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Synopsis

Introduction

Disorder in some form is almost always present in condensed matter systems. It

could arise from missing atoms, external impurities or disordered distribution of

dopants giving rise to a random scattering potential. Studying the effects of disor-

der is therefore necessary to have a good understanding of the properties of these

systems. Disorder/impurities can also give rise to new and interesting features in

the host systems. Kondo effect and heavy fermions [1], spin fractionalization in

frustrated magnets [2], weak localization in two-dimensions [3, 4] are some exam-

ples of these effects. External impurities are also often used as probes to study the

electronic state of host system, nature of order parameter and phase transitions [5]

etc. All these properties make it interesting to study disorder effects in condensed

matter systems.

In low dimensions, the quantum effects are enhanced and studying them pro-

vides an opportunity to understand and observe the effects of quantum fluctua-

tions. Moreover, low dimensional systems can be easily created in semiconductor

heterostructures which are useful for technological applications. These semiconduc-

tor heterostructures provide the advantage of tunability of various parameters like

carrier density, disorder in the system, which allows exploring different phases of

the system. Strong correlations, where the interactions between particles dominate

over their kinetic energy, are another important feature of many condensed matter

systems giving rise to various novel effects like high Tc superconductivity, fractional

quantum hall effect and spin liquid states [6, 7, 8]. Disorder, low dimensionality

and strong correlations are main components of the three systems we studied in

this thesis work. Following is a brief description of our work. More details of the

immediate context, motivations etc are discussed in individual sections.

Our first work concerns Kondo lattice scenarios in semiconductor heterostruc-

iii



iv SYNOPSIS

tures. We have studied Nuclear Magnetic Resonance (NMR) to probe the nature of

the electronic state in two dimensional electron gas (2DEG) in the heterostructures

[9]. In Kondo systems, a free electron gas interacts with localized spins and the

system can show a transition to a Fermi liquid state at low temperatures where

the localized spins are screened by the conduction electrons. Magnetic interactions

between the localized impurities, which are mediated by conduction electrons (Ru-

derman Kittel Kasuya Yosida (RKKY) interactions [10]), compete with the Kondo

coupling and the system shows a rich phase diagram, including a quantum criti-

cal point and heavy fermion superconductivity, arising out of this competition [11].

Semiconductor heterostructures can be used to explore this phase diagram if the for-

mation of a Kondo lattice in these structures is confirmed. We showed that nuclear

relaxation rate shows distinguishable features for a Kondo lattice and a disordered

arrangement of localized spins and can thus can be used to confirm the formation

of Kondo lattice in these structures. NMR can also distinguish a Kondo interaction

dominated regime from RKKY interaction dominated regime.

In second part of this thesis, we have analyzed the effects of coupling external

magnetic impurities to spin-1/2 Kitaev model [12] which is a quantum spin-1/2

model on honeycomb lattice with very anisotropic interactions [13]. The model can

be exactly solved and has a spin liquid ground state with very short ranged spin

correlations. The exact solvability of this model might be utilized to understand

quantum spin liquid states better. The model also allows non-abelian anyonic exci-

tations which make it interesting for quantum computation. We studied the effects

of spin-S impurities coupled to the Kitaev model in its gapless spin liquid phase.

We found that there is an interesting Kondo effect in the Kitaev model which is

independent of the sign of the Kondo coupling (ferromagnetic or antiferromagnetic)

and it is accompanied by a change of topology of the ground state. The ground state

has finite fluxes at the impurity sites in strong coupling regime. These fluxes are as-

sociated with localized zero energy Majorana fermionic modes and have non-abelian

statistics. We also calculated the inter-impurity interactions mediated by the gapless

excitations of Kitaev model and found interesting non-dipolar interactions.

In our final study of the effects of disorder and magnetism, we have analyzed the

transport properties of magnetic semiconductor heterostructures [14]. These het-

erostructures have a thin layer of Mn atoms separated from the transport channel

and show ferromagnetism at low temperatures. The ferromagnetism also affects the

transport properties of these heterostructures. These systems are of relevance for

spintronic devices and understanding the transport properties is thus an important
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question. Also, the mechanism of ferromagnetism in bulk magnetic semiconductors

and semiconductor heterostructures is not very well understood. Due to the poten-

tial fluctuation caused by the disorder in Mn layer, charge carriers in the quantum

well accumulate in potential wells forming charge droplets at low carrier densities.

We incorporated the effects of ferromagnetism of Mn atoms in the hopping proba-

bilities of charge carriers which could explain the observed anomaly (peak/shoulder)

in the resistivity of these structures. In bulk magnetic systems, the position of this

anomaly is generally used to infer the Curie temperature, but we showed that in two

dimensional systems, the anomaly can appear much below the Curie temperature.

Kondo Lattice Scenario in Disordered Semiconductor Heterostruc-

tures

Semiconductor heterostructures are layered structures of two or more semiconduc-

tors of different band gaps that can give rise to quantum well structures and the

density of charge carriers in the quantum well can be controlled by gate voltages

(Fig. 4a). These structures can be δ−doped with an atomic layer of dopants spa-

tially separated from the quantum well, to further control the carrier densities in the

quantum well with minimal effect on their mobility. Semiconductor heterostructures

have played a key role in the discovery and exploration of important phenomena in

condensed matter systems, like Fractional quantum Hall effect [15], due to their

reduced dimensionality, high mobilities and enhanced quantum effects. In our work,

we analyzed these systems in context of possibility of formation of a Kondo lattice

in Si δ−doped GaAs/AlGaAs heterostructures. Such a realization, if confirmed, can

be very useful to study properties of Kondo lattice systems in various regimes of

parameters. The main advantage of these structures is their tunability which is not

possible in actual Kondo lattice (heavy fermion) materials. These can be used to

study the complex phase diagram of Kondo lattice systems which arises from the

competition of the magnetic ordering tendency of the localized electrons and the

screening tendency (Kondo effect) of the conduction electrons and to explore the

nature of this quantum critical point [16, 11].

An electron gas is formed at the junction of GaAs and AlGaAs due to band

bending and mismatch of band gaps. The Si layer is partially ionized and provides

carriers in the quantum well region. These ionized Si atoms would like to arrange

in a triangular lattice to minimize the Coulomb energy. Generally disorder in the

arrangement of Si atoms is known to be significant. The possibility of spatial or-

dering of charged donors, or Wigner crystallization, in δ− doped heterostructures,
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when the degree of ionization is around 1/3 or lower has been theoretically predicted

[17, 18]. These ions cause a spatially varying Coulomb potential at the junction of

GaAs and AlGaAs where two dimensional electron gas (2DEG) is formed. The po-

tential profile depends on the arrangement of ions in the delta layer and could be

disordered or ordered. The potential wells can bind electrons and can give rise to

local moments in the 2DEG. This forms a Kondo system with these local moments

interacting with the free electrons. If the ions form a crystalline structure, there

is an interesting possibility of forming a Kondo lattice. There are two competing

interactions in the system, the Kondo coupling which tries to screen the impurity

spins and give rise to Kondo effect at low temperatures, and the inter-impurity spin

interaction mediated by the free electrons (RKKY interaction) which tends to build

correlations between the impurity spins.

In transport measurements, which are generally used to study these systems, the

enhanced density of states at the Fermi energy due to the Kondo resonance gives

rise to a peak in zero bias tunneling conductance in the Kondo-coupling dominated

regime which splits in the RKKY dominated regime. These were observed in the

experiments ([19]) done in these heterostructures. However, we argued that the

transport measurements are unable to give information about the spatial order of

localized spins and can not be used to confirm the formation of an artificial Kondo

lattice in semiconductor heterostructures. A zero bias conductance anomaly can

appear as long as each impurity is Kondo screened and it can split when pairwise

magnetic interactions become strong.

Although their small sizes make it difficult to employ standard bulk methods

such as neutron diffraction, suitably adapted NMR methods have been proposed

by which nuclear polarization may be generated locally in such devices and its

relaxation can be feasibly detected through two-terminal conductance measurements

[21]. The behavior of the nuclear relaxation rate conveys important information

about the electronic state in the device. We studied NMR for these systems in

different regimes and showed that nuclear relaxation rate shows distinct features

for a lattice of localized spins and a disordered distribution as well as for different

interaction regimes.

We consider the Hamiltonian for S = 1/2 magnetic impurities in a 2-dimensional

electron gas:

H =
∑

k

ξkc
†
kσckσ + J

∑

i

σσσi · Si. (1)
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Here Si is the localized spin and σσσi is the conduction electron spin density at ri. J

is the antiferromagnetic Kondo coupling between localized spins and free electron

density. The second term also gives rise to inter-impurity RKKY interaction which

in two-dimensions is JRKKY(Rij) ∼ J2ρ(ǫF )
R2

ij
cos(2kFRij); where, ρ(ǫF ) is the electron

density of states at the Fermi energy and kF is the Fermi momentum.

Nuclear spin relaxation takes place by coupling to various degrees of freedom of

the system. In our system, the nuclear polarization couples to both the localized

spin S and conduction electrons σσσ. The nuclear spins see an effective local magnetic

field hloc = 1
γn
(AdS + Asσσσ), where Ad and As are the hyperfine coupling with the

localized spin and conduction electrons respectively and γn is nuclear gyromagnetic

ratio. Nuclear relaxation rate is given by the transverse fluctuation of the local

effective field.

In the vicinity of localized spins, the relaxation through interaction with local

moments is dominant [20] and the relaxation rate can be written in terms of localized

moments susceptibility (χi) as

T−1
1 =

A2
dkBT

~2(gsµB)2
Im

(

χ+−
i (ω)

2ω

)

ω→0

. (2)

We calculated the susceptibility χi for different possible physical scenarios of the

system, i.e., few impurities case, a lattice of impurities in Kondo dominated and

RKKY dominated regimes and showed that it has unambiguously distinguishable

temperature dependences for these scenarios [9].

In the Kondo interaction dominated regime we fermionize the localized spins,

Si, in terms of a spin-less fermion fi and a Majorana fermion χi [22] as S+
i =

f †i χi/
√
2, S−

i = χifi/
√
2, and Sz

i = f †i fi − 1/2, where {χi, χj} = 2δij . We factorize

the quartic terms in Hamiltonian by using Hubbard-Stratonovich factorization and

do a mean field analysis. For a single localized spin coupled to the 2DEG, we

calculate the Kondo energy scale (ωK) and the spin susceptibility at low frequencies

using imaginary time Green’s functions. The mean field analysis gives ωK ==

D exp(−4/3ρJ) and at low temperatures T ≪ ωK ,

χ+−
i (ωm)

(gsµB)2
≈ 1

π

1

(|ωm|+ ωKi)
. (3)

where ωm = 2πmkBT are bosonic Matsubara frequencies. This gives the localized

spin contribution to nuclear relaxation rate T−1
1i =

A2
dkBT

π~ω2
K

at low temperatures from

the screened impurity while at high temperatures, the unscreened local moment
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gives a constant T−1
1i as χ ∼ 1/T

Thus, a few non-interacting local spins give a linear-T relaxation rate. If the lo-

calized spins are nearby, RKKY interactions compete with the Kondo screening. To

get the effect of this competition, we considered two nearby localized spins. RKKY

interaction between nearby spins is much larger than the hyperfine coupling and the

nuclear spins couple to an RKKY pair instead of individual spins at low tempera-

tures. Therefore, spin-spin correlations also affect the relaxation rate. Taking these

into account, at low temperatures T ≪ ωK , the relaxation rate is given by

T−1
1 =

2

π

A2
dkBT

ω2
K~

(

1− 1

π

JRKKY(R12)

ωK

)

. (4)

Although, in this case too, the relaxation rate is linear in T, it decreases as JRKKY(R12)

increases for antiferromagnetic couplings. Thus, in the RKKY dominated regime

with disordered local spin arrangement, nuclear relaxation rate becomes very small

as nearest spins form spin- singlets for JRKKY(R12) > π ωK and do not exchange

spin with nucleus. In contrast, for a lattice of spins, the nuclear relaxation rate

is finite even in the RKKY dominated regime. The main physical difference from

the two-impurity case is the existence of low energy magnetic excitations (magnons)

in the lattice for any value of the ratio JRKKY/ωK . As a result, significant nuclear

relaxation still occurs for large anti-ferromagnetic inter-impurity couplings unlike

the two-impurity case where it vanishes.

For the Kondo lattice, in weak RKKY interaction limit ( JRKKY ≪ ωK ), we

treat the RKKY interaction as a perturbation in Random phase approximation

(RPA) scheme for calculating the dynamical susceptibility:

χ+−
q (ω, T ) =

χ+−
i (ω, T )

1− χ+−
i (ω, T )(nimpJRKKY(q)/(gsµB)2)

. (5)

Here, nimp is the density of localized spins. If JRKKY(q) (or more generally, exchange

interaction Jex which includes RKKY interactions) has maximum value at wave-

vector Q, we can write JRKKY(Q + q) = JRKKY(Q) − (Ds/nimp)a
2q2 and with

χ+−
i (0, T ) ≃ (gsµB)2

πωK
(1− Ck2BT

2/ω2
K), (C is a constant of order 1), we get

(

χ′′(ω)
ω

)

ω→0

=
a2

4π2Dsωsf (T )
, (6)
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Figure 1: Plots showing the qualitative differences in the temperature and (AFM)
inter-impurity exchange interaction Jex dependencies of the nuclear relaxation rates
T−1
1 for a two impurity system and Kondo lattice. Main plot: T−1

1 (T ) for (a) a two
impurity system; (b) a Kondo interaction dominated lattice (Jex/ωK < 1); (c,d)
a Kondo lattice where Jex/ωK > 1 and T < (>)Tmf

C , where Tmf
C is the mean-field

transition temperature. Dotted curve interpolates between these two temperature
regimes (there is no phase transition). Inset: T−1

1 as a function of Jex/ωK for (i)
Kondo lattice (ii) two impurities - the T−1

1 vanishes for Jex/ωK > π.

where a is the lattice constant and Ds is spin stiffness of the Kondo lattice and

ωsf (T ) ≃ ωsf (0)

(

1 +
CT 2

ωkωsf (0)

)

. (7)

ωsf (0) = ωK − Jex(Q)nimp/π is the energy scale that represents the competition of

Kondo and inter-impurity exchange interactions. Although the temperature depen-

dence that follows from this for the Kondo lattice is linear in temperature, similar to

the two impurity case; there is the crucial difference that even when JRKKY ∼ π ωK ,

there is a finite relaxation rate which vanishes for the two impurities case.

In the RKKY-dominated regime, we neglect the Kondo effect in the lowest order
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and the conduction electrons provide magnon decay. Within RPA approach, we can

write the dynamical susceptibility near mean field transition point Tmf
C in terms of

magnetic correlation length ξ as

χ+−
Q+q(ω) =

(gsµB)
2

4kBTmf
C {α2/ξ2 + α2q2 − iγQ+q(ω)}

. (8)

Here, γ(Q + q) ∼ π(Jρ)2~ω/4Jex(Q)kF q is the imaginary part of exchange inter-

action and Q is the ordering wave vector. For a ferromagnet (FM), Q = 0 and

for anti-ferromagnet(AFM), Q = (π/a, π/a). The temperature dependence of the

nuclear relaxation rate is then given by

T−1
1 (T ) =

A2
d(Jρ)

2Jex(Q)n2imp

64~D2
skFQ

T

Tmf
C

ξ(T )2

a2
. (9)

for AFM and similarly for FM, T−1
1 (T ) ∼ Tξ(T )3

In a two dimensional isotropic Heisenberg model, their is no phase transition

but magnetic correlation length increases exponentially fast at low temperatures

(ξ(T ) ∼ exp(T0/T )). Thus the temperature dependence of nuclear relaxation rate

T−1
1 is exponential at low temperatures in RKKY dominated regime for a Kondo

lattice. This gives a clear distinguishable feature for a lattice as T−1
1 is linear for a

disordered set of localized spins. Also, the behaviour is very different from Kondo

interaction dominated regime and is thus able to distinguish between them. These

results are shown in Fig. 1.

Magnetic impurities in the honeycomb Kitaev model

We studied the behavior of spin-S impurities in the gapless spin liquid regime of

the Kitaev model on the honeycomb lattice [12]. The S = 1/2 Kitaev model [13]

is a honeycomb lattice of spins with direction-dependent nearest neighbor exchange

interactions,

H0 = −Jx
∑

x-links

σxj σ
x
k − Jy

∑

y-links

σyjσ
y
k − Jz

∑

z-links

σzjσ
z
k, (10)

where the three bonds at each site (Fig.2) are labeled as x, y and z.

This is an exactly solvable interacting quantum two-dimensional model which

makes it very interesting to explore its various properties. The ground state is a

quantum spin liquid with both gapless and gapped excitations in different regimes
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Figure 2: (a) Schematic of the Kitaev lattice showing the A and B sublattice sites
and the x, y and z types of bonds. (b) Brillouin zone. The Dirac point for the
massless Majorana fermions is denoted by kF and momentum summations are over
the (shaded) half Brillouin zone.

of parameter space. Impurities provide a very useful way to probe correlations

in the quantum spin liquid states where a simple observable order parameter is

usually not available. Non-magnetic impurities in quantum spin liquids have been

extensively studied theoretically [23, 24] and experimentally [25, 26] to build an

understanding of different types of ground states and excitations in these systems.

The model has non-abelian anyonic excitations in its gapless phase which makes

it possibly useful for quantum computing. Topological nature of states defined by

the plaquette fluxes and gapless Majorana fermionic excitations in the ground state

are other interesting features of the model. We studied spin-S impurities in the

Kitaev model to probe the nature of the spin liquid ground state and to study the

possibility of novel impurity effects due to fractionalization of spin into dispersing

and localized Majorana fermions.

The model can be solved [13] by writing the spins in terms of Majorana fermions

c, bx, by, bz as σαi = ibαi ci and using the conservation of plaquette operators (fluxes)

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 = ±1. Also, on each α−type bond, uαij = ibαi b

α
j is conserved

which converts the Hamiltonian to a hopping Hamiltonian for c−Majorana fermions

with gauge fixing condition Di = ibxi b
y
i b

z
i ci = 1 to take care of the extra degrees of

freedom introduced by this representation. The ground state corresponds to a flux

free state with all Wp = 1 for which we choose all uij = 1. The ground state is a

spin liquid with very short ranged spin-spin correlations and has gapless excitation

in large area of parameter space where the coupling constants Jx, Jy, Jz satisfy the

triangle inequality. The excitations have a massless linear Dirac cone dispersion
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which can give rise to a Kondo-like screening of the impurity spins. We studied the

nature of this Kondo effect and the RKKY-like long range interaction between two

distant impurities mediated by the gapless excitations.

We couple an external spin-S to the Kitaev model at one site (at origin) through

the Kondo coupling term VK =
∑

αK
αSασα(0). To understand the behaviour of

system at low energies (low temperatures), we did a Poor man’s scaling analysis of

the impurity coupling K by integrating out the high energy modes of the dispers-

ing Majorana fermions. To obtain corrections to K, we considered the Lippmann-

Schwinger expansion for the T−matrix element, scattering of a c−Majorana fermion

to a b−Majorana, T = V + V G0V + V G0V G0V + · · · , in increasing powers of K.

The first correction to the bare T−matrix comes from third order terms s.t.,

T (3) ∼ −KβSβ ρ(D)δD
JD

∑

β̃(K
β̃)2(Sβ̃)2. Here ρ(ǫ) = (1/2πv2F )|ǫ| ≡ C|ǫ| is the density

of states and D is the band edge energy. If the Kondo interaction is rotationally

symmetric or if the impurity is a S = 1
2 spin, this contribution renormalizes the

Kondo coupling constant.

Just as for the Kondo effect in graphene [27], there is a correction to the Kondo

coupling due to the change in the density of states with decrease in bandwidth

as the density of states vanishes at Fermi energy. This gives a contribution K →
K(D′/D)r, (D′ = D − |δD|) and the total contribution is

δK = −KδD

D

(

2K2a2CDS(S + 1)/J − 1
)

. (11)

Interesting features of the scaling equation are that there is an unstable fixed point at

Kc =
√

J/[2a2ρ(D)S(S + 1)] ∼ J/S and that the direction of coupling constant flow

is independent of its nature (ferromagnetic or anti-ferromagnetic). For K > Kc, the

coupling scales to infinity while for K < Kc, the coupling flows to zero and impurity

spin is not screened. Also, we found that the strong coupling fixed point K → ∞ is

stable for anti-ferromagnetic coupling.

