Quark mass effects on the QCD equation of state

York Schröder

(Univ Bielefeld)

work with: F. Di Renzo, A. Hietanen, K. Kajantie, M. Laine, V. Miccio, K. Rummukainen, C. Torrero, A. Vuorinen

TIFR Mumbai, 12 Feb 2008

Quantum Chromodynamics (QCD)

''zoom'' into part of SM gauge system: QCD

- central feature: asymptotic freedom
- smash atoms $\rightarrow e^-$ get emitted basics of our electronics
- smash protons (p) → get more p
 + exotic particles; never a quark
- strong force rises with distance
- quarks closer together (high E)
 ⇒ force weaker
- unexpected! (em force opposite)
- beautiful theory result Nobel price 2004 G/P/W
- experiment?! (← see left)

Quantum Chromodynamics (QCD)

Reality check?!

- outrageous claim: none of qu, gl ever seen!
 - ▷ have to explain confinement

how to check QCD vs Reality?

- (a) just solve its eqs (\rightarrow see next slide)
 - by computer (lattice); tough; ''oracle''; understand?!
- (b) consider models ''close to QCD''
 - fewer dims; different sy groups; diff particle content
- (c) consider circumstances in which eqs simplify
 - remainder of this talk

QCD reality check (a:computer)

look at hadron spectrum (hadrons: bound states of quarks; e.g. $K=s\bar{d}$, p=uud, $\Lambda=uds$)

- 1.8 • solve QCD eqs by computer [e.g. S. Aoki et.al., CP-PACS 1999] D 1.6 what does not come out: Ξ Ω 1.4 ▷ gluons m (GeV) 1.2 Ø fractional charges Σ^* K* enlarged multiplets Δ 1.0 **₹** ₹ K input what one gets: 0.8 ○ ♦ input just the observed Κ experiment 0.6 particles + masses ▷ no more, no less! 0.4
- punchline: obtain amazingly realistic spectrum, with 10% error
 - QCD lite; need to add remaining quark effects + quark masses
 - much development here; teraflop speeds, worldwide effort

QCD reality check (c:collider)

- e.g. LEP, $e^+e^- \rightarrow X$ (stuff hitting detector): find 2 broad classes of events (QM!)
- (1) $X = e^+e^-$ or $\tau^+\tau^-$ or $\dots l^+l^-$
 - ▶ leptons: no color charge → mainly QED interactions
 - ▷ simple final state: coupling small ($\alpha = e^2/(4\pi) \approx 1/137$) most of the time (99%) nothing happens
 - $\triangleright \ e^+e^-\gamma \sim 1\% \rightarrow {\it check \ details \ of \ QED}$
 - $\triangleright e^+e^-\gamma\gamma \sim 0.01\% \rightarrow \dots$
- (2) X > 10 particles: π , ρ , p, \bar{p} , ...
 - ''greek+latin soup'' constructed from qu+gl
 - ▷ pattern: flow of E+momentum in ''jets''
 - $\triangleright~$ 2 jets \sim 90%; 3 jets \sim 9%; 4 jets \sim 0.9%
 - direct confirmation of asy. freedom!
 - ▷ hard radiation is rare → # of jets
 - \triangleright soft radiation is common \rightarrow broadens jet

● nowadays: ''testing QCD'' → ''calculating backgrounds'' in search for new phenomena

QCD reality check (c:extremes)

basic thermodynamic observable: pressure p(T)

p(T) important for cosmology:

cooling rate of the universe

$$\partial_t T = -\frac{\sqrt{24\pi}}{m_{\rm Pl}} \frac{\sqrt{e(T)}}{\partial_T \ln s(T)}$$

- with entropy $s = \partial_T p$ and energy density e = Ts p
- \Rightarrow cosmol. relics (dark matter, background radiation etc.) originate when an interaction rate $\tau(T)$ gets larger than the age of the universe t(T).

p(T) in heavy ion collisions:

• expansion rate (after thermalization) given by

$$\partial_{\mu} T^{\mu\nu} = 0$$
 , $T^{\mu\nu} = [p(T) + e(T)] u^{\mu} u^{\nu} - p(T) g^{\mu\nu}$

- with flow velocity $u^{\mu}(t,x)$
 - ▷ hydrodynamic expansion: hadronization at $T \sim 100 150$ MeV ⇒ observed hadron spectrum depends (indirectly) on p(T)

p(T) via (large) computer ($\mu_B = 0$)

