QUARKONIA PRODUCTION AT RHIC Cesar Luiz da Silva Iowa State University for the PHENIX Collaboration

PH^{*}ENIX

Hot and Dense Matter in RHIC LHC era Mumbai Fev/2008

The Importance of the Quarkonia

2285 papers with J/ψ in the title according to SPIRES

	Mass	radius
π	0.14 GeV	0.06fm
р	0.94 GeV	0.87fm
Ψ΄	3.68 GeV	0.90fm
Хс	3.53 GeV	0.72fm
J/ψ	3.1 GeV	0.50fm
Υ	9.5 GeV	0.28fm

 $\Lambda_{QCD} \sim 200 \text{ MeV}$ $\alpha_s(M_Q) \leftrightarrow 1$

weak coupling with light mesons
small size

strong biding

All these features make quarkonia an excellent QCD probe.

The complete quarkonia dissociation could serves as a QGP thermometer.

Quarkonia Production in p+p collisions

Non-relativistic QCD (NRQCD): $\sigma(\hat{s}, Q^2) = \sum_{n} \frac{C_n(\Lambda)}{m^{d_n-4}} \langle \mathcal{O}_n^H(\Lambda) \rangle$ Formation of (ccg)₈ PLB167 (1986) 437, PRD43 (1991) 196, empirical agree with p+p PRD51 (1995) 1125.

Color Evaporation Model (CEM): $\sigma(S_{NN}, Q^2) = F_H \int_{2m_c}^{2m_D} d\widehat{s} \frac{d\sigma(\widehat{s}, Q^2)}{d\widehat{s}}$ data. Int. J. Mod. Phys. A 10 (1995) 3043 empirical $2m_c$

Screening in Colored Matter

Recombination and Coalescence

 $\sigma_{c\bar{c}} = \sigma(p + p \rightarrow c\bar{c} + X) = \begin{cases} 567\pm57(\text{stat})\pm224(\text{sys}) \ \mu\text{b} \ @ \ \text{PHENIX} \ [\text{PRL97} \ (2006) \ 252002] \\ 256 \ +400-146 \ \mu\text{b} \ \text{by} \ \text{FONLL} \end{cases}$

The charm cross section scales with binary scaling [PRL94 (2005) 082301]. Thus, the average number of $c\bar{c}$ pairs is: p+p

$$\langle N_{c\bar{c}} \rangle = N_{coll} \frac{\sigma_{c\bar{c}}^{p+p}}{\sigma_{inel.}^{p+p}}$$

Using PHENIX $\sigma_{c\bar{c}}$, σ_{pp} =42 mb and 1000 binary collisions in very central Au+Au collisions we find 13±7 c \bar{c} pairs per event. Number of J/ ψ s produced by recombination of charms : $N_{J/\psi} \propto \frac{N_{c\bar{c}}^2}{N}$

The charmonium recombination may be a important source of final $J^{\prime}\psi$ yield at

RHIC.

PHENIX Measures Electrons and Muons

- |η|<0.35 • $\Delta \phi = 2 \times \pi/2$
- eID: EmCal and RICH

- $\Delta \phi = 2\pi$
- Muon $|\mathbf{p}| > 2 \text{ GeV/c}$
- muon tracking
- 4 hadron absorbers in MuID
- common accepted $\pi/\mu \sim 10-4$

STAR Measures Electrons

- ●|η|<1, 0<φ<2π
- Events are triggered by EmCal (p_T>5 GeV/c)

Measuring $J/\psi s$

Determining Centrality

Centrality determined by Zero Degree Calorimeter($|\eta|$ >6) and Beam Beam Counter (3.0< $|\eta|$ <3.9)

p+p Data

14

A+A Data

RAA VS PT

Au+Au @ $s^{1/2} = 200 \text{ GeV}$

No strong messages from this side.

More data coming soon to have a complete R_{AA} centrality p_T picture.

Extrapolation of d+Au cold nuclear matter effects to Cu+Cu and Au+Au results

f_{dAu}= breakup cross section

arxiv:0801.0220

there is a large room for CNM effects
anomalous suppression is considerable at least at forward rapidity
but the CNM is not enough constrained yet for a serious calculation of anomalous suppression R_{AA}/CNM

see Raphael's talk

Comparison with SPS

Recombination/Coalescence Probe I

- Cronin effect broaden the p_T of primary $J/\psi s$
- •J/ψs from recombined charms are not affected by Cronin effect and p_T^2 should be flat

 \bullet p_T broadening observed at forward rapidity but not at mid-rapidity

but there is no broadening in d+Au data neither at mid-rapidity

again, we need more d+Au to confirm this trend C.L.Silva Recombination/Coalescence Probe II

eprimary J/ψs has isotropic behavior

open charms flow (see A. Dion's presentation)

J/ψs from these charms will show similar flow

epartial data from last Au+Au run doesn't provide any hint for now
be patient, remember the first PHENIX $J/\psi R_{AA}$ measurement?

