The In-Medium Behaviour of Finite Width Charmonia

Helmut Satz

Universität Bielefeld, Germany

Hot & Dense Matter

TIFR/Mumbai, Feb. 2008

Statistical QCD

For $T \ge T_c \simeq 150 - 200$ MeV, strongly interacting matter becomes plasma of deconfined quarks and gluons (QGP)

How to probe QGP in strong interaction thermodynamics?

- e-m signals (real or virtual photons)
- quarkonia ($Q\bar{Q}$ pairs)
- jets (fast partons)

Ultimate aim:

ab initio calculation of in-medium behaviour of probes

Statistical QCD

For $T \ge T_c \simeq 150 - 200$ MeV, strongly interacting matter becomes plasma of deconfined quarks and gluons (QGP)

How to probe QGP in strong interaction thermodynamics?

- e-m signals (real or virtual photons)
- quarkonia ($Q\bar{Q}$ pairs)
- jets (fast partons)

Ultimate aim:

ab initio calculation of in-medium behaviour of probes

Survival of Charmonium States in Hot QGP

 \Rightarrow Spectral Analysis of QGP \Leftarrow

NB: Thermodynamics, not nuclear collisions

Conceptual basis

- QGP consists of deconfined colour charges, hence \exists colour charge screening for $Q\bar{Q}$ probe
- screening radius $r_D(T)$ decreases with temperature T
- when $r_D(T)$ falls below binding radius r_i of $Q\bar{Q}$ state i, Q and \bar{Q} cannot bind, quarkonium i cannot exist
- quarkonium dissociation points T_i specify temperature of QGP

How can one calculate quarkonium dissociation points?

Two possibilities:

- solve Schrödinger equation using a temperature-dependent heavy quark potential V(r, T)
- \bullet calculate quarkonium spectrum directly in finite T lattice QCD

Two possibilities:

- solve Schrödinger equation using a temperature-dependent heavy quark potential V(r, T)
- calculate quarkonium spectrum directly in finite T lattice QCD
- 1. Potential Models for Quarkonium Dissociation
 - heavy quark potential \sim Schwinger model Karsch et al. 1988 Digal et al. 2001

$$V(r,T)=\sigma r\left\{rac{1-e^{-\mu r}}{\mu r}
ight\}-rac{lpha}{r}e^{-\mu r}$$

with screening mass $\mu(T) = 1/r_D(T)$

solve Schrödinger equation: with increasing T, bound state i disappears at some $\mu_i(T) = \mu(T_i)$

use screening mass from lattice estimates $\mu(T) \simeq 4 T$ for T > 0 to determine dissociation temperature T_i

charmonia:

 ψ' and χ_c dissociated at $T \simeq T_c$ J/ψ at $T \simeq 1.2 T_c$ charmonia:

 ψ' and χ_c dissociated at $T \simeq T_c$ J/ψ at $T \simeq 1.2 T_c$

• determine potential V(r, T) from lattice studies of heavy quark free energy; various different forms

Shuryak & Zahed 04; Wong 04,...; Alberico et al. 05,...; Digal et al. 05; Mocsy & Petreczky 05,...

Lattice studies provide free energy difference F(r,T) between medium with and without heavy quark pair; one possibility:

 $F = U - TS, \ S = (\partial F / \partial T)$ specifies internal energy U(r, T)

 $V(r,T) = U(r,T) = F(r,T) - T(\partial F/\partial T)$

with $N_f = 2$ lattice results for F(r, T).

no need of any separate screening mass

solve Schrödinger equation: with increasing T, bound state i disappears at some T_i

charmonia:

 ψ' dissociated at $T \simeq 1.1 T_c$

 χ_c dissociated at $T\simeq 1.2~T_c$

 J/ψ survives up to $T \simeq 2 \ T_c$

solve Schrödinger equation: with increasing T, bound state i disappears at some T_i

charmonia:

 ψ' dissociated at $T \simeq 1.1 T_c$ χ_c dissociated at $T \simeq 1.2 T_c$ J/ψ survives up to $T \simeq 2 T_c$

• reason for later dissociation: U(r, T) provides stronger binding than Schwinger model potential

ambiguity in specifying "lattice" potential: U(r,T) or F(r,T)

F(r,T) results ~ Schwinger model

various alternatives: V(r,T) = a F(r,T) + b U(r,T) reduce binding, lower dissociation temperatures

• dissociation defined mathematically, by $r \to \infty$, $\Delta E \to 0$ hence \exists a bound state region in which r > 1/T, $\Delta E < T$ what does that mean?

resolution: determine dissociation points $\underline{\text{directly}}$ in finite T lattice QCD

what does that mean?

resolution: determine dissociation points <u>directly</u> in finite T lattice QCD

2. Lattice Studies of In-Medium Charmonium Survival

<u>quenched</u>: Umeda et al. 01,...; Asakawa & Hatsuda 04; Datta et al. 04,...; Iida et al. 05; Jakovac et al. 05; unquenched: Aarts et al. 05,...

