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L~A1/3

Ncoll= # of NN collisions: ~A4/3

Npart/2 ~ A

“Participants”

“Collisions”

PHOBOS 
Glauber 

MC
Au+Au

Cu+Cu

Pre-requisites: Centrality Characterization

Number of participating nucleons from Glauber MC 
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I. Vitev

Pre-requisites: Hard vs Soft Hadron Production

Fast rise of high pT yields 
from hard collisions

Central A+A

Energy Density

ε ≥ 1 GeV/fm3 

Logarithmic rise of 
particle (≈energy) density
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Hadron Multiplicities
19.6 GeV 62.4 GeV 130 GeV 200 GeV

Cu+Cu

d+Au

Au+Au

preliminary

preliminary preliminary

PHOBOS

Au+Au : PRL  91, 052303 (2003)
d+Au   : PRL 93, 082301 (2004)
Cu+Cu: QM 2005
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Shape changes dramatically
versus centrality

Hadron Multiplicities

PHOBOS preliminary

PHOBOS PRL 93, 082301 (2004)

d+Au

PHOBOS

<Nch>pp *<0.5Npart>

Multiplicity per participant
is constant

PHOBOS PRL 93, 082301 (2004)
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Shape changes dramatically
versus centrality

Hadron Multiplicities

Multiplicity per participant
is constant
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200 GeV

Pseudorapidity

19.6 GeV

central

peripheral

central

peripheral

200 GeV

130 GeV

19.6 GeV

Au+Au

<Nch>e+e-*<0.5Npart>

Au+Au
PHOBOS PRL  91, 052303 (2003) PHOBOS PRL  91, 052303 (2003)
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Hadron Multiplicities
Ratio of 0-6% and 35-40% centrality 
bins, each normalized by Npart

PHOBOS

preliminary

Au+Au

35-40%
0-6%

Au+Au
0-6% 

Au+Au
35-40% 

200GeV
130GeV
62.4 GeV (prel)
19.6 GeV

200GeV
130GeV
62.4 GeV (prel)
19.6 GeV

Shape change of longitudinal 
distributions is energy independent

Limiting Fragmentation
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Centrality

Energy (GeV)

dN
/d
η/

<0
.5*

N p
art

> 200 GeV

130 GeV

62.4 GeV

19.6 GeV

Mid-rapidity dN/dη vs √s and Npart

PHOBOS

Au+Au

PHOBOS

Cu+Cu
preliminary

Au+Au : nucl-ex/0509034, submitted to PRC
Cu+Cu: QM 2005



Supercomputing RHIC Physics, Mumbai, Dec ‘05

dN/dη vs √s and Npart
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Initial State
Parton Saturation

Low Energy

High Energy

Hadron Multiplicities

Armesto, Salgado, Wiedemann hep-ph/0407018

Centrality

no
rm

. d
N

/d
η

Energy (GeV)
Centrality

no
rm

. d
N

/d
η

Energy (GeV)

Also limiting fragmentation, Npart scaling 

(c.f. Kharzeev, McLerran, Venugopalan, Jalilian-Marian, Nardi 
et al)
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Hadron Multiplicities

• Participant scaling of  total multiplicities

• Global constraints over full η range

• Slow growth of multiplicity with energy

• Saturation + LPHD?

• Factorization of energy/centrality dependence

• Saturation +LPHD?

