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Synopsis

Introduction

The Standard Model (SM) of strong and electroweak interactions, despite its great success in

explaining experimental data, is known to have many shortcomings as a final theory, and it

is widely expected that discovery of New Physics (NP) beyond the SM is around the corner.

However, we do not have a clear idea where the NP may be expected to show up. It is,

therefore, necessary at this stage to investigate all possibilities in order to be prepared if

and/or when the NP is actually found. This thesis investigates some signals which are not

expected in the SM, but are predicted in NP models. Most of these signals are small effects

which require more running of the LHC and similar machines before an observable effect can

be expected.

This synopsis of the thesis work is organised as follows.

1. Flavour Changing Neutral Current (FCNC) Decays of the Top Quark, as a probe of NP

in high energy collider machines;

2. A closer look at the deviations from the SM predictions in the measured values of RD

and RD∗ , and their possible explanations in a model-independent fashion;

3. Predictions for LHC searches for an sbottom LSP in a model with R-parity-violating

supersymmetry (SUSY);

4. Investigating the sgoldstino as a possible candidate for the (now defunct) diphoton

excess reported at the LHC in December 2015, showing that it was unlikely to have

been a correct explanation.

The thesis will be organised to contain a brief review of the motivation and major ideas for

NP, and then to elaborate on the above ideas in the successive chapters.



FCNC Decays of the Top Quark

The top quark is the heaviest fundamental particle discovered and, unlike other quarks in the

SM, it decays before hadronising. Since low energy QCD effects can be neglected for the top

quark to a high degree of accuracy, the decay is essentially an electroweak process.

The top quark decays into a b-quark and a W -boson most of the time, but very rarely also

decays into an up-type quark, like a c or a u-quark, associated with a neutral boson like a

Z or a Higgs boson. These rare decay modes have very small SM branching ratios (BRs)

(∼ 10−15) and are far beyond the detection capabilities of the LHC, which can optimistically

probe a maximum BR of 10−5. We can study the different methods of suppression because

of which the BR in the SM is so small; conversely, we can think about a scenario by which

the BR can be enhanced. An enhanced BR can be detected at the LHC easily because the

tiny SM BR won’t affect the signal.

In Ref. [1], we discuss the different mechanisms of suppression that lead to the tiny branching

ratios of these FCNC processes. They are:

• The Glashow–Iliopoulos–Maiani (GIM) suppression in these decays

• The Minimal Flavour Violation (MFV) framework which leads to a hierarchy of the

values of the CKM matrix elements

• The smallness of the weak coupling constant

Toy Model:

In order to study the effects of these modes of suppression in detail, we consider a toy model

where, apart from the quarks and the Higgs (H), there is a flavour changing charged scalar

field denoted by ω. The interaction Lagrangian is given by:

Lint = ξω+ω−H +
3∑

i,j=1

(
ηVij ūiLdjRω

+ + h.c.
)

(0.0.1)

where the parameter ξ controls the strength of the coupling between ω and the Higgs.

A similar Lagrangian can be written down for a theory with a Z boson, instead of the Higgs.

This is a theoretical laboratory for studying the effects of relaxing each mode of suppression,

one at a time.

The effects on the amplitude can be summarised as follows:

• GIM Mechanism: The unitarity of the CKM matrix leads to this mode of suppression

[30]. The matrix element for a process in which one quark q changes to another quark

q′ of the same charge can be written as

Mqq′ =

3∑
i=1

V ∗qiVq′iA (xi,MW ) =

3∑
i=1

λiA (xi,MW ) (0.0.2)



where xi = m2
i /M

2
W carries the generation information, MW is the scale of the charged

current interaction and λi = V ∗qiVq′i is the CKM factor. This can be expanded as

A(xi,MW ) = A0(MW ) + xiA
′
i(MW ) +

1

2
x2
iA
′′
i (MW ) + · (0.0.3)

Now, putting this back in Eqn. 0.0.2 and using the fact that
∑

i λi = 0, due to the

unitarity of the CKM matrix, it can be seen that the dominant term is actually not

proportional to A0, but to xiA
′
i. This gives us a suppression of xi in the amplitude. For

the top to charm decay, xi ∼ xb ∼ m2
b/M

2
W ∼ 10−3, leading to a suppression of ∼ 10−6

in the decay width.

• The MFV framework [3] means that the CKM matrix has a strong hierarchy in the

values of its elements as we proceed from the diagonal to the off-diagonal elements. In

our case of a top decay to a charm, the dominant CKM factor involved is V ∗tbVcb ∼ 0.04.

An alternative prescription, which preserves unitarity but doesn’t have the hierarchy

seen here, can be constructed. For example, we might have

V =

 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (0.0.4)

The dominant CKM element here is λ3 = sin θ cos θ = 1
2 sin 2θ, which can take up a

maximum value of 0.5, as opposed to the 0.04 in the previous case.

• Finally, the weak coupling constant is rather small in magnitude and we can think upon

a new physics model which can have large couplings. As these values are restricted by

the requirements of perturbation theory, we can get a modest enhancement of ∼ 7.

The effect on the amplitude is summarised in Fig. 1.
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Figure 1: The absolute value of the two helicity amplitudes and how the relaxation of the different suppression

factors enhances the amplitude. The subscript of M, plotted on the y-axis, denotes the helicity of the charm

and the top.

The overall enhancement in the amplitude is then 103 × 25× 7 ∼ 1.75× 105 and thus, in the

branching ratio, it is a factor of ∼ 3× 1010.



In different models:

Standard Model:

The SM BR, which is subject to all these suppression mechanisms, is calculated to be 5×10−15.

If all the three suppression mechanisms can be invalidated, one can hope to reach a BR of

10−5.

cMSSM:

In the constrained Minimal SuperSymmetric Model (cMSSM) (see in review [167]), given

by the four parameters - m1/2, m0, A0 and tanβ – apart from sgn µ, there exist charged

Higgs bosons which naturally violate the GIM mechanism. However, the four parameters are

constrained by various experimental inputs, most notably the Higgs boson mass. The effect of

various constraints can be seen in the left panel of Fig. 2. The effect of these constraints is to

raise the mass of the charged Higgs bosons in the theory, which is instrumental in suppressing

the amplitude significantly. Thus, any enhancement gained by GIM-breaking is offset by the

heavy charged Higgs in the theory. Furthermore, the cMSSM does not go beyond the MFV

framework and the enhancement due to the coupling is also not very large. Overall, the

cMSSM enhancement doesn’t exceed ∼ 104, leading to branching ratio ∼ 10−11 at best. This

is illustrated in the right panel of Fig. 2.
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Figure 2: The cMSSM parameter space spanned by m1/2-m0. The black points are excluded from theoretical

considerations, like unstable vacuum, tachyonic states etc. The blue points are excluded by the Higgs mass

constraint, while the red points are excluded from flavour constraints. The plot on the right is the branching

ratio for these points, where the colours are the same, except that the white (allowed) points on the left

correspond to the black points on the right.

RPV SUSY:

SUSY models which break R-parity [318] are particularly interesting in this context for several

reasons: firstly, there is no unitary CKM-like mixing matrix, thus there is no GIM suppression;

secondly, there is no MFV framework to subscribe to either, and thus there is no off-diagonal
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Figure 3: Illustrating the variation in the branching ratios B(t→ c+h0) (upper panels) and B(t→ c+Z0)

(lower panels) with increase in the sfermion masses. For the panels on the left, which show branching ratios

proportional to (λi2kλi3k)2 with the values of ik marked next to each curve, the mass of the slepton eLi is

plotted along the abscissa, and the mass of the squark d̃Rk is responsible for the thickness of the lines in the

upper panel and the hatched region in the lower panel. For the panels on the right, which show branching

ratios proportional to (λ2jkλ3jk)2 with the values of jk marked next to each curve, the mass of the squark

d̃Rk is plotted along the abscissa. The dark (light) grey shaded regions represent the experimental bounds

(discovery limits) from the LHC, operating at 7− 8 TeV (13 TeV, projected)

hierarchy; thirdly, several of the R-parity violating couplings can be rather large, as most

low-energy constraints are invalidated by the large values to which the sfermion masses have

been pushed up by LHC data. As a result, all three of the SM suppression mechanisms are

violated and we may expect full enhancement of the BR as explained above.

The RPV superpotential is given as:

Ŵ 6Rp =
3∑

i,j,k=1

(
1

2
λijkL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k + λ′′ijkÛ

c
i D̂

c
jD̂

c
k

)
(0.0.5)

where a hat (̂) represents a superfield. L̂ and Q̂ are SU(2) doublet superfields, while Ê, Û and

D̂ are singlets. The LQD term (second term) and the UDD term (third term) on the right

are relevant to the analysis. The LQD term violates lepton number (L) and the UDD term

violates baryon number (B). We can only consider one set of couplings at a time, but not

both together, since that would lead to rapid proton decay. We carried out a thorough update



of the RPV couplings applicable to our case and found that the most promising products were

of the form λ′i2kλ
′
i3k or λ′′2jkλ

′′
3jk with each of i, j, k running over 1, 2, 3

As shown in Fig. 3, the results are rather encouraging for the t → cZ decays, where the

projected experimental limits would actually constrain the model.

The most important feature of this work is that it provides a clear rule of thumb for deter-

mining if any NP model can provide observable signals.

Single top production:

An extension of this analysis which we feel to be worthwhile is studying the production of

single top quarks in an e+e− collider. In the SM, this occurs purely at the one-loop level,

and though the contributing Feynman diagrams would include a box diagram in addition to

triangle diagrams, the suppression factors (as explained above) would all be very strong. In the

context of RPV-SUSY, where these suppression factors are evaded, we find that the largest

contributions to this will come from tree-level diagrams containing the products λ′13kλ
′
1jk,

where j = 1, 2 and k = 1, 2, 3. These have been studied in the Ref. [6]. However, there exist

several other products where the contribution is only at the one-loop level (triangle as well

as box diagrams) and here the fact that RPV model evade all the suppression factors may, in

fact, lead to observable signals or extended discovery limits, as the case may be.

The theoretical calculations for this analysis have been completed, and the numerical com-

putations are under way.

A Closer look at RD and RD∗

Flavour changing processes via charged currents have been widely studied, especially in the b

quark sector. B-meson factories have diligently built up a huge repository of measurements

of the different quantities related to the decay and this is a sector where the SM has been very

stringently tested. One of the interesting processes measured is the decay of the B-meson to

a D-meson and a lepton-neutrino pair. Two channels have been studied in this regard - the

B → D decay and the B → D∗ decay. Theoretical calculations of branching ratios for these

processes with different leptons in the final state are fraught with uncertainties arising from

errors in the different quantities involved in the decay, like the CKM matrix element Vcb. A

ratio of the branching ratios is more useful as such quantities simply cancel and provides us

with a cleaner observable. Two such quantities are RD and RD∗ , defined as follows:

RD(∗) =
B(B → D(∗)τ ν̄τ )

B(B → D(∗)lν̄l)
(0.0.6)

where l = e, µ. However, when experimental measurements of these two quantities, viz. RD =

0.397 ± 0.028 and RD∗ = 0.316 ± 0.019 [358] are compared with the theoretical predictions

from the Standard Model (SM), RD = 0.300 ± 0.011 and RD∗ = 0.254 ± 0.004, we find

deviations of 1.9σ and 3.3σ for RD and RD∗ respectively. The combined discrepancy for the

two is quite large ∼ 4σ. We consider the exciting possibility that this might be a signal for



new physics1 and we perform a model-independent analysis of the process using all relevant

six-dimensional operators in [8].

Apart from RD and RD∗ per se, the other observables of interest are the binned values of RD

and RD∗ , the polarisation, PDτ and PD
∗

τ , of the final state τ lepton and the forward-backward

asymmetry in the two processes, ADFB and AD∗FB. The definitions of all the observables are

given below:

IntegratedRD(∗) : RD(∗) =
B(B → D(∗)τ ν̄τ )

B(B → D(∗)lν̄l)
(0.0.7)

Binned RD(∗) : RD(∗) [q2 bin] =
B(B → D(∗)τ ν̄τ )[q2 bin]

B(B → D(∗)lν̄l)[q2 bin]
(0.0.8)

Tau Polarisation : PD
(∗)

τ =
ΓD

(∗)
τ (+)− ΓD

(∗)
τ (−)

ΓD
(∗)

τ (+) + ΓD
(∗)

τ (−)
(0.0.9)

FB Asymmetry : AD(∗)
FB =

∫ π/2
0 dθ dΓD

(∗)
τ
dθ −

∫ π
π/2 dθ

dΓD
(∗)

τ
dθ∫ π/2

0 dθ dΓD
(∗)

τ
dθ +

∫ π
π/2 dθ

dΓD
(∗)

τ
dθ

(0.0.10)

The branching ratio B(B → D(∗)`ν̄`) ≡ BD
(∗)

` can be written as

d2BD(∗)
`

dq2d(cos θ)
= N|pD(∗) |

(
aD

(∗)
` + bD

(∗)
` cos θ + cD

(∗)
` cos2 θ

)
(0.0.11)

BD(∗)
` =

∫
dq2N|pD(∗) |

(
2aD

(∗)
` +

2

3
cD

(∗)
`

)
(0.0.12)

where

N =
τB G

2
F |Vcb|2q2

256π3M2
B

(
1− m2

`

q2

)2

and |pD(∗) | =

√
λ(M2

B,M
2
D(∗) , q

2)

2MB

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca) and θ is the angle between the lepton and

D(∗)-meson in the lepton-neutrino centre-of-mass frame. While a recent measurement of PD
∗

τ

has been reported by Belle for the first time (although with large errors) [275], none of the

other quantities have been experimentally measured as yet.

The decay amplitude for the process can be factorised into two parts – the hadronic part and

the leptonic part. The hadronic part of the decay amplitude cannot be calculated exactly

and is parametrised using form factors. These form factors are calculated in some theoretical

and numerical framework and, in this work, we choose to simply borrow those results already

available in the literature.

The Operator Basis:

The effective six-dimensional operators for b → c ` ν̄` used for the analysis respect the SM

gauge symmetry. This restricts the set of relevant operators to

1It is worth noting that a recent measurement the Belle collaboration [275] of RD∗ = 0.276± 0.034+0.029
−0.026

is consistent with the SM value. However, the error bars are quite large compared to the other results.



Ocb`V L = [c̄ γµ b][¯̀γµ PL ν]

Ocb`AL = [c̄ γµ γ5 b][¯̀γµ PL ν]

Ocb`SL = [c̄ b][¯̀PL ν]

Ocb`PL = [c̄ γ5 b][[¯̀PL ν]

Ocb`TL = [c̄ σµν b][¯̀σµν PL ν]

(0.0.13)

The set of Wilson Coefficients (WCs), denoted by Ccb`V L etc., corresponding to these operators,

are defined at the renormalization scale µ = mb. Note that in the SM, Ccb`V L = −Ccb`AL = 1 and

all others are zero. Any NP model would predict deviation from these values. In the initial

analysis, we neglect the tensorial contributions since it is difficult to build a microscopic model

with such interactions. (For the study of tensor operators in this case, refer to the Appendix

of Ref. [8]).

Form Factors:

• For B → D decay: The non-zero hadronic matrix elements for B̄ → D transition are

parametrised as

〈D(pD,MD)|c̄γµb|B̄(pB,MB)〉 = F+(q2)
[
(pB + pD)µ − M2

B −M2
D

q2
qµ
]

+ F0(q2)
M2
B −M2

D

q2
qµ

〈D(pD,MD)|c̄b|B̄(pB,MB)〉 = F0(q2)
M2
B −M2

D

mb −mc
(0.0.14)

〈D(pD,MD)|c̄σµνb|B̄(pB,MB)〉 = −i(pµBpνD − pνBp
µ
D)

2FT (q2)

MB +MD

〈D(pD,MD)|c̄σµνγ5b|B̄(pB,MB)〉 = εµνρσpBρpDσ
2FT (q2)

MB +MD

Numerical values for the form factors F0(q2) and F+(q2) have been computed in a lattice

framework [314]. The axial vector and the pseudoscalar matrix elements are zero from

symmetry considerations and thus only the WCs CτV L and CτSL contribute to this decay.

• For B → D∗ decay: The non-zero hadronic matrix elements for B̄ → D∗ transition are



parametrised as

〈D∗(pD∗ ,MD∗)|c̄γµb|B̄(pB,MB)〉 = iεµνρσε
ν∗pρBp

σ
D∗

2V (q2)

MB +MD∗

〈D∗(pD∗ ,MD∗)|c̄γµγ5b|B̄(pB,MB)〉 = 2MD∗
ε∗.q

q2
qµA0(q2)

+(MB +MD∗)
[
ε∗µ −

ε∗.q

q2
qµ

]
A1(q2)

− ε∗.q

MB +MD∗

[
(pB + pD∗)µ −

M2
B −M2

D∗

q2
qµ

]
A2(q2)

〈D∗(pD∗ ,MD∗)|c̄γ5b|B̄(pB,MB)〉 = −ε∗.q 2MD∗

mb +mc
A0(q2) (0.0.15)

〈D∗(pD∗ ,MD∗)|c̄σµνb|B̄(pB,MB)〉 = −εµναβ
[
− εα∗(pD∗ + pB)βT1(q2)

+
M2
B −M2

D∗

q2
ε∗αqβ

(
T1(q2)− T2(q2)

)
+2

ε∗.q

q2
pαBp

β
D∗

(
T1(q2)− T2(q2)− q2

M2
B −M2

D∗
T3(q2)

)]
〈D∗(pD∗ ,MD∗)|c̄σµνqνb|B̄(pB,MB)〉 = −2εµνρσε

∗νpρBp
σ
D∗T1(q2)

While no lattice calculation exists at the present for the form factors in this case, these

have been calculated in a Heavy Quark Effective Theory (HQET) framework [313].

In this case, symmetry dictates that the scalar current is zero and thus there is no

contribution to the decay width from CτSL.

It is important to note that the two processes depend on different sets of WCs: while CτV L
and CτSL contribute to the B → D decay process, CτV L, CτAL and CτPL contribute B → D∗.

This leads us to postulate that RD and RD∗ are theoretically independent measurements and

allow for separate explanations.

Explaining RD Alone:

The quantities aD` , bD` and cD` (in Eqn. 0.0.11) can be calculated for a particular helicity of

the final state lepton using the helicity amplitude approach. Since only CτV L and CτSL are

relevant, we can separately plot RD as a variation of the two WCs and note the range of values

for which it satisfies the experimental constraints. In this analysis, one of them is varied, the

other is held constant at its SM value. The results are given in Table 1 and plotted in Fig.

4, where the red (brown) band corresponds to the 1σ (2σ) uncertainty on the experimental

measurement.

Explaining RD∗ Alone:

We can carry out a similar treatment for the case of B → D∗ decay. In this case, three WCs

- CτV L, CτAL and CτPL - contribute. The plots of RD∗ as a function of the different WCs are

given in Fig. 5. As before, the 1σ (2σ) bands are indicated by the red (brown) bands.

In Table 2, the prediction for the binned RD∗ is given, as are those for PD
∗

τ and AD∗FB. Except

for an imprecise measurement of PD
∗

τ , no measurement for any of the other quantities exists.
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Figure 4: The dependence of RD with respect to the variation of the WCs CτV L (left) and CτSL (right).

SM
CVL CSL

(CSL = 0) (CVL = 1)

1σ range of the WC [1.073, 1.222]
[−0.656, −0.342]

[0.296, 0.596]

Pτ (D) [0.313, 0.336] [0.313, 0.336] [0.408, 0.556]

ADFB [−0.361, −0.358] [−0.361, −0.358]
[−0.168, −0.022]

[−0.450, −0.428]

RD [bin]

[m2
τ − 5] GeV2 [0.154, 0.158] [0.178, 0.236] [0.161, 0.181]

[5− 7] GeV2 [0.578, 0.593] [0.665, 0.888] [0.626, 0.752]

[7− 9] GeV2 [0.980, 1.003] [1.127, 1.505] [1.125, 1.502]

[9− (MB −MD)2] GeV2 [1.776, 1.823] [2.049, 2.741] [2.294, 3.669]

Table 1: The values of the WCs consistent with the 1σ experimental range for RD are shown in the second

row. The subsequent rows show the predictions for Pτ (D), ADFB and RD in four q2 bins for the WC ranges

shown in the second row.
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Figure 5: The dependence of RD∗ with respect to the variation of the WCs CτV L (left), CτAL (middle) and

CτPL (right). A thin vertical line shows the SM values of the WCs.



SM
CVL CAL CPL

CAL,PL = −1, 0 CVL,PL = 1, 0 CVL,AL = 1,−1

Range in WC [1.856, 2.569] [−1.149, −1.073] [0.890, 1.583]

Pτ (D∗) [−0.505, −0.490] [−0.530, −0.509] [−0.505, −0.488] [−0.322, −0.144]

AD∗FB [0.050, 0.078] [0.191, 0.297] [0.028, 0.062] [−0.078, −0.007]

RD∗

[m2
τ − 5] GeV2 [0.103, 0.105] [0.120, 0.140] [0.116, 0.132] [0.124, 0.148]

[5− 7] GeV2 [0.331, 0.336] [0.387, 0.457] [0.373, 0.425] [0.390, 0.465]

[bin] [7− 9] GeV2 [0.475, 0.479] [0.535, 0.613] [0.535, 0.613] [0.534, 0.610]

[9− (MB −MD∗)
2] GeV2 [0.554, 0.556] [0.577, 0.619] [0.621, 0.710] [0.571, 0.611]

Table 2: The values of the WCs consistent with the 1σ experimental range for R∗D are shown in the second

row. We only show the ranges that are closest to the SM values of the WCs. The subsequent rows show the

predictions for Pτ (D∗), AD
∗

FB and RD∗ in four q2 bins for the WC ranges shown in the second row.
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Figure 6: The predictions for PD
∗

τ , RD∗ in the last bin and AD
∗

FB are shown in three different planes for the

ranges of the three WCs CτV L, CτAL and CτPL.

and AD∗FB to construct three planes. When plotted in these three planes, the regions of the

allowed values of the WCs all separate out nicely as shown in Fig. 6. A future measurement

of any two of these three observables would help in restricting us to a particular region, thus

limiting the scope of any NP model.

We have thus set up a framework in which any NP model can be studied vis-a-vis its predic-

tions for B → D`ν` and B → D∗`ν`, and the results compared directly with the experimental

measurements.



Collider search for sbottom LSP in a SUSY model with bary-

onic R-parity violation

While the majority of SUSY search analyses assume the conservation of the adhoc Z2 symme-

try called R-parity, defined as R = (−1)3B+L+2S with B, L and S being the baryon number,

lepton number and spin of the particle respectively, it is also possible for the symmetry to

be violated (see section 2). Conservation of R-parity implies that SUSY particles will be pair

produced and heavy SUSY particles will decay into an odd number of lighter SUSY particles.

Violation of R-parity allows SUSY particles to decay to a pair of SM fermions. This leads

to a radical difference in the final state signatures - while the R-parity conserving scenario

typically leads to large missing transverse energy (E/T) in the final state, an R-parity violating

(RPV) scenario might produce final states with very little E/T. This departure also permits

us to evade some of the most stringent bounds from direct searches, which are generally made

assuming the conservation of R-parity.

In Ref. [12], we perform a collider analysis of the lighter SUSY partner of the bottom quark,

the sbottom – which also happens to be the Lightest Supersymmetric Particle (LSP) in

our chosen spectrum – decaying to a top quark and a light d-type quark through baryon

number violating couplings. The final states with either the top quark decaying leptonically

or hadronically can be :

• 2``′ + bb̄+ jets + E/T (`, `′ = e, µ);

• 1`+ bb̄+ jets + E/T;

• 0`+ bb̄+ jets + E/T

The RPV superpotential is given in Eqn. (0.0.5) and we need to choose only the baryon-

number violating terms, viz. the UDD terms with λ′′ couplings. The Lagrangian is given

by:

LUDD = −1

2
λ′′ijk

(
ũ?iRdjRd

c
kL + d̃?kRuiRd

c
jL + d̃?jRuiRd

c
kL

)
(0.0.16)

For the decay of the sbottom, to a top quark and a d-type quark, only certain λ′′ijk need to be

non-zero. For example, one of j, k must be 3 and i = 3 because there needs to be a t-quark in

the final state. Thus, we can have either λ′′313 (giving b̃1 → t+ d) or λ′′323 (giving b̃1 → t+ s).

We shall only consider one of these two couplings to be non-zero so as to avoid the problem

of large FCNCs.

The relevant dominant background processes which provide similar final state signatures are

tt̄+ jets (upto 2), tt̄bb̄, tt̄Z, tt̄W and tt̄H. For the case with hadronic final states, the QCD

multijet background becomes the most dominant background.

We have used MADGRAPH [359] to generate the different sets of signal and background events at

the partonic level. It is interfaced with PYTHIA8 [14] for parton showering and hadronisation.

The events are then passed through DELPHES [362] in order to simulate the detector response.

The signals events are samples of sbottom pairs of different masses. We set 6 benchmark



points BP-1 to BP-6, with BP-1 at mb̃ = 500 GeV and each benchmark point being an

increment of 100 GeV over the previous one, finally ending up at mb̃ = 1 TeV for BP-6.

Leptonic Final State:

For the leptonic final state, we perform a cut-based analysis and then follow it up with a

multivariate analysis, implemented through the Toolkit for Multivariate Analysis (TMVA)

using the ROOT framework [16].

Cut-based Analysis:

For the cut-based analysis, we demand the following:

• C1 : At least one lepton in the final state

• C2 : More than four jets in the final state

• C3 : Leading non b-tagged jet having pT > 250 GeV in the final state

• C4 : Second leading non b-tagged jet in the final state having pT > 150 GeV

• C5 : A large value for the scalar pT sum of all visible particles (HT ). Demand that

HT > 1000 GeV, where

HT =
∑

i=e,µ,j,γ

|~pT (i)| . (0.0.17)

• C6 : The value of MT2 > 360 GeV, which is defined as [17]

MT2

(
~pV 1
T , ~pV 2

T ,p/T

)
= min

/~p1T+/~p2T=/~pT

[
max

{
MT

(
~pV 1
T , /~p1

T

)
,MT

(
~pV 2
T , /~p2

T

)}]
(0.0.18)

where, /~p1
T and /~p2

T are two hypothetical subdivisions of the total missing transverse

momentum, p/T. In general, the transverse mass MT (~p1, /~p2) of the (~p1, /~p2) system is

defined as

MT (~p1, /~p2) =
√
m2

1 + 2 |~p1| |/~p2| (1− cosφ) (0.0.19)

where p2
1 = m2

1, the invisible particle is assumed to be massless and φ is the azimuthal

angle between the ~p1 and /~p2 vectors.

The result of the cut-based analysis is given in Table 3. The significance is calculated for a

particular luminosity (L) by the following formula:

SL =
σSL√

σSL+ σBL
(0.0.20)

where σS(B) is the surviving cross-section for the signal (background) after the cut-flow.

Multivariate Analysis:

We performed the multivariate analysis using Toolkit for Multivariate Analysis (TMVA)

implemented in the ROOT framework. The variables we use to carry out the analysis are:

(pT )j1, (pT )j2, (pT )j3, (pT )j4,(pT )bj1, (pT )bj2, HT , E/T, nJets and MT2



Cuts tt̄+ jets tt̄bb̄ tt̄Z tt̄H tt̄W BP1 BP2 BP3 BP4 BP5 BP6

(500) (600) (700) (800) (900) (1000)

Initial 8.32× 105 1.72× 104 874 509 645 519 175 67.0 28.3 12.9 6.15

After cuts: 757 13.9 5.48 1.61 1.93 17.43 10.85 5.62 2.73 1.29 0.575

S@300fb−1 10.7 6.68 3.47 1.69 0.80 0.36

Table 3: The surviving cross-section for the different processes entire series of cuts. The numbers in

the brackets for the different benchmark points indicate the sbottom mass corresponding to the respective

benchmark point and are in GeV.

where (pT )ji refers to the pT of the ith non-b tagged jet and (pT )bji refers to the pT of the ith

b-tagged jet. The analysis was carried out with default values of the TMVA parameters, and

we achieve a reach greater than in the cut-based case. The results are summarised in Table

4.

BP-1 BP-2 BP-3 BP-4 BP-5 BP-6

mb̃1
(GeV) 500 600 700 800 900 1000

BDT cut 0.165 0.185 0.262 0.245 0.270 0.335

S = S√
S+B

17.8 7.9 4.9 2.2 1.3 0.9

Table 4: Signal significances for the benchmark points with the choice of BDT cuts with L = 300 fb−1 of

luminosity.

It is clear from Table 4 that the exclusion bounds for the sbottom can be extended to beyond

800 GeV using MVA at a luminosity of 300 fb−1.

Hadronic Final State:

For the hadronic final state, in the absence of a lepton to tag on, our analysis is organised

around tagging a top jet. In order to construct jets, we avail of the particle information from

the EFlow branch of the DELPHES generated ROOT file. We use FASTJET [363] to construct

fat jets of R = 1.8 using the anti-kT algorithm [19] after demanding that pT > 30 GeV and

|η| < 3. Jets with pT > 200 GeV are reclustered using the Cambridge-Aachen (C/A) [20]

algorithm, using R = 1.8, and passed through to HEPTopTagger [21] for top tagging. We

select only those events with at least one tagged top for further analysis. Tops are tagged

with an efficiency of ∼ 30%.

We employ jet grooming techniques to get rid of soft and large angle radiations, along with

underlying events. In this analysis, we use Jet Trimming [22] as our preferred grooming

technique. This technique uses two independent parameters - Rtrim and pfrac
T . The algorithm

gets rid of large angle radiation by constraining all the constituents of the fat jet to lie within

a smaller jet radius Rtrim and of soft radiation by keeping only those constituents whose

pT > pfrac
T · pjet

T , where pjet
T is the pT of the input fat jet. We use Rtrim = 0.4 and pfrac

T = 1%.

The final state jets are classified into three categories - top jets (tagged by the top tagger),



Variable Definition

1. nlJet The number of light jets in the event

2. nbJet The number of b-tagged jets in the event

3. ntJet The number of top-tagged jets in the event

4. (pT )j1 pT of the hardest non-top tagged jet

5. (pT )j2 pT of the second hardest non-top jet

6. (pT )
j
(1)
t

pT of the hardest top tag jet

7. HT scalar sum of the pT of all the jets

8. mtj the invariant mass of the top and jet system

9. mjets the invariant mass of all the other jets

10. ∆M = |mtj −mjets| the mass difference of the two reconstructed invariant masses

11. ρ =
(pT )

j
(1)
t

(pT )
j
(1)
`

Ratio of the hardest top-jet pT and light jet pT

12. τ21 = τ2/τ1 Ratio of the Nsubjettiness variables

13. τ31 = τ3/τ1 Ratio of the Nsubjettiness variables

14. τ32 = τ3/τ2 Ratio of the Nsubjettiness variables

15. Φ(t, j) Azimuthal angle separation between the top jet and hardest light jet.

Table 5: List of all the variables used in the multivariate analysis.

b-tagged jets (tagged using a pT dependent b-tagging efficiency function)and light jets (those

which are neither top nor b- tagged jets).

For this section, we just consider QCD multijets and tt̄ + jets as the background, as these

overwhelm all other background processes. The variables used in the multivariate analysis

are given in Table 5.

QCD tt̄+ jets BP-1 BP-2 BP-3 BP-4 BP-5 BP-6

(500) (600) (700) (800) (900) (1000)

σ0 (fb) 1.87× 107 8.32× 105 5.19× 102 1.75× 102 67.0 28.3 12.9 6.15

σtoptag (fb) 2.65× 106 9.52× 104 1.66× 102 57.8 22.6 9.75 4.52 2.23

S = S√
S+B

3.50 1.21 0.57 0.32 0.20 0.16

Table 6: Showing the initial cross-section (σ0) and surviving cross-section after at least one top is tagged

(σtoptag) for the background and all the signal benchmarks. The QCD multijet sample is generated after a cut

on the HT variable of 800 GeV and cut of 100 GeV on the pT of the two hardest jets.

Trimmed jets are particularly important for the reconstruction of the sbottom. The recon-

struction is done only for those events with four or more jets. The reconstruction is done

by taking two mass functions. One takes into account the top-tagged jet and a light jet to

calculate the invariant mass of the system, mtj . The other mass function is done by taking

all the other jets and constructing their invariant mass, mjets. The process is iterated over

all the light jets such that the difference between these two masses (∆M = |mtj −mjets|) is

minimised and the corresponding values of mtj and mjets are used in the MVA.

Apart from the reconstructed masses, we also use n-subjettiness variables [385], since the



QCD multijets are not expected to have a definite substructure, unlike the jets from the

sbottoms.

The results for the hadronic case, however, are not very encouraging. In Table (6), besides

the initial and the top tagged cross-sections, the results of the TMVA are also shown. For

discovery, the leptonic channel remains the more promising channel. It might also be inter-

esting to consider a fusion of these two analysis techniques, with semi-leptonic final states,

but we have restricted ourselves only to the separate analyses in this work.

Investigating the sgoldstino as a possible candidate for the

diphoton excess

Discovery through direct searches has always been the Holy Grail of progress in particle

physics, especially in the context of a hadronic collider like the LHC. Since the LHC hasn’t

yet thrown up any signs of a new particle, there was a lot of excitement in the community

when one of the most tantalising signals in recent times was announced near the end of

2015. Both the CMS and ATLAS collaborations reported an excess in the diphoton channel

at ∼ 750GeV, prompting an explosion of papers discussing possible explanations. Various

ideas competed for attention: one of the most intriguing ones involved the sgoldstino. The

sgoldstino is the supersymmetric scalar partner of the goldstino, the fermion produced when

global SUSY is spontaneously broken. The explanation was proposed by several different

groups [405–408,418], all using an effective theory approach.

We studied the impact of the existence of such a scalar in the context of the Gauge Mediation

(GM) framework, in which SUSY breaking in the hidden sector is communicated to the visible

sector at a high scale by gauge interactions carried by messenger particles. These messengers

are charged under both the SM gauge group as well as the hidden sector quantum numbers.

Our analysis in Ref. [29] led us to conclude that under scrutiny, several theoretical aspects

affect the viability of the model in its minimal form.

In order to parametrise the effect of SUSY breaking in the visible sector, it is assumed that

it happens due to the F component of a chiral superfield X in the hidden sector acquiring

a VEV. This breaking effect is then communicated to the visible sector through messenger

gauge fields with the following effective Lagrangian

L = − c1

2M1

∫
d2θX̂Ŵ 1αŴ 1

α −
c2

2M2

∫
d2θX̂Ŵ 2αAŴ 2A

α −
c3

2M3

∫
d2θX̂Ŵ 3αAŴ 3A

α +H.c

(0.0.21)

where the superscripts {1,2,3} refer to the gauge groups U(1), SU(2) and SU(3) respectively,

α is the spinor index and A runs over the field components in the adjoint representation. The

masses {M1, M2, M3 } set the mass scale of the messenger fields. The superfields X̂ and ŴA
α



are written in terms of the ordinary fields as:

X̂ = S(y) +
√

2θξ(y) + θ2Fx(y) (0.0.22)

=
1√
2
{φ(y) + iα(y)}+

√
2θξ(y) + θ2Fx(y) (0.0.23)

ŴA
α = −iλAα (y) +DA(y)θα − (σµνθ)αF

A
µν(y)− θ2σµ

αβ̇
Dµ(y)λ†Aβ̇(y) (0.0.24)

The Majorana masses of the gauginos are given by:

mi = ci
〈Fx〉
Mi

(0.0.25)

The total cross-section of the diphoton production via the resonance S (assuming small decay

width) is given by :

σγγ(
√
s) = σpp→S(

√
s)Br (S → γγ) (0.0.26)

=
∑
i

Aii(√s)Γ (S → pipi)
Γ (S → γγ)

ΓS
(0.0.27)

where {pi, pi} refers to the initial state partons, {g, g}, {ū, u} etc, ΓS is the width of the

sgoldstino and the numerical values of the quantities Aii(√s) can be calculated from the

parton distribution functions at a particular energy. We require that σγγ(
√
s = 13 TeV) be

in the range of 3− 8 fb in order to explain the excess.

Formalism:

We work in the Ordinary Gauge Mediation (OGM) framework [30]. Apart from the chiral

superfield X̂, whose scalar and auxiliary components both get vevs, there are N5 pairs of

vector-like messenger fields {Φi, Φ̃i} (i = 1, N5), which transform under 5 + 5̄ of SU(5). The

superpotential is given by

ŴOGM = λijX̂
ˆ̃ΦiΦ̂j (0.0.28)

We can diagonalise λij by independently rotating the {Φ̂i,
ˆ̃Φj} pair, without affecting the

Kähler potential. The Dirac mass of the fermions in each pair of messengers is mi
F = λi〈S〉,

while the complex scalars have squared masses m2
i± = λ2

i 〈S〉2 ± λi〈Fx〉. The gaugino masses

are generated at one loop and are given by:

ma =
αa
4π

N5∑
i=1

dai
λi〈Fx〉
mi
F

g(xi) (a = 1, 2, 3) (0.0.29)

where a is the gauge group label, xi = λi〈Fx〉/(mi
F )2 and di is the Dynkin index for the

representation (di = 1 for SU(5), which is our case). The function g(x) is given by:

g(x) =
1

x2
[(1 + x)Ln(1 + x) + (1− x)Ln(1− x)] (0.0.30)

Assuming that all the λi = λ (equal couplings), we get

ma =
αa
4π
κmFN5g(κ) (0.0.31)
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Figure 7: Allowed region in the OGM parameter space that successfully explains the signal and satisfies

LHC bounds on squark and gaugino masses. While in the left panel the contribution from only φ (the scalar)

is considered, the right panel takes into account both φ (scalar) and a (pseudoscalar) contributions. The black

dots in the plot on the right hand side are referenced in the caption of Fig. 8.

where κ = λ〈Fx〉/m2
F , which can never exceed 1 (since otherwise one of the complex scalar

masses squared becomes negative). The decay width of the sgoldstino to the pair of photons

is given by:

Γγγ = Γ(φ→ γγ) =
1

2π

[
m4
φ

4

(
c1

M1
c2
W +

c2

M2
s2
W

)2
]

(0.0.32)

For the excess to be satisfied, we require that:

Agg13

ΓggΓγγ
Γgg + Γγγ + Γww + Γzz + Γzγ

& 3 fb (0.0.33)

Considering gluon fusion as the dominant mode of production, using this requirement, we

consider various aspects of the model - among them, the number of messenger pairs needed,

the running of the coupling constant and mass of S.

Number of messengers:

We have three free parameters - mF , 〈Fx〉 or κ, and N5. Taking N5 = 1, we find that imposing

Eqn. (0.0.33), gives us

mF . 175 GeV (0.0.34)

The mass of the messengers can be raised by raising the number of messengers. Choosing

κ = 0.8, a reasonable value, we can plot the region on the mF −N5 plane which can explain

the signal as well as evade the LHC bounds on squark and gaugino masses. This is shown in

Fig 7.

Taking into account all collider constraints, it is seen that we would need a very large number

of messenger fields (≥ 60). In itself, this is not a problem but with so many messenger fields,

the running of the SU(3) gauge coupling hits the Landau pole at quite low energy scales ∼ 50

TeV. This is shown in Fig. 8.



α3

25α2

25α1

�� �� �� �� ��
�

�

�

�

�

�

Λ(���)

α
(
Λ
)

��=������ ��=��

α3

25α2

25α1

�� �� �� �� �� �� �� ��
�

�

�

�

�

�

Λ(���)

α
(
Λ
)

��=����� ��=��

Figure 8: RG running of the SM gauge couplings above mF for the two representative sets of values of

{mF , N5} shown as black dots in Fig. 7. The values of the couplings at the scale m F is obtained using the

SM evolution from MZ to 2 TeV and the MSSM evolution from 2 TeV to mF .

Mass of sgoldstino:

The fermion component of X - the goldstino - is exactly massless at tree-level (and even

at one-loop level). The scalar component also remains massless at tree-level, but can get

mass through quantum corrections at one-loop. The total mass of the sgoldstino can arise

from messenger contributions added to any possible contribution from the hidden sector. The

messenger contribution to the mass squared can be calculated to be

Π(p2 = 0) = −
(
λ

g2
3

)2(
4π

√
5

N5
F (κ)

)2

m2
g̃ (0.0.35)

where

F (x) =
√
−G(x)/g(x)2; G(x) =

1

x2
[(2 + x)Ln(1 + x) + (2− x)Ln(1− x)]

and g(x) is as defined in Eqn. 0.0.30.

This is manifestly negative and much larger in magnitude than the squared gluino mass.

With the LHC constraining the gluino to very high masses (∼ 1.8 TeV), a large contribution

from the hidden sector is required to stabilise the potential and end up with ∼ 750 GeV

mass, a deeply uncomfortable fact for the minimal model. We see, therefore, that if the

sgoldstino explanation of the 750 GeV diphoton excess - or any similar signal - is to be valid,

we would have a model with rather improbable features. One can conclude, therefore, that

this is unlikely to be an explanation of the observed signal. Our conclusion was, in a sense,

vindicated, when it turned out that the observed signal wasa mere statistical fluctuation and

not a genuine scalar resonance.



Summary

This thesis work has invoked four different NP threads with the common factor being that

they all predict signals at colliders at levels which are not currently observable, but would

become so after sufficient running of the machines in question if the underlying NP model is

correct. In the process, several detailed computations have been performed, and numerical

analyses have been carried out keeping in mind the most currently available experimental data

and constraints arising from them. We have also used some of the state-of-the-art techniques

in the theoretical and computational analyses and in that sense, these represent the most

up-to-date analyses of the processes in question.
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Chapter 1
The Standard Model

1.1 Introduction

The Standard Model (SM) of particle physics is the central framework on which the study of

elementary particles is currently based. It purports to answer the age-old question of what

everything is made up of. With the SM, we have a viable theory encompassing three of the

four fundamental interactions and all the elementary particles discovered so far.

There are two classes of elementary particles – fermions and bosons. Fermions, e.g. electrons,

are spin-1
2 particles obeying the Pauli Exclusion principle, thereby following Fermi-Dirac

statistics. Bosons, e.g. photons, are integer-spin particles which follow the Bose-Einstein

statistics. While fermions appear to be the building blocks of matter, bosons are responsible

for mediating the fundamental interactions.

The four fundamental interactions are the electromagnetic force, the weak (nuclear) force,

the strong (nuclear) force and gravity. The first three are explained by the SM, while gravity

is as yet explained only classically by the theory of General Relativity. Extensive attempts

are being made to construct a quantum theory of gravity. All these interactions are believed

to be mediated by integer spin particles – the three forces of the SM by spin-1 particles, viz.

the photon and the W and Z bosons, while gravity is thought to be mediated by a spin-

2 particle, viz. the graviton. The nature of all these interactions is understood in terms of

certain underlying symmetries, which may or may not be partially broken. The mathematical

tool employed to describe these symmetries is group theory.

The three interactions are described by three distinct groups corresponding to gauge sym-

metries. Electromagnetism is described by the Abelian gauge group U(1)Y , while the non-

Abelian groups SU(2)L and SU(3)C describe weak and strong interactions respectively. In

this construction, the fermions belong to the fundamental representation of the groups and

the gauge bosons are placed in the adjoint representation. The strength of interaction be-

tween these particles are fixed by the different charges these particles carry under the different

1
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gauge groups.

In this chapter, we review the general gauge principle, along with the different gauge sym-

metries mentioned above. We then enlist the particle content of the SM and the charges

of each under the different gauge groups before taking a brief look at the phenomenon of

spontaneous symmetry breaking and the Higgs mechanism. This is followed by a discussion

on global symmetries of the SM and finally by the different flavour changing processes, both

via neutral and charged currents. Natural units (~ = 1 and c = 1) are used throughout.

1.2 Gauge Symmetries in the Standard Model

1.2.1 The Gauge Principle

A physical system described by multiple degrees of freedom can have several mathematically-

equivalent descriptions. A transformation between two such equivalent descriptions is called

a symmetry transformation. There are of two kinds, viz. spacetime symmetries, where the

transformation is of the spacetime coordinates (the most general case is the Poincarè sym-

metry), and internal symmetries, where the transformation is of other degrees of freedom.

Symmetry transformations governed by parameters that are spacetime-independent are called

global; if the transformation parameters are functions of space-time they are local. Gauge sym-

metries are internal symmetries in a classical field theory involving specific redefinitions of

the fields and can be both global and local.

The gauge principle is a a postulate that every fundamental interaction is described by an ac-

tion S which is invariant under some gauge transformations, i.e. by a gauge theory. Nöther’s

theorem then tells us that there must be associated conserved currents and charges. Histori-

cally, it was the discovery of these conservation laws which led to the development of gauge

theories.

1.2.2 Abelian Symmetry : QED

Quantum Electrodynamics (QED) is the description of electromagnetic interactions of a Dirac

fermion (typically the electron) by a gauge theory with a U(1)em symmetry. Fermions such

as electrons, are charged under this U(1)em group i.e. they belong to its fundamental repre-

sentation. Photons belong to the adjoint representation of the U(1)em gauge group. Gauge

symmetry then dictates the form of the interactions between the spinor and bosonic fields, as

follows.

The free electron Lagrangian is given by

Le = ψ(x) (γµ∂µ −m)ψ(x) (1.2.1)
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where ψ(x) is the electron spinor field. This term is evidently symmetric under a global

U(1)em transformation (or a phase change)

ψ(x)→ ψ′(x) = exp(−ieθ)ψ(x) (1.2.2)

where e is the gauge charge (in this case electric charge) of the fermion. Making this trans-

formation local, i.e. taking the parameter of the transformation as θ = θ(x), we have

ψ′(x) = exp{−ieθ(x)}ψ(x) (1.2.3)

and the Lagrangian is no longer gauge symmetric since under this transformation, for we get

ψ(x)∂µψ(x)→ ψ
′
(x)∂µψ

′(x) = ψ(x)∂µψ(x)− ieψ(x)∂µθ(x)ψ(x) (1.2.4)

To restore gauge invariance, we replace the derivative ∂µ with a gauge-covariant derivative

Dµ such that Dµψ(x) transforms as

Dµψ(x)→ [Dµψ(x)]′ = e−ieθ(x)Dµψ(x)

where Dµ = ∂µ + ieAµ(x) where we introduce a vector gauge field Aµ(x). Gauge invariance

is then satisfied if Aµ(x) transforms as

Aµ(x)→ A′µ(x) = Aµ(x) +
1

e
∂µθ(x) (1.2.5)

The new gauge invariant Lagrangian is then

LeA = ψ(x)iγµDµψ(x)−mψ(x)ψ(x) = Le + Lint (1.2.6)

where the covariant derivative term has automatically provided an interaction term between

the spinor field ψ(x) and the bosonic field Aµ(x) of the form

Lint = −eJµ(x)Aµ(x)

where Jµ(x) = ψ(x)γµψ(x) is the Nöther current corresponding to the gauge symmetry.

The U(1)em-symmetric Lagrangian will also contain a kinetic term for the gauge field Aµ(x)

which is given by

LA = −1

4
Fµν(x)Fµν(x) (1.2.7)

with a field strength tensor

Fµν = ∂µAν(x)− ∂νAµ(x) = − i
e

[Dµ, Dν ]

This is the minimal form required to preserve both gauge and Lorentz invariance. The full

QED Lagrangian is now given by

LQED = Le + LA + Lint

= ψ(x) (γµ∂µ −m)ψ(x)− 1

4
Fµν(x)Fµν(x)− eψ(x)γµψ(x)Aµ(x) (1.2.8)

Gauge invariance not only determines the form of the Lagrangian and the interaction terms,

it also precludes a mass term for the gauge field Aµ since a mass term of the form

Lm = M2
AA

µ(x)Aµ(x)

is not gauge invariant. Further, there are no self-coupling terms for the Aµ field in the classical

Lagrangian. Such terms can, however, arise at higher orders in a quantum field theory.
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1.2.3 Non-Abelian Symmetry : QCD

This construction of a gauge theory can be repeated for the non-Abelian gauge group SU(3)C ,

as follows. We first consider a Dirac fermion field Ψ(x) in the fundamental (triplet) represen-

tation of SU(3)C , i.e. having a colour quantum number 1. This can be written

Ψ =

 ψ1

ψ2

ψ3

 (1.2.9)

where the spacetime dependence is henceforth not indicated explicitly. This will have a Dirac

adjoint

Ψ =
(
ψ1 ψ2 ψ3

)
. (1.2.10)

This is really a triplet of mass-degenerate fermions ψ1, ψ2 and ψ3 carrying the third component

of colour +1, 0 and −1 respectively. For the free Lagrangian analogous to Eqn. 1.2.6 for this

colour triplet Ψ is

LΨ = Ψ (γµ∂µ −m) Ψ (1.2.11)

where expansion of the mass term makes the mass-degeneracy of the ψ1, ψ2 and ψ3 fields

explicit.

Now, under an SU(3)C transformation, with the strong coupling constant gs replacing the

electromagnetic e, we have

Ψ→ Ψ′ = exp
(
−igs~T · ~θ

)
Ψ = U(~θ)Ψ (1.2.12)

where ~θ = (θ1, θ2, . . . , θ8) are the SU(3)C transformation parameters, and Ta = 1
2λ

a (a =

1, 2, . . . , 8) are the SU(3)C generators, with the λa being Gell-Mann matrices. For the Dirac

adjoint, we will have

Ψ→ Ψ
′
= Ψ U†(~θ) (1.2.13)

It is simple to see that if the ~θ are independent of spacetime, then the Lagrangian of Eqn. 1.2.11

will be invariant under global SU(3)C transformations. If, however, ~θ = ~θ(x), then the kinetic

term transforms as

Ψγµ∂µΨ→ Ψ
′
γµ∂µΨ′ = Ψγµ∂µΨ + ΨγµU†(~θ)

[
∂µU(~θ)

]
Ψ (1.2.14)

and the second term on the right would break the gauge symmetry.

As before, gauge invariance can be restored by replacing the simple derivative ∂µ by a covariant

derivative

∂µ → Dµ = I∂µ − igs~T · ~Gµ (1.2.15)

where the ~Gµ = (G1
µ, G

2
µ, . . . , G

8
µ) are the 8 vector gauge fields (gluons) in the adjoint repre-

sentation of SU(3)C and I denotes the 3× 3 unit matrix. Gauge invariance then demands

~T · ~G′µ = U(~θ) ~T · ~Gµ U†(~θ)− i

gs
[∂µU(~θ] U†(~θ) (1.2.16)
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Under infinitesimal transformations, i.e. θa → 0, we have

U(~θ, θY ) = 1− igs~T · ~θµ
and the gluon fields transform as

Ga
′
µ = Gaµ −

1

gs
∂µθ

a + fabcθbGcµ (1.2.17)

where

[Ta,Tb] = ifabcTc (1.2.18)

with fabc being the structure functions of the group.

We can now write a gauge-invariant Lagrangian as

LΨG = Ψ (γµDµ −m) Ψ = LΨ − gsΨγµ~T · ~GµΨ (1.2.19)

i.e. as in the Abelian case, the gauge symmetry enforces an interaction of the form

Lint = −gsΨγµ~T · ~GµΨ (1.2.20)

The gauge-kinetic term can now be written using the same prescription as in the Abelian

case, i.e.

LG = − 1

12
Tr
[(
~T · ~Gµν

)(
~T · ~Gµν

)]
(1.2.21)

where
~T · ~Gµν = − i

gs
[Dµ,Dν ] (1.2.22)

which yields

Gaµν = ∂µG
a
ν − ∂νGaµ − igsfabcGbµGcν

using the Lie algebra in Eqn. 1.2.18.

Thus, finally, the SU(3)C-invariant Lagrangian has the form

LQCD = LΨ + LG + Lint (1.2.23)

= Ψ (γµ∂µ −m) Ψ− 1

12
Tr
[(
~T · ~Gµν

)(
~T · ~Gµν

)]
− gsΨγµ~T · ~GµΨ

It is worth mentioning two important points of difference with the Abelian case, viz.

1. In the Abelian case, at the lowest order, there is no self-interaction of the photon field

Aµ, whereas the Gaµ have mutual cubic and quartic interactions arising from the fabc

term in Eqn. 1.2.23.

2. While in the U(1)em case, the charge can be chosen at will, this is not possible for the

SU(3)C case. For if we try to rescale the generators to αTa, then Eqn. 1.2.18 would

enforce α = 1. The SU(3) colour charge is thus universal and this property manifests

itself as the universal nature of strong interactions.

As in the Abelian case, it is not possible to construct a mass term for the gauge bosons, for

the form

Lm = M2
G
~Gµ · ~Gµ (1.2.24)

would not be gauge invariant. Thus, the eight gluons in QCD are all massless.
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1.2.4 Electroweak Symmetry

We now describe the extension of the gauge principle to the theory of weak interactions, con-

structing in the process a unifying framework for the electromagnetic and weak interactions.

This is known as the electroweak theory of Glashow, Salam and Weinberg (GSW). The gauge

group here is SU(2) × U(1)Y , with U(1)Y being different from U(1)em. The construction of

this non-Abelian theory is very similar to that of QCD.

In a toy version of the model (where both chiralities are equivalent), we first consider a Dirac

fermion field Ψ(x) in the fundamental (doublet) representation of SU(2), i.e. having a weak

isospin of 1
2 ,

Ψ =

(
ψ1

ψ2

)
(1.2.25)

with a Dirac adjoint

Ψ =
(
ψ1 ψ2

)
. (1.2.26)

Once again, these are really a pair of mass-degenerate fermions ψ1 and ψ2 carrying the third

component of isospin +1
2 and −1

2 respectively.

Now, under an SU(2)×U(1)Y transformation

Ψ→ Ψ′ = exp
(
−ig~τ · ~θ − ig′Y ηθY

)
Ψ(x) = U(~θ, θY )Ψ (1.2.27)

where ~θ = (θ1, θ2, θ3) and θY are the SU(2) and U(1)Y transformation parameters respectively

defining the unitary transformation matrix U(~θ, θY ). We denote the SU(2) generators as

τa = 1
2σ

a (a = 1, 2, 3), where the σa are the Pauli spin matrices, while η = 1
2I is the U(1)Y

generator for the doublet with I denoting the 2× 2 unit matrix and Y the weak hypercharge

of the doublet. Once again

Ψ→ Ψ
′
= Ψ U†(~θ, θY ) (1.2.28)

for the Dirac adjoint. Now, the free Lagrangian analogous to Eqn. 1.2.6 for the fermion

doublet Ψ is

LΨ = Ψ (γµ∂µ −m) Ψ (1.2.29)

This Lagrangian is again invariant under a global transformation, but if ~θ = ~θ(x) and θY =

θY (x), then the kinetic term transforms as

Ψγµ∂µΨ→ Ψ
′
γµ∂µΨ′ = Ψγµ∂µΨ + ΨγµU†(~θ, θY )

[
∂µU(~θ, θY )

]
Ψ (1.2.30)

i.e. the gauge invariance is lost. As before, we then replace the simple derivative ∂µ by a

covariant derivative

∂µ → Dµ = I∂µ − ig~τ ·
−→
Wµ − ig′Y ηBµ (1.2.31)

where the
−→
Wµ = (W 1

µ ,W
2
µ ,W

3
µ) and Bµ are the vector gauge fields in the adjoint representa-

tion of SU(2)×U(1)Y . Denoting

gAµ = g~τ · −→Wµ + g′Y ηBµ
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so that

Dµ = I∂µ − igAµ
gauge invariance now demands

A′µ = U(~θ, θY )AµU†(~θ, θY )− i

g
[∂µU(~θ, θY )]U†(~θ, θY ) (1.2.32)

Under infinitesimal transformations, i.e. θa, θY → 0, we have

U(~θ, θY ) = 1− ig~τ · ~θµ − ig′Y ηθY

and the gauge fields transform as

W a′
µ = W a

µ −
1

g
∂µθ

a + εabcθbW c
µ B′µ = Bµ −

1

g′Y
∂µθY (1.2.33)

We can now write a gauge-invariant Lagrangian as

LΨA = Ψ (γµDµ −m) Ψ = LΨ − gΨγµAµΨ (1.2.34)

i.e. we have an interaction term of the form

Lint = −gΨγµAµΨ = −Ψγµ
(
g~τ · −→Wµ + g′Y ηBµ

)
Ψ (1.2.35)

The gauge-kinetic term can now be written using the same prescription as in the Abelian

case, i.e.

LA = − 1

8g2
Tr
[(
g~τ · ~Fµν + g′Y ηBµν

)(
g~τ · ~Fµν + g′Y ηBµν

)]
(1.2.36)

where

g~τ · ~Fµν + g′Y ηBµν = −i [Dµ,Dν ] (1.2.37)

which yields

F aµν = ∂µW
a
ν − ∂νW a

µ − igεabcW b
µW

c
ν

Bµν = ∂µB
a
ν − ∂νBa

µ (1.2.38)

using the Lie algebra

[τa, τ b] = iεabcτ c [η, τa] = 0 (1.2.39)

Thus, finally, the SU(2)×U(1)Y Lagrangian has the form

LGSW = LΨ + LA + Lint

= Ψ (γµ∂µ −m) Ψ

− 1

8g2
Tr
[(
g~τ · ~Fµν + g′Y ηBµν

)(
g~τ · ~Fµν + g′Y ηBµν

)]
− gΨγµ

(
g~τ · −→Wµ + g′Y ηBµ

)
Ψ (1.2.40)

As in the case of colour, the SU(2) charge is universal and this manifests itself as the universal

nature of weak interactions. And once again, a mass term for the gauge bosons

Lm = M2
W

−→
Wµ · −→Wµ +M2

BB
µBµ (1.2.41)

would not be gauge invariant. Thus the four gauge bosons in this toy model — W 1
µ ,W

2
µ ,W

3
µ

and Bµ — are all massless.
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1.3 Electroweak Symmetry-Breaking

Though the gauge principle provides a good description of electrodynamics (QED) and of

strong interactions (QCD), weak interactions require the vector bosons to be massive, to

account for (a) the short-range nature of the weak interactions, and (b) the success of the

effective four-fermion theory of Fermi. In fact, the weak bosons are known to have very large

masses, which cannot be explained by having approximate gauge symmetries in the same spirit

as we have approximate flavour symmetries. Thus, to explain these large masses, we require

to invoke the phenomenon of spontaneous symmetry-breaking for the electroweak sector. This

refers to the phenomenon in which the ground state of a system does not share the symmetry

of the Lagrangian (LS . Thus, if U is some symmetry transformation, then for a spontaneously

broken system

ULSU−1 = LS (1.3.1)

but

U |0〉 6= |0〉 (1.3.2)

where |0〉 is the ground state of the system. Classic examples, known from condensed matter

theory, are the Heisenberg ferromagnet and the Ginzburg -Landau theory of superconduc-

tivity. From our knowledge of these, we can easily infer that near the ground state, such a

system system undergoes a phase transition from a configuration with the symmetry, to one

without the symmetry – with consequent changes in the physical behaviour.

In this section we describe how the electroweak symmetry based on the SU(2)×U(1)Y group

is spontaneously broken to yield a physically-viable theory.

1.3.1 Gauge Boson Masses

To break the SU(2)×U(1)Y symmetry, we need to add to the theory with a fermion doublet

and gauge bosons, a further doublet of complex scalars, i.e. another isospin-1
2 object

S(x) =

(
s+(x)

s0(x)

)
=

1√
2

(
s1 + is2

s3 + is4

)
(1.3.3)

where s+ and s0 are complex scalar fields which can be written in terms of real scalar fields

s1, s2, s3 and s4. The hypercharge of this doublet is Y = +1.

As in the case of the fermion, we can write a free Lagrangian for this scalar doublet in the

form

LΦ = (DµS)†(DµS)−M2S†S (1.3.4)

with

Dµ = ∂µ − ig~τ ·
−→
Wµ − ig′ηBµ (1.3.5)

where η = 1
2I as before. The only difference from En. 1.2.31 is that we have put Y = 1.
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The above Lagrangian has a local SU(2)×U(1)Y symmetry and the gauge bosons are massless

as before. There is no scope for spontaneous symmetry-breaking with this Lagrangian. We,

therefore, modify it to the form

LV = (DµS)†(DµS) + µ2S†S − λ(S†S)2 (1.3.6)

where µ2, λ > 0. The µ2 term can no longer be called a mass term, for such a mass would

be tachyonic and therefore, non-physical. Thus, these two interaction terms can be combined

into a scalar potential

V (S) = −µ2S†S + λ(S†S)2 (1.3.7)

and the Lagrangian written as

LV = (DµS)†(DµS)− V (S) (1.3.8)

The vacuum will correspond to the minimum of this scalar potential, which will clearly be at

〈S†S〉 =
µ2

2λ
≡ v2

2
(1.3.9)

i.e.

〈s2
1〉+ 〈s2

2〉+ 〈s2
3〉+ 〈s2

4〉 = v2 (1.3.10)

This is the surface of a four-sphere in the Euclidean space of φ’s, all points of which are

potential minima, i.e. vacua of the quantum field theory. However, only one point on this

surface can be the physical vacuum. We now note that the Lagrangian, too, has a global

SO(4) invariance corresponding to rotations in the Euclidean space of s’s, which is known as

reparametrisation invariance. We exploit this to ensure that the physical vacuum falls on the

s3 axis, i.e.

〈s3〉 = v 〈s1〉 = 〈s2〉 = 〈s4〉 = 0

or

〈S〉 =
1√
2

(
0

v

)
(1.3.11)

The global SO(4) broken by this choice of axes is actually a subgroup of the SU(2) gauge

group, and hence, this choice of vacuum breaks the gauge symmetry. This is, therefore, a

case of spontaneous symmetry-breaking.

We now define a new set of scalars in the neighbourhood of the vacuum by

ϕ3 = s3 − v ϕi = si for i = 1, 2, 4 (1.3.12)

so that

Φ = S − 〈S〉 =

(
ϕ+(x)

ϕ0(x)

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(1.3.13)

The Lagrangian for the scalar field now becomes

LV = [Dµ(Φ + 〈S〉)]†[Dµ(Φ + 〈S〉)]− V (Φ) (1.3.14)
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where

V (Φ) = −µ2(Φ + 〈S〉)†(Φ + 〈S〉) + λ[(Φ + 〈S〉)†(Φ + 〈S〉)]2 (1.3.15)

Of particular interest in this case are the terms in Eqn. 1.3.14 of the form

Lm = [Dµ〈S〉]†Dµ〈S〉
= 〈S〉†

(
ig~τ · −→Wµ + ig′ηBµ

)(
−ig~τ · −→Wµ − ig′ηBµ

)
〈S〉 (1.3.16)

which are easily recognised as mass terms for the W and B bosons. These are now permitted

because the gauge symmetry has been broken by the vacuum.