Another remarkable property of the Kondo effect in Kitaev model is that the

unstable fixed point is associated with a topological transition from the zero flux

state to a finite flux state. The strong coupling (antiferromagnetic) limit amounts

to studying the Kitaev model with a missing site or cutting the three bonds linking

this site to its neighbors. Kitaev has shown [13] that such states with an odd number

of cuts are associated with a finite flux, and also that these vortices are associated

with unpaired Majorana fermions and have non-abelian statistics under exchange.

It has also been shown numerically [28] that the ground state of Kitaev model with
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one spin missing has a finite flux pinned to the defect site. We argued the existence

of a localized zero energy Majorana mode from degeneracy of the ground state in

presence of impurity spin and elucidated on the nature of this zero mode.

2 1

3

bz
3

bx
1b

y
2

Figure 3: Schematic of the three unpaired bMajorana fermions formed as a result
of cutting the links to the Kitaev spin at the origin. Any two of the three can be
given an expectation value (dotted bond).

We define new operators involving the impurity spin and Kitaev spins, τx =

W2W3S
x, τy =W3W1S

y and τ z =W1W2S
z, which are conserved and form an SU(2)

algebra [τα, τβ ] = 2iǫαβγτ
γ . This SU(2) symmetry is exact for all couplings and is

realized in the spin-1/2 representation
(

(τα)2 = 1
)

and all eigenstates, including

the ground state are doubly degenerate. In the strong (antiferromagnetic) coupling

limit JK → ∞, low energy states are the ones in which the spin at origin forms a

singlet |0〉 with the impurity spin. The double degeneracy in this case comes from

rest of the Kitaev system with spin at origin removed. This implies that there is

a zero-energy mode in the single particle spectrum and the two degenerate states

correspond to the zero mode being occupied or unoccupied. There are three free

b−Majorana fermions on the neighboring sites on the cut bonds (Fig 3). Any two

of them can be given an expectation value by using the gauge freedom and one

localized, zero energy, b−fermion remains at the defect site. Since a full zero energy

mode is made of two Majorana fermions, there has to be a zero energy Majorana

mode in the dispersing c−sector. This has also been shown explicitly by considering

the Kitaev’s model with one site missing [29]. Thus, in strong coupling limit, we can

create localized fluxes in the Kitaev model with zero energy Majorana mode at their

core, similar to the half vortices in p-wave superconductors which have non-abelian
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statistics [30].

The gapless c−Majorana excitations can also mediate long range RKKY-type

interactions between far away impurities. An impurity in Kitaev model couples

to one localized Majorana fermion and one massless dispersing fermion. For long

range interaction, we need to contract the localized b−Majorana fermion locally by

considering a second order term in Kondo coupling. This generates a term involving

only dispersing c−Majorana fermions only if the impurity spin locally couples to

a bond (two nearest neighbour spins) of Kitaev model. Therefore no long range

interaction is mediated between two distant spins if each one couples to only one

Kitaev spin. When the external spin is coupled to an αij−bond, the second order

term is of the form (KαSα)2cicj/J. The interaction with an impurity spin coupled to

βi′j′−bond is then given by terms of the type 1
J2 〈(Kα)2(Sα

1 )
2(Kβ)2(Sβ

2 )
2cicjci′cj′〉.

The fermionic averaging gives the long range interaction between the impurity spins

to be

J ij,i′j′

12 ∼ −(Kα)2(Sα
1 )

2(Kβ)2(Sβ
2 )

2 1

J2

1 + cos(2α̃(kF ))− 2 cos(2kF ·R12)

R3
12

. (12)

α̃(kF ) is a constant related to the position of Fermi point kF and is π/2 for symmet-

ric Kitaev coupling. Note that for spin-1/2 impurities, (Sα)2 = 1/4, no long-ranged

interaction is generated. Similarly if the impurities couple to all the bonds of a

hexagon symmetrically where
∑

bond pairs(S
αij

1 )2(S
βi′j′

2 )2 = const., again the inter-

action term is not generated. The interaction is non-dipolar ( non Si · Sj) unlike

the usual RKKY interaction in metals and has 1/R3
12 decay in 2-dimensions due to

vanishing density of states at Fermi energy which is also the case for graphene. The

RKKY interaction also reflects the bond-bond correlations in the Kitaev model’s

ground state.

Charge inhomogeneities and transport in magnetic semiconductor

heterostructures

We studied the effects of disorder and magnetism on transport in δ−doped mag-

netic semiconductor heterostructures [14]. In these heterostructures, a δ−layer of

Mn atoms is deposited slightly away from the quantum well (where charge trans-

port takes place) separated by a spacer layer of GaAs. The Mn atoms get partially

ionized acting as acceptors and provide holes in the quantum well. A schematic

of the heterostructure is shown in figure 4a. The Carbon δ−layer is introduced to
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Figure 4: (a) Schematic layout of the heterostructure δ-doped by Mn. (b) Schematic
of the quantum well potential (shown inverted). Dashed (blue) line represents the
quantum well potential in the absence of fluctuations and the solid (red) line shows
the potential well with an attractive fluctuation potential.

provide further carriers. The Mn atoms have finite magnetic moment in the semi-

conductor host and the system shows ferromagnetism [31]. Semiconductors with

bulk doping of Mn atoms also show ferromagnetism at fairly high temperatures and

the mechanism of the ferromagnetism has not been understood fully [32]. Research

interest for studying these magnetic semiconductor heterostructures mainly arises

from their possible use in spintronic devices [33] to generate and manipulate spin

polarized currents. Studying the nature of magnetism and its effect on transport

is therefore important. Also these systems could provide opportunities to explore

the physics of ferromagnetism in doped semiconductors. Both the bulk magnetic

semiconductors and heterostructures show a resistance anomaly (a peak/shoulder

like feature in temperature dependence of resistance) which arises due to onset of

ferromagnetic order of Mn atoms (Fig. 5a). For bulk systems this anomaly appears

near the ferromagnetic transition temperature and is often used to get an estimate of

the Curie temperature [32]. We studied the resistance anomaly in heterostructures

where both the magnetic layer and the transport channel are two dimensional. We

found that the resistance anomaly can appear at temperatures much lower than the

Curie temperature of the Mn layer and there are significant magnetic correlations

in the δ−layer well above the peak temperature. Also a phase transition is not
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necessary for the peak to appear (as is the case for 2-dimensional magnetic system).
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Figure 5: (a) Resistance data for the Mn δ-doped heterostructures (1, 2, 3, and 4)
for different carrier and doping densities and a carbon δ-doped heterostructure (5).
Resistance anomaly is absent in the carbon δ-doped sample, while the Mn δ-doped
samples exhibit an anomaly (hump or shoulder), which is likely due to the magnetic
ordering. (b) Anomalous Hall effect data for these samples. The Anomalous Hall
effect saturates at temperatures well above the peak in the resistivity for insulating
samples 1 and 4 while closer to the peak temperature for more metallic sample 2

As discussed for Si doping of semiconductor heterostructures above, the ionized

Mn atoms produce a fluctuating potential for charge carriers in the quantum well

(Fig 4b). We estimated the size of these potential fluctuations and typical radius

of the potential wells where the holes accumulate to form charge droplets. These

estimates give us the nature of the samples (insulating/metallic) as the samples with

spatially distant droplets are insulating while closely placed droplets with significant

tunneling give a more metallic sample. The disorder in Mn layer is assumed to be

Gaussian white noise with δ−function spatial correlations. Holes in the quantum

well screen the potential fluctuations. The screening length Rc =
√

n′a/π/p is the

radius beyond which the potential fluctuations get screened i.e. the holes in this

area balance the total charge fluctuation in region of radius Rc in Mn δ−layer. n′a
is the density of ionized dopants and p is the hole density in quantum well. The

r.m.s. value of this potential fluctuation for the case when 2d >> Rc, λ is ([34]),

Vfluc =
√

〈δφ2〉 ≈
(

n′ae
2

16πκ2ǫ20
ln

[

1 +

(

Rc

λ+ z0

)2
])1/2

. (13)
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Sample Rc(nm) z0,1(nm) z0,2(nm) Rp,1(nm) Rp,2(nm) D1(nm) D2(nm) ξ(nm)

1 24.28 1.79 3.62 8.96 0 11.58 – 1.82

2 15.45 1.57 0.78 8.79 0 5.72 – 3.50

3 15.67 1.71 2.30 8.90 0 5.82 – 3.70

4 18.02 1.71 1.34 8.90 0 7.53 – 3.46

Table 1: Calculated values for the screening length Rc, droplet sizes Rp,n, droplet
separations Dn corresponding to Rp,n, hole localization position z0,n, and the local-
ization length ξ at 77K. The calculations are for an effective n′a = 0.1nd (total Mn
density). In the last three samples, the separation of the droplets is comparable
with the localization length, implying proximity to the “metallic” phase. At 77K,
only one sub-band is occupied and thus Rp,2 and D2 are nor defined.

Here λ is the spacing between hole gas and Mn layer, (z0) is the position of local-

ization of hole gas in quantum well and d is the distance of metallic gate from Mn

layer. We estimate z0 by solving the Schroedinger equation along z−direction

[

− ~
2

2m∗
d2

dz2
+ V (z)

]

ψn = Enψn, (14)

where V (z) includes both the quantum well and fluctuation potentials. The holes

form puddles filling the potential wells. One or more sub-bands (bands arising from

confinement in z-direction) can be occupied. Sizes of the puddles depend on the

hole density and dopant density. Using various parameters of the structures (e.g.

for Sample 1, Mn density nd = 6.0 × 1014cm−2, hole density p = 0.3 × 1012cm−2,

quantum well depth V0 ≈ −85meV at 5K), we estimated puddle sizes, distance

between puddles, localization length of holes and mean level separation in these

droplets, etc. These estimates are shown in Table 1. The measured resistivities

of these heterostructures are shown in Fig 5. The comparison of hole localization

lengths and droplets separations qualitatively matches the experimental observation

that sample one is insulating while 2, 3 and 4 are more metallic at 77K as localization

lengths are comparable to droplet separations. Similar estimates at 5K give all the

samples to be insulating.

We analyze the resistivity behavior for insulating samples. The transport in these

samples takes place by hopping between puddles. The temperature dependence of

resistivity is expected to be of variable-range hopping type [exp(T0/T )
1/3] at very

low temperatures and of Arrhenius type at higher temperatures. In the Arrhenius

regime, resistivity would behave as ρ(T ) ∼ eEA/T where EA is an activation energy

of the order of the mean level spacing ∆ in a droplet or the classical thermal exci-
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tation over the barrier separating neighboring droplets. In the ferromagnetic phase,

we incorporate the effects of ferromagnetic correlations in hopping probability am-

plitude. When the Mn layer becomes magnetic, the droplets also get polarized in the

direction of local magnetization in Mn layer. If magnetic polarization of neighbour-

ing droplets is not aligned, the hopping is suppressed. Extra energy cost to hopping

is ∼ J(1 − cos θij) if θij is the angle between magnetization of two neighbouring

droplets. J can be related to both the magnetic exchange interaction in Mn δ−layer

and exchange interaction in the droplets. Since the droplet magnetization is approx-

imately aligned with the local magnetization in Mn layer, 〈cos θij〉 = e−D1/ξM (T ), for

a two dimensional ferromagnet, where D1 is the droplet separation and ξM is the

magnetic correlation length in Mn layer. With, ferromagnetism taken into account

the resistivity behaves as

ρ(T ) ≈ AeEA/T+J(1−〈cos θij〉)/T , (15)

where we have approximated 〈e− cos θij/T 〉 ≈ e−〈cos θij〉/T . For two-dimensional ferro-

magnet [35, 36, 37]

ξM (T ) =

{

a/
√

1− TC/T , T ≫ TC

a exp[πTC/2T ], T ≪ TC
. (16)

Here a ∼ 1/
√
nd is a length scale of the order of inter-atomic separation of the Mn

dopants and TC is the Curie temperature, below which the ferromagnetic correlations

increase rapidly.

We fit the model to measured resistivity data of sample 1 and 4 by adjusting

the parameters. The fits and the corresponding values of parameters are shown in

Fig. 6. An important point to be observed is that the peak/shoulder in resistivity

appears at much lower temperature than the mean field TC . This can be explained

in our hopping transport picture. TC corresponds to the temperature below which

magnetic correlation length (ξM ) start increasing rapidly in Mn layer. But since

the droplet separation is much larger than the Mn separation, the onset of ferro-

magnetism in Mn layer does not affect transport significantly at temperatures near

TC . At lower temperature, when ξM becomes comparable to droplet separation D1,

inter-droplet tunneling probability increases rapidly which gives a decrease in the re-

sistivity. This gives rise to a dip in the resistivity which results in the peak/shoulder

feature. As the temperature further decreases, the magnetic part saturates and the

activated behaviour starts dominating which at further lower temperatures becomes
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Figure 6: Observed temperature dependence of resistance for (a) Sample 4, in units
of the resistance at 70 K, and (b) Sample 1, in units of the resistance at 90 K
(points), and theoretical fits (solid lines). Sample 4 is near the percolation thresh-
old and Sample 1 is well-insulating. Parameters such as the activation energy EA

and the droplet separation D1 were chosen close to the values obtained from the
droplet model and the magnetic parameters J and TC were varied to obtain the
above fits. In both cases, the best fit value of TC was significantly larger than the
temperature, at which the resistance anomaly (hump or shoulder) was observed. At
lower temperatures, the resistivity becomes variable-range hopping type (not taken
into account in our model). For Sample 4 in panel (a), the values used for the fit
are D1 = 2 nm, EA = 9 K, J = 39 K, and TC = 30 K; for Sample 1 in panel (b),
the parameters are D1 = 9.4 nm, EA = 51 K, J = 56 K, and TC = 49 K.
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variable range hopping. In metallic samples, as the droplet separation is lower, the

peak lies closer to TC . These results clearly show that, unlike the bulk magnetic

semiconductors, the peak position should not be used as as estimate for TC of the

Mn layer in these heterostructures, specially for non-metallic samples. Our analysis

is also supported by the anomalous Hall effect measurements in these samples (Fig

5) which show saturation at temperatures much above the peak temperature [38].

This shows that there is significant ferromagnetism in Mn layer much before the

peak appearance in resistivity. The values of fitted parameters are shown in figure

6. Another important observation is that a phase transition is not needed to have

an anomaly in the resistivity and presence of significant magnetic correlations is

sufficient.
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Chapter 1

Introduction

Disorder plays a very important role in condensed matter systems as it changes their

properties non-trivially and is generally unavoidable. Disorder in condensed matter

systems can be in the form of missing atoms, external impurities or disordered dis-

tribution of dopants giving rise to a random scattering potential. Disorder effects

are studied in various areas of solid state/condensed matter physics, for example,

semiconductors, spin systems, superconductors and other quantum correlated sys-

tems, both theoretically and experimentally. Defects are also an important part

of material research as these affect various properties like material strength, their

electrical properties, behaviour of the material under extreme conditions etc.

Impurities and doping effects are a major area of work in semiconductor re-

search. Doping of semiconductor materials is often used to change their properties

and making them technologically more useful. Er doping of Si makes it an optical

amplifier, N doped GaP is useful for light emitting diodes, Mn/Gd doped GaAs is

a magnetic semiconductor and can be used for spintronic applications. These are

a few examples of the vast number of such possibilities. How a particular impurity

behaves in a material depends on both the host and the impurity properties and

the way these impurities sit in the host material. Density and nature of dopants

affects their transport properties also significantly. Thus, understanding the effects

of doping disorder and other defects in semiconductors is an important question in

this field.

Disorder studies form an important part in quantum condensed matter research

as these can be often used as tools to probe the nature of their state in different

regimes of parameter space. These can be used to study the properties of quantum

critical points [8] and deconfined criticality [9], to study the strongly correlated state

1
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in high temperature superconductors [10] etc. We studied effects of disorder in a

few two-dimensional quantum systems in this thesis. Below we describe the main

ideas that are studied in the thesis briefly.

In a part of our work, we analyzed effects of impurities in spin-1/2 Kitaev model

on honeycomb lattice in its gapless quantum spin liquid phase. Quantum spin liquid

(QSL) systems are interacting spin systems which do not show ordering to lowest

temperatures. The absence of ordering could be due to geometric frustration [1],

resonating ground states [2] etc. There can be both gapped and gapless quantum

spin liquids. In gapped spin liquids, the spin-spin correlations are exponentially

decaying while in gapless QSLs, spins/their higher order correlators have power law

correlations. These systems can have non-trivial collective excitations and long range

correlations. In these systems, a simple measurable order parameter is generally not

available. Studying the effects of vacancies or external impurities is one main method

that is used to explore the nature of their ground states, quasi-particle excitations

and transitions between different phases [3, 4, 5]. In the gapped phase, the vacancies

are found to bind a magnetic moment showing a 1/T impurity susceptibility. In

gapless phase, the gapless excitations of the spin liquid can screen the vacancy

moment partially [5] or completely [6] depending upon the nature of the excitations

in the spin liquid. In this context we studied effects of external magnetic impurities

in the Kitaev model (an exactly solvable quantum spin-1/2 model). We studied

the nature of Kondo screening of the impurity spin due to the coupling to gapless

fermionic excitations of the model. We found that the Kondo coupling flows to

infinity for couplings above a critical value which shows that there is a non-trivial

screening of the impurity spin. This is also hinted from the vacancy susceptibility

calculations (which is similar to our strong antiferromagnetic Kondo coupling case)

in Ref. [6], where a vacancy in gapless phase shows screened ln(1/T ) behaviour.

The inter-impurity spin interactions can also shed light on the nature of the quasi-

particle excitations. In presence of a finite Fermi wave-vector in the host system,

the inter-impurity interactions show oscillations at 2kFR length scale (as is the case

for our study of impurities in Kitaev model also) while, if the Fermi point lies at

zero momentum, the long range interactions do not show these oscillations, e.g. for

impurities on the surface of Topological insulators, the interaction does not oscillate

in sign when the Fermi surface lies at k = 0 [7].

A major area of research that emerged out of disorder effects is the Kondo

systems and heavy fermion physics. Study of Kondo effect and related physics

forms a large part of the thesis work. Kondo effect was first observed in metals
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with magnetic impurities. The signatures of the Kondo effect were seen in the

low temperature resistivity measurements where the resistivity showed a minimum

feature rather than the saturation behaviour expected for metals. It has been studied

extensively since then in dilute as well as dense Kondo systems and various novel

phenomena have been discovered. The idea has also been extended to screening of

magnetic moments by gapless quasi-particle excitations of different kinds [11, 3, 4].

The first question in this puzzle was to understand the existence of a magnetic

moment inside a metal. This was understood using Anderson’s model with large

onsite Coulomb repulsion (U) on the localized atom:

H =
∑

k,σ ǫkc
†
kσckσ + ǫd

∑

σ d
†
σdσ + Und↑nd↓ +

∑

k,σ

(

Vkc
†
kσdσ + h.c.

)

Here c†kσ are conduction electron creation operators, and d†σ for the creation operator

for an electron in d-level of the impurity. The large coulomb potential suppresses

double occupancy and helps in formation of the local moment on the impurity. In

this regime, where charge fluctuations are suppressed (|ǫd +U − ǫF |, |ǫF − ǫd| ≫ ∆,

where ∆ is the d−level broadening), the effective spin Hamiltonian can be obtained

by Schrieffer Wolf transformation to be

HK =
∑

k,σ ǫkc
†
kσckσ + JS.σ(0)

where σ(0) is the local spin density of conduction electrons at the impurity site.

This is called the Kondo Hamiltonian which has been studied to understand the

behaviour of dilute Kondo systems. The resistivity increase at low temperatures

(below the minimum feature) was shown to be arising from singular spin flip scat-

tering of conduction electrons at low temperatures by J. Kondo [12, 13]. This was

not immediately clear as the lowest order scattering term doesn’t give this singular

behaviour and next order terms were needed to explain the resistivity behaviour.

To see this, one can calculate the electron scattering rate (τ−1
tr ) from T−matrix

(T = (I −G0V )−1) considerations such that

τ−1
kk′ ∼

∫

δ(ǫk − ǫk′)|Tkk′ |2(1− cos θ′)dk′,

where θ′ is the angle between k and k′. In the lowest order in J , Tkk′ is constant and

1/τ(kF ) ∼ J2S(S+1)/ǫF again predicting a constant resistivity at low temperatures.

To get the singular corrections, we need to calculate the second order terms in J

also.

T
(2)

kk′ = (V G0V )kk′
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Total of these terms then gives

1

τ(k)
∼ J2S(S + 1)

ǫF
(1− 2J(g(ǫk) + g∗(ǫk))); where g(ǫ) ∼

∑

k

f(ǫk)

ǫk − ǫ− is
.

