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Preface

Welcome to my journey into the field of particle physics: a field which is at once rich, dense,

puzzling, and yet amazing. Our understanding of particles and their interactions has evolved

over several years and has resulted into a phenomenological model viz., the Standard Model,

which till date explains the interactions between particles very well. However there are strong

motivations — the choice of the gauge group, number of fermionic generations, stability of the

Higgs mass, hierarchy between fermion masses, neutrinos masses and mixings, particle nature

of dark matter, strong CP problem — for us to believe that physics beyond the Standard

Model must exist.

Given the lack of experimental evidence, however, almost all new physics models (with a

few notable exceptions) can be made consistent with the present data by tuning the free

parameters suitably, making the overall search strategy haphazard and difficult to steer us-

ing objective criteria. In such a scenario, simple extensions of the Standard Model and

effective field theories are currently favoured as a classic bottom-up approach when elegant

UV-complete theories seem to falter. In fact, data can provide direct or indirect hints for the

presence of new physics, depending upon its nature. For example, while the lighter parti-

cles may be observed directly as resonances in the invariant mass spectrum, such a method

would not work for heavier particles due to energy limitations. One would then have to rely

upon indirect clues where the presence of such a heavier resonance could lead to deviations

in well-measured/predictable observables.

In this thesis work, a similar approach has been adapted, wherein we have considered simple

bosonic extensions of the Standard Model to probe and predict direct and indirect signals –

or hints – in the data. A multitude of ‘clean’ final states have been analyzed, ranging from

γγ to di-muons to Wγ, where leptonic decays of W are considered, for different new physics

scenarios. The interesting regions/channels, which could be probed in future runs of LHC

have been identified. The reader is invited to share in these explorations, and ultimately, to

share in the hope that some of these studies may eventually prove useful when and if new

physics is discovered.
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If you haven’t found it yet, keep looking— Steve Jobs



So here I am, a final year PhD student hoping to decipher the laws of
nature. So did I succeed in my venture? The answer is perhaps no, but

hopefully I became wiser!
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Chapter 1

The Standard Way

1.1 Introduction

In this chapter, we discuss the central ideas which underlie the Standard Model (SM) of particle

interactions. The theoretical and experimental advancements in the field of particle physics

over the past century or so have led to this successful phenomenological model which describes

the interactions among the fundamental particles in a systematic framework. The quest

for such a systematic description began around the middle of 20th century when many new

particles were discovered with additional interactions which were different from the well-known

electromagnetic and gravitational forces. Subsequently, four types of particle interactions were

identified viz. electromagnetic, gravitational, weak and strong. Historically, the names weak

and strong were given based on their observed interaction strengths, but now that we now

know that these strengths are scale/energy dependent in a quantum theory, the names are to

be understood just as labels.

The SM is actually a combination of the Glashow-Salam-Weinberg (GSW) theory of elec-

troweak (EW) interactions [1–3] and quantum chromodynamics (QCD) which describes strong

interactions. Around the EW scale i.e. O(100 GeV), the electromagnetic and weak forces

unify and can be described within a single framework, which is the GSW model. The gravita-

tional interaction lies outside the domain of the SM as it is too feeble to matter in laboratory

experiments. It is dominant only near the Planck scale, i.e. O(1019 GeV), so that we may

regard the SM as a low-energy effective field theory of a full ultra-violet complete theory

describing the gravitational interactions as well.

The matter content of the SM comprises of three classes of elementary particles

1. spin-1 gauge bosons,

2. spin-1
2 -fermions, and

3. a scalar Higgs boson.

There are 12 gauge bosons, viz. 8 gluons g, W± and Z bosons and the photon γ. The

fermions are further classified as quarks (which participate in both strong and electroweak
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interactions) and leptons (which participate only in the electroweak interactions). There exist

a total of 6 quarks: up (u), down (d), charmed (c), strange (s), top (t) and bottom (b), and

6 leptons: electron (e), electron-neutrino (νe), muon (µ), muon-neutrino (νµ), tau (τ) and

tau-neutrino (ντ ) which are grouped into three generations each, as follows.(
νe (1955)

e (1896)

) (
νµ (1962)

µ (1937)

) (
ντ (2001)

τ (1975)

)
(
u (1969)

d (1969)

) (
c (1974)

s (1969)

) (
t (1994)

b (1977)

)
where the date of experimental discovery has been given in parentheses next to each fermion.

The discovery of the SM as a consistent theory of particle interactions has been a long journey

filled with many direct and indirect evidences. A brief timeline of ideas is given below [4].

1927 Foch, London and Weyl propose a gauge theory of electromagnetism.

1932 Heisenberg discovers isospin and constructs a theory of the strong interaction.

1934 Fermi’s theory of beta decay explains the weak interaction.

1935 Yukawa’s theory of the strong interaction predicts pions.

1947 Schwinger, Feynman, Tomonaga and Dyson create quantum electrodynamics (QED).

1953 Yang and Mills introduce nonAbelian gauge theory.

1956 Schwinger introduces the intermediate vector boson hypothesis in weak interactions.

1957 Parity violation is discovered in the weak interactions by Yang and Lee. The V-A

theory is suggested by Marshak & Sudarshan, Feynman & Gell-Mann and Sakurai.

1960 Nambu and Jona-Lasinio suggest spontaneous symmetry-breaking in elementary

particle theory.

1961 Glashow constructs the first electroweak theory with massless particles and Gell-

Mann constructs the eight-fold way .

1963 Cabibbo introduces the idea of flavour-mixing in u, d and s quarks.

1964 Englert & Brout, Higgs and Guralnik, Hagen & Kibble discover the Higgs mecha-

nism. Gell-Mann and Zweig propose the quark model.

1966 Kibble constructs the Higgs mechanism in nonAbelian gauge theories.

1967 Weinberg publishes the Standard Model for the lepton sector. Similar ideas are

independently proposed by Salam.

1971 t’Hooft prove that the Standard Model is renormalisable.

1973 Gell-Mann and Fritzsch & Leutwyler develop quantum chromodynamics (QCD) as

a gauge theory.

1973 Kobayashi & Maskawa predict the third generation and explain the origin of CP -

violation.

1973 Politzer and Gross & Wilczek discover asymptotic freedom of QCD.

By the mid-1970s, the Standard Model as we know it was more or less complete as a theory,

though some of the particles were discovered later, such as the W± in 1982, the Z0 in 1983,

the t quark in 1994, the ντ in 2001 and, finally, the Higgs boson H in 2012. The interplay

between direct and indirect evidences, and theoretical advancements have played a crucial

role in defining the standard of particle interactions. With the SM turning out to be the

underlying theory of particle physics, it is to be seen whether this is an ending or a mere

beginning towards new expeditions.
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1.2 Foundations of the Standard Model

The Standard Model of particle physics is built on the ideas of gauge invariance and sponta-

neous symmetry breaking [5–8] . The idea of gauge invariance was first discovered in classical

theory of electrodynamics, when it was realized that the different kinds of the vector potentials

Aµ, related by

Aµ → Aµ + ∂µα , (1.2.1)

could give rise to the same physical electric and magnetic fields. The above transformation on

Aµ (vector/gauge field) is known as the gauge transformation. Mathematically this amounts

to saying that the action

S =

∫
d4x L = −1

4

∫
d4x FµνF

µν = −1

4

∫
d4x (∂µAν − ∂νAµ)2 . (1.2.2)

stays invariant under the gauge transformation in equation 1.2.1.

In quantum electrodynamics (QED), the excitation of the Aµ field corresponds to photons.

An AµA
µ term is forbidden in equation 1.2.2 due to gauge invariance. Therefore, zero mass

of photons can be understood in terms of invariance of the Lagrangian under the gauge

transformations.

Now we consider the scenario where a spin-1
2 field (ψ) interacts with the photon field. The

Lagrangian for such a system is given as

L = −1

4
FµνF

µν + iψ̄ (∂µ − i Aµ)ψ . (1.2.3)

It can be seen that the Lagrangian is invariant under the global phase rotations of the field

ψ i.e.

ψ(x)→ eiαψ(x) , (1.2.4)

but is not invariant under the gauge transformation of the Aµ field as given in equation 1.2.1.

Since photons are observed to be massless, the theory must respect gauge invariance.

Note that if we make the transformations in equation 1.2.4 local, then for the combined

transformations

Aµ(x)→ Aµ(x) + ∂µα(x) , ψ(x)→ eiα(x)ψ(x) , (1.2.5)

the Lagrangian in equation 1.2.3 stays invariant. The continuous symmetry transformations

in equation 1.2.5 can be mapped to the U(1) Lie group, where the field ψ transforms in the

fundamental representation and Aµ transforms in the adjoint representation. The quantum

field theory of electrodynamics hence corresponds to a U(1) gauge theory. As an aside, note

that the symmetry operations in equation 1.2.5 with constant α are referred to as the global

symmetry transformations and correspond to a conserved current, Jµ and conserved charge

(Nöther’s theorem).

While a successful field theory for QED existed, attempts made to formulate a coherent

quantum theory for weak interactions were less successful. The first theory was given by Fermi,
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where the interactions were written as four-fermion operators with the operator structure same

as QED. While it fitted some of the low energy data, there were issues with unitarity and

renormalisation as the theory was really an effective theory in terms of higher dimensional

operators (dim> 4) and it failed at high energies. Since the weak interactions were observed to

be short-ranged unlike the electromagnetic interactions, it was thought that a massive gauge

particle could in principle serve as a consistent theoretical explanation at high energies. This

was the idea implemented in Intermediate Vector Boson theory, whose Lagrangian is

Lweak = −1

4
WµνW

µν + iψ̄γµ∂µψ + iψ̄′γµ∂µψ
′ + ψ̄γµψ′Wµ +M2

WW
µWµ + h.c. . (1.2.6)

The weak interactions at that time were observed only in the charged current processes before

1970’s, as a result only massive charged gauge bosons viz., W± were postulated 1. Although

the Intermediate Vector Boson theory apparently looked renormalizable due to absence of

higher-dimensional operators, it was actually non-renormalizable at higher energies. This can

be understood by considering the W propagator,

1

q2 −M2
W

(
−gµν +

qµqµ
M2
W

)
. (1.2.7)

This scales as 1/q2 at low energies but becomes constant at higher energies taking us back

to the same situation as the Fermi theory. The naive counting of divergences hence breaks

at higher q’s. On the other hand, if the W propagator was coupled to a conserved current

Jµ, such that qµJ
µ = 0, then a scaling as 1/q2 could be achieved. However, the mass term

of weak boson W in the equation 1.2.6 explicitly breaks gauge invariance and MW cannot be

set to zero because the weak interaction is short-range. The solution to write a consistent

theory for weak interactions came with the idea of spontaneous symmetry breaking (SSB) of

the gauge symmetries.

The concept of spontaneous breaking of the symmetry is quite different from that of explicit

breaking. While the symmetry of the Lagrangian is completely broken at all energy scales

for the latter case, in the former case the symmetry is broken only by the ground state of the

system but the Lagrangian still preserves the symmetry. It just gets hidden due to expansion

of the fields around the true minimum. If the symmetry transformation is described by the

unitary operator U , then SSB implies

L = ULU † , U |0〉 6= |0〉 . (1.2.8)

Note that due to Lorentz invariance, only scalar fields can aid in the phenomena of sponta-

neous symmetry breaking.

To explain the idea of SSB in detail, we consider a simplistic example of scalar field φ =
ρ+ iη√

2
theory, which is invariant under U(1) global transformations2.

L = ∂µφ
†∂µφ+m2φ†φ− λ(φ†φ)2 . (1.2.9)

1Here the fermions ψ and ψ′ have a relative charge difference of ±1.
2We will come to gauge symmetries shortly, after analyzing the repercussions of breaking a global symmetries

spontaneously.
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Figure 1.1: The scalar potential of the scalar field φ. Expansion of the field around one of

its true minima breaks the symmetry spontaneously.

In above Lagrangian, note that the complex scalar field φ has an opposite mass-squared terms

which corresponds to imaginary massive or unphysical particles ρ and η. In fact this term is

crucial for generating multiple vacua for φ. The schematic potential of φ is shown in Fig. 1.1.

Clearly because of m2 > 0, the ground state here does not corresponds to a single state with

zero vacuum expectation, rather to a plethora of states with non-zero expectation values i.e.

〈Φ〉 =
|v|√

2
eiθ 3, which are obtained by solving

∂V

∂φ
= 0 , where v =

√
m2

λ
. (1.2.10)

The choice of choosing one minima over others breaks the symmetry spontaneously.

Suppose we choose the ground state of the potential to be 〈Φ〉 =
v√
2

by fixing θ = 0. Clearly

this does not remain invariant under U(1) symmetry transformations. Re-expressing the field

around its true ground state i.e. φ → ρ+ iη + v√
2

, the Lagrangian in equation 1.2.9 gets

modified to

L =
1

2
∂µρ∂

µρ+
1

2
∂µη∂

µη −m2ρ2 + . . . . (1.2.11)

Here dots represent trilinear and quartic scalar interaction terms. Note that the Lagrangian in

equation 1.2.11 looks symmetry violating only because of the expansion of field φ around the

true minimum, the symmetry has got hidden. Now the expansion of field around its one of the

minima in equation 1.2.11 has results in physical particles — a massless and massive scalar

η and ρ respectively. The appearance of massless particle can be explained by Goldstone’s

theorem which states that the number of broken generators in SSB corresponds to massless

3Here θ denotes the redundancy in choosing the ground state
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particles which are known as Goldstone bosons in literature. Any global symmetry which is

broken spontaneously will inevitably yield massless fields. However absence of these scalars

in nature put such theories into serious trouble.

Thus far we have not addressed the solution of writing consistent broken gauge theories and

have discovered a new problem of massless particles associated with spontaneous breaking of

global symmetry. It was then realized that if a local gauge symmetry is broken spontaneously

instead of a global one then the massless boson can be absorbed as the longitudinal degree of

freedom of the gauge boson. This comes under the name of Brout-Englert-Higgs mechanism [9,

10], which is popularly known as Higgs mechanism. The triumph in incorporating Higgs

mechanism is that the spontaneous broken gauge theories are renormalizable [11]. Hence one

can write massive gauge field theories in a consistent manner.

To illustrate the procedure of SSB in gauge theories, we again consider a scalar field φ but

now charged under a gauged U(1) symmetry. The Lagrangian in equation 1.2.9 now gets

modified to,

L = −1

4
FµνF

µν + (∂µ − igAµ)φ†(∂µ + igAµ)φ+m2φ†φ− λ(φ†φ)2 . (1.2.12)

As before, minimizing the potential and expressing the field around its ground state results

in a massless field η and a massive degree of freedom ρ. Rewriting the above Lagrangian in

terms of new fields:

L = −1

4
FµνF

µν +
g2v2

2
AµA

µ +
1

2
∂µρ∂

µρ+
1

2
∂µη∂

µη −m2ρ2 + gvAµ∂
µη + . . . , (1.2.13)

where dots represent the trilinear and the quartic terms. Notice the bilinear term which is an

admixture of the gauge field and the massless field. The term can be interpreted as a gauge

transformation on Aµ field.

g2v2

2
AµA

µ +
1

2
∂µη∂

µη + gvAµ∂
µη → g2v2

2

(
Aµ +

∂µη

gv

)2

. (1.2.14)

Hence ∂µη appears as the longitudinal degree of mode the massive gauge field. However in the

Lagrangian η field still enters in the cubic and the quatic interactions. To make the physical

particle content explicit, we write fields in the non-linear parameterization i.e.

φ =
ρ+ iη + v√

2
= eiη

′
(
ρ′ + v√

2

)
, (1.2.15)

where for small field expansions ρ′ ∼ ρ and η′ ∼ η. In terms of these new fields ρ′, η′ and

A′µ = Aµ +
∂µη
gv , the Goldstone mode disappears from the theory leaving the massive scalar

and the vector field.

L = −1

4
F ′µνF

µν ′ +
g2v2

2
A′µA

µ′ +
1

2
∂µρ

′∂µρ′ −m2ρ2′ − λvρ3′ − λ

4
ρ4′ . (1.2.16)

The above Lagrangian can be interpreted by the means of performing a special gauge trans-

formation viz., the unitary gauge transformation i.e.

φ(x)→ φ′(x) = e−i
η′
v φ =

(ρ′ + v)√
2

, and Aµ → A′µ = Aµ +
∂µη

gv
. (1.2.17)
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Hence our twin problems — mass of gauge bosons and massless scalar — gets solved by

invoking the spontaneous breaking of the gauge symmetry. To conclude, gauge invariance

and spontaneous symmetry breaking mechanism are powerful tools for expressing the theories

with massive gauge bosons in a consistent manner.

1.3 The Electroweak part of the Standard Model

The electroweak part of the SM is often popularly known as the Glashow-Salam-Weinberg

model. In the previous section 1.2, we had discussed that the difficulties in describing weak

interactions could be resolved if the gauge symmetry was broken spontaneously. Now the

task is to determine the underlying symmetry associated with weak interactions. To do that,

let us consider the interaction part of the Intermediate Vector Boson theory

Lint
weak = ψ̄γµψ

′Wµ . (1.3.1)

The simplest possible gauge group which we can consider to describe the weak interactions

is SU(2) with ψ and ψ′ transforming as a doublet under SU(2). Note that only left chiral

fermions4 could be charged under this SU(2) due to observation of maximum parity violation

in charged currents [12] to which V − A structure provides a good fit [13, 14]. Among the

three generators of the SU(2) group, two of them can be associated with W± i.e. the charged

current and the third one with the neutral current. Since both electromagnetism and weak

forces were mediated by spin-1 particles, there were many efforts to unify these two forces.

Note that one could not have simply considered the third generator of SU(2) with the photon

since the interactions mediated in electromagnetism were parity conserving. It was realized

that the simplest possible gauge group for electroweak unification was SU(2)L×U(1)Y . The

charges associated with U(1)Y gauge group were termed as hypercharges. Since the low energy

theory preserves U(1)em, therefore the electroweak gauge group should spontaneously break

to electromagnetism. The generator which remains conserved after the symmetry breaking is

a linear combination of T3 and hypercharge and is given as Q = T3 + Y
2 .

The gauge group of the Standard Model is the direct product of strong interactions i.e. SU(3)c

and electroweak interactions i.e. SU(2)L × U(1)Y , where c, L and Y stands for colour, left

chiral and hypercharge respectively. The SU(3)c symmetry results in eight gauge bosons i.e.

the gluons and the electroweak gauge group corresponds to the four gauge bosons —Wµ
1−3

for SU(2) and Bµ for U(1)Y with the gauge couplings g3, g and g′ respectively. Amongst

the matter content, there exist three generations of quarks and leptons each which are listed

in Table 1.1. The characterization of the generation is based on the mass hierarchies — the

first generation corresponds to the lightest fermions and the third generation to the heaviest5.

The conservation of SU(2)L ×U(1)Y along with Lorentz invariance not only necessitates the

4Apart from the gauge symmetries, SM Lagrangian should also be invariant under the Lorentz transfor-

mations. Correspondingly the fermionic fields in the Lagrangian can be projected onto their chiral basis

(ψ = ψL + ψR) as the chirality operator i.e. γ5 commutes with the Lorentz transformations.
5However it is still not known whether the neutrinos follow the same hierarchical patterns or not.
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Generation I II III

Quarks up (u), down (d) charm (c), strange (s) top (t), bottom (b)

Leptons electron (e), e-neutrino (νe) muon (e), µ-neutrino (νµ) tau (τ), τ -neutrino(ντ )

Table 1.1: The three generations of quarks and leptons.

SM gauge bosons, but also the fermions to be massless. After symmetry breaking, using the

Higgs mechanism, the SM particles acquire mass. To break the symmetry spontaneously into

U(1)em, a scalar doublet Φ carrying a hypercharge Y = 1 is introduced. The SM Lagrangian

in presence of the scalar doublet is given as

LSM = −1

4
BµνB

µν − 1

4
W i
µνW

µν
i −

1

4
GaµνG

µν
a + |DµΦ|2 +QLi /DQL

+ uRi /DuR + dRi /DdR + LLi /DLL + eRi /DeR

+ QL YdΦdR +QLYuΦcuR +QLYeΦceR + h.c.

+ µ2Φ†Φ− λ

2
|Φ†Φ|2 , (1.3.2)

where Yu,d,e are 3× 3 Yukawa matrices for up, down and charged-lepton sectors respectively

and Dµ is the covariant derivative, µ is the Higgs mass parameter and λ is the Higgs self

interaction coupling. Note the wrong-sign mass parameter µ2 helps in generating the infinite

number of vacuum states and the choice of one over others breaks the symmetry. We choose

the vacuum state as

(
0

v√
2

)T
and define the scalar field in the unitary gauge as before.

Φ′ = e−i
θiσi
v Φ =

 0
h+ v√

2

 . (1.3.3)

In this gauge, the scalar potential becomes

V (Φ) = −µ2Φ′
†
Φ′ +

λ

2

(
Φ′
†
Φ′
)2

= m2h2 + λvh3 +
λ

4
h4 . (1.3.4)

Hence we see that the process of SSB has generated a Higgs mass, mh =
√

2m =
√

2λv and

additional Higgs cubic and quartic interactions.

The effect of SSB in gauge sector, as discussed before, is essentially to generate the masses of

gauge bosons in a consistent manner. This can be seen by considering the kinetic part of the

scalar Lagrangian

|DµΦ′|2 = |
(
∂µ − igWµ − ig′Bµ

)
Φ′|2 ,

=
1

2
∂µh∂

µh+M2
WW

µ+W−µ

(
1 +

h

v

)2

+
1

2
M2
ZZ

µZµ

(
1 +

h

v

)2

. (1.3.5)
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where,

W±µ =
W1µ ± iW2µ√

2
, MW =

1

2
gv ,

Zµ = cos θWW3µ − sin θWBµ , MZ =
1

2
v

√
g2 + g′2 ,

Aµ = sin θWW3µ + cos θWBµ , MA = 0 . (1.3.6)

Here θW is referred as the Weinberg angle and is given as tan θW =
g′

g
. Since the electroweak

symmerty gets broken to electromagnetism, the three broken generators are absorbed as

the longitudinal modes for W± and Z, the unbroken generator corresponds to the massless

photon. The masses and W and Z bosons can be expressed in terms of ρ parameter as

ρ =
M2
W

M2
Z cos2 θW

= 1 . (1.3.7)

This parameter is exactly equal to unity at tree-level in Standard Model.

Similar to gauge bosons, Higgs mechanism also helps in generating the mass terms of the SM

fermions. Let us consider the Yukawa part of the Lagrangian viz.,

LYuk = QiL YdijΦd
j
R +QiLYuijΦcujR +QiLYeijΦcejR + h.c.

= uLMu

(
1 +

h

v

)
uR + dLMd

(
1 +

h

v

)
dR + `LM`

(
1 +

h

v

)
`R + h.c. . (1.3.8)

The Yukawa matrices Y’s are in general non-diagonal and non-hermition. They are diagonal-

ized by performing bi-unitary transformations i.e.

Mu =
v√
2
V †uLYuVuR , Md =

v√
2
V †dLYdVdR , M` =

v√
2
V †`LY`V`R . (1.3.9)

Here V ’s are the rotation matrices, Mu = diag(mu,mc,mt), Md = diag(md,ms,mb) and

M` = diag(me,mµ,mτ ). Note that the absence of right handed neutrinos lead to massless

neutrinos in Standard Model framework. The above mass diagonalization modifies the struc-

ture of interactions of gauge bosons with fermions and leads to flavour changing interactions

in charged currents mediated by W

Lcc =
g√
2
ūiγ

µPL[VCKM]ijdj W
+
µ + h.c. , (1.3.10)

where VCKM = V †uLVdL. Note that the flavour changing matrix VCKM is also unitary and can

be described in terms of nine parameters — three rotation angles and six complex phases. Out

of these six phases, five can be absorbed by the rotation of the quark fields. The remaining

phase is the sole source of CP violation in weak interactions.

In contrast with the charged current, flavour changing interactions mediated by Z and γ are

absent at the tree-level because charges of all same-type fermions under U(1)Y symmetry are

same. The Lagrangian corresponding to the neutral current interactions is given as

Lnc = efγµf Aµ +
g

cos θW

(
gfLfγ

µPLf + gfRfγ
µPRf

)
Zµ , (1.3.11)
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where, ef is the electromagnetic charge of the fermion f , T3 is the isospin of the fermion and

gfL,R = T3 − ef sin2 θW . The electromagnetic charge of electron gets related to the SU(2)L

gauge coupling g as e = g sin θW .

To conclude this section, we highlight the major predictions and findings of the electroweak

sector of the Standard Model:

1. Unification of electromagnetism and weak forces via the electroweak gauge group SU(2)L×
U(1)Y . This is the minimal symmetry which would give rise to such a unification at

high scales.

2. The electroweak theory predicts the presence of new kind of neutral currents coupling

to heavy gauge boson, Z.

3. The electroweak structure along with three generations of fermions naturally incorpo-

rates the phenomena of CP violation.

4. Standard Model predicts ρ parameter to be exactly equal to unity at the classical level,

with very small quantum corrections.

1.4 Current status of the SM

In the previous section, we considered the electroweak sector of the Standard Model. Due to

its specific gauge group i.e. SU(2)L×U(1)Y definite interaction form exist between particles.

Over past several years, these forms have been tested to a great degree of accuracy at electron-

positron (LEP, SLAC, Belle, Babar), proton-antiproton (UA1, UA2, Tevatron), electron-

proton (HERA) and proton-proton (LHC) colliders. The gauge sector was the first to be

established with the discovery of W± and Z bosons at UA1 and UA2 [15, 16] followed by

precision measurements of gauge boson interactions with fermions and self interactions at

LEP-I, LEP-II and SLAC, where some of the interactions were tested upto a 0.1% level [17,

18]. The flavour sector has also been established at the B-factories by BABAR and BELLE

collaborations [19].

Signal Strength ATLAS-CMS (7− 8 TeV) Signal Strength ATLAS-CMS (7− 8 TeV)

(µggF
j )exp (combined) (µVBF

j )exp (combined)

µggF
γγ 1.10+0.23

−0.22 µVBF
γγ 1.3+0.5

−0.5

µggF
ZZ 1.13+0.34

−0.31 µVBF
ZZ 0.1+1.1

−0.6

µggF
WW 0.84+0.17

−0.17 µVBF
WW 1.2+0.4

−0.4

µggF
τ τ̄ 1.0+0.6

−0.6 µVBF
τ τ̄ 1.3+0.4

−0.4

Table 1.2: The combined measured values of (µij)
exp from ATLAS and CMS using 7 and 8

TeV data [21].

Now with the Higgs discovery at LHC [20], we have just began our journey towards verifying

the scalar sector. At tree level, Higgs couples with W+W−, ZZ, charged leptons and quarks.
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Due to its dominant coupling with top, it couples with gg and γγ6 at one loop. The Higgs can

be produced at the LHC via gluon fusion (ggF), vector-boson fusion (VBF), and in association

with SM gauge bosons (Vh), as well as with a top pair (tt̄h) and it can decay to γγ, ZZ∗ →
`+`−`′+`′−, WW ∗ → `+ν``

′−ν ′`, ff̄ if (mh > mf/2). The accurate measurements of these

couplings will hold a clues about the scalar sector and the nature of electroweak symmetry

breaking. Table 1.2 shows combined ATLAS and CMS signal strengths measurements from

run-I data for the observed Higgs Boson into various channels [21]. Although the uncertainties

in measurements at the present moment are large O(10 − 20%), we can clearly see that the

SM is compatible with the data. Other Higgs couplings for instance the tri-linear and quartic

at present are extracted using the information of the Higgs mass and the vacuum expectation

value. Its independent measurement is yet to be made at the experiments and this will

provide us a clear understanding of the nature of the electroweak symmetry breaking that

whether it occurs because of a Higgs doublet or many more. Apart from Higgs studies, LHC

is also actively probing other sectors and so-far have found no significant deviations from the

Standard Model predictions, see for example [22].

Despite such phenomenal success of the SM, there are several reasons to believe the existence

of the physics beyond Standard Model [23, 24]. The Higgs mass is thought to be one of the

major reasons for existence of physics beyond Standard Model because it is unstable in the

presence of new particles at scales much higher than the electroweak scales. Suppose a new

particle is present scale Λ >> OEW, then corrections to Higgs mass scales as

δm2
h ∝ Λ2 . (1.4.1)

To arrange mh ≈ 125 GeV then requires large amount of fine tuning. The Higgs mass

correction sets the scale of new physics to be roughly around a TeV to avoid large fine tuned

cancellations. This problem is primarily associated with the fundamental scalars and do not

arise for fundamental fermions and gauge particles. This can be simply understood based on

symmetry arguments. If we have a theory with only fundamental fermions and no scalars,

then the fermionic mass term viz., ψ̄ψ is symmetric under U(1)V transformations. In the

limit of zero mass, there is an enhanced symmetry of the theory i.e. the chiral symmetry

U(1)A. If this symmetry is also preserved by the quantum fluctuations, then fermion remains

massless even after performing higher order calculations. Notice this a phenomenal result

because this implies that in presence of m 6= 0, the mass corrections are proportional to the

symmetry breaking term which is m itself. The same result holds true for the gauge bosons.

The gauge symmetry principles prevent the masses of gauge bosons from becoming too large.

This is remarkable result in itself because the chiral/gauge symmetry argument prevents the

fermions/gauge bosons mass term becoming dependent on the cut off scale. Notice that we

cannot use such arguments of the SM Higgs. The mass term which arises from Φ†Φ interaction

is already invariant under all global and gauged symmetries. Therefore M2
h by no means is

protected by any enhanced symmetry of the theory. It might still happen that due to fine

tuned Higgs bare mass parameter, the actual mass of Higgs may be light and doesn’t depend

6Here the coupling with W+W− also plays a crucial role
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on the cut-off scale. But we strongly believe that just like fermions and gauge bosons, there

may be some phenomena which prevents Higgs boson mass. There is also a counter-view that

the issue associated with the stability of the mass of the fundamental scalar is more-or-less

aesthetic and should be taken with a pinch of salt.

There have been numerous attempts to solve the Higgs hierarchy or rather fine tuning prob-

lem [25]. The most popular one has undoubtedly been supersymmetry, where there is an

additional symmetry which relates the fermionic degree of freedom with the bosonic ones.

Here the chiral symmetry of fermions protects the mass of the fundamental scalars. Alter-

natively, there are composite Higgs models, where Higgs is not a fundamental scalar but a

bound state of fermions which are charged under a new gauge interaction similar to QCD.

Therefore the problem associated with the elementary scalar at first place only doesn’t arise.

If the observed Higgs mass is protected by symmetry arguments then new particles should

appear at the TeV-scale. But the continuous running of LHC has resulted in no sign of new

particle at the TeV-scale. This has put the idea of naturalness and fine tuning into trouble

and has resulted in a new problem of little hierarchy [26]. Experiments suggest that NP

scales should atleast be greater than 2-3 TeV and for some models even 5 TeV, while Higgs

mass stablization requires the scales to be present at a TeV. In the light of this, alternate

models with the concept of neutral naturalness viz., where new particles do not have strong

interactions have been hypothesized. Time will only tell that which of these models or any

other variant of these models will survive.

Another issue which concerns Standard Model is the existence of the neutrino oscillations [27,

28]. The massless neutrinos in SM could not have given rise to this phenomenon. The

problem may be easily alleviated by adding three right handed neutrinos and generating

masses through Higgs mechanism, but the zero charge of neutrinos creates a dilemma over

origin of neutrino masses. The fermions uncharged under electromagnetism are either Dirac-

like or Majorana-like and the process of acquiring mass is completely different for the two

cases. While Higgs mechanism works well with the Dirac-neutrinos, see-saw mechanism has

been suggested as an alternative method for origin of mass for Majorana-like neutrinos. The

data on the neutrino oscillation does hint towards new physics, but leaves its nature to be

completely unknown.

Astronomically there are many compelling evidences of the existence of dark matter ranging

from the proper velocities of galaxies clusters, rotation curve measurements of the galaxies,

Cosmic Microwave Background Radiation etc [29]. However till date no interactions other

than the gravitational ones have been reported for these particles. Attempts have been made

in the past to determine the particle content of dark matter but all efforts so far have gone

in vain. Since the existence of dark matter cannot be denied, some new physics should hold

the explanation to this mystery.