The gauge boson mass term now expands to

Lm =
1

8
g2v2 (W1µW

µ
1 +W2µW

µ
2 )

+
1

8
v2
(
Wµ

3 Bµ
)( g2 −gg′

gg′ g′2

)(
W3µ

Bµ

)
(1.3.17)

We can now define physical fields

W+
µ =

1√
2

(
W 1
µ − iW 2

µ

)
W−µ =

1√
2

(
W 1
µ + iW 2

µ

)
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW (1.3.18)

where tan θW = g′/g. In terms of these, the mass terms reduce to

Lm = M2
WW

+µW−µ +
1

2
M2
ZZ

µZµ (1.3.19)

with

MW =
gv

2
MZ =

gv

2 cos θW

We note that the Aµ field still has zero mass, and we identify it as the photon. Moreover, we

can define a ‘ρ parameter’ (often called Veltman parameter) [20]:

ρ =
M2
W

M2
Z cos2 θW

= 1 (1.3.20)

which is a prediction of this pattern of symmetry breaking. The covariant derivative in

Eqn. 1.3.5 can now be written in terms of these fields

Dµ = ∂µ − ig
(
τ+W

+
µ + τ−W

−
µ

)
+ ig cos θW τZZµ + ig sin θWQAµ (1.3.21)

and the electroweak generators as

τ± =
1√
2

(τ1 ± iτ2) τZ = τ3 − η tan2 θW Q = τ3 + η = τ3 +
1

2
I (1.3.22)

Identification of the photon with Aµ implies that g sin θW = e and Q is the generator of

SU(2)em. In general, it will also contain the Y quantum number and its eigenvalues will be

i3 + Y
2 . This justifies the charge assignments of s+ and s0 at the beginning of this section.
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1.3.2 The Higgs Mechanism

Expansion of the scalar potential in Eqn.1.3.15 leads to a form

V (Φ) =
1

4
λv4 − v

(
µ2 − λv2

)
ϕ3 −

1

2
(µ2 − λv2)

(
ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4

)
+ λv2ϕ2

3 + . . . (1.3.23)

where the ellipsis denotes cubic and quartic interaction terms. We can now drop the constant

term (except for cosmological considerations) and note that since v2 = µ2/2λ, the potential

simplifies to

V (Φ) = λv2ϕ2
3 + . . . (1.3.24)

The Lagrangian will now contain a mass term of the correct sign for the ϕ3 scalar, of the form

Lm(ϕ3) =
1

2
M2

3ϕ
2
3 (1.3.25)

where M3 =
√

2µ. This massive scalar is known as the Higgs boson. However, the ϕ1, ϕ2

and ϕ3 bosons, which are massless, also appear in the Lagrangian. These are known as

Goldstone bosons and we do not have any experimental evidence for such massless scalar

particles. However, it turns out that these are actually unphysical degrees of freedom of the

theory and can be easily eliminated. To see this, we note that the initial scalar doublet could

have been parametrised in polar form as

S(x) =
1√
2

exp

(
i

v
~τ · ~ξ(x)

)(
0

v +H(x)

)
(1.3.26)

where ~ξ = (ξ1, ξ2, ξ3) is a triplet of scalar fields and H is another scalar field. Clearly we will

have

〈ξ1〉 = 〈ξ2〉 = 〈ξ3〉 = 〈H〉 = 0

to be consistent with En. 1.3.11. Expanding the exponential in the neighbourhood of the

vacuum (i.e. ξa � v) enables us to identify H = ϕ3.

Now, since we are going to break the gauge symmetry anyway, we can initially exploit the

unbroken symmetry to make a local gauge transformation

S → S′ =
1√
2
U(~θ, θY )S

=
1√
2
U(~θ, θY ) exp

(
i

v
~τ · ~ξ(x)

)(
0

v +H(x)

)
(1.3.27)

where the parameters ~θ, θY are chosen to make

U(~θ, θY ) exp

(
i

v
~τ · ~ξ(x)

)
= I

Using the form of Eqn. 1.2.27, it is easy to check that this choice of gauge parameters is just

~θ(x) =
1

gv
~ξ(x) θY = 0 (1.3.28)



12 CHAPTER 1. THE STANDARD MODEL

This choice defines the so-called unitary gauge. In this gauge, we have

S′ =
1√
2

(
0

v +H(x)

)
(1.3.29)

Thus, in this gauge, which is the physically interpretable gauge, we have a massive Higgs

scalar, but no Goldstone scalars. The degrees of freedom represented by the ξa fields in the

unbroken theory reappear as the longitudinal modes of the massive gauge bosons W±, Z. In

the broken theory, therefore the Goldstone bosons must be regarded as mere gauge artefacts,

and they therefore can be removed by an appropriate gauge choice – as we have shown. This

feature of the electroweak symmetry is known as the Higgs mechanism.

We can now combine the Lagrangian of a fermion doublet Ψ with that of the Higgs doublet

Φ to obtain a toy version of the GSW electroweak model. In the next section, we show how

this is built upon to get the SM.

1.4 Construction of the Standard Model

1.4.1 Gauge interactions of fermions

The gauge interactions of a fermion doublet with weak isospin Y are given by Eqn. 1.2.35,

which can be combined with eqn. 1.3.22 to write

Lint = Ψγµ
[
g
(
τ+W

+
µ + τ−W

−
µ

)
+ g cos θW τZZµ + eQAµ

]
Ψ (1.4.1)

For this representations, the electroweak generators can be calculated from Eqn. 1.3.22 as

τ+ =
1√
2

(
0 1

0 0

)

τ− =
1√
2

(
0 0

1 0

)

τZ =
1

cos2 θW

(
1− q1 sin2 θW 0

0 −(1 + q2 sin2 θW )

)

Q =

(
q1 0

0 q2

)

where q1 = 1+Y
2 and q2 = −1+Y

2 . Plugging these into En. 1.4.1 leads to

Lint = Lcc + Lnc + Lem (1.4.2)

where the three terms on the right are given by

Lcc =
g√
2

(
ψ1γ

µψ2W
+
µ + ψ2γ

µψ1W
−
µ

)
Lnc =

g

cos θW
(1− q1 sin2 θW )ψ1γ

µψ1Zµ −
g

cos θW
(1 + q2 sin2 θW )ψ2γ

µψ2Zµ

Lem = eq1ψ1γ
µψ1Aµ + eq2ψ2γ

µψ2Aµ (1.4.3)
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and are known as the charged current, neutral current and electromagnetic interactions re-

spectively. The last of these, is identical with the case of QED discussed above if we put

q = −1 for the electron field.

1.4.2 Chiral Fermions

In the 1950’s it was established [8–10,12–14] that weak interactions violate parity maximally.

This is best expressed in the language of gauge theory as a statement that the W±-bosons

interact only with the left-chiral components of fermion fields and not with their right-chiral

components. It is thus appropriate to attach a subscript ‘L’ (for left) and call the symmetry

group SU(2)L×U(1)Y . Under SU(2)L, the left-handed fermions form doublets and the right-

handed fermions are singlets. Thus, we denote a pair of fermions as

ΨL =

(
ψ1L

ψ2L

)
ψ1R ψ2R (1.4.4)

where, in general, ψL = 1
2(1 − γ5)ψ and ψR = 1

2(1 + γ5)ψ. We have already seen that the

pattern of electroweak symmetry-breaking leads us to identify the electric charge q = i3+Y/2,

where the i3 and Y are the weak isospin and weak hypercharge assignments of a field. Since

i3 = ±1
2 for the left-handed fields and i3 = 0 for the right handed fields, it follows that

they must have different Y assignments so that the electric charge can be the same. The

interactions in Eqn. 1.4.3 can then be rewritten in the more realistic form

Lcc =
g

2
√

2

[
ψ1Lγ

µψ2LW
+
µ + ψ2Lγ

µψ1LW
−
µ

]
Lnc =

g

4 cos θW

[
(1− 4q1 sin2 θW )ψ1Lγ

µψ1LZµ − (1 + 4q2 sin2 θW )ψ2Lγ
µψ2LZµ

]
− 2g sin2 θW

cos θW

[
q1ψ1Rγ

µψ1RZµ + q2ψ2Rγ
µψ2RZµ

]
Lem = e

[
q1ψ1γ

µψ1Aµ + q2ψ2γ
µψ2Aµ

]
(1.4.5)

We note that since both the chiralities have the same electric charge, the electromagnetic

current is of parity-conserving form, whereas the charged and neutral currents are manifestly

parity-violating.

Thus far, we have discussed only a toy model with a non-specific fermion doublet. In the SM,

however, we have two classes of chiral fermions, with the left-handed doublets denoted as

LL =

(
ν`L

`L

)
QL =

(
uL

dL

)
(1.4.6)

while eR, uR and dR denote the right-handed singlet fields. The ` and ν` are the lepton and

its neutrino, while the u and d are a pair of quarks. To get the correct charge assignments

for leptons, we choose Y = −1 and for quarks, we choose Y = 1
3 . These values of Y must

be taken into account when writing the covariant derivatives in the electroweak Lagrangian.

We have also seen that strong interactions are described by the SU(3)C group, where the
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interactions respect parity, i.e. they are the same for right- and left-handed quarks. Leptons

do not carry the colour charge and are unaffected by strong interactions. Thus, the gauge

quantum number assignments of the leptons and quarks are as summarised in Table 1.1.

Left-Handed Fields Right-Handed Fields

SU(3)C SU(2)L U(1)Y SU(3)C SU(2)L U(1)Y

Quarks QL =

(
uL

dL

)
3 2 + 1

3

uR 3 1 + 4
3

dR 3 1 − 2
3

Leptons LL =

(
ν`L

`L

)
1 2 −1

eR 1 1 −2

νR 0 0 0

Table 1.1: The fermion content of the SM along with their charges under the different direct product gauge

groups.

It is worth mentioning at this stage itself that normally there is no right-handed neutrino

in the minimal SM, as such a particle would be a singlet under all the SM gauge groups.

However, after the discovery of neutrino oscillations, naive extensions of the SM do have a

right-handed neutrino. In this discussion, however, it will not be considered further.

In the unbroken phase of the electroweak model, all these fermions are massless, since a

fermion mass term

L(f)
m = mψψ = m

(
ψLψR + ψRψL

)
will clearly break the gauge symmetry, as ψL and ψR transform differently under SU(2)L.

Fermion masses, then, must arise from the spontaneous symmetry-breaking, for which they

must interact with the scalars of the theory. The simplest way to achieve this is to introduce

Yukawa-like operators of the form ψψϕ in the Lagrangian. This is discussed in the next

section. However, at this point it may be noted that in the unbroken phase of the electroweak

model, all the particles are massless – the gauge bosons because of gauge symmetry, the

scalars because the quadratic term is tachyonic and the fermions from a combination of parity

violation and gauge symmetry. It follows that all particle masses arise from the spontaneous

breaking of electroweak symmetry.

Though this is not demanded by any symmetry arguments, the SM has three copies or

generations of the leptons and quarks, each with the same representation and charges as

described above. In the gauge symmetric phase of the SM, the three generations are identical

to each other; it is only after the introduction of the Higgs scalar and the breaking of gauge

symmetry that the generations become non-degenerate in terms of mass. We thus have up

(u), down (d), strange (s), charm (c), bottom (b) and top (t) quarks respectively, in increasing

order of mass. These can be arranged in three families of weak-isopin doublets and singlets(
uL

dL

)
;

(
cL

sL

)
;

(
tL

bL

)
; uR; dR; cR; sR; tR; bR (1.4.7)

We must remember that each of these fields is a colour triplet. Thus, if we count all quantum

numbers, there are 18 quarks in all.
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Similarly, there are three generations of leptons – electrons, muons and tau leptons – along

with their respective neutrino partners, which can also be arranged as(
νeL

eL

)
;

(
νµL

µL

)
;

(
ντL

τL

)
; eR; µR; τR (1.4.8)

These are colour singlets and hence there are just 3 leptons and 3 neutrinos.

To get the full particle content of the SM, now, we must add on the 8 gluons, the 4 electroweak

bosons and the massive Higgs boson, making a total of 37 fields in all. Often this count is

given as 25 if the differently-coloured quarks are not considered distinct.

1.4.3 Fermion Masses

It has been mentioned in the previous section that fermion masses must be generated through

spontaneous symmetry-breaking through Yukawa-like interactions between the fermions and

the Higgs scalars. Since there are three generations, the most general gauge-invariant inter-

actions have the form

LSf = ydijQ
(0)
Li Sd

(0)
Rj + yuijQ

(0)
Li S̃u

(0)
Rj + y`ijL

(0)
Li Se

(0)
Rj + H.c. (1.4.9)

where S̃ = −iτ2S
∗ is the charge conjugate of the S doublet and summation is implied over

the generation indices i, j = 1, , 3. These generation indices are intended as follows u1 = u,

u2 = c, u3 = t and so on. The Yukawa couplings ydij , y
u
ij and y`ij then form a set of three 3× 3

complex matrices, i.e. 54 real parameters in all. However, most of them are not measurables,

as is shown below. The superscript ‘(0)’ is a reminder that these fermion fields (gauge basis)

are not the physical fields, which will be defined presently. It is also relevant to mention that

there is no term of the form yνijLLiS̃νRj because of the absence of the νRj ’s, at least in this

discussion.

Once the electroweak symmetry is broken, the scalar field must be shifted S = Φ + 〈S〉 and

this leads to

LSf = LYuk + L(f)
m (1.4.10)

where

LYuk = ydijQ
(0)
Li Φd

(0)
Rj + yuijQ

(0)
Li Φ̃u

(0)
Rj + y`ijL

(0)
Li Φe

(0)
Rj + H.c. (1.4.11)

are the Yukawa interactions and

L(f)
m = ydijQ

(0)
Li 〈S〉d(0)

Rj + yuijQ
(0)
Li 〈Φ̃〉u(0)

Rj + y`ijL
(0)
Li 〈S〉e(0)

Rj + H.c. (1.4.12)

is the mass term for the fermions. This expands to

L(f)
m =

ydijv√
2
d̄

(0)
Li d

(0)
Rj +

yuijv√
2
ū

(0)
Li u

(0)
Rj +

y`ijv√
2

¯̀(0)
Li `

(0)
Rj + H.c.

= Md
ij d̄

(0)
Li d

(0)
Rj +Mu

ij ū
(0)
Li u

(0)
Rj +M `

ij
¯̀(0)
Li `

(0)
Rj + H.c. (1.4.13)
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These mass matrices Mu, Md and M`, can always be diagonalised by bi-unitary transforma-

tions of the form

Mu
D = VuLMuVu†R = diag. (mu,mc,mt)

Md
D = VdLMdVd†R = diag. (md,ms,mb)

M`
D = V`LM`V`†R = diag. (me,mµ,mτ ) (1.4.14)

Thus, Eqn. 1.4.13 becomes

L(f)
m = d̄

(0)
Li (V d

L )ikM
d
kl(V

d†
R )ljd

(0)
Rj + ū

(0)
Li (V u

L )ikM
u
kl(V

u†
R )lju

(0)
Rj + ¯̀(0)

Li (V `
L)ikM

`
kl(V

`†
R )lje

(0)
Rj + H.c.

= d̄Li(M
d
D)ijdRj + ūLi(M

u
D)ijuRj + ¯̀

Li(M
`
D)ijeRj + H.c.

= md
i d̄idi +mu

i ūiui +m`
i
¯̀
i`i (1.4.15)

where we define physical fermion fields (mass basis) by

dLi = (V d
L )ijd

(0)
Lj dRi = (V d

R)ijd
(0)
Rj

uLi = (V u
L )iju

(0)
Lj uRi = (V u

R )iju
(0)
Rj

`Li = (V `
L)ij`

(0)
Lj `Ri = (V `

R)ij`
(0)
Rj (1.4.16)

and the mu
i , md

i and m`
i are the mass eigenvalues listed in Eqn. 1.4.14.

1.4.4 Flavour Mixing

It is important to note that the gauge boson-fermion interactions listed in Eqn. 1.4.5 are

for fermions in the gauge basis, denoted above by the superscript ’(0)’. To get realistic

interactions, we require to rewrite them in the physical or mass basis, and this leads to the

phenomenon of flavour-mixing in the SM.

We first consider the charged current interactions, which, in the gauge basis, have the form

Lcc =
g√
2

[
ū

(0)
Li γ

µd
(0)
LiW

+
µ + ν̄

(0)
Li γ

µ`
(0)
LiW

+
µ

]
+ H.c.

=
g√
2

[
ūLi (VuL)ik γ

µ
(
VdL
)∗
jk
dLjW

+
µ + ν̄

(0)
Li γ

µ
(
V`L
)∗
ji
`LjW

+
µ

]
+ H.c. (1.4.17)

In the above, we have the freedom to redefine physical neutrino fields as

νLi =
(
V`L
)
ij
ν

(0)
Lj (1.4.18)

since there was no neutrino mass matrix, but there is no more freedom in the case of the

quark fields. Accordingly, Eqn. 1.4.17 assumes the form

Lcc =
g√
2

[
Vij ūLiγ

µdLjW
+
µ + ν̄Liγ

µ`LiW
+
µ

]
+ H.c. (1.4.19)

where

V = VuLV
d†
L (1.4.20)
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is the Cabibbo-Kobayashi-Maskawa matrix, or CKM matrix. Since this is non-diagonal, it

follows that charged current interactions can have quarks of different generations (and hence

flavours), with interaction strengths proportional to the off-diagonal elements of the CKM

matrix. This phenomenon is referred to as flavour-mixing in the charged current sector of

the electroweak Lagrangian. It is important to note that there is no reason to suppose that

VuL = VdL, which would make the charged currents diagonal and remove flavour mixing from

the SM. At the same time, there is no a priori reason compelling VuL 6= VdL, for no principle

would be violated by such a choice. Thus, all that we can say is that the SM can nicely

accommodate flavour mixing, but not that it predicts flavour-mixing. The fact that VuL 6= VdL
is something which we must – and do – infer from empirical evidences.

1.4.5 Absence of FCNCs

When we turn to the neutral current, i.e. the current coupling to the Z boson, we have, in

the gauge basis,

Lnc =
g

4 cos θW

[
(1− 8

3
sin2 θW )u

(0)
Li γ

µu
(0)
Li Zµ − (1− 4

3
sin2 θW )d

(0)
Li γ

µd
(0)
Li Zµ

]
+

g

4 cos θW

[
ν

(0)
Li γ

µν
(0)
Li Zµ − (1− 4 sin2 θW )`

(0)
Li γ

µ`
(0)
Li Zµ

]
− 2g sin2 θW

cos θW

[
2

3
u

(0)
Ri γ

µu
(0)
RiZµ −

1

3
d

(0)
Ri γ

µd
(0)
RiZµ − `

(0)
Ri γ

µ`
(0)
RiZµ

]
=

g

4 cos θW

[
(1− 8

3
sin2 θW )ūLi (VuL)ik γ

µ (VuL)∗jk uLjZµ

−(1− 4

3
sin2 θW )dLi

(
VdL
)
ik
γµ
(
VdL
)∗
jk
dLjZµ

]
+

g

4 cos θW

[
νLj

(
V`L
)
ji
γµ
(
V`L
)∗
ki
νLkZµ − (1− 4 sin2 θW )`Lj

(
V`L
)
ji
γµ
(
V`L
)∗
ki
`LkZµ

]
− 2g sin2 θW

cos θW

[
2

3
ūRi (VuR)ik γ

µ (VuR)∗jk uRjZµ −
1

3
dRi

(
VdR
)
ik
γµ
(
VdR
)∗
jk
dRjZµ

− `Rj
(
V`R
)
ji
γµ
(
V`R
)∗
ki
`RkZµ

]

=
g

4 cos θW

[
(1− 8

3
sin2 θW )ūLjγ

µuLjZµ − (1− 4

3
sin2 θW )dLjγ

µdLjZµ

]
+

g

4 cos θW

[
νLjγ

µνLjZµ − (1− 4 sin2 θW )`Ljγ
µ`LjZµ

]
− 2g sin2 θW

cos θW

[
2

3
ūRjγ

µuRjZµ −
1

3
dRjγ

µdRjZµ − `Rjγµ`RjZµ
]

(1.4.21)

using the unitary property of the V matrices. Thus, there are no flavour-changing neutral

currents (FCNCs) in the SM. This can be expressed in words by saying that physical fermions

of the same charge are aligned, whereas those of dissimilar charges are not aligned, with the

off-diagonal part of the CKM matrix being a measure of the degree of mis-alignment.
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We also have the electromagnetic currents

Lem = e

[
2

3
u

(0)
Li γ

µu
(0)
Li Aµ +

2

3
u

(0)
Ri γ

µu
(0)
RiAµ −

1

3
d

(0)
Li γ

µd
(0)
Li Aµ −

1

3
d

(0)
Ri γ

µd
(0)
RiAµ

− −`(0)
Li γ

µ`
(0)
Li Aµ − `

(0)
Ri γ

µ`
(0)
RiAµ

]
(1.4.22)

which also remains diagonal in flavour as the chiral fermions in every current are aligned.

Similar arguments show that scalar currents coupling to the Higgs boson are also similarly

diagonal. Thus, we conclude that there are no flavour- changing neutral currents (vector,

scalar or electromagnetic) in the SM at the tree level. We note that this a firm prediction

of the SM, and not just a feature which can be accommodated. At the one-loop and higher

levels, however, FCNC’s can appear through intermediate charged currents and this has been

observed in many experiments.

1.4.6 CP Violation

In the electromagnetic Lagrangian, there are three discrete symmetries, viz. charge conju-

gation (C), parity (P ) and time reversal (T ), and therefore, all product transformations like

CP and CPT are also symmetries. In fact, it can be shown from very general field theo-

retic considerations that CPT is a symmetry of the action, except in pathological exceptions

constructed for that specific purpose. This is known as the CPT theorem.

In the weak interactions, however, we have seen that parity P is not conserved. Since particles

are taken to antiparticles by charge conjugation C, and antiparticles have opposite parity, it

was initially thought that CP is conserved in the weak interactions. In 1964, however, it was

discovered that CP is violated in neutral kaon decays.

If we write the SM Lagrangian in the form

LSM = Lgauge(e, g2, gs) + LΦ(µ, λ) + LY(mf ,VCKM ) + Lg−f(ξ) + LFP(ξ) (1.4.23)

in the Rξ gauge, with mf generically denoting all the fermion masses, and the last two terms

denoting the gauge-fixing and ghost terms required for quantisation. Then, under a CP

transformation,

LSM → (CP )LSM(CP )† (1.4.24)

= Lgauge(e, g2, gs) + LΦ(µ, λ) + LY(mf ,V†CKM ) + Lgf(ξ) + LFP(ξ)

where every term is invariant except the Yukawa term, where, in general V†CKM 6= VCKM .

Once again, we do not know this a priori, so all that we can say is that CP violation can

be accommodated in the SM by having nonzero phase(s) in the CKM matrix. The fact that

V†CKM 6= VCKM is something which we must – and do – infer from empirical evidences.

If we consider the Lagrangian for QCD in Eqn. (1.2.24), it can be easily seen that it is invariant

under CP . However, there is no known principle which can prevent us from adding a term
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which violates the CP symmetry, viz.

L��CP = − Θ

16π2
F aµνF̃

aµν (1.4.25)

where F̃ aµν = 1
2ε
µνρσF aρσ and Θ is a free parameter. This term contributes to the neutron

electric dipole momenta (NEDM) and thus experiments measuring NEDM can put bounds

on the value of Θ. The current bound on Θ is so stringent that many believe that the value

is actually zero, which leaves us with a fine-tuning problem. This is known as the strong-CP

problem. We return to this in Chapter 2.

1.4.7 Global Symmetries in the SM

Besides the discrete spacetime symmetries C, P and T mentioned above, the SM has a large

group of continuous global symmetries [25,26], which are termed accidental symmetries, since

they follow from the construction of the SM Lagrangian, rather than from any fundamental

principle. Let us consider the fermion sector first. The global symmetry, in the absence of

Yukawa matrices (y = 0), is

G
(y=0)
global = U(3)Q × U(3)U × U(3)D × U(3)L × U(3)E (1.4.26)

where each of the symmetry groups represent the flavour symmetry for the left-handed quarks

(Q), the right-handed up-type quarks (U), the right-handed down-type quarks (D), the left-

handed leptons (L) and the right-handed charged leptons (E).

Considering just the lepton sector

G
`;(y=0)
global = U(3)L × U(3)E (1.4.27)

The group U(3) has 9 generators and thus G
`;(y=0)
global has 18 generators. The Yukawa matrix

in the lepton sector is a 3× 3 complex matrix with 18 parameters (9 real and 9 imaginary).

Non-zero Yukawa matrix elements break this symmetry to

U(3)L × U(3)E → U(1)e × U(1)µ × U(1)τ (1.4.28)

where each U(1) corresponds to the lepton number for each generation. Thus, there are 3

unbroken generators and 15 broken generators. These broken generators allow us to rotate

away a similar number of Yukawa parameters, thus leaving us with 18− 15 = 3 independent

physical parameters, which can be readily identified with the masses of the electron, muon

and tau. The rest are all absorbed in the lepton wavefunctions and do not appear in any

physical process. What we are left with however, is three conserved quantum numbers Le,

Lµ and Lτ , which are the lepton numbers.

When we turn to the the quark sector, we have

G
q;(y=0)
global = U(3)Q × U(3)U × U(3)D (1.4.29)
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Thus G
q;(y=0)
global has 27 generators. As before, the Yukawa matrices in the quark sector are 3×3

complex matrices with 36 parameters (18 real and 18 imaginary). Non-zero Yukawa matrix

elements break this symmetry to

U(3)Q × U(3)U × U(3)D → U(1)B (1.4.30)

where U(1)B is the baryon number symmetry. The breaking leaves us with only one unbroken

generator from the initial 27, meaning that there are 26 broken generators. These broken

generators allow us to rotate away a similar number of Yukawa parameters, thus leaving us

with 36− 26 = 10 independent physical parameters. Out of these 10, 6 are quark masses and

the other 4 are parameters of the CKM matrix. 3 of the CKM parameters are angles and 1 is

a phase. The discussion in the previous section then tells us that this phase is the only source

of CP violation in the SM. It is noteworthy that this phase does not appear with less than

three generations of quarks – the brilliant conclusion of Kobayashi and Maskawa in 1973 [28].

The Higgs sector also has a global ‘custodial’ symmetry. The orbit structure of the Higgs

field after acquiring a vev is

s2
1 + s2

2 + s2
3 + s2

4 = v2 (1.4.31)

where si, i = 1...4 are the four components of the complex Higgs doublet S. This has a

global SO(3) symmetry, left over from the global SO(4) of the Higgs field before electroweak

symmetry breaking. Since the SO(3) group is homomorphic to the SU(2) group, the custodial

symmetry group may be regarded as a global SU(2), which survives even after symmetry-

breaking. Various consequences of this custodial symmetry are discussed in Ref. [29].

1.5 Flavour Changing Processes in the SM Quark Sector

We have seen that flavour changes through charged-current processes happen at the tree

level in the SM through the exchange of a charged Wboson. In contrast, there are no flavour-

changing neutral currents (FCNCs) at the tree level in the SM. However, as mentioned before,

FCNCs can occur through quantum corrections involving one-loop diagrams and higher. Ob-

viously, these effects would be weaker as they would be subject to the usual loop suppressions.

A few charged and neutral current processes along with their SM branching ratios (BRs) are

tabulated in Table 1.2. These experimental numbers make it obvious that flavour changing

processes via charged currents have higher BRs compared to those via neutral current pro-

cesses. However, it is to be noted that the difference in the BRs is absent if the process

doesn’t involve any overall change in flavour, as in the decay of J/ψ → µ+µ− given in Table

1.2, which has a much higher BR compared to seemingly similar processes listed in the table.
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Neutral Currents Charged Currents

Process BR Process BR

B0 → Xsγ (3.40± 0.21)× 10−4 B → Xµνµ (10.86± 0.16)%

B0 → K0µ+µ− (4.4± 0.4)× 10−7 B0
s → X`ν` (10.5± 0.8)%

Bs → µ+µ− (3.1± 0.7)× 10−9 D− → K0µ+νµ (3.31± 0.13)%

J/ψ → µ+µ− (5.96± 0.03)% K+ → µ+νµ (63.55± 0.11)%

Table 1.2: Some examples of neutral and charged current processes. All numbers are taken from the Particle

Data Group [346].

It has also been mentioned above that all flavour-changing effects can be ultimately attributed

to the off-diagonal elements in the CKM matrix. Charged currents are important for mea-

suring these CKM matrix elements and this is summarised in Table 1.3.

CKM Element Value Process

|Vud|
0.9749± 0.0026 π+ → π0e+νe

0.97425+0.00007
−0.00010 Average

|Vus|
0.2220± 0.0025 K → π0e+νe

0.2254± 0.0004 Average

|Vub|
0.00365± 0.00014 B → π`ν̄`

0.00371± 0.00007 Average

|Vcd|
0.214± 0.009 D → π`ν̄`

0.2253± 0.0004 Average

|Vcs|
0.997± 0.017 Ds → K`ν`

0.9734± 0.0001 Average

|Vcb|
0.0422± 0.0008 B → D∗`ν̄`

0.0418+0.0003
−0.0007 Average

Table 1.3: Showing some of the charged current processes which are helpful in determining the CKM matrix

elements. All the the values for the individual processes are taken from [31]. The averages are the latest values

presented by CKMFitter [32].

For precise measurements, semileptonic decays are generally preferred. This is because in

the fully hadronic decays, gluons can be exchanged between the initial and the final state,

whereas this is absent in the case of the semileptonic case (as shown in Fig. 1.1). Thus there

is less uncertainty due to QCD effects in the latter.

In addition to loop suppression, FCNC processes are also subject to the Glashow-Iliopoulos-

Maiani (GIM) mechanism [30]. It originates from the unitarity of the CKM matrix and results

in suppression of the amplitudes of FCNC processes by several orders of magnitude. This is

discussed in detail in Chapter 3.

One of the most important experimental observations is the oscillation in neutral mesons. This

was first observed in the Kaon system (K0 − K̄0 oscillation) and now it has been measured

in other systems like the D0 and the B0 mesons. In the light of the importance of these

oscillations especially in the measurement of the amount of CP violation in each of these

systems, it is worthwhile to take a formal look at neutral meson oscillations and how it is

important in the measurement of CP violation. This is done in Appendix A.
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Figure 1.1: Showing possible gluon exchanges which explain why the semi-leptonic decay in (a) has

less QCD effects than the fully hadronic one in (b).

The initial and final states of neutral current decays can either be up-type quarks or down-

type quarks. The presence of a loop in the decay dictates that all quarks of the opposite type

contribute in the loop. Since the top is much more massive than any of the other quarks, even

being several times as massive of the b quark, the heaviest down-type quark, neutral currents

for b-mesons, for example B0 → K0 decay, have very different decay widths compared to

t→ c decays, the up-type analogy.

Extensive experimental data have been gathered for neutral current decays in b− as well as

s− mesons. These are considered fertile hunting grounds for New Physics (NP) as any NP

particle would contribute in the loop and enhance the matrix element. Again, semileptonic

decays are preferred as they suffer from less QCD uncertainties. NP searches can also be

carried out in the top FCNCs. Since the top quark doesn’t hadronize, it is protected from

much of the QCD effects. Furthermore, the top FCNC decay to a charm quark and a Z or

a Higgs boson has an extremely small branching ratio in the SM (∼ 10−15), which makes

it conducive for NP searches as any enhancement of the signal can be easily distinguished

from the tiny SM contribution. The t → cH and t → cZ decays are studied in great detail

in Chapter 3. In recent times, there have been a lot of attention devoted to processes like

B → D`ν` and B → D∗`ν` since experimental observations seem to show violation in lepton

universality. In particular, the two ratios RD and RD∗ defined as

RD(∗) =
Br(B → D(∗)τντ )

Br(B → D(∗)lνl)
; l = e, µ (1.5.1)

are shown to deviate from the theoretical SM values. We discuss this anomaly in detail in

Chapter 4.

General references used for writing this chapter are [38], [39], [40], [41] and [37]. More specific

references have been cited as and when relevant.



Chapter 2
Beyond the Standard Model

2.1 New Physics beyond the Standard Model

The Standard Model, despite its somewhat ad hoc structure, has been amazingly successful

in explaining the results of practically all terrestrial experiments conducted till date, with the

exception of a few small anomalies of questionable permanence. With the possible exception

of General Relativity, no other modern theory has enjoyed such a long and uninterrupted

run of success. Nevertheless, despite all these successes, the SM fails to provide satisfactory

explanations to a number of questions. These, and speculations about their solutions, form

the substance of the present discussion.

This chapter is divided into three main parts. The first part is devoted to the problems

and perceived shortcomings of the Standard Model. In the second part, a few of the better-

known new physics (NP) solutions to some of these problems are elaborated. The third part

discusses the most popular NP structure within which many of these can be solved. viz.,

supersymmetry.

2.2 Shortcomings of the Standard Model

In the previous chapter we have seen how the fundamental interactions can be described by

gauge theories. These work nicely for electromagnetic and strong interactions, but in order to

get a valid theory for the weak interactions, we require to combine it with electromagnetism

in a unified theory, and then introduce a scalar potential with λϕ4 interactions, as well as

put in parity violation by hand and then utilise the scope for flavour and CP violation.

Because these disconnected ideas have been thrown in for purely phenomenological reasons

to create the electroweak model, purists have always felt that the SM is not a final theory,

but an effective low-energy limit of a more complete theory, which may be manifest at higher

energies. Some of these NP ideas are discussed in the next section, but here we introduce

23
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some of the well-known deficiencies of the SM. These can be grouped into (a) problems in the

classical structure of SM, (b) problems in the quantum mechanical structure of the SM, and

(x) phenomenological problems with the SM.

2.2.1 Problems in the Classical Structure of the SM

The structural problems with the classical version are

A. Accidental symmetries leading to conservation of baryon (B) and lepton (L) number,

B. Maximal parity violation,

C. The flavour problem(s),

D. The origin of spontaneous symmetry-breaking.

Each item is discussed below.

A. Accidental B & L conservation

Once the SM Lagrangian has been fully constructed in accordance with the principles of gauge

invariance and renormalisability, it turns out to have a set of residual global symmetries which

are not demanded by any fundamental principle. Two of these accidental symmetries are

baryon number (B) and (total) lepton number (L). Gauge-invariant operators which break

these symmetries do not appear in the SM because, given the SM field content, the simplest

constructions are of mass dimension greater than 4, and therefore non- renormalisable. For

example, the simplest L-violating operator has dimension five and is of the form (Lφ)2, while

the simplest B-violating operator has dimension six and is of the form (QQ)(QL). Misiak et.

al. [42] list the relevant six-dimensional operators as

L Violating Oνν =
(
φ̃†lp

)
C
(
φ̃†lr

)

B Violating

Oduq = εαβγεjk

[
(dαp )TCuβr

] [
(qγjs )TClkt

]
Oqqu = εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )TCet

]
Oqqq = εαβγεjnεkm

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]
Oduu = εαβγ

[
(dαp )TCuβr

] [
(uγs )TCet

]
Despite their ad hoc nature, these two accidental symmetries have stood up to a number of

very rigorous tests. These fall in three categories:

1. ∆B = ∆L = 1; ∆(B−L) = 0: The prototype search for this kind of B and L violation

is the proton decay. If B and L were simultaneously violated, then the proton should

decay through the process p+ → π0e+. Proton decay searches started in the 1970s

(including the pioneering Kolar gold mine experiment in India) and are continuing, but

no decay has ever been recorded. The Kolar experiment gave a lower limit on the proton
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lifetime of 3×1031 years [43]. This has since been improved greatly to a stringent lower

bound of 1.6× 1034 years by the SuperKamiokande collaboration [44] in Japan.

2. ∆B = 2, ∆L = 0; ∆(B − L) = 2: An example of a process of this kind is n − n̄
oscillations where n is a neutron. Several experiments are searching for signals of this

oscillation, like SuperKamiokande [45]. Current lower bounds on the oscillation lifetime

is 1.9× 1032 years. (For a full review of experimental results, see Ref. [46]).

3. ∆B = 0, ∆L = 2; ∆(B − L) = −2: This process is studied through the search for

neutrinoless double beta decay (NDBD). It is being actively searched for by various

groups around the world, including GERDA (which uses Germanium) and KamLAND

(which uses Xenon). The current lower limit on the decay half-life from 76Ge due to the

GERDA experiment is t1/2 ∼ 2.2× 1025 years. (For a detailed review, see Ref. [47].)

While the listed experiments search for violation of total lepton number L = 1
3 (Le + Lµ + Lτ ),

there might be violation in the individual lepton flavours Le, Lµ, Lτ . Such processes are

allowed in the SM, but occur only at the loop level and are thus highly suppressed. Examples

of such processes are µ → eγ and τ → 3e. The former is being investigated at the MEG

experiment which has observed an upper limit on the branching ratio, B (µ+ → e+γ) < 4.2×
10−13 [48]. The τ → 3µ process is being studied in Belle experiment [49].

Another manifestation of lepton flavour violation is in the neutrino sector, where the three

neutrino fields νe, νµ and ντ , carrying Le, Lµ and Lτ respectively can mix with each other.

This is now established beyond doubt [50–53], though the exact mechanism is still unclear

(see Section 2.3.2).

B. Maximal parity violation

In Chapter 1, Section 1.4.2, it was mentioned that parity is maximally violated in the SM.

This is because the weak bosons W a
µ (a = 1, 2, 3) — before spontaneous symmetry-breaking

— interact exclusively with the left handed fermions and not at all with right handed ones,

leading to a V − A structure of the W±µ couplings. Though this is an experimentally well-

established fact about weak interactions, there is nothing in the SM which explains a priori

why it should be so. To take a contrary example, the W a
µ (a = 1, 2, 3) could have coupled to

both left- and right-chiral fermions with different strengths, and we would still have parity

violation, though it would not be maximal. The SM accommodates the maximal nature of

the parity-violation by setting the weak isospin of the right-chiral fermions to zero — this is

done in a purely ad hoc manner, without any deeper insight. What makes the issue even more

intriguing is that neither QED nor QCD violates parity at all, the theories being vectorlike.

C. Flavour Problem in the SM

The flavour sector of the SM is perhaps the one which contains the largest number of puzzles

[54,55]. They can be divided into the three segments described below.
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1. Number of fermion families: As the couplings of the Z boson include an axial vector

component, there will be one-loop diagrams in the quantum theory, leading to a chiral

anomaly in the SM. It turns out that when this is summed over a full generation of

quark and lepton doublets, the anomaly cancels. This is a beautiful feature of the SM

about which we have no deeper insight than the fact that it happens. Thus, equality of

the number of quark and lepton doublets is necessary for anomaly cancellation and we

also know that at least three generations are needed for the existence of CP violation

— which means that the SM does have the minimal structure needed for both these

empirically-demanded features. However, there is no theoretical restriction on the ex-

istence of a larger number of generations than three. On the other hand, experimental

evidence appears to tell us that there are only the three generations already known and

no more [56]. The natural question to ask then is why we have exactly the minimal

number (3) of families of quarks and leptons needed to make the SM work at both the

classical and quantum levels. Does some deeper underlying feature manifest itself in

this apparent parsimony of Nature?

2. Hierarchy of quark and lepton masses: The masses of charged fermions span a large

number of scales, even apart from the neutrinos which are massless in the original

version of the SM. If all the fermion masses are indeed provided by the Higgs mechanism

— for which we have increasingly sound empirical evidence ( see, e.g., Fig. 13 in [57] )

— the magnitudes of the Yukawa couplings will have a correspondingly large hierarchy,

varying from that of the electron (ye ∼ 10−4) to that of the top quark (yt ∼ 1). The

origins of such a steep hierarchy are completely unknown.

If we include neutrino masses, and assume they come from the same mechanism as those

of the other fermions, the largest Yukawa coupling would be of the order of yν ∼ 10−13,

which is so much smaller than the top quark Yukawa coupling that it is widely believed

that there is some suppression mechanism at work, or that, alternatively, neutrinos

acquire their masses through some other mechanism altogether. Either hypothesis takes

us beyond the SM.

3. Hierarchy in the CKM matrix: As Table 1.3 makes clear, the CKM matrix is nearly a

unit matrix; the off-diagonal elements are quite small compared to the diagonal elements.

All that the theory requires, however, is that the CKM matrix should be unitary. If the

CKM matrix is parametrised as

VCKM =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP

c12c23 − s12s23s13e
iδCP

s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP
c23c13

 (2.2.1)

where sij = sin θij , cij = cos θij and δCP is the CKM phase, then experimental data can

be combined to get

θ12 ' 13.0o θ23 ' 2.3o θ13 ' 0.2o δCP ' 70o (2.2.2)
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It is clear that the mixing between generations is generically small and there is a strong

hierarchy here too, with the third generation having small mixing with the second and

almost vanishing mixing with the first. On the other hand, the CP -violating phase is

large. However, a basis-independent measure of CP -violation is not the phase per se,

but a combination of CKM elements known as the Jarlskog invariant, which is defined

by

JCP = Im
(
V ∗ikVjkVilV

∗
jl

)
(i, j, k, l = 1, 2, 3)

= cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δCP (2.2.3)

Given the values of θij in Eqn. 2.2.2, this is

JCP ' 3.2× 10−5 sin δCP (2.2.4)

as opposed to a possible maximum value JCP ' 0.71 sin δ when the mixing is maximal,

i.e. θ12 = θ23 = θ13 = 45o. The main issue here is that we have no idea why these

angles are small. This is especially interesting since the CP phase δCP ' O(1) [346]

which means that the amount of CP violation is heavily screened in the SM by the

small mixing angles in the CKM matrix.

If we permit for flavour-mixing in the lepton sector, which can happen if neutrinos

have masses generated by the Higgs mechanism in the same way as quarks, then there

will be a mixing matrix in the lepton sector exactly like the CKM matrix, and this

is known as the Pontecorvo-Maki-Nakagawa-Sakata matrix, or PMNS matrix [58, 59].

In contrast to the CKM matrix, the PMNS matrix has large off-diagonal terms, which

might be considered ‘natural’ since there is no strong hierarchy in the different mixing

parameters, This underlines the non-canonical character of quark mixing.

Finally, we recall that the SM simply postulates the existence of the CP violating phase

δCP without prescribing any source for it.

D. Origin of Spontaneous Symmetry Breaking (SSB)

The SM contains the Higgs field which allows gauge symmetry to be broken spontaneously

by acquiring a non-zero vacuum expectation value (vev). This is because the Higgs potential

is written as

V (S) = −µ2S†S + λ
(
S†S

)2
(2.2.5)

and the values

− µ2 ' 7.8× 103 GeV2 λ ' 0.065 (2.2.6)

are simply grafted on by hand, in order to get the correct values for the measured masses

of the W± and H0 bosons. Negativity of the coefficient of the S†S term is crucial to have

symmetry-breaking and this is just what the SM does not even try to explain.

A possible quantum field-theoretic explanation for the shape of the potential was suggested

by Coleman and Weinberg [60] in an Abelian theory as early as 1973. To adapt their work to
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the SM, we can choose µ2 = 0 in Eqn. 2.2.5, leaving only the quartic interaction term. This

itself is a special choice, of course, but vanishing of a term is generally easier to motivate than

specific values such as those of Eqn. 2.2.6. The Coleman–Weinberg mechanism then generates

an effective potential at one-loop, which can be computed as [61]

Veff(H) =
1

4
λH4 +BH4 ln

(
H2

M2

)
(2.2.7)

where M is a mass scale used to define the parameter λ, and the coefficient B is given by

B =

(
α

8 sin2 θW

)2∑
i

Ci(2Ji + 1)(−1)2Ji
m4
i

M4
W

= (4.22× 10−3)2
∑
i

Ci(2Ji + 1)(−1)2Ji
m4
i

M4
W

(2.2.8)

where Ci counts the charge and colour, with the index i summing over vector bosons and

fermions with mass mi and spin Ji. This potential — known as the Coleman-Weinberg

potential — for positive values of B, has a minimum at a non-zero value of H, which can

be equated with its vacuum expectation value. Thus, spontaneous symmetry-breaking is

generated by radiative corrections in the quantum field theory – an aesthetically pleasing

result.

The Higgs mass can be calculated from the potential in Eqn. 2.2.7 as

M2
H =

1

2

d2Veff

dH2

∣∣∣∣
H=〈H〉

=

(√
2MW sin θW

πα

)2

B ' (2243.2 GeV)2B (2.2.9)

which, in combination with Eqn. 2.2.8 should yield a Higgs boson of mass in the ballpark of

10s of GeV, which makes the measured value around 125 GeV a not-impossible goal.

However, when we compute the sum in Eqn. 2.2.8, the B-term gets contributions from both

bosons and fermions, but with different signs. For the Higgs mass squared to be positive, the

mass of the top quark needs to be mt < 78 GeV. Since the top quark is known to be much

heavier, the value of B is, in fact negative, and with negative B, the minimum shifts back to

〈H〉 = 0.

Thus the Coleman-Weinberg mechanism fails to provide a correct explanation of spontaneous

symmetry-breaking within the SM and we are forced back to assuming a nonzero negative

coefficient of the S†S term. The incorporation of more particles can ameliorate the effect of

the top quark contribution in B, but that takes us beyond the SM. In fact, in supersymmetric

models, the Coleman-Weinberg mechanism can be easily made to work because of the large

number of heavy new particles in the theory.

We thus see that the construction of the SM involves making ad hoc choices of several pa-

rameters, and sometimes rather non-intuitive ones as well. This is a plainly unsatisfactory

state of affairs and therefore a major motivation to seek a better theory.
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2.2.2 Standard Model as a Quantum Field Theory

Apart from the above problems with its classical structure, the quantum field-theoretic version

of the SM has its own set of problems, the chief of which are

A. Hierarchy Problem and Naturalness;

B. Metastability of Electroweak Vacuum;

C. Axial Anomaly and Strong CP Problem.

Each item is discussed below.

A. Hierarchy Problem and Naturalness

As we have seen in the previous chapter, construction of the SM would not have been possible

without the inclusion of elementary scalar fields, of which the Higgs boson is the empirical

manifestation. The discovery of the Higgs boson by the CMS and ATLAS collaborations at

the LHC [62, 63] and subsequent measurements of the Higgs boson decay probabilities ( see,

e.g., Fig. 13 in [57]) have more-or-less confirmed that the model of spontaneous symmetry-

breaking in the SM is indeed the correct one. However, at 125 GeV, the mass of the Higgs

boson is itself a puzzle, and the Higgs vacuum expectation value (vev) of 246 GeV and the

masses of the W± and Z bosons, to say nothing of the fermions, are all determined by this

scale. The only other fundamental scales known are the QCD scale (ΛQCD ∼ 200 MeV)

and the Planck scale MPl = (GN )−1/2 ' 1019 GeV, where GN is Newton’s gravitational

constant. The extremely small ratio between the electroweak scale (Mew ∼ 100 GeV) and the

Planck scale, while perfectly possible in a classical field theory, is untenable in its quantum

field-theoretic version. This is a generic problem with quantum field theories which have

elementary scalars, and is referred to as the hierarchy problem.

H H

t

t

H H

V

V

H H

VV

H H

HH

Figure 2.1: One-loop SM corrections to the Higgs mass-squared. The label ‘t’ represents the top quark and

‘V’ represents vector bosons

The hierarchy problem in the SM can be more precisely stated in terms of the squared mass

of the Higgs boson. If the SM is considered as an effective theory having some cutoff Λ, the

quantum correction to the Higgs boson mass-squared involve a term proportional to Λ2. This

can be seen from an approximate calculation of the Feynman diagrams listed in Fig. 2.1. The

dominant contribution is expected to come from the top quark, since it has by far the largest

coupling yt with the Higgs boson. Taking the leading contribution from the top loop, then,
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the Higgs mass-squared is given by

M2
H =

(
M2
H

)
bare

+ δM2
h =

(
M2
H

)
bare

+
y2
t

8π2

(
Λ2 − 6m2

t ln
Λ

mt
+ 2m2

t

)
(2.2.10)

Obviously, if the value of Λ is several orders of magnitude above the electroweak scale, then

the theory will predict MH ≈ Λ� 125 GeV, which is contrary to the experimental result. In

the extreme case that there is no new physics between the electroweak scale and the Planck

scale, the Higgs boson mass will be predicted to be of the order of MPl ' 1019 GeV, which

is quite absurd, for, apart from its empirical abnegation, it would drive the Higgs quartic

coupling λ = M2
H/4v

2 to impossibly non-perturbative values.

It may seem that it is simple to arrange for a mass of 125 GeV by choosing the bare mass-

squared
(
M2
H

)
bare

as a large negative quantity, and thus arrange a highly delicate cancellation

of ∼ O(1034) GeV between it and the divergent correction to the mass squared. This is highly

unnatural, but not more so than the cancellations envisaged in the original renormalisation

programme for QED and other quantum field theories. However, the problem for the Higgs

boson is that even if we arrange such a cancellation at the one-loop level, the quadratic

(and logarithmic) divergences reappear at the two-loop level, when we have no more free

parameters left to tune. We could, of course, redefine the bare mass to have the cancellation

at the two-loop level, but then there will be a divergence at the one-loop level. Similar

arguments can be applied to every order in perturbation theory, making nonsense of the very

notion of a perturbation expansion. This is the naturalness or fine-tuning problem [64–67], in

the sense of Dirac that a small number – the Higgs boson mass – is unstable under quantum

corrections.

One may take the extreme view that the hierarchy problem is just an artefact of perturbation

theory and the fact that we calculate only a few orders in the perturbation theory. In the

exact SM, which exists in principle, there is just one cancellation which gives us the Higgs

boson mass of 125 GeV. However, in this case, one would have to explain why the perturbation

theoretic calculations for Higgs contributions to electroweak precision observables as well as

the Higgs boson decay widths provide results which are closely corroborated by experiment.

For this reason, it is widely believed that the hierarchy problem can be solved within the

framework of perturbation theory.

The earliest attempt to solve the hierarchy problem within perturbation theory was made by

Veltman [68], where he proposed that the entire quadratic divergence in the Higgs boson mass

cancels. This proposal made sense before the masses of the top quark and the Higgs boson

were known, but now it is negated by the experimental results. Nevertheless, the author of

Ref [69] revives the idea and proposes that the cancellation does indeed occur at a very high

scale, where the renormalisation group evolution of the SM parameters makes this possible.

This is, in principle, possible, but the jury is still out on this idea.

Many other attempts to solve the hierarchy problem and save the Higgs boson mass from

receiving impossibly large radiative corrections have been made in the forty-five years since
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it was discovered. All of these involve new physics beyond the SM. Some of these ideas are

discussed in Section 2.3.

B. Stability of the Electroweak (EW) Vacuum

Other than the hierarchy problem, another problem induced by the discovery that the Higgs

boson has a mass as light as 125 GeV is that of the stability of the electroweak vacuum. We

may recall that the Higgs potential is given by

V (S) = −µ2
(
S†S

)
+ λ

(
S†S

)2
; µ2 > 0 (2.2.11)

These values are known at the electroweak scale (see Eqn. 2.2.6) and the quartic coupling λ

is positive, ensuring that the potential is bounded from below. However, for MH < 170 GeV,

it is known that the beta function of λ is negative and thus, with the knowledge that MH '
125 GeV tells us that the running of the quartic coupling λ decreases its value at high energy

scales. At a scale where it becomes zero (or negative), the electroweak vacuum becomes

unbounded from below and the current value V (v) = µ2v2 + λv4 ' −2.34 × 108 GeV4

becomes unstable. This would be a disaster, for then any hot spot in the Universe above the

threshold energy would see all the matter losing energy and heating up the neighbourhood,

which would in turn cross the instability threshold and also start losing energy. In a fraction

of a second, then, the Universe would disappear in an enormous explosion, known as a fiery

death. However, the proof that this does not happen is provided by the fact that the Universe

immediately after the Big Bang was at a higher temperature, and then it cooled down rather

than undergoing a fiery death.

Based on the zero-crossing of λ, the SM vacuum can either be stable, unstable or metastable.

The vacuum is stable if the quartic coupling remains positive all the way up to MPl ∼ 1019

GeV. If the quartic coupling becomes negative before reaching this scale, the vacuum can be

either unstable or metastable. If the value is only slightly negative, such that the lifetime

of the vacuum is larger than the age of the universe, the vacuum is regarded as metastable.

Otherwise, it is unstable.

Assuming only the SM field content, it was shown in [70], using a state-of-the-art calculation

involving a set of full 2-loop NNLO gauge couplings and 3-loop NNLO RGE precision, that

the SM is near-critical and not necessarily stable. It lies on the phase transition boundary

between a stable configuration and a metastable one. The results crucially depend on the

measured masses of the Higgs and the top quark. The authors calculate that the stability

condition on the Higgs mass can be well-approximated by

Mh > 129.6 GeV + 2.0 (mt − 173.34 GeV)− 0.5 GeV
α3(MZ)− 0.1184

0.0007
± 0.3GeV (2.2.12)

With the experimental bounds on the Higgs mass from Run-I being at MH = 125.09 ±
0.24 GeV [71], the stability condition is excluded at 2.8σ. The lifetime of the vacuum is
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greater than the age of the universe if [72]

Mh > 111 GeV + 2.8 GeV

(
mt − 173.2 GeV

0.9 GeV

)
− 0.9 GeV

(
αS(MZ)− 0.1184

0.0007

)
± 3 GeV

(2.2.13)

indicting that if we take central values, we will certainly get a metastable Universe. The

regions of instability, metastability and stability of the EW vacuum are given in Fig. 3 of

Ref. [70],

As is obvious from Eqn. 2.2.12 and 2.2.13, precise measurements of the mass of the Higgs

boson and, more importantly, of the top quark are of paramount importance in determining

the stability condition of the SM vacuum.

C. The Axial Anomaly and Strong CP Problem

The third and perhaps the most intractable problem with the SM as a quantum field theory

is the so-called strong CP problem. This is described briefly in this section, based mainly on

the treatment of Refs. [73–75].

If one considers the classical theory only, then in the limit of vanishing quark masses, the

QCD Lagrangian of Eqn. 1.2.24 ought to have a large global symmetry, viz. U(N)V ×
U(N)A, with V and A indicating vector and pseudovector (axial vector) respectively. For

the first generation quarks, in fact, mu,md � ΛQCD, so the corresponding symmetry ought

to be found. While the vector part is indeed exhibited in the form of isospin and baryon

number (U(2)V ≡ SU(2)I×U(1)B), the axial vector symmetry U()A is not seen. This can be

explained by claiming that the axial vector symmetry is spontaneously broken by the quark

condensates 〈ūu〉 = 〈d̄d〉 6= 0. However, we would then expect four Nambu-Goldstone bosons

corresponding to the four broken generators of U(2)A, which cannot be removed by a gauge

choice since these are global symmetries. In fact, the three pions π0, π± are good candidates

for these Nambu-Goldstone bosons, but there is no fourth light state in the mass spectrum,

since the only other possible candidate, the η, is far too heavy. This absence was recognised

as the U(1)A problem.

The problem was resolved by the recognition of the multiple vacuum structure of QCD. In

QCD, there is a chiral anomaly because of which axial currents are not conserved, viz.

∂µJ
µ
5 =

g2
snf

32π2
F aµνF̃

aµν ; F̃ aµν =
1

2
εµναβF aαβ (2.2.14)

where nf is the number of quarks and the F aµν are the SU(3)c field strength tensors. However,

the above operator can be written as a total derivative

F aµνF̃
aµν = ∂µK

µ (2.2.15)

with

Kµ = εµναβA
aν
(
F aαβ − g

3
fabcAbαAcβ

)
(2.2.16)
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It follows that under the transformation of the quark field qf → exp
(

1
2 iαγ5

)
qf , the chiral

anomaly changes the action by

δS = α

∫
V
d4x ∂µJ

µ
5 = α

g2nf
32π2

∫
V
d4x F aµνF̃ aµν

= α
g2nf
32π2

∫
V
d4x ∂µK

µ = α
g2nf
32π2

∫
S
dsµK

µ (2.2.17)

The surface integral in the last step suggests that if we were to set Aaµ = 0 at spatial infinity,

the integral would vanish and the anomaly with it. The axial symmetry would then be a good

symmetry. However, as t’Hooft showed [76], in a non-Abelian gauge theory like QCD there

exist multiple vacua, and tunneling between them permits the construction of non-trivial

gauge configurations for which the integrand does not vanish at infinity, i.e. the anomaly

exists. This explains why U(1)A is not a good symmetry of QCD.

However, this resolution of the U(1)A puzzle immediately leads to another problem of the

QCD Lagrangian and that is the existence of non-trivial anomaly-like terms such as

Lθ =
g2

32π2
θ F aµνF̃

aµν (2.2.18)

which are known as θ terms. This would lead to CP -violating effects in the strong sector —

but such effects have not been observed. For example, the θ term leads to a non-zero neutron

dipole moment, which has been estimated [77] to be dn = 5.2×10−16θ cm. The experimental

upper bound [78] on the electric dipole moment of the neutron is dn ' 10−26, giving us an

upper bound of θ ≤ 10−9− 10−10. Obviously, such a small parameter in the Lagrangian is an

acute fine-tuning problem, and this is referred to as the Strong CP problem.

While several ideas beyond the SM have been proposed to solve this problem, the most widely-

accepted explanation is the Peccei-Quinn (PQ) theory, which predicts the existence of new

particles called axions. This is discussed in Section 2.3.4.

2.2.3 Phenomenological Problems

In the previous two sections we have discussed the internal problems with the SM, both in its

classical and quantum versions. However, it is not enough for the SM merely to be internally

self-consistent, but it must also explain the observed phenomena and measurements. This

leads to a class of problems which we may call phenomenological, in the sense that they are

directly related to empirical data. While potentially every new measurement confronts the

SM, the major problem areas lie in studies of extra-terrestrial physics. These are

A. Baryogenesis at the observed level.

B. The Dark Matter problem.

C. The Dark Energy problem.



34 CHAPTER 2. BEYOND THE STANDARD MODEL

A. Baryogenesis

In this section, we discuss the problem of baryogenesis, i.e. the question of what causes the

overwhelming dominance of matter over antimatter in our present Universe. This section

closely follows the treatment of Refs. [79–82].

Our very existence proves that, at least in our immediate neighbourhood in the Universe, the

amount of matter overwhelmingly dominates the amount of antimatter. There is, moreover,

extensive observational evidence that matter does indeed dominate antimatter in the Universe

as a whole. This is quantified by a quantity called the baryon number asymmetry

η =
nB − nB

nγ
(2.2.19)

where nB, nB and nγ are the number of baryons, antibaryons and photons, respectively, in

the Universe. Obviously, this would vanish if the Universe was matter-antimatter symmetric,

but, in fact it does not. In the SM, we have a prediction of η ∼ 10−26, but observations tell

us that, in fact, η ∼ 10−10. This huge discrepancy is a major drawback of the SM.

How can one explain such a phenomenon? The first, and most naive, explanation would

be to say that the Universe was always baryon-asymmetric and all that we are observing is

its manifestation. However, as all the basic equations governing matter and radiation are

baryon-number symmetric (at least in the SM), this is an unnatural starting point and is a

solution by fiat rather than a satisfactory explanation. Alternatively, one could assume that

there are indeed equal amounts of matter and anti-matter in the Universe, but they exist in

different spatial zones. If this were the case, however, we would expect γ-rays arising from

the annihilation of matter and anti-matter at the interface of the zones, which would lead

to an isotropic haze of gamma radiation. No such effect has, however, been found. Keeping

the zones separate with an intervening vacuum is not possible with the present theories of

cosmological evolution. We are, then forced to the third, and most likely hypothesis, viz. that

the Universe started out as baryon symmetric, but developed a non-zero asymmetry during

its evolution. This is the idea of baryogenesis.

The necessary conditions for baryogenesis were enunciated by Andrei Sakharov in 1967 [83].

These are

1. Baryon number violation: This is an obvious requirement, or else nB = nB. If baryon

number is violated, we could have baryons produced through a heavy boson X which

decays as X → Y +B, where B is a baryon and X,Y do not carry any baryon number.

2. C and CP violation: If C (or charge) is conserved, the charge-conjugate reaction would

produce equal numbers of antibaryons, since

Γ(X → Y +B) = Γ(X → Y +B) (2.2.20)

However, even if C is not conserved, X could decay to two left-chiral baryons or to two

right-chiral baryons. If CP were an exact symmetry, we would have Γ(X → bLbL) =
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Γ(X → b̄Rb̄R), even if Γ(X → bLbL) 6= Γ(X → b̄Lb̄L). Thus, when an X boson decays,

we will have

Γ(X → bLbL) + Γ(X → bRbR) = Γ(X → b̄Rb̄R) + Γ(X → b̄Lb̄L) (2.2.21)

which would wipe out the baryon asymmetry. It follows, then, that both C and CP

should be violated.

3. Out-of-thermal-equilibrium interactions: At thermal equilibrium with high tempera-

tures, the rate at which the particle X decays and the rate at which it is created are

equal, i.e. Γ(X → Y +B) = Γ(Y +B → X). One cannot, then have a stable population

of either baryons or antibaryons.

However, if the particle X decays at a time when the temperature of the Universe,

T < MX , the final state with an energy of O(T ) cannot produce the particle X back.

The rate of creation of X is then Boltzmann-suppressed Γ(Y +B → X) ∼ e−MX/T . This

will ensure that the baryon population survives through the cooling of the Universe.

It is now interesting to discuss the SM and see if the Sakharov conditions can be realised

within its framework.

• Baryon Number Violation in the SM:

Naively speaking, the SM at zero temperature conserves baryon number, so this may

seem to immediately preclude baryogenesis in the SM. However, matters are not so sim-

ple at finite temperatures, especially the very high temperatures in the early Universe.

This is discussed below, following the classic treatment of Ref. [85].

In the SM, baryon number can be violated through the triangle anomaly since

∂µJ
µ
5 ∝ F aµνF̃ aµν 6= 0 (2.2.22)

where the F aµν are the SU(2)L field strength tensors. As this is a total derivative, the

corresponding terms in the Lagrangian may vanish if the gauge fields vanish at the

surface, just as we have argued in the case of the strong CP problem. As in that

case, it can be shown [76] showed that these gauge fields do not actually vanish at

infinity. This is because the classical electroweak vacuum field configuration comprises

an infinite number of equivalent vacua which are related to each other by “large” gauge

transformations. This is often referred to as the θ-vacuum of non-Abelian gauge theories.

Each vacuum state is associated with a winding number νi.

In SU(N) theories with spontaneously broken symmetries, we can define a Chern-Simons

number [86]

NCS =

∫
d3xJ0; with Jµ =

g2

32π2
εµνρσ

(
F aνρA

a
σ −

g

3
εabcA

a
νA

b
ρA

c
σ

)
(2.2.23)

The Chern-Simons number is topological and labels each vacuum state. It changes by

integral values. If a state is a vacuum state at time t0 and is at another vacuum state
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at time t1, we have

NCS(t1)−NCS(t0) =

∫ t1

t0

dt

∫
d3x ∂µJ

µ = ν ≡ integer (2.2.24)

and then the change in baryon number is

∆B = ∆L = νnf (2.2.25)

where nf is the number of fermion fields.

Continuous transformations around a vacuum cannot change NCS, however. That can

only occur by a transition from one vacuum to another either by tunnelling or by

going over the barrier. The solution of the state at the top of the barrier between two

consecutive vacua is called the sphaleron. This saddle point solution was first proposed

by Klinkhammer and Manton [87]. At zero temperature, the probability of tunnelling

from one vacuum state to the next is found to be exceedingly small.

P ∼ exp

(
−8π2

g2

)
∼ 10−173 (2.2.26)

which explains the conservation of baryon number in the SM at zero temperature.

However, Kuzmin et. al. [88] showed that at high temperatures, the transitions are

much less suppressed. At T & 100 GeV, these processes have significant amplitudes.

The calculations for the probability at finite temperature are complicated and require to

be done numerically. State-of-the-art computations [89] give the transition time between

two successive vacua as

τ−1 ≡ Γ

V
= Cα5

WT
4; αW =

α

sin2 θW
(2.2.27)

Lattice calculations [90] are used to obtain the value of C. Recent results show that

C = 25.4± 2.0 (2.2.28)

With these numbers, one can predict a finite probability for the transition from one

vacuum to the other and hence of a non-zero winding number, which, by Eqn. 2.2.25

corresponds to a finite amount of baryon-number violation. Thus, finite temperatures

are the key to baryon number violation in the SM.