• No modification during expansion/hadronization/recscattering? 
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Non-central collision:
Initial state eccentricity

Hydrodynamic Evolution
Time

Transverse
 Plane

Azimuthal Angle (rad)

Momentum space
anisotropy

2*v2

PHOBOS



Supercomputing RHIC Physics, Mumbai, Dec ‘05

Geometrical initial state 
eccentricity from 
Glauber model

Hydrodynamic Evolution

Elliptic Flow signal exhausts “hydro limit”
for mid-central to central collisions

STAR Au+Au 130 GeV

Hydro Calculation
Kolb, Heinz

Phys Lett B459

 Phys. Rev. Lett. 86 (2001) 402

Centrality
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 Molnar et al 

<v
2>

pT (GeV/c)

HSD Calculation
pT>2 GeV/c

Parton Cascade Hadron Cascade

 Cassing et al 

“Elliptic Flow”

Hydrodynamic Evolution

Neither partonic nor hadronic cascades reproduce flow
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Hydrodynamic Evolution

PHENIX 
(open symbols): 
Phys. Rev. Lett. 91, 
182301 (2003)

Rich structure vs mass (?) and pT

M. Oldenburg, STAR, QM2005

200 GeV
Au+Au

Baryons

Mesons
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Hydrodynamic Evolution

200 GeV
Au+Au

PHENIX 
(open symbols): 
Phys. Rev. Lett. 91, 
182301 (2003)

Quark-number
scaling

Text
Mass

scaling

M. Oldenburg, STAR, QM2005
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Hydrodynamic EvolutionHydrodynamic Evolution

200 GeV Au+Au
Data: STAR, PHENIX

Hydro: P. Huovinen et al., 
Phys. Lett. B503, 58 (2001)

Mass splitting at low pT understood in hydro calculations
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“Elliptic Flow”

Au+Au

19.6 GeV 62.4 GeV 130 GeV 200 GeV

preliminarypreliminary

PHOBOS

Cu+Cu

Au+Au: PHOBOS PRL 94 122303 (2005) 
Cu+Cu: PHOBOS QM 2005

Strong rapidity dependence of elliptic flow
Challenge to hydrodynamic calculations
Connection between flow and dN/dη 

Hydrodynamic Evolution
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“Elliptic Flow”

Hydrodynamic Evolution
PHENIX nucl-ex/0411040

62 GeV
200GeV 

17.2 GeV

Saturation of v2(pT) above √s ≈ 62 GeV
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Hydrodynamic EvolutionHydrodynamic Evolution

PHOBOS Glauber MC

Au+Au vs Cu+Cu
Interplay of initial geometry and initial density
Test ideas of early thermalization and collectivity

wrt reaction plane

22

22

xy

xy

σσ

σσ
ε

+

−
=

x

y Nucleus 2Nucleus 1

Participant
Region

Au+Au

Cu+Cu
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preliminary

PHOBOS 200 GeV  h±

Statistical errors only

Cu+Cu
preliminary

PHOBOS  200 GeV  
Statistical errors only

v2 near mid-rapidity

Geometrical initial state 
eccentricity from 
Glauber model

Au+Au

Hydrodynamic EvolutionHydrodynamic Evolution
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preliminary

PHOBOS 200 GeV  h±

Statistical errors only

Cu+Cu
preliminary

PHOBOS  200 GeV  
Statistical errors only

v2 near mid-rapidity

Geometrical initial state 
eccentricity from 
Glauber model

Au+Au

Surprisingly large flow signal 
in Cu+Cu!

Hydrodynamic Evolution
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Nucleus A Nucleus B

Participant Nucleons

Glauber model 
of AuAu collision:

b

Using the impact parameter as the x-axis, we define the 
standard eccentricity using the widths of the distribution in  x and y 

22

22

xy

xy

σσ

σσ
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+

−
=

σy2

σx2

Hydrodynamic EvolutionHydrodynamic Evolution
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Hydrodynamic Evolution

Au+Au

Large fluctuations in 
eccentricity

Many peripheral events with 
negative eccentricity 

Cu+Cu

Even bigger fluctuations in 
Cu+Cu

Hydrodynamic Evolution

Glauber MC 
Calculations
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Nucleus 1

Nucleus 2

Participant 
Region

x

y
b

Possibly reasonable method is to realign the coordinate system
to maximize the ellipsoidal shape (a principal axis transformation)

“Participant” eccentricity
(versus “standard” eccentricity)

Hydrodynamic EvolutionHydrodynamic Evolution
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Cu+Cu

Au+Au

Low Density Limit:
STAR, PRC 66 034904 (2002)

Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999) 

Surprisingly strong elliptic flow in Cu+Cu
Challenge to hydrodynamic picture??

