

Measuring Viscosity at RHIC

Sean Gavin

Wayne State University

I. Radial flow fluctuations: dissipated by shear viscosity
II. Contribution to transverse momentum correlations
III. Implications of current fluctuation data
S.G., M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)

IV. untriggered correlations in $(\eta, \phi) \rightarrow$ theoretical uncertainties S.G., G. Moschelli -- in progress

Shear Viscosity Measurements

- **consensus:** viscosity is extremely small
- light quark v₂ only a **bound** -- ideal hydro works
- theoretical uncertainties -- first steps

Measuring Shear Viscosity

Elliptic and radial flow suggest small shear viscosity

• Teaney; Kolb & Heinz; Huovinen & Ruuskanen

Problem: initial conditions unknown

CGC ⇒ more flow? larger viscosity? Hirano et al.;
Kraznitz et al.; Lappi & Venugopalan; Dumitru et al.

Additional viscosity probes?

What does shear viscosity do? It resists shear flow.

flow
$$v_x(z) \implies T_{zx} = -\eta \frac{\partial v_x}{\partial z}$$

shear viscosity $\boldsymbol{\eta}$

Transverse Flow Fluctuations

small variations in radial flow in each event

neighboring fluid elements flow past one another \Rightarrow viscous friction

shear viscosity drives velocity toward the average

 $T_{zr} = -\eta \, \partial v_r / \partial z$

damping of radial flow fluctuations \Rightarrow viscosity

Evolution of Fluctuations

momentum current for small fluctuations

$$g_t \equiv T_{0r} - \left\langle T_{0r} \right\rangle \approx \left\langle Ts \right\rangle u$$

shear stress

$$T_{zr} \approx -\eta \frac{\partial u}{\partial z} \approx -\frac{\eta}{Ts} \frac{\partial g_t}{\partial z}$$

momentum conservation

$$\frac{\partial}{\partial t}T_{0r} + \frac{\partial}{\partial z}T_{zr} = 0$$

diffusion equation for momentum current

$$\left(\frac{\partial}{\partial t} - v\nabla^2\right)g_t = 0$$

kinematic viscosity

$$v = \eta / Ts$$

shear viscosity η entropy density *s*, temperature *T*

Hydrodynamic Momentum Correlations

fluctuating momentum current

$$\frac{\partial}{\partial t}g_t = v\nabla^2 \left(g_t + \text{noise}\right)$$

particles jump between fluid cells \rightarrow Langevin noise

momentum flux density correlation function

$$r_g = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle$$

deterministic diffusion equation for $\Delta r_g = r_g - r_{g,eq}$

fluctuations diffuse through volume, driving $r_g \rightarrow r_{g,eq}$

width in relative rapidity grows from initial value σ_0 $\sigma^2 = \sigma_0^2 + 4v \left(\frac{1}{\tau_0} - \frac{1}{\tau_F}\right)$

Transverse Momentum Covariance

observable:

$$C = \langle p_{t1} p_{t2} \rangle - \langle p_t \rangle^2$$

$$\langle p_{t1}p_{t2}\rangle \equiv \frac{1}{\langle N\rangle^2} \left\langle \sum_{\text{pairs } i\neq j} p_{ti}p_{tj} \right\rangle$$

$$\langle p_t \rangle \equiv \frac{1}{\langle N \rangle} \langle \sum p_{ti} \rangle$$

measures momentum-density correlation function

$$C = \frac{1}{\langle N \rangle^2} \int \Delta r_g \, dp_1 dp_2$$

 ${\it C}$ depends on rapidity interval Δ

propose: measure $C(\Delta)$ to extract width σ^2 of Δr_g

Current Data?

STAR measures rapidity width of p_t fluctuations

J.Phys. G32 (2006) L37

$$\Delta \sigma_{p_t:n} = \frac{1}{\langle N \rangle} \left\langle \sum_{i \neq j} (p_{ti} - \langle p_t \rangle) (p_{tj} - \langle p_t \rangle) \right\rangle$$

find width σ_* increases in central collisions

• most peripheral $\sigma_* \sim 0.45$ • central $\sigma_* \sim 0.75$

naively identify σ_* with σ

$$\sigma_{central}^2 - \sigma_{peripheral}^2 = 4\nu \left(\frac{1}{\tau_{f,p}} - \frac{1}{\tau_{f,c}}\right)$$

freezeout $\tau_{f,p} \sim 1 \text{ fm}, \tau_{f,c} \sim 20 \text{ fm} \Rightarrow v \sim 0.09 \text{ fm}$

at $T_c \sim 170 \text{ MeV} \Rightarrow \qquad \eta/s \sim 0.08 \sim 1/4\pi$

Current Data?

