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Chapter 1

Introduction

The second law of thermodynamics determines the equilibrium properties of a closed

system. The entropy S of a closed system at equilibrium is always maximised. For a

system that can exchange energy with the surroundings the second law implies that

the Helmholtz free energy F , given by F = E − TS is minimised, where E is the in-

ternal energy of the system and T is the temperature. At a constant temperature, the

system can minimise its free energy by either maximising its entropy or minimising its

internal energy. Entropy of a system can be thought of as a measure of the disorder of

the system. Larger the disorder, larger the entropy. Thus, if at a finite T , the system

orders, the loss in entropy is compensated by a decrease in the internal energy of the

system. The simplest statistical physics example one can consider is the ferromagnetic

Ising model in 2 dimensions, which was solved exactly by Onsager [1]. Below a crit-

ical temperature Tc the system orders because the decrease in the internal energy of

the system outweighs the decrease in entropy. Such an ordering transition is ‘energy

driven’. There is another class of ordering transitions which are purely entropy driven.

Consider a system for which the internal energy is a function of the temperature T ,

but not of the density. Classical systems with hard-core repulsion fall in this category.

When these systems undergo an ordering transition as a function of density, they can

do so only by increasing their entropy. The earliest such example was again given by

Onsager [2] wherein he showed that a three dimensional fluid of thin hard rods must

undergo a transition to a nematic ordered phase (where the orientations of the rods

are aligned on an average) upon compression. This happens because the translational

entropy of the rods increases in the nematic phase.

Generally speaking, it is very hard to write down an analytical expression for the

free energy, F , of a system. Only a handful of simple systems exist for which exact

solutions are known and even then only is some limiting cases. For example the ex-

act solution of the 2-d Ising model is known only in the B = 0 limit, where B is an

external magnetic field. In case of the hard-rod system, the phase transition can be

found exactly only in the L/D → ∞ limit, where L is the length of the rod and D is

7



CHAPTER 1. INTRODUCTION 8

the diameter. Systems with many competing interactions have complicated phase dia-

grams. Although simple approaches such as mean field theory exist, it is not enough to

provide a quantitative analysis of the complex features that exist near a phase transi-

tion. Numerical techniques like Monte-Carlo simulations[3] sample the configuration

space of such systems and give us an insight into their equilibrium properties. They

can be then used to determine the phase diagram as a function of various parameters

like the temperature and interaction strength etc., which define the system. They can

be also used to extensively characterise the phases and phase transitions, providing

extensive support in understanding existing experimental data and also giving rise to

new experimental directions. In this thesis, we numerically investigate using Monte-

Carlo methods two systems: Ising antiferromagnet on the triangular lattice with next

and next-next nearest neighbour interactions and hard squares at full packing on the

cubic lattice. In the former the decrease in the internal energy determines the equi-

librium properties of the system. In the latter, since there is no energy scale in the

system, entropy determines the equilibrium properties. In both these cases we find that

simple Metropolis Monte-Carlo algorithms that work by updating local configurations

are not enough to equilibrate the system and we have to resort to non-local cluster

algorithms. In the following sections, we present an overview of the both these types

of systems, starting from their experimental origins to their theoretical modelling and

various methods used to gain insights into their rich equilibrium properties. It must de-

clared that the introductory scientific material presented in this Chapter is in essence a

rewording of excerpts from many excellent books and review articles on these subjects

and references are made wherever possible to the better source. This is in no way a

complete introduction but merely an exercise in regurgitating what I remember from

literature surveys while attempting to write this thesis with an obvious bias towards

ideas used further in this thesis.

1.1 Magnetism

Magnetism is a uniquely interesting property exhibited by many naturally occurring

and man-made materials. The first discovered and most abundant naturally occurring

magnetic material was the mineral Magnetite with the chemical formula Fe3O4. Its use

as a surgical tool by the ancient Indians, as a navigational tool by the ancient Chinese

and as a philosophical object by the ancient Greeks has been recorded. Since then we

have come a long way in finding practical uses for magnetic materials in every sphere of

life from fridge magnets to the latest IBM quantum computer. Apart from this, the rich

nature of magnetic materials gives perennial fodder to the hungry hordes of theoreti-

cal and experimental physicists with dozens of papers published each day contributing
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to our ever increasing understanding and amazement about these materials and their

properties. Chapter 3 of this thesis concerns itself with the study of a seemingly simple

yet unsurprisingly complex theoretical magnetic model. Our main mode of enquiry into

understanding this model is through numerical simulations. In Chapter 2 we develop

and analyse the numerical simulation techniques needed to solve this model. In the

subsequent subsections of this introduction, I provide the background needed to un-

derstand the model and numerical techniques of subsequent chapters. Further into this

chapter, we will switch to entropic considerations as promised in the introduction and

outline the background needed to understand the model thereof.

1.1.1 Magnetic materials

Magnetism can manifest in nature in many ways. Every material on earth is weakly dia-

magnetic, that is, it is repelled in the presence of an external magnetic field due to an

induced magnetic field in the opposite direction. However this effect is generally very

weak and hard to detect except in a class of materials known as superconductors. More

commonly detected responses to an external magnetic field are paramagnetism and fer-

romagnetism, which easily outweigh the weak diamagnetism and become the defining

properties of those materials. Paramagnetism is the more commonly observed effect, in

which spins of the unpaired electrons in the material align with the external magnetic

field causing a net attraction. However in the absence of an external magnetic field, the

material doesn’t have a net magnetic moment of its own. Ferromagnetic materials have

a net magnetic moment in the absence of an external field. Below a critical tempera-

ture known as the Curie temperature, the spins in a paramagnet spontaneously align

to produce a net magnetic moment. Other types of spontaneous alignment of spins

exist including the antiferromagnet in which below a Neel temperature, the number of

up aligned spins exactly cancel the number of down aligned spins creating a net-zero

magnetic moment. Ferrimagnetism happens when this cancelling is not exact and a

net magnetic moment survives. Some anti-ferromagnets can show ferrimagnetism in

the presence of an external magnetic field. Materials in which there are no unpaired

electrons are diamagnetic and are colloquially referred to as non-magnetic since dia-

magnetism is hard to detect. Hence all magnetic materials have unpaired electrons

which respond to an external magnetic field. Although the spin of an electron and

hence all magnetic interactions are quantum mechanical in nature, it is useful to work

in a classical and semi-classical approximation to gain some physical insight into the

problem. Here we start with the empirically observed Hund’s rule and Pauli princi-

ple and work our way through justifications of the origins of a few types of magnetic

interactions which form the basis of models further explored in this thesis.
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Dipole moment of an electron

Electrons respond to magnetic field because they have a net dipole moment. This dipole

moment has two contributions, one due to the intrinsic quantum-mechanical spin of the

electron known as the spin magnetic dipole moment and the other due to the revolution

of the electron around a nucleus known as the orbital magnetic dipole moment∗. The

total magnetic dipole moment of an electron is given as

~µJ = gJµB
~J

~
(1.1)

where µB and ~ are the Bohr magneton and Planck’s constant respectively. ~J is the total

angular momentum given as ~J = ~S+ ~L where ~S and ~L are the spin angular momentum

and the orbital angular momentum respectively. gJ is the lande g-factor which is related

to the spin g-factor gS and the orbital g-factor gL by the expression

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (1.2)

Pauli’s exclusion principle

Pauli’s exclusion principle† states that two fermions cannot have the same quantum

numbers. Electrons being fermions, follow this principle and hence if two electrons

occupy the same orbital their spin quantum number has to be different.

Hund’s rules

The first Hund’s rule‡ can be explained in terms of Pauli’s exclusion principle and the

Coulomb interactions between electrons. Coulomb interactions between dipole mo-

ments of electrons energetically favours electrons of similar spin over electrons of op-

posite spins. This along with Pauli’s exclusion principle ensures that electrons of similar

spin occupy different orbitals before electrons of opposite spins occupy the same orbital.

This leads to the first rule that the total spin S is always maximised. The second rule

states that the total orbital angular momentum L consistent with S is maximised. The

third rule states that the total angular momentum J is |L−S| when the shell is less than

half-full, S when the shell is half-full and L+ S when the shell is more than half-full.
∗This picture assumes that the electron is localised around a nucleus. In metals, where the electron is

delocalised, a quantum mechanical wave picture is more useful and can be found in [4].
†The quantum mechanical origins of this principle can be found in [5]
‡A more nuanced description of Hund’s rules can be found in [6]
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1.1.2 Magnetic ordering

The ideal paramagnet: Curie’s law

Consider a system of N independent spins with no interaction between the spins in

an external magnetic field B. The partition function of a single spin is given by the

Brillouin function

Z =
sinh(∆(J + 1/2))

sinh(∆/2)
(1.3)

where ∆ = µBB
kBT

. The net magnetisation per unit volume is then

M ∼ −d ln(Z)

d∆
(1.4)

which has the following limits:

lim
T→0

M(T ) ∼ J (1.5)

lim
T→∞

M(T ) ∼ J(J + 1)
B

T
(1.6)

In the limit of a small magnetic field B = µ0H, the susceptibility is given as :

χ =
M

H
∼ J(J + 1)

µ0µ
2

T
(1.7)

This is known as the Curie’s law and is used as an experimental signature to detect

systems in which the interaction between the electron dipole moments are weak.

Exchange coupling

The paramagnet is an example of a non-cooperative magnet in which the individual

electron dipole moments behave independently and are unaware of each others ex-

istence. This is often not the case and magnetic moments of electrons have an in-

fluence on neighbouring electrons. This leads to cooperative magnetism. Two types

of exchange interactions are possible following from Pauli’s exclusion principle. Di-

rect exchange occurs when the electrons are close enough such that the wavefunctions

overlap. Indirect exchange happens when the electrons are so far apart that the ex-

change is mediated by an intermediary. In metals, the intermediaries are delocalized

electrons giving rise to RKKY(Ruderman and Kittel, Kasuya and Yosida) interactions. In

insulators, the intermediaries are non-magnetic ions in the lattice giving rise to superex-

change. Both RKKY and superexchange interactions in the presence of strong spin-orbit

coupling give rise to DM(Dzyaloshinsky-Moriya) interactions. The direct exchange cou-
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pling can be represented as a spin-dependent coupling term in the Hamiltonian as:

HE = −
∑
ij

J(rij)~Si.~Sj (1.8)

where rij is the distance between two ions at i and j with spins ~Si and ~Sj respectively.

Jij is the exchange parameter. In the case of intra-atomic direct exchange, the exchange

parameter J is positive following Hund’s rules. For inter-atomic direct exchange the

sign of J is determined by the inter-play between Coulomb and kinetic energies of the

pair of magnetic ions. Coulomb interaction forces the ions apart. However, increase

in localisation increases the kinetic energy. In the case of indirect exchange, J can be

positive or negative for superexchange and oscillates between positive and negative for

RKKY exchange depending on the separation between the ions.

Ferromagnetism

A ferromagnet is a cooperative magnet. In an ideal ferromagnet, each site of a crys-

tal is occupied by an identical magnetic ion with a spontaneous dipole moment with

positive (J>0) inter-atomic direct exchange between the ions. The magnetic ions then

form domains which spontaneously magnetise along an easy axis determined by the

crystal field D. An external field doesn’t change the magnitude of the intrinsic mag-

netisation of these domains, but helps them in aligning along the direction of the field.

As temperature increases, the thermal energies of the magnetic moments eventually

overcome the exchange energies and the system transitions into a paramagnet above

the critical Curie temperature Tc. The magnetic susceptibility χ above Tc is given by the

Curie-Weiss law as:

χ ∼ 1

T − Tc
(1.9)

Examples of crystalline ferromagnets include Fe, Co and Ni. Various alloys of Fe, Ni and

Co are also examples of amorphous ferromagnets.

Antiferromagnetism

An ideal antiferromagnet is similar to the ideal ferromagnet but with a negative ex-

change parameter (J<0). Thus magnetic moments on neighbouring sites of a crys-

talline lattice are oppositely aligned giving rise to a net zero magnetic moment. The

lattice of an ideal antiferromagnet can be divided into two sublattices, each with a fer-

romagnet. The direction of the spontaneous magnetisation in these two ferromagnets

is exactly opposite and cancel out each other. Hence there is no overall spontaneous

magnetisation. As temperature increases, the thermal energies of the magnetic mo-

ments eventually overcome the antiferromagnetic exchange energies and the system
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transitions into a paramagnet above the critical Neel temperature TN . Below TN , the

magnetic susceptibility increases with increasing temperature. Above TN , the magnetic

susceptibility is given by a Curie-Weiss law. Examples of antiferromagnets include ionic

compounds such as FeO, CoO, MnS etc. and ordered alloys such as Fe3Mn, Pt3Fe and

CrPt.

Ferrimagnetism

In a simple crystalline ferrimagnet, different kinds of magnetic ions occupy different

sublattices of the system. The magnetic moments in a sublattice have ferromagnetic ex-

change. But the exchange between different sublattices is antiferromagnet. A net spon-

taneous magnetisation arises when the net moments of the different sublattices don’t

cancel each other exactly due to generally different number of sublattice sites per unit

cell and different moments of the ionic magnets on each of those sublattices giving rise

to a ferrimagnet. Examples of crystalline ferrimagnets include FeO.Fe2O3(magnetite),

NiO.Fe2O3, MnO.Fe2O3 etc. Amorphous ferrimagnetism exists in direct analogy to the

crystalline case except that the magnetic ions in the sublattices have random positions.

Examples include alloys like TbFe2 and GdFe2 where Tb-Tb, Gd-Gd and Fe-Fe inter-

actions are ferromagnetic but Tb-Fe and Gd-Fe are antiferromagnetic. Temperature

dependence of a ferrimagnet is similar to that of a ferromagnet with a transition to

a paramagnet above the Curie temperature Tc. However, the magnetic susceptibility

shows significant deviation from the Curie-Weiss law near Tc.

Other types of magnetic ordering

Many other types of magnetic ordering exists and below we list a few well known types

to give a flavour of the variety:

• Metamagnetism where a magnetic field induced transition happens from a state

of low magnetisation to a state of high magnetisation through a phenomenon

known as spin flop. Examples include 3d transition metal compounds like YCo2,

TiBe2, and FePt3.

• Incipient ferromagnetism happens when the exchange coupling is not strong

enough to form a long-range ferromagnet. However, at very low temperatures

small domains of similarly aligned magnetic moments emerge and are stabilised

over experimentally measurable timescales. Such domains are called param-
agnons. Palladium and platinum are examples which display incipient ferromag-

netism.

• Superparamagnetism occurs when small single domain particles of ferromag-

netic nature below a critical volume can be made to thermally fluctuate fast



CHAPTER 1. INTRODUCTION 14

enough along the easy axis of the crystal such that net measured magnetisation

is zero. This is different from the paramagnetic transition of a ferromagnet be-

cause it happens below the Curie temperature. Examples include Co particles in

mercury and Fe particles in amorphous gels.

• Speromagnetism is the phenomenon by which below an ordering temperature

TORD, the magnetic moments are frozen in random directions such that there is

no net magnetisation. This effect is mainly observed in systems with RKKY and su-

perexchange interactions. Example of a superexchange enabled speromagnetism

is FeF3 and RKKY enabled speromagnetism is CuMn.

• Asperomagnetism Asperomagnetism is similar to ferromagnetism but with some

orientations of magnetic moments more probable than others giving rise to a net

spontaneous magnetisation. YFe3 and DyNi3 are examples.

• Helimagnetism is asperomagnetism on a crystalline lattice where magnetic mo-

ments on the sites of a crystalline lattice are frozen in different orientations below

the ordering temperature TORD, but with some orientations more probable than

others giving rise to a net spontaneous magnetic moment. MnAu2 is an example.

• Weak ferromagnetism also known as canted antiferromagnetism or parasitic fer-

romagnetism occurs when two or more antiferromagnetic sublattices are canted

at an angle and do not cancel each other out exactly resulting in a net magnetic

moment. This can be caused by a difference in single-ion anisotropy in the sub-

lattices (NiF2) and DM interactions (β-MnS).

Detailed explanations of the various magnetic orderings and the various magnetic ex-

citations associated with them can be found in [[7]]

1.2 Theoretical modelling

1.2.1 Spin models

Heisenberg model

Working in the approximation where a quantum spin is represented by a vector ~Si in a

three dimensional space at site i the exchange coupling hamiltonian of Eq. [1.8] can



CHAPTER 1. INTRODUCTION 15

be written more generally as§:

H = −
∑
ij

(
JxijS

x
i S

x
j + JyijS

y
i S

y
j + JzijS

z
i S

z
j

)
(1.10)

where ~Jij = (Jxij, J
y
ij, J

z
ij) is the anisotropic exchange parameter. In the isotropic limit,

the Heisenberg model is

H = −J
∑
ij

(
Sxi S

x
j + Syi S

y
j + Szi S

z
j

)
(1.11)

In terms of the spin raising and lowering operators S±i = Sxi ± iSyi this can be written

as:

H = −J
∑
ij

[
1

2

(
Sxi S

x
j + Syi S

y
j

)
+ Szi S

z
j

]
(1.12)

When J < 0, it can be seen that the ground state is realised when all spins point

in the same direction. Thus J < 0 is the ferromagnetic exchange parameter. For

antiferromagnetic J > 0, the ground state has oppositely aligned neighbouring spins.

In the presence of a magnetic field B along the ẑ axis and a crystal field D along the

easy axis of the crystal, the hamiltonian can be written as:

H = −J
∑
ij

(
~Si.~Sj

)
−
∑
i

∑
α=x,y,z

Dα

(
~Si.êα

)2
−B

∑
i

Szi (1.13)

Ising model

The Ising model can be seen as a limiting case of the Heisenberg model when the easy

axis of the crystal is anisotropic along the z direction with Dz >> Dx, Dy. The lowest

energy state corresponds to spin doublet, Sz = ±s and the effective Hamiltonian can

be written as:

H = −Js2
∑
ij

σiσj −Bs
∑
i

σi (1.14)

where σi = ±1. Examples of compounds favouring such anisotropy include K2CoF4 and

Rb2CoF4[8]. The nearest neighbour Ising model has been solved analytically in one

dimension by Ising[9] and in two dimensions by Onsager[1] on the square lattice. It

can also be solved using transfer matrix methods on the square lattice. In subsequent

sections, we will study this model in more detail using mean-field and Landau theory.

§The Hubbard model is a more general effective Hamiltonian which reflects the quantum mechanical
nature of the spin of an electron, but is generally very difficult to solve and only solved exactly in one
dimension. The generalised anisotropic Heisenberg model can be derived as a limit of this model at half
filling.
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XY model

When Dz << Dx, Dy, the spin is free to rotate in the XY-plane giving rise to the XY

model represented as

H = −J
∑
ij

S+
i S
−
j + S−i S

+
j (1.15)

Rb2CrCl4 is an example of a compound which shows XY behaviour due to easy-axis

anisotropy[10]. The XY model has been solved analytically by performing a Jordan-

Wigner transformation of the spin raising and lowering operators into fermionic oper-

ators. Further exploration of the interesting physics that takes place in this model will

be done in subsequent sections.

1.2.2 Mean field approximations

Mean field approximations are an important first tool in exploring the solutions of a

many-body Hamiltonian. In the case of spin models, the effect of exchange interactions

from neighbouring spins is approximated by a mean value of the spin and fluctuations

around this mean value are ignored. As we shall see below mean field theory gets better

with increasing dimension and above an upper critical dimension the fluctuations are

much smaller than the mean value and can be ignored. This effect can be attributed

to the fact that as the dimensionality of the system increases, the coordination number

of the spin increases and there is a higher probability for the fluctuations from the

neighbouring spins to cancel each other. In infinite dimensions, mean field theory

becomes exact.

Weiss mean field theory

We will first study the Ising model using a mean field approximation on a d-dimensional

hypercube with coordination number z = 2d. The mean value of spin si is approximated

by the local magnetisation m = 〈sj〉 as si = m+ δ where δ = si−m and the limit δ → 0

is taken. Under this approximation Eq.[1.14] will read

H0 =
∑
i

H0
si

= −
∑
i

si(zJm+B) (1.16)

The expectation value of si under this Hamiltonian is given as:

〈si〉 =
tr sieβH

0
si

tr eβH
0
si

= tanh[β(zJm+B)] (1.17)
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Using the self consistency condition m = 〈si〉, we get the magnetisation as:

m = tanh[β(zJm+B)] (1.18)

In the absence of a magnetic field B, when βzJ < 1, the only solution is m = 0, cor-

responding to a paramagnet. When βzJ > 1, three solutions exist: m = 0 and ±m0

corresponding to the Z2 symmetry breaking of a ferromagnet. Thus the critical temper-

ature is given by βzJ = 1 or kBT = zJ . In 1-d, this simple mean-field approximation

predicts a phase transition at kBTc = 2J . But we know using the Peierls argument[11]

that there is no phase transition in 1-d. In 2-d the mean-field approximation does better

by predicting a phase transition at kBTc = 4J . However, the exact transition tempera-

ture calculated by Onsager is kBTc = 2J

ln(1+
√
2)
∼ 2.269J . In 3-d, the predicted value is

kBTc = 6J as compared to the numerically calculated value of kBTc = 4.511J[12].

Bethe mean field theory

Bethe a gave a more nuanced version of the Weiss mean field approximation which

greatly improves the predictions of mean field theory. We start by considering a cluster

of z + 1 spins: the spin si and its z nearest neighbours. We improve the mean field

approximation by saying that each of the neighbours interact with si directly, but the

interaction between the neighbours is only through an effective Weiss mean field. With

this approach if we follow a procedure similar to the one shown above for Weiss mean

field theory and solve a self consistency equation, we end up with the following form

for the critical temperature:

kbTc =
2J

ln( z
z−2)

(1.19)

In 1-d since Tc = 0, this correctly predicts that there is no phase transition. In 2-d, the

prediction is Tc = 2J
ln 2

= 2.885J which is much closer to the exact value than the Weiss

mean field prediction. Taking bigger and bigger clusters for the mean field approxi-

mation will increase the accuracy of the predicted exponent at the cost of increasing

difficulty. However at the critical point when the correlations are long range, any finite

cluster approximation will fail at correctly predicting the critical exponents for dimen-

sions less than the upper critical dimension.

1.2.3 Order parameter

Order parameter is a model dependent quantity that can be used to distinguish between

the ordered and disordered phases of the system. The order parameter for a system is

not unique. Any quantity which is zero is the disordered phase and non-zero in the

ordered phase is a viable order parameter.
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Heisenberg model: The ferromagnetic Heisenberg model orders below Tc for dimen-

sions greater than 2. The ground state corresponding to an energy minimum is realised

when all the spins point in some arbitrary direction n̂ and there is a net magnetisation.

Above Tc, the system is disordered and there is no not magnetisation. Thus a natural

order parameter for this model would be the total magnetisation vector ~m = 1
N

∑
i
~Si.

For T < Tc, in the ordered state it takes the value ~M = Mn̂. In the disordered state for

T > Tc, ~M = 0. In the absence of an external field, the Hamiltonian has O(3) symmetry

and the symmetry is spontaneously broken in the ordering direction n̂.

