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ABSTRACT

In recent times, the effects of spin-orbit coupling (SOC) in strongly correlated electron
systems has been one of the most actively studied subjects in Condensed Matter Physics,
as correlations and SOC together play a crucial role in understanding many new and exotic
quantum states of matter. For strongly spin-orbit coupled materials, the weak-to-intermediate
correlation regime corresponds to situations where band theory is applicable, and the lifting
of degeneracies leads to a nontrivial band topology, such as in topological insulators and
semimetals. On the other hand, in the limit of strong electronic correlations, a Mott-like gap
opens in the narrow total angular momentum bands, giving rise to the so-called ‘spin-orbit
assisted Mott insulators’. Such systems often feature multiple Fermi pockets at non-high
symmetry points, which opens up the possibility of realizing, for instance, long-range ordered
phases with valley-symmetry breaking. In this thesis, we attempt to understand the behavior
of some representative systems, which correspond to the regime of strong spin-orbit coupling,
accompanied by both weak and strong electronic correlations. The thesis consists of three
parts. In the first part, we study electronic phase competition on the (001) surface of the
topological crystalline insulator Pb1−xSnxTe, in the presence of Fermi surface nesting and
two-dimensional Van Hove singularities, and identify chiral p−wave superconductivity to be
the dominant electronic order. We further study the effect of an external magnetization on the
chiral p−wave order and find that multiorbital effects play an important role in stabilizing
electronic order on the surface. Finally, as a possible way of detecting the chiral p−wave
order, we study impurity-induced subgap bound states in this system and find that only in
certain parameter regimes of doping, the impurity bound states provide an unambiguous
signature of this order, and otherwise they are indistinguishable from impurity states in, say, a
semiconductor. In the second part of the thesis, we combine large-scale exact diagonalization
simulations of the torque response for various effective spin models studied in the literature,
with high-field torque magnetometry measurements, for probing the underlying interactions
in the Mott-insulating honeycomb iridate Na2IrO3, which is a popular Kitaev material. Our
results indicate the presence of strong ferromagnetic Kitaev correlations in this material,
and the possibility of realizing field-induced spin liquid physics beyond the position of a



characteristic peak-dip feature in the torque response, close to the magnetic ordering scale.
In the third part of the thesis, we study competing phases in a system of three coupled
spinless Luttinger liquids using a renormalization group (RG) treatment of the bosonized
interactions. Such an analysis is applicable for strongly spin-orbit coupled systems with
multiple small Fermi pockets, such as bismuth, in the presence of a large applied magnetic
field, where the behavior is essentially one-dimensional. We find that even at the one-loop
level in perturbative RG, off-diagonal contributions are generated in the phase stiffness
matrix, which require large nontrivial rotations of the matrix, along with a rescaling of the
fields. As a consequence of the rotations involved in the RG procedure, the nature of the
electronic phases and critical behavior of this system are in general sensitive to the relative
strengths of the interactions as well as the Luttinger liquid parameters. Our results also
indicate that it may be possible to realize chiral phases as well as valley symmetry breaking
in certain parameter regimes in such systems.
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Chapter 1

Introduction

Understanding, controlling and predicting the emergent behavior of strongly correlated
electron systems is one of the most pressing challenges in Condensed Matter Physics today
[1, 2]. In such systems, large ensembles of individual constituents give rise to highly complex
and fascinating collective phenomena. Owing to the strong correlations between the particles,
such collective states cannot be understood in terms of the single-particle approximation,
and require the development of more sophisticated approaches. Examples of remarkable
phenomena arising from electron-electron interactions include local moment formation and
magnetism [3, 4], spin liquid states [5, 6], correlated metals [7, 8], quantum criticality [9, 10],
and unconventional superconductivity [11, 12]. Over time, these are expected to give way
to possible practical applications, such as in superconducting magnets [13, 14] or quantum
computers [15–17].

Another important area of research in the field of quantum materials involves nontrivial
physics arising from strong spin-orbit coupling (SOC) [18, 19]. Recently, the consequences of
spin-orbit coupling (SOC) for correlated electron systems [20, 21, 18, 22] has been a subject
of great interest, as the cooperative effects of electronic correlations and strong spin-orbit
coupling have been found to play an important role in understanding many new and exotic
quantum states of matter. A schematic phase diagram in Fig.1.1, broadly depicting various
possible electronic phases that may be realized in the presence of weak and strong electronic
interactions as well as spin-orbit coupling, provides an illustration of this physics. In this
diagram, the two axes denote an increasing strength of the Hubbard interaction U and spin-
orbit coupling λ relative to the hopping amplitude t respectively, and the different regimes
corresponding to weak and strong interactions and SOC are separated into four quadrants.
For weakly spin-orbit coupled systems, increasing the strength of electronic correlations
leads to the formation of Mott insulators [23]. On the other hand, strong spin–orbit coupling
can have marked qualitative effects on the band structure of weakly interacting solids. As the



strength of spin-orbit coupling increases, the total angular momentum basis becomes more
suitable for describing the behavior of these systems. The degeneracies due to spin-flip or
inversion symmetries are lifted, giving rise to non-trivial band topology in weakly interacting
electron systems, manifested in topological insulators (TIs) [24–26] and semimetals [27, 28].
As the electronic correlations become stronger, it is possible to open a Mott-like gap in the
new bands in the total angular momentum basis which are narrower, giving rise to spin-
orbit entangled local moments in a class of materials known as ‘spin-orbit assisted Mott
insulators’ [18]. From the materials perspective, topological insulators have mostly been
identified, by the presence of topologically protected Dirac-like surface states [29–32], in
classes of solids with heavy s- and p- elements. 3d transition metal oxides have traditionally
been a playground for strong correlation effects, and much theoretical and experimental
effort has been brought to bear on material systems such as the cuprates [33], manganites
[34], and vanadium oxides [35]. In these compounds the SOC is a smaller energy scale as
compared to the atomic interactions, crystal field splitting, and kinetic terms. New materials
with significant electronic correlations and strong spin-orbit coupling often comprise 4d
and 5d transition metal elements [36], where the d-orbitals become more extended, the
electron correlation effects decline, while the SOC increases, and all these energy scales
become comparable, revealing a plethora of phases. Further, the presence of strong spin-orbit
coupling can also lead to the formation of small Fermi pockets at non-high symmetry points
in the Brillouin zone, which are replicated by the underlying symmetries of the crystal. Such
systems with multiple Fermi pockets can become effectively one-dimensional in the presence
of a large applied magnetic field. The method of bosonization [37] has proven useful for
studying of effects of electronic correlations in one-dimensional systems. A particularly
interesting situation arises in elemental bismuth, with three Dirac-like electron pockets, where
a variety of fascinating and anomalous effects [38–45] have been observed at high fields, in
the ultraquantum limit, inviting the question of how the effects of electronic correlations are
manifested in these strongly spin-orbit coupled systems.

Admittedly, the scope of topics under this overarching umbrella is large, and the choice
of problems in this thesis only covers a relatively small part of the area, and specifically
focuses on the regime of strong spin-orbit coupling, in the presence of both weak and strong
electronic correlations. Below we describe the research projects which form a part of this
thesis.



Fig. 1.1 The figure shows different electronic phases that may be realized as a function
of the relative strength of the spin-orbit coupling λ/t (along the x-axis) and the Hubbard
interaction U/t (along the y-axis), where t denotes the hopping amplitude. The regions of
weak and strong interactions, and corresponding regions for the spin-orbit coupling, are
separated into four quadrants. In this thesis, we shall discuss situations corresponding to the
large spin-orbit coupling regime, for both weak and strong electronic correlations. (Figure
has been reproduced from Ref. [46] )

1.1 Chiral p−wave superconductivity on a topological crys-
talline insulator surface

Phys. Rev. B 96, 205111 (2017), Eur. Phys. J. B (2018) 91: 198, Phys. Rev. B 99, 205105
(2019)

The topological crystalline insulator (TCI) phase [47] is a new state of matter where the
topological character of the electronic bands is protected by crystalline symmetries. The IV-
VI semiconductors SnTe and related semiconducting alloys Pb1−xSnx(Te,Se) were recently
predicted to belong to the TCI class [48–51]. These materials feature an even number of Dirac
cones on high-symmetry crystal surfaces such as {001}, {110} and {111}, topologically
protected by the reflection symmetry with respect to the {110} mirror planes. The band gap
minima of IV-VI semiconductors are located at the four L points in the FCC Brillouin zone.
For the case of the (001) surface, the L1 and L2 points are projected to the X1 point on the
surface, and the L3 and L4 points are projected to the symmetry-related X2 point [52]. The
resulting surface bandstructure comprises of two disconnected Dirac pockets touching each
other at two saddle points, with Type-II Van-Hove singularities [53] in the density of states,



near each of the X points [52]. This enhances the possibility of competing electronic orders
due to weak repulsive interparticle interactions [54, 55].

We consider interactions between surface electrons corresponding to different valleys
and spins, and project these interactions to the positive-energy band lying closest to the
Van Hove singularities. The resulting multiplicative form factors uσai (for a transformation
from valley a, spin σ to the ith band) lend a momentum dependence to the effective pairing
interactions obtained upon projection. The spin ↑ and spin ↓ components have a relative
phase of exp[iθk], due to the Berry phases [56] associated with the surface states, which gives
rise to additional phases in the effective interactions in the band picture and distinguishes
couplings corresponding to different spin configurations. We have constructed a two-patch
renormalization group (RG) [57, 58] for the interaction vertices to study possible electronic
instabilities in this system, where the instability is indicated in the form of a pole in the
vertex function. The results of the RG analysis are found to be extremely sensitive to the
spin configuration being considered. We have investigated the instabilities of the system
by evaluating the susceptibilities χ for various types of order, introducing infinitesimal test
vertices corresponding to different kinds of pairing into the action. A comparison between
the values of exponents corresponding to susceptibilities for different types of order shows
that the most divergent susceptibility corresponds to p-wave superconductivity, which is
chiral in nature since its symmetry is dictated by the aforementioned exp[iθk] dependence of
the Berry phase factors in the wave functions. We have further examined the robustness of the
superconducting order in the presence of an external magnetization, introduced as a Zeeman
spin-splitting term in the non-interacting part of the Hamiltonian. We find that in the presence
of a finite value of the Hund’s splitting ∆, quantified by the difference in the interactions for
spin-parallel and spin-antiparallel configurations, chiral p-wave superconductivity [59, 60]
continues to be the dominant instability at the one-loop level up to a finite value of the Zeeman
splitting Mc (which depends on the value of △ chosen). Finally, we have proposed that
impurity-induced Shiba-like subgap bound states [61, 62], in certain parameter regimes of
doping, can serve as robust and reliable experimental signatures for the chiral p−wave order,
in contrast to Majorana zero modes [16, 63, 64], which are harder to detect experimentally.
In particular, we have distinguished such states from impurity states in semiconductors
[65, 66] which are expected to be present even in the absence of the chiral p−wave order. We
obtain analytical expressions for the bound state spectra and wavefunctions and indicate the
properties of such states that can be used to identify the nature of the surface superconducting
order.



1.2 High-field torque magnetometry studies in the alkali
Iridate Na2IrO3

Phys Rev B 99, 081101(R) (2019)

The alkali Iridates A2IrO3(A=Na,Li) [67–71] and their celebrated 4d analogue α−RuCl3
[72–76] are popular candidate materials for realizing the physics of the honeycomb Kitaev
model [77]. Interactions between the effective j̃ = 1

2 pseudospins on every site of the
two-dimensional hexagonal lattice in these strongly spin-orbit coupled materials can be
described by a dominant anisotropic Kitaev and other subdominant interactions such as
Heisenberg and symmetric off-diagonal exchange [78, 79]. Such materials are known to
exhibit a magnetically ordered zigzag ground state [71]. Notwithstanding the great progress
made, the sign of the dominant Kitaev interaction remains a question of vital importance in
ascertaining the underlying physics in this class of materials [67, 70, 76, 78, 80]. There has
also been considerable effort towards tuning such materials to a quantum spin liquid state,
and, in particular, realizing a field-tuned spin liquid state, especially in α−RuCl3 [74, 73].
In this part of the thesis, we probe the physics of Na2IrO3 by using a combination of torque
magnetometry studies for magnetic fields up to 60 T, and exact diagonalization calculations.
We find a distinctive peak-dip structure in the experimental torque response at high magnetic
fields, which we use to constrain the model description of Na2IrO3.

The parameter space of couplings for Na2IrO3 has thus far been constrained by using
both analytical and numerical techniques [67, 70, 81–85, 79, 78], as well as experimental
investigation [86]. Based on such phenomenological justification, the simplest model arrived
at is a nearest-neighbor model with a dominant antiferromagnetic Kitaev and a smaller
ferromagnetic Heisenberg exchange [67]. A different model with a dominant ferromagnetic
Kitaev and smaller antiferromagnetic Heisenberg exchange is however suggested by quantum
chemistry and other ab initio calculations [87, 70, 82]. In order to stabilize a zigzag phase
within such a model, further neighbor couplings [87] or additional anisotropic interactions
[78, 79] must be included. Here we distinguish between these categories of models with either
a dominant antiferromagnetic Kitaev, or a dominant ferromagnetic Kitaev interaction, by
comparing experimental results for the finite magnetic-field response of Na2IrO3 with exact
diagonalization simulations. For a single crystal of Na2IrO3 of dimension ≈ 100 µm, the
torque response (τ) was measured as a function of the magnetic field at various fixed angles θ

of the crystalline axis normal to the honeycomb lattice, with respect to the magnetic-field axis.
A distinctive nonmonotonous peak-dip feature was observed in the magnetic torque response
in the field range of 20-40 T. Our starting point for the theoretical modeling of these features
is the usual spin Hamiltonian with nearest-neighbor Kitaev and Heisenberg interactions.



For our calculations, we use a hexagonal 24-site cluster with periodic boundary conditions.
The effect of the applied magnetic field is described using a Zeeman term with a constant
g-factor, for simplicity. We find that the peak-dip feature in the magnetic torque response
is reproduced only by models with a dominant ferromagnetic Kitaev interaction, whereas
models with a dominant antiferromagnetic Kitaev interaction display instead a monotonic
increase in the magnetic torque with magnetic field, with a single peak close to the Kitaev
energy scale. We have computed the spin-spin correlations, as a function of the distance on
the hexagonal cluster, for different values of the applied field. We find that the amplitude
of oscillation of the correlation functions falls off rapidly with increasing field values, in
particular above the zigzag ordering scale, indicating the possibility of realizing field-tuned
spin-liquid physics in the regime of field values beyond the position of the peak-dip feature.
Such a feature has also been observed recently in another popular Kitaev material α−RuCl3
[88], and our work sheds light on the universality of magnetic field-induced quantum spin
liquid physics in these Kitaev systems.

1.3 Phase transitions and critical phenomena in a system
of three coupled spinless Luttinger liquids

arXiv:1906.11053

The problem of coupled one-dimensional systems of interacting fermions has received
considerable attention in the literature, appearing in diverse contexts. These have been
used as building blocks for studying higher-dimensional systems such as cuprate high-
temperature superconductors [89], due to the availability of controlled nonperturbative
methods and numerical techniques for analyzing them. Such a situation may also arise
in many naturally occuring compounds, such as carbon nanotubes [90], low-dimensional
organic conductors [91], spin ladders [92, 93], quasi-1D superconductors (such as K2Cr3As3

[94]), Mott insulating magnets, as well as artificially manufactured structures (such as self-
assembled transition metal nanowires [95]). Bosonization has been the natural tool for
studying the low-energy properties of such systems. The majority of these studies involve
two-leg ladder systems [89, 95, 91], and the number of comparable studies on systems of
three coupled Luttinger liquids have been limited [92, 93, 90]. The common prescription for
studying all of these systems involves setting up scaling equations for the stiffness matrix K̂
in the quadratic part of the bosonized Hamiltonian (a sine-Gordon model), and the coupling
constants in the sine-Gordon terms. One peculiarity of coupled Luttinger liquid systems that
distinguishes them from single-phase Luttinger liquids is the fact that the renormalization



process, even if performed to one-loop order, introduces corrections to all the matrix elements
of K̂ in general. These corrections not only change the scaling dimensions of the interactions,
but also introduce large rotations of the K̂−matrices, which have, for the most part, been
neglected in existing studies of such systems. In our work, we study a system of three coupled
spinless Luttinger liquids, set up scaling equations for the K̂−matrix as well as the coupling
constants, and solve them numerically. From these solutions, we identify the most singular
susceptibilities, corresponding to different order parameters, which in turn determine the
phase diagram. Also, from a numerical study of the RG equations, we obtain the critical
behavior near the phase transition points. Such an analysis is applicable to multipocket
systems with strong spin-orbit coupling, such as bismuth, subject to quantizing magnetic
fields.

In our analysis, we have considered density-density type of interactions and situations
that physically correspond to partially filled bands. We have bosonized the fermionic model
using the standard abelian bosonization prescription. The renormalization group employed
by us follows the standard Wilsonian procedure of elimination of fast degrees of freedom,
restoration of the cutoff, rescaling of the couplings and the renormalization of the fields. This
leads to the generation of off-diagonal components to the K̂−matrices. To keep the Gaussian
fixed point unchanged, we rotate the K̂−matrices to diagonalize them and then rescale
the fields such that they become proportional to identity matrices, and repeat these steps
throughout the RG process. The rotations involved in restoring the above matrices are finite
rotations and we always work in the rotating frame, where these large rotations are absent.
The coefficients of the cosine terms in the interaction Hamiltonian rotate and stretch during
the RG flow procedure, and we write down scaling equations for these coefficients, as well
as for the coupling strengths, considering weak repulsive interactions in every channel. The
order parameters considered in our analysis are fermionic bilinear operators characterized
by chirality and band indices, which may be defined in the particle-particle or particle-hole
channels. We analyze the renormalization group flows of the sixteen order parameters
generated in the spinless case for opposite chiralities, written in terms of the bosonic fields,
to determine the dominant orders in a given parameter regime. To determine the nature of
the phase transitions in this system, the scaling of the correlation length ξ at the critical
point is determined by identifying the characteristic RG scale y where the couplings gα(y)
cross a designated value ≳ 1. We obtain continuous phase transitions as a function of the
Luttinger liquid parameter Kφ

⊥, which belong to the Berezinskii-Kosterlitz-Thouless (BKT)
[96] universality class. We conclude from our analysis of competing phases in this system
that it is possible to isolate specific interband or intraband particle-particle and particle-hole
orders for extreme values of the parameter Kφ

⊥, whereas for Kφ

⊥ ∼ 1, various orders compete



with one another, and in this regime, the initial conditions on the interactions play a crucial
role in the deciding the dominant electronic order.

The rest of the thesis is divided into three parts. The first part discusses aspects of
electronic phase competition in a topological crystalline insulator. This part consists of
three chapters. Chapter-2 provides an introduction to topological phases of matter. Chapter-
3 is dedicated to studying competing electronic instabilities on a topological crystalline
insulator surface, and the effect of an external magnetization on the resulting chiral p−wave
superconducting state. Chapter-4 discusses the possibility of using impurity-induced Shiba-
like subgap bound states in certain parameter regimes of doping as an experimental signature
of the chiral p−wave order on the TCI surface. The second part of the thesis discusses
high-field torque magnetometry measurements in the alkali Iridate Na2IrO3 and numerical
evidence for strong ferromagnetic Kitaev correlations as well as a possible field-induced
spin liquid state in this material. It comprises of two chapters. Chapter-5 provides an
introduction to Kitaev materials. Chapter-6 discusses the high-field magnetization response
of various effective spin models proposed to describe the Kitaev candidate Na2IrO3, using
exact diagonalization simulations on a hexagonal 24-site cluster with periodic boundary
conditions. The third part of the thesis discusses phase transitions and critical phenomena in a
system of three coupled spinless Luttinger liquids. Chapter-7 discusses the physical contexts
in which interacting one-dimensional systems appear, and our work on studying interaction
effects for three coupled spinless Luttinger liquids, using a renormalization group analysis
of the bosonized interactions, that takes into account the effect of off-diagonal corrections
generated in the phase stiffness matrices, at the one-loop level. Finally, Chapter-8 provides a
summary of the topics covered in this thesis.
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Chapter 2

Topological phases of matter

In the past decade, there has been remarkable progress in our understanding of topological
states of matter [97, 98]. These are gapped quantum phases in which the characterization of
order goes beyond the conventional paradigm of Landau’s symmetry breaking theory. There
are three types of topological phases: topologically ordered phases, symmetry protected
topological (SPT) phases, and symmetry enriched topological (SET) phases [99, 100], each
of which is associated with an unconventional order. For a topologically ordered phase, the
ground state can never be deformed into a trivial ordered state by local unitary operations.
These are gapped long-range entangled phases and may harbor excitations bearing fractional
statistics. In the presence of a global symmetry, the ground state is short-range entangled
and equivalent to a trivial ordered state up to unitary transformations which are, however,
constrained by the symmetry. Such phases are thus protected by a global symmetry, and are
known as symmetry-protected topological (SPT) phases [101–103, 97]. The global symmetry
can also intertwine with the non-trivial topological order, leading to symmetry-enriched
topological (SET) phases [100, 104]. Materials which realize such topological states in their
bulk are known as topological materials.

Below, we shall discuss topological insulators (TIs) and topological crystalline insulators
(TCIs), which are specific examples of SPT phases.

2.1 Topological insulators

Topological insulators [105–107, 25] are gapped quantum states of matter, with bulk wave-
functions that possess non-standard topological properties, quantified by various topological
invariants, i.e. discrete quantities that remain unchanged upon adiabatic deformations of the
system. These feature gapless edge or surface states, a universal and remarkable consequence
of a nontrivial bulk topology.



Topological phenomena were first observed in the context of the Integer Quantum Hall
Effect (IQHE) [108, 109], where a two-dimensional electron gas at very low temperatures
is subjected to a strong perpendicular magnetic field. Here, quantized plateaus appear in
the Hall conductivity, that can be attributed to the topological character of the bulk Landau
levels, expressed in terms of an integer topological invariant, known as the TKNN invariant
[110]. The Quantum Spin Hall (QSH) insulator state was later proposed by Kane and Mele
[24], for a model of graphene with strong spin-orbit coupling, which established that the
constraints imposed by time-reversal symmetry could lead to a new kind of topological
order, characterized by a Z2 index. Such a phase has been experimentally realized in
CdTe/HgTe/CdTe quantum wells [111, 112], and is associated with counter-propagating
edge states. This topological classification was soon extended to three dimensions, where
the topology is fully characterized by four Z2 invariants [113]. These have the advantage of
being fairly prevalent, and realizable under ambient conditions. Several classes of materials
with strong spin-orbit coupling, such as Bi1−xSbx alloys [114–117], Bi2Se3, Bi2Te3 [29, 118–
121] and strained HgTe [122] have been established to be three-dimensional topological
insulators, with surface states that have a linear dispersion and obey the Dirac equation.
These Dirac-like surface states are characterized by spin-momentum locking, and probed
experimentally using techniques such as Angle-Resolved Photoemission (ARPES) [29, 123]
and Scanning Tunneling Microscopy (STM) [118, 111, 124, 125]. The notion of three-
dimensional topological insulators has now been extended to systems that host no gapless
surface states but exhibit topologically protected gapless corner states (localized at the
corners) [126] or hinge states (that propagate along the edges) [127]. Their topological
character is protected by spatiotemporal symmetries. These systems can be subsumed under
the notion of higher-order TIs.

We shall now discuss new topological phases that are subsets of SPT phases, relevant
to this thesis. These are a) topological crystalline insulators (TCIs) and b) topological
superconductors (TSCs).

2.2 Topological crystalline insulators

Topological crystalline insulators (TCIs) [47] are gapped states of matter in which the
topological character of the bulk bandstructure arises from crystalline symmetries, i.e. they
cannot be adiabatically connected to the atomic limit without breaking symmetries involving
spatial transformations, such as mirror reflection or rotational symmetries. As a result,
specific crystalline symmetries ensure the topological protection of the metallic surface states
occuring in such systems. Theoretically, TCI phases protected by mirror reflection [128],



Fig. 2.1 The figure depicts the first Brillouin zone of Pb1−xSnxTe, which is a truncated
octahedron with six square faces and eight hexagonal faces, and represents the projection
of the L-points in the bulk Brillouin zone at different points on the surfaces. Two types of
surface states are depicted, depending upon whether each L-point projects to a different point
on the surface. For the (001) surface, the plane ΓL1L2 in the bulk Brillouin zone projects
onto the symmetry line ΓX in the surface Brillouin zone, with both L1 and L2 projecting onto
the X1−point. For the (111) surface, the plane ΓL1L2 projects onto the line ΓM, so there are
two Dirac points along each of the three equivalent lines ΓM. The inset shows the fcc unit
cell for SnTe, with two interpenetrating lattices. (Figure has been reproduced from Ref. [52]
with permission)

glide [129, 130], rotational [131] and inversion [132, 133] symmetries have been proposed,
and such phases have been identified using first-principles calculations in material systems
such as Ca2As [134], α−Bi4Br4 [135], a family of Zintl compounds including Ba3Cd2As4,
Ba3Zn2As4 and Ba3Cd2Sb4 [136], and in stacked graphene layers [137].

For the purpose of this thesis, we shall specifically focus on a class of TCIs, that are
protected by reflection symmetry with respect to a crystal plane, i.e. mirror reflection
symmetry [107, 51, 48, 49, 138, 50, 52]. Here the topological properties are dictated by
a new integer topological invariant, known as the mirror Chern number [48, 107], which
guarantees the existence of topological surface states on only those surfaces which are
invariant under mirror reflection symmetry. Such a TCI state was first theoretically predicted
in SnTe [48, 49], for mirror reflection symmetry with respect to the (110) mirror planes.
In practice, it is known that SnTe crystals are subject to a rhombohedral distortion [48],
which, strictly speaking, breaks the crystal mirror symmetries, and hence excludes a gapless
TCI phase. Moreover, these are naturally hole-doped, owing to an exceptionally high
concentration of electrically active Sn vacancies, which are heavily p-type, meaning that
the TCI states are not occupied and thus difficult to observe in photoemission experiments
[51]. Such issues can be avoided by instead considering Pb1−xSnxTe and Pb1−xSnxSe alloys,
where the chemical potential can be tuned more easily. Pb1−xSnxTe crystallizes in the rock



salt crystal structure [139–143], where each of two types of atoms (Pb/Sn and Te) form
separate face-centred cubic lattices, with the two lattices interpenetrating so as to form a
three-dimensional checkerboard pattern. The first Brillouin zone (BZ) of the crystal structure
is a truncated octahedron with six square faces and eight hexagonal faces (see Fig. 2.1). The
fundamental band gaps are located at the four distinct L-point momenta, which correspond
to the centres of the eight hexagonal faces of the BZ. It has long been established that the
ordering of the conduction and valence bands at L-points in SnTe is inverted relative to PbTe
[144], the latter being smoothly connected to the atomic limit. The topologically nontrivial
character of the former has been established from first-principles calculations [48]. In the
SnTe class of TCIs, topological surface states have been observed on crystal faces that are
symmetric with respect to the (110) mirror planes. Three common surface terminations of
IV–VI semiconductors are (001), (111), and (110). Depending on the surface orientation,
there are two types of TCI surface states [52, 138], with qualitatively different electronic
properties, depending on whether different L-points project to different points on the surface,
or pairs of L-points project to the same point on the surface. In particular, for the (001)
surface, the plane ΓL1L2 in the bulk Brillouin zone projects onto the symmetry line ΓX in
the surface Brillouin zone, with both L1 and L2 projecting onto the X1−point. For the (111)
surface, the plane ΓL1L2 projects onto the line ΓM, so there are two Dirac points along each
of the three equivalent lines ΓM (see Fig. 2.1).