• Out of equilibrium interactions in the SM:

This condition of Sakharov can be met in the SM by the electroweak phase transition

(EWPT), which presumably happened in the early Universe. The electroweak vacuum

near criticality can develop domains, inside which the Higgs vev and therefore particle

masses are non-zero in the symmetry-broken phase, while outside these domains the

symmetry is unbroken and all the masses are zero. Thus, baryogenesis can occur outside

the domains, and such baryons can propagate inside the domains, but the corresponding

antibaryons cannot be generated inside the domains due to the nonvanishing masses. As
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the Universe cools below the electroweak transition temperature, these domains expand

and join, eventually encapsulating the entire Universe. Thus, any baryogenesis taking

place at the domain walls freezes out and remains fixed for the rest of the evolution

process.

• CP violation:

From the basis-independent measure of CP -violation in the SM given by the Jarlskog

invariant (Eqn. 1.1.3), it is seen that the quantitative level of CP violation is extremely

small, essentially because of the near-diagonal nature of the CKM matrix. It is especially

small when compared to what is required for baryogenesis to occur. This is a clear failure

of the SM, which has no other source of CP violation. It is therefore widely believed

that extra sources of CP violation are needed, and this can only happen in theories

which go beyond the SM.

B. Dark Matter

Perhaps the greatest shortcoming of the SM is that it does not have any explanation for the

phenomenon of dark matter in the Universe. Dark matter (DM) is, in fact, one of the most

important mysteries in Science today, and the subject of intensive research by cosmologists,

astrophysicists and elementary particle physicists. The present discussion has been referenced

mainly from [91–93].]

DM was first proposed by Zwicky in 1937 to explain the unexpectedly large proper velocities

of galaxies in the Coma cluster. However, the idea was universally expected only after the

work of Rubin in 1973 on the velocity distribution of stars in the arms of spiral galaxies. If we

assume the mass M of such a galaxy to be concentrated in the central luminous region, then

Newtonian dynamics establishes that the transverse velocity of a star in the highly tenuous

spiral arms at a distance R from the galactic centre would be

v(R) =

√
GM

R
(2.2.29)

i.e. it would fall as R increased. Rubin’s observations, and a host of later results, suggest

that instead of having v(R) ∝ R−1/2, it appears that v(R) is approximately constant, even

showing a slight tendency to increase (see Fig. 2.2). To explain this, Rubin revived Zwicky’s

idea that the luminous galaxy is immersed in a halo of non-luminous, but transparent, dark

matter, whose gravitational attraction can be used to explain the observed effect. Thus, if the

matter within a sphere of radius R is M(R), then v(R) would be constant if M(R) ∝ R, i.e.

the matter density distribution is ρ ∝ R−2. This is a sharply rising curve towards the centre

of the galaxy, and is likely to be mostly due to dark matter. The fact that the constancy

of the velocity curves is also applicable to isolated stars out far beyond the luminous region

suggests that the bulk of the matter in the galaxy is dark. This phenomenon has now been

established for hundreds of galaxies and is believed to be universal. For remote galaxies where

it is difficult to measure rotation curves of individual stars, the existence of dark matter halos
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Figure 2.2: Rotation curve for NGC 6503, which shows the observed rotation curve (red) and the theoretically

expected rotation curve (blue), if the observed luminous matter made up the entire mass of the galaxy. The

data for the red curve is taken from hep-ph/9710467.

has been conclusively established by observing gravitational lensing by these galaxies and

galaxy clusters.

The question naturally arises as to the nature of this dark matter. Clearly it has gravitational

but no electromagnetic interactions. However, it is not immediately clear if it is distributed or

clumpy or if it has strong or weak interactions. A major clue arises from the of the so-called

Bullet Cluster (1E 0657-558) by the Chandra X-ray observatory [94]. This is an irregular

cluster (by optical and X-ray imagery) of galaxies which appears to have been formed by the

collision of two roughly spherical clusters (see Fig. 2.3). However, it is flanked on both sides

by roughly spherical dark halos which are revealed by gravitational lensing effects on distant

sources behind the halos [95], leading to the obvious conjecture that the two roughly spherical

dark halos have simply passed through each other, while the luminous baryonic components

have collided and merged into the observed irregular shape. This proves rather conclusively

that the dark matter is non-baryonic in nature and does not have strong interactions. The

hypothesis that dark matter could consist of massive compact halo objects (MACHOs) is

thus laid to rest. What is left is the possibility that dark matter consists of a new form of

elementary particle which has gravitational and possibly weak interactions, and not strong or

electromagnetic interactions.

The final piece in the puzzle comes from observation of fluctuations in the cosmic microwave
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Figure 2.3: The bullet cluster: The figure shows the merging galaxy cluster 1E0657-558, where the left

image is an image from Magellan and the right image is an x-ray image by the Chandra X-Ray Telescope. The

contours show the distribution of mass reconstructed using weak gravitational lensing methods. The image is

reproduced with permission from Dai et. al. 10.1103/ PhysRevD.78.104004, Vol 78 Issue 10, 2008. Copyright

(2008) by the American Physical Society

background radiation (CMBR), where data from the Planck experiment [96] suggests that

baryonic matter comprises 4.9% of the total energy-mass content of the Universe, DM com-

prises 26.8%, and the rest is a mysterious things called Dark Energy (see next section). The

relic density of DM in our Universe is calculated to be

ΩDMh
2 = 0.1198± 0.0026 (2.2.30)

where ΩDM = ρDM/ρcrit and h = H0/100 kms−1 Mpc−1. The relic density bounds constitute

an important constraint for any DM model.

It is important to note that given current models of cosmological evolution, it would not

be possible to generate so high a relic density from gravitational interactions alone. The

DM particles must, then, have been produced through weak interactions, and this gives us

a handle for their possible experimental detection. In fact, it is widely believed today that

the dark matter components are weakly-interacting massive particles (WIMPs). Moreover,

their masses must be comparable to the electroweak scale if the cosmological evolution is

to be explained by the current ΛCDM model. It is a remarkable coincidence that ∼ 100

GeV WIMPs interacting with the SM particles with the weak interaction coupling strength

provides just the right amount of relic density without any unnatural tuning of the values of

the parameters. This is known as the ‘WIMP miracle’.

Experiments and bounds: As mentioned above, the fact that DM particles must have weak

interactions provides a way to detect them in terrestrial experiments, much in the same way

as neutrinos (which also have only weak and gravitational interactions) can be detected by

experiments of sufficient sensitivity.

• Direct DM detection experiments mainly focus on WIMP searches. Non-relativistic

WIMPs hitting nuclei now and then in an underground detector produce recoil and this

can be measured accurately. Several versions of this idea have been implemented for

the different nature of couplings, one being dependent on the spin of the nuclei and the
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other being independent of it. The different experiments like CoGeNT (using 73Ge),

XENON100 (using 131Xe) even have different threshold energies and help establish

independent limits for different WIMP velocity distributions.

• Indirect DM detection can be done in two ways. The relative abundance of DM is

indicated by the CMBR data, when the fluctuations are expanded in terms of spherical

harmonics. The ratio of the strengths of the second and the third harmonics gives the

ratio of the baryonic matter to the dark matter abundances (See Refs. [97]). Alterna-

tively, assuming that the DM consists of WIMPs, they can be searched for in accelerator

machines where they could be produced in weak decays of strongly-produced particles,

and would leave a characteristic missing-energy-and-momentum signature.

A detailed review of the experimental searches are given in Refs. [98, 99]. It hardly needs to

be said that all DM detection experiments till date have yielded negative results, indicating

that if the WIMP hypothesis is correct, then the DM particles must be either too heavy or too

weakly-interacting to leave any traces in the current experiments. There is every possibility,

however, that the next round of experiments or the next round of data-taking at current

experiments would reveal signs of DM.

Constituents of Dark Matter: We have already seen that the SM does not contain any WIMPs,

except neutrinos, which are far too light to be DM candidates. However, there are several

possible candidates in theories beyond the SM, of which a few are

• Sterile neutrinos: It is possible that there exist heavy neutrinos which have no gauge

interactions, but mix with the light neutrino species through an extended PMNS matrix.

These heavy eigenstates can be produced through their mixing angles and create the

DM relic density observed. This is the hypothesis which involves minimum addition to

the SM.

• Axions: The solution to the Strong CP-problem (Sections 2.2.2 and 2.3.4) may also

provide a viable DM candidate in the axion. Most models place the axion mass in the

range of µeV and they can be detected by their oscillations to photons. Though all

current results are negative, experiments like ADMX [100] and CARRACK [101] are

actively searching for axion DM.

• Supersymmetric particles: Supersymmetry (SUSY) provides a good natural option for

WIMPs in the lightest neutralino (see Section 2.4). If SUSY particles are prevented from

decaying to any SM particle by the imposition of a Z2 symmetry between the SUSY

and SM particles, neutralinos produced in the early Universe survive to the present day

after the “freeze-out” temperature is reached, and they might interact weakly with SM

fields. The masses and coupling strengths of the lightest neutralino are expected to lie

in the very range where the ‘WIMP miracle’ occurs.

In some models of SUSY which include gravity, it is the lightest gravitino rather than

the lightest neutralino which are the DM candidates. Such gravitinos would be the

end product of decays of weakly-interacting particles produced in the early Universe.
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However, detection of these will be a real challenge, as they have only gravitational

interactions.

• Other Candidates: Other DM candidates which have been occasionally proposed in-

clude the lightest Kaluza-Klein modes of the photon in models with a universal extra

dimension (UED), and a heavy photon in little Higgs models with T -parity conservation.

Problems with the DM hypothesis: Despite the strength of the DM hypothesis, it still suffers

from certain problems, most notably its inability to explain small scale observations such as

the following.

1. Core-versus-Cusp problem: This refers to the disagreement between the N -body sim-

ulations using Cold Dark Matter (CDM) and observations. The Navarro-Frenk-White

(NFW) density profile for DM is [102]

ρ(R) = ρ0
Rs
R

(
1 +

R

Rs

)−2

(2.2.31)

where Rs is the scale radius and ρ0 is a density scale, both characteristics of the DM halo

being considered. This predicts a sharply increasing density at smaller radii (a ‘cuspy’

distribution) in line with the naive calculation mentioned above, while the observed

data suggests more flat central density profiles (the ‘cores’). A detailed discussion may

be found in Ref. [103].

2. Missing satellites problem: Simulations involving the CDM model predict that every

galaxy ought to have a large number of DM sub-halos, and each sub-halo can be as-

sociated with a satellite galaxy. For example, the CDM model predicts thousands of

satellite galaxies for the Milky Way, whereas the Local Group comprises only ∼ 50

satellite galaxies. One could try to explain away these missing satellites by arguing that

they do not contain enough luminous matter to be detected. However, this idea runs

into the ‘too big to fail’ problem discussed below. More details on this can be found in

Ref. [92].

3. Too-big-to-fail problem: In continuation of the missing satellites problem. detailed sim-

ulations within CDM models indicates that a large number of the missing satellite

galaxies would be too massive to not have stars. i.e. they are too big to fail to pro-

duce visible stars. For the Local Group, then, there are several large satellite galaxies

predicted which are simply not seen.

Before concluding this discussion on DM, it is worth mentioning that there is a class of

theories called Modified Newtonian Dynamics (MOND) theories [104, 105] which deny the

existence of DM altogether and suggest that modification of Newton’s law of gravitation over

long distances provides the explanation of the observed effects. MOND theories are not very

popular but they have proved rather difficult to rule out in any conclusive manner.
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C. Dark Energy

The largest and most mysterious component of the Universe, as evidenced by the Planck data,

is Dark Energy. This is briefly discussed in this section, based on Refs. [106,107].

The simple form of Hubble’s law gives us a uniformly expanding Universe, but the Friedman

equations tell us that if the Universe consists of gravitating matter with a positive density

and pressure, then the expansion rate must gradually slow down. However, in 1998, a mo-

mentous discovery in cosmology came from the observation of Type Ia supernovae in distant

galaxies which are considered to be standard candles, their apparent luminosities telling us

the distances of those galaxies, while a study of the redshift in their spectra tells us their

velocity of recession. It was found that the rate of expansion of the Universe is accelerating

instead of slowing down [108, 109]. Studies from CMBR [110] and large scale structure [111]

independently support this observation. It follows that about 70% of the energy-mass of

the Universe is an unknown form which exerts negative pressure, leading to repulsion rather

than attraction — unlike gravitation. Most recent data from the Planck satellite studying

the CMB also confirm the overwhelming dominance of this unknown entity, which has been

dubbed ‘dark energy’. A naive representation of dark energy is to simply add a constant term

with the cosmological constant Λ to the Einstein equation, yielding

Rµν −
1

2
gµνR = 8πG Tµν + Λgµν (2.2.32)

In a Friedmann-Robertson-Walker (FRW) Universe, the force law can be then written as

F = −GM
R2

+
Λ

3
R (2.2.33)

where R is the scale factor in the FRW metric. A positive value of Λ [112] means that at

sufficiently large distances the gravitational force is repulsive, rather than attractive. This

would explain the accelerated expansion of the Universe.

The Cosmological Constant Problem: A Λ term also contributes to the positive curvature of

the Universe. Our Universe has been observed to be very close to flatness and any positive

curvature must be tiny, which means that Λ itself must be extremely small. Why Λ is small

but not zero is a fundamental question in cosmology, because no known symmetry forces it

to be zero.

The existence of the cosmological constant means that the vacuum energy is non-zero. To

match the observations, the vacuum energy density needed is

Λ ∼ ρobs
vac =

(
10−3eV

)4
(2.2.34)

However, the introduction of the SM fields and the Planck scale brings with itself the zero

point fluctuations of the quantum fields. For the Planck scale, the vacuum energy is

Λ ∼ ρPlanck
vac ∼

(
1027eV

)4
(2.2.35)
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which is a discrepancy with the data by an intolerable 120 orders of magnitude — far worse

than the hierarchy problem discussed earlier. This is known as the cosmological constant

problem.

Several ingenious proposals to mitigate this problem may be found in the literature [113,114],

although no proposal has been accepted as completely satisfactory to date. However, issues

linked with dark energy are not discussed further as they form no part of the research work

in this thesis.

2.3 Beyond Standard Model Physics

As we have seen above, there are several problems and questions to which the SM has no

solution. It is natural, therefore, to assume that the SM is not the ultimate theory, but an

effective low-energy limit of a deeper underlying theory whose effects would become manifest

at higher energy scales than have been probed till the present. Many different versions of this

underlying theory have been proposed. Most of these address a limited set of the problems in

the SM – often just a single one – and it may be expected that eventually some combination

of these theories may prove to be the candidate for the ultimate ’theory of everything’.

2.3.1 Hierarchy Problem

In the wake of the Higgs boson discovery, perhaps the most pressing question is the explanation

of its low mass, which we have described as the hierarchy problem. As we have seen, this

arises from the large quadratic divergences (Λ2) in the radiative corrections to the Higgs boson

mass, which are caused by the high cutoff scale Λ for the SM. There are two main ways in

which this problem can be tackled, viz.

A. Arranging for cancellation of the quadratic divergence between different radiative cor-

rections, i.e. realising the Veltman condition in a new physics scenario.

B. Arranging for the cutoff scale Λ for the SM to lie in the range of a few TeV to a few

tens of TeV, in which case a low Higgs boson mass does not call for much fine tuning.

In either case, one requires the introduction of new fields and new interactions beyond the

SM.

A. Cancellation of quadratic divergences

In such theories, one introduces extra fields and interactions with some underlying symmetry

ensuring that the radiative corrections from these extra fields are equal and opposite to the

SM contributions, at least so far as the quadratically divergent term goes. There are two

major classes of these theories.
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• Supersymmetric theories: Supersymmetry is a symmetry which keeps the action of the

theory invariant under transformations which take a boson to a fermion and vice versa.

In the limit of unbroken supersymmetry, this requires every bosonic degree of the SM

to be paired with an extra fermionic degree of freedom, and every fermionic degree

of the SM to be paired with an extra fermionic degree of freedom. These extra fields

are called superpartners. In the limit of unbroken supersymmetry the SM particles

and the corresponding superpartners have the same masses and couplings. As a result,

when radiative corrections to the mass of the Higgs boson are calculated, one gets

contributions of equal magnitude from every boson-fermion pair of degrees of freedom.

Cancellation is then automatic, for it is well known that closed fermion loops and closed

boson loops differ by an extra negative sign.

H H

t̃

t̃

H H

t̃t̃

Figure 2.4: One-loop SUSY corrections to the Higgs mass squared. t̃ represents the scalar superpartner to

a SM top t

To be more concrete, we consider the dominant top quark contributions to the Higgs

boson mass corrections discussed in 2.2.2A. In a supersymmetric theory we will have

scalar superpartners of the left- and right-chiral top quarks, which are called left- and

right-scalar tops (or stops) respectively. The leading contribution of the stop loops given

in Fig. 2.4 are given by [115]

δM2
h =

λ2

16π2

(
Λ2 − 2m2

t̃
Log

Λ

mt̃

)
+
λ2v2

16π2

(
1− 2Log

Λ

mt̃

)
(2.3.1)

where λ2 and λv are the quartic and trilinear couplings between the Higgs and the stop

fields respectively, while mt̃ is the stop mass. Given that there are two stops in the

theory, a summation of the results in Eqn. 2.2.10 and 2.3.1 cancels out the quadratic

divergence if yt = λ, a condition that is guaranteed by supersymmetry. The summation

of the two leading contributions is, then

δM2
h =

y2
t

4π2

[(
m2
t −mt̃

2
)

Log
Λ

mt̃

+ 3m2
tLog

mt̃

mt

]
(2.3.2)

which is free from quadratic divergences, the offending terms having cancelled exactly.

Thus, the hierarchy problem is solved in the framework of supersymmetry.

In the limit of unbroken supersymmetry, mt̃ = mt, and thus the entire radiative cor-

rection in Eqn. 2.3.2 cancels. However, as is elaborated in the next section, the super-

partners must generally be heavier than their SM counterparts – since they have not

been observed, which corresponds to broken supersymmetry. Thus mt̃ > mt, and thus

there is a non-vanishing radiative correction, which can be used to put limits on the

mass of the stops. We note however, that the quadratic divergence cancels, irrespective

of whether supersymmetry is exact or broken.
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• Little Higgs models: Another popular proposal to tackle the hierarchy problem is the

class of Little Higgs models [116,117]. The basic idea of these models is that the Higgs

boson is a pseudo Nambu-Goldstone boson (pNGB) of a global symmetry which is

broken at some high energy scale. The is analogous to the breaking of chiral symmetry

of the light quarks, where the pions play the role of the pNGBs. The general ideas are

briefly discussed below, based on the treatment of Ref. [29].

In Little Higgs models, a global gauge group G is broken to a subgroup H at a scale

f . The subgroup H contains the SM electroweak gauge group GEW ≡ SU(2) × U(1)

(where the subscripts ‘L’ and ‘Y ’ have been omitted for brevity). The Goldstone bosons,

including the SM Higgs, of the global symmetry breaking (at scale f) reside in the coset

space G/H. Various models have been invented to implement this idea using various

choices for G and H.

One of the simplest cases for Little Higgs can be constructed in analogy with the low-

energy sigma models. These assume a global symmetry group G ≡ SU(3)V × SU(3)A,

where the labels ‘V’ and ‘A’ are arbitrary. In such a toy construction, the global groups

each break to a SU(2) group. Thus, from the initial (8 + 8 =)16 generators of the two

SU(3) groups, only (3 + 3 =)6 survive and 10 are broken, giving 10 massless Goldstone

bosons. However, gauging SU(3)V eliminates five of the Goldstone bosons (they are

‘eaten’ up as the gauge group breaks to SU(2)). Introducing two copies of pNGBs Φ1

and Φ2, both of which transform as triplets under the gauged SU(3)V, we have

Φ1 = eiθA/f

 0

0

φ1 + f

 , Φ2 = e−iθA/f

 0

0

φ2 + f

 (2.3.3)

where the vevs of the two triplets are f1 = f2 = f and φ1, φ2 are real scalar fields whose

mass is mφ ∼ f . Moreover, the 5 Goldstone bosons are θA =
∑8

i=4 θ
a
Aτ

a, τa = λa/2

are the SU(3) generators and the sum extends only over the broken generators. The

Lagrangian is given by

LΦ = |DµΦ1|2 + |DµΦ2|2 (2.3.4)

The calculation of Feynman diagrams such as Fig 2.5 (a) and (b) yields

∼ g2

16π2
Λ2
(
|Φ1|2 + |Φ2|2

)
(2.3.5)

which doesn’t break the global SU(3)A symmetry. The term which breaks the symmetry

is the cross-term, which can arise from the Feynman diagram in Fig. 2.5(c)

g4

16π2
Ln

(
Λ2

f2

) ∣∣∣Φ†1Φ2

∣∣∣2 (2.3.6)

Using the definitions for the Φ fields as given in Eqn. 2.3.3 and

θA =
1√
2

 0 0 h+

0 0 h0

h− h0∗ 0

 (2.3.7)
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Φ1,2

VH

Φ1,2

(a)

Φ1,2 Φ1,2

VHVH

(b)

Φ1
Φ2

Φ1 Φ2

VH VH

(c)

Figure 2.5: The different loop diagrams. Diagrams in (a) and (b) are propagator corrections and do not

contribute to the potential of the Φ. Diagram given in (c) does contribute to the potential.

we find that

∣∣∣Φ†1Φ2

∣∣∣2 = −4f2
(
H†H

)
+

9

2

(
H†H

)2
+ · · · where H =

1√
2

(
h+

h0

)
(2.3.8)

The mass term for the Higgs boson, generated after symmetry breaking is then

m2
H ∼

g4

16π2
f2Ln

(
Λ2

f2

)
(2.3.9)

giving us m2
H ∼ 100 GeV if the value of the weak coupling is chosen for g and f ∼ 1 TeV.

This is a remarkable result and unlike anything found in the SM, since naively we might

expect the mass-squared to be proportional to Λ2/16π2, where Λ is some extremely

high scale acting as the cutoff for the theory. However, that it is instead proportional

to f2/16π2 tells us that the quadratic divergences cancel off. The cancellation happens

between the heavy gauge bosons of the bigger symmetry group and the massless SU(2)

gauge bosons. Furthermore, unlike in SUSY, in this case, the cancellation happens be-

tween fields of same spin, an example of what is called ‘same statistics cancellation’. A

similar calculation can be performed with the fermion loops, yielding the same remark-

able cancellation of quadratic divergences, where the heavy top quark loop cancels the

contribution from the SM top.

Besides the toy model described above, the simplest viable model was constructed by

Arkani-Hamed, Cohen and Georgi, called the Littlest Higgs [118] and was based on

the SU(5) group. However, the model is disfavoured by electroweak precision data.

An extension of the model [218] which involves enlarging the group with a discrete

symmetry, called “T-symmetry”, helps the model evade the electroweak precision con-

straints [219, 220]. Additionally, the presence of the T-symmetry provides a natural

lightest T-odd particle (LTP), generally the T-odd heavy photon, which can act as a

dark matter candidate [221].
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B. Theories with a low cut-off

In such theories, the SM is superseded by a new physics theory at fairly low energy scales,

such as a few TeV, or a few tens of TeV. In that case, the presence of a Λ2 term does not

drive the Higgs boson mass to extraordinary values, since a minor tuning of the couplings

could reduce it to the 125 GeV level. There are again two major classes of these theories.

• Compositeness models; In view of the fact that mesons and baryons, which were once

thought to be elementary particles, are actually composites made up of quarks, the

idea can easily be extended to the quarks and leptons, and especially the Higgs boson,

which is the only elementary scalar. One possibility is that the Higgs boson is not

elementary but a composite of two unknown fermions bound together by a hitherto

unknown force [119–122]. Following the analogue of QCD, one can model this force as

a SU(N)TC gauge theory, in which it is called a technicolour theory, and the unknown

fermions are called technifermions. Since the force is non-Abelian in nature, we may

expect a Landau pole in the interaction strength just as we do in QCD, and this will set

the energy scale up to which we can treat the Higgs boson as an elementary particle,

i.e. the SM is valid. Above this energy, the technicolour interactions will have to be

considered in addition to the SM interactions. If we set the technicolour scale to a few

TeV, the hierarchy problem disappears.

While technicolour is, in principle, a simple and attractive idea (and is supported by

historical trends), in practice, it has proved to be very difficult to construct a tech-

nicolour model which is consistent with the experimental data already available. For

example, to generate Yukawa couplings of the composite Higgs boson with the quarks

and leptons it is necessary to embed the SU(3)c and SU(N)TC gauge groups in a larger

gauge group called extended technicolour (ETC). However, in ETC models, the elec-

troweak couplings run to large values at lower energies, and result in too large values

of K0-K̄0 mixing and the electroweak precision variable S. This can be ameliorated by

including some extra fields which suppress the beta functions in a model called walking

(as opposed to running) technicolour. However, this then fails to explain the large top

quark mass, for which one gain has to extend the gauge group and postulate some kind

of mixing phenomena between the Higgs and a top quark condensate. There are serious

problems even with these topcolour-assisted technicolour models.

One can go beyond technicolour and postulate that all the elementary particles, includ-

ing leptons and gauge bosons, are composites of more elementary particles called preons.

The best known models are the haplon and rishon models [123–125]. However, these

theories are highly speculative in nature and we do not have properly falsifiable predic-

tions from them as of now. All this has led to the virtual abandonment of composite

models as a solution to the hierarchy problem.

• Extra dimensions: Theories with extra dimensions provide an economical solution to

the hierarchy problem. In the simplest Kaluza-Klein models [129, 130], any dimension
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beyond our observable four spacetime dimension is assumed to be finite and compactified

to a circle of radius R below the threshold observable in gravity experiments [126]. This

gives rise to the R4×S1 topology where S1 is the circle of radius R. This was brilliantly

used to create the first unified field theory, but this could not permit particle masses

between zero and the Planck mass.

The basic idea of Kaluza and Klein was revived by Arkani-Hamed, Dimopoulos and

Dvali(ADD) [131] to explain the hierarchy problem. They postulate a world in which

a (1+3) dimensional spacetime (a D3 brane) is embedded in a (1+3+D) dimensional

toroidal spacetime (called the ‘bulk’). The SM fields are all contained on the brane,

but gravity cannot be confined since it arises from the geometry of spacetime. For

interactions on the brane, the bulk effects can be integrated out of the action, and

hence it can be shown that

(MPl)
2 =

(
M

(1+3+D)
Pl

)D+2
VD =

(
M

(1+3+D)
Pl

)D+2
(2πR)D (2.3.10)

where MPl is the usual 4D Planck scale (∼ 1019 GeV), M
(1+3+D)
Pl is the fundamental

Planck scale in the bulk and VD = (2πR)D is the volume of the compact dimensions.

If R > 1/MPl, the fundamental Planck scale will be much lower than the usual Planck

scale. This reduction of the Planck scale sets a cut-off for the SM at a much lower scale

and thus one can avoid the hierarchy problem.

An important prediction of the ADD model is the presence on the brane of closely-spaced

Kaluza-Klein modes of the graviton field, which could collectively lead to observable

effects at high energy experiments such as the LHC. No such signals have, however,

been seen till date [127].

Apart from the ADD model, there are other ideas, such as the Randall-Sundrum model,

which also solve the hierarchy problem by invoking extra spacetime dimensions [128].

However, as extra dimensional models do not form part of the research work in this

thesis, this discussion is not carried any further.

2.3.2 Parity Violation

In sections 2.2.1B it has been mentioned that maximal parity violation is built into the SM

by fiat, by placing the left- and right-chiral fermions in different representations of the gauge

group SU(2)L. This has intrigued researchers from the beginning, for none of the other

interactions distinguish between fermions of different chirality. The neatest of the models

which can explain this is the left-right symmetric or LRS model, where the idea is that the

two chiralities are equivalent at a high scale, but become inequivalent at a low scale through

a spontaneous symmetry-breaking mechanism. This is explained below, based mainly on the

treatment of Ref. [132].

In the LRS model, the electroweak symmetry group is extended to

GLR = SU(2)R × SU(2)L × U(1)B−L (2.3.11)
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Note that B − L, which was an accidental symmetry in the SM, is here elevated to the status

of a gauge symmetry. It ensures that fast proton decay cannot happen. Moreover, apart from

the usual left-handed fermionic doublets, one also obtains right-handed doublets

QR

(
2, 1,

1

6

)
=

(
uR

dR

)
; LR

(
2, 1,−1

2

)
=

(
νR

lR

)
(2.3.12)

where the numbers in parentheses are the gauge charges under the GLR gauge group. The

electric charge (Q) for the doublets is given by

Q = T3L + T3R +
B − L

2
(2.3.13)

The conservation of parity in this model implies that the interactions of the left-handed and

the right-handed fermions are identical. With the right-handed weak bosons (WRµ), which

belong to the adjoint representation of SU(2)R, the interaction Lagrangian with quark fields

is given by

LQ = Q̄Liγ
µ

(
∂µ + igLτ ·WLµ + ig′

B − L
2

Bµ

)
QL

+ Q̄Riγ
µ

(
∂µ + igRτ ·WRµ + ig′

B − L
2

Bµ

)
QR (2.3.14)

where gL and gR are the left and right gauge charges. A similar Lagrangian can be written

for the leptons.

To explain observations, one needs to break the symmetry down to the SM symmetry group.

which then breaks to U(1)EM. The introduction of a scalar which is a doublet under both

the SU(2) groups helps give masses to the quarks via the Yukawa interactions. However, this

doesn’t break the GLR gauge group. In order to do so, we require additional scalar triplets

∆L(3, 1, 1) and ∆R(1, 3, 1). The scalar Lagrangian then becomes

Lscalar = Tr
[
(Dµφ)†(Dµφ) + (Dµ∆L)†(Dµ∆L) + (Dµ∆R)†(Dµ∆R)

]
(2.3.15)

The vevs can be assigned to the neutral components

〈φ〉0 =

(
v 0

0 w

)
; 〈∆L(R)〉0 =

1√
2

(
0 0

uL(uR) 0

)
(2.3.16)

The right handed symmetry must be broken at a high scale. Thus, to obtain proper magni-

tudes of the vevs, we have

u2
L � v2 + w2 � u2

R (2.3.17)

which gives the required symmetry-breaking pattern

SU(2)R × SU(2)L × U(1)B−L
uR−→ SU(2)L × U(1)Y

v,w−→ U(1)EM
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2.3.3 Spontaneous CP Violation

Like parity-violation, CP violation is also accommodated in the SM by fiat, as it were, by

making the mass matrices complex. Once again, we note that all the other interactions

conserve CP . Obviously, then, we can model CP as broken spontaneously [133] just as parity

can. The CP -violating phase would then be related to the vev(s) of the Higgs field(s) which

would cause the symmetry breaking. Thus, the Lagrangian would be CP -invariant, but the

ground state would break the CP symmetry.

It is easy to show that if the vev of a single Higgs doublet has a phase, this can be absorbed

in the phases of the Higgs scalars. Thus, more than one Higgs doublet is needed to achieve

spontaneous CP violation. In the simplest extension, the most general CP -invariant potential

for two Higgs doublets (S1 and S2) is

V = m2
1|S1|2 +m2

2|S2|2 −
(
m2

3S1S2 +H.c
)

+ λ1|S1|4 + λ2|S2|4 + λ3|S1|2|S2|2

+ λ4|S1S2|2 + [λ5(S1S2)2 + λ6|S1|2S1S2 + λ7|S2|2S1S2 +H.c] (2.3.18)

At the tree level, λ5 = 0 because of Natural Flavour Conservation (NFC) which is imposed

to tackle the problem of large tree-level FCNCs [135]. However, a non-zero λ5 might arise

from loop corrections. After spontaneous symmetry breaking, we have

〈S0
1〉 = v1; 〈S0

2〉 = v2e
iδ (2.3.19)

where only the neutral Higgs components get a vev. The resulting potential (with non-zero

λ5 terms) can be minimized if and only if

λ5 > 0; −1 < cos δ =
m2

3 − λ6v
2
1 − λ7v

2
2

4λ5v1v2
< 1 (2.3.20)

Thus, we have a source for CP violation derived from the vevs of the Higgs doublets.

cos δ =
m2

3 − λ6v
2
1 − λ7v

2
2

4λ5v1v2
(2.3.21)

Thus, the introduction of an extra scalar doublet is enough to provide a source of spontaneous

CP violation. It may be argued, with some justification, that including an extra scalar doublet

is no less of a fiat than making the mass matrices complex. However, two Higgs doublets

occur naturally in supersymmetric (and other) models, which purport to solve the hierarchy

problem, so that we can simultaneously allowing for spontaneous CP violation [134].

2.3.4 Strong CP Problem and Peccei-Quinn symmetry

The Strong CP problem discussed in Section 2.2.2, can be elegantly solved if we assume

an extra U(1) symmetry called Peccei-Quinn symmetry [136, 137]. This follows from the

realisation that the transformation angle in the quark mass term and in the pseudoscalar

gauge field density are related to each other by the chiral anomaly. Thus, in the mass term

in the Lagrangian

Lm = muūu+mdd̄d+H.c. (2.3.22)
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we could redefine the quark fields so that the θ dependence of the FF̃ term goes away, in the

limit of zero quark masses. In the presence of quark masses, however, we can redefine the

quark fields such that there is no θF F̃ term in the Lagrangian, but there is a phase in the

masses. The Lagrangian can be written as

Lm =
(
muūu+mdd̄d

)
cos

θ

2
+H.c. (2.3.23)

The vacuum expectation value due to the quark condensates is then

E(θ) = (mu +md)e
iθ〈q̄q〉 (2.3.24)

We can write down the quark condensate in an effective theory language with pions being the

only dynamical degrees of freedom.

q̄q ≡ Σ = 〈q̄q〉exp

(
iσaπa

2fπ

)
(2.3.25)

The Lagrangian mass term then becomes

Lm = eiθTrMqΣ (2.3.26)

The pion mass is given (ignoring θ) by

m2
πf

2
π = (mu +md)〈q̄q〉 (2.3.27)

This can be substituted in Eqn. 2.3.24 to obtain

E(θ) = m2
πf

2
π cos(θ) (2.3.28)

Now we assume that there a scalar particle a, called an axion, with the Lagrangian

La = ∂µa∂
µa+

a/fa + θ

32π2
F aµνF̃

aµν (2.3.29)

where fa is the axion decay constant. If the rest of QCD possesses a symmetry called the

Peccei-Quinn symmetry (U(1)PQ) such that it is invariant under a translation

PQ : a→ a+ α (2.3.30)

by a constant α, then one can eliminate θ. The minimum of the potential for the axion occurs

at θ = 0 and this fixes its value. This solves the Strong CP problem.

The axions are stable particles with mass approximately given by

M2
a '

f2
πm

2
π

f2
a

(2.3.31)

If fa ∼ 103 GeV, Ma ∼ keV. Axions are a particularly attractive theoretical proposition since

this model provides the economy of solving both the Strong CP problem and providing a

natural dark matter candidate.
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2.3.5 Fermion Mass Models

There have been several attempts to explain the hierarchy in the fermion masses of the SM

by building models which would give a definite structure to the fermion mass matrices (or

equivalently, to the Yukawa couplings) in the SM. These may be classified into two types.

1. Democratic Models: The simplest democratic model [145, 146] just assumes that the

Yukawa couplings are all equal, which can be enforced by adding a S3 global symmetry

to the SM. The Yukawa matrix is, then, of the form

Y = k

 1 1 1

1 1 1

1 1 1

 (2.3.32)

This is a completely natural choice, since the couplings of gauge bosons to fermions of a

particular charge are all the same. Considering only the quark sector, the up and down

sectors are distinguished by the different choices for the value of k (ku for up type and

kd for down type). The diagonalized mass matrix gives the masses, which are then

(m1,m2,m3) = (0, 0, 3k) (2.3.33)

Although this reflects the hierarchy between the third (heavy) generation and the first

two (light) generations, it does not provide masses for the first generations. In order to

obtain non-zero masses for the first two generations, attempts to break the democratic

S3 symmetry or perturb the democratic Yukawa matrices have been pursued in the

literature [138, 139]. None of these models are quite convincing, however, since their

assumptions are rather ad hoc, and moreover, it is not clear how much of the mass of

the first generation quarks comes from the Lagrangian and how much comes from the

electromagnetic and other self-energy corrections.

2. Textures: The opposite point of view to the democratic model is to assume that some

of the terms in the Yukawa matrix are actually zero, i.e. they are presumably forbidden

by some symmetry. One of the first ansätze, made by Fritzsch [140], for the quark mass

matrix was

Mu =

 0 Au 0

A∗u 0 Bu

0 B∗u Cu

 ; Md =

 0 Ad 0

A∗d 0 Bd

0 B∗d Cd

 (2.3.34)

This however fails to explain the quark mixing data as it cannot faithfully reproduce the

CKM matrix [141]. The Fritzsch model has been generalised into the texture models

where a model is called an ‘n-zero texture model’ if for the mass matrix the number

of zeros along the diagonal added to half of the symmetric off-diagonal zeros equals

n. Thus, each of Mu and Md above is a 3-zero texture model while the two taken

together makes the Fritzsch model a 6-zero texture model. There is a family of such

models, but modern quark mixing data generally rules them out [142]. Analysis of 5-zero
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texture models have not yielded any success at explaining the observed quark masses

and mixings either [142]. However, 4-zero texture models have been quite successful

[143,144].

In conclusion, we may say that though there exist different models which try to explain the

flavour-mixing and CP -violation in the SM, none of them is completely convincing, and hence,

this sector of the SM remains as much of a mystery as ever.

2.3.6 Neutrino Masses

The main issue in neutrino masses is their smallness, which, as we have seen, would require

Yukawa couplings of 10−13 or less, which would be difficult to sustain under radiative cor-

rections. However, there is a saving grace. Neutrinos, being the only neutral fermions in

the SM, can be Majorana in nature, which means that a neutrino is its own CP -conjugate

particle. This allows one to write down a mass term for the left-handed neutrinos (LHνs)

alone without invoking the right-handed neutrinos. However, the mass parameter would still

be intolerably small.

To get around this, an ingenious mechanism called the seesaw mechanism was invented by

introducing the right handed neutrinos (RHνs) in the theory with their own Majorana mass

term in the Lagrangian [149], viz.

Lνm = mLLνLν
C
L +MRRνRν

C
R (2.3.35)

The introduction of the RHνs also allow us to write down a Dirac-type mass term mLRνLνR

giving us the mass matrix (
νL νCR

)( 0 mLR

mT
LR MRR

)(
νCL
νR

)
(2.3.36)

Since RHνs are singlets in the theory, their Majorana masses can be very large, even several

orders of magnitude higher than the electroweak scale. Under such an approximation, the

diagonalisation of this matrix gives

mLL ' −mLRM
−1
RRm

T
LR (2.3.37)

If mLR ∼ 100 GeV then MRR ∼ 1016 GeV, mLL ∼ 10−3 eV, fits solar neutrino data quite

well.

The model described above is called ‘Type I seesaw’. There are other ways to implement a see-

saw mechanism, e.g., by including a heavy weak triplet scalar field (‘Type II seesaw’) or two

fermionic weak triplet fields (‘Type III seesaw’). More details can be found in Refs. [147,148].

2.4 Grand Unified Theories

Unification of interactions previously thought to be fundamental has always been a major ob-

jective of physics. Two great advances in this direction have been the unification of electricity
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Figure 2.6: The running of the couplings of the different gauge groups. The dashed lines represent the

running of the coupling constants in the framework of the SM and the unbroken lines are plotted in the

framework of a SU(5) GUT. New particles are assumed to occur at the TeV scale, indicated by the dashed

vertical line.

with magnetism by Maxwell in the nineteenth century [150], and the unification of electro-

magnetism with weak interactions by Glashow, Salam and Weinberg in the twentieth [3,5,6].

Thus, the SM consists of two fundamental interactions, viz. strong and electroweak, with

gravitation as a third fundamental force. Though gravitation is well explained at the classical

level by Einstein’s equations its true nature still remains a mystery, since no wholly satis-

factory means has been found to quantise it. There are also alternative views which treat

gravitation as a classical background field [151] or as an emergent force [152, 153]. However,

when we come to the two forces in the SM, it is natural to ask if they can also be unified at

some higher energy scale, in a repetition of the triumph of the electroweak theory [124]. This

has given rise to a class of unified gauge-theoretic models known as Grand Unified Theories

(GUTs).

The main hypothesis of all GUTs is that there is a single gauge interaction above a sufficiently

high scale called the GUT scale (ΛGUT)(see Fig. 2.6). The corresponding gauge group, called

the GUT group GGUT, breaks spontaneously at this scale to the SM gauge group

GGUT −−−→
ΛGUT

GSM = SU(3)c × SU(2)L × U(1)Y −−→vEW

U(1)em]

of which the electroweak component, in turn, breaks spontaneously to the electromagnetic

gauge group at the electroweak scale vEW. We note that the main challenge of GUT is not

only to be able to unify the forces in the SM, but also to reproduce the observed fermion
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masses and mixing. There have been very many proposals for GUTs over the decades, only

a few of which have stood the test of time. As an example, however, we describe only the

simplest one.

GUT based on SU(5): This theory was originally due to Georgi and Glashow [154], but

this section mainly follows the discussion in Refs. [155–157]. The SM gauge group GSM is

embedded within SU(5) and the spontaneous symmetry-breaking happens at the GUT scale.

The fields in this theory are all left- handed; the right-handed fields are related to them by

a CP -conjugation. The fermions are in the fundamental 5 + 5̄ representation, which makes

the theory anomaly-free. The 24 generators of the group are given by a generalization of

the Gell-Mann matrices, λa, a = 1, ..., 24 (listed in Ref. [155]), with the first eight generators

identified with the generators of SU(3)C . The SU(2)L generators are associated the last three

generators of the list. Thus,

T (3)
a =

λa
2

(a = 1, . . . , 8); T
(2)
1 =

λ22

2
, T

(2)
2 =

λ23

2
, T

(2)
3 =

√
10λ24 −

√
6λ15

6
(2.4.1)

where the superscripts refer either to the group SU(3)C or SU(2)L. The generator of electric

charge is identified with

Q = −
√

2

3
λ15 (2.4.2)

Thus, using Q = TL3 + Y , we can identify the generator associated with the hypercharge

Y = −1

8

(
√

10λ24 +
5
√

6

3
λ15

)
(2.4.3)

The gauge fields, written as Aµ = AµaTa, a = 1, ..., 24. There are a set of new fields which get

introduced as well. These are the leptoquarks — vector bosons which interact with a quark

and a lepton. They are given by

Xµ
1 =

1√
2

(Aµ9 + iAµ10) Xµ
2 =

1√
2

(Aµ11 + iAµ12) Xµ
3 =

1√
2

(Aµ13 + iAµ14)

Y µ
1 =

1√
2

(Aµ16 + iAµ17) Y µ
2 =

1√
2

(Aµ18 + iAµ19) Y µ
3 =

1√
2

(Aµ20 + iAµ21)

(2.4.4)

The left-handed fermions fit into 5̄ of SU(5), ψiL, and a 10 of SU(5), ψLij along with a singlet

neutrino. It is given by

ψiL =


dCR
dCB
dCG
e

νe


L

; ψLij =


0 uCG −uCB −uR −dR
−uCG 0 uCR −uB −dB
uCB −uCR 0 −uG −dG
uR uB uG 0 −eC
dR dB dG eC 0


L

(2.4.5)

The RH antiparticles can be similarly represented in a 5 + 10 of SU(5).

Spontaneous Symmetry Breaking: There are two widely different scales involved in GUT —

one is the GUT scale and the other is the electroweak (EW) scale. This requires us to include
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two separate Higgs multiplets with two different vacuum expectation values (vevs). A Higgs

represented as a 24-plet in the adjoint representation breaks SU(5) to the SM gauge group

and another Higgs in the 5-plet breaks the SM gauge symmetry. The vevs of the 24 Higgs

give masses of ∼ 1015 GeV and that of the 5 Higgs provide EW-scale masses. The two Higgses

(Φ ≡ 24 of Higgs; H ≡ 5 of Higgs)are written as

Φ ≡
24∑
a=1

SaTa; H ≡


H1

H2

H3

H4

H5

 (2.4.6)

The potential for the two Higgses are

VΦ = m2
1TrΦ2 + λ1(TrΦ2)2 + λ2TrΦ4

VH =
m2

2

2
H†H +

λ3

4

(
H†H

)2
(2.4.7)

The minimum can be calculated to obtain the vev.

v2
Φ = − m2

1

λ1 + 7λ2/30
; v2

H = −m
2
2

λ3
(2.4.8)

Since the Φ field provides mass to the leptoquarks which are supposed to have masses of the

order of ΛGUT, we have

mX ,mY ' gG(ΛGUT)vΦ (2.4.9)

It can be estimated using αS(MZ) that gG ∼ 10−2, which gives

vΦ '
ΛGUT

gG
' 1014 GeV

10−2
= 1016 GeV (2.4.10)

This is a rough estimate and other numerical factors might change it by an order or so. The

electroweak transition happens due to the H field and thus vH ∼ 102 GeV. Thus there is a

large hierarchy between the two vevs.

Problems with GUTs: The scale of unification varies somewhat between different GUTs, but

it is always a few orders of magnitude below the Planck scale. For SU(5), e.g., ΛGUT ' 1014

GeV. However, calculations show that the value of sin2 θW (MZ) = 0.206, which is different

from the experimentally established value of sin2 θW (MZ) = 0.229 ± 0.004 [22]. Thus, the

initial intention of uniting the three forces at a scale ends up short when compared with

electroweak measurement.

Another more-or-less universal prediction of GUTs is proton decay due to the leptoquark

gauge bosons in the theory which couple to both leptons and quarks. The lifetime of the

proton predicted by most GUTs is in the range of 1030 − 1033 years, which is lower than

the lower limit of 1034 years established by experiments [158]. This rules out these theories,

including the minimal SU(5) model described above. Some of the models which can survive
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the proton decay constraint are based on the flipped SU(5) [159], SO(10) [160] and E6 [161]

gauge groups.

It is worth mentioning that the introduction of ΛGUT, which acts as a cutoff for the SM, and

lies far above the electroweak scale, exacerbates the hierarchy problem in GUTs. For this

reason, most modern GUTs are embedded in supersymmetric theories, to which we now turn.

2.5 Supersymmetry

It has already been explained above how the hierarchy problem is ameliorated in models with

supersymmetry. In this section, we describe supersymmetric models in some more detail.

Most of this material is referenced from the multiple lectures, reviews and books available in

the literature, such as [162–169].

A supersymmetry (SUSY) transformation turns bosons (b) into fermions (f) and vice versa.

The Haag-Lopuszanski-Sohnius theorem [170] shows how to bypass the no-go theorem of

Coleman and Mandula [171] by making the SUSY transformation spinorial and Grassmann-

valued in nature. Its generators Q and Q† are, therefore, anti-commutating spinor (fermionic)

operators which act as

Q|f〉 = |b〉; Q|b〉 = |f〉 (2.5.1)

where |b〉 and |f〉 are bosonic and fermionic states respectively. The SUSY algebra is given

by

{Q,Q†} = Pµ

{Q,Q} = {Q†, Q†} = 0

{Pµ, Q} = {Pµ, Q†} = 0

where Pµ is the generator of spacetime translations, i.e. the four-momentum. Furthermore,

the SUSY generators commute with all the generators of gauge transformations. In principle,

there could be N copies of the SUSY generators Q and Q†, in which case the model is called

N -SUSY. However, it has been shown that only N = 1 SUSY theories survive the test of

experimental evidence (E.g. see Sec. 3.1 of Ref. [164]).

A supersymmetric multiplet comprises a SM field and its superpartners, as well as some un-

physical ‘auxiliary’ fields (F and D fields) which disappear in on-shell terms. Each left-chiral

and each right-chiral fermion has a scalar partner, while each gauge boson has a corresponding

Majorana fermion as a partner. The scalar superpartners of SM fermions are called sfermions

(squarks and sleptons, or more specifically, selectrons, smuons, stops, etc.). The fermionic

partners of gauge bosons are called gauginos, e.g. the SUSY partner of a W boson is a wino

and that of a gluon is a gluino. Additionally, the Higgs sector has two scalar doublets and

their superpartners are called Higgsinos. The additional Higgs doublet must be present be-

cause the superpotential, being a holomorphic function of chiral superfields, does not permit

a single Higgs doublet to provide mass to both up and down type quarks.
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The above constitute the complete set of fields in the so-called minimal supersymmetric

Standard Model (MSSM). A summary of all these MSSM fields is given in Table 2.1.

SM field SUSY partner SU(3)C × SU(2)L × U(1)Y

Scalar superpartners

Squarks

QL Q̃ =

(
ũL

d̃L

)
(3, 2, 1/6)

uR ũR (3, 1, 2/3)

dR d̃R (3, 1, -1/3)

Sleptons

LL L̃ =

(
ν̃L

ẽL

)
(1, 2, -1/2)

eR ẽR (1, 1, -1)

Fermionic superpartners

Bino

B0 B̃0 (1,1,0)

Wino

W 0
3 W̃ 0

3 (1,3,0)
W±3 W̃±3

Gluino

g g̃ (8, 1, 0)

Higgsino

H1 =

(
H0

1

H−1

)
H̃1 =

(
H0

1

H−1

)
(1, 2, -1/2)

H2 =

(
H+

2

H0
2

)
H̃2 =

(
H̃+

2

H0
2

)
(1, 2, 1/2)

Table 2.1: The different supermultiplets in the MSSM

The MSSM Lagrangian can then be constructed in analogy with the SM, taking care that it

remains invariant under SUSY transformations.

2.5.1 SUSY breaking

As mentioned before, if SUSY is exact, the superpartners would have the same masses and

couplings as the SM fields, and if this were so, they should have been observed in the same

set of experiments as the SM fields. Since this is not the case, clearly the superpartners must

all be heavier than their SM counterparts – heavy enough to have evaded discovery at all

experiments done till date. This would require SUSY to be broken in the MSSM Lagrangian,

with the higher masses of the superpartners arising from the SUSY-breaking parameter(s).

The most obvious notion would be to assume that SUSY breaks spontaneously, just as the

gauge symmetries do. However, the energy of the vacuum state in a SUSY theory is non-



2.5. SUPERSYMMETRY 59

negative

〈0|H|0〉 =
1

4

(
|Q1|0〉|2 + |Q†1|0〉|2 + |Q2|0〉|2 + |Q†2|0〉|2

)
≥ 0 (2.5.2)

and therefore, it has a unique minimum at zero. It follows that SUSY cannot be spontaneously

broken and hence some other mode of SUSY breaking is called for. Moreover, spontaneous

breaking of SUSY would lead to the ‘supertrace’ mass formula

STr M2 ≡
∑
i

(−1)2sim2
i = 0 (2.5.3)

where mi and si are the mass and spin of all the MSSM fields. Separating out terms with

opposite signs shows that the sum of all SM particle masses must equal the sum of all super-

partner masses, which is clearly not possible if all the superpartners are heavier than their

SM counterparts.

Since SUSY cannot be spontaneously broken, it is necessary to explicitly break it by intro-

ducing soft SUSY-breaking terms

LMSSM
soft = LGauginos

soft + Lsleptons
soft + Lsquarks

soft + LHiggs
soft + Ltrilinear

soft (2.5.4)

where

LGauginos
soft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃

)
+ c.c. (2.5.5)

Lsleptons
soft = −L̃†m2

LL̃− ẽ2m2
ẽe
† (2.5.6)

Lsquarks
soft = −Q̃†m2

QQ̃− ũm2
ũũ
† − d̃m2

d̃
d̃† (2.5.7)

LHiggs
soft = −m2

HuH
∗
uHu −m2

Hd
H∗dHd − (BHuHd + H.c.) (2.5.8)

Ltrilinear
soft = −AuũQ̃Hu + Add̃Q̃Hd + AeẽL̃Hd + H.c. (2.5.9)

These terms are called ‘soft’ because when they are used to calculate radiative corrections,

one only gets ‘soft’ i.e. logarithmic divergences, and not the quadratic divergences which

create the hierarchy problem. Thus, breaking SUSY through soft terms does not re-generate

a hierarchy problem.

Of course, the inclusion of a whole set of new terms in the Lagrangian calls for an explanation.

The soft terms can then be thought of as generated by the spontaneous breaking of SUSY

in a hidden sector, i.e. a set of fields which do not have any interaction terms with the SM

fields (as shown schematically in Fig. 2.7). The breaking of SUSY is then communicated to

the (potentially) visible SUSY sector by certain interactions. Depending on the nature of

these interactions, the SUSY-breaking can be gravity-mediated (SUGRA) or gauge-mediated

(GMSB) or anomaly (AMSB) or gravitino-mediated. In this section, we discuss only gravity

mediation, while gauge mediation is described briefly in Chapter 6.

Gravity Mediation: This is the most obvious option since gravity couples universally. The

effect of the new physics in the hidden sector can be parametrised by higher-order operators

suppressed by the Planck scale mass, MPl. A hidden sector chiral superfield has a non-

vanishing F term which gets a vev, such that

〈X̂〉 = 0; 〈FX〉 6= 0 (2.5.10)
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Figure 2.7: In the standard paradigm of SUSY breaking, SUSY is broken in the hidden sector, which produces

a goldstino. The goldstino is ‘eaten’ by the gravitino G̃. The breaking is communicated to the visible SUSY

sector by means of messenger fields M, M̄ .

The interaction Lagrangian between the hidden sector superfield X̂ and the visible SUSY

superfields is

Lint =

∫
d2θd2θ̄

(
c

M2
Pl

X̂†X̂Q̂†i Q̂i +
b′

M2
Pl

X̂†X̂ĤuĤd +
b

MPl
X̂†ĤuĤd +H.c.

)
+

∫
d2θ

(
s

MPl
X̂Ŵα

a Ŵ
α
a +

a

MPl
X̂Q̂iĤuQ̂i +H.c

)
(2.5.11)

where α, a = 1, 2, 3 and the carets indicate superfields. The soft masses are then roughly

given by

msoft ∼
〈FX〉
MPl

(2.5.12)

If we assume that msoft ∼ TeV, we get the intermediate scale

MI =
√
〈FX〉 ∼

√
msoftMPl ∼ 1011GeV (2.5.13)

From the Lagrangian in Eqn. 2.5.11, we get a B−term given by∫
d2θd2θ̄

b

MPl
X̂†ĤuĤd = b

〈FX〉
MPl

∫
d2θĤuĤd (2.5.14)

There is however a term in the SUSY potential generated from the unbroken MSSM La-

grangian

Ŵµ = µHuHd (2.5.15)

Since this is not related to any dynamical supersymmetry breaking mechanism, µ can have

any magnitude, not necessarily one related to msoft. In gravity mediation, however, that is

not a problem. One can impose a discrete symmetry such that at the tree level µ = 0 and

then both µ and B are generated radiatively and are thus of the same order of magnitude.

Gravity mediation, elegant as it is, has a problem in the flavour sector, as it can potentially

lead to large FCNCs at the tree level. These are severely constrained from experimental data,

and difficult to fit in with the predictions of gravity-mediation. This is referred to as the

flavour problem in SUSY theories.
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2.5.2 The Higgs Sector in the MSSM:

It has already been explained that at least two Higgs doublets are needed in SUSY. In the

MSSM, there are exactly two Higgs doublets. After spontaneous breaking of the electroweak

symmetry, three of these become Goldstone modes ‘eaten up’ by the weak gauge bosons,

leaving five physical Higgs bosons, viz. the h0 (light Higgs), the H0 (heavy Higgs), the H±

(charged Higgses) and the A0 (CP-odd Higgs).

The two Higgs doublets may be written

H1 =

(
H0

1

H−1

)
with YH1 = −1; H2 =

(
H+

2

H0
2

)
with YH2 = +1 (2.5.16)

The Higgs potential is given by

VH = (µ2 +m2
H1

)H†1H1 + (µ2 +m2
H2

)H†1H2 − µB(εabH
a
1H

b
2 +H.c.)

+
g2

1 + g2
2

8
(H†1H1 −H†2H2) +

g2

2
|H†1H2|2 (2.5.17)

The neutral component of the two Higgs doublets can acquire a vev each such that

〈H1〉 =

(
v1

0

)
〈H2〉 =

(
0

v2

)
(2.5.18)

The ratio of the vevs is defined as tanβ = v2/v1. The mass of the CP-odd Higgs, given by

M2
A = µB(tanβ + cotβ) , (2.5.19)

is another parameter. In fact, all the masses and mixing angles in the MSSM Higgs sector

can be expressed in terms of tanβ and MA. For example, the tree-level masses of the charged

and the neutral Higgs bosons are given by

M2
H± = M2

A0 +M2
W

M2
H0,h0 =

1

2

(
M2
A0 +M2

Z ±
√

(M2
A0 +M2

Z)2 − 4M2
ZM

2
A0 cos2 2β

)
(2.5.20)

The second of the equations tells us that at tree level Mh0 ≤ MZ , which would be contrary

to the observations. However, loop corrections are very important for the mass of the light

Higgs boson. The one-loop result is

M2
h0 'M2

Z cos2 2β +
3g2

8π2

m4
t

M2
W

log

(
m2
t̃1

+m2
t̃2

2m2
t

)
(2.5.21)

This correction, which drives Mh0 above MZ , is very sensitive to the mass of the top quark,

which appears as a fourth power. In the MSSM, two-loop calculations have been done for the

neutral CP-even Higgs bosons and the upper limit for the mass of the light Higgs has been

found to be about 135 GeV [172,173] — which is perfectly consistent with the 125 GeV scalar

found at CERN. This, in fact, is the only experimental fact that supports SUSY models, as

of date. Of course, while this is encouraging, it is far from being in any way conclusive.
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2.5.3 Mixing between SUSY particles

Sfermions: We have seen that every fermion in the SM is partnered by two sfermions. These

can mix with each other since they have the same quantum numbers. The flavour eigenstates

– the right- and left-handed sfermions – mix with each other to give two mass eigenstates.

Thus, in the third generation,
(
t̃L, t̃R

)
mix to give the two mass states

(
t̃1, t̃2

)
, while

(
b̃L, b̃R

)
mix to give

(
b̃1, b̃2

)
and (τ̃L, τ̃R) mix to give (τ̃1, τ̃2). The stop mass matrix in the flavour

basis (t̃L, t̃R) is given by

m2
t̃

=

 m2
Q̃3

+m2
t +

(
1
2 − 2

3 sin2 θW
)
M2
Z cos 2β mt

(
At − µ

tanβ

)
mt

(
At − µ

tanβ

)
m2
ũ3

+m2
t + 2

3M
2
Z sin2 θW cos 2β


(2.5.22)

The mass eigenstates are then(
t̃1

t̃1

)
=

(
cos θt̃ − sin θt̃
sin θt̃ sin θt̃

)(
t̃L

t̃R

)
(2.5.23)

where obviously θt̃ is substantial because mt is large. The analogous mass matrices in the

(b̃L, b̃R) and the (τ̃L, τ̃R) basis are

m2
b̃

=

(
m2
Q̃3

+m2
b −

(
1
2 − 1

3 sin2 θW
)
M2
Z cos 2β mb(Ab − µ tanβ)

mb(Ab − µ tanβ) m2
d̃3

+m2
b + 1

3M
2
Z sin2 θW cos 2β

)

m2
τ̃ =

(
m2
L̃3

+m2
τ −

(
1
2 − sin2 θW

)
M2
Z cos 2β mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) m2
ẽ3

+m2
τ +M2

Z sin2 θW cos 2β

)
(2.5.24)

and here too, there is mixing, through not at the same level as the stop mixing because of

the smaller masses of the b and the τ±.

The RG evolution of some of the squared-mass parameters is given by

d

dt
m2
Q3

=
1

16π2

(
Xt +Xb −

2

15
g2

1|M1|2 − 6g2
2|M2|2 −

32

3
g2

3|M3|2 +
1

5
g2

1S

)
d

dt
m2
u3 =

1

16π2

(
2Xt −

32

15
g2

1|M1|2 −
32

3
g2

3|M3|2 −
4

5
g2

1S

)
d

dt
m2
d3 =

1

16π2

(
2Xb −

8

15
g2

1|M1|2 −
32

3
g2

3|M3|2 +
2

5
g2

1S

)
(2.5.25)

where

Xt = 2|yt|2
(
m2
Hu +m2

Q3
+m2

ũ3

)
+ 2|at|2

Xb = 2|yb|2
(
m2
Hd

+m2
Q3

+m2
d̃3

)
+ 2|ab|2

S = m2
Hu −m2

Hd
+ Tr

(
m2

Q −m2
L − 2m2

ũ + m2
d̃

+ m2
ẽ

)
The mixing of these squarks is controlled by the tanβ term in the off-diagonal elements. If

tanβ is small, the effect of the mixing is very small and the mass eigenstates will be very
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nearly the flavour eigenstates. This means that both the staus and the right handed sbottom

and stop will be nearly degenerate with the first two generations. However, the left-handed

bottom squark can receive large contributions from the fact that it is in the same doublet as

the left handed stop. It is seen from Eqns. 2.5.25 that the effect of Xt and Xb is to drive

the value of m2
Q̃3

towards smaller values as one goes down in energy. However, Xt is much

higher than Xb because of the Yukawa coupling and thus it is much more efficient at driving

the value down than Xb. This reduces the mass squared of the stop and thus the lighter stop

can be much lighter than the up-type squarks of the first two generations. As for the b̃L, it

is also affected by the same factor of Xt as it is in the same doublet as the stop. Thus it too

is generally much lighter than the d̃L and s̃L.

For the first two generations, the mass coefficients in the off-diagonal terms will be the masses

of the corresponding fermions, and these are relatively small, so that mixing in the first two

generations is well-nigh negligible.

Gauginos and Higgsinos: Electroweak symmetry-breaking, which mixes the W3 and B fields

in the SM, also mixes the corresponding wino and bino states, as well as the higgsinos. These

neutral gauginos W̃ 0
3 and B̃0 mix with neutral Higgsinos H̃0

u and H̃0
d to provide four mass

eigenstates – the neutralinos, χ0
i , (i = 1, ..., 4). The neutralino mass matrix in the flavour

basis is given by:

Mχ̃0 =


M1 0 −MZ cosβ sin θW MZ sinβ sin θW

0 M2 MZ cosβ cos θW −MZ sinβ cos θW

−MZ cosβ sin θW MZ cosβ cos θW 0 −µ
MZ sinβ sin θW −MZ sinβ cos θW −µ 0


(2.5.26)

which can be diagonalised to give the masses of the neutralinos. The mass hierarchy of these

Majorana fermions is mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
. The lightest neutralino is often the lightest

SUSY particle (LSP) and this is an attractive proposition as it can act as a dark matter

candidate, since it is colour and charge neutral.

In a similar way, the charged gauginos W̃± and the charged Higgsinos H̃± can mix to give

two chargino states, χ±i , (i = 1, 2). The chargino mass matrix in the flavour basis is given by

Mχ̃± =

(
M2

√
2MW cosβ√

2MW sinβ µ

)
(2.5.27)

and again, after diagonalisation, one obtains two Dirac fermions with mχ̃±1
< mχ̃±2

.