Ising model: For the 2-d ferromagnetic square lattice Ising model a viable order param-

eter is the scalar total magnetisation M = Nm, where m is the intensive magnetisation.

The ferromagnetically ordered ground state of this model for T < Tc has Z2 symmetry

in the absence of an external field. M = ±N in the two ground states and is 0 in the

disordered state for T > Tc.

XY model: In the 2-d XY model, the spins are free to rotate in the XY plane. The

ordered ground state can be described by the two component vector ~M = (Mx,My).

However the situation is more complex with the ordered state undergoing a KT transi-

tion which cannot be described by a local order parameter. We will return to this topic

in subsequent sections.

Other more complicated ground state ordering of spins require complex order parame-

ters as we shall see in the subsequent sections.

1.2.4 Landau theory

Landau developed a phenomenological theory for predicting the type of phase transi-

tions a system can undergo. The basis of writing down a Landau theory is to identify an

order parameter and expand the Gibb’s free energy around it, such that the symmetries

of the system are respected. If we were to consider an Ising ferromagnet, the local

magnetisation m is a good order parameter, since it is 0 in the paramagnetic phase and

±1 in the ferromagnetic phase. The Z2 symmetry of the system at B = 0 implies that

the Gibb’s free energy should be same for ±m. Hence in the expansion, only terms

which are even powers of m appear. The Gibb’s free energy can be written as:

G(m,T ) = a(T ) +
1

2
b(T )m2 +

1

4
c(T )m4 +

1

6
d(T )m6 + ... (1.20)

By expanding around the mean valuem, we have neglected the fluctuations around this

mean value. A variation of the Landau theory called the Landau-Ginzburg theory takes

into account these fluctuations. Landau theory successfully explains the continuous/2nd

order transitions, 1st order transitions and the interplay between them.
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2nd order transitions

Let c(T ), d(T ), .. > 0. We then Taylor expand b(T ) around Tc upto linear order as

b(T ) = b0(T − Tc). The ground state solution at a given T should minimise the free

energy. Hence we get
∂G

∂m

∣∣∣
T

= bm+ cm3 + dm5 + ... = 0 (1.21)

The solutions to first order are, m = 0 for T > Tc and m0 = ±
√
−b
c

for T < Tc. At

T = Tc, b = 0. In the limit T → T−c , m0 = ±
√

b0
c

(Tc − T ). The value of the order

parameter, m changes continuously at all times as T is varied, hence the transition is

continuous/2nd order in nature.

1.2.5 Critical exponents

In the previous subsection we saw that the in the case of a 2nd order phase transition

in the 2-d Ising model, the temperature dependence of magnetisation near the critical

point Tc is given as m ∼ (Tc − T )1/2. Here 1/2 is a critical exponent which turns out

to be independent of the microscopic details of the model and belongs to a universality

class. In this case it is the mean-field/Landau universality class in which fluctuations

can be ignored. Above the model dependent upper critical dimensions all models fall

in this class. The universality class of a model can be determined in the frame work

of a renormalisation group theory¶. These critical exponents can serve as effective ex-

perimental and numerical markers to understand the underlying effective theory which

governs the phase transitions observed in the system. We first define t = T−Tc
Tc

. The

critical point is then marked by t = 0 and critical exponents predict the behaviour of

various measurable quantities in the vicinity of criticality. Below we list a few critical

exponents and their definitions in terms of measurable quantities.

Specific heat:

C(B = 0, t) ∼ 1

tα
(1.22)

Magnetization:

M(B = 0, t) ∼ |t|β (1.23)

M(B, t = 0) ∼ |B| 1δ (1.24)

Magnetic susceptibility:

χ(B = 0, t) ∼ 1

|t|γ (1.25)

¶For a review of the renormalization group framework refer to[13]
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Correlation length:

ξ(B = 0, t) ∼ 1

|t|ν (1.26)

In the above discussion we have assumed that the critical exponents above and below

Tc are the same. This assumption is not always valid and breaks down for example in

the presence of anisotropies. The critical exponents obey various scaling relations. For

example α + 2β + γ = 2 and δ = 1 + γ
β
.

1.2.6 XY model

The spins in the XY model are unit vectors free to rotate in the XY plane and can be

represented as ~Si = (cos θi, sin θi) where θi is the angle of the spin with respect to a

fixed direction in the XY plane. Eq.[1.15] then can be rewritten as:

H = −J
∑
ij

~Si.~Sj = −J
∑
ij

cos(θi − θj) (1.27)

This Hamiltonian as mention before can only be exactly solved in 1d. Mermin-Wagner

theorem[14] tells us that there can be no long range order for d ≤ 2 in case of con-

tinuous spins. In 2d mean field calculations do not work because the upper critical

dimension is 4 and fluctuations are too important an effect to be ignored in this model.

However, we can still do a high temperature series expansion of the partition function.

The partition function is given as:

Z =

∫ 2π

0

∏
i

dθi
2π
e−βH (1.28)

To leading order this becomes:

Z ∼
∫ 2π

0

∏
i

dθi
2π

∏
ij

(1 +K cos(θi − θj)) (1.29)

where K = βJ . Now, the spin correlation function g(r) can be calculated as:

〈S(r).S(0)〉 =

[∫ 2π

0

∏
i

dθi
2π

cos(θr − θ0)
∏
ij

[1 +K cos(θi − θj)]
]
/Z (1.30)

Taking appropriate approximations to leading order, we find

〈S(r).S(0)〉 ∼ e
−|r|
ξ (1.31)

where ξ is the correlation length given by ξ = 1/ ln(a/K) where a is the nearest neigh-
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bour distance. Thus, at high temperatures, the correlation function decays exponen-

tially and the system is disordered.

At low temperatures, the spins can be thought of as pointing in the same general di-

rection, but with fluctuations coming from spin waves of long wavelength. This picture

can be treated by taking the continuous approximation θi → θ(~r). The Hamiltonian

then becomes:

H =
1

2
J

∫
d~r (∇θ)2 (1.32)

Spin correlations can be easily obtained by then solving a Gaussian integral and take

the form

〈S(~r).S(0)〉 ∼


e−aT for d > 2( r
L

)−η
for d = 2

e
−|r|
ξ for d = 1

(1.33a)

(1.33b)

(1.33c)

At d = 1 there is no phase transition as the model is always disordered. For d > 2,

the model orders at low temperatures and undergoes a continuous phase transition

into the high temperature disordered phase. The most interesting physics happens at

d = 2. There is no long range order at low temperatures. But the spins are algebraically

correlated. This means thats the system is at criticality with a temperature dependent

critical exponent. As we keep increasing the temperature, this line of critical points

needs to end somewhere for the system to transition into a disordered phase. This

transition cannot be understood in the Landau free energy frame work since there is

no local order parameter that disorders. A complete picture of this transition can be

explained using renormalization group theory as done by Kosterlitz and Thouless[15].

The transition at d = 2 is hence dubbed a KT transition. We can however gain a quali-

tative understanding of this transition and an estimate of the transition temperature by

considering excitations called vortices in the spin wave picture developed above.

1.2.7 The frustrated antiferromagnet

Antiferromagnetic order describes the the lack of any type of net magnetism in a mag-

netic system. First formulated by Neel[16], antiferromagnetic ordering exists below a

Neel temperature TN . The most basic realisation of this Neel order exists in a bipar-

tite lattice of spins S with nearest neighbour antiferromagnetic exchange interactions

J > 0. If the exchange interactions are isotropic, the Hamiltonian, H of the system can

be written as:

H = J
∑
〈ij〉

Si.Sj (1.34)
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Here, the sum is over nearest-neighbour links 〈ij〉 of the bipartite lattice. The spins

then, below a Neel temperature, spontaneously pick an axis, n such that 〈S~r〉 = (−1)~rn,

that is the spin directions alternate. This classical antiferromagnet can be easily mapped

to a classical ferromagnet, by the transformation S′i = ηSi, where ηi = (−1)i Because

of this duality, the mean-field theory which describes ferromagnets can be used as is

to describe the antiferromagnets with the above substitution to take into account the

‘sign’ of the spin.

The antiferromagnetic order parameter can be then defined as

m = eiQ.riSi (1.35)

where Q is the ordering wavevector such that eiQ.~ri = ±1

The difference between ferromagnets and antiferromagnets arises because the anti-

ferromagnetic order-parameter does not commute with the Hamiltonian, unlike in the

ferromagnetic case where the order parameter is the total spin and commutes with

the Hamiltonian. This changes the dispersion-law of the spin-wave spectrum. Also,

quantum-spin fluctuation become important. In this thesis we work in the classical

limit and ignore quantum fluctuations. A way of destroying this duality with the fer-

romagnets in the classical limit is to move away from bipartiteness which introduces

geometric frustration in the antiferromagnetic models and a simple transformation as

shown above becomes impossible. Not surprisingly, many antiferromagnetic materials

in nature do not crystallise in a simple bipartite manner. In fact, they crystallise in ge-

ometrically or topologically ‘frustrated’ lattices, of which the simplest two-dimensional

analogue is the triangular lattice. The basic difference between a triangular lattice and

a bipartite lattice motif is that in the triangular lattice case, the Neel order is frustrated.

The geometry of the triangular lattice leads to competing exchange interactions result-

ing in ‘geometric frustration’ described in detail below in the subsequent sub-sections.

This ‘geometric frustration’ on the triangular lattice causes it to not order at all temper-

atures. Only an incipient spin liquid behaviour with a huge ground state degeneracy

is observed at T → 0[17]. Many other types of geometrically frustrated models with

spin-liquid behaviour have been analytically and numerically studied. Few examples

include spin-ice[18, 19], pyrochlores[20], Kagome lattice models[21, 22] and Kagome

ice[23]. Experimental interest in geometric frustration has been long standing. Many

transition-metal oxides crystallise in geometrically frustrated lattices based on triangles

or tetrahedrons that share corners, edges or faces [24]. Examples include anhydrous

alums[25, 26], jarosites[27, 28], Herbertsmithite[29], Kapellasite[30], pyrochlores[31,

32], spinels[33, 34], magnetoplumbites[35, 36], garnets[36], ordered NaCl[37, 38],

and many other structure types[24]. A new kind of system based on non-colloidal

monolayers has also been shown to approximate the triangular lattice Ising antiferro-
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Figure 1.1: Triangular motifs showing Ising spins with antiferromagnetic nearest
neighbour couplings. Due to geometric frustration on the triangular lattice, all the
three spins cannot simultaneously satisfy the antiferromagnetic couplings. Shown in
black is the one frustrated bond always present.

magnet in many ways[39]. Recently, a new class of rare-earth-based frustrated an-

tiferromagnets have been discovered with effective Ising spins arranged on a perfect

triangular lattice[40, 41].

Ground-state spin configurations of the triangular Ising model with nearest, next-

nearest and next-next nearest neighbour interactions in the absence of an external

magnetic field show a surprising variety. In fact it has been analytically shown that

seven types of distinct ground states exist [42]. In this thesis, we concern ourselves

with antiferromagnetic nearest neighbour interactions and ferromagnetic next-nearest

and next-next nearest neighbour interactions as detailed below.

1.2.8 Antiferromagnetic nearest neighbour interactions on the tri-

angular lattice Ising model

This triangular Ising spin net was studied by Wannier[17]. On the triangular lattice, the

Ising antiferromagnet with nearest neighbour antiferromagnetic exchange interactions

is defined by the Hamiltonian,

H = J1
∑
〈ij〉

Szi .S
z
j (1.36)

where 〈ij〉 now represent nearest neighbour links on the triangle. In this case J1 can-

not pick a ground state even at T → 0 as shown in the Fig[1.1] due to geometric

frustration. In fact, the minimum energy configuration of this model at T → 0 is de-

fined as containing one frustrated bond per triangle as shown in Fig[1.2]. Frustrated
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Figure 1.2: One of the many degenerate minimum energy ground states of the nearest
neighbour Ising model on the triangular lattice. Up arrows represent up spins and
down arrows represent down spins. The frustrated bonds, one per triangle, are shown
in black.

bond here refers to the bond which doesn’t satisfy the antiferromagnetic nature of the

nearest neighbour coupling and is shown in ‘black’ in Fig[1.2]. This frustrated ground

state can be thought of a spin-liquid which was shown to have an incipient order at the

three-sublattice wavevector Q = (2π
3
, 2π

3
)[43]. At T → 0, the spins are correlated in a

power-law fashion as:

〈Sz(r)Sz(0)〉 ∼ A3 cos (2π(x̂+ ŷ))√
r

+
A0

r9/2
(1.37)

Ferromagnetic next-nearest neighbour interactions on the triangular lattice Ising

model

Further neighbour interactions, stabilise this spin-liquid ground state below a critical

temperature [44]. A model with nearest neighbour and next-nearest neighbor interac-

tions can be written as:

H = J1
∑
〈ij〉

Szi .S
z
j + J2

∑
〈〈ij〉〉

Szi .S
z
j (1.38)

where 〈ij〉 represent the nearest neighbour links of the triangular lattice and 〈〈ij〉〉
represent the next-nearest neighbour links of the triangular lattice. For antiferromag-

netic J1 (J1 > 0) and ferromagnetic J2 (J2 < 0), a ferrimagnetic three sublattice order

as shown in Fig[1.3] is established. Ferrimagnetic refers to the fact that the three-

sublattice order has a net magnetic moment. The three sublattice order breaks the

symmetry between the three sublattices of the triangular lattice such that spins of one

of the three sublattices of the triangular lattice point upward(downward) and the spins
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Figure 1.3: Ferromagnetic J2 stabilises a ferrimagnetic three-sublattice ordered state
with a net magnetic moment in which spins of one of the three sublattices of the trian-
gular lattice point upward(downward) and the spins on the other two sublattices point
downward(upward). Shown here is one such realisation of this six-fold symmetric
three-sublattice order. The black dots represent ‘up’ spins and the white dots represent
‘down’ spins.

on the other two sublattices point downward(upward) giving rise to a six-fold symmet-

ric ground state.

The three-sublattice order parameter can be defined as:

ψ ≡ |ψ|eiθ = −
∑
~R

ei
2π
3
(m+n)Sz~R (1.39)

where ~R = mêx + nêy as shown in Fig[1.4].

On the triangular lattice, the melting of this three-sublattice order has been studied

extensively as a model for the melting of three-sublattice order in monolayer films of

adsorbed noble gases on graphite substrates [45, 46]. The potential on the graphite

surface has hexagonal symmetry and the adsorbed gas molecules tend to sit on the

hexagonal centres forming a triangular net. Owing to the large effective size of the

gas molecules, the nearest site occupation is unfavourable. By assigning an ‘up’ spin

to the occupied sites and a ‘down’ spin to vacant sites, this model can be mapped to

a triangular lattice Ising antiferromagnet. On the triangular lattice antiferromagnet,

at B = 0, the ferromagnetic next-nearest neighbour couplings (J2) stabilise a three-

sublattice ordered phase of the ferrimagnetic kind (having a net magnetic moment)

below a critical temperature. The three-sublattice ordered state is known to melt in

a two-step manner, with an intermediate-temperature phase characterised by power-

law three-sublattice order of the Ising spins σ: 〈σ(~R)σ(0)〉 ∼ cos(Q. ~R)/|~R|η(T ) with the

temperature dependent power-law exponent η(T ) ∈ (1/9, 1/4) [47].
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Figure 1.4: The triangular lattice shown in black with its dual honeycomb lattice shown
in blue

Ferromagnetic next-next nearest neighbour interactions on the triangular lattice

Ising model

Next-next-nearest ferromagnetic interactions (J3) stabilize a striped order which con-

sists of alternating rows of ‘up’ and ‘down’ spins as shown in Fig[1.5]. It was shown

that ferromagnetic J3 is equivalent to a antiferromagnetic J2 in that they stabilise the

same stripe ordered ground state[44]. The Hamiltonian for this model can be written

as:

H = J1
∑
〈ij〉

Si.Sj + J3
∑
〈〈〈ij〉〉〉

Si.Sj (1.40)

where 〈ij〉 represent the nearest neighbour links of the triangular lattice and 〈〈〈ij〉〉〉
represent the next-nearest neighbour links of the triangular lattice and J1 > 0 is the

antiferromagnetic nearest neighbour coupling and J3 < 0 is the ferromagnetic next-

next-nearest neighbour coupling.
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Figure 1.5: Ferromagnetic J3 stabilises a striped ordered state in which ‘up’ and ‘down’
spins form alternating rows. The net magnetic moment of this state is zero. Shown
here is one such realisation.

The striped order parameter can be defined as φµ: (µ = 1, 2, 3) with,

φ1 =
∑

~R=mêx+nêy

(−1)mSz~R

φ2 =
∑

~R=mêx+nêy

(−1)nSz~R

φ3 =
∑

~R=mêx+nêy

(−1)m−nSz~R

where ~R = mêx +nêy as shown in Fig[1.4]. The striped order phase has been shown to

melt first order transition at a finite temperature[48, 49].

Recently discovered TmMgGaO4 can be modelled using the effective Hamiltonian:

H = J1
∑
〈ij〉

Szi S
z
j + J2

∑
〈〈ij〉〉

Szi S
z
j − µ

∑
i

Szi (1.41)

where i ∈ sites of a triangular lattice with J1, J2 > 0 and J2 ∼ 0.09J1 [41]. TmMgGaO4

shows stripe order at zero field below T ∼ 0.27K.

In a system with competing ferromagnetic next-nearest and ferromagnetic next-

next-nearest neighbour interactions, the three-sublattice ordered phase is known to

undergo a first order transition into the striped phase when the next-next-nearest

neighbour interactions dominate[49] as described in Chapter 3. However, it is also

interesting to understand how the three-sublattice melting transition is effected by a

ferromagnetic J3 and we also explore this in detail in Chapter 3.
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1.2.9 Hard object lattice gas

Lattice gases with hard-core repulsion have been of interest as a simple lattice ap-

proximation of a fluid consisting of hard molecules as they are easy to study and yet

retain excluded-volume effects. Hard objects are objects which occupy one or more

lattice sites with the property that no two objects share one or more lattice sites. At

full packing each lattice site uniquely belongs to a hard object. Many systems with

different shapes of hard objects on different lattices have been studied using a host

of analytically approximate, and numerical exact methods.. Since temperature plays

no role in these systems, the ordering in such systems is entropy driven. Decreasing

the density of the hard-objects usually drives the system into a disordered fluid phase.

Some examples of the models studied include dimers[50, 51, 52, 53], trimers[54, 55],

squares[56, 57, 58, 59, 60, 61, 62], hexagons[63], long rods[64], rectangles[65] and

a mixture of squares and dimers[66]. Despite this, only few examples of an analyti-

cally exact solution exist: for a problem of hard hexagons due to Baxter[63] and some

recent solutions on random lattices.[67]. Integrability of the hard hexagon problem

has been compared with the non-integrability of hard squares by means of partition

function roots and transfer matrix eigenvalues[68]. Recently, a model of hard squares

on a square lattice (which can be thought of particles with nearest and next-nearest

neighbour exclusion) was studied numerically[66]. At full packing of hard squares, the

system is in a columnar ordered state (where one of the odd or even columns is prefer-

entially occupied) with a transition of the Ashkin-Teller type to a disordered fluid as the

fugacity of the hard squares is decreased. Further in this thesis, we study the problem

of hard squares on a cubic lattice.

1.3 Monte-Carlo simulations

Monte-Carlo simulations of spin models involve generating an ensemble of spin con-

figurations C such that the probability of the a spin configuration is proportional to

the equilibrium Boltzmann weight of the spin configuration at a given temperature T .

Once we have such an ensemble of configurations which occur with the right probabil-

ity, we can perform measurements of various averages of various order parameters and

susceptibilities on this ensemble and call it the equilibrium average. Monte-Carlo helps

us do this without actually calculating the partition function of the system, since we

just need to normalise the computed averages using the reduced partition function of

the ensemble of configurations generated. Monte-Carlo becomes exact at infinite time,

but even at finite time, good Monte-Carlo algorithms can equilibrate the systems very

well and this can be checked using known methods as will be shown further in this

thesis. Monte-Carlo is also limiting in the sense that the configurations that can be pro-
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duced are finite, belonging to finite system sizes. Careful finite size scaling corrections

to measured quantities can be used effectively to mitigate this effect. Overall Monte-

Carlo algorithms are a very effective tool for gaining insights into strongly correlated

many-body problems whose exact solutions are inaccessible. In the following section

we start with the most basic form of Monte-Carlo called the Metropolis algorithm which

produces spin configurations by flipping one spin the previous configurations. After this

we go onto more complicated non-local forms of Monte-Carlo, which involve flipping a

non-local amount of spins in one Monte-Carlo step.

1.3.1 Detailed balance

An important principle that the Monte-Carlo algorithms use to generate configurations

that approach the probability distribution at equilibrium is called detailed balance. A

Markov chain is a stochastic process in a configuration space consisting of spin con-

figurations. We want the weight of each configuration πC to approach the equilibrium

weight. This can be achieved by the following condition:

P (A→ B)

P (B → A)
=
πA
πB

(1.42)

for all pairs of configurations A and B belonging to the Markov chain. Here P (A→ B)

is the transition probability from A to B. Additionally ergodicity should be maintained,

in the sense that every configuration in the ensemble should be a part of the Markov

chain.

1.3.2 Metropolis

The Metropolis algorithm[69] as alluded to above involves generating a random spin

configuration A as the starting point of the Markov chain. The next spin configuration

B is produced by selecting and flipping a random spin in A. This move is accepted

using the following probability:

P (A→ B) = min

[
1,
π(B)

π(A)

]
(1.43)

It can be easily seen that this condition satisfies detailed balance. We define a few terms

which will be used in the context of Monte-Carlo further on in this thesis.

Monte Carlo Step (MCS) One MCS involves flipping N spins randomly using the

Metropolis algorithm before a new spin configuration is recorded in the ensemble on

which the equilibrium measurements are carried out.

Warm-up time refers to the initial run of the Monte-Carlo algorithm ensuring that the
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system is well equilibrated and correlations with initially chosen random spin config-

uration have died out. After the initial warm-up, spin configurations are recorded at

every Monte-Carlo step and are stored as part of an ensemble on which the equilibrium

measurements are carried out. Sometimes, the spin configurations are recorded every

two MCS for better sampling and will be specified when used.

Using the above Metropolis algorithm, one can generate spin configurations on which

equilibrium measurements can be made. However, in the most interesting case of criti-

cal phenomena, this algorithm is very inefficient. This can be justified by noting that the

Metropolis involves local moves and at criticality the correlation length in the system

diverges. In other words, every spin talks to every other spin. Hence, a Markov process

which depends only on local changes will have very large autocorrelation times. In

other words the time taken for a spin flip to happen will be very high thus rendering

a finite time simulation highly inefficient. This is also referred to as critical slowing

down. More sophisticated algorithms involving non-local spin flips are used to address

this problem.