In our analysis, we shall work with the former class of surfaces, which has been shown to
harbor a double-Dirac like dispersion for the surface states [52], with two-dimensional Van
Hove singularities [53].

2.3 Topological superconductors

In principle, systematic topological classifications on the basis of symmetry properties are
possible for various quantum many-body systems with a gapped spectrum, and have been
conducted not only for insulators but also superconductors. A fully-gapped topological super-
conductor (TSC) [107, 145, 105] can be defined as one that cannot be adiabatically connected
to a Bose-Einstein condensate (BEC) of Cooper pairs. Conventional s−wave spin-singlet
superconductors are therefore clearly nontopological, and unconventional superconductivity
is a necessary, but not sufficient, condition for realizing a TSC. Moreover, even-parity pairing
inevitably leads to topologically trivial superconductors, whereas odd-parity pairing leads
to TSCs if the Fermi surface contains an odd number of time-reversal invariant momenta
[146, 120]. For weak spin-orbit coupling (i.e., spin is a good quantum number), odd-parity
pairing corresponds to spin-triplet pairing. As a consequence of its nontrivial topology, a TSC



is guaranteed to possess protected gapless excitations on the boundary. The classification
of TSCs and the nature of their boundary excitations, which are Bogoliubov quasiparticles,
depend crucially on the presence or absence of internal symmetries. In particular, both time-
reversal-breaking TSCs and time-reversal-invariant TSCs are of great interest. A 2D chiral
kx±iky spin-triplet superconductor [60] is an example of the former class of TSCs, which is
highly sought-after owing to its exotic emergent excitations. Recently, this classification has
been extended to the so-called higher-order topological superconductors [132, 147, 128], that
have gapped, topological surfaces and gapless Majorana modes instead on lower-dimensional
boundaries, i.e., corners of a two-dimensional system or hinges for a three-dimensional
system.

A chiral superconductor is one in which the phase of the complex superconducting gap
function, ∆(

−→
k ), winds in a clockwise or counterclockwise sense as

−→
k moves about some axis

on the Fermi surface of the underlying metal. A kx ± iky gap function is an example, which
precesses by ±2π as

−→
k follows a closed path enclosing the kz−axis. It is a topologically

non-trivial state which exhibits distinctive topological modes at surfaces and defects. A
chiral gap function breaks time-reversal symmetry and is degenerate with its time-reversed
partner. In situations where the kx and ky gap functions are degenerate, one can form linear
combinations kx ± iky whose absolute value squared is isotropic. A chiral superconductor
results from a spontaneous symmetry breaking between the states with the two chiralities.
Chiral p−wave superconductivity can be realized in an effectively spinless regime [64], with
the necessary ingredients being spin-momentum locking, and an induced Zeeman splitting.
Low-dimensional topological superconductors can be engineered by judiciously forming
heterostructures with conventional bulk s−wave superconductors [148], or even simpler
systems such as 2D semiconductor quantum wells [149, 150] or 1D semiconducting quantum
wires [151–153].

While there has been tremendous effort towards engineering topological superconductiv-
ity by means of an induced p−wave pairing, through, for instance, the proximity effect in
topological insulators [148, 154], or hybrid structures of semiconductors and superconduc-
tors [155, 156, 150], intrinsic topological superconductors are still quite rare, with Sr2RuO4

[157, 158, 59, 159, 160] being a popular candidate for the material realization of such a
state, although the nature of the superconducting order is still under debate [161–163]. The
synthesis of topological superconductors can be accomplished via proximity-induced su-
perconductivity at the interface of conventional superconductors and semiconductors with
large spin-orbit coupling [151, 156, 150, 152, 149], or by doping topological insulators, for
instance Sn1−xInxTe [164, 165] and MxBi2Se3 (M = Cu, Sr, Nb) [166, 120, 167–171]. The
latter class of materials are now considered as candidates for nematic superconductivity



[172, 173, 168]. There is considerable current interest in topological insulator surfaces
as an environment where two-dimensional topological superconductivity can be realized,
which is protected against weak disorder by s−wave Cooper pairing in the bulk. This makes
the superconductivity much more robust than in, say, Sr2RuO4 [174]. In this thesis, we
have shown that in the presence of weak correlations, the electronic ground state on the
(001) surface of the topological crystalline insulator (TCI) Pb1−xSnxTe corresponds to a
chiral p−wave superconducting state [175]. Low-lying Type-II Van Hove singularities [53],
peculiar to the (001) surface of this material, serve to enhance the transition temperature
to values parametrically higher than those predicted by BCS theory [54]. Since the surface
electronic bands are effectively spinless, s−wave superconductivity is precluded, unless
pairing occurs between electrons in different time-reversed surface bands, which is ruled out
at sufficiently low carrier densities. Here, the nontrivial Berry phases associated with the elec-
tronic wavefunctions ultimately dictate the chiral p−wave symmetry of the superconducting
order parameter. Pb1−xSnxTe thus provides a good meeting ground for various desirable
attributes, under extremely accessible conditions, which is not commonly encountered.

2.3.1 Experimental signatures of chiral p−wave order

A chiral p−wave superconductor provides a natural platform for the realization of Majorana
fermions [64, 63, 176], as quasiparticle excitations, since the latter require paired systems
with only one active fermionic species. Majorana fermions (MF) are their own anti-particles,
and have attracted massive theoretical interest due to their non-Abelian exchange statistics,
meaning that the particle exchange operations do not commute, in general. A fermionic state
can be obtained as a superposition of two Majorana fermions, which are spatially separated.
Such a state cannot be changed by local perturbations involving one of the Majorana con-
stituents, but can be manipulated by a physical exchange of the Majorana fermions, thereby
aiding low-decoherence topological quantum computation [177, 178]. Isolated MFs occur, in
general, in vortices and on edges of effectively spinless superconducting systems with triplet
pairing symmetry [145] and other systems with the same topological properties. Another
avenue that may be used to realize Majorana zero modes is by forming electrostatic line
defects in a chiral p−wave superconductor [179].

Majorana fermions provide a natural way to confirm the presence of a chiral p−wave
superconducting order, and are evidenced by zero-bias peaks in the tunneling density of states,
which may, however, be obscured by resonances from subgap states at nonzero energies,
and half-integer quantized conductance plateaus in a ballistic point contact [124, 180].
Alternative strategies for confirming the presence of chiral p−wave superconductivity include
the detection of half-quantum vortices in triplet superconductors [181, 182], broken time-



reversal symmetry in muon-spin resonance (µSR) experiments [183], spontaneous surface
currents at sample edges and domain walls [184, 185], evidence for triplet superconductivity
from the spin susceptibility using NMR experiments [186], and evidence for odd-parity
superconductivity from the tunneling current through Josephson junctions between s− and
p−wave superconductors [187]. In this thesis, we propose a much simpler strategy to detect
the presence of a chiral p−wave superconducting order in Pb1−xSnxTe, using impurity-
induced subgap bound states.

Recent point-contact spectroscopy measurements [188, 189] have confirmed the existence
of superconductivity on the (001) surface of Pb1−xSnxTe, indicated by a sharp fall in the
resistance of the point contact below a characteristic temperature (3.7-6.5 K) [188] and the
appearance of a spectral gap with coherence peak-like features, and zero-bias anomalies.
Note that the existence of superconductivity in a confined geometry under a superconducting
point contact cannot be characterized by a directly measurable zero resistance [188]. While
the drop observed in the resistance is only about 0.1%, this could be a result of the system
going superconducting locally in patches, in the absence of global phase coherence. The
zero-bias peaks observed are simply a consequence of Andreev tunneling, and no further
information is available regarding the nature of the superconducting order. While a scanning
tunneling probe would instead directly give the tunneling density of states, an appearance
of a zero-bias anomaly even in STM [155, 154, 148, 150] requires further investigation, to
distinguish a Majorana bound state from other possibilities like topologically trivial Andreev
bound states [190–194], or even bandstructure effects [195] and stacking faults [196]. Thus,
such states may not be unambiguously identifiable using existing probes [197–200]. Besides,
the conditions required for realizing Majorana zero modes might not always be feasible. For
instance, realizing Majorana zero modes in long linear defects requires the physical ends of
the wire to be in a topological superconducting state, which may not always be the case due
to the presence of disorder and external potentials. Such Majorana bound states also may not
exist for other types of surface defects, such as pointlike ones.

An alternate strategy would be to go beyond the Majorana states and instead look for
impurity-induced states [201–203] for probing the superconducting order, analogous to the
Yu-Shiba-Rusinov states [204, 62] realized in magnetic impurities in spin-singlet supercon-
ductors. In unconventional superconductors, such states may be realized for both magnetic
and non-magnetic impurities [202], and could be used for probing the superconducting order.
In the literature, there have been extensive studies on using Shiba-like states to detect a
chiral p−wave superconducting order [205–209, 203, 20]. We address the converse question:
given the presence of impurity-induced subgap bound states, when do they unambiguously
indicate the presence of a chiral p−wave order? We find that only certain parameter regimes



for the chemical potential guarantee the existence of impurity states which crucially depend
on the chiral p−wave nature of the superconductivity. In our analysis, we first identify the
parameter regimes where superconductivity may exist on the (001) surface of Pb1−xSnxTe
and show that for small changes in doping, the nature of the superconducting order can
change from a topological chiral p−wave type to a conventional s−wave type. In the chiral
p−wave superconducting state, we find two distinct parameter regimes, only one of which
can be used to reliably establish the existence of chiral p−wave superconductivity using
impurity-induced Shiba-like states. In our treatment, we obtain exact analytical expressions
for the bound-state spectra and wave functions, as a function of the parameters of the system,
which shed light on several notable characteristics of these bound states. We show that the
azimuthal angle-dependence of the wave functions in point defects can be used to distinguish
between nodal and chiral superconductors. We have obtained exact analytical expressions
for the bound-state wave function in a point defect, which qualitatively agree with Ref.
[207], with differences related to the localization length. Incidentally, other approximate
solutions proposed in the literature based on different variational ansatzes [208, 206] are
inconsistent with our exact solutions. For the case of point defects, we find that the wave
function corresponding to the zero-energy bound state has an internal SU(2) rotational sym-
metry which makes it useful as a quantum qubit. If chiral p−wave superconductivity is
indeed established on the surface of Pb1−xSnxTe, then such qubits would be relatively easy
to realize and manipulate using, say, STM tips. The above properties, together with the
constraints that we impose on the parameter regimes, can help identify the nature of the
surface superconducting order in Pb1−xSnxTe.



Chapter 3

Competing electronic instabilities on a
topological crystalline insulator surface

In this part of the thesis, we employ a multipatch parquet renormalization-group (RG)
analysis for studying competing electronic instabilities on the (001) surface of Pb1−xSnxTe
[175]. Depending upon the sign of the Hund’s splitting, which is taken into account in our
analysis, we find that away from perfect nesting, either a chiral p−wave superconducting
state is stabilized, or none of the commonly encountered electronic instabilities occurs at the
one-loop level. The topological crystalline insulator surface that we consider offers certain
natural advantages from an experimental point of view. It features two-dimensional Van
Hove singularities [53] that are accessible through a small change in doping, unlike, say,
graphene, where a very high level of doping is required to access the Van Hove singularities.
Interestingly, as we show below, the p−wave symmetry originates not from intrinsic Fermi
surface deformations, but from the nontrivial Berry phases associated with the topological
states, and is hence more robust against potential disorder as compared to, say, Sr2RuO4

[174].
Below, we discuss the effective surface Hamiltonian for the (001) surface of Pb1−xSnxTe

(written down in Ref. [52]), the projection of the interactions in the valley-spin basis to
one of the surface bands, and the corresponding low-energy theory. We then describe the
parquet renormalization group analysis used for studying the possible electronic instabilities
in this system due to weak repulsive interactions, and the calculation of susceptibilities
for different types of order, of which we find chiral p−wave superconductivity to be the
dominant electronic order over an extensive range of parameter space of interactions.



Fig. 3.1 The figure shows the k.p bandstructure in the vicinity of an X point on the (001)
surface. The constant-energy contour evolves rapidly with increasing energy from the Dirac
point, changing from two disconnected electron pockets to a large electron pocket and a
small hole pocket via a Lifshitz transition. At this transition point, a saddle point S on the
line XM leads to a Van Hove singularity in the density of states. (Figure has been reproduced
from Ref. [52] with permission)

3.1 Effective surface Hamiltonian for the (001) surface of
Pb1−xSnxTe

The band gap minima of IV-VI semiconductors are located at the four L points in the FCC
Brillouin zone. In Ref. [52], the TCI surface states are classified into two types: Type-I,
for which all four L-points are projected to the different time-reversal invariant momenta
(TRIM) in the surface Brillouin zone, and Type-II, for which different L-points are projected
to the same surface momentum. The (001) surface belongs to the latter class of surfaces, for
which the L1 and L2 points are projected to the X1 point on the surface, and the L3 and L4

points are projected to the symmetry-related X2 point. This leads to two coexisting massless
Dirac fermions at X1 arising from the L1 and the L2 valley, respectively, and likewise at X2.
The k.p Hamiltonian close to the point X1 on the (001) surface is derived on the basis of a
symmetry analysis in Ref. [52], and is given by

HX1
(k) = (vxkxsy − vykysx)+mτx +δ sxτy, (3.1)

where k is measured with respect to X1, −→s is a set of Pauli matrices associated with the two
spin components associated with each valley, τ operates in valley space, and the terms m and



δ , which are off-diagonal in valley space, are added to describe intervalley scattering. The
band dispersion and constant energy contours for the above surface Hamiltonian undergo a
Lifshitz transition with increasing energy away from the Dirac point, and when the Fermi
surface is at δ = 26 meV, two saddle points S1 and S2 at momenta (±m

vx
,0) lead to a Van-Hove

singularity in the density of states (see Fig. 3.1). The surface Hamiltonian corresponding to
each of the X points, given in Eq. 3.1 above, comprises of four essentially spinless bands.
The two bands lying closest to the chemical potential of the parent material each feature
two Dirac points at (0,±

√
m2 +δ 2/vy) as well as two Van Hove singularities at (±m/vx,0),

while the bands lying farther away in energy have a single Dirac-cone structure.

3.1.1 Projection of interactions in the valley-spin basis to a surface
band

In addition to the noninteracting part of the Hamiltonian described in Eq. 3.1 above, we now
consider interactions between surface electrons corresponding to different valleys and spins,
which gives rise to the following terms in the Hamiltonian:

HI =
1
2 ∑

a,b,c,d,σ ,σ ′
Uσσ ′

abcdc†
σac†

σ ′bcσ ′ccσd

where a,b,c,d refer to different valleys (which are either all the same, the same in pairs, or
all different in the above sum), and σ ,σ ′ refer to spins. Here, we consider Uσσ ′

abcd = Uσσ ′
1

when (a,c) belong to one X point [i.e., the L valleys corresponding to (a,c) are projected
to one of the X points] and (b,d) belong to the other X point. Similarly, Uσσ ′

abcd = Uσσ ′
2

when (b,c) belong to one X point and (a,d) belong to the other, Uσσ ′
3 when (a,b) belong to

one X point and (c,d) to the other, and Uσσ ′
4 when a,b,c, and d all correspond to L points

projected to the same X point. The interactions depend only on the relative orientations of
the spins, for example, Uσσ ′

can be written as Uσσ δσσ ′ +Uσσ (1−δσσ ′). In our analysis,
we have projected the interactions between electrons in the valley-spin picture to the positive-
energy band lying closest to the Van-Hove singularities. The resulting multiplicative form
factors uσai (for a transformation from valley a, spin σ to the ith band) lend a momentum
dependence to the effective pairing interactions obtained upon projection. We find that the
spin ↑ components of the form factors have an exp[iθk] dependence in momentum space and
transform as ℓ= 1 objects, whereas the phase of the spin ↓ components remains unchanged
upon advancing by an angle of 2π around the X i (i = 1,2) points, and these show an ℓ= 0
angular dependence. These additional phase factors arise from the Berry phases associated
with the surface states of the crystalline topological insulator. After projecting to the two



bands intersecting the Fermi level, we obtain the following low-energy theory

L = ∑
i,σ ,σ ′

ψ
†
i (∂τ − εk +µ)ψi −∑

i
∑

σ ,σ ′

1
2

hσσ ′
4 ψ

†
i ψ

†
i ψiψi −∑

i ̸= j
∑

σ ,σ ′

1
2
[hσσ ′

1 ψ
†
i ψ

†
j ψiψ j

+hσσ ′
2 ψ

†
i ψ

†
j ψ jψi +hσσ ′

3 ψ
†
i ψ

†
i ψ jψ j]

=∑
i

ψ
†
i (∂τ − εk +µ)ψi − (h0

4 +h1
4)ψ

†
i ψ

†
i ψiψi −∑

i̸= j
[(h0

1 +h1
1)ψ

†
i ψ

†
j ψiψ j

+(h0
2 +h1

2)ψ
†
i ψ

†
j ψ jψi +(h0

3 +h1
3)ψ

†
i ψ

†
i ψ jψ j] (3.2)

with h0
r =

1
2 ∑σ hσσ

r and h1
r =

1
2 ∑σ hσσ

r , where the quadratic noninteracting part comes from
the model in Eq. 3.1. The chemical potential value µ = 0 corresponds to the system being
doped to the Van Hove singularities. Here h4 refers to scattering processes between different
valleys within a band i, whereas h1, h2 and h3 respectively refer to exchange processes,
Coulomb interactions and pair hopping between electrons corresponding to the different
bands under consideration. These processes are pictorially depicted in Fig. 3.2. Due to the
distinct phase dependences associated with the form factors corresponding to spins ↑ and
↓, the effective interactions hr after projection to the low-energy bands also either have a
phase factor of exp[i(θk − θk′)] (for spin-antiparallel configurations) and behave as ℓ = 1
objects, or have no additional phase factors (for spin-parallel configurations) and behave as
ℓ= 0 objects. The coupling constants h0

r ∝ hσσ
r and h1

r ∝ hσσ
r , respectively, correspond to

ℓ= 0 and 1 angular momentum components of the interaction in our simplified model in Eq.
3.2 above. It is important to note that although the surface bands are effectively spinless,
we associate spin indices σσ ′ with the interactions hr in the different scattering channels r,
due to the phase dependences associated with interactions between electrons with different
spin configurations. In doing so, we allow for the Coulomb interactions between electrons
to depend on the spin configuration being considered, thereby incorporating the effects of
Hund’s splitting of interactions in our treatment.

3.2 Parquet renormalization group approach for weak re-
pulsive interactions

In BCS theory of superconductivity, the interaction between fermions and lattice vibrations
effectively creates an attractive interaction between two fermions, leading to the formation of
Cooper pairs. In high-Tc superconductors, on the other hand, the electron-phonon interaction
is too weak to account for the observed transition temperatures, and non-phononic pairing
mechanisms [210, 211] have been widely discussed. Here, we shall discuss one such possible
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Fig. 3.2 The figure shows the different types of Coulomb interaction processes in our low-
energy model. The solid lines and dashed lines denote two different patches X1 and X2
in momentum space on the (001) surface. All the vertices have momentum dependences
as indicated for h4. The σ ’s refer to the particular spin components of the (spinor) wave
functions associated with the bands under consideration.

approach for pairing, which assumes the presence of multiple competing orders, such as
superconductivity and density-wave instabilities, with fluctuations developing simultane-
ously at comparable energy scales. These give a progressively larger contribution to the
pairing channel, and below some characteristic energy scale internally set by the system, the
interaction becomes effectively attractive. The corrections to different couplings from the
particle-particle and particle-hole channels, for lower and lower energies, can be analyzed
using a parquet renormalization-group (RG) [57, 58] approach, which treats the different
competing orders on an equal footing. This is a weak coupling approach, which involves
summing series of logarithmically singular contributions to the the pairing interaction, and
within which one can determine whether superconductivity is the leading instability or a
density-wave order develops at a higher energy scale.

In real systems, such an approach becomes important whenever there is nesting between
different pockets of the Fermi surface. For a nesting vector Q, this leads to a logarithmic
divergence at zero frequency or zero temperature in the particle-hole bubble Πph(Q), similar
to the one that is always present in the particle-particle channel Πpp(0). The susceptibilities
in these competing channels are given by

Πpp(0,E) =−i
∫ d2kdω

(2π h̄)3 Gc(k,ω +E)Gc(−k,−ω)

and

Πph(Q,E) = i
∫ d2kdω

(2π h̄)3 Gc(k,ω)G f (k+Q,ω +E)



where the two-point correlation function Gc, f = 1
ω−εc, f /h̄+iδ sgn[ω]

, with c and f corresponding

to particles and holes respectively. When εc(k) = −ε f (k +Q), Πpp(0,E),Πph(Q,E) ∼
log[Λ

E ] where E is the typical energy of external fermions, and Λ is the fermionic bandwidth.
In the parquet RG approach, E is considered as a running variable, assuming its initial value
to be comparable to the bandwidth Λ. The renormalization group procedure is performed
for energies E that far exceed the Fermi energy EF , and so the vertex functions in this
approach depend only on the energy E and not on the momenta on the arms of the vertices.
The couplings diverge at a critical energy scale, which indicates the approach towards an
ordered ground state. We find that the parquet renormalization group approach is suitable
for investigating possible electronic instabilities in our system, due to the presence of Fermi-
surface nesting between the X points on the (001) surface, which opens up the possibility of
competing density-wave instabilities.

3.3 Renormalization group analysis

To study the possible instabilities in this system, we construct a two-patch renormalization
group for the interaction vertices, where the instability is indicated in the form of a pole in
the vertex function. We consider only the electrons near the saddle points at X1 and X2 on
the (001) surface. As discussed in the previous section, we distinguish between coupling
constants with different spin combinations (↑↑ or ↑↓) and write separate RG equations for
the two kinds of interactions. Due to the transformation properties of the corresponding
interactions, i.e. ℓ= 0 or ℓ= 1, we shall henceforth refer to hσσ

r (where σ =↑,↓) as h0
r and

hσσ
r as h1

r .
We perform RG analysis up to one-loop level, integrating out high-energy degrees of

freedom gradually from an energy cutoff Λ, which is the bandwidth. The susceptibilities in the
different channels schematically behave as χ

pp
0 (ω)∼ ln[Λ/ω] ln[Λ/max(ω,EF)], χ

ph
Q (ω)∼

ln[Λ/max(ω,EF)] ln[Λ/max(ω,EF , t)] and χ
ph
0 (ω),χ pp

Q (ω)∼ ln[Λ/max(ω,EF)], where ω

denotes the energy away from the Van Hove singularities, EF refers to the Fermi energy,
and t represents terms in the Hamiltonian that destroy the perfect nesting. We use y ≡
ln2[Λ/ω] ∼ χ

pp
0 as the RG flow parameter, and describe the relative weight of the other

channels as d1(y) =
dχ

ph
Q

dy , d2(y) =
dχ

ph
0

dy and d3(y) =−dχ
pp
Q

dy . In our treatment, d1(y) is taken
to be a function 1√

1+y , interpolating smoothly in between the limits d1(y = 0) = 1 and

d1(y ≫ 1) = 1√
y , and d2,d3 ≪ d1. The multiplicative factor d1(y) essentially incorporates

the effects of imperfect nesting in our analysis. The RG equations are obtained by evaluating
second-order diagrams and collecting the respective combinatoric prefactors, for each of
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Fig. 3.3 The figure shows the flow of couplings with renormalization-group scale y, starting
with repulsive interactions. In (a), the couplings in different angular momentum channels
(h0

r and h1
r ) are assumed to be degenerate initially, at (h0,1

r )initial = 0.1. The inset shows the
evolution of the fixed-point couplings gℓr (ℓ= 0,1) as a function of d1(yc) (= 1√

1+yc
), which

is the ratio of the particle-hole to particle-particle susceptibilities at the fixed point yc. In (b),
the ℓ= 1 components of all the couplings are chosen to be larger than the ℓ= 0 components
by 2% initially, i.e. |h1

r−h0
r |

|h0
r |

= 0.02, where (h0
r )initial = 0.1. In (c), the ℓ = 0 components

of all the couplings are chosen to be larger than the ℓ= 1 components by 2% initially, i.e.
|h0

r−h1
r |

|h1
r |

= 0.02, where (h1
r )initial = 0.1. The inset in (c) shows the behavior of hr(y)(yc−y) as

a function of (yc−y) close to the fixed point yc. The y-intercepts of the different curves show
the fixed-point values gℓr for the couplings hℓr(y). We find pair hopping between patches (h3)
and on-patch scattering (h4) to be the dominant scattering channels in all cases, irrespective
of the initial conditions for the different scattering channels hr (r = 1− 4). In ℓ = 1 and
ℓ= 0 components of h3 and (−h4) dominate in (b) and (c), respectively.



the interactions h1, h2, h3 and h4. The diagrams corresponding to the renormalization of the
interaction h2 are shown in Fig. 3.4. The RG equations obtained are given by (where we
have used the notation σσ ≡ 0 and σσ ≡ 1 for each of the couplings)

dh0
1

dy
= 2d1(−(h0

1)
2 − (h1

3)
2 − (h1

1)
2 +2h0

1h0
2 +(h0

3)
2) (3.3)

dh1
1

dy
= 2d1(−2h0

1h1
1 +2h1

1h0
2), (3.4)

dh0
2

dy
= 2d1((h0

2)
2 +(h0

3)
2), (3.5)

dh1
2

dy
= 2d1((h1

2)
2 +(h1

3)
2), (3.6)

dh0
3

dy
=−4h0

4h0
3 +2d1(4h0

2h0
3 −2h1

1h1
3), (3.7)

dh1
3

dy
=−4h1

4h1
3 +2d1(2h1

2h1
3 −2h0

1h1
3 +2h0

2h1
3), (3.8)

dh0
4

dy
=−2((h0

4)
2 +(h0

3)
2), (3.9)

dh1
4

dy
=−2((h1

4)
2 +(h1

3)
2). (3.10)

These coupled differential equations are then solved, starting from initial values of interac-
tions in the weak-coupling regime (h0

i = h1
i ∼ 0.1). The results of our RG analysis for the

cases where (a) the couplings in the ℓ= 0 and ℓ= 1 channels are chosen to be degenerate
initially, (b) the couplings in the ℓ= 1 channel are chosen to dominate initially, and (c) the
couplings in the ℓ = 0 channel are chosen to dominate initially, are illustrated in Fig. 3.3.
The RG flows are found to be extremely sensitive to the sign of the Hund’s splitting, and
the final set of dominant couplings gℓr near the critical point of the RG correspond to the
value of ℓ which has been chosen to dominate initially. In contrast, the results are remarkably
insensitive to the magnitude as well as sign of an initial splitting introduced between the
couplings hr corresponding to the different scattering channels r = 1− 4. This feature is
illustrated in Fig. 1 in Appendix-A.