There are few other aesthetic problems associated with the SM viz., why do we have SU(3)c×
SU(2)L×U(1)Y gauge symmetry, why there are three generations of fermions and one Higgs

doublet, why is the mass of an electron and top so different from each other?
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These are few problems which have intrigued the theorist time and again. While there have

been many theoretical breakthrough ideas as previously mentioned like supersymmetry, com-

posite Higgs, extra dimensions which attempt to address some of the above problems, none

of them have yet shown any observable effect at the detectors.

At present, SM fits the data well but it certainly cannot be the complete picture till all

scales because around Planck scale the gravitational effects become strong and such effects

would then have to be included in a consistent manner. Since data seems to be in agreement

with the Standard Model predictions within the experimental uncertainties, the new physics

may be either hidden under the large Standard Model backgrounds or may be present in

an inaccessible part of the parameter space. Given the scenario where no model is being

favoured by the experiments we choose to take an alternative and simplistic approach which

we describe in detail in the next chapter.
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Chapter 2

Small Expeditions out of the Standard Way

Experimental searches for physics beyond the Standard Model have – till date – yielded

neither significant positive results nor specific directions or paths to follow. However it is

clear from the discussions in the previous chapter, that physics beyond the Standard Model

must exist. In the absence of any specific hint about the nature of new physics, various new

physics models are current, and all being consistent with the present data, make the search

strategies somewhat incoherent. Wide-reaching ideas encompassing all of particle physics,

such as compositeness, supersymmetry or extra dimensions belong to this class, and one has

only to look at the number of papers predicting signals for these to see the huge variety of

possibilities which experimental physicists have to confront.

In such a situation, focused studies – often data-driven – have become extremely important.

Thus, simple extensions of the Standard Model and effective field theories are being increas-

ingly favoured to analyze the effects of new physics in data, as they have a small number of

free parameters and hence greater predictivity. Similarly, one looks at simplified versions of

the deeper models mentioned above where only a small sector of the full theory is relevant. In

general, data can provide direct or indirect hints for the presence of new physics, depending

upon its nature. For example, while the lighter particles may be observed directly as reso-

nances in the invariant mass spectrum, such a method would not work for heavier resonances

due to limited statistics. One would then have to rely upon the indirect clues where the

presence of such a heavier resonance could lead to deviations in well measured/predictable

observables.

The above approach has been adapted in this thesis work, wherein simple extensions of the

Standard Model have been considered to probe and predict direct and indirect hints in the

data. Our aim is not to address the problems listed in chapter 1 in a top-down fashion, but

rather to understand the data and eventually make predictions in a bottom-up approach.

The hope is that such studies would eventually guide us towards the UV-complete models,

at some stage in future. We have, thus, chosen a few select areas, focussing on extensions

of the Standard Model where extra bosons or additional couplings of the existing bosons are

involved.
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Recent flavour measurements in the neutral B decays concerning b to s flavour transitions [30–

33] have hinted towards lepton flavour-universality violation. Although the individual devi-

ations from the SM predictions are not more than 2-3σ, what is intriguing is the fact that

so many observables are simultaneously pointing towards the need of a similar kind of new

physics. Part of the thesis work has been devoted towards exploring a possible new physics

explanation for a few of the above anomalies. In chapter. 3, we have presented the simulta-

neous solutions to the anomaly RK and neutrino mixings. A class of U(1)X lepton flavour

universality violating models have been identified in a bottom-up approach. Our solutions

are consistent with the P ′5 anomaly. At the time when the work was done, results for the

RK∗ anomaly did not exist. We also analyze the implications of including RK∗ measurements

towards end of chapter. 3.

The indirect effect of new physics may also affect the gauge boson self interactions. In another

such study discussed in chapter 4, we perform a dedicated collider analysis for the process

pp→Wγ → `ν`γ, to study the new physics effects manifesting in the presence of anomalous

WWγ couplings. Instead of using the standard conventional variable i.e. the transverse

momentum of the photon, we identify other kinematic variables which aid in better signal

sensitivities.

The diphoton channel is perhaps one of the cleanest probes for searching for new physics at the

LHC – witness the discovery of the Higgs Boson [20]. Owing to better signal and background

distinctions, the sensitivity of these channels to detect new physics is much higher than that

of other channels like bb̄ or τ τ̄ . In chapter 5, we study the direct detection prospects of a

light scalar (lighter than the Higgs Boson) in the di-photon channel in the context of a type-I

2HDM and find favourable regions where such a light scalar could be probed with the current

luminosities at the LHC. We also briefly discuss the light scalar decays to bb̄ final states.

The discovery of a diphoton resonance at the LHC would prompt various questions, which

would hold true for any heavy resonance particle, e.g. does a heavy mass resonance corre-

sponds to a two-photon final state or could that be an artefact of a multiphoton (three or

more) final state appearing as an apparent diphoton state? or, what would be the spin of

such a prototype resonance? We have attempted to address these questions in chapter 6 using

an effective field theory approach in the context of a spin-0, spin-1 and spin-2 resonances. In

fact, a couple of years back, an anomaly in the diphoton invariant mass around 750 GeV had

been announced simultaneously by both ATLAS and CMS collaborations. Of course, it is

well known that the anomaly disappeared with increased statistics [34,35].

Most of the problems described above have been addressed by minimally extending the SM by,

for example, (i) the addition of singlet scalars, (ii) SU(2)L doublet scalars, (iii) right handed

neutrinos, (iv) additional gauge symmetries, (v) higher-dimensional operators. or some com-

binations of these. We describe the theoretical framework of these minimal extensions in the

following sections.
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2.1 Singlet Scalars

Introducing additional scalars S, uncharged under the SM gauge group, is perhaps the mini-

mal way of going beyond the SM [36]. Such extensions are useful in explaining various prob-

lems, such as dark matter, smallness of neutrino mass masses through see-saw mechanism

in presence of three right handed neutrinos, strong CP-problem, fermionic mass hierarchy

through the Froggatt-Nielson mechanism, µ problem of supersymmetry and many more. The

new SM-singlet scalar may be either charged under a Z2 symmetry or some additional gauge

symmetry depending upon the nature of the problem in consideration.

Let us consider two real scalar SM singlet fields S1 and S2 which transform under Z2 and Z ′2
symmetry operations respectively. The SM fields are not affected by these transformations.

We choose to break Z2 at scale vS1 spontaneously and preserve Z ′2 at all scales. To see

the phenomenological consequences of this choice, consider the modified Higgs potential in

presence of S1 and S2 fields

V (Φ, S1, S2) = −m2Φ†.Φ + λ
(

Φ†.Φ
)2

+m2
1S

2
1 + λS1S

4
1

−m2
2S

2
2 + λS2S

4
2 + λΦS1S

2
1

(
Φ†.Φ

)
+λΦS2S

2
2

(
Φ†.Φ

)
+ λS1S2S

2
1S

2
2 (2.1.1)

The spontaneous breaking of Φ and S1 generates mixing between the the SM-Higgs and this

new scalar. The observed Higgs hence is an admixture of the scalars h and S1. The mixing

between them is given by

L = m2
hh

2 +m2
S1
S2

1 + λΦS1 vEW vS1 hS1 (2.1.2)

Estimating orders of magnitude, mh ≈ O(vEW ) and mS1 ≈ O(vs1). Hence the mixing matrix

becomes (
v2
EW λΦS1 vEW vS1

λΦS1 vEW vS1 v2
S1

)
(2.1.3)

In the limit when the symmetry Z2 is broken at scales much larger than the electroweak scale,

the eigenvalues are v2
S1

and v2
EW

(
1− λ2

ΦS1

)
and the mixing angle is

vEW
vS1

λΦS1 . We want λΦS1

to be at-least less than unity, such that Higgs mass remains of the order of electro-weak scale.

Consequently the mixing angle generated is small. Nevertheless this mixing leads to the

singlet scalar coupling with the SM particles. If mass of S1 is of the order of TeV scale, then

it could in principle be observed as a resonance at LHC provided its couplings are reasonable

enough.

Howsoever simple this addition of SM scalar singlet S1 may appear, it has rather powerful

implications. In this thesis, we have studied the implications of adding such a scalar in the

context of neutrino masses. The other scalar S2 on the other hand doesn’t mix with any other

scalar field and is a stable particle due to preserved Z ′2 symmetry. This could be a candidate

for the unexplained dark matter content of the Universe.
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2.2 Two-Higgs doublet models

Theoretically there is no physical reason why there should be only one scalar doublet in

Nature. Just like the fermions, the scalar sector may well have more than one generation.

Such a possibility is explored in various multi-Higgs doublet models [37]. We consider the two-

Higgs doublet models, which are one of the simplest extensions of the SM with an additional

SU(2)L scalar doublet carrying same hypercharge as the SM doublet. The Higgs potential in

presence of Φ1 and Φ2 is

V (Φ1,Φ2) = m2
11 Φ†1Φ1 +

λ1

2

(
Φ†1Φ1

)2
+m2

22 Φ†2Φ2 +
λ2

2

(
Φ†2Φ2

)2
−m2

12Φ†1Φ2

+λ3 Φ†1Φ1 Φ†2Φ2 + λ4 Φ†1Φ2 Φ†2Φ1 −
1

2
λ5

(
Φ†1Φ2

)2

−1

2
λ6 Φ†1Φ2 Φ†1Φ1 −

1

2
λ7 Φ†1Φ2 Φ†2Φ2 + h.c. , (2.2.1)

where,

Φ1 =

(
1√
2

(ρ1 + iη1)
1√
2

(ρ2 + iη2)

)
Φ2 =

(
1√
2

(ρ3 + iη3)
1√
2

(ρ4 + iη4)

)
. (2.2.2)

The scalar potential above contains fourteen real parameters and eight real scalar fields. The

parameters of the Lagrangian can be chosen appropriately such that both the doublets exhibit

spontaneous symmetry breaking mechanism to yield masses to the fundamental particles of

the theory. To avoid charge and CP-violating minimum of the potential, we chose minima

at 〈ρ2〉 = v1 and 〈ρ4〉 = v2. For small expansions around the minima, the doublets in

Equation.2.2.2 can be expressed in terms of non-linear representation as:

Φ1 ≈ exp
i
τ.ξ1
v1 ×

(
0

1√
2

(ρ2 + v2)

)
Φ2 ≈ exp

i
τ.ξ2
v2 ×

(
0

1√
2

(ρ4 + v2)

)
(2.2.3)

where τ are the Pauli matrices, ξ1 = (η1, ρ1,−η2) and ξ2 = (η3, ρ3, η4). The doublets in

general can be rotated by different SU(2) and U(1) transformations. In the vector-axial

basis, this amounts to

Φ1 → expiτ.(θV +θA) Φ1 , Φ2 → expiτ.(θV −θA) Φ2 : SU(2)

Φ1 → expi(θ
′
V +θ′A) Φ1 , Φ2 → expi(θ

′
V −θ

′
A) Φ2 : U(1) (2.2.4)

Only the vector part of these transformations is gauged and is identified with the Standard

Model gauge group. The axial transformations on the other hand are already broken by the

scalar potential in Equation. 2.2.1. After spontaneous symmetry breaking, a linear combina-

tion of ξ1 and ξ2 which transforms under SU(2)V results in three Goldston bosons which gets

absorbed as the longitudinal polarization modes of the W± and Z bosons. The orthogonal ax-

ial combination results in the massive charged scalar and the pseudo-scalar. Consequently, the

rotation angle which diagonalizes the mass matrix of the charged scalars and pseudo-scalars

are same and is commonly denoted as β in the literature.(
G+ , G0

H+ , A

)
=

(
cosβ sinβ

− sinβ cosβ

)(
1√
2
(ρ1 + iη1) , η2

1√
2
(ρ3 + iη3) , η4

)
(2.2.5)
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The masses of the charged scalar and the pseudoscalar are proportional to the terms in the

scalar potential breaking SU(2)A and U(1)A symmetry respectively. The diagonalisation

process of the neutral CP-even scalars on the other hand is independent and corresponds to

the rotation angle α. (
h

H

)
=

(
sinα − cosα

− cosα − sinα

)(
ρ2

ρ4

)
(2.2.6)

Summarizing, the spontaneous breaking of the electroweak symmetry, SU(2)L × U(1)Y to

the U(1)em, results in five physical scalar fields viz. light CP-even Higgs (h), Heavy CP-even

Higgs (H), a pseudoscalar (A) and charged Higgs bosons (H±) and three Goldstone fields —

G± and G0, which gets absorbed as the longitudinal modes for the W± and the Z boson in

the unitary gauge. Expressing the doublets in terms of the physical degrees of freedom:

Φ1 =

(
G+ cosβ −H+ sinβ

1√
2

[h sinα−H cosα+ i (G cosβ −A sinβ) + v1]

)
,

Φ2 =

(
G+ sinβ +H+ cosβ

1√
2

[−h cosα−H sinα+ i (G sinβ +A cosβ) + v2]

)
, (2.2.7)

In this setup, the most general Yukawa interactions are given as

LYuk = QiL

(
Yd1 ijΦ1 + Yd2 ijΦ2

)
djR +QiL

(
Yu1 ijΦc

1 + Yu2 ijΦc
2

)
ujR

+ QiL
(
Ye1 ijΦc

1 + Ye2 ijΦc
2

)
ejR + h.c. . (2.2.8)

This structure of couplings results in tree-level flavour changing neutral and charged currents

mediated by the scalars since diagonalization of Y1 and Y2 matrices is different. To illustrate

the point, we consider the Yuwaka interactions for down-type quarks:

LYuk =
v√
2
dL

(
Yd1 cosβ + Yd2 sinβ

)
dR

+
1√
2
dL

(
Yd1 sinα− Yd2 cosα

)
h dR

− 1√
2
dL

(
Yd1 cosα+ Yd2 sinα

)
H dR

+
i√
2
dL

(
Yd1 sinβ − Yd2 cosβ

)
AdR (2.2.9)

The above interactions are written in the flavour basis. Diagonalizing the Yukawa matrices

by bi-unitary transformations VdL and VdR

Md =
v√
2
V †dL

(
Yd1 cosβ + Yd2 sinβ

)
VdR , (2.2.10)

we can re-express the scalar interactions in the mass basis as

LYuk =
sinα

cosβ
dL (Md/v) dR h−

1√
2

cos(β − α)

cosβ
dL V

†
dL
Yd2 VdR dR h

− cosα

cosβ
dL (Md/v) dRH +

1√
2

sin(β − α)

cosβ
dL V

†
dL
Yd2 VdR dRH

+ i tanβ dL (Md/v) dRA− i
1√
2

1

cosβ
dL V

†
dL
Yd2 VdR dRA (2.2.11)
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Models ui di `i Z2

Type I φ2 φ2 φ2 φ1 → −φ1

Type II φ2 φ1 φ1 φ1 → −φ1, di → −di,ei → −ei

Lepton-specific φ2 φ2 φ1 φ1 → −φ1, ei → −ei

Flipped φ2 φ1 φ2 φ1 → −φ1, di → −di

Table 2.1: The doublets interacting with the fermionic fields for different kinds of two-Higgs

models along with the fields transforming non-trivially under Z2 symmetry.

Hence we have flavour-changing neutral current interactions at tree-level. Similarly, one could

show the existence of flavour-changing charged current interactions mediated by the charged

Higgs boson. Note that the bounds from K–K̄ and B–B̄ oscillations are quite stringent and

restrict the allowed parameter space of the theory.

We have now witnessed the discovery of a scalar particle with mass 125 GeV at the Large

Hadron Collider whose couplings are more-or-less Standard Model like. Due to large errors on

the Higgs signal strength measurements, the possibility of the discovered scalar belonging to

an enlarged scalar sector is still allowed. The measurement of CP properties of the observed

scalar predicts it to be a CP-even scalar at 3-σ. We can therefore identify the observed scalar

with any of the CP-even scalars in the enlarged framework. In the two Higgs doublet model

set up — the natural choices are h or H. To suppress bounds from flavour oscillations, h is

identified with observed scalar and other scalars — H, A and H± are considered to be heavy

and decoupled from the theory. This limit in literature is popularly known as the decoupling

limit but it is not interesting as its predictions cannot be tested at the current colliders.

Additional symmetries can be invoked at high scales in-order to have light scalars consistent

with flavour oscillations leading to interesting phenomenological consequences. Z2 symmetry

being the simplest was the first one to be implemented and it categorized two Higgs doublet

models into four kinds viz., type-I, type-II, lepton-specific and flipped. In all of these models,

only one of the doublet coupled with the fermionic fields see Table 2.1 thus avoiding tree-

level flavour-changing neutral currents. The tree-level charged currents mediated by charged

scalars still exist and are CKM-like. We still get some bounds on the allowed parameter space

depending on the type of 2HDM considered.

The Yukawa interactions as in Equation 2.2.8 for type-I and type-II models gets modified to

LType−I
Yuk = QiL Yd1 ijΦ2d

j
R +QiLYu1 ijΦc

2u
j
R +QiLYe1 ijΦc

2e
j
R + h.c. , (2.2.12)

LType−II
Yuk = QiL Yd1 ijΦ1d

j
R +QiLYu1 ijΦc

2u
j
R +QiLYe1 ijΦc

1e
j
R + h.c. (2.2.13)

Similar expressions can be written for lepton-specific and flipped models. The scalar potential

with Φ1 → −Φ1 under Z2 gets modified to

V (Φ1,Φ2) = m2
11 Φ†1Φ1 +

λ1

2

(
Φ†1Φ1

)2
+m2

22 Φ†2Φ2 +
λ2

2

(
Φ†2Φ2

)2

+λ3 Φ†1Φ1 Φ†2Φ2 + λ4 Φ†1Φ2 Φ†2Φ1 −
1

2
λ5

(
Φ†1Φ2

)2
+ h.c. , (2.2.14)
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which is same for the four types of the two Higgs doublet models listed in the Table. 2.1. Type-

I model is more like the standard model as only one doublet has non-zero Yukawa coupling

and Type-II 2HDM is similar to the supersymmetric extension of the standard model. In

general there could be various other kinds of two Higgs doublet models like inert two Higgs

doublet models, BGL models etc. which have slightly different phenomenology.

In one of the chapters 6, type-I 2HDM is considered for the analysis. There the phenomenology

of a scalar h lighter than the observed scalar identified with H, in the mass range 70-110 GeV

is discussed. In another chapter 3, a different kind of 2HDM is analysed, where the two

doublets are charged differently under the abelian U(1)X symmetry. Since the motivation

of the work was to explain the RK anomaly using a Z ′, the additional scalars apart from

the observed Higgs were considered to be heavy and hence decoupled from the theory. The

additional doublet here helps to generate the correct structure of the CKM matrix, which

otherwise would have been impossible owing to non-universal X-charge assignments of the

quarks under U(1)x

2.3 Additional U(1)X gauge symmetry

In this section, we study the implications of minimally extending the SM gauge group by an

additional gauge symmetry U(1)X [38]. This addition results in a kinetic mixing between Bµ

and Xµ fields. The gauge kinetic term in this set up gets modified as

Lkin = −1

4
B̃µνB̃

µν − 1

4
X̃µνX̃

µν − k

2
B̃µνX̃

µν , (2.3.1)

where k is the mixing strength between the two fields. The fields at present are not canonically

normalized, and could be brought to their canonical basis by following transformation,

(
B̃µ

X̃µ

)
= P

(
Bµ

Xµ

)
, where P =

1 − k√
1− k2

0
1√

1− k2

 . (2.3.2)

In the new basis, the kinetic term in Equation. 2.3.1 becomes

Lkin = −1

4
BµνB

µν − 1

4
XµνX

µν . (2.3.3)

The transformations in Equation. 2.3.2 changes the neutral current structure of the fields as

follows

g Jµ3 W̃3µ + gY J
µ
Y B̃µ + gXJ

µ
XX̃µ → g Jµ3 W3µ + gY J

µ
YBµ

+

(
gX√

1− k2
JµX −

k√
1− k2

gY J
µ
Y

)
Xµ (2.3.4)

We note that the redefinition of fields at this stage has changed only the current structure of

the U(1)X field.
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Since the low energy symmetry of the nature is U(1)em, therefore the U(1)X symmetry cannot

remain conserved at all energy scales. If the SM particles, specifically quarks and leptons,

are charged under this symmetry, then the bounds from LHC on mass of X can be quite

stringent, typically around O(TeV ). In such cases, the typical scales chosen to break U(1)X

symmetry are much larger than the electroweak scale.

Another issue which concerns the X mass and more importantly Z–X mixing is the question

whether the SM Higgs doublet or any additional doublet if any, are charged under U(1)X

symmetry. If doublets transform as singlets under the action of U(1)X , then there will not

be any mass mixing between Z and X bosons and the kinetic mixing parameter k practically

remains unconstrained. However, in presence of mass mixing, k will be constrained from

various precision measurements at the LEP and the flavour factories. For example, let us

consider the case where the SM Higgs Boson and an additional scalar S, carries equal charges,

aX (for simplicity) under U(1)X symmetry. The part of the Lagrangian containing the mass

terms for the neutral gauge bosons can be given as:

Lmass = Φ†.
(g

2
W̃3µσ3 +

gY
2
B̃µ + aX gXX̃µ

)
×(g

2
W̃3µσ3 +

gY
2
B̃µ + aX gXX̃µ

)
.Φ + a2

Xg
2
XX̃µZ̃

′µS†S . (2.3.5)

After spontaneous symmetry breaking the true minimum of the fields correspond to 〈Φ〉 =
v√
2

, and 〈S〉 =
vs√

2
. Redefining aX gX → gX , the Lagrangian in Equation. 2.3.5 can be

written in a compact notation,

Lmass =
1

2

(
W̃3µ B̃µ X̃µ

)
M2
V

W̃
µ
3

B̃µ

X̃µ

 , (2.3.6)

where

M2
V =


1
4 g

2v2 −1
4 g gY v

2 −1
2 g gXv

2

−1
4 g gY v

2 1
4 g

2
Y v

2 1
2 gY gXv

2

−1
2 g gXv

2 1
2 gY gXv

2 g2
X

(
v2
S + v2

)
 (2.3.7)

This mass matrix doesn’t account for the kinetic mixing. Incorporating the kinetic mixing

will result in

Lmass =
1

2

(
W3µ Bµ Xµ

)
P T .M2

V .P

W
µ
3

Bµ

Xµ

 , (2.3.8)

where matrix P is defined in eqn 2.3.2.

We first diagonalize the 1-2 component of the above mass matrix i.e. W3µ and Bµ field to

obtain massive Zµ and massless Aµ fields,Z
µ

Aµ

Xµ

 =

cos θW − sin θW 0

sin θW cos θW 0

0 0 1


W

µ
3

Bµ

Xµ

 (2.3.9)
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where, tan θW = gY
g . The mass matrix after this rotation is given as

(
Zµ Aµ Xµ

)M
2
Z 0 ∆

0 0 0

∆ 0 M2
X


Z

µ

Aµ

Xµ

 (2.3.10)

where,

M2
Z =

1

4
(g2 + g2

Y )v2

M2
X =

g2
X

1− k2

(
v2
S + v2

)
+

g2
Y v

2k2

4(1− k2)
− gY gXkv

2

1− k2
(2.3.11)

∆ = −
gX

√
g2 + g2

Y v
2

2
√

1− k2
+
kgY

√
g2 + g2

Y v
2

4
√

1− k2
(2.3.12)

and the Z–X mixing angle which diagonalizes the above mass matrix is given as

tan 2θZX =
2∆

M2
X −M2

Z

(2.3.13)

The mixing is stringently constrained by the Z-pole measurements at LEP and SLC; therefore

we can approximate it to be

θZX ≈
∆

M2
X −M2

Z

. (2.3.14)

The vacuum expectation values satisfying vs � vew, renders small mixing angles naturally.

The mass eigenstates of Z and X after mixing are given as

Zm = Z − θZXX , Z ′m = X + θZXZ . (2.3.15)

The current in Equation. 2.3.4 gets modified to,

e Jemµ Aµ +

[
g

cos θW
− θZX

(
gX√

1− k2
JµX −

k√
1− k2

gY J
µ
Y

)]
Zµ

+

[(
gX√

1− k2
JµX −

k√
1− k2

gY J
µ
Y

)
+ θZX

g

cos θW

]
Z ′µ , (2.3.16)

where the superscript m is not written explicitly. The modifications in the current structure

of Z boson, stringently constrains θZX and k for a given value of gX . The Z-pole observables

will not only receive constraints due to the Z–X mixing, but will also be affected by the loop

effects mediated by X. However for O(TeV) scale Z ′, these effects are naturally small.

Another issue which concerns the additional gauge symmetry is anomalies. However if the

fermions are assigned vector-like charges under U(1)X , then the gauge symmetry by definition

is anomaly free. Otherwise the X-charges of the new fermionic fields should be such that the

anomaly coefficients are zero.

An additional U(1)X extension forms the backbone of the analysis reported in chapter 3.
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2.4 Effective field theory

Effective field theory is a framework considering only those degrees of freedom which are

relevant to the energy scales in the chosen problems [39]. For instance, for solving the hydrogen

atom problem, we need not worry about the existence of quarks and similarly in the theory of

weak interactions at low scales i.e. the Fermi theory, the knowledge of massive gauge bosons

W and Z are not required simply because these particles cannot be produced on-shell. In the

language of a quantum field theory, the basic idea is to integrate out the unimportant degrees

of freedom and keep all the operators in the Lagrangian containing the relevant degrees of

freedom.

There are two approaches of solving problems using an effective field theory viz. top-down and

bottom-up. In a top-down approach, we begin with a well-motivated theory, and integrate

out the irrelevant degrees of freedom. This approach is commonly used in flavour physics

wherein, for most of the processes, the energy scales are much less than the electroweak scale.

In contrast, the bottom-up approach is used when we are neither sure about the underlying

high-scale symmetry nor about the new particles charged under it. Here the Lagrangian is

expanded by writing all the possible terms which are consistent with the low-scale symmetry

into consideration.

We begin by describing the top-down approach. To illustrate, we begin with a simplistic

example of a semileptonic B decay, say B → K``, which, at parton level, is understood

as a b → s`` transition. We are interested in computing the effects mediated by a heavy Z ′

massive particle with mass mZ′ = O(TeV), in the EFT framework. The energy scale at which

this process is mediated is around the B-meson mass scale and is certainly well below mZ′ .

Therefore we can safely integrate out Z ′ and obtain the effective Lagrangian. In order to do

so, we have to follow a matching procedure where amplitudes of the full theory are matched

with the effective theory. In this way we can be sure about the correctness of low-energy

effective theory.

b

s

ℓ

ℓ

Z ′

Figure 2.1: Feynman diagram depicting the tree level transition b → s`` mediated by a

spin-1 particle.

For a top-down EFT, we should know the theory at high scale. Let us assume that the new

physics interactions at a high scale are given by the following Lagrangian

LZ′ = Z ′µ
(
g``γ

µ`+ gbsbγ
µs
)
. (2.4.1)
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To obtain the effective Lagrangian corresponding to LZ′ , we compute the amplitude in the

full theory following +i convention for obtaining Feynman rules.

iM =

(
ig` × igbs ×

−igµν
q2 −M2

Z′

)
`γµ` bγνs

=

ig` × igbs × i

M2
Z′

(
1− q2

M2
Z′

)
 `γµ` bγµs (2.4.2)

In the limit q2 � m2
Z′

iM = −i (g` × gbs)
(

1

M2
Z′

+
q2

M4
Z′

+ . . .

)
`γµ` bγµs (2.4.3)

The first term in the series corresponds to the dimension-6 operator, the second one to

dimension-8 and ellipses to further higher dimensional operators. Since q2 �M2
Z′ , we safely

concentrate only on the dimension-6 piece which is independent of q2. Now to arrive at

the effective Lagrangian, we make use of the fact that the amplitude of full theory and the

effective field theory are exactly the same. Sticking with the +i convention, we arrive at the

following effective Lagrangian

Leff = −
(
g` × gbs
M2
Z′

)
`γµ` bγµs . (2.4.4)

The coupling constant of the dimension-6 operator is known as the Wilson coefficient C. Here

C = −g` × gbs
M2
Z′

. Hence we have illustrated an example of tree-level matching and obtained

the effective Lagrangian and corresponding Wilson coefficient. Since this is obtained at tree-

level, this coefficient does not have any scale dependence and is valid at all scales. Matching

at loop-level introduces a parametric scale dependence on C and also often introduces new

operators.

In contrast, EFTs built using bottom-up principles are arbitrary as the underlying full theory

and the corresponding symmetries are not known. The higher-dimensional terms in the

Lagrangian are written based on the symmetries and particle content of the low energy theory.

The Lagrangian in terms of higher-dimensional operators can then be written as:

Ltot = LSM +
∑
i

Ci
Λ2
O(dim=6)
i +

∑
i

Ci
Λ4
O(dim=8)
i + . . . , (2.4.5)

where Λ is the scale at which NP enters. If the new physics enters only at the Planck

scale i.e. Λ = 1019 GeV, then the higher dimensional operators are heavily suppressed and

have no effect whatsoever at the current running TeV scaled colliders. However if some new

physics is present at scales much lower than the Planck scales, e.g. near the TeV scale, as

motivated by the hierarchy problem, then the EFT analyses could be useful in pinpointing

the correct vertex structure and eventually the full theory. This analysis although it looks

arbitrary at its face value but is useful since it is not biased by any kind of underlying
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theory/symmetry. We exemplify this point with a recent example in the literature concerning

the semileptonic B neutral decays. Few years back, an anomaly in the angular observable

of B → K∗µµ differential distribution was reported. During similar times, another anomaly

in the observable RK dealing with B → K transitions was also reported. Although none of

the above anomalies have been seen at the 5σ-level, what is intriguing is the fact that the

bottom-up EFT analysis point towards the dominant presence of new physics in the following

dimension-six operator

O9 =
αe
4π

[s̄γµPLb] [µ̄γµµ] (2.4.6)

with the Wilson coefficient Cµ9 = −1. Of course with this single operator there are still many

UV-complete explanations possible but the hope is that if the anomalies are indeed genuine

then the measurements in future will guide us towards a unified theory. Another place where

bottom-up EFT is useful is in parametrising the anomalous contributions to the SM couplings.

The electroweak sector of the SM has been well measured and the constraints on the allowed

values of the corresponding anomalous couplings are quite stringent. The Higgs couplings

in contrast have not been fully measured and still encompass large uncertainties as already

seen in Table. 1.2. The analysis dealing with the anomalous triple gauge coupling using the

bottom-up EFT technique has been performed in chapter 4.

To summarise, one can construct minimal extensions of the Standard Model which help to

study real and projected deviations in the data in a focussed way. This is an easier and more

practical way that the global study of deeper underlying physics, where no particular process

can be studied without bringing into play a slew of theoretical and phenomenological issues.

This is the approach adopted in the present thesis. We now go on to describe some of the

specific analyses carried out within this broad philosophy.
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Chapter 3

Neutrino mixing and RK anomaly in class of U(1)X

models

In this chapter, we present our findings on the simultaneous solutions to the anomalies seen

in the recent lepton flavour universality violating observables in neutral B-meson decays

and neutrino mixing data. The work has been done in collaboration with Dr. Sabyasachi

Chakraborty and Prof. Amol Dighe and is published in JHEP 1703 (2017) 117.

3.1 Introduction

The run-I data at LHC not only succeeded in discovering a Higgs Boson but also measured

one of the rarest decay predicted in the SM i.e. Bs → µµ [40] with the statistical significance

of more than 6σ. This sole measurement along with B → Xsγ and other neutral meson-

mixings measurements have been responsible for constraining many well defined models like

supersymmetry at the LHC [41,42], which predicts large flavour violations in certain regions

of the parameter space. Although the scales at which B decays operates occur are extremely

small O(mB), they have important implications in constraining the models of NP [43].

In this chapter, we focus on the recently reported indirect hints of lepton flavour universality

violation by the LHCb collaboration in the b→ s`` flavour observables1. The b→ s transitions

at leading order in the Standard Model proceeds through one loop penguin and box diagrams

due to absence of flavour changing neutral currents. These processes are touted to be sensitive

probes as NP effects here are not loop suppressed with respect to the SM contributions.