STAR measures rapidity width of p_t fluctuations

J.Phys. G32 (2006) L37

$$\Delta \boldsymbol{\sigma}_{p_t:n} = \frac{1}{\langle N \rangle} \left\langle \sum_{i \neq j} (p_{ti} - \langle p_t \rangle) (p_{tj} - \langle p_t \rangle) \right\rangle$$

find width σ_* increases in central collisions

• most peripheral $\sigma_* \sim 0.45$ • central $\sigma_* \sim 0.75$

naively identify σ_* with σ (strictly, $\Delta \sigma_{p_t:n} = \langle N \rangle C$ + corrections)

$$\sigma_{central}^2 - \sigma_{peripheral}^2 = 4\nu \left(\frac{1}{\tau_{f,p}} - \frac{1}{\tau_{f,c}}\right)$$

but maybe $\sigma_n \approx 2\sigma_*$ STAR, PRC 66, 044904 (2006)

uncertainty range $\sigma_* \le \sigma \le 2\sigma_* \implies 0.08 < \eta/s < 0.3$

Behavior part of a Correlation Landscape

untriggered correlations: no jet tag near side peak: similar to **ridge** with jet tag **but** at ordinary *p_t* scales

Near Side Peak: Centrality Dependence

near side peak

- pseudorapidity width $\sigma \rightarrow \sigma_{\eta}$
- azimuthal width σ_{ϕ}

centrality dependence: path length $\sim 2n_{bin}/n_{part}$

trends:

- rapidity broadening (viscosity)
- azimuthal narrowing

common explanation of trends?

find: σ_{ϕ} requires radial and elliptic flow plus viscosity

opening angle for each fluid element depends on r

$$\Delta \phi \sim v_{th} / v_r \sim (\lambda r)^{-1}$$

$r(p_1, p_2) = \text{pairs} - (\text{singles})^2 = \iint f(p_1, x_1) f(p_2, x_2) r(x_1, x_2)$ correlations: x_1, x_2

gaussian spatial $r(x_1, x_2)$:

• σ_t -- width in $\vec{r} = \vec{r}_{t2} - \vec{r}_{t1}$

•
$$\Sigma_t$$
 -- width in $\vec{R} = (\vec{r}_{t1} + \vec{r}_{t2})/2$

momentum distribution: $f = e^{-\gamma (E - \vec{p} \cdot \vec{v})/T}$

$$\sigma_{\phi}^{2} = \left\langle \Delta \phi^{2} \right\rangle \propto \lambda^{-2} \left(\Sigma_{t}^{2} - \sigma_{t}^{2} / 4 \right)^{-1}$$

Measured Flow Constrains Correlations

diffusion + flow for correlations

radial plus elliptic flow:

$$\vec{v}_r = \varepsilon_x(\tau) x \hat{x} + \varepsilon_y(\tau) y \hat{y}$$

"eccentric" blast wave

Heinz et al.

constraints: flow velocity, radius from measured v_2 , $\langle p_t \rangle$ vs. centrality

Rapidity and Azimuthal Trends

G. Moschelli + S.G., in progress

rapidity width:

- viscous broadening, $\eta/s \sim 1/4\pi$
- assume local equilibrium for all impact parameters

azimuthal width:

- flow dominates
- viscosity effect tiny

agreement with data easier if we ignore peripheral region -- nonequilibrium?

Summary: small viscosity or strong flow?

perfect fluid? need viscosity info!

- viscosity broadens p_t correlations in rapidity
- *p_t* **covariance** measures these correlations

current correlation data compatible with

 $0.08 < \eta/s < 0.3$

comparable to other observables with different uncertainties

untriggered (η, ϕ) correlations

- flow + viscosity works! hydro OK
- relation of (η, ϕ) structure to jet-tagged ridge?

p_t Fluctuations Energy Independent

sources of p_t fluctuations: thermalization, flow, jets?

