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There is a tide in the affairs of men.

Which, taken at the flood, leads on to fortune;

Omitted, all the voyage of their life

Is bound in shallows and in miseries.

On such a full sea are we now afloat,

And we must take the current when it serves,

Or lose our ventures.

– Julius Cæsar, Act IV, Scene III .
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Foreword

The Standard Model (SM) of particle physics has proved to be extremely successful over

the past few decades, holding its own against numerous experiments. However, one of the

areas where it falls short is explaining the masses of neutrinos and hence neutrino oscilla-

tions. Neutrinos are massless within the SM, hence they should not oscillate. Therefore,

the data from solar and atmospheric neutrinos also presented the first robust evidence of

physics beyond the SM. Our understanding of neutrino physics has improved immensely

since then. The determination of neutrino properties is one of the major goals of neutrino

phenomenology. Most of the current experiments focus on the precise determination of os-

cillation parameters, and deduce bounds on possible subdominant oscillation effects, caused

by standard or non-standard neutrino interactions. Results from these experiments could

open hitherto unexplored avenues of physics beyond the SM.

Neutrinos from astrophysical sources, such as core-collapse supernovae, binary star merg-

ers, or active galactic nuclei, etc., can help us immensely in our understanding of the govern-

ing dynamics of these sources. During the explosion of core-collapse supernova (SN), almost

all the gravitational binding energy of the star is emitted within a few seconds in the form

of neutrinos. These neutrinos, being weakly interacting, escape from the SN much before

the shockwave explodes the star. Hence, neutrinos can arrive a few hours before the emit-

ted photons, and can be used as an early SN warning system. A sufficiently high-statistics

signal from a future galactic supernova can shed light on the mechanism of the collapse and

explosion of a massive star. The extreme conditions through which the neutrinos travel to

the Earth would have a dramatic effect on their flavor evolution. This provides us with a

rare opportunity to study neutrino propagation through a dense media, which can be rele-

vant even in the early universe. Furthermore, it has been known for quite some time that

synthesis of nuclei heavier than iron can take place inside a SN core. This can take place

through rapid neutron capture, and hence goes by the name of r-process nucleosynthesis.

This process is quite sensitive to the neutrino flavor composition inside a SN. A careful study

of neutrino flavor evolution within a SN is required for making correct predictions about the

abundances of these heavy elements. Moreover, such enormous number of neutrino events



in future detectors can also be used to look for the existence of non-standard interactions of

neutrinos. A SN explosion, therefore, provides a nice astrophysical laboratory to study such

effects. Indeed the extreme conditions inside a SN would act to amplify even tiny amounts

of such non-standard interactions.

Flavor conversions of SN neutrinos have spurred intense research and debate about the

fascinating physics of neutrino flavor transformations during the collapse of a massive star.

The early studies in this field considered matter enhanced resonant flavor conversions as

the only source of large flavor changes. In this paradigm, neutrinos experience a refractive

potential, as they undergo elastic forward scattering with the background matter. These

Mikheyev-Smirnov-Wolfenstein (MSW) matter effects aid in yielding large flavor conversions

even for tiny vacuum mixing. However, later it was realized that deep within the SN regions,

the neutrino density itself is so high that neutrino-neutrino interactions can cause large self-

induced collective flavor oscillations. These can occur independently of the MSW effect

and need only the vacuum mixing as a perturbing seed. Broadly, these self-induced flavor

conversions are expected to either produce swaps in the neutrino spectra, converting regions

of νe spectra to νµ,τ , or to cause an averaging of flavor information, leading to decoherence.

This rich and surprising phenomenology of collective oscillations remains a subject of active

research and we are still far from having a complete picture.

More recently, it was shown that the ν-ν potential would lead to more rapid flavor con-

versions even for (almost) massless neutrinos, requiring a nonzero mass perhaps only as an

initial perturbation. These rapid flavor conversions, dubbed as “fast conversions”, would,

therefore, be independent of the yet unknown neutrino mass ordering and lead to complete

flavor equilibrium for both mass orderings. It was postulated that the necessary condition to

achieve these fast conversions is the presence of sufficient anisotropy in the angular emission

spectrum of the different neutrino flavors. This is something one can indeed expect near the

neutrino emission surface deep inside a SN. Due to different interaction cross-sections with

matter, the non-electron flavors νµ,τ decouple from matter deeper than ν̄e, and the latter

deeper than νe. Therefore, near the SN core, the νµ,τ zenith-angle distribution would be

more forward-peaked than that of ν̄e, which in turn would be more forward-peaked than the

νe distribution. It is this anisotropy in the neutrino-antineutrino emission that is believed

to cause fast conversions. This field of fast flavor conversions is a relatively new field, with



only a handful of papers focussing on the presence and growth rate of these conversions.

In this thesis, we aim to study these non-linear flavor oscillations of neutrinos, emphasiz-

ing fast flavor conversions. We discuss fast flavor conversions of SN neutrinos, taking into

account the recent developments showing the importance of anisotropic angular emission of

different flavors of neutrinos and antineutrinos. In particular, we systematically study the

possibility for obtaining fast conversions for evolution in space or time, and find that inward-

going neutrinos increase the rate of fast conversions. We present an analytical treatment

of the simplest system that exhibits fast conversions, and show that the conversions can be

understood as the dynamics of a particle rolling down in a quartic potential. Furthermore,

we also study the impact of non-standard self-interactions (NSSI) of neutrinos on the slower

as well as fast collective flavor conversions. We find that NSSI can give rise to many features

in the neutrino spectra that are not possible in the SM. Hence they will be important when

trying to analyze a future SN neutrino signal.

We hope that the work in this thesis can contribute towards a better understanding of SN

dynamics and interpretation of a future galactic SN neutrino signal.
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Chapter 1

Neutrino oscillations: an introduction

The neutrino was first postulated by Wolfgang Pauli in 1930 to explain the energy-momentum

conservation in radioactive beta decays [1]. It is an extremely light, uncharged lepton, which

can interact only via the weak interaction and gravity. A large number of these weakly-

interacting particles have been left over from the Big-Bang almost 13.8 billion years ago [2].

Neutrinos are also constantly produced from nuclear reactions in the Sun, collisions of cosmic

rays with nuclei in the upper atmosphere, particle accelerators, nuclear reactors, etc. In

fact, every second hundreds of billions of neutrinos, produced from the Sun, pass through

our bodies. However, they interact so weakly with matter that they have been popularly

alluded as the ‘ghost particles’. The Standard Model (SM) of particle physics predicts three

“flavors” of neutrinos: electron neutrino (νe), muon neutrino (νµ), and tau neutrino (ντ ), in

association with their charged lepton counterparts [3]. The invisible decay of the Z boson,

measured at the Large Electron Positron (LEP) collider also gives Nν = 2.984 ± 0.008,

thereby confirming that there are three active light neutrinos [4].

It is now a well-known fact that neutrinos can oscillate from one flavor to another. This

idea of neutrino oscillations was first suggested by Pontecorvo (1957) [5] and later by Maki,

Nakagawa and Sakata (1962) [6]. Neutrino oscillations are a quantum-mechanical phenom-

ena, and occur due to the fact that for neutrinos, flavor and mass eigenstates are different.

Neutrinos are produced via weak interactions as one of the three flavor eigenstates νe, νµ

and ντ and their propagation may be described in terms of mass eigenstates ν1, ν2 and ν3 [3].

During propagation, the mass eigenstates acquire non-trivial relative phases as a result of

1
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different neutrino masses, and this leads to flavor oscillations. Furthermore, since the neu-

trinos interact through weak interactions, they can scatter off the electrons and nucleons in

the background matter. This can give rise to an effective potential for the neutrinos, which

in turn can lead to matter enhanced resonant flavor oscillations. This is the well-known

Mikheyev-Smirnov-Wolfenstein (MSW) resonance [7,8] and can give rise to large flavor con-

versions in ordinary matter. Over the years, different experiments related to neutrinos from

the Sun [9–14], the atmosphere [15–18], reactors [12, 19–21] and accelerators [22–24] have

provided us with compelling evidences for the existence of neutrino oscillations.

Neutrinos also play a dominant role in the dynamics of a core-collapse supernova (SN).

The extreme conditions created by a stellar collapse can provide a unique opportunity to

study neutrino flavor propagation through highly dense matter (see, e.g., [25] for a review).

The signatures of neutrino flavor conversions deep inside a star can be imprinted on the

neutrino spectra observed from a galactic SN. This can be used to infer yet unknown neutrino

properties, as well as understand stellar dynamics.

The main focus of this thesis will be the study of neutrino flavor oscillations in a SN. The

phenomenon of neutrino oscillations has to be taken into account when studying neutrino

propagation through matter, and therefore becomes particularly relevant in dense media,

like a core-collapse supernova (SN) or the early universe. In the first half of this thesis, we

assume that neutrinos have Standard Model (SM) couplings and study flavor conversions in

dense media. This can help us learn more about SN explosion dynamics and nucleosynthesis.

In the second half of this thesis, we assume that neutrinos can have non-SM couplings, which

can play an important role in the flavor propagation.

In this chapter, we present a brief review of our current understanding of neutrino phe-

nomenology. We will introduce the basics of neutrino oscillations theory, both in vacuum and

in matter. We report on the current status of three-flavor neutrino oscillation parameters.

Finally, we will give a brief overview of the phenomenology of neutrinos streaming out of a

core-collapse SN.



3

1.1 Neutrino oscillations in vacuum

There are three neutrino flavors νe, νµ and ντ , produced along with their charged lepton

counterparts e, µ and τ [3]. The flavor eigenstates να (α = e, µ, τ) are related to the mass

eigenstates νi (i = 1, 2, 3) by 1

|να〉 =
∑
i

U∗α i|νi〉 , (1.1.1)

where U is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [5, 6]. In the 3-

flavor framework, this unitary mixing matrix can be parameterized as [3]

U =


c12c13 s12c13 s13 e

−iδ

−s12c23 − c12s23s13 e
iδ c12c23 − s12s23s13 e

iδ s23c13

s12s23 − c12c23s13 e
iδ −c12s23 − s12c23s13 e

iδ c23c13

×diag
(

1, ei
α21

2 , ei
α31

2

)
,

(1.1.2)

where cij ≡ cosϑij, sij ≡ sinϑij, the angles ϑij = [0, π/2]. The Dirac CP-violating phase is

δ = [0, 2π], whereas α21, α31 are the two Majorana CP violation phases. The antineutrinos

ν̄e, ν̄µ and ν̄τ are related to their mass eigenstates by U , i.e., |ν̄α〉 =
∑

i Uα i|ν̄i〉 .

Suppose at t = 0, the initial neutrino flavor is να. This may be written as a linear

combination of the three mass states, i.e., |να(0)〉 =
∑

i U
∗
α i|νi〉. After propagating for a

time t, the mass eigenstates acquire a phase, and hence

|να(t)〉 =
∑
i

U∗α i e
−i Eit|νi〉 , (1.1.3)

where Ei =
√
|pi|2 +m2

i is the energy, pi is the momentum, and mi is the mass of |νi〉. The

probability of obtaining another flavor νβ after a time t is given by

Pαβ = |〈νβ|να〉|2 =

∣∣∣∣∑
i

Uβ iU
∗
α ie
−iEi t

∣∣∣∣2 . (1.1.4)

In the ultra-relativistic limit, |pi| � mi, hence we can approximate

Ei =
√
|pi|2 +m2

i ' |pi|+
m2
i

2|pi|
. (1.1.5)

Further terms are of O (m4
i /|p3

i |) and can be neglected. The second term can be further

expanded as
m2
i

2|pi|
=
m2
i

2Ei

(
1 +

m2
i

2E2
i

)
. (1.1.6)

1We follow closely the discussion in [26].
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Since the neutrinos are ultra-relativistic, one can again neglect terms of O (m4
i /E

3
i ). Thus,

for all practical purposes, the mass eigenstates have the same energy, i.e., Ei ' E, since the

error involved in this approximation is also O (m4
i /E

3
i ), and can be neglected.

This allows us to rewrite Eq. (1.1.4) as

Pαβ =
∑
i

|Uβ i|2|Uα i|2 + 2 Re

[∑
i>j

Uβ iU
∗
α iU

∗
β jUα j e

−i
∆m2

ij
2E

t

]
, (1.1.7)

in terms of the neutrino mass-squared differences ∆m2
ij = m2

i −m2
j .

Using the unitarity property of U , one can write Eq. (1.1.7) as

Pαβ = δαβ − 4 Re
[∑
i>j

Uβ iU
∗
α iU

∗
β jUα j

]
sin2

(
∆m2

ij

4E
t

)

+ 2 Im
[∑
i>j

Uβ iU
∗
α iU

∗
β jUα j

]
sin

(
∆m2

ij

2E
t

)
. (1.1.8)

The oscillation probabilities with α = β are called the survival probabilities, while the ones

with α 6= β are called the transition probabilities. Clearly, for survival probabilities, the

quartic terms involving Us are real, and Eq. (1.1.8) simplifies to

Pαα = 1− 4
∑
i>j

|Uα i|2 |Uα j|2 sin2

(
∆m2

ij

4E
t

)
. (1.1.9)

Such an oscillating dependence of the flavor composition on t gives rise to neutrino flavor

oscillations [27]. Clearly, when the neutrinos are massless, ∆m2
ij = 0, and there are no

oscillations. For ultra-relativistic neutrinos, one may substitute t ≈ L in the above equations,

where L is the distance between the source and the detector.

1.1.1 Two flavor formalism

In this section, we illustrate the idea of neutrino oscillations using a two flavor scenario, say

νe and νµ. This can be obtained, for e.g., by setting ϑ23, ϑ13 → 0 in Eq. (1.1.2). The mixing

matrix connecting the mass and flavor basis is given by

U =

 cosϑ0 sinϑ0

−sinϑ0 cosϑ0

 , (1.1.10)

where ϑ0 is the mixing angle. Using this, the transition probability in two flavors is given by

Pνe→νµ = Pνµ→νe = sin2 2ϑ0 sin2

(
∆m2

4E
L

)
. (1.1.11)
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From unitarity, the survival probabilities are given by

Pνe→νe = Pνµ→νµ = 1− Pνe→νµ . (1.1.12)

It is important to remember that since the complex phase can be rotated away in a two

flavor framework, the expressions for antineutrinos are same as that for neutrinos.

Two crucial points may be obtained from the expression of the transition probability

in Eq. (1.1.11). Firstly, the amplitude of oscillations is a function of the mixing angle ϑ0,

while the frequency of oscillations is a function of ∆m2. Therefore, neutrino oscillations

require both mass and mixing to happen. However, since the dependence is on ∆m2, we

cannot access the information about individual mass from oscillation data. Secondly, for

oscillations to be observed, the phase factor (∆m2 L)/(4E) ' π. This allows us to define

the oscillation length as

Losc =
4πE

∆m2
' 2.48

E (MeV)

∆m2 (eV2)
(in m) . (1.1.13)

If L � Losc, the phase factor is too small, and oscillation does not develop. On the other

hand, if L� Losc, the phase is large, leading to rapid oscillations, which get averaged at the

detector. Therefore, the oscillation probability at the detector becomes

Pνe→νµ =
1

2
sin2 2ϑ0 , (1.1.14)

and the oscillation information is washed out.

1.2 Neutrino oscillations in matter

Till now, we have only considered neutrino oscillations in vacuum. However, in most realistic

scenarios, neutrinos traverse through a medium before being detected. Hence it is important

to treat neutrino oscillations in matter.

Neutrinos interact with the background matter through the SM weak interactions. The

dominant contribution comes from coherent forward elastic scattering with electrons and

nucleons in the medium. These processes involve only a single power of the Fermi coupling

GF , and hence dominate over non-elastic and loop processes, which involve larger powers of

GF [7]. Ordinary matter consists of e, p and n, but no µ and τ . Hence, forward scattering
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processes involve charged current (CC) interactions of νe with e, and equal neutral current

interactions of all neutrino flavors with n, p and e.

The effect of such coherent processes on neutrinos is equivalent to neutrino propagation in

an effective potential [7, 28]. The effective potential due to CC interactions with νe is given

by [29]

VCC(r) =
√

2GFne(r) , (1.2.1)

where ne(r) is the local electron density in the medium. Similarly, for NC interactions of

νe,µ,τ with nucleons, the effective potential is given by [29]

VNC(r) = −GFnn(r)√
2

, (1.2.2)

where nn(r) is the local nucleon density in the medium. Note that the NC interactions being

flavor-blind, this potential is the same for all flavors and hence can be rotated away as an

overall phase. For ν̄, both these effective potentials acquire a relative minus sign.

