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Chapter 1

Introduction

The work presented in this thesis is diverse. So, a separate primer is given for each of the
chapters. The thesis �rst starts with a study of a class of quantum mechanical models,
called tensor models. Various interesting aspects of these models are explored - emergence
of new light modes, unusual thermodynamics. Then the next chapter dives into the rich sea
of Chern-Simons matter theories. We strengthen the belief in the famous Chern-Simons
matter dualities by providing more evidence for their validity, by explicitly verifying the
conjectured free energy from these dualities. In the last chapter, we address a classi�cation
problem, namely 'what are all the classical 2−2 s matrices coming from a generic theory of
electrodynamics and gravity in arbitrary dimensions?'. Although, this problem is simple to
state and fundamental in nature, there has not been much work in the literature regarding
this. We solved it explicitly, along with special cases for low enough dimensions. Now,
some detailed overview of our work in each of the chapters.

(Chapter 1) O(N)q−1 Tensor Models

SYK model is a quantum mechanical model of N fermions with a 4 fermion interaction
term. The model is a statistical average over couplings randomly chosen from a Gaussian
ensemble. This model has attracted a lot of interest recently, because for one its exactly
solvable in the large N limit. One can write down a Schwinger-Dyson equation for the two
point correlator and solve it in the low energy limit as a perturbation expansion. It is quite
remarkable that the exact solution displays extremely nontrivial dynamics. This model
shows self equilibration over the time scales set by inverse temperature. It is already very
interesting that a phenomena such as self thermalization is captured by an exactly solvable
theory. Even more interestingly, the SYK model turns out to be maximally chaotic; out-of-
time-ordered four point function grows with time; the Lyapunov exponent which measures
this growth turns out to saturate the 'bound on chaos' proposed by Maldacena-Shenkar-
Stanford [2]. This fact is particularly interesting because the only other known systems
that also saturate this bound are �eld theories that have a gravitational dual description
and whose thermodynamics is dominated by black holes. This coincidence has motivated
the proposal that SYK theories have a (highly stringy and as yet unknown in detail) gravity

iv



dual description whose thermal behavior is dominated by black holes (see e.g [9, 10]. If
this conjecture is correct the fact that the SYK model is exactly solvable holds out the
hope that the intense study of this model could allow us to address several key questions
and puzzles about black hole physics, such as `are black hole horizons smooth or do they
have a �rewall?' and (assuming that black hole event horizons are indeed smooth) `what
is the solution to Hawking's information paradox'. Over the last few years this hope has
triggered a major research e�ort (spanning several hundreds of papers).

But this model is not strictly a unitary. After we average over the couplings it is not
clear how to associate a Hilbert Space with the SYK system, and its energy spectrum
(obtained by inverting the thermal partition function) is continuous rather than discrete.
There is no useful sense in which time evolution in the SYK theory is generated by a unitary
operator. As several of the deepest issues relating to black hole physics are intimately
connected with unitarity, this observation seems worrying.

Witten [19] noticed that there exists another theory which shares several features of the
SYK model, but has the virtue of being a unitary quantum theory in its own right. These
are the tensor models. Its a model of fermions charged under the global/gauge symmetry
group O(N)q−1 which agrees with the large N limit of the SYK model. The leading order
Feynman graphs for the two point function are exactly the same, i.e. the Schwinger Dyson
equation of the tensor model is same as that of SYK model. Witten's observation sparked
the following hope. Perhaps the tensor model - which is as solvable as the SYK model at
large N and share several properties of this large N solution - have all the good features of
the SYK model while also being genuine quantum mechanical systems. Perhaps, therefore,
the tensor models are the useful toy models to study in order to draw lessons about black
holes.

Motivated by this hope, in [3] we investigated several dynamical aspects of tensor models
in detail and found, to our disappointment, that when the dynamics of these theories di�er
from that of the SYK theory in at least two qualitative ways, moreover the di�erences in
question make the tensor models less like the dual of a gravitational theory. In the rest of
this chapter we outline and explain our main results.

First, we argue that the spectrum of �uctuations about the �nite temperature saddle
point in these theories has (q − 1)N

2

2
new light modes in addition to the light Schwarzian

mode that exists even in the SYK model, suggesting that the bulk dual description of
theories di�er signi�cantly if they both exist.

Second, we study the thermal partition function of a mass deformed version of the SYK
model. At large mass we show that the e�ective entropy of this theory grows with energy
like E logE (i.e. faster than Hagedorn) up to energies of order N2. The canonical partition
function of the model displays a decon�nement or Hawking Page type phase transition at
temperatures of order 1/ logN . We derive these results in the large mass limit but argue
that they are qualitatively robust to small corrections in J/m.

(Chapter 2) Chern-Simons Matter Duality

The chapter in my thesis on Chern-Simons matter theories has its genesis in a paper
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[54] I was a co author on but is not included in my thesis. First, I brie�y summarize the
contents of [54].

The paper [54] studied the conjectured duality between Fermions minimally coupled
to Chern-Simons gauge �elds (Regular Fermion or RF theory) and Wilson Fisher bosons
minimally coupled to level rank dual gauge �elds (Critical Boson or CB theory). At zero
mass both theories described above de�ne conformal �eld theories (CFTs). Each of these
CFTs admits a a single relevant mass deformation parameterized by a real mass.

Let m denote the mass of the theories above. By scaling, the low energy physics (i.e.
the `phase' in condensed matter language) is invariant under the scaling m → λm where
λ is a positive real number. However the phase can and does depend on the sign of m.
On the fermionic side this comes about as follows. When the fermion is massive it can be
integrated out and the low energy physics in the IR is topological and is governed by pure
Chern Simons theory. The rank of the low energy Topological Field Theory is same as the
rank of the original UV Chern Simons theory. However, it is well known that the level of
the low energy CFT di�ers from the UV level by the formula

kIR = KUV ±
sgn(m)

2
.

It follows that the low energy Chern Simons theories that govern the dynamics of theories
with fermionic masses of di�erent signs have levels that di�er by unity.

If the conjectured level rank duality between the RF theories and the CB theories is
indeed correct, then this must imply that, on the bosonic side of this duality, the low
energy theories that govern the dynamics of the bosonic theory with positive and negative
masses must have ranks that di�er by unity. This is indeed the case and comes about
as follows. When the bosons have positive (Wilson Fisher) masses, the low energy Chern
Simons theory has both the same level and the same rank as the UV theory. When the
bosons have negative Wilson Fisher masses, on the other hand, the bosons condense. The
condensation breaks the SU(N) gauge symmetry down to SU(N − 1). As a consequence
the low energy Chern Simons theory has the same level as the UV theory, but a rank that
is one less than that of the UV theory, in perfect agreement with the predictions of duality
[58].

While the picture spelt out in the previous paragraph sounds compelling, it is qualitative
in nature, and one would like to �nd quantitative evidence for its validity. When both
masses are positive, such evidence was obtained in earlier work, when, for instance, the
thermal partition functions of both theories was computed in detail at large N and found
to match perfectly under the conjectured duality [83, 56].

When the masses were negative, the fermionic thermal partition function had, once
again been computed in earlier work. However the bosonic partition function had not yet
been obtained. This major de�ciency was remedied in our paper [54] in which we per-
formed this computation. The computation required many new ideas - symmetry breaking
triggered the Higgs mechanism. In order to �nd the thermal free energy in this situation
we needed to solve the Schwinger Dyson equation for the new physical particles in our
problem, namely the W bosons. We were able to accomplish this in [54] and demonstrate
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that the �nal result for the thermal partition function agrees perfectly under duality with
that for the fermionic theory under duality.

In this chapter of my thesis we consider the follow-up [43] to the work mentioned above.
The similar conjecture exists for the duality between the Chern-Simons (CS) gauged regular
bosons in the fundamental representation and the level-rank dual theory- CS gauged critical
fundamental fermions. As in the previous subsection, the conjecture of duality implies that
the set of all RG �ows that originate in one theory are dual to the RG �ows from the dual
theory. Generic RG �ows from these quasi-bosonic �xed points lead to gapped phases,
whose low energy dynamics are governed by topological �eld theory. There are two in-
equivalent topological phases, unHiggsed phase, and the Higgsed phase. In the unHiggsed
phase the bosonic (resp. fermionic) theory is governed at long distances by pure SU(NB)kB
(resp. U(NF )kF ) topological �eld theory with two theories level-rank dual to each other.
In the Higgsed phase the bosonic (resp. fermionic) theory is governed in the IR by a pure
SU(NB − 1)kB (resp. U(NF )sgn kF (|kF |−1)) Chern-Simons theory with the two topological
�eld theories once again level-rank dual to each other.

As in the previous subsection the qualitative guesses of the last paragraph had been
made quantitative in earlier work only in one half of the phase diagram. In particular the
large N thermal free energy for the bosonic theory (RB) in the unHiggsed phase had earlier
been demonstrated to match the corresponding fermionic results under duality [83, 56]. In
this paper we complete this qualitative matching by evaluating the large N thermal free
energy of the bosonic theory in the Higgsed phase and demonstrate that our results, again,
perfectly match the predictions of duality. Our computation is performed in a unitary
gauge (as mentioned before) by integrating out the physical excitations of the theory - i.e.
W bosons - at all orders in the 't Hooft coupling.

The results and calculations are very similar to those of [54] except one di�erence. In the
critical boson theory, in [54], the `classical' potential for the scalar �eld is in�nitely deep.
This potential freezes the magnitude of the scalar �eld in the Higgsed phase to its classical
minimum even in the quantum theory. It follows that the Higgs vev is independent of the
temperature and has a simple dependence on the 't Hooft coupling. In the regular boson
theory, however, the classical potential for the scalar �eld is �nite and receives nontrivial
quantum corrections. The value of the scalar condensate is determined extremizing the
quantum e�ective action for the scalar �eld. The result of this minimization yields a
scalar vev that is a nontrivial function of both the 't Hooft coupling and the temperature.
We are able to compute the smooth `quantum e�ective potential' for the RB theory as
a function of the Higgs vev. More precisely we compute the quantum e�ective potential
for the composite �eld (φφ). In the Higgsed phase and in the unitary gauge this quantity
reduces to a potential - an exact Landau-Ginzburg e�ective potential. The extremization
of this potential determines the Higgs vev.

We emphasize that one of the key results of our work is an exact computation of the
quantum e�ective potential for φφ in the RB and CF theories, to all orders in the coupling
constants. This quantum e�ective potential is rich and contains a lot of physics, some of
which is explored in this chapter. We �nd that fact that we are able to compute such a
nontrivial and dynamically rich quantity exactly quite remarkable.
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In addition to giving us quantitative evidence for duality, the new exact result for the
quantum e�ective potential for the Higgs �eld gives us new understanding of the RB and
CF theories in a global manner. In particular it turns out that this quantum e�ective
potential is bounded from below only for a certain range of x6 (the parameter that governs
sextic interactions of φ), demonstrating that the regular boson theory has a stable vacuum
only when x6 lies in this range.

Moreover, the form of the quantum e�ective potential allows us to compute the phase
diagrams of the RB and CF theory in a simple and intuitive manner.

Finally, in the the zero temperature limit this exact Landau-Ginzburg potential is non-
analytic at φφ = 0. The extrema of this e�ective potential at positive φφ solve the gap
equations in the Higgsed phase while the extrema at negative φφ solve the gap equation
in the unHiggsed phase.

(Chapter 3) Classifying and Constraining 4 Photon and 4 Graviton classical
S-Matrices.

Consider the S matrix of a theory of four identical massless scalars. It is well known
that the most general S matrix in such a theory is speci�ed by a single function

A(s, t)

which enjoys the following symmetry properties

A(s, t) = A(t, s) = A(s, u), u = −s− t

where s, t and u are the usual Mandlestam invariants.
Now consider a slightly more complicated kinematical setting - the scattering of four

identical photons or four identical gravitons. What is the most general S matrix for such
a theory allowed simply on kinematical grounds? While this question is a very simple
and natural one, but has never been systematically addressed in the literature. In this
chapter we supply the answer to this question both for photons and for gravitons. We �nd
that there are 3 basic structures in terms of which any S-matrix of a classical theory of
electrodynamics can be written, and for gravity we �nd that the number of basic structures
for classical 2− 2 scattering is 10, in high enough dimensions. We solved the classi�cation
question described above as preparatory material in order to address a question that we
believe is of great physical importance, namely the classi�cation of consistent local classical
theories of gravity and electromagnetism.
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Chapter 2

Tensor Models

2.1 Introduction

It has recently been demonstrated that the dynamically rich Sachdev-Ye-Kitaev model -
a quantum mechanical model of fermions interacting with random potentials - is solvable
at large N [1, 4, 5]. This model is interesting partly because its thermal properties have
several features in common with those of black holes. The SYK model self equilibrates over
a time scale of order the inverse temperature and has a Lyapunov index that saturates the
chaos bound [5, 4]. Moreover the long time behaviour of this model at �nite temperature
is governed by an e�ective action that has been reinterpreted as a particular theory of
gravity expanded about AdS2 background solution [1, 6, 7, 8, 10, 11, 12, 13].

These facts have motivated the suggestion that the SYK model is the boundary dual of
a highly curved bulk gravitational theory whose �nite temperature behaviour is dominated
by a black hole saddle point. If this suggestion turns out to be correct, the solvability of
the SYK model at large N - and its relative simplicity even at �nite N - could allow one to

probe old mysteries of black hole physics in a manner that is nonperturbative in
1

N
, the

e�ective dual gravitational coupling (see e.g. [14, 15, 16] for recent progress).
There is, however, a potential �y in the ointment. While the SYK model - de�ned as a

theory with random couplings - is an average over quantum systems, it is not a quantum
system by itself. One cannot, for instance, associate the SYK model with a Hilbert space
in any completely precise manner, or �nd a unitary operator that generates time evolution
in this model. As several of the deepest puzzles of black hole physics concern con�icts with
unitarity, this feature of the SYK model is a concern.

Of course any particular realization of the couplings drawn from the SYK ensemble is a
genuine quantum theory. It is plausible that several observables - like the partition function
- have the same large N limit when computed for any given typical member of the ensemble
as they do for the SYK model de�ned by averaging over couplings [15, 17, 18]. It might
thus seem that every typical realization of random couplings is an in-equivalent consistent
quantization of classical large N SYK system. As the number of such quantizations is very
large, this would be an embarrassment of riches. The potential issue here is that if we work

1



with any given realization of the SYK model, it appears inconsistent to restrict attention to
averaged observables for any �nite N no matter how large. On the other hand correlators
of individual ψi operators (as opposed to their averaged counterparts) presumably do not
have a universal large N limit (and so are not exactly solvable even at large N). 1

In order to address these concerns some authors have recently [19, 20, 21] (based on
earlier work [22, 23, 24, 25, 26, 27]) studied a related class of models. These models are
ordinary quantum mechanical systems; in fact they describe the global or gauged quantum
mechanics of a collection of fermions in 0+1 dimensions. In this chapter we will focus our
attention on the model

S =

∫
dt

NF∑
a=1

[ψaD0ψa − (g ψqa + h.c.)],

D0 = ∂0 + iA0 , g =
J

N
(q−1)(q−2)

4

,

(2.1)

that was �rst proposed - at least in the current context - in [20] . In (2.1) ψa are a
collection of complex gauged fermionic �elds in 0 + 1 dimensions that transform in the
fundamental of each of the q − 1 copies of O(N). The index a is a �avour index that runs
from 1 . . . NF .

2. J is a coupling constant with dimensions of mass and ψq is a schematic
for a q vertex generalization of a `tetrahedronal' interaction term between q copies of the
fermionic �elds, whose gauge index contraction structure is explained in detail in [19, 20]
and will be elaborated on below.

The tetrahedral structure of the interaction[19, 20] is such that for any even number of
fermions q each fermion has q − 1 indices each in a di�erent O(N)(or U(N)). The indices
among the q fermions are contracted such that every fermion is index contracted with an
index of the same gauge group on one of the remaining fermions. Moreover, given any
- and every - 2 fermions have a single index (of some gauge group) contracted between
them. For q = 4 it is easy to check that these words de�ne a unique contraction structure
which may be viewed as a tetrahedral contraction among the 4 fermions each with q−1 = 3
indices(legs) with every fermion(point or vertex of the tetrahedron) connected to 3 di�erent
coloured legs. For q ≥ 6 it is not clear that the words above de�ne a unique contraction
structure. In case the contraction structure is not unique, we pick one choice - for example
the Round-Robin scheduling process to de�ne our interaction [28, 29]. 3

The connection between the quantum mechanical theories (2.1) and the SYK model
itself is the following; it has been demonstrated (subject to certain caveats) that sum over
Feynman graphs of the theory (2.1) coincides with the sum over Feynman graphs of the
SYK model at at leading order at large N (see [19] for the argument in a very similar
model), even though these two sums di�er at �nite values of N (see e.g. the recent paper
[30] and references therein). It follows that the quantum mechanical models (2.1) are

1We thank S. Sachdev for discussion on this point.
2For this simplest case NF = 1 this model was presented in Eq 3.23 of [20].
3We would like to thank J. Yoon for explaining the Round Robin scheduling process to us and clearing up
our misconceptions about uniqueness of the contraction structure for q > 4.
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exactly as solvable as the SYK model at large N ; moreover they also inherit much of the
dynamical richness of the SYK model. In other words the models (2.1) are solvable at large
N , are unitary and are potentially boundary duals of (highly curved) black hole physics.

Motivated by these considerations, in this chapter we study the e�ective theory that
governs the long time dynamics of the model (2.1) at �nite temperature. We focus attention
on dynamical aspects of (2.1) that have no counterpart in the already well studied dynamics
of the original SYK model. 4

In the rest of this introduction we will explain and describe our principal observations
and results.

2.1.1 New light modes

The thermal behaviour of both the theory (2.1) and the original SYK model is determined
by the path integral of these theories on a circle of circumference β.

It was demonstrated in [4, 5] that, in the case of the original SYK model, this path
integral is dominated by a saddle point of an e�ective action whose �elds are the two
point function and self energy of the fermions. An extremization of this e�ective action
determines both the fermionic two point function at �nite temperature as well as the free
energy of the system at leading order at large N .

In a similar manner, the thermal behaviour of the quantum mechanical systems (2.1) is
dominated by a saddle point at large N . Under appropriate assumptions it may be shown
that resultant e�ective action has the same minimum as that of the original SYK theory
[19]. 5. Specializing to the case NF = 1, the leading order fermionic two point function of
the quantum mechanical system is given by

〈ψa(t)ψb(t′)〉 = δabG
SY K(t− t′), (2.2)

where a and b denote the (collection of) vector indices for the fermions and GSY K(t) is the
thermal propagator of the original SYK model. 6

While the thermal behaviour of the model (2.1) is thus indistinguishable from that
of the SYK model at leading order in the large N limit, the dynamics of the quantum

4See [31, 32, 33, 34, 35, 36, 37, 28, 38, 39, 40] for other recent work on the model (2.1) and its close
relatives.

5A potential subtlety is that path integral of the quantum mechanical system (2.1) has a degree of freedom
that is absent in the original SYK model, namely the holonomy of the gauge group O(N)q−1. As for
the SYK model, integrating out the fermions leads to an e�ective action - proportional to Nq−1 - whose
�elds are a two point function of the fermions, a self energy and the holonomy of the gauge group. As in
the case of the original SYK model, at leading order in the large N limit the free energy of the system
is captured by the saddle point of this e�ectively classical action. If we work at temperatures that are
held �xed as N → ∞ it is highly plausible that this e�ective action is minimized when the holonomy is
the identity matrix (see 2.3 below). Under this assumption the saddle point of the quantum mechanical
system coincides with that of the SYK model.

6(2.2) applies both the the case that the group O(N)q−1 is global and local. In the latter case this equation
applies in the gauge ∂0A0 = 0. Assuming that the holonomy degree of freedom is frozen to identity at
large N , the gauged and global model coincide.
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mechanical model (2.1) di�ers from that of the SYK model at subleading orders in 1/N .
The �rst correction to leading large N thermal behaviour may be obtained by performing
a one loop path integral over quadratic �uctuations around the saddle point. In the long
time limit, correlators are dominated by the lightest �uctuations around the saddle point.

Recall that in the UV (i.e. as βJ → 0 ) the fermions of (2.1) have dimension zero. The
term proportional to ψq in (2.1) represents a dimension zero relevant deformation of this
UV �xed point. The resultant RG �ow ends in the deep IR in a conformal �eld theory in

which the fermions have dimension
1

q
. [4, 5]. In this IR limit (relevant to thermodynamics

when βJ →∞) ψq is marginal while the kinetic term in (2.1) is irrelevant [4, 5]. The fact
that the kinetic term is irrelevant in the IR - and so can e�ectively be ignored in analyzing
the symmetries of (2.1) at large βJ - has important implications for the structure of light
�uctuations about the thermal saddle point.

The �rst implication of the irrelevance of the kinetic term occurs already in the SYK
model and was explored in detail in [4, 5, 8]. The main point is that the action (2.1),
with the kinetic term omitted, enjoys invariance under conformal di�eomorphisms (i.e.
di�eomorphisms together with a Weyl transformation). However the saddle point solution
for the Greens function GSYK(t) is not invariant under conformal di�eomorphisms. It
follows immediately that the action of in�nitesimal conformal di�eomorphisms on this
solution generates zero modes in the extreme low energy limit.

At any �nite temperature, no matter how small, the kinetic term in (2.1) cannot com-
pletely be ignored and conformal invariance is broken; the action of conformal di�eomor-
phisms on the SYK saddle point consequently produces anomalously light (rather than
exactly zero) modes. The action for these modes was computed in [4, 5, 8] and takes the
form of the Schwarzian for the conformal di�eomorphisms.

A very similar line of reasoning leads to the conclusion that the model (2.1) has (q −
1)
N2

2
additional light modes in the large βJ limit, as we now explain. Let us continue to

work in the gauge A0 = 0. In this gauge the action (2.1) is obviously invariant under the
global rotations ψ → V ψ, ψ → ψV † where V is an arbitrary time independent O(N)q−1

rotation. In the global model (2.1) the rotation by V is the action of a global symmetry.
In gauged model on the other hand, these rotations are part of the gauge group and do
not generate global symmetries of our model; the Gauss law in the theory ensures that all
physical states are uncharged under this symmetry.

Let us now consider the transformation ψ → V (t)ψ together with ψ → ψV (t)† where
V (t) is an arbitrary time dependent O(N)q−1 rotation. In the case of the gauged models,
this transformation is not accompanied by a change in A0 (A0 = const throughout) so the
rotation is not a gauge transformation.

At �nite βJ the rotation by a time dependent V (t) is not a symmetry of the action (2.1)
in either the global or the gauged theory as the kinetic term in (2.1) is not left invariant by
this transformation. As we have explained above, however, the kinetic term is irrelevant
in the low temperature limit βJ →∞. It follows that the time dependent transformation
is an e�ective symmetry of dynamics this strict low temperature limit.
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However the saddle point solution (2.2) is clearly not invariant under the time dependent
rotations by V (t). It follows that, as in the discussion for conformal di�eomorphisms above,
the action of V (t) on (2.2) generates exact zero modes in the strict limit βJ → ∞ and
anomalously light modes at any �nite βJ . We emphasize that this discussion applies both
to the global model where O(N)q−1 is a global symmetry, and the gauged model where it
is not.

In section 2.2.2 below we argue that the dynamics of our new light modes is governed
by the e�ective sigma model on the group manifold

S = −A N q−2

|J |

∫
dt

q−1∑
l=1

Tr

[(
V −1
l (t)

∂

∂t
Vl(t)

)2
]
, (2.3)

where Vl(t) is an arbitrary element of the group O(N) and A is a number of order unity
that we have not been able to determine.

The formula (2.3) has appeared before in a closely related context. The authors of
[41] (see also [17]) studied the a complex version of the SYK model. Their model had an
exact U(1) symmetry at all energies, which - using the arguments presented in the previous
paragraphs - was approximately enhanced to a local U(1) symmetry at low energies. The
authors of [41] argued the long distance dynamics of the new light modes is governed by a
sigma model on the group manifold U(1). 7 Given these results, the appearance of a low
energy sigma model in the large βJ �nite temperature dynamics of the theory (2.1) seems
natural.

We would, however, like to emphasize two qualitative di�erences between the sigma
model (2.3) and the model that appeared in [41]. First (2.3) is a sigma model for a group
O(N)q−1 whose dimensionality goes to in�nity in the large N limit, N →∞. Second that
we �nd the new light modes of the action even of the gauged model (2.1) even though
O(N)q−1 is not a global symmetry of this theory.

The new modes governed by (2.3) are approximately as light - and so potentially as
important to long time dynamics - as the conformal di�eomorphisms described above.

Note, however, that there are (q − 1)
N2

2
light time dependent O(N)q−1 modes but (as far

as we can tell) only one conformal di�eomorphism.
We have already remarked above that the light di�eomorphism degree of freedom de-

scribed above has been given an interpretation as a particular gravitational action in an
AdS2 background. It seems likely to us that the e�ective action (2.3) will, in a similar way,
admit a bulk interpretation as a gauge �eld propagating in AdS2. The Yang Mills coupling
of this gauge �eld - like Newton's constant for the gravitational mode - will be of order

1

N q−1
(this is simply a re�ection of the fact that our model has N q−1 degrees of freedom).

This means that the t' Hooft coupling of all the gauge �elds in the bulk will be of order

g2
YMN ∼

1

N q−2
. The fact that this coupling goes to zero in the large N limit implies that

7They also argued for some mixing between the di�eomorphism and U(1) long distance modes.
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the bulk gauge �elds are classical even though there are so many of them. 8

It has been established that the light di�eomorphism degree of freedom has a qualita-
tively important e�ect on out of time ordered thermal correlators; it leads to exponential
growth in such correlators at a rate that saturates the chaos bound G ∼ e2πTt. When we
include the contribution of the new light modes described in this subsection, we expect
this growth formula to be modi�ed to

G(t) ∼
(
e2πTt +N2f(t)

)
. (2.4)

9 The factor of N2 is a re�ection of the fact that our new modes are N2 in number,
whereas - as far as we can tell - there is only a single light mode corresponding to conformal
di�eomorphisms.

Given that the solutions of the equations of motion to the Sigma model (2.3) grow
no faster than linearly in time, we expect f(t) to grow at most polynomial in time. This
suggests it that the light modes (2.3) will dominate correlators up to a time of order
1

πT
logN . At later times the exponentially growing di�eomorphism mode will dominate,

leading to exponential growth and a Lyapunov index that saturates the chaos bound.
To end this subsection let us return to a slightly subtle point in our discussion. In order

to derive the e�ective action for V (t) we worked in the gauge A0 = 0. As our theory is on
a thermal circle, in the case of the gauged model (2.1) we have missed a degree of freedom
- the gauge holonomy - by working in the gauge A0 = 0. This, however, is easily corrected
for. Even in the presence of a holonomy, we can set the gauge �eld A0 to zero by a gauge
transformation provided we allow ourselves to work with gauge transformations that are
not single valued on the circle. The net e�ect of working with such a gauge transformation
is that the matter �elds are no longer periodic around the thermal circle but obey the
boundary conditions

ψ(β) = −Uψ(0), (2.5)

where U is the holonomy around the thermal circle. For the �elds of the low energy e�ective
action (2.3) this implies the boundary conditions

V (β) = UV (0)U−1. (2.6)

Recall we are instructed to integrate over all values of the holonomy U . Consequently we
must integrate over the boundary conditions (2.6) with the Haar measure. See section A.3
for some discussion of this point.

In summary, the discussion of this subsection suggests that the bulk low energy e�ec-
tive action `dual' to the gauged/global quantum mechanics of (2.1) di�ers from the low
energy e�ective action `dual' to the SYK model in an important way; in addition to the
gravitational �eld it contains gauge �elds of a gauge group whose rank is a positive frac-
tional power of the inverse Newton (and Yang Mills) coupling constant of the theory. In

8We would like to thank J. Maldacena for a discussion of this point.
9See [29] for related work.
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the classical limit in which Newton's constant is taken to zero, the rank of the low energy
gauge �elds also diverges. Nonetheless the limits are taken in such a way that the e�ective
bulk theory remains classical.

2.1.2 Holonomy dynamics and the spectrum at large mass

Our discussion up to this point has applied equally to the `global' and `gauged' quantum
mechanical models (2.1). In the rest of this introduction we focus attention on the gauged
models, i.e. the models in which the O(N)q−1 symmetry algebra is gauged. In this case
the thermal path integral of our system includes an integral over gauge holonomies over
the thermal circle. We wish to study the e�ect of this holonomy integral on the dynamics
of our system.

In order to do this in the simplest and clearest possible way we deform the model (2.1)
in a way that trivializes the dynamics of all non holonomy modes in the theory. This
is accomplished by adding a mass to the fermions. For concreteness we work with the
O(N)q−1 model

S =

∫
dt

NF∑
a=1

[(
ψaD0ψa +mψaψa

)
− (g ψqa + h.c.)

]
,

D0 = ∂0 + iA0 , g =
J

N
(q−1)(q−2)

4

,

(2.7)

where m, the mass of the fermion is taken to be positive. 10 We work the large mass

limit, i.e. the limit
m

J
� 1. The e�ective interaction between fermions in (2.7),

J

m
, is

small in this limit and can be handled perturbatively. In the strict m→∞ limit the only
interaction that survives in the system is that between the (otherwise free) matter �elds
and the holonomy U . 11

Let us �rst work in the strict limit
m

J
→∞. In this limit the dynamics of the holonomy

�eld U in this theory is governed by an e�ective action obtained by integrating out the
matter �elds at one loop. 12 The resultant e�ective action is easily obtained and is given

10In the case that the mass is negative, most of our formulae below go through once under the replacement
m→ |m|.

11We emphasize that, in the limit under consideration, modes corresponding to di�eomorphisms or V (t)
are no longer light - and so are irrelevant. However the holonomy continues to be potentially important.

12For orientation, we remind the reader that the integral over the holonomy is the device the path integral
uses to ensure that the partition function only counts those states that obey the A0 equation of motion,
i.e. the Gauss law constraint. Restated, the integral over holonomies ensures that the partition function
only counts those states in the matter Hilbert space that are singlets under the gauge group.
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by ([42])

Z = Trx
H
m =

∫ q−1∏
i=1

dUi exp(−Se�(Ui)),

Se�(Ui) = −NF

∞∑
n=1

(−x)n
(∏q−1

i=1 TrUn
i

)
n

,

x = e−β|m|,

(2.8)

where H is the Hamiltonian of our theory. 13

Each Ui is an O(N) matrix that represents the holonomy in the ith factor in the gauge
group O(N)q−1. dU is the Haar measure over the group O(N)q−1 normalized so that the
total group volume is unity.

Notice that when x is of order unity, Se� ∼ N q−1 in (2.8). On the other hand the
contribution of the group measure to the `e�ective' action is of order N2. The integral in
(2.8) is interesting when these two contributions are comparable. This is the case if we
scale temperatures so that

x = e−β|m| =
α

NFN q−3
, (2.10)

with α held �xed as N is taken to in�nity. In this limit the terms in the second of (2.8)
with n > 1 are subleading and can be ignored. E�ectively

Z(x) =

∫ q−1∏
i=1

dUi exp(−Se�(Ui))

Se� =
α

N q−3

(
q−1∏
i=1

TrUi

)
.

(2.11)

In the large N limit the matrix integral (2.11) is equivalent - as we show below - to the
well known Gross Witten Wadia model and is easily solved. The solution - presented in
detail below - has the following features

• 1. In the canonical ensemble, the partition function undergoes a decon�nement type
phase transition at α = α1pt where the value of α1pt is given in (2.77). At smaller
values of α the system is dominated by the `con�ning' saddle point in which U is the
clock matrix. At larger values of α1pt the system is dominated by a more complicated

13The generalization of these results to a model with NB bosons and NF fermions yields the holonomy
e�ective action

Se�(Ui) =

∞∑
n=1

(NB + (−1)n+1NF ) xn

(∏q−1
i=1 TrUni

)
n

. (2.9)

As we will see below, in the scaling limit of interest to this chapter, only the term with n = 1 is important.
In the strictly free limit it follows that most the results presented above apply also to a theory with NF
fermions and NB bosons once we make the replacement NF → NF +NB .
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`decon�ned' or black hole saddle point. The phase transition is reminiscent of the
transitions described in [44, 45]. 14

• 2. In the microcanonical ensemble, the scaling limit described above captures the
density of states of the system at energies less than or of order N2. Over the range

of energies 1� E <
N2

4
, the entropy S is given by the simple formula

S(E) = (q − 3)

[
E

2
log

(
E

2

)
− E

2

]
+ E logNF + (q − 3)

E

2
log(2). (2.12)

The saddle point that governs the density of states of the theory changes in a non

analytic manner at E =
N2

4
. For E >

N2

4
the formula for the entropy is more

complicated. For energies E � (q − 2)
N2

4
, however, the entropy simpli�es to the

formula for nBN
q−1 complex bosonic and nFN

q−1 free complex fermionic harmonic
oscillators

S(E) = E

[
1− log

(
E

pN q−1

)]
. (2.13)

The complicated formula that interpolates between these special results is presented
in (2.99).

The formula (2.12) suggests that if a dual bulk interpretation of the theory (2.8) exists,
it is given in terms of a collection of bulk �elds whose number grows faster than expo-
nentially with energy. It would be fascinating to �nd a bulk theory with this unusual
behaviour.

Moreover the existence of a Hawking Page type phase transition in this model - and
in particular the existence of a subdominant saddle point even at temperatures at which
the dominant phase is a black hole phase - opens the possibility of the subdominant phase
playing a role in e�ectively unitarizing correlators about the black hole saddle point by
putting a �oor on the decay of the amplitude of correlators as in [46].

The results presented above apply only in the limit
m

J
→∞. We have also investigated

how these results are modi�ed at very weak (rather than zero) coupling. We continue to
work at low temperatures, in a manner we now describe in more detail. It turns that
Se�(U) takes the schematic form

Se�(U) =
∞∑
a=1

xafa(β, U). (2.14)

Working to any given order in perturbation theory, the functions fa(β) are all polynomials
of bounded degree in β. We work at temperatures low enough so that we can truncate

14We note that the �rst order phase transitions described in [45] were strongly �rst order (i.e. not on the
edge between �rst and second order) only after turning on gauge interactions. In the current context, in
contrast, the phase transition in our system is strongly �rst order even in the absence of interactions.
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(2.14) to its �rst term. In other words the terms we keep are all proportional to xmultiplied
by a polynomial dressing in β.

We demonstrate below that within this approximation the partition function (2.14)
takes the form

−Se�(U) = N q−1x

(
q−1∏
m=1

ρ1
m

)(
∞∑
k=0

(
J

m

)2k

H̃k(
J2β

m
)

)
. (2.15)

Note that (2.15) asserts that the interacting e�ective action has the same dependence on
x and U as its free counterpart did. The only di�erence between the interacting and free

e�ective action is a prefactor which is a function of the two e�ective couplings
J

m
and

J2β

m
. Below we have summed an in�nite class of graphs and determined the function H̃0.

Working at NF = 1 we �nd

H̃0 =2

[
1

2
+ 2γ(q)

(−β)

m
|J |2eγ(q)

(−β)
m
|J |2 − 1

2
e2γ(q)

(−β)
m
|J |2 − (−1)q/2

2
q β
|J |2
m

]
, (2.16)

where γ(q) is de�ned in (2.138).
(2.15) and (2.16) determine the e�ective action of our system whenever the terms

proportional to H̃m (m = 1, 2 . . .) in the second line of (2.140) can be ignored compared

to the term proportional to H̃0. This is always the case at weak enough coupling; the
precise condition on the coupling when this is the case depends on the nature of the as yet
unknown large argument behaviour of the functions H̃m .

The partition function that follows from the action (2.15) is identical to the free par-

tition function described above under the replacement α → αH̃0. It follows that the
interacting partition function is essentially identical to the free one in the canonical en-
semble. The β dependence of the e�ective value of α leads to some di�erences in the
microcanonical ensemble that turn out not to impact the main qualitative conclusions of
the analysis of the free theory. For instance the super Hagedorn growth of the entropy
persists upon including the e�ects of interaction.

Note Added: `We have recently become aware of the preprint [47] which overlaps with
this chapter in multiple ways. We hope it will prove possible to combine the results of
this chapter with the methods of [47] to better understand the new light modes discussed
earlier in this introduction'.

2.2 Light thermal modes of the Tensor models

In this section we consider the Gurau-Witten-Klebanov-Tarnopolsky model (or Tensor
model) at �nite temperature. The Lagrangians for the speci�c theories we study was listed
in (2.1). As we have explained in the introduction, this model has a new set of light modes
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parameterized by V (t), an arbitrary group element as a function of time, where V belongs
to O(N)q−1. In this section we will present an argument that suggests that the dynamics
of these light modes is governed by a (quantum mechanical) sigma model on the group
manifold. We will also present an estimate for the coupling constant of this sigma model.

That the dynamics of V (t) should be governed by a sigma model is very plausible on
general grounds. Recall that in the formal IR limit, V (t) is an exact zero mode of dynamics.
It follows that V (t) picks up dynamics only because of corrections to extreme low energy
dynamics. From the point of view of the low energy theory these corrections are UV e�ects,
and so should lead to a local action for V (t). The resultant action must be invariant under
global shifts V (t)→ V0V (t). We are interested in the term in the action that will dominate
long time physics, i.e. the action with this property that has the smallest number of time
derivatives. Baring a dynamical coincidence (that sets the coe�cient of an apparently
allowed term to zero) the action will be that of the sigma model.

In the rest of this section we will put some equations to these words. We would like
to emphasize that the `derivation' of the sigma model action presented in this section is
intuitive rather than rigorous - and should be taken to be an argument that makes our
result highly plausible rather than certain.

2.2.1 Classical e�ective action

In [5] the e�ective large N dynamics of the SYK model was recast as the classical dynamics
of two e�ective �elds; the Greens function G(t) and the self energy Σ(t). The action for Σ
and G derived in [5] was given by

S = N q−1

(
− logPf(∂t − Σ̃) +

∫
dt1 dt2

[
−Σ̃(t1, t2)G̃(t2, t1)− J2

q
G̃q(t1, t2)

])
. (2.17)

The utility of the action (2.17) was twofold. First, the solutions to the equations of motion
that follow from varying (2.17) are the saddle point that govern thermal physics of the
SYK model. Second, an integral over the �uctuations in (2.17) also correctly captures

the leading order (in
1

N
) correction to this saddle point result. In order to obtain these

corrections, one simply integrates over the quadratic �uctuations about this saddle point.
In particular the action (2.17) was used to determine the action for the lightest �uctuations
about the saddle point (2.17), namely conformal di�eomorphism [5].

In this section we wish to imitate the analysis of [5] to determine the action for �uctua-
tions of the new zero modes - associated with time dependent O(N)q−1 rotations - described
in the introduction. The action (2.17) is not su�cient for this purpose. As explained in the
introduction, the low energy �uctuations we wish to study are obtained by acting on the
saddle point Greens function with time dependent O(N)q−1 rotations; however the �elds
G and Σ that appear in (2.17) have no indices and so cannot be rotated.

As the �rst step in our analysis we proceed to generalize the e�ective action (2.17) to
an action whose variables are the matrices Gb

a and Σb
a. The indices a and and b are both
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fundamental indices of the group O(N)q−1. Our generalized action is given by

S = − logPf(D0 − Σ̃) +

∫
dt1 dt2

[
−Σ̃ b

a (t1, t2)G̃ a
b (t2, t1)− |g|

2

q
G̃q(t1, t2)

]
. (2.18)

In this action, the expression G̃q is a product of q copies of G̃a
b where all gauge indices

are contracted in a manner we now describe. Recall that a and b are fundamental indices
for the group O(N)q−1. Each of these indices may be thought of as a collection of q − 1
fundamental indices

a = (a1a2 . . . aq−1), b = (b1b2 . . . bq−1),

where ai and bi are fundamental indices in the (ith factor of) O(N). In the contraction

G̃q, a type indices are contracted with each other while b type indices are also contracted
with each other - there is no cross contraction between a and b type indices. The structure
of contractions is as follows; the a indices of precisely one of the O(N) factors of the
gauge group are contracted between any two (and every two) Gs and, simultaneously, the

b indices of the same two O(N) factors are also contracted between the same two G̃s. 15

As a quick check note that the total number of contraction of a (or b) indices, according

to our rule, is the number of ways of choosing two objects from a group of q, or,
q(q − 1)

2
.

As each pair hit two indices, we see that the pairing rule described in this paragraph
saturates the indices present q copies of G̃ (there are a total of q(q − 1) a type indices).

The contraction structure described for a type indices in the previous paragraph is
precisely the contraction structure for the interaction term ψq in the action (2.1).

We regard (2.18) as a phenomenological action with the following desirable properties.
First it is manifestly invariant under global O(N)q−1 transformations. Second if we make

the substitutions G̃a
b → G̃δab , Σ̃a

b → Σ̃δab into (2.18) we recover the action (2.17). It follows
in particular that, if G and Σ denote the saddle point values of (2.17) then

Ga
b = δabG, Σa

b = δabΣ, (2.19)

are saddle points of (2.18). This point can also be veri�ed directly from the equations of
motion that follow from varying (2.18), i.e.

G b
a (t1, t2) =((D0 − Σ)−1) b

a (t1, t2),

Σ b
a (t1, t2) =|g|2 (Gq−1) b

a (t1, t2).
(2.20)

While (2.18) correctly reproduces �nite temperature saddle point of the the model (2.1),
it does not give us a weakly coupled description of arbitrary �uctuations about this saddle
point. The fact that (2.18) has N2(q−1) �elds makes the action very strongly coupled. The

15These rules have their origin in the generalized `tetrahedronal' contraction structure described in the
introduction. For values of q at which the basic interaction structure has an ambiguity, we make one
choice; for instance we adopt the `Round Robin' scheme to �x the ambiguities. As far as we can tell,
none of our results depend on the details of the choice we make.
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key assumption in this section - for which we will o�er no detailed justi�cation beyond its
general plausibility - is that the action (2.18) can, however, be reliably used to obtain the
e�ective action for the very special manifold of con�gurations described in the introduction,
namely

G̃ a
b (t1, t2) =V b′

b (t1)G(t1, t2)V a
b′ (t2),

Σ̃ a
b (t1, t2) =V b′

b (t1)Σ(t1, t2)V a
b′ (t2),

(2.21)

where the index free functions G(t,t2) and V (t1, t2) are the solutions to the SYK gap
equations and V (t) is an arbitrary O(N)q−1 group element. The RHS in (2.21) is the result
of performing a time dependent O(N)q−1 rotation on the saddle point solution (2.19).

The fact that we have only (q − 1)
N2

2
�elds (V (t)) on this manifold of solutions - at

least formally makes the action restricted to this special manifold weakly coupled, as we
will see below.

In the rest of this section we will use the action (2.18) to determine the e�ective action
that controls the dynamics of the matrices V (t) at leading order in the long wavelength
limit.

2.2.2 E�ective action

In order to study quadratic �uctuations about (2.19), we follow [5] to insert the expansion
16

G̃ b
a (t1, t2) =G b

a (t1, t2) + |G(t1, t2)| q−2
2 g b

a (t1, t2),

Σ̃ b
a (t1, t2) =Σ b

a (t1, t2) + |G(t1, t2)| 2−q2 σ b
a (t1, t2),

(2.22)

into (2.18) and work to quadratic order in g b
a (t1, t2) and σ b

a (t1, t2). Integrating out
σ b
a (t1, t2) using the linear equations of motion, we �nd an e�ective action of the general

structure

S(G̃, Σ̃) = S(G,Σ) +
1

2

∫
dt1..dt4 g

b
a (t1, t2)K̃−1(t1, t2; t3, t4)g a

b (t3, t4)

− |g|
2

q

q

2
N

1
2

(q−1)(q−4)+1

∫
dt1 dt2 g(t1, t2)g(t1, t2).

(2.23)

The expression in the �rst line of (2.23) results from varying the �rst two terms in (2.18),

while the second line is the variation of the G̃q term in (2.18). This term denotes the a
sum of di�erent contraction of indices between the two gs

g(t1, t2)g(t1, t2) =

q−1∑
k=1

g
c1c2...ck−1akck+1....cq−1

c1c2...ck−1bkck+1....cq−1
g
d1d2...dk−1akdk+1....dq−1

d1d2...dk−1bkdk+1....dq−1
. (2.24)

16Note that we have scaled G �uctuations and Σ �uctuations with factors that are inverses of each other
ensures that our change of variables does not change the path integral measure. The scalings of �uctu-
ations in (2.22) are chosen to ensure that the second line of (2.23) takes the schematic form gg rather

than gK ′G where K ′ is an appropriate Kernel. We emphasize that the scaling factor |G(t1, t2)|± q−2
2 in

(2.22) represents the power of a function; no matrices are involved.

13



In the special case that the �uctuation �elds g are taken to be of the form gab = δab g,
the matrix contractions in (2.23) give appropriate powers of N , and (2.23) reduces to the
e�ective action for g presented in [5].

It was demonstrated in [5] that

K̃(t1, t2; t3, t4) = −|G(t1, t2)| q−2
2 G(t1, t3)G(t2, t4)|G(t3, t4)| q−2

2 . (2.25)

In the long distance limit the Greens function can be expanded as

G =Gc + δG+ ...,

δG(t1, t2) ≡ Gc(t1, t2) f0(t1, t2),
(2.26)

where Gc is the Greens function in the conformal limit and δG is the �rst correction to Gc

in a derivative expansion. It follows that f0 is an even function of the time di�erence, an
approximate form of which is given in [5]. Plugging this expansion into (2.25) it follows

that K̂ can be expanded as
K̃ = K̃c + δK̃ + ..., (2.27)

where [5]

δK̃(t1, t2; t3, t4) = K̃c(t1, t2; t3, t4)

[
q − 2

2
(f0(t1, t2) + f0(t3, t4)) + f0(t1, t3) + f0(t2, t4)

]
.