The gluinos form a colour octet and thus do not mix with any other MSSM particle. In most

SUSY breaking schemes, the gluino is much heavier than the electroweak gauginos. In SUSY

theories which incorporate gravity, one also has a gravitino, which is a spin-3
2 particle.
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2.5.4 R-parity and its violation

In SUSY models, one can define a Z2 symmetry corresponding to a conserved quantum number

called R-parity, which is

Rp = (−1)3(B−L)+2s (2.5.28)

for a field having B,L, s as the baryon number, lepton number and spin respectively. Like

all Z2 quantum numbers, R-parity is multiplicative and its conservation of prevents any

baryon or lepton number-violating terms arising in the superpotential. As both are observed

to be conserved in Nature, R-parity is an obvious symmetry to impose on a SUSY theory.

Furthermore, Rp helps distinguish between SUSY and SM particles – while SUSY particles

have an Rp = −1, SM particles have Rp = +1. Thus, at any SUSY vertex there must be

an even number of SUSY particles. This implies that the LSP is stable and a viable DM

candidate.

Rp can also be violated and this leads to terms in the superpotential such as

Ŵ�Rp =
1

2
λijkL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k +

1

2
λ′′ijkÛ ci D̂

c
jD̂

c
k + µ′iL̂iHu (2.5.29)

where the first term (LLE) violates lepton number by ∆L = 2, the second term (LQD)

violates lepton number by ∆L = 1 and the third term (UDD) violates baryon number by

∆B = 0. In general, due to stringent bounds from proton decay either of LQD and UDD is

considered non-zero, but not both simultaneously. Other aspects of R-parity and bounds on

the couplings are discussed more elaborately in Chapter 3.

2.5.5 Decay of SUSY particles

The superpartners in the MSSM, being heavy, may be expected to undergo fast decays, and

the study of such decay chains has been a major part of SUSY studies, especially in the

context of collider studies. In this section, we consider decays of SUSY particles with the

assumption that R-parity is conserved and a spectrum is such that χ̃0
1 is the LSP. R-parity

then ensures that the LSP will be stable and very weakly interacting, like neutrinos, so that

it will be observable only through missing energy and momentum signals in collider events.

• Sleptons, Squarks and Sneutrinos: Charged sleptons, squarks and sneutrinos can decay

through their weak interactions. A sample of such decays is

l̃→ νχ̃±i ; l̃→ lχ̃0
i ; ν̃ → lχ̃±i ; ν̃ → νχ̃0

i ; q̃ → qχ̃0
i ; q̃ → q′χ̃±i (2.5.30)

The right handed sleptons decay via the bino-like χ̃0
1 because they lack the SU(2)L charge

and cannot couple to weak gauginos. Even though weak squark decay as indicated above

is kinematically feasible, it remains subdominant if q̃ → qg̃ is also allowed because of

the relative strength of the couplings. Decays of stops are particularly interesting. If

the stop is too light, t̃→ tχ̃0
1 and t̃→ tg̃ may both be forbidden. In that case, the stop

will undergo a 3-body decay t̃→ bWχ̃0
1. This is an important search channel for a stop

which is almost degenerate with the top quark.
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• Neutralinos and Charginos: Several decay modes are possible for neutralinos and charginos.

For example a heavier neutralino and chargino can decay to the lightest neutralino

χ̃0
2 → χ̃1

0Z χ̃0
2 → χ̃1

0h0 χ̃±1 → χ̃0
1W
±

As with the squarks, if two neutralino masses are very close to each other, the next to

lightest neutralino would undergo a 3-body decay, e.g. χ̃0
2 → ff̄ χ̃0

1.

• Gluino Decay: Gluinos will decay to a quark and an (on-shell or off-shell) squark. The

squark then decays to a quark and a neutralino, or a quark and a chargino, which itself

then decays to a neutralino.

g̃ → qq̃ → qqχ̃0
1

or g̃ → qq̃ → qq′χ̃±1 → qq′W±χ̃0
1 → qq′lνlχ̃

0
1

A generic feature of R-parity conserving SUSY decays is a cascade-like structure with a lot

of sources of missing energy. For example one can easily imagine a slepton decay such as

l̃ → lχ̃0
2 → lZχ̃0

1 → ljjχ̃0
1

or l̃ → νχ̃−1 → lW−χ̃0
1 → ll′νl′χ̃

0
1

Thus a prominent feature of SUSY search strategies is looking for large missing energy. How-

ever, if Rp is violated, many more modes of decay open up and those decay chains typically

involve very little missing energy.

Before concluding this section it is worth mentioning that though searches for supersymmetric

particles have been and are being vigorously pursued, till date there is no evidence for any

of them. In fact, the lower mass bounds for the gluinos and the squarks of the first two

generations are now near 2 TeV. Bounds on the others are somewhat model dependent, but

these have also been slowly going up with time. For these reasons, the status of SUSY —

acquired in the 1980s and 1990s — as the ‘standard’ theory beyond the SM is gradually being

eroded. However, any new discovery at the LHC could immediately change the situation

quite drastically.





Chapter 3
Flavour-changing Decays of Top Quarks

3.1 Introduction : FCNC portal to new physics

The Run-I of the CERN Large Hadron Collider (LHC) has already led to the discovery of

the long-sought Higgs boson [174], and, probably, the elusive pentaquark [175] as well. As

the LHC has now commenced its crucial Run-II, the eyes of the whole world are focussed on

CERN with the hope that there will be startling discoveries at this machine, which is designed

to probe an energy regime hitherto inaccessible to terrestrial experiments.

It is natural, at this stage, to inquire into the different possibilities, and ask how sure we

are that any such discovery will be made. Unfortunately, it turns out that there is no really

compelling reason to expect a new discovery at the LHC Run-2 – though it is certainly possible.

This is because the whole range of experiments done at low, intermediate and the highest

available energies are beautifully explained by the Standard Model (SM), a portmanteau

theory which incorporates three or four disparate ideas and holds them together with a set of

phenomenological parameters. Ad hoc as it may seem, this clumsy model has been remarkably

successful – perhaps too successful – in explaining every known measurement, sometimes

to four or five decimal places. Ironically, it is the LHC, in its Run-I, which has put the

strongest stamp of authenticity on the SM by discovering the missing Higgs boson, measuring

its properties to be consistent with the SM predictions and, at the same time, failing to find

any significant deviations from the SM in a host of highly precise measurements. The recent

discoveries of the different hadronic and mesonic bound states, and that of exotics like the

pentaquark are as consistent with the SM as any of the other results.

When we extend our consideration beyond purely terrestrial experiments to the cosmos at

large, we immediately realise that the SM fails to explain several outstanding problems.

These include the problems of dark matter [178] , dark energy [179] and ultra-high energy

cosmic rays above the Greisen-Zatsepin-Kuzmin (GZK) bound [180]. In particular, if the

Earth is immersed in a distribution of dark matter, as appears to be the case, there must be

some way to detect this fact. This is a subject of intense experimental investigation around

67
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the world [181–184]. It is also hoped that discoveries at the LHC could shed light on the

problem of dark matter, which, if particulate, would appear in a collision as missing energy

and momentum. Some of the theoretical deficiencies of the SM are addressed in theories

which extend or go beyond it to postulate new structures and symmetries at higher energy

scales – these are generically referred to as ‘new physics’. A few of these models also have

dark matter candidates. The great hope of the present moment is that unambiguous signals

for such new physics will be discovered in Run-II of the LHC.

There are two ways in which new physics can be discovered at the LHC. The first – and

simplest – way is to ‘directly’ discover evidence for new particles, which could appear either

as resonances or pairs, or be produced in association with SM particles. Denoting a ‘new’

particle by P , the simplest tree-level processes are:

pp→ P or P ∗ → X + Y pp→ P + P̄ pp→ P +X (3.1.1)

where X and Y stand for SM particles. Taking into account the fact that a ‘new’ particle

will either decay into SM particles, or, if it is a component of dark matter, lead to missing

energy and momentum signals, one can enumerate the possible final states and then analyse

the LHC data to see if there is any evidence for such signals. An answer in the affirmative

would, of course, be very exciting, and hopefully this is what will occur in the near future.

While we have no wish to pour cold water on optimistic predictions of the above nature, one

cannot ignore the possibility that the mass of the ‘new’ particle(s) may very well lie outside

the kinematic reach of the LHC. Curiously, the last undiscovered particle for whose mass

we had a theoretical upper bound was the Higgs boson, and, in fact, the LHC was designed

to find it within the entire range of possibilities 1. For ‘new’ particles, however, all that we

have are experimental lower bounds [185–191] – which are more a measure of the failure of

experimental searches than a reflection of any physical principle. Thus, future failures to find

any signals of new physics can always be explained away as due to higher and higher masses

of the ‘new’ particle(s). In such a case, there would arise a serious problem in falsifying the

theories in question.

There does, however, exist an escape route, and this happens when we consider the quantum

effects of the ‘new’ physics. When we consider, say, tree-level decays of a SM particle which

have been mediated by a heavy ‘new’ particle P , e.g. a decay of the form

Q→ X + P ∗ → X + Y + Z

where the Q,X, Y, Z are all SM particles, then these are generally subject to a propagator

suppression by a factor M2
Q/M

2
P — which can be quite severe if MQ �MP , which is usually

the case. However, if, instead of a decaying particle, we have a scattering experiment

Q+ X̄ → P ∗ → Y + Z

1As it happens, the Higgs boson was found rather soon, and that too, near its lower mass bound rather

than the upper.
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conducted at an energy
√
s < MP , the corresponding ‘suppression’ factor will be s/M2

P —

which may be orders of magnitude larger than the earlier factor since it is possible to make√
s�MQ. Even then, it could very well be that MP is so large that even with the effective

values
√
s ∼ 1 − 2 TeV available at the LHC, the propagator suppression will still make the

process unobservable at the LHC, especially if there are large backgrounds arising from purely

SM production of Y + Z final states.

What we need to find, therefore, is a process which, for some reason, is severely suppressed

in the SM, but, for some equally valid reason, is not so severely suppressed in the new

physics sector. Here we are lucky, for there exists a whole class of SM processes which are

severely suppressed by the unitarity constraints of the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. These are the so-called flavour-changing neutral current (FCNC) processes involving

at least two generations of fermions in the initial and final states, and all the generations in

the loop. Though this suppression, commonly called the Glashow-Iliopoulos-Maiani (GIM)

mechanism [30], is described in any textbook on the SM [37], it is worthwhile to take a quick

look at the main argument, since it will form the crux of some of the discussions in this

article. The idea is that if we have an initial quark flavour q and a final quark flavour q′

of the same charge, and the only flavour-changing couplings we have are due to the charged

currents coupling to the W -boson, then the transition amplitude must have the form

Mqq′ =
3∑
i=1

V ∗qiVq′iA(xi,MW ) =
3∑
i=1

λiA(xi,MW ) (3.1.2)

where xi ≡ m2
i /M

2
W carries the generation dependence and MW sets the mass scale for

charged-current interactions. Moreover, λi = V ∗qiVq′i, and the unitarity of the CKM matrix

ensures that if q 6= q′, then
∑

i λi = 0. Obviously, we can expand the A(xi,MW ) in a

Maclaurin series

A(xi,MW ) = A0(MW ) + xiA
′
i(MW ) +

1

2
x2
iA
′′
i (MW ) + . . . (3.1.3)

where

A0(MW ) = A(0,MW ) , A′i(MW ) =

[
∂A

∂xi

]
xi=0

, A′′i (MW ) =

[
∂2A

∂x2
i

]
xi=0

and so on, where we make the assumption that xi � 1. The leading term in Mqq′ cancels

out and what is left is therefore suppressed by xi. Obviously, this will work nicely if we

take the quarks q, q′ to have charge +2/3, for then we automatically get a suppression in the

probability by xb = (mb/MW )2 ∼ 10−3, or by even smaller factors for the other generations2.

If we now assume that the ‘new’ particle(s) P make(s) contributions of the form

Mnew
qq′ =

3∑
i=1

λiηiÃ(yi,MP ) (3.1.4)

2For FCNC decays of the b quark, we need to expand about xt rather than xi = 0, since xt > 1. However,

this article focusses only on decays of the t quark.
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where the yi ≡ m2
i /M

2
P are similar to the xi and the ηi are arbitrary flavour-dependent

factors, then we immediately see that the leading order contribution stays, for
∑

i λiηi 6= 0.

Such contributions are unaffected by the GIM suppression, and, therefore, could, in principle,

be three orders of magnitude larger than the SM contributions.

The beauty of the above argument lies in the fact that in the above process, all that we need

to observe is the transition of a t quark to a quark of a different flavour but the same charge,

i.e. a u or a c. There is no requirement to produce heavy ‘new’ particles on-shell. Thus, in

the disappointing situation that all direct searches for ‘new’ physics at the LHC fail, one can

fall back upon GIM-suppressed processes as a portal through which we can still peer into that

otherwise-inaccessible new world.

The major loop-induced FCNC processes involving the top quark which have been studied in

the literature are:

1. the decays t → q + S, where q = u, c and S is a scalar – either the Higgs boson H0 or

its counterpart(s) in new physics models; and

2. the decays t → q + V , where q = u, c and V is a vector gauge boson – which can be a

photon or a gluon or a Z0-boson or any counterpart(s) in new physics models;

In the SM, we have well known results for the branching ratio

B(t→ c+H0) ∼ 10−15 B(t→ c+ Z0) ∼ 10−13 (3.1.5)

These are many, many orders of magnitude too small to be measured at Run-2 of the LHC,

where estimates are that at best branching ratios at the level of 10−5 may become accessible

when enough data are eventually collected (see Figure 8). There have been several predictions

in the literature that new physics processes could provide the necessary enhancement and

predict branching ratios at this level. The purpose of this article is to investigate these claims

critically and try to determine the model requirements which could lead to an actual discovery

of new physics at the LHC through the top quark FCNC portal.

Before proceeding further, we address the question of the rare decay t → q + γ, which is

bound to happen if its counterpart t → q + Z is possible. Electromagnetic gauge invariance

demands that t → q + γ be mediated only by the magnetic dipole moment operator [192].

This process, however, turns out to be less interesting for two reasons. In the first place, one

loop contributions to t→ q + γ are suppressed by about an order of magnitude compared to

the corresponding process with a final-state Z. This turns out to be essentially because the

coupling of a photon to di-quark pairs is suppressed by their fractional charge of −1/3. A

more serious hurdle is that experimental measurement of the rare decay t→ q+ γ is plagued

with much larger backgrounds because of the ease with which photons can be radiated at

tree-level. For this reason, experiments [193] can only achieve an accuracy for t → c + γ

which is an order of magnitude poorer than that for t → c + Z. Taken together, these two

factors ensure that the search for t → q + Z should clearly take precedence3 over that for

3As we will see in the final section, the process t → c + Z is somewhat marginal at the LHC. This makes

the case hopeless for t→ c+ γ. Replacing c by u leads to even smaller decay widths.
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t→ q+γ. Hence, we do not discuss the latter process further. For similar reasons, we do not

consider the process t→ q + g either.

This article is organised as follows. In the following section, we consider generic FCNC decays

of the top quark [194], taking a toy model, and determine the conditions required to have

maximal contributions to an FCNC process like t → c + B, where B is a scalar or a vector

boson. As an example we take up, in the next section, a supersymmetric model which is quite

likely to evade direct searches at the LHC. The following section extends this to the case of

a supersymmetric model with R-party violation, which relies on non-CKM sources of FCNC.

Finally we present a summary of our results and a conclusion. In the interests of smooth

reading, most of the more cumbersome formulae are relegated to the Appendix B.

3.2 Generic FCNC Decays of the top quark in a toy model

In this section, we investigate a toy

model which could be taken as a pro-

totype for FCNC decays for the top

quark. Let us assume there are a pair

of charged scalars ω± with couplings

of the form

Lint = ξ ω+ω−H (3.2.1)

+

3∑
i,j=1

(
η Vij ūiL djR ω

+ + H.c.
)

where H is the SM Higgs boson and

ξ, η are unknown couplings. These

ω±’s are rather like scalar versions of

the W±-bosons. The choice of scalars

Figure 3.1: Set of Feynman Diagrams leading to the decay

t→ c+H in our toy model.

makes the calculation simple and sidesteps complications due to gauge choice which arise with

the W±. For this part we stay within the minimal flavour violation (MFV) paradigm (see for

example, Ref. [195]) insofar as the only flavour-changing effects happen through the ‘CKM’

matrix elements Vij .

Let us now consider the decay t→ c+H as predicted in this model. Using the SM Yukawa

couplings for the H-boson and Feynman rules for ω± (which can quite easily be read off

from the above Lagrangian), we obtain four diagrams, shown in Figure 1. It is then a

straightforward matter to calculate the helicity amplitudes for the decay t → c + H. In

terms of the λi = V ∗tiVci, these can be written in the generic form

Mhcht =
3∑
i=1

λiAi(hc, ht) (3.2.2)
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where hc and ht are the helicities of the c and the t quarks respectively, and λ1 +λ2 +λ3 = 0

by unitarity of the CKM-like matrix V . Explicit expressions for these in terms of Passarino-

’tHooft-Veltman functions [196] are given in Appendix B.1. We require to calculate only two

non-vanishing amplitudes

(a) M++ =

3∑
i=1

λiAi(+1,+1) (b) M−− =

3∑
i=1

λiAi(−1,−1) (3.2.3)

which become analogues of the SM amplitudes if we put ξ = gMW and η = g/
√

2. To

calculate the branching ratio, we note that the squared and spin-summed/averaged matrix

element, in terms of the helicity amplitudes of Eqn. (3.2.3), is

|M|2 =
1

2

[
|M++|2 + |M−−|2

]
(3.2.4)

The partial width can now be written as

Γ(t→ c+H) =
1

16πmt

(
1− M2

H

m2
t

)
|M|2 (3.2.5)

and (if necessary) the branching ratio is easily obtained by dividing by the total decay width

Γt ' 1.29 GeV.

At this point we pause to make a rough numerical estimate of the above quantities. As may

be seen from Eqn. (3.2.5), the helicity amplitudes must have a mass dimension +1. Since

these arise from one-loop computations, and if Mω is close to MW , a crude approximation for

the amplitude factor will be

|M|2 ≈
( mt

16π2

)2
(3.2.6)

Substituting this into Eqn. (3.2.5), leads to a numerical estimate

Γ(t→ c+H) ≈ 5.9× 10−5 GeV (3.2.7)

which is ten orders of magnitude larger than the SM prediction.

It is natural to ask why the SM prediction is so much smaller than what one would naively

have expected. The answer is that the SM amplitude is suppressed by a combination of

three different effects, each reducing the amplitude by a few orders of magnitude. These are

explained below.

1. The first of these suppression effects is, of course, the GIM cancellation, which we have

already shown to lead to suppression by a factor[
mb(mt)

MW

]2

=

[
2.6 GeV

80.4GeV

]2

' 1.0× 10−3

in the decay amplitude.

2. In this toy model, we have taken the flavour-violating coupling to be ηVij (or ηiVij),

where the flavour-violation arises exactly as in the SM – from the off-diagonal terms
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in the ‘CKM’ matrix. This makes it a model with minimal flavour violation (MFV).

Since the CKM matrix exhibits a strong hierarchy as we move away from the diagonal,

this results in a further suppression in all MFV models – which may not hold in a new

physics model which deviates from the MFV paradigm. To make matters explicit, we

have λi = V2iV
∗

3i for i = 1, 2, 3. If we choose the ηi as in Eqn. (3.2.10), the only relevant

one is λ3 = V23V
∗

33 ' V23 since V33 ' 1. Now, |V23| ≈ 0.04 [346]. This gives us a

suppression by two orders of magnitude.

There is a subtle issue, however. If we consider the flavour mixing in a model of new

physics to be arbitrary and of unknown origin, it is perfectly fine to set λ3 = 1 and

thereby obtain an enhancement factor of 1/0.04 = 25. In fact, this is what we shall

assume in Section 5 of this paper. However, in a large class of non-MFV models, flavour

mixing does arise from mixing effects of the quarks, and there exists some unitary matrix

V ′ij which is not the measured CKM matrix. To get a maximal value of V ′23, we take

V ′ =

 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (3.2.8)

so that λ′3 = sin θ cos θ = 1
2 sin 2θ. Obviously, the maximum occurs for θ = π/4 and the

corresponding value of λ3 is 0.5 — an enhancement by a factor of 12.5 instead of 25.

Thus, what we can achieve by abandoning the MFV paradigm is an enhancement by

half of what we would get by discarding the CKM-type mechanism altogether.

3. Finally, in a model of new physics, there is always the possibility that the actual cou-

plings may be enhanced over the SM ones. To see this, we put4 ξ = Mω instead of

gMW and η3 = 1 instead of g/
√

2, and recalculate the amplitudes, thereby achieving a

modest enhancement by a factor of 2/g3 ' 7.3, assuming that Mω 'MW . This means

that the ‘SM’ amplitude is suppressed by a factor 1/7.3 ' 0.14 .

If we now combine the three effects, then the amplitude will have an overall suppression factor(
1.0× 10−3

)
× 0.04× 0.14 ' 5.6× 10−6 (3.2.9)

Multiplying the amplitude by this factor and squaring leads to a suppression of the estimated

partial decay width in Eqn. (3.2.7) by ten orders of magnitude to 1.85× 10−15 — which is in

the right ballpark.

Now that we have a clear understanding of the nature of the FCNC suppression in the SM

(or a SM-like model), we can remove these effects one by one to see how much the amplitude

can be enhanced in a new physics model. In order to predict really significant deviations from

the SM branching ratio any new physics model requires to meet the following conditions:

A. Frustration of the GIM cancellation.

4Strictly speaking, the couplings can be taken up to
√

4π ≈ 3.5, but then we will have to worry about

higher-order effects.
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B. Non-MFV pattern of flavour mixing.

C. Enhanced couplings.

To illustrate these in a concrete manner, we perform detailed numerical computations of the

helicity amplitudes of Eqn. (3.2.3) using the formulae of Appendix B.1.1. The loop integrals

in these formulae are evaluated using the well-known package FF [197], and our numerical

results are given in Figure 3.2.

10
−2

10
−4

10
−6

10
−8

|M
  

 (
t 

  
 c

 +
 H

)|
 [

G
e
V

]
−

−

(   )b

M  [GeV]ω

 0  100  200  300  400  500

(   )a

10
−2

10
−8

 0  100  200  300  400  500

10
−6

10
−4

M  [GeV]ω

|M
  

 (
t 

  
 c

 +
 H

)|
 [

G
e
V

]
+

+

 1

’SM’

no GIM

no MFV

max coup

’SM’

no GIM

no MFV

max coup

 1

Figure 3.2: The two non-vanishing helicity amplitudes for the decay t → c + H, as calculated in our toy
model as a function of the mass Mω of the scalar field ω. The legends next to each curve are explained in the
text. The small solid circles indicate the values Mω = 80, 300 GeV used in Table 1.

The ‘normal case’, when the couplings in Eqn. (3.2.2) are exactly like those in the SM cor-

responds to the black curves marked ‘SM’ in Figure 2. The dots correspond to the values

Mω = 80, 300 GeV (see Table 1). These amplitudes are suppressed due to a combination of

all the three effects described above5 (see below).

We can disrupt the GIM cancellation partially or wholly by replacing the coupling constant

η in Eqn. (3.2.2) by a generation-dependent factor ηi. The maximal effect will be obtained

if, for example, we consider

η1 = η2 = 0 η3 =
g√
2

(3.2.10)

The corresponding numerical curves are shown in Figure 2 in magenta, and labelled ‘no GIM’.

It is immediately obvious that the amplitude increases by 2− 3 orders of magnitude, exactly

as expected.

Next, we eschew MFV and consider the case λ3 = 1. This gives an enhancement by a factor

of 25. The blue lines marked ‘no MFV’ in Figure 2 represent the case in question. Finally, we

set the couplings to the maximal values ξ = Mω and η3 = 1 and obtain a further enhancement

5It may be seen in Appendix B.1.1 that the form factors F
(b)
1i and F

(b)
2i would violate the GIM cancellation.

This is indeed true, and arises from the helicity-flipping nature of the scalar ω interaction. However, the

contributions of F
(b)
1i and F

(b)
2i are very small, and hence, for all practical purposes, may be ignored in the

numerical evaluation.
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illustrated by the curves shown in red in Figure 2 and marked ‘max coup’. This, as predicted,

is enhanced by one order of magnitude.

If we consider the combination of all these effects, as we have done in Figure 2, we get an

enhancement factor around 2.04×104 (5.43×104) for |M++| (|M−−|) taking Mω = 80 GeV.

This is a more modest enhancement than estimated in Eqn. (3.2.9), but that is not surprising,

given the fact that the earlier estimate was made under a very crude approximation to the

decay amplitude. The actual enhancements available are made explicit in Table 1, where we

list the partial widths for t→ c+H in the toy model for Mω = 80, 300 GeV, for the SM-like

case as well as with the three suppression mechanisms successively disabled.

Mω ‘SM’ ⊕ no GIM ⊕ no MFV ⊕ max coup

80 1.81× 10−14 2.04× 10−9 4.74× 10−6 5.31× 10−5

300 4.31× 10−18 5.12× 10−11 1.19× 10−7 1.33× 10−6

Table 3.1: Partial decay widths for the decay t→ c+H in the toy model, with successive application of the

three enhancement conditions. All numerical values are in units of GeV.
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Figure 3.3: Helicity amplitudes for the decay t → c + Z in our toy model. The notations and conventions
follow those of Figure 3.2.
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Another process of interest at the LHC is the decay t → c + Z. The diagrams for this are

identical to those in Figure 1, except that the scalar H line must be replaced by a wiggly

Z line. We do not exhibit these diagrams in the interest of brevity, though we keep the

same configuration and numbering. In this case, the computation is rendered a little more

complicated because of the vector nature of the Z boson. The toy Lagrangian will be

Lint = iξω+←→∂µω−Zµ +
3∑

i,j=1

(
η Vij ūiL djR ω

+ + H.c.
)

(3.2.11)

where ξ, η are unknown couplings, as before. We can now compute the partial width for the

decay t→ c+ Z. The Feynman amplitude will assume the form

M(hZ)
hcht

=
3∑
i=1

λiAi(hZ ;hc, ht) (3.2.12)

where the sum over hZ runs over the longitudinal polarisation εL = ε(hZ)|hZ=0 and the

transverse polarisations ε±T = ε(hZ)|hZ=±1. The only non-vanishing amplitudes are

(a) M(+)
−+ =

∑3
i=1 λiAi(+1;−1,+1) (b) M(−)

+− =
∑3

i=1 λiAi(−1; +1,−1)

(c) M(0)
++ =

∑3
i=1 λiAi(0; +1,+1) (d) M(0)

−− =
∑3

i=1 λiAi(0;−1,−1)

(3.2.13)

and these may be regarded as ‘SM’ amplitudes, if we take ξ = gMω and η = g/
√

2 as before.

Once again, we plot these amplitudes in Figure 3.3 as a function of Mω and relegate the

detailed formulae to Appendix B.

In Figure 3.3, the four panels marked (a)–(d) correspond to the four amplitudes (a)–(d)

indicated in Eqn. (3.2.13). The colour coding and conventions for this figure are identical to

those in Figure 3.2. It is not difficult to see that once again, we get enhancement factors for

these amplitudes which are very similar to those for the t→ c+H case, when we successively

(a) relax the GIM cancellation, (b) abandon the minimal flavour-violation paradigm and (c)

enhance the couplings. This enables us to predict much larger partial widths, as shown in

Table 2.

For this calculation, we require the squared and spin-summed/averaged matrix element, which

is

|M|2 =
1

2

[∣∣∣M(+)
−+

∣∣∣2 +
∣∣∣M(−)

+−

∣∣∣2 +
∣∣∣M(0)

++

∣∣∣2 +
∣∣∣M(0)
−−

∣∣∣2] (3.2.14)

in terms of the helicity amplitudes of Eqn. (3.2.13). The partial width can now be written

Γ(t→ c+ Z) =
1

16πmt

(
1− M2

Z

m2
t

)
|M|2 (3.2.15)

as before, with MZ replacing MH . In this case, of course, the partial width in more enhanced

cases far exceeds the measured top quark width of 1.29 GeV, but this is not a serious matter,

since this is, after all, a toy model. The enhancement in this case due to, successively,

frustration of the GIM mechanism, saturation of the flavour off-diagonal terms and saturation
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of the coupling constant, have the same magnitudes as in the case of the top decaying through

a scalar H boson. We may, therefore, apply the same insights to both cases.

In general, the summed amplitudes for the decay t→ c+Z0 are about an order of magnitude

larger than the similar summed amplitudes for the decay t → c + H0. This is principally

because a major contribution comes from the diagram with a ω+ω−Z or ω+ω−Z vertex, which

are proportional to g cos θW and λ respectively, other factors being equal or similar. Since the

measurement of the Higgs boson mass tells us that λ ' 0.12 it follows that g cos θW /λ ' 5. A

further factor of around 2 is obtained because of the four non-vanishing helicity amplitudes

for t→ c+Z0 as opposed to the two obtained for t→ c+H0. Thus, we get an enhancement

of around 10, which becomes around 102 when we consider the partial decay width. As this is

a generic feature of the SM and most new physics models, it is obvious that the decay mode

t→ c+ Z0 is more promising for discovery than the t→ c+H0 mode.

Mω ‘SM’ no GIM no MFV max coup

80 4.23× 10−11 3.55× 10−4 5.15× 10−2 0.58

300 8.16× 10−12 8.32× 10−3 1.21 13.5

Table 3.2: Partial widths for the decay t→ c+ Z in the toy model, with successive application (L to R) of

the three enhancement conditions. All numerical values are in units of GeV.

3.3 FCNC decays of the top quark in the SM

We are now in a position to explore the decays t → c + H and t → c + Z in the Standard

Model, using insights from the toy model in the previous section. We start with t → c+H.

This time, of course, we have to take into account the exchange of the weak gauge bosons W±

in the loops, and this requires a choice of gauge in which to work. For loop diagrams, it is

convenient to choose the ’tHooft-Feynman gauge, since that keeps the ultraviolet divergences

at a manageable level. Of course, this comes at the cost of having extra diagrams with

unphysical Higgs bosons, and hence, in the SM, the four diagram topologies of Figure 3.1

The Feynman diagrams for this can be obtained from those of Fig. 3.4 by replacing the

dashed lines for H by wiggly lines for Z and changing the labels accordingly. We then go on

the calculate the helicity amplitudes of Eqn. (3.2.13) in terms of four form factors, which are

given in Appendix B.2. Most of the arguments given in the case of t → c + H above hold

for this case as well, except that the presence of four separate helicity amplitudes leads to

a somewhat larger branching ratio, O(10−13) as quoted in Eq. (3.1.5).The most important

thing we learn from this exercise has already been stated in the Introduction – the branching

ratios for flavour-changing t-quark decays in the SM are severely suppressed, being far too

small to be detected at the LHC, or even the most ambitious futuristic machine that can be

conceived. This has the effect of making these decays a very sensitive probe of new physics,

for any enhancement to measurable levels must arise from new physics beyond the SM.
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Figure 3.4: Feynman Diagrams leading to the

decay t→ c+H in the SM.

become the ten diagrams in Fig. 3.4. There is a

small catch in using the ’tHooft-Feynman gauge,

however, and that lies in the appearance of the

unphysical Higgs bosons. The couplings of these

to quarks depend on the d-quark masses mi, and

hence, would apparently lead to frustration of

the GIM mechanism. However, these contribu-

tions cancel out when all the diagrams are added,

as may be expected, since after all, they consti-

tute a gauge artefact. The largest contributions

to the amplitudes from individual diagrams (once

the singularities are isolated) are of the order of

10−3 – this already contains the suppression of

one order due to the electroweak couplings and

the factor 1/16π2 which appears in all loop dia-

grams. When all the contributions are summed-

up, the GIM cancellation becomes manifest, and

there is a reduction by O(m2
b/m

2
t ) ≈ 6 × 10−4.

This brings down the amplitude to O(10−7) and

hence, its square to O(10−14). Another order is

lost in kinematics, and thus we get the final result

5.8 × 10−15, as quoted in Eq. (3.1.5). When we

turn to the decay t→ c+ Z, we have a situation

similar to the toy model in the previous section.

3.4 FCNC decays of the top quark in the cMSSM

When we turn to new physics beyond the SM, the very first option must be the one which

has captivated the imagination of high energy physicists for the last few decades, viz., super-

symmetry (SUSY). The merits and demerits of SUSY have been exhaustively discussed in

the literature [198] and do not require to be repeated here. Instead, we focus on the effects

of SUSY on the flavour-changing processes t → c + H and t → c + Z which are the subject

of this work.

Apart from the fact that every SM field has a supersymmetric partner differing from it in spin

by one half, one of the most significant new features of SUSY models is the fact that they

all require the existence of two scalar Higgs doublets. Thus, after the electroweak symmetry-

breaking, these models contain five physical scalar fields, viz. a pair of charged Higgs bosons

H± and a triplet of neutral Higgs bosons, of which two (h0, H0) are even under CP and one

(A0) is odd under CP . The lighter one h0 of the CP -even pair can be identified with the near-

125 GeV scalar state found at the LHC in recent times. All the other states, H±, H0 and A0,

are presumed to be heavier, and, in fact, too heavy to have been detected in any experiments
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so far, including the LHC. As we shall see, it is likely that these states are all heavier than

the t-quark, and hence, the only kinematically-permitted decay will be t → c + h0, which is

analogous to the SM decay.

The more important difference from the SM in SUSY models arises because of the contribu-

tions of new particles in the loops. The most important of these are the contributions due

to the charged Higgs bosons H±, which have flavour-changing coupling like the W -boson.

However, since these couplings originate from the Yukawa sector, they are proportional to

the quark masses and hence will frustrate the GIM mechanism. Then there are contributions

where the SM particles are replaced by their SUSY partners, viz. squarks and charginos.

Here the flavour-changing effects will arise from the mixing matrices for squarks. In the

so-called minimal flavour violation (MFV) models, the squark mixing matrices are aligned

with the quark mixing matrix, i.e. the CKM matrix. This is the paradigm we shall adopt in

the present study. Non-MFV models have been studied in the literature and we shall have

occasion to discuss them in the final section.

gauginos : χ̃±1 χ̃±2 χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 g̃

mass bound (GeV) : 94 94 46 63 100 116 520

squarks : ũ1 ũ2 d̃1 d̃2 t̃1 t̃2 b̃1 b̃2

mass bound (GeV) : 1100 1100 1100 1100 96 96 89 247

gauginos : ẽ1 ẽ2 τ̃1 τ̃2 ν̃e ν̃τ 1

mass bound (GeV) : 82 82 73 94 94 94

Higgs bosons : H0 A0 H±

mass bound (GeV) : 500 0 80

Table 3.3: Experimental lower bounds on new particle masses relevant to SUSY models. The results for

the second generation of quarks and leptons are the same as those shown for the first generation. The most

conservative bounds have been taken. The numbers shown in this Table correspond to the case when R-parity

is conserved, but they do not change very much when R-parity is violated.

Though there are many SUSY versions of the SM and its extensions, the minimal version of

this is the so-called constrained minimal supersymmetric SM, or cMSSM [198]. This is the

SUSY model which has the minimum number of extra parameters (four parameters and a

sign), when compared with all the others. Not surprisingly, it is also the SUSY model which is

most constrained by experiment. However, since a light Higgs boson h0 is a common feature

of all SUSY models, including the cMSSM, the only features which will be affected will be the

couplings and the super-partner masses. As we have seen, this is not too serious a constraint

on loop-induced processes, so it is sensible to use the cMSSM as a paradigm case for FCNC

processes in SUSY. This is adopted in our work and it fixes the particle content and the vertex

factors, though there will be large variations in the latter as the model parameters change.

In the cMSSM, the process t→ c+ h0 will be mediated by the 10 diagrams of the SM listed

earlier in Fig. 3.4 as well as the 12 additional one-loop diagrams listed in Fig. 3.5. These
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diagrams have not only charged Higgs bosons but also charginos and squarks in the loops.

The details for calculating all these 22 diagrams are given in Appendix B.2, in terms of the

Figure 3.5: Additional Feynman diagrams leading

to the decay t→ c+H in the cMSSM.

usual form factors. Numerical evaluation

of these form factors, and hence the

branching ratio, is not, however, very

simple.

The problem here is that we cannot make

any random choice of the four parame-

ters and one sign in the cMSSM, for large

ranges of these have been ruled out by ex-

perimental data on a variety of measured

processes.

We, therefore, must evaluate the branching ratio for t→ c+h0 only for points in the parameter

space which are permitted by all the experimental constraints [199]. At a first glance, this

is a daunting prospect, given the wide range and diverse nature of experimental data which

impact the cMSSM, but the task is made much easier by the presence of public domain

software which do most of the computation automatically. We have, therefore, made free use

of these software to constrain the cMSSM parameter space. The exact procedure followed is

described as follows.

1. A set of random choices is made of the four parameters of the cMSSM, viz. the universal

scalar mass m0, the universal fermion mass m1/2, the universal trilinear coupling A0

and the ratio of Higgs boson vevs tanβ, within the ranges

100 GeV ≤ m0 ≤ 10 TeV 100 GeV ≤ m1/2 ≤ 10 TeV

−10 TeV ≤ A0 ≤ 10 TeV 2 ≤ tanβ ≤ 50

The sign of the µ parameter is chosen positive, since it is known that the negative sign

is disfavoured by measurements of the muon anomalous magnetic moment.

2. Given a choice of the above parameters, we find the low-energy cMSSM mass spectrum

by using the software SuSpect [200], which takes these values at the scale of grand

unification and uses the renormalisation group equations to evolve them down to the
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electroweak scale, and also calculates mixing induced by the electroweak symmetry-

breaking.

3. We eliminate parameter sets which are inconsistent with the observed h0 mass 125 ±
2 GeV. This turns out to be a very severe constraint for low values of m0, m1/2 and A0.

4. Of the surviving parameter sets, we eliminate those that are inconsistent with the results

of direct searches for SUSY, i.e. which yield masses for the SUSY particles which are

smaller than the experimental lower bounds given in Table 3 below [185–191,201,346].

5. With the remaining parameter sets, we calculate a clutch of low-energy variables mea-

sured in K and B decays, using the software SuperISO [202]. We then eliminate

parameter sets which are inconsistent with the 95% C.L. experimental data on these

variables, as given in Table 4.

The most restrictive of these are the branching ratios B(B → Xsγ) and B(Bs → µ+µ−). The

former is known to be highly sensitive to low values of the charged Higgs boson mass and the

latter is important for precluding very large values of tanβ. Once a parameter set survives

all the above filters, we consider it acceptable and use it to evaluate the t→ c+h0 branching

ratio. Our results are then set out in Figure 3.6.

Variable Lower Bound Upper Bound

B(B → Xsγ) 2.766× 10−4 4.094× 10−4

∆0(B → K∗γ) −3.8× 10−2 1.0× 10−1

B(Bs → µ+µ−) 7.261× 10−10 6.173× 10−9

B(Bd → µ+µ−) 4.0× 10−11 6.8× 10−10

B(B → Xsµ
+µ−) (low Q2) 2.4× 10−7 2.96× 10−6

B(B → Xsµ
+µ−) (high Q2) 1.48× 10−7 6.88× 10−7

B(B → τ+ντ ) 7.388× 10−5 2.993× 10−4

R[B(B → τ+ντ )] 5.5× 10−1 2.71

B(B → Dτν)] 5.2× 10−3 1.02× 10−2

B(Ds → τν) 5.06× 10−2 5.7× 10−2

B(Ds → µν) 4.95× 10−3 6.67× 10−3

B(D → µ+µ−) 3.49× 10−4 4.15× 10−4

R[B(K → µν)] 6.325× 10−1 6.391× 10−1

R23
µ 9.92× 10−1 1.006

δ(aµ) −6.5× 10−10 5.75× 10−9

Table 3.4: Experimental bounds [202–211] at 95% C.L. on low energy parameters calculable in the software

SuperISO. For detailed definitions, see [202].

The left panel in Figure 3.6 shows a scatter plot indicating the allowed regions in the m0–m1/2

plane, which is probably the best way to indicate constraints on the cMSSM. We note that

every point on this plane corresponds to all possible random choices of the other parameters

in the model, which accounts for the fuzziness in shapes. The black regions are disallowed by

‘theory’ constraints, which include the proper shape of the electroweak potential [212,213] and

the requirement that the lightest supersymmetric particle – a prime dark matter candidate
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Figure 3.6: The panel on the left shows the parts of the m0-m1/2 plane in the cMSSM which are ruled out
for all chosen values of A0 and tanβ. In the left panel, the black region is ruled out by theory constraints, the
blue dots by the Higgs boson mass constraints, and the red dots by all low-energy constraints. In the right
panel, blue and red dots follow the same convention as in the left panel, while the black dots are allowed by
all constraints.

– should be electrically neutral and have no colour quantum numbers. The extensive region

in blue is ruled out by a combination of the h0 mass constraint and the direct searches for

supersymmetry, while the comparatively limited red regions are ruled out by constraints from

low-energy measurements. Points falling in the white region are all allowed, and it is for these

that we can legitimately try to evaluate top FCNC processes. It is important to note that

almost the entire region for m0 and m1/2 within a TeV is ruled out – this is another way

of stating that there are no light squarks, unless we consider the third generation, where a

seesaw-type mechanism can give us one lighter squark state.

The panel on the right in Figure 3.6 contains our actual results. The scale on the y-axis,where

we have plotted the branching ratio of t → c + h0 immediately tells that this always comes

of the order of 10−11, which is just two-orders of magnitude above the SM prediction. On

the x-axis we have plotted the tanβ variable, even though the actual branching ratio is not a

very sensitive function of this, except when tanβ is around 5. As before, the blue points are

ruled out by Higgs mass constraints and direct constraints, and the red points are ruled out

by low-energy measurements. Unlike the left panel, however, the black points are the ones

which represent the allowed parameter sets. It is immediately obvious, therefore, that the

cMSSM prediction for B(t → c + h) is around 4.3 × 10−11, and this holds for almost all the

points in the allowed parameter space.

Why is this branching ratio so small in the cMSSM, when there exist charged Higgs bosons

to frustrate the GIM mechanism, as well as a wide range of possible couplings? The reason

is quite simple. We do indeed have contributions which frustrate the GIM mechanism. This

raises the branching ratio from the SM value of O(10−15) to O(10−11). However, if the factor

had been as large as m2
W /m

2
b ' 5 × 105, we should have expected the prediction to be one
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order larger. That this does not happen is a phenomenon rather peculiar to the cMSSM,

which is more constrained than other SUSY models. The requirement of a light Higgs boson

with a mass as high as 125 GeV above the tree-level value, which is MZ , requires most of the

SUSY partners in this model to be very heavy, and this, being essentially a logarithmic effect,

leads to the additional suppression of one order of magnitude in the t→ c+Z branching ratio.

Once this is understood, we cannot get the other enhancements, since (a) we have adopted

the MFV paradigm, and (b) the couplings in SUSY closely resemble the gauge couplings. The

Yukawa couplings of the charged Higgs boson are, indeed, dependent on tanβ, but they are

proportional to

mt

MW
cotβ +

mb

MW
tanβ

and hence do not grow very large in the range 3 ≤ tanβ ≤ 50.

As shown in the right panel in Figure 3.6, the application of the Higgs mass and direct

search constraints pushes the branching ratio down by a factor around 3, which is expected

since these are known to push up the SUSY partner masses from the 100 GeV to the TeV

range. The application of low-energy constraints (especially Bs → µ+µ−) further kills the

feeble enhancement due to large tanβ, leading to the somewhat disappointing prediction of

4.3× 10−11.

When we come to the process t→ c+Z0, this will be mediated by the whole set of diagrams

in Figures 3.4 and 3.5 where, as in the previous case, the h0 is replaced by the Z0 and the

corresponding broken line by a wiggly line. As in the previous section, we can calculate the

four helicity amplitudes in terms of F1–F4 form factors which are listed in Appendix B.2.2

and make a numerical evaluation. As in the case of the toy model, we predict branching ratios

which are about two orders of magnitude greater than the branching ratios for t → c + h0,

i.e. we get B(t → c + Z0) ∼ 10−9, which is still far too small to be accessed by experiment.

The reason is, of course, the same – breakdown of the GIM mechanism leads to a value about

four orders of magnitude greater than the SM prediction, but so long as we stay within the

MFV paradigm and have couplings which are not significantly greater than gauge coupling,

no further enhancements will be obtained.

We see, therefore, that not only does the cMSSM fail to produce enough enhancement of

the top FCNC decays for observation, but this will be a generic feature of any MSSM vari-

ant which follows the MFV paradigm. Not much can be gained, therefore, by relaxing the

universality constraints on the SUSY-breaking parameters, as is done in, for example, the

so-called phenomenological MSSM or pMSSM models. However, it is possible to break the

MFV paradigm by choosing squark mixing matrices which are not aligned with the CKM

matrix [214]. This provides some enhancement of the branching ratios for top FCNC decay,

but only to the level of about 10−7, partly because the squarks are already constrained to be

rather heavy.
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3.5 Beyond the MFV paradigm : R-parity violation

In the preceding section we have discussed how the cMSSM and its variants fail to produce top

FCNC effects at a measurable level. Within SUSY, however, there exists another scenario

which can provide the necessary enhancements, and that is the scenario when R-parity is

violated. It is well-known that the conservation of the Z2 quantum number R = (−1)L+2S+3B,

where L, S andB stand for lepton number, spin and baryon number of a particle, is a condition

which must be imposed by hand on all SUSY models if we want the lightest SUSY particle, or

LSP, to be a candidate for cold dark matter. Thus, when we consider a scenario in which the

R-parity is not conserved, we abandon the idea of explaining dark matter in a SUSY model

– a feature which has contributed to making such models far less popular than the opposite

variant. It is important to note, however, that R-parity conservation is not demanded by

SUSY at all – it is an add-on which was originally believed to be necessary to explain the

long lifetime of the proton [215]. However, ever since it was pointed out that this can be done

be separately conserving either lepton number L or baryon number B, it has been known

that one can easily have R-parity violating models which are consistent with both exact and

broken SUSY. In that case, R-parity loses its special position, for the way in which R-parity

produces a dark matter candidate is no different from any other Z2 symmetry imposed by

hand on a new physics model, such as, for example, the KK-parity imposed in models with a

universal extra dimension [216] and the T -parity imposed in the littlest Higgs models [217].

Thus, at the cost of decoupling SUSY from the search for an explanation of dark matter in

terms of new particles, it is legitimate to consider models where R-parity is violated.

Once we allow R-parity violation, it is straightforward to write down the extra interactions

allowed. These will arise from a superpotential term [318]

Ŵ 6R =
3∑

i,j,k=1

(
1

2
λijkL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k +

1

2
λ′′ijkÛ

c
i D̂

c
jD̂

c
k

)
(3.5.1)

where the L̂ and Q̂ superfields are SU(2) doublets (suitably combined) and the Êc, Û c and

D̂c are SU(2) singlets. The indices i, j and k run over the three matter generations. It is

immediately clear that the λijk are antisymmetric in i and j, i.e. there are 9 independent

λijk’s and the λ′′ijk are antisymmetric in j and k, i.e. there are 9 independent λ′′ijk’s. The λ′ijk
have no such symmetry properties and hence there will be 27 independent λ′ijk’s, bringing the

total number of independent parameters to 45. However, to avoid fast proton decay, we must

either conserve lepton number and set all the λijk’s and λ′ijk’s to zero, or conserve baryon

number and set all the λ′′ijk’s to zero. Either alternative leads to FCNC processes, including,

when the third generation is considered, the top quark. In this work, all RPV couplings will

be considered real.

Constraints on the R-parity violating couplings from various low-energy FCNC processes have

been industriously studied in the literature [223–228, 318] and a first look would lead to the

conclusion that the λ, λ′ and λ′′ couplings must be rather small. Such constraints depend,

however, on two crucial assumptions, viz.,
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• Only one (or at most two) of the R-parity couplings are substantial and all the others

are zero or of negligible value. This makes a phenomenological analysis simple, but its

virtue ends there. The oft-repeated analogy with a similar pattern observed in the SM

Yukawa couplings is not a very convincing argument.

• Most of the bounds used to be presented with scaling factors depending on the mass of

the exchanged squark, which was assumed to be around 100 GeV. Today, most of the

lower bounds on the squark masses (at least in the first two generations) are an order of

magnitude higher, leading to considerable relaxation in the constraints on the R-parity

violating couplings.

Once we realise that the R-parity violating couplings can, in fact, be very large, we also

note that they have no need to be aligned with the CKM matrix or even satisfy unitarity

constraints, for these are parameters of the Lagrangian, and do not arise from the mixing of

fields. The R-parity violating scenario, therefore, can satisfy all the conditions required for

Scales Upper Sfermion Current

Strongest Constraint as mass Scaling bound mass upper

arises from of Exponent (100 GeV) (GeV) bound

λ′121 Atomic Parity Violation [223] q̃L 1 0.035 1350 [230] 0.473

λ′122 νe mass bound [231] d̃R
1/2 0.004 1100 [346] 0.013

λ′123 CC Universality [223] b̃1
1/2 0.02 620 [232] 0.05

λ′131 Atomic parity violation [229] t̃L 1 0.019 300 [233] 0.057

λ′132 FB asymmetry (e+e−) [229] [318] t̃L 1 0.28 300 [233] 0.84

λ′133 νe mass bound [231] b̃1
1/2 0.0002 620 [232] 0.0005

λ′221 Bounds on Rµe [234] d̃R 1 0.18 1100 [346] 1.98

λ′222 νµ mass bound [231] d̃R
1/2 0.015 1100 [346] 0.05

λ′223 Ds meson decay [234] b̃1 1 0.18 620 [232] 1.1

λ′231 νµ DIS [223,318] ν̃τ 1 0.22 1700 [235] 2.00

λ′232 Bounds on Rµ(Z) [236,342] s̃ 1 0.39 1000 [346] 2.00

µ̃ -1 100 [346]

λ′233 νµ mass bound [231] d̃R
1/2 0.001 1100 [346] 0.003

λ′321 Ds decays [318] d̃R 1 0.52 1100 [346] 0.66

λ′322 ντ mass bound [231] d̃R
1/2 0.02 1100 [346] 0.07

λ′323 Ds decay [318] b̃1 1 0.52 620 [232] 2.00

λ′331 Bounds on Rτ (Z) [236] d̃ 1, 0.22 1000 [346] 2.00

λ′332 τ̃ -1 0.22 100 [346] 2.00

λ′333 ντ mass bound [231] b̃1
1/2 0.001 620 [232] 0.003

Table 3.5: Showing the experimental constraints on the R-parity-violating couplings λ′i2j and λ′i3j relevant
for FCNC decays of the top quark. The abbreviations used in the second column are as follows: charged current
(CC), forward-backward (FB), deep inelastic scattering (DIS), branching ratio (BR). The upper bounds on
the λ′ and λ′′ couplings scale as the masses of the sfermions listed in the third column, raised to the powers
given in the fourth column. The fifth column records the upper bounds when these masses are uniformly set
to 100 GeV (except for the gluino, whose mass is set to 1000 GeV). The sixth column gives the current lower
bound on the relevant sparticle masses and the last column gives the corresponding (scaled) upper bound on
the R-parity-violating couplings.
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FCNC enhancement, viz. frustration of the GIM mechanism, non-MFV mixing terms and

almost unconstrained coupling constants. We therefore choose, in this section, the R-parity

violating model (RPV-MSSM) as a paradigm to illustrate how large top FCNC effects can be

obtained.

As a first step to this study, we note that the λijk, while interesting enough in their own

right, are not relevant for the processes of interest in this article, since they do not appear

with operators involving quark fields. We do not discuss them further in this article. The

couplings of interest are the λ′ijk or the λ′′ijk – but obviously not both. We therefore list, in

Table 5 below, the constraints on the R-parity violating couplings relevant for the processes

under consideration, taking into account the current constraints on the masses of the sleptons

and squarks. These, of course, still assume that one (or at most two) coupling(s) at a time is

dominant.

Scales Upper Sfermion Current

Strongest Constraint as mass Scaling bound mass upper

arises from of Exponent (100 GeV) (GeV) bound

λ′′212
λ′′213 Perturbativity [339] – – 1.24 – 1.24

λ′′223
λ′′312 n− n̄ oscillation [239,240] d̃R 2 10−3 1100 [346] 0.1

λ′′313 g̃ 1/2 1000 [201] 0.1

λ′′323 Bounds on Rb(Z) [338] b̃ 1 1.89 500 [232] 1.89

τ̃ -1 1.89 80 [346]

Table 3.6: Showing the experimental constraints on the R-parity-violating couplings λ′′2jk and λ′′3jk relevant
for FCNC decays of the top quark. The notations and abbreviations follow the conventions of Table 3.5.

A glance at the last column of Tables 3.5 and 3.6 will make it clear that with the current

values of sfermion masses, the constraints on most of the R-parity-violating couplings are

very weak. These couplings can be as large as gauge couplings, or, is specific cases, much

larger. Top FCNC processes will typically involve

1. the products λ′i2kλ
′
i3k for the decays t→ c+h0/Z, where i denotes the leptonic flavour in

the loop and k denotes the d-type quark flavour in the loop. For decays to t→ u+h0/Z,

we would get the products λ′i1kλ
′
i3k, but these have not been considered in this work.

2. the products λ′′2jkλ
′′
3jk for the decays t→ c+ h0/Z, where j denotes a quark flavour of

the u-type and k denotes a d-type quark flavour. As in the previous case, for the decays

t → u + h0/Z, we would get products like λ′′1jkλ
′′
3jk, which are not considered in this

work.

In Table 3.7, we list the pairs of R-parity-violating couplings which can lead to top FCNC

processes, together with their maximum values corresponding to the last column of Tables 3.5

and 3.6. Some of the products are rather large, though staying well within the perturbative

limit of 4π.
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Figure 3.7: Further Feynman Diagrams leading to

the decay t→ c+H in the RPV MSSM.

The Feynman diagrams which contribute to

the FCNC decay t→ c+h0 in the RPV-MSSM

have been listed in Fig. 3.7. Of course, since

the R-parity violating superpotential is added

to the MSSM terms, we will also have contri-

butions from all the diagrams in Figs. 3.4 and

3.5. However, these are always small – as we

have seen – and hence the dominant contri-

bution will arise from R-parity-violating terms

alone.

As before, the details of the calculation are

given in Appendix B.3. It is important to

note that we have presented the diagrams me-

diated by λ′ couplings and the diagrams medi-

ated by λ′′ couplings in the same framework.

The former include diagrams labelled (a)–(f),

while the latter are labelled (g)–(j). The cor-

responding amplitudes will be added, as de-

scribed in Appendix B.3. However, there is no

harm done, so long as we keep all the λ′′ zero

when the λ′ are non-zero, and vice versa. The

variation of the branching ratios for t→ c+h0

and t → c + Z as a function of the sfermion

mass are given in Figure 3.8. The panels on

the left, carrying the header LQD̄, correspond

to the λ′ couplings and show values propor-

tional to (λ′i2kλ
′
i3k)

2. The relevant values of ik

are marked alongside each curve.

To illustrate the variation with the sfermion masses, we have set these couplings to the

experimental upper bounds in the last column of Table 5, and consequently, the products

to the values in Table 7. These, of course, will be relaxed further if the concerned sfermion

masses are taken higher, and would lead to even greater branching ratios, as may be imagined.

However, we have chosen to keep the couplings fixed to the values given in Table 7. In a similar

way, the panels on the right, carrying the header UDD̄, correspond to the λ′′ couplings, and

show values proportional to the products (λ′′2jkλ
′′
3jk)

2. Here, too, we have marked the values

of jk next to the relevant curves.

In Figure 3.8, the left panels illustrate the behaviour of the respective branching ratios with

respect to variations in the mass of the slepton ẽLi. Each curve starts on the left from the

current lower bound on the mass of this slepton and goes up to a TeV. The variation of the

branching ratio as the mass of the squark d̃Rk varies from 1 − 2 TeV is represented by the
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λ′121λ
′
131 λ′122λ

′
132 λ′123λ

′
133 λ′221λ

′
231 λ′222λ

′
232 λ′223λ

′
233

0.0269 0.0109 2.5× 10−5 3.96 0.1 0.0033

ẽL, d̃R ẽL, s̃R ẽL, b̃R µ̃L, d̃R µ̃L, s̃R µ̃L, b̃R

λ′321λ
′
331 λ′322λ

′
332 λ′323λ

′
333 λ′′212λ

′′
312 λ′′213λ

′′
313 λ′′223λ

′′
323

1.32 0.14 0.006 0.124 0.124 2.3436

τ̃L, d̃R τ̃L, s̃R τ̃L, b̃R s̃R b̃R b̃R

Table 3.7: Showing upper limits on the products of pairs of R-parity-violating couplings relevant for the

decays t→ c+ h0/Z, as well as the sparticles exchanged in the loops for each combination.
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Figure 3.8: Illustrating the variation in the branching ratios B(t→ c+h0) (upper panels) and B(t→ c+Z0)
(lower panels) with increase in the sfermion masses. For the panels on the left, which show branching ratios
proportional to (λ′i2kλ

′
i3k)2 with the values of ik marked next to each curve, the mass of the slepton ẽLi is

plotted along the abscissa, and the mass of the squark d̃Rk is responsible for the thickness of the lines in the
upper panel and the hatched region in the lower panel. For the panels on the right, which show branching
ratios proportional to (λ′′2jkλ

′′
3jk)2 with the values of jk marked next to each curve, the mass of the squark

d̃Rk is plotted along the abscissa. The dark (light) grey shaded regions represent the experimental bounds
(discovery limits) from the LHC, operating at 7–8 TeV (13 TeV, projected).
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thickness of the lines in the upper panel, and by the hatched regions on the lower panel (with

the upper boundary indicating a squark mass of 1 TeV). Quite obviously, the branching ratio

B(t→ c+ h0) is hardly affected by changes in the squark mass, whereas the branching ratio

B(t→ c+ Z0) can vary by as much as an order of magnitude as the squark grows heavier.

The panels on the right in Figure 3.8 illustrate the variation in the respective branching ratios

with change in the mass of the squark d̃Rk, which is the b-squark for jk = 13, 23 and the

c-squark for jk = 12. The black and blue curves correspond to the former two cases and the

red curves to the latter. In all the panels, the upper region shaded dark grey corresponds

to bounds on the relevant branching ratios as set by the CMS Collaboration [242], while the

regions shaded light grey corresponds to the projected discovery limits at the 13 TeV LHC,

assuming an integrated luminosity of 3000 fb−1. It is immediately obvious, that even with all

the enhancements available to us in a model with R-parity violation, the FCNC branching

ratios of the t-quark are rather small. For λ′′ couplings, in fact, these are hopelessly small –

in fact, so small, that even if we take the couplings to their perturbative limits, detection at

the LHC will become a touch-and-go affair. The situation is better for λ′ couplings, largely

because the sleptons can still be quite light. However, as the sleptons become heavier, the

FCNC branching ratios fall rather fast and become unobservable. The best case arises for

B(t → c + Z0) when we have the couplings λ′221λ
′
231 and λ′321λ

′
331, with exchange of µ̃L or

τ̃L in the loops. In the former case, the data already available from the LHC constrains the

slepton mass to be greater than about 350 GeV. In either case, a discovery at the 13 TeV

run is possible for a wide rage of slepton and squark masses. For other combinations of the

λ′ couplings, the branching ratios are too small to be accessible at the LHC, even at the end

of its run.

Before concluding this section, we may take up the issue mentioned before, that if the exper-

imental bounds on the sfermion masses increase, the upper bounds on the R-parity-violating

couplings can be relaxed still further. This may lead to higher values of the branching ratios

is question, if the sfermion in the FCNC loop is not the same one which leads to relaxation of

the bound. However, if we consider the only products which lead to sizable results as shown

in Figure 3.8, viz. λ′221λ
′
231, λ′321λ

′
331 and λ′′223λ

′′
323, we can see from Table 7 that the values

are, respectively, 3.96, 1.32 and 2.34. The maximum value that we can push these to is, of

course, 4π, and that would provide enhancements in the branching ratios at the level of one

or two orders of magnitude. This might just make it possible to observe the decay t→ c+Z if

it is mediated by λ′′223λ
′′
323, with more optimistic results for the λ′ couplings. However, only if

some sign of R-parity-violating SUSY is found at the LHC will it be worthwhile to investigate

further details in this regard.

3.6 Summary and Conclusions

This work was undertaken with a definite view, viz. to investigate FCNC decays of the t quark

which involve heavy particles that cannot be discovered directly at the LHC. Several such
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claims exist in the literature, but the results obtained are not always mutually consistent (see

Table 8 below). By starting with a toy model which closely resembles the SM, we have shown

that the extremely low values of FCNC branching ratios of the t-quark in the SM arise from

three different sources. These are (i) the GIM cancellation between one-loop diagrams with

different d-type quarks in the loop, (ii) the MFV paradigm, i.e. the choice of the hierarchical

CKM matrix as the only source of flavour violation, and (iii) the choice of gauge couplings or

their equivalent for the new particles. These result in suppression factors of the order 10−5,

10−4 and 10−1 respectively, driving the loop-induced branching ratios from their naive values

around 10−4 to tiny values in the neighbourhood of 10−14. It follows, therefore, that a new

physics model will be able to predict enhanced rates of these FCNC decays only to the extent

that one or more of these conditions is violated. We then illustrate this set of conditions by

considering (a) the cMSSM – a model where GIM cancellation is frustrated, but MFV holds

and the couplings can be modestly enhanced, and (b) the R-parity-violating extension of the

cMSSM, where all three conditions can be broken. In vindication of the general principles

enunciated above, the branching ratios in the cMSSM do not exceed 10−10 for t→ c+h0 and

10−8 for t → c + Z0, whereas, for the case when R-parity is violated, we can predict them

to be as large as 10−5 and 10−3 respectively. The last-mentioned values are well within the

range of accessibility at the LHC, as illustrated in Figure 3.8 above.

Reference Model GIM MFV g t→ ch0 t→ cZ0

T.-J. Gao et al. [243] 6B, 6L × × × 10−4(5) –

J.-J. Cao et al. [244] MSSM × X × 10−5(9) 10−6(7)

B. Mele [245] MSSM × X × 10−5(9) 10−8(7)

S. Bejar et al. [246] 2HDM Type-II × X × 10−4(9) –

G. Eilam et al. [229] 6R SUSY × × X 10−5(5) –

C. Yue et al. [247] Non-universal Z ′ × × × – 10−6(4)

I. Baum et al. [248] t-quark 2HDM × X × 10−6(6) –

A. Dedes et al. [214] SUSY × × × 10−7(7) –

Table 3.8: A few of the earlier calculations of FCNC decays of the top quark. Some of the results are in
agreement with our predictions, given in parentheses. Those which are not are generally due to choice of vastly
different parameters, which were allowed when these calculations were performed.

The utility of identifying the three suppression principles is well illustrated in Table 8, where

some of the different models considered in the literature are classified according to the con-

ditions which hold (X) or are violated (×). It is, then, easy to utilise the suppression levels

quoted above to understand/criticise the branching ratios predicted by these authors. More-

over, we now have a quick rule of thumb to predict the branching ratios for FCNC decays of

the top quark for any new physics model, for all that we need is to ask ourselves is which of

these three conditions are applicable.

The appendices of this article present a collection of the formulae needed to perform the

computations given in the text, in an explicit and user-friendly form, using the ’tHooft-

Veltman and Passarino-Veltman formalism for one-loop integrals. The formulae are given in
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terms of certain generic couplings, so as to be easily usable to carry out similar computations

in almost any new model of physics beyond the SM.