As a result of this matter effect, the resultant Hamiltonian (after dropping the identical

NC terms) for evolution in matter is given by [28]

i dt

νe
νµ

 =

−∆m2

4E
cos 2ϑ0 + VCC

2
∆m2

4E
sin 2ϑ0

∆m2

4E
sin 2ϑ0

∆m2

4E
cos 2ϑ0 − VCC

2

νe
νµ

 (1.2.3)

This general EoM applies for both constant as well as varying matter density. In general,

this equation is not easy to solve analytically. However, it can be solved analytically under

certain conditions. In the following sections, we will briefly outline the treatment for a

constant and varying matter profile.

1.2.1 Constant matter density

The assumption of a constant matter density vastly simplifies the problem and makes it

analytically tractable. The idea is to solve the problem in the basis of instantaneous matter

eigenstates, νmi , in which the Hamiltonian is diagonalizable. Clearly, for a varying matter

profile, these eigenstates will be a function of time, but for a constant matter profile, they

just provide a separate basis. The flavor states are related to the matter states by [28]νe
νµ

 = U(ϑm)

νm1
νm2

 =

 cosϑm sinϑm

−sinϑm cosϑm

νm1
νm2

 , (1.2.4)
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where ϑm is the effective mixing angle in matter. The diagonalization of the Hamiltonian

gives the mixing angle

tan 2ϑm =
sin 2ϑ0

cos 2ϑ0 − 2E VCC

∆m2

, (1.2.5)

and the effective mass-squared difference in matter

∆m2
m =

√
(∆m2 cos 2ϑ0 − 2E VCC)2 + (∆m2 sin 2ϑ0)2 . (1.2.6)

In terms of these, the effective squared masses in matter m2
1m, m

2
2m are given by

m2
1m, 2m =

1

2

(
m2

1 +m2
2 + 2E VCC ±∆m2

m

)
. (1.2.7)

In the top panel of Fig. 1.1, we show the behavior of ϑm and m2
1m, 2m as a function of the

electron density ne, plotted in arbitrary units. One can see that for ne much less than

the resonant electron density nRe , the effective mixing angle in matter is equal to that in

vacuum, while for ne = nRe , the value of ϑm passes through 45◦, eventually going to 90◦ for

large electron densities. In the bottom panel of Fig. 1.1, we plot the behavior of the effective

squared masses as a function of the electron density.

Clearly, with these redefinitions, the evolution in a medium with constant matter density

reduces to that of vacuum, with the vacuum parameters replaced by their corresponding

matter mixing angle and masses. The oscillation probability is given by [28]

Pνe→νµ = sin2 2ϑm sin2

(
ωmL

2

)
(1.2.8)

where

sin 2ϑm =
ω sin 2ϑ0√

(ω cos 2ϑ0 − VCC)2 + (ω sin 2ϑ0)2
, (1.2.9)

and ω(m) =
∆m2

(m)

2E
.

Eq. (1.2.8) demonstrates that the oscillation probability can undergo a resonance when

sin2 2ϑm = 1. This is the MSW (Mikheyev-Smirnov-Wolfenstein) resonance condition and is

satisfied when [7,8]

ω cos 2ϑ0 = VCC . (1.2.10)

This condition, satisfied either by neutrinos or antineutrinos, depending on the mass hierar-

chy, leads to maximal mixing in matter, i.e. ϑm = π/4, and can cause large flavor conversions

even when ϑ0 is small.
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Figure 1.1: Effective mixing angle ϑm (top) and effective squared-masses m2
1m, 2m (bottom)

in matter as functions of the electron number density ne(r) ∝ r. The other parameters used

are ∆m2 = 5 × 10−5 eV2, sin2 2ϑ = 0.1 and E = 1 MeV. The vertical dashed line indicates

the resonant electron density nRe .

1.2.2 Varying matter density

A more realistic scenario is when the neutrinos travel through a varying matter density

profile. In this case, the matter basis, and hence the unitary transformation connecting

the matter and flavor basis, become time-dependent. As a result, the evolution equations

become

i dt

νe
νµ

 = U(ϑm) dt

νm1
νm2

 + dt (U(ϑm))

νm1
νm2

 . (1.2.11)
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Using this, one arrives at

idt

νm1
νm2

 =

 ωm −idϑm
dt

idϑm
dt

−ωm

νm1
νm2

 . (1.2.12)

Clearly, the Hamiltonian is not diagonal, and the νm{1,2} are not energy eigenstates. Hence,

they mix with each other, depending on the size of the off-diagonal element.

One can parameterize the relative size of the off-diagonal element with respect to the

diagonal element via the adiabaticity parameter [30]

γ ≡ |ωm|
|dϑm/dt|

=

∣∣∣∣ 4 (∆m2
m)

3

∆m sin 2ϑ0

(
dVCC

dt

)−1∣∣∣∣ . (1.2.13)

The resonance is said to be adiabatic if γ � 1 at all points of the neutrino trajectory, and

in that case, transitions between matter eigenstates are suppressed. However, if γ . 1, the

resonance is non-adiabatic, and flavor transitions are sizeable. Large flavor transitions can

be obtained when γ is minimized. Near an MSW resonance, the value of γ:

γres =
∆m2

2E

sin2 2ϑ0

cos 2ϑ0

∣∣∣∣ 1

VCC

dVCC

dt

∣∣∣∣−1

res

. (1.2.14)

Correspondingly, the probability of one instantaneous matter eigenstate converting to the

other is [30]

Pres =
exp

(
−π

2
γresF

)
− exp

(
− π

2 sin2 ϑ0
γresF

)
1− exp

(
− π

2 sin2 ϑ0
γresF

) , (1.2.15)

where F is a parameter which depends on the density profile.

It is important to note that a similar matter-like potential V ∼
√

2GFnν is generated due

to interaction with the ambient neutrinos and antineutrinos in the medium [31,32]. However,

since this is proportional to the surrounding neutrino density, it is usually negligible in most

circumstances, for example, propagating inside the Sun or in the Earth. However, this

potential plays a very important role in the propagation of SN neutrinos, as this makes the

whole problem non-linear. We will deal with this issue in detail in later chapters.

1.3 Current status of three-flavor neutrino oscillations

Clearly, from the previous discussions, studying neutrino oscillation physics in detail requires

knowledge of six parameters: ∆m2
21, ∆m2

31, ϑ12, ϑ23, ϑ13, δ. Much of our understanding
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Figure 1.2: The two different neutrino mass-orderings are shown. The relative fraction of

the νe (red), νµ (blue) and ντ (green) in the individual mass eigenstates are also shown for

both the mass orderings. Left: Normal mass hierarchy. Right: Inverted mass hierarchy.

of the three-flavor neutrino oscillation framework have been confirmed by experiments us-

ing atmospheric, solar, reactor and accelerator neutrinos, which have helped to determine

five of these unknown parameters with great precision. While we have knowledge of the

∆m2
21, |∆m2

31|, ϑ12, ϑ23,and ϑ13, what remain to be determined are the CP violating phase

δ and the sign of m2
31. Typically, depending on the sign of ∆m2

31, two mass orderings are

defined, as shown in Fig. 1.2. If m3 > m1, the mass ordering is called the normal mass

hierarchy (NH), while if m1 > m3, it is called the inverted mass hierarchy (IH).

The most stringent bounds on ϑ23 come from atmospheric neutrino measurements by

Super-Kamiokande [15, 16], whereas the magnitude of the atmospheric mass-squared differ-

ence |∆m2
atm| ≡ |∆m2

31| is best constrained by accelerator experiments, for e.g., MINOS [33].

These give the following best fit with 1σ errors [34,35]:

sin2 ϑ23 = 0.441+0.027
−0.021 (NH), sin2 ϑ23 = 0.587+0.020

−0.024 (IH).

|∆m2
31| = 2.52+0.039

−0.040 × 10−3 eV2 (NH), |∆m2
32| = 2.51+0.038

−0.041 × 10−3 eV2 (IH).

Future experiments like JUNO [36], and INO [37] will shed light on the sign of ∆m2
31, thereby

resolving the neutrino mass-hierarchy determination problem. Latest global fits from the

Bari group [38] including the T2K [39] and NOνA [40] data indicate a ∼ 3σ preference in

favor of NH.
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Limits on the solar neutrino parameters were given by the KamLAND reactor experi-

ment [12], as well as SNO [13,41], Super-Kamiokande [15,42], Borexino [43], and Gallex [44]

experiments. While KamLAND constrains the solar mass-squared difference ∆m2
� ≡ ∆m2

21 [12],

the solar mixing angle ϑ12 is mainly constrained by solar experiments. The best fit with 1σ

errors are given by [34,35]

sin2 ϑ12 = 0.306+0.012
−0.012 (NH), sin2 ϑ12 = 0.306+0.012

−0.012 (IH).

∆m2
21 = 7.50+0.19

−0.17 × 10−5 eV2 (NH), ∆m2
21 = 7.50+0.19

−0.17 × 10−5 eV2 (IH).

The reactor mixing angle has now been well-determined by reactor neutrino experiments

and is quoted as [19,20]

sin2 ϑ13 = 0.02166+0.00075
−0.00075 (NH), sin2 ϑ13 = 0.02179+0.00076

−0.00076 (IH).

Long-baseline neutrino oscillation data play an important role in determining the CP

violating phase δ. The best fit with 1σ errors are quoted as [34,35]

δ = 261◦+51
−59 (NH), δ = 277◦+40

−46 (IH).

However, note that latest values of δ measured by T2K and NOνA do not overlap within 1σ.

Latest data from T2K excludes the CP conserving value (δ = 0◦, 180◦) at 2σ confidence [45].

NOνA, on the other hand, quotes the 1σ confidence interval for δ as [0◦, 21.6◦]∪ [163.8◦, 360◦]

[46]. Therefore, we still do not know the value of δ.

The absolute neutrino mass is unknown, but cosmology puts an upper bound on the sum

of neutrino masses to be
∑

imνi ≤ 0.17 eV [47]. Finally, note that the experiments studying

neutrino flavor oscillations cannot provide information on the Dirac or Majorana nature

of neutrinos. Establishing the nature of massive neutrinos is one of the most challenging

problems of neutrino physics. The experiments currently having the capability to establish

the Majorana nature of neutrinos are those searching for the neutrinoless double beta-decay

[48,49].
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1.4 Neutrinos from a core-collapse supernova

1.4.1 Explosion mechanism and neutrino emission

In this section, we will present a brief overview of the theory of a core-collapse SN, and the

associated neutrino emission 2. For detailed reviews of the same, focusing on different aspects,

see Refs. [25,50–56]. The end stage of hydrostatic burning of a massive star (8M�−20M�)

leaves behind concentric shells of elements (starting with hydrogen on the outermost layer

and ending mostly in iron), as end-products. Typically, hydrostatic burning concludes with

the formation of iron, as iron has the highest average binding energy per nucleon, and

production of heavier elements require energy to be supplied than released. As the iron

shell, formed from silicon burning, grows to a mass larger than the Chandrasekhar mass

limit ∼ 1.44M�, electron degeneracy pressure fails to support it any longer and a collapse is

initiated (t = 0 s). In the initial stages of the collapse (t ∼ 10 ms), electron capture, as well as

β−decay of nuclei, lead to further reduction in degeneracy pressure and this accelerates the

collapse. Neutrinos are also emitted through these processes. At a time of around t ∼ 100 ms,

when the surrounding densities are ρ ≡ ρtrap ≈ 1012 g/cm3, neutrinos get trapped in the core,

as their diffusion time becomes larger than the collapse time. The collapse proceeds until

nuclear densities ρnuc ≈ 1014 g/cm3 are reached, when the core stiffens. This decelerates

the infall of the core, which bounces in response to the increased nuclear matter pressure.

This creates a shock wave into the outer core. The outer core, on the other hand, is not in

acoustic communication with the inner core and keeps falling at a supersonic speed.

This “bounce and shock formation” [57] is ultimately responsible for a SN explosion, how-

ever, the exact details of it still remain a matter of active research. The “prompt explosion”

scenario is one where the shock wave is energetic enough to drive the explosion [58, 59].

However, hydrodynamic simulations suggest that the shock wave uses its energy in the dis-

sociation of heavy nuclei into nucleons [60]. The free protons, thus formed, have a larger rate

of electron capture, which leads to the production of a large burst of neutrinos. This phase,

dubbed as the “neutronization burst”, is quite a robust feature of all simulations [61, 62].

These neutrinos produced quickly leave the star, carrying away much of the energy of the

2The discussion in this section follows from [50].



13

shock wave. In the process, the shock weakens and finally stalls, turning into an “accretion

shock” at a radius between 100 km and 200 km [61,62].

As the shock stalls, the compact proto-neutron star (PNS) at the center begins to grow

by accretion of infalling stellar material. Most of the neutrinos and antineutrinos that were

trapped initially due to the high density start free-streaming from the “neutrinosphere”,

which acts like the surface of last scattering [63]. These neutrinos carry away a major

fraction of the gravitational binding energy of the star, which leads to the cooling of the

PNS (“Kelvin-Helmholtz cooling phase”) [64]. It is believed that the neutrinos deposit their

energy in the region behind the shock front through charged current capture of νe and ν̄e on

n and p [65]. In the “delayed neutrino-heating” explosion mechanism [61, 62], this neutrino

heating drives the shock-wave outward, leading to a successful explosion. However, this

scenario is highly sensitive to the neutrino flavor information and hence requires a precise

understanding of the phenomenon of neutrino flavor oscillations.

Thus, to sum it up, there are four distinct phases of neutrino emission from a core-collapse

SN [50,56]:

(i) In the initial collapse phase, when the core bounce has not yet taken place, small

amounts of νe are mainly emitted due to beta decay and electron capture.

(ii) During the “neutronization burst” phase which occurs typically O(25) ms after core-

bounce, this νe flux rises steeply. During this period, smaller amounts of ν̄e, as well as the

other flavors (νµ, ν̄µ, ντ , ν̄τ ) are also emitted, but these are negligible compared to the νe

flux.

(iii) This is followed by the “accretion phase”, which lasts for a period of O(1) s. As the

shockwave stagnates, matter accretes onto the core for a few 100 ms. During this phase, the

star cools by radiating neutrinos and antineutrinos of all flavors. Typically, there is an excess

of νe over other species, with a clear hierarchy in average energies 〈Eνµ,τ 〉 > 〈Eν̄e〉 > 〈Eνe〉.

(iv) Finally, one enters the “ Kelvin-Helmholtz cooling phase”, where the PNS at the

center cools by radiating away neutrinos for a period of O(10) s. The hierarchy of average

energy of neutrino flavors in this phase is found to be milder.

In Fig. 1.3, we highlight the luminosities and the average energies of the emitted neutrinos
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during these four phases [66, 67]. The left column indicates the initial collapse and the

neutronization burst phase, while the middle and the right column indicates the accretion

phase and the cooling phase respectively.

One can make a quick back-of-the-envelope estimate about the flux and the average en-

ergies of neutrinos emitted from a core-collapse SN. Typically for a PNS of mass MPNS ≈

1.4M� and a radius RPNS ≈ 15 km, the nucleon mean kinetic energy can be estimated from

the virial theorem by

〈En〉 =
1

2

GNMPNSmn

RPNS

≈ 25 MeV ,

where GN is the Newton’s gravitational constant. The average energy of the emitted neu-

trinos 〈Eν〉 is roughly of the same order of magnitude as 〈En〉. During a collapse, almost

99% of the entire gravitational binding energy of the star is emitted in the form of neutrinos.

This energy is equally divided among the three neutrino flavors and their antiparticles. The

energy released during a collapse is given by

Eg ≈
3

5

GNM
2
PNS

RPNS

≈ 1059 MeV .

Therefore, one expects that an approximate Eg/〈En〉 ∼ 1058 neutrinos are emitted from the

SN. These are emitted during a timescale of ∼ 10 s, which is the typical diffusion timescale

of neutrinos within the core.

Regarding the different species of neutrino flavor emitted, one has to keep in mind that

non-electron flavors like νµ, ντ have smaller opacities, i.e, they decouple earlier. They do not

have enough energy to undergo CC interactions of the form ν̄µ + p → n + µ+ because the

leptons are heavier. Hence they decouple at higher temperatures and have higher energy.