Each of the couplings associated with the RG flow has an asymptotic form hℓr(y) =
gℓr

yc−y
near the the critical point yc of the RG flow. In order to determine the behavior of the
fixed point values gℓr for the different couplings as a function of d1(yc), we substitute this
asymptotic form into the RG equations to obtain polynomial equations, which are illustrated
in Appendix-A. These coupled equations are then solved with appropriate initial conditions,
to determine gℓr (ℓ= 0,1) as a function of d1(yc), which is the ratio of the particle-hole and
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Fig. 3.4 The figure shows the diagrams for one-loop renormalization of the coupling h2. The
diagrams for h1, h3 and h4 are similarly obtained.

particle-particle susceptibilities at the fixed point yc. The behavior of gℓr as a function of
d1(yc) when all the couplings are chosen to be degenerate initially, is shown in the inset
in Fig. 3.3 (a). The corresponding behavior when the degeneracy between the couplings
in the ℓ = 0 and ℓ = 1 channels is lifted (such that g0

r > g1
r for all i) is shown in Fig. 2 in

Appendix-A (here we have only shown the behavior of the couplings g0
r , as the fixed-point

values g1
r turn out to be very small in this case).

3.3.1 Susceptibilities for different types of order

We now investigate the instabilities of the system by evaluating the susceptibilities χ for
various types of order, introducing infinitesimal test vertices corresponding to different kinds
of pairing into the action, such as △aψ

†
aσ ψ

†
aσ ′ +△∗

aψaσ ψaσ ′ for the patch a = 1,2 (where
the spin labels σ ,σ ′ are meant to simply denote the presence or absence of the phase factors
exp[iθk]) corresponding to particle-particle pairing on the patch.
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Fig. 3.5 The figure shows the test vertex renormalization corresponding to (a) particle-
particle pairing on the patch, (b) particle-particle pairing between patches, (c) particle-hole
pairing on the patch and (d) particle-hole pairing between patches, where Q refers to the
nesting vector between the patches X1 and X2 in two dimensions.



The renormalization of the test vertex for particle-particle pairing on a patch is governed
by the equation

∂

∂y

(
∆1

∆2

)
= 2

(
h1

4 h1
3

h1
3 h1

4

)(
∆1

∆2

)
(3.11)

since we can only consider Cooper pairing in the p-wave channel for spinless electrons. By
transforming to the eigenvector basis, we can obtain different possible order parameters, and
choose the one corresponding to the most negative eigenvalue. The vertices with positive
eigenvalues are suppressed under RG flow.

We diagonalize the Eq. 3.11 above and substitute the asymptotic form of the interactions
in the most negative eigenvalue. This gives us the exponent α for the divergence of the
susceptibility χ ∝ (yc − y)α for p-wave superconductivity. The renormalization of the test
vertex corresponding to particle-hole pairing between the patches, in the ℓ = 0 channel is
given by

∂

∂y

(
∆12

∆21

)
=−2d1(y)

(
h0

2 −h0
1 −h1

1 −h1
3

−h1
3 h0

2 −h0
1 −h1

1

)(
∆12

∆21

)
(3.12)

and in the ℓ= 1 channel, by

∂

∂y

(
∆12

∆21

)
=−2d1(y)

(
h1

2 h1
3

h1
3 h1

2

)(
∆12

∆21

)
(3.13)

The renormalization of the test vertex corresponding to particle-particle pairing between the
patches, in the ℓ= 0 channel, is given by

∂

∂y

(
∆12

∆21

)
= 2d3(y)

(
h0

2 h0
1

h0
1 h0

2

)(
∆12

∆21

)
(3.14)

and in the ℓ= 1 channel, by

∂

∂y

(
∆12

∆21

)
= 2d3(y)

(
h1

2 h1
1

h1
1 h1

2

)(
∆12

∆21

)
(3.15)

The renormalization of the test vertex corresponding to particle-hole pairing on a patch, in
the ℓ= 0 channel, is given by

∂

∂y

(
∆1

∆2

)
=−2d2(y)

(
−h1

4 h0
1 −h0

2 −h1
2

h0
1 −h0

2 −h1
2 −h1

4

)(
∆1

∆2

)
(3.16)



and in the ℓ= 1 channel, is given by

∂

∂y

(
∆1

∆2

)
=−2d2(y)

(
h1

4 h1
1

h1
1 h1

4

)(
∆1

∆2

)
(3.17)

The diagrams corresponding to the renormalization of the different kinds of pairing vertices
are shown in Fig. 3.5. The most negative eigenvalue for Cooper pairing on the patch is
given by 2(−h1

3 +h1
4) which corresponds to the eigenvector 1√

2

(
−1 1

)
, competing with

those for CDW and SDW order, given by −2(h1
3 − h0

1 − h1
1 + h0

2)d1(y) (corresponding to

the eigenvector 1√
2

(
−1 1

)
) and −2(h1

3 + h1
2)d1(y) (corresponding to the eigenvector

1√
2

(
1 1

)
) respectively. This is followed by particle-hole pairing on a patch in the ℓ= 0

channel, with the more negative eigenvalue given by −2(−h1
4 − (h0

1 −h0
2 −h1

2))d2(y) (corre-

sponding to the eigenvector 1√
2

(
−1 1

)
). Thus, the dominant instability of our system,

namely p-wave superconductivity, appears in the ℓ= 1 channel, whereas the dominant cou-
pling in the ℓ= 0 channel does not lead to any instability due to the absence of s- or d-wave
superconductivity on the patch.

The exponents for intrapatch p-wave pairing, charge-density wave (CDW), spin-density
wave (SDW), uniform spin, charge compressibility (κ) and finite-momentum π pairing are
given by-

αpw = 2(−g1
3 +g1

4),

αCDW =−2(g1
3 −g0

1 −g1
1 +g0

2)d1(yc),

αSDW =−2(g1
3 +g1

2)d1(yc),

ακ =−2(−g1
4 − (g0

1 −g0
2 −g1

2))d2(yc),

αs =−2(g1
4 +g1

1)d2(yc),

α
0
π = 2(g0

2 −g0
1)d3(yc),

α
1
π = 2(g1

2 −g1
1)d3(yc). (3.18)

The p-wave order here is chiral since its symmetry is dictated by the aforementioned
exp[iθk] dependence of the Berry phase factors in the wave functions. Note that this is a finite-
momentum pairing, with each patch X i located at a finite momentum with respect to the Γ

point on the surface. Furthermore, the relative phase of the p-wave order on different patches
is π , which means that we have d−wave order between the patches. Comparison between
the values of the exponents for p-wave pairing, SDW, CDW and charge compressibility, as a
function of d1(yc) shows that the most divergent susceptibility is p-wave superconductivity
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Fig. 3.6 The exponents α , which are negative, corresponding to the various susceptibilities:
chiral p−wave superconductivity, CDW, SDW, and uniform charge compressibility (κ),
plotted as a function of d1(yc) for the case in which each of the couplings gℓr for r = 1−4
and ℓ = 0,1 is degenerate. The order of these exponents indicates that chiral p−wave
superconductivity is the leading instability (with the most negative exponent αpw) throughout,
and CDW and SDW have nearly the same values of exponents α in this case.

throughout the parameter range 0< d1(yc)< 1 (see fig. 3.6). The CDW and SDW instabilities
show a weaker divergence, and are followed by charge compressibility. The exponents for
uniform spin susceptibility and π pairing are always positive and hence, these orders are
suppressed. In the case of perfect nesting, i.e. d1 = 1, the SDW and CDW instabilities
become degenerate with p-wave superconductivity.

Now, if a finite Hund’s splitting is introduced initially such that h1
r > h0

r , the above
analysis holds and p−wave superconductivity is still the dominant instability. However,
for an initial Hund’s splitting of the opposite sign, i.e. h0

r > h1
r , we find that the dominant

couplings gℓr at the instability threshold correspond to ℓ = 0 (see fig. 3.3 (b) and (c)). In
this case, the exponents α for each of the susceptibilities χ turn out to be either positive or
numerically close to zero. This is due to subtle cancellations between contributions from the
dominant couplings in different scattering channels. Thus, none of the instabilities considered
above are found to occur in this case within the one-loop approximation. Clearly, the nature
of instabilities in this system is crucially dependent on the sign of the Hund’s splitting.

3.4 Effect of an external magnetization

Here, we address the question of how robust such a superconducting order is against a
time-reversal symmetry breaking perturbation, such as proximity coupling to an external
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Fig. 3.7 The two-dimensional Van-Hove singularities on the TCI surface (indicated by ‘S’)
for (a) M = 0.0, (b) M = 0.04, (c) M = 0.05, and (d) M = 0.07 (in eV) where vx = 2.4 eV
Å−1, vy = 1.3 eV Å−1, m = 0.07 eV and δ = 0.026 eV (values taken from Ref. [52]). We
find that beyond M ≈ 0.05 eV, there are no Van-Hove singularities in the surface electronic
spectrum.



magnetization [212]. We show that the robustness of the surface superconducting order
against an external magnetization is enhanced by the presence of a finite Hund’s interaction.
Specifically, the critical value of spin-splitting (induced by the magnetization), beyond which
p-wave superconductivity is no longer possible, scales directly with the size of the Hund’s
splitting with respect to the repulsive electron interaction strength.

We introduce the effect of an external magnetization by adding a Zeeman splitting term M
to the noninteracting Hamiltonian in Eq. 3.1. In the presence of such a spin-splitting term, the
degeneracy between spins ↑ and ↓ is broken, and the complex form factors u↑ and u↓ differ
both in amplitude and phase. This gives rise to additional components for the couplings hr.
To simplify our analysis, we have integrated out the momentum-dependence of the absolute
values of the form factors |u↑(

−→
k ,M)|2 and |u↓(

−→
k ,M)|2 for the two spin components, over a

suitable range of two-dimensional momenta (kx,ky) around the X points (see fig. 3.7), and
normalized the results with respect to |u↑(

−→
k ,0)|2 and |u↓(k,0)|2 respectively. Henceforth,

we shall denote these k-integrated form factors by v↑ and v↓ for simplicity. The couplings
constants hr associated with the RG flows either involve two factors of either v↑ or v↓, or
one factor of each. Clearly, for M > 0, we have v↑(M)> 1 and v↓(M)< 1 for the positive

energy eigenstates, and the ratio v↑(M)

v↓(M) increases with an increase in M. Corresponding to

every scattering channel hr, we then have four components h↑↑r , h↓↓r , h↑↓r and h↓↑r , alternately
denoted by h0

r , h2
r , h1

r and h3
r respectively. This gives us a set of 16 coupling constants. For

M ≳ 0.05 eV, one also has to take into account the absence of the Van-Hove singularities in
the spectrum (as illustrated in Fig. 3.7). We have performed calculations for higher values of
magnetization as well, and found that the qualitative behavior of the system in that regime
is very similar to what we discuss below. Therefore, we confine our attention to situations
where Van-Hove singularities are present, since that gives us high transition temperatures
even in the weak-coupling regime. The final set of RG equations obtained by taking into
account the multiplicative factors vσ and vσ are given in Appendix-A. To determine the
possible electronic instabilities in this system, we evaluate the susceptibilities χ for various
types of order, as before, by writing down renormalization equations for the corresponding
test vertices, although the total number of instabilities possible increases in this case due
to the lifting of spin degeneracy by the Zeeman splitting term in the Hamiltonian. The
exponents α for different types of pairing now also involve the k−integrated form factors.

3.4.1 Ladder RG equations in the absence of Hund’s splitting

Let us first consider a situation where the various components of interactions hr in the
different scattering channels r = 1− 4 are taken to be identical initially, with no Hund’s
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Fig. 3.8 The phase diagram for y(EF ) as a function of the spin-splitting M when the initial
value of each of the dimensionless RG couplings is chosen to be equal to 0.03. This shows
that for large electron densities, it is possible to stabilize p−wave superconductivity for a
range of values of the Fermi energy EF , up till M ∼ 4 meV (in this case). The values on the
y-axis as well as the value of M up to which p-wave superconductivity may be stabilized
depend on the initial interaction strength. The latter decreases with an increase in the strength
of electronic interactions.

splitting present. In this case, we find that even for a very small value of Zeeman splitting M,
the leading components of the different kinds of interactions near the fixed point yc correspond
to spin ↑ (i.e. the ℓ = 0 channel). Now, if we introduce test vertices for different kinds of
pairing and calculate the exponents for the divergence of the respective susceptibilities, we
find that each of the exponents α is either positive or numerically close to zero. This indicates
the absence of any electronic instabilities in this case. Clearly, p-wave superconductivity
cannot be stabilized at energies corresponding to the fixed point of the parquet RG. However,
when the Fermi energy EF associated with the system exceeds the energy ωc corresponding
to the critical point yc, the RG flow must be terminated at EF , and any possible instabilities
will then depend on the order of the different couplings at the Fermi energy. These are
determined using a ladder RG approach, which is described in detail in Ref. [213].

Two kinds of vertices continue to flow logarithmically at energies below the Fermi energy
EF : vertices with zero total momentum, and with total momentum exactly equal to the
nesting vector Q in two dimensions. The vertices with zero total momentum are the h3 and h4

terms in our RG analysis and the vertices with total momentum Q are the h1, h2 and h3 terms.
The values of hr at EF act as the bare couplings for the theory at ω < EF . There are two
kinds of h3 vertices with a momentum transfer Q, h3a and h3b and we denote the h3 vertex
with zero total momentum as h3c. We shall refer to the vertices with zero total momentum



as hr(0) and the vertices with total momentum Q as hr(Q). The ladder RG equations are
obtained by considering those diagrams which still yield a logarithmic divergence.

The ladder RG equations for our system, where now y ≡ ln[EF
ω
], are given in Appendix-B.

These equations can be solved to give

hσσ
3 (0)−hσσ

4 (0) =
(hσσ

3 )EF − (hσσ
4 )EF

1−2vσ vσ ((hσσ
3 )EF − (hσσ

4 )EF ) log[EF
ω
]

for the superconducting vertex. A similar situation arises for the SDW instability in this
regime. The competition between these instabilities depends on the respective energies at
which different combinations of couplings diverge, and thus, on their values at the Fermi
energy EF . The first instability occurs in the channel for which the coupling at ω ∼ EF is the
largest.

Thus, we find that for relatively large electron densities, when the Fermi energy EF

exceeds the energy (ωc) corresponding to the critical point of the RG flow yc, p-wave
superconducting order can be stabilized on the TCI surface up to a small value of the spin-
splitting M (∼ 1 meV). For larger values of Zeeman splitting introduced by an external
magnetization, we find that a spin density wave (SDW) modulation may be possible over
and above the expected uniform spin polarization on the surface, if the number density of
electrons is sufficiently large. Although p-wave superconductivity is degraded even by an
infinitesimal external magnetization in the absence of Hund’s splitting, it is thus possible
to stabilize this phase over a range of electron densities (and corresponding Fermi energies
EF ). A phase diagram for y(EF) as a function of the spin-splitting term M is shown in Fig.
3.8 for an initial value of 0.03 for each of the dimensionless couplings. It should be noted
that the exact values on the y−axis, as well as the value of spin-splitting M (on the x-axis)
beyond which p-wave superconductivity is no longer possible, are both dependent on the
initial interaction strength being considered. In particular, we find that the range of values of
M for which p−wave superconductivity may be stabilized decreases with an increase in the
strength of electronic interactions.

3.4.2 Critical value of Zeeman splitting for a finite Hund’s splitting

For a multiorbital system like Pb1−xSnxTe, one must also take into account the effects of
Hund’s splitting. This effect can be built into our RG analysis by assuming the initial values
of interactions in each of the scattering channels r to be such that (hσσ

r −hσσ
r )> 0 (where

σ =↑,↓). As seen in the previous section, in the presence of an external magnetization,
p-wave superconductivity is destroyed (at the parquet level) even by a small value of Zeeman
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Fig. 3.9 The behavior of the critical value of the spin-splitting Mc (in eV) as a function of
the Hund’s splitting ∆ as a percentage of the initial interaction g ( i.e. hσσ

r = g initially for
r = 1−4 and σ =↑,↓), where g = 0.1 in this case. We find this behavior to be extremely
insensitive to the initial value considered for the interactions.

splitting. However, this is no longer true if a finite Hund’s splitting is introduced initially.
For a Hund’s splitting of △= hσσ

r − hσσ
r (for each scattering channel r, where σ =↑,↓),

p-wave superconductivity continues to be the leading instability at the parquet level up to a
finite value of the Zeeman splitting M (which depends on the value of △ being considered).
Corresponding to each value of ∆, a critical value of the spin-splitting Mc is obtained such
that for M > Mc, p-wave superconductivity is no longer possible. The variation of Mc as a
function of the percentage Hund’s splitting ∆

g (where g denotes the initial value chosen for
hσσ

r for r = 1−4 with σ =↑,↓) is shown in Fig. 3.9 for g = 0.1. The behavior of Mc as a
function of ∆

g turns out to be remarkably insensitive to value of g, i.e. the initial interaction
strength being considered (within the regime where perturbation theory is valid). To illustrate
the nature of the most divergent couplings in the two limits, RG flows for M < Mc and
M > Mc with a dimensionless initial repulsive interaction of 0.1 and a Hund’s splitting of
5% ( |h

σσ
r −hσσ

r |
|hσσ

r | = 0.05) introduced initially, where the critical value of the Zeeman splitting
Mc ≈ 6.1 meV, are shown in the Fig. 3 in Appendix-B. The corresponding behavior of
hσσ ′

r (y)(yc − y) as a function of (yc − y), which illustrates the order of the fixed point values
gσσ ′

r for the different couplings in the above-mentioned two cases, is shown in the Fig. 4 in
Appendix-B.



3.5 Summary

To summarize, we have studied competing electronic instabilities on the (001) surface
of Pb1−xSnxTe using a parquet renormalization group analysis and established that chiral
p−wave superconductivity is the dominant electronic instability in this system. The (001)
surface features a double-Dirac cone structure, along with Type-II Van Hove singularities,
which enhance the effective transition temperatures for competing Fermi-surface instabilities
brought about by weak repulsive interactions. The chiral nature of the superconducting
order arises not due to Fermi-surface deformations but due to the Berry phases associated
with the surface states. The approximate Fermi-surface nesting on the (001) surface makes
it crucial to study phase competition by taking into account competing instabilities in the
particle-particle and particle-hole channels. We have further studied the effect of an external
Zeeman spin-splitting field on the chiral p−wave order and find that in the presence of a
finite Hund’s splitting, there exists a critical value of the Zeeman field beyond which chiral
p−wave order is no longer present. This implies that multiorbital effects in this system play
an important role in stabilizing electronic order on the surface.





Chapter 4

Impurity-induced subgap states as an
experimental signature of chiral p−wave
order

Recent point-contact spectroscopy measurements [188, 189] have confirmed the existence
of superconductivity on the (001) surface of Pb1−xSnxTe. In these experiments, the su-
perconductivity is indicated by a sharp fall in the resistance of the point contact below a
characteristic temperature (3.7-6.5 K) along with the appearance of a spectral gap with
coherence peak-like features, and zero-bias anomalies, which are a consequence of Andreev
tunneling. However, the nature of the superconducting order remains to be ascertained. On
the other hand, zero-bias anomalies appearing in scanning tunneling spectra, which have
been discussed extensively as signatures of Majorana bound states [214, 167, 215], may also
originate from other independent causes such as topologically trivial Andreev bound states
[191, 190, 194, 192], band-structure effects [195] and stacking faults [196, 216]. While it has
been shown that Majorana bound states can be realized at the end points of linear defects in a
chiral p−wave superconductor [179], these may not exist for other types of surface defects,
such as pointlike ones, or may be difficult to detect experimentally. An alternate strategy
would be to go beyond the Majorana states and instead use impurity-induced Shiba-like states
[204, 62] for probing the superconducting order. In this part of the thesis, we identify the
parameter regimes of doping where a chiral p−wave superconducting order may be realized
on the TCI surface, and where impurity-induced Shiba-like subgap states can be reliably used
to establish the existence of the chiral p−wave order [217]. We also obtain exact analytical
expressions for the bound-state spectra and wave functions, as a function of the parameters
of the system, and our analysis sheds light upon the properties of the bound states that can be
used to identify the nature of the superconducting order.
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Fig. 4.1 The figure shows the bandstructure of the two upper surface bands in the vicinity of
the X point as a function of (kx,ky) in the presence of a Zeeman spin-splitting of magnitude
M, of different strengths; (a) M = 0.0, (b) M = 0.005, (c) M = 0.01, (d) M = 0.05, (e)
M = 0.1 (in eV). Note that a gap is introduced at the X point as M is turned on, and with
increasing values of M, this gap increases, and the curvature of the lower band gradually
changes sign. A change in the curvature can also affect the nature of the impurity-induced
bound states realized in the chiral p−wave superconducting state. In the paper, we work in
the regime M < m, where the mass term m = 0.07 eV determines the value of the energy at
the X point measured with respect to the pair of Dirac points.

4.1 Setting up the Nambu Hamiltonian

By examining the surface Hamiltonian in Eq. 3.1, it is evident that the two positive energy
bands (and likewise the two negative energy ones) touch each other at the X point, due to
time-reversal symmetry, with a massless Dirac-like dispersion in its vicinity. By introducing
a small Zeeman spin-splitting field, one can break the time-reversal symmetry in this system
and lift the degeneracy between the two bands at the X point. We introduce a Zeeman
spin-splitting term Msz in the non-interacting surface Hamiltonian in Eq. 3.1, which lifts the
degeneracy between the two bands at the X point, and results in the following dispersions for



the four surface bands

εk,± =±
√

k2
xv2

x + k2
yv2

y +m2 +δ 2 +M2 ±2
√

M2m2 + k2
xm2v2

x + k2
y(m2 +δ 2)v2

y . (4.1)

For surface momenta (kx,ky) in the vicinity of the X point, we now have a massive Dirac-like
dispersion, which can be approximately written as

εkx,ky =C−A(k2
x + k2

y), (4.2)

for the lower energy surface band, with C =
√

(M−m)2 +δ 2 and A ∼ 1/(MC), measured
with respect to the pair of Dirac points lying on either side of the X point. Since we are
interested in low values of doping, we will confine our attention to the regime corresponding
to small momenta (kx,ky), where M < m. Please refer to Fig. 4.1 for a pictorial depiction of
the surface bandstructure in the vicinity of the X point, in the presence of a Zeeman splitting
term.

In our analysis of impurity-induced bound states in a chiral p−wave superconductor, we
shall work with the following Bogoliubov-de Gennes (BdG) Hamiltonian:

H0(k) =

(
εkx,ky −µ ∆(kx − iky)

∆(kx + iky) −εkx,ky +µ

)
, (4.3)

where εkx,ky refers to the noninteracting dispersion in Eq. 4.2 and µ refers to the chemical
potential. This Hamiltonian acts in the Nambu space (ck,c

†
−k) where ck are the effectively

spinless fermions in the lower energy surface band, and ∆k ≡< ckc−k >= ∆(kx − iky) is the
superconducting order parameter. In the absence of ∆, Eq. 4.3 would correspond to two
copies of the Hamiltonian of a nonrelativistic particle whose energies are reckoned from an
arbitrary value µ .

Substituting the expression for εkxky from Eq. 4.2 above, the spectrum corresponding
to the Nambu Hamiltonian in Eq. 4.3 is given by E = ±

√
(Ak2 +µ ′)2 +∆2k2, where

k2 = k2
x + k2

y , and µ ′ = µ −C is an effective chemical potential reckoned from the top of
the band, corresponding to the energy value closest to the higher energy surface band. We
introduce dimensionless quantities

λ =
∆2

2A|µ ′| (4.4)

and
ε =

E
|µ ′| , (4.5)
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Fig. 4.2 The figure shows a schematic illustration of the Nambu bands when (a) µ < 0, and
the chemical potential lies in the gap (b) µ > 0 and the chemical potential intersects the
bands, in the absence of the chiral p−wave order parameter ∆. The bound state energies
denoted by the red and purple lines lie within the gap in (a) and intersect the bands in (b).
The chemical potential µ lies in the centre and is denoted by the blue line in (a) and the green
line in (b). The filled and empty part of the bands are represented by solid and dashed lines
respectively. Clearly, in (a) both the bands as well as the impurity states are empty.

which appear frequently in our analysis. For non-zero values of µ , the spectrum of the BdG
Hamiltonian is gapped if ∆ is finite. We look specifically for bound states which lie within
the gap.

4.2 Impurity-induced subgap bound states

In order to understand the principle behind the classification of impurity-induced states
in different parameter regimes for our system, we first consider the simpler problem of
impurity-induced states in doped semiconductors, and the difference in the nature of the
impurity bound states in the presence and absence of superconductivity, as well as the role
played by the position of the chemical potential in determining this difference.

