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Chapter 1

Introduction

The mysterious night sky has always been a constant source @mazement and wonder for
humans. The prehistoric man would draw the patterns of light he saw in the night sky

on the walls of his cave dwellings. As their understanding eslved further, our ancestors

started recognizing patterns in the rising and setting of the Sun, the Moon and the stars.
The regularity of these heavenly phenomena helped them del@p calendars, predict seasons,
and navigate better. At the same time, driven by curiosity to understand the cosmos, they
were naturally lead to the most fundamental questions surrainding our existence: Where
did the universe come from? Does it have a beginning? How didhie grand cosmic order
that we see emerged? Are their laws that can explain the regakity of the cosmos?

We have come a long way in the search for answers to these funai@ntal questions: from
Ptolemy's epicycles trying to explain the periodicity of planetary motion, to the Heliocentric
model of Copernicus, to the modern understanding of galaxi& and galactic clusters forming
laments and voids in an in nite expanse of spacetime. Our olservations tell us that the
universe indeed had a beginning, a very violent one, in whicfall the matter and energy we
see around us came into existence. This violent explosionrdig Bang, took place nearly
13.8 billion years ago, and the universe had been expanding/@r since.

The Big Bang model has been very successful in explaining therigin and observed prop-
erties of our universe. It had spectacular success in explasing the presence of the Cosmic
Microwave Background (CMB) radiation, observed in 1964, asa consequence of the decou-
pling of photons from the e  nuclei plasma when the latter started forming neutral atoms.
The model also explains the production and relative abundanes of various light elements
in the universe via nucleosynthesis.

Despite its resounding success the model is incomplete, asdives no justi cation for some
crucial observations. For instance, it does not explain thasotropy of the CMB on the largest
scales we observe today. Also, there is no mechanism for themeration of the minute CMB
anisotropies in the Big Bang scenario. It also does not prode any justi cation for the
atness of our universe, which can arise only if the density & matter and energy equals a

1



Chapter 1

certain critical value. These and other ne tuning problems require augmenting the model
with further ideas.

The mechanism ofin ation was proposed in the early 1980s to overcome these issues with
the Big Bang model B, 9, 10, 11, 12, 13]. According to the in ationary scenario, the
universe underwent a phase of exponentially fast expansiom its very early history. The
rapid expansion smoothed out any traces of inhomogeneitiesanisotropies and curvature,
giving rise to a very simple universe. The only departures fom this smooth state were tiny
guantum uctuations, which became seeds for the formation é galaxies and gave rise to
the CMB temperature anisotropies observed today.

In the simplest in ationary models, in ation is brought abo ut by a single homogeneous
scalar eld slowly rolling down a potential hill. The energy density of the eld couples to
the background spacetime geometry and drives the in ationay expansion. The model also
incorporates perturbations about the homogeneous solutio which are quantum in nature.
More intricate models may involve multiple scalars elds, more complicated potentials,
departures from slow roll, non-canonical kinetic terms etc The results from the Planck
satellite [14, 15, 16] seem to be in good agreement with the simplest models of inton
[17, 18, 19, 20, 21, 22, 23].

During the in ationary epoch the geometry of the universe was approximately de Sitter and
had a very high degree of symmetry. The isometry group of de 8er space isO(1;4). In the
present thesis, we explore the idea of how this underlying symetry can be used to constrain
the correlation functions of in ationary perturbations in single- eld models of in ation. We
also consider departures from the exact de Sitter limit, by &aking into account the corrections
sourced by the breaking of these symmetries. The resultinganstraints take the form of
Ward identities, relating n-point correlation functions to n + 1-point correlation functions
under certain limits. In particular, one gets interesting constraints on the scalar three point
function, which gives rise to leading non-Gaussianity in tre in ationary perturbations and
is of great observational signi cance. The work presentedn this thesis is primarily based
upon the articles [1, 2, 3], and relies heavily upon the important earlier works R4, 25, 26, 27].

This introductory chapter to the thesis is organized as folbws: sectionl.1 provides a very
brief overview of the Big Bang model and illustrates the horzon and atness problems
associated with it. Section 1.2 introduces in ation and explains how the problems of
standard cosmology get resolved in the in ationary framewak, and discusses classical
dynamics of in ation in the context of single eld slow roll m odels. During in ation,
the universe was approximately de Sitter in nature. Sectionl.3 provides a very brief
overview of the symmetry properties of de Sitter spacetime. This is followed in section
1.4 by a discussion of in ationary perturbations and issues of @uge xing. Section 1.5then
introduces the wave function of the universe, and talks abotisome of its properties as well
as computation of in ationary correlation functions from i t, with the two point function
taken as an example. Sectiorl.6 discusses the subsequent organization of the thesis.
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Introduction

1.1 The Big Bang model and associated problems

We observe the universe to be expanding uniformly in all diretions. This observation

naturally gives rise to the idea that at some point of time in the far past, all the matter and

radiation we observe today must have been concentrated in aery tiny volume. According

to Big Bang cosmology, the expansion and subsequent evolution of thisethse primordial

soup led to the formation of our present universe. Also, to a ery good approximation, the

universe is spatially at, and is homogeneous and isotropicon the largest scales. All these
observations can be incorporated into the Friedmann-Robeson-Walker (FRW) model of

the universe. The FRW model with at spatial sections has the metric

ds? = dt?+ a(t)? dr2+r2d 2 : (1.2)

Here, a(t) is the scale factor of the universe andd # is the metric on the unit 2-sphere.
The scale factor essentially measures the growth of the physal size of the universe. The
dynamics of the scale factor is governed by the Friedmann eaitions,

2
8% H2=88 ),

a 3 (1.2)
a 4G 3p '
- = - + :

a 3 ( )

Here, a dot represents a derivative with respect to time. (t) is the time-dependent energy
density of the universe, andP (t) is the pressure. As per Big Bang cosmology, the universe
after its birth was initially dominated by radiation, and ex panded at the rate of a(t) t.
Big Bang nucleosynthesis took place in the rst few minutes dter the birth of the universe,
in the radiation dominated era, leading to the formation of light nuclei. This was followed
by a period of matter domination, during which the universe gew at a(t)  t>=. The
decoupling of CMB from the e nuclei plasma took place during the phase of matter
domination when the latter started forming neutral atoms, approximately 380,000 years
after the Big Bang. The present era is the era of dark energy dmination.

One can also express the FRW metric 1.1) in terms of a “conformal time coordinate' ,
where is related to the ordinary time coordinate t by dt = ad . Then

ds?=a( )2 d2+dr2+r%d 2 : (1.3)

The advantage of working in the conformal coordinates is tharadial light rays move along
45°lines. They are also helpful in illustrating the horizon problem associated with the Big
Bang cosmology.
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Big Bang
-4—— Present Epoch
\\\
Radiation Domination T Dark Energy Domination

Matter Domination

Figure 1.1: A schematic representation of the Big Bang chronlogy of the universe. The
Big Bang birth of the universe took place approximately 13.8billion years ago. Big Bang
nucleosynthesis occurred in the rst 20 minutes. After about 47,000 years the universe
crossed over from radiation to matter domination. The CMB photons started free streaming
at about 380,000 years after the birth of the universe. Somehere between 500-800 million
years after the Big Bang the rst galaxies appear. Approximately 9.8 billion years after its
birth the universe underwent yet another transition, with t he dominant energy contribution
now coming from the dark energy, leading to an accelerated gransion.

The horizon and atness problems

The Big Bang model of cosmology outlined above has been veryuscessful. But it su ers
from a few problems also, rendering it incomplete. One of thge problems is thehorizon
problem. To understand the problem, we need to introduce theconcepts ofhorizon size
and causal connectivity The horizon size at any instant of time is de ned as the largest
distance over which two events could be in causal contact wit each other. In other words,
it is the maximum distance a photon could have traveled sincethe birth of the universe.
The comoving horizon size at any timet is given by
Z
Rp ¢ (t)= tC—dt: (1.4)
o a(t)

Clearly, the size of the horizon depends upon the evolutiony history of the universe.
Events which are beyond the horizons of one-another can notd in causal contact, and
hence can not in uence each other. One can calculate the sizef the comoving horizon at
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the time of decoupling, when the CMB was emitted. It turns out to be about 284 MPc.
Also, the comoving distance to the Last Scattering Surface I(SS), the surface from where
we receive CMB today, is about 14 GPc. This leads us to a parado Imagine two points on
the LSS as shown in the Figurel.2. Clearly, they are beyond each others comoving horizons
at the time of decoupling. Hence, they were never in causal ctact with one another, and
in particular, they were not in causal contact at the time of CMB emission. Therefore,
there is no reason for the temperature of the CMB received frm these two points to be the
same, as they could not have in uenced one another. Yet we olesve the CMB temperature
to be very isotropic throughout the visible universe: Tcyg = 2:72548 0:00057 K. This
paradox is termed as the horizon problem. There is no mechasim in Big Bang cosmology
to resolve this issue.

\ Comoving Horizon
‘lat Decoupling

Last
Scattering
Surface

Figure 1.2: lllustrating the Horizon Problem. Calculations suggest that the CMB
temperature isotropy should be limited to angular scales ofabout 2.3°, whereas we observe
isotropy at the largest scales.

Another problem associated with the Big Bang model is the atness problem. To illustrate
the problem, let us rewrite the rst Friedmann equation with the curvature term included,

_ 8G Kk

H 2 —
3 a2

(1.5)
where the constant k is the curvature parameter: it can be negative, zero or posive
depending upon whether the universe is open, at or closed, espectively. Eg.(.5) can
be rewritten as

k

= _ 16

e (1.6)

where . = % is the critical density for the universe to be at: if = then k =0.

Introducing the notation = = , the Friedmann equation takes the form

k

1= ——; 1.7

e (1.7)
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or equivalently »
- c_ UK
J 1= @H)?
Now, our observations tell us that the geometry of the univese is almost at, togay 1.
Considering the fact that in standard cosmology the comovig Hubble radius (@H) ! has
grown since the Planck epoch by about 60 orders of magnitudeye conclude that the value of
immediately after the Big Bang must have been very nely tun ed:j pjanck 1 10 €0,
This extreme ne tuning of the energy density needed to prodwce the observed at universe
is what is termed as the atness problem.

(1.8)

1.2 Ination - A solution to the horizon and atness prob-
lems

In the early 1980s, the idea of “in ation' was put forward to resolve the issues of the horizon
and atness problems and other inconsistencies of the Big Bag model B, 9, 10, 11, 12, 13];
for pedagogical discussions see€§, 29, 30, 31, 32, 33]. In ation provides a very simple
solution to the horizon problem - as per in ation, the comoving horizon size at decoupling
was actually much larger than the size of the visible univere today, and hence the points
on the Last Scattering Surface (and much beyond) were in mutal causal contact. Thus, it
is no surprise that the CMB observed today is highly isotropt.

According to the simplest in ationary scenario, there was a phase prior to the era of
radiation domination during which the energy density of the universe was dominated by
a scalar eld, the inaton . The in aton is hypothesized to have a very special kind of
potential function, as depicted in Figure 1.3. During in ation, the in aton evolves along
the almost at plateau region of the potential, rolling slow ly towards the minimum. The
energy density during in ation thus stays approximately constant. From the Friedmann
equation (1.2), this tells us that the Hubble rate is almost a constant during in ation, and
hence the universe expands exponentially rapidlya(t) e,

V()

Slowly Rolling
Inflaton
® =

4_4/ Reheating
f

Figure 1.3: Slow roll in ation. The kinetic energy contribu tion for the in aton is negligible
compared to the potential energy contribution. The energy censity of the universe is thus
roughly constant.
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During in ation, the comoving horizon size also increases eponentially. All of the visible

universe and regions much beyond as well come into mutual caal contact. This is
schematically shown in Figure 1.4. Thus, by postulating an in ationary phase in the

evolutionary history of the universe, one can explain the renarkable isotropy of the CMB.

No Inflation With Inflation

ho ho

Past Light Cone

Last Scattering Surface Past Light Cone
—

Decoupling

Decoupling

ol

Big Bang Singularity

Horizon Size
at Decoupling

/ Causal Contact

Big Bang Singularity

Figure 1.4: Solution to the Horizon Problem. In ation pushes the Big Bang singularity
much farther in conformal time, allowing the past light cones of points on the Last Scattering
Surface to intersect. This brings all of the visible univer® into causal contact.

In ation also provides a simple and elegant resolution to the atness problem. During
in ation, the comoving Hubble radius (aH) * shrinks exponentially rapidly. In ation thus
naturally drives the universe towards atness. This removes the sensitive dependence of
the geometry of the universe on the primordial energy densit and any specic value of
k: if during in ation the comoving Hubble radius shrinks su c iently to generate | 1

10 9, then the subsequent post-in ationary evolution will auto matically lead to the present
universe being observed at with the correct value for , thu s resolving the atness problem.

Classical dynamics of single- eld in ation

In the previous section, we illustrated the idea that how the horizon and atness problems
in the Big Bang model can be solved by postulating an exponerlly expanding in ationary
phase in the very early history of the universe. We would now ike to illustrate that how
can we bring about this exponential expansion from the dynancs of a scalar eld.

In the simplest models of in ationary cosmology, we assumelhie universe to be lled by a
real scalar eld (t;x). This scalar eld is called the “in aton'. The in aton is co upled to
gravity minimally via the action

Z

s=_1 ¢35 R %g @@ V() : (1.9)
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Here, V( ) is the potential energy term for the in aton, which is assumed to have the
generic slow roll form shown in Figurel.3. The energy-momentum tensor for the in aton
is given by

T @@ g 0 0@ +V(): @

o

The equation of motion for the eld is

S

1
> -0) p:g@(p

Tg@ )+ Vvy)=o: (1.11)

Here, a®denotes a derivative with respect to the eld

In the homogeneous limit, one assumes that the in aton is puely a function of time:

(t; x) (t). Inserting the FRW form of the metric g (1.1), one gets the energy-
momentum tensor for the in aton to be of the perfect uid form T = diag( ;P;P;P),
with the energy density and pressure given by

()= Z2+V(): (1.12)

NI NI

Pit)y=>-2% V() (1.13)

The dynamics of the universe is governed by the Friedmann eaation (1.2), which takes the
form 8G 1
2 _ L2, :
H 3 3 V() : (1.14)

From (1.11), we nd that the dynamics of the in aton is governed by

*+3H —+ VY )=0: (1.15)

In the slow roll approximation (see Figure 1.3), we can neglect the kinetic energy term%2
in comparison to the potential energy termV ( ). Equation (1.14) then gives us

r
8G 8G

H?Z —V H= —V(): 1.16
3 V() 3 V() (1.16)
As the potential energy is almost a constant during in ation, from (1.16) we can see that
the Hubble rate H is also a constant. This tells us that the scale factor of the niverse
grows exponentially at the rate of a(t) €. Thus, in ationary dynamics can be easily

brought about by a scalar eld slowly rolling down a potential hill.

Slow roll in ation is generally quanti ed in terms of two par ameters and . They are

given by
H 1 Vo ?
HZ 166 V (1.17)
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° 1 VOO
T 4. 8G V. (1.18)
During slow roll in ation, we have 1 and 1.

1.3 de Sitter spacetime and its symmetries

Assuming the Hubble rate to be constant, the metric during the in ationary regime was
ds? = dt®+ "t dxdx': (1.19)

If the Hubble rate H is an exact constant, then such a spacetime is called thde Sitter
spacetime. It is the maximally symmetric solution to the Einstein's equations with a positive
cosmological constant. In practice, the Hubble rate varieslowly during in ation, and hence
the geometry of spacetime is only approximately de Sitter.

The de Sitter spacetime has a large symmetry groug(1;4), with ten generators. For our

purposes we will be interested only in the connected subgrquof O(1;4). The de Sitter

spacetime is invariant under spatial translations and rotdions, scale transformations and
special conformal transformations. In other words, the de 8ter spacetime is conformally

invariant, as the above transformations form the group of conformal tansformations. See
[34, 35] for pedagogical discussions on some key properties of det8i space.

From the form of the metric in (1.19), spatial translations and rotations are an obvious
symmetry of the de Sitter geometry. It is also easy to see thathe scale transformation

XUox ot Hiln() (1.20)

where is a constant, is a symmetry of the de Sitter spacetime. Find, in nitesimal special
conformal transformations of the form

1
A2

X' xt 2 x)x'+H x? g 2t

2
thot+ S(b x) (1.21)

also leave the metric (.19 unchanged. Here,b parametrizes the in nitesimal special
conformal transformation.

During in ation, the Hubble rate is not a constant and varies slowly with time. The spatial
translational and rotational symmetries of the spacetime $ay intact, but the scaling and
special conformal symmetries get broken. However, as longsathe slow roll parameters
and are small, the breaking of conformal symmetries is small, ath the geometry is
still approximately that of the de Sitter space. In the subsequent chapters of this thesis,
we explore the constraints imposed on in ationary correlation functions due to this large

9
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underlying approximate symmetry group.

1.4 Perturbations in the early universe

In the previous sections, we introduced the basic in ationay mechanism driven by a
homogeneous scalar eld. We will now go beyond the homogenas limit and introduce
perturbations about the smooth background. These perturbdions generated during the
in ationary era ultimately give rise to the CMB temperature anisotropies and the large
scale structure of the universe. The presentation here is ementary and serves the purpose
of setting up the ideas and notation involved in subsequent kapters of the thesis; for
detailed discussions see?p, 36, 37, 38, 39, 40].

(a) Millennium Run (b) Planck CMB Map

Figure 1.5: Perturbations in the very early universe give rse to the large scale structure
as well as the temperature anisotropies in the CMB. Fig. 1.5a shows the Millennium Run
simulation [41, 42], which simulated the large scale structure of the universausing billions
of dark matter clouds. Fig. 1.5b shows the CMB temperature anisotropy map obtained by
the Planck satellite [43, 44, 45].

The perturbations are introduced in the in aton as well as the metric. We can classify
the perturbations using the underlying spatial rotation symmetry of de Sitter spacetime
into scalars, vectors and tensors. Out of these only the scat and tensor perturbations
are relevant for our simple setup, any perturbations vectorin nature die out exponentially
at late times. The scalar perturbations are physically souced by the in aton, but can be
transferred to the metric by a suitable choice of coordinats. The tensor perturbations are
purely in the metric.

The perturbations in the in aton are denoted by  (t; x). Thus the complete in aton eld
is
tx)= M+ (tx); (1.22)

where (t) is the homogeneous background. For introducing perturbaibns in the metric,
we work with the ADM decomposition [46, 47]. The ADM form of the metric is

ds? = NZ2dt?+ hy (dx' + N'dt)(dx) + NI dt); (1.23)
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where N;N ' are the lapse and shift functions respectively. The lapse ah shift functions
are non-dynamical variables and act as Lagrange multiplies, their equations of motion
providing the constraint equations of general relativity. We make the gauge choiceN =
1;N' = 0, sometimes referred to as the synchronous gauge. The pentbed metric to the
linear order in this gauge has the form

ds? = dt?+ a(t)?[(L+2 ) jj + by Jdx'dx: (1.24)

By de nition, the tensor perturbations are traceless: b; = 0; the trace has essentially been
absorbed in .

In bringing the metric into the ADM form ( 1.24), we have not completely exhausted the
spacetime reparametrization invariance of the theory. Cosider a spatial reparametrization
of the form

x' 1 x + vi(x): (1.25)

This does not alter the gauge choice we have already made. ltaa be shown that at late

times, when the modes of interest have exited the horizon, th tensor perturbations become
time independent. Using the leftover spatial reparametriation freedom, we can impose the
condition

@Jij =0 (1.26)

on the tensor perturbations. Thus, the tensor perturbations become transverse and traceless
at late times.

One can also perform a time reparametrization of the form
t! t+ (x) (1.27)

which, when compensated by an accompanying spatial reparaetrization
z t

X'Uox + Vi x) Vi x)= @ (x)  dt® 1

a2(19’

(1.28)

leaves the gauge choice una ected. But in the late time limit, V' (t;x) ! 0 in (1.28), and
hence we are left only with the time reparametrizations (.27). Using this, at late times,
one can choose a gauge in which the scalar perturbations in &éin aton vanish, =0.!
In this gauge, the scalar perturbations are thus purely in the metric, . We call this gauge
choice as Gauge 1. Alternatively, one can set the scalar paitbations in the metric to
vanish, = 0, and have the scalar perturbations purely in the in aton. This is called as
Gauge 2. The two gauges are related to one another by a time repametrization. Suppose

1To keep the discussion simple, here we consider only the leathg order in slow roll, where one can
conveniently move between setting either =0 or =0 by appropriate time reparametrizations at late
times. At higher orders in slow roll, the late time behaviour of the perturbations is such that it is natural
toset =0, and after this choice becomes time independent. See Chapter2 for a detailed discussion of
the leading order case, and Chapter 3 for higher orders in slow roll.

11



Chapter 1

we start in gauge 1, in which the perturbations are given by and bj , and then perform a
time reparametrization

t1 ot (1.29)

R
To the leading order in perturbations, this sets the perturbation to vanish. The tensor
perturbation bj is unchanged under the time reparametrization (.29. Now, if the back-
ground value of the in aton is (t), then the resulting value of the perturbation this time

reparametrization gives rise to is

0 : (2.30)
Similarly one can go from gauge 2 to gauge 1 by performing thenverse transformation.
As far as observational consequences are concerned, the CMBmperature anisotropies
as well as the density perturbations in matter distribution that give rise to the large scale
structure are seeded by the scalar perturbations48, 49], whereas the tensor uctuations give
rise to gravitational waves, which can leave a unique imprin on the B-mode polarization of
the CMB [50, 51, 52, 53].

1.4.1 Coherent phases of in ationary perturbations

Before we proceed, let us present an argument, followingsf], that provides very strong
evidence for the claim that in ation must have been the mechaiism which seeded the
primordial density uctuations.

A generic property of the quantum uctuations produced during in ation is that they freeze
out once they exit the horizon, i.e. there is no time evolutiom oncek  aH for the modes
with comoving wave number k. However, after in ation ends, the frozen modes re-enter
the horizon and become dynamical again. In particular, the arvature perturbations (k)
source the density perturbations (k) in the tightly coupled photon-baryon uid. The
density perturbations (k) qualitatively obey an equation of the form

*+ Fi+ ck® = Fy;

where F1; F, are respectively functions of the baryon-to-photon energydensity ratio and
the curvature perturbations (k), and cs is the speed of sound in the photon-baryon uid.
Thus in ationary perturbations source acoustic oscillations in the photon-baryon uid.

When the frozen super-horizon modes (k) re-enter the horizon, they start evolving slowly,
and satisfy (k) 0. If one considers each Fourier mode of the uctuations as airear
combination of a sine mode and a cosine mode, then it is as if iation excites only

the cosine modes. Thus all Fourier modes with a given wave nuber k and diering

amplitudes start oscillating again from their extremas one they re-enter the horizon. This
phase coherenceof di erent modes re-entering the horizon leaves an imprint n the CMB

temperature anisotropies generated at the time of recombiation, as we discuss below.

12
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Figure 1.6: Evolution of four di erent wave numbers in uencing the CMB anisotr opy spectrum.
=  corresponds to the time at which recombination took place.

Consider modes with di erent wave numbersk which re-entered the horizon before recombi-
nation took place and the CMB photons started free streaming The smaller the wavelength
of a mode, the earlier it re-entered the horizon, and the moreacoustic oscillations it had

undergone by the time of recombination. Figure 1.6 shows four di erent wave numbers
in di erent states of their oscillations at the time of recombination. The modes labeled
\Super-Horizon" have not yet re-entered the horizon and areinsensitive to causal physics.
The modes labeled \First Peak" re-entered the horizon su ciently early, so that at the

time of recombination they have made half an oscillation andare at the maximum of their

amplitudes. We therefore expect large anisotropies in the BB spectrum corresponding
to the scales for these modes. The modes labeled \First Troug' are the ones which have
completed three-fourths of an oscillation, and are at the zeo of their oscillation cycle,

implying very low anisotropies at the scales correspondindgo these wave numbers. This
pattern gets repeated as we keep on going to shorter and shait wavelengths.

Figure 1.7: The CMB temperature anisotropy spectrum measured by the Plank satellite [55].
Notice the distinctive appearance of peaks and troughs in the spé&wm for | 200, 0or < 1.
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It is now important to note that had it not been for the coherent phases of the di erent
Fourier modes re-entering the horizon, one would not see theell-tale peaks and troughs in
the CMB temperature anisotropy spectrum, as seen in gurel.7. As mentioned earlier, due
to the property of phase coherence, all Fourier modes with dérent amplitudes but the same
wave number oscillate coherently after horizon re-entry. kgure 1.8 shows the modes which
correspond to the rst peak and rst trough in the CMB anisotr opy spectrum. Notice that
although the magnitudes of their extremas are di erent, they oscillate coherently. Had it not
been for in ation giving rise to phase coherence, di erent males with the same wave number
will oscillate incoherently, and will interfere destructively at the time of recombination, as
shown in gure 1.9. This will destroy the peaks and troughs and will give rise toa at
featureless CMB anisotropy spectrum.

Figure 1.8: The coherent oscillations in the Fourier modes corresponding to way numbers which
give rise to the rst peak and the rst trough in the CMB anisotropy spectrum of gure 1.7.

Figure 1.9: Incoherent oscillations in the Fourier modes corresponding to the ame wavelengths as
in gure 1.8. Due to the destructive interference at the time of recombination one does not get
peaks and troughs in the CMB temperature anisotropy spectrum or this scenario.

One may be tempted at this stage to consider alternatives ton ation which excite only the
“cosine' mode and give rise to the observed phase coherent¢towever, most of these alter-
natives are ruled out once one takes the CMB temperature-pa@lrization cross correlation
data into account.? The cross correlation data, gure 1.10 shows a strong anti-correlation
between temperature and polarization for angular scales 50 |  200. These scales were

2The only alternatives that are not ruled out are the ones in wh ich the universe undergoes a contracting
phase prior to the hot big bang, during which it decelerates; see p6, 57] for reviews of such models.
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super-horizon at the time of recombination in alternativesto in ation, and any alternative
involving causal physics can not explain this observed antcorrelation.

Figure 1.10: The CMB temperature-polarization cross power spectrum meastwed by the Planck
satellite [43]. Note the anti-correlationfor50 | 200, corresponding to angular scales 1< < 5 .

1.5 The wave function of the universe

Another important idea relevant to the thesis is that of the wave function of the universe
[58], de ned as a functional over the late time values of in ationary perturbations. Our
discussion of symmetries will rely heavily upon the wave funtion and its invariance.

The wave function is de ned as a functional integral over thein ationary perturbations via

Z
(x) .
[ ()]= D e S (1.31)
initial

where S[ ] is the action and (x) denotes collectively the physical scalar and tensor
perturbations on a late time slice on which the wave functionis being constructed. Note
that the perturbations have frozen out after appropriate gauge xing at late times. Thus
the wave function (1.31) also becomes independent of time. The actiors can be evaluated
to the desired order in the perturbations: the leading term is quadratic, the cubic and
higher order terms depict interactions. The wave function @n be schematically expanded

as 4

N

[ (x)]=exp d*xd% (x) (y)h'(x)"(y)i

+
Ol NI
N

EBxd3yd®z (x) (y) (2)hx)"(y)" @)+ ::: (1.32)
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Hereh'(x)"(y)i, h(x)"(y)"(z)i etc. are coe cient functions that determine the correlatio n
functions of the in ationary perturbations  (x), following the standard quantum mechanical
recipe for computing expectation values from the wave fundbn. For instance, the two point
function of the perturbations is given by
Z
h(x) (y)i=N D[] (x) ()i [ % (1.33)

where N is the normalization
Z
N '= D[]j[]* (1.34)

We have written the coe cient functions in ( 1.32) in a very suggestive form. As we will see
below, they behave identically as the correlation functiors of marginal operators in a three
dimensional Euclidean conformal eld theory.