Finally, a word about the phenomenological implications of this work. It turns out that the

use of the FCNC decays of the top quark is not such a ready handle to new physics at the

LHC (and other high energy machines) as one might naively think, since the corresponding

branching ratios are generally rather small. Even when we deviate almost completely from

the SM, as exemplified in the R-parity-violating couplings, we require to be lucky to have

just the right masses and pairing(s) of couplings in order to predict an observable effect. This

is something which only the future can tell, and it is certain that the eyes of the entire high

energy community will be turned to the results of the LHC, as they slowly unfold over the

years to come.





Chapter 4
A closer look at the RD and RD∗ anomalies

4.1 Introduction

The third generation quarks are thought to be important probes of New Physics. As a

counterpart to the up-type third generation quark – the top – we have seen that in recent years,

a number of experimental measurements involving B meson decays have shown interesting

deviations from their SM expectations. Deviations have been seen both in the neutral current

b→ s decays [249,250]1 as well as the charged current b→ c processes. The most statistically

significant deviation, at the 4σ level [358], is seen in the combination of RD and RD∗ which

are defined as,

RD(∗) =
B
(
B → D(∗)τ ν̄τ

)
B
(
B → D(∗)lν̄l

) , (4.1.1)

where l = e or µ. In Table 4.1, we collect all the relevant experimental results related to the

B → D(∗)`ν` decay processes.

Note that, we have used the notation ` to denote any lepton (e, µ or τ) and l to denote only

the light leptons, e and µ.

The large statistical significance of the anomaly in RD and RD∗ has spurred a lot of interest

in this decay modes in the last few years [272, 277–311] and various possible theoretical

explanations have been proposed.

The main purpose of this work is to identify observables which can help distinguish the

different NP Lorentz structures that can potentially solve the RD and RD∗ anomalies. We first

perform an operator analysis of these potential NP signals by considering all the dimension-

6 operators that are consistent with SM gauge invariance. We compute the values of the

relevant Wilson coefficients (WCs) that explain the experimental measurements within their

1σ ranges. It is important to note that we consider the presence of NP only in the tau-channel

1For theoretical implications, see for example [251–264] and the references therein.
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List of Observables

Observable
Experimental Results

SM Prediction
Experiment Measured value

RD

Belle 0.375 ± 0.064 ± 0.026 [266] 0.299 ± 0.011 [267]

BaBar 0.440 ± 0.058 ± 0.042 [268,269] 0.300 ± 0.008 [270]

HFAG average 0.397 ± 0.040 ± 0.028 [358]
0.299± 0.003 [271]

0.300± 0.011

RD∗

Belle 0.293 ± 0.038 ± 0.015 [266]

0.252 ± 0.003 [272]

Belle 0.302 ± 0.030 ± 0.011 [273]

BaBar 0.332 ± 0.024 ± 0.018 [268,269]

LHCb 0.336 ± 0.027 ± 0.030 [274]

HFAG average 0.316 ± 0.016 ± 0.010 [358] 0.254± 0.004

Belle 0.276 ± 0.034 +0.029
−0.026 [275]

Our average 0.310± 0.017

B
(
B → Dτν̄τ

)
BaBar 1.02 ± 0.13 ± 0.11 % [268] 0.633± 0.014 %

B
(
B → D∗τ ν̄τ

)
BaBar 1.76 ± 0.13 ± 0.12 % [268] 1.28± 0.09 %

B
(
B → Dlν̄l

)
HFAG average 2.13 ± 0.03 ± 0.09 % [358] 2.11+0.12

−0.10 %

B
(
B → D∗lν̄l

)
HFAG average 4.93 ± 0.01 ± 0.11 % [358] 5.04+0.44

−0.42%

Pτ
(
B → Dτν̄τ

) 0.325± 0.009 [276]

0.325± 0.012

Pτ
(
B → D∗τ ν̄τ

)
Belle −0.44 ± 0.47 +0.20

−0.17 [275]
−0.497± 0.013 [275,277]

−0.497± 0.008

ADFB −0.360+0.002
−0.001

AD∗FB 0.064± 0.014

Table 4.1: The relevant observables, their experimental measurements and the SM predictions are shown.

While computing the branching ratios, we have used Vcb = 0.04. As HFAG has not yet included the latest Belle

measurement of RD∗ in their global average, we have taken a naive weighted average of the latest Belle result

and the average given by HFAG. However, since the recent Belle result has a large uncertainty, it does not

affect the previous world average in any significant way. The values given in boldface are our results for the SM

predictions. Note that, for the B → D∗`ν̄` SM predictions, the uncertainties correspond to 2σ uncertainties

in the form factor parameters, see section 4.5 for more details.

and not for the electron or the muon channels. Thus, in our calculations of RD and RD∗ ,

we use the SM values of the WCs in the denominator. For these values of the WCs, we

compute the predictions for a few observables that have the potential to distinguish between

the various NP operators. Although we provide numerical results only for the operators that

are consistent with SM gauge invariance, we provide the analytical expressions for the double

differential decay rates for the individual τ helicities for all the 10 independent dimension-6

operators contributing to these decays. To our knowledge, we are the first in the literature

to provide the full expressions.
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As we show later, RD and RD∗ are in general theoretically independent observables and the

anomalies can exist independently. A future measurement might reveal a greater anomaly in

one of them without affecting the other. Hence, in this paper, we attempt to explain each

without worrying about the other initially, but then also point out how both can be explained

together.

Very recently, the Belle collaboration reported the first measurement of the τ -polarisation in

the decay B → D∗τ ν̄τ [275]. While the uncertainty in this measurement is rather large now,

motivated by the possibility of more precise measurements in the future, we investigate how

such a measurement can distinguish the various NP explanations of RD and RD∗ . Further-

more, we show that measurements of RD∗ in bins of q2 can provide important information

about the nature of short distance physics. In fact, a combination of binwise RD∗ and more

precise measurements (that can be done in Belle II, for example) of τ polarisation in both the

B → Dτν̄τ and B → D∗τ ν̄τ decays can completely distinguish all the different NP operators.

Moreover, we show that the forward-backward asymmetry of the τ lepton (in the τ - ντ rest

frame) also has the potential to differentiate the various NP Lorentz structures.

The paper is organised as follows: In section 4.2 we write down all the operators relevant

for this study and define the notations for the corresponding WCs. The various observables

of our interest are defined in section 4.3. The sections 4.4 and 4.5 discuss the form factors

required for the calculation of the decay amplitudes. The analytic expressions for the double

differential decay widths for the individual lepton helicities are shown in sections 4.6 and

4.7. In the following section (section 4.8), we present all our numerical results. Finally, we

summarise our findings in section 6.6.

The full expressions for the double differential decay widths are shown in the appendices C.1

and C.2, and the contribution of the tensor operator OTL is discussed in appendix C.3. In

appendix C.4, we show how our operators are related to the dimension-6 operators of [42].

The renormalisation group equations for the WCs are computed in appendix C.5.

4.2 Operator basis

The effective Lagrangian for the b→ c ` ν̄ process at the dimension 6 level is given by,

Lb→c ` νeff =
2GFVcb√

2

(
Ccb`9 Ocb`9 + Ccb`

′
9 Ocb` ′9 + Ccb`10 Ocb`10 + Ccb`

′
10 Ocb`

′
10 + Ccb`s Ocb`s + Ccb`

′
s Ocb` ′s

+ Ccb`p Ocb`p + Ccb`
′

p Ocb` ′p + Ccb`T Ocb`T + Ccb`T5 Ocb`T5

)
(4.2.1)

where Ocb`i constitute a complete basis of 6-dimensional operators and Ccb`i are the cor-

responding Wilson coefficients defined at the renormalization scale µ = mb. In the SM,

Ccb`9 = −Ccb`10 = 1 and all the other WCs vanish. The full set of operators is given by:

Ocb`9 = [c̄ γµ PL b][¯̀γµ ν]

Ocb`10 = [c̄ γµ PL b][¯̀γµγ5 ν]

Ocb`s = [c̄PL b][¯̀ν]

Ocb`p = [c̄PL b][[¯̀γ5 ν]

Ocb`T = [c̄ σµν b][¯̀σµν ν]
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Ocb` ′9 = [c̄ γµ PR b][¯̀γµ ν]

Ocb` ′10 = [c̄ γµ PR b][¯̀γµγ5 ν]

Ocb` ′s = [c̄PR b][¯̀ν] (4.2.2)

Ocb` ′p = [c̄PR b][[¯̀γ5 ν]

Ocb`T5 = [c̄ σµν b][¯̀σµνγ5 ν]

The other possible tensor structures are related to Ocb`T and Ocb`T5 in the following way,

εµναβ [c̄ σµν b][¯̀σαβ ν] = −2iOcb`T5 (4.2.3)

[c̄ σµνγ5 b][¯̀σµνγ5 ν] = Ocb`T (4.2.4)

[c̄ σµνγ5 b][¯̀σµν ν] = Ocb`T5 . (4.2.5)

Note that the above basis of operators is different from the one used in some earlier literature

[279,284]. For example, the reference [279] uses the following set of operators,

Ocb`VL = [c̄ γµ b][¯̀γµ PL ν]

Ocb`AL = [c̄ γµ γ5 b][¯̀γµ PL ν]

Ocb`SL = [c̄ b][¯̀PL ν]

Ocb`PL = [c̄ γ5 b][[¯̀PL ν]

Ocb`TL = [c̄ σµν b][¯̀σµν PL ν]

Ocb`VR = [c̄ γµ b][¯̀γµ PR ν]

Ocb`AR = [c̄ γµ γ5 b][¯̀γµ PR ν]

Ocb`SR = [c̄ b][¯̀PR ν] (4.2.6)

Ocb`PR = [c̄ γ5 b][[¯̀PR ν]

Ocb`TR = [c̄ σµν b][¯̀σµν PR ν]

The Wilson coefficients of these two basis of operators are related through the following

equations,

Ccb`VL =
1

2

(
Ccb`9 − Ccb`10 + Ccb`

′
9 − Ccb` ′10

)
Ccb`AL =

1

2

(
−Ccb`9 + Ccb`10 + Ccb`

′
9 − Ccb` ′10

)
Ccb`SL =

1

2

(
Ccb`s − Ccb`p + Ccb`

′
s − Ccb` ′p

)
Ccb`PL =

1

2

(
−Ccb`s + Ccb`p + Ccb`

′
s − Ccb` ′p

)
Ccb`TL =

(
Ccb`T − Ccb`T5

)

Ccb`SR =
1

2

(
Ccb`s + Ccb`p + Ccb`

′
s + Ccb`

′
p

)
Ccb`PR =

1

2

(
−Ccb`s − Ccb`p + Ccb`

′
s + Ccb`

′
p

)
Ccb`VR =

1

2

(
Ccb`9 + Ccb`10 + Ccb`

′
9 + Ccb`

′
10

)
Ccb`AR =

1

2

(
−Ccb`9 − Ccb`10 + Ccb`

′
9 + Ccb`

′
10

)
Ccb`TR =

(
Ccb`T + Ccb`T5

)
(4.2.7)

We now assume the neutrino in the final state to be left handed. This implies that the WCs

in eq. (4.2.1) satisfy the following relations,

Ccb`9 = −Ccb`10 (4.2.8)

Ccb`
′

9 = −Ccb` ′10 (4.2.9)

Ccb`s = −Ccb`p (4.2.10)

Ccb`
′

s = −Ccb` ′p (4.2.11)

Ccb`T = −Ccb`T5 . (4.2.12)
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Consequently, all the WCs in the right hand column of eq. 4.2.7 vanish. Note that, the

operators on the left hand column of eq. 4.2.7 are the only ones that are consistent with the

full gauge invariance of the SM. In appendix C.4, we show how these WCs are related to

the 6-dimensional operators listed in [42]. Moreover, since many microscopic models do not

generate the tensor operator, we neglect them in the main text and study its effect only in

the appendix (see appendix C.3).

Although, we do not study the effects of the operators with a right handed neutrino (the ones

in the right hand column of eq. 4.2.7), we compute the full analytic expressions considering all

the 10 operators for the first time in the literature. The results are presented in appendices

C.1 and C.2.

4.3 Observables

The double differential branching fractions for the decays B → D`ν̄` and B → D∗`ν̄` can be

written as

d2BD(∗)
`

dq2 d(cos θ)
= N |pD(∗) |

(
aD

(∗)
` + bD

(∗)
` cos θ + cD

(∗)
` cos2 θ

)
. (4.3.1)

The normalisation factor, N and the absolute value of the D(∗)-meson momentum, |pD(∗) | are

given by,

N =
τB G

2
F |Vcb|2q2

256π3M2
B

(
1− m2

`

q2

)2

(4.3.2)

|pD(∗) | =

√
λ(M2

B,M
2
D(∗) , q

2)

2MB
, (4.3.3)

where λ(a, b, c) = a2 +b2 +c2−2(ab+bc+ca). The angle θ is defined as the angle between the

lepton and D(∗)-meson in the lepton-neutrino centre-of-mass frame, and q2 is the invariant

mass squared of the lepton-neutrino system.

The total branching fraction is given by,

BD(∗)
` =

∫
N |pD(∗) |

(
2aD

(∗)
` +

2

3
cD

(∗)
`

)
dq2 (4.3.4)

The observables RD and RD∗ have already been defined in eq. (4.1.1). We now define binned

RD(∗) in the following way,

RD(∗) [q2 bin] =
BD(∗)
τ [q2 bin]

BD(∗)
l [q2 bin]

(4.3.5)

For the decays with τ lepton in the final state, the polarisation of the τ also constitutes an

useful observable and can potentially be used to distinguish the NP Lorentz structures. The

τ polarisation fraction is defined in the following way,

Pτ (D(∗)) =
ΓD

(∗)
τ (+) − ΓD

(∗)
τ (−)

ΓD
(∗)

τ (+) + ΓD
(∗)

τ (−)
(4.3.6)
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where, ΓD
(∗)

τ (+) and ΓD
(∗)

τ (−) are the decay widths for positive and negative helicity τ leptons

respectively.

The τ forward-backward asymmetry, AD
(∗)

FB is defined as

AD(∗)
FB =

∫ π/2
0

dΓD
(∗)

dθ dθ −
∫ π
π/2

dΓD
(∗)

dθ dθ∫ π/2
0

dΓD
(∗)

dθ dθ +
∫ π
π/2

dΓD
(∗)

dθ dθ

=

∫
bD

(∗)
τ (q2)dq2

ΓD
(∗) (4.3.7)

where ΓD
(∗)

is the total decay width of D(∗) and the angle θ has already been defined above.

Note that, while the branching fractions depend on the functions aD
(∗)

` and cD
(∗)

` , the forward-

backward asymmetry depends only on bD
(∗)

` . Hence, they provide complementary information

on the nature of the short distance physics.

4.4 B̄ → D form factors

The hadronic matrix elements for B̄ → D transition are parametrised by2

〈D(pD,MD)|c̄γµb|B̄(pB,MB)〉 = F+(q2)
[
(pB + pD)µ − M2

B −M2
D

q2
qµ
]

+F0(q2)
M2
B −M2

D

q2
qµ (4.4.1)

〈D(pD,MD)|c̄γµγ5b|B̄(pB,MB)〉 = 0 (4.4.2)

〈D(pD,MD)|c̄b|B̄(pB,MB)〉 = F0(q2)
M2
B −M2

D

mb −mc
(4.4.3)

〈D(pD,MD)|c̄γ5b|B̄(pB,MB)〉 = 0 (4.4.4)

〈D(pD,MD)|c̄σµνb|B̄(pB,MB)〉 = −i(pµBpνD − pνBp
µ
D)

2FT (q2)

MB +MD
(4.4.5)

〈D(pD,MD)|c̄σµνγ5b|B̄(pB,MB)〉 = εµνρσpBρpDσ
2FT (q2)

MB +MD
(4.4.6)

Note that Eq. (4.4.3) and Eq. (4.4.6) are not independent equations and follow from Eq. (4.4.1)

and Eq. (4.4.5) respectively. Multiplying the left hand side of Eq. (4.4.1) by qµ one gets

qµ〈D(pD,mD)|c̄γµb|B̄(pB,MB)〉 = Inverse Fourier transform of 〈D|i∂µ(c̄γµb)|B〉
= Inverse Fourier transform of 〈D|(i∂µc̄γµb+ c̄γµi∂µb)|B〉
= (mb −mc)〈D(pD,MD)|c̄b|B̄(pB,MB)〉 (4.4.7)

Similarly, the term proportional to F+ in the right hand side of Eq. (4.4.1) vanishes upon

multiplication by qµ and gives

RHS = F0(q2)(M2
B −M2

D). (4.4.8)

2We use the convention ε0123 = 1. This implies ε0123 = −1.
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Thus, Eq. (4.4.7) and Eq. (4.4.8) taken together give us Eq. (4.4.3).

In order to get Eq. (4.4.6) from Eq. (4.4.5) one has to use the identity,

σµνγ5 =
i

2
εµναβσαβ . (4.4.9)

Substituting the above identity into the left hand side of Eq. (4.4.6) one gets,

〈D(pD,MD)|c̄σµνγ5b|B̄(pB,MB)〉 =
i

2
εµναβ〈D(pD,MD)|c̄σαβb|B̄(pB,MB)〉 (4.4.10)

=
i

2
εµναβ

(
−i(pBαpDβ − pBβpDα)

2FT (q2)

MB +MD

)
(4.4.11)

= εµναβpBαpDβ
2FT (q2)

MB +MD
(4.4.12)

The form factors F0(q2) and F+(q2) have been calculated using lattice QCD techniques in

[267]3. They are given by the following expressions,

F+(z) =
1

φ+(z)

3∑
k=0

a+
k z

k , (4.4.13)

F0(z) =
1

φ0(z)

3∑
k=0

a0
k z

k , (4.4.14)

where

z ≡ z(q2) =

√
(MB +MD)2 − q2 −√4MBMD√
(MB +MD)2 − q2 +

√
4MBMD

.

The functions φ+(z) and φ0(z) are given by,

φ+(z) = 1.1213
(1 + z)2(1− z)1/2

[(1 + r)(1− z) + 2
√
r(1 + z)]

5 , (4.4.15)

φ0(z) = 0.5299
(1 + z)(1− z)3/2

[(1 + r)(1− z) + 2
√
r(1 + z)]

4 , (4.4.16)

where, r = MD/MB.

The central values, uncertainties, and correlation matrix for the parameters a0
k and a+

k are

shown in tables 4.2 and 4.3.

a+
0 a+

1 a+
2 a+

3 a0
0 a0

1 a0
2 a0

3

Values 0.01261 -0.0963 0.37 -0.05 0.01140 -0.0590 0.19 -0.03

Uncertainties 0.00010 0.0033 0.11 0.90 0.00009 0.0028 0.10 0.87

Table 4.2: The central values and uncertainties for the parameters a0k and a+k from ref. [267] (table XI of

their arXiv version 1).

3There has been another Lattice calculation of these form factors with similar results [270].
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Figure 4.1: The q2 dependence of the form factors F0, F+ and FT . The uncertainty bands for F0 and F+

correspond to a χ2 ≤ 1.646 where the χ2 is computed using the expression χ2(x) = (x− x0)T V−1 (x− x0)

where x = (a+0 , a
+
1 , a

+
2 , a

+
3 , a

0
0, a

0
1, a

0
2, a

0
3) and x0 consists of the central values given in table 4.2. The covariance

matrix V is computed from the correlation matrix ρij given in table 4.3 using the formula Vij = σi(x)ρijσj(x)

where σ(x) is the vector of uncertainties given in tables 4.2. The uncertainty band for FT is obtained by simply

taking a ±10% uncertainty on the central value.

a+
0 a+

1 a+
2 a+

3 a0
0 a0

1 a0
2 a0

3

a+
0 1.00000 0.24419 −0.08658 0.01207 0.00000 0.23370 0.03838 −0.05639

a+
1 1.00000 −0.57339 0.25749 0.00000 0.80558 −0.25493 −0.15014

a+
2 1.00000 −0.64492 0.00000 −0.44966 0.66213 0.05120

a+
3 1.00000 0.00000 0.11311 −0.20100 0.23714

a0
0 1.00000 0.00000 0.00000 0.00000

a0
1 1.00000 −0.44352 0.02485

a0
2 1.00000 −0.46248

a0
3 1.00000

Table 4.3: The correlation matrix for the parameters a0k and a+k from ref. [267] (table XI of their arXiv

version 1).

As the tensor form factor FT has not been computed from lattice QCD, we have taken them

from [312]. Following [312], we write FT (q2) as,

FT (q2) =
0.69(

1− q2

(6.4GeV)2

)(
1− 0.56 q2

(6.4GeV)2

) . (4.4.17)

In fig. 4.1, we show the q2 dependences of F0, F+ and FT following the above expressions.
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4.5 B̄ → D∗ form factors

The hadronic matrix elements for B̄ → D∗ transition are parametrised by

〈D∗(pD∗ ,MD∗)|c̄γµb|B̄(pB,MB)〉 = iεµνρσε
ν∗pρBp

σ
D∗

2V (q2)

MB +MD∗
(4.5.1)

〈D∗(pD∗ ,MD∗)|c̄γµγ5b|B̄(pB,MB)〉 = 2MD∗
ε∗.q

q2
qµA0(q2) + (MB +MD∗)

[
ε∗µ −

ε∗.q

q2
qµ

]
A1(q2)

− ε∗.q

MB +MD∗

[
(pB + pD∗)µ −

M2
B −M2

D∗

q2
qµ

]
A2(q2)(4.5.2)

〈D∗(pD∗ ,MD∗)|c̄b|B̄(pB,MB)〉 = 0 (4.5.3)

〈D∗(pD∗ ,MD∗)|c̄γ5b|B̄(pB,MB)〉 = −ε∗.q 2MD∗

mb +mc
A0(q2) (4.5.4)

〈D∗(pD∗ ,MD∗)|c̄σµνb|B̄(pB,MB)〉 = −εµναβ
[
− εα∗(pD∗ + pB)βT1(q2)

+
M2
B −M2

D∗

q2
ε∗αqβ

(
T1(q2)− T2(q2)

)
(4.5.5)

+2
ε∗.q

q2
pαBp

β
D∗

(
T1(q2)− T2(q2)− q2

M2
B −M2

D∗
T3(q2)

)]
〈D∗(pD∗ ,MD∗)|c̄σµνqνb|B̄(pB,MB)〉 = −2εµνρσε

∗νpρBp
σ
D∗T1(q2) (4.5.6)

None of the form factors V,A0, A1, A2, T1, T2, T3 has been calculated in Lattice QCD. We used

the heavy quark effective theory (HQET) form factors based on [313]. These form factors can

be written in terms of the HQET form factors in the following way [284,313],

V (q2) =
MB +MD∗

2
√
MBMD∗

hV (w(q2)) ,

A1(q2) =
(MB +MD∗)

2 − q2

2
√
MBMD∗(MB +MD∗)

hA1(w(q2))

A2(q2) =
MB +MD∗

2
√
MBMD∗

[
hA3(w(q2)) +

MD∗

MB
hA2(w(q2))

]
A0(q2) =

1

2
√
MBMD∗

[
(MB +MD∗)

2 − q2

2MD∗
hA1(w(q2))

− M2
B −M2

D∗ + q2

2MB
hA2(w(q2))− M2

B −M2
D∗ − q2

2MD∗
hA3(w(q2))

]
T1(q2) =

1

2
√
MBMD∗

[
(MB +MD∗)hT1(w(q2))− (MB −MD∗)hT2(w(q2))

]
T2(q2) =

1

2
√
MBMD∗

[
(MB +MD∗)

2 − q2

MB +MD∗
hT1(w(q2))− (MB −MD∗)

2 − q2

MB −MD∗
hT2(w(q2))

]
T3(q2) =

1

2
√
MBMD∗

[
(MB −MD∗)hT1(w(q2))− (MB +MD∗)hT2(w(q2))

−2
M2
B −M2

D∗

MB
hT3(w(q2))

]
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where,

hV (w) =R1(w)hA1(w)

hA2(w) =
R2(w)−R3(w)

2 rD∗
hA1(w)

hA3(w) =
R2(w) +R3(w)

2
hA1(w)

hT1(w) =
1

2(1 + r2
D∗ − 2rD∗w)

[
mb −mc

MB −MD∗
(1− rD∗)2(w + 1)hA1(w)

− mb +mc

MB +MD∗
(1 + rD∗)

2(w − 1)hV (w)

]
hT2(w) =

(1− r2
D∗)(w + 1)

2(1 + r2
D∗ − 2rD∗w)

[
mb −mc

MB −MD∗
hA1(w)− mb +mc

MB +MD∗
hV (w)

]

(4.5.7)

hT3(w) =− 1

2(1 + rD∗)(1 + r2
D∗ − 2rD∗w)

[
2
mb −mc

MB −MD∗
rD∗(w + 1)hA1(w)

− mb −mc

MB −MD∗
(1 + r2

D∗ − 2rD∗w)(hA3(w)− rD∗hA2(w))

− mb +mc

MB +MD∗
(1 + rD∗)

2 hV (w)

] (4.5.8)

hA1(w) =hA1(1)[1− 8ρ2
D∗z + (53ρ2

D∗ − 15)z2 − (231ρ2
D∗ − 91)z3]

R1(w) =R1(1)− 0.12(w − 1) + 0.05(w − 1)2

R2(w) =R2(1) + 0.11(w − 1)− 0.06(w − 1)2

R3(w) =1.22− 0.052(w − 1) + 0.026(w − 1)2

(4.5.9)

Here, rD∗ = MD∗/MB, w(q2) = (M2
B + M2

D∗ − q2)/2MBMD∗ and z(w) = (
√
w + 1 −√

2)/(
√
w + 1 +

√
2).

The numerical values of the relevant parameters of the form factors along with their respective

1σ errors are given by

R1(1) = 1.406± 0.033, R2(1) = 0.853± 0.020, ρ2
D∗ = 1.207± 0.026 [358]

hA1(1) = 0.906± 0.013 [314] . (4.5.10)

In Fig. 4.2 we show the q2 dependence of the form factors using these numerical values. As

there have been no lattice calculations of these form factors, in order to be conservative, we

use two times larger uncertainties than those quoted above.

4.6 Expressions for aD` , bD` and cD` for B → D`ν̄`

The quantities aD` , bD` and cD` for positive helicity lepton are given by:
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Figure 4.2: The q2 dependence of the B → D∗ form factors. The bands correspond to two times the

uncertainties given in Eq. 4.5.10 .

aD` (+) =
2
(
M2
B −M2

D

)2
(mb −mc) 2

|C`
SL|2F2

0

+m`

[
4(M2

B −M2
D)2

q2 (mb −mc)
R
(
C`

VLC`∗
SL

)
F2
0

]
+m2

`

[
2
(
M2
B −M2

D

)2
q4

|C`
VL|2F2

0

]
(4.6.1)

bD` (+) = −m`

[
8|pD|MB

(
M2
B −M2

D

)
q2 (mb −mc)

R
(
C`

SLC`∗
VL

)
F0F+

]

−m2
`

[
8|pD|MB

(
M2
B −M2

D

)
q4

|C`
VL|2F0F+

]
(4.6.2)

cD` (+) = m2
`

[
8|pD|2M2

B

q4
|C`

VL|2F2
+

]
(4.6.3)

Their expressions for the negative helicity lepton are,

aD` (−) =
8M2

B|pD|2
q2

|C`
VL|2F2

+ (4.6.4)

bD` (−) = 0 (4.6.5)

cD` (−) = −8M2
B|pD|2
q2

|C`
VL|2F2

+ (4.6.6)

Note that, the WCs C`AL and C`PL do not contribute to this decay. This is because the

corresponding QCD matrix elements vanish, as can be seen from eqs. (4.4.2) and (4.4.4).
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The lepton mass dependence of the various terms can also be understood easily. As the

vector operators do not change the chirality of the fermion line, because of the left chiral

nature of the neutrino, the outgoing (negatively charged) lepton also has negative chirality

(and hence negative helicity in the massless limit). Thus the production of a left-handed

lepton through the vector operator does not need a mass insertion. By a similar argument,

one can see that the production of a right-handed lepton through the scalar operator does not

need any mass insertion. The amplitude for the production of a right-handed lepton through

a vector operator, on the other hand, clearly requires a mass insertion in order to flip the

lepton helicity. This explains why the terms proportional to |C`V L|2 in Eqs. 4.6.1-4.6.3 have

m2
` and the interference terms proportional to R

(
C`SLC

`∗
VL

)
have m` in front, while there is

no such dependence in Eqs. 4.6.4-4.6.6.

The full expressions for aD` , bD` and cD` including all the operators in Eq. (4.2.6) are shown in

appendix C.1.

4.7 Expressions for aD
∗

` , bD
∗

` and cD
∗

` for B → D∗`ν̄`

The quantities aD
∗

` , bD
∗

` and cD
∗

` for positive and negative helicitiy leptons are given by,

aD
∗

` (−) =
8M2

B |pD∗ |2

(MB +MD∗)
2

∣∣∣C`
VL

∣∣∣2 V2 +
(MB +MD∗)

2 (8M2
D∗q

2 + λ)

2M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A2
1

+
8M4

B|pD∗ |4
M2
D∗ (MB +MD∗)

2 q2

∣∣∣C`
AL

∣∣∣2 A2
2

−4 |pD∗ |2M2
B

(
M2
B −M2

D∗ − q2
)

M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 (A1A2) (4.7.1)

bD
∗

` (−) = −16|pD∗ |MBR
(
C`

VLC`∗
AL

)
(VA1) (4.7.2)

cD
∗

` (−) =
8 |pD∗ |2M2

B

(MB +MD∗)
2

∣∣∣C`
VL

∣∣∣2 V2 − (MB +MD∗)
2 λ

2M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A2
1

− 8|pD∗ |4M4
B

(MB +MD∗)
2M2

D∗q
2

∣∣∣C`
AL

∣∣∣2 A2
2

+
4 |pD∗ |2M2

B

(
M2
B −M2

D∗ − q2
)

M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 (A1A2) (4.7.3)

aD
∗

` (+) =
8 |pD∗ |2M2

B

(mb +mc)
2

∣∣∣C`
PL

∣∣∣2 A2
0

−m`

[
16 |pD∗ |2M2

B

(mb +mc) q2
R
(
C`

ALC`∗
PL

)
A2

0

]

+m2
`

[
8 |pD∗ |2M2

B

q4

∣∣∣C`
AL

∣∣∣2 A2
0 +

8 |pD∗ |2M2
B

(MB +MD∗)
2 q2

∣∣∣C`
VL

∣∣∣2 V2

+
2 (MB +MD∗)

2

q2

∣∣∣C`
AL

∣∣∣2 A2
1

]
(4.7.4)
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bD
∗

` (+) = m`

[
4|pD∗ |MB (MB +MD∗)

(
M2
B −M2

D∗ − q2
)

MD∗ (mb +mc) q2
R
(
C`

ALC`∗
PL

)
A0A1

− 16

(mb +mc)

|pD∗ |3M3
B

(MB +MD∗)MD∗q2
R
(
C`

ALC`∗
PL

)
A0A2

]
+m2

`

[
−4|pD∗ |MB (MB +MD∗)

MD∗q4

(
M2
B −M2

D∗ − q2
) ∣∣∣C`

AL

∣∣∣2 A0A1

+
16|pD∗ |3M3

B

(MB +MD∗)MD∗q4

∣∣∣C`
AL

∣∣∣2 A0A2

]
(4.7.5)

cD
∗

` (+) = m2
`

[
− 8 |pD∗ |2M2

B

(MB +MD∗)
2 q2

∣∣∣C`
VL

∣∣∣2 V2 +
(MB +MD∗)

2 λ

2M2
D∗q

4

∣∣∣C`
AL

∣∣∣2 A2
1

+
8|pD∗ |4M4

B

M2
D∗ (MB +MD∗)

2 q4

∣∣∣C`
AL

∣∣∣2 A2
2

−4 |pD∗ |2M2
B

M2
D∗q

4

(
M2
B −M2

D∗ − q2
) ∣∣∣C`

AL

∣∣∣2 (A1A2)

]
(4.7.6)

The WC C`SL does not contribute to this decay because the corresponding QCD matrix

element vanishes as can be seen from eq. (4.5.3). The lepton mass dependence of the various

terms can be understood in the same way as the B → D`ν̄` decay. Note also the absence of

interference terms proportional to R
(
C`V LC

`∗
PL

)
in the above expressions.

We provide the completely general result taking into account all the operators in Eq. (4.2.6)

in appendix C.2.

4.8 Results

4.8.1 Explaining RD alone

As mentioned in sec. 4.6, the B → Dτν̄τ amplitude depends only on the WCs CτV L and

CτSL. In Fig. 4.3, we show RD as function of CτV L and CτSL. In the right plot, we set

CτV L to its SM value CτV L|SM = 1 and vary CτSL, while in the left plot, we hold CτSL fixed

at its SM value CτSL|SM = 0 and change CτV L. The red and brown shades correspond to

the experimentally allowed 1σ and 2σ ranges (see Table 4.1), for which we have added the

statistical and systematic uncertainties in quadrature.

The ranges of CτV L and CτSL that are consistent with RD at 1σ are shown in the second row of

Table 4.4. The ranges for CτSL are slightly asymmetric about zero because of its interference

with CτV L. In the rows 3, 4 and 5-8, we also show the predictions for Pτ (D), ADFB and

RD in four different bins for the allowed ranges of CτV L and CτSL. Note that, ADFB and the

polarisation fraction Pτ (D) are independent of CτV L if CτSL is set to zero. This is because, in

this case the differential decay rate is proportional to |CτV L|2 and hence, the dependence on

CτV L drops out in Pτ (D) and ADFB. This is why the ranges for Pτ (D) and ADFB in the third

and fourth columns are identical. The binwise RD values are also graphically represented in
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Figure 4.3: The dependence of RD with respect to the variation of the WCs CτV L (left) and CτSL (right).

Fig. 4.4. The left and the right panels correspond to the WCs CτV L and CτSL respectively.

The SM predictions are shown in red. One can conclude from Fig. 4.4 that the binwise RD

does not help distinguish the two WCs CτV L and CτSL.

SM
CVL CSL

(CSL = 0) (CVL = 1)

1σ range of the WC [1.073, 1.222]
[−0.656, −0.342]

[0.296, 0.596]

Pτ (D) [0.313, 0.336] [0.313, 0.336] [0.408, 0.556]

ADFB [−0.361, −0.358] [−0.361, −0.358]
[−0.168, −0.022]

[−0.450, −0.428]

RD [bin]

[m2
τ − 5] GeV2 [0.154, 0.158] [0.178, 0.236] [0.161, 0.181]

[5− 7] GeV2 [0.578, 0.593] [0.665, 0.888] [0.626, 0.752]

[7− 9] GeV2 [0.980, 1.003] [1.127, 1.505] [1.125, 1.502]

[9− (MB −MD)2] GeV2 [1.776, 1.823] [2.049, 2.741] [2.294, 3.669]

Table 4.4: The values of the WCs consistent with the 1σ experimental range for RD are shown in the second

row. The subsequent rows show the predictions for Pτ (D), ADFB and RD in four q2 bins for the WC ranges

shown in the second row.

The predictions for Pτ (D), ADFB are pictorially presented in the left and middle panel of

Fig. 4.5. As mentioned earlier, in the absence of CτSL, Pτ (D) and ADFB are completely inde-

pendent of CτV L. Hence, neither measurement can distinguish between CτV L = 1 and other

values of CτV L. However, the predictions are very different for CτSL. Therefore, a measurement
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of Pτ (D) will tell us whether NP in the form of scalar operator OcbτSL exists or not. Moreover,

the two separate ranges of CτSL which satisfy the experimental bounds give very different

values of ADFB, indicated by the subscripts “+” and “-” in the middle figure.
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Figure 4.4: The binwise RD for four q2 bins. On the left, CτV L is varied, while on the right, CτSL is varied

within their 1σ allowed ranges.
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Figure 4.5: Predictions for the polarisation fraction Pτ (D) (left), ADFB (middle) and the differential decay

width (right). The subscripts “+” and “-” in the middle figure correspond to the two ranges of CτSL that

satisfy the experimental bounds of RD. In the right graph showing the normalised differential decay width,

the solid blue line is the SM prediction. The dashed black and red lines correspond to CτSL = −0.650 and

0.310 respectively. The data points shown on the right plot are due to the BaBar collaboration and are taken

from [269].

In the right panel of Fig. 4.5, we also show the normalised differential decay width as a

function of q2. As for the case of Pτ (D) and ADFB , the normalised differential decay width is
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independent of CτV L for CτSL = 0. The blue solid line is the SM prediction, and the black and

red dashed lines are the predictions for two representative values of CτSL, CτSL = −0.650 and

0.310 respectively. While producing these plots, we have used the central values of the form

factors. The blue data points are from the BaBar measurement reported in [269]. It is clear

that the differential decay width is not a good discriminant of the various NP operators.

4.8.2 Explaining RD∗ alone

The B → D∗τ ν̄τ decay amplitude depends on three WCs, CτV L, C
τ
AL and CτPL. In Fig. 4.6,

we show RD∗ as function of these WCs. In each of the plots, the WCs that are not varied

are all set to their SM values. The red and brown shades correspond to the experimentally

allowed 1σ and 2σ ranges respectively (see table 4.1).
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Figure 4.6: The dependence of RD∗ with respect to the variation of the WCs CτV L (left), CτAL (middle) and

CτPL (right). A thin vertical line shows the SM values of the WCs.

The ranges of CτV L, C
τ
AL and CτPL that are consistent with the experimental value of RD∗ at

1σ are shown in the second row of Table 4.5. We only show the ranges that are closest to the

SM values of the WCs. In the rows 3, 4 and 5-8, we also show the predictions for Pτ (D∗),

AD∗FB and RD∗ in four different bins for these allowed ranges of CτV L, C
τ
AL and CτPL.

The binwise RD∗ values are also plotted in Fig. 4.7. The left, middle and the right panels

correspond to the variation of WCs CτV L, C
τ
AL and CτSL respectively. The 1σ and 2σ experi-

mental values are shown in red and brown respectively. It can be seen that RD∗ in the last

bin can be used to distinguish between CτV L(or CτPL) and CτAL.

The predictions for Pτ (D∗) are pictorially presented in the left panel of Fig. 4.8. We do not

show the recent Belle measurements in this figure because the uncertainties are rather large.

Instead, we show a projection for Belle II 20 ab−1 (which is expected to be collected by the

end of 2021 [315]) assuming that the systematic uncertainty will go down by a factor of two

compared to that in the recent Belle measurement. It is then possible to distinguish CτPL from

the other WCs. The middle panel of Fig. 4.8 shows the predictions of AD∗FB pictorially. It can
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SM
CVL CAL CPL

CAL,PL = −1, 0 CVL,PL = 1, 0 CVL,AL = 1,−1

Range in WC [1.856, 2.569] [−1.149, −1.073] [0.890, 1.583]

Pτ (D∗) [−0.505, −0.490] [−0.530, −0.509] [−0.505, −0.488] [−0.322, −0.144]

AD∗FB [0.050, 0.078] [0.191, 0.297] [0.028, 0.062] [−0.078, −0.007]

RD∗

[m2
τ − 5] GeV2 [0.103, 0.105] [0.120, 0.140] [0.116, 0.132] [0.124, 0.148]

[5− 7] GeV2 [0.331, 0.336] [0.387, 0.457] [0.373, 0.425] [0.390, 0.465]

[bin] [7− 9] GeV2 [0.475, 0.479] [0.535, 0.613] [0.535, 0.613] [0.534, 0.610]

[9− (MB −MD∗)
2] GeV2 [0.554, 0.556] [0.577, 0.619] [0.621, 0.710] [0.571, 0.611]

Table 4.5: The values of the WCs consistent with the 1σ experimental range for R∗D are shown in the second

row. We only show the ranges that are closest to the SM values of the WCs. The subsequent rows show the

predictions for Pτ (D∗), AD
∗

FB and RD∗ in four q2 bins for the WC ranges shown in the second row.
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Figure 4.7: The binwise R∗D for four q2 bins. On the left, CτV L is varied, in the middle CτAL is varied, annd

on the right, CτPL is varied within their 1σ allowed ranges. The SM predictions are shown in red.

be seen that a measurement of AD∗FB can also potentially differentiate the various operators.

In the right panel of Fig. 4.8, we show the normalised differential decay width as a function

of q2 for some representative values of the WCs from Table 4.5. It can be seen that the shape

of the distribution does not change dramatically across the various NP explanations of RD∗ .

In Fig. 4.9, we show the predictions for Pτ (D∗), RD∗ in the last bin and AD∗FB in three different

planes for the three WCs CτV L, CτAL and CτPL when their values are restricted to the ranges

shown in Table 4.5. Interestingly, we find that each of the three pairs of observables can

potentially distinguish between the WCs unambiguously. Hence, the measurements of these

observables by the experimental collaborations ought to be very much on the cards in their

future runs.
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Figure 4.8: Predictions for the polarisation fraction Pτ (D∗) (left), AD
∗

FB (middle) and the differential decay

width (right). In the left plot, the Belle II 20 ab−1 projection is obtained by i) scaling down the statistical

uncertainty of the recent Belle measurement by the ratio of the luminosities i.e.,
√

20/0.71 ii) assuming the

systematic uncertainty to go down by a factor of two, and adding them in quadrature. The central value is

assumed to remain unchanged. On the right plot, The solid blue line is the SM prediction. The dashed black,

red and brown lines correspond to CτAL = −1.12, CτV L = 1.9 and CτPL = 1.5 respectively, where in each case

every other WC is set to their SM values. Note that the black dashed curve is indistinguishable from the SM

curve. The data is due to a BaBar measurement reported in [269].
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Figure 4.9: The predictions for Pτ (D∗), RD∗ in the last bin and AD
∗

FB are shown in three different planes

for the ranges of the three WCs CτV L, CτAL and CτPL given in Table 4.5. We remind the readers that, we have

inflated the uncertainties in the form factor parameters in Eq. (4.5.10) by a factor of two. Hence, the ranges

of Pτ (D∗) and RD∗ shown here are rather conservative.

4.8.3 Explaining RD and RD∗ together

We have seen from section 4.8.1 and 4.8.2 that while RD gets contributions from CτV L and

CτSL, RD∗ is affected by CτV L, CτAL and CτPL. Therefore, in general, these two observables are

theoretically independent. In the basis of WCs defined by {CτV L, CτAL, CτSL, CτPL}, the CτV L
direction is the only direction that affects both. However, as can be seen from tables 4.4 and

4.5, the range of CτV L ( i.e., [1.073, 1.222] ) that explains RD within 1σ is different from the
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range ( i.e., [1.849, 2.648] ) that explains RD∗ successfully within 1σ. Thus RD and RD∗

can not be explained simultaneously by invoking NP only of type CτV L. Fig. 4.10 shows the

allowed region in the CτV L−CτAL plane by the RD and RD∗ measurements. As CτAL does not

contribute to the B → Dτν̄τ decay, the allowed region for CτV L from RD (the red region) is

independent of the value of CτAL. On the other hand, both the WCs CτV L and CτAL contribute

to the B → D∗τ ν̄τ decay and hence the values of these WCs allowed by RD∗ measurement are

correlated. The overlap of the red and the green regions correspond to CτV L ∈ [1.073, 1.222]

and CτAL ∈ [−1.144,−1.062].

Hence, a minimum value of CτV L ≈ −CτAL ≈ 1.07 which translates to ∆(C9 − C10) ≈ 0.15

(i.e, 15% shift from the SM values) can explain both RD and R∗D successfully. This cor-

respond to the operator [c̄ γµ PL b][¯̀γµPL ν] with a coefficient g2
NP /Λ

2 where Λ is given by

Λ ≈ gNP 2.25 TeV.
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Figure 4.10: Allowed region in the CτV L − CτAL plane by RD and RD∗ measurements .

The predictions for Pτ (D∗), AD∗FB and binwise RD∗ for the above ranges of CτV L and CτAL are

given in table 4.6.

CτV L Pτ (D∗) RD∗ [bin]

∈ [1.073, 1.222] ∈ [-0.507, -0.489] [m2
τ − 5] GeV2 [5− 7] GeV2 [7− 9] GeV2 [9− (MB −MD∗)

2] GeV2

CτAL AD
∗

FB
[0.116, 0.131] [0.373, 0.426] [0.535, 0.609] [0.616, 0.706]

∈ [-1.144, -1.067] ∈ [0.055, 0.092]

Table 4.6: Predictions for Pτ (D∗), AD
∗

FB and binwise RD∗ for the values of WCs satisfying both the obser-

vations simultaneously. The 1σ range of the WCs is given in the first column.
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4.9 Summary

In this paper we have performed a model independent analysis of the RD and RD∗ anomalies

using dimension-6 operators that arise in a gauge invariant way. Among the four WCs CτV L,

CτAL, CτSL and CτPL, only CτV L and CτSL contribute to RD. On the other hand, RD∗ gets

contributions from CτV L, CτAL and CτPL. Thus, CτV L is the only WC that affects both (barring

tensor operator that is discussed in appendix C.3) and hence, these two observables are in

general theoretically independent. In view of this, initially we studied the solutions of RD

and RD∗ anomalies independent of each other. We obtained the ranges of the WCs that

are allowed by the RD and R∗D measurements at 1σ. We also discussed the possibility of

simultaneous solutions of these two anomalies.

For the allowed ranges of the WCs, we computed the predictions for both RD and RD∗ in

four different q2 bins, the forward-backward asymmetry, AD(∗)
FB and the polarisation fraction

of the final state τ lepton. We show that measuring the τ polarisation in B → D∗τ ν̄τ decays

along with the value of RD∗ in the last q2 bin can distinguish between the three WCs which

contribute to this process. This is graphically presented in Fig. 4.9. Similarly, as seen in

Fig. 4.5, the measurement of the τ polarisation in B → Dτν̄τ decay can in principle be used

to distinguish the two WCs CτV L and CτSL. Furthermore, we find that the forward-backward

asymmetry of the τ lepton is also a powerful discriminant of the various WCs (see Figs. 4.5 and

4.9). Unlike Pτ (D), it can even distinguish the sign of the scalar operator for the B → Dτν̄τ

decay. We hope that the experimental collaborations will take a note of this and make these

measurements in near future.

Additionally, in the appendix we also provide the analytic expressions for the double dif-

ferential decay widths for individual τ helicities taking into account all the 10 dimension-6

operators listed out in section 4.2. To our knowledge, we are the first to provide the full

expressions in the literature.

Although we have not considered the tensor operator OTL in the main text, we have explored

its effects on the RD and R∗D anomalies in appendix C.3. We have shown that there exists a

small range of CTL that is consistent with both the anomalies.



Chapter 5
Bottom squarks in B-number violating

MSSM

5.1 Introduction

Since the discovery of the Higgs by the LHC in its first run [62,63], the searches for signatures

for BSM physics have intensified. One of the most sought after theories of BSM physics has

been supersymmetry (SUSY) and a vast number of searches strategies have been developed

keeping the theory in mind. However, the majority of the SUSY search strategies at the LHC

assume that ‘R-parity’, a multiplicative quantum number defined as R = (−1)3B+L+2s with

B, L and s in terms of the baryon number (B), the lepton number (L) and the spin (S) of the

particle, is conserved. Conservation of R-parity implies that SUSY particles will always be

pair produced and that a heavy SUSY particle will decay into an odd number of lighter SUSY

particles, with or without other SM particles1. This ensures that the lightest SUSY particle

(LSP) is stable. A characteristic signature of an R-parity conserving SUSY scenario is a final

state with large missing transverse energy (E/T) due to the presence of the LSP. Since, in the

SM, neutrinos are the only real sources of missing energy apart from detector acceptance and

resolution effects, E/T can be used as a standard candle to search for these SUSY particles.

Besides, in supersymmetric theories with conserved R-parity, the lightest SUSY particle, if

colourless and electrically neutral, can always act as a good dark matter candidate.

However, the conservation of R-parity is not guaranteed, and, if one allows for its violation,

an sfermion can decay to a pair of SM fermions2, giving rise to signatures with, at best,

only a small missing transverse energy [318]. This negation of one of the standard features

of SUSY searches would, immediately, negate much of the collider constraints on the SUSY

spectrum. Welcome consequences of this are the easing of fine-tuning on the one hand [319],

1In most popular models, the decays are into a single lighter SUSY particle and one or two (and, only rarely

three) SM particles.
2Similarly, the gauginos and higgsinos would decay into three SM fermions.
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and, on the other, the possibility of facilitating electroweak baryogenesis [320–322] through

the accommodation of a top-squark lighter than what the R-conserving scenarios can allow.

From its very definition, one can see that the violation of R-parity can be achieved in three

ways: violation of either L or B, or both. However, if we allow both L and B to be violated,

nothing prevents the proton from decaying into a meson and a lepton, and, thus, the lower

limit on the proton decay lifetime [323] places severe constraints on their products. It is, of

course, more natural to ensure proton stability by insisting on one of the symmetries (B or L)

being unbroken, and this is the route that we take. Interestingly, such R-violating scenarios

can be easily motivated from supergravity models [324]. And while violating R-parity implies

that we lose the DM candidate, the dark matter content of the universe can appear from

other sources [325].

In this paper, we study a R-violating (RPV) SUSY scenario in the presence of baryon number

(UDD-type) violating operators alone. Contrary to naive expectations, such a scenario can be

well-accommodated within a GUT-framework [326], thereby preserving one of the successes of

SUSY. A further ramification is that, unlike in the case of the L-violating couplings, the lack of

any excess in the multilepton channel at the LHC does not impose any worthwhile constraint

on the squark/gluino masses [327–332]. We are faced, instead, with a multijet signal [333–336]

and it has been argued that the large irreducible QCD background would result in much

weaker sensitivity. Performing a collider analysis of the lightest scalar superpartner of the

bottom quark, namely the sbottom (b̃), subsequently decaying to a top quark and a light down-

type quark through non-zero λ′′ couplings, we show that it is not necessarily so. Depending

on the decay of the top quark, the final state can consist of only hadronic elements (jets), or

may contain at least one lepton. The latter semi-leptonic case is easier to study at a hadronic

collider environment like that of the LHC, since we can tag on the lepton. Our analysis will

take into account the very different nature of these two possible final states and is thus done

in two parts: first, for a final state with at least one lepton, and second, for a fully hadronic

final state. To study the semi-leptonic final state, we shall use both the traditional cut-based

analysis and multivariate analysis, while in the hadronic final state, we shall rely solely on

the multivariate analysis.

The rest of the paper is arranged as follows: in Section II, we briefly introduce R-parity

violating SUSY, noting down the couplings relevant for our analysis. In Section III, we

introduce our simplified model detailing all the parameters used. The analysis of a final state

with a lepton is presented in Section IV and in Section V, we perform the analysis for a

completely hadronic final state. Finally, we conclude in Section VI.

5.2 The R-parity violating MSSM

In terms of lepton, quark and Higgs superfields one can write down the R-parity violating

superpotential in the following form [318]: either bilinear terms or by Yukawa-like trilinear
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terms. The most generic RPV superpotential is given by:

W 6Rp = µiĤuL̂i +
1

2
λkijL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k +

1

2
λ′′ijkÛ

c
i D̂

c
jD̂

c
k (5.2.1)

where the first three sets of operators violate L while the last set violates B. Here, i, j and k

are generation indices, whereas both SU(2) and SU(3) indices have been suppressed. Clearly,

the couplings λkij and λ′′ijk are antisymmetric in the last two indices and, thus, there are a

total of (3 + 9 + 27 =) 39 L– and 9 B–violating interactions. Switching off the first three

sets, and concentrating only on the last, we have, in terms of the quark and squark fields:

LUDD = −1

2
λ′′ijk

(
ũ?iRdjRd

c
kL + d̃?kRuiRd

c
jL + d̃?jRuiRd

c
kL

)
. (5.2.2)

The bounds on the couplings λ
′′
ijk are varied. Some of them are strongly constrained from

n − n̄ oscillations [337] or the LEP data on Z-decays [338]. The others are only weakly

restricted, for example, through the requirement of their perturbative under renormalization

group flows [339]. Compendia of such constraints can be found in Refs. [318, 324, 340–346].

It should be noted that many of the low-energy constraints emanate from effective four-fermi

interactions, and in quoting them a reference squark mass is used; these bounds need to be

scaled appropriately when the squark mass differs.

As we are interested in the b̃, one of j, k in λ′′ijk must be 3. Similarly, if we demand that the

sbottom should decay into a top, we must have i = 3. In other words, we are left with just

two choices, namely λ′′313 and λ′′323, leading to b̃∗ → t + d and b̃∗ → t + s respectively. Since

the simultaneous presence of two such couplings lead to too large a size for flavour changing

neutral currents (FCNC) [347,348], we assume that only one of the two is non-zero and real.

For the mass range (of the squarks) that we are interested in, the strongest constraints are

λ′′313 < 0.1 [346] and λ′′323 < 1.89 [338] respectively. Even without saturating these bounds,

it is obvious that, once produced, the sbottom may decay promptly, thereby eliminating the

possibility of recognizably displaced vertices [349, 350]. We shall assume that while the R-

violating couplings are small enough to be both consistent with low energy phenomenology as

well as having at best marginal effect on squark-production, they are large enough to prevent

displaced vertices, thereby removing tell-tale signatures.

In the presence of ‘UDD’–type couplings, the decays (direct or cascades) of squarks and

gluinos (the dominantly produced SUSY particles at the LHC) would, typically, result in

multi-jet configurations with very little missing momentum. As these are very difficult to

detect (especially in the absence of hard leptons) in the messy hadronic environment of

the LHC, the strong limits on squark/gluino masses, derived in the context of R-conserving

models (or, even for R-violating, but B-conserving ones) do not hold. In particular, if a

pair-produced squark decays directly into a pair of quarks, the resultant four-jet sample is

likely to be overwhelmed by the QCD background. The situation is ameliorated somewhat

if some of the quarks (rather, the corresponding jets) can be tagged as this would allow us

not only to eliminate much of the background, but also to use invariant mass combinations

to increase the signal-to-noise ratio. This was used in Refs. [351, 352] and, subsequently, by
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the ATLAS collaboration [334], to investigate the pair-production of stops and their decays,

through the very same couplings that we are considering here, to a b–quark and a light quark

each. Here, we investigate the complementary scenario, namely where the sbottom (rather

than the stop) is the LSP.

5.3 The Simplified Model Spectrum and Simulation

As we are primarily interested in the lighter bottom squark, we simplify the spectrum by

considering it to be the LSP with the other SUSY partners being much heavier. In particular,

we do not include gluino production despite the fact that, for similar masses, σ(g̃g̃)� σ(b̃b̃∗)

and that the gluino could easily decay into a b̄b̃ pair, thereby adding to the signal strength.

Indeed, gluino pair-production, with each decaying into three quarks has been used [336] to

set a limit of mg̃ > 1.08 TeV and, hence, by making the g̃ heavy, we deliberately preclude this

contribution altogether. Our assumption about the spectrum obviously means that decays

through R-conserving channels are no longer possible and that the sbottom is forced to decay

to two SM quarks with 100% branching ratio. For the choice of the RPV coupling λ′′313 (λ′′323),

the daughters are the top and a light-quark (d or s, as the case may be). The top quark can

decay either leptonically or hadronically; thus giving rise to the following final states :

• 2``′ + bb̄+ jets + E/T; `, `′ = e, µ,

• 1`+ bb̄+ jets + E/T,

• 0`+ bb̄+ jets + E/T.

It should be noted that all these channels will be associated with only a small missing trans-

verse energy, if any. Final states with multiple jets are very challenging in the LHC environ-

ment and thus require dedicated studies. Several SM processes which provide similar final

state signatures have been treated as background, particularly, tt̄ + jets (upto 2), tt̄bb̄, tt̄Z,

tt̄W and tt̄H, constitute the dominant SM background; QCD multijet events constitute huge

background for the purely hadronic case.

Before we delve into the discussion of signals and backgrounds, let us examine the parameter

space that leads to the spectrum that we consider. The gaugino mass parameters M1 and

M2, as well as the higgsino mass parameter, µ are set to 1 TeV, while the value of tanβ, the

ratio of the vacuum expectation values of the two Higgs doublets H0
u and H0

d , is fixed at 10.

The masses of the first two generations of squarks and all the three generations of sleptons

lie around 3 TeV and the mass of the right-handed stop is set to ∼ 1 TeV. The left-handed

third generation squark mass is set to about 1.5 TeV. While the tri-linear couplings At is set

to −2 TeV, the other tri-linear couplings Ab and Aτ are set to zero. We also fix the gluino

mass parameter (M3) at 2 TeV, while varying only the right-handed sbottom mass parameter

(mbR) to obtain different sbottom masses. In our analysis we consider six representative

benchmark points with sbottom masses 500 GeV (BP-1), 600 GeV (BP-2), 700 GeV (BP-3),

800 GeV (BP-4), 900 GeV (BP-5) and 1000 GeV (BP-6).
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BP - 1 BP - 2 BP - 3 BP - 4 BP - 5 BP - 6

mb̃1
(GeV) 500 600 700 800 900 1000

B(Bs → µ+µ−) 4.27× 10−9

B(b→ sγ) 3.19× 10−4

∆mBs(ps−1) 18.01

∆mBd(ps−1) 0.403

Table 5.1: The first row presents the masses of the bottom squark for the different benchmark points. In

the bottom part of the table, the values of the low-energy flavour observables are presented. These remain

identical for the different benchmark points.

The particle spectrum has been generated using SPheno v-3.3.8 [353, 354] with the trilinear

R-parity violating model as implemented in SARAH v-4.4.6 [355,356]. FlavorKit [357] is used

to calculate the low energy flavour observables b → sγ and Bs → µ+µ− and care has been

taken to ensure that the benchmark points are consistent with the flavour physics data [358]

at better than 95% C.L. In particular, the mass differences ∆mBd (∆mBs) associated with

B0– and Bs–mixing (see Table 5.1) are very close to the experimental measurements [346].

We further ensure that the spectrum we use at each benchmark point is consistent with the

latest measurements of Higgs mass, Higgs couplings and Higgs signal strength at the LHC.

It is worth noting that for our analysis, lighter squarks, consistent with the present bounds,

would not be a problem. Since the contribution to various flavour processes from RPV,

typically, are proportional to (λ′′2/m2
q̃), it is possible to accommodate a smaller squark mass,

provided the couplings are reduced accordingly. In this scenario, we would, for example,

receive additional contribution to our signal events from, say the sstrange. If the sstrange

were only slightly heavier than the sbottom, it would decay to the sbottom along with a

bottom and a strange quark, via an off-shell gluino3. Owing to only a small difference in the

masses, the sbottom would be produced almost at rest with the two other jets being very

soft; this would be indistinguishable from the sbottom pair production scenario and would

thus add to our signal events. We do not consider this, and, thus, the analysis in this paper

is quite conservative.

The signal and background events are generated using MADGRAPH (version 2.2.2) [359], prop-

erly interfaced with PYTHIA8 (version 8.210) [360, 361] for parton showering and hadroniza-

tion. Event sets are then passed through DELPHES (version 3.2.0) [362] in order to simu-

late the detector response. Jets are reconstructed using FASTJET (version 3.1.3) [363], with

R = 0.4 using the anti-kt algorithm [364] in the leptonic case. For the hadronic case, we

intend to tag the boosted top quarks in the final state, which will necessarily be a fat jet;

thus, we use R = 1.8 using the C/A algorithm [365] which is optimized for tagging moderately

boosted tops [366].

3The only other channel available to it would be the RPV channel to the top and the bottom, which would,

again, be largely indistinguishable from that we consider here.
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Jets are selected with pT > 30 GeV and |η| < 2.5. Leptons (electron and muon) are selected

with pT > 20 GeV and |η| < 2.4. To reduce the background contribution of electrons or

muons from semileptonic decays of heavy flavours, a relative isolation criteria is imposed.

The relative isolation parameter, Irel, defined as,

Irel =

∑
i 6=P pT (i)

pT (P )
(5.3.1)

with P being the particle of interest (here electron or muon), is calculated as the sum of trans-

verse energy of all the charged and neutral particles measured in the tracker and calorimeters

in an isolation cone4 ∆R < 0.3 around the lepton direction divided by the lepton transverse

momentum. In our analysis, we demand Irel < 0.15.

In the semi-leptonic decays of the top, the final state contains multiple leptons and a significant

amount of missing transverse energy, calculated using the pT of all the visible particles. Our

signal topology also includes multiple b-jet candidates and in order to tag them as ‘b-jets’,

we require the angular distance ∆R between the parton level b-quark and the jet to be less

that 0.4, as implemented in DELPHES. A pT dependent b-tagging efficiency (εb) for |η| < 2.5,

following the CMS collaboration [367], is used to make our analysis more robust:

εb =


0.75 for pbT ≤ 30 GeV

0.85 for 30 GeV < pbT ≤ 400 GeV

0.95− 0.00025 pT for 400 GeV < pbT ≤ 800 GeV

0.65 for pT > 800 GeV.

(5.3.2)

Throughout the entire pT range, following the CMS card, a mistagging rate of 1% is assumed

for the non b-jets. Note that, the b-tagging efficiency obtained by the ATLAS collaboration

[368] is comparable with that of the CMS collaboration.

The cross-section of the tt̄ + jets (upto 2) process is taken from the LHC Top Quark Working

Group [369], while that of the tt̄H is taken from the LHC Higgs Cross-Section Working

Group report [370]. The NLO cross-section for tt̄W and tt̄Z are taken from [371], where

the results have been computed using MSTW2008 parton distribution functions (PDFs).

We use PYTHIA to calculate the cross-section for the tt̄bb̄ process, where the PDF used in

the calculation is CTEQ6L [372] and the factorization scale has been chosen to be MZ , the

mass of the Z-boson. For the signal processes, we use the sbottom pair production cross-

sections at the 13 TeV LHC calculated including the resummation of soft-gluon emission at

next-to-leading logarithmic accuracy matched to next-to-leading order supersymmetric QCD

corrections [373].

4Here, and henceforth, ∆R ≡
√

(∆η)2 + (∆φ)2 is the usual distance measure in the rapidity(η)–azimuthal

angle (φ) plane.
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5.4 Leptonic Final State

In this section we consider the final state in which there is at least one lepton; thus this

analysis includes both leptonic and semi-leptonic decays of the top quarks. We first perform

a cut-based analysis on the data sets and then supplement it with a multivariate analysis.

In Fig. 5.1, we present the jet multiplicity and the pT distribution of the two leading non

b-tagged jets. Additionally, in Fig. 5.2, the distributions for HT and MT2, both defined

shortly, are also shown. All the distributions include three representative benchmark points -

BP-1, corresponding to mb̃1
= 500 GeV, BP-4, corresponding to mb̃1

= 800 GeV, and BP-6,

corresponding to mb̃1
= 1000 GeV - along with the dominant SM backgrounds. Following

these distributions, we can discuss the optimization of our selection cuts in order to improve

the signal to background ratio.
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Figure 5.1: In (a) we show the distribution of the number of jets, (b) the PT distribution of the hardest non

b-tagged jet, while in (c) the same for the second hardest non b-tagged jet. For the sake of clarity, just the

two dominant SM background processes are shown, viz. tt̄+ jets and tt̄bb̄.
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Figure 5.2: Distribution of the (a) scalar HT and (b) Stransverse mass variable, MT2, are displayed.