4.2.1 Impurity states in doped semiconductors

It is well-known that in one dimension, a bound state always exists for a nonrelativistic
particle in the presence of an attractive Delta-function potential. Consider a single impurity
in a semiconductor, and writing down the Schrodinger equation in momentum space, we
have

(εk −µ)ψk +
∫

dk′Vk,k′ψk′ = Eψk (4.6)



(a)

k

E(k)

(b)

k

E(k)

Fig. 4.3 The figure shows a schematic illustration of the Nambu bands when (a) µ < 0, and
the chemical potential lies in the gap (b) µ > 0 and the chemical potential intersects the
bands, in the presence of the chiral p−wave order parameter ∆. Clearly, an additional band
gap opens in (b) due to the superconducting order. The impurity levels denoted by the red
and purple lines in (a) lie within the gap, while in (b), a pair of impurity levels denoted by
blue and yellow lines lie within the smaller gap while another pair intersects the two bands.
The chemical potential µ lies in the centre and is denoted by the blue line in (a) and the
purple line in (b). The filled and empty part of the bands are represented by solid and dashed
lines respectively. In (a), both the bands as well as the impurity states are empty.

where Vk,k′ =V0 and µ denotes the chemical potential. Using

ψk =
−V0

∫
dk′ψk′

(εk −µ −E)

and integrating both sides over the momentum k, we obtain the following condition on the
defect potential strength V0 for realizing impurity-induced bound states

V0 =
−1∫ dk

(εk−µ−E)

which always gives rise to a solution, provided the integrand does not have any real poles.
When such impurity bound states are present, they appear at an energy value proportional to√

V0 below the bottom of the conduction band and move further downwards as V0 increases.
If εk is the valence band of a semiconductor, then the V0 must be positive, and the bound states
appear above the top of the valence band. The existence of the impurity band is independent
of the chemical potential µ , but the chemical potential determines whether the impurity band
is occupied or not.

Now, the same problem can be reexpressed in the Nambu representation by introducing
another copy of the problem which is related to the first one by a particle-hole transformation.
In the Nambu representation, the impurity bound states appear exactly as discussed above,



except that since there are now two copies, for each positive impurity level, there is a
corresponding negative one with the same magnitude. Consider the example of an impurity
bound state arising from donor dopants in a semiconductor, and εk > 0 corresponds to the
conduction band. The chemical potential is the reference energy from which all energies
are measured, and in this case, the negative value of µ implies that the chemical potential
does not intersect the bands, and both the bands are empty. This is illustrated in Fig. 4.2 (a)
above. On the other hand, when µ > 0, the bands as well as the impurity levels cross the
Fermi level, and become occupied, resulting in a new situation depicted in Fig. 4.2 (b). This
is merely an artefact of the chemical potential changing sign and the levels that have crossed
are those whose nature has changed from being empty to being occupied.

The situation changes dramatically in the presence of a chiral p−wave superconducting
order. If the chemical potential µ < 0, the impurity levels remain empty but the bands shift
in magnitude, as shown in Fig. 4.3 (a). Here, we continue to obtain subgap states and the
impurity levels are indistinguishable from those in semiconductors. However, when µ > 0,
the presence of superconductivity introduces a gap at the points where the two dispersing
bands intersected, as shown in the Fig. 4.3 (b). In this regime, the impurity levels which
were formerly present only near the extrema of the upper and lower Nambu bands abruptly
collapse to take values within the gap, and therefore, we now obtain subgap states. Thus, in
the presence of a chiral p−wave order, if µ < 0, one continues to obtain subgap states which
are indistinguishable from impurity states in semiconductors, while if µ > 0, new subgap
states appear due to the superconducting order in the system.

In an analogous manner, we identify different parameter regimes of doping for the (001)
surface of Pb1−xSnxTe, classified as the normal gap and the inverted gap regimes, only in the
latter of which one can realize subgap bound states depending crucially upon the existence
of the chiral p−wave order.

4.2.2 Conditions for obtaining subgap bound states

We derive the general condition for realizing subgap bound states localized in one or more
directions, associated with point or linear defects on the surface of the TCI, modeling such
defects by a multidimensional Dirac delta-function V (xi) = V0 ∏i δ (xi), where i refers to
the dimension, and V0 represents the strength of the defect potential. The delta-function
approximation for the potential defects is justified, provided that the defect potential is
sufficiently smooth on the scale of the lattice constant (to avoid scattering processes between
the X1 and X2 points) but nevertheless, short-ranged compared to the wavelength of the
electrons.



The Schrödinger equation in momentum space, in the presence of the defect potential is
given by

H0(k)ψk +
∫
(ddk′)Vk,k′ψk′ = Eψk, (4.7)

where H0(k) is defined in Eq. 4.3 above, E refers to the value of the bound state energy, and
Vk,k′ =V0σz for the case of a point defect, and 2πV0δ (ky − k′y)σz for a linear defect along the
y−direction. In the latter case, the integration over k′y gets rid of the Delta function, leading
to an equation which is diagonal in ky but mixes the kx components.

Inverting Eq. 4.7, we have

ψk =−[H0(k)−EI]−1V0σz

∫
(ddk′)ψk′, (4.8)

where it is understood in Eq. 4.8 above and also in the analysis that follows that the integration
runs only over kx for a linear defect along the y−direction. Next, we integrate both sides over
k, cancel the common term

∫
(ddk)ψk on both sides and arrive at the following condition:

Det{−
∫
(ddk)[H0(k)−EI]−1V0σz − I}= 0, (4.9)

for the bound state. Here the integration over each component of k ranges from −∞ to
∞. Note that when

∫
(ddk)ψk = 0, the wavefunction vanishes at the origin, and the above

condition is no longer applicable, since we cannot cancel the common terms. This is, for
example, true for topologically non-trivial zero-energy Majorana bound states in linear
defects, for which the real-space wavefunction acquires its peak values at the physical ends
of the defect and decays into the interior. When the defect being considered is infinitely long
in one of the directions, the ends not being a part of the system, one cannot mathematically
realize Majorana bound states within this approach. Here we have explicitly excluded such
states from consideration.

Using the expression for H0(k) in Eq. 4.3, the condition in Eq. 4.9 translates to

Det

(
−V0I1(0,0,E)−1 V0I3(0,0,E)
−V0I4(0,0,E) −V0I2(0,0,E)−1

)
= 0, (4.10)

where we define

I1,2(x,y,E) =
∫

∞

−∞

(dkx)(dky)exp[ikxx]exp[ikyy]
εkx,ky −µ ±E

(εkx,ky −µ)2 −E2 +∆2(k2
x + k2

y)
, (4.11)



and

I3,4(x,y,E) =
∫

∞

−∞

(dkx)(dky)exp[ikxx]exp[ikyy]
∆(kx ∓ iky)

(εkx,ky −µ)2 −E2 +∆2(k2
x + k2

y)
. (4.12)

Let us consider first the case of point defects. From Eq. 4.10, we obtain the following
condition for the strength of the defect potential V0 that gives a bound state at energy E:

(V0I1(0,0,E)+1)(V0I2(0,0,E)+1) = 0. (4.13)

From Eq. 4.13, it is evident that for a given value of V0, we have a pair of bound states
with energies ±E, which is a reflection of particle-hole symmetry of the BdG Hamiltonian.
Conversely, for every value of the bound state energy there exist two possible values for the
strength of the defect potential, V0, which do not in general have the same magnitude, for
which one may realize such a state.

For a line defect of infinite length along, say, the y−direction, the defect potential may
be written as V (x) =V0δ (x), such that the translational symmetry is broken only along the
x−direction. In this case, we obtain, from Eq. 4.10, the following condition for realizing a
subgap bound state with an energy E, where ky is conserved and takes real values.

(V0I1(0,0,E)+1)(V0I2(0,0,E)+1)+V 2
0 I3(0,0,E)I4(0,0,E) = 0. (4.14)

The relation between V0 and E is

V0(E) =
−(I1 + I2)±

√
(I1 − I2)2 −4I3I4

2(I1I2 + I3I4)
. (4.15)

Since V0 is real, the discriminant must be positive, resulting in a condition which relates the
allowed values of the bound state energy to the quantum number ky i.e. min(E2

g ,(µ
′)2)≥

E2 ≥ ∆2k2
y . The lowest energy bound states clearly correspond to the case where ky = 0. This

leads to the conditions 1+ I1V0 = 0, or 1+ I2V0 = 0.
From Eq. 4.8, we can also obtain expressions for the bound state wavefunctions. Taking

an inverse Fourier transform on both sides, we obtain the following expression for the
wavefunction in real space:

ψ(x,y) =

(
a(x,y)
b(x,y)

)
= (−V0)

(
I1(x,y,E)a0 − I3(x,y,E)b0

I2(x,y,E)b0 + I4(x,y,E)a0

)
, (4.16)



where ψ0 =

(
a0

b0

)
is the real-space wavefunction at the origin, i.e. ψ(0,0), and I1,2(x,y,E)

and I3,4(x,y,E) are as defined in Eqs. 4.11 and 4.12. The normalization condition is∫
dx
∫

dy(|a(x,y)|2 + |b(x,y)|2) = 1. (4.17)

For the case of a point defect, we find that, for any non-zero value of the bound state
energy E, putting x = y = 0 on both sides of Eq. 4.16 above results in the elimination of
one of the components a0 or b0 when the condition in Eq. 4.13 is satisfied. For E = 0,
however, it simply gives rise to a consistency condition without yielding any new information
about the components at the origin, and the only constraint on the constants a0 and b0 is
then the normalization condition in Eq. 4.17. This is a manifestation of an internal SU(2)
rotational symmetry (in particle-hole space), which makes the zero energy state centered
at the origin useful as a possible quantum qubit. A similar condition is also obtained for a
linear defect, but in the specific case where ky = 0. Since there are arbitrarily close bound
states parametrized by nonzero ky, the zero energy state is not useful as a qubit for the case
of linear defects.

4.3 Bound state spectra and wavefunctions

In obtaining the analytical expressions for the bound state spectra and wavefunctions, we shall
distinguish between the situations where the chemical potential lies within the conventional
or normal band gap between the pair of surface bands, and those where it intersects the lower
surface conduction band, giving rise to an inverted band gap at small momenta. We shall find
that the subgap states that arise in the inverted band gap situation crucially depend on the
existence of the chiral p−wave order. On the other hand, in the normal band gap situation,
the impurity bound states are not qualitatively affected in the limit where the chiral p−wave
order is absent. A schematic of the band structure near the X point on the (001) surface,
together with various representative positions for the chemical potential is shown in Fig. 4.4.
If the gap is sufficiently large and the Fermi level does not intersect the upper band, then
(interband) s−wave superconductivity, which occurs in case (a) of Fig. 4.4, is precluded.
For the case (b) in Fig. 4.4 where the chemical potential does not intersect the lower surface
conduction band, the band gap is conventional, as in, say, a semiconductor, and we call it
normal. For the case (c) in Fig. 4.4, where it intersects this band, an additional band gap
opens up at the points of intersection (not depicted in Fig. 4.4), due to the presence of the
chiral p−wave superconducting order. This corresponds to an inverted band gap. In what
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Fig. 4.4 The figure shows a schematic illustration of the bandstructure in the vicinity of the
X point, and three different doping regimes that can either result in qualitatively different
electronic instabilities on the (001) surface of Pb1−xSnxTe (i.e. either conventional s−wave
or chiral p−wave order), or lead to a difference in the nature of impurity-induced bound
states realized in a chiral p−wave superconducting state. In (a), the Fermi level intersects two
of the surface bands, which are time-reversed counterparts. In this case, interband pairing of
electrons gives rise to s−wave superconductivity, and no Shiba-like states exist for potential
defects on the surface. In (b) and (c), the pairing of the surface electrons is of the chiral
p−wave type. We show in the paper that only the latter case, (c), when the Fermi level
intersects the lower surface conduction band, Shiba-like subgap states can be unambiguously
attributed to the presence of topological superconductivity.



follows, we will be working with the valence band, as that is the physical situation prevailing
in our system.

4.3.1 Point defects

Let us first consider the case of a point defect. In plane polar coordinates, Eq. 4.13, relating
the impurity strength to the bound state energy E, takes the form

1
V0

=
1

4π

∫
Λ2

0
dυ

(Aυ +µ ′)∓E
(Aυ +µ ′)2 −E2 +∆2υ

, (4.18)

where υ = k2 and µ ′ ≡ µ −C, and Λ is the large momentum cutoff, physically corresponding
to the inverse of the width of the potential well, which is approximated to be a Delta-function
potential in our treatment. We now examine Eq. 4.18 respectively in the normal and inverted
band gap regimes.

Conditions for bound states in different parameter regimes

(a) Normal band gap: µ ′ > 0

When the chemical potential µ >C (or µ ′ > 0), the condition for subgap bound states in Eq.
4.18 above evaluates to

1
V0

≈ 1

2A
√

(λ +1)2 − (1− ε2)

[
(λ ± ε) ln

∣∣∣∣∣λ +1−
√
(λ +1)2 − (1− ε2)

λ +1+
√
(λ +1)2 − (1− ε2)

∣∣∣∣∣

+

√
(λ +1)2 − (1− ε2)

(
ln | A2Λ4

|µ ′|2(1− ε2)
|
)]

. (4.19)

For any value of the bound-state energy |E|< µ ′, we find that (λ ±ε)<
√
(λ +1)2 − (1− ε2),

implying that V0 is always a positive quantity. Physically, this corresponds to impurity (hole)
states near the valence band of a semiconductor, and in this regime, one always obtains
subgap states, even when ∆ is turned off. The impurity levels here lie in the manner shown in
Fig. 4.3 (a).

(b) Inverted band gap: µ ′ < 0

Here, the chemical potential µ <C, or µ ′ < 0, and this corresponds to the inverted band gap
situation, which corresponds to the expression in Eq. 4.19 above, with λ →−λ . In this case,



a gap opens either at k = 0 or at the points of intersection of the two Nambu bands (see Fig.
4.3 (b)). If, in this regime, ∆ is turned off, this gap will close and the impurity levels will be
pushed away to the positions originally predicted for impurity states in a semiconductor (see
Fig. 4.2 (b)).

Exponentially decaying bound state wavefunctions for point defects

Let us now calculate the expressions for the bound state wavefunctions for the case of a
point defect. From Eq. 4.16, it can be seen that the spatial dependence of the bound-state
wavefunctions is determined by the integrals I1,2(x,y,E) and I3,4(x,y,E), defined in Eqs. 4.11
and 4.12 respectively. In plane polar coordinates, these equations assume the form

I1(r) =− 1
(2π)2

∫
dkdφ k exp[ikr cos[θ −φ ]]

(Ak2 +µ ′)∓E
(Ak2 +µ ′)2 −E2 +∆2k2 (4.20)

and

I2(r,θ) =
1

(2π)2 exp[iθ ]
∫

dkdφ k exp[ikr cos[φ ]]exp[iφ ]
∆k

(Ak2 +µ ′)2 −E2 +∆2k2 (4.21)

where µ ′ ≡ µ −C, k =
√

k2
x + k2

y , and tan[φ ] = y/x. We illustrate the specific case of
E = 0 where simple analytical expressions for the wavefunctions can be obtained in terms
of elementary functions. Qualitatively similar results are expected for other bound-state
energies with E ̸= 0. We once again consider regimes with a normal and an inverted band
gap.

(a) Normal band gap: µ ′ > 0

Using the well-known result
∫

dφ exp[ikr cos[θ −φ ] = 2πJ0(kr), the expression of I1(r) from
Eq. 4.20 is as follows:

I1(r) =
1

4π

∫
dkkJ0(kr)

2
A(α +β )

(
α

k2 +α2 +
β

k2 +β 2

)
=− 1

2πA(α +β )
(αK0 (αr)+βK0 (β r)) , (4.22)

where α,β =
√

µ ′/A((
√

(λ +2±
√

λ )/
√

2).



Thus, we find that I1(r) is an exponentially decaying function of at large distances r from
the position of the defect. Note that when ∆ = 0, i.e. λ = 0, α and β are real, giving rise to
exponentially decaying states.

Similarly, using the result
∫

dφ exp{ikr cos[θ −φ ]}exp[iφ ] = iexp[iθ ]2πJ1(kr), we may
simplify the expression for I2 given in Eq. 4.21 as

I2(r,θ) =
−iexp[iθ ]

2πA(α +β )

∫ dx
r

J1(x)
(

x2

x2 +α2r2 −
x2

x2 +β 2r2

)
=

−iexp[iθ ]
2πA(α +β )

1
r
(K1(αr)−K1(β r)) , (4.23)

where kr ≡ x, α,β =
√

µ ′/A((
√

λ +2±
√

λ )/
√

2), and in the second line we have used the
relation [218] ∫

∞

0
dx

xJ0(ax)
x2 +α2r2 = K0(aαr), (4.24)

differentiated both sides with respect to the parameter a and taken the limit a → 1, to obtain
Eq. 4.23 above. We therefore find that the function I2(r,θ) decays exponentially at large
distances.

(b) Inverted band gap: µ ′ < 0

Here, we consider a situation where µ <C, or µ ′ < 0, and repeat the analysis of the previous
section by replacing µ ′ by −|µ ′| in Eqs. 4.20 and 4.21.

For λ ≥ 2, we then have,

I1(r) =
1

2π

∫
dk kJ0(kr)

1
A(α −β )

(
2α

k2 +α2 −
2β

k2 +β 2

)
=

1
2πA(β −α)

(αK0(αr)−βK0(β r)) ,

where now α,β =
√

µ ′/A((
√

λ ±
√

λ −2)/
√

2). Similarly, from Eq. 4.21, we write the
expression for I2(r,θ) as

I2(r,θ) =
i

2π
exp[iθ ]

∫
dk J1(kr)

1
(A)

1
(β −α))

(
x2

x2 +α2r2 −
x2

x2 +β 2r2

)
=

iexp[iθ ]
2πA(β −α)

1
r
(K1(αr)−K1(β r))



where α,β =
√

µ ′/A((
√

λ ±
√

λ −2)/
√

2), following steps similar to the previous case,
where µ ′ > 0. The results obtained are identical for λ < 2, but with α,β =

√
|µ ′|/A((

√
λ ∓

i(
√

2−λ )/
√

2). Please refer to Appendix-C for a detailed derivation of the asymptotic forms
of the bound state wavefunctions.

In contrast to a chiral superconductor, a nodal superconductor gives a qualitatively
different wavefunction for the impurity bound state. For instance, when the superconducting
order parameter ∆k = ∆k cos[φ ], we have

I2(r,θ) =
cos[θ ]
(2π)

∫
dk k

∆k
(Ak2 +µ ′)2 +∆2k2 iJ1(kr).

Similarly, for ∆k = ∆k sin[φ ],

I2(r,θ) =
sin[θ ]
(2π)

∫
dk k

∆k
(Ak2 +µ ′)2 +∆2k2 iJ1(kr).

Thus, unlike a chiral p−wave superconductor, the above types of superconducting order
feature nodal lines in the bound-state wavefunction, at large distances from the position of
the defect. One could use STM imaging of the bound-state wavefunctions as a means to
distinguish between nodal and chiral p−wave order on the surface.

4.3.2 Line defects

Here we study the nature of bound states for long linear defects. In this case, we write the
defect potential as V (x,y) =V0δ (xcos[α]+ysin[α]), and consider the special case of α = 0,
i.e. V (x) = V0δ (x). Once again, we study the two regimes with a normal and an inverted
band gap, respectively.

(a) Normal band gap: µ ′ > 0

Following Eq. 4.14, the relation between V0 and the bound state energy E (for ky = 0) is
given by

1
V0

=
1

(2π)

∫
∞

0

dy
2
√

y
(−Ay−µ ′±E)
A2(y+a)(y+b)

, (4.25)

where µ ′ ≡ µ −C, y = k2
x and a,b = (µ ′/A)((λ +1∓

√
((λ +1)2 − (1− ε2)). Evaluating

the integral in Eq. 4.25, we arrive at

V0,± =
4A(

√
a+

√
b)

(1+
√
(1∓ ε)/(1± ε))

, (4.26)
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Fig. 4.5 The figure shows the variation in the strength of the defect potential V0 required
to give a subgap bound state, as a function of the magnitude of the bound state energy E
for a line defect. The cases considered are: (a) µ ′ > 0 for a normal band gap (b) µ ′ < 0 for
an inverted band gap. The parameters chosen are A = 4.0 eVÅ, µ ′ = 20 meV and ∆ = 5
meVÅ. We find the behavior to be qualitatively different in the two cases. In the latter case,
V0 → ∞ as E → 0 and the defect potential strength V0 can change sign, which opens up the
possibility of realizing subgap bound states for both potential wells and barriers of various
sizes. Here, 1 and 2, denoted by the solid and dashed curves respectively, refer to the two
solutions obtained for the strength of the potential V0. The dashed line refers to the value of
the energy gap, which is given by 2|µ ′| for the topologically trivial regime in (a) and 2Eg for
the topologically nontrivial regime in (b).



with
√

ab = |µ ′|
√

1− ε2/A. The variation of V0 as a function of the bound state energy E
is shown in Fig. 4.5. Here we find a trivial crossing of the energy level with the chemical
potential as V0 is tuned, which does not depend on the presence of superconductivity. We
emphasize here that the crossing that we observe is an artefact of the Nambu representation,
and would appear even in the absence of superconductivity.

The subgap bound states in this case form a part of a continuum of states parametrized
by different values of ky. The corresponding expression obtained by solving Eq. 4.14 for a
finite, real value of ky is given by

V0,± =
2A(

√
a+

√
b)
√

1± εe
(√

1∓ εe +
√

1± εe
)(√

1− ε2
e +1

) ,

with a,b = (µe/A)(λe + 1∓
√

(λe +1)2 − (1− ε2
e )), µe = µ ′+Ak2

y , E2
e = E2 −∆2k2

y and
λe = ∆2/(2A|µe|). Clearly, V0 is always positive in this case, corresponding to hole-like
states near the valence band.

(b) Inverted band gap: µ ′ < 0

When the chemical potential intersects the lower surface conduction band, we have µ ′ < 0.
Evaluating the resulting integral from Eq. 4.14, we obtain the relation

V0,± =
4A(

√
a+

√
b)

(1−
√
(1± ε)/(1∓ ε))

, (4.27)

where a,b = (|µ ′|/A)(λ −1∓
√

(λ −1)2 − (1− ε2)). Clearly, in this case, the amplitude of
the defect potential may change sign depending upon the value of the bound state energy E
under consideration, and in general, subgap bound states can be realized for both potential
wells and barriers, corresponding to particle-like and hole-like states, as is also evident from
Fig. 4.5. The defect potential strength corresponding to the bound state solutions move
further away as we approach ε → 0, as illustrated in Fig. 4.5 (b).

Similarly, for a finite, real value of ky, we obtain the relation

V0,± =
2A(

√
a+

√
b)
√

1∓ εe
(√

1± εe −
√

1∓ εe
)(√

1− ε2
e −1

) ,

where µe = µ ′−Ak2
y , E2

e = E2−∆2k2
y , and a,b = (|µe|/A)(λe−1∓

√
(λe −1)2 − (1− ε2

e )).
Note that the above expression is only applicable in the regime where ε2

e < 1.



On the other hand, for ε2
e > 1, which can only be satisfied for µ ′ < 0, we have the

alternate expression

V0,± =
4A2

√
b(b+a)(Ab+ |µe|(1± εe))

(A2b2 +2A|µe|b+µ2
e (1− ε2

e ))
, (4.28)

where a,b = (µe/A)(
√
(λe −1)2 − (1− ε2

e )∓ (λe −1)). The RHS in Eq. 4.28 may change
sign for bound state energies satisfying the condition |εe|> λe.

4.4 Summary

In summary, we have examined the parameter regimes where a chiral p−wave supercon-
ducting order can exist on the (001) surface of Pb1−xSnxTe, depending upon the position of
the chemical potential and the strength of the Zeeman splitting. Within the chiral p−wave
regime, we further identified two situations, corresponding to the normal and the inverted
band gap and showed that although Shiba-like subgap states can exist in both these regimes,
only in the latter case, such states can be attributed to the presence of a chiral p−wave
superconducting order. As a possible application of our results, we show that for the case
of point defects, the wavefunctions corresponding to the zero-energy bound states have an
internal SU(2) rotational symmetry, which makes them useful as possible quantum qubits.
We have obtained exact analytical expressions for the bound state spectra and wavefunctions
in different regimes, and used the properties of these states to identify the chiral p−wave
nature of the superconducting order.
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Chapter 5

Kitaev materials: spin-orbit physics in
correlated electron systems

In recent times, the emergence of novel quantum states of matter in correlated electron
systems with strong spin–orbit coupling (SOC) has been a subject of great interest, both
theoretically and experimentally [21, 22]. The combination of electronic correlations and
SOC engenders many new and exotic quantum phases of matter, such as topological insulators
and superconductors [25, 105, 145], unconventional magnetism [219] and spin liquids [220–
225]. While 3d transition metal oxide systems form a traditional playground for strong
correlation effects [35, 226], it has recently been realized that 4d and 5d transition metal
compounds provide an excellent platform for realizing the cooperative effects of electron
correlations and strong spin-orbit coupling [21]. The latter class of materials are expected
to show metallic behavior owing to their relatively larger electronic bandwidths, but are
instead found to host exotic insulating states, now recognized to be narrow-gap Mott states
aided by strong spin-orbit coupling [227]. Such systems are governed by a combination
of electronic correlations, spin-orbit entanglement, and crystal-field effects, and give rise
to peculiar correlated ground states and excitations. They exhibit magnetic states with
unusually low ordered moments, which are best described as effective pseudospin j̃ = 1

2
entities [18, 227, 228], due to the strong spin-orbit coupling. In particular, these have been
proposed to realize the physics of the Kitaev spin model [77] with bond-dependent spin-spin
interactions on a 2D honeycomb lattice, which harbors gapped and gapless spin-liquid states
with emergent Majorana fermionic excitations. The search for a quantum spin liquid (QSL)
[5, 6], a collective quantum state with long-range entanglement and fractionalized excitations,
has been a long-standing quest in modern Condensed Matter Physics, and is a part of the
greater initiative towards understanding the existence and nature of phases beyond Landau’s
theory of spontaneous symmetry breaking. The realization of spin liquid states in actual



Fig. 5.1 The figure depicts the formation of spin-orbit entangled j̃ = 1/2 moments for ions
in a d5 electronic configuration such as for the iridium ion Ir4+. The degeneracy between the
5d orbitals is lifted by the crystal field splitting due to the octahedral environment, and the
t2g and eg sets of orbitals have different energies. The large SOC acts within the t2g manifold,
which can be mapped to effective l̃ = 1 operators, giving rise to j̃ = 1

2 and j̃ = 3
2 states. A

finite Mott-like gap is then introduced in the j̃ = 1
2 bands. (Figure has been reproduced from

Ref. [46])

materials represents a significant experimental and theoretical challenge, and there has been
considerable progress in this direction owing to the emergence of these so-called ‘Kitaev
materials’ [46]. In particular, the honeycomb iridates A2IrO3 (A=Na,Li) [68] and α−RuCl3
[72] have attracted much theoretical and experimental attention as promising candidates for
realizing the physics of the Kitaev honeycomb model.