One also needs to impose appropriate boundary conditions atie in ationary perturbations

in the far past to make the functional integral eq.(1.31) well de ned. We work with the
Bunch-Davies boundary conditions [59, 60, 61]. The Bunch-Davies boundary conditions
correspond to the physical condition that all the modes of inerest were deep within the
horizon before in ation, and their wavelengths were much snaller compared to the Hubble
scale. Thus, they were indi erent to the curvature on larger scales and behaved as if they
were living in Minkowski space. The initial vacuum state for the in ationary perturbations

is thus de ned in a way analogous to the vacuum state for quantm elds in at spacetime.
An interesting point to note is that the Bunch-Davies state is invariant under the de Sitter
isometries p2, 63, 64].

One can, for instance, choose to express the wave function tarms of the scalar perturbation
(x), and the tensor perturbations bj (x), as®

M3 17
bzen TG @y () »IRK0)
3 PxEYby (OB T (OTH ()
+%Zd3xd3yd3z () () (2)I0X)0()OE)
7 dxdydz () )by ()OO (2)i +

(1.35)

Notice that for every factor of the scalar perturbation  (x), we introduce a factor of O(x),

3The discussion here assumes that we are working to the leadimy order in slow roll, where only corrections
of O(=H ) are incorporated. As discussed earlier, as well as in Chaper 2, at this order it is trivial to switch
between the two gauges = 0 and = 0, and the wave function can be expressed in either of the two.
However, for higher orders in slow roll, it is natural to expr ess the late time wave function in the =0
gauge, a point discussed in considerable detail in Chapter 3.
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and for every factor of by (x), we introduce a factor of T (x) in the wave function.

The wave function can equivalently be expressed in the momeéam space as*

N

2 d3k; ok ,
Ll=en 15 5 SRk (k) ()FO( k)O( ko)
4
d3ky Bk 0 ,
3 Gy k) sk T ko)
VA 3 3 3
k k k
s ooy () (k) (k)

hO( k1)O( k2)O( ka)i + ::: (1.36)

Here, we have expanded the tensor perturbationsy; (k) in terms of the two polarization
tensorsej as

X2
by (k)= & s(k) (1.37)
s=1

where the polarization tensors are normalized according to

e i =p s (1.38)
ij

1.5.1 The coe cient functions and their relation to CFT

We now investigate the nature of the coe cient functions in t he wave function (1.35).

Note that spatial translations and rotations are symmetries of the background that remain
unbroken. Also, although we have made the gauge choicd = 1; N' =0, we still need to

impose the equations of motion of these variables. In partiglar, the N' equation of motion
corresponds to the spatial reparametrization invariance 6 the wave function, and the N

equation of motion gives rise to time reparametrization inariance. Let us exploit these
invariance properties to understand the nature of the coe cient functions appearing in the
wave function.

The translational invariance of the wave function implies that the coe cient functions are
also translationally invariant. Similarly, the rotationa | invariance of the wave function
implies that O(x) should behave like a scalar andr'! (x) should behave like a rank-2 tensor
under spatial rotations.

Consider next the scaling transformations of the form givenin (1.20) at late times. The
perturbation  (x) transforms as a scalar under the transformation. Hence

! o= X (1.39)

4 ; ; . R d3k ik x R s ik x
Our convention for the Fourier transform is: f (x) = 2 )37 € f(k), and f (k)= d°xe f (x).
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The condition that the wave function stays invariant under t his transformation is

[ 1= [ (1.40)

Now, every additional power of the perturbation  (x) in the wave function is accompanied
by an extra O(x) in the coe cient function. Thus, in a schematic way, the condition for
the invariance of the wave function (1.40 translates to

Z Z
d®x x)ox)= & (x)O(x); (1.41)

which by using (1.39 becomes
Z Z
@B L oox)=  dx (x)O(x)
Z Z
) dBx (x) 0( x)= & (x)O(x): (1.42)

From (1.42), we can conclude that under a scaling transformation,O(x) transforms as
oxx)! 30( x); (1.43)
and if we choose the scaling parameter to be small, =1+ , then

O(x)! O(x)+ O (x);
O (x)=30(x)+ X' @O(x): (1.44)

This is exactly the condition that will arise for scale invariance if O(x) is a scalar operator
of dimension 3 in a three dimensional Euclidean conformal & theory, and the coe cient
functions hOOi etc. are correlation functions of these operatorsZg].

A very similar calculation for the tensor perturbations bj tells us that the objects T (x)
also behave as operators of dimension 3 in a three dimensidrnauclidean CFT.

We next consider the invariance of the wave function under spcial conformal transforma-
tions. A in nitesimal special conformal transformation at late times is given by

' ox'+ x":

x'=x%0 2¢(b x): (1.45)

The scalar perturbation transforms as
) WX)= (k' x ) (1.46)
Imposing the condition (1.41) for the invariance of the wave function then leads to the
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following transformation of the operator O(x) under a special conformal transformation

O(x)! O(x)+ O(x);
O(x)= 6(b x)O(x)+ BO(x);
D=x%b @ 20b x)(x @: (1.47)

This is same as the transformation rule for a scalar operatoof dimension 3 under a special
conformal transformation in a CFT. Similarly, the tensor op erator T! (x) transforms under
the special conformal transformation (.45 as

Ty (x) ! Ty (x)+ T (x);
Tij (X) = 6(b X)Tij (X) +2 Miijk +2MjkTik + 6Tij (X);
MEk=xkd x'B¢D=x%b @ 20b x)(x @: (1.48)

This agrees with the transformation rule for the stress-enggy tensor of a three dimensional
CFT.

Thus, we have established thatO(x) and T! (x) behave as dimension three operators in
a 3D Euclidean conformal eld theory. The coe cient functio ns appearing in the wave
function behave as the correlation functions of these opetars, a point discussed in greater
detail in Chapter 3, see also 26].

1.5.2 The two point function

The wave function approach provides a very elegant methodalgy for calculating the corre-
lation functions of perturbations generated during in ati on. We illustrate the method below
by computing the correlator h (k1) (k)i in terms of the CFT correlator hO(k1)O(k>2)i.
The same technigue can be generalized to nd similar relatias between other correlators.

To derive the relationship betweenh (k1) (k)i and hO(k1)O(k>)i, we start by consid-
ering the wave function in momentum space in the form

[ ]=exp M_'§| }Z d°ky ks
H2 2 (2)yP@e)3

(k1) (k2)hO( k1)O( ka)i (1.49)
By de nition, the correlation function h (ki) (k)i is given by
Z
h (ki) (k2)i=N D[ ] (k1) (ko) [ 1% (1.50)
where N is the normalization factor given by

y
Ni= D[] [ 1% (1.51)
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De ne the quantity W[J] as

Z

M 2 ks Bk
WP]=N D[ Jexp 5 z )13 v )23

(k1) (k2)hO( k1)O( kp)i
Z
d*kJI(k) (k) ; (1.52)

where J(k) is a source term. W[J] acts like a generating functional for the correlation
functions. In terms of W[J], we can write the correlation function h (k1) (k»)i as

H4 2W[J]

h k) Kl = G T ()

(1.53)

The expressions forN and W [J] can be evaluated exactly by using Gaussian integration
techniques. This gives us

N =ex }Tr Lo 2 IVI—'E'hC)( k1)O( k)i ; (1.54)
and
M2 z
W[J]l=exp (2 )GHPZI d3k1d3k2J(k1)hO( k1)O( k)i 1J(k2) : (1.55)

Putting the expression (1.55) into the equation (1.53) we get a relationship betweerh (k1) (k)i
and hO( k1)O( ky)i as

0. 1 H? 1 .
h (k) ()I™= 5 82 o ko( ka)io

(1.56)

where a® on a correlator denotes the suppression of the momentum coesving factor
of (2 )% 3(ky + k). It is straight forward to obtain similar relations for hig her point
correlation functions.

Let us now move further and compute the correlation functionhO(k1)O(k>)i in a CFT. The
conformal symmetries of the CFT x this completely. We start by considering translational
invariance. This will require that the correlator hO(k1)O(k»)i be proportional to the delta
function (2 )2 3(ky1 + k»), as translational invariance implies conservation of monentum.
Next consider the invariance under rotations. This will require the correlator hO(k1)O(k>)i
to be a function only of the magnitude of k;, which we denote byki;. Thus translational
and rotational invariance x the form of the correlation fun ction hO(k1)O(k>)i to be

hO(k1)O(k2)i = (2 )3 3(ky + ko) f (k1); (1.57)

where f (k1) is for now an arbitrary function. Finally, we impose the constraint due to
scaling. Recall that the position space operatofO(x) has dimension 3. Since the momentum
space operatorO(k) is related to O(x) by a Fourier transform, it must be dimensionless.
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Thus the correlation function hO(k1)O(k2)i should also be dimensionless. Now, in equation
(1.57), the delta function has a scaling dimension 3. To compensate for this, the function
f (k1) should have dimension 3. This tells us thatf (k;) k£, and hence the form of the
correlator hO(k1)O(k»o)i is

hO(k1)O(k2)i = (2 ) 3(ky + ko) ki (1.58)

Thus conformal symmetries alone can x the scalar two point uinction hO(k1)O(k2)i. In
particular, (1.58) tells us that

hO( k1)O( ka)i = hO(k1)O(k2)i: (1.59)

Equation (1.56) then tells us that

2
h (k) (K2)i =@ ) (ki k) gr

— (1.60)
ME, ko

Using the expression 1.30) for the change of gauge between Gauge 2 and Gauge 1, we get

h (ke) (k)i = (2 )2 (ks + ko) o ML (L.61)
2 2M3, k$

This is a very well known and useful result, with important observational consequences.
Note that in reaching up to eq.(1.60) we had been assuming exact conformal invariance, with
H being a constant. This, however, is not true during in ation. The conformal symmetries

are slightly broken, and H is no more a constant. This results into a modi cation of the

result in eq.(1.61), with the momentum dependence getting modi ed to h (ky) (k»)i°

Ky 3”‘5, where ng is called the tilt of the two point function, and is sensitive to the

departures from exact conformal invariance. The tilt can beexpressed in terms of the
slow roll parameters as ng = 2 6, [24]. A similar computation can also be done for the
tensor two point function, which also deviates from the exat scale invariant form due to

breaking of the conformal symmetries. This in ationary prediction for departures from the

exact scale invariant form is in excellent agreement with olservations®

The example above illustrates the elegance of the computathal technique based upon the
wave function, which is quite straight forward and simple. It can be used to calculate
correlation functions of other in ationary perturbations in a similar manner as well 3, 27].

The scalar tilt, which parametrises the modi cation in mome ntum dependence of the two point function

from the exact scale invariant form, arises because the values of H; —appearing in eq.(1.61) depend upon
the exact moment when the momentum mode of interest exits the horizon via k aH, and is given by
! !
4 .
= L In H_ =2 E_
dink 2 H2 Qy_

Ns :2( 3):

6The latest data from Planck [ 14, 16] gives ns = 0:968  0:006.
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1.6 Organization of the thesis

Most of this thesis deals with the idea of using the underlyilg approximate de Sitter
symmetries to derive constraints on the correlation functons of in ationary perturbations,
by utilizing the coordinate reparametrization invariance of the late time wave function.
We have presented a very basic overview of the ideas neededr fthe rest of the thesis
in the present chapter. In Chapter 2, we work to the leading order in slow roll, where
deviations from exact de Sitter invariance only toO( =H ) are relevant, and derive symmetry
constraints in the form of Ward identities for the correlation functions of in ationary
perturbations. In Chapter 3 we generalize these Ward identities to incorporate correéns
to all orders in the slow roll expansion. Chapter4 discusses some applications and conse-
guences of the Ward identities. Appendices associated witeach chapter provide additional
supplementary material.
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Chapter 2

Symmetry constraints in in ation:
the leading order in slow roll

2.1 Introduction

In ation is an attractive idea which explains the approxima te homogeneity and isotropy of
our universe. It also leads to the genesis of small perturb&ins required for the observed
anisotropy in the Cosmic Microwave Background and for the gowth of structure.

There has been considerable e ort in developing many theorétal models that can give
rise to in ation in the early universe. However, relatively little work has been done on
understanding the nature of the perturbations which are praduced during in ation in a
model independent manner. More recently, such a model indegndent analysis has been
developed based on symmetry considerations.

During in ation, spacetime is approximately described by de Sitter space. The essential
idea of some of the symmetry based analysis is to use th®(1;4) symmetry of de Sitter

space, which is also the symmetry group of three dimensionatuclidean Conformal Field

Theories, to constrain correlation functions of the perturbations. Of course, the universe
is not exactly described by de Sitter space during in ation, but the corrections which are
gquanti ed in terms of the slow roll parameters are small, beng of order 1% or so. The
0O(1;4) symmetry should therefore be useful in constraining the orrelation functions. In

the following discussion, we shall refer to this symmetry goup as the de Sitter group or the
conformal group interchangeably.

In the present chapter, we carry out such a symmetry based argsis for the scalar three
point function, by including the rst non-vanishing correc tions in the slow roll approxima-

tion. Among all the three point correlations, the three point scalar correlator is expected
to be of the biggest magnitude, and therefore of most signi ance for observational tests of
non-Gaussianity. It is therefore clearly important to understand what constraints can be
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imposed on it from symmetry considerations alone. This is tle motivation underlying the
present chapter. The constraints obtained can be straight érwardly generalized to higher
point correlation functions as well.

One of our main results in this chapter is a set of Ward identiies relating the three
point function to the scalar four point function in a particu lar limit. The coe cient of

proportionality between the two is the parameter -, de ned in section 3.2

It is well known that the three point function is suppressed in the canonical model of slow
roll in ation (for a de nition of this model see eq.( 2.20) so that, in a sense which we
make precise below, it can be thought of as vanishing to leadg order in the slow roll
approximation. We argue that this feature is more generallyvalid. In addition, the Ward
identities allow us to estimate the magnitude of the leadingnon-vanishing contribution to
the three point function, in the slow roll approximation. We nd that generically it is of
the same order as the three point function in the canonical siw roll model. To get a rough
idea, this means that quite generally, as long as conformalygnmetry is approximately valid,
fne O ()%, although the detailed functional form is not the same as assmed in the
standard f \_ parametrization, so this is only an estimate.

While the small magnitude for the three point function is disappointing from the point of
view of observations, this result can be turned around in anmteresting way as follows. If
observationally a three point function of bigger magnitude is observed then it would rule
out not only the canonical model of slow roll in ation, but in fact all models where the
dynamics is approximately conformally invariant, and the sliow roll approximation holds.?!

We also show that the Ward identities determine the three pont function, nearly completely,
upto one constant, in terms of the four point function. To leading order, the latter can be
computed in the de Sitter limit and is thus constrained by the full de Sitter symmetry group.
In this way, we can make precise the extent to which conformakymmetry constrains the
scalar three point correlator.

Unfortunately, as is well known, the four point function its elf is not signi cantly constrained
in a conformal eld theory. In position space there are threeinvariant cross ratios in three
dimensions, and conformal symmetry allows the four point salar correlator to be a general
function of these three variables. This is a rather weak cortsaint. It follows from our
analysis then that conformal invariance also constrains tke three point scalar correlator
only weakly.

Directly checking the Ward identities through observations seems very challenging, although
it cannot be ruled out, perhaps. A more interesting angle midnt be the following. In the
canonical slow roll model, the four point function in the de Stter limit arises from a tree
diagram with single graviton exchange, seed 27, 65]. If the three point function is observed

Strictly speaking, in a non-generic case, approximate conformal invariance and the slow roll approxi-
mation do allow the magnitude to be bigger, as we discuss belav. But in this case the functional form is
completely xed, so one should be able to test for this possibility as well.
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and found to depart from the functional form it has in the canonical slow roll model, then it
would follow from the Ward identities that the four point fun ction must also have a di erent
form. This would suggest that perhaps higher spin elds migh have been involved during
in ation, a possibility explored in [ 66, 67, 68, 69, 70, 71].

The approach followed in this chapter is based on the importat work of [24] and [25] and
also the subsequent papers,2p] and [27]. As was emphasized in these works, symmetry
considerations are conveniently discussed in terms of the ave function of the universe
at late times. In the de Sitter limit, the Ward identities of ¢ onformal invariance can
be obtained from the constraints of spatial reparametrizaion and time reparametrization
invariance, which the wave function must satisfy. The time reparametrization constraint in
particular is the same as the Wheeler-DeWitt equation. The® constraints must continue
to hold even when we go beyond the de Sitter limit. In this way, the spatial and time
reparametrization invariance can be used to obtain the corected Ward identities which
now include the breaking of conformal invariance.

It is worth explicitly mentioning that while the analysis we carry out draws on techniques
developed in the study of the AAS/CFT correspondence T2, 73, 74],> we do not assume
that there is a hologram for de Sitter space or for in ation. We use the techniques drawn
from AdS/CFT only as a way of e ciently organizing the analys is of symmetry constraints

for perturbations which are generated during in ation in th e gravitational system.

The analysis we carry out assumes, as was mentioned above, ahthe full in ationary
dynamics, including the scalar sector, preserves approxiate conformal invariance. Some of
our conclusions therefore do not apply to models like DBI in ation [81, 82] or Ghost in ation
[83], in which the scalar sector breaks the full conformal symmey badly. In addition, it
assumes that only one in aton was present during in ation, and that the initial state was
the Bunch-Davies vacuum. We also assume that the slow-roll anditions hold; these are
more precisely discussed in sectior2.2.1. Besides these assumptions, our conclusions are
robust, and as was emphasized above, model independent. Fexample, they should hold
even if higher derivative corrections to Einstein gravity become important3

This chapter is organized as follows. In section3.2 we discuss some of the introductory
material. The Ward identities are derived in section 2.3. In section 2.4 we analyze these
identities further and derive various consequences. Findf, we conclude in section2.5.
AppendicesA.1, A.2 and A.3 contain additional important details.

The present chapter is largely based onl1]. Early work on using conformal symmetry
to constrain in ationary correlators includes [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95].
More recent work, where the conformal symmetries are oftenttought of as being non-linearly
realized, include P6, 97, 98, 99, 100, 101, 102 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,

2For reviews see [5, 76, 77, 78, 79, 80|

3More correctly, these results should apply also to models where quantum e ects are small but classical
higher derivative corrections are important. As would happ en, for example, if the Hubble scale is of order
the string scale, M, but much smaller than the Planck scale, Mp .
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113 114). Many interesting Ward identities have already been derived using this approach.
Additional related work is in [115 116, 117], see also J18 119 120, 121, 122, 123. Our
discussion in section2.4 is closely related to [L24], see also 125. The basic approach of
using time and spatial reparametrizations to derive Ward identities that we follow was rst
discussed in the AdS context in 126]. There are also some related developments in the
study of Lifshitz and hyperscaling violating spacetimes, & interest for possible connections
between AdS gravity and condensed matter physics, se€.27).

2.2 Basic set-up and conventions

In this section we give a few details about the basic approachve will use; for more details
see P4, and [26], [27].

We will consider the metric to be of the ADM form

ds? = NZ2dt?+ hy (dx' + N'dt)(dx + NI dt); (2.1)

and work in the gauge
N=1;N'=0: (2.2)

The equations of motion obtained by varyingN and N' in the action must still be imposed.
These equations will give rise to the constraints of spatialnd time reparametrizations that
play an important role in the subsequent discussion.

The background in ationary solution is a Friedmann-Robert son-Walker (FRW) spacetime
with scale factor a(t). Allowing for perturbations in the metric, we can write

hy a%(t)gy = a®M) [ + ) (2.3)
with
i =2 i + bIJ (24)
where by is traceless.
A scalar eld, the inaton, , is also present in in ation (as mentioned in the introducti on,

we will restrict ourselves to the case with a single in aton). It can be written as
= M+ (tx) (2.5)

where and are the background value and the perturbation of the in aton, respectively.

We will consider the wave function of the universe at late times, when the perturbations
of interest have exited the horizon and stopped evolving in ime. The wave function is
actually a functional of the perturbations j; . Assuming the wave function is approxi-
mately Gaussian and that corrections are small, we can expahit in a Taylor series in the
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perturbations to get
z
P—— . P—— .
| % dx g(x)dy oly) (x) (y)hO(x)O(y)i
z
A TR T 5 ) W) )T )i
z

P g Pt s P ——
% g dy oly) bz o(2) (2.6)

. (x) (y) (2)O(x)O(y)O(2)i

1 P P P o P
i d®x gx) Py gly)d’z g(z) d*w g(w)

N

[ ; jl=exp

[ NI N

+

w

(x) (y) (2) (W)hO(x)O(y)O(z)O(w)i + :::

The ellipses denote additional terms which will not play an important role in this chapter.

The coe cient function for the quadratic term in in eq.(2.6) is given by 4
ho(k)O(k9i =2 )3 3(k + kY Kk3: (2.7)

Let us also mention that in our conventions
Z
ok)o(k9i = dxd3ye **e KYrox)O(y)i: (2.8)

We also note that the coe cient function for the quadratic te rmin jj is given by ®

() T2 = 2 )° 2+ ko) 5L (2.9)

whereTS(k) = Tj (k) S ( k), and the polarization tensor, S, satis es the normalization
sij s =o sis
ij :
The wave function eq.@.6) is obtained by doing a path integral with Bunch-Davies boundary
conditions in the far past,
Z
[ 5 4]1= [D 1D j]est: vl (2.10)

Our choice, eq.@.2), does not x the gauge completely. There is still the freedon to do
spatial reparametrizations of the form

' ox+ T(x); (2.11)

“We follow the convention where bold face symbols, e.g. k, stand for 3-vectors, and symbols without
bold faces denote the magnitudes, e.g.k j kj.
The labels s; s denote the two polarizations of the graviton.

27



Chapter 2

and time reparametrization of the form

tot+ (x);x' X+ V(L x); (2.12)
where Z 1
V=@ az—(t)dt: (2.13)

Note that in de Sitter space eq.@.13 becomes,

i_ 1 2H .
V= oo (@)e M (2.14)

The wave function must be invariant under these coordinate tansformations. In the classical
limit, which we mainly consider here, the wave function is agproximately

[ ] gsti il (2.15)

and the invariance of the wave function arises from the invalance of the action with
respect to the spatial and time reparametrizations. It is eay to see in the Hamilton-
Jacobi formulation that for Einstein gravity, for example, the equation of motion obtained
by varying N; N ' in the action, are exactly the equations which impose this iwvariance. More
generally, the equations of motion can be complicated, but lhe ones obtained by varying
N:N' should, on general grounds, still impose this invariance.

The invariance of the wave function under eq.2.11) and eq.(3.10 leads to conditions on
the coe cient functions, introduced in eq.(2.6). In de Sitter space these constraints are
exactly the same as Ward identities for conformal invariane in a conformal eld theory,
with the coe cient functions playing the role of correlatio n functions in the CFT. This
is the essential reason why the study of the constraints impsed by conformal invariance
on the wave function, and therefore expectation values, carbe mapped to an analysis of
constraints imposed on correlation functions in a CFT.

In de Sitter space the scale factor, eq4.3). is given by
a?(t) = et (2.16)

whereH , the Hubble parameter, is constant. More generally the Hublle parameter, de ned
by
H (2.17)

o ||

will not be a constant.

Its variation gives two of the slow roll parameters which quantify the breaking of conformal

invariance,

H M
= — = —: 2.18
T Re 2HH. (2.18)
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Another parameter is given by
— 2.19
. (2.19)
We often refer in this chapter to the \canonical model of slowroll in ation". By this we
mean a theory with the action

Z
s= dax"gME 2R S0 ) V() (2.20)

p

where the potential is varying slowly enough to meet the condions, eq.(2.22 and eq.(2.23.
Note that in our normalization the scalar eld is dimensionless, andV has dimensions of
[M 2. In this theory the Hubble parameter is given by

1
H? = 3V (2.21)

In the slow roll approximation in this model, the conditions
1 1; (2.22)

and also

1 2.23
a (2.23)
are met.

The scalar eld then approximately satis es the equation

— % ve (2.24)

where a prime denotes derivative with respect to the scalar eld. The slow roll parameters,
1 and , de ned in eq.(2.18), are given by
2 \/ 00

and = V; (2.25)

H
1
NI =
<|<

o

and meeting the slow roll conditions, eq.2.22), eq.(2.23 leads to the requirements,

0 2
VV 1; (2.26)
and \/00
v 1 (2.27)
Also, in this model
q_ _ P 21 (2.28)
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As a result, from eq.@.22 we see that

ﬁ_ T (2.29)

2.2.1 More general action and slow roll conditions

More generally, our analysis will allow for additional terms so that the full action could
schematically take the form
Z
s=  dxPgmg %R %(@)2 v+ ARz Zgey (2.30)

where the additional terms, like the last two, also have addiional derivatives. The R?;R3
terms above actually denote various terms with four derivaive and six derivatives respec-
tively. The coe cients cy;c, are dimensionless, and in general could be functions of, while

denotes a higher energy cut-o scale, which could in string theory be the string scale,
Mg, for example. The R?;R3 terms could be signi cant, for example, if the Hubble scale
is of order the string scale in string theory. The ellipses sind for additional terms with
higher derivatives on the metric, and also terms with additional derivatives on the in aton.
These would be suppressed by appropriate powers of .

As was mentioned above, we are interested here in theories whe the additional terms in
eg.(2.30 give rise to an approximately conformally invariant dynamics for the perturbations.
This can be ensured by taking both the Hubble parameter and tke scalar to vary slowly,
so that eq.(2.22) and eq.(2.23 are met. The background solution is then approximately
de Sitter space with a constant scalar, which clearly presetes conformal invariance. And
the perturbations about this background will then inherit t his conformal symmetry. In the
discussion which follows, it will be convenient for parameer counting to take

1 (2.31)

Corrections about the conformally invariant limit will the n be suppressed by ; and .
With these features in mind we will take, in general, the condtions eq.(2.22 and eq.(2.23
to hold for approximate conformal invariance to arise®

Once these conditions are met, it also follows from the eld guations in the general case that
eq.(2.29 is valid. As was mentioned above, we are assuming that therés an approximate
de Sitter solution when  is small. The corrections to de Sitter space in such a solutio
arise because of extra contributions to the stress energy a@uto the non-vanishing value of —

However, any such contribution must be of order (92 or higher, since the scalar Lagrangian

6 Strictly speaking, we have established that the conditions eq.(2.22), eq.(2.23) are su cient, but perhaps
not necessary. However, if they are violated the emergence 6 approximate conformal invariance for the
dynamics of small perturbations would be something of an accident, which we view as being quite unlikely.
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has at least two derivatives. Thus we learn that ;; can at most be of order

2
1 q o (2.32)
and eq.(2.23 then leads to eq.@.29. The equations, (2.22), (2.23 and (2.29 are what we

will use in our derivation of the Ward identities.