[lattice data from Karsch et.al.]

at $T \to \infty$, expect ideal gas: $p_{SB} = \left(16 + \frac{21}{2}N_f\right) \frac{\pi^2 T^4}{90}$ confirms simplicity: 3 dofs $(\pi) \to 52$ $(3 \times 3 \times 2 \times 2 \text{ qu} + 8 \times 2 \text{ gl})$

p(T) via weak-coupling expansion

need to explain 20% deviation from ideal gas at $T \sim 4T_c$ structure of pert series is non-trivial !

• Ex.:
$$p(\mathbf{T}) \equiv \lim_{V \to \infty} \frac{\mathbf{T}}{V} \ln \int \mathcal{D}[A^a_{\mu}, \psi, \bar{\psi}] \exp\left(-\frac{1}{\hbar} \int_0^{\hbar/T} d\tau \int d^{3-2\epsilon} x \mathcal{L}_{QCD}\right)$$

 $= g^2 + g^3 + g^4 \ln g + g^4 + g^5 + g^6 \ln g + \dots$

reason: interactions make QCD a multiscale system

dynamically generated scales ($|k| \sim \pi T$ is called "hard"): color-electric screening at $|k| \sim m_{\rm E} \sim gT$ ("soft") color-magnetic screening at $|k| \sim g^2 T$ ("ultrasoft")

expansion parameter

$$g^2 n_b(|k|) = \frac{g^2}{e^{|k|/T} - 1} \stackrel{|k| \leq T}{\approx} \frac{g^2 T}{|k|}$$

treatment of a multiscale system: effective field theory !

Effective theory prediction for p(T)

• collect contributions to p(T) from all physical scales

- weak coupling, effective field theory setup
- ▷ faithfully adding up all Feynman diagrams
- ▶ get long-distance input from clean 3d lattice observable:

$$p_{\mathcal{G}}(T) \equiv \frac{T}{V} \ln \int \mathcal{D}[A_k^a] \exp\left(-S_{\mathcal{M}}\right) = T \# g_{\mathcal{M}}^6$$

only one non-perturbative (but computable!) coeff needed

$$\begin{split} \frac{p_{\text{QCD}}(T)}{p_{\text{SB}}} &= \frac{p_{\text{E}}(T)}{p_{\text{SB}}} + \frac{p_{\text{M}}(T)}{p_{\text{SB}}} + \frac{p_{\text{G}}(T)}{p_{\text{SB}}} \quad , \quad p_{\text{SB}} = \left(16 + \frac{21}{2}N_f\right)\frac{\pi^2 T^4}{90} \\ &= 1 + g^2 \quad + g^4 \quad + g^6 \quad + \dots \qquad \Leftrightarrow \text{4d QCD} \\ &+ g^3 + g^4 + g^5 + g^6 + \dots \qquad \Leftrightarrow \text{3d adj H} \\ &+ \frac{1}{p_{\text{SB}}}\frac{T}{V}\int \mathcal{D}[A_k^a]\exp\left(-S_{\text{M}}\right) \quad \Leftrightarrow \text{3d YM} \\ &= c_0 + c_2g^2 + c_3g^3 + (c_4'\ln g + c_4)g^4 + c_5g^5 + (c_6'\ln g + c_6)g^6 + \mathcal{O}(g^7) \end{split}$$

 $[c_2$ Shuryak 78, c_3 Kapusta 79, c'_4 Toimela 83, c_4 Arnold/Zhai 94, c_5 Zhai/Kastening 95, Braaten/Nieto 96, c'_6 KLRS 03]