Here f(ǫk) is the Fermi distribution. It is the g(ǫ) sum that gives the singular

corrections to the resistivity at low temperatures such that the spin part of resistance

is [13]:

Rspin
imp ∼ J2S(S + 1)

ǫF

(

1− 4Jρ0(ǫF ) ln

(

kBT

D

))

.

where D is the conduction band width.

Another way to analyze the Kondo problem is to do a scaling analysis for the

Kondo coupling and see if it flows to the strong coupling fixed point and becomes

relevant at low temperatures. For magnetic impurities in metals, a Poor man’s

scaling analysis can be performed [14]. To study the system properties at low

temperatures, we find out the effective Hamiltonian in a reduced bandwidth for the

fermionic excitations (−D + δD to D − δD) by integrating out the excitations in

the band edges ((−D to −D + δD) and (D to D− δD)). This process is repeated

successively to get a scaling law for the coupling constant. For the Kondo problem,

the scaling equation comes out to be

dJ

d lnD
= −2ρ0J

2,

which shows that the coupling flows to larger values for antiferromagnetic coupling

while to zero for ferromagnetic case and gives the Kondo scale kBTK ∼ e−1/2Jρ0

for antiferromagnetic case. The impurity spin is screened at low temperatures and

impurity susceptibility does not show 1/T divergence, rather saturates to a constant

value. The screening can be understood qualitatively by imagining the conduction

electrons forming singlet with the impurity spin at low temperatures.

The above perturbation theory for resistivity breaks down at T < TK and the

resistivity actually saturates at low temperatures in the unitarity limit for scattering.

These properties hold for dilute Kondo systems and have been understood well.

In dense Kondo systems, where the localized spins are close by, magnetic RKKY

(Ruderman Kittel Kasuya Yosida) interactions mediated by conduction electrons

[15] are large and compete with the Kondo screening. The RKKY interaction in

metals is given by

HRKKY = −J2χ(r− r′)S(r) · S(r′) = JRKKY (r− r′)S(r) · S(r′),
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Figure 1.1: Typical behaviour of resistivity at low temperatures for a heavy fermion
system [16].

where χ(r) is the conduction electron spin correlation function and can be evaluated

to be

χ(q) = 2
∑

k

f(ǫk)− f(ǫk+q)

ǫk+q − ǫk

which gives

JRKKY (r) ∼ −J2ρ0
cos(2kF r)

r3
.

The RKKY interaction competes with Kondo effect and for large J , Kondo screening

wins while in relatively small J systems, RKKY interaction is larger.

Main examples of dense Kondo systems are rare earth metallic compounds (e.g.

CeCu6, CeAl3, CePd2Si2 etc.) which are Kondo lattice systems. These systems

show an even richer set of interesting properties. For Kondo lattice systems also,

the resistivity shows a minimum similar to dilute systems but at even lower temper-

atures, a new coherent regime is formed [16] (Fig. 1.1). Ground state of the system

then becomes a Fermi liquid but with very large effective mass (m∗ ≃ 102 − 103m)

and the resistivity again shows ρ(T ) ∼ AT 2 with a large A. These systems can be

tuned from Kondo regime to RKKY regime by applying pressure, magnetic field etc

and signatures of quantum critical behaviour can be found at the transition [17].

Some of these systems also develop superconductivity in the proximity of this point

[18, 17]. We studied nuclear magnetic resonance methods as probes to study two-

dimensional Kondo lattice systems in semiconductor heterostructures in both the
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Kondo dominated and RKKY dominated regimes.

In a part of our work, we also studied transport properties of magnetic semi-

conductor heterostructures. Semiconductor heterostructures, where quantum well

structures can be formed by sandwiching a layer of a semiconductor material be-

tween layers of different band gap material, play a very important role in current

research as a variety of low dimensional systems can be created and studied in these

systems. Their reduced dimensionality, high mobilities and enhanced quantum ef-

fects make them interesting systems to explore. Discovery of quantum Hall effect

[19], Anderson localization in two dimensions [20, 21], various aspects of Kondo effect

in quantum dot systems [22], spintronics applications [23] etc. are some examples of

these. The density of the two dimensional electron/hole gas in the quantum well can

be tuned by various gate voltages and metallic, insulating and transition transport

regimes can be studied. An important class of these structures is δ−doped mag-

netic heterostructures which have a δ−doping of magnetic atoms (Mn) separated

from the quantum well (to keep their carrier mobilities high). The ferromagnetism

in the δ−layer can produce magnetic polarization of the charge carriers and are

thus interesting for spintronic applications. The magnetism and disorder of mag-

netic layer also affects the resistivity of these systems and is an important question

to be understood. The studies of magnetic semiconductor heterostructures could

also give information about the mechanism of ferromagnetism in bulk magnetic

semiconductors.

Below, we give an outline with brief description of our work discussed in this

thesis.

Outline

In chapter 2, we discuss the study of Kondo lattice scenarios in semiconductor het-

erostructures. We studied nuclear magnetic resonance (NMR) to probe the nature of

the electronic state in two dimensional electron gas (2DEG) in the heterostructures

[24]. In these Kondo systems, the free electron gas interacts with localized spins

and the system can show a transition to a Kondo screened state at low tempera-

tures where the localized spins are screened by the conduction electrons. Magnetic

RKKY interactions between the localized impurities compete with the Kondo cou-

pling. Semiconductor heterostructures could be used to explore the phase diagram

arising out of this competition if the formation of a Kondo lattice in these struc-

tures is confirmed. We showed that nuclear relaxation rate shows distinguishable
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features for a Kondo lattice and a disordered arrangement of localized spins and thus

can be used to confirm the formation of Kondo lattice in these structures. NMR

can also distinguish a Kondo interaction dominated regime from RKKY interaction

dominated regime.

In chapter 3, we discuss the properties of external magnetic impurities coupled

to spin-1/2 Kitaev model [25]. It is a quantum spin-1/2 model on honeycomb

lattice with very anisotropic interactions [26]. The model can be exactly solved

and has a spin liquid ground state with very short ranged spin correlations. We

studied the effects of spin-S impurities coupled to the Kitaev model in its gapless

spin liquid phase. We found that there is an interesting Kondo effect in the Kitaev

model which is independent of the sign of the Kondo coupling (ferromagnetic or

antiferromagnetic) and it is accompanied by a change of topology of the ground state.

The ground state has finite fluxes at the impurity sites in strong antiferromagnetic

coupling regime. These fluxes are associated with localized zero energy Majorana

fermionic modes and are likely to have non-abelian statistics as is the case for the

vortices with Majorana fermion at its core described in Refs. [26, 27]. We also

calculated the inter-impurity interactions mediated by the gapless excitations of

Kitaev model and found interesting non-dipolar interactions.

In chapter 4, we describe the effects of disorder and magnetism on transport

properties of magnetic semiconductor heterostructures [28]. These heterostructures

have a δ−layer of Mn atoms separated from the transport channel and show ferro-

magnetism at low temperatures. The ferromagnetism also affects transport proper-

ties of these heterostructures. The mechanism of ferromagnetism in bulk magnetic

semiconductors and semiconductor heterostructures is not very well understood and

studying these systems could provide useful information about these. Due to the

potential fluctuation caused by the disorder in Mn layer, charge carriers in the

quantum well accumulate in potential wells forming charge droplets at low carrier

densities. We incorporated the effects of ferromagnetism in hopping probabilities

which could explain the observed anomaly (peak/shoulder) in the resistivity of these

structures. In bulk magnetic systems, the position of this anomaly is generally used

to estimate the Curie temperature, but we showed that in two dimensional systems,

the anomaly can appear much below the Curie temperature.

In Chapter 5, we present a concluding summary of the thesis.
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Chapter 2

Kondo Lattice Scenario in

Semiconductor Heterostructures

2.1 Introduction

Kondo systems have been studied extensively for last few decades. These systems

show various interesting features like enlarged Fermi surface, heavy fermions, super-

conductivity, magnetic ordering and signatures of quantum critical behaviour. A

Kondo system generally consists of localized magnetic moments interacting with a

continuum of excitations via spin exchange processes.

Kondo effect was originally observed and studied in metallic systems with mag-

netic impurities. In dilute Kondo systems, at low temperatures, resonant spin flip

scattering processes give a large contribution to the resistivity leading to minima like

feature in resistivities of these systems (Fig. 2.1). Other properties of the Kondo

transition/crossover include an enhanced density of states at Fermi energy due to

resonant states formed at Fermi level. The impurity spins are screened and the sus-

ceptibility saturates at low temperatures. These dilute Kondo systems show Fermi

liquid properties at low temperatures well below the Kondo temperature (TK) and

have been well understood via both numerical and analytical tools including exact

Bethe ansatz solution [1].

Dense Kondo systems are the systems where the magnetic moments are closely

spaced (inter-impurity separation rimp < ξK ∼ 1/TK) and the spin-spin interactions

mediated by conduction electrons (RKKY interactions) are large. Magnetic ordering

tendencies due to large magnetic interactions compete with the Kondo screening.

These systems show even richer variety of phases with heavy fermionic excitations,

11
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Figure 2.1: Resistivity measurements for Cu with Iron impurities showing the min-
ima [2].

superconductivity and quantum critical behaviour arising out of this competition

[3, 4]. These Kondo lattice systems are usually formed in rare earth compounds

(e.g. CeCu6, Y bRh2Si2, LaRu2Si2) where the strongly localized f-electrons give

rise to magnetic moments. These systems can be tuned by application of pres-

sure and magnetic fields or by doping to study the competition of magnetic and

Kondo interactions. Recent experimental studies have shown that these systems

are strong candidates for finding quantum critical points [5, 6, 7]. The quantum

criticality appears at the transition between Kondo and magnetic regimes. The

magnetic fluctuations try to decrease the effective Kondo coupling in Kondo regime

and vice-versa such that at the transition, both scales vanish and the system prop-

erties are dominated by quantum fluctuations. There is a large area of phase space

where the system has non Fermi liquid behavior and the resistivity is quasi-linear

in temperature (Fig. 2.2) unlike the quadratic behaviour of Fermi-liquids. These

systems also show superconductivity around the critical point (Fig. 2.3) [8]. The

phase diagram has similarities to the high-TC superconductors and the Iron based

superconductors as several of these systems also show co-existence of magnetism

and superconductivity. These systems provide opportunities to study the physics
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α

Figure 2.2: Suppression of magnetic ordering in Y bRh2Si2 by application of mag-
netic field and the evolution of the resistivity exponent (∆ρ = ρ(T ) − ρ(0) ∝ Tα)
from 2 in the Fermi liquid (FL) phase to 1 in the non-Fermi liquid (NFL) phase [7].

of quantum critical points as well as could provide insights into an understanding

of high-TC superconductivity. These have given a new direction to the research

work in this field. To explore and understand the complex phase diagram of Kondo

lattice systems and drive it across the quantum critical point, one need to tune the

parameters of the system which is usually a difficult task in solid state systems.

Tunability is a key feature of semiconductor heterostructures where the charge

carrier density and other parameters can be varied easily. There have been experi-

mental proposals of creating a Kondo lattice systems in these heterostructures [9].

Semiconductor heterostructures are layered structures of two or more semiconduc-

tors of different band gaps that can give rise to quantum well structures and the

density of charge carriers in the quantum well can be controlled by gate voltages

(Fig. 2.4). These structures can be δ−doped with an atomic layer of dopants spa-

tially separated from the quantum well, to further control the carrier densities in

the quantum well with minimal effect on their mobility. The electron gas is formed

at the junction of GaAs and AlGaAs due to band bending and mismatch of band

gaps. The Si δ−layer is partially ionized and provides carriers in the quantum well

region. These ionized Si atoms would like to arrange in a triangular lattice to min-
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Figure 2.3: Temperature-pressure phase diagram of CePd2Si2, showing the emer-
gence of a superconducting phase around the quantum critical point. Open circles
show the superconducting ordering temperature [8, 3].

imize the Coulomb energy. Generally disorder in the arrangement of Si atoms is

known to be significant. The possibility of spatial ordering of charged donors, or

Wigner crystallization, in δ− doped heterostructures, when the degree of ionization

is around 1/3 or lower has been theoretically predicted [10, 11]. These ions cause

a spatially varying Coulomb potential at the junction of GaAs and AlGaAs where

two dimensional electron gas (2DEG) is formed. The potential profile depends on

the arrangement of ions in the delta layer and could be disordered or ordered. The

potential wells can bind electrons and give rise to local moments in the 2DEG. This

forms a Kondo system with these local moments interacting with rest of the free

electrons in the quantum well. If the ions form a crystalline structure, there is an

interesting possibility of formation of a Kondo lattice. Such a realization, if con-

firmed, can be very useful to study properties of Kondo lattice systems in various

regimes of parameters.

In transport measurements, which are generally used to study these systems, the

enhanced density of states at the Fermi energy due to the Kondo resonance gives

rise to a peak in zero bias tunneling conductance in the Kondo-coupling dominated

regime which splits in the RKKY dominated regime. These were observed in the

experiments ([9]) done in these heterostructures. In Ref. [9] it was observed that
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Figure 2.4: A schematic of the δ−doped semiconductor heterostructure and the band
bending at the AlGaAs-GaAs junction. The position of Fermi level and density of
2DEG can be varied by changing the gate voltage and Si doping etc.

the 2DEG conductance showed an alternating splitting and merging of a zero bias

anomaly (ZBA) upon varying the gate voltage Vg which happens because varying

the gate voltage affects the 2DEG density, which, in turn, controls the sign of the

RKKY exchange interaction, JRKKY (Rij) ∼ (J2ρ/R2
ij) cos(2kFRij), of the localized

spins. Here J is the Kondo coupling of the localized spins with the conduction

electrons, and ρ is the density of states at the Fermi energy. However, the transport

measurements are unable to give information about the spatial order of localized

spins and can not be used to confirm the formation of an artificial Kondo lattice in

semiconductor heterostructures. A zero bias conductance anomaly can appear as

long as each impurity is Kondo screened and it can split when pairwise magnetic

interactions become strong. This is also evident from similar observation of zero bias

conductance peak in coupled double quantum dot systems and its splitting when

inter-dot coupling is large [12]. We studied nuclear relaxation rate as a probe to

distinguish a disordered system from a Kondo lattice.

NMR for semiconductor devices

Nuclear magnetic resonance (NMR) methods usually measure the relaxation rates

of the nuclear polarization or the Zeeman splitting of the nuclear levels. Both

of these reflect the nature of the electronic state of the systems as the nuclear
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dipolar couplings are much smaller than the nuclear couplings to electronic degrees

of freedom. The relaxation rates (T−1
1 , T−1

2 ) for the nuclear polarization M(t) are

defined as

dMz

dt
=
Mz(t)−M0

z

T1
;
dMx/y

dt
=
Mx/y(t)−M0

x/y

T2
. (2.1)

NMR methods have been widely used to study strongly correlated electron phe-

nomena in bulk systems as local probes for the magnetic state of the system, for

example, to study the magnetization patterns created by magnetic/non-magnetic

impurities in Cuprate superconductors [13] and quantum spin liquids, to explore

bulk Kondo systems for magnetism [14] etc. The utility of NMR probes for probing

strongly correlated electron phenomena in meso and nano scale devices has been

hampered, in comparison with bulk systems, by the small size of the active regions

in the devices. Recently, suitably adapted NMR methods have been proposed by

which nuclear polarization may be generated locally in such devices and its relax-

ation can be feasibly detected through two-terminal conductance measurements [15].

One such detection proposal is based on the idea that electron transport through

the device is sensitive to the Overhauser shift; and, by measuring the relaxation

rate of the conductance at different values of temperature and other parameters, it

is possible to extract the dependence of nuclear relaxation rate T−1
1 on those pa-

rameters. The behavior of the nuclear relaxation rate conveys useful information

about the electronic state in the device.

The magnetic coupling of a nuclear moment with its external environment can

be expressed as

Hnuc = −~γnI · (H+Hloc), (2.2)

whereH is the external magnetic field and Hloc is the local field due to the electrons,

and γn is the nuclear gyromagnetic ratio. The nuclear relaxation rate then depends

on H±
loc, the (transverse) local field fluctuations at the site of a nucleus[16]:

T−1
1 =

γ2n
2

∫ ∞

−∞
dt eiωnt〈{H+

loc(t),H
−
loc(0)}〉. (2.3)

where ωn is the nuclear Zeeman frequency which is very small and in fast electronic

relaxation limit, we take ωn = 0 . Nuclear relaxation takes place through coupling

to localized spins S as well as conduction electrons σσσ :
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Hloc = AdI · S+AsI · σσσ. (2.4)

Here Ad and As are the hyperfine coupling with the localized spin and conduction

electrons respectively. T−1
1 is thus related to the local transverse spin susceptibility

of the electrons. The relaxation contribution from localized (electron) spins is usu-

ally much larger in devices similar to those considered here [17]. Therefore, taking

only localized spin part,

T−1
1 =

A2
dγ

2
n

2

∫ ∞

−∞
dt 〈{S+(t), S−(0)}〉.

=
A2

d γ
2
n kB T

~2 γ2e
Im

(

χ+−
i (ω)

ω

)

ω→0

. (2.5)

We calculated the susceptibility χi in different possible scenarios of the system,

i.e., few impurities case, lattice of impurities in Kondo dominated and RKKY dom-

inated regimes and showed that it has unambiguously distinguishable temperature

dependences for these scenarios [18]. The difference is more significant when the

RKKY interaction dominates the Kondo effect.

2.2 Two dimensional Kondo model

We consider the Kondo model Hamiltonian for S = 1/2 magnetic impurities in a

2-dimensional electron gas:

H =
∑

k

ξkc
†
kσckσ + J

∑

i

σσσi · Si. (2.6)

Here Si denotes the localized spin and σσσi the conduction electron spin density

at ri. J is the antiferromagnetic Kondo coupling between localized spins and free

electron density. We need to calculate the susceptibility χi in different possible

scenarios of the system.

We use the “drone-fermion” representation for the localized spins [19, 20] :

S+
i =

1√
2
f †i χi, S−

i =
1√
2
χifi, Sz

i = f †i fi −
1

2
, (2.7)
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where fi and f †i are Fermionic operators and χi are real Majorana fermions de-

fined by {χi, χj} = 2δij . The commutation relations for the impurity spins are

automatically satisfied in this representation, obviating the need to impose local

constraints on the fermion number as would have been the case, for example, with

the Abrikosov pseudo-fermion representation. The increased number of degrees

of freedom also does not need a projection procedure because it just generates two

independent copies of the spin system. For a single impurity, there is no natural rep-

resentation of the Majorana fermion but it can be seen if we write χ as g+g†, where

g is a complex fermion. Now the impurity Hilbert space is 4-dimensional. It can

be seen that it separates into two independent subsets |0〉, f †g†|0〉 and g†|0〉, f †|0〉.
The spin operators do not connect these two sets. Thus all spin averages can be

computed without needing a projection. For even number of impurity spins, it can

be alternatively seen by forming fermionic operators h = χ1 + iχ2 (χ1, χ2 are the

Majorana fermions of two neighbouring impurities). Now the 8-dimensional Hilbert

space again forms two independent copies |0〉, f1
†h†|0〉, h†f2

†|0〉, f1
†f2

†|0〉 and

h†|0〉, f1†|0〉, f2†|0〉, f1†h†f2†|0〉.

Introducing the Bosonic operators,

ai =
1√
2

(

f †i ci↑ +
χici↓√

2

)

, bi =
1√
2

(

f †i c
†
i↓ −

χic
†
i↑√
2

)

; (2.8)

the interaction part of the Hamiltonian (up to constants) can be written as

Hint = −J
∑

i

(

a†iai + b†i bi
)

− J

2
f †i fi +

J

8

(

c†i↑ci↑ − c†i↓ci↓
)

. (2.9)

The ai and bi operators resemble pairings in the exciton and Cooper channels re-

spectively. The last term in Eq. 2.9 gives different but small shifts J ≪ ǫF to up

and down spin electrons while the second term is a constant shift of the impurity

energy; we neglect these terms in further analysis (Ref. [20]) and use the interaction

Hamiltonian

Hint = −J
∑

i

(

a†iai + b†ibi
)

. (2.10)

The quartic part Hint can be factorized using Hubbard Stratonovich transformation.