1.3.3 Cluster updates

Improvements from the Metropolis algorithm involve flipping clusters of spins. The

Wolff cluster algorithm uses this method. The Wolff cluster[70] is an improvement

over the Swensden-Wang algorithm[71].

Wolff cluster

We take the example of a 2d Ising spin model to illustrate this algorithm. Clusters of

connected spins are constructed starting from a single spin. A connected spin is a spin

pointing in the same direction as that of the cluster. So we choose a random initial

spin and start building a cluster using spins that are in similarly oriented. A spin which

points in the same direction as the cluster is added to the cluster with a probability

p = 1−exp{−2β}. Once such a cluster is built, it is flipped with probability 1. Note that

doing so satisfies the detailed balance condition. The steps in the Markov chain here are

connected by cluster flips rather than spin flips. This overcomes the local constraints

of flipping each spin individually and thus can speed up the process. In the case of

highly frustrated systems or highly constrained models even the Wolff cluster performs

unsatisfactorily and we have to resort to more sophisticated algorithms as we will see

futher in this thesis.
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1.3.4 Dual worm algorithms for the 2d frustrated Ising antiferro-

magnets

Worm algorithms are very useful as a means of generating non-local updates in Monte

Carlo simulations of various lattice models (for a brief review, see Section 5.1 of Ref. [72]).

The ‘worm’ construction typically involves creating a defect and an antidefect next to

each other in the initial configuration. The location of the defect defines the fixed tail
of the worm, while the head of the worm corresponds to the antidefect, which is moved

through the lattice in a way which satisfies detailed balance conditions in a larger con-

figuration space that allows for one defect-antidefect pair. The construction ends when

the head reaches the tail again and annihilates it. All variables encountered during the

motion of the worm are updated as a result of this construction. An early implementa-

tion of a worm algorithm in the context of classical lattice model Monte Carlo simula-

tions was done in the high-temperature expansion representation, by updating closed

path configurations through the motion of end points of a disconnected path [73]. A

similar idea was also used to develop a worm algorithm for the quantum rotor model

in d = 2 spatial dimensions using the link-current representation (divergence-free con-

figurations of current variables on links of the equivalent classical d + 1 = 3 dimen-

sional space-time lattice) [74, 75]. The construction creates a charged defect (with

non-zero divergence of the link current) at the tail, and a corresponding antidefect

at the head. In this case, the worm maintains detailed balance in the configuration

space relevant to the sampling of the Green function of the system [76]. In quantum

Monte Carlo simulations of other bosonic systems, a similar worm algorithm has been

used both in the framework of imaginary time worldline formulations [77, 78], and

the stochastic series expansion (SSE) approach [79] to perform non-local changes in

the configuration. In this case too, the defects at the head and the tail of the worm

correspond to creation and annihilation of a particle [80], allowing access to config-

urations relevant to the sampling of the single particle Green function. ‘Dual’ worm

algorithms have also been used to construct cluster updates for two-dimensional classi-

cal Ising models [81]. These algorithms work by updating dimer configurations (which

encode bond energies of the original model) on the corresponding dual lattice. The

updated bond energies are used to obtain a new spin configuration in which an en-

tire cluster of spins has been flipped in one update step. Recently, this approach has

been used [49] to obtain efficient cluster updates for frustrated Ising models for which

the usual cluster updates [71, 70] are known to perform poorly [82]. For instance,

for the antiferromagnetic Ising model on the triangular lattice, bond-energy configu-

rations correspond to dimer configuratons on the dual honeycomb lattice, with dimers

intersecting frustrated bonds on the direct lattice. At T = 0, the dimer configuration

is a perfect matching (each dual lattice site is touched by exactly one dimer). The
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worm algorithm then works by creating a defect-antidefect pair in the dimer configu-

ration. The defect corresponds to a monomer, i.e. a site on the dual lattice with no

dimers touching it. The antidefect corresponds to an antimonomer, i.e. a site with

two dimers touching it. The initial defect-antidefect pair is created by simply picking

a site at random and pivoting the dimer touching it to another unoccupied link. The

antidefect is then propagated by pivoting successive dimers along a closed path, with

probabilities preserving detailed balance. The updated dimer configuration of the dual

lattice is then mapped back to a new spin configuration. This ends up flipping an en-

tire cluster of spins. At nonzero temperature, the dimer configuration is not a perfect

matching since dual lattice sites with three dimers touching them are allowed, and

the worm construction is suitably generalized to work with more general defect anti-

defect pairs.[49] The fact that all these worm constructions preserve detailed balance

in a larger configuration space with one defect-antidefect pair allows for an interesting

and simple method to calculate the corresponding correlation functions: The equilib-

rium defect-antidefect correlation function is simply proportional to the histogram of

the head-to-tail separations measured during the worm propagation [83, 84, 80]. In

the quantum rotor case, and in the context of worldline and SSE methods, this cor-

responds to the imaginary time single-particle Green function [83, 84, 80, 75]. As

we detail in Chapter 2, in the example studied in the thesis here, this corresponds to

the correlation function between a half-vortex and the corresponding antidefect in the

argument θ of the complex three-sublattice order parameter [49]. Apart from measur-

ing the defect-antidefect correlator during worm construction, one can also measure

various statistical properties of the worms themselves; the simplest of these is the dis-

tribution of worm lengths. This is of interest because the Monte-Carlo autocorrelation

properties of the worm algorithm depends on the number of variables updated in a

single worm construction, which in turn depends on the distribution of worm lengths.

For instance, the fractal structure and scaling properties of worms defined by the high

temperature expansion have been studied previously [85]. Properties of spin clusters

defined by other cluster algorithms [71, 70], have been numerically studied in the case

of the critical 2d Ising model [86], and found to be in agreement with theoretical pre-

dictions [87, 88, 89, 90, 91]. Following the generalization of cluster algorithms to

the fully frustrated square lattice [92], the properties of such clusters have also been

studied extensively in that setting [93]. Since closed worms on the dual lattice define

a cluster on the original lattice, properties of these clusters are also interesting from

this point of view. Statistics of worms constructed by a direct worm algorithm for a

three dimensional spin ice model have also been studied, but less information seems to

be available on worms in the corresponding two dimensional model [94]. Part of the

motivation for our work is an earlier observation that the autocorrelation properties

of two rather different dual worm algorithms (DEP and myopic) [49], when used to
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Figure 1.6: Transition graphs of initial (black) and final (gray) configurations of the
pocket algorithm. Left: In the presence of monomers the graph can be open; right:
transition loop touching the symmetry axis. The cluster move consists in flipping the
cluster. Figure and caption taken from Ref.[95]

simulate frustrated Ising models on two different 2d lattices (triangular and Kagome)

over a range of temperatures and further neighbor interactions for which the system

displays power-law three-sublattice order, seem to be universally determined by the

power-law exponent of the equilibrium spin-spin correlation function. Since the worm

length distribution is expected to control the manner in which successive configurations

decorrelate with each other, we attempt to understand this universality by focusing here

on the worm length distribution (and related statistical properties) in this interesting

regime.

1.3.5 Pocket algorithm for hard dimers

Krauth and Moessner developed a highly efficient cluster algorithm for dimers on a 2d

lattice[95]. This algorithm makes use of the symmetries of the system to construct a

transition graph between two dimer configurations. A transition graph can be thought

of as a overlay of two dimer configurations. Fig[1.6] shows the transition graph of a

dimer model on a 2d lattice with and without the presence of monomers. The pocket

cluster algorithm proceeds as follows:

A randomly chosen symmetry axis S and an initial dimer is chosen. Two sets of ge-

ometrically identical lattices are constructed. Lattice A which has the initial dimer

configurations and a pocket lattice P which is empty to begin with. The initial dimer

is deleted from A and placed in P. The algorithm then proceeds as a loop over all the

elements in P. Each element of P is taken. It is then reflected about the symmetry axis

and placed in A. This will obviously violate hard core constraints for neighbours of this

reflected dimer in A. All the dimers which violate the hardcore constraints are then

removed from A and placed in P. The loop over dimers in P is repeated until all dimers

in P are exhausted. This will happen when a reflected dimer placed in A doesn’t violate

anymore hardcore constraints. In this process we have in fact constructed a transition
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graph and flipped the initial cluster into the final cluster. Since the transition graph is

symmetric about the symmetry axis C, the interior of the transition graph even though

flipped about the symmetry axis remains unchanged. In effect we have only flipped

the dimers along the outer boundary of the transition graph. In this thesis we will

generalise this algorithm to equilibrate hard squares on a cubic lattice.

1.4 Overview of the Thesis

In Chapter. 2 we develop a simple model for the worm length distribution of the dual

worm algorithm used for the frustrated Ising model, which predicts that the worm

length distribution is a power law, with the power-law exponent (1+θ) being a universal

function of the equilibrium exponent ηs for spin-spin correlations at the three-sublattice

ordered wavevector. Our starting point will be the well-known statement, alluded to

in the Introduction that the histogram of head-to-tail distances of the worm is given by

the equilibrium defect-antidefect correlator. Using standard results from the Kosterlitz-

Thouless description of the power-law three-sublattice ordered phase, we conclude that

the defect-antidefect correlator has a power-law form, with exponent ηm = 1/4ηs. Since

the defect moves in a manner that preserves detailed balance (with antidefect held

fixed), we interpret this power-law correlation between the defect and antidefect to

be the result of a random walk performed by the defect in the presence of a static

logarithmic potential that attracts it to the fixed antidefect. In this heuristic picture, the

worm length is thus mapped to the time τr of first return to origin of a random-walker

that starts at the origin and moves in a logarithmic central potential. Using standard

results from random walk theory, this gives us a prediction

θ = ηm/2 ≡ 1/8ηs. (1.44)

This is our basic result. It provides a rationale for the observed universality noted

earlier, and a simple parameter-free (but approximate) fit to the observed statistics of

worm lengths, independent of the detailed (and somewhat complicated) worm con-

struction protocols employed by the DEP and myopic algorithms [49]. As will be clear

from the results presented here, this prediction works reasonably well (especially given

its parameter-free character) both at non-zero temperature in the critical phase associ-

ated with the two-step melting of three-sublattice order, and in the zero temperature

critical phase that obtains on the triangular lattice. However, clear deviations from the

prediction are quite apparent in both regimes. These deviations reflect the need to have

a more accurate description of the worm dynamics that goes beyond the picture of a

random-walker in an effective static potential.

In Chapter. 3 we investigate the effect of increasing ferromagnetic next-next-nearest
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neighbor interactions on the nature of the two-step melting transition of the three-

sublattice ordered phase using sophisticated but efficient worm algorithms developed

in [49]. We find that the two-step melting pinches-off into an effective single critical

melting line (which separates the three-sublattice ordered phase and a paramagnet),

which on further increasing the strength of the ferromagnetic next-next-nearest neigh-

bor interactions resolves into a first-order melting transition. To further characterize

this effective critical line we turn to the six-state clock model studied by Cardy [96]

for reasons explained below. The six-fold symmetric ground state of the six-state clock

model has a similar two-step melting transition with an intermediate power-law or-

dered phase which pinches-off via a multi-critical point into a first order line. A self-

dual line whose equation is known passes through this multi-critical point [96, 97].

Simulating parameter values and comparing the extracted critical exponents along this

one dimensional line allows us to numerically determine this multi-critical point and

thus verify a conjuncture by Dorey et. al. that this multi-critical point lies in the univer-

sality class of the Z6 parafermionic CFT constructed and solved by Zamolodchikov and

Fateev [98]. On comparing the scaling behavior of the binder cumulants constructed

from the three-sublattice order parameter and the ferromagnetic order parameter in

the triangular lattice model with the binder cumulants constructed from corresponding

order-parameters in the six-state clock model we find similarities which helps us pre-

dict the location of a possible multi-critical point Mc in the effective critical line that we

observe in the triangular lattice model. We were then able to numerically obtain the

value of the critical exponents with high accuracy along this effective critical line and

we find that at the predicted Mc the critical exponents are comparable to the exactly

calculated values of the Z6 parafermionic CFT within error-bars.

In Chapter. 4 we study a model of hard squares at full packing on a cubic lattice using

local Monte Carlo moves and cluster Monte Carlo algorithms. Clusters are constructed

using global reflection symmetries of the partition function. Each hard square can be

assigned a direction (its normal) to define three types of hard squares: x,y and z. At the

isotropic point, when the fugacities of all three types of hard squares are equal, we find

that the system is in a sublattice ordered state. We also study the evolution of the system

as a function of anisotropy in the fugacities. As the fugacity of z type hard square,

zz is reduced relative to zx and zy we find that the system undergoes a continuous

transition into a bi-layered phase. These bi-layers are occupied predominantly by x

and y type hard squares with relatively few z type hard squares. Each bilayer, when

viewed along the z axis, can be thought of as a square lattice with a mixture of dimers

and hard squares at close to full packing. The dimers correspond to the x and y type

hard squares lying entirely within the bi-layer and hard squares correspond to the z

type hard squares. The rare x and y type hard squares that straddle two bi-layers

correspond to a dimer defect on both the bi-layers that they touch. This allows an
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analogy to the recently studied problem of hard-squares and dimers at full packing on

the square lattice[66]. In this analogy, decreasing the fugacity of z type hard squares

would then decrease the fugacity of hard squares in the two dimensional problem. Most

of the correlation between different bilayers is transmitted by rare x and y hard squares

that straddle two bilayers. We further wish to explore this analogy in future work.



Chapter 2

Statistical properties of worm
algorithms

2.1 Models

Ising models on triangular and kagome lattices with antiferromagnetic nearest neigh-

bor interactions are among the simplest models of geometric frustration [17, 99]. For

these models, the pattern of nearest-neighbour bond energies can be represented in

terms of dimer models on the corresponding dual lattice (honeycomb and dice respec-

tively) [49]. When further neighbour interactions are absent, there is a macroscopic

degeneracy of minimum energy spin configurations, which corresponds to a T = 0

ensemble of dimer configurations on the dual lattice. For the triangular lattice anti-

ferromagnet, this T = 0 ensemble is made up of all perfect matchings (fully-packed

dimer configurations) on the honeycomb lattice, while the T = 0 dimer configurations

on the dice lattice have exactly one dimer touching each three-coordinated site and an

even number of dimers touching each six-coordinated site. The former ensemble has

power-law dimer correlations with power-law exponent ηd = 2 (at the uniform and the

three-sublattice wavevectors). This corresponds to power-law three-sublattice order for

the spins, with power-law exponent ηs = 1/2 at T = 0 [17, 43]. The Kagome lattice

antiferromagnet in this limit is a short-range correlated spin liquid [99], corresponding

to short-range dimer correlations.

At T = 0 for the nearest neighbour triangular antiferromagnet, the relationship

between ηd and ηs can be understood in terms of a coarse-grained height model [83,

100, 101, 102] description of the ensemble of fully-packed dimer configurations on

the honeycomb lattice. In this representation, the spin operator at the three sublattice

wavevector corresponds to exp(iπh) (where h is the height field) while the dimer oper-

ator has a uniform part given in terms of the gradient ∇h and a second piece exp(2πih)

at the three-sublattice wavevector. Dimer correlations at the uniform wavevector fall of

37
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as 1/r2 independent of the stiffness of the height model, while correlations at the three-

sublattice wavevector decay with power-law exponent ηd controlled by the stiffness of

the height model. Spin correlations at the three-sublattice wavevector fall of as a power

law with exponent ηs (with ηd = 4ηs). When all fully-packed dimer configurations have

equal weight, ηd = 2.

A second-neighbour ferromagnetic interaction J2 on the triangular lattice, with

|J2| ∝ T in the T → 0 limit, favours three-sublattice ordered fully-packed dimer

configurations over others, and gives rise to a ηd < 2 and ηs < 1/2. Indeed, ηs de-

creases monotonically with increasing |J2|/T (in this zero temperature limit), until the

system develops long-range three-sublattice order when ηs = 1/9 is reached [101].

In the coarse-grained height representation, this is understood by noting that |J2|/T
tunes the stiffness of the height model, thereby influencing the value of ηs (and of

ηd = 4ηs). Monomers in this fully-paked dimer model correspond, in the Coulomb gas

(CG) description of the coarse-grained height model [83, 102], to a magnetic charge

+1 (antimonomers have magnetic charge −1). As a result, the monomer-antimonomer

correlator decays as a power law with an exponent ηm = 1/ηd = 1/4ηs. In terms of the

argument θ of the complex three-sublattice order parameter of the spin model, these

monomers are half-vortices.

A fixed nonzero value of second-neighbor ferromagnetic interaction induces long-

range three-sublattice order on both lattices at low enough temperature, which can

then melt via a two-step process, wherein the intermediate state has power-law or-

dered spin correlations at the three-sublattice wavevector, with power-law exponent ηs
that ranges from 1/9 (at the low-temperature end) to 1/4 (at the high-temperature

end) [101, 47, 22]. When spin correlations display power-law three-sublattice or-

der, the dimer correlations also have a power-law form, with exponent ηd = 4ηs. At

non-zero T , the dimer representation of bond-energies now allows defects with three

dimers touching a three-coordinated site, greatly increasing the entropy of allowed

configurations. The worm algorithm now makes other defects (Section. 2.2) apart

from monomers. However, we can still think of these defects as half-vortices (or the

corresponding antidefect) in the argument θ [103, 104, 105] of the fourier component

of the spin density at the three-sublattice wavevector. Since the power-law ordered

phase is described by a Gaussian theory for θ, the defect-antidefect correlator is again

expected to decay with exponent ηm = 1/4ηs = 1/ηd (where ηd, the dimer correlation

exponent, is again related to the power-law exponent ηs via ηd = 4ηs). [See Fig.2.1]
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on periodic L×L Kagome lattices using the myopic worm algorithm for three values
of T at which the system is in the power-law ordered critical phase. Lines denote fits to
a power-law form ∝ 1/Lηm.
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Figure 2.2: ηm extracted from the L dependence of defect correlator as a function of
ηs in simulations employing the DEP and myopic worm algorithms. The line denotes
the theoretically expected dependence ηm = 1/4ηs.

2.2 Algorithms

2.2.1 Dual Representation and dual worm updates

We begin with a summary of the dual representation of the frustrated Ising antiferro-

magnet on the triangular lattice: One represents every configuration of the triangular

lattice Ising model in terms of configurations of dimers on links of the dual honeycomb

lattice, with a dimer placed on every dual link that intersects a frustrated nearest neigh-

bour bond of the triangular lattice (Fig. 4.1). For our purposes here, a frustrated bond of

the triangular lattice is one that connects a pair of spins pointing in the same direction.

When J1 > 0 (corresponding to the interesting case of frustrated antiferromagnetism),

this implies that every minimally frustrated spin configuration, which minimizes the

nearest-neighbour exchange energy by ensuring that every triangle of the triangular

lattice has exactly one frustrated bond, corresponds to a defect-free dimer cover of the

dual honeycomb lattice, in which there is exactly one dimer touching each dual site of

the honeycomb lattice.

At non-zero temperature, more general configurations also contribute to the parti-

tion sum. These have a nonzero density of defective triangles, i.e. triangles in which all

three spins are pointing in the same direction. In dual language, these correspond to

honeycomb lattice sites with three dimers touching the site. Thus, in dual language,

the configuration space at nonzero temperature is that of a generalized honeycomb lat-

tice dimer model, with either one or three dimers touching each dual site. This dimer

model inherits boundary conditions from the original spin model: We choose to work

with Lx × Ly samples with periodic boundary conditions on the Ising spins along two
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Figure 2.3: The first step of the myopic worm construction on the dual honeycomb
lattice: A start site o is chosen randomly. The tail of the worm remains static at this start
site until the worm construction is complete. In this first step, the head of the worm
moves to one of the three neighbours of the start site with probability 1/3, regardless
of the local dimer configuration. The neighbour thus reached is our first vertex site v(1).
Viewed from the point of view of this vertex, the start site o is the first entry site n(1).

principal directions x̂ and ŷ of the triangular lattice. This translates to global constraints

on the dual description which are spelled out in detail when we describe our algorithm.

All of this generalizes readily to the Kagome lattice antiferromagnet. The idea is

again to work with the dual representation in terms of a generalized dimer model

on the dual lattice. The dual lattice is now the dice lattice, which is a bipartite lattice

with one sublattice of three-coordinated sites and a second sublattice of six-coordinated

sites (Fig. 4.1). Every spin configuration on the Kagome lattice corresponds to a dimer

configuration on the dice lattice, with either one or three dimers touching the three-

coordinated sites, and an even number of dimers touching the six-coordinated sites.

As before, a frustrated bond is one that connects a pair of nearest neighbour spins

pointing in the same direction, and is represented by a dimer on the dual link that is

perpendicular to this bond. Minimally frustrated spin configurations, that minimize

the nearest-neighbour exchange energy, now correspond to dimer configurations with

exactly one dimer touching each three-coordinated dice lattice site. Periodic boundary

conditions of the Lx ×Ly spin system again translate to global constraints (see below).

The dual worm approach,[81] on which both cluster algorithms are based, is rather

simple to explain in general terms: One first maps the spin configuration of the system
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Figure 2.4: The probabilistic step of the myopic algorithm: After arriving at the vertex
site v(l) from the entry site n(l) we choose to exit via x(l) (which is one of the neighbours
of v(l)) with probability given by the probability table T . A) When the spin interactions
extend upto next-next-nearest neighbours on the Kagome lattice, knowledge of the
local dimer configuration consisting of dimer states from s0 to s5 and d0, d1 and d2
suffices to compute entries of the table T . B) When the spin interactions extend upto
next-next-nearest neighbours on the triangular lattice, knowledge of the local dimer
configuration consisting of dimer states from s0 to s11 and d0, d1 and d2 suffices to to
compute entries of T .

to the corresponding dual configuration of dimers. Each dimer configuration is thus

assigned a Boltzmann weight of the “parent” spin configuration from which it was

obtained. Next, one updates the dual dimer configuration in a way that preserves

detailed balance. In this way, one obtains a new dimer configuration, which is then

checked to see if it satisfies certain global winding number constraints (spelled out in

detail below) that must be obeyed by any dimer configuration that is dual to a spin

configuration with periodic boundary conditions. If the global constraints are satisfied,

one maps the new dimer configuration back to spin variables, to obtain an updated spin

configuration which can differ from the original spin configuration by large nonlocal

changes. Since the procedure explicitly satisfies detailed balance, one obtains in this

way a valid algorithm for the spin model being studied.

For the triangular lattice Ising antiferromagnet, we have developed two strategies

for constructing rejection-free updates of the generalized dimer model on the dual hon-

eycomb lattice. As mentioned in the Introduction, one of these generalizes readily to

the generalized dice lattice dimer model which is dual to the frustrated Kagome lat-

tice Ising model, while the other is specific to the generalized honeycomb lattice dimer

model.

