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1 Chapter 1: Unitarity, crossing symmetry and dual-

ity of the S-matrix

1.1 Introduction

It has recently been conjectured that U(N) Chern-Simons theories coupled to a multiplet

of fundamental Wilson-Fisher bosons at level k are dual to U(|k| − N) Chern-Simons

theories coupled to fundamental fermions at level −k. 1 The evidence for this conjecture

is threefold. First the spectrum of ‘single trace’ operators and the three point functions

of these operators have also been computed exactly in the ’t Hooft limit, and have been

found to match[2–7]. Second the thermal partition functions of these theories have also

been computed in the ’t Hooft large N limit and have been shown to match [2, 3, 6, 8–

11]. Finally the duality described above has been demonstrated to follow from an extreme

deformation of the known Giveon-Kutasov type duality [12, 13] between supersymmetric

theories [14].

Assuming the duality described above does indeed hold, it is interesting to better un-

derstand the map that transforms bosons into fermions. Morally, we would like an explicit

construction of the fundamental fermionic field ψa(x) as a function of the fundamental

bosonic fields 2; such a formula cannot, however, be given precise meaning in the current

context as ψa(x) is not gauge invariant and its offshell correlators are ill-defined.

The on shell limit of correlators of the elementary bosonic and fermionic fields, however,

are physical as they compute the S-matrix for the scattering of bosonic or fermionic quanta.

As Chern-Simons theory has no propagating gluonic states, the S-matrix is free of soft gluon

infrared divergences when the fundamental fields (bosons and fermions) are taken to be

massive. An identity relating well-defined bosonic and fermionic S-matrices appears to be

the closest we can come to a precise bosonization map. Motivated by this observation,

in this chapter we present a detailed study of 2 → 2 S-matrices in Chern-Simons theories

with fundamental bosonic and fermionic fields.

Even independent of the Bose-Fermi duality, it is interesting that it is possible to

1Our notation is as follows. k is the coefficient of the Chern-Simons term in the bulk Lagrangian in the
dimensional reduction scheme utilized throughout in this chapter. It is useful to define κ = sgn(k)(|k|−N).
|κ| is the level of the WZW theory dual to the pure Chern-Simons theory. Note that |k| > N . In terms of
κ and N the duality map takes the level-rank form N ′ = |κ|, κ′ = −sgn(κ)N .

2The template here is the formula ψ = eiφ of two dimensional bosonization. In some respects the
already well known map between the gauge invariant higher spin currents on the two sides of the duality is
the 2 + 1 dimensional analogues of the 1 + 1 dimensional relation between global U(1) symmetry currents
∂φ ∼ ψ̃ψ.
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determine exact results for the S-matrix of these theories as a function of the ’t Hooft

coupling constant λ = N
k

. Exact results for scattering amplitudes as a function of a gauge

coupling constant are rare, and should be studied when available for qualitative lessons.

As we will see below, the explicit formulae for S-matrices presented in this chapter turn

out to possess several unfamiliar and unusual structural features. Some of these unusual

features appear to have a simple physical interpretation; we anticipate that they are general

properties of S-matrices in all matter Chern-Simons theories. 3

As we have mentioned above, it is possible to determine (or conjecture) explicit results

for the 2→ 2 scattering amplitudes for large N fundamental matter Chern-Simons theories.

In this chapter we present explicit formulae for all these scattering amplitudes. In the rest

of this introduction we will describe the most important qualitative features of our results.

We first briefly review some kinematics in order to set terminology.

Consider the 2 → 2 scattering of particles in representations R1 and R2 of U(N). Let

the tensor product of these two representations decompose as

R1 ×R2 =
∑
m

Rm. (1)

It follows from U(N) invariance that the S-matrix for the process takes the schematic form

S =
∑
m

PmSm, (2)

where Pm is the projector onto the mth representation, and Sm is the scattering matrix in

the ‘mth’ channel.

In this chapter we study the 2 → 2 scattering matrices of the elementary quanta

of theories with only fundamental matter. In this situation R1 and R2, are either both

fundamentals, or one fundamental and one antifundamental. 4 In the case of fundamental -

fundamental scattering, Rm is either the ‘symmetric’ representation with two boxes in the

first row (and no boxes in any other row) of the Young Tableaux, or the ‘antisymmetric’

representation with two boxes in the first column and no boxes in any other column. In the

case of fundamental - antifundamental scattering, Rm is either the singlet or the adjoint

representation. In this chapter we will present computations or conjectures for the all

3These features include the presence of an non-analytic δ function piece in the S-matrix localized on
forward scattering, and modified crossing symmetry relations as we describe below.

4The scattering of two antifundamentals is simply related to the scattering of two fundamentals, and
will not be considered separately in this chapter.
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orders S-matrices in all the four channels mentioned above (symmetric, antisymmetric,

singlet and adjoint) in both the bosonic and the fermionic theories.

The scattering matrices of interest to us in this chapter are already well known in the

non-relativistic limit (i.e. in the limit in which the masses of the scattering particles and

the center of mass energy are both taken to infinity at fixed momentum transfer) as we

now very briefly review. The Chern-Simons equation of motion ensures that each particle

traps magnetic flux. The Aharonov-Bohm effect then ensures that the particle R1 picks

up the phase 2πνm as it circles around5 the particle R2, where

2πνm =
4πT a1 T

a
2

k
= 2π

C2(Rm)− C2(R1)− C2(R2)

k
, (3)

(where T a1/2 are the representation matrices for the group generators in representations

R1 and R2 and C2(A) is the quadratic Casimir in representation A). It follows as a

consequence [15] that the non-relativistic scattering amplitude in the Rm exchange channel

is given by the Aharonov-Bohm scattering amplitude of a U(1) particle of unit charge of a

point like magnetic flux of strength 2πνm.

It is easily verified that νm = O( 1
N

) or smaller in the symmetric, antisymmetric or

adjoint channels. In the singlet channel, however, it turns out that to leading order in

the large N limit νm = N
k

= λ. It follows that the rotation by π which interchanges

the two scattering particles is accompanied by a phase e−iπλB in the bosonic theory and

(−1)e−iπλF = e−iπ(−sgn(λF )+λF ) in the fermionic theory. 6 Note that these phases are

identical when

λB = λF − sgn(λF ). (4)

However (4) is precisely the map between λB and λF [6] induced by the level-rank duality

transformation described at the beginning of this introduction. In the singlet channel, in

other words the bosons and conjecturally dual fermions are both effectively anyonic, with

the same anyonic phase. This observation provides a partial physical explanation for the

duality map (4).

We note in passing that the anyonic phase πλB is precisely twice the phase of the bulk

interaction term in the conjectured Vasiliev duals to these theories [2, 16]. Indeed the first

5Readers familiar with the relationship between Chern-Simons theory and WZW theory may recognize

this formula in another guise. C2(R)
k is the holomorphic scaling dimension of a primary operator in the

integrable representation R, and e2πiνm is the monodromy of the four point function < R1, R2, R̄1, R̄2 >
in the conformal block corresponding to the OPE R1R2 → Rm .

6 The additional -1 in the fermionic theory comes from Fermi statistics. We have used −1 = e±iπ =
e−iπsgn(λF ).
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speculation of the bosonization duality for matter Chern-Simons theories [2] was motivated

by argument very similar to that presented in the previous paragraph but in the context of

Vasiliev theories (deformations of the bosonic and fermionic theory that lead to the same

interaction phase ought to be the same theory). It would certainly be very interesting to

find a logical link between the phase of interactions in Vasiliev theory and the anyonic

phase of the previous paragraph, but we will not peruse this thread in this chapter.

Moving away from the non-relativistic limit, in this chapter we have (following the

lead of [6]) summed all planar graphs to determine the exact relativistic S-matrix for

both the bosonic as well as the fermionic theories in the symmetric, antisymmetric and

adjoint channels. Even though our completely explicit solutions are quite simple, they

possess a rich analytic structure (see section 1.3 for a detailed listing of results). It is

a simple matter to compare the explicit results for the S-matrices in the bosonic and

fermionic theories that are conjecturally dual to each other. We find that the bosonic and

fermionic S-matrices agree perfectly in the adjoint channel. On the other hand the bosonic

S-matrix in the symmetric/antisymmetric channels matches the fermionic S-matrix in the

antisymmetric/symmetric channels. Our results are all consistent with the following rule:

the bosonic S-matrix in the exchange channel Rm is identical with the fermionic S-matrix

in the exchange channel RT
m, where RT

m is the dual representation under level-rank duality.
7

The match of S-matrices upto transposition appears to make perfect sense from several

points of view. Let us focus attention on the particle - particle scattering and consider a

multi-particle asymptotic state. As the Aharonov-Bohm phases νm vanish in the large N

limit considered in this chapter, the multi-particle state in question is effectively a collection

of non interacting bosonic particles, and so must obey Bose statistics. As an example,

consider a multi-particle state that is completely antisymmetric under the interchange of

its momenta. In order to meet the requirement of Bose statistics, this state must also

be completely antisymmetric under the interchange of color indices. The corresponding

dual asymptotic state in the fermionic theory is also completely antisymmetric under the

interchange of momenta. In order to meet the requirement of fermionic statistics, this state

must thus be completely symmetric under the interchange of color indices. In other words

the map between bosonic and fermionic asymptotic states must involve a transposition

7In the large N and large k limit, the dual of a representation with a finite number of boxes plus a finite
number of anti-boxes in the Young Tableaux is given by the following rule: we simply transpose the boxes
and the anti-boxes in the Young Tableaux (i.e. exchange rows and columns independently for boxes and
anti-boxes). According to this rule the fundamental, antifundamental, singlet and adjoint representations
are self-dual, while the symmetric and antisymmetric representations map to each other.
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of color representations; this transposition is part of the duality map between asymptotic

states of the two theories, and is a reflection of the bose -fermi nature of the duality. 8

See section 1.8 for further discussion of the map between the multi-particle states of this

theory induced by duality.

The transposition of exchange representations above might also have been anticipated

from another point of view. In the pure gauge sector (i.e. upon decoupling the fundamental

bosonic and fermionic fields by making them very massive), the conjectured duality between

the bosonic and fermionic theories reduces to the level-rank duality between two distinct

pure Chern-Simons theories. It is well known that, under level-rank duality, a Wilson line

in representation R maps to a Wilson line in the representation RT . As a Wilson line in

representation R represents the trajectory of a particle in representation R, it seems very

natural that the exchange channels in a dynamical scattering process also map to each

other only after a transposition.

Before proceeding we pause to address an issue of possible confusion. We have asserted

above that scalar and spinor S-matrices map to each other under duality. The reader

whose intuition is built from the study of four dimensional scattering processes may find

this confusing. Scalar and spinor S-matrices cannot be equated in four or higher dimensions

as they are functions of different variables. Scalar S-matrices are labelled by the momenta

of the participating particles. On the other hand spinor S-matrices are labelled by both

the momentum and the ‘polarization spinor’ of the participating particles. In precisely

three dimensions, however, the Dirac equation uniquely determines the polarization spinor

of particles and antiparticles as a function of of their momenta 9. It follows that three

dimensional spinorial and scalar S-matrices are both functions only of the momenta of the

scattering particles, so these S-matrices can be sensibly identified.

For a technical reason we explain below we are unable to directly compute the S-

matrix in the singlet exchange channel by summing graphs; given this technical limitation

we are constrained to simply conjecture a result for this S-matrix. The reader familiar

8It is not difficult to see how the transposition of S-matrices emerges out of the difference between Bose
and Fermi statistics at the diagrammatic level. Scattering processes involving identical particles (both
fundamentals or both antifundamentals) receive contributions both from ‘direct’ scattering processes as
well as ‘exchange’ scattering process. The usual rules tell us that direct and exchange processes must
be added together with a positive sign in the bosonic theory but with a negative sign in the fermionic
theory. The difference in relative signs implies that S-matrix in the symmetric channel (the sum of the
exchange and direct S-matrices) in the bosonic theory is interchanged with the antisymmetric S-matrix
(the difference between exchange and direct processes) the fermionic theory.

9A related fact: the little group for massive particles in 2+1 dimensions is SO(2), which admits non-
trivial one dimensional representations.
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with the usual lore on scattering matrices may think this is an easy task. According to

traditional wisdom, the S-matrices in a relativistic quantum field theory enjoy crossing

symmetry. Particle-antiparticle scattering in both channels should be determined from the

results of particle-particle scattering; given the scattering amplitudes in the symmetric and

antisymmetric exchange channels, we should be able to obtain the results of scattering in

the singlet and adjoint exchange channels by analytic continuation. This principle yields a

conjecture for the S-matrix in the singlet channel which, however, fails every consistency

check: it has the wrong non relativistic limit and does not obey the constraints of unitarity.

For this reason we propose that the usual rules of crossing symmetry are modified in the

study of S-matrices in matter Chern Simons theories.

A hint that crossing symmetry might be complicated in these theories is present already

in the non-relativistic limit as the Aharonov-Bohm scattering amplitude has an unusual

δ function contribution localized about forward scattering [17]. This contribution to the

S-matrix has a simple physical origin: a wave packet of one particle that passes through

another is diluted by the factor cos(πνm) compared to the usual expectations because

of destructive interference from Aharonov-Bohm phases; as a consequence the S-matrix

includes a term proportional to (cos(πνm)− 1)I (I is the identity S matrix; see subsection

1.2.3 for more details). The non-analyticity of this term makes it difficult to imagine it

can be obtained from a procedure involving analytic continuation.

In addition to the singular δ function piece, the scattering amplitude has an analytic

part. In this chapter (and in the large N limit studied here) we conjecture that this

analytic piece is given by the naive analytic continuation from the particle-particle sector,

multiplied by the factor

f(λ) =
sin(πλ)

πλ
.

This conjecture passes several consistency checks; it yields a result consistent with the

expectations of unitarity, and has the right non-relativistic limit, and yields S-channel

S-matrices that transform into each other under Bose-Fermi duality.

The factor f(λ) is familiar in the study of pure Chern-Simons theory; N times this

factor is the expectation value of a circular Wilson loop on S3 in the large N limit. In

section 1.7.4 below we present a tentative explanation for why one should have expected

S-matrices in matter Chern-Simons theories to obey the modified analyticity relation with

precisely the factor f(λ). Our tentative explanation has its roots in the fact that the fully

gauge invariant object that obeys crossing symmetry is the ‘S-matrix’ computed in this

chapter dressed with external Wilson lines linking the scattering particles. The presence
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of the Wilson lines leads to an additional contribution (in addition to those considered in

this chapter) that we argue to be channel dependent; in fact we argue that the ratio of

the additional contributions in the two channels is precisely the given by the factor above,

explaining why the ‘bare’ S-matrix computed in this chapter has ‘renormalized’ crossing

symmetry properties. If our tentative explanation of this feature is along the right tracks,

then it should be possible to find a refined argument that predicts the analytic structure

and crossing properties of the S-matrix at finite values of N and k. We leave this exciting

task for the future.

We note also that the factor f(λ) appears also in the normalization of two point func-

tions of, for instance, two stress tensors (see [6]). The appearance of this factor in the two

point functions of gauge invariant operators seems tightly tied to the appearance of the

same factor in scattering in the singlet channel, as the diagrams that contribute to these

processes are very similar. It would be interesting to understand this relationship better.

this chapter is organized as follows. In section 1.2 below we describe the theories we

study in this chapter, review the conjectured level-rank dualities between the bosonic and

fermionic theories, set up the notation and conventions for the scattering process we study,

review the constraints of unitarity on scattering and review the known non-relativistic

limits of the scattering matrices. In section 1.3 below we briefly summarize the method

we use to compute S-matrices, and provide a detailed listing of the principal results and

conjectures. We then turn to a systematic presentation of our results. In section 1.4 we

compute the S-matrices of the bosonic theories by solving the relevant Schwinger-Dyson

equations. In section 1.5 we verify the results of section 1.4 at one loop by a direct

diagrammatic evaluation of the S-matrix in the covariant Landau gauge. In section 1.6

we compute the S-matrix of the fermionic theories by solving a Schwinger-Dyson equation

and verify the equivalence of our bosonic and fermionic results under duality. In section

1.7 we present our conjecture for the S-channel scattering amplitudes (in the bosonic

and fermionic systems) of our theory, and provide a heuristic explanation for the unusual

transformation properties under crossing symmetry obeyed by our conjecture. In section

1.8 we end with a discussion of our results and of promising future directions of research.

Several appendices contain technical details of the computations presented in this chapter.

1.2 Statement of the problem and review of background material

This section is organized as follows. In subsection 1.2.1 we describe the theories we study.

In subsection 1.2.2 we review the conjectured duality between the bosonic and fermionic
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theories. In subsection 1.2.3 we review relevant aspects of the kinematics of 2→ 2 scatter-

ing in 3 dimensions, with particular emphasis on the structure of the ‘identity’ scattering

amplitude, which will turn out to be renormalized in matter Chern-Simons theories. In

subsection 1.2.4 describe the precise scattering processes we study in this chapter. In sub-

section 1.2.6 we review the known non-relativistic limits of these scattering amplitudes. In

subsection 1.2.7 we describe the constraints on these amplitudes from the requirement of

unitarity.

1.2.1 Theories

As we have explained above, in this chapter we study two classes of large N Chern-

Simons theories coupled to matter fields in the fundamental representation. The first

family of theories we study involves a single complex bosonic field, in the fundamental

representation of U(N), minimally coupled to a Chern-Simons coupled gauge field. In the

rest of this chapter we refer to this class of theories as ‘bosonic theories’. The second

family of theories we study involves a single complex fermionic field in the fundamental

representation of U(N), minimally coupled to a Chern-Simons coupled gauge field. In the

rest of this chapter we refer to this class of theories as ‘fermionic theories’.

The bosonic system we study is described by the Euclidean Lagrangian

S =

∫
d3x

[
iεµνρ

kB
4π

Tr(Aµ∂νAρ −
2i

3
AµAνAρ) +Dµφ̄D

µφ+m2
Bφ̄φ+

1

2NB

b4(φ̄φ)2

]
(5)

with λB = NB
kB

. Throughout this chapter we employ the dimensional regularization scheme

and light cone gauge employed in the original study of [2]. The theory (5) has been studied

intensively in the recent literatures [3, 5–11, 14, 18]. It has in particular been demonstrated

that in the regulation scheme and gauge employed in this chapter, the bosonic propagator

is given, at all orders in λB, by the extremely simple form

〈φj(p)φ̄i(−q)〉 =
(2π)3δijδ

3(−p+ q)

p2 + c2
B

(6)

where the pole mass, cB is a function of mB, b4 and λB, given by

c2
B =

λ2
B

4
c2
B −

b4

4π
|cB|+m2

B. (7)

(see e.g. Eqn 1.5 of [14] setting x4 = 0 setting temperature T to zero). In all the Feynman
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φ̄i(−p) φj(p)p

(a)

Figure 1: Propagator of bosonic particles.

diagrams presented in this chapter, we adopt the following convention. The propagator

(6) is denoted by a line with an arrow from φ̄ to φ, with moment p in the direction of the

arrow (see Fig. 1).

The fermionic system we study is described by the Lagrangian

S =

∫
d3x

[
iεµνρ

kF
4π

Tr(Aµ∂νAρ −
2i

3
AµAνAρ) + ψ̄γµDµψ +mF ψ̄ψ

]
(8)

with λF = NF
kF

. This theory has also been studied intensively in the recent literatures [2,

5, 7–11, 14, 18]. In particular it has been demonstrated that the fermionic propagator is

given (in the light cone gauge and dimensional regulation scheme of this chapter), to all

orders in λF , by [2, 7, 9, 14]

〈
ψj(p)ψ̄

i(−q)
〉

=
δij(2π)3δ3(−p+ q)

iγµpµ + ΣF (p)
, (9)

where

ΣF (p) =iγµΣµ(p) + ΣI(p)I,

ΣI(p) =mF + λF

√
c2
F + p2

s,

Σµ(p) =δ+µ
p+

p2
s

(
c2
F − Σ2

I(p)
)
,

c2
F =

(
mF

sgn(mF )− λF

)2

. (10)

Here γµ compose the Euclidean Clifford algebra,

{γµ, γν} = 2δµν , [γµ, γν ] = 2iεµνργρ.

The fermionic propagator presented above has a pole at p2 = c2
F ; so the quantity cF is the

pole mass - or true mass - of the fermionic quanta . In all the Feynman diagrams presented

in this chapter, we adopt the following convention. The propagator (9) is denoted by a line

19



ψ̄i(−p) ψj(p)p

(a)

Figure 2: Propagator of fermionic particles.

with an arrow from ψ̄ to ψ, with momentum p in the direction of the arrow (see Fig. 2).

1.2.2 Conjectured Bose-Fermi duality

The bosonic theory (5) may be rewritten as

S =

∫
d3x

[
iεµνρ

kB
4π

Tr(Aµ∂νAρ −
2i

3
AµAνAρ) +Dµφ̄D

µφ+m2
Bφ̄φ+

1

2NB

b4(φ̄φ)2

− NB

2b4

(
σ − b4

NB

φ̄φ−m2
B

)2 ]
.

(11)

We have introduced a new field σ in (11); upon integrating σ out (11) trivially reduces to

(5). Expanding out the last bracket in (11) and ignoring the constant term, we find that

(11) may be rewritten as

S =

∫
d3x

[
iεµνρ

kB
4π

Tr(Aµ∂νAρ−
2i

3
AµAνAρ)+Dµφ̄D

µφ+σφ̄φ+NB
m2
B

b4

σ−NB
σ2

2b4

]
. (12)

The so called Wilson-Fisher limit of the bosonic theory is obtained by taking the limit

b4 →∞, mB →∞,
4πm2

B

b4

= mcri
B = fixed. (13)

In this limit the last term in (12) may be omitted; moreover it follows from (7) that in this

limit

|cB| = mcri
B .

Note, of course, that this equation has no solution for negative mcri
B . As was explained in

[6, 14] this is plausibly a reflection of the fact that (7) is the saddle point equation for an

uncondensed solution, whereas the scalar in the theory wants to condense when mcri
B < 0.

The determination of the condensed saddle point is a fascinating but unsolved problem,

and in this chapter we restrict our attention to the case mcri
B > 0.

As we have mentioned in the introduction, it has been has been conjectured that the
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scalar theory in the Wilson-Fisher limit described above is dual to the theory (8), 10 once

we identify parameters according to

kF = −kB,
NF = |kB| −NB,

λB = λF − sgn(λF ),

mF = −mcri
B λB.

(14)

As we have explained above, we will restrict our attention to bosonic theories with mcri
B > 0.

It follows from (14) that, for the purpose of studying the bose-fermi duality, 11 we should

restrict attention to fermionic theories that obey the inequality

λFmF > 0. (15)

It is easily verified that (14) implies that

|cF | = |cB|. (16)

In other words the bosonic and fermionic fields have equal pole masses under duality. This

observation already makes it seem likely that the duality map should involve some sort of

identification of elementary bosonic and fermionic quanta. 12 The relationship between

bosonic and fermionic S-matrices, proposed in this chapter, helps to flesh this identification

out.

1.2.3 Scattering kinematics

In this chapter we study 2→ 2 particle scattering; for this purpose we work in Minkowski

space. Let the 3 momenta of the initial particles be denoted by p1 and p2 and let the

momenta of the final particles be denoted by −p3 and −p4. Momentum conservation

10A preliminary suggestion for this duality may be found in [2] . The conjecture was first clearly stated,
for the massless theories in [9], making heavy use of the results of [4, 5]. The conjecture was generalized
to the massive theories in [6] and further generalized in [14]. Additional evidence for this conjecture is
presented in [7, 10, 11].

11We emphasize that all results obtained directly in the fermionic theory are valid irrespective of whether
or not (15) is obeyed. However we do not have a corresponding bosonic results to compare with when this
inequality is not obeyed.

12Note that this is very different from sine-Gordon-Thirring duality, in which elementary fermionic
quanta are identified with solitons in the bosonic theory.
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ensures p1 + p2 + p3 + p4 = 0. We use the mostly positive sign convention, and define the

Lorentz invariants s, t, u in the usual manner

s = −(p1 + p2)2, t = −(p1 + p3)2, u = −(p1 + p4)2, s+ t+ u = 4c2
B (17)

where cB is the pole mass of the scattering particles (the scattering particles have equal

mass).

The S matrix for the scattering processes is given by (see below for slight modifications

to deal with bosonic or fermionic statistics)

S(p1, p2,−p3,−p4) =(2E~p1)(2π)2δ2(~p1 + ~p3)(2E~p2)(2π)2δ2(~p2 + ~p4)

+ i(2π)3δ3(p1 + p2 + p3 + p4)T (s, t, u, E(p1, p2, p3)),

E~p =
√
c2
B + ~p2,

E(p1, p2, p3) =± 1 = sgn (εµνρp
µ
1p

ν
2p
ρ
3) , ε012 = −ε012 = 1

(18)

The fact that 2→ 2 scattering can depend on the Z2 valued variable E(p1, p2, p3) rather

than just s, t, u is a kinematical peculiarity of 3-dimenensions. Note that E(p1, p2, p3)

measures the ‘handedness’ of the triad of vectors p1, p2, p3. The symbol ~p that appears in

(18) denotes the spatial part of the 3-vector p. It might seem to be strange that ~p makes

any appearance in the formula for a Lorentz covariant S-matrix. Note, however, that the

various 3-vectors we deal with are always on-shell, so the knowledge of ~p is sufficient to

permit the reconstruction of the full 3-vector p. Using the on-shell condition it is not

difficult to verify that (2E~p)(2π)2δ2(~p + ~r) is Lorentz invariant, even though this is not

completely manifest.

The manifestly Lorentz invariant rule for the multiplication of two S-matrices is

[S1S2](p1, p2,−p3,−p4)

=

∫
d3r1(2π)θ(r0

1)δ(r2
1 + c2

B)

(2π)3

d3r2(2π)θ(r0
2)δ(r2

2 + c2
B)

(2π)3

× S1(p1, p2,−r1,−r2)S2(r1, r2,−p3,−p4)

=

∫
d2~r1

2E~r1(2π)2

d2~r2

2E~r2(2π)2
S1(p1, p2,−r1,−r2)S2(r1, r2,−p3,−p4).

(19)
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The quantity

I(p1, p2,−p3,−p4) = (2E~p1)(2π)2δ2(~p1 + ~p3)(2E~p2)(2π)2δ2(~p2 + ~p4) (20)

that appears in the first line of (18) is clearly the identity matrix for this multiplication

rule.

The identity matrix may be rewritten in a manifestly Lorentz invariant form (see Ap-

pendix 1.9.1 )

I(p1, p2,−p3,−p4) = lim
ε→0

4π
√
sδ

(√
4t

t+ u
− ε
)

(2π)3δ3(p1 + p2 + p3 + p4). (21)

It is sometimes convenient to study 2 → 2 scattering in the center of mass frame. In

this frame the scattering momenta may be taken to be

p1 = (
√
k2 + c2

B, k, 0), p2 = (
√
k2 + c2

B,−k, 0)

p3 = (−
√
k2 + c2

B,−k cos(θ),−k sin(θ)), p4 = (−
√
k2 + c2

B, k cos(θ), k sin(θ)).
(22)

The kinematical invariants are given by

s = 4(c2
B + k2), t = −2k2 (1− cos(θ)) , u = −2k2 (1 + cos(θ)) , (23)

and the S-matrix takes the form

S = (2π)3δ(p1 + p2 + p3 + p4)S(
√
s, θ), (24)

where θ is the scattering angle - the angle between −~p3 and ~p1. More precisely, let ~p1

point along the positive x axis so that ~p2 points along the negative x axis. θ ∈ (−π, π)

is defined as the rotation in the clockwise direction (here clockwise is defined w.r.t. the

orientation of the usual x, y axis system) that is needed to rotate ~p1 into −~p3. Note that

parity transformations, that take θ to −θ, are generically not symmetries of our theory. In

the center of mass system E(p1, p2, p3) defined in (18) is given by

E(p1, p2, p3) = sgn(θ). (25)
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For later use we note the following center of mass reduction formulae

E(p1, p2, p3)

√
su

t
→ √s cot

(
θ

2

)
,

E(p1, p2, p3)

√
st

u
→ √s tan

(
θ

2

)
,

E(p1, p2, p3)

√
tu

s
→ 2k2

√
s

sin(θ).

(26)

The rule (19) induces the following multiplication rule for the functions S(
√
s, θ):

[S1S2](
√
s, θ) =

∫
dα

8π
√
s
S1(
√
s, α)S2(

√
s, θ − α), (27)

The identity matrix for this multiplication rule is clearly given by

SI(
√
s, θ) = 8π

√
sδ(θ) = lim

ε→0
4π
√
s [δ(θ + ε) + δ(θ − ε)] , (28)

in agreement with (21) recast in center of mass coordinates.

The Hermitian conjugate of an S-matrix functions for S† are given by

[S†](p1, p2,−p3,−p4) = S∗(p3, p4,−p1,−p2),

[S†](
√
s, θ) = S∗(

√
s,−θ).

(29)

The S-matrix must be unitary, i.e. must obey the equation S†S = 1. This implies

−i(T − T †) = T †T. (30)

Written out as an explicit equation for the T functions this boils down to

− i (T (p1, p2,−p3,−p4)− T ∗(p3, p4,−p1,−p2)) δ3(p1 + p2 + p3 + p4)

=

∫
d3l

(2π)3

d3r

(2π)3

[
θ(−l0)θ(−r0)δ3(p1 + p2 + p3 + p4)δ3(p1 + p2 + l + r)

× (2π)δ(r2 + c2
B)(2π)δ(l2 + c2

B)T ∗(−p1,−p2, l, r)T (−p3,−p4, l, r)

]
+ . . .

(31)

where the . . . denotes the contribution of intermediate states with more than two particles.

We will return to this formula below
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1.2.4 Channels of scattering

A theory of a fundamental field has two kinds of elementary quanta: those that transform in

the fundamental of U(N) and those that transform in the antifundamental of that gauge

group. In this chapter we refer to quanta in the fundamental of U(N) as particles; we

refer to quanta in the antifundamental of U(N) as antiparticle. We use the symbol Pi(p)

to denote a particle with color index i and three momentum p, while Ai(p) denotes an

antiparticle with color index i and three momentum p. We employ this notation for both

the bosonic and the fermionic theories described in the previous subsection.

In this chapter we study 2 → 2 scattering. There are essentially two distinct 2 → 2

scattering process; particle-particle scattering and Particle-antiparticle scattering 13

Particle - antiparticle scattering The tensor product of a fundamental and an

antifundamental consists of the adjoint and the singlet representations. It follows that

Particle-antiparticle scattering is characterized by two scattering functions. We adopt the

following terminology: we refer to scattering in the singlet channel as scattering in the

S-channel. Scattering in the adjoint channel is referred to as scattering in the T -channel.

It follows from U(N) invariance that the S-matrix for the process

Pi(p1) + Aj(p2)→ Pm(−p3) + An(−p4) (32)

is given by

S = δmi δ
j
nI(p1, p2,−p3,−p4) + iT jmin (p1, p2,−p3,−p4)(2π)3δ3(p1 + p2 + p3 + p4). (33)

(see the previous subsection for the definition of I). The S-matrix may be decomposed

into adjoint and singlet scattering matrices

S =

(
δmi δ

j
n −

δji δ
m
n

N

)
ST +

δji δ
m
n

N
SS (34)

where

ST = I(p1, p2,−p3,−p4) + iTT (p1, p2,−p3,−p4)(2π)3δ3(p1 + p2 + p3 + p4)

SS = I(p1, p2,−p3,−p4) + iTS(p1, p2,−p3,−p4)(2π)3δ3(p1 + p2 + p3 + p4)
(35)

13The case of antiparticle-antiparticle scattering is related to that of particle-particle scattering by CPT,
and so needn’t be considered separately.
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and

T jmin (p1, p2,−p3,−p4) =

(
δmi δ

j
n −

δji δ
m
n

N

)
TT (p1, p2,−p3,−p4) +

δji δ
m
n

N
TS(p1, p2,−p3,−p4)

(36)

Particle - particle scattering The tensor product of two fundamentals consists of

the representation with two boxes in the first row of the Young Tableaux, and another

representation with two boxes in the first column of the Young Tableaux. We refer to

these two representations as the symmetric U -channel and the antisymmetric U -channel

respectively. It follows that particle- particle scattering is characterized by the scattering

functions in these two channels.

More quantitatively, the S-matrix for the process

Pi(p1) + Pj(p2)→ Pm(−p3) + Pn(−p4) (37)

takes the form

S = ±δmi δnj I(p1, p2, p3, p4) + δni δ
m
j I(p1, p2, p4, p3)

+ iTmnij (p1, p2, p3, p4)(2π)3δ3(p1 + p2 + p3 + p4)
(38)

where the ± in the first line is for bosons/fermions. The S-matrix may be decomposed into

the symmetric and antisymmetric channels

S =
δni δ

m
j + δmi δ

n
j

2
SUs +

δni δ
m
j − δmi δnj

2
SUa (39)

where

SUs = ±I(p1, p2, p3, p4) + I(p1, p2, p4, p3)

+ iTUs(p1, p2, p3, p4)(2π)3δ(p1 + p2 + p3 + p4)

SUa = −(±)I(p1, p2, p3, p4) + I(p1, p2, p4, p3)

+ iTUa(p1, p2, p3, p4)(2π)3δ(p1 + p2 + p3 + p4).

(40)

We will sometimes need to work with the direct and exchange scattering amplitudes (SUd
and SUe) by

S = δmi δ
n
j SUd + δni δ

m
j SUe (41)
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where

SUd = ±I(p1, p2, p3, p4) + iTUd(p1, p2, p3, p4)(2π)3δ(p1 + p2 + p3 + p4)

SUe = I(p1, p2, p4, p3) + iTUa(p1, p2, p3, p4)(2π)3δ(p1 + p2 + p3 + p4)
(42)

where

SUs = SUd + SUe , SUa = SUe − SUd , TUs = TUd + TUe , TUa = TUe − TUd . (43)

And

Tmnij (p1, p2, p3, p4) = δmi δ
n
j TUd(p1, p2, p3, p4) + δni δ

m
j TUe(p1, p2, p3, p4). (44)

We refer to SUd as the ‘direct S-matrix’ in the U -channel. SUe , on the other hand is the

‘exchange S-matrix in the U -channel.

In this chapter we study scattering in both the bosonic as well as fermionic theories de-

scribed in the previous subsection. We use the superscriptB/F to denote the corresponding

functions in the bosonic/fermionic theories. For example SBT is the T -channel scattering

matrix for bosons, while SFS denotes the S-channel scattering matrix for fermions.

1.2.5 Tree level scattering amplitudes in the bosonic and fermionic theories

The evaluation of full S-matrix of the bosonic and fermionic theories of subsection 1.2.1

is the main subject of this chapter. The evaluation of the all loop amplitudes will require

summing all planar diagrams in lightcone gauge, together with some educated guesswork.

However the tree level scattering amplitudes in these theories are, of course, easily evaluaed

in a covariante Landau gauge. In this section we simply present the results for these

tree level scattering amplitudes, in all scattering channels, in both the bosonic and the

fermionic theories. In every case we present the results for the full S matrix (rather than

the T matrix) to emphasize the relative sign between the identity piece and the scattering

terms. In the scalar theories we work for simplicity at b4 = 0. Our results in the fermionic

theory are presented upto a physically irrelevant overall phase. The results presented in

this subsection are all derived in Appendix 1.9.2.
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At tree level we find

SB,Ud = I(p1, p2, p3, p4)− 4π

kB

εµνρp
µ
1p

ν
2p
ρ
3

(p2 + p3)2
(2π)3δ(p1 + p2 + p3 + p4)

SB,Ue = I(p1, p2, p4, p3) +
4π

kB

εµνρp
µ
1p

ν
2p
ρ
3

(p2 + p4)2
(2π)3δ(p1 + p2 + p3 + p4)

SB,T = I(p1, p2, p3, p4) +
4π

kB

εµνρp
µ
1p

ν
2p
ρ
3

(p4 + p3)2
(2π)3δ(p1 + p2 + p3 + p4)

SB,S = I(p1, p2, p3, p4)− 4πλB
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p4)2
(2π)3δ(p1 + p2 + p3 + p4)

SF,Ud = I(p1, p2, p3, p4) +
4π

kF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p3)2
− 2imF

)
(2π)3δ(p1 + p2 + p3 + p4)

SF,Ue = I(p1, p2, p4, p3)− 4π

kF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p4)2
+ 2imF

)
(2π)3δ(p1 + p2 + p3 + p4)

SF,T = I(p1, p2, p3, p4)− 4π

kF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p4 + p3)2
+ 2imF

)
(2π)3δ(p1 + p2 + p3 + p4)

SF,S = −I(p1, p2, p3, p4) + 4πλF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p4)2
− 2imF

)
(2π)3δ(p1 + p2 + p3 + p4).

(45)

1.2.6 The non-relativistic limit and Aharonov-Bohm scattering

As we have explained above, in this chapter we wish to compute the 2→ 2 scattering matrix

of fundamental matter coupled to Chern-Simons theory. The result of this computation is

already well known in the non-relativistic limit, i.e. the limit in which

s− 4c2
B

4c2
B

→ 0. (46)

14 In this limit the S-matrix is obtained from the scattering of two non-relativistic particles

interacting with a Chern-Simons gauge field. The quantum description of this system may

be obtained by first eliminating the non dynamical gauge field in a suitable gauge and

then writing down the effective two particle Schrodinger equation see e.g. [15]). Moving to

center of mass and relative coordinates further simplifies the problem to the study of the

quantum mechanics of a single particle interacting with a point like flux tube located at the

origin. The S-matrix may then be read off from the scattering solution of Aharonov-Bohm

[19] with one interesting twist; the effective value of the flux depends on the scattering

channel.

14In the limit (46) t/4m2 and u/4m2 also tend to zero, as is most easily seen in the center of mass frame.
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Let the scattering particles transform in the representations R1 and R2 of U(N). As

we have reviewed in the introduction, if

R1 ×R2 =
∑
m

Rm (47)

then

S =
∑
m

SmPm

where Pm is the projector onto the representation Rm. It turns out that the scattering

matrix in the mth channel Sm is simply the Aharonov-Bohm scattering amplitude of a unit

charge U(1) particle scattering off a thin flux tube with integrated flux 2πνm where

νm =
C2(Rm)− C2(R1)− C2(R2)

k
. (48)

Let F denote the fundamental representation, A the antifundamental representation, S

the ‘symmetric’ representation (with two boxes in the first row of the Young Tableaux, and

no boxes in any other row), AS the antisymmetric representation (with two boxes in the

first column of the Young Tableaux, and no boxes in any other column), Adj the adjoint

representation and I the and the singlet. The Casimirs of these representations are

C2(F ) = C2(A) =
N2 − 1

2N
, C2(S) =

N2 +N − 2

N
, C2(AS) =

N2 −N − 2

N

C2(Adj) = N, C2(I) = 0.

(49)

In the symmetric and antisymmetric exchange channels respectively (for particle-particle

scattering)

νS =
1

k
− 1

Nk
, νAS = −1

k
− 1

Nk
. (50)

In the singlet and adjoint exchange channels respectively (for particle - antiparticle scat-

tering)

νI = −λB +
1

Nk
, νAdJ =

1

Nk
. (51)

Note that in the large N limit, νI is of order unity, νS and νAS are both of order O(1/N)

and νAdj is of order O(1/N2).

In the rest of this subsection we specialize to scattering in the scalar theory. As we have

reviewed in great detail in Appendix 1.9.3, the quantum mechanics of a non-relativistic

scalar scattering of a point like flux tube with integrated flux 2πν admits a ‘scattering’
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solution (the Aharonov Bohm solution), whose large radius asymptotics is given by

ψ(r) = eikx + e−i
π
4 h(θ)eikr

√
2π

kr
(52)

where

h(θ) = 2π (cos(πν)− 1) δ(θ) + sin(πν)

(
Pv cot

(
θ

2

)
− isgn(ν)

)
(53)

where Pv denotes the principal value. In the non-relativistic limit and in the center of

mass frame the scattering amplitude T is proportional to h(θ); more precisely

T (s, θ) = −4ih(θ)
√
s. (54)

Using (23) (54) and (53) together imply the covariant prediction

TNRm (p1, p2, p3, p4, λB, b4) =− 4i
√
s sin(πνm)

(
E(p1, p2, p3)

√
t

u
− isgn(νm)

)
− i(cos(πνm)− 1)I(p1, p2, p3, p4)

(55)

(see (20) (21), (28) for a definition of I) where TNRm is the non-relativistic limit of scattering

in the mth channel, νm is the corresponding value of ν as described above.

(55) applies when the scattering particles are distinguishable (as in the case of particle

- antiparticle scattering in the situation of interest here). When the scattering particles

are identical - as in the case of particle - particle scattering here, R1 = R2 = R and we

have to add the contribution of exchange scattering. (55) is modified to

TNRm (p1, p2, p3, p4, λB, b4) =− 4i
√
s sin(πνm)

(
E(p1, p2, p3)

√
t

u
− isgn(νm)

)
− i(cos(πνm)− 1)I(p1, p2, p3, p4)

+ a

[
−4i
√
s sin(πνm)

(
−E(p1, p2, p3)

√
u

t
− isgn(νm)

)
− i(cos(πνm)− 1)I(p2, p1, p3, p4)

]
(56)

where the sign a = 1 if the R3 is symmetric in the Rs while a = −1 if R3 is antisymmetric

product of 2 Rs (in the case that the scattering particles are fermionic, a has an additional

overall -1). In writing (56) we have used the fact that E(p2, p1, p3) = −E(p1, p2, p3).
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Non-relativistic limit of S-channel scattering In the S-channel νm = λB in the

large N limit so the S-channel S-matrix must reduce, in the limit (46), to

(T SB)NR(p1, p2, p3, p4, λB, b4) =4i
√
s sin(πλB)

(
E(p1, p2, p3)

√
t

u
+ isgn(λB)

)
− i(cos(πλB)− 1)I(p1, p2, p3, p4).

(57)

This prediction for the non-relativistic limit of the S-matrix in the S-channel has several

striking features.

• TBS is not an analytic function of kinematic variables. The term proportional to the

δ function in that expression is singular, and is infact proportional to the identity

scattering matrix (see subsection 1.2.3).

• TBS is not an analytic function of λB at λB = 0 (because of the term proportional to

sgn(λB). )

• TBS is universal, in the sense that it is independent of b4 in this limit.

As we will see below, the last two features are artifacts of the non-relativistic limit. On

the other hand we will now argue that the last the term in (53) ∝ δ(θ) is an exact feature

of the S-matrix at all energy scales.

The term proportional to δ(θ) in (53) was infact missed in the original analysis by

Aharonov and Bohm. The presence of this term was discovered much later by Ruijsenaars

[17] (see also the later papers [15, 20–22] for further elaboration) where it was also pointed

out that this contact term is necessary to unitarize Aharonov-Bohm scattering (see the

next subsection for a review of this fact). In the rest of this subsection we will present a

simple physical interpretation for this part of the Aharonov-Bohm S-matrix.

As we have reviewed extensively in (1.2.3), the scattering matrix is postulated the form

S = I + iT where the factor I accounts for the unscattered part of the wave packet. In

the context of Aharonov-Bohm scattering, however, half of this unscattered wave packet

passes above the scatterer and so picks up the phase eiπνm while the other half passes below

and so picks up the phase e−iπνm . The symmetry between up and down ensures that the

part of the unscattered part of the S-matrix is modulated by a factor cos(πνm) as it passes

by the scatterer. In the current context, consequently, we should expect

S = cos(πνm) + iT ′
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where T ′ is an analytic function of momentum. If we insist nonetheless on using the usual

split S = I + iT then we will find

T = −i(cos(πνm)− 1)I + T ′

(where T ′ is an analytic function of the scattering angle) in perfect agreement with (55).

As our physical explanation of the last term on the RHS of (55) makes no reference to the

non-relativistic limit, we expect this term to be an exact feature of the S-matrix in every

channel, even away from the non-relativistic limit.

All our comments about the term proportional to I in the S-matrix hold also for the T

and the U -channels; the last term in (55) is expected to be exact in these channels as well.

As we have noted above, however, in these channels νm ≤ O( 1
N

) so that cos(πνm) − 1 ≤
O( 1

N2 ). It follows that the O( 1
N

) computations of these scattering matrices presented in

this chapter will be insensitive to these terms.

Non-relativistic limit of scattering in the other channels As we have seen

above, νm is of order 1
N

or smaller in the other three scattering channels. All the calculations

in this chapter are done to leading order in the 1
N

, and so capture the first term in the Taylor

expansion in νm of the scattering amplitude. In this subsubsection we merely emphasize

the simple but confusing fact that the non-relativistic limit of this term need not agree

with the first term in the Taylor expansion of the non-relativistic limit (55) (this is an

order of limits issue).

Let us consider a simple example for how this might work. Define y = νm(4m2)
s−4m2 , and

consider the function

f =
ey − e−y
ey + e−y

.

Taylor expanding this function to first order in νm, we find

f = 2y +O(ν2
m).

The non-relativistic limit the first term in this expansion diverges like y. On the other

hand if we first take the non-relativistic limit (46)

f = sgn(νm).

Conservatively, therefore, we should conclude that the results of this subsection make
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no sharp prediction for the non-relativistic limit of the scattering amplitudes in the U and

T -channels. This is certainly the case for the term independent of θ in (53); as in the toy

example above, this term is non-analytic in νm, and so cannot be Taylor expanded in νm,

and so makes no prediction for the non-relativistic limit of the Taylor expansion.

On the other hand the term in (53) proportional to cot
(
θ
2

)
and δ(θ) are both analytic

in θ, and one might optimistically hope that the Taylor expansion of these terms in νm

will accurately capture the non-relativistic limits of the scattering amplitudes in the U and

the T -channels. Below we will see that this is indeed the case, though it works in a rather

trivial way.

1.2.7 Constraints from unitarity

As we have already remarked above, the S matrix in any quantum theory obeys the

equation S†S = 1. In subsection 1.2.3 we expanded this equation out in terms of the

T-matrix to obtain (31).

In a general quantum field theory (31) does not constitute a closed equation for 2→ 2

scattering because of the terms indicated with the . . . - the contributions from 2 × n

scattering - in the RHS of (31). It is easily verified, however, that at leading order in the

large N limit in the theories under consideration the contribution of 2 → n processes to

the RHS of (30) is suppressed, compared to the LHS, by a factor of 1

N
n−2
2

. In the large N

limit of interest to this chapter, it follows that we can drop the . . . on the RHS of (31),

which then turns into a powerful nonlinear closed constraint on 2 → 2 scattering matrix

elements.

Constraints from unitarity in the various channels Let us work out the specific

form of this constraint in the special case of particle - antiparticle scattering. Using (35),
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we find

− i
[
(TT (p1, p2,−p3,−p4)− T ∗T (p3, p4, p1, p2))

× (2π)3

(
δimδjn −

1

N
δijδmn

)
(2π)3δ3(p1 + p2 − p3 − p4)

]
− i
[
(TS(p1, p2,−p3,−p4)− T ∗S(p3, p4,−p1,−p2)) δ3(p1 + p2 − p3 − p4)

1

N
δijδmn

]
=

∫
d3l

(2π)3

d3r

(2π)3

[
(2π)2θ(l0)θ(r0)δ(r2 + c2

B)δ(l2 + c2
B)

× (2π)6δ3(p1 + p2 − p3 − p4)δ3(p1 + p2 − l − r)

×
((

δimδjn −
1

N
δijδmn

)
TT (p1, p2,−l,−r)T ∗T (p3, p4,−l−, r)

+
1

N
TS(p1, p2,−l,−r)T ∗S(p3, p4,−l,−r)δijδmn

)]
.

(58)

Equating the coefficients of the different index structures on the LHS and RHS we conclude

that

− i (TT (p1, p2,−p3,−p4)− T ∗T (p3, p4,−p1,−p2)) δ3(p1 + p2 − p3 − p4)

=

∫
d3l

(2π)3

d3r

(2π)3

[
(2πi)2θ(l0)θ(r0)δ(r2 + c2

B)δ(l2 + c2
B)

× δ3(p1 + p2 − p3 − p4)(2π)3δ3(p1 + p2 − l − r)

× TT (p1, p2,−l,−r)T ∗T (p3, p4,−l,−r)
]
,

(59)

and that

− i (TS(p1, p2,−p3,−p4)− T ∗S(p3, p4,−p1,−p2)) δ3(p1 + p2 − p3 − p4)

=

∫
d3l

(2π)3

d3r

(2π)3

[
(2πi)2θ(l0)θ(r0)δ(r2 + c2

B)δ(l2 + c2
B)

× δ3(p1 + p2 − p3 − p4)(2π)3δ3(p1 + p2 − l − r)

× TS(p1, p2,−l,−r)T ∗S(p3, p4,−l,−r)
]
.

(60)

Now recall that the scattering matrix TT is O( 1
N

). It follows that the RHS of (59) is

subleading in 1
N

compared to the LHS. In the large N limit, consequently, (59) may be
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rewritten as

(TT (p1, p2,−p3,−p4)− T ∗T (p3, p4,−p1,−p2)) = 0. (61)

Applying the same reasoning to particle-particle scattering, we reach the identical conclu-

sion for U -channel scattering. It is easily verified that the slightly trivial, linear equations

(61) (and the analogous equation for U -channel scattering) are infact obeyed by the exact

solutions for TT and TU presented below15

On the other hand the S-channel scattering matrix TBS is O(1) in the large N limit.

Consequently, the nonlinear equation (60) is a rather nontrivial constraint on S-channel

scattering.

S-channel unitarity constraints in the center of mass frame The constraint

on the S-channel S-matrix is most conveniently worked out in the center of mass frame.

We choose the scattering momenta to take the form

p1 =

(√
p2 + c2

B, p, 0

)
, p2 =

(√
p2 + c2

B,−p, 0
)
,

p3 =

(
−
√
p2 + c2

B,−p cos(α),−p sin(α)

)
, p4 =

(
−
√
p2 + c2

B, p cos(α), p sin(α)

)
,

(62)

In this frame TS = TS(p, α) or T = T (s, α) (recall s = 4(p2 + c2
B) ) and the constraint from

unitarity is simply a constraint on this function of two variables.

In order to work out the precise form of this constraint we first process the delta

functions inside the integrals.∫
d3l

(2π)3

d3r

(2π)3
(2π)2θ(l0)θ(r0)δ(r2 + c2

B)δ(l2 + c2
B)(2π)3δ3(p1 + p2 − l − r)

=

∫
d3l

(2π)3
(2π)2θ(l0)θ(−l0 + (p1)0 + (p2)0)δ(l2 + c2

B)δ((p1 + p2)2 − 2(p1 + p2) · l)

=
1

8π
√
s

∫
dθdl0d`sδ(l0 −

√
p2 + c2

B)δ(`s − p2)

=
1

8π
√
s

∫
dθ

(63)

where Ep =
√
p2 +m2 =

√
s

2
and `s = l2 + l20. It follows that the unitarity constraint is

15This is related to the fact that these scattering amplitudes have no branch cuts in the physical domain
for T and U -channel scattering.
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given by

− i (TS(s, α)− T ∗S(s,−α)) =
1

8π
√
s

∫
dθTS(s, θ)T ∗S(s,−(α− θ)) (64)

(this is essentially identical to the manipulation that produced the product rule (27)).

Unitarity of the non-relativistic limit As an example for how this works, we will

now demonstrate that the non-relativistic limit of the S-channel S-matrix, (55), obeys the

constraints of unitarity. In the center of mass frame (55) takes the form

TS(
√
s, α) = H(

√
s)T (α) +W1(

√
s)− iW2(

√
s)δ(α), (65)

where

T (α) = i cot
(α

2

)
,

and

H(
√
s) = 4

√
s sin(πλB),

W1(
√
s) = −4

√
s sin(πλB)sgn(λB),

W2(
√
s) = 8π

√
s (cos(πλB)− 1) .

(66)

With an eye to application later in the chapter, we will first work out the unitarity con-

straint for arbitrary H(
√
s), W1(

√
s) and W2(

√
s), specializing to the specific forms (66)

only at the end.

Using the formula∫
dθPv cot

(
θ

2

)
Pv cot

(
α− θ

2

)
= 2π − 4π2δ(α), (67)
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(see footnote16 for a check of (67)), (64) reduces to

H −H∗ =
1

8π
√
s

(W2H
∗ −HW ∗

2 ) ,

W2 +W ∗
2 = − 1

8π
√
s

(
W2W

∗
2 + 4π2HH∗

)
,

W1 −W ∗
1 =

1

8π
√
s

(W2W
∗
1 −W ∗

2W1)− i

4
√
s

(HH∗ −W1W
∗
1 ) .

(70)

It is easily verified that the specific assignments (66) obey the equation (70). The first

equation in (70) is obeyed because H and W2, in (70), are both real. The third equation

in (70) is obeyed because W1 is also real and |H|2 = |W1|2. The second equation in (66)

reduces to the true trigonometric identity

2 (1− cos(πλB)) = (1− cos(πλB))2 + sin2(πλB).

We conclude that the Aharonov-Bohm scattering amplitude obeys the equations of unitar-

ity, though in a slightly trivial fashion as the coefficient of δ(θ) was the only part of the

S-matrix that had an imaginary piece.

Unitarity constraints on general S-matrices of the form (65) As we have seen

in the last subsubsection, the functions Pv cot
(
θ
2

)
, 1 and δ(θ) form a closed algebra under

convolution (i.e the convolution of any two linear combinations of these functions is, once

again, a linear combination of the same three functions). This nontrivial fact allowed us

16 We can check the (67) by calculating the Fourier coefficients,∫
dα

2π
e−inα

∫
dθPv cot

(
θ

2

)
Pv cot

(
α− θ

2

)
=

∮
dω

2πω
ω−n

∮
dz

z
Pv

(
z + 1

z − 1

)
Pv

(
z + ω

ω − z

)

=


−i
∮
dz Pv

(
z+1
z−1

)
z−n−1 = −2π (n > 0)

0 (n = 0)

i
∮
dz Pv

(
z+1
z−1

)
z−n−1 = −2π (n < 0)

(68)

where z = eiθ and ω = eiα. By comparing (68) with Fourier coefficients of delta function,

δ(α) =
1

2π

∞∑
n=−∞

einα, (69)

we can immediately check (67).
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in the last subsection to find a simple solution of the unitarity equation of the form (65)

(this was simply the Aharonov-Bohm solution).

Given the closure of (65) under convolution, it is tempting to conjecture that the

scattering matrix in the S-channel takes the form (65) even outside the non-relativistic

limit (we will find independent evidence below that this is indeed the case). With this

conjecture in mind, in this subsection we will inquire to what extent the requirement of

unitarity (70) determines S-matrices of the form (65).

Let us first do some counting. The data in S-matrices of the form (65) is three complex

or six real functions of s and λB. Unitarity provides 3 real equations. It follows that if we

impose no more than the condition of unitarity, the general S-matrix is given in terms of

three unknown real functions.

In order to make further progress we need more information. In the previous subsection

we have already argued that, on physical grounds, we expect the form of W2 in (66) to

be exact even away from the non-relativistic limit. If we make this assumption, unitarity

gives us 3 real equations for the remaining 4 unknown functions, and so the S-matrix is

determined in terms of one unknown function. Let us see how this works in more detail.

The first equation in (70) forces the function H to be real. The second equation in (70)

then forces H to be given exactly by the expression in (66). We are left with a single

unknown complex function W1 subject to a single real equation; the third of (70).

Let us summarize. If we assume that the S-matrix takes the form (65) and further

assume that the expression for W2 in (66) is exact, then unitarity also forces the expression

for H in (66) to be exact, and constrains W1 to obey the third of (66), which is one real

equation for the unknown complex function W1.

1.3 Summary: method, results and conjectures

In this section we summarize the method we use to compute S-matrices and list our prin-

cipal results and conjectures.

1.3.1 Method

In this chapter we compute the functions TT , TUd and TUe for both the bosonic and the

fermionic theories. We also present a conjecture for the functions SS. We then study the

transformation of our results under Bose-Fermi duality. The method we employ to compute

the S-matrices is completely straightforward; we sum all the off shell planar graphs with
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(a)

Figure 3: This diagram would contain a diagrammatic representation of the exact ampli-
tude V as a sum over ladders, where the ‘rungs’ in the ladder are the triple line propagators.

(a)

Figure 4: A diagrammatic representation of the effective single particle exchange four point
amplitude for bosons. This amplitude is give by the sum of the tree level exchange of a
gluon, dressed tree level exchanges of the gluon and the point interaction controlled by the
parameter b4

four external legs, and then obtain the S-matrices by taking the appropriate on shell limits.

Following [2] and several subsequent papers, we work in the lightcone gauge A− = 0.
17 The off shell four point amplitude receives contributions from an infinite number of

Feynman graphs. The graphs that contribute may be enumerated very simply; they are

simply the sum of all ladder graphs Fig 3, where the triple line is the effective exchange

interaction between fundamental particles. In the case of the bosonic theory, for instance,

the triple line is given diagrammatically by Fig. 4. It is easy to convince oneself that the

all orders amplitude depicted in Fig. 3 obeys the integral equation depicted in Fig 5 [2, 6].

According to the labeling of momenta in Fig. 5, qµ is the three momentum that flows,

from left to right in graphs of Fig. 3. qµ is a ‘constant of motion’ in the sense that if a

17Our notation is as follows. x+, x− and x3 are a set of coordinates on Minkowski space. x+ and x−

are lightcone coordinates while x3 is a spatial coordinate.

39



(a)

Figure 5: A diagrammatic depiction of the integral equation obeyed by offshell four point
scattering amplitudes. The blob here represents the all orders scattering amplitude while
the triple line represents the effective single particle exchange four point interaction between
quanta. Here, and in every Feynman diagram in this chapter, all momenta flow in the
direction of the arrows of the propagators.

given ladder diagram has a particular value of qµ then every sub ladder within the original

ladder also has the same value of qµ (this is not true of the momenta p and k in Fig. 3).

This implies that different values of qµ do not ‘mix’ in the integral equation of Fig. 5.

In other words Fig. 5 represents an infinite set of decoupled integral equations; one for

every value of qµ. It was pointed out in [6] that the integral equations in Fig. 5 simplifies

dramatically when q± = 0. The authors of [6] infact solved the relevant integral equations

for the bosonic theory in massless limit. In this chapter to find exact formulae for the

sum over planar graphs with four external lines with q± = 0 by explicitly solving the

integral equations relevant to that case. In the case of the bosonic theory our results are a

generalization of those of [6] to nonzero mass18 The integral equation turns out to be more

complicated to solve in the case of the fermionic theory, but we are able to find the exact

solution in this case as well.

With exact off shell results in hand, we proceed to evaluate the S-matrices for our

problem by taking the appropriate on shell limits. The on shell condition determines the

energy of each of the participating particles (in terms of their momenta) upto a sign. Energy

and momentum conservation require that two of the external lines have positive energy

while the other two have negative energy, leaving a total of six distinct cases. 19 Recalling

18[6] performed this summation in order to evaluate three point functions of gauge invariant operators
in special kinematical configurations.

19We say an external line has positive energy if p0 is positive (or p0 is negative) going into the graph. An
external line with an ingoing arrow and positive energy represents an initial particle. An external line with
an outgoing arrow and positive energy into the graph (or negative energy in the direction of the arrow)
is an ingoing antiparticle. An external line with an arrow going into the graph and negative energy going
into the graph is an outgoing antiparticle. An external line whose arrow points out of the graph and whose
energy is negative going into the graph (or positive in the direction of the arrow) is an outgoing particle.
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that external lines with positive energy represent initial states while external lines with

negative energy represent final states, it is not difficult to convince oneself that one of these

six cases determines the function TS, another determines TT , two others determine TUd ,

TUe respectively, while the last two processes compute the CPT conjugates of scattering

in the U -channel. In other words the four different scattering functions introduced, in the

previous subsection, are all different limits of the single four point amplitudes determined

by the integral equation of Fig. 5.

As we have emphasized above, we have been able to evaluate the off shell four point am-

plitude only in the special case q± = 0. This technical limitation has different implications

for our ability to compute the S matrices in the different channels.

qµ turns out to be the center of mass 3 momentum for S-channel scattering. The

condition q± = 0 ensures that the center of mass energy is spacelike; this is impossible for

an onshell scattering process. It follows that the technical limitations which restricted us

to q± = 0 forbid us from directly computing S-channel scattering, a fact that will force us

to resort to conjecture in this channel.

In the T and U -channels, on the other hand, q represents the 3 momentum transfer

between an initial and final particle. As all participating particles have the same mass,

the 3 momentum transfer is always spacelike (this is most easily seen in the center of mass

frame), there is no barrier to setting q± = 0 in these processes. For an arbitrary T or

U -channel process, it is always possible to find an inertial frame in which q± = 0. In these

channels, in other words, the restriction to q± = 0 is simply a choice of frame. Assuming

that the S-matrix for our process is Lorentz invariant, the on shell limits of our off shell

four point amplitude completely fix the S-matrix in these channels. We are thus able to

report definite results for the scattering matrices in these channels.

1.3.2 Results in the U and T channels

In this subsection we simply present our final results for U and T -channel scattering,

separately for the bosonic and the fermionic theories. We first report our results for the
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bosonic theory. In the T -channel (adjoint exchange) we find

TBT (p1, p2, p3, p4, kB, λB, b̃4, cB)

=E(p1, p2, p3)
4iπ

kB

√
u t

s

− 4 iπ

kB

√
−t (b̃4 − 4πiλB

√−t)eiπλB + (b̃4 + 4πiλB
√−t)e2iλB tan−1

(
2|cB |√
−t

)

−(b̃4 − 4πiλB
√−t)eiπλB + (b̃4 + 4πiλB

√−t)e2iλB tan−1
(

2|cB |√
−t

)

=E(p1, p2, p3)
4iπ

kB

√
u t

s

− 4 iπ

kB

√
−t (b̃4 − 4πiλB

√−t) + (b̃4 + 4πiλB
√−t)e−2iλB tan−1

( √
−t

2|cB |

)

−(b̃4 − 4πiλB
√−t) + (b̃4 + 4πiλB

√−t)e−2iλB tan−1
( √
−t

2|cB |

)

(71)

where we have used

tan−1(x) + tan−1(
1

x
) =

π

2
, for x > 0

and b̃4 = −b4 + 2πλ2
B|cB|. Here form of the tan−1(x) is

tan−1 x =
1

2i
ln

(
1 + ix

1− ix

)
(72)

and the domain and the branch cut structure of the function tan−1(x) are depicted in

Fig. 6.

In the special case b4 →∞, TT reduces to

TB∞T (p1, p2, p3, p4, kB, λB, cB) =E(p1, p2, p3)
4iπ

kB

√
u t

s

− 4 iπ

kB

√
−t 1 + e

−2iλB tan−1
( √
−t

2|cB |

)

1− e−2iλB tan−1
( √
−t

2|cB |

) .

(73)

In the U -channel we find

TBUd(p1, p2, p3, p4, kB, λB, b̃4, cB)

=E(p1, p2, p3)
4iπ

kB

√
s t

u

− 4 iπ

kB

√
−t (b̃4 − 4πiλB

√−t) + (b̃4 + 4πiλB
√−t)e−2iλB tan−1

( √
−t

2|cB |

)

−(b̃4 − 4πiλB
√−t) + (b̃4 + 4πiλB

√−t)e−2iλB tan−1
( √
−t

2|cB |

) .
(74)
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In the limit b4 →∞ we have

TB∞Ud (p1, p2, p3, p4, kB, λB, cB) =E(p1, p2, p3)
4iπ

kB

√
s t

u

− 4 iπ

kB

√
−t 1 + e

−2iλB tan−1
( √
−t

2|cB |

)

1− e−2iλB tan−1
( √
−t

2|cB |

) .
(75)

Finally, the amplitude TBUe is obtained from TBUd simply by interchanging the two initial

momenta. The usual symmetry of bosonic amplitudes immediately implies

TBUe(p1, p2, p3, p4, kB, λB, b4, cB) = TBUd(p2, p1, p3, p4, kB, λB, b4, cB) (76)

with a similar formula for S∞Ue(p1, p2, p3, p4, kB, λB, cB).

We now report our results for the fermionic theory. In this case S-matrix in the T -

channel is given by

T FT (p1, p2, p3, p4, kF , λF , cF )

=− E(p1, p2, p3)
4iπ

kF

√
u t

s

+
4 iπ

kF

√
−t eiπ(λF−sgn(mF )) + e

2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)

eiπ(λF−sgn(mF )) − e2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)

=− E(p1, p2, p3)
4iπ

kF

√
u t

s
+

4 iπ

kF

√
−t 1 + e

−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

)

1− e−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

) .

(77)

In the U -channel we find

T FUd(p1, p2, p3, p4, kF , λF , cF )

=−
(
− E(p1, p2, p3)

4iπ

kF

√
s t

u

+
4 iπ

kF

√
−t eiπ(λF−sgn(mF )) + e

2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)

eiπ(λF−sgn(mF )) − e2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)
)

= −
(
− E(p1, p2, p3)

4iπ

kF

√
s t

u
+

4 iπ

kF

√
−t 1 + e

−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

)

1− e−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

)
)
.

(78)
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Finally, the usual symmetry for fermionic amplitudes immediately implies that

T FUe(p1, p2, p3, p4, kF , λF , cF ) = −T FUd(p2, p1, p3, p4, kF , λF , cF ). (79)

As we have mentioned earlier in this introduction, in the limit b4 → ∞, the bosonic

theory studied in this chapter has been conjectured to be dual to the fermionic theory,

when the parameters of the two theories are related by (14). Our results for the scattering

amplitudes reported above are in perfect agreement with this conjecture. In particular it

may be verified that, provided the inequality (15) is obeyed, the bosonic and fermionic

S-matrices (including the identity pieces, see subsections 1.2.3 and 1.2.4)

SB∞T (p1, p2, p3, p4,−kF , λF − sgn(λF ), cF ) = SFT (p1, p2, p3, p4, kF , λF , cF ),

SB∞Ud (p1, p2, p3, p4,−kF , λF − sgn(λF ), cF ) = −SFUd(p1, p2, p3, p4, kF , λF , cF ),

SB∞Ue (p1, p2, p3, p4,−kF , λF − sgn(λF ), cF ) = SFUe(p1, p2, p3, p4, kF , λF , cF ),

SB∞Us (p1, p2, p3, p4,−kF , λF − sgn(λF ), cF ) = SFUa(p1, p2, p3, p4, kF , λF , cF ),

SB∞Ua (p1, p2, p3, p4,−kF , λF − sgn(λF ), cF ) = SFUs(p1, p2, p3, p4, kF , λF , cF ).

(80)

1.3.3 A conjecture for identity exchange and modified crossing symmetry

In the case of the bosonic theory we conjecture that S matrix in the S-channel is given by

SBS = cos(πλB)I(p1, p2, p3, p4) + i
sin(πλB)

πλB
T trialS (81)

where T trialS is the S-channel S-matrix obtained from analytic continuation of the T or

U -channel results using the usual rules of ‘naive’ crossing symmetry, and is given by

T trialS = (πλB) 4 i
√
sE(p1, p2, p3)

√
u

t

+ (πλB) 4
√
s


(

4πλB
√
s+ b̃4

)
+ eiπλB

(
−4πλB

√
s+ b̃4

)( 1
2

+
cB√
s

1
2
− cB√

s

)λB
(

4πλB
√
s+ b̃4

)
− eiπλB

(
−4πλB

√
s+ b̃4

)( 1
2

+
cB√
s

1
2
− cB√

s

)λB
 .

(82)
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In the limit b4 →∞, T trialS simplifies to

T trialS = (πλB) 4 i
√
s

E(p1, p2, p3)

√
u

t
+


1 + eiπλB

(
1
2

+
cB√
s

1
2
− cB√

s

)λB
1− eiπλB

(
1
2

+
cB√
s

1
2
− cB√

s

)λB

 . (83)

In a similar manner we expect that the fermionic S-matrix is given by

SFS = cos(πλF )I(p1, p2, p3, p4) + i
sin(πλF )

πλF
T trialF

= sin(πλF )

(
4E(p1, p2, p3)

√
s t

u
+ 4
√
s

1 + e
−2i(λF−sgn(mF )) tan−1

( √
s

2|cF |

)

1− e−2i(λF−sgn(mF )) tan−1
( √

s
2|cF |

)
)

+ cos(πλF )I(p1, p2, p3, p4).

(84)

It follows from (81), (84) and the results of the previous subsection the fermionic and

bosonic S-channel S matrices map to each other under duality upto an overall minus sign

(recall that overall phases in an S-matrix are unobservable and so unimportant).

1.4 Scattering in the scalar theory

In this section we compute the four point scattering amplitude in the theory of fundamental

bosons coupled to Chern-Simons theory. Very briefly we integrate out the gauge boson to

obtain an offshell effective four boson term in the quantum effective action for our theory,

given by

1

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3
V (p, k, q)φi(p+ q)φ̄j(−(k + q))φ̄i(−p)φj(k). (85)

We then take an appropriate on shell limit to evaluate the S-matrix.
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1.4.1 Integral equation for off shell four point amplitude

As explained in the previous section, V (p, k, q) obeys the integral equation depicted in Fig

5. In formulas

V (p, k, q) = V0(p, k, q)− i
∫

d3r

(2π)3
V (p, r, q3)

NV0(r, k, q3)

(r2 + c2
B − iε) ((r + q)2 + c2

B − iε)
,

V (p, k, q) = V0(p, k, q)− i
∫

d3r

(2π)3
V0(p, r, q3)

NV (r, k, q3)

(r2 + c2
B − iε) ((r + q)2 + c2

B − iε)
,

(86)

where the ‘one particle’ amplitude V0 is given by the sum of graphs in Fig. 4. Summing

these graphs (see Appendix 1.9.4 for details) we find20

NV0(p, k, q3) = −4πiλBq3
(k + p)−
(k − p)−

+ b̃4,

b̃4 = 2πλ2
BcB − b4.

(87)

Here

d3r = dr0dr1dr3, k± =
±k0 + k1√

2
. (88)

21 (87) is actually ambiguous as stated. The first term on the RHS of (87) is proportional

to 1
(k−p)− : the gauge boson propagator in lightcone gauge. This term is ill defined when

k− = p−, a point that lies on the integration contour on the RHS of (34).

The reason that the gauge boson has a codimension two singularity in momentum

space is that the choice of lightcone gauge, A− = 0, leaves unfixed the residual gauge

transformations that depend only on x+ and x3. In this chapter we resolve this ambiguity

of the propagator at p− = 0 with the ‘Feynman’ prescription

1

p−
→ p+

p+p− − iε
. (89)

We adopt this prescription for several reasons.

• 1. It is the only resolution of the singularity of the gauge propagator that permits

20 If we include other multi-trace terms such as
λp

Np−1 (φ̄φ)p in the action (5), this effect only reflects a

shift of b̃4 by a linear term of cp−2
B λp with a suitable coefficient. The rest of calcuation of 2→ 2 scattering

is the same as presented in this chapter.
21Note in that our definition of k− is the negative of the definition usually adopted in studies of

Minkowskian physics. We adopt this definition because it will prove convenient once we continue to
Euclidean space.
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continuation to Euclidean space. It therefore appears to be the only resolution of

the singularity that can make contact with all the beautiful Euclidean results of

[2–6, 8–11].

• 2. Its use leads to sensible results with no unphysical divergences. 22

• 3. In special cases, results obtained by use of this prescription turn out to agree with

results in the covariant Landau gauge (see subsection 1.5 below).

Of course the pragmatic reasons spelt out above are ultimately unsatisfactory; we

would like eventually to have a justification of this prescription on physical grounds (such a

justification would presumably involve a careful accounting for the unfixed gauge symmetry

of the problem). However we leave this potentially subtle exercise to future work.

1.4.2 Euclidean continuation

In order to solve the integral equation (86) we will find it convenient to use a standard

maneuver to ‘continue this equation to Euclidean space’. Operationally, the procedure is

to define a Euclidean amplitude via V E(p0, k0) = V (ip0, ik0). 23 Once the amplitude V E

has been solved for, the amplitude of real physical interest, V , is obtained by the inverse

relation

V (p0, k0) = V E(−ip0,−ik0).

Even though the method of Euclidean continuation is standard in the study of scattering

amplitudes, for completeness we recall the justification of this method, in the context of

our problem, in Appendix 1.9.4. We emphasize that this procedure is valid only when the

singularities of all propagators in the Lorentzian problem are resolved by the Feynman iε

prescription. This is one of the main reasons we adopted the iε prescription of (89) above.

22Other potential resolutions of this singularity appear to lead to pathological results. For instance the
replacement of 1

p−
by its principal value leads to unacceptable divergences in propagators.

23In this paragraph we are interested only in the dependence of all quantities on p0 and k0 so we suppress
the dependence of V on other components of the momenta.
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The Euclidean continuation of the scattering amplitude obeys the integral equation

V E(p, k, q) = V E
0 (p, k, q) +

∫
d3r

(2π)3
V E

0 (p, r, q3)
NV E(r, k, q3)

(r2 + c2
B) ((r + q)2 + c2

B)

V E(p, k, q) = V E
0 (p, k, q) +

∫
d3r

(2π)3
V E(p, r, q3)

NV E
0 (r, k, q3)

(r2 + c2
B) ((r + q)2 + c2

B)

NV E
0 (p, k, q3) = −4πiλBq3

(k + p)−
(k − p)−

+ b̃4

(90)

where

d3r = dr0dr1dr3, k± =
k1 ± ik0√

2
. (91)

Note, in particular, that k± are now complex conjugates of each other. Below we will

sometimes use the notation

k2
s = 2k+k− = k2

1 + k2
0. (92)

1.4.3 Solution of the Euclidean integral equation

The integral equation (90) may be solved in a completely systematic manner. We have

presented a detailed derivation of our solution of this equation in Appendix 1.9.4. In this

subsection we simply quote our final results.

Our solution takes the form

NV = e
−2iλB

(
tan−1

(
2(a(k))
q3

)
−tan−1

(
2(a(p))
q3

))(
4πiλBq3

p− + k−
p− − k−

+ j(q3, λB)

)
(93)

where

a(p) =
√

2p+p− + c2
B (94)

and

j(q3, λB) = 4πiλBq3


(

4πiλBq3 + b̃4

)
e

2iλB tan−1
(

2cB
q3

)
+
(
−4πiλBq3 + b̃4

)
eπiλBsgn(q3)(

4πiλBq3 + b̃4

)
e

2iλB tan−1
(

2cB
q3

)
−
(
−4πiλBq3 + b̃4

)
eπiλBsgn(q3)

 .

(95)

It is not difficult to verify that

j(q3, λB) = j(−q3, λB) = j(q3,−λB) = j(−q3,−λB) = j(|q3|, |λB|). (96)

48



In other words, j is an even function of q3 and λB separately. It follows in particular that

j(q, λB) = 4πiλB|q|


(

4πiλB|q|+ b̃4

)
e2iλB tan−1( 2cB

|q| ) +
(
−4πiλB|q|+ b̃4

)
eπiλB(

4πiλB|q|+ b̃4

)
e

2iλB tan−1
(

2cB
|q3|

)
−
(
−4πiλB|q|+ b̃4

)
eπiλB

 . (97)

This formula may be rewritten as follows. Let us define

H(q) =

∫
d3r

(2π)3

1

(r2 + c2
B) ((r + q)2 + c2

B)
=

−tan−1
(

2cB
|q3|

)
4π|q3|

+
1

8|q3|


=

tan−1
(
|q3|
2cB

)
4π|q3|

=
1

8πi|q| ln
(

1
2

+ cB
iq

−1
2

+ cB
iq

)
.

(98)

Here to get the last line, we have used the formula (72). H(q) is simply the one loop four

boson scattering amplitude in φ4 theory. In terms of this function we have

j(q) = 4πiλB|q|


(

4πiλB|q|+ b̃4

)
+
(
−4πiλB|q|+ b̃4

)
e8iπλB |q|H(q)(

4πiλB|q|+ b̃4

)
−
(
−4πiλB|q|+ b̃4

)
e8iπλB |q|H(q)

 . (99)

Using the last line in (98) j(q) may also be rewritten as

j(q) = 4πiqλB


(

4πiqλB + b̃4

)
+
(
−4πiqλB + b̃4

)( 1
2

+
cB
iq

− 1
2

+
cB
iq

)λB
(

4πiqλB + b̃4

)
−
(
−4πiqλB + b̃4

)( 1
2

+
cB
iq

− 1
2

+
cB
iq

)λB
 . (100)

Transformation under parity While parity transformations are not a symmetry

of the bosonic theory, the simultaneous action of a parity transformation and the flip in

the sign of kB (or λB) is symmetry of this theory. Every physical quantity in this theory

must, therefore, transform in a suitably ‘nice’ way under the combined action of these two

transformations.

The off shell Greens function computed in the previous subsection is not physical as it

is not gauge invariant, and so need not transform ‘nicely’ under parity operations. Indeed

it is easily verified by inspection that the amplitude V is left invariant by a reflection in the
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3 direction accompanied by a flip in the sign of λB. However the combined operation of a

flip in the sign of λB and a reflection in either the 0 or 1 directions is not an invariance of

this amplitude. The reason for this asymmetry is that reflections in the 3 direction are the

only parity transformations that commute with the choice of light cone gauge (for instance

a reflection in the 1 direction changes the gauge A− = 0 to A+ = 0. ).

As we will see below, the physical S matrix indeed enjoys the full parity symmetry

expected of this theory.

1.4.4 Analytic continuation of j(q)

In our study of S-channel scattering later in this chapter we will need to continue the func-

tion j(q) to q2 = −s. This analytic continuation is achieved by setting q = limα→π
2
e−iα

π
2
√
s

or equivalently by setting

q → −i
(√

s+ iε
)

The precise analytic continuation we will use is the following. We will take the function

j(q) to be defined by (99), where H(q) is defined by (98). The function tan−1(x) that

appears in some versions of the definition of H(q) is taken to have the analytic structure

depicted in Fig. 6 24

The function H(q) (see (98) ) analytically continues to HM(
√
s)

HM(
√
s) =− i

∫
d3r

(2π)3

1

(r2 + c2
B − iε) ((r + q)2 + c2

B − iε)

=
1

8π
√
s

ln

(
1
2

+ cB√
s+iε

−1
2

+ cB√
s+iε

)
.

(102)

For
√
s < 2cB, the factors of iε make no difference in the formula (102) and may simply be

dropped. When
√
s > 2cB, the factors of iε choose out the branch of logarithmic function

24This analytic structure follows from the formula

tan−1 x =
1

2i
ln

(
1 + ix

1− ix

)
. (101)

if we define the logarithmic to be the usual log for positive real values, but to have a branch cut along the
negative real axis.
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π
2
+ iα

π
2
− iα

−π
2 + iα

−π
2 − iα

x

i

−i

−π
2 + i∞ π

2 + i∞

−π
2 − i∞ π

2 − i∞

(a)

Figure 6: Branch cut structure of the function tan−1 x. α is a real function of x along the
branch cut which vanishes at infinities and becomes ∞ at |Im(x)| = 1.
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and we have

HM(
√
s) =


1

8π
√
s

ln

(
1
2

+
cB√
s

− 1
2

+
cB√
s

)
(
√
s < 2cB)

1
8π
√
s

(
ln

(
1
2

+
cB√
s

1
2
− cB√

s

)
+ iπ

)
(
√
s > 2cB)

. (103)

It follows, in particular, that

−i
(
H(
√
s−H∗(√s)

)
=
θ(
√
s− 2cB)

4π
√
s

. (104)

Let jM denote the analytic continuation of j(q). It follows that

jM(
√
s) =(πλB)(4

√
s)


(

4πλB
√
s+ b̃4

)
+
(
−4πλB

√
s+ b̃4

)
e8πλB

√
sHM (

√
s)(

4πλB
√
s+ b̃4

)
−
(
−4πλB

√
s+ b̃4

)
e8πλB

√
sHM (

√
s)

 ,

jM(
√
s) =



(πλB)(4
√
s)

(4πλB
√
s+b̃4)+(−4πλB

√
s+b̃4)

(
1
2+

cB√
s

− 1
2+

cB√
s

)λB

(4πλB
√
s+b̃4)−(−4πλB

√
s+b̃4)

(
1
2+

cB√
s

− 1
2+

cB√
s

)λB
 , (

√
s < 2cB)

(πλB)(4
√
s)

(4πλB
√
s+b̃4)+eiπλB(−4πλB

√
s+b̃4)

(
1
2+

cB√
s

1
2−

cB√
s

)λB

(4πλB
√
s+b̃4)−eiπλB(−4πλB

√
s+b̃4)

(
1
2+

cB√
s

1
2−

cB√
s

)λB
 , (

√
s > 2cB)

(105)

1.4.5 Poles of the functions j(q) and jM(
√
s)

In this subsection we will analyze the conditions under which the functions j(q) and jM(
√
s)

have poles for real values of their arguments. The conditions are most conveniently pre-

sented in terms of inequalities on b4 for fixed values of all other parameters.

Substituting b̃4 = 2πλ2
BcB − b4 in the formulas (105) and (100) we can see that for

b4 > −2πλBcB(4 − λB) neither of the functions above has a pole at real values of its

argument. When −2πλBcB(4−λB) ≥ b4 ≥ −2πcB(4−λ2
B) the function jM has a pole, but

j has no pole. At the upper end of this interval the pole occurs at
√
s = 2cB. At the lower

end of this interval the pole value is
√
s = 0. For b4 ≤ −2πcB(4−λ2

B), jM(
√
s) has no real

poles, but the function j(q) develops a pole. This pole starts out at q = 0 and migrates to

q =∞ as b4 → −∞.

A pole in the function jM(
√
s) at s = sB signals the presence of a particle - antiparticle

bound state in the singlet channel. As we have seen above, bound states exist only for b4
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less than a certain minimum value. We will now explain how this result fits with physical

intuition; let us first focus on the special case λB = 0. In this case poles exist for b4 ≤ 0. In

the non-relativistic limit a term +
∫
b4

(φ̄φ)2

2N
in the Minkowskian action represents a negative

(attractive) delta function interaction between particles and antiparticles when b4 > 0. It

seems plausible that such an attractive potential could support a bound state, as appears

to be the case. Clearly the binding energy of this system is proportional to b4, and so goes

to zero in the limit b4 → 0. In other words we should expect the mass of the bound state

to be given precisely by 2cB at b4 = 0, exactly as we find. As b4 decreases we should expect

the binding energy to increase, i.e. for the bound state energy to decrease, exactly as we

find. Above a critical value of cB we find above that the binding energy is so large that

the bound state energy vanishes. At even lower values of b4 the vacuum is unstable as it is

energetically favorable for particle - antiparticle pairs to spontaneously bubble out of the

vacuum. This instability is, presumably, signalled by the appearance of the tachyonic pole

in b4. The instability of the vacuum also seems reasonable from the viewpoint of quantum

field theory; a large negative value of b4 the classical scalar potential is unbounded from

below; plausibly the same is true of the exact potential in the quantum effective action in

this regime.

The pattern is very similar at nonzero λB; though the precise values of the critical values

for b4 shift around. Apparently the anyonic interaction in the singlet channel renormalizes

the effective interaction of the theory.

Note that bound states do not exist in the limit b4 →∞, the limit in which the bosonic

theory is dual to the fermionic theory.

It would be interesting to flesh out the qualitative discussion presented in this subsec-

tion. Near the threshold of bound state formation the interacting particles are approxi-

mately non-relativistic, so it may be possible to reproduce the pole mass in this regime by

solving a Schrodinger equation. We leave this to future work.

1.4.6 Various limits of the function j(q).

The explicit form of the function j(q) (here q =
√
|q3|2) is one of the principal compu-

tational results of this section. j(q) has the dimensions of mass. It is a function of one

dimensionless variable λB, and three quantities of mass dimension 1; q, cB and b4. It

follows that j takes the form j = qh(x, y, λB) where

x =
q

2cB
, y =

q

b4

. (106)
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In this subsection we study the behavior of the function j at extreme values of its three

dimensionless arguments.

Large b4 limit When |b|4 � λBq (i.e. when λBy � 1) the function j(q) simplifies to

j(q3, λB) = 4πiλB|q3|
(

1 + e8iπλB |q3|H(q)

1− e8iπλB |q3|H(q)

)
= −4πiλB|q3|

1 + e
−2iλB tan−1

(
|q3|
2cB

)

1− e−2iλB tan−1
(
|q3|
2cB

)
 . (107)

Small λB The function j may be expanded in a Taylor series in λB at fixed values of

x and y. We find

j =
−b4

1 + b4H(q)
− 16π2λ2

Bq
2
3

3b4

(
1

(b4H(q) + 1) 2
− b4H(q)− 1

)
+O(λ4

B). (108)

The limits λB → 0 and b4 →∞ (i.e λB → 0 and y → 0 at fixed x ) commute, so one may

obtain the small λB expansion of (107) by simply setting b4 →∞ in (108).

Note that, in the strict λB → 0 limit,

lim
λB→0

NV (p, k, q3) = lim
λB→0

j(q3) =
−b4

1 + b4

tan−1
(
|q3|
2cB

)
4π|q3|

=
−b4

1 +H(q3)b4

.
(109)

(109) is the well known result for the off shell amplitude in large N φ4 theory. It is easily

verified by directly solving the integral equation (90) at λB = 0.

The limit |λB| → 1 The expression for j(q) simplifies somewhat in the limit λB → 1.

The simplification is especially dramatic if we also take the limit b4 →∞. In the combined

limit y → 0 and λB → 1 (the order of limits does not matter) we have

j(q) =4πiq
ei tan−1( 2cB

q ) − e−i tan−1( 2cB
q )

ei tan−1( 2cB
q ) + e−i tan−1( 2cB

q )

=4πiq(i) tan

(
tan−1

(
2cB
q

))
=− 8πcB.

(110)

The ultra-relativistic limit If cB and b4 are held fixed while
√−t is taken to infinity

(this is the case, for instance, in fixed angle high energy scattering in the U and T -channels,
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see below) , we take x and y to infinity at fixed λB and j simplifies to

j(q) = 4πqλB tan
πλB

2
. (111)

The ultra relativistic limit does not commute with the limit b4 →∞. If b4 is taken to

∞ first and q →∞ next then we work with y → 0, x→∞ at fixed λB and find

j(q) = −4πλBq cot

(
πλB

2

)
. (112)

The ultra relativistic limit also does not commute with the limit λB → 0. At λB = 0

the function j(q) tends to a constant proportional to b4. Physically this is we have a

dimensionless coupling constant at nonzero λB, but only a dimensionful coupling constant

at any finite λB; at zero lambda the theory is very weakly coupled at high energies, and

receives contributions only from tree level graphs.

The massless limit If cB is taken to zero at fixed b4, λB and q (i.e. if x is taken to

infinity at fixed y and λB) then j simplifies to the rational function

j(q) = 4πλBq

(
4πλB sin

(
πλB

2

)
q + b̃4 cos

(
πλB

2

)
4πλB cos

(
πλB

2

)
q − b̃4 sin

(
πλB

2

)) . (113)

The massless limit commutes with the limit b4 → ∞. In this limit (113) reduces to

(112).

The non-relativistic limit in the U and T -channels As we will see below, the

non-relativistic limit in the U and T -channels is obtained by taking cB to infinity at fixed

q. In other words, this limit is obtained by taking x to zero at fixed λB and y. In this limit

2iλB tan−1
(

2cB
q3

)
in (97) reduces to πiλB and we have

j(
√
−t) = b̃4. (114)

In this limit, in other words, the function j receives contributions only from tree level

scattering with the effective four point coupling b̃4 in this limit. No genuine loop diagrams

contribute to T and U -channel scattering in this limit.
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If we first take b4 →∞ and then take the non-relativistic limit we find

j(q) = −8πcB (115)

As (114) and (115) both tend to infinity in the combined non-relativistic and b4 → ∞
limit, the reader may find herself tempted to conclude that the non-relativistic and b4 →∞
commute. This conclusion is, infact, slightly misplaced. As we have emphasized in section

1.2.6, the true dynamical information in the non-relativistic limit lies in the function

h = − j

8icB

which is derived from (54). The correct interpretation of the results of this subsection are

that the function h vanishes in the non-relativistic limit at fixed b4, but reduces to a λB

independent numerical constant if b4 is first taken to infinity.

1.4.7 The non-relativistic limit in the S-channel

As we will see below, the function relevant for scattering in the S-channel is the analytically

continued function jM(
√
s), see (105). The non-relativistic limit of S-channel scattering

is obtained in the limit
√
s → 2cB where the limit is taken from above with all other

parameters held fixed. It is easily seen from (105) that in this limit

jM(
√
s) = −(πλB)(4

√
s)sgn(λB). (116)

Note that jM(
√
s) is a non-analytic function of λB as λB → 0 in this limit. The non-

analyticity is precisely of the form expected from the non-relativistic limit; infact, in this

limit

W1(
√
s) =

sin(πλB)

πλB
jM(
√
s). (117)

We will suggest an interpretation of this fact in section 1.7 below.

1.4.8 The onshell limit

In order to compute the physical S-matrix we analytically continue the amplitude V to

Minkowski space. It follows from (85) that the onshell value of this analytically continued

V may directly be identified with the scattering amplitude T (see subsection 1.2.3) once

all momenta are taken onshell.
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As the 3 vectors p and p + q are simultaneously onshell, it follows that p3 = − q3
2

.

Similarly k3 = − q3
2

. As p and k are themselves onshell it follows that 25

a(p)2 = −q
2
3

4
, a(k)2 = −q

2
3

4
, a(p) = a(k) = −iq3

2
.

An infrared ‘ambiguity’ and its resolution The offshell amplitude (241) takes

the form

NV = PT,

T =

(
4πiλBq3

p− + k−
p− − k−

+ j(q3)

)
,

P = e
−2iλB

(
tan−1

(
2(a(k)
q3

)
−tan−1

(
2(a(p)
q3

))
.

(118)

The expression T defined above has a perfectly smooth on shell limit that we will study

below. The onshell limit of P is more singular,

P = e−2iλB(tan−1(−i)−tan−1(−i)), (119)

recall that tan−1(i) diverges, P thus takes the schematic form

P = eiλB(∞−∞)

and is ambiguous.

The ambiguity in the expression for P has its origins in ladder graphs in which the

scalars interact via the exchange of a very soft gauge boson. The integration over very

small gauge boson momenta is divergent; however we encounter two classes of divergences

which could potentially cancel, leading to the ambiguous result for P .

In a theory with physical gluonic states, the IR divergence obtained upon integrating

out soft gluons is a real effect in scattering amplitudes (even though it cancels out in

physical IR safe observables). However Chern-Simons theory has no physical gluons. On

physical grounds, therefore, we do not expect the scattering amplitude to be divergent or

ambiguous in any way. We will now explain that the correct on shell value for P is infact

unity.

25The sign in the last two equations follows from the fact that a(p) is defined with a square root with a
branch cut on the negative real axis coupled with the fact that the rotation from Euclidean to Minkowski
space proceeds in the clockwise direction.
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We first note that the λB dependence of the ambiguity is extremely simple; it follows

that if we can accurately establish the on shell value of P at one loop, we know its correct

value at all loops. In order to determine P at one loop, in Appendix 1.9.4 we have performed

a careful computation of the one loop amplitude directly in Minkowski space. Offshell our

result agrees perfectly with the analytic continuation of (93), as we would expect. On being

careful about all factors of iε however, we find that the on shell result is unambiguous, and

we find that the two terms in (119) actually cancel. It follows that the correct on shell

continuation of P above is simply unity. In the next subsection we present a completely

independent verification of this result from a rather different point of view.

In this subsubsection we have already encountered an unusual phenomenon: the an-

alytic continuation of the Euclidean answer is ambiguous or incomplete due to potential

IR on shell singularities, and this ambiguity is resolved by performing a computation di-

rectly in Minkowski space. In the case at hand the ambiguity had a relatively simple and

straightforward resolution. A similar issue will come back to haunt us in a more virulent

form in our study of S-channel scattering below.

Covariantization of the amplitude We now turn to the onshell limit of T in (118).

In this limit the expression for T may equally well be written in the manifestly covariant

form

T = 4πiλBεµνρ
qµ(p− k)ν(p+ k)ρ

(p− k)2
+ j(

√
q2). (120)

26 The manifestly covariant expression (120) also enjoys invariance under the simultaneous

operation of an arbitrary parity flip together with a flip in the sign of λB. The first term

in (120) is odd under parity flips as well as under a flip in the sign of λB. The second term

in (120) is even under both operations.

As we will explain in more detail below, the magnitude of the expression εµνρ
qµ(p−k)ν(p+k)ρ

(p−k)2

can be written in terms of the standard kinematical invariants s, t, u. However the sign of

this expression is not a function of these invariants. This is a peculiar kinematical feature

of 2-2 scattering in 2 + 1 dimensions. The most general amplitude in this dimension is a

26The equivalence between (120) and (118) follows from the observation that, in onshell,

q · (p− k) = 0⇒ p3 − k3 = 0⇒ (p− − k−)(p+ − k+) =
1

2
(p− k)2

and the observation (see the previous subsection) that j(q3) = j(−q3).
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function of s, t and the Z2 valued variable

E(q, p− k, p+ k) = sgn (εµνρq
µ(p− k)ν(p+ k)ρ) .

The quantity E(a, b, c) measures the ‘handedness’ of the triad of three vectors a, b, c. Note

that it is odd under parity as well as under the interchange of any two vectors.