We end with a few comments which are of relevance for the dis@sion in section2.4.3
where we estimate the normalization of the homogeneous tern$;, in the solution of the
Ward identities. We begin by noting that when the higher derivative terms are important
for the metric, H?2 will not be given in terms of V by eq.(4.8). Instead, the relation will be
more complicated and have the form
H

H2f — =V; (2.33)
where f is a function which depends on the higher derivative contritutions. Now as long
as the functionf  O(1), we get

H?2 V: (2.34)
Taking a time derivative then gives,
Ho vo -
Using eq.@2.32 then leads to
VO
- ﬁ: (2.36)

It follows from eq.(2.34) and eq.(2.36) that the general slow roll case is in fact quite analogous
to the canonical slow roll model. In particular, it follows from eq.(2.34), eq.(2.36) that

= P—. (2.37)

and also that in the slow roll expansion in general, an extra ime derivative leads to a
suppression by a factor of ;.

The function f in eq.(2.33 has the limiting behaviour f ! 3 when® 1 0. Eq. (2.39) is
therefore a reasonable assumption if O(1) also for = O(1), but it could be a bad
approximation if f becomes big for™  O(1).

2.3 The Ward identities

We now turn to a discussion of the Ward identities. It is convenient to rst consider the case
of pure de Sitter space, with no corrections, and then consier the in ationary spacetime.
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2.3.1 de Sitter space

In de Sitter space the metric perturbations j and the scalar perturbation  both freeze out
and become time independent at su ciently late time, when th eir physical spatial momenta
J% become much smaller thanH .

The late time wave function is then a functional of these varables, as discussed in e(6).
As was mentioned above in the comments after eg2(10), our choice eq.@.2) does not x
the gauge completely. In the discussion below, it will be somtimes convenient to x the
remaining time reparametrization freedom, eq.8.10), by setting the late time value of to
vanish,’

=0: (2.38)

It is possible to do this for a suitable choice of (x) because at late times, whenv' in
eg.(2.13 vanishes, transforms under

t! t+ (x)

as
! H (x):

After this additional gauge xing eq.( 2.38), the Ward identities of special conformal transfor-
mations are then derived in this gauge by considering a combied spatial reparametrization
and time reparametrization,

eZHt '
HZ

. . X
x'oxt 2 x)xt+ 0 (x1)? (2.39)
j

J
£l t+2 QTX; (2.40)

which preserve the gauge condition eq4.38). Before proceeding, let us note that the special
conformal transformations are speci ed by three parametes, b:i=1; 3. Also, note that

the last term in eq.(2.39, which goes likeb eHZZH , can be dropped at late time.

The invariance of the wave function under the combined trangormation, eq.(2.39), eq.(2.40),
gives rise to constraints on the coe cient functions in eq.(2.6). In particular, for the
coe cient function hOOOQi in eq.(2.6), which is the coe cient of the term cubic in

in the wave function, this leads to the condition,

LR hO(k1)O(k2)O(k3)i% L, hO(k1)O(k2)O(k3)i% LP, hO(k1)O(k2)O(k3)i%= 0; (2.41)

"This choice will be referred to as gauge A in section 2.3.2
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where LP is the di erential operator

LP=2 k @ b @ @ @ :

(@3 (@3 @& @
The prime symbols on the correlation functions in eq.2.41) denote the correlation functions
with the momentum conserving delta function stripped o :

(b k) (2.42)

hO(k1)O(k2)O(k3)i = (2 )* 3(ka + ka + k3) hO(k1)O(k2)O(k3)i® (2.43)
We will follow a similar convention in this chapter for other correlation functions as well.

It is worth giving some more details leading to eq.2.41). Since the asymptotic value of
is time independent, it only transforms under the spatial reparametrization, eq.(2.39),

! + ( (x));
~ : o . (2.44)
( x)= 20 x)x' xB @ (x):
Requiring that the wave function is invariant gives rise to the condition
[ 1= + (I (2.45)
For the coe cient hOOOQOi in position space this leads to the relation,
h( O (x))O(y)O(z)i + hO(x)( O (y))O(z)i + hO(x)O(y)( O (z))i =0; (2.46)
where,
O(x)= x20 2(b x)x' @O(x) 6(b x)O(x): (2.47)

Eq.(2.47) becomes eq2.41) in momentum space. The wave function also depends onj ,
which transforms under eq..39, eq.(2.40), but the resulting terms are not relevant for
obtaining the identity eq.(2.46) and we omit them here.

The Ward identity for scale transformations can be derived h a similar way by requiring
the invariance of the wave function under the coordinate transformation

tl t+ ;x'1 e x' @ H)X: (2.48)

The scalar perturbation  transforms under this as

! + ()
. (2.49)
( )=Hx'@:
For the coe cient function hOOOQi this gives the relation
h( O (x))O(y)O(z)i + hO(x)( O (y))O(z)i + HO(x)O(y)( O(z))i =0; (2.50)
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where O (x) is now given by
O(X)=H 3+x'@ O(x): (2.51)

The rst term on the RHS of eq.(2.51) arises as follows. Each factor of (x)ﬁ'n the cubic
term in the wave function, eq.(2.6), is accompanied by an integration measure, d®x  g(x).
Since we are in the gauge = 0, P g = 1 and does not change under the transformation
eq.(2.49. The change in the measured®x under eq.(2.48 then gives rise to this rst term.

We note that eq.(2.50 is what we would expect for an operator of dimension 3 in a CFT
In momentum space eq.R.50) becomes

X3 @
Ka
@a

a=1

hO(k1)O(k2)O(k3)i =0: (2.52)

2.3.2 In ationary spacetime

Now let us consider departures from the conformally invariat case which arise during
in ation. In general, the metric begins to di er from the de Si tter case and this in turn
a ects the asymptotic behavior of the various perturbations. It turns out that for the limited
purpose of deriving the Ward identities of interest, the departures of the metric from de
Sitter space can be neglected. This is because these depars, which arise becauséi is
no longer a constant, are proportional to 1; , eq.(2.18), whereas the Ward identity we seek
arises at order . Since we have argued that the condition eqZ.29), which is true in the
canonical slow roll theory is also true more generally, it isconsistent to take the background
metric to be de Sitter space while keeping corrections of o .

This approximation leads to considerable simpli cation. The asymptotic behavior of per-
turbations continues to be that of de Sitter space. As a resul it is quite straightforward
to connect with the analysis above in de Sitter space.

Choice of gauge

There is one subtlety in the in ationary case which needs to ke kept in mind though. A
variable which is often used to describe scalar perturbatios in in ation is the variable R,
given by

R = al : (2.53)

The variable R has the advantage that it is invariant under linearized coodinate trans-
formations, and is also constant outside the horizon. Howesr, since — appears in the
denominator on the RHS, taking the —! 0 limit, when the de Sitter description should
become a good one, can sometimes be confusing when workingedily in terms of R.

The simplest way to deal with this complication is to use two d erent gauges. While the
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perturbations are inside the horizon and evolving, one can wrk in the gauge where eq2.39
is true. We refer to this as gauge A below. In this gauge the sdar perturbation is given by
which behaves in a smooth way, with a well de ned Lagrangian ér example, in the de
Sitter limit. Once the perturbations leave the horizon, one can then go over to the gauge
where
=0 (2.54)

is true. In this gauge the scalar perturbation is given by and is a constant outside the
horizon, so that the correlation functions in terms of are time independent. We call
this gauge B below. The required coordinate transformationis a time reparametrization
eg.(3.10), with a suitably chosen time independent parameter (x). At the linearized level
the variable in gauge B is related to the variable in gauge A by

Having calculated the correlation functions in gauge A it isa straightforward exercise, only
involving a change of variables, to go over to gauge B.

This is in fact the procedure we will follow below. To begin, we will work in gauge A and
construct the wave function in terms of  and the remaining degrees of freedom in the
metric j; . We can think of this wave function as being constructed in tre epoch when the
perturbations of interest are exiting the horizon. It will t ake the form given in eq.@.6).
We will then obtain relations between various coe cient fun ctions of this wave function by
demanding that it is invariant under suitable time and spati al reparametrizations. Then we
will change the gauge and go to gauge B, and recast these reilabs now between correlation
functions of , which are conserved outside the horizon.

One more comment is in order before we proceed. Although theraceless component of the
metric perturbation, bj, eq.(2.4), will not play much of a role in the following discussion,
we have in mind carrying out a spatial reparametrization eq(2.11) so that at late time bj;
satis es the condition,

@' =o0: (2.56)
Indeed, only after this gauge xing is R given by eq.2.53).

The Ward identities

Setting =0, eq.(2.38), to derive the Ward identity of special conformal transformations,

we again choose the spatial and time reparametrizations, ef2.39, eq.(2.40, and demand

that the wave function is invariant under them. The only new change is that since we are
also keeping e ects of orderg now, the change in the scalar perturbation  has an extra
term compared to eq.@.44).

This extra term arises as follows. One wants the full in aton eld, eq.(2.5), to transform like

35



Chapter 2

a scalar under the coordinate transformation eq.2.39, (2.40). That is, denoting a generic
coordinate transformation as
x I x + (X (2.57)

(where =0;1;2;3), should transform as
! @ : (2.58)

It is easy to see that this gives rise to an extra term in the transformation for , so that,
to this order
! + ( )+ () (2.59)

where () is the same as in eq2.44) and 7( ), the extra contribution, is given by

T x)= 20 X)ﬁ_i (2.60)

Now demanding that the wave function is invariant under the full change of  gives rise
to a modi ed Ward identity, which takes the form

Lp, hO(k1)O(k2)O(k3)i%+ LP,hO(k1)O(k2)O(k3)i%+ L, hO(k1)O(k2)O(k3)i®

=2 " b @ 1OK1)O(k,)O(ks)O(ks)i® . oD
2 b & (1)(2)(3)(4)|k4!0,

where LE is the same as de ned in eq.2.42).

Similarly, for the scaling transformation, eq.(2.48), we get the Ward identity

X

hO(k1)O(k2)O(ks)i = ﬁ_ho(kl)o(kz)o(ks)o(kni o (262

a ka! O

a=1

Eq.(2.62 and especially eq.2.61) are some of the main results of this chapter.

So far our discussion was in terms of the coe cient functionswhich appear in the wave
function. It is useful to express the results in terms of corelation functions of perturbations.
The expectation values of correlators involving  can be obtained from the wave function
in the standard fashion. For example, the two point function is

R o
O ¥ ili i ) ().

D 1D T P (269

h (x) (y)i=
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From eq.(2.6) we see that in momentum space this gives,

o 1 H?2 1
h (k) (kK9i=@ )% 3k+ k9 3MZ, FOK)OKI (2.64)
=@ ok L (2.65)

M2, 23"

where we have used eg2.7).

Although it will not be very relevant for the present discussion, let us note that the RHS
of eq.(2.63 is slightly imprecise. To make the sum over metrics well dened, the remaining
gauge redundancy must also be removed. This is a general feme when calculating
expectation values, P7]. While we are not being very explicit about this, we always have
in mind xing this redundancy by also taking " to be transverse, eq.2.56). Note that

is already set to vanish in the gauge we are working with so fareq.(2.38).

Once the correlation functions for  have been obtained, we can change gauge and go over
to gauge B, eq.@.54), as was discussed in subsectiol.3.2 above.

For the two point function, we see from eq.@.65), eqg.(2.38) and eq.(2.53 that the variable
R has the two point function,

hR(K)R(k9i = (2 )3 3k + k9 H? HZ 1, (2.66)
- M2 2 2% '
which is the standard result. In gauge B where eqZ.54) is met,
R=: (2.67)
Thus, eq.(2.66) leads to,
H2 H? 1
_ 33 n--~.
h (k) (k9i=@ )2 3k + k9 MZ 7 A (2.68)
For completeness, we also note that the graviton two-point éinction is given by
: 33 H? 1
hs(ka) so(k2)i =(2 )7 “(k+ K2) sis0 130 (2.69)
pI K1

where s= 1 j ¢.

At linear order the variable in gauge B is related to  in gauge A by eq..55. When
we consider the three point function things get a little more complicated in going over to
gauge B. Since the three point function is suppressed (due tthe factor of —on the RHS of
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eq.(2.61) the relation, eq.(2.55), is needed to second order. It turns out to be®

H 1H H 2
— + - - :
- 2_H- 2

(2.70)

It was shown in [24] that in gauge B is in fact constant outside the horizon, and since
we have gauge xed completely, it is also a physical observdbe. This makes it a convenient
variable to use. From eq.@.70) and eq.(A.8) we get that °

1 H*H3® _ 53 1
h (k1) (k2) (k3)i iV —3(2 ) P(ky+ ko + ka) Q37k3

I - =

P N A 2.71)
h O(k1)O(k2)O(ka)i %+ — —; ks
H - - a=1
Similarly, the four point function to leading order is given by
h (k Kk k k)i =h (k k Kk kg)i

(k1) (k2) (k3) (ka) (k1) (k2) (k3) (ka)icr 2.72)

+ h (k1) (k2) (ka) (ka)igr :

The two terms on the RHS of eq.@.72) were calculated in 5] and [27], and are also given in
eq.(A.19) and eq.(A.23) of appendix A.1.2. In particular, h ieT is determined in terms
of the hOOT;j; i correlator, and therefore completely xed by conformal invariance, see 76].

By inverting eq.(2.72) and eq.(2.72, one can express000i and hOOOOi in terms of the
three point correlator h i, and h icp respectively, eq.@.19). It turns out that the
contribution of h ieT to the RHS of the Ward identities vanishes. As a result, eq.2.61)
and (2.62 then become

B2 h (k1) (k2) (ka)i%+ 12 h (k1) (k2) (ka)i%+ I8 h (k1) (k2) (k3)i®

= 4'\|ﬂ—'§2'H;22 b @% kih (k1) (k2) (k3) (k4)i°k4! o &73)
and
6+ X ke -2 1 (k1) (k2) (ka)i®= ZM—'E';Zkfh (k1) (k2) (k3) (ka)i®
@ H2 H2 Kal ©
o (2.74)
0 =1P+6 b g ; (2.75)

8]t follows from inverting eq.(D.8) in [ 27] to obtain  in terms of

°Note that the second term on the RHS of eq.(2.71) is of the same order as the rst term, hOOQi° For
instance, — = H—_ H—_ = Py P .

\We remind the reader that a prime symbol on a correlator denot es that the momentum conserving delta

function has been removed, see eqZ.43).
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and L as given in eq.@.42.

In this way, we see that the Ward identities eq.(2.61) and eq.(2.62 derived above impose
conditions on the physically observable three and four poih correlators. Some of these
Ward identities have been discussed in the literature befag, e.g., settingb/ k4 in eq.(2.73
gives eq.(37) in [L03.

2.4 Comments on the Ward identities

Let us comment on the Ward identities obtained above in more ctail.

2.4.1 The canonical slow roll model as a check

The Ward identities obtained above can be checked in the camdcal slow roll model,
eg.(2.20, and shown to hold. For the slow roll model eq.@.20), the three point function
was obtained in R4]. The corresponding cubic coe cient function can be easilycalculated,
as discussed in appendiA.1.1, and is given by

X L X X
O(ki)O(k)Oks)i%== LT k3 Pay 27 ks 1T kG (279)
1 a aéhb ta>b

whereky | Kaj, and k; = kg + ko + Ka.

The four point function in this model was discussed in 5] and also in R7]. The corre-
sponding coe cient function is given in eq.(4.33) of [27] (see appendixA.1.2 of this paper).

To check the Ward identity for scale invariance eq.@.62), we note that since HOOQI® in
eq.(2.76) is cubic in momenta, the LHS of eq.@.62) vanishes. From eq.(6.21) and (6.22) of
[27], it is easy to check that the RHS of eq.R.62 also vanishes whenk, ! 0. Thus the
Ward identity eq.(2.62 holds.

The check for the Ward identity of special conformal transfamations, eq.(2.61), is more
complicated because the four point coe cient function hOOOQi is an unwieldy large ex-
pression. Nevertheless, using Mathematica one can checkdhit is indeed valid. It is easy
to see that the function k3 satis es the condition,

Lg (k%) =0; 2.77)

where the operator L is de ned in eq.(2.42. The non-trivial contribution for the LHS
of the Ward identity eq.(2.61) comes therefore from the second term in eq2.76. The
HOOOOi coe cient function has two kinds of contributions, denoted by WS and RS (see
eq.(A.11)). Of these, only the RS term contributes.
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2.4.2 Constraint on the magnitude of the three point functio n

We see from eq.2.76) that the cubic coe cient function hOOQi vanishes in the canonical
slow roll model in the limit when the slow roll parameters vanish. This is well known and
is responsible for the small magnitude of the non-Gaussiatyi in this model. One can argue
more generally that the cubic coe cient LOOOi must vanish in the limit when all the slow
roll parameters vanish. In the gravity calculation, this happens because in this limit
becomes a massless scalar eld in de Sitter space with no patial, and therefore does not
have a three point function. From the point of view of conformal invariance and the related
CFT, in this limit the corresponding operator O is exactly marginal, and in a CFT it is
well known that the three point function of an exactly margin al operator vanishes. This is
analogous to what happens in 2 dimensional CFT, see for exangsection (15.8) of 128]. If
this three point function would not vanish then hOi for example would have a log divergence
at second order in perturbation theory, leading to a non-zeo beta function for O. Thus,
on general grounds, we know that the expectation value for te scalar three point function
should be suppressed.

The Ward identity, eq.( 2.61), allows us to estimate the magnitude of the three point fundion
once non-vanishing values for the slow roll parameters areaken into account. Since the
guartic coe cient function hOOOQQi is not expected to vanish in the de Sitter limit, we see
from eq.(2.61) that the RHS is of order . From this, it follows quite naturally that the

hOOOQi coe cient function will be of order . So we see that as long as conformal invariance
is an approximate symmetry, the three point scalar correlabr will be of order its value in
the canonical slow roll model, eq.2.71), and therefore be small. Although the functional
form is not the same as in the standardf . parametrization, to get a rough idea, this
magnitude corresponds to anfy. O (W‘)2 . If observationally a scalar non-Gaussianity
is observed in the near future, its magnitude would most likdy be much bigger. Thus
the considerations of this chapter show that such an obsent#®on would not only rule out
the canonical slow roll model, but more generally any model \wich preserves approximate
conformal invariance during in ation. Note that in our conv entions, the scalar and tensor

two point correlators are given in eq.2.66) and eq.(2.69.

There is one important caveat to the above statement. As willbe discussed in the next
subsection, the Ward identity eq.(2.61) does not uniguely determine the coe cient function
hOOOi and thus the scalar three point functionh i, in terms of OOOOQOi. The remaining
freedom corresponds to the three point function of a dimensin 3 primary scalar operator

in a CFT, S, with an arbitrary overall normalization. However, as we argue there, with
generic assumptions, in the slow roll approximation this nomalization is expected to be
small, making any such contribution to hOOOi even more suppressed than that which
originates from the hOOOOi source term. In case these generic assumptions are somehow
not met, and the normalization is bigger making S, dominate, the functional form of the
three point function will be xed (upto a contact term) and th is possibility can therefore
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also be checked observationally.

2.4.3 Solving the Ward identities to determine the three poi nt function

In this subsection, we investigate the question of uniquenss: given a four point coe cient
function hOOOOi, to what extent do the Ward identities, eq.(2.61) and eq.(2.62, x the
three point coe cient function, hOOOi. We nd, not surprisingly, that there is very little
freedom that remains. It corresponds to adding to the three mint coe cient function a
term whose form is the same as the three point function of a diransion 3 operator in a
CFT, S,. The momentum dependence of this additional function is comletely xed, and
all that is left undetermined is its overall normalization. ! Besides this normalization our
conclusion is therefore that the three point function is conpletely xed in terms of the four
point function. This is an interesting result because unlile the three point function, the four
point function, hOOOQi, does not vanish in the conformally invariant case. By relaing
the two, we learn that the freedom allowed by the approximate conformal symmetry for
the three point function is about the same as that in the four point function. Towards the
end of this section we argue that the normalization constantfor the additional term Sy
should be suppressed generically in the slow roll approximnten, so that even this remaining
ambiguity is not important.

The Ward identities are in the form of linear dierential equa tions for hO00I% with
HOOOOI? appearing on the RHS as a source or inhomogeneous term. Supeothere are
two solutions for LOOOi ° allowed by eq.@.61), q.(2.62. Let us denote their di erence as

h000iI? h 000i9 = Sp(ky;ka;ks): (2.78)

It is clear that S}, solves the homogeneous equations,

X @
Ka Sh(ki;ko;kz) =3 Sp(ki;ko;ka) (2.79)
a=1 @a
and
x3
LE. Sn(ki;kz;ks)=0: (2.80)
a=1

The RHS in eq.(2.79 arises because the delta function has been removed in de ng ROOOi
By comparing with eq.(2.41) and eq.(2.52), we see that these are exactly the equations
satis ed by the three point function of a dimension 3 operata in the CFT.

It is well known that the three point function of a dimension 3 primary in a CFT is xed
in position space upto overall normalization. We nd a similar result on analyzing the two
equations eq.e.79 and eq.(2.80 in momentum space. Upto an additional constant, which

" There is also an additional constant associated with a contact term, see below.
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a ects only contact terms in position space, the only freedomin S, allowed is the overall
normalization. Details of this analysis are given in the apgendix A.2.

Since NOOOI conserves overall momentum, it is easy to see thab,, can be taken to be a
function of only the three scalars,ky; a=1; 3. Our analysis in appendixA.2 then gives,

1h NE X3 NE X i
Sh(k;karks) = N 2 In( ) k3 +In( ka) kS kak? + kikoks ; (2.81)
a=1 a=1 b=1 aéb

where is a short distance cut-o which is introduced in obtaining the solution. As
discussed in appendiXA.2, in obtaining this nal form for the solution we have also imp osed
conditions which arise from the operator product expansion N is the overall undetermined
normalization, and In( )_is the extra coe cient which multiplies the contact term a k3).
It is easy to see that ( ,k2) is a contact term because each component of (_k3) is
independent and therefore analytic in at least one of the morenta.

We now give an argument for whyN is likely to be suppressed in the slow roll limit, so that
the contribution to hOOOI ° which arises from Sy, is sub-dominant compared to a solution
of Ward identities with the hOOOOi source turned on, eq.R2.61), eq.(2.62.

To understand this point let us return to the canonical slow roll model. In this model, to
leading order, no term of the form eq.@.81) is present. One_quick way to see this is to
notice that in eq.(2.76) there is no term of the form ( _k3)In(" k). At subleading order
such a term does arise in this model, but it is suppressed witla coe cient of order fzz, as
opposed to the leading terms in eq2.76), which are O(p "1). Having understood this better
in the canonical model below, we will then argue that it shoull be true more generally as

well, leading to the suppression of theS;, contribution mentioned above.

In the canonical model, a term giving rise to a contribution o the form eq.(2.81) would
arise from a contribution to the Lagrangian of the form

z
d3xa® (Vo0 3y (2.82)

Comparing with eq.(3.8) in [24], we see that such a contribution is in fact present (in
the second line). However, it is not included in the nal resut for the three point function
because it is suppressed. To keep the discussion simple wesase that eq.2.31) is valid, and
therefore that in the slow roll approximation every additio nal time derivative is suppressed
with one factor of 1, as was discussed in sectio.2. It is then straightforward to see that,
barring accidental cancellations, this requires every aditional derivative of the potential to
be suppressed by a factor OP 1.

For example, from eq.@.25 we see that

VO . VOO
o P oo (2.83)
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so that Voo o
VG e (2.84)

Similarly, since eq.@.24) is valid, we have on taking two time derivatives

VOOO
- 2 (2.85)
Now
@ H*: (2.86)

since the LHS has two additional time derivatives. This gives, on using eq.R.28),

Vo0
SR (2.87)

P

So we see thatv °qin units of H2) is smaller than the terms of order 5 71, retained in

eq.(2.76).

In section 2.2.1towards the end, we argued that quite generically eqZ.34) and eq.(2.24) are
expected to be valid for a general action of the form eqZ.30) in the slow roll approximation.
It then follows, as was mentioned there, that every additioral time derivative will be
suppressed by one additional power of 1, so that the argument above will go through,
leading to eq.(2.87).

Let us end with some comments. First, if somehow due to say aatental cancellations, the
normalization constant N is bigger than O(y), the three point function would be bigger in
magnitude, making it more experimentally accessible. Howeer, in this case if approximate
conformal invariance is preserved, the functional form forhOOQIi® must be as given by
Sh, €0.(2.82), and is completely xed, so this possibility can also be teted observationally.
Second, by using the generalized Fourier transform discues in appendixA.2, we can write
down a formal solution for the three point function in terms of the four point function. For
completeness, we present this result in appendiA.3. Finally, conformal perturbation theory
is a standard way to study the consequences of small departas from conformal invariance.
In this, one perturbs a conformally invariant theory by turn ing on a coupling constant that
breaks conformal invariance, and then calculates correlatrs perturbatively in this coupling
constant. Our approach above is dierent, and attempts to sole the Ward identities of
scale and special conformal invariance after incorporatig the e ects of the breaking of
these symmetries. This approach, which is akin to trying to ®lve the Callan-Symanzik
equation for a small value of the beta function, can be more pwerful in principle, although
an explicit solution of the resulting Ward identities has not proved so easy in practice, as
we see from appendixA.3.
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2.5 Discussion

In this chapter we have studied the constraints imposed by aproximate conformal invari-
ance on the scalar three point function. This correlation function is of the greatest interest
experimentally as a test of non-Gaussianity, and it is theréore important to understand how
well it can be constrained in a model independent manner fromsymmetry considerations
alone. In particular, we derived the Ward identities of scak and special conformal invariance
and showed that these relate the three point function to the bur point function in a
particular limit, once the breaking of conformal invariance due to the non-zero values of
slow roll parameters is taken into account.

We then investigated these Ward identities and found that they considerably constrain the
three point function. We argued that as long as the dynamics $ approximately conformally
invariant, and the slow roll approximation is valid, the mag nitude of the three point function

should be suppressed, being of the same order as that found ife canonical slow roll
model of in ation, eq.(2.20. Roughly, although the detailed functional form is dierent,

this corresponds tof . O((g‘)z). If an experimental discovery of non-Gaussianity is
made in the near future it would almost certainly require a much bigger value for the three
point correlator. Our analysis therefore says that such a dscovery would not only rule out
the canonical slow roll model of in ation, but in fact any mod el where conformal invariance
is approximately valid, and the slow roll approximation is valid.

We also found that the Ward identities determine the three pant function in terms of

the four point function nearly completely. An additional fu nction, Sy, is allowed, but
its functional form is completely xed, and corresponds to the three point function of
a dimension 3 scalar primary operator in a CFT, only leaving he overall normalization
and a coe cient of a contact term undetermined. We argued that generically the overall
normalization should be suppressed in the slow roll approxnation. If somehow this generic
argument fails and the normalization is bigger leading t0S,, dominating the three point

function, the functional form of the three point function wo uld still be completely xed,

allowing for an experimental test of this possibility as wel.