The average energies of νe and ν̄e are governed by the reactions νe + n → p + e− and

ν̄e + p → n + e+. Since there are more neutrons than protons, the interaction rate of νe

is more than that of ν̄e, hence average energies of ν̄e are larger than that of νe. Hence

typical average energy hierarchy goes as 〈Eνe〉 < 〈Eν̄e〉 < 〈Eνµ,τ 〉. Also, since the scattering

cross-section of neutrinos on nucleons σ ∝ (G2
FE

2
ν), the neutrinosphere - the surface of

free-streaming for neutrinos, is also energy dependent, and flavor dependent. 3

3The scattering of neutrinos with nuclei does not allow for much exchange of energies [68]. It is possible

that while undergoing collisions, the neutrinos can change directions without any change in energy. Hence the

concept of an energysphere (beyond which there is no exchange of energy) is different from a transportsphere
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Figure 1.3: Snapshot of the luminosities and the average energies of the emitted neutrinos

in the different phases [66]. This figure has been taken from [67]. Left: Initial cooling and

neutronization burst phase. Middle: Accretion phase. Right: Cooling phase.

For more quantitative claims about the neutrino fluxes and average energies, one has

to resort to numerical simulations. These simulations employ detailed neutrino transport,

incorporating all the relevant weak interaction processes. The neutrino luminosities are

typically time-dependent, being very high ∼ 1054 ergs/s during the neutronization epoch,

and gradually decreasing with time. Moreover, the relative neutrino number fluxes are also

seen to change with time.

The hydrodynamics simulations of the SN do not always result in successful explosions

by this delayed neutrino-heating mechanism. While some of the low mass (8M� − 12M�)

stars explode [69, 70], explosions might be inhibited in heavier mass stars [71]. Typically,

the neutrino heating is not sufficient to trigger the shockwave, hence the shock falls back

and no explosion takes place. Simulations in 2D can generate explosions sometimes by

including convection inside the PNS just below the neutrinosphere [55, 71]. One of the

effects of convection is to enhance the early neutrino luminosities, thereby increasing the

energy deposition behind the shock. In 3D, it is more difficult to generate explosions using

(beyond which the neutrinos can free stream). However, for most part of this thesis, we will not distinguish

between the two, and identify the region of free-streaming as a neutrinosphere.
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only convection [72], since turbulent energy cascade in 3D occurs from larger scales to smaller

scales, which is the opposite of what happens in 2D [73]. An important parameter in these

studies of neutrino-driven explosion is the compactness parameter, which characterizes the

difference in various stellar density profiles [74]. It is defined as the ratio of a chosen mass

shell to the radius that encloses the mass. Low mass progenitors (M < 12M�) have low

compactness, and are easier to explode [74]. However, this compactness is a non-monotonic

function of the progenitor mass, and hence can be very different for stars of nearly the same

mass [74,75]. Therefore, non explosions of certain massive progenitors may be a result of this

non-monotonicity rather than a numerical artefact. Non-radial hydrodynamic instabilities

can also become relevant in the explosion mechanism of the SN. Large scale convective

overturns can occur in the PNS, just below the shockwave in the accretion shock phase. The

delayed explosion mechanism can also be assisted by such standing accretion shock instability

(SASI) [69,76], which causes violent convective motions below the shock wave, thereby aiding

in regenerating the shockwave by added energy deposition. However, throughout this thesis,

we neglect such convective instabilities, and assume that the delayed explosion mechanism

in realized inside a star.

1.4.2 Supernova neutrino spectra

A detailed measurement of the neutrino signal from a galactic SN could yield important

information about the masses, and mixing of the neutrinos, as well as the SN explosion

mechanism [25, 77]. Furthermore, a detailed understanding of neutrino flavor conversions is

necessary for a proper interpretation of a neutrino signal from a SN [78].

The neutrinos free-stream from the neutrinosphere, and pass through the SN envelope,

going through a huge range of ordinary matter densities, varying from ∼ 1011 g/cc near the

core to nearly vacuum in the interstellar space. During the neutrino propagation, flavor

conversions are affected not only by the matter density, but also the surrounding neutrino

density. This is because near the neutrinosphere, the neutrino density itself is so high

that neutrinos start interacting with other neutrinos. Thus, for SN neutrinos, enhanced

flavor conversion can happen in two ways: either due to ordinary matter, which introduces a

potential
√

2GFne(r) for a background electron density ne(r), or due to the potential created
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Figure 1.4: The alpha-fit neutrino spectra shown for α = 3, 〈Eνe〉 = 12 MeV, 〈Eν̄e〉 = 15

MeV and 〈Eνx〉 = 18 MeV [79]. Here νx refers to νµ, ντ or any linear combination of both.

All the plots are scaled by a factor of 10, keeping the relative normalization intact, and hence

shown in arbitrary units.

by ambient neutrinos and antineutrinos ∝
√

2GF (nν(r) + nν̄(r)) for a background neutrino

density nν(r) [31, 32].

A SN acts like an approximate blackbody, which cools by emission of neutrinos. Keeping

this in mind, SN simulations typically fit the neutrino spectra with a “quasi-thermal” spectra,

the so-called “alpha-fit” [79]:

Fνα(E) =
1

〈Eν〉
(α + 1)(α+1)

Γ(α + 1)

(
E

〈Eν〉

)α
exp

[
−(α + 1)

E

〈Eν〉

]
, (1.4.1)

where Fνα(E) is normalized to unity. Here, 〈Eν〉 denotes the average energy of the neutrinos,

Γ(z) is the Euler gamma function, and α is a dimensionless parameter which relates to the

width of the spectra, given by

1

1 + α
=
〈E2〉 − 〈E〉2

〈E〉2
.

These spectral parameters can be different for the different neutrino emission phases, and

depend on the particulars of simulation, such as the treatment of neutrino transport, and

inputs from nuclear physics. Typically α = 2 corresponds to a Maxwell-Boltzmann spectrum,

α > 2 to a pinched spectrum, where the high and low energy tails are suppressed, and α < 2
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to a broadened spectrum. Usual simulations quote values of α such that 2 ≤ α ≤ 5 [79].

Typically, one expects that 〈Eνe〉 ≈ 10 − 12 MeV, while the ν̄e energies are slightly larger,

i.e., 〈Eν̄e〉 ≈ 12 − 15 MeV [79]. Interactions for νµ, ντ and their antiparticles are almost

identical, and their average energies are higher: 〈Eνµ,τ 〉 ≈ 15− 18 MeV [79]. The hierarchy

in average energies of different flavors is essentially due to the different neutrino interaction

cross-sections, as explained in the previous section. An illustration of the quasi-thermal

alpha-fit spectra is shown in Fig. 1.4.

The total flux of neutrinos streaming out of the neutrinosphere is a function of the lumi-

nosity and is given by

Φνα(E) =
Lν
〈Eν〉

Fνα(E) , (1.4.2)

where Lν is the corresponding neutrino luminosity.

1.4.3 Oscillations of supernova neutrinos

The question we want to address is the following: how do the final spectra emerging from

the SN, after flavor conversions, look like? To answer this question, we need to understand

the physics of flavor conversions of SN neutrinos.

1.4.3.1 MSW flavor conversions

For a long time, it was believed that the major mode of flavor conversions in a SN was

due to resonant flavor conversions by the Mikheyev-Smirnov-Wolfenstein (MSW) effect [30,

77]. Within this paradigm, large flavor conversions happen when the ∆m2
ν cos 2ϑ/(2Eν) =

±
√

2GF ne, where the plus and minus signs refer to neutrinos and antineutrinos respectively.

For the solar neutrino mass-squared difference ∆m2
�, it is called the “L-resonance” (low

density), as it occurs at matter densities of about ρL ≈ (10− 100) g/cc. Since we know that

∆m2
� > 0, the L-resonance takes place only for neutrinos. For the atmospheric mass-squared

difference ∆m2
atm, the resonance is called “H-resonance” (high density), and occurs at matter

densities of about ρH ≈ (103 − 104) g/cc. The H-resonance takes place for neutrinos in the

normal hierarchy (∆m2
atm > 0), and for antineutrinos in the inverted hierarchy (∆m2

atm < 0).

For a typical SN density profile, these resonances are shown in Fig. 1.5. It is now known that



19

0.1 sec

1.0 sec

2.0 sec

5.0 sec

15.7 sec

ρH

ρL

107 108 109 10100.1

10

1000

105

107

109

1011

R(cm)

ρ
(g
/c

c)

Figure 1.5: A snapshot of a SN density profile at the indicated times, taken from a 15M�

progenitor [87]. The density region ρH corresponds to the H-resonance with the atmospheric

mass difference, while ρL corresponds to the L-resonance with the solar mass difference. The

width of the bands are due to the range of expected energies of SN neutrinos.

both these resonances are adiabatic, since both the mixing angles are reasonably large [34,35].

Such resonant flavor conversions in a SN has already been studied in details to probe neutrino

properties and SN dynamics [77, 80–86]. From Fig. 1.5, we see that typical SN post-bounce

matter density profiles are non-monotonic, time-dependent, and show a discontinuity at the

position of the shock-front. This discontinuity is due to the shockwave leaving behind a

rarefaction region, with a sharp drop in density. The final νe flux after an MSW resonance

is given by [77]

Fνe = p(E)F 0
νe(E) +

(
1− p(E)

)
F 0
νx(E) , (1.4.3)

where p(E) denotes the energy dependent νe survival probability and F 0 indicates the initial

fluxes leaving the SN core. Typically, for a static SN profile, ignoring turbulence effects, one

finds (p, p̄) ≈ (0, cos2 ϑ12) for NH, and (p, p̄) ≈ (sin2 ϑ12, 0) for IH, where p̄ refers to the ν̄e

survival probability [77].

1.4.3.2 Self-induced bipolar neutrino oscillations

However, this above picture assumes that the effect of the neutrino potential within a SN

is negligible, which is found not to be the case [88–92]. Deep inside a SN, the neutrino
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Figure 1.6: Neutral current interaction processes which contribute to the self-interactions of

νe. Similar processes also hold for ν̄e and νx.

density is so high ∼ 1031/cc, that neutrino-neutrino interactions are significant. These

interactions give rise to an MSW-like potential ∝
√

2GF (nν(r) + nν̄(r)) for a background

neutrino density nν(r) [31]. As a result, each neutrino interacts with all other neutrinos

in the medium, thereby making the problem of flavor evolution non-linear. Neutral current

interactions preserve flavor, so the processes which contribute to these self-interactions are of

the scatterings of the type νe(p)+νx(k)↔ νx(p)+νe(k), and νe(p)+ ν̄e(k)↔ νx(p)+ ν̄x(p),

as shown in Fig. 1.6. Here νx ≡ νµ, ντ , or any linear combination of both, since all non-

electron flavors have identical interactions within the SN, and for phenomenological purposes,

can be considered the same. Hence, unlike the matter potential, this neutrino potential

is not flavor diagonal, and has significant contributions in the off-diagonal components as

well [89, 90]. Such flavor evolution has been studied extensively using the density matrix

formalism [88–96]. It was shown that due to these non-linear neutrino-neutrino interactions,

a dense ensemble of neutrinos and antineutrinos exhibit collective oscillations. The simplest

example would be a mono-energetic ensemble of νe and ν̄e, partly oscillating to νx and ν̄x,

leaving the net flavor content unchanged [89, 90, 97]. The system behaves like a collection

of coupled oscillators in flavor space [97, 98]. Depending on the neutrino-neutrino coupling,

these coupled oscillators can either oscillate harmonically, or have run-away solutions, which

would indicate large self-induced flavor conversions [97, 98].

Such nonlinear flavor conversions in a SN have been studied extensively in the literature

(see Refs. [25, 78, 99, 100] for a discussion of the recent developments and the open issues).
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In [97], two stages of collective effects were recognized: (i) “synchronized” oscillations, where

neutrinos of all energies oscillate with a single frequency but small amplitude–due to the small

mixing angle in matter [101], and (ii) “bipolar” oscillations. For mono-energetic neutrinos,

these bipolar can lead to a complete flavor conversion for IH even for small mixing angle In

the case of NH, no bipolar oscillations take place. This analysis was restricted to two flavors:

νe and νx, with an excess of νe over ν̄e. Bipolar oscillations were shown to be equivalent

to an inverted pendulum in flavor space, where swinging of the pendulum from an unstable

inverted position was shown to be equivalent to run-away flavor oscillations [97,98].

The bipolar oscillations further culminate in spectral splits. For a single spectral split,

all νe beyond a certain critical energy would convert to νx, while below this energy, the νes

would emerge in their original flavor [91]. An analytical understanding of the phenomenon

was offered [102,103] using a simple box spectrum in the variable ω ≡ ±∆m2/(2E), where the

positive (negative) sign stands for neutrinos (antineutrinos). Multiple spectral splits observed

in the simulations [104,105] were explained analytically [106] in terms of the development of

spectral swaps in gω, where

gω ∝ Fνe(ω)− Fνx(ω) for ω > 0 ,

∝ Fν̄x(ω)− Fν̄e(ω) for ω < 0 . (1.4.4)

It was shown that in IH (NH), any positive (negative) crossing of the gω-spectra is unstable,

thereby causing bipolar oscillations leading to a spectral swap. The three-flavor mixing effects

can be largely understood in terms of stepwise two flavor effects. However, decoupling of

the third flavor need not always be straightforward, and interesting effects can arise due to

that [95, 107–109].

Most of the above analyses were carried out in the two-flavor framework with a single

angle approximation, i.e., all neutrinos were emitted from the neutrinosphere with the same

initial angle [91]. Multi-angle effects were shown to cause smearing of features in bipolar

oscillations, leading to smoothening of spectral splits [104]. However, such multi-angle deco-

herence can be suppressed for sufficient neutrino-antineutrino asymmetry, which can exist in

the deleptonization flux in a realistic supernova [94]. The inclusion of multi-angle effects can

also result in the suppression of bipolar oscillations in presence of matter [91,104,110–113].

We are still far from having a complete analytical picture of the flavor instabilities that lead
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Figure 1.7: A schematic picture of a SN envelope with the different length scales involved.

to spectral swaps. However, one can get an understanding of the onset of these instabilities

using a linearized stability analysis [96, 100, 114]. For an isotropic gas of neutrinos and

antineutrinos, the rate of development of these instabilities is proportional to
√
ωµ, where

µ =
√

2GFnν is the rate of interaction with ambient neutrinos, proportional to the number

density of the neutrinos nν .

1.4.3.3 Fast flavor oscillations

All the above studies considered flavor independent angular emissions of neutrinos from

the neutrinosphere. However, if this assumption does not hold, then new instabilities can

arise even deeper inside the star, which would result in faster flavor conversions with a

rate proportional to µ, producing flavor equilibrium among the different neutrino fluxes at

r ∼ O(1) m from the SN surface [115]. These conversions could occur even for massless

neutrinos, requiring a nonzero ω perhaps only as an initial perturbation, thereby being

independent of the yet unknown neutrino mass ordering. It was speculated that the necessary

condition to achieve these fast conversions is the presence of sufficient anisotropy in the

angular emission spectrum of the different neutrino flavors. This is something one can indeed

expect near the neutrinosphere deep inside a SN. Due to different interaction cross-sections

with matter, the non-electron flavors νµ,τ decouple from matter deeper than ν̄e, and the latter

deeper than νe. Therefore, near the SN core, the νµ,τ zenith-angle distribution would be more

forward-peaked than that of ν̄e, which in turn would be more forward-peaked than the νe
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distribution. This would give rise to flavor dependent emission angular distribution for the

neutrino flavors, which is required for fast conversions. Such fast conversions would imply

that flavor conversions can occur even earlier than before. A schematic picture of different

length scales associated with neutrino flavor conversions within a SN envelope is shown in

Fig. (1.7). These effects were not found in previous numerical studies of self-induced flavor

conversion because they focused on a region relatively far away from the neutrinosphere,

where the angular distributions of the different ν species become similar. Although flavor-

dependent angular distributions of neutrinos were considered in [116, 117], fast conversions

were not obtained because these works considered different angular distributions for νe and

νµ,τ , while keeping those of νe and ν̄e similar.