(2.28)

The �rst two contributions have their origin in the factors of G
q−2

2 in (2.25) and were called
rung contributions in [5] (2.25). The remaining two contributions have their origin in the
factors of G in (2.25) and were called rail contributions in [5]. We note that for rung
contributions f0 appears with either �rst two times or last two times of the kernel. On the
other hand the two times in rail contributions are one from the �rst set and one from the
second.

Our discussion so far has applied to general �uctuations about the saddle point, and
has largely been a review of the general results of [5] with a few extra indices sprinkled in.
In the rest of this subsection we now focus attention on the speci�c �uctuations of interest
to us, namely those generated by the linearized form of (2.21) around conformal solution

(gc)
b
a (t1, t2) = |Gc(t1, t2)| q−2

2 Gc(t1, t2)
[
H b
a (t1)−H b

a (t2)
]
. (2.29)

Notice that the �uctuations (2.29) represent the change of the propagator under a time
dependent O(N)q−1 rotation. The form of (2.29) is similar in some respects to the variation
of the propagator under di�eomorphisms, studied in [5], with one important di�erence;
the factors of Hb

a(t1) and Hb
a(t2) appear with a relative negative sign in (2.29), whereas

the in�nitesimal di�eomorphism �elds in the light �uctuations of [5] appeared with a
relative positive sign in [5]. The fact that our �uctuations are `anti-symmetric' rather
than` symmetric' will play an important role below.
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Specializing to this particular �uctuation, It can be shown (see Appendix A.1) that gc
is an eigenfunction of K̃−1

c with eigenvalue |J |2 more clearly∫
dt3 dt4 K̃c

−1
(t1, t2; t3, t4)(gc)

b
a (t3, t4) = |J |2 (gc)

b
a (t1, t2). (2.30)

It follows immediately from (2.30) that

1

2
gc K̃

−1
c gc =

|g|2
q

gc gc. (2.31)

Using this equation it may be veri�ed that for the for the particular �uctuations under
study- the second line of (2.23) simply cancels the part of the term in the �rst line obtained

by replacing K̃ with K̃c.
It follows that the action (2.23) evaluated on the modes (2.29) is nonzero only because

K−1 di�ers from K−1
c . Recall K = Kc + δK (see (2.27)). Using δK−1 = −KδKK−1 that

the action for our special modes evaluates at quadratic order to

Se� = −1

2
gc K̃

−1
c δK̃ K̃−1

c gc. (2.32)

Using the fact that K̃−1 is Hermitian ([5]) and the eigenvalue equation (2.30), the action
simpli�es to

Se� = −1

2
|J |4

∫
dt1..dt4 (gc)

b
a (t1, t2) δK̃(t1, t2; t3, t4) (gc)

a
b (t3, t4). (2.33)

Plugging the speci�c form of our �uctuations (2.29) into this expression we �nd 17

Se� = −1

2
N q−2

q−1∑
l=1

∑
(i,k) pair

(−1)i−k
∫
dti dtk (Hl)

b
a (ti)(Hl)

a
b (tk)Lik(ti, tk), (2.34)

where i ∈ (1, 2), k ∈ (3, 4) and

Lik(ti, tk) =

∫
A(t1, .., t4)

∏
m6=i,m 6=k

dtm,

A(t1, ..t4) = |J |4 Gc(t1, t2)|Gc(t1, t2)| q−2
2 δK̃(t1, t2; t3, t4)|Gc(t3, t4)| q−2

2 Gc(t3, t4). (2.35)

The expression (2.34) is not yet completely explicit, as Lik in (2.35) is given in terms of
δK which is given in terms of the �rst correction to the conformal propagator Gc which,

17Here factors of N comes from trace over other colour index δ-functions that multiply Hl of any colour.
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in turn, is not explicitly known. Luckily δG can be eliminated from (2.34) as we now
demonstrate. 18

While we do not know the explicit form of the correction to the conformal two-point
function δG(t1, t2), we know that it satis�es the equation

Σc ∗ δG+ δΣ ∗Gc + s ∗Gc = 0. (2.38)

This is simply the gap equation expanded around the conformal point. Here s(t1, t2) =

− ∂

∂t1
δ(t1 − t2) is a local di�erential operator.

In order to make the expression (2.34) explicit we �rst simplify the formulae (2.35) for
Lij. Plugging the expansion G = Gc + δG into (2.25), and using properties of conformal
solutions, it may be veri�ed after some algebra that for odd i− k 19

Lik(ti, tk) = 2 δ(ti − tk)
[
q − 2

2
Gc ∗

δΣ

q − 1
+ Σc ∗ δG

]
(ti, tk). (2.39)

The fact that Lik is proportional to a δ function establishes that the contribution of terms
with odd i− k to the action is local. (2.39) may be further simpli�ed using the relation

δ(ti − tk)Gc ∗
δΣ

q − 1
(ti, tk) = δ(ti − tk)Σc ∗ δG(ti, tk), (2.40)

and to give
Lik(ti, tk) = qδ(ti − tk)Σc ∗ δG(ti, tk). (2.41)

Multiplying δ-function on both sides of (2.38) and using (2.40), we �nd

Lik(ti, tk) = −δ(ti − tk)s ∗Gc(ti, tk) = δ(ti − tk)
∂

∂ti
Gc(ti, tk). (2.42)

18Using the fact that gc is an eigenfunction of K̃c with eigenvalue
1

|J |2 rung contributions can easily be

summed up to

Srunge� = −1

2
(q − 2)

1

|J2|

∫
(gc)

b
a (t1, t2) f0(t1, t2) (gc)

a
b (t1, t2) dt1dt2. (2.36)

This expression is not by itself useful as the integral that appears in it has a log divergence once

numerically determined form of f0(τ1, τ2) −−−−−−−→
|τ1−τ2|→0

1

|τ1 − τ2|
(from [5]) is used; follows from

gc(τ1, τ2) = |Gc(τ1, τ2)| q−2
2 Gc(τ1, τ2)[H(τ1)−H(τ2)] −−−−−−−→

|τ1−τ2|→0

sgn(τ1 − τ2)

|τ1 − τ2|
H ′(τ1)(τ1−τ2) ∼ O(|τ1−τ2|0).

(2.37)

19Here overall factor of 2 comes from symmetry of the integrations and
q − 2

2
comes from rung part.
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On the other hand when i− k is even, using properties of conformal solutions 20

Lik(ti, tk) = −
[
q − 2

2
× 2 + 1

]
Σc(ti, tk)δG(ti, tk) + (Σc ∗ δG ∗ Σc)(ti, tk)Gc(ti, tk). (2.43)

(2.43) can be further simpli�ed by substituting

Σc ∗ δG ∗ Σc = δΣ + s, (2.44)

and then using the linearized form of the gap equation

δΣ Gc = (q − 1)δG Σc, (2.45)

to give

Lik(ti, tk) = −Gc(ti, tk)
∂

∂ti
δ(ti − tk). (2.46)

Adding together the contributions of i− k even and i− k odd we have a manifestly local
e�ective action, whose structure accounts for the fact that we have worked beyond the
purely conformal limit (recall that in the purely conformal limit our �uctuation action
simply vanished) even though the �nal expression makes no reference to the explicit form
of the correction δG to the conformal propagator Gc.

Se� =−N q−2

q−1∑
l=1

∫
dti dtkGc(ti − tk)δ(ti − tk)Tr

(
∂

∂ti
Hl(ti)Hl(tk)

)
(2.47)

Expanding Hl(tk) in a Taylor series expansion about ti

Hl(tk) =
∞∑
n=0

∂n

∂tn
Hl(ti)

(tk − ti)n
n!

allows us to recast (2.47) into the form

Se� = −N q−2

∫
dt

q−1∑
l=1

∞∑
n=0

Cn Tr

(
∂

∂t
Hl(t)

∂n

∂tn
Hl(t)

)
. (2.48)

where

Cn =
1

n!

∫
dt Gc(t)δ(t)t

n. (2.49)

The term in the sum (2.48) with n = 0 is a total derivative and so can be ignored. It
follows that

Se� = −
∫
dt

q−1∑
l=1

∞∑
n=1

CnTr

(
∂

∂t
Hl(t)

∂n

∂tn
Hl(t)

)
. (2.50)

20As before
q − 2

2
× 2 comes from rung part.
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Our �nal result (2.50) for the e�ective action, has now been arranged as an expansion over
terms with increasing numbers of derivatives.

Recall that all the results of this section have been obtained after expanding the Greens
function

G(t1, t2) = Gc(t1, t2) + δG(t1, t2), (2.51)

and assumed that δG� Gc. This assumption is only valid when t1 − t2 �
1

J
, but are not

valid for t1 − t2 ∼
1

J
. All potential non localities in the e�ective action for H presumably

have their origin in regions where our approximations are valid. It thus seems plausible
that the central result of this section - namely the absence of non-localities in the e�ective

action on length scales large compared to
1

J
- which therefore takes the form (2.50) - is a

reliable result.
On the other hand the precise expressions for the coe�cient functions Cn involve in-

tegrals over a function - namely the delta function - which varies over arbitrarily small
distances - and so is not reliable (it uses our approximations in a regime where they are
not valid). We would expect the correct versions of (2.49) to be given by smeared out
versions of the integrals in (2.49). On general dimensional grounds it follows that

Cn →
An
|J |n . (2.52)

We will make the replacement (2.52) in what follows. The numbers An could presumably be
computed by studying four point correlators of appropriate operators at �nite temperature.
We will not attempt this exercise in this chapter.

For the purposes of long time physics we are interested only in the term with the leading
number of derivatives, i.e. with the term with n = 1 in (2.50). The coe�cient of our action
in this case is proportional to A1 ≡ A. 21 and the e�ective action of our theory at leading
order in the derivative expansion takes the form

S = −A N q−2

|J |

∫
dt

q−1∑
l=1

Tr

(
∂

∂t
Hl(t)

∂

∂t
Hl(t)

)
. (2.56)

21Note that

C1 =

∫
dt δ(t)Gc(t) t. (2.53)

Plugging the formula

Gc = b
sgn(t)

|Jt| 2q
, (2.54)

into (2.53) we �nd, formally, that

C1 ∝
∫
dt|t|1− 2

q δ(t) = 0, (2.55)

(where we have used the fact that q > 2). As explained above, we expect that the vanishing of C1 is not
a physical result but rather is a consequence of inappropriate use of approximations. We assume that

C1 →
A
|J | in what follows where A is an unknown dimensionless number.
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In the analysis presented so far we have determined the form of the e�ective action for
in�nitesimal group rotations H. The group invariant extension of our result to �nite group
rotations is the sigma model action

S = −A 1

|J |

∫
dt

q−1∑
l=1

Tr

[(
V −1
l (t)

∂

∂t
Vl(t)

)2
]
, (2.57)

where Vl ∈ SU(N) whose in�nitesimal form is Vl = 1 + Hl +O(H2
l ). (2.45) is simply the

action for a free particle moving on the group manifold O(N)q−1 22. As explained in the
introduction, the structure of this action could have been anticipated on general grounds.

The fact that the action is proportional to
1

J
follows largely on grounds of dimensional

analysis.
As we have already seen in the introduction, once we have established that the action

for V (t) is local the form of the low energy e�ective action (2.3) for our system is almost
inevitable using the general principles of e�ective �eld theory. The main accomplishment
of the algebra presented in this section is the demonstration that the e�ective action for
V (t) is, indeed, local.

Note that the Sigma model action (2.45) has an O(N)q−1 ×O(N)q−1 global symmetry
under which

Vl → AVlB, (2.58)

where A and B both belong to O(N)q−1. The rotations by A are simply the global
symmetry that the microscopic SYK model possesses. Rotations by B are an emergent
symmetry of the low energy e�ective action. The corresponding conserved quantities are
Ll = V̇lV

−1
l , and Rl = V −1

l V̇l
23. Choosing a basis (Ta)

24 of Lie algebra O(N) it can be
shown that Hamiltonian vector �elds corresponding to group functions Ll,a = Tr (TaLl),
Rl,a = Tr (TaRl) give two copies of O(N) (at both classical and quantum level), both of
which commutes with the Hamiltonian which is the quadratic Casimir of the algebra.

2.3 Holonomy dynamics and density of states at large

mass

We now switch gears; in this section and next we discuss a the mass deformed SYK theory
(2.7) in the large mass limit. We work with the theory based on the O(N)q−1 symmetry
where this symmetry is gauged. The large mass limit is of interest because it allows us
to focus on the dynamics of the holonomy at �nite temperature, and also allows us to
compute the growth of states in the theory as a function of energy in a very simple setting.

22Non-trivial holonomy can be turned on for these new light modes, details of contribution of these light
modes to e�ective action for holonomy is presented in Appendix A.3.

23A dot over a quantity indicates derivative with respect to time.
24It is assumed in what follows that this basis puts the Killing form in a form proportional to identity.
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2.3.1 Scaling limit

As explained in the introduction, in this section we will compute the �nite temperature
partition function

Z = Tr x
H
m ,

for the mass deformed gauged O(N)q−1 melonic theory (2.7).
In the large mass limit all �elds in (2.7) except the holonomies of the gauge group can

be integrated out at quadratic order. The result of this integration is easily obtained using
the formulae of [42], and is given by (2.8).

Notice that the e�ective action Se�(Ui) presented in (2.8) is invariant under the global
`gauge transformations' Ui → ViUiV

−1
i for arbitrary orthogonal matrices Vi. This invari-

ance may be used to diagonalize each Ui. The integral in (2.8) may then be recast as an
integral over the eigenvalues of each of the holonomy matrices Ui with the appropriate
measure. As Um are each unitary, their eigenvalues take the form eiθ

n
m where n runs from

1 to N . We de�ne the eigen value density functions

ρm(θ) =
1

N

N∑
n=1

δ(θ − θnm). (2.59)

As we are dealing with orthogonal matrices, the eigenvalues of our matrix occurs in equal
and opposite pairs (θa,−θa) and so the eigenvalue density function de�ned in (2.59) is an
even function.

As usual the rather singular looking sum over delta functions in (2.59) morphs into an
e�ectively smooth function at largeN as the individual eigenvalues merge into a continuum.
Note that

TrUn
m

N
=

∑N
j=1 e

inθjm

N
=

∫
ρi(θ)e

inθ ≡ ρnm, (2.60)

where the last equality de�nes the symbol ρni . Note that the subscript m on ρ runs from
1 . . . q − 1 and labels the O(N) factor under study, while the superscript n runs from
1 . . .∞ and labels the Fourier mode of the eigenvalue distribution. Using the fact that
ρi(θ) = ρi(−θ) it follows that

ρni =

∫
dθρ(θ) cosnθ. (2.61)

It follows that ρni are all real numbers and that ρni = ρ−ni .
In the large N limit the integral over the eigenvalues θnm may be recast, in the large N

limit into a path integral over the eigenvalue functions ρm(θ) given by

Z(x) =

∫ q−1∏
i=1

Dρi exp

[
1

2

∞∑
n=1

(
−N2

q−1∑
m=1

|ρnm|2
n
− 2NFN

q−1(−x)n
(∏q−1

m=1 ρ
n
m

)
n

)]
, (2.62)
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25 where the path integral is now taken over the eigenvalue density functions ρm with a
measure which descends from the �at integration measure for individual eigenvalues θjm.
As we have only (q − 1)N eigenvalues, the Jacobian of this variable change is of order N
in the exponent and so is subleading at large N and will not concern us.

Notice that the e�ective action in (2.62) is a sum of two kinds of terms; those propor-
tional to N2 (we call these terms the contribution of the measure) and those proportional
to N q−1 (we call these terms the contribution of the energy). As q ≥ 4 the energy over-
whelms the measure at large N if x is taken to be of order unity. In order to work in a
regime in which the measure and the energy compete with each other we de�ne

x =
α

pN q−3
, (2.63)

where 26

p = NF ,

and take the limit N → ∞ with α held �xed. In this limit the `energy' term with n = 1
in (2.62) is of order N2 and so competes with the measure. All energy terms with n > 1
are, however, subleading compared to the measure and can be dropped at large N . In the
limit under consideration, in other words, the e�ective action in (2.62) simpli�es to

Z(α) =

∫ q−1∏
i=1

dUi exp(−Se�(Ui)),

Se� = − α

N q−3

(
q−1∏
i=1

TrUi

)
.

(2.64)

We will now evaluate the integral (2.62) at large N with the e�ective action replaced by
the simpli�ed e�ective action (2.64). In order to facilitate comparison with the matrix
model literature, it is useful to note that the matrix integral (2.64) is closely related to the

25Let us focus on the special case NF = 1. In this case the Hilbert space of our quantum mechanical
problem is simply the sum of q forms of the group O(N3) with q running from 1 to N3. The exponential
in (2.62) is the character of this Hilbert space w.r.t the subgroup O(N)3, with representations coming
from q forms in O(N3) graded by xq. (In order to view the exponential as a character one must use
(2.60)). The integral in (2.62) projects onto the singlet subspace, and so counts the number of O(N)3

singlets. Note that it was very important for this discussions that the fundamental fermions in this
chapter are complex. The case of real fermions was studied from this point of view in [48]. In this
case the Hilbert space of the NF = 1 theory consists of spinors of O(N3), and the decomposition of
this representation content into representations of O(N)3 appears to be a very di�erent problem; it was
suggested in [48] that this decomposition contains no singlets. We thank C. Krishnan for discusssions
on this point.

26As explained in the introduction, in the free limit we could as well study bosons coupled to the gauge
�eld in which case we would have p = NB +NF where NB is the number of bosons.
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following integral over unitary matrices

ZSU(α) =

∫ q−1∏
i=1

dUi exp(−Se�(Ui)),

Se� = − α

N q−3

(
q−1∏
i=1

TrUi +

q−1∏
i=1

TrU †i

)
.

(2.65)

Where the integral is now taken over unitary matrices. In the large N limit the two matrix
models have the same gap equation (see below) and

logZSU(α) = 2 logZ(α). (2.66)

2.3.2 Determination of saddle points

The matrix model (2.65) (and so (2.64)) is easily solved in the large N limit using the
usual saddle point method. In order to see how this can be done note that as far as the
integral over the eigenvalues of U1 are concerned, TrU2, TrU3 . . .TrUq−1 are all constants.
Focusing only on the integral over U1, (2.64) reduces to

ZSU =

∫
dU1 exp

(
N

g1

(
TrU1 + TrU †1

))
,

1

g1

= αρ1
2ρ

1
3 . . . ρ

1
q−1 = αu2u3 . . . uq−1,

(2.67)

where in order to lighten the notation we have de�ned

ρ1
m = um (2.68)

A similar statement applies to the integral over all Ui for i = 1 . . . q− 1. However (2.67) is
precisely the celebrated Gross Witten Wadia matrix integral [49, 50, 51]. Recall that the
saddle point that dominates the integral (2.67) (and its counterparts for U2 etc) is given
by [49, 50, 51]

ρm(θ) =


1

2π

[
1 +

2

gm
cos θ

]
, gm ≥ 2, |θ| ≤ π

2

πgm
cos

θ

2

√
gm
2
− sin2 θ

2
, gm < 2, |θ| < 2 sin−1

(gm
2

)1/2

,

(2.69)

where27

1

gm
= α

∏
j 6=m

uj. (2.70)

27This eigenvalue densities produced above solve the GWW saddle point equations

2N

gm
sin θnm =

∑
j 6=n

cot

(
θjm − θnm

2

)
,

in the large N limit.
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Taking the Fourier transform of (2.69) it follows that

um =


1

gm
, gm ≥ 2

1− gm
4
, gm < 2.

(2.71)

We refer to the solution um =
1

gm
as the wavy phase while the solution um = 1 − gm

4
as

the gapped phase.
(2.70) and (2.71) may be regarded as a set of 2(q−1) equations for the 2(q−1) variables

um and gm. In order to complete the evaluation of our matrix integrals we will now solve
these equations.

Let us �rst demonstrate that the variables gm are either all greater than 2 or all less
than two simultaneously; (2.70) and (2.71) admit no solutions in which some of the gm are
greater than 2 while others are less than 2. 28

Let us assume that gm ≥ 2. It follows from (2.70) and (2.71) that

αu1u2 . . . uq−1 =
um
gm

=
1

g2
m

≤ 1

4
. (2.72)

On the other hand let us suppose that gk < 2 Then it follows from (2.70) and (2.71) that

αu1u2 . . . uq−1 =
uk
gk

=
1

gk
− 1

4
>

1

4
. (2.73)

As (2.72) and (2.73) contradict each other it follows that either all gm ≥ 2 or all gm < 2
as we wanted to show. Moreover it follows immediately from (2.73) that when all gm ≤ 2
they are in fact all equal. Similarly it follows from (2.72) that when all gm ≥ 2 then once
again they are all equal. 29 It follows that in either case all um and all gm are equal. Let
us refer to the common saddle point value of um as u. The saddle point equations (2.71)
now simplify to

u =


αuq−2 u ≤ 1

2

1− 1

4αuq−2
, u >

1

2
.

(2.74)

Once we have determined the solution to (2.74) value of the partition function (2.64), in

28Equivalently ums are either all less than half or all greater than half. Equivalently the matrix models
for Um are all simultaneously in the wavy phase or simultaneously in the gapped phase.

29Actually all solutions are equal up to sign - however saddle points that di�er by sign assignments are
actually essentially identical - they can be mapped to each other by U → −U , so we ignore this issue.
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the large N limit under consideration, is given by

Z(α) = exp

(
−N

2

2
V (u)

)
,

V (u) = (q − 1)f(u)− 2α uq−1,

f(u) =


u2, u ≤ 1

2
1

4
− 1

2
log [2(1− u)] , u >

1

2
.

(2.75)

30 Indeed the saddle point equation (2.74) is simply the condition that the `potential' V (u)
in (2.75) is extremist. In other words the saddle point solutions of our matrix integral are
in one to one correspondence with the saddle points (or extrema) of V (u); the contribution

of each saddle point to the matrix integral is simply given by e−N
2 V (u)

2 .
At every positive value of α, V (u) = 0 when u = 0 and V (u) diverges as u approaches

unity from below. 31 However the qualitative behaviour of the function V (u) for values
between zero and unity depends sensitively on α.

It is easily veri�ed that for α ≤ αc =
(q − 1)q−1

4(q − 2)q−2
the function V (u) increases mono-

tonically as u increases from 0 to unity (see Fig 2.1 (a)). It follows that when α ≤ αc the
only saddle point lies at u = 0. In this case the saddle point value of the partition function
is Z(x) = 1 (see below for a discussion of �uctuations about this saddle point value).

At α = αc the potential V (u) develops a point of in�ection at u = uc =
q − 2

q − 1
(see Fig.

2.1 (b)). Note that uc >
1

2
. At this value of α we have a new saddle point in the gapped

phase.
As α is increased above αc the point of in�ection at u = uc splits up into two saddle

points; a local maximum at u = umax < uc and a local minimum at u = umin > uc (see
Fig. 2.1 (c)). To start with both saddle points are in the gapped phase. We refer to the
saddle point at umax as the upper saddle and the saddle point at umin as the lower saddle.

As α is increased further the value of umin continues to increase while the value of umax

continues to decrease. At α = αpt = 2q−3 > αc, umax =
1

2
. For α > αpt, umax <

1

2
and the

upper saddle makes a Gross Witten Wadia phase transition into the wavy phase (see Fig
2.1 (d)). 32

Finally, when the new saddle point at u = uc is �rst nucleated, we have V (uc) > 0. As
α is increased V (umin) decreases below this value. At α = α1pt = we have V (umin) = 0

30The factor of
1

2
in the exponent of the �rst equation in (2.64) is a consequence of the fact that we are

working with the orthogonal model. The analogous formula for the partition function of the unitary
model, (2.65), is the square of the partition function listed here and so does not have the factor of half
in the exponential.

31Note that u =
TrU

N
≤ 1.

32The formula for umax, umin as a function of α is complicated in general. However the formula simpli�es
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Figure 2.1: E�ective potential for di�erent values of temperature and associated phase
transitions. The graphs are drawn for q = 4.

(see Fig 2.1(f)). For larger values of α, V (umin) < 0 and our matrix model undergoes a
�rst order phase transition from the saddle at u = 0 to the saddle at u = umin. Note that
at α = α1pt (i.e. at the `Hawking Page transition temperature') the saddle at u = umax is
already in the the wavy phase when q = 4 but is still in the gapped phase for q > 4.

at large α and we �nd

umax =

(
1

α

) 1
q−3

, umin = 1 +
1

−4α+ q − 2
+

q2 − 3q + 2

2(−4α+ q − 2)3
+ . . . (2.76)
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2.3.3 Thermodynamics in the canonical ensemble

The thermodynamics of our system in the canonical ensemble follows immediately from
the nature of the function V (u) as a function of α described at the end of the last section.
For convenience we discuss the phase diagram of our system as a function of α rather than

temperature (recall that α is de�ned by the relations e−βm = x =
α

pN q−3
).

For α < αc the saddle at u = 0 is the only saddle point in the theory (see Fig 2.1 (a)).
For αc < α < αpt

33 there are two additional saddle points at u = umin and u = umax

with
1

2
< umax < umin < 1. The saddle point at u = umax is a local maximum and

V (umax) > 0 (see Fig 2.1 (c)). The saddle point at u = umin is a local minimum and
however V (umin) > 0. Both these saddles are subdominant compared to the �at saddle in
this range of α.

For αpt < α < α1pt the two new phases continue to be subdominant compared to the

phase at u = 0; in this range, however, the solution at u = umax <
1

2
is now in the wavy

phase (see Fig 2.1 (e)).
At α = α1pt we have V (umin) = 0. For α > α1pt V (umin) < 0, so the solution at u = umin

is the dominant saddle point. Our system undergoes a phase transition at α = α1pt (see
Fig 2.1 (e)). The value of α1pt is given as a function of q by

α1pt =
1

4
(q − 1)w

[
1− 1

(q − 1)w

]−(q−2)

, w = −W−1

−2 exp
[
− (q+1)

2(q−1)

]
q − 1

 , (2.77)

where Wn is the productlog function.

2.3.4 Thermodynamics in the microcanonical ensemble

In this subsection we compute the density of states as a function of energy corresponding
to each of the saddle points described in the previous subsection. In order to do this we
use the thermodynamical relations

E(α) = α∂α logZ(α) S(α) =

(
logZ(α)− E(α) log

α

N q−3p

)
, (2.78)

where E is the eigenvalue of
H

m
. We invert the �rst of these equations to solve for α(E),

and then plug this solution into the second equation to obtain S = S(E). For the trivial
saddle, the saddle value of S(E) is trivial, so we include the contribution of �uctuations
around this saddle.

33In the text of this paragraph and the next we have assumed that αpt < α1pt as is the case for q = 4. For
q ≥ 6 the order above is reversed, and the discussion has obvious modi�cations.
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The saddle at u = 0

The saddle point at u = 0 exists at every value of α. In this case the saddle point
values of the energy and entropy both vanish so the �rst nontrivial contribution to the
thermodynamics comes from the study of �uctuations about the saddle point. In this
subsection - which is a bit of a deviation from the main �ow of the (otherwise purely
saddle point) computations of this chapter we describe the relevant computations. For
the purposes of this subsection - and this subsection only - we retreat away from the
scaling limit (2.10) and work with the full matrix model (2.8) - or more precisely with
its generalization (2.9) which allows for bosonic as well as fermionic harmonic oscillators.
Working with this generalized model we compute the �uctuations around the trivial saddle
point TrUn

m = 0, i.e. ρnm = 0.
For the purposes of studying small �uctuations around this saddle point we work with

the integral (2.62). The integral (2.62) can be simpli�ed by making the variable change

ρnm =
βnm
N

(2.79)

The point of the scaling (2.79) is that it eliminates all explicit factors of N from the integral
(2.62). It follows that - at least for the purposes of the perturbative Wick contraction
evaluations we perform in this subsection - at any �nite order in perturbation theory the
integral over βmn receives signi�cant contributions only from values of βmn of order unity.

Note however that if βmn are of order unity then ρmn are of order
1

N
and so are very small.

We can thus safely integrate over all values of βmn without worrying about boundaries to
the domain of integration. 34 In other words (2.62) may be rewritten in terms of these
scaled variables

Z(x) =
∞∏
n=1

Fn(x),

Fn(x) =


Mn

∫ q−1∏
m=1

dβnm exp

(
−

q−1∑
m=1

|βnm|2
2n

+NFx
n

(∏q−1
m=1 β

n
m

)
+ c.c

n

)
n odd

Mn

∫ q−1∏
m=1

dβnm exp

(
−

q−1∑
m=1

|βnm|2
2n
−NFx

n

(∏q−1
m=1 β

n
m

)
+ c.c

n

)
n even.

(2.80)

The expressions for Fn above involve an integral with the usual measure dzdz for the
complex variable βnm. The integral is taken over the whole complex plane35. The x inde-
pendent normalization constantMn above are chosen to ensure that normalization of Haar
measure,i.e, Fn(0) = 1 .

34More generally the variables ρmn are constrained by the requirement that the function ρm(θ) =
1

2π

∑
n

ρnme
−inθ, is positive for every value of θ. This constraint is trivial when all ρnm as is e�ectively

the case for the perturbative evaluations discussed above.
35As mentioned above, the di�erence between this measure and dθjm is sub-dominant in large N limit.
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The expressions for Fn presented in (2.80) are formal as the integrals that de�ne Fn do
not converge. However this fact does not bother us, as we are not really interested in the
the expression for Z(x) but only in the coe�cients in of xk for each k in that expression.
Each of these coe�cients is easily obtained (by Taylor expanding the non Gaussian terms
in the integrands in the formulas for Fn above and performing all integrals using Wicks
theorem. We �nd

Fn(x) =
∞∑
k=0

x2kn
(
p2(2n)q−3

)k
(k!)q−3, p ≡ NF , (2.81)

Let E denote the eigenvalues of
H

m
; in other words E is the energy of our theory in

units of the oscillator mass (or frequency). It follows from (2.81) that the functions Fn(x)
represent the partition function of a system whose entropy as a function of energy is given
by Sn(E) where

eSn(E) =

(
E

2n
!

)q−3 (
p2(2n)q−3

) E
2n . (2.82)

At large E ( i.e. when E � 2n) we may use Sterling's approximation to simplify (2.82) to
obtain the asymptotic formula

Sn(E) = (q − 3)
E

2n
log

(
E

2n

)
+
E

2n
(−(q − 3) + 2 log p+ (q − 3) log(2n)) . (2.83)

Notice that the density of states grows faster than exponentially as a function of energy,
explaining the divergence of the integrals that de�ne Fn (or, equivalently, explaining why
the sums in (2.81) are divergent at every x no matter how small.

As the partition function of our system is simply the product over the functions Fn,
the entropy of our system at large energies is obtained by distributing the available energy
E among the various systems Sn in such a way as to maximize the entropy. A glance at
(2.83) is su�cient to convince oneself that the best one can do is to put all available energy
into the `system' S1. It follows that for E � 1, the contribution of the saddle point at
u1 = 0 to the entropy of the system is

S(E) = S1(E) = (q − 3)
E

2
log

(
E

2

)
+
E

2
((log(2)− 1)(q − 3) + 2 log p) . (2.84)

The saddle at u = 0 is exceptional in that it is trivial as a saddle point; in order to
determine the thermodynamics of this `phase' we had to perform the one loop expansion
about this saddle point. The remaining saddle points we will study in this section are
nontrivial even at leading order, and so will be analyzed only within the strict saddle point
approximation. In the rest of this subsection we also return to the study of the strict
scaling limit (2.10).
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The wavy phase

In this subsection we study the thermodynamics of the wavy saddle, i.e. the saddle point
at u = umax for α > αpt = 2q−3. The contribution of this saddle point to partition function
is

logZ(α) = −N
2

2
(q − 3)α−

2
q−3 . (2.85)

The energy of the corresponding phase is given by

E(α) = α∂α logZ(α) =
N2

α
2
q−3

, (2.86)

Note that the energy is a decreasing function of α so that this phase has a negative speci�c
heat. As this phase exists only for α > αpt it follows that the energy in this phase is
bounded from above by

Ept ≡ E(αpt) =
N2

4
. (2.87)

The entropy of this phase is given by

S(α) =

(
logZ(α)− E(α) log

α

N q−3p

)
. (2.88)

Eliminating α between (2.86) and (2.88) we obtain

S(E) = (q − 3)

[
E

2
log

(
E

2

)
− E

2

]
+ E log p+ (q − 3)

E

2
log(2). (2.89)

Note that (2.89) is in perfect agreement with (2.84). This match strongly suggests that
the formula (2.89) is correct for all values of E in the range

1� E <
N2

4
. (2.90)

The gapped phase

The analysis of this section applies to the saddle point at u = umax for α ≤ αpt and to
the saddle point at umin. The partition function of this saddle is given by plugging the
solution of the equation

u = 1− 1

4αuq−2
, u ≥ 1

2
(2.91)

into the formula

logZ = −N
2

2

[
(q − 1)

(
1

4
− 1

2
log [2(1− u)]

)
− 2αuq−1

]
. (2.92)

As we have explained above, for α < αc =
(q − 1)q−1

4(q − 2)q−2
there are no legal solutions to

(2.91). For αc < α < αpt = 2q−3 there are two legal solutions and for α > αpt there is a
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single legal solution to this equation. After the partition function is obtained one obtains
the energy and entropy of the solution using the thermodynamical formulae

E(α) = α∂α logZ(α) , S(α) =

(
logZ(α)− E(α) log

α

N q−3p

)
. (2.93)

Eliminating α from the expressions obtained in (2.93) we �nd the entropy S as a function
of the energy. This function S = S(E) is di�cult to �nd explicitly simply because (2.91) is
di�cult to solve. The procedure described above, however, implicitly de�nes this function.
It is not di�cult to convince oneself that there is a single saddle point of this nature for

every energy E >
N2

4
and that the function S(E) is an analytic function of energy for

every energy greater than
N2

4
.

While explicit formulae are di�cult to obtain in general, they are easy to obtain in
three special limits which we now describe

A. The solutions with α near αpt i.e. (E near Ept):

At α = αpt (2.91) admits the solution u =
1

2
. (This is a solution at u = umax, i.e.

the solutions that is a local maximum). It follows that at α = αpt − δα, (2.91) admits a

solution with u =
1

2
+ δu. Here δu is solved order by order in δα. A few lines of standard

algebra gives:

S (Ept + δE) =− 1

4
N2

[
log

(
2q−3N3−q

p

)
+
q − 3

2

]
− log

[
2(q−3)/2N3−q

p

]
δE

+
2(q − 3)

2N2
(δE)2 +

4(7− 3q)

6N4
(δE)3 + . . .

(2.94)

Comparing (2.94) and (2.89), it is easily veri�ed that while S(E), S ′(E) and S ′′(E) are

continuous at E =
N2

4
, S ′′′(E) is discontinuous. In that sense the function S(E) has a

third order phase transition' at E =
N2

4
. Further taking the limit:

lim
ε→0+

S
′′′
(
N2

4
− ε
)

=
4(6− 2q)

N4
, lim

ε→0+
S
′′′
(
N2

4
+ ε

)
=

4(7− 3q)

N4
(2.95)

This discontinuity is a consequence of the fact that the saddle point undergoes a Gross
Witten Wadia transition at this energy.

B. The solutions with α near αc (i.e. E near Ec):

At α = αc (2.91) admits the solution u =
q − 2

q − 1
. For α = αc + δα the (2.91) admits

two solutions near this critical solution at u = uc + δu; these are the solutions at u = umax
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and u = umin respectively. A careful calculation shows E, S as a function of α are di�erent
for this two branches but S as a function of E is same for both of them and given by:

S (Ec + δE) =
1

4
N2

[
−(q − 2) log

(
(q − 2)2−q(q − 1)q−1N3−q

4p

)
+ (q − 1) log

(
2

q − 1

)
+

(q − 3)

2

]
− log

[
(q − 2)2−q(q − 1)q−1N3−q

2(q+1)/2p

]
(δE) +

[
− 8

3N4(q − 2)(q − 1)

]
(δE)3 + . . .

(2.96)

Note that (2.96) is completely smooth around E = Ec =
1

4
N2(q − 2).

C. The solutions with α� 1 (i.e. E � N2

2
):

At α� 1 (2.91) admits the solution near u = 1; this is the thermodynamically dominant

saddle at u = umax. Setting u = 1− δu, δu is solved to give as series in
1

α
:

δu =

(
1

4

)
α−1 +

(
q − 2

16

)
α−2 + . . . (2.97)

It follows that:

logZ(α) = N2α +

(
−1

4
N2(q − 1)

)
log(α) + . . . ,

E(α) = N2α +

(
−N

2(q − 2)(q − 1)

32

)
α + . . . ,

S(α) =
(
−N2

)
α log(α) +

(
N2
(
1 + log

(
2pN q−3

)))
α + . . .

(2.98)

which gives

S(E) = E − E log

(
E

pN q−1

)
− N2

2

[
q − 1

2
log

(
2E

N2

)
+

3

4
(q − 1) +

1

8
(q − 1)

(
2E

N2

)−1 ]
+ . . . (2.99)

Entropy as a function of energy for E � N2

2

We have veri�ed above that for E � N2

2
the saddle point for the eigenvalue distribution

function becomes very peaked and so is well approximated by a delta function. Whenever
the eigenvalue distribution becomes so peaked e�ect of the holonomies on the partition
function of the system can be ignored. It follows that for energies much greater than N2

the partition function of our system is simply that of NFN
q−1 complex fermionic oscillators.

The partition function for our system thus reduces to

logZ(x) = NFN
q−1 log(1 + x), (2.100)
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For x� 1 (2.100) reduces to
logZ(x) = x p N q−1. (2.101)

Substituting x =
α

N q−3p
we �nd that (2.101) agrees precisely with the leading term in the

�rst line of (2.98):
logZ(α) = N2α. (2.102)

The energy of the corresponding phase is given by

E(α) = α∂α log(Z(α)) = N2α. (2.103)

The entropy of this phase is given by

S(α) = logZ(α)− E(α) log
α

N q−3p
= N2

(
1− log

(
α

pN q−3

))
α. (2.104)

Eliminating α between (2.103) and (2.104) we obtain

S(E) = E

(
1− log

(
E

pN q−1

))
. (2.105)

Note that (2.105) matches with the leading and 1st subleading term in (2.99).

2.4 The holonomy e�ective action with weak interac-

tions

In the previous section we studied the free energy of the mass deformed SYK model in

the zero coupling
J

m
= 0. In this section we will study corrections to the results of the

previous section in a power series expansion in the coupling constant. For simplicity we
also study the special case NF = 1 in (2.7) .

In principle the leading large N contribution to Se� is given as follows (we restrict
attention to the massless case for simplicity in this paragraph). Consider the gap equation
(2.20). We are instructed to solve this gap equation on a thermal circle, subject to the
requirement that the solution respect the boundary conditions

G

(
t1 +

β

2
, t2

)
= −UG

(
t1 −

β

2
, t2

)
G

(
t1, t2 +

β

2

)
= −G

(
t1, t2 −

β

2

)
U−1

Σ

(
t1, t2 +

β

2

)
= −UΣ

(
t1, t2 −

β

2

)
Σ

(
t1 +

β

2
, t2

)
= −Σ

(
t1 −

β

2
, t2

)
U−1

(2.106)
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We must then plug this solution into (2.18) and the corresponding result is represented by
Se�(U). While this prescription is clear it is rather di�cult to implement in practice. In
order to get some intuition for the e�ect of interactions on Se�(U) present some perturbative
results for this object.

The thermal partition function of theory (2.7) is given, as usual, by the Euclidean
path integral of the theory on a thermal circle of circumference β. The free result (2.8)
is obtained by integrating out all fermions at at `one loop' (i.e. by computing fermionic
determinants -we explain how this works in more detail below). Corrections to (2.8) are
obtained by including the contribution of more general diagrams.

It was demonstrated in [19] that, in the strict large N limit of interest to this chapter,
the only graphs that contribute are melonic graphs. One way of organizing the graphs
that contribute to our computation is by the number of melons a graph contains. We will
refer to a graph with n melons as an nth order graph. Such graphs are proportional to
J2n. As in the previous section we will be interested in the e�ective action as a function of
holonomies, Se�(U). Let the contribution to Se�(U) from graphs of nth order be denoted
by Sn(U). We have

Se�(U) =
∞∑
n=0

Sn(U). (2.107)

As in the previous section we will principally be interested in the partition function in
the scaling limit (2.10). In this limit the temperature is very small and so β is very large
β ∼ logN . For this reason it is important to keep track of explicit multiplicative factors
of β (as opposed, for instance, to factors of x = e−βm) in our results. Below we will
demonstrate that nth order graphs have at least one and at most n explicit multiplicative
factors of β. It follows that the contributions of nth order graphs to the e�ective action
can be organized in series

Sn(U) =
J2nβn

mn

n−1∑
a=0

(
1

mβ

)a
fna (x, U) ≡ −

(
J

m

)2n

F2n(mβ, x, U). (2.108)

Substituting (2.108) into (2.107), we can rearrange the sum over graphs as

Se�(U) =
∞∑
k=0

(
J

m

)2k

Hk(
J2β

m
, x, U),

Hk

(
J2β

m
, x, U

)
=
∞∑
n=k

(
J2β

m

)n−k
fnk (x, U).

(2.109)
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As we are interested in the scaling limit (2.10) it follows that:

Hk

(
J2β

m
, x, U

)
= H̃k

(
J2β

m

)
x

q−1∏
i=1

TrUi,

fnk (x, U) = fnk x

q−1∏
i=1

TrUi,

Hk

(
J2β

m

)
=
∞∑
n=k

(
J2β

m

)n−k
f̃nk ,

Seff(U) = x

q−1∏
i=1

TrUi ×
∞∑
k=0

(
J

m

)2k

H̃k

(
J2β

m

)
,

(2.110)

where we will present an argument for the u dependences asserted here below.
(2.110) represents an interesting reorganization of usual perturbation theory. This

reorganization is particularly useful at small
J2

m2
� 1 but �nite values of

J2β

m
. As β ∼

m

logN
in the scaling limit, it follows that

J2β

m
is �xed only for

J2

m2
∼ 1

logN
. At these small

values of the coupling, Seff(U) is well approximated by the �rst term in the expansion

in (2.110), i.e. by the term proportional to H̃0. We will explicitly evaluate H̃0 in this

section and so reliably determine the partition function when
J2

m2
is in the parametric

range described above. 36

In the rest of this section we present the results of our explicit perturbative compu-
tations. Although we are principally interested in the function H0 in the scaling limit,
to set notations and for practice we �rst present the results of simpler computations. To
start with we work out the partition function at level zero and recover the free partition
function of the previous section. We then work out the partition function at level 1 (i.e.
including graphs with a single melon). Next we present our results at level 2 (i.e. including
all graphs with two melons). Finally we turn to the problem of principal interest to us,

36Although this is far from guaranteed, it is possible that the approximation Se� ∼ H0 has a larger range

of validity. Let us consider the parametric regime in which
J2

m2
is small compared to unity but large

compared to
1

mβ
. In this regime

J2β

m
is e�ectively scaled to in�nity. Let us de�ne

rk = lim
J2β
m →∞

Hk

H0
. (2.111)

If it turns out that rk is bounded (�nite) then it follows that H0 is in fact also a good approximation

to the partition function for all values of β assuming only that
J2

m2
� 1. It would be interesting to

investigate whether rk above are actually bounded for all k; however we leave that to future work.
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namely the sum of the in�nite set of graphs that generates H0. As preparation for all these
computations we �rst brie�y discuss the structure of the free Greens function.

2.4.1 Free Greens Function

Consider the free fermionic Greens function

〈ψa(t)ψb(0)〉.

We work in a colour basis in which the holonomy U is diagonal. In this basis in which the
action of holonomies on the fermions is given by

Uψa = eiθaψa,

Uψa = e−iθaψa.
(2.112)

The free fermionic Greens function at �nite temperature is given by

〈ψa(t)ψb(0)〉 =G0(t)δab , G0(t) = f(t,m, θa), for −β ≤ t ≤ β (2.113)

where

f(t,m, θa) =
1

2
e−(m+iθa)t

[
sgn(t) + tanh

(
1

2
(m+ iθa)β

)]
=

e−(m+iθa)t

1 + x e−iθaβ
[
Θ(t)−Θ(−t) x e−iθaβ

]
.

(2.114)

Note that the function f obeys the identity

f

(
β

2
+ t,m, θa

)
= −f

(
−β

2
+ t,m, θa

)
for 0 ≤ t <

β

2
, (2.115)

from which it follows that the Greens function is antiperiodic on the circle as required on
physical grounds.

Note that we have presented the Greens function only in the `fundamental domain'
−β < t < β. Our fermionic Greens function is taken by de�nition to be a periodic function
of t with period 2β; this property plus the explicit results (2.113) and (2.114) can be used
to de�ne the Greens function at every value of Euclidean time as required. The extended
Greens function de�ned in this manner has singularities at t = nβ for every integral value
of n, and is smooth everywhere else.

Note also that the `reversed' Greens function 〈ψa(t)ψbb(0)〉 is also given in terms of the
function G0 by the formula 37

〈ψa(t)ψb(0)〉 = −G0(−t)δba. (2.116)

This formula is also manifestation of symmetry of mass deformed SYK Lagrangian under
the simultaneous swaps ψ ↔ ψ, U ↔ U−1, m↔ −m.