Experimentally such b → s transitions could be measured as inclusive or exclusive decays of

the Bd,s mesons for instance: B → K∗γ, B → Xsγ, B → K(∗)``, B → Xs``, Bs,d → µµ and

so on. Theoretical calculation of these observables is challenging because of the presence of

form factor uncertainties and non-factorizable QCD corrections. However it is still possible

to construct few observables which are less vulnerable to the QCD corrections. Two such

1Indirect hints have also been reported in the charged B decays, but they lie outside the scope of this

chapter and work.
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observables are the ratios, RK and RK∗ [44]. These ratios are defined as

RK(∗) =

∫ q2
max

q2
min

dq2dΓ(H(b)→ H(s)µµ)

dq2∫ q2
max

q2
min

dq2
dΓ(H(b)→ H(s)ee)

dq2

. (3.1.1)

Here H(b) and H(s) refers to some hadron containing b and s valence quarks respectively.

The above quantities have been measured for B+ → K+ and B0 → K0∗ exclusive decays at

the LHCb experiment in CERN [32,33]. The current deviations are listed in the Table. 3.1

Observables R
[1,6]
K RK∗

[0.045,1.1] RK∗
[1.1,6]

(Central q2) (low q2) (Central q2)

LHCb 0.745+0.090
−0.074 ± 0.036 0.66+0.110

−0.070 ± 0.024 0.685+0.113
−0.069 ± 0.047

Expected 1.00± 0.01 0.92± 0.02 1.00± 0.01

Deviation 2.6 2.3 2.6

Table 3.1: The present status of deviations in RK(∗) observables at LHCb.

Since these ratios are almost free from the hadronic uncertainties in the Standard Model,

the deviations in the measurements could arise either due to statistical fluctuations or due

the presence of NP. The angular observable P ′5 [48] in the decays of the B mesons in B →
K∗µµ [30, 31] also show deviations from the SM predictions. The BELLE collaboration

has also reported an anomaly in P ′5 [49] which is compatible with the one observed in [30,

31]. The branching ratio measurements of B → K∗µµ [50] and B → φµµ [51] also show

slight deviations from the SM predictions. While all the latter anomalies could be accounted

for by form factor uncertainties and underestimated non-factorisable corrections, the R
(∗)
K

measurement should be free from strong interaction effects, since such effects majorly cancel

in the ratio. Therefore, if the R
(∗)
K anomaly are confirmed, they would signal a clear lepton

flavour universality violation [44,52].

Assuming that the above anomalies are due to presence of some physics beyond model, they

can be addressed by invoking additional NP contributions to some of the Wilson coefficients

Ci(µ) appearing in the effective Hamiltonian for b→ s``. In the SM, the effective Hamiltonian

for this process is [53]

Heff = −4GF√
2
VtbV

∗
ts ×∑

i=1,6

CiOi + C7γO7γ + C8GO8G +
∑
i=9,10

CiOi +
∑
i=S,P

C
(′)
i O

(′)
i

 , (3.1.2)

where Oi’s are the effective operators, and ′ indicates currents with opposite chirality. The

values of Ci(mb) have been calculated in [54]. At the leading order, the additional NP
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contributions may contribute to the operators which are already present in the SM:

O7γ =
e

16π2
mb (s̄σµνPRb)F

µν , O9 =
αe
4π

[s̄γµPLb]
[
¯̀γµ`

]
,

O10 =
αe
4π

[s̄γµPLb]
[
¯̀γµγ5`

]
, (3.1.3)

or may enhance the effects of the operators whose contributions are normally suppressed by

the lepton mass in the SM:

OS =
αe
4π

[s̄PRb]
[
¯̀̀
]
, OP =

αe
4π

[s̄PRb]
[
¯̀γ5`

]
,

O′S =
αe
4π

[s̄PLb]
[
¯̀̀
]
, O′P =

αe
4π

[s̄PLb]
[
¯̀γ5`

]
, (3.1.4)

or may generate new operators which are absent in SM [55]:

O′7γ =
e

16π2
mb (s̄σµνPLb)F

µν , O′9 =
αe
4π

[s̄γµPRb]
[
¯̀γµ`

]
,

O′10 =
αe
4π

[s̄γµPRb]
[
¯̀γµγ5`

]
. (3.1.5)

Simultaneous explanation of the RK and P ′5 anomalies2 is possible if the NP effects are present

in O9,O′9,O10 or O′10 operators [56]. The global fits [57–61] prefer NP effects in Oµ9 , i.e.

additional contributions to Cµ9 . Since the observed value of RK(obs) = 0.745+0.090
−0.074±0.036 [32]

is less than the SM prediction, which gives RK to be unity within an accuracy of 1% [44,52],

the new physics contribution must interfere destructively with the SM, i.e. opposite to that

of CSM
9 (mb) = 4.2 [54]. This indicates that the sign of CNP,µ

9 is negative. The best-fit

value of CNP,µ
9 is ≈ −1 [56–61]. In addition CNP,µ

9 = −CNP,µ
10 also gives a good fit to data

[58–61]. Motivated by these results, many explanations of the anomaly using Z ′ [62–82] and

leptoquark [56,82–103] models have been given in the literature.

Since the flavour anomalies mentioned above mostly involve muons, and there is no clear hint

of new physics effects in the electron sector apart from RK measurement, most of the analysis

have been performed assuming new physics effects in muons only. However, NP contributions

in the electron sector, CNP,e
9 , of the same order as those in the muon sector, are still consistent

with all b → s measurements within 2σ [58–61]. The comparisons among two dimensional

global fits also prefer (CNP,e
9 , CNP,µ

9 ) over other combinations like (CNP,µ
9 , CNP,µ

10 ) and (CNP,µ
9 ,

C ′ NP,µ
9 ), with the best fit point favouring dominant contributions to CNP,µ

9 [61].

In this work, we build our analysis around the choice where NP contributes via the O9

operator. We allow both CNP,e
9 and CNP,µ

9 to be present. Since these two contributions have

to be different, the NP must violate lepton flavour universality. This may be implemented in a

minimalistic way through an abelian symmetry U(1)X , under which the leptons have different

charges. In particular, greater NP contribution to CNP,µ
9 than CNP,e

9 may be achieved by a

higher magnitude of the X-charge for muons than for electrons. Substantial NP contributions

to the flavour anomalies also require tree-level flavour-changing neutral currents (FCNC) in

2The time when the paper was written results of R∗K anomaly were not known, hence the major analysis

in the thesis would concern with RK anomaly. Later in section 3.6, we will comment on the plausibility of

inclusion of RK∗ measurement on the generality of our results.
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the quark sector. These can be implemented through different X-charges for the quark

generations as well, which should still allow for quark mixing, and be consistent with the

flavour physics data.

A horizontal U(1)X symmetry in the lepton sector would also determine the possible textures

in the mass matrix of the right-handed neutrinos. In turn, the mixing pattern of the left-

handed neutrinos [27,28] will be affected through the Type-I seesaw mechanism. The possible

textures of the right-handed neutrino mass matrix and the lepton flavour universality violation

required for the flavour anomalies can thus have a common origin. Scenarios like an Lµ −Lτ
symmetry with X-charges given to the SM quarks [66, 78] or additional vector-like quarks

[65,73], have been considered in the literature in this context. Other models with Z ′ also have

their own X-charge assignments [67,68,70,72,77], however their connection with the neutrino

mass matrix has not been explored. We build our model in the bottom-up approach, where we

do not assign the X-charges a priori, but look for the X-charge assignments that satisfy the

data in the quark and lepton sectors. As a guiding principle, we introduce a minimal number

of additional particles, and ensure that the model is free of any gauge anomalies. Finally,

we identify the horizontal symmetries that are compatible with the observed neutrino mixing

pattern, and at the same time are able to generate CNP,e
9 and CNP,µ

9 that explain the flavour

anomalies.

The chapter is organized as follows. In section 3.2, we describe the construction of the U(1)X

models from a bottom-up approach. In section 3.3, we explore the allowed ranges of the

parameters that are consistent with the experimental constraints like neutral meson mixings,

rare B decays, and direct collider searches for Z ′. In section 3.4, we present the predictions for

the CP-violating phases in the lepton sectors for specific horizontal symmetries, and project

the reach of the LHC for detecting the corresponding Z ′. In section 3.5, we summarize our

results and present our concluding remarks.

3.2 Constructing the U(1)X class of models

We construct a class of models wherein, in addition to the SM fields, we also have three right-

handed neutrinos that would be instrumental in giving mass to the left-handed neutrinos

through the seesaw mechanism. We extend the SM gauge symmetry group by an additional

symmetry, U(1)X , which corresponds to an additional gauge boson, Z ′, with mass MZ′ and

gauge coupling gZ′ . To start with, we denote the X-charge for a SM field i by Xi. In this

section, we shall determine the values of Xi’s in a bottom-up approach.

3.2.1 Preliminary constraints on the X-charges

Since we wish to build up the model by introducing NP effects only in theO9 operator, we have

to make sure that the NP contribution to all the other operators listed in eqs. (3.1.3), (3.1.4),

and (3.1.5) should vanish. We first consider the interactions of Z ′ with charged leptons, `, in
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the mass basis:

L`Z′ = gZ′ `L γ
µV †`L X`L V`L `L Z

′
µ + gZ′ `R γ

µV †`R X`R V`R `R Z
′
µ , (3.2.1)

where X`L = diag (XeL , XµL , XτL) and X`R = diag (XeR , XµR , XτR), while V`L and V`R are

the rotation matrices diagonalizing the Yukawa matrix for charged leptons. Note that the

SU(2)L gauge invariance of the SM ensures X`L = Xν`L .

The Lagrangian in eq. (3.2.1) may be rewritten as

L`Z′ =
1

2
gZ′ ` γ

µ
(
V †`LX`LV`L + V †`RX`RV`R

)
` Z ′µ

−1

2
gZ′ ` γ

µγ5

(
V †`LX`LV`L − V

†
`R
X`RV`R

)
` Z ′µ . (3.2.2)

The second term in eq. (3.2.2) would contribute to O10 and O′10. Since we do not desire such

a contribution, we require

V †`LX`LV`L = V †`RX`RV`R . (3.2.3)

A straight forward solution to the eq. (3.2.3) yields V`L = I and V`R = I and further X`L =

X`R . In such a case a non-zero Yukawa matrix would need the Higgs field, Φ, to be a singlet

under U(1)X . Note that with unequal vector-like charge assignments in the lepton sector, the

Yukawa matrix will naturally be diagonal. This therefore is a minimal and consistent solution

and we proceed with this in our analysis.

Now we turn to the Z ′ interactions with the d-type quarks:

LdZ′ = gZ′ dL γ
µV †dL XdL VdLdL Z

′
µ + gZ′ dR γ

µV †dR XdR VdR dR Z
′
µ , (3.2.4)

where XdL = diag (XdL , XsL , XbL), XdR = diag (XdR , XsR , XbR), while VdL and VdR are the

rotation matrices which diagonalize the Yukawa matrix for d-type quarks. Note that the

SU(2)L gauge invariance of the SM ensures XdL = XuL .

Substantial NP effects require the X-charges to be non-universal, thereby generating both

bLγ
µsLZ

′
µ and bRγ

µsRZ
′
µ transitions. The presence of `γµ`Z ′µ interactions from eq. (3.2.2)

will potentially generate both O9 and O′9 operators. We would like the NP contributions to

O′9 operator to be vanishing, which can be ensured if the 2-3 element of V †dRXdRVdR vanishes.

Indeed, we would demand a stricter condition to ensure no tree-level FCNC interactions in

the right handed d-type sector, i.e. V †dRXdRVdR is diagonal. This can be ensured if

VdR ≈ I or XdR ∝ I . (3.2.5)

The non-universal charge assignments in the quark sector will also be constrained by the

observed neutral meson mixings. In particular, the constraints in the K–K oscillations are

by far the most stringent, and severely constrain the flavour changing Z ′ interaction with the

first two generation quarks. This can be accounted if we choose [66,72]

XdL = XsL , XdR = XsR . (3.2.6)
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Another extremely important constraint stems from the requirement that the theory be free

of any gauge anomalies. If the charge assignments are vector-like, i.e.

XuL = XdL = XuR = XdR ≡ XQ , X`L = Xν`L = X`R = Xν`R ≡ XL , (3.2.7)

and are related by the condition

Tr [ 3XQ + XL] = 0 , (3.2.8)

the theory is free of all gauge anomalies. The X-charge assignments can then be written in a

simplified notation as given in table 3.2. In terms of this notation, the anomaly-free condition

is

3 (2x1 + x3) + ye + yµ + yτ = 0 . (3.2.9)

Fields Q1 Q2 Q3 L1 L2 L3 Φ

U(1)X x1 x1 x3 ye yµ yτ 0

Table 3.2: Vector-like X-charge assignments after applying preliminary constraints from

the vanishing of NP contributions to O′9, O10 and O′10 operators, and constraints from K–K

mixing. Here Qi and Li represent the ith generations of quarks and leptons, respectively.

We are now in a position to select the correct alternative in eq. (3.2.5). The NP contribution

to the O9 operator would require x1 and x3 to be unequal (see section 3.2.3), i.e. XdL 6= I.

The vector-like charge assignments then imply XdR 6= I, and the only possibility remaining

from eq. (3.2.5) is VdR ≈ I. This condition need not be automatically satisfied in our model.

In addition, XdL = XdR 6= I could create problems in generating the structure of the quark

mixing matrix. We shall discuss the way to overcome these issues in section 3.2.2.

3.2.2 Enlarging the scalar sector

Additional doublet Higgs to generate the CKM matrix

The Yukawa interactions of quarks with the Higgs doublet Φ are

LYuk = Qf
L Yu Φc uf

R +Qf
L Yd Φdf

R . (3.2.10)

where the superscript “f” indicates flavour eigenstates. The X-charge assignments given in

table 3.2 govern the structure of the Yukawa matrices (Yu and Yd) as

Yu =

× × 0

× × 0

0 0 ×

 , Yd =

× × 0

× × 0

0 0 ×

 , (3.2.11)

where × denote nonzero values. Quarks masses are obtained by diagonalizing the above Yu
and Yd matrices using the bi-unitary transformations V †uLYuVuR and V †dLY

dVdR , respectively.
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Clearly, the rotations would be only in 1-2 sector. Therefore the quark mixing matrix, i.e.

VCKM = V †uLVdL also would have non-trivial rotations only in the 1-2 sector, however this

cannot be a complete picture as we know that all the elements of VCKM are non-zero.

The correct form of VCKM can be obtained if mixings between 1-3 and 2-3 generations are

generated. This can be achieved by enlarging the scalar sector of SM through an addition of

one more SM-like doublet, Φ1, with X-charge equal to ±d where d = (x1 − x3). We choose

XΦ1 = +d, similar to that in [66].

We first show how the 1-3 and 2-3 mixings are generated with the addition of this new Higgs

doublet. The generic representations for these doublets Φ1 and Φ2 ≡ Φ are

Φ1 =

(
φ+

1
1√
2
[Re(φ1) + iIm(φ1) + v1]

)
, Φ2 =

(
φ+

2
1√
2
[Re(φ2) + iIm(φ2) + v2]

)
,

where v1 and v2 are vacuum expectation values of the two doublets. There are related by

v1 = v cosβ and v2 = v sinβ, where v is the electroweak vacuum expectation value. With

this addition the Lagrangian in eq. (3.2.10) gets modified to

LYuk = Qf
L

(
Yu1 Φc

1 + YuΦc
2

)
uf
R +Qf

L

(
Yd1 Φ1 + YdΦ2

)
df
R , (3.2.12)

where

Yu1 =

0 0 0

0 0 0

× × 0

 , Yd1 =

0 0 ×
0 0 ×
0 0 0

 . (3.2.13)

The bi-unitary transformations would now diagonalize the quark mass matrices as

Mdiag
u =

v√
2
V †uL (Yu1 cosβ + Yu sinβ)VuR , (3.2.14)

Mdiag
d =

v√
2
V †dL

(
Yd1 cosβ + Yd sinβ

)
VdR . (3.2.15)

From eqs. (3.2.11), (3.2.12) and (3.2.13), it may be seen that rotations in 1-2, 1-3 as well

as 2-3 sector will now be needed to diagonalize the Yukawa matrices. Appropriate choice

of parameters can then reproduce the correct form of VCKM. We choose VuL = I, so that

VdL = VCKM, which ensures that Z ′ does not introduce any new source of CP violation in

B–B mixing.

Having fixed VuL and VdL , we now turn to VuR and VdR . The solution to eq. (3.2.14) yields

[Yu1 ]ij = 0, implying the mixing angle between the 2-3 and 1-3 generation for up type quark

is zero. The solution does not constrain the rotation angle between the first and the second

generation, which we choose to be vanishing for simplicity. Hence, VuR in our model is I.

Note that eq. (3.2.5) and subsequent discussion near the end of section 3.2.1 led to the

requirement VdR ≈ I. We shall now see that this requirement is easily satisfied in this

framework. With VdL = VCKM, eq. (3.2.15) may be written in the form

VCKMM
diag
d V †dR =

× × ×
× × ×
0 0 ×

 . (3.2.16)
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It may be seen that VdR with small rotation angles, parametrized as

VdR ≈

 1 θdR12
θdR13

e−i δd

−θdR12
1 θdR23

−θdR13
ei δd −θdR23

1

 , (3.2.17)

can lead to the above form, with

θdR23
≈ Aλ2ms/mb , θdR13

≈ −Aλ3md/mb , (3.2.18)

where A and λ are the Wolfenstein parameters and md, ms and mb are the quark masses.

Note that similar observation has been made in [66]. The value of θdR12
is not constrained,

and can be chosen to be vanishing. Thus, the requirement VdR ≈ 1 is satisfied.

Note that since VdR is only approximately equal to I, small NP contributions to C ′9 are present,

However as we shall see in section 3.2.3, these contributions are roughly (Aλ2ms)/(mbVtbV
∗
ts)

times the NP contributions to C9, and hence can be safely neglected.

Singlet scalar for generating neutrino masses and mixing pattern

Our model has three right handed neutrinos, νR’s. The Dirac and the Majorana mass terms

for neutrinos are

Lmass
ν = −νLmDνR −

1

2
νcRMRνR + h.c. , (3.2.19)

where the basis chosen for νL is such that the charged lepton mass matrix is diagonal. The

active neutrinos would then get their masses through the Type-I seesaw mechanism. The net

mass matrix being

Mν = −mDM
−1
R mT

D . (3.2.20)

Since the neutrinos are charged under U(1)X with charges (ye,yµ and yτ ), the (α, β) elements

of the Dirac mass matrix mD would be nonzero only when yα = yβ, while the (α, β) elements

of the Majorana mass matrix MR would be nonzero only when yα + yβ = 0. Since the X-

charges of neutrinos are non-universal and vector-like, the former condition implies that mD

is diagonal. (It can have off-diagonal elements if two of the yα’s are identical. However we can

always choose the νR basis such that mD is diagonal.) The allowed elements of MR are also

severely restricted, and it will not be possible to have a sufficient number of nonzero elements

in MR to be able to generate the neutrino mixing pattern.

To generate the required mixing pattern, we introduce a scalar S, which is a SM-singlet, and

has an X-charge XS = a, as a minimal extension of our model. With the addition of this

scalar, the Lagrangian in eq. (3.2.19) modifies to

[Lmass,S
ν ]αβ = [Lmass

ν ]αβ −
1

2
[νcR]α[YR]αβ[νR]β S + h.c. . (3.2.21)

The conditions for mD, MR and YR elements to be non zero are

[mD]αβ 6= 0 if yα − yβ = 0 , (3.2.22)

[MR]αβ 6= 0 if yα + yβ = 0 ,

[YR]αβ 6= 0 if yα + yβ = ±a . (3.2.23)
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When S gets a vacuum expectation value vS , it contributes to the Majorana mass term for

right handed neutrinos which now becomes

[MS
R]αβ = [MR]αβ +

vS√
2

[yR]αβ . (3.2.24)

Thus an element of [MS
R]αβ will be non-zero if,

yα + yβ = 0,±a . (3.2.25)

The textures in the neutrino mass matrix, i.e. the number and location of vanishing elements

therein, hold clues to the internal flavour symmetries. Only some specific textures of MR

are allowed. While no three-zero textures are consistent with data, specific two-zero textures

are allowed [104–107]. In addition, most one-zero textures [108], and naturally, all no-zero

textures, are also permitted. Among the allowed textures, we identify those that can be

generated by a U(1)X symmetry with a singlet scalar, i.e. those for which values of yα

and a satisfying eq. (3.2.25) may be found. These combinations are listed in table 3.3, and

categorized according to the ratio ye/yµ. Note that by the leptonic symmetry combination

peLe+pµLµ+pτLτ , we refer to all U(1)X charge combinations, where pe/ye = pµ/yµ = pτ/yτ

(for non zero values yα and pα respectively). It is to be noted that part of the list was

already derived in [106,107]. Later in section 3.2.3, we shall examine the consistency of these

symmetries with the flavour data.

Note that we would like all the elements of right handed neutrino mass matrix to have similar

magnitudes, so it would be natural to have [MS
R]α,β ∼ O(vS). Our scenario is thus close to a

TeV-scale seesaw mechanism [109].

Relating X-charges of doublet and singlet scalars

The scalar sector of our model consists of two SU(2)L doublets Φ1 and Φ ≡ Φ2, and a

SM-singlet S, with X-charges d, 0, a, respectively. The scalar potential that respects the

SU(2)L × U(1)Y × U(1)X symmetry is

VΦ1Φ2S = −m2
11Φ†1Φ1 +

λ1

2
(Φ†1Φ1)2 −m2

22Φ†2Φ2 +
λ2

2
(Φ†2Φ2)2

−m2
SS
†S +

λS
2

(S†S)2 + λ3 Φ†1Φ1 Φ†2Φ2

+λ4 Φ†1Φ2 Φ†2Φ1 +
(
λ1S1Φ†1Φ1 + λ2SΦ†2Φ2

)
S†S . (3.2.26)

The U(1)X symmetry is broken spontaneously by the vacuum expectation values of Φ1 and

S, and consequently Z ′ obtains a mass (see section 2.3). Since the collider bounds indicate

MZ′ & TeV, we expect vs & TeV (since v1 . electroweak scale).

Therefore, before electroweak symmetry breaking, U(1)X symmetry gets broken sponta-

neously and the singlet, S, gets decoupled. The effective potential for the doublets after
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Category ye/a yµ/a yτ/a Symmetries

A 0 −1 0, 1 Lµ, Lµ − Lτ

B 1
2 −3

2 ±1
2 Le − 3Lµ ± Lτ

C −1
2 −3

2
1
2 Le + 3Lµ − Lτ

D 1
2 −1

2 ±1
2 , ±3

2 Le − Lµ ± Lτ , Le − Lµ ± 3Lτ

E 1
2

1
2 −1

2 , −3
2 Le + Lµ − Lτ , Le + Lµ − 3Lτ

F 3
2 −1

2 −1
2 3Le − Lµ − Lτ

G 1 0 0 Le

Table 3.3: The X-charges (in units of a) along with the symmetry combinations that are

consistent with the neutrino oscillation data [27, 28]. Note that by the leptonic symmetry

combination peLe + pµLµ + pτLτ , we refer to all U(1)X charge combinations, where pe/ye =

pµ/yµ = pτ/yτ (for non zero values yα and pα respectively). In the list we have dropped the

cases with lepton flavour universality and the one where ye = yµ = 0.

U(1)X symmetry breaking

VΦ1Φ2 = −
(
m2

11 −
λ1S1

2
v2
S

)
Φ†1Φ1 +

λ1

2
(Φ†1Φ1)2 −

(
m2

22 −
λ2S

2
v2
S

)
Φ†2Φ2

+
λ2

2
(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1). (3.2.27)

The potential, VΦ1,Φ2 , is invariant under the global transformation U(1)V × U(1)A such that

U(1)V × U(1)A : Φ1 → ei(θV −θA)Φ1, Φ2 → ei(θV +θA)Φ2. (3.2.28)

Out of U(1)V and U(1)A, only U(1)V can be gauged and identified as U(1)Y since both the

doublets should have the same hypercharge. After electro-weak symmetry breaking, along

with the gauge symmetries, U(1)A would also be broken spontaneously and would result in

a Goldstone boson. This problem would not arise if the potential were not symmetric under

U(1)A to begin with, i.e. if it were broken explicitly by a term

∆VΦ1Φ2 = −m2
12Φ†1Φ2 + h.c. . (3.2.29)

Note that this can happen naturally in our scenario: the term above can be generated by

spontaneously breaking of U(1)X if XS is equal to XΦ1 , i.e., if a = d, we can have

∆VΦ1Φ2S = −m̃12

[
S Φ†1Φ2 + S†Φ†2Φ1

]
, (3.2.30)

with

m2
12 =

1√
2
m̃12vS . (3.2.31)

Thus the identification XS = XΦ1 = a naturally avoids a massless scalar in our model by

modifying the potential as

VΦ1Φ2S → VΦ1Φ2S + ∆VΦ1Φ2S . (3.2.32)
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3.2.3 Selection of the desirable symmetry combinations

In this section, we combine the U(1)X symmetries identified in section 3.2.2 with the NP

contribution to O9 needed to account for the flavour anomalies. The Lagrangian describing

the Z ′ interactions with d-type quarks and charged leptons is

LZ′ = gZ′ dLγ
µ V †CKMXQ VCKMdL Z

′
µ + gZ′ dR γ

µ V †dR XQ VdR dR Z
′
µ

+gZ′ ` γ
µXL ` Z ′µ (3.2.33)

Here XQ = diag(x1, x1, x3) and XL = diag(ye, yµ, yτ ). Using the above Lagrangian, the Z ′

contributions to the effective Hamiltonian for b→ s`` processes at MZ′ scale is

HNP
eff = −(x1 − x3) y` g

2
Z′

M2
Z′

VtbV
∗
ts (sLγ

µbL)
(
`γµ`

)
+

(x1 − x3) y` g
2
Z′

M2
Z′

θ2
dR23

(sRγ
µbR)

(
`γµ`

)
.

(3.2.34)

Comparing it with the standard definition of Heff as given in eq. (3.1.2), we obtain the NP

contribution to the Wilson coefficients CNP,`
9 and C ′NP,`

9 as

CNP,`
9 (MZ

′) =

√
2π(x1 − x3) y`g

2
Z′

GFM2
Z′αe

, C ′NP,`
9 (MZ

′) = −
√

2π(x1 − x3) y`g
2
Z′θ

2
dR23

GFM2
Z′αeVtbV

∗
ts

, (3.2.35)

The smallness of θR23, as shown in eq (3.2.18), makes the NP contribution to O′9 small in

comparison to the corresponding contribution to O9:

C ′`9 (MZ
′) = −

θ2
DR23

VtbV
∗
ts

CNP,`
9 (MZ

′)

≈ −0.025CNP,`
9 (MZ

′) . (3.2.36)

The flavour anomalies like RK and P ′5 depend crucially on CNP,e
9 and CNP,µ

9 , and not on

CNP,τ
9 . A negative value of CNP,µ

9 is preferred [57–61] as a solution to these anomalies which

can be easily obtained if, (x1 − x3) yµ < 0. The values of CNP,e
9 and CNP,µ

9 are related by

CNP,e
9 /CNP,µ

9 = ye/yµ . (3.2.37)

This ratio stays the same at all scales between MZ′ and mb, since the O9 operator does not

mix with any other operator at one loop in QCD. This ratio is represented in figure 3.1 by

lines corresponding to different symmetries in table 3.3.

In figure 3.1, we also show the 1σ contours in the CNP,µ
9 –CNP,e

9 plane obtained from the

global fits [59–61]. For further analysis, we select only those combinations (categories A, B,

C, D) which pass through the 1σ regions of any of these global fit contours. Among these

possibilities, Lµ − Lτ has already been considered in the context of RK [65,66,73,78], where

the NP contribution to Ce9 is absent. We shall explore the phenomenological consequences of

these symmetries in section 3.3.

Note that although we refer to the symmetries by their lepton combinations, quarks are also

charged under the U(1)X . These charges can be easily obtained from the anomaly eq. (3.2.9),
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Figure 3.1: Allowed 1σ regions in (CNP,e
9 ,CNP,µ

9 ) plane using the global fit data: red contour

is obtained from [59], blue from [60] and green from [61]. Lines for various U(1)X symmetries

using eq. (3.2.37) have also been plotted. We do not show τ charge explicitly in the plot.

and have been given in table 3.4, in terms of the parameter a. Further, note that all the

X-charges are proportional to a. As a result, a and gZ′ always appear in the combination

agZ′ . We therefore absorb a in the definition of gZ′ :

gZ′ → a gZ′ , (3.2.38)

and consider a = 1 without loss of generality for our further analysis. The interactions of

Z ′ then can be expressed in terms of two unknown parameters, gZ′ and MZ′ . In the next

section, we shall subject all the symmetry combinations in table 3.4 to tests from experimental

constraints.

3.3 Experimental Constraints

Our class of models will be constrained from flavour data and direct searches at the colliders.

We choose to work in the decoupling regime where the additional scalars are heavy and do

not play any significant role in the phenomenology. This is easily possible by suitable choice

of the parameters in eq. (3.2.32). This framework naturally induces Z − Z ′ mixing at tree

level, which can also be minimized by the choice of these parameters (section 2.3). The two

parameters that are strongly constrained from the data are the mass and gauge coupling of

the new vector boson, Z ′. In this section, we explore the constraints on MZ′ and gZ′ from

neutral meson mixings, rare B decays, and direct Z ′ searches at colliders.
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Category Symmetry/Charges x1/a x2/a x3/a ye/a yµ/a yτ/a

A Lµ − Lτ 1
3

1
3 −2

3 0 −1 1

Lµ
4
9

4
9 −5

9 0 −1 0

B Le − 3Lµ + Lτ
7
18

7
18 −11

18
1
2 −3

2
1
2

Le − 3Lµ − Lτ 1
2

1
2 −1

2
1
2 −3

2 −1
2

C Le + 3Lµ − Lτ 1
2

1
2 −1

2 −1
2 −3

2
1
2

D Le − Lµ + 3Lτ
1
6

1
6 −5

6
1
2 −1

2
3
2

Le − Lµ − 3Lτ
1
2

1
2 −1

2
1
2 −1

2 −3
2

Le − Lµ + Lτ
5
18

5
18 −13

18
1
2 −1

2
1
2

Le − Lµ − Lτ 7
18

7
18 −11

18
1
2 −1

2 −1
2

Table 3.4: Charges of the fermion fields in units of a. It can be seen that for all the allowed

symmetries we have (x1 − x3) yµ < 0.

3.3.1 Constraints from neutral meson mixings and rare B decays

The FCNC couplings of Z ′ to dL-type quarks (note that VdL = VCKM) will lead to neutral

meson mixings as well as b → d and b → s transitions at the tree level, and hence may be

expected to give significant BSM contributions to these processes.

The effective Hamiltonian in SM [110] that leads to K −K, Bd −Bd and Bs −Bs mixing is

HSM
eff =

G2
F

16π2
M2
WC

SM
K (µ)

[
sγµ(1− γ5)d

][
sγµ(1− γ5)d

]
+

G2
F

16π2
M2
W (VtbV

∗
td)

2CSM
Bd

(µ)
[
bγµ(1− γ5)d

] [
bγµ(1− γ5)d

]
+

G2
F

16π2
M2
W (VtbV

∗
ts)

2CSM
Bs (µ)

[
bγµ(1− γ5)s

] [
bγµ(1− γ5)s

]
, (3.3.1)

where CSM
P (µ) are the Wilson coefficients at the scale µ for P = K,Bd, Bs and the CKM

factors for K–K mixing are absorbed in CSM
K (µ) itself.