In order to obtain the onshell amplitude from the offshell one, one can utilize LSZ

formula. By making different choices for the signs of the energies of the four external

particles, the single master expression (120) determines the T-matrix for particle-particle

scattering in both channels, as well as the T-matrix for particle antiparticle scattering

in the adjoint channel; this observation also makes clear that these three T-matrices are

related as usual by crossing symmetry. In the rest of this section we explicitly evaluate the

T-matrix in each of these channels and comment on our results.

1.4.9 The S-matrix in the adjoint channel

In order to determine the scattering function TBT (particle - antiparticle scattering in the

adjoint channel) we study the scattering process

Pi(p1) + Aj(p2)→ Pi(p3) + Aj(p4) (121)

for i 6= j. It follows from the definitions (36) that the scattering amplitude for this process

is precisely the function TBT .

The S-matrix for the scattering process (121) is evaluated by the exact onshell amplitude

(120), once we make the identifications

p1 = p+ q, p2 = −(k + q), p3 = −p, p4 = k.

It follows that

s = −(p− k)2, t = −q2, u = −(p+ q + k)2

which implies

p2
1 = p2

2 = p2
3 = −c2

B, p1 · p2 =
−s+ 2c2

B

2
,

p1 · p3 =
−t+ 2c2

B

2
, p2 · p3 =

−u+ 2c2
B

2
.
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Note also that 27

|εµνρqµ(p− k)ν(p+ k)ρ|2 = 4|εµνρ(p+ q)µ(k + q)νpρ|2 = 4|εµνρpµ1pν2pρ3|2

=− 4

(
p2

1p
2
2p

2
3 + 2(p1 · p2)(p2 · p3)(p3 · p1)

− p2
3(p1 · p2)2 − p2

2(p1 · p3)2 − p2
1(p3 · p2)2

)
=−

(
16c6

B − 8c4
B(s+ t+ u) + c2

B(s+ t+ u)2 − s t u
)

=s t u.

(122)

It follows that

TBT (p1, p2, p3, p4, λB, b4, cB) =
4iπ

kB
E(p1, p2, p3)

√
tu

s
+

1

N
j(
√
−t), (123)

where the field renormalization factor is trivial in the leading order in 1/N expansion. In

the center of mass frame, this S-matrix is given by

TBT (s, θ, λB, b4, cB) =
4iπ

kB

s− 4c2
B

2
√
s

sin(θ) +
1

N
j

(√
s− 4c2

B

∣∣∣∣sin(θ2
)∣∣∣∣) . (124)

Notice that the scattering amplitude is completely regular at θ = 0; in particular In the

non-relativistic limit we find that the scattering function h(θ) is given by

hBT (θ) = 0 (125)

at finite b4. If b4 is taken to infinity first, on the other hand, in the non-relativistic limit

we find

hBT (θ) = −iπ. (126)

Notice that in neither case does h(θ) have a term proportional either to cot
(
θ
2

)
or to δ(θ)

) as anticipated in our discussion of the non-relativistic limit in subsection 1.2.6.

1.4.10 The S-matrix for particle- particle scattering

In order to determine the scattering function TBUd we study the scattering process

Pi(p1) + Pj(p2)→ Pi(p3) + Pj(p4). (127)

27In our notation ε012 = −ε012 = 1.
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It follows from the definitions (44) that the scattering amplitude for this process is precisely

the function TBUd , provided i 6= j.

The S-matrix for the scattering process (121) is evaluated by the exact onshell amplitude

(120), once we make the identifications

p1 = p+ q, p2 = k, p3 = −p, p4 = −(k + q).

It follows that

s = −(p+ q + k)2, t = −q2, u = −(p− k)2

TBUd(p1, p2, p3, p4, λB, b4, cB) =
4iπ

kB
E(p1, p2, p3)

√
ts

u
+

1

N
j(
√
−t) (128)

where E(p1, p2, p3) was defined in (18). Notice that, upto the issues involving the sign E,

TBUd is obtained from TBT by the interchange s↔ u.

In the bosonic theory under study, TBUe is obtained from TBUd by the interchange p1 ↔ p2.

This interchange flips the sign of E and also interchanges u and t, so we find

TBUe(p1, p2, p3, p4, λB, b4, cB) = −4iπ

kB
E(p1, p2, p3)

√
us

t
+

1

N
j(
√
−u). (129)

If the non-relativistic limit is taken at nonzero b4 we have using (54)

hBUd(θ) = − π

kB
tan

(
θ

2

)
,

hBUe(θ) =
π

kB
cot

(
θ

2

)
.

(130)

If b4 is first taken to infinity, on the other hand, we have

hBUd(θ) = − π

kB
tan

(
θ

2

)
− iπ,

hBUe(θ) =
π

kB
cot

(
θ

2

)
− iπ,

(131)

in good agreement with the predictions of subsection 1.2.6.

61



(a)

Figure 7: Gauge loop in gauge field propagator is cancelled by the ghost loop.

1.5 The onshell one loop amplitude in Landau Gauge

In this section we present a consistency check of (120) and (95), the main results of the

previous section. Our check proceeds by independently evaluating the onshell 4 point

function at one loop in the covariant Landau gauge. As we describe below, the results of

our computation are in perfect agreement with the expansion of (120) and (95) to O(λ2
B).

We believe that the check performed in this subsection has value for several reasons.

First, the lightcone gauge employed in this chapter is nonstandard in several respects. It

is not manifestly covariant. It leads to a gauge boson propagator that is singular when

p− = 0: as we have emphasized above, in order to make progress in our computation

we were forced to simply postulate an iε prescription that resolves this singularity in an

appealing manner. And finally the offshell result of this computation appears, at first sight,

to be ambiguous when continued onshell.

The computation we describe in this subsection, on the other hand, suffers from none

of these deficiencies. It is manifestly covariant; it is an entirely standard computation,

following rules that have been developed and repeatedly utilized over several decades, and

it will turn out to have no confusing IR ambiguities. 28 For this reason, the match between

our results of the previous subsection and those that we report in this subsection may

be regarded as rather nontrivial evidence that we have correctly dealt with all the tricky

aspects of the computation in the lightcone gauge.

We now turn to a brief description of the Landau gauge computation, relegating most

details to Appendix 1.9.5. For simplicity we work with the scalar theory in special case

b4 = 0. In the Landau Gauge, the gauge boson propagator receives two corrections at

one loop: from a gauge boson loop and from a ghost loop. It is easily verified that these

two diagrams cancel each other (see Fig 7). It is also easily seen that the ghosts make

28Of course the weakness of the Landau gauge is that, unlike in the lightcone gauge, it is very difficult
to perform explicit computations in this gauge beyond low loop order, as the gauge condition does not
remove all gauge boson self interactions.
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(a)

Figure 8: The box diagram in Landau Gauge

(a)

Figure 9: H diagrams in the lightcone gauge.

no appearance in any other diagram that contributes to one loop scattering of four gauge

bosons. It follows that, at the one loop level, we may ignore both renormalizations of the

gauge boson propagator as well as the ghosts: These two complications cancel each other

out.

With this understanding it is easily verified that the one loop scattering amplitude

of four scalar bosons receives contributions from six classes of diagrams, (see six figures,

Figs. 8∼13). These are the box diagrams of Fig. 8, the h diagrams of Fig. 9, the V

diagrams of Fig. 10, the Y diagrams of Fig. 11, the Eye diagram of Fig. 12, and the

Lollipop diagram of Fig. 13. In order to evaluate the one loop contribution to four scalar

scattering, we need to evaluate the sum of these six classes of diagrams. It is well known,

(a)

Figure 10: V diagrams in the Landau Gauge.
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(a)

Figure 11: Y diagram in the Landau gauge.

(a)

Figure 12: Eye diagram in the Landau gauge.

(a)

Figure 13: Lollipop diagram in the Landau Gauge.

64



however, that in the study of planar diagrams there is a canonical way to sum the integrands

of these diagrams before performing the integral. We choose a uniform definition of the

loop momentum across all the six sets of graphs; the loop momentum l is the momentum

that flows clockwise between the external line with momentum p and the external line with

momentum p+ q (see Fig. 8). Adopting this definition, we then evaluate the integrand for

each class of diagrams, and sum the integrands.

It turns out that the process of summing integrands leads to several cancellations

and simplifications. In order to see the cancellations between integrands, it is important

that each integrand be expressed in a canonical form. There is, of course, a standard

way to achieve this. It is a well known result that an arbitrary one loop integrand in d

dimensions may be reduced, under the integral sign 29 to a linear sum over scalar integrals 30

with at most d propagators. The coefficients in this decomposition are rational functions

of the external momenta. There also exists a rather simple algorithmic procedure for

decomposing an arbitrary integrand into this canonical form. Finally the scalar integrals

are not all independent. The canonical form of the integrand is obtained by decomposing

the integrand into a linear combination of linearly independent scalar integrands.

Implementing this procedure (see Appendix 1.9.5 for several details) we find that the

full one loop integrand for 4 scalar boson scattering turns out to be given by the remarkably

simple expression

Ifull = 4π2λ2
B

(
− 2

c2
B + (l + p)2

− 2

(l + p− k)2

− 8k · q
(c2
B + (l + p)2) (c2

B + (p+ q + l)2)

)
.

(132)

In the dimensional regulation scheme that we employ, the integral of the first term in (132)

is 4π2λ2
B × cB

2π
. The integral of the second term simply vanishes. The integral of the third

term is 32π2(k · q)λ2
BH(q) where H(q), the one loop amplitude for four boson scattering,

was defined in (109). It follows that the full one loop onshell scattering amplitude is given

by ∫
d3l

(2π)3
Ifull = Vone loop = 2πcBλ

2
B + 32π2(k · q)λ2

BH(q) (133)

in perfect agreement with (108) at b4 = 0.

29i.e. upto terms that integrate to zero.
30A scalar integral, by definition, is the loop integral over a product of propagators in the loop, but with

numerator unity.
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p
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k
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r

= +

ψi,αψi,α

ψ̄i,δψ̄i,δ ψj,γψj,γ

ψ̄j,β
ψ̄j,β

ψχ

ψ̄ρ

ψ̄τ

ψσ

γαβ

γγδ

γαρ

γχδ

(a)

Figure 14: A diagrammatic depiction of the integral equation obeyed by offshell four point
scattering amplitudes in the fermionic theory. The blob here represents the all orders
scattering amplitude.

We end this brief subsection with two further comments. We first note that the one loop

amplitude in the Landau gauge was manifestly infrared safe. While integrands that would

have given rise to infrared divergences (associated with the exchange of arbitrarily soft

gluons in loop) appear at intermediate stages in the computation, they all cancel already

at the level of the integrand (i.e. before performing any integrals). This is the analogue of

the slightly more subtle cancellation of IR divergences in lightcone gauge mentioned above

and described in more detail in Appendix 1.9.4.

The second comment is that the derivation integrand reported in (132) uses a reduction

formula that is valid only at generic values of external momenta. Our derivation of this

formula fails, for instance, when two of the external momenta are collinear. In more familiar

quantum field theories this caveat would be of little consequence; the analyticity of the

amplitude as a function of external momenta would guarantee that the result applied at all

values of the momenta. As we will see below, however, this amplitudes in Chern-Simons

theories sometimes appear to have non analytic singularities, so the caveat spelt out in this

paragraph may turn out to be more than a pedantic technicality.

1.6 Scattering in the fermionic theory

In this section we compute the four point scattering amplitude in the theory of fundamental

fermions coupled to Chern-Simons theory. As in the bosonic theory, we integrate out the

gauge boson to obtain an offshell effective four fermi term in the quantum effective action

for our theory, given by

1

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3
V αγ
βδ (p, k, q)ψi,α(p+ q)ψ̄j,β(−(k + q))ψ̄i,δ(−p)ψj,γ(k). (134)
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Figure 15: Fermionic tree level diagram

ψ̄i

ψi ψ̄j

ψj

p r k

p+ q r + q k + q
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ψ

ψ̄ψ

ψ̄

(a)

Figure 16: Fermionic 1 loop diagram
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We then take an appropriate onshell limit to evaluate the S-matrix.

1.6.1 The offshell four point amplitude

As in the case of the bosonic theory, the offshell four point amplitude V αγ
βδ (p, k, q) obeys a

closed Schwinger-Dyson equation. As for the bosonic theory, we work with the special case

q± = 0. As above we first set up this Schwinger-Dyson equation for the Lorentzian theory,

but find it more convenient, technically, to work with the Euclidean rotated amplitude. The

Euclidean rotated amplitude is defined in a manner very similar to the bosonic theory (see

below for a few more details), and may be shown to obey the Schwinger-Dyson equation

V αγ
βδ (p, k, q) =

1

2
(γµ)αβGµν(p− k)(γν)γδ

+
1

2

∫
d3r

(2π3)
[γµG(r + q)]ασV

σγ
βτ (r, k, q)[G(r)γν ]τδGµν(p− r).

(135)

Here G(p)ασ is the exact fermionic propagators determined in (9) (see also [2]), while Gµν

is the gauge boson propagator defined by

〈Aaµ(−p)Abν(q)→= (2π)3δ3(p− q)Gµν(q) (136)

where Aµ = AaT a and we work with generators normalized so that

∑
a

(T a)ij(T
a)kl =

1

2
δilδ

k
j . (137)

And here γµ compose the Euclidean Clifford algebra,

{γµ, γν} = 2δµν , [γµ, γν ] = 2iεµνργρ, (ε103 = ε103 = 1).

In the lightcone gauge in which we work the only nonzero components of Gµν are

G+3(p) = −G3+(p) =
4π i

κ p+
. (138)

Now noting the fact that only non zero component is G+3(p) = −G3+(p) and using

rearrangement with γ+ = iγ0+γ1√
2

,

(γ+)αβ(γ3)γδ − (γ3)αβ(γ+)γδ = −
(
δγβ(γ+)αδ − (γ+)γβδ

α
δ

)
, (139)
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as well as

γ+Xγ3 − γ3Xγ+ = −2(XIγ
+ −X−I), (140)

(here X = Xiγ
i +XII is an arbitrary 2→ 2 matrix), we conclude that in the α, δ indices

of R.H.S of the Eq.(135) - and therefore the LHS , and so V takes the form

V αγ
βδ (p, k, q) = g(p, k, q)δαδ δ

γ
β + f(p, k, q)(γ+)αδ δ

γ
β + g1(p, k, q)δαδ (γ+)γβ + f1(p, k, q)(γ+)αδ (γ+)γβ.

(141)

Plugging this form V into (135) yields a set of four integral equations for the four

component functions in (141). We have succeeded in finding the exact solution to these

equations. We present the derivation of our solution in Appendix 1.9.6. The final result for

this offshell amplitude is extremely complicated. The result, which takes multiple pages to

write, is given in (300), (307) and (308) of the Appendix. We see no benefit in reproducing

this extremely complicated final result in the main text.

1.6.2 The onshell limit

As we have seen above, the offshell four point function defined in (134) is quite a compli-

cated object. In this section we will argue that the onshell S-matrix is, however, rather

simple.

In order to study the S-matrix it is first convenient to continue our result for V in (134)

to Minkowski space. This is achieved by making the substitution

p0 → −ip0, k0 → −ik0, γ0 → −iγ0,

on the Euclidean result of the previous subsection. This substitution yields the four fermi

term in the effective action (85) in Lorentzian space.

In order to convert this four point vertex to a scattering amplitude, we must now go

onshell. We now pause to carefully explain how this is achieved.

In free field theory (i.e. in the absence of the four point function interaction) the fermion

field operators may be expanded in creation and annihilation modes in the standard fashion
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ψ(x) =

∫
d3p

(2π)3
ψ(p)eip·x

=

∫
d2p

(2π)2

1√
2 Ep

(
u(~p)a~pe

ip·x + v(~p)b†~pe
−ip·x

)
,

ψ̄(x) =

∫
d3p

(2π)3
ψ̄(p)eip·x

=

∫
d2p

(2π)2

1√
2 Ep

(
ū(~p)a†~pe

−ip·x + v̄(~p)b~pe
ip·x
)
,

(142)

where p0 = ω =
√
c2
F + p2

1 + p2
3. As always we use the mostly positive convention, so eip.x

has negative ‘frequency’ in time, while e−ip.x has positive frequency in time. As is usual,

the coefficients of negative frequency wave functions are annihilation operators, while the

coefficients of positive frequency wave functions are creation operators. We refer to a and

a† as particle destruction and creation operators, while b and b† are antiparticle destruction

and creation operators. The wave functions u(p)eip.x and v(p)e−ip.x are solutions to the

Dirac equation

(i(pµ + Σµ)γµ + ΣI)ψ(p) = 0

and, as usual, ψ̄ = iψ†γ0, where Σ is defined in (10). For later convenience, we introduce

the following notation,

ΣI(ps) = f(ps)ps, Σ+ = g(ps)ps.

The Dirac equation uniquely determines u(p) and v(p) upto multiplicative constants.

We fix the normalization ambiguity by demanding

ū(~p)u(~p) = 2f(ps)ps, v̄(~p)v(~p) = −2f(ps)ps. (143)

31 These requirements leave the phase of the functions u(p) and v(p) undetermined: we

will make an arbitrary choice for this phase below.

We will find it useful to have explicit expressions for u and v. In order to obtain these

expressions, it is useful to fix a particular convention for γ matrices. In Euclidean space we

31This normalization convention may be justified by performing a double analytic continuation, so that
x0 becomes a spatial direction and x3 a temporal direction. Once this is done, the free Lagrangian is of
first order in time, and so may be canonically quantized in the usual manner. The normalization described
above are chosen to ensure that the usual anticommutation relations for the field operators ψ translate to
standard anticommutation relations for the creation and annihilation operators a, a†, b, b†.
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make the choice γ+ =

(
0
√

2

0 0

)
, γ− =

(
0 0√
2 0

)
and γ3 =

(
1 0

0 −1

)
. This choice

determines the Lorentzian γ matrices to be

γ3 =

(
1 0

0 −1

)
, γ+ =

(
0
√

2

0 0

)
,

γ− =

(
0 0√
2 0

)
, γ0 =

(
0 1

−1 0

)
.

(144)

The quadratic Dirac Lagrangian consequently takes the explicit form

∫
d3p

(2π)3
ψ̄(−p)

(
ip2 + f(ps)ps i

√
2p+(1 + g(ps))

i
√

2p− −ip2 + f(ps)ps

)
ψ(p). (145)

The equations of motion for u and ū are(
ip2 + f(ps)ps −i(E~p − p1)(1 + g(ps))

i(E~p + p1) −ip2 + f(ps)ps

)
u(~p) = 0,

ū(~p)

(
ip2 + f(ps)ps −i(E~p − p1)(1 + g(ps))

i(E~p + p1) −ip2 + f(ps)ps

)
= 0,

(146)

while those for v and v̄ are(
ip2 − f(ps)ps −i(E~p − p1)(1 + g(ps))

i(E~p + p1) −ip2 − f(ps)ps

)
v(~p) = 0,

v̄(~p)

(
ip2 − f(ps)ps −i(E~p − p1)(1 + g(ps))

i(E~p + p1) −ip2 − f(ps)ps

)
= 0.

(147)

Note that, (146) and (147) admits solution only when, determinant of the matrix appearing

in those equations are zero. This gives onshell condition p2 + c2
F = 0, equivalently

p2
2 + f(ps)

2p2
s −

(
E2
~p − p2

1

)
(1 + g(ps)) = 0.

Solving these equations subject to the normalization conventions described above (plus an
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arbitrary choice of phase) we find

u(~p) =
1√

E~p + p1

(
ip2 − f(ps)ps

i(E~p + p1)

)
,

ū(~p) =
1√

E~p + p1

(
−(E~p + p1) p2 − if(ps)ps

)
,

(148)

and

v(~p) =
1√

E~p + p1

(
ip2 + f(ps)ps

i(E~p + p1)

)
,

v̄(~p) =
1√

E~p + p1

(
−(E~p + p1) p2 + if(ps)ps

)
.

(149)

1.6.3 S-matrices

With explicit expressions for u(~p) and v(~p) in hand, it might seem like an easy task to

take the onshell limit of the ofshell 4 Fermi correlators. Infact that is not the case. As

in the bosonic theory the onshell limit of these correlators is apparently ambiguous, and

must be taken very carefully. The reader will recall that we discussed this issue at great

detail in the bosonic theory, came to the conclusion that the correct final prescription is

simply to first set |~k| to |~p| before taking either of these momenta individuallyonshell. We

adopt a similar prescription for the bosonic theories. We first replace the quantities Ep

and Ek that appear in our solutions for u(~p) and v(~p) with ±p0 and ±k0 respectively. We

then evaluate the offshell amplitude with |~k| = |~p| and only then take the momenta to

individually be onshell. This process yields unambiguous answers which we present below.

As in the bosonic case, it should be possible to justify this order of limits with a careful

evaluation of the amplitude directly in Minkoski space keeping careful track of the factors

of iε but we have not persued this thought.

S-matrix for adjoint exchange in particle - antiparticle scattering As we have

explained above, the offshell four fermion scattering amplitude is extremely complicated.

Quite remarkably, however, the onshell limit displays remarkable simplifications. In the

72



T -channel the onshell S-matrix is given by

T FT = V αγ
βδ (p, k, q)ui,α(p+ q)v̄j,β(−(k + q))ūi,δ(p)vj,γ(−k)

= −4πi

kF
q3
p− + k−
p− − k−

− 4iπ

kF
q3

(q3 − 2i sgn(mF )|cF |) e2iλF tan−1
(

2|cF |
q3

)
− eiπsgn(q3)λF (q3 + 2i sgn(mF )|cF |)

eiπsgn(q3)λF (q3 + 2i sgn(mF )|cF |) + (q3 − 2i sgn(mF )|cF |) e2iλF tan−1
(

2|cF |
q3

)

= −E(p1, p2, p3)
4iπ

kF

√
u t

s

− 4iπ

kF

√
−t

(√−t− 2i sgn(mF )|cF |
)
e

2iλF tan−1
(

2|cF |√
−t

)
− eiπλF

(√−t+ 2i sgn(mF )|cF |
)

eiπλF
(√−t+ 2i sgn(mF )|cF |

)
+
(√−t− 2i sgn(mF )|cF |

)
e

2iλF tan−1
(

2|cF |√
−t

)

= −E(p1, p2, p3)
4iπ

kF

√
u t

s

− 4iπ

kF

√
−t

(√−t− 2i sgn(mF )|cF |
)
e

2iλF tan−1
(

2|cF |√
−t

)
− eiπλF

(√−t+ 2i sgn(mF )|cF |
)

eiπλF
(√−t+ 2i sgn(mF )|cF |

)
+
(√−t− 2i sgn(mF )|cF |

)
e

2iλF tan−1
(

2|cF |√
−t

)

= −E(p1, p2, p3)
4iπ

kF

√
u t

s
+

4 iπ

kF

√
−t eiπ(λF−sgn(mF )) + e

2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)

eiπ(λF−sgn(mF )) − e2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)

= −E(p1, p2, p3)
4iπ

kF

√
u t

s
+

4 iπ

kF

√
−t 1 + e

−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

)

1− e−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

) .
(150)

As we have emphasized above, we have obtained this result only after taking the onshell

limit in a particular manner. In particular, in the solution in (148),(149) we treated Ep as

a free symbol to start with; we set ps = ks first and then set E2
p = −→p 2

+ c2
F .
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S-matrix for particle - particle scattering In the U -channel

T FUd = V αγ
βδ (p, k, q)ui,α(p+ q)ūj,β(k + q)ūi,δ(p)uj,γ(k)

=
4πi

kF
q3
p− + k−
p− − k−

+
4iπ

kF
q3

(q3 − 2i sgn(mF )|cF |) e2iλF tan−1
(

2|cF |
q3

)
− eiπsgn(q3)λF (q3 + 2i sgn(mF )|cF |)

eiπsgn(q3)λF (q3 + 2i sgn(mF )|cF |) + (q3 − 2i sgn(mF )|cF |) e2iλF tan−1
(

2|cF |
q3

)

= −
(
E(p1, p2, p3)

4iπ

kB

√
s t

u

− 4iπ

kF

√
−t

(√−t− 2i sgn(mF )|cF |
)
e

2iλF tan−1
(

2|cF |√
−t

)
− eiπλF

(√−t+ 2i sgn(mF )|cF |
)

eiπλF
(√−t+ 2i sgn(mF )|cF |

)
+
(√−t− 2i sgn(mF )|cF |

)
e

2iλF tan−1
(

2|cF |√
−t

)
)

= −
(
− E(p1, p2, p3)

4iπ

kF

√
s t

u
+

4 iπ

kF

√
−t eiπ(λF−sgn(mF )) + e

2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)

eiπ(λF−sgn(mF )) − e2i(λF−sgn(mF )) tan−1
(

2|cF |√
−t

)
)

= −
(
− E(p1, p2, p3)

4iπ

kF

√
s t

u
+

4 iπ

kF

√
−t 1 + e

−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

)

1− e−2i(λF−sgn(mF )) tan−1
( √
−t

2|cF |

)
)
.

(151)

As in the previous subsubsection, we have obtained this resultafter taking the onshell

limit in a particular manner. In particular, in the solution in (148),(149) we treated Ep as

a free symbol to start with; we set ps = ks first and then set E2
p = −→p 2

+ c2
F .

1.7 Scattering in the identity channel and crossing symmetry

1.7.1 Crossing symmetry

It is sometimes asserted that the S-matrix for particle - antiparticle scattering, in any

quantum field theory, may be obtained from the S-matrix for particle - particle scattering.

This claim goes by the name of crossing symmetry. In the context of the 2→ 2 scattering

studied in this chapter, the formulae asserted with the claim are (we work with the bosonic

theory for definiteness)

TS(s, t, u) = NTUd(t, u, s), TT (s, t, u) = TUd(u, t, s). (152)
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These equations assert that the formulae for particle - antiparticle scattering may be read

off from the analytic continuation of the physical particle - particle scattering amplitude
32 .

In the case of an ungauged field theory - or in the case of the scattering of gauge

invariant particles in a gauge theory, there is a rather straightforward intuitive argument

for crossing symmetry of amplitudes. The LSZ formula relates S-matrices to onshell limits

of well-defined offshell correlators. The offshell correlators are expected to be analytic

functions of their insertion positions. The on shell limit of these correlators is the ‘master

function’ referred to in the footnote above which plausibly inherits analytic properties from

those of the underlying correlators.

This intuitive argument does not work for the scattering of non gauge singlet particles

in a gauge theory, as the relevant scattering amplitudes cannot be obtained from the onshell

limit of an offshell correlator (the putative offshell correlators are not gauge invariant and

so are ill defined).

While the argument for crossing symmetry presented in this subsection does not apply

to, for instance, the scattering of gluons in N = 4 Yang Mills theory, the final result

(i.e. that scattering amplitudes obey crossing symmetry) is widely expected to hold true

for these amlitudes, at least with a suitable definition of the scattering amplitudes (a

definition is needed to deal with IR ambiguities having to do with soft gluons and other

soft particles). In this context we expect that the failure of the argument outlined in

this subsection is just a technicality; other arguments (perhaps based on diagrammatics)

guarantee the final result.

As in the previous paragraph, we are also interested in the scattering of non singlet

excitations. Unlike the case of gluonic scattering in N = 4 Yang Mills, however, we

will argue below that the failure of the argument for crossing symmetry is more than a

technicality. The crossing relations are actually modified in our theories. We suspect that

the underlying reason for the modification is that the Chern-Simons action, which controls

the dynamics of our gauge fields, effectively turns our scattering particles into anyons.

Apparently, the usual crossing relations are true for the scattering of bosons and fermions,

but are modified in the scattering of anyons.

32Analytic continuation is needed because physical scattering processes in the different channels utilize
non overlapping domains of the (allegedly) single analytic ‘master’ scattering formula. Consider, for
instance, the first of (152). Physical particle- particle scattering process are captured by the function
TUd(x, y, z) for y, z < 0 ; given that x + y + z = 4m2, this implies x > 4m2. On the other hand on the
RHS of the first of (152) we need the same function at x, y < 0 and so z > 4m2. It is clear that there is
no overlap between these different domains.
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1.7.2 A conjecture for the S-matrix in the singlet channel

As we have explained above, a naive application of crossing symmetry predicts that, the S-

channel scattering amplitude is given by TBS (s, t, u) = NTBUd(t, u, s). We have performed the

analytic continuations needed to make sense of this formula in subsection 1.4.4. Utilizing

the results of that subsection, the naive prediction of crossing symmetry is

T trialS = (πλB) 4i
√
sE(p1, p2, p3)

√
u

t
+ jM (

√
s)

= (πλB) 4
√
s
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√
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t
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)
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sHM (

√
s)


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t
+
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(
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√
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)
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(
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√
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√
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(
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 ,

(153)

(in the last line we have specialized to the physical domain s ≥ 4c2
B).

The function T trialS cannot be the true scattering matrix in the S-channel for three related

reasons.

• T trialS does not include the last term in (53); a term delta function localized on forward

scattering with a coefficient proportional to (cos(πλB)− 1). This term is certainly present

in the scattering amplitude at least in the non-relativistic limit.

• Even ignoring the term localized at forward scattering, the non-relativistic limit of T trialS

does not agree with (53).

• T trialS does not obey the unitarity relation (64).

In the rest of this subsection we will demonstrate that all these problems are simultaneously

cured if we conjecture that the scattering matrix in the S-channel is given by a rescaled T trialS

plus a contact term added by hand. We conjecture that the bosonic scattering matrix in the

S-channel is given by

TBS =
sin(πλB)

πλB
T trialS − i(cos(πλB)− 1)I(p1, p2, p3, p4) (154)

(see subsection 1.2.3 for a definition of the Identity matrix). In subsection 1.7.4 we will present

a tentative justification for the modification of the usual rules of crossing symmetry implicit in
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(81). In the rest of this subsection we will demonstrate that the conjectured scattering amplitude

TBS passes various consistency checks.

In the center of mass frame our conjectured scattering amplitude (154) takes the form (65)

with

H(
√
s) = 4

√
s sin(πλB),

W1(
√
s) = 4

√
s sin(πλB)G,

W2(
√
s) = 8π

√
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(155)

Let us first demonstrate that our conjectured expressions (155) have the correct non-relativistic

limit. The functions H and W2 in (66) are independent of the energy s and already agree perfectly

with the same functions in (66). Moreover

lim√
s→2cB

G = −sgn(λB) (156)

it follows that

lim√
s→2cB

W1(
√
s) = −4

√
s| sin(πλB)| (157)

in agreement with (66). We conclude that our conjectured scattering amplitude (155) reduces

precisely to the expected Aharonov-Bohm scattering amplitude in the non-relativistic limit.

We next demonstrate that our conjecture for the S-channel S-matrix obeys the constraints of

unitarity, i.e. that (155) obeys the equations (70). As we have explained in subsection 1.2.7, the

fact that H and W2 in (155) agree with the corresponding functions in (66) immediately implies

that the first two equations in (70) are obeyed. We will now demonstrate that the functions in

(155) also obey the third equation in (70). 33

33A point here requires explanation. In our study of unitarity in section 1.2.7, the function H multiplies
an S-matrix proportional to Pv cot θ2 . Feynmam diagrams produce a scattering amplitude in which the

function H multiplies
sin θ

2 cos θ2
sin2 θ

2−iε
. These two expressions clearly coincide at nonzero θ; interestingly enough

they also coincide at θ = 0. Indeed it is not difficult to demonstrate that

Pv
1

θ
=

θ

θ2 − iε .

The key point here is that the second expression above has two poles; one of these lies above the real θ
axis while the second one lies below it. The residue of each of these two poles is precisely half what it
would have been for the simple pole 1

θ , demonstrating that the expression on the RHS is identical to the
principal value.
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The third equation in (70) may be rewritten, in terms of the function G, as

G−G∗ = (1− cos(πλB))(G−G∗)− i sin(πλB)(1−GG∗)

This equation is holds if

G−G∗ = −i tan(πλB)(1−GG∗). (158)

Now

G =
1 + eiπλBy

1− eiπλBy ,

where

y =

(
−4πλB

√
s+ b̃4

)
(

4πλB
√
s+ b̃4

) ( 1
2 + cB√

s

1
2 −

cB√
s

)λB
.

Note in particular that y is real (its detailed form is irrelevant for what follows). It follows that

G−G∗ =
4iy sin(πλB)

|1− eiπλBy|2 , (1−GG∗) =
−4y cos(πλB)

|1− eiπλBy|2 .

It follows that (158) is satisfied so that our proposal (81) defines a unitary S-matrix.

Finally, in the limit λB → 0, our conjecture reduces to (see the second line of (82))

TBS =
−b4

1 + b4HM (
√
s)
.

It is easily independently verified that this is the correct formula for the scattering amplitude of

the large N φ4 theory that (5) reduces to in the small λB limit. In other words our conjectured

scattering amplitude has the correct small λB limit.

1.7.3 Bose-Fermi duality in the S-channel

We have conjectured above that, in the S-channel, the bosonic S-matrix is given by

TBS (s, t, u, λB) =
kB sin(πλB)

π
TBUd(t, u, s, λB)− i (cos(πλB)− 1) I(p1, p2, p3, p4), (159)

This implies that the S-matrix in the S-channel is given by

SBS (s, t, u, λB) = i
kB sin(πλB)

π
TBUd(t, u, s, λB) + cos(πλB)I(p1, p2, p3, p4), (160)

where I is the identity S-matrix, see subsection 1.2.3.

In this section we have, so far, presented our conjecture for the S-channel S-matrix in the

bosonic theory. It is natural to conjecture a similar formula in the fermionic theory. In analogy
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with our conjecture for the bosonic theory we conjecture that

TFS (s, t, u, λF ) =
kF sin(πλF )

π
TFUd(t, u, s, λF )− i (cos(πλF )− 1) I(p1, p2, p3, p4) (161)

so that

SFS (s, t, u, λF ) = i
kF sin(πλF )

π
TFUd(t, u, s, λF ) + cos(πλF )I(p1, p2, p3, p4). (162)

We will now demonstrate that these two conjectures map to each other under duality.

kB sin(πλB)

π
=
kF sin(πλF )

π
,

TBUd(t, u, s, λB) = −TFUd(t, u, s, λF ),

cos(πλB) = − cos(πλF ),

(163)

(through this subsection we specialize to the limit b4 →∞ in the bosonic theory). it follows that

SBS (s, t, u, λB) = −SFS (s, t, u, λF ), (164)

which implies that

SFS (s, t, u, λF ) = sin(πλF )

(
4E(p1, p2, p3)

√
s t

u
+ 4
√
s

1 + e
−2i(λF−sgn(mF )) tan−1

( √
s

2|cF |

)
1− e−2i(λF−sgn(mF )) tan−1

( √
s

2|cF |

)
)

+ cos(πλF )I(p1, p2, p3, p4).

(165)

Note that, SFS (s, t, u, λF ) reduces to correct tree level S-matrix presented in section 1.2.5. The

overall minus sign on the RHS of (164) has no physical significance, as the sign of fermionic

scattering amplitudes is largely a matter of convention. 34 (164) demonstrates the unitarity

singlet fermionic S-matrix obtained from the conjecture (162), as we have already checked the

unitarity of the bosonic S-matrix.

In summary, our conjecture for the S-channel S-matrices is consistent with Bose-Fermi duality.

This observation may be taken as one more piece of evidence in support of our conjecture. 35

34 Indeed there does not even exist a particularly natural convention for the sign of a fermionic S-
matrix. A fermionic transition amplitude could be defined either by < a4a3|a†2a†1 > or by the amplitude

< a3a4|a†2a†1 >; both conventions are equally natural and yield S-matrices that differ by a minus sign. Note
that the sign of all components of the S-matrix, including the identity term is flipped by this maneuver,
just as in (164).

35The function T trialS , and its fermionic counterpart clearly map to each other under duality. In order
to account for the nature of anyonic scattering, unitarity and the non-relativistic limit, we were forced to
modify T trialB and its fermionic counterpart by multiplicative and additive shifts. It is nontrivial that these
shift functions, which were determined purely by consistency requirements in each theory, also turn out to
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1.7.4 A heuristic explanation for modified crossing symmetry

In this section we have conjectured that the naive crossing symmetry (152) are modified in

fundamental matter Chern-Simons theory; in the large N limit of interest to this chapter, we

have proposed that the second of (152) continues to apply, while the first of (152) is replaced

by (81). The arguments presented so far for this replacement have been entirely pragmatic; we

guessed the modified crossing relation in order that the S-matrix in the S-channel obey various

consistency conditions.

In this subsection we will attempt to sketch a logical explanation for this modified crossing

relation (82). Our explanation is heuristic in several respects, but we hope that its defects will

be remedied by more careful studies in the future.

The starting point of our analysis is the argument for crossing symmetry in the bosonic theory

in the limit λB → 0, briefly alluded to in subsection 1.7.1. When λB is set to zero, the bosonic

theory effectively reduces to a theory of scalars with global U(N) symmetry . In this theory the

offshell correlator

C = 〈φi(x1)φ̄j(x2)φ̄k(x3)φm(x4)〉 (166)

is a well-defined meromorphic function of its arguments. By U(N) invariance this correlator is

given by

Cjkim(x1, x2, x3, x4) = A(x1, x2, x3, x4)δji δ
k
m +B(x1, x2, x3, x4)δki δ

j
m (167)

where the coefficient functions A and B are functions of the insertion points x1 . . . x4. crossing

symmetry follows from the observation that distinct scattering amplitudes are simply distinct

onshell limits of the same correlators.

This statement is usually made precise in momentum space, but we will find it more convenient

to work in position space. Consider an S2 of size R, inscribed around the origin in Euclidean R3

(we will eventually be interested in the limit R→∞). The S-matrices SUd and SS may both be

obtained from the correlator A as follows. Consider free incoming particles of momentum pi and

pm starting out at very early times and focussed so that their worldlines will both intersect the

origin of R3. These two world lines intersect the S2 described above at easily determined locations

x1 and x4 respectively. Similarly the coordinates x2 and x3 are chosen to be the intercepts of the

world lines of particles with index j and k, starting out from the origin of R3 and proceeding to

the future along world lines of momentum p2 and p3 respectively. Having now chosen the insertion

points of all operators as definite functions of momenta, the correlator A(x1, x2, x3, x4) is now a

function only of the relevant particle - particle scattering data; the particle-particle S-matrix may

infact be read off from this correlator in the limit R → ∞ after we strip off factors pertaining

to free propagation of our particles from the surface of the S2 to the origin of R3. Particle-

transform into each other under duality.
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antiparticle scattering may be obtained in an identical manner, by choosing x1 and x2 to lie

along the trajectory of incoming particles or antiparticles of momentum p1 and p2 respectively,

while x3 and x4 lie along particle trajectories of outgoing particles and antiparticles of momentum

p3 and p4 respectively. Intuitively we expect that crossing symmetry - the first of (152) - follows

from the analyticity of the correlator A as a function of x1, x2, x3 and x4 on the large S2.

In the large N limit A may be obtained from the correlator Cjkim in (167) from the identity

A =
1

N2
Cjkimδ

i
jδ
m
k (168)

At nonzero λB the correlator Cjkim no longer makes sense as it is not gauge invariant. In order

to construct an appropriate gauge invariant quantity let W12 denote an open Wilson line, in the

fundamental representation, starting at x1, ending at x2 and running entirely outside the S2 one

which the operators are inserted. In a similar manner let W43 denote an open Wilson starting

at x4 and ending at x3, once again traversing a path that lies entirely outside the S2 on which

operators are inserted. Then the quantity

A′ = Cjkim(W12)ij(W43)mk (169)

is a rough analogue of A in the gauged theory. The precise relationship is that A′ reduces to A in

the limit λB → 0 in which gauge dynamics decouples from matter dynamics. A′ is clearly gauge

invariant at all λB; moreover there seems no reason to doubt that A′ is an analytic function of

x1 . . . x4.

We can now evaluate A′ in the same two onshell limits discussed in the paragraph above; as in

the paragraph above this yields two functions of onshell momenta that are analytic continuations

of each other. In the limit λB → 0 these two functions are simply the direct channel and singlet

channel S-matrices. We will now address the following question: what is the interpretation of

these two functions, obtained out of A′, at finite λB?

The path integral that evaluates the quantity A′ may conceptually be split up into three

parts. The path integral inside the S2 may be thought of as defining a ket |ψ1 > of the field

theory that lives on S2. The path integral outside the S2 defines a bra of the field theory on S2,

lets call it < ψ2|. And, finally, the path integral on S2 evaluates < ψ2|ψ1 >.

The key observation here is that the inner product occurs in the direct product of the matter

Hilbert space, and the pure gauge Hilbert Space. The pure gauge Hilbert space is the two

dimensional Hilbert Space of conformal blocks of pure Chern-Simons theory on S2 with two

fundamental and two antifundamental Wilson line insertions.

The inner product in the gauge sector depends only on the topology of the paths of matter

particles inside the S2. The distinct topological sectors are distinguished by a relative wind-
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x1 x2

x3 x4 x3 x4

x1 x2

(a)

Figure 17: The full effective Wilson lines for S and Ud channels

x3 x4

x1 x2

(a)

Figure 18: The full effective Wilson lines for T -channel

ing number of the two scattering particles around each other. In the large N limit where the

probability for reconnections in the Skein relations (see Eq. 4.22 of [23]) vanishes, the gauge

theroy inner product in a sector of winding number w difffers from the inner product in a sector

of winding number zero merely by the relevant Aharonov-Bohm phase. This relative weighting

is, of course, a very important part of the scattering amplitude of the theory, producing all the

nontrivial behaviour. However the gauge theory inner product is nontrivial even at w = 0. The

details of this extra factor depend on the apparently unphysical external Wilson lines. This extra

factor is not present in the ‘S-matrix’ computed in this chapter (as we had no external Wilson

lines connecting the various particles). In order to compare with the S-matrices presented in this

chapter, we must remove this overall inner product factor.

The gauge inner product < ψG2 |ψG1 > corresponding to identity matter scattering (i.e. the

geodesic paths of the matter particles from prduction to annihilations) depends on the scattering

channel. Let us first study scattering in the identity channel. The initial particle created at x1
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connects up to the final particle at x3, while the particle created at x2 connects up with the final

particle at x4. Combining with the external lines, the full effective Wilson line is topologically a

circle, see the second of Fig. 17. On the other hand, in the case of particle-particle scattering,

the dominant dynamical trajectories are from the initial insertion at x1 to the final insertion at

x2 and from the initial insertion at x4 to the final insertion at x3. Including the external lines,

the net effective Wilson line has the topology of two circles, see the first of Fig 17.

As the topology of the effective Wilson loops in the first and second of Fig. 17 differs, it

follows that the gauge theory inner product (even at zero winding) is different in the two sectors.

It was demonstrated by Witten in [23] that the ratio of the path integral with two circular Wilson

lines to the path integral with a single circular Wilson line is infact given by

k sin(πλB)

π
= N

sin(πλB)

πλB

in the large N limit. It follows that we should expect that

TS =
k sin(πλB)

π
TUd (170)

in perfect agreement with (82) (the δ function piece in (82) is presumably related to a contact

term in the correlators described in this subsection).

A similar argument relates TUe to TT without any relative factor, as in this case the closed

Wilson lines described above has the topology of two circles in both cases.

1.7.5 Direct evaluation of the S-matrix in the identity channel

The fact that we were able to solve the integral equation that determines four particle scattering

only for q± = 0 prevented us from evaluating the S-matrix in the identity channel by direct

computation. For this reason we have been forced, in this section, to resort to guesswork and

indirect arguments to conjecture a result for the S-matrix in the channel with identity exchange.

It would, of course, be very satisfying to be able to verify our conjecture by direct computation.

Unfortunately we have not succeeded in doing this. In this subsection we briefly report two

potentially promising ideas for a direct evaluation.

Double analytic continuation As we have already explained above, the planar graphs

that evaluate 2 → 2 scattering may be summed by an integral equation. As a technical trick to

solve the integral equation, earlier in this chapter we found it convenient to analytically continue

momenta to Euclidean space according to the formula p0 = ip0
E . We then proceeded to solve the

integral equation in Euclidean space. In order to evaluate T and U -channel scattering we then

analytically continued the final result back to Lorentzian space by setting p0
E = ip0.
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There is, however, a natural, inequivalent analytic continuation of the Euclidean space integral

equation to Lorentzian space: the continuation

p3 = −ip3
L

Under this continuation x3 turns into a time like coordinate, while x± are complex coordinates

x+ ∼ z, x− ∼ z̄ that parameterize the spatial R2. This at first strange sounding analytic

continuation has been employed with great apparent success in several studies of the thermal

partition function of large N Chern-Simons theories [2–6, 8–11], a fact that suggests this analytic

continuation should be taken seriously.

Under this analytic continuation a center of mass momentum with q± = 0 is timelike; indeed

the condition q± = 0 is simply the assertion that the center of mass momentum points entirely

in the time direction, so that in the S-channel we are studying scattering in the center of mass

frame. 36

In summary, it seems plausible that the double analytic continuation of the integral equation

(86) at q± = 0 provides a direct computational handle on the S-matrix in the identity channel.

The discussion of this subsection may seem, at first, to directly contradict (82); surely the

solution of an analytically continued integral equation is simply the analytic continuation of the

solution of the original equation without any factors or additional singular terms? Infact this is

not the case. It turns out that the integral equation after double analytic continuation has new

singularities in the integral. These singularities - which are absent in the original equation - spoil

naive analytic continuation. We illustrate this complicated set of affairs in Appendix 1.9.7.

If the central idea of this subsection is correct, then it should be possible to obtain the

scattering cross section with identity exchange by solving the double analytic continued integral

equation taking the new singular contributions into account. This appears to be a delicate task

that we have not managed to implement.

As a warm up to the exercise suggested in this section it would be useful to rederive the

ordinary non-relativistic Aharonov-Bohm equation by solving the Lippmann Schwinger equation,

order by order in perturbation theory, in momentum space, perhaps at the value of the self

adjoint extension parameter w = 1 (see [22] ) at which point the Aharonov-Bohm amplitude is

an analytic function of ν so perturbation theory is well-defined. We suspect that this exercise

will encounter all the subtle singularities discussed in this section, and it would be useful to learn

how to carefully deal with these singularities in a context where the answer is known without

doubt. We postpone further study of these ideas to future work.

36Recall that the 3 momentum qµ had the interpretation of momentum transfer in the T and the U -
channels. As momentum transfer is necessarily spacelike for an onshell process, it follows that the U and
T channel scattering processes are never onshell with this choice of Lorentzian continuation.
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Schrodinger equation in lightfront quantization? It is striking that in the non-

relativistic limit, the exact S-matrix was obtained rather easily by solving a Schrodinger equation

in position space. One might wonder if the full non-relativistic S-matrix may similarly be obtained

by solving an appropriate Schrodinger equation.

An observation that supports this hope is the fact that genuine ‘particle creation’ never occurs

in the large N limit. A Feynman diagram that describes virtual fundamental particles being

created and destroyed during a scattering process has additional index loops and is suppressed

in the large N limit. It thus seems plausible that the scattering matrices of interest to us in this

chapter may be obtained by solving the relevant quantum mechanical problem.

Although we will not present the details here, we have succeeded in reproducing the effective

scattering amplitude of the ungauged large N φ4 theory by solving a two particle Schrodinger

equation. The Schrodinger equation in question is obtained from a lightcone quantization of the

quantum field theory. It may well prove possible to extend this analysis to the gauged theory,

and thereby extract the S-matrix from an effective Schrodinger equation; however we have not

yet succeeded in implementing this idea. We leave further study of this idea to future work.

1.8 Discussion

In this chapter we have presented computations and conjectures for the formulas for 2 → 2

scattering in large N matter Chern-Simons theories at all orders in the ’t Hooft coupling. All the

computations presented in this chapter were performed in the light cone gauge together with an

assumption of involving the precise definition of the gauge propagator in this gauge. It would be

useful to have checks of our results using different methods - perhaps working in a covariant gauge.

It might be possible (and would be very interesting) to generalize the covariant computation of

section 1.5 to two loops. It would also be very interesting to study how (and whether) the unusual

structural features predicted here manifest themselves in a covariant computation.

Obvious extensions of this chapter include the generalization of the computations presented

here to the simplest N = 1 and 2 supersymmetric matter Chern-Simons theories, and also to

the large class of single boson-fermion theories studied in [7]. The authors of [24] study the most

general renormalizable N = 1 U(N) Chern-Simons gauge theory coupled to a single (generically

massive) fundamental matter multiplet. Their S-matrices are in perfect agreement with the self

duality of this class of theories. And excitingly, The consistency of their results with unitarity

requires a modification of the usual rules of crossing symmetry in precisely the manner anticipated

in lending substantial support to our conjecture. They also find that in a certain range of coupling

constants S-matrices have a pole whose mass vanishes on a self dual codimension one surface in

the space of couplings.

In [25] the finite b4 results of the bosonic computations in this chapter are matched with a
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generalized fermionic computation in which we include a (ψ̄ψ)2 and (ψ̄ψ)3 terms in the fermionic

Lagrangian.

Perhaps the most interesting formula presented in this chapter is the formula for the scattering

matrix in the S-channel. (see (81), (82)). This formula is manifestly unitary: it includes an

unusual rescaling of the identity piece in the S-matrix; it agrees with the formula for Aharonov-

Bohm scattering in the non-relativistic limit, and the formula for large N φ4 scattering in the

small λB limit. It is also tightly related to scattering in the other channels via rescaled relations

of crossing symmetry. In the case of the scalar theory, this S-matrix also has poles signalling the

existence of a stable singlet bound state of two particles in the singlet channel over a range of

values of b4. Unfortunately the formula for S-channel scattering presented in this chapter has

not been derived but has simply been conjectured. A very important problem for the future

is to honestly derive the formula for S-channel scattering, perhaps along the lines sketched in

subsection 1.7.5.

Another reason to understand scattering after the double analytic continuation described in

subsection 1.7.5 is to better understand the detailed connection between the Lorentzian results

of this chapter and the Euclidean results of earlier computations [2, 3, 6, 8–11].

The S-matrices derived here have all been obtained for the scattering of massive particles.

There is no barrier to taking the high energy (or equivalently zero mass) limit of our scattering

amplitudes. Interestingly, the scattering amplitudes develop no new infrared singlularities in this

limit. This fact is probably an artifact of the large N limit that supresses the pair creation of

fundamental particles; it seems likely that 1
N corrections to the results presented in this chapter

will have new infrared singularities in the zero mass limit.

As we have explained, the formulas (and conjectures) presented in this chapter imply that the

usual rules of crossing symmetry are modified in matter Chern-Simons theories. In this chapter

we have presented a conjecture for the nature of that modification in the ’t Hooft large N limit. It

would be interesting to prove this rule analogue of crossing symmetry (perhaps using a refinement

of the arguments in subsection 1.7.4).

A simplifying feature of the ’t Hooft large N is that scattering was truly anyonic (i.e. was

characterized by a nonzero anionic phase) only in the singlet channel of Particle-antiparticle scat-

tering. In particular the anyonic phase vanishes in particle-particle scattering (see subsection

1.2.6) so that we were never forced in this chapter to address issues having to do with the gen-

eralization of Bose or Fermi statistics. At finite N and k this situation will change, presumably

leading to nontrivial phases between particle-particle scattering in the direct and exchange chan-

nels. These considerations suggest that the crossing symmetry structure of scattering amplitudes

will be very rich at finite N and k; it would be fascinating to have even a well motivated con-

jecture for this structure. It is conceivable that the S-matrix presented in this chapter and its

generalization to the finite N and k case may have useful applications in the condensed matter
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problems and also in the area of the topological quantum computation [26]. 37

If the unusual structural properties conjectured in this chapter withstand further scrutiny,

then they are likely to be general features of all matter Chern-Simons theories. We should,

in particular, be able to probe these features in the scattering of maximally supersymmetric

Chern-Simons theories (ABJ theories). In this connection it is interesting to note that there is

an unresolved paradox in the study of scattering amplitudes in ABJM and ABJ theory. In this

theory the 2→ 2 scattering amplitude has been argued to vanish at one loop [27–29], but to be

non vanishing at two loops [29–31]. The paradox arises because although the proposed two loop

formula for four particle scattering in ABJM theory has cuts [30], there do not seem to exist any

candidate intermediate processes to saturate these cuts. 38 While scattering amplitudes in ABJ

theory are more confusing than those considered in this chapter because they receive infrared

divergences from intermediate massless scalar and fermion propagation, it is at least conceivable

that the resolution to this apparent unitarity paradox lies along the lines sketched in this chapter.

The results of this chapter should generalize, in the most straightforward fashion, to scattering

in U(M)× U(N) theory when M
N << 1 (in this limit the ABJ theory begins to closely resemble

a theory with a single gauge group and only fundamental matter, like the theories studied in this

chapter). The analysis of this chapter suggests that the 2 → 2 scattering amplitude does not

completely vanish at one loop: it should at least have a δ function localized singular piece. The

contribution of this piece in a one loop sub diagram to two loop graphs could then, additionally,

modify the scattering amplitudes as well as the usual rules of crossing symmetry. It would

be fascinating to verify these expectations via a direct analysis of scattering amplitudes in the

supersymmetric theories39.

A significant check of all the computations and conjectures presented in this chapter is that

they are all consistent with the recently conjectured level-rank duality between bosonic and

fermionic Chern-Simons theories. This works in a rather remarkable way. The bosonic S-matrices

have nontrivial analytic structure (e.g. two particle cuts) at all values of λB (including λB = 0

where the cuts come from the four boson contact interaction) provided |λB| 6= 1. Precisely at

λB = 1, however, the bosonic S-matrix collapses into precisely the analytically trivial constant

that one predicts from fermionic tree level scattering. Indeed the agreement between bosonic and

37Perhaps there is a sense in which the finite N and k result is ‘quantum’, and results in the ’t Hooft
limit are obtained from the ‘classical limit’ of the corresponding ‘quantum structure’.

38There appear to be only two candidates for the processes that could produce these cuts. The first is
by sewing together two 2 → 3 tree level amplitudes, but there are no such amplitudes in ABJM theory.
The second is by sewing together a tree level 2 → 2 amplitude with a one loop 2 → 2 amplitude, but as
we have remarked, the latter have been argued to vanish.

39It is interesting to note that, in [32] it was argued that in the case of ABJM, three loop amplitude
is non zero. However, again they missed the existance of delta function. It would be interesting to see
whether higher point functions also shows some nontrivial analytical structure. For a discussion of higher
point function in ABJM theory, we refer reader to [33].
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fermionic S-matrices works at all values of λB, not just at extreme ends.

Indeed the results of this chapter shed some additional light on the working of this duality. The

first point, as we have already emphasized in the introduction, is that our S-matrix is effectively

anyonic in the singlet channel. The effective anyonic phase can be estimated very simply in the

non-relativistic limit, and the duality map from λB to λF can simply be deduced by demanding

that the dual theories have equal anyonic phases.

In the U -channel, on the other hand, the anyonic phase is trivial. Bosonic and fermionic S

matrices map to each other only after we transpose the exchange representations. As we have

explained in more detail in the introduction, this suggests that, for scattering purposes, there

exists a map between asymptotic multi bosonic states that transform in representation R of

U(NB) and multi- fermionic states that transform in representation RT of U(NF ).

There is an obvious puzzle about the identification suggested above; namely the number of

states on the two sides do not match (this is true even if we restrict to the simplest representation,

namely the fundamental, simply because NB 6= NF ). It seems possible that the duality between

the bosonic and fermionic theories really works only on compact manifolds (and so, effectively,

only in the singlet sector on R2). If this turns out to be the correct eventual statement of

the duality, then the perfect match under duality of the scattering amplidues in non singlet

sectors may eventually find its explaination in the match of factorized subsectors in higher point

scattering in the singlet channel. For instance one could consider the scattering of two particles,

and simultaneously the scatering of two antiparticles very far away, with colour indices chosen

so that the full four particle initial state is a singlet and so duality invariant. Presumably the

scattering amplitudes factor into the scattering amplitude for particle - particle scattering and

the scatterng amplitude for antiparticle-antiparticle scattering, implying the duality invariance of

these more basic 2 particle scattering amplitudes, even though they do not occur in a gauge singlet

sector, explaining the results obtained in this chapter. It would certainly be nice to understand

this better.

In summary, the results and conjectures presented in this chapter have several unexpected

features, have intriguing implications, and throw up several puzzles. If our results stand up to

further scrutiny they suggest several fascinating new directions of investigation.

1.9 Appendices for Chapter 1

1.9.1 The identity S-matrix as a function of s, t, u

As explained in subsection 1.2.3, the identity S-matrix has a simple form in the center of mass

frame; it is given by

(2π)3δ3(p1 + p2 − p3 − p4)8π
√
sδ(θ)
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As we will see below, the expression δ(θ) is slightly singular when recast in terms of invariants,

so we will find it convenient to regulate this expression as

(2π)3δ3(p1 + p2 − p3 − p4)4π
√
s lim
ε→0

(δ(θ − ε) + δ(θ + ε)) .

Using (23), this expression may be recast in invariant form

δ

(√
4t

t+ u
− ε
)

(2π)3δ3(p1 + p2 − p3 − p4) (171)

as we have already noted in (21).

In this Appendix we present a cumbersome but direct algebraic check that I as defined in

(171) coincides with I defined in (20). Our strategy is as follows. We start with the expression

(171), and express the arguments of the delta functions in (171) entirely in terms of the 8 variables

px1 , p
y
1, p

x
2 , p

y
2, p

x
3 , p

y
3, p

x
4 , p

y
4 (the energies of the ingoing and outgoing particles are solved for using

the on shell condition). We choose to view the resultant expression as follows. We think of

px1 , p
y
1, p

x
2 , p

y
2 as fixed initial data and the remaining quantities px3 , p

y
3, p

x
4 , p

y
4 as variable scattering

data. The four delta functions in (171) thus determine px3 , p
y
3, p

x
4 , p

y
4 as functions of px1 , p

y
1, p

x
2 , p

y
2.

At leading order in ε is not difficult to explicitly determine the values for px3 , p
y
3, p

x
4 , p

y
4 obtained

in this manner. We find

p3,x = p1,x ± εa3,x, p4,x = p2,x ± εa4,x, p3,y = p1,y ± εa3,y, p4,y = p2,y ± εa4,y. (172)

where the four a variables are obtained by solving four linear equations (the ± above corresponds

to the two possibilities θ = ε or θ = −ε in the centre- of-mass frame). In what follows below

we will not need the explicit form of the solutions for the a variables, but will only need certain

identities obeyed by these solutions. These identities turn out, in fact, to be three of the four

equations that the a variables obey. The relevant three equations are

a4,x = −a3,x, a4,y = −a3,y, a3,x = Ba3,y,

where B =
p2,y

√
m2 + p2

1,x + p2
1,y − p1,y

√
m2 + p2

2,x + p2
2,y

p1,x

√
m2 + p2

2,x + p2
2,y − p2,x

√
m2 + p2

1,x + p2
1,y

.
(173)

Let us now return to our task of rewriting the delta function in (171) in terms of delta functions
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linear in px3 , p
y
3, p

x
4 , p

y
4. It follows from the usual rules for manipulating delta functions that

δ

(√
4t

t+ u
− ε
)
δ3(p1 + p2 − p3 − p4)

= J1δ
2(−→p 3 −−→p 1 + εa3)δ2(−→p 4 −−→p 2 + εa4) + J2δ

2(−→p 3 −−→p 1 − εa3)δ2(−→p 4 −−→p 2 − εa4)

(174)

where J1 and J2 are the relevant Jacobians. It remains to compute these Jacobians.

The reader might naively expect that the Jacobians are independent of a3 and a4 in the limit

ε → 0, but that is not the case. It is not difficult verify that, in the ε → 0 limit the derivatives
∂
√

4t
t+u

∂px3
and

∂
√

4t
t+u

∂py3
(which enter the expression for the Jacobians) are of the form A

B where A and

B are both expressions of unit homogeneity in a3 and a4. The ratio A
B does not depend on the

overall scale of a3,x, a3,y and a4,x, a4,y, but does depend on their relative magnitudes. It turns out

that the equations (173) are sufficient to unambiguously determine the ratio A
B (which turns out

to be the same for the two solutions corresponding to the ± signs so that J1 = J2 = J) ; we find

J =
√
s

1

E1E2
(175)

where Ei =
√
m2 + p2

i,x + p2
i,y and

s =
√

2

√√
m2 + p2

1,x + p2
1,y

√
m2 + p2

2,x + p2
2,y +m2 − p1,xp2,x − p1,yp2,y. (176)

Collecting factors, it follows that the RHS of (171) coincides with the RHS of (20) in the limit

ε→ 0.

1.9.2 Tree level S-matrix

The bosonic effective action is

TB =
1

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3
V (p, k, q)φi(p+ q)φ̄j(−k − q)φ̄i(−p)φj(k), (177)

where at tree level

V (p, k, q) = 8πiλεµνρ
qµpνkρ

(k − p)2
. (178)

And the fermionic effective action is

TF =
1

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3
V αγ
βδ (p, k, q)ψi,α(p+ q)ψ̄j,β(−k − q)ψ̄i,δ(−p)ψj,γ(k), (179)
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where at tree level

V αγ
βδ (p, k, q) = 2iπλεµνρ

(γµ)αβ(γν)γδ (k − p)ρ
(k − p)2

. (180)

The gauge field propagator that we work with in this section is

〈Aµ(p)Aν(−q)〉 = (2π)3δ3(p− q)4π

p2
εµνρp

ρ. (181)

Particle-particle scattering According to the momentum assignments in (37), The bosonic

S-matrix is given by

SB(p1, p2, p3, p4)

=〈out|1 + iTB|in〉
=〈0|an(p4)am(p3)ab†(p2)aa†(p1)|0〉

+
i

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3

[
V (p, k, q)

× 〈0|an(p4)am(p3)
(
φi(p+ q)φ̄j(−k − q)φ̄i(−p)φj(k)

)
ab†(p2)aa†(p1)|0〉

]
.

(182)

Using appropriate contractions and commutation relations, we find

SB(p1, p2, p3, p4) = δamδ
b
n (I(p1, p2, p3, p4) + iV (−p3, p2, p1 + p3))

+ δanδ
b
m (I(p1, p2, p4, p3) + iV (−p4, p2,−p3 − p2))

(183)

The first term is for the Ud channel while the other is for the Ue channel.

Whereas the fermionic S-matrix is

SF (p1, p2, p3, p4)

=〈out|1 + iTF |in〉
=〈0|an(p4)am(p3)ab†(p2)aa†(p1)|0〉

+
i

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3

[
V αγ
βδ (p, k, q)

× 〈0|an(p4)am(p3)
(
ψi,α(p+ q)ψ̄j,β(−(k + q))ψ̄i,δ(−p)ψj,γ(k)

)
ab†(p2)aa†(p1)|0〉

]
(184)
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Using appropriate contractions and anticommutation relations,

SF (p1, p2, p3, p4)

=− δamδbnI(p1, p2, p3, p4)

− iδamδbnV αγ
βδ (−p3, p2, p1 + p3)ūβ(−p4)ūδ(−p3)uα(p1)uγ(p2)

+ δanδ
b
mI(p1, p2, p4, p3)

+ iδanδ
b
mV

αγ
βδ (−p4, p2,−p3 − p2)ūβ(−p3)ūδ(−p4)uα(p1)uγ(p2)

(185)

Again, the first term is for the Ud channel while the other is for the Ue channel.

Particle-antiparticle scattering According to the momentum assignments in (32), The

bosonic S-matrix is given by

SB(p1, p2, p3, p4)

=〈out|1 + iTB|in〉
=〈0|bn(p4)am(p3)b†b(p2)aa†(p1)|0〉

+
i

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3

[
V (p, k, q)

× 〈0|bn(p4)am(p3)
(
φi(p+ q)φ̄j(−k − q)φ̄i(−p)φj(k)

)
b†b(p2)aa†(p1)|0〉

]
(186)

Using appropriate contractions and commutation relations, we find

SB(p1, p2, p3, p4) =

(
δamδ

n
b −

δnmδ
a
b

N

)
(I(p1, p2, p3, p4) + iV (−p3, p4, p1 + p3))

+
δnmδ

a
b

N
(I(p1, p2, p3, p4) + iV (−p2, p4, p1 + p2))

(187)

The first term is for the T -channel while the other is for the S-channel.

Whereas the fermionic S-matrix is

SF (p1, p2, p3, p4) = 〈out|1 + iTF |in〉 = 〈0|bn(p4)am(p3)b†b(p2)aa†(p1)|0〉

+
i

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3
V αγ
βδ (p, k, q)〈0|bn(p4)am(p3)(

ψi,α(p+ q)ψ̄j,β(−k − q)ψ̄i,δ(−p)ψj,γ(k)

)
b†b(p2)aa†(p1)|0〉

(188)
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Using appropriate contractions and anticommutation relations, we find

SF (p1, p2, p3, p4)

= −
(
δamδ

n
b −

δnmδ
a
b

N

)(
I(p1, p2, p3, p4)− iV αγ

βδ (−p3, p4, p1 + p3)ūβ(−p3)v̄δ(p2)uα(p1)vγ(−p4)
)

− δnmδ
a
b

N

(
I(p1, p2, p3, p4) + iV αγ

βδ (−p2, p4, p1 + p2)v̄β(p2)ūδ(−p3)uα(p1)vγ(−p4)
)

(189)

Again, the first term is for the T -channel while the other is for the S-channel.

Explicit tree level computation Now we substitute for the V s for the respective channels

in bosonic case, and obtain

While the fermionic expressions for S, T , Ud and Ue channels are (with respect to the identity)

respectively,

TS =
2iπ

kF (p2 + p4)2
εµνρ (ū(−p3)γµu(p1)) (v̄(p2)γµv(−p4)) (p2 + p4)ρ

TT = − 2iπ

kF (p3 − p4)2
εµνρ (v̄(p2)γµu(p1)) (ū(−p3)γµv(−p4)) (p3 + p4)ρ

TUd =
2iπ

kF (p2 + p3)2
εµνρ (ū(−p4)γµu(p1)) (ū(−p3)γµu(p2)) (p2 + p3)ρ

TUd =
2iπλF

(p2 + p4)2
εµνρ (ū(−p3)γµu(p1)) (ū(−p4)γµu(p2)) (p2 + p4)ρ

(190)

These expressions can be manipulated conveniently using the Gordon Identities which are

derived below:

The Dirac equation satisfied by u(p), ū(p), v(p), v̄(p) are given by

(iγµpµ +m)u(p) = 0, ū(p) (iγµpµ +m) = 0,

(−iγµpµ +m) v(p) = 0, v̄(p) (−iγµpµ +m) = 0.
(191)
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The gamma matrices are given by

γ0 =

(
0 1

−1 0

)
,

γ1 =

(
0 1

1 0

)
,

γ2 =

(
1 0

0 −1

)
.

(192)

They satisfy

γµγν = gµν − εµνργρ. (193)

Now, using Dirac equation (191), it is easy derive the Gordon identities

−ū(p1)γµu(p2) = i

(
ū(p1)

(p1 + p2)µ

2m
u(p2)− εµνρ (−p1 + p2)ν

2m
ū(p1)γρu(p2)

)
−ū(p1)γµv(p2) = i

(
ū(p1)

(p1 − p2)µ

2m
v(p2) + εµνρ

(p1 + p2)ν
2m

ū(p1)γρv(p2)

)
−v̄(p1)γµu(p2) = i

(
v̄(p1)

(−p1 + p2)µ

2m
u(p2)− εµνρ (p1 + p2)ν

2m
v̄(p1)γρu(p2)

)
−v̄(p1)γµv(p2) = i

(
−v̄(p1)

(p1 + p2)µ

2m
v(p2) + εµνρ

(p1 + p2)ν
2m

v̄(p1)γρv(p2)

)
(194)

Using this, it is easy to show that

ū(p1)γµu(p2) =
1

1 + (p1−p22m )2

(
−i(p1 + p2)µ

2m
− 1

2m2
εµνρ(p1)ν(p2)ρ

)
ū(p1)u(p2)

v̄(p1)γµu(p2) =
1

1 + (p1+p2
2m )2

(
−i(−p1 + p2)µ

2m
+

1

2m2
εµνρ(p1)ν(p2)ρ

)
v̄(p1)u(p2)

ū(p1)γµv(p2) =
1

1 + (p1+p2
2m )2

(
−i(p1 − p2)µ

2m
+

1

2m2
εµνρ(p1)ν(p2)ρ

)
ū(p1)v(p2)

v̄(p1)γµv(p2) =
1

1 + (p1−p22m )2

(
i
(p1 + p2)µ

2m
− 1

2m2
εµνρ(p1)ν(p2)ρ

)
v̄(p1)v(p2)

(195)

The only thing that is remaining is to compute the quantities, ū(p′)u(p), v̄(p′)v(p), ū(p′)v(p), v̄(p′)u(p).

For this, we explicitly construct the solution for V and u starting boosting the rest frame results

which are easily computable to a frame where the momenta is p. In the rest frame, equation

satisfied by the u and v is given by,

(
−iγ0 + I

)
u(0) = 0,

(
iγ0 + I

)
v(0) = 0, (196)
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and for ū and v̄

ū(0)
(
−iγ0 + I

)
= 0, v̄(0)

(
iγ0 + I

)
= 0, (197)

where I denotes, the 2× 2 identity matrix. The solutions are

u(0) =
√
m (1,−i) , v(0) =

√
m (1, i) , ū(0) =

√
m (1, i) , v̄(0) =

√
m (−1, i) . (198)

Suppose we are now interested in solution for u and v at momenta p, given by

pµ = (−m cosh(α),m sinh(α) cos(θ),m sinh(α) sin(θ)) . (199)

The solutions are given by

u(p) =
(

cosh(
α

2
)I − sinh(

α

2
)
(
cos(θ)γ2 − sin(θ)γ1

))
u(0)

ū(p) = ū(0)
(

cosh(
α

2
)I + sinh(

α

2
)
(
cos(θ)γ2 − sin(θ)γ1

))
v(p) =

(
cosh(

α

2
)I − sinh(

α

2
)
(
cos(θ)γ2 − sin(θ)γ1

))
v(0)

v̄(p) = v̄(0)
(

cosh(
α

2
)I + sinh(

α

2
)
(
cos(θ)γ2 − sin(θ)γ1

))
.

(200)

It is now easy to compute ū(p′)u(p), v̄(p′)v(p), ū(p′)v(p), v̄(p′)u(p). Results are given by

ū(p1)u(p2) =e
i tan−1 sin(θ2−θ1)

cos(θ2−θ1)−coth(α1) coth(α2)
√

(2m2 − 2 p1 · p2),

v̄(p1)v(p2) =e
i tan−1 sin(θ1−θ2)

cos(θ1−θ2)−coth(α1) coth(α2)
√

(2m2 − 2 p1 · p2),

v̄(p1)u(p2) =e
i tan−1

sinh(α12 ) cosh(α22 ) sin(θ1)−sinh(α22 ) cosh(α12 ) sin(θ2)

sinh(α12 ) cosh(α22 ) cos(θ1)−sinh(α22 ) cosh(α12 ) cos(θ2)

×
√

(−2m2 − 2 p1 · p2),

ū(p1)v(p2) =e
i tan−1

sinh(α22 ) cosh(α12 ) sin(θ2)−sinh(α12 ) cosh(α22 ) sin(θ1)

sinh(α12 ) cosh(α22 ) cos(θ1)−sinh(α22 ) cosh(α12 ) cos(θ2)

×
√

(−2m2 − 2 p1 · p2),

(201)
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As a final ingredient to compute the tree level scattering is

εµνρū(p1)γµu(p2)ū(p3)γνu(p4)pρ5

=
(ū(p1)u(p2)) (ū(p3)u(p4))(

1 + (p1−p2)2

4m2

)(
1 + (p3−p4)2

4m2

)
×
[
− 1

4m2
εµνρ(p1 + p2)µ(p3 + p4)νpρ5

+
1

4m4
((p1 · p5)εµνρp

µ
2p

ν
3p
ρ
4 − (p2 · p5)εµνρp

µ
1p

ν
3p
ρ
4)

+
i

4m3

(
(p4 · p5) (p3 · (p1 + p2))− (p3 · p5) (p4 · (p1 + p2))

)
+

i

4m3

(
(p1 · p5) (p2 · (p3 + p4))− (p2 · p5) (p1 · (p3 + p4))

)]
,

(202)

where p · p′ = pµp
′µ. Now just by few interchange of signs, as it follows from (195), one can

compute tree level with any appropriate combinatios of u′s and v′s using (201). For example,

εµνρv̄(p1)γµv(p2)ū(p3)γνu(p4)pρ5

=
(v̄(p1)v(p2)) (ū(p3)u(p4))(

1 + (p1−p2)2

4m2

)(
1 + (p3−p4)2

4m2

)
×
[ 1

4m2
εµνρ(p1 + p2)µ(p3 + p4)νpρ5

+
1

4m4
((p1 · p5)εµνρp

µ
2p

ν
3p
ρ
4 − (p2 · p5)εµνρp

µ
1p

ν
3p
ρ
4)

+
i

4m3
(−(p4 · p5) (p3 · (p1 + p2)) + (p3 · p5) (p4 · (p1 + p2)))

+
i

4m3
((p1 · p5) (p2 · (p3 + p4))− (p2 · p5) (p1 · (p3 + p4)))

]
.

(203)

Using formulas presented in (202), (203) we find

SF,Ud = −I(p1, p2, p3, p4)− eiα1
8π

kF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p3)2
− 2imF

)
(2π)3δ(p1 + p2 + p3 + p4),

SF,Ue = I(p1, p2, p4, p3)− eiα2
8π

kF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p4)2
+ 2imF

)
(2π)3δ(p1 + p2 + p3 + p4),

SF,T = −I(p1, p2, p3, p4) + eiα3
8π

kF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p4 + p3)2
+ 2imF

)
(2π)3δ(p1 + p2 + p3 + p4),

SF,S = −I(p1, p2, p3, p4) + eiα48πλF

(
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p4)2
− 2imF

)
(2π)3δ(p1 + p2 + p3 + p4),

(204)

where α1 to α4 are some complicated physically irelevant phase factors. They obey interchange

symmetry and for equal momneta (for example, in (201), p1 = p2) phase vanishes. In particular,
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this implies that the phase factor in Ud and Ue channel are the same. Although, these phases

has no physical relevance, we present the results in the C.M. frame. Let the incoming momenta

be p1, p2 and out going momenta are −p3,−p4 and the angle between p1 and −p3 is given by θ

then we find α1 = α2 = α3 = α4 = −θ. Note that, inparticular this has the property that, near

identity, phase factors has no contribution, this is what we expect also from physical ground. So

the answers obey the duality with the Bosonic answers in the respective channels.

For completeness, we also write answers for bosonic case.

SB,Ud = I(p1, p2, p3, p4)− 8π

kB

εµνρp
µ
1p

ν
2p
ρ
3

(p2 + p3)2
(2π)3δ(p1 + p2 + p3 + p4)

SB,Ue = I(p1, p2, p4, p3) +
8π

kB

εµνρp
µ
1p

ν
2p
ρ
3

(p2 + p4)2
(2π)3δ(p1 + p2 + p3 + p4)

SB,T = I(p1, p2, p3, p4) +
8π

kB

εµνρp
µ
1p

ν
2p
ρ
3

(p4 + p3)2
(2π)3δ(p1 + p2 + p3 + p4)

SB,S = I(p1, p2, p3, p4)− 8πλB
εµνρp

µ
1p

ν
2p
ρ
3

(p2 + p4)2
(2π)3δ(p1 + p2 + p3 + p4).

(205)

1.9.3 Aharonov-Bohm scattering

In this section we will review the classic computation, first performed by Aharonov and Bohm, of

the scattering of a charged non-relativistic particle off a flux tube; see [15, 17, 19–22] for relevant

references. We assume that the flux tube is oriented in the z direction, and sits at the origin of the

transverse two dimensional space. We focus on states that also preserve translational invariance

along the z direction, so our problem is effectively two (spatial) dimensional. We assume that

the integrated flux of the flux tube equals 2πν so that the phase associated with the charge

particle circling the flux tube is 2πiν (the particle is assumed to carry unit charge and mass m).

Throughout this appendix we assume |ν| < 1.

Derivation of the scattering wave function We will find scattering state solutions at

energy E = k2

2m of the Schrodinger equation for this particle; intuitively k is the momentum of

the particle incident on the flux.

The time independent Schrodinger equation that governs our system is(
− 1

2m
(∇+ 2πiνG)2 − k2

2m

)
ψ = 0 (206)

where

Gi =
εij
2π
∂j ln r (207)
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In polar coordinates the one form G is given by

G =
dφ

2π
.

Following Aharonov and Bohm we adopt ‘regular’ boundary conditions at the origin of our

space, i.e. we demand that the wave function at the origin remain finite. As we will see below this

requirement forces the wave function to vanish at the origin like r|ν| in the s wave channel. The

appearance of |ν| in this boundary condition results in a scattering amplitude that is non-analytic

as a function of ν and ν = 0. 40

The most general solution to the Schrodinger equation consistent with the boundary condi-

tions described above is given by

ψ(r, θ) =
∑
n>0

ane
inθJn+ν(kr) +

∑
n>0

a−ne
−inθJn−ν + a0J|ν|(kr) (208)

Recall the asymptotic expansion of Bessel functions at small and large values of the argument

Jα(x) =

(
x
2

)α
Γ(α+ 1)

+ . . . , =
1√
2πx

(
eix−i

π
4
−iαπ

2 + e−ix+iπ
4

+iαπ
2

)
(209)

and the expansion of the plane wave in terms of Bessel functions

eikx =
∑
n

inJn(kr)einθ (210)

and the large r expansion of this plane wave (obtained by substituting (208) into (210))

eikx
′

= eikr
′ cos(θ) =

∑
n

ineinθJn(kr)

∑
n

ineinθJn(kr) ≈ 1√
2πkr

∑
n

ineinθ
(

(eikr−
iπn
2
− iπ

4 + e−ikr+
iπn
2

+ iπ
4

)
(r � 1)

=
2π√
2πkr

(
e
−iπ
4 eikrδ(θ) + e

iπ
4 e−ikrδ(θ − π)

)
.

(211)

41 It is easy to see that the unique solution of the form (208) whose ingoing part - i.e. part

40 See [22] for a fascinating one parameter self adjoint relaxation of this boundary condition (which
infact yields analytic S-matrices at w = 1) .

41 This formula is very picturesque; it describes an incoming wave from the negative x axis (so at
θ = −π) and an outgoing wave along the positive x axis (so at θ = 0). In particular, the outgoing part of
the incident wave is equivalent to a contribution to the scattering amplitude proportional to δ(θ) .
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proportional to e−ikr - is identical to the plane wave (210) is given by

ψ(r, θ) =

∞∑
n=1

ine−i
πν
2 Jn+ν(kr)einθ +

∞∑
n=1

inei
πν
2 Jn−ν(kr)e−inθ + e−i

π|ν|
2 J|ν|(kr) (212)

The scattering amplitude At large r ψ(r) reduces to

1√
2πkr

(
2πei

π
4 δ(θ − π)e−ikr +H(θ)e−i

π
4 eikr

)
(213)

where

H(θ) = e−iπ|ν| +
∞∑
n=1

(
e−iπνeinθ + eiπνe−inθ

)
. (214)

Decomposing H(θ) up into its even and odd parts and then further processing we find

H(θ) =

( ∞∑
n=1

2 cos(πν) cos(nθ)

)
+ e−i|ν|π +

( ∞∑
n=1

2 sin(πν) sin(nθ)

)

=

(
cos(νπ) +

∞∑
n=1

2 cos(πν) cos(nθ)

)
− i| sin(νπ)|+

( ∞∑
n=1

2 sin(πν) sin(nθ)

)

= 2π cos(πν)δ(θ)− i| sin(νπ)|+
( ∞∑
n=1

2 sin(πν) sin(nθ)

)

= 2π cos(πν)δ(θ) + sin(πν)Pv

(
cot

(
θ

2

))
− i| sin(πν)|

= 2π cos(πν)δ(θ) + sin(πν)Pv

(
e−i

θsgn[ν]
2

sin
(
θ
2

) ) .

(215)
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42 It is conventional to write the wave function as a plane wave plus a scattered piece ; at large r

ψ(r) = eikx +
h(θ)e−i

π
4 eikr√

2πkr
. (218)

Plugging (211) into (218) and comparing with (213) we conclude that

h(θ) = H(θ)− 2πδ(θ) (219)

so that

h(θ) = 2π (cos(πν)− 1) δ(θ) + sin(πν)Pv

(
e−i

θsgn[ν]
2

sin
(
θ
2

) ) . (220)

Physical interpretation of the δ function at forward scattering It is intuitively clear

that the amplitude for propagation (path integral) for a particle starting out a large distance away

from the origin on the negative real axis, to a position nearer the scattering center has enough

information to compute the scattering S-matrix. 43 The amplitude for a particle to propagate

from far to the left of the origin to a point near the origin (lets say at angle θ ≈ π for definiteness)

receives contributions from path whose angular winding around the origin are approximately

42In going from the third to the fourth line above we have used the formula

Pv

(
cot

(
θ

2

))
= 2

∞∑
m=1

sin(mθ) (216)

This formula is equivalent to the assertion that∫
dθ

2πi
Pv cot

(
θ

2

)
eimθ = sgn(m) (217)

(the integral on the RHS of (217) clearly vanishes when m=0 as Pv(cot
(
θ
2

)
) is an odd function). The

integral on the LHS of (217) can be converted into a contour integral about the unit circle on the complex
plane via the substitution z = eiθ. The contour integral in question is simply∮

dz

2πi
Pv

zm−1(z + 1)

z − 1

This integral is easily seen to evaluate to unity for m ≥ 1 when it receives contributions only from the
pole at unity. The substitution z = 1

w allows one to conclude as easily that the integral evaluates to −1
for m ≤ −1, establishing (216).

43Let us explain how scattering data may be extracted in practice. Recall that the amplitude for a free
particle to propagate from polar coordinates r, θ to polar coordinates r′, θ′ in time t is given by

AF (r, θ, r′, θ′, t) =
1

2πit
e
i

(
r2+(r′)2−2rr′ cos(θ−θ′)

2t

)
(221)

φFk (r′, θ′) = 2πi
√
te−i

r2

2t AF (r, θ, r′, θ′, t) (222)
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...− 3π,−π, π, 3π.... Of these infinitely many paths those with winding approximately π and −π
are special. These sectors consist of paths that go below the origin, and paths that go above

the origin, but do not otherwise wind the origin. It may be shown that these paths are entirely

responsible for the terms in H(θ) (see the previous subsection) proportional to δ(θ).

For a free plane wave H(θ) = 2πδ(θ). In a ‘traditional’ scattering problem H(θ) = 2πδ(θ) +

nonsingular i.e. the incident wave goes through largely untouched, and in addition we have some

scattering. In the problem with Aharonov-Bohm scattering, however, we have seen in the last

subsection that H(θ) = 2π cos(πν)δ(θ). This fact is easily interpreted. The contribution of paths

with winding π and −π in this problem is identical to the contribution of the same paths in

the free theory except that the paths with winding π are weighted by an additional phase eiπν

while the paths with winding −π are weighted by the additional phase e−iπν . The two sectors

are flipped by reflection and so otherwise contribute equally. This explains the modulation of the

δ(θ) part of H(θ) by cos(πν), and the consequent appearance of the term 2π(cos(πν)− 1)δ(θ) in

h(θ).

1.9.4 Details of the computation of the scalar S-matrix

Computation of the effective one particle exchange interaction In this subsec-

tion we explicitly compute the summation over the effective ‘one particle exchange’ four point

interactions depicted in Fig 4. We perform our computation in Euclidean space and analytically

continue our final result back to Euclidean space. In Figure 19 we redraw the diagrams of Fig 4,

this time including detailed momentum assignments for all legs.

is the wave function at time t of a particle, initially localized to a delta function located at r, θ. In the
limit

r →∞, t→∞ mr

h̄t
= k = fixed, r′, θ′ = fixed (223)

we have
φFk = eikx

′
(224)

i.e the wave function reduces to a plane wave. In the case of an interacting theory with interactions
localized around the origin, let the amplitude for the particle to propagate from r, θ to polar coordinates
r′, θ′ in time t be denoted by A(r, θ, r′, θ′, t). It follows that the scattering wave function for our problem
is given by

φk(r′, θ′) = 2πi
√
te−i

r2

2t A(r, θ, r′, θ′, t) (225)

in the limit (223) as this path integral produces a wave function with an incoming piece that is indistin-
guishable from a plane wave near the origin. The scattering amplitude h(θ) is read off from the large r′

expansion of φk(r′, θ) in the usual manner.
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(e) (f)

Figure 19: The one loop diagrams that contribute to the unit represented by the triple line
excluding the tree level diagram. Note that box diagram is not included here as it is one
of the contributions from two units sewn together.

44.

The graph in Fig. 19(a) evaluates to

NA1 = (−4π2λ2)

∫
−(r + p)−

(r − p)−
(r + k)−
(r − k)−

1

r2 + c2
B

d3r

(2π)3

=

∫
−
(

1 + 2
(p+ k)−
(p− k)−

(
p−

(r − p)−
− k−

(r − k)−

))
1

r2 + c2
B

d3r

(2π)3

Let θ denote the phase of the complex number r−. Since r2 doesn’t have a θ dependence,

performing the θ integration first,

NA1 = (−4π2λ2)

∫
−
(

1− 2
(p+ k)−
(p− k)−

(θ(ps − rs)− θ(ks − rs))
)

1

r2 + c2
B

dr3rsdrs
(2π)2

(226)

The graph in Fig. 19(b) evaluates to

NA2 = (−4π2λ2)

∫
−(r + p+ 2q)−

(r − p)−
(r + k + 2q)−

(r − k)−

1

(r + q)2 + c2
B

d3r

(2π)3

44All the graphs below have the common overall factor −4π2λ2, because they each have a single internal
scalar propagator, two internal gauge propagators, and two φφA 3. The scalar propagators contribute with
no factors. The gauge propagators are each proportional to 2πiλ. The triple vertices each contribute a
factor of i. And finally we get an overall minus sign from the fact that we are computing the contribution
to the Euclidean effective action which appears in the path integral as e−SE
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we can change the integration variabler → r − q and define variables p′ = p+ q,k′ = k + q.

NA2 = (−4π2λ2)

∫
−(r + p′)−

(r − p′)−
(r + k′)−
(r − k′)−

1

r2 + c2
B

d3r

(2π)3

=

∫
−
(

1 + 2
(p′ + k′)−
(p− k)−

(
p′−

(r − p′)−
− k′−

(r − k′)−

))
1

r2 + c2
B

d3r

(2π)3

Again, performing the θ integration first,

NA2 = (4π2λ2)

∫ (
1− 2

(p′ + k′)−
(p− k)−

(
θ(p′s − rs)− θ(k′s − rs)

)) 1

r2 + c2
B

dr3rsdrs
(2π)2

(227)

Fig. 19(c) evaluates to

NA3 = (−4π2λ2)

∫
−(p+ k + 2q)−

(p− k)−

(r + k)−
(r − k)−

1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
−(p′ + k′)−

(p− k)−

(
1 + 2

k−
(r − k)−

)
1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
−(p′ + k′)−

(p− k)−
(1− 2θ(ks − rs))

1

r2 + c2
B

dr3rsdrs
(2π)2

(228)

Fig. 19(d) evaluates to

NA4 = (−4π2λ2)

∫
−(p+ k)−

(p− k)−

(r + k + 2q)−
(r − k)−

1

(r + q)2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
−(p+ k)−

(p− k)−

(r + k′)−
(r − k′)−

1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
−(p+ k)−

(p− k)−

(
1 + 2

k′−
(r − k′)−

)
1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
−(p+ k)−

(p− k)−

(
1− 2θ(k′s − rs)

) 1

r2 + c2
B

dr3rsdrs
(2π)2

(229)

Fig. 19(e) evaluates to

NA5 = (−4π2λ2)

∫
(p+ k + 2q)−

(p− k)−

(r + p)−
(r − p)−

1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
(p′ + k′)−
(p− k)−

(
1 + 2

p−
(r − p)−

)
1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
(p′ + k′)−
(p− k)−

(1− 2θ(ps − rs))
1

r2 + c2
B

dr3rsdrs
(2π)2

(230)
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Fig. 19(f) evaluates to

NA6 = (−4π2λ2)

∫
(p+ k)−
(p− k)−

(r + p+ 2q)−
(r − p)−

1

(r + q)2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
−(p+ k)−

(p− k)−

(r + p′)−
(r − p′)−

1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
(p+ k)−
(p− k)−

(
1 + 2

p′−
(r − p′)−

)
1

r2 + c2
B

d3r

(2π)3

= (−4π2λ2)

∫
(p+ k)−
(p− k)−

(
1− 2θ(p′s − rs)

) 1

r2 + c2
B

dr3rsdrs
(2π)2

(231)

The total Amplitude is

NAtot =
6∑
i=1

Ai (232)

Which gives

NAtot =

∫
dr3rsdrs

(2π)2

[
(−4π2λ2)

r2 + c2
B

×
(
−2 +

4q−
(p− k)−

[
θ(p′s − rs)− θ(k′s − rs) + θ(ks − rs)− θ(ps − rs)

])] (233)

Where we recall that

p′ = p+ q, k′ = k + q.

We are interested in the special case q± = 0. In this case the p′± = p± and k′± = k±, and so

k′s = ks and p′s = ps. It follows that the θ functions in (233) cancel in pairs and

NAtot = (−2)(−4π2λ2)

∫
1

r2 + c2
B

dr3rsdrs
(2π)2

= 8π2λ2

∫
1

r2 + c2
B

d3r

(2π)3
(234)

We use dimensional regularization, which replaces the integral by ( m4π ). So ultimately these

diagrams give

NAloop = 2πλ2cB (235)

Euclidean rotation The integral equation (90) may be used to solve for the function V (p0, ~p, k0,~k, q3).

In this subsection we will be interested only in the dependence of V on p0 and k0 and so use the

notation V = V (p0, k0).

As is often the case in the study of relativistic scattering amplitudes, in this chapter we will

find it convenient determine V by first computing its ‘Euclidean continuation’. In this brief
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subsection we pause to define the Euclidean continuation of V , and to determine the integral

equation it obeys.

Given the amplitude V (p0, k0) we define the one parameter set of amplitudes, Vα(p0, k0) for

0 ≤ α ≤ π
2 as follows. Let us assume that V (p0, k0) admits an analytic continuation to the

function V (z, w) for 0 < Arg(z) < π
2 and 0 < Arg(w) < π

2 . We also assume that this function

can be defined to be free of singularities when Arg(z) = Arg(w). In terms of this analytic

function, we define a one parameter extension, Vα of V by

Vα(p0, k0) = V (p0eiα, k0eiα).

It follows in particular that Vα is a smooth function of α.

The Euclidean continuation, VE of V is defined by

VE(p0, q0) = Vπ
2
(p0, k0).

Note in particular that

VE(p0, k0) = V (ip0, ik0)

45

In order to obtain the integral equation obeyed by Vα(p0, q0) one must, of course, make the

replacement p0 → eiαp0, k0 → eiαk0 in (34). However this replacement must also be accompanied

by a simultaneous change in the contour of integration of the variable r0. If the r0 contour is left

unchanged then the pole
1

(p− r)+(p− r)− − iε
in the integrand in the first of (34) could cross the contour of integration at a particular value

of α, leading to a non-analyticity in Vα as a function of α. In order to define Vα as a smooth

function with no singularities, we adopt the following procedure. For any given p0 and α we first

deform the contour of integration over the variable r0. This deformation is performed without

crossing any singularities in the integrand, and so does not change the value of the integral. It

is chosen in a manner that ensures that the rotation p0 → p0eiα can be performed without the

pole crossing the contour of integration; for any fixed p0 and α such a deformation may always

be found. After the rotation on p0 is now performed, the integration contour for r0 is further

modified to suit convenience. It is convenient to choose the final contour for integration over r0

to be the rotation of the initial contour counterclockwise by the angle α, together with two arcs

of angle α at ∞. It is easily verified that the arcs at infinity do not contribute to the integral

(because the integrand dies off fast enough at infinity) .

45This equation that is sometimes summarized by the mnemonic p0
E = −ip0

L, k0
E = −ik0

L.
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In summary, the integral equation obeyed by the function Vα(p0, k0) is given by making the

replacements p0 → eiαp0, k0 → eiαk0, r0 → eiαr0 in (34) and then continuing to integrate the

new r0 variable over its real axis. The integral equation for VE is given by the special case α = π
2 .

Solution of the Euclidean integral equations In this subsection we determine the

solution to the scalar Euclidean integral equation (90).

Differentiating the first equation in (90) w.r.t. p3 we conclude that ∂p3V
E = 0. It follows

that V is independent of k3 and p3. In a similar manner, from the second equation we conclude

that ∂k3V
E = 0. The identity∫ ∞

−∞

dx

(x2 + a2)((x+ y)2 + a2)
=

2π

|a|(y2 + 4a2)

may now be used to perform the integral over r3 on the RHS of the first two equations in (90).

Defining

a(p) =
√
c2
B + ~p2 =

√
c2
B + 2p+p−

where the square root on the RHS is positive by definition, we find

V E(p, k, q) = V E
0 (p, k, q) +

∫
d2r

(2π)2
V E

0 (p, r, q3)
N

a(r)(q2
3 + 4a2(r))

V E(r, k, q3)

V E(p, k, q) = V E
0 (p, k, q) +

∫
d2r

(2π)2
V E(p, r, q3)

N

a(r)(q2
3 + 4a2(r))

V E
0 (r, k, q3)

NV E
0 (p, k, q3) = −4πiλq3

(k + p)−
(k − p)−

+ b̃4

(236)

Now if z = x+iy√
2

then

∂z =
1

2
(∂x − i∂y) , ∇2 = 2∂z∂z̄, ∂z̄

1

z
= ∂z∂z̄ ln(zz̄) = ∇2 ln r = 2πδ2(~r).