Calculate correlation function $G_i(\tau, T)$ for specific mesonic quantum number channel *i*, specified by spectral distribution $\sigma_i(\omega, T)$

$$G(au,T) = \int d\omega \,\, \sigma_i(\omega,T) \,\, K(\omega, au,T)$$

with kernel

$$K(\omega, au,T) = rac{\cosh[\omega(au-(1/2T))]}{\sinh(\omega/2T)}$$

relating imaginary time τ and $c\bar{c}$ energy ω ; invert $G(\tau, T)$ by MEM to get $\sigma(\omega, T)$:

• results for quenched and unquenched $(N_f = 2)$ QCD agree

charmonia

 χ_c is dissociated for $T \ge 1.1~T_c$ J/ψ persists up to 1.5 $T_c < T < 2.3~T_c$

(in accord with U-based potential model studies)

• caveat: finite T widths

report here on an attempt to address this problem: H.-T. Ding, O. Kaczmarek, F. Karsch, HS (in preparation)

3. Construction Kit for Spectral Distributions

recall correlator $G(\tau,T) = \int d\omega \ \sigma_i(\omega,T) \ K(\omega,\tau,T)$ with kernel $K(\omega,\tau,T) = \cosh[\omega(\tau - (1/2T))]/\sinh(\omega/2T)$ and spectral distribution $\sigma_i(\omega,T)$ in $c\bar{c}$ channel ipresent standard lattice study of charmonia in hot QGP:

compare correlator $G(\tau, T)$ for $T > T_c$ to a reference correlator $G_0(\tau, T)$ using spectral function at T = 0

$$G_0(au,T) = \int d\omega \,\, \sigma_i(\omega,T=0) \,\, K(\omega, au,T)$$

shows what correlator would look like if spectrum at $T > T_c$ were same as at T = 0 ratio $R(au,T)=G(au,T)/G_0(au,T)$

indicates finite temperature modifications of spectrum

use for $\sigma_i(\omega, T = 0)$ spectrum obtained for $0 < T \ll T_c$ from lattice QCD via MEM (some lattice artifacts cancel); get

Datta et al. 04

what does this tell us about spectrum, about compatibility of potential theory and lattice results?

Mocsy & Petreczky 05,...; Wong 06,...; Alberico et al. 06;...

idealized spectrum at T = 0

$$\sigma(\omega,T=0)=f\,\,\delta(\omega-M)+c\,\,\omega^2 heta(\omega-s_0)$$

 $f \sim \text{strength of resonance}$ $c \sim \text{strength of continuum}$

assume that at T > 0 resonance broadens (relativistic B-W), but retains same strength

$$\sigma_r(\omega,T) = N(\gamma) \; f \; rac{M}{\pi} iggl\{ rac{2\omega\gamma}{\omega^2\gamma^2+(\omega^2-M^2)^2} iggr\}$$

 $N(\gamma)$ assures normalization for width $\gamma = \gamma(T)$

calculate correlator ratio $R(au,T)=G(au,T)/G_0(au,T)$

- using resonance contribution only, with 2 $m_c \leq \omega$
- using resonance, with 2 $m_c \leq \omega$, plus T = 0 continuum

[NB: no zero mode]

resonance only

resonance + continuum

for $\gamma \leq 0.5 - 0.8$ GeV correlator ratio decreases with τ , but varies less than 10 %

 $\underline{ \text{conclusion:}} \ R(\tau,T) \simeq 1 \ \text{compatible with resonance broadening} \\ \underline{ \text{over wide range of widths}}$

for $\gamma \leq 0.5 - 0.8$ GeV correlator ratio decreases with τ , but varies less than 10 %

continuum threshold \sim open charm threshold

for $T > T_c$, M_D decreases (decrease with T of $F(T, r = \infty)$ in heavy quark lattice studies) what happens for decreasing continuum threshold $s(T) < s_0$?

correlator ratio increases rapidly with decreasing s(T)

competing effects:

- $ext{ increase } \gamma \qquad \Rightarrow \quad R(au,T) \Downarrow$
- $ext{ decrease } s(T) \;\; \Rightarrow \;\; R(au,T) \Uparrow$

decrease of continuum threshold affects χ_c at lower T than J/ψ or η_c

hence possible; $egin{array}{cc} R_\chi & {
m increases with } au \ R_{J/\psi} & {
m decreases with } au \end{array}$

check in detail

Still missing:

 $\omega = 0$ contribution to spectrum at $T \neq 0$:

c and \bar{c} annihilate & "heat the medium"

contribution to spectral function:

$$\sigma_0(\omega) = T \,\, a(T) \,\, \omega \,\, \delta(\omega)$$

```
crucial: T-dependence of a(T)
```

lattice studies use $\sigma(\omega, T < T_c)$, not $\sigma(\omega, T = 0)$

Still missing:

 $\omega = 0$ contribution to spectrum at $T \neq 0$:

c and \bar{c} annihilate & "heat the medium"

contribution to spectral function:

$$\sigma_0(\omega) = T \,\, a(T) \,\, \omega \,\, \delta(\omega)$$

crucial: T-dependence of a(T)

lattice studies use $\sigma(\omega, T < T_c)$, not $\sigma(\omega, T = 0)$

we're tuning, stay tuned...

last word not yet known

 \Rightarrow talk of Agnes Mocsy for alternative