5.4.1 Cut-based Analysis

Our cut optimization prescription resembles the one adopted by the CMS collaboration [376]

in order to distinguish a tt̄bb̄ sample from a background sample of tt̄+ jets (upto 2). In this
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section, we consider only leptonic events, i.e. events which have at least one lepton. In order

to distinguish the signal from background, we make use of five discriminating variables: the

number of jets, the pT of the hardest and the second hardest jets in each event, the scalar

HT and the transverse mass variable, MT2. The individual variables and the cuts imposed

on them are discussed below:

• C1 : We demand that each signal event contain at least one lepton. This particular

choice of signal topology will substantially remove the most severe SM background

coming from the pure QCD multijet processes.

• C2 : In any process with multiple jets in the final state, the number of jets (including

both the b-jets and the light jets) plays a very crucial role as a discriminatory variable.

Due to the large mass-splitting between the sbottom and the top, both the latter and the

other daughter would, often, carry a large pT , and, hence, we expect a higher multiplicity

of large–pT jets as compared to the SM backgrounds which, typically, have a significant

number of softer jet-progenitors. Consequently, we demand that the number of jets be

greater than four.

• C3 : Since we expect the non b-tagged jets coming from the sbottom decay to have a

high pT , we can place a pT cut on such a jet. We demand that the leading non b-tagged

jet have a pT > 250 GeV.

• C4 : Since the sbottom pair decay produces two light jets, we expect that the second

hardest non b-tagged jet will also be very energetic. We put a cut of pT > 150 GeV on

the sub-leading non b-tagged jet. The light jets, if any, from the background processes

are not expected to have such a high pT .

• C5 : We calculate HT , the scalar sum of pT of all the visible particles, namely jets,

leptons and photons. It is defined as follows:

HT =
∑

i=e,µ,j,γ

|~pT (i)| . (5.4.1)

The importance of this variable as a signal discriminator is very well reflected in Fig 5.2.

If we demand that our signal events should have substantially large value of HT ∼ 1000

GeV then most of the tt̄jj and tt̄bb̄ events are removed. This is again taking advantage

of the fact that the large mass of the sbottom results in jets and leptons with a pT

typically much higher than those emerging from SM processes.

• C6 : Finally, we put a cut on the transverse mass variable MT2 > 360 GeV. The

variable is defined as [377]:

MT2

(
~pV 1
T , ~pV 2

T , p/T

)
= min

/~p1T+/~p2T=/~pT

[
max

{
MT

(
~pV 1
T , /~p1

T

)
,MT

(
~pV 2
T , /~p2

T

)}]
(5.4.2)

where, /~p1
T and /~p2

T are two hypothetical subdivisions of the total missing transverse

momentum p/T. The separation of the visible particles into two sets with associated

transverse momenta ~pV 1
T and ~pV 2

T , is done so that the invariant masses of the two parts

are as close to each other as possible.
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In general, the transverse mass MT (~p1, /~p2) of the (~p1, /~p2) system is defined as

MT (~p1, /~p2) =
√
m2

1 + 2 |~p1| |/~p2| (1− cosφ) . (5.4.3)

Here, φ is the azimuthal angle between the ~p1 and /~p2 vectors with /~p2 corresponding to

a massless particle (neutrino) and m2
1 ≡ p2

1. For the process under consideration, the

visible part comprises of a b-quark, a light quark and a lepton coming from each of the

bottom squarks. Given the symmetry of the system, we group the visible entities such

that the two visible parts are nearly identical in invariant mass. For calculating MT2,

we use the Cheng and Han Bisection algorithm [378]. From the distribution shown in

Fig. 5.2, we can easily see that this variable too has a good discriminatory power.

The event summary for the signal and backgrounds after individual selection cuts is presented

in Table 5.2. The numbers in the table denote the resulting cross-sections after each selection

cut is applied to both signal and background events. The first row in the table, denoted by

‘C0’, refers to the NLO production cross-section for each process.

The numbers on the subsequent rows relate to the surviving cross-section for each of the cases

after the relevant cut (indicated as bullet points earlier) has been imposed.

Cuts tt̄+ jets tt̄bb̄ tt̄Z tt̄H tt̄W BP1 BP2 BP3 BP4 BP5 BP6

C0: 8.3× 105 1.7× 104 8.7× 102 5.1× 102 6.5× 102 5.2× 102 1.8× 102 67.0 28.3 12.9 6.2

C1: 1.8× 105 3.3× 103 2.7× 102 1.0× 102 2.3× 102 90.6 29.6 10.9 4.4 1.9 0.8

C2: 3.8× 104 1.2× 103 1.4× 102 63.4 89.4 76.8 25.8 9.7 3.9 1.7 0.8

C3: 3.9× 103 65.2 20.3 6.8 10.5 43.3 19.3 8.2 3.6 1.6 0.7

C4: 1.6× 103 27.2 11.0 3.2 2.1 33.4 16.1 7.2 3.2 1.5 0.6

C5: 9.6× 102 16.3 7.7 2.1 3.1 26.1 14.3 6.9 3.2 1.4 0.6

C6: 7.6× 102 13.9 5.5 1.6 1.9 17.4 10.9 5.6 2.7 1.3 0.6

Table 5.2: The surviving cross-section (in fb) for the different processes after each of the cuts. For tt̄ + jets,

we consider up to 2 jets.

We can now estimate the signal significance corresponding to each benchmark point at the 13

TeV LHC assuming 300 fb−1 of integrated luminosity. We are interested in the cross-section

after the cut ‘C6’ is imposed (last row of Table 5.2). The number of signal (background)

events, denoted by S (B), is given by the product of this cross-section and the integrated

luminosity. In Table 5.3, we tabulate the signal significance S given by

S =
S√
S +B

.

It is evident from the table that, for an integrated luminosity of 300 fb−1, the LHC stands in

extremely good stead to detect the sbottom should its mass be 600 GeV or below. The LHC

will graze past the exclusion limit of 95% C.L. for masses around ∼ 750 GeV. Given 3000

fb−1 integrated luminosity, we find that the discovery reach (i.e. 5σ significance) will exceed

800 GeV and the exclusion bounds might be extended to beyond the 900 GeV mass point.
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Background BP1 BP2 BP3 BP4 BP5 BP6

mb̃1
(GeV) 500 600 700 800 900 1000

N 2.3× 105 5.2× 103 3.3× 103 1.7× 103 8.2× 102 3.9× 102 1.7× 102

S = S√
S+B

10.7 6.7 3.5 1.7 0.8 0.4

Table 5.3: Number of background and signal events for a integrated luminosity of 300 fb−1, along with the

significances for the different benchmark points. See text for details.

5.4.2 Multivariate Analysis

To achieve a better discrimination between the signal and the SM background, we perform

a multivariate analysis (MVA) using the Boosted Decision Tree (BDT) algorithm as imple-

mented in the Toolkit for Multivariate Data Analysis (TMVA) [374] with ROOT [375]. We

briefly describe the procedure, the details of which may be found in Ref. [374], along with the

parameters for our analysis below.

Decision trees are used to classify events as either signal-like or background-like. Each node

in a decision tree uses a single discriminating variable, along with a certain cut value imposed

on it, to provisionally classify events as either signal-like or background-like depending on the

purity of the sample. The decision tree needs to be ‘trained’ and that starts with the root

node. We can think of the process as two bins originating from the root node (i.e., the zeroth

node), one having events classified as signal-like and the other as background-like. At the

next level, each of these bins can be treated in exactly the same way as the root node, using a

variable of choice and a particular value of cut on it, giving us two bins—one signal-like and

the other background-like—for each node. A tree is built up to a depth either determined by

the remaining number of background events, or by the depth specified by the user. The final

leaf nodes contain background-like and signal-like events from the training sample. Generally

half of the provided sample is used for training and the other half is then used for testing.

Decision trees, however, are unstable under statistical fluctuations and cannot be used as

good classifiers. Instead, the technique of boosting can be used to combine several classifiers

into a single one, such that the latter is more is stable under such fluctuations and, hence, has

a smaller error than the individual ones. Boosting modifies the weights of individual events

and creates a new decision tree. Higher weights are preferentially assigned to the incorrectly

classified events. Previously assigned weights are modified by α, given by

α =
1− ε
ε

, where ε =

√
p(1− p)
N

, (5.4.4)

where N is the total number of training events in the node and p = S/(S + B), called the

purity of the sample. The number of decision trees in the forest we use is given by NTrees

= 400, the maximum depth of the decision tree allowed is MaxDepth = 5 and the minimum

percentage of training events in each leaf node is given by MinNodeSize = 2.5%. We choose

Adaptive Boost, proven to be effective with weak classifiers and implemented as AdaBoost in

TMVA, as the method for boosting the decision trees in the forest with the boost parameter
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Set-1 (pT )j1, (pT )j2, (pT )j3, (pT )j4, (pT )bj1, (pT )bj2, (pT )bj3, (pT )bj4,

HT , E/T, nJets, nbJets, MT2, mh
b̃1

, m`
b̃1

Set-2 (pT )j1, (pT )j2, (pT )j3, (pT )j4, (pT )bj1, (pT )bj2, HT ,

E/T, nJets, MT2, mh
b̃1

, m`
b̃1

Set-3 (pT )j1, (pT )j2, (pT )bj1, (pT )bj2, HT , E/T, nJets, MT2

Set-4 (pT )j1, (pT )j2, HT , E/T, nJets, MT2

Table 5.4: Different sets of variables that can be considered for the multivariate analysis. We choose Set-2

for our analysis.

β ≡ AdaBoostBeta = 0.5. This parameter adjusts the learning rate of the algorithm simply

by changing the weights α → αβ. We have used the default values of the BDT parameters,

viz. NTrees, MaxDepth and MinNodeSize.

A challenge endemic to TMVA is finding an optimal set of observables that would lead to the

best possible discrimination between signal and background events. It is important to note

that a larger set of variables need not always provide better discrimination, especially if it is

mostly filled with irrelevant observables. We tried four sets comprising of 15 (Set-1), 12 (Set-

2), 8 (Set-3) and 6 (Set-4) variables respectively as detailed in Table 5.4. We then plot the

ROC (Receiver’s Operative Characteristic) Curve for these sets. The ROC curves signify the

efficiency of the signal (εS) with respect to the efficiency of rejecting the background (1− εB),

with εB being the efficiency of the background. This is exemplified by the left panel of Fig.5.3,

wherein we plot these ROCs for the benchmark point BP-4. Whereas the use of Set-1 and

Set-2 offers some improvement over Sets 3 and 4, the former are virtually indistinguishable in

their efficacy. In other words, the extra variables in Set-1 are of very little relevance. Given

this, we choose the largest set of variables without keeping any irrelevant variables, namely

Set-2 for the rest of the analysis in this section.

The variables chosen as BDT inputs have already been introduced in the previous section (see

the cut-based analysis) except for the two new variables, namely mh
b̃1

and m`
b̃1

, which represent

the reconstructed sbottom mass using the hadronically (h) and leptonically (`) decaying top

quarks respectively. We select events with exactly one isolated lepton (electron or muon) with

two or more b-tagged jets, utilising only the two hardest b-tagged jets in our reconstruction.

Additionally, we work with the four hardest light (i.e., non-b-tagged) jets in the event.

We could have also attempted to reconstruct the sbottom for events with two isolated leptons

originating from the leptonic decay of the two top quarks. However, the presence of two

neutrinos, the only source of missing energy here, renders the reconstruction non-trivial and

makes it a highly involved task. With the dileptonic branching fraction being only 5% (com-

pared to 30% for the semileptonic one), and with the pair production cross-section falling

rapidly with the sbottom mass, this channel is likely to be important only in the very high

luminosity run of the LHC. In this work, we thus focus only the semi-leptonic case when



124 CHAPTER 5. BOTTOM SQUARKS IN B-NUMBER VIOLATING MSSM

0.994 0.995 0.996 0.997 0.998 0.999 1.000

S

0.0

0.2

0.4

0.6

0.8

1.0
1 

- 
B

(a)

15var

12var

8var

6var

0.6 0.4 0.2 0.0 0.2 0.4

BDT cut value

0

5

10

15

20

Si
gn

ifi
ca

nc
e 

(in
 

) (b)
BP-1
BP-2
BP-3
BP-4
BP-5
BP-6

Figure 5.3: On the left (a), the ROC plot is shown for BP-4 with the four sets of variables and on the right

(b), the plot for the signal significance against different BDT cut-values is shown.

events contain exactly one isolated lepton with b-tagged and light jets and missing transverse

energy. The interested reader can refer to [379, 380] for the detailed implementation of the

reconstruction of tt̄ and heavy resonances using dileptonic modes.

Before we proceed to reconstruct the top quark, we must reconstruct the W bosons. The

hadronically decaying W boson is reconstructed by choosing the pair of light non b-tagged

jets which give an invariant mass closest to the actual W boson mass with a further demand

that the thus reconstructed mass lies within MW ± 30 GeV. The leptonically decaying W

boson in the decay of the top quark is reconstructed, within a quadratic ambiguity, from the

four momentum of the lepton, p` and the missing transverse momentum ~
�pT ≡ (p/x,p/y), by

imposing the condition that the invariant mass M`ν = MW . Note that, here it is assumed

that the only source of missing energy is the neutrino originating from the leptonic decay of

W. Using the 4-vector of the isolated lepton pµ = (E`, p`x, p
`
y, p

`
z), arising from the decay of

the W , one can construct the longitudinal component (and, hence, the energy) of the missing

momentum as follows:

p/z =
1

2 (E`2 − p`2z )

[
p`z

(
2p`xp/x + 2p`yp/y −m2

` + M2
W

)
±
√

∆
]
, (5.4.5)

where the quantity ∆ is given by

∆ = E`2
[(

2p`xp/x + 2p`yp/y −m2
` + M2

W

)2
− 4p/2

T

(
E`2 − p`2z

)]
, (5.4.6)

with m` being the mass of the lepton and MW being the input mass for the W boson. This

provides us with two values of p/z corresponding to the two signs of the square root. For

certain configurations, however, one may obtain ∆ < 0, rendering the calculated p/z complex

and thus unphysical. In these cases, one can re-calculate the missing energy by finding those

values of p/T for which ∆ ≥ 0:

p/T =
1

2
(
E`2 − p`2z − (p`x cosφ+ p`y sinφ)2

) [−(p`x cosφ+ p`y sinφ)(m2
` −M2

W)±
√

(m2
` −M2

W)2(E`2 − p`2z )

]
.

(5.4.7)



5.4. LEPTONIC FINAL STATE 125

For each sign of the square root in Eqn. 5.4.7, we get a value of p/T, which when substituted

in Eqn. 5.4.5 give two values of p/z for every value of p/T. Thus, we end up with four values

of p/z in this case, instead of just two as in the earlier case.

For each value of the z-component of the MET (i.e. p/z), we can reconstruct the leptonically

decaying top quark mass by combining the 4-momenta of the lepton, b-jets and the missing

energy. Several reconstructed mass combinations can exist, depending on the number of

solutions of p/z and since there are two b-tagged jets to choose from.

To obtain the optimal values of the leptonic and hadronic top quark masses in each event, a

minimum-χ2 approach is adopted with the χ2 defined as:

χ2 =
(mtH −mt)

2

σ2
mtH

+
(mtL −mt)

2

σ2
mtL

, (5.4.8)

where σmtL and σmtH represent the uncertainty in top quark mass measurement for leptoni-

cally and hadronically decaying tops respectively at the LHC. We consider σmtL = 2.7 GeV

and σmtH = 1.15 GeV [381, 382]. Using the 4-momentum information of the isolated lepton

and missing transverse energy along with the two b-tagged jets and the leading four non

b-tagged jets, we reconstruct the leptonic and hadronic top quark masses. The combination

which leads to the lower χ2 value is chosen. Nice resonance peaks around top quark mass

are observed for both the leptonically and hadronically decaying tops for all the benchmark

points.

After the reconstruction of two top quarks, we are now left with the final reconstruction of

the sbottom mass using these two reconstructed top quarks and and the two remaining light

quark jets originating from the decay of the two sbottoms. For each reconstructed top mass,

there are two possible choice to combine the light jets for the reconstruction of the sbottom

mass. We select the combination which leads to the least difference between the reconstructed

mass of the leptonically decaying sbottom and the hadronically decaying sbottom. The plot

for the reconstructed sbottom for BP-1 (corresponding to a 500 GeV sbottom) and for BP-4

(corresponding to a 800 GeV sbottom) are shown in Fig. 5.4, where the left and right panels

denote the reconstruction method involving the leptonically and hadronically decaying top

quarks. The reconstructed sbottom masses peak at the truth masses for the two benchmark

points, while for tt̄ events it peaks near the truth top quark mass. The peaks corresponding

to the signal events are significantly distinct from that of the backgrounds, and this motivates

us to consider the reconstructed masses as the BDT inputs.

BP-1 BP-2 BP-3 BP-4 BP-5 BP-6

mb̃1
(GeV) 500 600 700 800 900 1000

BDT cut 0.231 0.234 0.258 0.230 0.311 0.294

S = S√
S+B

20.9 9.9 4.7 2.7 1.6 0.9

Table 5.5: Signal significances for the benchmark points with the choice of BDT cuts with L = 300 fb−1 of

integrated luminosity.
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Figure 5.4: Reconstructed sbottom masses for BP-1, BP-4 and the tt̄ events, left (a) denotes the case when

the top quark decays leptonically while the right (b) signifies the hadronically decaying top quark scenario.

For details, see the text.

For each benchmark point, the variation of signal significance with the BDT cut value has

been shown in plot (b) of Fig. 5.3 and Table 5.5 shows the best signal significance with the

corresponding BDT cut values assuming L = 300 fb−1. Clearly, the MVA improves the reach

of the search compared to the cut-based analysis, e.g. signal significance improves from 10.7

to 20.9 for BP-1, resulting in an increase of the discovery reach of ∼ 100 GeV in the mass of

the b̃1. The variation of signal significance with integrated luminosity is shown in Fig. 5.5,

solid lines for the cut-based analysis and the dashed lines for the MVA. One can observe that

with 2000 fb−1 data, b̃1 mass of upto 1 TeV can be explored at the High Luminosity run of

LHC.

5.5 The Hadronic Final State

We now consider the case where both the top-quarks decay fully hadronically. The fully

hadronic final state is difficult to investigate at the LHC because of the overwhelming QCD

background. However, in our signal events, the top quarks are expected to be boosted, such

that the three quarks from its decay form a ‘fatjet’ with substructure. Our plan is to exploit

the substructure of such a fatjet to identify a top quark and investigate the reach for sbottom

using 13 TeV data from the LHC.

Our final state will contain only reclustered fatjets and we shall attempt to tag some of these

jets as tops. The background should ideally have contributions from all the SM processes

we considered in the leptonic counterpart—tt̄ + jets (upto two), tt̄bb̄, tt̄Z, tt̄W and tt̄H—in

addition to the QCD multijet, but for all practical purposes the QCD multijet processes and

tt̄ +jets (upto two) contribute so overwhelmingly to the background (even after cuts) that we

really need not consider the other processes. In this section, we work with this simplifying

assumption about the background. It is to be noted that while simulating the QCD multijet



5.5. THE HADRONIC FINAL STATE 127

100 500 1000 2000 3000
Integrated Luminosity (fb 1)

0

5

10

15

20

25

Si
gn

ifi
ca

nc
e

BP-1
BP-2
BP-3
BP-4
BP-5
BP-6

Figure 5.5: Plot of significance versus the integrated luminosity. While the inset legend shows the colour for

the different benchmark points, the solid line corresponds to the significance corresponding to the cut-based

analysis and the dashed line to that provided by the multivariate analysis. Horizontal lines at 2σ and 5σ

indicate the potential for exclusion and discovery.

events, we restrict ourselves up to four jets at the parton level (light quarks and gluons only)

due to our computational limitations. However, once parton showering is switched on, the jet

multiplicity can and does become larger.

Our strategy is to tag at least one top quark in each signal event. For this purpose, we use

HEPTopTagger [383], which is quite efficient for tagging tops with moderate boosts (pT &

200 GeV). We avail of the energy flow of the particles, provided in the EFlow branch of the

DELPHES generated ROOT file to obtain the particle information. We use FASTJET to construct

fat jets of R = 1.8 using the anti-kT jet algorithm with a minimum pT of 30 GeV. The jets with

pT > 200 GeV and |η| < 3 are then selected to pass through the HEPTopTagger. Before they

enter the toptagger, these jets are reclustered exclusively with the Cambridge-Aachen (C/A)

algorithm with the same jet radius (viz. R =1.8). The default settings of HEPTopTagger were

used: the mass drop required for jet splitting was set at min(mj1 ,mj2)/mj = µ < 0.8 with

the minimum mass of a subjet mmin
sub = 30 GeV, where j1 and j2 are the subjets of the fatjet

j. The top– and W–masses are reconstructed on a set of filtered subjets numbering no more

than Nfilt = 5. Tops are tagged with masses in the range between mmin
top = 140 GeV and

mmax
top = 200 GeV. We achieve an efficiency of about 30% using these conditions for moderate

(∼ 200 GeV) to high (say 600 GeV or more) pT regime. The choice of large jet radius indicates

that we are required to incorporate some jet grooming technique in order to get rid of soft

and large angle radiations as well as underlying events. In our analysis, we use a particular

technique, named Jet Trimming [384] which has been found to be very effective in grooming

large R jets. This grooming technique involves two independent parameters, namely Rtrim

and pfrac
T . The prescription is to essentially recluster the constituents of a given jet with a

smaller jet radius Rtrim and then keep those subjets with pT greater than a fixed fraction, pfrac
T

of the input jet pT . In our analysis, we optimize these two parameters and choose Rtrim = 0.4



128 CHAPTER 5. BOTTOM SQUARKS IN B-NUMBER VIOLATING MSSM

and pfrac
T = 1%. These trimmed jets, obtained after trimming the original anti-kT jets, are

used for further analysis.

5.5.1 Multivariate Analysis

After passing the jets to the HEPTopTagger, we select the events containing at least one top-

tagged jet. The complete event information is used to construct different observables, and

these, in turn, are used to perform a multivariate analysis using the TMVA framework.

Once we have successfully described the full event information in terms of jets, we classify

the different types of jets as top-tagged jets, b-tagged jets and “light” jets (non top-tagged,

non b-tagged jets). For b-tagging, we calculate the angular distance between a jet and the

b-hadron, and make sure that the separation ∆R < 0.5. Furthermore, we also take into

account a pT dependent b-tagging efficiency given by [368]:

εb =


0.5 for pbT ≤ 50 GeV

0.75 for 50 GeV < pbT ≤ 400 GeV

0.5 for pT > 400 GeV

(5.5.1)

Note that the above-mentioned efficiencies are conservative estimates; with more data and

improved algorithms we expect significant improvement in b-tagging efficiencies. Finally, jets

which are not tagged either as ‘top-jets’ or ‘b-jets’ are called ‘light jets’.

Not only are the light-jets in the signal sample often harder than those in the background, an

analogous statement also holds for the respective top-jet constituent (especially for heavier

sbottoms). To utilize these characteristic differences, between the signal and background

events, we consider the pT of the hardest top jet and the pT of the hardest and second

hardest light jets as BDT input variables. Like the leptonic analysis, one of the most important

variables is HT (see eqn.5.4.1), with the sum, obviously, running over all the jets. Being closely

associated with the center-of-mass energy of the process, it too is an important discriminator.

It is important to remind our readers here that we use only trimmed jets to construct the

jet observables. We use the number of b-tagged jets as a discriminator by passing it as a

variable for MVA, as QCD decreases vastly if a b-tag is demanded. We could, instead, have

put a cut on it before the MVA—a pre-MVA cut—but as this would decrease the background

a lot, making the BDT analysis somewhat unreliable, we desist. In Fig. 5.6, we plot the

distributions in the pT of the hardest light jet, that of the hardest top tagged jet and HT .

The QCD multijet sample was generated with an imposed cut of 1 TeV on the HT and after

demanding that the two hardest jets in the sample be harder than 100 GeV. With the center

of mass energy of the sbottom pair production process being ∼ 1 TeV, this ensures ample,

yet relevant statistics for the QCD multijet process. The variable HT turns out to be a good

discriminator as the peak of higher mass benchmarks lies to the right of the QCD peak, the

tail of the distribution only contributes to the signal peaks.
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Figure 5.6: The plots for a few of the variables used in the analysis. The left plot (a) shows the pT of

the hardest light jet (non top-tagged, non b-tagged jet), while the plot in the middle (b) shows the pT of the

hardest top-tagged jet. The rightmost figure (c) is that of the HT , which is the scalar sum of all the jets. In all

of these, only two benchmark points (BP-1 and BP-4) have been shown and the histograms for the background

processes are hatched.

Restricting ourselves to events with a tagged-top and at least four jets overall5 two more

useful observables are obtained by partitioning an event such that one subset contains the

tagged top and a single non-b jet, while the other contains the rest of the jets. Denoting the

invariant masses of the two sets by mtj and mjets, we retain these variables for the pairing

that minimizes the difference

∆M ≡ |m(jt, ji)−m(jk, jl, ...)| (5.5.2)

Ideally, ∆M should vanish. However, owing to the vagaries of jet reconstruction algorithms

as well as detector effects, this would rarely occur. Note that the requirement of the top’s

partner above being a non-b jet helps get rid of significant amount of the QCD background

in the signal peak region. Note that, among the two invariant masses mtj and mjets and the

mass difference ∆M , only two are independent parameters. In the MVA analysis, however,

we use all the three parameters simultaneously as BDT inputs. In Fig. 5.7, we plot the two

invariant masses we talked about earlier. These seem to have moderate discriminatory powers.

Furthermore, In Fig. 5.8, we also show the correlations in the mtj −mjets plane for the QCD

multijets (left plot), and for two benchmark points - BP-4 (middle) and BP-6 (right). For

the QCD, the points are dense in the region around the (500,500) point while for the signal

it is dense around (800,800) for BP-4 and around (1000,1000) for BP-6. It is interesting to

note that this feature, in principle, can be used for probing heavier bottom squarks.

Nsubjettiness [385] is an inclusive jet shape variable which takes into account the energy

distribution within a fat jet. It is defined as

τN =

∑
k pT,kmin (∆R1,k,∆R2,k...∆RN,k)∑

k pT,kR0
(5.5.3)

5Our primary event selection criteria includes at least one toptagged jet, however for the reconstruction

of invariant masses we restrict ourselves to exactly one toptagged event. In principle, two or more toptagged

samples would give better mass peaks with negligible QCD events, however we find a very few signal events

surviving the two or more toptagged jet selection criteria.
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Figure 5.7: The reconstructed masses that we used for the multivariate analysis. The plot on the left (a)

is the invariant mass of the top with one of the light jets (in short, ‘tj’ set), while that on the right (b) is the

invariant mass of all the other jets in that event which do not correspond to the ‘tj’ set. The invariant mass

reconstruction technique has been discussed in the text in detail. Only two benchmarks (BP-1 and BP-4) are

plotted and the background histograms are hatched.
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Figure 5.8: Colour plots showing correlation between the mtj and mjets variables in the case of QCD (left),

BP-4 (middle) and BP-6 (right). Strong correlation can clearly be seen around the (500, 500) point for QCD,

(800, 800) for BP-4 and (1000, 1000) for BP-6. This can be exploited to probe heavier sbottoms as well.

where ∆Rj,k is the angular separation between the jth candidate jet and the kth constituent

particle, pT,k is the pT of the kth constituent and R0 is the jet radius of the fatjet under

consideration. Normalisation ensures that 0 ≤ τN ≤ 1. If τN ≈ 0, it indicates that all the

radiation in the jet is aligned with the subjet directions and that there is a maximum of N

subjets in the considered jet. On the other hand, if τN � 0, it indicates the presence of more

subjets and that the radiation is distributed far from the candidate subjets. It turns out that

the ratio between two Nsubjettiness variables might have higher discriminatory power than

the variables themselves. For events with at least one toptagged jet, we calculate three such

ratios, τ21, τ31 and τ32, where τij = τi/τj , associated to the leading toptagged jet. The ideal

toptagged jet should have a three-prong structure, and thus τ31 and τ32 are expected to be

small, while this would not be true for the QCD background. Thus, these can be used as

good discriminating variables. In Table 5.6, we list all the above-mentioned variables that are

passed to the BDT for the MVA.
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Variable Definition

1. nlJet The number of light jets in the event

2. nbJet The number of b-tagged jets in the event

3. ntJet The number of top-tagged jets in the event

4. (pT )j1 pT of the hardest light jet

5. (pT )j2 pT of the second hardest light jet

6. (pT )
j
(1)
t

pT of the hardest top tag jet

7. HT scalar sum of the pT of all the jets

8. mtj the invariant mass of the top and jet system

9. mjets the invariant mass of all the other jets

10. ∆M = |mtj −mjets| the mass difference of the two reconstructed invariant masses

11. τ21 = τ2/τ1 Ratio of the Nsubjettiness variables

12. τ31 = τ3/τ1 Ratio of the Nsubjettiness variables

13. τ32 = τ3/τ2 Ratio of the Nsubjettiness variables

14. ρ =
(pT )

j
(1)
t

(pT )
j
(1)
`

Ratio of the hardest top-jet pT and light jet pT

15. Φ(t, j) Azimuthal angle separation between the toptagged jet

and the leading light jet.

Table 5.6: List of all the variables used in the multivariate analysis. Note that, the variable ρ2 is calculated

only only for events with two or more tagged tops.

QCD tt̄+ jets BP-1 BP-2 BP-3 BP-4 BP-5 BP-6

σ0 (fb) 1.9× 107 8.3× 105 5.2× 102 1.8× 102 6.7× 101 2.8× 101 1.3× 101 6.2

σtoptag (fb) 2.6× 106 6.7× 104 1.4× 102 5.0× 101 2.0× 101 8.6 4.0 2.0

Table 5.7: Showing the initial cross-section (σ0) and surviving cross-section after at least one top is tagged

(σtoptag) for the background and all the signal benchmarks. The QCD multijet sample is generated after a cut

on the HT variable of 800 GeV and cut of 100 GeV on the pT of the two hardest jets.

Two further observables, namely ρ and Φ(t, j), are used as BDT inputs, with the former being

defined as

ρ =
(pT )

j
(1)
t

(pT )
j
(1)
`

(5.5.4)

where (pT )
j
(i)
t

is the pT of the ith top jet, while (pT )
j
(i)
`

is the pT of the ith light jet (i.e.

a non top-tagged, non b-tagged jet). The quantity Φ(t, j) measures the azimuthal angular

separation between the top-tagged jet and the leading light jet.

5.5.2 Results

We now proceed to discuss the details of the multivariate analysis using the BDT method

implemented in the TMVA ROOT framework. The fifteen variables discussed earlier and
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listed in Table 5.6), each of which we expect to have some discrimination power, are used as

the BDT inputs. The BDT parameters are same as in the leptonic case, viz. NTrees = 400,

MaxDepth = 5 and MinNodeSize = 2.5% with AdaBoostBeta = 0.5. In Table 5.7, we show

the initial cross-sections (σ0) and the cross-section after at least one top is tagged (σtoptag).

The top tagged events in the QCD samples are due to misidentification of fat jets as top jets;

the corresponding ‘fake rate’ is about 10% for the QCD sample. The advantage of using the

multivariate analysis is that we can translate a complicated multi-dimensional optimisation

problem over all input variables into that involving a one parameter function which is much

easier to handle. We can now choose the BDT cut value such that it maximizes the signal

significances. The results of the multivariate analysis are presented in Table 5.8 and Fig. 5.9.

BP-1 BP-2 BP-3 BP-4 BP-5 BP-6

mb̃1
(GeV) 500 600 700 800 900 1000

BDT cut 0.186 0.167 0.245 0.238 0.266 0.280

S = S√
S+B

3.50 1.21 0.57 0.32 0.20 0.16

Table 5.8: Signal significances for the benchmark points with the choice of BDT cuts with L = 300 fb−1 of

integrated luminosity.
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Figure 5.9: Plot showing the significance of the different benchmark points with variation of the BDT cut

value. All figures for for 300 fb−1

From Table 5.8, it is evident that the signal significances for the benchmark points diminish

rapidly as we proceed from BP-1 to BP-6. The primary reason is the rapid decrease of

the sbottom pair production cross-section with the increase of sbottom mass. Even though

we expect to tag the top quarks originating from the heavier sbottoms more efficiently, the

impact is negligible compared to the drastic fall in the production cross-section. Improved

toptagging with smaller fake rate for the QCD multijet events is essential for better signal-

background discrimination. State-of-the-art jet grooming techniques, namely Pruning [386]

and SoftDrop [387] may help in reducing QCD multijet events and, thus, enhancing the signal

significance.
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It is thus clear that the hadronic channel is not the most favourable one for the discovery

of the sbottom. The exclusion limit is barely reached, for 300 fb−1 integrated luminosity,

for the first benchmark point (500 GeV). A higher integrated luminosity of 3000 fb−1 from

a futuristic collider like the High Luminosity LHC will be able to push the exclusion limit

to about 650 GeV. However, here we would like to suggest an interesting extension of this

analysis which combines our leptonic and hadronic analyses, a successful marriage of the

boosted and non-boosted analyses with semi-leptonic final states. We will leave this very

interesting avenue for our future work.

5.6 Summary and Outlook

In this paper, we analyze the discovery potential of the LHC for a bottom-squark (the LSP)

which decays, with a 100% branching ratio, to the top and a light quark via R−parity violating

UDD couplings. While relatively heavy squarks allow for large couplings, thereby opening

up the possibility of significant resonance production (such as d + b → t̃∗), we eschew this

possibility altogether, assuming the couplings are small enough for them to be unimportant in

production processes (whether resonance or pair), yet large enough to preclude recognizably

displaced vertices.

Based on the final state, we devise two strategies, one for a final state which has at least

one isolated lepton (electron or muon) and the other for a fully hadronic final state. For the

leptonic state, two independent investigations have been performed: first, using the traditional

cut-based analysis and then using a multivariate analysis (MVA). The backgrounds considered

for the leptonic analysis are t ¯+jets, tt̄bb̄, tt̄W , tt̄H and tt̄Z. After demanding an isolated

lepton tag, we consider cuts on various observables, like HT and MT2 among others, in order

to separate signal from background. We also reconstruct the sbottom mass with exactly one

isolated lepton with two or more b-tagged jets and four hardest light (i.e., non-b-tagged) jets in

the event. We use these reconstructed sbottom masses, namely mh
b̃1

and m`
b̃1

representing the

reconstructed masses using the hadronically and leptonically decaying top quarks respectively,

as BDT inputs. While the cut-based analysis reveals an exclusion of∼ 750 GeV of the sbottom

mass, the MVA extends that range to ∼ 850 GeV with 300 fb−1 of data.

For the fully hadronic final state, we perform the MVA directly as we find through our lep-

tonic analysis that it helps to improve the reach for heavy resonance. The dominant QCD

multijet and the (tt̄+ jets) backgrounds drown out all other sources of SM backgrounds. We

consider events in which we can tag at least one top jet using the HEPTopTagger framework.

Furthermore, in order to reduce the effect of underlying events and soft radiation, we groom

the large R anti-kT jets using the “Trimming” technique. Several observables are then con-

structed using these trimmed jets and then passed to the MVA. The results, unfortunately,

are not as good as in the leptonic channel, with the exclusion limit barely crossing 500 GeV.

The sensitivity that our analyses project can be further improved upon the inclusion of other

aspects. We list a few here:
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• Incorporating tracker information such as number of soft-tracks [388], not associated

with the reconstructed objects, is likely to help in improving the sensitivity, especially

for the most challenging case, viz. the fully hadronic final state.

• As we have already mentioned, the very couplings that we have investigated here also

lead to the stop decaying to a bottom and a light quark. Although the background

processes to the corresponding final state (two b + d/s pairs) have larger production

rates than the one here, the simpler nature of the final state, especially the ability to

reconstruct the masses [351, 352] allows for a higher experimental sensitivity [334]. In

this work, we have deliberately avoided this channel, assuming the stop to be much

heavier. If it is not so, but is comparable to the sbottom in mass, the sensitivities need

to be compounded.

• The very same coupling will also lead to decays like d̃ (s̃) → t̄ + b̄ (depending on the

identity of the coupling). Once again, we have not included this assuming that the

d̃ (s̃) is much heavier. This assumption was partly motivated by the need to keep large

FCNCs at bay. However, a second solution exists if the squark masses are relatively

degenerate [389–391]. This can be motivated if the soft-supersymmetry breaking masses

for the right-handed squarks are similar, and so are the small trilinear terms Ad, As, Ab.

As can be readily appreciated, this solution is more natural than the one we have

considered here.

Direct two-body decays of d̃ (s̃) that are nearly degenerate with the b̃ would lead to

configurations very similar to that we have considered here, with the added advantage

that the non-top jets here originate from b-quarks and, thus, can be tagged. This would

severely curtail the SM backgrounds (with the biggest effect being seen in the fully

hadronic state), resulting in much improved sensitivity.

• Indeed, even if the d̃ (s̃) are sufficiently heavier than the b̃ (on account of a possibly

large Ab, the effects due to Ad,s of similar magnitudes being smaller) so as to open

up their R-conserving three-body decays (into b̃ accompanied by a pair of quarks), the

associated quarks would lead to only soft jets. Thus, for such a cascade, one essentially

comes back to the configuration that we have analysed here.

• Finally, both stops and sbottoms (and, similarly, the other squarks) can originate from

gluinos. If the gluino is not much heavier than the quark, its production cross section is

much larger. Such a gluino would decay into the squark-quark pair. The latter would

lead to a soft jet, with the first suffering a R-violating decay leading to a configuration

very similar to the one under consideration. This is quite analogous to the ATLAS

study [336] (that set a limit of mg̃ > 1.08 TeV), except for the fact that, in the present

context, some of the jets would be rather soft.

On the other hand, if the gluino is very heavy, the produced squarks will be highly

boosted, providing highly boosted tops in turn. This suits top tagger algorithms favor-

ably and has been analyzed in [392].
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In view of these obvious improvements to the sensitivity that can be effected, it is quite

apparent that the conclusions reached by us are only conservative.





Chapter 6
The Sgoldstino as a 750 GeV diphoton

resonance

6.1 Introduction

Discovery through direct searches has remained a gold standard in particle physics and the

LHC holds promise of fulfilling such aspirations. Till date, however, there haven’t been

any signs of a new particle. Towards the end of 2015, there was a lot of excitement in the

community over a tantalising signal of an excess in the diphoton channel. The excess, initially

reported by both the ATLAS and the CMS collaborations, have since disappeared and is now

thought to be a statistical flucatuation.

The ATLAS and the CMS collaborations had reported the excess of events in the diphoton

invariant mass (mγγ) distribution based on 3.2 and 2.6 fb−1 of proton-proton collision data

respectively collected at a center-of-mass energy of 13 TeV. ATLAS observed the most sig-

nificant deviation from the background hypothesis at mγγ ≈ 750 GeV, corresponding to a

local (global) significance of 3.6 (2.0) 1 [393]. The largest excess in the CMS data was seen

around the 760 GeV mass bin with a local (global) significance of 2.6 (. 1.2) standard devia-

tions [394]. This excess is also found consistent with the constraints from the run 1 data [396].

It was also reported by ATLAS that the properties of the events in the signal region were found

to be compatible with those in the invariant mass regions above and below the excess. As

suggested by many authors, the most simple-minded explanation of this excess is to propose

the existence of a resonance (S) of mass ∼ 750 GeV. In order to generate the correct amount

of signal, the resonance must have couplings that produce σsignal ≡ σ(pp → S)Br(S → γ γ)

about 5 fb [396,445,446].

1This was obtained using a narrow width of the signal component. The statistical significance increases

slightly once the possibility of larger width is taken into account. See [395] for more details.

137
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In this article, we consider the possibility of this resonance being an sgoldstino2, the “super-

partner” of the goldstino, the goldstone fermion of spontaneous global supersymmetry (SUSY)

breaking. This possibility has been discussed by [405–408, 418] using an effective description

of how the SUSY breaking is mediated to the MSSM sector. In this article, we scrutinise the

viability of this proposal when realistic models for the mediation of SUSY breaking are con-

sidered. But before we start discussing that, we would like to make a few general comments

about SUSY breaking in order to put things in perspective.

Unlike other symmetries, there are some interesting limitations on the possibility of spon-

taneous global SUSY breaking. For example, neither a pure super Yang-Mills (SYM) nor a

SYM theory with massive matter in real representations of the gauge group breaks SUSY

spontaneously3. In particular, global N = 2 SYM theories (that have matter in real represen-

tations) cannot have SUSY spontaneously broken. This is one of the reasons why one needs

global N = 1 SUSY with complex representation for phenomenology (i.e., MSSM) as there is

a hope that SUSY can be spontaneously broken as required by experiments.

However, even in MSSM, it turns out to be impossible to break SUSY spontaneously. In

fact, with the minimal field content of MSSM both the SUSY and the EW symmetry remain

unbroken4. Hence, adding more fields to the MSSM is unavoidable. However, even after

adding many heavy fields, the gaugino masses cannot arise in a renormalisable SUSY theory

at tree-level. This is because SUSY does not contain any (gaugino)-(gaugino)-(scalar) coupling

that could give rise to a gaugino mass term when the scalar gets a vacuum expectation value

(VEV). Moreover, the tree level supertrace rules do not allow a phenomenologically acceptable

spectrum.

Hence, one possibility for breaking SUSY spontaneously in the MSSM is to have tree level

SUSY breaking in a so-called “hidden sector” and radiatively mediate the information of

SUSY breaking to the MSSM sector5. This also helps in finding a solution of the SUSY

flavour problem. As the pattern of SUSY breaking interactions in the visible MSSM sector is

determined by the interactions of the messenger particles with the MSSM, a natural way to

avoid additional flavour violation in the MSSM is to have flavour symmetries in the messenger

interactions. The models of gauge mediation, where the information of SUSY breaking is

communicated to the MSSM sector by gauge interactions, achieve this goal in a natural way6.

In the gauge mediation scenarios, one assumes the existence of “messenger fields” that are

charged both under the SM gauge group as well as the hidden sector quantum numbers. The

mass scale of these messengers is arbitrary and, in principle, can be as low as ∼ 10 TeV. These

models are often called “low scale SUSY breaking” scenarios and, as we will see later, are the

only ones (among the different SUSY breaking scenarios) relevant for the diphoton excess.

2To our knowledge, the name “sgoldstino” was first used in [422].
3This follows from the fact that Witten Index of these theories is non-zero [419]. See also [420,421].
4A Fayet-Iliopoulos D-term breaking also turns out to be phenomenologically unacceptable [167].
5Note that, in four space-time dimensions, if supersymmetry is not broken spontaneously at the tree level,

then it can not be broken by radiative Coleman-Weinberg mechanism [443]
6This is however not true in general, as the messenger fields can have renormalisable superpotential couplings

to the MSSM [403,432–435,444]
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In the following section, we review the general framework that leads to the sgoldstino explana-

tion of the diphoton excess and present the necessary formulae to study the phenomenology.

In section 6.3, we will discuss the ordinary gauge mediation (OGM) scenario and point out

the various theoretical issues it confronts in connection to the diphoton excess. The general-

isation of the OGM framework, called the extraordinary gauge mediation (EOGM), will be

discussed in section 6.4. In section 6.5, we will investigate whether there is some way out of

the difficulties raised in the previous sections. We will conclude in section 6.6.

6.2 Generalities

6.2.1 Theoretical framework

In order to parameterise the effect of SUSY breaking in the visible sector, it is usually assumed

that SUSY is broken in the hidden sector by the VEV of the F component of a chiral superfield

X. In particular, the gaugino masses are generated by the following terms,

L ⊂ −1

2

c1

M1

∫
d2θXW 1αW 1

α − 1

2

c2

M2

∫
d2θXW 2αAW 2A

α

− 1

2

c3

M3

∫
d2θXW 3αAW 3A

α + h.c. (6.2.1)

where the superscripts {1,2,3} refer to the U(1), SU(2) and SU(3) gauge groups respectively

(the adjoint indices for both the gauge groups SU(2) and SU(3) are denoted by A), and α is

the spinor index. The scale Mi denotes the mass scale of the messeger fields which have been

integrated out to get the above Lagrangian terms7. The chiral superfield X and Wα have the

following expansion in terms of the ordinary fields,

X = S +
√

2θξ(y) + θθFx(y) (6.2.2)

=
1√
2

(φ(y) + ia(y)) +
√

2θξ(y) + θθFx(y) (6.2.3)

WA
α = −iλAα (y) +DA(y)θα − (σµνθ)αF

A
µν(y)− θθσµ

αβ̇
D(y)
µ λ†A β̇(y) , (6.2.4)

where, yµ = xµ − iθσµθ†.

Once the F term of X gets a VEV, say 〈Fx〉, the above Lagrangian terms generate the

following Majorana masses for the gauginos,

mi = ci
〈Fx〉
Mi

. (6.2.5)

The Lagrangian of Eq. (6.2.1) also generates couplings of the scalar components of X to the

7In models of gravity mediation, the scale Mi is of the order of the planck scale. It is then clear that gravity

mediation models are not relevant for the diphoton excess.
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gauge bosons,

Lgg =
1

2
√

2

c3

M3

(
φGaµνG

µνa − aGµνG̃µν
)

(6.2.6)

LWW =
1

2
√

2

2c2

M2

(
φW+

µνW
−µν − aW+

µνW̃
−µν
)

(6.2.7)

Lγγ =
1

2
√

2

(
c1

M1
c2
W +

c2

M2
s2
W

) (
φFµνF

µν − aFµνF̃µν
)

(6.2.8)

LZZ =
1

2
√

2

(
c1

M1
s2
W +

c2

M2
c2
W

) (
φZµνZ

µν − aZµνZ̃µν
)

(6.2.9)

LZγ =
1

2
√

2
2sW cW

(
c2

M2
− c1

M1

) (
φZµνF

µν − aZµνF̃µν
)
. (6.2.10)

The scalars φ and a can decay to the gauge bosons through these couplings. The corresponding

partial decay rates are given by (see appendix D.1 for details)8

Γγγ ≡ Γ(φ→ γγ) =

[
1

2mφ

] [
1

8π

][
1

8

(
c1

M1
c2
W +

c2

M2
s2
W

)2
] [

8m4
φ

] [1

2

]
(6.2.11)

Γgg ≡ Γ(φ→ gg) =

[
1

2mφ

] [
1

8π

][
1

8

(
c3

M3

)2
] [

64m4
φ

] [1

2

]
(6.2.12)

Γzγ ≡ Γ(φ→ Zγ) =

[
1

2mφ

][
1

8π

(
1− m2

Z

m2
φ

)] [
1

8

(
c2

M2
− c1

M1

)2

4s2
W c

2
W

]
(6.2.13)

×

2m4
φ

(
1− m2

Z

m2
φ

)2


Γzz ≡ Γ(φ→ ZZ) =

[
1

2mφ

] 1

8π

(
1− 4

m2
Z

m2
φ

)1/2
 [1

8

(
c1

M1
s2
W +

c2

M2
c2
W

)2
]

×
[

8m4
φ

(
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

)][
1

2

]
(6.2.14)

Γww ≡ Γ(φ→WW ) =

[
1

2mφ

] 1

8π

(
1− 4

m2
W

m2
φ

)1/2
 [1

8

(
2c2

M2

)2
]

×
[

8m4
φ

(
1− 4

m2
W

m2
φ

+ 6
m4
W

m4
φ

)]
(6.2.15)

Here sW and cW denote the sine and cosine of the Weinberg angle respectively. The partial

decay rates for the scalar a can be obtained from the above expressions by replacing mφ by ma.

There is slight difference between the decay rates of φ→ ZZ(W+W−) and a→ ZZ(W+W−);

however, that is numerically insignificant (see appendix D.1).

8Signatures of sgoldstino at the e+e− and hadron colliders were first studied in [447,448] where the formulae

for the decay rates can also be found.
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6.2.2 Explaining the excess

The total cross section for the diphoton production via the resonance S is given by9,

σLHC energy = σ(p p→ S)LHC energy Br(S → γ γ)

=
∑
i

AiiLHC energy Γ(S → pi pi)
Γ(S → γ γ)

ΓS
, (6.2.16)

where {pi pi} refers to the initial state partons i.e., {g g}, {ū u}, {d̄ d} and so on. The total

width of S is denoted by ΓS . The numerical values of the quantities AiiLHC energy are calculated

in appendix D.2 and are given by,

Agg13 ≡ A|gg13 TeV LHC =
5.44 pb

GeV

Aūu13 ≡ A|ūu13 TeV LHC =
2.94 pb

GeV

Ad̄d13 ≡ A|d̄d13 TeV LHC =
1.73 pb

GeV

Agg8 ≡ A|gg8 TeV LHC =
1.15 pb

GeV

Aūu8 ≡ A|ūu8 TeV LHC =
1.2 pb

GeV
(6.2.17)

Ad̄d8 ≡ A|d̄d8 TeV LHC =
0.66 pb

GeV

In order to explain the signal, σ13 TeV must be approximately in the range 3− 8 fb, assuming

that the resonance has a small width . few GeV [396]. A larger width of ∼ 40 GeV requires

σ13 TeV to be slightly higher: σ13 TeV ≈ 5−14 fb [396]. As the sgoldstino typically has a narrow

width, in our estimates we will use the range 3− 8 fb for the required cross section.

We will first consider the production by gluon fusion only, as the production by uū and dd̄

initial states is slightly disfavoured [396, 445, 446]. In section 6.5.3, we will comment on the

possibility of quark initiated production.

6.3 Ordinary gauge mediation

In the OGM framework, the hidden sector is parameterised by a single chiral superfield

X. Both the scalar and auxiliary components of X are assumed to get VEVs that are

denoted by 〈S〉 and 〈Fx〉 respectively. In addition to this, OGM also includes N5 vector like

pairs of messenger fields, (Φi, Φ̃i), transforming under 5 + 5̄ of SU(5)10. The corresponding

superpotential reads,

WOGM = λijXΦ̃iΦj , (6.3.1)

where the indices {i, j} run from 1 to N5. Note that the matrix λij can always be brought to

a diagonal form with real entries by independent unitary rotations on Φ and Φ̃ (the Kähler

9Here we use the approximation that ΓS/mS is small. This is a very good approximation even for the case

when Γ = 45 GeV, which gives ΓS/mS = 0.06.
10Complete representations of a GUT group are normally used in order to keep the unification of the gauge

couplings intact. However, in general, complete representations are not necessary. The use of incomplete

representations often also have interesting phenomenology, see for example, [409] and the references therein.
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potential remain unchanged). Hence, in the rest of this section, we will assume that λij is

diagonal with λii ≡ λi.

The fermions of each {Φi, Φ̃i} pair has a Dirac mass mi
F = λi〈S〉. The mass eigenstates of

the complex scalars, on the other hand, have squared masses mi2
± = λ2

i 〈S〉2 ± λi〈Fx〉. The

gaugino masses are generated at the one loop level and are given by [398],

ma =
αa
4π

N5∑
i=1

dai
λi〈Fx〉
mi
F

g(xi) (a = 1, 2, 3) (6.3.2)

where, xi =
λi〈Fx〉
(mi

F )2
and the function g(x) is given by [398],

g(x) =
1

x2
[(1 + x)Log(1 + x) + (1− x)Log(1− x)] . (6.3.3)

The symbol di denotes twice the Dynkin index for a particular representation. For example,

in the case of 5 + 5̄ of SU(5), d = 1. In Eq. 6.3.2, we have used the GUT normalisation of

the hypercharge gauge coupling.

Note that the SUSY breaking F -term VEV 〈Fx〉 must satisfy 〈Fx〉 ≤ λi〈S〉2 , ∀i in order to

avoid the messenger scalar masses from becoming tachyonic. For simplicity, we assume all the

λi couplings to be equal and set them to a common value λ. We define the ratio λ〈Fx〉/m2
F to

be κ. With these definitions, the formula for the gaugino mass takes the form (for messengers

in 5 + 5̄ of SU(5)),

ma =
αa
4π

κmF N5 g(κ) (a = 1, 2, 3) . (6.3.4)

The ca couplings (see Eq. 6.2.5) which control the signal strength are given by,

ca
Ma

=
ma

〈Fx〉
=
αa
4π

λ

mF
N5 g(κ) (a = 1, 2, 3) . (6.3.5)

Similarly, the scalar masses can be written as [416,417],

m̃2
a = 2N5 κ

2m2
F

[
Ca3

(α3

4π

)2
+ Ca2

(α2

4π

)2
+ Ca1

(α1

4π

)2
]
f(κ) (6.3.6)

where Ca are the quadratic Casimirs and the function f(x) is given by [398],

f(x) =
1 + x

x2

[
Log(1 + x)− 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x→ −x) . (6.3.7)

In order to calculate the gaugino masses at the ∼ TeV scale, we use the values of αa at 1 TeV,

which we compute using the one loop SM running equations,

1

αa(µ)
' 1

αa(mZ)
+
ba
π

Ln

(
µ

mZ

)
{ 1

α1(mZ)
,

1

α2(mZ)
,

1

α3(mZ)
} = {59, 30, 8.5} (6.3.8)

{bSM
1 , bSM

2 , bSM
3 } = {−41

20
,
19

12
,
7

2
} (6.3.9)
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Figure 6.1: Allowed region in the OGM parameter space that successfully explains the signal and satisfy

LHC bounds on squark and gaugino masses. While in the left panel the contribution from only φ is considered,

the right panel takes into account both φ and a contributions.

We now examine the requirements on mF , 〈Fx〉 and N5 in order to generate the correct cross

section for the excess. In order to have a feeling for the messenger mass scale required for

the excess, we first consider a single pair of SU(5) messengers {5 + 5} i.e., N5 = 1 and also

set λ = 1. Following the discussion of the previous section, the explanation of the diphoton

excess requires11,

Agg13

ΓggΓγγ
Γgg + Γγγ + Γww + Γzz + Γzγ

& 3 fb . (6.3.10)

This gives,

mF . 175 GeV . (6.3.11)

The messenger scale can be raised if the number of messenger fields is increased. In Fig. 6.1

we show the allowed region in the mF – N5 plane for λ = 1 and κ = 0.8. In the left panel, only

the contribution of φ to the signal is considered, while in the upper right panel contributions

from both φ and a are taken into account. As discussed before, κ should satisfy κ ≤ 1 to

avoid tachyonic states in the messenger sector. For κ very close to unity, one of the complex

scalars in every pair of messenger fields becomes too light (its squared mass is m2
F (1 − κ)).

Also, the function f(κ) decreases rapidly for κ & 0.8 [398] reducing the MSSM squark masses.

Hence, we have chosen a value κ = 0.8 in Fig. 6.1.

The light green shaded region reproduces the correct amount of signal to explain the excess.

In the light red shaded region, the gaugino masses are what is required by the exclusion limits

11Here we have neglected any decay mode other than the gauge boson final states. However, existence of

other decay modes will increase the total width of the resonance, hence adding an extra contribution to the

denominator of Eq. 6.3.10. This means that the required signal cross section will be even higher, as pointed

out also in the end of section 6.2.2. Thus our estimate is on the conservative side.
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Figure 6.2: RG running of the SM gauge couplings above mF for the two representative sets of values of

{mF , N5} shown as black dots in Fig. 6.1, see text for more details. The values of the couplings at the scale

mF is obtained using the SM evolution from mZ to 2 TeV and the MSSM evoulution from 2 TeV to mF .

of the LHC. In particular, the gluino mass is set to more than 1.5 TeV and a conservative

lower bound of 200 GeV is considered for the bino and wino masses (we also show the region

satisfying a stricter lower bound of 650 GeV on the bino and wino masses [451]). Similarly,

in the light blue region the squarks are heavier than a TeV. It can be seen that a very large

number of messengers & 60 is required in order to both successfully explain the signal as well

as produce sufficiently large gaugino and squark masses.

However, for such a large number of messenger fields, the gauge couplings lose asymptotic

freedom. The one-loop running of the gauge couplings above the messenger fermion mass

mF is shown in Fig. 6.2 for two sets of values of {mF , N5}, shown as black dots in Fig. 6.1.

The point {mF , N5} = {14 TeV, 65} is chosen such that all the requirements namely, correct

amount of the signal cross section and heavy enough gaugino and squark masses are satisfied.

It can be seen from the left panel of Fig. 6.2 that the SU(3) gauge coupling in this case hits a

one-loop Landau pole below ∼ 50 TeV. The right panel of Fig. 6.2 shows the renormalisation

group (RG) running for {mF , N5} = {7 TeV, 35} i.e., when the constraint from the squark

masses is relaxed. This is relevant for example, in models where the squark masses are

generated at the tree level [423, 424]. However, even in this case, the required number of

messenger pairs is & 35 and the one-loop Landau pole is encountered below ∼ 80 TeV.

Before concluding this section, we would like to make two final comments:

i)Although we have presented our results for messengers transforming under {5+5} of SU(5),

our general conclusions hold for other representations also and even in the case when the

possibility of doublet-triplet splitting is considered (this will be more clear in section 6.5.3).

ii)The formula in Eq. 6.3.5 is strictly valid only if the SUSY breaking VEV is small namely,
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Figure 6.3: RG evolution of λ for N5 = 5 and for two initial values of λ: λ(10 TeV) = 1 (left) and

λ(10 TeV) = 2 (right).

κ << 1. For κ ∼ 1, one has to compute the separate loop contributions from the messenger

scalar with masses m2
± = m2

F (1± κ). This gives a correction factor ∼
(

1− 2/3κ2

1− κ2

)2

in the

decay rates for the scalar φ ( here we have assumed λ = 1 for simplicity). This factor is only

≈ 2.5 for κ = 0.8 which we use for our analysis12 and is absent for a. Hence, this does not

affect our numerical analysis.

6.3.1 Possibility of larger λ

It can be seen from Eq. 6.3.5 that, for a given gaugino mass, the ci coefficients (hence, diphoton

signal cross section) can be increased by increasing λ. However, one should first check the

RG running of λ in order to see the maximum value of λ that is safe.

As the fundamental representation of SU(5) can be decomposed into representations of

SU(3)⊗ SU(2)⊗ U(1) in the following way,

5→ (3, 1)−1/3 ⊕ (1, 2)1/2 (6.3.12)

the superpotential can be rewritten as,

W = λD
c

i XΦDc

i Φ̃Dc

i + λLi XΦL
i Φ̃L

i (6.3.13)

Note that, the notation Dc and L have been used just for notational convenience and they

12The paper [395] which appeared after the first version of our paper considered the very fine tuned possibility

of κ being extremely close to unity which may somewhat mitigate the problem, however, at the cost of very

large trilinear coupling between the sgoldstino and some of the light messenger scalars. We do not consider

this extremely fine-tuned possibility in this paper.
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do not represent the MSSM fields. The beta functions of these couplings are given by

βλDci
= λD

c

i

(
γ(ΦDc

i ) + γ(Φ̃Dc

i ) + γ(X)
)
, (6.3.14)

βλLi
= λLi

(
γ(ΦL

i ) + γ(Φ̃L
i ) + γ(X)

)
, (6.3.15)

where

γ(ΦDc

i ) = γ(Φ̃Dc

i ) =
1

4π
(−2α1

15
+ αd i −

8α3

3
) (6.3.16)

γ(ΦL
i ) = γ(Φ̃L

i ) =
1

4π
(−3α1

10
+ αl i −

3α2

2
) (6.3.17)

γ(X) =
∑
i

1

4π
(3αd i + 2αl i) (6.3.18)

We have used the notation, αd i ≡
(λD

c

i )2

4π
and αl i ≡

(λLi )2

4π
.

Hence, the RG equations for the λ couplings are,

d λD
c

i

dt
=

1

16π2
λD

c

i

[
(3N + 2)

(
λD

c

i

)2 − 16

3
g2

3 −
4

15
g2

1 + 2N(λLi )2
]
, (6.3.19)

d λLi
dt

=
1

16π2
λLi

[
(2N + 2)

(
λLi
)2 − 3g2

2 −
3

5
g2

1 + 3N(λD
c

i )2
]
, (6.3.20)

In Fig. 6.3 we show the running of these λ couplings for five pairs of {5 + 5̄} messengers and

for two initial values of λ at the scale 10 TeV, λ(10 TeV) = 1 and 2. It can be seen from the

right panel of Fig. 6.3 that even for λ(10 TeV) = 2, it grows very fast and hits a one-loop

Landau-pole below ∼ 25 TeV. Needless to say, the situation gets worse if a larger number of

messenger pairs is considered. Hence, we conclude from this analysis that values of λ much

larger than unity at the messenger scale is not a possibility.

6.3.2 Estimate of the mass of S

It was shown in [413] that in renormalizable Wess-Zumino models with canonical Kähler

potential, the existence of a massless fermion implies that the complex scalar in the same

chiral multiplet remains massless at the tree level even if SUSY is spontaneously broken. As

the fermion component of X is the goldstino in our case (which is exactly massless even at loop

level), the scalar component of X, the sgoldstino will be massless at the tree level. However,

in general, the sgoldstino is expected to acquire non-zero mass when loop corrections are

included.

In our scenario, the sgoldstino mass gets contribution from the loops of messenger fields (apart

from possible contributions from the hidden sector). The messenger contribution is computed

in appendix D.3. The final result is given by (for N5 pairs of 5 + 5̄ of SU(5)),

Π(p2 = 0) = −
(
λ

g2
3

)2 (
4π

√
5

N5
F (x)

)2

m2
g̃ (6.3.21)
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Hence, the potential for the sgoldstino gets a one-loop negative quadratic contribution from

the messenger fields and this contribution is considerably larger in magnitude than the squared

gluino mass13. This means that a large contribution from the hidden sector is required to

stabilise the sgoldstino potential and somehow generate a small mass ∼ 750 GeV for the

sgoldstino.

At this point, we would like to remind the readers that, in our discussions till now, we have

completely ignored specifying the details of the hidden sector and how SUSY is broken there.

We just assumed that the chiral superfield X gets a SUSY breaking F -term VEV from the

dynamics of the hidden sector without specifying the hidden sector at all. However, in order

to understand whether a light sgoldstino can be obtained without too much tuning, we are

now forced to consider the hidden sector as part of our model and think about the problem

in its entirety. We postpone any further investigation of this issue to section 6.5.

6.4 Extra Ordinary Gauge Mediation

We have seen in the previous section that the OGM framework needs a very large number

of messengers in order to explain the diphoton signal and avoid the strong constraints on

the gluino and squark masses from LHC. We have also seen that such a large number of

messengers renders the theory non-perturbative at scales as low as ∼ 50 TeV, much below the

GUT scale.

In this section we will consider a generalisation of the OGM framework namely, the Extra

Ordinary Gauge Mediation (EOGM) where the OGM Lagrangian (Eq. 6.3.1) is supplemented

with vector-like mass terms for the chiral superfiels Φ̃i and Φj [400]. Hence, we now have the

EOGM superpotential

WEOGM = (λijX +mij) Φ̃iΦj , (6.4.1)

where, λij and mij are arbitrary complex matrices. As in the OGM scenario, the auxiliary

field of X is assumed to get a VEV to break SUSY spontaneously. The fermion components

of the messenger fields have the Dirac mass matrix,

mF = λij〈S〉+mij . (6.4.2)

Without loss of generality, one can always go to the basis of Φ̃ and Φ (by independent unitary

rotations on them that do not affect their Kähler potential) where mF is diagonal with real

eigenvalues (mF )i. Hence, from now on we will assume that the matrix mF is diagonal and the

matrices λij and mij are defined in the basis where mF is diagonal. The scalar mass-squared

matrix in this basis can now be written as,

m̃2 =

(
mF

2 −λ〈Fx〉
−λ〈Fx〉 mF

2

)
. (6.4.3)

13Note that, models with non-polynomial superpotential can give rise to tree level sgoldstino mass. We

compute the sgoldstino mass in one such model [442] in appendix D.3.3, however, again it turns out to be in

general much larger than the gluino mass.
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We will assume the matrix λ to be real and symmetric in order to impose invariance under

CP and messenger parity (i.e., Φi → Φ̃i in the basis where mF is diagonal) in the messenger

sector [402,404].