Unlike the three point function, the four point function doe s not vanish in the leading slow
roll approximation, and is conformally invariant. By relat ing the three point function to
the four point function we therefore relate the three point function also to a conformally
invariant correlator. Unfortunately, as is well known, the functional form of the four point
function is not constrained very signi cantly by conformal invariance alone; as a result of
the Ward identities this is also then true for the three point function. In the canonical slow
roll model the four point function arises due to single gravion exchange. If the three point
function is observed and found to deviate from its functiond form in the canonical slow roll
model, the four point function must also be di erent, suggesing perhaps that higher spin
elds might be involved during in ation.
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More generally, it would be worth extending the analysis in tis chapter to include the
breaking of conformal invariance to higher order in the slowroll expansion. The three point
function, to leading non-vanishing order, only requires corections of order - to be included,
and these can be obtained without changing the background gemetry, since corrections to
the metric are of order the slow roll parameters, ; and , eq.(2.18, and we have argued
that these should be much smaller. But going beyond this ordewould require corrections
in the de Sitter geometry also to be incorporated. This is anteresting question to pursue,
both from the point of view of cosmology and also holographyn approximately AdS spaces.
Once the asymptotic behavior of the elds has been determing, the Ward identities should

follow from the invariance of the wave function under time ard spatial reparametrizations.

We discuss this generalization to higher orders in slow rolin the next chapter.
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Chapter 3

Symmetry constraints in in ation:
higher orders in slow roll

3.1 Introduction

In this chapter, we explore the constraints imposed by theO(1;4) symmetries on the
perturbations produced during in ation to higher orders in slow roll. More speci cally,
we derive Ward identities arising due to the scale and speclaonformal transformations for
the correlation functions of these perturbations. The Ward identities incorporate breaking
of the O(1; 4) symmetries as well, and are valid to all orders in the slow oll expansion.

The analysis carried out is based on symmetries alone, and isdependent of speci ¢ models.
As a result, the Ward identities obtained can provide robust model independent checks of
the central idea behind a large class of in ationary models,namely, that the in ationary
dynamics (including the scalar sector) preserves approxi@te conformal invariance. These
results should apply not only to slow roll models with di erent shapes of the in ationary
potential, but also in situations where higher derivative corrections can become important,
such as in string theory scenarios, with the Hubble scale dung in ation being of order the
string scale, which in turn is much smaller than the Planck sale.

The O(1;4) symmetry algebra is also the symmetry algebra of a three anensional Euclidean
Conformal Field Theory (CFT), which is the motivation behin d our calling it the conformal
group. However, we should mention at the outset that we do notassume a dS/CFT type
of correspondence in deriving the results. Rather the conraion with a conformal eld

theory (with the breaking of conformal invariance also included) is only for the purpose of
organizing the discussion of the symmetries.

This chapter is organized as follows. Sectior3.2 contains the basic set-up. The central ideas
and key results behind the derivation of the Ward identities are then discussed in section
3.3. For our analysis, it is useful to work with the late time wave function of the universe,
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when the modes of interest have exited the horizon. Constraits imposed by symmetries
on the coe cient functions determining the wave function ar e discussed in sectior8.4. The
late time behaviour of the modes in the canonical slow roll mdel of in ation is discussed
in subsection 3.6.1, and some aspects which arise when higher derivative corréons are
incorporated are discussed in subsectior3.6.2 We end with a discussion in section3.7.
The three appendicesB.1, B.2 and B.3 contain important supplementary material.

This chapter is largely based on2]. The analysis we carry out is based on the seminal works
[24] and [25]. It also develops ideas earlier reported ing6], [27] and [1]. There are many
other references also of relevance. The use of conformal syratry to constrain in ationary
correlation functions has also been discussed ir84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 129, 13(. Approaches where the conformal symmetries are often thaght of as being
non-linearly realized include P6, 97, 98, 99, 100, 101, 103 104, 105 106, 107, 108 109,
110,111, 112, 113 114, 118 131]. The idea of using time and spatial reparametrizations to
derive Ward identities in the context of AdS was rst discussed in [126].

Notation : Before proceeding, let us clarify the notation we will folbw in this chapter. A
dot above a quantity represents a time derivative, e.g. — d =dt. Spatial three vectors are
written in boldface, e.g. x;k, etc. Also, ky;kp, etc. represent the magnitudes of the vectors
Ka;Kp, whereask;; k;, etc. represent thei®;j™" components ofk. Unless otherwise stated,
the spatial indicesi;j , etc. will be raised and lowered using the Kronecker delta, jj .

3.2 Basic set-up

In this section, we will outline the essential ideas behind he derivation of the Ward
identities. Our discussion will be general and not tied to aly speci ¢ model. In sections3.6.1
and 3.6.2 we will discuss the concrete cases of the canonical model slow roll in ation,
and the presence of higher derivatives, respectively.

The dynamical degrees of freedom in the theories we consideiill be the metric and a single
scalar eld.l We work with the ADM form of the metric,

ds? = N2dt?+ hj (dx' + N'dt)(dx + N/ dt); (3.1)
with N and N' being the lapse and shift functions respectively. We choosthe gauge
N =1;N'=0: (3.2)

This gauge is called thesynchronous gauge.

1The discussion can be extended to include additional scalais. However, model independent observational
predictions are not easy to make in such models.
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The unperturbed background FRW solution is
ds? = dt?+ a(t)  dx'dx : (3.3)

The Hubble parameter is given by

=2 (3.4)
Including the metric perturbations, denoted by j , gives
hjy = &M+ 1 (3.5)
Similarly, expanding the in aton about the background value (t) gives
= ()+ : (3.6)

The gauge choice, eql.2), does not x all the coordinate reparametrization invariance.
There are two kinds of residual gauge transformations whictcan be carried out. These are
spatial reparametrizations,

i

X' X+ vI(x); (3.7)

under which
hij ! hij TV v (3.8)

or equivalently

T 200 rivi+r;vi: (3.9)
We can also perform time reparametrizations
t! t+ (X); (3.10)

along with accompanying spatial reparametrizations of theform

x' x4+ wi(t x) (3.11)
with | z, L
wi(tx)= @ (x) dtom; (3.12)
under which
! + A1) (x); (3.13)
il 2 g_ (x)+ @w; + Qw : (3.14)

Using the homogeneity of the background FRW solution, we carexpand the perturbations
in a basis of modes carrying xed comoving momenta. Let be a generic perturbation.
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Then Z

tx= 2K

(2 )3
where the comoving momentum isk. We will be interested in the behaviour of the
perturbations at late times, when the modes of interest havedeft the horizon,

ek X (t: k); (3.15)

k’=a? H?: (3.16)

Using the time reparametrization symmetry at late times, we can set
=0: (3.17)

In this gauge, the perturbations freeze out once they exit tle horizon, i.e., they become
time independent, since their subsequent evolution beconsedominated by a frictional term
proportional to the Hubble parameter. The remaining gauge nvariance now corresponds
to spatial reparametrizations, eq.3.7). The choice of gauge eq3.17), and the freeze out of
modes will be discussed in greater detail for the canonicall@v roll model in section 3.6.1,
and in the presence of higher derivative terms in sectior8.6.2

In the gauge eq.B8.17), all the remaining perturbations arise from the metric. We can
decompose them as
i+ =€ L+ byl (3.18)

where by is the traceless component. determines the perturbations in the trace of the
metric. To linear order in perturbations, we see from eq.8.18 that

i =2 + by (3.19)

Going beyond the linear order, we will nd that the de nition given in eq.(3.18 leads to
a simpli cation in our discussion of symmetries. To be more peci c, it will turn out that
the coe cient functions for the trace of the stress tensor will transform in a canonical way
with this choice of variables.

It will be useful to carry out our symmetry based analysis in terms of the wave function of
the universe. This wave function is actually afunctional of the perturbations. Expanding
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at late times, when the perturbations become time independst, we get
1 VA
[ il=exp 5 dd (x) () AT)T(Y)i

d*xd® (x) by (y) T (x) P! (y)i

N

d®xd3y by (x)bw (y) P (x) P (y)i

N

d*xd®y d®z (x) (y) (2) hT)T(Y)T(2)i

N

dxd’y d®z (x) (y)by (2) AT )T ()P (2)i
(3.20)

N

d*xd®y d®z (x)bj (y)bw (z) AT (x) P (y)P¥ (2)i

W= NI NP W] NP
N

d*x d®y d®z by (x)bi (Y)bmn (2) HPY (x) DX (y)P™ (2)i

Z
1
W dsxl d3Xm+n (Xl) (Xm)biljl(xm+l) binjn(xm+n)

T(x1) T(Xm)-biljl(xm+1) 'binin(xm+n) +

The quadratic terms in  and b correspond to a Gaussian wave function; higher order
terms give rise to non-Gaussianity.

Invariance with respect to the residual gauge invariance, amely with respect to the spatial
reparametrization eq.(3.7), imposes constraints on the coe cient functions hT (x)T(y)i,
HT (x) T (y)i etc, which appear in this expansion. In fact, these coe ciert functions have
been written in a suggestive manner because the constraintake the form of Ward identities
which are satis ed by correlation functions of the stress-aergy tensor in a conformal eld
theory. This will be discussed further in section3.4. Note that in eq.(3.20 we have also
included a mixed term between and % for generality, although such a term will vanish on
further gauge xing the spatial reparametrization invaria nce suitably, as we will see later.
Let us also mention that as per our conventions, ed§.19, T is related to the trace of the
stress tensorTj by

T=2T; 2T; (3.21)

so that the coe cient function for a general metric perturba tion, j,is Tl . Also, B; is the
traceless part of the stress-energy tensorj; .

The invariance with respect to spatial reparametrizations eq.(3.7) arises as follows. The
wave function as a functional of the late time value for a gendc perturbation can be
written as a path integral 7
[ 1= [D ]€%; (3.22)
initial
where the initial conditions will be taken to be the Bunch-Davies vacuum. The action S
has a pre-factor EG M F2’I' By suitably rescaling elds in terms of the Hubble parameter
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H, we see that
S=—<'S; (3.23)

where S contains the rescaled elds which have been made dimensicgds by the rescaling.
Since no gravity waves have been detected so far, we know that

H? 8.
Mz, 10 & (3.24)
Thus the path integral on the RHS of €q.@3.22 can be evaluated in the semi-classical limit,
by solving the equations of motion subject to the boundary caditions at late and early
times. In particular, in the gauge eq.3.2), the N;N ' equations must also be imposed. These
equations give rise to the invariance of the wave function uder spatial reparametrizations,
eq.(3.7), after xing the gauge, eq.(3.17), at late times.

3.3 The Ward identities

We are now ready to discuss the derivation of the Ward identiies. We will be interested
in the Ward identities which arise due to scale and special aoformal transformations. It is
useful to rst consider the case of de Sitter space, with the lackground metric

ds? = di2+ e dx'dx: (3.25)

This metric is well known to have an O(1;4) symmetry with ten generators. Besides the
three spatial translations, and three rotations along the gatial directions, this symmetry
group includes scale transformations,

x'Pox ot Hilog( ); (3.26)

and three special conformal transformations,

: : o X .
x'1oxt o 2(x))x + 0 | (x))? %e 2Ht
. : (3.27)
2 x!
tlh t+ :
H

The scale and special conformal symmetries give rise to Waritlentities on the correlation
functions of the perturbations. In de Sitter space these idatities are met exactly; in
in ationary backgrounds, there are corrections that arise due to the evolving in aton which
breaks these symmetries. We will derive the resulting iderities for the correlation functions

?We take Mp = pg=—  10°GeV.
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to all orders in the slow roll parameters

H
1= g7 (3.28)
= %_; (3.29)
and
1 -2

The identities for the scale transformations are the analoges of the Callan-Symanzik
equations in eld theory, which incorporate the running of t he coupling constants. Similarly,
we get identities for the special conformal transformatiors also incorporating the evolving
in aton.

Before proceeding, let us note that in the canonical slow rélmodel, discussed in section
3.6.1 and i are related as
= 1 (3.31)

But more generally, when higher derivatives are included, hey will not be related in this
way. Also, for the slow roll conditions to hold,

TR & (3.32)

The expectation values for the perturbations are obtained fom the wave function in the
standard manner. For example, for scalar perturbations these are given by
1 VA
h(xy)  (xn)i=g [D1Db ?(x1)  (xn); (3.33)

where N denotes the overall normalization factor in the path integral,
VA
N = [D ][Db;]j j* (3.34)

We will be interested in calculating these expectation vales at late times, when the
perturbations of interest have frozen out.

There is one important point which we must consider before weroceed. The sum over all
metric perturbations b on the RHS of eq.@3.33) is ill de ned because we have not yet xed
the spatial reparametrization invariance symmetry. The integral on the RHS would diverge
without xing this symmetry. A conventional choice, which w e will also make, is to take
bj to be transverse,

@b =0; (3.35)

besides also being traceless. With this further gauge xingthe path integral on the RHS of
eq.(3.33 becomes nite. Note that since b freezes out at late times, the additional gauge
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xing required for eq.(C.2.2) can be achieved by a spatial reparametrizatiorx' ! x'+ '(x)
which preserves the synchronous gauge €§.9Q).

Also note that after the additional gauge xing, eq.(C.2.2), the resulting perturbations
manifestly correspond to a scalar with spin 0, and a tensor perturbation b; which has
spin 2, with respect to the rotations along the spatial diredions.

It is worth commenting here that the underlying reason for this further gauge xing is
that we are working with local correlation functions in a theory of quantum gravity. These
correlations are well de ned perturbatively about the in a tionary background, but only
after gauge xing, as discussed above.

3.3.1 Ward identities for scale transformations

Under a scale transformation

x'Iox+ x 1; (3.36)

and b; transform as
I+ + X'@; (3.37)
by ! by + x k@bij (3.38)

(see appendixB.1). Note that the transversality condition, eq.( C.2.2), is preserved by this
transformation.

We can now consider changing variables in the path integral o the RHS of eq.(3.33), with

and b transforming as given in eq.8.37) and eq.3.39), respectively. The measure in
the path integral on the RHS of eq.3.33 is invariant under spatial reparametrizations, and
therefore under the change in eq3.36).

Naively, on the basis of what has been discussed so far, oneght also conclude that the
wave function is invariant under this transformation, lea ding to the condition

((x1))  (xn) +  + (x1)  ((xn)) =0; (3-39)

where from eq.@.37),
= +x'@: (3.40)

This is incorrect.

Under the transformation eq.(3.36), by transforms homogeneously, but has a homogeneous
and an inhomogeneous term in its transformation. The relatons between the coe cient
functions we obtain, as discussed in sectio3.4, will ensure that terms in the wave function
which are quadratic or higher order in the perturbations carcel amongst each other under
this transformation. However, there is one term which arise from the leading term that is
guadratic in  in eq.(3.20), to begin with, which needs to be handled with care and does
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not cancel, as is also discussed at the end of secti@¥4.2 The quadratic terms in the wave
function include 1 7
exp 3 dxd3 (x) (y) RAT()T(y)i : (3.41)

After the transformation eq.(3.37), we get a piece arising from the inhomogeneous term in
the transformation of ,
o+ o+ ; (3.42)

which will now be linear in ,

Z
exp dxd3 (x)HT ()T (y)i : (3.43)

This term will remain uncanceled. In contrast, the homogeneus term in the transformation
of ,
I+ x'@ + (3.44)

will give rise to a term which is quadratic in ; this will cancel against a term coming from
the piece of cubic in

Before proceeding, let us note that in eq.8.20) there is another quadratic term,

Z
exp dxd3y (x)by (y) T (x)PI (y)i ; (3.45)

involving both  and by , which could also have potentially contributed an additional piece.
However, in the gauge eq.C.2.2), this term in the wave function vanishes. This follows after
noting that symmetries require the momentum space coe ciert function Hipi (k)T (kp)i to
be of the form

P (k) T(ka)i (2 )° 3(ka + k2) %u le'S” (ka); (3.46)
1

where (k1) is a dimension 3 function ofkj.

Keeping this uncanceled linear term, €q.8.43), gives us then the correct Ward identity

(Ca) )+ 2 () ((xn)

(3.47)
=2  Exd¥yHT(x)T(y)ih (x1)  (xn) (X)i:

We will be interested in the expectation values for with non-zero momentum. Since is
a constant, we can drop the piece linear in on the LHS of eq.@3.47), leading to the Ward
identity

Z

X0
@ h (x1) (xp)i =2 dxd3yHr(x)T(y)ih (x1) (xn) (X)i: (3.48)

Xa
@ a

a=1
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Expressing this in momentum space gives
X @
3n 1)+ kq h (k1)  (kn)i®=

L, @k

a (3.49)

1
—h (k Knig )i© :
h (kn+1) ( kn+1)i® (k) (kn+1) Kns1! O

Similarly, for correlation functions of tensor perturbati ons b we get

xXn @ _
Xa @— I«biljl(xl) binjn(xn)l =
a=1 a (350)
2 dxdy T (x)T(y)ihbij, (x1)  biyj, (xn) (X)i;
which in momentum space takes the form
X @ -
3h 1)+ ka@—k hoisj, (k1) bigj, (kn )it =
a=1
1 (3.51)
.- - 0 .
h (kn+1 ) ( kn+1 )iomlljl(kl) blnjn(kn) (kn+1 )I o 0.

Mixed identities involving both tensor and scalar perturbations can also be similarly ob-
tained. These are given by

3 1)+ ka@—@i oy (k) biin (k) (Kme1)  (kn)i®

a:11 (3.52)
— . o i0 .
- h (kn+1 ) ( kn+1 )iomlljl(kl) blme (km) (km +1 ) (kn+1 )' Koy ! 0-

Equations (3.49 and (3.51) are examples of Maldacena consistency conditions in thetér-
ature [24]. These are exact to all orders in the slow roll expansion.

The physical picture behind these relations is easy to state The LHS of e€q.@3.48 is
the change of the n-point correlator under an overall change of scale. Exactlysuch a
transformation is generated by a scalar perturbation (kp+1 ) in the limit of very long
wavelength, kn+1 ! 0, leading to the identity eq.(3.49).

Comments The reader will note that the scale transformation eq.@3.36) is di erent from
the isometry in de Sitter space, €q.8.26). In de Sitter space, metric perturbations and
also perturbations for test scalars freeze out at late timesand become time independent.
Thus, in e ect, the scale transformation becomes eq3.36). In the in ationary case, once

3A prime °symbol on a correlation function denotes the suppression ofthe overall momentum conserving
delta function. For e.qg.
h (k1) (k2)i =2 )® (k1 + k2) h (k1) (k2)i%
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we choose the gauge where e®.(L7) is met, we cannot make any time reparametrization,
e(.(3.10. Thus the only symmetries available are spatial reparametizations.

Similarly, the special conformal transformations, which we will consider next, eq.@.53), are
di erent from the corresponding isometries in de Sitter spa®, eq.@3.27). However, again at
late times, their action on time independent elds will be the same as eq3.53).

It is also worth emphasizing that our derivation of the Ward identities for scale invariance
obtained here is quite general. As mentioned above, it is va to all orders in the slow
roll expansion, and thus should hold even when the slow roll @nditions are not valid. The
assumptions one has used are that one can go to the gauge éj1(7), and that the remaining
metric perturbations in this gauge then freeze out due to thecosmological expansion. The
residual spatial reparametrizations are then enough to gie rise to the Ward identities above.
A similar comment will also apply to the Ward identities of sp ecial conformal invariance we
derive next.

3.3.2 Ward identities for special conformal transformatio ns
We next turn to the special conformal transformations,

X' ox+ () T(x)= 2(b x)x'+ bBxZ: (3.53)

Here there is an important extra subtlety. Consider the transformation of and by under
eg.(3.53 (see appendixB.1),

0Ol (x) 20 )+ '@ (x); (3.54)

bj (x) ! by (x)+ ™@by (x)+2 M P, (X)bjm (X) +2 M iy (X)bim (X); (3.55)
whereM P (x) is given by

MP(x)=xily xh: (3.56)

It is easy to see that the transformation eq.@3.55 does not preserve the transverse gauge
condition eq.(C.2.2) we have chosen forb; . We must therefore carry out a compensating
coordinate transformation

"X+ vH(X);

vixy=  Pm), oo
@ 1

which then restores the transversality condition onbyj . Under this compensating transfor-
mation, and bj transform as

X)) W@(x) %bﬂx); (3.59)
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and
o (01 bx) 6" @ ) 4 g Pmi)
60" bi (x) @ bk?@gX) + bk (x) @ bkrg@gX)
o (3.59)
66" @by (x) kgx)
+ 40" ban(X) @ bbnééx) ij + by (x)

The Ward identities then arise because of the combined trarfermations eq.@3.54 and
eq.(3.58 for the transformation of , and eq.3.55 and eq.(3.59 for the transformation
of bj . Note that the compensating transformation parameter V' itself depends onbj . As
a result, the compensating transformation becomes non-liear in the perturbations.

Once this subtlety requiring a compensating coordinate transformation is taken care of,
the rest of the analysis follows along similar lines to that br the scale transformation case.
The wave function is invariant under spatial reparametriz ations, and therefore under the
combined transformations eq.3.53 and eq.(3.57). More correctly, this is true for all terms

in the wave function which are quadratic or higher order in the perturbations. However,
the inhomogeneous term in eqd.54), 2(b x), gives rise to a term in the change of the
wave function which is linear in . This term does not cancel. As a result we get a Ward
identity for scalar perturbations of the form

Z

4 dxd% (b X)HT(x)T(y)ih (x1)  (Xn) (¥)i
(3.60)
+hC (x1)  (xp)i+ +h(x1) © (xn)i=0;

where € denotes the complete homogeneous change inunder eq.(3.54) and eq.(3.59),

6™ bim (X)
@

2p" @bjm (X)

C(x)= 20 x)x+Ix® @ (x) @

@ (x) bj (x): (3.61)

In momentum space this takes the form

((ka))  (kn) + + (k1)  ((kn)) =
@ h(k)  (Kns)i _ (3.62)

2 b - ;
@n+1 h(kner) ( Kne2 )i 1 g

where ( (k)) is given by

z
( (k)= B° (k)+6 bk (33';(3% (k  K)bim (R)
3.63)
odR 1 (
+2 k! 2V Re bj (k  K) bm (K);
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and the operator IO is given by

|pkb:2k—@ b © (bk)—@—@+6b

@ .
a a a a (3.64)

Similarly, for the tensor perturbations we get the Ward identity

bijj, (k1)  bij.(kn) +  + by, (ki) Binjn (Kn)

@ biljl(kl) binjn(kn) (kn+l) . (3-65)
@n+1 h (kn+1) ( kn+1 )i

2 b 1
Kn+ ! O

where (bj ) is the complete change inb; in momentum space, given by

by (k) =P b (k)+2 B, (K) by (K) + 2 My (K) by (K)
+60" = Ki bjm (k) + kj bim (k)

£2
PO b (K9
H80T Ty o
kO
é‘;—")g S By (K9 B ()

Ka

kPbj (k- K9+ Kby (k k9
(3.66)

40" ij (2 )3 qu bab(k(b bbm(k k(b

Bk Bk (ka k9

" 0 0 09.
4" (2 )3 (2 )3 jk ko k0?2 blj (k() bab(k 9bbm(k K K 9,

where

b —@ ; (3.67)

Finally, we can write the general Ward identity for the variation of a mixed correlator
involving m tensor perturbations bj (k) and (n m) scalar perturbations (k) as

bijj, (k1) bBigjm(km) (km+1) (k) +
biyj, (K1) Bimjm (Km)  (km+1)  (kn)
Biyji (k1) bBinjm(km) ( (Km+1))  (kn) +
bijji (k1) Bigjm (km) (Kmsx)  ( (kn))

@ bisji (K1) Bipjm(km) (Km+1) — (Kn+1)

@n+1 h (kn+1) ( kn+1 )io K . 0’
n+l -

+

+

(3.68)

+

= 2 b

where ( (k)) is given by eq.(4.22 and (b; (k)) is given by eq.(3.66).

These identities are again exact, like the ones for scale tresformations derived in section
3.3.1 They are valid to all orders in the slow roll expansion, and a&e one of the key results
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of this chapter. Note that due to the non-linear nature of the transformations eq.(3.58 and
eq.(3.59, the resulting identities are in fact quite complicated. We will see in section3.5,
following [27], that the identity for the four point scalar perturbations in de Sitter space is
indeed met.

Itis important to note that both connected and disconnected contributions to the correlation
functions may be important in the Ward identities. As mentio ned in eq.@3.23), after suitable
rescaling the action has a factor oM F2,|:H2 in front of it. Since this ratio is large, eq.(3.249),
the situation in cosmology is analogous to the largeN limit in AAS/CFT, with M 3,=H?
playing the role of N2. Disconnected components in the Ward identities can then dén
dominate over connected ones. More accurately, the non-lgar nature of the transformation
in the compensating spatial reparametrization means that derent number of elds will
be present in correlation functions involved in the LHS of the Ward identities eq.(3.62),
eq.(3.65. The suppression at largeN due to additional elds can be compensated for by
including additional disconnected components. For more diils and an explicit example
see section3.5.

Let us also note that in the Ward identity for scalar perturbations eq.(3.62), for the cases
n = 2;3, the extra terms in (k) due to the compensating spatial reparametrization can
be neglected to the leading order irH 2=M3,. The extra terms are the last two terms on the
RHS of eq.@.22). This will become clearer from the discussion in sectior8.5. As a result,
for the casesn = 2; 3, the Ward identity eq.(3.62 takes the form,

|

@ h (ki) (k2) (ka)i

bb C_ .
e M) GR)i= 20 Bl TR (RO g 8
and
|
" - @ h(ki) (ko) (k) (Ka)
» B, h(ky) (k2) (ka)i 2 b @ h (ka) ( Ka)i® o (3.70)

For the special caseb / k3 in eq.(3.69 and b/ k4 in eq.(3.70, we obtain the conformal
consistency relations derived in eq.(37) of 103. However, as we will see in sectiorB.5,
for the casen 4 in eq.(3.62 the extra terms in (k) due to the compensating spatial
reparametrization cannot be neglected. Thus, the Ward idetities obtained from eq.(3.62
forb/ knp+1 , n 4, have additional terms as compared to eq.(37) of1[03].

This concludes our summary of some of the main results of thishapter.

3.4 Conditions on the coe cient functions

In this section, we will show how the invariance of the wave fmction under the scale and
special conformal transformations, eq. 8.36) and eq.(3.53), lead to conditions on the coef-
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cient functions which are analogous to Ward identities in a conformal eld theory. These
Ward identities also incorporate the breaking of conformalinvariance in the in ationary
background.

We start with the Ward identities of spatial reparametrizat ions in general. These will give
rise to conditions analogous to Ward identities of stress-eergy conservation in a eld theory.
We then obtain the identities for scale and special conformitransformations.

In this section, it will be convenient to work with a general metric perturbation bj; without

further imposing the transversality condition eq.(C.2.2). Once the constraints on the
coe cient functions have been obtained for these general pdurbations, they will lead to

constraints on expectation values which can be calculated rdy after further gauge xing,

as explained in section3.3 above.

3.4.1 Spatial reparametrizations
Under a spatial reparametrization eq.@.7), the perturbations and b; transforms as
1 | 1
! +§@\/i+v@+§@\/jbij; (3.71)
and

2
bij ! bij + @\/j + @Vi é QvVa i ot bik @Vk + bjk @/k
+ V¥ @by 3 @Va by 3 @Voban (i + byj)

See appendixB.1 for some details of the derivation.