Contributions due the Z ′ exchange will have the same operator form as in the SM since (i) The

FCNC contributions to dRiγ
µdRjZ

′
µ operator are small as shown in eqs. (3.2.18) and (3.2.36),

and (ii) we are working in the decoupling limit, where the contributions due to the exchanges

of scalars H0, A0 and H+ are negligible3. As a result, the total effective Hamiltonian can

simply be written with the replacement

CSM
P (µ)→ Ctot

P (µ) = CSM
P (µ) + CNP

P (µ) , (3.3.2)

3The contributions due to charged Higgs are loop suppressed and the amplitude of H0 and A0 interferes

destructively leading to vanishing contributions for the limit α− β ≈ π
2

and MA0 ≈MH0 .
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with the Wilson coefficients CNP
P at the MZ′ scale given by

CNP
K (MZ′) =

2π2 (x1 − x3)2 g2
Z′ (VtdV

∗
ts)

2

M2
Z′G

2
FM

2
W

,

CNP
Bq (MZ′) =

2π2 (x1 − x3)2 g2
Z′

M2
Z′G

2
FM

2
W

where, q = d, s . (3.3.3)

These Wilson coefficients at one loop in QCD run down to the MW scale as [110]

CNP
P (MW ) =

[
αs(mt)

αs(MW )

] 6
23
[
αs(MZ′)

αs(mt)

] 2
7

CNP
P (MZ′) . (3.3.4)

Since the form of operators corresponding to CNP
P (µ) and CSM

P (µ) is the same, the ratio

CNP
P (µ)/CSM

P (µ) stays the same for all scales below MW . Since only this ratio is relevant for

the constraints from P–P mixing, we work in terms of CNP
P (MW )/CSM

P (MW ).

The constraints from P–P measurements are generally parametrized in terms of the following

quantities [111]:

CεK ≡
Im
[〈
K0|Htot

eff |K̄0

〉]
Im
[〈
K0|HSM

eff |K̄0

〉] , CBqe
2iφBq ≡

〈
Bq|Htot

eff |B̄q
〉〈

Bq|HSM
eff |B̄q

〉 . (3.3.5)

Note that the quantity C∆mK ≡ Re
[〈
K0|Htot

eff |K̄0

〉]
/Re

[〈
K0|HSM

eff |K̄0

〉]
is also a relevant

observable, however since it receives large long distance corrections, we do not consider it in

our analysis. Since VDL = VCKM, there is no new phase contributions to Bq −Bq mixing and

φBq = 0.

We combine the above measurements and show the allowed 2σ regions in the gZ′–MZ′ plane

in figure 3.2. Note that constraints from neutral meson mixings depends on gZ′ , MZ′ and

(x1−x3). Since (x1−x3) = a, therefore the P–P constraints are the same in all the categories

in table 3.4 (and hence for all the four panels of figure 3.2).

Figure 3.2 also shows the 2σ allowed regions that correspond to the constraints from a global

fit [61] incorporating the b→ s`` and b→ sγ data. Note that these constraints have already

been used in shortlisting the lepton symmetries in table 3.4, Here we find the allowed regions

in the gZ′–MZ′ plane using eq. (3.2.35). The constraints depend on the X-charges of the

electron and muon, but are independent of the charge of τ . Therefore we have displayed

them in four panels, that correspond to the categories A, B, C, D, respectively.

Our model receives no constraints from Bd → µµ and Bs → µµ since these decays depend

on O10, and our charge assignments do not introduce any NP contribution to this operator.

The NP contribution will affect b → sνν decays, however the current upper limits [112] are

4-5 times larger than the SM predictions, whereas in the region that is consistent with the

neutral meson mixing and global fits for the rare decays, the enhancement of this decay rate

in our model is not more than 10%. We exemplify this point by working out the effect. The

effective Hamiltonian for b→ sν`ν` in SM is [110,112]

HSM
eff = −4GF√

2

αe
4π

VtbV
∗
tsC

SM
L

[
sLγµ bL

] [
ν`γµ(1− γ5)ν`

]
, (3.3.6)

39



Lμ

Lμ - Lτ

0.2 0.3 0.4 0.5 0.6
1000

2000

3000

4000

5000

gZ /

M
Z

/
(G
e
V
)

Category-A

Le - 3 Lμ + Lτ

Le - 3 Lμ - Lτ

0.2 0.3 0.4 0.5 0.6
1000

2000

3000

4000

5000

gZ /

M
Z

/
(G
e
V
)

Category-B

Le + 3 Lμ - Lτ

0.2 0.3 0.4 0.5 0.6
1000

2000

3000

4000

5000

gZ /

M
Z

/
(G
e
V
)

Category-C

Le - Lμ + 3 Lτ

Le - Lμ - 3 Lτ

Le - Lμ - Lτ
Le - Lμ + Lτ

0.2 0.3 0.4 0.5 0.6
1000

2000

3000

4000

5000

gZ /

M
Z

/
(G
e
V
)

Category-D

Figure 3.2: The constraints in the gZ′ –MZ′ plane, from neutral meson mixings, rare

B decays, and collider searches for Z ′, for the symmetry categories in table 3.4. The 2σ

regions allowed by the neutral meson mixings are shaded pink, while the 2σ regions allowed

by the global fit [61] to b → s`` and b → sγ is shaded blue. Purple is the overlap of these

two constraints. The dotted and dashed lines correspond to the collider bounds – the regions

above them are allowed at 95% C. L.. The net allowed region for a given symmetry is therefore

the purple region lying above the dotted / dashed line corresponding to that symmetry.

where CSM
L = −Xt/s

2
W , with Xt = 1.469± 0.017 [112]. The Z ′ mediation also generates the

contribution to the same operator. The combined SM and NP effect is

Htot
eff = −4GF√

2

α

4π
VtbV

∗
ts (CSM

L + CNP,`
L )

[
sLγµ bL

] [
ν`γµ(1− γ5)ν`

]
, (3.3.7)

with CNP,`
L = (x1−x3)πy`g

2
Z′/(
√

2M2
Z′GFαe) The right handed current operator contributions

are small (see arguments leading to eq. (3.2.36)) and are neglected. NP can enhance the rate

of an individual lepton channel b → sν`ν` if (x1 − x3)y` < 0. In experiments, the branching

ratios and the decay widths corresponding to b → sν`ν` has to summed over all the three

generations of neutrinos. We consider the quantity Rνν which gives us a measure of NP effects

Rνν =
|CSM
L + CNP,e

L |2 + |CSM
L + CNP,µ

L |2 + |CSM
L + CNP,τ

L |2
3 |CSM

L |2
(3.3.8)
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Figure 3.3: Predictions for Rνν with different symmetries from table 3.4.

The enhancement or suppression of the branching ratio crucially depends on the combined

effects of (x1 − x3)y` for the three generations.

In figure 3.3 we show the value of Rνν as a function of MZ′ for all the symmetries in table 3.4,

where the coupling has been fixed to gZ′ = 0.4. It is observed that the net increment is

not more than 10% for all symmetries. (Note that for some symmetries, the lower values of

masses may not be allowed, as shown in figure 3.2, in which case the deviation would be further

reduced.) The enhancement and suppression is thus too small for the current experiments to

be sensitive to – The current bounds on BR(B → K(∗)νν) are 4–5 times higher than the SM

prediction [112], while Belle2 experiment is expected to reach a sensitivity close 30% from

SM by 2023 [132].

3.3.2 Direct constraints from collider searches for Z ′

In figure 3.2 we also show the bounds in the gZ′–MZ′ plane from the 95% upper limits on

the σ × BR for the process pp → Z ′ → `` [113, 114]. The bounds coming from di-jet final

state [115,116] are relatively weaker than those coming from di-leptons, hence we neglect the

di-jet bounds in our analysis. The total cross-section pp→ Z ′ → `` depends not only on MZ′

and g′Z but also on the X-charges of quarks and leptons, therefore the bounds obtained differ

for all the nine symmetries in table 3.4.

Note that the experimental limits in [113,114] are given in the narrow width approximation,

whereas the Z ′ for masses above 2 TeV has broad width for all the symmetry cases which

we have considered. The constraints in the broad width case are generally weaker, therefore

even lighter Z ′ values than those shown in the figure are allowed.
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3.4 Predictions for neutrino mixing and collider signals

3.4.1 Neutrino mass ordering and CP-violating Phases

The categories A, B, C and D, in table 3.4 correspond to different texture-zero symmetries

in the right-handed neutrino mass matrix MR. Through eq. (3.2.24), these predict the light

neutrino mass matrix Mν , which can be related to the neutrino masses and mixing parameters

via

Mν = −UPMNSM
diag
ν UTPMNS , (3.4.1)

where UPMNS is the neutrino mixing matrix parametrized by three mixing angles θ12, θ13,

θ23, and the Dirac phase δcp. The diagonal mass matrix Mdiag
ν = (e2iα1m1, e

2iα2m2,m3)

incorporates the Majorana phases α1 and α2, in addition to the magnitudes of the masses,

m1,m2 and m3. Since the symmetries restrict the form of MR, they are expected to restrict

the possible values of neutrino mixing parameters. While the neutrino mixing angles are

reasonable well-measured, the values of unknown parameters like α1, α2 and δCP may be

restricted in each of the scenario. In addition, whether the neutrino mass ordering is normal

(m2
2 < m2

3) or inverted (m2
2 > m2

3) is also an open question, and some of the symmetries may

have strong preference for one or the other ordering. The symmetries in table 3.4 that yield

two-zero textures for MR, viz. Lµ − Lτ , Le − 3Lµ − Lτ , Le + 3Lµ − Lτ and Le − Lµ ± 3Lτ

have already been explored in this context and the allowed parameter values determined

[66,104–106,117].
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Figure 3.4: The scatter plots of allowed values of the CP phases α2 and δCP with the those

of α1. The left (right) panel shows the results for normal (inverted) mass ordering. The

yellow (red) points correspond to (2α1, 2α2) values for mlight = 0.05(0.2) eV, while the blue

(green) points correspond to (2α1, δCP) values for mlight = 0.05(0.2) eV.
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We exemplify the point in the context of the symmetries that yield one-zero texture for MR,

viz. Lµ and Le− 3Lµ +Lτ . These two also happen to be the ones that are consistent with all

the global fits [58–61] to the b→ s`` and b→ sγ data to within 1σ. Both of these symmetries

lead to [MR]22 = 0. Equation (3.2.24) then leads to the condition of one vanishing minor in

the Mν mass matrix [118], i.e. [Mν ]11[Mν ]33 − [Mν ]213 = 0. In terms of masses and elements

of the UPMNS matrix,

(U13U32 − U12U33)2m2m3e
2iα2 = − (U12U31 − U11U32)2m1m2e

2i(α1+α2)

− (U13U31 − U11U33)2m1m3e
2iα1 , (3.4.2)

where Uij are elements of the UPMNS matrix. Requiring the neutrino masses and mixings to

satisfy the above relation, we show the allowed values of the CP-violating phases α1, α2 and

δCP in figure 3.4, for two fixed values of the lightest neutrino mass mlight (i.e. m1 for normal

ordering and m3 for inverted ordering). We let the other neutrino parameters (mixing angles

and mass squared differences) to vary within their 3σ ranges [27, 28]. The figure shows that

the allowed value of α2 with the Lµ or Le − 3Lµ + Lτ symmetry is restricted to be rather

close to π/2. For lower mlight values, α2 is more severely restricted and for inverted ordering,

the value of α1 also is restricted to be close to π/2.

Another set of predictions may be obtained by relating the lightest neutrino mass mlight to

the effective mass measured by the neutrinoless double beta decay experiments [119] if the

neutrinos are Majorana, i.e.

〈mee〉 =
∣∣∣m1e

2iα1 cos2 θ12 cos2 θ13 +m2e
2iα2 sin2 θ12 cos2 θ13 +m3e

−2iδCP sin2 θ13

∣∣∣ . (3.4.3)

We show the allowed region (with mixing angles and mass squared differences varied within

their 3σ ranges [27, 28]) in the mlight–〈mee〉 plane in figure 3.5. Bounds from the non-

observation of neutrinoless double beta decay [119] and conservative limits coming from

cosmology (
∑
mν < 0.6 eV) [120] have also been shown. The figure shows that the sym-

metries Lµ or Le − 3Lµ + Lτ restrict the allowed values of mlight and 〈mee〉 significantly in

the case of inverted ordering: mlight & 0.045 eV and 〈mee〉 & 0.055 eV. With the cosmological

bounds on the sum of neutrino masses becoming stronger, the inverted hierarchy in these

scenarios would get strongly disfavoured.

The symmetries in table 3.4 that do not lead to a zero-texture in MR, i.e. Le − Lµ ± Lτ ,

will not give any predictions for the neutrino mass ordering or CP-violating phases; model

parameters can always be tuned to satisfy the data.

3.4.2 Prospects of detecting Z ′ at the LHC

In our model apart from Z ′, there are additional scalars and three heavy majorana neutrinos.

Note that the parameters in our model have been chosen such that we are in the decoupling

limit, i.e. the additional scalars H,A,H±, S are too heavy to affect any predictions in the

model. The three right handed neutrinos in our model have masses of the order of a TeV and
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Figure 3.5: The scatter plots of allowed values of mlight and 〈mee〉. The red (blue) points

correspond to the allowed values with (without) the symmetry (Lµ or Le−3Lµ+Lτ ). The left

(right) panel shows the results for normal (inverted) mass ordering. The regions disallowed by

the non-observations of neutrinoless double beta decay (0νββ) and cosmological constraints

have also been shown.

hence can be looked at the collider-based experiments. The recent analyses for the detection

of the heavy right handed neutrinos can be found in [121]. We however choose MR &MZ′/2,

hence do not consider the phenomenology of the right handed neutrinos.

We shall now explore the possibility of a direct detection of the Z ′ gauge boson in the 13 TeV

LHC run. The cleanest probe for this search is pp → Z ′ → `` [113, 114]. In such a search,

one looks for a peak in the invariant mass spectrum of the dilepton pair.

As an example, we choose the Le− 3Lµ +Lτ symmetry. We use FeynRules [122] to generate

the model files and then interface the Madgraph [123] output of the model with PYTHIA 6.4

[124] for showering and hadronisation with parton distribution function CTEQ-6 [125]. The

output is then fed into Delphes 3.3 [126,127] which gives the output in the ROOT [128] format

for a semi-realistic detector simulation while using the default ATLAS card. In our detector

analysis jets are constructed from particle flow algorithm using the anti-kT jet algorithm with

R = 0.5 and pmin
T = 50 GeV. We retain events only with a pair of isolated opposite-sign

muons with highest pT in each event. Care has been taken to reject any isolated electron in

the event sample. A rough pT cut on the muons is set at pµT > 25 GeV which roughly matches

the ATLAS cuts [113]. The dominant SM background for this di-muon channel comes from

the Drell-Yann process. Other factors contributing to the SM background are diboson and

top quarks in the final state. In the left panel of figure 3.6 we show the dimuon invariant

mass distribution of the SM backgrounds as well as the signal for a fixed benchmark scenario

satisfying all the flavour and collider constraints (see figure 3.2) with MZ′ = 4 TeV and
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gZ′ = 0.36. Although the production cross section for such a heavy Z ′ gauge boson is small,

close to 1.49 fb, the SM background is also minuscule in that regime. Therefore, the Z ′ → µµ

is a natural probe to look for BSM signals. We note in passing that a Z ′ associated with a

hard jet in the final state should increase the signal significance further [129]. However, we

only select events with opposite sign di-muon pair and a hard jet veto.
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Figure 3.6: The left panel shows the dimuon invariant mass distribution for the signal

originating from Z ′ (with MZ′ = 4 TeV and gZ′ = 0.36) and the various SM backgrounds at

13 TeV, with L = 100 fb−1. The right panel shows the discovery significance S/
√
S +B as a

function of MZ′ (with gZ′ = 0.36) and integrated luminosity. The 5 σ and 3 σ contours are

also shown explicitly.

To further calculate the reach of the LHC for the Z ′ discovery via Z ′ → µµ, we use a

signal specific cut on the dimuon invariant mass mµµ > 700 GeV which renders all the SM

backgrounds to be very small whereas the signal hardly gets affected. We keep the coupling

gZ′ fixed at 0.36, and illustrate in the right panel of figure 3.6, the reach of the LHC in

the MZ′– integrated luminosity (L) plane, in the form of a density plot of the significance

S/
√
S +B [130]. (Here S, B are the number of signal and background events after the

cut, respectively.) The figure indicates that detecting a Z ′ of mass 4000 GeV at 3 σ (5 σ)

significance requires an integrated luminosity close to 400 fb−1 (1000 fb−1) in the 13 TeV run

of the LHC.

3.5 Summary and concluding remarks

In this chapter, we have looked for a class of models with an additional possible U(1)X

symmetry that can explain the flavour anomalies (RK and P ′5) and neutrino mixing pattern.

The models are built around the phenomenological choice where NP effects are dominant only

in the O9 operator, as indicated by the global fits to the b→ s data. One salient feature of our

analysis is that the assignment of X-charges of fields is done in a bottom-up approach. I.e.,

we do not start with a pre-visioned symmetry, but look for symmetry combinations consistent

with both the flavour data and neutrino mixing.
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In order to generate neutrino masses through the Type-I seesaw mechanism, we add three

right-handed neutrinos to the SM field content. This also allows us to assign vector-like

X-charges to the SM fermions, so that the anomaly cancellation can be easily achieved.

This choice also makes NP contributions to O10 and O′10 vanish. While the different X-

charge assignments to the SM generations introduce the desired element of lepton flavour

non-universality at tree level, it also introduces the problem of generating mixings in both

quark and lepton sector. This is alleviated by adding an additional doublet Higgs Φ1 that

generates the required quark mixing, and a scalar S that generates lepton mixing. The choice

of rotation matrices VuL = VuR = 1, VdL = VCKM and VdR ≈ 1 also ensures that the NP

contribution to O′9 is negligible. The scalar S also helps in avoiding the possible problem of

a Goldstone boson appearing from the breaking of a symmetry in the doublet Higgs sector.

Our model is thus rather parsimonious, with the introduction of only the two additional

scalar fields Φ1 and S. The symmetry breaking due to the vacuum expectation values of

these scalars gives mass to the new gauge boson Z ′, at the same time keeping its mixing with

the SM Z boson under control.

With the X-charges of quark and lepton generations connected through anomaly cancellation,

the X-charge assignments may be referred to in terms of the corresponding symmetries in

the lepton sector. We identify those leptonic symmetries that would give rise to the required

structure in the neutrino mass matrix, at the same time are consistent with the global fits to

the b→ s data. We find nine such symmetries, viz. Lµ−Lτ , Lµ, Le−3Lµ±Lτ , Le+3Lµ−Lτ ,

Le−Lµ±3Lτ , and Le−Lµ±Lτ . We find the allowed regions in the gZ′–MZ′ parameter space

that satisfy the bounds from neutral meson mixings, rare B decays, and direct Z ′ collider

searches.

The lepton symmetries give rise to specific textures in the right-handed neutrino mass matrix

MR, and hence, through seesaw, to patterns in the light neutrino mass matrix. The consequent

neutrino masses and mixing parameters are hence restricted by these symmetries. In order

to exemplify this, we have focussed on the symmetries Lµ and Le− 3Lµ +Lτ that give rise to

one zero-texture in MR, and are also the most favoured symmetries according to all the b→ s

global fits. We have analyzed the correlations among the CP-violating phases α1, α2, δCP, and

also explored the allowed region in the parameter space of the lightest neutrino mass mlight

and the effective neutrino mass 〈mee〉 measured in the neutrinoless double beta decay. For

Le − 3Lµ +Lτ , we also calculate the reach of the LHC for direct detection of Z ′ through the

di-muon channel. We find that discovery of Z ′ with the required mass and gauge coupling is

possible with a few hundred fb−1 integrated luminosity at the 13 TeV run.

Note that the parameters in our minimal model have been chosen such that we are in the

decoupling limit, i.e. the additional scalars H,A,H±, S, and the three right-handed neutrinos

are too heavy to affect any predictions in the model. Our model thus does not try to account

for the flavour anomalies indicated in the semileptonic b → c decays [131]. These anomalies

may be addressed in the extensions of this minimal model to include non-decoupling scenarios

(for example, where the charged Higgs is light), or additional charged W ′± gauge bosons.
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While the former scenario needs to satisfy additional constraints from flavour and collider

data, the latter will need mechanisms for giving masses to the new gauge bosons.

In this chapter we have presented a class of symmetries that are consistent with the current

data, and not applied any aesthetic biases among them. As more data come along, some of

these symmetries are sure to be further chosen or discarded. We have chosen the symmetries

in the bottom-up approach, and have not tried to explore their possible origins. A curious

pattern applicable for some of the symmetries (Lµ, Le − 3Lµ +Lτ and Le −Lµ +Lτ ) is that

the non-universality of X-charges is displayed only by the third generation quarks and the

second generation leptons. Such patterns may provide further hints in the search for the more

fundamental theory governing the mass generation of quarks and leptons.

3.6 Afterword

In this section, we comment on the implications of including RK∗ measurements and on the

possibility of having simultaneous solutions of RK and RK∗ . In previous sections, we had

seen that most favourable solution explaining the b→ s anomalies was

CNP,µ
9 ≈ −1 , CNP,e

9 ≈ 0 . (3.6.1)

This same solution, however, is unable to explain RK∗ measurement in low q2 bin. To see

this, let us note the expressions of RK and RK∗ measurements in detail [44, 133].

RK =

∫ q2
max

q2
min

dq2dΓ(B → Kµµ)

dq2∫ q2
max

q2
min

dq2
dΓ(B → Kee)

dq2

, RK∗ =

∫ q2
max

q2
min

dq2
dΓ(0+⊥)(B → K∗µµ)

dq2∫ q2
max

q2
min

dq2
dΓ(0+⊥)(B → K∗ee)

dq2

(3.6.2)

where,

dΓ(B → K``)

dq2
∝

(
|C`10 + C`′10|2 +

∣∣∣∣C`9 + C`′9 +
2mb

mb +mK
C7
fT (q2)

f+(q2)

∣∣∣∣2
)

dΓ0(B → K∗``)

dq2
∝

(
|C`10 − C`′10|2 +

∣∣∣∣C`9 − C`′9 +
2mb

mB
C7
T0(q2)

V0(q2)

∣∣∣∣2
)

dΓ⊥(B → K∗``)

dq2
∝

(
|C`10|2 + |C`,′10 |2 + |C`′9 |2 +

∣∣∣∣C`9 +
2mbmB

q2
C7
T−(q2)

V−(q2)

∣∣∣∣2
)

(3.6.3)

Observing the above equations, it is certain that if we introduce a NP contribution in Cµ9 , i.e.

Cµ,NP
9 , then the observables RK and RK∗ will have values lesser than their SM expectation.

However, due to photon pole enhancement of RK∗ in the low q2 bin, large negative values

of Cµ9 (much larger than -1) will be required. Such large values are undesirable for RK

measurement as they push its value outside the 2-σ range.
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To analyze the plausibility of simultaneous solutions, say within 1-σ of the experimental

deviation, we plot σ =
(Rtheory

H −Rmeasured
H )

σexp
for different values of Cµ,NP

9 in fig. 3.7. Here

RH = RK or RK∗ . Note that σ = 0 in the plot implies that the theoretically predicted value

of RK or RK∗ exactly matches the measured value at the experiment. Clearly simultaneous

solutions does not exist between RK and RK∗ (both) as there is no-overlap within 1-σ.

However, if we ignore RK∗ measurement in the low q2, then simultaneous solution is possible

between RK and central q2 bin measurement of RK∗ anomaly.

Note that although we have examined only a particular case of new physics but the result is

generic and holds for all the symmetries. There is no neat simultaneous explanation of RK

and RK∗ anomaly possible, if the effects of both the bins in RK∗ measurement are included.
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Figure 3.7: A plot in the plane of (σ,Cµ9 ) to check the possibility of simultaneous explana-

tions of RK and RK∗ measurements.

Many papers after the announcement of RK∗ measurement either discarded low q2 bin solution

or predicted light mass particles, which could in principle explain low q2 solutions, see for

example [134, 135]. However in the current situation, both approaches look contrived and it

is perhaps better for us to wait for next results.
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Chapter 4

Pinning down the anomalous triple gauge boson

couplings at the LHC

This chapter deals with the analysis concerning the presence of NP interactions in triple gauge

boson couplings. The work has been done in collaboration with Dr. Ushoshi Maitra and Prof.

Sreerup Raychaudhuri and is there on Phys. Rev. D 99, no. 9, 095017 (2019).

4.1 Introduction

In chapter 2, we discussed effective field theory in detail. The broad picture of effective field

theories in bottom-up approach is perhaps not the best approach to probe of physics beyond

the SM because of presence of large number of operators consistent with the symmetries. The

focus in recent times has been, therefore, on a more minute examination of the operators,

and on measurables which depend significantly on only a limited set of these operators,

rather than the whole set – an exercise which goes under the misnomer of simplified models

– though it is the examination rather than the model which is simplified. Perhaps one of

the earliest of these focussed examinations has been that of anomalous triple gauge-boson

couplings (TGCs) [139, 140], which started from the days of the LEP collider [141] and have

acquired new relevance in the present climate [142–144]. These are anomalous, of course, only

in the sense of being absent in the SM at tree level. The TGC’s which have been considered

are possible modifications to the W+W−γ and W+W−Z vertices, and possible new ZZγ,

Zγγ and ZZZ vertices [145].

This chapter takes precisely one of these vertices, viz,

the W+W−γ vertex illustrated on the left and considers

a specific final state which is affected by only changes to

this vertex. The process in question is

p+ p→W± + γ

where the W± → `±ν`(ν̄`) for ` = e, µ and perhaps τ .
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If we denote the W+
µ W

−
ν Aλ vertex by iΓ

(WWγ)
µνλ , then the most general CP -conserving form

consistent with the gauge and Lorentz symmetries of the SM can be parametrised [139] in

the form of three separate terms, viz.

iΓWWγ
µνλ (p1, p2, p3) = ie

[
T

(0)
µνλ(p1, p2, p3) + ∆κγT

(1)
µνλ(p1, p2, p3) +

λγ
M2
W

T
(2)
µνλ(p1, p2, p3)

]
(4.1.1)

where the Tµνλ tensors are, respectively,

T
(0)
µνλ = gµν (p1 − p2)λ + gνλ (p2 − p3)µ + gλµ (p3 − p1)ν (4.1.2)

T
(1)
µνλ = gµλp3ν − gνλp3µ

T
(2)
µνλ = p1λp2µp3ν − p1νp2λp3µ − gµν (p2 · p3 p1λ − p3 · p1 p2λ)

− gνλ (p3 · p1 p2µ − p1 · p2 p3µ)− gµλ (p1 · p2 p3ν − p2 · p3 p1ν)

The tensor T
(0)
µνλ in Eq. (4.1.3) corresponds to the Standard Model coupling, while the tensors

T
(1)
µνλ and T

(2)
µνλ give rise to anomalous TGC’s. It may be noted that the dimension-4 tensor

T
(1)
µνλ can be absorbed in T

(0)
µνλ with a coefficient κγ = 1 + ∆κγ . However, in our work we have

kept these tensors distinct as representing the SM and beyond-SM parts. Thus ∆κγ and λγ

parametrise the beyond-SM contributions — which agrees with the common usage by most

experimental collaborations1. It is reasonable to assume that ∆κγ will not be more than

a few percent, for otherwise these corrections would have been detected when the W itself

was discovered. It is also traditional to parametrise the mass-suppression of the dimension-6

operator T
(2)
µνλ with a factor M−2

W . If the operator arises from new physics at a scale Λ, the

corresponding coefficient should have been ξ/Λ2, and hence, we can identify

λγ = ξ

(
MW

Λ

)2

(4.1.3)

Setting ξ = 1, and Λ = 1 TeV, we get λγ ' 0.0065. We may thus expect λγ to lie an order

of magnitude below ∆κγ , and, in fact, we shall see below that this is indeed true for the

experimental constraints.

We remark in passing that there are also CP -violating contributions to the W+W−γ vertex,

which can be parametrised in terms of two coupling constants κ̃γ and λ̃γ . However, these

are constrained to be very small from the measurement of the electric dipole moment of the

neutron [150], and hence we will not consider them further in this chapter. It is also possible

– in fact, plausible – that if the photon has anomalous couplings with a W+W− pair, then

the Z boson may also have such anomalous couplings, which may be related in some way

by the gauge invariance of the SM [139]. However, the philosophy adopted in this chapter is

that these will not affect the measurement in question, and can therefore, be kept outside the

scope of the discussion.

1Strictly speaking, there are SM contributions to ∆κγ and λγ at higher orders. For example, at the one-loop

level, there could be contributions of the order of (few)×10−4 at a centre-of-mass energy of TeV strength [146].

These are negligible in the current experimental studies, which, till date, only put constraints at the level of

10−2.
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Figure 4.1: Feynman diagrams contributing to the final state γ`+ν` at a hadron collider,

with initial ud̄ (or the more suppressed cs̄) partonic states. These diagrams correspond to

both the signal and the background, since the W+W−γ vertex, indicated by the red dot in

diagram (a), has both SM and anomalous contributions.

4.2 Collider Analysis

The production of a W± associated with a hard transverse photon is one of the most standard

processes which one considers at a hadron collider [153, 154]. It occurs through a pair of

dissimilar quarks, e.g. u and d, as the initial-state partons, which are required for single W

boson production. A photon can then be radiated off any of the internal or external legs of

the corresponding diagram. However, if we allow the W± to decay further into a charged

lepton `± and the corresponding neutrino ν`, we will have one more diagram where a photon

is radiated off the charged lepton. The final state consists, then, of a photon, a lepton and

missing energy from the neutrino. One would also require a jet veto to keep the process

hadronically quiet. The four diagrams at leading order are illustrated in Fig. 4.1.

When these diagrams are evaluated, the Feynman amplitude can be written

M(∆κγ , λγ) =MSM + ∆κγMκ + λγMλ (4.2.1)

squaring which, it follows that the cross-section will be a combination of terms

σ(∆κγ , λγ) = σSM + (∆κγ)2 σκ + λ2
γσλ

+ ∆κγσκ,SM + λγσλ,SM + ∆κγλγσκ,λ (4.2.2)

where the terms on the first line of Eq. (4.2.2) arise from the squares of the corresponding

terms in Eq. (4.2.1), while the terms on the second line are the respective interference terms.

Since ∆κγ and λγ are small, it is clear that σSM will be the dominant term – or dominant

background – while the other terms in Eq. (4.2.2) will constitute a small signal. Of these, the
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terms linear in ∆κγ and λγ will generally be the largest. The challenge is, therefore, to isolate

the extremely small signal from the large SM background by the judicious use of kinematic

cuts and distributions. At this point, we note that QCD corrections to the Wγ process may

increase [155] the overall cross-section by 30 − 40%. However, these may be expected to be

rather similar for both signal and background, and hence are not taken into account in our

analysis.

In the experimental situation, our concern is with a hadronically-quiet final state consisting

of a hard transverse photon, a hard transverse lepton and substantial missing energy. This is

a very clean signal and, barring issues like pileup and multiple interactions at the LHC, may

be expected to constitute a strong probe for the underlying physics – in this case, the TGC

concerned. Since the final state is so simple, there exists only a small number of kinematic

variables which are invariant under longitudinal boosts, and these, together with the cuts we

have imposed on them, are listed below.

(A) The magnitude of the transverse momentum of the photon (pTγ), which we require to

satisfy pTγ ≥ 60 GeV.

(B) The pseudorapidity of the photon (ηγ), which we require to satisfy ηγ ≤ 2.5.

(C) The magnitude of the transverse momentum of the lepton (pT`), which we require to

satisfy pT` ≥ 40 GeV.

(D) The pseudorapidity of the lepton (η`), which we require to satisfy η` ≤ 2.5.

(E) The magnitude of the missing transverse momentum (6pT ), which we require to satisfy

6pT ≥ 40 GeV.

(F) The so-called angular separation between photon and lepton (∆Rγ`), which we require

to satisfy ∆Rγ` ≥ 0.4.

The cuts in (A) – (E) are driven more by ease of identification of the final state and the

detector coverage, while (F) is included to suppress the collinear photons which are preferred

by the SM diagram in Fig 4.1(b).

