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Pre-requisites: Centrality Characterization

“Participants”

— Au+Au
— Cu+Cu

| | |
100 '300 300 400 Neoll= # of NN collisions: ~A4/3

part “Collisions”

Number of participating nucleons from Glauber MC
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Pre-requisites: Hard vs Soft Hadron Production
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Hadron Multiplicities
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Au+Au :PRL 91,052303 (2003)
d+Au :PRL 93,082301 (2004)
Cu+Cu: QM 2005




Hadron Multiplicities
PHOBOS PRL 93,082301 (2004)

d+Au

PHOBOS PRL 93,082301 (2004)

T T
—PHOBOS d + Au + 0-20%
200 GeV © 20-40%

* 40-60%

s 60-80%

+ 80-100%

> Min-bias

/’
s ”
l’l
rd
<
s

/
y

'
T —
v < Nch>pp *<0.5N part>

5 10 15

o

< >
PHOBOS Npa,t

Shape changes dramatically  Multiplicity per participant
versus centrality IS constant
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Hadron Multiplicities
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Hadron_MuItlpllutles

Ratio of 0-6% and 35-40% centrality
Limiting Fragmentation bins, each normalized by Npart
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distributions is energy independent
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Mid-rapidity dN/dn vs Vs and e

Au+Au : nucl-ex/0509034, submitted to PRC

Cu+Cu: QM 2005
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preliminary
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dN/dn vs Vs and N
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Hadron Multiplicities

Initial State
Parton Saturation

N Low Energy

norm. dN/dn
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Armesto, Salgado, Wiedemann hep-ph/0407018

Also limiting fragmentation, N scaling

N

part

(c.f. Kharzeev, McLerran,Venugopalan, Jalilian-Marian, Nardi
et al)
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Hadron Multiplicities

Participant scaling of total multiplicities

* Global constraints over full n range

Slow growth of multiplicity with energy

e Saturation + LPHD?

Factorization of energy/centrality dependence
e Saturation +LPHD?

No modification during expansion/hadronization/recscattering?
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Hydrodynamic Evolution

Time
Transverse
Plane G

Reaction
plane

dN/d(¢ - ¥,) abitrary scale

° 03 _3 _2 -
Non-central collision: PHOBOS

Initial state eccentricity Momentum space
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Hydrodynamic Evolution

Phys. Rev. Lett. 86 (2001) 402

-

=T rTrrlrrrrror
STAR Au+Au 130 GeV

 I—
—— 1 7
——1 1

Hydro Calculation
Kolb, Heinz
H Phys Lett B459
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Elliptic Flow signal exhausts “hydro limit”
for mid-central to central collisions
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Hydrodynamic Evolution

Parton Cascade Hadron Cascade

HSD Calculation
pT>2 GeV/c

Molnar et al Cassing et al

Neither partonic nor hadronic cascades reproduce flow
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Hydrodynamic Evolution

PHENIX

(open symbols):
Phys. Rev. Lett. 91,
182301 (2003)

Aeuiwiaad ¥y1S

Rich structure vs mass (?) and pT

M. Oldenburg, STAR, QM2005
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Hydrodynamic Evolution

PHENIX

(open symbols):
Phys. Rev. Lett. 91,
182301 (2003)
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: : Pt M. Oldenburg, STAR, QM2005
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Hydrodynamic Evolution

AN 200 GeV Au+Au
Hydro model P ) Data: STAR, PHENIX

Hydro: P. Huovinen et al,,
Phys. Lett. B503, 58 (2001)
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Mass splitting at low pt understood in hydro calculations
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Hydrodynamic Evolution

19.6 GeV 62.4 GeV 130 GeV 200 GeV

Strong rapidity dependence of elliptic flow
Challenge to hydrodynamic calculations
Connection between flow and dN/dn

Au+Au: PHOBOS PRL 94 122303 (2005)
Cu+Cu: PHOBOS QM 2005
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Hydrodynamic Evolution
PHENIX nucl-ex/0411040

(a)

@ <p>=04GeVic s,y (GeV) S Nsuy V (PHENIX)