The strategy that generalizes readily to the dice lattice case is one in which we

deliberately do not keep track of the local dimer configuration of the dual lattice at

alternate steps of the worm construction in order to ensure that detailed balance can

be satisfied without any final rejection step. Since this strategy involves being delib-

erately short-sighted at alternate steps of the construction, we dub this the “myopic”
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Figure 2.5: The myopic step of the myopic worm algorithm on the dual honeycomb
lattice: After arriving at an exit site x(l) from a vertex site v(l), the next vertex site v(l+1)

is chosen to be one of the two other neighbours of x(l) with probability 1/2. Viewed
from this new vertex site v(l+1), x(l) becomes the entry site n(l+1).

worm algorithm. Below we begin with a detailed description of how this works for the

generalized dimer models on the honeycomb and dice lattices which are dual to the

physics of the frustrated Ising models on the triangular and Kagome lattices.

2.2.2 Myopic worm algorithm

On the honeycomb lattice this myopic worm algorithm consists of the following steps:

We begin by choosing a random “start site” o on the honeycomb lattice. Regardless

of the local dimer configuration in the vicinity of this site, we move from the start

site to one of the three neighbouring sites, with probability 1/3 each (Fig. 2.3). The

neighbouring site reached in this way is our first “vertex site” v(1). In our terminology,

we have “entered” this vertex site from the start site o. Therefore, the start site is the

“entry site” n(1) for this vertex. Next, we choose one of the neighbours of v(1) as the

“exit site” x(1), via which we can exit this vertex. When we arrive at vertex site v(1)

from entry site n(1), and leave this vertex site via exit site x(1), we flip the dimer state

of the dual links 〈n(1)v(1)〉 and 〈v(1)x(1)〉. The choice of exit site x(1) via which we exit

from a vertex site v(1), given that we arrived at vertex site v(1) from a particular entry

site n(1), is probabilistic (Fig. 2.4), with probabilities specified in a probability table T

whose structure we now discuss.

For any vertex site v encountered in our process, these probabilities are given by a

probability table T vnx, where n is the entry site from which we have entered the vertex

and x is the exit site we wish to leave from. Entries in this probability table are con-

strained by the requirement of local detailed balance. In order to state these constraints

on T v in a way that makes subsequent analysis easy, we rewrite this table as a three-

by-three matrix M v
ij (i, j = 1, 2, 3) by choosing a standard convention to label the three
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Figure 2.6: The first step of the myopic worm construction on the dual dice lattice: A
start site o is chosen randomly from one of the six-coordinated sites on the dice lattice.
The tail of the worm remains static at this start site until the worm construction is
complete. In this first step, the head of the worm moves to one of the six neighbours
of the start site with probability 1/6, regardless of the local dimer configuration. The
neighbour thus reached is our first vertex site v(1). Viewed from the point of view of
this vertex, the start site o is the first entry site n(1).

neighbours of v by integers running from one to three. Thus, if n is the ith neighbour

of v and x is the jth neighbour of v according to this convention, we write T vnx = M v
ij.

We denote by wvn the Boltzmann weight of the dual dimer configuration before we

flip the dimer states of dual links 〈nv〉 and 〈vx〉. In the same way, wvx, for each choice

of x, denotes the corresponding Boltzmann weight after these flips are implemented.

As is usual for all worm algorithms, these weights for the intermediate configurations

encountered during this myopic construction are obtained from the Boltzmann weight

of the generalized dimer model with the proviso that the “infinite energy cost” of vio-

lating the generalized dimer constraints at the start site and current site (“head” and

“tail” of the worm in worm algorithm parlance) are ignored when keeping track of the

weights of these intermediate configurations.

We choose the T matrices to satisfy a local detailed balance condition that depends



CHAPTER 2. STATISTICAL PROPERTIES OF WORMS 45

1/5

1/5

1/5 1/5

1/5v(l)

v(l+1)

v(l)

v(l+1)

v(l)

v(l)

v(l)

v(l+1)

v(l)

v(l+1)

v(l+1)

n(l+1) = x(l)

x(l)

n(l+1) = x(l)

n(l+1) = x(l)

n(l+1) = x(l)n(l+1) = x(l)

Figure 2.7: The myopic step of the myopic worm algorithm on the dual dice lattice:
After arriving at an exit site x(l) (which, by construction, is always a six-coordinated
site) from a vertex site v(l), the next vertex site v(l+1) is chosen to be one of the five
other neighbours of x(l) with probability 1/5. Viewed from this new vertex site v(l+1),
x(l) becomes the entry site n(l+1).

on these weights

wvnT
v
nx = wvxT

v
xn . (2.1)

Rewriting wvn ≡ W v
i if n is the ith neighbour of v, and wvx ≡ W v

j if x is the jth neighbour

of v, we can write these detailed balance conditions in terms of the matrix M v
ij and the

weights W v
i (with i, j = 1, 2, 3) as

W v
i M

v
ij = W v

jM
v
ji , (2.2)

As is usual in the analysis of such detailed balance constraints, we define the three-

by-three matrix Avij = W v
i M

v
ij and note that the detailed balance condition is now

simply the statement that Av is a symmetric matrix which satisfies the three constraints∑
j

Avij = W v
i for i = 1, 2, 3

(2.3)

For interactions that extend up to next-next-nearest neighbours on the triangular

lattice, the three weights W v
i that enter these equations differ from each other only
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e(1) = ss

c(1)

Figure 2.8: If the randomly chosen start site s is touched by only one dimer, we
move along that dimer to reach a new pivot site c(1) in the first step of the DEP worm
construction. The start site s becomes our first entry site e(1).

due to factors that depend on the dimer state, d0, d1, d2 of the the three links emanating

from v and the twelve dual links surrounding v, whose dimer state has been denoted s0,

s1 . . . s11 in Fig. 2.4. This feature allows us to tabulate all possible local environments

of v, and analyse these constraint equations in advance to determine and tabulate the

Av (and thence determine M v) in advance. In practice, if the weights permit it, we use

the “zero-bounce” solution given in Ref. [106] and Ref. [107], else the “one-bounce”

solution given there.

Having reached the exit x(1) of the vertex v(1) in this manner, we now need to choose

the next vertex v(2) which we will enter next from this site x(1). This is the myopic part

of our procedure: This next vertex v(2) is randomly chosen to be one of the two other
neighbours of x(1) (other than the previous vertex v(1)) with probability 1/2 each(Fig. 2.5).

After making this choice, x(1) becomes the entry site n(2) for this next vertex v(2), and the

previous probabilistic procedure is repeated at this next vertex v(2) in order to choose

the next exit site x(2) from which we will exit v(2).

In this manner, we go through a sequence of vertices until the exit site x(k) of the kth

vertex equals the start site o. When this happens, one obtains a new dimer configura-

tion which again has either one dimer touching each honeycomb site, or three dimers

touching a honeycomb site. This new dimer configuration can be accepted with proba-

bility one since our procedure builds in detailed balance with respect to the Boltzmann

weight of the generalized dimer model.

It is straightforward to prove this explicitly using the notation we have developed

above. To this end, we first note that the forward probability for constructing a partic-

ular worm to go from an initial configuration Ci to a final configuration Cf takes on the

product form

P (Ci → Cf ) =
1

3
× T v(1)n(1)x(1)

1

2
T v

(2)

n(2)x(2) . . .
1

2
T v

(k)

n(k)x(k)

(2.4)
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Figure 2.9: The pivot step of the DEP worm construction when one arrives at a central
pivot site pc from an entry site e and there is only one dimer touching pc. We pivot
the dimer from the link 〈pce〉 to the link 〈pconew〉 with probabilities determined by the
corresponding elements of the probability table R. onew, which is the new overlap
site, can either one of the two neighbours n1 and n2 of the central pivot site pc or the
entry site e from which we came to pc. The central pivot site pc now becomes the
new entry site enew from which this new overlap site onewhas been reached, and the
next step is an overlap step. On the dual honeycomb lattice, knowledge of the local
dimer configuration consisting of dimer states from s0 to s11 and d0, d1 and d2 suffices
to calculate R when the interactions extend up to next-next-nearest neighbours on the
triangular lattice.

while the reverse probability takes the form

P (Cf → Ci) =
1

3
× T v(k)x(k)n(k)

1

2
T v

(k−1)

x(k−1)n(k−1) . . .
1

2
T v

(1)

x(1)n(1)

(2.5)

As noted earlier, while the weights w that appear in the intermediate steps of the con-

struction are computed ignoring the violation of the generalized dimer constraints at

two sites, the initial and final weights wv(1)
n(1) and wv

(k)

x(k)
have no such caveats associated

with them. Indeed, we have

wv
(1)

n(1) ≡ w(Ci) , (2.6)
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Figure 2.10: The pivot step of the DEP worm construction when one arrives at a central
pivot site pc from an entry site e and there are three dimers touching pc: At this point,
one has three options, with probabilities determined by corresponding entries of the
probability table K: We can choose to exit to one of the two neighbours n1 or n2, or
bounce back to the entry site e. If we choose to exit through either n1 or n2, we move
along the dimer connecting the central pivot site pc to this chosen exit which becomes
our new pivot site pnew, and delete the dimer on the link 〈pce〉. The third option is to
move along the dimer connecting the central pivot site pc back to the entry site e, and
e then becomes our new overlap site onew. On the dual honeycomb lattice, knowledge
of the local dimer configuration consisting of dimer states from s0 to s11 and d0, d1
and d2 suffices to determine K when the interactions extend upto next-next-nearest
neighbours on the triangular lattice.

the physical Boltzmann weight of the initial configuration, while

wv
(k)

x(k) ≡ w(Cf ) , (2.7)

the physical Boltzmann weight of the final configuration.

Now, since our choice of transition probabilities obeys

wv
(p)

n(p)T
v(p)

n(p)x(p) = wv
(p)

x(p)T
v(p)

x(p)n(p) (2.8)

for all p = 1, 2 . . . k, and since

wv
(p)

x(p) ≡ wv
(p+1)

n(p+1) (2.9)
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Figure 2.11: The overlap step of the DEP worm construction: One arrives at a central
overlap site oc from an entry site e. At this stage, one uses the probability table K to
choose one out of two options: If we choose to exit along the empty link (in this case
〈ocn1〉), we deposit a dimer on the empty link, and move along it making n1 our new
overlap site onew. The central overlap site oc now becomes the new entry site enew from
which we enter the new overlap site onew. On the other hand, we may choose to exit
along the link 〈ocn2〉 to reach our new pivot site pnew = n2. The central overlap site oc
now becomes the new entry site enew, from which we enter the new pivot site pnew. On
the dual honeycomb lattice, knowledge of the local dimer configuration consisting of
dimer states from s0 to s11 and d0, d1 and d2 suffices to determine the probability table
K, when the interactions extend upto next-next-nearest neighbours on the triangular
lattice.

for all p = 1, 3 . . . k − 1, we may write the following chain of equalities

w(Ci)P (Ci → Cf ) =

= wv
(1)

n(1) ×
1

3
T v

(1)

n(1)x(1)
1

2
T v

(2)

n(2)x(2) . . .
1

2
T v

(k)

n(k)x(k)

=
1

3
× T v(1)x(1)n(1)w

v(1)

x(1)
1

2
T v

(2)

n(2)x(2) . . .
1

2
T v

(k)

n(k)x(k)

=
1

3
× T v(1)x(1)n(1)w

v(2)

n(2)

1

2
T v

(2)

n(2)x(2) . . .
1

2
T v

(k)

n(k)x(k)

=
1

3
× T v(1)x(1)n(1)

1

2
T v

(2)

x(2)n(2)w
v(2)

x(2) . . .
1

2
T v

(k)

n(k)x(k)

. . .

= wv
(k)

x(k) ×
1

3
T v

(k)

x(k)n(k)

1

2
T v

(k−1)

x(k−1)n(k−1) . . .
1

2
T v

(1)

x(1)n(1)

= w(Cf )P (Cf → Ci) (2.10)
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Figure 2.12: The first step of the DEP worm construction when the randomly chosen
start site s is touched by three dimers: We move along any one of the three dimers with
probability 1/3, to reach a new pivot site c(1). The start site s becomes our first entry
site e(1).

Thus, our procedure explicitly obeys detailed balance, and this myopic worm construc-

tion provides a rejection-free update scheme that can effect large changes in the con-

figuration of a generalized honeycomb lattice dimer model with one or three dimers

touching each honeycomb site.

To translate back into spin language, we need to take care of one additional sub-

tlety: Although the procedure outlined above gives us a rejection-free nonlocal update

for the generalized dimer model with Boltzmann weight inherited from the original

spin system, we cannot translate this directly into a rejection-free nonlocal update for

the original spin system since we are working on a torus with periodic boundary condi-

tions for the spin system. The reason has to do with the fact that the periodic boundary

conditions of the spin system translate to a pair of global constraints: In every valid

dimer configuration obtained from a spin configuration with periodic boundary condi-

tions, the number of empty links crossed by a path looping around the torus along x̂ or

ŷ must be even, since the absence of a dimer on a dual link perpendicular to a given

bond of the spin system implies that the spins connected by that bond are antiparallel.

This corresponds to constraints on the global winding numbers of the corresponding

dimer model, which must be enforced by any Monte Carlo procedure. Note that these

constraints are on the parity of these winding numbers, which are in any case only

defined modulo 2 unless one is at T = 0.
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Figure 2.13: The pivot step of the DEP worm construction when one arrives at a
central pivot site pc from an entry site e, and there are two dimers touching pc: We
can exit to the neighbour n, which is the neighbour not connected to the central pivot
site pc by a dimer, or bounce back by exiting through the entry site e. If we choose to
exit through the neighbour n, we flip the dimer on the link 〈pce〉 to the link 〈pcn〉. We
then move along this dimer to reach our new overlap site onew ≡ n. If we choose to
bounce back, the entry site e becomes our new overlap site onew. The central pivot site
pc now becomes our new entry site enew in either case. The probability table T is used
to determine which option is chosen. On the dual honeycomb lattice, knowledge of
the local dimer configuration consisting of dimer states from s0 to s11 and d0, d1 and d2
suffices to calculate T when the interactions extend upto next-next-nearest neighbours
on the triangular lattice.

Therefore, to convert this rejection-free myopic worm update procedure for dimers

into a valid update scheme for the original spin system, we test the winding numbers

(modulo 2) of the new dimer configuration to see if it satisfies these two global con-

straints. If the answer is yes, we translate the new dimer configuration back into spin

language by choosing the spin at the origin to be up or down with probability 1/2 and

reconstructing the remainder of the spin configuration from the positions of the dimers.

If, however, the new dimer configuration is in an illegal winding sector, we repeat the

previous spin configuration in our Monte Carlo chain.

This procedure generalizes readily to the Kagome lattice Ising antiferromagnet with

interactions extending up to next-next-nearest neighbour spins. Since most of the re-

quired generalizations are self-evident, we merely point out some of the key differences

here. Our myopic worm update procedure now begins with a randomly chosen six-
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coordinated site as the start site o. With probabilities 1/6 each, we choose one of its

neighbours as the first vertex site v(1) (Fig. 2.6). The start site o thus becomes the entry

site n(1) from which we enter the first vertex v(1). The choice of the first exit site x(1)

via which we exit the first vertex is again dictated by a three-by-three probability table

(Fig. 2.4).

For any vertex v, this probability table is determined by solving detailed balance

equations completely analogous to the ones displayed earlier for the honeycomb lattice

case. In the dice lattice case, the three weights W v
i depend on the dimer states s0, s1

. . . s5 of the six dual links shown in Fig. 2.4, and on the dimer states d0, d1, d2 of the three

links emanating from v. Therefore, we are again in a position to solve these equations

for all possible local environments of v and tabulate these solutions for repeated use

during the worm construction.

As in the honeycomb case, having arrived at x(1), we choose the next vertex v(2) in

a myopic manner: Without regard to the local dimer configuration, we randomly pick,

with probability 1/5 each, one of the other neighbours (other than v(1)) of x(1) as the

next vertex v(2) (Fig. 2.7). x(1) now becomes the entry site n(2) from which we enter

this second vertex v(2). The exit x(2) is again chosen from the pre-tabulated probability

table, and the process continues until the kth exit x(k) equals then start site o.

Clearly, our earlier proof of detailed balance goes through unchanged, and this my-

opic worm construction again gives a rejection-free way of updating the dual dimer

model in accordance with detailed balance. To translate this into an update scheme for

the original spin model, we must again check that the new dimer configuration is in

a legal winding sector, and if the new configuration is in an illegal winding sector, we

must repeat the original spin configuration in our Monte Carlo chain.

2.2.3 DEP worm algorithm

The other strategy we have developed is specific to the honeycomb lattice dimer model

that is dual to the triangular lattice Ising antiferromagnet. Since it involves deposition,

evaporation, and pivoting of dimers, we dub this the DEP worm algorithm. The DEP

worm construction begins by choosing a random start site s. The subsequent worm

construction consists of so-called “overlap steps” and “pivot steps”. Pivot steps are car-

ried out when one reaches a “central” “pivot site” from a neighbouring “entry site”,

while overlap steps are carried out when one reaches a central “overlap site” from a

neighbouring entry site. Details of some of the subsequent pivot steps in this construc-

tion depend on whether the randomly chosen start site s is touched by three dimers

or by one dimer, i.e. if the corresponding triangle is defective or minimally frustrated.

Therefore we describe these two branches of the procedure separately, but use a uni-

fied notation so as to avoid repetition of the aspects that do not depend on the branch
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chosen.

Branch I

Let us first consider the case when the randomly chosen start site s is touched by exactly

one dimer(Fig. 2.8). In this case, we move along the dimer touching s to its other end.

The site at the other end of this dimer becomes our first central site c(1), at which we

must now employ a pivot step with c(1) as the first pivot site. For the purposes of this

first pivot step, the start site s becomes the entry site e(1) from which we have arrived

at this pivot site c(1) by walking along this dimer.

Before proceeding further, it is useful to elucidate the nature of a general pivot move

encountered in our algorithm: In a pivot step, after one arrives at the central pivot site

pc from an entry site e (as we will see below, e could be the previous overlap site oold, or

a previous pivot site pold) by moving along a dimer connecting e to pc, the subsequent

protocol depends on whether there is exactly one dimer (Fig. 2.9) touching pc or three

(Fig. 2.10). In the first case, one pivots the dimer touching pc, so that it now lies on

link 〈pconew〉 instead of link 〈pce〉(Fig. 2.9). Here, onew is one of the neighbours of pc,

chosen using the element Rpc
e,onew of a three-by-three probability table Rpc

α,β (where α and

β range over the three neighbours of the central site pc, and the full structure of this

table is specified at the end of this discussion). Note that in some cases, it is possible

for onew = e with nonzero probability, if the corresponding diagonal entry of the table

is nonzero. After this is done, the next step in the construction will be an overlap step,

with onew being the central overlap site and pc playing the role of the new entry site

enew from which we have arrived at this central overlap site. The structure of a general

overlap step is specified below, after describing the pivot move in the second case, i.e.
with three dimers touching the central pivot site.

If the central pivot site pc in a pivot step has three dimers connecting it (Fig. 2.10)

to its three neighbours n1, n2, and e (where e is the entry site from which we arrived

at the central pivot site pc), we choose one out of three alternatives using a different

probability table Kcs
α,β(np), where α and β range over all neighbours of a central site

cs and np is a particular privileged neighbour of cs (in the case being described here,

cs = pc and np = e): With probabilities Kpc
e,n1

(e) and Kpc
e,n2

(e) drawn respectively from

this table, we may delete the dimer on link 〈pce〉 and reach either n1 or n2, and the

next step would then be a pivot step, with the neighbour thus reached now playing the

role of the new central pivot site pnew and pc playing the role of the new entry site enew
from which we have reached this new central pivot site. On the other hand, we may

“bounce” with probability Kpc
e,e(e) , i.e. we simply return from pc to e without deleting

any of the three dimers touching pc; in this case, the next step will be an overlap step,

with e as the new central overlap site onew, and pc will play the role of the new entry site
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enew from which we have reached this new overlap site (Fig. 2.10). Note that elements

of this table Kcs
α,β(np) with α 6= np never play any role in the choices made at this kind

of pivot step. As we will see below, these elements of the table in fact determine the

choices made at a general overlap step in a way that preserves local detailed balance.

Returning to our construction, if the central pivot site c(1) was of the second type

and we did not bounce, we would reach a new central pivot site c(2) (with c(1) now

becoming the entry site e(2) from which we reach this new pivot site), and we would

perform another pivot step as described above. If on the other hand, the central pivot

site c(1) was of this first type or if it was of the second type and we bounced, the next

step will be an overlap step with a new central overlap site c(2). Since we would have

reached c(2) by moving along a dimer connecting it to c(1), c(1) will play the role of the

new entry site e(2) for this overlap step (in the bounce case, c(2) = e(1)). Having reached

the central overlap site c(2) from entry site e(2) in this way, we must employ an overlap

step.

Before proceeding with our construction, let us first elucidate the structure of choices

at an overlap step after we have reached a central overlap site oc from an entry site e.

e could be the previous pivot site e = pold if the previous step had been a pivot step

(as in the example above) or it could be a previous overlap site e = oold if the previous

step had also been an overlap step (we will see below that this is also possible). In

either case, at a general overlap step, one arrives at the overlap site oc from entry site

e along one of the two dimers touching oc. Thus, one neighbour of oc, suggestively

labelled onew, is not connected to the central overlap site oc by a dimer, while the other

two neighbours are connected to oc by dimers. One of the latter pair of neighbours is

of course the entry site e from which we arrived at oc, while we suggestively label the

other as pnew.

At such an overlap step, one always has two options to choose from, whose prob-

abilities are given as follows by entries of the probability table K introduced ear-

lier(Fig 2.11): One option is to deposit, with probability Koc
e,onew(onew), an additional

dimer on the originally empty link 〈oconew〉 emanating from oc. If we do this, onew be-

comes the new overlap site, which we have entered from oc, which becomes the new

entry site enew, and the next step will again be an overlap step. The second option,

chosen with probability Koc
e,pnew(onew), is that we move along the second dimer touching

oc to the other neighbour pnew, which is connected to oc by this second dimer. If we

do this, pnew becomes the new pivot site, which we enter from site oc, which becomes

the new entry site enew, and the next step will be a pivot step. As we will see below,

the fact that the table K that fixes the probabilities for choosing between these two op-

tions is the same as the one used in a pivot step (when the pivot site has three dimers

touching it) is crucial in formulating and satisfying local detailed balance conditions

that guarantees a rejection-free worm update.
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Returning again to our construction, we employ this procedure to carry out an over-

lap step when we reach the overlap site o(2) from entry site e(2). Clearly this process

continues until we encounter the start site s as the new overlap site in the course of

our worm construction. When this happens, we obtain a new dimer configuration that

satisfies the generalized dimer constraint that each site be touched by one or three

dimers.

Branch II

Let us now consider the case when the randomly chosen start site s is touched by three

dimers. In this case, we move along one of the three dimers touching s to its other end

(with probability 1/3 each), so that the site at the other end becomes the central pivot

site c(1) for a pivot step, and the start site s becomes the entry site e(1) from which we

have entered this central pivot site (Fig 2.12). We now implement the protocol for a

pivot step (as described in Branch I) to reach a new central site c(2). If the next step

turns out to be a pivot step, c(2) plays the role of a central pivot site, whereas it becomes

the central overlap site if the next step is an overlap step. In either case, c(1) becomes

the entry site e(2) for this next step. In this manner, we continue until we reach the start

site s as the new central overlap site c(k) for an overlap step. When this happens, the

worm construction ends after these k steps, since the start site again has three dimers

touching it, and we thus obtain a new dimer configuration that satisfies the generalized

dimer constraint that each site be touched by one or three dimers.