The matrix m̃2 can be block diagonalised by a suitable change of basis of the scalar fields,

the block diagonalised matrix being,

M2 =

(
m2

+ 0

0 m2
−

)
, (6.4.4)

where m2
± = m2

F ± λ〈Fx〉. Now assuming that the matrices m2
± are diagonalised by the

unitary matrices U±, the gaugino masses can be written as [410],

ma =
αa
4π

∑
±

N∑
i,j=1

(±)(U †±)ij(U±)jimj

m2
±iLog(m2

±i/m
2
j )

m2
±i −m2

j

. (6.4.5)

Let us now consider only one pair of messengers to simplify the discussion. In this case the

expressions of the gaugino masses and couplings ca take the same form as the OGM case,

ma =
αa
4π

κmF g(κ) (6.4.6)

ca
Ma

=
αa
4π

λ

mF
g(κ) (6.4.7)

the only difference being in the definition of mF which now has the form,

mF = λ〈S〉+m. (6.4.8)

Hence, for fixed values of the messenger fermion masses, the situation is exactly the same

as OGM. In the presence of many pair of messengers, if [mF , λ] = 0 then the matrix λ

can be diagonalised simultaneously with mF and hence, the situation is again exactly the

same as OGM with many messenger fields. In the case when [mF , λ] 6= 0, in general, one

has to analyse the situation numerically. Analytic results are known even in this case for

λ〈Fx〉 << m2
F [400,415]:

• The R charge for the field X, R(X) 6= 0: In this case the expression of the gaugino

mass can be written as,

ma =
αa
4π

neff
〈Fx〉
〈S〉 (6.4.9)

where,

neff =
1

R(X)

∑
i

(
2−R(Φi)−R(Φ̃i)

)
. (6.4.10)

As neff is less than the total number of messengers, the gaugino mass in this case is

always less than that in the OGM case.
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• R(X) = 0, even in this case the expression of the gaugino mass simplifies to,

ma =
αa
4π
〈Fx〉

∑
i

λii
mi
F

, (6.4.11)

If min(mi
F ) = m, then

ma ≤
αa
4π

〈Fx〉
m

Trλ . (6.4.12)

Hence, the situation is again the same as the OGM case.

We have checked numerically that the situation does not improve for the case when λ〈Fx〉 ∼
m2
F .

6.5 Way out?

We have seen in the previous sections that an sgoldstino explanation of the diphoton excess

faces two major issues: i) the gaugino masses, and in particular the gluino mass, turn out to

be rather low unless a very large number of messenger fields is considered; ii) the messenger

particles yield a large negative one loop contribution to the sgoldstino potential. In this

section, our goal is to look for potential solutions of the above problems.

6.5.1 D-term contribution to the gaugino mass

We have only considered F -term contribution to the gaugino mass in the previous sections.

We will now assume that the messenger fields are also charged under some new U(1) gauge

group. The Φ fields have charge +1 and the Φ̃ fields carry a charge −1 under this new U(1).

The relevant part of the Lagrangian is given by,

L ⊂
∫
d4θ

(
Φ†ie

gV Φi + Φ̃†ie
−gV Φ̃i

)
+

∫
d2θ (λijX +mij) Φ̃iΦj + h.c. . (6.5.1)

The F -term of the chiral superfield X and the D-term of the vector superfield V are assumed

to have VEVs 〈Fx〉 and 〈D〉 respectively14. However, since the above Lagrangian possesses

an U(1) R-symmetry, the charges being R(Φ) = 1, R(Φ̃) = 1, R(X) = 0 and R(V ) = 0, it

follows that the F -term and the D-term have the R-charges R(F ) = 2 and R(D) = 0. Hence,

〈Fx〉 6= 0 breaks R-symmetry spontaneously, while 〈D〉 6= 0 does not. It is then clear that the

gaugino masses must be associated with non-zero 〈Fx〉.

As we discussed previously, the leading F -term contribution to the gaugino mass comes from

the term

−1

2

cF
Λ
XWAW

A . (6.5.2)

14Note that the existence of non-zero 〈D〉 breaks the messenger parity spontaneously.
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ξ1

λ λ

φ1 φ2

ξ2

Figure 6.4: Diagram showing that a D-term does not contribute to the the Majorana gaugino mass at the

leading order in the F -term VEV.

As the gaugino mass is always associated with 〈Fx〉, the D-term contribution must always be

suppressed by higher powers of Λ and hence, subdominant compared to the leading F -term

contribution. That there is no D-term contribution at the leading order in the F -term VEV

can also be understood diagrammatically. It can be seen from Fig. 6.4 that, in order to join

the scalar lines, one needs a term φ1φ2 in the Lagrangian (refer to appendix D.3 for the

notation) which does not arise from the D-term.

In models with explicitly broken R-symmetry, the lowest dimensional operators that can give

rise to the gaugino mass should be,

−1

2

cD
Λ3
D

W̃W̃WAW
A (6.5.3)

which generates a contribution,

mλ = cD
〈D

W̃
〉2

Λ3
D

, (6.5.4)

which is subleading compared to (6.5.2). The chiral superfield W̃ belongs to the hidden sector

and corresponds to either an abelian or a non-abelian gauge group. Note that, as mentioned

before, the term in (6.5.3) breaks R-symmetry explicitly. We thus conclude that D-term

contribution can not enhance the gaugino mass considerably.

We would like to comment in passing on the problem of vanishing leading order (in SUSY

breaking F term VEV) gaugino masses in models of direct gauge mediation [428,429] and semi-

direct gauge mediation [430], regardless of how the R-symmetry is broken. The authors of [413]

proved this in generalised renormalizable O’Raifeartaigh models assuming a locally stable

pseudomoduli space. This problem can be avoided with non-polynomial superpotential which

naturally appears in many models of dynamical/non-perturbative SUSY breaking (DSB) [439–

441]. Hence, the gaugino mass to leading order in 〈Fx〉 that were considered in the previous

sections should indeed be thought in the framework of DSB models.

6.5.2 Metastable SUSY breaking

Before going to the discussion of metastable SUSY breaking, it is worth reviewing briefly the

relation between R-symmetry and spontaneous SUSY breaking.
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Consider a generic model of gauge mediated supersymmetry breaking in which a Hidden

sector (HS) consisting of the superfields (Ya, X) breaks supersymmetry and then messenger

fields (Φi, Φ̃i) communicate the supersymmetry breaking to the visible MSSM sector via loop

effects. The hidden sector fields are neutral under the Standard Model gauge group but could

have its own gauge dynamics while the messenger fields (Φi, Φ̃i) transform in a vector like

representation of SM gauge group and could also be charged under the HS gauge group.

Let us write the full superpotential of the theory as follows

W = WHS({Ya}, X) +WM(X,Φi, Φ̃i) +WMSSM,

with WM = λijXΦiΦ̃j +mijΦiΦ̃j .
(6.5.5)

Here WMSSM is the MSSM superpotential and WHS is hidden sector superpotential which

spontaneously breaks SUSY15.

What can one say about the R-symmetry in WHS? Note that, for generic superpotential

without R-symmetry, Nelson and Seiberg showed that a supersymmetric vacuum always exists

[411]. In other words, R-symmetry is a necessary (but not sufficient) condition for spontaneous

breaking of supersymmetry. However, unbroken R-symmetry forbids (Majorana) masses for

the gauginos. Thus, it must be broken spontaneously which, in turn, would lead to a massless

R-axion that may be dangerous for phenomenology16.

Another possibility is to break R-symmetry explicitly in hidden sector (WHS). Now it is pos-

sible to write down models with no R-symmetry which break SUSY spontaneously but these

models have a non-generic superpotential in the sense that it doesn’t allow all renormalisable

terms allowed by symmetries. As superpotential couplings are protected from renormalisation

and hence are not generated at loop levels, a non generic superpotential is technically natural.

However, it is tuned and not satisfactory.

One scenario which avoids these problems is metastable supersymmetry breaking [412]. It

is based on the idea that though the true vacuum is supersymmetric, our universe lies in a

metastable vacuum. In this picture, there is no need to keep R-symmetry but one does need

to worry about decay rates from the metastable vacuum to the true vacuum and arrange for

a long lived universe.

As mentioned in the previous section, the problem of vanishing leading order (in SUSY break-

ing F -term) gaugino masses can be avoided in models of DSB. Hence, DSB in a metastable

vacuum is an attractive phenomenological possibility. In fact, some of these models can poten-

tially solve the problem mentioned in section 6.3.2 and give rise to a light sgoldstino [425–427].

However, detailed exploration of these models is necessary to see whether they can indeed

serve as natural models for a light sgoldstino and avoid the problems mentioned in section 6.3.

15Note that the R-parity conserving MSSM has three parameter worth of R-symmetries. However, R-

symmetry has gauge anomalies in the MSSM.
16R-symmetry may be broken by Gravity effects, thus giving mass to the R-axion [397]
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Figure 6.5: Allowed region in the case of quark anti-quark initiated production of the sgoldstino. See text

for more details.

6.5.3 Quark anti-quark initiated production of the sgoldstino

In this section, we consider the possibility that the production cross section of sgoldstino has

a significant contribution from quark anti-quark initial state. The coupling of the sgoldstino

to the quark anti-quark pair can arise from the same effective Lagrangian that generates the

trilinear A-terms namely,

Ltrilinear ⊂
Au
〈Fx〉

∫
d2θXHuQU

c +
Ad
〈Fx〉

∫
d2θXHdQD

c + h.c. (6.5.6)

which generates following couplings for the sgoldstino,

v sinβAu√
2〈Fx〉

S ū PL u ,
v cosβAd√

2〈Fx〉
S d̄ PL d . (6.5.7)

The decay rates Γ(φ→ ū u) and Γ(φ→ d̄ d) can now be calculated from the above Lagrangian

and read,

Γ(φ→ ū u) =

[
1

2mφ

] [
1

8π

][(
v sinβAu√

2〈Fx〉

)2

3m2
φ

]
, (6.5.8)

Γ(φ→ d̄ d) =

[
1

2mφ

] [
1

8π

][(
v cosβAd√

2〈Fx〉

)2

3m2
φ

]
, (6.5.9)

where we have neglected the quark masses. In this limit, the corresponding decay rates of a

have the same expressions with mφ replaced by ma.

We now assume that the production of sgoldstino is mostly by the ūu and d̄d initial states

so that a large coupling to gluons is not necessary. We define the number of messengers

with quantum numbers (1, 2)1/2 to be N12. Their mass will be denoted by mweak
F . In the



6.5. WAY OUT? 153

left panel of Fig. 6.5 we show the allowed region in the N12 – mweak
F plane when two sets

of values for Au and Ad are chosen17. Similarly, in the right panel the allowed region in

the N12 – Au/Ad plane is shown for mweak
F = 8 TeV. It can be seen that even for very

large value of Au = Ad ∼ 10 TeV 18, quite low masses for the electroweak messenger fields

mweak
F . 10 TeV with a very large multiplicity & 50 are necessary. Consequently, the SU(2)

and U(1) couplings (i.e., g2
i /4π) hit Landau poles typically below few hundred TeV. For

example, for mweak
F = 8 TeV and N12 = 100, the one loop Landau poles for SU(2) and U(1)

appear around 50 TeV and 200 TeV respectively.

As the SUSY breaking F -term VEV 〈Fx〉 must be less than (mweak
F )2 in order to avoid

tachyons in the messenger sector, it also turns out that a gluino mass of more than 1.5 TeV

again requires a very large number of SU(3) messengers, exactly as in the OGM scenario

discussed earlier.

However, one could consider a scenario where the X superfields that couple to the SU(3)

messengers (denoted by Φ3 and Φ̃3 below) are different from the X superfields that couple to

the SU(2) messengers (denoted by Φ2 and Φ̃2 below) so that,

W = (X2 +m2)Φ̃2Φ2 + (X3 +m3)Φ̃3Φ3 , (6.5.10)

The X2 and X3 superfields get VEVs given by,

〈X2〉 = 〈S2〉+ θθ〈F2〉 , (6.5.11)

〈X3〉 = 〈S3〉+ θθ〈F3〉 . (6.5.12)

One can define two complex scalars that are linear combinations of S2 and S3,

Sh =
F2S2 + F3S3√

F 2
2 + F 2

3

(6.5.13)

Sl =
−F3S2 + F2S3√

F 2
2 + F 2

3

(6.5.14)

In the limit of F3 � F2, Sh ≈ S3 and Sl ≈ S2. If we now assume that the scalar Sl is actually

the 750 GeV resonance and the other scalar Sh is much heavier then the diphoton signal can

be explained. Moreover, as F3 is now assumed to be much large than F2, large gluino mass

can also be easily obtained.

However, it should be mentioned that the scalar Sl is actually not the sgoldstino. It is actually

Sh which appears in the goldstino multiplet, hence, Sh should be identified as the sgoldstino.

In this sense, we have not solved the original problem with sgoldstino being the candidate for

the 750 GeV resonance.

17In general, A-terms are generated at 1-loop level in the models of messenger matter interactions. Thus

they are of same order of the gaugino masses. Larger A-terms can be obtained from model where A-terms are

generated at the tree level [401]. These models have the advantage of being free from A/m2 problem [403].
18Note that very large A-terms may give rise to electric charge and SU(3) colour breaking minima in the

potential [449,450], thus we restrict them to 10 TeV in our analysis.
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Figure 6.6: Allowed region in the case of quark anti-quark initiated production of the sgoldstino with only

light hypercharge messengers.

Before concluding this section, we would also like to point out that one can also consider the

extreme case when there are three different superfields X1, X2 and X3 that couple to the

U(1), SU(2) and SU(3) messengers respectively. In this case, both the SU(2) and SU(3)

messenger masses can be very high. In Fig. 6.6 we show the number of U(1) messengers (N1)

and their mass (mY
F ) required for the correct amount of signal and also mass of Bino more

than 200 GeV. It can be seen that for mY
F ∼ 5 TeV one needs N1 & 50. The landau pole in

the U(1) gauge coupling only appears around 2000 TeV in this case.

6.6 Conclusion

In this paper we have carefully studied the possibility of an sgoldstino being a candidate for

the signal of a possible new resonance with mass ∼ 750 GeV recently reported by the ATLAS

and CMS collaborations. We have found that the explanation of the signal is in tension with

the lower bound on masses from direct searches of gauginos, in particular, the gluino. In order

to achieve a large enough gluino mass, a very large number of messenger fields is required,

which, in turn, renders the theory non-perturbative at a rather low scale of order few tens of

TeV. Moreover, we find that the one-loop messenger contribution to the sgoldstino potential

is negative and large in magnitude (larger than the gluino mass squared). Hence, a large

positive contribution from the hidden sector is required to tune this away and get a small

mass ∼ 750 GeV for the sgoldstino.

While there exist examples of models with dynamically broken SUSY where a light sgoldstino

can, in principle, be achieved, perhaps without large tuning, getting both the correct amount

of signal cross-section and also large enough gluino and squark masses (without spoiling the

calculability of the theory at a rather low scale) seems to be a stubborn problem. It would
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be interesting to find explicit models where these problems can be overcome in a satisfactory

way. We postpone investigation in this direction to future studies.

We have also considered the possibility of the resonance being produced by quark anti-quark

initial state. While in this case the problem of Landau poles can be delayed beyond few

thousand TeV, the scalar resonance can not be the sgoldstino.





Chapter 7
Conclusion

The work presented in this thesis aims to highlight some aspects of the search for physics

beyond the Standard Model (BSM) using both direct and indirect search strategies. With the

LHC running at peak potential, this is the ripe time for a successful hunt for BSM physics.

The studies presented in this thesis focus on the different aspects of such a search.

The scope of direct searches at colliders is naturally limited by the centre-of-mass energy of

the collisions. While the LHC is expected to probe the range up to about 2-3 TeV quite well,

BSM physics might well lie beyond this energy range. A theoretical tool which allows one to

probe regions beyond this energy range is looking at virtual effects of heavy particles. Any

existent heavy BSM particle will contribute to a process in excess over the Standard Model

(SM) contribution and thereby modify experimentally-measurable quantities like branching

ratios. To actually see these effects we must choose a process for which the SM contribution

is known to be extremely small so that BSM physics would be able to modify it significantly.

Decay processes of interest for such a study are decays via flavour-changing neutral currents

in the quark sector, which are known to be absent at tree level in the SM. Of particular

interest are the flavour-changing neutral current decays of the top quark, since they are easy

to identify in the finals states at a hadronic collider like the LHC. We showed in our work

that since the branching ratios of t→ cH and t→ cZ in the SM are exceedingly small, they

are good processes to consider for BSM effects. In order to understand the process, we took a

toy model which possesses the essential features of the SM weak sector. Our analysis serve to

highlight the three possible sources of suppression of the branching ratio of the process in the

SM, and thus the possible avenues for enhancement. This provides a useful ready reckoner

to check if a new model with BSM physics can enhance top quark FCNC decays at all. We

concluded that a model like the cMSSM cannot contribute enough to the branching ratio so as

to bring it to the projected reach of the LHC, but, under certain conditions, R-parity-violating

SUSY might be able to fulfill the requirements.

157



158 CHAPTER 7. CONCLUSION

Apart from studying flavour-changing processes via neutral currents, we also focussed on

flavour changes in the quark sector via charged currents. From a theoretical standpoint, one

of the most exciting results have been observed in this regime are the charged current decay

processes of B0 → D`ν and B0 → D∗`ν, where ` is any of the three leptons. Recent measure-

ments of ratios such as RD and RD∗ have shown deviations from the SM and have hinted at

possible lepton non-universality. Approaching the problem from a model-independent effec-

tive theory point of view, we computed the values of the different Wilson coefficients required

to explain the discrepancy, assuming that BSM physics affects the third leptonic generation

alone. Several numerical calculations relating to the different observables of the decays were

performed. Additionally, for the first time in literature, we provided completely general for-

mulae for the matrix elements, considering all relevant six-dimensional operators, including

the tensorial operators. The formulae are listed in the Appendix of this thesis.

Direct searches, of course, precede rather than accompany indirect searches. We therefore

performed a collider study for a certain simplified model in R-parity-violating SUSY. Given

that the third generation squarks can be light and might be probed by the LHC, the lighter

sbottom is the lightest supersymmetric particle in the simplified spectrum of our choice.

It decays to a top quark along with a light quark. State-of-the-art multivariate analysis

techniques were employed to study this decay both in the leptonic and in the hadronic channel.

Investigations confirm our expectations that the leptonic channel is more promising than the

hadronic channel in terms of discovery or exclusion.

Towards the end of 2015, there was much excitement because both the CMS and ATLAS

collaborations of the LHC seemed to be seeing a resonance at ∼ 750 GeV in the diphoton

channel. This created huge interest in the high energy physics community, as it would be a

clear BSM signal, if confirmed. Many candidates for this kind of a resonance were proposed.

One interesting suggestion was that it was a sgoldstino, the scalar partner of the Goldstino

associated with the spontaneous-breaking of supersymmetry. We investigated various aspects

of the proposal and found that such a model would be quite untenable. In fact, later, by

the middle of 2016, the erstwhile signal disappeared and it is now thought to be a mere

fluctuation. The negative conclusion of our work thus, in a way, stands vindicated for that

particular proposal, and moreover, tells us what to expect if there is indeed a sgoldstino and its

signals are seen. Our analysis may be treated as a example of how a proposal for the candidate

of a reported excess might be investigated. It demonstrates that a holistic approach to an

analysis of a reported excess is important and that consequences of the suggestion, including

the effect of messenger particles on the coupling constant, the mass of the sgoldstino, etc.,

are to be considered beyond the obvious branching ratio.

There are a number of ways in which the work presented in this thesis could remain relevant

and useful in the future.

• The analysis methods for the top rare decays are independent of the model used and

can be used for a generic analysis in the future. For a model to predict a branching

ratio for the top rare decays to the Higgs or Z boson, which would be observable either
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at the LHC or a future collider, it would have to satisfy the level of enhancements as

found from our study. This provides a quick check of the viability of such models.

• Similar statements can be made about the model-independent flavour physics results.

Furthermore, a generic numerical treatment of the process will greatly benefit from the

general formulae provided in the Appendix.

• Our analysis of signals for decaying squarks of the third generation, even if not the

final word on the subject (which can only come with increasing data), does set out a

paradigm for such analyses.

• The evaluation of a sgoldstino candidate for the CERN 750 GeV resonance can form a

useful caveat for the future, that any explanation of an observed experimental anomaly

should be consistent with all the observations, and not just the one in question.

There is, of course, scope for further work following what has been done in the thesis. Fu-

ture studies may focus on the limitations of a completely model independent study in flavour

physics using six-dimensional operators. This could shed more light on the various assump-

tions which are involved in the study of charged current and neutral current decays of mesons,

especially those containing the b-quark. Furthermore, one may be interested in the effects of

different operators in the context of neutral B-meson decays, the study of which compliments

the neutral current decays of the B-meson, especially in the context of BSM physics. As it

is increasingly becoming evident that the LHC might be able to probe only third genera-

tion squarks, more sophisticated collider analyses of such particles will serve as blueprints for

future studies.

Plans to run the LHC at its current energy till the year 2035 seem to be on firm footing now,

and the experimental collaborations are expected to steadily collect more and more data as

the run proceeds. The quantum of flavour data for B-mesons will also rise in volume as

B-factories like Belle-II and LHCb promise to deliver very high luminosity in the very near

future. This new data might soon indicate a direction for the departure from the SM. It is

hoped that the contents of this thesis, in their own humble way, would further the cause of

this global scientific pursuit of BSM physics over the next two decades.





Appendix A
FCNC Processes in the SM: CP Violation

A.1 CKM Matrix and Unitarity Triangles

The CKM matrix, as stated above, is written defined as

VCKM ≡ V = Vu
LVd†

L

The matrices Vu
L and Vd

L being unitary makes V unitary as well. The unitarity of the CKM

matrix is mathematically given by the two following equations:

3∑
i=1

|Vij |2 = 1 j = 1, 2, 3 (1.1.1)

3∑
i=1

VjiV
∗
ki =

3∑
i=1

VijV
∗
ik = 0 j, k = 1, 2, 3 (1.1.2)

Eqn. 1.1.1 expresses weak universality since it says that the sum of the couplings of any

up-type quark to all the down-type quark is the same regardless of the quark generation.

Eqn. 1.1.2 provides a constraint on the size of the CKM matrix elements. It represents six

triangles in a complex plane, each of which has equal area, given as JCP /2, where

JCP =
∣∣=(V ∗ikVjkVilV

∗
jl)
∣∣ ; i, j, k, l = 1, 2, 3 (1.1.3)

is called the Jarlskog invariant [21] and is true for any value of i, j, k, l. These six triangles

are called unitary triangles.

There are, in principle, an infinite number of ways to represent the CKM matrix and all are

mathematically equivalent to each other. A standard representation is given by the Particle

Data Group (PDG) [22]

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12C23s13e

iδ c23c13

 (1.1.4)
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Unitary relation Triangle representation

V ∗cdVcs; O(λ)

V ∗udVus; O(λ)
V ∗tdVts; O(λ5)V ∗cdVcs + V ∗tdVts + V ∗udVus = 0

V ∗cdVud; O(λ)

V ∗csVus O(λ)
V ∗cbVub; O(λ5)V ∗cdVud + V ∗cbVub + V ∗usVcs = 0

V ∗tsVtb; O(λ2)

V ∗csVts; O(λ2)
V ∗cdVtd; O(λ4)V ∗tsVtb + V ∗cdVtd + V ∗csVts = 0

V ∗cbVtb; O(λ2)

V ∗csVts O(λ2)
V ∗cdVtd; O(λ4)V ∗cbVtb + V ∗cbVub + V ∗csVts = 0

V ∗ubVtd; O(λ3)

V ∗usVts; O(λ3)

V ∗udVtd; O(λ3)V ∗ubVtd + V ∗cbVub + V ∗usVts = 0

V ∗cbVcd; O(λ3)

V ∗tbVtd; O(λ3)

V ∗ubVud; O(λ3)V ∗cbVcd + V ∗cbVub + V ∗tbVtd = 0

Table A.1: The six different unitary triangles of the CKM matrix.
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(0,0) (1,0)

|VudV ∗ub|
|VcdV ∗cb|

|VtdV ∗tb|
|VcdV ∗cb|

γ = φ3

α = φ2

β = φ1

Figure A.1: Angles in the unitary triangle

Phenomenologically, however, it makes sense to exploit the observation that

|Vub| � |Vcb| � |Vus| � 1; |Vud| ' |Vtb| = 1 (1.1.5)

In order to accommodate this information, we can express the matrix as an expansion in

λ = |Vus| = sin θC ' 0.23 (where θC is called the Cabibbo angle [23]). Up to O(λ4), the CKM

matrix can be written as

V =

 1− 1
2λ

2 λ Aλ3(ρ− iη + i
2ηλ

2)

−λ 1− 1
2λ

2 − iηA2λ4 Aλ2(1 + iηλ2)

Aλ3(1− ρ− iη) −Aλ2 1

 (1.1.6)

This is called the Wolfenstein parametrisation of the CKM matrix [24]. The four parameters

of the CKM matrix are replaced by four real numbers – λ,A, ρ, η. In this parameterisation,

the diagonal elements are almost (or exactly) unity and the magnitude falls off as one moves

away from the diagonal due to increasing powers of λ. Furthermore, the matrix is nearly

symmetric. Both these features accurately represent experimental observations. The edges

of the six unitary triangles can be expressed as powers of λ and is shown in Table A.1, along

with the corresponding constraint relations. Depending on the magnitudes of the sides of the

triangles, two of the triangles (listed as the first two in the table) are highly squashed, while

the next two are somewhat less squashed. The last two triangles have sides of nearly equal

length and are thus expected to have large angles, which allows for easier measurements at

colliders. These two triangles have factors which determine bottom transitions. In Section

A.4, it will be shown that the amount of CP asymmetry in the b-system is dependent on the

value of an angle in this triangle; the angle being large produces a large CP asymmetry in

b-systems.

The angles of the last unitarity triangle are indicated in Figure A.1 and they are (according

to two equivalent naming conventions) given by

α = φ2 = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
; β = φ1 = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
; γ = φ3 = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
(1.1.7)
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A.2 Oscillations of Neutral Mesons: Formalism

A neutral meson, generically called P 0 in this section and in the next, can oscillate between P 0

and P
0

states. The particle can in the meanwhile also undergo decay and thus the Hamiltonian

describing this process is not Hermitian. It can be written as a sum of Hermitian and anti-

Hermitian pieces :

H = M− i

2
Γ =

(
M11 M12

M∗12 M11

)
− i

2

(
Γ11 Γ12

Γ∗12 Γ11

)
(1.2.1)

where M and Γ are Hermitian. We have already assumed that the two interaction states have

equal masses and have the same decay widths (i.e. M22 = M11 and Γ22 = Γ11 (as demanded

by CPT invariance) and that M21 = M∗12, Γ21 = Γ∗12 by the condition of hermiticity. P 0 and

P
0

are the interaction eigenstates and there exist two mass eigenstates misaligned with the

interaction eigenstates – PL and PH , for light and heavy states. At the initial time (t = 0)

|PL(0)〉 = p
∣∣P 0
〉

+ q|P 0〉 |PH(0)〉 = p
∣∣P 0
〉
− q|P 0〉 (1.2.2)

which gives ∣∣P 0
〉

=
1

2p
(|PL(0)〉+ |PH(0)〉) (1.2.3)

Under time evolution due to the Hamiltonian in Eqn. 1.2.1, we have∣∣P 0(t)
〉

=
1

2p
(|PL(t)〉+ |PH(t)〉)

=
1

2p

(
e−i(ML− i

2
ΓL)t |PL(0)〉+ e−i(MH− i

2
ΓH)t |PH(0)〉

)
=

1

2p

(
e−i(ML− i

2
ΓL)t

(
p
∣∣P 0
〉

+ q|P 0〉
)

+ e−i(MH− i
2

ΓH)t
(
p
∣∣P 0
〉
− q|P 0〉

))
= g+(t)

∣∣P 0
〉

+
q

p
g−(t)|P 0〉 (1.2.4)

where we have inverted in the second last step using Eqn. 1.2.2 and

g± =
1

2

(
e−i(ML− i

2
ΓL)t ± e−i(MH− i

2
ΓH)t

)
(1.2.5)

Similarly, the state starting out as |P 0〉 at t = 0, evolves to a state |P 0
(t)〉 given by

|P 0
(t)〉 =

p

q
g−(t)

∣∣P 0
〉

+ g+(t)|P 0〉 (1.2.6)

Oscillation between the states
∣∣P 0
〉

and |P 0〉 will give rise to CP violation if the two states

are the two conjugate CP eigenstates, i.e. CP
∣∣P 0
〉

= eiδ|P 0〉 =⇒ CP|P 0〉 = e−iδ
∣∣P 0
〉
.

A.3 Measuring CP Violation: Formalism

The first detection of CP violation happened in 1964 due to Cronin and Fitch. The experiment

involved neutral kaons and their decay. The two flavour eigenstates for the kaons K0 and K̄0
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are misaligned from the CP eigenstates KS (CP = +1) and KL (CP = −1) (called K−short

and K−long respectively). The names have been chosen because KS decays quite rapidly

compared to KL and thus if a beam of kaons is fired along a beam pipe, the KL would

preferably survive after a certain length. Thus, with a longer beam length, one is expected

to end up with an arbitrarily pure KL state. It happens to be that KS can decay to two

pions whereas KL to three pions, which is a fortunate kinematic accident. Thus, if after a

sufficiently long distance, if one were to see 2π decay, representing the presence of KS , it

would mean that the CP of the state flipped from −1 to +1 and is thus not conserved. The

experimentalists measured 2π decays even at the end of the 17m beamline at a rate of about

1 in 500, much higher than that expected if CP were conserved.

It beckons us to understand CP violation more formally. Consider the final state f and its

CP conjugate f̄ . Using the evolution equations in Eqns. 1.2.4 and 1.2.6, the matrix element

for the decay of P 0 to f is given by

M(
∣∣P 0(t)

〉
→ |f〉) = g+ 〈f |H

∣∣P 0
〉

+
q

p
g− 〈f |H|P 0〉

= g+(t)A(f) +
q

p
g−(t)Ā(f) (1.3.1)

Thus, for calculating the decay width, we get

Γ(
∣∣P 0(t)

〉
→ |f〉) ∝

∣∣M(
∣∣P 0(t)

〉
→ |f〉)

∣∣2
∝ |A(f)|2

[
|g+(t)|2 + 2<

(
q

p
g+g−ρ̄(f)

)
+

∣∣∣∣qp
∣∣∣∣2 |g−(t)|2 |ρ̄(f)|2

]
(1.3.2)

where

ρ̄(f) =
Ā(f)

A(f)
=

1

ρ(f)
(1.3.3)

Similarly, one can compute the following

Γ(|P 0
(t)〉 → |f〉) ∝ |Ā(f)|2

[
|g+(t)|2 + 2<

(
p

q
g+g−ρ(f)

)
+

∣∣∣∣pq
∣∣∣∣2 |g−(t)|2 |ρ(f)|2

]

Γ(
∣∣P 0(t)

〉
→ fb) ∝ |A(f̄)|2

[
|g+(t)|2 + 2<

(
q

p
g+g−ρ̄(f̄)

)
+

∣∣∣∣qp
∣∣∣∣2 |g−(t)|2

∣∣ρ̄(f̄)
∣∣2]

Γ(|P 0
(t)〉 → fb) ∝ |Ā(f̄)|2

[
|g+(t)|2 + 2<

(
p

q
g+g−ρ(f̄)

)
+

∣∣∣∣pq
∣∣∣∣2 |g−(t)|2

∣∣ρ(f̄)
∣∣2]

(1.3.4)

CP asymmetry is then measured to be

ACP =
Γ
(∣∣P 0(t)

〉
→ |f〉

)
− Γ(|P 0

(t)〉 → fb)

(|P 0(t)〉 → |f〉) + Γ(|P 0
(t)〉 → fb)

(1.3.5)

CP violation in mesonic systems can be of three different types. For each of the cases, we use

Eqns. (1.3.2 and 1.3.4) to calculate the CP violation.
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1. Through Decay: There is (almost) no oscillation between the two CP eigenstates, but

the magnitude of the amplitude of the decay of a neutral meson P to a final state f is

not the same as the CP conjugate of the process, i.e.

|A(f)| 6= |Ā(f̄)| (1.3.6)

In this case, ML = MH and ΓL = ΓH = Γ, which gives g− = 0 and |g+|2 = e−Γt. Thus,

ACP =
|A(f)|2 − |Ā(f̄)|2
|A(f)|2 + |Ā(f̄)|2 (1.3.7)

which is non-zero only because the amplitudes for the two processes are different. This

is also called CP violation through decay or Direct CP violation.

2. Flavour specific decays: This occurs when P can decay to a final state f , whereas the

CP conjugate cannot decay to the same state. By the analysis of the final state, the

identity of the decaying meson can be ascertained. Thus,

P → f but P 6→ f (1.3.8)

The P meson can oscillate to a P which can then decay to a f̄ . Even if the |A(P → f)| =
|Ā(P → f̄)|, the mixing between the two CP states gives a measure of CP violation.

In the scenario when the two amplitudes are equal in magnitude, the CP asymmetry is

given by

ACP =
1− |p/q|4
1 + |p/q|4 (1.3.9)

3. Flavour non-specific decays: This occurs when both the meson P and its CP conjugate

state P go to the same final state f . There are two different scenarios to consider :

(a) When |A(f)| = |Ā(f)| – This holds when f is a CP eigenstate. CP asymmetry

will occur solely through neutral meson oscillations. Thus, with |A(P → f)| =

|Ā(P → f)| and |q/p| = 1,

ACP =
Γ(
∣∣P 0(t)

〉
→ |f〉)− Γ(|P 0

(t)〉 → |f〉)
Γ(|P 0(t)〉 → |f〉) + Γ(|P 0

(t)〉 → |f〉)

=
<
(
q
pg
∗
+g−ρ̄(f)

)
−<

(
p
q g
∗
+g−ρ(f)

)
|g+|2 + |g−|2 + <

(
q
pg
∗
+g−ρ̄(f)

)
+ <

(
q
pg
∗
+g−ρ̄(f)

)
=

−2 sin (arg(q/p) + arg(ρ̄(f))) e
1
2

∆Γt sin(∆Mt)

1 + e∆Γt + cos (arg(q/p) + arg(ρ̄(f))) (1− e∆Γt)
(1.3.10)

since one can write g∗+g− = 1
4e
−ΓLt

(
1 + e∆Γt − 2ie

1
2

∆Γt sin(∆Mt)
)

with

∆M = MH −ML and ∆Γ = ΓL − ΓH . It is noteworthy that both (q/p), which is

an oscillation parameter, and ρ̄(f), which is a decay parameter, contribute to the

CP asymmetry.
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(b) When |A(f)| 6= |Ā(f)| – This is the more general case for a CP eigenstate. In this

case,

ACP =
Γ(
∣∣P 0(t)

〉
→ |f〉)− Γ(|P 0

(t)〉 → |f〉)
Γ(|P 0(t)〉 → |f〉) + Γ(|P 0

(t)〉 → |f〉)
= Cf cos(∆Mt)− Sf sin(∆Mt) (1.3.11)

with

Cf =
1− |ρ̄(f)|2
1 + |ρ̄(f)|2 ; Sf =

2= ((q/p)ρ̄(f))

1 + |ρ̄(f)|2 (1.3.12)
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Figure A.2: Feynman diagrams for the D0 −D0
oscillation are shown in (a) and (b), and the decay of D0

and D
0

to the K+π− channel are given in (c) and (d).

A.4 Measuring CP violation in Mesons

Among the mesons with the dominant quark being the up-type quarks, only charm mesons

allow for a whole range of experimental observations. This is because the top quark doesn’t

form mesons and thus T − T̄ oscillation does not exist, limiting our avenues of searches for

the CP asymmetry in top decay. Mesons built out of u and ū quarks, like π0 are their own

anti-particles and thus there are no oscillations. Furthermore they posses very few decay

channels and so measuring CP asymmetry is a difficult process.

D0− D
0

oscillations have been quite extensively studied. The Feynman diagrams for the

process are shown in diagram (a) and (b) of Fig. A.2. One of the oft-looked at channels in
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the search for CP violation is the D0 → K−π+ channel. The CP conjugate final state of

the channel (i.e. D0 → K+π−) can occur from either c → ds̄u transition or from D0 − D0

(diagram (c) and (d) in Fig. A.2). The decay rate evolution as a function of time can help in

distinguishing between the two contributions to the final state (and their interference).

For the down-type quarks, a rich repertoire of experimental results exists in both the K0 and

the B0 system. We shall only concentrate on the bottom mesons. B0 (B
0
) mesons survive

B0

`−

ν`
b c

d

W

(a)

B
0

`−

ν`
b c

d

W

(b)

B0

b

c

c

sd

d

ψ

KS

(c)

B
0

b

c

c

sd

d

ψ

KS

(d)

Figure A.3: The presence of a lepton or an anti-lepton in the final state identifies whether the initial state

is a B0 or a B
0

as shown in (a) and (b). The decay to J/ψKS are shown in (c) and (d).

long enough to be detected by Silicon Vertex Detector (SVD) in modern B-factories like

Belle and BaBar. The lifetime of the B− mesons is ∼ 10−12s, which allows for a secondary

vertex to form about a hundred microns away from the primary vertex. Tracks from the

decay vertex (secondary) do not coincide with the primary vertex when they are extrapolated

back. This non-zero value of displacement is key to the measurement of the lifetime of the

bottom meson. Early studies were carried out by ALEPH, DELPHI and OPAL at LEP

which had the resolution of ∼ 25µm [34]. Modern detectors at the B-factories like Belle with

a SVD resolution of 12µm [35] have helped achieve sub-picosecond accuracy for the B-meson

lifetimes.

The B-system is important for the measurement of CP violation, primarily because the effect

in the B-system is about three orders of magnitude higher than in the K-system. However,

unlike the K-system, the decay widths of the two B-meson mass eigenstates are almost equal.
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The measurement is an exemplary experimental achievement. A collider like KEK produces

e+e− → Υ(4S)→ B0B
0

events. These two B0 mesons are correlated in the EPR fashion, i.e.

the oscillation of the two B0’s are such that at any point of time one of them is a B0 and the

other is a B
0
. When one of them, say a B

0
decays and is tagged from its semi-leptonic decay

B
0 → `− + X+ at some time t1, we know that the other meson is a B0 at that moment. It

then decays at t2 (t2 > t1) into a CP eigenstate f . During this time interval ∆t(= t2 − t1),

the B0 might oscillate to the B
0

meson (shown in Fig. A.3).

The amplitude for the process is given by

A(f, t1,∆t) = e−
1
2

Γ(t1+∆t)− i
2

(M1+M2)(t1+∆t)[
A(f) cos

(
1

2
∆MB∆t

)
+ i

q

p
Ā(f) sin

(
1

2
∆MB∆t

)]
(1.4.1)

where the different quantities are all defined in the previous section. The decay widths for

the B0
(
B

0
)

going to the state f and the other decaying to a charged lepton (l− or l+) are

given by

Γ
(
B0B

0 → [l+X]tfl+∆t

)
∝ e−Γ(2t+∆t)

∣∣A(l+)
∣∣2 |A(f)|2

[
1 + =

(
q

p
ρ̄(f)

)
sin (∆MB∆t)

]
Γ
(
B0B

0 → [l−X]tfl+∆t

)
∝ e−Γ(2t+∆t)

∣∣Ā(l−)
∣∣2 |A(f)|2

[
1−=

(
q

p
ρ̄(f)

)
sin (∆MB∆t)

]
(1.4.2)

The CP eigenstate of choice, often used by the Belle and BaBar collaborations, is J/ψKS .

The decays of the B0 and B
0

to the J/ψKS is shown in Fig.A.3, we have

q

p
ρ̄(J/ψKS) =

q

p

Ā(J/ψKS)

A(J/ψKS)
=

V∗tbVtd

VtbV∗td
.
VcbV∗cs
V∗cbVcs

= e−2iφ1 (1.4.3)

Thus,

=
(
q

p
ρ̄(J/ψKS)

)
= sin(2φ1) (1.4.4)

Thus, the CP asymmetry is

ACP =
Γ(B0 → J/ψKS)− Γ(B

0 → J/ψKS)

Γ(B0 → J/ψKS) + Γ(B
0 → J/ψKS)

= sin (∆MB∆t) sin 2φ1 (1.4.5)





Appendix B
FCNC Decays of the Top Quark

(Pertaining to Chapter 3)

B.1 Toy model amplitudes

B.1.1 The decay t→ c+H

We consider the decay t(k) → c(p) + H(q). In the rest frame of the t quark, we have

k =
(
mt,~0

)
and

u(k, ht) =

√
mt

2

(
1 + ht 1− ht 0 0

)T
(2.1.1)

where ht = ±1 is the helicity of the t quark. Now, the three-momenta ~p and ~q will be

back-to-back, and we can choose this as the z-axis. In this case, we can write

p =
(
Ec 0 0 |~p|

)
q =

(
EH 0 0 −|~p|

)
(2.1.2)

where

|~p| ' Ec '
m2
t −M2

H

2mt
EH '

m2
t +M2

H

2mt
(2.1.3)

taking mc � mt,MH . In the approximation, the c-quark wave function is

u(p, hc) '
√
m2
t −M2

H

8mt

(
1 + hc 1− hc 1 + hc −1 + hc

)T
(2.1.4)

The helicity amplitudes M(hc, ht) now have the explicit form

M(hc, ht) =

3∑
i=1

λiAi(hc, ht) (2.1.5)

where i runs over the three d-type quarks in the loop, λi = V2iV
∗

3i, and we parametrise

Ai(hc, ht) = ū(p, hc)i (F1iPL + F2iPR)u(k, ht) (2.1.6)
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where PL, PR are the chiral projection operators

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) (2.1.7)

and F1i and F2i are form factors given below. Four helicity amplitudes are possible, but the

only non-vanishing ones are

Ai(+1,+1) '
√
m2
t −M2

H F1i

Ai(−1,−1) '
√
m2
t −M2

H F2i (2.1.8)

Each of the form factors F1i and F2i can be written

Fni = F
(a)
ni + F

(b)
ni + F

(c)
ni + F

(d)
ni (2.1.9)

where n = 1, 2 and the superscripts refer to the graphs (a)–(d) shown in Figure 1. These can

be written in terms of the Passarino-’tHooft-Veltman functions, defined as Euclidean space

integrals

B0(m1,m2;M) =

∫
d4k

π2

1

(k2 +m2
1){(k + p)2 +m2

2}

pµB1(m1,m2;M) =

∫
d4k

π2

kµ
(k2 +m2

1){(k + p)2 +m2
2}

(2.1.10)

where p2 = −M2. In the MS scheme, we can write

B0(m1,m2;M) = ∆ + B̂0(m1,m2;M)

B1(m1,m2;M) = −1

2
∆ + B̂1(m1,m2;M) (2.1.11)

where the B̂0,1 are finite. The divergent quantity is ∆ = 2/ε− γ + ln 4π where ε→ 0 and γ

is the Euler-Mascheroni constant. We also have

C0(m1,m2,m3;M1,M2,M3) =

∫
d4k

π2

1

(k2 +m2
1){(k + p2)2 +m2

2}{(k + p2 + p3)2 +m2
3}

C11p2µ + C12p3µ =

∫
d4k

π2

kµ
(k2 +m2

1){(k + p2)2 +m2
2}{(k + p2 + p3)2 +m2

3}
(2.1.12)

where p1 = p2 + p3 and p2
i = −M2

i for i = 1, 2, 3 and the C0, C11 and C12 are naturally finite.
In fact, the GIM cancellation ensures that all the form factors are finite and hence, we keep
only the finite parts of the B and C functions. In terms of these, we can now compute the
F1 form factors

F
(a)
1i = − ξη2

16π2
mcC

(a)
12

F
(b)
1i =

yimiη
2

16π2
mt

{
2
(
C

(b)
11 − C

(b)
12

)
+ C

(b)
0

}
F

(c)
1i =

ycη
2mt

16π2(m2
t −m2

c)
mtB̃1(mi,Mω;mt)

F
(d)
1i = − ytη

2mc

16π2(m2
t −m2

c)
mcB̃1(mi,Mω;mc) (2.1.13)
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and the F2 form factors

F
(a)
2i = − ξη2

16π2
mt

(
C

(a)
11 − C

(a)
12

)
F

(b)
2i =

yimiη
2

16π2
mc

(
C

(b)
0 + 2C

(b)
12

)
F

(c)
2i =

ycη
2mt

16π2(m2
t −m2

c)
mcB̃1(mi,Mω;mt)

F
(d)
2i = − ytη

2mc

16π2(m2
t −m2

c)
mtB̃1(mi,Mω;mc) (2.1.14)

where

C
(a)
X = CX(mi,Mω,Mω;mc,mt,MH)

C
(b)
X = CX(Mω,mi,mi;mc,mt,MH) (2.1.15)

for X = 0, 11, 12, 22. These are evaluated using the public domain software FF [197].

The Yukawa couplings y are the SM ones, i.e.

yi =
gmi

2Mω
yt =

gmt

2Mω
yc =

gmc

2Mω
. (2.1.16)

The above form factors can be used to evaluate the total form factors appearing in Eqn. (2.1.9),

which then enables us to compute the helicity amplitudes in Eqn. (2.1.8). These are then

convoluted with the λ factors in Eqn. (3.2.3) and used to generate the squared and spin-

summed/ averaged matrix element in Eqn. (3.2.4). Plugging this into Eqn. (3.2.5) then

produces the desired result.

B.1.2 The decay t→ c+ Z

We now consider the decay t(k)→ c(p)+Z(q). The kinematics is similar to the previous case,

withMZ in place ofMH . Accordingly, the helicity spinor for the c-quark, in the approximation

mc � mt,MZ , is

u(p, hc) '
√
m2
t −M2

Z

8mt

(
1 + hc 1− hc 1 + hc −1 + hc

)T
(2.1.17)

while the helicity spinor for the t-quark is identical with that in Eqn. (2.1.1). In this case,

we also have to consider the polarisation vector of the Z boson, which, for the three helicity

choices hZ = 0,±1, has the form

ε(q, hZ) =
(
− (1−|hZ |)|~p|

MZ
∓hZ√

2
− i|hZ |√

2

(1−|hZ |)EZ
MZ

)
(2.1.18)

where, as in Eqn. (2.1.3),

|~p| ' Ec '
m2
t −M2

Z

2mt
EZ '

m2
t +M2

Z

2mt
(2.1.19)

The helicity amplitudes M(hZ ;hc, ht) now have the explicit form

M(hZ ;hc, ht) =

3∑
i=1

λiAi(hZ ;hc, ht) (2.1.20)
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where i runs over the three d-type quarks in the loop, λi = V2iV
∗

3i, and we parametrise

Ai(hZ ;hc, ht) = ū(p, hc) iΓ
µ u(k, ht) ε

∗
µ(q)

Γµ = F1iγ
µPL + F2iγ

µPR + iF3iσ
µνqνPL + iF4iσ

µνqνPR (2.1.21)

Of the 12 possible helicity amplitudes, the only nonvanishing ones are

Ai(+1;−1,+1) = −
√

2(m2
t −M2

Z) [F1i − F4i (EZ + |~p|)] (2.1.22)

Ai(−1; +1,−1) = −
√

2(m2
t −M2

Z) [F2i − F3i (EZ + |~p|)]

Ai(0; +1,+1) = −
√
m2
t −M2

Z

[
F2i

√
EZ + |~p|
EZ − |~p|

− F3iMZ

]

Ai(0;−1,−1) = −
√
m2
t −M2

Z

[
F1i

√
EZ + |~p|
EZ − |~p|

− F4iMZ

]

Each of the form factors can be written

Fni = F
(a)
ni + F

(b)
ni + F

(c)
ni + F

(d)
ni (2.1.23)

where n = 1, 2, 3, 4 and the superscripts refer to the graphs (a)–(d) shown in Figure 1 (with H
replaced by Z). These can be written, as before, in terms of the Passarino-’tHooft-Veltman
functions. We thus obtain the F1 form factors

F
(a)
1i =

ξη2

16π2

[
m2
t (C

(a)
11 − C

(a)
12 + C

(a)
21 − C

(a)
23 ) +mcmt(C

(a)
12 + C

(a)
23 )− C(a)

24

]
F

(b)
1i =

η2

16π2

[
αim

2
iC

(b)
0 + βi

(
B0 −M2

ωC
(b)
0 +m2

t (C
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(b)
23 )−m2

cC
(b)
12 − 2C

(b)
24

)
+βimcmt

(
3

2
(C
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0 + C

(b)
11 ) + C
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12 + C

(b)
23
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F

(c)
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16π2(m2
t −m2

c)
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αm2

cB1(mi,Mω;mc) + βmcmtB1(mi,Mω;mc)
]

F
(d)
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16π2(m2
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αm2
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]

(2.1.24)

the F2 form factors
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16π2

[
m2
t (C

(a)
11 − C

(a)
12 + C

(a)
21 − C

(a)
23 )−mcmt(C

(a)
12 + C

(a)
23 )− C(a)

24

]
F

(b)
2i = − η2

16π2

[
αim

2
iC

(b)
0 + βi

(
B0 −M2

ωC
(b)
0 +m2

t (C
(b)
21 − C

(b)
23 )−m2

cC
(b)
12 − 2C

(b)
24

)
−βimcmt

(
3

2
(C

(b)
0 + C

(b)
11 ) + C

(b)
12 + C

(b)
23

)]
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(c)
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η2

16π2(m2
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αm2
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]

F
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16π2(m2
t −m2

c)

[
αm2

tB1(mi,Mω;mt)− βmcmtB1(mi,Mω;mt)
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(2.1.25)

the nonvanishing F3 form factors
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3i = − ξη2

16π2

[
mt(C

(a)
11 − C

(a)
12 + C

(a)
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F
(b)
3i = − η2

16π2
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and the nonvanishing F4 form factors

F
(a)
4i = − ξη2

16π2

[
mt(C

(a)
11 − C
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12 + C

(a)
21 − C

(a)
23 )−mc(C
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(2.1.27)

F
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4i = − η2

16π2
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[
mt

(
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11 − C
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23

)
−mc

(
1

2
(C

(b)
0 + C

(b)
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In the above,

B0 = B0(mi,mi;MZ)

C
(a)
X = CX(mi,Mω,Mω;mc,mt,MZ)

C
(b)
X = CX(Mω,mi,mi;mc,mt,MZ)

where X = 0, 11, 12, 21, 23, 24. The Zdid̄i couplings are α = −1
2−2Qsin2θW and β = 1

2 where

Q = −1/3 is the charge of the down-type quark.

Once we have these form factors, we sum them up using Eqn. (2.1.23) and use them to

calculate the helicity amplitudes in Eqn. (2.1.23). These are then convoluted with the λi

factors in Eqn. (3.2.13) and used to calculate the squared spin-summed/ averaged matrix

element in Eqn. (3.2.14). Finally this is used in Eqn. (3.2.15) to produce the partial width.

B.2 SM and cMSSM amplitudes

B.2.1 The decay t→ c+H

In the Standard Model, as in the toy model, the decay t → c + H can be parametrised in

terms of the two nonvanishing helicity amplitudes of Eqn. (2.1.8). The calculation follows the

lines of the toy model, except that the diagrams are those of Figure 3.4 instead of Figure 3.1.

Thus, in this Appendix, we only require to list the form factors, diagram-wise.

It is convenient, in evaluating these diagrams, to define a set of general vertices:

uiuih : ig(AhuiPL +Bh
uiPR)

didih : ig(AhdiPL +Bh
diPR)

h(−q)φ+(p)W−µ : igαhφ(p+ q)µ

hφ+φ′− : igMWβ
h
φφ′

hW+
µ W

−
ν : igMWωhgµν

uidjφ
+ : ig

(
Xφ
ijPL + Y φ

ijPR

)
in terms of a set of coupling constants Ahui, B

h
ui, A

h
di, B

h
di, α

h
φ, βhφφ′ , ωh, Xφ

ij and Y φ
ij . In order

to obtain numerical values in the SM, we need to substitute the coupling constants according

to the table given below.



176 APPENDIX B. FCNC DECAYS OF THE TOP QUARK

coupling: Ahui Bh
ui Ahdi Bh

di αhφ βhφφ′ ωh Xφ
ij Y φ

ij

SM value :
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2MW
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2MW
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2 −
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W

1
mi√
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− mj√
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In terms of these, the form factors of type F1 are
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G
ti C

(d)
0 +mcY

G
ci Y

G
ti C

(d)
12

]
F

(e)
1i =

ig3mi

16π2
mc

[
(Ahdi +Bhdi)C

(e)
12 +BhdiC

(e)
0

]
F

(f)
1i = − ig3

16π2

[
z1
(
B0(2, 3)−M2

WC
(f)
0

)
− z3C(f)

0 −mtz5
XG
ti

Y Gti
(C

(f)
11 − C

(f)
12 )−mcz2C

(f)
12

]
Y Gti

F
(g)
1i =

ig3

16π2(m2
t −m2

c)
m2
tA

h
ucB

(g)
1

F
(h)
1i =

ig3

16π2(m2
t −m2

c)

[
mt

(
mtA

h
ucY

G
ci +mcA

h
uc
XG
ti

Y Gti
XG
ci

)
B

(h)
1 −mi

(
mtA

h
ucY

G
ci
XG
ti

Y Gti
+mcA

h
ucX

G
ci

)
B

(h)
0

]
Y Gti

F
(i)
1i = − ig3

16π2(m2
t −m2

c)
mcmtA

h
utB

(i)
1

F
(j)
1i = − ig3

16π2(m2
t −m2

c)

[
mcX

G
ti (mcX

G
ciB

(j)
1 −miY

G
ci B

(j)
0 ) +mtY

G
ti (mcY

G
ci B

(j)
1 −miX

G
ciB

(j)
0 )
]
Ahut (2.2.1)

and the form factors of type F2 are

F
(a)
2i =

ig3MWωh
16π2

mt(C
(a)
11 − C

(a)
12 )

F
(b)
2i =

ig3αhG+

16
√

2π2

[
XG
cimcmt(C

(b)
12 − 2C

(b)
11 ) + Y Gcimimt(C

(b)
0 − C

(b)
11 + C

(b)
12 )
]

F
(c)
2i =

−ig3αhG+

16
√

2π2

[
XG
timcmt(C

(c)
12 − 2C

(c)
11 ) + Y Gti mimt(C

(c)
0 − C(c)

11 + C
(c)
12 )
]

F
(d)
2i = − ig

3MWβ
h
GG

16π2

[
mtY

G
ci Y

G
ti (C

(d)
11 − C

(d)
12 )−miX

G
tiY

G
ci C

(d)
0 +mcX

G
ciX

G
tiC

(d)
12

]
F

(e)
2i =

ig3mi

16π2
mt

[
(Ahdi +Bhdi)(C

(e)
11 − C

(e)
12 ) +AhdiC

(e)
0

]
F

(f)
2i = − ig3

16π2

[
z4
(
B0(2, 3)−M2

WC
(f)
0

)
− z6C(f)

0 −mtz2
Y Gti
XG
ti

(C
(f)
11 − C

(f)
12 )−mcz5C

(f)
12

]
XG
ti

F
(g)
2i =

ig3

16π2(m2
t −m2

c)
mcmtB

h
ucB

(g)
1

F
(h)
2i =

ig3

16π2(m2
t −m2

c)

[
mt

(
mtB

h
ucX

G
ci +mcB

h
uc
Y Gti
XG
ti

Y Gci

)
B

(h)
1 −mi

(
mtB

h
ucX

G
ci
Y Gti
XG
ti

+mcB
h
ucY

G
ci

)
B

(h)
0

]
XG
ti

F
(i)
2i = − ig3

16π2(m2
t −m2

c)
m2
cB

h
utB

(i)
1

F
(j)
2i = − ig3

16π2(m2
t −m2

c)

[
mcY

G
ti (mcY

G
ci B

(j)
1 −miX

G
ciB

(j)
0 ) +mtX

G
ti (mcX

G
ciB

(j)
1 −miY

G
ci B

(j)
0 )
]
Bhut (2.2.2)

As in the previous section, the superscripts refer to the diagrams marked (a)–(j) in Figure 3.4.
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In the above, we have used the functions

C
(a)
X = CX(mi,MW ,MW ;mc,mt,Mh) B

(g)
1 = B1(mi,MW ;mt)

C
(b)
X = CX(mi,MW ,MW ;mc,mt,Mh) B

(h)
1 = B1(mi,MW ;mt)

C
(c)
X = CX(mi,MW ,MW ;mc,mt,Mh) B

(h)
0 = B0(mi,MW ;mt)

C
(d)
X = CX(mi,MW ,MW ;mc,mt,Mh) B

(i)
1 = B1(mi,MW ;mc)

C
(e)
X = CX(MW ,mi,mi;mc,mt,Mh) B

(j)
1 = B1(mi,MW ;mc)

C
(f)
X = CX(MW ,mi,mi;mc,mt,Mh) B

(j)
0 = B0(mi,MW ;mc) (2.2.3)

where X = 0, 11, 12, 21, 23, 24, as before, and defined a set of effective couplings

z1 = XG
ciB

h
di

z2 = mtY
G
ci

XG
ti

Y G
ti

Ahdi +mcX
G
ciB

h
di +miY

G
ci B

h
di +miY

G
ci A

h
di

z3 = mt
XG
ti

Y G
ti

Ahdi(miX
G
ci +mcY

G
ci ) +m2

iA
h
diX

G
ci +mimcA

h
diY

G
ci

z4 = Y G
ci A

h
di

z5 = mtX
G
ci

Y G
ti

XG
ti

Bh
di +mcY

G
ci A

h
di +miX

G
ciA

h
di +miX

G
ciB

h
di

z6 = mt
Y G
ti

XG
ti

Bh
di(miY

G
ci +mcX

G
ci ) +m2

iB
h
diY

G
ci +mimcB

h
diX

G
ci (2.2.4)

These form factors can now be combined, using Fni =
∑j

A=a F
A
ni for n = 1, 2 and the results

substituted into Eqn. (2.1.8) as before.