37Owing to time translation symmetry.
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2.4.2 Level zero: Free theory

In this brief subsection we compute Se� at one loop, i.e. in the free theory. The result for
Se�(U) was already presented in the previous subsection; we obtain that result here from
a one loop computation as a simple practice exercise. Let

ωn =
2π

β

(
n+

1

2

)
. (2.117)

The �elds ψa and ψa can be independently expanded in Fourier space as

ψ(t) =
∑
n

ψne−iωnt , ψ(t) =
∑
n

ψne
+iωnt. (2.118)

When substituted the free part of action (2.7) becomes

S =
∑
n,a

ψa,n[β(−iωn +m+ iθa)]ψ
a,n. (2.119)

Fermionic integration gives:

ZF =
∏
a

n=+∞∏
n=−∞

[β(−iωn +m+ iθa)]

=
∏
a

n=+∞∏
n=−∞

[−i(2πn+ π) +mβ + iθaβ]

=
∏
a

n=+∞∏
n=−∞

[−i2πn+ c(θa)]

=
∏
a

c(θa)
2

n=+∞∏
n=1

[(−i2πn+ c(θa))(+i2πn+ c(θa))]

=
∏
a

c(θa)
2

n=+∞∏
n=1

[
(2πn)2 + c(θa)

2
]

=
∏
a

c(θa)
2

(
n=+∞∏
n=1

(2πn)2

)
n=+∞∏
n=1

[
1 +

(
c(θa)/2

πn

)2
]

=
∏
a

c(θa)
2

(
n=+∞∏
n=1

(2πn)2

)[
sinh c(θa)

2
c(θa)

2

]

=N
∏
a

[
sinh

c(θa)

2

]
∼
∏
a

e
c(θa)

2 (1− e−c(θa)),

(2.120)

where
c(θa) = mβ + iθaβ − iπ
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and

N =
∏
a

n=+∞∏
n=1

(2
√

2πn)2

is an in�nite holonomy independent constant. As for every θa there is −θa to be taken into

account
∏
a

e
c(θa)

2 becomes independent of holonomy. Keeping only holonomy dependent

terms 38

logZ =
∑
a

log[1 + xe−iθaβ] , x = e−mβ, (2.121)

In other words
logZ = Tr log[1 + xU ]. (2.122)

Expanding (2.122) in a power series in x we recover (2.8) at NF = 1. In the scaling limit
we recover (2.64).

2.4.3 Level one: single melon graphs

The contributions of graphs with a single melon to the Free energy is given by

F2 =
1

2!
2C 2

2
(−1)q/2q m2

∫ q∏
k=1

G0(t1 − t2, θak) dt1dt2, (2.123)

ψ
ψ̄

Figure 2.2: Single loop contribution to free energy.

In this graph we contract each of �elds in the interaction vertex ψq with one of the
�elds in ψ

q
. Consider any particular ψ �eld. This ψ �eld has to contract with one of the

q ψ �elds in the second interaction vertex. It is thus clear that there are q choices for this
contraction (the choices of which ψ our speci�ed ψ pairs up with). Once this choice has
been made, if we are interested - as we are- in graphs that contribute only at leading order

38Note that this also ensures for β →∞ partition function is 1 and for β → 0 total number of states for a
given a are 2.
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in large N there are no further choices in our contraction. Recall that every one of the
remaining ψ's (respectively ψ's) has exactly one colour common with the ψ (resp ψ) that
we have just contracted together. The leading large N behaviour is obtained only if the
ψ that shares any given gauge index with our special contracted ψ is now contracted with
the ψ that shares the same gauge index with the special contracted ψ. This rule speci�es
a unique contraction structure for the remaining �elds. It follows that, up to a sign, the
symmetry factor is simply q. The sign in question is simply (−1)(q−1)+(q−2)+..+1 Recalling
that q is even, it is easy to see that this phase = (−1)q/2.

The integral in (2.123) is very easy to perform. To see this note that the analytic
structure of the integrand as a function of t = t1 − t2 takes the form

e−qmt(Aq sgn(t) +Bq),

for various di�erent values of q. The integrand is integrated from −β
2
to

β

2
. The integral

over t1 + t2 produces an overall factor of β. The integrals are all trivial to do; evaluating
them we �nd the �nal answer

F2 =
(−1)q/2

2!
2C 2

2
q mβ I

(2)
1 (q, x), (2.124)

where

I
(2)
1 (q, x) =

1− xq
q

TrF

q∏
k=1

(
1

1 + xŨk

)
. (2.125)

The expression TrF (...) in the equation above represents the trace over an operator built
on a particular Auxiliary Hilbert space. The operator in question is a function of the
elementary operators Ũk that act on this Hilbert space. We will now carefully de�ne the
relevant Hilbert space and the operators Ũk and so give meaning to (2.125).

The operators Ũk in (2.125) have the following meaning. These operators are unitary
operators that act on a vector space whose dimensionality is N

q
2

(q−1). The vector space
in question is the tenor product of q − 1 factors, each of which has dimension N

q
2 . Each

factor described above is associated with one of the q − 1 gauge groups. Let us focus on
any one gauge group, say the �rst. The factor associated with this gauge group consists

of
q

2
distinct factors of isomorphic N dimensional spaces on which the N × N holonomy

matrices of the �rst gauge group naturally act.
Recall that each ψ �eld that appears in an interaction has exactly one gauge index

contraction with every other ψ �eld. This means, in particular, that the indices of gauge

group 1 are contracted between
q

2
pairs of ψs. This fact is the origin of the

q

2
distinct

factors of the space on which the holonomy matrices of the �rst gauge group act.
With all this preparation we now explain the form of the operators Ũk. Each Ũk acts

as U1 (the holonomy of the �rst O(N) gauge group) on one of the
q

2
copies of the N

dimensional vector space associated with the �rst O(N), and as identity on the remaining
q

2
− 1 copies of this space. In a similar fashion it acts as U2 on one of the

q

2
copies of
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the N dimensional vector space associated with the second O(N), and as identity on the

remaining
q

2
− 1 copies of this space. And so on. Exactly two Ũks act as U1 on the same

Hilbert space. Exactly two Ũks act as U2 on the same Hilbert space, etc. Finally every two
Ũks act on the same Hilbert space for one and only one gauge group.39 The symbol TrF
in that equation denotes the trace over the full N

q
2

(q−1) dimensional Hilbert space.
From a practical point of view it is less complicated to use the de�nitions of the Ũk

operators than it might at �rst seem. We could, for instance, expand the result (2.125) in

a power series in x. The formal looking expressions of traces of sums of products of Ũk
operators that appear as coe�cients in this expansion can easily be evaluated in terms of
traces of powers of the holonomy matrices U1 . . . Uq−1 of the factors of O(N).

A little thought will allow the reader to convince herself that the rules described above
imply that, for instance

Tr

(
q∑

k=1

Ũk

)
= qN

(q−2)(q−1)
2 TrU1Tr U2 . . .TrUq−1, (2.126)

Tr

(
q∑

k1 6=k2

Ũk1Ũk2

)
= qN

q2−5q+6
2

[
q−1∏
k=1

TrU2
1 (TrU2)2 . . . (TrUq−1)2

+ (1↔ 2) + (1↔ 3) + . . . (1↔ q − 1)] , (2.127)

Tr

(
q∑

k=1

Ũ2
k

)
= qN

(q−2)(q−1)
2

(
TrU2

1 TrU2
2 . . .TrU2

q−1

)
. (2.128)

As an illustration of these rules let us evaluate the partition function in the low energy

scaling limit described in the previous section. Recall that in the limit of interest x ∼ 1

N q−3

and we are instructed to retain only those contributions to Se�(U) that are linear in x;
terms of higher order in x can be discarded. It follows that the partition function in this
limit may be evaluated by Taylor expanding (2.125) in x and discarding all terms that are
quadratic or higher order in x. Using the �rst of (2.126) we conclude immediately that

F2 =
(−1)q/2

2!
2C2/2 q mβ N

q−1(−x)

q−1∏
m=1

ρ1
m. (2.129)

where ρ1
m =

TrUm
N

as in the previous section, and we have dropped the terms of order x0

which are independent of Um.

39This means that if U1 and U3 act on the same copy of the Hilbert space for gauge group 1, then they
necessarily act on di�erent copies of the Hilbert space for all the other gauge groups.
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2.4.4 Level 2: 2 melon graphs

At level 2 we once again have contributions from a single Feynman diagram Fig 2.3. In
order to evaluate this graph we must evaluate in integral

F4 =
1

4!
4C4/2 (−1)2(q2)2

∫ 4∏
i=1

dti

(
q−1∏
i=1

G0(t12, θai)

)(
q−1∏
i=1

G0(t34, θbi)

)
‘×G0(t32, θc2)G0(t14, θc1). (2.130)

ψ ψ̄

ψψ̄

Figure 2.3: Two loop contribution to free energy.

We give some details of this expression and the evaluation of this integral in the Ap-
pendix A.2. We have completely evaluated this integral with the help of mathematica (see
Appendix A.2.2 for arbitrary number of melons), but the �nal result for Se�(U) in the gen-
eral case is too complicated to transfer to text. As before, however, the answer simpli�es
dramatically in the low energy scaling limit of the previous section (see Appendix A.2.1)
and we �nd

F4 =
(−1)

4!
4C4/2 2(q2)2[mβ I

(4)
1 (q) +m2β2 I

(4)
2 (q)] N q−1x

q−1∏
m=1

ρ1
m, (2.131)

where

I
(4)
1 (q) = −2

q
(2q − 3),

I
(4)
2 (q) = −1.

(2.132)
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Note that the �nal answer had two terms; one proportional to an overall factor of β and
the second proportional to β2. In the next subsection we will argue that a graph at level
n, in the low temperature scaling limit, has terms proportional to βq for q = 1 . . . n.

2.4.5 The in�nite sum H0

We will now turns to a study of the free energy at level n. As in the previous subsection
we will focus on the start at the low energy scaling limit of the previous section, and so
retain only those terms in all graphs that are proportional to x. As we will see below,
general graphs in the scaling limit and at level n break up into di�erent pieces that are
proportional to βk for k = 1 . . . n.40 We will further focus our attention on the graph with
the largest power of β, i.e. in this subsection we will contribute that piece of the level n
answer that scales like βnx. It turns out that this piece is rather easy to extract as we now
explain.

Let us �rst recall that the propagator in our theory takes the following form:

〈ψa(t)ψ
b
(0)〉 =

e−(m+iθa)t

1 + x e−iθaβ
[
Θ(t)−Θ(−t) x e−iθaβ

]
. (2.133)

It will turn out (and we will see explicitly below) that the denominator in (2.133) only
contributes at order βn−1 or lower in free energy linear in x. For the purposes of the current
subsection, therefore (where we wish to ignore terms at order x2 or higher and only keep
highest power of β) this denominator can be dropped, and we can work with the simpli�ed
propagator41

〈ψa(t)ψ
b
(0)〉 =e−(m+iθa)t

[
Θ(t)−Θ(−t) x e−iθaβ

]
. (2.134)

In this subsection we assume m > 0; the case m < 0 can be argued in a completely analo-
gous manner with the role of ψ and ψ reversed in the analysis below. In the computation
of Feynman diagrams on the circle we will need to choose a `fundamental domain' on the
circle; our (arbitrary but convenient) choice of fundamental domain is

−β
2
< t <

β

2
(2.135)

40For instance the level one graph computed above was proportional to β while the level two graph was
the sum of one term proportional to β and another term proportional to β2.

41The role that of the overall holonomy dependent phase factors above is quite subtle. Naively these overall
factors can be dropped in their contribution to free energy diagrams. The naive argument for this is

that the net contribution to of these phase factors at any interaction vertex is proportional to
∏
a

ei(θa)t1

where the sum runs over the phases θa of all the q propagators that end at that interaction vertex. As

the interaction vertex is a gauge singlet,
∑

θa vanishes, so it might at �rst seem that the contribution of

all these phase factors drops out. This is in general incorrect. The subtlety is that t1 is not single valued
on the circle. In diagrams in which propagators `wind' as they go around the circle, one of the factors in
the product may e�ectively be evaluated at, e.g. t1 + β and so the net contribution of this phase factor
could turn out to be eiβθa . While this contribution is constant (independent of t1), it is nontrivial in
nonzero winding sectors. Such a contribution will play an important role in our computation below.
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Finally some terminology. We will call the part of the propagator (2.134) that is propor-
tional to θ(t) the `forward' (`normal') part of the propagator, and the part of the propagator
proportional to θ(−t) the `reverse' part of the propagator. Note that the normal part of
the propagator ranges is modulus from 1 to

√
x; it is maximum (i.e. unity) at t = 0 and

minimum (i.e.
√
x) at t =

β

2
. The modulus of the reverse part of the propagator varies

in magnitude from
√
x to x. It is minimum (i.e. equal to x) at t = 0 and maximum (i.e.

equal to
√
x) at t = −β

2
.

With all this preparation we are now ready to isolate the parts of the level n diagrams
whose contribution is proportional to xβn.

a b
a

b

a

b

Figure 2.4: Circle diagram: a, b represents respectively insertions of ψ, ψ. Direction of
arrow is from ψ to ψ. The diagram is drawn for q = 4.

To start with let us consider the simple nth level ring diagram depicted in Fig. 2.4.
In this diagram we have n a type vertices and n b type vertices. In this graphs we have
q − 1 propagators connecting adjacent a and b type vertices, but only a single propagator
connecting b to a type vertices.

Consider any propagator between a and b type vortices - which has a type vertex A at
time t1 and its adjacent b type vertex B at time t2. Depending on whether t1 > t2 or t1 < t2,
all the q−1 propagators from A to B are either simultaneously all reverse or simultaneously
all normal. If all propagators are reverse, the modulus of these propagators is less than√
x
q−1

< x (recall q ≥ 4). It follows that con�gurations in which the propagators from
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A to B do not contribute in the scaling limit, and so all propagators from A to B must
be normal. Given that these propagators are all normal their modulus is proportional to
e−m(q−1)|t1−t2|. It is intuitively clear that separating t1 from t2 over a �nite fraction of the
circle forces us to pay a high cost in factors of x; it can be shown (this will be clearer in
a bit) that such con�gurations do not contribute to the result in the scaling limit. In the
scaling limit we only receive contributions from con�gurations in which |t1− t2| is of order
1

m
. It follows that for parametric purposes, we can simply regard t1 and t2 as the same

point, replacing the integral over t1 − t2 by
1

m
. For parametric purposes, in other words,

each of the melons in Fig. 2.4 can be thought of as a single interaction vertex, inserted at
a single `self energy vertex', inserted at a single time, with e�ective an e�ective insertion

factor of order
J2

m
.

Now let us turn to the propagators between b and a type vertices. These are now n
di�erent propagators connecting the e�ective self energy blobs described in the previous
paragraph. Let the e�ective times of insertions of these self energy blobs be T1, T2 . . . Tn.
Our graph is proportional to the product of n propagators, the �rst from T1 to T2, the
second from T2 to T3 . . . and the last from Tn to T1 + wβ where w is an integer. As each
reverse propagator contributes a factor of at least

√
x to the integrand, no more than two

of these propagators can be reverse.
Let us �rst consider diagrams in which all propagators are forward. As all propagators

move forward in time, the �nal propagator in the sequence must end not at time T1 but
at time T1 + wβ where w is a positive integer. The modulus of the product of these
propagators is then easily seen to be proportional to e−wmβ = xw. In the scaling limit of
interest to us, the only option is w = 1. Once we set w = 1, the integrand of the diagram
is now independent of the e�ective insertion times Ti. The integral over these n insertion
times thus gives a factor βn, and the contribution of the graph in question is proportional
to xβn as desired.

Now let us consider diagrams in which one of the propagators between the e�ective self
energy vertices is reverse, and the rest are forward. It is easy to verify that the modulus of
the product of propagators in such a graphs is proportional to xe−wmβ where w = 0, 1, . . ..
In the scaling limit under consideration we are interested only in w = 0. Once again
the modulus of these graphs is independent of the insertion positions of the e�ective self
energy vertices, and integration over their locations produces a result proportional to xβn

as required.
Diagrams in which two of the propagators are reverse are kinematically very con-

strained. Similar argument as above shows these graphs are proportional to x only if

w = −1,i.e, if the two reverse propagators each have length
β

2
(up to corrections of order

1

m
) and so all the forward propagators have length zero, again up to corrections of order

1

m
. These constraints ensure that such graphs are proportional to β but no higher power
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of β (certainly not βn) and so are not of interest to the current section.
In summary, graphs of the form depicted in Fig. 2.4 only contribute at order xβn if all

propagators from a to adjacent b type vertices are normal, if the separation between a and

adjacent b type vertices is of order
1

m
, and if the propagators between adjacent melons are

either all normal with net winding number one or one reverse and the rest normal with net
winding number zero. Once we have identi�ed the parts of these graphs that contribute at
order xβn, the computation of these contributions is very simple (see below).

Let us now turn to more general graphs than those drawn in Fig. 2.4. All graphs
that contribute to the free energy at leading order in the large N limit are of the general
structure depicted in 2.4, but with the melons in Fig 2.4 replaced by e�ective melons or
`cactus graphs'. The net e�ect of this is to replace the bare propagators between a and b
type vertices in Fig. 2.4 by exact propagators. Recall that we are only interested in the

propagator corrections at times t = |t1 − t2| ∼
1

m
� β. The kth order correction to the

forward propagator at short times takes the schematic form

G(t) ∼ |J |
2ktk

mk

k∑
n=0

Cn

(m
t

)n
(2.136)

As all values of t that contribute to our integrand in the low energy scaling limit of interest

to this chapter are of order
1

m
, it follows that all terms on the RHS of (2.136) are of order

J2k

m2k
. As compared to the contribution of the graphs of Fig. 2.4, in other words, these

graphs have extra powers of J2 but no compensating factors of β. It follows that The
contribution of such graphs at level n is always of the form xβh with h strictly less than
n. Consequently all such graphs can be ignored.

In summary, the only graphs that contribute at terms proportional to xβn at level n are
the very simple `necklace' graphs depicted in Fig. 2.4. We have already explained above
that the contribution of each of these graphs is easily evaluated in the scaling limit. It
follows that the computation of the sum of these graphs is a relatively simple job.

Relegating all further details to the Appendix A.2.1 we simply list our results. The
contribution of order xβn to Se�(U) from graphs of level n is given, for n ≥ 2 by

J2n

m2n
F2n = 2x N q−1

(
q−1∏
m=1

ρ1
m

)
1

(n− 1)!

[
γ(q)

(−β)

m
|J |2

]n(
2− 2n−1

n

)
+O(βn−1),

(2.137)
where

γ(q) = (−1)
q
2

(q−1) q

2
. (2.138)

Summing these contributions over all n = 2 to in�nity and adding the separate contribution
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of n = 1 we �nd H0.

H0 =2x N q−1

(
q−1∏
m=1

ρ1
m

)[ ∞∑
n=2

1

(n− 1)!

[
γ(q)

(−β)

m
|J |2

]n(
2− 2n−1

n

)
− (−1)q/2

2
q2 β
|J |2
m

]

=2x N q−1

(
q−1∏
m=1

ρ1
m

)[
1

2
+ 2γ(q)

(−β)

m
|J |2eγ(q)

(−β)
m
|J |2 − 1

2
e2γ(q)

(−β)
m
|J |2 − (−1)q/2

2
q β
|J |2
m

]
,

(2.139)

so that the free holonomy e�ective action takes the form (2.108) with F0 in that equation
given by H0 in (2.139).

Note that γ(q) is positive for q = 4, 8, 12 . . . but is negative for q = 6, 10, 14 . . .. It

follows that the exponential terms in (2.139) decay at large
J2β

m
for the �rst set of values

of q but blow up for the second set of values of q. It would be interesting to better
understand the meaning and consequences of this observation.

2.4.6 Thermodynamics

At su�ciently weak coupling we have demonstrated in the previous subsection that the
free result for Se�(U) in the scaling limit, (2.64), is replaced by the formula

−Se�(U) = N q−1

(
q−1∏
m=1

ρ1
m

)
xH̃0, (2.140)

where H0 was computed in the previous subsection.
Note that (2.140) has the same structure of U dependence as (2.64); it follows that

the partition function obtained by integrating e−Seff (U) over U is simply Z(x̃) (where the
function Z(x) was de�ned in (2.64)). At small enough coupling x̃ is close to x, and the
structure of the canonical partition function generated by (2.140) is very similar to the
results described in detail for the free theory in the previous section.

What does consequence does the replacement of x by x̃ have for the micro canonical
partition function? Let us �rst recall a simple formal result. Let

e−βm → e−mβ(1 + ε h0(β)).

By linearizing the usual thermodynamical formulae it is easy to show that this replacement
results in the replacement

S(E) = S0(E) + ε
E

m
h0

[
∂S0(E)

∂E

]
+O(ε2), (2.141)

(this result holds provided we expand about an analytic point in the phase diagram, i.e.

away from phase transitions). Clearly in our context this result applies if
J2

m2
∼ α

logN
and

α is taken to be small. However our results for the partition function are valid over a larger
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parametric regime; they are de�nitely valid whenever
J2

m2
∼ α

logN
even at �nite values of

α. In order to understand the e�ect H̃0 has on the entropy as a function of energy at such
values of α we take a slightly di�erent route.

De�ne a `particle mass probability function' p(m) by the following requirement∫
dm′e−βm

′
p(m′) = xH0. (2.142)

Intuitively p(m) denotes a spread in the mass density function (which was a δ function for
the free theory) that mimics the e�ects of interactions in thermodynamics.

A little thought demonstrates that the following ansatz for p(m′) reproduces the struc-
ture of our perturbative expansion for xH0

p(m′) =
∞∑
k=0

1

m
gk

(
m′ −m
|J |2/m

)( |J |
m

)2k−2

, (2.143)

where the functions gk(y) do not depend on J . Working with the probability distribution
(2.143) is equivalent to replacing x by

x→
∫ ∞

0

e−βm
′
p(m′)dm′ = x

∞∑
n,k=0

1

n!

(
−|J |

2β

m

)n( |J |
m

)2k ∫ ∞
−m2/J2

ungk(u)du. (2.144)

The lower limit of the integration in (2.144) can safely be approximated by −∞. If we
want the RHS of (2.144) to equal x̃ we must choose∫ ∞

−∞
g0(u)du = 1 ,

∫ ∞
−∞

u g0(u)du =
2

q
γ(q),∫ ∞

−∞
un g0(u)du = 4n

(
1− 2n−2

n

)
γ(q)n , n ≥ 2

(2.145)

These relationships determine the moments the as yet unknown g0. Inverting these relations
we �nd

p(m′) =2δ(m′ −m)− δ
(
m′ −m− 2γ(q) |J |

2

m

)
− 4γ(q)

|J |2
m

δ′
(
m′ −m− γ(q) |J |

2

m

) (2.146)

Recall that the function p(m′) in the free theory was just a δ function localized at m′ = m.
The interaction e�ects considered in this section split this δ function into a set of 4 localized

δ (or δ′) spikes, distributed in a width of order
J2

m
around m′ = m. As an aside we note

the striking fact that interaction e�ects - at least at the order we have computed them -
do not smoothen the free spectral function out.

It is not di�cult to convince oneself that the function S(E) that follows from (2.146)
is qualitatively similar to the entropy as a function of energy derived in detail for the free
theory in the previous section, and in particular displays faster than Hagedorn growth.
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2.5 Discussion

In these notes we have argued that the quantum mechanical model (2.1) - which is known
to agree with the SYK model in the strict large N limit - displays qualitatively new

dynamics at subleading orders in
1

N
. We argued that the �uctuation spectrum about the

�nite temperature saddle point in this theory has new light modes - that originate in time
dependent O(N)q−1 transformations - in addition to the modes that arise from conformal
di�eomorphisms and that were present also in the original SYK theory. The total number

of new light modes is (q − 1)
N2

2
and so is very large in the large N limit. We have also

proposed that the dynamics of these new modes is governed by the sigma action (2.3),
with a normalization constant A whose value we have not been able to calculate.

Assuming that our proposal for the new light modes is correct, it raises several interest-
ing questions. It should be possible to check our proposal for the structure for the e�ective
action (2.3) by performing an independent computation of the four point function of four
operators in the theory (2.1) (by summing ladder diagrams) and comparing the long time
behaviour of this computation with what one obtains directly from (2.3). Such a procedure
should also permit the direct computation of the as yet unknown constant A.

It is also natural to attempt to �nd a bulk interpretation of our new modes. One
natural suggestion is that these modes are dual to gauge �elds in AdS2

42 If this is the case
it is interesting that the rank of the bulk gauge �elds diverges in the e�ectively classical
N → ∞ limit. In other words the bulk classical dual of this theory is given in terms of a
weakly coupled theory of an in�nite number of classical �elds. The situation is somewhat
reminiscent of the proliferation of `light states' in the duality of [52], and also the situation
with ABJ `triality' in the ABJM limit [53] (although in this context the number of bulk
Vasiliev �elds is never both parametrically large and parametrically weakly coupled). It
would be very interesting to investigate this further.

We have also shown that the density of states in an extreme mass deformation of
the model (2.1) displays a faster than Hagedorn growth at energies of order N2. In our
opinion this is also a very striking result; the phase that displays this rapid growth is the
`thermal graviton' or `string gas' phase. The rapid growth in the density of states of this
phase presumably means it cannot thermally equilibriate with another system. It would
be interesting to understand what consequences this rapid growth has for potential bulk
duals of mass deformed versions of the theory (2.1).

Finally we have performed detailed calculations for the holonomy e�ective action of the
mass deformed theory (2.1) away from the strict large mass limit. In a particular scaling
limit that zooms in on the dynamics of the theory at energies of order N2 we demonstrated
that the holonomy e�ective action of our theory, Seff(U) takes a simple universal form. We
were able to capture the leading interaction e�ects by summing the appropriate in�nite
class of graphs and obtain a very simple e�ective action that captures the leading deviation
away from free behaviour. It should certainly be possible to generalize our perturbative

42We thank J. Maldacena for this suggestion.
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computation of H̃0 to a computation of H̃1. More ambitiously, it may eventually prove
possible to completely sum this perturbative expansion. We leave investigation of this
possibility to the future.
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Chapter 3

Chern-Simons Matter Theory

3.1 Introduction

There is now considerable evidence that a single fermionic �eld in the fundamental of
U(NF ) minimally coupled to U(NF ) Chern-Simons gauge theory at level1 kF is dual to
vector SU(NB) Wilson-Fisher scalars minimally coupled to SU(NB) Chern-Simons gauge
theory at level kB = −sgn(kF )NF with NB = |kF | [54]-[55] 2. This (almost standard by
now) duality asserts that the two so-called quasi-fermionic CFTs i.e. Chern-Simons gauged
`regular fermions' (RF) and `critical bosons' (CB) - are secretly the same theory.

It has also been conjectured (see [56] and references therein) that the `quasi-fermionic'
duality of the previous paragraph follows as the infrared limit of a duality between pairs of
fermionic and bosonic RG �ows. The fermionic RG �ows are obtained by starting in the
ultraviolet with the Chern-Simons gauged Gross-Neveu or `critical fermion' (CF) theory
and deforming this theory with relevant operators �ne tuned to ensure that the IR end
point of the RG �ow is the RF theory. In a similar manner the conjecturally dual bosonic
�ows are obtained by starting in the ultraviolet with the gauged `regular boson' (RB)
theory deformed with the �ne tuning that ensures that the RG �ow ends in the CB theory.

The UV starting points of the �ows described above de�ne dual pairs of conformal �eld
theories. These RB and CF theories - so-called quasi-bosonic theories - are conjectured to
be dual to each other 3. If valid, this conjecture implies that the set of all RG �ows that
originate in the RB theory are dual to the set of all RG �ows that originate in the CF
theory. The duality of the pair of specially tuned RG �ows of the last paragraph- those

1In our conventions the level of a Chern-Simons theory coupled to fermions is de�ned to be the level of
the low energy gauge group obtained after deforming the theory with a fermion mass of the same sign as
the fermion level.

2See the introduction to the recent paper [54] for a more more detailed description of earlier work.
3At leading order in large N - the order to which we work in this chapter - the RB and CF theories appear
as a line of �xed points parameterized by the single parameter x6, the coe�cient of the φ6 coupling of
the bosonic theory (see below for the dual statement in the fermionic theory). In other words the one
parameter set of RB and CF theories (and �ows originating therein) that we study in this chapter are
actually only physical at three particular values of the parameter x6. See the very recent paper [57] for
a computation of the beta function for x6 that establishes this point.
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that end in the IR in the quasi-fermionic conformal �eld theories - is a special case of this
general phenomenon.

Generic RG �ows that originate at quasi-bosonic �xed points lead to gapped phases,
or more accurately, phases whose low energy behaviour is governed by a topological �eld
theory. There are two inequivalent topological phases. In the unHiggsed phase the bosonic
(resp. fermionic) theory is governed at long distances by pure SU(NB)kB (resp. U(NF )kF )
topological �eld theory with the two theories being level-rank dual to each other. In
the Higgsed phase the bosonic (resp. fermionic) theory is governed in the IR by a pure
SU(NB − 1)kB (resp. U(NF )sgn kF (|kF |−1)) Chern-Simons theory with the two topological
�eld theories once again being level-rank dual to each other. 4

The most compelling evidence for the scenarios spelt out above comes from explicit
results of direct all-orders calculations that have been performed separately in the fermionic
and bosonic theories in the large N limit. In particular, the thermal partition function of
deformed RF and CB theories have both been computed in the unHiggsed phases to all
orders in the 't Hooft coupling, and have been shown to match exactly with each other for
all relevant deformations that end up in this phase [56] 5. While impressive, this matching is
incomplete, as the restriction to the unHiggsed phase covers only half of the phase diagram
of these theories.

The authors of [56] (and references therein) were also able to compute the thermal
partition function of the CF theory in the `Higgsed' phase. However, they were unable to
perform the analogous computation in the bosonic theory in this phase and so were unable
to verify the matching of thermal free energies in this phase. In this chapter we �ll the gap
described above. We present an explicit all-orders computation of the thermal free energy
of the RB theory in the Higgsed phase. Under duality our �nal results exactly match the
free energy of the fermionic theory in the Higgsed phase, completing the large N check of
the conjectured duality in a satisfying manner.

At the technical level, the computation described in the previous paragraph (and pre-
sented in detail in section 3.3) is a relatively straightforward generalization of the compu-
tations presented in the recent paper [54]. In [54] the large N free energy of the Higgsed
phase of the Chern-Simons gauged Wilson-Fisher boson theory was computed for the �rst
time. As we describe in much more detail below, the computation of the free energy in
the Higgsed phase of the RB theory can be divided into two steps. In the �rst step we
compute the thermal free energy (or equivalently, the gap equation) of the CB theory as
a function of its Higgs vev. We are able to import this computation directly from [54]. In
the relatively simple second step carried through in this chapter, we derive a second gap

4As �rst explained in [58], the reduction in rank of the bosonic Chern-Simons theory compared to the
unHiggsed phase is a consequence of the Higgs mechanism in the bosonic �eld theory. The reduction
in level of the fermionic Chern-Simons theory is a consequence of the switch in sign of the mass of the
fermion - level of the pure Chern-Simons theory obtained by integrating out a negative mass fermion is
one unit smaller than the level obtained by integrating out a positive mass fermion.

5A similar matching has also been performed for the S-matrix in the unHiggsed phase [59, 60]. The
generalization of this match to the Higgsed phase is also an interesting project, but one that we will not
consider in this chapter.
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equation that determines the e�ective value of the Higgs vev.
The second step described at the end of the last paragraph had no counterpart in [54].

In the critical bosonic theory the `classical' potential for the scalar �eld is in�nitely deep.
This potential freezes the magnitude of the scalar �eld in the Higgsed phase to its classical
minimum even in the quantum theory. It follows that the Higgs vev is independent of the
temperature and has a simple dependence on the 't Hooft coupling in the critical boson
theory. In the regular boson theory, on the other hand, the classical potential for the
scalar �eld is �nite and receives nontrivial quantum corrections. The value of the scalar
condensate is determined extremizing the quantum e�ective action for the scalar �eld. The
result of this minimization yields a scalar vev that is a nontrivial function of both the 't
Hooft coupling and the temperature. It follows that the computations of this chapter give
us a bonus: we are able to compute the smooth `quantum e�ective potential' for the RB
theory as a function of the Higgs vev. More precisely we compute the quantum e�ective
potential for the composite �eld (φφ). In the Higgsed phase and in the unitary gauge
employed in the computations of this chapter, this quantity reduces to a potential - an
exact Landau-Ginzburg e�ective potential - for the Higgs vev. The extremization of this
potential determines the Higgs vev - and is an equivalent and intuitively satisfying way
of obtaining the gap equations - in the Higgsed phase. The later sections of this paper -
sections 3.4 and 3.5 are devoted to the study of the exact quantum e�ective potential of
the theory and its physical consequences.

Let us denote the expectation value of (φφ) by (φφ)cl. At zero temperature it turns out
that the quantum e�ective action is non-analytic at (φφ)cl = 0. For this reason the domain
of the variable in our e�ective potential - namely φφ - naturally splits into two regions. We
refer to the region φφ > 0 as the Higgsed branch of our e�ective potential. On the other
hand the region φφ < 0 is the unHiggsed branch of our e�ective potential. On the Higgsed
branch the quantum e�ective potential for φφ is simply a quantum corrected version of
the classical potential of the theory. Classically φφ always positive, and so the potential
for the theory on the unHiggsed branch (i.e. at negative φφ) has no simple classical limit
and is purely quantum in nature. The extremization of the e�ective potential on the Hig-
gsed/unHiggsed branches exactly reproduces the gap equations in the Higgsed/unHiggsed
phases.

In both phases the extrema of this e�ective potential are of two sorts; local maxima and
local minima. Local maxima clearly describe unstable `phases'. The instability of these
phases has an obvious semiclassical explanation in the Higgsed phase; it is a consequence
of the fact that we have chosen to expand about a maximum of the potential for the
Higgs vev. In this chapter we �nd an analogous physical explanation for the instability
of the `maxima' in the unHiggsed phase. In Section 3.5.3 we use the results for exact
S-matrices in these theories [59, 60] to demonstrate that the `phases' constructed about
maxima in the unHiggsed branch always have bound states of one fundamental particle
(created by φ) and one antifundamental particle (created by φ) in the so called `singlet'
channel. Moreover we demonstrate in Section 3.5.3 that these bound states are always
tachyonic (i.e. have negative squared mass). As a consequence, such expansion points
are maxima in the potential of the �eld that creates these bound states (in this case φφ),
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explaining the instability of the corresponding solutions of the gap equation.
It turns out that our e�ective potential is unbounded from below in the limit (φφ)cl →

+∞ when x6 < φ1. Here x6 is the parameter that governs the φ6 interaction of the theory
de�ned precisely in (3.2), and φ1 is a particular function of the 't Hooft coupling λB of this
theory listed in (3.70). When (φφ)cl → −∞, on the other hand, the potential turns out
to be unbounded from below when x6 > φ2; φ2 is given in (3.70). It follows that the RB
theory is unstable - i.e. does not have a stable vacuum state - if either of the conditions
above are met. Happily it turns out that φ1 < φ2 so that there is a range of values for x6,
namely

φ1 ≤ x6 ≤ φ2 , (3.1)

over which the regular boson theory is stable.
The zero temperature phase diagram of the RB theory was worked out in great detail

in the recent paper [57]. In order to accomplish this, the authors of [57] evaluated every
solution of the gap equation of the RB theory and then compared their free energies. The
dominant phase at any given values of microscopic parameters is simply the solution with
the lowest free energy; this dominant solution was determined in [57] by performing de-
tailed computations. In Section 3.5.4 of this chapter we demonstrate that the structure
of the phase diagrams presented in [57] has a simple intuitive explanation in terms of the
exact Landau-Ginzburg e�ective potential for (φφ)cl described above. As we explain in
Section 3.5.4 below, the general structure of the phase diagram follows from qualitative
curve plotting considerations and can be deduced without performing any detailed compu-
tations. Moreover the analysis of the current paper has an added advantage; it allows us to
distinguish regions of the phase diagram where the dominant phase is merely metastable
(this happens when x6 > φ2 or x6 < φ1) from regions in the phase diagram in which the
dominant solution of the gap equation is truly stable (this happens in the range (3.1)).

3.2 Review of known results

3.2.1 Theories and the conjectured duality map

The RB theory is de�ned by the action

SB =

∫
d3x

[
iεµνρ

κB
4π

Tr(Xµ∂νXρ −
2i

3
XµXνXρ) +DµφD

µφ

+m2
Bφφ+

4πb4

κB
(φφ)2 +

(2π)2

κ2
B

(
xB6 + 1

)
(φφ)3

]
, (3.2)

while the ζF and ζ2
F deformed critical fermion (CF) theory is de�ned by the Lagrangian

SF =

∫
d3x

[
iεµνρ

κF
4π

Tr(Xµ∂νXρ −
2i

3
XµXνXρ) + ψγµD

µψ

− 4π

κF
ζF (ψψ − κFy

2
2

4π
)− 4πy4

κF
ζ2
F +

(2π)2

κ2
F

xF6 ζ
3
F

]
. (3.3)
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In these formulae

κB = sgn(kB) (|kB|+NB) , κF = sgn(kF ) (|kF |+NF ) . (3.4)

The levels kF and kB are de�ned to be the levels of the WZW theory dual to the pure
Chern-Simons theory (throughout this chapter we work with the dimensional regularization
scheme). For concreteness, in this chapter we will assume that the bosonic theory gauge
group is SU(NB) while the fermionic gauge group is U(NF ) with `equal' levels kF for the
SU(NF ) and U(1) parts of the gauge group. The generalization to U(NB) ↔ SU(NF )
and U(NB) ↔ U(NF ) dualities is straightforward at large N and will not be explicitly
considered in this chapter.

In the rest of this chapter we will present our formulae in terms of the 't Hooft couplings
de�ned by

λB =
NB

κB
, λF =

NF

κF
. (3.5)

We have already mentioned in the introduction that the two theories above have been
conjectured to be dual to each other under the level-rank duality map

NB = |κF | −NF , κB = −κF . (3.6)

This implies that the bosonic 't Hooft coupling is given in terms of its fermionic counterpart
by

λB = λF − sgn(λF ), (3.7)

The relations (3.6) and (3.7) are expected to hold even at �nite N . On the other hand the
map between deformations of these two theories is conjectured to be6

xF6 = xB6 , y4 = b4 , y2
2 = m2

B . (3.8)

The above equation (3.8) is known to hold only in the large N limit; this relationship may

well receive corrections in a power series expansion in
1

N
.

To end this subsection, let us note that under the �eld rede�nition

φ =
√
κB ϕ , (3.9)

the action (3.2) turns into

SB =
NB

λB

∫
d3x

[
iεµνρ

1

4π
Tr(Xµ∂νXρ −

2i

3
XµXνXρ) +DµϕD

µϕ

+m2
Bϕϕ+ 4πb4(ϕϕ)2 + (2π)2

(
xB6 + 1

)
(ϕϕ)3

]
. (3.10)

It follows immediately that in the limit

λB → 0 , m2
B, b4, x6 = fixed , (3.11)

the theory (3.2) should reduce to a nonlinear but classical theory of the �elds ϕ and Xµ.
We will return to this point below.

6Since xB6 = xF6 , we drop the superscript B or F on x6 often in the paper when referring to this coupling.
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3.2.2 Structure of the thermal partition function

As explained in e.g. [54], the large N thermal free energy of either of these theories on
S2 × S1 can be obtained following a two step process. In the �rst step we compute the
free energy of the theory in question on R2 × S1, at a �xed value of the gauge holonomies
around S1. The result is a functional of the holonomy eigenvalue distribution function ρ(α)
and is given by the schematic equation

e−V2T 2v[ρ] =

∫
R2×S1

[dφ] e−S[φ,ρ] . (3.12)

where V2 is the volume of two dimensional space and T is the temperature.
In order to complete the evaluation of the S2× S1 partition function of interest, in the

next step we are instructed to evaluate the unitary matrix integral

ZS2×S1 =

∫
[dU ]CS e

−V2T 2v[ρ]. (3.13)

where [dU ]CS is the Chern-Simons modi�ed Haar measure over U(N) described in [61].
It was demonstrated in [61] that the thermal partition functions (3.13) of the bosonic

and fermionic theories agree with each other in the large N limit provided that under
duality

vF [ρF ] = vB[ρB] , (3.14)

where the bosonic and fermionic eigenvalue distribution functions, ρB and ρF , are related
via

|λB|ρB(α) + |λF |ρF (π − α) =
1

2π
. (3.15)

In this chapter we will evaluate the free energy vB[ρB] of the bosonic theory in the Higgsed
phase and verify (3.14), thus establishing the equality of thermal free energies of the RB
and CF theories in the Higgsed phase. We summarize the map between the parameters
(3.6), (3.7), (3.8) and the holonomy distributions (3.15):

NF = |κB| −NB , κF = −κB , λF = λB − sgn(λB) ,

xF6 = xB6 , y4 = b4 , y2
2 = m2

B , |λB|ρB(α) + |λF |ρF (π − α) =
1

2π
. (3.16)

In Appendix B.1 we provide a comprehensive review of everything that is known about
the large N thermal free energies of the CF and RB theories (the appendix also contains a
formula for a `three variable o�-shell' free energy functional of the CF theory that is valid
in both phases (B.3)). In the rest of this section we only present those results that will be
of relevance for the computations in the paper.

The free energy vF [ρF ] in the critical fermion theory has been computed in both
fermionic phases in [56]. The result is given in terms of an auxiliary o�-shell free energy7

7We put a hat over a particular quantity (e.g. ĉF ) to denote the dimensionless version of that quantity
(e.g. cF ) obtained by multiplying by appropriate powers of the temperature T .
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(equation (B.12) in Appendix B.1)

FF (cF , ζF ) =
NF

6π

[ |λF | − sgn(λF )sgn(XF )

|λF |
ĉ3
F −

3

2λF

(
4π

κF
ζ̂F

)
ĉ2
F

+
1

2λF

(
4π

κF
ζ̂F

)3

+
6πŷ2

2

κFλF
ζ̂F −

24π2ŷ4

κ2
FλF

ζ̂2
F +

24π3xF6
κ3
FλF

ζ̂3
F

− 3

∫ π

−π
dαρF (α)

∫ ∞
ĉF

dy y
(
log
(
1 + e−y−iα

)
+ log

(
1 + e−y+iα

)) ]
.

(3.17)

The above free energy is a function of two variables cF and ζF . Extremizing FF with
respect to these variables and plugging back in the extremum values gives us the free energy
vF [ρF ]. The physical interpretation of the variable cF is that its value at the extremum of
FF coincides with the pole mass of the fermion.

The free energy (3.17) assumes two di�erent analytic expressions depending on the
sign sgn(λF )sgn(XF ) and governs the dynamics of the two di�erent phases. The phase in
which sgn(XF )sgn(λF ) = ±1 is referred to as the unHiggsed phase and the Higgsed phase
respectively. In equation (B.3) in Appendix B.1, we give an o�-shell free energy in terms
of three variables (which include cF and ζF ) which is analytic in all three variables and
encompasses the behaviour of both phases.

The free energy (3.17) in the unHiggsed phase of the CF theory matches the free energy
of the regular boson theory in the unHiggsed phase (equation (B.13) in Appendix B.1) com-
puted in [56] under the duality map (3.16). The free energy (3.17) with sgn(λF )sgn(XF ) =
−1 gives a prediction for the regular boson theory in the Higgsed phase. Applying the
duality transformation (3.16) and making the following `�eld' rede�nitions:

cF = cB ,
4πζF
κF

= −2λBσB , (3.18)

we get the following prediction for the free energy in the Higgsed phase (equation (B.28)):

FB(cB, σB) =
NB

6π

[
− λB − 2sgn(λB)

λB
ĉ3
B − 3σ̂B(ĉ2

B − m̂2
B) + 6b̂4λBσ̂

2
B + (3xB6 + 4)λ2

Bσ̂
3
B

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(3.19)

The extremum value of the variable cB corresponds to the pole mass of the W boson
excitation in the Higgsed phase. In the next section we will independently compute the
o�-shell free energy of the RB theory, and demonstrate that our answer agrees with (3.19)
once we identify the �eld σB with

σB = 2π
φφ

NB

. (3.20)
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where φ and φ respectively stand for the saddle point values of the corresponding �elds
denoted by the same letters (recall these �elds have nonzero saddle point values in the
Higgsed phase).

Note: Here and in the rest of the paper, we de�ne the quantities cF and cB to be
always positive. In other words, cF,B is shorthand for |cF,B|. This is the same convention
used in [56].

3.3 The Higgsed Phase of the regular boson theory

3.3.1 Lagrangian in Unitary gauge

Consider the following action for the SU(NB) regular boson theory:

SE =

∫
d3x
[
iεµνρ

κB
4π

Tr(Xµ∂νXρ −
2i

3
XµXνXρ) +DµφD

µφ

+m2
Bφφ+

4πb4

κB
(φφ)2 +

(2π)2

κ2
B

(xB6 + 1)(φφ)3
]
,

(3.21)

with Dµ = ∂µ− iXµ. The above action can be reorganized as follows in the Higgsed phase
where we anticipate 〈φφ〉 6= 0. Following [54] we work in the unitary gauge

φi(x) = δiNB
√
|κB|V (x) . (3.22)

For future reference we note also that (3.22) implies the following for the `classical' �eld ϕ
de�ned in (3.9):

ϕi(x) = δiNB
√

sgn(κB)V (x) . (3.23)

The �eld V (x) shall be termed the Higgs �eld. The above gauge choice lets us decompose
the gauge �eld Xµ as

Xµ =

(
(Aµ)ab − δab

NB−1
Zµ

1√
κB

(Wµ)a

1√
κB

(W µ)b Zµ

)
, (3.24)

where the indices a, b run over 1, . . . , NB − 1. In terms of these variables, the action can
be rewritten as follows8:

SE[A,W,Z, V ] =
iκB
4π

∫
Tr(AdA− 2i

3
AAA)

+
i

4π

∫ (
2W adW

a + κBZdZ − 2iZW aW
a − 2iW aA

a
bW

b
)

+

∫
d3x (|κB|V 2ZµZ

µ + sgn(κB)V 2W aµW
aµ)

+ |κB|
∫
d3x

(
∂µV ∂

µV +m2
BV

2 + 4πb4sgn(κB)V 4 + 4π2(xB6 + 1)V 6
)
.