The only additional feature introduced in Branch II is that one could in princi-

ple reach the start site s as the central pivot site of some intermediate pivot step

l(Fig. 2.13). In this case, the intermediate configuration reached at this lth step is

not a legal one (since it still has two dimers touching s), and we need to continue with

the worm construction. This is done using a special “two-by-two” pivot step(Fig. 2.13).

In this two-by-two pivot step, one arrives at the two-by-two pivot site (which will al-

ways be the start site in our construction) pc from an entry site e (as in all other steps,

e could be a previous central overlap site oold or the previous central pivot site pold) by

moving along a dimer connecting e to pc. Unlike the usual pivot step, at which there

is only one dimer touching the central pivot site, pc has a second dimer touching it,

which connects pc to another neighbour nf . Thus, unlike the usual pivot step, there is

just one neighbour of pc, suggestively labelled onew, which is not connected to pc by a

dimer when one arrives at pc to implement this step. Therefore, our only options are to

rotate the dimer which was on link 〈epc〉, to now lie on link 〈pconew〉, or to bounce. The

probabilities for these two choices are determined by a probability table T pcα,β(nf ). Here,

α and β are both constrained to not equal nf , making T pcα,β(nf ) a two-by-two matrix. In

either case, onew chosen in one of these two ways becomes the new central overlap site
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of the next step, which must be an overlap step, and the process continues.

This new configuration thus obtained upon completing the worm construction ini-

tiated either using Branch I or Branch II can now be accepted with probability one if

the probabilities with which we carried out each of the intermediate pivot steps and

overlap steps obeyed local detailed balance. Local detailed balance at a pivot step in

which the pivot site is touched by one dimer requires that the probability table Rpc
e,of

obeys the conditions

wpce R
pc
e,of

= wpcofR
pc
of ,e

, (2.11)

where the wpcn is the Boltzmann weight of the dimer configuration in which the link

〈pcn〉 connecting pc to one of its neighbours n is occupied by a dimer and the other

two links emanating from pc are empty. As in all worm constructions, these weights

are computed ignoring the fact that the generalized dimer constraint (that each site be

touched by exactly one or three dimers) is violated at two sites on the lattice. These

conditions again form a three-by-three set of constraint equations of the type discussed

in Ref. [107] and Ref. [106], allowing us to analyze these constraints and tabulate

solutions in advance for all cases that can be encountered. If the weights permit it, we

use the “zero-bounce” solution given in Ref. [107] and Ref. [106], else the “one-bounce”

solution given there.

Local detailed balance at a two-by-two pivot step in which the pivot site is touched

by two dimers requires that the probability table T pcα,β(nf ) obeys the conditions

wpcα (nf )T
pc
α,β(nf ) = wpcβ (nf )T

pc
β,α(nf ) , (2.12)

where the wpcα (nf ) is the Boltzmann weights of the dimer configurations in which the

links 〈pcnf〉 and 〈pcα〉 are covered by dimers and the third link is empty. As always,

these weights are computed ignoring the fact that the dimer constraints are violated at

two sites on the dual lattice. In practice, we tabulate all possible local environments

that can arise in such an update step, and use Metropolis probabilities to tabulate in

advance the corresponding entries of T pc(nf ).

Finally, the constraints imposed by local detailed balance at an overlap step are

essentially intertwined with the local detailed balance constraints that must be enforced

at a pivot step when the pivot site has three dimers touching it. This is because the

deletion of a dimer at such a pivot step is the “time-reversed” counterpart of the process

by which an additional dimer is deposited at an overlap step. Indeed, this is why we

have been careful in our discussion above to draw the probabilities at the pivot step

from the same table K as the probabilities that govern the choices to be made at an

overlap step.
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We use a different probability table Kcs
α,β(np) (where α and β range over all neigh-

bours of a central site cs and np is a particular privileged neighbour of cs) to decide on

the next course of action:

We now describe the structure of the table Kcs
α,β(np). Here, cs is the central site,

which would be the current pivot site in a pivot step with three dimers touching the

pivot site, or the current overlap site in an overlap step. np is a “privileged neighbour”

of cs; in a pivot step, np is the entry site from which we enter the pivot site cs, while in

an overlap step, it is the unique neighbour of cs that is not connected to cs by a dimer.

Clearly, local detailed balance imposes the following constraints on this probability

table K:

wcsα (np)K
cs
α,β(np) = wcsβ (np)K

cs
β,α(np) . (2.13)

Here both α and β can be either the site np or the two other neighbours n1 and n2

of the central site cs. wcsn1
(np) = wcsn2

(np) denotes the weight of the configuration with

both links 〈csn1〉 and 〈csn2〉 covered by a dimer and the link 〈csnp〉 unoccupied by a

dimer. On the other hand, wcsnp(np) denotes the weight of the configuration in which

all three links 〈csn1〉, 〈csn2〉 and 〈csnp〉 are covered by dimers. As before, these weights

are computed ignoring the fact that the generalized dimer constraint (that each site be

touched by exactly one or three dimers) is violated at two sites on the lattice.

Choices for the tables R and K consistent with these local detailed balance con-

straints, can be computed using the same strategy described in our construction of the

myopic worm update. Again, the weights that enter these constraints on K (R) depend

only on the dimer states d0, d1, and d2 of the three links emanating from the central site

cs (pivot site pc), and the dimer states s0, s1 . . . s11 of the twelve links surrounding this

site, allowing us to tabulate in advance all possible local environments and the corre-

sponding solutions for K and R. The formal proof of detailed balance uses these local

detailed balance constraints to construct a chain of equalities relating the probabilities

for an update step and its time-reversed counterpart in exactly the same way as the

proof given in the previous discussion of the myopic worm update. Therefore, we do

not repeat it here for the present case.

With this background, we use the DEP and myopic algorithms [49] in the triangular

case and the myopic algorithm in the Kagome case to simulate the classical Ising model

H = J1
∑
〈RR′〉

σRσR′ + J2
∑
〈〈RR′〉〉

σRσR′ ,

(2.14)

where 〈RR′〉 and 〈〈RR′〉〉 denote nearest-neighbor and next-nearest-neighbor links of

the lattice in question, and σR = ±1 are the Ising spins on sites R of the triangular
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or kagome lattice. In our convention, J1/2 > 0 corresponds to an antiferromagnetic

coupling, while J1/2 < 0 correspond to a ferromagnetic coupling. We focus here on

the case with J1 > 0 and J2 < 0, and study the statistics of worms generated by these

algorithms in the power-law three-sublattice ordered phase on both lattices.

2.3 Random walker in a logarithmic potential with ab-

sorbing boundary conditions

As mentioned earlier, we model the worms created by the worm algorithms by making

a heuristic connection to a random walk in a central logarithmic potential. The idea is

simple: The worm construction proceeds by moving a defect at the head of the worm

through the dual lattice until it comes back to its initial location and annihilates with

the tail (at which an antidefect is held fixed). Since the equilibrium defect-antidefect

correlator in the power-law three-sublattice ordered phase is also of a power-law form

and since the worm construction preserves detailed balance in the enlarged configura-

tion space with one defect and one anti-defect, we take the point of view that the head

of the worm performs a random walk while interacting with the fixed tail via a static

potential determined by the logarithm of the equilibrium defect-antidefect correlator.

In other words, the worm construction can be thought of as a random walk in a central

potential V (r) = − ln(Cdefect(r)) = kBTηm ln(r).

With this motivation, we now recapitulate some standard results for the return time

statistics of a d-dimensional continuous-time random walker in an attractive radial po-

tential V (r) = Ã ln r with Ã/kBT = ηm. To obtain the statistics of first return times, we

impose an absorbing boundary condition at the origin. This boundary condition implies

that the walk ends when the walker reaches its origin. The Langevin equation reads:

dr

dt
= −Ã

r
r̂ + ξ(t), (2.15)

with,

〈ξi(t)ξj(t′)〉 = 2kBTδijδ(t− t′) (2.16)

where i, j = 1, ..., d.

The equivalent Fokker-Planck equation for the probability distribution P (r, t) for the

position of the walker at time t is:

dP

dt
= kBT∇ ·

(
A

r
r̂P +∇P

)
(2.17)

with A = Ã/kBT .

Since the potential is radially symmetric, we can define the radial probability distri-



CHAPTER 2. STATISTICAL PROPERTIES OF WORMS 59

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

1 10 100 1000 10000

P
(⌧

r
)

⌧r

J2/T ; ✓measured

0.00 ; 0.33(1)
0.05 ; 0.47(2)
0.10 ; 0.56(2)

T ! 0, J1 = 1

myopic on triangular
L = 600

10�7

10�6

10�5

10�4

10�3

10�2

10�1

10 100 1000

P
(⌧

r
)

⌧r

T ; ✓measured

4.7 ; 0.71(4)
4.5 ; 0.86(1)
4.3 ; 1.05(3)

J1 = 1, J2 = �1

myopic on triangular
L = 600

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

1 10 100 1000 10000

P
(⌧

r
)

⌧r

J2/T ; ✓measured

0.00 ; 0.31(1)
0.05 ; 0.45(1)
0.10 ; 0.59(2)

T ! 0, J1 = 1

DEP on triangular
L = 600

10�7

10�6

10�5

10�4

10�3

10�2

10�1

10 100 1000

P
(⌧

r
)

⌧r

T ; ✓measured

4.7 ; 0.64(5)
4.5 ; 0.82(7)
4.3 ; 1.02(9)

J1 = 1, J2 = �1

DEP on triangular
L = 600

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10 100 1000

P
(⌧

r
)

⌧r

T ; ✓measured

1.36 ; 0.74(3)
1.30 ; 0.87(5)
1.24 ; 0.97(3)

J1 = 1, J2 = �1

Myopic on Kagome
L = 288

10�7

10�6

10�5

10�4

10�3

10�2

10�1

1 10 100 1000 10000

P
(⌧

r
)

⌧r

✓measured = 0.48(3)

Fully packed dimers
Loop algorithm on cubic lattice
L = 72

a. b.

c. d.

e. f.

Figure 2.14: Probability distribution P (τr) of the number of sites of the dual lattice
visited (τr) in one completed worm of the myopic algorithm for a 288 × 288 Kagome
lattice for three values of T at which the system is in the power-law ordered critical
phase. Lines denote fits to a power-law form ∝ 1

τr
1+θmeasured

.



CHAPTER 2. STATISTICAL PROPERTIES OF WORMS 60

0

0.2

0.4

0.6

0.8

1

0.2 0.25 0.3 0.35 0.4 0.45 0.5

✓ m
ea

su
re

d

(⌘ predicted
m )/2

f(x) = x

DEP on triangular [T ! 0; J1 = 1; J3 = 0]
Myopic on triangular [T ! 0; J1 = 1; J3 = 0]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

✓ m
ea

su
re

d

(⌘ predicted
m )/2

f(x) = x

DEP on triangular [J1 = 1; J2 = �1; J3 = 0]
Myopic on triangular [J1 = 1; J2 = �1; J3 = 0]
Myopic on Kagome [J1 = 1; J2 = �1; J3 = 0]

a. b.
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simulations employing the DEP and myopic worm algorithms. The line denotes the
expected dependence in dimension d < 2.

bution by writing r = (r,Ω) and integrating over the angle variable as:

Q(r, t) = rd−1
∫
dΩP (r,Ω, t) (2.18)

Eq.(2.17) then reduces to a one-dimensional Fokker-Planck equation:

∂Q

∂t
= kBT

∂

∂r

(
b

r
Q+

∂Q

∂r

)
(2.19)

where b = A+ 1− d
For a free random walk in an effective dimension d′, the corresponding one dimen-

sional Fokker-Planck equation would be

∂Q

∂t
= kBT

∂

∂r

(
b′

r
Q+

∂Q

∂r

)
(2.20)

where b′ = 1− d′.
Thus a random walker in an attractive central potential in dimension d can be

viewed as a free random walker in an effective dimension d′, with

d′ = d− A (2.21)

The survival probability of a random walk S(t), is the probability that the random

walk has not reached its origin. If S(t) decays as a power law, the exponent of the power

law is defined as the ‘persistence exponent’ θ in random walk literature. The probability

of first return to origin F (0, t) = −∂S(t)/∂t for a random walker in dimension d′ has
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been calculated as [108, 109]:

F (0, t) =


1/t2−(d

′/2), for d′ < 2

1/(t ln2(t)), for d′ = 2

1/t(d
′/2), for d′ > 2

(2.22)

In terms of the persistence exponent θ,

F (0, t) ∝ 1/t1+θ. (2.23)

Thus,

θ ∝

1− (d′/2), for d′ < 2

(d′/2)− 1, for d′ > 2
(2.24)

For d′ = 2, the survival probability decays logarithmically and the persistence exponent

is not defined. Since A ≡ ηm and d = 2, we find d′ = 2− ηm. Also since ηm ∈ (1/2, 9/4)

(see below) is always positive, d′ < 2 throughout the power-law regimes studied here.

Thus we obtain

θ = ηm/2 ≡ 1/8ηs. (2.25)

in the power-law regimes studied here.

2.4 Observables

Defect-antidefect correlator: During the worm construction, a defect-antidefect pair

is created on the dual lattice, and the antidefect is then moved (keeping the defect

fixed) through the dual lattice (in a manner satisfying detailed balance in the enlarged

configuration space) until it returns to the location of the defect and annihilates it, pro-

ducing a legal dimer configuration that can be mapped back to a spin configuration.

As noted earlier, the defect-antidefect correlator Cm(~r) is proportional to the histogram

of the head to tail distance ~rm which can be accumulated during the worm construc-

tion [83]. We choose a normalization convention where this histogram, when summed

over ~r, gives the mean length of worms constructed by the algorithm (in other words,

we measure the number of times the head to tail separation is ~r per worm). In the

power-law three-sublattice ordered phase we expect Cm(~r) ∼ 1/rηm, with ηm = 1/4ηs..

During the worm construction, the worm can wind across the periodic boundary condi-

tions of the lattice. Even if the worm winds before annihilating, we always record the

geometric distance between the head and tail of the worm (modulo the lattice size L in

each direction).

Worm length or “return time” distribution: The number of dual lattice sites (with
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Figure 2.17: ζ extracted from the τr dependence of the average number of flipped dual
links 〈p〉, plotted as a function ηm for all cases studied here. The dotted-line is a guide
to the eye, suggesting that ζ depends in a universal way on ηm, and the dependence
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multiplicities, if a site is visited more than once) visited by the head of the worm dur-

ing the worm construction defines the length of the worm, which corresponds in our

random walk analogy, to the return time of the walk. Histogramming this at the end

of each worm construction gives us the return time probability distribution, P (τr) of

the worms. From Eq.(2.23), we see that our simple random walk model would predict

P (τr) ∼ 1/τ 1+θr , with θ = ηm/2 = 1/8ηs.

Average worm length: We also measure the average length of a worm, 〈v〉. As

noted earlier, our defect-antidefect correlator is normalized to ensure that 〈v〉 =
∑

~r Cm(~r).

Thus we expect 〈v〉 ∼ L2−ηm. Interestingly, 〈v〉 can also be obtained from the return time

probability distribution P (τr) as 〈v〉 =
∑

τr
τrP (τr). If we assume that the dominant

contribution to this sum comes from the regime where P (τr) ∼ 1/τ 1+θr , and introduce

an upper cutoff τcut-off(L) beyond which which P (τr) contributes sub-leading terms to

the sum, then the L dependence of 〈v〉 should be controlled by the L dependence of

the cutoff τcut-off. If we assume τcut-off(L) ∼ Lb, then 〈v〉 ∼ Lb(1−θ). Comparing the two

results for the form of 〈v〉 we obtain b(1− θ) = 2− ηm. Thus, our simple random walk

model prediction of θ = ηm/2 (Eq.(1.44)) corresponds to b = 2.

Average number of flipped links per worm: When a worm retraces its path, it flips

the dimers along the retraced path again, in effect not flipping them in the first place.

Thus counting the number of flipped links is equivalent to measuring the perimeter of

the closed path defined by the worm. We measure the average number of flipped links

per worm 〈p〉 as a function of the return time τr of the worm.

Average number of flipped spins per worm: After mapping back to the original

spin configuration, we can measure the average number of spins on the direct lattice

flipped by one worm update. This is equivalent to measuring the area enclosed by the

closed worm. Since the worm is on a torus, this area can be the either be the inner or
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outer area with respect to the worm. We choose to always work with the smaller area,

and the corresponding number of flipped spins. In our measurements, we keep track of

the average number of flipped spins 〈a〉 defined in this way, and study its dependence

on the average number of flipped links 〈p〉 introduced earlier.

2.5 Results

All our measurements are performed on lattice sizes of upto 600×600 lattice sites for the

triangular lattice antiferromagnet and upto 288×288 unit cells (with three sites per unit

cell) for the Kagome lattice antiferromagnet. For studying the statistics of worms, we

perform one worm update per Monte Carlo step (MCS) and measure all the requisite

histograms and averages during the worm construction. If after the worm construction

the dimer configuration is not physical, we discard the measurements made during that

worm construction. All our data is averaged over 1× 108 MCS.

We have performed such measurements in all five cases mentioned in Section. 2.2:

In the T → 0 limit on the triangular lattice, we study both the DEP and myopic algo-

rithms at three values of J2/T = 0.00, 0.05 and 0.10 all of which are in the power-law

ordered phase. To access the T > 0 power-law ordered phase, we set J1 = 1 and

J2 = −1. On the triangular lattice, we study both the algorithms in the power-law

ordered phase at T = 4.3, 4.5 and 4.6, and on the Kagome lattice we study the myopic

algorithm in the power-law ordered phase at T = 1.24, 1.30 and 1.36 (all temperatures

are measured in units of J1 = 1).

The defect-antidefect correlator Cm(êx
L
s
) is measured at separation êx Ls (with s = 2

for the zero temperature measurements and s = 24 for the nonzero temperature mea-

surements) on periodic L×L lattices as a function of lattice size L for L = 288, 360, 420

and 600 on the triangular lattice and L = 96, 144, 216 and 288 on the Kagome lattice (êx
is one of the Bravais lattice vectors). Fig. 2.1 show this correlator in the T → 0 limit for

the DEP and myopic worm algorithms respectively on the triangular lattice. Figs. 2.1

shows this correlator in the T > 0 regime for the DEP and myopic worm algorithms

respectively on the triangular lattice. Fig. 2.1 shows the correlator in the T > 0 regime

for the myopic worm algorithm on the Kagome lattice. In all the above cases we ex-

tract ηm by fitting a power law to the L dependence of the correlator. Fig. 2.2 plots the

best-fit ηm obtained in this way versus the spin correlation exponent ηs (this exponent

is measured by fitting the equilibrium spin correlator at the three sublattice wavevector

to a power-law form) for each of these five cases. As can be seen, the data agrees very

well with the theoretical prediction of ηm = 1/4ηs for the T → 0 case. We note that for

T > 0 cases, the agreement is less impressive but still reasonable.

We measured the probability distribution of return times P (τr) as a function of τr for
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Figure 2.18: The lattice size L dependence of the average number of dual lattice sites
visited per worm 〈v〉 using the myopic worm algorithm on the triangular lattice for
three values of T at which the system is in the power-law ordered critical phase. Since
〈v〉/L2 ∼ 1/Lηm, the power-law fits give us an alternate measurement of ηm.
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L = 600 on the triangular lattice and L = 288 on the Kagome lattice. Figs. 2.14, 2.14

show the return time distribution in the T → 0 limit for the DEP and myopic worm al-

gorithms respectively on the triangular lattice. Figs. 2.14, 2.14 show the distribution in

the T > 0 power-law ordered phase for the DEP and myopic worm algorithms respec-

tively on the triangular lattice. Fig. 2.14 shows the distribution in the T > 0 power-law

ordered phase for the myopic worm algorithm on the Kagome lattice. In all the above

cases we extract θ by fitting power laws with exponent 1 + θ to the tail of the distribu-

tion. Fig. ?? shows the measured value of θ as a function of ηpredicted
m /2 = 1/(8ηs) for the

T → 0 and the T > 0 cases respectively. The theoretical prediction of θ = ηpredicted
m /2

is seen to give a reasonable account of the measured values of θ in the T > 0 cases,

although deviations are clearly visible. In the T → 0 cases, we note that the predic-

tion of our simple random walk model appears to deviate more significantly from the

measured value of θ.

By way of comparison with a better-understood example, we also studied the re-

turn time distribution of a direct lattice worm algorithm for the fully-packed dimer

model [84], on the 3-dimensional cubic lattice. In this case too, the worm creates a

monomer-antimonomer pair, and propagates the antimonomer through the lattice un-

til it recombines with the monomer at the starting site. The defect-antidefect correlator

on the cubic lattice is controlled by the emergent Coulomb interaction between the

monomer and antimonomer. Since this is a power-law potential rather than a loga-

rithmic potential, the effective dimension d′ in this case is d′ = d = 3, and the return

time statistics is therefore expected to be identical to that of the usual random walk

in three dimensions [108]. Fig. 2.14 shows our measurement θ = 0.48 ± 0.03 of the

persistence exponent, which agrees within errors with the exact value of 1/2 predicted

by Eq. 2.24 for d′ = 3. This value of θ is also consistent with the results for the worm

length distributions in Ref. [94], for a worm algorithm on the pyrochlore lattice.

We also measured the average number of flipped dual links per worm, 〈p〉, as a

function of τr for L = 600 on the triangular lattice and L = 288 on the Kagome lattice.

Figs. 2.16 shows this functional dependence in the T → 0 power-law ordered phase for

the DEP and myopic worm algorithms respectively on the triangular lattice. Figs. 2.16

shows this function in the T > 0 power-law ordered phase for the DEP and myopic

worm algorithms respectively on the triangular lattice. Figs. 2.16 shows this functional

dependence in the T > 0 power-law ordered phase for the myopic worm algorithm

on the Kagome lattice. In all the above cases we find that 〈p〉 is a power of τr. The

exponent ζ is obtained by fitting to a power-law form. Fig. 2.17 shows the value of ζ

thus obtained, plotted as a function of ηm for each of these five cases. Though we do

not have a theoretical prediction for this dependence, we note all the measured data

points seem to fall on a single curve, suggesting a universal origin for this dependence.