It follows from (236) that

∂p+ (V − V0) =
4iλq3p−

a(p)(q2
3 + 4a2(p))

V,

∂k+ (V − V0) = − 4iλq3k−
a(k)(q2

3 + 4a2(k))
V.

(237)

The equations (237) may be regarded as first order ordinary differential equations in the variables

p+ and k+ respectively. These equations are easily solved. Using the identities∫
dp+p−

a(p)(q2
3 + 4a(p)2)

=

∫
da

q2
3 + 4a2

=
1

2|q3|
tan−1

(
2a

|q3|

)
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If we agree to choose a definition of tan−1 that makes it an odd function we can drop the modulus

signs in this formula. Of course we would also like the tan−1 function to be continuous; these

requirements together fix the branch choice

−π
2
< tan−1(x) <

π

2

It follows that (237) may be recast as

∂p+

(
e
−2iλ tan−1

(
2a(p)
q3

)
V

)
=

(
e
−2iλ tan−1

(
2a(p)
q3

))
∂p+V0,

∂k+

(
e

2iλ tan−1
(

2a(k)
q3

)
V

)
=

(
e

2iλ tan−1
(

2a(k)
q3

))
∂k+V0.

(238)

The equations (238) are now easily solved by integration. It might at first seem that the integral

of the RHS of these equations is complicated by the fact that the term multiplying ∂p+V0 in the

first equation on the RHS of (238) is actually a function of p. Recall, however, that ∂p+V0 is

proportional to the δ function; using the formula f(x)δ(x− a) = f(a)δ(x− a) we can replace the

argument of this prefactor by the corresponding function of k+. Similar remarks apply to the

second of (238). Integrating these two equations it follows that

NV = (4πiλq3)
p− + k−
p− − k−

e
−2iλ

(
tan−1

(
2(a(k)
q3

)
−tan−1

(
2(a(p)
q3

))

− e2iλ tan−1
(

2a(p)
q3

)
h(k, p−, q3)

= (4πiλq3)
p− + k−
p− − k−

e
−2iλ

(
tan−1

(
2(a(k)
q3

)
−tan−1

(
2(a(p)
q3

))

− e−2iλ tan−1
(

2a(k)
q3

)
h̃(k−, p, q3)

(239)

Comparing these two equations determines the k+ dependence of h and the p+ dependence of h̃,

and we conclude

NV (p, k, q3) = e
−2iλ

(
tan−1

(
2(a(k)
q3

)
−tan−1

(
2(a(p)
q3

))(
4πiλq3

p− + k−
p− − k−

+ j(k−, p−, q3)

)
(240)

Now the function j(k−, p−) above must be a function of charge zero, and so must be a function

of k−
p−

. It must also be singularity free (i.e. its derivative w.r.t both p+ and k+ must vanish. This

seems impossible unless the function j is a constant, so we conclude

NV = e
−2iλ

(
tan−1

(
2(a(k)
q3

)
−tan−1

(
2(a(p)
q3

))(
4πiλq3

p− + k−
p− − k−

+ j(q3)

)
(241)

In order to evaluate j(q3) we now plug the form (241) back into (236), explicitly perform
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the integral over ~r and compare both sides of the integral equation. The integral over ~r may be

evaluated in polar coordinates by integrating over the modulus r and the angle θ. We will find

it convenient to perform the angular integral by contour methods. Let us define z = eiθ. Then∫
dθ =

∫
C

dz
2πiz where the contour C runs counterclockwise over the unit circle on the complex

plane. The first of (236) turns into

e
2iλ tan−1

(
2
√
k2+c2

B
q3

)
(NV (p, k, q)−NV0(p, k, q))

=

∫
dr

re
2iλ tan−1

(
2
√
r2+c2

B
q3

)
√
c2
B + r2(q2

3 + 4(c2
B + r2))

I(r) =
1

4iλq3

∫
dr∂r

e2iλ tan−1

(
2
√
r2+c2

B
q3

) I(r)

I(r) =

∫
C

dz

(2π)2iz

(
−4πiλq3

rz + p−
rz − p−

+ b̃4

)(
−4πiλq3

rz + k−
−rz + k−

+ j(q3)

)
(242)

Where z in I(r) is integrated over the unit circle. We now proceed to evaluate I(r) using Cauchy’s

theorem. We find

2πI(r) = (4πiλq3 + b̃4)(−4πiλq3 + h)

− θ(r − p)8πiλq3

(
−4πiλq3

k− + p−
k− − p−

+ j(q3)

)
+ θ(r − k)8πiλq3

(
−4πiλq3

k− + p−
k− − p−

+ b̃4

) (243)

where the first line is the contribution from the pole at z = 0, the second line is the contribution

from the pole at z = p−
r and the third line is the contribution of the pole at z = k−

r . Let us define

F (r) = e
2iλ tan−1

(
2
√
r2+c2

B
q3

)

It follows from (243) and (242) that

(8πiλq3)e
2iλ tan−1

(
2
√
k2+c2

B
q3

)
(NV (p, k, q)−NV0(p, k, q))

= (4πiλq3 + b̃4)(−4πiq3 + j(q3))(F (∞)− F (0))

− 8πiλq3

(
−4πiλq3

k− + p−
k− − p−

+ j(q3)

)
(F (∞)− F (p))

+ 8πiλq3

(
−4πiλq3

k− + p−
k− − p−

+ b̃4

)
(F (∞)− F (k))

(244)
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Substituting in for V and V0, the LHS of this equation may be rewritten as

(8πiλq3)

(
F (p)

(
4πiλq3

p− + k−
p− − k−

+ j(k−, p−, q3)

)
− F (k)

(
4πiλq3

p− + k−
p− − k−

+ b̃4

))
It follows LHS exactly cancels the terms proportional to F (k) and F (p), and (244) may be

rewritten as

(−4πiλq3 + b̃4)(+4πiλq3 + j(q3))F (∞) = (4πiλq3 + b̃4)(−4πiλq3 + j(q3))F (0)

This is a linear equation for j(q3) whose solution is given by

j(q3) = 4πiλq3


(

4πiλq3 + b̃4

)
F (0) +

(
−4πiλq3 + b̃4

)
F (∞)(

4πiλq3 + b̃4

)
F (0)−

(
−4πiq3 + b̃4

)
F (∞)

 (245)

Using

F (∞) = eπiλsgn(q3), F (0) = e
2iλ tan−1

(
2cB
q3

)

we have

j(q3) = 4πiλq3


(

4πiλq3 + b̃4

)
e

2iλ tan−1
(

2cB
q3

)
+
(
−4πiλq3 + b̃4

)
eπiλsgn(q3)(

4πiλq3 + b̃4

)
e

2iλ tan−1
(

2cB
q3

)
−
(
−4πiλq3 + b̃4

)
eπiλsgn(q3)

 (246)

In the limit b4 →∞ we have

j(q3) = −4πiλq3

eπiλsgn(q3) + e
2iλ tan−1

(
2cB
q3

)
eπiλsgn(q3) − e2iλ tan−1

(
2cB
q3

)


= −4πiλ|q3|

1 + e
−2iλ tan−1

(
|q3|
2cB

)
1− e−2iλ tan−1

(
|q3|
2cB

)
 (247)

In summary, the off shell Euclidean sum of the diagrams depicted in Fig 3 is given by (241) with

j(q3) given by (246).

The one loop box diagram computed directly in Minkowski space In this sub-

section, by the direct calculation of the one loop box diagram in the Minkowski space, we will

show the cancellation of IR divergence of gauge propagator and that P in (119) becomes unity

109



(a)

Figure 20: Box diagram in the light cone gauge.

P = 1. In Minkowski space, the one loop box diagram (see Fig 20) evaluates to

Ioneloop = (4πλq3)2

∫
d3r

(2π)3

(r + p)−(p− r)+

(p− r)+(p− r)− − iε1
(r + k)−(k − r)+

(k − r)+(k − r)− − iε1
1

2r−r+ + r2
3 + c2

B − iε
1

2(r + q)−(r + q)+ + (r + q)2
3 + c2

B − iε
.

(248)

Although we are interested in the value of this integral at q± = 0, we have allowed q± 6= 0 in

the scalar propagators as a regulator; we will take the limit at the end of the computation. This

manoever allows us to evaluate the integral in a particularly simple manner.

Before embarking on the calculation, let us recall the issues involved. The term of O(λ2) in

the expansion of the offshell amplitude (93) (we set b4 = 0 for simplicity) is

V2 =8πλ2q3

(
tan−1

(
2a(k)

q3

)
− tan−1

(
2a(p)

q3

))
p− + k−
p− − k−

+ 16π2q2
3λ

2H(q3) + 2πcBλ
2. (249)

The last term in this equation is the contribution of the one loop diagrams in Fig. 4 to V .

Offshell, consequently, we expect (248) to evaluate to

−iIoneloop =8πλ2q3

(
tan−1

(
2a(k)

q3

)
− tan−1

(
2a(p)

q3

))
p− + k−
p− − k−

+ 16π2q2
3λ

2H(q3). (250)

Here extra −i factor comes from the analytic continuation as we can check by the relationship

between (86) and (90). As mentioned at the beginning of this subsection, the reason we are

undertaking this whole exercise is that the first term in (249) is naively ambiguous onshell, and

we aim to discover its true value via a careful evaluation of (248).
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In order to evaluate (248) we first evaluate the integral over r+ integral using the methods of

complex analysis. The integral over r+ may be regarded as contour integral, where the contour

runs from left to right along the real axis and then closes in a giant semi circle at infinity in the

upper half plane. The integrand has four poles located at

r+ = p+ + i
ε1

(r − p)−
,

r+ = k+ + i
ε1

(r − k)−
,

r+ = −r
2
3 + c2

B

2r−
+ i

ε

2r−
,

r+ = −q+ −
(r3 + q3)2 + c2

B

2(r + q)−
+ i

ε

2(r + q)−
.

(251)

Scalar poles From the point of view of IR divergences, the main point of interest in this

section is the contribution from the first two poles in (251); the poles that have their origin in the

gauge boson propagator. In order to be able to focus on the interesting part, however, it is useful

to first get the ‘boring’ part of the answer out of the way. (Irrelevant part for the subtraction

between tan−1 functions.) In this subsection we evaluate the contribution of the last two poles

to the integral. In this subsection we assume for definiteness that the regulator q− < 0 (it is not

difficult to see that the final results do not depend on this assumption).

If r− < 0 then neither of the third or fourth poles in (251) lie in the upper half plane, and so

these poles do not contribute to the r+ integral. On the other hand if r− > −q− > 0, both poles

contribute to the integral, and it is not difficult to verify that the contribution of the two poles

infact cancels. In other words the poles of interest contribute only in the range

0 < r− < −q−.

When r− is in this window, we integrate over r+ receives contributions only from the third pole

in (251). Evaluating the residue of this pole redefining r− = −q−x, it is easily seen that

I3
oneloop =

i

2
(4πλq3)2

∫ 1

0

dx

2π

∫ ∞
−∞

dr3

2π

[(
1− 2

(p+ k)−
(p− k)−

(
p−

p− + q− x
− k−
k− + q− x

))
× 1

r2
3 + c2

B + q2
3 x+ 2q3r3x− iε− 2q−q+(x2 − x)

]
.

(252)

In the limit q± → 0 ,

I3
oneloop =

i

2
(4πλq3)2

∫ 1

0

dx

2π

∫ ∞
−∞

dr3

2π

1

r2
3 + c2

B + q2
3 x+ 2q3r3x− iε

, (253)
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(where I3
oneloop is the contribution of the third and fourth poles to the integral (248).)

We now evaluate the integral over r3 by closing the contour in the upper half plane. The pole

that contributes is at

r3 = −q3x+ i
√
c2
B + q2

3x− q2
3x

2 − iε,

(note that c2
B + q2

3x− q2
3x

2 > 0). We find

I3
oneloop =

i

4
(4πλq3)2

∫ 1

0

dx

2π

1√
c2
B + q2

3x− q2
3x

2

= 2πλ2
√
q2

3

(
log(2m+ i

√
q2

3)− log(2m− i
√
q2

3)

)
= i(4πλq3)2H(q),

(254)

in precise agreement with the second term in (250).

As the sum of the third and fourth poles in (251) yields the second term in (250), the sum of

the first two poles must give rise to the first term in (250). We will now verify that that is indeed

the case.

Contributions of the gauge boson poles off shell The first two poles in (251) are

a consequence of our resolution of the singularity of the gauge boson propagator. Offshell, the

contribution of these poles to the integral (248) is very simple: we pause to explain this fact.

Consider the integral ∫
dl+dl−

l+
l+l− − iε1

f(l+, l−),

where f is any sufficiently smooth function. The integrand has a pole at

l+ =
iε1
l−
.

If we evaluate the l+ integral by closing the contour with a giant semicircle in the upper half

plane, this pole contributes only if l− > 0. The contribution of this pole to the integral is

2πi

∫ ∞
0

dl−
iε1
l2−
θ(l−)f(

iε1
l−
, l−).

Provided f(l+, l−) has no singularities if either of its arguments vanish, then in the limit ε1 → 0

the integral over l− receives contributions only from l− ∼ ε1, i.e. at finite values of the variable

y = ε1
l−

. Changing integration variables to y we find that the contribution of this pole to the

integral is given by

−2π

∫ ∞
0

dyf(iy, 0). (255)
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Provided all external momenta are offshell the analysis of the paragraph above applies, and

allows us to easily evaluate the contribution of the first two poles to (248). Identifying the function

f , applying the formula (255) and performing the integral over r3 we find that the contribution

of the first pole

I1
oneloop = −(4πλq3)2 (k + p)−

(k − p)−
×
∫ ∞

0

dỹ

2π

1√
2p−p+ + c2

B − iε+ iỹ

1

4(2p−p+ + c2
B + iỹ − iε) + q2

3

,
(256)

where

ỹ = 2p−y.

In (256), we took ε1 → 0 limit already, and we also take into account that p− < 0 inside the

lightcone. Evaluating the integral we obtain

I1
oneloop = −(4πλq3)2 (k + p)−

(k − p)−

× i

2π
√
q2

3

(
−π

2
+ tan−1

(
2

√
2p−p+ + c2

B − iε
q2

3

))
.

(257)

Similarly the contribution of the second term is

I2
oneloop = (4πλq3)2 (k + p)−

(k − p)−

× i

2π
√
q2

3

(
−π

2
+ tan−1

(
2

√
2k−k+ + c2

B − iε
q2

3

))
.

(258)

Summing these two contributions we find perfect agreement with the first term in (250).

All we have seen so far is that the one loop four point function in Minkowski space is, indeed,

the continuation of its Euclidean counterpart. Of course we knew this had to be true on general

grounds, so the agreements obtained so far have simply been internal consistency checks. In order

to get new information we will now investigate the contribution of the first two poles in (251) to

the amplitude (248) when the external particles are all onshell. Recall that the continuation of

the Euclidean answer - and the naive analysis of this subsection - yielded ambiguous answers for

this quantity. Obtaining the correct result for this amplitude requires a more careful calculation

which we now turn to .

The onshell contribution of the gauge boson poles In this subsubsection finally

we will show that P in (119) is unity P = 1. In the previous two subsubsections, we have seen that
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gauge boson poles contribute to the first term of (250) while the scalar boson poles contributes

to second term of the (250). Therefore our concerning factor(
tan−1

(
2a(k)

q3

)
− tan−1

(
2a(p)

q3

))
→
(
tan−1 (−i)− tan−1 (−i)

)
(259)

in the first term of (250) is given by the contribution of the on-shell gauge boson poles.

When the momenta p and k are onshell, the analysis of Appendix 1.9.4 yields an ambiguous

result. This is because the analysis presented above applies only when the function f of the

previous section is sufficiently well behaved. This assumption is valid for generic values of p

and k. When the two external momenta are onshell, however, it turns out that the function

f(l−, l+) of the previous subsection blows up at l− = 0, invalidating the approximations used

in the previous subsection. We will now present a more careful analysis of this special case. In

this subsection we ignore the overall factor (4πλq3)2 in (248); the factor is not important as the

conclusion of this subsection is that the net contribution of the two gauge boson poles for the

onshell 4 point function actually vanishes.

The contribution of the first gauge boson pole to the r+ integral in (248) is given as∫ ∞
0

dy

∫ ∞
−∞

dr3

[
− 1

2π
(1 +

ε1
y

)
1

X

×
(

(y(k− + p−) + 2p−ε1)(2p−(k+ − p+)− iy)

(y(k− − p−)− 2p−ε1)(2p−(k+ − p+)− iy)− i2p−yε1

)]
(260)

where we have made the variable redefinition

r− = p− + 2p−
ε1
y

(261)

and where

X =

(
r2

3 − p2
3 − 2(p2

3 + c2
B)
ε1
y

+ i(y − ε+ 2ε1)

)
×
(

(r3 + q3)2 − p2
3 − 2(p2

3 + c2
B)
ε1
y

+ i(y − ε+ 2ε1)

)
.

(262)

We can obtain the second pole contribution by exchanging the momentum k and p.

By noting that

p2
s = k2

s , p2
3 = k2

3,

when p, k, (p+ q), (k + q) are on-shell, we can see that the first line of (260) is symmetric under

the exchange. We can see that O(ε01) term of the second line of (260) is antisymmetric under the
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exchange of p and k because its form is

k− + p−
k− − p−

.

Hence the sum of the contributions from first and second pole of (248) should be O(ε1). In the

integrand of (260), the variable r3 appears only in factor X. Therefore the sum of the first and

second pole contribution becomes following form∫ ∞
y

dy

∫ ∞
−∞

dr3

(
ε1 × Ĩ(y)

1

X(r3, y)

)
. (263)

Because of this explicit factor, in order to establish that (263) vanishes in the limit ε1 → 0 it

is sufficient to verify that the integral in (263) has no compensating singularity as ε1 → 0. To

investigate it, it is important to note that

(y(k− − p−)− 2p−ε1)(2p−(k+ − p+)− iy)− i2p−yε1 = 0⇒ y = ε1 = 0. (264)

at the denominator of second line of (260) if k− 6= p−. 46 It is also useful to expand

−2πĨ(y) ∼ (k− + p−)

(k− − p−)2

(
2ip−

2p−(k+ − p+)− iy +
2ik−

2k−(p+ − k+)− iy

)
+

8p−k−
y(k− − p−)2

+O(ε1). (265)

The integral over r3 in factor X is elementary, and may be explicitly performed; however the

resultant expression is a slightly messy function of y and we do not present the explicit form here.

After performing the r3 integral and further changing variables to y1 = y
ε1

, (263) reduces to

an expression of the schematic form

I =

∫ ∞
0

dy1I(y1). (266)

Naively I(y1) is of order ε21 (it picks up an additional factor of ε1 from the change of variables

y = ε1y1). Infact the singular behavior that results in the ill definition of the naive expression

modifies this estimate for y1 of order unity or smaller. Nonetheless it is possible to demonstrate

46 In the case of k− − p− = 0 on-shell, LHS of (264) is always zero for any y, ε1. This may intrigue to
the delta function in the S-channel.
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that I(y1) ≤ O(ε1) throughout its integration domain. In pariticular 47

I(y1) ∼



ε1
√
y1

(c2B+p23)
3
2

(y1 � 1)

ε1 (y1 ∼ 1)

ε21 (y1 ∼ p23
ε1

)

1√
ε1

(
1
y1

) 5
2

(y1 � p23
ε1

)

. (271)

We can immediately see that (263) vanishes in the limit ε1 → 0 in the first three cases in (271).

Actually also in the case y1 � p23
ε1

, we can check that it vanishes if we integrate over y1∣∣∣∣∣
∫ ∞
p23
ε1

dy1
1√
ε1

(
1

y1

) 5
2

∣∣∣∣∣ ∼ 1√
ε1

(ε1)
3
2 ∼ ε1 → 0. (272)

So the net contribution of two gauge boson poles for one loop 4 point function, namely contribution

for the first term of (248) vanishes. This results that the subtraction of tan−1 function vanishes

as

0 =

(
tan−1

(
2a(k)

q3

)
− tan−1

(
2a(p)

q3

))
p− + k−
p− − k−

⇒ 0 =

(
tan−1

(
2a(k)

q3

)
− tan−1

(
2a(p)

q3

)) (273)

in the on-shell p and k. Then finally we conclude that the P in (119) becomes unity P = 1.

47For instance at y � ε1 namely y1 � 1 by performing the contour integral we get∫
dr3

1

X
∼
∫
dr3

1

r2
3 − 2(p2

3 + c2B) εy + iε̃

1

(r3 + q3)2 − 2(p2
3 + c2B) εy + iε̃

∼ πiy
3
2
1

4
√

2(p2
3 + c2B)

3
2

. (267)

Then (260) behaves as∫
dy

[
ε1
y

∫
dr3

1

X

(
2p−ε1(2p−(k+ − p+))

−2p−ε1(2p−(k+ − p+))

)]
∼
∫
dy1ε1

√
y1

(p2
3 + c2B)

3
2

. (268)

At y � p2
3, namely y1 � p23

ε1
, the integration over r3 gives∫
dr3

1

X
∼
∫
dr3

1

r2
3 + iy

1

(r3 + q3)2 + iy
∼ −πe

iπ
4

2y
3
2

. (269)

Then from (265) and dy = ε1dy1, we can see that (263) behaves as∫
dy

∫ ∞
−∞

dr3

(
ε1 × Ĩ(y)

1

X(r3, y)

)
∼
∫
dy1ε

2
1

1

y
5
2
1 ε

5
2
1

∼
∫
dy1

1

y
5
2
1 ε

1
2
1

. (270)
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1.9.5 Details of the one loop Landau gauge computation

In this subsection we provide some details for our evaluation of the one loop scattering amplitude

in the covariant Landau gauge. As we have explained in the main text, the evaluation consists of

determining the integrand for each graph, and then following standard manipulations that allow

one to re-express the integrand in a standard basis. In order to illustrate how this works, we

first present all steps in detail for the most complicated diagram (this is the box graph). For the

remaining diagrams we content ourselves with a brief explanation or simply stating our results.

Simplification of the integrand of the box graph Straightforward use of the Feynman

rules leads to an expression for the integrand of the box graph depicted in Fig. 8

1

64π2λ2
Ibox =

(εν1νβqν1pν lβεµ1µβ1qµ1(l + p)µkβ1)

l2((l + p)2 + c2
B)(l + p− k)2((l + p+ q)2 + c2

B)

=
k · q

[
2
(
(l · k)

(
c2
B − l · p

)
+ (k · p)(l · (l + p))

)
− (l · q)(l · (k + p))

]
l2((l + p)2 + c2

B)(l + p− k)2((l + p+ q)2 + c2
B)

+
(k · q)(q · l)

(
k · p+ c2

B

)
+ (k · q)2(l · (−k + l + p)) + (k · p)(q · l)2

l2((l + p)2 + c2
B)(l + p− k)2((l + p+ q)2 + c2

B)

(274)

The denominator of the expression above is the product E1E2E3E4 where

E1 = c2
B + (l + p)2, E2 = c2

B + (p+ q + l)2, E3 = l2, E4 = (l + p− k)2. (275)

The terms in the numerator RHS of (274) that involve the loop momentum l can be re-expressed

as functions of the denominators plus terms independent of l. For example

l · l = E3, 2 p · l = E1 − E3,

2 q · l = E2 − E1, 2 k · l = E1 − E4 − 2 c2
B − 2 k · p,

where we have used onshell conditions

p2 + c2
B = 0, k2 + c2

B = 0, (p+ q)2 + c2
B = 0, (k + q)2 + c2

B = 0.

Judiciously using these and similar identities, it is easy to show that the integrand in (274) may
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be rewritten as

− (k · k − k · p)(k · q)(k · q + 2k · k)

E1E2E3E4
+
k · q

(
k · q − 2c2

B

)
2E1E2E3

+
k · q

(
k · q − 2c2

B

)
2E1E2E4

+
k · q

(
k · p+ c2

B

)
E2E3E4

+
k · q

(
k · p+ c2

B

)
E1E3E4

− (k · p)(q · l)
2E2E3E4

+
(k · p)(q · l)
2E1E3E4

− k · q
2E1E2

+
k · q

4E1E3
+

k · q
4E1E4

+
k · q

4E2E3
+

k · q
4E2E4

− k · q
2E3E4

(276)

The expression in (276) includes a term with four denominators. As we have mentioned in the

main text, under the integral sign it is always possible to reduce any such expression into a linear

combination of expressions with three or fewer denominators (recall we work in 3 spacetime

dimensions). This reduction may be achieved by the systematic procedure spelt out in [34].

Implementing this procedure in the case at hand we find the replacement rule

−(k · k − k · p)k · q(k · q + 2k · k)

E1E2E3E4
=
k · q

(
2c2
B − k · q

)
2E1E2E3

+
k · q

(
2c2
B − k · q

)
2E1E2E4

−k · q
(
k · p+ c2

B

)
2E1E3E4

− k · q
(
k · p+ c2

B

)
2E2E3E4

(277)

Using (277), the integrand for the box diagram reduces to

1

64π2λ2
Ibox =

k · q
(
k · p+ c2

B

)
2E1E3E4

+
k · q

(
k · p+ c2

B

)
2E2E3E4

− (k · p)(q · l)
2E2E3E4

+
(k · p)(q · l)
2E1E3E4

− k · q
2E1E2

+
k · q

4E1E3
+

k · q
4E1E4

+
k · q

4E2E3
+

k · q
4E2E4

− k · q
2E3E4

(278)

We now turn to a discussion of the relations between distinct scalar (and other) integrands.

Expressing the corresponding integrals in terms of Feynman parameters, it is not difficult to

demonstrate that, under the integral sign

1

E1E2E3
=

1

E1E2E4
,

1

E1E3E4
=

1

E2E3E4

q.l

E1E3E4
= − q.l

E2E3E4

1

E1E3
=

1

E1E4
=

1

E2E3
=

1

E2E4
.

(279)
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For instance

1

E1E3
=

∫ 1

0

dx

(xE3 + (1− x)E1)2

=

∫ 1

0

dx

(l2 + 2(1− x)l · p)2

=

∫ 1

0

dx(
l̃2 + (1− x)2c2

B

)2 .

(280)

Similarly

1

E1E4
=

∫ 1

0

dx

(xE4 + (1− x)E1)2

=

∫ 1

0

dx(
l2 + 2l · p− 2 p · kx− 2 l · k x− 2c2

B x
)2

=

∫ 1

0

dx(
l̃2 + (1− x)2c2

B

)2 .

(281)

Using these relations we may rewrite the integrand for the box diagram as

1

64π2λ2
Ibox =

k · q
(
k · p+ c2

B

)
E1E3E4

+
(k · p)(q · l)
E1E3E4

− k · q
2E1E2

+
k · q
E1E3

− k · q
2E3E4

. (282)

In order to complete our simplification, we must now re-express the term

(k · p)(q · l)
E1E3E4

in terms of scalar integrals. The procedure for doing this is once again standard [35, 36] and we

find

(k · p)(q · l)
E1E3E4

→(k · p)(k · q)(
c2
B − k · p

) 1

E1 E4
− (k · p)(k · q)

c2
B − k · p

1

E3 E4

+
(k · p)(k · q)

(
k · p+ c2

B

)
c2
B − k · p

1

E1 E3 E4
.

Using this replacement rule the integrand for the box diagram finally reduces to

Ibox = 4π2λ2

(
− 8k · q
E1 E2

− 8(c2
B + k · p)k · q
c2
B − k · p

1

E3 E4

+
16 c2

B(k · q)
c2
B − k · p

1

E1 E4
+

16 c2
B(c2

B + k · p)k · q
c2
B − k · p

1

E1 E3 E4

)
. (283)
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Simplification of the remaining integrands We are left with the task of evaluating and

simplifying the integrand of the remaining one loop scattering diagrams. These diagrams are

listed in Fig. 9-7. The simplification of the integrand follows a procedure that similar to but

much simpler than that adopted in the previous subsection. The diagrams of 9-7 are simpler than

the box diagram considered in the previous subsection because none of them involves more than

3 propagators, so we never have to employ a replacement rule analogous to (277).

We briefly illustrate how things work in the specially simple case of the h graphs of Fig.

9. Since all of the four h diagrams are interrelated by linear momentum redefinitions, we can

evaluate any one of them and multiply the result by 4. We consider first of these diagrams. Apart

from come constant overall factor it gives∫
d3l

(2π)3

εµνρ(l + 2p+ 2q)ν lρgµχε
χσφ(p+ k)σ(k − p)φ

(k − p)2l2((l + p+ q)2 + c2
B)

=4

∫
d3l

(2π)3

εµνρ(p+ q)ν lρgµχε
χσφpσkφ

(k − p)2l2((l + p+ q)2 + c2
B)
. (284)

Introducing Feynman parameter x and eliminating cross-terms including l in the denominator by

usual drill we get

4

∫
εµνρ(p+ q)ν lρgµχε

χσφpσkφ
(k − p)2(l2 + x(1− x)(p+ q)2 + xc2

B)2

d3l

(2π)3
(285)

The integrand is odd in all components of l, hence the integration vanishes. It follows that

Ih = 0.

In a similar manner we find that the integrand for the sum of the two V diagrams (see Fig. 10)

is

IV = 4π2λ2

(
− 2

E1
− 8 c2

B

E1 E3
+

6(c2
B + k · p)
E3 E4

− 8 c2
B (c2

B + k · p)
E1 E3 E4

)
.

The integrand for the sum of the two Y diagrams (see Fig. 11) is

1

4π2λ2
IY =

8c2
B

(
k · p+ c2

B

) (
−k · p− 2k · q + c2

B

)
(c2
B − k · p) E1 E3 E4

+
8c2
B

(
−k · p− 2k · q + c2

B

)
(c2
B − k · p) E1 E4

− 4
(
k · p+ c2

B

) (
−k · p− 2k · q + c2

B

)
(c2
B − k · p) E3 E4

.

(286)

The integrand for the sum of the eye diagrams (see Fig. 12) is

IEye = 4π2λ2

(
− 2

E4
− 2

(
k · p+ c2

B

)
E3 E4

)
·
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Note that, contribution from lollipop diagrams (see Fig. 13) vanishes. Similarly, one can show

that two diagrams in Fig. 7 each other. Summing all these contributions together, we find the

remarkably simple integrand

Ifull = 4π2λ2

(
− 2

E1
− 2

E4
− 8k · q
E1 E2

)
. (287)

It follows that (modulo possible subtleties at special values of external momenta, see the main

text) the full one loop four boson scattering amplitude is given by

Sone loop = 2πmλ2 + 32π2(k · p)λ2H(q). (288)

Note, of course, that this result precisely matches the O(λ2) term in the Taylor expansion of the

function j(q) at b4 = 0.

Absence of IR divergences Notice that our scattering amplitude is finite without regu-

lation; in particular the amplitude has no IR divergences. This is satisfying. IR divergences

in theories like QED result from the fact that the asymptotic electron states of the theory are

surrounded by a cloud of soft photons. The IR finiteness of our amplitude reflects the fact that

Chern-Simons theories does not have massless gluonic states. Although the absence of IR diver-

gences is physically very reasonable, at the technical level it appears to be a bit of a miracle, given

the appearance of the massless gauge boson propagator at intermediate steps in the computation.

Integrands of the form, for instance

1

E1E3E4
,

1

E1E4
,

1

E1E3
(289)

that appear at intermediate steps in the computation, give rise to integrals that are IR divergent.

The lack of IR divergences in our final result is a consequence of the cancellation of all these

expressions in the final result for the integrand. For instance, the box diagram integrand Eq.282,

first and second term are IR finite where as third and fourth are IR divergent. However, one can

show log divergence arising from both the third and fourth integrands cancel each other48. Note

48 One simple way to check this is using the following trick (refer to Bern’s paper [37])∫
d3p

2π3

1

E1E3E4
= − 1

(k · p+ c2B)
(

∫
d3p

2π3

1

E1E4
) +

1

2c2B

∫
d3p

2π3

1

E3E4

−N
(

2

(p− k)2
+

1

2c2B

)∫
d5p

2π5

1

E1E3E4
.

(290)

where in the last line N is some number which is not important for our argument. Note that, third (last)
term in the last line is IR convergent as this is in the higher dimension. The second term in the last line
also IR convergent where first term is not, however, this IR divergence explicitly cancels the IR divergence
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that, the first line of box integral of Eq.274 has no IR divergence (near l ∼ 0), so final should

also have no IR divergence.

Absence of gauge boson cuts The imaginary part of any Feynman diagram may be de-

termined using Cutkosky’s rules. We pause to briefly review these rules (we follow a presentation

due to ’t Hooft and Veltman [38]). Given a graph one divides the vertices of the graph into

two groups; circled and uncircled vertices. Associated with a particular distribution of circles

for vertices , one defines a ‘cut graph’. The expression for the cut graph is obtained from a

sequence of modifications on the expression for the usual (uncut) Feynman graph as we now

describe. The factor of i in each circled vertex is replaced by a factor of −i. Propagators between

two circled vertices are replaced by their complex conjugates. Every factor of 1
p2+c2B−iε

in a cut

propagator: i.e. a propagator that runs between a circled and uncircled vertex - is replaced by

θ(p0)δ(p2 + c2
B − iε) where p0 is the energy running from the uncircled to the circled vertices.

The sequence of modifications described above gives the expression for the ‘cut graph’ associated

with a given distribution of circles for vertices.

Cutkowski’s rules state that the imaginary part of any Feryman diagram is given by the sum

of the expressions for cut graphs for all possible ways of distributing circles among the vertices

of that graph subject to the restriction that at least one vertex in the graph is circled and at

least one vertex is uncircled. Cutkowski’s rules are the diagrammatic reflection of the unitarity

of scattering amplitudes.

If we were to apply these rule to the one loop diagrams depicted in Fig. 8,9,10,11,1213, it

would, at first appear that the imaginary part of the one loop graph would receive contributions

from graphs in which two scalar propagators are cut and graphs in which two gauge boson

propagators are cut. 49 Our extremely simple final answer (132) and (133) does have two scalar

cuts, but has no cut contribution from two intermediate gauge boson lines. From a physical

standpoint this is extremely satisfying; the Chern-Simons theory we study has no propagating

gauge boson states, and so a two gauge boson cut would likely have signalled a contradiction with

unitarity. From the purely technical point of view, however, the absence of two gauge boson cuts

seems striking. Individual graphs in Fig. 8,9,10,11,1213 certainly have these cuts, which must,

therefore cancel between graphs. In this subsubsection we verify that this is indeed the case.

Two gauge boson cuts naively occur in the T -channel. In this channel the two external scalar

lines at the top of the graphs in Fig. 8,9,10,11,1213 represent initial states (one particle one

antiparticle) while the two external lines at the bottom of the graph are final states. In order

coming from third term of (282).
49A graph in which a one gauge boson and propagator is cut will contribute zero to the imaginary part.

All cut graphs may be regarded as the square of tree level processes. One of the tree process corresponding
to such a cut would be decay of a single scalar to a scalar and a gauge boson: this is kinematically forbidden
and so does not contribute.
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to focus on this channel we must take p0 > 0, k0 < 0, (p + q)0 > 0 and (k + q)0 < 0. We find

it useful to work in the ‘center of mass frame’ in which the two incoming quanta approach each

other along the x axis. Let the final scattering angle be α. It follows that

p = (p0, p, 0), k = (−p0, p, 0),

p+ q = (p0, p cos(α), p sin(α)), k + q = (−p0, p cos(α), p sin(α)). (291)

All two gauge boson cuts have a universal factor that comes from delta functions that puts

the gauge bosons on shell. This factor is given by∫
d3l

(2π)3
(−2πi)2δ(−l20 + l2)δ((l + p− k)2)θ(−l0)θ(l0 + 2p0)

=

∫
d3l

(2π)3
(−2πi)2 1

2|l0|
δ(l0 + l)δ(−4l0p0 − 4 p2

0)θ(−l0)θ(l0 + 2p0)

=

∫
1

(2π)3
ldl0dldθ(−2πi)2 1

8 p2
0

δ(l0 + l)δ(l0 + p0)θ(−l0)θ(l0 + 2p0)

=

∫
1

(2π)3
p0dl0dldθ(−2πi)2 1

8 p2
0

δ(−p0 + l)δ(l0 + p0)θ(−l0)θ(l0 + 2p0)

=− 1

16πp0

∫
dl0dldθδ(−p0 + l)δ(l0 + p0))

(292)

in the last line we have dropped the theta function because delta function clicks with in the theta

function. 50

In addition to the universal factor evaluated in (292) each diagram has its own particular

factors that arise from the vertex factors, from propagators between circles or between crosses,

and from the numerator of the cut gauge boson propagators that we have not yet included in our

50The two delta functions in the final line of (292) have a simple physical interpretation. As the two
gauge fields are on shell, the cut graph proceeds via two intermediate (tree level) scattering processes,
each of which take two scalar photons to two gauge bosons. The usual kinematical restrictions applied to
these intermediate processes implies that the 3 momenta of the two intermediate gauge bosons - which,
according to the labelling of 3 momenta in Fig 8 - is −l and l + p+ k -

(p0,±p0 cos(α),±p0 sin(α)).

The δ functions in the last line of δ enforce this.
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analysis. For the various diagrams with two gauge bosons cuts, these factors are given by

Eye diagram =− 4p2
0δ(−p0 + l)δ(l0 + p0).

V diagram =4

(
2p2

0 − l · k −
2c2
B p2

0

l · p

)
δ(−p0 + l)δ(l0 + p0)

1

16
(Box diagram) =

[
−k · q

2
+

2k · q
(
k · p+ c2

B

)
+ (k · p)(l · q)

4l · p

+
2k · q

(
k · p+ c2

B

)
− (k · p)(l · q)

4l · (p+ q)

− k · q
(
k · p+ c2

B

) (
2c2
B − k · q

)
4(l · p) (l · (p+ q))

]
× δ(l − p0)δ(l0 + p0)

Y diagram =

[
8
(
−k · p− k · q − c2

B + l · p+ q · l
)

+ 4
c2
B

(
k · p+ c2

B − 2q · l
)

l · p

]
× δ(l − p0)δ(l0 + p0).

(293)

We must now sum these factors, multiply with the universal term in δ and then integrate the

result over the 3 momentum l. The delta functions in (292) effectively turn this last integral into

an integral over the angle of the spatial part of l. This angular integral is easily performed using∫
c

l · q
l · p = 2π(cos(α)− 1)− 2π(cos(α)− 1)

p0

m
,∫

c

1

l · (p+ q) l · p =
4π

p0m(2c2
B + p2 − p2 cos(α))

,∫
c
1 = 2π,

∫
c

1

l · p =
2π

m p0
,

∫
c
l · k = −

∫
c
l · p = −2πp2

0,

∫
c
l · q = 0

(294)

where the notation
∫
c is the angle integral or more formally∫

c
=

∫
dl0dldθδ(−p0 + l)δ(l0 + p0). (295)

We find that the cut due to the various diagrams is given by − 1
16π p0

times

Box cut =− 1

16π p0
× 2(−m+ p0) sin2

(α
2

)
,

Y cut =− 1

16π p0
× (p0 −m) cos(α),

Eye cut =− 1

16π p0

p0

2
,

V cut =− 1

16π p0
(m− 3p0

2
).

(296)
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It follows that

(Box cut) + (Y cut) + (Eye cut) + (V cut) = 0. (297)

Potential subtlety at special values of external momenta We now turn to the

discussion of an important subtlety that we have, so far, glossed over. As we have emphasized

above, our determination of the integrand for the box diagram made crucial use of the replacement

rule (277). The derivation of this replacement rule works at generic values of the external momenta

but turns out to fail when any two of the three independent external momenta are parallel (in

this case the Gram-determinant vanishes) to each other. As an example, consider the situation

when pµ ‖ kµ as appearing in 8. In this case, in the centre-of-mass frame, the angle of scattering,

θ = 0 in S-channel. Of course if the amplitude was an analytic function of external momenta

then we could simply ignore these exceptional momenta. The scattering amplitude at exceptional

external momenta could be obtained by analytic continuation from the generic case. However

we have seen that, the scattering amplitude is not an analytic function of external momenta (in

the S-channel, in the centre-of-mass frame we have a piece δ(θ) and this is precisely one of the

points where the reduction that we discussed in (277) breaks down). The amplitude actually has

singularities that are localized on the s, t plane. Moreover these singularities play an important

role in the discussion of unitarity in these theories, as we have already emphasized.

1.9.6 Details of scattering in the fermionic theory

Off shell four point function We now restrict our attention to the special case q± = 0.

Plugging (141) into the Schwinger-Dyson equation (135), performing the integral over the 3

component of the momentum, and comparing coefficients of the different index structures on the

two sides of this equation we find

f(p, k, q) = −λ
2
G+3(p− k)

− 4πiλ

∫
d2p′

(2π)2

(
p′−f(p′, k, q)(q3 − 2iΣI(p

′)p′s) + 2g(p′, k, q)((−1 + Σ2
I(p
′))p′2s − c2

F )
)
G+3(p′ + p)√

p′2s + c2
F

(
q2

3 + 4(p′2s + c2
F )
)

g(p, k, q) =

− 4πiλ

∫
d2p′

(2π)2

p′−G+3(p′ + p)√
p′2s + c2

F

(
q2

3 + 4(p′2s + c2
F )
) (2p′−f(p′, k, q) + g(p′, k, q)(q3 + 2iΣI(p

′)p′s)
)

(298)
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f1(p, k, q) =

− 4πiλ

∫
d2p′

(2π)2

(
p′−f1(p′, k, q)(q3 − 2iΣI(p

′)p′s) + 2g1(p′, k, q)((−1 + Σ2
I(p
′))p′2s − c2

F )
)
G+3(p′ + p)√

p′2s + c2
F

(
q2

3 + 4(p′2s + c2
F )
)

g1(p, k, q) =
λ

2
G+3(p− k)

− 4πiλ

∫
d2p′

(2π)2

p′−G+3(p′ + p)√
p′2s + c2

F

(
q2

3 + 4(p′2s + c2
F )
) (2p′−f1(p′, k, q) + g1(p′, k, q)(q3 + 2iΣI(p

′)p′s)
)
(299)

We have played around with these equations and discovered that they admit a solution of the

following structure

g(p, k, q) =
−p−

2(p− k)−
W0(y, x, q3) +

1

2
W1(y, x, q3)

f(p, k, q) =
1

2(p− k)−
W3(y, x, q3) +

−p+

q2
s

W2(y, x, q3)

g1(p, k, q) =
k+p−

2(p− k)−
B2(y, x, q3) +

1

2(p− k)−
B3(y, x, q3)

f1(p, k, q) =
−p+

p2
s(p− k)−

B0(y, x, q3) +
−k+

2(p− k)−
B1(y, x, q3)

(300)

where we use y = 2
q3

√
k2
s + c2

F and x = 2
q3

√
p2
s + c2

F . Our ansatz completely specifies the de-

pendence of V on the argument of the complex variables p+ and k+, leaving undetermined the

dependence of V on the modulus of these variables. Plugging the above ansatz, it is possible to
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perform all angular integrals in Eq. 298,299 using the formulae∫ 2π

0

dθ

2π
(p′−)2 1

p− − p′−
= −p−θ(p′s − ps)∫ 2π

0

dθ

2π
p′−

1

p− − p′−
= −θ(p′s − ps)∫ 2π

0

dθ

2π

1

p′− − p−
= −2

p+

p2
s

θ(ps − p′s)∫ 2π

0

dθ

2π

1

(p′− − p−)(k − p′)−
=

2

(k − p)−

(
k+

k2
s

θ(ks − p′s)−
p+

p2
s

θ(ps − p′s)
)

∫ 2π

0

dθ

2π

p′−k+

(p′− − p−)(k − p′)−
=

k+

(k − p)−
(
θ(ks − p′s)− θ(ps − p′s)

)
∫ 2π

0

dθ

2π

(p′−)2

(p′− − p−)(k − p′)−
= − 1

(k − p)−
(
k−θ(−ks + p′s)− p−θ(−ps + p′s)

)

(301)
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Equating the coefficients of the different functions of the arguments of k+ and p+ we obtain the

following equations for the coefficient functions W1 . . .W4 and B1 . . . B4.

W1(y, x, q3) =
iλ

q3

∫ ∞
y

dx′
XW0(y, x′, q3) + 2W3(y, x′, q3)

(1 + x′2)
− iλ

q3

∫ ∞
x

dx′
XW1(y, x′, q3) + 2W2(y, x′, q3)

(1 + x′2)

W0(y, x, q3) =
iλ

q3

∫ x

y
dx′

XW0(y, x′, q3) + 2W3(y, x′, q3)

(1 + x′2)

W3(y, x, q3) = − iλ
q3

∫ y

x
dx′

Y1W0(y, x′, q3) + YW3(y, x′, q3)

(1 + x′2)
− 4πiλ

W2(y, x, q3) =
iλ

q3

∫ x

2|cF |
q3

dx′
Y1W1(y, x′, q3) + YW2(y, x′, q3)

(1 + x′2)

B1(y, x, q3) =

− iλ

q3

(
2

(−c2
F + q2

3
y2

4 )

∫ y

2|cF |
q3

Y B0(y, x′, q3) + Y1B3(y, x′, q3)

x′2 + 1
dx′ +

∫ y

x

Y B1(y, x′, q3) + Y1B2(y, x′, q3)

x′2 + 1
dx′

)

B0(y, x, q3) =
iλ

q3

∫ x

2|cF |
q3

Y B0(y, x′, q3) + Y1B3(y, x′, q3)

x′2 + 1
dx′

B2(y, x, q3) = − iλ
q3

∫ ∞
x

2B1(y, x′, q3) +XB2(y, x′, q3)

x′2 + 1
dx′

B3(y, x, q3) = 4πi λ+

iλ

q3

(
(−c2

F + q2
3
y2

4 )

2

∫ ∞
y

2B1(y, x′, q3) +XB2(y, x′, q3)

x′2 + 1
dx′ −

∫ y

x

2B0(y, x′, q3) +XB3(y, x′, q3)

x′2 + 1
dx′

)
(302)

where

a = 2
|cF |
q3

, X = q3

(
1 + i

(
2mf

q3
+ λx

))
,

Y = q3

(
1− i

(
2mf

q3
+ λx

))
, Y1 =

1

2
q2

3

((
2mf

q3
+ λx

)
2 − x2

)
x =

2

q3

√
p2
s + c2

F , y =
2

q3

√
k2
s + c2

F

(303)

All of the equations above may be converted into differential equations by differentiating w.r.t.

x. Notice that the first four equations in (302) (equations for the W variables) are decoupled

from the last four variables (equations for the B variables). Furthermore the second and third

of the equations above involve only the functions W0 and W3. These two equations are a set of
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linear first order differential equations for W0 and W3. These equations are given by

∂xW0(y, x, q3) = I
λ

q3

1

1 + x2
(W0(y, x, q3) X(x) + 2W3(y, x, q3))

∂xW3(y, x, q3) = I
λ

q3

1

1 + x2
(W0(y, x, q3) Y1(x) + Y (x) W3(y, x, q3))

(304)

It is not difficult to simultaneously solve these equations, using the observation that

∂x

(
W3(y, x, q3)− Y (x)

2
W0(y, x, q3)

)
= 0. (305)

With this solution in hand, the first of (302) may then be used to solve for W1 (we merely have

to solve a linear first order differential equation) and the fourth of (302) may be solved for W2.

A very similar process may be employed to solve for B1, B2, B3, and B4. Of course the solution

to the differential equations so obtained have four integration ‘constants’ (in the Ws) and four

integration ‘constants’ in the Bs. These integration ‘constants’ are really arbitrary functions of

y. However their y dependence may be determined either from the requirement of symmetry

- or equivalently by setting up the analogue of the (135) ‘from the right’ (this process yields a

solutions to Ws and Bs upto unknown functions of x. Implementing these steps we find that our

functions are given by

W0(y, x, q3) =
C1(y) + C2(y)e2iλ tan−1(x)

q3

W3(y, x, q3) = −C1(y) +

(
C1(y) + C2(y)e2iλ tan−1(x)

)
(−2imf − iλq3x+ q3)

2q3

W1(y, x, q3) =
D1(y) +D2(y)e2iλ tan−1(x)

q3

W2(y, x, q3) = −D1(y) +

(
D1(y) +D2(y)e2iλ tan−1(x)

)
(−2imf − iλq3x+ q3)

2q3

B2(y, x, q3) =
h1(y) + h2(y)e2iλ tan−1(x)

q3

B1(y, x, q3) = −h1(y) +
(−2imf − iλq3x+ q3)

(
h1(y) + h2(y)e2iλ tan−1(x)

)
2q3

B3(y, x, q3) =
h3(y) + h4(y)e2iλ tan−1(x)

q3

B0(y, x, q3) = −h3(y) +
(−2imf − iλq3x+ q3)

(
h3(y) + h4(y)e2iλ tan−1(x)

)
2q3

.

(306)

The 8 undetermined constants in our solution are an artifact of the fact that we solved a set

of integral equations by converting them into differential equations. In order to determine the
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8 integration constants, we plug our solution back directly into the integral equations (302).

It turns out that all integrals on the RHS of the equations (302) may be explicitly performed.

The undetermined constants are then easily obtained by comparing the LHS and RHS of (302).

Implementing this procedure we obtain the final solution

W0(y, x, q3) = −
4iπλ

(
−1 + e2iλ(tan−1(x)−tan−1(y))

)
q3

W1(y, x, q3) =
4iπλ

(
−1 + eiλ(π−2 tan−1(y))

)(
e2iλ tan−1(a)(aλ+mf1 + i)− (aλ+mf1 − i)e2iλ tan−1(x)

)
q3

(
eiπλ(aλ+mf1 − i)− e2iλ tan−1(a)(aλ+mf1 + i)

)
W2(y, x, q3) =

2πλ
(
−1 + eiλ(π−2 tan−1(y))

)
eiπλ(aλ+mf1 − i)− e2iλ tan−1(a)(aλ+mf1 + i)(

e2iλ tan−1(a)(aλ+mf1 + i)(mf1 + λx− i)− (aλ+mf1 − i)(mf1 + λx+ i)e2iλ tan−1(x)
)

W3(y, x, q3) = 2πλ
(
−(mf1 + λx+ i)e2iλ(tan−1(x)−tan−1(y)) +mf1 + λx− i

)
.

(307)

where

mf1 = 2
mf

q3
.
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The other components are

B0(y, x, q3)

=
πλq3e

−2iλ tan−1(y)
(
eiπλ(mf1 + λy − i)− (mf1 + λy + i)e2iλ tan−1(y)

)
eiπλ(aλ+mf1 − i)− e2iλ tan−1(a)(aλ+mf1 + i)(

(iaλ+ imf1 + 1)(mf1 + λx+ i)e2iλ tan−1(x) − ie2iλ tan−1(a)(aλ+mf1 + i)(mf1 + λx− i)
)

B1(y, x, q3)

=
2πλq3e

−2iλ tan−1(y)
(
eiπλ(mf1 + λx− i)− (mf1 + λx+ i)e2iλ tan−1(x)

)
(
y2q23

4 − c2
F

) (
eiπλ(aλ+mf1 − i)− e2iλ tan−1(a)(aλ+mf1 + i)

)(
e2iλ tan−1(a)(aλ+mf1 + i)(imf1 + iλy + 1)− i(aλ+mf1 − i)(mf1 + λy + i)e2iλ tan−1(y)

)
B2(y, x, q3) =

4πλ
(
eiπλ − e2iλ tan−1(x)

)
e−2iλ tan−1(y)(

y2q23
4 − c2

F

) (
eiπλ(aλ+mf1 − i)− e2iλ tan−1(a)(aλ+mf1 + i)

)(
(aλ+mf1 − i)(mf1 + λy + i)e2iλ tan−1(y) − e2iλ tan−1(a)(aλ+mf1 + i)(mf1 + λy − i)

)
B3(y, x, q3) =

−
2πλe−2iλ tan−1(y)

(
e2iλ tan−1(a)(aλ+mf1 + i)− (aλ+mf1 − i)e2iλ tan−1(x)

)
eiπλ(aλ+mf1 − i)− e2iλ tan−1(a)(aλ+mf1 + i)(

(mf1 + λy + i)e2iλ tan−1(y) − eiπλ(mf1 + λy − i)
)

(308)

In summary, the offshell four point amplitude, defined in (85), takes the form (141), with the

functions in this equation given by (300) with the W and B functions given in (307) and (308)

respectively.

1.9.7 Preliminary analysis of the double analytic continuation

Analysis of the scalar integral equation after double analytic continuation In

this appendix we initiate a very preliminary discussion of the bosonic integral equation after

double analytic continuation discussed in subsection 1.7.5 above. In subsection 1.9.7 below we

evaluate the one loop contribution to four boson scattering after double analytic continuation,

and demonstrate that the computation includes a singular contribution, absent from the naive

analytic continuation of the U and T -channel results to the S-channel. Under certain assumptions

this singular piece precisely reproduces the O(λ2) term in the contact δ function part of the S-
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channel scattering amplitudes. In subsection 1.9.7 below we take a non-relativistic limit of the

double analytic continued integral equation and demonstrate that it reduces to the non-relativistic

Aharonov-Bohm equation with ν = λ.

The oneloop box diagram after double analytic continuation Appendix 1.9.4

was devoted to a detailed study of the one loop diagram Fig. 20 at q± = 0 directly in usual

Minkowski space. The conclusions of Appendix 1.9.4 may be summarized as follows. In the case

that the momenta p and k both lie offshell, the Minkowskian one loop diagram agrees with the

unambiguous analytic continuation of the Euclidean answer. In the case that the momenta p and

k were both onshell, the continuation from Euclidean space was ambiguous, but the Minkowskian

computation resolved the ambiguity.

In this Appendix we revisit the one loop diagram of Fig. 20 after performing the double

analytic continuation described in subsection 1.7.5. We recompute the diagram, this time in the

double analytically continued Minkowski space - the space in which the 3 direction is taken to be

time. We address the following question: how does the answer of this computation compare with

analytic continuation from usual Minkowski space (and the analytic continuation from Euclidean

space, when this analytic continuation is unambiguous).

Although we will not present the detailed computation here we have indeed verified that

when p and k are both offshell, the computation performed directly after the double analytic

continuation agrees with the appropriate analytic continuations from usual Minkowski space as

well as from Euclidean space.

The situation is more delicate when p and k are both onshell. In this case though the Euclidean

answer is ambiguous, the ‘usual’ Minkowskian answer is not. We outline the computation of the

double analytically continued result in this Appendix. In particular we show that the analytic

continuation of this ‘usual’ answer does not agree with the answer of the computation performed

directly in double analytically continued Euclidean space. The details of the difference between

these answer depends in a very unusual way on the relative smallness of the iε in scalar propagators

and iε in the gauge propagators. In a natural limit (the one in which these two have the same

degree of smallness), the difference between the two results agrees precisely with the difference

between T trialS and TBS (see (154)) lending some support to the conjecture (154).

Setting up the computation Let T (α) denote the double analytic continuation of the

one loop contribution to the T matrix. T (α) is given by (see (248))

iT (α)

(4πλq3)2
= −

∫
d3r

(2π)3

[
2(r + p)−(r − p)+

2(r − p)−(r − p)+ − iε
2(r + k)−(r − k)+

2(r − k)−(r − k)+ − iε

× 1

r2
s − r2

3 + c2
B − iε1

1

r2
s − (r3 + q3)2 + c2

B − iε1

] (309)
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Note that after double analytic continuation v+ is a complex number and v− is its complex

conjugate for all v± (this was true also in Euclidean space). As in Euclidean space, we will find

it convenient to work with the magnitude and phase of these complex numbers. Choosing axes

so that p+ is a real number we have

p± =
ps√

2
, k± =

ks√
2
e±iα, r± =

rs√
2
e±iθ. (310)

As we focus on the case of onshell scattering (and as q± = 0) we have

ps = ks, q3 = −2p3 = −2k3 = 2
√
p2
s + c2

B =
√
s (311)

Plugging (310) and (311) into (309) and using the fact that the scalar propagators are independent

of θ and α, while the gauge boson propagators are independent of r3 we find

iT (α)

(4πλq3)2
=

∫ ∞
0

rsdrs
2π
I1(rs, α)I2(rs) (312)

where I2(rs) is the integral of the product of the scalar propagators over the timelike coordinate

r3

I2(rs) =

∫ ∞
−∞

dr3

2π

1

r2
s − r2

3 + c2
B − iε1

1

r2
s − (r3 + q3)2 + c2

B − iε1
(313)

and I1(rs, α) is the integral of the product of the gauge boson propagators over the angle θ

I1(rs, α) = −
∫ 2π

0

dθ

2π

(rse
iθ − ps)(rse−iθ + ps)

(rseiθ − ps)(rse−iθ − ps)− iε
(rse

iθ − pseiα)(rse
−iθ + pse

−iα)

(rseiθ − pseiα)(rse−iθ − pse−iα)− iε (314)

The integral over r3 in (313) is easily evaluated by contour methods and we find

I2(rs) =
−i√

r2
s + c2

B(q2
3 − 4r2

s − 4c2
B + 4iε1)

=
−i

4
√
r2
s + c2

B(p2
s − r2

s + iε1)

(315)

The integral over θ in (314) may also be evaluated by contour techniques. Let

z = eiθ, w = eiα (316)

so that

I1(rs, α) = −
∮
|z|=1

dz

2πiz

(z + rs
ps

)(z − ps
rs

)

(z − rs
ps

)(z − ps
rs

) + iεz
rsps

(z + w rs
ps

)(z − w ps
rs

)

(z − w rs
ps

)(z − w ps
rs

) + iεzw
rsps

(317)
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where the integration contour in (317) runs over the unit circle.

The contribution of the pole at zero The integrand in (317) is a meromorphic

function of z with 5 poles. The simplest of these poles is at z = 0. The contribution of this

pole to I1(rs, α) is simply −1 ; plugging this together with (315) into (312) we find that the

contribution of the pole at zero to iT is given by

iT = i(4πλq3)2H(q) (318)

in perfect agreement with the analytic continuation of (254). As the contribution of the pole at

zero has already reproduced the analytic continuation of the ‘real’ Minkowski scattering ampli-

tude, It follow that the contribution of the remaining 4 poles in (317) is simply the difference

between this analytic continuation, and the result directly computed after double analytic con-

tinuation

The contribution of the remaining four poles Let us retreat from the onshell limit

for a moment, i.e. allow ps and ks to be different. A naive evaluation of the contribution of the

remaining four poles in (317) in the limit of vanishing ε1 yields and answer proportional to

θ(ps − rs)− θ(ks − rs)

This quantity vanishes when ps = ks suggesting that the contribution of the remaining four poles

to the angle integral should vanish in the onshell limit. 51 However this reasoning is a bit too

quick for the following reason. Suppose ps− ks = a where a is a very small number and ks is the

onshell value of spatial momentum. Then rs is indeed constrained vary over a very small range.

However this is not sufficient to guarantee that the integral over rs will vanish. The reason for

this is that this small interval is concentrated around precisely the value of rs at which (315) is

singular, and a singular integrand may well integrate to a finite quantity over a vanishing small

integration domain. Cautioned by these considerations we now turn to a careful and honest

evaluation of the contribution of the remaining 4 poles in (317) to I1(rs, α)

The remaining four poles in (317) are located at z± and wz± where

z± =
1

2

(
rs
ps

+
ps
rs
− iε±

√
(
rs
ps

+
ps
rs
− iε)2 − 4

)
, w = eiα (319)

where the square root function is defined to have a branch cut along the negative real axis. It is

51This is indeed how things worked in our derivation of the Euclidean integral equation for V .
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easily verified that

z+z− = 1, z+ + z− =
rs
ps

+
ps
rs
, z+ − z− =

√(
rs
ps
− ps
rs

)2

− 2iε

(
rs
ps

+
ps
rs

)
(320)

It may also be verified that |z+| > 1, so |z−| < 1. The two poles enclosed by the unit contour

in (317) are located at z− and wz− (the remaining two poles lie outside the contour and do not

contribute to the integral). The contribution of these two poles to (317) is given by

I1(rs, α) = −
(z− + rs

ps
)(z− − ps

rs
)

z2
−(w − 1)(z+ − z−)

(
(z− + w rs

ps
)(z− − w ps

rs
)

z− − wz+
−

(wz− + rs
ps

)(wz− − ps
rs

)

wz− − z+

)
(321)

Using (320) several times, (321) may be simplified to

I1(rs, α) =
−w(z− + rs

ps
)(z− − ps

rs
)(z− − z+ − rs

ps
+ ps

rs
)

z−(wz+ − z−)(wz− − z+)

z+ + z−
z+ − z−

=
−w(z− − z+ + rs

ps
− ps

rs
)(z− − z+ − rs

ps
+ ps

rs
)

(wz+ − z−)(wz− − z+)

z+ + z−
z+ − z−

=
2iεw(r2

s + p2
s)

2

r3
sp

3
s(z+ − z−)(wz+ − z−)(wz− − z+)

(322)

Note that (322) ε in apparent vindication of the intuition that suggests that these poles contribute

vanishingly to the integral. Let us anyway proceed to complete our careful evaluation: we conclude

that the contribution of these poles to (312) is given by

iT (α) =
4επλ2q2

3

p3
s

∫ ∞
0

drsw(r2
s + p2

s)
2

r2
s(z+ − z−)(w − z−

z+
)(w − z+

z−
)

1√
r2
s + c2

B(p2
s − r2

s + iε1)
(323)

In the limit ε → 0, the RHS in (323) vanishes unless the integral in that equation develops

a singularity. The integrand in (323) does have a singularity that approaches the integration

contour at rs = ps. If w 6= 1, however, no other singularity in the integrand approaches the

integration contour rs = (0,∞). A single singularity approaching an integration contour does not

give rise to a singular contribution to the integral (because the integration contour can always

be deformed to avoid the singularity). Provided w 6= 1 it follows that the integral on the RHS of

(323) is nonsingular, and so the RHS of (323) vanishes in the limit ε→ 0.

The situation is different, however, if w tends to unity. In this case the singularities caused

by the factors (w− z−
z+

), (w− z+
z−

) and (p2
s− r2

s + iε1) all approach the same contour point, namely

rs = ps as w → 1 and ε1, ε → 0. In this case the integral on the RHS conceivably develops a

pinch singularity, and the RHS of (323) does not necessarily vanish in this case.

In summary we have concluded that iT (α) vanishes for nonzero α, but not necessarily at
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α = 0. In order to better understand the behaviour of iT (α) near α = 0 we now evaluate the

integral of this quantity over α. This integral may be affected by contour techniques and we find

∫ 2π

0
dα iT (α)

=

∮
|w|=1

dw

iw

4επλ2q2
3

p3
s

∫ ∞
0

drsw(r2
s + p2

s)
2

r2
s(z+ − z−)(w − z−

z+
)(w − z+

z−
)

1√
r2
s + c2

B(p2
s − r2

s + iε1)

(324)

The integral runs counterclockwise over the unit circle in the w plane. This contour encloses a

single pole, at w = z−
z+

. Evaluating the residue of this pole we find

∫ 2π

0
dα iT (α) = −8π2ελ2q2

3

p2
s

∫ ∞
0

drs(r
2
s + p2

s)

rs(z+ − z−)2

1√
r2
s + c2

B(p2
s − r2

s + iε1)
(325)

Because of the overall factor of ε, it is clear that (325) receives contributions - if at all - only

from rs in the neighborhood of ps. It is not too difficult to convince oneself that the dominant

contribution is from rs ∼
√
ε. In order to see this we make the variable change rs =

√
εx. To

leading order in
√
ε we find∫ 2π

0
dα iI(α) = −16π2λ2psq

2
3√

p2
s + c2

B

∫ ∞
−∞

√
εdx

(iε1 − 2xps
√
ε)(x2 − i) (326)

(to obtain (326) we have used here that (z+ − z−)2 = 2ε(x2 − i) at leading order in ε)

Let us now assume that ε1 �
√
ε (this would in particular have been the case if ε1 = ε). In

this case (326) simplifies to∫ 2π

0
dα iI(α) = 4π2λ2√s

∫ ∞
−∞

dx

(x− ib)(x2 − i) (327)

Where b is a positive infinitesimal. The integral on the RHS of (327) evaluates (by a straightfor-

ward application of contour techniques) to −π. We conclude that

iT = −4π3λ2√sδ(α) (328)

This is in perfect agreement with the expectation

T = −8πi
√
s (cos(πλ)− 1) δ(α) = 4iπ3λ2√sδ(α) +O(λ4)
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Solutions of the Dirac equation at q± = 0 after double analytic continuation.

In order to compute S matrices in he Fermionic theory after double analytic continuation we need

solutions to the relevant Dirac equations. We present the relevant solutions in this Appendix.

After a double analytic continuation k0 = ik3 and the gamma matrix convention is γ0 = −iγ3.

The Dirac equation is give by

ψ̄(−p)
(
i
(
p0γ

0 + p−γ
− + p+γ

+ (1 + g(ps))
)

+ f(ps)ps
)
ψ(p) = 0. (329)

Where

p2
s = p2

1 + p2
2. (330)

Our gamma matrix convention is

γ0 =

(
−i 0

0 i

)
(331)

γ+ =

(
0
√

2

0 0

)
(332)

γ− =

(
0 0√
2 0

)
(333)

So now the Dirac equation is

ψ̄(−p)
(
p0 + f(ps)ps i

√
2p+(1 + g(ps))

i
√

2p− −p0 + f(ps)ps

)
ψ(p) = 0 (334)

Now we use the on-shell condition

p0 = ±E~p (335)

Where

E~p =
√
p2

1 + p2
2 + C2

f (336)

Cf is the fermion pole mass.

The solution with p0 = −E~p is particle solution u(~p) while the solution with p0 = E~p is the

antiparticle solution v(−~p).

Now we need to solve

ū(~p)

(
−E~p + f(ps)ps i

√
2p+(1 + g(ps))

i
√

2p− E~p + f(ps)ps

)
u(~p) = 0 (337)
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Which on solving on right and on left gives respectively,

u(~p) =
1√

E~p + f(ps)ps

(
E~p + f(ps)ps

− i
√

2p−

)
(338)

ū(~p) =
1√

E~p + f(ps)ps

(
E~p + f(ps)ps −i

√
2p+(1 + g(ps))

)
(339)

Where normalization is set to be ū(~p)u(~p) = 2f(ps)ps.

We also need to solve

v̄(~p)

(
−E~p − f(ps)ps i

√
2p+(1 + g(ps))

i
√

2p− E~p − f(ps)ps

)
v(~p) = 0 (340)

Which on solving on right and on left gives respectively,

v(~p) =
1√

E~p − f(ps)ps

(
E~p − f(ps)ps

−i
√

2p−

)
(341)

v̄(~p) =
1√

E~p − f(ps)ps

(
E~p − f(ps)ps − i

√
2p+(1 + g(ps))

)
(342)

Where normalization is set to be v̄(~p)v(~p) = −2f(ps)ps.

Aharonov-Bohm in the non-relativistic limit After double analytic continuation, the

four boson four point function satisfies the integral equation

V (~p,~k) = V0(~p,~k) +

∫ (i)2V0(~p,~l)V (~l,~k) d3l
(2π)3(

−l20 + l2s + c2
B − iε

) (
−(l0 + q0)2 + l2s + c2

B − iε
) (343)

where

V0(~p,~k) = 4πiλq0
(k + p)−
(k − p)−

− 2iπλ2cB (344)

Since both V0 and V depend only on the spatial components of momenta, we can perform l0

integral in (343) to get

V (~p,~k) = V0(~p,~k) + i

∫
V0(~p,~l)V (~l,~k)√

l2s + c2
B

(
q2

0 − 4l2s − 4c2
B + iε

) d2l

(2π)2
(345)
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Let us focus on the special case in which k and k + q are taken to be onshell, i.e. q0 = −2k0 =

−2
√
k2
s + c2

B while p and p+ q are generically offshell. Let us define

ψ(~p) = (2π)2δ2(~p− ~k) + i
V (~p,~k)

4
√
p2
s + c2

B(k2
s − p2

s + iε)
(346)

Where k is onshell. Then (345) can be written as

−4i
√
p2
s + c2

B

(
k2
s − p2

s

)
ψ(~p) =

∫
V0(~p,~l)ψ(~l)

d2l

(2π)2
(347)

In the non-relativistic limit √
p2
s + c2

B = cB

q0 = −2cB

and so (347) becomes

(
k2
s − p2

s

)
ψ(~p) =

∫ (
2πλ

(l + p)−
(l − p)−

+
πλ2

2

)
ψ(~l)

d2l

(2π)2
(348)

(348) takes the form of a non-relativistic Schrodinger equation of a particle propagating in a

potential whose nature we will soon identify. (346) is the assertion that the wave function ψ(r)

that obeys this Schrodinger equation takes the Lippmann Schwinger scattering form, with a

scattering function (roughly h(θ)) proportional to V (k, p) once p is set onshell. Restated, the non

relativistic limit of the integral equation (343) is simply the Lippmann Schwinger equation for

the scattering matrix of a non-relativistic quantum mechanical problem, whose precise nature we

now investigate.

In order to better understand the Schrodinger equation (348) we transform it to position

space. Multiplying (348) by eipx

(2π)2
and integrating over p we find

∫ (
k2
s − p2

s

)
ψ(~p)eip.x

d2p

(2π)2
=

∫ (
2πλ

(l + p)−
(l − p)−

+
πλ2

2

)
ψ(~l)

d2l

(2π)2
eip.x

d2p

(2π)2
(349)

Let us define the position space wave function

ψ(x) =

∫
d3p

(2π)3
eip.xψ(p)

Changing the integration variable on the RHS of (348) as p→ p+l, and recalling z = x+ = x1+ix2√
2
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and z̄ = x− = x1−ix2√
2

, (348) may be rewritten as

(
2∂z∂z̄ + k2

s

)
ψ(z, z̄) =

∫ (
−4πλ

l−
p−

+
πλ2

2
− 2πλ

)
ψ(~l)

d2l

(2π)2
eip.xeil.x

d2p

(2π)2
(350)

The first term on RHS of (349) is

−4πλ

∫
eip.x

p−

d2p

(2π)2

∫
l−ψ(~l)eil.x

d2l

(2π)2
= −4πλ

(
i

2πz

)
(−i∂z̄ψ(z, z̄)) (351)

=
−2λ

z
ψ(z, z̄) (352)

While the rest of the RHS of (349) is(
πλ2

2
− 2πλ

)∫
ψ(~l)eil.x

d2l

(2π)2

∫
eip.x

d2p

(2π)2
=

(
πλ2

2
− 2πλ

)
ψ(z, z̄)δ2(z) (353)

It follows that (349) may be recast as(
∂z∂z̄ +

k2
s

2

)
ψ(z, z̄) =

−λ
z
∂z̄ψ(z, z̄) +

(
πλ2

4
− πλ

)
ψ(z, z̄)δ2(z) (354)

Let us now define a gauge covariant derivative as

Dz = ∂z + iAz

Az =
−iλ
z

Dz̄ = ∂z̄

(355)

in terms of which (349) reduces to(
DzDz̄ +

k2
s

2

)
ψ(z, z̄) = −

(
πλ2

4
+ πλ

)
ψ(z, z̄)δ2(z) (356)

How is the gauge potential Az in (355) to be interpreted? Firstly, clearly this potential is pure

gauge away from z = 0, as the antiholomorphic derivative of Az vanishes away from z = 0. In

other words Az is the gauge potential of a localized point flux. The magnitude of this flux is given

by the contour integral
∫
Azdz over the unit circle and so is 2π2λ. In other words (356) is the

Schrodinger equation for the Aharonov-Bohm problem with ν = λ (plus delta function contact

interaction), in an unusual complex gauge. The contact interaction plausibly makes do difference

to scattering computations if the Schrodinger equation is studied with boundary conditions (like

those adopted by Aharonov and Bohm) that force ψ(r) to vanish at the origin.
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2 Chapter 2: Poles in the S-Matrix

2.1 Introduction, analysis and conclusions

In the previous chapter based on [39] has initiated the study of the S-matrix in fundamental matter

Chern-Simons theories to all orders in the ’t Hooft coupling. In particular it presented a detailed

study of 2→ 2 scattering in the most general renormalizable theory of a single fundamental scalar

interacting with a U(NB) Chern-Simons gauge field

S =

∫
d3x

[
iεµνρ

κB
4π

Tr(Aµ∂νAρ −
2i

3
AµAνAρ) +Dµφ̄D

µφ+m2
Bφ̄φ+

1

2NB
b4(φ̄φ)2

]
, (357)

to all orders in λB = NB
κB

.

The theory (357) has elementary quanta that transform in either the fundamental or the

antifundamental representations of U(NB). We refer to quanta in the fundamental representation

as particles, and quanta in the antifundamental representation as antiparticles. It was possible to

explicitly compute the particle - particle scattering matrix together with the particle - antiparticle

scattering matrix in the channel corresponding to adjoint exchange. They also presented the

following conjectured formula for the particle - antiparticle S-matrix in the channel corresponding

to singlet exchange:

TS(
√
s, θ) = 8πi

√
s(1− cos(πλB))δ(θ) + 4i

√
s sin(πλB)Pv

(
cot

(
θ

2

))

+ 4
√
s sin(π|λB|)


(

4π|λB|
√
s+ b̃4

)
+ eiπ|λB |

(
−4π|λB|

√
s+ b̃4

)( 1
2

+
cB√
s

1
2
− cB√

s

)|λB |
(

4π|λB|
√
s+ b̃4

)
− eiπ|λB |

(
−4π|λB|

√
s+ b̃4

)( 1
2

+
cB√
s

1
2
− cB√

s

)|λB |

(358)

where

cB = pole mass of the single scalar excitation,
√
s = centre of mass energy,

θ = angle of scattering,

b̃4 = 2πλ2
BcB − b4.

(359)

As explained in chapter 1, the S-matrix (358) does not agree with the simple analytic contin-

uation of the particle - particle S-matrix. Instead, the nonsingular part of (358) is given by the

analytic continuation of the particle - particle S-matrix rescaled by the factor sin(πλB)
πλB

. In other

words the correctness of the conjectured S-matrix (358) requires an intriguing modification of
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the usual text book rules of crossing symmetry in the case of matter Chern-Simons theories. As

with any conjecture that challenges accepted wisdom, the formula (358) should be subjected to

stringent checks. In this note we confront the conjecture of chapter 1 with a nontrivial consistency

check and find that it passes the test, as we now describe.

The S-matrix (358) has a pole for b̃4 ≥ b̃crit4 = 8πcB|λB| indicating the existence of a particle -

antiparticle bound state in the singlet channel at these values of parameters. 52 As b̃4 approaches

b̃crit4 from above, the mass of the bound state approaches 2cB. In other words, if we set b̃4 =

b̃crit4 + δb4, the binding energy EB is small at small δb4 (it turns out EB ∼ (δb4)1/|λB |) 53 and

vanishes when δb4 = 0.

Motivated by this observation, in this note we focus on the field theory (357) in a sector

containing a singlet particle - antiparticle pair in a particular scaling limit we call the ‘near

threshold limit’. This limit is defined by scaling δb4 to zero while simultaneously scaling
√
s−2cB

to zero like (δb4)1/|λB |. In this limit the particles are non-relativistic and we may set
√
s− 2cB =

k2

cB
.54 In our scaling limit

δb4
cB
→ 0,

k

cB
→ 0,

k

cB

(
cB
δb4

) 1
2|λB |

= fixed. (361)

Like any non-relativistic limit, our limit focuses attention on a sector of the theory in which

kinetic energies of the particle and antiparticle are small compared to rest masses. In this limit

our system must admit an effective description in terms of the non-relativistic quantum mechanics

of two particles interacting via Chern-Simons gauge boson exchange, plus a contact interaction.

We will now describe this quantum mechanical system in more detail, following Amelino-Camelia

and Bak [22].

It is well known (see, for instance, [15, 21]) that the entire effect of the Chern-Simons in-

teractions between non-relativistic particles is to implement anyonic statistics for the particles.

This happens because the Chern-Simons equation of motion forces each particle to trap a unit of

flux; the other particle picks up a phase when circumnavigating this flux. The magnitude of the

phase depends on the coupling colour factors: when the colour factors of the two particles (which

52 b4 is always negative when bound states exist, so it possible that (357) is non perturbatively unstable
in this range of parameters. While the study of the nonperturbative stability of (357) is an interesting
question (one that can presumably be settled by the evaluation of the all orders effective action for φ), it
is irrelevant for the perturbative considerations of this note, and will not be studied in this chapter.

53More precisely, at lowest nontrivial order in δb4

EB
4cB

=

(
δb4

16π|λB |cB

) 1
|λB |

. (360)

54Note that our definition of the near threshold limit does not constrain
√
s− 2cB to take a particular

sign. This quantity is negative in the study of bound states, and positive in the study of scattering.
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transform in representations R1 and R2 respectively) Clebsch-Gordon couple into representation

Rm it turns out that the magnitude of the phase is given by [15]

νm =
c2(Rm)− c2(R1)− c2(R2)

κ
, (362)

where c2(R) is the quadratic Casimir of the representation R.

The effect of this phase is most simply described when we change variables to work with

the centre of mass and relative degrees of freedom of the particle - antiparticle system. The

centre of mass motion is free, and is ignored in what follows. In terms of relative coordinates, in

the gauge singlet sector (i.e. c2(Rm) = 0), the entire effect of the Chern-Simons coupled gauge

field is implemented by inserting a point like solenoid of integrated flux −2πλB at the origin

of the two dimensional plane. The quantum mechanical description of this system is given by

a non-relativistic Schroedinger equation (363) below for a particle of effective mass cB
2 and of

effective U(1) charge unity, minimally coupled to a U(1) gauge field corresponding to this point

like solenoid In other words, the time independent Schroedinger equation for our system at energy

E =
√
s− 2cB = k2

cB
is given by

−DiD
iψ = k2ψ,

Di = ∇i + iAi,

Ai = ν
εijx

j

x2
,

(363)

where, in the singlet sector, (as in Chapter 1)

ν = −λB. (364)

It turns out that the point like interaction between the particle and the antiparticle imposes

modified boundary conditions for this effective Schroedinger wave function at origin [22, 40](see

the Appendix 2.2 for an intuitive explanation). As explained in [22, 40] there exists a one

parameter set of consistent and self-adjoint boundary conditions for the wave function at the

origin. These boundary conditions are specified as follows. Let

ψ(~r) =
∑
m

eimθψm(r). (365)

The functions ψm(r) for m 6= 0 are required, as usual to vanish at r = 0. For m = 0, on the other

hand, we require that

ψ0(r) ∝
(
r|λB | +

wR2|λB |

r|λB |

)
, (366)
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where R is a reference length scale and w is the self-adjoint extension parameter as introduced

in [22].

In other words ψ0 is not forced to vanish at the origin but has a component that blows up.

We refer to (366) as the Amelino-Camelia-Bak boundary conditions.

The modified boundary conditions (366) are labeled by the single dimensionful parameter

wR2|λB |. It follows from dimensional analysis that the effect of this parameter on any process

with characteristic momentum scale k (like the scattering of particles with momentum k) is

proportional to w(Rk)2|λB |. As w(Rk)2|λB | → 0 the boundary conditions above effectively reduce

to the ‘usual’ Aharonov-Bohm boundary conditions; the boundary conditions that force ψ0 to

vanish at the origin.

In summary, the low energy effective description of the particle - antiparticle system in the near

threshold limit is given by the quantum mechanics of a single non-relativistic particle propagating

in two dimensions. The wave function of this particle obeys the Schroedinger equation (363) and

the boundary conditions (366). The boundary condition parameter wR2|λB | in (366) is an as yet

unknown function of δb4.

It follows from the discussion above that the S-matrix (358) must reduce in the near threshold

limit, to the S-matrix computed by solving (363) subject to the Amelino-Camelia- Bak boundary

conditions. This expectation is a nontrivial consistency check of the conjecture (358), which we

now proceed to verify.

The near threshold limit of the S-matrix (358) is easily determined. As above we set

√
s = 2cB +

k2

cB
. (367)

In the limit (361), the second line of (358) reduces to

8cB| sin(πλB)|
1 + eiπ|λB |

[
δb4
(

2cB
k

)2|λB |
16π|λB |cB

]

1− eiπ|λB |
[
δb4
(

2cB
k

)2|λB |
16π|λB |cB

] ,
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so that the S-matrix (358) reduces to

TS(
√
s, θ) = −16πicB(cos(πλB)− 1)δ(θ) + 8icB sin(πλB)Pv

(
cot

(
θ

2

))
+ 8cB| sin(πλB)|

1 + eiπ|λB | AR
k2|λB |

1− eiπ|λB | AR
k2|λB |

,

AR =

[
δb4 (2cB)2|λB |

16π|λB|cB

]
.

(368)

On the other hand the S-matrix obtained by solving the Schroedinger equation (363) subject

to the boundary conditions (366) has already been determined in [22] and we rederive it in the

Appendix 2.2. 55 It turns out that

TNR = −16πicB (cos (πλB)− 1) δ(θ) + 8icB sin(πλB)Pv

(
cot

θ

2

)
+ 8cB| sinπλB|

1 + eiπ|λB | ANR
k2|λB |

1− eiπ|λB | ANR
k2|λB |

,

ANR =
−1

w

(
2

R

)2|λB | Γ(1 + |λB|)
Γ(1− |λB|)

.

(371)

The S-matrices (368) and (371) are identical in structure. They agree in all details provided we

identify

−w (cBR)2|λB | =
cB
δb4

(
16π|λB|

Γ(1 + |λB|)
Γ(1− |λB|)

)
. (372)

(372) determines the hitherto unknown dependence of the boundary condition parameter wR2|λB |

as a function of δb4.

55More precisely in the Appendix 2.2 we show that the Schroedinger equation described above has a
scattering solution that takes the form

ψ(~r) = eikx + ζ(~r),

ζ(~r) =
e−

iπ
4 eikrh(θ)√

2πkr
+O

(
1

r
3
2

)
,

h(θ) = 2π (cos (πλB)− 1) δ(θ)− sin(πλB)Pv

(
cot

θ

2

)
+ i| sin (πλB) |

1 + eiπ|λB |
[
−1
w

(
2
kR

)2|λB | Γ(1+|λB |)
Γ(1−|λB |)

]
1− eiπ|λB |

[
−1
w

(
2
kR

)2|λB | Γ(1+|λB |)
Γ(1−|λB |)

] .
(369)

The non-relativistic limit of the usual invariant scattering amplitude is given by

TNR = −8icBh(θ). (370)
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In summary, in the near threshold limit, the S-matrix (358) agrees perfectly with the S-matrix

computed from the Schroedinger equation (363) subject to the boundary conditions

ψ0(r) ∝

r|λB | − cB
δb4

(
16π|λB|Γ(1+|λB |)

Γ(1−|λB |)

)
(
rc2
B

)|λB |
 . (373)

As we have emphasized above, however, the effect of the modified boundary conditions on a

process at momentum scale k is measured by w(Rk)2|λB |. It follows from (372) that in the current

situation, the effect of the modified boundary conditions on a process at momentum scale k is

measured by

M =
cB
δb4

(
k

cB

)2|λB |(
16π|λB|

Γ(1 + |λB|)
Γ(1− |λB|)

)
. (374)

Note that M is held fixed in the near threshold scaling limit (361). The modified boundary

condition can be ignored when M → 0. M tends to zero in, for instance, the usual non-relativistic

limit (where k is scaled to zero with all other parameters like δb4 held fixed). Consequently

wR2|λB | is effectively zero in the quantum mechanical description of the usual non-relativistic

limit, explaining why (358) reduces to the w = 0 Aharonov-Bohm-Ruijsenaars [17, 19] S matrix

in this limit, as noted in chapter 1.

The agreement of the S-matrix (358) (and in particular of its poles) with (371) in the near

threshold limit immediately demonstrates that the spectrum of near threshold bound states of

the singlet particle - antiparticle sector of (357) agrees with the spectrum of bound states of the

Schroedinger equation (363) subject to the boundary conditions (373).

The scattering matrices TS and TNR are quite involved functions of k and λB; for this reason

we view the matching of these two functions in the appropriate limit as a rather nontrivial test

of the conjectured S matrix (358). Note that TS would not have matched with TNR without

the the additional factor sin(πλB)
πλB

invoked in chapter 1. As a consequence the results of this note

provide indirect support to the modified crossing symmetry properties for the S matrix of matter

Chern-Simons theories conjectured in chapter 1.

In this chapter we have argued that the S matrix (358) may be derived from a Schroedinger

equation in a particular scaling limit. Perhaps it is possible to derive the full relativistic formula

(358) from the solution to an appropriate Schroedinger equation in lightcone slicing; we leave the

further investigations of this issue to future work.
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2.2 Appendix: The quantum mechanics of anyons with point like

interactions

In the main text we have followed [22, 40] to assert that point like interactions between anyons

effectively impose modified local boundary conditions on the Schroedinger equation in the relative

coordinates. This assertion may appear unfamiliar as contact interactions usually lead to delta

function potentials for relative coordinates. In fact these viewpoints are equivalent. In the

subsections 2.2 and 2.2 below we demonstrate that the correct treatment of the two dimensional

delta function at λB = 0 does, in fact, effectively modify the boundary conditions at the origin

and has no other effect. Moreover the boundary conditions so obtained agree with λB → 0 limit

of the boundary conditions (366).

In subsection 2.2 we proceed to rederive the scattering amplitude for the Schroedinger equation

(363) subject to the boundary conditions (366); our results agree with those of [22].

Quantum mechanics with a two dimensional delta function

Renormalization of the coupling constant In this section we review the dynamics

of the quantum mechanical system governed by the two dimensional Schroedinger equation

−∇
2

2m
ψ(~x) + V (~x)ψ(~x) =

k2

2m
ψ(~x), (375)

where V (~x) is taken to be proportional to a suitably renormalized version of the attractive two

dimensional δ function. This system has been studied in great detail in several papers (see e.g.

[41]); we review the principal results.

Let

ψ(~x) =

∫
d2k

(2π)2
ei
~k.~xψ̃(~k). (376)

The time independent solution of (375) that describes the scattering of an incoming particle with

momentum ~k off an arbitrary potential V (x) is given by the solution to the Lippmann-Schwinger

equation

ψ̃(~p) = (2π)2δ2(~p− ~k) + 2m

∫
d2q

(2π)2

Ṽ (~q)ψ̃(~p− ~q)
k2 − p2 + iε

. (377)

Let V (x) = −gδ2(~x) so that its Fourier transform is given by Ṽ (~k) = −g. Plugging into (377) we

find

ψ̃(~p) = (2π)2δ2(~p− ~k)− 2mgA(~k)

k2 − p2 + iε
, (378)

147



where

A(~k) =
1

1− 2mg
∫ d2p

(2π)2
1

p2−k2−iε

. (379)

The integral in (379) diverges logarithmically. Evaluating the integral with a cut off Λ we have

A(~k) =
1

1− mg
2π ln

(
Λ2

−k2

) . (380)

The function A(~k) is proportional to the scattering amplitude of our quantum mechanical

system. In order to define a sensible scattering problem we must regulate and renormalize (380)

by choosing the coupling constant g to scale to zero logarithmically with the cut off Λ. We choose

g(Λ) so that
1

g(Λ)
=

1

gR(µ)
+
m

2π
ln

(
Λ2

µ2

)
, (381)

where the renormalized coupling gR(µ) is held fixed as Λ is taken to infinity. gR(µ) is, of course,

a function of the renormalization scale µ. (380) now takes the form 56

A(~k) =
1

1− mgR
2π ln

(
µ2

−k2

) . (384)

Description in terms of modified boundary conditions We will now find an

alternative effective description of the renormalized two dimensional delta function in terms of

modified boundary conditions at r = 0. For this purpose it will prove convenient to work in

position rather than momentum space. For this reason we regulate the δ function potential as

the ‘circular square well’

V (r) = − g

πr2
0

; r < r0,

= 0 ; r > r0.

(385)

Let us now study rotationally invariant solutions of the two dimensional Schroedinger equa-

tion with the potential (385). 57 Clearly the most general regular (at r = 0) solution to the

56As an application notice that the scattering amplitude (384) has a pole at

k2 = −µ2e
− 2π
mgR , (382)

implying that our renormalized δ function potential quantum mechanics has a single bound state with
binding energy

E = − µ
2

2m
e
− 2π
mgR . (383)

57Only rotationally invariant solutions are affected by the potential (385) in the limit r0 → 0, as the
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Schroedinger equation takes the form

aJ0(lr) ; r < r0,

cJ0(kr) + dY0(kr) ; r > r0,
(386)

where,

l2 = 2m

(
g

πr2
0

+ E

)
, k2 = 2mE. (387)

The requirement of continuity of the wave function and its first derivative across r = r0 determines

d and c in terms of a. In the small r0 limit it is easily verified that

d

c
=

−1

2
mg + 2

π

[
γ + ln

(
kr0
2

)] , (388)

where, γ is Euler-Mascheroni constant.

As in the previous section (388) does not have a well defined r0 → 0 limit. In order that the

LHS of (388) is well defined as r0 → 0 we must choose g to be a function of r0 and take g to zero

as r0 is scaled to zero, keeping gR fixed where

1

gR(µ)
=

1

g(r0)
+
m

π

[
ln
(r0µ

2

)
+ γ
]
. (389)

Note that(389) agrees exactly with (381) under the replacement µr0eγ

2 → µ
Λ .

Implementing this limit we find

d

c
=

−1

2
mgR

+ 2
π ln

(
k
µ

) . (390)

It follows that the Schroedinger problem with a delta function potential with renormalized

strength gR is equivalent to the free Schroedinger equation subject to the r → 0 boundary

condition

ψ0(r) ∝
[(
− 2

mgR
− 2

π
ln
k

µ

)
J0 (kr) + Y0(kr)

]
. (391)

Using the small argument expansions

J0(kr) = 1 +O
(
(kr)2

)
, Y0(kr) =

2

π
ln

(
kr

2

)
+ 2

γ

π
+O

(
(kr)2 ln(kr)

)
, (392)

we see that the k dependence cancels from (391) and the boundary condition on ψ(r) takes the

wave function at nonzero angular momentum dies rapidly at small r due to the angular momentum barrier.
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local form

ψ0(r) ∝
[(
− 2

mgR
+ 2

γ

π

)
+

2

π
ln
(µr

2

)
+O

(
r2 ln r

)]
. (393)

In summary, the Schroedinger equation in the presence of a renormalized δ function potential

is exactly equivalent to the free Schroedinger equation subject to the local boundary conditions

(393) at the origin.

It is easily verified that the boundary conditions (393) are obtained as a limit of the Amelino-

Camelia-Bak boundary conditions (366) if we set

w = −1 + |λB|
(
− 2π

mgR
+ 2γ + 2 ln

(
µR

2

))
,

and take the limit |λB| → 0. In other words the usual (i.e. δ function) description of contact

interactions is indeed equivalent to the appropriate |ν| → 0 limit of the Schroedinger equation

(363) subject to the boundary conditions (366). This suggests that the boundary conditions (366)

do indeed capture the effect of contact interactions at general λB. This has been argued to be

true in [22, 40].

Derivation of the scattering amplitude In this section we will derive the scattering

amplitude for the Schroedinger equation (363) subject to the boundary conditions (366). We

assume |ν| < 1.

We wish to find scattering state solutions at energy E = k2

2m of the Schroedinger equation for

this particle; i.e. k is the magnitude of the momentum of the particle incident on the solenoid.

The most general solution of the Schroedinger equation that meets the boundary conditions for

ψm(r) at the origin (m 6= 0) is

ψ(~r) =
∑
n>0

ane
inθJn+ν(kr) +

∑
n>0

a−ne
−inθJn−ν(kr) + a0J|ν|(kr) + b0J−|ν|(kr). (394)

The scattering solution we wish to find obeys the boundary condition (366); moreover at large r

its ingoing piece (part proportional to e−ikr) must reduce to that of the incoming wave eikx. It is

not difficult to see that the unique solution that meets our boundary conditions is given by (see

1.9.3 for the detailed derivation for the special case w = 0)

ψ(~r) =

∞∑
n=1

ine−i
πν
2 Jn+ν(kr)einθ +

∞∑
n=1

inei
πν
2 Jn−ν(kr)e−inθ

+
Γ(|ν|+ 1)

(
2
k

)|ν|
J|ν|(kr) + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
J−|ν|(kr)

Γ(|ν|+ 1)
(

2
k

)|ν|
ei
π|ν|
2 + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
e−i

π|ν|
2

.

(395)
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At large r, ψ(~r) reduces to

1√
2πkr

(
ei
π
4 δ(θ − π)e−ikr +H(θ)e−i

π
4 eikr

)
,

where,

H(θ) =

∞∑
n=1

(
e−iπνeinθ + eiπνe−inθ

)

+
Γ(|ν|+ 1)

(
2
k

)|ν|
e−i

π|ν|
2 + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
ei
π|ν|
2

Γ(|ν|+ 1)
(

2
k

)|ν|
ei
π|ν|
2 + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
e−i

π|ν|
2

.

(396)

Now we can write

∞∑
n=1

(
e−iπνeinθ + eiπνe−inθ

)
=

( ∞∑
n=1

2 cos(πν) cos(nθ)

)
+

( ∞∑
n=1

2 sin(πν) sin(nθ)

)

=

(
cos(πν) +

∞∑
n=1

2 cos(πν) cos(nθ)

)
− cos(πν)

+

( ∞∑
n=1

2 sin(πν) sin(nθ)

)

= 2π cos(πν)δ(θ)− cos(πν) +

( ∞∑
n=1

2 sin(πν) sin(nθ)

)

= 2π cos(πν)δ(θ) + sin(πν)Pv

(
cot

(
θ

2

))
− cos(πν).