Now, for the invariance of the wave function under spatial rgparametrizations, the terms

proportional to the transformation parameter v; that get generated because of the trans-
formations eq.(3.71), eq.(3.72, must cancel with one another. Consider rst such terms

which are linear in . These terms are produced by the rst and second terms of the ave

function, eq.(3.20). These are

Z
d®xd3 (x) (y) AT (X)T(y)i
1Z h i (3.73)
= o Exdy @ux) )+ (X)@Vi(y) FT()TY)i;
and
Z
d®xd3 (x) by (y) BT (x) P! (y)i
7 (3.74)

= 2 d*d3 (x) @ vj(y)Hr(x)P! (y)i:
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Mutual cancellation of the terms in eq.(3.73 and eq.(3.74) produces the Ward identity

@bl (x)T(y)i + :—é@hT(x)T(y)i =0: (3.75)

Using
; ; 1
TV = 'b'l + é i T: (376)

and eq.3.21), this can also be written as
@ir’ (x)T (y)i =0: (3.77)
Similarly, canceling the extra terms in the wave function which are linear in b gives

@it (x)TH(y)i = 0: (3.78)

Proceeding in a similar manner, and canceling terms linearn v; and quadratic in  gives

@b (ITHT@I=5@ *x y) MEXT@i+ 3@ *x 2) HE)TY)
2 . 2 (3.79)
g @) TY)T ()i

Eq.(3.79 can be rewritten in terms of the complete stress-energy tesor T! and its trace
T as

@T (OTWT@i= 3@ *(x y) NTEIT@i+ 2@ *x  2) hTET(v)i: (380)
Similarly, canceling terms proportional to bj produces the Ward identity

@l OPYT@I= 2@ (c y) I)TE)
N %@ 3x z) HT(x)P¥ (y)i

(3.81)
+2@ *x y) WHY)TE)
i@ P(x y) AT (y)T(2)i;
and proportional to bj by gives
@’ ()P y)P™M(2)i = @ 3(x  z) P (x)PH(y)i
+ %@ 3(x  z) HPK (y)P™ (2)i (3.82)

2ih @ 3(x z) HPK(y)T™(2)i:

“Note that unless otherwise stated, @ stands for the derivative with respect to X', i.e. @=@x
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3.4.2 Scale transformations

We now turn to deriving conditions on the coe cient function s for the invariance of the
wave function under scale transformations, eq3.36). The change in and by under these
transformations is given by eq.@.37) and eq.(3.38 respectively.

The procedure we follow is the same as outlined above. Candef the terms linear in the
transformation parameter and quadratic in  gives

Z

dPzhT ()T (y)T(z)i = x' @,,@

@(+ y @y AT (X)T(y)i +6 AT (X)T(y)i; (3.83)

which in momentum space takes the form
!

X
I(Isir!nohT(kl)T(kz)T(kg)i = ka@—@K AT (k1) T (k2)i; (3.84)

a=1
wherek, | Kaj.

In general, the n-point correlation function of the T operators will be related under scaling
to the (n  1)-point correlation function through the relation
|
X 1 @ '
lim hr(ky) T(kp)i= ka — hr(ki) T(kn 1)i: (3.85)
kn! O a1 @K

Requiring the cancellation of the extra quadratic terms inbj gives us the Ward identity
Z

dz P ()P (y) T (2)i = xi@—@’?(+ yi@@.y HPI (x) P (y)i +6 HPT (x)PX (y)i; (3.86)
which translates in momentum space to
" #
_ i _ X2 @ . U
kl;r!nohb” (k)P4 (k)T (k3)i = Ka Ok HPI (k1) DM (ko)i: (3.87)

a=1

The general form of the scaling Ward identity relating the n-point correlation function of
(n 1) Pii operators and one insertion ofT, to the (n  1)-point correlation function of the
i operators is

lim hPUi(ky)  Ploodn 1k, 1)T(kn)i =
kn! O n #

X 1 @

. - (3.88)
k2 Bk HPiUs(ky) Pl dn 1k, )i

a=1
One can also write the general scaling Ward identity relatirg the (n + 1)-point correlation
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function involving m insertions of i and (n+1 m)insertions of T, with the n-point
correlation function of m insertions of P and (n m)ofT,as

im K () P () T(met)  T(Kpo )i =
n+l - n #
ka@—@K HPI1i(ky) P (k) T(Kms1)  T(Kn)i:

(3.89)

a=1

One nal comment. We began this subsection by considering tems which are quadratic in
, €0.(3.83. There is also a term which is linear in both and the transformation parameter
. Since is spatially constant, this term has support only at zero monentum in the wave
function and we neglect it here. However, in deriving expedtion values, this term which
is uncanceled plays a crucial role, as was discussed in secti3.3.1 above.

3.4.3 Special conformal transformations

We will now derive Ward identities for the invariance of the wave function under special
conformal transformations, eq.@.53. The change in and b; under this is given by
eq.(3.549 and eq.(3.55. Note that, as was mentioned at the beginning of this sectia, we
are considering a general graviton perturbation here and hae not xed it to be transverse;
as a result we do not have to worry about the fact that a specialconformal transformation
leads to the gauge eqC.2.2) not being preserved.

We start again with terms which are linear in by and quadratic in . Invariance of then
gives

3b (x +y) AT (X)T(y)i % @ + ()@ T ()T(y)i

(3.90)
= d®z(b 2)AT(X)T(y)T(2)i;
which in momentum space has the form
1 h i @
= LR+ LR, HT(ky)T(ko)i = b —— Hr(k1)T(k2)T(k3)i : (3.91)
2 @3 ks! 0
where L is the operator
@ @ @ O
Lp=2 k = b = (b k) = =
@& @& @& @ (3.92)
k@k @R

In general, the n-point correlation function of T operators will be related to the (n  1)-point
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function under a special conformal transformation as

X 1 ! @
LEa hT (k1) T(kn 1)i = b @ hT (k1)  T(kp)i : (3.93)

a:l knl O
Similarly, canceling the extra terms quadratic in b gives

Z
DY + DY HPY (x)PM (y)i = &z (b z)HPT (x)PK (y)T(2)i; (3.94)

where the action of the operatorD? is de ned by

b i — ij Iom L
DEPI(x)= 3(b x)PI(x)+ 5 (X)@w_Jp (x) | (3.95)
M B 0BT ) My 0P (0;

with M }J?(x) as de ned in eq.(3.56). The Ward identity eq. ( 3.94) can be expressed in the
momentum space as

Db, + DE, BT (k)P (k)i = b = HPI (k)P (k) T(ka)i 5 (3.96)
@3 ks! 0
where the momentum space operaton is de ned by
D P! (k) = %LH’” (k) MR ()P (k) MRy ()P (K); (3.97)

with the operator L as given in eq.8.92, and M'? (k) as given by eq.8.67).

Following a similar procedure as outlined above, we get the \&rd identity for special
conformal transformations relating the n-point correlation function with ( n 1) insertions
of Pi and one insertion of T, to the (n 1) point correlation function of Pi to be

9(1

DR, HPYi(ky) P ik 1)i=
a=1 (3.98)
b @ HPids(k,)  Plo e 1k, 1)T(kn)i
@n kn! O

In general, the Ward identity of special conformal invariance relating the n-point correlation
function with m insertions of Pi and (n  m) insertions of T, to the (n+1)-point correlation
function with m insertions of P and (n+1 m)insertions of T is given by

" #
DY, +% LP HPWi(ky)  Pmim (k) T(kma1)  T(kn)i
a=1 r=m+1 (3.99)
- p_@ HPi(ky)  Prim (ko) T(Kmer)  T(Knsa )i :
n+l Knss ! O
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where the operatorsDE and LE are given in eq.8.97) and eq.(3.92) respectively.

Finally, as in the case of the scale transformations, theres one remaining term linear inbj;
and by, with support at zero momentum, which is uncanceled. In calalating expectation
values, section3.3, this term will vanish once we choose the transverse gaugeq€C.2.2).

3.5 Explicit checks of the special conformal Ward identitie S

In this section, we present a few checks of the Ward identitis of special conformal trans-
formations, eq.(3.62 and eq.(3.65. Our analysis above has been to the leading order in
H2=M3,, and we will verify the Ward identities to this order below.

3.5.1 Basic checks

Consider the Ward identity eq.(3.62 for the case ofn = 2. We have

X2 2 o1
» |p|?a h (k1) (ko)i+  68"k; WEh (k1 R) (k2) bim (R)i
z
, ek 1 .
+2 ki WEhbi,- (k1 R)bm(R) (k)i + ki$ ko (3.100)
@ 1 - .
2 b @ hke) ( k3)i0h (k1) (k2) (ka)i o

We will rst consider the identity eq.( 3.100 in the de Sitter limit. We substitute

= al ; (3.101)
and take the limit —! 0. Keeping only the leading terms, we get
Z
: Todk 1 :
Be, (k) ()i= 60Tk mogenh (ki R) - (ke) bin (R
a=1 (3.102)
+ k1$ k2

Next, we introduce suitable factors ofH=Mp,. The wave function eq.@3.20 arises from the
action eq.(3.162, which has a factor of =G Mél in front of it. Thus, after suitably
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rescaling by powers of the Hubble parameter, will go like
Z

MSI 1 d3 d3 o 9] ;
exp o2 xd%y  (x)  (y)hO(x)O(y)i
1 i .
+ 5 dxd®yby (x)ba(y) P ()P (y)i
1 z (3.103)
* 3 dxd’yd’z  (x) (y) (2)hO(x)O(y)O(2)i
"z
P o dxdydz () )by (2) )OI P! (2)i +
As a result, we see that the propagatorsh i or hoj byi behave likeH?=M3,, while each

vertex, e.g., the three point verticeshO(x)O(y)O(z)i and hO(x)O(y) P! (2)i in eq.(3.103,
go like M 3,=H2. With this, one can argue that

H4

h byl : (3.104)
TOME

From eq.(3.104), it becomes clear that to leading order inH ?=M2,, the correlation function
h (k1 K) (k2)bm (K)iinthe RHS of eq.@3.102 is suppressed compared tt (k1) (K2)i
in the LHS and eq.(3.102 reduces to

X2
PP h (ki) (k2)i=0: (3.105)
a=1
This condition is the statement of conformal invariance of the two point function h (k1) (k)i
in de Sitter space, and it is easy to verify that it is met.

Next, let us consider then = 2 scalar Ward identity, eq.(3.100, to the rst non-trivial
order in the slow roll approximation (but still to the leadin g order in H2=M3,). The
terms proportional to h bi and hbb i in eq.(3.100 scale asH 4:Mé|, and can be dropped
compared to other terms, which scale add Z:Mél, in the limit H Mp,. EQ.(3.100 then
reduces to

b

a=1

@ L h(ki) (k2) (ka)i ¢ (3.106)

e, h(ky) (ka)i= 2 b @s h(k3) ( Kk3)i® ks! 0

In the canonical slow-roll model we have

. H2 1
h (k1) (k2)i = (2 )° 3(ky+ k2) VR ¥ns, (3.107)
Pl
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and ®
x3 H4 1 1
h (ki) (ko) (ka)i=(2 )*° ~ & 22°
(k1) (k2) (k3)i =(2 ) o ® M3 427 (2ka)
N (3.108)
@ 2) Kkd+2 1 kakbz'i'ki ks
a=1 aéb U ash

Working to the leading order in the slow roll parameters ; as well as the scalar tiltng,
one nds that eq.(3.109 implies
ns = 2( 3); (3.109)

which is the correct result, [24].

Note that the casen = 3 for the Ward identity eq.( 3.62) in the slow roll approximation was
discussed in detail in [L].

Next, we turn to the graviton two-point correlator and consi der the Ward identity eq.( 3.65.
Again dropping terms which are subleading inH Z:Mél, and working in the de Sitter limit
-1 0, we get,

PP Hoy (k1)bi (k2)i

a=1

= 2M P, (Ko)hoym (K1)bi (k2)i +2 M (Kg)hbim (K1) by (K2)i
+2 M P (K2)hoy (K1) b (K2)i +2 MR, (K2)hoy (K1) bim (K2)i - (3.110)

6b™ ) .

ey Kai Mojm (K1)bwi (k2)i + kg Hoim (K1) by (K2)i
1

6b™ ) .

ey Kok hojj (K1)bim (kK2)i + ka Hoj (K1) bkm (K2)i
5

The two-point graviton correlator is

oy (k)b K)i0= e ), (3.111)

where Pjy (k) is given in eq.(5.2) of R7]. An explicit calculation then shows that eq.(3.110
is indeed met. Note that the last two terms on the RHS of eq.8.110 come from the
compensating spatial reparametrization which maintains he transverse gauge fobj .

3.5.2 The scalar four point function

In this subsection, we consider the Ward identity eq.@.62) for the casen = 4. We will work
to the leading order in H2=M2,, and to the leading order in =H , i.e. in the de Sitter limit.

>The result eq.(3.108 is from [24], with k; = kq + ko + Kks.
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Eq.(3.62 for the case ofn = 4 then gives

X A
b2 h (k1) (k2) (ka) (ka)i +  2B"K}

a=1

3h (ki1 K) (k2) (ka) (ka)bim (K)i + hoj (k1 R)bym (R) (k2) (k3) (Ka)i

*r 1
(2 ) k2
i
(3.112)
+ k1% ko + ki1 $ ks + ki1 $ kg

@ L Wk (ke)i

= 20D - :
@&s h(ks) ( ks)i® ks! 0

We next write eq.(3.112 in terms of by using eq.@3.101), and take the de Sitter limit
—!' 0. In this limit, the terms in eq.( 3.112 that survive are

X4
PP h (ki) (k2) (k3) (Ka)i
a=1
.Z 3
= 8k %k—ﬁh (ki K) (k2) (k) (Ka)bim (R (3:113)

+ k1% ko + k1% ks + ki $ kg

Introducing suitable factors of H=Mp, by rescaling the wave function, eq.8.103, we see
that for connected correlators,
HO . HB8

h i —= h Db ;
B 1

(3.114)

From eq.(3.1149, it seems that for the Hubble scale being much small compak to the
Planck scale,H Mp, the correlation function h (k1 K) (k2) (k3) (ka)bim (K)i in
the RHS of eq.@.113 is suppressed compared thv (k1) (k2) (k3z) (ka)i inthe LHS.
However, one should also consider disconnected contribains to the RHS of eq.8.113
which may contribute to the same order of H=Mp, as the LHS. In particular, there is

a disconnected contribution to the ve point function h bj i in eq.(3.113, which
goes as
H 6
h ih by i ; (3.115)
ME,
and which is of the same order ah i. With these considerations, €q.8.113 in the

limit H Mp, becomes
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X4
PP h (ki) (k2) (k3) (Ka)i
a=1
Z
I _ _
= 60"k} Wk_lzh (k1 R) (ko)ihbim (R) (k3) (ka)i (3.116)

+ k2% ks + ko$ ks + ki$ ko + ki$ ks + ki $ ks

It is important to note that there are other possible disconnected contributions to the ve
point correlator h (k1 K) (k2) (k3) (ka)bim (K)i, such as

h(kz2) (ks)ihbim (K) (k1K) (ka)i: (3.117)

However, this requiresk, + k3 = k1 + k4 = 0, and will not contribute in general.

Eq.(3.116 gives the change in the four point correlatorh i under a special confor-
mal transformation in the exact de Sitter limit. Using the re lations

h (ki) (k)i =2 )® (ki + ko)h (k1) (k2)i®
H2 1 (3.118)

=2 )% 3(ky + k2) =5 =z
(2 )7 °(ka+ Z)M,§|2kf’

and

2h (ks) ( ka)i%h (ka) ( Ka)i%bm (R)ba( K)i°
il (R)O(k3)O(K4)i (3.119)

H* hoim ()b ( R)i°hB (R)O(k3)O(Ka)i
M&, (2k$)(2K3) ’

hoim (R)  (k3)  (Ka)i

2

we can write eq.3.116 as

X4
B2 h (k1) (k) (ks) (ka)i=
a=1
HO 60" Pimia (k1 + k2) ki | Kai il (ka + k2)O(k3)O(Ka)i
Mg Jki+ kaf® k3 ki (2k$)(2k3) (3.120)
, ks, ki PRa(ks + ka)O(k1)O(kz)i
KK @DEK)

+ k2% ks + ko8 ki ;

where we have used the eg3(11]).

Eq.(3.120 gives us the change in the scalar four point function under aspecial conformal
transformation. We can verify this by performing an explicit check. The four point function
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h i was calculated in R7]. It is given by
Z
h (ki) (k2) (ks) (ka)i= [D ] (ki) (k2) (k3) (ka)P[ [; (3.121)

where P[ ] is the probability distribution function

z
P[ 1= Dbl [ ; bl% (3.122)

An explicit expression for P[ ] was obtained starting from the wave function, eq.@.103,
in eq.(5.3) of 7). It is given by ©

5 Z Pk, ok _
P[ 1=exp H—PZI @ )13(2 )23 (k1) (k2)hO( k1)O( K2)i
Z v 3
¥ (dzk)"]s (ky) %ZHO( k1)O( k2)O( k3)O( Ka)i
1 (3.123)
+ 210( k1)O( k) (k1 + k2)i®h0( ka)O( ka)Ha (ks + ka)i®
(2 )3 3 X Kis Pii (kg + kz);
J=1 ’ jk1 + kgj?

From eq.(3.120) and eq.(3.123, we see that the four point function has two types of
contributions,

h i = h ice + h et (3.124)
Here, h icg is the term proportional to hOOOOi,
h (k1) (kz2) (k3) (Ka)icr = %%ﬁM(kl)O(kz)O(k3)O(k4)i; (3.125)
a=1 Ma
and h ieT is the term proportional to OO, i%M00h,i°
1He 1 N

h (k1) (k2) (ks) (ka)ier = ZM—6|Q47k3 I (k1;k2; k3 Kkg)
P a

+1(kpikaikarka) + 1 (Kaikakaiko) + 1 (kaikaikaika)  (3129)
|

+ 1 (kg k2, Kz ke) + (ks Ka; k1 ko) 5

6In [27], the term hb, OOi in the wave function appeared with a coe cient 1 =4 (see eq(2.36) of 27]).
But in the present chapter we choose to have a =2, which means we need to consistently replace

hh(l OOithere ! 2h-bkl OQi here

while using expressions from R7].
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wherel (k1;k2;ks;Kg) is given in eq.(E.13) of 7],

Z .
Ky ko kake) = ks Gk ) (ko) B (ko)i
B ns e (2 )32 )3 k3 k3 (3.127)
hO(k1)O(k2) B (ks)ihO(k3)O(ka) B (ke)i:
Now, the term h icr Isinvariant under a special conformal transformation, wheeas
the term h ieT does change. We therefore have
x4 x4
B2 h (ki) (k2) (ks) (ka)i= B2 h (ki) (k2) (ks) (ka)igT:
a=1 a=1
(3.128)
As discussed in appendix (E.2) of 27], we have
X! . 1He 1 h
B2 h (ki) (k2) (ks) (ka)igT = ZM—GQW 1 (k1;ka;ka;ka)
a=1 Pl a=1 Pa
(3.129)

+ Cl(kiskarkorka)+ Cl(ki;ka ks ko) + ©1(kaikoikaika),
|
+ Cl(karkz;karka) + Cl(kaikaikaika) ;

with  CI(kq;ks;ks;ka) given in eq.(E.23) of R7],

Kk Pimig (K) Y
CRERT hO(k1)O(k2) Py (k)i (3.130)

hO(k3)O(ka) B ( k)i:

€l (ky;ko;ka; ka) = 12bny,

By using the Ward identity eq.(3.8) of [27] expressed in momentum space,

118y ()O(SOKD)T = 5 K HO(K? + K)O(KD)i + kY FO(KS + K)O(KDi ;  (3.131)

we can calculate the RHS of eq3.129. This gives the result eq.3.120 for the change in
the four point function, and completes the check.

3.6 Late time behaviour of modes

In this section, we elaborate on the late time behaviour of mdes in the canonical model of
slow roll in ation and also after including higher derivati ve terms in the action.

3.6.1 The canonical model of slow roll in ation

We have discussed in sectio.2that one can use the residual time reparametrization invart
ance, eq.8.10, in the gauge €q.8.2), toset =0, and that the remaining perturbations all
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become time independent in this gauge, at late times. Here wdemonstrate this behaviour
explicitly in the canonical slow roll model of in ation. The behaviour in the presence of
higher derivative terms is discussed in sectior8.6.2

The action for the canonical model of slow roll in ation is given by

S= M3 d4xp_g %R %(r 2 V() (3.132)

In the canonical model, the Hubble parameter eq4.8) is given by

v
H? = 3 (3.133)

The background (t) satis es the equation of motion
*+3H —+ VY )=0: (3.134)

which in the slow roll approximation reduces to

VO
- e (3.135)
where a © denotes a derivative with respect to the scalar eld. Using €.(3.133 and
eq.(3.139, the slow roll parameters ;; and , de ned in eq.(3.28), eq.(3.29 and eq.(3.30),

can be expressed as

1 VO 2 VOO
1= = 5 v ;=1 VZ (3.136)
The slow roll conditions, eq.@3.32, are
VO 2 VOO
— 1, — 1 3.137
- Y (3.137)

For the purpose of convenience in calculations, it is helpfuto further decompose the metric
perturbation i, eq.@3.5), as follows P9

i =[A j + @@B + @C; + @C; + Dj |; (3.138)

where A;B transform as scalars,C; transforms like a 3-vector and Dj transforms as a
rank-2 tensor under spatial rotations. Note that the perturbation C; is divergence-less, and
Dj is transverse and traceless,

@Ci =0; @Dj =0; Dj =0: (3.139)

The Einstein equations to linear order in the perturbations about the FRW in ationary
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background are given by (see appendiB.3) ’

1 1 a 1 a
Y, = _—r?A ZA 3 = A Z = r?2g 3.140
) 22" 2 a > a B ( )
0=A a°B 3aaB; (3.141)
- = A (3.142)
3 a 1 a
2— _ V%) =ZA+3 = A+ Zr’B+ = r°B; (3.143)
2 2 a
for the scalar perturbations A;B; . The vector perturbations C; satisfy the equation
r ZC-r =0: (3144)
For the tensor perturbations Dj; we get
b a 1 5 -n-
The equation of motion for s
a 1 1
*+3 £ _4+\O ~r?2 = Z_3A+r%B : 14
3 - ?) ~ 5 = 3A+T (3.146)
Eq.(3.14] can be used to solve foB in terms of A,
Z, L Z o !
B(t;x)= dtoa(t(bs Gi(x) + dt®B(t%9A(%P%x)  + Gu(x): (3.147)

where G1; G, are arbitrary functions of x.

The late time behaviour of these equations can be obtained byropping all spatial deriva-
tives of the form r ?=& in egs.(3.140, (3.145 and (3.146. In addition, due to the 1=a°
pre-factor in eq.(3.147), we get that

B(t;x) Go(Xx)fort!l ; (3.148)

so that all time derivatives of B vanish at late times. Equations (3.140, (3.143 and (3.145
then simplify to

v ) = %A+3

|

A; (3.149)

3

2— _ V%) = EA+3 (3.150)

o I
P

"For brevity, we present the equations in units with M3, = z&= = 1.
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Dj +3 g_ Djj =0; (3.151)

and eq.3.149 becomes

.+3

D I

—+Vvo% ) + g A=0: (3.152)

As discussed in appendixB.3, the late time behaviour for A;  is

A(t;x) = Pi(x) 2

o 1|

P2(x); (3.153)

and
(tx)= ) P2(x); (3.154)
where P1; P, are time independent functions ofx. Also, the perturbations Ci; Dj become

time independent.

We can now carry out a time reparametrization
t! t+ Py(x); (3.155)

along with the accompanying spatial reparametrization, eq(3.11), which maintains the
gauge choice eg3.2). Note that under the time reparametrization eq.(3.10, and the
accompanying spatial reparametrization eq.8.11), the perturbations change as

A =2 g— X): (3.156)
21 1

B =2 (x) dtom; (3.157)

C;=0; (3.158)

Dj =0; (3.159)

( )= —(x): (3.160)

We see from eq.8.154 and eq.(3.160 that the change eq.(3.159 sets the late time value of
to vanish. In addition, using eq.(3.156 we see that the value ofA is given by

Al A%= Py(x); (3.161)

while C, Dj are unchanged and therefore continue to be time independentB is changed
by the the time reparametrization eq.(3.159, see eq.8.157, but this change vanishes at
late times, and thus B too continues to be time independent. Thus, we see that in the
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gauge =0 all the perturbations freeze out at late times.2

3.6.2 Higher derivative corrections

In the discussion above, we have considered the canonical m@ of slow roll in ation, with
the action in eq.(3.132. The action for this model involves two-derivative terms. One of
the main motivations of our work is to be able to use symmetry onsiderations in more
complicated situations where explicit computations or mocls may be unavailable. An
example is the possibility that the Hubble scaleH during in ation is of order the string
scale M, so that higher derivative corrections to eq.@.132 would be important. Given
our limited knowledge of string theory in time dependent situations, explicit models or
calculations for such a scenario are not possible today. Bua symmetry based analysis
should still be possible, as we discuss further in this sean.

The more general situation we have in mind is the one with an e etive action having higher
order terms of the schematic form
Z 2

3 4
s= o o’ G RrRe(@y v+ N+ @S

(3.162)

The higher derivative terms are important becauseH O(). In eq.( 3.162, is the

underlying cuto scale, which would be of order the string s@le Mg; in string theory. The
term R?= 2 schematically denotes four derivative terms, and so on. Als, the coe cients

of each of the higher order terms can in general be a functionfo . Let us note that in
the background solution the contribution from terms like (@ )* will be small, since the
in aton will be evolving slowly. However, these terms will be important in determining
the behaviour of the perturbations, since the perturbations will start out with physical

wavelengths H 1, and then freeze out at a time when ' H 1.

Let us note that H  O() is consistent with the bounds on the tensor perturbation s, since

can be much smaller than M, as indeed happens in weakly coupled string theory. The
condition Mp, also ensures that all quantum loop e ects are small, and it is aly tree
level e ects involving the higher derivative corrections which are important in the kind of
scenario we have in mind.

In fact, considerations of the last few sections can be extated in a straightforward way
to situations of this type. The crucial point is that even wit h the higher derivative terms
present, one can argue that solutions with the same asymptat behaviour as in the two-
derivative case continue to exist. The underlying reason fothis is that the asymptotic
behaviour in the two-derivative case follows from gauge inariance. We will discuss this in

8The perturbations ; bj , which appear in section 3.2 and the discussion thereafter, are given by
1 1

:%A+6I'ZB; and bij:Dij+@CJ‘+@Ci+@@B §ijrzBZ
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more detail in the next subsection. Given this fact, the argunents leading to the Ward
identities can be easily seen to apply in cases with higher dative corrections as well.
A further change of coordinates allows us to set to vanish, as discussed in sectiorB.2,
and the invariance of the wave function under the residual sptial reparametrizations in the
synchronous gauge then leads to the Ward identities of integst.

Freezing of the perturbations

We start with a discussion of the spin-2 componentDj; , eq.(3.138, which corresponds to
gravity waves. In the two-derivative theory it satis es the eq.(3.145. At late times, when
k?=a? becomes su ciently small, this becomes eq.8.151), which has the general solution
eq.(B.38). In particular, Dj becomes time independent, satisfying egg.39), since the
additional solution proportional to Kj in eq.(B.38) dies out ast ! 1 . Higher derivative
terms would result in contributions to the equation of motion with either additional spatial
derivatives, and/or additional time derivatives. All term s with spatial derivatives will
become small, since the physical wavelength for xed k becomes large at late times.
Thus the only terms which survive will have additional time derivatives. It is then clear
that the solution eq.(B.39) will continue to hold even when higher derivative corrections are
included.