We also measured the average number of flipped spins per worm on the direct lattice
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Figure 2.19: Average number of spins 〈a〉 flipped by worms that flip p dual links for
the myopic algorithm in a 288 × 288 Kagome lattice for three values of T at which the
system is in the power-law ordered critical phase. Lines denote fits to a power-law form
∝ pD.
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〈a〉 as a function of p, the number of flipped dual links, for L = 600 on the triangular

lattice and L = 288 on the Kagome lattice. Figs. 2.19 shows the distribution in the

T → 0 limit for the DEP and myopic worm algorithms respectively on the triangular

lattice. Figs. 2.19 shows the distribution in the T > 0 case for the DEP and myopic

worm algorithms respectively on the triangular lattice. Figs. 2.19 shows the distribution

in the T > 0 case for the myopic worm algorithm on the Kagome lattice. In all the above

cases we extract the exponent D by fitting this functional dependence to a power law

form. For worms that do not intersect themselves before closing, this would amount to

plotting the enclosed area as a function of perimeter of the worm, and the exponent

D could then be interpreted as the fractal dimension of the cluster constructed by the

worm. However, when we perform the fits, we find that the fractal dimension D ≈ 1

in all the five cases studied. To understand this better, we looked at the actual traces of

the worms in all cases and found that the worms defined by these algorithms intersect

themselves very often. The spin cluster obtained from such a worm consists of many

small components and the area of the individual components does not scale with the

measured total perimeter. For such worms, it is quite natural that the total perimeter

and the area scale in the same way, i.e. D ≈ 1.

We can also extract ηm from the lattice size L dependence of the average number of

dual sites visited per worm 〈v〉 (as discussed in Section. 2.4) using the relation 〈v〉/L2 ∼
1/Lηm. Figs. 2.18 shows the power-law fits in the T → 0 limit for the DEP and myopic

worm algorithms respectively on the triangular lattice. Figs. 2.18 shows the power-law

fits in the T > 0 regime for the DEP and myopic worm algorithms respectively on the

triangular lattice. The extracted value of ηm matches within error-bars to the value

of ηm extracted from the defect-antidefect correlator as seen in Figs. 2.1 for T → 0

and T > 0 respectively. In the noninteracting dimer model limit of the dual dimer

model (T → 0 and J2/T = 0), it is well known that ηm = 1
2

and we find that our

measurement of 〈v〉/L2 ∼ 1/L0.52(2) is in very good agreement. However we note

that a previous study of a worm algorithm for the square ice model in the free dimer

limit [110] concluded that 〈v〉 is 〈v〉 ∼ L1.665(2), which is at odds with what one would

expect when ηm = 1/2 (the values of ηm and ηd are the same for the noninteracting

dimer model on the honeycomb and the square lattice).

2.6 Conclusions

A similar heuristic picture for the worm-length distribution is possible in other appli-

cations of worm algorithms to two-dimensional critical points/phases, and it would be

interesting to ask how well the analogs of Eq.(1.44) do in these cases. In the opposite

direction, the readily discernible deviations of the measured values of θ from the pre-
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diction of the simple random walk model underscore the importance of incorporating

the back-reaction of worm motion on the underlying dimer configuration, rather than

thinking in terms of a fixed static potential provided by the dimer configuration. We

leave this as an interesting direction for future work.



Chapter 3

Triangular lattice Ising
antiferromagnet with nearest and
next-nearest neighbor couplings

3.1 Introduction

The Ising antiferromagnet on the triangular lattice [17], is a prototypical example of

a frustrated magnet characterized by a macroscopic degeneracy of minimum energy

spin configurations that give rise to a nonzero entropy density in the low tempera-

ture limit at B = 0 [17]. The geometry of the triangular lattice leads to competing

nearest neighbor exchange interactions resulting in geometric frustration. One mani-

festation of this geometric frustration and the resulting degeneracy is that the system

does not develop any long-range order all the way down to T = 0 [17]. Instead,

the T → 0 limit is characterized by power-law correlations of the Ising spins at the

three-sublattice wavevector Q [43]. This provides a simple example of a classical spin-

liquid. Experimental interest in geometric frustration has been long standing. Many

transition-metal oxides crystallize in geometrically frustrated lattices based on triangles

or tetrahedrons that share corners, edges or faces [24]. Examples include anhydrous

alums[25, 26], jarosites[27, 28], Herbertsmithite[29], Kapellasite[30], pyrochlores[31,

32], spinels[33, 34], magnetoplumbites[35, 36], garnets[36], ordered NaCl[37, 38],

and many other structure types[24]. A system based on non-colloidal monolayers

has also been shown to approximate the triangular lattice Ising antiferromagnet in

many ways[39]. Recently, a new class of rare-earth-based frustrated antiferromag-

nets have been discovered with effective Ising spins arranged on a perfect triangular

lattice[40]. Given the abundance of geometric frustration in nature, many other types

of geometrically frustrated models which exhibit spin-liquid behavior have also been

analytically and numerically studied in search for a spin-liquid. Few examples include

70
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Figure 3.1: A 4 × 4 triangular lattice with nearest neighbor interaction: J1 (shown
in red), next-nearest neighbor interaction: J2 (shown in green) and next-next-nearest
neighbor interaction: J3 (shown in blue). The filled circles represent up (down) spins
and the empty circles represent down (up) spins. A ferromagnetic J2 stabilizes “ferri-
magnetic three-sublattice order with a net magnetic moment in which spins of one of
the three sublattices of the triangular lattice point upward (downward) and the spins
on the other two sublattices point downward (upward).

spin-ice[18, 19], pyrochlores[20], Kagome lattice models[21, 22] and Kagome ice[23].

The T → 0 spin-liquid ground state of the triangular Ising antiferromagnet can

be destabilized into seven distinct ordered ground states by introducing sub-leading

next-nearest and next-next-nearest neighbor exchange couplings [42]. Ferromagnetic

next-nearest neighbor couplings, stabilize long-range ferrimagnetic three-sublattice or-

der below a critical temperature [47]. The three-sublattice ordered phase has a net

magnetic moment and it distinguishes between the three sublattices of the triangular

lattice with all spins on two sub-lattices pointing in one direction and the spins on the

third sub-lattice pointing in the opposite direction. Very similar behavior is also seen in

the Ising antiferromagnet on the Kagome lattice [22]. In the Kagome case, the T = 0

limit is a classical spin-liquid with short-ranged correlations, and next-nearest-neighbor

couplings again induce long-range three-sublattice order below a critical temperature.

The three-sublattice order in this case distinguishes between the three sublattices of the

underlying triangular Bravais lattice structure.

Triangular Ising antiferromagnet with sub-leading ferromagnetic next-next nearest

neighbor coupling has been used to model the monolayer adsorption of inert gases on

graphite substrates [45]. The potential on the graphite surface has hexagonal sym-

metry and the adsorbed gas molecules tend to sit on the hexagonal centers forming a

triangular net. Owing to the large effective size of the gas molecules, the nearest site

occupation is unfavorable. By assigning an ‘up’ spin to the occupied sites and a ‘down’

spin to vacant sites, this model can be mapped to a triangular lattice Ising antiferro-

magnet.
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The three-sublattice ordered state is known to melt in a two-step manner, with

an intermediate-temperature phase characterized by power-law three-sublattice order

of the Ising spins σ: 〈σ(~R)σ(0)〉 ∼ cos(Q. ~R)/|~R|η(T ) with the temperature dependent

power-law exponent η(T ) ∈ (1/9, 1/4) [47, 103].

Ferromagnetic next-next-nearest neighbor couplings J3 also destabilize the spin-

liquid phase preferred by the antiferromagnetic nearest-neighbor interactions at low

temperatures by facilitating a so-called stripe ordered phase which has been shown to

melt via a first order transition at a finite temperature[49]. The stripe ordered phase

consists of alternating single ferromagnetic columns or rows of oppositely oriented

spins. In a system with competing ferromagnetic next-nearest and next-next-nearest

neighbor interactions, the three-sublattice ordered phase is known to undergo a first

order transition into the striped phase when the next-next-nearest neighbor interac-

tions dominate [49].

In this work we investigate the anti-ferromagnetic Ising model on a triangular lat-

tice with competing ferromagnetic next-nearest and next-next-nearest neighbor inter-

actions (henceforth referred to as the triangular lattice model) using sophisticated but

efficient Monte-Carlo worm algorithms developed in Ref. [49]. We find similarities in

the phase diagram that we numerically obtain for the triangular lattice model with

the six-state clock model studied by Cardy [96]. We then numerically characterize the

phase diagram of the six-state clock model using a Monte-Carlo Wolff cluster algorithm

and compare it to the phase diagram of the triangular lattice model using a host of

numerical techniques. This similarity in the phase diagram of the triangular lattice

model and the six-state clock model is not accidental. The six-state clock model sup-

ports a six-fold symmetric ground state which can be mapped to the six-fold symmetric

ground state that we see in the triangular lattice model. The six-fold symmetric ground

state of the six-state clock model has a two-step melting transition with an interme-

diate power-law ordered phase[96] which pinches off via a multicritical point into a

first-order line[97]. A self-dual line whose equation is known passes through this mul-

ticritical point[96, 97, 98]. Simulating parameter values and comparing the extracted

critical exponents along this self-dual line allows us to numerically characterize this

multicritical point and its neighborhood. On comparing the scaling behavior of various

quantities in this neighborhood with that of the neighborhood of a similar multicritical

point in the triangular lattice model allows us to numerically pin-point the location of

the multicritical point in the phase diagram of the triangular lattice model.

We numerically verify a conjecture on the six-state clock model and obtain new

results on both the six-state clock model and the triangular lattice model which we

summarize below:

a. On the six-state clock model, we present conclusive numerical evidence (by way of

numerically obtaining multicritical exponents) of the conjecture that the multicritical
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point at which the two-step melting phase pinches off belongs to the universality class

of a Z6 parafermionic CFT.

b. On the six-state clock model, we numerically show that the line of first-order tran-

sitions which was previously conjectured to extend upto the multicritical point [97]

becomes weakly first-order before meeting the multicritical point.

c. We numerically obtain a phase diagram of the triangular lattice anti-ferromagnet

with competing next-nearest and next-next-nearest neighbor interactions.

d. We numerically show that there exists a multicritical point in the triangular lattice

anti-ferromagnet with competing next-nearest and next-next-nearest neighbor interac-

tions that belongs to the universality class of a Z6 parafermionic CFT. To this end, we

numerically extract multicritical exponents which match (within error-bars) the values

predicted by the Z6 parafermionic CFT.

The rest of the chapter is broadly organized as follows: In Section. 3.2 we discuss

the various numerical techniques that we use to characterize the phase diagram in both

the models. In Section 3.3, we define and numerically study the six-state clock model.

In Section 3.4, we do the same for the antiferromagnetic Ising model on the triangular

lattice with competing next-nearest and next-next-nearest neighbor ferromagnetic in-

teractions. We conclude in Section. 3.5 with a summary of our conclusions and discuss

future directions.

3.2 Methods

To distinguish between and numerically characterize the ordered, disordered and criti-

cal phases and the various phase transitions that we encounter in both our models, we

use the disconnected two-point correlation function (henceforth referred to as the cor-

relation function). The correlation function for a local order-parameter O(r) is defined

as:

CO(r) = 〈O(r + a) · O∗(a)〉 (3.1)

averaged over all sites a, where r is the distance between the two sites at a and r + a.

For T < Tc, when there is long-range order in O, CO(r) → |A|2 as r → ∞ where

A = 〈O〉 is the value of the order-parameter in the ordered phase. At the critical

point at T = Tc, CO(r) ∼ 1/rηO, where ηO is a critical exponent. In case of a two-step

melting transition with a critical phase between T1 and T2, the upper and lower critical

transition temperatures of the two-step melt respectively, ηO becomes a temperature

dependent critical exponent, ηO(T )∀T ∈ [T1, T2]. In the disordered phase at T > Tc,

CO(r) ∼ exp(−r/ξ) where ξ is a small finite correlation length. In our simulations we

look at the averaged correlation function at a fixed distance L/a along the natural x̂

and ŷ axes of our lattice, where a is a proper divisor of the system size L. CO(L/a)
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then has the same functional dependence on system size L for the various phases as

described above, although in practice due to our finite-size lattice we may not see the

exponential decay in the disordered phase. Since ξ diverges as T → Tc, for T slightly

greater than Tc even though the system is in a disordered phase, ξ > L/a. So any decay

of the correlation function faster than 1/Ld where d = 2 is the dimension of the lattice

is considered to be an indication of the system being disordered.

We also look at the fourth-order binder cumulant to study the phase transitions. The

binder-cumulant for a n-component order-parameter O is defined as:

UO(L) = 1− n〈O(L)4〉
(n+ 2)〈O(L)2〉2 (3.2)

As L → ∞, to leading order, UO(L) ∼ 0 in the disordered limit and UO(L) ∼ 2/(n + 2)

in the ordered limit. In case of a continuous phase transition UO(L) as a function

of decreasing temperature T is a monotonically increasing function bounded between

[0, 2/(n + 2)] with an inflection point approaching (U∗O, Tc) as L → ∞ where U∗O is a L-

independent universal value 3 0 < U∗O < 2/(n+2). Since at criticality, UO(L) approaches

U∗O, the crossing point of various UO(L) can be used to determine Tc. At L = ∞, UO(L)

becomes a step-function which jumps from 0 to 2/(n + 2) at Tc as we decrease T . In

practice for finite size systems although U∗O has leading order L-dependent corrections,

in our simulations we find them to be small enough to be ignored. Our error-bars

accommodate any finite-size effects on U∗O. In a two-step melting scenario, UO(L) is

still monotonically increasing as a function of decreasing T bounded by [0, 2/(n + 2)].

However, since we have a critical phase between T2 and T1, the upper and lower critical

temperatures of the two-step melt respectively, UO(L) → U∗O(T ), a L−independent but

T−dependent universal value between T1 and T2 in the L → 0 limit. Hence UO(L) for

various L stick throughout the critical region between T2 and T1. First order transitions

cause UO(L) to become non-monotonic and no longer be bounded between [0, 1/a].

Negative peaks develop in UO(L) for large system sizes between the T → Tc fixed point

and the T → ∞ fixed point with peak heights diverging with increasing L as L2 and

peak position approaching Tc as L → ∞. The emergence of the negative peaks has

been attributed to the presence of multiple peaks (phase co-existence) in the order-

parameter distribution which occurs in the vicinity of a first-order transition[111]. In

the vicinity of a weak first-order transition, phase-coexistence still occurs leading to

negative peaks in UO(L), but the peak heights diverge with increasing L as Lb, where

b < 2. This feature can hence be used to differentiate between a first-order and a weak

first-order transition.

We also look at correlation ratios of the form VO(L) = CO(L/a)/CO(L/a′). For a > a′

it can be easily seen that the dimensionless ratio VO(L) → 0 in the disordered phase

and VO(L) → 1 in the ordered phase for L → ∞. At a critical point, from finite-size
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Figure 3.2: The two-point correlation function of the three-sublattice order parameter
cos(θ), Cθ(~r) at separation ~r = êx

L
2

rescaled by a factor L1/9, as a function of tempera-
ture T for various system sizes L at t = 0.46. At T1 = 0.96(1), we see a crossing for the
various system sizes. Lines are cubic splines and a guide for the eye.

arguments, VO(L) becomes scale invariant causing this quantity to cross for various L

at a critical, L−independent value V ∗O 3 0 < V ∗O < 1. In case of a two-step melting tran-

sition with a critical phase between T1 and T2, the upper and lower critical transitions

of the two-step melting respectively, VO(L) will stick through out the critical phase for

various L, defining a L−independent but T−dependent critical value VO(T )∗.

A simple histogram of the order-parameter distribution P (|O|) also gives great in-

sight into the nature of the phase transition. P (|O|) is obtained during the Monte-Carlo

run which samples configurations based on their weight in the partition function of

the system and hence directly corresponds to the weight of the order-parameter O in

the Landau free-energy of the effective Hamiltonian. Thus P (|O|) develops a peak at

a non-zero value of |O| when the system is in the ordered phase and peaks at 0 when

the system is in the disordered phase with respect to the order-parameter O. In case of

a continuous transition between the ordered and disordered phases, the peak position

shifts smoothly from a non-zero value to 0 with increasing temperature. In case of a

first-order order to disorder transition, at the transition temperature P (|O|) develops a

two-peak structure with peaks at 0 and the ordered value of |O| corresponding to the

phase coexistence at a first-order transition. In case of a weak first-order transition the

distance between the two co-existence peaks is smaller than that of a first-order tran-

sition with decreasing distance corresponding to decreasing weakness of the first-order

transition.
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Figure 3.3: The two-point correlation function of the three-sublattice order parameter
cos(θ), Cθ(~r) at separation ~r = êx

L
2

rescaled by a factor L1/4, as a function of tempera-
ture T for various system sizes L at t = 0.46. At T2 = 1.04(1), we see a crossing for the
various system sizes. Lines are cubic splines and a guide for the eye.

3.3 Six-state clock model

The Hamiltonian of the six-state clock model can be written as [96]:

H =
∑
〈ij〉

V (θi − θj). (3.3)

where
∑
〈ij〉 is the sum over nearest neighbor pairs of the lattice and θi, a multiple of

2π/6 is an angular variable defined on each site of the lattice. The potential V is defined

as:

V (θ) = K1[1− cos(θ)] +K2[1− cos(2θ)] +K3[1− cos(3θ)]. (3.4)

where, θ ≡ θ(r) = θi − θj and r ≡ rij is the distance between sites i and j.

The ground state of the clock model is a six-fold symmetry phase which can be

mapped to the ground state of the triangular lattice model. In the phase diagram

of the six-state model, this ground state melts via various transitions depending on the

values of K1, K2 and K3, including a two-step melting scenario and a first order melting

scenario which are separated by a multicritical point M[96, 112, 97]. To simplify our

discussion we look at the phase diagram in a (t, T ) plane where t is a line defined in

the (K1, K2, K3) space which is of interest to us. To this end, the six-state model can be
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parameterized in terms of t, α and β along the lines of Ref. [97] as:

K1 =
1

3
log (t/ [(β − αt)(α− 2βt)]) ; (3.5)

K2 =
1

3
log ((α− 2βt)/ [t(β − αt)]) ;

K3 =
1

6
log
(
(β − αt)2/

[
(α− 2βt)t2

])
;

α = 3 −
√

6 and β =
√

6 − 2 defines a self-dual line, t, in the phase diagram of the

model, which passes through a multicritical point at t = tM[112]. For t < tM the

six-fold symmetric ground state is separated from the disordered state by a first-order

transition[97]. For t > tM, the ground state melts via a two-step transition defined by

a lower and upper critical transition temperatures T1 and T2 with a critical phase in

between which pinches off at the multicritical point M[96, 112]. This critical phase

is defined by a temperature dependent critical exponent, η(T ) ∈ [1/9, 1/4] for T ∈
[T1, T2][105]. The self dual line passes through this critical phase. It was conjectured

that the multicritical point at t = tM belongs to the universality class of the Z6 self-

dual parafermionic CFT given by Zamolodchikov and Fateev [98]. Naturally, it begs to

be asked if this multicritical point is similar to the one we see at the intersection of a

line of first order transitions and the pinch-off point of a two-step melting transition in

the triangular lattice model as discussed in Section. 3.4. To this end, we first perform

detailed simulations on the square lattice six-state clock model. Below we give details

about our analysis of the six-state clock model. We perform simulations in the (t, T )

parameter space for a fixed α = 3−
√

6 and β =
√

6− 2. The complex order-parameter

exp(iθ) captures the six states of the six-fold symmetric ground state. We also look at the

order parameters exp(2iθ) and exp(3iθ). As we explain in Section. 3.4 these three order

parameters find direct analogues in the triangular lattice model. The simulations for the

six-state clock model were done on a square lattice with toric boundary conditions using

a Wolff cluster algorithm [70] for upto 240 × 240 lattices. The respective correlations

functions for the three order-parameters described above are labeled as Cθ(r),C2θ(r)

and C3θ(r) respectively. We also look at the binder-cumulants for the 1-component

order parameter cos(θ), Uθ(L) and the 2-component order parameter cos(3θ), U3θ(L).

We first look at t = 0.46 > tM at which we show that the system melts via a two-step

melting transition. At the lower critical transition temperature T1 of the two-step melt,

the two-point correlation function of the six-fold symmetric order parameter exp(iθ),

Cθ(r) ∼ 1/r1/9. Hence, Cθ(L/2) rescaled by a factor L1/9, plotted as a function of

temperature T should become a L−independent quantity at T1 and cross for various

system sizes at T = T1. Using a similar argument, L1/4Cθ(L/2) plotted as a function of

T , should cross for various L at T = T2. Fig. 3.2 and 3.3 show a crossing in L1/9Cθ(L/2)

and L1/4Cθ(L/2) as a function of T for various L at T1 = 0.96(1) and T2 = 1.04(1)
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Figure 3.4: The two-point correlation function of the three-sublattice order parameter
cos(θ), Cθ(~r) at separation ~r = êx

L
2

as a function of system size L, for various values
of temperatures (T ∈ [0.94, 1.06]) at t = 0.46. The straight lines are power-law fits of
1/Lηθ to Cθ(L/2). Inset shows the χ2 of the power-law fits of 1/Lηθ to Cθ(L/2) as a
function of the temperature.

respectively. Fig. 3.4 shows Cθ(L/2) plotted as a function of system size L for various

T ∈ [0.94, 1.06]. Lines are power-law fits to 1/Lηθ . ηθ increases with increasing

T with ηθ = 0.122 ∼ 1/9 at T = T1 = 0.96 and ηθ = 0.238 ∼ 1/4 at T = T2 = 1.04.

Inset of Fig. 3.4 shows the χ2 of the power-law fits of Cθ(L/2) to 1/Lηθ as a function

of T . Since the two-step melting is bounded by the lower and upper critical transition

temperatures, T1 and T2 respectively and the correlation function goes to zero as a

power-law only in the critical phase between T1 and T2 and we see a clear minima in

the χ2 of the fits between T1 = 0.96 and T2 = 1.04 (indicated by dashed vertical lines)

as expected. The width (in temperature) of the two-step melting phase at t = 0.46 is

∆T = 0.08. As we further decrease t, in the limit t → t+M, the two-step melting phase

pinches off and the width of the two-step melting phase, ∆T → 0. But, in practice, due

to the finite-size nature of our lattice simulations and finite Monte-Carlo time, ∆T can

only be resolved if ∆T > δT1 or δT2, the error-bar on T1 and T2 respectively. Thus, the

pinch-off point overestimates the value of tM.

At t = 0.35, we find the last resolvable ∆T our methods can afford. Fig. 3.5 and

3.6 show the plots of L1/9Cθ(L/2) and L1/4Cθ(L/2) respectively as a function of T for

various L at t = 0.35. Both show a crossing allowing us to estimate the lower and upper

critical transition temperatures T1 = 0.99970(25) and T2 = 1.00000(25) respectively,

with a ∆T = 0.0003. We hence need other more sensitive methods to estimate tM,
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Figure 3.5: The two-point correlation function of the three-sublattice order parameter
cos(θ), Cθ(~r) at separation ~r = êx

L
2

rescaled by a factor L1/9, as a function of tempera-
ture T for various system sizes L at t = 0.35. At T1 = 0.9997(5), we see a crossing for
the various system sizes. Lines are cubic splines and a guide for the eye.
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Figure 3.6: The two-point correlation function of the three-sublattice order parameter
cos(θ), Cθ(~r) at separation ~r = êx
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rescaled by a factor L1/4, as a function of tempera-
ture T for various system sizes L at t = 0.35. At T2 = 1.0000(5), we see a crossing for
the various system sizes. Lines are cubic splines and a guide for the eye.
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Figure 3.7: T dependence of the binder-cumulant of the order parameter cos(3θ), U3θ

at t = 0.35 > tM for various L. The dashed vertical lines show T1 and T2.
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Figure 3.13: T dependence of the binder-cumulants, Uθ (left panel) and U3θ (right
panel) for various t = 0.330, 0.341, 0.342 and 0.343. Lines are cubic splines and a guide
for the eye.