(3.25)
8The notation ABC stands for d3xεµνρAµBνCρ.
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3.3.2 An e�ective action for the Higgs �eld V

We will now compute the thermal partition function of the regular boson theory in the
Higgsed phase, i.e. we will compute vB[ρB] de�ned by

e−V2T 2vB [ρB ] =

∫
R2×S1

[dV dWdZdA] e−SE[A,W,Z,V ] , (3.26)

where SE[A,W,Z, V ] was de�ned in (3.25). For this purpose it is convenient to break up
the e�ective action SE[A,W,Z, V ] into two parts

SE[A,W,Z, V ] = S1[A,W,Z, V ] + S2[V ] (3.27)

where

S1[A,W,Z, V ] =
iκB
4π

∫
d3x Tr(AdA− 2i

3
AAA)

+
i

4π

∫ (
2W adW

a + κBZdZ − 2iZW aW
a − 2iW aA

a
bW

b
)

+

∫
d3x (|κB|V 2ZµZ

µ + sgn(κB)V 2W
µ

aW
a
µ ) , (3.28)

and

S2[V ] =

∫
d3x
(
|κB|∂µV ∂µV + Ucl(V )

)
,

Ucl(V ) = |κB|m2
BV

2 + 4πb4κBV
4 + 4π2|κB|(xB6 + 1)V 6 . (3.29)

The path integral (3.12) can be rewritten as

e−V2T 2vB [ρB ] =

∫
[dV ] e−S2[V ]

∫
[dWdZdA] e−S1[A,W,Z,V ] (3.30)

Let us �rst study `inner' path integral i.e.

e−V2T 2vCB[ρB ,V ] ≡
∫

[dWdZdA] e−S1[A,W,Z,V ] , (3.31)

where the right hand side de�nes the quantity vCB[ρB, V ]. As far as the path integral in
(3.31) is concerned, V (x) is a background �eld. The path integral (3.31) is di�cult to
evaluate for arbitrary V (x) even in the large NB limit9. This problem simpli�es, however,
in the special case that V (x) is a constant. In fact, precisely in this limit, the path integral
(3.31) has been evaluated in the recent paper [54]. Luckily, it will turn out that, in the
large N limit, the integral over V (x) in (3.30) localises to a saddle point at which V (x) is
constant (see below). As a consequence we only need the result of the path integral (3.31)

9(3.31) is e�ectively the generating function of all correlation functions of the dimension two scalar J0 in
the large N critical boson theory, and so contains a great deal of information.
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for constant V (x); we are able to read o� this result directly from [54] which we now pause
to recall.

The authors of [54] studied the critical boson theory in its Higgsed phase. Working
in unitary gauge and following manipulations essentially identical to those outlined in the
previous subsection, they found that the CB theory in the Higgsed phase can be rewritten
as e�ective theory of interacting massiveW bosons, Z bosons and SU(NB−1) gauge �elds,
whose action is given by

SE[A,W,Z] =
iκB
4π

∫
Tr(AdA− 2i

3
AAA)

+
i

4π

∫ (
2W adW

a + κBZdZ − 2iZW aW
a − 2iW aA

a
bW

b
)

−
∫
d3x

(
NB

4π
mcri

B ZµZ
µ +

λB
4π
mcri

B W aµW
aµ

)
. (3.32)

The authors of [54] were then able to evaluate the �nite temperature partition function for
the theory de�ned by (3.32). Their �nal result for vCB[ρB] is given as follows. One obtains
vCB[ρB] by extremizing an o�-shell free energy FCB(cB) given by

FCB(cB) =
NB

6π

[
− λB − 2sgn(λB)

λB
ĉ3
B +

3

2
m̂cri
B ĉ

2
B + Λ

(
m̂cri
B

)3

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
,

(3.33)

Here, Λ is an undetermined constant; shifts in Λ correspond to shifts in the cosmological
constant counterterm in the starting action for the CB theory (see [54] for a discussion).

Note that the action S1 in (3.25) agrees precisely with the action (3.32) reported in [54]
if we replace mcri

B by the quantity

mcri

B = − 4π

|λB|
V 2 with V constant. (3.34)

It follows that for the special case that V (x) is constant, the path integral (3.31) is given
by the extremum value of (3.33) with the replacement (3.34) and the path integral over V
in (3.30) takes the form∫

[dV ]e−Seff [V ] with Seff [V ] = S2[V ] + V2T
2vCB[ρB, V ] . (3.35)

From the expressions for S2[V ],10 and FB(cB) in (3.29) and (3.33), it is clear that there is
an overall factor of NB in front of the e�ective action Seff [V ]. In the large NB limit the

10In [54], the free energy vCB[ρB ] depended on mcri
B which was a parameter in the theory. After the

replacement (3.34), the dependence on the parameter mcri
B is replaced by a dependence on the �eld

V (x). We have included an explicit V in the notation for vCB[ρB , V ] to highlight this dependence on
the Higgs �eld V .
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path integral over V may be evaluated in the saddle-point approximation. We expect the
dominant minima of the e�ective action to occur at constant values of V since the kinetic
term ∂µV ∂

µV adds a positive de�nite piece to the action. For this reason it is su�cient to
have the expression vCB[ρB, V ] only at constant V . As we have already explained above,
this result is given by extremizing (3.33) w.r.t. cB after making the replacement (3.34).
It follows that the �nal result for vB[ρB] in (3.26) is obtained by extremizing the regular
boson o�-shell free energy

FB(cB, V ) = FCB(cB) +
1

V2T 2
S2[V ] ,

with respect to both cB and V .11 Using the explicit expressions (3.29), (3.33) and (3.34)
we �nd the following explicit result for the o�-shell free energy of the RB theory:

FB(cB, V ) =
NB

6π

[
− (λB − 2sgn(λB))

λB
ĉ3
B −

8Λ

|λB|3
(2πV̂ 2)3

− 3

|λB|
(ĉ2
B − m̂2

B)2πV̂ 2 +
6b̂4

λB
(2πV̂ 2)2 +

(3xB6 + 3)

|λB|
(2πV̂ 2)3

+ 3

∫ π

−π
ρB(α)dα

∫ ∞
ĉB

dyy
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
. (3.36)

We compare the result (3.36) with the prediction (3.19) of duality for the Higgsed phase
free energy given by

FB(cB, V ) =
NB

6π

[
− λB − 2sgn(λB)

λB
ĉ3
B

− 3

|λB|
(ĉ2
B − m̂2

B)2πV̂ 2 +
6b̂4

λB
(2πV̂ 2)2 +

(3xB6 + 4)

|λB|
(2πV̂ 2)3

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
, (3.37)

where, to get the above expression, we have used (3.22) and (3.20) to write the �eld σB in
(3.19) as

σB =
2πV 2

|λB|
. (3.38)

We see that (3.36) agrees precisely with (3.37) provided we choose the as yet undeter-
mined parameter Λ as

Λ = −1

8
λ2
B . (3.39)

11It is understood that FCB[ρB , cB ] is evaluated after making the replacement (3.34).
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In the next subsection we will verify that the result (3.39) - which is so far just a
prediction of duality - can also be obtained by direct computation within the Higgsed CB
theory. The strategy we employ is the following. We �rst note that the gap equation
corresponding to stationarity of (3.36) with respect to V̂ 2 is

ĉ2
B − m̂2

B + 8Λσ̂2
B − 4b̂4λBσ̂B − (3xB6 + 3)λ2

Bσ̂
2
B = 0 . (3.40)

where σB is given in terms of V 2 by (3.38). The equation (3.40) merely simply expresses the
condition that the tadpole of the �uctuation of the scalar �eld V vanishes when the �eld
V is expanded around its true solution v. In the next subsection we directly evaluate this
`tadpole vanishing condition' in the RB theory in the Higgsed phase and thereby determine
Λ by comparison with (3.40).

3.3.3 Tadpole cancellation for V

As we have explained above, in the Higgsed phase our scalar �eld V gets the expectation
value v. It is useful to de�ne

V (x) = v +H(x) . (3.41)

The condition that v is the correct vacuum expectation value of V (x) is equivalent to the
condition that the expectation value (i.e. one point function, i.e. tadpole) of the �uctuation
H(x) vanishes. In other words we require that∫

R2×S1

[dV dWdZdA] H(x) e−SE[A,W,Z,V ] = 0 . (3.42)

Using the explicit form of SE[A,W,Z, V ] in (3.25), equation (3.42) can be rewritten as

sgn(κB)〈W aµ(x)W aµ(x)〉+ |κB|〈Zµ(x)Zµ(x)〉 +
∂

∂(v2)
Ucl(v

2) = 0 . (3.43)

where Ucl(V ) is the potential for the Higgs �eld V given in (3.29) and all expectation values
are evaluated about the `vacuum' where V (x) = v. While the �rst and third terms in (3.43)
above are both of order NB, it is easily veri�ed that the second term in this equation -
the term proportional to 〈Zµ(x)2〉 is of order unity12 and so can be dropped in the large
NB limit. At leading order in the large NB limit, it follows that the tadpole cancellation
condition (3.42) can be rewritten as

λB
2πV3

∫
d3x〈W aµ(x)W aµ(x)〉+

∂Ucl(σB)

∂σB
= 0 , (3.44)

where we have integrated the equation (3.43) over spacetime and have divided the re-
sulting expression by the volume of spacetime V3. We have also changed variables to
σB = 2πv2/|λB| de�ned in (3.38). Moving to momentum space, (3.44) turns into

λB
2π

∫ D3p

(2π)3
ηµν Ga

aµν(p) +
∂Ucl(σB)

∂σB
= 0 , (3.45)

12This follows from the observation that the Z propagator scales like 1/NB .
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where

〈W aµ(−p)W b
ν (p′)〉 = Gb

aµν(p) (2π)3δ(3)(p− p′) = δa
b Gµν(p) (2π)3δ(3)(p− p′) , (3.46)

and the measure D is the natural measure in momentum space at �nite temperature.13

Happily, the exact all-orders formula for the propagator Gµν was computed in [54]. In
Appendix B.2 we proceed to plug the explicit expression for Gµν and evaluate the �rst term
in (3.45). We are able to evaluate all the relevant summations and integrals analytically,
and demonstrate that in our choice of regularization scheme (3.44) takes the explicit form

−NB

2π

(
c2
B − λ2

Bσ
2
B

)
+
∂Ucl(σB)

∂σB
= 0 . (3.48)

Recall the expression for U(σB) from (3.29):

Ucl(σB) =
NB

2π

(
m2
BσB + 2b4λBσ

2
B + (xB6 + 1)λ2

Bσ
3
B

)
. (3.49)

Plugging this back into (3.48) we �nd

c2
B −m2

B − 4b4λBσB − (3xB6 + 4)λ2
Bσ

2
B = 0 , (3.50)

Comparing this with the gap equation obtained earlier in (3.40), we see that (3.40) matches
(3.50) for the predicted value of Λ = −λ2

B/8 in (3.39) as expected.

3.4 A three variable o�-shell free energy

The �nite temperature unHiggsed phase is governed by the two-variable o�-shell free energy
(equation (B.14) in Appendix B.1)

FB(cB, S̃) =
NB

6π

[
− ĉ3

B + 3S̃
(
ĉ2
B − m̂2

B

)
+ 6b̂4λBS̃2 − (4 + 3xB6 )λ2

BS̃3

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
, (3.51)

On the other hand, we have demonstrated in this chapter that the �nite temperature
Higgsed phase is governed by the two-variable o�-shell free energy (3.19). As these are

13Explicitly, the notation D3p signi�es that we work at �nite temperature i.e. on the spacetime R2 × S1
β

where the third direction x3 is a circle of circumference β. The measure D3p is then given by∫ D3p

(2π)3
f(p) =

∫
dp1dp2
(2π)2

∫ π

−π
dα ρB(α)

1

β

∞∑
n=−∞

f

(
2πn+ α

β

)
, (3.47)

where ρB(α) is the distribution of the eigenvalues α of the gauge �eld holonomy around S1
β .
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two separate `phases' of the same theory it is somewhat unsatisfying that the o�-shell
`Landau-Ginzburg' free energies used to describe them are di�erent. The reader may
wonder whether there exists a single master o�-shell free energy functional - analytic in all
`�elds' - which encompasses the physics of both (3.51) and (3.19). At least at the algebraic
level there is a simple a�rmative answer to this question as we now describe.

Consider the o�-shell free energy

F (cB, σB, S̃) =
NB

6π

[
− ĉ3

B − 4S̃3λ2
B − 3ĉ2

Bσ̂B − 12S̃2λ2
Bσ̂B − 12S̃λ2

Bσ̂
2
B

+ 6ĉB|λB|(S̃ + σ̂B)2 + 3
(
m̂2
Bσ̂B + 2λB b̂4σ̂

2
B + λ2

Bx
B
6 σ̂

3
B

)
+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(3.52)

Note that (3.52) is a function of three `�eld' variables, namely cB, S̃ and σB. Extremizing

(3.52) w.r.t. S̃, cB and σB respectively yields the equations

(S̃ + σ̂B)(−ĉB + |λB|(S̃ + σ̂B)) = 0 ,

ĉB(S(cB) + σ̂B)− |λB|(S̃ + σ̂B)2 = 0 ,

ĉ2
B − m̂2

B − 4ĉB|λB|(S̃ + σ̂B) + λB

(
4S̃2λB − 4b̂4σ̂B + 8λBσ̂BS̃ − 3λBσ̂

2
Bx

B
6

)
= 0 . (3.53)

The quantity S(cB) that appears in the second of (3.53) is de�ned in (B.1). O�-shell,

the objects S(cB) and S̃ are completely distinct. S(cB) is a function of cB while S̃ is an
independent variable. However it is easy to see (by subtracting the �rst two equations in
(3.53)) that these two quantities are, in fact, equal on-shell.

Note in particular that the �rst of (3.53) - the equation that follows upon extremizing

(3.52) w.r.t. S̃ - is the product of two factors. This equation is satis�ed either if

S̃ + σ̂B = 0 , (3.54)

or if
−ĉB + |λB|(S̃ + σ̂B) = 0 . (3.55)

(clearly (3.54) and (3.55) cannot simultaneously be obeyed unless cB = 0). Let us �rst
suppose that (3.54) is obeyed. Using (3.54) to eliminate σB from (3.52) yields an o�-shell

free energy that now depends only on S̃ and cB. It is easily veri�ed that the resultant free
energy agrees exactly with the two-variable free energy (3.51) in the unHiggsed phase. It
follows that solutions of (3.54) parameterize - and govern the physics of - the unHiggsed
phase of the RB theory.

In a similar manner let us now suppose that (3.55) is obeyed in which case we use it to

eliminate S̃. It is easily veri�ed that the resultant two-variable free energy - which depends
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on cB and σB - agrees exactly with (3.37) with the identi�cation (3.38):

σB =
2πv2

|λB|
. (3.56)

It follows that solutions of (3.55) parameterize - and govern the physics of - the Higgsed
phase of the RB theory.

The identi�cation (4.84) has a simple explanation. Recall that the bare mass m2
B

appeared in the action (3.2) as the coe�cient of φφ. It follows that the Legendre transform
of the free energy of our theory w.r.t. m2

B yields the exact quantum corrected e�ective
potential of our theory as a function of the composite �eld (φφ)cl. This Legendre transform
may be computed by adding the term

−m2
B(φφ)cl

to (3.52) and then treating m2
B as a new dynamical �eld w.r.t. which (3.52) has to be

extremized (of course we also continue to extremize (3.52) w.r.t. cB, σB and S̃ as before).
Note that the dependence of (3.52) on m2

B is extremely simple; it occurs entirely through
the term NB

2π
σBm

2
B. As a consequence, extremizing w.r.t. m2

B sets

σB =
2π(φφ)cl

NB

. (3.57)

In the Higgsed phase it follows from φi = δiNB
√
|κB| v (equation (3.22)) that

(φφ)cl = |κB|v2 . (3.58)

(in obtaining (3.58) we use the fact that the Higgs �eld V is e�ectively classical in the
large NB limit). Inserting (3.58) into (3.57) yields (4.84). We note, however, that (3.57)
is more general than (4.84) because it applies even in the unHiggsed phase. We will make
use of this fact in the next section.

We have thus found a simple single o�-shell free energy - namely (3.52) - that captures
the physics of both the Higgsed and the unHiggsed phases. We have also explained that
one of the three variables that appears in this free energy - namely σB - has a simple direct
physical interpretation given by (3.57). It follows, in particular, that if we integrate cB and

S̃ out from (3.52), the resultant free energy (which is a function of σB) can be reinterpreted
as the quantum e�ective potential of the theory as a function of (φφ)cl. In the next section
we will explicitly undertake this exercise in the zero temperature limit.

It is easily veri�ed that the duality map (3.16) between parameters together with the
�eld rede�nitions

λBS̃ = λF C̃ −
sgn(λF )

2
ĉF , λBσB = −2πζF

κF
, cB = cF . (3.59)

turns the bosonic o�-shell free energy (3.52) into the fermionic o�-shell free energy (B.3).
This match captures the Bose Fermi duality between RB and CF theories at the level of the
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complete thermal o�-shell free energies of the two theories; note that each of these o�-shell
free energies is analytic in all `�elds'. In Appendix B.3 we investigate the behaviour of our
three-variable o�-shell free energy in the so called critical boson scaling limit of the RB
theory.

3.5 The exact Landau-Ginzburg e�ective potential

In this section we integrate out the variables S̃ and cB out from the e�ective action (3.51)
and obtain an o�-shell free energy for the �eld σB. We work at zero temperature throughout
this section. In this simple - and physically especially important - limit we obtain a simple
analytic expression for the resultant free energy as a function of σB. As we have explained
in the previous section, this free energy is simply related to the quantum e�ective potential
of the RB theory as a function of the �eld (φφ)cl.

After having obtained this exact Landau-Ginzburg potential we study and use it in
various ways. First we note that this e�ective potential has extrema of two sorts - local
maxima and local minima. Local maxima represent unstable saddle point solutions of the
theory. In the case of the unHiggsed branch (see below) we present an interpretation of the
resultant instability in terms of the tachyonic bound states of the system. We also use the
exact Landau-Ginzburg e�ective action that we obtain to understand the zero temperature
phase diagram of the RB theory (as a function of its microscopic parameters) in a simple
and intuitive way. Finally we also make a prediction for the range of the parameter x6 over
which the RB theory is stable, i.e. has a stable vacuum.

3.5.1 An e�ective potential for σB

In the zero temperature limit the three-variable o�-shell free energy (3.52) simpli�es to

F (cB, σB, S̃) =
NB

6π

[
− ĉ3

B − 4S̃3λ2
B − 3ĉ2

Bσ̂B − 12S̃2λ2
Bσ̂B − 12S̃λ2

Bσ̂
2
B

+ 6ĉB|λB|(S̃ + σ̂B)2 + 3
(
m̂2
Bσ̂B + 2λB b̂4σ̂

2
B + xB6 λ

2
Bσ̂

3
B

) ]
. (3.60)

Varying this free energy w.r.t. S̃ produces the �rst of the gap equations in (3.53) which
we repeat here for convenience

(S̃ + σ̂B)(−ĉB + |λB|(S̃ + σ̂B)) = 0 . (3.61)

As we have discussed above, this equation has two solutions corresponding to the unHiggsed
and Higgsed branches:

unHiggsed : S̃ = −σ̂B , Higgsed : S̃ = −σ̂B +
ĉB
|λB|

. (3.62)
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Plugging these solutions back into the expression for the free energy, we have, in the
unHiggsed phase,

F (uH)(cB, σB) =
NB

6πT 3

(
−c3

B + 4λ2
Bσ

3
B − 3(c2

B −m2
B)σB + 6b4λBσ

2
B + 3xB6 λ

2
Bσ

3
B

)
, (3.63)

and in the Higgsed phase,

F (H)(cB, σB) =
NB

6πT 3

(
2−|λB |
|λB |

c3
B + 4λ2

Bσ
3
B − 3(c2

B −m2
B)σB + 6b4λBσ

2
B + 3xB6 λ

2
Bσ

3
B

)
.

(3.64)

We then extremize the above free energies with respect to cB to get

unHiggsed : cB = −2σB , Higgsed : cB =
|λB|

2− |λB|
2σB . (3.65)

Recall that cB is positive by de�nition. It follows that the solutions (3.65) exist only when
σB is positive (negative) in the Higgsed (unHiggsed) phase respectively. Plugging back the
above expressions into the free energies in (3.63) and (3.64), we get

F (uH)(σB) =
NB

2πT 3

[(
(1 + xB6 )− 4− λ2

B

3λ2
B

)
λ2
Bσ

3
B + 2b4λBσ

2
B +m2

BσB

]
, (3.66)

and in the Higgsed phase,

F (H)(σB) =
NB

2πT 3

[(
(1 + xB6 )− |λB|(4− |λB|)

3(2− |λB|)2

)
λ2
Bσ

3
B + 2b4λBσ

2
B +m2

BσB

]
. (3.67)

The quantum e�ective potential for the �eld (φφ)cl is related to the above free energies as

Ueff((φφ)cl) = T 3F (σB) with the replacement σB →
2π(φφ)cl

NB

. (3.68)

We continue to use the variable σB as the argument of the e�ective potential Ueff to avoid
clutter, with the understanding that all instances of σB in Ueff are to be replaced with
2π(φφ)cl/NB. Explicitly, we have

Ueff(σB) =


NB

2π

[
(x6 − φ2)λ2

Bσ
3
B + 2λBb4σ

2
B +m2

BσB
]

for σB < 0 ,

NB

2π

[
(x6 − φ1)λ2

Bσ
3
B + 2λBb4σ

2
B +m2

BσB
]

for σB > 0 ,

with the replacement σB →
2π(φφ)cl

NB

. (3.69)

The constants φ1 and φ2 are given by

φ1 =
4

3

(
1

(2− |λB|)2
− 1

)
, φ2 =

4

3

(
1

λ2
B

− 1

)
. (3.70)
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Observe that the e�ective potential (3.69) is bounded from below for positive values of σB
if the coe�cient of σ3

B is positive in the second of (3.69), i.e. when

x6 > φ1 . (3.71)

Similarly, the e�ective potential is bounded from below for negative values of σB if the
coe�cient of the σ3

B term is negative in the �rst of (3.69), i.e. when

x6 < φ2 . (3.72)

Note that φ1 < φ2.
Note that the terms proportional to σ2

B and σB are identical for the two ranges of
σB but the coe�cients of the σ3

B terms are di�erent: this non-analyticity in the cubic
term is what gives a sharp distinction between the Higgsed and unHiggsed branches of
the e�ective potential at zero temperature. When we turn on temperature we expect this
non-analyticity to be smoothed out. 14

We also give a slightly di�erent expression for the Landau-Ginzburg potential in terms
of the variable cB which is useful for the analysis of the gap equations as performed in
Section 4 of [57]. For this purpose, we substitute back the expressions for σB in terms of
cB from (3.65):

Ueff(cB) =


NB

2π

[
Au

c3
B

6
+B4,u

c2
B

2
−m2

B

cB
2

]
unHiggsed ,

NB(2− |λB|)
2π|λB|

[
−Ah

c3
B

6
−B4,h

c2
B

2
+m2

B

cB
2

]
Higgsed .

(3.73)

Here, Au, B4,u and Ah, B4,h are constants de�ned by

Au = 1−
(

1 +
3x6

4

)
λ2
B , B4,u = λBb4 ,

Ah = 1−
(

1 +
3x6

4

)
(2− |λB|)2 , B4,h = −sgn(λB)(2− |λB|)b4 . (3.74)

The o�-shell variable cB has the following advantage; its on-shell value coincides with the
pole mass (the gap) of the fundamental excitation in the corresponding phase. We record
the gap equations that follow from extremizing (3.73) w.r.t the variable cB:

unHiggsed : Auc
2
B + 2B4,ucB −m2

B = 0 ,

Higgsed : Ahc
2
B + 2B4,hcB −m2

B = 0 . (3.75)

Solutions to the quadratic equations in (3.75) above correspond to candidates for the
Higgsed or unHiggsed phases of the theory. The very recent paper [57] analysed the
solutions of (3.75) in detail and used information about the free energy at these solutions
to obtain the phase structure as a function of the parameters x6, λBb4 and m

2
B. In the next

subsection we will extract the same physical information from the exact Landau-Ginzburg
e�ective potential (3.69).

14This should be easy to verify - and seems to follow from the fact that the �nite temperature free energy
is an analytic function of its variables - but we have not veri�ed it in detail.
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3.5.2 Higgsed branch

In this subsection we study the e�ective potential (3.69) in more detail on the Higgsed
branch.

Potential for the Higgs vev

We have already noted around (4.84) that the variable σB has a simple interpretation
in terms of the Higgs vev on the Higgsed branch. Making the replacement (4.84), i.e.
σB = 2πv2/|λB| in the second line of (3.69) we �nd

Ueff(v) =
NB

|λB|
(
m2
Bv

2 + 4πsgn(λB)b4v
4 +

(
(1 + xB6 )− |λB |(4−|λB |)

3(2−|λB |)2

)
4π2v6

)
, (3.76)

It is easily veri�ed that (3.76) may also be obtained by taking the zero temperature limit of
(3.37) (i.e. dropping the last line in that formula) and integrating cB out of that equation.
It follows that the true value of the Higgs vev in the vacuum is obtained by extremizing
(3.76).

Note that (3.76) manifestly reduces to the classical potential

Ucl(v) =
NB

|λB|
(
m2
Bv

2 + 4πsgn(λB)b4v
4 + (2π)2(x6 + 1)v6

)
, (3.77)

in the classical limit (3.11) (i.e. λB → 0 with m2
B, b4 and x6 �xed) as expected on general

grounds.

Graphs of Ueff(σB) in various cases

In this subsubsection we will study the graphs of Ueff(σB) on the Higgsed branch for various
ranges of values of microscopic parameters. The results of this subsubsection will prove
useful in sketching the phase diagram of the RB theory in later subsections.

Recall that, on the Higgsed branch, Ueff(σB) is given by the expression

Ueff(σB) =
NB

2π

(
− |λB |2

(2−|λB |)2Ah
4σ3

B

3
− |λB |

(2−|λB |)
2B4,hσ

2
B +m2

BσB

)
, σB > 0 , (3.78)

(Ah, B4,h were de�ned in the second line of (3.74)). The extremization of Ueff(σB) produces
the gap equation in the second of (3.75) which we reproduce here:

Ahc
2
B + 2B4,hcB −m2

B = 0 . (3.79)

The structure of the curves for Ueff above turn out to depend sensitively on discriminant
Dh of this gap equation (3.79):

Dh = 4(B2
4,h +m2

BAh) . (3.80)
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As discussed below (3.69), the above e�ective potential is bounded below when x6 > φ1

where φ1 was de�ned in (3.70). In other words Ah < 0 when x6 > φ1 and Ah > 0 when
x6 < φ1.

15

We have the following cases as depicted in Figures 3.1 and 3.2:

1. Ah is negative: the potential Ueff increases at large σB.

σB σB σB

1(a).i. 1(a).ii. 1(b)

Figure 3.1: E�ective potential in the Higgsed phase for Ah negative.

(a) m2
B is positive:

i. B4,h is negative, or B4,h is positive such Dh is negative : the potential
rises monotonically as σB increases from zero to in�nity, and there are no
nontrivial positive solutions of the gap equation (3.79).

ii. B4,h is positive such that Dh is positive: As σB is increased from zero, Ueff

initially increases, reaches a local maximum and then decreases, reaches a
minimum and then increases without bound. In this case the gap equation
has two solutions; the larger of which is the candidate for a stable phase (the
smaller solution presumably describes unstable dynamics since it occurs at
a local maximum of the e�ective potential).

(b) m2
B is negative: For either sign of B4,h, Ueff initially decreases, reaches a mini-

mum and then turns and increases inde�nitely. The gap equation has exactly
one legal solution (i.e. a solution for cB which is positive) which is the candidate
for a stable phase.

2. Ah is positive: the potential Ueff decreases at large σB.

(a) m2
B is negative

15Note that φ1 is an increasing function of λB . In particular φ1 = −1 for the free theory (λB = 0), whereas
for the strongly coupled case (|λB | = 1) we have φ1 = 0. The fact that φ1 increases as we increase |λB |
indicates that coupling e�ects increase the propensity of our theory to develop a runaway instability
along the v direction.
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σB σB σB

2(a).i. 2(a).ii. 2(b)

Figure 3.2: E�ective potential in the Higgsed phase for Ah negative.

i. B4,h is positive, or B4,h is negative such that Dh is negative: The potential
decreases monotonically as σB increases from zero to in�nity, and there are
no nontrivial positive solutions of the gap equation (3.79).

ii. B4,h is negative such that Dh is positive: As σB is increased from zero
Ueff initially decreases, reaches a local minimum and then increases till it
reaches a local maximum after which it decreases without bound. In this
case the gap equation has two solutions; the smaller of which is the candi-
date metastable phase (the larger solution presumably describes unstable
dynamics again since it occurs at a local maximum of the potential).

(b) m2
B is positive: For either sign ofB4,h, Ueff initially increases, reaches a maximum

and then turns and decreases inde�nitely. The gap equation has exactly one
legal solution; this is a local maximum and so presumably describes an unstable
`phase'.

In the last two paragraphs above we have encountered three examples of solutions (1.a.ii,
2.a.ii, 2.b) to the gap equations that describe unstable `phases'. For future use we note
that these three unstable solutions are all given by the following root of (3.79):

cB =
−B4,h +

√
B2

4,h + Ahm2
B

Ah
. (3.81)

It is also easy to check that the three cases described above are the only three legal roots
of the form (3.81). In other words every local maximum of the potential (3.76) is a root
of the form (3.81), and a legal root (i.e. a root for which the RHS is positive) of the form
(3.81) is one of the three `local maxima' situations described above 16.

16To repeat, these three cases are as follows. First when Ah is negative, m2
B positive and B4,h positive

such that Dh is positive. Second when Ah is positive, m2
B is negative and B4,h negative such that Dh is

positive. Lastly when Ah is positive and m2
B positive for either sign of B4,h.
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3.5.3 unHiggsed branch

Graphs of Ueff(σB) in various cases

In this subsubsection we plot Ueff(σB) on the unHiggsed branch for various ranges of
microscopic parameters.

We start with the following expression for the Landau-Ginzburg potential in the un-
Higgsed branch in terms of the constants Au and B4,u:

Ueff(σB) =
NB

2π

(
−Au

4σ3
B

3
+ 2B4,uσ

2
B +m2

BσB

)
, (3.82)

where Au and B4,u are as in the �rst line of (3.74). Now recall that σB is necessarily
negative in the unHiggsed phase. As a consequence (3.82) may be rewritten as

Ueff(σB) =
NB

2π

(
Au

4|σB|3
3

+ 2B4,u|σB|2 −m2
B|σB|

)
. (3.83)

The gap equation that follows by varying (3.83) w.r.t. σB is given in (3.75) and is repro-
duced below:

Auc
2
B + 2B4,ucB −m2

B = 0 , (3.84)

where cB = 2|σB|. Note the formal and notational similarity with the analogous equation
(3.79) in the Higgsed phase. As in the previous subsection we brie�y analyze the behaviour
of (3.83) as a function of σB in all the various cases. We de�ne the discriminant Du of
(3.84):

Du = 4(B2
4,u +m2

BAu) . (3.85)

We then have the following cases as depicted in Figures 3.3 and 3.4:

1. Au is positive: the potential Ueff increases at large |σB|.

σB

1(b)

σB

1(a).i.

σB

1(a).ii.

Figure 3.3: E�ective potential in the unHiggsed phase for Au positive.

(a) m2
B is negative:
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i. B4,u is positive, or B4,u is negative such that Du is negative: the potential
rises monotonically as |σB| increases from zero to in�nity, and there are no
nontrivial positive solutions of the gap equation (3.84).

ii. B4,u is negative such that Du is positive: As |σB| is increased from zero,
Ueff initially increases up to a local maximum and then decreases down to
a local minimum and then increases without bound. The gap equation has
two solutions the larger of which is the dominant stable phase (the smaller
solution presumably describes unstable dynamics since it occurs at a local
maximum of the e�ective potential).

(b) m2
B is positive: For either sign ofB4,u, Ueff initially decreases, reaches a minimum

and then turns and increases inde�nitely. The gap equation has exactly one legal
solution which is the dominant stable phase.

2. Au is negative: the potential Ueff decreases at large |σB|.

σB

2(a).i.

σB

2(b)

σB

2(a).ii.

Figure 3.4: E�ective potential in the unHiggsed phase for Au negative.

(a) m2
B is positive

i. B4,u is negative, or B4,u is positive such that Du is negative: The potential
decreases monotonically as |σB| increases from zero to in�nity, and there
are no nontrivial positive solutions of the gap equation (3.84).

ii. B4,u is positive such that Du is positive: As |σB| is increased from zero Ueff

initially decreases down to a local minimum and then increases up to a
local maximum after which it decreases without bound. The smaller of the
two solutions to the gap equation (3.84) is the `dominant' metastable phase
(the larger solution presumably describes unstable dynamics again since it
occurs at a local maximum of the potential).

(b) m2
B is negative: For either sign of B4,u, Ueff initially increases, reaches a maxi-

mum and then turns and decreases inde�nitely. The gap equation has exactly
one legal solution; this is a local maximum and so presumably describes an
unstable `phase'.
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In the paragraphs above we have encountered three examples of `unstable phases' (1.a.ii,
2.a.ii, 2.b). The solution of the gap equation (3.84) associated with each of these phases is
easily veri�ed to be

cB =
−B4,u −

√
B2

4,u + Aum2
B

Au
. (3.86)

Moreover it is also easy to check that every legal (i.e. positive) solution of the form (3.86)
is one of the three local maxima of the paragraphs described above.

Explanation for the instability of local maxima

We have already explained above that

|σB| = −
2π(φφ)cl

NB

, (3.87)

where the RHS of this equation should be interpreted in quantum rather than semiclassical
terms since semiclassically the variable (φφ)cl is given by 〈φ〉〈φ〉 and is positive. The
operator φφ however is not necessarily positive (this follows because the subtraction that
is used to give this operator meaning is not positive). Equation (3.87) e�ectively asserts
that the unHiggsed branch explores only negative values of the operator φφ. We have
noted above the e�ective potential as a function of (φφ)cl has unstable `phases' that sit at
local maxima of the e�ective potential. In the rest of this subsection we will present an
explanation of these instabilities.

Our proposal for the mechanism of the instability of the `local maxima' phases is that
it is the tachyonic instability of a bound state of a single fundamental and antifundamental
�eld in the singlet channel. We claim that the solutions (3.86) are all unstable in this sense,
while none of the stable phases - i.e. the phases that occur at legal values of

cB =
−B4,u +

√
B2

4,u + Aum2
B

Au
, (3.88)

su�er from such an instability.
In order to see that this is indeed the case let us recall that bound states do occur as

poles in the S-matrix of a fundamental φ �eld scattering o� an antifundamental φ �eld.
Moreover these poles do sometimes go tachyonic (i.e. their squared mass sometimes goes
below zero). The condition for this to happen can be worked out by following discussion
in Section 4.5 of [59] and Appendix C of [60]. The particle-antiparticle scattering S-matrix
has a pole with positive squared mass when

4λB ≤ λ2
B(3xB6 + 4)− 4

b4λB
cB
≤ 4 . (3.89)

When

4λB = λ2
B(3xB6 + 4)− 4

b4λB
cB

,
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the pole is at threshold, i.e.
√
s = 2cB. On the other hand when

λ2
B(3xB6 + 4)− 4

b4λB
cB

= 4 , (3.90)

the pole lies at
√
s = 0. Using the de�nitions (3.74) for Au and B4,u it is easy to see that

the condition (3.90) can be rewritten as

B4,u = −AucB . (3.91)

(recall that the quantity cB is positive by de�nition). When

λ2
B(3xB6 + 4)− 4

b4λB
cB

> 4 , (3.92)

we have a bound state with negative squared mass, i.e. a tachyonic bound state. The
condition for the existence of this tachyonic pole is

AucB ≤ −B4,u . (3.93)

Of course the quantity cB is not independent of Au and B4,u but is determined in terms of
these quantities by the gap equation. The solutions to the gap equation are given by

cB =
−B4,u ±

√
B2

4,u + Aum2
B

Au
(3.94)

Inserting these solutions into the condition (3.93), we �nd that the condition (3.93) is met
whenever

−B4,u ±
√
B2

4,u + Aum2
B ≤ −B4,u (3.95)

This condition is obeyed by the `minus' branch of solutions (3.86) but not by the `plus'
branch of solutions (3.88). But we have seen above that this is precisely the split between
the local maxima (solutions (3.86)) and local minima (solutions (3.88)) of the e�ective
action (3.83). It is thus natural to identify the tachyonic bound states as the explanation
for the instability of the `minus' branch of solutions (3.86).

It follows, in other words, that the instabilities in the unHiggsed phase occur for the
same reason as the instabilities in the Higgsed phase, but for a di�erent �eld. Unstable
Higgsed `phases' occurred when our solution to the gap equations was at a maximum of
the potential for the �eld φ. We propose that instabilities in the unHiggsed phase occur
for solutions to the gap equation around maxima for the �eld (φφ)cl that is very ostensibly
related to the bound state of φ and φ.

In the case of the Higgsed theory in the λB → 0 limit (3.11) we obtained a classical
theory (with an overall factor of λ−1

B outside the action) in terms of the variable ϕ. In the
current unHiggsed context the e�ective potential does not have a clear classical limit as
λB → 0. On solutions to the gap equation that follows from varying (3.83) w.r.t. |σB|, it
turns out that σB and φφ (rather than λBσB and ϕϕ as in the Higgsed phase) are �nite
as λB → 0. The �eld ϕ which was the natural classical variable at weak coupling in the
Higgsed phase does not seem to be useful in the analysis of the unHiggsed branch (this is
probably a re�ection of the fact that dynamics is always quantum on this branch).
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3.5.4 Landau-Ginzburg Analysis of the zero temperature phase

diagram17

In subsections 3.5.2 and 3.5.3 we have already explored the qualitative structure of the
Landau-Ginzburg potential (3.69), plotted as a function of σB, separately for σB > 0 and
σB < 0. In this section we will simply put the analyses of subsections 3.5.2 and 3.5.3
together to obtain a global picture of the Landau-Ginzburg potential as a function of σB
over all possible ranges of parameters x6, λBb4 and m

2
B. We reproduce the potential below.

Recall that our exact Landau-Ginzburg potential as a function of σB (or equivalently, using
(3.57), a function of (φφ)cl) is given by

Ueff(σB) =


NB

2π

[
(x6 − φ2)λ2

Bσ
3
B + 2λBb4σ

2
B +m2

BσB
]

for σB < 0 ,

NB

2π

[
(x6 − φ1)λ2

Bσ
3
B + 2λBb4σ

2
B +m2

BσB
]

for σB > 0 .

(3.96)

Recall from (3.70) that φ1 < φ2. As we have explored in detail above, the plots of the
e�ective potential are qualitatively di�erent when x6 < φ1, φ1 < x6 < φ2 and x6 > φ2.
For this reason we analyze these three ranges of parameters separately. It is also useful to
recall the formulae for the discriminants (3.80) and (3.85) of the gap equations (3.75) in
either phase of the theory:

Dh =
4(2− |λB|)2

λ2
B

[
(λBb4)2 − 3λ2

B

4
(x6 − φ1)m2

B

]
,

Du = 4
[
(λBb4)2 − 3λ2

B

4
(x6 − φ2)m2

B

]
. (3.97)

Case I: x6 > φ2

In this case the coe�cient of σ3
B in the e�ective potential (3.96) is positive both when

σB > 0 and when σB < 0. It follows that Ueff(σB) is an increasing function in the limits
σB → ±∞. Note, in particular, that Ueff(σB) is unbounded from below at large negative
σB presumably indicating a runaway instability of the theory. In other words, the theory
has no truly stable phase in this range of x6. In this subsection we will sketch the `phase
diagram' of the theory, de�ned as the diagram that tracks the dominant metastable phase
as a function of the relevant parameters. 18 In order to do this we simply plot Ueff(σB)
as a function of σB. The detailed behaviour of the curve Ueff(σB) at �nite values of σB
depends on the signs and values of m2

B and λBb4. We have the following sub cases.

1. m2
B positive.

17This subsection was worked out in collaboration with O. Aharony.
18We emphasize that this phase diagram is formal; no phase - not even the dominant one - is stable. The
theory always has a run away instability to tunnel to large negative values of σB .
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Figure 3.5: E�ective potential for x6 > φ2.

(a) λBb4 positive with Du negative or λBb4 negative with Dh negative: In this case
Ueff(σB) is a monotonically increasing function of σB as depicted in Fig 3.5(a).
Ueff(σB) has no extrema and so the gap equation has no solutions.

(b) λBb4 positive with Du positive: In this case the curve of Ueff(σB) takes the
schematic form depicted in Fig 3.5(b). Ueff(σB) has two extrema; a local mini-
mum and a local maximum both for σB < 0, so both in the unHiggsed branch.
The local minimum is the only metastable phase of the theory (the maximum
is unstable) and so is the dominant `phase'.

(c) λBb4 negative with Dh positive: The graph of Ueff(σB) takes the schematic form
depicted in Fig 3.5(c). Ueff(σB) has two extrema; a local minimum and a local
maximum both for positive σB so in the Higgsed branch. The local minimum
is the only metastable phase of the theory (the maximum is unstable) and so is
the dominant `phase'.

2. m2
B negative, λBb4 arbitrary: In this case the graph of Ueff(σB) versus σB takes the

schematic form depicted in Fig 3.5(d). We have a local maximum at negative σB (so
in the unHiggsed phase) and a local minimum - so a metastable phase - at positive
σB, so in the Higgsed branch. This local minimum is the dominant (metastable)
phase.

Putting all this together we conclude that our theory has the (metastable) phase struc-
ture depicted in Fig. 8 of [57] and redrawn here for convenience in Fig. 3.6 of this chapter.
Notice that whenever a metastable phase exists, a subdominant unstable local maximum
of Ueff(σB) also exists in the vicinity. These are the subdominant `phases' that appear in
Fig. 22(a) of [57].

To end this subsubsection let us study what happens in the limit in which x6 → φ2

from above. First, nothing special happens to Ueff(σB) for positive σB. At negative σB,
however, the coe�cient of the σ3

B term tends to zero when σB < 0. In this limit Du is
always positive, so the top half of the red curve in Fig. 3.6 tends to a horizontal line (the
m2
B > 0 axis). Moreover, when m2

B and λBb4 are both positive (i.e. the case of Fig. 3.5(b))
the local minimum (which can be thought of as arising due to a competition between the
linear and quadratic terms in the action) continues to occur at a �xed value of σB and the
Ueff(σB) evaluated at this minimum also remains �xed. But the local maximum of this
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Figure 3.6: Phase diagram for x6 > φ2. The positive λBb4 axis (shown in blue) corresponds
to a second-order phase transition.

diagram (which is a result of the competition between the cubic and quadratic terms in
the action) now occurs at a value of σB that tends to −∞. Moreover the value of Ueff(σB)
at this maximum also tends to ∞. For x6 ≤ φ2 this local maximum simply does not exist
any more.

Case II: φ1 < x6 < φ2

In this case, the coe�cient of σ3
B is positive for σB > 0 and negative for σB < 0 which

implies that the potential is bounded below for all values of σB, so the theory is stable.
Ueff(σB) is a decreasing function of σB for large negative σB, but is an increasing function
of σB for large positive σB.

σBσB σB σB

(a) (b) (c) (d)

Figure 3.7: E�ective potential for φ1 < x6 < φ2.

1. m2
B positive: λBb4 positive or λBb4 negative with Dh negative: In this case the graph

of Ueff(σB) versus σB takes the form depicted in Fig 3.7(a). The global minimum
in the unHiggsed phase (negative σB) is the only extremum of Ueff(σB); this phase
dominates the phase diagram.

2. m2
B positive and λBb4 negative with Dh positive or

m2
B negative and λBb4 negative with Du positive: In this case the graph of Ueff(σB)

versus σB takes the form depicted in Fig 3.7(b) when m2
B is positive and of the

form depicted in Fig 3.7(d) when m2
B is negative. In either case the graph has a
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local minimum in the unHiggsed branch (negative σB) and a local minimum in the
Higgsed branch (positive σB) separated by a local maximum. The maximum occurs
in the Higgsed branch when m2

B > 0 but in the unHiggsed branch when m2
B < 0. 19

The dominant phase is the local minimum with the smaller free energy. Which phase
dominates depends on the precise values of m2

B, λBb4 and x6. A detailed analysis
has been performed in [57] and we summarize the results here. When x6 is strictly
between φ1 and φ2 the theory has a �rst order phase transition line along the curve

Dν = m2
B − νc(x6)(λBb4)2 = 0 . (3.98)

The function νc(x6) was studied in detail in [57]; see around Fig. 25 and Fig. 26. The
function νc(x6) is monotonically decreasing as a function of x6 with x6 ∈ (φ1, φ2).
The function νc(x6) is negative when x6 is near φ2 and hence the �rst order transition
line is in the third quadrant (corresponding to Fig. 3.8(a)). When x6 is near φ1, the
function νc(x6) is positive and hence the �rst order transition line is in the fourth
quadrant (Fig. 3.8(b)). The phase transition line crosses over to the fourth quadrant
from the third quadrant (equivalently, νc(x6) goes from being negative to positive) at
some intermediate value of x6. This intermediate value occurs at x6 = 1

2
(φ1 +φ2) and

the phase transition line coincides with the negative λBb4 axis. We plot the phase
diagram for this case and also the corresponding Landau-Ginzburg potential on the
phase transition line in Figure 3.9. Clearly, we have two exactly equal minima and
hence the onset of a �rst order phase transition.