In this thesis, we focus our attention on the alkali iridate Na2IrO3, and probe the underly-
ing interactions in this material by using a combination of magnetometry studies, at very high
magnetic fields up to 60 T, and large-scale exact diagonalization simulations [229]. From
our analysis, we find evidence for strong ferromagnetic Kitaev correlations in this system,
and signatures of the much sought-after field-induced quantum spin liquid state, which has
also been discussed extensively in the context of α−RuCl3 [73, 74, 230, 231].

5.1 Properties of 5d transition metal oxides: Mott physics
and local moment formation

Here, we discuss the formation of spin-orbit entangled j̃ = 1
2 moments in 4d and 5d transition

metal compounds, considering, in particular, the example of the 5d5 system Na2IrO3, which
is relevant for the purpose of this thesis.

In Na2IrO3, each iridium ion is surrounded by an octahedral cage of oxygen O2−anions
with a sixfold coordination, and is in the Ir4+ configuration, with five electrons in the 5d
subshell. The arrangement of the negatively charged oxygen ions, in a distribution that is
not spherically symmetric, leads to a splitting in the ten-fold degeneracy of the 5d orbitals,



known as the crystal field splitting. In octahedrally coordinated compounds with an Oh point
group symmetry, the d-levels are split into four-fold degenerate eg and six-fold degenerate
t2g subspaces. The t2g orbitals have a lower energy as compared to the eg orbitals, and in
the limit where the octahedral crystal splitting is large, the eg manifold can be projected out.
Since the Hund’s coupling, favoring a high-spin state, is almost an order of magnitude smaller
than the crystal field energy scale in these systems, the five electrons in the t2g manifold give
rise to a low spin-1/2 configuration. One can then treat the spin-orbit interaction in the eg and
t2g subspaces separately, with the latter being equivalent to a triply degenerate manifold of
atomic p-orbitals. This is because the angular momentum of the d-orbitals, projected to the
t2g subspace, can be mapped to a set of effective l̃ = 1 angular momentum operators, with
an additional minus sign. Next, taking the spin-orbit coupling term into consideration, the
t2g multiplet is split into a j̃ = 1

2 doublet and a j̃ = 3
2 quartet. The j̃ = 3

2 quartet is lower in
energy, and the j̃ = 1

2 Kramers’ doublet accommodates one electron, or equivalently one hole.
Please see Fig. 5.1 for an illustration of the process of formation of these local moments. Due
to the orbital component, the j̃ = 1

2 moments and their exchange interactions are sensitive to
the bonding geometries on the lattice. The j̃ = 1

2 bands have a relatively narrow bandwidth,
and even a modest onsite Coulomb repulsion U can open a Mott-like gap in the half-filled
band.

5.2 Kitaev physics in transition metal compounds

The Kitaev honeycomb model [77] is one of the few known examples of theoretical models
exhibiting a quantum spin liquid ground state, and it has been proposed that such an interac-
tion can be realized between the j̃ = 1

2 pseudo-spins in the classes of spin-orbit entangled
Mott insulators discussed above [18]. Here, we briefly describe the salient features of this
model, and discuss how the bonding geometries in the honeycomb iridates give rise to a
dominant bond-directional Kitaev interaction, along with other competing isotropic and
anisotropic interaction terms, which constitute the effective spin models used for describing
these materials.

5.2.1 The Kitaev model

The Kitaev model is an example of a Kugel-Khomskii compass model [232, 233], in which
spin–spin interactions along each bond are anisotropic, and depend on the orientation of the
bond. This model comprises of spin-1/2 degrees of freedom on a honeycomb lattice, coupled
via strongly anisotropic nearest-neighbor Ising interactions with bond-dependent easy axes,



given by
H = ∑

<i j>,γ

Ji jS
γ

i Sγ

j ,

where γ = {x,y,z} and the bond < i j > is of type γ . Each site thus corresponds to three
flavors of bonds. An exact solution of the model can be obtained by representing the spin
operators in terms of four types of Majorana fermions {bx

i ,b
y
i ,b

z
i ,ci}, such that Sγ

i =
i
2bγ

i ci.
The Hamiltonian is then written as

H =
1
4 ∑
<i j>

bγ

i bγ

jcic j

The bilinear operators ûi j = ibγ

i bγ

j commute with each other as well as the Hamiltonian, and
can be replaced by their expectation values. This gives rise to the quadratic Hamiltonian

H =− i
4 ∑
<i j>

< ûi j > cic j.

This form can be exactly diagonalized for a given configuration of < ûi j >, reducing to
a non-interacting Majorana hopping Hamiltonian in a static background Z2 gauge field.
The Hilbert space on each site is enlarged from dimension 2 to 4, but the physical Hilbert
space can be recovered by using a projection operator Pj = 1

2(1 + b j
xb j

yb j
zc j) for each lattice

site. The projection operator acting on a site j flips all the û operators emanating from
this site. The emergent flux degrees of freedom are described by the plaquette operator
Wp = Sx

1Sy
2Sz

3Sx
4Sy

5Sz
6 = ∏

6
i=1 ui,i+1. The eigenvalues of the plaquette operator are ±1. All the

plaquette operators commute with each other and with the Hamiltonian, and thus describe
constants of motion. As a result of the macroscopic number of conserved quantities, the
discussion can be restricted to a given flux sector. On the honeycomb lattice, the lowest
energy corresponds to a situation with Wp = +1 on every hexagonal plaquette, i.e. the
‘flux-free’ condition. The ground state is a spin-liquid with short-range nearest neighbour
spin-spin correlations, and consists of localized and itinerant Majorana fermions [176]. When
one of the coupling constants of the model, Jγ is much larger than the others, the system is in
a gapped QSL phase, whereas an extended gapless QSL is realized around the isotropic point
Jx = Jy = Jz = JK .

5.2.2 Bonding geometries and magnetic interactions

The honeycomb iridates A2IrO3 (A=Na,Li) consist of layers of edge-sharing IrO6 octahedra,
alternating with layers of Li/Na atoms. The Ir ions in each layer lie on a honeycomb lattice.



For Na2IrO3, the unit cell is known to have a monoclinic C2/m symmetry [86], and the IrO6

octahedra are slightly asymmetric. The geometric orientation of the neighbouring octahedra
plays a crucial role in determining the microscopic exchange of the magnetic moments
located on the Ir ions at the center of these octahedra. As discussed in the previous section,
in the case of the honeycomb iridates, neighboring IrO6 octahedra share edges, and the
two symmetric Ir-O-Ir exchange paths, with bond angles of 90◦, lead to the emergence of
Kitaev-like interactions in this system. In contrast, for perovskite iridates, such as Sr2IrO4

[36], two neighboring IrO6 octahedra share a corner, with a single Ir-O-Ir exchange path,
referred to as a 180◦−bond. This is illustrated in Fig. 5.2.

Given the spin-orbital nature of the local moments, the interactions between them are
expected to be highly anisotropic. In general, these can be written as

H = ∑
i j

Ji jSi.Sj +Di j.(Si ×Sj)+Si.Γi j.Sj (5.1)

where Ji j is the isotropic Heisenberg coupling, Di j is Dzyaloshinskii-Moriya (DM) vector
[234, 4] and Γi j is the symmetric pseudo-dipolar tensor. The realization of a pure Kitaev
model requires that Ji j,Di j → 0 for every bond and only one component of the Γi j tensor
remains nonzero. For idealized edge-sharing octahedra with inversion symmetry, all leading
order contributions to the interactions vanish, and at the next higher order, the only nonzero
component of Γi j is the Kitaev term. This is because the hopping of holes between the
j̃ = 1

2 states vanishes due to an interference between the symmetrically placed superexchange
paths, via the oxygen 2p orbitals. As the next higher order contribution, bond-directional
interactions arise from hopping between a j̃ = 1

2 state and the m = ±3
2 component of the

j̃ = 3
2 quartet of the adjacent site, and the Hund’s coupling JH between the j̃ = 1

2 and excited
j̃ = 3

2 moments [18], which determine the strength of the Kitaev interaction.
In real materials, the magnetic interactions involve various competing terms along with

the Kitaev interaction. In the presence of a direct overlap of Ir 5d orbitals, and due to the
spatially extended nature of these orbitals, nearest-neighbor and further neighbor Heisenberg
terms must both be taken into account in a realistic scenario. A symmetric off-diagonal
exchange Γ is also allowed by symmetry [78], considering the most idealized crystal structure.
An additional symmetric off-diagonal exchange Γ′ is introduced due to the trigonal distortion
of the oxygen octahedra [79]. The effective magnetic interactions between the local moments



Fig. 5.2 The figure shows two possible geometries of a TM-O-TM bond with corresponding
orbitals active along these bonds. The large (small) dots stand for the transition metal (oxygen)
ions. (a) A 180◦-bond formed by corner-shared octahedra, and (b) a 90◦-bond formed by
edge-shared octahedra. (Figure has been reproduced from Ref. [18] with permission)

are thus written as

H = ∑
<i j>,γ(αβ )

Ji jSi.Sj +Ki jS
γ

i Sγ

j +Γi j(Sα
i Sβ

j +Sβ

i Sα
j )

+Γ
′
i j(S

β

i Sγ

j +Sγ

i Sβ

j +Sα
i Sγ

j +Sγ

i Sα
j )+ ∑

≪i j≫
J2Si.Sj + ∑

≪i j≫
J3Si.Sj (5.2)

where γ refers to the spin component corresponding to the bond < i j > under consideration,
≪ i j ≫ and ≪ i j ≫ refer to the next-nearest and next-to-next nearest neighbor bonds
respectively, and α and β correspond to the remaining two components. The phase diagram
of the above Hamiltonian in Eq. 5.2 has been studied in great detail. The first extension
considered for the Kitaev model on the honeycomb lattice was with an isotropic Heisenberg
term, to yield the Kitaev-Heisenberg model. The importance of longer range Heisenberg
interactions J2 and J3 [70, 235], and finite nearest-neighbor off-diagonal interactions Γ and
Γ′ [78, 79], and the role of the next nearest neighbor Kitaev interaction (K2) [82] were later
investigated.

5.3 Sodium iridate: existing results

Na2IrO3 is a layered Mott insulator with a bulk charge gap Eg = 340 meV [69] and spin-orbit
coupling strength λ ≈ 0.5 eV [21]. The bulk electrical resistivity of this material shows
an insulating behavior with large room-temperature values (∼20-35 Ω cm), a pronounced



increase upon cooling and strong directional anisotropy [236, 87]. The magnetic susceptibility
follows a Curie-Weiss law at high temperatures, with the Curie-Weiss temperature ΘCW ≈
−116 K and an effective Ir moment µe f f = 1.82µB, close to the value of 1.74µB expected
for spin-1/2 moments [68, 236, 86]. The effective moments are weakly dependent on the
field direction, but the magnetic susceptibility is strongly anisotropic, indicated by the strong
directional dependence of the Curie-Weiss temperature ΘCW . X-ray absorption spectroscopy
indicates a small admixture of j̃ = 1

2 and j̃ = 3
2 states [237]. A small trigonal distortion

of the IrO6 octahedra results in a crystal field splitting of the j̃ = 3
2 states of about 110

meV, from resonant inelastic x-ray scattering (RIXS) measurements [238, 239], which,
however, is considerably smaller than the typical strength of the spin-orbit coupling in the
iridates. Neutron and x-ray diffraction [68], inelastic neutron scattering (INS) [86], and
resonant inelastic x-ray scattering (RIXS) [71] measurements reveal a low temperature
zigzag ordered state with an ordered moment µord ≈ 0.2µB, and with moments ordered
at 45◦ from the crystallographic ab plane and the cubic x,y axes of the IrO6 octahedra
[236, 86, 68]. The ordering temperature TN is found to be ≈ 15 K [68]. The suppression of
the ordering temperature far below the Curie-Weiss temperature indicates the presence of
strong frustration in the system.

On the theoretical front, the parameter space of couplings for Na2IrO3 has thus far been
constrained using ab initio computations [81, 70, 84, 85], numerical techniques such as
exact diagonalization [78, 79, 67, 228], classical Monte Carlo simulations [82, 240], and
degenerate perturbation theory [67, 228, 235, 78, 79], as well as experimental investigation
[86]. The simplest competing interaction term considered along with a dominant Kitaev
exchange is an isotropic nearest-neighbor Heisenberg term. Within the nearest-neighbor
Heisenberg-Kitaev model, with the Heisenberg interaction JH > 0 and the Kitaev interaction
JK < 0 [70, 87, 235] (as suggested by quantum chemistry and other ab-initio calculations),
a zigzag magnetic order cannot be realized. It was later realized that the zigzag order
can be restored by the presence of second- and third-neighbor Heisenberg couplings (J2,J3)
[70, 235], large anisotropic Γ/Γ′ [78, 79], and enhanced by the presence of a second-neighbor
Kitaev coupling K2 [82]. Even within the nearest-neighbor model, a zigzag ground state can
be obtained provided we consider a ferromagnetic Heisenberg interaction JH < 0 and an
antiferromagnetic Kitaev term JK > 0 [67].

For our calculations, we refer to a model with a dominant antiferromagnetic Kitaev
exchange as Model A, and a model with a dominant ferromagnetic Kitaev and a smaller
antiferromagnetic Heisenberg term as Model B when accompanied by further-neighbor
Heisenberg interactions, and Model C when supplemented by additional anisotropic inter-



actions. We distinguish between these different categories of models using the high-field
magnetoresponse of Na2IrO3, accompanied by exact diagonalization simulations.

5.4 Open questions: spin liquid physics in Kitaev materi-
als

Although most of the known Kitaev materials have been found to exhibit magnetic order
at sufficiently low temperatures, due to the presence of competing isotropic interactions
along with the dominant Kitaev term, the possibility of tuning these systems towards a
spin liquid ground state using external parameters such as an applied pressure [241, 20]
or magnetic field [242–244] has been extensively explored. In particular, there have been
numerous studies, aiming to confirm the presence of a field-induced spin liquid phase in
the 4d transition metal compound α−RuCl3, and to understand the nature of this phase.
α−RuCl3, which has a lower ordering temperature and a more idealized honeycomb lattice
structure as compared to Na2IrO3, has emerged as an extremely popular candidate for
realizing Kitaev physics in recent times [242, 245]. Among the most prominent findings
in this material, a robust magnetic scattering continuum has been observed in inelastic
neutron scattering (INS) [242, 246] as well as Raman scattering [247, 248] studies, and
has been interpreted as a signature of fractionalized excitations. In the latter case, the
asymptotic two-fermion form has been fitted to the Raman scattering response, indicating
the presence of fermionic excitations. More recently, new field dependent INS [249] and
Raman scattering [250] experiments have been performed, which use improved experimental
methods and analysis, and explore higher field regimes. Besides, experimental avenues
such as specific heat [243, 251], magnetic susceptibility [251], nuclear magnetic resonance
(NMR) [73, 251], electron spin resonance (ESR) [252], thermal conductivity [88, 253, 254],
terahertz spectroscopy [244, 74, 255, 256] and magnetization [88] measurements have been
explored to understand the nature of the excitations in the high-field phase, and in particular,
whether these are gapped or gapless excitations. Recently, there has been evidence for a
quantized thermal Hall conductance [231] in α−RuCl3 at low temperatures, as a function
of the applied magnetic field, with the quantization value being half of the two-dimensional
thermal Hall conductance of the integer quantum Hall effect. This half-integer quantization
of the thermal Hall conductance is a signature of topologically protected chiral edge currents
of charge-neutral Majorana fermions, which can be treated as half of a conventional fermion.
These results demonstrate the fractionalization of spins into itinerant Majorana fermions
and Z2 fluxes, which is predicted to occur in Kitaev spin liquids [77]. Motivated by this



observation, the effects of non-Kitaev exchange interactions on the gapped chiral spin liquid
state have also been investigated recently [257], and it has been found that off-diagonal
exchange interaction Γ′ significantly enhances the mass gap of the Majorana fermions, which
explains the temperatures at which the quantized thermal Hall conductance is apparently
observed. However, the observed quantization is not unambiguous, and if not quantized,
there are other effects, such as the Berry curvature of magnon bands [258] or the interplay of
a second-neighbor Dzyaloshinskii-Moriya interaction and a Zeeman coupling for emergent
spinons in non-Kitaev spin liquids [259], that can explain the non-trivial value of the thermal
Hall conductance at low temperatures and high fields.

The role of the high-field torque response in understanding the nature of the field-induced
spin liquid phase has generally been underemphasized, although it has gained some popularity
in recent times [260, 261]. In this connection, our collaborators from Dr. Suchitra Sebastian’s
group in Cavendish laboratory have performed high-field torque magnetometry measurements
[262] for fields up to 60 T, for Na2IrO3, a sister Kitaev material of α−RuCl3, where most of
the interesting physics is found to occur at much higher energy scales. These measurements
were among the first for a Kitaev material at such high fields, and revealed hitherto unknown
features, later theoretically interpreted by us, and described in this thesis, to possibly provide
evidence for a field-induced spin liquid phase in this material. The experimental data shows a
robust characteristic nonmonotonous peak-dip feature in the torque response, corresponding
to the zigzag ordering scale of Na2IrO3. The high-field measurements enable us to access a
regime where the behavior of the system is governed entirely by the Kitaev interaction. From
our numerical simulations, we find that for field values exceeding the position of the peak-dip
feature, there is no dominant magnetic order in the system. The spin-spin correlations tend to
decay, beyond the nearest neighbors, with increasing magnetic field strength, thus implying
the presence of a short-range correlated phase at high fields. Our conclusions are supported
by recent resonant inelastic x-ray scattering (RIXS) results on Na2IrO3 and α−Li2IrO3 [263],
where a broad continuum of magnetic excitations that persists up to at least 300 K has been
observed. RIXS measurements of the dynamical structure factor for energies within the
continuum show that dynamical spin-spin correlations are restricted to nearest neighbors.
This is consistent with the interpretation of a field-induced spin liquid phase at high fields, as
evidenced by continuum scattering and a possible half-quantized thermal Hall conductivity
in the case of α−RuCl3. Incidentally, a similar peak-dip feature has also been observed for
α−RuCl3 [88], at an energy scale corresponding to the zigzag ordering scale of that material,
and is found to disappear at temperatures exceeding the zigzag ordering temperature (≈ 7 K).
However, no theoretical interpretation of this feature has been provided. Our work explores



underlying universalities in these Kitaev materials, and we expect many of our results to hold
for α−RuCl3 as well.



Chapter 6

High-field torque magnetometry in
Na2IrO3: possibility of a field-induced
spin liquid phase

In this part of the thesis, the magnetoresponse of the Mott-insulating honeycomb iridate
Na2IrO3 is investigated using torque magnetometry measurements at high fields up to 60
T [229]. A robust characteristic peak-dip structure is observed in the torque response at
magnetic fields corresponding to an energy scale close to the zigzag ordering temperature
(≈ 15 K) of this material. Using exact diagonalization simulations, we show that such
a distinctive feature in the torque response constrains the effective spin models for these
classes of Kitaev materials to ones with a dominant ferromagnetic Kitaev interaction, while
alternative models with a dominant antiferromagnetic Kitaev interaction are excluded. We
further show that, at high magnetic fields, long range spin correlation functions decay rapidly
beyond the nearest neighbor, which indicates the possibility of a transition to a field-induced
quantum spin liquid phase beyond the position of the peak-dip feature in the torque response.
Below, we describe the experimental details, theoretical modeling, exact diagonalization
algorithm and the results of our calculations.

My role in this joint experiment-theory work, reported below, has been the performance
of extensive numerical simulations over a large parameter space, and the theoretical interpre-
tation of the results.



Fig. 6.1 The figure shows the magnetic torque (τ) measured as a function of magnetic field
for different polar angular orientations (θ ) and azimuthal angle φ = 90◦. A peak dip structure
is observed in the magnetic torque, and is seen to evolve with θ . Individual torque curves
have been offset for clarity. (Inset: a crystal on the cantilever with the various coordinate
systems: XYZ → lab frame; xyz → frame fixed to the cantilever, so that X and x coincide. θ

is the angle that the normal to the crystal makes with the magnetic field, and the measured
magnetic torque along the X direction is referred to as τ .)



Fig. 6.2 The figure shows the derivative of experimentally measured magnetic torque with
respect to magnetic field ( dτ

dH ) as a function of magnetic field and angle (θ ) for φ = 90◦

(top) and φ = 0◦ (bottom). The position of the maxima in the torque is indicated by regular
triangles, while that of the subsequent minima is marked by inverted triangles.
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Fig. 6.3 The figure shows the (a) isotropic magnetization measured using an extraction
magnetometer in pulsed magnetic fields, and using a force magnetometer in DC fields,
which shows no features up to 60 T, where the calibration is performed using magnetization
measurements on a pellet of Na2IrO3 in a SQUID magnetometer, and the (b) isotropic
magnetization mZ (in µB per atom) calculated as a function of field, for Model B with
Jh = 2.4, JK =−12.0, J2 = 1.6, J3 = 1.2 (in meV) for the orientation θ = 18◦, φ = 90◦, and
for Model C with Jh = 4.0, JK =−16.0, Γ = 2.4 and Γ′ =−3.2 (in meV), for the orientation
θ = 36◦, φ = 0◦.

6.1 Experimental details and salient features of the data

A single crystal of Na2IrO3, of dimension ≈ 100 µm on a side, with a much smaller thickness,
was mounted on a piezoresistive cantilever and measured on an in situ rotating stage in pulsed
magnetic fields up to 60 T. The torque response (τ) was measured as a function of the
magnetic field at various fixed angles (0◦ ≲ θ ≲ 90◦) of the crystalline axis normal to the
honeycomb lattice, with respect to the magnetic-field axis. A distinctive nonmonotonic
feature is observed in the magnetic torque response. A peak in the magnetic torque in the
vicinity of 30–40 T is followed by a dip in the vicinity of 45–55 T. The peak and dip features
are separated by as much as ≈ 15 T near θ ≈ 45◦−55◦, but draw closer together at angles
closer to θ ≈ 0◦ and θ ≈ 90◦. The experimental torque response, for a range of angles θ , is
depicted in Fig. 6.1. In the vicinity of θ ≈ 0◦ and θ ≈ 90◦, the peak and dip features are seen
to merge into a single plateaulike feature. This evolution of the signature peak-dip feature as
a function of field-inclination angle and magnetic field is shown in Fig. 6.2 for two different
azimuthal orientations (φ = 0◦,90◦), where φ is the angle that the crystallographic a axis
makes with the axis of rotation of the cantilever. The high-field torque response of Na2IrO3

was independently measured for two crystals, for three different azimuthal orientations (φ =
0◦, 90◦ and 180◦), at a temperature of 1.8 K and results for both were found to be very similar.
The signature peak-dip feature is found to disappear above the zigzag ordering temperature.
Meanwhile, the isotropic magnetization (mZ) measured using an extraction magnetometer in
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Fig. 6.4 The figure shows our hexagonal 24-site fragment with periodic boundary conditions.

Model Jh JK J2 J3 Γ Γ′

Antiferromagnetic Kitaev (Model A) - + × × × ×
Ferromagnetic Kitaev (Model B) + - + + × ×
Ferromagnetic Kitaev (Model C) + - × × + -

Table 6.1 Models considered for exact diagonalization calculations, where Jh refers to the
nearest-neighbor Heisenberg interaction, JK refers to the Kitaev interaction, J2 and J3 refer to
further-neighbor Heisenberg terms, and Γ and Γ′ refer to symmetric off-diagonal exchange
interactions.

pulsed magnetic fields up to 60 T, and a force magnetometer in steady fields up to 30 T, is
found to be largely featureless and to increase linearly with magnetic field up to 60 T (see
Fig. 6.3).

6.2 Theoretical Modeling

We use theoretical modeling of the nonmonotonous peak-dip features that we observe in the
high field torque response, in order to distinguish between potential microscopic models.
Our starting point is the usual spin Hamiltonian [235, 67] with nearest-neighbor Kitaev and
Heisenberg interactions:

Jh ∑
<i j>

−→
σi .

−→
σ j + JK ∑

<i j>
σ

γ

i σ
γ

j (6.1)



where γ = x,y,z labels an axis in spin space and a bond direction of the honeycomb lattice,
and the Hamiltonian is expressed in terms of Pauli matrices −→

σi . Model A with dominant
antiferromagnetic Kitaev correlations is parameterized by nearest-neighbor interactions
Jh < 0 and JK > 0 [67]. In Model B, further neighbor antiferromagnetic Heisenberg cou-
plings J2 and J3 are introduced up to the third nearest neighbor [70], along with Jh > 0
and JK < 0. In Model C, bond-dependent nearest-neighbor off-diagonal terms H(γ)

od =

Γ∑α ̸=β ̸=γ ∑{i, j}(σα
i σ

β

j +σ
β

i σα
j ) (α and β are the two remaining directions apart from the

Kitaev bond direction γ) [78] and H ′
od = Γ′

∑α ̸=β ̸=γ ∑{i, j}(σ
β

i σ
γ

j +σ
γ

i σ
β

j +σα
i σ

γ

j +σ
γ

i σα
j )

[79] accounting for trigonal distortions of the oxygen octahedra are introduced. The main
parameters of these models are summarized in Table 6.1.

For our calculations, we use a hexagonal 24-site cluster with periodic boundary conditions
(see Fig. 6.4). The effect of the applied magnetic field

−→
H = Hẑ (in the lab frame) on

the system is described by Hmag = (g
2)∑i ∑γ hγσ

γ

i , with g ∼ 1.78 [67] being the Lande g
factor, assumed to be a constant, and

−→
h = (hx,hy,hz) being the field as expressed in the

crystal octahedron frame. Exact diagonalization calculations for the ground state energy and
eigenvector are performed using a modified Lanczos algorithm. The code was benchmarked
by reproducing the results in Ref. [67]. The N lattice sites were numbered 0,1,2...N − 1
(for N = 24), and specific pairs of these sites were identified as ‘bonds’ or ‘links’, of type
x, y or z. Every site has a spin with two possible states |1 > or |0 >. The system then
has 2N configurations or underlying basis states, where each configuration is denoted by
|sN−1,sN−2...s0 > with si = 0,1. Corresponding to such a set of binary numbers, we have
a decimal equivalent given by |sN−1x2N−1 + sN−2x2N−2 + ...+ s0x20 >. The basis vectors
were thus denoted as |0 >, |1 >...|2N−1 >. An arbitrary state vector |ψ > can be expanded in
terms of these basis vectors as |ψ >= ∑

2N−1

i=0 ai|i >. The ground state Ψ0 for this Hamiltonian
H0 was determined using the Modified Lanczos algorithm.