(397)

Substituting in (396)

H(θ) = 2π cos(πν)δ(θ) + sin(πν)Pv

(
cot

(
θ

2

))
+

Γ(|ν|+ 1)
(

2
k

)|ν|
e−i

π|ν|
2 + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
ei
π|ν|
2

Γ(|ν|+ 1)
(

2
k

)|ν|
ei
π|ν|
2 + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
e−i

π|ν|
2

− cos(πν)

= 2π cos(πν)δ(θ) + sin(πν)Pv

(
cot

(
θ

2

))
− i sin(π|ν|)Γ(|ν|+ 1)

(
2
k

)|ν|
eiπ|ν| − wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
Γ(|ν|+ 1)

(
2
k

)|ν|
eiπ|ν| + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν| .
(398)

In order to compute the scattering amplitude, we must rewrite the wave function as a plane
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wave plus a scattered piece; at large r

ψ(r) = eikx +
h(θ)e−i

π
4 eikr√

2πkr
. (399)

We find

h(θ) = H(θ)− 2πδ(θ), (400)

so that

h(θ) = 2π (cos(πν)− 1) δ(θ) + sin(πν)Pv

(
cot

(
θ

2

))
− i sin(π|ν|)Γ(|ν|+ 1)

(
2
k

)|ν|
eiπ|ν| − wR2|ν|Γ(1− |ν|)

(
k
2

)|ν|
Γ(|ν|+ 1)

(
2
k

)|ν|
eiπ|ν| + wR2|ν|Γ(1− |ν|)

(
k
2

)|ν| . (401)

This yields (369).
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3 Chapter 3: A Charged Membrane Paradigm at Large

D

3.1 Introduction

Emparan, Suzuki, Tanabe (EST) and collaborators have recently noted [42–48] that the clas-

sical dynamics of black holes simplifies at large D (D is the dimensionality of space time).

Schwarzschild black holes in a large number of dimensions are characterized by two widely sep-

arated length scales. The first of these is the Schwarzschild radius r0, while the second is the

distance δr away from Schwarzschild radius after which spacetime ceases to be warped by the

black hole. In other words δr is defined so that spacetime is effectively flat for r > r0 + δr.

At large D the membrane thickness, δr, is easily estimated; it turns out that δr ∼ r0/D � r0.

Similar observations apply to static charged black holes at large D.

The separation of scales between the membrane thickness and the black hole radius results

in the simplification of black hole dynamics at large D. The first hint of this fact appeared in

the results for the large D spectrum of quasinormal modes of Schwarzschild black holes obtained

by EST and collaborators [45, 47, 48]. It turns out that most of the quasinormal modes are

heavy with frequencies ∼ 1/δr. The remaining modes are anomalously light; their frequencies

are of order 1/r0. 58 As we will see below, the spectrum of quasinormal modes about Reissner-

Nordstrom black holes is qualitatively similar.

The pattern of the quasinormal mode frequencies described above may be understood intu-

itively as follows. A quasinormal mode is a linearized solution of Einstein’s equations about the

black hole background, subject to the condition that it is ingoing at the horizon and outgoing in

the asymptotically flat exterior region. As the second boundary condition is effectively imposed

at the outer edge of the membrane region, the quasinormal problem is analogous to the analysis

of the harmonics of the wave equation in a hollow, leaky spherical shell. The radius of this shell is

r0 and its thickness is δr. Clearly modes with nonzero ‘harmonic number’ in the radial direction

all have frequencies of order 1/δr; these are EST’s generic heavy modes. Modes of zero radial

harmonic number, if present, have frequencies of order 1/r0; these are EST’s anomalously light

modes.

The imaginary part of all heavy quasinormal mode frequencies are of order 1/δr; it follows

that these modes all decay away after a time scale of order δr. On the other hand the light

quasinormal modes have lifetimes of order r0. Consider a violent dynamical process like a black

hole collision. For a time of order δr after the event, dynamics is complicated and involves all

quasinormal modes. For times t � δr, however, the heavy quasinormal modes have all decayed

58More precisely, all but a finite number of quasinormal modes at every angular momentum are heavy.
A finite number of modes at every angular momentum are light.
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away and the subsequent dynamics is governed by a nonlinear interacting theory of only the light

quasinormal modes, the principal focus of this chapter. 59

Light quasinormal modes may roughly be thought of as ‘Goldstone bosons’ for the symmetries

of flat space that are broken by the black hole. Non rotating black holes appear in family of

solutions labeled by a set of parameters αi; the black hole location, radius, boost velocity and

charge. By infinitesimally varying each of these parameters we obtain a set of time independent

linearized solutions of the Einstein-Maxwell equations about any of these black holes. Now

consider configurations that locally resemble these zero modes but with δαi = δαi(θ), i.e. with

the infinitesimal parametric variations chosen to be functions of the black hole angular coordinates

with spherical harmonic numbers of order unity. It follows that in any patch of size of order δr

(i.e. of angular extent of order δr/r0) the δαi are approximately constant. In any such patch the

fluctuation closely approximates a zero mode, and so is static on the time scale δr. However the

variation of δαi on length scales of order r0 cause such configurations evolve over times of the

same order. It follows that quasinormal modes built out of such configurations have frequencies

of order 1/r0, and may be identified with charged generalizations of the light modes of EST.

The identification of light quasinormal modes with ‘Goldstone bosons’ immediately suggests

the possibility of using the collective coordinate method to derive the nonlinear ‘chiral Lagrangian’

of these light modes. 60. On general grounds one expects that the effective nonlinear equations

of motion for the light modes will admit a power series expansion in the ratio of the energy scales

of the light and heavy modes, i.e. in a power series in δr/r0 ∼ 1/D. In other words the collective

coordinate equations for light modes dynamics are a reformulation of black hole dynamics that

is exact at large D.

At leading nontrivial order in 1/D, the equations that govern the collective coordinate dy-

namics of uncharged black holes were derived in the recent paper [1] (see [49–53] for closely related

work) 61. In this chapter we build on the work of [1] in two different ways. First we improve

the construction of [1] in several respects. We use collective coordinate variables with a direct

physical significance and present our final equations and spacetimes in an explicitly ‘geometri-

cal’ form. Second - using the same improvements - we generalize the work of [1] to obtain the

nonlinear collective coordinate dynamics of charged black holes in a large number of dimensions.

59At time scales large compared to r0 the light quasinormal modes also decay away and the black holes
settle down into their equilibrium state. The approach to equilibrium is governed by the linearized theory
of quasinormal modes.

60As the resulting system turns out to be dissipative, however, it is easier to deal with the effective
equations of motion than an effective action.

61The papers [49] and [50] worked out the effective collective coordinate expansions for the special case
of uncharged stationary configurations. When restricted to flat space and lowest order in D the results
of these papers are special cases of [1] and this chapter. The papers [51–53] analyze dynamics at length
and time scales of order r0/

√
D (this turns out to be the relevant length scale for the Gregory-Laflamme

phenomenon at large D), as opposed to this chapter where we focus on length scales of order unity.
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In the rest of this introduction we will provide a more detailed description of the collective

coordinate construction presented in this chapter and present our main results.

A more detailed introduction and summary

In the technical heart of this chapter we follow [1] to simply write down a class of leading order

collective coordinate spacetimes (see (408) below). We then carefully verify that our spacetimes

and gauge fields (written down by physically guided guesswork following [1]) obey the Einstein-

Maxwell equations of motion at leading order in 1/D 62 and so constitute a good starting point

for the construction of true solutions to the Einstein-Maxwell equations in an expansion in 1/D.

Our collective coordinate spacetimes are built sewing together patches of Reissner-Nordstrom

black holes with different radii, charges and boost velocities into a single smooth spacetime.

These spacetimes are in one to one correspondence with the configurations of a non gravitational

codimension one membrane propagating in flat D dimensional space. The dynamical degrees of

freedom of the membrane are

• 1. The embedding of its timelike world volume in flat D dimensional spacetime, i.e. the

shape of the membrane. Through this chapter we use the symbols nA and KAB to denote

the normal and extrinsic curvature of the membrane surface in D dimensional Minkowski

space. We also use the symbol K = ηABKAB to denote the trace of the extrinsic curvature.

• 2. A velocity vector field uA in the membrane world volume (so that u · n = 0) whose

world volume divergence vanishes (i.e. ∇·u = 0 where ∇ is the covariant derivative on the

membrane world volume). The velocity field is normalized in the usual manner u · u = −1.

• 3. A scalar charge density field Q 63 that lives on the membrane (this field is absent in the

neutral case).

To reiterate, the starting point of the technical analysis presented in this chapter is a class

of ‘collective coordinate spacetimes’ - that are simply guessed. We have one such spacetime for

every distinct membrane configuration. Our collective coordinate spacetimes turn out to solve

the Einstein-Maxwell equations at leading order in 1/D everywhere outside their event horizons.

The strategy adopted in the rest of this chapter is to use these spacetimes as the first term in

the perturbative construction of true solutions of the Einstein-Maxwell equations in a power series

62More precisely the equations of motion are obeyed everywhere outside the even horizons of these
configurations. This is sufficient, as regions inside the event horizon are causally disconnected - and
invisible - from those outside, and so may be ignored for the purposes of predicting observations outside
the event horizon.

63More precisely the field Q utilized in this chapter is a variable proportional to the actual conserved
charge density field on the membrane.
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expansion in 1/D. In this chapter we explicitly implement this expansion to first subleading order

in 1/D. In other words we correct the leading order collective coordinate spacetimes described

above to ensure that they obey the Einstein-Maxwell equations not just at the leading order

in 1/D but also at first subleading order in this expansion. We discover that it is possible to

accomplish this task with only nonsingular corrections if and only if the membrane shape, charge

density and velocity fields obey the following local equations of motion(∇2u

K − (1−Q2)
∇K
K + u ·K − (1 +Q2)(u · ∇)u

)
· P = 0,

∇2Q

K − u · ∇Q−Q
(
u · ∇K
K − u ·K · u

)
= 0,

where ∇ = the covariant derivative on the membrane world volume,

and PAB = ηAB − nAnB + uAuB.

(402)

64 65

Corresponding to every solution of the equations (402) we are able to improve (408). The

improvements are computed to ensure that the corrected configurations (see (473),(474), (475),

(476), (477)) solve the Einstein-Maxwell equations at leading and first subleading order in 1/D.

We expect the construction presented in this chapter to constitute the first couple of terms in a

systematic expansion of solutions to the Einstein-Maxwell equations order by order in 1/D.

As we have explained above, membrane spacetimes are parameterized by the shape of the

membrane (one function), the charge density field (one function) and a unit normalized divergence

free velocity field on the membrane (D − 3 functions) and so by D − 1 functions in total. The

membrane equations (402) are also D − 1 in number (the first equation in (402) is a vector

projected orthogonal to n and u and so has D−2 components, while the second is a scalar and so

has one component). It follows that we have as many equations as variables and so (402) define

an initial value problem for membrane motion. (402) are simply the large D collective coordinate

equations of black hole motion.

Following [1], in this chapter we have derived the membrane equations (402) under the as-

sumption that our spacetimes preserve an SO(D − p − 2) isometry subgroup for p held fixed as

D → ∞. 66 Even though have made this assumption in our derivation, the final membrane

64The expression in the first bracket in the first of (402) is a vector in the membrane world volume and

so is orthogonal to n. When acting on such a vector the projector PAB = g
(WV )
AB + uAuB where g

(WV )
AB is

the induced metric on the membrane world volume.
65In the uncharged limit, the equation (402) are easily demonstrated to reduce to the membrane equation

of motion presented in [1] once we account for the fact that the velocity field of this chapter differs from
the velocity field employed in [1] (see subsection 3.3.11 for relevant details.).

66This requirement guarantees that there are no unaccounted for factors of D in, for instance, derivatives
of the metric and gauge field.
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equations (402) (and the spacetimes dual to solutions of these membrane equations) make no

explicit reference to the isometry group. Our final equations are entirely covariant; they treat the

isometry directions and other directions democratically. We refer to equations with this property

as geometrical.

Given the geometrical nature of our membrane equations and spacetimes, it is natural to

wonder whether our equations apply more generally than their derivation. Could it be that (402)

captures the dynamics of black hole motions on time scales of order unity, even in the absence

of a large isometry symmetry? While an appropriate version of such a conjecture might well be

true, we would like to emphasize a subtlety. There are several pairs of independent geometrical

expressions that reduce to each other at leading order in the large D limit under the assumption

of an SO(D − p − 2) isometry but differ from each other more generally 67. For this reason it

turns out that there are different geometrical ways of presenting the equations of motion (402),

all of which are identical at leading order in 1/D when evaluated on any membrane configuration

that preserves an SO(D − p − 2) isometry but which differ on more general configurations. As

the results of this chapter are all obtained assuming an SO(D − p − 2) isometry, they cannot

distinguish between these different geometrical presentations of the membrane equations. For

example, the divergence of the first equation in (402) turns out to coincide, at leading order in

large D, with the equation

(1−Q2)

[∇2K
K2
− u · ∇K

K

]
− (1 +Q2)

(
u · ∇K
K − u ·K · u

)
= 0,

where ∇ = the covariant derivative on the membrane world volume,

(403)

under the assumption of SO(D− p− 2) symmetry. It follows that the computations presented in

this chapter cannot resolve the question of which of these is the ‘correct’ leading order membrane

equation in the absence of an isometry .68

The membrane equations (402) are nonlinear and rather complicated. In future work we

will demonstrate that these equations admit simple classes of solutions in which the membrane

velocity field uµ is that of rigid rotations and the charge density field is proportional to u0 (the

time component of the velocity vector). The membrane shape is constrained to obey a single

nonlinear partial differential equation. Solutions obtained in this manner include the duals to

charged rotating black hole solutions at large D. For the special case of uncharged black holes

67For example, the independent geometrical quantities u ·∇K/D and ∇µ(u ·K)µ may be shown to agree
with each other at leading order in 1/D for any membrane configuration that preserves an SO(D− p− 2)
invariance. On the other hand the same two expressions could differ at leading order when evaluated on
configurations that do not enjoy any symmetry.

68Even staying within the class of isometric spacetimes, the iteration of the computations of this chapter
to one higher order could help to resolve this question. We hope to report on the results of a higher order
computation in the not too distant future.
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this nonlinear partial differential equation turns out to exactly match the constraint on the shape

of stationary membranes derived in a different way in [49, 50], establishing that the results of

[49, 50] (at leading order and in flat space) are a special case of the more general results of [1]

and this chapter.

The simplest solution of the sort described in the previous paragraph is obtained upon switch-

ing off all angular velocities; the membrane solution is a static spherical ‘soap bubble’ with a

uniform charge density. In section 3.4.4 below we have verified that the metric and gauge field

dual to this solution agree perfectly with the exactly known static Reissner-Nordstrom black hole

solution expanded to first subleading order in 1/D.

The membrane equations (402) capture all of the complexities of black hole horizon dynamics

at large D, at time scales of order unity 69. The detailed study of (402) should teach us a great

deal about black hole horizon dynamics. As a first small step in this program, in section (3.5) we

linearize the membrane equations (402) about the exact spherical solution dual to the Reissner-

Nordstrom black hole, and determine the spectrum of small fluctuations about this background

(see section 3.4.4) for details. This spectrum of linearized fluctuations may be regarded as a

prediction for the spectrum of light quasinormal modes about charged black holes at large D.

In the course of obtaining the quasinormal mode spectrum described in the previous para-

graph, we reduce the manifestly geometrical but slightly abstract equations (402) to explicit linear

differential equations for two scalar fields and a divergence free vector field on SD−2 times time

(this reduction is valid for linearized fluctuations about the spherical membrane surface). This

explicit form of the equations helps us verify that the equations (402) do indeed constitute a

well posed initial value problem for the membrane shape, charge density and velocity fields at

least for these linearized configurations, as we had anticipated above on intuitive grounds. Our

explicit results for the quasinormal modes also reveals that the membrane equations (402) are

highly dissipative. As an independent test of the equations (402) it would be useful to verify

our prediction for the large D quasinormal spectrum by direct analysis of the Einstein-Maxwell

equations about the Reissner-Nordstrom black hole background. While we make some remarks

about this, we leave a detailed verification to future work.

69We believe this to be true at least for spacetimes that preserve an SO(D − p− 2) isometry for any p
that is held fixed as D is taken to infinity.
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3.2 The collective coordinate ansatz

3.2.1 Boosted charged black holes in Kerr-Schild coordinates

The Reissner-Nordstrom black hole in the ‘Kerr-Schild’ coordinate system 70 is given by

ds2 = −dt2 + dr2 + r2dΩ2
D−2 +

(
(1 +Q2cD)

(r0

r

)D−3
− cDQ2

(r0

r

)2(D−3)
)

(dt+ dr)2,

= ds2
flat +

(
(1 +Q2cD)

(r0

r

)D−3
− cDQ2

(r0

r

)2(D−3)
)

(dt+ dr)2,

A =
√

2Q
(r0

r

)D−3
(dt+ dr).

(404)

(404) describes a black hole at rest, i.e. a black hole moving with velocity u = −dt. The

solution for a black hole moving at an arbitrary constant velocity u may be obtained by boosting

(404) and is given by

gMN = ηMN +

(
(1 +Q2cD)

1

ρD−3
− cDQ2 1

ρ2(D−3)

)
OMON ,

AM =

√
2QOM
ρD−3

,

O = n− u, u = const, u · u = −1, ρ =
r

r0
,

r2 = PMNx
MxN , PMN = ηMN + uMuN , n = r0dρ, note u · n = 0 .

(405)

Note that the function ρ in (405) obeys the identity

ρ∇2ρ = (D − 2)dρ · dρ . (406)

Here and through most of this chapter we view ρ as a function that lives in flat D dimensional

space. In particular ∇ in (406) is the covariant derivative in flat space rather than in the metric

(405).

Through this chapter we will use the term membrane to refer to the surface ρ = 1 viewed as

a submanifold of flat Minkowski space. Note also that uµ may be thought of a vector field that

lives on the membrane. It is obvious that

∇ · u = 0, (407)

where ∇ is the covariant derivative on the membrane.

70See Appendix 3.7.1 for a lightning introduction to this coordinate system and its advantages.
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3.2.2 Collective coordinate spacetimes from boosted black holes

Consider the spacetime given by

gMN = ηMN +

[ (
1 +Q2

) 1

ρD−3
− Q2

ρ2(D−3)

]
OMON ,

AM =

√
2QOM
ρD−3

,

O = n− u, u · u = −1, n =
dρ√
dρ.dρ

, u · n = 0,

(408)

where ρ, Q and u are arbitrary smooth functions and vector fields in flat D dimensional Minkowski

spacetime subject only to the requirement that the function ρ obeys (406) on the membrane

surface and that the velocity field restricted to the membrane obeys (407).

The codimension one membrane worldvolume will play a special role in this chapter. We

assume that the function ρ is chosen to ensure that the membrane surface is a smooth timelike

submanifold of flat Minkowski space. 71 The membrane separates regions of spacetime where

with ρ < 1 (inside the membrane) from regions with ρ > 1 (outside the membrane). The function

ρ is chosen to ensure that the outside region is a connected spacetime and that includes all of

spacelike infinity as well as I+ and I−. The membrane worldvolume itself is not necessarily

connected.

The spacetimes (408) have the following properties.

• 1. Upto corrections of order 1/D, the static black holes (405) are special cases of (408)

with the ρ, Q and u functions given as in (405). In these special cases ρ = 1 is the black

hole event horizon.

• 2. It is easily verified the membrane surface ρ = 1 is a null submanifold of the metric (408)

for a general spacetime of this form. At least when (408) settles down to a stationary black

hole at late times (as we will assume throughout this chapter) this submanifold may be

identified with the spacetime event horizon. 72

• 3. Consider a point xµ0 on the membrane (ρ = 1) of the spacetime (408). Let uµ0 , Q0 and

K0 denote the velocity, charge density field and trace of membrane extrinsic curvature at

that point. Comparing with (405), we will see in subsection 3.3.6 below that a patch of size

of order 1
D centered about xµ0 is identical, at leading order in D, to the metric and gauge

71We will see below that the same surface - ρ = 1 - is a null when viewed as a submanifold of the metric
(408).

72The dissipative nature of the membrane equations of motion we derive below suggests that all solutions
reduce to stationary solutions at late times.
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field of a patch centered about the membrane of a Reissner-Nordstrom black hole of radius

(D − 2)/K, Q parameter Q0 and boost velocity uµ0 .

• 4. It seems plausible from point (3) above that every patch centered about the membrane

of the configuration (408) obeys the Einstein-Maxwell equations at leading order in 1/D.

In subsection 3.3.6 below we demonstrate that this is the case provided the spacetime (408)

enjoys an SO(D − p− 2) isometry for any p that is held fixed as D is taken to infinity.

• 5. The gauge field in (408) and the deviation of the metric from ds2
flat scales like e−D(ρ−1).

It follows (408) approaches flat space exponentially rapidly for ρ− 1� 1/D.

• 6. Combining (4) and (5) above it follows that (408) also obeys the Einstein-Maxwell

equations at leading order in 1/D (or better) everywhere outside its event horizon.

• 7. The equations of motion are not well solved when 1 − ρ � 1. However points that lie

inside the event horizon of (408) are causally disconnected from dynamics on and outside

the membrane and will be ignored in the rest of this chapter.

In summary, the metric (408) is built by stitching together bits of the event horizon of Reissner-

Nordstrom black holes of varying radii, charge densities and boost velocities. The spacetime (408)

obeys the Einstein-Maxwell equations at leading order in large D everywhere outside its horizon

at least provided it preserves an SO(D−p−2) isometry. It follows that metrics of the form (408)

are useful starting points for a perturbative construction of the solutions of the Einstein-Maxwell

equation in an expansion in 1
D .

3.2.3 Subsidiary constraints on ρ, u and Q

The spacetimes (408) are parameterized by the functions ρ and Q and uµ. These functions are

defined on all of D dimensional Minkowski space. However we have already noted that (408)

rapidly tends to flat space when ρ−1� 1
D . Consequently two spacetimes whose ρ and Q and uµ

functions agree on the surface ρ = 1 but deviate at larger values of ρ actually describe spacetimes

that agree at leading order in 1/D on and outside their event horizons. 73

In this chapter we use spacetimes of the form (408) as the starting point for a perturbative

expansion of true solutions of the Einstein-Maxwell system in a power series in 1/D. Any two

73In and around subsection 3.3.6 we show that for this statement to be true it is also necessary the
gradients ∇ρ of the two ρ functions coincide on the membrane ρ = 1 at leading order in the large D limit.
However this is automatic, given the conditions we have imposed on our construction. Upto a position
dependent normalization, ∇ρ is proportional to the normal vector of the surface ρ = 1. It follows that the
two ∇ρ functions agree with each other upto normalization at ρ = 1. The condition that both ρ functions
obey (406) at ρ = 1 guarantees that the normalizations also agree at leading order in the large D limit
(see (430)).
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configurations of the form (408) that differ from each other only at subleading orders in 1/D

constitute equivalent starting points for perturbation theory. In order to restrict attention only

to inequivalent configurations it is convenient to invent a set of rules that determine the functions

ρ, u and Q everywhere in spacetime, in terms of the shape of the membrane and the values of

the velocity and charge density fields on the membrane. We refer to these arbitrary rules as

subsidiary constraints on the functions ρ, Q and u.

There is a great deal of freedom in the choice of subsidiary constraints. Two different choices

of these conditions lead to the same solution at any given order in perturbation theory. The dif-

ferences between the starting points in perturbation theory are compensated for by the differences

in the results of the perturbative expansion.

While all choices of subsidiary constraints are on equal footing in principle, in practice some

choices (those that most accurately approximate the true eventual solutions) lead to simpler

results in perturbation theory than others. After experimenting with a few options we have

chosen, in this chapter, to impose the following subsidiary constraints on ρ, u and Q:

ρ∇2ρ = (D − 2)dρ · dρ,
u · u = −1, n · u = 0, PMN [(n · ∇)uM + (u · ∇)nM ] = 0,

n · ∇Q = 0,

where n =
dρ√
dρ · dρ, PMN = ηMN − nMnN + uMuN .

and ∇ = the covariant derivative in the embedding flat space.

(409)

Let us pause to comment on our choice of subsidiary constraints. Recall that it is an im-

portant element of our construction that (409) is obeyed on the surface ρ = 1 (see (406)). This

is a physical requirement, independent of arbitrary choices of subsidiary conditions. Our first

subsidiary condition (409) simply asserts that (406) continues hold everywhere; even away from

the membrane. This condition is sufficient to determine the function everywhere in terms of the

shape of the membrane (i.e. solutions to the equation ρ− 1 = 0).

The third condition in (409) asserts that Q is defined off the membrane surface by parallel

transporting it along integral curves of the normal vector n ∝ dρ. The second condition (409)

determines u in terms of its value on the membrane by specifying its evolution under parallel

transport under the same integral curves. 74

74The subsidiary constraints adopted in this chapter are chosen to permit simple comparison with exact
uncharged rotating black hole solutions, see [54] for details. These conditions imposed in this differ from
the rather elegant geometrical subsidiary constraints imposed in [1].
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3.2.4 Fixing coordinate and gauge invariance

In the next section we will describe the perturbative procedure we will employ to correct the

spacetime (408) in order to obtain a spacetime that solves the Einstein-Maxwell equations upto

first subleading order in 1/D. In order to find an unambiguous solution to this problem we need

to fix coordinate redefinition and Maxwell gauge ambiguities. In this subsection we describe our

choice of coordinates and gauge.

Let the spacetime metric in the solutions described by this chapter take the form

gMN = ηMN + hMN , (410)

where hMN is given, at leading order, by (408). We fix coordinate redefinition ambiguity by

imposing the condition

OMhMN = 0, (411)

where

O = n− u, (412)

and all indices in (411) are raised and lowered using the flat metric ηMN . Using the fact that

O ·O = 0, it is easily verified that the leading order metric (408) does indeed obey (411).

In a similar manner we fix the Maxwell gauge ambiguity by imposing the condition

OMAM = 0. (413)

Note that (413) is obeyed at leading order (see (408)).

Note that our choice of gauge depends on O, and so on n and u, which, in turn, depend on the

membrane shape and velocity field in the particular solution under study. Our choice of gauge is

somewhat analogous to a background field gauge in the study of gauge theories, or, more closely,

to the gauges adopted in the study of the fluid gravity correspondence (see e.g. [55–60]).

Note also that the coordinate choice adopted in this chapter differs in detail from that of [1].

As is clear from the discussion of this section, the gauge adopted here is completely geometrical.

This is not true of the gauge adopted in [1], which singles out the isometry direction as special.

3.2.5 Perturbation theory

In the next section we will implement a perturbative procedure that can be used to correct (408)

at first subleading order in 1/D. Roughly speaking we search for a metric and gauge field of the
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form

gMN = ηMN + hMN ,

hMN =
∞∑
n=0

h
(n)
MN

Dn
,

AM =
∞∑
n=0

A
(n)
M

Dn
,

h
(0)
MN = OMON

[
(1 +Q2)ρD−3 −Q2ρ−2(D−3)

]
,

A
(0)
M =

√
2Q

ρD−3
,

(414)

and attempt to find the correction fields h
(1)
MN and A

(1)
M that ensure that the Einstein-Maxwell

equations are satisfied not just at leading order but also at first subleading order in 1/D. In

order to technically implement this idea, it turns out to be very helpful to assume our solutions

preserve a large isometry group, as we describe in detail in the next section

3.3 Perturbation theory assuming SO(D − p− 2) invariance

3.3.1 Careful definition of the large D limit

In the computational part of this chapter we follow [1] to take the limit D →∞ while preserving

an SO(D − p − 2) symmetry with p held fixed. We take the large D limit while maintaining a

large isometry subgroup so that we can reliably estimate the scaling with D of all terms in the

equations we encounter.

The requirement that our solutions preserve an isometry group is less restrictive than it first

appears for two reasons. First, several spacetimes of physical interest (e.g. those that describe

classes of black hole collisions) indeed preserve large isometry groups. Secondly, although the

derivation of the membrane equations that we present below assumes an SO(D−p− 2) isometry,

we will see that all our final equations are entirely geometrical on the membrane world volume; the

isometry directions are not special in any way. In particular our final equations are independent

of p.

While none of our final results will depend on p, all intermediate computations are performed

within a framework that explicitly preserves SO(D − p − 2) invariance. In order to perform
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computations we assume that our metric and gauge field take the form

ds2 = gµν(xµ)dxµdxν + eφ(xµ)dΩ2
d ,

A = Aµ(xµ)dxµ,

d = D − p− 3, µ = 1 . . . p+ 3,

(415)

where gµν , φ and Aµ are all arbitrary functions of the coordinates xµ but are independent of the

angular coordinates on the Sd in (415). 75 Under this assumption the D dimensional Einstein-

Maxwell equations effectively reduce to a p+ 3 dimensional Einstein-Maxwell system coupled to

the effective scalar field φ.

3.3.2 The Einstein-Maxwell equations in the SO(D − p− 2) invariant sector

In this chapter we study solutions of the Einstein-Maxwell equations governed by the Lagrangian

S =
1

16πGD

∫ √
−g̃ dDx

(
R̃− FMNF

MN

4

)
, (417)

where

FMN = ∂MAN − ∂NAM ,
R̃ = Ricci scalar in full D dimensional spacetime,

g̃ = Determinant of the metric in full D dimensional spacetime.

(418)

76 We wish to focus attention on metrics and gauge fields of the form (415). In this section we

will work out the effective dynamical equations for such configurations.

Substituting (415) into (417) we find the effective Lagrangian 77

S =
Ωd

16πGD

∫ √−g dp+3x e
dφ
2

(
R+ d(d− 1)e−φ +

d(d− 1)

4
(∂φ)2 − FµνF

µν

4

)
,

(∂φ)2 = gµν(∂µφ)(∂νφ).

(419)

75In the special case of flat space

ds2 = ηαβdw
αdwβ + dS2 + S2dΩ2

d = ηαβdw
αdwβ + dzMdz

M , (416)

where zM are the d + 1 Euclidean coordinates built out of angular coordinates on Sd and the radial
coordinate S.

76In (418) the gauge field Aµ and the metric gµν are both taken to be dimensionless while Newton’s
constant GD has length dimension D − 2.

77Due to the presence of SO(D − p− 2) symmetry all the quantities depend only on wα, S coordinates,
while all the vectors (in particular, A) have components only in dwα, dS directions. Hence when we go to
the p+ 3 dimensional space, the M,N indices are replaced by µ, ν.
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Varying this Lagrangian we obtain the equations of motion

(d− 1)e−φ − d

4
(∂φ)2 − 1

2
∇2φ+

1

4(d+ p+ 1)
FµνF

µν = 0,

Rµν −
d

4
(∂µφ)(∂νφ)− d

2
∇µ∇νφ−

1

2
FµρFν

ρ +
1

4(d+ p+ 1)
FρσF

ρσgµν = 0,

∇µFµν +
d

2
(∂µφ)Fµν = 0,

where d = D − p− 3,

and ∇ = covariant derivative taken w.r.t. the metric gµν .

(420)

3.3.3 Setting up the perturbative computation

Convenient coordinates for flat space The metric (408) is completely determined

once we specify the two scalar fields ρ and Q and the vector field uµ. These fields live in flat

space and are constrained to obey the equation (409).

The following coordinates for flat space

ds2
flat = ηαβdw

αdwβ + dS2 + S2dΩ2
d , i = {0, 1, · · · , p+ 1}, d = D − p− 3. (421)

are particularly useful for studying SO(D−p−2) invariant configurations. In these coordinates the

requirement of SO(D−p−2) isometry implies that ρ, Q and u are functions of ({wα, S} ≡ {xµ})
only. Moreover uθi = 0 in every angular direction θi on the Sd.

The perturbative expansion of SO(D − p− 2) invariant solutions Metrics and

gauge fields that preserve an SO(D − p− 2) isometry can be parameterized in the form

ds2 = gµν(S,wα)dxµdxν + S2eδφ(S,wα)dΩ2
d ,

AMdX
M = Aµ(S,wα)dxµ.

(422)

Note that

φ = φ0 + δφ, φ0 = 2 ln(S).

(φ0 is simply value of φ in flat space).

As explained around (410), in this chapter we will expand the metric and gauge field in a

power series expansion in 1/D. 78 The schematic expansion (410) takes the precise form

gµν =

∞∑
k=0

(
1

D

)k
g(k)
µν , Aµ =

∞∑
k=0

(
1

D

)k
A(k)
µ , δφ =

∞∑
k=1

(
1

D

)k
δφ(k). (423)

78The central advantage of the assumption of SO(D − p − 2) isometry is that the variables of the
perturbation expansion are independent of D.
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From (408) we read off the leading values of gµν and Aµ

g(0)
µν dx

µdxν = ηαβdw
αdwβ + dS2 +

[
(1 +Q2)ρ−(D−3 −Q2ρ−2(D−3)

]
(Oµdx

µ)2,

A(0)
µ =

√
2Qρ−(D−3)Oµ.

(424)

More detailed parameterization of the first order corrections to the metric

and gauge field After imposing the gauge conditions (411) and (413), the metric correction

g
(1)
µν and gauge field correction A

(1)
µ can can be parameterized in terms of 6 unknown scalar, three

unknown vector and one unknown tensor functions 79as

g(1)
µν = S(V V )OµOν + 2S(V z)O(µZν) + S(zz)ZµZν + S(Tr)Pµν

+ 2V (V )
(µOν) + 2V (z)

(µZν) + Tµν ,

A(1)
µ = S(AV )Oµ + S(Az)Zµ + V (A)

µ ,

(425)

where

O = n− u, Z =
dS

S
−
(
n · dS
S

)
n,

Pµν = projector perpendicular to u, n and Z, PµνTµν = 0.

The vectors (V
(V )
µ , V

(Z)
µ , V

(A)
µ ) and tensor (Tµν) above are all projected orthogonal to O, n and

Z (the tensor Tµν is also assumed to be traceless).

Let us now consider the corrections of the ‘dilaton’ function δφ. We see from (433) and (434)

that χ = D(dφ) appears in the equations of motion. Were φ to have an O
(

1
D

)
fluctuation δφ(1),

this term would contribute to the equations of motion at leading order, invalidating the fact that

the starting metric (408) solves the Einstein-Maxwell equations at leading order. For the same

reason φ at O
(

1
D

)2
, contributes to the Einstein-Maxwell equations at O

(
1
D

)
. It follows that

δφ(2) is an unknown function that contributes to the first order perturbative equations at the

same order as the 6 scalars that appear in (425), and so will have to be determined together with

these six functions in the computation of the first corrections to (408).

Auxiliary embedding space The coordinate system (421) describes flat RD as the

‘fibration’ of an Sd over a p+ 3 dimensional base space with metric

ds2
flat = ηαβdw

αdwβ + dS2 = ηµνdx
µdxν , xµ = {wα, S}. (426)

The radius of the fibred Sd is given by the coordinate S.

79The terms scalar, vector and tensor refer to the transformation properties of the fields under those
rotations in the tangent space that leave n, u and dS fixed. See below for more details.
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Under the assumption of SO(D − p − 2) symmetry, the membrane world volume can be

thought of as a codimension one (p+ 2 dimensional) surface in the base space together with the

d dimensional spheres fibred over each of the base points on this surface. More generally all the

ingredients - the functions ρ, uµ and Q - that go into the construction of the seed metric (408) can

all be regarded as functions and vector fields on the base space - which then determine SO(d+ 1)

invariant functions and vector fields on all of RD in the obvious manner. This is the viewpoint we

will adopt while doing the computations described in this section. This viewpoint is convenient

because the auxiliary space (426) makes no reference to D. Once we formulate our perturbation

theory in terms of fields propagating on the auxiliary space (426), all factors of D in the equations

are completely manifest, allowing for a clean formulation of large D perturbation theory.

The end result of the first stage of our computation (e.g. the results presented in (3.3.13))

are all presented in terms of covariant derivatives of the field φ, u and Q viewed as scalar and

one-form fields that live in the base or auxiliary space (426).

It is important to note general expressions built out of covariant derivatives of SO(D− p− 2)

invariant fields in the auxiliary space (426) do not agree with the corresponding expressions built

out of covariant derivatives of the same fields in the metric (421) of the embedding space 80. In

Appendix 3.7.4 we have explored the dictionary between covariant expressions in the full flat D

dimensional space and the auxiliary space. Using these translation formulae, we are then able

to rewrite our final results for the first order corrected metric and gauge fields in terms of full

spacetime covariant derivatives of ρ, u and Q. Our final results, presented in the next section,

are given in this language, and turn out to be geometrical, in a sense we describe in detail below.

Constraints and Subsidiary conditions recast in auxiliary space As we have

explained in the previous section our construction (408) works provided the functions ρ and u obey

the conditions (406) and (407). The ∇2 in (406) is a Laplacian in the full flat space (421), while

the ∇ operator in (407) is the covariant derivative on the membrane, viewed as a submanifold

of the full flat space (421). In order to use these conditions in our computations below, we need

to rewrite them in terms of covariant derivatives on (426) and on the membrane world volume

viewed as a submanifold of (426). 81

Depending on context, we will use the symbol ∇̃ to denote the covariant derivative either in

the base space (426) or on the membrane viewed as a submanifold of (426). As we have explained

80Roughly speaking the difference comes about in terms involving expressions like ΓMSM with M summed
over. This expression receives contributions from M ranging over the angular directions of Ωd in the case
of (421) but not in the case of (426).

81All computations in the paper [1] were performed in the auxiliary space (426). The final results of
[1] were presented in this auxiliary space, without being reconverted to the full space. Note also that in
the auxiliary space, because of our choice of coordinates, all Christoffel symbols vanish and the covariant
derivatives are same as partial derivatives.
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in Appendix 3.7.4,

∇ · u = (D − p− 2)Z · u+ ∇̃ · u, (427)

(in this equation ∇ is the covariant derivative of the membrane viewed as a submanifold of RD

while ∇̃ is the covariant derivative on the membrane viewed as a submanifold of (426)). Here

Z =
dS

S
−
(
n · dS
S

)
n. (428)

Using the fact that (407) is assumed to hold for our ansatz metrics it follows from (428) that

Z · u = − ∇̃ · u
D − p− 2

. (429)

In a similar manner the fact that (406) is assumed to hold on the membrane of (408) implies

that

(D − p− 2)
dS · ∇̃ρ
S

+ ∇̃2ρ = (D − 2)dρ · dρ.

where ∇̃ = the covariant derivative on the space (489).

(430)

In an entirely analogous manner, the subsidiary condition (409) can be recast in terms of

covariant derivatives in the auxiliary space (426).

(D − p− 2)
ρ

S
dS · ∇̃ρ+ ρ∇̃2ρ = (D − 2)dρ · dρ,

uµu
µ = −1, nµu

µ = 0,

(ηµν + uµuν − nµnν)
[(
nα∇̃α

)
uµ +

(
uα∇̃α

)
nµ

]
= 0,

nµ∇̃µQ = 0,

where nµ =
∇̃µρ√

(∇̃νρ)(∇̃νρ)
,

and ∇̃ = the covariant derivative on (426).

(431)

3.3.4 Zooming in on patches

In this subsection we will identify a scaling limit of distance scales that admits an interesting large

D limit. For this purpose we turn back to the Einstein-Maxwell equations specialized to the case

of SO(D− p− 2) invariant configurations and note that derivatives of the scalar field φ appear in

(420) with additional factors of D as compared to terms with an equal number of derivatives of

gµν or Aµ. This observation (see [1]) suggests that we will obtain one class of nontrivial solutions

to these equations if we assume that gµν and Aµ vary on length scale 1/D, i.e. the length scale of
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δr (see the introduction) while φ varies at the length scale unity (at least upto corrections that

are subleading in 1/D). Under this assumption the solutions we study are characterized by two

widely separated length scales, exactly like the black holes described in the introduction. 82

In order to describe the large D limit of solutions characterized by two different length scales

(1/D and unity) we adopt the following procedure. We view our manifold as a union of patches,

each of size 1/D. Each patch is centered around a particular coordinate xµ0 . In each such patch

we work with the scaled coordinates, metric, connections and gauge fields

xµ = xµ0 +
αµ(qa)

D
,

Gab = D2 × (∂aα
µ) (∂bα

ν)gµν ,

Aa = D × (∂aα
µ)Aµ,

(432)

where αµ are any convenient (D independent) functions of the coordinates qa. Note that Gab

differs from gµν transformed to qa coordinates by the scale factor D2. In the same way the gauge

field Aa differs from Aµ transformed to the coordinates qa by a scale factor D. The scale factors

are chosen to scale up distances and holonomies on the patch to order unity. We also find it

convenient to define the one-form field

χa ≡ D ∂aφ = αµa∂µφ. (433)

Note that χµ is of order unity and constant (to leading order in 1/D) in scaled patch coordi-

nates (see [1] for more discussion). The equations of motion may be rewritten in terms of scaled

quantities as

Eφ ≡
(
d

D

)
∇aχa +

χ2

2
− 2(d− 1)

d
e−φ −

[
D2

2d(D − 2)

]
FcdF

cd = 0,

Eab ≡ Rab −
(
d

D

)(∇aχb +∇bχa
2

)
−
(

d

4D2

)
χaχb −

1

2
FacFb

c + gab

[
FcdF

cd

4(D − 2)

]
= 0,

Ea ≡ ∇aF ab +
d

2D
χaF

ab = 0,

where ∇ = the covariant derivative w.r.t. metric gµν .

(434)

All quantities (curvatures, Christoffel symbols, field strengths) in (434) are constructed out of

the scaled metric Gab and scaled gauge field Aa.

The variables in these equations are all assumed to be of order unity. All factors of D in these

equations are explicit, and so the equations (434) are easily expanded in a power series in 1/D.

82See [1] for a more detailed discussion of the rational behind choosing this scaling limit.
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At leading order, in particular, the equations reduce to

Eφ|leading ≡ ∇aχa +
χ2

2
− 2e−φ −

[
FcdF

cd

2

]
= 0,

Eab|leading ≡ Rab −
∇aχb +∇bχa

2
− 1

2
FacFb

c = 0,

Ea|leading ≡ ∇aF ab +
1

2
χaF

ab = 0.

(435)

In this chapter we search for solutions of these equations in each patch of the manifold. We

require that solutions in neighbouring patches agree with each other where they overlap. We will

find solutions of our equations order by order in an expansion in 1
D .

3.3.5 Choice of ‘patch coordinates’

In this chapter we will follow [1] to implement perturbation in 1/D in a patch of size ∼ O
(

1
D

)
centered around an arbitrary point xµ0 on the membrane (ρ = 1 surface). We will then sew

together the results from each patch to obtain a global correction to the metric and gauge field

in (408).

In order to set up the computation in any given patch, we need an explicit choice of local

coordinates in each patch, i.e. an explicit choice of the coordinates ∼ {ya} as defined in equation

(432).

Having imposed SO(D− p− 2) invariance we have three distinguished one-form fields in each

patch. These one-forms are n(xµ0 ), u(xµ0 ) and Z(xµ0 ). Note that from (429) it follows that

Z · n = 0, Z ·O = −Z · u = O
(

1

D

)
,

where ‘·’ denotes contraction with respect to flat metric.

Let Y i denote a set of p one-form fields chosen so that

Y i · Z = Y i · n = Y i ·O = 0, Y i · Y j = δij .

There is, of course, a great deal of ambiguity in the precise details of the Y i fields that will play

no role in what follows.

Let {xµ0} = {wα0 , S0} represent a point on the membrane in the metric (408). We wish to

focus on the patch of size of order 1
D around xµ0 . We set up a local coordinate system for this
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patch as follows.

R = D(ρ− 1),

V = D(xµ − xµ0 )Oµ(x0),

z

S0
= D(xµ − xµ0 )Zµ(x0),

yi = D(xµ − xµ0 )Y i
µ(x0).

(436)

3.3.6 The perturbative metric in a patch

In these coordinates and at leading order in the 1
D expansion, the rescaled metric and gauge field

(432) take the form

ds2 = 2

(
S0

n0
S

)
dR dV −

[
1− (1 +Q2

0)e−R +Q2
0e
−2R

]
dV 2

+

[
1

1− (n0
S)2

]
dz2 +

p∑
i=1

dyidyi +O
(

1

d

)
,

eφ = S2
0 ,

A =
√

2 Q0e
−RdV +O

(
1

d

)
,

(437)

where Q0 = Q(xµ0 ), n0
S = (n · dS)|xµ=xµ0

.

(437) describes a configuration that is translationally invariant in the coordinates V z and yi

(but not in R). We refer to (437) as the black brane metric. Notice that black brane metrics are

parameterized by S0, n0
S and the charge Q = Q0. Recall r0 = S0/n

0
S is the radius of the static

black hole whose patch, when blown up about a membrane point with S = S0, yields the black

brane metric (437).

It is easily directly verified that the black brane configuration (437) solves the leading large

D equations of motion (435).

After appropriate scaling the metric and gauge field fluctuation at first order in
(

1
D

)
(see(425))
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takes the following form in the ‘patch coordinates’

G
(1)
ab dq

adqb = S(V V )dV
2 + 2

[
S(V z)

S0

]
dV dz +

[
S(zz)

S2
0

]
dz2 + S(Tr)dy

idyi

+ 2V
(V )
i dyidV + 2

[
V

(z)
i

S0

]
dyidz + Tijdy

idyj ,

A(1)
a dqa = S(AV )dV +

[
S(Az)

S0

]
dz + V

(A)
i dyi.

(438)

3.3.7 The structure of perturbative equations at first order

Let us begin the process of determining the correction to our metric and gauge field in a patch

(centered about an arbitrary point on the membrane). Upon plugging first order corrected metric

and gauge field into the Einstein-Maxwell equations, we find that each of these equations takes

the schematic form

Hv(1) = s(1). (439)

The term v(1) in (439) is a schematic for the collection of unknown functions in (425). The

‘source’ terms s(1) have their origin in the fact that a blown up patch of (408) fails to solve the

Einstein-Maxwell equations at first subleading order in 1/D. This failure has its roots in the

following facts:

• 1 A patch of (408) differs from the black brane metric at first subleading order in 1/D.

This difference is visible upon Taylor expanding the fields n, u and Q to first order about

the special point xµ0 and results in source terms proportional to the first derivative of n u

and Q.

• 2. The black brane itself fails to solve the Einstein- Maxwell equations at first subleading

order in 1/D. This shows up in the fact that the equations (434) themselves have corrections

in the 1/D expansion. This gives rise to derivative free source terms.

Note that all source terms are entirely determined by the data (membrane shape, velocity

field, charge field) that go into defining the ansatz metric and gauge field. (408)

All source terms are fast varying functions of the coordinate R but slow varying functions of

all other coordinates. This implies that

v(1) = v(1)(R,
V

D
,
z

D
,
yi

D
),

173



where R and the other scaled coordinates are are defined in (436). As v(1) is already a fluctuation

variable at order 1/D, derivatives of v(1) in all directions other than R contribute to the Einstein-

Maxwell equations only at order 1/D2. It follows that the homogeneous operatorH is a differential

operator only in the variable R. In other words the equations (439) are linear ordinary differential

equations.

Even though the RHS of (439) has its origin partly in the Taylor expansion of (408) about the

special point xµo , the source functions s(1) in the patch about xµ0 do not explicitly depend on the

expansion coordinates V, z, yi. The reason for this is simple. The locality of the Einstein-Maxwell

equations ensures that s(1) is a 1
D times a local functions of the fields ρp+d, nµ, uµ, Q and their

derivatives. Dependence on the coordinates V , z and yi dependence could only arise from Taylor

expanding the fields nµ, uµ and Q about the point xµ0 . The terms proportional to V, z, yi in this

Taylor expansion are all manifestly of order 1/D2 or smaller. 83

Let us also reiterate that source s(1) contains at most one derivative of nµ, uµ and Q. This

follows immediately from the observation that ρ, u and Q are functions of V
D , z

D and yi

D in the

patch, and every derivative of these functions is weighted by a factor of 1
D .

Let us summarize. (439) is a collection of an infinite number of linear ordinary differential

equations in the variable R; one such equation at each point on the membrane world volume.

At each membrane point the source functions are explicit function of R, with coefficients that

depend on the values and (at most) one derivatives of the ρ, u and Q fields at that point. In

to find G
(1)
ab , A(1)

a and δφ(2)we need to solve these linear differential equations at each membrane

point and then sew these solutions together into a global correction to (408). At the technical

level, the procedure for perturbation theory is strongly reminiscent of the procedure adopted in

studies of the fluid gravity correspondence, see e.g. [55, 58–60]

3.3.8 Equations in the three symmetry channels

As we have explained above, the variables in G
(1)
ab , A(1)

a and δφ(1) consist of 7 scalar functions, 3

vector functions and one tensor function (where ‘scalar’, ‘vector’ and ‘tensor’ refer to the transfor-

mation property of the modes under SO(p) rotations in part of xµ tangent space that is orthogonal

to X, n and u). The black brane background (437)), and so the operator H, preserves SO(p)

symmetry. It follows that the equations (439) do not mix the scalar vector and tensor modes;

the equations in these three sectors decouple from each other.

Tensor Sector:

83On the other hand source functions have nontrivial dependence on R at leading order in 1/D; this is a
consequence of the fact that ρp+d evaluates to eR at leading order in the large d expansion, and so powers
and derivatives of this function naturally appear in sources.
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In the tensor sector the differential equations (439) reduce to a single ordinary second order

differential equation for a single unknown, Tij(R); this equation is easily solved for an arbitrary

source function. We present our explicit results below.

Vector Sector:

In the vector sector we have four coupled equations for three unknown functions. The four

equations in question are

ERi = 0, EV i = 0,

Ezi = 0, Ei = 0,
(440)

(see (434) for definitions of the equations). The directions i are the Y i directions. They are

assumed to be orthogonal to O, u and dS.

At first order it turns out that the following linear combination of equations vanishes identi-

cally.

∂R

[(
S0

n0
S

)
EV i + f0(R)ERi

]
+

[(
S0

n0
S

)
EV i + f0(R)ERi

]
+

[
1− (n0

S)2

S0

]
Ezi = 0,

where f0(R) = 1− (1 +Q2
0)e−R +Q2

0e
−2R.

(441)

We thus have only three independent vector equations for our three vector unknowns. It turns

out that the the remaining three equations are easily solved for arbitrary source terms that obey

(441), and in particular for the source terms that actually appear in the first order computation

(see below for more details).

Scalar Sector:

In the scalar sector we have 11 equations for 7 variables. The 11 equations are

ERR = 0, ERV = 0, ERz = 0,

EV V = 0, EV z = 0, Ezz = 0,

ER = 0, EV = 0, Ez = 0,
p∑
i=1

Eii = 0, Eφ = 0,

(442)

(see (434) for the definition of these equations). At first order it turns out that the following four
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linear combination of equations automatically vanish.

Combination-1: ∂RER + ER +
Ez
S0

= 0,

Combination-2: ∂R

[
EV V +

(
n0
S

S0

)
f0(R)ERV

]
+

[
EV V +

(
n0
S

S0

)
f0(R)ERV

]
+

(
n0
S −

1

n0
S

)[
EV z +

Q0S0e
−R

√
2
[
1− (n0

S)2
]ER] = 0,

Combination-3: ∂R

[(
n0
S

S0

)
f0(R)ERz + EV z

]
+

[(
n0
S

S0

)
f0(R)ERz + EV z

]
−
(
n0
S −

1

n0
S

)(
n0
S

S0

)
Ezz = 0,

Combination-4: ∂R

[
Eφ + 2

(
n0
S

S0

)2

f0(R) ERR − 2[1− (n0
S)2] Ezz − Eii

]
+ 2

(
n0
S

S0

)2

[∂Rf0(R) + 2f0(R)] ERR + 4

(
n0
S

S0

)
ERV

+ 4

[
1− (n0

S)2

S0

]
ERz − 2

√
2Q0e

−REV = 0.

(443)

We thus have exactly seven independent equations to solve for the seven unknowns in the scalar

sector. It turns out that the remaining seven equations are easily solved for arbitrary sources

that obey (443), and in particular for the source terms that actually appear in the first order

computation (see below for more details).

3.3.9 Basis for Source Functions

Let us now turn to a description of the sources that appear on the RHS of (439). In the scalar

sector there are two kinds of sources. The first kind of source has its origin in the fact that the

black brane metric (437) solves the Einstein-Maxwell equations only at large D and not at first

subleading order in 1
D . This fact gives rise to sources (RHS of (439)) that are simply functions

of R. We also have sources from the first term in the Taylor expansion of the functions nµ, uµ

and Q expanded about xµ0 . Let s(a) (a = 1 . . . NS) denote the set of scalar first derivatives of the

functions n, u and Q . Let s0 = 1 (this allows us to deal with the first kind of source mentioned

above). On general grounds, the source Sm terms in the mth scalar equations ESm takes the form

Sm =

NS∑
a=0

Sam(R) s(a). (444)

In a similar manner we let v(a) (a = 1 . . . NV ) denote the set of scalar first derivatives of the
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functions n, u and Q. The source terms Vmi in the mth vector equation EVmi take the form

Vmi =

NV∑
a=1

Vam(R)v
(a)
i . (445)

Finally if t
(a)
ij (a = 1 . . . NT ) denote the set of tensor first derivatives of the functions n, u and Q,

then the source terms Tij in the unique tensor equation must take the form

Tij =

NT∑
a=1

T a(R)t
(a)
ij . (446)

It turns out at first order (NS = 6, NV = 5, NT = 2). In table (1) we have listed and

explicit basis for independent scalar vector and tensor data at first order. Here Pµν is the projector

perpendicular to uµ, nµ and Zµ.

Scalars Vectors Tensors
(6) (5) (2)

s(1) = uµuνKµν v
(1)
µ = uνPα

µKνα t
(1)
µν = Pα

µ P
β
ν

[
Kαβ

2
−
(

s3
p

)
ηαβ

]
s(2) = uµZνKµν v

(2)
µ = uνPα

µ ∂νuα t
(2)
µν = Pα

µ P
β
ν

[
∂αuβ+∂βuα

2
−
(

s4
p

)
ηαβ

]
s(3) = P µνKµν v

(3)
µ = Pα

µ (Z · ∂)uα
s(4) = P µν∂µuν v

(4)
µ = Pα

µ ∂αQ

s(5) = uµ∂µQ v
(5)
µ = ZνPα

µKνα

s(6) = ZµZνKµν

Table 1: Data at 1st order in 1
D

expansion

3.3.10 Equations of motion from regularity at the horizon

We are interested in solutions to the equations of perturbation theory that are everywhere regular

(away from the black hole singularity that will turn out to be shielded by an event horizon). Even

though all our source functions are regular, this condition is not automatic at R = 0 (i.e. ρ = 1).

This perhaps surprising fact plays a key role in this chapter. This subsection is devoted to a more

detailed exposition of this fact.

Let EMN denote the Einstein equation obtained by varying the Einstein-Maxwell Lagrangian

w.r.t gMN , and let MN denote the Maxwell equation obtained by varying the Einstein-Maxwell

Lagrangian w.r.t AM . As we have explained above, the perturbative procedure of this chapter
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is geared to determining the ρ dependence of unknown metric and gauge field components. For

our purposes it is thus natural to view the ρ direction as a Euclidean ‘time’ direction in which

we wish to understand ‘dynamics’. From this point of view the equations

CMEin = EMN (dρ)M = EMρ, CMax = MN (dρ)N = Mρ, (447)

are, respectively, the Einstein and Maxwell ‘constraint’ equations.

The dot product of the Einstein scalar equation CMEin with n and u (or n and O) appears

to play no role in the discussions of this subsection. For that reason in the rest of this section

we will deal with CMEinp, the constraint Einstein equations that are projected orthogonal to n

and O. From the ‘geometrical’ viewpoint (see below for much more discussion) CMEinp is a vector

equation while CMax is a scalar equation. However perturbative procedure described so far is not

geometrical: it treats the isometry directions as special. From our current point of view CMEinp
may be decomposed into a single SO(p) scalar CEinp · Z and an SO(p) vector (CMEinp projected

orthogonal to Z).

In the scalar sector it is easily verified that

(CEinp · Z) ∝
[(

S0

n0
S

)
EV z + f0(R)ERz

]
,

∝ f0(R)2 d

dR

[
S(V z)(R)

f0(R)

]
+ Σ(V z)(R) = 0,

(448)

CMax ∝ ER

∝ f0(R)

(
d

dR
S(Az)(R)

)
+
√

2Q0e
−RS(V z)(R) + Σ(Az)(R) = 0.

(449)

Here Σ(V z)(R) the full source term for the combination of equations
[(

S0

n0
S

)
EV z + f0(R)ERz

]
while

Σ(Az)(R) is the source term in ER. 84

An inspection of (448) reveals that this equation admits nonsingular solutions at R = 0 if

and only if the linear term, in the Taylor expansion of Σ(V z)(R) about R = 0, vanishes. Provided

this condition is met the solution to (448) is nonsingular. Once this condition is met it follows

from (448) that

S(V z)(R = 0) =
Σ(V z)(R = 0)

f ′(R = 0)
. (450)

Turning to the equation (449), it is easily seen that the solution to this equation is nonsingular

if and only if
[√

2Q0e
−RS(V z)(R) + Σ(Az)(R)

]
vanishes at R = 0. Using (450), this condition is

84 Clearly, each of Σ(V Z)(R) and Σ(Az)(R) are linear combinations of the previously defined quantities
Sai (R).
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equivalent to the requirement that
[√

2Q0
Σ(V z)(R=0)

f ′(R=0) + Σ(Az)(R = 0)
]

vanish. Plugging in the ex-

plicit expressions for the source functions Σ(Az)(R) and Σ(Az)(R) we find that we have nonsingular

solutions if and only if

(X − u) ·K · (X − u)−
[

2Q2

(1−Q2)

] [
(X − u) ·K · u

]
=

(
1− n2

S

S nS

)
,

(X − u) · ∂Q = Q

[
(X − u) ·K · u

]
,

where X =
dS

nS
− n =

(nS
S

)
Z.

(451)

In the vector sector, the projection of CEinp may be shown to be proportional to[(
S0

n0
S

)
EV i + f0(R)ERi

]
∝ f0(R)

d

dR

[
V

(z)
i (R)

]
+ V(Z)

i (R) = 0. (452)

Here V(Z)
i (R) is the combination of source terms in the first line of (452) - and so an appropriate

linear combination of Vami(R) This equation has regular solutions if V(Z)
i (R) vanishes at R = 0

i.e. if

P ij
[
(X − u) · ∂(u− n)i +Q2 (X · ∂ni − u · ∂ui)

]
= 0,

where X =
dS

nS
− n =

(nS
S

)
Z.

(453)

It may be verified that (451) and (453) exhaust the constraints of regularity; once these

equations hold the solution for the first order correction to the black brane metric and gauge

field can always be chosen (by choosing appropriate integration constants in the solutions of the

differential equation) to be regular at R = 0 (and everywhere else within the patch).

In summary, the perturbative procedure described in this subsection yields regular solutions

if and only if the equations of motion (451) and (453) are obeyed.

3.3.11 Equivalence to the equations of [1] in the uncharged limit

Note that the same null one-form Oµ has been parametrized in a different way in [1].

O = A(dS − uthere) = n− uhere, (454)

where uthere is the velocity field used in [1] and in this subsection, uhere will denote the velocity

field we used in this chapter . Recall that uthere was chosen to obey uthere.dS = 0. Dotting (454)
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with dS we find A = nS = n · dS from which it follows that

uthere =
uhere − n

nS
+ dS. (455)

This is the reason the equations of motion for the uncharged membrane as reported in equation

1.7 of [1] apparently do not match with the Q → 0 limit of the equations of motion we derived

in (451) and (453). However, we shall see that once we take into account this difference in the

definition of u, the uncharged limit of our equations of motion exactly matches with that of [1].

The equations of motion for the uncharged membrane were reported in equation 1.7 of [1] as

U⊥ ·K · U⊥ + nS(n2
S − 1)/S = 0,(

(U⊥ · ∇)uthere
)
· Pµνthere = 0,

U⊥ = U − (U · n)n, U = dS + n2
S(dS − uthereµ dxµ).

(456)

The projector Pµνthere projects orthogonal to the subspace spanned by uthere, n and dS. But uthere

is a linear combination of uhere and n. Therefore it follows that the projector Pµνthere employed in

(456) agree with the projector Pµν in (453). The covariant derivative ‘∇’ is a derivative defined

in the auxiliary space. In our choice of coordinates, this could be replaces by ‘∂’.

Using (455) we could express the vector U⊥ in (456) in terms of the velocity uhere

U⊥ = U − 2nSn = dS − nS(uhere + n) = nS(X − uhere),

where X =
dS

nS
− n =

(nS
S

)
Z.

(457)

Substituting equation(455) and (457) in (456), we find 85

(X − uhere) ·K · (X − uhere) +
n2
S − 1

SnS
= 0,[((

X − uhere
)
· ∂
)

(n− uhere)
]
· P = 0.

(458)

Equations (458) exactly match with the (Q→ 0) limit of equations (451) and (453).

3.3.12 Conditions to fix the integration constants

As we have explained above, the first order corrections to (408) are obtained by solving a collec-

tion of linear ordinary differential equations at each point on the membrane. As mentioned above

these equations turn out to be explicitly solvable and yield regular solutions provided the equa-

85note that the projected derivative of uhere−n
nS

equals 1
nS

times the projected derivative of u− n as the
term with nS differentiated vanishes under projection. Where u is the new velocity.
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tions of motion of Subsection 3.3.10 are obeyed. The solutions to these equations are, however,

not yet unique. as they depend on as yet undetermined integration constants at each membrane

point. As we have mentioned in the previous subsection, some of these constants are determined

by the requirement of regularity at R = 0. This condition however leaves several integration

constants undetermined. 86 In order to obtain a unique solution to our equations we will impose

additional physically motivated constraints that will uniquely determine these integration con-

stants.

Asymptotic flatness:

An obvious requirement that we impose is that the correction metric and gauge field g
(1)
µν and A

(1)
µ

vanish exponentially rapidly as R → ∞. This condition ensures that the full spacetime metric

rapidly approaches the metric of flat space upon moving a large distance (in units of 1
D ) away

from the membrane. This condition sets the value of several integration constants.

Normalization Conditions:

Even after imposing the condition of asymptotic flatness, it turns out that we still have two

undetermined integration constants in the scalar sector and one in the vector sector. This is

precisely as should be expected on physical grounds. Our starting spacetime (408) was parame-

terized by two scalar functions (the shape of the membrane and its charge density field) plus one

vector function (the velocity field). A redefinition of these fields (e.g. Q → Q + O(1/D) leaves

(408) unchanged at leading order, but modifies it at first subleading order. Such a redefinition

will modifies the first order correction to the metric by a compensating amount. For this reason

we should expect the first order correction to have a two parameter ambiguity in the scalar sector

and a one parameter ambiguity in the vector sector, precisely as we find. 87

The ambiguity described above is a result of the fact that we have not yet supplied a precise

all orders definition of the shape, velocity and charge density fields that enter into the leading

order solution (408). Such a definition may be supplied by specifying an additional constraint on

all higher order corrections to (408) that would fix the field redefinition ambiguity described in

the previous paragraph. In this chapter we choose to do this by requiring that S(V V ), V
(V )
µ and

S(AV ) all vanish at R = 0. More invariantly we impose the condition that

HMNn
N = AMn

M = 0 when ρ = 1.

86As the integration ‘constants’ can, in general, be unconstrained functions of the membrane world
volume (they are constants only in that they do not depend on R) they are in fact undetermined integration
functions on the membrane world volume.

87A very similar issue arose in the study of the fluid gravity correspondence, and was dealt with in a
manner similar to that described below. See e.g. [55, 58–60].
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We refer to these additional conditions - that effectively define the shape, velocity and charge

density fields - as ‘normalization’ conditions.

It may be checked that the normalization conditions we have chosen ensure, in particular

that the surface ρ = 1 is a null surface which we will later identify with the event horizon of the

spacetime.

The conditions of asymptotic flatness together with the normalization conditions are sufficient

to fix all integration constants, and yield unique expressions for the first order correction the the

metric and gauge field (408).

3.3.13 Results for the first order correction on the patch

In this subsection we present the explicit solution for the metric and the gauge field corrections

at first order in O
(

1
D

)
. Our explicit results are presented for (p = 2), but will be generalized to

all p in the next section. As mentioned above, our solution takes the form (438). In the rest of

this subsection we present our explicit results for the functions that appear in (438)88

The functions appearing in the gauge field

V A
i (R) =−

√
2 Q

(
S

nS

)2 [
(1−Q2)v

(5)
i + (1 +Q2)

(nS
S

)
v

(2)
i

]
Re−R

+
√

2Q3

(
S

nS

)2 (
v

(5)
i −

(nS
S

)
v

(2)
i

) [
1 + log(1−Q2e−R)

]
e−R

(459)

S(Az)(R) =−
[

2
√

2 S2Q3e−R

(1− n2
S)(1−Q2)

] [
1 + log(1−Q2e−R)

]
s1

+

[
2
√

2 S3Q e−R

nS(1− n2
S)(1−Q2)

] [ (
Q2 −R+Q2R

)
+Q2 log(1−Q2e−R)

]
s2.

(460)

S(AV )(R) =
√

2 Q Re−R
(
S

nS

)(
s(5)

Q
− s(1) +

S

nS
s(2)

)

+ 2
√

2

(
Q3

1−Q2

)
e−R ΥA(R)

(
S

nS

)(
s(1) − S

nS
s(2)

)
,

(461)

88The solution presented in this subsection depends on three functions Q, S and nS . Strictly speaking
they should be written as Q0, S0 and n0

S , the values of these functions at xµ = xµ0 . But we did not write
it that way firstly because of notational simplicity and secondly because we know that the difference is
always suppressed by terms of order O

(
1
D

)
.
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where

ΥA(R) =

∫ R

0
dx log(1−Q2e−x). (462)

The functions appearing in the metric:

Tij(R) =

(
2S

nS

)(
t
(1)
ij − t

(2)
ij

)
log(1−Q2e−R). (463)

V
(z)
i (R) =

[
S2(1 +Q2)

nS(1− n2
S)

](
v

(5)
i −

(nS
S

)
v

(2)
i

)
log(1−Q2e−R) (464)

V
(V )
i (R) =

(
QS

nS

)2 [
1− e−R − f0(R)

(
1 + log[1−Q2e−R]

)] (
v

(5)
i −

(nS
S

)
v

(2)
i

)
−R [1− f0(R)]

(
S

nS

)2 [
(1−Q2)v

(5)
i + (1 +Q2)

(nS
S

)
v

(2)
i

] (465)

S(V z)(R) =S
(1)
(V z)(R) s(1) + S

(2)
(V z)(R) s(2),

S
(1)
(V z)(R) =−

[
2Q2S2

(1− n2
S)(1−Q2)

] [
Q2
(
e−R − e−2R

)
− f0(R) log(1−Q2e−R)

]
,

S
(2)
(V z)(R) =

[
2Q2S3

nS(1− n2
S)(1−Q2)

] [
(e−R − e−2R)(Q2 −R+Q2R)

− f0(R) log(1−Q2e−R)

]
− 2S3Re−R

nS(1− n2
S)
.

(466)

S(zz)(R) =
[
s(2) −

(nS
S

)
s(1)
] [ 2S4(1 +Q2)

(1− n2
S)2(1−Q2)

]
log(1−Q2e−R). (467)

S(Tr)(R) =

[
−2 +

(
S

nS

)
(s(3) − s(4))

]
log(1−Q2e−R). (468)
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S(V V )(R) = −
√

2Q e−RSAV (R) +Q2
[
e−2R − e−R

]
+ 2e−R

[
Q2 R

(
s(5)

Q
− s(1) +

S

nS
s(2)

)
+ ΥH(R)

(
s(1) − S

nS
s(2)

)]
,

(469)

where

f0(R) = 1−
[
(1 +Q2)e−R −Q2e−2R

]
,

ΥH(R) =

[
(e−R −Q2) log(1−Q2e−R)− (1−Q2) log(1−Q2) +

(
Q2(1 +Q2)

1−Q2

)
ΥA(R)

]
.

(470)

Correction (2nd order in 1
D

) to the scalar field φ

δφ =
∑
k=1

(
1

D

)k
δφ(k),

δφ(1) = 0,

δφ(2)(R) = −2S(Tr)(R)−
(

1− n2
S

S2

)
S(zz)(R).

(471)

The Q → 0 limit If we set Q to zero in equation (459) to (471), most of the functions

vanish except V
(V )
i and S(V z). In the uncharged limit, the metric takes the following simple form,

G
(1)
ab dq

adqb|uncharged = −2Re−R
[(

S

nS

)2 (
v

(5)
i +

nS
S

v
(1)
i

)
dyi +

S3 s(2)

nS(1− n2
S)
dz

]
dV. (472)

3.3.14 The global first order metric

With the first order corrected patch metric in hand (see the previous subsection), it is straight-

forward to find the global form of the metric and gauge field which, when expanded in any patch

around a membrane point, will reproduce the results of Appendix 3.3.13. In order to obtain this

global form we simply make the replacements

eR → ρ−D, R→ D × (ρ− 1), dV → OMdx
M , dR→ D × (dρ),
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in the results of subsection 3.3.13. The final metric obtained in this manner is already reasonably

compact. There is, however, a physically motivated rewriting of this result in a form that is both

more elegant and also makes manifest the ‘geometrical’ nature of our final result, as we explain

in more detail in the next section.

3.4 Geometrical Form of the first order corrected metric

3.4.1 Redistribution invariance and the Geometrical form

The membrane equations (451) and (453) make make special reference to eφ, nS and the one-

form field Zµ. The same is true of our explicit results for the first order correction to (408),

presented in subsection 3.3.13. Expressions involving S, nS and Z of course are only well defined

for configurations that preserve an SO(D − p − 2) symmetry. Moreover the definition of, e.g. S

depends on the details of the isometry.

Unconstrained dependence on S and nS is unacceptable for the following reason. A solution

that preserves an SO(D − p − 2) isometry also preserves an SO(D − p′ − 2) isometry for all

p′ > p. It follows that any solution of the equations for a particular choice of p must also be a

solution of the same equation for all larger p. We refer to this requirement as the requirement of

redistribution invariance.

The requirement of redistribution invariance is most simply met if the equation of motion

and the metric and gauge field can both be written in an explicitly geometrical form that makes

no reference to the particular isometry group of the solution. The membrane equation and first

order metric and gauge field obtained in this section do indeed turn out to have this property.

The reader may, at first, wonder how it is possible for expressions with explicit appearances

of S and nS to also be geometrical. This is, infarct, possible in the large D limit, as we now

explain with an example. Consider the manifestly geometrical expression ∇2ρ where ∇ refers to

the covariant derivative on the full flat D dimensional embedding spacetime. Let us now evaluate

this expression in the large D limit restricting attention to membrane configurations that preserve

an SO(D− p− 2) isometry. The computation is most conveniently performed using the following

coordinates

ds2 = ηαβdw
αdwβ + dS2 + S2dΩ2

d,

in the embedding flat space. Using these coordinates

∇2ρ =
1

Sd
∂µ

(
Sd∂µρ

)
.

At leading order in the large D limit this expression reduces to D dS·dρ
S It follows that dS·dρ

S = ∇2ρ
D

at leading order in the large D limit. Consequently any appearance of dS·dρ
S in any equation may
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be explicitly geometrized.

Similar manipulations allow us to geometrize several other expressions involving S, nS and

Z. Of course not every expression involving these quantities can be geometrized (expressions

that are not redistribution invariant certainly cannot). However it turns out that all terms in

the equations of motion (451) and (453) and all terms in our explicit expression for the metric

and gauge field in subsection 3.3.13 can be geometrized. The final geometrical expressions for

equations of motion and the the first order corrected metric and gauge field are more compact

than the unprocessed expressions. In the next section we present our final results for the first

order corrections to the metric and gauge field in explicitly geometrical form. In the subsequent

subsection we do the same for the equations of motion.

3.4.2 Metric and Gauge field in Geometric Form

While we expect the first order correction to the metric and gauge field to be geometrizable on

physical grounds, this requirement is nontrivial at the algebraic level. The vector Zµ - which is

treated as a special in the computation described above and in subsection 3.3.13- has no intrinsic

geometrical significance 89. If the first order correction to the metric and gauge field is completely

geometrical, it should be possible to rewrite it in a manner that makes no reference to Zµ. In

fact it should be possible to rewrite the metric and gauge field in the form

hMN = F (ρ)OMON +H
(T )
MN + 2O(MH

(V )
N) +H(S)OMON +H(Tr)PMN ,

AM =
√

2Q ρ−(D−3) OM +
(
A(S)OM +A

(V )
M

)
,

where

F (ρ) =
[
(1 +Q2)ρ−(D−3) −Q2ρ−2(D−3)

]
,

PMN = ηMN −OMnN −ONnM +OMON ,

PMNH
(V )
N = PMNA

(V )
N = 0, PMNH

(T )
MQ = 0, PMNH

(T )
MN = 0,

(473)

(473) should reproduce the expressions for gµν , Aµ (see (425)) as well as the scalar φ (recall that

φ is part of the full D dimensional metric).

The general metric and gauge field presented in (473) are parameterized by three unknown

scalar functions (rather than the seven scalar functions in (425) and in the expansion of the scalar

φ) and by two vector functions (rather than three vector functions in (425)). It follows that the

explicit results of subsection 3.3.13 can be recast into the form (473) only if the seven scalar

functions determined in subsection 3.3.13 obey four constraints, and the three vector functions

89On the other hand the vectors nµ and uµ are intrinsically geometrical, as they describe the membrane
shape and velocity field in D dimensional spacetime.
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determined in the same Appendix obey a single constraint equation.

We have verified that our explicit results do infarct obey all constraints. We view this fact as

an impressive consistency check of the complicated algebra that went into obtaining the explicit

results of subsection 3.3.13.

S(1) =
(
D
K

) [
u·∂Q
Q
− u ·K · u+ (u·∂)K

K

]
Scalars

S(2) =
(
D
K

) [
u ·K · u− (u·∂)K

K

]
VM

(1) =
(
D
K

) [∇NK
K + (u · ∇)uN

]
PNM

Vectors
VM

(2) =
(
D
K

) [∇NK
K − (u · ∇)uN

]
PNM

Tensor TMN = PMQ1
(
D
K

) [∇Q1
OQ2

+∇Q2
OQ1

2
− ηQ1Q2

( ∇·O
D−2

)]
PQ2N

Table 2: We list the data that enters into our explicit results for the first order correction
to the metric and the gauge field. All data is presented in explicitly geometrical form. ρ, Q
and uµ should be thought of as two functions and a vector field in flat D dimensional space.
All derivatives that appear in this table are covariant derivatives w.r.t flat D dimensional
space.

As our explicit results obey all consistency conditions, it is possible to rewrite our final results

in the explicitly geometric form (473). We find that the various free functions in (410) are given

by

A
(V )
M = −

(√
2

D

)
Qρ−D

[
D(ρ− 1)(V(1) −Q2 V(2))−Q2[1 + log(1− ρ−DQ2)]V(2)

]
M

+O
(

1

D

)2

,

A(S) =

(
1

D

)[√
2 Q D(ρ− 1) ρ−DS(1) + 2

√
2

(
Q3

1−Q2

)
ρ−D ΥA(ρ) S(2)

]
+O

(
1

D

)2

.

(474)

H
(T )
MN =

(
2

D

)
log(1−Q2ρ−D) TMN +O

(
1

D

)2

,

H
(V )
M =

(
1

D

){
Q2
[
(F (ρ)− ρ−(D−3)) + (F (ρ)− 1) log(1−Q2ρ−D)

]
V(2)M

−D(ρ− 1)F (ρ) [V(1) −Q2 V(2)]M

}
+O

(
1

D

)2

.

(475)
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H(S) = −
√

2Q ρ−DA(S) +

(
1

D

)[
ρ−(D−3) − F (ρ)

]
+

(
2

D

)
ρ−D

[
Q2 D(ρ− 1) S(1) + ΥH(ρ)S(2)

]
+O

(
1

D

)2

,

H(Tr) = O
(

1

D

)3

,

(476)

where

F (ρ) =
[
(1 +Q2)ρ−(D−3) −Q2ρ−2(D−3)

]
,

ΥA(ρ) =

∫ D(ρ−1)

0
dx log(1−Q2e−x),

ΥH(ρ) =

[
(ρD −Q2) log(1−Q2ρ−D)− (1−Q2) log(1−Q2) +Q2

(
1 +Q2

1−Q2

)
ΥA(ρ)

]
.

(477)

The limit Q→ 0 The results of the previous subsection simplifies drastically in the limit

Q → 0. In this limit the gauge field simply vanishes, and the full first order corrected metric is

given by the remarkably simple expression

ds2
uncharged =ds2

flat + ρ−(D−3)(OMdx
M )2

− 2(ρ− 1)ρ−(D−3)[V(1)]MONdx
MdxN +O

(
1

D

)2

,
(478)

where V1 is defined in table 2.

In Appendix 3.7.2 we have shown how this geometric form of the metric and gauge field reduce

to the solution presented in subsection 3.3.13, once we impose the constraint of SO(D − p − 2)

invariance on all geometric data.

3.4.3 Geometrizable form of the membrane equations of motion

The membrane equations of motion (451) and (453) may be recast into a simpler looking form.

We have a combined equation capturing both vector equation and one of the scalar equations.[
(u−X) · ∇̃O −Q2(u · ∇̃)u+Q2(X ·K)

]
· P +

(nS
S

)
(1−Q2)X = 0, (479)
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(X − u) · ∇̃Q+Q

[(
S

nS

)
(u · ∇̃)

(nS
S

)
− (u ·K · u)

]
= 0, (480)

where

Pµν = Projector perpendicular to uµ and nµ,

X =
dS

nS
− n =

(
S

nS

)
Z, O = n− u.

In this equation ∇̃ above is the partial derivative on the membrane world volume viewed as a

submanifold of (426).

The projection of equation (479) perpendicular to Zµ directly reduces to the vector equation

of motion as given in equation (453). In appendix 3.7.3 we have shown that equation (480) is

equal to second equation of (451). Moreover the dot product (479) with Zµ equals the first

equation in (451) upto correction of O
(

1
D

)
.

We re emphasize that the projector employed in (479) projects orthogonal to n and u but

not to Zµ. In other words (479) unifies a SO(p) scalar and SO(p) vector equation into a single

‘geometrical’ vector equation. This fact may lead the reader to suspect that the equations (479)

and (480) are geometrizable (i.e. can be written without any explicit reference to the isometry

direction. This is indeed the case. It is not too difficult to demonstrate that the geometric form

of the equations of motion, (402) (see the introduction) reduce immediately to (479) and (480)

upon using the dictionary of translation as presented in appendix 3.7.4.

Constraint equations and the membrane equations of motion In the previous

section we explained that the Einstein and Maxwell constraint equations play a special role in our

construction. We obtained the membrane equations of motion from the requirement that these

bulk equations admit nonsingular solutions. Once the membrane equations were imposed, it was

possible to utilize the constraint equations to solve for some unknown bulk scalar and vector fields

in terms of others in a nonsingular manner. We have already mentioned in subsection 3.3.10 that

the geometric nature of the membrane equations is a direct consequence of the geometric nature

of Einstein’s constraint equations.

In this subsection we wish to focus on the fact the constraint equations played two roles in

the perturbative program of the previous section.

• 1 They yielded the membrane equations of motion.

• 2 They allowed us to solve for some unknowns bulk fields in terms of others.
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Interestingly enough, the relations that we obtain from item (2) above are all automatic in

the expression (473). In other words the relations of item (2) above are simply a subset of the

relations between various unknown bulk vectors fields and various unknown bulk scalar scalars

fields that are forced on us once we assume that the first order metric and gauge field correction

take on a geometric form.

Had we used hindsight to set up our perturbative expansion in a manifestly geometric manner

by simply assuming that our first order correction takes the form (473) then the constraint

equations of subsection 3.3.10 would simply have reduced to the membrane equations (402),

exactly as in the studies of the fluid gravity correspondence (see e.g. [55–60]).

Recall that the Einstein constraint equations assert the conservation of the Brown York Stress

tensor, while the Maxwell constraint equation asserts the conservation of a ‘charge current’ F ρM .

These observations suggest that it may be possible to recast our membrane equations (402) as

conservation equations for a manifestly geometric membrane stress tensor and charge current, as

was the case in the study of fluid gravity. We will not pursue this point further in this chapter

but hope to return to it in the near future.

3.4.4 Comparison with the Reissner-Nordstrom solution

As an elementary check of the results reported in Subsection 3.4.2, consider the following mem-

brane configuration. Let uMdx
M = −dt, Q = const and let the membrane surface be given

by xM (ηMN + uMuN )xN = r2
0. It is easily verified that this configuration solves the membrane

equations (402); clearly this static soap bubble solution is dual to the Reissner-Nordstrom black

hole (405).

We will now use the formalism developed in this chapter to determine the spacetime metric

and gauge field dual to this membrane solution, to first order in 1/D.

Let us first start with the leading order solution (408) dual to this solution. We need to find

a function ρ that obeys the first of equation (409) and s.t. ρ = 1 on the membrane surface listed

above. The unique solution to this mathematical problem is given by

ρ =

√
xM (ηMN + uMuN )xN

r2
0

.

Next we must determine the spacetime fields u and Q fields that reduce to −dt and q on the

membrane and obey (409) everywhere in the bulk of D dimensional flat space. The unique

solution to this problem is given by u = −dt and Q in all of flat space. The leading order solution

with this data is given by (408) with these choices for ρ, Q and u.

Let us now turn to the first order correction. It is easily verified that relevant geometric

data as given in table 2 vanish on this particular profile of ρ and uM and Q. It follows that the
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first order correction to the gauge field vanishes. The first order correction to the metric also

almost vanishes. Of all the quantities listed in (474), (475) and (476) vanish except for HS which

evaluates to
(

1
D

) [
ρ−(D−3) − F (ρ)

]
with F (ρ) listed in (477).

Plugging these values of ρ, uM and Q into (408) and adding the correction terms (473) , it

follows that the metric and gauge field dual to our simple solution of the membrane equations is

given, to first order in 1
D , by

gMN = ηMN +
[
(1 +Q2)ρ−(D−3) −Q2ρ−2(D−3)

]
OMON

+
Q2

D

(
ρ−2(D−3) − ρ−(D−3)

)
OMON +O

(
1

D

)2

,
(481)

(481) is easily seen to agree with the exact RN black hole solution (405) expanded to leading

nontrivial order in 1/D. The function ρ of (405) agrees exactly with the function ρ reported

above. The only appearance of D in the solution (405) is in the factor cD. Upon plugging the

expansion

cD = 1− 1

D
+O

(
1

D

)2

,

into (405) we immediately recover (481).

The matching performed in this subsection was almost trivial. In an unpublished work we

use the same method to match the metric dual to a rigidly rotating solution of the membrane

equations to the much more complicated exact solution of an uncharged rotating Myers Perry

black hole [61]. Once again we find a perfect match between the two expansions.

3.5 Light quasinormal spectrum or the RN black hole

Our membrane equations (402) should describe all SO(D − p− 2) invariant black hole dynamics

(over times scales much larger than 1/D) at large D. As a first application of these equations, in

this section we will use them to obtain a prediction for the spectrum of light quasinormal modes

(those with frequencies of order unity rather than of order D) about charged Reissner-Nordstrom

black holes in the large D limit.

For the purposes of this section we work in polar coordinates in D spacetime dimensions. Our

coordinate system for flat space is given by

ds2 = −dt2 + dr2 + r2dΩ2
D−2 . (482)

The exact solution of (402) dual to RN black holes was presented in subsection 3.4.4. In the
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coordinates (482) this solution takes the particularly simple form

r = 1, Q = Q0 = const, u = −dt, (483)

where we have chosen units that set the size of the membrane to unity. 90

The most general linearized perturbation around (483) takes the form

r = 1 + ε δr(t, θ),

Q = Q0 + ε δQ(t, θ),

u = −dt+ ε δuµ(t, θ)dxµ.

(484)

We now adopt the following strategy. We simply insert the expansions (484) into (402), work to

linear order in ε and obtain the effective linear equations for the fluctuation fields δr, δQ and δuµ

defined in (484). These fields live on the membrane world volume. A useful set of coordinates on

this world volume are the angular coordinates θa on ΩD−2 and time. The metric on the membrane

world volume in these coordinates is obtained by inserting the first of (484) into (482), and is

given in terms of the function δr(t, θ). To linear order in ε the metric on the membrane surface

is given by

ds2 = −dt2 + (1 + 2εδr) dΩ2
D−2 . (485)

It is useful to have a dictionary to go between forms and vectors that live on the membrane

and those that live in spacetime. Consider a vector field Aµ that lives on the membrane. This

vector field may be uplifted to spacetime. The spacetime components AM(ST ) of this vector field

are given in terms of the world volume components Aa by the formulae

Aa(ST ) = Aa, At(ST ) = At, Ar(ST ) = ε
(
At∂tδr +Aa∂aδr

)
. (486)

In a similar manner, a one-form field in spacetime B
(ST )
a is easily pulled back to a one-form field

90We do not loose generality by making this choice. The classical Einstein Maxwell equations studied
in this chapter enjoy invariance under the following ‘scaling’ symmetry:

g̃MN = α2gMN , F̃MN = αFMN .

This scale transformation together with the coordinate change x̃M = αxM transforms a Reissner Nordstrom
black hole with Schwarzschild radius r0 and charge parameter Q0 into a Reissner Nordstrom black hole
with Schwarzschild radius αr0 and charge parameter Q0. It follows that the quasinormal mode frequencies
of the black hole parameterized by (r0, Q0) are simply 1

r0
times those for the black hole parameterized by

(1, Q0). For this reason we will perform all computations in this section with black holes of radius unity,
and simply reinsert factors of r0 in the final answer.
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Ba on the membrane. In formulae

Ba = B(ST )
a + εB(ST )

r ∂aδr, Bt = B
(ST )
t + εB(ST )

r ∂tδr. (487)

As a simple consistency check on these formulae, it is easily verified that AµBµ = AM(ST )B
(ST )
M .

Below we will treat the field uµ in (484) as a one-form field on the membrane. Recall that uµ is

constrained by the requirement ∇ · u = 0, i.e. that the velocity field is divergence free. Here ∇
is the covariant derivative taken in the metric (485).

In order to evaluate the terms in (402) we need to compute the, normal one-form and extrinsic

curvature of the membrane as well as a few derivatives of the velocity field. The computations

involved are straightforward: to linear order in ε we find

nr = 1,

nµ = −ε∂µδr,
Ktt = −ε∂2

t δr,

Kta = −ε∂t∇aδr,
Kab = −ε∇a∇bδr + (1 + εδr)gab,

δut = 0, (u · u = −1)

(u ·K)t = Ktt = −ε∂2
t δr,

(u ·K)a = −ε∂t∇aδr + εδua,

K = KA
A = D

(
1− ε

(
1 +
∇2

D

)
δr

)
,

(488)

where a, b are angular directions on ΩD−2, the symbol µ runs over these angular coordinates and

time (i.e µ = (t, a)) and gab is the round metric on SD−2. All indices in (488) are indices on the

spherical metric world volume, i.e. on a space with metric

ds2 = −dt2 + dΩ2
D−2 , (489)

and all covariant derivatives in (488) are taken in the background spacetime (489).

Using (488), the first equation in (402) may be shown to reduce, at linearized order in ε, to(
1 +
∇2

D

)
δua + (1−Q2

0)∇a
(

1 +
∇2

D

)
δr − ∂t∇aδr − (1 +Q2

0)∂tδua = 0. (490)

(All covariant derivatives are once again evaluated on the metric (489)).

As we have noted above, the fluctuation velocity field δua is constrained by the condition

∇ · u = 0. The divergence in this equation is evaluated in the full membrane metric. Rewriting
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this constraint in terms of fields that are taken to propagate on the fixed metric (489) (to linear

order in ε and leading order in D) we find

∇µδuµ = −D∂tδr, (491)

with the covariant derivatives now evaluated on the metric (489). From now on until the end of

this section our fluctuation fields will all be taken to propagate on the fixed background (489)

and all covariant derivatives will refer to this metric unless explicitly otherwise declared.

As δut vanishes (this follows upon linearizing the equation u ·u = −1), (491) may be rewritten

as

∇aδua = −D∂tδr. (492)

In order to solve this equation it is useful to define

δua = ∇aΦ + δva, (493)

where

∇ · δv = 0. (494)

It follows from (492) that

∇2Φ = −D∂tδr. (495)

Below we will use this equation to eliminate Φ in favour of δr. Note that (495) admits a solution

if and only if its RHS has no overlap with the kernel of the operator ∇2. As the kernel of ∇2

consists of functions that are constant on the sphere, it follows that (495) is consistent if and

only if the spatially constant (i.e. l = 0 mode) of δr is time independent. When this condition is

obeyed, Φ may be solved for in terms of δr, as we will do below.

Plugging the expansion (493) into the equation (490) we find(
1 +
∇2

D
− (1 +Q2

0)∂t

)
δva =−

(
(1−Q2

0)∇a
(

1 +
∇2

D

)
− ∂t∇a

)
δr

−
(

1 +
∇2

D
− (1 +Q2

0)∂t

)
∇aΦ.

(496)

3.5.1 The spectrum of shape fluctuations

Taking the divergence of (496) and using (494) and (495) we obtain the following decoupled scalar

equation for the fluctuation field δr

D(1 +Q2
0)∂2

t δr − 2D

(
1 +
∇2

D

)
∂tδr + (1−Q2

0)

(
1 +
∇2

D

)
∇2δr = 0. (497)
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91

The most general linearized fluctuation δr can be expanded as

δr =
∑
l,m

almYlme
−iωrl t . (499)

Here Ylm are spherical harmonics on SD−2, l labels the spherical harmonic representation, m

is a collective label for all the internal quantum numbers within a given spherical harmonic

representation.

Let us pause to give a more complete description of scalar spherical harmonics in arbitrary

dimensions, and in particular to compute the eigenvalue under ∇2 acting on the lth spherical

harmonic. The lth spherical harmonic, Ylm, are composed of the collection of functions on SD−2

obtained by restricting homogeneous degree l polynomials in RD−1 to the unit sphere. The

polynomials in questions are linear combinations of monomials of the form aµ1µ2µ3...µlx
µ1xµ2 . . . xµl

where aµ1µ2µ3...µl are symmetric and traceless tensors. It is easily shown that

−∇2
SD−2Ylm = l(D + l − 3)Ylm. (500)

92

Plugging the expansion (499) into (497) and using (500) we find (at leading order in large D)

ωrl =
−i(l − 1)±

√
(l − 1)(1− lQ4

0)

1 +Q2
0

. (502)

Re inserting factors of r0 (see the discussion in the introduction to this section) we find (500) we

91In order to obtain (497) we have used and

∇a∇2δua = ∇2∇aδua +Rab∇aδub,
= ∇2∇aδua +D gab∇aδub,

= D

(
1 +
∇2

D

)
∇aδua = −D2

(
1 +
∇2

D

)
∂tδr.

(498)

92This may be demonstrated as follows. The condition of tracelessness ensures that the degree l poly-
nomials described above obey the equation ∇2Φ = 0, where ∇2 is evaluated in RD−1. But

0 = ∇2
RD−1Φ =

1

rD−2
∂r
(
rD−2∂rr

l
)

+
∇2
SD−2Φ

r2
. (501)

(the RHS of this equation is ∇2 of the function in RD−1 evaluated in polar coordinates). Here ∇2
SD−2 is

the Laplacian evaluated on the unit sphere. (500) follows from (501).
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find (at leading order in large D)

r0ω
r
l =
−i(l − 1)±

√
(l − 1)(1− lQ4

0)

1 +Q2
0

. (503)
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(503), our final result for the light quasinormal mode frequencies associated with shape fluc-

tuations, is correct as stated for l > 1, but requires clarification for in special cases l = 0 and

l = 1 for the reasons we now describe.

Let us first consider l = 0. In this case (503) predicts the existence of quasinormal modes

with frequencies ωr0 = 0 and ωr0 = 2i
1+Q2

0
. As noted under (495), however, modes at l = 0 are

physical only if they are time independent. It follows that we have only one mode at l = 0: this

mode has ω = 0. 94 This zero mode has a simple physical interpretation; it corresponds to an

infinitesimal uniform rescaling of the black hole radius.

Let us now turn to l = 1. In this case we have a degeneracy of quasinormal mode frequencies;

both modes have ω = 0. The formula (503) was obtained by assuming harmonic dependence in

time and solving for the harmonic frequencies, and it is well known that this procedure requires

modification in the case that the frequencies are degenerate. In order to see how this works, we

note that the specialization of (497) to modes with l = 1 yields the very simple equation

∂2
t δr = 0. (504)

It follows that the two solutions to this equation are δr = Y m
1 (am + bmt) where am and bm

are arbitrary constants. These two zero modes also have a simple physical interpretation. The

mode multiplying am is an infinitesimal translation of the black hole, while bm parameterizes an

infinitesimal boost of the black hole. Note that the m labels for l = 1 scalar spherical harmonics

are precisely the labels for a vector in (D − 1) dimensions, as appropriate for translations and

boosts.

As we have mentioned above, (503) is correct as stated for l ≥ 2. It is easily verified 95 that all

quasinormal modes with l ≥ 2 have negative imaginary components (and so represent decaying

fluctuations).