Let us study the behaviour in the limits x6 → φ1 and x6 → φ2. In the limit x6 → φ2

from below, the unHiggsed branch minimum occurs at σB → −∞ and the potential
Ueff(σB) evaluated on this solution tends to −∞. In this limit the unHiggsed branch
local minimum is the dominant phase for every value of λBb4 < 0 and m2

B. In the
opposite limit x6 → φ1 the Higgsed branch local minimum occurs at very large values
of σB and Ueff(σB) evaluated on this solution tends to −∞. In this limit the Higgsed
branch local minimum is the dominant phase for every value of λBb4 < 0 and m2

B.

3. m2
B negative: λBb4 positive or λBb4 negative with Du negative: The graph of Ueff(σB)

versus σB takes the form depicted in Fig. 3.7(c). The global minimum in the Higgsed
branch (positive σB) is the only extremum of Ueff(σB); this phase dominates the phase
diagram.

Putting all this together we arrive at the phase diagram presented in Fig. 7 of [57]. This
phase diagram is resketched in Fig 3.8 for convenience.

Case III: x6 < φ1

In this case, the coe�cient of σ3
B is negative for both σB > 0 and σB < 0. It follows that

Ueff(σB) is a increasing function in the limits σB → ±∞. Note, in particular, that Ueff(σB)

19In fact at m2
B = 0 the local maximum goes through σB = 0; this maximum undergoes a `second order

phase transition' at this point from the Higgsed to the unHiggsed phase. This point is depicted in Figure
3.9.
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Figure 3.8: The phase diagram for φ1 < x6 < φ2. There is a second order phase transition
(shown in blue) along the positive λBb4 axis. The �rst order phase transition line is the
curve (shown in green) between the two dashed curves. The precise location of this phase
transition curve varies as we change x6. Two possible locations of this curve have been
sketched in the two �gures above. The �rst �gure corresponds to x6 near φ2 and the second
�gure corresponds to x6 near φ1.
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Figure 3.9: The �rst �gure is the phase diagram for x6 = 1
2
(φ1 + φ2). The second �gure is

the Landau-Ginzburg potential at the same value of x6 for a point on the �rst order phase
transition line (green) corresponding to m2

B = 0 and some λBb4 < 0.
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is unbounded from below at large positive σB presumably implying a runaway instability
of the theory. In this case the instability is easy to understand as it is present even in
the classical theory at su�ciently negative values of x6. Just as in Section 3.5.4, in range
of parameters the RB the theory has no truly stable phases. As in Section 3.5.4, in this
subsubsection we will sketch the `phase diagram' of the theory, de�ned as the diagram
that tracks the dominant metastable phase as a function of relevant parameters. As in
Section 3.5.4 we read o� our results from plots of Ueff(σB) as a function of σB. We have
the following subcases.

σBσB σB σB

(b) (c) (d)(a)

Figure 3.10: E�ective potential for x6 < φ1.

1. m2
B negative.

(a) λBb4 negative with Du negative or λBb4 positive with Dh negative: Ueff(σB) is
a monotonically decreasing function of σB as depicted in Fig 3.10(a). Ueff(σB)
has no extrema, and so the gap equation has no solutions.

(b) λBb4 negative with Du positive: In this case the curve of Ueff(σB) takes the
schematic form depicted in Fig. 3.10(b). Ueff(σB) has two extrema; a local
minimum and a local maximum both for σB < 0, so both in the unHiggsed
phase. The local minimum is the only metastable phase of the theory (the
maximum is unstable) and so is the dominant `phase'.

(c) λBb4 positive with Dh positive: The graph of Ueff(σB) takes the schematic form
depicted in Fig 3.10(c). Ueff(σB) has two extrema; a local minimum and a local
maximum both for positive σB so in the Higgsed phase. The local minimum is
the only metastable phase of the theory (the maximum is unstable) and so is
the dominant `phase'.

2. m2
B positive, λBb4 arbitrary: In this case the graph of Ueff(σB) versus σB takes the

form depicted in Fig 3.10(d). We have a local minimum in at negative σB (so in
the unHiggsed phase) and a local maximum at positive σB, so in the Higgsed phase.
This local minimum is the dominant (metastable) phase.

Putting all this together we conclude that our theory has the (metastable) phase struc-
ture depicted in Fig. 9 of [57] and redrawn here for convenience in Fig. 3.11 of this chapter.
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Figure 3.11: Phase diagram for x6 < φ1. The positive λBb4 axis (shown in blue) corresponds
to a second-order phase transition.

Notice that whenever a metastable phase exists, a subdominant unstable local maxi-
mum of Ueff(σB) also exists in the vicinity. These are the subdominant `phases' that appear
in Fig. 27(b) of [57].

To end this subsubsection let us study what happens in the limit in which x6 → φ1

from above. For negative values of σB, nothing special happens to Ueff(σB). At positive σB,
however, the coe�cient of the σ3

B term tends to zero. In this limit Dh is always positive,
so the top half of the red curve in Fig. 3.11 tends to a horizontal line (the negative m2

B

axis). Moreover, when m2
B and λBb4 are both positive (i.e. the case of sub Fig. 3.10(d))

the local minimum (which can be thought of as arising due to a competition between the
linear and quadratic terms in the action) continues to occur at a �xed value of σB and the
Ueff(σB) evaluated at this minimum also remains �xed. But the local maximum of this
diagram (which is a result of the competition between the cubic and quadratic terms in
the action) now occurs at a value of σB that tends to ∞. Moreover the value of Ueff(σB)
at this maximum also tends to ∞. For x6 ≥ φ1 this local maximum simply does not exist
any more.

3.6 Discussion

The results of this chapter suggest several questions for future work. First, it would be
interesting to generalize the computation of S-matrices presented in [59, 60] to the Higgsed
phase of the Regular Boson theory. The fact that this (and related) computations may
throw light on the dual fermionic interpretation of the Z boson - as discussed in detail in
[54] - make it particularly interesting.

One of the most interesting results of this chapter is the o�-shell e�ective action (3.69).
It would be interesting to generalize this result to �nite values of temperature and chemical
potential and explicitly observe the smoothing-out of the non-analyticity which was present
at zero temperature. It would be also interesting to compute a similar action for the
theory of one fundamental boson and one fundamental fermion studied in [62] and to use
this action to unravel the phase structure of the deformed N = 2 supersymmetric matter
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Chern-Simons theory with a single chiral multiplet in the fundamental representation. It
is possible that such an investigation will have interesting interplays with supersymmetry:
for example it may be possible to �nd a superspace version of (3.69).

In Section 3.4 we have presented a three-variable o�-shell free energy that reproduces
the gap equation and thermal free energy of the regular boson theory. We have also
presented a physical interpretation of the variable σB that enters this action. It would be
interesting to investigate whether there are interesting o�-shell interpretations of the other
dynamical variables - cB and S̃ - that appear in Section 3.4.

Above, we have found a preferred value for the cosmological constant counterterm Λ of
the CB theory - one that correctly reproduces the tadpole condition for the regular boson
theory (see (3.39)). It would be interesting to derive (3.39) from a more fundamental
physical principle. It would also be interesting to investigate if this result makes any
physical predictions for the critical boson theory: is it correct, for instance, to interpret
the Legendre transform of (3.33) w.r.t mcri

B (with Λ chosen to have the value (3.39)) as
the Coleman-Weinberg potential of the CB theory w.r.t its dimension two scalar operator
J0? It would be interesting to further investigate this and similar questions, and their
implications.

Finally it would be interesting to generalize the considerations of this chapter - even
qualitatively - to �nite values of NB. We leave all these questions for future work.
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Chapter 4

Classifying and Constraining 4 Photon
and 4 Graviton S-Matrices

4.1 Introduction

The study of string theory suggests a surprising rigidity in the structure of quantum theories
of gravity. For instance, there are only 5 known Lorentz Invariant theories of gravity in
�at 10 dimensional space, namely Type I, Type IIA, Type IIB, SO(32) Heterotic, E8×E8
Heterotic. Is it possible that these 5 are the only 10 dimensional stable Lorentz Invariant
quantum theories of gravity? But how can we establish that there is no other Lorentz
Invariant theory of gravity? Atleast with our current state of understanding of quantum
gravity the only practical way of tackling such a question is to employ simple general low
energy consistency considerations. This is the strategy we will employ in this chapter.

Consider all consistent Lorentz invariant d dimensional theories that admit a classical
limit. We conjecture: The classical gravitational S matrix in every such theory is necessarily
one of either the Einstein S matrix, or the Type II string theory S-matrix on Rd ×M or
the Heterotic string S-matrix on Rd ×M , where M is any 'compact space'.

Note the S-matrices above are independent of M . The conjecture of the last paragraph
asserts that the gravitational part of the classical limit of any consistent theory of �at space
gravity admits a consistent truncation to one of the three universal theories described
above. Perhaps low energy consistency is enough to establish this result? To proceed
towards proving this conjecture, we �rst tackle an easier sub-problem. Recall that the
Type II and Heterotic S-matrices have intermediate massive poles corresponding to the
exchange of higher spin massive particles. The conjecture of the previous paragraph - if
true - implies a simpler result as a special case. Namely that Einstein gravity is the only
consistent local (i.e. �nite number of derivatives) classical theory of gravity that admits
a consistent truncation involving no other �elds. We wish to investigate this special case
�rst. To complete this special case we need to prove this special case for scattering of
n = 3, 4, . . . gravitons. The case of 3 gravitons is simple and there is already an interesting
result about this in the literature - the 3 graviton S-matrix and constraint thereof [131].
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This simplicity has its root in the fact that 3 graviton S matrices are highly kinematically
constrained. The most general 3 graviton S matrix is kinematically forced to be a linear
combination of three structures.

T1 = (ε1.ε2ε3.p1 + perm)2 2 der: Einstein

T 2 = (ε1 ∧ ε2 ∧ ε3 ∧ p1 ∧ p2)2 4 der : Gauss-Bonnet

T 3 = (ε1.p2ε2.p3ε3.p1)2 6 der : Riemann3

(4.1)

Therefore, the most general 3 graviton S matrix takes the form

aT1 + bT2 + cT3 (4.2)

where, a, b, and c are numbers. [131] demonstrated that any theory in which either b or c
is nonzero is necessarily acausal unless it couples to higher spin particles of arbitrarily high
spin. In other words, in a causal gravitational theory with a local S matrix, b = c = 0. This
already established our conjecture for 3 graviton scattering. However note that 3 graviton
scattering is special as it is parameterized by �nite data. We encounter qualitatively greater
complexity when scattering 4 (or more) gravitons.

In the work that is described in this chapter, we have systematically listed all the
possible 2 − 2 S matrices for a classical theory of electrodynamics and gravity. Now, to
prove the above stated conjecture, we wish to use causality and constrain the possible
theories. This remains to be done in the future work.

As a warm-up for counting the independent function data, consider the scattering of 4
identical scalars. The most general S matrix is a fully symmetric function S of s, t, u with
s + t + u = 0. For the case of local S matrices, S is a polynomial. The number of such
polynomials at degree m is given by coe�cient of xm in

Zsym =
1

(1− x2)(1− x3)

dsym(m) ∼ m+ 1

6
asymptotically

(4.3)

This dsym also counts the number of �eld rede�nition inequivalentm derivative 4φ terms
one can add to the free boson Lagrangian. There is a simple map from S matrices and
Lagrangian structures.

Next we do this counting for the case when we have objects with indices. Such S
matrices are labelled by polarization tensor in addition to Mandelstam invariants s, t, u.
The full S matrix has to be S4 invariant. Now it is easy to check that the Z2×Z2 subgroup
of S4 consisting of I, P12P34, P13P24 and P14P23 leaves s, t, and u unchanged. S4 invariance
thus requires that index structure that appears in the S matrix is Z2 × Z2 invariant. The
conditions above just on index structure ensure the S matrix is invariant under Z2 × Z2

permutations. To ensure invariance under all of S4 we must now also ensure invariance of
the S matrix under S4/(Z2 × Z2) = S3.

Consider an index structure that happens to be invariant under a subgroup G of S3 .
The coe�cient function of s, t and u that multiplies this structure must also be invariant
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under this subgroup - which can vary from nothing to all of S3. We decompose polynomials
of s, t and u into the 3 irreps of S3 , namely the 1 dimensional completely symmetrical
representation, the one dimensional completely antisymmetric representation and the 2
dimensional irrep (in which it turns out that every permutation operator (e.g.P12 ) has
eigenvalues ±1. We �nd

Zno−sym =
1

(1− x)2
, dno−sym(m) = m+ 1

Zsym =
1

(1− x2)(1− x3)
, dsym(m) ∼ m+ 1

6

Zas =
x3

(1− x2)(1− x3)
, das(m) ∼ m+ 1

6

Zmixed =
2x

(1− x)(1− x3)
, dmixed(m) =

2(m+ 1)

3

ZZ2−sym =
1 + x

(1− x)2
, dZ2−sym(m) =

m+ 1

2

(4.4)

Its clear from the large m values of d above that a structure with no symmetry will give
rise to 6 functions worth degrees of freedom because fully symmetric d corresponds to one
function worth degree of freedom and dsym grows like m+1

6
for large enough m. Similarly,

dmixed suggests that a mixed symmetry structure would correspond to 4 function worth
degrees of freedom, and Z2 − sym structures have 3 function worth degrees of freedom.
This is veri�ed in our explicit listing of structures.

As a �rst exercise we present result for the most general local parity invariant S matrix
for 4 photons. For d ≥ 5 this function is parameterized by 2 Z2 invariant functions
(A0,1(s, t) = A0,1(t, s)) and a single S3 invariant function A2,1(s, t); a total of 7 degrees
of freedom. We say a Lagrangian structure A is a descendent of a structure B if �rst A
has more derivatives than B, but all the extra derivatives that are in A but not in B have
indices that contract with each other.

We have three primary structures given in terms of Lagrangians. Let A0,1 and A0,2

parameterize descendents of the four derivative structures (TrF 2)2 and Tr(F 4) respectively
while A1,2 parameterizes descendents of the six derivative term

FabTr(∂aF∂bFF ) (4.5)

Note, that in d = 4 we have special relation given by

FabFc[dFefFgh] = 0 (4.6)

Because any product of 5 dimensional antisymmetric tensors is trivially 0 in 4 dimensions,
as there are not enough indices in 4 dimensions to construct such an object. One might be
tempted to write further relations involving 6, 7, 8 indices for 5, 6, 7 dimensions respectively.
But antisymmetrization on our 4 F structures for 6 or more indices vanishes identically for
any dimensions because if we chose any 3 F s from our 4 F s the product would necessarily
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be symmetric in exchange of two of the F s. We go on to parametrize the photon S matrix
explicitly written in terms of polarization vector and momenta of the photons.

As a check to the claim that these three structures form a basis for any 2−2 scattering,
we write the tree level scattering of 4 photons in Type-I theory (or Type II theory on D
branes). It has a single index structure given in our basis as:

LSS4V ∝
1

16

(
Tr(F 4)− 1

4
(Tr(F 2))2

)
(4.7)

which itself can be obtained by expanding the Born Infeld action to quartic order in F .
Consequently this scattering amplitude can be cast into our general form with A2,1 = 0

and A0,2 =
1

4
A0,1 . The expression for A0,1 is a well known Veneziano type function.

We have also recast the formula for tree level scattering in the open bosonic string into
our general form. It involves all three of our structures.

Now, we present the result for the most general parity invariant S matrix for 4 graviton
scattering.

For d ≥ 7 the most general S matrix turns out to be parameterized by 7 Z2 invariant
functions, one function that enjoys no permutation symmetry and two functions that are
completely permutation symmetric. A total of 29 degrees of freedom.

Listing these primary terms with derivatives orders, we have one term at six derivative
order. This multiplies a fully symmetric function of s, t, u. Going up in derivatives, at eight
derivative order we have 5 Z2 invariant terms and one term with no additional symmetry.
This gives a total of 15 + 6 = 21 degrees of freedom parameterizing a general descendent
coming from these structures. At degree ten we have 2 Z2 invariant structures giving 6
degrees of freedom for parameterizing descendants from these primary structures. Finally,
we have a single completely symmetric function (one degree of freedom) parameterizing
descendents of a 12 derivative terms (4 derivatives of 4 Reimanns). We explicitly list this
parameterization in the later sections of this chapter.

As a check of our parametrization we write the 4 graviton S matrix from the Einstein
Lagrangian, in terms of our 10 basis structures of momenta and polarization as mentioned

above. Then we construct the 4 Riemann term which, when multiplied by
1

stu
, generates

the same S matrix at tree level as the Einstein action.
Next, the 4-graviton amplitude in Type II superstring theory is proportional (in the

sense of index structure) to the S matrix for Einstein gravity, and so can also be easily
written in our basis.

ASS4h = h(s, t, u, α′)AEG4h (4.8)

The tree level S matrices for the Heterotic string and the bosonic string are more com-
plicated, but also can each be written as a linear combination of the last 9 structures we
discussed above. The �rst structure - descendents of the 6 derivative term - never appears
in tree level string amplitudes. It would be interesting to check whether this structure
appears in string loop amplitudes. We have not yet tried this.
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The �nal goal of this work is to use the principle of causality to constrain all the
possible classical e�ective theories of gravity (and electrodynamics) upto 4 Riemann (and
�eld strength, Fµν) level. This is a work for the future.

Now, to systematically proceed to do our computation, we �rst get the answer from
the CFT side. Using group theory arguments �rst we constrain the number of possible
structures and their appropriate symmetries. The counting from the CFT side is already
done in the [132]. We present it in the next section.

4.2 CFT four point structures

In this section we compute the number of index structures for the four point function of
identical spin 1 and spin 2 currents. This section is a review of the relevant parts, for our
counting, from [132] and [136].

As the spin-1 operator is conserved, e�ectively it can be thought of as a vector of
SO(d − 1) obtained after subtracting the scalar degree of freedom of the conservation
equation [132]. The index structures of the four point function are the same as number of
SO(d−2) singlets in the tensor product of four SO(d−1) vectors. This is not exactly true,
as one needs to take into account the permutation symmetry of the external operators. We
expect the four point function of identical operators to be invariant under S4, the group of
permutations of four objects. The four point function is written as a function of cross-ratios,
the invariance of the four point function under permutations that do not leave cross-ratio
�xed is known as the crossing symmetry. This symmetry imposed via the crossing equation
on the CFT side or by summing over s,t and u channels on the scattering side. Only the
left-over symmetry, S4/S3 = Z2 × Z2 is to be imposed at the outset. It is important to
understand that these Z2's act as a simultaneous exchange of pairs of external operators
and they leave the cross-ratios invariant. So the total number of four-point structures is

N =
(

Res
SO(d−1)
SO(d−2)

(
⊗4
i=1 ρ

)Z2×Z2
)SO(d−2)

. (4.9)

Here we have used the notations in [132]. This is computed by the representation ring
identity (

⊗4
i=1 ρ

)Z2×Z2

= ρ4 	 3
(
S2ρ⊗ ∧2ρ

)
. (4.10)

Let us compute this for a vector representation of SO(d− 1).

Res
SO(d−1)
SO(d−2) = ⊕ • (4.11)
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We will compute the representation appearing in S2ρ and ∧2ρ.

⊗ ·
, , ·

· ·

#S2 #∧2

1 0

0 1
1 1

· 2 0

N = 12 + 12 + 22 + 22

−3(1 · 0 + 0 · 1 + 1 · 1 + 2 · 0) = 7.

(4.12)
The counting above assumes large enough dimensions, CFT dimension d ≥ 4. The Lorentz
group in lower dimensions is special and there are identities between these 7 structures
causing these orbits to shrink to a total of 5 terms in d = 3. This is described in [132] and
Appendix A in [136].

In 3-d the restriction of (4.11) of the spin-1 traceless symmetric tensor of O(2) to O(1)
is just

Res
O(2)
O(1) = •+ ⊕ •− (4.13)

Where superscript + is for parity even and − is for parity odd. Plugging this in (4.10) we
immediately see that there are 5 parity even structures and 2 parity odd structures. Its
interesting to note that this result is independent of spin l of the current, i.e. on the l.h.s.
of (4.13) we could have taken any spin l representation the r.h.s. would remain the same
in this special case. Therefore, even for the case of spin-2 current, we will have the same
counting of structures in d = 3 (bulk dimensions 4).

Let us do a similar counting for the spin-2 conserved current. It decomposes into
SO(d− 2) as ⊕ ⊕ •.

⊗ •
, , , , , • , ,

, , , , •
• •

#S2 #∧2

1 0

0 1

1 0
1 1

1 1
3 1

0 2
2 2

· 3 0

(4.14)

From here it follows that the number of four point structure for spin-2 current is

N = 12 + 12 + 12 + 22 + 22 + 42 + 22 + 42 + 32 (4.15)

−3(1 · 0 + 0 · 1 + 1 · 0 + 1 · 1 + 1 · 1 + 3 · 1 + 0 · 2 + 2 · 2 + 3 · 0)

= 29.

This counting also assumes large enough dimensions, namely CFT dimensions d ≥ 6.
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In the case of spin 2 conserved current, there are two more special cases apart from
d = 3. First, there is the case of d = 5. There is a degeneracy condition mentioned in
section 2.7 and Appendix A of [136], which results in the reduction from 29 function worth
degrees of freedom to 28 degrees of freedom.

Secondly, the case of d = 4. [132]. In this case we have to consider the restriction of
parity even spin 2 representation of O(3) to O(2), ⊕ ⊕ •+. This representation has
the character

χ( ⊕ ⊕•+)(x, s) =
1 + s

2

(
x

5
2 − x− 5

2

x
1
2 − x− 1

2

)
+

1− s
2

(4.16)

Where,
O(2) = U(1)× Z2 = {(x, s) : x ∈ U(1), s = ±1} (4.17)

Plugging this in the (4.10) we �nd that the total number of parity even structures is
22 and parity odd structures is 3. Parity odd structures count is just the coe�cient of s
in the character of product of 4 of the above mentioned representations, i.e. (4.9).

4.3 S-matrices

In this section we review the relevant parts of [134, 135]. We also explicitly list all possible
photon and graviton S-matrices and �nd them to be in one-to-one correspondence with
the CFT four point structures. The S-matrix is a scalar function of four polarizations εi
and four momenta pi with the following properties

f(λiεi, pi) =
( 4∏

i

λ`ii

)
f(εi, pi)

f(εi + αipi, pi) = f(εi, pi)

with p2
i = 0, εi · pi = 0. (4.18)

Here `i is the spin of the i-th operator. This is exactly the same algebraic problem as the
classi�cation of conformal four point function of spinning operators in embedding space.
It has been studied in [134, 135]. The function with above properties can be constructed
using only two types of structures,

hij = (εi · εj)(pi · pj)− (εi · pj)(εj · pi), (4.19)

vi,jk = (εi · pj)(pi · pk)− (εi · pk)(pi · pj). (4.20)

The structure hij contributes homogeneity 1 to εi and εj each, while vi,jk contributes
homogeneity 1 only to εi. The S-matrix is constructed with h's and v's such that the
required homogeneity in all the ε's is obtained. For a given i, j, the structure hij is unique
while a priory, there are multiple vi,jk structures for a given i. For example a single
homogeneity in ε1 is obtained by v1,23, v1,34 and v1,24. For CFT four point functions, where
the role of pi is played by the embedding space coordinate Xi, it turns out there are
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only two of these structures that are linearly independent. In the context of S-matrices
however, these structures are even more constrained thanks for momentum conservation.
After de�ning s = (p1 + p2)2/2, t = (p1 + p3)2/2, u = (p1 + p4)2/2,

v1,23 = (ε1 · p2)(p1 · p3)− (ε1 · p3)(p1 · p2)

= (ε1 · p2)t− (ε1 · p3)s

= −(ε1 · (p1 + p3 + p4))t− (ε1 · p3)(−t− u)

= −(ε1 · p4)t+ (ε1.p3)u

= −v1,43 (4.21)

Similarly, v1,23 = −v1,24. This implies that for a given i, vi,jk structure is unique, we
can change either j or k in vi,jk at the cost of a minus sign. Let us de�ne a convention
vi ≡ vi,(i+1,i+2). Now the S-matrix is to be written only using hij and vi, both these
structures are unique for the given value of their indices. We write the S-matrix structures
using a standard graphical notation, hij are denoted as a line between the vertices i and j
after drawing the lines, all remaining homogeneity is saturated by v's. This is elaborated
in �gure 4.3

1

2 3

4H14

V2 V3

Figure 4.1: This �gure denotes the S-matrix h14v2v3 for photons. The same diagram
also has an interpretation for graviton S-matrix, in that case it represents the S-matrix
h14v1v4v

2
2v

2
3.

With this notation, we have computed the possible gauge invariant 4-photon S-matrix
structures as well as 4-graviton S-matrix structures in �gure 4.2 and 4.3 respectively. In
both cases, the number of structures agrees with the group theory counting done in the
previous section.

These results are only true in d ≥ 4 for the case of photon and d ≥ 6 for the case of
graviton. The identities between hij and vi,jk for d = 3 are are discussed in Appendix C of
[133]. In the case of d = 3 where there is a reduction from 7 degrees of freedom to 5, but
number of structures remain the same, as was done in the counting in the previous section.
Similar identities between hij and vi,jk for the case of d = 4, 5 for the case of graviton are
not listed but from the counting of the previous section we know how many structures
reduce in these dimensions for the case of gravitons.
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1)

2)

3)

Figure 4.2: Linearly gauge invariant photon S-matrices

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Figure 4.3: Linearly gauge invariant graviton S-matrices

Now, with the counting of previous section in mind, we start to write the Lagrangian
structures for the bulk theories.

4.4 S matrices for 4 scalars - enumeration and counting

Consider the S matrix of a theory of four identical massless scalars. Clearly the most
general S matrix in such a theory is speci�ed by a single function

A(s, t)
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which enjoys the following symmetry properties

A(s, t) = A(t, s) = A(s, u), u = −s− t (4.22)

(4.22) re�ects the fact that the S matrix enjoys invariance under the full permutation
group, and so in particular interchanges 2↔ 3 and 2↔ 4 respectively. Of course s, t and
u are the usual Mandlestam invariants that obey

s+ t+ u = 0 (4.23)

If we focus attention on S matrices that arise from local Lagrangians, the functions
A(s, t) are necessarily polynomials of s and t and u. These polynomials can be sorted by
their degree. At degree zero we have a constant - corresponding to the Lagrangian term
φ4. The only completely symmetric polynomial at degree one is s + t + u which vanishes
by (4.23). At degree two we have two symmetric polynomials s2 + t2 +u2 and st+ tu+us.
However the equation (s+ t+u)2 = 0 gives us one relation between these two polynomials.
The independent polynomial can be taken to be st + tu + us and is generated by the
Lagrangian term

∂µ∂νφ∂µφ∂νφφ (4.24)

At degree three we have 3 independent symmetric polynomials, s3+t3+u3, s2(t+u)+t2(s+
u)+u2(s+t) and stu. The equations (s+t+u)3 = 0 and (s+t+u)(st+tu+us) = 0 give us
three relations between these three independent quantities. The independent polynomial
can be taken to be stu and is generated by the Lagrangian structure

∂µ∂ν∂αφ∂µφ∂νφ∂αφ (4.25)

This enumeration can be continued inde�nitely. In order to see how the counting works
let us compute two partition function

Zn(x) = Trxd =
∞∑
m=0

dn(m)xm, Zsym(x) = Trxd =
∞∑
m=0

dsym(m)xm (4.26)

(the subscript n stands for naive) where the `trace' in Zn i taken over all symmetric poly-
nomials, the trance in Z is taken over all equivalence classes of symmetric polynomials
(polynomials that agree when s+ t+ u = 0 are regarded as identical). Zn(x) is simply the
partition function of three identical particles in a harmonic oscillator and is given by

Zn(x) =
1

3(1− x3)
+

1

6(1− x)3
+

1

2(1− x)(1− x2)
(4.27)

As we have seen in the examples above, the relationship between dn(m) and dsym(m) is

dsym(m) = dn(m)−
m−1∑
p=0

dsym(p) (4.28)
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(the last term on the RHS re�ects the fact that any lower order nontrivial polynomial can
be multiplied by the appropriate power of (s+ t+ u) to generate a symmetric polynomial
at degree m, as we have seen in examples). It follows that

dn(m) =
m∑
p=0

dsym(p) (4.29)

so that
d(p) = dn(p)− dn(p− 1) (4.30)

It follows that

Zsym(x) = (1− x)Zn(x) =
1

3(1 + x+ x2)
+

1

6(1− x)2
+

1

2(1− x2)

=
1

(1− x2)(1− x3)

= 1 + x2 + x3 + x4 + x5 + 2x6 + x7 + 2x8 + 2x9 + 2x10 . . .

(4.31)

It is straightforward but unilluminating to expand (4.31) to obtain an analytic expression
for d(m). At large m

dsym(m) ∼ m+ 1

6
(4.32)

Recall that d(m) counts the number of independent n Lagrangian structures that contribute
to the scattering of 4 identical scalars.

4.5 S matrices for 4 photon scattering

In section 4.2 above we have already counted the number of independent index structures
that can appear in 4 photon S matrices. For D ≥ 5 we found that there was a total of 7
such structures, which transformed in under the S3 `residual permutation symmetry' group
as 3 structures in the (singlet) completely symmetric representation and two structures in
the unique 2 dimensional representation of S3. In this section we explicitly construct
the corresponding S matrix index structures. As our classi�cation follows just from simple
symmetry considerations, it follows that the full 4 photon S matrix of any theory - classical
or quantum - is given by a linear combination of the index structures listed in this section.
The coe�cients of this linear combination are, in general, arbitrary functions (subject to
certain symmetry requirements, see below) of the Mandelstam variables s, t, u.

In this chapter we are especially interested in S matrices generated by the local part of
the 4 photon quantum e�ective action of our theory, i.e. the S matrices that we can obtain
from local (i.e with �nite number of derivatives) gauge invariant bulk interaction terms.
As a special case of the construction of the most general 4 photon S matrix (described in
the previous paragraph) we also present an explicit parameterization of all inequivalent
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local four photon e�ective actions 1. Our �nal answer is given in terms of 3 in�nite classes
of Lagrangian terms - terms in the same class generate 4 photon S matrices with the
same index structure but with di�erent dependences on s, t, u. Our �nal answers are very
explicit.

4.5.1 Direct Enumeration

Our method to construct 4 photon S matrices is completely straightforward (if slightly
tedious). We systematically list all gauge invariant local Lagrangian structures that can
contribute to four photon scattering subject to the following equivalences

• Terms in the Lagrangian that di�er by terms that vanish when we impose the lin-
earized equations of motion ∂µFµν can be converted to each other by the an appro-
priate �eld rede�nition. Such terms generate the same 4 photon S matrix and so are
regarded as equivalent.

• Terms in the Lagrangian that di�er by a total derivative generate the same S matrix
and so are regarded as equivalent.

• Terms in the Lagrangian that involve the dot product - i.e. an index contraction - of
two separate derivatives (e.g.

B = Tr(∂µFab∂
µFbcFcdFda)

generate S matrices with the same index structures. Consequently, if we are inter-
ested only in the index structures of S matrices, all such terms may be regarded as
equivalent.

• Let us now specialize - as we do in much of this section - to the study of local
Lagrangians. It is useful to de�ne the notion of a `descendent' in the space of local
Lagrangians. A term B is said to be a descendent of a term C if B can be obtained
from C by acting on the �elds that appear in C by derivatives whose indices contract
in pairs. For instance the term B above is a descendent of

C = Tr(FabFbcFcdFda)

It is also useful to de�ne the notion of a `primary' in the space of Lagrangians. A
primary is a Lagrangian structure that cannot itself be written as the `descendent'
of some other another local Lagrangian. In order to classify local Lagrangian terms
it is useful to �rst construct all inequivalent primary structures. With these in hand
it is straightforward to construct all descendents, and so all S matrices that arise out
of local Lagrangian structures. In the �rst part of our analysis - where we seek to
classify all inequivalent primaries - we simply set all descendents to zero; two terms
that di�er by a descendent are regarded as equivalent.

1We regard local e�ective actions as equivalent when they generate the same S matrix, or, equivalently,
when they can be related to each other by a �led rede�nition of a speci�ed sort, see below.
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4.5.2 Triviality of 3 photon scattering

As a warm up to the study of 4 photon S matrices, it is useful to �rst rederive a well known
fact, namely that there are no nontrivial index structures for 3 photon scattering; 3 photon
scattering simply vanishes.

Consider a term in the Lagrangian with three explicit factors of the �eld strength. We
can always use integration by parts to transfer all derivatives that act on the third �eld
strength to the �rst and second ones. So the most general Lagrangian term of this sort
takes the schematic form

∂∂...∂F ∂ . . . ∂F F (4.33)

Now let us examine the index structure of any such term. Focusing on primaries, none of
the indices of the derivative operators ∂µ are allowed to contract with each other. Also,
when ∂µ acts on a given F , the µ index is not allowed to contract with an index of that
F , because when that happens the corresponding term vanishes because of the equation
of motion. It follows that when ∂µ derivative acts on the �rst F must contract with a free
index on either the second F or the third F . Now suppose we have two derivatives, say ∂µ
and ∂ν , acting on the �rst F . Then one of the two indices (say µ) must contract with a
free index of the second F while the other one - ν contracts with a free index of the third
F (if both indices contract with the free indices of - say - the second F , the corresponding
term vanishes because of antisymmetry of Fµν).

In summary primaries formed out of 3 Fs cannot have more than four derivatives, and
the unique candidate for a four derivative primary is

T4 = ∂µ∂θFaν∂ν∂φFaµFθφ (4.34)

The reader can, however, easily verify that the swap of dummy variables

µ↔ ν, θ ↔ φ, a↔ b (4.35)

allows us to prove that T4 = −T4, so that T4 vanishes. It follows that there are no three F
primaries with four derivatives.

Let us now turn to two derivative primaries. The reader can easily convince herself
that any candidate two derivative primary can, by an integration by parts (and by use of
the equation of motion), be manipulated into one of the following two terms

T a2 = ∂µFνa∂νFµbFab

T b2 = ∂µFab∂νFabFµν
(4.36)

2 However the change of dummy variables (4.35) can, once again, be used to demonstrate
that T a2 = −T a2 and T b2 = −T b2 . It thus follows that each of T a2 and T b2 vanish identically.

Finally, the unique operator with 3 Fs and no derivatives is simply TrF 3 (where the
trace is taken over the Lorentz indices of the antisymmetric D ×D matrix F ). Using

TrF 3 = Tr(F 3)T = Tr(F T )3 = −TrF 3

2In particular, integration by parts with ∂µ takes ∂µFθφ∂νFµθFνφ to T a2 .
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it follows that this term also vanishes identically. We conclude that there exist no primaries
with 3 F �elds.

4.5.3 4 photon scattering

Clearly all gauge invariant contributions to the Lagrangian that contribute to 4 photon
scattering consist of products of derivatives (of arbitrary number) multiplying 4 Fµν �elds
in such a way that all indices contract so that the Lagrangian is a scalar. It is very easy to
see that no term involving 6 or more derivatives (distributed and contracted in any manner
among the 4 Fµν operators) can yield a `primary' contribution to the 4 photon S matrix.
In order to see why this is the case, suppose it were not true. Then there must be a scalar
expression built out of 4 Fµνs and 6 derivatives in which none of the derivatives contract
with each other. It follows that both indices of atleast two Fab operators must contract
with derivatives. A candidate term of this term might be

∂aFµν∂µFab∂b∂ν∂
pFmn∂

mFpn (4.37)

in which the indices of the �rst two �eld strength operators are both contracted with
derivatives. In order to see that the term above is trivial (according to our rules of counting
as spelt out above) we use the the Bianchi identity

∂aFµν = −∂µFνa − ∂νFaµ

to re express the �rst �eld �eld strength in (4.37) as a sum of two other terms. This gives
us a sum of terms, each of which is a product of four �eld strengths. Note, however, that
both of these terms have a pair of derivatives with contracted indices, and so both terms
are descendents, and so are trivial for the purposes of the current section.

The reader can easily convince herself that exactly the same argument can be made
whenever two separate �eld strength operators have both their indices contracted with
derivatives. Let the two �eld strengths of this form be the `�rst' and the second Fµν
operators in the expression. The two derivatives that contract with the second Fµν must
act on distinct Fαβ �elds (else the expression would vanish by the antisymmetry of Fab ).
Moreover neither of these derivatives can act on the second �eld itself (else the expression
would vanish by the equations of motion). An integration by parts can be used to ensure
that none of the derivatives act on the `fourth' Fµν . With this convention it follows that
one of the two derivatives that contracts with the second Fµν must act on the `third' Fµν
while the second derivative must act on the �rst Fµν . We can now replace the expression
involving the derivative acting on the �rst Fµν by two di�erent terms via the Bianchi
identity. A moment's consideration will convince the reader that both these terms are
descendents and so can be dropped.

Let us now turn to terms involving four derivatives acting on the four Fµν operators.
The reader can quickly convince herself that there are �ve terms of this sort that are not
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obviously trivial. These terms are

T 4
1 = ∂δ∂νFαaFβa∂α∂βFνβFδb

T 4
2 = ∂νFαa∂δFβa∂αFνb∂βFδb

T 4
3 = ∂δ∂γFaαFaβ∂αFbγ∂βFbδ

T 4
4 = ∂β∂dFabFbc∂α∂aFcdFαβ

T 4
5 = ∂γ∂αFab∂δ∂βFbaFαβFγδ

(4.38)

(Any other expression that the reader may care to write down can be manipulated into one
of the �ve forms above upto total derivatives - without, at this stage, the use of Bianchi
identities).

In Appendix C.1 we employ Bianchi identities to �nd relations between the structures
T 4
i (i = 1 → 5). The relations we obtain turn out to be strong enough to allow us to

deduce that each of the terms listed in (4.38) actually are actually trivial. It follows that
there is no Lagrangian structure built out of four �eld strengths and four derivatives that
generates a `primary' S matrix.

The situation is a bit more complicated with terms involving two derivatives of the
four �eld strengths. By using the equivalence of terms that di�er by total derivatives, the
reader can convince herself that there there are fourteen naively inequivalent structures at
this order. They are

T 2
1 = ∂bFβa∂aFαbFθαFθβ

T 2
2 = ∂bFβa∂aFβbFµνFµν

T 2
3 = ∂bFβa∂aFαbFθβFθα

T 2
4 = Fβa∂aFαb∂bFθαFθβ

T 2
5 = Fβa∂aFβb∂bFµνFµν

T 2
6 = Fβa∂aFαb∂bFθβFθα

T 2
7 = ∂βFbaFθβ∂aFbαFθα

T 2
8 = FαaFβb∂aFαθ∂bFβθ

T 2
9 = FαaFβb∂b∂aFαθFβθ

T 2
10 = FbαFaα∂bFµν∂aFµν

T 2
11 = FbαFaα∂a∂bFµνFµν

T 2
12 = FαaFβb∂aFβθ∂bFαθ

T 2
13 = FαaFβb∂a∂bFβθFαθ

T 2
14 = Fab∂aFµν∂bFνρFρµ

(4.39)

T 2
1 and T 2

3 are equivalent upto relabeling.
Once again these naively independent structures are not really all distinct; once again

Bianchi identities may be used to relate these 14 structures. In Appendix C.2 we demon-
strate that the use of Bianchi identities generates 13 nontrivial identities between the
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structures listed in (4.39). These identities can use used to relate each of these structures
to a single independent term which we choose to be

T 2
I = Fab∂aFµν∂bFνρFρµ (4.40)

4.5.4 Most General Local S matrix for 4 photon scattering

We have demonstrated in the last subsection that the three primaries for for photon scat-
tering are

S1 : (TrF 2)2, S2 : TrF 4, S3 : Fab∂aFµν∂bFνρFρµ (4.41)

In this subsection we will explicitly parameterize the most general `descendent' S matrix
built out of these primaries.

Let us �rst consider descendents of (TrF 2)2. Every such descendent is a linear combi-
nation of the terms

A0,1
m,n =

m∏
i=1

n∏
j=1

Tr
(
∂νj∂µiFF

)
Tr
(
∂µiF∂νjF

)
(4.42)

In order to see this let us �rst note that we can always choose, by an integration by parts
, to have no derivative acting on the second appearance of F in (4.42). Once we adopt
this convention, it follows that all descendent derivatives that act on the �rst F necessarily
have indices that contract with a derivative that acts either on the third or on the fourth
F as we have displayed in (4.42). In addition to the terms displayed in (4.42) we could
have descendent derivatives acting on the third and fourth F contracting with each other.
However these terms are easily manipulated into terms of the form (4.42) using integration
by parts and the equations of motion. 3

It is manifest from the expression (4.42) that

A0,1
m,n = A0,1

n.m (4.43)

3For instance
Tr (F∂µF ) (∂µFF ) = −Tr (∂µF∂µF ) (FF )− Tr (F∂µF ) (F∂µF )

Using the equation of motion ∂2F = 0, the second term in the expression above can be written as

−1

2
(∂2µ + ∂4µ)2Tr (FF ) (FF ) = −1

2
(∂1µ + ∂3µ)2Tr (FF ) (FF ) = −Tr (∂µFF ) (∂µFF )

Where the notation ∂aµ denotes a derivative that acts only on the a
th appearance of F . In the manipulation

in the equation above we have �rst integrated by parts twice and then used the equation of motion. In
summary we conclude that

Tr (F∂µF ) (∂µFF ) = −A0,1
1,0 +−A0,1

0,1.

While the manipulation in this footnote might seem complicated in position space, it is completely
standard in momentum space. The manipulation simply demonstrates the familiar fact that p2.p4 = p1.p3
using

p2.p4 =
1

2
(p2 + p4)2 =

1

2
(p1 + p3)2 = p1.p3.
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It is convenient to package the information of the parameters A0,1
m,n into a generating func-

tion

A0,1(t, u) =
∞∑

m,n=0

A0,1
m.nt

mun (4.44)

It follows from (4.43) that
A0,1(t, u) = A0,1(u, t) (4.45)

The most general local descendent of (TrF 2)2 is parameterized by the most general poly-
nomial function A0,1(t, u) that is symmetric under interchange of t and u. 4 Explicitly, the
S matrix generated by the descendent parameterized by A0,1(t, u) is given by

A0,1(t, u)
(
p1
µε

1
ν − p1

νε
1
µ

) (
p2
µε

2
ν − p2

νε
2
µ

) (
p3
αε

3
β − p3

βε
3
α

) (
p4
αε

4
β − p4

βε
4
α

)
+A0,1(s, u)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
µε

3
ν − p3

νε
3
µ

) (
p2
αε

2
β − p2

βε
2
α

) (
p4
αε

4
β − p4

βε
4
α

)
+A0,1(t, s)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p4
µε

4
ν − p4

νε
4
µ

) (
p3
αε

3
β − p3

βε
3
α

) (
p2
αε

2
β − p2

βε
2
α

) (4.46)

In a similar manner, the most general descendent of the primary Tr(F 4) is a linear
combination of the quantities

A0,2
m,n =

m∏
i=1

n∏
j=1

Tr
(
∂νj∂µiF∂µiFF∂νjF

)
(4.47)

Using

Tr
(
∂νj∂µiF∂µiFF∂νjF

)
= Tr

(
∂νjFF∂µiF∂νj∂µiF

)
= Tr

(
∂νj∂µiF∂νjFF∂µiF

)
(where we have taken the transpose in the �rst step and used cyclicity of the trace in the
second step) it follows that

A0,2
m,n = A0,2

n.m (4.48)

As above, the information in the coe�cients A0,2
m,n is most conveniently packaged into

the generating function

A0,2(t, u) =
∞∑

m,n=0

A0,2
m.nt

mun (4.49)

It follows from (4.48) that
A0,2(t, u) = A0,2(u, t) (4.50)

Note that 5

4More generally, the most general S matrix with the same index structure as that generated by (TrF 2)2 -
whether local or not - is parameterized by the most general function A0,1(t, u) that is symmetric under
the interchange of t and u.

5We have used the symbol t rather than the symbol s for contractions between derivatives acting on the
�rst and second appearances of F in (4.42) because we are using conventions in which the �eld strengths
that appear in (4.42) correspond, in order, to the �rst, third, second and fourth particles respectively
(and then cyclically sum. With this convention the S matrix has a 1 ↔ 2 symmetry (rather than, for
instance, a 1 ↔ 3 symmetry), as was the case with (4.46). While this choice is convenient it carries no
physical content. 1, 2, 3,4 are dummy variables in the S matrix (4.46).
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As above the most general descendent of Tr(F 4) is parameterized by the most general
polynomial function A0,2(t, u) that is symmetric in t and u. The Lagrangian term A0,2(t, u)
generates the following S matrix

A0,2(t, u)
(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
νε

3
α − p3

αε
3
ν

) (
p2
αε

2
β − p2

βε
2
α

) (
p4
βε

4
µ − p4

µε
4
β

)
+A0,2(s, u)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p2
νε

2
α − p2

αε
2
ν

) (
p3
αε

3
β − p3

βε
3
α

) (
p4
βε

4
µ − p4

µε
4
β

)
+A0,2(t, s)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
β − p4

βε
4
α

) (
p2
βε

2
µ − p2

µε
2
β

) (4.51)

Now let us consider the third structure which is

FabTr(∂aF∂bFF ) (4.52)

Note that
FabTr(∂aF∂bFF ) = FabTr(F∂bF∂aF ) (4.53)

(where we have taken the transpose within the trace and used the antisymmetry of Fab).
It follows that the three Fs that enter in the trace in (4.52) all appear on equal footing.