Introducing fields ∆i
1 and ∆i

2, the partition function can be written in path integral

form as

Q =

∫

D(c, f, χ,∆) exp

(

−
∫ 1

T

0
dτ [S0(τ) + Sint(τ)]

)

, (2.11)
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where

S0 =
∑

kσ

c†kσ (∂τ + ξk) ckσ +
∑

i

(

f †i ∂τfi +
1

2
χi∂τχi +

1

J

(

|∆i
1|2 + |∆i

2|2
)

)

,(2.12)

Sint =
∑

i

(

∆i
1a

∗
i +∆i

2b
∗
i

)

+ h.c. (2.13)

∆i
1,2 = |∆i

1,2|eiφ
i
1,2

For a single impurity in the 2D electron gas, upon making the following global

transformations (under which S0 is invariant),

f → fei(φ2−φ1), c↑(r) → c↑(r)e
iφ2 , c↓(r) → c↓(r)e

iφ1 ; (2.14)

Sint takes the form

Sint =|∆i
1|
(

ai + a†i

)

+ |∆i
2|
(

bi + b†i

)

+
φ̇+
2

∑

k,σ

c†kσckσ

+ φ̇−

{

∑

k

1

2
(c†k↑ck↑ − c†k↓ck↓) + f †i fi

}

. (2.15)

Here φ± = φ1±φ2. The φ̇+ term couples to total electron density n and φ̇− couples

to z−component of the total spin (σz + Sz + 1/2) which are both constants. Thus

the φ̇ terms become zero (on doing integration by parts) and Sint is given by

Sint =|∆i
1|
(

ai + a†i

)

+ |∆i
2|
(

bi + b†i

)

(2.16)

We do a mean field analysis neglecting the fluctuations of |∆|’s. The saddle point

solution for ∆’s is |∆1,2|∗ = r0, where

r0 =
J

2
Re 〈ai + bi〉 . (2.17)

For multiple impurities or a lattice of impurities in the 2D electron gas, the above

transformations can be made with φ01, φ
0
2, the average values of φi1, φ

i
2 respectively,

if there is a U(1) symmetry breaking. Sint will then have extra terms containing

fluctuations of φi1/2. These fluctuations are gapless and their effects on nuclear

relaxation rate need to be studied in more detail. In our work, we have used the

single impurity approach and have not studied the effects of φ fluctuations.
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2.2.1 One impurity spin

We first consider a single impurity at ri interacting with the conduction electrons.

This scenario will also be valid for a very dilute Kondo system where the inter-

impurity interactions are negligible. Up to leading order in J ,

〈ai〉 = 〈bi〉 and 〈χici↓〉 =
1√
2
〈f †i ci↑〉. (2.18)

The mean field solution for r0 in Eq. 2.17 is,

r0 =
3J

2
√
2
〈f †i ci↑〉 with 〈f †i ci↑〉 = − r0√

2
kBT

∑

νn

FνnGνn . (2.19)

Here Fνn and Gνn are Matsubara Green’s functions defined for f fermions and

electrons as:

Fνn = −
〈

Tτfif
†
i

〉

νn
= (iνn + iωK sgn(νn))

−1 , (2.20)

Gνn =
∑

k

G
(0)
νnk

≃ −iπρ sgn(νn). (2.21)

Here ρ is the density of states at the Fermi energy and ωK = πρr20 .

G
(0)
νnk

is the free electron Green function,

G
(0)
νnk

= −
〈

Tτcic
†
i

〉

νn,k
= (iνn − ξk)

−1 . (2.22)

From Eq. 2.19 we have

−3

4
r0JkBT

∑

νn

FνnGνn = r0, ; (2.23)

and thus

ωK = D exp

(

− 4

3ρJ

)

. (2.24)

ωK differs parametrically from the correct Kondo temperature, kBTK ∼ De−1/(ρJ),

where there is no factor of 4/3 in the exponent. This is a shortcoming of the mean

field approach.
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The frequency dependent local susceptibility is given by

χi (ωm)

(gsµB)2
= 〈Tτ Sz

i (τ) S
z
i

(

τ ′
)

〉ω = −kBT
∑

νn

FνnFνn+ωm

=
2ωK

π|ωm| (|ωm|+ 2ωK)

[

ψ

(

1

2
+
ωK + |ωm|
2πkBT

)

− ψ

(

1

2
+

ωK

2πkBT

)]

≃ 1

π (|ωm|+ ωK)
, T ≪ ωK. (2.25)

Here ψ is the Digamma function and ωm are bosonic Matsubara frequencies. At

ωm = 0, the static spin susceptibility is

χi(0) =
(gsµB)

2

2π2kBT
ψ′
(

1

2
+

ωK

2πkBT

)

≃ (gsµB)
2







(πωK)−1 if T ≪ ωK

(4kBT )
−1 if T ≫ ωK

(2.26)

The susceptibility obtained by this mean field analysis correctly shows a saturat-

ing behaviour at low temperatures as expected for the unitarity limit of the Kondo

model. The high temperature result is also in agreement with the Curie suscep-

tibility of an isolated impurity spin. However at finite temperatures near ωK , a

1/(T +ωK) dependence is predicted instead of the correct (1− (T/ωK)2)/ωK .While

this does have an effect on the temperature dependence of the nuclear relaxation

rate, we will use an appropriate modification to correct the discrepancy.

Nuclear relaxation rate

The nuclear relaxation rate follows from Eq. 2.5 for which we need the transverse

local susceptibility χ+−
i (ω). At low temperatures T ≪ ωK ,

χ+−
i (ωm)

(gsµB)2
= 〈Tτ S+

i (τ) S
−
i (τ ′)〉ωm

= −kBT
∑

νn

FνnXνn+ωm ≈ 1

π

1

(|ωm|+ ωKi)
. (2.27)

Here

Xνn = −〈Tτχi(τ)χi(0)〉νn = (iνn + iωKi sgn(νn))
−1

is the Green function for the Majorana fermions. The transverse susceptibility and

the longitudinal susceptibility we defined in Eq. 2.25 are equal: this is correct as
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long as there is no external magnetic field. An analytic continuation, χ+−
i (ωm) →

χ+−
i (ω) = (gsµB)

2/π(−i~ω + ωKi), to real frequencies leads to

T−1
1i =

A2
dkBT

π~ω2
K

=
πA2

dkBT

~(gsµB)4
χi(0)

2. (2.28)

Thus, a few non-interacting local spins give a linear-T relaxation rate. If the localized

spins are nearby, RKKY interactions compete with the Kondo screening. To analyze

the effects of this competition, we will consider below two interacting nearby spins.

2.2.2 Two impurity spins

To understand the effects of the competition between Kondo screening and inter-

impurity interactions, we considered two nearby localized spins S1,S2 atR = R1,R2

which interact via an exchange interaction

Hex = Jex(R12)S1 · S2. (2.29)

If the wave-functions of the localized electrons have a significant overlap, then

direct exchange would be dominant. Indirect (or RKKY) exchange is more im-

portant at larger separations. Here it also becomes important to compare the

relative strengths of the RKKY interaction between the impurity spins with the

hyperfine interaction of either of the impurities with neighbouring nuclei. The

RKKY interaction JRKKY falls off with distance R12 as JRKKY ∼ J2ρ
R2

12

. This should

be compared with Ad = As
llocR2

p
, where Rp is the size of the electron puddle (lo-

calized electrons) in the plane of the heterostructure. We use the following pa-

rameters for a GaAs/AlGaAs heterostructure, Jρ ∼ 1, lloc ∼ 1nm, Rp ∼ 10nm,

As = 3.8 × 10−54Jm3, and m = 0.063me. Then JRKKY ≫ Ad/Nnuc is satisfied if

R12 ≪
√

1/Adρ ≈ 1mm. For the experimental system, the sample sizes are usu-

ally a few microns; thus the RKKY interaction is large compared to the interaction

of the nuclei with the individual localized spins. The nuclei couple to the RKKY

bound pair S1 + S2 rather than the spins separately. The impurity susceptibility

now involves both on-site (χ+−
i (ω)) and intersite (C+−

ij (ω)) correlations:

(gsµB)
2〈
{

S+
i (t), S

−
j (0)

}

〉ω = coth

(

~ω

2kBT

)

Im(C+−
ij (ω)). (2.30)
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Therefore, using eq. 2.3, the nuclear relaxation rate can be written as

T−1
1 ∝ A2

d

(

Im
χ+−
1 (ω)

ω
+ Im

χ+−
2 (ω)

ω

)

ω→0

+ 2A2
d Im

(

C+−
12 (ω)

ω

)

ω→0

. (2.31)

We have already shown that Im
(

χ+−

i (ω)
~ω

)

ω=0
= (gsµB)2

π ω2
Ki

. The inter-site correlation

C+−
ij (ωm)

(gsµB)2
= −Jex(R12)

2

(

−kBT
∑

νn

FνnXνn+ωm

)2

≈ −Jex(R12)

2

1

π(|ωm|+ ωi
K)

· 1

π(|ωm|+ ωj
K)
,

(2.32)

is similarly analytically continued to real frequencies ω yielding

1

(gsµB)2
Im

(

C+−
12 (ω)

~ω

)

ω=0

= −Jex(R12)

2π2
(ωK1 + ωK2)

(ωK1ωK2)
2 .

In the last step in Eq. 2.32 we have considered the low temperature limit, kBT ≪
ωK . Thus for two impurities we have, to leading order in inter-impurity interaction,

T−1
1 =

A2
dkBT

π~

(

1

ω2
K1

+
1

ω2
K2

− Jex(R12)

π

(ωK1 + ωK2)

(ωK1ωK2)
2

)

. (2.33)

The above expression reflects the fact that as Jex increases (antiferromagnetic cou-

pling), the uniform susceptibility of the two-impurity system decreases, thus de-

creasing the nuclear relaxation rate. For identical impurities (ωK1 = ωK2),

T−1
1 =

2

π

A2
dkBT

ω2
K~

(

1− 1

π

Jex(R12)

ωK

)

. (2.34)

It is also evident from Eq. 2.33 that when the two Kondo temperatures are very

dissimilar, the competition of the Kondo and antiferromagnetic inter-impurity in-

teraction is determined by the relative strengths of Jex and the larger of the two

Kondo temperatures.

When Jex/ωK ≥ π, the nuclear relaxation rate is suppressed to zero: this is

the maximum value of Jex/ωK for which the behaviour is governed by the Kondo

screening of the impurity spins. At antiferromagnetic couplings Jex > πωK , the

ground state is an RKKY singlet which is unable to exchange spins with the nuclei.

While our analysis is only to leading order in Jex, more accurate calculations [22]

based on numerical renormalization group methods have shown that this critical
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point occurs at Jex/kBTK ≈ 2.2. On the other hand, even for a large ferromagnetic

coupling of the spins, the ground state is a Kondo singlet [22].

The main difference we have shown from the single impurity case is that nu-

clei in the vicinity of a double Kondo impurity system would not relax through

their coupling to the impurities if the antiferromagnetic coupling of the impurities

were sufficiently large to form an RKKY singlet. With a larger number of spatially

disordered impurity spins, one can show that for weak interimpurity interactions,

the nuclear relaxation rates have linear-T behavior with logarithmic factors arising

from the random distribution of Kondo temperatures of individual impurities [23]

ignore the Kondo effect to leading order. In that case, it is known that the magnetic

susceptibility at low temperatures is dominated by pairs with the weakest exchange

interactions [24]. This leads to a weakly increasing susceptibility eC ln1/2(T0/T ) (in-

stead of zero for the double impurity case). Nevertheless, the nuclear relaxation rate

is dominated by the linear-T pre factor as the exponential term is weaker than any

power law.

2.2.3 Lattice of impurity spins

Nuclear relaxation in a Kondo lattice is also affected by the competition of the

exchange interaction and the impurity spin screening tendency of the conduction

electrons. However, as we show below, the results are qualitatively different from

the two-impurity case. The main physical difference from the two-impurity case

is the existence of low energy magnetic excitations in the lattice for any value of

the ratio Jex/ωK . As a result, significant nuclear relaxation still occurs for large

antiferromagnetic inter-impurity couplings unlike the two-impurity case where it

vanishes.

Kondo interaction dominated behaviour: ωK ≫ Jex

We consider first the scenario where we have a lattice of Kondo impurities with

a weak exchange interaction among the neighbouring spins. At low temperatures,

the ground state of such a system consists of “heavy-fermions”: a narrow band of

fermions with a large density of states.

Interestingly, in the absence of RKKY interactions, the formation of the heavy

fermion band has no qualitative effect on the nuclear relaxation rate [20]. This

is because the enhancement 1/Z0 in the density of states is canceled by the quasi

particle weight Z0.
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We consider weak exchange interaction among the spins and treat it as a per-

turbation:

HRKKY =
∑

〈ij〉
Jex(Rij)Si · Sj =

∑

q

Jex(q)Sq · S−q. (2.35)

In the random phase approximation, the q dependent spin susceptibility is given by

χ+−
q (ω, T ) =

χ+−
i (ω, T )

1− nimpJex(q)
(gsµB)2 χ+−

i (ω, T )
. (2.36)

The local nature of the Kondo effect implies the impurity susceptibility χi has no

wave-vector dependence. We assume that Jex(q) has maximum value at q = Q,

and the wave-vector dependence in the vicinity of the maximum is Jex(Q + q) =

Jex(Q)− (Ds/nimp)a
2q2, where a is the lattice constant of the Kondo array and Ds

the spin wave stiffness. The susceptibility in this momentum region has the form

χ+−
Q+q(ω, T ) =

(gsµB)
2

π
(

ωsf (T )− i~ω + Dsa2q2

π

) , where (2.37)

ωsf (T ) =
(gsµB)

2

πχ+−
i (0, T )

− Jex(Q)nimp

π
. (2.38)

ωsf (0) = ωK − Jex(Q)nimp/π is a new energy scale that represents the competition

of Kondo and inter-impurity exchange interactions. As Jex(Q)nimp → πωK , the

uniform, static transverse susceptibility tends to diverge signaling a magnetic phase

transition. The condition Jex(Q)nimp/ωK = π for transition from the Kondo phase

to a (antiferro)magnetic phase is the same as the one we found for the double

impurity problem.

From Eq (2.26), expanding ψ′ for kBT ≪ ωK , we can get the temperature

dependence for the single impurity susceptibility,

χ−1
i (0, T ) ≃ πωK

(gsµB)2

(

1 +
3πkBT

ωK
+

4π2k2BT
2

ω2
K

)

.

The linear dependence of χi(T ) on T is an artifact of our mean-field treatment, for it

is well known from phenomenological and Bethe ansatz studies of the Kondo model

that at low temperatures, χ(T ) has a T 2 correction and not a linear-T correction.

Therefore, we use the correct temperature dependence of χ in further calculations.

χ+−
i (0, T ) = χi(0, T ) ≃ χi(0)

(

1− Ck2BT
2

ω2
K

)

, (2.39)
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(C is a constant). Together with the frequency dependence of Im χ per impurity

from Eq. 2.36 and Eq. 2.37, we have

Im

(

χ+−(ω)
~ω

)

ω→0

=
(gsµB)

2

πNimp

∑

q

1

(ωsf(T ) +Dsa2q2)
2

=
(gsµB)

2

4π2Dsωsf (T )
, (2.40)

and the nuclear relaxation rate for kBT ≪ ωK comes out to be

1

T1
=

A2
dkBT

4π2~Dsωsf (T )
. (2.41)

The temperature dependence of ωsf(T ) is obtained from Eq. 2.38. For kBT ≪ ωK ,

ωsf (T ) ≈ ωsf(0)

(

1 +
Ck2BT

2

ωKωsf (0)

)

. (2.42)

This shows the crucial differences between the nuclear relaxation results for the

Kondo lattice in Eq. 2.41 and the two-impurity case in Eq. 2.34. First, at the tran-

sition Jex(Q)nimp/ωK = π, 1/T1 for the Kondo lattice is large and finite, while it

vanishes for the two-impurity case. Second, as ωsf(0) → 0, the temperature depen-

dence of the nuclear relaxation rate for the two-impurity system remains linear−T,
while for the (two-dimensional) Kondo lattice it becomes 1/T. These differences

arise from the existence of long wavelength, low energy magnetic excitations in the

lattice even for large Jex(Q). Further differences between the lattice and a double

impurity can be seen in the strong RKKY regime, Jex(Q)nimp/ωK > π.

RKKY interaction dominated behaviour: Jex ≫ ωK

We consider the case when localised spin-spin interactions are dominant and neglect

the Kondo interaction in the zeroth order. We are particularly interested in the

regime close to a magnetic phase transition. The Hamiltonian describing the system

would be

H =
∑

k,σ

ξkc
†
kσckσ +

∑

q

Jex(q)Sq · S−q + J
∑

i

σσσi · Si,

where J is to be treated now as a perturbation. Jex(q) represents all exchange

processes except indirect exchange (RKKY),
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JRKKY(q, ω) = J2

∫

(d2k)
nk−q/2 − nk+q/2

ω + ǫk−q/2 − ǫk+q/2 + iδ
.

Thus we may write the effective inter-impurity exchange interaction as Jex(q, ω) =

Jex(q) + JRKKY(q, ω). The spin susceptibility within RPA approximation near the

ordering point is

χ+−(q, ω) =
χi(ω, T )

1− Jex(q,ω)nimp

(gsµB)2
χi(ω, T )

, (2.43)

χi(ω, T ) =
(gsµB)

2

4kBT
.

We re-express Eq.2.43 introducing the mean-field transition temperature Tmf
C (where

the denominator of Eq. 2.43 vanishes):

χ+−(Q+ q, ω) =
(gsµB)

2

4kBT
(

1− Jex(q,ω)
Jex(Q)

Tmf
C
T

)

=
(gsµB)

2

4kBTmf
C

{

∆−
(

1− Jex(Q+q)
Jex(Q)

)

− iγ(Q+ q, ω)
} , (2.44)

where Q is the wave vector of ordering, ∆ =
T−Tmf

C

Tmf
C

and γ(q, ω) is the imaginary

part of Jex(q,ω)
Jex(Q) ,

γ(q, ω) = − πJ2

Jex(Q)

∫

(d2k)
(

nk−q/2 − nk+q/2

)

δ
(

~ω + ǫk−q/2 − ǫk+q/2

)

≃ π(Jρ)2~ω

4Jex(Q)kF q
= γ(q)ω. (2.45)

We now Taylor expand the exchange interaction near its extremum, Jex(Q+q) =

Jex(Q)(1 − α2q2). We have introduced the new parameter α for simplicity; it is

related to the Kondo lattice constant a and stiffness Ds introduced in Sec. 2.2.3

through Jex(Q)α2 = (Ds/nimp)a
2. The expression for the transverse susceptibility

then becomes
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χ+−(Q+ q, ω) =
(g

S
µB)

2

4kBT
mf
C {∆+ α2q2 − iγ(Q+ q)ω} . (2.46)

Strictly speaking, a magnetic continuous phase transition is not possible in an

infinite 2D system at finite temperatures. This needs to be reconciled with the fact

that the susceptibility in Eq. 2.46 has a Stoner instability at a finite temperature

Tmf
C . Sufficiently above the mean field transition temperature Tmf

C , a Curie-Weiss law

would be approximately correct. However, close to the Stoner instability (T = Tmf
C ),

there are beyond-RPA corrections to ∆. For example, in the context of a 2D itinerant

electron ferromagnet, it is known [21] that for T < Tmf
C , ∆ decreases exponentially

with temperature (∆ ∼ e−C/T ), vanishing only at T = 0. For a correct treatment,

one should identify ∆ with α2/ξ2, where ξ is the correlation length:

χ+−(Q+ q, ω) =
(g

S
µB)

2

4kBTmf
C {α2/ξ2 + α2q2 − iγ(Q + q)ω} . (2.47)

It follows from Eq. 2.44 and Eq. 2.45 that

Im

(

χ+−(Q + q, ω)

ω

)

ω→0

=
(g

S
µB)

2γ(Q + q)

4kBTmf
C α2 (ξ−2 + q2)2

.

We can now estimate the nuclear relaxation rate. For an antiferromagnetic

square lattice, the ordering happens at Q = (π/a, π/a). Then the relaxation rate at

the site of any given impurity is

T−1
1 (T ) ≈ A2

dγ(Q)T

4Nimp~
2Tmf

N

∑

q

J2
ex(Q)

(Ds/nimp)2a4 (ξ−2 + q2)2

=
A2

d(Jρ)
2Jex(Q)n2imp

64~D2
skFQ

T

Tmf
N

ξ(T )2

a2
. (2.48)

The correlation length ξ has the following temperature dependence,

ξ(T ) ≃











min

(

α

√

Tmf
N

T−Tmf
N

, a

)

, T > Tmf
N

max
(

~v
2πD′

s
exp(2πD

′

s
kBT ), L

)

, T < Tmf
N

, (2.49)

where the low temperature behaviour was obtained in Ref. [25]. v is the spin wave

speed, and D′
s ≈ 0.2Jex(Q)nimp is the exact spin wave stiffness at T = 0 for a

2D Heisenberg antiferromagnet. Eq. 2.48 differs from estimates [25] of 1/T1 for
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Heisenberg antiferromagnets because in our case, the magnon decay is due to the

scattering from conduction electrons and not due to magnon-magnon scattering.