In addition to the above, if we consider the vector momenta in the transverse plane, which

we denote ~pTγ , ~pT` and ~6pT , we can construct three more variables which are invariant under

longitudinal boosts. These are

∆ϕγ` = cos−1

(
~pTγ · ~pT`
pTγ pT`

)
∆ϕγ 6pT = cos−1

(
~pTγ · ~6pT
pTγ 6pT

)
∆ϕ`6pT = cos−1

(
~pT` · ~6pT
pT` 6pT

)
(4.2.3)

These angular variables are known to be highly sensitive to momentum-dependent operators

[142] and since the tensors T
(1,2)
µνλ are of this kind, we may expect them to carry some signs of

the anomalous TGCs. In fact, we find that the only variables which are sensitive to these are

the transverse momenta in (A), (C) and (E) above, and these angular variables in Eq. (4.2.3).

Finally, to ensure good convergence of our Monte Carlo simulations, we construct [153, 154]
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Cut σSM σκ σλ

pTγ ≥ 60 GeV 430.11 fb 737.82 fb 41.89 pb

pTγ ≥ 60 GeV 100.0 % 100.0 % 100.0 %

pT` ≥ 40 GeV 70.25 % 75.70 % 85.55 %

6pT ≥ 40 GeV 22.82 % 52.34 % 70.77 %

MTW ≥ 30 GeV 20.68 % 43.13 % 55.11 %

ηγ ≤ 2.5 15.89 % 36.88 % 53.50 %

η` ≤ 2.5 12.28 % 32.61 % 52.24 %

∆Rγ` ≥ 0.4 11.30 % 32.60 % 52.26 %

48.57 fb 240.52 fb 21.89 pb

Table 4.1: Cut flow table showing the effect of different kinematic cuts on the principal

terms in the cross-section. As may be expected, the SM contribution is brought down to

about one tenth, whereas the others are reduced to roughly a third and a fifth respectively.

The large value of σλ is due to the inappropriate choice of M2
W as the suppression factor —

if we had chosen Λ = 1 TeV instead, these cross-sections would be suppressed by a factor

(MW /1 TeV)2 ≈ 6.4× 10−3, which would bring them on par with the previous columns.

the variable MTW , where

M2
TW = 2 pT` 6pT (1− cos ∆ϕ`6pT ) (4.2.4)

and impose a cut MTW ≥ 30 GeV. The effect of these successive kinematic cuts on the terms

in the cross-section is shown in Table 4.1. Any stronger cuts would result in severe loss in the

TGC signal, both for ∆κγ and λγ .

4.3 Results

4.3.1 1D LO analysis

In this section, we perform the one-dimensional analysis considering leading order results. We

derive the limits by considering one of the TGCs at a time, viz., either ∆κγ 6= 0, λγ = 0, or

∆κγ = 0, λγ 6= 0.

If we consider the total cross-section, as given above, the limits one can put on the parameters

∆κγ and λγ are already strong. The actual number of signal events (in thousands) expected

are shown in the panels marked (a) and (b) in Fig. 4.2, assuming an integrated luminosity

of 100 fb−1. The abscissa in (a) and (b) shows, respectively, the values of ∆κγ and λγ ,

each assuming that the other is zero. The region marked in grey corresponds to the 95%
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Figure 4.2: Constraints on the anomalous WWγ couplings from consideration of the total

cross-section, assuming an integrated luminosity of 100 fb−1. The upper panels correspond

to the variation in the excess in events per thousand over the SM prediction for the cases

(a) ∆κγ 6= 0, λγ = 0 and (b) ∆κγ = 0, λγ 6= 0. The horizontal line shows the SM prediction

and the shaded portion corresponds to its variation at 95% C.L. Solid vertical lines marked

‘CMS(Wγ)’ correspond to the Run-1 CMS bounds on the corresponding anomalous coupling

from Wγ production [154] and broken verticals marked ‘CMS(WW)’ correspond to similar

bounds obtained from WW production [152], assuming that WWγ and WWZ anomalous

couplings are related through SU(2) symmetry. The lower panels, marked (c) and (d) re-

spectively, show the corresponding 95% C.L. search limits (see text) when the luminosity is

varied up to 5 ab−1, with a horizontal broken line to indicate the machine limit of 3 ab−1 for

the HL-LHC.

confidence level (C.L.) fluctuation in the SM prediction. Solid vertical lines indicate the

current experimental bounds2 from Wγ production at the LHC [153, 154], which directly

constrains the WWγ vertex, whereas broken vertical lines indicate the bounds from WW

production [151,152], where there are contributions from both WWγ and WWZ vertices. As

explained above, these constraints are not as solid as those obtained from Wγ production.

2The constraints from ATLAS [151,153] and CMS [152,154] are not obtained from the total cross-section,

but from a study of the pT distributions of the final states. However, they are included here for purposes of

comparison.
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However, it is immediately obvious that the signal considered in this work can achieve the

95% C.L. level even at values which are comparable with the WW constraints, and certainly

far smaller than the current Wγ constraints.

If the plots in the upper panels of Figure 4.2 indicate strong constraints with a luminosity of

100 fb−1, it is relevant to ask what may be achieved at the high-luminosity upgrade of the

LHC (HL-LHC), where the integrated luminosity may go as high as 3 ab−1. To determine

the search limits, we can determine the signal significance χ2(L,∆κγ , λγ) as a function of

luminosity L as

χ2(L,∆κγ , λγ) =

[
L{σ(∆κγ , λγ)− σSM}√

LσSM

]2

(4.3.1)

assuming Gaussian random fluctuations in the background δ(LσSM ) =
√
LσSM . For this

study, we ignore systematic errors, or, more properly, assume that they will be small enough

to be ignored, compared to the statistical error. Now if, for a given value of L, the value(s) of

∆κγ and/or λγ satisfies χ2(L,∆κγ , λγ) > 1.96, we qualify the signal for an anomalous TGC

as observable at 95% C.L. The corresponding variations, for the cases (c) ∆κγ 6= 0, λγ = 0 and

(d) ∆κγ = 0, λγ 6= 0 are plotted in the lower panels of Figure 4.2. It may immediately be seen

that even with a very low integrated luminosity, the 13 TeV LHC does immensely better than

the Run-1 data, and with an integrated luminosity of 1 ab−1, the direct constraints which

may be obtained from the total cross-section are better than those even from WW production

(which involve the WWZ couplings), except for one case ∆κγ > 0, λγ = 0. At this juncture

it is relevant to note the asymmetry of the curves in each panel about the zero point, which

can be attributed to large interference terms between the anomalous WWγ operators and

the SM ones.

We now address the principal question for which this work was taken up, and that is whether

the study of differential cross-sections instead of the total cross-section can help better in

identifying anomalous WWγ couplings. We have made a careful study of practically all the

straightforward kinematic variables it is possible to construct with a γ` 6 pT final state. It

turns out that the ones which are sensitive to the anomalous couplings, i.e. the ones for which

the anomalous operators behave differently than the SM operators, are those listed below:

X = (a) (b) (c) (d) (e) (f)

vX = pTγ pT` 6pT ∆ϕγ` ∆ϕγ 6pT ∆ϕ`6pT

Table 4.2: List of kinematic variables whose distributions are sensitive to anomalous TGCs.

The effect of the anomalous TGCs on these is, of course, different for different observables,

and this is illustrated in Figures 4.3 and 4.4. In Figure 4.3 we show three histograms in each

panel, for the bin-wise quantity

Nexcess = L

(
dσ

dvX
− dσSM

dvX

)
, (4.3.2)

where L is the integrated luminosity and vX is the corresponding variable in Table 4.2. In each

panel of Figure 4.3, the red histogram corresponds to the excess events as per Eqn. (4.3.2)
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for ∆κγ = +0.063, i.e. the more stringent CMS upper limit arising from the WW cross-

section [152], and the blue histogram indicates the corresponding lower limit ∆κγ = −0.063.

The solid shaded region represents the 95% C.L. fluctuations in the SM prediction, denoted

δ(SM). In each case, the kinematic cuts listed in the text above are shown by a vertical line

and hatching. For these plots, we have set L = 3 ab−1, i.e., the maximum envisaged value of

the HL-LHC.

If we consider the case of ∆κγ > 0, i.e. the red histograms in Figure 4.3, we can see that the

number of excess events is substantially above the SM fluctuation for a significant number of

bins, especially as one goes towards higher magnitudes of pT and for back-to-back vectors in

the transverse plane, except for the opening angle in the transverse plane between the decay

products of the W , which tend to be aligned for the signal. In fact, in some of the bins, the

deviation is rather large. One the other hand, if we consider the case of ∆κγ < 0, i.e. the

blue histograms in Figure 4.3, the deviations are large only for really high magnitudes of pT

and even more extreme angles in the transverse plane than in the case of positive ∆κγ .
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Figure 4.3: Background-subtracted kinematic distributions for the different variables listed

above in the case of ∆κγ 6= 0 with λγ = 0. The panels are marked (a), (b), etc. according

to the legend in the text. Red histograms correspond to the signal with a positive value

(marked) of ∆κγ and blue histograms correspond to negative values of ∆κγ , while the shaded

histograms correspond to the 95% C.L. fluctuations in the SM background. Vertical lines

with hatching indicate the kinematic cuts listed in the text.
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Some of the salient features of the histograms in Figure 4.3 are listed below.

• In all the panels, the signal histograms for negative ∆κγ change sign over the selected

range, whereas for positive ∆κγ they are monotone.

• Of the upper three panels, clearly the best signal will come from a study of the missing

pT , for, even for negative ∆κγ , there are significant deviations over 100 GeV.

• In the lower three panels, all show large deviations from the SM background. It is not

clear by inspection which of these three variables is best suited to find the signal. For

this, we must develop a suitable numerical metric.

We then turn to the other anomalous coupling λγ , in the case when ∆κγ = 0. This is illus-

trated in Figure 4.4, where we show the same three histograms in each panel as for Figure 4.3,

for the bin-wise quantities as defined in Eqn. (4.3.2) and the table below it. The notations

and conventions of Figure 4.4 are therefore identical with those of Figure 4.3. Obviously

the range of values of λγ is smaller, but this is, as explained before, due to the artificial

scaling with MW instead of some higher scale. Thus, the red (blue) histograms correspond

to λγ = +0.011(−0.011), which are, as before, the CMS limits from WW production [152].

Qualitatively, the deviations are rather similar to those in Figure 4.3, and one cannot tell,

just by inspection, which of the parameters is preferable. Thus, if indeed, a deviation in these

distributions from the SM prediction is found, we will encounter a difficult inverse problem,

i.e. separation of signals from ∆κγ from those for λγ . In the present chapter, however, we

feel that it is premature to address this problem. Instead, we focus on whether it will be

possible to extend the discovery reach of the LHC by considering these distributions, rather

than the total cross-section. The time to address this distinction will come when a deviation

is actually found.

In order to see if a distribution has enough deviation from the SM prediction to be observable

at, say, 95% C.L., we need to construct a suitable numerical metric. We choose a simple-

minded extension of the one in Eqn. (4.3.1), in the form

χ2
X(L,∆κγ , λγ) =

NX∑
n=1

N
(n)
excess√
N

(n)
SM

2

(4.3.3)

where the index n runs over all the bins, and

N
(n)
SM = L

dσ
(n)
SM

dvX
(4.3.4)

is the SM prediction in that bin. Nexcess is defined in Eqn. (4.3.2), but here it carries a bin

index n, and L is, as usual, the integrated luminosity. The total number of bins NX is not

the same for all the different variables vX , as a glance at Figures 4.3 and 4.4 will show. We

can now compare the calculated values of χ2
X(L,∆κγ , λγ) with χ2(NX , 95%) which is the

probability that the SM cross-section with NX bins will undergo a 95% Gaussian fluctuation,
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Figure 4.4: Background-subtracted kinematic distributions for the different variables listed

above in the case of λγ 6= 0 with ∆κγ = 0. The panels are marked (a), (b), etc. according

to the legend in the text. Red histograms correspond to the signal with a positive value

(marked) of λγ and blue histograms correspond to negative values of λγ , while the shaded

histograms correspond to the 95% C.L. fluctuations in the SM background. Vertical lines

with hatching indicate the kinematic cuts listed in the text.

faking a signal. If, for a given set of arguments, χ2
X(L,∆κγ , λγ) > χ2(NX , 95%), we will

assume the corresponding anomalous TGC to be discoverable at the LHC.

Our results for the different variables are shown in Figure 4.5. The upper panels, marked (a)

and (c) show the discovery limits for the transverse momentum variables pγT , p`T and 6pT in the

two cases (a) ∆κγ 6= 0, λγ = 0 and (c) ∆κγ = 0, λγ 6= 0 respectively. Corresponding limits for

the azimuthal angle variables ∆ϕγ`, ∆ϕγ 6pT and ∆ϕ` 6pT are similarly shown in the lower panels,

marked (b) and (d) respectively. As before, the CMS limits from Wγ production [154], as well

as those from WW production [152] are shown by solid and broken vertical lines respectively.

As in Figure 4.2, a broken horizontal line represents the maximum integrated luminosity

envisaged at the HL-LHC, and therefore, its intersections with the different curves indicates

the discovery limit of the machine.

If we now inspect the discovery limits in Figure 4.5 and compare then with those in Figure 4.2,

the following conclusions emerge.
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Figure 4.5: 95% C.L. discovery limits for the case ∆κγ 6= 0, λγ = 0 in the panels on the

left, marked (a) and (b), and the case ∆κγ = 0, λγ 6= 0 in the panels on the right, marked

(c) and (d). Only three variables at a time have been shown in each panel to avoid clutter.

The upper panels, marked (a) and (c) show the discovery limits for transverse momentum

variables, while the lower panels, marked (b) and (d) show the discovery limits for azimuthal

angle variables.

• For ∆κγ < 0, λγ = 0, the discovery limits from the total cross-section are better than

those from the distributions; among the distributions, the best constraints arise from

∆ϕ` 6pT .

• For ∆κγ > 0, λγ = 0, the discovery limits from the total cross-section are no longer bet-

ter; instead the pT distributions are more efficient, especially as the luminosity increases

above 100 fb−1. The ∆ϕ` 6pT distribution can be used to get discovery limits comparable

to those from the different pT distributions, but not better.

• For ∆κγ = 0, λγ < 0, the total cross-section and the pT distributions give similar

discovery limits, while the discovery limits from the ∆ϕ` 6pT are significantly better and

obviously improve as the integrated luminosity increases.

• For ∆κγ = 0, λγ > 0, the total cross-section gives better discovery limits than the pT

distributions, whereas the ∆ϕ` 6pT distribution always gives better sensitivity.
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It is also interesting to note that of the three pT distributions, the best results are obtained

from different distributions in different regimes, whereas for the ∆ϕ distributions, ∆ϕ` 6pT is

always the most sensitive. This sensitivity is likely to be due to interference between different

helicity amplitudes [147], though that is not explicit in our calculations.

There is a very important lesson to learn from the above observations, viz., that there is no

unique variable whose study will provide the maximum sensitivity to anomalous TGCs. A

proper experimental study should, therefore, include all the variables considered above, in-

cluding the total cross-section. Currently, experimental results are mostly based on transverse

momentum studies [148,153,154], but these, as our results indicate, are not always the most

sensitive variables.

NLO analysis

As all of the above results are considered at the leading order (LO) with a fixed set of parton

distribution functions (PDFs), viz. the CTEQ-6L set, it is relevant to ask how robust these

results are against QCD effects, such as scale variation, next-to-leading order (NLO) effects

and PDF uncertainties. One could also ask whether detector effects will lead to degeneration

in the bounds obtainable from these variables. A complete analysis of these questions, we

feel, is beyond the scope of the present work, and hence we have only made some preliminary

studies in this regard.

To estimate these effects, as well as to validate our LO analyses, we have simulated the pro-

cesses in questions using a combination of the following public domain softwares: MadGraph

(version MG5-aMC-v2.4.2 [156]) to calculate cross-sections, Pythia (version Pythia8219 [157])

for the simulation including fragmentation effects and Delphes (version Delphes-3.4.1 [158]) as

a toy detector simulation. In this simulation, we trigger on a final state with a hard transverse

photon and a hard transverse lepton, with a significant amount of missing pT . In addition,

we require our process to be hadronically quiet, i.e. we put a strong jet veto.

At the very outset, let us note that with the requirement of high-pT , the detector effects,

simulated by using the Delphes package, with standard levels of smearing for the final state

photon and the lepton, are very small, and may be safely neglected. The QCD effects are sim-

ulated by running the package MadGraph, which permit (a) the inclusion of NLO corrections,

(b) variation of the factorisation scale Q, which we set to MW /2, MW and 2MW to cover the

expected range, and (c) two PDF sets, the CTEQ-6 set [159] and the NNPDF-2.3 set [160].

Even though a large portion of these are removed by the jet veto and the hard pT cuts, the

residual effects are still not small, especially for the SM background where the change can

be as much as a factor of 2. The new operators associated with the anomalous couplings

∆κγ and λγ are also changed, but by not much more than 20 - 30% after application of the

jet veto. However, all this does have an effect on the χ2. As mentioned above, a full study

of the detailed effects for all the distributions is beyond the scope of this work, though it
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Figure 4.6: QCD smearing of 95% C.L. discovery limits for the case ∆κγ 6= 0, λγ = 0 in

the panel on the left, marked (a), and the case ∆κγ = 0, λγ 6= 0 in the panel on the right,

marked (b). Only the variable ∆ϕ` 6pT has been considered. Solid (dot-dash) lines correspond

to CTEQ-6 and NNPDF-2.3 parton densities and the colour scheme is as follows: red for LO

and blue; back and green for NLO with Q = 1
2MW ,MW and 2MW respectively. The region

shaded yellow is the envelope of the different QCD uncertainties. As in the previous figures,

dashed lines indicate the CMS constraints.

should certainly be taken up before the experimental data come in. However, our preliminary

findings can be summarised as follows. Despite the smearing in distributions due to QCD

effects, the variable ∆ϕ` 6pT remains the most sensitive of the azimuthal angle variables. We

have exhibited our results for the χ2 analysis using the ∆ϕ` 6pT variable in Figure 4.6.

In Figure 4.6, we have plotted the graphs for integrated luminosity versus the minimum

accessible values of (a) ∆κγ and (b) λγ respectively, taking into account the QCD effects

in the distribution of ∆ϕ` 6pT . The LO contributions, with Q = MW , as used in all the

other plots, are shown as solid red lines. The solid curves correspond to CTEQ-6 PDFs,

and the dot-dashed curves to NNPDF choices. Blue, black and green colours correspond to

Q = 1
2MW ,MW and 2MW respectively. The yellow-shaded region is the envelope of all these

curves and may be taken as an indicator of the overall smearing due to QCD effects.

A glance at the QCD effects shows that they are clearly asymmetric, and hence arise princi-

pally from the interference terms. This is consistent with the maximum change happening in

the SM contribution. For ∆κγ , it leads to dilution of the LO results for negative ∆κγ , but

to a strengthening for positive ∆κγ . On the other had, for λγ , we have a strengthening (and

very little spread) for negative λγ , but a large smearing as well as dilution for positive λγ . We

may expect all the χ2 analyses for different distributions to have such effects. This underlines

the importance of considering all the variables, as mentioned above, before the potential of

the LHC to probe anomalous TGC’s is fully realised.
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4.4 2D LO analysis

Thus far, we have only considered one of the TGCs at a time, viz., either ∆κγ 6= 0, λγ = 0,

or ∆κγ = 0, λγ 6= 0. While convenient from a purely phenomenological standpoint, this is

hard to justify from a top-down approach, for the same new physics which creates nonzero

∆κγ could very well generate nonzero λγ as well. We now turn, therefore, to the study of this

more realistic case of joint variation of the two parameters. The formulae in Eqns. (4.3.1)

and (4.3.3) are naturally geared to handle this joint variation, so all that is required is to

numerically vary both the parameters and perform the same kind of analysis as we have

described above.

Our results for joint variation are shown in Figure 4.7. The left panel, marked (a) shows the

discovery limits that can be obtained using the total cross-section. The inaccessible region at

the 13 TeV LHC, assuming an integrated luminosity of 10(1000) fb−1 is shaded in pink(red).

For comparison, on the same panel we give the constraints from LEP-2 (black), and from the

CMS (blue) and ATLAS (green) Collaborations at the LHC Run-1. In each case the inside of

the ellipse is not accessible and the region outside is ruled out. It is immediately obvious that,

as was the case with one parameter at a time, the total cross-section is a reasonably sensitive

probe of anomalous TGCs, and in fact, even with 10 fb−1 of data, it is as sensitive as the use

of the WW production data (modulo the WWZ caveat). Sensitivity improves dramatically

for 1000 fb−1 luminosity, as the tiny red shaded region indicates. However – and here lies the

rub – the inaccessible region is star-shaped, with four arms which stretch to possible large

values of one of the parameters at a time. It is easy to see why these arise, for the significance

is based on a single parameter, viz., the total cross-section, and there will always be regions

where the contributions to this from ∆κγ cancel with those from λγ , making the signal small

or vanishing. Thus, although the total cross-section can be used to probe the anomalous

TGCs quite efficiently, there remain these four narrow wedges of the parameter space which

are inaccessible to the LHC.

The situation can be radically improved by using a distribution, rather than the total cross-

section, for it is almost inconceivable that the extra contributions from ∆κγ will undergo

a bin-by-bin cancellation with those from λγ , given that the distributions are somewhat

different, as shown in Figures 4.3 and 4.4. To be precise, the same pair of values which

cause cancellation of anomalous effects in one bin, may not cause cancellation in another

bin, and hence, the overall value of χ2 will not be rendered small. This is illustrated in the

right panel, marked (b) of Figure 4.7, where we use the distribution in ∆ϕ` 6pT to obtain 95%

C.L. discovery limits. Here, corresponding to different values of the integrated luminosity, we

show the discovery limits as elliptic regions in the same way as shown by the experimental

collaborations. As usual, the interior of each ellipse is inaccessible to the LHC with the

luminosity in question. The experimental constraints are given exactly as in the left panel,

marked (a). It hardly needs to be commented that at the HL-LHC, very stringent constraints
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Figure 4.7: Joint discovery limits at 95% C.L. on the anomalous couplings ∆κγ and λγ . The

measurables used are (a) the total cross-section, and (b) the azimuthal angle variable ∆ϕ 6̀pT
respectively. In the left panel, marked (a) the regions shaded pink (red) are inaccessible to

the LHC with 10 (1000) fb−1 of integrated luminosity. Similar inaccessible regions lie inside

the oblate ellipses (in red) on the right panel, marked (b). Experimental constraints from

LEP-2 and from the Run-1 of LHC are shown as prolate ellipses in both panels. The tiny

black dot at the centre is, of course, the SM prediction at tree-level.

indeed could be obtained in case no deviation from the SM is seen. It may be noted, however,

that even with this accuracy of measurement, the one-loop SM effects will not be accessible,

though effects from new physics such as the MSSM, may be [146] . The above results will also

be both strengthened and diluted by QCD effects, as shown for the single-parameter analyses

above. We may thus expect the ellipses in Figure 4.7 to get distorted (though retaining their

ellipticity) and smeared out on the same pattern as the curves in Figure 4.6.

4.5 Summary

We have considered the process pp→ γW ∗ → γ ` 6pT at the 13 TeV run of the LHC, and stud-

ied possible implications of having anomalous (CP -conserving) WWγ vertices in the theory.

The choice of this process (which has a lower cross-section than, say, W+W− pair produc-

tion) is because the tagging of a final-state photon ensures that there is no contamination of

the new physics contribution with possible anomalous effects in the WWZ vertex. We have

shown that the anomalous WWγ couplings may be constrained by considering not one, but

seven independent observables, viz. the total cross-section, three different pT distributions

and three different azimuthal angle variables. The relative efficacy of each of these has been

studied in detail, making certain simplifying assumptions, such as the absence of initial/final

state radiation, pileup effects, systematic errors and detector effects. The first two we expect

to be essentially eliminated by the rather severe kinematics cuts chosen for our analysis, but
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the latter ones can only be estimated by a thorough experimental analysis, which is beyond

the scope of this work. Similarly, we have assumed that the kinematic cuts suggested by us

will be effective in controlling backgrounds from W + jet events (with a jet faking a photon).

Under these assumptions, we have shown that the judicious use of the variables studied, es-

pecially the azimuthal angle variable ∆ϕ` 6pT , can be used to pinpoint anomalous effects in the

process in question, to a great degree of accuracy, as the statistics collected by the LHC (and

its HL upgrade) grow larger. QCD effects will cause some dilution or strengthening of these

results, depending on the values of the TGC’s, but the overall pattern will not change too

radically. Such measurements would eventually probe not just large electoweak corrections

in the TGC sector, but could also effectively constrain new physics involving modifications

and mixings in the gauge sector. Of course, the most exciting scenario would be to see an

unambiguous deviation from the SM prediction in any of the variables (or more than one

variable) in the upcoming runs of the LHC, and it is on this hopeful note that we conclude

this chapter.
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Chapter 5

Light CP-even Higgs Boson in type-I 2HDM at

LHC

This chapter deals with the phenomenology of a scalar lighter than the observed 125-GeV

Higgs Boson in the final states γγ and bb̄. The results of this chapter are based on the work:

D. Bhatia, U. Maitra and S. Niyogi, “Discovery prospects of a light Higgs boson at the LHC

in type-I 2HDM, Phys. Rev. D 97, no. 5, 055027 (2018)”. Note that most parts of the bb̄

analysis were performed by Dr. Ushoshi Maitra. Our analysis has become important in the

context of recent diphoton excess of 2.8σ (global 1.3 σ)in the γγ channel around 95 GeV [161].

Although at this stage, the deviation is not significant but is certainly of importance simply

because LEP had also indicated a possibility of observing an excess of Higgs-like events in

similar mass region [17].

5.1 Introduction

Despite the overwhelming success of the SM, the current measurements [21] at LHC still do

not rule out the possibility of the observed particle belonging to an enlarged scalar sector

of a beyond-SM scenario. Usually the additional scalars are considered to be heavy, and in

some cases, they are even decoupled from the low-energy effective theory. However, there

may exist scenarios where some of the new physics particles are lighter than the observed

Higgs. We explore this possibility in context of the type-1 two-Higgs-doublet model, which is

least constrained by the data.

As already discussed in Chapter. 2, two Higgs doublet models (2HDM’s) are one of the

simplest extensions of the SM with an additional scalar doublet charged under SU(2)L, where

in type-I only one of the Higgs doublets interacts with the fermions in the gauge basis. Since

the Higgs boson discovered at the LHC is CP even [162,163], amongst the five scalars predicted

in the 2HDM viz., the light CP-even scalar h, the heavier CP-even scalar H, the CP-odd

scalar A and the charged scalar H±, we can identify only one of the CP-even scalars with

the observed scalar at the LHC. Since we are interested in studying light CP-even scalar

scenarios, we identify H with the observed 125-GeV Higgs and study the phenomenology of
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the lighter Higgs. Furthermore we choose its mass range from 70 − 110 GeV to avoid decay

of H → hh. As a result, the bounds coming from the total decay width measurement of

the observed scalar [164], the measurement of Higgs signal rate [21], and direct decay of the

observed Higgs to a pair of light Higgses, i.e., H → hh [165] becomes irrelevant in our case

(see Refs. [166,167] for an analysis with additional scalars lighter than mh/2).

To study the discovery prospects of the light CP even scalar, a suitable choice of production

and decay channels is essential. In our scenario, the light Higgs decays dominantly to bb̄,

except in the fermiophobic limit. Here its decay to bosons (mainly photons) becomes im-

portant. We therefore examine the light Higgs decays in the bb̄ and γγ final states at the

LHC. Note that the search for such low mass scalars decaying to diphotons has already been

performed at LHC Run-1 [168, 169]. For the diphoton channel, we consider the production

of the scalar through gluon fusion and in association with gauge bosons. The production

of the light scalar in association with gauge boson/top pair is considered for the bb̄ mode.

Owing to a clean environment, the diphoton final state is one of the favorite channels to

search for new resonances at the LHC. In contrast, the bb̄ state is plagued by the huge SM

multijet backgrounds. Therefore, the light Higgs has been considered in the boosted regimes

for this channel, where the jet substructure techniques enable the efficient suppression of the

SM backgrounds [170, 171]. Note that since bb̄ analysis was not explicitly performed by me,

I will focus only on the diphoton analysis in the chapter.

This chapter is organized in the following manner. We begin with a brief introduction to

the 2HDM in section 5.2, followed by a discussion of plausible channels which can be used

to probe the light Higgs at the LHC in section 5.3. In section 5.4, we briefly review various

constraints on the 2HDM parameter space arising from the LEP and LHC measurements, in

the context of Type-I 2HDM. A dedicated collider analysis of the light Higgs in the allowed

parameter space at the LHC is performed in section 5.5. Finally in section 5.6, we summarize

our results. Further in appendix A.1, we discuss the light Higgs couplings to diphotons. In

appendix A.2, the implications of the light charged Higgs boson on our results is analyzed,

and in appendix A.3, the tagging methods used to reconstruct boosted objects are discussed.

Finally, in appendix A.4, we tabulate the behaviour of the total cross section of the selected

modes with respect to the 2HDM parameters.

5.2 2HDM: a brief review

The Z2-symmetric 2HDM Lagrangian with two SU(2)L Higgs doublets (Φ1 and Φ2)1 can be

parametrized as [37]:

L2HDM = (DµΦ1)† DµΦ1 + (DµΦ2)† DµΦ2 + LYuk(Φ1,Φ2)− V (Φ1,Φ2) , (5.2.1)

1Under Z2 transformation, Φ1 → Φ1 and Φ2 → −Φ2
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where LYuk represents the Yukawa interactions and V (Φ1,Φ2) is the scalar potential given as

V (Φ1,Φ2) = m2
11 Φ†1Φ1 +

λ1

2
(Φ†1Φ1)2 +m2

22 Φ†2Φ2 +
λ2

2
(Φ†2Φ2)2 −

[
m2

12Φ†1Φ2 + h.c
]

+λ3 Φ†1Φ1 Φ†2Φ2 + λ4 Φ†1Φ2 Φ†2Φ1 −
[

1

2
λ5

(
Φ†1Φ2

)2
+H.c.

]
. (5.2.2)

Here m12 is the soft Z2 symmetry-breaking parameter. Note that in our analysis, we have

assumed V (Φ1,Φ2) to be invariant under CP (i.e., charge and parity transformations) and

consequently the parameters of the scalar potential are real. The spontaneous breaking of

SU(2)L×U(1)Y symmetry results in five physical scalar fields h, H, A and H± (with masses

mh, mH , mA and mH± , respectively) and three Goldstone bosons G and G±, which appear as

the longitudinal modes for Z and W± bosons. The mass spectra of the particles are obtained

by minimizing the scalar potential V (Φ1,Φ2) in Eq. (5.2.2).

The doublets in terms of the physical fields and the Goldstone bosons can be expressed as:

Φ1 =

(
G+ cosβ +H+ sinβ

1√
2

[h sinα−H cosα+ i (G cosβ +A sinβ) + v1]

)
,

Φ2 =

(
G+ sinβ −H+ cosβ

1√
2

[−h cosα−H sinα+ i (G sinβ −A cosβ) + v2]

)
, (5.2.3)

where α and β are the rotation angles which diagonalize the mass matrices for the neutral

CP even Higgs and the charged Higgs/CP odd Higgs respectively. The parameters of the

scalar potential (m11,m22, λi ) can be expressed in terms of the rotation angles (α, β), the

Z2 symmetry breaking parameter (m12), and the masses of the scalars (mh, mH , mA, m±H)

as [37]:

m2
11 =

1

4

(
m2
h +m2

H − 4m2
12 tanβ +

(
m2
H −m2

h

)
secβ cos(2α− β)

)
, (5.2.4)

m2
22 =

1

4

(
m2
h +m2

H − 4m2
12 cotβ +

(
m2
H −m2

h

)
cscβ sin(2α− β)

)
, (5.2.5)

λ1 =
1

2v2
sec2 β

(
m2
h +m2

H + (m2
H −m2

h) cos 2α− 2m2
12 tanβ

)
, (5.2.6)

λ2 =
1

2v2
csc2 β

(
m2
h +m2

H − (m2
H −m2

h) cos 2α− 2m2
12 cotβ

)
, (5.2.7)

λ3 =
1

v2
csc 2β

(
−2m2

12 + (m2
H −m2

h) sin 2α+ 2m2
H± sin 2β

)
, (5.2.8)

λ4 =
1

v2

(
m2
A − 2m2

H± +m2
12 cscβ secβ

)
, (5.2.9)

λ5 =
1

v2

(
m2

12 cscβ secβ −m2
A

)
, (5.2.10)

v1 = v cosβ and v2 = v sinβ . (5.2.11)

The couplings λi (i = 1, 5) are constrained by the perturbativity, vacuum stability [172], and

unitarity [173] bounds, which in turn, restrict the allowed values of the scalar masses for a

given value of α and β [37, 174]. The masses of the additional scalars also get constrained
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from the well measured flavour and electroweak observables [175–177]. The combined effect of

these constraints on the 2HDM parameter space is discussed in appendix. A.2, in the context

of type-I 2HDM. Note that the free parameter α remains unaffected after imposition of above

constraints (see Fig. A.1 in appendix. A.2).