The most general descendent of this structure can be written as linear combinations of

A2,1
m,n =

m∏
i=1

n∏
j=1

∂µi∂νjFabTr
(
∂µi∂aF∂νj∂bFF

)
(4.54)

Clearly
A2,1
m,n = A2,1

n.m (4.55)

(once again this follows by taking transpose within the trace in (4.47) and using the an-
tisymmetry of Fab). The coe�cients A2,1

m,n also obey a slightly less obvious symmetry

property6

A2,1
m,n = (−1)m

m∑
p=0

m!

(m− p)!p!A
2,1
m−p,n+p (4.57)

6A nice way to see this is to consider the following manipulations

A2,1
m,n =

m∏
i=1

n∏
j=1

∂µi∂νjFabTr
(
∂µi∂aF∂νj∂bFF

)
= −

m∏
i=1

n∏
j=1

∂µi∂νjFabTr
(
∂µiF∂νj∂bF∂aF

)
=

m∏
i=1

n∏
j=1

∂µi∂νjFabTr
(
∂aF∂νj∂bF∂µiF

)
=

m∏
i=1

n∏
j=1

(−1)m∂µi∂νjFabTr
(
∂µi
(
∂aF∂νj∂bF

)
F
)

=

m∏
i=1

n∏
j=1

(−1)m∂µi∂νjFab

m∑
p=0

m!

(m− p)!p!Tr
(
∂µm−p∂aF∂νj∂µm+p

∂bFF
)

(4.56)

In the second line we have used integration by parts. In the third line we have used the transpose property
and cyclicity of trace. In the fourth line we again use integration by parts
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The meaning of this symmetry is clearer when expressed in terms of the generating function

A2,1(s, t) =
∞∑

m,n=0

A2,1
m.ns

mtn (4.58)

(4.57) is equivalent to the symmetry property

A2,1(s, t) = A2,1(u, t), where u ≡ −(s+ t) (4.59)

It also follows from (4.55) that

A2,1(s, t) = A2,1(t, s) (4.60)

Combining (4.59) and (4.60) it follows that A2,1 is a completely symmetric function of
s, t, u, i.e.

A2,1(s, t) = A2,1(t, s) = A2,1(u, t) = A2,1(t, u) = A2,1(s, u) = A2,1(u, s), where u ≡ −(s+t)
(4.61)

The S matrix is given by

A2,1(s, t)
[(
p1
aε

1
b − p1

bε
1
a

)
p2
a

(
p2
µε

2
ν − p2

νε
2
µ

)
p3
b

(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2
aε

2
b − p2

bε
2
a

)
p1
a

(
p1
µε

1
ν − p1

νε
1
µ

)
p4
b

(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3
aε

3
b − p3

bε
3
a

)
p4
a

(
p4
µε

4
ν − p4

νε
4
µ

)
p1
b

(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4
aε

4
b − p4

bε
4
a

)
p3
a

(
p3
µε

3
ν − p3

νε
3
µ

)
p2
b

(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

)] (4.62)

4.5.5 S matrix written in terms of unconstrained polarizations

Our explicit expressions for the S matrices are all presented in terms of polarization vectors
that obey εi.ki = 0 and εi = εi ∼ ki. In other words the polarization tensors that enter our
expressions are constrained rather than free data. For some purposes it is useful to have
expressions for the S matrix expressed entirely in terms of unconstrained data. We turn
to this problem in this subsection.

Throughout our discussion we will always choose all polarization vectors to be normal-
ized, i.e. we chose εi.ε

∗
i = 1. The polarization vector εi, for the i

th particle can be written
as

εi = cos ζiε
p
i + sin ζiε

o
i (4.63)

where εpi is a normalized polarization vector that lies within the three dimensional manifold
spanned by the four momenta p1 . . . p4 and ε

o
i is another normalized polarization vector that

is completely orthogonal to this plane. Now the equation pi.ε
p
i = 0 forces εpi to lie in a two

dimensional subspace of the momentum plane. Recall also that εpi occurs in equivalence
classes; polarizations in the same equivalence class are related by εpi ∼ εpi +αpi. All vectors
in the same equivalence have the same norm and de�ne the same S matrices and are thought
of as physically identical. Modding out by this ambiguity, εpi is uniquely determined (upto
a phase that we choose arbitrarily and will play no essential role below.)
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It follows that the `in momentum plane' part of εi is is completely determined by the
angle ζi. On the other hand the `out of momentum plane' part of εi is �xed by ζi together
with the choice of a unit vector in the D − 3 dimensional transverse space.

The full S matrix - which is separately linear in each of the εis - is consequently the
sum of three distinct kinds of terms. Term 1 is proportional to sin ζ1 sin ζ2 sin ζ3 sin ζ4.
Term 2 is proportional to sin ζ1 sin ζ2 cos ζ3 cos ζ4 + permutations. Term 3 is proportional
to cos ζ1 cos ζ2 cos ζ3 cos ζ4. In order that the whole S matrix grow no faster than s2, the
same must be true of each of Term 1, Term 2 and Term 3 separately 7 We now explicitly
list the 3 di�erent terms in the S matrix. In the rest of this section we will never again use
the full polarization εi but will make extensive use of εoi . In order to lighten the notation
in the formulae below we will drop the superscript o above. Every occurrence of εi in the
rest of this subsection actually denotes ε0i .

Term 1 of the S matrix is given by

S1 = −8(A0,1(t, u)(s2ε1 · ε2ε3 · ε4) + A0,1(s, u)(t2ε1 · ε3ε2 · ε4) (4.64)

+A0,1(t, s)((s+ t)2ε1 · ε4ε2 · ε3))

S2 = −2(A0,2(t, u)(t2ε1 · ε4ε2 · ε3 + (s+ t)2ε1 · ε3ε2 · ε4) + A0,2(s, u)(s2ε1 · ε4ε2 · ε3
+(s+ t)2ε1 · ε2ε3 · ε4) + A0,2(t, s)(s2ε1 · ε3ε2 · ε4 + t2ε1 · ε2ε3 · ε4))

S3 = 0

S1 + S2 + S3 = −2ε1 · ε2ε3 · ε4
(
4s2A0,1(t, u) + u2A0,2(s, u) + t2A0,2(t, s)

)
−2ε1 · ε3ε2 · ε4

(
4t2A0,1(s, u) + u2A0,2(t, u) + s2A0,2(t, s)

)
−2ε1 · ε4ε3 · ε2

(
4u2A0,1(t, s) + s2A0,2(s, u) + t2A0,2(t, u)

)
(4.65)

Term 3 of the S matrix is given by

S1 = s2(−A0,1(t, u))− t2A0,1(s, u)− (s+ t)2A0,1(t, s)

S2 = −1

4

((
2s2 + 2st+ t2

)
A0,2(s, u) +

(
s2 + t2

)
A0,2(t, s) (4.66)

+
(
s2 + 2st+ 2t2

)
A0,2(t, u)

)
S3 = st(s+ t)(A2,1(t, s) + A2,1(u, s) + A2,1(t, u))

S1 + S2 + S3 = −s2A0,1(t, u)− t2A0,1(s, u)− u2A0,1(t, s)

+
1

4

(
−
(
s2 + u2

)
A0,2(s, u)−

(
s2 + t2

)
A0,2(t, s)−

(
u2 + t2

)
A0,2(t, u)

)
−stu(A2,1(t, s) + A2,1(u, s) + A2,1(t, u)) (4.67)

7For instance, if each of the ζi =
π

2
the full S matrix is given by Term 1. If each of the ζi = 0 then

the full S matrix equals Term 3. If two of the ζi = 0 and the other two equals
π

2
we get one of the six

permutations of Term 2.
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Finally, the part of term 2 proportional to cos ζ1 sin ζ2 cos ζ3 sin ζ4 is given by 8

S1 = t2ε⊥2 · ε⊥4 A0,1(s, u)

S2 =
1

4
ε⊥2 · ε⊥4 (s(u− t)A0,2(t, s) + u(s− t)A0,2(t, u))

S3 = ε⊥2 · ε⊥4
stu

2
(A2,1(t, s) + A2,1(u, s) + A2,1(t, u))

S1 + S2 + S3 =
1

4
ε⊥2 · ε⊥4

[
4t2A0,1(s, u) + u(s− t)A0,2(t, u) + s(u− t)A0,2(t, s)

+2stu
{
A2,1(t, s) + A2,1(u, s) + A2,1(t, u)

}]
(4.68)

where ε⊥i refers to the transverse part of the polarization.
In 4 dimensions, at the level of descendants, the full S matrix= 0 has a solution. The

equation (4.46)+(4.51) = 0 is equivalent to the following two constraints

s2A0,2(−s− t, t) + t2A0,2(s,−s− t) + (s+ t)2A0,2(s, t) = 0

−1

2
s2A0,1(t,−s− t)− 1

8
s2A0,2(s,−s− t)− 1

8
s2A0,2(t, s)− 1

8
s2A0,2(t,−s− t) = 0

(4.69)

has the following solution

A0,2(s, t) = st

A0,1(s, t) =
1

4
(s2 + t2 + st)

(4.70)

The s-matrix of the structure which becomes fully symmetric is

S1,2,3,4 =
1

2

(
uTr(F 1F 2F 3F 4) + tTr(F 1F 3F 4F 2)

)
+
s

8

(
Tr(F 1F 2)Tr(F 3F 4) + Tr(F 1F 3)Tr(F 4F 2) + Tr(F 1F 4)Tr(F 2F 3)

) (4.71)

So, the counting for the case of 4-dimensions is 3 + 1 + 1 = 5 degrees of freedom, as is
expected from the CFT side counting in 3-dimensions. One of the orbits with 3 elements
(S3/Z2) becomes an orbit of 1 element, i.e. fully symmetric.

4.5.6 Counting Data in S matrices

We have seen above that the most general S matrix for 4 photons is speci�ed by functions
A(0,1), A0,2) and A2,1. These three functions are not quite on the same footing - in particular
they don't carry equivalent amounts of data - because they have di�erent symmetries. The
function A2,1 is completely symmetric in s t and u. The number of polynomials of degree
m of this sort is given by dsym(m) where dsym(m) is the coe�cient of xm in (4.73). At large

m, in particular, dsym(m) ∼ m+ 1

6
.

8Of course Term 2 has 5 additional terms related to this one by permutations.
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In contrast, the most general degree m function of s, t, u, with no symmetry constraints
(this is what we would �nd if we were scattering, for instance, 4 distinguishable scalars) is
simply the most general degree m polynomial built out of s and t and has m + 1 terms.
The partition function that counts these polynomials is

Zno−sym =
1

(1− x)2

Somewhere in the middle of these two extremes, the most general degree m polynomial
that preserves a Z2 subgroup - say, of interchange between s and t - is simply the most
general symmetric degree m polynomial of two variables, and so has[m

2

]
+ 1

independent coe�cients. The partition function that counts these polynomials is given by

ZZ2−sym(x) =
1 + x

(1− x2)2

We can say all this more systematically in terms of the permutation group of three
objects (which, in this case, are s, t and u). The irreducible representations of the group S3

are labelled by Young Tableaux made out of 3 boxes. There are three such Young Tableaux
- the completely symmetric one (with all three boxes in a single row), the completely
antisymmetrical one (with all three boxes in a single column) and the mixed representation
with two boxes in the �rst row and one in the second row (equivalently with two boxes in the
�rst column and one in the second column). The completely symmetrical and completely
antisymmetrical representations are one dimensional, while the mixed representation is two
dimensional.

There is only one polynomial of degree zero; it transforms in the symmetric represen-
tation. At degree 1 we have two polynomials which can be taken to be 2s− t−u = 3s and
2t − s − u = 3t. Note that these polynomials all vanish upon complete symmetrization.
Moreover they are each annihilated by a Z2 permutation symmetry. They are mapped
to each other under permutation and consequently transform in the mixed representation.
Note also that exactly one of these expressions is symmetric under the interchange of, say,
s and t while the other one can be chosen to be antisymmetric under the same exchange
(s+ t) and s− t are the two choices here).

At degree 2 we have three polynomials which can be taken to be (s2 + t2 + u2), and
(s2 + t2−2u2) and t2 +u2−2s2). The �rst of these is in the symmetric representation. The
next two transform in the mixed representation. A convenient basis for these two elements
is s2 + t2 − 2u2 and s2 − t2. Clearly the �rst element is symmetric under the interchange
of s and t, while the second element is antisymmetric under the same interchange.

At degree three we have four polynomials. These can be taken to be s3 + t3 + u3,
s2t−t2s−s2u+u2−u2t−t2u, s3+t3−2u3, and s3+u3−2t3. The �rst of these expressions is
completely symmetric. The second is completely antisymmetric. The remaining two belong
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to the mixed representation. Once again we can choose a basis in this set of elements that
is symmetric and antisymmetric under interchange of s and t (the symmetric expression is
s3 + t3 − 2u3, whereas the antisymmetric expression is s3 − t3)

The full set of polynomials of stu of degree m can be decomposed into these repre-
sentations. The number of completely symmetrical representations is given by dsym(m) as
described above. The number of completely antisymmetrical polynomials is easily com-
puted along the lines of the discussion in (4.26). The analogue of Zn computed there is
the partition function of three identical particles in a fermionic harmonic oscillator and is
given by

Zn(x) =
1

3(1− x3)
+

1

6(1− x)3
− 1

2(1− x)(1− x2)
(4.72)

Correspondingly, the number of degree m completely antisymmetric polynomials of s, t
and u is das(m), the coe�cient of xm in

Zas(x) = (1− x)Zn(x) =
1

3(1 + x+ x2)
+

1

6(1− x)2
− 1

2(1− x2)

=
x3

(1− x2)(1− x3)

= x3(1 + x2 + x3 + x4 + x5 + 2x6 + x7 + 2x8 + 2x9 + 2x10 . . .

(4.73)

Finally, there are [m
2

]
+ 1

representations of the mixed type (and so twice as many polynomials that transform in
these representations because the representations are two dimensional). The partition
function that counts the polynomials that transform in this representation is given by

Zmix−sym =2 (ZZ2−sym − Zsym)

=
x

(1− x)2 (x2 + x+ 1)

(4.74)

As a check, the sum of the partition functions of the polynomials that transform in various
representations is given by

2ZZ2−sym − Zsym + Zas =
1

(1− x)2
= Zno−sym (4.75)

4.5.7 Growth of S matrices with s at �xed t

In this subsection we will classify all local 4 photon S matrices that grow no faster than s2

in the Regge limit for every choice of polarization vectors.
Let us �rst study term 1 of the S matrix. Provided that D ≥ 4 the condition that the S

matrix grow no faster than s2 is only met provided the same condition holds independently
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for the coe�cients of ε1.ε2ε3.ε4 and the two other similar terms. Our condition is thus simply
that (

4u2A0,1(t, s) + s2A0,2(s, u) + t2A0,2(t, u)
)

(4.76)

(together with the two crossing related expressions) grow no faster than s2 in the Regge
limit.

If we assume that A0,1 and A0,2 are polynomials then the expression in (4.76) is a
polynomial of degree 2 or greater. Moreover it is symmetric under interchange of s and t.
The only polynomials that meet these conditions and still do not grow faster than s2 are
s2 + t2, st, s2t+ t2s and s2t2. Now if the polynomial in (4.76) were to evaluate to s2t2 then
the (permutation related) polynomial that occurs in the bracket of the second-last line of
(4.64) would evaluate to s2u2. As this expression grows faster than s2 and so is disallowed.
We conclude that the expression in (4.76) must be a linear combination of s2 + t2, st and
s2t+ t2s.

Let us now turn to the result of term 3 above. Notice that the part of this answer that
depends on A(0,1) and A(0,2) is proportional to the term in (4.76) completely symmetrized
(i.e. is proportional to the sum of the three brackets in the last three lines of (4.64)).
Given the conditions of the last paragraph, this term automatically grows no faster than
s2 in the Regge limit. It follows that Term 3 grows no faster than s2 in the Regge limit
provided the same is s true of

−stu(A2,1(t, s) + A2,1(u, s) + A2,1(t, u)).

This condition immediately forces A2,1(s, t) to be a constant.
Finally, let us turn to the expression in term 2 above. The coe�cient of ε2.ε3 in that

expression is given by[
4u2A0,1(s, t) + t(s− u)A0,2(t, u) + s(t− u)A0,2(s, u) + 2stu

{
A2,1(t, s) +A2,1(u, s) +A2,1(u, s)

}]
(4.77)

As we now know that A(2,1) is a constant, the term proportional to A(2,1) in this expression
is proportional to stu and so automatically grows no faster than s2 in the Regge limit. In
order that our S matrix grow no faster than s2 at �xed t, it must be that the same is true
of the expression

4u2A0,1(s, t) + t(s− u)A0,2(t, u) + s(t− u)A0,2(t, s) (4.78)

By repeating the reasoning in the paragraph under (4.76) it must be that (4.78), like (4.76),
is a linear combination of the polynomials s2 + t2, st, and stu.

In summary we require that the expressions in (4.76) and (4.78) must simultaneously
be (possibly di�erent) linear combinations of the three polynomials listed above. If A0,1

and A0,2 are constants, then both (4.76) and (4.78) are automatically linear combinations
of s2+t2 and st. The only other possibility for A0,1 and A0,2 is that they are proportional to
the (unique symmetric degree one) polynomial s+t. If we suppose that A0,1(s, t) = a(s+t)
and that A0,2(s, t) = b(s+ t) then (4.76) evaluates to

−4au3 − b
(
s2t+ t2s

)
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The condition that this expression grow no faster than s2 in the Regge limit sets a = 0.
With this condition (4.78) evaluates to

−st(s− u)− st(t− u) = −3stu

So b is allowed to be nonzero.

4.5.8 String tree level 4 photon S matrices

Superstring

In this section we express the type 1 superstring amplitude for photons using our basis.
The amplitude is given by [137]

Ass4V = f(s, t, u)

(
1

2
ε2.ε3 (sε1.k3ε4.k2 + tε1.k2ε4.k3) +

1

2
ε1.ε4 (sε2.k4ε3.k1 + tε2.k1ε3.k4)

+
1

2
ε2.ε4 (sε1.k4ε3.k2 + uε1.k2ε3.k4) +

1

2
ε1.ε3 (sε2.k3ε4.k1 + uε2.k1ε4.k3)

+
1

2
ε3.ε4 (tε1.k4ε2.k3 + uε1.k3ε2.k4) +

1

2
ε1.ε2 (tε3.k2ε4.k1 + uε3.k1ε4.k2)

−1

4
stε1.ε4ε2.ε3 −

1

4
suε1.ε3ε2.ε4 −

1

4
tuε1.ε2ε3.ε4

)
(4.79)

where f(s, t, u) is a function of the Mandelstam variables with no polarization dependence.
This is reproduced by the s-matrix coming from the following Lagrangian term

Lss4V ∝
1

16

(
Tr(F 4)− 1

4
(Tr(F 2))2

)
(4.80)

Bosonic String

The open bosonic string amplitude is given by [138],

AOpen
4V =

(
−Ass4V +

st (ε2.ε3 − ε2.k3ε3.k2) (ε1.ε4 − ε1.k4ε4.k1)

4
(
u
2 + 1

) +
su (ε1.ε3 − ε1.k3ε3.k1) (ε2.ε4 − ε2.k4ε4.k2)

4
(
t
2 + 1

)
+
tu (ε1.ε2 − ε1.k2ε2.k1) (ε3.ε4 − ε3.k4ε4.k3)

4
(
s
2 + 1

) +
1

2
s

(
1

3
(ε1.k2ε2.k3ε3.k1 − ε1.k3ε2.k1ε3.k2)

(ε4.k1 − ε4.k2) + ε1.k3ε2.k3 (ε3.k1ε4.k1 + ε3.k2ε4.k2)) +
1

2
t

(
1

3
(ε1.k3ε2.k1ε3.k2 − ε1.k2ε2.k3ε3.k1)

(ε4.k1 − ε4.k3) + ε1.k2ε3.k2 (ε2.k1ε4.k1 + ε2.k3ε4.k3)) +
1

2
u

(
1

3
(ε1.k3ε2.k1ε3.k2 − ε1.k2ε2.k3ε3.k1)

(ε4.k3 − ε4.k2) + ε2.k1ε3.k1 (ε1.k2ε4.k2 + ε1.k3ε4.k3))− 1

4
stε1.ε4ε2.ε3 −

1

4
suε1.ε3ε2.ε4

−1

4
tuε1.ε2ε3.ε4

)(s
2

+ 1
)( t

2
+ 1

)(u
2

+ 1
)
g(s, t, u) (4.81)
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This is reproduced by the following Lagrangian term

LOpen4V ∝
(s

2
+ 1
)( t

2
+ 1

)(u
2

+ 1
) 1

16

(
−Tr(F 4) +

1

4
(Tr(F 2))2

)
+

1

32
Tr (∂µ1∂ν1FF )Tr (∂µ1F∂ν1F )

1

32
Tr (∂µ1∂µ2∂ν1∂ν2FF )Tr (∂µ1∂µ2F∂ν1∂ν2F ) +

1

16
Tr (∂µ1∂µ2∂ν1FF )Tr (∂µ1∂µ2F∂ν1F )

−1

4
Tr (∂µ1F∂µ1FFF ) +

1

2
Tr (∂µ1∂µ2∂ν1F∂µ1∂µ2FF∂ν1F ) +

1

4
Tr (∂µ1∂µ2∂µ3F∂µ1∂µ2∂µ3FFF )

+
1

4
Tr (∂µ1

∂µ2
∂ν1∂ν2F∂µ1

∂µ2
FF∂ν1∂ν2F ) +

1

4
Tr (∂µ1

∂µ2
∂µ3

∂ν1F∂µ1
∂µ2

∂µ3
FF∂ν1F )

− 1

12
FabTr (∂aF∂bFF ) +

1

6
∂µ1

∂µ2
∂ν1FabTr (∂µ1

∂µ2
∂aF∂bF∂ν1F )

+
1

8
∂µ1

∂µ2
FabTr (∂µ1

∂µ2
∂aF∂bFF )

(4.82)

4.6 Lagrangian terms for 4 point functions

In this section we study di�eomorphically invariant Lagrangians for pure gravity theories.
The only �eld in our theory is the graviton. We will attempt to parameterize all La-
grangians that lead to inequivalent gravitational 3 and 4 point S matrices. In this section
we work in an expansion about �at space - we will generalize our results to gravitational
theories in asymptotically AdS spaces in later sections.

Let us start with some generalities. Firstly, any di�eomorphically invariant Lagrangian
can be built out of products of covariant derivatives of the Riemann tensor. 9 As the
Riemann tensor vanishes in �at space, terms in the gravitational action that contribute to
three and four point scattering are necessarily built out of products of at most four copies
of the Riemann tensor; of course these four copies can each appear with arbitrary numbers
of derivatives.

4.6.1 Triviality of terms proportional to Rµν

Consider a Lagrangian that takes the form∫ √
g (R + εRµνA

µν) (4.83)

(where Aµν is any two index tensor built out of the Riemann tensor and its derivatives).
We will now explain that at �rst order in ε, the S matrix the classical S matrix that follows
from this Lagrangian is identical to that for the pure Einstein theory. In order to see this
we �rst note that under the �eld rede�nition

gµν = g̃µν + ε (Rµν + gµνR) (4.84)

9In this chapter we restrict our attention to gravitational theories that have a Lagrangian description, and
ignore the possibility of gravitational Chern Simons terms.
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the Lagrangian (4.85) turns into ∫ √
g̃
(
R̃ + nO(ε2)

)
(4.85)

where R̃ is the Ricci scalar built out of the metric g̃µν . Returning to the original
variables for a moment, let us substitute the expansion

gµν = ηµν +
n∑
i=1

hiµν(ki) (4.86)

into the Lagrangian (4.85) (here hiµν are the linearized solutions of Einstein's equations
corresponding to gravitons of particular polarization and momenta. Once we make this
substitution, we can read o� the n graviton S matrix for the Lagrangian (4.85) by evaluating
the coe�cient of the term linear separately in each �eld hi. Schematically

S =
∞∑
n=1

Snh
1h2 . . . hn

where S is the action and Sn is the n particle S. Working to linearized order in ε we have

Sn = SEn + εSnewn (4.87)

where Sn is the n particle S matrix that follows from the Einstein Lagrangian and Snewn is
the correction to this S matrix at �rst order in ε due to the correction term in (4.85).

After making the �eld rede�nition, however, it also follows that

S =
∞∑
n=1

S̃nh̃
1h̃2 . . . h̃n (4.88)

where
S̃n = SEn

(this follows from the fact that the Lagrangian in the new variables is the Einstein action:
all formulas are correct only upto order ε)

The relationship between hiµν and h̃
i
µν may be obtained by linearizing (4.84). The really

important point is that, at linear order, this relationship is trivial

hiµν = h̃iµν (4.89)

This follows because it follows by index matching that Aµν is a linear combination of Rµν ,
gµνR, and terms that are of second or higher order in the Riemann tensor. Linearizing and
using the fact that both R and Rµν vanish onshell, (4.89) follows.

Comparing (4.87), (4.88) and (4.89) we immediately conclude that Snewn all vanish, as
we wanted to show.
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4.6.2 Identities of the Riemann Tensor

In this section we list all the identities and symmetry properties of the Riemann tensor
that we will be using in the subsequent analysis to determine the di�eomorphism invariant
Lagrangian structures.

1. The symmetry properties of the Riemann tensor,

Rabcd = −Rbacd = −Rabdc, Rabcd = Rcdab (4.90)

2. The algebraic Bianchi identity

Rabcd +Racdb +Radbc = 0 (4.91)

3. The di�erential Bianchi identity

∇aRbcde +∇bRcade +∇cRabde = 0 (4.92)

4. The contracted Bianchi identity, which we get from the di�erential Bianchi identity
by contracting the Riemann tensor appropriately.

∇aRce +∇bRcabe −∇cRae = 0 (4.93)

5. Commutator of derivatives

[∇f ,∇e]Rabcd = RpbcdR
p
afe +RapcdR

p
bfe +RabpdR

p
cfe +RabcpR

p
dfe (4.94)

We will be using these identities and symmetry properties of the Riemann tensor along
with integration by parts judiciously to �x the independent Lagrangian terms.

4.6.3 Classi�cation of terms that contribute to 3 graviton scatter-

ing

We will now classify all terms in the Lagrangian that can contribute to 3 point gravitational
scattering. In this section we work in asymptotically high dimensions and so do not allow
ourselves to use dimension dependent structures like ε tensors or special identities for the
Riemann tensor that work only in special dimensions.

All terms that contribute to three point functions are built out of at most 3 copies of
the Riemann tensor. The simplest such term in the Einstein Lagrangian itself; it is a two
derivative term built out of a single copy of the Riemann tensor and results in the following
onshell 3 point gravitational S matrix

(4.95)

This is the unique term in the Lagrangian that we can build out of a single copy of the
Riemann tensor.
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Let us now turn to terms built out of two copies of the Riemann tensor. The most
general term of this form is given by

S =

∫ √
gRabcdR

abcd (4.96)

every other term two Riemann term is either equivalent to the term listed in (4.96) or to
a term built out of three copies of the Riemann tensor. ................... To be precise, let us
consider the following possible Lagrangian term

S =

∫ √
gRabcdR

acbd (4.97)

Using (4.6.2), we can systematically relate it to (4.96) as follows

RabcdR
acbd = Rabcd

(
−Rabdc −Radcb

)
= RabcdR

abcd −RabcdR
acbd

∴ RabcdR
acbd =

1

2
RabcdR

abcd (4.98)

where in the �rst line we have used the algebraic Bianchi identity and in the second line we
have used the symmetry properties of the Riemann tensor. We will be mostly concerning
ourselves, for now, with Lagrangian terms upto order eight in derivatives. Let us now
examine two derivatives acting on two Riemann tensors, which we show to be equivalent to
either three Riemann terms or proportional to Ricci tensor, which according to arguments
in section 4.6.1, can be discarded due to �eld rede�nition.

S =

∫ √
g∇µRabcd∇µRacbd

=

∫ √
g (−∇aRbµcd −∇bRµacd)∇µRacbd

=

∫ √
g∇µ (−∇aRbµcd −∇bRµacd)R

acbd + C∂M

=

∫ √
g (−∇a∇µRbµcd −∇b∇µRµacd)R

acbd + C∂M + C̃R3

= ĈRµν + C∂M + C̃R3

(4.99)

where in the second line we have used the di�erential Bianchi identity. In the third line
we have used integration by parts to get the total derivative term C∂M. In the fourth line
we have used commutator of derivatives to get the C̃R3 term which is of higher order in
Riemann tensor and hence will be dealt with when we classify terms with three Riemann
tensors. Finally we use the contracted Bianchi identity to relate this to the Ricci tensor
term ĈRµν . Hence for all practical purposes such terms will be discarded. Detailed analysis
of other possible two derivative contractions and higher order derivatives on two Riemann
tensors are considered in Appendix C.3.
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Finally let us consider terms built out of three copies of the Riemann tensor. Let us �rst
study terms with no derivatives. It is easy to convince oneself that there are two unique
terms of this form ([139],[140]).

RpqrsR tu
pq Rrstu, RpqrsR t u

p r Rqtsu (4.100)

All possible non-zero index contractions of three Riemann tensors to yield scalars can
be obtained from this two by repeated application of the symmetry properties and the
algebraic Bianchi identities. Let us consider an explicit example: R rs

pq RrtsuR
tu
pq

R rs
pq RrtsuR

tu
pq = R rs

pq (−Rrsut −Rruts)R
tu
pq

= R rs
pq RrstuR

tu
pq −R rs

pq RrtsuR
tu
pq

∴ R rs
pq RrtsuR

tu
pq =

1

2
R rs
pq RrstuR

tu
pq (4.101)

Where in the second line we have used the algebraic Bianchi identity and subsequently used
the symmetry properties of the Riemann tensor. Similar manipulations can be done for
any non-zero contraction of three Riemann tensors to reduce it to one of the two forms or
a linear combination of both. It is to be noted that the contribution of the both the three
Riemann terms to the linearized three point function is the same so we can consider a linear
combination of the two which contribute to the three point function and another one which
does not. To be precise, let us consider the linearized Riemann tensor (gµν = ηµν + hµν),

Rabcd =
1

2
FabFcd

Fab = (kaeb − kbea), hab = eaeb (4.102)

This satis�es the necessary symmetry properties of the Riemann tensor while being
gauge invariant. This satis�es both the algebraic Bianchi identity and the di�erential
Bianchi identity. Finally let us comment on the fact that only one of the two three Riemann
structures contribute to three point functions. Explicit computations show that the linear
combination

RpqrsR tu
pq Rrstu + 2RpqrsR t u

p r Rqtsu (4.103)

contributes to the three point function but the combination

RpqrsR tu
pq Rrstu − 2RpqrsR t u

p r Rqtsu (4.104)

does not. We can consider the non-linear completion of this term such that the three point
S matrix coming from this term is proportional to a total derivative even without imposing
equations of motion. The reason why we consider a non linear completion is because only
after this completion the four point function coming from the new term is gauge invariant.

χ6 =
1

8
εabcdefε

ghijklR gh
ab R ij

cd R kl
ef

= 4R cd
ab R ef

cd R ab
ef − 8R c d

a b R
e f
c d R

a b
e f − 24RabcdR

abc
eR

de + 3RabcdR
abcdR

+ 24RabcdR
acRbd + 16R b

a R
c
b R

a
c − 12R b

a R
a
b R +R3

(4.105)

This term is in-fact the six dimensional Euler density.
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Now let us turn to the terms with derivatives on three copies of the Riemann tensor. The
basis for structures with two derivatives on three Riemann tensors have been discussed in
[139].

RpqrsR tuv
p ∇v∇sRqtru, Rpqrs∇qR

tuv
p∇sRtuvr

Rpqrs∇rR
tuv

p∇sRtuvq, Rpqrs∇vRt u
p r∇vRtqus (4.106)

We claim that upto total derivatives, there are no structures with two derivatives acting
on three Riemann tensors, which contribute to the three point function. All of them are
four Riemann structures or polynomials involving Ricci tensors.

We now consider four derivatives acting on three Riemann tensors.

4.6.4 Classi�cation of terms that contribute to 4 graviton scatter-

ing

In this section we list all the terms that can contribute to the analytic part of the four
point scattering amplitude. We begin by listing the terms without any derivatives acting
on them.

(RpqrsR
pqrs)2

RpqrsR t
pqr R

uvw
sRuvwt

RpqrsR tu
pq R vw

tu Rrsvw

RpqrsR tu
pq R vw

rt Rsuvw

RpqrsR t u
p r RtvwsR

v w
q u

RpqrsR t u
p r R

v w
t u Rqvsw

RpqrsR t u
p r R

v w
t q Ruvsw

(4.107)

From these structures explicit computation shows that at the linearized level out of these
seven structures only six are independent. Note that the linearized Riemann tensor can
be expressed as product of two electromagnetic �eld strengths, then its immediately ob-
vious that these structures are just inequivalent contractions of the two electromagnetic
Lagrangian structures, namely the �rst two structures in (4.41). As an explicit example we

show the equivalence for the structure (RpqrsR
pqrs)2 ∼

(
Tr(F 1F 2)Tr(F 3F 4)

)2
. In addition

to these six independent structures above, we can also write three more structures which
are given by the contraction of the �rst two structures with the third one in (4.41).

S2S3 : Tr(F 1F 2F 3F 4)F 1
abTr(p

2
aF

2p3
bF

3F 4)

S1S3 : Tr(F 1F 2)Tr(F 3F 4)F 1
abTr(p

2
aF

2p3
bF

3F 4)

S3S3 : F 1
pqTr(p

2
pF

2p3
qF

3F 4)F 1
abTr(p

2
aF

2p3
bF

3F 4)

(4.108)
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4.6.5 Explicit Listing of Kinematically Allowed Gravitational S

matrices

In this subsection we list all the possible tree level graviton 2− 2 S matrices in spacetime
dimension greater than or equal to 7. First structure has a natural interpretation, and in
the rest of 9 structures Riemann tensor can be thought of as product two Fµν tensors, both
at same momenta.10

• The combination which vanish at 3 point level

T1 : RpqrsR tu
pq Rrstu + 2RpqrsR t u

p r Rqtsu (4.109)

has a completion, which makes it a topological term in 6 dimensions, so its non-trivial
only form 7 dimensions onward. The S matrix coming from this has the following
form

3B0,0(s, t, u)εijklmnpεasdfghjε1i ε
2
jε

3
kε

4
l p

1
mp

2
np

3
pε

1
aε

2
sε

3
dε

4
fp

1
gp

2
hp

3
j (4.110)

εijklmp is Levi-Civita tensor of rank 7. B0,0(s, t, u) is a fully symmetric function of
s, t, u. Note that since the expression involves the product of Levi-Civita tensors, it
is gauge invariant in dimensions greater than 7 also.

• T2 : Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 2F 3F 4), where superscript labels particles. This
structure has only (Z2 × Z2) symmetry. The corresponding orbit from the CFT
side contains 6 elements. The general descendant is of the following form

m∏
i=1

n∏
j=1

∂µi∂νj
(
F 1
abF

1
pq

)
∂µi
(
F 2
baF

2
qr

)
∂νi
(
F 3
cdF

3
rs

)
F 4
dcF

4
sp (4.111)

The S matrix has the following form

B0,1(s, t)
[(
p1
pε

1
q − p1

qε
1
p

) (
p2
pε

2
q − p2

qε
2
p

) (
p3
rε

3
s − p3

sε
3
r

) (
p4
rε

4
s − p4

sε
4
r

)(
p1
aε

1
b − p1

bε
1
a

) (
p2
bε

2
c − p2

cε
2
b

) (
p3
cε

3
d − p3

dε
3
c

) (
p4
dε

4
a − p4

aε
4
d

)]
+B0,1(s, u) [3↔ 4] +B0,1(t, s) [2↔ 3] +B0,1(t, u) [2↔ 3 then 2↔ 4]

+B0,1(u, t) [2↔ 4] +B0,1(u, s) [2↔ 4 then 2↔ 3]

(4.112)

The function B0,1 has no special symmetry property. The notation has been short-
ened to avoid clutter. B0,1 dependence on s, t, u has been written showing S3 per-
mutations. [A↔ B...] means to �ip A and B particle labels from the term shown in
the �rst two lines. Notice that there are 6 terms.

10It is best thought of in the momentum space.
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• T3 : Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 3F 2F 4). This is a very similar structure to the previ-
ous one, but now it has extra Z2 symmetry, which can be clearly seen as label 3 and
4 swap. Therefore, the orbit of S3 is cut by half. General descendant

m∏
i=1

n∏
j=1

∂νj∂µi
(
F 1
abF

1
pq

)
F 2
baF

2
rs∂µi

(
F 3
cdF

3
qr

)
∂νi
(
F 4
dcF

4
sp

)
(4.113)

m ↔ n is manifest in the above expression. S matrix, where B0,2(s, t) is symmetric
in s, t

B0,2(t, u)
[(
p1
pε

1
q − p1

qε
1
p

) (
p2
pε

2
q − p2

qε
2
p

) (
p3
rε

3
s − p3

sε
3
r

) (
p4
rε

4
s − p4

sε
4
r

)(
p1
aε

1
b − p1

bε
1
a

) (
p3
bε

3
c − p3

cε
3
b

) (
p2
cε

2
d − p2

dε
2
c

) (
p4
dε

4
a − p4

aε
4
d

)]
+B0,2(s, u) [3↔ 2] +B0,2(s, t) [2↔ 4]

(4.114)

With the following symmetry property.

B0,2(t, u) = B0,2(u, t) (4.115)

• T4 : Tr(F 1F 2F 3F 4)Tr(F 1F 2F 3F 4). This structure, like Tr(F 4) again has Z2 symme-
try of 1↔ 3. Most general descendant

m∏
i=1

n∏
j=1

∂νj∂µi(F
1
abF

1
pq)∂µi(F

2
bcF

2
qr)F

3
cdF

3
rs∂νj(F

4
daF

4
sp) (4.116)

m↔ n is the symmetry. The S matrix is

B0,3(s, u)
[(
p1
aε

1
b − p1

bε
1
a

) (
p2
bε

2
c − p2

cε
2
b

) (
p3
cε

3
d − p3

dε
3
c

) (
p4
dε

4
a − p4

aε
4
d

)(
p1
pε

1
q − p1

qε
1
p

) (
p2
qε

2
r − p2

rε
2
q

) (
p3
rε

3
s − p3

sε
3
r

) (
p4
sε

4
p − p4

pε
4
s

)]
+B0,3(t, u) [3↔ 2] +B0,3(s, t) [3↔ 4]

(4.117)

With the following symmetry property.

B0,3(s, u) = B0,3(u, s) (4.118)

• T5 : Tr(F 1F 2F 3F 4)Tr(F 1F 3F 2F 4). This structure has Z2 symmetry of 2↔ 3. Most
general descendant

m∏
i=1

n∏
j=1

∂νj∂µi(F
1
abF

1
pq)∂µi(F

2
bcF

2
rs)∂νj(F

3
cdF

3
qr)F

4
daF

4
sp (4.119)

m↔ n is the symmetry. The S matrix is

B0,4(s, t)
[(
p1
aε

1
b − p1

bε
1
a

) (
p2
bε

2
c − p2

cε
2
b

) (
p3
cε

3
d − p3

dε
3
c

) (
p4
dε

4
a − p4

aε
4
d

)(
p1
pε

1
q − p1

qε
1
p

) (
p3
qε

3
r − p3

rε
3
q

) (
p2
rε

2
s − p2

sε
2
r

) (
p4
sε

4
p − p4

pε
4
s

)]
+B0,4(s, u) [3↔ 4] +B0,4(u, t) [2↔ 4]

(4.120)

With the following symmetry property.

B0,4(s, t) = B0,4(t, s) (4.121)
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• T6 : Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 2)Tr(F 3F 4). This structure has extra Z2 symmetry
of 1 to 2 exchange. The most general descendant is

m∏
i=1

n∏
j=1

∂µi∂νj
(
F 1
abF

1
pq

)
F 2
baF

2
qp∂µi

(
F 3
cdF

3
rs

)
∂νj
(
F 4
dcF

4
sr

)
(4.122)

Again with m↔ n symmetry. S matrix

B0,5(t, u)
[(
p1
pε

1
q − p1

qε
1
p

) (
p2
pε

2
q − p2

qε
2
p

) (
p3
rε

3
s − p3

sε
3
r

) (
p4
rε

4
s − p4

sε
4
r

)(
p1
aε

1
b − p1

bε
1
a

) (
p2
aε

2
b − p2

bε
2
a

) (
p3
cε

3
d − p3

dε
3
c

) (
p4
cε

4
d − p4

dε
4
c

)]
+B0,5(s, u) [3↔ 2] +B0,5(s, t) [2↔ 4]

(4.123)

With the following symmetry property.

B0,5(t, u) = B0,5(u, t) (4.124)

• T7 : Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 4)Tr(F 2F 3). This structure has extra Z2 symmetry
of 1 to 3 exchange. The most general descendant is

m∏
i=1

n∏
j=1

∂µi∂νj
(
F 1
abF

1
pq

)
∂µi
(
F 2
baF

2
rs

)
F 3
cdF

3
sr∂νj

(
F 4
dcF

4
qp

)
(4.125)

Again with m↔ n symmetry. S matrix

B0,6(s, u)
[(
p1
pε

1
q − p1

qε
1
p

) (
p4
pε

4
q − p4

qε
4
p

) (
p2
rε

2
s − p2

sε
2
r

) (
p3
rε

3
s − p3

sε
3
r

)(
p1
aε

1
b − p1

bε
1
a

) (
p2
aε

2
b − p2

bε
2
a

) (
p3
cε

3
d − p3

dε
3
c

) (
p4
cε

4
d − p4

dε
4
c

)]
+B0,6(t, u) [3↔ 2] +B0,6(s, t) [3↔ 4]

(4.126)

With the following symmetry property.

B0,6(s, u) = B0,6(u, s) (4.127)

• T8 : Tr(F 1F 2F 3F 4)F 1
abTr(p

2
aF

2p3
bF

3F 4). Where, p2
a from the Lagrangian perspective

is a derivative acting on R2
abcd This structure has neither Z2 × Z2, which although is

preserved by the �rst trace but broken by the FTr(...) part, nor it has S3 which is
preserved by the FTr(...) part but broken by the Tr(F 4) part. Only Z2 is preserved,
that is just 2↔ 4 �ip symmetry. The descendant is of the general form

m∏
i=1

n∏
j=1

∂µi∂νj
(
F 1
pqF

1
ab

)
∂a∂µi

(
F 2
qrF

2
µν

)
∂b
(
F 3
rsF

3
να

)
∂νj
(
F 4
spF

4
αµ

)
(4.128)

The S matrix for this structure is
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+
(
B2,1(s, u)

(
p1
pε

1
q − p1

qε
1
p

) (
p2
qε

2
r − p2

rε
2
q

) (
p3
rε

3
s − p3

sε
3
r

) (
p4
sε

4
p − p4

pε
4
s

)
B2,1(t, u)

(
p1
pε

1
q − p1

qε
1
p

) (
p3
qε

3
r − p3

rε
3
q

) (
p2
rε

2
s − p2

sε
2
r

) (
p4
sε

4
p − p4

pε
4
s

)
+ B2,1(t, s)

(
p1
pε

1
q − p1

qε
1
p

) (
p3
qε

3
r − p3

rε
3
q

) (
p4
rε

4
s − p4

sε
4
r

) (
p2
sε

2
p − p2

pε
2
s

))((
p1
aε

1
b − p1

bε
1
a

)
p2
a

(
p2
µε

2
ν − p2

νε
2
µ

)
p3
b

(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2
aε

2
b − p2

bε
2
a

)
p1
a

(
p1
µε

1
ν − p1

νε
1
µ

)
p4
b

(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3
aε

3
b − p3

bε
3
a

)
p4
a

(
p4
µε

4
ν − p4

νε
4
µ

)
p1
b

(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4
aε

4
b − p4

bε
4
a

)
p3
a

(
p3
µε

3
ν − p3

νε
3
µ

)
p2
b

(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

))
(4.129)

With the following symmetry property.

B2,1(s, u) = B2,1(u, s) (4.130)

With total of 12 terms, which is S4/Z2.

• T9 : Tr(F 1F 2)Tr(F 3F 4)F 1
abTr(p

2
aF

2p3
bF

3F 4). This structure again has only Z2 sym-
metry of 3↔ 4.

Descendants

m∏
i=1

n∏
j=1

∂µi∂νj
(
F 1
pqF

1
ab

)
∂aF

2
qpF

2
µν∂b∂µi

(
F 3
rsF

3
να

)
∂νj
(
F 4
srF

4
αµ

)
(4.131)

This has m↔ n symmetry. S matrix(
B2,2(t, u)

(
p1
pε

1
q − p1

qε
1
p

) (
p2
pε

2
q − p2

qε
2
p

) (
p3
rε

3
s − p3

sε
3
r

) (
p4
rε

4
s − p4

sε
4
r

)
+ B2,2(s, u)

(
p1
pε

1
q − p1

qε
1
p

) (
p3
pε

3
q − p3

qε
3
p

) (
p2
rε

2
s − p2

sε
2
r

) (
p4
rε

4
s − p4

sε
4
r

)
+ B2,2(t, s)

(
p1
pε

1
q − p1

qε
1
p

) (
p4
pε

4
q − p4

qε
4
p

) (
p3
rε

3
s − p3

sε
3
r

) (
p2
rε

2
s − p2

sε
2
r

))((
p1
aε

1
b − p1

bε
1
a

)
p2
a

(
p2
µε

2
ν − p2

νε
2
µ

)
p3
b

(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2
aε

2
b − p2

bε
2
a

)
p1
a

(
p1
µε

1
ν − p1

νε
1
µ

)
p4
b

(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3
aε

3
b − p3

bε
3
a

)
p4
a

(
p4
µε

4
ν − p4

νε
4
µ

)
p1
b

(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4
aε

4
b − p4

bε
4
a

)
p3
a

(
p3
µε

3
ν − p3

νε
3
µ

)
p2
b

(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

))
(4.132)

With the following symmetry property.