Likewise for the ferromagnetic case,

T−1
1 (T ) ≈ A2

dT

4Nimp~
2Tmf

C

∑

q

J2
ex(Q)γ(q)

(Ds/nimp)2a4 (ξ−2 + q2)2
.

=
A2

dπ(Jρ)
2Jex(Q)nimp

128~kF aD2
s

T

Tmf
C

ξ(T )3

a3
. (2.50)

The temperature dependences of the correlation lengths are similar to the antifer-

romagnetic case,

ξ(T ) ≃















min

(

α

√

Tmf
C

T−Tmf
C

, a

)

, T > Tmf
C

max

(

√

D′

s
kBT a exp(

2πD′

s
kBT ), L

)

, T < Tmf
C

, (2.51)

where the low temperature behavior for the antiferromagnet was obtained in Refs.

[25, 26], and for the ferromagnet from Refs. [26, 27]. D′
s ≈ 0.18Jex(Q)nimp is

the exact spin wave stiffness at T = 0 for a 2D (square lattice) Heisenberg magnet.

These results also differ from the usually-encountered 3D Kondo lattice systems [28],

because of the qualitative difference in the behavior of ξ(T ) at low temperatures.

In presence of inter-impurity exchange interactions, the singular Kondo correc-

tions (∼ (Jρ) ln(D/kBT )) to the gyromagnetic ratio of the impurity spins are mod-

ified to (Jρ) ln(D/
√

J2
ex + k2BT

2) [29]. Consequently, the primary effect of Kondo

corrections is to decrease the Stoner critical temperature Tmf
C as well as the pre-factor

in the expressions for the nuclear relaxation rates but the temperature dependence

of T−1
1 does not change significantly.

2.3 Summary

We calculated the nuclear relaxation rates T−1
1 for the Kondo lattice and the few

disordered magnetic impurities cases and showed that they have qualitatively dif-

ferent low temperature behaviors: when inter-spin exchange interactions are strong

compared to the Kondo energy ωK , the temperature dependence of T−1
1 for the few-

impurity system will follow an approximate linear−T law, while for the Kondo lattice

T−1
1 will show an exponential behaviour eA/T at low temperatures. In contrast, we

argued that transport measurements [9] in this case may not provide a convincing
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evidence for the formation of crystalline order (Kondo lattice). The exponential

temperature dependence is special to two dimensions and indicates stronger spin

fluctuations: a power-law behavior is expected in three dimensions on either side

of the transition temperature [28]. These results also differ from a 2D Heisenberg

magnet because in our case, magnon decay is mediated by conduction electrons. We

hope our study will work towards encouraging the use of NMR measurements as an

additional handle for studying magnetism and long-range order in low-dimensional

conductors.



References

[1] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Univ. Press,

Cambridge, (1993).

[2] J. P. Franck, F.D. Manchester, D.L. Martin, The specific heat of pure copper and

of some dilute copper-iron alloys showing a minimum in the electrical resistance

at low temperatures Proc. R. Soc. London, Ser. A 263, 494 (1961).

[3] P. Gegenwart, Q. Si and F. Steglich, Quantum criticality in heavy-fermion

metals, Nature Phys. 4, 186 (2008).

[4] P. Coleman and A. J. Schofield, Quantum criticality, Nature 433, 226 (2005).
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Chapter 3

Magnetic impurities in the

honeycomb Kitaev model

3.1 Introduction

Impurity effects are an essential part of our understanding of strongly correlated

electron systems, both as probes for the underlying electronic state as well as due

to the numerous nontrivial effects they have on the properties of the system [1].

Recently many studies have explored impurity effects as probes for the putative

quantum spin liquid state in underdoped cuprate superconductors [2] and geomet-

rically frustrated magnets [3]. The S = 1/2 honeycomb lattice Kitaev model [4]

provides a very appealing system to study in this context as the model is integrable

via several schemes of spin-fractionalization into fermions [4, 5, 6] and exhibits both

gapless and gapped quantum spin liquid phases. The Kitaev model has been studied

in various contexts ranging from the possibility of quantum computation with the

anyons [4, 7] that the model predicts, understanding dynamics of quantum quenches

in a critical region [8] to fractional charge excitations in topological insulators [9].

We study the behavior of spin-S impurities in the gapless spin liquid regime

of the Kitaev model on the honeycomb lattice. The impurity coupling K scales

away from an unstable fixed point Kc ∼ J/S irrespective of the sign of impurity

coupling, similar to impurity problems in pseudogapped bosonic spin liquids [17].

The Kitaev model magnetic impurity problem is nevertheless qualitatively different

for two important reasons. First, the unstable fixed point separates topologically

distinct sectors in the Kitaev model, with the strong coupling sector associated with

non-abelian anyons. Second, the gapless spinons in the Kitaev spin liquid mediate a

35
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Figure 3.1: (a) Schematic of the Kitaev lattice showing the A and B sites and the
x, y and z types of bonds. (b) Figure showing the reciprocal lattice vectors for the
A sublattice. The Dirac point for the massless Majorana fermions is denoted by kF
and momentum summations are over the (shaded) half Brillouin zone.

non-dipolar RKKY interaction proportional to S2
iαS

2
jβ/R

3
ij between distant magnetic

impurities provided that (a) each impurity couples to more than one lattice site on

the host and (b) the impurity spin S 6= 1/2. The absence of long-range interaction

for S = 1/2 impurities could give a way for local manipulation of the Kitaev system.

3.1.1 Kitaev model

The S = 1/2 Kitaev model [4] is a honeycomb lattice of spins with nearest neighbour

interactions with a strong direction dependence. The Hamiltonian for the Kitaev

model is,

H0 = −Jx
∑

x-links

σxj σ
x
k − Jy

∑

y-links

σyjσ
y
k − Jz

∑

z-links

σzjσ
z
k, (3.1)

where the three bonds at each site are labeled as x, y and z links. The model can be

solved [4] by representing the spins in terms of Majorana fermions c, bx, by, bz as σαi =

ibαi ci and using the fact that there are macroscopic number of conserved quantities

for the model. As was shown in ref. [4], the flux operators Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6

defined for each elementary plaquette p are conserved (see Fig.3.1), with eigenvalues

±1, and form a set of commuting observables which divides the Hilbert space into

distinct sectors. Along with the flux operators, on each α−type bond, uαij = ibαi b
α
j

is also conserved and these uij’s commute with each other. The representation in

terms of Majorana fermions bxi , b
y
i , b

z
i , ci spans a larger Fock space, and we restrict

to the physical Hilbert space of the spins by choosing the gauge condition Di =

ibxi b
y
i b

z
i ci = 1 such that σxσyσz = i.
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Using these conserved quantities, the Hamiltonian becomes a problem of free

hopping Majorana fermions on honeycomb lattice.

H0 =
i

4

∑

jk

Ajkcjck, (3.2)

where

Ajk =







2Jα
jk
ujk if j, k are neighbouring sites on anα-bond,

0 otherwise.

Also, the flux operators can be expressed as product of uij over the bonds of the

plaquette. Ground state of the Kitaev model lies in the vortex free sector with

all Wp = 1. The gauge invariant (D = 1) state of the system only depends on

the configuration of Wp’s and we can therefore fix all uij = 1 for studying the

ground state properties. The physical state corresponding to the uij = 1 state is

the appropriately gauge projected state |ψp〉 such that Di|ψp〉 = |ψp〉 :

|ψp〉 = Πa

(

1 +Da

2

)

|{uij=1}〉 (3.3)

The model has two types of quasi-particle excitations: free dispersing fermions

and Z2 vortices. The excited state manifolds with finite vorticity are separated from

the ground state manifolds by a gap of order Jα.

Defining the Bravais lattice with two point basis (Fig.3.1), the Hamiltonian is

translationally invariant and can be diagonalized in momentum space,

H0 =
i

4

∑

q>0,α

ǫα(q)a
†
q,αaq,α, (3.4)

with ǫα(q) = ±|f(q)|, f(q) = 2(Jxe
iaq·n1 + Jye

iaq·n2 + Jz) and the eigen-basis,

aq,0 = c̃q,A + c̃q,Be
−iα̃(q),

aq,1 = c̃q,A − c̃q,Be
−iα̃(q). (3.5)

Here A/B is the site label for the two types of sites in Kitaev model, α̃(q) is the

phase of f(q) and c̃q represents the Fourier transform of ci. The lattice constant is

a. As we see in Eq. 3.4, the sum over momenta is only over half of first Brillouin

zone as ci’s are real fermions. The above Hamiltonian has gapless excitation for a
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region of parameter space where J ’s satisfy the triangle inequalities |Jx|+ |Jy| ≥ |Jz|
etc. and a gapped spectrum outside this parameter regime. The gapless phase has

point Fermi surface where ǫ(kF ) = 0 and ǫ(q) has linear dispersion around kF

(Fig.3.1). The position of the Fermi point in the Brillouin zone depends on the

relative values of Jx, Jy and Jz. For simplicity, and without loss of generality, we

will assume Jx = Jy = Jz = J for further analysis.

The Kitaev model ground state is a quantum spin liquid with only nearest neigh-

bor spin-spin correlations. On an α−bond, only 〈σαi σαj 〉 is non zero and other two

spin correlations are zero. Four spin bond-bond correlations are long ranged with

power law decay in the gapless phase of the Kitaev model.

In the gapless phase, the vortex excitations have non-abelian statistics if the gap-

less fermionic excitations are gapped by applying magnetic field. In the non-abelian

phase, the states are topologically protected and thus could be useful for quantum

computation. Although such anisotropic interactions are difficult to form in solid

state systems, there have been proposals of possible formation of Kitaev model in

systems with strong spin-orbit interactions [10] which could lead to anisotropic in-

teractions. Sodium/Lithium Irridate (A2IrO3) in which Ir atoms form hexagonal

lattice and have strong spin orbit coupling were proposed to have Kitaev like spin

interactions but there is a significant Heisenberg coupling also in these materials

along with Kitaev interactions. Various other methods of creating a Kitaev model

in optical lattices [11], Josephson junction circuits [12] etc. have also been proposed.

3.2 Kondo effect in Kitaev model

Now we couple a spin S Kondo impurity to a Kitaev spin at an A site (r = 0) by

an exchange interaction:

VK =i
∑

α

KαSαbαcA = i
∑

q∈HBZ,α

Kα

√
2N

Sαbα(c̃q,A + c̃†q,A)

≡ 1√
N

∑

q∈HBZ,α,β

QαSαbα(aq,β + a†q,β). (3.6)

The index HBZ is to remind us that the momenta q are summed over half of

the first Brillouin zone (see Fig. 3.1).

We now do a poor man’s scaling analysis for the Kondo coupling K. The idea of

the Poor Man scaling [13, 14] process is as following. To study the system properties
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at low temperatures, we compute the effective Hamiltonian in a reduced bandwidth

for the fermionic excitations (−D+δD to D−δD) by integrating out the excitations

in the band edges ((−D to −D+δD) and (D to D−δD)). We perform this process

successively to get a scaling law for the coupling constants in the Hamiltonian. To

do the analysis for our problem, we consider the Lippmann-Schwinger expansion

for the T−matrix element 〈Ω, bβ |KβSβbβca,A|Ω + (q, α)〉. We make a perturbation

expansion T = T (1) + T (2) + · · · in increasing powers of K and follow its variation

as a function of the decrease of the bandwidth (−D,D). The first correction to the

bare T−matrix comes from two third order terms (see Fig. 3.2). The contribution

from on-site scattering (Fig.3.2a) is

T (3),a = 〈Ω, bβ|VKG+
0 (E)VKG

+
0 (E)VK |Ω+ (q, α)〉

=
QβSβ

N

∑

(D−δD)≤|ǫq′ |,|ǫq′′ |≤D,α̃,β̃,α̃′

(Qβ̃)2(Sβ̃)2〈bβ | b†β(aq′′,α̃′ + a†
q′′,α̃′)G

+
0 (ǫ) bβ̃

× (aq′,α̃ + a†
q′,α̃)G

+
0 (ǫ) b

†
β̃
cq,α|(q, α)〉

= −Q
βSβ

N

∑

q′,β̃

(Qβ̃)2(Sβ̃)2
〈

a†
q′,1aq′,1

1

E − (H0 − ǫq′,1)
+ aq′,0a

†
q′,0

1

E − (H0 + ǫq′,0)

〉

1

E − ǫb

≃ −2QβSβ ρ(D)a2|δD|
E −D

· 1

E − J

∑

β̃

(Qβ̃)2(Sβ̃)2. (3.7)

Here ρ(D) is the density of states at the band edge, a is the lattice constant and

G0(E) = (E −H0 + iδ)−1.



40 3. MAGNETIC IMPURITIES IN THE HONEYCOMB KITAEV MODEL

(a)
bβ̃ q′, α̃q, α

bβ

Sβ̃Sβ̃ Sβ

(b)

Sβ̃Sβ̃ Sβ

q, α bβ

q′, α̃ bβ̃

Figure 3.2: Diagrams contributing to the scaling of Kondo coupling Kα when the
impurity couples to a single Kitaev spin.

Similarly, the contribution from Fig. 3.2(b) is

T (3),b =
QβSβ

N

∑

(D−δD)≤|ǫq′ |,|ǫq′′ |≤D,α̃,β̃,α̃′

(Qβ̃)2(Sβ̃)2 〈Ω, bβ | bβ̃cq,αb
†
βc

†
q,α

× 1

E − (H0 + ǫb + ǫq,0)
b†
β̃
(aq′′,α̃′ + a†

q′′,α̃′)
1

E − (H0 + ǫb + ǫq,0)
(−aq′,α̃ − a†

q′,α̃)|Ω〉

=− QβSβ

N

∑

q′,β̃

(Qβ̃)2(Sβ̃)2
1

E − 2ǫb

×
〈

a†
q′,1aq′,1

1

E − (−ǫq′,1 + ǫb + ǫq,0)
+ aq′,0a

†
q′,0

1

E − (ǫq′,0 + ǫb + ǫq,0)

〉

≃ −2QβSβ ρ(D)a2|δD|
E −D − J

· 1

E − 2J

∑

β̃

(Qβ̃)2(Sβ̃)2. (3.8)

Adding the two contributions (taking E ≃ 0),

T (3) ≃ 2QβSβρ(D)
a2δD

ǫb

∑

β̃

(Qβ̃)2(Sβ̃)2
{

1

D
+

1

2(D + J)

}

. (3.9)
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Here we have taken E, ǫq,α ≪ D, J and neglected them.

If either the impurity is a S = 1
2 spin, or the Kondo interaction is rotationally

symmetric, the above contribution renormalizes the Kondo coupling constant. How-

ever for S 6= 1
2 with anisotropic coupling, new terms are generated and one needs to

go to higher order diagrams to obtain the scaling of these new coupling terms. For

S = 1/2 or for symmetric impurity coupling we thus have

δK ∼ −2K3S(S + 1)ρ(D)a2
δD

J

{

1

D
+

1

2(D + J)

}

. (3.10)

Just as for the Kondo effect in graphene[15], owing to the change in the density of

states with bandwidth (here ρ(ǫ) = (1/2πv2F )|ǫ| ≡ C|ǫ|), we also need to consider

the change in K due to the rescaling done in order to keep the total number of states

fixed. This gives a contribution K → K(D′/D)r, (D′ = D − |δD|). In addition,

as we shall scale the bandwidth D to smaller values, the second term in braces in

Eq. 3.10 may be dropped. Thus

δK ≃ −2K3S(S + 1)ρ(D)a2
δD

DJ
+K

δD

D

= −KδD

D

(

2K2a2CDS(S + 1)/J − 1
)

. (3.11)

Thus, as we decrease the bandwidth by integrating out the high energy excitations,

the effective couplingK has an unstable fixed point atKc =
√

J/[2a2ρ(D)S(S + 1)];

or in other words, Kc ∼
√

J/S2a2CD ∼ J/S. Here we usedD . J and C ∼ 1/(Ja)2.

Clearly for K > Kc, the coupling flows to infinity independent of the nature of

coupling (ferromagnetic or antiferromagnetic), while for K < Kc, the coupling flows

to zero. For anisotropic Kondo coupling we can show

δKz,± ∼ −Kz,±
δD

D

[

2a2ρ(D)S(S + 1)
K2

z +K+K−
J

− 1

]

. (3.12)

The two-parameter Kondo flow is therefore given by

δKz

δK±
=
Kz

K±
⇒ Kz

K±
= const. (3.13)

A comparison of Kondo effect and RKKY interaction in graphene [15, 16], a

bosonic spin bath [17] and the Kitaev model are shown in Table 3.1.

Similarly we can analyze the flow of the Kondo coupling constant when the

impurity spin is at the centre of a Kitaev lattice hexagon. The spin couples to the
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Graphene Z2 bosonic spin bath with
pseudogap density of states
ρ(ǫ) = C|ǫ|.

Kitaev, honeycomb
lattice

Kondo
scaling

Unstable intermediate
coupling fixed pt. only
for AFM coupling. Only
AFM flows to strong
coupling above unstable
fixed pt.

Flow direction is independent
of the sign of magnetic
impurity coupling. Unstable
intermediate coupling fixed
pt. for both FM and AFM.

Scaling same as Z2

bosonic spin bath case.
However a topological
transition is associated
with the unstable fixed
point.

RKKY SiαSjα/R
3

ij SiαSjα/R
3

ij S2

iαS
2

jβ/R
3

ij

Table 3.1: Comparison of Kondo effect and RKKY interaction in graphene, a Z2

bosonic spin bath with a pseudogap density of states and the Kitaev model on the
honeycomb lattice.

Kitaev spins at the vertices of hexagon as

VK =i
∑

j∈hexagon,α
Kα

j S
αbαj cj =

∑

q∈HBZ,j,α

iKα
j S

αbαj√
2N

(eiq·rj c̃q,λj
+ e−iq·rj c̃†q,λj

)

=
1√
N

∑

α,j,q∈HBZ

Qα
j S

α bαj

{

eiλj α̃(q)eiq·rj(aq,0 + (−1)λjaq,1)

+ e−iλj α̃(q)e−iq·rj(a†q,0 + (−1)λja†q,1)
}

. (3.14)

λj = 0 or 1 specifies the sublattice A or B to which j belongs.

We look at the scaling of scattering term of the type Qα
i S

αbαi cq,0e
iq·ri . Two of the

terms contributing to this matrix element are same as the terms calculated above

for the case of an impurity at the site of Kitaev lattice. These give

T
(3)
1i ≃ 2Qβ

i S
βeiq·ri

∑

β̃

(Qβ̃
i )

2(Sβ̃)2ρ(D)a2
δD

JD
.

The new terms contributing to the matrix element are those coming from Fig. 3.3.

The contribution from the top diagram in Fig. 3.3 is
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(a)

bβ̃ q′, α̃q, α
bβ

Sβ, iSβ̃, jSβ̃, i

(b)
q, α bβ

q′, α̃ bβ̃

Sβ, iSβ̃, i Sβ̃, j

Figure 3.3: Third order contributions to the T−matrix arising from site off-diagonal
scattering.

T
(3)
2a =

QβSβeiq·ri

N

∑

q′,β̃,j

(Qβ̃)2(Sβ̃)2(Qβ̃)2(Sβ̃)2〈Ω, bβ| b†β,i,A

×
(

eiq
′·ri(aq′,0 + aq′,1) + e−iq′·ri(a†q′,0 + a†q′,1)

)

G+
0 (ǫ) bβ̃,j,B

×
(

eiα̃(q
′)eiq

′·rj(aq′,0 − aq′,1) + e−iα̃(q′)e−iq′·rj(a†
q′,0 − a†

q′,1)
)

× G+
0 (ǫ) b

†
β̃,i,A

cq,αe
iq·ri |Ω+ (q, α)〉

= −Q
βSβeiq·ri

N

1

E − ǫb

∑

q′,β̃,j

(Qβ̃)2(Sβ̃)2
〈

e−iq′·(ri−rj)eiα̃(q
′)a†

q′,1aq′,1

1

E − (H0 − ǫq′,1)
− eiq

′·(ri−rj)e−iα̃(q′)aq′,0a
†
q′,0

1

E − (H0 + ǫq′,0)

〉

= −QβSβeiq·ri
1

E − ǫb

∑

β̃,q′,j

(Qβ̃)2(Sβ̃)2

〈

e−iq′·(ri−rj)eiα̃(q
′)a†

q′,1aq′,1
1

E − |f(q′)| − eiq
′·(ri−rj)e−iα̃(q′)aq′,0a

†
q′,0

1

E − |f(q′)|

〉
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(a)
q, α

bβ̃bβ

Sβ̃, jSβ, i

(b)
q, α

q′, α̃

Sβ, i Sβ, j

bβ

Figure 3.4: New vertices generated from site off-diagonal scattering.