93K. Tanabe has informed us that he is also studying the dynamics of charged black holes at large D
and has independently obtained the result (503).

94Had the mode with ωr0 = 2i
1+Q2

0
been physical, it would have represented an instability, contradicting

the well known stability of Reissner Nordstrom black holes (atleast of sufficiently small charge) in arbitrary
dimensions.

95Note that a Reissner Nordstrom black hole with Q0 = 1 is extremal at large D. All regular black holes
have |Q0| < 1.
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3.5.2 The spectrum of velocity fluctuations

The fact that the shape fluctuation δr obeys the equation of the previous subsection ensures that

the RHS of (496) vanishes. The velocity fluctuations, δva, are thus effectively constrained to obey

(496) with its RHS set to zero.

The fluctuation field δv may be expanded in vector spherical harmonics

δva =
∑
l,m

blmY
lm
a e−iω

v
l t (505)

Let us pause to describe vector spherical harmonics in arbitrary dimension in more detail.

The lth vector spherical harmonic may be obtained as a restriction of a vector field on RD−1

to the unit sphere. The vector field in question is made up as a linear sum of vector valued

monomials of the form Vµµ1µ2...µlx
µ1xµ2 . . . xµl where Vµµ1µ2...µl is traceless, symmetric in all of

its indices except the first one, and it is zero when it’s first index is symmetrized with any of the

others. In particular, tracing the first index of b with any of the others gives zero.

It follows that each of the vector valued monomials listed above obeys the equations

∇.V = 0, ∇2V = 0 (506)

where the covariant derivatives are taken in the flat space RD−1. The restriction of each of these

vector valued monomials to the unit sphere yields a vector field tangent to the unit sphere (this

is because the r component of these vector fields - proportional to the monomial with first index

dotted with xµ - vanishes). Let this vector field be denoted by V . It is easily verified that∇.V = 0

(where the covariant derivative is now taken on the unit sphere). We demonstrate in Appendix

3.7.5 that

∇2V = −[(D + l − 3)l − 1]V (507)

where, in this equation, V is viewed as a vector field on the unit sphere and ∇ is the covariant

derivative on the unit sphere.

Plugging the expansion (505) into (496) and setting the coefficient of every independent vector

spherical harmonic to zero we obtain, at leading order in large D

ωvl =
−i(l − 1)

1 +Q2
0

. (508)

This formula agrees with the formula for the spectrum of vector quasinormal modes presented in

[1] in the limit Q0 → 0. Reinstating factors of r0 we have

r0ω
v
l =
−i(l − 1)

1 +Q2
0

(l = 1, 2, 3 . . . .) (509)
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Note that all the velocity quasinormal modes are pure (negative) imaginary, and so represent

a ring down that decays without oscillations. Vector harmonics with l = 1 are zero modes.

These modes transform in the representation (1, 1, 0, 0, . . . 0) - i.e. the adjoint representation - of

SO(D− 1) and have a simple physical interpretation. These zero modes turn on an infinitesimal

spin on the for the black holes, i.e. begin to take one along the branch of the large D version of

Kerr Newman black holes.

3.5.3 The spectrum of charge fluctuations

The spectrum of charge fluctuations is governed by the second of (402), which we repeat here for

convenience
∇2Q

K − u · ∇Q = Q

(
u · ∇K
K − u ·K · u

)
. (510)

Plugging (484) into this equation we obtain the linearized equation(∇2

D
− ∂t

)
δQ = Q0

(
∂2
t − ∂t

(∇2

D
+ 1

))
δr. (511)

Plugging in the expansion

δQ =
∑
l,m

qlmYlm(θ)e−itω
Q
l , (512)

and focusing on the coefficient of Ylm for a particular value of l, the RHS of (511) is a source

term which drives δQ at the frequency ωrl given by (522). A source of the form

δr =
∑
l,m

almYlm(θ)e−iω
r
l t (513)

induces the response

δQf =
∑
l,m

alm
iωrlQ0(l − 1− iωrl )

l − iωrl
Ylm(θ)e−iω

r
l t . (514)

The most general solution of (511) is given by a linear sum of the particular solution (514) and

the most general solution to the homogeneous equation, i.e. to the equation (511) with the RHS

set to zero. In order to determine the quasinormal frequencies we associated with Q oscillations

we solve for the frequencies of these homogeneous modes. This is easily accomplished. Using

(500) we find, at leading order in large D,

−l + iωQl = 0, (515)
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which gives the QN frequency for the charge perturbations

ωQl = −il. (516)

Reinstating factors of r0 we have

r0ω
Q
l = −il. (517)

As in the case of velocity fluctuations, the charge fluctuation quasinormal modes are pure negative

imaginary, and so represent diffusive decay without oscillation. ω vanishes when l = 0. The

corresponding zero mode is simply an infinitesimal uniform rescaling of Q0.

3.5.4 A consistency check for shape fluctuations

The spectrum of shape fluctuations can be rederived starting from the equation (403), i.e.

(1−Q2)

[∇2K
K2
− u · ∇K

K

]
= (1 +Q2)

(
u · ∇K
K − u ·K · u

)
. (518)

The linearized equation is given by

(1−Q2
0)

(
∂t −

∇2

D

)(
1 +
∇2

D

)
δr = (1 +Q2

0)

(
∂2
t − ∂t

(
1 +
∇2

D

))
δr. (519)

Now let’s consider the perturbation in membrane shape function to be a particular mode, namely

f(t, θ) =
∑
l,m

almYlm(θ)e−iω
r
l t . (520)

This turns (519) into an algebraic equation for a given mode

(ωrl )
2 +

2iωrl (l − 1)

1 +Q2
0

− 1−Q2
0

1 +Q2
0

l(l − 1) = 0, (521)

which has roots

ωrl =
−i(l − 1)±

√
(l − 1)(1− lQ4

0)

1 +Q2
0

. (522)

They exactly match with (502).

Recall that we have argued above that the divergence of (402) agrees with (403) for all

configurations that preserve an SO(D − p − 2) isometry. In this subsection we have shown,

however, the spectrum of shape fluctuations computed from the divergence of (402) agrees with

the spectrum computed from (403) even though arbitrary spherical harmonics do not, in general,

preserve a large isometry subgroup. The reason this had to work is as follows. In any spherical

harmonic representation there exist special spherical harmonics that preserve a large isometry
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group. It follows from our general arguments above the two equations considered in this subsection

must give the same spectrum of shape fluctuations for these special modes. However the equations

analyzed in this subsection are geometrical, and in particular respect the full SO(D−1) rotational

symmetry group of the background solution, and so generate the same spectrum of oscillations

for all spherical harmonics in a given representation.

In summary the two equations had to give the same spectrum for some particular elements of

the spherical harmonic representation. Rotational invariance then forces them to give the same

spectrum for all spherical harmonics in the same representation, as we actually find.

3.6 Discussion

In this chapter we have presented a construction of a large class of solutions of the Einstein-

Maxwell equations. Our solutions are in one to one correspondence with the solutions of the

equations of a charged, nongravitational membrane propagating in flat space according to the

dynamical equations (402).

We have used our membrane equations to generate a prediction for the spectrum of light

quasinormal modes about Reissner-Nordstrom black holes in Einstein-Maxwell gravity. As a check

on our results it would be useful to independently compute these quasinormal mode frequencies,

perhaps using the gauge invariant formulation of [62].

All of the computations presented in this chapter have been performed at first nontrivial order

in the expansion in 1/D. It is of great interest to generalize the computations presented herein

to the next order in this expansion. Apart from determining second order corrections to the

membrane equations presented in this chapter such a computation would allow us to distinguish

between different geometrical presentations of the first order equations (e.g the equation (403)

and the divergence of (402)) (see the introduction for a discussion).

In this chapter we have derived equations of membrane dynamics assuming that our config-

uration preserves an SO(D − p − 2) isometry. As we have explained above, however, our final

results are geometrical (in that they make no reference to the isometry algebra and treat all

dimensions democratically). It is possible that the final geometrical equations are valid in more

general situations, i.e. for configurations that preserve no isometry but perhaps obey some other

weaker conditions 96. It would be interesting to investigate this further.

In order to gain intuition for the membrane equations derived in this chapter, it would be

useful to determine and study the properties of a class of simple solutions of these equations. In

future work we will present a detailed study of stationary solutions to the membrane equations

(402). As we have mentioned in the introduction, this allows us to make contact between the

96We thank A. Strominger for a question about this possibility.
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membrane equations presented in this chapter and the membrane analysis of static and stationary

black holes at large D presented in [49, 50].

It would also be interesting to follow the lead of [51–53] and attempt to investigate Gregory-

Laflamme type instabilities using an appropriate extension of the framework presented in this

chapter.

The solutions presented in this chapter rapidly approach empty flat space away from their

event horizons. At every order in the expansion in 1/D the gauge field and metric simply vanishes

far away from the membrane. Non perturbatively in 1/D (most likely at order 1/DD) we expect

our membrane motions to excite a Maxwell and gravitational radiation field. As this radiation

field is the means by which an external observer can actually observe the black hole dynamics

described in this chapter, it is of great interest to find the formula that determines this field. We

hope to return to this question in the near future.

On a related note, any extended object that consistently sources gravity and Maxwell radiation

should possess a conserved charge current and stress tensor. It would be interesting to find

all orders formulae (within the 1/D expansion) for the charge current and stress tensor of the

membrane.

Once all these issues have been settled satisfactorily, it would of course be interesting to

simulate complicated dynamical processes (e.g. black hole collisions) using our membrane equa-

tions, and compare our results with numerical simulations in D = 4. Such a comparison would

throw light on the question of whether the beautiful structures that emerge in black hole dynam-

ics at large D are also a useful starting point for a perturbative expansion for the dynamics of

astrophysical black holes.

3.7 Appendices for Chapter 3

3.7.1 Reissner-Nordstrom solution in Kerr-Schild coordinates

The static Reissner-Nordstrom black hole solution is very familiar. This solution is most usu-

ally presented in Schwarzschild like coordinates. In these coordinates the spacetime manifestly

Minkowskian at infinity. However the coordinates are singular at the black hole horizon. Let t̃

be the Schwarzschild time coordinate. The coordinate change

dt̃ = dv − dr

f(r)
, (523)
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recasts the solution as

ds2 = 2dvdr − f(r)dv2 + r2dΩ2
D−2 ,

A =
√

2Q
(r0

r

)D−3
dv ,

f(r) = 1− (1 +Q2cD)
(r0

r

)D−3
+ cDQ

2
(r0

r

)2(D−3)
,

cD =
D − 3

D − 2
.

(524)

In these so called Eddington-Finkelstein coordinates the advantages and disadvantages of the

Schwarzschild coordinate system are reversed. The black hole metric is now smooth at the future

event horizon. However in the limit r → ∞ the spacetime metric ds2 = 2dvdr − dv2 + r2dΩ2
D−2

is not manifestly Minkowskian.

The further coordinate change to the ‘Kerr-Schild’ time coordinate t is specified by

dv = dt+ dr. (525)

It is easy to see that the Kerr-Schild time t agrees with the Schwarzschild time coordinate at

large r, but effectively reduces to the Eddington-Finkelstein time coordinate at the first zero of

f(r) (when approached from large r), i.e. at the outer event horizon. For this reason one might

anticipate that the black hole solution in Kerr-Schild coordinates is both manifestly Minkowskian

at large r as well as manifestly smooth at the outer future event horizon. A glance at the explicit

black hole solution, (404) is sufficient to convince oneself that this is indeed the case.

3.7.2 Relating the geometric form of the metric and gauge field with the

answer found in explicit computation

In this appendix we shall present how the different structures and functions appearing in section

3.4 are related to the functions and data appearing in subsection 3.3.13 (the explicit computation

with SO(d+ 1) invariance).

As explained in subsection 3.3.3, for explicit computation we assumed the following metric for

the flat space-time.

ds2
flat = ηMNdx

MdxN = ηµνdx
µdxν + S2Ωijdθ

idθj ,

where ηµνdx
µdxν = dwadw

a + dS2 is the metric in the auxiliary space of {xµ} (see subsection

3.3.3) and Ωij is the metric of a d dimensional unit sphere ({θi} are the angular coordinates along

the isometry directions). Now because of the isometry the geometric forms will have the following

properties.
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1. For any geometric vector VM , the components along the {θi} directions will be zero (i.e.,

Vθi = 0).

2. Similarly for any geometric tensor HMN

Hµθi = 0 and Hθiθj ∝ Ωij .

3. As explained before, apart from nµ and uµ there is one more special vector in the auxiliary

space: ZMdx
M = Zµdx

µ = dS
S −

(
nS
S

)
nµdx

µ . Using these Z one-form we can further

decompose any geometric vector and tensor scalar, vector and tensor of the SO(p) isometry

group in the (p+ 3) dimensional auxiliary space.

Using these properties we can translate the results in the geometric form to the language of

‘auxiliary space’. For most of the functions, the translation is straightforward and we present the

dictionary in Table 3 and Table 4. In Table 3 we present how the three scalar, two vector and one

tensor function appearing in the geometric form of the metric and gauge field ((473)) decompose

into seven scalar, three vector and one tensor function appearing in equation ((438)). Then in

table 4 we decompose the geometric data in terms of the non-geometric ones (with SO(d + 1)

invariance) used for explicit computation.

However for for δφ, i.e. the fluctuation in the radius of the d dimensional sphere, the transla-

tion rule becomes a bit more subtle to be presented in a table. For convenience we shall explain

it separately in subsection 3.7.2.

Using the tables 3 and 4 and the argument presented in subsection 3.7.2 we could easily see

that if we specialize the metric and the gauge field as presented in equations (473), (474), (475)

and (476) to SO(d + 1) isometry (where d = D − p − 3) , they indeed reduce to the explicit

solution presented in subsection 3.3.13 upto correction of O
(

1
D

)2
.

Relating δφ to the geometric forms Note that any geometric tensor will have some

nonzero components along the isometry directions and also because of symmetry the components

must be proportional to the metric of the d dimensional unit sphere. We can explicitly compute

this proportionality factor which will be directly related to δφ.

Consider the traceless tensor H
(T )
MN appearing in equation (473) and suppose H

(T )

θiθj
= S2H Ωij
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Explicit Computation Geometric Form(
1
D

)
S(V V ) H(S) +O

(
1
D

)2(
1
D

)
S(AV ) A(S) +O

(
1
D

)2(
1
D

)
S(V z) ZµH

(V )
µ +O

(
1
D

)2(
1
D

)
S(zz) ZµZνH

(T )
µν +O

(
1
D

)2(
1
D

)
S(Az) ZµA

(V )
µ +O

(
1
D

)2(
1
D

)
S(Tr)

(
1
p

)
P µνH

(T )
µν +H(Tr) +O

(
1
D

)2(
1
D

)
V

(V )
µ P ν

µH
(V )
ν +O

(
1
D

)2(
1
D

)
V

(z)
µ Pα

µ Z
βH

(T )
αβ +O

(
1
D

)2(
1
D

)
V

(A)
µ P ν

µA
(V )
ν +O

(
1
D

)2(
1
D

)
T µν P µαP νβ

[
H

(T )
αβ −

(
gαβ
p

)
P ν1ν2H

(T )
ν1ν2

]
+O

(
1
D

)2

Table 3: Here we relate how the functions appearing in equation (438) are related to the
geometric form of the metric and the gauge field as in equation (473)

where H is some scalar function. Then it follows that

0 = ηMNH
(T )
MN = ηµνH(T )

µν +
Ωij

S2
H

(T )

θiθj
= ηµνH(T )

µν + d× H

⇒ H = − ηµνH
(T )
µν

D − p− 3
.

(526)

Similarly consider the tensor H(Tr)PMN appearing in (473)). Since we know that nθi = uθi = 0,

the nonzero components of this tensor along the isometry directions are simply given by

H(Tr)Pθiθj = H(Tr)S2Ωij . (527)

From equation (526) and (527) and the definition of δφ (recall that the fluctuation in the

radius of the d dimensional sphere = S2δφ), it follows that

δφ = H(Tr) + H = H(Tr) −
(

1

D − p− 3

)
ηµνH(T )

µν . (528)

The second term in the RHS of equation (528) is of O
(

1
D

)2
since by construction H

(T )
µν starts

at O
(

1
D

)
. Now from explicit computation we know that δφ is of O

(
1
D

)2
(see equation (471)) .

Then it immediately follows that H(Tr) also must start from terms of O
(

1
D

)2
.

We could explicitly compute the second term in RHS of (528) in terms of the functions
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Geometric data Data used in computation

S(1)

(
S
nS

) [
s(5)

Q
− s(1) +

(
S
nS

)
s(2)
]

S(2)

(
S
nS

) [
s(1) −

(
S
nS

)
s(2)
]

ZµV
µ
(1)

(
S
nS

)2

s(6) + s(1) −
(

1−n2
S

S×nS

)2

ZµV
µ
(2)

(
S
nS

)2

s(6) − s(1) −
(

1−n2
S

S×nS

)2

ZµZνT
µν s(6) −

(
nS
S

)
s(2)

PµνT
µν s(3) − s(4)

PµνV
ν
(1)

(
S
nS

)2 [
v

(5)
µ +

(
nS
S

)
v

(2)
µ

]
PµνV

ν
(2)

(
S
nS

)2 [
v

(5)
µ −

(
nS
S

)
v

(2)
µ

]
ZνPαµT

αν v
(5)
µ − v

(3)
µ −

(
nS
S

)
v

(1)
µ

Table 4: Decomposition of geometric data in the special case of SO(d + 1) symmetry in
terms of the data in auxiliary space used for explicit computation

appearing in equation (438). Note that ηµν could be expanded as

ηµν = nµnν − uµuν +
S2

1− n2
S

ZµZν + Pµν +O
(

1

D

)
.

Using this expansion of ηµν and the translation rules as given in table 3 we find(
1

D − p− 3

)
ηµνH(T )

µν =
1

D2

[(
1− n2

S

S2

)
Szz + p× S(Tr)

]
+O

(
1

D

)3

. (529)

In equation (529) we have used the fact that H(Tr) is of O
(

1
D

)2
and by construction uµH

(T )
µν =

nµH
(T )
µν = 0. Substituting equation (529) in equation (528) we found that

H(Tr) =
1

D2

[
δφ(2) +

(
1− n2

S

S2

)
Szz + p× S(Tr)

]
+O

(
1

D

)3

.

Now from equation (471) it directly follows that

H(Tr) = O
(

1

D

)3

.
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3.7.3 Relating equations of motion expressed in different forms

In this section we shall first state a set of algebraic identities that are true upto corrections of

O
(

1
D

)
. Using these identities we could easily show that the equations of motion as derived in

subsection 3.3.10 ((451) and (453)) are equivalent to equations (479) and (480).

1. Identity-1:

Ṽ⊥ ·K · u = u ·K · Ṽ⊥ = [(u · ∂)n] · Ṽ⊥
= −[(u · ∂)Ṽ⊥] · n Since n · Ṽ⊥ = 0

=
(nS
S

)
[(u · ∂)u] · n+ (u · ∂)

(nS
S

)
+O

(
1

D

)
Since u · dS = O

(
1

D

)
= −

(nS
S

)
(u ·K · u) + (u · ∂)

(nS
S

)
+O

(
1

D

)
Since u · n = 0.

(530)

Here Ṽ⊥ = Z −
(
nS
S

)
u = dS

S −
(
nS
S

)
(n+ u) =

(
S
nS

)
(X − u).

2. Identity-2:

Ṽ⊥ · ∂u · Z =− Ṽ⊥ · ∂Z · u+O
(

1

D

)
since u · Z = O

(
1

D

)
=
(nS
S

)
Ṽ⊥ ·K · u+O

(
1

D

)
since u · dS = O

(
1

D

)
, u · n = 0.

(531)

3. Identity-3:

u · ∂u · Z =− u · ∂Z · u+O
(

1

D

)
since u · Z = O

(
1

D

)
=
(nS
S

)
u ·K · u+O

(
1

D

)
since u · dS = O

(
1

D

)
, u · n = 0.

(532)

4. Identity-4: (
S

nS

)
Ṽ⊥ · ∂(u− n) · Z

= Ṽ⊥ ·K · u−
(
S

nS

)
Ṽ⊥ ·K · Z +O

(
1

D

)
Using (531)

= −
(
S

nS

)
Ṽ⊥ ·K · Ṽ⊥ +O

(
1

D

)
Since Z = Ṽ⊥ +

nS
S
u.

(533)
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5. Identity-5: [
u · ∂u−

(
S

nS

)
Z · ∂n

]
· Z

=
(nS
S

)
u ·K · u−

(
S

nS

)
Z ·K · Z +O

(
1

D

)
Using (532)

= −
(
S

nS

)
Ṽ⊥ ·K · Ṽ⊥ − 2(Z ·K · u) + 2

(nS
S

)
u ·K · u+O

(
1

D

)
= −

(
S

nS

)
Ṽ⊥ ·K · Ṽ⊥ − 2(Ṽ⊥ ·K · u) +O

(
1

D

)
.

(534)

Using (533)and (534) we could very easily compute the projection of (479) along Z direc-

tion. It turns out to be the following,

0 =

[
(u−X) · ∂O −Q2(u · ∂)u−Q2(X ·K)

]
· Z +

(nS
S

)
(1−Q2)(X · Z)

=− (1−Q2)

[(
S

nS

)
Ṽ⊥ ·K · Ṽ⊥ − Z · Z

]
+ 2Q2(Ṽ⊥ ·K · u) +O

(
1

D

)
=−

(
S

nS

)
(1−Q2)

[
Ṽ⊥ ·K · Ṽ⊥ −

(
nS(1− n2

S)

S3

)]
+ 2Q2(Ṽ⊥ ·K · u) +O

(
1

D

)
.

(535)

Equation (535) is simply equal to
[
− S
nS

(1−Q2)
]

times the first equation in (451). Second

equation of (451) follows once we substitute (530) in equation (480).

3.7.4 Notation and translation

Through this chapter we have had occasion to work with functions (like ρ and Q) and one-form

or vector fields (like u and n = dρ
|dρ|) that live in flat D dimensional space. We also often deal

with functions and one-forms that live on the the membrane world volume. Through the chapter

we use the dummy indices M,N . . . to denote coordinates in the embedding flat D dimensional

spacetime, and the indices A,B . . . to denote coordinates on the membrane world volume. M,N

indices run over D values, while A,B indices run over D − 1 values.

In the computational part of this chapter we have assumed that our spacetimes and membrane

world volumes both preserve an SO(D − p − 2) isometry group. It follows that the spacetime

metric takes the form

ds2 = gµνdx
µdxν + eφdΩ2

d, (536)

where µ, ν run over p + 3 values and gµν and φ are functions only of xµ. We will often use the
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notation

eφ = S2.

In a similar manner the metric on the membrane world volume takes the form

ds2 = gabdx
adxb + eφdΩ2

d, (537)

where a, b run over p+ 2 values. As all spacetime vector and scalar fields also preserve SO(d+ 1),

for computational purposes it is sometimes useful to view these fields as living on the reduced

p+ 3 dimensional manifold

ds2 = gµνdx
µdxν ,

(in the case of bulk fields) and

ds2 = gabdx
adxb,

(in the case of fields that live on the membrane world volume). We use the symbols ∇M and ∇A
to denote covariant derivatives on all of spacetime (or all of the membrane world volume) and

∇̃µ and ∇̃a to denote fields on reduced spacetime (or the reduced membrane world volume).

Consider a vector field vM defined on all of flat space. If we assume that vM preserves SO(d)

invariance, it is easily verified that

∇MvM = d
v.∇̃S
S

+ ∇̃µvµ. (538)

In a similar manner, if vA is a vector field on the membrane then

∇AvA = d
v.∇̃S
S

+ ∇̃ava. (539)

If ψ is a scalar field in spacetime or on the membrane then it is easily verified that

∇2ψ = d
∇̃S.∇̃ψ
S

+ ∇̃2ψ, (540)

(where dS is regarded as a one-form in either spacetime or on the membrane depending on the

space on which ∇2 is evaluated). Note that dS on the membrane world volume is simply dS in

spacetime, projected onto the membrane world volume.

Finally if v is a vector field in either spacetime or the membrane world volume then

∇2v = d

(
∇̃S.∇̃v
S

− dS v.∇̃S
)

+ ∇̃2v. (541)

To end this section we note that the extrinsic curvature tensor for the membrane world volume
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takes the form

KAB = (Kµν ,
nS

S
Ωij),

where θi are angles on the unit d sphere and Ωij is a metric on this space.

3.7.5 Eigenvalues of the Laplacian for Vector Spherical Harmonics

In this Appendix we evaluate the eigenvalue of the Laplacian acting on the lth vector spherical

harmonic. This spherical harmonic was defined in terms of the restriction of a collection of vector

valued monomials to the unit sphere in subsection 3.5.2.

Our strategy is to evaluate the Laplacian of V - viewed as a vector valued monomial in RD−1

- in spherical polar coordinates, and use the fact that this Laplacian vanishes (see subsection

3.5.2) to evaluate the Laplacian of the same vector field restricted to the unit sphere.

Consider any divergenceless vector field on RD−1 with vanishing radial component, i.e. Vr = 0.

Using explicit expressions for the Christoffel symbols for flat space in polar coordinates we find

∇rVr = 0,

∇rVa = ∂rVa −
Va
r
,

∇aVr =
Va
r
,

∇aVb = ∇̂aVb,

(542)

where ∇̂ denotes the covariant derivative taken on a unit sphere.

We will now use these results to evaluate ∇2V on RD−1 in spherical polar coordinates. The result

of this computation depends on the free index in this equation. Let us first consider the case with

the free index equal to r. In this case

∇2Vr = ∇r(∇rVr) +
1

r2
gab∇a∇bVr,

=
1

r2
∇̂a∇̂aVr −

1

r2
∇̂aV a,

= 0.

(543)

In other words the vanishing of the r component of ∇2V is just a triviality - it follows as an

identity upon assuming Vr = 0 and ∇.V = 0.

Let us now turn to the more interesting case of the free index being an angular direction on

the unit sphere. In this case
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∇2Vc =∇r(∇rVc) +
1

r2
gab∇a∇bVc,

=∂r

(
∂rVc −

Vc
r

)
− Γarc

(
∂rVa −

Va
r

)
+

1

r2
∇̂a∇̂aVc

+ Γaar

(
∂rVc −

Vc
r

)
+

1

r2
Γrac

V a

r
,

=∂r

(
∂rVc −

Vc
r

)
− 1

r

(
∂rVc −

Vc
r

)
+

1

r2
∇̂a∇̂aVc

+
D − 2

r

(
∂rVc −

Vc
r

)
− Vc
r2

.

(544)

Let us now specialize to Vc is the vector field corresponding to the lth vector spherical harmonic.

In this case Vc ∝ rl+1. Using this fact and ∇2Vc = 0 we get

−∇̂2Vc = (l(l + 1)− l − l + (D − 2)l − 1)Vc = [(D + l − 3)l − 1]Vc. (545)
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4 Chapter 4: Currents and Radiation from the large

D Black Hole Membrane

4.1 Introduction

4.1.1 Review of Black hole - Membrane duality

The classical dynamics of black holes in asymptotically Minkowski spacetimes has recently been

shown to simplify in a large number of dimensions D. Consider a violent dynamical process such

as a collision between two black holes. The dynamics of this situation is complicated when the

black holes first ‘collide’ . After a time of order 1/D after the ‘merger’ however, it turns out

that the spacetime metric settles down into a configuration whose near horizon geometry is a

union of overlapping patches, each of size 1/D. The geometry of each patch closely resembles

that of a Schwarzschild or Reissner Nordstrom black hole. The effective radius, boost velocity

and charge of these patches varies on the event horizon over time and length scales of order unity.

The subsequent evolution of the spacetime is governed by an effective dynamical system whose

variables are the effective shape of the event horizon (one function) together with its local boost

velocity field (D − 2 functions) and charge density field (one function), a total of D functions of

D−1 variables. The dynamical evolution of these variables is governed by a set of local membrane

equations of motion. The underlying Einstein-Maxwell equations that govern the dynamics of

this system uniquely determine the membrane equations in a power series expansion in 1/D. At

leading order in 1/D the membrane equations of motion take the form

∇̂ · u = 0

pνµ

(
u · ∇̂

)
uν = pνµ

(
∇̂2uν − (1−Q2)∇̂νK +K (uαKαν)

K(1 +Q2)

)
,

uν∇̂ν (KQ) = ∇̂2Q−KQ (uαKαβu
β),

(546)

(546)97 98 are a set of D equations for as many variables. It follows that (546) defines a well

97 The equations (546) were first obtained in the papers [1, 63] building on the earlier work [42–48].
See also [49, 50, 64, 65] for the independent derivation of membrane equations in for the special case of
stationary solutions. (546) had been generalized in [66] to include first correction in 1/D for the special
case of uncharged black hole membranes. [51–53, 67, 68] have also independently derived the equations of
membrane dynamics in the so called ‘black brane’ limit. At least for the case of uncharged black holes,
the equations of [51–53, 67, 68] were demonstrated in [69] to be a special case (a special scaling limit) of
the equation (546). See [70–76] for recent related work.

98The notation used in this equation goes as follows. Here we view the membrane as embedded in flat
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posed initial value problem for membrane dynamics.

We have presented the membrane equations (546) at leading order in the expansion in 1
D ; as

a consequence all terms in each of the equations (546) are of the same order in D, where orders

of D are counted according to the rules spelt out in chapter 3. According to the rules of that

chapter in particular, all divergences and Laplacians are of order D, while contractions of indices

of the form AMB
M are of order unity. As an example of an application of this rule, ∇2uM and

K = ∇AnA are both taken to be of order O(D) while (uAKABu
B) is assigned order O(1) This

rule applies irrespective of whether we are dealing with space-time indices or worldvolume indices.

See chapter 3 for an explanation of the rational behind this rule.

Using the rule spelt out in the previous paragraph, it follows that the LHS of the first equation

in (546) is of order D. Every term in the third equation in (546) is also of order D. However

each term in the second equation of (546) is of order unity.

The membrane whose dynamics is described by (546) may be thought of in the following

picturesque terms. The membrane consists of a bunch of ‘particles’ of density u0 = γ whose

velocity is given by ui

u0
. uM is the ‘density current’ of these ‘particles’ and the first equation in

(546) is a statement of the conservation of this density current. With this interpretation, the

conservation of this density current is simply the statement that our fictional particles flow from

one point to another but are never created or destroyed 99 The second equation in (546) may be

regarded as a statement of Newton’s laws for the constituent particles of the membrane. This

equation asserts that the acceleration of any given membrane particle is governed by ‘forces’ (the

RHS of the second equation in (546)) which depend on the trajectories of neighbouring particles.
100 The terms on the RHS of the second of (546) are reminiscent of the force terms that act on

a regular fluid. The first term on the RHS of (546) captures the force of shear viscosity while

the second term is analogous to a pressure force, with the role of the pressure played by K the

Minkowski space. Small Greek indices denotes the intrinsic coordinates along the membrane worldvolume.

∇̂µ denotes the covariant derivative with respect to the intrinsic metric of the membrane, g
(ind,f)
µν . All

raising and lowering of indices are also done using this intrinsic metric. Kµν is the extrinsic curvature of
the membrane , K = Kµ

µ is the trace of the extrinsic curvature, pµν is the projector orthogonal to the
velocity field

pµν = g(ind,f)
µν + uµuν ,

uµ is the velocity.
99As we will see below, the ‘particles’ in question will turn out to be the basic carriers of entropy of

the membrane, and the ‘particle density current’ mentioned here is closely related to the membrane’s
entropy current. The conservation of entropy density holds only at first order; we will show below that the
divergence of the entropy current is generically nonzero (but positive) at second order in the expansion in
1/D. This means that the fictional ‘particles’ mentioned in the text above are created in dynamical flows
at second and higher order in 1/D.

100We have a D− 2 parameter set of particles which execute a D− 2 parameter set of particle flows. The
D − 1 dimensional membrane world volume is simply the congruence of these flow lines. Note that the
extrinsic curvature of the membrane at any given point is completely determined by the shape of particle
flow lines in the neighbourhood of that point.
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trace of the extrinsic curvature of the membrane. This term drives flows that reduces gradients

of K and works to iron out wrinkles in the membrane world volume that might otherwise have

developed over the course of a dynamical flow. In some sense this term is responsible for stitching

the independent particle world lines (or, more visually, world threads) into a smooth membrane

surface.

The last equation in (546) asserts that our particles carry a separate independent ‘charge’ -

with density proportional to KQ. This charge is carried along by our particles as they move. In

addition it ‘diffuses’ between particles in the manner specified by the RHS of the third equation

in (546). This charge density is, of course, closely related to the electromagnetic charge current

of the membrane, a statement we will make precise in this chapter.

Let us re-emphasize the main point. If we wait for a time large compared to 1/D after a

cataclysmal event, the equations that govern black hole dynamics reduce to the equations that

govern the motion of a relativistic membrane that propagates in flat space. At first nontrivial

order, the membrane may usefully be thought of as generated by the flow lines of a collection of

‘particles’ which interact with each other locally as they flow. The membrane equations (546) -

which define a good initial value problem for the membrane shape and velocity field - are simply

a rewriting of Einstein’s equations for black hole dynamics at leading order in 1/D and in the

appropriate regime.

4.1.2 Membrane coupling to radiation: qualitative discussion

In this chapter we refer to all degrees of freedom that vary on time and length scales of order

unity (rather than, say, 1/D) as slow. The collective coordinate membrane motions described

above are one set of slow degrees of freedom in black hole spacetimes. A second simpler set of

slow degrees of freedom are gravitons and photons that live far away from the black hole and

have wavelengths of order unity or larger. It is natural to wonder how these two distinct classes

of slow modes interact with each other. In this chapter we present a detailed analysis of the

coupling of these two classes of slow modes. We demonstrate, in particular, that the coupling

between membrane modes and light gravitons is of order 1

D
D
2

, and so is nonperturbatively small

in the 1/D expansion.

As we explain in section 4.2 below the smallness of this coupling at large D may be understood

as follows. The slow modes that describe the collective coordinate motions of membranes are

localized to a region very near the the black hole horizon by a large potential barrier. The barrier

is kinematical in origin and schematically takes the form of a repulsive potential V (r) = D2

4r2
in

an effective one dimensional Schrodinger problem. In order to escape as radiation, a membrane

mode which lives at the edge of the black hole of radius r0 has to to tunnel through this barrier all

the way out to r ≈ D
2ω before it can start to propagate. The amplitude for this tunneling process
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is suppressed by the area under the potential curve, and is of order e
−D

2
ln D

2ωr0 ∼
(

2ωro
D

)D
2 . When

r0ω is of order unity, this amplitude is nonperturbatively small in the 1/D expansion. It follows

that membrane motions on time scale of order 1/r0 do not source radiation at any finite order in

the 1/D expansion.

The discussion of the previous paragraph is reminiscent of Maldacena’s argument for the

decoupling of the near horizon geometry of a D3 brane from the external bulk in the context

of the AdS/CFT correspondence [77]. Indeed at energies of order unity, the limit D → ∞
is effectively a decoupling limit for the near horizon region of the Schwarzschild and Reissner

Nordstrom black holes, analogous in many respects to the Maldacena decoupling limit in which

energies are held fixed as α′ is taken to zero.

We would like to emphasize that the decoupling between membrane degrees of freedom and

asymptotic infinity is accurate only for the classical theory of gravity and appears to fail quantum

mechanically, even semiclassically. The reason for this is simply that near horizon modes with

ω ∼ D
r0

do not decouple from infinity. As we will review below, however, the Hawking temperature

of a black hole of radius r0 scales like D
r0

at large D. It follows that the Hawking radiation emitted

by a black hole at large D does not decouple from infinity. This observation suggests that it is

misguided to hope that there exists a quantum microscopic theory of the large D membrane

described in this chapter. Such a theory - which might have been hoped to stand in the same

relation to the membrane equations (546) as N = 4 Yang Mills theory does to the hydrodynamics

of [55, 58] - appears never to decouple from asymptotic infinity. In other words the analysis of

this chapter should be viewed purely in terms of the classical equations of gravity and not as the

first step in a programme to quantize gravity at large D.

4.1.3 Membrane coupling to radiation: quantitative discussion

Although membrane degrees of freedom couple very weakly to external gravitons and photons

at large D, they do couple to these modes at any finite D no matter how large. In other words

membrane motions source gravitational and electromagnetic radiation. One of the principle

accomplishments of this chapter is the derivation of a formula for the radiation sourced by any

given membrane motion.

In order to obtain this formula we first note that the explicit 1
D expansion of spacetime

solutions dual to membrane motions (see [1, 63, 66]) is valid only at points whose distance from

the event horizon, S, obeys the inequality S � r0 ( here r0 is the local black hole radius). 101

When, on the other hand, S � r0
D the solution reduces to a small fluctuation about flat space.

101More precisely r0 = D
K where K is the trace of the extrinsic curvature of the membrane surface. We

use the notation of the previous chapter through this chapter. Recall that K is of order D so r0 is of order
unity.
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In this region the solution is well approximated by a solution of the Einstein Maxwell equations

linearized about flat space. Notice that the domains of validity of these two approximations

overlap: the 1/D expansion of [1, 63, 66] and linearization are both valid approximations in the

overlap regime102

r0

D
� S � r0. (547)

In the previous subsection we have explained that the radiation field first begins to propagate

at distances S of order D
ω away from the membrane. These distances lie well outside the regime

of the 1/D expansion of [1, 63, 66]. However the radiation fields are extremely small, and so are

well described by the linearized Einstein Maxwell equations. In order to obtain the radiation field

due to a given membrane motion, all we need to do is to identify the effective linearized solution

that the spacetimes of [1, 63, 66] reduce to in the overlap region (547) and then continue this

linearized solution to infinity.

The implementation of this programme is, however, complicated by an important detail. In

order to explain this point we first pause to provide a qualitative description of space of linearized

solutions to the Einstein Maxwell equations away from the membrane , i.e. at distances S � r0
D to

the exterior of the membrane. The linearized solutions in this region turn out to be a superposition

of two classes of modes; modes whose integrated flux decays towards infinity (we call these the

decaying modes) and modes whose integrated flux grow towards infinity (we call these the growing

modes). These can be understood as the decaying and growing modes of the effective Schrodinger

problem under the potential barrier V (r) = D2

4r2
mentioned in the previous subsection. As we

show in section 4.2 below, decaying modes of the effective Schrodinger problem start out at order

unity very near the membrane and decay rapidly upon progressing outwards. On the other hand

growing modes start out at order 1/DD near the membrane but grow equally rapidly away from

the membrane. The growing modes catch up in magnitude with the decaying mode at a distances

of order D
2ω away from the membrane. This is also precisely the point beyond which both the

modes emerge out from under the effective potential barrier. At larger distances the modes cease

to grow or decay but oscillate, propagating in form of radiation fields. The integrated flux of

both modes stays constant as r is further increased.

As mentioned above, the 1
D expansion of [1, 63, 66] is valid simultaneously with the linearized

approximation only in the region (547). The decaying solution is sizeable in this region and is

perfectly captured by the 1
D expansion. On the other hand the growing mode is of order 1

DD
in

this region. It is thus nonperturbatively small and so is completely invisible to the 1
D expansion

of [1, 63]. In other words the solutions of [1, 63] capture only half of the information of the

linearized solution in the overlap region (547). In order to complete our specification of the

102We explicitly verify below that the metric and gauge field presented in chapter 3 is a solution of the
linearized Einstein Maxwell equations in this regime.
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linearized solution and to extend it into the radiation region we need more information. The

extra data comes from the physical expectation that radiation from the membrane motion is

necessarily outgoing at infinity. The absence of ingoing radiation at infinity provides the second

piece of data needed to continue the linearized solutions to large S.

We now explain how the membrane solutions may actually be continued to infinity in a

practically useful manner. In this chapter we demonstrate that the decaying part of a linearized

solution of the Einstein- Maxwell equations uniquely defines a stress tensor and a charge current

on the membrane at large D. 103. The sources thus defined may be thought of as giving rise to

(the decaying part of) the linearized solution we started with. More precisely the convolution of

a Greens function against this source produces a response whose decaying part agrees with the

solution we started out with. 104 The absence of ingoing radiation at infinity dictates that we

use the retarded Greens function. This convolution produces the correct solution in and outside

the overlap region (547). In the overlap region the convolution produces the nonperturbatively

small growing part of the solution in addition to the decaying piece obtained from the solutions

of [1, 63]. In the region r � D
ω the convolution produces the radiation field that we wished to

calculate.

In sections 4.4 and 4.5 below - the technical heart of this chapter - we explain in detail how the

map between decaying solutions of the Einstein-Maxwell system and a stress tensor and charge

current on the membrane is constructed. Though the derivation takes a lot of work the final

prescription is very simple. The charge current JB is given by

JB = J
(out)
B − J (in)

B .

Here

J
(out)
B = nAF outAB , (548)

where F outAB is the field strength of the decaying part of external solution that was given to us,

evaluated on the membrane, and nA is the outward pointing unit normal to the membrane. Note

that nBJ
(out)
B = 0. It follows that this current may also be viewed as the current J

(out)
µ that lives

on the world volume of the membrane. 105 In a similar manner the current J
(in)
B turns out to

obey nBJ
(in)
B = 0 and can also be thought of as a current J

(in)
µ that lives on the membrane world

volume. It turns out

J (in)
µ = − δ

δAµ
SctrA, (549)

103The existence of such a map is plausible from a counting perspective; both sides of the map depend
on a single piece of data on a slice (think the membrane) of spacetime.

104This convolution procedure also produces a growing mode. The detailed magnitude of that growing
mode - which is always of order 1/DD - depends on the Greens function we use.

105See section (4.3) for the precise relationship between J
(out)
B and J

(out)
µ .
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where, to first order in the expansion in 1/D,

SctrA = −1

4

∫
FµνF

µν

√
R

, (550)

where R is the Ricci scalar on the world volume of the membrane and Fµν is the field strength

of the linearized external solution restricted to the membrane. 106

In a similar manner the stress tensor TAB on the membrane is given by

TAB = T
(out)
AB − T (in)

AB . (551)

Here

8πT
(out)
AB = K(out)

AB −K(out)p
(out)
AB , (552)

is the Brown York stress tensor of the external solution evaluated on the membrane surface. Here

K(out)
AB and p

(out)
AB are the extrinsic curvature and the projector on the membrane world volume

viewed as a submanifold of the bulk whose metric is that of Minkowski space perturbed by the

decaying external solution. As above, T
(out)
AB and T

(in)
AB are both tangential to the membrane world

volume and so can equally well be regarded as stress tensors, T
(out)
µν and T

(in)
µν that live on the

membrane world volume. 107 It turns out that√
−g(ind)T (in)

µν = − δ

δgµν(ind)

S(in), (553)

where

S(in) = − 1

8π

∫ √
−g(ind)

√R+
1

2

RµνRµν
R

3
2

(in)

+O
(

1

D

) , (554)

R, Rµν and g
(ind)
µν are respectively the intrinsic Ricci scalar , intrinsic Ricci tensor and the intrinsic

metric of the membrane.

The stress tensors (553) and (552) are both evaluated on the membrane world volume using the

prescribed external solution. Recall the external solution is flat space plus the decaying linearized

solution of Einstein’s equations, which we assume is given to us. In the particular case of interest

to this chapter, this decaying linearized solution is given by matching with the metric presented

in [1, 63].

106At leading order in the large D expansion the Gauss Codazzi equations may be used to show that√
R = K.

107Once again see section 4.3 for the precise relationship between the spacetime and world volume stress
tensors.
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4.1.4 Explicit formula for the Membrane Stress Tensor and Charge Current

It is not difficult to implement the procedure described in the previous subsection on the solutions

of [1, 63] and so obtain a formula for the membrane stress tensor and charge current. We find

Tµν =

(
1

8π

)[(
K

2

)
(1 +Q2)uµuν +

(
1−Q2

2

)
Kµν −

(
∇̂µuν + ∇̂νuµ

2

)

−
(
KQ2

2D
+

2Q∇̂2Q

K
+Q2uαuβKαβ

)
uµuν − (uµVν + uνVµ)

−
[(

1 +Q2

2

)(
uαuβKαβ

)
+

(
1−Q2

2

)(
K

D

)]
g(ind,f)
µν

]
+O

(
1

D

)
,

Jµ =

(
Q

2
√

2π

)[
Kuµ −

(
pνµ∇̂νQ

Q

)
− (u · ∇̂)uµ −

(
∇̂2uµ

K

)
+Kαµuα

]

+Q uµ +O
(

1

D

)
,

(555)

where

Vµ = Q ∇̂µQ+Q2(uαKαµ) +

(
2Q4 −Q2 − 1

2

)(∇̂µK
K

)

−
(
Q2 + 2Q4

2

)
(u · ∇̂)uµ +

(
1 +Q2

K

)
∇̂2uµ,

Q =

(
Q

2
√

2π

)[∇̂2K

K2
− 2K

D
− (u · ∇̂)K

K
−
(

2∇̂2Q+K(u · ∇̂)Q

Q K

)
+
(
uαuβKαβ

)]
.

(556)

Here g
(ind,f)
µν denotes the induced metric on the membrane as embedded in flat space and ∇̂µ

denotes the covariant derivative with respect to g
(ind,f)
µν . Extrinsic curvature of the membrane is

denoted by Kµν and K is the trace of the extrinsic curvature.

According to the rules for D counting explained earlier in this introduction, the first term on

the RHS for the expressions for stress tensor and charge currents presented in (555) are each of

order D. All other terms in both expressions are of order unity. We emphasize, in particular, that

the membrane stress tensor and charge current are not parametrically small in the large D limit.

The radiation sourced by these currents is nonetheless nonperturbatively small in the appropriate

regimes, for the kinematical reasons - the heavily damped grey body factor - described earlier in

this introduction.
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Several terms in the stress tensor and charge current above have familiar hydrodynamical

interpretations. In particular, relativistic fluids propagating on fixed background manifolds always

have a contribution to their stress tensor proportional to −ησMN where σMN is the symmetrized

derivative of the velocity field projected orthogonal to the velocity and η is called the shear

viscosity of the fluid. An inspection of the first line of (555) reveals that our membrane stress

tensor also has such a contribution with effective value of η = 1
16π . Below we will see that the

entropy density of the membrane is given, to leading order, by 1
4 . It follows that the ratio of

shear viscosity to entropy density for our membrane equals 1
4π , in agreement with [78].

Keeping only the leading terms (i.e the terms that scale like D) in (555) we find the much

simplified expressions

Tµν =

(
K

16π

)
(1 +Q2)uµuν ,

Jµ =
1

2
√

2π
(QKuµ) .

(557)

Note that the leading order stress tensor and charge current is simply that of a collection of

pressure free ‘dust’ particles. Note, in particular, that the leading order stress tensor lacks a

surface tension term (a term proportional to Πµν). In this respect the stress tensor of the large

D black hole membrane differs significantly from more familiar membranes like soap bubbles or

D2 branes.

4.1.5 Equations of motion from conservation

As the fractional loss of energy to radiation is non perturbative in the large D limit, it follows

that membrane energy, momentum and charge are conserved at each order in the 1
D expansion.

In fact a stronger result must hold; in order for the formula for gravitational and electromagnetic

radiation from the membrane to be gauge invariant, the membrane stress tensor and charge

current must be conserved currents. Indeed the conservation of the membrane stress tensor and

charge current turn out to be an alternate - and conceptually very satisfying - way of restating

the membrane equations of motion (546). The fact that the membrane equations (546) are

simply statements of conservation of an appropriate membrane stress tensor and charge current

emphasizes that our membrane equations are hydrodynamical in nature.

We have explained above that the expressions for the stress tensor and charge current (555)

each have one term of order D and several terms of order unity. The reader may at first suppose

that only the leading order terms (those of order D) are needed to obtain the leading order

membrane equations of motion via conservation. This is indeed the case for the first equation

(546). The divergence of the leading order stress tensor a term of order D2. This term is

proportional to Kuµ∇.u. It follows that the term in ∂νT
νµ proportional to uµ indeed receives

219



its leading contribution from the order D part of the stress tensor; the condition that this term

vanish is simply the first equation of (546)

Let us turn our attention, however, to the projection of ∂νT
νµ orthogonal to uµ. According

to the rules of large D counting summarized earlier in this introduction, this projected expression

is of order D rather than of order D2. At leading order (order D) this expression receives

contributions both from the order D as well as the order unity contributions to the stress tensor

(recall that the divergence of a tensor or vector of order unity is generically of order D). The

order D piece of Tµν , (557), yields the LHS of the second equation in (546); the RHS of that

equation is obtained from the divergence of the order unity parts of the stress tensor (555). A

similar statement is true of the relationship between the conservation of the charge current and

the third equation in (546).

In summary, in order to obtain the first equation in (546) we needed to know only the leading

order stress tensor (557). In order to obtain the second and third equations of (546), however,

we need to know the subleading terms in (555) as well.

4.1.6 Entropy Current

We have, so far, focused our attention on the conserved currents that live on the membrane. A

key fact about black holes, however, is that that they carry entropy in addition to charge and

energy. While charge and energy obey the first law of thermodynamics, and so are conserved,

entropy obeys the second law and so is a non decreasing function of time.

The entropy carried by a black hole is mirrored in the fact that the membrane carries an

entropy current. In this chapter we define this current and demonstrate that it obeys a local

version of the second law of thermodynamics, i.e.

∇̂µJµS ≥ 0.

Our construction of the membrane entropy current proceeds in a manner analogous to the con-

struction of [79]. The current is constructed by pulling the area form on the event horizon back

onto the membrane. A local form of the Hawking area increase theorem then ensures that the

divergence of this entropy current is point wise non negative for every membrane motion. At first

leading and subleading order in the 1/D expansion we find the extremely simple result

JMS =
uM

4
, (558)

(see (771) for the correction to this equation at second subleading order in the special case of
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uncharged fluids). By explicit use of equation 1.5 of [66] at leading nontrivial order in 1
D we find

∂MJ
M
S =

1

8K
σABσ

AB, (559)

where

σAB = (∂MuN + ∂NuM )PMA PNB . (560)

Note in particular that entropy production vanishes at leading order if and only if the fluid velocity

flow is shear free. As the flow is always also divergence free, it follows that every time independent

(i.e. stationary) velocity vector field is proportional to a killing vector on the membrane world

volume [80]. This observation may be used as the first step in a systematic classification of

stationary solutions of the membrane equations, a topic we hope to return to in the near future.

4.1.7 Radiation from small fluctuations

In the section 4.8 to this chapter we develop the general theory of radiation for the Maxwell

and Einstein equations (877) coupled to sources after linearization. In that section we work in

a particular Lorentz frame, expand all modes in spherical harmonics and present very explicit

radiation formulae. As an application of these formulae, in the main text we evaluate the radiation

that results from a general linearized fluctuation about a spherical membrane. It follows from

the formulae of that section that energy lost to radiation per unit time is smaller by a factor

of 1/DD when compared to the membrane energy stored in the fluctuation, providing a clear

demonstration of the smallness of radiation.

4.1.8 Organization

This chapter is organized as follows. In section 4.2 we review the properties of retarded Greens

functions in arbitrary dimensions with a special emphasis on the large D limit. In section 4.3

we review the structure of currents and stress tensors localized on a codimension one membrane.

Sections 4.4 and 4.5 are the technical heart of this chapter. In these sections we construct a

membrane charge current and stress tensor dual to any decaying linearized solution of the Einstein

Maxwell equations in the exterior neighbourhood of the membrane world volume. In section 4.6

we apply the general formalism of the previous two sections to the special case of the membrane

spacetimes of chapter 3, and find the stress tensor and charge current that lives on the membrane

dual to large D black holes at leading order in 1
D . In section 4.7 we define an entropy current on

the membrane and demonstrate that its divergence is point wise non negative. In section 4.8 we

proceed to review and develop the general theory of linearized radiation from localized sources

for the Einstein Maxwell equations in an arbitrary number of dimensions. We then proceed, in

section 4.9, to use these formulae to determine the radiation sourced by small fluctuations about
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the spherical membrane solution. Finally in section 4.10 we present a discussion of our results.

This chapter also includes several appendices in which we present details of algebraically intensive

computations.

4.2 Review of background material: Greens functions in general

dimensions

In this section we review elementary background material on Greens functions in arbitrary di-

mensions, with a focus on the large D limit. In the rest of this chapter we will use the results of

this subsection for qualitative as well as quantitative purposes. The key qualitative results from

this subsection that will be of importance to us below are

• In the large D limit distinct Greens functions (e.g. retarded and Feynman Greens functions)

differ from each other only at order 1/D
D
2 at spatial distances and time frequencies of order

unity (see subsection 4.2.2 below).

• The fractional energy loss per unit time into gravitational radiation, from a stress tensor

that varies over distance and time scales of order unity, is of order 1/DD.

At the quantitative level, in section 4.8 we use the results of this section to derive detailed

formulae for the electromagnetic and linearized gravitational radiation from arbitrary sources in

general dimensions, once again with a focus on the large D limit.

4.2.1 Greens function in frequency space

Consider the retarded Greens function G(xµ, x
′
µ) defined by the equation

−� G(x− x′) = δD(x− x′), (561)

together with the boundary condition that G vanishes if x lies outside the future lightcone of x′.

In (561) the d’Alembertian 108 is taken is taken w.r.t the coordinate x. G may be thought of as

the causal response at the point x to a unit normalized delta function source at x′.

Although the equation (561) is Lorentz invariant, our Greens function cannot be thought of

as a function only of x2 (this is a consequence of retarded boundary conditions). In order to

solve for the Greens function (and to understand its properties) we found it most convenient to

sacrifice manifest Lorentz invariance. We choose a particular rest frame and so a particular time

coordinate. In this section we further locate the source point x′ of our Greens function at the

108Throughout this chapter we employ the mostly positive sign convention.
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origin of spatial coordinates and Fourier transform w.r.t. time

G(ω,~r) =

∫
G(t, ~r)eiωtdt. (562)

It follows from (561) that G(ω,~r) obeys the equation

−
(
ω2 + ~∇2

)
G(ω,~r) = δD−1(~r). (563)

As G(ω,~r) is spherically symmetric it is convenient to work in polar coordinates, i.e. in coordi-

nates in which the Minkowskian metric is given by

ds2 = −dt2 + dr2 + r2dΩ2
D−2,

(563) simplifies to

ω2G(ω, r) +
1

rD−2
∂r
(
rD−2∂rG(ω, r)

)
= −δD−1(~r). (564)

The boundary conditions on G(r, t) require G(ω, r) to be purely outgoing (i.e. ∝ eiωr) at infinity.

The unique solution to (564) subject to these boundary conditions is

G(ω, r) =
i

4

( ω

2πr

)D−3
2
H

(1)
D−3
2

(ωr). (565)

Here H
(1)
n (x) is the nth Hankel function of first kind, whose small and large argument asymptotics

are given by

H(1)
n (x) ≈ − i

(
2

x

)n 1

π
Γ(n)

(
1 +

x2

4(n− 1)
+O

(
x4/n2

))
for x2 � n,

H(1)
n (x) ≈ (1− i)e− inπ2 eix 1√

πx

(
1 + i

4n2 − 1

8x
+O

(
n4/x2

))
for x� n2.

(566)

Using (566) it follows that our Greens function is given by

G(ω, r) ≈ 1

(D − 3)ΩD−2

1

rD−3

(
1 +

ω2r2

2(D − 5)
+O(ω4r4/D2)

)
for r2ω2 � D,

G(ω, r) ≈ − (2i)−
D
2

( ω
πr

)D−2
2 eiωr

ω

(
1 + i

(D − 2)(D − 4)

8ωr
+O(D4/r2ω2)

)
for rω � D2.

(567)

Lightcone structure of the retarded Greens function In the previous subsubsection

we presented an exact result for the retarded Greens function as a function of ω and r. In
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Appendix 4.11.5 we evaluate the Fourier transform of the expressions of the previous subsection

and obtain a formula for the retarded Greens function directly in position space. In this brief

subsection we simply report the final results of Appendix 4.11.5.

When D is even we find

G(x, x′) =
θ(X0)

2

(
1

π

)D−2
2

δ(
D−4
2 ) (−XMX

M
)
, (568)

where

XM = xM − (x′)M , δn(X) = ∂nXδ(X).

When D is odd, on the other hand we find

G(r, t) =
ΩD−3

(2π)D−4
(∂M∂

M )
D−3
2

(
θ(t− r)√
−xMxM

)
, (569)

where Ωn is the volume of the unit n sphere

Ωn =
2π

n+1
2

Γ
(
n+1

2

) . (570)

In either case the Greens function is given by linear sums of finite numbers of derivatives acting

on expressions that vanish outside the future lightcone; it follows that these Greens functions

never propagate signals faster than light. 109

Although the expressions (568) and (569) are exact, they are not particularly well suited for

taking the large D and obscure various features of the Greens functions in this limit. In the rest

of this chapter we will revert to working with the non manifestly Lorentz invariant but highly

explicit representation Greens functions (565). We will now proceed to estimate the expression

(565) in the large D limit; we find that the large D limit is smooth and can be taken without

differentiating between odd and even D.

4.2.2 Large D expansion through WKB

In this section we will use the WKB approximation to determine the large D limit of the retarded

Greens function. The main conclusions of this subsection are

• Upto a scaling (see (571)) the scalar Greens function is given by the solution to the one

dimensional Schrodinger equation listed in (572)

109Note, however, that the number of derivatives that appears in the expression for the Greens functions
increases without bound in the large D limit. This allows naive large D approximations of the Greens
function to mimic apparently acausal behaviour in some situations. When used correctly, however, the
Greens function is causal in every D.
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• In the large D limit the potential in this Schrodinger equation exceeds the energy when

ωr < 2D and is less than the energy when ωr > 2D. The wave function that yields the

Greens function describes a process of tunneling through a wide potential barrier. The

exponential tunneling suppression ensures that the oscillating solution that emerges when

ωr > 2D is very small. This explains the smallness of radiation at large D.

• All Greens functions (e.g. retarded, advanced, Feynman) are all essentially identical for

ωr � 2D. In particular when ωr is of order unity, the differences between different Greens

functions are of order 1/DD.

In the rest of this subsection we will explain these points in some more detail relegating detailed

derivations to appendices.

The transformation

G(ω, r) =
1

r
D−2
2

ψ(ω, r), (571)

recasts the equation (564) into

−∂2
rψ(ω, r) +

(D − 2)(D − 4)

4r2
ψ(ω, r) = ω2ψ(ω, r), (572)

110 i.e. a one dimensional Schrodinger equation with potential V and energy E given by

V (r) =
D∗2

4r2
, E = ω2 where D∗ =

√
(D − 4)(D − 2) ≈ D − 3 +O(1/D).

This potential divides the r axis into the classically allowed and disallowed regions

2ωr > D∗ : allowed;

2ωr < D∗ : disallowed.

In Appendix 4.11.5 we demonstrate that WKB approximation of the solutions to this equation

are exact in the large D limit away from the turning points. 111

Let us first consider the classically disallowed region. We define

κ(r) =

(
D∗2

4r2
− ω2

) 1
2

. (573)

110For the purposes of this discussion we stay away from the point r = 0 and so ignore the term propor-
tional to the δ function.

111Although we do not go beyond leading order in this chapter, higher order corrections to the WKB
approximation generate a systematic expansion of the Greens function in a power series in 1/D.
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The WKB solution to ψ(ω, r) takes the form

ψ(ω, r) =
1√
κ(r)

(
A
(eω
D

)D−3
e
∫
κ(r)dr +Be−

∫
κ(r)dr

)
, (574)

(where e is Euler’s number 2.7182...) for some constants A and B. In (574) we have chosen to

multiply A by the constant factor
(
eω
D

)D−3
for future convenience. Note that this factor is of

order 1/DD.

At small r and with an appropriate choice of integration constants we have∫
κ(r)dr ≈ D∗

2
ln r − r2ω2

2D∗
+O(r4ω4/(D∗)3),

so that

e
∫
κ(r)dr ≈ rD∗/2

(
1− r2ω2

2D∗
+ . . .

)
.

112 It follows that at small r

G(ω, r) = A
(eω
D

)D−3
+

B

rD−3
, (575)

where we have accounted for the proportionality factor between G(ω, r) and ψ(ω, r) (see (571)).113

Now the equation

∇2G(ω, r) = −δ(r);

leaves A undetermined but fixes the constant B to

B =
1

(D − 3)ΩD−2
, (576)

(Ωn, the volume of the unit n sphere, is listed in (570)). The constant A is determined by

matching with the solution in the classically allowed region as we explain below.

In the classically allowed region we have k(r) =
√
ω2 − D∗2

4r2
. The usual formulae of the WKB

approximation yield

ψ(ω, r) =
1√
k(r)

(
Cei

∫
k(r)− iDπ

4 + Ee−i
∫
k(r)+ iDπ

4

)
≈ 1√

ω

(
Cei(ωr−

Dπ
4 ) + Ee−i(ωr−

Dπ
4 )
)
.

(577)

112Note, in particular, that the correction to the leading order small r behaviour in e
∫
κ(r)dr ≈ rD

∗/2

is negligible provided r2ω2

2D∗ � 1, in agreement with the estimate for the validity of the small argument
expansion of the exact formula for the Greens function presented in (567).

113In fact we choose the integration constants in (574) to ensure that (575) is valid. The constants The
combination of the equations (574) and (575) give a complete definition of the constants A and B.
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The last expression in (577) holds in the limit 2ωr � D∗. 114

For the special case of the retarded Greens function the wave function must be outgoing at

infinity so that E = 0. The constants A and C are both determined by matching across the

turning point; in Appendix 4.11.5 we use standard WKB matching formulae to find

C =
(1 + i)√

2
B

√
D∗

2

(
D∗

ω

)−D∗
2

e
D∗
2 =

(1 + i)√
2

(2)−
D
2
ω
D−3
2

π
D−2
2

,

A =
iB

2
=

i

2(D − 3)ΩD−2
.

(578)

The parametric dependences of these results may be understood as follows. At the turning

point we expect the two terms in (574) to be of comparable magnitude. Using the WKB approx-

imation to evolve the solution inwards to small r we obtain the following estimate. The ratio of

the decaying to the growing solution at the point r should approximate e2
∫ D∗

2ω
r κ(r)dr. At large D

and when r � D∗

2ω we find

2

∫ D∗
2ω

r
κ(r)dr ≈ D∗ ln

D∗

eωr
.

Comparing with (575) it follows that

A ∼ B, (579)

in approximate agreement with the more precise formulae (578). Using similar logic we can use

(577) to estimate the value of ψ(ω, r) when we approach the turning point from the large r limit.

Matching this estimate with the value of the wave function when the turning point is approached

from the small r limit we find

C ∼ B
(

2ω

D∗

)D−2
2

, (580)

an estimate that is once again in agreement with the precise result (578).

The utility of the rough approximations (579) and (580) is that they are equally valid for

other Greens functions (e.g. the retarded Greens function or the Feynman Greens function). It

follows that for all these Greens functions the term in (574) proportional to B dominates over

the term proportional to A when rω � D/2. When rω is of order unity, in particular, the term

proportional to A (which is sensitive to the precise nature of the Greens function) is subdominant

to the term proportional to B (which is universal) at relative order 1/DD. It follows that different

reasonable Greens functions 115 differ from each other only at order 1/DD when ωr is of order

114The integration constants in the integrals in the first expression in (577) are determined by the re-
quirement that it reduce to the second expression in the same equation at large r.

115We call a Greens function ‘reasonable’ if the large r boundary condition that defines it ensures that the
ratio of the decaying and growing solutions at the turning point is of order unity. The retarded, advanced
and Feynman Greens functions are all reasonable by this criterion. It is possible to rig up Greens functions
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unity.

The fact that C/B is of order 1/DD/2 captures the smallness of radiation in the large D limit.

Let us end this subsubsection with a brief discussion of a subtle point. In the limit that

r2ω2 � D the Greens function G(ω, r) is effectively independent of ω. Upon Fourier transforming,

this observation suggests that the Greens function in this limit is time independent but nonlocal in

space (in fact the spatial dependence of the propagator is exactly that of the Euclidean propagator

for ∇2 in D − 1 Euclidean dimensions). This suggests that the retarded propagator mediates

instantaneous action at a distance and so is acausal. Of course the exact formulae of subsubsection

4.2.1 make it clear that this conclusion is erroneous. While we have not carefully tracked down

the fallacy in the naive argument, we believe it has its roots in the following fact. In order to

really argue for acausality one should turn on a source that is sharply localized in time and detect

a response outside the lightcone of this source. Such a source is necessarily non analytic and so

always has significant support at arbitrarily high ω. It follows that the approximations of the

previous paragraph, which work for ω of order unity cannot really be consistently used to argue

for acausality. It would be interesting to understand this point better but we leave it for future

work.

4.3 Review of Background Material: the stress tensor and con-

served currents on codimension one membranes

In this section we study conserved currents and stress tensors localized on codimension one

surfaces in space time.

Consider the flat space RD−1,1. Consider a function ρ defined on this spacetime, and consider

a membrane whose world volume is given by the solutions to the equation ρ− 1 = 0. The normal

to the membrane world volume is given by the equation

nM =
∂Mρ

|∂ρ| , |∂ρ| =
√
∂Mρ∂Mρ (581)

and is assumed to be everywhere spacelike.

4.3.1 Scalar sources localized on a membrane

As a warm up consider the minimally coupled scalar equation

−�φ = S. (582)

whose boundary conditions are finely tuned (in a D dependent way) so as to violate the conclusions of
this paragraph. Such Greens functions are unphysical for our purposes, and will be ignored through the
rest of this chapter.
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Consider a situation in which the source S of that equation is given by the distributional valued

field SST localized on the membrane

SST = |∂ρ|δ(ρ− 1)S, (583)

where S is a smooth function on the membrane. Integrating (583) over a pillbox whose faces are

just above and just below the membrane we conclude that

~n · ∂φout − ~n · ∂φin = −S, (584)

where ~n is the outward pointing unit normal to the membrane (i.e. from ‘in’ to ‘out’), φout is the

scalar field just outside the membrane and φin is the scalar field just inside the membrane.

The source S can also be given the following interpretation. Let φ0 be the value of the field φ

on the membrane world volume. Let Sout[φ0] represent the action of the outer part of the solution

as a functional of φ0, the value of the field φ on the membrane 116. Using

Sout = −1

2

∫
(∂φ)2,

it follows that

δSout =

∫
δφout∂

2φout −
∫
∂M
(
δφout∂

Mφout
)

=

∫
δφout(n · ∂)φout. (585)

The first two integrals on the RHS of (585) are taken over the bulk spacetime to the exterior of

the membrane. The last integral is taken over the membrane world volume. In the final step in

(585) we have used the scalar equation of motion and Stokes theorem.

It follows from (585) that

(~n · ∂)φout =
δSout
δφ0

(586)

(this is simply the Hamilton Jacobi equation: the LHS is evaluated on the membrane approached

from the outside). In a similar manner, making similar definitions we have

(~n · ∂)φin = −δSin
δφ0

. (587)

The difference in sign between (587) and (586) stems from the fact that the normal n is outward

pointing from the point of view of the inside, but inward pointing from the point of view of the

116If the external region of spacetime has an additional boundary, the action would also depend on the
value of the field φ on this additional boundary. This dependence plays no role in what follows and is
suppressed in the notation. Similar remarks hold for the internal solution.
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outside. It follows that (584) can be rewritten as

S = −δSin
δφ0

− δSout
δφ0

. (588)

It is not difficult to present explicit expressions for the actions Sout and Sin in terms of

integrals over the membrane of φ0 and the normal derivatives of φ on the outer and inner solutions

respectively on the membrane.

Sin[φ0] = −1

2

∫
(∂φ)2 =

(
−1

2

∫
∂M
(
φ∂Mφ

)
+

1

2

∫
φ∂2φ

)
= −1

2

∫
φ0(n · ∂)φin. (589)

The integral in the last expression in (589) is taken over the membrane world volume; all other

integrals are taken over the region of bulk spacetime that lies to the interior of the membrane; in

obtaining the last equality we have used the bulk equation of motion and Stokes theorem. In a

similar manner

Sout[φ0] =
1

2

∫
φ0(n · ∂)φout. (590)

4.3.2 Membrane Charge current

Let us now study the Maxwell equation. Consider the action for the bulk gauge field AM coupled

to a current JM

Action = −
∫ (

FMNF
MN

4
+ JMAM

)
, (591)

where

FMN = ∂MAN − ∂NAM . (592)

The equation of motion that follows from this action

∂MFMN = JN . (593)

Let the charge current that is tangent to and localized on the membrane .

JM = |∂ρ|δ(ρ− 1)JM , (594)

where JM is a smooth vector field tangent to the membrane (i.e. JMnM = 0). Integrating (798)

over a pillbox that encloses the membrane we conclude that

nMF
MN
(out) − nMFMN

(in) = JN , (595)

where n is the outward pointing normal to the membrane.
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As in the previous subsection, (595) may be rewritten as

JN =
δSout[(A0)N ]

δ(A0)N
+
δSin[(A0)N ]

δ(A0)N
, (596)

Sout[(A0)N ] is the action of the outer part of the solution as a functional of the gauge field

restricted to the membrane.

As in the previous subsection it is not difficult to present explicit expressions for the actions

Sout and Sin in terms of integrals over the membrane of (A0)M and the normal derivatives of the

gauge field in the outer and inner solutions respectively.

Sin[A0] = −1

2

∫
(A0)NnMF

MN
(in) ,

Sout[A0] =
1

2

∫
(A0)NnMF

MN
(out).

(597)

We will now demonstrate that the divergence of JMST , viewed as a distributional current in

spacetime, vanishes provided JM is a conserved current on the membrane.

In order to see this we note that

∂MJM = δ(ρ− 1)|∂ρ|
[
∂M

(
ln
(√

∂Mρ∂Mρ
))

JM + ∂MJ
M
]

= δ(ρ− 1)|∂ρ|
[
JN (n · ∂)nN + ∂MJ

M
]

= δ(ρ− 1)|∂ρ|
[
ΠN
M∂NJ

M
]
.

(598)

Here ΠMN = ηMN −nMnN . In the first line of (598) have used (∂Mρ)JM = 0. In order to obtain

the second line of the equation we have used ∂M∂Nρ = ∂N∂Mρ and nMJ
M = 0. In order to

obtain the third line we have used nMJ
M = 0 to conclude that nNnM∂MJ

N = −JN (n · ∂)nN .

As ΠN
M∂NJ

M is simply the divergence of JN viewed as a vector field on the membrane, it follows

from (598) that the JM is conserved in spacetime if and only if the JM is conserved on the

membrane world volume.

4.3.3 Membrane localized stress tensor

Let us now turn to a study of the Einstein equation . the action for the bulk gauge field gMN

coupled to a current T MN

Action =
1

16π

∫ √−gR− (1

2

)∫
hMNTMN . (599)

231



Consider a membrane localized stress tensor given by

T MN = |∂ρ|δ(ρ− 1)TMN . (600)

The equation of motion that follows from this action

RMN −
(
R

2

)
gMN = 8πTMN , (601)

where TMN [81]is a symmetric tensor that is tangent to and smooth on the membrane. By

integrating Einstein’s equations over a pill box that surrounds the membrane one can show that(
K(out)
MN −K(out)(g0)MN

)
−
(
K(in)
MN −K(in)(g0)MN

)
= −8πTMN , (602)

where (g0)MN is the space-time metric restricted to the membrane. K(out)
MN and K(in)

MN are the

extrinsic curvature computed from ‘outside’ and ‘inside’ the membrane respectively.

In other words the discontinuity of the Brown- York stress tensor across the membrane is pro-

portional to TMN .

As in the previous subsection, (602) may be rewritten as

TMN = −
[
δSout[(g0)MN ]

δ((g0)MN )
+
δSin[(g0)MN ]

δ((g0)MN )

]
, (603)

Sout[(g0)MN ] is the action of the outer part of the solution as a functional (g0)MN , the space-time

metric, restricted to the membrane.

As in the previous subsection it is not difficult to present explicit expressions for the actions

Sout and Sin in terms of integrals over the membrane of (g0)MN and the normal derivatives of the

metric in the outer and inner solutions respectively. The action is given entirely by the Gibbons

Hawking term and takes the form

S = Sout + Sin (604)

where

Sin = − 1

8π

∫ √−g(ind) Kin,

Sout =
1

8π

∫ √−g(ind) Kout,
(605)

where the integral is taken over the world volume of the membrane, viewed as a boundary of the

internal and external solutions respectively. The difference in signs in the two equations above is

because K is defined as the trace of the extrinsic curvature of the normal vector n which always

runs from in to out.
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We emphasize that TMN is assumed tangent to the membrane, i.e. TMNnM = 0. We will

now demonstrate that T MN is conserved in spacetime if and only if

• TMN is a conserved stress tensor on the membrane world volume

• TMNKMN = 0, where KMN is the extrinsic curvature on the membrane.

Unlike the equation for charge conservation, the equation for the conservation of the spacetime

stress tensor has a free index. We get the first condition above when the free index in this

equation is in the membrane world volume, and the second condition when the free index is

chosen proportional to the membrane normal.

Let us first consider the equation for stress tensor conservation projected tangent to the

membrane world volume:

pPN∇MT MN = δ(ρ− 1)|∂ρ|pPN
[
∇M

(
ln
(√

∂Mρ∂Mρ
))

TMN +∇MTMN
]

= δ(ρ− 1)|∂ρ|pPN
[
(n · ∇)nMT

MN +∇MTMN
]

= δ(ρ− 1)|∂ρ|
[
pPNp

Q
M∇QTMN

]
.

(606)

The manipulations in (606) are essentially identical to those in (598). Note that

pPNp
Q
M∇QTMN is the membrane world volume divergence of the membrane stress tensor TMN .

On the other hand

nN∇MT MN = − (∇MnN ) T MN = −KMNT MN = −δ(ρ− 1)|∂ρ|KMNT
MN , (607)

(in going from the first to the second expression in (607) we have used T MNnN = 0). It follows

that the normal component of the stress tensor conservation equation is satisfied if and only if

KMNT
MN = 0.

4.3.4 The stress tensor for a Nambu-Goto membrane

In order to gain some intuition for membrane stress tensors is useful to consider a simple example.

Consider a relativistic membrane whose only degree of freedom is its shape and whose dynamics

is governed by the relativistic Nambu-Goto action

S = −σ
∫ √−g(ind), (608)

where g(ind) is the determinant of the metric g
(ind)
µν induced on the world volume of the membrane

and σ is the tension of the membrane. It is easily verified that the equation of motion that follows

from this action is simply

K = 0, (609)
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where K is the trace of the extrinsic curvature of the membrane world volume. The spacetime

stress tensor for this system may be obtained by varying the action w.r.t the spacetime metric.

The stress tensor is easily verified to take the form (600) with

TMN = −σ pMN . (610)

Note that TMN is proportional to the world volume metric; it follows that TMN - viewed as

membrane world volume stress tensor - is trivially conserved. On the other hand the requirement

that TMNKMN = σK = 0 is nontrivial and yields the membrane equation of motion.

In the simple example reviewed above the conservation of the membrane stress tensor was

trivial in the world volume directions as a consequence of diffeomorphism invariance in these

directions. On the other hand the conservation of the stress tensor in the normal direction was

nontrivial and yields the equations of motion - a relativistic version of Newton’s laws in the normal

direction. Below we will see that the large D gravitational membranes of interest to this chapter

behave in an orthogonal fashion. In that case the equation of stress tensor conservation in the

normal direction is obeyed in a relatively trivial manner, while the equation for world volume

conservation of the stress tensor yields the membrane equations of motion.

4.4 Membrane Currents from Linearized solutions: Description

of the Map

In this section and the next we study the minimally coupled scalar, Maxwell and linearized

Einstein equation in the vicinity of the world volume of a codimension one membrane. We

assume that our membrane is embedded in a flat D dimensional spacetime and work in the large

D limit.

Let us suppose we are given a solution to the exterior of the membrane world volume that

decays rapidly towards infinity. 117 We then search for a corresponding regular solution in

the interior region of the membrane subject to the requirement that the scalar field, tangential

components of field strengths and curvatures are continuous across the membrane while allowing

for first derivatives of these quantities to be discontinuous across the membrane. Our continuity

requirement effectively imposes a Dirichlet type boundary condition for the (as yet unknown)

solution in the interior of the membrane. This boundary condition, together with the requirement

of regularity, turns out to be sufficient to uniquely - and practically - determine the interior

117As we will see later, the true exterior solution also has small constant modes with coefficient of order
1
DD

(see (575) for an example). At distances of order unity from the membrane - where we work in this
section - the constant modes (the mode proportional to A in (575)) are nonperturbatively smaller than
the decaying piece, and so are invisible to the large D analysis of this section. However the details of this
constant piece shape the nature of the radiation far away; see e.g. the discussion under (580).
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solution order by order in the 1/D expansion. 118

Though the interior and exterior solutions are continuous across the membrane they are not

analytic continuations of each other. In particular normal derivatives of fields are generically

discontinuous across the membrane. The discontinuities in these normal derivatives determine

an effective source for the wave equations that is localized on the membrane (see (584), (595)

and (602) ). As explained in those equations, this source is the difference between an ‘exterior’

current (the exterior normal derivative) and ‘interior’ current (the interior normal derivative).
119

To recap, the procedure described in this section and the next allows us to constructively

establish a one to one map between decaying linearized solutions to the exterior of a membrane

and an auxiliary solution (which has no physical reality). The auxiliary solution agrees with

the decaying solution - upto corrections of order 1/DD - to the exterior of the membrane. It

is constructed to ensure that it is regular everywhere in the interior of the membrane. The

auxiliary solution solves the free uncharged equations everywhere to the exterior and interior of

the membrane. The auxiliary solution also solves the bulk equations precisely on the membrane

provided the membrane is assumed to carry a charge; in this section and the next we find precise

formulae for this charge as a functional of the prescribed external solution. The discussion of this

section and the next is precise (even conceptually) only in the 1
D expansion.

The starting point of the discussion of this section was a decaying external solution which was

assumed to be known in the neighbourhood of the membrane surface. This original solution is - in

general - not known far away from the membrane. However the analysis of this section - together

with one additional piece of information - allows us to determine this asymptotic behaviour as

we now explain.

Recall that the auxiliary solution obeys the linearized bulk equation, with a known charge,

all over spacetime. It follows that the auxiliary solution is given all over spacetieme by the

convolution of the membrane current with a Greens function. This statement does not, as yet,

completely determine the auxiliary solution as all of the linearized equations of motion we study

118The fact that these boundary and regularity conditions uniquely determine our solution is true only
in the 1/D expansion and is certainly untrue at finite D. As an example consider the minimally coupled
scalar equation �φ = 0 with the membrane manifold taken to be SD−2× time and the Dirichlet boundary
condition that φ vanish on the membrane. One solution with these boundary conditions is φ = 0, but
this solution is clearly not unique. In the l = 0 sector, for instance, we also have solutions of the form

φ =
∑
n ane

−iωnt (ωn
r

)D−3
2 JD−3

2
(ωnr) where ωn run over the set of zeroes of JD−3

2
(ωn). Note however

that at large D the first zero of this Bessel function occurs at a value of order D/2. It follows that the
frequencies ωn are all of order D or higher at large D. In the large D limit we disallow solutions with such
high frequencies. In this extremely simple toy example it follows that the unique allowed interior solution
is simply φ = 0.

119As explained in the introduction, the interior current is neatly encoded in the action of the interior
solution as a function of the metric, gauge field or scalar field on the membrane.
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admit an infinite number of inequivalent Greens functions (e.g. advanced, retarded, Feynman

etc). We now add an additional condition on the auxiliary solution; we demand that it is (e.g.)

purely outgoing at infinity. This condition uniquely singles out one particular Green’s function

(e.g. the retarded Green’s function) and yields a well defined - and practically useful - formula

for the auxiliary solution all over spacetime. 120

Recall, however, that the original external solution agrees with the auxiliary solution in an

exterior neighbourhood of the membrane. If physical considerations inform us that the external

solution obeys (e.g.) outgoing boundary conditions at infinity, it then follows that the external

solution agrees with the auxiliary solution - to non perturbative accuracy - everywhere outside the

membrane. It follows that the external solution is also given everywhere outside the membrane

by the integral formula described in the previous paragraph.

In summary let us suppose we are given a linearized external solution in the neighbourhood

of the membrane world volume that is known to be purely outgoing at infinity. The following two

step procedure can be used to continue this solution to large r. In the first step we determine the

‘membrane current’ corresponding to our external solution. This determination is the topic of

this section and the next. In the second step we convolute this current against a Greens function

- this is the topic of section 4.8. The resultant expression is the continuation of the external

solution to large r. In the external neighbourhood of the membrane this expression is guaranteed

to agree with the configuration we started out with, upto nonperturbative corrections. The large

r behaviour of this solutions yeilds the radiation field that our external solution continues to at

infinity.

4.4.1 Minimally coupled scalar

We start with the case of a minimally coupled scalar equation

�φ = −S, (611)

with the source S assumed to be delta function localized on the membrane.

Given the decaying part of the solution to (611) in the exterior, we wish to construct the

matching interior solution. Our tactic for achieving this is very straightforward. We first construct

the most general decaying solution to (611) in the vicinity of the exterior of the membrane. We

then construct the most general regular solution to the same equation in the vicinity of the interior

120 The fact that the auxiliary solution is given by the convolution of a membrane current with the
Green’s function depends crucially on the fact that the auxiliary solution was defined to be regular in the
interior of the membrane. Had we defined the auxiliary solution differently- perhaps by allowing prescribed
singularities in the interior of the membrane - we would have obtained an integral formula for this solution
given by the convolution of the Greens function with all sources - those located at singularities together
with those on the membrane.
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of the membrane. By matching solutions in the exterior with those in the interior we produce the

most general solution to (611) that is continuous across the membrane. Our construction - which

uniquely pairs any external solution with an internal solution - turns out to depend on one free

function on the membrane. This function can be thought of as the value of φ on the membrane

or equally as the source ‘current’ S. The construction thus gives us

• 1. An explicit classification and construction of all consistent decaying external solutions.

• 2. A one to one map between such solutions and corresponding interior solutions.

• 3. Consequently a one to one map between decaying external solutions and a source function

S localized on the membrane.

Our construction of the exterior and interior solutions takes the form of a power series expansion

in the distance s away from the membrane. The radius of convergence of this expansion is of

order D/K and so this expansion is useful, from a practical point of view, only when s� D/K.

The coefficients in this power series expansion are each individually determined in a power series

expansion in 1
D .

Given that (611) is a second order equation, the reader may wonder how it is possible that ex-

terior and interior solutions to this equation are parametrized by one rather than two functions on

the membrane. The key point here is the restriction that the exterior solution rapidly decay away

from the membrane and that the interior solution be regular (in particular not grow arbitrarily

large as D is taken to infinity at any point reliably captured by our approximations). These two

conditions cut down the set of exterior and interior solutions each to solutions parametrized by

a single function on the membrane; upon imposing continuity across the membrane we find a set

of sewn solutions parametrized by a single function on the membrane.

As this point is very important, we now explain it again in a more precise and much more

detailed manner.

The full set of solutions to the equation �φ = 0 - either to the exterior or in the interior of

the membrane - is indeed parametrized by two functions on the membrane world volume. Let us

denote these two functions by α and β. It follows from linearity that the most general solution

of the equation �φ = 0 away from the membrane is given by

φ = F1[α(x)] + F2[β(x)], (612)

where F1,2 are linear maps from the space of functions on the membrane to functions in the flat

spacetime in which the membrane is embedded. Later in this section we will explicitly construct

the two functionals F1 and F2 (in a Taylor series expansion in distance away from the membrane)
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121 with the following two properties.

• First, on the membrane F1[α] = α and F2[β] = β. In other words α and β are the values of

φ restricted to the membrane. F1[α] and F2[β] are two different continuations of the scalar

field on the membrane into the bulk.

• Second F1 decays rapidly (over a distance scale 1/D) to the exterior of the membrane,

and grows rapidly over the same distance scale on the interior of the membrane, while F2

neither grows nor decays as we move distances of order 1/D away from the membrane.

Instead the variation of F2, as we move away from the membrane, occurs over length scales

of order unity. 122

We will now use the two functionals F1 and F2 to construct solutions φ(x) of (611) that are of

the form described in the previous subsection, or, more specifically have the following properties

• φ(x) reduces to an arbitrarily prescribed function φ0(x) on the membrane world volume.

• φ(x) is continuous across the membrane but its normal derivative is across this surface

• φ(x) decays to the exterior of the membrane, and stays regular (does not blow up) in the

interior.

A moment’s thought will convince the reader that the required solution is given by

φ(x) = F1[φ0] outside,

φ(x) = F2[φ0] inside.
(613)

As mentioned above, in the next section we will explicitly determine the functionals F1 and F2

in a power series expansion in 1/D.

Note that the solutions (613) are parameterized by a single membrane’s function worth of

data - which can be thought of either as φ0(x) or the source function S on the membrane. This

fact can also be understood in the following terms. Suppose we are given a source S localized on

121We determine the coefficients of this expansion order by order in 1/D.
122The functionals F1 and F2 are effectively local functions of α and β in the following sense: it is possible

to foliate spacetime around the membrane into tubes each of which cuts the membrane and is labeled by
the point x0 at which it does so. To any given order in 1/D, F1 and F2 at any x0 depend only on the
distance from the membrane (which is assumed small in units of the local radius of extrinsic curvature of
the membrane), the extrinsic geometry of the membrane at x0 and a finite number of derivatives of α(x0)
or β(x0). The reason for this locality is simply that the boundary conditions of decay in the exterior and
lack of blow up in the interior can each effectively be imposed at distances of order 1/D away from the
membrane. The thinness of the region enclosed by our boundary conditions is the underlying reason for
the locality of our expansion.
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the world volume of the membrane. Clearly the most general solution to (611) in the presence of

this source takes the form

φ(x) =

∫
dyG(x− y)S(y), (614)

where G is a Greens function for the operator � and the integral over y is taken over the

membrane world volume. At finite D (614) does not define a unique solution to the problem,

because the Greens function, G, is not unique. As we have explained in subsection 4.2.2, however,

all reasonable Greens functions are identical (upto differences of order 1/DD) at distances of order

unity around the source. It follows that the formula (614) does unambiguously define a unique

solution to (611) in the neighbourhood of the membrane an expansion in 1/D. (613) is this

unique solution; i.e. (614) can be identified with (613) in the neighbourhood of the membrane

for every reasonable choice of the Greens function D, even though the expressions (614) begin to

depend sensitively on the choice of Greens function at large r (i.e. distances of order D). As we

have explained in detail above, the ‘correct’ choice of Greens functions is determined by physical

considerations for the problem at hand; the relevant Greens function for this chapter will always

prove to be the retarded Greens function.

4.4.2 Maxwell Equation

Although it is possible to solve the Maxwell equations in a gauge invariant manner, we will find

it convenient to proceed by fixing a gauge. We first define a foliation of spacetime into surfaces of

constant ρ, chosen so that the surface ρ = 1 is the membrane. We choose the function ρ to obey

the equation �
(

1
ρD−3

)
= 0 (see subsection 4.5.1 below). We then choose to work in a gauge in

which Aρ vanishes, i.e. the gauge dρ.A = 0.

With this choice of foliation, the Maxwell equations can be divided up into the constraint

equations (Maxwell equations dotted with dρ) and the dynamical equations. More precisely, by

a slight misuse of terminology, we will refer to the equations

ΠA
C∂BF

BC = 0, (615)

as dynamical equations where

ΠCA = ηCA − nAnC ,

nA =
∂Aρ√
∂Dρ∂Dρ

.
(616)
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On the other hand we refer to

M = 0,

M≡ nC∂BFBC ,
(617)

as the constraint Maxwell equation

We proceed by first solving the dynamical equations defined above and then turn later to

the constraint equation. The dynamical equations are very similar in character to the minimally

coupled scalar equation discussed in the previous subsubsection. As in the previous subsubsection

we find in general that the solutions to the dynamical Maxwell equations take the form

A = F1[Cµ(x)] + F2[Bµ(x)], (618)

where A is the oneform gauge field in spacetime and Cµ and Bµ are worldvolume gauge fields

on the membrane. F1,2 are now linear maps from gauge fields on the membrane to oneform

gauge fields in flat spacetime. These functional share the following properties with their scalar

counterparts. First, on the membrane F1[Cµ] = Cµ and F2[Bµ] = Bµ (it makes sense to equate

a spacetime gauge field with a world volume gauge field precisely because dρ.A vanishes). As for

scalars F1 decays rapidly (over a distance scale 1/D) to the exterior of the membrane, and grows

rapidly over the same distance scale on the interior of the membrane, while F2 neither grows nor

decays as we move distances of order 1/D away from the membrane. Instead the variation of F2,

as we move away from the membrane, occurs over length scales of order unity.

As in the case of scalars above, the boundary condition that our spacetime gauge field decays

in the exterior, is regular and bounded in the interior and that the field strength restricted to the

membrane is continuous on the membrane, and that it takes the value (A0)µ on the membrane

leaves us with the solutions

A(x) = F1[(A0)µ] outside,

A(x) = F2[(A0)µ] inside.
(619)

We have completed our programme of solving the dynamical equations. What remains is

to solve the Maxwell constraint equations. It is a well known property of Maxwell’s equations

that if the dynamical equations are obeyed everywhere and the constraint equation is obeyed on

a single slice then the constraint equation is obeyed everywhere. Our definition of dynamical

and constraint equations are different from the usual ones (which are adapted to a foliation of

spacetime into coordinate systems including ρ as a special coordinate) and it is instructive to
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work our our version of this standard statement. This is easily done. Note that

∂A
(
ΠA
B∂CF

CB
)

= ∂C∂BF
CB−∂A

(
nAnB∂CF

CB
)

= −n.∂
(
nB∂CF

CB
)
−K

(
nB∂CF

CB
)
, (620)

(where we have used the antisymmetry of FAB in the last step). It follows that

(n.∂)M = −KM− ∂A
(
ΠA
B∂CF

CB
)
, (621)

(see (617) for a definition of M). Now the last term on the RHS of (622) is the divergence of

the dynamical equations and so vanishes once those equations are solved. On solutions of the

dynamical equations it thus follows that

(n.∂)M = −KM. (622)

Integrating (622) along flow lines of the vector field n it follows that

M(ρ) =M0e
−
∫ ρ
1 Kds, (623)

whereM0 is the value ofM at ρ = 1 (i.e. on the membrane) and ds is the proper distance from

the membrane along the integral curves of the vector field n.

Note that K, the extrinsic curvature of slices of constant ρ is positive and of order D (see

subsection 4.5.1 below).

Let us assume thatM0 is nonzero. It follows thatM(ρ) decays rapidly to zero (over a length

scale of order 1/D) as we move away from the membrane towards the exterior. But it also follows

that M(ρ) blows up rapidly - over a length scale of order 1/D - as we move away from the

membrane towards the interior.

Let us now apply these results to the two special solutions F1[(A0)µ] and F2[(A0)µ] defined

above. The solution F1[(A0)µ] is defined so that it decays rapidly to the exterior of the membrane

and blows up rapidly in the interior of the membrane. The fact that M also has the same

behaviour comes as no surprise for this solution. On the other hand the solution F2[(A0)µ] is

defined so that it does not blow up in the interior of the membrane. It is thus impossible for M
to blow up in the interior - in the manner determined by (623). It follows that M0 must in fact

vanish on the solution F2[(A0)µ].

In summary we have demonstrated that the solution F2[(A0)µ] is very special; it is the solution

on which the constraint equation is automatically satisfied - without the need to impose any

further constraint on (A0)µ. On the other hand the configuration F2[(A0)µ] is a solution of

the full Maxwell equations not for all (A0)µ but only for those that are constrained to obey a

further condition (which we will interpret below as the condition of conservation of the membrane
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current).

Matching the solutions F1 and F2 as in (619) yields a class of solutions of Maxwell’s equations

parametrized by (A0)µ subject to the single constraint just described above. The solution (619)

is a solution to Maxwell’s equations with a current of the form (594) with the function JM given

in (595). This current may be rewritten as

JM = J
(out)
M − J inM , J

(out)
M = nNF

(out)
NM , J

(in)
M = nNF

(in)
NM . (624)

Note that the conservation of this current follows immediately from the constraint equations

applied to the external and internal solutions respectively. As we have explained above this

conservation is automatic for the internal solution, but imposes a constraint on the data (A0)µ

in the case of the external solution.

The interior current J
(in)
M is most compactly presented by evaluating the action of the interior

solution Sin[A0]. The current J
(in)
M is then given by varying this action w.r.t A0 using

δSin[A0] =

∫
δ(A0)MJ

(in)M , (625)

(see (596)). As the interior solution F2[Aµ(x)] is well defined for every value of the boundary

gauge field (A0)µ(x), Sin[A0], is a gauge invariant functional of this boundary gauge field that

also turns out to be local in the large D limit. 123

On the other hand the external contribution to the current is simply evaluated from the

definition (624), where the quantity on the RHS of that equation is evaluated on the external

solution which is assumed to be known.

Let us summarize. Solutions of Maxwell’s equations that obey our boundary conditions are

parametrized by the membrane gauge field subject to a single constraint (the conservation of the

exterior contribution to the membrane current). The full membrane current is given by adding

the exterior contribution to the interior contribution which, in turn, is obtained from the variation

of a gauge invariant ‘counterterm’ boundary action. In order to compute the current associated

with a given external solution the only remaining nontrivial step is the determination of the

counterterm action associated with the interior solution.