B2,2(t, u) = B2,2(u, t) (4.133)

• T10 : F 1
pqTr(p

2
pF

2p3
qF

3F 4)F 1
abTr(p

2
aF

2p3
bF

3F 4). This structure has S3 symmetry, be-
cause 2, 3, 4 can be permuted and the structure remains invariant. The most general
descendant of this structure is

m∏
i=1

n∏
j=1

∂µi∂νj(F
1
abF

1
pq)∂p∂a(F

2
µνF

2
βγ)∂q∂b(F

3
ναF

3
γδ)F

4
αµF

4
δβ (4.134)
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The S matrix contribution from this structure is(
B4,1(s, t) +B4,1(t, u) +B4,1(u, s)

)
×[(

p1
aε

1
b − p1

bε
1
a

)
p2
a

(
p2
µε

2
ν − p2

νε
2
µ

)
p3
b

(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)(
p1
pε

1
q − p1

qε
1
p

)
p2
p

(
p2
βε

2
γ − p2

γε
2
β

)
p3
q

(
p3
γε

3
δ − p3

δε
3
γ

) (
p4
δε

4
β − p4

βε
4
δ

)
+ (1↔ 2) + (1↔ 3) + (1↔ 4)]

(4.135)

With the following symmetry property.

B4,1(s, t) = B4,1(u, t) = B4,1(t, s) = B4,1(u, s) = B4,1(s, u) = B4,1(t, u) (4.136)

A priori there are many 'structures' one can write down for a particular kind of term, but
with the use of various identities the above list is the minimal independent set.

4.6.6 Reduction of Structures in lower dimensions

Clearly, the �rst structure, T1 starts to contribute to the s-matrix from D ≥ 7, because in
D = 6 it becomes identically zero. So, in 6 dimensions we have 28 degrees of freedom.

In D = 5 there are two relations between T3, T4, T5, T7, removing two of the structures
entirely. So, we are left with 7 structures with 28− 6 = 22 degrees of freedom.

T7 =
1

8
(T4 − 4T5)

T3 = −T5

4

(4.137)

In D = 4, T2 vanishes identically. Both T8, T9 are descendants. Also, there is one more
relationship between T3, T4, T5, T7, resulting in the left over structures, T6, T10 and one of
T3, T4, T5, T7 (say T3).

T7 =
T3

2
(4.138)

So, far count for the degrees of freedom is 3 + 3 + 1 = 7. But there is again a linear
combination of T3 and T6 which becomes fully symmetric, thereby reducing the count
of degrees of freedom to 5 as is expected from the CFT counting. The two derivative
descendant s matrix from this fully symmetric structure must vanish, we have found the s
matrix from the combinations of the two structures T3 and T6 that vanishes, but the fully
symmetric combination in has yet to be computed explicitly, but it will be written in the
paper which is yet to appear.

4.6.7 String tree level 4 graviton S matrices

Einstein gravity

In this section we reproduce the s-matrix coming from Einstein gravity in our basis. The
scattering amplitude for Einstein gravity is given by [141],
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AEG4h =
−4κ2

stu

(
1

2
ε2.ε3 (sε1.k3ε4.k2 + tε1.k2ε4.k3) +

1

2
ε1.ε4 (sε2.k4ε3.k1 + tε2.k1ε3.k4)

+
1

2
ε2.ε4 (sε1.k4ε3.k2 + uε1.k2ε3.k4) +

1

2
ε1.ε3 (sε2.k3ε4.k1 + uε2.k1ε4.k3)

+
1

2
ε3.ε4 (tε1.k4ε2.k3 + uε1.k3ε2.k4) +

1

2
ε1.ε2 (tε3.k2ε4.k1 + uε3.k1ε4.k2)

−1

4
stε1.ε4ε2.ε3 −

1

4
suε1.ε3ε2.ε4 −

1

4
tuε1.ε2ε3.ε4

)2

(4.139)

This can be written in term of our basis structures, and from there we can read o� the
Lagrangian which produces the same 2−2 s-matrix at tree level (just the tensor structure,
without the 1

stu
).

LEG4h ∝ 1

32
(RpqrsR

pqrs)2 − 1

2
RpqrsR t

pqr R
uvw

sRuvwt +
1

16
RpqrsR tu

pq R vw
tu Rrsvw

−1

4
RpqrsR tu

pq R vw
rt Rsuvw −RpqrsR t u

p r RtvwsR
v w
q u +

1

2
RpqrsR t u

p r R
v w
t u Rqvsw(4.140)

Type II

The 4-graviton amplitude in Type II superstring theory is given by [141]

Ass4h = h(s, t, u, α′)AEG4h (4.141)

Hence it is reproduced by the same Lagrangian term which produces Einstein gravity upto
momentum factors.

4.6.8 Heterotic String

The Heterotic string tree level amplitude can be written in our basis as

A2T2 + A3T3 + A4T4 + A5T5 + A6T6 + A7T7 + A8T8 + A9T9 (4.142)
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Where,

A2 =
1

8

(
s2t+ st2 +

t3

2

)
+

1

16

(
s2t2 +

3st3

2
+
t4

2

)
+

1

4

(
−st

2
− t2

2

)
− t

4

A3 =
1

8

(
1

2

(
−t3 − u3

)
+

1

2

(
t
(
−u2

)
− t2u

))
+

1

16

(
1

2

(
t
(
−u3

)
− t3u

)
− t2u2

2

)
+
tu

8
+
t+ u

4

A4 =
1

8

(
2
(
s3 + u3

)
+ 4

(
s2u+ su2

))
+

1

16

(
2
(
s3u+ su3

)
+ 4s2u2

)
− s− u

A5 =
1

8

(
2
(
s3 + t3

)
+ 4

(
s2t+ st2

))
+

1

16

(
2
(
s3t+ st3

)
+ 4s2t2

)
− s− t

A6 = − 1

128
t2u2 +

1

64

(
t
(
−u2

)
− t2u

)
− tu

32

A7 =
1

32

(
s
(
−u2

)
− s2u

)
+

1

4

(
1

8

(
s2 + u2

)
+
su

4

)
+

1

16

(
1

8

(
−s4 − u4

)
+

1

4

(
s
(
−u3

)
− s3u

)
− 1

4
s2u2

)
A8 =

1

32

(
s
(
−u2

)
− s2u

)
+

1

4

(
1

4

(
−s2 − u2

)
− su

4

)
+

1

4

A9 =
1

128

(
t2u+ tu2

)
+

1

4

(
1

16

(
t2 + u2

)
+
tu

16

)
− 1

16
(4.143)

4.6.9 Closed Bosonic String

Previously in 4.5.8, we wrote the open bosonic string theory amplitude using our F struc-
tures. Now, closed bosonic string theory amplitude is just the square of the open string
amplitude. All, the possible ways to square our F structures, including the cross terms,
are included in the listing of 10 basis structures for the case of gravity. Therefore, it is
obvious that we would be able to write the closed bosonic string tree level amplitude in
our basis, thereby writing an e�ective Lagrangian which produces the same s-matrix at the
tree level.

4.7 Conclusions

We conclude by classifying all the possible S matrix structures11 for 2− 2 scattering for an
e�ective theory of pure electrodynamics as well as a classi�cation for an e�ective theory of
pure gravity. We �nd that for electrodynamics, this scattering is completely speci�ed by 3
polynomials of s, t, u, i.e. any general S matrix can be written down as a linear combination
of these three functions dressed with a known dependence on polarization and momenta.
In the case of gravity there are 10 such polynomials corresponding to 10 structures listed in
section 4.6.5. The dependence on polarization is completely �xed. In the future extensions

11For electrodynamics our conclusions are valid in dimension ≥ 5, and for gravity they are valid in dimen-
sion ≥ 7.

119



of this work, we want to impose the physical input of causality and constrain the possible
physical theories of electrodynamics and gravity. The expectation is that for the case of
gravity, only Einstein theory survives. Next we plan to study the 2− 2 exchange diagrams
involving massive spin particles and try to understand how String theory continues to stay
causal. Our conclusions are valid if a �nite number of terms are involved in the Lagrangian
but String theory involves an in�nite tower of higher spin massive particles. We also wish
to understand if there is a �ne-tuning happening in the case of string theory, also how
constrained it is.
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Appendix A

Appendices for Chapter 1

A.1 Conformal Kernel

In this appendix following main result is proved∫
dt3 dt4 K̃c(t1, t2; t3, t4)(gc)

b
a (t3, t4) =

1

|J |2 (gc)
b
a (t1, t2), (A.1)

where relevant quantities are de�ned by

K̃c(t1, t2; t3, t4) =− |Gc(t1, t2)| q−2
2 Gc(t1, t3)Gc(t2, t4)|Gc(t3, t4)| q−2

2 ,

gc(t1, t2) =|Gc(t1, t2)| q−2
2 Gc(t1, t2)[H(t1)−H(t2)].

(A.2)

Important part of the integration is given by:

Q(t1, t2) ≡
∫
dt3 dt4 Gc(t1, t3)Gc(t2, t4)Gc(t3, t4)q−1[H(t3)−H(t4)]

=− 1

|J |2
∫
dt3 Gc(t1, t3)H(t3)

∫
dt4 Gc(t2, t4) |J |2Gc(t4, t3)q−1

− 1

|J |2
∫
dt4 Gc(t2, t4)H(t4)

∫
dt3 Gc(t1, t3) |J |2Gc(t3, t4)q−1

=− 1

|J |2
∫
dt3 Gc(t1, t3)H(t3)(−δ(t2 − t3))− 1

|J |2
∫
dt4 Gc(t2, t4)H(t4)(−δ(t1 − t4))

=
1

|J |2 [Gc(t1, t2)H(t2) +Gc(t2, t1)H(t1)]

=− 1

|J |2Gc(t1, t2) [H(t1)−H(t2)] .

(A.3)

This proves claimed result when multiplied with −|Gc(t1, t2)| q−2
2 .
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A.2 Details of the perturbative computations

A.2.1 Leading Power of β

Two melon graphs

In this subsection we consider the contribution to the free energy given by �g. A.1. First
non-trivial e�ect of winding is seen at this level as explained below. The term whose Wick

contraction is calculated is
1

4!
(Jψ4 +h.c.)4 - where each of 4C4/2 terms contribute the same.

The symmetry factor is calculated as follows. Any one of q number of ψ's of �rst ψ-vortex

ψ̄(t4)
ψ(t3)

ψ̄(t2)ψ(t1)

θa1

θa2

θa3

θb1

θb2

θb3

θc1
θc2

Figure A.1: Direction of arrow is from ψ to ψ. The diagram is drawn for q = 4.

contracts with any one of q number of ψ's of any one of two ψ-vortex to give a factor of
2q2. Any one of q number of ψ's of second ψ-vortex contracts with any one of q number of
ψ's of remaining ψ-vortex to give a factor of q2. In large-N only non-suppressed diagram
is obtained by joining ψ to ψ (of same vortex) of same common colour. Choice of external
propagator gives q − 1 possibilities at each blob. Sign of the symmetry factor comes from
noticing as there are two identical 'blobs' sign of contraction of each blob cancel and overall
sign is just because of contraction between two 'blobs', it turns out to be -1. Contribution
of symmetry factor at this order becomes

F4 =
1

4!
4C4/2 (−1)2[q2(q − 1)]2I(4), (A.4)
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where

I(4) =

∫ 4∏
i=1

dti

(
q−1∏
i=1

G0(t12, θai)

)(
q−1∏
i=1

G0(t34, θbi)

)
G0(t32, θc2)G0(t14, θc1). (A.5)

Where θs are holonomies on di�erent propagators. Here time di�erences are not necessarily
single valued and to satisfy the constraint

t12 + t23 + t34 + t41 = wβ,

where w = 0,±1,±2 (note that each tik is in (−β
2
,
β

2
), and this restricts allowed values of

n) we introduce dimensionless Lagrange multiplier integration

P ≡ β

∫ +∞

−∞

ds

2π
eis(t12+t23+t34+t41−wβ) = δ

(
t12 + t23 + t34 + t41 − wβ

β

)
. (A.6)

In the scaling limit (assuming m > 0), the propagator becomes

G0(t) = e−(m+iθa)tθ(t)− xe−iθaβe−(m+iθa)tθ(t)− x1/2e−mβ/2e−iθaβe−(m+iθa)tθ(−t). (A.7)

This way of writing ensures in each of three parts of G0 excluding explicit x dependence

integration over −β
2
to
β

2
gives only positive powers of x. We will refer to these three parts

of G0 as x0, x, x1/2 contributions.
In the scaling limit of interest I(4) can receive contribution from 5 di�erent types of

integration

I(4) =x0 everywhere + x1/2 on one of the outer (θc1 , θc2) lines + x1/2 on both of the outer lines

+x on one of the outer lines + x on one of the inner lines (θa1 , θa2 . . . θaq−1 , θb1 , θb2 . . . θbq−1).
(A.8)

Note that choosing x1/2 on one of the inner propagators will force choosing all the inner
propagators in the same blob to be x1/2 term due to unit step function. Therefore this choice
is ignored in scaling limit calculation. Here we'll present the calculation corresponding to
the �rst one and mention results for others.

Consider x1/2 on θc1 say, and on all others we choose x independent part of G0. This
ensures following time ordering for non-zero integrand t12 > 0, t32 > 0, t34 > 0, t41 > 0,
with which only consistent values of n are 0, 1. Contribution to I(4) becomes, omitting
β(−x1/2)e−iθc1βe+iθc1wβ (for a contribution like F0 we must have n = 0 which is shown to
be true below)

I(4) ∼ β(−x1/2)e−iθc1βe+iθc1wβ

∫
ds

2π
dt12 dt32 dt34 dt41 e

−iswβ e−(m(q−1)−is)t12×

e−(m(q−1)−is)t34 e+(m+is)t41−mβ/2e−(m+is)t32

=− β(−x1/2)e−iθc1βe+iθc1wβ

∫
ds

2π

(eisβ/2 − x1/2)(x1/2e−isβ/2 − 1)

(s+ i(q − 1)m)2(s− im)2
e−iswβ +O(x3/2),

(A.9)
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where we ignored higher order contributions in x. Simplifying the numerator gives 3 terms:
x independent piece that comes with a non-zero phase factor eisβ/2 (which will give a factor
of β upon integration because only w = 0 will contribute), x1/2 term that comes with no
non-trivial phase (cannot give a β upon integration), x term drops out in scaling limit.
Rest of the integration can be done easily choosing proper contour (semi-circle on upper
or lower half plane as required by convergence) to ensure only w = 0 term contributes to
give the following result

δw,0x
1/2 2

(qm)3

(
−1 +

q

4
mβ
)
. (A.10)

All other integrations can be performed similarly to give leading order contribution to free
energy

F4 =
1

4!
4C4/2 2q4 (q − 1)2

q2
m2β2 N (q−1)2

x

q−1∏
m=1

ρ1
m +O(β). (A.11)

n melon graphs

Here a circle diagram with n ≥ 2 blobs is considered and leading term in β is calculated
using methods demonstrated in previous sub-section.

Symmetry factor for the diagram in large N limit is 1

(−1)
nq
2

+n+1

(n!)2
n! (q2)n (n− 1)!. (A.12)

The leading order contribution in β comes from two distinct choices - i) considering x1/2

in any one of the n external propagators (with holonomy θa say) with x
0 part of the free

propagator in all others and ii) x0 part of the free propagator in all propagators.
Contribution from the integral due to choice (i) is easily seen to be

− x1/2|g|n e−iθaβ+iwθaβ β

∫
ds

2π
e−i(w−

1
2

)sβ 1

(−is+m(q − 1))n(is+m)n

= −2x |g|n e−iθaβ 1

(n− 1)!

(
β

2mq

)n
δw,0,

(A.13)

where we have kept only highest power of β. Note that extra powers of beta βn−1 came from
the integration because of evaluation of residue around a pole of order n. This contribution
is to be multiplied with a factor of n due to freedom in choosing one external propagator
on which x1/2 is considered.

Now we turn to the choice (ii). In this case contribution to the integral is

|g|n eiwθaβ β
∫

ds

2π
e−iwsβ

(1− x1/2e−is
β
2 )n

(−is+m(q − 1))n(is+m)n

= 2x |g|n e−iθaβ 1

(n− 1)!

(
β

2mq

)n(
2n−1

n
− 1

)
δw,1.

(A.14)

1Here an extra factor of (n − 1)! comes as compared to n = 2 case because of freedom of joining n blobs
with one another.
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As before we have kept only highest power of β. Note that this contribution vanishes for
n = 2.

After summing over the holonomies, and canceling loop N's with that of scaling of g,
contribution to free energy becomes

F2n = 2x N q−1

(
q−1∏
m=1

ρ1
m

)
1

(n− 1)!

[
γ(q)

(−β)

m
|J |2

]n(
2− 2n−1

n

)
+O(βn−1), (A.15)

where
γ(q) = (−1)

q
2

(q−1) q

2
. (A.16)

A.2.2 All powers of β in a circle diagram

ψ(t2n−1)

ψ̄(t2n)

ψ(t1)

ψ̄(t2)

ψ(t3)

ψ̄(t4)

ψ(t5)

ψ̄(t6)

ψ(t7)

ψ̄(t8)

In this subsection we shall compute explicitly the integral involved in computing the
contribution to the free energy in the scaling limit linear in x = e−mβ.

The free fermionic Green's function at any �nite temperature is given by,

〈ψ(t)ψ(0)〉 ≡ G0(t)

=
1

2
e−(m+iαj)t

[
sgn(t) + tanh

(β
2

(m+ iαj)
)]

= e−(m+iαj)t
[
θ(t)− xe−iαjβ

]
, (A.17)
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where, x = e−mβ << 1 (scaling limit). Hence, one can also write the `reversed' Green's
function at �nite temperature as,

〈ψ(0)ψ(t)〉 = G∗0(−m) =
1

2
e(m+iαj)t

[
sgn(t)− tanh

(β
2

(m+ iαj)
)]
. (A.18)

Here αj are holonomies, satisfying the following constraint

q∑
j=1

αj = 0 . (A.19)

Now in the computation we use discrete representation of the delta function

δ(t21 + t32 + t43 + t54 + t65 + . . .− t2n−1 2n + t1 2n)

=
1

2πβ

∞∑
ω=−∞

e−2πiω
β

(t21+t32+t43+t54+t65+ . . . −t2n−1 2n+t1 2n ). (A.20)

Evaluating the integral

Let us focus on the diagram which can be computed as using the integral,

I(2n) = 1
2πβ

(
J
4

)2n
∞∑

ω=−∞

[∫ β/2

−β/2
dt1 e

−t1(m+iαq)e−2πiω
β
t1
(
sgn(t1) + tanh(mβ+iαqβ

2
)
)

∫ β/2

−β/2
dtq e

tq((q−1)m−iαq)e−2πiω
β
tq (A sgn(tq)−B))

]n
. (A.21)

Here the �rst integral inside the sum is a single propagator while the second one represents
the melon with q − 1 propagators, where A and B are de�ned as

q−1∏
j=1

[
sgn(tq)− tanh(

mβ+iαjβ

2
)
]

= (−1)q (A sgn(tq)−B) . (A.22)

We integrate over the time intervals of these propagators in (A.21) and since there are
n of them we raise it to the power n. However, we would also have to implement the
constraint that the times add up to an integral of β. This is achieved by representing the

delta function on a circle of length β as an in�nite sum. This contributes a factor of e
2πi

ω
β
ti

in each of the propagators as shown in (A.21).
Now we would like to focus on the integrals within the box brackets in (A.21)

F (2n) =
∞∑

ω=−∞

[
I(q)
ω

]n
. (A.23)
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Upon integrating over t1 and tq one �nds that

I(q)
ω =

f1 + f2

((q − 1)m− iαq + z)(m+ iαq − z)
, z = −2πiω

β
(A.24)

Here f1 consists of terms with e±kzβ where k ∈ Zeven while f2 consists of terms e±kzβ/2

where k ∈ Zodd. Its is evident that upon raising I(q)
ω to n one would have to evaluate sums

in z of the form

S1 =
∞∑

ω=−∞

e±kzβ

(((q − 1)m− iαq + z)(m+ iαq − z))n
, k ∈ Zeven

S2 =
∞∑

ω=−∞

e±kzβ/2

(((q − 1)m− iαq + z)(m+ iαq − z))n
, k ∈ Zodd. (A.25)

Since z = −2πiω
β

we see that these reduce to

S1 =
∞∑

ω=−∞

1

(((q − 1)m− iαq + z)(m+ iαq − z))n
,

S2 =
∞∑

ω=−∞

ezβ/2

(((q − 1)m− iαq + z)(m+ iαq − z))n
. (A.26)

We will use the technique of Matsubara summation to evaluate the above, where a
weighting function is included to replace the sum by a contour integral. So, �rst let

us evaluate S1. With a weighting function f(z) =
1

1− ezβ , one can replace the above

summation with the following contour integral,

S1 =

∮
dz

(1− ezβ)(((q − 1)m− iαq + z)(m+ iαq − z))n
(A.27)

Notice that the integrand has two poles at z ≡ za = −(q−1)m+ iαq and z ≡ zb = m+ iαq
and both are of n-th order. Using the residue theorem, one can evaluate the above integral
as,

S1 = lim
z→za

1

(n− 1)!
∂(n−1)
z

1

(1− ezβ)(z − zb)n
+ lim

z→zb

1

(n− 1)!
∂(n−1)
z

1

(1− ezβ)(z − za)n
(A.28)

Now, it is very easy to verify that for any function f(z),

∂(n−1)
z

[
f(z)

1

(z − za)n
]

=
n−1∑
k=0

(−1)k (n−1)Ck
(n+ k − 1)!

(n− 1)!

∂
(n−k−1)
z f(z)

(z − za)n+k
(A.29)

In the present case, taking f(z) =
1

(1− eβz) , one can evaluate

∂(n)
z

[ 1

1− eβz
]

=
βne−βz

(e−βz − 1)n+1
A(n) (A.30)
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where, A(n) is the Eulerian polynomial in e−βz, given by,

A(n) =
n−1∑
m=0

m+1∑
k=0

(−1)k n+1Ck(m+ 1− k)n e−βzm (A.31)

Using equation (A.30) and (A.31), one can easily obtain,

∂(n−k−1)
z f(z) = ∂(n−k−1)

z

[ 1

1− eβz
]

=
βn−k−1

(e−βz − 1)n−k

n−k−2∑
m=0

m+1∑
l=0

(−1)l n−kCl (m+ 1− l)n−k−1e−β(m+1)z

+
1

1− eβz δn−k−1,0 (A.32)

Finally Substituting equation (A.32) into equation (A.29), we have,

∂(n−1)
z

[ f(z)

(z − za)n
]

= ∂(n−1)
z

[ 1

(1− eβz)(z − za)n
]

=
n−1∑
k=0

(−1)k

(z − za)n+k
(n−1)Ck

(n+ k − 1)!

(n− 1)!

[ βn−k−1

(e−βz − 1)n−k

n−k−2∑
m=0

m+1∑
l=0

(−1)l

n−kCl (m+ 1− l)n−k−1e−β(m+1)z +
1

1− eβz δn−k−1,0

]
(A.33)

Evaluating the above expression at both the poles z = za and zb, one can compute S1 as
expressed in equation (A.28).

Now let us discuss about evaluating the summation S2 as given in equation (A.26).

With a weighting function f(z) =
eβz/2

1− eβz , one can replace the above summation with the

following contour integral,

S2 =

∮
eβz/2dz

(1− eβz)(((q − 1)m− iαq + z)(m+ iαq − z))n
(A.34)

Notice that we encounter the same n-th order poles in the contour integral as we had with
S1. The residue computation for evaluating this contour integral needs to evaluate the
following term as before,

∂(n)
z f(z) = ∂(n)

z

[ eβz/2

1− eβz
]

=
βne−βz/2

2n(e−βz − 1)n+1
B(n) (A.35)

where, B(n) is the Eulerian polynomial of type-B in e−βz, given by,

B(n) =
n∑

m=0

m∑
k=0

(−1)m−k n+1Cm−k(2k + 1)n e−βzm (A.36)
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Finally, using equation (A.29), (A.35) and (A.36), one can obtain,

∂(n−1)
z

[ f(z)

(z − za)n
]

= ∂(n−1)
z

[ eβz/2

(1− eβz)(z − za)n
]

=
n−1∑
k=0

(−1)k

(z − za)n+k
(n−1)Ck

(n+ k − 1)!

(n− 1)!

βn−k−1

2n−k−1(e−βz − 1)n−k

n−k−1∑
m=0

m∑
l=0

(−1)m−l n−kCm−l (2l + 1)n−k−1e−(2m+1)βz/2 (A.37)

Now using the above equation one can compute the residue and hence the integral (A.34).
This �nishes the computation of S2 as given in equation (A.26).

One �nds that S1 depends only linearly on x = e−mβ while S2 depends as
√
x. Fur-

ther noting that the di�erence in A and B in (A.22) behaves as A−B = O(xq−1) we �nd

that f1 = (A−B)O(x
−q
2

+1) = O(xq/2) and f2 = (A−B)O(x
−q+1

2 ) = O(x
q
2
−1). Therefore

in the scaling limit one can take A = B = 2q−2

(
1− x

q−1∑
j=1

e−iβαj

)
.

Therefore evaluating (f1 + f2)N ≈ F1 + F2 in the scaling limit- where once again F1 con-
sists of terms with e±kzβ where k ∈ Z while F2 consists of terms e±kzβ/2 where k ∈ Zodd,
F (n) = S1F 1 + S2F 2. Here F 1,2 = F1,2(z = 0)2.

The fact that only these two type of summations contribute for any integer value of k,
makes it easier to evaluate equation (A.21) in the scaling limit as,

I(2n) = J2n

n−2∑
k=0

2(q−1)nxβn−k

(mq)n+kΓ(n)2
(2n − 22+kn)(n−1Ck)Γ(n+ k)

q−1∏
m=1

ρ1
m (A.38)

which can be re-written as

I(2n) =

(
J2β

mq

)n n−2∑
k=0

(
J2

m2

)k (
m

qJ2β

)k
2(q−1)nx

Γ(n)2
(2n − 22+kn)(n−1Ck)Γ(n+ k)

q−1∏
m=1

ρ1
m

+O(β) (A.39)

or equivalently keep all orders in β as

I(2n) =
J2n

m2nqn
(−1)q(n−1)

(n− 1)!

[
(2n− 2)!

(n− 1)! qn−1
mβ

(
1− n

(
q − 2n+ 3

))
(A.40)

+
n−2∑
k=0

(n+ k − 1)!

k!(n− k − 1)! qk
(1− 2k+2−nn)(mβ)n−k

]
x

(
q−1∏
m=1

ρ1
m

)
.

This multiplied with (A.12)×N q−1 gives contribution of a circle diagram with n melons.

2Since their z dependences were where taken into account in evaluating S1 and S2
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A.2.3 Evaluating the subleading correction

We end this appendix by presenting a technical result which we do not use in the main text
of the paper, but record here anyway, just in case this result �nds application subsequent
work.

The technical result we report here is the evaluation of the Feynman integral for diagram
Fig. (A.2) (the �gure is drawn for q = 4 but we present the evaluation in general), which
is one of the diagrams that would contribute to the generalization of the results presented

in this chapter to subleading orders in
1

β
. We present the result for the Feynman diagram

ignoring the symmetry factor (which can easily be independently evaluated). We evaluate
the diagram of Fig. (A.2) as follows. In order to get the integrand of the diagram we �rst
multiply together all the propagators that make it up, keeping careful track of holonomy
factors and making use of the fact that holonomies at any interaction vertex sum to zero.
The integrand is the term in the big square bracket in (A.41) with ε1 and ε2 temporarily
set to zero. The �rst two lines on the RHS of (A.41) are the n − 2 factors on the in the
diagram Fig.(A.3). 3

The next four lines on the RHS of (A.41) represent the second factor in Fig.(A.3). Lines
3-6 on the RHS of (A.41) are the remaining factors (the propagators outside the square
bracket) in Fig.(A.3). 4

3t1 in this term is the length of the straight line in these factors, while t2 is the length of the 3 (or more
generally q − 1) melonic lines in the part Fig.(A.3) that is enclosed in the square bracket. Really there
are n − 1 di�erent t1s and n − 2 di�erent t2. As t1 and t2 are dummy variables that we integrate over,
we have used the same symbol for all of them.

4The third line in (A.41) is the straight line in this part of Fig.(A.3). The last and second-last lines in
(A.41) are, respectively, the blobs of q − 1 and q − 2 propagators in this part of Fig.(A.3). Finally the
fourth line in (A.41) is the product of the two propagators that run between the `q − 1 blob' and the
`q − 2 blob'. The times in all these terms represent the lengths of the corresponding propagators.
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Figure A.2: subleading diagram

I(2n−2) =
(

1
2πβ

)2
∞∑

ω1,ω2=−∞

[(∫ β/2

−β/2
dt1e

−(m+iα1+i
ε1
β

)t1 (sgn(t1) + tanh(mβ+iα1β
2

)
)

∫ β/2

−β/2
dt2e

((q−1)m−iα1−i
ε1
β

)t2 (sgn(t2)A1 −B1)

)n−2

∫ β/2

−β/2
dt1e

−(m+iα1+i
ε1
β

)t1 (sgn(t1) + tanh(mβ+iα1β
2

)
)

(∫ β/2

−β/2
dt3e

(m+iα2+i
ε2
β

)t3 (sgn(t3)− tanh(mβ+iα2β
2

)
))2

∫ β/2

−β/2
dt4e

((q−2)m−i(α1+α2)−i
(ε1+ε2)

β
)t4 (sgn(t4)A1,2 −B1,2)∫ β/2

−β/2
dt5e

(−(q−1)m+iα2+i
ε2
β

)t5 (sgn(t5)A2 +B2)

]
(A.41)

After evaluating the integrand we need to perform the integrals. Roughly speaking we

must integrate all propagator lengths in the integrand above from −β
2
to

β

2
. However we
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Figure A.3: parts of subleading diagram

need to do this subject to the constraint that as we go round either of the two circles in
the diagram Fig.(A.2) we come back to the same time as we started out, modulo β. This
is where the parameters ε1 and ε2 in (A.41) come in. ε1 couples to the sum of lengths of
propagators in units of β around the big circle in Fig.(A.2), while ε2 multiplies the sum of
the lengths of all the propagators as we go around the small circle - again in units of β in
Fig.(A.2). The constraint that these lengths evaluate to an integral multiple of β can then
be implemented by setting ε1,2 = 2πω1,2 and then summing ωi over all integral values, as
we have done in (A.41).

In order to proceed we perform the time integrals in an unconstrained manner. The
result can be rearranged (according to its ωi dependence) as a sum of four types of terms.

1. Terms containing ek(z1+z2)β where k ∈ Z

2. those with ekz1β/2 where k ∈ Zodd

3. with ekz2β/2 where k ∈ Zodd

4. and ek(z1+z2)β/2 where k ∈ Zodd;

where zi = −2πi

β
ωi.

We deal with these four classes of terms separately; for each class we explicitly perform
the sum over ωi (by reducing it to a contour integral as in the previous subsection) and
expand the resultant expression in a Taylor series in x (again as in the previous subsection),
keep only the terms that are linear in x. Combining together the results from each of the
four classes we obtain our �nal result

I(2n−2) = −
(
J2β

mq

)n n−4∑
k=0

x(q − 1)

(mqβ)k+1

2(q−1)n(2n + (n− 1)23+k)(2n+ k − 2)Γ(n+ k − 1)

Γ(n− k − 1)Γ(n)Γ(1 + k)

q−1∏
m=1

ρ1
m
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+O(β2) (A.42)

(the terms O(β2) that we have omitted to list in (A.42) are the terms with k = n− 3 and
k = n− 2 which exist in the �nal answer but the values of whose coe�cients do not follow
the uniform rule of the other terms).

Note that (A.42) scales like
1

β
in coordinated large β small J limit in which J2β is held

�xed.

A.3 The holonomy e�ective action from the sigma model

In this section we ask the following question: what is the contribution to Se�(U) - the
e�ective action for holonomies - resulting from integrating out the new light degrees of
freedom discovered in the massless tensor model in early sections in this chapter? In the
bulk of this section we address this question at the technical level. At the end of the section
we turn to a quick discussion of its physical import.

Turning on holonomy is equivalent to putting appropriate boundary condition on

fermion �elds. This translates into boundary condition on Vl, given by Vl(−
β

2
) = UVl(+

β

2
),

U ∈ O(N). This boundary condition is equivalent to the computation of the partition func-
tion

Z = e−Se�(U) = Tre−βHÛ , (A.43)

where H is the Hamiltonian of the quantum mechanical system (2.3) and U is the quantum
mechanical operator that implements left rotations on the sigma model by the O(N)q−1

group rotation U . The partition function (2.2) is the product of q − 1 factors, associated
with the sigma models on the q−1 gauge groups. It follows that the e�ective action Se�(U)
that follows from this computation takes the form

Se�(U) =
∑
i

S(Ui). (A.44)

In the rest of this section we compute the functions S(Ui)
Let us �rst note that the Hilbert H space on which any one of the factors of q − 1

distinct factors the sigma model (2.3) acts is given as follows. The Hamiltonian acts on
the Hilbert space H

H =
∑
Ri

R̃i ⊗ R̃i. (A.45)

The sum Ri runs over all genuine (as opposed to spinorial) representations of O(N). R̃i

denotes the vector space on which O(N) acts in the ith representation. The space R̃i ⊗ R̃i

transforms in the representation Ri × Ri under O(N)L × O(N)R; the operator Û acts

as an O(N) rotation on the �rst R̃i but as identity on the second R̃i. The Hamiltonian
corresponding to action (2.3) is diagonal under the decomposition (A.45); the energy of

the ith factor of the Hilbert space is
JC2(Ri)

2AN q−2
.
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Representations of O(N) are conveniently labeled by the highest weights (h1, h2, h3 . . .),

the charges under rotations in mutually orthogonal two planes. Let h =
∑
i

hi. At leading

order in the large N limit the dimensionality of the representation Ri depends only on h
and is given by

d(Ri) =
Nh

h!
.

Moreover the Casimir C2(Ri) of representations of O(N) also depends only on h at leading
order in the large N limit and is given by

C2(Ri) = Nh.

Let χRi(U) denote the character in the Ri representation of O(N) and let

χn(U) =
∑
Ri∈n̂

χRi(U), (A.46)

where n̂ denotes the collection of all representations of O(N) with h = n. In other words
χn(U) is the sum over the characters of all representations with h = n.

Note that all representations with h = n can be constructed - and can be constructed
exactly once - from the direct products of n vectors of O(N) (this is true when N � n as
we assume). 5 Let Pn denote the projector onto representations with h = n

Pn [f(U))] =

∫
dU ′

∑
Ri∈n̂

χRi(U)χ∗Ri(U
′)f(U ′). (A.47)

It follows that
χn(U) = Pn [(TrU)n] . (A.48)

where U on the RHS of (A.48) represents the group element in the vector representation
of O(N).

Finally we de�ne

z = e−
J

2ANq−3 . (A.49)

It follows immediately from all the facts and de�nitions presented above that

e−S(Ui) =
∞∑
n=0

(zN)n

n!
χn(Ui). (A.50)

Using (A.48), (A.50) can be rewritten in the (perhaps deceptively) elegant form

e−S(Ui) = Pz∂ze
NzTr(Ui). (A.51)

5Note, however, that not every representation of n vectors has h = n; the product space includes rep-
resentations (formed by contracting 2 vector indices) with h = n − 2, and representations (formed by
contracting 4 vector indices) with h = n− 4 . . . .
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Note that ∫
dUe−S(U) = 1. (A.52)

This is an immediate consequence of the fact that the vacuum is the only representation in
the spectrum of the group sigma model that is a singlet under O(N)L. It follows that the
partition function generated by S(U) by itself is trivial. However S(U) is only one piece
of the e�ective action for U in the massless tensor model (2.1); we get other contributions
to the e�ective action by integrating out the fermionic �elds themselves (as was explicitly
done earlier in this chapter for the case of massive fermions). When put together with other
contributions the e�ective action (A.51) could have a signi�cant impact on the partition
function, especially at temperatures scaled to ensure that the matter contribution to the
e�ective action - like the contribution of the sigma model considered in this section - is of
order N2.
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Appendix B

Appendices for Chapter 2

B.1 Previously known results for the large N free energy

Below we will encounter several equations that involve the quantities

C =
1

2

∫ π

−π
dα ρF (α)

(
log(2 cosh( ĉF+iα

2
)) + log(2 cosh( ĉF−iα

2
))
)
,

S =
1

2

∫ π

−π
dα ρB(α)

(
log(2 sinh( ĉB+iα

2
)) + log(2 sinh( ĉB−iα

2
))
)
,

(B.1)

where ĉB and ĉF are (dimensionless versions of) the thermal masses in the boson and
fermion theory respectively.

Using (3.15), it is not di�cult to verify the following identities:

λBS = −sgn(λF )

2
cF + λFC , λFC = −sgn(λB)

2
cB + λBS . (B.2)

B.1.1 Results for the critical fermion theory

In [56] the `�xed holonomy' R2 × S1 partition function - vF [ρF ] - of the fermionic theory
has been evaluated in both fermionic phases. The �nal result of this calculation is most
conveniently given in terms of an auxiliary o�-shell free energy

FF (cF , ζF , C̃)

=
NF

6π

[
ĉ3
F − 2λ2

F C̃3 − 3

2

(
ĉ2
F −

16π2

κ2
F

ζ̂2
F

)
C̃ +

6πŷ2
2

κFλF
ζ̂F −

24π2ŷ4

κ2
FλF

ζ̂2
F +

24π3xF6
κ3
FλF

ζ̂3
F

− 3

2
C̃
(
ĉ2
F −

(
2λF C̃ −

4π

κF
ζ̂F

)2
)

− 3

∫ π

−π
dαρF (α)

∫ ∞
ĉF

dy y
(
log
(
1 + e−y−iα

)
+ log

(
1 + e−y+iα

)) ]
. (B.3)
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The auxiliary o�-shell free energy (B.3) is a function of three variables - cF , ζF and C̃
- in addition to the temperature and the holonomies. The free energy vF [ρF ] de�ned in
(3.12) is obtained from FF [ρF ] in (B.3) by extremizing the latter quantity w.r.t. these three

`dynamical' variables. Extremizing the free energy (B.3) w.r.t. the variable C̃ yields the
equation of motion

ĉ2
F =

(
2λF C̃ −

4π

κF
ζ̂F

)2

. (B.4)

Varying w.r.t. cF yields
C̃ = C , (B.5)

with C given in (B.1), while the stationarity of variation w.r.t ζF yields

−3

4

(
4πζ̂F
κF

)2

xF6 −
16πζ̂F
κF

λF C̃ +
8πζ̂F
κF

ŷ4 + 4λ2
F C̃2 − ŷ2

2 = 0 . (B.6)

Plugging (B.5) into (B.4) and (B.6) respectively yields the simpli�ed gap equations

ĉ2
F =

(
2λFC −

4πζ̂F
κF

)2

, (B.7)

and

−3

4

(
4πζ̂F
κF

)2

xF6 −
16πζ̂F
κF

λFC +
8πζ̂F
κF

ŷ4 + 4λ2
FC2 − ŷ2

2 = 0 , (B.8)

for the quantities cF and ζF .
Below we will �nd it useful to work with a reduced o�-shell free energy, obtained by

integrating C̃ out of (B.3). In order to do this we note that (B.4) has two solutions

2λF C̃ =
4πζ̂F
κF
± ĉF , (B.9)

The undetermined sign in (B.9) is completely free. Clearly this sign is (tautologically)

given by sgn(X̃F ) where

X̃F ≡ 2λF C̃ −
4πζ̂F
κF

. (B.10)

It follows that (B.9) may formally be rewritten as

2λF C̃ =
4πζ̂F
κF

+ sgn(X̃F )ĉF . (B.11)

The reduced free energy - which is now a function only of two variables cF and ζF - is
obtained by plugging either of these two solutions into (B.3). Note that when we do this
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the second line of (B.3) vanishes as a consequence of (B.4).1 Inserting the solutions (B.11)
into the free energy (B.3), we have the following explicit expression for the reduced o�-shell
free energy as a function of cF and ζF

FF (cF , ζF ) =
NF

6π

[
|λF | − sgn(λF )sgn(X̃F )

|λF |
ĉ3
F −

3

2λF

(
4πζ̂F
κF

)
(ĉ2
F − ŷ2

2)

− 3ŷ4

2λF

(
4πζ̂F
κF

)2

+
(3xF6 + 4)

8λF

(
4πζ̂F
κF

)3

− 3

∫ π

−π
dα ρF (α)

∫ ∞
ĉF

dy y
(
log
(
1 + e−y−iα

)
+ log

(
1 + e−y+iα

)) ]
.

(B.12)

Note that the above reduced o�-shell free energy function has two branches depending on
the sign sgn(X̃F ). We refer to the branch in which sgn(X̃F )sgn(λF ) > 0 as the unHiggsed

branch, and the branch in which sgn(X̃F )sgn(λF ) < 0 as the Higgsed branch. It is easily
veri�ed that the variation of (B.12) with respect to ĉF yields (B.7) while the variation of
(B.12) w.r.t ζF yields (B.8).

Note that that the gap equations (B.4), (B.5) (equivalently (B.7)) and (B.6) - unlike

the free energy (B.12) - have no explicit dependence on sgn(X̃F ). Nonetheless the same

gap equations hold for both `phases' of the theory, i.e. for both choices of sgn(X̃FλF ).2 It
follows from this observation that the solutions to the �nite temperature gap equations
of the fermionic theory vary analytically as we pass from one `phase' to another. In fact
more is true; the �nite temperature free energy of the fermionic theory is itself analytic
as one passes from the unHiggsed to the Higgsed phase. At the physical level, the sharp
zero temperature distinction between the Higgsed and unHiggsed phases gets blurred out
by �nite temperature e�ects.

1This reduced form of the o�-shell free energy - rather than the fully o�-shell free energy (B.3) - was
presented in [56]. The o�-shell free energy (B.3) is a new formula that has not previously been presented
in the literature.

2The fact that sgn(X̃F ) disappears from the gap equations is obvious when we obtain the equations from
(B.3), even though this fact might appear mysterious when derived starting from (B.12).
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B.1.2 Results for regular bosons in the unHiggsed Phase

The o�-shell free energy for the RB theory was computed in [56] and is given by

FB(cB, S̃) =
NB

6π

[
− ĉ3

B + 2
(
ĉ2
B − m̂2

B

)
S̃ + 2λB b̂4S̃2

+ S̃
(
ĉ2
B − m̂2

B − (4 + 3xB6 )λ2
BS̃2 + 4λB b̂4S̃

)
+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
,

(B.13)

or equivalently by

FB(cB, S̃) =
NB

6π

[
− ĉ3

B + 3S̃
(
ĉ2
B − m̂2

B

)
+ 6b̂4λBS̃2 − (4 + 3xB6 )λ2

BS̃3

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.14)

As in the previous subsection, the free energy vB[ρB] de�ned in (3.12) is obtained by

extremizing the action (B.13) w.r.t. the dynamical variables S̃ and cB. The equations of

motion that follow by varying (B.13) w.r.t S̃ and cB respectively are

ĉ2
B = (4 + 3xB6 )λ2

BS̃2 − 4λB b̂4S̃ + m̂2
B , (B.15)

and
S̃ = S , (B.16)

where S was de�ned in (B.1). Inserting (B.16) into (B.15) yields the gap equation for the
single variable cB

ĉ2
B = (4 + 3xB6 )λ2

BS2 − 4λB b̂4S + m̂2
B . (B.17)

As in the previous subsection it is possible to obtain a reduced free energy by integrating
S̃ out of (B.13). This may be achieved by using (B.15) to solve for S̃ as a function of cB
and plugging this solution into (B.13). 3 This is the form in which the o�-shell free energy
for the scalar theory in the unHiggsed phase was presented in [56].

3Note that the second line of (B.13) vanishes when we do this as a this line is proportional to (B.15).
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B.1.3 Duality in the unHiggsed phase and a prediction for the

Higgsed phase

We �rst list the duality map between various quantities in the RB and CF theories. Recall
that the 't Hooft parameters λB and λF were de�ned as

λB =
NB

κB
, λF =

NF

κF
. (B.18)

The duality maps di�erent parameters as follows:

NF = |κB| −NB , κF = −κB , λF = λB − sgn(λB) ,

xF6 = xB6 , y4 = b4 , y2
2 = m2

B , |λB|ρB(α) + |λF |ρF (π − α) =
1

2π
. (B.19)

The last relation gives rise to

NFρF (α) =
|κB|
2π
−NBρB(π − α) . (B.20)

Consider the o�-shell free energies for the critical fermion theory in terms of the two `�elds'
cF and ζF given in (B.12):

FF (cF , ζF ) =
NF

6π

[
λF − sgn(X̃F )

λF
ĉ3
F −

3

2λF

(
4πζ̂F
κF

)
(ĉ2
F − ŷ2

2)

− 3ŷ4

2λF

(
4πζ̂F
κF

)2

+
(3xF6 + 4)

8λF

(
4πζ̂F
κF

)3

+

− 3

∫ π

−π
dαρF (α)

∫ ∞
ĉB

dy y
(
log
(
1 + e−y−iα

)
+ log

(
1 + e−y+iα

)) ]
.