Thus,

T
(3)
2a =2iQβ

i S
βeiq·ri

1

E − J

1

E −D

∑

q′∈HBZ,β̃,j

Qβ̃
i Q

β̃
j (S

β̃)2sin(q′ · (ri − rj)− α̃(q′)).

Similarly calculating the contribution from the bottom diagram in Fig. 3.3,

T
(3)
2b =2iQβ

i S
βeiq·ri

1

E − 2J

1

E − J −D

∑

q′∈HBZ,β̃,j

Qβ̃
i Q

β̃
j (Sβ̃)

2 sin(q′ · (ri − rj)− α̃(q′)).

Adding all the contributions,

T
(3)
i = −2Qβ

i S
βeiq·riρ(D)a2

|δD|
JD

∑

β̃

(Sβ̃)2

×



(Qβ̃
i )

2 − i
∑

q′=D/vF ,j∈i
Qβ̃

i Q
β̃
j sin(q

′ · (ri − rj)− α̃(q′))



 . (3.15)

There are also new terms of second order in K that are generated. These

terms are as shown in figures (3.4). The term corresponding to figure (3.4a) is

∼ KβK β̃SβSβ̃bβi b
β̃
j . When projected to the vortex free ground state, it becomes

∼ (Kβ)2(Sβ)2 generating anisotropic potential for the impurity spin. The second

term (3.4b) is ∼ (Kβ)2 (Sβ)2cicj/J which contributes to the long range interaction

between impurity spins.
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3.2.1 Stability of strong coupling point

Our poor Man’s scaling analysis is only valid for small Kondo couplings as the

perturbation theory breaks down much before the critical value of the coupling.

Our analysis shows that the coupling flows to larger values for coupling above the

critical coupling Kc. we can not predict whether it flows to ∞ or whether there is

some other fixed point beyond Kc. To have an idea of the stability of the strong

coupling fixed point, we study the model close to this point and see if it is a stable

fixed point.

In the strong coupling limit, K is the largest energy scale and the impurity

spins forms a singlet/triplet with the Kitaev spin at origin. We analyze whether

this composite decouples from the rest of the Kitaev model and we are left with

a Kitaev model with one spin missing or does it couple strongly to the rest of the

Kitaev model.

We consider the Hamiltonian such that the Kondo term and the Kitaev model

with one spin missing (HK−) form the unperturbed Hamiltonian and Kitaev cou-

pling to the site at origin is the perturbation.

H0 = KS · σ0 +HK− (3.16)

V = J(σx0σ
x
1 + σy0σ

y
2 + σz0σ

z
3) (3.17)

For antiferromagnetic Kondo coupling (K > 0), the ground state consists of a Kondo

singlet of S and σ0 and the Kitaev model with one spin missing. The perturbation

term causes transitions from singlet to triplet states of the Kondo singlet. We use

effective Hamiltonian scheme [18] to include the effects of the perturbation terms

within the projected ground state subspace.

Heff = eiQHe−iQ, (3.18)

where Q is chosen such that the terms which take us out of the reduced Hilbert

space are canceled order by order. This gives the reduced Hamiltonian as

Heff = H0 +H1 +H2 +O(V 3), (3.19)

〈α|H1|β〉 = 〈α|V |β〉, (3.20)

〈α|H2|β〉 =
1

2

∑

γ 6=α,β

〈α|V |γ〉〈γ|V |β〉
(

1

Eα − Eγ
+

1

Eβ − Eγ

)

, (3.21)

where α, β belong to the ground state manifold and γ belongs to excited state man-
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ifold. The eigenstates of the Kondo term are singlet |s〉 and triplet states |t, (0,±1)〉

|s〉 = 1√
2
(| ↑,⇓〉 − | ↓,⇑〉) (3.22)

|t, 1〉 = | ↑,⇑〉 (3.23)

|t, 0〉 = 1√
2
(| ↑,⇓〉+ | ↓,⇑〉) (3.24)

|t,−1〉 = | ↓,⇓〉 (3.25)

Here ↑ refers to the Kitaev spin and ⇑ refers to the impurity spin state.

Anti-ferromagnetic coupling

For the antiferromagnetic Kondo coupling case, ground state is the singlet state.

As 〈s|V |s〉 = 0, H1 = 0 and

〈s,K−|H2|s,K ′
−〉 =

1

2

∑

t,K ′′

−

〈s,K−|V |t,K ′′
−〉〈t,K ′′

−|V |s,K ′
−〉
(

1

E0 − Et
+

1

E′
0 − Et

)

,

(3.26)

Here, K− denotes the eigenstates of the Kitaev model with the spin at origin missing.

Since change in energy of the Kitaev state is ∼ J ≪ K, we ignore their contribution

in the energy denominators of the perturbation term. Then H2 becomes

〈s,K−|H2|s,K ′
−〉 ≃

J2

E0 − Et

∑

t,K ′′

−
,α,β

〈s|σα0 |t〉〈t|σβ0 |s〉〈K−|σαα |K ′′
−〉〈K ′′

−|σββ |K ′
−〉

≃ −J
2

K

∑

α,β

〈s|σα0 (1− |s〉〈s|)σβ0 |s〉〈K−|σαασββ |K ′
−〉

= −3J2

K

∑

α,β

〈K−|σαασββ |K ′
−〉

H2 ≃ −3J2

K

∑

α,β

σαασ
β
β (3.27)

Here, in σαα , the subscript α refers to a neighour site of origin in α−bond direction
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Thus, in the anti-ferromagnetic coupling case, the Kondo singlet decouples from the

rest of the Kitaev model and a small interaction (J2/K ≪ J) is generated between

the three neighbor sites of origin in the second order perturbation. The strong cou-

pling fixed point is thus a stable fixed point and is equivalent to Kitaev model with

one spin missing.

Ferromagnetic case

In the ferromagnetic Kondo coupling case, the triplet states form the ground state

manifold. We can do degenerate perturbation theory to get the effective Hamilto-

nian.

〈t′,K ′
−|H1|t,K−〉 = J〈t′,K ′

−|V |t,K−〉 (3.28)

=
∑

α

〈t′|σα0 |t〉〈K ′
−|σαα|K−〉 (3.29)

If we calculate the matrix elements of 〈t′|σα0 |t〉, these matrices are just the spin−1

matrices:

σx0 =









0 1√
2

0
1√
2

0 1√
2

0 1√
2

0









,

σy0 =









0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0









,

σz0 =







1 0 0

0 0 0

0 0 −1







and the Hamiltonian in the reduced subspace becomes

H1 = JSα
0 σ

α
α . (3.30)

where S0 represents the spin-1 at the origin.

Thus for the ferromagnetic impurity coupling, the new terms which couple the

triplet and the rest of the Kitaev model are similar to the original Kitaev coupling
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and of the same strength. The model becomes a Kitaev like model with the spin

at origin being a spin−1. Thus the Kondo triplet does not decouple from the rest

of the Kitaev model in strong coupling limit. The new model need to be studied

in further detail to understand the behaviour of ferromagnetic strong coupling fixed

point.

3.2.2 Topological transition

A remarkable property of the Kondo effect in Kitaev model is that the unstable

fixed point is associated with a topological transition from the zero flux state to a

finite flux state. The strong antiferromagnetic coupling limit amounts to studying

the Kitaev model with a missing site or cutting the three bonds linking this site to

the neighbors. Kitaev has shown [4] that such states with an odd number of cuts

are associated with a finite flux, and also that these vortices are associated with

unpaired Majorana fermions and have non-abelian statistics under exchange. It has

also been shown numerically for the gapless phase [19] that the ground state of the

Kitaev model with one spin missing has a finite flux pinned to the defect site. We

argued the existence of a localized zero energy Majorana mode from degeneracy of

the ground state in presence of impurity spin and elucidated on the nature of this

zero mode.

For the Hamiltonian H = H0 + VK , the three plaquettes W1, W2 and W3 (Fig.

3.5) that touch the impurity site are no longer associated with conserved flux op-

erators, while the flux operators that do not include the origin remain conserved.

The three plaquette operator W0 = W1W2W3 is still conserved and W0 = 1 in the

ground state of the unperturbed Kitaev model. We define the composite operators

τx = W2W3S
x, τy = W3W1S

y and τ z = W1W2S
z ( Sα are the Pauli spin matrices

corresponding to the impurity) which are also conserved in presence of the impurity

coupling. The τα’s do not commute with each other and instead obey the SU(2) al-

gebra, [τα, τβ ] = 2iǫαβγτ
γ . This SU(2) symmetry, which is exact for all couplings is

realized in the spin-1/2 representation
(

(τα)2 = 1
)

. Thus all eigenstates, including

the ground state are doubly degenerate (corresponding to τ z = ±1).

In strong (antiferromagnetic) coupling limit JK → ∞, the low energy states will

be the ones in which the spin at the origin forms a singlet |0〉 with the impurity spin,

|ψ〉 = |ψK−〉⊗|0〉. |ψK−〉 stands for the low energy states of the Kitaev model with

the spin at the origin removed. To see the action of the SU(2) symmetry generators

on these states, we note that they can be written as τα = W̃α ⊗ σα0 ⊗ Sα and W̃α

do not involve the components of the spin at the origin, σα0 . We then have τα|ψ〉 =
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2 1

3

bz
3

bx
1b

y
2

Figure 3.5: Schematic of the three unpaired b–Majorana fermions formed as a result
of cutting the links to the Kitaev spin at the origin. Any two of the three can be
given an expectation value (dotted bond).

−(W̃α|ψK−〉) ⊗ |0〉. Thus, in the strong coupling limit, the symmetry generators

act non-trivially only in the Kitaev model sector. This implies that the low energy

states of the Kitaev model with one spin removed are all doubly degenerate, with

the double degeneracy emerging from the Kitaev sector. This implies there is a zero-

energy mode in the single particle spectrum. The two degenerate states correspond

to the zero mode being occupied or unoccupied.

Let us examine the structure of the zero mode. Removing a Kitaev spin creates

three unpaired b−Majorana fermions at the neighboring sites, say, bz3, b
x
1 and by2 (Fig.

3.5). Now ibx1b
y
2 is conserved and commutes with all the conserved flux operators

Wi but not with the two other combinations iby2b
z
3 and ibz3b

x
1 . So, we can choose a

gauge where the expectation value of ibx1b
y
2 is equal to +1 such that these two b

modes drop out of the problem and we equivalently have one unpaired b−Majorana

fermion. The unpaired bz3 Majorana has dimension
√
2 and therefore, there must

be an unpaired Majorana mode in the c sector (again of dimension
√
2) so that

together these two give the full (doubly degenerate) zero energy mode. Also, while

the bz3 mode is sharply localized, the wave function of the c mode can be spread out

in the lattice. Existence of a zero energy c−Majorana mode has also been shown

explicitly by considering the Kitaev model with one site missing [20].
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3.3 RKKY interactions

In the absence of impurities, in the ground state manifold (vortex free state), we

have only nearest neighbour two-spin correlations in the Kitaev model [5]. This is

because each Kitaev spin is a bilinear of a massless cMajorana fermion and a massive

bMajorana fermion, and the bMajorana fermions have only short range correlations.

For instance, for an α−type bond between neighbours i and j, i〈bαi b
β
j 〉 = δαβ .We now

add impurities with each one locally coupled to Kitaev spins. Distant impurities can

interact only if they are coupled via the massless Majorana fermions. By contracting

b Majorana fermions locally by second order perturbation in the Kondo coupling,

and using the identities (bαi )
2 = 1, and i〈bαi b

β
j 〉 = δαβ , we generate vertices of the

type (KαSα)2cicj/J, where i and j are not farther than nearest neighbour (are on

a bond). Since c2i = 1, these vertices will contain massless Majorana fermions only

when i and j belong to different sites. This effectively means that two distant

impurities coupled to a single Kitaev site each cannot interact. However when the

impurities interact with more than one neighbouring Kitaev spins, we see that a long

range interaction of the spins is possible. As an example, we analyze the interaction

when the two impurities are at the centers of distant hexagons. The interaction

term is

VK = i
∑

j∈hex1,α
KαSα

1 b
α
j cj + i

∑

j∈hex2,α
KαSα

2 b
α
j cj . (3.31)

The effective interaction generated involving c−type Majorana fermions at two

neighbouring sites (i ∈ A, j ∈ B) is given by (see Fig. 3.4)

Veff =
∑

ν

〈Ωb|V |ν〉 1

E0 − Eν
〈ν|V |Ωb〉

≈ 2

J

∑

a,<ij>α

(Kαij )2(S
αij
a )2cicj .

Here αij refers to the z−component when neighbouring sites i and j are along

a z−bond, etc. Now the interaction between the two impurity spins is given by the

second order term in Veff (or, equivalently, fourth order in K). These terms are of

the type
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•

j, B

•

i, A k,−ω′ i′, A

S2
S1

k′, ω′ j′, B

Figure 3.6: A typical long-distance impurity interaction mediated by a pair of prop-
agating c Majorana fermions emanating from the ends of a Kitaev bond.

1

J2
〈(Kαij )2(S

αij

1 )2(Kβi′j′ )2(S
βi′j′

2 )2cicjci′cj′〉

=
1

4J2N2
(Kαij )2(S

αij

1 )2(Kβi′j′ )2(S
βi′j′

2 )2
∑

{k,k′,q,q′}∈HBZ

〈(ck,A eik·ri + c†k,A e−ik·ri)

× (ck′,B eik
′·rj+ c†k′,B e−ik′·rj)(cq,A eiq·ri′+ c†q,A e−iq·ri′ )(cq′,B eiq

′·rj′+ c†q′,B e−iq′·rj′ )〉.

Writing ck’s in terms of ak’s and considering the i ↔ i′, j ↔ j′ (Fig. 3.6) case,

and denoting Γα,β = 1
J2 (K

αij )2(S
αij

1 )2(Kβi′j′ )2(S
βi′j′

2 )2, (from now we use α ≡ αij

and β ≡ βi′j′) the contribution from above term is

Jαβ
12(a) ∼ −Γα,β

N2

∑

{k,k′}∈HBZ,ω′

[

sin(k · (ri − ri′))

−iω′ − ǫk,0
+

sin(k · (ri − ri′))

−iω′ − ǫk,1

]

×
[

sin(k′ · (rj − rj′))

iω′ − ǫk′,0
+

sin(k′ · (rj − rj′))

iω′ − ǫk′,1

]

= −Γα,β

2N2

∑

{k,k′}∈HBZ

sin(k · (ri − ri′)) sin(k
′ · (rj − rj′))

×
[

tanh( |ǫk|2T ) + tanh(
|ǫk′ |
2T )

|ǫk|+ |ǫk′ |
+

tanh( |ǫk|2T )− tanh(
|ǫk′ |
2T )

|ǫk| − |ǫk′ |

]

,

where ω′ are fermionic Matsubara frequencies. In the T → 0 limit, the second term

becomes zero. Near the Fermi point, we have |ǫkF+q| ≃ vF q. Converting the k and

k′ sums to integrals over q and q′, we have
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•
S2

S1
•

i, A

j, B

j′, B

i′, Ak′, ω′

k,−ω′

Figure 3.7: Another contribution to long range impurity interaction from the same
pair of bonds as Fig. 3.6.

Jαβ
12(a) ∼− 2Γα,β

vFN2

∑

q,q′

sin((kF + q) ·R12) sin((kF + q′) ·R12)
tanh(vF kF

2T )

q + q′

=− 8Γα,βa4

vF (2π)4

∫

dq dq′qq′J0(qR12)J0(q
′R12) sin

2 φ
1

q + q′

≃− 8

vF

Γα,βa4

(2π)4
π

R3
12

sin2 φ

∫ ∞

0
dq̃

∫ ∞

0
dq̃′
√

q̃q̃′ cos(q̃ − π

4
) cos(q̃′ − π

4
)

1

q̃ + q̃′
.

Here φ = kF ·R12 and we used the asymptotic limit of the Bessel functions. Thus

the contribution of above term to the long range interaction goes as

J ij,i′j′

12(a) ∼ −(Kα)2(Sα
1 )

2(Kβ)2(Sβ
2 )

2 a4[1− cos(2kF ·R12)]

4vF J2π3R3
12

.

Similarly the term corresponding to i ↔ j′, j ↔ i′ ( Fig.3.7 ) makes the following
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contribution to the long range interaction:

Jαβ
12(b) ∼

− Γα,β

N2

∑

{k,k′}∈HBZ,ω′

{−2i sin(k · (ri − r′j)− α̃(k))

−iω′ − ǫk,0
+

−2i sin(k · (ri − r′j)− α̃(k))

−iω′ − ǫk,1

}

·

·
{−2i sin(k′.(rj − r′i) + α̃(k′))

iω′ − ǫk′,0
− −2i sin(k′.(rj − r′i) + α̃(k′))

iω′ − ǫk′,1

}

≃ − 2Γα,β

vFN2

∑

q,q′

sin((kF + q).R12 − α̃(kF )) sin((kF + q′).R12 + α̃(kF ))
1

q + q′

≃− 8Γα,βa4

vF (2π)4

∫

dqdq′ sin(qR12 cos θ + φ+ α̃(kF )) sin(q′R12 cos θ
′ + φ− α̃(kF ))

q + q′

which gives

J ij,i′j′

12(b) ∼− (Kα)2(Sα
1 )

2(Kβ)2(Sβ
2 )

2 × a4

4vF J2π3
(cos(2α̃(kF ))− cos(2kF ·R12))

R3
12

,

where α̃(kF ) is the phase of f(kF ). Adding the two terms, we get the contribution

to the long range interaction coming from the pair of bonds ij and i′j′ :

J ij,i′j′

12 ∼ −(Kα)2(Sα
1 )

2(Kβ)2(Sβ
2 )

2 a4

4vFJ2π3
1 + cos(2α̃(kF ))− 2 cos(2kF ·R12)

R3
12

.

(3.32)

This is the long range interaction between impurity spins each coupled to a

bond. The power law correlation reflects the bond-bond (four spin) correlations in

the Kitaev model ground state which are long ranged while two-spin correlations

are only nearest neighbour. We find that if for spin-1/2 impurities, (Sα)2 = 1/4 and

no long-ranged interaction is generated. If the impurities couple to the full hexagon,

we can sum these bond contributions to get full answer. If the Kondo coupling is

isotropic and all types of Kitaev bonds (x, y, z) are involved, the resulting sums
∑

bond pairs(S
αij

1 )2(S
βi′j′

2 )2 will yield a constant S1(S1 + 1)S2(S2 + 1), which will

make the long range interaction vanish in this this approximation. One may then

need to obtain any long range interaction taking care of the small differences in the

separation between the different pairs of bonds.

The inter impurity interactions have an interesting non-dipolar nature ((Sα
1 )

2(Sβ
2 )

2)

unlike the usual dipolar (S1 ·S2) RKKY interaction in metals. The 1/R3 behaviour
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in two-dimensions is characteristic of the linearly vanishing density of states at Fermi

energy, as is the case for graphene also.

This study of impurity effects shows that the Kitaev model is quite robust to

external magnetic disorder. If Kondo coupling is small, the impurity coupling flows

to zero and does not affect the system significantly. Also if the impurity spins are

spin-half or they are coupled to only one Kitaev spin each, there are no significant

interactions generated between the spins and thus collective behaviour of impurity

spins is less likely to affect the Kitaev model state.

3.4 Summary

To summarize, we studied the effect of impurity quantum spins coupled to the

ground state manifold of Kitaev model in its gapless spin-liquid state. We found an

unusual Kondo effect with an unstable fixed point demarcating a topological tran-

sition between zero flux and finite flux sectors. When more than one impurity is

present, we showed that under certain circumstances, massless spinons in the Kitaev

model mediate a higher order (non-dipolar) RKKY interaction between distant im-

purity spins. Topological transition and non-dipolar impurity interactions make the

Kitaev Kondo effect qualitatively different from the Kondo effect in some bosonic

spin liquids that also have an unstable fixed point.