4.4.3 Linearized Einstein Equation

Let the metric be given by ηMN +HMN . As in the previous subsection we work with a particular

gauge choice; we impose the gauge nNHNM = 0.

In parallel with the previous subsection it is convenient to decompose Einstein’s equations

123Recall that (A0)µ is also the gauge field on the membrane viewed from the outside and so is known.
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into dynamical and constraint equations. Let us define

EMN = RMN −
R

2
gMN − 8πTMN . (626)

The Einstein equations take the form

EMN = 0. (627)

The dynamical equations are defined to be

ΠM
A EMNΠN

B = 0. (628)

The constraint Einstein equations are

CEM ≡ nAEAM ,
CEA = 0.

(629)

As in the previous subsection we first solve the dynamical Einstein equations to find a structure

very similar to that for the minimally coupled scalar. The most general solution is given by

H = F1[hµν(x)] + F2[gµν(x)], (630)

where the G = η +H is the spacetime metric and hµν(x) and gµν(x) are induced metrics on the

membrane. F1,2 are now maps from the induced metric on the membrane to linearized metric

fluctuations in flat spacetime. Note that the induced metric is nontrivial even in the absence

of the fluctuation HMN . The maps F1 and F2 linearly map changes in this induced metric to

linearized fluctuations of the bulk.

As in the previous section F1 decays rapidly (over a distance scale 1/D) to the exterior of

the membrane, and grows rapidly over the same distance scale in the interior of the membrane,

while F2 neither grows nor decays as we move distances of order 1/D away from the membrane.

Following the previous subsection we proceed to solve the dynamical equations subject to

the boundary conditions that gMN reduces to
[
g

(ind)
µν = g

(ind,f)
µν + h

(0)
µν

]
on the membrane where

g
(ind,f)
µν is the induced metric on the membrane viewed as a submanifold of the spacetime with

metric ηMN and h
(0)
µν is arbitrary but small. Through this section we work to linearized order in

h
(0)
µν .

Imposing the boundary conditions of fall off to the exterior and regularity in the interior and

the continuity of the induced metric on the membrane as we pass from outside to inside, we find
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that the unique solutions to our equations are

H = F1[g(ind)
µν ] outside,

H = F2[g(ind)
µν ] inside,

(631)

where H is a spacetime symmetric two tensor (we have omitted its indices for brevity).

As with the study of the Maxwell equation the main qualitative difference between the solu-

tions of the linearized Einstein equations and the minimally coupled scalar equation lies in the

constraint equations. However the Einstein constraint equations are of two varieties. Let

XN ≡ CEMΠM
N .

We refer to the equation XM = 0 as the momentum constraint equations. Moreover let

Y ≡ CEMnM .

We refer to the equation Y = 0 as the Hamiltonian constraint equation.

In Appendix 4.11.10 we use the identity

∇M
(
EMN

)
= 0,

to demonstrate that the momentum and Hamiltonian Einstein constraint equations obey the

equations

ΠC
B(n · ∇)XC = −K XB −XAKAB − Y (n · ∇)nB ,

n · ∇Y = −K Y −∇ ·X +XC(n · ∇)nC .
(632)

As in the previous subsection, these equations determine the ρ dependence of the constraint

equations in terms of their value at ρ = 1. Let us first consider the momentum constraint

equations. The first term on the RHS of the first line of (632) is of order D while the last two

terms on the RHS of this equation are of order unity and can be ignored. It follows that, as

in the previous subsection, the constraint equations XC grow exponentially as we move away

from the membrane in the interior region, but decay exponentially in the exterior. As in the

previous subsection this means that the constraint equations XC must simply vanish for the

interior solution, F2 in (631). Once this result has been established for XC , the second equation

in (632) ensures that the same is true of the constraint equation Y . As in the previous subsection

there is no particular reason for the constraint equations to vanish for the exterior solutions - F1

in (631), and we will see by explicit computation below that they do not.

It follows that the interior solution F2 is labeled by a boundary metric on the membrane.
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On the other hand the external solution F1 is labeled by the same boundary data modulo one

constraint. We will later interpret this condition as the requirement that the membrane stress

tensor be conserved. It follows also that the solution (631) is also labeled by membrane boundary

metric subject to a single constraint.

We now turn the ‘Hamiltonian’ constraint equation

CMnM = 0.

Recall that in section 4.3 we demonstrated that a stress tensor of the form (600) is conserved in

spacetime provided that

• TMN , viewed as a tensor on the membrane world volume is conserved.

• TMNKMN = 0.

We have just argued that the ‘momentum’ constraint equations guarantee that the first condition

is satisfied. We will now use the ‘Hamiltonian’ constraint equations to show that the second

condition is also satisfied.

It is well known that the Hamiltonian constraint equation can be rewritten in terms of the

membrane extrinsic curvature and intrinsic membrane curvatures as follows (see e.g. eqn 10.2.30.

page 259, of [82])124

0 = nAnBEAB =
1

2

(
−R+K2 −KABKAB

)
, (633)

where EAB = is the Einstein Tensor, R is the intrinsic Ricci scalar on (ρ = const) slices and

KAB is the extrinsic curvature of the same slices. All indices in (633) are raised or lowered using

the induced metric on ρ = const slices, embedded in full space-time. As Einstein’s equations are

obeyed both just outside and just inside the membrane, it follows in particular that

1

2

(
−R(out) +K2

(out) −K
(out)
AB KAB(out)

)
= 0,

1

2

(
−R(in) +K2

(in) −K
(in)
AB KAB(in)

)
= 0,

(634)

where all quantities with the subscript ‘out’ are evaluated on the special slice ρ = 1 (we refer to

this slice as the membrane) as approached from the outside, while all quantities with the subscript

‘in’ are evaluated on the membrane when approached from the interior.

124In [82], the eqn 10.2.30 is derived for a spacelike hypersurface where the normal is timelike. But in
our case the normal is spacelike and this is why the sign in the first term of our equation (633) is different
from what it is there in [82]. See appendix (4.11.15) for a derivation.
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Recall that the membrane world volume - viewed as a submanifold of flat space - has a

nontrivial Ricci curvature tensor Rµν and a nontrivial extrinsic curvature tensor KMN ; the trace

of KMN is K. Now R
(out)
µν , K(out)

MN and K(out) refer to the same quantities - but evaluated with the

membrane regarded as a submanifold of
[
gMN = ηMN + h

(out)
MN

]
. Similar remarks apply to the

inside. It follows that - for instance K(out)
MN differs from KMN at first order in the fluctuation field

hMN . Let us now subtract the two equations in (634) above. Using the fact that R(out) = R(in)

(this follows because R is a function only of the induced metric on the membrane and not its

normal derivative) we find

0 = nAnBEAB|out − nAnBEAB|in
= K (Kout −Kin)−KAB

(
KABout −KABin

)
= −KAB

[(
KABout −KABin

)
− (Kout −Kin) ΠAB

]
= 8πKABT

AB.

(635)

In the second line of this equation we have worked to linear order in hAB. The third line is an

algebraic rearrangement of the second line and in the fourth line we have used the definition of

the membrane stress tensor given in (602)

Notice that, as in the previous subsection it is useful to define

T
(out)
AB =

(
KAB(out) −K(out) pAB(out)

)
,

T
(in)
AB =

(
KAB(in) −K(in) pAB(in)

)
,

where

pAB(out/in) = Projector on the membrane, embedded in outside (inside) metric.

(636)

This implies

TAB = −
(

1

8π

)[
T

(out)
AB − T (in)

AB

]
. (637)

In parallel with the previous subsection, the ‘momentum’ Einstein equations ensure that TAB is

conserved. 125

As in the previous subsection, the fact that the interior solution is well defined for every value

of the induced metric g
(ind)
µν without restriction allows us determine T

(in)
AB by first evaluating the

125More precisely each of T
(out)
AB and T

(in)
AB are separately conserved when viewed as tensor fields on the

membrane with metric induced from ηMN + hMN . Note that T
(out)
AB and T

(in)
AB each have a term that is

zeroth order in fluctuations. However this zero order piece is common between T (out) and T (in) and so
cancels in their difference. As a consequence TAB is of first order in fluctuations. It follows that TAB
is conserved, to first order, even when viewed as a tensor field living on the membrane with undeformed

induced metric g
(ind,f)
µν .
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action Sin using (605) and obtaining the current using (603). Note that Sin is a gauge invariant

function of g
(ind)
µν which will also turn out to be local in the large D limit.

Counterterm Action for T
(in)
AB at first order As we have seen above, the interior solution

F2 that appears in (631) is labeled by a metric on the boundary of the membrane. As we have

explained in the previous section, the interior contribution to this stress tensor may be obtained

as follows. We first compute the boundary action

S(in) = −
(

1

8π

)∫ √
−g(ind) K(in), (638)

of this solution. This action should be viewed as a functional of the membrane metric that

parameterizes solutions of the functional F2. Varying the action (638) w.r.t this boundary metric

then yields the contribution of the interior stress solution to the membrane stress tensor (see

(603)).

It turns out that, upto first order in the expansion in 1
D , the action (638) is easily evaluated as

a functional of the metric on the membrane using the Gauss Codacci formalism For any Ricci-flat

space, the intrinsic quantities could be related to extrinsic quantities in the following way [82]

(see Appendix (4.11.15) for derivation).

0 = Rµν −KKµν +KµαKνα + eµAe
ν
BR

ACBC′ nCnC′ ,

0 = R−K2 +KµνKµν ,
(639)

where Rµν and R is the intrinsic Ricci tensor and Ricci scalar of the membrane, RACBC
′

is the

Riemann tensor of the full space-time and and nC is the unit normal to the membrane. eµA is

the matrix that relates coordinates along the membrane ({xµ}) to the full space-time coordinate

({XA}) as

xµ = eµA XA.

The following scalings with D apply to the various quantities that in equation (639) when eval-

uated on the interior solution F2

R ∼ O(D2), Rµν ∼ O(D),

K(in) ∼ O(D), K(in)
µν ∼ O(1),

eµAe
ν
BR

ACBC′ nCnC′ ∼ O(1),

(640)

(the derivation of these scalings use the fact that in the interior solution F2 the metric varies in

the ρ direction on length scale unity - rather than length scale 1/D (as is the case for the exterior

solution F1).
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The nature of these scalings allow us determine K in terms of intrinsic Riemann curvature

tensor by solving equation (639) order by order in
(

1
D

)
expansion.

K(in) =
√
R(in) +

1

2

RµνRµν
R

3
2

(in)

+O
(

1

D

)
,

K(in)
µν =

Rµν√
R

+O
(

1

D

)
.

(641)

Note that the last term in the first equation of (639) has not contributed to this order. In order

to evaluate this complicated term we would need the full details of the solution F2 developed in

the next section. As this term does not contribute, however, the computation we have presented

is identical to the computation of the counter term on a curved membrane surface embedded in

flat-Minkowski space 126.

Substituting the first equation of (641) in equation (638) we get the form of the counter term

action in terms of membrane’s intrinsic curvature:

Scounter = −8πS(in) =

∫ √
g(ind)

[√
R+

1

2

(RµνRµν
R 3

2

)
+O

(
1

D

)]
. (642)

In Appendix 4.11.8 we have demonstrated that the stress tensor

−8π

√
g(ind)T (in)

µν = g(ind)
µα

δScounter
δg

(ind)
αβ

 g(ind)
νβ ,

obtained from this action is given by

(−8π)T (in)
µν = −

( Rµν
2
√
R

)
+

(
g

(ind)
µν

2

)[√
R+

1

2

(RαβRαβ
R 3

2

)]
+O

(
1

D

)
. (643)

4.5 Membrane currents from Linearized Solutions: Detailed Con-

struction

In this detailed technical section we present an explicit construction of the functionals F1 and F2

defined in the previous section, separately for the scalar, vector and linearized gravity theories

((612), (618), (630)). As explained behind we construct these functionals in a power series

expansion in ρ− 1. Each Taylor series coefficient in this expansion is computed in an expansion

126Note that if we are considering the outside solution, the equation (639) is still applicable, but the

scaling rules described in equation (640) are not valid. In that case, K(in)
µν also scales like order O(D2) and

therefore the solution that we have presented in equation (641) is not valid for the space-time outside the
membrane.
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in 1/D.

The results of this section will be used in the next section to read off the current and stress

tensor carried by the large D gravitational membrane. The only aspect of the internal solution

that will be needed for this purpose is its action; as explained in the previous section the action

is given by a surface integral of the solution and its first normal derivative at the membrane. For

the purposes of computing this action we are thus specially interested in the first Taylor series

expansion coefficient of our solution.

As explained above we present our solutions in terms of a Taylor series in ρ − 1. Before

proceeding to the explicit constructions we thus need to pause to give a precise definition of the

function ρ and to briefly explore its properties.

4.5.1 A membrane adapted foliation of spacetime

Consider a function ρ defined in flat Minkowski space by the following conditions.

• ρ takes the value unity on the membrane world volume.

• ρ obeys the equation

�

(
1

ρD−3

)
= 0, (644)

everywhere outside the membrane.

• 1
ρD−3 decays at infinity and is purely outgoing there.

The conditions above uniquely define the function ρ to the exterior of the membrane at any D.
127 Once we have the solution for ρ to the exterior of the membrane, we define it in the interior

of the membrane by an analytic continuation. The interior solution ρ defined in this manner

continues to obey the equation (644) in the interior except at positions of potential singularities

of 1
ρD−3 . We will see below that such singularities - which are always present - do not occur at

distances � D
K away from the membrane and will play no role in our analysis below.

While the requirements above uniquely determine the function ρ in principle, an explicit

determination of ρ as a functional of the membrane world volume is a difficult job at finite

D. The situation in this regard is much better at large D. In this subsection we explicitly

determine the function ρ in a Taylor series expansion in distance away from the membrane 128.

The coefficients of this expansion are determined in a Taylor series expansion in 1
D . The key

127This may be understood as follows. Any solution of the second order differential equation (644) is
uniquely specified by two boundary conditions. In the present context the two boundary conditions are the
requirement that ρ = 1 on the membrane world volume and the requirement that the solution is outgoing
at infinity.

128This expansion is good at distances � D
K away from the membrane
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simplification at large D is that, in this limit, the function ρ turns out to be locally determined

by the shape of the membrane world volume (see later in this subsection for the precise version

of this statement). 129

Consider a point in flat spacetime with coordinates xM . To every such point we can associate

a point x̂µ on the membrane by the requirement that the straight line between xM and x̂µ is

collinear with the normal at x̂µ. Let s(xM ) denote the distance between xM and x̂µ(xM ) measured

along this straight line. In Appendix 4.11.9 we demonstrate that

ρ(x) = 1 + s(x)

(
K

D − 2
+

2

K

(
1

2K
∇̂2

(
K

D − 2

)
+

K2

2(D − 2)2
+
KMNK

µν

K

)
+O

(
1

D2

))
+ s(xµ)2

(
1

2K
∇̂2

(
K

D − 2

)
+

K2

2(D − 2)2
+
KµνK

µν

K
+O

(
1

D

))
+O

(
s3
)
,

(645)

where all intrinsic membrane quantities (like K, Kµν etc) are evaluated at the membrane point

x̂(x). The quantity ∇̂ represents the covariant derivative along the world volume of the membrane.
130

Later in this subsection will need to take derivatives of the function ρ. As we have expressed ρ

as a function of s, it is useful to first compute relevant derivatives of the function s. It is possible

129A related fact is that we do not need to use the boundary condition that ρ is outgoing at infinity in
order to determine ρ in the large D limit. If, in other words we were to define a new function ρ̃ by the
conditions listed in this subsection, with the one replacement that ρ̃ is required to be ingoing rather than
outgoing at infinity, then in the 1

D expansion ρ̃ would have the same Taylor series expansion around the
horizon as ρ. It turns out that the two functions ρ and ρ̃ differ only at order 1

DD
at distances of order

unity away from the black hole. The two functions begin to differ substantially from each other only at
distances of order D away from the membrane. All these remarks are, of course, tightly connected to the
properties of Greens functions at large D discussed in section 4.2.

130The structure of the equations we encounter in evaluating the function ρ(xM ) in the large D expansion
is as follows. At leading order in perturbation theory we are able to obtain the O(1) part of the coefficient
of s. At next leading order we find the O(1/D) piece in the coefficient of s together with the O(1) part
of the coefficient of s2. At third order we would find the O(1/D)2 contribution to the coefficient of s, the
O(1/D) contribution to the coefficient of s2 and the O(1) part of the coefficient of s3, and so on. In other
words if we specialize to the case that s(xµ) is of order 1/D then our perturbative expansion evaluates ρ
in an expansion in 1

D . In (645) have reported the result of our expansion upto second order. In the special
case that s ∼ O(1/D) we have

ρ(xµ)− 1 = s(xµ)
K(r̂µ)

D − 2
+(

2s(xµ)

K
+ s(xµ)2

)(
1

2K
∇̂2

(
K

D − 2

)
+

K2

2(D − 2)2
+
KMNK

MN

K

)
+O

(
1

(D − 2)3

)
,

(646)

where we have arranged terms so that the first and second lines in this (646) are respectively of order 1/D
and 1/D2
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to verify that

∂Ms = nM ,

�s = K + sKMNK
MN ,

+O(1/D) + s×O(1) + s2O(D),

(647)

where nM is the vector ∂Mρ rescaled to have unit norm. 131 Using these results it may be verified

that

N2 ≡ |∂ρ|2 ≡ ∂Mρ∂Mρ =

(
K

D − 2

)2

+
4

D − 2
(1 +Ks)

(
2

K

(
1

2K
∇̂2

(
K

D − 2

)
+

K2

2(D − 2)2
+
KMNK

MN

K

))
+O(1/D2) + s×O(1/D) + s2 ×O(1).

(648)

4.5.2 Membrane solutions of the minimally coupled scalar

In this subsection we will construct the solution (613) (see the previous section) both for ρ > 1

and ρ < 1. We obtain our solution in a Taylor series expansion in ρ− 1. The coefficients in this

expansion are obtained in a power series expansion in 1
D . 132

Recall that the solution (613) is labeled by the value φ0(x̂) of the scalar field on the membrane.

In the special case that φ0(x̂) is a constant α, it follows immediately that the solution of interest

is given by φa = α
ρD−3 (for ρ > 1) and φ = α (for ρ < 1). Note that in the exterior region φ

varies on the length scale 1/D in the direction normal to the membrane. If φ0(x̂) is a function

that varies on length scale unity, the relative slowness of this variation suggests the following.

Let α(x) in (649) be any smooth extension of the membrane function φ0(x̂) into the bulk. Then

φa(x) =
α(x)

ρD−3
(ρ ≥ 1),

φa(x) = α(x) (ρ ≤ 1),

(649)

131The second equation in (647) may be understood as follows. As ∂µs = nµ, it follows that �s equals
K of the constant ρ slice at that point. To the appropriate order in 1/D, K(xM ) can be re-expressed in
terms of curvature invariants at the corresponding x̂ point, yielding the second equation of (647)

132As in the previous subsection, at leading order in our expansion we find the coefficient of the constant
term in the Taylor series expansion at order unity in the expansion in 1

D . At next order we find the O(1/D)
correction to this constant together with the order unity (i.e leading) contribution to the coefficient of
(ρ − 1). We stop our expansion at this point. Had we gone to one higher order in the perturbative
expansion we would have obtained the O(1/D2) correction to the constant, the O(1/D) correction to the
coefficient of ρ−1 and the order unity correction to the coefficient of (ρ−1)2. In other words our expansion
reduces to an honest expansion in

(
1
D

)
provided (ρ− 1) is of order

(
1
D

)
.
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133 also solves the minimally coupled scalar equations; not exactly (as was the case when α was

constant), but at leading order in the expansion in 1
D . We will check below that this expectation

is indeed correct.

In order to proceed with our computation we need to make a particular choice for the extension

of the membrane valued function φ0(x̂) to the bulk function α(x). In the rest of this section we

choose, arbitrarily, to extend the function φ0(x̂) into the bulk in such a way that it obeys the

‘subsidiary condition’

dρ · dα = 0. (650)

This requirement together with the condition that α(x) agrees with φ0(x̂) on the membrane. 134

completely determines the bulk field in terms of the membrane valued field α(x).

φa(x) in (649) is a function of order unity which varies on length scale
(

1
D

)
. We would thus

expect that the action of � on a configuration of this sort should yield an expression of order

O(D2). Using (644), however, it is easily verified that

�φa(x) =
�α(x)

ρD−3
(ρ ≥ 1),

�φa(x) = �α(x) (ρ ≤ 1).

(651)

Recall from the introduction that even though the function α varies over length scale unity, �α is

generically of order O(D). It follows that the ansatz (649) satisfies the minimally coupled scalar

equation at order D2 - the order at which we might at first expect this equation to be violated,

Systematic procedure to correct the ansatz φa In order to proceed, we search for a

systematic correction of (649). The corrections should have the property that they are subleading

compared to φa(x) presented above when (ρ−1) is of order O
(

1
D

)
, and also that they are capable

of canceling the RHS of (651). An ansatz that obviously satisfies the first criterion and turns out

to satisfy the second is

φ(x) =

∑∞
n=0 αn(x)(ρ− 1)n

ρD−3
(ρ ≥ 1),

φ(x) =

∞∑
n=0

βn(x)(ρ− 1)n (ρ ≤ 1),

α0(x) = β0(x) = α(x),

(652)

133The subscript a in φa stands for ‘ansatz’; a is not a spacetime vector index.
134The subsidiary condition (650) is simply one convenient way of extending α away from the membrane

surface in a smooth, D independent way. The auxiliary condition (650) is convenient but essentially
arbitrary. We could, for example, also have used the condition α(xµ) = α(x̂µ(xµ)). This condition would
also have served our purposes in principle but proves less convenient for actually solving the problem in
practice.
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with

n · ∂αn = n · ∂βn = 0. (653)

Assuming the expansion (652) and focusing on the region ρ > 1, a straightforward algebraic

exercise demonstrates that

�φ(x) =
∞∑
n=1

An
(ρ− 1)n

ρD−3
,

An =

(
�αn + ((n+ 1)(D − 2)− 2(D − 3))

(dρ · .dρ) αn+1

ρ

+ (n+ 2)(n+ 1)(dρ · .dρ) αn+2

)
.

(654)

135

When ρ− 1 < 1, on the other hand, we find

�φ(x) =
∞∑
n=1

Bn(ρ− 1)n,

Bn =

(
�αn + ((n+ 1)(D − 2))

dρ.dραn+1

ρ
+ (n+ 2)(n+ 1)(dρ · .dρ)αn+2

)
.

(656)

The coefficients An and Bn in the expansion above can themselves be expanded in a power

series in (ρ− 1). Let

An =
∑
m

Amn (ρ− 1)m,

Bn =
∑
m

Bm
n (ρ− 1)m,

(657)

where

n.∇Amn = n.∇Bm
n = 0. (658)

The equations (657) and (658) define the expansion functions Amn and Bm
n . The expressions for

135We have used the fact that
(D − 2)∂µρ∂

µρ = ρ�ρ, (655)

(this is an expansion of the equation � 1
ρD−3 = 0) to simplify the RHS of (654).
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�φ can be rewritten in terms of these expansion coefficients as

�φ(x) =
∞∑
n=1

Ãn
(ρ− 1)n

ρD−3
, (ρ > 1)

�φ(x) =
∞∑
n=1

B̃n(ρ− 1)n, (ρ < 1)

Ãn =
n∑

m=0

Amn−m,

B̃n =

n∑
m=0

Bm
n−m,

n · ∂Ãn = n · ∂B̃n = 0.

(659)

The condition that φ is harmonic then simply reduces to the condition Ãn = B̃n = 0. We will

now demonstrate that these equations are very easily solved in a power series expansion in 1/D.

Explicit solution at low orders for ρ > 1 In this subsection we construct the functional

F1 defined in (612).

Let us consider the special case n = 0. Ã0 = 0 implies that A0 = 0 i.e. that

�α0 − (D − 4)
dρ · dρ
ρ

α1 + 2(dρ · dρ) α2 = 0.

This equation is practically solvable in the large D limit because the term proportional to α2 is

subleading at large D compared to the other terms in this equation. Ignoring this term in the

equation we obtain the equation

α1 =
ρ�α0

(D − 4)(dρ · dρ)
. (660)

More precisely α1 is given by (660) on the membrane and determined elsewhere by subsidiary

conditions n · ∂α1 = 0. 136

At any event we are most interested in α1 evaluated on membrane surface. The solution we

have presented for α1 on the membrane is given in terms of the spacetime d’Alembertian of α.

136 To see why this is so recall that (660) was obtained by equating the coefficient of (ρ − 1)0 in (659)
to zero. Clearly (660) is not the unique solution to this condition; if we add (ρ − 1)G to the solution for
α1 presented in (660) the coefficient of (ρ − 1)0 in (659) continues to vanish. In other words (660) is too
strong; the correct statement is

α1 =
ρ�α0

(D − 4)(dρ · dρ)
+O(ρ− 1). (661)

The ambiguity of extending α1 off the membrane is then resolved by the condition n.∇α1 = 0.
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This result may be reworded in terms of the membrane d’Alembertian acting on the membrane

valued function φ0 using

�α = �̃(φ0)− ∇̂K · ∇̂φ0

K
+O

(
1

D

)
, (662)

(here � in (660) is the full spacetime d’Alembertian operator, �̃ is the d’Alembertian on the

membrane world volume and (662) is derived using the subsidiary condition n · ∂α = 0). The

dot product in the last term on the RHS of (662) is taken in the membrane world volume metric

ΠMN = ηMN − nMnN . Note that the second term on the RHS of (662) is of order unity in

the 1/D expansion, and so is subleading compared to the first term in that equation. On the

membrane (i.e. on the surface ρ = 1 and at leading order

�α = �̃φ0.

Using (648) it then follows that on the membrane surface ρ = 1

n · ∂φ =

[
K

D − 2

] [
−(D − 3)α+

(
D

K2

)
�α0(xµ)

]
=−Kα0

(
1− 1

D

)
+
�α0(xµ)

K
+O

(
1

D

)
=−Kα

(
1− 1

D

)
+
�̃(φ0)

K
+O

(
1

D

)
.

(663)

Recall from the introduction that �α0 and K are both of order D. The RHS of (663) has terms

of order D and order unity.

The procedure outlined here can be generalized to all orders. The equation Ã1 = 0 will now

allow us to determine α2 to leading order. Plugging this result into the equation Ã0 = 0 then

allows us to determine the first subleading correction to α1 in the 1/D expansion. In a similar

manner the equation Ã2 = 0 allows us to determine α3 to leading order; which in turn permits

the determination of α2 to first subleading and α1 to second subleading order in 1/D, and so on.

Explicit solution at low orders when ρ < 1 In this subsection we construct the functional

F2 defined in (612) at lowest nontrivial order. In order to do this we focus on the special case

n = 0. B̃0 = 0 implies that B0 = 0 i.e. that

�β0 + (D − 2)
(dρ · dρ)β1

ρ
+ (n+ 2)(n+ 1) (dρ · dρ)β2 = 0.
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Once again the term proportional to β2 is subleading at large D compared to the other terms in

this equation. It follows that

β1 = − ρ�α0

(D − 2)(dρ · dρ)
. (664)

Once again (664) is reliable only on the membrane; β1 is extended off the membrane using the

condition n · ∂β1 = 0.

We are particularly interested in this coefficient evaluated on the membrane surface. Using

(662) it follows that on the membrane

n · ∂φ|ρ=1 =− �α0(xµ)

K
+O

(
1

D

)
=−

(
1

D

)[
�̃(φ0)− ∇̂K · ∇̂φ0

K

]
+O

(
1

D

)

=− ∇̂µ
(
∇̂µφ0

K

)
+O

(
1

D

)
.

(665)

According to (583), the contribution of the internal solution to the current on the membrane

is given by the spacetime source

S =
(√

dρ · dρ
)
δ(ρ− 1)(n · ∂φin)

= −
(√

dρ · dρ
)
δ(ρ− 1)∇̂µ

(
∇̂µφ
K

)
.

(666)

This current can be derived from the variation of the action for the internal solution w.r.t. φ0

using the equation (587) once we identify

Sin =
1

2

∫
(∇̂φ0)2

K
, (667)

(667) can also be obtained from (589) using (665).

Current Using the results of the previous two subsubsections it is easily verified that

n · ∂φ|out − n · ∂φ|in = −Kα0(xµ)

(
1− 1

D

)
+

(
2

K

)
�α0(xµ).

In other words our field φ obeys the equation (583) (which we repeat here for convenience)

�φ =
[(√

dρ · dρ
)
δ(ρ− 1)

]
J , (668)
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J = −Kφ0

(
1− 1

D

)
+

2

K

(
�̃(φ0)− ∇̂K · ∇̂φ0

K

)
. (669)

4.5.3 Membrane solutions of the Maxwell Equations

We will now imitate the analysis of the previous subsection to demonstrate that the most general

solution of the Maxwell equations is parametrized by a conserved current living on the membrane,

and explicitly construct the solution generated by any particular current.

ρ > 1 In this subsubsection we find the solution F1[A0] (see (618)). We will find it convenient

to slightly change notation as compared to the previous section; in particular the data for our

solution - referred to as (A0)µ in the previous section will be taken to be G
(0)
M below. As we

explain in detail below, G
(0)
M is a bulk spacetime gauge field whose restriction onto the membrane

equals (A0)µ of the previous section.

Following previous subsections we assume that the gauge field AA can be expanded outside

the membrane as

AA = ρ−(D−3)GA,

GA =
∞∑
k=0

(ρ− 1)kG
(k)
A ,

(670)

where each of G
(k)
A admits further expansion in

(
1
D

)
.

As in the previous subsection, the leading term G
(0)
B in this expansion will turn out to be the

data of our solution (which we will later be able to trade for a conserved current). Below we will

outline the procedure that determines all the remaining coefficient functions in terms of G
(0)
A .

In order to set up the problem we work in the gauge AAnA = 0. Of course this is simply a

convenient device; the gauge invariant content in our expansion lies in the field strengths. This

particular gauge is convenient as our problem has a special oneform - ∂ρ - at each point in

spacetime. By using this oneform to fix gauge we obtain a parametrization that keeps all the

symmetries of the physical problem manifest.

Our gauge condition implies

nAGA = 0, (671)

nAG
(k)
A = 0, for every k (672)

where nA is the unit normal to the ρ = constant surfaces, defined by

∂Aρ = N nA, N =
√

(∂Aρ)(∂Aρ),
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(recall that N was evaluated in (648) and equals K
D−2 to leading order). As in the previous

subsection, we impose a subsidiary condition on the coefficient functions GA to give our expansion

meaning. The condition we impose is

ΠA
C(n.∂)G

(k)

A = 0, for every k (673)

where

ΠAB = ηAB − nAnB.

From (671) it follows that

nA(n.∂)GA = −GA
[
(n.∂)nA

]
. (674)

Similarly from (672) it follows that

nA(n.∂)G
(k)
A = −G(k)

A

[
(n.∂)nA

]
, (675)

(the last two equations are consistent because of (672))137.

Our discussion above has been presented in a particular gauge. However the functions GA

actually have a simple gauge invariant significance as we now explain. Note that

FAB = ∂A(ρ−(D−3)GB)− ∂B(ρ−(D−3)GA)

= (∂Aρ
−(D−3))GB − (∂Bρ

−(D−3))GA + ρ−(D−3)(∂AGB − ∂BGA).

Now using

−nA∂BGA = −∂B(nAG
A) + (∂BnA)GA

= ηCB(∂CnA)GA

=
(
ΠC
B + nCnB

)
(∂CnA)GA

= KBAG
A + nBG

A(n.∂)nA

= KA
BGA − nBnA(n.∂)GA, (676)

where the projector ΠAB = ηAB − nAnB.

137Here all lowering, raising and contraction of indices have been done using the flat metric ηAB .
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It follows that

nAF
A
B =

−N(D − 3)GB
ρD−2

+
1

ρD−3

[
(n.∂)GB − nA∂BGA

]
=
−(D − 3)NGB

ρD−2
+

1

ρD−3
KA
BGA.

(677)

Here in the last line we have used the subsidiary condition (673).

Moreover

ΠA′
A FA′B′Π

B′
B =

(
1

ρD−3

)
ΠA′
A (∂A′GB′ − ∂B′GA′) ΠB′

B . (678)

Equations (676) (and in particular (677) and (678)) are presentations of the gauge invariant

significance of the functions GA.

We now proceed to use the Maxwell equations to determine GkA (for k ≥ 1) in terms of G
(0)
A .

Our analysis proceeds in analogy with that of the previous subsection (scalar field) with one

crucial difference. While there are (D− 1) unknown functions GA we have D Maxwell equations.

In order to solve for GA we will use only the (D− 1) dynamical Maxwell equations (615). 138 In

Appendix 4.11.11 we have presented all the algebraic details of our computation of GA. Here we

simply present our results.

Let us define

F
(m)
AB = ∂AG

(m)
B − ∂BG(m)

A . (679)

At first subleading order in 1
D we find

G
(1)
B =

ΠC
B ∂AF

(0)
AC

2(D − 3)N2 −NK +O
(

1

D

)

=

(
ΠC
B ∂AF

(0)
AC

NK

)
+O

(
1

D

)
.

(680)

Here, in the second line, we have used the fact that K = DN +O(1).

Note that ΠC
B ∂AF

(0)
AC could be re-expressed completely in terms of quantities and covariant

138As we have explained in detail in the previous section, the remaining constraint equation (617) con-

strains the data G
(0)
A (which we referred to as (A0)µ in the previous section) that parametrizes general

solutions of the Maxwell equation.

259



derivatives that are defined only along the membrane.

ΠC
B ∂AF

(0)
AC = ΠC

B∂
A
[
nAn

A′F
(0)
A′C − nCnA

′
F

(0)
A′A + ΠA′

A F
(0)
A′C′Π

C′
C

]
= K nAF

(0)
ACΠC

B + ΠC
B∂

A
[
ΠA′
A F

(0)
A′C′Π

C′
C

]
+O (1)

= K nA(∂CG
(0)
A )ΠC

B + ΠC
B∂

A
[
ΠA′
A F

(0)
A′C′Π

C′
C

]
+O (1)

= K KA
BG

(0)
A + ΠC

B∂
A
[
ΠA′
A F

(0)
A′C′Π

C′
C

]
+O (1) .

(681)

In (681) all free indices are projected on the membrane and also all contracted indices and

derivatives run along the membrane directions only. Similarly, because of our gauge condition,

G
(k)
A for every value of k could also be considered as a vector field (G

(k)
µ ) defined only along the

membrane. Therefore It follows that G
(1)
µ - the first Taylor coefficient in the expansion of the

gauge field off the membrane but viewed as a vector field along the membrane - can be rewritten

entirely in terms of intrinsic quantities on the membrane as

G(1)
µ =

(
1

N

)(
Kν
µG

(0)
ν +

∇̂νF̂νµ
K

)
+O

(
1

D

)
, (682)

where F̂µν is the field strength along the surface and ∇̂µ is the covariant derivative on the

membrane surface, with respect to the intrinsic metric of the membrane. Also all raising lowering

and contraction of indices have been done using the intrinsic metric of the membrane as embedded

in flat space.

Restricting attention to the surface ρ = 1 we have in particular

nAF
A
B|ρ=1 = J

(out)
B = −(D − 3)NG

(0)
B +NG

(1)
B +KA

BG
(0)
A . (683)

Using the same argument as given above and substituting equations (682) in equation (683) we

get the outside current as vector field along the membrane (upto first subleading order)

J (out)
µ = −(D − 3)NG(0)

µ +
∇̂νF̂νµ
K

+ 2Kν
µG

(0)
ν +O

(
1

D

)
, (684)

where F̂µν is the field strength along the surface

As explained in the previous section, the constraint Maxwell equation asserts that

∇̂µJµ(out) = 0,

(where ∇̂µ is the covariant derivative on the membrane surface) yielding an effective constraint

on the data G
(0)
µ of the solution.
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ρ < 1 In this subsection we proceed to construct the functional F2 defined in (618). As in the

previous subsection, the data for this solution will be taken to be the spacetime gauge field G̃
(0)
A

whose restriction onto the membrane defines A0 of the previous section.

In order to proceed with our computation we proceed assuming that the solution in the region

ρ < 1 can be expanded as

G̃A =

∞∑
k=0

(ρ− 1)kG̃
(k)
A . (685)

In order that the gauge field is continuous across the membrane we will require that the

restriction of G̃
(0)
B to the surface ρ = 1 agree with the restriction of G

(0)
B on the same surface. As

in the previous subsection we will use Maxwell’s equations to determine the higher order terms

in the expansion of the gauge field in terms of G0
A. As in the previous subsection we adopt the

gauge nAG̃A = 0 which implies that .

nAG̃
(k)
A = 0, for every k. (686)

As in the previous subsubsection we also demand that

ΠC
Bn

A∂AG̃
(k)
C = 0.

Again as in the previous subsubsection it follows that

(n.∂)G̃
(k)
A = −nA G̃

(k)
B

[
(n · ∂)nB

]
.

The quantities G̃
(k)
A have the following gauge invariant significance:

F̃AB = ∂AG̃B − ∂BG̃A,

F̃AB =

∞∑
k=0

k(ρ− 1)k−1N
[
nAG̃

(k)
B − nBG̃

(k)
A

]
+

∞∑
k=0

(ρ− 1)k
[
∂AG̃

(k)
B − ∂BG̃

(k)
A

]
.

(687)

Solving the equation (∂AF̃
AB = 0) at first subleading order we find (see Appendix 4.11.11)

G̃
(1)
B = −ΠC

B ∂AF
(0)
AC

NK
+O

(
1

D

)

= −
(

1

N

)KA
BG

(0)
A +

ΠC
B∂

A
[
ΠA′
A F

(0)
A′C′Π

C′
C

]
K

+O
(

1

D

)
,

(688)
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where

F̃
(m)
AB = ∂AG̃

(m)
B − ∂BG̃(m)

A , KAB = Extrinsic curvature, K = ηABKAB.

In the last line we have used equation (681).

As in previous subsection we could also express G(1) as a vector field defined intrinsically on

the membrane

G̃(1)
µ = −∇̂

νF̂νµ
NK

−
Kν
µG

(0)
ν

N
+O

(
1

D

)
, (689)

where F̂µν is the field strength along the surface and ∇̂µ is the covariant derivative on the

membrane surface, with respect to the intrinsic metric of the membrane. Also all raising lowering

and contraction of indices have been done using the intrinsic metric of the membrane as embedded

in flat space.

(689) is our result for the first Taylor coefficient of the internal solution expressed entirely in

terms of the gauge field G
(0)
A restricted to the membrane (which we denote here as G

(0)
µ ).

According to (595) and (624) we have

J
(in)
B = nAF̃AB|ρ=1 = NG̃

(1)
B +KA

BG
(0)
A . (690)

Substituting equation (688) in equation (690) to first subleading order we find

J
(in)
B = −

ΠC
B∂

A
[
ΠA′
A F

(0)
A′C′Π

C′
C

]
K

+O
(

1

D

)
= −ΠC

B ΠA′′A ∂A

[
ΠA′
A′′F

(0)
A′C′Π

C′
C

K

]
+O

(
1

D

)
.

(691)

It follows from (691) and (594) that the contribution of the internal solution to the current on

the membrane is given by the spacetime source

J inB = −
(√
∇ρ · ∇ρ

)
δ(ρ− 1)J inB

=
(√
∇ρ · ∇ρ

)
δ(ρ− 1)

[
ΠC
B ΠA′′A ∂A

(
ΠA′
A′′F

(0)
A′C′Π

C′
C

K

)
+O

(
1

D

)]
.

(692)

As before we could also view the current as a vector defined only along the membrane.

J (in)
µ = −∇̂

νFνµ
K

+O
(

1

D

)
. (693)
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This current is consistent with (596) if we define

Sint = −1

4

∫
FµνF

µν

K
, (694)

where the integration is now taken only over the membrane world volume. It may be verified

using (597) and (688) that (694) is indeed the action of the interior solution. As explained in the

previous section, the fact that the interior current is identically conserved follows immediately

from the gauge invariance of the action (694).

Membrane Current Let us summarize. We have constructed the most general decaying

solution to the linearized Maxwell equations in the exterior neighbourhood of a membrane sur-

face. This solution is parametrized by one vector field G
(0)
B on the membrane world volume, or

equivalently a conserved current on the membrane world volume. The conserved current is given

in terms of G
(0)
B by the formula

JB = JB(out) − JB(in)

=
[
−(D − 3)NG

(0)
B +NG

(1)
B +KA

BG
(0)
A

]
−
[
NG̃

(1)
B +KA

BG
(0)
A

]
= −(D − 3)NG

(0)
B +N

[
G

(1)
B − G̃

(1)
B

]
= −(D − 3)NG

(0)
B +

(
2 ΠC

B

K

)
∂A
[
∂AG

(0)
C − ∂CG

(0)
A

]
+O

(
1

D

)
+O

(
1

D

)
.

(695)

Expressed as current as a vector intrinsic to the membrane, we find

Jµ = Jµ(out) − Jµ(in)

=
[
−(D − 3)NG(0)

µ +NG(1)
µ +KA

BG
(0)
µ

]
−
[
NG̃(1)

µ +Kν
µG

(0)
ν

]
= −(D − 3)NG(0)

µ +N
[
G(1)
µ − G̃(1)

µ

]
= −(D − 3)NG(0)

µ +
2∇̂νFνµ
K

+O
(

1

D

)
.

(696)
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4.5.4 Membrane solutions of the linearized Einstein Equations

In this subsection we will find the most general solution of the Einstein equation linearized around

flat space-time

gAB = ηAB + hAB,

RAB =
1

2

(
∂C∂Ah

C
B + ∂C∂Bh

C
A −�hAB − ∂A∂BhCC

)
+O(h2) = 0.

(697)

As explained in the previous section we proceed by first solving the dynamical Einstein equa-

tions (628) to determine the functionals F1 and F2 defined in (630). We construct these two

functionals - to lowest nontrivial order - in the next two subsubsections. As in the previous

subsection, in this subsubsection we find it convenient to use the bulk metrics ηMN + h
(0)
MN and

ηMN + h̃
(0)
MN (see below) as the data in terms of which we write our solutions. The restrictions

of these metrics to the membrane defines the intrinsic metric g
(ind)
µν used as the data for the

functionals F1 and F2 used in (630).

As explained in the previous section, once we have solved the dynamical equations, the con-

straint equation is automatic for the inner solution. For the outer solution it is simply the

requirement that the Brown York stress tensor is conserved on the membrane approached from

the outside. Below we will find explicit expressions for the Brown York Stress tensor on the

membrane approached from both the outside and the inside in our solutions.

ρ > 1: Let us first study the external region ρ > 1. In analogy with previous subsections the

solution in this region takes the form

hAB =

[
ρ−(D−3)

∞∑
m=0

(ρ− 1)mh
(m)
AB

]
. (698)

As in the previous subsection we adopt a gauge condition adapted to the foliation of spacetime

in slices of constant ρ

nAh
(m)
AB = 0. (699)

As in the previous subsection we impose the subsidiary conditions

ΠC′
B ΠC

A (n.∂)h
(m)
CC′ = 0. (700)

on the expansion coefficients of (698). These conditions together with the gauge conditions (671)

make (698) a well defined expansion of the metric function.

As in the previous subsection the functions h
(0)
AB may be thought of as the basic data of the

solutions. The dynamical Einstein equations determine the higher order coefficients in (698) in
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terms of h
(0)
AB. We present the details for how this works in Appendix 4.11.12. To first order in

the expansion in (ρ− 1) and at leading order in (1/D) we find

h
(1)
AB =−ΠC′

B ΠC
A

[
∂C∂

Mh
(0)
MC′ + ∂C′∂

Mh
(0)
MC −�h

(0)
CC′ + (D − 3)Nh(0)KCC′ + ∂C∂C′h

(0)

2(D − 3)N2 −NK

]

+O
(

1

D

)
=−ΠC′

B ΠC
A

[
∂C∂

Mh
(0)
MC′ + ∂C′∂

Mh
(0)
MC −�h

(0)
CC′ + (D − 3)Nh(0)KCC′ + ∂C∂C′h

(0)

NK

]

+O
(

1

D

)
,

where h(0) = ηABh
(0)
AB.

(701)

As explained in the previous section, (see around (636)), the Einstein constraint equation is

simply the condition that the Brown York stress tensor

T
(out)
AB = K(out)

AB −K(out) pAB, (702)

is conserved on the membrane, w.r.t the induced metric on the membrane. Here KAB is the

extrinsic curvature of the ρ = 1 slice, K is its trace, pAB is the projector on the ρ = 1 slice.

At leading nontrivial order the stress tensor evaluated at ρ = 1 turns out to be

TAB(out) =
(
K̃AB − K̃Π̃AB

)
+
N

2

(
hAB(1) − h(1)ΠAB

)
− N

2
(D − 3)

(
hAB(0) − h(0)ΠAB

)
.

(703)

Here K̃AB and Π̃AB denote the extrinsic curvature and the projector respectively on the mem-

brane embedded in the metric
[
ηAB + h

(0)
AB

]
and K̃ is the trace of K̃AB.

Π̃AB = ηAB − nAnB − hAB(0) ,

K̃AB = KAB − 1

2

[
KACh

CB
(0) +KB

C h
CA
(0)

]
,

K̃ = Π̃ABK̃
AB =

[
ΠAB + h

(0)
AB

]
K̃AB = K +O(h2),

(704)

where KAB and ΠAB are respectively the extrinsic curvature and projectors on the ρ = 1 slice as

embedded in flat Minkowski space-time, K ≡ ηABKAB.

As explained in the previous section, this ‘internal’ stress tensor can be rewritten more ele-

gantly in terms of purely intrinsic geometrical quantities on the membrane (see (643)). The less

elegant expression (711) will, however, prove practically more useful to us in the next subsection,

265



as the cancellations with the outer stress tensor (703) are more manifest in this form.

Plugging (701) into (703) yields an expression for the Brown York stress tensor purely in

terms of hAB(0) . The requirement that this stress tensor is conserved on the membrane yields an

effective constraint on hAB(0) . 139

ρ < 1: As above, in the interior of the membrane we expand the metric as

Bulk metric =gAB = ηAB + h̃AB,

h̃AB =

[ ∞∑
m=0

(ρ− 1)mh̃
(m)
AB

]
.

(706)

As above we use the gauge condition

nAh̃
(m)
AB = 0. (707)

As above we require the coefficients of the expansion (706) to obey the additional subsidiary

constraints

ΠC′
B ΠC

A (n.∂)h̃
(m)
CC′ = 0. (708)

As above h0
AB may be regarded as data of the solutions. The dynamical Einstein equations

determine all other terms in the expansion in terms of data. At leading order we find (see

Appendix 4.11.12 for details)

h̃
(1)
AB = ΠC′

B ΠC
A

[
∂C̄∂

Mh
(0)
MC′ + ∂C′∂

Mh
(0)
MC −�h

(0)
CC′ − ∂C∂C′h(0)

NK

]
+O

(
1

D

)
. (709)

As explained in the previous section, the momentum constraint equations in the interior of

139 Note that the stress tensor (703) is non vanishing even when hAB = 0, i.e. when the spacetime metric
is flat. The conservation of this zero order stress tensor w.r.t. the zero order metric (i.e. the induced
metric on the surface ρ = 1 viewed as a submanifold of the flat bulk spacetime with metric ηAB .) on
the membrane is a trivial identity. The conservation of (703), when expanded to first order in hAB is
nontrivial. If we expand the stress tensor (703) as TAB = T 0

AB + T 1
AB and the world volume metric on

the membrane as PAB = P 0
AB + P 1

AB (where superscripts denote the order of expansion in hAB) then the
conservation equation, expanded to first order takes the schematic form

(∇1)MT 0
MN + (∇0)MT 1

MN = 0 (705)

(here we have expanded the covariant derivative as ∇ = ∇0 +∇1; as above superscripts keep track of the
order of hAB and have used the fact that (∇0)MT 0

MN vanishes identically.) Note that the equation (705)
asserts that T 1

MN is not quite a conserved stress tensor on the membrane. The lack of perfect conservation
of T 1

MN is a direct consequence of the nonvanishing of T 0
MN .
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the membrane assert the conservation of the stress tensor

8πTAB(in) = KAB(in) −K(in) pAB(in), (710)

where KAB(in) and pAB(in) are the extrinsic curvature and the projector on the membrane embedded

in the metric
[
ηAB + h̃AB

]
. K(in) is the trace of KAB(in). Using the expansion equation (706) we

find

TAB(in) =
(
K̃AB − K̃Π̃AB

)
+
N

2

(
h̃AB(1) − h̃(1)ΠAB

)
. (711)

As described before, here K̃AB and Π̃AB denote the extrinsic curvature and the projector re-

spectively on the membrane embedded in the metric
[
ηAB + h

(0)
AB

]
and K̃ is the trace of K̃AB.

Π̃AB = ηAB − nAnB − hAB(0) ,

K̃AB = KAB − 1

2

[
KACh

CB
(0) +KB

C h
CA
(0)

]
,

K̃ = Π̃ABK̃
AB =

[
ΠAB + h

(0)
AB

]
K̃AB = K +O(h2).

(712)

The conserved membrane stress tensor The full membrane stress tensor is given by

8πTAB = −
(
TAB(out) − TAB(in)

)
=

N

2
(D − 3)

(
hAB(0) − h(0)ΠAB

)
− N

2

[
hAB(1) − h̃AB(1) − (h(1) − h̃(1))ΠAB

]
.

(713)

Now from equation (701) and (709) it follows that

h̃
(1)
AB = −h(1)

AB −
(
D

K

)
h(0)KAB +O

(
1

D

)
.

Substituting we find

8πTAB =
N

2
(D − 3)

(
hAB(0) − h(0)ΠAB

)
− K

D

[
hAB(1) − h(1)ΠAB

]
+

(
h(0)

2

)
KAB +O

(
1

D

)
.

(714)
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In the next section we shall see that for our particular solution h(0) ∼ O
(

1
D

)
. In that case the

expression for the final stress tensor simplifies further and we find.

8πTAB =
N

2
(D − 3)

(
hAB(0) − h(0)ΠAB

)
−
(
K

D

)[
hAB(1) − h(1)ΠAB

]
+O

(
1

D

)
.

(715)

4.6 The Charge Current and Stress Tensor for the large D black

hole membrane

4.6.1 Review of the nonlinear large D charged black hole membrane solutions

As reviewed in some detail in the introduction, the authors of [1, 63, 66] found a class of asymp-

totically flat solutions to the Einstein Maxwell equations. The solutions obtained in [1, 63, 66]

are in one to one correspondence with the configuration (shape, velocity and charge density) of a

membrane in flat space, and describe the dynamics of black holes in a large number of dimensions

at time and distance scales of order unity.

The spacetime metric GMN and gauge field aM of [1, 63, 66] take the schematic form

GMN = ηMN + gMN , gMN =

∞∑
n=1

GnMN (ρ− 1)

ρn(D−3)
,

aN =
∞∑
n=1

AnN (ρ− 1)

ρn(D−3)
.

(716)

The functions GnMN (ρ−1) and AnN (ρ−1) each admit a power series expansion in ρ−1. Schemat-

ically

GnMN (ρ− 1) =
∞∑
k=0

GnkMN (ρ− 1)k, AnN (ρ− 1) =
∞∑
k=0

AnkN (ρ− 1)k. (717)

The coefficients GnkMN and AnkMN are all finite in the limit D → ∞ and each themselves admit a

power series expansion in 1
D , whose coefficients are various derivatives of the shape, velocity and

charge density fields of the membrane.

The authors of [1, 63, 66] have developed a systematic perturbative procedure to determine

the coefficients GnkMN and AnkM . The mth iteration of the perturbative procedure of [1, 63, 66]

simultaneously determines the coefficients GnkMN AnkN upto order 1
Dm−k

(simultaneously for all n).

It follows that the mth iteration allows systematic determination of the metric and gauge field

to order 1
Dm for those values of ρ for which ρ − 1 is of order 1

D . This was, in fact, the method

adopted in [1, 63, 66]. The authors of those papers work with a scaled coordinate R = D(ρ− 1)
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and then, in the mth order of perturbation theory, systematically determine the gauge field

and metric to order 1/Dm. The fact that the authors of [1, 63, 66] found solutions of the full

nonlinear Einstein Maxwell equations is reflected in the fact that the perturbative procedure

works uniformly at every value of n in the expansion (716).

Note that (717) reduces to the expansions (698)and (670) when (716) is truncated to the term

with n = 1. This observation makes perfect sense; the terms in (716) with n ≥ 2 are all highly

subdominant compared to the leading term when ρ−1� 1
D . As explained in the introduction this

is precisely the matching region in which we expect the general nonlinear solution of [1, 63, 66]

to reduce to a particular linearized solution of the Einstein Maxwell equations. In fact the

attentive reader will have noticed that the structure of the perturbative expansion described in

the previous paragraph is precisely the structure employed to obtain the general solution to the

linearized Einstein Maxwell solutions in section 4.5. In other words the solution of [1, 63, 66] is

guaranteed to reduce to a special case of the construction of section 4.5 when we truncate (716)

to n = 1.

In this section we will see how this works in detail in a particular example. Our starting point

is the first order solution of the perturbative procedure of [1, 63, 66] presented in [63]. 140 In the

rest of this section we massage the explicit solution of the chapter 3 to put it in the form (716)

and (717). We then drop all terms with n ≥ 2 in this expansion, identify the effective solution

of section 4.5 that we are left with and thereby read off the membrane charge current and stress

tensor of the solution.

In the rest of this subsection we simply recall the final result for the membrane metric and

gauge field determined in chapter 3 in some detail. This solution is parametrized by the shape of

a metric in flat space, a velocity field uM on the membrane and a charge density field Q on the

membrane As in earlier sections in this chapter, the symbols nM denotes the normal of the flat

space membrane while KNM is its extrinsic curvature and K is the trace of KMN in flat space.

Like in chapter 3 we define

OM = nM − uM .

In terms of all these quantities the metric and gauge field, presented in the previous chapter

140The results presented in 4.5 have since been generalized to one higher order in [66] for the special
case of uncharged membranes. As this generalization has not yet been performed for the case of charged
membranes, in this chapter we restrict our attention to metrics and gauge fields at first order in the
derivative expansion, leaving the extension to second order results to future work.
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is given by

GMN = ηMN + gMN

gMN = F (ρ)OMON + g
(T )
MN + 2O(Mg

(V )
N) + g(S)OMON + g(Tr)PMN ,

√
16π aM =

√
2Q ρ−(D−3) OM +

(
a(S)OM + a

(V )
M

)
,

where

PMN = ηMN −OMnN −ONnM +OMON ,

PMNg
(V )
N = PMNa

(V )
N = 0, PMNg

(T )
MQ = 0, PMNg

(T )
MN = 0,

(718)

The factor of
√

16π in the third line of (718) is a consequence of the differences in the conventions

used for the gauge field in chapter 3 and this chapter (see around (879)). The various free functions

appearing in equations (718) are given by

a
(V )
M = −

(√
2

D

)
Qρ−D

[
D(ρ− 1)V

(1)
M −Q2[1 + log(1− ρ−DQ2)]V

(2)
M

]
+O

(
1

D

)2

,

a(S) =

(
1

D

)[√
2 Q D(ρ− 1) ρ−DS(1) + 2

√
2

(
Q3

1−Q2

)
ρ−D ΥA(ρ) S(2)

]
+O

(
1

D

)2

.

(719)

g
(T )
MN =

(
2

D

)
log(1−Q2ρ−D) τMN +O

(
1

D

)2

,

g
(V )
M =

(
1

D

)[
Q2
[
(F (ρ)− ρ−(D−3)) + (F (ρ)− 1) log(1−Q2ρ−D)

]
V

(2)
M

−D(ρ− 1)F (ρ) V
(1)
M

]
+O

(
1

D

)2

.

(720)

g(S) = −
√

2Q ρ−Da(S) +

(
1

D

)[
ρ−(D−3) − F (ρ)

]
+

(
2

D

)
ρ−D

[
Q2 D(ρ− 1) S(1) + ΥH(ρ)S(2)

]
+O

(
1

D

)2

,

g(Tr) = O
(

1

D

)3

,

(721)

The different functions and the derivative structures that appear in equations (719), (720)
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and (721) are defined as141

S(1) =
(
D
K2

)
∇̄2Q

Scalars

S(2) =
(
D
K

) [
uAuBKAB − (u·∂)K

K

]
V

(1)
M =

(
D
K

) [ ∇̄2uN
K

+ uCKCN

]
PN
M

Vectors

V
(2)
M =

(
D
K

) [
∂NK
K
− (u · ∂)uN

]
PN
M

Tensor τMN = PQ1

M

(
D
K

) [∂Q1
OQ2

+∂Q2
OQ1

2
− ηQ1Q2

(
∂·O
D−2

)]
PQ2

N

Table 5: A listing of the ‘first order’ quantities that appear in the formula for the metric
and gauge field, taken from chapter 3.

F (ρ) =
[
(1 +Q2)ρ−(D−3) −Q2ρ−2(D−3)

]
,

ΥA(ρ) =

∫ D(ρ−1)

0
dx log(1−Q2e−x),

ΥH(ρ) =

[
(ρD −Q2) log(1−Q2ρ−D)− (1−Q2) log(1−Q2) +Q2

(
1 +Q2

1−Q2

)
ΥA(ρ)

]
.

∇̄2Q = ΠA
B∂A

[
ΠBC∂CQ

]
, ∇̄2uA = ΠAA′Π

B
C∂B

[
ΠCC′ΠA′A′′(∂C′uA′′)

]
.

(722)

4.6.2 The Membrane Charge Current

From equation (719) it is not difficult to read off the corresponding value of A1
M (see (716)).

Recall that A1
M is guaranteed to be a solution for the linearized Maxwell equations around flat

space. We find

√
16πA1

B ≡MB =
∞∑
k=0

(ρ− 1)kM
(k)
B , (723)

141Here our basis for the independent boundary data ( the derivatives of velocity and the shape of the
membrane) is little different from what has been used in the previous chapter. The basis we have used
turns out to be more convenient for our analysis later in this chapter.
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with

M
(0)
B =

√
2Q OB +

(√
2

D

)
Q3

(
D

K

)(
∂AK

K
− (u · ∂)uA

)
PAB +O

(
1

D

)2

,

M
(1)
B =

√
2

(
D

K

)(∇̄2Q

K

)
OB −

√
2

(
D

K

)[∇̄2uA
K

+ uCKCA

]
PAB +O

(
1

D

)
,

where OB = nB − uB, PAB = ηAB − nAnB + uAuB = ΠAB + uAuB,

∇̄2Q = ΠA
B∂A

[
ΠBC∂CQ

]
, ∇̄2uA = ΠAA′Π

B
C∂B

[
ΠCC′ΠA′A′′(∂C′uA′′)

]
,

(724)

(for notational convenience we have renamed A1k
A of (717) as M

(k)
A ; we have dropped the super-

script unity as we will only concern ourselves with the linearized part of the solution from now

on).

As we have emphasized above, the configuration (723) is guaranteed to be a linearized solution

of the form presented in subsection 4.5.3. As we have explained around that subsection, every such

solution may is associated with a membrane current. This current is given by JM = J
(out)
M −J (in)

M

where J
(out)
M is simply nNFNM where FNM is the field strength evaluated on the solution (723)

above and J
(in)
M is given by (691) where the field strength in that expression is once again evaluated

on the configuration (723) using the solution (723). The algebra required to evaluate these two

components of the current is straightforward; in Appendix 4.11.13 we demonstrate that

√
16πJoutB =

√
2

[
Q

(
K +

∇̄2K

K2
− 2K

D

)
+ (u · ∂)Q−

(∇̄2Q+Q(u · ∂)K

K

)
+Q(uCuC

′
KCC′)

]
uB −

√
2Q

[(
∂AQ

Q

)
+ (u · ∂)uA

]
PAB +O

(
1

D

)
,

(725)

while

√
16πJ

(in)
B =

√
2

[(∇̄2Q

K
+Q uCuC

′
KCC′

)
uB +Q PAB

(∇̄2uA
K

)
−Q KC

AuC

]
+O

(
1

D

)
.

(726)

Here we have used the following short-hand notation for derivatives projected along the mem-

brane.

∇̄2K ≡ ΠAB∂A

[
ΠB′
B ∂B′K

]
, ∇̄2Q ≡ ΠAB∂A

[
ΠB′
B ∂B′Q

]
,

∇̄AūB ≡ ΠA′
A ΠB′

B ∂A′uB′ , ∇̄2uA ≡ ΠCB∂C

[
ΠA′
A ΠB′

B ∂B′uA′
]
,

(727)

(725) and (726) are our final results for the internal and external contributions to the membrane

272



current. Putting them together we find

JB = J
(out)
B − J (in)

B .

Subtracting equation (725) from equation (726) we find

√
16πJB =

√
2

[
Q

(
K +

∇̄2K

K2
− 2K

D

)
+ (u · ∂)Q−

(
2∇̄2Q+Q(u · ∂)K

K

)]
uB

−
√

2Q

[(
∂AQ

Q

)
+ (u · ∇̄)uA +

(∇̄2uA
K

)
−KC

AuC

]
PAB +O

(
1

D

)
.

(728)

Note that by construction JB is a vector tangent to the membrane and also all the derivatives

that appears in the expression of JB are all along the membrane. All these derivatives could re

expressed as covariant derivatives with respect to the intrinsic metric of the membrane. In terms

of the coordinates intrinsic to the membrane we write the current as

√
16πJµ =

√
2

[
Q

(
K +

∇̂2K

K2
− 2K

D

)
+ (u · ∇̂)Q−

(
2∇̂2Q+Q(u · ∇̂)K

K

)]
uµ

−
√

2Q

[(
∇̂νQ
Q

)
+ (u · ∇̂)uν +

(
∇̂2uν
K

)
−Kα

ν uα

]
pνµ +O

(
1

D

)
,

where pµν = g(ind,f)
µν + uµuν , ∇̂µ = Covariant derivative w.r.t g(ind,f)

µν ,

g(ind,f)
µν = Induced metric on membrane, embedded in flat space-time

(·) denotes contraction w. r. t g(ind,f)
µν .

(729)

4.6.3 A consistency check

In the previous subsection we obtained the results for the membrane charge current assuming that

the configuration (723) is indeed a particular case of a solution of the general solution presented

in subsection 4.5.3. While this must be the case on logical grounds, it is, of course, reassuring

to have a direct algebraic check of this claim. We have performed such a direct check; in this

subsection we present a brief explanation of the check we have here relegating most details to

Appendix 4.11.13.

In subsection 4.5.3 we argued that the most general linearized solution to the Maxwell equation

is parametrized by the single function G
(0)
A , the gauge field on the membrane. The Taylor series

coefficients of this gauge field off the membrane are completely determined in terms of G
(0)
A . In

particular, to first order, G
(1)
A is given in terms of G

(0)
A by (680). We will now verify that (724) is

consistent with (680).

Roughly speaking, G
(0)
A is simply M

(0)
B while G

(1)
A is M

(1)
B (see (724)). However this is not

completely accurate for two reasons
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• The analysis of the previous section was performed with the choice of gauge nB.GB = 0.

Unfortunately the solution (723) is presented in a different gauge. In order to compute

G
(0)
M and G

(1)
M , consequently, we must either compute gauge invariants or perform a gauge

transformation that puts the solution (723) into the gauge nB.GB = 0. We found it more

convenient to actually perform the gauge transformation.

• The statement that G
(0)
A is given by (724) evaluated at ρ = 1 is unambiguous. However

the statement that G
(1)
M is the part of (724) proportional to (ρ− 1) is meaningful only once

we have agreed on a set of subsidiary conditions on the coefficients of the expansion in

(ρ − 1). In the analysis of the previous section we assumed that all coefficient functions

obeyed the subsidiary conditions (673). The coefficient functions in (724) turn out not to

obey these subsidiary conditions (the coefficients in (724) obey the subsidiary conditions

employed in chapter 3, which are slightly different from (673)). Consequently they have to

be re-expanded in terms of quantities that do obey (673) before we can read off G
(1)
A .

In Appendix 4.11.13 we have carefully dealt with both these issues, and verified that the solution

(724) does indeed take the general form presented in subsection 4.5.3 with

√
16πG

(0)
B = −

√
2Q uB +

√
2Q3

D

(
D

K

)(
∂AK

K
− (u · ∂)uA

)
PAB

+
√

2ΠA
B

[
∂AQ

K
− Q∂AK

K2

]
+O

(
1

D

)2

,

√
16πG

(1)
B =

[
M̃

(1)
B + C

(0)
B

]
= −
√

2

(
D

K

)(∇̄2Q

K

)
uB −

√
2Q

(
D

K

)(
PBA ∇̄2uB

K

)
+O

(
1

D

)
.

(730)

4.6.4 Membrane equation of motion from conservation of the charge current

In section 4.5 we have argued that any membrane constructed out of the general linearized solution

of the Maxwell equations presented in that section must be automatically conserved. Earlier in

this section we have used the formalism of section 4.5 to explicitly determine a charge current

for the membrane spacetimes of [1, 63, 66]. Our final result, presented in (728) is given in terms

of the curvatures, charge and velocity derivatives of the large D black hole membrane. If the

analysis presented in this chapter is self consistent it must turn out that the charge current (728)

- which can simply be algebraically determined in terms of membrane curvatures, velocity and

charge derivatives - must automatically vanish using only constraints between these derivatives

that were already determined in [1, 63, 66]. In this subsection we explain how this works in detail.
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At leading order in the large D limit, the current (728) takes the form

√
16πJµ =

√
2QKuµ (731)

and is of order D 142 . The divergence of a current of order O(D) is generically of order O(D2). In

the current context the naively order O(D2) term in the divergence of the leading order current

is given by

√
16π∇̂µJµ =

√
2QK

(
∇̂µuµ

)
+O(D). (732)

This expression is naively of order O(D2) because K is of order O(D) and
(
∇BuB

)
would also

be of order O(D) if u were an unrestricted arbitrary velocity field. The fact that the divergence

of the charge current must vanish tells us that u cannot be an unrestricted velocity field; it must,

in fact, be chosen to ensure that (
∇̂µuµ

)
= O(1). (733)

The requirement (733) is the first of (546) and was, in fact, the starting point of the membrane

construction of [1, 63, 66].

In this chapter we have systematically determined the large D membrane charge current (728)

upto O(1). 143 As the operation of taking the divergence generically increases the order of D

of a current by one power, our knowledge of the charge current (728) is sufficient to determine

the divergence of this current only to order O(D). We have already explained that the condition

(733) ensures that the divergence of the charge current vanishes at order O(D2). We will now

explore the requirement that this divergence also vanishes at order O(D).

Apart from the expression listed in (731), every term in (728) is of O(1) rather than order

O(D). While a generic term in a current of order unity has a divergence of order D, it follows

from (733) that any term of order unity proportional to uM has a divergences of order unity. It

follows that such terms do not contribute to the divergence of the charge current at order O(D).

Dropping all such terms we find the simplified current

√
16πJ (simp)

µ =
√

2Q

{
Kuα −

[(
∇̂µQ
Q

)
+ (u · ∇̂)uµ +

(
∇̂2uµ
K

)
−Kν

µuν

]
pµα

}
+O

(
1

D

)
,

(734)

142This scaling is because K is of order D as explained in chapter 3 - see the introduction.
143The determination of the charge current to order O(1/D) requires knowledge of the gauge field in the

solutions of [1, 63, 66] at order O(1/D) which has not yet been worked out.
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whose divergence is given by

√
16π∇̂µJµ(simp)

=− ∇̂µ
{[
∇̂νQ+Q(u · ∇̂)uν +Q

(
∇̂2uν
K

)
−QKα

ν uα

]
pνµ
}

+KQ(∇̂ · u) +K(u · ∇̂)Q+Q(u · ∇̂)K +O(1)

= K

{
Q(∇̂ · u) + (u · ∇̂)Q+Q

[
(u · ∇̂)K

K

]
−
[
∇̂2Q

K

]
−Q (uµuνKµν)

}
+O(1).

(735)

In computing equation (735) we have used the identities (1101) and (1106). 144

In the analysis of [1, 63, 66] it turns out that ∇·u = O(1/D). Moreover the ‘charge’ equation

of motion of the previous chapter asserts that

(u · ∇̂)Q+Q

[
(u · ∇̂)K

K

]
−
[
∇̂2Q

K

]
−Q (uµuνKµν) = O(1/D). (736)

It follows that the last line of (735) - and so the divergence of the charge current (728) - does

indeed vanish at order D.

In summary, the charge current computed in (728) is indeed divergence free; the fact that

this is the case is, in fact, a restatement of the ‘charge’ equation of motion of chapter 3.

4.6.5 The Membrane Stress Tensor and its conservation

In the rest of this section we imitate the analysis already presented for the membrane charge

current in order to obtain and analyse the large D black hole membrane stress tensor. As the

logic of our construction proceeds in close analogy with the case of the charge current we keep

our explanations brief.

Expanding the metric presented in (718),(720) and (721)) in the form (716), it is not difficult

to show that the function G1
MN in (716) (which, for notational convenience, we refer to below as

MAB) is given by

G1
MN ≡MAB =

∑
n

(ρ− 1)nM
(n)
AB, (737)

144We emphasize that it is permissible to replace the full charge current Jµ by Jsimpµ only for the purposes
of computing its divergence and not for the purposes of computing radiation.
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where

M
(0)
AB = (1 +Q2)OAOB + 2Q4

(
OAV

(2)
B +OBV

(2)
A

)
−Q2OAOB − 2Q2τAB

+O
(

1

D

)2

,

M
(1)
AB = 2Q2S(1)OAOB − (1 +Q2)

[
V

(1)
A OB +OAV

(1)
B

]
+O

(
1

D

)
,

(738)

with145

V
(1)
A =

(
D

K

)[∇̄2uB
K

+ uCKCB

]
PBA ,

V
(2)
A =

(
D

K

)[
∂CK

K
− (u · ∂)uC

]
PCA ,

S(1) =

(
D

K2

)
∇̄2Q,

τAB = PA
′

A

(
D

K

)[
∂A′OB′ + ∂B′OA′

2
− ηA′B′

(
∂ ·O
D − 2

)]
PB

′
B ,

where

∇̄2Q = ΠA
B∂A

[
ΠBC∂CQ

]
, ∇̄2uA = ΠAA′Π

B
C∂B

[
ΠCC′ΠA′A′′(∂C′uA′′)

]
.

(739)

The metric (737) is a particular example of the general linearized solution to the Einstein

equations presented in subsection (4.5.4). As in the previous subsection we have also verified in

detail that the solution (737) and (738) after appropriate transformation agrees with the general

structure listed in subsection 4.5.4 provided we identify

h
(0)
AB = (1 +Q2) uAuB

+

(
1

D

)[
− 2Q4

(
uAV

(2)
B + uBV

(2)
A

)
−Q2uAuB − 2Q2 τAB

+ ΠC
A [∂CζC′ + ∂C′ζC ] ΠC′

B

]
+O

(
1

D

)2

,

h
(1)
AB =

(
D

K2

)[
2Q∇̄2Q uAuB + (1 +Q2) ΠC

B

(
uA∇̄2uC + uC∇̄2uA

) ]
+O

(
1

D

)
,

(740)

where

ζA = (1 +Q2)

(
D

K

)(nA
2
− uA

)
. (741)

145In equation (737) and (738) we simply renamed G1k
AB as M

(k)
AB to avoid confusion.
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We have, in particular, verified that the results quoted in (740) are consistent with (701).

From the first equation of (740) it follows that the trace of h
(0)
AB(= ΠABh

(0)
AB) is of order O

(
1
D

)
,

which justifies our expression of stress tensor as given in equation (715) of previous section.

According to the general analysis of that subsection, any such solution is associated with a

stress tensor, which is given by the difference between the Brown York stress tensor evaluated on

the metric (737) and the expression (711) evaluated on the same solution. Also in equation (715),

we have an expression for the final stress tensor explicitly in terms of h
(0)
AB and h

(1)
AB. Substituting

equation (740) in equation (715) we find the explicit expression for the stress tensor for metric

(738).

At this stage to simplify our calculation of stress tensor we shall use a trick. We shall define

T
(NT )
AB as

T
(NT )
AB =

N

2
(D − 3)h

(0)
AB −

(
K

D

)
h

(1)
AB.

Then from equation (715) we could clearly see that TAB − T (NT )
AB ∝ ΠAB. We write the propor-

tionality factor as ∆. With this notation the stress tensor could be written as

8πTAB = 8π
[
T

(NT )
AB + ∆ ΠAB

]
. (742)

Now we shall determine ∆ using the condition that KABT
AB = 0 (see equation (607)).

KABT
AB = 0⇒ ∆ = −K

ABT
(NT )
AB

K
.

Now collecting all these pieces together we finally get the explicit expression for the stress

tensor

8πT
(NT )
AB =

(
K

2

)
(1 +Q2)uAuB +

(
1−Q2

2

)
KAB −

(∇̄AuB + ∇̄BuA
2

)
−
(
KQ2

2D
+

2Q∇̄2Q

K
+Q2uCuC

′
KCC′

)
uAuB − (uAVB + uBVA) +O

(
1

D

)
,

VA = Q ∇̄AQ+Q2(uCKCA) +

(
2Q4 −Q2 − 1

2

)(∇̄AK
K

)
−
(
Q2 + 2Q4

2

)
(u · ∇̄)uA +

(
1 +Q2

K

)
∇̄2uA

(743)

and

∆ = −
[(

1 +Q2

2

)(
uAuBKAB

)
+

(
1−Q2

2

)(
K

D

)
+O

(
1

D

)]
. (744)
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As in the previous subsection, ∇̄A defines the projected derivative along the membrane as embed-

ded in flat Minkowski space. See equation (727) for a more precise definition.Also in our algebra

we used the fact that to leading order in 1
D ,

KABKAB =
K2

D
+O(1).

In equations (742), (743) and (744) all derivatives and all free and contracted indices are along the

membrane. Therefore we can as well re-express the stress tensor as a tensor defined completely

on the membrane, where all projected derivatives are replaced by covariant derivatives, defined

with respect to the membrane’s intrinsic metric.

8πTµν =

(
K

2

)
(1 +Q2)uµuν +

(
1−Q2

2

)
Kµν −

(
∇̂µuν + ∇̂νuµ

2

)

−
(
KQ2

2D
+

2Q∇̂2Q

K
+Q2uαuβKαβ

)
uµuν − (uµVν + uνVµ)

−
[(

1 +Q2

2

)(
uαuβKαβ

)
+

(
1−Q2

2

)(
K

D

)]
g(ind,f)
µν

+O
(

1

D

)
,

(745)

where

Vµ = Q ∇̂µQ+Q2(uαKαµ) +

(
2Q4 −Q2 − 1

2

)(∇̂µK
K

)

−
(
Q2 + 2Q4

2

)
(u · ∇̂)uµ +

(
1 +Q2

K

)
∇̂2uµ.

(746)

Conservation of the stress tensor In this subsection we shall compute the divergence of

the stress tensor (742) and demonstrate that it vanishes at order O(D2) and at order O(D) once

we impose the membrane equations of motion.

As in the case of the charge current, the stress tensor has a leading order piece

8πTµν =

(
K

2

)
(1 +Q2)uµuν , (747)

which is of order O(D). All other terms in (742) are of order O(1). As in our analysis of the charge

current the divergence of (747) is naively of order O(D2); the requirement that the divergence

vanish at this order reimposes the condition (733). As in the case of the charge current we must

now impose the condition that the divergence of the stress tensor vanishes also at order O(D).
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The order O(D) part of this divergence receives contributions only from those O(1) terms in (742)

whose divergences is of order O(D). This criterion excludes all order O(1) terms proportional to

g
(ind,f)
µν in (742). 146 In order to compute the divergence of the stress tensor at order D, it follows

that we can replace the stress tensor in (742) by the simpler effective stress tensor T
(eff)
µν .

T (eff)
µν =

(
K

2

)
(1 +Q2)uµuν +

(
1−Q2

2

)
Kµν

−
(
∇̂µuν + ∇̂νuµ

2

)
− (uµVν + uνVµ) ,

(749)

where Vµ is defined in equation (746).

The divergence of T
(eff)
µν has a free index and so can be decomposed into the part orthogonal

to uµ and the part in the direction of uµ. We will find it convenient to give these two different

pieces names. Let

Eµ ≡ pµν ∇̂αTαν(eff)

and let

E ≡ uν∇̂αTαν(eff).

We will first demonstrate that the requirement that Eµ vanish at order O(D) is simply a re-

statement of the motion. On the other hand the requirement that E vanish at order D tells us

(∇̂ ·u) is of order O
(

1
D

)
or smaller (this is a strengthening of the condition (733)). As both these

conditions were independently met in chapter 3, it follows that the stress tensor dual to the large

D membrane is indeed conserved.

146In order to see this recall that ∇̂µgµν(ind,f) = 0 identically. Therefore

∇̂µ
[
∆ g(ind,f)

µν

]
= ∇̂ν∆ = O(1). (748)
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We now turn to a demonstration of the first of these assertions.

Eµ =−
(
K

2

)
(1 +Q2)(u · ∇̂)uµ −

(
1−Q2

2

)
pµν∇̂αKα

ν

+ pµα

(
∇̂2uα + ∇̂ν∇̂αuν

2

)
+O(1)

=−
(
K

2

)[
(1 +Q2)(u · ∇̂)uµ + (1−Q2)pµν

(
∇̂νK
K

)

− pµν
(
∇̂2uν
K

+
∇̂α∇̂νuα

K

)]
+O(1)

=−
(
K

2

)[
(1 +Q2)(u · ∇̂)uµ + (1−Q2)pµν

(
∇̂νK
K

)

− pµν
(
∇̂2uν
K

+Kναu
α

)]
+O(1).

(750)

In the last step we have used identities (1103) and (1107) and also (733).

We now turn to the quantity E. After a little bit of algebra (see appendix (4.11.14) we are

able to show that

E ≡ uν∇̂αTαν(eff)

=

(
K

2

)
(1 +Q2)(∇̂ · u)− (1 + 2Q2)(u · ∇̂)K +

K

2
(uµuνKµν)

(
1 + 3Q2 + 2Q4

)
+

1

2

(
D2K

K

)(
1 +Q2 − 2Q4

)
+O(1)

=
(1 + 2Q2)

2

[
−2(u · ∇̂)K +K(1 +Q2)(uµuνKµν) + (1−Q2)

(
∇̂2K

K

)]

+

(
K

2

)
(1 +Q2)(∇̂ · u) +O(1)

=

(
K

2

)
(1−Q2)(∇̂ · u)−

(
1 + 2Q2

K

)
(∇̂µEµ) +O(1).

(751)

We have already argued above that all the Eµ are of order unity or smaller. It follows that ∇µEµ
is of order D or smaller and so (751) implies that(

K

2

)
(1 +Q2)(∇̂ · u) = O(1)

⇒ (∇̂ · u) = O
(

1

D

)
,

(752)

as we claimed above.
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4.6.6 Stress Tensor and current conservation imply the membrane equations

of motion

We have already demonstrated above that the membrane equations of motion are sufficient to

ensure that the charge current and stress tensors dual to the solutions constructed in chapter 3 are

automatically conserved. In this brief subsection we point out that the relationship between the

membrane equations of motion and current conservation can be reversed. Just as the equations

of motion imply current and stress tensor conservation, the conservation equations in turn imply

the membrane equations of motion.

The argument is immediate. The first membrane equation is simply (750), which we have

already derived as a consequence of conservation. Plugging (752) in equation (735) then yields

the second membrane equation. In other words the conservation equations directly imply

(1 +Q2)(u · ∇̂)uµ + (1−Q2)(pµν∇νK)− Pµν
(
∇̂2uν
K

+Kναu
α

)
= O(1),

(u · ∇̂)Q+Q

[
(u · ∇̂)K

K

]
−
[
∇̂2Q

K

]
−Q (uµuνKµν) = O(1),

(753)

the two membrane equations of motion listed in the introduction of chapter 3.

4.6.7 Qualitative discussion of the uncharged membrane stress tensor and

resulting equation of motion

In this subsection we focus our attention to the relatively simple case of an uncharged membrane.

In this special case we re-discuss the structure of the membrane stress tensor and resulting

equation of motion emphasizing qualitative features. The purpose of this subsection is to help

the reader develop some intuition for the structure of the large D membrane.

Let us first note that the expression for the membrane stress tensor, (555), simplifies consid-

erably when we specialize to the study of uncharged membranes. We find

Tµν =

(
1

8π

)[(
K

2

)
uµuν +

(
1

2

)
Kµν −

(
∇̂µuν + ∇̂νuµ

2

)

+

(
uµ∇̂νK + uν∇̂µK

2K

)
−
(
uαuβKαβ

2
+

K

2D

)
g(ind,f)
µν

]
+O

(
1

D

)
.

(754)
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At leading order in the large D limit (754) simplifies to

Tµν =
K

16π
uµuν . (755)

This term is of order O(D) because K is of order O(D); all other terms in (754) are of order

O(1). Note, in particular, that the leading order stress tensor lacks a ‘surface tension’ term

proportional to g
(ind,f)
µν . (755) appears to assert that the large D black hole membrane is made

up of a collection of pressure free dust particles with density proportional to K. This slogan is

misleading, as we now explain.

The divergence of (755) is given by

∇̂νTµν =
(∇̂ · u)K

16π
uµ +

(u · ∇̂)(Kuµ)

16π
. (756)

The first term in (756) is or order D2 while the second term is of order O(D) (recall that (∇̂ · u)

is of order D). Setting the divergence of the stress tensor to zero at order O(D2) immediately

yields the condition that (∇̂ ·u) = 0. We emphasize that even though (755) is the stress tensor of

a collection of pressure free dust particles of (variable) density K
16π , one of the equations of motion

that follows from the conservation of (755) asserts that the velocity flow uµ is incompressible The

reason for this apparent dissonance is that terms involving a derivative of the dust density are

subleading in
(

1
D

)
compared to the term involving the divergence of the velocity.

It might naively seem from (756) that the remaining equations of motion that follow from the

requirement that the stress tensor is conserved is the equation

pµν ·
(
u · ∇̂

)
(Kuν) = K

(
u · ∇̂

)
uµ = 0, (757)

where pµν represents the world volume projector orthogonal to the velocity uµ. The equation

(757), if correct, would have been the statement that the ‘proper acceleration’ of uµ vanishes on

the membrane world volume in the directions orthogonal to uµ. This statement would have been

consistent with the interpretation of uµ as the velocity field of a pressure free gas of dust.

The equation (757) is in fact incorrect. This is because the expression in (757), which is of

order O(D), is of the same order as (parts of) the divergence of the O(1) terms in the stress

tensor (754) that were omitted in the leading order expression (755). The corrected version of

(757) takes these additional terms into account, yielding the membrane equation (546) which can

be rewritten for the special case of an uncharged membrane as

K pµν (u · ∇̂)uν = pµν

(
∇̂2uν + uαKν

α − ∇̂νK
)

= 0. (758)

The equation (758) can be thought of as an expression of Newton’s force applied to the particles
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that make up the membrane. The LHS represents ‘mass density’ (K) times acceleration (u · ∇̂)u

while the RHS of (758) describes the forces that these particles are subject to. The first two

term on the RHS of (758) are an expression of the of the force of shear viscosity and have their

origin in the last term - the shear viscosity term - in the first line of (754). 147 The final term

in the RHS of (758) has its origin in the second term - the bending or curvature energy term -

the on the RHS of the first line of (754) (see (1103)). Roughly speaking this term reflects the

fact membrane has a restoring force that tries to smooth out gradients of the membrane extrinsic

curvature.

4.7 Membrane Entropy current

In the previous section we have found explicit formulae for the stress tensor and a charge current

on the world volume of the membrane. In this section we will use a pullback of the area form

on the event horizon of our the spacetimes dual to large D black hole membranes to define and

determine an entropy current on the membrane. The Hawking area increase theorem guarantees

that the entropy current that we define in this section has a divergence that is point wise non

negative [79].

As in the case of the charge current and stress tensor, in this section we first explain the

general strategy that we use to construct a membrane entropy current at every order in the 1
D

expansion. We then proceed to implement our construction at low orders in this expansion, using

explicit results for the spacetimes dual to large D membranes.

In previous sections we obtained results for the charge current and stress tensor on the mem-

brane using the explicit results of chapter 3 for the spacetime solutions dual to membrane motions

accurate to first order in 1
D . The knowledge of the stress tensor and charge current to this order

proved sufficient to test one of the most important structural features of these currents; namely

that the requirement that these currents be conserved is a restatement of the membrane equations

of motion. In a similar manner it is possible to obtain an entropy current to first order in the

derivative expansion at first order in 1
D using the results of chapter 3. However the divergence of

the current obtained in this manner turns out to vanish identically. In other words at this order

we are blind to one of the most important general properties of the entropy current, namely that

it is not conserved, but it’s divergence is instead point wise positive definite.

In order to capture this basic qualitative feature of the membrane entropy current, in this

section we work with second order (in 1
D ) metrics of [66] dual to second order membrane motions.

147The first term on the RHS of (758) is the classic expression of a viscous force, familiar from the Navier
Stokes equations. The second term in (758) is less familiar because it vanishes when the membrane world
volume is flat. This term arises because ∇̂µ∇̂νuµ differs, in general, from ∇̂ν∇̂µuµ by terms proportional
to the curvature of the membrane (see (1107)).
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148 The disadvantage of our reliance on the results of [66] is that these results apply only to

uncharged black holes. Second order spacetimes and gauge fields dual to charged large D black

holes have not yet been obtained. For this reason all the explicit results presented in this section

apply only to the case of uncharged membranes. The extension of this analysis to charged

membranes should be a straightforward exercise once the charged version of [66] are available.

After obtaining our formula for the entropy current we turn our attention to the simplest so-

lution of the membrane equations of motion - namely the solution for a static spherical membrane

- and compute energy, charge and entropy of this solution. We demonstrate that the charges of

our solution agree with those of exact large D black holes to leading order in the large D limit,

demonstrating in particular, the consistency of our results for membrane currents with the first

law of thermodynamics.

4.7.1 Determination of the entropy current

Consider the spacetime dual to a membrane configuration. Let the bulk spacetime metric at the

event horizon be denoted by GAB. 149 The precise definition of the membrane shape function

and membrane velocity were chosen in [66] to ensure that the spacetime metric GMN takes the

following simple form at any point on the event horizon

GMN = ηMN + (n− u)M (n− u)N +H
(T )
MN +HTr PMN

D − 2
. (759)

Here nM is the normal oneform on the event horizon normalized so that

ηMNnMnN = 1,

uM is the ‘velocity’ field chosen to be orthogonal to nM (i.e. ηMNuMnN = 0) and also to be unit

normalized (i.e. ηMNuMuN = −1). Moreover

PMN = ηMN + uMuN − nMnN (760)

and the ‘tensor’ field H
(T )
MN is orthogonal to both uM and nM and is also traceless i.e.

H
(T )
MNn

M = H
(T )
MNu

M = H
(T )
MNP

MN = 0,

(where all indices are raised using the inverse metric ηMN ).

148In fact the use of the results of [66] (rather than those of chapter 3) proves convenient for another
unrelated reason. In their construction the authors of [66] have employed a natural all orders definition of
the membrane shape and velocity that turn out to significantly simplify their metric in the neighbourhood
of its event horizon in a manner that proves convenient for the analysis we present below.

149 We emphasize that GAB is the full spacetime metric, not the metric restricted to the event horizon.
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(759) is a formula for the full D dimensional spacetime metric at any point on the event

horizon. The metric (759) carries information about the inner product between any two vectors

in the D dimensional tangent space to the full manifold at any point on the metric. In this section

we will be primarily interested only in the metric restricted to the event horizon itself - i.e. the

inner product between any two vectors, both of which lie in the D− 1 dimensional tangent space

of the event horizon. The tangent space of the event horizon is a codimension one subspace of the

tangent space of the full space, consisting of those vectors whose dot product with nM vanishes.

It is easily verified that a basis for such vectors is given by the tangent vector uM = ηMNuN

together with any basis for the D − 2 dimensional space of vectors orthogonal to both uM and

nM .

If we are concerned only with the tangent space of the event horizon then the metric (759) is

easily verified to be equivalent to

GehMN = H
(T )
MN +

(
1 +

HTr

D − 2

)
PMN , (761)

in the sense that

jMkNGMN = jMkNGehMN ,

where jA and kB are arbitrary vectors in the tangent space of the event horizon. Note that

GehMNn
M = GehMNu

M = 0. It follows that the metric (761) has rank D − 2, even though the

event horizon is a D− 1 dimensional manifold, reflecting the fact that the event horizon is a null

manifold.

We will now define D − 2 dimensional ‘area form’ on the event horizon. Consider any point

on the event horizon and consider a ‘patch’ of a D − 2 dimensional sub manifold enclosed by

the generalized parallelogram formed out of the D − 2 infinitesimal vectors δtA1 . . . δt
A
D−2. Let

the D − 2 volume of this patch - computed using the metric induced on this patch by (761) (or

equivalently (761)) -be given by δVD−2. The D − 2 area form AB1...BD−2
on the event horizon is

defined by equation

δVD−2 = AB1...BD−2
δtA1

1 . . . δt
AD−2

D−2 , (762)

(this equation is required to hold for every choice of the infinitesimal vectors δtAi ).

If one of the boundary vectors, tA1 is chosen to be uA then it is clear by inspection that the

metric induced by (761) on the D− 2 dimensional patch is of rank D− 3, and so δVD−2 vanishes.

It follows from (762) that AB1...BD−2
must vanish when contracted with uA. Now the area form is

only well defined in its action on tangent vectors of the event horizon. However we could choose

instead to generalize this area form to any D−2 form that can be contracted with tangent vectors

on the full manifold, so long as this form has the correct action when acting on tangent vectors of

the event horizon. Of course this ‘uplift’ of the volume form on the event horizon is not unique;
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we choose a unique ‘uplift’ by arbitrarily imposing the additional requirement that the D − 2

form vanishes when contracted with nM . With this choice the uplifted area form on the event

horizon necessarily takes the form

AA1...AD−2
= ζεA1...AD−2B1B2u

B1nB2 , (763)

where εA1...AD−2B1B2 is the standard volume form in flat D dimensional space with metric ηMN

and ζ is yet to be determined.

We will now determine ζ in (763). Consider a D − 2 dimensional parallelepiped constructed

out of D− 2 basis vectors δtA1 . . . δt
A
D−2 where these basis vectors are all chosen to be orthogonal

to both uA and nA. As above we will denote the volume of this parallelepiped - constructed in

the spacetime (761)- by δVD−2.

Let us now consider a different problem. Consider a fictional space time with metric G′AB
given by

G′AB = GehMN + nAnB − uAuB. (764)

Using (761) and (760) we find

G′MN = ηMN +H
(T )
MN +HTr PMN

D − 2
. (765)

Working with the metric G′MN we now consider the D dimensional parallelepiped bounded the

vectors δtA1 . . . δt
A
D−2 together with the additional two vectors δa nM and δb uM . Let δVD denote

the volume of this D dimensional parallelepiped. A little thought will convince the reader that

(upto a sign we will not keep track of)

δVD = δa δb δVD−2. (766)

However δVD is easily independently determined. Using the fact that the volume form of the non

degenerate D dimensional metric G′AB is simply given by
√
−G′εA1...AD we conclude that

δVD =
√
−G′ δaδb εA1...AD−2B1B2u

B1nB2 (767)

Comparing (767), (766) and (763) we conclude that (upto a sign)

ζ =
√
−G′, (768)

so that

AA1...AD−2
=
√
−GεA1...AD−2B1B2u

B1nB2 , (769)
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(769) is our final result for the area form on the world volume of the membrane.

At least for the case of uncharged black holes, it was demonstrated in [66] that H
(T )
MN and HTr

both vanish at leading and first subleading order in 1
D and are nonzero only at order O(1/D2).

As H
(T )
MN is traceless, it follows that the contribution of this term to the determinant G′ starts at

order 1
D4 . On the other hand the trace of PMN

D−2 is unity. It follows that upto order 1
D2

√
−G′ = 1 +

HTr(ρ = 1)

2
= 1− C

2
+O(1/D3),

C =
2

K2
(u ·K − u.∇u)2,

(770)

where we have used the explicit result for HTr(ψ = 1) at order 1
D2 (see Equation 4.16 of [66]) to

obtain the explicit value for C. Note that C is of order 1
D2 . 150

The entropy current on the membrane is obtained by dualizing the area D − 2 form and

dividing by 4 [79]. We obtain

JµS =
√
−G′u

µ

4
≈
(

1− C

2
+O

(
1/D3

)) uµ

4
. (771)

Note in particular that at leading order in 1/D

JµS =
uµ

4
. (772)

The first correction to this leading order result occurs at order 1/D2.

The divergence of this entropy current (771) is easily computed;

∇̂µJµS =
∇̂µuµ

4
− uµ∇̂µC

8
+O

(
1/D3

)
, (773)

∇AuA was evaluated in [66] with the result

∇̂µuµ =
pµνpαβ∇̂(µuα)∇̂(νuβ)

2K
+O(1/D2). (774)

Note in particular that ∇AuA is of order 1
D . As C is of order 1

D2 , if follows from (773) that

∇̂µJµS =
pµνpαβ∇̂(µuα)∇̂(νuβ)

8K
+O(1/D2). (775)

Note that the RHS of (775) is positive definite. As we have explained earlier in this section

150We emphasize again that the explicit result for C reported in the second line of (770) is accurate only
for uncharged black holes; the computations required to determine C have not yet been performed for
charged black holes. We leave the determination of C with nonzero charge as a task for the future.
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this positivity could have been anticipated on general grounds using the Hawking area increase

theorem [79].