Cu+Cu: PHOBOS QM 2005

Hydrodynamic EvolutionHydrodynamic Evolution

using 
“Standard”
Eccentricity
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Cu+Cu

Au+Au

Low Density Limit:
STAR, PRC 66 034904 (2002)

Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999) 

“Participant Eccentricity” provides universal scaling
Approach to equilibrium? 

Cu+Cu: PHOBOS QM 2005

Hydrodynamic EvolutionHydrodynamic Evolution

“Hydro-Limit”using 
“Participant”
Eccentricity
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LHC

Cu+Cu

Au+Au

Low Density Limit:
STAR, PRC 66 034904 (2002)

Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999) 

Will flow saturate at LHC as 
thermalization is achieved?

Cu+Cu: PHOBOS QM 2005

Hydrodynamic EvolutionHydrodynamic Evolution
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• Large collective flow signal observed in Au+Au

• Overall magnitude + mass splitting ≈ hydro

• Additional (geometrical?) azimuthal correlations in Cu+Cu

• How is thermalization/pressure build-up achieved?

• What are the (early) degrees of freedom?

Hydrodynamic EvolutionHydrodynamic Evolution
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Event-by-Event Physics (last century)

Matter Density µB (GeV)
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Quark-Gluon Plasma

Hadron Gas

Phase Boundary

0

200

0

Atomic Nuclei

1

Critical Point

“Event-by-event Physics”:   
Search for critical phenomena 
induced near phase transition/critical point

XE-by-E

Nevent

“Special 
events”

“Normal 
events”

Stock

√s

<(X - <X>)2> Enhanced Fluctuations
near Critical Point

Rajagopal, Shuryak,
Stephanov, Wilczek
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Fluctuations and the QCD Phase Diagram

Matter Density µB (GeV)

Te
m

pe
ra

tu
re

 (M
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Quark-Gluon Plasma

Hadron Gas

Phase Boundary

0

200

0

Atomic Nuclei

1

Critical Point

• Phase transition/Latent heat

- Supercooling

- Droplet Formation

- <pT>, Multiplicity Fluctuations

• Location of critical point

- <pT> Fluctuations

• Deconfinement

- Charge/DoF

- Charge Fluctuations

• Chiral Symmetry Restoration

- DCC formation

- Charge/neutral fluctuations

Mishustin

Jeon, Koch
Asakawa, Heinz,Mueller 

Rajagopal, Wilczek
Bjorken

Rajagopal, Shuryak, 
Stephanov, Wilczek
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• Net Charge/Δy Fluctuations <-> 
Charge/DoF
– Jeon, Koch hep-ph/0003168
– Asakawa, Heinz, Mueller hep/ph/0003169

– Change from 1-2 (QGP) to 4 (Pion Gas)

• Fluctuations frozen b/c charge 
conservation

– Diffusion vs Expansion timescale

• Fluctuations of N+/N- or N+- N- 
vs statistical reference

Ratio N+/N-

Net Charge N+ - N-

Net Charge Fluctuations 
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Net Charge Fluctuations 
STAR PRC 68 (2003) 

Charge Conservation

Resonance Gas

HIJING

P130 GeV Au+Au

|η| < 0.7, 0.1 GeV/c < pT

Quark-
Coalescence

Bialas, 2003
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Net Charge Fluctuations vs √s 

QGP

?
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Is this a Problem?

• Basic argument still appears valid

• Possible Explanations

- Diffusion in long-lived hadronic phase?

- Resonances?

- A feature of hadronization?

- Quark Coalescence?

- Bound states?

• Need connection to other data and QCD

?
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 <pT> Fluctuations

● pT  - simple observable (supposedly...) 