—A— <p>=0.75 GeVic 62.4 (open) S 16V (PHENIX)
o 130 (filled grey)
- <p==1.35GeVic 290 filled) —m— \[5,, = 17 GeV (CERES)

62 GeV.
ZOOGeV\.;-. ~
N

C

Saturation of v, (pT) above s = 62 GeV
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Hydrodynamic Evolution

Nucleus 1 Nucleus 2

PHOBOS Glauber MC '
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Interplay of initial geometry and initial density

Test ideas of early thermalization and collectivity
Supercomputing RHIC Physics, Mumbai, Dec ‘05




Hydrodynamic Evolution

PHOBOS 200 GeV
Statistical errors only

s v e /f\u+Au
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e
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Hydrodynamic Evolution

PHOBOS 200 GeV
Statistical errors only

® . ® Aut+Au

T _

. \S\
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Cu+Cu N

preliminary
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part

Geometrical initial state
350 400 eccentricity from
Glauber model

e e by by b
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=]

part
Surprisingly large flow signal
in Cu+Cu!
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Hydrodynamic Evolution

Nucleus A Nucleus B

Glauber model
of AuAu collision

Participant Nucleons

Using the impact parameter as the x-axis, we define the
standard eccentricity using the widths of the distribution in x and y




Hydrodynamic Evolution

este:ma:lan:l

Large fluctuations in Even bigger fluctuations in
eccentricity Cu+Cu

Many peripheral events with Glauber MC

negative eccentricity Calculations
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Hydrodynamic Evolution

Possibly reasonable method is to realign the coordinate system
to maximize the ellipsoidal shape (a principal axis transformation)

Nucleus 1

Nucleus 2

Participant

“Participant” eccentricity
(versus “standard” eccentricity)
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Hydrodynamic Evolution

Low Density Limit:
STAR, PRC 66 034904 (2002)
PHOBOS 130 GeV. Star Voloshin, Poskanzer, PLB 474 27 (2000)
prelimingry Heiselberg, Levy, PRC 59 2716, (1999)

B 200 GeV
0 200 GeV

" 130 GeV %
o B 200 GeV

US|ng O 200 GeV +
“Standard” . " 62.4 GeV ++JT]+Cu+Cu

= tricit +T oo
ccentricity | m@ " i

17 GeV, Na49

4 GeV, E&77

10 20
1/(S) (dN_ /dy) [fm™]

Surprisingly strong elliptic flow in Cu+Cu
Challenge to hydrodynamic picture??
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Hydrodynamic Evolution

Low Density Limit:
STAR, PRC 66 034904 (2002)
PHOBOS preliminary Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999)
200 GeV, tracks 130 GeV, Star

< 200 GEV.. hits 17 GeV, Nadg
130 GeV, hits
200 GeV, tracks

u Si N g o 200 GeV, hiils
. 62.4 GeV, hits l N
M |

4 GeV, E&YT

“Participant” % + )
Eccentricity | M £

10 20 30
1/(S) (dN_ /dy) [fm]

“Participant Eccentricity” provides universal scaling
Approach to equilibrium?

Cu+Cu: PHOBOS QM 2005
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Cu+Cu: PHOBOS QM 2005

Hydrodynamic Evolution

PHOBOS preliminary
,130 GeV, Star
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Will flow saturate at LHC as
thermalization is achieved!?
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Low Density Limit:
STAR, PRC 66 034904 (2002)
Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999)




Hydrodynamic Evolution

Large collective flow signal observed in Au+Au

Overall magnitude + mass splitting = hydro

Additional (geometrical?) azimuthal correlations in Cu+Cu
How is thermalization/pressure build-up achieved?