4.7.2 Thermodynamics of spherical membranes

The simplest solution of the membrane equations of motion (546) is a static spherical bubble of

radius r0 with u = −dt and Q = Q0 = const. In this brief subsection we compute the charges of

this solution and match these with the thermodynamic charges of black holes.

At leading order in the large D limit it follows from (555) that T00 for this solution is given

by

T00 =
(D − 2)(1 +Q2

0)

16πr0
.

It follows that the mass m of this solution is given by

m = ΩD−2r
D−2
0 T00 =

ΩD−2(D − 2)rD−3
o (1 +Q2

0)

16π
. (776)

Note that m in (776) agrees with the mass of the black hole (885) at large D (recall that cD = 1

in (886) the large D limit).

The static membrane solution described above has a gravitational tail at infinity. It follows

from (1001) and (998) that the curvature of this tail is given by

R0i0j = − 8π

(D − 2)ΩD−2
∇i∇j

( m

rD−3

)
, (777)

in agreement with (882), supporting our identification of
∫
T00 with the mass of the membrane.

It may be verified that (777) agrees with the curvature of the black hole solution (885) at

large r and large D.

In a similar manner the charge density of our solution is given by

J0 =
Q0(D − 2)

2
√

2πr0

.

It follows that the charge of our membrane configuration is given by

q = ΩD−2r
D−2
0 J0 =

ΩD−2(D − 2)Q0r
D−3
o

2
√

2π
. (778)

Once again the q in (778) agrees with the charge of the black hole (885) at large D (see (886)).

At large r our charged static membrane solution sources an electric field given by

Ei = F i0 = − 1

(D − 2)ΩD−2
∇i
( q

rD−3

)
, (779)
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in agreement with (883).

It follows from this analysis of metric and field strength tails at infinity that the spherical

membranes studied in this section are dual to static black holes (885) of mass m and charge Q0.

Finally it follows from (772) that the entropy S of our static solution is given by the area of

the membrane divided by 4, i.e.

S =
ΩD−2r

D−2
0

4
, (780)

in agreement with the entropy (889) of a black hole with the same mass and charge.

In the study of black hole physics we define the black hole temperature and chemical potential

via the formulae (887) and (888). These definitions ensure that black holes obey the first law

of thermodynamics (890). As the spherical membranes of this subsection are dual to the corre-

sponding black holes, it is natural to assign them the same temperature and chemical potentials

T =
(1−Q2

0)K

4π
,

µ =
Q√
8π
.

(781)

With these definitions the equation (890) can be viewed as the assertion that the spherical mem-

branes of this subsection obey the first law of thermodynamics.

In the spirit of the equations of hydrodynamics, the identification (781) can be made locally

for any membrane configuration, allowing us to discuss the evolution of the local black hole

temperature and chemical potential in the course of a dynamical evolution.

4.8 Radiation in general dimensions

Earlier in this chapter we have determined the explicit form of the stress tensor and charge current

carried by a large D black hole membrane. As the membrane undergoes a dynamical motion

these currents source electromagnetic and gravitational radiation. The resultant radiation field

is determined by plugging these currents into radiation formulae: the formulae that determine

radiation fields in terms of currents. In this section we review radiation formulae in arbitrary

dimensions.

For completeness - and clarity of presentation - we begin this section with a discussion of the

formulae for the radiation response of a massless minimally coupled field to a scalar source, even

though this theory is not needed in order to analyse the black hole membrane. We then turn to

the analysis of the cases of real interest; the radiation response of a Maxwell field to an arbitrary

conserved current and the analysis of the radiation response of the linearized gravitational field

to an arbitrary conserved stress tensor. In the next section we will apply the formulae developed
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in this section to a particular situation, namely to the study of small fluctuations about a static

membrane.

In a certain abstract sense the radiation formulae are extremely simple; they take the schematic

form

R(x) =

∫
dDx′G(x− x′)J(x′), (782)

where J is the source, R the radiation response and G a retarded Greens function. From this point

of view the theory of radiation ends with the computation of the appropriate Greens function, a

topic we have already discussed in section 4.2.

Let us now, however, specialize to situations in which the ‘centre of mass’ of the sources

is at rest and localized in a shell of radius R about a particular spatial point x′. If we are

interested in the radiation response at points x whose distance from x′ is much larger than R,

the resultant radiation formulae will clearly be most transparent when expressed in spherical

polar coordinates with x′ as origin. In this coordinate system the sources and radiation fields are

both naturally expanded in a basis of scalar, vector and tensor spherical harmonics. (782) then

turns into an integral transform that expresses radiation fields a particular symmetry property

(say, e.g. radiation fields in the lth vector spherical harmonic) as an integral over sources in the

same representation. The resultant final expressions are much more explicit - and so much more

transparent - than (782).

The starting point for the derivation of the formulae presented in this section is the expansion

of the retarded scalar Greens function of section 4.2 in spherical coordinates. In (565) the Greens

function was already presented in polar coordinates in the special case of the source at the origin.

In Appendix 4.11.6 we demonstrate that when the source is displaced away from the origin, the

generalization of (565) is given by (we assume |~r| > |~r′|)

G(ω, |~r − ~r′|) =
iπ

2

∞∑
l=0

1

(r′r)
D−3
2

H
(1)
D−3+2l

2

(ωr)JD−3+2l
2

(ωr′)Pl(θ, θ′), (783)

where Pl(θ, θ′) is the projector onto the space of functions whose angular dependence is a linear

combinations of lth scalar spherical harmonics; see around (894) in the Appendix for more details)

and θ and θ′ are the angular locations of ~r and ~r′ respectively. 151

As mentioned above, all the results of this section are presented in terms of scalar, vector and

tensor spherical harmonics. We define and study spherical harmonics in arbitrary dimensions in

Appendix 4.11.4.

151 While the formulae developed in this section are standard extensions of textbook treatments of
radiation to arbitrary dimensions, we were unable to locate a reference with all formulae presented in a
clear and systematic manner and so chose to undertake the exercise ourselves. All the formulae developed
in this section are derived for arbitrary values of D ; however we also emphasize special simplifications
that occur at large D.
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4.8.1 Scalar Radiation

Consider a minimally coupled scalar φ which is zero at early times. The scalar is subsequently

kicked out of its ‘vacuum’ state by coupling to a source according to the equation

−�φ = S. (784)

where S is an arbitrary function of space and time. 152 We further assume that the sourcce S(x)

is spatially localized about a particular point in space at all times in a particular Lorentz frame.

We choose to work in this Lorentz frame, and choose the this point as the origin of our spatial

coordinates. At large enough distance from the origin the equation of motion for φ simplifies to

−�φ = 0.

Spherical Expansion of outgoing radiation The most general solution to the minimally

coupled scalar equation that is outgoing radiation at infinity takes the form (see (966))

φ(ω, ~x) =
∑
l

αl(ω, θ)
HD+2l−3

2
(ωr)

r
D−3
2

. (786)

The functions αl(ω, θ) are angular functions in the lth spherical harmonic sector for scalars, i.e.

they obey the equation

Plαl′ = δl,l′αl.

153

Radiation in terms of sources The response of the field φ to the source function S is given

by the formula

φ(ω, ~x) =

∫
dD−1~x′G(ω, |~x− ~x′|)S(ω, ~x′). (788)

152This equation of motion follows from the action

S =

∫
dDx
√
−G

(
−1

2
(∇φ)2 + Sφ

)
. (785)

153This is an abbreviated form of the equation∫
dΩ′D−2Pl(θ, θ

′)αω,l′(θ
′) = δl,l′αω,l(θ). (787)
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Here G(ω, |~x− ~x′|) is the retarded Greens function determined in (565) and

S(ω, ~x′) =

∫
eiωtS(x′

µ
)dt. (789)

In other words S(ω, ~x′) is the source function Fourier transformed in time.

It is useful to decompose the source into its distinct angular momentum components

S(ω, ~x) =
∑
l

Sl(ω, r′, θ′), (790)

where

PlSl′ = δl,l′Sl. (791)

In other words Sl(ω, r′, θ′) is the part of S(ω, ~x′) that transforms in the lth spherical harmonic

representation. Inserting the expansion (783) for the Greens function in (788) and specializing

that formula to large r, it is easily verified that (788) reduces to (786) with

αl(ω, θ) =
iπ

2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 Sl(ω, r′, θ), (792)

(792) is our final formula for scalar radiation. In the rest of this subsection we will study limits

and properties of the formula (792).

The static limit Recall that

Jn(x) ≈
(
x
2

)n
Γ(n+ 1)

, (x2 � n). (793)

This observation may be used to simplify (792) in two different physical situations. The first is

the static limit ω → 0 taken at finite D. The second - of particular interest to this chapter - is

the limit in which ωR is held fixed as D is taken to infinity (here R is an estimate of the spatial

size of the support for the scalar source S which is assumed to be of finite extent). In either limit

we obtain the simplified formula

αl(ω, θ) = α̃lω
l+D−3

2

∫
dr′(r′)l+D−2Sl(ω, r′, θ), (794)

with

α̃l =
iπ

2l+
D−1
2

1

Γ
(
l + D−1

2

) . (795)

In this subsubsection we study the static limit, postponing our stdy of the large D limit to
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the next subsubsection.

In the static limitthere is a further simplification. As ω is taken to zero the Hankel function

in (786) may be approximated by its small argument expansion (566) and we find

φ(0, r, θ) =
1

rD−3

∞∑
l=0

(
1

2

)
2

2l +D − 3

∫
dr′r′D−2

(
r′

r

)l
Sl(0, r

′, θ), (796)

(796) is simply the multipole expansion of the solution to the Euclidean equation ∇2φ = −S
in D − 1 Euclidean dimensions, and may directly be obtained by inserting (962) into (788).

Note that the static field falls off much faster at large r than the radiation field does; this is

the generalization of the familiar fact that the Coulomb field in D = 4 falls off like 1
r2

while a

radiation field decays more slowly, like 1
r .

Large D limit Let us now turn to the large D limit at finite ω. The Sterling approximation

allows us to simplify the expression α̃l; we find

α̃l ≈
i
√
π

2D
D
2

(
el+

D−3
2

Dl−1

)
. (797)

We would now like to estimate how fast our system loses ‘charge’ via radiation at large D. In

order to make this question precise, let us slightly generalize the discussion of this subsection to

the case of a complex scalar field φ and source S. All the formulae derived above continue to apply.

The advantage is that our scalar field now carries a current given by JM = i(∂Mφ
∗φ − φ∗∂Mφ).

Let us assume that the source function is nonzero only in a shell of radius of order R and vanishes

outside the shell. In the external region the current JM is conserved. We will now estimate first

the integrated density of this charge contained in the field φ to the exterior of the shell of S and

second the rate of loss of charge to infinity by radiation. The ratio of these two quantities will

give us an estimate of the rate of loss of charge due to radiation per unit time.

Using (786) we see that the charge carried by our configuration in the lth mode is of order

RDD

(ωR)2l+D−4

∫
SD−2

|αl(θ)2|,

where the source is assumed to be of size R we have retained only leading order terms in the limit

of large D. On the other hand the rate of energy lost due to radiation is of order∫
SD−2

|αl(θ)2|.

It follows that the fractional loss of charge by radiation per unit time is of order (ωR)2l+D−4

RDD
, and
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so is extremely small at large D.

4.8.2 Electromagnetic Radiation

In this section we will find the solution to the Maxwell equation

∇MFMN = JN , (798)

sourced by an arbitrary localized charge current JM . It follows from (798) that

�FMN = −(∇NJM −∇MJN ). (799)

In particular the electric field defined by

Ei = F0i, (800)

obeys the equation

� ~E = − ~Jeff ,
~Jeff = ~∇J0 − ∂0

~J .
(801)

In order to determine the radiation response to a current it is sufficient to determine the

electric field at large distances; all other components of the field strength may be obtained rather

simply from the electric field using the Bianchi identity. To see how this works recall that the

Bianchi identity with free indices 0, i, j takes the form

∂0Fij = ∇iEj −∇jEi, i.e

Fij(ω, ~x) =
i(∇iEj(ω, ~x)−∇jEi(ω, ~x))

ω
.

(802)

It follows that the Fij is completely determined in terms of ~E at every nonzero ω.

Free outgoing solutions of Maxwell’s equations At large distances where the source

JM vanishes, (801) reduces to

� ~E = 0. (803)

Now ~E is a vector field in spacetime. As we have explained in Appendix 4.11.4, any such field can

be written in terms of two scalar fields and one divergenceless, purely tangential (to the sphere)

vector field. This tangential divergenceless vector field can be expanded in vector spherical

harmonics while the two scalars are expanded in scalar spherical harmonics. A useful basis for
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this decomposition is listed in (915) in the Appendix. In this basis the action of ∇2 is diagonal

and is listed in (921).

It follows immediately from (921) that the most general solution to (803) is given by a vector

of the form (915) where the radial dependence of the coefficients αl, ~γl and βl respectively is the

same as that of the (l − 1)th, lth and (l + 1)th angular momentum component of the modes in

(786). In other words the most general harmonic solution for ~E is given by

~E(ω, ~x) =
∞∑
l=0

(
HD+2l−5

2
(ωr)

r
D−3
2

~A−[S−l (ω, θ)] +
HD+2l−1

2
(ωr)

r
D−3
2

~A+[S+
l (ω, θ)]

)

+

∞∑
l=1

(
HD+2l−3

2
(ωr)

r
D−3
2

~Vl

)
,

(804)

where S±l are arbitrary r independent scalar functions in the lth scalar spherical harmonic sector

and ~Vl is an arbitrary vector function in the lth vector spherical harmonic sector, normalized so

that each of the Cartesian components of ~Vl is a function only of the angles and is independent

of r. Here ~A−[S−l (ω, θ) and ~A+[S+
l (ω, θ)] are the maps from scalar to vector functions in RD−1

defined in (917).

The equation

~∇ · ~E = 0, (805)

(which also holds in the absence of sources) further constrains radiation fields. Using (923) and

appropriate recursion relations for Hankel functions we demonstrate in subsection 4.11.7 below

that

lS−l = (l +D − 3)S+
l , (806)

(804) with the constraint (806) is the most general solution to the source free Maxwell equations.

At very large distances, ωr � D2, (804) simplifies to

~E(ω, ~x) =

√
2

πω

eirω

r
D−2
2

∞∑
l=0

e
−i(D+2l)π

4

(
~A+[S+

l (ω, θ)]− ~A−[S−l (ω, θ)]
)

+ i

√
2

πω

eirω

r
D−2
2

∞∑
l=1

e
−i(D+2l)π

4 ~Vl

=

√
2

πω

eirω

r
D−2
2

∞∑
l=0

e
−i(D+2l)π

4

(
r̂
(
lS−l − (l +D − 3)S+

l

)
− r ~̃∇

(
S−l + S+

l

))
+ i

√
2

πω

eirω

r
D−2
2

∞∑
l=1

e
−i(D+2l)π

4 ~Vl.

(807)

Where we have used (917) in the last step. Note, in particular, that the radiation electric field is
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orthogonal to r̂ - and so is finally well approximated by a local plane wave - at these distances.

Radiation in terms of sources In order to determine the radiation field sourced by an

arbitrary current we expand the effective source ~Jeff in the form (915). In particular let

~Jeff =
(
~A−[a] + ~A+[b] +~c

)
, (808)

where a, b and ~c respectively play the role of α, β and ~γ in (915). In Appendix 4.11.6 we have

determined the action of the retarded Greens function on an arbitrary vector field expanded in

the basis employed in (808). Using (977), (978) and (979) of the Appendix we find that the

electric field at large r takes the form (804) with

S−l =
iπ

2

∫
dr′JD−3+2(l−1)

2

(ωr′) r′
D−1
2 al(ω, r

′, θ),

S+
l =

iπ

2

∫
dr′JD−3+2(l+1)

2

(ωr′) r′
D−1
2 bl(ω, r

′, θ),

~Vl =
iπ

2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 ~cl(ω, r

′, θ).

(809)

The conservation of the electromagnetic current ~J can be used to show that the effective current

obeys the following equation

~∇ · ~J eff = �J0. (810)

This relation can be used to verify that the coefficients (809) obey (806). 154

Special limits As in the previous subsection (793) may be used to simplify (809) in both the

static and the the large D limits. In either limit we obtain the simplified formula

S−l (ω, θ) = S̃−l ω
l+D−5

2

∫
dr′(r′)l+D−3a(ω, r′, θ),

S+
l (ω, θ) = S̃+

l ω
l+D−1

2

∫
dr′(r′)l+D−1b(ω, r′, θ),

Vl(ω, θ)i = Ṽlω
l+D−3

2

∫
dr′(r′)l+D−2c(ω, r′, θ),

(812)

154At the formal level it is obvious that this had to work.

∇ · E = −J0. (811)

This is simply the Gauss law, and ensures that the Electric field is divergence free in the absence of a
source. The fact that the actual formulae (809) obey (806) may be regarded as a check on our algebra.

297



with

S̃−l =
iπ

2l+
D−3
2

1

Γ
(
l + D−3

2

) ,
S̃+
l =

iπ

2l+
D+1
2

1

Γ
(
l + D+1

2

) ,
Ṽl =

iπ

2l+
D−1
2

1

Γ
(
l + D−1

2

) .
(813)

As in the previous subsection in the large D limit at fixed ω we use the Sterling approximation

to further simplify α̃l; we find

S̃−l ≈
i
√
π

2D
D
2

(
el+

D−5
2

Dl−2

)
,

S̃+
l ≈

i
√
π

2D
D
2

(
el+

D−1
2

Dl

)
,

Ṽl ≈
i
√
π

2D
D
2

(
el+

D−3
2

Dl−1

)
.

(814)

As in the previous subsection (814) does not apply in the static limit at fixed D. In this

limit, however, the small argument expansion of the Hankel function leads to simplifications. In

Appendix 4.11.7 we demonstrate that in the limit ω → 0 the radiation formulae (809) yield results

consistent with the familiar formulae of electrostatics

~E = −∇ΦE ,

∇2ΦE = J0(r′),

Fij = ∂iAj − ∂jAi,
∇2 ~A = ~J .

(815)

4.8.3 Gravitational Radiation

In this section we will find the unique purely outgoing solution to the linearized Einstein equation;

i.e. the linearized version of

RMN = 8πTMN , (816)

as a functional of an arbitrarily specified conserved TMN .

298



It follows from (816) that, to linear order in an expansion around flat space

�RMNPQ =8π (∂M∂PTNQ − ∂M∂QTNP − ∂N∂PTMQ + ∂N∂QTMP )

− 8π

D − 2
(ηMP∂N∂QT − ηMQ∂N∂PT − ηNP∂M∂QT + ηNQ∂M∂PT ) .

(817)

In particular

�R0i0j = −(Teff )ij ,

(Teff )ij = 8π

(
ω2Tij − iω(∂iT0j + ∂jT0i)− ∂i∂j

(
T00 +

T
D − 2

)
− ηijω2 T

D − 2

)
.

(818)

As in the previous subsection it is sufficient to consider R0i0j as all other curvature components

are easily obtained from this one by use of the Bianchi identity. 155 One way to understand this

statement is to work in the h0M = 0. In this gauge and in Fourier space

hij =
−2

ω2
R0i0j . (820)

As all gauge invariants can be built out of hij , it follows that all gauge invariant information is

also contained in R0i0j except in the special limit ω → 0.

Parametrization of vacuum solutions When all source currents vanish (818) reduces to

�R0i0j = 0. (821)

As in the previous subsection the most general tensor field R0i0j can be decomposed into four

scalars, two divergence free tangential vector fields and one divergence free, traceless tangential

tensor field - the later can be decomposed in tensor spherical harmonics. The form of this expan-

sion is given in (924). Away from all sources the equation (821) determines the radial dependence

of all the coefficient functions in (924). It follows from (930) that the radial dependence of κl,

γl and χijl (in the decomposition (924) applied to R0i0j) is precisely that of the coefficient of the

mode αl in the equation (786). On the other hand the radial dependence of αl, ~φl, ~ψl and βl is

that of the modes with angular momentum l − 2, l − 1, l + 1 and l + 2 respectively in (786). It

155 The Bianchi identity yields

R0ijk =
−i
ω

(∂kR0i0j − ∂jR0i0k),

Rijpq =
−i
ω

(∂qR0pij − ∂pR0qij).

(819)
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thus follow that away from all sources

R0i0j(ω, ~x) =

∞∑
l=0

(HD+2l−7
2

(ωr)

r
D−3
2

(C−)ij [S
−
l (ω, θ)] +

HD+2l+1
2

(ωr)

r
D−3
2

(C+)ij [S
+
l (ω, θ)]

+
HD+2l−3

2
(ωr)

r
D−3
2

(
(C0)ij [S

0
l (ω, θ)] + δijS

Tr
l (ω, θ)

))
+
∞∑
l=1

(
HD+2l−5

2
(ωr)

r
D−3
2

(B−)ij [V
−
l (ω, θ)] +

HD+2l−1
2

(ωr)

r
D−3
2

(B+)ij [V
+
l (ω, θ)]

)

+

∞∑
l=2

(
HD+2l−3

2
(ωr)

r
D−3
2

(Xl)ij

)
,

(822)

where S±l , S0
l and STrl are arbitrary r independent scalar functions in the lth scalar spherical

harmonic sector, ~V ±l is an arbitrary vector function in the lth vector spherical harmonic sector,

normalized so that each of the Cartesian components of ~V ±l are functions only of the angles and

are independent of r, and Xl is an arbitrary symmetric, divergencelsess, traceless tensor function

in the lth vector spherical harmonic sector, normalized so that each of the Cartesian components

of Xl are functions only of the angles and are independent of r, and all functionals (e.g. (C)ij)
were defined in (925).

(822) is the most general solution to the linearized dynamical Einstein equations; however the

general solution (822) does not automatically solve the Einstein constraint equations. Using

∇i(Teff )ij = 8π�

(
iωT0j + ∂j

(
T00 +

T
D − 2

))
, (823)

we find the linearized gravity analogue of the electromagnetic Gauss law of the previous subsection

∇iR0i0j = −8π

(
iωT0j + ∂j

(
T00 +

T
D − 2

))
. (824)

In particular, in the absence of sources we have

∇iR0i0j = 0. (825)

Using (825), (923) and appropriate recursion relations for Hankel functions we find

(l − 1)S−l =
(l +D − 3)S0

l

2(2l +D − 3)

(
(2l +D − 3)− 4l

D − 1

)
,

(l +D − 2)S+
l =

lS0
l

2(2l +D − 3)

(
(2l +D − 3)− 4(l +D − 3)

D − 1

)
,

(l − 1)~V −l = (l +D − 2)~V +
l .

(826)
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Moreover it is easily verified that

(Teff )ii = 8π�

(
T00 +

T
D − 2

)
, (827)

so that

Ri0i0 = −8π

(
T00 +

T
D − 2

)
. (828)

The equation (828) implies that R0i0j is traceless in the absence of sources; this sets

STrl = 0. (829)

(822) with the constraint (826) and (829) is the most general source free solution of the linearized

Einstein equations. Notice that the general radiation field is parametrized by a single scalar

function, a single divergence free vector function and a single traceless divergence free tensor

function on the unit sphere.

In the large distance limit ωr � D2 (822) simplifies to

R0i0j(ω, ~x) = i

√
2

πω

eirω

r
D−2
2

∞∑
l=0

e
−i(D+2l)π

4

(
C0
ij [S

0
l (ω, θ)]− C+

ij [S
+
l (ω, θ)]− C−ij [S−l (ω, θ)]

)
+

√
2

πω

eirω

r
D−2
2

∞∑
l=1

e
−i(D+2l)π

4

(
B+
ij [
~V +
l (ω, θ)]− B−ij [~V −l (ω, θ)]

)
+ i

√
2

πω

eirω

r
D−2
2

∞∑
l=2

e
−i(D+2l)π

4 (Xl)ij

= i

√
2

πω

eirω

r
D−2
2

∞∑
l=0

e
−i(D+2l)π

4(
r̂ir̂j

(
l(l +D − 3)

(
D − 3

D − 1

)
S0
l − (l +D − 3)(l +D − 2)S+

l − l(l − 1)S−l

)
+ rr̂i∇̃j

(
D − 3

2
S0
l + (l +D − 2)S+

l − (l − 1)S−l

)
+ {i↔ j}

− r2∇̃ij
(
S0
l + S+

l + S−l
)

−Πij

(
2l(l +D − 3)

D − 1
S0
l + (l +D − 3)S+

l − lS−l
))

+

√
2

πω

eirω

r
D−2
2

∞∑
l=0

e
−i(D+2l)π

4

(
r̂i

(
(l − 1)(Vl)

−
j − (l +D − 2)(Vl)

+
j

)
− r∇̃i

(
(Vl)

−
j + (Vl)

+
j

)
+ {i↔ j}

)
+ i

√
2

πω

eirω

r
D−2
2

∞∑
l=1

e
−i(D+2l)π

4 (Xl)ij .

(830)
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Where we have expanded the expressions of Cs and Bs as given in (925) using (927) in the last

step. Note that the radiation field is polarized orthogonal to the line of sight from the observation

to the source point in this limit.

Radiation in terms of sources These scalar, vector and tensor functions on the unit sphere

that characterize radiation may be determined in terms of the (Teff )ij as follows. The tensor

field (Teff )ij may be decomposed along the lines of (924) as

(Teff )ij =
(
C−ij [a] + C+

ij [b] + C0
ij [c] + δijd

)
+
(
B−ij [~u] + B+

ij [~v]
)

+ zij ,
(831)

where C−ij [a], C+
ij [b] and C0

ij [c] are the maps from scalars to tensors in RD−1 defined in (925) in

the Appendix.

In what follows we use obvious notation to denote the lth spherical harmonic components of

the scalar, tensor and vector functions on the unit sphere that appear in (831). For instance al

denotes the projection of the scalar function a to the lth scalar spherical harmonic sector, while

(zl)ij denotes the projection of the tensor field zij to the lth tensor harmonic sector. As in the

previous subsection, the action of the retarded Greens function on an arbitrary tensor field (831)

takes the for, (981) and (982) and we obtain

S−l =
iπ

2

∫
dr′JD−3+2(l−2)

2

(ωr′) r′
D−1
2 al(ω, r

′, θ),

S+
l =

iπ

2

∫
dr′JD−3+2(l+2)

2

(ωr′) r′
D−1
2 bl(ω, r

′, θ),

S0
l =

iπ

2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 cl(ω, r

′, θ),

~V −l =
iπ

2

∫
dr′JD−3+2(l−1)

2

(ωr′) r′
D−1
2 ~ul(ω, r

′, θ),

~V +
l =

iπ

2

∫
dr′JD−3+2(l+1)

2

(ωr′) r′
D−1
2 ~vl(ω, r

′, θ),

(Xl)ij =
iπ

2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 (zl)ij(ω, r

′, θ),

STrl =
iπ

2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 dl(ω, r

′, θ) = 0.

(832)

Although it may not be apparent from a casual glance, the solution (832) obeys the constraints

(829) and (826). (829) is obeyed after a partial integration simply because d equals the operator

� acting on another function (see (823)). Moreover the expressions for al, bl and cl in (832)

may also be shown to obey (826) by using (932), integrating by parts and using an appropriate

recursion relation (see subsection 4.11.7 for details).
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Special limits As in the previous subsection (793) may be used to simplify (832) in both the

static and the the large D limits. In either limit we obtain the simplified formula

S−l = S̃−l ω
l+D−7

2

∫
dr′(r′)l+D−4al(ω, r

′, θ),

S+
l = S̃+

l ω
l+D+1

2

∫
dr′(r′)l+Dbl(ω, r

′, θ),

S0
l = S̃0

l ω
l+D−3

2

∫
dr′(r′)l+D−2cl(ω, r

′, θ),

~V −l = Ṽ −l ω
l+D−5

2

∫
dr′(r′)l+D−3~u(ω, r′, θ),

~V +
l = Ṽ +

l ω
l+D−1

2

∫
dr′(r′)l+D−1~v(ω, r′, θ),

(Xl)ij = X̃lω
l+D−3

2

∫
dr′(r′)l+D−2(z)ij(ω, r

′, θ),

(833)

with

S̃−l =
iπ

2l+
D−5
2

1

Γ
(
l + D−5

2

) ,
S̃+
l =

iπ

2l+
D+3
2

1

Γ
(
l + D+3

2

) ,
S̃0
l =

iπ

2l+
D−1
2

1

Γ
(
l + D−1

2

) ,
Ṽ −l =

iπ

2l+
D−3
2

1

Γ
(
l + D−3

2

) ,
Ṽ +
l =

iπ

2l+
D+1
2

1

Γ
(
l + D+1

2

) ,
X̃l =

iπ

2l+
D−1
2

1

Γ
(
l + D−1

2

) .

(834)

As in the previous subsection in the large D limit at fixed ω we use the Sterling approximation
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to further simplify α̃l; we find

S̃−l ≈
i
√
π

2D
D
2

(
el+

D−7
2

Dl−3

)
,

S̃+
l ≈

i
√
π

2D
D
2

(
el+

D+1
2

Dl+1

)
,

S̃0
l ≈

i
√
π

2D
D
2

(
el+

D−3
2

Dl−1

)
,

Ṽ −l ≈
i
√
π

2D
D
2

(
el+

D−5
2

Dl−2

)
,

Ṽ +
l ≈

i
√
π

2D
D
2

(
el+

D−1
2

Dl

)
,

X̃l ≈
i
√
π

2D
D
2

(
el+

D−3
2

Dl−1

)
.

(835)

As in the previous subsection (835) does not apply in the static limit at fixed D. In this

limit, however, the small argument expansion of the Hankel function leads to simplifications. In

Appendix 4.11.7 we demonstrate that the radiation formulae (822), in this limit yield results

consistent with the equations

R0i0j = ∇i∇jΦG,

∇2φG = −8π

(
T00 +

T
D − 2

)
,

R0ijk = −∇i
(
∇jAGk −∇kAGj

)
,

∇2AGi = −8πT0i,

Rijkl = ∇i∇kTjm +∇j∇mTik −∇j∇kTim −∇i∇mTjk,
∇2TGij = 8πTij .

(836)

4.9 Radiation from linearized fluctuations about spherical mem-

branes

4.9.1 Electromagnetic Radiation

As we have explained in the previous section, the simplest solution of the charged membrane

equations of motions is a static spherical membrane whose world volume is SD−2× time. This

solution is dual to a static charged black hole. The spectrum of linearized membrane fluctuations

about this simple solution was determined in chapter 3. These linearized solutions are dual to the
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light quasinormal modes around the dual stationary black holes. In this section we will compute

the radiation sourced by these linearized membrane modes. The radiation fields we compute have

the bulk interpretation as the ‘outgoing’ pieces of the corresponding quasinormal modes.

We begin this section by briefly recalling the linearized solutions of chapter 3. As in chapter

3 we choose our background solution to be a charged black hole of unit radius (as explained in

chapter 3, the scale invariance of the Einstein Maxwell equations ensures that this choice involves

no loss of generality). We work to linearized order about this static solution. In other words the

membrane configurations we study are

r = 1 + δr(t, θ),

Q = Q0 + δQ(t, θ),

u = −dt+ δuµ(t, θ)dxµ.

(837)

As we have demonstrated earlier in this chapter, the charge current associated with any membrane

configuration is given, in terms of arbitrary coordinates on the membrane world volume, by

Jµ =

(
Q

2
√

2π

)[
Kuµ −

(
pνµ∇̂νQ

Q

)
− (u · ∇̂)uµ −

(
∇̂2uµ

K

)
+Kαµuα

]

+Q uµ +O
(

1

D

)
,

(838)

where

Q =

(
Q

2
√

2π

)[∇̂2K

K2
− 2K

D
− (u · ∇̂)K

K
−
(

2∇̂2Q+K(u · ∇̂)Q

Q K

)
+
(
uαuβKαβ

)]
. (839)

We will now evaluate the current Jµ listed in (838) for the special case of small fluctuations

around the spherical membrane ((837)) to first order in fluctuations. For this purpose we use the

angular coordinates on the unit SD−2 and time as coordinates on the membrane world volume.

Note that, to linear order in fluctuations, the metric on the membrane world volume is given by

ds2 = −dt2 + (1 + 2δr)dr2. (840)

All covariant derivatives in (838) must be evaluated on this metric. However, following chapter 3,

we will find it most convenient to view our fluctuation fields δr and uµ as living on the undeformed

unit sphere. In all formulae below the symbol ∇a will refer to the covariant derivative on this

round sphere (a are the angular directions on the sphere). 156 Adopting these conventions the

156In order to present all our formulae in terms of covariant derivatives w.r.t the unit sphere, we sometimes
need to rewrite covariant derivatives w.r.t. the metric (840) in terms of covariant derivatives on the unit
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formulae

nr = 1,

nµ = −∂µδr,
Ktt = −∂2

t δr,

Kta = −∂t∇aδr,
Kab = −∇a∇bδr + (1 + δr)gab,

δut = 0, (u · u = −1)

(u ·K)t = Ktt = −∂2
t δr,

(u ·K)a = −∂t∇aδr + δua,

K = KA
A = D

(
1−

(
1 +
∇2

D

)
δr

)
,

(841)

(which we have borrowed from chapter 3) allow us to explicitly evaluate all components of the

membrane world volume current in terms of the linearized fluctuations in (837); we find

Jt =
1

2
√

2π

(
−DQ0 +

(
DQ0

(
1 +
∇2

D

)
δr −DδQ− ∂tδQ−Q0∂

2
t δr +

∇2

D
δQ

))
,

Ji =
1

2
√

2π

(
Q0δui −Q0∂tδui − ∂iδQ−Q0∂i∂tδr −Q0

∇2

D
δui

)
.

(842)

Note that we have presented our current with lower indices, i.e. as a oneform field. This oneform

field lives of the membrane world volume whose metric is given by (840).

Recall that the membrane current is conserved, i.e.

∇ · J = 0, (843)

Explicitly evaluating this conservation equation for the current (842) we obtain the equation(∇2

D
− ∂t

)
δQ = Q0

(
∂2
t − ∂t

(∇2

D
+ 1

))
δr +O(1/D). (844)

Note that (844) is precisely the linearized ‘charge’ membrane equation presented in chapter 3.

We view this agreement as a consistency check on the algebra that led to (842)

The expression (842) is the current evaluated on the membrane world volume in our particular

choice of world volume coordinates. Radiation is sourced by the current viewed as a distributional

vector field in spacetime. We obtained the spacetime current as follows. We first converted the

sphere.
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oneform field J into a vector field on the membrane world volume using its metric (840) 157. We

then converted the vector field on the membrane to a vector field in spacetime using the formulae

JaST = δ(r + δr − 1)Ja,

J tST = δ(r + δr − 1)J t,

JST r = δ(r + δr − 1)
(
J t∂tδr + Ja∂aδr

)
= δ(r + δr − 1)J t∂tδr.

(845)

The equality in the last line of this equation holds to linear order in fluctuations as Ja vanishes

on the static membrane. Note that we have also omitted the measure factor
√

1 + (∇δr)2 in the

spacetime current (see e.g. (594)) as this term is unity to linear order. We find the following

expression for the spacetime current

JaST =
1

2
√

2π
δ(r + δr − 1)

(
DQ0δu

a −Q0∂tδu
a − ∂aδQ−Q0∂

a∂tδr −Q0
∇2

D
δua
)
,

J tST =
1

2
√

2π
δ(r + δr − 1)

(
DQ0 −

(
DQ0

(
1 +
∇2

D

)
δr −DδQ

− ∂tδQ−Q0∂
2
t δr +

∇2

D
δQ

))
,

JrST =
1

2
√

2π
δ(r + δr − 1) (DQ0∂tδr) ,

(846)

As was explained in chapter 3 the linearized solutions take the form

δr =
∑
l,m

almYlme
−iωrl t,

δQ =
∑
l,m

alm
iωrlQ0 (l − 1− iωrl )

l − iωrl
Ylme

−iωrl t +
∑
l,m

qlmYlme
−iωQl t,

δui =
∑
l,m

−iωrl
l

alm∇iYlme−iω
r
l t +

∑
l,m

blmV
lm
i e−iω

v
l t,

(847)

(the summation over l involving alm in the last line excludes l = 0). The coefficients blm

parametrize the ‘velocity fluctuations’ of chapter 3; note that these fluctuations affect only the

velocity field. The coefficients qlm parametrize the ‘charge fluctuations’ of chapter 3; note that

they affect only the charge field. The coefficients alm parametrize the ‘shape’ fluctuations of

chapter 3. These are the most complicated quasinormal modes, as they affect the shape δr, the

charge δQ and the velocity δu. In the rest of this subsection we will determine the radiation field

157However the term proportional to δr does not contribute to leading order in fluctuations as Ja vanishes
for the stationary membrane. In effect, thus, consequently we raise all indices using the metric of the unit
sphere
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sourced by each of these fluctuations in turn.

Radiation from Charge Fluctuations Let us first restrict our attention to the lth spher-

ical harmonic mode of ‘charge’ fluctuations (i.e. mode in (847) that is proportional to qlm). In

this special case the spacetime current (846) reduces to

JaST = − 1

2
√

2π
δ(r − 1)qlme

−iωQl t (∂aYlm) ,

J tST =
D

2
√

2π
δ(r − 1)

(
qlmYlme

−iωQl t
)
,

JrST = 0.

(848)

It follows that the quantities b and c relevant for (808) are given by

b =
l

2
√

2π
δ(r − 1)qlmYlme

−iωQl t − 1

2
√

2π
qlmYlme

−iωQl t∂rδ(r − 1),

c = 0,

(849)

(at ω = ωQl = −il). In writing our result (848) we have taken the large D limit and retained only

leading order terms. It follows from (812) that

S+
l =

D

2
√

2π
S̃2
l ω

l+D−1
2 qlmYlme

−iωQl t,

~Vl = 0,

(850)

where the coefficients S̃+
l are defined in (813). The S+

l can be computed from the constraint

equation (806) which in the large D limit reduces to

S−l =
D

l
S+
l .

The electromagnetic radiation field associated with the lth ‘charge’ fluctuation quasinormal mode

is given by plugging these results into (804).

Radiation from Velocity Fluctuations Let us now restrict our attention to the lth spher-

ical harmonic mode of ‘velocity’ fluctuations (i.e. mode in (847) that is proportional to blm). In
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this special case the spacetime current (846) reduces to

JaST =
DQ0

2
√

2π
δ(r − 1)blmV

a
lme
−iωvl t,

J tST = 0,

JrST = 0.

(851)

It follows that the quantities b and c relevant for (808) are given by

b = 0,

c =
iDQ0ω

v
l

2
√

2π
δ(r − 1)blmV

a
lme
−iωvl t,

(852)

(at ω = ωvl = −i(l−1)
1+Q2

0
). It follows from (809) that

~Vl =
iDQ0

2
√

2π
(ωvl )

D−1
2

+lṼlblm~Vlme
−iωvl t, (853)

where the coefficients Ṽl is defined in (813). The electromagnetic radiation field associated with

the lth ‘velocity’ fluctuation quasinormal mode is obtained by plugging (853) into (804).

Radiation from Shape Fluctuations Let us first restrict our attention to the lth spherical

harmonic mode of ‘shape’ fluctuations (i.e. mode in (847) that is proportional to alm). The

radiation due to the shape fluctuation is little complicated compared to the ’charge ’ fluctuation

or the ’velocity ’ fluctuation , since the small perturbation in the shape turns on both the charge

and the velocity fluctuation(847) . In this special case the spacetime current (846) reduces to

JaST = −iω
r
l

l

DQ0

2
√

2π
δ(r − 1)alm∇aYlme−iω

r
l t,

J tST = δ(r − 1)
DQ0

2
√

2π

(
alm

iωrl (l − 1− iωrl )
l − iωrl

Ylme
−iωrl t

)
+
DQ0

2
√

2π
almYlm∂rδ(r − 1)e−iω

r
l t

− DQ0(−l + 1)

2
√

2π
δ(r − 1)almYlme

−iωrl t,

JrST = − iω
r
lDQ0

2
√

2π
δ(r − 1)almYlme

−iωrl t.

(854)

It follows that the quantities b and c relevant for (808) are given by

b =
Q0

2
√

2π
almYlm∂

2
r δ(r − 1)e−iω

r
l t,

c = 0,

(855)
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(at ω = ωrl ). It follows from (809) that

S+
l = S̃+

l ω
l+D−1

2
D2Q0

2
√

2π
almYlme

−iωrl t,

~Vl = 0,

(856)

where the coefficient S̃+
l are defined in (813). The S+

l can be computed from the constraint

equation (806) which in the large D limit reduces to

S−l =
D

l
S+
l .

The electromagnetic radiation field associated with the lth ‘shape’ fluctuation quasinormal mode

is obtained by plugging (804) ).

4.9.2 Gravitational Radiation

In this subsection we compute the gravitational radiation emitted by the quasinormal modes

described earlier in this section. As we demonstrated earlier in this chapter, the stress tensor on

the world volume of the large D black hole membrane is given by

Tµν =

(
1

8π

)[(
K

2

)
(1 +Q2)uµuν +

(
1−Q2

2

)
Kµν −

(
∇̂µuν + ∇̂νuµ

2

)

−
(
KQ2

2D
+

2Q∇̂2Q

K
+Q2uαuβKαβ

)
uµuν − (uµVν + uνVµ)

−
[(

1 +Q2

2

)(
uαuβKαβ

)
+

(
1−Q2

2

)(
K

D

)]
g(ind,f)
µν

]
+O

(
1

D

)
,

(857)

where

Vµ = Q ∇̂µQ+Q2(uαKαµ) +

(
2Q4 −Q2 − 1

2

)(∇̂µK
K

)

−
(
Q2 + 2Q4

2

)
(u · ∇̂)uµ +

(
1 +Q2

K

)
∇̂2uµ.

(858)

The stress tensor is conserved upto the membrane equation of motion (546) and the divergence-

lessness of the velocity field.

∇µTµν = 0. (859)
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The most general form of the fluctuation of the stress tensor about the RN background takes the

form

−8πTtt = −D
2

(1 +Q2
0) +

Q2
0

2
−
(
− (1 +Q2

0)

(
1 +
∇2

D

)(
D

2
+ ∂t

)
δr + (D + 1)Q0δQ

+Q2
0

(
1 +
∇2

D

)
(Q2

0∂t − 1/2)δr + 2Q0

(∇2

D
− ∂t

)
δQ+ 2Q2

0∂
2
t δr

)
+

1 +Q2
0

2
∂2
t δr −

1−Q2
0

2

(
1−

(
1 +
∇2

D

)
δr

)
+

1−Q2
0

2
∂2
t δr,

−8πTta =

(
D(1 +Q2

0)−Q2
0

2
δua +

1−Q2
0

2
∂t∇aδr +

1 +Q4
0

2
∂tδua −Q0∂aδQ

− 1−Q2
0 −Q4

0

2
(1 +

∇2

D
)∇aδr −

(
1 +Q2

0

2

) ∇2

D
δua + 2Q2

0∂t∇aδr − 2Q2
0δua

)
,

−8πTab = −1 +Q2
0

2
∂2
t δrgab +

(
1−Q2

0

2
(∇a∇bδr − gabδr) +Q0gabδQ+

∇aδub +∇bδua
2

+ gab∂tδr

)
− 1−Q2

0

2

(
1 +
∇2

D

)
δrgab.

The velocity fluctuation and the shape fluctuation along the angular direction follows the following

second order differential equation((
1 +
∇2

D

)
− (1 +Q2

0)∂t

)
δua =−

(
(1−Q2

0)∇a
(

1 +
∇2

D

)
− ∂t∇a

)
δr, (860)

and along the t direction the velocity fluctuation and the shape fluctuation follows the constraint

equation158

∇aδua = −(D − 2)∂tδr ≈ −D∂tδr. (861)

We have, so far, been working with tensor fields living on the world volume of the membrane. In

order to determine the source for radiation we are really interested in the stress tensor viewed as

a distributional tensor field living in spacetime. Apart from the delta functions that localize the

spacetime quantities to the membrane (and which we will explicitly present in later formulae) the

relationship between these two structures is given in general by the following translation formulae

158The expression below can be obtained either by use the expansion of the divergence in terms of the
Christoffel symbol or use the form

(∇.T )i =
1√
g
∂k(
√
gT ki )− 1

2
∂igklT

kl.
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between the membrane field Aµν and the spacetime field AMN
ST

AttST = Att, AabST = Aab,

ArrST = O(ε2), AtaST = Ata,

AtrST =
(
Att∂tδr +Ata∂aδr

)
, AarST =

(
Aat∂tδr +Aab∂bδr

)
.

It follows that to linear order in fluctuations

T ttST = δ(r + δr − 1)T tt,

T abST = δ(r + δr − 1)T ab,

T taST = δ(r + δr − 1)T ta,

T trST = δ(r + δr − 1)
(
T tt∂tδr + T ta∂aδr

)
= δ(r + δr − 1)T tt∂tδr,

T rrST = 0,

T arST = 0.

(862)
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Explicitly we find

−8πT ttST = δ(r + δr − 1)

(
− D

2
(1 +Q2

0)−
(
− (1 +Q2

0)

(
1 +
∇2

D

)(
D

2
+ ∂t

)
δr

+ (D + 1)Q0δQ+
1−Q2

0

2
∂2
t δr

+Q2
0

(
1 +
∇2

D

)
(Q2

0∂t − 1/2)δr + 2Q0

(∇2

D
− ∂t

)
δQ+ 2Q2

0∂
2
t δr

)
+

1 +Q2
0

2
∂2
t δr −

1−Q2
0

2

(
1−

(
1 +
∇2

D

)
δr

))
,

−8πT taST = −δ(r + δr − 1)

(
D(1 +Q2

0)−Q2
0

2
δua +

1−Q2
0

2
∂t∇aδr+

1 +Q4
0

2
∂tδua −

1−Q2
0 −Q4

0

2
(1 +

∇2

D
)∇aδr −Q0∂aδQ−

(
1 +Q2

0

2

) ∇2

D
δua

+ 2Q2
0∂t∇aδr − 2Q2

0δua

)
,

−8πT abST = δ(r + δr − 1)

(
− 1 +Q2

0

2
∂2
t δrgab +

(
1−Q2

0

2
(∇a∇bδr − gabδr) +Q0gabδQ

+
∇aδub +∇bδua

2
+ gab∂tδr

)
− 1−Q2

0

2

(
1 +
∇2

D

)
δrgab

)
−8πT trST = δ(r + δr − 1)

(
− D

2
(1 +Q2

0)∂tδr

)
,

−8πT rrST = 0,

−8πT arST = 0.

Gravitational Radiation from Charge fluctuation Let us first restrict our attention to

the lth spherical harmonic mode of ‘charge’ fluctuations (i.e. mode in (847) that is proportional

to qlm). In this special case the stress tensor (863) reduces to

−8πT ttST = −δ(r − 1)DQ0δQ,

−8πT taST = δ(r − 1)Q0∂
aδQ,

−8πT abST = δ(r − 1)Q0g
abδQ,

−8πT trST = 0,

−8πT rrST = 0,

−8πT arST = 0,

(863)
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where δQ is given by the part of (847) proportional to qlm.

It follows that we can read of the relevant quantity b from the effective stress tensor (818)

and (831) is given by

b =
Q0

D
(∂2
r δ(r − 1))qlmYlme

−iωQl t (864)

(at ω = ωQl ). It follows from (809) that

S+
l = S̃+

l DQ0(ωQl )l+
D+1
2 qlmYlme

−iωQl t, (865)

where S̃+
l is given by (835). The other components can be read of using the constraint equation

(826),which in the large D limit can be simplified as

S0
l =

2D

l
S+
l , S−l =

D2

l(l − 1)
S+
l . (866)

The contribution to the radiation due to the charge fluctuation to the vector sector and the tensor

sector vanishes in the linear order.

The explicit formula for gravitational radiation from the charge fluctuations is given by plug-

ging (865) and (866) into (822).

Gravitational Radiation from Velocity fluctuation We now turn our attention to the

lth spherical harmonic mode of ‘velocity’ fluctuations (i.e. mode in (847) that is proportional to

blm). In this special case the spacetime current (846) evaluates to

−8πT ttST = 0,

−8πT taST = δ(r − 1)Q0
D(1 +Q0)2

2
δua,

−8πT abST = δ(r − 1)

(∇aδub +∇bδua
2

)
,

−8πT trST = 0,

−8πT rrST = 0,

−8πT arST = 0,

(867)

where δua is obtained from the part of (847) proportional to blm. We can read of the relevant

quantity ~v from the effective stress tensor (818) and (831). We find

~v =
−iωvl (1 +Q2

0)

2
(∂rδ(r − 1))blmV

lm
i e−iω

v
l t, (868)
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(at ω = ωvl ). It follows from (809) that

~V +
l = iDṼ +

l (ωul )l+
D−1
2

1 +Q2
0

2
blmV

lm
i e−iω

v
l t, (869)

where Ṽ +
l is given by (835). The other components can be read of using the constraint equation

(826),which in the large D limit can be simplified as

~V −l =
D

(l − 1)
~V +
l . (870)

The contribution to the radiation due to the velocity fluctuation to the scalar sector and the

tensor sector vanishes in the linear order. The gravitational radiation associated with the lth

‘velocity’ fluctuation quasinormal mode is given by plugging (869) and (870) into (822).

Gravitational Radiation from Shape fluctuation Finally, we turn to the lth spherical

harmonic mode of ‘shape’ fluctuations (i.e. mode in (847) that is proportional to alm). In this

special case the spacetime current (846) reduces to

−8πT ttST = δ(r − 1)

(
1 +Q2

0

2

(
1 +
∇2

D

)
D

2
δr −DQ0δQ

)
− D(1 +Q2

0)

2
δr∂rδ(r − 1),

−8πT taST = δ(r − 1)Q0
D(1 +Q0)2

2
δua,

−8πT abST = δ(r − 1)

(
− 1 +Q2

0

2
∂2
t δrgab +

(
1−Q2

0

2
(∇a∇bδr − gabδr) +Q0gabδQ

+
∇aδub +∇bδua

2
+ gab∂tδr

)
− 1−Q2

0

2

(
1 +
∇2

D

)
δrgab

)
−8πT trST = δ(r − 1)

(
− D

2
(1 +Q2

0)∂tδr

)
,

−8πT rrST = 0,

−8πT arST = 0,

(871)

where all fluctuation fields are obtained from the part of (847) proportional to alm. It follows

that we can read of the relevant quantity b from the effective stress tensor (818) and (831) and

is given by

b =
1 +Q2

0

2D

(
∂2
r δ(r − 1)almYlme

−iωrl t − ∂rδ(r − 1)almYlme
−iωrl t

)
, (872)

(at ω = ωrl ). It follows from (809) that

S+
l = S̃+

l D
2 1 +Q2

0

2
(ωrl )

l+D+1
2 almYlme

−iωrl t, (873)
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where S̃+
l is given by (835). The other components can be read of using the constraint equation

(826),which in the large D limit can be simplified as

S0
l =

2D

l
S+
l , S−l =

D2

l(l − 1)
S+
l .

The contribution to the radiation due to the charge fluctuation to the vector sector and the tensor

sector vanishes in the linear order.The radiation field associated with the lth ‘shape’ fluctuation

quasinormal mode is obtained by plugging these results into (822).

4.10 Discussion

In this chapter we have obtained explicit formulae for the stress tensor, charge current and

entropy current that live on the world volume of the large D black hole membrane of [1, 63, 66].

We have demonstrated that the membrane stress tensor and charge current are conserved. When

written in terms of membrane variables, the requirement of conservation is simply a restatement

of the membrane equations of motion of [1, 63, 66]. In contrast to the charge current and the

stress tensor, the entropy current on the membrane world volume is not conserved; ∇MJMS is

nonvanishing at order 1
D . We have used the Hawking area increase theorem to demonstrate that

the divergence of this entropy current is point wise positive definite. At lowest nontrivial order

(order 1
D ) we have demonstrated that this divergence is proportional to the square of the shear

tensor.

In this chapter we have also derived explicit formulae for linearized radiation response of the

metric and the electromagnetic field to an arbitrary stress tensor and a charge current. Plugging

the our explicit results for the membrane stress tensor and charge current into these general

formulae yields a formula for the radiation emitted from a large D black hole membrane as it

undergoes any particular solution of the large D membrane equations. A central qualitative

result of this chapter is that the fractional energy lost to radiation as the large D black hole

membrane moves, oscillates and vibrates around is of order 1
DD

. The smallness of radiation is a

simple kinematical consequence of the nature of Greens functions in large D, and results in the

decoupling of membrane motion from asymptotic low energy gravitons at large D. It also ensures

that the ‘radiation reaction’ on large D black hole membranes can be ignored when working to

any fixed order in 1
D .

The results of this chapter could be generalized in many ways. First, the membrane stress

tensor has been derived in this chapter at first subleading order in 1
D . It should be straightforward

to use the explicit results of [66] to generalize this stress tensor to second order in the large D

expansion, and verify that the conservation of this improved stress tensor leads to the second

order membrane equations of motion derived in [66]. Second it would be interesting to generalize
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the construction of [66] to the study of charged membranes and thereby obtain the formula for

the leading entropy production for charged membranes.

It was demonstrated in [69] that the ‘black brane’ equations of Emparan, Suzuki and Tanabe

(EST) and collaborators are a special scaling limit of the membrane equations of [1, 63, 66]. It

should be straightforward to take the same scaling limit of the stress tensor derived in this chapter

and compare the result with the ‘black brane stress tensor’ constructed by EST and collaborators.

It would be interesting (and may be possible) to use the formulae derived in this chapter -

especially the formula for the divergence of the entropy current - to classify all stationary solutions

of the membrane equations of motion.

The membrane equation of motion (546) and the formula for the membrane stress tensor (555)

apply, at first order in 1
D , note only to membranes in flat space but also to membranes propagating

in any slowly varying solution of the vacuum Einstein equations RMN = 0, e.g. a gravitational

wave. Using this fact the membrane equations of motion together with the formulae for the

membrane stress tensor and charge current of this chapter can be used to study how external

gravitational waves ‘polarize’ large D black holes. The induced polarization will set the black

hole oscillating, and the black oscillation will in turn radiate gravitational and electromagnetic

waves in accordance with the formulae derived in this chapter. It should be straightforward to

work out the details of this process in order to compute the ω dependent analogues of the ‘Love

Numbers’ for black holes described, for instance, in [83]. 159

It would be interesting to generalize the construction of the membrane entropy current to

higher to the large D black hole membrane for higher derivative theories of gravity. The study

of this subject should make contact with ongoing attempts to establish the second law of ther-

modynamics in higher derivative theories of gravity.

The RHS of the formula (775) for the divergence of the entropy is of order 1
D . At least naively,

this fact suggests that the fractional rate of entropy production in black hole motion is of order
1
D . This conclusion appears to lead to a paradox.

Consider the head on collision of two non rotating black holes, each of which is moving at a

substantial fraction of the speed of light. If the energy lost as radiation in this collision process

is very small - as suggested by the discussion of this chapter - then almost all of the initial

energy of this configuration must find its way into the black hole that is formed out of this

159It is interesting to understand how energy conservation works when a gravitational wave is incident
on a black hole at large D. Consider, for instance, a spherical wave of amplitude A incident on a black
hole. Only a fraction εA of this amplitude reaches the membrane (where ε is a small number of order

1

D
D
2

). This part of the wave excites the membrane into a motion of amplitude proportional to εA and so

of energy proportional to (εA)2. The membrane oscillation set up by this process result in radiation, and
so a back scattered wave of amplitude of order ε2A. The interference of this back scattered wave with the
initial incident wave reduces the energy of the initial wave by an amount proportional to ε2A×A = ε2A2,
accounting for the energy deposited into membrane vibrations.
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collision. It follows that the mass of this daughter black hole is substantially larger than the

sum of masses of the initial colliding black holes implying that the entropy of the final black hole

is also substantially larger than the sum of the entropies of the original colliding black holes.

In other words the collision of two black holes at large D appears to lead to fractional entropy

production of order unity, in apparent contradiction with the claim of the previous paragraph.

We do not have a clear resolution to the puzzle described above. Note, however, that there is

a time period of order 1
D when the colliding black holes first come very near to each other, when

the membrane description of [1, 63, 66] breaks down. It is possible that the solution over this

time period is a rather violent one, leading to the emission of a substantial amount of radiation

over the short time scale of order 1
D , invalidating the claim the energy lost in radiation at large

D is rather small. This discussion suggests that the solution describing the collision of two black

holes may be rather interesting when the black holes first touch. It is possible that the details

of this solution are amenable to an analytical analysis of some sort. We hope to return to this

fascinating question in the future.

4.11 Appendices for Chapter 4

4.11.1 Conventions and notation

Table 6: Different indices
Minkowski Spacetime indices Capital Latin (A, B, M , N)

Indices in the membrane Small Greek (α, β, µ, ν)
Cartesian Space indices Small Latin (i, j, k, m)
Angle indices on SD−2 Small Latin (a, b, c, d)

• For our case because of the continuity of the metric p
(in)
AB = p

(out)
AB . So sometimes we have

denoted it by just pAB.

• In all sections we have used (in) and (out) both as superscript and subscript, in a way so

that it does not clutter the notation mixing with other raised or lowered indices. The same

is true for the superscipt (or sometimes subscript) (k), used to denote the kth coefficient

in an expansion around ρ = 1.

• In most places ∇̂ denotes covariant derivative with respect to g
(ind,f)
µν . But in some sections

(e.g., in appendix (4.11.8)) it denotes covariant derivative with respect to g
(ind)
µν . What we

mean will be clear from the context.
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Table 7: Gauge fields
Full (nonlinear) Gauge field aM
(as read off from chapter 3)

Linearized part from aB AB = ρ−(D−3)MB

( not satisfying gauge conditions of this chapter)

Coefficient of kth term in expansion M
(k)
B

of MB around ρ = 1
Linearized and outside the membrane GA

(satisfying gauge conditions of this chapter)

Coefficient of kth term in expansion G
(k)
A

of GA around ρ = 1

Linearized and inside the membrane G̃A

Coefficient of kth term in expansion G̃
(k)
A

of G̃A around ρ = 1

Table 8: Different metrics
Full (nonlinear) metric: GAB = ηAB + gAB

(as read off from chapter 3)

Linearized part from GAB ηAB + ρ−(D−3)MAB

( not satisfying gauge conditions of this chapter)

Coefficient of kth term in expansion M
(k)
AB

of MAB around ρ = 1

Linearized Metric Outside the membrane: gAB = ηAB + hAB = ηAB + hAB
ρD−3

Linearized Metric Inside the membrane: g̃AB = ηAB + h̃AB

Coefficient of kth term in expansion h
(k)
AB

of hAB around ρ = 1

Coefficient of kth term in expansion h̃
(k)
AB

of h̃AB around ρ = 1

Induced Metric from Full space-time: g
(ind)
µν

Induced Metric from flat space-time: g
(ind,f)
µν

Table 9: Differential operators

w.r.t induced metric on the membrane ∇̂
w.r.t full space-time metric ∇

w.r.t Minkowski metric ∂
d’Alembertian �

d’Alembertian w.r.t g
(ind,f)
µν �̃
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Table 10: Different projectors
On the membrane as

embedded in flat space-time ΠAB = ηAB − nAnB.
On the membrane as embedded in

space time with metric gAB = ηAB + hAB p
(out)
AB

On the membrane as embedded in

space time with metric g̃AB = ηAB + h̃AB p
(in)
AB

Projector orthogonal to both the normal as PAB = ηAB − nAnB + uAuB.
embedded in flat space and the velocity

Projector orthogonal to velocity along the as pµν = g
(ind,f)
µν + uµuν .

membrane as embedded in flat space

Projector orthogonal to membrane as Π̃AB = ηAB + h
(0)
AB − nAnB.

embedded in space with metric ηAB + h
(0)
AB

Projector on the membrane as
dependence of the Pl

lthspherical harmonic

Table 11: Extrinsic curvature
when embedded in gAB = ηAB + hAB K(out)

AB

when embedded in g̃AB = ηAB + h̃AB K(in)
AB

when embedded in ηAB + h
(0)
AB K̄AB

when embedded in ηAB KAB

gABK(out)
AB K(out)

g̃ABK(in)
AB K(in)[

ηAB − hAB(0)

]
K̄AB K̄

ηABKAB K

• We have used ∇ for covariant derivative with respect to both gAB and g̃AB. What we

mean, will be clear from the context.

• In section (4.9) and section 4.8 and appendices from (4.11.4) to (4.11.6), ∇i denotes co-

variant derivative in flat space-time, but not necessarily in Cartesian coordinates and ∇̂a
denotes covariant along unit sphere.

• Throughout this chapter we employ the mostly positive sign convention.
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Table 12: Intrinsic curvature and Field strength
Riemann Tensor for full space time RABCD

(for general analysis)

Ricci Tensor for gAB = ηAB + hAB R
(out)
AB

Ricci Tensor for g̃AB = ηAB + h̃AB R
(in)
AB

Ricci Scalar for gAB = ηAB + hAB R(out)

Ricci Scalar for g̃AB = ηAB + h̃AB R(in)

Ricci Tensor for g
(ind)
µν Rµν

Ricci Scalar for g
(ind)
µν R

Field strength for GA FAB

∂AG
(k)
B − ∂BG

(k)
A F

(k)
AB

Field strength for G̃A F̃AB

∂AG̃
(k)
B − ∂BG̃

(k)
A F̃

(k)
AB

Field strength along the membrane F̂µν

Table 13: Different Sources
TAB Space-time Stress tensor
JA Space-time Current
TAB Defined through TAB =

√
dρ · dρ δ(ρ− 1)TAB

JA Defined through JA =
√
dρ · dρ δ(ρ− 1)JA

Tµν Stress tensor along the membrane
Jµ Current along the membrane

T
(out/in)
AB K(out/in)

AB −K(out/in)pAB

J
(out)
A nBFBA

J
(in)
A nBF̃BA

Table 14: other notations
Fourier transform defined as ψ(t) =

∫
e−iωtψ̃(ω)dω

2π

Outgoing wave represented by e−iω(t−r).
Greens function defined as � G(x, y) = −δD(x− y)

N
√
dρ · dρ

nA
∂Aρ
N

4.11.2 Linearized Solutions for point masses and charges

In this brief Appendix - whose purpose is largely to fix conventions for the normalization of mass

and charge, we solve the linearized Einstein and Maxwell equations in the presence of a point

mass and charge at the origin.
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Conventions for the action and equations of motion employed in this chapter

In this chapter we work with the metric and gauge field governed by the action

S =
1

16π

∫ √−g (R− 4πFMNF
MN
)
. (874)

As explained in the text we will sometimes study this action coupled to a classical source -

at linearized order. The resultant linearized equations can be obtained from the action -

Action =
1

16π

∫ √−g (R− 4πFMNF
MN
)
−
∫ (

1

2
hMNTMN + JMAM

)
, (875)

where

FMN = ∇MAN −∇NAM . (876)

The linearized equations of motion (about flat space and zero gauge field) that follow from

this action is

RMN −
RgMN

2
= 8πTMN ,

∇MFMN = JN
(877)

(the LHS of the first equation in (877) should be linearized).

Comparison with the conventions used in earlier work In contrast with the conven-

tions employed in this chapter, the previous chapter used the action

S =
1

16π

∫ √−g(R− 1

4
FMNF

MN

)
. (878)

It follows that the gauge fields of this chapter are related to the gauge fields of chapter 3 by

the map

Ahere =
Athere√

16π
. (879)

Solutions for point sources We will now find solutions to the linearized version of (877)

in the presence of point sources

T00 = mδD−1(~x), J 0 = qδD−1(~x)

(with all other components zero). By definition, the spacetime that arises in response to these

sources will be taken to have mass m and charge q.

322



In order to solve the linearized versions of (877) we first employ the gauge

∇M
(
hMN −

ηMNh

2

)
= 0

and

∇MAM = 0.

We find that the solution to the linearized version of (877) is given by

h00 =
16πm

(D − 2)ΩD−2rD−3
,

hii =
16πm

((D − 3)(D − 2)ΩD−2rD−3
,

A0 = −A0 = − q

(D − 3)ΩD−2rD−3
.

(880)

The corresponding linearized metric and gauge field takes the form

ds2 = −dt2
(

1− 16πm

(D − 2)ΩD−2rD−3

)
+ dyidyi

(
1 +

16πm

(D − 3)(D − 2)ΩD−2rD−3

)
,

A0 =
q

(D − 3)ΩD−2rD−3
dt,

(881)

where r2 = yiyi. It may be verified that the curvature component R0i0j evaluated on this solution

is given by

R0i0j = − 8π

(D − 2)ΩD−2
∇i∇j

( m

rD−3

)
. (882)

In a similar manner the field strength F0i evaluated on this solution is given by

F0i = − 1

(D − 3)ΩD−2
∇i

q

rD−3
. (883)

The coordinate change

yi = xi
(

1− 8πm

(D − 3)(D − 2)ΩD−2rD−3

)
,

turns (881) into

ds2 = −dt2
(

1− 16πm

(D − 2)ΩD−2r̃D−3

)
+

dr̃2(
1− 16πm

(D−2)ΩD−2r̃D−3

) ,
A0 =

q

(D − 3)ΩD−2rD−3
,

(884)
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where r̃2 = xixi
160 . The solution in (884) is presented in the Schwarzschild gauge most conve-

nient for comparing with the Reissner Nordstrom black holes of the next section.

4.11.3 Reisnner Nordstorm Black Holes and their thermodynamics

In this Appendix we present the solutions for Reisnner Naordstorm black holes in arbitrary

dimensions and also review their thermodynamics. The material reviewed here is, of course, well

known. Our main purpose is to establish conventions.

The system (874) admits the following two parameter set of exact Reissner Nordstrom solu-

tions

ds2 = −dt2f(r) +
dr2

f(r)
+ r2dΩ2

D−2;

f(r) =

(
1− (1 + cDQ

2)rD−3
0

rD−3
+
cDQ

2rD−3
0

r2(D−3)

)
,

A =
Q√
8π

(r0

r

)D−3
dt,

(885)

where 161

cD =
D − 3

D − 2
.

The mass and charge of these solutions are easily read off by comparison with (884); we find

m =
(D − 2)(1 + cDQ

2)rD−3
0 ΩD−2

16π
,

q =
1√
8π

(D − 3)QrD−3
0 ΩD−2.

(886)

The inverse temperature of these solutions is obtained by continuing to Euclidean space and

identifying the periodicity of the time circle that keeps the solution regular at the outer event

horizon; this procedure gives

T =
(1− cDQ2)(D − 3)

4πr0
. (887)

The chemical potential µ of this solution is given by A0 evaluated at infinity minus A0 eval-

uated at the outer event horizon and equals

µ = − 1√
8π
Q. (888)

160(884) is equivalent to (881) under the coordinate change listed above only at large r. More precisely
these two terms are equivalent when we keep corrections to the flat space metric of order 1

rD−3 but ignore
terms of order 1

r2(D−3)

161Note that the solution (885) agrees with the solution reported in chapter 3 after using (879).
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Finally, the entropy of the black hole is the area of its outer event horizon divided by 4 and

is given by

S =
ΩD−2r

D−2
0

4
. (889)

It is easily verified that

TdS =
ΩD−2(D − 2)(D − 3)

16π
(1− cDQ2)rD−4

0 dr0,

dm =
ΩD−2(D − 2)

16π

(
(1 + cDQ

2)(D − 3)rD−4
0 dr0 + 2cDQr − 0D−3dQ

)
,

µdq =− QΩD−2(D − 3)

8π

(
(D − 3)Qr − 0D−4dr0 + rD−3

0 dQ
) (890)

It is easily verified that these expressions are consistent with the first law of thermodynamics

TdS = dm+ µdq. (891)

4.11.4 Spherical Harmonics

In this appendix we review various properties of scalar vector and tensor spherical harmonics

that will prove useful to us in the rest of this chapter.

Scalar Spherical Harmonics Scalar spherical harmonics form a basis for functions on the

unit SD−2. Every scalar spherical harmonic may be obtained as the restriction of a polynomial

function in RD−1 to the unit sphere. Distinct polynomials that have the same restriction to

the unit sphere define the same spherical harmonic. In other words spherical harmonics may be

thought of as equivalence classes of polynomials in RD−1. In each equivalence class it is possible

to find a unique representative polynomial which given by a linear combination of monomials of

the form

Sl = Ci1...ilx
i1 . . . xil , (892)

where the coefficients Ci1...il are symmetric and traceless.

Monomials of the form (892) of degree l define a basis for lth scalar spherical harmonics. Such

monomials transform in the representation (l, 0, . . . 0) of SO(D − 1), where we label SO(D − 1)

representations by highest weights under rotations in orthogonal two planes of RD−1. It follows

from the tracelessness of Ci1...il that ∇2Sl = 0 where ∇2 is the Laplacian in RD−1. Transforming

this equation to spherical polar coordinates we deduce that

−∇2Yl = l(D + l − 3)Yl, (893)

where Yl is the restriction of Sl onto the unit sphere and ∇2 on the LHS of (893) is the Laplacian
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on the unit sphere.

Projectors onto spaces of scalar spherical harmonics We use notation in which

the angles on the unit SD−2 are collectively denoted by θ. For some purposes it is useful to define

Pl. Pl acts on the space of functions on the unit sphere as a projector onto the lth spherical

harmonic sector. In other words∫
dΩ′D−2Pl(θ, θ′)Yl′(θ′) = δll′Yl(θ). (894)

It is not difficult to find an explicit expression for the projector Pl(θ, θ′). In order to do this

first note that

Pl(θ, θ′)R
[
Y ′l (θ′)

]
= R

[
Pl(θ, θ′)Y ′l (θ′)

]
,

where R is any SO(D−1) rotation operator (this equation follows because the action of a rotation

operator on any kth spherical harmonic is another kth spherical harmonic). It follows, in other

words, that Pl(θ, θ′) is invariant under simultaneous rotations of θ and θ′. Let r̂ denote the unit

vector in the direction of θ and r̂′ denote the unit vector in the direction of θ′. It follows that

Pl(θ, θ′) = fl(r̂.r̂
′),

where fl(x) is an as yet undetermined function of a single real variable x.

In order to determine fl(x) we note that

∇2Pl(θ, θ′) = ∇′2Pl(θ, θ′) = −l(D + l − 3)Pl(θ, θ′). (895)

Let us now specialize to the case that the vector r̂′ points along the xD−1 axis. In this case

r̂.r̂′ is simply the cosine of the angle (let us call it θ) that r̂ makes with the xD−1 axis. It follows

from (895) that fl(cos θ) is an lth spherical harmonic. Notice that fl(cos θ) depends only on the

angle with the xD−1 axis and so is rotational invariant under SO(D−2) rotations that leave xD−1

unchanged. The unique spherical harmonic with these properties is proportional to the unique

regular solution to the differential equation

1

(sin(θ))D−3
∂θ

(
(sin(θ))D−3 fl(cos θ)

)
= −l(D + l − 3)fl(cos θ).

Solving the equation we find

fl(cos θ) = Nl(sin θ)
−D−4

2 P
D
2
−2

D
2

+l−2
(cos θ), (896)
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where P
D
2
−2

D
2

+l−2
(x) is an associated Legendre function and Nl is an as yet undetermined constant.

In order to determine Nl we use the equation (894) for the special case that r̂ points along

the xD−1 axis, and the function it acts on (Y ′l in (894)) is chosen to be

(sin θ′)−
D−4
2 P

D
2
−2

D
2

+l−2
(cos θ′) where θ′ is the angle of r̂′ with the xD−1 axis. It follows from (894)

that

lim
θ→0

(
(sin θ′)−

D−4
2 P

D
2
−2

D
2

+l−2
(cos θ)

)
= NlΩD−3

∫
(sinθ)D−3

(
(sin θ)−

D−4
2 P

D
2
−2

D
2

+l−2
(cos θ)

)2

= NlΩD−3

∫
sin θ

(
P
D
2
−2

D
2

+L−2
(cos θ)

)2

,

(897)

where ΩD−3 is the volume of the unit D−3 sphere. The integral on the RHS of (897) is standard

in the theory of Legendre functions and is given by∫
sin θ′

(
P
D
2
−2

D
2

+l−2
(cos θ′)

)2

=
2(l +D − 4)!

(2l +D − 3)l!
.

Moreover the limit on the LHS is given by

lim
θ→0

(
(sin θ′)−

D−4
2 P

D
2
−2

D
2

+l−2
(cos θ)

)
=

(−1

2

)D−4
2 (l +D − 4)!

l!Γ(D−2
2 )

.

These relations determine Nl; plugging in the value we obtain

fl(cos θ) =

(−1

2

)D
2 2l +D − 3

π
D−2
2

(sin θ′)−
D−4
2 P

D
2
−2

D
2

+l−2
(cos θ). (898)

In particular we have

Pl(0) = lim
θ→0

fl(cos θ) =
1

2D−2π
D−2
2

(l +D − 4)!

l!

(2l +D − 3)

Γ
(
D−2

2

) . (899)

Vector spherical harmonics Vector spherical harmonics form a basis for the set of diver-

gence free vector fields on the unit sphere SD−2. In this brief section we will describe how vector

spherical harmonics can be obtained as the restriction of polynomial valued vector fields in RD−1.

We will also use this description to compute some of the properties of these harmonics.

Consider a vector field in RD−1 of the form

W l
i = Vi,i1...ilx

i1 . . . xil . (900)

We will be interested in the restriction of this vector field onto the unit sphere. As in the previous

subsection different expressions of the form (900) that restrict to the same vector field on the unit
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sphere will be considered equivalent; in other words vector spherical harmonics are identified with

equivalence classes of expressions of the form (900). The indices i1 . . . il are clearly symmetric. As

the normal component of the vector field W l
i has no restriction to the sphere it is convenient to set

this component to zero. The requirement xiW l
i = 0 is equivalent to the condition that the Vi,i1...il

vanishes under symmetrization between i and (say) i1. As in the previous section one can find

a representative in any equivalence class with the property that the coefficient functions Vi,i1...il

vanish upon tracing, say, i1 and i2. The set of coefficient functions with these properties transform

in the (l, 1, . . . 0) representation of SO(D − 1) (see the previous subsection for an explanation of

our labelling of representations).

It follows from all the conditions we have imposed that

∇.W l = 0, (901)

where the divergence is taken in the embedding RD−1. Translating this equation to polar coor-

dinates we also find

∇.W l = 0, (902)

where W l is now thought of as a vector field on the unit sphere and ∇ is now regarded as the

covariant derivative on the unit sphere.

The set of vector fields W l
i - when restricted to the sphere - define a basis for lth vector

spherical harmonics on SD−2. We use the symbol V α
l to denote lth vector spherical harmonics

on SD−2. We will sometimes also use the symbol V α
l to denote a vector function in the full

embedding RD−1 defined by

V l
i = Vi,i1...il

xi1 . . . xil
rl

, (903)

where the coefficients Vi,i1...il are constants independent of r. With this normalization each

Cartesian component of the vector field V l is independent of r.

Note that for any fixed i (where i is a Cartesian coordinate) W l
i is a polynomial of the form

(892). It follows that ∇2W l
i = 0 (where ∇2 is the Laplacian acting on RD−1). In a similar manner

for any fixed i the function V l
i defined in (903) is an r independent scalar spherical harmonic of

degree l and so it follows that

−∇2V l
i =

l(D + l − 3)

r2
V l
i , (904)

where, once again, the Laplacian is taken in the embedding RD−1.

Consider a sphere of radius r centered about the origin of RD−1. The restriction of V l
i onto

this sphere defines a vector field on the sphere. We will now compute the eigenvalue of the
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Laplacian ∇̂2 on this sphere acting on this vector field. Using standard formulae

∇̂2(Vi(θ)

= ∂m(Πjn∂mVj)Πin

= −1

r
Πimr̂j∂mVj + Πij∂m∂nVj

=
1

r2
Vi −

l(l +D − 3)

r2
Vi

= − l(l +D − 3)− 1

r2
Vi,

(905)

(where Πij denotes the projector onto the unit sphere). Here we have used some identities

∂ir̂j =
1

r
Πij ,

∂k∂kr̂i = −D − 2

r2
r̂i,

∂iΠij = −D − 2

r
r̂j ,

∂kΠij = −1

r
(Πkir̂j + Πkj r̂i) ,

∂k∂kΠij = − 2

r2
(Πij − (D − 2)r̂ir̂j) .

(906)

Upon setting r = 1 (905) gives the eigenvalue Laplacian (viewed as a vector field acting on

vectors on the unit sphere) acting on the lth vector spherical harmonic.

As in the previous subsection we define the linear operator PVl which acts on vector fields

on the unit sphere and projects onto the sector of vector field spanned by lth vector spherical

harmonics.

PVl [Vl′ ] = δll′Vl′ ,

PVl [∂χ] = 0.
(907)

It is possible to work out an explicit form for the projector PVl ; however we will not have

need for the explicit expression in this chapter and so will not pause to do so.

Tensor Spherical harmonics Mimicking the analysis of the previous section, a basis for

traceless, divergenceless symmetric tensor fields on the unit sphere is given by the restriction of

the polynomial expressions

Bl
ij = Tij,i1...ilx

i1 . . . xil , (908)

onto the unit sphere. The coefficient function Tij,i1...il is chosen to have the following properties.
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• It is symmetric in the indices i1 . . . il and separately in i, j.

• It vanishes under tracing any two of the indices.

• It vanishes under the symmetrization of (say) i with (say) i1.

The coefficient functions Tij,i1...il transform in the (l, 2, 0 . . . 0) representation of SO(D− 1). The

restriction of Bl
ij to the unit sphere yields a set of symmetric traceless, divergenceless tensor fields

on the unit sphere that form the basis for the set of lth tensor spherical harmonics.

Note that any fixed Cartesian component of Bl
ij is a function of the form (892), and so

∇2Bl
ij = 0, where ∇2 is the Laplacian on RD−1.

As in the previous subsection we sometimes have used Bl
ij for a tensor spherical harmonic field

that is defined in all of RD−1. Rather than the function Bl
ij defined above, we find it convenient

to use the normalized tensor fields

T lij = Tij,i1...il
xi1 . . . xil

rl
. (909)

As in the previous section we may restrict T lij to the surface of a sphere of radius r. The

Laplacian of T l viewed as a tensor field on this restricted surface is easily computed; we have

∇̂2(Tij(θ) = ∂m(ΠpnΠqk∂mTpq)ΠinΠjk

=
2

r2
Tij −

l(l +D − 3)

r2
Tij

= − l(l +D − 3)− 2

r2
Tij .

(910)

As in previous subsections we define the linear operator PTl , which acts on traceless symmetric

tensor on the unit sphere and projects onto the sector of tensor fields spanned by lth tensor

spherical harmonics.

PTl [(Tij)l′ ] = δll′(Tij)l′ ,

PTl [anything else] = 0;
(911)

where ‘anything else’ refers to tensors formed out of derivatives acting on scalar or vector spherical

harmonics. It should be possible to work out an explicit form for the projector PTl ; however we

will not have need for the explicit expression in this chapter and so will not pause to do so.

Decomposition of the general vector field on RD−1 in a spherical basis As we

have mentioned above, the most general vector field on RD−1 can be constructed out of two scalar
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fields and one divergenceless purely angular vector field. The decomposition takes the form

~A = r̂a+∇b+ ~γ, (912)

where a and b are arbitrary scalar fields and ~γ is an arbitrary divergence free, purely angular

vector field. We emphasize that the scalars a and b and the vector field ~γ are arbitrary functions

of the radial coordinate r.

In (912) we have arbitrarily chosen a basis for the two scalar fields in the problem; of course

any two linearly independent linear combinations of a and b would form as good a basis. We will

now find a geometrically natural basis for the problem. Let α and β be the two scalar functions

and let αl and βl respectively represent the projection of these functions into the space of lth

spherical harmonics i.e.

α =

∞∑
l=0

αl, β =
∞∑
l=0

βl, Pl′αl = δll′αl, Pl′βl = δll′βl, (913)

where Pl, the projector onto the lth scalar spherical harmonic was defined in (894). Let ~γ represent

the non radial and divergence free vector field and let ~γl represent the projection of this field onto

the space of lth vector spherical harmonics i.e. let

~γ =
∞∑
l=1

~γl, PVl′ ~γl = δll′~γl, (914)

where PVl′ was defined in (907). As emphasized above αl , βl and ~γl are all arbitrary functions of

r. The most general vector field ~Jeff can be parametrized in terms of α, β and ~γ by

~Jeff =
(
~A−[α] + ~A+[β] + ~γ

)
, (915)

where162

~A−[α] =

∞∑
l=0

(
lr̂αl + r~∇pαl

)
,

~A+[β] =

∞∑
l=0

(
(l +D − 3)r̂iβl − r~∇pβl

)
.

(917)

162 We have defined the projected derivative ∇p as follows

Scalar : ∇piα = Πj
i∂jα,

Vector : ∇pi βj = Πk
i Πl

j∂k(Πm
l βm).

(916)

and so on for the tensor .
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The linear combinations in (917) are special because they are ‘diagonal’ under the action of

Pl′ , the projector onto scalar spherical harmonics acting separately on each Cartesian components.

Specifically we have

Pl′
(
~A−[α]

)
= ~A−[Pl′+1α],

Pl′
(
~A+[β)]

)
= ~A+[Pl′−1β].

(918)

163

The action of the scalar projector on individual Cartesian components of vector spherical

harmonics is automatically diagonal and is very simple

Pl (~γ) = PVl (~γ) = ~γl, (920)

where PVl represents the projector onto the space of lth vector spherical harmonics.

It is now easy to deduce the action of the RD−1 Laplacian ∇2 on the vector field ~Jeff . Using

the fact the Laplacian in Cartesian coordinates acts on each component of a vector field as if it

were a scalar, it follows immediately from (920) and (918)

∇2 ~A−[α] = ~A−[α̃],

∇2 ~A+[β] = ~A+[β̃],

∇2~γ = ~̃γ,

(921)

where

α̃ =
∑
l

(
1

rD−2
∂r
(
rD−2∂rαl

)
− (l − 1)(l − 1 +D − 3)

r2
αl

)
,

β̃ =
∑
l

(
1

rD−2
∂r
(
rD−2∂rβl

)
− (l + 1)(l + 1 +D − 3)

r2
βl

)
,

~̃γ =
∑
l

(
1

rD−2
∂r
(
rD−2∂r~γl

)
− (l)(l +D − 3)

r2
~γl

)
.

(922)

In words, ∇2 acts on αl as it would on the (l − 1)th component of a scalar field. ∇2 acts on βl

as it would on the (l + 1)th component of a scalar field. ∇2 acts on ~γl as it would on the (l)th

component of a scalar field; the last statement reflects the fact that the lth scalar and vector

163This equation can be restated as

Pl′( ~A−[αl]) = δl′,l−1( ~A−[αl]),

Pl′( ~A+[βl]) = δl′,l+1( ~A+[βl]).
(919)
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spherical harmonics have equal eigenvalues under the the action of the Laplacian on the unit

sphere.

It is also not difficult to verify that

~∇ · ~A−[α] =
∑
l

lrl−1∂r

( αl
rl−1

)
,

~∇ · ~A+[β] =
∑
l

l +D − 3

rl+D−2
∂r

(
rl+D−2βl

)
,

~∇ · ~γ = 0.

(923)

An expansion of the arbitrary tensor field in a spherically adapted basis The

most general symmetric tensor field in RD−1 can be split into its trace - which is a decoupled scalar

- and a traceless symmetric tensor. We ignore the trace part in what follows. The most general

traceless symmetric tensor field is parametrized by three scalar fields, two angular divergence

free vector fields and one angular divergence free tensor field. As in the previous subsection, it

is dynamically convenient to choose a basis for the vectors and the scalars that diagonalizes the

action of ∇2. The logic and algebra is very similar to the previous subsection and we only present

final results.

Following the previous subsection we use obvious notation to denote the projection of any of

these quantities to their lth spherical harmonic sector. For instance αl represents the projection

of α to the lth scalar spherical harmonic sector, while ~φl represents the projection of ~φ to the lth

vector spherical harmonic sector, etc. 164 A general tensor field Tij is given in terms of this data

by the decomposition

Tij =
(
C−ij [α] + C+

ij [β] + C0
ij [γ] + δijκ

)
+
(
B−ij [φ] + B+

ij [ψ]
)

+ χij ,
(924)

164The index l runs from 0 to ∞ in the case of scalars, from 1 to ∞ in the case of vectors and from 2 to
∞ in the case of tensors
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where

(C−)ij [α] =A−i
(
A−j [α]

)
= A−j

(
A−i [α]

)
,

(C+)ij [β] =A+
i

(
A+
j [β]

)
= A+

j

(
A+
i [β]

)
,

(C0)ij [γ] =
1

4

(
A−i

(
A+
j [γ]

)
+A−j

(
A+
i [γ]

)
+A+

i

(
A−j [γ]

)
+A+

j

(
A−i [γ]

))
− δij

∑
l

(
2l(l +D − 3)

D − 1
+
D − 3

2

)
γl,

δijκ =
∑
l

A−i
(
A+
j [κl]

)
+A−j

(
A+
i [κl]

)
−A+

i

(
A−j [κl]

)
−A+

j

(
A−i [κl]

)
2(2l +D − 3)

,

(B−)ij [~φ] =A−i [φj ] +A−j [φi],

(B+)ij [~ψ] =A+
i [ψj ] +A+

j [ψi].

(925)

Quantities like A−i
(
A−j [α]

)
that appear in the equation above have the following meaning;

the operator A−i acts on each Cartesian component of A−j [α] as if it were a scalar (i.e. according

to the formula (917)). 165 More generally the action of the A−i or A+
i on any vector field is that

these operators act on each of the Cartesian components of the corresponding vector field as they

would on a scalar (i.e. according to (917)). Using the fact that each Cartesian component of an

lth vector harmonic is an lth scalar harmonic , it follows that the action of these operators on

tangential divergenceless vector fields (those that can be expanded in vector harmonics) is given

165Here we explicitly write the expressions for the action of two ~A′s on a scalar

A−i A−j [α] = ((l − 1)r̂i + r∇pi )
(
lr̂j + r∇pj

)
[α]

= l(l − 2)r̂ir̂jα+ (l − 1)(rr̂i∇pj + rr̂j∇pi )α+ lδijα+ r2∇ijα,
A+
i A+

j [α] = ((l +D − 2)r̂i − r∇pi )
(
(l +D − 3)r̂j − r∇pj

)
[α]

= (l +D − 3)(l +D − 1)r̂ir̂jα− (l +D − 2)(rr̂i∇pj + rr̂j∇pi )α− (l +D − 3)δijα+ r2∇ijα,
A−i A+

j [α] = ((l + 1)r̂i + r∇pi )
(
(l +D − 3)r̂j − r∇pj

)
[α]

= l(l +D − 3)r̂ir̂jα− (l + 1)rr̂i∇pjα+ (l +D − 2)rr̂j∇piα+ (l +D − 3)δijα− r2∇ijα,
A+
i A−j [α] = ((l +D − 4)r̂i − r∇pi )

(
lr̂j + r∇pj

)
[α]

= l(l +D − 3)r̂ir̂jα+ (l +D − 4)rr̂i∇pj − (l − 1)rr̂j∇piα− lδijα− r2∇ijα,
(926)

where we have defined ∇ij as the complete projected derivative of two ∇i and is given by

∇ijα = Πk
i Πm

j ∂m (Πn
k∂nα) .

It can be easily shown that ∇ij is symmetric under the exchange of i←→ j.
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by

~A−[~φ] =
∞∑
l=0

(
lr̂~φl + r~∇p~φl

)
,

~A+[~ψ] =
∞∑
l=0

(
(l +D − 3)r̂i ~ψl − r~∇p ~ψl

)
.

(927)

Of course the linear combinations in (925) are ‘diagonal’ under the action of Pl′ , the projector

onto scalar spherical harmonics acting separately on each Cartesian component.

Pl
(
(C−)ij [α]

)
= (C−)ij [Pl+2α],

Pl
(
(C+)ij [β]

)
= (C+)ij [Pl−2β],

Pl
(
(C0)ij [γ]

)
= (C0)ij [Plγ],

Pl
(

(B−)ij [~φ]
)

= (B−)ij [PVl+1
~φ],

Pl
(

(B+)ij [~ψ]
)

= (B+)ij [PVl−1
~ψ]

(928)

(recall PVl projects onto the subspace of lth vector spherical harmonics).

The action of the scalar projector on individual Cartesian components of tensor spherical

harmonics is automatically diagonal and is very simple

Pl (χ)ij = PTl (χ)ij = (χl)ij , (929)

where PTl represents the projector onto the space of lth tensor spherical harmonics. Equation

(929) simply asserts that each Cartesian component of modes in the lth tensor spherical harmonic

is a scalar spherical harmonic of degree l.

The action of the operator ∇2 is also diagonal - and rather simple - in this basis

∇2
(
(C−)ij [α]

)
= (C−)ij [α̃],

∇2
(
(C+)ij [β]

)
= (C+)ij [β̃],

∇2
(
(C0)ij [γ]

)
= (C0)ij [γ̃],

∇2
(

(B−)ij [~φ]
)

= (B−)ij [~̃φ],

∇2
(

(B+)ij [~ψ]
)

= (B+)ij [ ~̃ψ],

∇2χij = χ̃ij ,

∇2κ = κ̃,

(930)
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where

α̃ =
∑
l

(
1

rD−2
∂r
(
rD−2∂rαl

)
− (l − 2)(l − 2 +D − 3)

r2
αl

)
,

β̃ =
∑
l

(
1

rD−2
∂r
(
rD−2∂rβl

)
− (l + 2)(l + 2 +D − 3)

r2
βl

)
,

γ̃ =
∑
l

(
1

rD−2
∂r
(
rD−2∂rγl

)
− l(l +D − 3)

r2
γl

)
,

~̃φ =
∑
l

(
1

rD−2
∂r

(
rD−2∂r~φl

)
− (l − 1)(l − 1 +D − 3)

r2
~φl

)
,

~̃ψ =
∑
l

(
1

rD−2
∂r

(
rD−2∂r ~ψl

)
− (l + 1)(l + 1 +D − 3)

r2
~ψl

)
,

χ̃ij =
∑
l

(
1

rD−2
∂r
(
rD−2∂r(χl)ij

)
− l(l +D − 3)

r2
(χl)ij

)
,

κ̃ =
∑
l

(
1

rD−2
∂r
(
rD−2∂rκl

)
− l(l +D − 3)

r2
κl

)
.

(931)

It is also not difficult to verify that

∇iC−ij [α] = A−j
[
(l − 1)(r)l−2∂r

(
αl

(r)l−2

)]
,

∇iC+
ij [β] = A+

j

[
(l +D − 2)

∂r
(
(r)l+D−1βl

)
(r)l+D−1

]
,

∇iC0
ij [γ] = A+

j

[
l

2(2l +D − 3)

(
(2l +D − 3)− 4(l +D − 3)

D − 1

)
(r)l∂r

(
γl

(r)l

)]
+A−j

[
(l +D − 3)

2(2l +D − 3)

(
(2l +D − 3)− 4l

D − 1

)
∂r
(
(r)l+D−3γl

)
(r)l+D−3

]
,

∇iB−ij [~φ] =
∑
l

(l − 1)rl−1∂r

(
(φl)j
rl−1

)
,

∇iB−ij [~ψ] =
∑
l

l +D − 2

rl+D−2
∂r

(
rl+D−2(ψl)j

)
,

∇iχij = 0.

(932)

4.11.5 Scalar Greens Functions

Retarded Greens Functions in position space In this subsection we obtain explicit

expressions for the Greens function in position space, starting from the exact Fourier space result

(565).
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• Even D

When D is even the argument of the Hankel function that appears in (565) is half integral.

Now Hankel functions of half integral argument have an amazing property; their large argument

expansion truncates at a finite order. In equations

H
(1)
m+1/2(ωr) =

√
2

πωr
(−i)m+1eiωr

m∑
k=0

(m+ k)!

k!(m− k)!

ik

(2ωr)k
, (933)

m (which is m = D−4
2 in our context) is an integer. As this expression takes the form eiωr times

a polynomial in ω. It follows that G(r, t) defined by

G(r, t) =

∫
dω

2π
Gω(r)e−iωt, (934)

is a linear sum of a finite number of derivatives of δ(r − t). We find

G(r, t) =
1

2

(
1

2πr

)m+1 m∑
k=0

(m+ k)!

k!(m− k)!

∫
dω

(−iω)m−keiω(r−t)

(2r)k
(935)

= −1

2

( −1

2πr

)m+1 m∑
k=0

(m+ k)!

k!(m− k)!

∂m−kr δ(t− r)
(−2r)k

. (936)

It may be verified that (935) resums to

G(r, t) =
θ(X0)

2

(
1

π

)D−2
2

δ(
D−4
2 )(r2 − t2) =

θ(X0)

2

(
1

π

)D−2
2
(
XM∂M
2XNXN

)D−2
2

δ(XMXM ). (937)

166 We have checked the equivalence of (937) and (935) on Mathematica for D ≤ 14.

• Odd D

In order to obtain an explicit expression for the Greens function in odd D we found it conve-

nient to start with the explicit expression for the Greens function in ω and ~k. Transforming to

polar coordinates in ~k space we have

GD(r, t) = −ΩD−3

∫
dω

(2π)D
dθ(sin θ)D−3 kD−2dk

(ω + iεk)2 − k2
e−i(ωt−kr cos θ) (938)

(here ε is an infinitesimal dimensionless number and the positive factor of k in front of ε has been

inserted for future convenience). For t < 0 we can close the contour in the upper half plane. As

166Recall that δm(α) is the mth derivative of the delta function w.r.t. α. In the case at hand α is
r2 − t2 = XMXM and partial derivatives w.r.t. α can be converted into partial derivatives w.r.t. XM

using the chain rule ∂α = XM∂M
2XNXN

.
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the integrand of (938) is analytic here the integral vanishes, as expected for a retarded correlator.