However, in the presence of higher derivative terms there add be additional solutions
which do not die out at large t. We will assume that the correct boundary conditions in
the far past are such that any such solution is not \turned on" in the far future, leading to

eg.(B.39).

Exponentially growing solutions would signify an instability. Our assumption that they are
absent is consistent with the background in ationary solution being stable. There could
be additional oscillatory solutions though, which are nondecaying. We cannot rule these
out except by appealing to the initial conditions. However, the following possibility is
worth mentioning in this context. The additional oscillato ry solutions might be present
if the higher derivative corrections in e€q.(3.162 arise in the rst place by integrating out
massive particles with a mass O(). This could happen in an underlying theory where
all particles, the massive ones and the graviton, satisfy smnd order equations of motion,
leading to a well posed initial value problem. In this case, he graviton will indeed have
the solution discussed above, egB.39), with a second solution which decays, eqB.38). If

H, these additional particles would also be produced duringn ation, with a suitable
Boltzmann suppression. However, the Ward identities we dewe in section 3.3 will continue
to hold in this case as well. The wave function in the presencef these elds will continue to
be invariant under spatial reparametrizations, and thus ater integrating these heavy elds
out, eq.(3.33, the same Ward identities will follow for and bj .

The discussion for spin-1 is even more straightforward. Thesolution found in the two-
derivative case is pure gauge, since there are no physical glees of freedom with spin 1.
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Starting from the unperturbed solution of the form eq.(3.3), and carrying out a spatial
reparametrization
x'1ox + (x); (3.163)

one gets

Ci= i @@%@ ); (3.164)

so that the most general time independentC; can be turned on with a suitable choice of
'(x). This makes it clear that a solution of the form eq.(B.37) must continue to exist in
the presence of higher derivative terms too.

Finally we come to the scalar perturbations. In the two-derivative theory, the late time
behaviour for solutions was found to be eq.3.153, eq.(3.148 and eq.(3.159, for A;B and

respectively. We now argue, in analogy with the case of spid-above, that the existence
of solutions exhibiting this behaviour follows from spatid and time reparametrizations
which preserve the synchronous gauge e@{2). Starting from eq.(3.3) and doing the
transformation eq.(3.163 gives

B=2@%@ ); (3.165)

so that the most general time independentB can be turned on. Also, starting from eq.@.3)
and carrying out a transformation

X' ox'(@+ ) (3.166)

where is a constant, gives
A=2: (3.167)

The late time behaviour of A with higher derivative terms will still be determined by an
equation where all spatial derivatives can be dropped. Thedalution eq.(3.167 then means
that actually

Al Py(x) (3.168)

will be a solution to the small perturbation equations. Finally, doing the time reparametriza-
tion eq.(3.10 gives rise to the solution

A=2H (x); = —(x): (3.169)

Putting all these solutions together, we get the general la¢ time behaviour seen in eq3.153,
eq.(3.148 and eq.(3.159.

Since the solutions in the spin-0 case arise just from gaugevariance, they stay valid even
in the presence of the higher derivative terms. As in the cas®f the spin-2 mode, there
could as well be additional solutions which do not decay, butwe will assume that they are
either not turned on due to the initial conditions, or are of oscillatory type arising due to
additional massive particles, which do not invalidate the aguments for the Ward identities.
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3.7 Discussion

In this chapter, we have derived the Ward identities that arise from scale and special
conformal transformations for single eld in ation. Our re sults are given in eq.8.49 and
eg.(3.62 for the scalar perturbations, and eq.@3.51) and eq.(3.69 for the tensor perturba-
tions. Similar results for mixed correlators can also be eadly obtained, see eq.8.52 and

eq.(3.69.

The Ward identities for the special conformal transformations also involve a contribution due
to a compensating spatial reparametrization, as explainedn section 3.3.2 The underlying
reason for this is that we are working with local correlatorsin a quantum theory of gravity.
Such correlators can be de ned in perturbation theory after suitable gauge xing, but a
compensating spatial reparametrization must then be carréd out to preserve the gauge, for
deriving the Ward identities of special conformal transformations [27]. The Ward identities
for scale invariance do not require such a compensating traformation and are well known
in the literature already, [24], and called the Maldacena consistency conditions.

The Ward identities we obtain also incorporate the breakingof the O(1;4) symmetry. In
fact, this breaking is incorporated to all orders in the slowroll parameters. The resulting
relations can be thought of as being the analogues of the Cah-Symanzik equation, but
now for both scale and special conformal transformations.

When the slow roll conditions are approximately valid, the Ward identities impose useful
constraints on the correlation functions. The coe cient fu nctions which appear in the wave
function, and which transform in a manner analogous to corréation functions in a conformal

eld theory, can then be constrained order by order in the slav roll approximation, and the

resulting constraints on the expectation values, in agreemant with the Ward identities, can

then be obtained. For the scalar three point function, which is observationally the most
important one for non-Gaussianity, this was discussed in1].

We work in a theory where the degrees of freedom are the metriand a scalar eld. However,
it is worth emphasizing that our results are also valid in situations where there are extra
massive elds present during in ation, with masses of orderthe Hubble scale, or even higher.
The wave function in the presence of such elds must still meethe equations of motion
imposed by varying the shift and lapse functions, and thus mst be invariant under the
spatial reparametrizations discussed in sectior8.4.1, in the gauge eq.8.17) at late times.
As a result, after the heavy elds are integrated out in deriving the expectation values for

and bj , in the step analogous to eq.8.33), the same Ward identities as before, eq3.49),
eq.(3.51), eq.(3.62 and eq.(3.65 are obtained.

In contrast, our results are not valid when there are additional scalar elds which are much
lighter than the Hubble scale, as in multi- eld models of in ation. In this case, it is well
known that the results are model dependent, and do not followjust from the underlying
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symmetries?

In the context of AdS physics, space-times where conformalysnmetry is broken are im-

portant in the study of condensed matter physics and QCD. Exanples include Lifshitz and

hyperscaling violating geometries. The Ward identities fo the stress tensor etc. can be
obtained in such situations in a way completely analogous towhat we have used above.
Some discussion of the identities in such situations can beofind in [127].

The scalar three point function: Since the scalar three point function is of the greatest
interest as a test of non-Gaussianity, let us end by commentig on it in some more detail.

The Ward identities of interest here are e€q.8.49 and eq.(3.62 for n = 3, and relate the

scalar 3 and 4 point correlators. These Ward identities werestudied to the leading order in

the slow roll expansion in [L]. The resulting relations in terms of coe cient functions are

given in eq.(3.24) and eq.(3.25) of 1],

X3 @
Ka
@

hO(k1)O(k2)O(ks)i = ﬁ_m(kl)o(kZ)o(k3)o(k4)i . (3170

a=1 ka! O

and

Lp, hO(k1)O(k2)O(k3)i%+ LP,hO(k1)O(k2)O(k3)i%+ LP, hO(k1)O(k2)O(K3)i®
@ - (Bar

— b —— hO(k1)O(k2)O(k3)O(ka)i®

=2 — :
H @4 ka! O

with LE de ned in eq.(3.92. Note that in the leading slow roll approximation, the four
point coe cient function hOOOOi can be calculated in the conformally invariant limit [ 27].
As a result of the factor of —on the RHS of eq.8.170 and eq.(3.171), the three point
function hOOOi will be suppressed. Converting to expectation values, onedjs that

(3.172)

where the slow roll parameter is given in eq.3.30). Although the functional form one will
get in general is di erent, this roughly corresponds to

fae (3.173)

It is well known that the parameter r which measures the ratio of the power in the tensor

®See [.37] for interesting progress in this direction.
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to scalar perturbations is given by 10

Pe(k) _
P (k)

16 : (3.174)

Note that in theories which are not of the type described by a anonical model of in ation,
eq.(3.132, e.g., those involving higher derivative corrections, ;1 and as de ned in eq.(3.28
and eq.3.30) need not be the same. In these theories also, e§.72 with the de nition of

given in eq.(3.30) is still valid to leading order in the slow roll parameters. We see from
eq.(3.173 and eq.(3.179 that there is therefore an interesting tie-in between the ratio of
power in the scalar and tensor perturbations, and the non-Gassianity. This connection is
well known in the canonical slow roll models, but we see hereht it is more general, since
eg.(3.173 follows from symmetry considerations alone.

The estimate in eq.3.172 should actually be thought of as a lower bound. A contribution
due to an intermediate graviton (or the stress energy tensorunning as an intermediate
in the OOOOI correlator) will give a contribution of this order to the non -Gaussianity.
However, as has been emphasized i€, if there are additional particles of mass of order
the Hubble scale which couple more strongly than the gravito, the contribution can be
even biggert!

Keeping the above considerations in mind we can phrase thige-in between the two scales as
follows. If tensor perturbations are observed in the future so that is known, we would have
a rm prediction on a lower bound on non-Gaussianity that follows only from conformal
invariance. On the other hand, if the non-Gaussianity is obgrved and found to be of a bigger
magnitude than the bound on that arises from constraints on the tensor perturbations,
eq.(3.179), then it would rule out the scenario of approximate conformal invariance. More
correctly, it will rule out this scenario together with the a ssumption that particles which
appear as intermediate states, and contribute to the non-Gassianity, couple to the in aton
only with gravitational strength.

©The tensor and scalar power spectraPy(k); P (k) are

H? 4 HZ2 11

MZ a3

" Similarly, in theories where conformal invariance is viola ted to a signi cant extent, the non-Gaussianity
can be bigger, e.g. in DBI in ation.
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Chapter 4

Applications and consequences of
the Ward identities

4.1 Introduction

In this chapter, we continue to explore the symmetry properties of the correlation functions
of the perturbations produced during in ation. In particul ar, we discuss some applications
and consequences of the Ward identities derived in the prewvus chapters. The present
chapter is largely based on 3], and is organized as follows. Sectiont.2 provides a quick
recap of some properties of de Sitter space relevant for therpsent chapter, and helps
set-up the notation. In section 4.3, we consider a class of models which are not of the
standard slow roll type. Instead, in these models, called geeralized single eld models, the
in aton can roll quickly in units of the Hubble parameter, H, while the spacetime is still
approximately de Sitter space. Using the earlier calculatbns of the three and four point
correlation functions of scalar perturbations in these moaels, [L33 and [134], we explicitly
check that the Ward identities derived and discussed in the pevious chapters are valid for
this class of models as well.

In section 4.4 we discuss the scalar three point function in slow roll in ation in some detail.
This correlation function, which is observationally most sgni cant in the study of non-
Gaussianity, was rst calculated in [24] using the in-in formalism. The Ward identities
suggest a somewhat di erent way to calculate this correlation function. These identities
relate the three point function to the scalar four point function in a particular limit, with the
coe cient of the four point function being suppressed by a power of the slow roll parameter
=H , [1, 2]. This suggests that the leading slow roll result for the three point function can
be calculated from the four point function in the de Sitter approximation (where the slow
roll parameters can be set to vanish). We make this explicit in section 4.4 by carrying out
the calculation along these lines. We show that replacing oa of the legs in the four point
function calculation in de Sitter space with a factor of the dow roll parameter =H does give
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the correct result for the three point function. This way of t hinking about the three and
higher point correlators, motivated by the AdS/CFT corresp ondence 2, 73, 74], and the
resulting discussion of the Ward identities was implicit in some of the earlier literature, R7],
and has also played an important role in the recent discussits in [66]. See also§7, 70, 135.

We end with a discussion in sectiord.5. AppendicesC.1 and C.2 provide additional details.

Notation: The Planck mass is given byMp| = 1:p 8G . We denote the conformal time
coordinate by . Spatial three vectors are denoted by boldface letters, e.gx;k etc. ky;a=
1;2;::: denotes the momentum vectorskq;k»:::: etc, whereask':i = 1;2;3 denotes the
components ofk. The magnitude of a vector is denoted by the corresponding alinary
letter, e.g. X | Xj. Adotabove a quantity denotes ordinary time derivative, eg. f— d=dt.

4.2 Some properties of de Sitter space

We start by presenting some key properties of de Sitter spacewhich we will refer to
throughout the rest of the chapter. Four dimensional de Sitter space in planar coordinates
is given by the line element

ds? = dt? + e®tdx'dx;; (4.1)

where 1 < t;x' < 1. In our calculations, we will make use of the conformal time
coordinate , given by

1.t
= —e M 4.2
o (4.2)
where 1 < 0. The line element in eq.@.1) then takes the form
d= —1_( d 2+ dxidx): 4.3
s = H2 2( I)- ( ' )
Note that the coordinates (t; x) or ( ; x) cover only half of de Sitter space.
Four dimensional de Sitter space has the following isometes,
(i) Translations: x'! x'+ ' (4.4a)
(i) Rotations:  x' 1 x'+1ixl; 1y = Iy (4.4b)
(iii) Dilatations: ! (1+ );x'! (1+ )x'; (4.4c)
(iv) Special Conformal Transformations: ! (1+2b x); (4.4d)
X' x'+2b xx' +H(? x?): '
Here, the parameters i j, and b are all in nitesimal. These isometries impose important

constraints on the correlation functions of in ationary pe rturbations.
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4.3 Conformal invariance and general single eld models of
in ation

The canonical single eld slow roll models of in ation are characterized by the action

M2, - P
S:TP' dx" g R g @@ 2v(); (4.5)
where V() is the potential for the inaton . For ination to occur, the potential is

assumed to be approximately at over a range of values for . The in aton evolves slowly
along this at part during in ation, leading to exponential expansion. In the homogeneous
limit, the in aton is purely a function of time, (1), and the metric is the unperturbed
FRW metric,

ds? = dt?+ a(t)? j dx'dx; (4.6)

where a(t) is the scale factor of the universe. The metric can equivalatly be expressed in
terms of the conformal time coordinate as'

ds?=a( )2 d2+ jdx'dd : 4.7)

Also, the Hubble parameter is given by

a
H== 4.8
N (4.8)
The homogeneous eld satis es the equations
3H? = 12, V();
2
1
H = - 2
5 (4.9)
0= "+3H —+ d\(/j( ):

The slow roll conditions are imposed by setting the slow rollparameters 1; 1 to be much
less than unity, where

(4.10)

1 (4.11)

C2HHS
The slow roll criterion 1; 1 1 ensures that the universe remains approximately de Sitter
during the in ationary phase. The slow roll conditions can also be expressed in terms of

1The general relation between the ordinary time t and the conformal time is

_ dt
= 20
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the slow roll parameters ; , where

1 2
= __- 4.12
2H?2’ ( )
= — (4.13)
H —
Notethat = j1and = 1inthe canonical slow roll model due to the background equatins

eg.(4.9). Another set of slow roll parameters are the potential slowroll parameters, de ned
by

Vo 2
V ’

(4.14)

In the slow roll approximation, these are also related to theparameters ;; due to the
background equations eq4.9),via y= 1and ,= 3

Perturbations to the homogeneous situation discussed abavare introduced in the ADM
formalism. The metric in the ADM formalism takes the form

ds? = NZdt?+ hj (dx' + N'dt)(dx) + N’ dt); (4.15)

where hjj is the induced metric on the spatial three surface labeled bytime t, and N; N i
are the lapse and shift functions, respectively. One needtmake a choice of gauge to X
the di eomorphism invariance of the theory. A convenient choice is the synchronous gaugge
de ned by imposing the conditions

N=1;N'=0: (4.16)
The perturbed metric in this gauge has the form

hj =a*[(1+2 ) j +by;

b = 0: (4.17)

where ; by are the scalar and tensor perturbations in the metric, respetively, with bj;
being traceless. The perturbed in aton is given by

= )+ (Ex): (4.18)

Note that in the ADM formalism ;hj are the dynamical variables, whereasN; N are
Lagrange multipliers. One thus needs to impose the equatios of motion of N;N' as
constraints in the gauge eq.4.16. In the wave function of the universe approach, the
equations of motion of N;N ' correspond to time and spatial reparametrization invariance
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of the wave function. In [2], as discussed in the previous chapters, general Ward ideities
were derived for single eld models of in ation as a consequece of these reparametrization
invariance constraints. These Ward identities are satis el by the correlation functions of
the curvature perturbation , and the transverse and traceless tensor perturbationd .?
For instance, for a scaling transformation, we have

3 X @ 0
M D+ k-2 hki) (kn)i%=
a=1 @k
. (4.19)
-0 .
h (knor) ( Kkpogion (K0 (keI

where a % on a correlation function denotes the suppression of the ovall momentum
conserving -function; for e.g.

X
h(k)) (kn)i=(2 )®?® ka h(ki)  (kn)i® (4.20)

a=1

Similarly, for special conformal transformations, we havethe Ward identity

( (k1)) (ko) + + (ki)  ((kn)) =
@ h(kiy)  (knsa)i , (4.21)

2 b " ;
@n+1 h(kKner) ( knen)i% 1 o

where ( (k)) is given by

Zz Pk 1
( (k)= P (k)+6 bk == (k R)bm(R)
(2 )7 k2 (4.22)
+2 gk K 1b--k R) bim (R):
eye e om
and the operator IO is given by
bb — e @ @ @ @ .
Lka@b@(bk)@@+6b@. (4.23)

Here, we have reproduced the Ward identities satis ed by thecorrelation functions of
Similar Ward identities are satis ed by the correlation fun ctions of the tensor perturbation
bjj as well. For details on the derivation of the Ward identities see the previous chapters.

We would now like to check the validity of these Ward identities for more general single
eld models of in ation, where the matter part of the Lagrang ian density is an arbitrary
function of the scalar eld and its rst derivatives. These models of in ation follow fr om

2In the gauge eq.(4.16), the tensor perturbations bj can be made transverse,@b; = 0, at late times,
using the spatial reparametrization x' ! x'+ v'(x).
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the action (see [L36, 137))

Z
S= % d4xp_g M3 R+2P(X; ) ; (4.24)
where 1
X= 39 @@ ; (4.25)
and P(X; ) is an arbitrary function of X; . The speed of sound parametercs which

characterizes these general single eld models of in atioris de ned as

P.
2 X .

_ 4.26

S Py +2XPxx (4.26)
Clearly, for the canonical slow roll model of in ation, whereP(X; )= X V( ), the speed
of sound iscs = 1. For models with more general form of the matter Lagrangian P(X; )
than the canonical slow roll model, we havecs 6 1.

In these general models of single eld in ation, one de nes tree \slow variation parame-
ters," given by 1, eq.(4.10), and

1= ﬁ; (4.27)
s= C%H: (4.28)

For in ation to occur, the three slow variation parameters must be small,
;s L (4.29)

However, the parameter , eq.(4.12, which is small in the canonical slow roll model of
in ation, need not be small for the more general models’

3Consider, for instance, the DBI model of in ation [ 81, 82]. In this model, one has

| O ——
P(X; )= % 1 2Xf()+%

where the in aton is the position of a D3 brane moving in a warped throat, and f ( ) is the warping factor.
The energy density and pressure for this model are given by

_ 1 1,
f() 1T 2xt() f()

V()

V()

and 1P 1
p= m 1 2Xf()+m V():

The speed of sound can be calculated using eq4.26), and is given by
Cs = P 1 2Xf ():

Working in the homogeneous limit, the in aton becomes purel y a function of time, (t). We then have
X = _2=2. The speed of sound then becomes

q_——
= 1 22f():
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The two, three and four point functions for the curvature perturbation in these models of
in ation have been computed explicitly. For our purpose, wefollow the references 33 134).
We have reproduced their results in appendixC.1 for completeness.

For the case ofn = 2, the scaling Ward identity eq.(4.19 becomes,

¥ @

. @ h (ku) (ka) (ka)i°
a=1 " @k

3t h(ks) ( Kai® 41 o

h (k1) (k2)i%= (4.30)

which is also known as the Maldacena consistency condition.An explicit check for its
validity in the P (X; ) models of in ation was performed in [133], and it was found to hold
true.

We now check the Ward identities eqs.4.19 and (4.21) for the case ofn = 3. Their explicit
form is

X @

Ky — h (k1) (k2) (k3) (ka)i®
a=1 a@K

6+ h (kq) ( kg)i© Ka! 0;

h (k1) (k2) (ks)i®=

(4.31)

for the scaling transformation, and for the special confornal transformation we have

@ h (k) (k2) (k3) (ka)i

bb i = '
Py, h(ky) (k2) (ka)i 2 b @ h (kq) ( kg)i® kel O

a=1

(4.32)

Using the expressions for the three and four point functionsgiven in appendix C.1, we
performed a check of these Ward identities on Mathematica. W& nd that the scaling Ward
identity is met, since the LHS and RHS of eq.4.31) vanish individually. Similarly, we nd

In this model, the in aton evolves relativistically, and th e parameter de ned in eq.(4.12) is not small.
Consequently, the speed of sound is very small,cs 1. This gives an approximate expression for _

Also, the Friedmann and continuity equations have the form
MEH? = ;
= BH( +p)
Using these equations, one nds that the expression for the slow variation parameter 1, de ned in eq.(4.10),
is given by
32
2 F1 o)+ oV

s 1 .
21+ GtV

where the approximate expression follows from the condition that ¢s 1. To get a de Sitter like phase of
exponential expansion, one must have 1 1. Thus, the potential must satisfy the condition

2¢csfV 1
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that the special conformal Ward identity, eq.(4.32), is also met. As discussed in appendix
C.1, the four point function has two parts, one coming from a contct interaction term and
the other from an intermediate scalar exchange. An intereshg point to note is that the
dominant contribution to the RHS of eq.(4.32) in the limit ks ! 0 comes from the four
point contact interaction term, whereas the intermediate scalar exchange contribution is
subleading.

4.4 Bulk calculation of the scalar three point function in
in ation

The three point function for the scalar perturbation , eq.(4.17), in in ation was computed
in [24] using the in-in formalism. In this section, we present an dernate approach for
computing the same. This approach arises as a consequence tbe scaling and special
conformal Ward identities relating the three and four point functions at the leading order
in the slow roll approximation, see [l]. The Ward identities suggest that the three point
function must follow from a computation of the four point fun ction, with one of the external
legs replaced by the time derivative of the homogeneous bagkound, — Working in the
Bunch-Davies vacuum, we will show that this is indeed the cas, providing another check
for the validity of the Ward identities. Our method follows t he approach utilized in [27]
for computing the in ationary four point function of . The discussion here is also related
to [66] and [67], where related ideas are used to examine the e ect of highempin elds on
non-Gaussianity.

The present technique for computing the in ationary three point function relies on an
important analogy between calculations in dS and AdS spacesWe rst calculate the wave
function, in terms of the late time values for the perturbations, and then the correlation
functions can be computed from the wave function. To computehe in ationary three point
function for , we need to evaluate the wave function [ ], where is the perturbation
to the in aton, eq.( 4.18), and is related to by a change of gauge. The wave function [ ]
has the schematic form

Z Z
_ M2, 1 o1 , ,
[ 1=exp Hz > hOOi + 3 hOOOi + ; (4.33)
where
hO(k1)O(k2)i = (2 )3 3(ky + ko) k; (4.34)
and hOOOi;::: are the coe cient functions. Once we have the wave function [ ], in

particular the cubic coe cient HOOOi, we can get the three point function for by using

R
D_] [ ]

h i = R
| D 11 12

; (4.35)
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e |

Figure 4.1: The three point function in de Sitter space, withone leg being the time-derivative
of the background

which is the standard quantum mechanical prescription to canpute expectation values.
Knowing the three point function for , we can get the three point function for by simply
performing a change of gauge. Thus, the whole computation ks down to computing the
cubic term hOOQi in the wave function [ ].

The analogy with AdS space also suggests that this cubic terncan be calculated using the
analogue of Feynman-Witten bulk-to-boundary propagators In fact, as already mentioned,
the three point function gets related to the four point function with one leg replaced by the
background value of the in aton, — as shown in gure 4.1, see [, 66]. The propagators in
gure 4.1 are bulk-to-boundary propagators in de Sitter space, and tke interaction vertex is

given in gure 4.2, which arises by expanding the action about the in ationary background
as will be explained shortly. In fact, since de Sitter space an be analytically continued

to Euclidean AdS (EAdS) space, the whole calculation can be dne conveniently by rst

working in EAdS space and then continuing the result back to & Sitter space. Note that the
Bunch-Davies vacuum in de Sitter space corresponds to choing the boundary condition

that deep in the interior of EAdS space all perturbations be@me regular. This is the
procedure we follow in the computation below.

To be more specic, consider the metric of four dimensional AdS space in Poincare

coordinates,
R2 X :
ds? = =295 dzZ+  dxdx' ; (4.36)
z i=1
where Rags is the EAdS radius, and the coordinatez 2 [0;1 ). Under the analytic
continuation
z= i; (4.37)
and )
i
ﬁ1
the metric eq.(4.36) goes to the metric of four dimensional de Sitter space, e3). Also,

Rads = (4.38)
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the partition function in EAdS space is related to the wave function in de Sitter space via
the same analytic continuation. In the semiclassical apprgimation, where one can replace
the path integral involved in the calculation of the partiti on function or the wave function

by its saddle point value, one can write

Zenos[(X)] @ Saan 1O 2= 1 () @S wa 01 (4,39
Rads = iy

where the EAdS partition function Zgags is a functional of the boundary value of the eld
( x)asz! 0, whereas the wave function in de Sitter space is a functioral of the late time
value of the eld ( x) as ! 0. The other boundary condition imposed while computing
the on-shell action is to demand regularity of the solution ceep in the interior, z!1 , of
EAdS; as mentioned above, this corresponds to the choice ofuBich-Davies vacuum in the
far past, ! 1 | in de Sitter space.

4.4.1 Computing the coe cient function hOOOi

In the EAdS space, with the metric given by eq.@.36), we start with the action

z
M 32 p_
S:TP' dx"g R 2 (r )? 2v() ; (4.40)
where (z;x) = (2)+ (z;x) is the in aton written in AdS coordinates, and is the

cosmological constant, which is related to Rgqs by

S (4.41)
Rids
We expand the metric perturbatively as
g =9 *+9 ; (4.42)

whereg is the unperturbed background metric given in eq.@.36), and g is the pertur-
bation. Substituting eq.(4.42) into the action eq.(4.40 and expanding, we get

Z

1
S= So+ SE, EMél d*x

P30 @( )@( )+ Sm; (4.43)

where Sy is the action for the unperturbed background, Sé,%, is the part of the action which
is quadratic in the metric perturbation g , and Sj¢ is the interaction term, given by
Z
1

p
St = =M3, d*

gg T ; (4.44)

N
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Figure 4.2: The qualitative three point bulk interaction ve rtex between two scalars and a
graviton.

where the energy-momentum tensoiT  for the scalar eld is given by

T =0@ 9 9 @@ +2V(): (4.48)

The interaction term eq.(4.44) gives rise to an interaction vertex between two scalars and
a graviton, depicted qualitatively in gure 4.2

From Sézrg\,, we can compute the propagator for the graviton. For doing sowe choose the
gauge?
92z =0; 9z =0; (4.46)

with i = 1;2;3. The graviton propagator in this gauge is given by 138 139

G (Z1;X1;22;X2)

Z 7 " #
Bk - 1 g2 Jz(pz1)d:(pz2) 1 (4.47)

where »
Ty = j + #1 (4.48)

Note that the graviton propagator in eq.(4.47) is not transverse. We can however decompose
it into a transverse part and a longitudinal part. The transv erse graviton propagator is given

by

G (Z1;X1;22;X2)

" #
z Z
d3k . 1 d Jg(pZ]_)Jg(pZZ) 1 (449)
= 2 )3 e'k (x1 x2) %Pz pzﬁ(k;_{_ p2) é(']'I'k"|'l'| + Tij Tj'k "|'i'j Ta)
where »
Ti = i o (4.50)

The longitudinal part is then essentially the di erence between the full propagator, eq.4.47),
and the transverse piece, eq4.49).