In [111], a linear stability analysis was applied to demonstrate the presence of these large

flavor conversions due to flavor dependent neutrino angular distributions. Although [111]

showed the presence of fast conversions, the results were derived using a highly discretized

versions of the neutrino angular distributions, which were known to lead to spurious flavor

conversions [113]. More recently, these results were vindicated in [118] by employing larger

number of angular modes. Fast conversions were further studied in [119], where a stability

analysis with non-trivial continuous ν angular distributions was performed, at large distances

from the core. Here, it was shown that if there are more ν̄e than νe, or if the emission

distribution of ν̄e are wider, fast conversions can take place. This condition is unphysical in

a SN, as there are typically more νe than ν̄e. However, fast conversions can also take place in

conditions prevalent within a SN. Indeed, it will be shown in this thesis that fast conversions

can happen for parameters more relevant to a SN.

One may wonder how these results get affected in the presence of non-standard inter-

actions. There are stringent bounds on non-standard interactions (NSI) of neutrinos with

charged fermions [120–125]. But non-standard self-interactions (NSSI) of neutrinos have

very loose direct constraints and can be as large as in the SM, if not larger [126–129]. This

is primarily because neutrino-neutrino interactions have not been directly observed yet, and

hence it is very difficult to put bounds on them. The framework for analyzing the effect of

NSSI on collective oscillations was first developed in [130], which showed that flavor-violating

NSSI can cause complete flavor conversions even in the absence of any mixing.
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1.4.4 Supernova neutrino observables and detectors

A detailed understanding of neutrino flavor conversions within a SN can help in possible

interpretations of a neutrino signal from a galactic or extra-galactic SN. The νe neutronization

burst signal is found to be quite robust, and almost independent of the progenitor mass and

the nuclear equation of state [131]. Hence, it is a particularly interesting probe of flavor

conversions. The neutronization burst can be utilized to discern the neutrino mass-ordering

since the signal is suppressed by sin2 ϑ13 ' 0.02 in NH and sin2 ϑ12 ' 0.3 in IH [77,81,82,85,

131]. The detection of the neutronization burst can also be used to constrain non-standard

neutrino physics, such as oscillations of active neutrinos into light sterile neutrinos [132],

violation of Lorentz invariance [133], neutrino decay [134], etc. All these scenarios would

lead to a suppression of the neutronization burst in either hierarchy. The rise time of a

galactic SN ν̄e light curve, observable in large underground detectors, can also provide a

diagnostic tool for the neutrino mass hierarchy [135].

Earth-matter effects on neutrino oscillations as the neutrinos pass through the Earth

mantle have also been investigated [77, 83, 84]. The sensitivity of the oscillations to shock-

wave propagation [136–140] and to turbulence in the density of the stellar envelope [141–143]

has also been studied. Resonant neutrino conversions in a SN can be used to probe neutrino

mixing and SN dynamics [80]. Attempts have also been made at extracting SN and neutrino

parameters from experimental data [144]. More recent studies have tried to reconstruct the

neutrino spectra at various detectors [145–148]. A new model-independent analysis strategy

for the next galactic SN signal which can distinguish flavor equalization due to fast flavor

conversions from the MSW scenario during the SN accretion phase has been proposed in [149].

The only recorded neutrino burst from a supernova came from SN1987A, which occurred

in the Large Magellanic Cloud, at a distance of about 50 kpc from the solar system [150].

A few hours before the optical discovery of SN1987A, a small number of neutrino events

(about 20 events in total) with energy ∼ 10 MeV was observed around the same time in

Kamiokande-II [151], IMB [152] and Baksan [153]. Owing to the extremely low statistics,

only weak bounds can be placed on the neutrino relative luminosities during different times.

However, the observed few events were compatible with the general features of a core-collapse

SN described in the earlier sections.
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After SN1987A, a lot of detectors have been constructed with the primary or secondary

aim of SN neutrino detection. Suitable detectors should be sensitive to products of neutrino

interactions in the O ∼ 10 MeV range. SN neutrinos can undergo CC as well as NC reactions

with the detector materials. Most of the detectors during SN1987A, as well as most of

the current detectors are sensitive to ν̄e, primarily through the inverse beta decay (IBD)

process: ν̄e + p → n + e+ [154]. Detection is via the energy loss of the positron, either

through Cherenkov radiation in water, for e.g., Super-Kamiokande [155], and the recently

proposed Hyper-Kamiokande [156], or through liquid scintillator detectors, for e.g., LVD

[157], Borexino [158], KamLAND [159], and the proposed JUNO [36], and LENA [160].

Recently, Super Kamiokande has approved Gd mixing with water to increase neutron capture

efficiency, which will help in reducing background immensely [161].

Long string detectors, for e.g., Icecube [162] and the next generation PINGU [163], can

also detect SN neutrino burst as a diffuse signal [162, 164]. Icecube cannot determine the

flavor, energy, and direction of individual neutrinos from a SN, rather the signal appears as

a correlated rise in the background noise. However, for a near galactic SN, one can expect

large statistics in Icecube. This can allow for a clear distinction between the accretion and

cooling phases during a core-collapse [165]. Furthermore, an estimation of the progenitor

mass from the shape of the neutrino light curve can also be obtained from Icecube data [165].

It may also be possible to observe the neutrino spectral modulation due to turbulence, and

forward and reverse shockwave during the cooling phase [165].

For detection of νe, the most promising detector material is liquid Argon. Liquid Ar

has a high cross-section for the CC interaction channel : νe + Ar → e− + K∗, from which

the e− track can be constructed in a time projection chamber (TPC) [166]. This channel

is particularly useful for detection of the νe burst during the neutronization epoch. The

upcoming DUNE [167], and MicroBooNE [168] will be using this liquid Ar TPC technology

for detection of νe.

The detection of the non-electron flavors, νµ and ντ , are more difficult, as they do not

have enough energy to undergo CC interactions in a detector. They can be detected via NC

interactions, which are flavor-blind. Elastic NC scatterings on protons is a viable channel

which can be used for detection of these non-electron flavors [145]. Such NC interactions
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are sensitive to neutrinos having an energy of O ∼ 20 MeV. Hence, the advantage of νµ,τ

over νe and ν̄e in NC interactions is that the former are more energetic than than the latter,

and hence form a significant part of the neutrino signal. These are observable in scintillator

detectors.

Finally, note that elastic scattering on electrons, ν+e− → ν+e− is sensitive to all neutrino

flavors [169] and can occur in all detectors. The interaction cross-section of this channel is

larger for the electron flavor neutrinos than the non-electron flavor ones. The advantage of

this interaction channel is that the angular distribution of the scattered electrons are forward

peaked, and this information can be used to locate the SN. However, this interaction channel

is plagued by backgrounds of the primary interaction channel in each detector, and hence

is more difficult to track. The addition of Gd to water in Super Kamiokande is expected to

reduce the backgrounds due to IBD [161], and improve the directional property.

1.5 Outline of the thesis

Our present work explores some of these new aspects of flavor oscillations of SN neutrinos:

the first half of this thesis focuses on fast flavor conversions near the SN core, while the second

half studies the effect of NSSI of neutrinos on flavor conversions. In Chapter 2, we discuss

the mathematical formalism required to study neutrino flavor propagating in a dense media.

To check for fast conversions, in Chapter 3, we perform the linear stability analyses for a flat

source geometry that more appropriately models the SN emission region, using physically

more plausible conditions, where the νe are in excess of ν̄e, but the angular distributions are

different. We carefully specify the possible fast instabilities for evolution in space or time,

and show the impact of inward-going neutrinos. We verify these linear stability predictions,

for several cases, using numerical calculations of the fully nonlinear evolution. In Chapter 4,

we explore this further by studying analytically the simplest system that shows fast flavor

conversions: a set of four beams of neutrinos and antineutrinos intersecting each other at an

angle θ. We demonstrate analytically that its dynamics is equivalent to that of a particle

in a quartic potential. Fast oscillations correspond to the inversion of this potential, leading

to an instability. This gives us a clearer understanding of the phenomenon of fast flavor

conversions.
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We also perform an exploratory study of the effects of NSSI on flavor conversions of SN

neutrinos in Chapter 5. We find that the presence of NSSI makes us reconsider many of

the standard results of flavor evolutions of dense neutrino streams. A smoking gun effect of

the presence of NSSI is that a spectral crossing is no longer necessary for the development

of spectral swaps. This could give rise to collective oscillations during the neutronization

epoch, which are absent otherwise. As a result, distinct splits in the neutrino spectra during

this epoch can be a signal of NSSI. Finally, in Chapter 6, we also explore the effects of NSSI

on the long-time flavor evolution of the four-beam model by solving the fully non-linear

equations of motion numerically. We demonstrate that the fast oscillations are modulated

by the slow oscillations. Finally, in Chapter 7, we discuss our results and conclude.

We believe that many of these results will have important observable consequences for the

neutrino signal from a future galactic SN.





Chapter 2

Formalism: oscillations of dense

neutrino streams

In this chapter, we present a formalism for studying neutrino flavor oscillations in a dense

media. We outline the density matrix formalism, and then introduce the polarization vector

notation. We also discuss the linear stability analysis (LSA), used primarily to check for

the presence of an instability in the system. We present the LSA formalism used to study

flavor conversions far away from a SN core. The results of this chapter will be used in all

the subsequent chapters.

2.1 The density matrix formalism

The previous chapter describes the flavor evolution of neutrino beams, in vacuum or in a

medium, in terms of the Schrödinger equation. However, this formalism is inadequate when

one has to treat an ensemble of neutrinos, which undergoes mixing as well as scattering in

a medium. This becomes relevant while studying neutrino flavor evolution in a SN, or in

the early universe, where the density of neutrinos is very high and one needs to deal with

an ensemble, instead of single particle states. Apart from the refractive effects caused due

to background matter, as well as the ambient neutrinos, one also needs to model collisions,

which can destroy the coherence of the evolution, and affect the oscillations.

29
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A proper treatment of these neutrino flavor conversions may be modeled using the density

matrix formalism, which can account for mixed states and possible loss of coherence due to

collisions. We closely follow the derivation of [170]. See Refs. [171–174] for related derivation,

and [175] for recent developments.

Consider a left-handed massless neutrino field νL(x), which can be expanded in the mo-

mentum basis as

νL(x) =

∫
dp (apup + b†pv−p)eip·x , (2.1.1)

where dp = d3p/(2π)3, and the Dirac spinors up and v−p refer to the massless negative-

helicity neutrinos and positive helicity antineutrinos respectively. Here ap is an annihilation

operator for the neutrinos of momentum p and b†p is a creation operator for the antineutri-

nos. For an ensemble of n neutrinos, these operators are column vectors, which satisfy the

anticommutation relation

{ai(p), a†j(p)} = {bi(p), b†j(p)} = δij (2π)3 , (2.1.2)

where i, j range from 1 to n.

From all the possible bilinears of ap and b†p , the only ones which do not violate lepton

number, and whose expectation values do not oscillate rapidly around zero, are the “density-

operators” a†pap and b†pbp. Therefore, an ensemble of neutrinos and antineutrinos can be

characterized by the n × n “matrix of density” ρp,x, t and ρ̄p,x, t, defined for neutrinos and

antineutrinos, respectively, as

〈a†j(p) ai(p)〉 = (2π)3(ρp,x, t)ij

〈b†i (p) bj(p)〉 = (2π)3(ρ̄p,x, t)ij

where 〈〉 indicates an expectation value taken with respect to the initial states of the ensem-

ble. Note that the order of indices in the definition of ρ̄ is reversed. This guarantees that

the ρ̄ transforms in the same way as ρ under a unitary transformation νL = U †νLU . For a

three flavor neutrino ensemble, the density matrix can be written as

ρp,x, t =


ρee ρeµ ρeτ

ρeµ ρµµ ρµτ

ρτe ρτµ ρττ

 . (2.1.3)
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A similar expression holds for ρ̄, with the ρij replaced by ρ̄ij.

Using the above definition of density matrix, one can define a matrix of occupation num-

bers,

%p,x, t = nνp,x, t ρp,x, t (2.1.4)

where nνp,x, t is the number density of neutrinos with momentum p at a position x and time t.

The diagonal entries of this matrix are the particle and antiparticle occupation numbers for

the corresponding neutrino species, while the off-diagonal elements encode phase information

related to oscillations. Throughout this thesis, we will work with the occupation number

matrices, instead of the density matrices.

2.2 Equations of motion

In the absence of external forces acting on neutrinos, the dynamics of the occupation number

matrices is dictated by the following equations of motion (EoMs) [170]:

∂t%p,x,t + vp · ∇x%p,x,t = −i[Hp,x,t, %p,x,t] + C[%p,x,t] , (2.2.1)

with the Liouville operator on the left-hand side. To lighten the notation, we shall drop the

subscripts x and t henceforth. The matrix Hp is the Hamiltonian

Hp = Hvac +HMSW +Hνν , (2.2.2)

containing the vacuum, matter and self-interaction terms, that leads to the evolution of %p

over space and time.

The first term of Eq. (2.2.1) represents the matrix of vacuum oscillation frequency,

Hvac = U
M2

2 p
U † (2.2.3)

where U is the mixing matrix and M2 is the squared neutrino mass matrix given by M2 =

diag (m2
1, m

2
2, m

2
3). Typically, for oscillation physics, one can phase away a common term

proportional to the identity matrix, and parameterize M2 in terms of the solar and the

atmospheric mass squared differences. Simplifying to an effective two-flavor scenario, the

matrix of vacuum oscillation frequency is Hvac = diag(−ω/2,+ω/2) in the mass basis, where
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ω = ∆m2/2p ≈ ∆m2/2E for relativistic neutrinos of energy E. The sign ± in front of the

∆m2 refers to NH (+) and IH (−), respectively. Depending on the whether the solar or the

atmospheric mass-squared difference is used, one can associate it with ωL = ∆m2
�/(2E) and

ωH = ∆m2
atm/(2E).

The vacuum energy can be affected due to the propagation of neutrinos in a medium.

Neutrinos forward scatter with the medium, which in turn gives rise to a refractive effect

in the potential proportional to the Fermi constant GF . For typical energies of O(10) MeV

of SN neutrinos, the electron neutrinos can undergo both neutral current (NC) as well as

charged current (CC) interactions with the medium, whereas the other flavors only undergo

NC interactions. Since the NC interactions are same for all flavors, they contribute an overall

forward scattering phase and can be rotated away. Hence the only relevant process is due

to the CC interactions of electron neutrinos with the medium. This gives rise to the well

known MSW effect, as discussed in the previous chapter. The matter effect in Eq. (2.2.2),

due to the net background electron density ne(x), is represented by

HMSW = λ diag(1, 0, 0) (2.2.4)

in the weak interaction basis, where λ =
√

2GF ne(x) [29]. In the two-flavor basis, this can

be written as HMSW = λ diag(1, 0).

Apart from this, neutrino-neutrino interactions are dominant deep inside a SN, as discussed

in 1.4.3.2. This makes an additional contribution Hνν to the energy shift due to refractive

effects [31], given by

Hνν =
√

2GF

∫
d3q

(2π)3
(%q − %̄q)(1− vp · vq) . (2.2.5)

This occurs due to neutrinos forward scattering off each other in a dense medium, and hence

this potential is proportional to % itself, making the problem non-linear. Since % has non-

zero off-diagonal entries, this leads to off-diagonal refractive indices. Furthermore, due to the

anisotropy of the neutrino background, this potential is proportional to (1− vp · vq), where

vp is the velocity of the test neutrino, and vq is the background neutrino velocity. This leads

to “multi-angle effects”, i.e., neutrinos experience different potentials due to other neutrinos

moving on different trajectories. This effect vanishes for an isotropic medium, however, in an

anisotropic medium, this can cause flavor decoherence, leading to flavor equilibrium among

the different neutrino species.
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The last term on right-hand-side in Eq. (2.2.1), i.e. C[%p,x,t], represents a collision term

acting on neutrino flavor evolution. This term is proportional to G2
F , and is responsible for

destroying the coherence of the neutrino ensemble. We shall neglect all collision terms in all

the chapters of this thesis, as this is still an ongoing work. However, we will comment on

the effects of collisions on flavor conversions in Appendix B.

As a final remark, note that for antineutrinos, the EoMs are the same but with the

replacement Hvac → −Hvac, thus it is convenient to think of antineutrinos of energy E as

neutrinos of energy −E, making their EoMs formally identical.