On the other hand for t > 0 we close the contour in the lower half plane and pick up contributions

from the two poles in the integrand. Doing the ω integral we find

GD(r, t) = iΩD−3

∫
1

(2π)D
dθ(sin θ)D−3kD−2dk

e−ik(t−iε) − eik(t+iε)

2k
eikr cos θ

=
iΩD−3

(2π)D−3

∫
1

(2π)2
(k2 − k2 cos θ)

D−3
2
e−ik(t−iε) − eik(t+iε)

2
eikr cos θdθdk

=
iΩD−3

(2π)D−3
(−∂2

t + ∂2
r )

D−3
2

∫
1

(2π)2

e−ik(t−iε) − eik(t+iε)

2
eikr cos θdθdk

=
iΩD−3

(2π)D−3
(−∂2

t + ∂2
r )

D−3
2 G3(r, t), (939)

where

G3(r, t) =

∫
e−ik(t−iε) − eik(t+iε)

2
eikr cos θdθ

dk

(2π)2
. (940)

We now proceed to explicitly evaluate integral in (940). Evaluating the integral over k in that

expression we find

G3(r, t) =
−i
2

∫
dθ

2π

(
1

t− r cos(θ)− iε +
1

t+ r cos(θ) + iε

)
∴ G3(r, t) = −iI1 + I2

4πi
, (941)

where I1 and I2 are defined as :

I1 =

∮
2idz

r
(
z − t+

√
t2−r2
r

)(
z − t−

√
t2−r2
r

) , (942)

I2 =

∮ −2idz

r
(
z − −t+

√
t2−r2
r

)(
z − −t−

√
t2−r2
r

) , (943)

where we have defined eiθ = z, and the contour integrals above are taken anticlockwise over the

unit circle. When r > t the poles in z in I1 and I2 both lie on the unit circle. This integral can be

defined by the principal value and simply vanishes. When t2 > r2, on the other hand, the second

pole in I1 lies within the unit circle while the first pole lies outside. The situation is reversed

for I2; the first pole lies within the unit circle while the second one lies outside. Evaluating the

integrals by contours we find

I1 =
−iθ(t2 − r2)√

t2 − r2
,

I2 =
−iθ(t2 − r2)√

t2 − r2
.

(944)
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a = 2D∗

ω

r

V (r) = D∗2

4r2

E = ω2

Figure 21: Potential for allowed and disallowed regions .

Using the fact that G3 vanishes for negative t it follows that

G3(r, t) =
−2πiθ(t− r)√

t2 − r2
. (945)

From (939) it follows that

GD(r, t) =
ΩD−3

(2π)D−4
(−∂2

t + ∂2
r )

D−3
2

(
θ(t− r)√
t2 − r2

)
. (946)

Large D expansion of the Greens Function using WKB As we have explained in

the main text, the large D limit of the Greens function is given by the solution of an effective

Schrodinger equation which takes the form

−ψ′′(ω, r) +
D∗2

4r2
ψ(ω, r) = ω2ψ(ω, r), where D∗ =

√
(D − 2)(D − 4). (947)

The most general WKB solution to this equation in the classically disallowed region is given
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by

ψ(ω, r) =

√
D∗B

√
2
(
D∗2

4r2
− ω2

) 1
4

(
D∗

2ωr
−
√

D∗2

4ω2r2
− 1

)−D∗
2 (D∗

ω

)−D∗
2

e
D∗
2
−
√
D∗2
4
−ω2r2

+

√
D∗A

√
2
(
D∗2

4r2
− ω2

) 1
4

(
D∗

2ωr
−
√

D∗2

4ω2r2
− 1

)D∗
2 (D∗

ω

)−D∗
2

e
D∗
2

+

√
D∗2
4
−ω2r2 .

(948)

In the limit 2rω � D∗ this solution reduces to

ψ(ω, r) =
B

r
D−4
2

+A
(eω
D

)D−3
r
D−2
2 , (949)

in agreement with (575). In order to obtain (949) , we have used D∗ = (D − 3) + O(1/D) and

have ignored this higher order correction. We have also used

Ωn =
2π

n+1
2

Γ(n+1
2 )

. (950)

In the classically allowed region, on the other hand,

ψ(ω, r) =
Eei

D∗π
4 e
−iD

∗
2

sin−1
(
D∗
2ωr

)
e−i

√
ω2r2−D∗2

4 + Ce−i
D∗π
4 e

iD
∗
2

sin−1
(
D∗
2ωr

)
ei
√
ω2r2−D∗2

4(
ω2 − D∗2

4r2

) 1
4

. (951)

In the limit 2ωr � D∗ (951) reduces to

ψ(ω, r) =
1√
ω

(
Eei

D∗π
4 e−iωr + Ce−i

D∗π
4 eiωr

)
, (952)

in agreement with (577).

The usual WKB crossing formulae relate the four constants A B C E. Using Equation 7.35

of [84] we have

C = e−
iπ
4

(
A+

iB

2

)√
D∗

2

(
D∗

ω

)−D∗
2

e
D∗
2 ,

E = e
iπ
4

(
A− iB

2

)√
D∗

2

(
D∗

ω

)−D∗
2

e
D∗
2 .

(953)

As we have explained in the main text, the constant B is universal and is given by B =
1

(D−3)ΩD−2
. If we now specialize to the case of the retarded Greens function we have E = 0. From
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(953) it follows that

C =
(1 + i)√

2
B

√
D∗

2

(
D∗

ω

)−D∗
2

e
D∗
2 =

(1 + i)√
2

(2)−
D
2
ω
D−3
2

π
D−2
2

,

A =
iB

2
=

i

2(D − 3)ΩD−2
.

(954)

167 It follows that in the classically allowed region

ψ(ω, r) = − (2i)−
D∗
2
ω
D−3
2

π
D−2
2

e
i

(√
ω2r2−D∗2

4
+D∗

2
sin−1

(
D∗
2ωr

))
(
ω2 − D∗2

4r2

) 1
4

. (955)

It is easily verified that (955) matches both the leading and first subleading terms in (567) when

expanded at large r.

In the classically disallowed region , where D∗ > 2ωr we find the explicit formula

ψ(ω, r) =
1

(D − 3)ΩD−2

(
e
D∗
2
−
√
D∗2
4
−ω2r2(

D∗2

4r2
− ω2

) 1
4

(
D∗

ω

(
D∗

2ωr
−
√

D∗2

4ω2r2
− 1

))−D∗
2

+
i

2

e
D∗
2

+

√
D∗2
4
−ω2r2(

D∗2

4r2
− ω2

) 1
4

(
1

2r
−
√

1

4r2
− ω2

D∗2

)D∗
2 )

=
1

(D − 3)ΩD−2

(
1

r
D−4
2

+
i

2

(eω
D

)D−3
r
D−2
2

)
,

(956)

where the second expression applies at small ωr. So the Greens Function can be written as

G(ω, r) =
1

(D − 3)ΩD−2r
D−3
2

(
1

r
D−3
2

+
i

2

(eω
D

)D−3
r
D−3
2

)
. (957)

It may be verified that this result matches the small r asymptotics of the exact formula (565)

in the following sense. From (565) the exact Greens function is given by

G(ω, r) =
i

4

( ω

2πr

)D−3
2
(
JD−3

2
(ωr) + iND−3

2
(ωr)

)
, (958)

167We have used the large D approximations D∗ ≈ D − 3 and

ΩD−2 ≈ 2−
D−3

2 π
D−2

2 e
D−3

2 D−
D−2

2 .
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where Nn is the Neumann function. At small ωr we use the small ωr expansion of the Bessel and

Neumann functions to obtain

G(ω, r) =
i

4

1

(D − 3)ΩD−2

( ω

2πr

)D−2
2

(
−4i

(
2π

ωr

)D−3
2

+
2

e

(
2πeωr

D

)D−3
2

)

=
1

(D − 3)ΩD−2r
D−3
2

(
1

r
D−3
2

+
i

2e

(eω
D

)D−3
r
D−3
2

)
,

(959)

in agreement with (956).

We will now explain in what sense the WKB approximation may be thought of as the first term

in a systematic large D approximation of the Greens function. The first correction to any WKB

approximation is of order of the fractional change in the wavenumber over a distance scale of order

one wavelength. In formulae, the first correction to this approximation is of order 1
k(r)∂r ln k(r)

where k(r) is the local WKB wave number. In the classically allowed region k(r) =
√
ω2 − D2

4r2
.

So the fractional correction, E(r), to the WKB approximation can be estimated to be of order

E(r) =
D∗2

r3(√
ω2 − D∗2

4r2

)3 .

Provided that
√
ω2 − D∗2

4r2
is of order unity (i.e. provided we don’t get too near the turning point)

it follows that E(r) = O (1/D) (recall that ωr > D/2). This conclusion works all the way down

to ωr − D
2 ∼ 1

D
2
3

. In a similar manner the fractional error to the WKB approximation in the

classically disallowed region is once again estimated as

E(r) ∼ 1

D
√

1− 4ω2r2

D2

,

and is once again of order 1
D provided we stay away from the turning point. In summary, the

WKB approximation provides an excellent approximation to the Greens function at large D

except within a distance of order 1

D
2
3

of the turning point.

We end this subsection with a qualitative description of the retarded Green’s function in the

large D limit. There are four qualitatively distinct regions in the Greens function. Deep into

the classically allowed region, for rω � D2, the Greens function is in the radiation zone. In this

regime (567) applies, and the modulus of Greens function is proportional to eiωr

r
D−2
2

. It follows that

the mod squared Greens function is proportional to the inverse volume of the D − 2 sphere of

radius r in this region, and so represents radiation whose integrated flux is independent of r.

Moving further in we reach the intermediate radiation zone D
2 < ωr

2 � D2. In this region the
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Greens function represents an oscillating radiation field that has not propagated far enough to

settle into its large r asymptotic value.

Moving to smaller r we pass the turning point of the potential and enter the classically

forbidden region. In this intermediate static regime
√
D � ωr

2 � D
2 , ψ no longer oscillates as a

function of r. Instead the Greens function turns into a sum of a term that grows as r increases

and another that decays as r decreases. The decaying and growing pieces are comparable in

magnitude near the turning point. However the decaying term grows towards small r and quickly

dominates.

Moving to still smaller r we reach the static zone ωr
2 �

√
D. In this region the first of (567)

applies, and G(ω, r) becomes independent of ω (justifying the name static zone). The decaying

term in (956) is much larger than the growing term in this region; in particular the the ratio of

the growing term to the decaying term of order 1
DD

when ωr is of order unity.

4.11.6 Action of the Greens function on scalars, vectors and tensors in a

spherical basis

Results for the off centred Green’s function In our analysis of radiation we will

will find it useful to have a generalization of the exact expression (565) to a Greens function

whose source point is displaced away from the origin. In the next subsection we demonstrate

that

G(ω, |~r − ~r′|) =
iπ

2

∞∑
l=0

1

(r′r)
D−3
2

H
(1)
D−3+2l

2

(ωr)JD−3+2l
2

(ωr′)Pl(θ, θ′). (960)

This result applies provided |r| > |r′|′, i.e. provided that the observation point is located

further from the origin than the source point. The Hankel function H(1)(r) which appears in

(783) is the unique solution to the Bessel function that is is purely outgoing at infinity. On the

other hand the Bessel function J(r′) that also appears in this expression is the unique solution to

the Bessel equation that is regular at the origin. θ collectively denotes all the angles of the point

~r on SD−2, θ′ similarly denotes all angles of the point ~r′ and Pl(θ, θ′) is the projector onto the

angular dependence of the lth spherical harmonic defined in (894).

It is easily verified that (783) reduces to (565) in the limit r′ → 0. As a consistency check on

this formula we have explicitly verified that the expansion (783) is translationally invariant, i.e.

that

(∂~r + ∂~r′)G(ω, |~r − ~r′|) = 0. (961)

Note also that in the limit ω → 0,

G(0, |~r − ~r′|) =
1

rD−3

∞∑
l=0

(
r′

r

)l 1

2l +D − 3
Pl(θ, θ′). (962)
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Derivation The expression (783) may be derived as follows. Provided that ~r 6= ~r′ (and so

in particular when |~r| > |~r′| ) the Greens function is annihilated by the action of(
ω2 + ~∇2

)
,

separately on the variables ~r and ~r′. The most general solution of the equation(
ω2 + ~∇2

)
φ(ω,~r) = 0, (963)

is a linear superposition of modes of the form φl(ω, r)Ylm(θ) , where Ylm represents an arbitrary

scalar spherical harmonic 168 in the representation (l, 0, 0, . . . , 0) of SO(D − 1). Using the fact

that

∇2Ylm = −l(l +D − 3)Ylm, (964)

where the Laplacian is taken on the unit sphere, see (893)) it follows from (963) that(
ω2 +

1

rD−2
∂r(r

D−2∂r)−
l(l +D − 3)

r2

)
φl(ω, r) = 0. (965)

Solving this equation we find that

φl(ω, r) =
1

r
D−3
2

(
Al,ωH

(1)
D−3+2l

2

(ωr) +Bl,ωJD−3+2l
2

(ωr)

)
. (966)

The boundary conditions on our Greens function require it to be regular at every finite value

of ~r′ other than ~r; and requires the Greens function to be an outgoing function of ~r; these

considerations force us to use the Hankel function with argument r and the Bessel function

with argument r′. The Greens function must also be rotationally invariant under simultaneous

rotations of θ and θ′. As we have explained above, the unique rotationally invariant function of

two angles constructed using functions only in in the lth spherical harmonic sector is the projector

Pl defined in (894). It follows from all these considerations that the Greens function must be

given by an expression of the form

G(ω, |~r − ~r′|) =

∞∑
l=0

al

(r′r)
D−3
2

H
(1)
D−3+2l

2

(ωr)JD−3+2l
2

(ωr′)Pl(θ, θ′), (967)

for some as yet unknown coefficients al. We will now demonstrate that

al =
iπ

2
; for all l (968)

168See Appendix 4.11.4 for a discussion of Spherical harmonics and their properties in arbitrary dimen-
sions.
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using which (783) follows.

In order to obtain (968) we use the large argument expansion of the Hankel function (566).

(967) simplifies to

G(ω, |~r − ~r′|) ≈ i
√
π

2

(−iω
r

)D−2
2

eiωr
∑
l

JD−3+2l
2

(ωr′)(ωr′)−
D−3
2 Pl(θ, θ′) (969)

We also specialize (967) to the case in which the source and observation points are at the same

angle. In this special case the LHS of (783) is simply G(ω, (r− r′)) (see (565)) and (967) reduces

to

G(ω, (r − r′)) =

∞∑
l=0

alPl(0)

(r′r)
D−3
2

H
(1)
D−3+2l

2

(ωr)JD−3+2l
2

(ωr′) (970)

(where G(ω, r) is defined in (565) and Pl(0) is presented in (899)). In order to determine the

coefficients al it is sufficient to further specialize (970) to large r and retain only leading order

terms on both sides in the 1
r expansion. (970) reduces to

i

4

( ω

2πr

)D−3
2

(
i−

D−2
2

√
2

πωr
eiω(r−r′)

)

= i−
D−2
2

√
2

πωr

(ω
r

)D−3
2 eiωr

ω

∑
l

i−lalPl(0)JD−3+2l
2

(ωr′)(ωr′)−
D−3
2

i.e. eix = −4i(2π)
D−3
2

∑
l

alPl(0)JD−3+2l
2

(x)(x)
D−3
2

(971)

(where we have used (567), and x = ωr′). Taylor expanding the LHS and RHS in x about x = 0

and using the well known series expansion for the Bessel function

JD−3+2l
2

(x)(x)
D−3
2 =

∞∑
m=0

(−1)m

m!Γ
(
l +m+ D−1

2

) (x)l+2m

2l+2m+D−3
2

, (972)

we find the following recursion relations

ãn = Γ

(
n+

D − 1

2

)2n

n!
−
bn
2
c∑

m=1

ãn−2m

m! Γ
(
n−m+ D−1

2

)
 , (973)

where

ãl = −4iπ
D−3
2 Pl(0)al. (974)
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Using the explicit value of Pl(0) listed in (899) it may be verified that

al =
iπ

2
, (975)

solves the recursion relation (973), establishing (968).

Action of the retarded Greens function on the arbitrary spherically decomposed

vector field We will now use the results the previous subsections together with those of

Appendix 4.11.4 to present the general solution to the equation

(
−∇2 − ω2

)
~E = ~Jeff , (976)

where the field Jeff is a general vector field in RD−1 that admits the expansion (915). We search

for the unique solution to this problem subject to the restriction that it behaves as eiωr at infinity.

In Cartesian coordinates the solution to this problem is simply given by

~E(~r) =

∫
dr′G(ω, |~r − ~r′|) ~Jeff(r′), (977)

where the Green’s function G(ω, |~r−~r′|) was defined in (783). Using (918) the solution (977) can

be rewritten in terms of a spherical decomposition as

~E(ω,~r) = ~A−[ξα] + ~A+[ξβ] + ~υγ , (978)

where

ξα(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2(l−1)

2

(ωr)

r
D−3
2

∫
dr′JD−3+2(l−1)

2

(ωr′) r′
D−1
2 αl(ω, r

′, θ),

ξβ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2(l+1)

2

(ωr)

r
D−3
2

∫
dr′JD−3+2(l+1)

2

(ωr′) r′
D−1
2 βl(ω, r

′, θ),

~υγ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2l

2

(ωr)

r
D−3
2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 ~γl(ω, r

′, θ).

(979)

Action of the retarded Greens function on the arbitrary spherically decomposed

tensor field In this brief subsection we study the equation

(
−∇2 − ω2

)
Hij = Tij , (980)

346



where Tij is a given symmetric tensor field. We will find the unique solution to (980) subject to

the condition that Hij is outgoing at infinity.

Let the source function Tij have the spherical decomposition listed in (924). Proceeding as

in the previous subsection, it is easy to verify that the unique outgoing solution to (980) is given

by

Hij(ω,~r) = C−ij [ξα] + C+
ij [ξβ] + C0

ij [ξγ ] + δijξκ + B−ij [~υφ] + B+
ij [~υψ] + τχij , (981)

where

ξα(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2(l−2)

2

(ωr)

r
D−3
2

∫
dr′JD−3+2(l−2)

2

(ωr′) r′
D−1
2 αl(ω, r

′, θ),

ξβ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2(l+2)

2

(ωr)

r
D−3
2

∫
dr′JD−3+2(l+2)

2

(ωr′) r′
D−1
2 βl(ω, r

′, θ),

ξγ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2l

2

(ωr)

r
D−3
2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 γl(ω, r

′, θ),

ξκ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2l

2

(ωr)

r
D−3
2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 κl(ω, r

′, θ),

~υφ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2(l−1)

2

(ωr)

r
D−3
2

∫
dr′JD−3+2(l−1)

2

(ωr′) r′
D−1
2 ~φl(ω, r

′, θ),

~υψ(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2(l+1)

2

(ωr)

r
D−3
2

∫
dr′JD−3+2(l+1)

2

(ωr′) r′
D−1
2 ~χl(ω, r

′, θ),

τχij(ω,~r) =
∑
l

iπ

2

H
(1)
D−3+2l

2

(ωr)

r
D−3
2

∫
dr′JD−3+2l

2
(ωr′) r′

D−1
2 (χl)ij(ω, r

′, θ).

(982)

4.11.7 Details relating to the general theory of radiation

Static Limit of Electromagnetic Radiation It is useful to separately consider the scalar

part of the electric field (first line of (804)) and the vector part (second line of (804)). Let us

first focus on the scalar part of this field. Using (806) and the fact that Hn(x) ∼ x−n , we see

that the first term in the first line of (804) is negligible compared to the second term in the same
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line and at small ω and we find

~E(ω, ~x) =

∞∑
l=0

(
HD+2l−1

2
(ωr)

r
D−3
2

~A+[S+
l (ω, θ)]

)

=
−i
π

∞∑
l=0

2
2l+D−1

2

Γ
(

2l+D−1
2

) (
(l +D − 3)r̂S+

l − r
~̃∇S+

l

)
ω

2l+D−1
2 rl+D−2


= −~∇ΦE ,

(983)

where

ΦE =
−i
π

∞∑
l=0

(
2

2l+D−1
2

Γ
(

2l+D−1
2

)
ω

2l+D−1
2

S+
l

rl+D−3

)
, (984)

S+
l =

iπ

2

∫
dr′(r′)

D−1
2 J 2l+D−1

2
(ωr′)bl(ω, r

′, θ)

=
iπ

2

ω
2l+D−1

2

2
2l+D−1

2 Γ
(

2l+D+1
2

) ∫ dr′(r′)l+D−1bl(ω, r
′, θ).

(985)

169

(983) is simply the statement that the electric field in the stationary limit is the gradient of a

scalar potential. There is, of course, a simple explanation and interpretation of this fact. Recall

that t he effective source ~Jeff - from which b is built - is a linear combination of two terms.

One of the two terms is the time derivative of the spatial current, and is subleading compared to

the other term (the spatial derivative of the charge current) in the small ω limit. In this limit,

consequently, the formula for the electric field reduces to

~E =

∫
G(ω → 0, |~r − ~r′|∇′J0(r′)

= ∇
(∫

G(ω → 0, |~r − ~r′|J0(r′)

)
= −∇ΦE ,

ΦE = −
∫
G(ω → 0, |~r − ~r′|J0(r′).

(986)

This is simply Coulomb’s law. Indeed it may directly be verified that ΦE defined in (984) and

169In going from the first to the second lines of (983) we replaced the Hankel function by its leading term
in a small argument expansion (this is appropriate in the small ω limit). The equations (984) and (985)
are expressions for the effective potential. In going from the first to the second line of (985) we have used
the fact that ω is small to replace the Bessel function by the leading piece in a small argument expansion.
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(986) agree with each other. 170.

In the static limit magnetic field can be written using the Bianchi identity as:

Fij(0, r, θ) = lim
ω→0

i(∇i ~Ej(ω, r, θ)−∇j ~Ei(ω, r, θ))
ω

. (988)

The only term in (808) that contributes to the RHS of (988) is the pure vector piece c, which

only receives contributions from the the term in ~Jeff equal to ∂0
~J .

In the limit of small ω ~̃c and ~c differ only by a factor of ω at it is easily verified that

Fij(ω, r, θ) = (∇i ~Aj(ω, r, θ)−∇j ~Ai(ω, r, θ)),

~A = lim
ω→0

i ~E

ω

∴ ~A =
∑
l

i

(2l +D − 3)rD−3

∫
dr′(r′)D−2

(
r′

r

)l
(~̃cl(0, r

′, θ)).

(989)

In other words the magnetic field is given by dA where ∇2 ~A = ~J , and we recover the usual

formulae of magnetostatics.

Constraints from current conservation and ∇·E = 0 As we have explained in the main

text the fact that ∇. ~E vanishes in vacuum implies that the scalar functions S± that characterize a

general radiation field (see (804)) are not independent but are related by (806). In (809), however,

we have presented separate formulae for S± in terms of integrals over scalar components of charge

currents. The consistency of (809) requires that these results for S± automatically obey (806).

We will now demonstrate that this is indeed the case.

At the structural level the way this works is very simple. If we take the divergence of (801)

and use (810) we obtain (811), which guarantees that ∇.E vanishes in vacuum. In this section

we will rerun this structural argument on the explicit formulae (809). The fact that we land on

our feet serves as a consistency check of the algebra that led to (809) and (806).

In the rest of this subsection we proceed to algebraically demonstrate that

• The equation ∇ · E = 0 implies that the coefficient functions in (804) obey (806)

170In order to perform this verification it is useful to note in the limit of small ω

~Jeff → ∇J0

bl =
(r′)l

2l +D − 3
∂r′

( J0l

(r′)l

)
(987)

where J0l is the lth spherical harmonic piece of the charge current J0.
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• That the relations (809) automatically obey (806) once we account for the fact that the

current is conserved.

Demonstration that ∇ · E = 0 implies (806)

According to (804) the vacuum electromagnetic solution is given by

~E =
∑
l

H(1)

l+D−5
2

(ωr)

r
D−3
2

~A−[S−l (ω, θ)] +
H

(1)

l+D−1
2

(ωr)

r
D−3
2

~A+[S+
l (ω, θ)] +

H
(1)

l+D−3
2

(ωr)

r
D−3
2

~Vl(ω, θ)

 .

(990)

Using

∇ · ~A−[S−l (ω, θ)] = lrl−1∂r

H(1)

l+D−5
2

(ωr)

rl+
D−5
2

S−l (ω, θ)

= −lS−l (ω, θ)
H

(1)

l+D−3
2

(ωr)

r
D−3
2

∇ · ~A+[S+
l (ω, θ)] =

l +D − 3

rl+D−2
∂r

(
H

(1)

l+D−1
2

(ωr)rl+
D−1
2

)
S+
l (ω, θ)

= +(l +D − 3)S+
l (ω, θ)

H
(1)

l+D−3
2

(ωr)

r
D−3
2

∇ · ~Vl(ω, θ) = 0,

(991)

it follows that ∇ · E = 0 provided

−lS−l (ω, θ) + (l +D − 3)S+
l (ω, θ) = 0. (992)

Proof that current conservation satisfies this requirement

Recall that according to (808) the effective current admits the following decomposition

~Jeff =
∑
l

(
A−[al(ω, r

′, θ′)] +A+[bl(ω, r
′, θ′)] +~cl(ω, r

′, θ′)
)
. (993)

Using (923) yields

∇′ · ~Jeff =
∑
l

(
lr′

l−1
∂r′

(
al(ω, r

′, θ′)

r′l−1

)
+
l +D − 3

r′l+D−2
∂r′
(
bl(ω, r

′, θ′)r′
l+D−2

))
. (994)
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From (810) we conclude that

lr′
l−1
∂r′

(
al(ω, r

′, θ′)

r′l−1

)
+
l +D − 3

r′l+D−2
∂r′
(
bl(ω, r

′, θ′)r′
l+D−2

)
−�′(J0)l = 0. (995)

Multiplying by iπ
2 Jl+D−3

2
(ωr′)r′

D−1
2 integrating by parts w.r.t. r′ and noting also that

∫
dr′�′

(
Jl+D−3

2
(ωr′)r′

D−1
2

)
=

0 we get ,

iπl

2

∫
dr′Jl+D−5

2
(ωr′)r′

D−1
2 al(ω, r

′, θ′) =
iπ(l +D − 3)

2

∫
dr′Jl+D−1

2
(ωr′)r′

D−1
2 bl(ω, r

′, θ′) (996)

Which from (809) translates to

lS−l (ω, θ) = (l +D − 3)S+
l (ω, θ). (997)

Static Limit of Gravitational Radiation It is useful to separately consider the scalar

vector and tensor parts of the curvature given in (822).

Focusing first on the scalar part we see from (822), (826) and the fact that hn(x) ∼ x−n ,

that in the limit ω → 0 the scalar part of (822) reduces to

R0i0j(ω, ~x) = lim
ω→0

∞∑
l=0

(
HD+2l+1

2
(ωr)

r
D−3
2

C+
ij [S

+
l (ω, θ)]

)

=
−i
π

lim
ω→0

∞∑
l=0

2
2l+D+1

2

Γ
(

2l+D+1
2

) (
(l +D − 2)r̂ − r ~̃∇

)(
(l +D − 3)r̂S+

l − r
~̃∇S+

l

)
ω

2l+D+1
2 rl+D−1


= ∇i∇jΦG,

(998)

where

ΦG =
−i
π

∞∑
l=0

(
2

2l+D+1
2

Γ
(

2l+D+1
2

)
rl+D−3

)
lim
ω→0

S+
l

ω
2l+D+1

2

=

∞∑
l=0

1

(2l +D + 1)rl+D−3

∫
dr′(r′)l+Dbl(0, r

′, θ),

(999)

where we have used

lim
ω→0

S+
l

ω
2l+D+1

2

=
iπ

2

1

2
2l+D+1

2 Γ
(

2l+D+3
2

) ∫ dr′(r′)l+Dbl(0, r
′, θ). (1000)

(999) is simply the statement that R0i0j in the stationary limit is the double gradient of a
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suitably scaled version of the Newtonian potential φG. Indeed it is easily verified that φG is given

by

∇2φG = −8π

(
T00 +

T
D − 2

)
(1001)

171

Let us now turn to the vector part of R0i0j . Once again using (822), (826) and the small

argument expansion of the Hankel function we see that the vector part of R0i0j simplifies to

R0i0j(ω, ~x) =
∞∑
l=0

(
HD+2l−1

2
(ωr)

r
D−3
2

B+
ij [V

+
l (ω, θ)]

)

=
−i
π

∞∑
l=0

2
2l+D−1

2

Γ
(

2l+D−1
2

) (
(l +D − 3)r̂i(V

+
l )j − r∇̃i(V +

l )j

)
ω

2l+D−1
2 rl+D−2

+ {i↔ j}

= −iω
(
∇iAGj +∇jAGi

)
,

(1003)

so that (using the Bianchi identity)

R0ijk =
i

ω
(∇jR0i0k −∇kR0i0j)

= −∇i
(
∇jAGk −∇kAGj

)
,

(1004)

where

AGi =
1

2π

(
2

ω

) 2l+D+1
2

Γ

(
2l +D − 1

2

)
(V +
l )i

rl+D−3
. (1005)

It is easily verified that

∇2AGi = −8πT0i.

172 Note that ~AG obeys the same equation obeyed by the ‘vector potential’ magnetostatics with

the role of the current being played by T0i. Indeed (1004) asserts that R0ijk is proportional to

171To see this note that, in the strict limit ω → 0 the effective stress tensor reduces to

T effij = 8π∇′i∇′j
(
T00 +

T
D − 2

)
.

It follows that

bl =
8π(r′)l+1

(2l +D − 1)(2l +D − 3)
∂r′

(
1

r′
∂r′

(
T00 + T

D−2

(r′)l

))
. (1002)

172 To see this note that the term in (Teff )ij (see (818)) that contributes to the the vector in (822)

iω(∂iT0j + ∂jT0i).
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∇iFGjk where FGjk is the magnetic field constructed from the effective vector potential AGi .

Finally we turn to the tensor part of R0i0j . It follows immediately from

∇2R0i0j = 8πω2Tij

In the small ω limit the contribution of tensor sources to to Rijkm takes the form

R0ijk =
i

ω
(∇jR0i0k −∇kR0i0j) ,

Rijkm =
i

ω
(∇iR0jkm −∇jR0ikm)

= ∇i∇kTjm +∇j∇mTik −∇j∇kTim −∇i∇mTjk,

Tij =
−R0i0j

ω2
.

(1006)

The tensor contribution from the source is

zij = −8πω2

(
Tij − δij

T kk
D − 2

)
. (1007)

The scalar sector also contributes to Rijkm, but its closed form is a bit ugly unlike the other

beautiful results in this section, and that can be obtained from the scalar contribution to R0i0j .

We don’t present it here.

Tracelessness and divergenceless of gravitational radiation In this subsection we

rerun some of the discussion of section 4.11.7 but this time in the context of gravitational radia-

tion. In particular we will explain how the explicit gravitational radiation formulae ensure that

gravitational radiation is traceless and divergence free. At the formal level these results follow

immediately once we use that fact that when a box of something (e.g. �ζ) is convoluted with

Green’s function, the resulting integral vanishes. We will now use this fact to demonstrate

Result 1: Gravitational Radiation is traceless.

hij(ω, ~x) = − 2

ω2

∫
G(ω, |~x− ~x′|)T̂ij(ω, ~x′)dD−1x′. (1008)

Hence

hijη
ij(ω, ~x) = − 2

ω2

∫
G(ω, |~x− ~x′|)(ηij T̂ij(ω, ~x′))dD−1x′. (1009)

It follows that

vi = − 8πiωr′l

2l +D − 3
∂r′

(
T0i

r′l

)
.

.
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Using Conservation of stress tensor, we have

ηij T̂ij = −�′
(
T00 +

T
D − 2

)
, (1010)

hence the integration vanishes, i.e. hijη
ij = 0

Result 2: Gravitational Radiation is divergenceless.

Taking spatial divergence of (1008),

∂ihij(ω, ~x) = − 2

ω2
∂i

∫
G(ω, |~x− ~x′|)T̂ij(ω, ~x′)dD−1x′

= − 2

ω2

∫
G(ω, |~x− ~x′|)

(
∂iT̂ij(ω, ~x′)

)
dD−1x′.

(1011)

Using Conservation of stress tensor, we have

∂′iT̂ij = −�′
(
iωT0j + T00 +

T
D − 2

)
, (1012)

hence the integration vanishes, i.e. ∂ihij = 0.

4.11.8 Variation of the first order gravitational counterterm action

In this brief Appendix we demonstrate that the variation of (642) yields the stress tensor (643).

Varying the first term inside the bracket in (642) we find∫
δ
√
R =

∫
δR

2
√
R

=

∫
1

2
√
R
[
−Rµνδgµν + ∇̂µ∇̂νδgµν − ∇̂2δg

]
=

∫
1

2

[
−
(Rµν√
R

)
+
(
∇̂µ∇̂ν − g(in)

AB ∇̂2
)( 1√

R

)]
δgµν

=

∫
1

2

[
−
(Rµν√
R

)
− g(in)

µν ∇̂2

(
1√
R

)
+O

(
1

D

)]
δgµν

=

∫
1

2

[
−
(Rµν√
R

)
+ g(in)

µν

(
∇̂2R
2R 3

2

)
+O

(
1

D

)]
δgµν ,

(1013)

where for convenience, we have used the notation δg
(ind)
µν = δgµν and we have used the formula

δRµν =
1

2

[
∇̂α∇̂µδgαν + ∇̂α∇̂νδgαµ − ∇̂µ∇̂νδg − ∇̂2δgµν

]
⇒ δR = −δgµνRµν +

(
∇̂µ∇̂ν − g(ind)

µν ∇̂2
)
hAB,

where δg = gµν(ind)δgµν , δgµν = gµα(ind) δgαβ g
αν
(ind).

(1014)
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Varying the second term inside the bracket in (642) we find

1

2
δ

(RµνRµν
R 3

2

)
= − 3

4
R− 5

2 RµνRµν δR−
RµαRαν δgµν

R 3
2

+
Rµν δRµν
R 3

2

.

(1015)

Now from equation (1014) it follows that∫
R− 5

2 RµνRµν δR

=

∫
R− 5

2 RαβRαβ
[
−δgµνRµν +

(
∇̂µ∇̂ν − g(ind)

µν ∇̂2
)
δgµν

]
=

∫
δgµν

[
−R− 5

2 RαβRαβRµν +
(
∇̂µ∇̂ν − gµν∇̂2

)(
R− 5

2 RαβRαβ
)]

=

∫
δgµν

[
O
(

1

D

)]
. (1016)

Similarly the second term in equation (1015) is also of order O
(

1
D

)
. In the third term of equation

(1015) if we substitute the formula equation (1014) we get one term which is of order O(1).∫ Rµν δRµν
R 3

2

=

∫ −g(ind)
µν

∇̂α∇̂βRαβ
R

3
2

(in)

+O
(

1

D

) δgµν
=

∫ [
−g(ind)

µν

(̂̂
∇2R
2R 3

2

)
+O

(
1

D

)]
δgµν .

(1017)

Using equation (1013), (1015), (1016) and (1017) we find the equation (643)

4.11.9 Perturbative solution for ρ

In this section we find the solution of (645). In order to do this we find it convenient to use the

following coordinate system. Choose any point on the membrane. We treat this point as the

origin of our coordinate system. We now erect a Cartesian coordinate system about this point,

making sure to orient a special coordinate, z, so that the normal to the membrane at that point

is dz. Let the remaining Cartesian coordinates (which are all orthogonal to each other and to z

but are otherwise arbitrary) be denoted by xµ). It follows that, in this coordinate system, the

equation of the membrane takes the following form

z(yµ) = −Kµν

2
yµyν −

Cµνσ
3

yµyνyσ −
Dµνσρ

4
yµyνyσyρ + · · · (1018)
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Now consider a point outside the membrane whose coordinates are (z, xµ). At least in a neigh-

bourhood of the membrane any such point may uniquely be associated with a point (z(yµ), yµ)

on the membrane by the requirement that a straight line drawn normal through this membrane

point passes through (z, xµ).

Let yµ(z, xµ) denote the coordinates of the membrane point associated with an arbitrary bulk

point in this manner, and let s(z, xµ) denote the distance along this line from the given bulk point

to the membrane. We will now determine yµ(z, xµ) and s(z, xµ) in a Taylor series expansion in

xµ.

Working in a Taylor expansion in yµ, the normal at any point on the membrane is given by

n =
dz + (Kµνyν + Cµνσyνyσ +Dµνσρyνyσyρ) dyµ

N , (1019)

where the normalization N is chosen to ensure that n.n = 1. To solve for yµ in terms of the xµ

and z we note that, by definition

xµ − yµ
z − z0

=
nµ
nz
,

xµ − yµ
z − z0

= (Kµνyν + Cµνσyνyσ +Dµνσρyνyσyρ) .
(1020)

These equations are easily solved in a Taylor series expansion in xµ (but to all orders in z). To

the cubic order in xµ we have

yµ = (Px)µ − z(P · C)µνσ(Px)ν(Px)σ + 2z2(P.C.C)µνσρ(Px)ν(Px)σ(Px)ρ

− z(P.D))µνσρ(Px)ν(Px)σ(Px)ρ − z(P.K)σρKµνPx)ν(Px)σ(Px)ρ,
(1021)

where we have defined

Pµν =

(
1

1 + zK

)
µν

.

We now turn to the determination of s(xµ, z). First note that

s(xµ, z) =
√

(z − z0)2 + (x− y)2

= (z − z0)

√
(1 +

(x− y)2

(z − z0)2
.

(1022)

Using (1020) and retaining terms to cubic order in y we obtain

s(xµ, z) = z +
1

2
(Kµν + z(K ·K)µν) yµyν +

(
1

3
Cµνσ + z(K · C)µνσ

)
yµyνyσ + · · · (1023)
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Substituting the expansion of y in (1023) and retaining terms to the cubic order in x

s(xµ, z) = z +
1

2
(Kµν + z(K ·K)µν) ((Px)µ(Px)ν − 2z(P · C)µσρ(Px)ν(Px)σ(Px)ρ)

+

(
1

3
Cµνσ + z(K · C)µνσ

)
(Px)µ(Px)ν(Px)σ + · · ·

(1024)

We now turn to the determination of the function ρ. Using the Cartesian coordinate system

employed in this Appendix it is not difficult to solve for ρ in a Taylor series expansion in xµ.

Once that is achieved one can re-express the result in terms of yµ and s using (1021) and (1024).

The algebra involved is tedious and we omit all details. Our final result for ρ is

ρ(xµ)− 1 = s(xµ)
K(yµ)

D − 2
+(

2s(xµ)

K
+ s(xµ)2

)(
1

2K
∇̂2

(
K

D − 2

)
+

K2

2(D − 2)2
+
KMNK

MN

K

)
+O

(
1

(D − 2)3

)
.

(1025)

4.11.10 Evolution of the Einstein Constraint Equations

In this Appendix we derive the equation (632) assuming that the dynamical Einstein equations

hold everywhere.

Since all components of the Einstein equation are already linear in the metric fluctuation, in this

appendix we would simply replace all covariant derivatives ∇ by partial derivatives ∂.

Now the dynamical equations are true everywhere and therefore their divergence also vanishes

and we find

0 = ∂A
[
EAB − nAXB − nBXA − nAnBY

]
= −K XB − (n · ∂)XB −XAKAB − nB(∂ ·X)

− nB [K Y + (n · ∂Y ]− Y (n · ∂)nB.

(1026)

Simplifying (1026) further using the expression for (∇ ·X).

∂ ·X = ∂A

[
ΠACECC′n

c′
]

= ∂A
[
EACn

C − nAY
]

= EAC∂AnC − [K Y + (n · ∂)Y ]

= XC(n · ∂)nC − [K Y + (n · ∂)Y ] .

(1027)
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Substituting equation (1027) into equation (1026) we obtain

0 = ∂AÊ
AB = ∂A

[
ΠCAΠC′

B ECC′
]

= ∂A

[
ΠCAΠC′

B ECC′
]

= −K XB − (n · ∂)XB −XAKAB − nB
[
XC(n · ∂)nC

]
− Y (n · ∂)nB

= −K XB − (n · ∂)XB −XAKAB + nB
[
nC(n · ∂)XC

]
− Y (n · ∂)nB

= −K XB −ΠC
B(n · ∂)XC −XAKAB − Y (n · ∂)nB.

(1028)

It follows that

∂ ·X + [K Y + (n · ∂)Y ]−XC(n · ∂)nC = 0, (1029)

K XB + ΠC
B(n · ∂)XC +XAKAB + Y (n · ∂)nB = 0 (1030)

These are the equations (632).

4.11.11 Derivation of the large D foliation adapted solution to Maxwell’s equa-

tions and Charge Current

In this Appendix we present the derivation of some of the results reported in subsections 4.5.3

and 4.5.3.

ρ > 1 As reported in (670), the Maxwell field in the region ρ > 1 is assumed to take the form

AM = ρ−(D−3)GM = ρ−(D−3)
∑
k

(ρ− 1)kG
(k)
M .

Maxwell’s equations take the form173

0 = ∂AF
A
B = 2(∂Aρ

−(D−3))(∂AGB)− (∂Bρ
−(D−3))(∂ ·G) + ρ−(D−3)∂A(∂AGB − ∂BGA).

(1031)

To derive expression for ∂AF
A
B in (1031) we have used the subsidiary condition (673), the gauge

choice (671) and the harmonicity condition (644). Note also that

nAGA = 0⇒ (∂A∂Bρ)GA = −(∂Aρ)(∂BG
A). (1032)

173In this subsection all raising, lowering and contraction of indices have been done using the flat
Minkowski metric ηAB .
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It is convenient to rewrite the Maxwell equation (1031) in the form

T
(1)
B + T

(2)
B + T

(3)
B = 0, (1033)

where

T
(1)
B =2(∂Aρ−(D−3))(∂AGB)

= −2(D − 3)

ρD−3

[ ∞∑
k=0

k
(ρ− 1)k−1

ρ
N2G

(k)
B +

∞∑
k=0

(ρ− 1)k

ρ
N(n.∂)G

(k)
B

]
,

T
(2)
B =− (∂Bρ

−(D−3))
(
∂AG

A
)

=
(D − 3)

ρD−2
(NnB)

∞∑
k=0

(ρ− 1)k(∂AG
(k)
A ),

T
(3)
B =ρ−(D−3)∂A(∂AGB − ∂BGA)

=ρ−(D−3)
∞∑
k=0

{
k(ρ− 1)(k−1)

{(
(n · ∂)

(
NG

(k)
B

)
+KNG

(k)
B + 2NnB(∂ ·G(k))

)
− nB(G(k) · ∂)N −NnB(∂ ·G(k))

}
+ (ρ− 1)k∂AF

(k)
AB

}
,

where F
(k)
AB = ∂AG

(k)
B − ∂BG

(k)
A .

(1034)

We now simply plug (1034) into (1033) and equate the coefficients of distinct powers of (ρ−1). As

explained in the main text, at this stage we are only interested in solving the dynamical Maxwell

equations (615). We find the first nontrivial constraint by equating to zero the coefficient of

(ρ − 1)0 in the projected version ((615)) of the Maxwell equation (1033). This procedure yields

the equation

0 = ρ(D−3)ΠC
B∂

AFAC

=− 2(D − 3)N2G
(1)
B + [KN + (n · ∂)N ]G

(1)
B + ΠC

B∂
AF

(0)
AC + 2N2G

(2)
B

+O(ρ− 1).

(1035)

Solving equation (1035) at leading order in
(

1
D

)
we get

G
(1)
B =

ΠC
B ∂AF

(0)
AC

2(D − 3)N2 −NK +O
(

1

D

)
=

ΠC
B ∂AF

(0)
AC

NK
+O

(
1

D

)
.

(1036)
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In the second line we have used the fact that K = DN +O(1).

As we have explained around (661), the solution (1036) for G
(1)
B is only valid on the membrane

i.e. at ρ = 1. G
(1)
B can be determined off the membrane using (672) to evolve the result (1036)

off the membrane.

Exterior current The exterior current for the solution determined above is given by

JB = nAF
A
B

∣∣∣∣
ρ=1

. (1037)

In order to explicitly evaluate this current we note that

nAF
A
B = −(D − 3)

(
ρ−(D−3)

ρ

)
NGB + ρ−(D−3)

[
(n.∂)GB − nA∂BGA

]
= −(D − 3)

(
ρ−(D−3)

ρ

)
N

∞∑
k=0

(ρ− 1)kG
(k)
B + ρ−(D−3)

∞∑
k=0

k(ρ− 1)(k−1)NG
(k)
B

+ ρ−(D−3)
∞∑
k=0

(ρ− 1)(k)KA
BG

(k)
A . (1038)

In the derivation of the last equation we have used

−nA∂BGA = −∂B(nAG
A) + (∂BnA)GA

= δCB(∂CnA)GA

=
(
ΠC
B + nCnB

)
(∂CnA)GA

= KBAG
A + nBG

A(n.∂)nA

= KA
BGA − nBnA(n.∂)GA. (1039)

Setting ρ = 1 in (1038) we obtain

J
(out)
B = −(D − 3)NG

(0)
B +NG

(1)
B +KA

BG
(0)
A (1040)

ρ < 1 For ρ < 1 the form of the gauge field is given by

A
(in)
M = G̃M =

∑
k

(ρ− 1)kG̃
(k)
M .
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Maxwell equation takes the form

∂AF
(in)
AB =

∞∑
k=0

[
k(ρ− 1)(k−1)

{
G̃

(k)
B (n · ∂)N + 2N(n · ∂)G̃

(k)
B +KNG̃

(k)
B +NnB(∂ · G̃(k))

}
+ k(k − 1)(ρ− 1)(k−2)N2G̃

(k)
B + (ρ− 1)k∂AF̃

(k)
AB

]
,

where F̃
(k)
AB = ∂AG̃

(k)
B − ∂BG̃

(k)
A .

(1041)

Here also we could determine G̃
(k)
B , k > 0 in terms of G̃

(0)
B = G

(0)
B using equation (1041)

projected in the direction perpendicular to nB. The leading order G̃
(1)
B could be determined from(

ΠC
B∂

AF
(in)
AC

)
by setting the coefficient of (ρ− 1)0 to zero :

[KN + (n · ∂)N ] G̃
(1)
B + ΠC

B∂
AF

(0)
AC +N2G̃

(2)
B = 0. (1042)

Here all lowering and raising of indices have been done using the flat metric ηAB .

G̃
(1)
B = −ΠC

B ∂AF
(0)
AC

NK
+O

(
1

D

)
. (1043)

Inside current The inside current on the ρ = 1 surface is given as

J
(in)
B = nAF

(in)
AB

∣∣∣∣
ρ=1

, (1044)

so that

nAF
(in)
AB =

∞∑
k=0

k(ρ− 1)(k−1)NG̃
(k)
B +

∞∑
k=0

(ρ− 1)(k)KA
BG̃

(k)
A . (1045)

Here also to simplify we have used the equation (1039). Substituting ρ = 1 in equation (1045)

we find the inside current

J
(in)
B = NG̃

(1)
B +KA

BG
(0)
A . (1046)
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4.11.12 Derivation of the large D foliation adapted solution to Einstein’s equa-

tions

ρ > 1 As explained in subsection 4.5.4, the metric in the region ρ > 1 is assumed to take the

form (698) which we repeat here for convenience

gAB = ηAB + ρ−(D−3)hAB = ηAB + ρ−(D−3)
∑
k

(ρ− 1)kh
(k)
AB. (1047)

Einstein’s equations (linearized around ηAB) take the form :

0 = R
(out)
AB = t

(1)
AB + t

(2)
AB + t

(3)
AB, (1048)

where

t
(1)
AB = ∂A

[(
∂Cρ

−(D−3)
)

hCB + ρ−(D−3)∂Ch
C
B

]
+ (A↔ B)

=
[
∂Aρ

−(D−3)
] [
∂Ch

C
B

]
+ ρ−(D−3)∂A∂Ch

C
B + (A↔ B), (1049)

t
(2)
AB = −∂2

[
ρ−(D−3)hAB

]
= −2

[
∂Cρ

−(D−3)
]

[∂ChAB]− ρ−(D−3)∂2hAB, (1050)

t
(3)
AB = −∂A∂B

[
ρ−(D−3)h

]
= −[∂A∂Bρ

−(D−3)]h− (∂Aρ
−(D−3))∂Bh

−(∂Bρ
−(D−3))∂Ah− ρ−(D−3)(∂A∂Bh). (1051)

In deriving equations (1049), (1050) and (1051) we have used (699), (700) and (644).

We now substitute equation (1047) in equation (1048) and expand it in powers of (ρ − 1).

Equating powers of ρ−1 in the dynamical equation allows us to solve for the unknown coefficients

h
(k)
AB, k > 0 in terms of h

(0)
AB, order by order in

(
1
D

)
. In particular h

(1)
AB is determined at leading

order in
(

1
D

)
by equating terms of order (ρ−1)0 on both sides of the projected Einstein equation

0 = ρD−3ΠC
BΠC′

A R
(out)
CC′

=

(
D − 3

2

)
NKABh

(0) + (D − 3)N2h
(1)
AB −

(
1

2

)
((n.∂)N +NK)h

(1)
AB

+
1

2
ΠC
BΠC′

A

[
∂C∂

Mh
(0)
MC′ + ∂C′∂

Mh
(0)
MC − ∂2h

(0)
CC′ − ∂C∂C′h(0)

]
+O(ρ− 1). (1052)
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Solving equation (1052) at leading order in
(

1
D

)
we get ,

h
(1)
AB

=−ΠC
BΠC′

A

[
∂C∂

Mh
(0)
MC′ + ∂C′∂

Mh
(0)
MC − ∂2h

(0)
CC′ − ∂C∂C′h(0) + (D − 3)h(0)KCC′

2(D − 3)N2 −NK

]

+O
(

1

D

)
=−ΠC

BΠC′
A

[
∂C∂

Mh
(0)
MC′ + ∂C′∂

Mh
(0)
MC − ∂2h

(0)
CC′ − ∂C∂C′h(0) +Dh(0)KCC′

NK

]

+O
(

1

D

)
.

(1053)

In equation (1053) naively it seems that the last term is of order O(D). But we shall see that

for our case h(0) is actually of order O
(

1
D

)
, so the last two terms do not even contribute to the

leading solution for h
(1)
AB.

External stress tensor The stress tensor T outAB is given by

T
(out)
AB =

[
K(out)
AB −K(out) p

(out)
AB

]
, (1054)

where K(out)
AB is the extrinsic curvature of the (ρ = 1) surface (approached from the outside)

viewed as a submanifold of the full space-time with bulk metric gAB = ηAB + ρ−(D−3)hAB. The

trace of K(out)
AB is denoted by K(out) and p

(out)
AB is the projector onto the surface (ρ = 1). Let the

normal to the surface is denoted by n
(out)
A = ∂Aρ√

gAB(∂Aρ)(∂Bρ)
. It follows from the gauge condition

(699) that the denominator of this expression - the norm of the one-form ∂Aρ in the metric gAB

- differs from the norm of the same oneform in the metric ηAB only at quadratic order in hAB.

If we work only to linear order in hAB it follows that (n
(out)
A = nA) and also since nAh

AB = 0, it

implies gABn
(out)
B = gABnB = nA.

It thus also follows that

p
(out)
AB ≡ gAB − n(out)

A n
(out)
B = gAB − nAnB = ΠAB + ρ−(D−3)hAB,

[p(out)]CA = δCA − nCnA = ΠC
A.

Where in the last step we have used the definition ΠAB = ηAB − nAnB and the definition

gAB = ηAB + hAB
ρD−3 .
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The extrinsic curvature evaluates to 174

K(out)
AB = [p(out)]CA[p(out)]C

′
B ∇CnC′ |ρ=1

= ΠC
A ΠC′

B

(
∂CnC′ − nqΓqCC′

)
|ρ=1

= KAB −ΠC
AΠC′

B (nqΓ
q
CC′)|ρ=1,

(1055)

where KAB is the extrinsic curvature of (ρ = 1) surface as embedded in flat Minkowski space-time

ηAB. The last term in equation (1055) can be evaluated by determining the Christoffel symbol

with respect to the metric gAB to linear order in hAB. We find

−ΠC
AΠC′

B nqΓ
q
CC′ |ρ=1

=−
(

ΠC
AΠC′

B

2

)
nq
[
∂C

(
ρ−(D−3)hC′q

)
+ ∂C′

(
ρ−(D−3)hCq

)
− ∂q

(
ρ−(D−3)hC′C

)]
ρ=1

=

[
N

2
h

(1)
AB −

N

2
(D − 3)h

(0)
AB +

1

2

(
h

(0)
AqK

q
B + h

(0)
BqK

q
A

)]
ρ=1

(1056)

In the last step of equation (1056) we have used the following manipulation :

ΠACΠBC′nq∂Ch
q
C′ = −ΠACΠBC′hqC′(∂Cnq)

= −ΠACΠBC′hqC′KCq

= −hqBKA
q .

(1057)

Substituting equation (1056) in equation (1055) we finally get

K(out)
AB = KAB +

[
N

2
h

(1)
AB −

N

2
(D − 3)h

(0)
AB +

1

2

(
h

(0)
AqK

q
B + h

(0)
BqK

q
A

)]
ρ=1

. (1058)

It follows that the trace of the trace of the external extrinsic curvature is given by

K(out) =
[
ηAB − hAB(0)

]
K(out)
AB = K +

[
N

2
h(1) − N

2
(D − 3)h(0)

]
ρ=1

, (1059)

where K = ηABKAB = Trace of the extrinsic curvature of (ρ = 1) surface as embedded in flat

space-time and h(k) denotes
[
ηABh

(k)
AB

]
.

Note, if we assume the membrane to be embedded in an auxiliary space with metric (ηAB +h
(0)
AB)

and denote the extrinsic curvature as K̃AB, then K(out)
AB and K(out) could simply be written as

K(out)
AB = K̃AB +

N

2

[
h

(1)
AB − (D − 3)h

(0)
AB

]
, K(out) = K̃ +

N

2

[
h(1) − (D − 3)h(0)

]
(1060)

174 In this section ∇ means covariant derivative with respect to full linearised space-time from outside.
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Substituting equations (1058), (1059) and (1060) in equation (1054) we obtain our final expression

for the stress tensor from outside (ρ = 1) surface as given in (703).

ρ < 1 For ρ < 1 the metric is assumed to take the form (706) which we reproduce for convenience

g̃AB = ηAB + h̃AB = ηAB +
∑
k

(ρ− 1)kh̃
(k)
AB.

Einstein equation takes the form

R
(in)
AB =

(
1

2

)[
∂C∂Ah̃

C
B + ∂C∂Bh̃

C
A − ∂2h̃AB − ∂A∂Bh̃

]
= 0. (1061)

As in the previous subsection h̃
(k)
AB, k > 0 can be determined in terms of h̃

(0)
AB = h

(0)
AB using

the dynamical Einstein equations. In particular h̃
(1)
AB may be determined from the coefficient of

(ρ− 1)0 in

0 =
(

ΠC
BΠC′

A R
(in)
CC′

)
=

(
ΠC
AΠC′

B

2

)[
∂M∂C′ h̃

(0)
MC + ∂M∂C h̃

(0)
MC′ − ∂2h̃

(0)
CC′ − ∂C∂C′ h̃(0)

]
−
(

1

2

)
[NK + (n · ∂)N ] h̃

(1)
AB −KAB h̃(1) +O(ρ− 1)

(1062)

(Here all lowering and raising of indices have been done using the flat metric ηAB). Solving

equation (1062) in leading order in O
(

1
D

)
we find :

h̃
(1)
AB =

(
ΠC
AΠC′

B

NK

)[
∂M∂C′ h̃

(0)
MC + ∂M∂C h̃

(0)
MC′ − ∂2h̃

(0)
CC′ − ∂C∂C′ h̃(0)

]
+O

(
1

D

)
. (1063)

Interior stress tensor The interior stress tensor is given by

T
(in)
AB = K(in)

AB −K(in)p
(in)
AB

∣∣∣∣
ρ=1

, (1064)

where K(in)
AB is the extrinsic curvature of the ρ = 1 surface (as approached from the interior)

viewed as a submanifold of the full space-time with bulk metric g̃AB = ηAB + h̃AB. The trace of

K(in)
AB is denoted by K(in) and p

(in)
AB is the projector onto the surface (ρ = 1). As in the previous

subsection, working to linear order in the metric fluctuations

n
(in)
A = nA; p

(in)
AB = ΠAB + h̃AB.

365



The extrinsic curvature evaluates to

K(in)
AB = [p(in)]CA[p(in)]C

′
B ∇C n̂C′ |ρ=1

= ΠC
AΠC′

B

(
∂CnC′ − nqΓqCC′

)
|ρ=1

= KAB −ΠC
AΠC′

B nqΓ
q
CC′ |ρ=1,

(1065)

where KAB is the extrinsic curvature of (ρ = 1) surface as embedded in flat Minkowski space-time

ηAB. The last term in equation (1065) is simplified further by evaluating the Christoffel symbol

as :

−ΠC
AΠC′

B nqΓ
q
CC′ |ρ=1

=−
(

1

2

)
ΠC
AΠC′

B n
q
[
∂C h̃C′q + ∂C′ h̃Cq − ∂qh̃C′C

]
ρ=1

=

[
N

2
h̃

(1)
AB +

1

2

(
h̃

(0)
AqK

q
B + h̃

(0)
BqK

q
A

)]
ρ=1

=

[
N

2
h̃

(1)
AB +

1

2

(
h

(0)
AqK

q
B + h

(0)
BqK

q
A

)]
ρ=1

.

(1066)

Substituting equation (1066) in equation (1065) we finally get

K(in)
AB = KAB +

[
N

2
h̃

(1)
AB +

1

2

(
h

(0)
AqK

q
B + h

(0)
BqK

q
A

)]
ρ=1

= K̃AB +

(
N

2

)
h̃

(1)
AB.

(1067)

The trace of the extrinsic curvature is given by

K(in) =
[
ηAB − h̃AB(0)

]
K(in)
AB =

[
K̃ +

(
N

2

)
h̃(1)

]
ρ=1

, (1068)

where K̃ =
(
ηAB − hAB(0)

)
K̃AB and h̃(k) denotes

[
ηABh̃

(k)
AB

]
.

Substituting equations (1067) and (1068) in equation (1064) we get the final expression for

the stress tensor from interior of the (ρ = 1) surface as given in equation (711).

4.11.13 Details Related to the Large D black hole membrane current

In this Appendix we first perform the consistency check described in subsection 4.6.3. We then go

onto supply some of the algebraic details of the derivation of the final form of the charge current

on the large D black hole membrane (728).

Details of the consistency check described in subsection 6.3
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Gauge Transformation In this subsection we gauge transform the gauge field presented

in (723) to put it in the gauge employed in subsection 4.5.3.

Let us apply a gauge transformation parametrized by the gauge function Λ on the gauge field

of (723), where

Λ = ρ−(D−3)
[
Λ(0) + (ρ− 1)Λ(1) + (ρ− 1)2Λ(2) + · · ·

]
,

M̃B = ∂BΛ +MB, 0 = nBM̃B = nBMB + (n · ∂)Λ

⇒(n · ∂)Λ = −nBMB.

(1069)

Equating different powers of (ρ − 1) on both sides of the last equation in (1069) we get the

following equations for Λ(0), Λ(1) and Λ(2).

− (D − 3)NΛ(0) + (n · ∂)Λ(0) +NΛ(1) = −
√

2Q

− (D − 3)N [Λ(1) − Λ(0)] + (n · ∂)Λ(1) +NΛ(2) = −
√

2

(
D

K

)(∇̄2Q

K

)
,

(1070)

where ∇̄2Q = ΠAB∂A
[
ΠC
B∂CQ

]
. Solving equation (1070)

Λ(0) =

(
1

D − 3

) √
2Q

N
+

(
1

D

)2
(√

2

N

)[
Q+ (n · ∂)

(
Q

N

)
+

(
D

K

)(∇̄2Q

K

)]
+O

(
1

D

)3

,

Λ(1) =

(
1

D − 3

)(√
2

N

)[
Q+

(
D

K

)(∇̄2Q

K

)]
+O

(
1

D

)2

.

(1071)

Now after applying the gauge transformation

M̃B = MB + ∂BΛ = ρ−(D−3)
[
M̃

(0)
B + (ρ− 1)M̃

(1)
B + · · ·

]
;

M̃
(0)
B = −

√
2Q uB +

√
2Q3

D

(
D

K

)(
∂AK

K
− (u · ∂)uA

)
PAB

+

√
2

D
ΠA
B

[
∂AQ

N
− Q∂AN

N2

]
+O

(
1

D

)2

,

M̃
(1)
B = −

√
2

(
D

K

)(∇̄2Q

K

)
uB −

√
2Q

(
D

K

)(∇̄2uA
K

+ uCKCA

)
pAB +O

(
1

D

)
,

(1072)

where

∇̄2uA ≡ ΠCB∂C

[
ΠA′
A ΠB′

B ∂B′uA′
]
, ∇̄2Q ≡ ΠAB∂A

[
ΠB′
B ∂B′Q

]
(1073)
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Note that M̃B now satisfies the gauge condition of the previous section, i.e., nBM̃B = 0.

Change in the subsidiary condition In this section we re-expand the coefficients of

the gauge field of the previous subsection so that these coefficients obey the subsidiary conditions

of subsection 4.5.3.

M̃B satisfies the gauge condition imposed in the previous section, and consequently can be

identified with the field GB of (670). However the expansion coefficients M̃
(k)
B cannot yet be

identified with the expansion coefficients G
(k)
B of (670) as M̃

(k)
B do not obey (673), i.e.

PBA (n · ∂)M̃
(k)
B 6= 0.

The coefficient functions G
(k)
B are easily extracted from the expansion of

√
16πGB = M̃B by

following a recursive procedure we now outline. On the surface ρ = 1, the quantity
√

16πGB
(0)

simply equals M̃
(0)
B . Away from ρ = 1,

√
16πGB

(0) (which no longer agrees with M̃
(0)
B ) can be

determined from knowledge of its value on the ρ = 1 surface using the equation

PBA (n · ∂)G
(0)
B = 0.

Now that G
(0)
B is known everywhere consider

G−G(0)
B

This expression is a known power series expansion in (ρ − 1) which starts at (ρ − 1)1. On the

surface ρ = 1 the quantity G
(1)
B is simply the coefficient of the linear term in (ρ − 1) in this

expansion. We have thus determined G
(1)
B at ρ = 1. However this information together with the

subsidiary condition

PBA (n · ∂)G
(1)
B = 0,

determines G
(1)
B everywhere.

Now that we know G
(1)
B also everywhere consider the quantity

G−G(0)
B −G1

B(ρ− 1).

This quantity is a known power series that starts at order (ρ− 1)2. The coefficient of (ρ− 1)2 is

simply G
(2)
B evaluated at ρ = 1 . . . , and so on. We can thus proceed to evaluate G

(n)
B for all n.

As the black hole membrane solution is known only to a very low order, we need to implement
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the recursive procedure described above only to very low order. This is very easily done. Clearly

√
16πG

(0)
B = M̃

(0)
B − (ρ− 1)C

(0)
B +O(ρ− 1)2,

for some as yet unknown function C
(0)
B . Now the operator PAB (n · ∂) annihilates the LHS so it

must also kill the RHS. Applying this operator to both sides of this equation, Taylor expanding

in ρ− 1 and equating the coefficient of (ρ− 1)0 to zero we find

C
(0)
A =

1

N
PBA (n · ∂)M̃

(0)
B .

It follows that √
16πGB = G

(0)
B +

(
M̃

(1)
B + C

(0)
B

)
(ρ− 1).

so that on the surface ρ = 1

G
(1)
B =

(
M̃

(1)
B + C

(0)
B

)
. (1074)

From the explicit black hole membrane solution we know M̃
(1)
B only to leading order in the 1/D

expansion (though we know M̃
(0)
B and so C

(0)
B to first subleading order). It follows that our current

knowledge of the black hole membrane solution is detailed enough only to allow to determine G
(1)
B

only at leading order in 1/D on the membrane surface. 175

We now turn to simplifying the expression for C
(0)
B . Plugging in the actual value of M̃

(0)
B for

the black hole membrane we may simplify this expression as follows :

C
(0)
A =

1

N
ΠB
A(n · ∂)M̃

(0)
B

= −
√

2Q

N
ΠB
A(n · ∂)uB +O

(
1

D

)
= −
√

2Q

N
PBA (n · ∂)uB +O

(
1

D

)
=

√
2Q

N
PBA (u · ∂)nB +O

(
1

D

)
=

√
2Q

N
uCKCB PBA +O

(
1

D

)
,

(1075)

where we have plugged in the explicit expressions listed in (1072). In the second and last line

of equation (1075) we have used the fact that the membrane charge density and velocity field in

175As explained above, once G
(1)
B has been determined on the surface ρ = 1 it is easily continued away

from this surface. We will, however, have no need for this continuation.
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chapter 3 obey the subsidiary conditions

(n · ∂)Q = 0, PBA (n · ∂)uB + pBA(u · ∂)nB = 0.

From equation (1072) and (1075) it is not difficult to read off the values of M̃
(1)
B and C

(0)
B .

Using

K = DN +O(1) and
∇̄2uA
K

=
PBA ∇̄2uB

K
+O

(
1

D

)
,

we find

√
16πG

(0)
B = −

√
2Q uB +

√
2Q3

D

(
D

K

)(
∂AK

K
− (u · ∂)uA

)
pAB

+

√
2

D
ΠA
B

[
∂AQ

N
− Q∂AN

N2

]
+O

(
1

D

)2

,

√
16πG

(1)
B =

[
M̃

(1)
B + C

(0)
B

]
= −
√

2

(
D

K

)(∇̄2Q

K

)
uB −

√
2Q

(
D

K

)(∇̄2uA
K

)
+O

(
1

D

)
.

(1076)

Consistency In the previous subsubsections we have transformed the linearized part of

the large D black gauge field into gauge and subsidiary conditions used in subsubsection 4.5.3,

and have thus managed to read off the expressions for the quantities G
(0)
B and G

(1)
B listed in that

subsection. However, according to the analysis of subsubsection 4.5.3 the quantities G
(0)
B and

G
(1)
B are not independent. In fact G

(1)
B is given in terms of G

(0)
B by the equations (680) and (682).

In other words the linearized part of the large D black hole metric is fits into the general

framework of subsubsection 4.5.3 if and only if the explicit results (1076) obey (680) upto cor-

rections of order O
(

1
D

)
. We have explicitly verified that this is indeed the case. This completes

our check of the consistency of the large D black hole solutions at linearized order.

Details of the derivation of equation 6.13

The Membrane Current from Outside Now that we have recast the solution (723)

in the form of the solutions presented in subsection 4.5.3 we can use any of the formulae of that

subsection to evaluate the membrane current. The external contribution to the current, Jout, is

most simply obtained from the equation (683) which we quote again here for convenience

JoutB = −(D − 3)NG
(0)
B +NG

(1)
B +KA

BG
(0)
A .
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Substituting G
(0)
B and G

(1)
B from equation (1076) we find that upto corrections of order O

(
1
D

)
,

√
16πJoutB =

√
2Q

[
(1−Q2)

(
∂AK

K

)
+ (1 +Q2)(u · ∂)uA −

(∇̄2uA
K

)
− KC

AuC

]
PAB

+
√

2

[
(D − 3)NQ+ (u · ∂)Q−

(
∂2Q+Q(u · ∂)K

K

)
+Q(u ·K · u)

]
uB

−
√

2Q

[(
∂AQ

Q

)
+ (u · ∂)uA

]
PAB +O

(
1

D

)
.

(1077)

In the next subsection we shall see that the first line in the final expression of JoutB (the third

step) vanishes as consequence of the stress tensor conservation equation on the membrane. So

the final form of the outside current after removing the first line

√
16πJoutB =

√
2

[
Q

(
K +

∇̄2K

K2
− 2K

D

)
+ (u · ∂)Q

−
(∇̄2Q+Q(u · ∂)K

K

)
+Q(u ·K · u)

]
uB

−
√

2Q

[(
∂AQ

Q

)
+ (u · ∂)uA

]
PAB +O

(
1

D

)
.

(1078)

To simplify in equation (1078) we have used the identities (see equations (1110), (1111), (1112),

(1113) and (1114) for derivation) that

(D − 3)N = K +
∇̄2K

K2
− 2K

D
+O

(
1

D

)
.

The membrane current from inside In order to compute J inB we use (690) which we

quote here again for convenience

J inB = NG̃
(1)
B +KA

BG
(0)
A . (1079)

By comparing (688) and (680) we see that it is a general feature of the solutions obtained in

subsections 4.5.3 and 4.5.3 that

G̃
(1)
B = −G(1)

B +O
(

1

D

)
.

It follows that (1079) can be rewritten as

J inB = −NG(1)
B +KA

BG
(0)
A . (1080)
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Using (1076) it follows that

√
16πJ

(in)
B =

√
2

[(∇̄2Q

K

)
uB +Q

(
PAB ∇̄2uA

K

)
−QKA

B uA

]
+O

(
1

D

)
. (1081)

4.11.14 Details Related to the large D black hole Membrane Stress Tensor

This Appendix mirrors the previous one except for the fact that it focuses on the membrane stress

tensor rather than the charge current. In the first part of this Appendix we check that the large

D black hole metrics - upon linearization - do indeed fit into the general structure of linearized

solutions to Einstein’s equations at large D developed in this chapter. In the second part of the

Appendix we provided details of our computation of the precise form of the large D black hole

stress tensor.

Consistency As we have described above, the large D black hole metric of chapter 3 simplifies

in the ‘matching’ region to the linearized form (737) with (738). For the convenience of the reader

we reproduce those equations here:

GAB = ηAB + ρ−(D−3)MAB = ηAB + ρ−(D−3)
∑
n

(ρ− 1)nM
(n)
AB, (1082)

where

M
(0)
AB = (1 +Q2)OAOB + 2Q4

(
OAV

(2)
B +OBV

(2)
A

)
−Q2OAOB − 2Q2τAB

+O
(

1

D

)2

,

M
(1)
AB = 2Q2S(1)OAOB − (1 +Q2)

[
V

(1)
A OB +OAV

(1)
B

]
+O

(
1

D

)
,

(1083)
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with

V
(1)
A =

(
D

K

)[∇̄2uB
K

+ uCKCB

]
PBA ,

V
(2)
A =

(
D

K

)[
∂CK

K
− (u · ∂)uC

]
PCA ,

S(1) =

(
D

K2

)
∇̄2Q,

τAB = PA
′

A

(
D

K

)[
∂A′OB′ + ∂B′OA′

2
− ηA′B′

(
∂ ·O
D − 2

)]
PB

′
B ,

where

∇̄2Q = ΠA
B∂A

[
ΠBC∂CQ

]
, ∇̄2uA = ΠAA′Π

B
C∂B

[
ΠCC′ΠA′A′′(∂C′uA′′)

]
.

(1084)

In this section we will recast the results (1082) and (1083) into the general form obtained

subsection 4.5.4. As in the previous Appendix, this requires us to perform first a coordinate

(gauge) transformation on the solution (1082), (1083). We then read off the expansion coefficients

of the general solution described in subsection 4.5.4 by imposing the subsidiary conditions defined

in that subsection.

Gauge transformation Starting with the solution (1082) and (1083) we perform the

infinitesimal coordinate transformation

xA → xA + ρ−(D−3)ξA,

which recasts the solution into the form

M̃AB = MAB + ρ(D−3)∂A

(
ρ−(D−3)ξB

)
+ ∂B

(
ρ−(D−3)ξA

)
. (1085)

We wish to choose our coordinate transformation to ensure that ĥab satisfies the gauge condition

of subsubsection 4.5.4, namely

nAM̃AB = 0. (1086)

It follows that the infinitesimal coordinate transformation must be chosen to ensure that

−nAMAB = (n · ∂)
[
ρ−(D−3)ξB

]
+ nA∂B

[
ρ−(D−3)ξA

]
. (1087)

Our general strategy for determining the vector field ξA that satisfied (1087) is to assume that

like hAB, the vector ξA generating the coordinate transformation also admits an expansion in the
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powers of (ρ− 1) :

ξA =

∞∑
m=0

(ρ− 1)mξ
(m)
A . (1088)

We then substitute the expansion equations (737) and (1088) into (1087) and determine the

expansion coefficients ξ(m), order by order in the
(

1
D

)
expansion by equating powers of (ρ − 1)

on both sides for the equation (1087).

For the practical purposes of this chapter we only need to implement this programme to the

first couple of orders. Equating the coefficient of (ρ − 1)0 on both sides of equation (1087) we

find

nAM
(0)
AB = (D − 3)N

[
ξ

(0)
B + nB(n · ξ(0))

]
−
[
(n · ∂)ξ

(0)
B + nA∂Bξ

(0)
A

]
−N

[
ξ

(1)
B + nB(n · ξ(1))

]
.

(1089)

Similarly equating the coefficient of (ρ− 1)1 we find

nAM
(1)
AB = (D − 3)N

[
(ξ

(1)
B − ξ

(0)
B ) + nB(ξ

(1)
A − ξ

(0)
A )nA

]
−
[
(n · ∂)ξ

(1)
B + nA∂Bξ

(1)
A

]
− 2N

[
ξ

(2)
B + nB(n · ξ(2))

]
.

(1090)

Solving equation (1089) and (1090) simultaneously we find ,

ξ
(1)
A =

[
1

(D − 3)N

] [
nB[M

(1)
AB +M

(0)
AB]−

(nA
2

)(
n · [M (1) +M (0)] · n

)]
+O

(
1

D

)
,

ξ
(0)
A = ξ

(0,1)
A +

(
1

D

)
ξ

(0,2)
A +

(
1

D

)2

,

where

ξ
(0,1)
A =

[
D

(D − 3)N

] [
nBM

(0)
AB −

(nA
2

)(
n · [M (0)] · n

)]
,

ξ
(0,2)
A =

[
1

(D − 3)N

] [
nB
(
∂Aξ

(0,1)
B + ∂Bξ

(0,1)
A

)
− nA

(
nC [∂Cξ

(0,1)
C′ ]nC

′
)]

+

[
D

(D − 3)2N2

] [
nB[M

(1)
AB +M

(0)
AB]−

(nA
2

)(
n · [M (1) +M (0)] · n

)]
.

(1091)

After substituting equation (1091) in equation (1085) we find

M̃AB = ΠC
AΠC′

B

[
M

(0)
CC′ + ∂Cξ

(0)
C′ + ∂C′ξ

(0)
C + (ρ− 1)M

(1)
CC′ +O(ρ− 1)2

]
. (1092)
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Change in subsidiary condition In order to extract the expansion coefficients h
(m)
MN de-

fined in subsection 4.5.4 we need to ‘Taylor’ expand the metric (1092) in a power series expansion

in ρ while ensuring that the Taylor coefficients of this expansion obey the subsidiary conditions

(700). This is easily accomplished using the method outlined in the previous Appendix for the

case of the gauge field. Let M̃
(j)
MN represent the expansion coefficients of the metric (1092) where

these coefficients don’t necessarily obey the subsidiary condition (700), i.e.

ΠC
AΠC′

B (n · ∂) M̃
(k)
CC′ 6= 0.

It must be that

h
(0)
AB = M̃

(0)
AB − (ρ− 1)C

(0)
AB +O(ρ− 1)2,

for some as yet unknown function C
(0)
AB. Now the operator ΠC′

A ΠC
B(n ·∂) annihilates the LHS so it

must also kill the RHS. Applying this operator to both sides of this equation, Taylor expanding

in ρ− 1 and equating the coefficient of (ρ− 1)0 to zero we find

C
(0)
AB =

1

N
ΠC′
A ΠC

B (n · ∂)M̃
(0)
CC′ .

It follows that

hAB = h
(0)
AB +

(
M̃

(1)
AB + C

(0)
AB

)
(ρ− 1),

so that on the surface ρ = 1

h
(1)
AB =

(
M̃

(1)
AB + C

(0)
AB

)
. (1093)

Using equations (1092) and (1093) it follows that the coefficients h
(0)
AB and h

(1)
AB corresponding to

metric (1092) are given by :

h
(0)
AB = (1 +Q2) uAuB

+

(
1

D

)[
− 2Q4

(
uAV

(2)
B + uBV

(2)
A

)
−Q2uAuB − 2Q2 τAB

+ ΠC
A [∇CξC′ +∇C′ξC ] ΠC′

B

]
+O

(
1

D

)2

,

h
(1)
AB =

(
D

K2

)[
2Q∇̄2Q uAuB + (1 +Q2) ΠC

BΠC′
A

(
uC′∇̄2uC + uC∇2uC′

)]
+O

(
1

D

)
,

(1094)
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where

ξA = (1 +Q2)

(
D

K

)(nA
2
− uA

)
,

V
(2)
A =

(
D

K

)[
∂CK

K
− (u.∂)uC

]
PCA ,

τAB =

(
D

K

)
PCA

[
KCD −

(
∂CuD + ∂DuC

2

)
− ηCD

(
K − (∂ · u)

D − 3

)]
PDB .

(1095)

Here

[
pAB = ηAB−nAnB+uAuB

]
and∇ denotes covariant derivative with respect to the intrinsic

metric on the membrane as embedded in flat space.

Note that the trace of h
(0)
AB vanishes till order O(1) in our

(
1
D

)
expansion.

∴ h(0) = ηABh
(0)
AB = −(1 +Q2) +

ΠAB∇AξB
D

+O
(

1

D

)
= −(1 +Q2) + 2

(
1 +Q2

D

)(
D

K

)
∇A

(
nA

2
− uA

)
+O

(
1

D

)
= O

(
1

D

)
.

(1096)

Consistency As in the previous Appendix, it is not difficult to verify that the second

equation in (1094) is consistent with (701) upto corrections of order O
(

1
D

)
.
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Derivation of equation 6.36

E ≡ uµ∇̂ν [T (NT )]νµ

=

(
K

2

)
(1 +Q2)(∇̂ · u) +

(
1 +Q2

2

)
(u · ∇̂)K +

(
K

2

)
(u · ∇̂)Q2

−
(

1−Q2

2

)
uµ∇̂νKµν + uν∇̂µ

(
∇̂νuµ + ∇̂µuν

2

)
− (∇̂ · V) +O(1)

=

(
K

2

)
(1 +Q2)(∇̂ · u) +Q2(u · ∇̂)K +

(
K

2

)
(u · ∇̂)Q2

+K(uαKαβu
β)− (∇̂ · V) +O(1)

=

(
K

2

)
(1 +Q2)(∇̂ · u)− (1 +Q2)(u · ∇̂)K +

(
K

2

)
(u · ∇̂)Q2

−Q∇̂2Q−
(

2Q4 −Q2 − 1

2

)(∇̂2K

K

)
+

(
1 +

Q2 + 2Q4

2

)
K (uαKαβu

β)

+O(1).

(1097)

In the second last line we have used identities (1103) and (1107). In the last line we have used

identity (1109).

Now we could simplify equation (1097) further by using the current conservation equation equa-

tion (735). For convenience we are quoting the equation here.

∇̂2Q = QK(∇̂ · u) +K(u · ∇̂)Q+Q(u · ∇̂)K −QK(uαKαβu
β) +O(1). (1098)

Substituting equation (1098) in equation (1097) we find

E = −
(

1 + 2Q2

2

)[
2(u · ∇̂K)− (1−Q2)

(
∇̂2K

K

)
− (1 +Q2)K(uαKαβu

β)

]

+

(
K

2

)
(1−Q2)(∇̂ · u) +O(1)

. (1099)

Now we shall show that the term in the first line of equation (1099) could be re-expressed as[
−
(

1+2Q2

K

)
(∇̂µEµ)

]
, where Eµ is the projection of stress tensor conservation equation in the
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direction perpendicular to uµ.

EA = −
(
K

2

)[
(1 +Q2)(u · ∇)uA + (1−Q2)pAC

(∇CK
K

)
− pAC

(∇2uC
K

+KCBu
B

)]
+O(1).

Taking the divergence of the above equation we find

∇̂µEµ = −
(
K

2

)
∇̂µ
[
(1 +Q2)(u · ∇̂)uµ + (1−Q2)pµν

(
∇̂νK
K

)

− pµν
(
∇̂2uν
K

+Kναu
α

)]
+O(D)

= −
(
K

2

)[
(1 +Q2)K(uαKαβu

β) + (1−Q2)

(
∇̂2K

K

)
− 2(u · ∇̂)K

]
+O(D).

(1100)

Here in the last line we have used identities (1103), (1108) and (1105). Substituting equation

(1100) in equation (1099) we get equation (751).

4.11.15 Identities

In this appendix we shall prove several identities and equations that we have used at different

steps in our calculations.

Membrane embedded in flat-spacetime In this subsection all identities are derived on

ρ = 1 hypersurface as embedded in flat space-time. Usually all contractions (often denoted by

‘·’) are with respect to flat Minkowski metric ηAB. In few cases we have to use contraction and

covariant derivative with respect to the induced metric on the membrane. In those cases we have

used Greek indices and the covariant derivatives are denoted as ∇̂. Sometimes we have used ∇̄A
to denote ∇̂ in the language of the embedding space. For example,

∇̂µuν → ∇̄AuB ≡ ΠA′
A ΠB′

B ∇A′uB′ ,

where ΠAB is the projector on the membrane.176

176 Most of the identities that are derived here involve indices, functions and derivatives that are defined
entirely along the membrane. Therefore they could be very easily re expressed in the language of the

intrinsic geometry of the membrane, (by simply replacing ∇̄ → ∇̂, {A,B} → {µ, ν}, ΠAB → g
(ind,f)
µν ).

In the main text we have often used these identities with such replacement.
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Identity-1:

∇̂µ
[
(uν∇̂ν)uµ

]
= ∂B[ΠAB(u · ∂)uA]− nB(n · ∂)[ΠAB(u · ∂)uA]

= ∂B
[
(u · ∂)uB

]
− ∂B

[
nBnC(u · ∂)uc

]
+O(1)

= ∂B
[
(u · ∂)uB

]
+ ∂B

[
nBuC(u · ∂)nc

]
+O(1)

= ∂B
[
(u · ∂)uB

]
+ ∂B

[
nBuC(u · ∂)nc

]
+O(1)

= (u · ∂) [∂ · u] + (∂Au
B)(∂Bu

A) + ∂B

[
nB(uAuA

′
KAA′)

]
+O(1)

= K(uAuA
′
KAA′) +O(1).

(1101)

Here ∇̂µ denotes covariant derivative with respect to the induced metric on the membrane as

embedded in the flat space, g
(ind,f)
µν .

Identity-2:

nA∂2uA = ∂C(nA∂CuA) +O(1)

=− ∂C(uA∂CnA) +O(1)

=− ∂C(nCuk(n · ∂)nk +KC
Au

A) +O(1)

=− (u · ∂)K − ∂A(KC
Au

A) +O(1)

=− (u · ∂)K − ∂A(KC
A )uA +O(1)

=− 2(u · ∂)K +O(1).

(1102)

Identity-3:

ΠA′
A ∂A′

[
KAB −KΠAB

]
= 0

⇒ ΠA′
A ∂A′K

AB = ΠAB∂AK.
(1103)

Identity-4:

uA∇̄2uA = −ΠBB′(∂BuA)(∂B′u
A) = O(1),

since ΠAB∂AuB ∼ O
(

1

D

)
.

(1104)

Here ∇̄2uA denotes the following.

∇̄2uA ≡ ΠA′
A ΠBB′∂B

(
ΠB′′
B′ Π

C
A′∂B′′uC

)
.
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Identity-5:

∇̄A∇̄2uA = ΠA
A′∂A

[
ΠA′A′′∇̄2uA′′

]
= −KnA∇̄2uA +O(D)

= −K
[
∂B(nA∂BuA)− (∂Bn

A)∂BuA)
]

+O(D)

= −K
[
∂B(nA∂BuA)

]
+O(D)

= K
[
∂B(uA∂BnA)

]
+O(D)

= K
[
∂B(KB

Au
A)
]

+O(D)

= K [(u · ∂)K] +O(D).

(1105)

In the last line we have used identity (1103).

Identity-6:

ΠB′
B ∂B′

[
pABQ

(∇̄2uA
K

−KC
AuC

)]
= Q ΠB′

B ∂B′

[
pAB

(∇̄2uA
K

−KC
AuC

)]
+O(1)

= O(1).

(1106)

Here pAB denotes the projector perpendicular to both nA and uA.

pAB = ηAB − nAnB + uAuB.

In the last step of equation (1106) we have used the identities (1102), (1103), (1104) and (1105).

Identity-7:

∇̄A∇̄BuA ≡ ΠB′
B ΠA

A′∂A

[
ΠA′A′′ΠB′′

B′ (∂B′′uA′′)
]

= −K
[
ΠB′
B n

A∂B′uA

]
+O(1)

= K
[
ΠB′
B u

A∂B′nA

]
+O(1)

= K(uAKBA) +O(1).

(1107)

Identity-8:

∇̄A(u · ∇̄)uA ≡ ΠA′
A ∂A′

[
ΠAA′′(uB∂B)uA′′

]
= −K nA(u · ∂)uA +O(1)

= K (u ·K · u) +O(1).

(1108)
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Identity-9:

VA = Q ΠB
A∂BQ+Q2(uCKCA) +

(
2Q4 −Q2 − 1

2

)(
ΠB
A∂BK

K

)
−
(
Q2 + 2Q4

2

)
(u · ∂)uA +

(
1 +Q2

K

)
∇̄2uA.

∴ ΠAB∂AVB = Q∇̄2Q+ (1 +Q2)(u · ∂)K +

(
2Q4 −Q2 − 1

2

)(∇̄2K

K

)
−
(
Q2 + 2Q4

2

)
K (uAuBKAB) +O(1).

(1109)

Here ∇̄2Q and ∇̄2K denote

∇̄2Q = ΠAB∂A∂BQ, ∇̄2K = ΠAB∂A∂BK.

In the last line of (1109) we have used identities (1103), (1108) and (1105).

Identity-10:

∂2ρ−(D−3) = 0

⇒ ∂A

[
ρ−(D−2)NnA

]
= 0

⇒ KN − (D − 2)N2

ρ
+ (n · ∂)N = 0

⇒ KN − (D − 2)N2 + (n · ∂)N = 0 ∵ ρ = 1

⇒ (D − 3)N = K −N +
(n · ∂)N

N

⇒ (D − 3)N = K − K

D
+

(n · ∂)K

K
+O

(
1

D

)
.

(1110)

Identity-11

∂AN =
∂A
[
(∂Bρ)(∂Bρ)

]
2N

=
(∂Bρ)∂A∂Bρ

N

=
(∂Bρ)∂B∂Aρ

N
= (n · ∂)(NnA)

⇒ (n · ∂)nA =
ΠB
A∂BN

N
=

ΠB
A∂BK

K
+O

(
1

D

)
.

(1111)
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Identity-12:

(n · ∂)K = nA∂A∂Bn
B

= nA∂B∂An
B

= ∂B
[
(n · ∂)nB

]
− (∂Bn

A)(∂An
B)

= ∂B

(
ΠBA∂AK

K

)
−KABK

AB

=
∇̄2K

K
− K2

D
+O(1).

(1112)

Here in the last line we have used identity (1111). Combining (1110). (1111) and (1112) we find

Identity-13:

(D − 3)N = K +

(∇̄2K

K2

)
− 2

(
K

D

)
+O

(
1

D

)
. (1113)

Identity-14:

∂2Q = ∂A
(
ΠAB∂BQ

)
∵ (n · ∂)Q = 0

= ∇̄2Q+O(1).
(1114)

Relating intrinsic and extrinsic curvature of membrane with curvature of em-

bedding space-time Here we shall relate the intrinsic curvatures of a timelike membrane

with the extrinsic curvature of the membrane and the curvatures of the full space-time. For our

derivation we shall follow [82].

Define the coordinates along the full-space time as

{XA} ≡ {ρ, xµ}, A = {1, 2, · · · , D}, µ = {2, · · · , D}

The equation of the membrane is given by (ρ = 1). {xµ} are the coordinates that can vary along

the membrane. The unit normal to the surface is denoted as nA .

Suppose ωA is a vector tangent to the membrane. ∇̂A denotes the covariant derivative with

respect to the intrinsic metric of the membrane and ∇A denotes the covariant derivative with

respect to the full space-time metric. It follows that

[∇̂A, ∇̂B]ωC = RPCBA ωP

[∇A,∇B]ωC = RPCBA ωP ,
(1115)
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where RPCBA denotes the intrinsic Riemann tensor of the membrane and RPCBA is the Riemann

tensor of the full space-time. We shall use pAB as the projector on the membrane surface.

∇̂A∇̂BωC
= pA

′
A pB

′
B pC

′
C ∇A′

(
pB
′′

B′ p
C′′
C′ ∇B′′ωC′′

)
= pA

′
A pB

′
B pC

′
C ∇A′∇B′ωC′ + pA

′
A pB

′
B pC

′
C ∇A′

(
pB
′′

B′ p
C′′
C′

)
(∇B′′ωC′′)

= pA
′

A pB
′

B pC
′

C ∇A′∇B′ωC′ +KACKBC′ωC
′ −KAB [(n · ∇)ωC′ ] p

C′
C .

(1116)

Here in the last line we have used the fact that nCωC = 0

Using equations (1115) and (1116) we find

RPCBA ωP = pA
′

A pB
′

B pC
′

C RPC′B′A′ ω
P + [KACKBP −KAPKBC ]ωP . (1117)

Since equation (1117) is true for any ωP we find

RPCBA = pA
′

A pB
′

B pC
′

C RPC′B′A′ + [KACKBP −KAPKBC ] . (1118)

Contracting equation (1118) with pAC and pACpBP we find

pCA pC
′

B RCC′ = RAB −KKAB +KACKCB +RAkBk′ n
knk

′
,

R = R+ 2RCC′ n
CnC

′ −K2 +KABKAB.
(1119)

Note that the second equation of (1119) could be rewritten as[
RCC′ −

R

2
GCC′

]
nCnC

′ ≡ nCnC′ECC′ = −R+K2 −KABKAB. (1120)

Note also that for Ricci flat geometries equation (1119) reduces to

0 = RAB −KKAB +KACKCB +RAkBk′ n
knk

′

∴ 0 = R−K2 +KABKAB.
(1121)
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5 Conclusion

The work presented in this Thesis is divided into two parts each addressing a different problem.

In the first part more light is shed on the famous level-rank duality between two theories, namely

a Chern-Simons theory coupled with critical bosons and a Chern-Simons theory coupled with

fundamental fermions in the ’t Hooft large N limit. The work deals with the duality between the

S-matrices of these two theories, and while doing that it also produces a surprise, namely the mod-

ification of the conventional channel crossing symmetry in these theories due to a non-analyticity

in one of the scattering channels, which has anyonic character. Although this modification is only

conjectured on the basis of the unitarity requirement, it has found multiple evidences. A special

nonrelativistic limit of the S-matrix in this anyonic channel exactly reduces to the self-adjoint

extension of the Aharonov- Bohm scattering matrix, which is reported in this thesis. In addition,

a later work on Supersynnetric Chern-Simons theory (N = 1 and N = 2) has revealed that a

similar conjecture has to be made in these theories as well. However, it will be really interesting

to find the version of this conjecture for finite N and k theories, as well as in the supersymmetric

theories with bifundamental matter.

The second part is about ’a membrane paradigm at large D’, which states that in large number

of spacetime dimensions D the black hole dynamics reduces to the dynamics of a codimenison-1

membrane in a flat spacetime with the same number of dimensions. This dynamics is governed by

the ’membrane equations of motion’, which are actually the equations of conservation of a stress

tensor and a charge current defined on this membrane. This stress tensor and charge current is

coupled to the gravitational and electromagnetic radiation that this membrane emits, and this

radiation is nonperturbatively small. It would be amazing if this program is extended to the

processes like a collision of two black holes and some general lessons can be learnt out of it.

My own work

Since no part of my work is a single author publication (By putting ’we’ and ’our’ all over the

place I wasn’t just being modest, I was being honest), the list of my own direct contribution to

the work presented in this thesis is as follows.

Chapter 1:

• Setting up and solving the Euclidean Schwinger-Dyson equation to obtain the bosonic

4-point function

• Taking the onshell limit in different channels to find the bosonic S-matrices

• Setting up and solving the Euclidean Schwinger-Dyson equation to obtain the fermionic
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4-point function

• Taking the onshell limit in different channels to find the fermionic S-matrices

• Checking the duality between the bosonic and fermionic S-matrices in non-anyonic channels

Chapter 2:

• Taking the near threshold limit of the conjectured S-matrix

• Solving the Schrodinger equation with self-adjoint boundary condition and verifying the

result with [22]

• Comparing the two results

Chapter 3:

• Converting the metric, gauge field and membrane equations into geometric form

• Determining the light quasinormal spectrum of RN black hole

Chapter 4:

• Determining and analyzing Greens function in general dimensions

• Constructing membrane current and stress tensor from linearized solution

• Showing that membrane entropy current is proportional to the velocity field

• Analysing spherical harmonics in general dimensions

• Deriving the formulae for radiation in general dimensions and relating it to the sources
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