In our analysis, we identify the heavier CP even Higgs with the discovered scalar by fixing

mH = 125 GeV and study the phenomenology of the light CP even scalar h. At this stage

we have following free parameters — α, β, mH± , mA, m12 and mh. However, we confine

ourselves to that part of the allowed parameter space, where the masses of the charged and

pseudoscalar Higgs bosons are heavy i.e. O(500) GeV and do not affect our analysis. The

Z2 breaking parameter in this case becomes irrelevant for the light Higgs phenomenology

and can be suitably chosen to have any value less than 100 GeV (see appendix. A.2). Note

that although we have chosen the charged Higgs to be heavy for most of our analysis, we do

analyze the implications of having a low-mass charged scalar in appendix. A.2.

We now discuss the couplings of the scalar particles with fermions and gauge bosons. In the

type-I 2HDM, fermions couple only to one of the doublets i.e. Φ2 and LYuk is given as

LType−I
Yuk = QL YdΦ2dR +QLYuΦc

2uR +QLYeΦc
2eR + h.c. ,

= −
∑

f=u,d,`

mf

v

(
ξfhff h+ ξfHff H − iξ

f
Afγ5f A

)
−
√

2Vud
v

u
(
muξ

u
APL +mdξ

d
APR

)
dH+ −

√
2m`

v
ξ`AνPR`H

+ + h.c. ,(5.2.12)

where Yu,d,e are 3 × 3 Yukawa matrices, Vud is the Cabibbo-Kobayashi-Maskawa matrix

element, mf is the mass of a fermion (f) and

ξu,d,`h = cosα/ sinβ , ξu,d,`H = sinα/ sinβ , ξuA = cotβ , ξd,`A = − cotβ . (5.2.13)

We list some of the couplings of gauge bosons with scalars that are relevant for our analysis

(see Refs. [178], [179] for a complete list):

LGauge−int =
m2
Z

v
ξVh ZµZ

µh+
m2
Z

v
ξVHZµZ

µH + 2
m2
W

v
ξVhWµW

µh+ 2
m2
W

v
ξVHWµW

µH

+
αem
8πv

ξγhh FµνF
µν +

αem
8πv

ξγH HFµνF
µν , (5.2.14)

where

ξVh = sin(β − α) , ξVH = cos(β − α) , (5.2.15)

and the expressions for ξγh and ξγH are listed in appendix A.1. Based on the above couplings

of the scalars with fermions and gauge bosons, two interesting limits arise:

1. Alignment limit (α → β): Here the couplings of the heavier CP even Higgs exactly

match those of the SM Higgs.

2. Fermiophobic limit (α→ π/2) : In this limit, the tree-level couplings of the light Higgs

with fermions (ξfh) vanish [see Eq. (5.2.13)] and its loop-induced couplings with fermions

are also negligible. The light Higgs in this case behaves as a fermiophobic scalar.
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We shall see later that these limits have interesting implications in our analysis. As an aside,

note that the condition α ≡ β → π/2 corresponds to the case where the alignment and

fermiophobic limits occurs simultaneously. In this case, the couplings of the light Higgs with

both fermions and gauge bosons vanish [see Eqns. 5.2.13, 5.2.15] and the type-I 2HDM maps

to the inert 2HDM model.

After discussing the couplings of the light Higgs boson, we are now in a position to predict

its phenomenological consequences. In the next section, we identify the promising channels

which could be useful in probing the light Higgs at the LHC. Keeping a large QCD background

in mind, a suitable choice of the production channel and decay mode would be essential for

the discovery of a light scalar like the SM Higgs.

5.3 Promising channels to explore at the LHC

The light Higgs boson, just like the SM Higgs, can be produced at the LHC via gluon fusion

(ggF), vector-boson fusion (VBF), and in association with SM gauge bosons (Vh), as well as

with a top pair (tt̄h). The ratio of the production cross section of the light Higgs and that

of the SM-like Higgs (hSM ) as a function of α is plotted in the left panel of Fig. 5.1. Here,

by “SM-like Higgs” we mean a hypothetical scalar whose couplings are exactly same as those

of the SM Higgs but whose mass is equal to that of the light Higgs i.e. mhSM = mh. Note

that mh is chosen to be 80 GeV in Fig. 5.1 for illustrative purposes. The gluon fusion as well

as the tt̄h production cross section of the light Higgs in the type-I model scale as (ξfh)2 with

respect to the SM-like Higgs. Similarly, the cross sections for the light Higgs produced in

WH/ZH/VBF

ggF/tth
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Figure 5.1: A representative plot for mh = 80 GeV and tanβ = 2. The left panel illustrates

the variation of the ratio of the cross sections of the light Higgs (h) and the SM-like Higgs

(hSM) with α. The right panel shows the branching ratios of the light Higgs as a function of α

(the range of α is restricted near π/2 to signify the behavior around the fermiophobic limit).

Note that the V h/VBF and ggF/tt̄h production modes are able to probe a similar parameter

space. In a similar fashion, the variations of the bb̄ and τ τ̄ decay modes are identical with α.
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association with gauge bosons or through vector-boson fusion scale as (ξVh )2. Therefore, the

ordinate in Fig. 5.1 essentially shows the variation of (ξih)2 against α. The scaling has been

illustrated for tanβ = 2 in Fig. 5.1. It can be seen from Eqn. (5.2.13) and (5.2.15) that for

large values of tanβ, all production channels scale identically as cos2 α.

The right panel of Fig. 5.1 represents various branching fractions of the light Higgs again as

a function of α. In most of the parameter space, the light Higgs decays dominantly to a pair

of bottom quarks. However, near α→ π/2 (the fermiophobic limit), it decays maximally to a

pair of gauge bosons. We therefore choose bb̄ and γγ as the light Higgs decay modes for our

analysis. We must stress that the branching ratio of h to a τ pair is also significant (∼ 10%).

Since the parameter space probed by it is similar to that of bb̄, we restrict ourselves to the

analysis of bb̄ in this manuscript.

Now our task is to determine the suitable production mode for a light Higgs decaying to a

pair of bottom quarks and photons. Note that analyzing bb channel in the ggF or VBF mode

is challenging due to the presence of large QCD background. However, the presence of a

lepton(s) in addition to the bb̄ in V h or tt̄h production modes could help to suppress these

backgrounds. Hence, we choose light Higgs production in association with a W boson and top

pair for bb̄ analysis.2 On the other hand, the diphoton channel is one of the cleanest probes

for discovering new resonances at the LHC. This channel is also comes with the additional

advantage of enhanced sensitivity near the fermiophobic limit in the type-I 2HDM. In this

limit, i.e., α→ π/2, the decay of h to γγ becomes prominent and can only be probed through

the V h/VBF production mode as shown in Fig. 5.1. We have considered only the Wh process

in our analysis as the parameter space probed by VBF and Zh are exactly the same as that

of Wh. The diphoton channel can also be used to probe regions away from the fermiophobic

limit through ggF/tt̄h production mode. Since the production cross section of tt̄h is roughly

100 times smaller than that of ggF, we have not considered this for the diphoton analysis. To

summarize, we have chosen the following channels3 for probing the light Higgs at the LHC:

Channel 1: pp→ h→ γγ.

Channel 2: pp→Wh→Wγγ.

Channel 3: pp→Wh→ bb̄.

Channel 4: pp→ tt̄h→ tt̄bb̄.

The phenomenological consequences of these channels will be examined in section 5.5.

5.4 Experimental constraints

In this section, we discuss the experimental constraints on the 2HDM parameter space i.e. α,

tanβ and mh from the observed Higgs signal strength measurements and the direct searches

2Zh production mode is neglected as leptonic branching ratio in case of Z is smaller than W and the

parameter space probed by Wh and Zh are exactly the same.
3The behavior of the total cross section with respect to α and β corresponding to the four selected channels

is discussed in appendix A.4.
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of light scalars at LEP and LHC. In our analysis, we have varied α in its full range i.e.,

[0 : π] and tanβ in the restricted range of [1 : 10]. While the lower value of tanβ is chosen

to account for the constraints from the flavor observables (as discussed in appendix. A.2,

the higher value is restricted to 10 for interesting phenomenology.4 The organization of this

section is as follows. In Secs. 5.4.1 and 5.4.2 we discuss the individual constraints from the

signal strength measurements and the direct searches for light scalars, respectively. Towards

end of section 5.4.2, the combined effect of the above constraints on the parameter space is

presented.

5.4.1 LHC constraints: Signal strength measurements of the 125 GeV

Higgs

Since we have identified the heavier CP even Higgs with the observed Higgs boson, its cou-

plings with fermions and gauge bosons – which are different from that of the SM by the

factors ξfH , ξVH , ξγH , get constrained by the signal strength measurements [21]. If the observed

Higgs is produced through channel i and decays to j, then the signal strength (µij) (assuming

narrow-width approximation) is defined as [21,180]

µij =
σ(i→ H)

σ(i→ HSM)
× BR(H → j)

BR(HSM → j)
= ξprod,i

H × ξdecay,j
H

Γtot
HSM

Γtot
H

, (5.4.1)

where

ξprod,i
H =

σ(i→ H)

σ(i→ HSM)
, ξdecay,j

H =
Γ(H → j)

Γ(HSM → j)
, Γtot

H =
∑
k

ξdecay,k
H Γk,SM

H .

In Table 5.1 we list the production and decay scaling factors for the observed Higgs. Note

that these factors are exact only at the leading order. However, the deviations after including

the higher-order corrections are small [181] and hence are neglected in the analyses.

Production ggF/tt̄H VBF/V H Decay ff̄ V V ∗ γγ

ξprod
H (ξfH)2 (ξVH)2 ξdecay

H (ξfH)2 (ξVH)2 (ξγH)2

Table 5.1: Scaling factors for the production and decay processes. See Eqs. (5.2.13), (5.2.14)

and (A.1.3) for the definitions of ξfH , ξVH and ξγH respectively.

The measured signal strengths i.e. (µij)
exp used in our analysis are listed in Table 5.2. Note

that these measurements do not constrain the mass of the light Higgs due to the absence

of H → hh the decay mode as we have considered mh > mH/2 in our analysis. Hence the

parameters that are constrained by Higgs signal strength measurements are α and β. In

Fig. 5.2, we present the allowed regions in the (sin(β − α), tanβ) plane after incorporating

constraints from the Higgs signal strength measurements. These regions are determined by

4With an increase in tanβ, the couplings of the light Higgs in the type-I 2HDM with fermions decrease,

and for gauge bosons, they become independent of β.
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Signal Strength ATLAS-CMS (7− 8 TeV) Signal Strength ATLAS-CMS (7− 8 TeV)

(µggF
j )exp (combined) (µVBF

j )exp (combined)

µggF
γγ 1.10+0.23

−0.22 µVBF
γγ 1.3+0.5

−0.5

µggF
ZZ 1.13+0.34

−0.31 µVBF
ZZ 0.1+1.1

−0.6

µggF
WW 0.84+0.17

−0.17 µVBF
WW 1.2+0.4

−0.4

µggF
τ τ̄ 1.0+0.6

−0.6 µVBF
τ τ̄ 1.3+0.4

−0.4

Table 5.2: The combined measured values of (µij)
exp from ATLAS and CMS using 7 and 8

TeV data [21], used in our analysis. The allowed regions in the parameter space are determined

by allowing individual µij predicted in the type-I 2HDM to lie within ±2σ from the central

values of the measured signal strengths i.e. (µij)
exp.

allowing individual µij predicted in the type-I 2HDM to lie within ±2σ of the central values

of (µij)
exp obtained from the combined ATLAS and CMS 7 and 8 TeV data [21]. However, we

must mention that we have not employed the χ2 minimization technique while deriving such

allowed regions using data.
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Figure 5.2: The allowed region (shaded in blue) is determined by allowing individual µji
predicted in the type-I 2HDM to lie within ±2σ of the central values of (µij)

exp obtained from

the combined ATLAS and CMS 7 and 8 TeV data [21]. The signal strengths considered for

the analysis are listed in Table 5.2. Note that we have not employed the χ2 minimization

technique in our analysis for determining the allowed regions of the parameter space.

We now discuss the qualitative features of Fig. 5.2. The constraints from the Higgs signal

strength measurements force us to remain close to the alignment limit as the heavier CP even

Higgs here behaves exactly like the SM Higgs. In Fig. 5.2, one could notice that for tanβ ≈ 1,

negative values of sin(β − α) are slightly less constrained than positive ones. In this region,

sin(β − α) > 0 implies α < π/4 and sin(β − α) < 0 implies α > π/4. As a result, the

Yukawa couplings of the SM-like Higgs which scale as (ξfH) decrease for increasing positive
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Light Higgs Maximum allowed

mass | sin(β − α)| from LEP

70 GeV 0.165

80 GeV 0.21

90 GeV 0.39

100 GeV 0.49

110 GeV 0.54
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Figure 5.3: In the left panel we list the upper bounds on | sin(β−α)| at 95% C.L. obtained

from the LEP direct search measurements [182] for different light Higgs masses. In the right

panel we translate these bounds into allowed regions at 95% C.L. in the (α, tanβ) plane. The

regions shaded in blue(pink) correspond to mh = 90 (100) GeV. Note that the effect of the

LEP constraint limits the allowed range of α for a given tanβ and light Higgs mass.

values of sin(β−α). Therefore, the signal strength µggFj (which depends on ξfH) drops quickly

below the allowed range for positive values of sin(β − α), making this region relatively more

constrained. For larger values of tanβ, sin(β−α) is approximately equal to cosα. Hence, the

allowed region in Fig. 5.2 becomes symmetric in sin(β − α) as well as independent of tanβ.

Although, we have plotted effect of signal strength constraints in the (sin(β−α), tanβ) plane,

this can be easily translated to the (α, tanβ) plane. The net effect is only to restrict the

allowed range of α to be less than π for a given value of tanβ.

5.4.2 Light Higgs direct search bounds

A CP even scalar has been searched for in the channel e+e− → Zh [182] at LEP. The cross

section for this process scales as (ξVh )2, i.e., sin2(β − α). The absence of any excess in this

process has severely constrained | sin(β − α)|. In the left panel of Fig. 5.3, we list the upper

limits on | sin(β − α)| at 95%C.L. for different masses of the light Higgs [182].

Note that as the center-of-mass energy at LEP was limited to 209 GeV, the production cross

section of the light Higgs for the heavier masses faced severe phase-space suppression. As a

result, these masses are less constrained by the LEP data. In the right panel of Fig. 5.3, we

project the LEP bounds listed in the left panel onto the allowed regions at 95% C.L. in the

(α, tanβ) plane for mh = 90 GeV (pink) and mh = 100 GeV (blue) for illustrative purposes.

Note that the LEP constraint – just like the Higgs signal strength – restricts the allowed

range of α to be less than π, for a given tanβ and mh. We must mention that the Tevatron

also searched for such a light Higgs in the V h production mode [183]. However, the Tevatron
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Figure 5.4: We demonstrate the allowed regions by incorporating constraints only from the

light scalar searches at the LHC [161,168,169] in the (α, tanβ) plane for mh = 90 GeV (pink

band) and 100 GeV (blue band). The masses have been chosen for illustrative purposes as

before.

bounds are much less stringent than LEP and hence are not considered in the analysis.

LEP has also searched for a CP odd scalar in the process e+e− → hA [184,185]. This search

is complimentary to e+e− → hZ as the former depends on cos2(β − α) and the latter on

sin2(β−α). The null results in both production modes significantly constrain both sin(β−α)

and cos(β−α) and require them to be much less than unity. If both h and A are light at the

same time such that mA +mh < 209 GeV, then the combined direct search constraints of h

and A rule out a significant part of the parameter space including the regions which satisfy

the alignment limit. Therefore, our choice of demanding a heavy pseudoscalar is in sync with

the requirement of a light Higgs.

Both the ATLAS and CMS collaborations have searched for additional light scalars in the

diphoton final state [161, 168, 169]. While CMS has placed 95% C.L. upper bounds on the

total cross section for a light scalar decaying to γγ for the production modes ggF+tt̄h and

VBF+V h. On the other hand, ATLAS instead provides an inclusive bound for the combina-

tion of all of the production modes. To understand the effect of these measurements on the

parameter space of the 2HDM, let us note the behavior of the total cross section of the light

Higgs decaying to a pair of photons. We now know that the light Higgs branching ratio to

a pair of photons is large near the fermiophobic limit and could be probed in the VBF+V h

production mode. However, in this case, the total cross section, i.e., σ × BR is large only

for smaller values of tanβ and tends to zero for larger values of tanβ (see Table A.1 in ap-

pendix A.4). For regions away from the fermiophobic limit, although the branching ratio of

the light Higgs to a diphoton is not large, this decay could still be probed in the ggF mode

owing to its large production cross section.

The effect of the LHC direct detection constraints [161, 168, 169] are displayed in Fig. 5.4,

where we plot the allowed parameter space in the (α, tanβ) plane for mh = 90 GeV (pink
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Figure 5.5: The net allowed parameter space for the type-I 2HDM in the (α, tanβ) plane for

mh = 90 GeV (pink band) and 100 GeV (blue band) after combing measurements from the

Higgs signal strength [21] and the direct searches for light scalar at LEP and LHC [161,168,

169, 182]. The wedge-like disallowed region around α ≈ π/2 arises from the direct searches

for the light Higgs decaying to the a diphoton at the LHC. This constraint gets relaxed for

larger values of tanβ and with increasing mass of the light Higgs due to suppression in the

production cross section.

band) and 100 GeV (blue band). The masses have been chosen for illustrative purposes

as before. The combined bounds from ATLAS and CMS near the fermiophobic limit are

sensitive only to the VBF+V h production mode, where the total cross section is large for

smaller tanβ values. Consequently, this region gets severely constrained and results in a

wedge-like exclusion around α ≈ π/2 as can be seen in Fig. 5.4. For regions away from the

fermiophobic limit, the combined constraints from ATLAS and CMS [161, 168, 169] are far

more stringent for mh = 100 GeV than 90 GeV, hence rule out a significant part of the

parameter space for the same.

Now we combine the individual constraints from the Higgs signal strength measurements [21]

and the direct searches of the low mass scalars at LEP and LHC [161, 168, 169, 182]. The

results are shown in Fig. 5.5 in the (α, tanβ) plane for mh = 90 GeV (pink band) and 100

GeV (blue band). As already noted, the effect of the direct detection constraints from LEP

and the Higgs signal strength measurements is to restrict the allowed range of α to be less

than π. In our case, the LEP constraints are far more stringent than those arising from the

Higgs signal strength. In Fig. 5.5, we can see that the allowed range of α increases with as

the light Higgs mass increases. This happens due to the relaxed LEP constraints for heavier

light Higgs mass (see left panel of Fig. 5.3). In contrast, the direct search for a light Higgs

at the LHC rules out a wedge-like region around the fermiophobic limit and some regions

away from the fermiophobic limit. However, the constraints for the latter from the LHC

are much weaker than the LEP constraints and consequently are masked in the combination
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(see Fig. 5.5). Note that the LHC constraint around the fermiophobic limit gets relaxed for

larger values of tanβ and with increasing mass of the light Higgs due to suppression in the

production cross section.

5.5 Future prospects at LHC Run-2

In this section, we discuss the prospects of observing a light Higgs boson in the following

channels: pp → h → γγ, pp → Wh → Wγγ, pp → Wh → bb̄, and pp → tt̄h → tt̄bb̄.

The signal and background processes5 corresponding to each channel are generated using the

event generators Madgraph [123] or Pythia-8 [186] (depending on the number of final-state

hard particles at the parton level) with the NN23LO1 [187] parton distribution function. The

generated events are then showered and hadronized using Pythia-8. Note that the collider

analysis has been carried out in Pythia. We have not performed any detector simulation in

the analysis. We now describe the basic cuts used in our analysis.

1. A minimum cut of 20 GeV is imposed on the transverse momentum of photons, electrons,

muons, and missing energy.

2. Owing to the finite resolution of the electomagnetic calorimeter, photons and electrons

(muons) are accepted for further analysis if their pseudorapidities are less than 2.5 (2.7).

3. Photons and leptons (electrons and muons) are required to be isolated, meaning free

from the dominant jet activity in their nearby regions.

4. In experiments, there is a typical 5% probability for an electron to fake a photon, due

to track mismeasurements. Since this feature is not present in Pythia, we take this

into account in our analysis with the help of a random number. We randomly select 5%

events, where an electron is mistagged as a photon.

5. The hadrons are clustered into jets with jet radius R = 0.4 using anti-kT algorithm

[188]. The jets that satisfy — pjet
T > 30 GeV and |η| < 4.5 are retained for further

analysis.

6. For the topologies which require b tagging, ∆R is computed between a b parton and

each of the anti-kT jets. If it happens to be less than 0.1, we convolute it with an

additional 70% b-tag efficiency factor.

Note that the above cuts (criteria) imposed on the final-state objects in Pythia are extremely

generic and not specific to any process under consideration. Hence these fall under the

category of preselection cuts. In the coming sections, we discuss the detailed collider analysis

5Note that there are two types of backgrounds associated with a particular signal topology: reducible and

irreducible. While the irreducible backgrounds consist of exactly the same final states, the reducible back-

grounds are somewhat different and contribute to a particular signal topology because of the misidentification

of objects.
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of observing the light Higgs boson. The signal significance6 is computed over the allowed

parameter space as a function of α, tanβ, and mh.

5.5.1 Channel 1: pp→ h→ γγ

We begin with the analysis of the light Higgs boson decaying to the diphoton final state. For

our signal topology, the irreducible background arises from the tree-level quark-antiquark as

well as loop-induced gluon-gluon annihilation to γγ. The reducible backgrounds arise from

jγ, jj and e+e− final states, respectively, where a jet(s) or lepton(s) fakes a photon(s). The

QCD backgrounds can be considerably reduced by demanding the final-state photons to be

isolated (see Table. 5.3). The background due to the Z-pole contributions in the Drell-Yan

(Z → ee) process also dilutes the diphoton signal for light Higgs masses around mZ due to its

large cross section, even though the mistagging rate for an electron to fake a photon is small.

The preselection criteria discussed in the previous section are extremely generic and cannot

aid in effective signal-background separation. Additional cuts on the kinematic variables i.e.,

the transverse momentum (pT ) and the invariant mass of the diphoton pair are necessary

for further reduction in the background processes. To illustrate this point, in Fig. 5.6, we

plot the normalized transverse momentum distributions for the leading isolated photon (pγT )

corresponding to the signal (with mh = 110 GeV) and the SM backgrounds. The pT for

the signal distribution peaks approximately at mh/2 and for backgrounds processes (e.g., γγ,

jγ, and jj) it peaks at much lower values (although in the plot only the γγ background is

shown). Therefore, suitable choice of the cuts on the leading and subleading isolated photon

candidates and the invariant mass of the diphoton pair can enhance the signal significance.

The selection cuts used for the diphoton analysis are as follows:

pT selection : pγTlead
> 40 GeV , pγTsub

> 30 GeV . (5.5.1)

mγγ
inv selection : |mγγ

inv −mh| < 2.5 GeV . (5.5.2)

Here pγTlead
and pγTsub

correspond to the transverse momentum of the leading and sublead-

ing photon, respectively and mγγ
inv corresponds to the invariant mass of the diphoton pair.

Table 5.3 shows the efficiencies of the preselection and selection cuts on the signal and back-

ground processes, where the efficiency of a cut is defined as

Efficiency ≡ Number of events after imposing the cut

Number of events before imposing the cut
(5.5.3)

After imposing the preselection and selection cuts on the signal and background processes, we

are in a position to determine the signal significance for the light Higgs boson as a function

6The significance S of observing signal over background is defined as
s√
s+ b

, where s and b are the number

of signal and background events respectively.

77



Signal(γγ)

Bkg(γγ)

Bkg(ee)

20 40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

0.25

pT(γ)

N
o
rm
a
liz
e
d
d
is
tr
ib
u
ti
o
n

Figure 5.6: The figure illustrates the normalized pT distributions of the leading isolated pho-

ton in the channel γγ for the signal and background processes. Here Signal (γγ) corresponds

to the light Higgs boson of mass mh = 110 GeV, which is produced in the gluon-fusion process

and decays to a pair of photons, Bkg(γγ) corresponds to the irreducible diphoton background

and Bkg(ee) corresponds to reducible background where both electrons fake a photon

.

Efficiency

Cuts Signal Backgrounds

γγ jγ jj ee

Preselection 0.59 0.377 0.019 1.0× 10−6 1.0× 10−3

pT selection 0.84 0.28 0.21 ∼ 0 0.45

mγγ
inv selection 0.99 0.082 0.024 0 ∼ 10−4

Table 5.3: The efficiencies of the signal and background processes against different cuts are

listed for Channel 1. The light Higgs mass is chosen to be 110 GeV for illustration. The dijet

background becomes negligible after imposing all of the cuts.

of its mass and mixing angles α and β. In Fig. 5.7 (a), we plot the significance of observing

h i.e. S(γγ) with respect to α for mh = 100 GeV and an integrated luminosity L = 300

fb−1 for different values of tanβ. In Fig. 5.7 (b) we repeat the exercise with mh = 110 GeV.

Note that the significance for smaller masses is negligible, and hence it is not shown in the

plot. We now discuss the qualitative features of Fig. 5.7 with respect to α and tanβ. The

discontinuities in Fig. 5.7 (a) for tanβ = 3 and 4 near the fermiophobic limit, correspond

to the excluded regions from the direct searches of the light Higgs at the LHC as discussed

in section 5.4.2. In addition, the constraints from LEP has limited the allowed range of α

to be less than π for a given light Higgs mass and tanβ (see discussions in section 5.4.2).

The dip in the significance signifies the regions where the total cross section proportional to

ξfh × ξγh vanishes. The first minimum occurs where ξγh vanishes due to cancellation of the

top and W loop contribution7 in h → γγ whereas the second minimum corresponds to the

7For large values of tanβ, the dip corresponding to ξγh → 0 shifts towards α ≈ π/2 [see Eq. (A.1.3)].
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Figure 5.7: Variation of the signal significance S(γγ) with α for mh = 100 , 110 GeV and

L = 300 fb−1 for different values of tanβ. Panel (a) corresponds to mh = 100 GeV and panel

(b) to 110 GeV. The vertical gray dashed line corresponds to α = π/2 i.e., the fermiophobic

limit. Here the signal significance drops to zero as expected. Hence, the light Higgs produced

in gluon fusion is insensitive to the alignment limit. The discontinuities in panel (a) for

tanβ = 3 and 4 near the fermiophobic limit, correspond to the excluded regions from the

direct searches of the light Higgs at LHC as discussed in section 5.4.2.

fermiophobic limit (ξfh → 0). Hence, this channel is ineffective in probing the regions close

to the fermiophobic limit. The significance of observing the signal in this channel is larger

for α > π/2 as sin(β − α) is negative in this region. As a consequence, the top- and W loop

interfere constructively and enhance the diphoton rate.

5.5.2 Channel 2: pp→ Wh→ Wγγ

In this section, we analyze the discovery prospects of the light Higgs boson in the channel

Wγγ at 13 TeV center-of-mass energy, where the leptonic decays (only e and µ) of W are

considered. The SM backgrounds arises from pp → Wγγ, pp → Wjγ, pp → Wjj and

pp→WZ (Z → e+e−). The background reduction methods are exactly the same as the ones

discussed in section 5.5.1, and hence we refrain from discussing them in this section.

The signal is characterized by the presence of at least one isolated lepton, two isolated photons

and missing energy. The selection cuts used in the analysis are

pT selection : p`T > 30 GeV ,Emiss
T > 30 GeV , pγTlead

> 40 GeV , pγTsub
> 30 GeV .

mγγ
inv selection : |minv −mh| < 2.5 GeV .

Here p`T corresponds to the transverse momentum of leptons (e and µ) and Emiss
T denotes

the total missing transverse energy. We refer to Table 5.4 for the effect of preselection and

selection cuts on the signal and background processes. This channel allows us to probe the

regions close to fermiophobic limit where production via the gluon-fusion process loses its
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Efficiency

Cuts Signal Backgrounds

Wγγ Wjγ Wee

Preselection 0.29 0.042 0.032 4.9× 10−3

pT selection 0.55 0.186 0.36 0.308

mγγ
inv selection 0.98 0.028 0.023 6× 10−3

Table 5.4: The efficiencies of the signal and background processes against different cuts for
Channel 2. The light Higgs mass is chosen to be 110 GeV for illustration.

sensitivity. In Fig. 5.8, the significance S(`νγγ) of the signal with respect to α for 100 fb−1

integrated luminosity is plotted for four different values of mass of the light Higgs. We now

summarize the distinctive features of Fig. 5.8 below:

1. For a given light Higgs mass, the significance in this channel decreases as tanβ increases,

as the production cross section (proportional to ξVh ) decreases for large values of tanβ.

2. The branching ratio of h → WW ∗ increases significantly for larger values of mh. Fur-

thermore the decay, h → Zγ also opens up for mh > mZ . As a result, the branching

ratio of the light Higgs to diphotons decreases with increase in mh. This reduces the

signal significance substantially.

3. The discontinuities in Fig. 5.8 correspond to the disallowed regions from the LEP, and

LHC direct search measurements. The chopped-off upper half of the curves in Fig. 5.8

(a) for tanβ = 4, 6, Fig. 5.8 (b) for tanβ = 3, 4, 6 and Fig. 5.8 (c) for tanβ = 3, 4

near α ≈ π/2 are due to the LHC constraint. These are exactly the disallowed wedge-

shaped regions in Fig. 5.5. Note that the bounds from the LHC become insignificant

for larger values of tanβ and mh. The direct search bounds from LEP on the other

hand, constrain the minimum and the maximum values of α. This restricts the net

allowed range of α to be less than π. Since in Fig. 5.8 we highlight regions close to the

fermiophobic limit, the net effect of the LEP constraints is not visible.

To conclude, regions around the fermiophobic limit can be best explored at the 13 TeV LHC

for lower masses of the light Higgs and intermediate tanβ values.

5.5.3 Channel 3: pp→ Wh→ W bb̄

In this section, we analyze the discovery prospects of the light Higgs in the Wbb̄ channel,

where we consider leptonic decays of W . The signal is characterized by Wbb̄, where we tag

the leptonic (e and µ) decays of W . The signal is categorized by the presence of two b-

tagged jets, an isolated lepton and missing energy. In spite of the fact that it is the dominant

decay channel in most of the parameter space, the bb̄ mode is difficult to probe because of

the presence of the enormous QCD background. The SM irreducible background arises from
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Figure 5.8: Variation of the signal significance S(Wγγ) with α for mh = 80, 90, 100, 110

GeV for L = 100 fb−1 for different values of tanβ. The color code is the same as in Fig. 5.7.

Note that the range of α is restricted in the plot to signify the regions with reasonable

significance. The discontinuities in panel (a) for tanβ = 4 and 6, panel (b) for tanβ = 3, 4

and 6, panel (c) for tanβ = 3 and 4 near the fermiophobic limit correspond to the excluded

regions from the direct searches of the light Higgs at LHC-I as discussed in section 5.4.2. The

absence of the tanβ = 3 line in panel (a) is attributed to constraints from LEP which set an

upper limit on α and require it to be less than 1.5 for tanβ = 3 and mh = 80 GeV.
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Figure 5.9: Variation of the signal significance S(Wbb) with α for mh = 80, 90, 100, 110

GeV for L = 300 fb−1 for different values of tanβ. The color code is the same as in Figs. 5.7

5.8. This channel is also insensitive around the fermiophobic limit.

pp → WZ. The reducible background arise from pp → tt̄ where one of the W ’s is along

the beam line and hence escapes detection, and W+jets where light-quark jets are mistagged

as b-jets. The Wh production rate is governed by the magnitude of ξVh and is small in the

favored parts of the parameter space. With a small signal cross section in comparison to

large backgrounds, it is difficult to isolate signal events from huge SM backgrounds in the

2b + ` + Emiss
T final state at the LHC. In order to achieve appreciable significance at the

LHC, we follow the analysis of Ref. [170] and consider the Wh process in the boosted regime.