● High statistical precision: 

● σpT/<pT>inc< 0.1%

● Sensitive to many interesting scenarios

● Critical Point

● DCC production

● Droplet formation

● Any non-statistical, 
momentum-localized process

NA49, Phys Lett B459 (1999) 679

Event-by-event <pT> compared to 

stochastic reference (mixed events)

Central Pb+Pb
√s = 17.2 GeV
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 <pT> Fluctuations

● pT  - simple observable (supposedly...) 

● High statistical precision: 

● σpT/<pT>inc< 0.1%

● Sensitive to many interesting scenarios

● Critical Point

● DCC production

● Droplet formation

● Any non-statistical, 
momentum-localized process

PHENIX: Au+Au 200GeV 
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Energy Dependence?

STAR

No evidence for non-monotonic energy dependence
But: Interpretation ⇔ choice of variables
Non-monotonic system-size dependence



STAR preliminary

CERES 

STAR 

centrality

STAR

Normalization to <pT>
Normalization per particle
Linear or quadratic measures

STAR
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Fluctuations for small systems

NA49 preliminary[NA49, PRC 70, 034902 (2004)]

all negatives, acceptance: 4 < yπ < 5.5 and 0.005 < pt < 1.5 GeV/
c

- Fluctuations and Percolation (Clustering) in small systems
- Connection to elliptic flow in Cu+Cu?
- Connection to strangeness enhancement vs Npart?

Text
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Search for “unusual” events in Au+Au

Multiplicity distribution and χ2 (shape) distribution 
shows distinct tails  - O(10-4)

200 Events

Total Multiplicity Fluctuations Shape Fluctuations

2M Events

Fr
eq

ue
nc

y 
of

 e
ve

nt
s
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Rate of unusual events correlates with ‘luminosity’ - 
Consistent with collision-pileup as source of rare events

Shape FluctuationsTotal Multiplicity Fluctuations
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E-by-E fluctuations in the K/π ratio

- Use dE/dx to identify π,K,p event-by-event

- Do Max Likelihood fit to extract K/π ratio event-
by-event

- Required 2 years of detector calibation to 
eliminate dE/dx – multiplicity correlation

T

K/π

NA49 Measurement

• Is strangeness enhanced in every event?

• Can we see signs of super-cooling below Tcrit?
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E-by-E fluctuations in the K/π ratio

• Dynamical fluctuations are small ( < ~5%) 
• Compatible with resonance gas (Jeon, Koch; nuclth/9906074)

• Strangeness enhancement in every event 
• Chemical freeze-out at same T in every event

Pb+Pb, 17.2 GeV
NA49, PRL 86 (2001) 1965
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Strangeness Fluctuations vs √s 
NA49 ‘Horn’

preliminaryNA49

Fluctuations in 
K/pi ratio

NA49 (QM’04)

Rajagopal, Stephanov: Compatible with constant correlation strength
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• pT fluctuations show ‘smooth’ √s dependence

• no 20, 30 GeV data yet

• Fluctuations small  in central events at top SPS energy + above

• Energy dependence of k/pi fluctuations?

• Multiplicity + pT fluctuations for peripheral events?

Event-by-Event fluctuations 
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Fluctuations at RHIC

Matter Density µB (GeV)

Te
m

pe
ra
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Quark-Gluon Plasma

Hadron Gas

Phase Boundary

0

200

0

Atomic Nuclei

1

Critical Point

RHIC

Close to μB ~ 0 axis

Cross-over?
Far from critical point?