“This gauge naturally goes over to the gaugeN = 1;N' = 0 under analytic continuation, which is used
in our in ationary calculations.
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From eq.(4.43), we see that the scalar eld behaves essentially like a free scalar eld in
EAdS space, with only gravitational interactions. Thus for a particular momentum mode
carrying momentum k, we have

(X z) = o(k)(A+ kz)e K2 dkx: (4.51)
where we have chosen the solution for which is regular asz ! 1

To calculate the EAdS partition function, we need to compute the on-shell action. In
particular, to extract the unknown coe cient hOOOi, we need to evaluate the contribution
from the Feynman-Witten diagrams of gure 4.3. This contribution is given by

z=0 z=0 z=0

(a)s channel (bt channel (9)u channe

Figure 4.3: Feynman-Witten diagrams for the s, t, and u channel processes contributing to
the calculation of the EAdS patrtition function. z = 0 is the EAdS boundary. The wavy line
denotes the bulk-to-bulk graviton propagator, the solid lines represent the bulk-to-boundary
propagators for the scalar eld , and the dashed line represents the background. The
exchanged graviton carries momentunk.

1 dz; dz C
ST > M 8 Rads 2—412—42 Px1d®%o g2 g 2T, (20 X 1) 452
1 2 .

Giakaly (213X 13 Z2; X 2) @42 @112 Ty 1 (225 % 2):

As already discussed above, we can write the graviton propagor as a sum of a transverse
and a longitudinal part. This gives us

1
S5 el = > M3 Rigs (W +2R); (4.53)

94



Applications and consequences of the Ward identities

where W is the transverse graviton contribution,
VA
W = dzidz, d®x103%2 Tij (215X 1) Gj (215X 15 225 X2) T (225 X 2); (4.54)

where we have used’ = z? I . The contribution to the on-shell action from the longitudi nal
part of the exchanged graviton is written in the form of a \remainder" term R, which has
the form

R=R1+ R+ Rg3; (455)
with R1;R2; R3 given by
Z
dz 1
Ry = — X T4 (2;X) = Tz (2;%);
z @
1Z dz 1
Ro= 3 7d3X@sz(z;X)@Tzz(z;X); (4.56)
_ 1Z dz 5 . 1 ° cu)-
Rs= 3 ;d X@Tz (2;X) @ @Tzi(z;x):

We can now perform the computation of the on-shell action. Sme details of the calculation
are given in appendix C.2. The contribution from the transverse part of the graviton
exchanged vanishes, see appendi.2.2. The contribution from the longitudinal part is

calculated in appendix C.2.1, and is given by

1 — 3 3 x3 B
R = EH(Z ) Ka o(ka)
atn 16;,1 X . # (4.57)
5 kit o kaki+ o kIKS
a=1 aéb a<b
Using eq.@.53), we see that the EAdS on-shell action is
EAds _ 1y2p2 33 x ¥
Son' shell = EMPI Riads q(z ) Ka o(ka)
" )@ a=1 y a=1 y # (4.58)
1‘ k3+ } k k2+ i k2k2 .
2 a 2 afp K a™b -
a=1 aéb a<b

From eq.(4.58), by taking derivatives with respect to the boundary value ¢ of the eld ,
we obtain the three point coe cient function hOOOi,

1 _ X
MO(k1)O(k2)O(ka)i = 5-(2)° % ka
a=1
" # 4.59
1)@ 3 lX 2 4 X 21,2 ( )
> ka+§ kakb+K kaky
a=1 a6b a<b
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where we have made use of the analytic continuation ec4(398.

4.4.2 The three point function h i

We now proceed to compute the in ationary three point function h  i. From the wave
function eq.(4.33, one nds that

1 H* 10(k1)O(k2)O(ka)i |

h (k1) (k2) (k)i = - —! (4.60)
AMg <3, MO(ka)O( ka)i®
Substituting the result eq.(4.59 in eq.(4.60), and using eq.@.34), we get
. 1 H4 — ¥ o
h (k1) (kz2) (ks)i= éM—“ﬁ(z )3 3 Ka 3
PI = =1 a
" a=1 a=1
# (4.61)
1% 3 1X 2, 4 X 21,2 .
> ka+5 kakb+? kiky
a=1 aéb a<b

Now, to obtain the three point function for the perturbation , we need to perform a change
of gauge from to in eq.(4.61). The second order change of gauge relating and is
given by (see p4] for details)

|| T

- 'H_3 2 (4.62)

+
NI =
NI

Performing the change of gauge eg4.62 in eq.(4.61), we get the nal result

¥ 1 H*H?2

x3
- 33
h (k1) (k2) (k)i =(2 ) Ka . @3 Mi 2

a=1

" #  (4.63)
1 2H® X 1 , AX
E + —3 ka + E kakb + K ka kb y

- a=1 aéb a<b

which is indeed the expression for the three point function & computed in [24].

The present method of calculation also provides us with an uderstanding of which region
in the bulk makes a signi cant contribution to the late time ! 0 correlation functions.
E.g. for the three point function, when k3 ! 0 keepingki;k, xed, the corresponding
bulk-to-boundary propagators for the scalars, shown in gue 4.1, go deep inside the bulk.
Thus the behaviour in the far past becomes important. This isa version of the UV-IR
connection in de Sitter or in ationary space times, and has dso been discussed in6f).
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4.5 Discussion

We have studied the Ward identities for scale and special cdiermal transformations in the
context of in ation and de Sitter space in this chapter. It was argued earlier in chapters?, 3
that these Ward identities follow from the coordinate reparametrization symmetries of the
system. The coordinate reparametrization invariance can le used to set the perturbation
in the in aton to vanish, =0, at late times. The resulting perturbations in single el d
models then correspond to scalar perturbations, and tensor perturbations by in the metric.
The residual spatial reparametrization symmetries presengive rise to Ward identities for
the correlation functions of these perturbations.

For generalized models of single eld in ation, it was shown here that the Ward identities
are indeed valid, as would be expected from the general naterof the arguments leading to
these identities. We should mention that some of these Warddentities were checked in an
earlier work [103.

Finally, we described an alternate calculation for the three point function for scalar per-
turbations in standard slow roll in ation in the Bunch-Davi es vacuum. This calculation
is motivated by techniques drawn from the AdS/CFT correspondence and is related to
other recent papers, including R7, 66, 67, 70], and could be useful in thinking about the
implications of additional elds during in ation, includi ng those with higher spin. See also
[68, 71, 135, 140.

The additional checks presented in this chapter put the Ward identities on a very solid
footing. They thus indeed provide robust model independentconstraints on single eld
models of in ation.
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Conclusions

The aim of the thesis was to study the constraints imposed by nderlying symmetries on
correlation functions of perturbations in single eld models of in ation. In ation is the
dominant paradigm to explain the approximate isotropy and homogeneity of the universe.
In ation also gives rise to quantum perturbations which lead to the observed anisotropy in
the Cosmic Microwave Background, and which seed the formatin of large scale structure
in the universe.

During in ation, the spacetime is well approximated by four dimensional de Sitter space,
which is a maximally symmetric FRW cosmology, with the symmery group O(1;4). The
time evolution of the in aton and its back-reaction on the metric breaks these symmetries,
but this breaking is small if the slow roll conditions are sais ed. The symmetry algebra of
0(1;4) is the same as the symmetry algebra of a three dimensional Uelidean Conformal
Field Theory. Because of this, we referred to theO(1;4) symmetry of de Sitter space as
the conformal symmetry group. It includes translations and rotations along the spatial
directions, as well as a scale transformation, and three spél conformal transformations.

In chapter 2, single eld slow roll in ation was studied at the leading or der, and it was
shown that the symmetry constraints on the correlation fundions of scalar and tensor
perturbations can be expressed in terms of the Ward identites of conformal invariance.
More precisely, in the de Sitter limit, where the slow roll parameters can be set to vanish,
we obtained Ward identities for exact conformal invariance Incorporating departures
from exact conformal invariance by taking into account the non-vanishing of the slow roll
parameter =H then gave rise to Ward identities which included the breakirg of the de Sitter
symmetries. The scaling Ward identities gave rise to the Mallacena consistency condition,
and additional similar constraints arise due to the specialconformal transformations.

Further study, presented in chapter 3, showed that the Ward identities follow from the
constraints of reparametrization invariance and should bemore generally valid. This allows
the breaking of conformal invariance during in ation, due to the evolution of in aton, to be
incorporated systematically even beyond the leading ordein the slow roll parameters. After
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appropriate gauge xing, we argued that the leftover spatia reparametrization invariance
can be used to derive Ward identities for scale and special oformal transformations. The
Ward identities so obtained are valid to all orders in slow rdl expansion. The derivation
of the Ward identities for special conformal transformations required an additional eld-
dependent compensating spatial reparametrization to maitain the gauge choice.

The situation is analogous to what happens in a eld theory whch is not scale invariant.
The correlations in such a theory still satisfy the Callan-Symanzik equation, which now
involves contributions due to the non-vanishing of the betafunctions. In the conformally
invariant limit, the beta functions vanish and the Ward iden tities simplify and constrain the

correlators in a more powerful way. In the near conformal linit, where the beta functions are
small, there can still be signi cant constraints from the Ward identities. In the same way,
for in ation the Ward identities are generally valid since t hey arise from the constraints
of spatial reparametrization invariance, which is a gauge gmmetry of general relativity,

and must hold very generally. In the slow roll limit, where there is approximate conformal
invariance, these conditions can impose signi cant constints on the correlation functions
for the scalar and tensor perturbations.

We relied on the late time wave function of the universe for tre derivation of the Ward
identities. The late time limit was relevant because the in ationary perturbations freeze
out after horizon crossing in the appropriate gauge. The inariance of the wave function
under the spatial reparametrizations meant that the coe ci ent functions appearing in
a semiclassical expansion of the wave function transformedéh a way analogous to the
correlation functions of a marginal primary operator in a three dimensional conformal eld
theory.

In chapter 4, we studied the generalized single eld models of in ation n some detail. In
these models of in ation the parameter =H is not necessarily small. We found that the
Ward identities are valid for this class of models as well. Awther interesting consequence
of the Ward identities is a method to compute the scalar threepoint function in slow roll
in ation from the scalar four point function calculation, b y setting one of the external
legs in the Feynman-Witten diagrams contributing to the four point function to be - We
explicitly computed the three point function using this method, providing another check
for the validity of the Ward identities.

The key aspect of the symmetry based analysis carried out inHis thesis is that it is
model independent. Constraints which arise, for example,ri the approximately conformally
invariant limit, probe basic features of the in ationary mo del in a model independent way.
These constraints can have signi cant observational consguences, and can therefore give
rise to model independent tests for the in ationary paradigm.
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Appendices for Chapter 2

A.1 More on hOOOI and hOOOOi In the canonical model of
slow roll in ation

In this appendix, we discuss in some more detail the coe cieh functions hHOOOi and
hOOOOi in the canonical model of slow roll in ation. We divide this appendix into two
subsections, one for each of them.

A.1.1 The three point coe cient function hOOOi

The three point scalar correlatorh (k1) (ko) (k3)i inthe canonical slow roll model, eq.2.20),
was computed in R4],

. H* H* 1
h (k1) (k2) (ka)i=(2 )* 3 ki+ke+ ks — — QA (A1)
4 MA, T L(2k3)
— 2° - X 3 —241X 2 LR 21,25 .
aéb a>b

Here, ka = jkaj and ki = ky + ko + k3. Using the de nitions of the slow-roll parameters,
1 and , eq.(2.18, and the eq.(2.28), in eq.(A.1) and eq.(A.2) above, we can obtain the
expression forh (k1) (ko) (ka)i interms of ;; as

1 H* 1
- 3 3 .
h (k1) (k2) (k3)i =(2 )° ° ki + ko + k3 rEAvES QmA, (A.3)
with 2 3
X 1 X 4 X
A=(1+2) ki +2 145 kaki+ - kakyd: (A.4)
a aéb t a>b
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We can also express the relation between and , as given in eq..70), in terms of the
parameters ; and as

1 1+ 5
= P 1 A5
21 4, (A5)
Then from eq.(A.3) and eq.(A.4), we get
H4 1
- 33
h (k1) (k2) (k3)i= (2 )°° ky+ka+ ks WQW
Pl a a
A.6)
3,+4 X p__— 1X 4 X (
S U K21 5 kKB o KA
! a aéb t a>b

Now, to obtain a relationship betweenh (ki) (k2) (ks)i and hO(k1)O(k2)O(ks)i, we
use the momentum space expression for the wave function eg.6), given by
M2, 14 d®k; dk;

[ ]=exp A2 21 WW (k1) (k2)hO( k1)O( k)i

17 d3ky d®kz diks
+ =
3 @)pPE)yre)y

hO( k1)O( k2)O( ka)i

(k1) (k2) (ks) (A7)

where we have kept only the relevant terms. This gives

1 H* O(k1)O(kz)O(ka)i
4ME 3 10(ka)O( Ka)i®

a

h (k1) (k2) (ks)i= (A.8)

Using the expression foO(ka)O( ka)i® eq.(2.7), in eq.(A.8), and using eq.(A.6) we obtain
the relation

X L X X
O(ki)Ok)Ok)i%= BT ks TPay 2T e T G (a9
1 a aéhb ta>|cv

which is same as the expression in e®(76).

A.1.2 The four point coe cient function hOOOOi

The scalar four point coe cient function hOOOQi in the canonical slow roll model was
calculated in [65] and [27]. It is given, see eq.(4.32) of]7], as
Z
Y Bk,
3
a=1 (2 )

hO(x 1) O(x 2)O(x3)O(X 4)i = éka *a hO(k1)O(k2)O(k3)O(ka)i;  (A.10)
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where

X4
hO(k1)O(k2)O(ks)O(ka)i = 4(2 )° 3( ka) % WS (ka;ka;ksika)

a=1

+ WS(k1;kaikaika) + WS(k;kaskarka) + RS(ky;ka;ks;ka) (A.11)

+ RS(kq;ka;ka;ka) + RS(kq;ka;kaika) ;

with %/ S being the contribution from the transverse component of thegraviton exchanged,
given by

f(kz + k1):kagf(ka + k3):Ksg

WS(ki;koika ka)= 2 kiks+

jk1 + koj?
) f(ky + k2):kogf (ks + Ka):kag ) f(ko + k1)kiof(ka + k3):kag
kg.k4+ jkl+ k2j2 + k]_.k4+ jkl+ k2j2
Koka + f(ko + k1):koof (kg + k3):ksg Kk f(ko + ki):kagf (kg + kz):kag
o k1 + Koj? v k1 + koj?
K-k f(ks + ka):kagf(ka + k3):ksg
Lo jk1 + k2j?
kiko(ky + k2)? (ki + k2)? k3 ki  4ksks (A.12)
(ki+ ko ks Kka)?(ky+ ko + k3 + kg)2(ky + ko j k1 + Koj)(ky + k2 + jk1 + K3j)
ki + ka ki + ko . ki + ko
2k 1Ko (ki + k)2 + k3 + k2 +4ksks  jki + koj2 (K1 + k)2
+ ! ! 3 +(1:;2% 3;4)

+
ki ko+ ks+ ks Kkit+ko+ kst ks 2(ky+ kp)
jkl + k2j3 k% 4k2k1 k% + jkl + k2j2 k% 4k4k3 k‘% + Jkl + k2j2
2( k2 2Kkoky K2+ jky + kaj2)®( k2 2Ksks K2+ jkq + k2j?)?

The longitudinal contribution from the graviton is denoted by RS, and is given by

Ai(ky; ko ks;Kka) + Az(ky; ko ks Ka) + Az(ky; ko ks Kka)

S . ko k - A1l
#? (kl,kZ, 35 4) (k1+k2+k3+k4) (kl+ k2+ k3+ k4)2 (kl+ k2+ k3+ k4)3 ( 3)
with
ke y ks ka ki ko Kf+ kG +2kPKS . .
Ai(k1; ko ks ka) = 8k, + Kaf? +f1;2, 349
k%kz k3k§+ k%kg k4k§+ k]_ k3k%k£+ k]_ k4k%k§
ijl + k2j2
ki ko KE+ K2 +2KEKE ks ka KB+ KF +2K3KE A1)
8]'(1 + k2J4
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1

Aa(kiikaiksika) = gp g

k3k4(k3+ k4) k1 ko k%"' k% +2k%k%

(k3k4+ ks k4)+ klkz(k1+ kz)(k1k2+ k1 kz) ks kg k§+ klzl +2k§k§

1

m k%kz kgklzl(kz + k3)+ k%kz k4k§(k2 + k4)

+ k1 kakZk2(ky + k) + ki kak3k2(ky + ki)

ki k2

8k, o (ki + kz) ka kg K3+ ki +2k3k?

+ k3k4(k3 + k4)(k3k4+ ks k4) +f1,2, 3 49 ; (A15)

kikokska(ky + k2)(k3 + kg)(kika + K1 k2)(ksks + k3 Kkg)
4k + kaj*

kikoksks(kika ksks + kiko Kkgks + Ky Kakoks + k1 kakoks)

jki1 + kzj?

Az(ki; ko ks ka) =

1

+ P kiko(kiks + k1 ko) kz kg k3 + k7 +2k3k?

+ ki k2k3k4(k1 + kz)(kg"‘ k4)(k3k4+ ks k4)+ f1,2, 3; 4g

. 3kikokska(kiko + k1 ko)(ksks + ks Ka) .

Ak + al? (419

From eq.(2.72, we can see thath i is made up of two parts. Among them, h ick
gets contribution from the four point coe cient function hOOOOQi. Similar to eq.(A.8), one
can derive a relation betweenhOOOOQOi and h icp using the momentum space
wave function. The relation is given by

1 HE 1O(k1)O(kz)O(ks)O(ka)i
BMR 3.1 MO(ka)O( ka)i®

a=1

h (k1) (kz2) (k3) (kKa)icr = (A.17)

Inverting eq.(2.70), we obtain  in terms of . Working upto linear order in , we get

m ; (A.18)
Using eq.(A.18) in eq.(A.17), we obtain

1 H® H4 hO(k1)O(k2)O(k3)O(K4)i

h (k1) (k2) (k3) (Ka)icr = 4 — : (A.19)
8ME 4 1 10(ka)O( ka)i®
Similarly, the other contribution in h i,i.e. h ieT, comes from integrating out a
boundary graviton. The correspondingh ieT was computed in eq.(5.6) of 27],
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. a3 X H6 1
h (k1) (k2) (k3) (ka)ieTr =42 ) Ka VIRL 3
a=1 Pl a=1 (Zka) (A.20)
65 (ka;karkaka) + B5(ka;kaikarka) + B5(ka;kaikarka) ;
with &S being given by (eq.(5.7) of R7])
s o _ S(g;kl;kz)S(R;kg;k4) . f(k2 + kl):klgf(k4 + kg):kgg
O haikaikaika) = =2 SR ke i + Kaf?
Kypky + f(ky+ kz?ikzgf(k.32+ ka):kag Kok + f(kz + kl?:klgf(kfl;' ks):kag
jk1 + ko] jk1+ koj (A.21)
ooka 4 f(kz + k1):koof (kg + k3):ksg Kook f(kz + ka):kiof (k1 + k2):kog
o K1+ kof? o K+ kof?
Kk f(ks + Ka):kaof (kg + k3):ksg |
s jka + k2j? '
with
e akok
S(R;k1;k2) = (Ki+ ko + ka) e Dy . (A22)
(ki + ko + k) (ki + ka + Ka) = R=  (Kitko)
In eq.(A.20), one can use eqA.18) to obtain
x4 H4 H6 1
h (k1) (k2) (k) (Ka)ier =4(2 )*°® Ka —7 -5 Q3
- Mg = e (2k3)
a=1 - a=1 1“4 (A.23)

BS(k1;koikaika)+ BS(kqikaikaika) + GS(kq;karkaiks) :

Thus, h (k1) (k2) (k3) (ka)icr,ineq.(A.19), and h (k1) (kz2) (k3) (Ka)ieT,ineq.(A.23),
give the two contributions mentioned on the RHS. of eq.2.72).

A.2 Solving the homogeneous equation for hOOOi

In this appendix, we calculate the homogeneous contributia to the three point function
HOOOQI® denoted by S, (k1;kz:k3), €q.(2.78. For this, we need to solve the equations
eg.(2.79 and eq.(2.80). We start by rewriting eq.( 2.80) in a slightly di erent manner which
is more suited for the purpose of our calculation. Note that he function Sy (k1;k2;k3) is a
function only of the magnitudes ky; ko, and k3. Thus it will be bene cial for us if we express
the derivative operators in eq.@2.42 in terms of the magnitudes k1; ko and ks, rather then

105



Appendix A

in terms of the components ofk;k, andks. Using

@
@

ki @
ey (A.24)

-~

wherek is the magnitude andk; is the i™" component of a generic vectok, we can re-express
the derivative operator L? as

LP =(b k) ( k) (A.25)
with
_ 2@, @
(k)= E@; ok’ (A.26)
Eq.(2.80 can then be written as
(b k1) ( ki) +(b k2) ( k2) +(b k3)( ks) Sn(ki;kz;ks)=0: (A.27)

With the choice for the parameter of the special conformal tansformation, b, to be per-
pendicular to k3, i.e. b? kg, €q.(A.27) becomes

(( k1) ( k2)) Sn(ka;ka; ks) =0: (A.28)
Similarly, we can make another independent choice for the pameter b, b ? k,, and obtain
(( k1) ( K3)) Sn(ka;ka; ks) =0: (A.29)

The other possible independent choiceh ? k1, gives an equation that is a linear combination
of eq.(A.28) and eq.(A.29).

We will now analyze solutions to these equations. Our analyis is related to that carried out
in [2€]. Let us consider a complete set of function$,(k) de nedintherange z2 (1 ;1),
given by

fo(k) =1+ ikz)e *: (A.30)

Any general function, say H (k), can be expanded in terms off ,(k) in a souped-up Fourier
transform as Z,
H (k) = dz f (k) H(2): (A.31)
1

The functions f ;(k) are actually eigenfunctions of the operators (k), satisfying
( Kfz (k)= Z%f ,(k): (A.32)
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It is also important to note that the inverse of the transform ation in eq.(A.31) is given by,
Z

Z
1 Ly
dk gz~ HIA dq : (A.33)

H(z) =

Using eq.(A.31), we can expand the functionSy (k1; ko; k3) as
VA 1
Sh(ki; ko k3) = dz; dz; dzs f 7, (K1)f 2, (K2)f 25 (k3) M (215 22; 23): (A.34)
1

Substituting Sy (k1; ko; k3) from eq.(A.34) into eq.(A.28) and eq.(A.29), we obtain
2?2 =72 = 7% (A.35)

which in turn allows us to write Sy (kq;ko; k3) as

Z
X 1
Sh(ki; kojks) = dzFn,nons (K1 k2 K3 Z2) M nynons (2); (A.36)

ninging= 1 0

whereM p,n,n;(2) are a set of 8 functions corresponding to the 8 possible chues of the set
fni;n2;n3g, and Fn,n,ns(K1; Ko; K3; 2) is given by

Frpnons (K1 k2, k3;z) = (1+ ingkyz) (1 + ingkoz) (1 + insksz) e '(Ntkitnzkernska)z. (A 37)
Using eq.(A.24), we can also rewrite eq.2.79 as

kl@—@k + kz@—@K + k3@—@k Sh(k1; ko2; ka) = 3 Sp(Kk1; ko; Ka): (A.38)

Using eq.(A.36) and eq.(A.37) in eq.(A.38) we get

@ X “a
Ka @k Sh(ki; ka2, k3) = dzFn;n,ns(Ka; ki Ks; 2)
a=1 ninzng= 1 0 (A.39)
@
@ZZM ninang(2)
Combining eq.(A.38) and eq.(A.39) we obtain
@ —-n-
@Zz M ninonz(2) +3 M pynns(z) =0: (A.40)
This has the general solution
M ninans(2) = m; (A.41)
1h213

74

wheremy,n,n, IS @z independent constant. Thus, eq.fA.41) xes the functional dependence
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of M on z. Using eq.(A.41) in eq.(A.36) we see that

X Z1 dz
Sh(k; ko; ks) = Mninons - Frinons (K koi ks; 2): (A.42)
0

ninz;nzg= 1

To make the integration in eq.(A.42) well dened asz! 1 , we add a small imaginary
component to ky. The integral is also divergent asz! 0. We regularize it by putting a

small cut-o at z= . On carrying out the integral we get
(
X 1 1 x3 5
Sh(k1; k2; ks) = Mninyng 33 + 5 (naka)“+

ni;ng;ng= 1 a=1

VRS ;s 1X , 1Y
+1 9 (naka) 3 NaKa(Npkp)~ + 3 (naka) (A.43)

a=1 aéb azl)

. Z

! x 3 ! AZ _ itnyko+ nokot naks)z

3 (naka) €

a=1 z

This gives us the solution to the homogeneous equations e@.(79 and eq.(2.80. At this
stage, it consists of a sum of eight distinct functions, coresponding to the eight distinct
choices for the set (11; n2; n3). We will now take various limits of the answer in eq.(A.43)
and nd a unique solution.

First of all, we remove the rst two terms in the solution eq.(A.43) which go like powers
of 1=, since their presence would violate conformal invariance We next consider the last
term involving the integral. We can explicitly evaluate thi s integral to get

Z X i X
M2z 05 naka) 1= 5 In Naka +O( ) (A44)

a a

Ldz P
—e
z

Here, is the Euler-Mascheroni constant andin denotes the natural logarithm. The O( )

terms appearing in eq.@.44) vanish in the limit ! 0. Thus, our answer becomes
X ( S 5 i X
Sh(k1; ka;ks) = Mninyns 3 (naka) + 2 +In NaKa
ni;ng;nz= 1 a=1 a ) (A.45)
VRS ;s 1X , 1¥
1 9 (Naka) 3 NaKa(Npkp)~ + 3 (naka)
a=1 aéb a=1

We will now consider the behavior of eq.A.45) in the limit k; k,  ks. We know that
the momentum space three point function is related to the po#ion space expression by the
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standard Fourier transform. Thus
Z

P
hO(k1)O(k2)O(K3)i d®x1 A%, d¥xze 10 aka Xa)O(x1)O(x2)O(X 3)i

Z
d3X1d3X2d3X3e if(ki+ko+ks) x1+ka (X2 Xx1)+ks (X3 X1)g

~ hO(0)O(x2  x1)O(xs  X1)i

d3xl d3xd3ye if(ki+ka+ks) xa+ka x+ks ygm(o)o(x)o(y)i
x 2 .
2 )% 8 ka dxdiye k2 X+*KsY)pO(0)O(x)O(y)i; (A.46)

a=1

where we have used the notatiorx, x; = x andx3 X1 = Yy. Now, as we are interested
in the limit ko !1) x ! 0 (wherex j Xxj), we can use the Operator Product Expansion
(OPE)

O(0)O(x) = % Oo(x)+ ::: (A.47)

where A is a constant. Substituting eq.(A.47) into eq.(A.46) then gives us

oz .
MO(k1)O(k2)O(ka)i (2 )° * ka  dxdye '(k”*k3y>x—13r0(x)0(y)i

Z

i 1 1
— (2 )3 3 Ka d3xd3ye i(ka x+ksy) F jX yJG (A48)

a=1

x3 74 . .\ 11
(2 )3 3 ka d3xd3ye |(k2 X k3 Y) "
_ x3ye’
a=1
where we have used the fact thatk, ks ) x y. The leading ky dependence in this

limit is thus given by the integral

Z
d®x

ikzX

x3

In(kz); ! O (A.49)

Using dimensional analysis to x the k3 dependence in eq/&.48), we nd that the three
point function in this limit is of the form

hO(k1)O(k2)O(ks)i (2 )° B X ka k3In(k 2): (A.50)
a=1

From eq.(2.78), eq.(A.45) and eq.(A.50), we see that only two terms, (h1;n») = (1;1) or
(1, 1) are consistent with this behaviour. Now, by taking the similar limit k;  k» ks
and following the steps outlined above, we can see that the ghs ofk, and k3 should also
be identical: (no;n3)=(1;1) or ( 1, 1). Combining these two results, we see that out of
the eight possibilities in eq.(A.45) for (n1;ny;n3), only two survive: (ng;ny;n3) =(1;1;1)
and (n3;n2;ng)=( 1, 1; 1).
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Note that the choice (nq;nz;n3)=( 1; 1; 1) diersfrom (nqi;ny;n3)=(1;1; 1) only by
an overall sign, which can be absorbed into the coe cient. By suitably rede ning  and
the normalization N to absorb some constants, we then geBy, to be given by eq..81).