2.2.1 Polarization vector formalism

In most of the cases, the three flavor neutrino framework can be approximated by a two-

flavor scenario. This is because, within a SN, νµ and ντ have identical interactions, and

behave similarly. Hence the system can be described by two flavors: νe and νx, where νx

can be νµ, ντ or a linear combination of both. The advantage of this is that all terms in the

Hamiltonian can be written in terms of 2 × 2 Hermitian matrices, and can be expanded in

the Pauli basis as follows [93]:

Hvac =
1

2
(ω0I + ωB · σ) ,

HMSW =
1

2
(λI + λL · σ) ,

%p =
1

2
(fpI + Pp · σ) ,

%p =
1

2

(
f̄pI + Pp · σ

)
, (2.2.6)

where Pp and Pp may be interpreted as the polarization vectors for neutrinos and anti-

neutrinos, respectively. The coordinate system is chosen such that the polarization vector

pointing in the +z indicates νe whereas that in the −z direction indicates νx. The neutrino

density is given by integrating the momentum distribution function fp over all momentum

modes, i.e., nν ≡
∫
d3 p fp and nν̄ ≡

∫
d3p f̄p. The normalization is such that |Pp| = 1.

The vacuum Hamiltonian may be interpreted as an external magnetic field, given by B =

(sin 2ϑ0, 0,− cos 2ϑ0), where ϑ0 is the vacuum mixing angle between the two flavors. The

MSW potential HMSW is characterized by its magnitude λ and a unit vector L = (0, 0, 1).
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Figure 2.1: The polarization vector picture. The vector P precesses around the net Hamil-

tonian vector, denoted by H. These precessions correspond to oscillations.

Finally, the neutrino-neutrino interaction strength is normalized by µ =
√

2GFnν for a net

neutrino density nν .

This simplifies the EoMs to

(∂t + vp · ∇x) Pp =
[
ωpB + λL + µ

∫
dp′(1− vp · v′p)(P′p −P

′
p)
]
×Pp , (2.2.7)

(∂t + vp · ∇x) Pp =
[
−ωpB + λL + µ

∫
dp′(1− vp · v′p)(P′p −P

′
p)
]
×Pp . (2.2.8)

These are the fully non-linear EoMs, in the polarization picture, for a multi-angle evolution

of neutrinos. As mentioned before, for a single-angle evolution, the (1−v ·v′) term drops out

of the integral and the equations become simpler. Using the formalism developed here, one

can study the different types of collective behaviors that arise in a dense gas of neutrinos.

Let us focus on Eqs. (2.2.7-2.2.8) in the limit µ → 0. In this limit, the net Hamiltonian

vector is denoted by H. The equations are analogous to that of a polarization vector P

precessing around the net Hamiltonian vector, given by H, as shown in Fig. 2.1. The flavor

direction, given by L, is along the z-axis, whereas B is confined to the x-z plane, and makes

an angle 2ϑ0 with the z-axis. The precession of P around H indicates flavor oscillations.
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2.3 Collective flavor oscillations: A brief recap

2.3.1 Single energy flavor evolution

Eqs. (2.2.7-2.2.8) are a set of non-linear coupled partial differential equations, involving 3

spatial dimensions, 3 momentum dimensions and 1 dimension of time, and hence is very

difficult to solve analytically. In fact, solving the entire problem numerically is a challenging

task, and we need to resort to simplifications. One such simplification is the single-angle

approximation, where neutrinos and antineutrinos are emitted from the neutrinosphere with

a single angle. As a further approximation, one can neglect spatial evolution of the neutrino

beams, and consider only propagation along the time direction. This simplifies the EoMs to

∂tPp =
[
ωpB + λL + µ (P−P)

]
×Pp , (2.3.1)

∂tPp =
[
−ωpB + λL + µ (P−P)

]
×Pp , (2.3.2)

where P =
∫
dp Pp and P =

∫
dp Pp. In this section, we will use the above equations

to demonstrate the intriguing aspects of collective oscillations. To begin with, we confine

ourselves to a gas of equal densities of νe and ν̄e with a small effective mixing angle ϑ� 1,

inverted mass-ordering, and a large self-interaction term µ � ω. We neglect matter effects

and set λ = 0. The flavor evolution is governed by the z-component of the polarization

vectors, Pz and P z respectively. For a mono-energetic neutrino ensemble, the flavor evolution

for a constant neutrino density is shown in Fig. 2.2. We notice that initially, both the Pz

and P z remain fixed in their initial state. After a while, they flip completely, but return to

their initial position, causing periodic conversions of νe and ν̄e to νx and ν̄x. In this whole

process, the net flavor lepton number is always conserved. Note that the above case was

in the inverted mass ordering. On the other hand, for normal mass ordering, the system is

completely stable and there are no flavor conversions.

These “bipolar oscillations”, involving pair conversions of νeν̄e ↔ νxν̄x are collective in

nature, i.e., all neutrino energies oscillate at the same frequency, and occur with a frequency

∼ √ωµ. This system is mathematically equivalent to a pendulum in flavor space [91, 97],

similar to how the ordinary neutrino oscillations in vacuum or matter are equivalent to a
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Figure 2.2: Flavor evolution of Pz in inverted mass ordering for the system of equations

Eqs. (2.2.7-2.2.8). The parameters chosen for this plot are ϑ0 = 0.01, ω = 0.3 km−1, cor-

responding to the atmospheric mass squared difference and neutrino energy 10 MeV, and

µ = 10 km−1.

precessing spin [93, 176, 177]. Depending on the neutrino mass ordering, the gravitational

force for this flavor pendulum acts upwards or downwards, thereby making certain flavor

configurations unstable, akin to an inverted pendulum. Bipolar oscillations correspond to

the pendulum starting in an unstable inverted position, slightly offset by a small mixing

angle, and swinging through the lowest position to the other side. The time-period of this

flavor pendulum depends logarithmically on the vacuum mixing angle [97]. Naively, one

can associate these type of flavor conversions with an instability in flavor space, as will be

explored in the next section.

In order to model a more realistic SN environment with a toy model, one needs to have

a varying neutrino density, which is declining with distance. We consider a toy neutrino

potential, as shown in Fig. 2.3 (left panel),

µ(r) = 102
(rNS

r

)4

km−1, (2.3.3)

where rNS = 10 km is the radius of the neutrinosphere. The corresponding evolution for Pz

and P z are shown in the right panel of Fig. 2.3. Clearly, the oscillations decline as a function

of radii, leading to complete flavor conversion. Using the flavor pendulum analogy, one can

show that reduction of µ(r) leads to a reduction in the energy of the pendulum, thereby

reducing the amplitude in each swing.
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Figure 2.3: Left: The varying neutrino potential given by Eq. (2.3.3). Right: Flavor evolution

of Pz in inverted mass ordering for the system of equations Eqs. (2.2.7-2.2.8) for a varying

neutrino potential given by Eq. (2.3.3). The other parameters chosen for this plot are chosen

for this plot are ϑ0 = 0.01, ω = 0.3 km−1, corresponding to the atmospheric mass squared

difference and neutrino energy 10 MeV.

Finally, a comment regarding the matter effect. It can also be shown that the presence of

a finite non-zero λ can be treated by transforming to a frame rotating around L. In such a

frame, the mixing angle is matter suppressed, thereby leading to a logarithmic delay [97] in

the onset of oscillations.

2.3.2 Multi-energy spectral splits

The previous section dealt with non-linear flavor conversions for a simple toy model of

mono-energetic neutrinos and antineutrinos. However in a SN, neutrinos and antineutrinos

are emitted with a continuous energy distribution, given by Eq. (1.4.1). The flavor evolution

for a spectrum of νe and νx is shown in Fig. 2.4. The left panel corresponds to inverted mass

hierarchy (IH), while the right panel corresponds to normal mass hierarchy (NH). One can

see that the bipolar oscillations eventually give rise to spectral splits [91]. In IH, all νe and

νx within a certain energy range are swapped, whereas in NH, the swapping occurs beyond

a certain energy. Such a flavor exchange is called a “swap”, whereas the sharp boundaries

at either side of the swaps are called “splits”.

During the cooling phase, multiple spectral splits were observed in the simulations both

in the neutrino and antineutrino channel [104, 105]. An analytical explanation of this effect
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Figure 2.4: SN neutrino spectra before (dashed lines) and after (solid lines) collective bipolar

oscillations, indicating the presence of distinct spectral splits. The νe spectra is shown in

red, while the νx spectra is shown in blue. For this neutrino spectra, we consider α = 3,

〈Eνe〉 = 12 MeV, 〈Eν̄e〉 = 15 MeV and 〈Eνx〉 = 18 MeV. The flavor evolution assumes the

single-angle emission of neutrinos.
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gω
in

Figure 2.5: The difference spectrum gin
ω for the initial spectra considered in Fig. 2.4. Notice

that there is a positive crossing at ω ≈ −0.8 km−1 and ω ≈ 0.6 km−1, and a negative crossing

at ω ≈ 0 km−1.

was offered in [106], in terms of the development of spectral swaps in the difference spectrum

gω, defined as (see Eq. (1.4.4))

gω ∝ Fνe(ω)− Fνx(ω) for ω > 0 ,

∝ Fν̄x(ω)− Fν̄e(ω) for ω < 0 . (2.3.4)

For the initial spectra considered in Fig. 2.4, we show the difference spectrum gω in Fig. 2.5.

Notice that gω has a number of “spectral crossings”. A crossing is defined as “positive”
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Figure 2.6: The development of the swap factor Sω with distance r from the neutrinosphere.

Left: Inverted hierarchy. Right: Normal hierarchy.

(“negative”) if gω changes sign from negative (positive) to positive (negative). The effects

of collective oscillations are best described in terms of the “swap factor” given by

gfin
w = Sω g

in
ω , (2.3.5)

where gin
w is the initial difference spectrum, and gfin

w is the final spectrum after collective

oscillations. In Fig. 2.6, we show the development of Sω, as a function of the distance from

the neutrinosphere, for IH (left panel) and NH (right panel). Note that in IH (NH), any

positive (negative) crossing of the gω-spectra is unstable, thereby causing bipolar oscillations

leading to a spectral swap.

This development of a swap around a spectral crossing is related to the conservation of

flavor lepton number during bipolar oscillations [106]. The EoMs imply that B ·
(
P−P

)
=∫

dω gw is conserved, and hence zero across the swap. As a result, swaps can only develop

around a spectral crossing.

However, multi-angle matter effects were shown to cause smearing of these spectral splits

in the accretion phase [104]. Furthermore, three flavor effects were shown to cause additional

splits, and could be mostly interpreted in terms of stepwise two-flavor splits [107,108].

Therefore, it is clear that in order to solve the set of non-linear equations, one needs to

take resort to numerical simulations. However, one can get some intuitive insights into the

onset of these oscillations by treating this as an instability in flavor space, and applying a
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Figure 2.7: Plot showing the growth of the off-diagonal element |PT | for the parameters

chosen in Fig. 2.2.

stability analysis. This technique, developed in [96] within the context of SN neutrinos, will

be the next topic of discussion.

2.4 Linearized stability analysis

The non-linearity of the equations of motion (EoMs) makes the analytic understanding of

long time behavior of collective oscillations intractable. However, it is possible to analyti-

cally study the onset of these oscillations if one interprets the problem as an instability in

propagating flavor waves. To motivate this point, let us first focus on the off-diagonal of

the occupation number matrix. In terms of the polarization vector picture, this can also be

denoted by |PT | =
√
P 2
x + P 2

y . In Fig. 2.7, we plot the quantity log |PT | for the parameters

chosen in Fig. 2.2. Notice that it starts as a very small quantity. This is because, deep inside

the SN, the matter density is so high that flavor and mass eigenstates are almost identical.

However, note that there is a period of rapid exponential growth in |PT |, which indicates

the onset of collective oscillations. This exponential growth during onset can be calculated

using a linear stability analysis [96, 114]. Such an analysis typically leads to an eigenvalue

equation, whose exponentially growing eigenvalues correspond to an instability, and indicate

the onset [96].
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To begin with, we confine ourselves to a spherically symmetric setup, where neutrinos are

emitted from a fiducial neutrinosphere of radius R, as shown in Fig. 2.8. Following [96], we

label them by the variable u = sin2 ϑR, where ϑR is the emission angle of the neutrinos. The

radial velocity for a mode u at the radius r is vr,u =
√

1− uR2/r2. The transverse velocity

is given by vTr,u = u1/2R/r. In the following section, we will assume that the solutions are

stationary, and hence the time-derivate drops out of the equation.

In terms of the flux matrices F [96, 114]

Fω,u,ϕdω du = 2πr2 vr,u%p
d3p

(2π)3
, (2.4.1)

the EoMs become

i∂rFω,u,ϕ = [Hω,u,ϕ, Fω,u,ϕ] , (2.4.2)

where

Hω,u,ϕ = (ω + λr)v
−1
r,u + µR

R2

r2

∫
dΓ′

1− vr,uvr,u′ − vTr,u · vTr,u′
vr,uvr,u′

Fω,u′,ϕ′ , (2.4.3)

and ϕ is the azimuthal angle. Here
∫
dΓ =

∫∞
−∞ dω

∫ 1

0
du
∫ 2π

0
dϕ, and negative values of ω

represent antineutrinos. In addition, we have vTr,u · vTr,u′ =
√
uu′(R2/r2) cos(ϕ− ϕ′). If axial

symmetry is enforced, this term drops out of the EoMs [114].

The quantities λr (matter potential at a radius r) and µR (neutrino-neutrino potential at

the neutrinosphere) are defined as

λr =
√

2GF ne(r) ,

µR =

√
2GF

[
F ē
ω,u,ϕ(R)− F x̄

ω,u,ϕ(R)
]

4πR2
, (2.4.4)

where F ē
ω,u,ϕ(r) represents the ν̄eν̄e flavor-diagonal element of the 2× 2 matrix Fω,u,ϕ(r), at

a radius r, for ω < 0, i.e., for antineutrinos.

The flux matrices Fω,u,ϕ in Eq. (2.4.3) have been rescaled such that at t = 0,∫
dΓ
[
F ē
ω,u,ϕ(R)− F x̄

ω,u,ϕ(R)
]

= 1 .

These Fω,u,ϕ may now be written in the form

Fω,u,ϕ =
Tr (Fω,u,ϕ)

2
+
gω,u,ϕ

2

 sω,u,ϕ Sω,u,ϕ

S∗ω,u,ϕ −sω,u,ϕ

 , (2.4.5)
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Figure 2.8: Neutrinos with a momentum p emitted from the neutrinosphere of radius R. The

emission angle is denoted by ϑR. These neutrinos interact with other neutrinos of momentum

q at a distance r from the neutrinosphere.

where

gω,u,ϕ =

 F e
ω,u,ϕ − F x

ω,u,ϕ for ω > 0 ,

F x̄
ω,u,ϕ − F ē

ω,u,ϕ for ω < 0 .
(2.4.6)

is the difference in spectra of the two flavors and Sω,u,ϕ is the off-diagonal parameter that we

will use to characterize flavor conversions. In this entire analysis, we neglect all collisional

processes which change the total number of neutrinos. Hence Tr (Fω,u,ϕ) is conserved and

can be dropped from the EoMs.

At t = 0, we have s = 1 and S = 0 in Eq. (2.4.5). As flavor evolution begins, S starts

developing a non-zero value. Since s2 + |S|2 = 1, a small amplitude expansion may be

performed with the approximation s ≈ 1, |S| � 1, and where terms of O(|S|2) are dropped.

This is equivalent to linearizing the equations in S.

To linear order in Sω,u,ϕ, we get an eigenvalue equation of the form

i∂r Sω,u,ϕ =

[
(ω + λr) v

−1
r,u + µR

R2

r2
×
∫

dΓ′
1− vr,uvr,u′ − vTr,u · vTr,u′

vr,uvr,u′
gω′,u′,ϕ′

]
Sω,u,ϕ

− µR

R2

r2

∫
dΓ′

1− vr,uvr,u′ − vTr,u · vTr,u′
vr,uvr,u′

gω′,u′,ϕ′Sω′,u′,ϕ′ . (2.4.7)

Far away from the neutrinosphere (r � R), we can drop terms of O(R2/r2) in Eq. (2.4.7).
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In this limit, dropping the constant term λr, the EoMs are given by

i∂rSω,u,ϕ =
[
ω + uλ̃r + uµ̃rε

]
Sω,u,ϕ

−µ̃r
∫

dΓ′
[
u+ u′ − 2

√
uu′ cos(ϕ− ϕ′)

]
gω′,u′,ϕ′ Sω′,u′,ϕ′ , (2.4.8)

where

λ̃r =
√

2GF ne(r)
R2

2 r2
,

µ̃r =

√
2GF

4πR2

R4

2 r4

[
F ē
ω,u,ϕ(R)− F x̄

ω,u,ϕ(R)
]
. (2.4.9)

Here ε =
∫
dΓ′ gω′,u′,ϕ′ encodes the net neutrino-antineutrino asymmetry. We also define

λ̄ = λ̃r + εµ̃r for notational convenience.