(Non-)Perturbative Gauge

Polarization measurement $N(\theta) = A[1+\lambda.cos^2\theta]$ $\theta \equiv$ angle btw. e⁺ and J/ ψ directions in it rest frame

B. L. Ioffe, D. E. Kharzeev, PRC68, 061902 (2003) non-perturbative effects in J/ψ production leads to unpolarization perturbative behavior leads to a polarized J/ψ deconfined matter wash out non-perturbative effects in J/ψ and result in non zero polarization for $p_T \sim 0$ in Au+Au collisions one needs precise measurement of polarization evolution in Au+Au, d+Au and p+p

First measurement of Ys in A+A collision so far

nuclear modification matter much easier to interpret

less shadowing (CNM)

negligible recombination

evertheless, dissociation occur only for T/Tc>3 for

 Υs and ~1.6 for $\Upsilon '$

Detectors Upgrades PHENIX STAR

Silicon Vertex Detector

- will improve S/B
- precise measurement of $B \rightarrow J/\psi$
- Nose Cone Calorimeter
- Iarge coverage for γ
- ■larger acceptance for $\chi_c \rightarrow J/\psi + \gamma$

Forward Tracker
 measures J/ψ at forward rapidity
 Compact Muon Detector

- measurement of $\Upsilon \rightarrow \mu^{+}\mu^{-}$
- DAQ upgrate
- take advantage of higher luminosities

Stochastic cooling at RHIC will provide an order of magnitude higher luminosity in few years

Detectors Upgrades STAR

Silicon Vertex Detector

- will improve S/B
- precise measurement of $B \rightarrow J/\psi$
- Nose Cone Calorimeter
- Iarge coverage for γ
- larger acceptance for $\chi_c \rightarrow J/\psi + \gamma$

Forward Tracker
 measures J/ψ at forward rapidity

Compact Muon Detector

- measurement of Υ→µ⁺µ⁻
- DAQ upgrate
- take advantage of higher luminosities

Stochastic cooling at RHIC will provide an order of magnitude higher luminosity in few years

Current Status and Outlook

- suppression as a hot and dense matter thermometer
- in the experimental side the suppression has been measured but we are still learning it components: CNM, recombination, feed down
- R_{AA} measurement is not sufficient to separate the suppression components
- other measurements which are on the way:
 - extended momentum distributions
 - elliptic flow
 - o polarization
- suppression of excited states needs detector upgrades
- Y suppression measurement seems feasible in a short term

BACKUP SLIDES

Cold Nuclear Effects

PDF modification in nucleus from DGLAP evolution equations fits to DIS and Drell-Yan data.[Nucl.Phys.B535(1998)351]

 $(ccg)_{8} \text{ formation } \frac{x}{\tau_{c}} \approx \hbar/2m_{c} \approx 0.07 \text{ fm/c} \leftarrow Color \text{ neutralization } \frac{\pi}{\tau_{e}} \approx \hbar/\sqrt{2m_{c}\Lambda_{QCD}} \approx 0.25 \text{ fm/c}$ Path @ RHIC : $d_{8}(x_{F} \sim 0) \approx 26 \text{ fm} \quad R_{Au} = 6.38 \text{ fm}$

 $x_{F}=x_{1}-x_{2}$ x_{1} x_{2} x_{1} x_{1} x_{2} x_{1} x_{1} x_{2} x_{1} x_{1} x_{2} x_{1} x_{2}

Quarkonia formation doesn't scale with number of collisions due to :

- different parton distribution
- → dissociation with hadrons $(J/\psi+\pi->D^++D^-)$

🗕 energy loss

Cold Nuclear Effects II

Quarkonia Production in Tevatron

$d+Au \rightarrow J/\psi$

EKS: K. J. Eskola et al., Nucl. Phys. A696, 729 (2001)
 NDSG: D. deFlorian and R. Sassot, Phys. Rev. D 69, 074028(2004).

Modest absorption at RHIC energies. Brand new d+Au data with 30x more statistics will constrain CNM models.

Sequential Screening

Models to Au+Au collisions

22

ratio vpr2> is obtained directly to invariant pr spectra for different centralities.
Only pr < 5 GeV/c was accounted for in this calculation.</pre>