CHAPTER 3. TRIANGULAR ISING ANTIFERROMAGNET 84

ηθzf=5/24

η2θzf=1/3
η3θzf=3/8

1

0.33 0.34 0.35 0.36 0.37 0.38 0.39

η

t

 ηθ
η2θ
η3θ

ηZF
3θ = 3/8

ηZF
2θ = 1/3

ηZF
θ = 5/24

ηθ
η 2 θη2θ
η3θ

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

η
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which we describe shortly. Fig. 3.7 shows the binder-cumulant U3θ(L) as a function of

T at t = 0.35. In the two-step melting phase even though U3θ(L) should be monotonic

and bounded between [0,2/3], we see negative peaks in the binder-cumulant which do

not scale with L. This is a an artifact of the proximity of the pinch-off point to a line

of weak first-order transitions found at t < tM. This anomalous behavior of the binder

cumulants has been observed before for continuous transitions in the proximity of a

weak first order line. As we will show below, U3θ(L) shows this anomalous behavior for

t = tM + ε, where ε is a small positive number, but Uθ(L) is well behaved (monotonic

and bounded between [0, 1/2]) for t > tM. This feature provides a key similarity with

the triangular lattice model helping us pin-point the location of the multicritical point

on the triangular lattice model.

We then look at t = 0.28 < tM. Fig. 3.8 and 3.9 show Uθ(L) and U3θ(L) respectively

as a function of T for various system sizes. Both binder-cumulants show negative peaks

which scale with the system size Lwith a crossing behavior at the transition temperature

T = 1. Inset in Fig. 3.8 and 3.9 plots the height of the negative peaks as a function of

system size L. Lines are fits to a power-law of the form Lb. Umin
θ (L) scales as L0.9 and

Umin
3θ (L) scales as L1.2. As discussed in Section. 3.2, a scaling of the negative peaks in

the binder-cumulant softer than L2 indicates a weak-first order transition at T = 1 for

t = 0.28. At t = 0.32, the system continues to exhibit a weak first-order transition at

T = 1 as seen in the negative peaks of Uθ(L) and U3θ(L) shown in Fig. 3.10 and 3.11

respectively. Inset of Fig. 3.10 and 3.11 show that Umin
θ (L) scales as L0.82 and Umin

3θ (L)

scales as L0.83 at t = 0.32, showing the increasingly weak first-order behavior of the

melting transition as t→ t−M.

As further confirmation of this weakening first-order behavior, we plot the histogram

of the order-parameter P (|exp(iθ)|) as a function of |exp(iθ)| in Fig. 3.12 at the transi-
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tion temperature T = 1 for various t ∈ [0.28, 0.34] < tM. We see a clear double peak

structure at t = 0.28. As we increase t, the distance between the two peaks decreases be-

fore finally becoming a single peak at t = 0.34. As discussed in Section. 3.2 this implies

a weakening first-order transition as t→ t−M. To determine the extent of this weakening

first-order behavior as t→ t−M we look at the behavior of Uθ(L) and U3θ(L) as a function

of T for various t ∈ [0.330, 0.343] in Fig. 3.13. The left and right panel show Uθ(L) and

U3θ(L) respectively. At t = 0.33, both Uθ(L) and U3θ(L) show negative peaks due to the

weak first-order nature of the transition at t = 0.33. As we increase t, the height of the

negative peaks for both the binder-cumulants decreases and finally at t = 0.342, we see

that Uθ(L) becomes monotonic and bounded between [0, 1/2]. U3θ(L) continues to have

negative peaks for t > 0.342 and well into the two-step melting region at t = 0.35 as

seen in Fig. 3.7. To accurately determine tM, we turn to the conjecture by Dorey et. al.

that the multicritical point at t = tM belongs to the universality class of the Z6 self-dual

parafermionic CFT. This CFT predicts the critical exponents η as ηZFθ = 5/24, ηZF2θ = 1/3

and ηZF3θ = 3/8 for the order parameters exp(iθ), exp(i2θ) and exp(i3θ) respectively.

Since the self-dual line defined by T = 1 passes through the multicritical point, we can

measure the critical exponents η along this self-dual line and compare them with the

values predicted by the CFT to determine tM. Fig. 3.14 shows the values of ηθ, η2θ and

η3θ which were measured by fitting power-laws of the form 1/Lη to Cθ(L/2), C2θ(L/2)

and C3θ(L/2) respectively for various t ∈ [0.33, 0.39] at T = 1. Solid lines show the

values of ηZFθ , ηZF2θ and ηZF3θ . At t = tM = 0.342(1) we find the best match with the

values predicted by the CFT. As discussed above, t = 0.342 is the point at which Uθ(L)

becomes monotonic while U3θ(L) continues to remain non-monotonic for t > 0.342.

Although we do not have a qualitative argument for why the weak-first order line at

t < tM effects only U3θ(L) for t > tM, as shown in Sec.3.4, this is the same behavior we

find in the triangular lattice model.

3.4 Ising antiferromagnet on the triangular lattice with

next-nearest and next-next-nearest ferromagnetic in-

teractions.

The Hamiltonian for our model of Ising spins on the triangular lattice can be written

as:

H = J1
∑
〈rr′〉

σrσr′ + J2
∑
〈〈rr′〉〉

σrσr′ + J3
∑
〈〈〈rr′〉〉〉

σrσr′

(3.6)
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Figure 3.15: The two-point correlation function of the three-sublattice order parameter
ψ, Cψ(~r) at separation ~r = êx

L
2

rescaled by a factor L1/9, as a function of temperature
T for various system sizes L at R = 2 and κ = 3.5. At T1 = 5.7(1), we see a crossing for
various system sizes. The error bar on T represents the width of the temperature grid
in our simulations. Lines are cubic splines and a guide for the eye.
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Figure 3.16: The two-point correlation function of the three-sublattice order parameter
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rescaled by a factor L1/4, as a function of temperature
T for various system sizes L at R = 2 and κ = 3.5. At T2 = 6.5(1), we see a crossing for
various system sizes. The error bar on T represents the width of the temperature grid
in our simulations. Lines are cubic splines and a guide for the eye.
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and κ = 3.5. The straight lines shown in the figure are combined power-law fits of
1/Lηθ to Cψ(L/2) (shown in inset) and 1/L9ηθ to Cσ(L/2).
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Figure 3.20: The two-point correlation function of the three-sublattice order parameter
ψ, Cψ(~r) at separation ~r = êx
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2

rescaled by a factor L1/9, as a function of temperature
T for various system sizes L at R = 2 and κ = 0.2. At T1 = 1.7430(5), we see a crossing
for the various system sizes. Lines are cubic splines and a guide for the eye.
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Figure 3.21: The two-point correlation function of the three-sublattice order parameter
ψ, Cψ(~r) at separation ~r = êx
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2

rescaled by a factor L1/4, as a function of temperature
T for various system sizes L at R = 2 and κ = 0.2. At T2 = 1.7443(5), we see a crossing
for various system sizes. Lines are cubic splines and a guide for the eye.
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Figure 3.23: T dependence of the binder-cumulant of the order parameter σ, Uσ at
R = 2 and κ = 0.2 > κM. Lines are cubic splines and a guide for the eye. Dashed
vertical lines are T1 and T2.
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Figure 3.24: T dependence of the binder-cumulant of the order parameter ψ, Uψ at
R = 2 and κ = 0.08 < κM for various system sizes L. Inset shows the power-law
dependence of the magnitude of the peak-height on the system size L. The straight line
(inset) is a power-law fit to Lb.
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Figure 3.25: T dependence of the binder-cumulant of the order parameter σ, Uσ at
R = 2 and κ = 0.08 < κM for various system sizes L. Inset shows the power-law
dependence of the magnitude of the peak-height on the system size L. The straight line
(inset) is a power-law fit to Lb.
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Figure 3.26: T dependence of the binder-cumulant of the order parameter ψ, Uψ at
R = 2 and κ = 0.10 < κM for various system sizes L. Inset shows the power-law
dependence of the magnitude of the peak-height on the system size L. The straight line
(inset) is a power-law fit to Lb.
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Figure 3.27: T dependence of the binder-cumulant of the order parameter σ, Uσ at
R = 2 and κ = 0.10 < κM for various system sizes L. Inset shows the power-law
dependence of the magnitude of the peak-height on the system size L. The straight line
(inset) is a power-law fit to Lb.

where 〈rr′〉, 〈〈rr′〉〉, and 〈〈〈rr′〉〉〉 denote nearest neighbor, next-nearest neighbor, and

next-next-nearest neighbor links of the triangular lattice as shown in Fig. 3.1, and

σr = ±1 are the Ising spins at sites r of this lattice. In our convention, J1/2/3 > 0

corresponds to an antiferromagnetic coupling, while J1/2/3 < 0 corresponds to a fer-

romagnetic coupling. In our model, J1 is assumed to be positive (antiferromagnetic)

while J2 and J3 are negative (ferromagnetic). When J2 = J3 = 0, the Hamiltonian

reduces to a nearest-neighbor antiferromagnetic Ising model on the triangular lattice.

As described in the introduction, this model doesn’t order even at low temperatures

and shows an incipient power-law order at the three-sublattice wavevector in the limit

T → 0. Dominating ferromagnetic J2 stabilizes a ferrimagnetic three-sublattice long-

range order below a critical temperature which melts via a two-step melting process

via an intermediate power-law phase, while dominating ferromagnetic J3 stabilizes a

striped order below a critical temperature. For a system with ferromagnetic J2 and fer-

romagnetic J3, the system undergoes a first-order transition from the three-sublattice

ordered phase into a striped phase when J3 starts to dominate[49]. In this work we

are interested in the effect of competing ferromagnetic J3 on the nature of the two-step

melting process. To better suit this interest we re-parameterize the problem as follows:

We fix J1 = 1 and define R and κ such that, R = −(J2 + J3)/J1 and κ = −(J2 − J3)/J1.
For a fixed value of R, we can then explore a κ − T phase diagram. For κ >> 0, J2
dominates stabilizing a three-sublattice order and for κ << 0, J3 dominates stabilizing
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a striped order. R >> 1, implies that |J2 + J3| dominates over |J1|. R = 2 implies
|J1+J2|

2
= |J3|. We first study this scenario to understand the phase diagram of the

model. We normalize our temperature as T = 1
βR

.

The ferromagnetic order parameter σ is given as σ =
∑

~r σ~r. We also define a

complex three-sublattice order parameter ψ ≡ |ψ|eiθ along the lines of [103] as follows

:

ψ = −
∑
~r

ei
2π
3
(m+n)σ~r (3.7)

where θ = 2π
3

(m + n) and the sites of the lattice are labeled as ~r = mêx + nêy. Ad-

ditionally, we also define and measure cos(θ), cos(2θ) and cos(3θ) correlators which

as explained in Section.3.3 find direct analogues in the six-state clock model. From

Eq.[3.7] it is clear that the correlators of cos(3θ) and cos(θ) are proportional to the

correlators of σ and ψ respectively.

The fact that we have to investigate a critical power-law phase calls for the use of

efficient non-local Monte Carlo algorithm, which don’t suffer the usual critical slowing-

down experienced by local updates. We use two efficient dual-lattice worm algorithms

developed in Ref. [49] to numerically investigate the phase diagram of our model at

R = 2, in the κ − T plane. Our data for the triangular lattice model is obtained with

2 ∗ 107 MCS and a 2 ∗ 105 MCS equilibration time. One MCS is defined as one lattice

sweep of single spin-flip metropolis updates followed by Nw number of worm updates

such that Nw × average number of dual-lattice sites visited by a worm = N , the number

of dual-lattice sites. The largest lattice size we measure is a 360× 360 lattice with toric
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Figure 3.30: T dependence of the binder-cumulants, Uψ (left panel) and Uσ (right
panel) at R = 2 for κ ∈ [0.1300, 0.1500]. Lines are cubic splines and a guide for the eye.
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Figure 3.31: Ratio of the two-point correlation functions of ψ at separation L/2 and
L/4, Cψ(L/2)/Cψ(L/4) for κ ∈ [0.1325, 0.1500] at R = 2 as a function of temperature T .
Lines are cubic splines and a guide for the eye.
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Figure 3.32: Ratio of the two-point correlation functions of σ at separation L/2 and
L/4, Cσ(L/2)/Cσ(L/4) for κ ∈ [0.1325, 0.1500] at R = 2 as a function of temperature T .
Lines are cubic splines and a guide for the eye.
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Figure 3.33: χ2 (green dots) of power-law fits of 1/Lηθ to Cψ(L/2) as a function of T
for κ ∈ [0.1325, 0.15] at R = 2. The labelled numbers are the values of ηθ of the power-
law fit. The grey dotted line corresponds to our estimate of the critical temperature
extracted from Fig. 3.31. Lines connect the data points and are a guide for the eye.
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Figure 3.34: χ2 (solid circles) of power-law fits of 1/Lη3θ to Cσ(L/2) as a function of T
for κ ∈ [0.1325, 0.15] at R = 2. The labelled numbers are the values of η3θ of the power-
law fit. The grey dotted line corresponds to our estimate of the critical temperature
extracted from Fig. 3.32. Lines connect the data points and are a guide for the eye.
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boundary conditions.

At R = 2 and κ = 3.5, we find that the effect of the ferromagnetic next-nearest

neighbor interactions J2 clearly dominates over the ferromagnetic next-next-nearest

neighbor interactions J3 and we are in the two-step melting regime with a three-

sublattice ordered ground state stabilized by ferromagnetic J2. The intermediate critical

region bounded by T1 and T2, the lower and upper critical transition temperatures re-

spectively, is defined by power-law correlations of the three-sublattice order parameter,

Cψ ∼ Cθ ∼ 1/Lηθ , where ηθ(T ) ∈ [1/9, 1/4] for T ∈ [T1, T2]. As in the case of the six-

state clock model, this intermediate power-law region accepts a Gaussian description

and thus C2θ ∼ 1/L4ηθ and Cσ ∼ C3θ ∼ 1/L9ηθ . Fig. 3.15 and Fig. 3.16 show Cψ(L/2)

rescaled by a factor of L1/9 and L1/4 respectively as a function of T at R = 2 and κ = 3.5.

Following the above arguments both show a crossing at T1 = 5.70(5) and T2 = 6.50(5)

respectively for various L. Fig. 3.17 and Fig. 3.18 show joint fits of Cψ(L/2) ∼ 1/Lη

with C2θ ∼ 1/L4η and Cσ ∼ 1/L9η respectively for T ∈ [T1 = 5.7, T2 = 6.5]. We find

η ∈ [0.11 ∼ 1/9, 0.25 = 1/4] as expected. The width of the two step melting at R = 2

and κ = 3.5 is ∆T = 0.8. As we decrease κ, we find the ∆T decreases and the lower and

upper critical transition lines approach a pinch-off point at which ∆T ≥ δT1, 2. Fig.3.19

shows T1 and T2 as a function of κ for κ ∈ [0.18, 0.23] in the vicinity of the pinch-off

point. At κ = 0.2, we find the last resolvable T1 and T2 for which ∆T < δT1, 2. Fig. 3.20

and Fig. 3.21 show Cψ(L/2) rescaled by a factor of L1/9 and L1/4 respectively as a func-

tion of T at R = 2 and κ = 0.2. Both these functions show a crossing at T1 = 1.74275(75)

and T2 = 1.74425(25) respectively for various L. Fig. 3.22 shows Cψ(L/2) plotted as a

function of system size L for various T ∈ [1.742, 1.745]. Lines are power-law fits to



CHAPTER 3. TRIANGULAR ISING ANTIFERROMAGNET 103

Lηθ . ηθ increases with increasing T with ηθ = 0.13 ∼ 1/9 at T = 1.743 ∼ T1 and

ηθ = 0.216 ∼ 1/4 at T = 1.7440 ∼ T2. Inset of Fig. 3.22 shows the χ2 of the power-law

fits of Cψ(L/2) to 1/Lη as a function of T . We see a clear minima in the χ2 of the fits be-

tween T1 = 1.74275 and T2 = 1.74425 (indicated by dashed vertical lines) as expected.

Fig. 3.23 shows the binder-cumulant Uσ(L) as a function of T for various L at κ = 0.2.

Even though at κ = 0.2, the system is in the two-step melting regime, just as in the

case of the six-state clock model, we see negative peaks in the binder-cumulant that

do not scale with L. This suggests a possible line of weak first-order transitions meet-

ing the pinch-off point of the two-step melting transition defining a multicritical point

at similar to the one found in the six-state clock model. As mentioned in Section.3.3,

the pinch-off point of the two-step melting transition overestimates the location of a

possible multicritical point. Hence we go to a small enough κ and approach κM from

the left (κ → κ−M). We look at κ = 0.08 < κM. Fig. 3.24 and 3.25 show Uψ(L) and

Uσ(L) respectively as a function of T for various system sizes. Both binder-cumulants

show negative peaks which scale with the system size L with a crossing behavior at

the transition temperature. Inset in Fig. 3.24 and 3.25 plots the height of the nega-

tive peaks as a function of system size L. Lines are fits to a power-law of the form Lb.

Umin
ψ (L) scales as L0.91 and Umin

σ (L) scales as L1.4. As discussed in Section. 3.2 and seen

in Section. 3.3, a scaling of the negative peaks in the binder-cumulant softer than L2

indicates a weak-first order transition at κ = 0.08. At κ = 0.1, the system continues to

exhibit a weak first-order transition as seen in the negative peaks of Uψ(L) and Uσ(L)

shown in Fig. 3.26 and 3.27 respectively. Inset of Fig. 3.26 and 3.27 show that Umin
ψ (L)

scales as L0.91 and Umin
σ (L) scales as L1.29 at κ = 0.1, showing the increasingly weak

first-order behavior of the melting transition as κ → κ−M. As further confirmation of

this weakening first-order behavior, we plot the histogram of the three-sublattice order-

parameter P (|ψ|2) as a function of |ψ|2 in Fig. 3.28 at temperatures across the transition

temperature for various κ ∈ [0.1, 0.18] < κM. The black dashed-lines in the panels for

κ = 0.1, 0.12, 0.13, 0.14 and 0.1425 show a bi-modal Gaussian fit g(|ψ|2) to the histogram

at the transition temperature. We see a clear double peak structure in the histogram for

κ = 0.1 at the transition temperature of T = 1.5690. Fig. 3.29 shows the position of the

two means µ1 and µ2 of g(|ψ|2) for κ ∈ [0.1, 0.1425]. As we increase κ, it is clear that the

distance between the two peaks decreases indicating a weakening first-order transition.

At κ = 0.18 from the bottom-left panel of Fig. 3.28 it is clear that the system undergoes

a continuous transition indicated by the smoothly shifting position of single peaked his-

tograms of the order parameter across the transition temperature. This is not surprising

because, although we found the pinch-ooff point of the two-step melting region to be at

κ = 0.2, the system, just as in the case of the six-state clock model would continue to be

in the two-step melting region for κ < 0.2 and κ > κM. Finite-size and finite-time nature

of Monte-Carlo simulations is unable to resolve the two-step melting transition in this
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small sliver of κ. To pin-point the location of the multicritical point we draw parallels

with the behavior of Uθ and U3θ of the six-state clock model in the vicinity of the mul-

ticritical point and look at Uψ and Uσ as a function of T in Fig. 3.30 for κ ∈ [0.13, 0.15].

The left and right panel show Uψ(L) and Uσ(L) respectively. At κ = 0.13, both Uψ(L)

and Usigma(L) show negative peaks due to the weak first-order nature of the transition

at κ = 0.13. As we increase κ, the height of the negative peaks for both the binder-

cumulants decreases and finally at κ = 0.1425, we see that Uψ(L) becomes monotonic

and bounded between [0, 1/2]. Uσ(L) continues to have negative peaks for κ > 0.1425

and well into the two-step melting region at κ = 0.2 as seen in Fig. 3.23. This is similar

to what we find in the six-state clock model and gives us a clue about the nature and

location of a multicritical point. In the six-state clock model, the multicritical line lies

on the self-dual line and is defined by the transition temperature TM = 1. We only had

to explore the 1−dimensional t-space to pinpoint the location of the multicritical point.

In the triangular lattice model we need to explore a 2−dimensional (κ, T ) space. To this

end, we first accurately determine a line of transition temperatures for κ ∈ [0.13, 0.15].

We look at correlation ratios (described in Section. 3.2) Vψ(L) and Vσ(L). Fig. 3.31 and

Fig.3.32 show Vψ(L) and Vσ(L) for various L as a function of T for κ ∈ [0.1325, 0.15].

As described in Section. 3.2 the crossing point of V (L) for various L determines the

transition temperature. Using this we are able to determine the transition temperature

to an accuracy of δT = 0.0005, which is the spacing of our temperature grid for these

measurements. To further the accuracy of out transition temperature measurements,

we look at a finer grid of δT = 0.0001 around the transition temperature T , defined

by the crossing point of V (L) and fit power-laws of the form 1/Lηθ , 1/Lη2θ and 1/Lη3θ

to Cψ(L/2), C2θ(L/2) and Cσ(L/2) respectively for κ ∈ [0.1325, 0.15]. For κ < κMC , we

have a line of weak first order transitions. At finite-sizes, they define an effective critical

transition because the correlation length is generally very very large at the transition

temperature. For κ > κM and < 0.2, we have a single effective continuous transi-

tion due to the unresolvability of the two-step melting as a result of the finite-size and

finite-time nature of our simulations. Thus for κ ∈ [0.1325, κM, 0.15], we have a single

effective transition temperature, defined by effective critical exponents ηθ, η2θ and η3θ.