We try to solve Eq. (2.4.8) for exponential solutions of the eigenvalue equation of the form

Sω,u,ϕ = Qω,u,ϕe
−iΩr , (2.4.10)

with Ω = γ + iκ. Whether flavor conversions take place depends on whether Eq. (2.4.8) has

complex solutions for Ω. A positive imaginary solution of Ω, i.e a positive κ, leads to an

exponential rise in S, and signals an instability. Typically, since these equations have real

coefficients, the solutions of Ω are complex conjugate pairs. Hence every growing solution

is accompanied by a decaying solution. However, all we care about is the presence of the

growing solution, which leads to run-away solutions in the system.

Using Eq. (2.4.10), one finds that the eigenvector Q satisfies the eigenvalue equation(
ω + uλ̄− Ω

)
Qω,u,ϕ = µ̃r

∫
dΓ′

[
u+ u′ − 2

√
uu′ cos(ϕ− ϕ′)

]
gω′,u′,ϕ′ Qω′,u′,ϕ′ . (2.4.11)

Observe from Eq. (2.4.11) that the RHS has the form A + Bu +
√
u (C cosϕ+D sinϕ),

where A, B, C and D are complex numbers. This motivates us to consider the following

ansatz for Q:

Qω,u,ϕ =
A+Bu+

√
u (C cosϕ+D sinϕ)(

ω + uλ̄− Ω
) . (2.4.12)

Inserting Eq. (2.4.12) into Eq. (2.4.11) gives
I0,0

1 − 1 I0,0
2 I1,0

3/2 I0,1
3/2

I0,0
0 I0,0

1 − 1 I1,0
1/2 I0,1

1/2

−2 I1,0
1/2 −2 I1,0

3/2 −2 I2,0
1 − 1 −2 I1,1

1

−2 I0,1
1/2 −2 I0,1

3/2 −2I1,1
1 −2I0,2

1 − 1




A

B

C

D

 = 0 (2.4.13)
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where

Iα, βn = µ̃r

∫
dω du dϕ gω,u,ϕ

un

ω + uλ̄− Ω
cosα ϕ sinβ ϕ . (2.4.14)

Clearly, non-trivial solutions exist only if the determinant of the matrix is zero. It is also

important to note that for a given angular mode u0, the quantity |Qω,u,ϕ|2 is a Lorentzian in

a range of ω-modes.

In order to determine the eigenvalue Ω, we assume that the neutrinos have an axial sym-

metry of emission, i.e., gω,u,ϕ → gω,u/2π. This allows us to do the ϕ integral, therefore

simplifying the determinant immensely,


I1 − 1 I2 0 0

I0 I1 − 1 0 0

0 0 −I1 − 1 0

0 0 0 −I1 − 1




A

B

C

D

 = 0 (2.4.15)

From this, one arrives at the following set of characteristic equations:

(I1 − 1)2 = I0I2 , (2.4.16)

I1 = −1 . (2.4.17)

The first equation leads to nonzero solutions for A and B, and corresponds to the axially

symmetric solutions, which exist for a non-trivial distribution of zenith angles. They are

known as the multi-zenith angle (MZA) instability. The second equation has nonzero solu-

tions for C and D, thereby giving solutions with a nontrivial dependence on the azimuthal

angle ϕ. These are the multi-azimuthal angle (MAA) instability.

A few of comments are in order. Firstly, both the instabilities are only dominant when

µr ∼ λ̄, and can be suppressed by large matter effects [96]. Secondly, one can study the

growth of temporal solutions, where one check for large growths in time. In such a case, it

has been shown that matter effects cannot suppress these instabilities, and only affect the

real part of Ω [178]. Furthermore, it was shown that the stability analysis, when applied to

discretization of continuous angular distributions, gives rise to “spurious instabilities” [113].

However, recently, it was demonstrated that these spurious modes originate from artificial

pole singularities, instead of a branch cut in the Riemann surface. This identification helps
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in the removal of the spurious modes [179]. Finally, this method is only useful to predict

the exponential growth rate of instabilities in the system. The fully non-linear solutions of

simple toy models show an initial onset phase, followed by an exponential rise, before the

growth becomes non-linear. However, linear stability only accounts for the growth rate in

the initial phase till the non-linearity sets in.





Chapter 3

Fast Flavor Conversions Near a

Supernova core

In this chapter, we apply the formalism presented in previous chapter to explore some new

aspects of collective oscillations of supernova (SN) neutrinos. In particular, we explore the

presence and growth rates of fast flavor conversions in a realistic SN environment. We

perform the linear stability analysis (LSA) to study the onset of fast flavor conversion of

neutrinos near the source of emission. We classify growth rates into spatial and temporal,

and conclude this chapter with the solutions of the fully non-linear equations of motion,

demonstrating the presence of fast flavor conversions in a realistic SN environment. 1

3.1 Introduction

As already explained in Chapter 1, in the deepest SN regions, the neutrino density itself is so

high that a ν-ν potential, µ ∼
√

2GFnν , is also experienced by a propagating neutrino [31].

This potential is flavor off-diagonal and can lead to self-induced flavor oscillations with a

frequency ∼ √ωµ. However, more recently, it was pointed out that the ν-ν potential would

lead to even faster flavor conversions at a rate ∼ µ, in contrast to
√
ωµ above, for a non-

1The results in this chapter are based on the paper: B. Dasgupta, A. Mirizzi and M. Sen, “ Fast neutrino

flavor conversions near the supernova core with realistic flavor-dependent angular distributions”, Journal of

Cosmology and Astrophysics 1702 (2017) no.02, 019 [arXiv: 1609.00528[hep-ph]].

47
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trivial neutrino emission angular spectra [111, 115, 118, 119]. These faster conversions can

produce flavor equilibrium among the different neutrino fluxes at r ∼ O(1) m from the SN

surface. Such rapid flavor conversions have been dubbed in the literature as “fast flavor

conversions”.

Following up previous literature, in [119], a stability analysis showed that if there are

more ν̄e than νe, or if the emission angular distribution of ν̄e are wider, then fast conversions

occur. However, this situation is physically less motivated since in a SN environment, there

is typically an excess of νe over ν̄e. Furthermore, these instabilities only existed for µ ' λ,

and were suppressed for a larger λ. These results were in contrast with those in [118], where

fast conversions existed even when λ = 0, as long as there was some noise in the emission

distributions.

In this chapter, we identify that the resolution to these differences [180]. The resolution

lies in the observation that [118] focuses on fast flavor evolution in time, very close to the

SN core using discrete distributions, whereas [119] considers the flavor evolution in space,

at larger distances and employing continuous distributions. We perform a more detailed

study of the conditions for the development of the fast flavor conversions close to the SN

core. To this purpose, we do the LSA for a flat source geometry that more appropriately

models neutrino emission close to the neutrinosphere. We consider physically well-motivated

neutrino fluxes, i.e., νe have a larger flux and wider angular distribution than ν̄e, and use

continuous distributions to avoid the problem of spurious modes. We carefully specify the

possible instabilities for evolution in space or time, and consider the impact of inward-going

neutrinos, which can play an important role near the SN core. Finally, we verify these linear

stability predictions using numerical calculations of the fully nonlinear evolution, and present

nonlinear calculations of fast conversion using SN neutrino fluxes and angular distributions

inspired from a SN simulation.

3.2 Stability Analysis close to the SN core

In this section, we perform the LSA for a flat source emitting neutrinos. Since we are focusing

on distances ∼ O(10) m from the neutrinosphere, a major simplification happens if flavor
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conversions are studied only at small distances from the SN core. Most of the neutrinos are

then emitted around a radius O(10) m from the neutrinosphere. Since the conversions take

place very close to this emission region, the curvature of the neutrinosphere is not relevant.

We therefore model the source region as a diffuse flat infinite plane, as shown in Fig. 3.1. As

discussed in previous chapters, we consider two flavors: νe and νx, where x = µ, τ or a linear

combination of both.

Deep inside a SN, due to the cross-section of interaction νx decouple from matter deeper

than ν̄e, which in turn decouple earlier than νe. Therefore, one expects that close to the SN

core the νx zenith-angle distribution would be more forward-peaked than that of ν̄e, which

again would be more forward-peaked than the νe distribution. This would give rise to flavor

dependent emission angular distribution for the neutrino flavors, as shown in Fig. 3.1.

The neutrinos are conveniently labeled by ω, vz, andϕ, that define the Cartesian compo-

nents of the momenta

p =
(
E
√

1− v2
z cosϕ,E

√
1− v2

z sinϕ,Evz

)
, (3.2.1)

where vz ≡ cosϑ is the component of the neutrino velocity along the z-axis, and ϑ and ϕ

the zenith and azimuthal angles, respectively. Note that vz can take negative values, i.e.,

the zenith angle ϑ can take values between 0 and π, representing neutrinos with trajectories

that range from radially outward to radially inward into the star.

The advantage of working near the neutrinosphere is that one does not need to resort to

the flux matrices, which were introduced to conserve the flux through a sphere of radius r,

and directly work with the occupation matrices. The neutrino occupation matrix, defined

in Chapter 2 can also be represented as

%ω,vz ,ϕ =
1

2
Tr[%ω,vz ,ϕ] I + Φν̄

gω,vz ,ϕ
2

 sω,vz ,ϕ Sω,vz ,ϕ

S∗ω,vz ,ϕ −sω,vz ,ϕ

 , (3.2.2)

where vz = cosϑ is the component of the neutrino velocity along the z-axis, and ϑ and ϕ

the zenith and azimuthal angles, respectively.

The normalization of gω,vz ,ϕ is given by Φν̄ , determined by the condition

Φν̄

∫ 0

−∞
dΓ gω,vz ,ϕ = −(Φν̄e − Φν̄x) , (3.2.3)
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ches

Figure 3.1: Schematic geometry of the model and flavor-dependent zenith-angle distribu-

tions of neutrino fluxes. The 3 ellipses are schematic polar plots of the normalized angular

distributions of the νe (blue), ν̄e (red), and νx (green) fluxes at the point where the arrows

originate.

where dΓ = dω dvz dϕ/(2π)3, and Φν̄e,x are the flavor-dependent total number fluxes averaged

over the sphere of radius x. This specific normalization does not matter and all physical

quantities depend only on the product Φνgω,vz ,ϕ. Note that in this scheme of normalization,

the neutrino-neutrino interaction potential is then given by µ =
√

2GFΦν . We observe that

these differential fluxes dΦνα/dΓ are predicted in some of the detailed SN simulations, and

can be used as initial conditions for subsequent flavor evolution. Also, in order to include

neutrinos with trajectories that range from radially outward to radially inward into the star,

vz ≡ cosϑ can take negative values.

Since the total number of neutrinos is conserved, the trace term can be dropped from the

EoMs. At the neutrinosphere, neutrinos are emitted as flavor eigenstates, hence sω,vz ,ϕ = 1,

and Sω,vz ,ϕ = 0, leading to no flavor mixing. In absence of collisions, Tr[%2] is conserved,

giving s2
ω,vz ,ϕ+|Sω,vz ,ϕ|2 = 1. The quantity that is relevant for the calculation is the difference

of the flux distributions for the two flavors:

gω,vz ,ϕ ∝ dΦνe/dΓ− dΦνx/dΓ for neutrinos (ω > 0) ,

∝ dΦν̄x/dΓ− dΦν̄e/dΓ for antineutrinos (ω < 0) . (3.2.4)

Using the formalism outlined in 2.4, one can redo the eigenvalue equation on S for neutrino

emission from the flat source. To linear order in Sω,vz ,ϕ, we have the eigenvalue equation
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i(∂t + vz∂z + ~vT · ~∂T )Sω,vz ,ϕ =

[
ω + λ+ µ

∫
dΓ′ (1− vzv′z − ~vT .~v′T ) gω′,v′z ,ϕ

′

]
Sω,vz ,ϕ

−µ
∫
dΓ′ (1− vzv′z − ~vT .~v′T ) gω′,v′z ,ϕ

′ Sω′,v′z ,ϕ
′ , (3.2.5)

where ~vT is the velocity vector of the neutrino projected on the x-y–plane. For now, we

assume translation invariance of the solutions along the transverse directions and drop the

term involving the ∂T .

Our discussion pertains to a situation where µ � ∆m2/(2E) for all relevant neutrino

energies E. We can then ignore the vacuum term, and integrate Eq. (3.2.5)
∫
dω gω,vz ,ϕ

to find that the evolution of S̃vz ,ϕ ≡
∫
dω gω,vz ,ϕ Sω,vz ,ϕ depends on spectrum gω,vz ,ϕ only

through g̃vz ,ϕ ≡
∫
dω gω,vz ,ϕ, i.e., the difference of the flux-weighted angular spectra of the

neutrinos and antineutrinos. Explicitly, when gω,vx,ϕ ∝ (dΦνe/dΓ−dΦνx/dΓ)ω>0+(dΦν̄e/dΓ−

dΦν̄x/dΓ)ω<0 is integrated over ω, the νx and ν̄x dependent terms cancel each other. As a

result, the νx and ν̄x distributions do not enter the EoMs as long as they are equal. At this

point, one could integrate out ω and study the stability of S̃vz ,ϕ. However, we will study

the stability of Sω,vz ,ϕ, keeping our equations general and explicitly retaining ω, setting it to

zero only at the end.

In this section, we consider only νe and ν̄e with the spectrum

gω,vz ,ϕ =
1

2π

[
(1 + a)fνe(ω)Θ(vz)Θ(1− vz)−

1

(1− b)
fν̄e(ω)Θ(vz − b)Θ(1− vz)

]
, (3.2.6)

which, once integrated over their normalized ω-distributions fνe(ω) and fν̄e(ω), encodes the

difference of the flux-weighted zenith-angle distributions of νe and ν̄e.

We consider two toy models with different angular distributions, which are shown in the

two panels of Fig. 3.2. These models incorporate an important feature of the realistic SN

spectra, that the zenith angle distributions for the neutrinos and antineutrinos are not the

same. In Model I (left panel), while neutrinos are emitted over the entire forward hemisphere

(0 ≤ vz ≤ 1), the antineutrinos are contained in a narrower forward cone b ≤ vz ≤ 1, with

b > 0. Model II (right panel), in addition, also allows for inward going neutrinos and

antineutrinos, i.e., −1 ≤ vz ≤ 1 for neutrinos and b ≤ vz ≤ 1 for antineutrinos, with b > −1.
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νe

νe
1 + a

1

1 - b
Model I

-1 0 b 1
vz

Spectra

νe

νe

1 + a

1

1 - b

Model II

-1 0b 1
vz

Spectra

Figure 3.2: Sketches of the schematic zenith angle distributions of νe (blue) and ν̄e (red),

used for the calculations in this section. Left: Model I shows a spectrum that corresponds to

no inward going νe or ν̄e as defined by Eq. (3.2.6). Right: Model II shows a spectrum with

inward going νe and ν̄e as defined by Eq. (3.2.7). The νe and ν̄e have a flux ratio 1 + a, i.e.,

more νe than ν̄e when a > 0, and the ν̄e have a more forward-peaked distribution, controlled

by the parameter b which we always choose to be larger than the min(vz) for νe.

Model II can be represented by the spectrum

gω,vz ,ϕ =
1

2π

[
1 + a

2
fνe(ω)Θ(1 + vz)Θ(1− vz)−

1

(1− b)
fν̄e(ω)Θ(vz − b)Θ(1− vz)

]
,

(3.2.7)

In both the models, the neutrino-antineutrino asymmetry is labeled by a, such that 1 + a

encodes the ratio of the total neutrino to antineutrino flux. Typically for a SN, a > 0. As

long as 1/(1− b) > 1 + a, there is a crossing of the two flux-weighted angular spectra. This

kind of a “non-trivial” flavor-dependent angular distribution is believed to be be crucial for

fast conversion.