In the strong Kondo coupling limit we showed that a non-zero flux is created

with an unpaired b−Majorana fermion localized in its vicinity and a delocalized

c−counterpart. Localized b−Majorana fermion at the finite flux defect is reminis-

cent of the localized Majorana fermions at the cores of half vortices in p−wave

superconductors [21]. One difference, as pointed out by Kitaev, is that in p−wave

superconductors, the currents associated with the fluxes are charged (and thus in-

teract with impurity potentials). Besides, the individual charges acquire abelian

phases of their own. Another difference is that in the Kitaev model, the full (doubly

degenerate) zero mode is made of a b and a c Majorana fermion while in the super-

conductor, two vortex core Majorana fermions make a zero mode. p−wave paired

ground states in the Kitaev model and its vortex excitations have also been studied

in Ref. [22]. There are already numerous proposals in the literature how a Kitaev

model could be realized [11, 10, 12], and we are hopeful that eventually these novel

impurity effects may also be experimentally studied.
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Chapter 4

Charge transport in magnetic

semiconductor heterostructures

4.1 Introduction

Magnetic semiconductors usually consist of a semiconductor host doped with mag-

netic atoms (about 0.1 − 1%). (III,Mn)V (e.g. (Ga/In,Mn)As, (Ga,Mn)P/N) is a

common class of these materials which have been studied extensively [1]. In such

materials, if the Mn concentration is not too high, Mn substitutes Ga acting as an

acceptor, so doping GaAs with Mn yields both local magnetic moments and free

holes. Semiconductor materials have the great advantage that their properties can

be controlled via various means like gate voltages, light, doping etc which make

them useful for various electronic technological processes. Combining magnetism

with semiconducting properties thus has potential usability for spintronic applica-

tions which exploit the spin of the charge carriers to manipulate the charge transport

[2]. For these purposes, it is desirable to get magnetism in these systems at room

temperatures. Magnetic transitions of the order of 150K have been achieved in these

materials. Higher transition temperatures have been difficult to achieve due to lim-

ited solubility of Mn/other magnetic atoms in these semiconductor compounds and it

is an active area of research. The mechanism of ferromagnetism in these dilute mag-

netic semiconductors (DMS) has not been understood very well [3]. The microscopic

interaction governing the ferromagnetism (FM) could be of Zener/Ruderman-Kittel-

Kasuya-Yosida (RKKY) type or double-exchange type. The Zener/RKKY model

is applicable when the effective coupling between local magnetic moments and the

spins of charge carriers is smaller than the carrier bandwidth [5, 1]. This model is

57
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Figure 4.1: Schematic layout of the heterostructure δ-doped by Mn.

more likely at higher concentration of Mn atoms such that the impurity band states

are extended on the length scale of inter-Mn distances. Other picture of ferromag-

netism is based on interacting bound polaron scenario [1, 4] which is dominant when

number of holes (charge carriers) is small. Here, the localized hole polarizes the Mn

atoms in its vicinity and these magnetic polarons interact via the hopping of holes

giving rise to ferromagnetism at low temperatures and this is regarded as a double

exchange mechanism. The current opinion is that both mechanisms of FM can take

place in bulk DMSs. Conditions for realization of either mechanism strongly depend

not only on the concentration of magnetic metal ions, but also on the character of

their distribution in the Semiconductor host.

In bulk DMS materials, carrier mobilities are usually small due to large scattering

from the dopants and these systems are usually close to metal-insulator transition.

Another major direction of work in this field has been magnetic semiconductor het-

erostructures, (fig. 4.1). These structures have planar two dimensional geometries

and can thus be easily incorporated in to existing microelectronic devices. In these

systems, the Mn atoms are doped in the form of a δ−layer spatially away from the

quantum well where charge transport takes place. This gives higher charge mobili-

ties to these systems as well as incorporates the effects of the ferromagnetism. Also,

exploring these systems could provide insights into understanding the microscopic

mechanism of ferromagnetism in these semiconductors.

Two mechanisms for the FM ordering in these two-dimensional (2D) GaAs/InGaAs/GaAs
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Figure 4.2: Resistance data for Mn δ-doped heterostructures (1, 2, 3, and 4) for
different carrier and doping densities (see Table 4.1) and a carbon δ-doped het-
erostructure (5). Note the absence of any resistance anomaly in the carbon δ-doped
sample, while the Mn δ-doped samples exhibit an anomaly (hump or shoulder),
which is likely due to magnetic ordering.

heterostructures δ-doped by Mn have been proposed in the current literature [8, 9].

The first model [8] attributes FM ordering to indirect interaction of Mn atoms by

means of holes in a 2D conducting channel. The efficiency of this mechanism is

based on the large mean free path of 2D carriers due to their remoteness from the

Mn layer. In the second model, FM ordering arises within the Mn layer, possibly

mediated by the holes in the layer, like in usual DMS structures [9].

One of the most relevant questions is the effect of FM ordering on the tempera-

ture dependence of resistivity, in particular, the relation of the FM ordering to the

resistance anomaly (a peak or shoulder) near TC [5]. Several theories have been pro-

posed [10, 11, 12, 13, 14, 15] for explaining the resistivity in bulk DMSs but there are

not many works on these effects in 2D semiconductor heterostructures. In addition

to magnetism, disorder plays a significant role in DMS transport properties [16].

We studied the effects of spatial disorder of dopant concentration in the Mn δ-

layer on the electronic properties of the 2D hole gas and showed that at low carrier

densities, competition of disorder and nonlinear screening results in formation of
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Figure 4.3: (a) Effective mass dependence on magnetic field for Sample 2 (red
circles) measured by ShdH oscillations and for Sample 4 (blue diamonds) measured
by cyclotron resonance. Solid black line corresponds tom∗/me = 0.14. (b) Magnetic
field dependence of the resistance of Sample 3 at different temperatures. The inset
shows Shubnikov–de Haas (ShdH) oscillations indicating metallicity.

“metallic” droplets separated by insulating regions in hole gas in quantum well. We

make estimates for droplet sizes and inter-droplet distance, energy level spacing in

these droplet structures and the potential barrier separating neighboring droplets.

Using these as parameters in a simple model for resistivity which incorporates the

effect of ferromagnetism on inter-droplet tunneling, we obtained a quantitative ex-

planation of the temperature dependence of resistivity in the DMS ferromagnetic

heterostructures.

A schematic layout of the studied structures is shown in Fig. 4.1. The structures

consist of an InxGa1−xAs quantum well (QW) inside a GaAs matrix with a Mn

δ-layer separated from the QW by a GaAs spacer of width 3 nm. The QW thickness

W is about 10 nm and the In fraction is x ≈ 0.2. A carbon δ-layer (≈ 2×1012cm−2)

is introduced at a distance 10–15 nm below the QW just at the top of the buffer layer

to compensate the hole depletion of the QW by the (undoped) buffer layer. The

mobility and other electrical and structural parameters of the studied structures are

shown in Table 4.1.

Existence of well pronounced Shubnikov–de Haas (ShdH) oscillations in Samples

2 and 3 tells us that these two samples are on the metallic side of the percolation

transition. In Fig. 4.3(b), we show magnetic field dependence of the resistance at two

temperatures. The inset shows ShdH oscillations previously discussed in Ref. [6]. In

contrast to Samples 2 and 3, Sample 1 is quite insulating, with R(5K)/R(70K) ≈ 30.

The resistance R(T ) exhibits an Arrhenius behavior (activation energy ≈ 110 K for
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Quantum
well
depth
−V0,
meV

Vfluc(z
=0, Rc)
at 77 K,
meV

Overlap
probability
of the hole
wavefunc-
tion with
Mn layer
(77 K)

Hole
mobility
µp

(77 K),
cm2/V·s

Hole
density p
(77 K),
cm−2 ×
1012

Overlap
probability
of the hole
wavefunc-
tion with
Mn layer
(5 K)

Hole
mobility
µp (5 K),
cm2/V·s

Hole
density
p (5 K),
cm−2 ×
1012

1 1.2 (6.0) 0.18 85 260 0.15×10−2 1350 1.8 0.15×10−3 180 0.3

2 0.5 (3.0) 0.21 100 170 0.51×10−2 1860 2.0 0.52×10−3 2950 0.71

3 0.4 (2.5) 0.23 115 160 0.39×10−2 1930 1.8 0.63×10−3 3240 0.79

4 0.35 (2.0) 0.17 70 145 0.72×10−2 2370 1.4 0.9×10−3 3400 0.46

5 0 0.18 85 – – 1600 0.5 – – –

Table 4.1: Parameters characterizing the samples under study. Samples 1–4 are δ-doped by Mn. Sample 5 is δ-doped by
carbon instead of Mn. All the samples have a carbon layer too as shown in Fig. 4.1. We also show the model estimates
for the fluctuation potential Vfluc at the quantum well edge facing the Mn dopant layer, and overlap probability of the hole
wavefunction with a 1 nm thick region centered at the δ-layer of Mn situated 3 nm away from the quantum well. Here, Rc

is the screening length. At each In content, the quantum well depth was estimated using the known experimental results,
according to which the valence band discontinuity is about 1/3 of the band gap discontinuity [18].
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Figure 4.4: Plot of logR(T ) vs T for Sample 1 demonstrating an Arrhenius be-
havior for temperatures higher than about 30 K and a hopping behavior at low
temperatures.

T & 30 K) with crossover to variable hopping regime at temperatures less than 30 K

(see Fig. 4.4). Sample 4 with a smaller carrier density compared to Samples 2 and

3 is closer to the percolation transition having high enough values of R(5K) = 19.7

kOhm and R(5K)/R(70K) ≈ 1.5.We found that the temperature dependence of the

resistivity can be fitted to the Arrhenius law (activation energy ≈ 20 K for T & 30

K). Charge transport is two-dimensional in these systems which is confirmed by

ShdH oscillations for Samples 2 and 3, which are observed only when the magnetic

field is perpendicular to the sample plane (inset of Fig. 4.3(b)). Manifestations of

the quantum Hall effect (QHE) were observed even in the most insulating Sample

1 (Ref. [6]), which establishes its 2D nature.

Evidence of ferromagnetic (FM) correlations playing a crucial role comes from

observation of a hump or shoulder in the temperature dependence of resistivity as

shown in Fig. 4.2. The fact that this feature is observed for all samples doped

by Mn but is absent for Sample 5 doped by C instead of Mn shows that it has a

magnetic origin. Direct evidence of FM ordering for Samples 1 and 4 was through the

observation of hysteresis loop in the magnetization curve [7, 19, 20]. The observation

of anomalous Hall effect (AHE) in all mentioned samples [6, 7, 17] is yet another

evidence. Results of the AHE measurements are presented in Fig. 4.5 for samples

1, 2 and 4. It is commonly accepted that the “anomalous” hump or shoulder of this

temperature dependent resistance can be used as a measure of the Curie temperature
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Figure 4.5: Magnetic field dependence of the AHE for Samples 1, 2 and 4. Tem-
perature of the measurements and sample numbers are shown near the curve. For
insulating samples (1 and 4) the temperature of measurement is greater than the
peak temperature, while for the metallic Sample 2, they are close. For insulating
samples, AHE curves can be seen to saturate, while for metallic samples, saturation
is not reached or will be reached at higher fields.

[1, 5, 12]. There are differing opinions on whether the anomaly in R(T ) or dR/dT

should be accepted as TC [21]. While it is justified for the case of bulk metals to

associate the temperature at which the anomaly occurs with TC , we find below that

in the 2D case, the situation is quite different.

4.2 Model of nanoscale inhomogeneities

We consider the effects of the Coulomb potential due to charged Mn atoms on

the state of the charge carriers in the quantum well. For the purpose of analy-

sis, we can consider the following system, which captures the main physics. The

two-dimensional hole gas (2DHG) is formed within the InGaAs quantum well and

additional holes for the 2DHG are provided by Mn acceptors distributed in the δ-

layer with density nd, which is spatially separated from the quantum well by a GaAs

spacer of thickness λ. We thus have two interacting subsystems - the δ-layer, where

the Mn atoms are a source of holes as well as of magnetism owing to their spins,

and the quantum well, where the behavior of the holes is affected by the charge
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and spin of Mn atoms. In addition, the holes in the 2DHG are known to affect the

distribution of magnetization in the δ-layer. This will be particularly true for the

more metallic samples [8].

The parameters characterizing the samples under study are listed in Table 4.1.

The table shows the total Mn content in the δ-layer, the quantum well depth V0

in the absence of fluctuations, the hole densities p, and mobilities µp in the 2DHG

layer at two different temperatures on either side of the resistance anomaly.

At low carrier density, it has been shown [22, 23, 24, 25, 26] that the interplay of

disorder (due to random potentials of the charged Mn atoms) and nonlinear screen-

ing by the holes can lead to inhomogeneities in the carrier density. The physical

picture of droplet formation and metal-insulator transition is as follows. Charge

fluctuations of the ionized Mn acceptors create a fluctuating potential for the hole

gas in the quantum well. Holes begin filling the deepest energy levels in the poten-

tial profile. Introduction of holes also affects the size of the potential fluctuation

because of screening. We assume a Gaussian white noise distribution for the charge

density ρ(r, z) = en(r)δ(z + λ) of the Mn atoms in the δ-layer (z axis is directed

perpendicular to the δ-layer, z = 0 corresponds to the GaAs/InGaAs interface). For

points r, r′ lying in the δ-layer we have,

〈n(r)n(r′)〉 − 〈n2〉 = n′aδ(r − r′), (4.1)

where n′a is the total density of ionized Mn atoms in the δ-layer: n′a = n−a +n+a . n
−
a

is the density of negatively charged Mn atoms (acceptors) and n+a is the density of

positively charged (donor) Mn atoms which could happen if the Mn atom goes into

an interstitial position. In the further calculations, for simplicity and consistency,

we take a typical value of n′a and assume that n′a = 0.1nd (nd is the total Mn

density), which is in agreement with the effective ionization of about 0.1 observed

in Ga1−yMnyAs samples [1, 3].

From Eq. (4.1), it is easy to see that the variance of the fluctuation charge density

in a circular region of size R is 〈δn2(R)〉 = n′a/(πR
2). The random distribution of

charges creates a fluctuating potential φ at the interface. In the presence of holes

in 2DHG, potential fluctuations are screened beyond a length scale Rc where the

fluctuation charge density
√

〈δn2(Rc)〉 =
√

n′a/π/Rc becomes less than the hole

density p. The variance of the potential fluctuations at the interface is then given
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by [25]

〈δφ2〉 = n′ae
2

8πκ2ǫ20

{

ln

[

4d2

λ(2d− λ)

]

−2 ln

[

(

λ2 +R2
c

(2d− λ)2 +R2
c

)
1
4

+

(

(2d− λ)2 +R2
c

λ2 +R2
c

)
1
4

]}

. (4.2)

Here, κ = 12.9 is the permittivity of GaAs and Rc =
√

n′a/π/p is the characteristic

screening length described above. Parameter d is a length scale, beyond which the

potential fluctuations get screened even in the absence of holes in the quantum well.

Often there is a metallic gate on the sample, in which case d is equal to the distance

from the quantum well to the gate.

In cases where the inequality 2d ≫ Rc, λ is met, potential fluctuations can be

expressed in a much simpler form,

〈δφ2〉 ≈ n′ae
2

16πκ2ǫ20
ln

[

1 +

(

Rc

λ

)2
]

. (4.3)

Holes in the quantum well are centered at a distance z0 (measured from the

interface closest to the Mn layer) in the direction perpendicular to the interface.

To obtain z0, we solve the Schrödinger equation in the quantum well taking into

account the (z-dependent) fluctuating potential,

[

− ~
2

2m∗
d2

dz2
+ V (z)

]

ψn = Enψn. (4.4)

Here V (z) is the quantum well potential together with the fluctuations (see

Fig. 4.6). n = 1, 2, 3 . . . refers to the subband index. For holes, we use the ap-

proximation of the parabolic dispersion with the effective mass m∗ = 0.14me as

measured from cyclotron resonance for these structures (Fig. 4.3). We approximate

V (z) as follows. For z < 0, V (z) = α(|z + λ| − λ), α = ep/κǫ0. For z > W, we

have V (z) = 0, where W is the quantum well thickness. For 0 < z < W, we have

V (z) = VQW (z) − e
√

〈δφ2(Rc, z)〉, where VQW (z) = −V0 + αz. For the present de-

vices, we have taken W = 10 nm, λ = 3 nm and the values of V0 are as shown in

Table 4.1. We also assume that the spatially varying fluctuation potential does not

affect the valence band position away from the quantum well. The condition for exis-

tence of a subband is En < 0. Table 4.1 shows the overlap probability
∫

δz dz|ψ1(z)|2,
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Figure 4.6: Schematic of the quantum well potential (shown inverted). Dashed
(blue) line represents the quantum well potential in the absence of fluctuations and
the solid (red) line shows the potential well with an attractive fluctuation potential.
The dotted line indicates the Mn dopants at a distance λ from the left face of the
quantum well. The quantum well of thickness W is defined in the InGaAs layer
sandwiched between GaAs regions.

of the hole wavefunction with the Mn layer, where δz is a 1 nm thick region centered

at the δ-layer.

We also find that the hole wavefunction in the GaAs region decreases away from

the quantum well with a localization length ξz having a value ranging from 1 nm to

2 nm. This is comparable to the localization length estimated in Ref. [8]. We will

henceforth use λ+z0 as the distance of the hole gas from the δ-layer for the purpose

of calculating the potential fluctuations. For a given subband n, we determine z0,n

as z0,n =
∫

dz z|ψn(z)|2. Tables 4.2 and 4.3 show the values of En and z0,n for the

first two subbands. For simplicity, we will denote e
√

〈δφ2(d+ z0,n, λ+ z0,n, R)〉 by
Vfluc(z0,n, R). The values of the fluctuation potential are also shown in Table 4.1.

Now, we describe how at low enough densities, holes in the 2DHG can get orga-

nized into charge droplets. Let Rp,n be the size of a droplet. The potential fluctu-

ations associated with this length scale are given by Vfluc(z0,n, Rp,n). Suppose that
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the holes fill this potential well up to a wavevector kmax. From the virial theorem,

~2k2max,n

2m∗ =
1

2
Vfluc(z0,n, Rp,n), (4.5)

where the factor of 1/2 is for a linear-in-Rp,n confining potential, which is ap-

proximately the case here. Number of occupied states in the droplet is approx-

imately (kmaxRp)
2/2, which can be equated with the fluctuation charge Nh =

πR2
p ×

√

n′a/π/Rp =
√

πn′aRp, if only the lowest subband is occupied. We will

discuss below the case where more than one subband is occupied. If only the lowest

subband is occupied and 2d≫ Rc, λ , Eq. (4.5) yields a very simple solution for the

droplet size

Rp,1 ≈
√

2aB(λ+ z0,1). (4.6)

Eq. (4.6) is valid when λ+z0 is much greater than aB . The Bohr radius corresponding

to these parameters is aB ≈ 5.3 nm. In our case λ+z0 ≈ aB , and this approximation

does not give the correct values. We solve for Rp numerically using Eqs. (4.5) and

(4.7). Droplet sizeRp and the number of holes per droplet are only weakly dependent

on p.

Now, we consider the case where two subbands are occupied. Energy of the

highest occupied state measured from the bottom of the lowest subbands (n = 1) is

of the order of (we will obtain a better estimate below)

Emax,1 =
~
2kmax,1

2m∗ =
~
2
√

πn′a
m∗Rp,1

. (4.7)

From this estimate of Emax,1 and the energies E1 and E2, we can see that the

second subband is also partially occupied for Sample 1. Filling of the two subbands

is not independent and following two conditions need to be satisfied in addition to

the relations in Eq. (4.5). First, the chemical potential of the droplets corresponding

to the two subbands should be the same (see Fig. 4.7)

Emax,1 − Emax,2 =
~
2

2m∗ (k
2
max,1 − k2max,2) = E2 − E1. (4.8)

Second, the total number of bound holes is now distributed over the two bands.

This effectively results in the transfer of some of the higher energy holes in the lower

subband to lower energy empty states in the upper subband. This would lead to a

decrease of the droplet size corresponding to the lower subband, and a finite droplet
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Figure 4.7: A schematic picture of the dispersion curves E(k) (at small k) cor-
responding to the two lowest subbands n = 1 and n = 2. E1 and E2 are the
fluctuation potentials corresponding to z0,1 and z0,2 respectively, and R = Rc. The
shaded region represents filled states. The two subbands have a common chemical
potential.

size in the upper subband. The transfer of charge from the lower subband to the

upper subband naturally makes the concentration of charge in the droplet higher

since the charge carriers can occupy two bands in the same region.