- central collisions \Rightarrow thermalized
- energy independent bulk quantity \Rightarrow jet contribution small

Azimuthal Correlations from Flow

transverse flow: narrows angular

correlations

• no flow $\Rightarrow \sigma_{\phi} = \pi/\sqrt{3}$

• $\sigma_{\phi} \propto 1/v_{rel}$

elliptic flow:

- v₂ contribution
- STAR subtracted

momentum conservation:

• $\propto \sin \phi$; subtracted

Borghini, et al

viscous diffusion:

• increases spatial widths Σ_t and σ_t

•
$$\sigma_{\phi} \propto (\Sigma_t^2 - \sigma_t^2/4)^{-1/2}$$

Elliptic and Transverse Flow

blast wave:
$$n(p) \propto \int f(p,x) \rho(x) \propto \int e^{-\gamma (E - \vec{p} \cdot \vec{v})/T} e^{-r^2/2R^2}$$

transverse plus elliptic flow: "eccentric" blast wave $\vec{v}_r = \varepsilon_x x \hat{x} + \varepsilon_y y \hat{y}$

flow observables: fix ε_x , ε_y , and *R* vs. centrality

Blast Wave Azimuthal Correlations

$$r(p_1, p_2) = \iint_{x_1, x_2} f(p_1, x_1) f(p_2, x_2) r(x_1, x_2)$$

gaussian spatial $r(x_1, x_2)$: • σ_t -- width in $\vec{r} = \vec{r}_{t2} - \vec{r}_{t1}$ • Σ_t -- width in $\vec{R} = (\vec{r}_{t1} + \vec{r}_{t2})/2$

azimuthal trend :

- $\Sigma_t \propto$ system size
- σ_t constant
- roughly:

$$\left<\Delta\phi^2\right> \propto \lambda^{-2} (\Sigma_t^2 - \sigma_t^2/4)^{-1}$$

Uncertainty Range

we want:

$$C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{i \neq j} p_{ti} p_{tj} \right\rangle - \langle p_t \rangle^2$$

STAR measures:
$$\langle N \rangle \Delta \sigma_{p_t:n} = \left\langle \sum_{i \neq j} (p_{ti} - \langle p_t \rangle) (p_{tj} - \langle p_t \rangle) \right\rangle$$

= $\int dx_1 dx_2 \left[\Delta r_g(x_1, x_2) - \langle p_t \rangle^2 \Delta r_n(x_1, x_2) \right]$

momentum density correlations

density correlations

density correlation function $\Delta r_n = r_n - r_{n,eq}$ may differ from Δr_g maybe $\sigma_n \approx 2\sigma_*$ STAR, PRC 66, 044904 (2006)

uncertainty range $\sigma_* \le \sigma \le 2\sigma_*$ $\Rightarrow 0.08 \le \eta/s \le 0.3$

Covariance \Rightarrow Momentum Flux

covariance

$$C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{\text{pairs } i \neq j} p_{ti} p_{tj} \right\rangle - \langle p_t \rangle^2$$

unrestricted sum: $\sum_{alli,j} p_{ti} p_{tj} = \int p_{t1} p_{t2} dn_1 dn_2$ $= \int dx_1 dx_2 \Big(\int dp_1 p_{t1} f_1 \Big) \Big(\int dp_2 p_{t2} f_2 \Big)$ $g_t(x) = \int dp p_t \Delta f(x, p) \longrightarrow \int g(x_1) g(x_2) dx_1 dx_2$

correlation function: $r_g = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle$

$$\int r_g dx_1 dx_2 = \left\langle \sum p_{ti} p_{tj} \right\rangle - \left\langle N \right\rangle^2 \left\langle p_t \right\rangle^2 = \left\langle \sum p_{ti}^2 \right\rangle + \left\langle N \right\rangle^2 C$$

C = 0 in equilibrium $\Rightarrow \qquad C = \frac{1}{\langle N \rangle^2} \int (r_g - r_{g,eq}) dx_1 dx_2$

sQGP + Hadronic Corona

viscosity in collisions -- Hirano & Gyulassy

supersymmetric Yang-Mills: $\eta/s = 1/4\pi$ pQCD and hadron gas: $\eta/s \sim 1$

Broadening from viscosity