A.3 A prescription to calculate hOOOiI from hOOOOi

In this appendix, we will argue that for a given scalar four padnt coe cient function hOOOOi
in general, not necessarily for the canonical slow roll modethe Ward identity in eq.( 2.61)
can be solved, in principle, to get the three point coe cient function hOOOi. We start by
decomposingtO0Qi %into two parts

hO(k1)O(k2)O(k3)i%= Sh(ki;ka;ks) + Si(ka;kz;ks); (A.51)

where Sy (Kq; ko; k3) is the homogeneous piece ed(81), and Sj(kq;ko; ks) is a particular
solution to the inhomogeneous Ward identity eq.@.61). To calculate the particular solution
Si(k1; ko; k3), we rewrite the eq.(2.61) as,

LR, FO(k1)O(k2)O(ks)i %+ LR, hO(k1)O(k2)O(K3)i %+ LR, hO(k1)O(k2)O(k3)i®

. (A.52)
=B fj(ky;kaiks):

Here, fj (k1;K2;k3) is assumed to be an arbitrary vector function of the three manenta k.
Comparing with eq.(2.61), we can see that

£ (kaikaiks) =2 = -2 10(k1)O(k2)O(Ks)O(ka)I® (A53)

H @k ka! O
Note that from eq.(A.52), f;(k1;k2;Kk3s) is symmetric under the permutations of its argu-
ments. We can write the most general vector functionf (k1; k2; k3) with the above property
as
fij(ki ka2 ks) = kg F (ki ko ks) + Kaj F (k2 kar ki) + kaj F(ks; ki ko) ; (A.54)

such that F (ky; ko; k3) is an arbitrary function and is symmetric under the exchange of its
last two arguments.

Next, we make a choice forb, the parameter of special conformal transformation, to be

perpendicular to k3,
ko ks

kg

Using eq.(A.54) and eq.(A.55), the RHS of eq.(A.52) becomes

b= ks Ks: (A.55)

(k2 ks)?

b fj(ki; ko ks)= k3 2
3

g(ka; ka; Kka); (A.56)
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with the de nition,
O(k1; ka; k3) = F(ka;ki;ks)  F(ki;ko; Ka): (A.57)

It is obvious from the de nition that g(kz1;ko; ks) is antisymmetric under the exchange of
its rst two arguments. Also, using eq.(A.25), eq.(A.26) and eq.(A.55), we can write the
LHS of eq.(A.52) as,

LR, FO(k1)O(k2)O(k3)i %+ L, hO(k1)O(k2)O(k3)i %+ LR, hO(k1)O(k2)O(k3)i®

2 (A58)
(kzkfs) (( k2) (k1)) Si(ka; k2;ka):
3

= k%
From eq.(A.56) and eq.(A.58), we see that the Ward identity eq.(A.52) becomes,
(( k2) (k1)) Si(ka;ko;ka) = g(k1;ka; ks): (A.59)

Next we expand bothS;(kq; ko; k3) and g(ki; ko; k3) in terms of the functions f ,(k), eq.(A.30),

Z 1

Si(ki; ko ka) = dz; dzo dzg F (K1; Ko; Ka; 215 225 23) M (245 22; 23); (A.60)
z,

o(Kka; ka; k3) = dz; dzo dzz F (K1; ko; K3; 715 225 23) N (21; 22; Z3); (A.61)
1

with
F (ki ko;Ka;21;20;23) = (L + ik1z) (1 + ikozp) (1 + ikgzg) e '(Kizatkezatkaza). (A 6D)

Substituting eq.(A.60) and eq.(A.61) into eq.(A.59) gives us,

N (z1;22;23)

M (z1;22; 23) = 2 2

(A.63)

Using the de nition of the inverse transformation in eq.(A.33), we can invert eq.(A.61) to
obtain N (z1; z; z3) in terms of g(ky; ko; ks) as

Z,
N (21;22:23) = %1 22 0 kg dllamat o sz
1
ZwZy,Zy, o (A.64)
g(le,Ciz,ZQS) doydoydes
%%
Using eq.(A.64) and eq.(A.63) in eq.(A.60), we nally obtain
Z, Z,
F (ki ko ks z1:20;2 dp; dp> d
Si(k1; k2; ks) = dz;dz;dz; (ks 22 2 ; 223) ﬂ#Pz#mplpzps
1 (z1Z z 1 2 2 2 (A.65)
(prz1+ Pro P2 Ps g(on; i ) '
e 121+ P22Z2+ p3Z3) dqldqqu3
CF BB
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Thus, given a four point coe cient function hOOOOi, we should rst calculate the function

o(ai; ; i), €9.(A.57). Knowing g, we can evaluate the integral in eq.A.65) to obtain the

function S;. Eqg. (A.51) then gives us the three point coe cient function hOOOQOi, as desired.
Note that the expression above is a formal one. In particulay we know that the solution to

the Ward identities is not unique, with an ambiguity of the fo rm given by Sy, eq.(2.81). This

ambiguity should be related to an ambiguity in how to carry out the integrals in eq.(A.65).
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Appendices for Chapter 3

B.1 Transformation of perturbations under spatial reparam etriza-

tions

In this appendix, we would like to give some details about thetransformation properties of
the perturbations under spatial reparametrizations. We casider the perturbed line element
in the gauge eq.8.2),

ds? = dit?+ hy (t; x)dx'dx ; (B.1)
with
hj (g = a’(t) e [ + byl (B.2)
where
b =0: (B.3)

Consider now a spatial reparametrization of the form eq.8.7). The change inh; under this
transformation is

hij =rivi+rjv: (B.4)
Eq.(B.4) implies
gij:az—](-t) @v; + Qv i Va
= aZ—tt)h@ hjkvk + @ A% v, h?® @hp + @hip  @hy I (B.5)

gk @V + gk @V + V*@gj ;
where indices will now be raised and lowered by;; . Eq.(B.5) gives us
gi =20k @V + V' @ui: (B.6)
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Putting g; from eq.(B.2) in eq.(B.6) gives the change in under spatial reparametrizations,
eq.3.7), as
1 1
= §@Vi +Vvk@ + §@Vj bij ; (B.7)

which is the result quoted in eq.@.71). Once we have calculated , we can insert the full
gj in eq.(B.5) to get the change inb; as

2
bj = @+ @vi Z@ai + b @V~ + by @<+
, ) (B.8)
+ v @by :—%@va bjj é@vbbab( i + bj)

For simplicity, we call the terms in eqs.(B.7) and (B.8) which are proportional to the
perturbations as the homogeneous pieces of the transformiah, and the parts independent
of the perturbations as the inhomogeneous pieces of the traformation.

Having obtained eq.(B.7) and eq.(B.8), we can calculate the changes and b; for the spe-
ci c cases of scale transformations, eq3.36), special conformal transformations, €q.8.53),
and the compensating spatial reparametrization, €q.8.57). For scale transformations, the
change in and bj is given by eq.@.37) and eq.(3.38) respectively. Similarly, for the special
conformal transformations, the changes are given by ed354 and eq.(3.55, and for the
compensating spatial reparametrization, the changes aree(3.58 and eq.(3.59.

B.2 The scalar and tensor spectral tilts

As a simple check on the Ward identities, we consider here th&-point correlators. For
scalar perturbations, the scaling Ward identity in eq.(3.49 relates the 2-point expectation
value to the 3-point expectation value,

* @ 0. o
3+ o ka@—K h (k1) (k2)i*= mh (k1) (kz2) (k3)i oo (B.9)
The expression forh (k1) (k)i is
o 33 H2 1, 3n..
h (k1) (k2)i =(2 )° (k1 + k2) M2 4 ky =7, (B.10)
Pl

where ng is the scalar tilt. Thus, we get
n #
X2
Ka @

@k h (k1) (k2)i°=( 3+ ng)h (k1) ( ka)if (B.11)

a=1
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which on substituting back into the eq.(B.9) gives the well known Maldacena consistency
condition

Jm h(ka) (kz) (ka)i®=  nsh (k1) ( k1)i%h (k3) ( ka)i® (B.12)
By using the expression forh (k1) (k) (k3)i from [24], we get?
dm h (k) (k2) (ka)i®=(6 2 )h (k1) ( k1)i%h (k3) ( k3)i® (B.13)
Putting the limit from eq.( B.13) into eq.(B.12) gives the expression for the scalar tilt as
nsg =2 6 ; (B.14)

which is indeed the correct expression,Z4]. For a pedagogical discussion se&], 32.

Similarly, consider the tensor Ward identity in eq.(3.51), with n = 2. This has the form

X @

" gy L ths(k1)bse(kz) (ka)i®  : (B.15)

3t h (ka) ( Ka)i® oo

hbs(k1)bso(k2)i 0=

In writing eq.(B.15), we have introduced the two polarization tensors for the gaviton, €,

j
through the relation

X2
by (k) = eﬁ (k) bs(k): (B.16)
s=1

Now, the expression forhbs(k1)bso(k2)i has the form

, H?2
ibs(k1)bso(ka)i = (2 )% *(k1 + K2) g0y 77T (8.17)
Pl

where nt is the tensor tilt. By using the expression €q.B.17) in eq.(B.15), we get
klir'norbs(kl)bso(kz) (k3)i®=  nt ssohbs(ki)bs( ki)ith (k3) ( ka)i® (B.18)

We can calculate the limit on the left side of eq.B8.18) by using the expression for the
correlator hbs(k1)bso(k2) (k3)i from [24]. This gives

Jim_bs(ka)bso(ka) (ks)i%= 2 ssohb(ka)bs( ka)ith (ks) ( ks)i® (B.19)
Then by comparing eq.@B.18) and eq.(B.19), we get
nt = 2 (BZO)

which is the correct expression for the tensor tilt.

. . 00
1The slow roll parameter is given by = ¥
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B.3 The behaviour of perturbations in canonical slow roll

In this appendix, we provide some details of the analysis gien in section3.6.1 We follow [29]
for our calculations. Our gauge choice, eq3.2), is same as the synchronous gauge dfJ] (see
section 5.3 (B) ). The relevant equations are egs.(5.3.28)-(5.3.33) for star perturbations,
eq.(5.1.51) for vector perturbations, and eq.(5.1.53) fortensor perturbations.

The energy-momentum tensor for the in aton can be calculatel by varying the matter part
of the action (3.132 with respect to the metric. It is given by

1
T =g 30 )P+V() +g g @@ : (B.21)
This has the form of the energy-momentum tensor for a perfectuid,

T =( +P)uu +Pg ; (B.22)

with the energy density , pressureP, and the four-velocity u given by

= %(r )2+ V(); (B.23)

1 2
P= E(r )° V() (B.24)
u= [ ) g @: (B.25)

For our purpose, we specialize to the case of single eld slowoll in ation. We then have

- % 24 V() (B.26)
P = %—2 V(); (B.27)
uw=1;u =0; (B.28)

for the homogeneous background (t). By expanding egs.B.23)-(B.25) to linear order in
the perturbation , we get

= — _+Vq) ; (B.29)
P=—_ V) (B.30)
u=—; (B.31)

where u is de ned through u; @u + uiV, and uiV = 0 for single eld in ation. Also,
for single eld in ation, the anisotropic stresses in the perturbed energy-momentum tensor
vanish,

S=0: iV:o; g:o; (B.32)
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By using the eqs.B8.26)-(B.32) above in the eqgs.(5.3.28)-(5.3.33), eq.(5.1.51) and eé.(1.53)
of [29], we obtain the perturbed Einstein equations eqs.8.140-(3.146 given in section 3.6.1
for the scalar, vector and tensor perturbations, along with the equation of motion for the
background (t), eq.(3.134. Note that the perturbations G; in eq.(5.1.51) of P9] vanish
due to our gauge choice eq3.2).

We now provide some details for calculating the late time belviour of the perturbations.
To solve for the perturbation A, we consider eq.8.149. Inserting from eq.(3.142 into
eq.(3.149, we get an equation purely for the perturbation A,

#
+ m A=0: (B.33)

+
w
o |

By using the background eq.8.139 in eq.(B.33), we get
!

A 2 — A=0: (B.34)
The general solution to eq.8.34) is
Z t
A(t;x) = Py(x)+ Po(x)  dt®-2(19; (B.35)

where P1(x); P2(x) are two arbitrary functions of x. EQ.(B.35) on using the background
equation

H  — 2 (B.36)

dt

SIS
NI

becomes
A(t;x) = Pi(x) 2

o ||

P2(x);
which is the solution quoted in eq.@3.153.

Once we have obtained the solution forA, it is straight forward to obtain the solution for
the perturbation . From eq.(3.142 and eq.(3.153, it follows that

(tx)= ) Pax);

as given in eg.8.154. One can check explicitly that the solutions eq.3.153, eq.(3.159
satisfy the other equations, namely eq.8.150 and eq.(3.152.

The equation for the perturbation Ci, eq.(3.144), has the general solution
Ci(t;x) = @%Qi(x); (B.37)

which shows that the perturbation C; is frozen for non-zero momentum modes, which are
the ones of interest to us.
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Finally, we consider eq.@3.15)) for the tensor perturbations. The general solution is

Z, " Z . #
Djj (tx) = Dj (x)+ Kjj(x) dt%xp 3  dt® = (B.38)
which in the late time limit also gets frozen,
Dj (t;x) Djy(x)fort!1l (B.39)
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Appendices for Chapter 4

C.1 Correlation functions of for the P(X; ) models of in-
ation

In this appendix, to make the thesis self-contained, we presnt the results for the two, three
and four point functions of the curvature perturbation for the general single eld models
of in ation introduced in section 4.3. These results are taken from 33 134].

The two point function is given by

h (ki) (K2)i = (2 )° (ks + ko) 1y = o

H?2 1
= — C.1
ME cs 4k3 4y

The three point function to the leading order in the \slow var iation" parameter is given
by

X v
h(ke) (ko) (Ka)i =@ )2 ° ke o2 1

S —— A (C.2)
e M3, c2 2 e 2k3
where 1
Al Lo, 2 36K
c2 2K 3
C.3)
1 1 X 1 1% (
+ = 1 = k2k2 + = k2k3+ - k3 .
2 a™b 2 a™b a
Cs K a<b K a6éb 8a:1
with  and being de ned as
w2 2,3 .
=X P;XX + éx P;xxx X (C4)

1The term A can have subleading corrections which areO( ). For details, see [133].
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and
= XP.x +2X?%Pxx : (C.5)

Note that K = ki + k» + k3. Another important quantity which we will need later is

1 2
= EX zp;xx +2X3P;XXX + §X4P;XXXX : (06)

The four point function receives contributions from a contact interaction term, as well as
from an intermediate scalar exchange. The complete expreissm for the four point function
to the leading order is given by

h(ke) (k) (ka) (i =@ 1P % ke MO 2 Y 1o ey
1 2 3 4 - TR "2 a2 ey y .
o MBCE3 %G
where T is given by
2 2
T= Tm—% 1 Tt = 1 Ta
g2 3 1 (C.8)
+ = 2 T+ — E"'l Te2 + 2 1 Tes

Here, Ts1; Tso; Tsz are contributions coming from an intermediate scalar exchage, and are
given by

9

1
Ty = 5 k2?k3k2k3k12

(ky + ko + k12)3M 8

1 6M2 3M 1 .
—_ =+ 2T 4+ = +23Permutations:
M3 K5 K4 K3

. (C.9)

+ 2 KEKkBK3KkGkaa

1
(ky + ko + Ki12)3
kZk2k3 1
kiz (ki + ko + kq2)3

3 3
16 (ks k) Kiokik3 Gan(ksika) 2 (k1o Ka)

3
Ts2 = 35 (Ks Ka) ki2k?k3 F(ksika; M)

3
1_6(k12 Ka) F(ki2;ka; M)

21,212

Kikaks Gan(k12; ka)
K12

k2k3kZ
K12

(C.10)

3 3
16 (k1 k2)K12k3kZ Gpa(ki; ko) + 3 (k12 k2) Gpa( Ki2;k2)
+ 23 Permutations;
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1
Ts3 = —(kl K2)(ks ka)kiz F(Ki; ko ke + ko + Ki12) F(k3; ka; M)
+ —(kl k2)(K12 k4) F(kl,kz,k1+ Ko + K12) F (K12, k4, M)

k2k
(k12 k2)(k12 k4) 3 F (kyo; ko Ky + ko + ki2) F(ki2; ka; M)
k3,

+ a(kl k2)(ks Kka)kiz Gpu(Ka; Ko k3; Ka) (C.11)
1 k3
+ (k1 k2)(ki2 ki) Gpy(k1; k2;K12; ka)
32 k1o
1 k2
—(klz k2)(ks k4)—be( K12; K2; K3; Ka)
k2k3
—(klz k2)(ki2 k4) Gpp( Ki2;ko; ki2;kg) + 23 Permutations;
where we have used the notation
K = ki + ko + k3 + kg,
k1o = k1 + ko
12 | 1 - 2 (C.12)
K12 = jK12];
M = ks + kg + kqp:

Also, the functions F; Gap; Gpa and Gpp used in egs.C.10) and (C.11) above are de ned as

1
F(u;v;m) m2uv+(u+v)m+m2; (C.13)
1 2
Gan(u; V) 33 2uv+(u+ vM + M
(C.14)
3 12
+ 2uv+(u+ vM + uv;
M 2K 4 M K>
1
Gpa(u; v + u+ v+ M
ba( ) M 3K M3K“2( )
2
+W2uv+2(u+v)M+M +M2K“4 2uv +(u+ v)M (C.15)
12
MKS5
Gp(U; V; X; 2Xy + (X + Y)M + M ?
bi V) e 29 H(x*y)
1
+M3K“2 y(u+ V) + 2y +(u+ V) (X+y) M +(u+ v+ x+yM?2
2
_c C.16
VErS 2uvxy + 2xy(u+ v)+ uv(x +y) M (C.16)
+(uv+ ux + uy + vx + vy + xy)M 2
6 1 1 1 1
+ uvxy 2+ M —+ —+ —+ — + uvxy:
M 2K 4 u v X Yy M K>
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Also, Te1; Teo; Tez in €q.(C.8) are contributions coming from the four point contact inter ac-
tion, and are given by

k2k2k2k2
Ta =36 1234 éf 4, (C.17)
2 +
T,= 1K Koks ka) |, B(s+ka)  12ks g Permutations; (C.18)
8 K3 K K2
and
P W
T = 1 (k1 k2)(ks Ka) 14 _ash KaKp . Skakoksks 1
Y 2 3 K,
32 K K kK3 . ka (©.19)
+ M + 23 Permutations:

K’4

C.2 Calculating the Euclidean AdS on-shell action

In this appendix, we provide some details for calculating tre EAdS on-shell action to
determine the unknown coe cient hOOOi.

C.2.1 The longitudinal graviton contribution

We rst compute the contribution to the EAdS on-shell action coming from the longitudinal
part of the exchanged graviton, which we have denoted by ; see eq4.55. For the purpose
of calculations, it will be convenient to expressR1; R2; R3 given in eq.(4.56) in momentum
space. We get

dz d3k
Rl: 22 (2 )3 TZ]( ; k) TZ] (Z k)
i
i dz d3k
Re= 3 T 2pkTal@ Wiz S Toa(@K); (C.20)
17 dz d%
Rs= 3 zpphiTa@ k)@kiTzi(z;k);

Now, to compute the remainder terms, we need to nd the quantties T;j (z; k) and T,,(z;k),
with the energy-momentum tensor given in eq.4.45. Note that to get the coe cient
hOOOQOi, out of the two factors of T in each of the remainder terms, one must give a
contribution proportional to , and the other must give a contribution proportional to

; see gure 4.3 Consider rst the case when the energy-momentum tensor canibutes
a factor of . For this case

T;(zx)= @ @ ; (C.21)

122



Appendices for Chapter 4

which on substituting the expression for  from eq.(4.51) and converting to momentum
space gives®

Ti(zk)= iz ) 3p+qg k) op) o) p’g (1+ gze P*I7Z (C.22)

where p; g are the momentum labels carried by the two external legs. Similarly, we also
have

Tozx)= 3 (@ ) (@ ) : €23

which in momentum space takes the form

TozK)= 52 %P+ a k) ofp) o(@)

P’ ?z?+(p q)(1+ p2)(1+ q2) e (Proz

(C.24)

Consider now the case when the energy-momentum tensor coiithutes one factor of and
one factor of . For this case, we have

T;(zx)= @ @ (C.25)
which in momentum space is given by
T(zK) =12 ) %p K@ op)p+pe P (C.26)

where p is the momentum carried by the external leg . We also have®

2
Tzx)= @@ AV ) c27)
implying that
2
Ta@k= )% k) #2@ + XSV )+ p2) ofp)e P (C28)

We can now jump into the computation of the remainder terms. Consider for instance the
s-channel process shown in guret.3. The contribution from this process to R, de ned in

*For given in eq.(4.51), we have
@ «(zx)= Kz o(kle “e"*;
@ (@)= ki ok)(i+ ke e

*We use the notation VY ) dV( )=d . Also note that we have an additional factor of R 3,5 multiplying
the VO ) term in eq. (C.27) as compared to eq.@.45). It is because in writing the EAdS on-shell action
eq.(4.52), we extracted out an overall factor of R 45 .
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eq.(C.20), is

dz d3k

20y iz(2 )% 3(ky + ko + k) o(k1) o(ka)

n (0}
e (Kirka)z 2k, (1 + koz) + kZkgj (1 + ki2) (C.29)
1.
2 i(2)°3%ks k)@ o(ks) kg (L+ ksz)e *% ;

which on simpli cation yields

RS = 2—_(2)33X3k Y (k)i
1 H a Oak2

7 a=1 a=1 3
1dz Kz : 2 2 0
—2© ki(k2 k3)+ ky(k1 ksz) (C.30)
n (0]
+ 7 kP(ky ka)(ko+ ka)+ kZ(k1 ka)(ki+ ka)

n )
+ 22 kfkoks(ky k3)+ kikiks(ki k3)

where we have used the fact that under the analytic continuaton given in eq.@.37), z@
goes over to =H , and since we are working to the leading order in slow roll, wecan
consider this factor to be a constant and pull it out of the z-integral. Eq.(C.30) gives

_ X3 B 1
Riz ZH(Z )3 3 Ka o(Ka) K2
" a=1 a=1 3
1n 5 ) (0]
e kZkoks(ks ka)+ kfkika(ky k3)
7 (C.31)
n (0] 1 dz
+ kZ(ka ka)(ko+ ka)+ kZ(k1 ka)(ki + k3) —e X
n o £ # 0

2 2 Ldz
+ kl(kz k3)+ kz(kl k3) ?e
0

Now, the remaining two integrals in eq.(C.31) are divergent. Let us replace the lower limit
of the remaining integrals by , where ! 0. Then

1
d
Loz gx (C.32)

and z
K K OK : (C.33)
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Using the results of eqs.C.32) and (C.33) in eq.(C.31), we get

RS = 2—_(2)33X3k ¥ o(k)i
1 H a a k32

" a=1 a=1
1n 5 5 (0]
< kikoks(kz k3)+ kykiks(ki ks)
(C.34)
1 n (0]
K+ K 0K = kP(ky ka)+ kZ(ky ka)
n 0#

+ OK  k&(ka ks)(ko+ k) + kZ(k1 kz)(ky+ ka)

This is our nal answer for R3. From gure 4.3 it is clear that the t and u channel
contributions to R can be easily obtained fromR$ by performing momentum interchanges.
In particular,

R} = Ri(k2 $ ka); (C.39)

and
RY = R3(k1 $ kgz): (C.36)

The complete expression foR 1 is then

R;= RS+ R} + RY: (C.37)

get*

33 X3 B 1
2) Ka o(ka) +
k
a=1 a=1 3

0

k

=ro

kokZ(kz k3)+ kikZk2(ki k3) kikok$(ky ka)  kZkZk$

kZk$(ko ka)+ kZkZ(ky k3) kikok$(ki kz) kZkZkZ
(0]
k$(ky ka)(ki+ ko) 3kZkoka(kz k3) 3kikZks(ky ks)
2 1 1 : 2 2 °
+ ki K = (k1 kp)+3 K+K 0K —  Kki(kz2 kz)+ ky(k1 ks)

#
n 0

3 0K  kf(kz ks)(ka+ ka)+ kZ(k1 kz)(k1+ ka)
(C.38)

As before, we have
Ry = R3(kz2$ k3); RS = R3(k1 $ ks); (C.39)

*In calculating R, we have used the slow roll approximation VY ) 3H =
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and the complete expression is

R,= R+ RL+ RY: (C.40)
Finally, evaluating Rz, we nd that

R3 = -Rq: (C.41)

Combining the expressions forR 1; R> and R 3, we get an expression foR, eq.(4.55), given
by

1 — s 3 x3 v
R = EH(Z ) Ka o(ka)
a=1 a=1
" # (C.42)
l)@ 3 lX 2 4 X 21,2 1 )@ 2 .
5 kit s kakir o kI o Kk
a=1 aéb a<b a=1

The cut-o dependent term in eq.(C.42) has to be removed by the addition of a suitable
local counter-term. The nal expression for the remainder term is then given by eq.4.57).

C.2.2 The transverse graviton contribution

We now proceed to calculate the contribution to the EAdS on-#ell action coming from the
transverse part of the exchanged graviton. This contribution is denoted byW, and is de ned
in eq.(4.54). Out of the two Tj terms in W, one must contribute a piece proportional to

, and the other must contribute a piece proportional to @ . Using the expression
eq.(4.45 for the energy-momentum tensor, we get

2
TiE= @@ + V() (c43)

The key point to note in eq.(C.43) is that T; is proportional to j . Thus, while calculating
W, the contraction of Tj; with the transverse graviton propagator G gives the traceG;y ,
which vanishes. Therefore, there is no contribution from tre transverse graviton exchange
to the EAdS on-shell action, i.e.

W =0: (C.44)

Therefore, the only contribution to the EAdS on-shell action comes from the longitudinal
part of the exchanged graviton, eq.4.57).
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