What are the (early) degrees of freedom?
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Event-by-Event Physics (ast century)

N “Normal

Quark-Gluon Plasma events”

® Temperature (MeV)

(=)

L _ .C{ical Point

XE-by-E

Hadron Gas
Enhanced Fluctuations

near Critical Point
Matter Density ug (GeV)

“Event-by-event Physics:

Search for critical phenomena

induced near phase transition/critical point R \/S
Stephanov, Wilczek
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Fluctuations and the QCD Phase Diagram

® Phase transition/Latent heat

Quark-Gluon Plasma - Supercooling Mishustin

= Droplet Formation

® Temperature (MeV)

(=)

= <pT>, Multiplicity Fluctuations

L _ .C{ical Point

® Location of critical point

] Rajagopal, Shuryak,
= <pT> Fluctuations Stephanov, Wilczek

Hadron Gas
® Deconfinement

Atomic Nuclei

i = Charge/DoF A JeonH, KOC:LI I
Matter Density ug (GeV) sakawa, Heinz,Mueller

= Charge Fluctuations

® Chiral Symmetry Restoration

Rajagopal, Wilczek

= DCC formation Bi
jorken

= Charge/neutral fluctuations
Supercomputing RHIC Physics, Mumbai, Dec ‘05
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Ratio N*/N"

Net Charge Fluctuations

* Net Charge/Ay Fluctuations <->

Charge/DoF

— Jeon, Koch hep-ph/0003168
— Asakawa, Heinz, Mueller hep/ph/0003169

— Change from to

* Fluctuations frozen b/c charge
conservation

— Diffusion vs Expansion timescale

e Fluctuations of NT/N- or N*T- N-

R I vs statistical reference

percomputing RHIC Physics, Mumbai, Dec ‘05




Net Charge Fluctuations

STAR PRC 68 (2003)  Inl < 0.7, 0.1 GeV/c < py

* 80 AGeV
v 30 AGeV
" 40 AGeV

Charge Conservation

130 GeV AutAu
HIJING

;

Resonance Gas

100 200 300 400 500 600 700 800 [

]
=
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I\
5% Central Au+Au ) 2TAR Preliminary

STAR |n|<0.5

CERES 2.0=v <29
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® Basic argument still appears valid

® Possible Explanations

Diffusion in long-lived hadronic phase?

Resonances?

A feature of hadronization?
Quark Coalescence!?
Bound states?

® Need connection to other data and QCD

Supercomputing RHIC Physics, Mumbai, Dec ‘05




<p7> Fluctuations

e PT -simple observable (supposedly...) NA49, Phys Lett B459 (1999) 679

e High statistical precision: 10*| Central Pb+Pb

s =172 GeV s

o OpT/<PT>jnc< 0.1%

e Sensitive to many interesting scenarios

|
0.4 0.5
M(p,) (GeVic)

Event-by-event <p+> compared to

stochastic reference (mixed events)
Supercomputing RHIC Physics, Mumbai, Dec ‘05




<p7> Fluctuations

PT - simple observable (supposedly...)
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o OpT/<PT>jnc< 0.1%
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Sensitive to many interesting scenarios
PHENIX: Au+Au 200GeV
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® Au+Au 0 - 5% Most Central
¥ CERES Pb+Pb

No evidence for non-monotonic energy dependence

Supercomputing RHIC Physics, Mumbai, Dec ‘05
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® Au+Au 0 - 5% Most Central
¥ CERES Pb+Pb

Normalization to <pT>
Normalization per particle
Linear or quadratic measures




all negatives, acceptance: 4 <y, < 5.5 and 0.005 < pt < 1.5 GeV/
NA49 preliminary

[NA49, PRC 70, 034902 (2004)] ¢

4 pip
* C+C
B Si+Si -
® Pb+Pb

— HIJING

<
-
gﬁ
=
S

Y

- Fluctuations and Percolation (Clustering) in small systems
- Connection to elliptic flow in Cu+Cu!?
- Connection to strangeness enhancement vs Npart?
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Search for “unusual’ events in Au+Au

Total Multiplicity Fluctuations Shape Fluctuations

—— Data
Au+Au 200 GeV
Phobos
— 2M MInBias Preliminary

—— 2M 3% central (scaled)

-
<

3
QIIIIIIII T IIIII|T| T IIIIIII| T IIIII|T| T IIIIIII| T IIIIIII| T

—— Random events 7

—
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]

Au+Au 200 GeV 0-3% Central
PHOBOS Preliminary

Frequency of events
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1 [ 1 1 | 1 1 1 1 | 4 4 4 4 | 4
2000 3000 4000 5000
Total # of hits

I
1000

Multiplicity distribution and 2 (shape) distribution
shows distinct tails - O(IO'4)
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Total Multiplicity Fluctuations Shape Fluctuations

0.0006— 0.0004

Au+Au 200 GeV 3% central

Au+Au 200 GeV 3% central + Phobos preliminary

Phobos preliminary

Events with large number of hits Events with unusual shape y2>3

o\

[ A A R Y A A AT N A

Fraction of strange events

2
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L.