Outlook: $\textbf{08} \rightarrow \textbf{10} \rightarrow \textbf{12}$

$$\begin{array}{rcl} \frac{p_{\rm G}}{p_{\rm SB}} & = & \#_{(6)} \left(\frac{g_{\rm M}^2}{T}\right)^3 + [\delta \mathcal{L}_{\rm M}]_{(9)} \\ \\ g_{\rm M}^2 & = & g_{\rm E}^2 \left[1 + \#_{(7)} \frac{g_{\rm E}^2}{m_{\rm E}} + \left(\frac{g_{\rm E}^2}{m_{\rm E}}\right)^2 \left(\#_{(8)} + \#_{(10)} \frac{\lambda_{\rm E}}{g_{\rm E}^2}\right) + \cdots_{(9)}\right] \\ \\ \frac{p_{\rm M}}{p_{\rm SB}} & = & \frac{m_{\rm E}^3}{T^3} \left[\#_{(3)} + \frac{g_{\rm E}^2}{m_{\rm E}} \left(\#_{(4)} + \#_{(6)} \frac{\lambda_{\rm E}}{g_{\rm E}^2}\right) + \left(\frac{g_{\rm E}^2}{m_{\rm E}}\right)^2 \left(\#_{(5)} + \#_{(7)} \frac{\lambda_{\rm E}}{g_{\rm E}^2} + \#_{(9)} \left(\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right)^2\right) \\ & \quad + \left(\frac{g_{\rm E}^2}{m_{\rm E}}\right)^3 \left(\#_{(6)} + \#_{(8)} \frac{\lambda_{\rm E}}{g_{\rm E}^2} + \#_{(10)} \left(\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right)^2 + \#_{(12)} \left(\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right)^3\right) \\ & \quad + [3d \operatorname{5loop} \operatorname{Opt}]_{(7)} + [\delta \mathcal{L}_{\rm E}]_{(7)} + [3d \operatorname{6loop} \operatorname{Opt}]_{(8)} + \cdots_{(9)}] \\ m_{\rm E}^2 & = & T^2 \left[\#_{(3)}g^2 + \#_{(5)}g^4 + [4d \operatorname{3loop} 2\operatorname{pt}]_{(7)} + \cdots_{(9)}\right] \\ \lambda_{\rm E} & = & T \left[\#_{(6)}g^4 + \#_{(8)}g^6 + \cdots_{(10)}\right] \\ g_{\rm E}^2 & = & T \left[g^2 + \#_{(6)}g^4 + \#_{(8)}g^6 + \cdots_{(10)}\right] \\ p_{\rm SB}^2 & = & \#_{(0)} + \#_{(2)}g^2 + \#_{(4)}g^4 + \#_{(6)}g^6 + [4d \operatorname{5loop} \operatorname{Opt}]_{(8)} + \cdots_{(10)} \end{array}$$

notation: $\#_{(n)}$ enters p_{QCD} at g^n

[cave: no $\frac{1}{\epsilon} + 1 + \epsilon$, no IR/UV, and no logs shown above]

matching p(T) at $N_f = 0$

want best possible description of pure-glue sector

- fix unknown perturbative $\mathcal{O}(g^6)$ coeff
- use available lattice data
- translate via $T_c/\Lambda_{\overline{\rm MS}}pprox 1.20$
- match at intermediate $T\sim 3-5T_c$

Quark mass dependence

analyze quark mass dependence to NLO

 $\Lambda_{\overline{MS}} = 200 \text{ MeV}$ strategy: ''unquenching'' 4.0start from $N_f = 0$, i.e. $m_q = \infty$ lower N_f quark masses to $m_{q,phys}$ p at any T increases estimate this "correction factor" • aproach is systematic 3.0 LO: $c_0(N_f)/c_0(0)$ NLO: $[c_0 + g^2 c_2](N_f) / [c_0 + g^2 c_2](0)$ - $[N_f = 4]/[N_f = 0] O(g^2)$ - $[N_f = 4]/[N_f = 0] O(g^0)$ • computed $c_{0,2}(T, N_c, N_f, m_i, \mu_i)$ ---- $[N_f = 3]/[N_f = 0] O(g^2)$ good convergence LO→NLO ---- $[N_f = 3]/[N_f = 0] O(g^0)$ \triangleright $N_f = 3:5\%$ effect 2.9 400 600 800 1000 \triangleright $N_f = 4$: even better T / MeV