6.2.1 Modified Lanczos algorithm

The Modified Lanczos algorithm [264] requires the initial selection of a trial vector ψ0

(constructed using a random number generator in our case) which should have a nonzero
projection on the true ground state of the system in order for the algorithm to converge
properly. A normalized state ψ1, orthogonal to ψ0, is defined as

ψ1 =
H0ψ0−< H0 > ψ0√
< H2

0 >−< H0 >2
. (6.2)



In the basis {ψ0,ψ1}, H0 has a 2x2 representation which is easily diagonalized. Its lowest
eigenvalue and corresponding eigenvector are better approximations to the true ground
state energy and wavefunction than the quantities < H0 > and ψ0 considered initially. The
improved energy and wavefunction are given by

ε =< H0 >+bα (6.3)

and
ψ̃0 =

ψ0 +αψ1√
1+α2

(6.4)

where b =
√
< H2

0 >−< H0 >2, f =
<H3

0>−3<H0><H2
0>+2<H0>

3

2b3 and α = f −
√

1+ f 2.
The method can be iterated by considering ψ̃0 as a new trial vector and repeating the above
steps. The Modified Lanczos method helps in obtaining a reasonably good approximation
to the actual ground state of the system while storing only three vectors, ψ0, H0ψ0 and
H2

0 ψ0 rather than the entire Hamiltonian in the spin basis representation. This is especially
advantageous as the number of basis vectors increases rapidly with the number of spin sites.
In the regular Lanczos algorithm, the matrix is first reduced to a tridiagonal form before
computing the ground state eigenvector. However, there can be issues with the convergence to
the true ground state because of loss of orthogonality among the vectors. This is circumvented
in this algorithm as orthogonality is enforced at each and every step of the iteration.

After the determination of the ground state Ψ0 to a reasonable approximation, the
magnetization −−−→m|ψ> was obtained in this state with components (mx,my,mz), where mγ =<

ψ|∑N−1
i=0 σ

γ

i |ψ >, and was transformed to the lab frame from the octahedral frame, the
components in the lab frame being (mX ,mY ,mZ). Finally, in the lab frame, the torque
response is calculated as ΓX = mY H.

6.2.2 Coordinate system transformations

For our exact diagonalization calculations, we have transformed the external magnetic field
from the laboratory frame to the IrO6 octahedral frame by defining intermediate crystal and
cantilever axes, and transformed the calculated magnetization back from this frame to the lab
frame. We explain the transformations used in the following:

Notations: Laboratory axes: X̂ ,Ŷ , Ẑ

Cantilever axes: x̂,ŷ, ẑ



Crystal axes: â, b̂, ĉ

Octahedral axes: p̂, q̂, r̂

Laboratory to cantilever axes: The lab X̂-axis and the cantilever x̂-axis are always coin-
cident. Let θ be the angle between the Ẑ and ẑ axes.We have

|x̂ŷẑ >= MLab→Canti|X̂Ŷ Ẑ >

|X̂Ŷ Ẑ >= LCanti→Lab|x̂ŷẑ >

where

MLab→Canti =

 1 0 0
0 cosθ −sinθ

0 sinθ cosθ



LCanti→Lab =

 1 0 0
0 cosθ sinθ

0 −sinθ cosθ


Cantilever to crystal axes: The honeycomb layer formed by the Ir atoms resides on the
crystallographic ab plane. Let the â-axis of the crystal make an angle φ with the x̂-axis of
the cantilever. Then,

|âb̂ĉ >= MCanti→Crystal|x̂ŷẑ >

|x̂ŷẑ >= LCrystal→Canti|âb̂ĉ >

MCanti→Crystal =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1



LCrystal→Canti =

 cosφ −sinφ 0
sinφ cosφ 0

0 0 1


Crystal to octahedral axes: Since the [111] direction in the octahedral frame is perpen-
dicular to the honeycomb lattice, the unit vectors are related as follows:

ĉ =
p̂+ q̂+ r̂√

3



b̂ =
−p̂+ q̂√

2

â =
p̂+ q̂−2r̂√

6

Then,
|p̂q̂r̂ >= MCrystal→Octa|âb̂ĉ >

|âb̂ĉ >= LOcta→Crystal|p̂q̂r̂ >

MCrystal→Octa =


1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

−
√

2
3 0 1√

3



LOcta→Crystal =


1√
6

1√
6

−
√

2
3

− 1√
2

1√
2

0
1√
3

1√
3

1√
3


Lab to octahedral and octahedral to lab frame: Let the components of the magnetic
field be (0,0,H) in the lab frame and (hp,hq,hr) in the octahedral frame. Then

|hphqhr >= MCrystal→OctaMCanti→CrystalMLab→Canti|00H >

which finally gives us

hp = (− 1√
6

sinθ sinφ +
1√
2

sinθ cosφ +
1√
3

cosθ)H

hq = (− 1√
6

sinθ sinφ − 1√
2

sinθ cosφ +
1√
3

cosθ)H

hr = (

√
2
3

sinθ sinφ +
1√
3

cosθ)H

Let the components of the magnetization vector −→m be (mX ,mY ,mZ) in the lab frame and
(mp,mq,mr) in the octahedral frame. Then,

|mX mY mZ >= LCanti→LabLCrystal→CantiLOcta→Crystal|mpmqmr >



from where we find

mZ = (−mp√
6
− mq√

6
+mr

√
2
3
)sinθ sinφ +

mp −mq√
2

sinθ cosφ +
(mp +mq +mr)√

3
cosθ

and

mY = (
mp√

6
+

mq√
6
−mr

√
2
3
)cosθ sinφ +

(−mp +mq)√
2

cosθ cosφ +
(mp +mq +mr)√

3
sinθ

6.2.3 Structure factor calculations

The chosen parameter sets are verified to be consistent with the zigzag ground state of
Na2IrO3 by calculating the adapted structure factors S(

−→
Q ) [265] acting as order parameters,

to determine different phases of the system in the presence of an applied magnetic field.
The corresponding dominant order wavevectors

−→
Q =

−−→
Qmax characterize the nature of the

magnetic ordering in various field regimes. The static structure factors S(
−→
Q ) for different

spin configurations are given by

Sγ

zigzag =
1

N2 ∑
r,r′,β ,β ′

exp[i
−→
Qγ .(

−→
r′ −−→r )]νβ ,β ′(<−−→

σr,β .
−−→
σr′,β ′ >−∑

γ

< σ
γ

r,β >< σ
γ

r′,β ′ >) (6.5)

SNeel =
1

N2 ∑
r,r′,β ,β ′

νβ ,β ′(<−−→
σr,β .

−−→
σr′,β ′ >−∑

γ

< σ
γ

r,β >< σ
γ

r′,β ′ >) (6.6)

SFM =
1

N2 ∑
r,r′,β ,β ′

(<−−→
σr,β .

−−→
σr′,β ′ >−∑

γ

< σ
γ

r,β >< σ
γ

r′,β ′ >) (6.7)

Sγ

stripy =
1

N2 ∑
r,r′,β ,β ′

exp[i
−→
Qγ .(

−→
r′ −−→r )](<−−→

σr,β .
−−→
σr′,β ′ >−∑

γ

< σ
γ

r,β >< σ
γ

r′,β ′ >) (6.8)

where each site is labeled by an index i and a position in the unit cell −→r ,β denotes the
sublattice index (β = A,B), and γ = x,y or z. The contribution to the structure factors coming
from the alignment of the spins with the field direction has explicitly been deducted in this
definition. The structure factors for the four different phases are plotted as a function of field
for different models in Fig. 6.5, which clearly shows that AFM zigzag is the dominant spin
configuration among these, in all cases.
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Fig. 6.5 The figure shows the evolution of structure factors for different ordered phases as
a function of the field for (a) Model A with Jh = −4.0, JK = 21.0 (in meV), (b) Model B
with, for instance, Jh = 2.4, JK =−20.0, J2 = 1.6, J3 = 1.2 (in meV) , and (c) Model C with
Jh = 4.0, JK =−16.0, Γ = 2.4 and Γ′ =−3.2 (in meV).
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Fig. 6.6 (a) Magnetic torque as a function of magnetic field (in µBT per site) for Model
B (denoted by τB) with parameters Jh = 3.6, JK = −30.0 (in meV) for antiferromagnetic
Heisenberg and dominant ferromagnetic Kitaev correlations, corresponding to the orientation
θ = 42◦, φ = 0◦. In this case, further neighbor interactions J2 = 0.6, J3 = 1.8 (in meV)
are necessary to stabilize a zigzag ground state. The experimental data (solid line) for this
orientation is plotted along with the torque response (dashed line) calculated for this model
for comparison. (b) Magnetic torque calculated as a function of magnetic field (in µBT
per site) for Model A (denoted by τA) with parameters Jh =−4.0, JK = 21.0 (in meV) for
ferromagnetic Heisenberg and dominant antiferromagnetic Kitaev interactions, corresponding
to the orientation θ = 36◦, φ = 0◦, and for Model C (denoted by τC) with parameters
Jh = 4.0, JK =−16.0, Γ = 2.4, and Γ′ =−3.2 (in meV) for antiferromagnetic Heisenberg
and dominant ferromagnetic Kitaev exchange, corresponding to the same orientation. In
Model A (dashed line) characterized by a stable zigzag phase, no peak-dip feature appears,
unlike experimental observations. In contrast, in Model C (solid line), where a fine-tuned
zigzag phase requires the introduction of nearest-neighbor anisotropic terms Γ and Γ′, the
magnetic-field dependence of magnetic torque shows a peak-dip feature corresponding with
experiment.

6.3 Numerical exact diagonalization results for the torque
response

The calculated magnetic torque responses for the different models are shown in Fig. 6.6. We
find the peak-dip feature in the magnetic torque response to be reproduced only by models
with dominant ferromagnetic Kitaev interactions (i.e., Models B and C), whereas models with
dominant antiferromagnetic Kitaev interactions (i.e., Model A) display instead a monotonic
increase in the magnetic torque with magnetic field. The main parameters of the models
considered for our simulations are summarized in Table 6.1. Fig. 6.7 shows the evolution of
the peak-dip feature as a function of the field-inclination angle θ and the magnetic field for
Model B, calculated using exact diagonalization. We have performed exact diagonalization



Fig. 6.7 Calculated contour plot of dτ

dH in the θ −H plane, for parameters Jh = 3.6, JK =
−18.0, J2 = 2.4, and J3 = 1.8 (in meV), i.e., Model B, corresponding to the azimuthal angle
φ = 20◦. We find that the position of the peak-dip feature, indicated by the regions where
dτ

dH changes sign, shifts closer to the origin for increasing (decreasing) values of the polar
angle θ for θ close to 0◦ (90◦), in agreement with the experimental results. At the extreme
values of θ , the width of the region of nonmonotonicity increases, which is at variance with
experiment. The torque values obtained in our simulations can be negative, and in such cases
we plot − dτ

dH instead.
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Fig. 6.8 The figures show the calculated torque response for different models with a ferromag-
netic Heisenberg and antiferromagnetic Kitaev interaction with further neighbor Heisenberg
interactions. Figures (a) and (b) correspond to Jh =−4.0, JK = 21.0 (in meV) for the orien-
tation θ = 48◦, φ = 90◦, for J2 and J3 interactions as indicated in the figure. We observe that
further neighbour interactions J2 and J3 do not give rise to any peak-dip features in the torque
response. In figures (c) and (d) above, we have considered combinations of parameters for
Jh = −4.0, JK = 21.0 (in meV) with either J2 or J3 terms present but not both. In (c), we
consider J2 or J3 which is ferromagnetic and in (d), we consider these interactions to be
antiferromagnetic, both for the orientation θ = 48◦, φ = 90◦. In neither case do we see any
peak-dip features in the torque response.
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Fig. 6.9 The figures show the calculated torque response for different models with a ferro-
magnetic Heisenberg and antiferromagnetic Kitaev interaction with additional anisotropic
parameters Γ and Γ′. Figures (a) and (b) show the calculated values of the torque for models
with Jh = −8.0, JK = 40.0 (in meV), for the orientation θ = 36◦, φ = 0◦, with Γ and Γ′

values as indicated. We observe that additional Γ and Γ′ terms do not give rise to any peak-dip
features in the torque response. Figure (c) corresponds to parameter values Jh = −1.84,
JK = 3.2 (in meV) for the orientation θ = 69◦, φ = 90◦ with an additional Γ term with values
indicated in the figure. Figure (d) shows the torque response for two sets of parameters with
Jh < 0, JK > 0 and Γ > 0 at different orientations of the field. Here Set 1 corresponds to
Jh =−1.84, JK = 3.2 and Γ= 1.528 (in meV) for θ = 36◦ and φ = 0◦, and Set 2 corresponds
to Jh =−12.0, JK = 17.0, and Γ = 12.0 (in meV) for θ = 48◦ and φ = 90◦.
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Fig. 6.10 The figure illustrates the calculated torque response for models with Jh > 0, JK < 0
and various combinations of additional interactions J2 and J3. Here (a) shows the torque
response for Jh = 2.4, Jk =−20.0 (in meV) for θ = 36◦ and φ = 0◦ with J2 and J3 values
as indicated (in meV), and (b) shows the torque response for two sets of data where Set
1 corresponds to Jh = 2.4, JK = −12.0, J2 = 0.2 and J3 = 0.2 (in meV) for θ = 32◦ and
φ = 90◦, while Set 2 corresponds to Jh = 2.4, JK =−12.0, J2 = 0.8 and J3 = 0.8 (in meV)
for θ = 41◦ and φ = 90◦. We observe that peak-dip features, sometimes more than one, are
observed in the expected field range for all of these models, even though most of them do
not exhibit a zigzag ground state order. Moreover, the shift in the position of the peak-dip
feature with an increase in the values of the parameters J2 and J3 is clearly seen in (b).

simulations for magnetic fields up to 300 T for Model A (for the parameters provided in the
caption in Fig. 6.6), and found a single peak in the magnetic torque response at a magnetic
field slightly lower than 150 T, beyond which the torque decreases with increase in field
strength and no further features are observed in the torque response. We have also considered
variants of Model A with isotropic J2 and J3 as well as anisotropic exchange interactions (see
Figures 6.8 and 6.9), and have confirmed that this model does not give a peak-dip feature
in its torque response, even with additional interaction terms present. Our results strongly
indicate that Na2IrO3 is described by a model dominated by ferromagnetic Kitaev exchange.
The distinctive peak-dip feature in the torque response thus provides an independent handle
for constraining experimental data. Of the two types of ferromagnetic Kitaev exchange
models we consider, in Model B, the peak-dip feature is observed over a large parameter
range (in fact, larger than the space over which a zigzag ground state is seen, as illustrated in
Fig. 6.10), while in Model C, the peak-dip feature only appears upon inclusion of a significant
Γ′ < 0 term, which physically is associated with trigonal distortion in Na2IrO3. The inclusion
of significant anisotropic terms in Model B does not yield additional peak-dip features, with
the peak-dip surviving only for relatively small values of additional anisotropic interactions.



0.0

1.0

2.0

0 1 2 3 4

C
ij

|i − j|/a

0 T
7 T

17 T
31 T
35 T
38 T
42 T
52 T
59 T

−0.5

0.5

1.5

2.5

0 1 2 3 4

C
ij

|i − j|/a

Jh
JK

Fig. 6.11 The figure shows the correlation functions Ci j calculated as a function of |i− j|
a , a

being the distance between two neighboring sites, with parameters Jh = 4.0, JK = −16.0,
Γ = 2.4, and Γ′ = −3.2 (in meV), for an orientation of θ = 36◦, φ = 0◦. The inset shows
the corresponding plots for a pure Heisenberg model with Jh = 16.0 meV (blue) and for a
pure Kitaev model with JK =−16.0 meV (red). It can be clearly seen that for higher fields
(>35 T), the correlation functions fall rapidly with distance and behave more and more like
those of a pure Kitaev model, characterized by a spin liquid ground state.

6.4 Spin-spin correlation functions as evidence for a field-
induced spin liquid state

We have computed the evolution of the spin correlation functions with distance for increas-
ing magnetic-field values. The extent of decay of the correlation functions with distance
reveals the presence or absence of long range correlations in the high field regime. The
correlation functions Ci j =< (−→σi− < −→

σi >).(−→σ j− < −→
σ j >) > are calculated for a chosen

set of neighboring sites in our 24-site cluster and plotted in Fig. 6.11 as a function of |i− j|
a

(a being the distance between nearest neighbour sites) for different values of the applied
field. We find that the decay of the correlation functions Ci j as a function of |i− j|

a is much
faster at relatively higher values of the applied field, and the amplitude of the oscillation
of the correlation functions falls off rapidly with increasing fields, in particular above the
zigzag ordering scale. Furthermore, structure factor calculations do not show a crossover
from antiferromagnetic zigzag order to any of the known ordered states, considered by us, at
the position of the metamagnetic transition manifested through the peak dip in the transverse
magnetization. Indications therefore are that the high magnetic-field regime beyond the



peak-dip feature manifests spin-liquid physics in Na2IrO3. Our work sheds light on the
universality of magnetic-field-induced quantum spin liquid physics in Kitaev systems, which
we find to be signaled by the peak dip structure in the anisotropic magnetization at the zigzag
ordering scale, also recently reported in α−RuCl3 [88], where no theoretical explanation for
such features has been sought so far.

6.5 Summary

In summary, we have studied the high-field torque response of various effective spin models
used in the literature to describe the behavior of the alkali Iridate Na2IrO3, known to be a
Kitaev candidate, using large-scale exact diagonalization simulations. We have considered
broadly three classes of models, and their variants: Model A, which is a nearest-neighbor
model with a ferromagnetic Heisenberg and antiferromagnetic Kitaev interaction, Model B,
which comprises a ferromagnetic Kitaev along with antiferromagnetic Heisenberg interac-
tions up to the third neighbor, and Model C, which considers nearest-neighbor symmetric
off-diagonal exchange interactions along with a ferromagnetic Kitaev and antiferromagnetic
Heisenberg interactions. We have compared our results with experimental torque magnetom-
etry measurements of Na2IrO3 for fields up to 60 T, which feature robust peak-dip features
in the range 20-40 T for a range of orientations of the normal to the sample with the respect
to the direction of the applied field. We have found that such features can only be reproduced
by models with a ferromagnetic Kitaev interaction and not by their antiferromagnetic Kitaev
counterparts. We have also shown that beyond the position of the peak-dip feature, the
spin-spin correlation functions become increasingly short-ranged for higher field values,
thus indicating the possibility of quantum spin liquid physics in this regime. Our results are
consistent with the observation of a continuous spectrum of excitations [246, 74], as well
as, possibly, a half-quantized thermal Hall conductivity [231] for field values exceeding the
zigzag energy scale for α−RuCl3. We have illustrated the underlying universalities of the
Kitaev materials Na2IrO3 and α−RuCl3, where a similar peak-dip feature has been observed
recently.



PHASE COMPETITION AND
CRITICAL BEHAVIOR IN THREE
SPINLESS COUPLED LUTTINGER

LIQUID SYSTEMS





Chapter 7

Competing phases and critical
phenomena in three coupled spinless
Luttinger liquid systems

7.1 Introduction

The problem of coupled one-dimensional systems of interacting fermions has received
considerable attention in the literature, appearing in diverse contexts. These provide a testing
ground for theoretical ideas developed for higher-dimensional systems, and a platform for
realizing exotic phases of matter [266–269]. For models of interacting fermions in two spatial
dimensions, it is usually a nontrivial task to ascertain phase diagrams of strongly correlated
systems, due to the lack of accurate, systematic, nonperturbative methods. On the other hand,
there are reliable nonperturbative methods available in one dimension such as bosonization
[37] and the density matrix renormalization group (DMRG) method [270, 271]. Coupled-
chain systems also provide a useful description for many naturally occuring compounds, such
as carbon nanotubes [90], low-dimensional organic conductors [91], spin ladders [92, 272–
274], quasi-1D superconductors (such as K2Cr3As3 [94]), as well as artificially manufactured
structures (such as self-assembled transition metal nanowires [95]). Many of these studies
involve two-leg ladder systems [275–282].

In the literature, systems of two coupled CuO chains have been used extensively for
gaining insight into the physics of copper oxide materials [280]. In particular, the importance
of an explicit treatment of the oxygen atoms, for a better understanding of these materials,
has been discussed, and ladder models have been studied for including the effect of oxygen
atoms in such systems [283, 284]. The question of whether orbital currents could exist in



cuprate materials has also received much attention. Various intriguing phases of strongly
correlated systems have been considered due to their possible relevance for understanding
the pseudogap region in the phase diagram of the cuprates. One such possibility is the
“orbital antiferromagnet,” the “staggered flux” phase, or the “d-density wave” [285–288]. It
is characterized by circulating currents which produce local magnetic moments aligned in
an antiferromagnetic (staggered) way. The “circulating current” phase [20, 289], like the
“staggered flux” phase, breaks time reversal symmetry and is characterized by circulating
currents which produce local orbital magnetic moments, with the difference that it preserves
translational symmetry while the “staggered flux” phase breaks it. There are also experimen-
tal examples of fermionic ladder materials, such as the “telephone number” compound Sr14−x

CaxCu24O41 [290], which display similarities and differences with the uniform cuprates.
Besides, the question of whether the transverse correlations between two chains of interacting
fermions are sustained by single-particle hopping or by pair hopping processes has interesting
implications for high-temperature superconductivity [276, 291, 281].The instability of super-
conductivity for systems where a chemical potential difference is introduced between the
legs of a two-leg ladder has been analyzed [292]. The effect of disorder for one-dimensional
systems in the presence of interactions has also been explored [278].

The number of comparable studies on systems of three coupled Luttinger liquids have
been limited, and here, spinful systems have been studied more extensively. These have
proven useful for comparing the magnetic properties of systems composed of an even and
an odd number of spin chains [92, 293, 93, 294], understanding the nature of instabilities
in a three-band system using a Luttinger liquid framework with perturbations induced by
residual interactions between the low-energy fermions (applicable in the case of cylindrical
single-walled carbon nanotubes in the (5,0) configuration [90]) and in a one-dimensional
three-orbital Hubbard model with generic repulsive electronic interactions (applicable for the
quasi-1D superconductor K2Cr3As3 [94]).

The common prescription for studying all these systems involves setting up scaling
equations for the stiffness matrix K̂ in the quadratic part of the bosonized Hamiltonian (a
sine-Gordon model), and the coupling constants in the sine-Gordon terms. One peculiarity of
coupled Luttinger liquid systems that distinguishes them from single-phase Luttinger liquids
is the fact that the renormalization process, even if performed to one-loop order, introduces
corrections to all the matrix elements of K̂ in general, which must be taken into account in
any renormalization group analysis. Unlike the diagonal corrections to the K̂−matrix, the off-
diagonal corrections result in an interplay of the different interaction channels, even when the
scaling of the coupling constants is considered only up to the leading tree-level order. Instead
of solving the scaling equations for all the independent elements of K̂−matrix, a considerably



simpler strategy is to separate the effects of these corrections into two groups: large rotations
of the K̂−matrix and small renormalizations of the eigenvalues of K̂. Of these two, only
the latter affects the scaling dimensions of the interactions. In contrast, for the case of two
identical spinless coupled Luttinger liquids, the problem decouples into two disconnected
problems, respectively involving symmetric and antisymmetric combinations of the valley
fields. Generically, in the absence of interaction between these channels, the renormalization
procedure does not generate off-diagonal corrections to the stiffness matrix in this case.
On the other hand, in the case of two spinful Luttinger liquids, generic interactions lead to
appearance of off-diagonal corrections to K̂ during the scaling procedure, a point which was
first noted in Ref. [283]. However, the simplest situation where such nontrivial rotations
arise is the case of three spinless Luttinger liquids. In the literature, there have been studies
of three coupled spinful Luttinger liquid systems, which suffer from the shortcoming that the
aforementioned rotations are not accounted for. Motivated thus, in this part of the thesis, we
perform a one-loop RG analysis for three coupled spinless Luttinger liquid systems by taking
into account both the rotations of the K̂−matrices and the rescaling of their eigenvalues [295].
From the solutions of the scaling equations, we identify the most singular susceptibilities,
corresponding to different order parameters, which in turn determines the phase diagram.
Also, from a numerical study of the RG equations, we obtain the critical behavior near the
phase transition points.

Our main findings are as follows. We find that the fixed point behavior is dependent both
on the relative initial values of the coupling constants and the Luttinger liquid parameter,
which is a qualitatively different situation from, say, the single-phase and two-phase sine-
Gordon models, where the fixed-point behavior is completely independent of the initial
conditions on the interactions. This is a direct consequence of the rotations of the stiffness
matrices introduced in our approach. Depending upon the relative initial values of the
couplings and the Luttinger parameters, we identify the different instabilities in the particle-
particle and particle-hole channels and the nature of their transitions across phase boundaries.
Further, we obtain the conditions under which valley symmetry breaking and intervalley
orders may appear in both these channels. The possibility of chiral orders is also discussed
in this context.

Our calculations may prove useful for understanding phase transitions and critical phe-
nomena in the context of systems with multiple small Fermi pockets (like graphite intercalates
[296, 297] and bismuth [45, 44, 298, 43, 299, 42, 300, 301, 41, 40, 39, 38, 302]) subject to
quantizing magnetic fields, and cylindrical nanotubes at high fields. Our analysis is appli-
cable for the study of competing phases in three coupled 1D systems where the instability
occurs at energy scales much smaller than the chemical potential. However, in situations



where the instabilities appear at higher energy scales, other approaches such as the parquet
renormalization group approach [57, 303, 58], discussed in Chapter-3, will be relevant.

7.2 Interacting model and bosonization

We consider generic density-density type of interactions, and expand the three spinless
fermionic fields in the vicinity of the two Fermi points. We are interested in situations that
physically correspond to partially filled bands, so that Umklapp scattering between the two
Fermi points for a given band is not relevant. However, since we would like our model
to be relevant for systems with multiple nested Fermi pockets with a nesting vector half
a reciprocal lattice vector (such as in the case of bismuth), we do allow the possibility of
two-particle Umklapp scattering between pockets, such that the total momentum transferred
corresponds to a reciprocal lattice vector. With these assumptions, the interaction part of the
Hamiltonian has the following form,

Hint = ∑
p,m

(g(1)1 ψ
†
pmψ

†
pmψpmψpm +g(2)1 ψ

†
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†
pmψpmψpm
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†
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†
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†
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+g(4)4 ψ
†
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pmψpmψpm), (7.1)

where p = 1(−1) refers to right (left) moving fermions, and m = 0,1,−1 denotes the bands
and m ̸= m. The three bands are regarded as identical, for simplicity. The above model is C3

symmetric under permutation of bands. To study the low-energy behavior, we shall utilize the
standard bosonization technique to analyze the continuum fermion model. We now bosonize
the fermionic model using the abelian bosonization prescription-

ψpm =
ηpm√
2πa

exp[ipkFmx]exp[−ipϕpm], (7.2)

where kFm is the Fermi momentum for band m, a is a cutoff of the order of the lattice constant,
and p = 1(−1) stands for the R(L) branch. We assume the Fermi momenta kFm for the three



bands to be identical. The Majorana Klein factors ηR/Lm satisfy

{ηRm,ηRm′}= 2δmm′

{ηLm,ηLm′}= 2δmm′

{ηRm,ηLm′}= 0.