Although we lose a significant number of events by demanding boosted Higgs (phT > 200

GeV), it enables us to overcome huge SM backgrounds quite efficiently. We reconstruct a fat

jet with radius parameter RJ = 0.8 and transverse momentum pJT > 200 GeV. We then tag

the fat jet as a Higgs using the mass-drop technique discussed in appendix A.3.

The analysis is performed with 14 TeV centre-of-mass energy for mh = 70, 80, 100 and 110.

We have not considered mh = 90 GeV in our analysis as it is difficult to isolate the signal

from the huge Z → bb̄ background. We summarize our selection criteria as follows:

p`T > 30 GeV ,Emiss
T > 30 GeV , pW

T = |p`T + pmiss
T | > 200GeV ,RJ = 0.8 ,

pJT > 200 GeV , |mh −mJ| < 5 GeV
(
for mh ≤ 90 GeV

)
,

pJT > 250 GeV , |mh −mJ | < 8 GeV
(
for mh > 90 GeV

)
,

where pWT is the magnitude of the vector sum of the momentum of the lepton and missing

energy in the transverse plane. The efficiencies of these cuts are displayed in Table. 5.5.

We can see that by demanding at least one fat jet and anti-kT jet reduces Wbb̄ and W3j

backgrounds. Also, by invoking a fat jet with no jet activity outside and MassDrop with a

double b-tag, we are able to suppress the tt̄bb̄ process very effectively.

After imposing the above cuts, we compute the signal significance for the light Higgs boson

as a function of its mass and mixing angles α and β. In Fig. 5.9 we plot the significance
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of observing the light Higgs as a function of α. Figures 5.9 (a) and 5.9 (b) represent the

significance with an integrated luminosity of 300 fb−1 for mh = 100 and 110 GeV respectively.

Again, the discontinuities in Fig. 5.9 arise due to direct detection constraints from LEP and

LHC. It is interesting to note the behavior of the signal significance in Fig. 5.9. The dip in

the plot signifies the points where the total cross section proportional to ξVh × ξ
f
h vanishes.

The first dip corresponds to ξVh → 0 and the second dip represents ξfh → 0 (fermiophobic

limit). Hence, this channel is useful in probing regions away from the fermiophobic limit.

Efficiency

Cuts Signal Backgrounds

Wbb W3j tt̄bb̄

At least one fat jet and anti-kT jet 0.45 0.11 0.10 0.47

Isolated leptons 0.86 0.71 0.68 0.21

One fat jet with no anti-kT jet 0.5 0.27 0.16 0.019

Emiss
T > 30 GeV 0.987 0.93 0.93 0.99

pWT > 200 GeV 0.93 0.88 0.85 0.77

MassDrop with double b-tag 0.32 0.299 0.0037 0.031

Inv. mass 0.79 0.077 0.077 0.11

Table 5.5: The efficiencies of the different cuts used for the analysis of Channel 3 for both

signal and background processes. The numbers are for a light Higgs mass of 110 GeV.

5.5.4 Channel 4: pp→ tt h→ tt bb

Continuing with the discussion of a light Higgs decaying to bb̄, we now focus our attention on

the tt̄h production mode, where semileptonic decays of top-pair are considered The irreducible

background here arises from the tt̄bb̄ final state and the reducible background arises from

tt̄ + jets, where a jet fakes the bottom quark. Due to the presence of four b quarks in the

final state, it is difficult to reconstruct the light Higgs accurately due to the various possible

combinations. This problem can be addressed by resorting to boosted scenarios where the

decay products of the hadronically decaying top and light Higgs are enclosed within a single

jet of large radius parameter. Therefore, our signal essentially comprises of two fat jets, an

isolated lepton, missing energy and one anti-kT b tagged jet. To tag the top and Higgs

jets, we first construct the fat jets with pJT > 125 GeV and ∆R = 1.2. The jets satisfying

pJT > 250 GeV are tagged as top-jet if they satisfy the prescription described in appendix. A.3.

Similarly the remaining jets are tagged as the Higgs jets if they satisfy the mass drop criteria

and the filtered jet mass, mHiggs
J , lies within 5/10 GeV window about the light Higgs mass

(see appendix. A.3 for more details). In addition, we demand a b-tagged jet outside the top

and Higgs fat jet. This helps in further eliminating the tt̄+jets background. We summarize
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Figure 5.10: Variation of the signal significance S(tt̄bb̄) in the channel tt̄bb̄ with α for

different values of mh at 1000 fb−1 integrated luminosity. While the dark blue, dark red, and

dark green dashed lines correspond to tanβ = 1.2, 2, and 5, respectively, the dashed gray

vertical line for α = π/2 illustrates the fermiophobic limit. Owing to enhanced sensitivity

of σ(pp → tt̄h → tt̄bb̄) for low tanβ, we have chosen slightly lower values of tanβ for this

channel.

the cuts used in the analysis below:

p`T > 30 GeV ,Emiss
T > 30 GeV , ptop

T > 250 GeV, 150 GeV < mtop
J < 200 GeV ,

pHiggs
T > 125 GeV , |mHiggs

J −mh| < 5 GeV
(
for mh ≤ 90GeV

)
pHiggs
T > 160 GeV , |mHiggs

J −mh| < 10 GeV
(
for mh > 90 GeV

)
.

The efficiencies of the individual cuts are listed in Table 5.6. We are now in a position to

estimate the signal significance i.e., S(tt̄bb̄) as a function of α, tanβ, and mh. In Fig. 5.10

we plot the significance of observing a light Higgs for four different light Higgs masses: mh =

70, 80, 100, and 110 GeV. We have not considered mh = 90 GeV for the analysis because in

that case it will be difficult to isolate the signal events from the large tt̄Z background. Note

that we have chosen smaller tanβ values as the total cross section decreases with increase in

β (see Table. A.1). The significance is higher for lower values of α. Hence this channel is
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effective for probing lower tanβ and α regions. This particular mode for probing the light

Higgs does not work out in the fermiophobic limit as both the production cross section and

decay branching ratio are negligible.

Efficiency

Cuts Signal Backgrounds

ttbb tt+ 3j

Isolated leptons 0.53 0.56 0.57

Two fat jets 0.31 0.17 0.20

p`T > 30 GeV, Emiss
T > 30 GeV 0.76 0.65 0.63

Top tagged 0.11 0.088 0.13

Mass drop with double b-tag and inv mass 0.056 0.011 0.0009

anti-kT b-jet outside top and Higgs jet 0.28 0.25 0.50

Table 5.6: We list the efficiencies of the different cuts used for the analysis of Channel-4 for

both signal and background processes. The numbers are for light Higgs mass 110 GeV.

5.6 Summary and concluding remarks

To summarize, we study the prospects of observing a CP-even scalar lighter than the observed

125 GeV Higgs at the LHC, in the context of Type-I 2HDM. We identify the heavier CP-even

Higgs in the 2HDM with the discovered Higgs. We also consider the charged and pseudoscalar

Higgs bosons to be heavy. This choice simplifies the 2HDM parameter space and leaves α,

tanβ, and mass of the light Higgs (mh) as the relevant free parameters. We consider various

theoretical and experimental constraints to determine the allowed regions in the parameter

space. The mass of the light Higgs is taken to be greater than 62.5 GeV to avoid H → hh

decay.

To study the phenomenology of the light Higgs at the LHC, we determine the suitable pro-

duction and decay modes. In most parts of the parameter space, the light Higgs in Type-I

2HDM decays dominantly to bb̄. However, for regions close to the fermiophobic limit, its

decay to bosons, mainly photons, becomes dominant. Therefore, we focus on the light Higgs

decay to bb̄ and γγ in this analysis. Analyzing bb̄ in the ggF or VBF production mode is

challenging due to the large QCD background. We choose the light Higgs production in as-

sociation with the W boson and top pair for the bb̄ analysis. Furthermore, we tag the light

Higgs in the boosted regimes, for better signal significances. The choice of the production

mode for γγ channel is much simpler because of its better reconstruction properties. We

choose the Wh production mode for analyzing regions close to the fermiophobic limit, and

the ggF production mode for regions away from the fermiophobic limit.

We analyze the discovery prospects of the light Higgs boson in four channels viz. pp→ h→
γγ, pp → Wh → Wγγ, pp → Wh → Wbb̄, and pp → tt̄h → tt̄bb̄ at the LHC. We find

interesting regions in the parameter space of 2HDM which could be probed at the future
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Figure 5.11: The plot illustrates the regions of the allowed parameter space, which could be

probed/excluded in different channels with significances greater than 2σ for the light Higgs

boson of mass 110 GeV at the LHC with 300 fb−1 of integrated luminosity. While the contour

shaded in yellow illustrates the total allowed region in the (α, tanβ) plane for mh = 110 GeV,

we can probe only the hatched regions with significances greater than 2σ, leaving behind

regions which satisfy the alignment limit, α ≈ β. Here, we have combined the allowed regions

for pp→ h→ γγ and pp→Wh→Wbb̄ due to their similar behaviour.

runs of the LHC with a few hundred fb−1 of Luminosity. We summarize our findings in

Fig. 5.11 for mh = 110 GeV and L = 300 fb−1. In this plot, the contour shaded in yellow

illustrates the total allowed region for mh = 110 GeV. The hatched portions denote the

regions where the above channels could be probed with significances greater than 2σ at the

LHC. The un-hatched regions in the allowed contour correspond to α ≈ β and approximately

satisfy the alignment limit. As already noted, such regions would be difficult to probe/rule-

out in near future. For the purpose of the plot, we have combined the allowed regions for

pp→ h+X → γγ +X and pp→Wh+X →Wbb̄+X as they probe almost similar parts of

the parameter space (see appendix A.4).

Searches of physics beyond the Standard Model till date have yielded neither any significant

results nor specific directions to follow. However, the current measurements still do not rule

out the possibility of the observed 125 GeV scalar belonging to some enlarged sector. In

this chapter, we examined a possible scenario in context of Type-I 2HDM and studied the

prospects of observing a light CP-even scalar at the future runs of LHC. Our aim in the study

was to put together all the relevant information and provide an optimized search strategy for

the light Higgs at the LHC. The discovery of such a light scalar would not only open doors

to the new physics but also help us to understand the mechanism of electroweak symmetry

breaking better.

86



Chapter 6

Dissecting Multi-Photon Resonances at the Large

Hadron Collider

This chapter deals with the analysis concerning disentanglement of multi-photon topologies

with the diphoton ones. The work has been done in collaboration with Dr. Abhishek Iyer

and Prof. B.C. Allanach and is published in Eur. Phys. J. C 77, no. 9, 595 (2017).

6.1 Introduction

In this chapter, we consider a hypothetical new boson X, with mass around a TeV-scale,

decaying dominantly to photons, which can potentially give rise to an excess in the diphoton

final state.

There are mainly two kind of topologies which could result in such an effect viz., the standard

and the non-standard ones. In the standard case, the decay proceeds in the conventional

manner i.e. pp→ X → γγ. The non-standard topologies result in multi-photon1 final states,

but the decay products appear to be diphotons from the detector point of view. Here the

heavy resonance X decays first to lighter particles n, which further decay into diphotons,

thereby leading to a multi-photon final state. Since mn << mX , photons from n are highly

collimated and this creates an illusion of a diphoton final state in the detector.

We are interested in the disentanglement of the standard versus the non-standard topologies

in our analysis. To perform this segregation, we have ignored the SM backgrounds. For

this to be a good approximation, we require the backgrounds to be smaller than the signal

cross-section. Figure 6.1 shows viable regions for mX ≥ 1200 GeV where this is the case, i.e.

σ(pp→ X)×BR(X → γγ) is well above the background but below the current experimental

limits [34,35].

Disentanglement of the standard versus the non-standard topologies crucially depends on the

mass of the lighter resonance n. Photons deposit their energies in the electromagnetic calori-

metric cells, where the granularity of each ECAL cell is approximately 0.02×0.02 in the η−ϕ
1more than two
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Figure 6.1: The plot displays the upper 95% C.L., obtained from both ATLAS and CMS

collaborations, on the total cross-section for the diphoton final state considering spin-0 and

spin-2 resonance. The curves labelled ”BG” shows central values of the fitted diphoton mass

spectrum at 13TeV LHC collisions.

direction for both ATLAS and CMS detectors. In the limit of extremely small mn, where each

apparent photon deposits its energy within a single cell of the electromagnetic calorimeter,

the separation between the two topologies is challenging. However, when mn is large enough

for the photons (from n) to be detected by different cells of the electromagnetic calorimeter,

but small enough so that they produce the illusion of a single photon, discrimination using

photon jet substructure properties is possible. One has to disregard the photon isolation in

such cases and form photon jets instead [189,190].

As a case study, we study bosonic extensions of the standard model which could give rise to

the standard/non-standard topologies. Using λJ variable, we attempt to disentangle not just

the toplogies but also the spin of the prototype resonance considered. The lighter particle i.e.

n is assumed to have spin-0 in the analysis, as an example.

This chapter is organised as follows: in section 6.2 we set up extensions to the SM Lagrangian

which can predict heavy di-photon or multi-photon resonances. The finite photon resolution

of the detector is discussed in section 6.3. In section 6.4, isolation criteria are removed and

photon-jets are adopted. Substructure and kinematic observables are then used to distinguish

the different scenarios. In section 6.5 we introduce the statistics which tell us how many

measured signal events will be required to discriminate one set of spins from another, whereas

we cover how one can constrain the mass of the intermediate particle n in section 6.6. We

conclude in section 6.7.
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6.2 Model description

In this section we describe the minimal addition to the SM Lagrangian which can give rise

to heavy resonant final states made of photons. We make no claims of generality: various

couplings not relevant for our final state or production will be neglected. However, we shall

insist on SM gauge invariance. Beginning with the di-photon final state, a minimal extension

involves the introduction of a SM singlet heavy resonance X. We assume that any couplings

of new particles such as the X (and the n, to be introduced later) to Higgs fields or W±, Z0

bosons are negligible. Eq. 6.2.1 gives an effective field theoretic interaction Lagrangian for

the coupling of X to a pair of photons, when X is a scalar (first line) or a graviton (second

line).

LintX=spin 0 = −ηGX
1

4
GaµνG

µνaX − ηγX
1

4
FµνF

µνX,

LintX=spin 2 = −ηTψXTαβfermionXαβ − ηTGXTαβgluonXαβ − ηTγXTαβphotonXαβ. (6.2.1)

where Tαβi is the stress-energy tensor for the field i and the ηj are effective couplings of

mass dimension -1. Fµν is the field strength tensor of the photon (this may be obtained in

a SM invariant way from a coupling involving the field strength tensor of the hypercharge

gauge boson), whereas Gaµν is the field strength tensor of a gluon of adjoint colour index

a ∈ {1, . . . , 8}. As noted earlier, the direct decay of a vector boson into two photons is

forbidden by the Landau-Yang theorem [191, 192]. Since X is assumed to be a SM singlet,

there are no couplings to SM fermions, which are in non-trivial chiral representations when

it is a scalar.

The presence of an additional light scalar SM singlet in the theory (n), with masses such that

mn < mX , opens up another decay mode: X → nn. Lagrangian terms for these interactions

are

LintX=spin 0,n = −1

2
AXnnXnn, LintX=spin 2,n = −ηTnXXαβT

αβ
n , (6.2.2)

where AXnn has mass dimension 1. n may further decay into a pair of photons leading to a

multi-photon final state through a Lagrangian term

Lintnγγ = −1

4
ηnγγFµνF

µνn. (6.2.3)

Although we assume that n is electrically neutral, it may decay to two photons through a loop-

level process (as is the case for the Standard Model Higgs boson, for instance). Alternatively,

if X is a spin 1 particle, it could be produced by quarks in the proton and then decay into

nγ. The Lagrangian terms would be

LintX =spin 1,n = −(λq̄Xq q̄RγµX
µqR + λQ̄XQQ̄LγµX

µQL +H.c.)− 1

4
ηnXγnX̃µνF

µν , (6.2.4)

where λi are dimensionless couplings, qR is a right-handed quark, QL is a left-handed quark

doublet and X̃µν = ∂µXν − ∂µXν . The decay Xspin=1 → nγ would have to be a loop-level

process, as explicitly exemplified in Ref. [193], since electromagnetic gauge invariance forbids

it at tree level.
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Spin of X Spin of n Number of photons

0
0 γγ+γγ

2 γγ+γγ

1
0 γ+γγ

2 γ+γγ

2
0 γγ+γγ

2 γγ+γγ

Table 6.1: Different possibilities for spin assignments leading to an apparent di-photon state

from other multi-photon final states. The one or two photon states have been grouped into

terms which may only be resolved as one photon when mn/mX is small.

For scalar n then, we have a potential four photon final state if X is spin 0 or spin 2 and a

potential three photon final state if X is spin 1 as shown in Eq. 6.2.5:

p p→ Xspin=0,2 → n n→ γγ + γγ

p p→ Xspin=1 → n γ → γγ + γ (6.2.5)

If the mass of the intermediate scalar n is such that mn � mX , its decay products are highly

collimated because the n is highly boosted. It thereby results in a photon pair resembling a

single photon final state. This opens up a range of possibilities with regards to the interpre-

tation of the apparent di-photon channel. Above, we have assumed the intermediate particle

n to be a scalar while considering different possibilities for the spin of X. Table 6.1 gives

possible spin combinations for the heavy resonance X and the intermediate particle n leading

to a final state made of photons. The third column gives the number of photons for each

topology, grouped in terms of collimated photons that may experimentally resemble a single

photon in the mn/mX → 0 limit. The spin 1 X example was already proposed as a possible

explanation [193] for a putative 750 GeV apparent di-photon excess measured by the LHC

experiments (this subsequently turned out to be a statistical fluctuation).

In this work, we shall focus on the case where n is a scalar. However, the techniques developed

in this chapter can be extended to cases where n is spin 2 as well (but not spin 1, since n→ γγ

would then be forbidden by the Landau-Yang theorem). In the next section we will describe

the scenario under which the process in Eq. 6.2.5 can mimic a truly di-photon signal.

6.3 The size of a photon

In a collider environment, any given process can be characterised by a given combination

of final states. These final states correspond to different combinations of photons, leptons

(electrons and muons), jets and missing energy. They can be distinguished by the energy

deposited by them in different sections of the detector. In a typical high energy QCD jet,

most of the final state particles (roughly 2/3) are charged pions whereas neutral pions make
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up much of the remaining 1/3 [190]. The constituents of a jet primarily deposit their energy

in the hadronic calorimeter (HCAL) while the π0 → 2γ decay of a neutral pion ensures that it

shows up in the electromagnetic calorimeter (ECAL). Thus most of the constituents of the jet

pass through the ECAL and deposit their energy in the HCAL. Photons and electrons deposit

their energy in the ECAL, on the other hand. They can be distinguished by mapping the

energy deposition to the tracker (which precedes the calorimeters). Apart from the tracker,

electrons and photons are similar in appearance, from a detector point of view. Muons are

detected by the muon spectrometer on the outside of the experiment.

The experimental sensitivity to detect a single photon is subject to the following two criteria:

(a) Dimensions of the ECAL cells: The ATLAS and CMS detectors have slightly different

dimensions for the ECAL cells. ATLAS has a slightly coarser granularity with a crystal size

of (0.0256, 0.0254) in (η, φ). In comparison, CMS has a granularity of (0.0174, 0.0174) in

(η, φ). CMS and ATLAS have a pre-shower layer in the electromagnetic calorimeter with finer

η segmentation, which should also be employed in analyses looking for resonances into multi-

photon final states. The details of this layer are not available to us, and so we do not discuss it

further. However, we bear in mind that information from the pre-shower layer may be used in

addition to the techniques developed in this chapter. Any estimates of sensitivity (which come

later) are therefore conservative in the sense that additional information from the pre-shower

layer should improve the sensitivity. High energy photons will tend to shower in the ECAL:

this is taken into account by clustering the cells into cones of size Rcone = ∆R = 0.1. Thus

if two high energy signal photons are separated a distance ∆R < Rcone, they are typically

not considered to be resolved by the ECAL since it could be a single photon that is simply

showering.

(b) Photon isolation: In ATLAS and in CMS, a photon is considered to be isolated if

the magnitude of the vector sum of the transverse momenta (pT ) of all objects with ∆R ∈
[Rcone, 0.4] is less than 10% of its pT . Qualitatively, this corresponds to the requirement

that most of the energy is carried by the photon around which the cone is constructed. This

criterion is required in order to distinguish a hard photon from a photon from a π0 decay.

However, it is possible that certain signal topologies may give rise final state photons that

are separated by a distance ∆R ∈ [Rcone, 0.4]. For instance, consider the process given in

Eq. 6.2.5. The particle X can either be a scalar or a graviton. For concreteness, let us assume

that n is a scalar. In this case, a four photon final state resulting from X → nn → γγ + γγ

would appear to be a di-photon final state. However, as mn increases, eventually ∆R > 0.4

and the number of resolved final state photons will increase. Similar arguments hold for the

case where particle X is a spin 1 state. For a given mass of n, the eventual number of detected,

isolated and resolved photons depends on the granularity of the detector and is expected to

be slightly different for both the CMS and ATLAS.

To approximate the acceptance and efficiency of the detectors for our signal process, we

perform a Monte-Carlo simulation using the following steps:

• The matrix element for our signal process is generated in MadGraph5 aMC@NLO [123]
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by generating the Feynman rules for the process with FEYNRULES [194]. We set ηi =

O(20 TeV)−1, AXnn = MX/100 and λi = 0.5 in the model file. MadGraph5 then cal-

culates the width of the X: ΓX ∼ 1 − 2 GeV depending on the model, so the heavy

resonance is narrow2. Events are generated at 13 TeV centre of mass energy using the

NNLO1 [187] parton distribution functions.

• For showering and hadronisation, we use PYTHIA 8.2.1 [186]. The set of final state

particles is then passed through the DELPHES 3.3.2 detector simulator [127].

We use the DELPHES 3.3.2 isolation module for photons and we impose a minimum pT

requirement of 100 GeV on each isolated photon.
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Figure 6.2: Probabilities of detecting different numbers of isolated, resolved photons for a

1200 GeV X → multi-photon decay as a function of mn, the mass of the intermediate particle.

We show the probabilities for 0 (blue), 1 (orange) or 2 (green) photons for each X produced.

The probabilities for detecting 3 or 4 isolated, resolved photons for the signal are very small

for this range of mn and are not shown. Solid lines correspond to CMS, and dashed lines to

ATLAS.

2The light resonance is also narrow, since Γn = m3
n|ηnγγ |2/(64π).
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Figure 6.2 shows the probabilities of detecting the different number of detected, resolved,

isolated photons in the final state for a produced X for ATLAS (dashed) and CMS (solid).

If pT (γ) < 10 GeV or |η(γ)| > 2.5, DELPHES records a zero efficiency for the photon, and it is

added to the ‘0 photon’ line. In the rest of the detector, DELPHES assigns between a 85% and

a 95% weight for the photon (the difference from 100% is also added to the ‘0 photon’ line in

the figure). A few of the simulated photons from the X additionally fail the pT > 100 GeV

cut: these are not counted in the figure, and so the curves do not add exactly to 1.

The probabilities are shown for different possibilities of the spin of X, as shown by the header

in each case. The bottom row corresponds to spin 2 when it is produced by gg fusion (left)

and q̄q annihilation (right). Spin 1 corresponds to X → nγ → γγ + γ, whereas the other

cases all correspond to a X → nn→ γγ + γγ decay chain. The effective number of detected

photons can be reduced by them not appearing in the fiducial volume of the detector (i.e.

|η(γ)| < 2.5), or by them not being isolated (in which case both photons are rejected) or

resolved (in which they count as one photon). We note that for each spin case, in the low mn

limit, the X is most likely to be seen as two resolved, isolated photons because each photon

pair is highly collimated.

We note first that the probability for detecting 0, 1 or 2 resolved, isolated photons for the

spin 2 case does not depend much on whether it is produced by a hard gg collision or a hard

q̄q collision. An interesting trend is observed for the spin 0 and spin 2 cases, where the two

photon probability has a minimum at mn ≈ 40 GeV. At mn = 40 GeV, the photon pair from

an n are often separated by ∆R ∈ [Rcone, 0.4] and fail the isolation criterion because the two

photons have similar pT . Fig. 6.3 gives the distribution of ∆R between the photon pair coming

from n as a function of its mass, and illustrates the preceding point. For light masses (mn = 1

GeV) it is clear that both signal photons are within ∆R < Rcone. For intermediate masses

mn ∈ {25, 50} GeV, most photons are within ∆R ∈ [Rcone, 0.4], whereas for mn = 100

GeV, a good fraction are already isolated photons, having ∆R > 0.4. Using an estimate

mn ∼MX∆R/4 from following equation

∆R =
mn

MX

2 cosh η(n)√
z(1− z)

. (6.3.1)

we deduce that events with four isolated signal photons are expected to be evident only in

the mn & 120 GeV region for MX = 1200 GeV.

The spin 1 case in comparison, has a significantly lower zero photon rate for mn < 50 GeV,

as the process is characterised by a single photon and two collimated photons. Thus, unless

the single photon is lost in the barrel or lost because of tagging efficiency, it will be recorded

even if the collimated photons fail the isolation criterion.

6.4 Photon Jets

Since we wish to describe collimated and non-isolated photons in more detail (since, as the

previous section shows, these are the main mechanisms by which signal photons are lost), we
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Figure 6.3: ∆R distribution for photon pairs originating from n → γγ for different values

of mn. Photon pairs to the left hand side of the ‘ECAL Prescription’ line are considered

to be one photon, whereas those between the ECAL prescription and the ‘Isolation’ line are

rejected because of the photon isolation criteria.

follow refs. [189,190] and define photon-jets. For this, we relax the isolation criteria and work

with the detector objects, i.e. the calorimetric and track four vectors. The calorimetric four

vectors for each event are required to satisfy the following acceptance criteria:

EECAL > 0.1 GeV , EHCAL > 0.5 GeV, (6.4.1)

while only tracks with pT > 2 GeV are accepted. These calorimetric and track four vectors are

clustered using FASTJET 3.1.3 [195] using the anti-kT [188] clustering algorithm with R =

0.4. The tracks’ four vectors are scaled by a small number and are called ‘ghost tracks’: their

directions are well defined, but this effectively scales down their energies to negligible levels

to avoid over counting them (the energies are then defined from the calorimetric deposits).

The photon jet size R = 0.4 is chosen to coincide with the isolation separation of the photon

described in Section 6.3. The anti-kT clustering algorithm ensures that the jets are well defined

cones (similar to the isolation cone) and clustered around a hard momentum four vector, which

lies at the centre of the cone. Thus for our signal events, the jets are constructed around the

photon(s). These typically have a large pT , since they are produced from a massive resonance.

Since these jets are constructed out of the calorimetric (and ghost track) four vectors, they

constitute a starting point for our analysis. At this stage, while a QCD-jet (typically initiated

by a quark or gluon) is on the same footing as a photon jet, they can be discriminated from

each other3 by analysing different observables:

• Invariant mass cut: We would demand the invariant mass of the two leading photon

3Here we have not implemented such cuts, since we only simulated signal.
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jets to be close to the mass of the observed resonance, reducing continuum backgrounds.

• Tracks: QCD jets are composed of a large number of charged mesons which display

tracks in the tracker before their energy is deposited in the calorimeter4 [196]. The

track distribution for a QCD jet typically peaks at higher values of the number of

tracks compared to a photon jet which peaks at zero tracks.

• Logarithmic hadronic energy fraction (log θJ): This variable is a measure of the

hadronic energy fraction of the jet. For a photon jet most of the energy is carried by the

hard photon(s). As a result, this jet will deposit almost all of its energy into the ECAL,

which is in stark contrast with a QCD jet. This can be quantified by constructing the

following substructure observable [189,190]:

θJ =
1

Etotal

∑
i

EHCALi , (6.4.2)

where Etotal is the total energy in the jet deposited in the HCAL plus that deposited

in the ECAL, whereas EHCALi is the energy of each jet sub-object i that is deposited

in the HCAL. log(θJ) is large and negative for a photon jet, while it peaks close to

log[2/3] = −0.2 for a QCD jet, since charged pions constitute around (2/3) of the jet

constituents. We would require the leading jet to have log(θJ) < −0.5, corresponding

to very low hadronic activity.

Under these cuts, the QCD fake rate should reduce to less than 10−5 [189, 190]. Removing

photon isolation and instead describing the event in terms of photon jets is advantageous

because it helps discriminate the standard di-photon decay from the decay to more than two

photons in Eq. 6.2.5. However, it still fails in the limit mn/MX → 0, as we shall see later.

Taking photon jets as a starting point, we shall devise strategies where we may discern the

nature of the topology and glean information about the spins of the particles involved.

6.4.1 Nature of the topology

In this section we identify variables that aid in identifying the topology of the signal process

and the spin of X. We begin by listing different cases we would like to discriminate between

in Table 6.2. In the event of an observed excess in an apparent di-photon final state, we would

relax the isolation criteria and define photon jets. Analysing the photon jets’ substructure will

help measure the number of hard photons within each jet. The difference in substructure for

a photon jet with a single hard photon as opposed to several hard photons can be quantified

by [189,190]:

λJ = log

(
1− pTL

pTJ

)
. (6.4.3)

This can be understood as follows:

• Hard photon jets are re-clustered into sub-jets.

4A gluon initiated jet typically has a larger track multiplicity than a quark initiated jet.
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Model Process

S2 pp→ S → γγ

S4 pp→ S → nn→ γγ + γγ

V 3 pp→ Z ′ → nγ → γ + γγ

G2ff qq̄ → G→ γγ

G4gg gg → G→ nn→ γγ + γγ

G4ff q̄q → G→ nn→ γγ + γγ

Table 6.2: Cases to discriminate with a scalar n and a heavy resonance which is: scalar (S),

spin 1 (Z ′) or spin 2 (G). We have listed the main signal processes to discriminate between

in the second column, ignoring any proton remnants. The notation used for a given model is

Xk: X = S, V,G labels the spin of the resonance and k denotes the number of signal photons

at the parton level in the final state.

• pTL denotes the pT of the leading sub-jet (i.e. the sub-jet with the largest pT ) within

the jet in question, whilst pTJ is the pT of the parent jet.

• For a ‘single pronged’ photon jet, pTL ∼ pTJ . Thus λJ is negative, with a large magni-

tude.

• For a double-prong photon jet, pTL < pTJ , resulting in λJ closer to zero than the single

pronged jets. We expect a peak where pT (n) is shared equally between the two photons,

i.e. pTL/pTJ = 1/2, or λJ = −0.3.

There exist other substructure variables one could use in place of λJ , such asN−Subjettiness [197,

198] or energy correlations [199] which are a measure of how pronged a jet is. Here, we prefer

to use λJ because it is particularly easily implemented and understood, and is robust in the

presence of pile-up [200].

Fig. 6.4 shows the distribution of λJ for the di-photon heavy resonance S2 (solid) and a

multi5-photon S4 topology mn = 1 GeV (dot-dashed). It is evident from the figure that

the λJ distribution is similar for the two cases, since they both peak at highly negative λJ .

This can be attributed to the fact that for such low masses of n in S4, the decay photons are

highly collimated with ∆R < Rcell. They therefore should resemble a single photon. However,

the appearance of a small bump like feature on the right of the plot for mn = 1 GeV S4 is

interesting and unexpected prima facie since the opening angle between the photons in this

case is less than the dimensions of an ECAL cell. However, this is explained by the fact that

the energy of a photon becomes smeared around the cell where it deposits most of its energy.