charm quark contributes already at low $T\sim 350 MeV$

setting the scale

now ready to estimate thermodynamic quantities

multiply best $N_f = 0$ result with correction factor $g^{2}(\bar{\mu}) = \frac{24\pi^{2}}{(11C_{A} - 2N_{f})\ln(\bar{\mu}/\Lambda_{\overline{\text{MS}}})} , \ m_{i}(\bar{\mu}) = m_{i}(\bar{\mu}_{\text{ref}}) \left[\frac{\ln(\bar{\mu}_{\text{ref}}/\Lambda_{\overline{\text{MS}}})}{\ln(\bar{\mu}/\Lambda_{\overline{\text{MS}}})}\right]^{\frac{9C_{F}}{11C_{A} - 2N_{f}}}$ 6 need to fix $\Lambda_{\overline{MS}}$ in physical units! $N_f = 4$ strategy: matching $N_f = 3$ take p of hadronic resonances 4 match p and p' to our recipe $\overline{N_f} = 2$ р / Т⁴ • obtain $\Lambda^{(eff)}_{\overline{\rm MS}} \approx 175...180 MeV$ resonance gas shaded: lattice simulations needed! 2 -- analytic recipe - interpolation 100 400 600 800 1000

T/MeV

hadron resonance gas

from PDG, get http://pdg.lbl.gov/2007/mcdata/mass_width_2006.csv:

*MASS(MeV)	,Err+	,Err-	,WIDTH(MeV)	,I	,G,J	,P,C,A,Cł	rg,R,S,Name	,Quarks
1.3957018E+02	,3.5E-0	04,3.5E-0	04,2.5284E-14	,1	,-,0	,-, ,B,	+, ,R,pi	,uD
1.349766E+02	,6.0E-0	04,6.0E-0	04,7.8E-06	,1	,-,0	,-,+, ,	0, ,R,pi	,(uU-dD)/sqrt(2)
5.4751E+02	,1.8E-0	01,1.8E-0	01,1.30E-03	,0	,+,0	,-,+, ,	0, ,R,eta	,x(uU+dD)+y(sS)
8.0E+02	,4.0E+0)2,4.0E+0	02,8.0E+02	,0	,+,0	,+,+, ,	0, ,R,f(0)(600)	,Maybe non-qQ
7.755E+02	,4.0E-0	01,4.0E-0	01,1.4940E+02	,1	,+,1	,-, ,B,	+, ,R,rho(770)	,uD

extract list of Mesons and Baryons, incl masses + deg.factors

$$\frac{p_{had}(T)}{T^4} = \sum_{i \in Baryons} \frac{d_i}{2\pi^2} \int_0^\infty dp \, p^2 \ln\left(1 + e^{-\sqrt{p^2 + m_i^2/T^2}}\right)$$
$$- \sum_{i \in Mesons} \frac{d_i}{2\pi^2} \int_0^\infty dp \, p^2 \ln\left(1 - e^{-\sqrt{p^2 + m_i^2/T^2}}\right)$$

thermodynamic quantities

now use the recipe $p(N_f=0) \times corr.fct$ to obtain s(T) = p'(T), e(T) = Ts(T) - p(T), c(T) = e'(T) = Tp''(T)

- use eff numbers of bosonic dof's $g_{\rm eff}(T) \equiv e(T) / \left[\frac{\pi^2 T^4}{30}\right]$ $h_{\rm eff}(T) \equiv s(T) / \left[\frac{2\pi^2 T^3}{45}\right]$ $i_{\rm eff}(T) \equiv c(T) / \left[\frac{2\pi^2 T^3}{15}\right]$
- observe significant structure
- at 2nd order phase transition $i(T) \sim (T T_c)^{-\gamma}$

Equation of state

consider dimensionless ratios of thermodynamic quantities

• equation of state

$$w(T) \equiv \frac{p(T)}{e(T)} = \frac{p(T)}{Tp'(T) - p(T)}$$

sound speed (squared)

$$c_s^2(T) \equiv \frac{p'(T)}{e'(T)} = \frac{p'(T)}{Tp''(T)} = \frac{s(T)}{c(T)}$$

• $\left(\frac{1}{3} - w(T)\right) \propto$ "trace anomaly" (or "interaction measure")

peak around 70MeV not (yet) visible in lattice simulations

Summary

- QCD contains an extremely rich structure
- thermodynamic quantities of QCD are relevant for cosmology and heavy ion collisons
- these quantities can be determined numerically at $T \sim 200$ MeV, and analytically at $T \gg 200$ MeV; multi-loop sports, eff. theories convenient
- effective field theory opens up tremendous opportunities: analytic treatment of fermions, universality, superrenormalizability
- quark mass dependence shows good convergence
- charm quark contributes already at fairly low T
- need reliable lattice simulations in transition region