We adopt the following convention for the Klein factors, following Ref. [94],

ηmpηmp = η0pηmp = imp,

ηmpηmp = η0pη0p = ip,

ηmpηmp = η0pηmp = im,

where p,m =±1. The chiral fields ϕpm can be written in terms of nonchiral fields φm and θm

as ϕpm = φm − pθm, and their gradients are proportional to the fermionic density and current
operators, respectively, i.e.

∇φm ∝ ψ
†
RmψRm +ψ

†
LmψLm

∇θm ∝ ψ
†
RmψRm −ψ

†
LmψLm (7.3)

We collect all quadratic terms together, which we henceforth call the “noninteracting” part.
The rest consist of sine-Gordon terms (see below) that we denote as interactions.

We diagonalize the quadratic part of the Hamiltonian by transforming to new bosonic
fields φ̃ given by  φ1

φ−1

φ0

=


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3
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6
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3


 φ̃1

φ̃−1

φ̃0


and likewise for the fields θi. The “noninteracting” part of the Hamiltonian can be written as

HB
0 =

1
2π

∫
dx∑

µ

vµ(Kµ(∇φ̃µ)
2 +

1
Kµ

(∇θ̃µ)
2), (7.4)



where µ = 0,1,−1. Note our convention for Kµ differs from the one commonly used in the
literature, where K−1

µ takes the place of Kµ . We have, for the bare couplings,

v±1K±1 = vF − 1
2π

(G2 −G1)≡ v⊥K⊥
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where G1 = g(4)1 −g(4)2 −2g(4)4 , G2 =−g(1)1 +g(2)2 +2g(1)4 −2g(2)4 , G0
1 =−2g(4)1 +2g(4)2 −2g(4)4

and G0
2 = 2g(1)1 −2g(2)2 +2g(1)4 −2g(2)4 . Note that the twofold degeneracy of the eigenvalues

of the stiffness matrix K̂ is a consequence of the C3 rotational symmetry of the quadratic
part of the Hamiltonian. Following the strategy of Ref. [89], we study the scaling of the
quantities Kφ

0,⊥ =
v0,⊥K0,⊥

π
and Kθ

0,⊥ = v0.⊥
πK0,⊥

, assuming an initial condition v0,±1 = π . We now

define new rescaled fields ψ̃0,±1 =
√

Kφ

0,⊥φ̃0,±1 and ϕ̃0,±1 =
√

Kθ

0,⊥θ̃0,±1. Such a rescaling
makes the stiffness matrix proportional to the identity matrix. During the RG process, small
diagonal and off-diagonal corrections are introduced to the stiffness matrix, and it has a
real symmetric form that we denote by Zµν . After bosonization, the interacting part of the
Hamiltonian has the form of coupled sine-Gordon terms

HB
int = ∑

α

gα cos(a(α)
i ψ̃i)+∑

β

gβ cos(A(β )
i ϕ̃i) (7.5)



where α = 1−3, 7−9 and β = 4−6, and the coefficients,
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where the effective couplings gα(α = 1−8) are linear combinations of the couplings g( j)
i .

Note that we allow the possibility of the coupling constants in the sine-Gordon model to
break the C3 permutation symmetry in the following analysis. The same can also be done in
the quadratic part. However, introducing C3 symmetry breaking in any of these sine-Gordon
channels ultimately results in lifting of C3 symmetry in the quadratic part, as we shall see,
and so there is no loss of generality. During the RG procedure, the vectors â and Â, in general,
rotate and stretch. We find that the scaling dimensions for the interaction terms in Eq. 7.5
depend on the values of the Luttinger parameters Kφ ,θ

0 and Kφ ,θ
⊥ , and in our analysis, we only

retain the most relevant interaction terms (smallest scaling dimensions). This further reduces
the number of parameters we need to consider in our model.

7.3 Renormalization group analysis

The renormalization group follows the standard Wilsonian procedure of elimination of fast
degrees of freedom, restoration of the cutoff, rescaling of the couplings and the renormal-
ization of the fields. This makes the stiffness matrices differ from unity due to off-diagonal
corrections, i.e. they take the form Zµν . To keep the Gaussian fixed point unchanged, we



Fig. 7.1 The figure shows a schematic illustration of our renormalization group procedure.
The stiffness matrix, which is initially diagonal, develops off-diagonal corrections in the
course of the RG flow and takes the general form Zµν . This matrix is diagonalized, which
leads to a rotation R of the coefficients a(α) of the sine-Gordon interaction terms. The
diagonal elements are then absorbed in the respective sine-Gordon fields, which brings the
stiffness matrix back to unity, and leads to a rescaling of the rotated coefficients a(α).



need to rotate the Zθ ,φ
µν matrices to diagonalize them and then rescale the fields such that they

become proportional to identity matrices. Note that the above rotation does not change the
scaling dimensions of the interaction terms. Now, in the new basis obtained after rotation
and rescaling of the fields, we can once again compute the one-loop corrections and the
resulting changes in the diagonal and off-diagonal elements, and repeat the aforementioned
steps throughout the RG process. A completely equivalent procedure has been followed in
Ref. [89], where, instead of keeping the Gaussian fixed point unchanged, the fields are kept
unchanged and the renormalization process leads to rotations and stretching of eigenvalues
of the Zθ ,φ

µν matrices. At this point, the number of parameters in the model is still large, and
we simplify our analysis by considering the anisotropic limits Kφ

⊥ ≫ Kφ

0 or Kφ

0 ≫ Kφ

⊥, which
allows us to drop certain terms in the interacting Hamiltonian in Eq. 7.5 with higher scaling
dimensions. However, we emphasize that the formulation may be readily extended to the
general case. Below we discuss the results obtained by incorporating one-loop corrections
to the matrices Zφ

µν and Zθ
µν in the two aforementioned parameter regimes. The details of

the calculations are discussed in Appendix-D. At any given stage of the RG, the matrix Zφ

µν ,
with the one-loop corrections incorporated, is given by

Zφ =


1
2 +∑α

g2
α dy

16π
((a(α)

1 )2 +(a(α)
−1 )

2)(a(α)
1 )2

∑α

g2
α dy

16π
((a(α)

1 )2 +(a(α)
−1 )

2)(a(α)
1 )(a(α)

−1 ) 0

∑α

g2
α dy

16π
((a(α)

1 )2 +(a(α)
−1 )

2)(a(α)
1 )(a(α)

−1 )
1
2 +∑α

g2
α dy

16π
((a(α)

1 )2 +(a(α)
−1 )

2)(a(α)
−1 )

2 0
0 0 1

2

 .

(7.6)
Note that the above matrix is block-diagonal - a consequence of the nature of the in-

teraction terms and/or approximations employed in the parameter regimes considered in
our analysis. While the corrections accumulated are infinitesimal, the rotations involved
in restoring the matrices with off-diagonal contributions are finite rotations which cannot
be accounted for in the RG flow equations. In our approach, we are always in the rotating
frame, where these large rotations are absent, and only small incremental changes to the
components along the field directions need to be tracked. These amount to slow changes in
the orientation and length, in the rotating frame, upon scaling. In the limit where Kφ

0 ≪ Kφ

⊥,
we find that we only need to retain the couplings gα(α = 1−3), based on their lower scaling
dimensions. In this case, we calculate one-loop corrections to the Zφ matrices due to the
terms g1, g2 and g3 in the interaction Hamiltonian, and likewise, to the Zθ matrices due to
the terms g4,g5 and g6. The corresponding matrix turns out to be block-diagonal due to
the symmetry of the interaction terms in this regime. On the other hand, in the limit where
Kφ

⊥ ≪ Kφ

0 , only the couplings gα(α = 7−9) need to be retained for our analysis. Here we



obtain one-loop corrections to the Zφ matrices arising from the couplings g7, g8 and g9, and,
once again, to the Zθ matrices due to the terms g4,g5 and g6. In this case, the matrix Zφ

is generally a dense matrix which comprises nonzero corrections to every matrix element.
However, implementing the limit Kφ

⊥ ≪ Kφ

0 , we can drop certain terms and it reduces to a
block-diagonal form similar to Eq. 7.6 above with α = 7−9.

We denote the eigenvalues of the matrices in the Eq. 7.6 above by z1, z−1 and z0. We
diagonalize the stiffness matrix and rescale the fields using these eigenvalues. At any given
stage of the RG flow, the coefficients of the cosine terms in the interaction Hamiltonian evolve
in the manner a(α)

i → (Ra(α))i√
zi

, where R is the rotation which diagonalizes the matrix Zµν . We

continue to denote the interaction terms as gα cos[â(α)
i ψ̃i] or gα cos[Â(α)

i ϕ̃i]. Proceeding in
incremental steps, the RG equations for a(1)1 and a(1)−1, due to the rescaling process, are given
by

da(1)1
dy

=−a(1)1 α1

da(1)−1

dy
=−a(1)−1α−1 (7.7)

where z1 = 1/2 + α1dy and z−1 = 1/2 + α−1dy, and α1 and α−1 depend upon all the
couplings as well as the coefficients of all the fields in the sine-Gordon terms. The RG
flow equations for the rest of the components a(α)

i are similarly obtained. The tree-level
contributions to the RG flows for the couplings gα may be obtained in terms of their respective
scaling dimensions. In our analysis, we do not calculate the one-loop corrections to the
renormalization of the coupling constants gα , as they are a higher-order contribution in the
small coupling constants. As an illustrative example, the RG equations for the couplings
gα ,α = 1−3 are given by

dg1

dy
=

(
2− 1

4π
((a(1)1 )2 +(a(1)−1)

2)

)
g1

dg2

dy
=

(
2− 1

4π
((a(2)1 )2 +(a(2)−1)

2)

)
g2

dg3

dy
=

(
2− 1

4π
((a(3)1 )2 +(a(3)−1)

2)

)
g3 (7.8)

Similar arguments are used to determine the RG equations for the rest of the couplings
gα(α = 4−9). We solve these coupled differential equations numerically and obtain the
fixed-point values for the couplings gα and the coefficients a(α)

i . We consider weak repulsive
interactions in every channel, and study the nature of the RG flows as a function of the
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Fig. 7.2 The figure shows a scaling collapse plot of the RG flow parameter y ∼ ln[ξ ] (where
ξ is the correlation length) as a function of 1√

Kφ

⊥−Kc

. Kc denotes the critical value of the

Luttinger liquid parameter Kφ

⊥, where the system undergoes a phase transition. The plot
shows results for five different sets of initial conditions on the interactions, with one or more
of the couplings gα taking non-zero values initially, and indicates that the phase transitions
occuring in this system are continuous in nature and belong to the BKT universality class.

initial conditions on the interactions and the value of the Luttinger liquid parameter Kφ ,θ
⊥ . In

general, we find that the couplings gα either diverge or flow to zero in the course of the RG
flow. From Eq. 7.7 above, it is clear that the coefficients a(α)

1 and a(α)
−1 obey different RG

equations , and show qualitatively different behavior as a function of the RG flow parameter.
While the coefficient a(α)

1 always decreases in the course of the RG procedure, a(α)
−1 may

increase or decrease, depending upon the initial conditions considered for the interactions. In
other words, the coefficients of the different fields rescale differently in the course of the RG
flow, following the rotation of the stiffness matrix.

7.4 Order parameters and phase diagram

The order parameters considered in our analysis are fermionic bilinear operators characterized
by chirality and band indices. There are two classes of order parameters in our system. These
are defined in the particle-hole channels where we follow the convention used by Ref. [94],

Re[Oi
ph] = ∑

mm′
λ

i
mm′ψ

†
RmψLm′ +h.c (7.9)
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Fig. 7.3 The figure shows the phase diagram of a system of three coupled spinless Luttinger
liquids, for the parameter regimes (a) Kφ

⊥ ≫ Kφ

0 and Kφ

0 ≪ 1, where only particle-particle
(p-p) orders are considered due to the smaller scaling dimensions for the corresponding terms,
and (b) Kφ

0 ≫ Kφ

⊥ and Kφ

0 ≫ 1, where only particle-hole (p-h) orders are considered in our
analysis. In both cases, we can tune Kφ

⊥ and for values of Kφ

⊥ ∼ 1, various interband and
intraband orders compete with one another, with the winner being determined by the initial
conditions on the interactions.



where λ i(i = 1...8) correspond to the Gell-Mann matrices (see Appendix-D for details), λ 0

denotes the 3x3 unit matrix, ψpm (ψ†
pm) is the electron annihilation (creation) operator with

chirality p and band m, and in the particle-particle channels,

Re[Oi
pp] = ∑

mm′
λ

i
mm′ψ

†
Rmψ

†
Lm′ +h.c (7.10)

where, in both the Eqs. 7.9 and 7.10, no spin indices are considered due to the spinless
nature of the fermions. Note that we consider ordered states arising from scattering or pairing
in opposite chiralities in this analysis, and we have checked that equal-chirality interband
pairing terms show a qualitatively similar behavior. The order parameters in Eqs. 7.9 and 7.10
above are now expressed in terms of the bosonic fields. A total of sixteen order parameters
are obtained in the particle-hole and particle-particle channels for the spinless case (see
Appendix-D). The dominant order parameters are determined by introducing small order
parameter fluctuations and considering how it evolves under RG. The corresponding RG
equations are listed in Appendix-D. At the tree level, the dominant order parameters are
those that have the smallest scaling dimensions. In order to determine the winning order
parameters, we consider the behavior of the couplings gα and the corresponding rotation
parameters a(α)

i near the critical point for a given set of initial conditions and find that both
quantities play a crucial role in deciding the nature of the dominant electronic orders. In
some cases, we find that none of the order parameters we studied grows under RG, implying
the absence of any long-range order despite the presence of interactions.

We have two broad classes based on the relative sizes of Kφ

0 and Kφ

⊥ and within each
of these two classes, we further have two situations corresponding to Kφ

0 ≫ 1 or Kφ

0 ≪ 1.
The case of Kφ

0 ∼ 1 has not been considered in this work and will be taken up later. In the
regime where Kφ

0 ≫ Kφ

⊥ and Kφ

0 ≪ 1, the dominant instabilities are found in the intraband
particle-particle channel. Similarly, in the regime where Kφ

⊥ ≫ Kφ

0 and Kφ

0 ≫ 1, the dominant
instabilities are found in the intraband particle-hole channel. We now consider the remaining
two cases, which allow us to tune Kφ

⊥ over a large range, and involve both intraband and
interband orders.

We find that for Kφ

0 ≫ Kφ

⊥ and Kφ

0 ≫ 1, the particle-hole orders are more relevant due to
smaller scaling dimensions of the corresponding terms, whereas for Kφ

⊥ ≫ Kφ

0 and Kφ

0 ≪ 1,
the particle-particle orders are found to be more relevant. Using a numerical scaling analysis,
we have studied the nature of the phase transitions in this system, and find that the phase
diagram is affected primarily by two factors: the magnitude of the Luttinger liquid parameter
Kφ

⊥ and the set of initial conditions considered for the interactions gα . The scaling of the
correlation length ξ at the critical point is determined by identifying the characteristic scale



y where the couplings gα(y) cross a designated value ≳ 1. We obtain continuous transitions
as a function of Kφ

⊥, which belong to the Berezinskii-Kosterlitz-Thouless (BKT) universality
class. To confirm this, we have demonstrated universal BKT scaling collapse for the behavior
of the correlation length close to the critical point (see Fig. 7.2). Note that the critical value
Kc of the Luttinger parameter Kφ

⊥ is different for different initial conditions on the couplings
gα but give rise to the same critical behavior.

Below we discuss the salient features of the phase diagram, considering various parameter
regimes for Kφ

⊥, each of which correspond to two further regimes, Kφ

0 ≫ Kφ

⊥ and Kφ

0 ≫ 1
or Kφ

0 ≪ Kφ

⊥and Kφ

0 ≪ 1. Since Kθ

⊥ is inversely related to Kφ

⊥ in our model, it does not
constitute an independent parameter in the phase diagram.

Kφ

⊥ ≪ 1: In this regime, for Kφ

0 ≪ Kφ

⊥ and Kφ

0 ≪ 1, the intraband particle-particle orders
are found to be dominant, whereas if Kφ

0 ≫ Kφ

⊥ and Kφ

0 ≫ 1, initially no electronic orders
are present for extremely small values of Kφ

⊥, and for larger values of Kφ

⊥, a particular pair
of interband particle-hole orders dominates, depending upon the initial conditions being
considered for the interactions.

Kφ

⊥ ∼ 1: In the regime Kφ

⊥ ∼ 1, in both the regimes Kφ

0 ≪ Kφ

⊥ and Kφ

0 ≪ 1, and Kφ

0 ≫ Kφ

⊥
and Kφ

0 ≫ 1, various intraband and interband particle-particle and particle-hole orders
compete with each other, and the winners are dependent most sensitively on the initial
conditions chosen for the interactions in this part of the phase diagram.

Kφ

⊥ ≫ 1: In this regime, for Kφ

0 ≪ Kφ

⊥ and Kφ

0 ≪ 1, a particular pair of interband particle-
particle orders is found to be dominant, depending upon the initial conditions chosen for the
interactions, and no order is present at extremely large values of Kφ

⊥, whereas if Kφ

0 ≫ Kφ

⊥
and Kφ

0 ≫ 1, then the intraband particle-hole orders are found to dominate.
The various electronic orders found to occur in the different parameter regimes considered

by us are schematically shown in Fig. 7.3.

7.5 Summary

In summary, we have studied competing electronic phases and phase transitions in a system
of three coupled spinless Luttinger liquids using a renormalization group analysis of the
bosonized model, that takes into account one-loop corrections to the stiffness matrix, generat-
ing off-diagonal contributions. In order to restore these matrices to a form that is proportional
to an identity matrix, we introduce a series of rotations and then rescale the fields at each



step of the RG flow. These rotations and rescalings are found to couple different interaction
channels even at the tree-level order. The coefficients of different fields in a given interaction
term rescale differently. The results of the RG flows are found to be sensitive to the relative
initial values of the interaction couplings gα , a feature absent in single-phase and two-phase
sine-Gordon models. We have also studied competing orders in the particle-particle and
particle-hole channels using the renormalization group, which are sixteen in number for the
spinless case. In the regimes considered, we find that for extreme values of the Luttinger
liquid parameter Kφ

⊥, interband and intraband orders which involve one of the three bands, or
a particular pair of bands, are found to dominate, depending upon the initial conditions for
the couplings, which leads to valley symmetry breaking, and the intraband orders realized are
chiral. In the regime where Kφ

⊥ ∼ 1, the dominant orders are found to be strongly sensitive to
the initial values of the interaction couplings. For simplicity, we have considered the regimes
of Kφ

0 ≫ 1 or Kφ

0 ≪ 1, and the case of Kφ

0 ∼ 1 has not been considered here. In the latter
regime, the particle-particle and particle-hole channels compete with each other and the
results are likely to be sensitive to the initial conditions considered. This will be taken up in
a future work. We determine the nature of the phase transitions as a function of the Luttinger
parameter Kφ

⊥ as well as the initial conditions on the interactions gα using a numerical scaling
analysis, and obtain continuous transitions belonging to the BKT universality class. We
expect our analysis to be applicable to systems with three Fermi pockets, such as bismuth
and graphite intercalation compounds, in the presence of a large magnetic field, where each
of the electron pockets effectively behaves like a one-dimensional system.





Chapter 8

Summary

In summary, we have explored strongly spin-orbit coupled systems in the regimes of both
weak and strong electronic correlations, and find that a variety of interesting phases can
be realized either by tuning the electron correlations or an external parameter such as an
applied magnetic field. In the case of the topological crystalline insulator Pb1−xSnxTe as
well as multipocket systems at high fields, such as the one discussed in the last part of the
thesis, weak electron correlations are shown to result in electronic states that break valley
degeneracy, including chiral orders. In the spin-orbit assisted Mott insulator Na2IrO3, we
found that a magnetic field may be used to tune the system from a magnetically ordered
ground state to a quantum spin liquid state with short-range spin correlations. Below, I
summarize the main findings of the three research projects that have been discussed in this
thesis.

8.1 Electronic instabilities on a topological crystalline in-
sulator surface

In the first part of the thesis, we have studied electronic phase competition on the (001)
surface of the topological crystalline insulator Pb1−xSnxTe using a parquet renormalization
group analysis, which takes into account competing instabilities in the particle-particle and
particle-hole channels. We found that over a wide range of parameter space of the repulsive
interactions considered, the dominant electronic order in this system is chiral p−wave
superconductivity. Here, the chiral nature of the superconducting order arises from the Berry
phases associated with the surface states, and is topologically protected against weak disorder,
unlike in the case of Sr2RuO4. We further studied the effect of an external magnetization on
the chiral p−wave superconductivity and found that the electronic order on the surface is



protected by multiorbital effects in this system, i.e. for a finite value of Hund’s splitting, there
is a critical value of the external magnetization beyond which the chiral p−wave order is no
longer stable. On the experimental front, recent point-contact spectroscopy measurements
have confirmed the existence of superconductivity on the (001) surface of this material, but
the nature of the superconducting order remains to be ascertained. While scanning tunneling
measurements provide a possible avenue for detecting unconventional superconductivity,
zero-bias peaks in STM measurements may not necessarily indicate the presence of Majorana
zero modes. In this connection, in the third part of the project, we have proposed a simple
approach, using impurity-induced Shiba-like subgap states, for unambiguously identifying the
nature of the superconducting order. We have shown that if chiral p−wave superconductivity
is indeed present, then subgap bound states in only certain parameter regimes of doping
depend crucially upon it. We have obtained exact analytical expressions for the bound state
spectra and wavefunctions, as a function of the parameters of the system, and identified the
properties of such states that can be associated with the nature of the superconducting order.
From an experimental point of view, Pb1−xSnxTe provides a natural setting for realizing such
a state, owing to the presence of low-lying Van Hove singularities and effectively spinless
surface bands. If realized, this would be a rare example of a system with intrinsic chiral
p−wave superconductivity, in contrast to the proximity-induced superconducting order in
topological insulator heterostructures.

8.2 High-field torque response of the alkali Iridate Na2IrO3:
Evidence for strong ferromagnetic Kitaev correlations
and possibility of a field-induced spin liquid

In the second part of the thesis, we have combined high-field torque magnetometry measure-
ments (up to 60 T) for the alkali iridate Na2IrO3, a popular Kitaev material, with large-scale
exact diagonalization simulations, to probe the underlying interactions in this material. We
calculated the magnetoresponse for effective spin models with a dominant Kitaev term, along
with subdominant isotropic and anisotropic off-diagonal exchange interactions, and found
that a robust characteristic peak-dip feature in the experimental torque response, observed
in the field range of 20-40 T, can only be reproduced for models with a large ferromagnetic
Kitaev interaction, and not for their antiferromagnetic Kitaev counterparts. We further cal-
culated spin-spin correlations as a function of distance on the hexagonal cluster for various
values of the applied field, and found that beyond the position of the peak-dip feature, the spin
correlations become increasingly short-ranged for larger field values. Furthermore, structure



factor calculations do not show a crossover from an antiferromagnetic zigzag order to any
of the commonly encountered magnetically ordered states at the position of the peak dip in
the transverse magnetization. Indications therefore are that the high magnetic-field regime
beyond the peak-dip feature manifests spin-liquid physics in Na2IrO3. Our work sheds light
on the universality of magnetic-field-induced quantum spin liquid physics in Kitaev systems,
which we find to be signaled by the peak dip structure in the anisotropic magnetization at the
zigzag ordering scale, also recently reported in α−RuCl3, another Kitaev material that has
attracted a lot of attention. Such a feature thus serves as an independent experimental handle
that can provide valuable information about the nature of the magnetic interactions as well as,
possibly, signal the onset of a field-induced spin liquid phase. The microscopic models that
we use for our calculations are indicated to be relevant to a broad class of spin-orbit coupled
honeycomb Kitaev materials including α−RuCl3. Our results are consistent with recent
thermal Hall conductivity and inelastic neutron scattering experiments in α−RuCl3, which
point towards the possibility of accessing Kitaev physics at high fields beyond the zigzag
ordering scale of these materials. The short-range correlated phase at high fields obtained for
models which reproduce the qualitative features of the experimental torque response strongly
emphasize the importance of this regime for realizing a spin-liquid phase.