(B.21)

Using the relation (B.20), the last line in (B.21) can be rewritten as 4

− 3NF

6π

∫ π

−π
dαρF (α)

∫ ∞
ĉF

dy y
(
log
(
1 + e−y−iα

)
+ log

(
1 + e−y+iα

))
=

=
3NB

6π

∫ π

−π
dαρB(α)

∫ ∞
ĉF

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

))
. (B.22)

4The two terms in the RHS of (B.20) simplify as follows. The integral over α in the term proportional to
|κB | can be performed by Taylor-expanding the logarithms and gives zero since the integrals are of the

form

∫ π

−π
dα einα = 0 for non-zero integers n. In the term proportional to ρB(π − α), we have performed

the variable change α→ π − α resulting in an additional minus sign in the argument of the logarithms.
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Substituting the various fermionic parameters with their bosonic counterparts in (B.19),
we get the following expression for the dual of the fermionic o�-shell free energy in terms
of two `�elds' cF and ζF :

F(cF , ζF ) =
NB

6π

[
− λB − sgn(λB)− sgn(X̃F )

λB
ĉ3
F +

3

2λB

(
4πζ̂F
κF

)
(ĉ2
F − m̂2

B)+

+
3b̂4

2λB

(
4πζ̂F
κF

)2

− (3xB6 + 4)

8λB

(
4πζ̂F
κF

)3

+

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉF

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.23)

unHiggsed phase: sgn(XF ) = −sgn(λB)

In this case F(cF , ζF ) in (B.23) simpli�es to

F(cF , ζF ) =
NB

6π

[
− ĉ3

F +
3

2λB

(
4πζ̂F
κF

)
(ĉ2
F − m̂2

B)+

+
3b̂4

2λB

(
4πζ̂F
κF

)2

− (3xB6 + 4)

8λB

(
4πζ̂F
κF

)3

+

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉF

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.24)

If we now perform the �eld rede�nitions

ĉF = ĉB ,
4πζ̂F
κF

= 2λBS̃ . (B.25)

we see that the fermionic o�-shell free energy reduces exactly to the regular boson o�-shell
free energy (B.14), establishing the duality of the CF and RB theories in their unHiggsed
phases. The matching of o�-shell free energies between the two theories automatically
guarantees the matching of gap equations, as the latter are obtained by extremizing the
o�-shell free energies w.r.t. their `�elds'.
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Higgsed phase: sgn(XF ) = sgn(λB)

In this case F(cF , ζF ) simpli�es to

F(cF , ζF ) =
NB

6π

[
− λB − 2sgn(λB)

λB
ĉ3
F +

3

2λB

(
4πζ̂F
κF

)
(ĉ2
F − m̂2

B)+

+
3b̂4

2λB

(
4πζ̂F
κF

)2

− (3xB6 + 4)

8λB

(
4πζ̂F
κF

)3

+

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉF

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.26)

If we now make the �eld rede�nitions

ĉF = ĉB ,
4πζ̂F
κF

= −2λBσ̂B , (B.27)

we �nd that (B.26) reduces to

FB(cB, σB) =
NB

6π

[
− λB − 2sgn(λB)

λB
ĉ3
B − 3σ̂B(ĉ2

F − m̂2
B) + 6b̂4λBσ̂

2
B + (3xB6 + 4)λ2

Bσ̂
3
B

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.28)

(B.28) may be regarded as the prediction of duality for the o�-shell free energy of the RB
theory in the Higgsed phase.

B.2 The tadpole from W boson loops

The exact all-orders propagator Gµν(q) in (3.44) is the saddle point value in the large NB

limit of a gauge-singlet �eld αµν(q) that appears in [54] as one of two gauge-singlet �elds
αµν and Σµν that describe the e�ective dynamics of the W boson:

Gµν(q) = − 1

λB
αµν(q) . (B.29)

The �rst term of the gap equation (3.45) is then given by the tadpole contribution

λBNBT (σB) =
λBNB

2π

∫ D3q

(2π)3
gµρG(q)ρµ = −NB

2π

∫ D3q

(2π)3
gµρα(q)ρµ . (B.30)
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For brevity, we work with the parameter m = λBσB in what follows. The �eld αµν(q) is
given in terms of four known functions F1, F2, F3 and F4 of w = 2q+q− and the all-loop
exact kernel Q(q) = G−1(q).

α++(q) =
λB

(2π)2detQ

1

q2
−

(
imF1 + (F3 + w

2
)2
)
,

α−+(q) =
λB

(2π)2detQ

(
(1− F4)(F3 + w

2
)− im(F2 + im− q3)

)
= α+−(−q) ,

α−−(q) =
λB

(2π)2detQ
q2
−(1− F4)2 ,

α−3(q) = − λB
(2π)2detQ

q−(1− F4)(F2 + im− q3) = α3−(−q) ,

α3+(q) = − λB
(2π)2detQ

1

q−

(
F1(1− F4) + (F2 + im− q3)(F3 + w

2
)
)

= α+3(−q) ,

α33(q) = − λB
(2π)2detQ

(
(F2 + im)2 − q2

3

)
. (B.31)

We give explicit expressions for the functions F1...4:

F2(w) = im(g(w)− 1) , F4(w) = 1− 1

g(w)
,

F3(w) = −w
2

+
1

g(w)

(
1

2
I(w)− m2

3
(g(w)3 − g(0)3)

)
,

F1(w) = img(w)

(
c2
B(g(w)− g(0))− m2

3
(g(w)3 − g(0)3) + wg(w)− I(w)

)
, (B.32)

where the functions g(w) and I(w) are given by

g(w) = 1 + λBξ(w) , I(w) =

∫ w

0

dz g(z) = w + λBIξ(w) , (B.33)

and the function ξ(w) in the de�nition of g(w) above is given by

ξ(w) =
1

2mβ

∫ π

−π
dα ρB(α)

[
log 2 sinh

(
β
2

√
w + c2

B + i
2
α

)
+ log 2 sinh

(
β
2

√
w + c2

B − i
2
α

)]
. (B.34)

We recognize the quantity S de�ned in (B.1) to be the value of βmξ(w) at w = 0:

S = βmξ(0) =
1

2

∫ π

−π
dα ρB(α)

[
log 2 sinh

(
ĉB+iα

2

)
+ log 2 sinh

(
ĉB−iα

2

) ]
. (B.35)
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In the above expressions, the constant cB is the pole mass of the W boson which occurs in
the determinant of the all-loop kernel Q(q) = G−1(q):

detQ(q) = − m

(2π)3
(q2 + c2

B) , (B.36)

and is given in terms of the parameter m and the function ξ(w) above by

c2
B = m2(1 + λBξ(0))2 or equivalently β2c2

B = ĉ2
B = (m̂+ λBS)2 . (B.37)

Substituting the expressions (B.31), (B.32) for αµν(q) in (B.30), we have

T (m) = − 1

2πλB

∫ D3q

(2π)3
(α+−(q) + α−+(q) + α33(q)) ,

=
1

m

∫ D3q

(2π)3

1

q2 + c2
B

( I(w)

g(w)2
+

4m2

3
g(w) +m2g(w)2 +

2m2

3

g(0)3

g(w)2
+ q2

3

)
,

=
1

m

∫ D3q

(2π)3

1

q2 + c2
B

(
L(w)− (w + c2

B)
)

+
1

m

∫ D3q

(2π)3
, (B.38)

where we have added and subtracted the term w+ c2
B inside the integrand to complete the

quantity q2
3 to q2 + c2

B. The quantity L(w) is given by

L(w) =
I(w)

g(w)2
+

4

3
m2g(w) +m2g(w)2 +

2

3
m2 g(0)3

g(w)2
. (B.39)

The discrete sum over q3 in the �rst term is given in terms of the function χ(w)

χ(w) = −(2π)3

m

∫ Dq3

2π

1

q2
3 + w + c2

B

= −(2π)3

mβ

∫ π

−π
dαρB(α)

∑
n∈Z

1

(2π n
β

+ α
β
)2 + w + c2

B

,

= −2π3

m

∫ π

−π
dαρB(α)

1√
w + c2

B

×

×
(

coth

(
β
2

√
w + c2

B + i
2
α

)
+ coth

(
β
2

√
w + c2

B − i
2
α

))
. (B.40)

The q3 sum in the last term in (B.38) is given by c0 ≡
∑

n 1 and is hence divergent.
We regularize the divergent sum using ζ-function regularization in which case we have
c0(reg.) = 1 + 2ζ(0) = 0. Thus, equation (B.38) becomes

T (m) = − 1

(2π)3

∫ ∞
0

dw

4π
χ(w)

(
L(w)− (w + c2

B)
)

= 2

∫ ∞
0

dw

4π
ξ′(w)(L(w)− (w + c2

B)) ,

(B.41)

where we have used χ(w) = −2(2π)3ξ′(w). Next, recall the expressions (B.33) and (B.37):

g(w) = 1 + λBξ(w) , I(w) =

∫ w

0

dzg(z) = w + λBIξ(w) , c2
B = m2(1 + λBξ(0))2 .

(B.42)
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Inserting (B.42) into (B.41) and Taylor-expanding L(w) − (w + c2
B) in all explicit factors

of λB (around λB = 0) we �nd

L(w)− (w + c2
B) =

I(w)

g(w)2
+

4

3
m2g(w) +m2g(w)2 +

2

3
m2 g(0)3

g(w)2
− (w +m2g(0)2) ,

=
∞∑
n=0

(−λB)nLn(w) , (B.43)

with

L0(w) = 2m2 , L1(w) = − (Iξ(w)− 2wξ(w))− 2m2ξ(w) ,

L2(w) =
(
−2Iξ(w)ξ(w) + 3wξ(w)2

)
+m2

(
3ξ(w)2 − 4ξ(w)ξ(0) + ξ(0)2

)
,

Ln(w) =
(
(n+ 1)wξ(w)n − nξ(w)n−1Iξ(w)

)
+

2m2

3

(
(n+ 1)ξ(w)n − (n− 2)ξ(w)n−3ξ(0)3 + 3(n− 1)ξ(w)n−2ξ(0)2 − 3n ξ(w)n−1ξ(0)

)
for n ≥ 3 .

(B.44)

The integral over w in (B.41) becomes

∞∑
n=0

(−λB)n
∫ ∞

0

dw

4π
ξ′(w)Ln(w) . (B.45)

The integral over the �rst two terms in the expressions for Ln≥1 in (B.44) can be
simpli�ed by writing this in a total derivative form

dw ξ′(w)
(
(n+ 1)ξ(w)nw − nξ(w)n−1Iξ(w)

)
= d(ξ(w)n+1w − ξ(w)nIξ(w)) (B.46)

In the dimensional regularization scheme used in our previous paper [54] we have ξ(∞) = 0.
Also, by de�nition we have Iξ(0) = 0. This implies that∫ ∞

0

dw ξ′(w)
(
(n+ 1)ξ(w)nw − nξ(w)n−1Iξ(w)

)
= 0 . (B.47)

The remaining terms in L are simple polynomials in ξ and the integrations can be easily
performed. Only L0 and L1 give non-zero contributions:∫ ∞

0

dw ξ′(w)L0(w) = −2m2ξ(0) ,

∫ ∞
0

dw ξ′(w)L1(w) = +m2ξ(0)2 . (B.48)

Substituting the above results into (B.41), we get

T (m) = −m
2

2π

(
2ξ(0) + λBξ(0)2

)
. (B.49)

Recalling the equation (B.37) for ĉB and m = λBσB, we have the �nal expression for the
tadpole contribution from the W boson propagator (B.30):

λBNBT (σB) = −NB

2π

(
c2
B − λ2

Bσ
2
B

)
. (B.50)
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B.3 The critical boson scaling limit

Recall that the RB theory reduces to the critical boson or CB theory in the scaling limit

m2
B →∞, λBb4 →∞,

m2
B

2λBb4

= mcri
B = fixed . (B.51)

In this subsection we study the reduction of the o�-shell free energy under this scaling
limit. The o�-shell free energy (3.52) simpli�es in the limit (B.51) as follows. The second
term in the second line of (3.52) reduces to

6λB b̂4σ̂B
(
m̂cri
B + σ̂B

)
= 6λB b̂4

[(
σ̂B +

m̂cri
B

2

)2

− (m̂cri
B )2

4

]
(B.52)

Note that con�ning potential (B.52) is in�nitely sti� in the CB scaling limit. It follows

that σ̂B is frozen at the minimum of (B.52) i.e. at σB = −m
cri
B

2
in the CB scaling limit. It

follows that in this limit (3.52) simpli�es to

F (cB, S̃) =
NB

6π

[
− ĉ3

B − 4S̃3λ2
B +

3

2
ĉ2
Bm̂

cri
B

+ 6S̃2λ2
Bm̂

cri
B − 3S̃λ2

B(m̂cri
B )2 + 6ĉB|λB|(S̃ − m̂cri

B

2
)2

+ 3

∫ π

−π
dαρB(α)

∫ ∞
ĉB

dy y
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.53)

(we have omitted a divergent constant proportional to b4 that can be cancelled by a cos-

mological constant counterterm.) Extremizing (B.53) w.r.t. S̃ we recover the �rst of the
gap equations in (3.53) under the replacement

σB → −
mcri
B

2
.

The two inequivalent solutions of this equation are (3.54) and (3.55) under the same re-
placement for σB. These solutions correspond to the unHiggsed and Higgsed branches
respectively.

On the Higgsed branch we can plug the solution of (3.55) back into (B.53) to �nd a free
energy as a function of the single o�-shell variable cB; the �nal result of this exercise is given
by the critical boson free energy given in (3.33)5. In a similar manner, on the unHiggsed

5This procedure automatically produces a particular choice of the cosmological constant counterterm. It
would be interesting to investigate if this particular value has physical signi�cance.
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branch we can plug the solution of (3.54) into (B.53) to �nd o�-shell free energy as a
function of cB, given by

FCB(cB) =
NB

6π

[
− ĉ3

B +
3

2
m̂cri
B ĉ

2
B −

λ2
B(m̂cri

B )3

2

+ 3

∫ π

−π
ρ(α)dα

∫ ∞
ĉB

dyy
(
log
(
1− e−y−iα

)
+ log

(
1− e−y+iα

)) ]
.

(B.54)
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Appendix C

Appendices for Chapter 3

C.1 Four derivatives on four F structures

We show that all possible Lagrangian structures built out of four derivatives and four
�eld strengths, are essentially descendants of structures that can be constructed out of two
derivatives on four Fabs.For convenience, we will work in momentum space with appropriate
particle labels.

T 4
1 = k3

αF
1
αak

3
βF

2
βak

1
γF

3
γbk

1
δF

4
δb

= −k3
αF

1
γαk

3
βF

2
βak

1
aF

3
γbk

1
δF

4
δb − k3

αF
1
aγk

3
βF

2
βak

1
αF

3
γbk

1
δF

4
δb

= −k3
αF

1
γαk

3
βF

2
βak

1
aF

3
γbk

1
δF

4
δb + Idesc

= k3
γF

1
γαk

3
βF

2
βak

1
aF

3
bαk

1
δF

4
δb + k3

bF
1
γαk

3
βF

2
βak

1
aF

3
αγk

1
δF

4
δb + Idesc

= k3
αF

1
γαk

3
βF

2
βak

1
aF

3
γbk

1
δF

4
δb + k3

bF
1
γαk

3
βF

2
βak

1
aF

3
αγk

1
δF

4
δb + Idesc

= k3
αF

1
γαk

3
βF

2
βak

1
aF

3
γbk

1
δF

4
δb − k2

bF
1
γαk

3
βF

2
βak

1
aF

3
αγk

1
δF

4
δb + Idesc

∴ T 4
1 ∼ −k2

bF
1
γαk

3
βF

2
βak

1
aF

3
αγk

1
δF

4
δb + Idesc ∼ Ĩdesc

(C.1)

In deriving this we have used Bianchi identity between the �rst k1 and F 1 in the second line.
In the fourth line we use Bianchi identity between �rst k3 and F 3. The structure in the sixth
line is due to momentum conservation and antisymmetry of Fab. In the �nal step, to go
from Idesc to Ĩdesc, we have used Bianchi identity between k2 and F 2. Similar manipulations
can be used to prove that all of the T 4

i s are descendants of the lower structures and do not
constitute independent lagrangian terms.

C.2 Two derivatives on four F structures

We classify all the possible independent lagrangian structures that can be constructed out
of two derivatives acting on four �eld strengths. Essentially we show that out of all the
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structures listed in (4.39), only one is independent. We show some of the manipulations
in the hope that it is clear to the reader that rest follow from similar manipulations. Of
the possible T 2

i s, we show that each one of them can be related to T 2
10.

T 2
1 = k2

aF
1
βak

1
bF

2
αbF

3
θαF

4
θβ

≡ k1
aF

2
βak

2
bF

1
αbF

3
θαF

4
θβ

= k2
bF

1
αbk

1
aF

2
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3
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4
θβ

= T 2
3
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aF

1
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βF

2
αbF
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θβF

4
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aF
1
bβk

1
aF

2
αbF

3
θβF

4
θα

= −k2
aF

1
bak

1
βF

3
θβF

2
bαF

4
θα +O

(
desc(TrF 4)

)
= −k2

aF
1
bak

1
βF

3
θβF

2
bαF

4
θα +O

(
desc(TrF 4)

)
= k2

bF
1
bak

1
βF

3
θβF

2
αaF

4
θα + k2

αF
1
bak

1
βF

3
θβF

2
abF

4
θα +O

(
desc(TrF 4)

)
= k2

aF
1
abk

1
βF

3
θβF

2
αbF

4
θα + k2

αF
4
θαk

1
βF

3
θβF

1
baF

2
ab +O

(
desc(TrF 4)

)
= k2

aF
1
abk

1
βF

3
θβF

2
αbF

4
θα + T 2

10 +O
(
desc(TrF 4)

)
∴ T 2

1 = T 2
3 ∼ T 2

10 +O
(
desc(TrF 4)

)
(C.2)

The steps in the manipulation are as follows. In the second line we relabel (1 ↔
2) to establish the fact that T 2

1 ∼ T 2
3 in momentum space. In the �fth line, we use

Bianchi identity corresponding to particle 1. In the eighth line we use Bianchi identity
corresponding to particle 2. Equating the seventh and tenth line we obtain the �nal
identity. Hence we have the lagrangian term T 2

1 is identical to T 2
10 upto descendants of four

photon Lagrangians of derivative order 4. Let us look at a second example

T 2
6 = k2

aF
1
βak

3
bF

2
αbF

3
θβF

4
θα

= −k2
αF

1
βak

3
bF

2
baF

3
θβF

4
θα +O

(
desc(TrF 4)

)
= −k2

αF
1
θαk

3
bF

2
baF

4
βaF

3
θβ +O

(
desc(TrF 4)

)
= −k2

αF
1
θαk

3
bF

2
abF

3
βθF

4
βa +O

(
desc(TrF 4)

)
∴ T 2

6 ∼ O
(
desc(TrF 4)

)
(C.3)

where we have used Bianchi identity corresponding to the second particle and relabelling
of (1 ↔ 4). In this way all the lagrangian structures can be represented in terms of T 2

10

and descendants of TrF 4 and (TrF 2)2.

C.3 Derivatives on two Riemann tensors

We look at possible two and four derivative contractions on two Riemann tensors and
systematically reduce them to higher Riemann polynomials and Ricci tensor polynomials
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1

S =

∫ √
g∇µRabcd∇µRacbd

=

∫ √
g (−∇aRbµcd −∇bRµacd)∇µRacbd

=

∫ √
g∇µ (−∇aRbµcd −∇bRµacd)R

acbd + C∂M

=

∫ √
g (−∇a∇µRbµcd −∇b∇µRµacd)R

acbd + C∂M + C̃R3

= ĈRµν + C∂M + C̃R3

(C.4)

2

S =

∫
∇aRbcfe∇bRacfe

= −
∫ (
∇b∇aRbcfe

)
Racfe + C∂M

= ĈRµν + C∂M + C̃R3

(C.5)

3

S =

∫ √
g∇µ∇νRabcd∇µ∇νRacbd

=

∫ √
g∇ν∇µ∇µRabcdR

acbd + C∂M

=

∫ √
g∇ν∇µ∇µ (−∇aRbνcd −∇bRνacd)R

acbd + C∂M

= ĈRµν + C∂M + C̃∇R∇RR

(C.6)

4

S =

∫ √
g∇a∇bRecfd∇e∇fRacbd

=

∫ √
g∇e∇f∇a∇bRecfdR

acbd + C∂M

= ĈRµν + C∂M + C̃∇R∇RR

(C.7)

Similar manipulations can be used to get rid of all higher order derivatives at the two
Riemann tensor level.
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C.4 Derivatives on three Riemann tensors

We look at the possible scalar polynomials constructed out of two derivatives and three
Riemann tensors

1 ∫ √
gRpqrsR tuv

p ∇v∇sRqtru =

∫ √
gRpqrsR tuv

p ∇v(−∇rRqtus −∇uRqtsr)

= −
∫ √

gRpqsrR tuv
p ∇v∇rRqtsu + C ′R4

∴
∫ √

gRpqrsR tuv
p ∇v∇sRqtru ∼ 1

2
C ′R4 (C.8)

2 ∫ √
gRpqrs∇rR

tuv
p∇sRtuvq = −

∫ √
gRpqrs∇s∇rR

tuv
pRtuvq + C∂M

∼ C ′R4 + C∂M

(C.9)

3 ∫ √
gRpqrs∇vRt up r∇vRtqus = −

∫ √
g(∇vRpqrsRt up r∇vRtqus +RpqrsRt up r∇v∇vRtqus) + C∂M∫ √

gRpqrs∇vRt up r∇vRtqus =
−1

2

∫ √
gRpqrsRt up r∇v∇vRtqus + C∂M

∼ ĈRµν + C ′R4 + C∂M

(C.10)

4 ∫ √
gRpqrs∇qRtuvp∇sR

tuv
r = −

∫ √
gRpqrs(∇vRtupq +∇pRtuqv)∇sR

tuv
r∫ √

gRpqrs∇qRtuvp∇sR
tuv

r =
−1

2

∫ √
gRpqrs∇vRtupq∇sR

tuv
r

=
−1

2

∫ √
gRpqrs∇vRtupq(−∇vRtu

rs −∇rR
tu v
s )∫ √

gRpqrs∇qRtuvp∇sR
tuv

r =
1

4

∫ √
gRpqrs∇vRtupq∇vRtu

rs

∼ ĈRµν + C ′R4 (C.11)
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C.5 Counting Index Structures

C.5.1 3 point functions

Vectors (gauge �elds)

According to the analysis presented in Section 4.2, the distinct 3 point functions of 3 vectors
in a d dimensional CFT are in one to one correspondence with the permutation invariant
SO(d− 1) singlets one can form out of 3 SO(d− 1) vectors 1

Consider the 3 × (d − 1) dimensional vector space spanned by the indices of these 3
vectors. According to a classic theorem, this 3 (d−1) dimensional vector space decomposes
into representations of U(d− 1)× S3 as∑

Y

UY PY

where Y are Young Tableaux with 3 boxes, the sum over Y runs over all these Tableaux, UY
is the U(d−1) representation with the Young Tableaux Y , and PY is the S3 representation
with the same Young Tableaux.

As there are no nontrivial cross ratios for 3 particles, the only way for a 3 point function
to be invariant under S3 is for the index structure itself to be invariant under S3 (see
below for the contrast with 4 point functions). Consequently we are forced to restrict our
attention to the completely symmetric representation of U(d−1). This single representation
decomposes into the vector and the traceless symmetric 3 tensor of SO(d − 1). As there
are no singlets in this decomposition, it follows that there are no structures for the 3 point
functions of 3 vectors.

Traceless symmetric 2 tensors (gravitons)

A traceless symmetric tensor in d dimensions has d(d+ 1)/2− 1 components. Subtracting
the d components (due to conservation) leave us with r = d(d − 1)/2 − 1 components of
- presumably - a traceless symmetric tensor of SO(d − 1). As above the 3r dimensional
vector space decomposes into ∑

Y

UY PY

where Y are Young Tableaux with 3 boxes, the sum over Y runs over all these Tableaux,
UY is the U(r) representation with the Young Tableaux Y , and PY is the S3 representation
with the same Young Tableaux. As above we are only interested in Young Tableaux Y
corresponding to the 3 box completely symmetric representation. We appear to be left
with a 6 index SO(d − 1) tensor with indices split into 3 groups of 2. The indices are
traceless and symmetric in each pair, and we have complete symmetry under interchange

1We deal with SO(d− 1) singlets rather than SO(d− 2) singlets, as in the next subsection, as any three
operators can be put in a straight line using conformal transformations, and SO(d− 1) is the part of the
rotation group that leaves a line in d dimensions invariant.
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of pairs. We should be counting the inequivalent SO(d − 1) singlets in such a tensor. As
far as I can tell there is exactly one way of creating such a singlet - by contracting indices
in a chain, i.e. a contraction of the form

(a, b) (b, c) (c, a)

This is not the expected answer of 3 inequivalent 3 point functions for the stress tensor.
What am i doing wrong?

C.5.2 Four Point Functions

Consider the symmetric group S4. Consider the Z2 × Z2 subgroup of S4 generated by the
two elements A = P12P34 and B = P13P24 where Pab is the permutation of the elements a
and b. The four elements of this group are

I, A = P12P34, B = P13P24, AB = BA = P14P23

In other words the nontrivial elements of this subgroup are obtained by double pairing 1,
2, 3, 4 in each of the 3 possible ways and by permuting in pairs.

Note that this Z2 × Z2 subgroup leaves two conformal cross ratios

u =
r12r34

r13r24

, v =
r14r23

r13r24

invariant. 2 If a correlator has to be invariant under S4, Z2 × Z2 has to leave its index
structure invariant.

Now consider the action of the symmetric group S4 on `states' that are annihilated by
Z2 × Z2. This is equivalent to studying S4 modded out by Z2 × Z2 from the right. 3 It is
not di�cult to convince oneself that under this equivalence rule, every element of S4 can
be put in the form (1, a, b, c) where (a, b, c) represent any any permutation of the numbers

of 2, 3, 4. It follows, in other words, that
S4

Z2 × Z2

= S3.

Representations R of S4 are labelled by Young Tableaux with 4 boxes. The Rth rep-
resentation acts on a vector space VR. Let us denote the Z2 × Z2 invariant subspace of
VR by ṼR. The states in ṼR transform in representations of some representation R̃ of

S4

Z2 × Z2

= S3. As R̃ is a representation of S3 it is speci�ed by a (sum of) Young Tableaux

with 3 boxes.
S4 has 5 irreducible representations. These representations fall into 2 classes. In the

�rst class we have 3 representations; the one dimensional representation with four boxes
in the �rst row, the one dimensional representation with four boxes in the �rst column
and the 2 dimensional representation with two boxes respectively in each of the �rst and

2In the context of scattering, the same subgroup leaves s, t and u unchanged.
3We use the following labelling of elements of S4; (2314), for instance, denotes the permutation that takes
1 to 2, 2 to 3, 3 to 1 and 4 to 4.
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second rows (this also means that the Young Tableaux has two boxes in each column).
In the second class we have two 3 dimensional representations - the �rst is labelled by a
Tableaux that contain three boxes in the �rst row and one in the second, and the second
representation is labelled by a Tableaux that contains 3 boxes in the �rst column and one
box in the second column.

The two classes of representations in the previous paragraph di�er in the following way.
Representations in class 2 have no states that are left invariant by any of the nontrivial
elements of Z2×Z2. The reason for this is intuitively clear from the nature of the Tableaux
for these representations; that any double paring of boxes in these Tableaux has one pair
`symmetric' but the other pair `antisymmetric'. On the other hand every state in the
representations that occur in the �rst class is left invariant by every element of Z2 × Z2.
Intuitively, this is because every double pairing of boxes in such Tableaux is such that the
paired elements are both symmetric or both antisymmetric. It follows that every state in
each of the representations in class 1 is automatically invariant under Z2 × Z2.

Focusing on representations of class 1, is not too di�cult to convince oneself that the
one dimensional representation of S4 with 4 boxes descends to the one dimensional repre-
sentation with 3 boxes in a single row of S3. Similarly the one dimensional representation
of S4 with four boxes in a single column descends to the one dimensional representation of
S3 with 3 boxes in a single column. Finally the 2 dimensional representation (two boxes in
the �rst and second row) of S4 descends to the two dimensional representation of S3 that
is labelled by a Tableaux with two boxes in the �rst row and one box in the second row.

Vectors (gauge �elds)

In this case the state space above is given by the three class one representations of U(d−1).
Lets �rst consider the completely symmetric tableaux. This gives us a completely sym-
metric - but not traceless tensor. This decomposes into 3 SO(d − 1) representations:
(symmetric and traceless ) 4 tensors, 2 tensors and the singlet. Each of these representa-
tions has a single SO(d-2) singlet (obtained by setting all indices in the SO(d1) singlet to
d− 1). So we have 3 SO(d− 1) singlets from this representation, each of which transform
in the 1 dimensional (completely symmetric) representation of S3.

Now let us turn to the U(d− 1) representation with two boxes in each of the �rst two
rows of the Young Tableaux. In this case the symmetries of the tensor in question are
precisely those of the Riemann tensor. In terms of SO(d− 1) we have the representations
with h1 = 2, h2 = 2, h1 = 2, h2 = 0, and the singlet. The �rst of these representations has
no SO(d − 2) singlets. The second and third of these each have exactly one SO(d − 2)
singlets. It follows that from this representation we get 2 SO(d−2) singlets, each of which
transform in the 2 dimensional representation of S3 with two boxes in the �rst row and
one in the second row. In summary we get a total of 4 singlets from this representation.

Finally, the representation with a single columns of four boxes is a single SO(d − 1)
representation (the completely antisymmetric 4 index tensor).
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C.6 Functions of s t and u as representations of S3

In this section we study polynomials of s, t and u graded by their degree. We will be
particularly interested in decomposing the space of such functions into distinct representa-
tions of the permutation group S3 which permutes the three variables. We will perform our
study both for unconstrained functions of s, t and u, as well as for `constrained' functions,
i.e. functions that are regarded as identical if they agree when s + t + u = 0. We start
with a brief discussion of the permutation group S3 and its representations.

C.6.1 S3 and its irreducible representations

Let us �rst recall that the group S3 has six elements. An element of the permutation group
is said to be odd or even depending on whether it is built out of an odd or even number
of permutations. We label an element of S3 by the result of the action of that element on
(1, 2, 3), Thus (1, 2, 3), the identity element I is even. The other two even elements are
the cyclical permutations C = (2, 3, 1) and C−1 = (3, 1, 2). The set of even elements of S3

form the abelian subgroup Z3. The odd elements of this group are the three permutations
P12 = (2, 1, 3), P13 = (3, 2, 1) and P23 = (1, 3, 2).

If we think of 1, 2 and 3 as basis elements of a three dimensional vector space then the
action above yields a representation of S3 in terms of 3× 3 matrices. The representation is
clearly reducible: all permutation elements act as identity on the basis vector (1 + 2 + 3).
This one dimensional representation is the completely symmetrical representation of S3;
this is the representation labelled by three boxes in the �rst row of the Young Tableaux.

On the other hand the two dimensional set of vectors with 1 + 2 + 3 = 0 mix only
among themselves under the permutation group, and so transform under a 2 dimensional
representation of this group. A convenient basis for this space is found by diagonalizing
C. Let

B1 = e−
2πi
3 |1〉+ |2〉+ e

2πi
3 |3〉, B2 = e

2πi
3 |1〉+ |2〉+ e−

2πi
3 |3〉 (C.12)

Then

C

(
B1

B2

)
=

(
e−

2πi
3 0

0 e
2πi
3

)(
B1

B2

)
(C.13)

The action of the permutations on the same basis is given by

P12

(
B1

B2

)
=

(
0 e−

2πi
3

e
2πi
3 0

)(
B1

B2

)

P13

(
B1

B2

)
=

(
0 e

2πi
3

e
−2πi

3 0

)(
B1

B2

)
P23

(
B1

B2

)
=

(
0 1
1 0

)(
B1

B2

)
(C.14)

Note that the phases that appear in the top right corner of the three matrices (C.14) are,

respectively, e−
2πi
3 , 1 and e

2πi
3 . Of course the rede�nition B1 → αB1 changes each of these
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phases by α. It follows that while the actual value of each phase is convention dependent,
the ratios of the phases are physical (convention independent). We will encounter this fact
below.

The equations (C.13) and (C.14) give a complete characterization of this two dimen-
sional irreducible representation of S3 (this is the representation labelled by the Young
Tableaux with two boxes in its �rst row and one in its second row, or equivalently two
boxes in the �rst column and one in the second column). From the fact that P 2

ij = 1 it
follows that the eigenvalues of the operator Pij = ±1 in every representation of S3. In this
particular 2 dimensional representation it is easily veri�ed that the two eigenvalues of Pij
are plus one and minus one for every choice of i and j.

Though it does not show up in the decomposition described above, there is a third irre-
ducible representation of S3. This is the completely antisymmetric representation labelled
by a Young tableaux with three boxes in the �rst column. In this one dimensional rep-
resentation, every even element of the permutation element acts as unity (identity) while
every odd element as −1 (negative identity).

C.6.2 Left action of S3 on itself

Now consider the left action of S3 on itself. This clearly generates a 6 dimensional reducible
representation of the permutation group. Similarly the basis vector

(123) + (231) + (312) + (213) + (321) + (132)

I + S + S−1 + P12 + P13 + P23

(C.15)

transforms in the one dimensional symmetric representation. Similarly the basis vector

(123) + (231) + (312)− (213)− (321)− (132)

I + S + S−1 − P12 − P13 − P23

(C.16)

transforms in the one dimensional antisymmetric representation. What remains is the four
dimensional vector space of elements

A(123) +B(231) + C(312) + p(213) + q(132) + r(321)

with A + B + C = 0 and p + q + r = 0. It is not di�cult to decompose this four
dimensional vector space into a direct sum of two copies of the two dimensional irreducible
representation de�ned in the previous subsection. De�ne

b1 = e−
2πi
3 (123) + (231) + e

2πi
3 (312)

b2 = e
2πi
3 (123) + (231) + e−

2πi
3 (312)

β1 = e−
2πi
3 (213) + (132) + e

2πi
3 (321)

β2 = e
2πi
3 (213) + (132) + e−

2πi
3 (321)

(C.17)
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With this de�nition it is easy to see that b1 and β1 are eigenstates of C with eigenvalue

e−
2πi
3 while b2 and β2 are eigenstates of C with eigenvalue e

2πi
3 . Moreover

P12

(
b1

b2

)
=

(
0 e

2πi
3

e−
2πi
3 0

)(
β1

β2

)
, P12

(
β1

β2

)
=

(
0 e

2πi
3

e−
2πi
3 0

)(
b1

b2

)
P13

(
b1

b2

)
=

(
0 1
1 0

)(
β1

β2

)
, P13

(
β1

β2

)
=

(
0 1
1 0

)(
b1

b2

)
P23

(
b1

b2

)
=

(
0 e−

2πi
3

e
2πi
3 0

)(
β1

β2

)
, P23

(
β1

β2

)
=

(
0 e−

2πi
3

e
2πi
3 0

)(
b1

b2

)
(C.18)

from which it immediately follows that the vectors (b1 + β1), (b2 + β2) transform in one
irreducible 2 dimensional representation of S3, while the vectors (b1−β1), (b2−β2) transform
in a second copy of the same representation 4

C.6.3 Functions of 3 variables and the permutation group.

Consider a function of three variables s, t and u. Let the permutation group S3 act on
these three variables. Given any particular function f(s, t, u), the action of the permutation
group generates upto 5 new functions.

If the original function was invariant under a subgroup of the permutation group then
we would obtain fewer than 5 new functions. Let us �rst suppose that this is not the case.
In this case the six dimensional linear vector space of the obtained functions transforms
in a six dimensional representation of S3. Infact the representation we �nd is identical to
that of the previous subsection (representation of S3 by left action on itself). So we obtain
one copy of the symmetric representation, one copy of the antisymmetric representation
and two copies of the two dimensional representation.

Consider a general function f(s, t, u). Given any such function it is easy to break it up
into a part that is completely symmetric, a part that is completely antisymmetric and a
part that lies somewhere in the (generically 4 dimensional) representation vector space of

4In the basis that we have arbitrarily adopted, the phases in the to right corner of the 2× 2 matrices that

represent P12, P13 an P23 respectively are e
2πi
3 , 1 and e−

2πi
3 in the �rst representation (plus sign) , while

the same phases are −e 2πi
3 , −1 and −e− 2πi

3 in the second representation. In neither case are these the
same phases that appear in (C.14), but in both cases the ratio of phases is the same as in (C.14). This
is enough to ensure that both choices transform in the representation (C.14), see the discussion under
(C.14).
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the two dimensional representations. We have

f(s, t, u) = f sym(s, t, u) + fas(s, t, u) + fmixed(s, t, u)

f sym(s, t, u) = P symf =
f(s, t, u) + f(t, u, s) + f(u, s, t) + f(t, s, u) + f(u, t, s) + f(s, u, t)

6

fas(s, t, u) = P asf =
f(s, t, u) + f(t, u, s) + f(u, s, t)− f(t, s, u)− f(u, t, s)− f(s, u, t)

6

fmixed(s, t, u) = Pmixedf =
2f(s, t, u)− f(t, u, s)− f(u, s, t)

3
(C.19)

It is easy to verify that P sym, P as and Pmixed all square to themselves and so are projectors.
Moreover they project onto orthogonal subspaces, so that the product of two non equal
projectors vanishes. Finally, these projectors commute with the action of the permutation
group. The last equation in (C.19) asserts that the polynomials that transform in the mixed
representations vanish under Z3 symmetrization as well as under complete symmetrization
(these two facts imply these functions also vanish under complete antisymmetrization).

C.6.4 Counting S3 representations in polynomials

Let us consider the partition function

Z̃no−sym =
∑
m

d̃ns(m)xm (C.20)

where d̃ns(m) is the number of polynomials of s, t u of degree m. Clearly Z̃no−sym is the
product of a partition function for s, a partition function for t and a partition function for

u. Each of these partition functions is
1

1− x and so we �nd

Z̃no−sym =
1

(1− x)3
(C.21)

from which it follows that

d̃ns(m) =
(m+ 2)(m+ 1)

2
(C.22)

The correctness of (C.22) (note the RHS of this equation is the number of ways of arranging
m circles and two crosses on a line) can also be veri�ed directly by simple combinatorial
counting.

Now the set of polynomials of any given degree - counted by (C.21) - transform in a
representation of the symmetric group S3. The representation in question can be decom-
posed into the three irreducible representations of S3 that we have discussed above - the
completely symmetric, completely antisymmetric and 2 dimensional. We would like to
�nd separate partition functions for polynomials in the completely symmetric, completely
antisymmetric and mixed representations of S3.
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The partition function for completely symmetric polynomials of 3 variables is the same
as the partition functions for 3 identical bosons in a harmonic oscillator potential (with
zero point energy ignored). Using the formulas for Bose exponentiation, it is given by the
power of p3 in the expression

exp

[
p

1− x +
p2

2(1− x2)
+

p3

3(1− x3)

]
and so is given by

Z̃sym(x) =
1

3(1− x3)
+

1

6(1− x)3
+

1

2(1− x)(1− x2)
=

1

(1− x)(1− x2(1− x3)
(C.23)

The partition function for completely antisymmetric polynomials of 3 variables is the same
as the partition functions for 3 identical fermions a harmonic oscillator potential (with zero
point energy ignored). Using the formulas for Bose exponentiation, it is given by the power
of p3 in the expression

exp

[
p

1− x −
p2

2(1− x2)
+

p3

3(1− x3)

]
and so is given by

Z̃as(x) =
1

3(1− x3)
+

1

6(1− x)3
− 1

2(1− x)(1− x2)
=

x3

(1− x)(1− x2)(1− x3)
(C.24)

The partition function for polynomials that transform in the nontrivial two dimensional
representations is given by (C.21)-(C.23) -(C.24) and is given

Z̃mixed =
2x

(1− x)2(1− x3)
(C.25)

(we emphasized that Z̃mixed is the partition function for polynomials in the two dimensional
representation and not for the representations themselves; as each representation has two
polynomials, the partition function that counts the number of mixed representations is
half of (C.27). As a satisfying consistency check, note that even the partition function for
representations clearly has an expansion in positive integers).

Note of course that - by construction

Z̃no−sym(x) = Z̃sym(x) + Z̃as(x) + Z̃mixed(x) (C.26)

As an application of these ideas, let us compute the partition function over those
polynomials that happen to be symmetric under an interchange of s and t, but are otherwise
unconstrained. This is the same as counting the partition function over all polynomials
that have eigenvalue unity under the permutation P12. We know that this is true of every
polynomial in a symmetric representation and exactly half of the polynomials in the two
dimensional representations (because P12 has eigenvalues ±1 in such representations. It
follows that

Z̃Z2−sym =
x

(1− x)2(1− x3)
+

1

3(1− x3)
+

1

6(1− x)3
+

1

2(1− x)(1− x2)
=

1 + x

(1− x2)2(1− x)
(C.27)
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C.6.5 Counting Polynomials with s+ t+ u = 0

When dealing with S matrices, we are not interested in all all polynomials of s, t and
u, merely those that are nonzero when s + u + t = 0. As this condition - namely that
s+ t+ u = 0 - is S3 invariant, the resultant polynomials still transform in representations
of S3, even though they are e�ectively functions of only two variables. We denote the
partition functions over polynomials with s+ t+ u = 0 that transform in representation r
as Zr(x) (note that Zr (note the lack of the tilde on Z). The relationship between Zr and

Z̃r is very simple. For every representation r

Z̃r = Zr ×
1

1− x (C.28)

The equation (C.28) expresses the fact that if we have a polynomial that transforms in
the representation r and also are nonvanishing when s + t + u = 0 we can �nd another
polynomial that also transforms in the representation r - but this time vanishes when
s+ t+ u = 0 - by multiplying the �rst polynomial with (s+ t+ u)m for any possible value

of m (the factor of
1

1− x in (C.28) is the partition function for polynomials in (s+ t+u).).

5

It follows immediately that

Zno−sym =
1

(1− x)2
=

∞∑
m=0

(m+ 1)xm

Zsym =
1

(1− x2)(1− x3)
= 1 + x2 + x3 + x4 + x5 + 2x6 + x7 + 2x8 + 2x9 + 2x10 . . .

Zas =
x3

(1− x2)(1− x3)
= x3

(
1 + x2 + x3 + x4 + x5 + 2x6 + x7 + 2x8 + 2x9 + 2x10 . . .

)
Zmixed =

2x

(1− x)(1− x3)

ZZ2−sym ==
1 + x

(1− x2)2
=

∞∑
m=0

([m
2

]
+ 1
)
xm

(C.29)

As a check, it is a simple matter to directly count the number of polynomials with
s+ t+ u = 0 that are symmetric under an s and t interchange. Using u = −s− t we can
write all such polynomials as symmetric polynomials in the 2 variables s and t. It is clear

that the number of such polynomials of degree m is given by [
m

2
] + 1 in agreement with

the last of (C.29). Of course the �rst of (C.29) is also obviously true.

5One way to think of this is to use s, t, and s+t+u as our variables in the original full space of polynomials
and to note that - as s+ t+ u is permutation invariant - the transformation properties of the polynomial
lie entirely in its s and t dependence.
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For each r we perform the expansion

Zr(x) =
∞∑
m=0

dr(m)xm (C.30)

At large m we have

dno−sym(m) = m+ 1

dsym(m) ∼ m+ 1

6

das(m) =∼ m+ 1

6

dmixed(m) =
2(m+ 1)

3

ZZ2−sym ==
m+ 1

2
=

(C.31)

When we need to count degrees of freedom, we will assign one unit of `degrees of

freedom' to functions whose number grows like
m+ 1

6
at large m. With this counting

a symmetry-less polynomial of s, t u has six degrees of freedom. Completely symmet-
ric/antisymmetric polynomials have one degree of freedom. The set of all mixed polyno-
mials have 4 degrees of freedom. The set of mixed polynomials that are also Z2 symmetric
have 2 degrees of freedom. The set of all Z2 invariant polynomials have 3 degrees of
freedom.

C.6.6 Examples at low orders

There is only one polynomial of degree zero; it transforms in the symmetric representation.
At degree 1 we have two polynomials which can be taken to be 2s − t − u = 3s and
2t − s − u = 3t. Note that these polynomials all vanish upon complete symmetrization.
Moreover they are each annihilated by a Z2 permutation symmetry. They are mapped
to each other under permutation and consequently transform in the mixed representation.
Note also that exactly one of these expressions is symmetric under the interchange of, say,
s and t while the other one can be chosen to be antisymmetric under the same exchange
(s+ t) and s− t are the two choices here).

At degree 2 we have three polynomials which can be taken to be (s2 + t2 + u2), and
(s2 + t2−2u2) and t2 +u2−2s2). The �rst of these is in the symmetric representation. The
next two transform in the mixed representation. A convenient basis for these two elements
is s2 + t2 − 2u2 and s2 − t2. Clearly the �rst element is symmetric under the interchange
of s and t, while the second element is antisymmetric under the same interchange.

At degree three we have four polynomials. These can be taken to be s3 + t3 + u3,
s2t−t2s−s2u+u2−u2t−t2u, s3+t3−2u3, and s3+u3−2t3. The �rst of these expressions is
completely symmetric. The second is completely antisymmetric. The remaining two belong
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to the mixed representation. Once again we can choose a basis in this set of elements that
is symmetric and antisymmetric under interchange of s and t (the symmetric expression is
s3 + t3 − 2u3, whereas the antisymmetric expression is s3 − t3)
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