1 1 | 1 1 1 1 | 1 1 1 1 | 1 L 1 1 1 1 1 | 1 I 1 I | 1 1 1 1 | 1 1 1
500 1000 1500 500 1000 1500
Product of beam currents Product of beam currents

Rate of unusual events correlates with ‘luminosity’ -
Consistent with collision-pileup as source of rare events
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E-by-E fluctuations in the K/m ratio

® |[s strangeness enhanced in every event!

e Can we see signs of super-cooling below T ¢!

NA49 Measurement
- Use dE/dx to identify =, K,p event-by-event

- Do Max Likelihood fit to extract K/x ratio event-
by-event

- Required 2 years of detector calibation to
eliminate dE/dx — multiplicity correlation

T —

Supercomputing RHIC Physics, Mumbai, Dec ‘05




E-by-E fluctuations in the K/ ratio Pb+Pb, 17.2 GeV
NA49, PRL 86 (2001) 1965

Excluded at 90 % conf. level
¢ Data

— Mixed Events

Frequency F

5

N
ﬁiﬂ(\T 04

§
0.1 2 .
Single Event K/7 ratio

10"
Amplitude G

Dynamical fluctuations are small ( < ~5%)
Compatible with resonance gas (Jeon, Koch; nuclth/9906074)
Strangeness enhancement in every event

Chemical freeze-out at same T in every event
Supercomputing RHIC Physics, Mumbai, Dec ‘05




Strangeness Fluctuations vs Vs

NA49 (QM04)

3
@ | (K" + K)/(m*+ )
'-.'--llc2 8? - ° Data —— mixed events
E i s UrQMD v1.3 o data
_3_ 6f ' 1 Oy = 17.78%
L i Opineg = 17.23%
. *
e 2-
Z [ NA49 preliminary
I N R B
0 5 10 15 20 :
sqri(s)

Fluctuations in
K/pi ratio

Rajagopal, Stephanov: Compatible with constant correlation strength
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Event-by-Event fluctuations

p fluctuations show ‘smooth’ Vs dependence

* no 20, 30 GeV data yet
Fluctuations small in central events at top SPS energy + above
Energy dependence of k/pi fluctuations!?

Multiplicity + p fluctuations for peripheral events?

Supercomputing RHIC Physics, Mumbai, Dec ‘05




Fluctuations at RHIC

alle

Quark-Gluon Plasma Close to HB o= O axis

Cross-over?
Far from critical point?

D Temperature (MeV)

o

Critical Point

- - - gCitic

=>Fluctuations not induced by
Hadron Gas g phase-change itself?

Atomic Nuclei

Matter Density ug (GeV)
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An Evolving Paradigm

® Event-by-Event Physics

= Critical phenomena (1990s)

= Fluctuations of conserved quantities (2000)
® Fluctuations and Correlations

= Connection between correlations and
fluctuations (Koch, Bialas ‘98)

® Study transport properties of the medium
® Approach to thermalization

® Properties of Hadronization

Supercomputing RHIC Physics, Mumbai, Dec ‘05




Forward/backward
multiplicity correlations

Use variance

Supercomputing RHIC Physics, Mum}
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Clusters and 0‘2C

Forward/backward correlations give access

to cluster structure of particle production
Supercomputing RHIC Physics, Mumbai, Dec ‘05
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Data
HIJING
AMPT

.
e O

O
PHOBOS 200 GeV

(AutAu preliminary 7 = 2.0

0.5 1 1.5 2

- @] Data

HIJING

SO O AMPT

PHOBOS 200 GeV

Au+AL|| preliminarly =

Forward/backward correlations suggest
effective cluster size = 2-2.5 for 200 GeV Aut+Au
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UADS: Phys.LettB123:361,1983

tal '

Keff

=
o
Q w

20< fiyps < 30

I
O

< Cplyym,)xin-1) >
&)