We need to now satisfy the following condition

√

πn′aRp,1 =
(kmax,1Rp,1)

2

2
+

(kmax,2Rp,2)
2

2
. (4.9)

Eqs. (4.8), (4.9), and (4.5) form a system of coupled nonlinear equations that may

be solved for Emax,n and Rp,n. Tables 4.2 and 4.3 show the calculated values of

Emax,1, Rp,1, and Rp,2.

Now we analyze the conditions for a metal-insulator crossover. Localization length,

which characterizes the spread of the hole wavefunction outside the droplets is

ξ =
~

√

2m∗(|E1| − |VQW (z0)| − |Emax,1|)
. (4.10)

A percolation transition to a more conducting regime is expected when the droplets

begin to overlap. The droplets are said to “overlap” once the interdroplet tun-

neling becomes significant; in other words, the localization length ξ of holes in the

droplets becomes comparable to the separation D1 between the surfaces of neighbor-
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Sample Rc

(nm)
z0,1(nm) E1(meV) z0,2(nm E2(meV) Rp,1(nm) Rp,2(nm) Emax,1(meV)D1(nm) D2(nm) ξ(nm)

1 24.28 1.79 -203 3.62 -80 8.96 0 83 11.58 – 1.82

2 15.45 1.57 -142 0.78 -33 8.79 0 60 5.72 – 3.50

3 15.67 1.71 -147 2.30 -40 8.90 0 54 5.82 – 3.70

4 18.02 1.71 -106 1.34 -17 8.90 0 48 7.53 – 3.46

Table 4.2: Calculated values (at 77 K) of the screening length Rc, droplet sizes Rp,n, droplet separations Dn corresponding to
Rp,n, penetration depths z0,n, energy levels En, the maximum energy, Emax,1, of occupied states measured from the bottom
of the potential well for the lowest subbands (n = 1) and the localization length ξ. The calculations are for an effective
n′a = 0.1na. Note that in the last three samples, the separation of the droplets is comparable with the localization length,
implying proximity to the “metallic” phase.

Sample Rc

(nm)
z0,1(nm) E1(meV) z0,2(nm) E2(meV) Rp,1(nm) Rp,2(nm) Emax,1(meV)D1(nm) D2(nm) ξ(nm)

1 145.7 2.99 -275 5.37 -204 9.8 0.6 76 55.59 73.59 1.45

2 43.52 2.64 -206 5.16 -128 9.57 0 55 21.68 – 1.93

3 35.71 2.58 -198 5.10 -119 9.51 0 51 17.83 – 2.13

4 54.85 2.93 -155 5.36 -91 9.77 0 41 26.75 – 2.11

Table 4.3: Calculated values at 5K for the same quantities as described in Table 4.2 for an effective n′a = 0.1na. Note that
all the samples are found to be well-insulating at this temperature. The interdroplet distance D1 is very sensitive to the hole
density p, and since p increases rapidly with temperature, the ratio D1/ξ can become comparable to unity at relatively low
temperatures enabling a transition to the “metallic” phase.



70 4. CHARGE TRANSPORT IN MAGNETIC SEMICONDUCTOR HETEROSTRUCTURES

ing droplets (D1/ξ ∼ 1). To obtain the separation of the droplets, we note that the

total number of holes in a droplet with both bands considered is Nh =
√

πn′aRp,1.

These holes are “drained” from an area of size R such that Nh = πR2p. We thus

get the size of the catchment area of a droplet, R =
√

Rp,1Rc. The distance D1

between the surfaces of neighboring droplets is then D1 = 2(
√

Rp,1Rc − Rp,1). As-

suming that the potential well corresponding to second subband is also centered at

the well corresponding to first subband, we find the distance between the droplets

corresponding specifically to holes in the second subband, D2 = 2(
√

Rp,1Rc−Rp,2).

From Tables 4.2 and 4.3, we see that the droplet size is fairly constant for different

temperatures and hole densities. Sample 1 is insulating at all temperatures. The

behavior of the remaining samples differs significantly for T = 77 K and T = 5 K. For

these samples at 77 K, the interdroplet separation is comparable to the localization

length ξ which means that they are more “metallic”. Note that the interdroplet

distance is larger for Sample 4, which gives rise to an Arrhenius-type behavior in

a wide enough temperature range. At T = 5 K, the interdroplet separation far

exceeds ξ so that all the samples are in the insulating regime. That does not agree

with experimental results because Samples 2 and 3 exhibit a quasimetallic behavior

even at T = 5 K. This could result from the strong dependence of D1 on the sample

parameters (the carrier density, for example) at low temperatures. Thus, the droplet

picture following from our calculations being quite reasonable at T = 77 K, may

give overestimated values of the interdroplet distances at T = 5 K. Since D1 is

very sensitive to the carrier density p, and p changes rapidly with temperature, the

insulator to metal crossover will take place in Samples 2-4 as the temperature is

increased from 5 K. We also find that in contrast to the usual situation encountered

in GaAs heterostructures, where the contribution of all but the lowest subbands can

be neglected, in Sample 1, the second subband is also occupied.

The energy level spacing, ∆, of a droplet can be found by noting that addition

of a hole to a droplet increases Rp,1 by an amount 1/
√

πn′a. The difference of the

values of Emax,1 of the droplets of size Rp,1+1/
√

πn′a and Rp,1 respectively gives us

the level spacing at the chemical potential. The level spacing is of the order of 30

K, which falls within the range of the measured activation energies for resistivity.

As one approaches the metal-insulator crossover, the potential barrier separating

neighboring droplets (see Eq. (4.10)) decreases. Holes near the Fermi level in the

potential wells can be thermally excited above the potential barrier to energies above

the percolation threshold; this is an alternate mechanism for transport as against

the usual inter-droplet tunneling followed by Coulomb blockade.
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Using the reduced dopant density n′a does not affect the droplet sizes significantly

but it does reduce Rc by a factor
√

n′a/na, thus bringing the system closer to the

metallic percolation transition. Sample 1, which has higher dopant density, thus is

more insulating as the potential fluctuations are large. Since we are looking at the

charge distribution at the moment, we have ignored magnetism. Magnetism, and

its effect on transport will be considered in the next section.

4.3 Resistivity

The droplet picture developed in the previous section can be used to understand the

experimentally observed temperature dependence of the resistivity of the insulating

samples. We will study the resistivity of Samples 1 and 4 where the holes are well-

localized in a droplet phase. In addition to localization effects, we will also need to

take into account the effect of ferromagnetic correlations.

In absence of magnetism, as in many disordered insulators, the temperature

dependence of resistivity is expected to be of variable-range hopping type at very

low temperatures and of Arrhenius type at higher temperatures. In the Arrhenius

regime, one could either have nearest-neighbor tunneling together with an activation

energy of the order of the mean droplet level spacing, ∆, or the classical thermal

excitation over the barrier separating neighboring droplets. Our resistivity measure-

ments will not distinguish the two mechanisms and we will denote the Arrhenius

energy fitting the data by EA; and EA = ∆ for the tunneling mechanism, which

was estimated in the previous section. We analyze the behavior of resistivity across

the mean-field Curie temperature TC , below which the ferromagnetic correlations

increase rapidly. There is no continuous transition to a ferromagnetic state in two

dimensions at a finite temperature and TC is a characteristic energy scale of the

order of the exchange interaction associated with the ferromagnetism. Since the

resistivity peak is in the vicinity of 30 K, we are in the Arrhenius regime. This was

experimentally observed for Samples 1 and 4.

In absence of magnetism, the resistivity would behave as ρ(T ) ∼ eEA/T . When

the droplets are magnetically polarized, there is an additional energy cost associated

with introducing an extra charge into a given droplet if the spin orientation of

the electrons in the droplet differs from that of the extra charge. Suppose the

droplets are individually polarized (with different orientations) and let θij be the

angle between the magnetizations of droplets at sites i and j. When a hole tunnels

between these two droplets, the extra energy cost ∆mag
ij at the destination droplet
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depends on the relative orientations of the magnetizations

∆mag
ij = J(1− cos θij). (4.11)

If magnetic order in the droplet is induced by the Mn layer, then J is related to

local magnetization in the Mn layer. If magnetic order is mainly determined by the

interaction of holes in the quantum well then J is related to the exchange interaction

in the droplets. Our analysis is not dependent on the mechanism of ferromagnetism

since J and TC are phenomenological parameters. The temperature dependence of

resistivity is governed by the total energy EA + ∆mag
ij associated with introducing

an extra charge carrier into the droplet j from a neighboring droplet i

ρ(T ) ≈ AeEA/T+J(1−〈cos θij〉)/T , (4.12)

where we have approximated 〈e− cos θij/T 〉 ≈ e−〈cos θij〉/T . For a two-dimensional fer-

romagnet, 〈cos θij〉 = e−D1/ξM (T ), where [27, 28, 29]

ξM (T ) =

{

a/
√

1− TC/T , T ≫ TC

a exp[πTC/2T ], T ≪ TC
. (4.13)

Here a ∼ 1/
√
nd is a length scale of the order of inter-atomic separation of the Mn

dopants (nd id the total Mn density). TC is the Curie temperature, below which the

ferromagnetic correlations increase rapidly. If ferromagnetism is intrinsic to the Mn

layer, then due to disorder, we expect the local ferromagnetic interaction J to be

larger than the global transition temperature TC . For a homogeneous distribution of

Mn atoms, J ∼ TC for the same mechanism of ferromagnetism. If ferromagnetism

is due to indirect exchange mediated by the holes, then TC falls with interdroplet

tunneling probability and is smaller than J in general.

Fig. 4.8(a) shows the calculated resistivity as a function of temperature. While

we assumed a TC of 30 K, the peak in the resistivity appears at a significantly lower

temperature. This is a characteristic feature of the 2D DMS heterostructures in con-

trast with bulk DMS where the peak appears near the critical temperature T0 which

for Heisenberg ferromagnets is not very different from the Curie temperature TC .

In the bulk case, while the peak does not also coincide with T0, it is nevertheless

possible to obtain the critical temperature based on resistivity measurements [1].

The key physical difference is that the magnetic correlation length for bulk DMS

diverges upon approaching T0 from higher temperatures, whereas in 2D, the mag-
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Figure 4.8: (a) Calculated resistivity (in arbitrary units) as a function of tempera-
ture. Parameters from Sample 1 were used for the plots. We assumed a degree of
ionization of 0.1, ferromagnetic transition temperature TC = 30 K, exchange inte-
gral J = 70K. The peak in the resistivity occurs at a temperature lower than TC .
(b) Plot of log(ξM/D1) showing the variation of magnetic correlation length ξM for
Sample 1 as a function of temperature (solid line). The dots show log[ρ(T )/ρ(77K)]
for the same sample. The anomaly in the resistivity ρ(T ) occurs in the vicinity of
the temperature where ξM/D1 ∼ 1.
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Figure 4.9: Observed temperature dependence of resistance for (a) Sample 4, in
units of the resistance at 70 K, and (b) Sample 1, in units of the resistance at 90 K
(points), and theoretical fits (solid lines). Sample 4 is near the percolation threshold
and Sample 1 is well-insulating. The fits were made using Eq. (4.12). Parameters
such as the activation energy EA and the droplet separation D1 were chosen close
to the values obtained from the droplet model. The magnetic parameters J and TC
were then varied to obtain the above fits. In both cases, the best fit value of TC is
significantly larger than the temperature, at which the resistance anomaly (hump or
shoulder) is observed. At lower temperatures, the resistivity becomes variable-range
hopping type (not taken into account in our model). For Sample 4 in panel (a), the
values used for the fit are D1 = 2 nm, EA = 9 K, J = 39 K, and TC = 30 K; for
Sample 1 in panel (b), the parameters are D1 = 9.4 nm, EA = 51 K, J = 56 K, and
TC = 49 K.
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netic correlation length remains finite except at T = 0 (see Eq. (4.13)) due to the

absence of true long-range ferromagnetic order at finite temperatures. The peak is

related to the temperature when the magnetic correlation length in the Mn layer

becomes comparable to the interdroplet separation. Temperature corresponding to

this peak is determined by the specific values of parameters of the sample and not

only by TC . Fig. 4.8(b) shows that the shoulder in the resistivity of Sample 1 occurs

near the temperature where ξM/D1 ∼ 1.

In Fig. 4.9, we show the observed resistance and a fit based on our model

(Eq. (4.12)) for Samples 1 and 4. Parameters such as activation energy EA and

droplet separation D1 were chosen close to values obtained from the droplet model.

Magnetic parameters J and TC were then varied to obtain the above fits. While

making the fits, we made following observations. Position of the peak or shoulder is

sensitive to TC and D1, while J and EA determine the sharpness of the resistance

anomaly. If D1 is reduced, then 〈cos θij〉 = e−D1/ξM (T ) changes from 0 to 1 at a

higher temperature, which shifts the resistance anomaly to a higher temperature.

Increasing TC also shifts the anomaly to a higher temperature. We found that values

of D1 and EA chosen near the calculated values generally gave good fits.

The resistivity anomaly can be understood qualitatively from our droplet pic-

ture in following way. We assume that the ferromagnetism is intrinsic to Mn-layer

and the droplet polarization follows the local Mn magnetization. TC corresponds

to the temperature below which magnetic correlation length (ξM ) start increasing

rapidly in Mn layer. But since the droplet separation is much larger than Mn sep-

aration, onset of ferromagnetism in Mn layer does not affect transport significantly

at temperatures near TC . At lower temperature, when ξM becomes comparable to

droplet separation D1, inter-droplet tunneling probability increases rapidly which

gives a decrease in the resistivity. This gives a dip in the resistivity which results

in the peak/shoulder feature. As the temperature further decreases, the magnetic

part saturates and the activated behaviour starts dominating which at further lower

temperatures becomes variable range hopping. In metallic samples, as the droplet

separation is lower, the peak lies closer to TC . These results clearly show that, un-

like the bulk magnetic semiconductors, the peak position should not be used as an

estimate for TC of the Mn layer in these heterostructures, specially for non-metallic

samples. Our analysis is also supported by the anomalous Hall effect measurements

in these samples (Fig 4.5) which show saturation at temperatures much above the

peak temperature [17]. This shows that there is significant ferromagnetism in Mn

layer much before the peak appearance in resistivity. The values of fitted parameters
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are shown in figure 4.9

4.4 Summary

We studied the effect of disorder, Coulomb interaction and ferromagnetism on

the transport properties of 2D heterostructures δ-doped by Mn. Observation of

Shubnikov–de Haas oscillations for fields perpendicular to the 2D direction of the

quantum well confirmed the two-dimensionality of these samples. Resistivity mea-

surements as well as previously measured magnetic hysteresis [7, 19, 20] and anoma-

lous Hall effect [6, 17] established magnetic ordering at low temperatures. We stud-

ied the two most insulating samples using our droplet model.

We showed that at low carrier densities, interplay of disorder in the spatial dis-

tribution of dopant Mn atoms and screening effects by holes in the 2D quantum

well leads to electronic phase separation in the quantum well. For this phase, we

obtained typical sizes of the hole droplets, their mean separation, and their en-

ergy levels. Unlike conventional nonmagnetic GaAs/AlGaAs heterostructures, a

two-subband model was used here as the carrier density was much larger in these

heterostructures. We introduced a simple nearest-neighbor hopping model for the

resistivity of this droplet phase taking into account discreteness of energy levels in

the droplets and the effect of ferromagnetic correlations between spins of neighbor-

ing droplets. Values of the parameters in the resistivity model were obtained from

droplet model where possible. Ferromagnetic parameters such as Curie temperature

were varied to fit the observed data. A good agreement with the experiments was

obtained.

An important understanding that emerged from our study is that a resistance

anomaly is possible in 2D even if there is no magnetic transition. The second find-

ing concerns the relation between position of the peak or shoulder in the resistivity

data and the Curie temperature. Unlike 3D DMS systems where such resistance

features are found in the vicinity of the critical temperature T0 (which is not very

different from the Curie temperature TC for Heisenberg ferromagnets), we showed

that in 2D DMS heterostructures, the peak or shoulder-like feature does not directly

give the Curie temperature, and furthermore, the Curie temperature can be sub-

stantially larger than the temperature at which such features are observed. This

statement is supported by the AHE results presented in Fig.4.5. It is seen that for

insulating Samples 1 and 4, the AHE saturates at temperatures well above the peak

temperature which means that TC is higher than the peak temperature. Physically,
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this is because the resistivity changes once the magnetic correlation length becomes

comparable to the inter-droplet separation. Clearly, the difference between Curie

temperature and the position of the resistivity peak will be stronger for more insu-

lating samples. However if our approach is adapted to insulating 3D DMS systems,

we would expect, like other works, a resistivity anomaly in the vicinity of the critical

temperature as the correlation length diverges at TC .
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Chapter 5

Conclusion

In this thesis, we studied disordered two dimensional quantum systems. In our study

of Kondo lattice scenarios in δ−doped semiconductor heterostructures, we analyzed

nuclear magnetic resonance (NMR) method as a tool to probe the electronic state

of a two-dimensional electron gas (2DEG) in a quantum well. In these systems,

the Si δ−layer produces a fluctuation potential profile for the 2DEG which can lead

to bound states for the electrons. These localized electrons act as local magnetic

moments (for odd number of bound electrons in a potential well), scattering the

conduction electrons in the quantum well which gives a prototype Kondo system.

Conduction electrons also mediate magnetic RKKY interaction between the local

moments which competes with the Kondo screening and can be tuned by changing

the carrier density in the quantum well. Depending on the arrangement of ionized

Si atoms, the local moments in 2DEG could either form an ordered lattice or be

in a disordered state. Distinguishing these two scenarios is not easy by standard

transport measurements. We showed that the temperature dependence of nuclear

relaxation rates (T−1
1 ) has distinguishable features for different possible electronic

states in the quantum well. In the spatially ordered state of local moments, T−1
1

shows an exponential increase at low temperatures in RKKY dominated regime

which is clearly distinguishable from the disordered state which has small nuclear

relaxation rate. NMR could thus be used to confirm the formation of an artificial

Kondo lattice in semiconductor heterostructures. NMR can also distinguish between

the Kondo coupling dominated regime and the RKKY regime.

Next, we studied effects of external magnetic impurities in Kitaev spin-1/2 hon-

eycomb lattice model. The model has very anisotropic spin interactions and is ex-

actly solvable with a spin liquid ground state with both gapped and gapless regimes.
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Exact solvability of the model make it relatively simpler to explore disorder effects.

We coupled a spin-S impurity to a Kitaev spin in the gapless phase of the model

and looked for a possible Kondo effect due to screening of impurity spin by the gap-

less excitations. We analyzed scaling behaviour of the coupling constant using Poor

Man’s scaling approach. The impurity coupling scaling has an unstable fixed point

KC irrespective of the sign of impurity coupling. Coupling constant flows to infinity

for K > KC while for K < KC , it flows to zero. Another interesting feature of the

Kondo effect in Kitaev model is that the unstable fixed point separates topologically

distinct sectors of the Kitaev model and the strong coupling phase has finite flux

with a zero energy Majorana mode at its center. We also studied the nature of

interaction between two distant magnetic impurities mediated by the gapless Majo-

rana fermionic excitations. The inter-impurity interaction has an interesting feature

that it is a non-dipolar RKKY interaction proportional to S2
αS

2
β/r

3 provided that

(i) each impurity couples to more than one lattice site (bonds) on the host and (ii)

the impurity spin S is not a spin-1/2.

In our study of charge transport in δ−doped magnetic semiconductor heterostruc-

tures, we analyzed the influence of magnetism and disorder in Mn δ−layer on the

resistivity of two-dimensional hole gas (2DHG) in the quantum well. Disorder po-

tential from ionized Mn atoms and non-linear screening of the potential by the

holes in 2DHG leads to formation of charge droplets in the quantum well at low

carrier densities. Charge transport then takes place by carriers hopping between

the droplets and shows Arrhenius behaviour. Measured resistivity for these systems

shows a peak/shoulder anomaly in its temperature dependence. We estimated sizes

of the droplets, their separation and energy level separation in the droplets etc. We

then incorporated effects of ferromagnetic correlations in the hopping probability

and showed that resistivity anomaly can be qualitatively explained by our model.

The resistance anomaly appears when magnetic correlation length in Mn layer be-

comes comparable to droplet separation such that droplets spins also become aligned

which increases the hole tunneling probability and gives a dip in the resistivity. This

temperature can be significantly different from the mean field Curie temperature for

ferromagnetism in Mn layer (unlike bulk 3D systems) specially for systems in insu-

lating regime and the peak position should not be used as a measure of the Curie

temperature in these 2D ferromagnetic semiconductor structures.