8.3 Competing phases and critical phenomena in a system
of three coupled spinless Luttinger liquids

In the third part of the thesis, we have studied competing electronic phases and phase
transitions in a system of three coupled spinless Luttinger liquids using a renormalization
group (RG) analysis of the bosonized interactions. Our RG procedure takes into account
one-loop corrections to the stiffness matrices, generating off-diagonal contributions. In order
to keep the Gaussian fixed point invariant, we introduce a series of rotations and then rescale
the fields at each step of the RG flow, or equivalently, the coefficients of different fields in
the sine-Gordon interaction terms. These rotations and rescalings are found to be dependent
on all the couplings as well as coefficients of all the fields, and couple different interaction
channels even at the tree-level order. Moreover, we find that the coefficients of different fields
in a given interaction term rescale differently. The RG flows are found to be sensitive to the
initial values of the interaction couplings gα , a feature absent in single-phase and two-phase
sine-Gordon models. We also study the response to fluctuations to the order parameters in
the particle-particle and particle-hole channels using the renormalization group, to determine
the most dominant electronic orders. We find that the overall nature of the winning orders in



different parameter regimes is governed by the RG flow equations for the couplings as well
as the coefficients of the fields in the sine-Gordon terms. In particular, for extreme values of
the Luttinger liquid parameter Kφ

⊥, interband and intraband orders which involve one of the
three bands, or a particular pair of bands, are found to dominate, depending upon the initial
conditions for the couplings, which is a manifestation of valley symmetry breaking. The
intraband orders realized are generically chiral. In the regime where Kφ

⊥ ∼ 1, the dominant
orders are found to be strongly sensitive to the initial values of the interaction couplings. For
simplicity in the analysis of the dominant electronic orders, we have considered the regimes
of Kφ

0 ≫ 1 or Kφ

0 ≪ 1 in our analysis, and the case of Kφ

0 ∼ 1 has not been considered in
this work. In such a regime, the particle-particle and particle-hole channels will compete
with each other and the results are likely to be sensitive to the initial conditions considered.
This will be taken up in a future work. We determine the nature of the phase transitions as a
function of the Luttinger parameter Kφ

⊥ as well as the initial conditions on the interactions gα

using a numerical scaling analysis, and obtain continuous transitions belonging to the BKT
universality class. While the critical value of Kφ

⊥ is different for different initial values of the
couplings, the nature of the phase transitions is found to be independent of this. Our analysis
is expected to be applicable for strongly spin-orbit coupled systems with three Fermi pockets,
such as bismuth, at high magnetic fields. We have not studied the case where Kφ

0 ∼ Kφ

⊥,
with the rotations being in general O(3) matrices. The rotation matrices in that case are
non-abelian and it would interesting to see if this gives qualitatively new insights into the
problem. A similar analysis should also be performed for the case of three spinful coupled
Luttinger liquids (which are useful for describing quasi-one dimensional systems such as
K2Cr3As3), taking into account special fillings where intraband Umklapp scattering terms
are possible.
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Appendix A

Parquet RG equations in the presence of an external magne-
tization

Here we present the RG equations in the presence of an external magnetization M, which
is taken into account by introducing additional form factors v↑(M) and v↓(M) in the RG
equations. Corresponding to every scattering channel hr, we then have four components h↑↑r ,
h↓↓r , h↑↓r and h↓↑r , alternately denoted by h0

r , h2
r , h1

r and h3
r respectively. This gives us a set of

16 coupling constants. The final set of RG equations are given by
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Fixed-point behavior of the couplings

The different couplings hℓr(y) have an asymptotic form gℓr
yc−y near the critical point yc of the

RG flow. In order to determine the behavior of the fixed point values gℓr for the different
couplings as a function of d1(yc), we substitute this asymptotic form into the RG equations
to obtain the polynomial equations, as follows-
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These coupled equations are then solved with appropriate initial conditions, to determine
gℓr (ℓ= 0,1) as a function of d1(yc), which is the ratio of the particle-hole and particle-particle
susceptibilities at the fixed point yc. The behaviour of gℓr as a function of d1(yc) when the
degeneracy between the couplings in the ℓ= 0 and ℓ= 1 channels is lifted (such that g0

r > g1
r

for all r) is shown in Fig. 2.
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Fig. 1 (a) Flow of the couplings with the RG scale y, with an initial splitting in the different
scattering channels r. Here we have chosen the initial value of h1 to be greater than all

the other hr by 10%, i.e. |hℓ1−hℓr|
|hℓr|

= 0.1 (r ̸= 1) for ℓ= 0,1, where (hℓr)initial = 0.1 for r ̸= 1.
The resulting order of the couplings at the fixed-point yc is identical to the case where all
the couplings are chosen to be degenerate initially, and h0,1

3 and (−h0,1
4 ) are the dominant

couplings. This illustrates that our RG flows are insensitive to the initial order of the couplings
in different scattering channels r = 1−4 , as long as h0

r = h1
r for all r. Here, the critical point

yc ≈ 3.8. (b) Flow of the couplings with the RG scale y, with h0
1 > h1

1 by 10% initially, i.e.
|h0

1−h1
1|

|h1
1|

= 0.1, where (h0
r )initial = 0.1 for r ̸= 1 and (h1

r )initial = 0.1 for all r. This changes the

order of the couplings at the fixed point drastically, and now h0
3 and (−h0

4) dominate near the
fixed point of the RG flow.
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Fig. 2 The fixed point values for g0
r as a function of d1(yc) for the case where the ℓ = 0

components of all the couplings dominate initially. Note that the fixed point values g0
2 and g0

1
turn out to be identical.



Appendix B

Ladder RG equations in the absence of Hund’s splitting

In the absence of Hund’s splitting, i.e. when the various components of interactions hi

in the different scattering channels i = 1− 4 are taken to be identical initially, p-wave
superconductivity cannot be stabilized at energies corresponding to the fixed point of the
parquet RG. However, when the Fermi energy EF associated with the system exceeds the
energy ωc corresponding to the critical point yc, the RG flow must be terminated at EF , and
any possible instabilities will then depend on the order of the different couplings at the Fermi
energy. These are determined using a ladder RG approach.

Two kinds of vertices continue to flow logarithmically at energies below the Fermi energy
EF : vertices with zero total momentum, and with total momentum exactly equal to the
nesting vector Q in two dimensions. The vertices with zero total momentum are the h3 and h4

terms in our RG analysis and the vertices with total momentum Q are the h1, h2 and h3 terms.
The values of hi at EF act as the bare couplings for the theory at ω < EF . There are two
kinds of h3 vertices with a momentum transfer Q, h3a and h3b and we denote the h3 vertex
with zero total momentum as h3c. We shall refer to the vertices with zero total momentum
as hi(0) and the vertices with total momentum Q as hi(Q). The ladder RG equations are
obtained by considering those diagrams which still yield a logarithmic divergence.

The ladder RG equations for our system, where now y ≡ ln[EF
ω
], are given as follows-

dhσσ
1 (Q)

dy
= 2((2hσσ

3a (Q)hσσ
3b (Q)− (hσσ

3a (Q))2)v2
σ

− (hσσ
1 (Q))2v2

σ − (hσσ
3a (Q))(hσσ

3a (Q))v2
σ−

(hσσ
1 (Q))(hσσ

1 (Q))v2
σ +2(hσσ

1 (Q))(hσσ
2 (Q))v2

σ )

dhσσ
1 (Q)

dy
= 2((2(hσσ

3a (Q))(hσσ
3b (Q))− (hσσ

3a (Q))2)v2
σ

− (hσσ
1 (Q))2v2

σ − (hσσ
3a (Q))(hσσ

3a (Q))v2
σ−

(hσσ
1 (Q))(hσσ

1 (Q))v2
σ +2(hσσ

1 (Q))(hσσ
2 (Q))v2

σ )



dhσσ
1 (Q)

dy
= 2(hσσ

3a (Q)(hσσ
3b (Q)−hσσ

3a (Q))v2
σ

+hσσ
3a (Q)(hσσ

3b (Q)−hσσ
3a (Q))v2

σ +hσσ
1 (Q)(−(hσσ

1 (Q))v2
σ

− (hσσ
1 (Q))v2

σ +(hσσ
2 (Q))v2

σ +(hσσ
2 (Q))v2

σ )

-

dhσσ
1 (Q)

dy
= 2(hσσ

3a (Q)(hσσ
3b (Q)−hσσ

3a (Q))v2
σ

+hσσ
3a (Q)(hσσ

3b (Q)−hσσ
3a (Q))v2

σ +hσσ
1 (Q)(−(hσσ

1 (Q))v2
σ

− (hσσ
1 (Q))v2

σ +(hσσ
2 (Q))v2

σ +(hσσ
2 (Q))v2

σ )

dhσσ
2 (Q)

dy
= 2((hσσ

2 (Q))2 +(hσσ
3b (Q))2)v2

σ

dhσσ
2 (Q)

dy
= 2((hσσ

2 (Q))2 +(hσσ
3b (Q))2)v2

σ

dhσσ
2 (Q)

dy
= 2((hσσ

2 (Q))2 +(hσσ
3b (Q))2)vσ vσ

dhσσ
2 (Q)

dy
= 2((hσσ

2 (Q))2 +(hσσ
3b (Q))2)vσ vσ

dhσσ
3a (Q)

dy
= 2(2hσσ

1 (Q)(hσσ
3b (Q)

−hσσ
3a (Q))v2

σ +2hσσ
2 (Q)hσσ

3a (Q)v2
σ

−hσσ
1 (Q)hσσ

3a (Q)v2
σ −hσσ

1 (Q)hσσ
3a (Q)v2

σ )

dhσσ
3b (Q)

dy
= 4hσσ

2 (Q)hσσ
3b (Q)v2

σ

dhσσ
3c (0)
dy

=−4hσσ
4 (0)hσσ

3c (0)v2
σ



dhσσ
3a (Q)

dy
= 2(2hσσ

1 (Q)(hσσ
3b (Q)

−hσσ
3a (Q))v2

σ +2hσσ
2 (Q)hσσ

3a (Q)v2
σ

−hσσ
1 (Q)hσσ

3a (Q)v2
σ −hσσ

1 (Q)hσσ
3a (Q)v2

σ )

dhσσ
3b (Q)

dy
= 4hσσ

2 (Q)hσσ
3b (Q)v2

σ

dhσσ
3c (0)
dy

=−4hσσ
4 (0)hσσ

3c (0)v2
σ

dhσσ
3a (Q)

dy
= 2(hσσ

1 (Q)(hσσ
3b (Q)−hσσ

3a (Q))v2
σ

+hσσ
1 (Q)(hσσ

3b (Q)−hσσ
3a (Q))v2

σ+

hσσ
3a (Q)(hσσ

2 (Q)v2
σ +hσσ

2 (Q)v2
σ

−hσσ
1 (Q)v2

σ −hσσ
1 (Q)v2

σ ))

dhσσ
3b (Q)

dy
= 4hσσ

2 (Q)hσσ
3b (Q)vσ vσ

dhσσ
3c (0)
dy

=−4hσσ
4 (0)hσσ

3c (0)vσ vσ

dhσσ
3a (Q)

dy
= 2(hσσ

1 (Q)(hσσ
3b (Q)−hσσ

3a (Q))v2
σ

+hσσ
1 (Q)(hσσ

3b (Q)−hσσ
3a (Q))v2

σ+

hσσ
3a (Q)(hσσ

2 (Q)v2
σ +hσσ

2 (Q)v2
σ

−hσσ
1 (Q)v2

σ −hσσ
1 (Q)v2

σ ))

dhσσ
3b (Q)

dy
= 4hσσ

2 (Q)hσσ
3b (Q)vσ vσ

dhσσ
3c (0)
dy

=−4hσσ
4 (0)hσσ

3c (0)vσ vσ



dhσσ
4 (0)
dy

=−2((hσσ
3c (0))2 +(hσσ

4 (0))2)v2
σ

dhσσ
4 (0)
dy

=−2((hσσ
3c (0))2 +(hσσ

4 (0))2)v2
σ

dhσσ
4 (0)
dy

=−2((hσσ
3c (0))2 +(hσσ

4 (0))2)vσ vσ

dhσσ
4 (0)
dy

=−2((hσσ
3c (0))2 +(hσσ

4 (0))2)vσ vσ

From the above equations, we find

d(hσσ
3c (0)−hσσ

4 (0))
dy

= 2(hσσ
3c (0)−hσσ

4 (0))2vσ vσ

for the superconducting vertex. These equations can be solved to give

hσσ
3 (0)−hσσ

4 (0) =
(hσσ

3 )EF − (hσσ
4 )EF

1−2vσ vσ ((hσσ
3 )EF − (hσσ

4 )EF ) log[EF
ω
]

A similar situation arises for the SDW instability in this regime. The competition between
these instabilities depends on the respective energies at which different combinations of
couplings diverge, and thus, on their values at the Fermi energy EF . The first instability
occurs in the channel for which the coupling at ω ∼ EF is the largest.

To illustrate the nature of the most divergent couplings in the two limits, RG flows
for M < Mc and M > Mc with a dimensionless initial repulsive interaction of 0.1 and a
Hund’s splitting of 5% ( |h

σσ
i −hσσ

i |
|hσσ

i | = 0.05) introduced initially, where the critical value of
the Zeeman splitting Mc ≈ 6.1 meV, are shown in the Fig 3. The corresponding behavior of
hσσ ′

i (y)(yc − y) as a function of (yc − y), which illustrates the order of the fixed point values
gσσ ′

i for the different couplings in the above-mentioned two cases, is shown in the Fig. 4.
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Fig. 3 The RG flows for (a) M = 4 meV and (b) M = 7 meV where the critical value of
spin-splitting Mc ≈ 6.1 meV. The fixed point value yc ≈ 3.43 for (a) and yc ≈ 3.2 for (b)
above. Here, the initial values for each of the dimensionless couplings is taken to be 0.1, and

a Hund’s splitting of 5% ( |h
σσ
i −hσσ

i |
|hσσ

i | = 0.05) is introduced initially such that hσσ
i > hσσ

i for
i = 1−4 and σ =↑,↓. Clearly, the leading couplings near the instability threshold correspond
to spin-antiparallel configurations for M < Mc, while the spin ↑ component of each of the
couplings dominates for M > Mc. Here the couplings h↑↑i , h↓↓i , h↑↓i and h↓↑i are denoted
respectively by h0

i , h2
i , h1

i and h3
i , for clarity. The factors of v↑ and v↓ have been absorbed

into the couplings constants hℓi (ℓ= 0−3) in the above plots, for simplicity in notation.
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Fig. 4 The order of the fixed-point values for the different couplings hℓi (ℓ= 0−3) at the
critical point yc for (a) M = 4 meV and (b) M = 7 meV, where the critical spin-splitting
Mc ≈ 6.1 meV. Here, the initial values for each of the dimensionless couplings is taken

to be 0.1, and a Hund’s splitting of 5% ( |h
σσ
i −hσσ

i |
|hσσ

i | = 0.05) is introduced initially such that

hσσ
i > hσσ

i for i = 1− 4 and σ =↑,↓. The above plots show the evolution of hℓi (y) as a
function of (yc − y) close to the fixed point yc, where each coupling constant hℓi has an

asymptodic form gℓi
yc−y , and the y-intercepts of curves shown give an estimate of the fixed-

point values gℓi for the different couplings. This clearly indicates that the leading couplings
for M < Mc correspond to the odd angular momentum (ℓ= 1 and ℓ= 3) channels, for spin-
antiparallel configurations, in the presence of a finite Hund’s splitting, while for M >Mc these
correspond to the spin ↑ (ℓ= 0) channel. As in Fig. 3, the factors of v↑ and v↓ corresponding
to each coupling have been absorbed into hℓi (ℓ= 0−3).



Appendix C

Derivation of the asymptotic form of the bound state wave-
functions for point defects

Here we derive the expressions for the asymptotic form of the bound state wavefunctions for
a point defect in a chiral p−wave superconductor.

The expression for the bound state wavefunctions for point defects involves the following
integrals

I1(r) =− 1
(2π)2

∫
kdkdφ exp{ikr cos[θ −φ ]} (Ak2 +µ ′)

(Ak2 +µ ′)2 +∆2k2

and
I2(r,θ) =

1
(2π)2

∫
kdkdφ exp{ikr cos[θ −φ ]}exp[iφ ]

∆k
(Ak2 +µ ′)2 +∆2k2

where k=
√

k2
x + k2

y , tan[φ ] = y
x . Let us now consider the integral I1. Using the result

∫
dφ exp{ikr cos[θ −

φ ]}= 2πJ0(kr), we have

I1(r) =− 1
(2π)2

∫
kdk

Ak2 +µ ′

(Ak2 +µ ′)2 +∆2k2 2πJ0(kr)

The above expression may be rewritten as

I1 =− 1
2π

∫
kdk

1
2(Ak2 +µ ′+ i∆k)+ 1

2(Ak2 +µ ′− i∆k)
(Ak2 +µ ′)2 +∆2k2 J0(kr)

=− 1
4π

∫
dkkJ0(kr)

1
A
(

1
(k− k1)(k− k2)

+
1

(k− k3)(k− k4)
)

where k1 = i
√

µ ′
A

√
λ+2+

√
λ√

2
, k2 = i

√
µ ′
A

√
λ−

√
λ+2√

2
, k3 = i

√
µ ′
A

√
λ+2−

√
λ√

2
=−k2, k4 =−i

√
µ ′
A

√
λ+2+

√
λ√

2
=

−k1. This can further be simplified as

− 1
4π

∫
dkkJ0(kr)

1
A(k1 − k2)

(
2k1

k2 − k2
1
− 2k2

k2 − k2
2
)



Let us now rewrite k1 = iα , k2 =−iβ where α and β are real, and α,β > 0 (α =
√

µ ′
A

√
λ+2+

√
λ√

2
,

β =
√

µ ′
A

√
λ+2−

√
λ√

2
). The above equation can be rewritten as

− 1
4π

∫
dkkJ0(kr)

2
A(α +β )

(
α

k2 +α2 +
β

k2 +β 2 )

To evaluate the above expression, we shall use the standard integral [218]∫
∞

0
dk

kJ0(kr)
k2 +α2 = K0(αr),

which is applicable in our case, since r > 0, α,β are real and Re[α],Re[β ]> 0. The asymp-
totic form of the RHS is given by

K0(αr)∼ (
π

2αr
)1/2 exp[−αr]

∞

∑
n=0

an(0)
(αr)n

where an(ν) =
(4ν2−12)(4ν2−32)...(4ν2−(2n+1)2)

(n+1)! ( 1
4ν2−12 +

1
4ν2−22 + ... 1

4ν2−(2n+1)2 ). Using these
results, we find

I1(r) =− 1
2πA(α +β )

(αK0(αr)+βK0(β r))

which is an exponentially decaying function at large values of r.
Similarly, using the result

∫
dφ exp{ikr cos[θ −φ ]}exp[iφ ] = i2πJ1(kr)exp[iθ ], we may

simplify the expression for I2 as

I2(r,θ) =
exp[iθ ]
(2π)2

∫
kdk

∆k
(Ak2 +µ ′)2 +∆2k2 i2πJ1(kr)

=
exp[iθ ]

2π

∫
dkkJ1(kr)

1
2
(

1
Ak2 +µ ′− i∆k

− 1
Ak2 +µ ′+ i∆k

)

=
exp[iθ ]

4π

∫
dkkJ1(kr)

1
A(k1 − k2)

(
1

k− k1
− 1

k− k2
+

1
k+ k1

− 1
k+ k2

)

k1 = i
√

µ ′
A

√
λ+2+

√
λ√

2
, k2 = i

√
µ ′
A

√
λ−

√
λ+2√

2
, k3 = i

√
µ ′
A

√
λ+2−

√
λ√

2
=−k2, k4 =−i

√
µ ′
A

√
λ+2+

√
λ√

2
=

−k1. This can be rewritten as

exp[iθ ]
4π

∫
dkkJ1(kr)

1
A(k1 − k2)

(
2k

k2 − k2
1
− 2k

k2 − k2
2
)



Again, replacing k1 by iα and k2 by −iβ , where α and β are real,and α,β > 0 (α =√
µ ′
A

√
λ+2+

√
λ√

2
, β =

√
µ ′
A

√
λ+2−

√
λ√

2
), we find

I2 =
exp[iθ ]

4π

∫
dkJ1(kr)

2
Ai(α +β )

(
k2

k2 +α2 −
k2

k2 +β 2 )

Let us rewrite the variable of integration as kr ≡ x. Then

I2 =
exp[iθ ]

2πAi(α +β )

∫ dx
r

J1(x)(
x2

x2 +α2r2 −
x2

x2 +β 2r2 ) (2)

To evaluate the above Eq. 2, we shall use the standard integral [218]∫
∞

0
dx

xJ0(ax)
x2 +α2r2 = K0(aαr),

where r > 0, α,β are real and Re[α],Re[β ] > 0. Here, we differentiate both sides with
respect to a, and then take the limit a → 1, we have

∫
∞

0

x2J1(x)
x2 +α2r2 dx = K1(αr) (3)

Thus, using Eq. 3 in Eq. 2, we have

I2 =
exp[iθ ]

2πAi(α +β )r
(K1(αr)−K1(β r))

The asymptotic form of the function on the RHS is given by

K1(αr)∼ (
π

2αr
)1/2 exp[−αr]

∞

∑
n=0

an(1)
(αr)n

where an(ν) =
(4ν2−12)(4ν2−32)...(4ν2−(2n+1)2)

(n+1)! ( 1
4ν2−12 +

1
4ν2−22 + ... 1

4ν2−(2n+1)2 ), which is
exponentially decaying in nature.



Appendix D

Order parameters in terms of bosonic fields

In our analysis, the fermionic bilinears for the order parameters are expressed in terms of
Gell-Mann matrices, which are a set of eight linearly independent 3×3 traceless Hermitian
matrices. These are as follows-

λ
1 =

 0 1 0
1 0 0
0 0 0

 ,λ 2 =

 0 −i 0
i 0 0
0 0 0



λ
3 ==

 1 0 0
0 −1 0
0 0 0

 ,λ 4 =

 0 0 1
0 0 0
1 0 0



λ
5 =

 0 0 −i
0 0 0
i 0 0

 ,λ 6 =

 0 0 0
0 0 1
0 1 0



λ
7 =

 0 0 0
0 0 −i
0 i 0

 ,λ 8 =
1√
3

 1 0 0
0 1 0
0 0 −2





Below, we list the expressions for the sixteen order parameters in terms of the bosonic
fields:

Re[O10
ph] ∝ sin[

√
2θ̃1]cos[

2φ̃−1√
6

+
2φ̃0√

3
−2kFx]

Re[O20
ph] ∝ cos[

√
2θ̃1]cos[

2φ̃−1√
6

+
2φ̃0√

3
−2kFx]

Re[O30
ph] ∝ sin[

√
2φ̃1]cos[

2φ̃−1√
6

+
2φ̃0√

3
−2kFx]

Re[O40
ph] ∝ sin[

θ̃1√
2
+

3θ̃−1√
6
]cos[

φ̃1√
2
− φ̃−1√

6
+

2φ̃0√
3
−2kFx]

Re[O50
ph] ∝ cos[

θ̃1√
2
+

3θ̃−1√
6
]cos[

φ̃1√
2
− φ̃−1√

6
+

2φ̃0√
3
−2kFx]

Re[O60
ph] ∝ sin[

θ̃1√
2
− 3θ̃−1√

6
]cos[

φ̃1√
2
+

φ̃−1√
6
− 2φ̃0√

3
+2kFx]

Re[O70
ph] ∝ cos[

θ̃1√
2
− 3θ̃−1√

6
]cos[

φ̃1√
2
+

φ̃−1√
6
− 2φ̃0√

3
+2kFx]

Re[O80
ph] ∝ (cos[

√
2φ̃1]sin[

2φ̃−1√
6

+
2φ̃0√

3
−2kFx]+ sin[

4√
6

φ̃−1 −
2φ̃0√

3
−2kFx])

Re[O10
pp] ∝ sin[

√
2φ̃1]cos[

2θ̃−1√
6

+
2θ̃0√

3
]

Re[O20
pp] ∝ cos[

√
2φ̃1]cos[

2θ̃−1√
6

+
2θ̃0√

3
]

Re[O30
pp] ∝ sin[

√
2θ̃1]cos[

2θ̃−1√
6

+
2θ̃0√

3
]

Re[O40
pp] ∝ sin[

φ̃1√
2
+

3φ̃−1√
6
]cos[

θ̃1√
2
− θ̃−1√

6
+

2θ̃0√
3
]

Re[O50
pp] ∝ cos[

φ̃1√
2
+

3φ̃−1√
6
]cos[

θ̃1√
2
− θ̃−1√

6
+

2θ̃0√
3
]

Re[O60
pp] ∝ sin[

φ̃1√
2
− 3φ̃−1√

6
]cos[

θ̃1√
2
+

θ̃−1√
6
− 2θ̃0√

3
]

Re[O70
pp] ∝ cos[

φ̃1√
2
− 3φ̃−1√

6
]cos[

θ̃1√
2
+

θ̃−1√
6
− 2θ̃0√

3
]

Re[O80
pp] ∝ (cos[

√
2θ̃1]sin[

2θ̃−1√
6

+
2θ̃0√

3
]+ sin[

4θ̃−1√
6

− 2θ̃0√
3
]) (4)



The RG equations for the above order parameters are given as follows-

dO10
ph

dy
= (2− 1

16π
((A(4)

1 )2 +(A(4)
−1)

2 +(a(7)1 )2 +(a(7)−1)
2))O10

ph

dO20
ph

dy
= (2− 1

16π
((A(4)

1 )2 +(A(4)
−1)

2 +(a(7)1 )2 +(a(7)−1)
2))O20

ph

dO40
ph

dy
= (2− 1

16π
((a(9)1 )2 +(a(9)−1)

2 +(A(5)
1 )2 +(A(5)

−1)
2)))O40

ph

dO50
ph

dy
= (2− 1

16π
((a(9)1 )2 +(a(9)−1)

2 +(A(5)
1 )2 +(A(5)

−1)
2))O50

ph

dO60
ph

dy
= (2− 1

16π
((a(8)1 )2 +(a(8)−1)

2 +(A(6)
1 )2 +(A(6)

−1)
2)))O60

ph

dO70
ph

dy
= (2− 1

16π
((a(8)1 )2 +(a(8)−1)

2 +(A(6)
1 )2 +(A(6)

−1)
2))O70

ph

d∆10
ph

dy
= (2− 1

4π
(a2

1 +a2
−1))∆

10
ph

d∆20
ph

dy
= (2− 1

4π
(b2

1 +b2
−1))∆

20
ph

d∆30
ph

dy
= (2− 1

4π
(c2

1 + c2
−1))∆

30
ph

dO10
pp

dy
= (2− 1

16π
((a(1)1 )2 +(a(1)−1)

2 +(A(7)
1 )2 +(A(7)

−1)
2))O10

pp

dO20
pp

dy
= (2− 1

16π
((a(1)1 )2 +(a(1)−1)

2 +(A(7)
1 )2 +(A(7)

−1)
2))O20

pp

dO40
pp

dy
= (2− 1

16π
((a(2)1 )2 +(a(2)−1)

2 +(A(9)
1 )2 +(A(9)

−1)
2))O40

pp

dO50
pp

dy
= (2− 1

16π
((a(2)1 )2 +(a(2)−1)

2 +(A(9)
1 )2 +(A(9)

−1)
2))O50

pp

dO60
pp

dy
= (2− 1

16π
((a(3)1 )2 +(a(3)−1)

2 +(A(8)
1 )2 +(A(8)

−1)
2))O60

pp

dO70
pp

dy
= (2− 1

16π
((a(3)1 )2 +(a(3)−1)

2 +(A(8)
1 )2 +(A(8)

−1)
2))O70

pp

d∆10
pp

dy
= (2− 1

4π
(A2

1 +A2
−1))∆

10
pp

d∆20
pp

dy
= (2− 1

4π
(B2

1 +B2
−1))∆

20
pp

d∆30
pp

dy
= (2− 1

4π
(C2

1 +C2
−1))∆

30
pp (5)



where A(α)
i ,α = 7−9 are defined analogously to a(α)

i ,α = 7−9. Note that we have studied
the RG flow equations for each of the terms ∆i0

pp/ph(i = 1−3), in the order parameters O30
ph/pp

and O80
ph/pp defined in Eq.4 separately. The scaling dimensions of either of these sets of terms

cannot be expressed in terms of those of the interaction couplings considered in our analysis.
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