3.2.1 Stationary Solutions with Evolution in Space

We begin by looking for a steady state or stationary solution, i.e., the occupation matrices do

not change with time. In that case it is appropriate to drop the time-derivative in Eq. (3.2.5),

and the eigenvalue equation for S = Qe−iΩz becomes

[
ω + λ+ µε− (Ω + µεv) vz − µ (εc cosϕ+ εs sinϕ)

√
1− v2

z

]
Q =

µ

∫
dΓ′
[
1− vzv′z − cos(ϕ− ϕ′)

√
(1− v2

z)(1− v′ 2z )
]
gω′,v′z ,ϕ

′ Q′ ,(3.2.8)
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where we have defined the integrals over the spectrum,

ε =

∫
dΓ gω,vz ,ϕ , (3.2.9)

εv =

∫
dΓ vz gω,vz ,ϕ , (3.2.10)

εs =

∫
dΓ sinϕ

√
1− v2

z gω,vz ,ϕ , (3.2.11)

εc =

∫
dΓ cosϕ

√
1− v2

z gω,vz ,ϕ , (3.2.12)

that encode the total, zenith, and azimuthal asymmetries, respectively. We take the ansatz

that

Q =
q1 + q2 vz + q3 cosϕ

√
1− v2

z + q4 sinϕ
√

1− v2
z

ω + λ+ µε− (Ω + µεv) vz − µ (εc cosϕ+ εs sinϕ)
√

1− v2
z

, (3.2.13)

which gives us an eigenvalue equation,

q1

q2

q3

q4


=



I0,0
0,0 I0,0

1,0 I1,0
0,1 I0,1

0,1

−I0,0
1,0 −I0,0

2,0 −I1,0
1,1 −I0,1

1,1

−I1,0
0,1 −I1,0

1,1 −I2,0
0,2 −I1,1

0,2

−I0,1
0,1 −I0,1

1,1 −I1,1
0,2 −I0,2

0,2





q1

q2

q3

q4


, (3.2.14)

in terms of a family of integrals

Iα,βm,n = µ

∫
dΓ

[
cosα ϕ sinβ ϕ vmz (1− v2

z)
n/2

ω + λ+ µε− (Ω + µεv) vz − µ (εc cosϕ+ εs sinϕ)
√

1− v2
z

]
gω,vz ,ϕ .

(3.2.15)

Note that the integrals are dimensionless, and functions of Ω and other parameters.

The main point here is that whether fast flavor conversions take place depends on whether

Eq. (3.2.14) has complex solutions for Ω. The imaginary part of Ω, that we denote as usual as

κ = Im(Ω), leads to an exponential rise in Sω,vz ,ϕ ∼ eκr. If Im(Ω) happens to be nonzero in

the limit of vanishing ω and λ, it can only be proportional to µ, which is the only remaining

dimensional scale, signaling an instability whose rate scales directly with µ, in contrast to

the usual bipolar instabilities that scale as
√
ωµ.

If gω,vz ,ϕ is independent of ϕ, as we have chosen in Eq. (3.2.6), the ϕ integrals decouple

and we can drop the indices α, β in the integrals Iα,βm,n (setting them to zero), and write
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Eq. (3.2.14) as 

q1

q2

q3

q4


=



I0,0 I1,0 0 0

−I1,0 −I2,0 0 0

0 0 −I0,2/2 0

0 0 0 −I0,2/2





q1

q2

q3

q4


. (3.2.16)

The upper 2×2 block, manifestly independent of ϕ, gives the azimuthally symmetric solution,

whereas the diagonal lower block gives the azimuthal symmetry breaking solution. The

eigenvalues for the azimuthally symmetric instabilities are given by

(I0,0 − 1) (I2,0 + 1)− (I1,0)2 = 0 , (3.2.17)

while for the azimuthally non-symmetric instabilities one has(
I0,2

2
+ 1

)
= 0 . (3.2.18)

These azimuthal symmetry breaking instabilities spontaneously can generate large ϕ-dependent

variations in the flavor composition, even if one starts with almost perfectly symmetric initial

condition.

With a choice of the spectrum gω,vz ,ϕ given in Eq. (3.2.6), it is possible to perform the

integrals Im,n analytically and one can write the eigenvalue equations explicitly. However,

these are transcendental equations in Ω and one cannot obtain closed-form solution for Ω

using them, in general. Thus we resort to solving Eqs. (3.2.17) and (3.2.18) numerically

using Mathematica.

In Fig. 3.3, we show a contour plot of the imaginary part of Ω for different values of a and

b which shows that fast conversions do not occur if b = 0. The instabilities are azimuthally

symmetric, i.e., solutions to Eq. (3.2.17) and we found no solutions to Eq. (3.2.18) with

imaginary parts. As discussed before, the parameters a and b, that define the spectrum

gω,vz ,ϕ, are in fact closely related to the total and zenith angle asymmetries between the

neutrino flavors, ε = a and εv = (a − b)/2. For λ = 0, we found no instabilities in the

azimuthally symmetric as well as asymmetric equations. These results are in qualitative

agreement with the results obtained in ref. [119]

The most important feature to be noticed here is that the are no instabilities if b = 0, i.e.,

when the neutrino and antineutrino distributions are the same. We have checked explicitly
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Figure 3.3: Instability rates for different values of a and b, for three different values of λ/µ =

0.03, 1, and 10, respectively from left to right. Note that a large a corresponds to large total

flavor asymmetry ε and a zero b corresponds to identical angular distributions for the two

flavors, where the instabilities vanish. The instabilities are azimuthally symmetric, and we

find no instabilities that break the azimuthal symmetry. For λ = 0 we find no instabilities,

azimuthally symmetric or not, that scale as µ.

that a necessary condition to have fast instabilities appears to be a crossing between the

angular spectra of νe and ν̄e, as shown in Fig. 3.2. Another important feature to be noted is

that instabilities exist only if λ ∼ µ, disappearing for both smaller and larger λ.

3.2.2 Homogeneous Solutions with Evolution in Time

We also consider the possibility that the flavor composition does not vary spatially, but

undergoes rapid turnovers in time. This is motivated by the results of the previous section,

where we saw that unless λ ∼ µ, we did not find fast conversions. We will now show that

for temporal growths, matter effects do not matter.

If we assume that the neutrino flavor composition is relatively homogeneous over the region

of interest and only varies with time, we can drop the spatial derivatives in Eq. (3.2.5), and

write Sω,vz ,ϕ = Qe−iΩt. Thereafter, analogous to the previous section, one obtains the same

eigenvalue equation for Q as in Eq. (3.2.14), but with the integrals Iα,βm,n replaced by a new

family of integrals

Jα,βm,n = µ

∫
dΓ

[
cosα ϕ sinβ ϕ vmz (1− v2

z)
n/2

ω + λ+ µε− Ω− µεv vz − µ (εc cosϕ+ εs sinϕ)
√

1− v2
z

]
gω,vz ,ϕ ,

(3.2.19)
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Model I Model II

Figure 3.4: Instability rates for different values of a and b, for evolution in time, without

including inward going modes (left panel) and including inward going modes (right panel).

These instabilities are azimuthally asymmetric, and we found no instabilities if the azimuthal

symmetry were to be exact. There is no dependence on λ.

which differ by the replacement vzΩ→ Ω in the denominator of the integrand of Iα,βm,n.

For a spectrum which is independent of ϕ, Eq. (3.2.14) simplifies as Eq. (3.2.16). The upper

block gives the azimuthally symmetric solution whereas the lower block gives the azimuthal

symmetry breaking solution. The eigenvalues for the azimuthally symmetric instabilities are

given by

(J0,0 − 1) (J2,0 + 1)− (J1,0)2 = 0 , (3.2.20)

while for the azimuthally non-symmetric instabilities one has(
J0,2

2
+ 1

)
= 0 . (3.2.21)

The important fact here is that λ does not affect the temporal stability in any way. If

there is an unstable solution for λ = 0, one will find an unstable solution with the same

imaginary part for any other value of λ by simply shifting the real part of Ω, i.e., by shifting

Ω→ Ω + λ, as is apparent from Eq. (3.2.19).

In Fig. 3.4 (left panel) we show the instability rates for evolution in time, for Model I,

i.e., gω,vz ,ϕ is given by Eq. (3.2.6). It is apparent that fast instabilities, which are azimuthal

symmetry breaking solutions to Eq. (3.2.21), exist only for small values of a and large values

of b. There is no dependence on λ, which can be absorbed into the real part of Ω.
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Figure 3.5: Growth of instability for evolution in time, as predicted by numerical solution

of the nonlinear evolution of ν̄e, for representative values of a and b. The left panel shows

quantity Aeµ = log10|S| as a measure of the extent of flavor conversion. The right panel

shows the angle-integrated survival probabilities Pee. These instabilities are azimuthally

asymmetric and independent of λ.

On the right panel in Fig. 3.4, we show the analogous results, but for Model II, where the

νe are emitted isotropically along all zenith angles (see right panel of Fig. 3.2). It is clear

that, for the same value of a and b, the presence of the backward traveling modes of νe

greatly amplify the instabilities. This is another important result we arrive at. Closer to

the neutrinosphere, the fast instability can be stronger due to the presence of these inward

going neutrinos.

We have also numerically solved the fully nonlinear EoMs for the spectrum corresponding

to the left panel in Fig. 3.4 (no inward going modes). The EoMs were discretized in vz and

ϕ, with 100 modes for 0 ≤ vz ≤ 1 and 10 modes in ϕ, and the ν-ν interaction strength was

taken to be µ = 4×105 km−1. In Fig. 3.5 we show the numerically evaluated angle-integrated

amplitudes of the flavor conversions for the ν̄e,

Aeµ(t) = log10|S(t)| , (3.2.22)

for some representative values of a and b. The initial evolution, that asymptotes to a plateau

at Aeµ ' 10−5, is not the fast conversion predicted by linear stability analysis. However, the

subsequent evolution, where Aeµ grows approximately linearly, is in excellent agreement with

the corresponding growth rates shown in the left panel of Fig. 3.4. We have also performed

nonlinear calculations corresponding to the right panel of Fig. 3.4, which show faster growth,
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but we do not show them here, as they are otherwise quite similar. In all these cases we find

a perfect agreement between the linear and non-linear calculation of Aeµ. In particular, we

find exponentially growing solutions within t ∼ O(10−8) s.

In the right panel of Fig. 3.5, we also show the corresponding angle-integrated survival

probability given by Pee(t). As one can clearly see, fast conversions lead to approximate

flavor equilibrium, i.e., Pee ' 1/2. Depending on the details of these fast conversions,

however, this equilibration may not necessarily be complete, e.g., if the instability growth

rates are small.2

3.2.3 Evolution in both Space and Time

If the occupation matrix evolves in both space and time, the formalism presented above is

inadequate. A useful way of studying these solutions is to consider

S(~x, t) = Qe−i(
~Ωx·~x+Ωtt) , (3.2.23)

and follow the approach in refs. [178, 181] (see also [100, 182]). One can Fourier transform

to the momentum space as Qe−i(
~Ωx·~x+Ωtt) →

∑
~k,pQ~k,pe

−i(~k·~x+pt), and study the stability of

these Fourier modes. Physically, ~k and p correspond to inhomogeneities or pulsations with

wave-vectors ~k or frequency p, respectively. Here, we do not go into a detailed study along

these lines, except to note a few key features:

1. If we are looking at spatial evolution along z, the time-dependence in S will appear

as pulsations of frequency p = Ωt that affects the linear stability, e.g., in Eq. (3.2.14),

through the replacement λ→ λ− p in Eq. (3.2.15).

2. If on the other hand we wish to study evolution in time, the spatial oscillations of S

along z can be Fourier decomposed into their constituent frequencies labeled by kz,

and one simply shifts

µεv → µεv + kz , (3.2.24)

in Eq. (3.2.19).

3. Fourier modes of the fluctuations along transverse directions x and y will lead to

2 I would like to thank Alessandro Mirizzi for the simulations leading to these plots.
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analogous shifts

µεc,s → µεc,s + kx,y , (3.2.25)

in the denominator of Eq. (3.2.15) or Eq. (3.2.19).

4. The linear stability analysis can then proceed with these minor replacements, essen-

tially amounting to these redefinitions of the asymmetry parameters. Practically, this

may have interesting consequences leading to enhanced fast conversions, e.g., as was

shown in refs. [178,181], the pulsations can enhance instabilities by effectively removing

the matter effect for the specific pulsating Fourier modes and the evolution of nearby

modes via nonlinear coupling of modes. Similarly, inhomogeneity may dynamically

mimic a larger zenith or azimuthal angle asymmetry and enhance fast conversions. A

detailed exploration of these possibilities is left for a future study.

Another more intuitive way of studying these solutions is to consider the dispersion

relations for the flavor instability field S [183]. In this, instabilities arise as gaps in the

dispersion relations. Based on this, a categorization of different types of instabilities

was presented in [183].

3.3 Numerical solutions with SN Fluxes

Numerical simulations of SN explosions predict flavor-dependent zenith-angle neutrino dis-

tributions, as explained earlier. Inspired by SN simulations, a first attempt to characterize

self-induced neutrino flavor conversions with flavor-dependent ν distributions was performed

in [117, 184]. However, angular distributions for νe and ν̄e were assumed to be identical

in these studies, and only a crossing between electron and non-electron neutrino angular

spectra was considered. As a result, even though the flavor conversions were shown to be

enhanced with respect to the case with trivial angular distributions, the possibility of fast

conversions was missed. In light of the insights obtained in the previous sections, we now

consider the possibility of fast conversions by introducing realistic SN angular distributions

with different angular distributions for νe and ν̄e.

We consider the normalized angular distributions for different ν species from a one-

dimensional SN model for a 25 M� progenitor at post-bounce time t = 0.325 s and r = 25 km,
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Figure 3.6: Left panel: Normalized flavor-dependent zenith angle distributions of SN neu-

trinos from a one-dimensional SN model from the Garching group for a 25M� progenitor at

post-bounce time t = 0.325 s and r = 25 km [185]. Right panel: Difference of flux-weighted

angular spectra of νe and ν̄e, for two choices of flux ratios corresponding to small asymmetry

(dashed line) and large asymmetry (solid line), respectively. Note that νx and ν̄x fluxes are

equal and thus drop out.

simulated by the Garching group [185], as shown in Fig. 3.6 (left panel). Notice that while the

νx distributions are mostly forward-peaked, νe and ν̄e have a significant fraction of backward

going neutrinos.

In this specific simulation, there exists a strongly hierarchical flavor ratio Φνe : Φν̄e : Φνx =

3.5 : 1.9 : 1. For such a strong νe to ν̄e asymmetry, there is no crossing between the zenith-

angle spectra of νe and ν̄e (see right panel in Fig. 3.6) and we do not expect to find any fast

conversion. However, it has been recently discovered that multidimensional SN simulations

exhibit a phenomenon called lepton-emission self-sustained asymmetry (LESA) [76], i.e., the

lepton asymmetries of the neutrino fluxes have strong variance over various directions and

this roughly hemispherical asymmetry appears to be self-stabilized. In particular, along

some directions flavor asymmetries among the different species can be much milder than in

the corresponding 1D simulations (see [186]).

Currently, the ν angular distributions for the multi-dimensional SN models showing the

LESA effects are not available in a readily usable form. Therefore, we use the 1D distributions

shown in Fig. 3.6, and simply change the relative weights of νe and ν̄e fluxes within the

range predicted by models exhibiting LESA. In particular we take two cases, one with a

large asymmetry Φνe : Φν̄e : Φνx = 3.5 : 1.9 : 1, and another with a small asymmetry
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Figure 3.7: Growth of fast instabilities for realistic SN neutrino angular distributions con-

sidered in this thesis. The dashed and continuous curves correspond to the flux parameters

with small and large lepton asymmetries, as may be expected due to LESA. While large

asymmetries suppress the fast conversion, for smaller asymmetries there is ' 20% flavor

conversion within a few nanoseconds. The growth of off-diagonal components is shown on

the left panel, while the right panel shows the angle-integrated survival probability for ν̄e.

Φνe : Φν̄e : Φνx = 1.5 : 1.4 : 1, roughly corresponding to the direction with lowest asymmetry.

In this latter case, one finds a crossing between the zenith-angle spectra of νe and ν̄e, as

shown in the right panel of Fig. 3.6. Therefore, fast conversions are expected here.