When we come to consider the cMSSM, the SM contributions will not only involve modifi-

cations of the SM couplings given above, but will also be enhanced by contributions from

the additional eight diagrams in Figure 3.5, which involve superparticles in the loops. These

involve some additional couplings which are parametrised in a general way as

χ+
i χ
−
j h : ig

(
AhijPL +Bh

ijPR

)
χ+
i χ
−
j Z

µ : igγµ
(
AZijPL +BZ

ijPR

)
d̃∗d̃h : igMWβ

h
d̃d̃

d̃(p)d̃∗(q)Zµ : igαd̃
d̃
(p+ q)µ

d̃∗iukχ
+
j : ig

(
Xi
kjPL + Y i

kjPR

)
in terms of an additional set of coupling constants Ahij , B

h
ij , A

Z
ij , B

Z
ij , β

h
d̃d̃

, αd̃
d̃
, Xi

kj , Y
i
kj . For a

numerical analysis, we require to take the full set of coupling constants as given in the table

below.

where, in terms of the chargino mixing matrices U and V ,

Qij =
1√
2
Ui2Vj1; Sij =

1√
2
Ui1Vj2

QUij = −Ui1U∗j1 −
1

2
Ui2U

∗
j2 + δijsin

2θW ; QVij = −Vi1V ∗j1 −
1

2
Vi2V

∗
j2 + δij sin2 θW
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coupling : Ahui Bh
ui Ahdi Bh

di

cMSSM : − mi cosα
2MW sinβ − mi cosα

2MW sinβ
mi sinα

2MW cosβ
mi sinα

2MW cosβ

coupling: αhG+ αhh+ βhG+G− βhG+h+

cMSSM : −1
2 sin(β − α) −1

2 cos(β − α)
cos 2β sin(α+β)

2 cos2 θW

cos(β−α)(m2
h+
−m2

h0
)

2M2
W

coupling: βhh+h− ωh XG+

ij Y G+

ij

cMSSM value : − sin(β − α) sin(β − α)
mi√
2MW

− mj√
2MW

−cos 2β sin(α+β)
2 cos2 θW

coupling: Xh+
ij Y h+

ij

cMSSM value :
mi cotβ√

2MW

mjtanβ√
2MW

coupling: Ahij Bh
ij AZij BZ

ij

cMSSM value : Q∗ij sinα− S∗ij cosα Qji sinα− Sji cosα QVij QUij

coupling: βh
d̃d̃

αd̃
d̃

Xi
kj Y i

kj

cMSSM value : −
(

1
2 − sin2 θW

3

)
1− 2

3 sin2 θW
2 cos θW

0 Uj1

+ sin(α+β)
cos2 θW

Evaluating the Feynman diagrams of Figs. 3.4 and 3.5 now leads to the F1 form factors

F
(k)
1i =

ig3αhh+

16
√

2π2

[
Xh+

ci

(
(m2

t − 2M2
h+)(C

(k)
11 − C

(k)
12 )−B0(2, 3) +m2

iC
(k)
0 + 2m2

cC
(k)
11

)
−mimcY

h+

ci (C
(k)
12 + 2C

(k)
0 )
]

F
(l)
1i =

ig3αhh+

16
√

2π2

[
Xh+

ti

(
2m2

tC
(l)
11 − 2M2

h+C
(l)
12 +m2

cC
(l)
12 −B0(2, 3) +m2

iC
(l)
0

)
−mimtY

h+

ti (C
(l)
11 − C

(l)
12 + 2C

(l)
0 )
]

F
(m)
1i = −

ig3MWβ
h
h+h−

16π2

[
mtX

h+

ci X
h+

ti (C
(m)
11 − C

(m)
12 )−miX

h+

ci Y
h+

ti C
(m)
0 +mcY

h+

ci Y h
+

ti C
(m)
12

]
F

(n)
1i = −

ig3MWβ
h
G+h−

16π2

[
mtX

G
ciX

h+

ti (C
(n)
11 − C

(n)
12 )−miX

G
ciY

h+

ti C
(n)
0 +mcY

G
ci Y

h+

ti C
(n)
12

]
F

(o)
1i = −

ig3MWβ
S
G+h−

16π2

[
mtX

h+

ci X
G
ti (C

(o)
11 − C

(o)
12 )−miX

h+

ci Y
G
ti C

(o)
0 +mcY

h+

ci Y Gti C
(o)
12

]
F

(p)
1i = − ig3

16π2

[
z1
(
B

(p)
0 −M2

h+C
(p)
0

)
− z3C(p)

0 −mtz5
Xh+

ti

Y h
+

ti

(C
(p)
11 − C

(p)
12 )−mcz2C

(p)
12

]
Y h

+

ti

F
(q)
1i = −

ig3MWβ
h
d̃d̃

16π2

[
mtX

i
cjX

i
tj(C

(q)
11 − C

(q)
12 )−miX

i
cjY

i
tjC

(q)
0 +mcY

i
cjY

i
tjC

(q)
12

]
F

(r)
1i = − ig3

16π2

[
z1
(
B

(r)
0 −M2

d̃i
C

(r)
0

)
− z3C(r)

0 −mtz5
Xi
tj

Y itj
(C

(r)
11 − C

(r)
12 )−mcz2C

(r)
12

]
Y itj

F
(s)
1i =

ig3

16π2(m2
t −m2

c)

[
mt

(
mtA

h
ucY

h+

ci +mcA
h
uc
Xh+

ti

Y h
+

ti

Xh+

ci

)
B

(s)
1

−mi

(
mtA

h
ucY

h+

ci
Xh+

ti

Y h
+

ti

+mcA
h
ucX

h+

ci

)
B

(s)
0

]
Y h

+

ti

F
(t)
1i =

ig3

16π2(m2
t −m2

c)

[
mt

(
mtA

h
ucY

i
cj +mcA

h
uc
Xh+

ti

Y h
+

ti

Xi
cj

)
B

(t)
1 −mi

(
mtA

h
ucY

i
cj
Xh+

ti

Y h
+

ti

+mcA
h
ucX

i
cj

)
B

(t)
0

]
Y h

+

ti

F
(u)
1i = − ig3

16π2(m2
t −m2

c)

[
mcX

h+

ti

(
mcX

h+

ci B
(u)
1 −miY

h+

ci B
(u)
0

)
+mtY

h+

ti

(
mcY

h+

ci B
(u)
1 −miX

h+

ci B
(u)
0

)]
Ahut

F
(v)
1i = − ig3

16π2(m2
t −m2

c)

[
mcX

i
tj

(
mcX

i
cjB

(v)
1 −miY

i
cjB

(v)
0

)
+mtY

i
tj

(
mcY

i
cjB

(v)
1 −miX

i
cjB

(v)
0

)]
Ahut (2.2.5)
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and the F2 form factors

F
(k)
2i =

ig3αhh+

16
√

2π2

[
Xh+

ci mcmt(C
(k)
12 − 2C

(k)
11 ) + Y h

+

ci mimt(C
(k)
0 − C(k)

11 + C
(k)
12 )
]

F
(l)
2i =

−ig3αhh+

16
√

2π2

[
Xh+

ti mcmt(C
(l)
12 − 2C

(l)
11 ) + Y h

+

ti mimt(C
(l)
0 − C

(l)
11 + C

(l)
12 )
]

F
(m)
2i = −

ig3MWβ
h
h+h−

16π2

[
mtY

h+

ci Y h
+

ti (C
(m)
11 − C

(m)
12 )−miX

h+

ti Y
h+
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(m)
0 +mcX

h+

ci X
h+

ti C
(m)
12

]
F

(n)
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ig3MWβ
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G+h−

16π2

[
mtY

G
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(n)
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(n)
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G
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G
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]
F
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(o)
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G
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]
F
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(
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(p)
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(p)
0

)
− z6C(p)
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+
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(p)
11 − C

(p)
12 )−mcz5C

(p)
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]
Xh+

ti

F
(q)
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h
d̃d̃

16π2

[
mtY

i
cjY

i
tj(C

(q)
11 − C

(q)
12 )−miX

i
tjY

i
cjC

(q)
0 +mcX

i
cjX

i
tjC

(q)
12

]
F

(r)
2i = − ig3

16π2

[
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(
B

(r)
0 −M2

d̃i
C

(r)
0

)
− z6C(r)

0 −mtz2
Y itj
Xi
tj

(C
(r)
11 − C

(r)
12 )−mcz5C

(r)
12

]
Xi
tj

F
(s)
2i =

ig3

16π2(m2
t −m2

c)

[
mt

(
mtB

h
ucX

h+

ci +mcB
h
uc
Y h

+

ti

Xh+

ti

Y h
+

ci

)
B

(s)
1

−mi

(
mtB

h
ucX

h+

ci
Y h

+

ti

Xh+

ti

+mcB
h
ucY

h+

ci

)
B

(s)
0

]
Xh+

ti

F
(t)
2i =

ig3

16π2(m2
t −m2

c)

[
mt

(
mtB

h
ucX

i
cj +mcB

h
uc
Y h

+

ti

Xh+

ti

Y icj

)
B

(t)
1 −mi

(
mtB

h
ucX

i
cj
Y h

+

ti

Xh+

ti

+mcB
h
ucY

i
cj

)
B

(t)
0

]
Xh+

ti

F
(u)
2i = − ig3

16π2(m2
t −m2

c)

[
mcY

h+

ti

(
mcY

h+

ci B
(u)
1 −miX

h+

ci B
(u)
0

)
+mtX

h+

ti

(
mcX

h+

ci B
(u)
1 −miY

h+

ci B
(u)
0

)]
Bhut

F
(v)
2i = − ig3

16π2(m2
t −m2

c)

[
mcY

i
tj

(
mcY

i
cjB

(v)
1 −miX

i
cjB

(v)
0

)
+mtX

i
tj

(
mcX

i
cjB

(v)
1 −miY

i
cjB

(v)
0

)]
Bhut (2.2.6)

where

C
(k)
X = CX(mi,MW ,Mh+ ;mc,mt,Mh) B

(s)
X = BX(mχ̃+

i
,Md̃j

;mt) (2.2.7)

C
(l)
X = CX(mi,Mh+ ,MW ;mc,mt,Mh) B

(t)
X = BX(mi,Mh+ ;mt)

C
(m)
X = CX(mi,Mh+ ,Mh+ ;mc,mt,Mh) B

(u)
X = BX(mχ̃+

i
,Md̃j

;mc)

C
(n)
X = CX(mi,Mh+ ,MW ;mc,mt,Mh) B

(v)
X = BX(mi,Mh+ ;mc)

C
(o)
X = CX(mi,MW ,Mh+ ;mc,mt,Mh) C

(p)
X = CX(Mh+ ,mi,mi;mc,mt,Mh)

C
(q)
X = CX(mχ̃+

i
,Md̃j

,Md̃j
;mc,mt,Mh) C

(r)
X = CX(Md̃j

,mχ̃+
i
,mχ̃+

i
;mc,mt,Mh)

where X = 0, 11, 12, 21, 23, 24, as before, and defined two sets of effective couplings

z
(p)
1 = Xh

ciB
h
di

z
(p)
2 = mtY

h
ci

Xh
ti

Y h
ti

Ahdi +mcX
h
ciB

h
di +miY

h
ciB

h
di +miY

h
ciA

h
di

z
(p)
3 = mt

Xh
ti

Y h
ti

Ahdi(miX
h
ci +mcY

h
ci) +m2

iA
h
diX

h
ci +mimcA

h
diY

h
ci

z
(p)
4 = Y h

ciA
h
di
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z
(p)
5 = mtX

h
ci

Y h
ti

Xh
ti

Bh
di +mcY

h
ciA

h
di +miX

h
ciA

h
di +miX

h
ciB

h
di

z
(p)
6 = mt

Y h
ti

Xh
ti

Bh
di(miY

h
ci +mcX

h
ci) +m2

iB
h
diY

h
ci +mimcB

h
diX

h
ci (2.2.8)

and

z
(r)
1 = Xi

cjB
h
ij

z
(r)
2 = mtY

i
cj

Xi
tj

Y i
tj

Ahij +mcX
i
cjB

h
ij +miY

i
cjB

h
ij +miY

i
cjA

h
ij

z
(r)
3 = mt

Xi
tj

Y i
tj

Ahij(miX
i
cj +mcY

i
cj) +m2

iA
h
ijX

i
cj +mimcA

h
ijY

i
cj

z
(r)
4 = Y i

cjA
h
ij

z
(r)
5 = mtX

i
cj

Y i
tj

Xi
tj

Bh
ij +mcY

i
cjA

h
ij +miX

i
cjA

h
ij +miX

i
cjB

h
ij

z
(r)
6 = mt

Y i
tj

Xi
tj

Bh
ij(miY

i
cj +mcX

i
cj) +m2

iB
h
ijY

i
cj +mimcB

h
ijX

i
cj (2.2.9)

As before, these form factors can now be combined, using Fni =
∑j

A=a F
A
ni for n = 1, 2 and

the results substituted into Eqn. (2.1.8) to get the final amplitude.

B.2.2 The decay t→ c+ Z

When we turn to the decay process t→ c+Z, then, as in the toy model, we have to calculate

four helicity amplitudes in terms of four form factors F1, F2, F3 and F4. For the Standard

Model, we then evaluate the diagrams of Figure 3.4, replacing the H everywhere by a Z. In

order to do this, we set up the following general vertices.

uiuiZ
µ : igγµ(AZuiPL +BZ

uiPR)

didiZ
µ : igγµ(AZdiPL +BZ

diPR)

Wµ+Zνφ− : igωφWZg
µν

Zµφ(p)+φ′−(q) : igαφφ′(p+ q)µ

uidjφ
+ : ig

(
Xφ
ijPL + Y φ

ijPR

)
in terms of a set of coupling constants AZui, B

Z
ui, A

Z
di, B

Z
di, ω

φ
WZ , αφφ′ , X

φ
ij and Y φ

ij . In the SM,

these have values given in the table below.

where

guL =
1

2
− 2

3
sin2 θW guR = −2

3
sin2 θW

gdL = −1

2
+

1

3
sin2 θW gdR =

1

3
sin2 θW (2.2.10)
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coupling : AZui BZui AZdi BZdi

SM : − guL
cos θW

− guR
cos θW

− guL
cos θW

− guR
cos θW

coupling : ωφWZ αφφ′ Xφ
ij Y φij

SM : −MZ sin2 θW − cos 2θW
2 cos θW

mi√
2MW

− mj√
2MW

As in the previous cases, we can now compute, using the diagrams of Figure 3.4 (with h0 → Z)
a set of forms factors. The set of F1 form factors are

F
(a)
1i =

g3 cos θW
16π2

[
2m2

t (C
(a)
21 − C

(a)
23 )− 2C

(a)
24 + (m2

t +m2
c −M2

Z)C
(a)
11 −m

2
cC

(a)
12 − (B

(a)
0 −m2

iC
(a)
0 )
]

F
(b)
1i = − g

3ωG
+

WZ

16
√

2π2

[
mtX

G
ti (C

(b)
11 − C

(b)
12 )−miY

G
ti C

(b)
0

]
F

(c)
1i = − g

3ωG
+

WZ

16
√

2π2

[
mcX

G
ciC

(c)
12 − 2miY

G
ci C

(c)
0 + 2mtX

G
ci(C

(c)
11 − C

(c)
12 )
]

F
(d)
1i = −

g3αG
+

G−

16
√

2π2

[
m2
tY

G
ci Y

G
ti (C

(d)
21 − C

(d)
23 ) +mcmtX

G
ciX

G
tiC

(d)
23 − 2Y Gci Y

G
ti C

(d)
24 −mimtY

G
ti X

G
ci(C

(d)
0 + C

(d)
11 )
]

F
(e)
1i =

g3

32π2

[
AZdi

{
2(m2

c +m2
t −M2

Z +mcmt)(C
(e)
0 + C

(e)
11 ) + 2m2

t (C
(e)
11 − C

(e)
12 ) +m2

cC
(e)
12 + 2C

(e)
24

+2mimt(C
(e)
0 + C

(e)
11 )−B(e)

0 +M2
WC

(e)
0

}
+ 2miB

Z
di

{
mt(C

(e)
0 + C

(e)
11 )−miC

(e)
0

}]
F

(f)
1i = − g3

16π2

[
XG
ci

{(
mi +mt

Y Gci
XG
ci

)
AZdi

(
mcX

G
ci(C

(f)
0 + C

(f)
12 ) +miY

G
ci C

(f)
0

)
−BZdi

(
mc(miX

G
ci +mcY

G
ci )C

(f)
12 − Y

G
ci (B

(f)
0 −M2

WC
(f)
0 )−mtY

G
ci (mtC

(f)
21 +mcC

(f)
23 )− 2C

(f)
24

)}
−mtY

G
ci A

Z
di(mcX

G
ci +miY

G
ci )C

(f)
11

]
F

(g)
1i = − g3

16π2(m2
t −m2

c)
m2
cA

Z
ciB

(g)
1

F
(h)
1i = − g3

16π2(m2
t −m2

c)
AZti

[
mtX

G
ti

(
mcX

G
ciB

(h)
1 −miY

G
ci B

(h)
0

)
+mcY

G
ti

(
Y GcimcB

(h)
1 −miX

G
ciB

(h)
0

)]
F

(i)
1i =

g3

32π2(m2
t −m2

c)
mt

(
mtA

Z
ti +mcBti

Z
)
B

(i)
1 (2.2.11)

F
(j)
1i =

g3

16π2(m2
t −m2

c)
AZtiY

G
ti

[
mtY

G
ci

(
mt +mc

XG
tiX

G
ci

Y Gti Y
G
ci

)
B

(j)
1 −miX

G
ci

(
mt

Y GciX
G
ti

XG
ciY

G
ti

+mc

)
B

(j)
0

]

The nonvanishing F2 form factors are

F
(a)
2i =

g3 cos θW
16π2

mcmt(C
(a)
11 − C

(a)
12 )

F
(b)
2i = − g

3ωG
+

WZ

16
√

2π2
(mt −mc)X

G
tiC

(b)
12

F
(c)
2i =

g3ωG
+

WZ

16
√

2π2
mtX

G
ci(C

(c)
11 − C

(c)
12 )

F
(d)
2i = −

g3αG
+

G−

16
√

2π2

[
m2
tX

G
ciX

G
ti (C

(d)
21 − C

(d)
23 ) +mcmtY

G
ci Y

G
ti C

(d)
23 − 2XG

ciX
G
tiC

(d)
24 −mimtX

G
tiY

G
ci (C

(d)
0 + C

(d)
11 )
]

F
(e)
2i = − g3

32π2
AZdi

[
mt(mt +mc)(C

(e)
0 + C

(e)
11 ) +m2

t (C
(e)
11 − C

(e)
12 ) +mcmtC

(e)
12 −m

2
tC

(e)
21 −mt(mt −mc)C

(e)
23

]
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F
(f)
2i = − g3

16π2

[
Y Gci

{(
mi +mt

XG
ci

Y Gci

)
BZdi

(
mcY

G
ci (C

(f)
0 + C

(f)
12 ) +miX

G
ciC

(f)
0

)
−AZdi

(
mc(miY

G
ci +mcX

G
ci)C

(f)
12 −X

G
ci(B

(f)
0 −M2

WC
(f)
0 )−mtY

G
ci (mtC

(f)
21 +mcC

(f)
23 )− 2C

(f)
24

)}
−mtX

G
ciB

Z
di(mcY

G
ci +miX

G
ci)C

(f)
11

]
F

(g)
2i = − g3

16π2(m2
t −m2

c)
mcmtB

Z
ciB

(g)
1

F
(h)
2i = − g3

16π2(m2
t −m2

c)
BZti

[
mtY

G
ti

(
mcY

G
ci B

(h)
1 −miX

G
ciB

(h)
0

)
+mcX

G
ti

(
mcX

G
ciB

(h)
1 −miY

G
ci B

(h)
0

)]
F

(j)
2i =

g3

16π2(m2
t −m2

c)
BZtiX

G
ti

[
mtX

G
ci

(
mt +mc

Y Gti Y
G
ci

XG
tiX

G
ci

)
B

(j)
1 −miY

G
ci

(
mt

XG
ciY

G
ti

Y GciX
G
ti

+mc

)
B

(j)
0

]
(2.2.12)

The nonvanishing F3 form factors are

F
(a)
3i = −g

3 cos θW
32π2

mc

[
C

(a)
11 + 2C

(a)
12

]
F

(c)
3i =

g3ωG
+

WZ

16
√

2π2
XG
ci(C

(c)
11 − C

(c)
12 )

F
(d)
3i =

g3αG
+

G−

16
√

2π2

[
mtX

G
ciX

G
ti (C

(d)
21 − C

(d)
23 )−mcY

G
ci Y

G
ti C

(d)
23 +miY

G
ti X

G
ci(C

(d)
0 + C

(d)
11 )
]

F
(e)
3i =

g3

32π2
AZdi

[
(mt +mc)(C

(e)
0 + C

(e)
11 ) +mt(C

(e)
11 − C

(e)
12 ) +mcC

(e)
12 −mtC

(e)
21 − (mt −mc)C

(e)
23

]
F

(f)
3i =

g3

16π2
XG
ci

[
AVdi

(
mi +mt

Y Gci
XG
ci

)
XG
ci(C

(f)
11 − C

(f)
12 ) (2.2.13)

−BZdi
{(
miX

G
ci +mcY

G
ci

)
(C

(f)
11 − C

(f)
12 ) + (miX

G
ci +mcY

G
ci )C

(f)
11 + Y Gci (mtC

(f)
21 +mcC

(f)
23 )

}]
The nonvanishing F4 form factors are

F
(a)
4i =

g3 cos θW
16π2

mt{2(C
(a)
11 − C

(a)
12 )− (C

(a)
21 − C

(a)
23 )}

F
(b)
4i = − g

3ωG
+

WZ

16
√

2π2
XG
tiC

(b)
12

F
(d)
4i =

g3αG
+

G−

16
√

2π2

[
mtY

G
ci Y

G
ti (C

(d)
21 − C

(d)
23 )−mcX

G
ciX

G
tiC

(d)
23 +miX

G
tiY

G
ci (C

(d)
0 + C

(d)
11 )
]

F
(e)
4i = − g3

16π2
mi(A

Z
di +BZdi)(C

(e)
0 + C

(e)
11 )

F
(f)
4i =

g3

16π2
Y Gci

[
BZdi

(
mi +mt

XG
ci

Y Gci

)
Y Gci (C

(f)
11 − C

(f)
12 ) (2.2.14)

−AZdi
{(
miY

G
ci +mcX

G
ci

)
(C

(f)
11 − C

(f)
12 ) + (miY

G
ci +mcX

G
ci)C

(f)
11 +XG

ci(mtC
(f)
21 +mcC

(f)
23 )

}]
where

C
(a)
X = CX(mi,MW ,MW ;mc,mt,MZ) B

(e)
0 = B0(MW ,mi;MZ)

C
(b)
X = CX(mi,MW ,MW ;mc,mt,MZ) B

(g)
1 = B1(mi,MW ;mt)

C
(c)
X = CX(mi,MW ,MW ;mc,mt,MZ) B

(h)
1 = B1(mi,MW ;mt)

C
(d)
X = CX(mi,MW ,MW ;mc,mt,MZ) B

(h)
0 = B0(mi,MW ;mt)

C
(e)
X = CX(MW ,mi,mi;mc,mt,MZ) B

(i)
1 = B1(mi,MW ;mc)

C
(f)
X = CX(MW ,mi,mi;mc,mt,MZ) B

(j)
1 = B1(mi,MW ;mc)

B
(a)
0 = B0(MW ,MW ;MZ) B

(j)
0 = B0(mi,MW ;mc) (2.2.15)

where X = 0, 11, 12, 21, 23, 24, as usual. We then calculate the total form factors using

Fni =
∑j

A=a F
A
ni for n = 1, 2, 3, 4 and substitute the results into Eqn. (2.1.23) to get the final

SM amplitude.
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In the cMSSM, we require to evaluate all the diagrams which contribute in the SM, i.e. those

which are listed in Figure 3.4. This will involve all the vertices we have defined for the SM,

but the coupling constants will be somewhat different. These are listed in the table below.

coupling : AZui BZui AZdi BZdi

SM : − guL
cos θW

− guR
cos θW

− guL
cos θW

− guR
cos θW

coupling : ωG
+

WZ αG
+

G− XH+

ij Y H
+

ij

SM : −MZ sin2 θW − cos 2θW
2 cos θW

mi cotβ√
2MW

mj tan β√
2MW

Due to the absence of a W±H∓Z vertex (whereas there is a W±H∓h0 vertex, the list of

additional diagrams in the cMSSM can be obtained by changing the H lines in Figure 3.5

to Z lines, provided we discard the diagrams marked (k), (`), (n) and (o). Evaluating the

remaining ones we get the F1 form factors

F
(m)
1i = −

g3αh
−

h+

16
√

2π2

[
m2
t (C

(m)
21 − C

(m)
23 )Y hciY

h
ti +mcmtC
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23 Xh

ciX
h
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24 Y hciY

h
ti −mimt(C

(m)
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h
ci
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]
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(r)
0 + C

(r)
12 ) +miY

j
ciC

(r)
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j
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(2.2.16)

The F2 form factors are

F
(m)
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−
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[
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]
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[
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(2.2.17)
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(2.2.18)

The nonvanishing F3 form factors are
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−
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12 ) (2.2.19)

−BZdi
{(
miX

j
ci +mcY

j
ci

)
(C

(r)
11 − C

(r)
12 ) + (miX

j
ci +mcY

j
ci)C

(r)
11 + Y jci(mtC

(r)
21 +mcC

(r)
23 )
}]

Finally, the nonvanishing F4 form factors are
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−AZdi
{(
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j
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j
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(r)
11 − C

(r)
12 ) + (miY

j
ci +mcX

j
ci)C
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(r)
21 +mcC
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}]

where we have used

C
(m)
X = CX(mi,Mh+ ,Mh+ ;mc,mt,MZ) B

(m)
0 = B0(Mh+ ,Mh+ ;MZ)

C
(p)
X = CX(Mh+ ,mi,mi;mc,mt,MZ) B

(q)
0 = BX(Md̃j

,Md̃j
;MZ)

C
(q)
X = CX(mχ̃+

i
,Md̃j

,Md̃j
;mc,mt,MZ) B

(s)
X = BX(mi,Mh+ ;mt)

C
(r)
X = CX(Md̃j

,mχ̃+
i
,mχ̃+

i
;mc,mt,MZ) B

(t)
X = BX(mχ̃+

i
,Md̃j

;mt)

B
(u)
X = BX(mi,Mh+ ;mt) B

(v)
X = BX(mχ̃+

i
,Md̃j

;mc) (2.2.21)

for X = 0, 11, 12, 21, 23, 24, as usual. It is now a simple matter to calculate the total form

factors using Fni =
∑j

A=a F
A
ni for n = 1, 2, 3, 4 and substitute the results into Eqn. (2.1.23)

to get the final cMSSM amplitude.
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B.3 RPV-MSSM amplitudes

B.3.1 The decay t→ c+H

Since the RPV-MSSM is merely an extension of the MSSM, it will contain all the diagrams of

Figures 3.4 and 3.5. However, as we have seen in the text, these contributions are small, and

the R-parity violating contributions can be much larger. It is sensible, therefore, to calculate

these alone. To have a unified picture, we include both λ′ijk and λ′′ijk couplings when listing

the diagrams in Figure 3.7, though only one set at a time can contribute. In terms of these,

the F1 form factors are

F 1a
1ik = gMWβ

h
ẽiẽi

λ
′
i2kλ

′
i3k

16π2
mcC

(a)
12

F 1b
1ik =

ydkλ
′
i2kλ

′
i3k

16π2
mcMd̃k

[
C

(b)
0 + 2C

(b)
12

]
F 1c
1ik = gMWβ

h
d̃k d̃k

λ
′
i2kλ

′
i3k

16π2
mcC

(c)
12

F 1d
1ik =

yliλ
′
i2kλ

′
i3k

16π2
mcmli

[
C

(d)
0 + 2C

(d)
12

]
F 1e
1ik = − ytλ

′
i2kλ

′
i3k

16π2(m2
t −m2

c)
mcmtB

(e)
1

F 1f
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ycλ
′
i2kλ

′
i3k

16π2(m2
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(f)
1
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(g)
12

]
F 1h
1jk =
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)]
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16π2(m2
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1

F 1j
1jk = −
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16π2(m2
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c)
mt(mt +mc)B

(j)
1 (2.3.1)

and the F2 form factors are
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1ik = gMWβ
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ẽiẽi

λ
′
i2kλ

′
i3k

16π2
mt

[
C

(a)
11 − C

(a)
12

]
F 2b
1ik =
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1
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1 (2.3.2)
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in terms of

C
(a)
X = CX(mk,Mẽi ,Mẽi ;mc,mt,Mh) B

(e)
1 = B1(mk,Mẽi ;mc)

C
(b)
X = CX(Mẽi ,mk,mk;mc,mt,Mh) B

(f)
1 = B1(mk,Mẽi ;mc)

C
(c)
X = CX(mi,Md̃k

,Md̃k
;mc,mt,Mh) B

(i)
1 = B1(mj ,Md̃k

;mt)

C
(d)
X = CX(Md̃k

,mei ,mei ;mc,mt,Mh) B
(j)
1 = B1(mj ,Md̃k

;mt) (2.3.3)

C
(g)
X = CX(mj ,Md̃k

,Md̃k
;mc,mt,Mh) C

(h)
X = CX(Md̃k

,mj ,mj ;mc,mt,Mh)

where, as usual, X = 0, 11, 12, 21, 23, 24. As before, we go on to compute total form factors

using Fni =
∑j

A=a F
A
ni for n = 1, 2 and substitute the results into Eqn. (2.1.8) to get the

amplitude in the RPV-MSSM.

B.3.2 The decay t→ c+ Z

The Feynman diagrams for the decay t → c + Z are the same as those in Figure 3.7, with

h0 → Z, as we have seen before. As before, we present the amplitudes for the λ′ and λ′′

couplings together, though either one or the other must be zero.

The F1 form factors are
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λ
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1 (2.3.4)

The F2 form factors are
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(2.3.5)
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F 2e
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The F3 form factors are

F 3a
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(2.3.7)

and, finally the F4 form factors are
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(2.3.8)

where

C
(a)
X = CX(mk,Mẽi ,Mẽi ;mc,mt,MZ) B

(b)
0 = B0(mk,mk;MZ)

C
(b)
X = CX(Mẽi ,mk,mk;mc,mt,MZ) B

(d)
0 = B0(mi,mi;MZ)

C
(c)
X = CX(mi,Md̃k

,Md̃k
;mc,mt,MZ) B

(e)
1 = B1(mk,Mẽi ;mc)

C
(d)
X = CX(Md̃k

,mi,mi;mc,mt,MZ) B
(f)
1 = B1(mk,Mẽi ;mt)

C
(g)
X = CX(mi,Md̃k
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;mc,mt,MZ) B

(h)
0 = B0(mj ,mj ;MZ)

C
(h)
X = CX(Md̃k
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;mt) (2.3.9)
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and we have defined effective couplings

gZd = − sin2 θW
6 cos θW

gZe =
1− 2 sin2 θW

2 cos θW

guL = −1− 2qu sin2 θW
2 cos θW

guR =
qu sin2 θW

cos θW

gdL =
1 + 2qd sin2 θW

2 cos θW
gdR =

qd sin2 θW
cos θW

geL =
1− 2 sin2 θW

2 cos θW
geR = − sin2 θW

cos θW
(2.3.10)

It is now a straightforward matter to calculate the total form factors using Fni =
∑j

A=a F
A
ni

for n = 1, 2, 3, 4 and substitute the results into Eqn. (2.1.23) to get the final RPV-MSSM

amplitude.



Appendix C
The RD and RD∗ Anomalies

C.1 Full expressions for aD` , bD` and cD`

For the negative helicity of the lepton:
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For the positive helicity of the lepton:
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C.2 Full expressions for aD
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C.3 Contribution of the Tensor operator Ocb`
TL

C.3.1 B → Dτν̄τ

In this section we investigate the effect of the tensor operator Ocb`TL on the B → Dτν̄τ decay.

In the first column of table C.1, we show the range of CτTL that explains RD within 1σ. In

the subsequent columns, we show the predictions of Pτ (D), ADFB and binwise RD for the

allowed range of CτTL that is closest to zero (i.e., CτTL ∈ [0.240, 0.796]). A comparison with

the left plot of Fig. 4.6 reveals that Pτ (D) in this case is quite different from the other cases

and thus, can completely distinguish the tensor operator from the vector or scalar operators.

Similarly, ADFB can also be used to distinguish the tensor from the vector operator, however,

there exists some degeneracy with the scalar operator.

The variation of RD as a function of CτTL is also shown in the left plot of Fig. C.1. The

predictions for binwise RD for the tensor operators are graphically presented in the right plot

of Fig. C.1.

C.3.2 B → D∗τ ν̄τ

The range of CτTL that explains R∗D within 1σ is shown in the first column of table C.2. The

resulting values for Pτ (D∗), AD∗FB and binwise R∗D are shown in the subsequent columns. In

CτTL Pτ (D) RD [bin]

∈ [0.240, 0.796] ∈ [0.125, 0.254] [m2
τ − 5] GeV2 [5− 7] GeV2 [7− 9] GeV2 [9− (MB −MD)2] GeV2

CτTL ADFB
[0.178, 0.233] [0.673, 0.907] [1.135, 1.533] [1.989, 2.508]

∈ [-3.500, -3.052] ∈ [−0.451, −0.404]

Table C.1: Predictions for Pτ (D), ADFB and binwise values of RD for a range of CτTL for which RD is

experimentally satisfied within 1σ. The range of the WCs is given in the first column. The values in the

subsequent columns are only for the range of CτTL closest to the SM value of 0, viz. the positive range.
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Figure C.1: The left panel shows the dependence of RD with respect to the variation of the WCs CτTL and

the right panel shows the prediction for RD in four different bins of q2 from table C.1.

CτTL Pτ (D∗) RD∗ [bin]

∈ [-0.120, -0.058] ∈ [-0.481, -0.441] [m2
τ − 5] GeV2 [5− 7] GeV2 [7− 9] GeV2 [9− (MB −MD∗)

2] GeV2

CτTL AD
∗

FB
[0.113, 0.129] [0.368, 0.423] [0.531, 0.610] [0.620, 0.715]

∈ [0.709, 0.834] ∈ [−0.016, 0.034]

Table C.2: Predictions for Pτ (D∗), AD
∗

FB and binwise values of RD∗ for a range of CτTL for which RD∗ is

experimentally satisfied within 1σ. The corresponding range of the WCs is given in the first column. The

values in the subsequent columns are only for the range of CτTL closest to the SM value of 0, viz. the negative

range.

the left plot of Fig. C.2 we also show the dependence of R∗D as a function of CτTL. The right

plot shows the binwise R∗D graphically.

A quick look at the allowed ranges for CTL in the B → D (Table C.1) and the B → D∗

(Table C.2) cases shows that there is a region of overlap, around 0.7-0.8, which allows one to

explain both the anomalies simultaneously.
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Figure C.2: The left panel shows the dependence of RD∗ with respect to the variation of the WCs CτTL and

the right panel shows the prediction for RD∗ in four different bins of q2 from table C.2.

C.4 SU(3)C × SU(2)L × U(1)Y gauge invariance

In table C.3, we show how the WCs of the operators in this paper are related to the WCs of

the gauge invariant dimension 6 operators of [42]. We use the following set of notations:

• Greek letters µ, ν, · · · are used to denote Lorentz indices.

• SU(2) fundamental indices are denoted by a, b, · · · and I, J · · · will be used to denote

adjoint indices.

• To represent quark (lepton) flavors, we use i, j, k · · · (m,n · · · ).

• A tilde (e.g. C̃) is used to denote high energy Wilson coefficients.

• The notation for the operators is as given in [42].

• definition of the quark mixing matrices (f and m denote flavour and mass bases)

ufL = V u
L u

m
L

ufR = V u
Ru

m
R

dfL = V d
Ld

m
L (3.4.1)

dfR = V d
Rd

m
R

C.5 RG Running of Wilson Coefficients

In this section, we note the renormalisation group (RG) running of the couplings and the

Wilson coefficients. The QCD coupling above the mb scale is given by α
(5)
s and that above
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WCs in this work WCs in [42] Operator structure
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R ]3i C̃

ij,33
`edq [V u

L ]j2
(
¯̀1
3e3

) (
d̄iq

1
j

)
CcbτT

∗
= −CcbτT5

∗
=

1

2
[V d †
L ]3i C̃

(3)ij,33
`equ [V u

R ]j2

(
`
1
3σµνe3

)
ε12

(
q2
iσ

µνuj
)

Table C.3: Correspondence of our operators with those in reference [42]. The mixing of different lepton

flavours are ignored.

b

c

ν

ℓ

g

Figure C.3: Vertex Correction and self energy diagrams.

the mt scale is given by α
(6)
s . These are given by

α(5)
s (µ) =

αs(mb)

1 + β
(5)
0

αs(mb)
2π ln

(
µ
mb

) α(6)
s (µ) =

αs(mt)

1 + β
(6)
0

αs(mt)
2π ln

(
µ
mt

) (3.5.1)

where β
(nf )
0 = 11− 2nf

3 .

In order to calculate the running of the Wilson Coefficients to a high scale M , we need

to calculate the beta functions for the different operators - the scalar, vector and tensor

operators. The calculation is sketched below (for a good review on the subject, see [316])

Firstly, we need to consider the self-energy correction for the b or c quarks (left diagram in
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Fig. C.3). This is given by

Σ(p) = i

∫
d4k

(2π)4
(igsγ

µT a)
i(�p+�k +mb/c)

(p+ k)2 −m2
b/c

(
igsγ

νT b
) (−igµνδab)

k2

=
4

3

−αs4π �p+
αsmb/c

π︸ ︷︷ ︸
dropped

 1

ε
+ finite (3.5.2)

where p is the momentum of the incoming (or outgoing) quark.

From Feynman diagram on the right of Fig. C.3, we find that the vertex correction in d

dimensions (d = 4− 2ε) is given by

ΓHad(p, p′) = i

∫
ddk

(2π)d

(
igsγ

λT a
) i

�p+�k −mb
iF i

�p
′ +�k −mc

(
igsγ

σT b
)

(−iδabgλσ)
1

k2

= ig2
sC2(3)

∫
ddk

(2π)d
γλ (�p+�k +mb)F (�p

′ +�k +mc) γ
λ

k2
(
(p+ k)2 +m2

b

)
((p′ + k)2 +m2

c)
(3.5.3)

where C2(3) = 4
3 and F = 1, γµ, σµν for scalar, vector and tensor operators and p (p′) is the

on-shell momentum of the b (c) quark. A few things are noteworthy and enlisted below:

• As the denominator has mass dimension 6, divergence will appear only when the nu-

merator is a function of loop momentum with mass dimension greater than and equals

to two.

• The general form of the numerator is

N = γλ
(
��p
′ +�k +mb

)
F (�p+�k +mc) γ

λ

= γλ�kF�kγλ + finite (3.5.4)

– For scalar

N = 4k2 (3.5.5)

– For vector

N = γλ�kγµ�kγ
λ = −k2γλγµγ

λ + 2kµγλ�kγ
λ = 2k2γµ − 4kµ�k

Using ∫
d4kkµkνf(k2) =

1

4
gµν

∫
d4kk2f(k2)

we get

N = k2γµ (3.5.6)

– For tensor

N = γλ�kσµν�kγ
λ�k2 1

4
γλγρσµνγ

ργλ = 0 (3.5.7)

where we used the previous integral formula in the second step.
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Putting this back and using Feynman parameterisation and neglecting quark masses, we have

the following formula

ΓHad = ig2
sC2(3)NF

∫ 1

0
dζ

∫
ddk

(2π)d
1[

ζ (p+ k)2 + (1− ζ) (p′ + k)2
]2

= i
16π

3
αsNF

∫ 1

0
dζ

∫
dd`

(2π)d
1

(`2 + ∆)2

where ` = k + p+ (1− ζ)(p′ − p) and ∆ = ζ(1− ζ)(p′ − p)2

= i
16π

3
αsNF

∫ 1

0
dζ

i

(4π)2

(
2

ε
+ finite

)
= −αs

4π

8N
3
F 1

ε
+ finite (3.5.8)

where N = 4, 1, 0 for F = 1, γµ, σµν respectively. The bare effective Lagrangian to the lowest

power in derivatives is

Lbare
eff = iψ̄0�∂ψ0 + Cc̄0Fb0 ¯̀

0F ′ν`0 (3.5.9)

where ψ0 is any bare quark or lepton field, C is the Wilson coefficient to the six-dimensional

operator and F , F ′ are Dirac operators.

We redefine the quantities in the bare Lagrangian as

ψ0 =
√
Zψψ; C0 = µ2εZCC (3.5.10)

where ψ represents any quark field. The QCD contributions to the different quark fields will

be equal to each other. Then Eqn. 3.5.9 can then be written as

Lren
eff = iZψψ̄�∂ψ + C ZCZ2

ψµ
2ε c̄Fb ¯̀F ′ν`

= iψ̄�∂ψ + i(Zψ − 1)ψ̄�∂ψ + Cµ2ε c̄Fb ¯̀F ′ν` + C (ZCZ
2
ψ − 1) µ2ε c̄Fb ¯̀F ′ν`

Absorbing the divergences in Eqn. 3.5.2 and Eqn. 3.5.8 in the counter terms, we find that

Zψ = 1− 4

3

αs
4π

1

ε
and ZC = 1− 8

3

αs
4π

(N − 1)
1

ε
(3.5.11)

Using the RG equations, the β-function turns out to be

βC = −2εC − µ

ZC
C dZC
dµ

=
8

3

1

4π
(N − 1)C µ

ZC

dαs
dµ

1

ε

= −8

3

αs
4π

(N − 1)C (3.5.12)

Thus,

βSC = −8
αs
4π
C, βVC = 0, and βTC =

8

3

αs
4π
C (3.5.13)

where the superscripts S, V and T on the β denote scalar, vector and tensor couplings. The

running of the Wilson Coefficients can be found by solving the β-function equation given in

Eqn. 3.5.13. Solving, we get,

C̃(mb) =

[
αs(mt)

αs(mb)

] γ

2β
(5)
0

[
αs(M)

αs(mt)

] γ

2β
(6)
0 C̃(M) (3.5.14)
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Figure C.4: Plot of the running of the Scalar (left) and Tensor (right) Wilson Coefficients. The range of the

running is from mb to 2.5 TeV. As a demonstration, the range of the initial values used are the ones mentioned

in the text for B → D decay.

Thus, the scalar and tensor WCs are given by:

C̃S(M) =

[[
αs(mt)

αs(mb)

] γS

2β
(5)
0

[
αs(M)

αs(mt)

] γS

2β
(6)
0

]−1

C̃S(mb) (3.5.15)

C̃T (M) =

[[
αs(mt)

αs(mb)

] γT

2β
(5)
0

[
αs(M)

αs(mt)

] γT

2β
(6)
0

]−1

C̃T (mb) (3.5.16)

where

γS = −8 γT =
8

3
(3.5.17)

which are simply the boldfaced coefficients in Eqn. 3.5.13. This is plotted in Fig. C.4.



Appendix D
The Sgoldstino as a 750 GeV candidate

D.1 Calculation of the partial decay widths

In this appendix we will calculate the partial decay rate of φ and a to two vector bosons.

D.1.1 φ→ γ γ

We start with the decay φ→ γ γ which arises from the following term in the Lagrangian,

L ⊂ 1

Λ
φFµνF

µν . (4.1.1)

This yields the following Feynman rule,

[i] [2!] [− 2

Λ
(p1 · p2 gµν − p1µp2ν)] (4.1.2)

Thus, the matrix element is given by,

iM = − 4

Λ
i (p1 · p2gµν − p1µp2ν) ε∗ν(p1)ε∗µ(p2) (4.1.3)

This gives,

|M|2 =
16

Λ2
(p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) ε∗ν(p1)ε∗µ(p2)εβ(p1)εα(p2)

(4.1.4)

201
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Summing over the polarizations, i.e.,∑
εµ(p)ε∗ν(p) = −gµν

we get,

|M|2 =
16

Λ2
(p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) gαµgβν

=
16

Λ2

(
p2

1 p
2
2 + 4(p1 · p2)2 − 2(p1 · p2)2

)
=

32

Λ2
(p1 · p2)2

=
32

Λ2

(
m2
φ

2

)2

=
8m4

φ

Λ2
(4.1.5)

Hence,

Γ(φ→ γ γ) =
1

Λ2

[
1

2mφ

] [
1

8π

] [
8m4

φ

] [1

2

]
. (4.1.6)

The factor of 1/2 in the end is due to the presence of two identical particles in the final state.

D.1.2 a→ γ γ

The decay a→ γ γ arises from the Lagrangian

L ⊂ 1

Λ
aFµνF̃

µν =
1

2Λ
aFµνFαβ ε

µναβ (4.1.7)

The Feynman rule for this vertex is given by

p

a

p1

p2

ν

σ

[i] [2!] [− 2

Λ
εµνρσp1µp2ρ] (4.1.8)

The matrix element and its square are given by,

iM = − 4

Λ
i εµνρσp1µp2ρε

∗
ν(p1)ε∗σ(p2)

|M|2 =
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γε

∗
ν(p1)ε∗σ(p2)εβ(p1)εδ(p2) (4.1.9)
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Summing over the polarisations we get,∑
|M|2 =

16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γgνβgσδ

=
16

Λ2
εµρσβ εβαγσ p1µp1αp2ρp2γgνβgσδ

=
32

Λ2
(−gµαgργ + gµγgρα) p1µp1αp2ρp2ν

=
32

Λ2
(p1 · p2)2

=
32

Λ2

(
m2
a

2

)2

=
8m4

a

Λ2
(4.1.10)

Hence, finally we get

Γ(a→ γ γ) =
1

Λ2

[
1

2ma

] [
1

8π

] [
8m4

a

] [1

2

]
. (4.1.11)

D.1.3 φ→ Z Z

The relevant part of the Lagrangian is

L ⊂ 1

Λ
φZµνZ

µν . (4.1.12)

The Feynman rule is same as the decay φ→ γγ (Eq. 4.1.2).

The squared matrix element is given by,

|M|2 =
16

Λ2
(p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) ε∗ν(p1)ε∗µ(p2)εβ(p1)εα(p2)

(4.1.13)

Summation over the polarization vectors,∑
εµ(p)ε∗ν(p) = −gµν +

pµpν

m2
Z

we get,

|M|2 = 16 (p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β)

(
−gµα +

pµ2p
α
2

m2
Z

)(
−gνβ +

pν1p
β
1

m2
Z

)
= 16 (p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) (−gµα)

(
−gβν

)
= 16

(
2(p1.p2)2 + p2

1p
2
2

)
= 8m4

φ

(
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

)
(4.1.14)
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Γ(φ→ Z Z) =

[
1

2mφ

][
λ1/2(1,m2

Z/m
2
φ,m

2
Z/m

2
φ)

8π

]
|M|2

[
1

2

]
(4.1.15)

(4.1.16)

where,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (4.1.17)

Γ(φ→ Z Z) =
1

Λ2

[
1

2mφ

] 1

8π

(
1− 4

m2
Z

m2
φ

)1/2
 |M|2 [1

2

]
(4.1.18)

=
1

Λ2

[
1

2mφ

] 1

8π

(
1− 4m2

Z

m2
φ

)1/2


×
[

8m4
φ

(
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

)][
1

2

]
(4.1.19)

D.1.4 a→ Z Z

The relevant part of the Lagrangian is

L ⊂ 1

Λ
aZµνZ̃

µν . (4.1.20)

The Feynman rule is same as the decay a→ γγ (Eq. 4.1.8).

The squared matrix element is given by,

|M|2 =
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γε

∗
ν(p1)εβ(p1)ε∗σ(p2)εδ(p2) (4.1.21)

Summing over the polarisations, we have,

|M|2 =
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γ

(
−gνβ +

p1νp1β

M2
Z

)(
−gσδ +

p2σp2δ

M2
Z

)
(4.1.22)

=
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γgνβgσδ (4.1.23)

where we have used the fact that the second terms in each of the parenthesis vanish due to

the anstisymmetry of the Levi-civita symbols. We thus have,

|M|2 =
16

Λ2
εµρσβ εβαγσ p1µp1αp2ρp2γ (4.1.24)

Using the relation,

εµρσβ εβαγσ = 2 (−gµαgργ + gµγgρα) (4.1.25)
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we get,

|M|2 =
32

Λ2
(−gµαgργ + gµγgρα) p1µp1αp2ρp2γ (4.1.26)

=
32

Λ2

(
−p2

1p
2
2 + (p1 · p2)2

)
(4.1.27)

=
32

Λ2

(
−m4

Z +
(m2

a − 2m2
Z)2

4

)
(4.1.28)

=
8m4

a

Λ2

(
1− 4m2

Z

m2
a

)
(4.1.29)

Γ(a→ Z Z) =

[
1

2ma

][
λ1/2(1,m2

Z/m
2
a,m

2
Z/m

2
a)

8π

]
|M|2

[
1

2

]
(4.1.30)

=
1

Λ2

[
1

2ma

][
1

8π

(
1− 4

m2
Z

m2
a

)1/2
]
|M|2

[
1

2

]
(4.1.31)

=
1

Λ2

[
1

2ma

][
1

8π

(
1− 4m2

Z

m2
a

)1/2
]

×
[
8m4

a

(
1− 4

m2
Z

m2
a

)][
1

2

]
(4.1.32)

D.2 Calculation of AiiLHC energy

In this appendix we will calculate the quantities AiiLHC energy defined in section 6.2.2 for two

LHC energies 8 TeV and 13 TeV, and for the initial states {gg}, {ūu} and {d̄d}.

D.2.1 Production by gluon fusion

The partonic cross section for the process g(p) g(k)→ φ(q) is given by

σ̂(g(p) g(k)→ φ(q)) (4.2.1)

=
1

22

1

82

1

2Ep 2Ek

1

|vp − vk|

∫
d3q

(2π)3

1

2Eq
|M|2 (2π)4δ(4)(p+ k − q) (4.2.2)

⇒ using the identity

∫
dq0 δ(q2 −m2

φ) Θ(q0) =
1

2Eq
, we get (4.2.3)

=
1

22

1

82

2π

2Ep 2Ek

1

|vp − vk|

∫
d4q δ(q2 −m2

φ) Θ(q0) |M|2 δ(4)(p+ k − q) (4.2.4)

=
1

22

1

82

2π

2Ep 2Ek

1

|vp − vk|
|M|2 δ((p+ k)2 −m2

φ) (4.2.5)

=
1

22

1

82

2π

x1x2S

1

2
|M|2 δ(x1x2S −m2

φ) (4.2.6)

=
π

256

1

x1x2S
|M|2 δ(x1x2S −m2

φ) (4.2.7)

where the following definitions have been used,

p = x1P1, k = x2P2, P1 =

√
S

2
(1, 0, 0, 1) and P2 =

√
S

2
(1, 0, 0,−1).
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Here, P1 and P2 are the 4-momenta of the two protons and
√
S is their centre-of-mass energy.

We now proceed to compute the hadronic cross section which is given by

σ√
S

=

∫ 1

0
dx1

∫ 1

0
dx2 fg/p(x1)fg/p(x2) σ̂(x1, x2) (4.2.8)

⇒ using the change of variables {x1, x2} → {x = x1, z = x1x2},we get

=

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x) σ̂(z) (4.2.9)

=

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x)× π

256

1

z S
|M|2 δ(zS −m2

φ) (4.2.10)

We now use the expression for Γφ→g g (following appendix D.1),

Γ(φ→ g g) =

[
1

2mφ

] [
1

8π

]
|M|2

[
1

2

]
, (4.2.11)

to get

σ√
S

=
π

256

32πmφ Γφ→g g
S

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x)

1

z
δ(zS −m2

φ) (4.2.12)

=
π

256

32πmφ Γφ→g g
S2

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x)

1

z
δ(z −

m2
φ

S
) (4.2.13)

=
π

256

32πmφ Γφ→g g
S2

∫ 1

m2
φ
S

dx

x
fg/p(x)fg/p(m

2
φ/Sx)

S

m2
φ

(4.2.14)

=
π2

8

Γφ→g g
mφS

∫ 1

m2
φ
S

dx

x
fg/p(x)fg/p(m

2
φ/Sx) (4.2.15)

Hence,

AggLHC energy =
π2

8

1

mφS

∫ 1

m2
φ
S

dx

x
fg/p(x)fg/p(m

2
φ/Sx) (4.2.16)

Using the MSTW 2008 LO parton distribution functions (PDF) we get,

Agg13 TeV =
5.44 pb

GeV
(4.2.17)

Agg8 TeV =
1.15 pb

GeV
. (4.2.18)

D.2.2 Production by quarks

The cross section of the process q̄ q → φ can be calculated in the same way as above, except

for the following changes,

• The colour factor is different, so we must have 1/32 instead of 1/82 as in the case for

gluons
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• The symmetry factor (1/2) for identical particle used in Eq. (4.2.11) no longer applies

• The PDF are different - we now have quark PDF instead of the gluon PDF.

Applying the above changes, we finally get,

σ√S =
4π2

9

Γφ→qq̄
mφS

∫ 1

m2
φ
S

dx

x

(
fq/p(x)fq̄/p(m

2
φ/Sx) + fq̄/p(x)fq/p(m

2
φ/Sx)

)
Hence,

Aqq̄LHC energy =
4π2

9

1

mφS

∫ 1

m2
φ
S

dx

x

(
fq/p(x)fq̄/p(m

2
φ/Sx) + fq̄/p(x)fq/p(m

2
φ/Sx)

)
Using again the MSTW 2008 LO parton distribution functions (PDF) we get,

Aūu13 ≡ A|ūu13 TeV LHC =
2.94 pb

GeV

Ad̄d13 ≡ A|d̄d13 TeV LHC =
1.73 pb

GeV

Ac̄c13 ≡ A|c̄c13 TeV LHC =
0.11 pb

GeV

As̄s13 ≡ A|s̄s13 TeV LHC =
0.21 pb

GeV

Ab̄b13 ≡ A|b̄b13 TeV LHC =
0.05 pb

GeV

Aūu8 ≡ A|ūu8 TeV LHC =
1.2 pb

GeV
(4.2.19)

Ad̄d8 ≡ A|d̄d8 TeV LHC =
0.66 pb

GeV
(4.2.20)

Ac̄c8 ≡ A|c̄c8 TeV LHC =
0.03 pb

GeV
(4.2.21)

As̄s8 ≡ A|s̄s8 TeV LHC =
0.05 pb

GeV
(4.2.22)

Ab̄b8 ≡ A|b̄b8 TeV LHC =
0.01 pb

GeV
(4.2.23)

D.3 Calculation of the sgoldstino mass

In this appendix, we want to compute the 1-loop contribution to the sgoldstino mass from

the term,

L ⊂
∫
d2θ λXΦ1Φ2 + h.c. (4.3.1)

We will ignore the gauge indices of Φ1 and Φ2 for the time being. The following notation will

be used for the chiral superfields:

X = S +
√

2 θ ψx + θθ Fx (4.3.2)

Φ1 = φ1 +
√

2 θ ξ1 + θθ F1 (4.3.3)

Φ2 = φ2 +
√

2 θ ξ2 + θθ F2 (4.3.4)

A Dirac fermion Ψ is constructed out of the two Weyl fermions ξ1 and ξ2,

Ψ =

(
ξ1α

ξ†α̇2

)
(4.3.5)

whose Dirac mass will be denoted by mΨ = λ〈S〉. The scalar mass eigenstates will be denoted

by φ+ and φ− with their mass squared given by m2
± = m2

Ψ ± λ〈Fx〉.
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D.3.1 Diagrammatic calculation

The relevant vertex factors are given by,

S Ψ̄ Ψ : −λPL (4.3.6)

S∗S φ∗+φ+ : −λ2 (4.3.7)

S∗S φ∗−φ− : −λ2 (4.3.8)

S φ∗+φ+ : −λmΨ (4.3.9)

S φ∗−φ− : −λmΨ (4.3.10)

The Feynman rules can be obtained by multiplying the above vertex factors by i and appro-

priate symmetry factors.

The relevant diagrams are,

S S

Ψ

q

Ψ

SS

q

φ+/φ−

S S

φ+/φ−

q

φ+/φ−

Figure D.1: One loop contributions to the sgoldstino mass from the messengers.

We will now compute the diagrams one-by-one.

Fermion loop

−iΠ(p2 = 0) = −(−iλ)(−iλ)

∫
d4q

(2π)4
Tr

[
PL

i

6q −mΨ
PR

i

6q −mΨ

]
= −2λ2

∫
d4q

(2π)4

q2(
q2 −m2

Ψ

)2
= −2λ2

∫
d4q

2π4

[
1

q2 −m2
Ψ

+
m2

Ψ(
q2 −m2

Ψ

)2
]

(4.3.11)

First scalar loop

−iΠ(p2 = 0) = (−i λ2)
∑
φ=φ±

∫
d4q

(2π)4

i

q2 −m2
φ

= λ2

∫
d4q

(2π)4

[
1

q2 −m2
+

+
1

q2 −m2
−

]
(4.3.12)
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Second scalar loop

−iΠ(p2 = 0) = (−iλmΨ)(−iλmΨ)
∑
φ=φ±

∫
d4q

(2π)4

i2

(q2 −m2
φ)2

(4.3.13)

= λ2m2
Ψ

∫
d4q

(2π)4

[
1

(q2 −m2
+)2

+
1

(q2 −m2
−)2

]
(4.3.14)

Note that the sum of the diagrams goes to zero in the limit of equal masses for the scalars

and fermions, i.e. when SUSY is unbroken.

We need to evaluate integrals of two the forms:

A0(m) =

∫
dDq

(2π)D
1

q2 −m2
; B0(0,m,m) =

∫
dDq

(2π)D
1

(q2 −m2)2 (4.3.15)

They are given by,

A0(m) =
i

16π2
m2

[
1

ε̂
+ 1− Ln

m2

µ2

]
(4.3.16)

B0(0,m,m) =
A0(m)

m2
− i

16π2
(4.3.17)

where,

1

ε̂
=

2

4−D − γE + Ln(4π), γE being the Euler constant. (4.3.18)

Putting all loop contributions in order, we have

−iΠ(p2 = 0) = −2λ2

∫
d4q

(2π)4

[
1

q2 −m2
Ψ

− 1

2

1

q2 −m2
+

− 1

2

1

q2 −m2
−

(4.3.19)

+m2
Ψ

1(
q2 −m2

Ψ

)2 − m2
Ψ

2

1

(q2 −m2
+)2
− m2

Ψ

2

1

(q2 −m2
−)2

]

= −2λ2 i

16π2

[
m2

Ψ

(
1

ε̂
+ 1− Ln

m2
Ψ

µ2

)
− m2

+

2

(
1

ε̂
+ 1− Ln

m2
+

µ2

)
− m2

−
2

(
1

ε̂
+ 1− Ln

m2
−
µ2

)
+m2

Ψ

(
1

ε̂
− Ln

m2
Ψ

µ2

)
− m2

Ψ

2

(
1

ε̂
− Ln

m2
+

µ2

)
− m2

Ψ

2

(
1

ε̂
− Ln

m2
−
µ2

)]
(4.3.20)

= −2λ2 i

16π2

[
m2

+

2
Ln
m2

+

µ2
+
m2
−

2
Ln
m2
−
µ2
−m2

ΨLn
m2

Ψ

µ2

+
m2

Ψ

2
Ln
m2

+

µ2
+
m2

Ψ

2
Ln
m2
−
µ2
−m2

ΨLn
m2

Ψ

µ2

]
(4.3.21)

= −2λ2 i

16π2

[
m2

ΨLn
m+m−
m2

Ψ

+ λ〈Fx〉Ln
m+

m−
+m2

ΨLn
m+m−
m2

Ψ

]
(4.3.22)
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Hence, assuming Φ1 (Φ2) to be a 5 (5̄) of SU(5), and for Nm pairs of {Φ1,Φ2}, we have,

Π(p2 = 0) = 5Nm
2λ2

16π2

[
2m2

ΨLn
m+m−
m2

Ψ

+ λ〈Fx〉Ln
m+

m−

]
(4.3.23)

= 5Nm
λ2

16π2
m2

Ψ

[
2Ln

m2
+m

2
−

m4
Ψ

+
λ〈Fx〉
m2

Ψ

Ln
m2

+

m2
−

]
(4.3.24)

=
(

4π
√

5Nm

)2
(

λ

16π2

)2 λ2〈Fx〉2
m2

Ψ

G

(
λ〈Fx〉
m2

Ψ

)
(4.3.25)

where the function G(x) is given by,

G(x) =
1

x2
[(2 + x)Log(1 + x) + (2− x)Log(1− x)] . (4.3.26)

In terms of gaugino mass, this can be written as,

Π(p2 = 0) = −
(
λ

g2
a

)2 (
4π

√
5

Nm
F (x)

)2

m2
a (4.3.27)

The behaviour of the function F (x) ≡
√
−G(x)/g(x)2 is shown in Fig. D.2.

��� ��� ��� ��� ��� ���
���

���

���
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(
�
)

Figure D.2: The behaviour of F (x) as a function of x.

D.3.2 Coleman-Weinberg potential

The Dirac mass for the fermions as a function of S is given by,

mF (S) = λS (4.3.28)
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and the scalar mass matrix is

m̃2(S) =

(
λ2S∗S −λ〈Fx〉
−λ〈Fx〉 λ2S∗S

)
, (4.3.29)

with the eigenvalues,

m2
±(S∗S) = λ2S∗S ± λ〈Fx〉 . (4.3.30)

Using the standard formula for the Coleman-Weinberg potential [60],

VCW =
1

64π2
STr

(
M4

[
log

M2

Λ2
cut−off

− 3

2

])
, (4.3.31)

we get,

VCW =
2

64π2

[ [
m2

+(S,S∗)
]2

Ln
[
m2

+(S,S∗)
]

+
[
m2
−(S,S∗)

]2
Ln
[
m2
−(S,S∗)

]
− 2 [mF (S)∗mF (S)]2 Ln [mF (S)∗mF (S)]

− λ2〈Fx〉2
(

log Λ2
cut−off +

3

2

)]
(4.3.32)

After replacing S → 〈S〉+ S, we get the coefficient of S∗S to be,

Π(p2 = 0) =
2λ2

16π2

[
2m2

ΨLn
m+m−
m2

Ψ

+ λ〈Fx〉Ln
m+

m−

]
(4.3.33)

D.3.3 Tree level sgoldstino mass

Here we give an example of a model where the sgoldstino gets tree level mass at the time

of SUSY breaking [442]. The mode is just an extension of the Affleck-Dine-Seiberg model

(ADS) or 3-2 model of [439–441]. The field content of the ADS model is

SU(3) SU(2)

Q 3 2

U c 3 1

Dc 3 1

L 1 2

,

and the superpotential is given by,

W3−2 = Wcl +Wnp (4.3.34)

where, (4.3.35)

Wcl = hQaAD
c
aL

A , (4.3.36)

Wnp =
Λ7

3

det(QQc)
, (4.3.37)

where, Qc is defined as Qc ≡ (U c, Dc). In this model h << g̃2, g̃3 which are the gauge

couplings for the groups SU(2) and SU(3) respectively. Thus, F -term contribution to the



212 APPENDIX D. THE SGOLDSTINO AS A 750 GEV CANDIDATE

scalar potential is subdominant compared to the D-term contribution. The minimum of the

potential can be obtained perturbatively along the D-flat directions,

Q =

 a 0

0 b

0 0

M , Qc =

 a 0

0 b

0 0

M , L =

( √
a2 − b2

0

)
M (4.3.38)

where,

M ≡ Λ3

h1/7
� Λ3 , (4.3.39)

and a ≈ 1.164, b ≈ 1.132.

Note that L1 (the component of L getting a non-vanishing VEV) is the sgoldstino here. The

SU(2) D-term equation of motion gives,

Da
2 = g̃2

∑
f

f †T a2 f (4.3.40)

where T a2 = σa/2, σa being the Pauli matrices. The Eq. 4.3.40 will get contributions from all

the fields carrying SU(2) charge i.e., Q and L,

Da = g̃2

(
L†
σa

2
L+

∑
r

Qr†i
σa

2
Qri

)
(4.3.41)

where the index r is the SU(3) index. This gives, for the scalar potential,

V =
1

2
DaDa (4.3.42)

=
g̃2

2

8

(
L†
σa

2
L+

∑
r

Qr†i
σa

2
Qri

)(
L†
σa
2
L+

∑
r

Qr†i
σa
2
Qri

)
. (4.3.43)

Noting that only the third Pauli matrix contributes, we have,

V =
g̃2

2

8

[(
L†1L1

)2
+ 2(L†1L1)(Qr†1 Q

r
1 −Qr†2 Qr2) + · · ·

]
, (4.3.44)

where the ellipses denote terms unimportant for sgoldstino mass. This generates a mass term

for L1 which is given by,

M2
L1

=
g̃2

2

8

(
4(a2 − b2)M2 + 2(a2 − b2)M2

)
(4.3.45)

=
3g̃2

2

4
(a2 − b2)M2 . (4.3.46)

This is, in general, much larger than the gaugino mass.

D.4 Calculation of the gaugino mass

The relevant part of the Lagrangian is given by

L ⊂
∫
d4θΦ†1e

2gTaV aΦ1 +

∫
d4θΦ†2e

2gTaV aΦ2 +

(∫
d2θ yXΦ1Φ2 + h.c.

)
(4.4.1)
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where,

V a = θσ̄µθ̄Aaµ + iθ2θ̄λ†a − iθθ̄2λa +
1

2
θ2θ̄2Da (4.4.2)

A Majorana fermion Ψλ is constructed out of the (Weyl) gaugino field λa,

Ψλ =

(
λα

λ†α̇

)
(4.4.3)

q

Ψ

φ+/φ−

Ψλ Ψλ

Figure D.3: One-loop contribution to the gaugino mass.

The relevant vertex factors are given by,

α ΨξΨ
A
λ : −igTA (4.4.4)

β ΨξΨ
A
λ : +igγ5T

A (4.4.5)

The gaugino mass is generated via the one loop diagrams shown in Fig. D.3.

Loop with the scalar α

− i
2
m

(α)AB
Ψλ

= Tr[TATB]

∫
d4q

(2π)4
(−g)

−i
6q +mΨ

(+g)
i

q2 −m2
α

(4.4.6)

= −g2 Tr[TATB]

∫
d4q

(2π)4

6q −mΨ

q2 −m2
Ψ

1

q2 −m2
α

(4.4.7)

= g2mΨ Tr[TATB]

∫
d4q

(2π)4

1

q2 −m2
Ψ

1

q2 −m2
α

(4.4.8)

= g2mΨ Tr[TATB]B0(0,mΨ,mα) (4.4.9)

Loop with the scalar β

− i
2
m

(β)AB
Ψλ

= Tr[TATB]

∫
d4q

(2π)4
(−gγ5)

−i
6q +mΨ

(−gγ5)
i

q2 −m2
β

(4.4.10)

= g2Tr[TATB]

∫
d4q

(2π)4
γ5
6q −mΨ

q2 −m2
Ψ

γ5
1

q2 −m2
β

(4.4.11)

= g2Tr[TATB]

∫
d4q

(2π)4

(− 6q −mΨ)

q2 −m2
Ψ

1

q2 −m2
β

(4.4.12)

= −g2mΨ Tr[TATB]B0(0,mΨ,mβ) (4.4.13)
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where, the B0 function is given by,

B0(0,m1,m2) =
A0(m1)−A0(m2)

m2
1 −m2

2

(4.4.14)

− i
2
mAB

Ψλ
= g2mΨ Tr[TATB] (B0(0,mΨ,mα)−B0(0,mΨ,mβ)) (4.4.15)

= −ig
2mΨ

16π2
Tr[TATB]

(1 + x) ln (1 + x) + (1− x) ln (1− x)

x
(4.4.16)

= −i g2

16π2
Tr[TATB]

〈Fx〉
mΨ

(1 + x) ln (1 + x) + (1− x) ln (1− x)

x2
(4.4.17)

mAB
Ψλ

=
g2

16π2
2Tr[TATB]

〈Fx〉
mΨ

g(x) (4.4.18)

mAB
Ψλ

=
g2

16π2

〈Fx〉
mΨ

g(x) δAB . (4.4.19)
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