Fig. 3.33 and Fig. 3.34 show the χ2
ψ and χ2

σ of the 1/Lηθ and 1/Lη3θ fits respectively in

a finer grid of temperatures around the transition temperature for κ ∈ [0.1325, 0.15]. At

the same temperature for a given κ both χ2
ψ and χ2

ψ show a clear minima defining a

transition temperature with an accuracy of δT = 0.0001. The points are labelled with

the values of the critical exponents η. Fig. 3.35 shows the values of ηθ, η2θ and η3θ

as a function of κ for κ ∈ [0.1325, 0.15]. Solid lines show the values of ηZFθ , ηZF2θ and

ηZF3θ . At κ = κM = 0.1425(25) we find the best match with the values predicted by

the CFT. As shown above, κ = 0.1425 is the point at which Uψ(L) becomes monotonic

while Uσ(L) continues to be non-monotonic for κ = κM > 0.1425 just as in the case of
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the six-state clock model. Our best estimate for the location of the multicritical point

on the triangular lattice model is (κM, TM) = (0.1425(25), 1.6460(1)). Fig. 3.36 shows

the power-law fits of 1/Lηθ , 1/Lη2θ and 1/Lη3θ to Cψ(L/2), C2θ(L/2) and Cσ(L/2) re-

spectively at κ = 0.1425 and T = 1.6460. We find ηθ = 0.206(4), η2θ = 0.35(4) and

η3θ = 0.367(5) which match very well with the values predicted by the Z6 parafermionic

CTF. As further proof of the similarity of the multicritical points in both the models, the

critical value of the binder-cumulants, U∗θ and U∗3θ of the six-state clock model shown

in Fig. 3.13 at t = tM = 0.342 matches within error-bars of U∗ψ and U∗σ of the six-state

clock model shown in Fig. 3.30 at κ = κM = 0.1425. Fig. 3.37 summarizes the phase

diagram of the triangular lattice model at R = 2. Fig. 3.38 reproduces the ground-state

sping configurations for a J1, J2, J3 Ising model on a triangular lattice calculated by

Tanaka and Uryû for a ferromagnetic J3. The R = 2 line directly connects the three-

sublattice ordered state stabilized by a ferromagnetic J2, with a stripe ordered phase

stabilized by a ferromagnetic J3. The three-sublattice ordered ground-state meets the

stripe ordered ground state on the R = 2 line at κ = 0. For κ = ε, where ε is a small

number, the three-sublattice ordered state was shown to melt via a first-order transition

at a finite temperature [49]. For κ = −ε the stripe ordered state was shown to melt via

a first-order transition at a finite temperature. Separating the two states it was shown

that there is a line of first order transitions. Even though J1 is antiferromagnetic, a

ferromagnetic ground state can be stabilized from a three-sublattice ordered state by

decreasing κ (increasing J3) along the R = 4 line. Fig. 3.39 shows the histogram of the

three-sublattice order parameter, P (|ψ|2) at R = 4 and a finite T = 2.5. At κ = 1.996,

we see a single peak at a non-zero value of |ψ|2, suggesting that the system is in a three-

sublattice ordered state. At κ = 1.980, we a single peak at 0, suggesting that the system

is no longer three-sublattice ordered. Instead the system is in a ferromagnetic ordered

state. At an intermediate κ = 1.988, we find that a double peaked structure in the his-

togram. This suggests that a line of first order transitions separates the three-sublattice

ordered state and a ferromagnetic ordered state.

3.5 Summary

The multicritical point in both the models has a two-step melting transition pinching-

off on one side and a weakening first order transition on the other side. Numerically,

the two-step melting pinches off well before reaching the multicritical point due to

finite-size and finite-time effects. This effectively leaves the multicritical point straddled

by an effective continuous transition and a weak first-order transition. Distinguishing

between a weak-first order transition and a continuous transition using Monte-Carlo

methods is very hard, since the weak first-order transition exhibits pseudo-critical be-
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havior for system sizes less than the very large correlation length at the weak first-order

transition. Recently some sophisticated methods have been proposed to distinguish be-

tween the two transitions. In our case, since we already know the expected value of the

critical exponents η at the multicritical point, we just need to find the transition temper-

atures around the vicinity of the multicritical point and measure η to high accuracy, to

match with the known values and hence were able to pin-point the multicritical point.

The multicritical point on the triangular lattice model is (to our knowledge) the first

example of a multicritical point on a microscopic model described by a CFT. There are

ordered phases with different melting scenarios in the generalised J1, J2 and J3 Ising

models on the triangular and Kagome lattices which probably lead to other types of

multicritical points. We wish to return to those in future works. The phase diagram of

the Ising antiferromagnet on the Kagome lattice with next-nearest and next-next near-

est neighbor interactions has a similar two-step melting transition pinching off into

a first-order transition since the ground states stabilized by these interactions on the

Kagome lattice are similar to the ones on the triangular lattice. It would be interest-

ing to know the properties of that multicritical point and see if it falls in the same

universality class. Recently discovered TmMgGaO4 can be modeled using the effective

Hamiltonian:

H = J1
∑
〈ij〉

Szi S
z
j + J2

∑
〈〈ij〉〉

Szi S
z
j − µ

∑
i

Szi (3.8)

where i ∈ sites of a triangular lattice with J1, J2 > 0 and J2 ∼ 0.09J1. TmMgGaO4 shows

stripe order at zero field below T ∼ 0.27K. This is equivalent to the J1 > 0, J2 = 0 and

J3 < 0 case in our model. It would be interesting to see if such materials can be tuned to

support three-sublattice order, providing experimental equivalence of a pinch-off point.



Chapter 4

Hard squares at full packing on a cubic
lattice

In the previous chapter, we dealt with a spin model where the order disorder transi-

tion is facilitated by the interplay of internal energy and entropy. Hard object models

with no interaction energy between the objects are examples of entropic models with

the configurational energy being zero. The only way the object talk to each other is

through their hard core repulsion which implies that they cannot overlap. A typical

configuration of hard objects will have an entropy associated with it. Any transition

the system undergoes will be an entropic transition. Such entropic transitions can be

driven by introducing vacancies in the system or anisotropy in fugacities of the hard

objects. Hard object models both on and off lattice have been continuously studied.

An off lattice example is the hard sphere gas whose liquid to solid transition has been

of continuous interest[113]. An well studied example of an hard object model on the

lattice is the dimer model. The dimer model consists of sites forming a lattice and edges

connecting the sites. Each edge can be occupied by a dimer or be empty. Hard dimers

implies that each edge is occupied by only one dimer such that no two dimers touch

each other. This implies that each site of the lattice can be touched by exactly one

dimer. The full packing limit of this problem implies that every lattice site is touched

by one dimer. This dimer model on a planar square lattice can be solved by writing

the partition function in terms of a Pfaffian[114]. Apart from mathematical intrigue,

these dimer models serve as important dual mappings of various spin models. The 2d

Ising model can be mapped to a dimer model on the fisher lattice and can be solved

exactly[115]. The Rokshar-Kivelson quantum dimer model was proposed as a model for

high temperature superconductivity where the dimers represent singlet states between

electrons of neighbouring sites[116]. The classical dimer model is a limiting case of this

model where the dynamics of the quantum model can be represented as dimer flips in

the classical case.The quantum wave-function of the quantum dimer model can be rep-

107
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resented as a superposition of all classical dimer coverings. In the previous chapters

we used the fact that a antiferromagnetic Ising model on the triangular lattice can be

mapped to a dimer model on the dual honeycomb lattice to construct worm algorithms

for the dimer model. The classical dimer model in a 2d square lattice is a prototypical

example of a model for entropic considerations with the configurational energy being

zero. Entropy in the system arises from the notion that dimers can flip freely as long as

they don’t violate the hard core condition. This results in a pair of dimer flipping freely

on a bipartite lattice. The classical square lattice dimer model has been explored in the

presence of vacancies. Other types of hard object have also been studied as mentioned

in Chapter 1. One such is model is hard squares on a square lattice. At full packing, this

model is in a columnar ordered state which destabilises into a disordered fluid at finite

vacancy density[66]. A model of a mixture of hard squares and dimers has also been

previously studied[66]. In this case, the columnar order under goes a KT transition into

a power-law ordered state at finite dimer density. A mixture of hard-squares, dimers

and vacancies has also been studied[66]. It was shown that the KT transition from

finite dimer density and the order disorder transition from finite vacancy density are

connected by a line of Ashkin-Teller criticality with exponents depending on the ratio of

dimers and vacanies. In this chapter we study the problem of anisotropic hard squares

on a cubic lattice. Anisotropy here refers to the different fugacities for differently ori-

ented squares. Our motivation to study this problem comes from trying to generalise

the problem of squares and dimers on a 2d square lattice. In the limit of the fugacity of

z-normal oriented squares (z-squares) becoming zero, one can reduce the 3d problem

into decoupled 2d layers of hard-squares on the XY plane. A small density of z-normal

plates then couples these layers. The projection of z-normal plates on the 2d XY plane

can be thought of as dimers on the XY plane.

4.1 Model

We consider a system of hard squares on a cubic lattice at full packing as shown in

Fig.4.1. The cubic lattice is of a linear dimension L, with the total number of lattice

sites N = L3. A hard plate occupies four sites on this lattice. With periodic boundary

conditions the lattice can be populated with hard squares which do not touch each other

such that every site of the lattice belongs uniquely to one hard plate. We distinguish the

hard squares on the basis of the Cartesian direction in which their normals are pointing.

Thus x, y and z-type squares have their normals in the x, y and z directions. We assign

fugacities to each of the three types of squares: sx, sy and sz. The partition function of
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x

y

z

Figure 4.1: A sample configuration of hard squares at full packing on the cubic lattice
with L = 4. Hard squares are objects which occupy four lattice sites with the property
that no two squares share one or more lattice sites. At full packing each lattice site
uniquely belongs to a hard plate. x, y and z-type squares are colored green, blue and
red respectively.

the system is then given by:

Z =
∑
C

(sx)
nx(sy)

ny(sz)
nz (4.1)

where the sum extends over all allowed configurations C. nx, ny and nz are the number

of x, y and z-type squares respectively with sx, sy and sz as their respective fugacities.

In this work we study the system at the isotropic point which is defined by sx = sy =

sz = 1. We also study the system by setting the fugacities sx and sy to be equal and

varying the fugacity sz. We explore the phase diagram as a function of sz.

4.2 Methods

We simulate the system using local and non-local updates. The local updates are of two

types as shown in Fig. 4.2 and 4.3. Fig. 4.2 shows a ‘ring’ type exchange, where a two

adjacent squares of the same type, say x-type, belonging to a cube can rotate into two

y-type or two z-type squares. Fig. 4.3 shows a ‘shift’ type exchange, wherein a plate

slides across a cube consisting of two adjacent squares.

By using only the two local updates above, ergodicity in the configuration space of

the system cannot be achieved as the local moves can not change winding numbers. We

supplement the local updates with a pocket cluster algorithm[95] explained in detail
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c.b.a.

Figure 4.2: A local update which consists of ‘ring’ exchange of squares on a cube where
two adjacent x-type squares belonging to a cube can rotate into two y-type squares or
two z-type squares and vice-versa.

a.

b.

Figure 4.3: A local update which consists of a ‘shift’ exchange of a plate and a cube
consisting of two adjacent squares.
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Figure 4.4: All the above nine are symmetry planes of the cubic lattice and are allowed
at the isotropic point when the fugacities of all the three types of squares are equal.
When we vary the fugacity of the z-type plate, a z-type plate can not be reflected into
an x or y-type plate. Thus the symmetry planes in e, f, h and i are not allowed in this
anisotropic scenario.
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Figure 4.5: The layering order parameter (Lx · Lx) + (Ly · Ly) as a function of inverse
system size 1/L for values of z plate fugacites, sz = 1.0, 0.8. The fact that (Lx · Lx) +
(Ly · Ly) goes to a non-zero value in the thermodynamic limit shows that the system is
not in a layered phase but in the sublattice phase at these values of sz.

in the introduction which updates a macroscopic number of squares at each move. We

generalised the pocket cluster algorithm to the 3d case of anisotropic squares. One

move of the pocket cluster algorithm can be described in short as follows: A random

square p is picked as a seed and removed from the lattice A and placed in a pocket P

which is an empty lattice in the beginning. The seed square p is then taken from the

pocket, reflected about a randomly chosen symmetry plane S of the system and placed

back on the original lattice A. All the other squares which now overlap with p on A

are removed and placed on P . Again, a square p′ on P is chosen, reflected about S

and placed on A. This procedure is repeated till P is empty. We finally end up with a

cluster update on A. The only care needed to be taken in case of anisotropic systems

is that the symmetries of the system about which one can reflect the squares reduces.

In our case since z-squares have a different fugacity compared to x and y squares, any

symmetry cut which reflects a z-square into an x or y square is not allowed. Fig. 4.4

shows the possible symmetry planes of the system which can be used to define the

pocket cluster update for an isotropic system. Planes e, f, h, i are not allowed incase of

z-square anisotropy.

4.3 Results

We define a layering order vector ~L as follows:
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Figure 4.6: The layering order parameter Lz ·Lz as a function of inverse system size 1/L
for various values of z plate fugacites, (sz = 1, 0.8, 0.7, 0.6, 0.5). The order parameter
goes to a non-zero value in the thermodynamic limit for the whole range of sz. This
coupled with the fact that that x and y layering order parameters go to 0 for sz < 0.60(5)
indicate that for sz < 0.60(5) the system is layered in the z-direction and for sz > 0.60(5)
the system is sublattice ordered.

Lx =
∑
x,y,z

(−1)x(Nx +Ny +Nz)/L
3 (4.2)

Ly =
∑
x,y,z

(−1)y(Nx +Ny +Nz)/L
3 (4.3)

Lz =
∑
x,y,z

(−1)z(Nx +Ny +Nz)/L
3 (4.4)

(4.5)

At the isotropic point (sz = 1) we find that all three components of the layering

order vector go to a non-zero value in the thermodynamic limit. Fig.4.5 shows the order

parameter constructed from the x and y components of the layering order vector and

Fig.4.6 shows the order parameter constructed from the z component of the layering

order vector. At sz = 1, both can be seen going to a constant non-zero value as a

function of 1/L.

Now we systematically decrease sz, making the system anisotropic in the z direction.

Fig.4.8 shows the order parameter constructed from the x and y components of the

layering order vector. As sz is decreased it can be seen that the order parameter goes

from a constant value in the thermodynamic limit to a disordered decay. The order

parameter constructed from the z component on the other hand remains a constant

as a function of 1/L for all values of sz with the magnitude of the order parameter

increasing as we decrease sz.
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L = 72.    Histogram of L 
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Figure 4.7: Joint histogram of the single plate layering order vector L in (φ, θ) co-
ordinate space at four values of z plate fugacities: sz = 1, 0.9, 0.8, 0.7. The continuous
shifting of peaks as we decrease sz away from isotropy suggests a continuous transition.
As we decrease sz, φ of the eight peaks remain constant, while θ shift continuously from
(−) 1√

3
to (-)1. The four peaks in the northern (southern) hemisphere, close up contin-

uously into the north(south) pole and in the layered phase we see peaks only in the
north and south poles.
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Figure 4.8: The layering order parameter (Lx ·Lx)+(Ly ·Ly) as a function of system size
L for various values of z plate fugacites, across the transition. At sz = 0.66, the order
parameter clearly goes to a constant value. At sz = 0.54, it decays as ∼ 1/L3, indicative
of a layered phase.
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Figure 4.9: Histogram of the single plate layer order parameter (Lx · Lx) + (Ly · Ly) for
various values of sz. The peaks shift continuously away from 0 as we increase sz, from
the layerd phase into the sublattice phase.
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Figure 4.10: Histogram of the single plate layer order parameter Lz · Lz for various
values of sz. The peaks shift continuously towards 0 as we increase sz, from the layered
phase into the sublattice phase.
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Figure 4.11: Binder cumulants of the single plate columnar order parameter (Lx ·Lx) +
(Ly · Ly) as a function of sz for four values of system sizes, L. At sz ∼ 0.62 the binders
cumulants for various system sizes start sticking indicating a transition from an ordered
into a power-law behaviour of the order parameter.
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To further study the nature of the transition, we look at the histogram of the direc-

tion of the layering order vector in the (φ, θ) plane in Fig.4.7. As we decrease sz sys-

tematically, we find that the φ of the peaks remain constant. cos(θ) on the other hand,

shifts continuously from (−) 1√
3

to (−)1 as we decrease sz from 1 to 0.75. This is consis-

tent with the fact that the order parameter constructed from the x and y components

decrease in magnitude and the z component order parameter increases in magnitude

as we decrease sz. The continuous shifting of peaks away from the isotropic point also

suggests a continuous transition.

Fig.4.9 and Fig.4.10 show the histograms of the order parameters constructed from

the x, y and z components respectively. Continuous shifting of peaks in the histogram

as a function of increasing sz suggests a continuous transition. Fig.4.11 also shows

the binder cumulant constructed from the x, y component order parameter. As we

decrease sz, the binders start sticking a sz ∼ 0.6 which is an artifact of the fact that the

x, y component order parameter goes from a constant to a power-law as a function of

system size, L.

We conclude that at sz = 0.60(5), the system goes from an ordered state into a

layered state, with layering in the z direction.

4.4 Summary

We have studied the model of hard-squares on a cubic lattice at full packing with

anisotropy in the fugacity of z-normal plates. At the isotropic point sz = 1, we find

that the system supports long range columnar order. In the fully anisotropic limit of

sz = 0, we find that the system is in a layered phase. We find a transition from the

layered phase to the columnar ordered phase at a non-zero sz, across which the layered

order parameter is continuous. Although we do not yet have a theory for this transi-

tion, we can make some useful observations for future work. The Binder cumulant of

the layering order parameter sticks in the layered phase and splays in the columnar

ordered phase. This is similar to the sticking and splaying of binder cumulant across a

2d KT transition. We observe KT behaviour in a 3d system. This could be an artefact

of the fact that in the layered phase, the system acts as decoupled 2d layers. It has

been shown that thin films of a 3d XY model supports KT physics[117]. It will be very

interesting to explore this connection further.



Chapter 5

Conclusion and Outlook

In Chapter.1 we presented a overview of simple theoretical models which can be used

to study the wide range of magnetic phenomena in nature. We also further explored the

nature of interaction that drive magnetic transitions. We also eloberated on purely en-

tropic transitions. We then gave a short summary of numerical Monte-Carlo techniques

we use to solve the problems posed in this thesis. In Chapter.2, we presented and

tested a simple statistical model for the distribution of lengths of worms constructed by

worm algorithms used in Monte Carlo simulations of frustrated triangular and kagome

lattice Ising antiferromagnets, focusing on the behaviour in the critical phase associ-

ated with the two-step melting of three-sublattice order in these systems. These worm

algorithms work by creating a defect-antidefect pair and propagating the antidefect

while keeping the defect fixed. The worm construction ends when the antidefect re-

turns to the starting site and annihilates the defect. To model the distribution of worm

lengths in the critical (power-law three-sublattice ordered) phase, we use an analogy

with a random walker in a logarithmic central potential whose strength is set by the

power-law form of the equilibrium defect-antidefect correlation function. The return

time distribution of such a random walk in a logarithmic potential is known to follow

a power-law behaviour, which provides us a prediction for the distribution of lengths

of the worms in this critical regime. This prediction depends only on the long-distance

properties of the system in equilibrium, and is therefore independent of details of the

algorithm and model Hamiltonian. We find that measured power-law exponents for the

worm-length distribution are in reasonably good agreement with this prediction for two

different worm algorithm protocols independent of the lattice (kagome or triangular)

and the detailed form of the model Hamiltonian. This provides a rationale for the ap-

proximately universal behaviour of autocorrelation exponents noted in earlier work on

these worm algorithms. Clearly, a similar heuristic picture for the worm-length distri-

bution is possible in other applications of worm algorithms to two-dimensional critical

points/phases, and it would be interesting to ask how well the analogs of Eq.(1.44)

do in these cases. In the opposite direction, the readily discernible deviations of the
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measured values of θ from the prediction of the simple random walk model underscore

the importance of incorporating the back-reaction of worm motion on the underlying

dimer configuration, rather than thinking in terms of a fixed static potential provided

by the dimer configuration. We leave this as an interesting direction for future work.

In Chapter.3 we performed Monte Carlo simulations using recently developed clus-

ter algorithms for frustrated lattices [49] to study the phase diagram of a triangular

lattice Ising antiferromagnet with ferromagnetic next-nearest and next-next-nearest

interactions. In the presence of ferromagnetic next-nearest neighbor couplings, the

spins form a three-sublattice ordered (
√

3 ×
√

3) state at low temperatures which is

known to melt via a two-step melting process with an intermediate power-law three-

sublattice ordered phase characterized by a temperature dependent exponent η(T ) ∈(
1
9
, 1
4

)
[103, 105, 47]. We studied the effect of increasing ferromagnetic next-next-

nearest neighbor interactions on the nature of this melting transition. We find that the

two-step melting pinches off into an anomalous effective critical transition line charac-

terized by scale invariant behavior of the correlation functions and anomalous binder

cumulant behavior before finally resolving into a first order transition which separates

the ferrimagnetic three-sublattice ordered state and a paramagnet. We numerically

investigate this anomalous effective critical line and obtain estimates for the location

of a multicritical point Mc with exponents which are shown to match within errorbars

with the values for the Z6 self-dual parafermionic conformal field theory constructed by

Zamolodchikov and Fateev [98]. We also demonstrate that the same exponents govern

the behavior of the corresponding pinch-off point of the two-step melt of the six-fold

symmetric ground state in the six-state clock model studied by J. Cardy [96]. Our re-

sults on the clock model provide strong evidence in favor of a conjecture of Dorey et. al.

identifying this pinch-off point with the Z6 parafermionic conformal field theory [97].

We compare the binder cumulant behavior of the three-sublattice order parameter and

the ferromagnetic order parameter near the estimated multicritical point of both the

models and find similarities which helps us in pin-pointing the location of the multi-

critical point on the triangular lattice phase diagram. In further work we would also

like to study the phase diagram of the Ising antiferromagnet on the Kagome lattice with

next-nearest and next-next nearest neighbor interactions. The ground states stabilized

by these interactions on the Kagome lattice are similar to the ones on the triangular

lattice. It would be interesting to know the properties of the multi-critical point and if

it also falls in the same universality class.

In Chapter.4 We numerically investigate a lattice gas of hard squares at full packing

on a cubic lattice with fugacities zx, zy and zz of the three differently oriented squares as

control parameters using local and cluster Monte Carlo updates. At the isotropic point,

we find that the system is in an sublattice ordered state. As we decrease the fugacity of

one orientation of squares while keeping the other two fixed, we observe a transition
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from the columnar ordered state to a bi-layered phase. In future work, we would like

to further explore this bi-layered phase by thinking of it as a problem of a mixture of

hard squares and dimers on a square lattice. This will shed more insight into the KT

like transition that we observe in this 3d system.

In conclusion we have explored two models, one where energetic interactions drives

the physics and the other where entropic considerations drives the physics. For the first

case we developed two sophisticated Monte-Carlo worm algorithms whose statistics

we were able to map to a random walker in a logarithmic field. We then proceed to

numerically investigate the model and show the presence of a multicritical point in

the Z6 universality class. To our knowledge, this is the first numerical confirmation of a

non-trivial multicritical point in a microscopic model and was made possible because of

the exceptional performance of the worm algorithms that we developed. In the second

case, we generalised a previously proposed pocket cluster algorithm for 2d dimer mod-

els to a 3d hard-square model. In this model we observe 2d KT physics in a 3d model.

To our knowledge this has not been seen before and opens up many possibilities to

observe KT physics in such models. The ideas and methods used in the development

of the algorithms and in the numerical analysis of the models will be very useful for

further numerical studies of exotic models with many competing interactions.
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