When a single (or two closely spaced photons) hit the centre of the cell, the smearing is almost

identical for both cases. However, there exist a small fraction of cases for the collimated S4

topologies, where the two photons hit a cell near its edge such that they get deposited in

adjacent cells, leading to the small double-pronged jet peak at λJ = −0.3. One would require

both good statistics and a very good modelling of the ECAL in order to be able to claim

5In this article, we refer to three or more hard signal photons as a multi-photon state.
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Figure 6.4: Distribution of λJ for S2 and some multi-photon topologies S4 for mn = 1 GeV

and V 3 and S4 for mn = 40 GeV in the ATLAS detector. Double photon jets dominantly

appear at λJ ∼ −0.3. If a single hard photon in a jet radiates, it often appears in the bump

λJ ∈ [−3.5,−2], but there is a possibility for the photon jet to really only contain one photon:

here, λJ is strictly minus infinity. We do not show such events here on the figure, but they

will count toward model discrimination.

discrimination of the two cases S2 and S4 (1 GeV), and for now we assume that they will not

be. On the other hand, by the time that mn reaches 40 GeV, the multi-photon topologies V3

and S4 are easily discriminated from S2, due to the large double-photon peak at λJ = −0.3.

They should also be easily discriminated from each other since V3 has a characteristic double

peak due to its γ + γγ topology.

Using the λJ distribution of the apparent di-photon signal, we then segregate the different

scenarios into two classes:

• Case A: a peak in signal photons at λJ = −0.3: Here, the distribution in Fig. 6.4

points to the presence of intermediate particles n and intermediate masses (of say

mn > 15 GeV) which lead to well resolved photons inside the photon jet, e.g. V3

(40 GeV) and S4 (40 GeV) in Fig. 6.5. There are 4 possibilities under this category:

S4, V 3, G4gg, G4ff (see Table 6.2). Due to the double-peak structure V 3 can be distin-

guished from S4, G4ff , G4gg using the λJ distribution.

• Case B: no sizeable peak at λ = −0.3: Here, we can either have S2 or intermediate

particles n with a low mass. Most photon pairs coming from n appear as one photon

since each from the pair hits the same ECAL cell. Thus, signal events resemble a conven-

tional di-photon topology. All seven cases in Table 6.5 (S2, S4, V 3, G2gg, G4gg, G2ff , G4ff )

can lie in this category, depending on mn/MX .
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Figure 6.5: ∆η distribution between the two leading photon jets for the various models.

There was very little difference between the S2 and S4 distributions by eye and so we have

plotted them as one histogram.

Model S2 S4 V 3 G4gg G2ff G2gg G4ff

∆η Central Non central

Table 6.3: Classification of the ∆η distributions of models (listed in Table 6.2) as either

central or non-central.

Once the nature of the topology is confirmed by the λJ distribution (i.e. a classification into

case A or B), we then wish to determine the spin of the resonance X responsible for the

excess.

Consider case A for instance: as shown in Fig 6.6, the three remaining scenarios in case A,

S4, G4ff , G4gg, can be distinguished from one another by constructing the ∆η distribution

between the leading signal photon jets. We classify ∆η for a given scenario as either central

(peaking at zero) or non-central (two distinct peaks away from zero) as shown in Table 6.3.

We show the various distributions in Fig. 6.5. In the case where two scenarios can have the

same ∆η distribution classification (e.g. S4 and G4gg), one must examine differences in the

precise shapes of these distributions to distinguish them. This will be discussed in the next

section. In case B, all seven models listed in Table 6.5 are possibly indicated if mn/MX is

very small. As shown in Fig 6.6, ∆η will be needed to distinguish the various models.
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(V 3, G4gg, G4qq, S4)
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(V 3, G4gg, G4qq, S4)

Case B
(G2gg, G2qq, S2)
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Figure 6.6: Flow chart representing the analysis strategy, beginning with photon jets, to

discern the spin of the parent resonance X. After defining photon jets, the λJ distribution is

used to select different possibilities: Case A, where the λJ distribution indicates the presence

of intermediate n particles in the decay with an intermediate mass. Case B indicates that

either the intermediate particles are very light or absent. A double bump structure in the λJ

distribution indicates the spin 1 (V 3) topology.

6.5 Spin Discrimination

The discussion in the previous section illustrates the role of the substructure variables λJ and

∆η. While λJ is useful in determining whether a given process results in well resolved photons

in the calorimeter, ∆η helps discriminate the different spin hypotheses from one another. The

signal ∆η distribution changes depending upon which spins are involved in the chain and they

are invariant with respect to longitudinal boosts. They should therefore be less subject to

uncertainties in the parton distribution functions (PDFs), which determine the longitudinal

boost in each case6.

We wish to calculate how much luminosity we expect to need in order to be able to discrim-

inate the different spin possibilities in the decays, i.e. the different rows of Table 6.2. For

this, we assume that one particular Hypothesis HT , is true. Following Ref. [201] (which did

a continuous spin discrimination analysis for invariant mass distributions of particle decay

chains and large N), we require N signal events to disfavour a different spin hypothesis HS

to some factor R. We solve

1

R
=
p(HS |N events from HT )

p(HT |N events from HT )
(6.5.1)

6We note that whether the photon is in the fiducial volume or not does depend upon the longitudinal

boost, and is therefore subject to PDF errors.
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for N , for some given R (here we will require R = 20, i.e. that some spin hypothesis HS

is disfavoured at 20:1 odds over another HT ). We are explicitly assuming that background

contributions B are negligible to make our estimate, but in practice, they could be included

in the ∆η distributions in which case HS → HS +B and HT → HT +B in Eq. 6.5.1.

We characterise the ‘N events from HT ’ by the values of a particular observable (or set of

observables) oi. In the present chapter, we shall consider the pseudrapidity difference ∆η

between the leading and next-to-leading photon jet, o
(T )
i (for i ∈ {1, 2, . . . , N}) that are

observed in those events, although the observables could easily be extended to include other

observables, for example λJ . By Bayes’ Theorem, we rewrite Eq. 6.5.1 as

1

R
=
p(HS)

p(HT )

p(N events from HT |HS)

p(N events from HT |HT )
=
p(HS)

p(HT )

∏N
i=1 p(o

(T )
i |HS)∏N

i=1 p(o
(T )
i |HT )

. (6.5.2)

Binned data measured in the o distribution {n(T )
j } (for j ∈ {1, 2, . . . ,K}, K being the number

of bins), will be Poisson distributed7 based on the expectation µ
(X)
j for bin j:

p(nj |HX) = Pois(nj |µ(X)
j ), (6.5.3)

where X ∈ {S, T} and Pois(n|µ) = µne−µ

n! . Substituting this into Eq. 6.5.2, we obtain

log

(
1

R

)
= log

(
p(HS)

p(HT )

)
+

K∑
j=1

[
n

(T )
j log

µ
(S)
j

µ
(T )
j

+ µ
(T )
j − µ(S)

j

]
, (6.5.4)

where µ
(T )
j is the expectation of the number of events in bin j from HT and n

(T )
j is a random

sample of observed events obtained from p(nj |HT ). There is a (hopefully small) amount of

information lost in going between unbinned data in Eq. 6.5.2 and binned data in Eq. 6.5.4.

The first term on the right hand side contains the ratio of prior probabilities of HT and

HS : this ratio we will set to one, having no particular a priori preference. Then taking the

expectation over many draws, 〈n(T )
j 〉 = µ

(T )
j and so

log

(
1

R

)
=

K∑
i=1

[
µ

(T )
j log

µ
(S)
j

µ
(T )
j

+ µ
(T )
j − µ(S)

j

]
. (6.5.5)

We notice that Eq. 6.5.5 is not antisymmetric under T ↔ S, but this is expected since we

are assuming that HT is the true hypothesis, in contrast to HS . As the data come in, at

some integrated luminosity, the distribution will be sufficiently different from the prediction

of some other hypothesis, HS , to discriminate against it at the level of 20 times as likely.

Each term on the right-hand side is proportional to the integrated luminosity collected L,

µ
(X)
j = Lσ(X)

tot ε
(X)
j , (6.5.6)

7As argued above, we work in kinematic régimes where backgrounds can be neglected. We are also neglecting

theoretical errors in our signal predictions. It would be straightforward to extend our analysis to the case where

some smearing due to theoretical uncertainties is included, where we would convolute Eq. 6.5.3 with a Gaussian

distribution.
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where σ
(X)
tot is the assumed total signal cross-section (i.e. the X production cross section)

before cuts for HX and ε
(X)
j is the probability that a signal event makes it past all of the

cuts and into bin j, under hypothesis X. Assuming that σStot = σTtot ≡ σtot, we may solve

Eq. 6.5.5 and Eq. 6.5.6 for NR = Lσtot, the expected number of total signal events required

to disfavour HS over HT to an odds factor of R:

NR =
logR∑K

j=1

[
ε
(T )
j log

ε
(T )
j

ε
(S)
j

+ ε
(S)
j − ε(T )

j

] . (6.5.7)

One property of this equation is that if ε
(T )
j = ε

(S)
j ∀ j, then LR →∞. This makes sense: there

is no luminosity large enough such that it can discriminate between identical distributions.

Eq. 6.5.7 works for multi-dimensional cases of several observables: one simply gets more bins

for the multi-dimensional case. If one works in the large statistics limit, for continuous data

(rather than binned data), one obtains a required number of events that is related [201] to the

Kullback-Leibler divergence instead [202]. The Kullback-Leibler divergence is commonly used

when one has analytic expressions for distributions of the observables (see Ref. [201]), and has

the advantage of utilizing the full information in o. We do not have analytic expressions, partly

because they depend upon parton distribution functions, which are numerically calculated.

Our method loses some information by binning, but it has the considerable advantage that

it includes kinematical selection and detector effects (all contained within the εj). Eq. 6.5.7

has the property that: if one halves the total X production cross-section, one requires double

the luminosity to keep the discrimination power (measured by R) constant.

Since we shall estimate ε
(X)
j numerically via Monte-Carlo event generation, there is a potential

problem we have to deal with: a bin might end up with no generated events and so one

encounters divergences from the logarithm in the denominator of Eq. 6.5.7. This is due,

however, to not using enough Monte Carlo statistics, where M signal events are simulated in

total for each parameter choice and for each hypothesis pairing. We restrict the range of o

and use large enough Monte Carlo statistics (M = 200000) such that no bins (that are set to

be wide enough) contain zero events.

6.5.1 Event Selection and Results

Using the statistic developed in Eq. 6.5.7, we first first discriminate Case A from B defined in

Section 6.4.1. Thus, in the event of an apparent di-photon excess in a certain invariant mass

bin say m
(0)
γγ , we propose the following steps:

• We relax the isolation criteria and re-analyse the events by constructing photon jets.

• The invariant mass mj1j2 of the two leading photon jets for each events are required to

lie around m
(0)
γγ : we require 1100 < mj1j2/GeV < 1300.

• Photon jets from pions are eliminated by requiring that leading jet to have no tracks

(nT = 0) and by requiring log θJ < −0.5. We also take into account the photon
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conversion factor. This depends on whether the photon converts before or after exiting

the pixel detector. This conversion probability is a function of the number of radiation

lengths (a) a photon passes through before it escapes the first pixel detector and is given

by [190]

P (η) = 1− exp(−7

9
a(η)). (6.5.8)

We approximate this by an η independent conversion probability P (η) = 0.2.

• The substructure of each jet is analysed using λJ to determine whether it is in Case A

or B.

Fig.6.6 gives a pictorial representation of these steps. We use mn = 40 GeV and mn = 1

GeV as examples for the model hypotheses to be tested. We simulate 2× 105 events for the

topologies predicted by HT and HS and compute λJ for the all events which pass the basic

selection criteria. To avoid any zero event bins, λJ is binned between [−4, 0] with a bin size

of 0.6 and the efficiency for each particular bin is extracted for both distributions from the

simulation. Owing to the distinct nature of the λJ distribution for both the cases, 3-4 events

is sufficient to discriminate between case A and case B. The mn = 1, 40 GeV cases both have a

post-cut acceptance efficiency of ∼ 55%. For a cross-section of 0.5 fb, we can accumulate some

five signal events with ∼18 fb−1 of integrated luminosity. Once the nature of the topology

(corresponding to a given case) is identified, our next step is to discriminate the different

possibilities within it. Both of the scenarios are handled independently as follows:

CASE A: In this case there are only four possibilities corresponding to a multi-photon

topology (i.e. proceeding through an intermediate n). As discussed earlier, we do not impose

the requirement of two isolated photons, since the photons from n tend to fail isolation cuts.

We compute ∆η between the two leading photon jets. In order to discriminate V3 from the

other cases, the twin-peaked structure of V 3 under λJ (as shown in Fig 6.4.3) can be employed

to discriminate it collectively from S4, G4gg, G4ff . In this case one requires a minimum of

20 signal events to disfavour the other three at a 20 : 1 odds. All samples are characterised

by a minimum of ∼ 55% acceptance efficiency. With this information then, one can disfavour

S4, G4gg, G4ff in favour of V 3 with ∼ 72 fb−1 of integrated luminosity for a 0.5 fb signal

cross-section.

S4, G4gg, G4ff can then be discriminated from one another using ∆η between the two leading

jets. Table 6.4 computes the minimum number events required for pairwise discrimination of

the three cases for mn = 40 GeV and is computed using Eq. 6.5.7 To avoid zero event bins in

the ∆η distribution, we restrict the a priori range of |∆η| ∈ [−5, 5] to [−4, 4]. As shown in

the Table 6.4, disfavouring S4 as compared to G4gg constitutes the largest expected number

of required signal events i.e. 29. This can be achieved with a luminosity of ∼ 105 fb−1. Thus

in the event of a discovery corresponding to Case A, it is possible to get exact nature of the

spin of X within 105 fb−1 of data.

CASE B: This constitutes the more complicated of the two cases. Since the two hard photons

inside the photon-jet for the multi-photon topologies can not be well resolved, the substructure

is similar to the conventional single photon jet from the standard di-photon topology. Thus
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NR S4 G4gg G4ff

S4 ∞ 22 13

G4gg 29 ∞ 4

G4ff 19 5 ∞

Table 6.4: Spin discrimination: NR = Lσ(X)
tot , the expected number of total signal events

required to be produced to discriminate against the ‘true’ row model versus a column model

by a factor of 20 at the 13 TeV LHC for mn = 40 GeV.

there are more cases to distinguished in this case. We compute the ∆η between the leading

two jets of the event. To avoid zero event bins in the ∆η distribution, we restrict the a priori

range of ∆η from [−5, 5] to [−4, 4].

The signal models here are characterised by an acceptance efficiency of at least 55%. Using

the cross-section of 0.5 fb, we find that the cases S2 and S4 are virtually indistinguishable

owing to the similar shapes of their ∆η distributions. They thus cannot be distinguished on

the basis of the ∆η distribution. However, as shown in Fig. 6.4, the presence of secondary

bump for the collimated case will help in distinguishing these two cases. In this case, the

same technology we have developed for the ∆η distribution could be employed for the λJ

distribution.

Distinguishing S2, S4 from V 3 requires a maximum expected number of events of 250-300.

This is achievable with 1.1 ab−1 of integrated luminosity, assuming an acceptance of ∼ 55 %

and a signal production cross-section of 0.5 fb. Distinguishing scenarios like S2 from G4ff or

G4gg requires 23 events or less: these could be discriminated with ∼84 fb−1 for our reference

cross-section of 0.5 fb, whereas the rest of the pairs of spin hypotheses can be distinguished

within 364 fb−1 of data.

NR S2 S4 V 3 G2gg G4gg G2ff G4ff

S2 ∞ > 2000 272 27 15 91 14

S4 > 2000 ∞ 255 26 15 96 13

V 3 260 248 ∞ 54 9 37 21

G2gg 32 31 65 ∞ 5 13 38

G4gg 23 24 14 6 ∞ 54 4

G2ff 102 110 44 12 40 ∞ 8

G4ff 19 18 28 37 5 12 ∞

Table 6.5: Spin discrimination of two models: NR = Lσ(X)
tot , the expected number of total

signal events required to be produced to discriminate against the ‘true’ row model versus a

column model by a factor of 20 at the 13 TeV LHC for mn = 1 GeV.
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6.6 Mass of the intermediate scalar

A multi-photon topology is indicative of the presence of two scales in the theory: mX and mn.

While the scale of the heavier resonance is evident from the apparent di-photon invariant mass

distribution, extracting the mass of the lighter state may be more difficult. From Fig. 6.2, we

see that for low to intermediate masses, one does not obtain isolated photons from n which

may be used to reconstruct its mass. We therefore examine the invariant mass of photon jets.

The decay constituents of n retain its properties such as its pT , pseudo-rapidity η, mass etc..

Fig. 6.7 shows a comparison of the mass of the leading jet for S4 and a few different values

of mn. The peak of each distribution, which can be fitted, clearly tracks with the mass of n.
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Figure 6.7: Comparison of the S4 photon jet mass distributions for the leading photon jets

and various mn.

Using an estimate based on the statistical measure introduced in section 6.5, we calculate that

25 signal events would be required to discriminate the 35 GeV from the 45 GeV hypothesis,

for instance: i.e. ∼91 fb−1 of integrated luminosity and a signal cross-section of 0.5 fb. Thus,

for intermediate masses and reasonable amounts of integrated luminosity, a fit to the peak

should usefully constrain mn, at least for mn & 10 GeV.

6.7 Conclusion

In the event of the discovery of a resonance at high di-photon invariant masses, it will of course

be important to dissect it and discover as much information about its anatomy as possible.

Here, we have provided a use case for Refs. [189,190], where photon jets, photon sub-jets and

simple kinematic variables were defined that might provide this information. The apparent

di-photon signals may in fact be multi-photon (i.ė greater than two photons), where several
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photons are collinear, as is expected when intermediate particles have a mass much less than

the mass of the original resonance. We identified useful variables for this purpose: the pseudo-

rapidity difference between the photon jets helps discriminate different spin combinations of

the two new particles in the decays. We quantify an estimate for how many signal events are

expected to be required to provide discrimination between different spin hypotheses, setting

up a discrete version of the Kullback-Leibler divergence for the purpose. For the discovery of

a 1200 GeV resonance with a signal cross-section of 05 fb, many of the spin possibilities can be

discriminated within the expected total integrated luminosity expected to be obtained from

the LHC. A simple sub-jet variable λJ provides a good discriminant between the di-photon

and multi-photon cases. The invariant mass of the individual photon jets provides useful

information about the intermediate resonance mass.
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Chapter 7

Summary and concluding remarks

The present searches at the Large Hadron Collider have witnessed no success in determining

any signs of new physics apart from few glitches in the charged and neutral B meson decays.

With more and more statistics, the SM seems to be emerging as the sole winner. Since the

race is not yet over, however, we cannot be sure of its outcome. There is still much room for

new physics and it is in this context that we have studied four different new physics scenarios.

These scenarios have mostly dealt with the determination of direct and indirect hints of new

bosonic physics1 at the Large Hadron Collider.

Probes of new physics depend on the scales at which observable effects emerge. While lighter

particles could be probed as resonances at the colliders, the heavier particles rely on the

indirect hints where for instance a well-measured observable significantly differs from its SM

prediction. Note that the definition of lighter and heavier is relative and depends on the

center of mass energy probed by a particular collider.

Given the lack of experimental evidences and with well-motivated models failing to show their

mark at the collider, the strategy followed in the thesis has been primarily to understand the

fluctuations in the data and eventually make predictions by either constructing or considering

simple extensions of SM in a bottom-up approach. The advantage of this approach is that

it is mostly unbiased and could help to point towards the full UV-complete theory in future.

Till then our job is essentially to collect the missing pieces of the puzzle.

A wide range of analyses have been performed using these techniques ranging from deter-

mining class of U(1)X models to explain the hints of lepton flavour universality violation

in neutral B-decays to finding signs of new physics in diphoton resonances to probing the

well-measured gauge boson vertices. In performing these analyses, a number of ”clean” final

states have been analyzed ranging from γγ to di-muons to Wγ, where leptonic decays of W

are considered, for different NP scenarios. The interesting regions/channels which could be

probed at the recent runs of the LHC have been identified Luminosity. Now it remains to be

1The choice of bosonic signals is partly motivated by the fact that more fermions generally lead to anomalies,

but this is not a very strong argument. It is more fair to say that in the present climate bosonic signals seemed

to be the ones that suggested themselves to us more strongly.

106



seen which of these scenarios would survive at the future runs of LHC.

Since the nature of the new physics is not known, this creates confusion in finding a particular

direction and probing it further. We may hope that the situation will change with more

running years of the LHC and other futuristic colliders like BELLE-II, CLIC and ILC. Till that

time our work will be to persevere in trying to find smart methods to probe the undetectable.

On this note the present thesis may be properly ended.
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Appendix A

This appendix is devoted to analysis performed in chapter 5. Here we list the some of the

important formulas and implications of the low mass charged Higgs on the diphoton analysis.

We also discuss the fat-jet tagging techniques used for h→ b̄b analysis. The behaviour of the

total cross-section with respect to mixing angles α and β are also noted.

A.1 Diphoton loop

The effective interactions of h(H) with γγ are given as [178]:

L =
αem
8πv

ξγhh FµνF
µν +

αem
8πv

ξγH HFµνF
µν . (A.1.1)

Correspondingly the decay width is

Γ(h(H)→ γγ) =
α2g2

1024π3

m3
h(H)

m2
W

|ξγh(H)|
2 . (A.1.2)

For Type-I 2HDM, the effective couplings ξγh(H) receives dominant contributions from W-

boson, charged Higgs and top loop, and is given as

ξγh(H) = NcQ
2
t ξ

t
h(H)F1/2(τt) + ξWh(H)F1(τW ) +

m2
W

M2
H±

ξH
±

h(H)F0(τH±) . (A.1.3)

The form factors are given as:

F0(τH±) = τH± [1− τH±f(τH±)] , F1/2(τt) = −2τt [1 + (1− τt)f(τt)] , (A.1.4)

F1(τW ) = 2 + 3τW + 3τW (2− τW )f(τW ) , (A.1.5)

where

f(τ) =

(
sin−1 1√

τ

)2

for τ > 1 , f(τ) = −1

4

(
log

η+

η−
− iπ

)2

for τ < 1 ,

η± = 1±
√

1− τ , τ = 4
(
m/mh(H)

)2
. (A.1.6)

108



The couplings of h(H) with tt̄, W+W− and H+H− in Type-I 2HDM:

ξth = cosα/ sinβ , ξtH = sinα/ sinβ , ξWh = sin (β − α) , ξWH = cos (β − α) , (A.1.7)

ξH
±

h =
1

4m2
W sin2(2β)

[
8m2

12 cos (α+ β)− sin(2β)

(
(m2

h − 2m2
H±) cos(α− 3β)

+(2m2
H± + 3m2

h) cos(α+ β)

)]
, (A.1.8)

ξH
±

H =
1

4m2
W sin(2β)

[
(2m2

H± −m2
H) sin (α− 3β) + sin(α+ β)

(
4m2

12

sinβ cosβ

−2m2
H± − 3m2

H

)]
. (A.1.9)

A.2 Charged Higgs analysis

In this section, we revisit some of our analyses by considering effect of low mass charged

Higgs. We will see that our results will remain more-or-less unaltered. The independent

2HDM parameters are varied in the following ranges1:

α = [0, π] , tanβ = [1, 10] ,m12 = [0.01, 1000] GeV ,

MA = [80, 2000] GeV ,MH± = [80, 2000] GeV . (A.2.1)

As in Type-I 2HDM, couplings decrease with increase in tanβ, we have fixed the upper limit

on tanβ to be 10. We first determine the allowed parameter space by incorporating following

constraints:

• Perturbativity: We demand the Higgs self couplings i.e. λi and the Yukawa couplings

to be less than 4π, for the perturbative expansion to remain valid.

• Vacuum stability: This condition ensures the scalar potential to be bounded from below

by restricting λi’s in the following ranges :

λ1,2 > 0, λ3 > −
√
λ1λ2 and λ3 + λ4 − |λ5| > −

√
λ1λ2 [172]

• Unitarity: This arise from the requirement of unitarity of scattering amplitudes such

that the amplitudes do not grow with the increase in center of mass energies. The

unitary bounds for 2HDM can be found in Ref. [173]

• ρ-parameter

(
m2
W

m2
Z cos θW

)
: Its value in SM is predicted to be unity at tree-level (the

renormalization scheme is chosen such that this relation even holds after including higher

order corrections [203]). Experimental prediction of ρ parameter is in agreement with

the SM and constraints the masses of new scalars introduced in the theory [175].

• Flavour observables: Although the tree-level FCNC in 2HDM are absent due to the Z2

symmetry, the charged scalars can affect these processes through higher order diagrams.

In general, the flavour observables in these models are sensitive to the mH± and tanβ.

1The lower range of MA has been kept same as that of MH± for simplicity.
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• Direct charged Higgs searches at LEP: The charged Higgs has been searched in the

channel e+e− → H+H− at LEP. The null observation of the signal has put a lower

bound of 80 GeV on the mass of charged Higgs [204,205]. This bound has been derived

assuming H± decays only to the τ ν̄ and cs̄ modes. However, in the alignment limit the

decay H± → hW± becomes significant. Hence, the bound on the charged Higgs mass

gets relaxed in the regions close to the alignment limit [206].

The effect of above constraints on the parameter space is shown in Fig. A.1 . The allowed

regions are shown in the panels (a), (b) and (c) of Fig. A.1 in (MA,MH±), (α,m12) and

(MH± ,m12) planes respectively. For Type-I model, the bounds from flavour physics are weak

and allows almost all values of mH± & 80 GeV for tanβ & 2 [176,177,207]. Hence we haven’t

shown the effect in the plot.

The important inferences which we can make from Fig. A.1 are following:

1. It can be seen from Fig. A.1 (a) that there exists upper bounds on the masses of the

charged Higgs and the pseudoscalar Higgs. These bounds arise primarily due to the

unitarity constraints. Furthermore bounds from the ρ parameter force the mass of

pseudoscalar to be approximately equal to that of charged Higgs for mH± & 200 GeV,

and for mH± . 200 GeV, the pseudoscalar mass remains unconstrained.

2. The Z2 symmetry breaking parameter m12 is also restricted to be less than 100 GeV

(see Fig. A.1 (b) and (c)). These bounds arise from the vacuum stability requirements.

3. The mixing angle α is not constrained at all by any of the above constraint as can be

seen in Fig. A.1 (c).
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Figure A.1: Allowed range of MA and MH± after imposing constraints from perturbativity,

vacuum stability, tree-level unitarity, ρ-parameter, LEP and flavour data.

After determining the allowed parameter space from theoretical and few experimental con-

straints, we proceed to examine the effect of light charged Higgs on the allowed parameter

space from the Higgs signal strength measurements (for earlier analyses of this kind Ref. [208]).

For illustration purpose, we have fixed the mass of charged Higgs to be 200 GeV andm2
12 = 100

GeV. The charged Higgs boson will affect the signal strength measurements through its con-

tribution in H → γγ decay. It can be seen from Fig A.2 that the deviations in the high tanβ

regions are dramatic while for low tanβ, the increment in the allowed range of sin(β − α) is

slight. Furthermore, for the low tanβ regions, the LEP measurements are far more constrain-
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ing (see Fig. 5.5). Therefore, the allowed parameter space for tanβ < 10 which is our region

of interest, remains same even after including effects from the low mass charged Higgs.

A light charged Higgs boson could also affect the significance of observing light Higgs h in the

γγ channel. It is however found that the significance only increases slightly for larger values

| sin(β − α)|. The effect is depicted in the right panel of Fig A.2. Although the plot is shown

for a particular choice of mh and tanβ, the qualitative result is independent of their values.

Hence the effect of considering light charged Higgs boson only mildly affects our analyses.
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Figure A.2: In the left panel, the allowed parameter space from the signal strength data

is plotted with and without charged Higgs. The blue contour shows the allowed parameter

space without H± and the brown contour is with H± of mass 200 GeV. In the parameter

region we are considering i.e., tanβ < 10, the effect of adding charged Higgs is miniscule.

In the right panel, we show the effect of the charged Higgs on the significance of observing

γγ final state. The charged Higgs is found to enhance the significance for large values of

sin(β − α). The Black (red dashed) line corresponds to the diphoton analysis without (with)

the charged Higgs effects.

A.3 Fat jet tagging techniques

In this section, we summarize the fat jet tagging methods for Higgs and top quark jets [170,

171]. We begin with the discussion on the reconstruction of a Higgs fat jet. To start with,

we combine all the momentum four-vectors (ji) within ∆R = 0.8 to form a fat jet (J) using

Cambridge-Aachen algorithm. The fat jets with pT > 200 GeV are considered for further

analysis.

• The fatjet (J) is broken into two subjets (j1 and j2) and the heavier jet is labelled as

j1.

• The two subjets are considered if the mass of j1 has sufficient mass drop i.e. mj1 < µmJ
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and the splitting between two jets defined as y =
min(pT1 , pT2)

max(pT1 , pT2)
is greater than ycut

2.

This is a powerful cut to reduce the contaminations due to the QCD background. We

have considered µ = 0.67 and ycut = 0.09 for our analysis [170].

• If the previous condition is not satisfied then j1 is identified as J and the procedure is

repeated until both of the above conditions are satisfied.

• The final jet is considered as the Higgs if both subjets are b-tagged and the mass of the

filtered3 fat jet (mJ) is close to the Higgs mass.

Now we discuss the reconstruction of top jet. We combine all the momentum four-vectors

(ji) within ∆R = 1.2 to form a fat jet (J) using Cambridge-Achen algorithm. The fat jets

with pT > 250 GeV are considered for further analysis.

• Inside a fat jet, a lose massdrop criteria is employed such that J → j1j2, mj2 < mj1

and mj2 > 0.2mJ . The splitting takes place iteratively till mj1 > 30 GeV. A fat jet is

retained if it has atleast three such subjets.

• The three subjets are then filtered with ∆R = 0.3 into five subjets. Only those fatjets

with total jet mass close to the top quark mass are considered. The subjets which

reconstruct the top mass are then reclustered into three subjets.

• These subjets are then required to satisfy decay kinematics. Among three pair of in-

variant mass with these subjets, two of them are independent (as one of them satisfies

W-mass criteria). In a two dimensional space where the coordinates represent two inde-

pendent invariant mass, top-like jets represent a thin triangular annulus whereas QCD

jet is localized in the region of small pair-wise invariant mass.

A.4 Cross section

The dependency of the total cross section (σ× BR) on α and sin(β−α) are listed in Table. A.1

and also displayed in Fig. A.3.

It can be easily seen from the expressions of the cases A and D listed in the Table A.1, that

the behaviour of total cross section for pp→ h→ γγ and pp→Wh→Wbb̄ becomes identical

with respect to α in the large tanβ regions. The same can also be verified from tanβ = 6

line Fig. A.3.

2 This is to ensure not too asymmetric splitting between j1 and j2.
3To eliminate underlying events in the fatjet, it is filtered with Rfilter = 0.3 and three hard subjets are

retained.
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Total cross section Parametric dependence Limit where the cross section vanishes

A σ(pp→ h→ γγ)

(
cosα

sinβ

)2

× |ξγh |2 ×
1

Γtot
h

α→ π/2, |ξγh | → 0

B σ(pp→ V h→ V γγ) sin(β − α)2 × |ξγh |2 ×
1

Γtot
h

α→ β, |ξγh | → 0

C σ(pp→ tt̄h→ tt̄bb̄)

(
cosα

sinβ

)4

× 1

Γtot
h

α→ π/2

D σ(pp→ V h→ V bb̄) sin(β − α)2 ×
(

cosα

sinβ

)2

× 1

Γtot
h

α→ π/2, α→ β

Table A.1: The dependency of total cross section for various processes with respect to

coupling scale factors are tabulated. The limits where the total cross section vanishes are

also listed. The behaviour of the total cross section for all four cases with respect to α for

tanβ = 2 and 6 is plotted in Fig.A.3.

Figure A.3: A representative plot of (σ× BR) for light Higgs decaying to γγ and bb̄ for

mh = 100 GeV. The dashed line in blue corresponds to tanβ = 2 while the dotted line in red

corresponds to a tanβ = 6.
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