Clusters in Aut+Au reminiscent
of results from p+p
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Correlation Probes of the Medium

S
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Correlation Probes of the Medium

e ———

Vacuum Static medium: Flowing medium:
(reference) Broadening Anisotropic shape

Armesto et al, nucl-ex/0405301




Correlations at ‘high” p

In| < 0.7, 4 GeV/c < PTtrig < 6 GeV/c, 2 < Prasso < PTtrig

o d+Au FTPC-Au 0-20%

k- —— p+p min. bias ié\-{—nn

* Au+Au Central

—
‘o
=
e
—
=
e
)
(=]
o
=
=
—
-

Leading Particle STAR PRL (2003)

Relative to trigger particle:
- Jet-like near-side correlations visible in Au+Au

- Away-side correlations disappear for central Au+Au
Supercomputing RHIC Physics, Mumbai, Dec ‘05
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(a) 0-5%

(b) 5-10%

(c) 10-20%

(e) 40-60%

ba=pm=pe=po=pmmpmmrmy= [y pp——

TH8 87

[

(f) 60-90%

Near sid

05 1 15 2
A ¢ (rad)

25 3

)
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Cone-
Structure?

Sonic shock waves
Stoecker, nucl-th0406018
Casalderrey,Shuryak, Teaney,
hep-ph/0411315




Dainese, Loizides and Paic

Au+Au, 20-40% Au+Au, 0-5%

STAR QM 05
D. Magestro

8 < pT(trig) <15 GeVic
pT(assoc) > 8 GeV/c
Back-to-back jets re-appear at sufficiently high pT

Fragmentation of observed jets similar in A+A, p+p

Surface emission!?
Supercomputing RHIC Physics, Mumbai, Dec ‘05
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Two-particle angular correlations show rich
structure at low to moderate p (~GeV/c)
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From p+p to AutAu

Evolution of Structure
from p+p to
central AutAu

RPN EY o — N SFR PN EN Y T

0 T2
J. Adams et al. (ST%R),
@ yucl-ex/0411003.

. "-‘?\\*\mﬁ -
g
Al

"\“ ”&1\\\

&bl Bt e

|

b L3 b = 0 = b 3 e U 2N

Supercomputing RHIC Physics, Mumbai, Dec ‘05



Correlation Probes of the Medium
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Momentum Correlations at RHIC

o(p, 1) Subtract fragmentation peak to
o ) 70-80% _

* look at medium
2 o € \
U 0.004

parton fragments

S So
5 =
S==

1=}
N
wn

o
i
2
00
2o
X
2
goo
~
Q
<

bulk medium

Ap ! Pp,; (GeV/e)

STAR preliminary

“Minijets: velocity/temperature correlation structures on (1n,$)”
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Correlations in Transport Models

cut on initial parton py
23 [ | | pTit, [:.I.|2::- 2GeV
2 | f\ = 4GeV
= BGeV

dM/d delta phi

2 3 4
delta phi [rad]

e This is the first study of jet correlations that treats the bulk sector and
jets in the same framework. The results are encouraging but need several
improvements:

- add soft partons (“push” effect will contribute)

- study centrality, particle type dependence (higher statistics)
- include hadronization (coalescence, fragmentation)

- extend to radiative processes, coherence

- could also study other correlations, e.g., Mach cone ...
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Summary

® Evolving experimental + theoretical program

‘Global’ scaling rules
Collective flow
Search for critical phenomena
Connection of correlations + fluctuations
Interaction of perturbations with medium

Initial entropy production

Fluctuations in small systems!?

Thermalization: How and what!?

What is the role of hadronization?
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Net Charge, and K/st Fluctuations

Instead of measuring the variance of a yield ratio,
n . (Ar,)°) _ (An,)*) + (An,)*) _9 (An,An, )

I, =

n, <’iz>2 i <n1>2 <n2>2 (n,Xn,)

Study the “dynamical fluctuations”:

y =<(nl_n2\>_1_
2o I\ () () | () ()

Side Note: D= (nl + n2><(A”12 )2>

<p¢> Fluctuations

1 N gvent C
<Apt,lApt,2>= N E N -

event k=1

i=1 j=1,i=j
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