=>Fluctuations not induced by 
phase-change itself?
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An Evolving Paradigm

• Event-by-Event Physics

- Critical phenomena (1990s)  

- Fluctuations of conserved quantities (2000)

• Fluctuations and Correlations

- Connection between correlations and 
fluctuations (Koch, Bialas ‘98) 

• Study transport properties of the medium

• Approach to thermalization

• Properties of Hadronization



Supercomputing RHIC Physics, Mumbai, Dec ‘05

Forward/backward 
multiplicity correlations

Use variance σ2
C

P-N

P

N
P+N

(Impact parameter)

(Partitioning)

PN
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Clusters and σ2C

PN

Forward/backward correlations give access 
to cluster structure of particle production



Supercomputing RHIC Physics, Mumbai, Dec ‘05

Cluster-size from F/B fluctuations

40-60% peripheral 0-20% central

PHOBOS 200 GeV
Au+Au preliminary

PHOBOS 200 GeV
Au+Au preliminary

Forward/backward correlations suggest 
effective cluster size ≈ 2-2.5 for 200 GeV Au+Au
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Clusters in p+p

546 GeV
P+N

UA5: Phys.Lett.B123:361,1983

Keff

Clusters in Au+Au reminiscent 
of results from p+p



Supercomputing RHIC Physics, Mumbai, Dec ‘05

Probe

Time

Correlation Probes of the Medium
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Time

Armesto et al, nucl-ex/0405301

Correlation Probes of the Medium
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Correlations at ‘high’ pT

Relative to trigger particle:
- Jet-like near-side correlations visible in Au+Au
- Away-side correlations disappear for central Au+Au

Hadrons

q

q

Hadrons

Leading Particle

|η| < 0.7, 4 GeV/c < pTtrig < 6 GeV/c, 2 < pTAsso < pTtrig

STAR PRL (2003)
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Correlations at not-so-high pT

Cone-
Structure?

Near side
Away side

PHENIX, ICPAQGP ‘05

cos(θ)=cs

Sonic shock waves
Stoecker, nucl-th0406018
Casalderrey,Shuryak,Teaney,
hep-ph/0411315
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Back-to-back jets re-appear at sufficiently high pT
Fragmentation of observed jets similar in A+A, p+p

Surface emission?

STAR QM ’05
D. Magestro

8 < pT(trig) < 15 GeV/c
pT(assoc) > 8 GeV/c

Dainese, Loizides and Paic
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Seeing partons at high pT

STAR
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p-p 200 GeV

STAR preliminary

Soft Look at Partons 

Two-particle angular correlations show rich 
structure at low to moderate pT (~GeV/c)

Tom Trainor, STAR



Supercomputing RHIC Physics, Mumbai, Dec ‘05

From p+p to Au+Au

Centra
l

Perip
heral

All Charges

J. Adams et al. (STAR),
nucl-ex/0411003.

p-p 200 GeV

STAR preliminary

Evolution of Structure 
from p+p to 

central Au+Au
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Correlation Probes of the Medium

Time
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“Minijets: velocity/temperature correlation structures on (η,φ)”

ηΔ
φΔ

70-80%

20-30%

0-5%
centrality

STAR preliminary

Momentum Correlations at RHIC

parton fragments

bulk medium

Subtract fragmentation peak to
 look at medium

 Tom Trainor, STAR, Bad Liebenzell, Oct ‘05
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Correlations in Transport Models

Denes Molnar,
BNL workshop

June ‘05

STAR

Data
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Summary

• Evolving experimental + theoretical program

- ‘Global’ scaling rules

- Collective flow 

- Search for critical phenomena

- Connection of correlations + fluctuations 

- Interaction of perturbations with medium

• Initial entropy production

• Fluctuations in small systems?

• Thermalization: How and what?

• What is the role of hadronization?
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Net Charge, and K/π Fluctuations
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Instead of measuring the variance of a yield ratio,

D ≡ 〈n1 + n2 〉 〈(Δr12 )
2 〉

Study the “dynamical fluctuations”:

Side Note:
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<pt> Fluctuations



Supercomputing RHIC Physics, Mumbai, Dec ‘05

v2 vs pT

RHIC

SPS+

<pT> vs √s

v2(η’) vs √sdN/dη’ vs √s

PHENIX nucl-ex/0411040

PHOBOS

62 GeV
200GeV 

17.2 GeV