In Fig. 3.7 (left panel) we show the amplitude of flavor evolution Aeµ for ν̄e, for these two

choices of flux ratios. Note that these calculations include the inward going neutrino modes

as shown in Fig. 3.7. The right panel of Fig. 3.7 shows the corresponding angle-integrated

survival probabilities Pee(t). One can see that while no fast conversion takes place for the

large flux asymmetry, if the flux asymmetry is not very large fast conversion leads to almost

O(1) flavor conversion within a few nanoseconds, in a range of r − R ∼ O(1) m from the

boundary leading to approximate flavor equilibrium. This emphasizes the idea that fast

flavor conversions require a crossing in the spectra of νe and ν̄e to take place.3

3 I would like to thank Alessandro Mirizzi for the simulations leading to these plots.
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3.4 Summarized Results

In this chapter, we have investigated the possibility of flavor conversions of SN neutrinos,

that occur with a fast rate ∼ µ, driven by interactions of neutrinos emitted with non-trivial

angular distributions. Considering physically well-motivated neutrino fluxes and emission

geometry, we have studied the nonlinear flavor evolution for different toy models, and com-

pared it with the linear stability analyses. We have found excellent agreement between the

linearized growth rate of fully non-linear solutions, and those predicted by the stability anal-

ysis. We have demonstrated that a necessary condition in order to have fast conversions is

the presence of a crossing among the angular spectra of νe and ν̄e. Another important result

is that the backward going modes strongly enhance fast conversions, and make fast conver-

sions possible for a wider range of flux and angular asymmetries. In particular, rapid flavor

turn-overs may occur in time, even if the corresponding spatial evolution is suppressed by

the presence of a large matter potential. Considering a moderate hierarchy among the fluxes

of different flavors and flavor-dependent ν angular distributions, as predicted from Garching

SN simulations, we have shown that fast conversion is possible in realistic scenarios.

The natural region where these effect would show up is just above the core of a SN, where

one expects significant differences in the angular distributions of the different ν species. In

multi-dimensional SN simulations presenting the LESA phenomenon, it is quite likely that

there will be directions along which the flavor asymmetries among the different species are

moderate at early post-bounce times and allow for these fast conversions. If these conversions

indeed take place, these would produce a tendency towards flavor equilibrium among the

different species. Since at the neutrinosphere, the non-electron neutrino flavors are supposed

to be more energetic, such rapid νeνx would indicate a large energy gain for the νe. This

can in turn help in sufficient heating behind the stalled shock wave through charged current

νe capture processes, since the energy deposition behind the shock wave depends on the νe

and ν̄e luminosity. This can have a strong impact on the revival of the stalled shock-wave

by enhanced neutrino reheating. Furthermore, due to the change in the number of νe and ν̄e

due to fast flavor conversions, the ratio of neutron to proton also gets affected deep inside

the SN. This can affect r-process nucleosynthesis of heavy elements, which are quite sensitive

to the neutron to proton ratio inside the SN.
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The possibility of this new form of self-induced flavor conversions represents a new chal-

lenge for the simulation of the SN neutrino signal. Indeed, in its most general form, the

problem involves tracking the neutrino ensemble, including oscillations and scattering, in an

anisotropic and fluctuating environment of an exploding supernova. This is way beyond the

scope of current studies. In the next chapter, we will consider a simple system undergo-

ing fast oscillations, and try to understand analytically through a classical analogue of the

phenomenon. This will help us get an intuitive understanding of fast oscillations.





Chapter 4

An Analytical Understanding of Fast

Flavor Conversions

In the previous chapter, we explored the phenomena of fast flavor conversions, and demon-

strated that fast conversions indeed take place near the neutrinosphere, causing rapid neu-

trino flavor conversions. While the linear stability analysis allows us to predict the onset of

these instabilities and study them in the linear regime, an analytical understanding of fast

conversions was missing. In this chapter, we present an analytical treatment of the simplest

system that exhibits fast conversions, and show that the conversions can be understood as

the dynamics of a particle rolling down in a quartic potential governed dominantly by the

neutrino potential. We show that subleading effects due to the vacuum terms are needed to

seed fast conversions. 1

4.1 Introduction

Although collective oscillations have been studied extensively numerically, there is still no

concrete analytical understanding of collective effects. This is essentially due to the non-

linear nature of the problem. However, insights can be gained into collective bipolar oscil-

1The results in this chapter are based on the paper: B. Dasgupta and M. Sen, “Fast Neutrino

Flavor Conversion as Oscillations in a Quartic Potential”, Physical Review D97 (2018) no.2, 023017,

[arXiv:1709.08671[hep-ph]].
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lations from a simple model of a pair of mono-energetic neutrino-antineutrino beam inter-

acting with each other. This system is mathematically equivalent to a pendulum in flavor

space [91, 97]. The stability of the pendulum is determined by the neutrino mass hierarchy.

For the inverted mass ordering, the system is akin to a pendulum starting in an unstable

inverted position, slightly offset by a small mixing angle, and swinging through the low-

est position to the other side. This corresponds to bipolar flavor conversions. This simple

mechanical analog of the flavor oscillations forms the basis for much of our intuitive under-

standing of the physics of collective oscillations.

We aim to discover a simple mechanical analog of fast oscillations, similar to how the

flavor pendulum explains bipolar flavor oscillations. Towards this goal, we consider the

simplest model that shows fast oscillations: a set of four beams of neutrinos and antineutrinos

intersecting each other at an angle θ. Under some simplifying assumptions, we show that its

dynamics is equivalent to oscillations of a particle in a quartic potential. Using the classical

mechanical action, we analytically compute the oscillation period in the inverted quartic

potential and find excellent agreement with numerical solutions. Furthermore, we identify

three different time scales, as well as conserved quantities associated with fast conversions.

4.2 Fast oscillations in the intersecting 4-beam model

We use the polarization vector formalism outlined in Chapter 2, and apply it to a two-flavor

neutrino system. The equation of motion (EoM) for a 2-flavor neutrino of momentum p is

given by,

Ṗp =
[
ωpB + µ

∫
dΓ′(1− v · v′)Pp′

]
×Pp , (4.2.1)

where B = (sin 2ϑ0, 0, − cos 2ϑ0) for a vacuum mixing angle ϑ0, and dΓ′ refers to an integral

over the 3-momenta of the other neutrinos, as explained in 2.2.1. Here, we have ignored

ordinary matter effects, and assumed that collisions are absent. For simplicity, we also

assume that the flavor evolution is homogeneous over a length scale much larger than the

length scale corresponding to fast conversions. Hence we drop the space derivative, and the

only relevant dynamics is its time evolution. Similar equations hold for antineutrinos with

the replacement Pωp,vp ≡ P−ωp,vp . In the following, we drop the subscript p for clarity.
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PL ≡ νe

PL ≡ νe

PR ≡ νe
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Figure 4.1: Four-beam model: Electron neutrinos (solid) and antineutrinos (dashed) travel-

ling along two beams each, one from the left (red) and another from the right (blue), forward

scatter off each other. We study the time evolution of the flavor content of these beams.

The simplest system that shows fast flavor conversions is a system consisting of two right-

going and left-going neutrinos and antineutrinos, intersecting each other at an angle θ, as

shown in Fig. 4.1 [119]. The neutrino and antineutrino beams are labeled by their correspond-

ing polarization vectors. Following Eq.(4.2.1), the EoMs for the four polarization vectors are

given by:

ṖL = ωB×PL + µ
[
(1 + c) PR − (1− c) PL − 2 PR

]
×PL ,

ṖR = ωB×PR + µ
[
(1 + c) PL − (1− c) PR − 2 PL

]
×PR ,

ṖL = −ωB×PL + µ
[
(1− c) PL − (1 + c) PR + 2 PR

]
×PL ,

ṖR = −ωB×PR + µ
[
(1− c) PR − (1 + c) PL + 2 PL

]
×PR . (4.2.2)

The terms involving v · v′ lead to terms involving c ≡ cos θ, where θ is the angle shown in

Fig. 4.1. Following [97], we define the following linear combination of polarization vectors to

understand the flavor evolution more clearly,

Q ≡ PL + PR + PL + PR − 2ω
µ(3−c)B , (4.2.3)

D ≡ PL + PR −PL −PR . (4.2.4)

We additionally define the following combination of polarization vectors

X ≡ PL −PR + PL −PR , (4.2.5)

Y ≡ PL −PR −PL + PR . (4.2.6)
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While the bipolar oscillations were easily described by Q and D [97], one needs X and Y

additionally to describe fast oscillations. In terms of these vectors, the EoMs take the form

Q̇ =
µ

2
(3− c) D×Q +

µ

2
(1 + c) X×Y , (4.2.7)

Ḋ = ωB×Q , (4.2.8)

Ẋ =

[
ω

(
3 + c

3− c

)
B + µ cQ

]
×Y + µD×X , (4.2.9)

Ẏ =

[
ω

(
2

3− c

)
B− µ

2
(1− c)Q

]
×X +

µ

2
(3 + c) D×Y . (4.2.10)

4.2.1 Bipolar limit

There are two ways in which the above set of equations reduce to the previously well-known

equations for the bipolar flavor pendulum.

(i) If c = −1, which corresponds to two back-to-back beams of neutrinos and antineutri-

nos, then Eqs.(4.2.7, 4.2.8) decouple from the rest and simply reproduce the bipolar flavor

pendulum. In this limit, Eqs.(4.2.9, 4.2.10) imply that X ·X + Y ·Y is constant. Therefore,

if X and Y are initially zero to begin with, they remain zero throughout.

(ii) For any value of c, if X and Y are initially exactly zero, there exists a L↔ R exchange

symmetry in Eqs.(4.2.5, 4.2.6). In this scenario, these two quantities have no dynamics at

all. This is to be expected because the equations of motion do not break this symmetry

unless the initial conditions do so. In this case, the first two equations simply reproduce the

flavor pendulum that exhibits bipolar oscillations at a frequency ∼ √ωµ. In addition, if the

initial neutrino-antineutrino asymmetry α, defined such that P z = (1 − α)Pz is zero, the

Q only evolves in the x-z plane while D acquires a non-zero component only along the y

direction. Here we take 0 ≤ α ≤ 1 and |P| = 1, corresponding to an excess of neutrinos over

antineutrinos as is expected in a SN. On the other hand, if there is an excess of antineutrinos,

it is more convenient to define Pz = (1 − ᾱ)P z with 0 ≤ ᾱ ≤ 1 and |P| = 1. More

complications may arise if α or ᾱ 6= 0, the pendulum has a spin. In the bipolar scenario, a

non-zero neutrino antineutrino asymmetry induces a spin in the pendulum, making it gyrate

like a top [97].
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Figure 4.2: Dynamics of the components of Q. The parameters are chosen to be ω/µ0 = 10−5,

ϑ0 = 10−2 and c = 0.5. Here µ = µ0 = 105 km−1 is the value of µ at the neutrinosphere.

Tfast is matched using the estimate in Eq.(4.4.2), which defines Tonset and Twait as the periods

where Qz ≥ 0.99Qz(t = 0).

4.2.2 Fast oscillations beyond the bipolar limit

It is thus clear, as was already evident through the linear analysis in [119], that one must

break the L ↔ R symmetry to obtain any oscillations faster than the bipolar oscillations.

We will consider initial conditions on the polarization vectors to be

PL,R(0) = (0, 0, 1± ε) , (4.2.11)

PL,R(0) = (0, 0, 1− α± ε) , (4.2.12)

where ε is the small difference between the left and right going modes that breaks the L↔ R

symmetry. This is a small arbitrary numerical seed chosen in order to break the symmetry.

Throughout this chapter, we choose ε = 10−9. In general the motion is quite complicated

but major simplifications happen if α = 0. In this case, for the above initial conditions, one

can verify by inspecting Eqs.(4.2.7 - 4.2.10), that Y is in the y direction only and X remains

in the x-z plane. This α = 0 limit is significantly simpler and we confine our attention to it

to illustrate the physics of fast oscillations. However, as we will comment later, many of the

obtained insights will be relevant more generally.

Eq.(4.2.1) implies that the magnitudes of each of the 4 polarization vectors Pp remains
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constant. Further, Eq.(4.2.8) provides that

d

dt
B ·D = 0 . (4.2.13)

Hence B ·D is a constant of motion, as in the bipolar case. This quantity is associated with

the conservation of flavor lepton number [97]. Thus, flavor lepton number is conserved even

for fast oscillations, as one would expect.

The length of Q, unlike for bipolar oscillations, is not conserved and changes as

d

dt
(Q ·Q) = µ

(1 + c)

2

[
QXY

]
, (4.2.14)

where [· · · ] indicates the scalar triple product of the three vectors. The evolution of the

components of Q is shown in Fig. 4.2. We find that the dynamics is mainly captured in Qz,

with Qx, Qy ' 0. Note that there are three timescales associated with the evolution of Q

as illustrated in the figure: Tonset, the onset time; Tfast, characterizing the time-period of

fast oscillations; and Twait, the waiting period in between two oscillations. We will comment

more on these in later sections.

Likewise, the quantity Q ·D varies as

d

dt
(Q ·D) = µ

(1 + c)

2

[
DXY

]
. (4.2.15)

If there is no initial asymmetry, i.e., α = 0 and therefore D(0) = 0, the R.H.S. of Eq.(4.2.15)

vanishes because D and X×Y remain orthogonal, as we argued following Eqs.(4.2.7 - 4.2.10).

Then, Q·D is a constant and remains at its initial value zero. However, for α 6= 0, i.e., a non-

zero neutrino-antineutrino asymmetry, Q · D is no longer constant, unlike for the bipolar

flavor pendulum [97]. While a core-collapse SN mostly has an excess of neutrinos over

antineutrinos, in the recently discovered lepton-emission self-sustained asymmetry (LESA)

phenomenon [76] as well as in binary neutron star mergers [187–189], there can be an excess

of antineutrinos over neutrinos, leading to a non-zero value of ᾱ. In Fig. 4.3, we show Q ·D

for α = 0 as well as for α = 0.2 and ᾱ = 0.2. Defining ᾱ, instead of simply letting α be

negative, has the advantage that α = 0.2 and ᾱ = 0.2 are related to each other very simply

as is apparent from Fig. 4.3. In the limit ω → 0, the replacement P ↔ P keeps the EoMs

unchanged.
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Figure 4.3: Variation of Q ·D with time for neutrino-antineutrino asymmetry α = 0 (solid

red), α = 0.2 (dashed blue) and ᾱ = 0.2 (dotted black).

As an immediate by-product, one can solve for D starting from Eq.(4.2.7). Taking a cross

product with Q, one gets

D =
2

µ(3− c)
Q× Q̇

Q2
+

Q ·D
Q2

Q +
(1 + c)

(3− c)
1

Q2

[
(Q ·X)Y − (Q ·Y)X

]
. (4.2.16)

The first two terms are identical to the D for the bipolar pendulum [97]. However, note that

Q obeys Eq. (4.2.3), which has extra dynamics from X and Y. The last term is the extra

one that arises due to fast oscillations. Thus, even when the last term is small, the solution

for D is actually different. Moreover, Q ·D is not constant if α 6= 0, and this expression for

D must be understood as an implicit solution.

Finally, we end this section by showing the evolution of X and Y, for α = 0 in Fig. 4.4.

We observe that while X develops only an x component dominantly and has a subleading z

component, the quantity Y only has a non-zero y component. This can also be inferred by

inspecting the EoMs. We have checked that D remains very small and is always along the

y direction, and we do not show it here.
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Figure 4.4: Left: Evolution of X. Right: Evolution of Y. The parameters used here are

ω/µ0 = 10−5, ϑ0 = 10−2 and c = 0.5.

4.3 Full EoMs for Fast Conversions

Further simplification can be obtained for Eqs. (4.2.7 - 4.2.10) in the limit ω/µ → 0, where

D = constant. If in addition α = 0, then D ∼ ω/µ, and can be set to zero at all times for

small enough (ω/µ). This simplifies the equations immensely, thereby giving

Q̇ =
µ

2
(1 + c) X×Y , (4.3.1)

Ẋ = ω

(
3 + c

3− c

)
B×Y + µ cQ×Y , (4.3.2)

Ẏ = ω

(
2

3− c

)
B×Y − µ

2
(1− c) Q×X . (4.3.3)

We have kept the terms ofO(ω/µ) in Eqs. (4.3.2 - 4.3.3) to indicate the subleading corrections

to Ẋ and Ẏ.

In the limit α = 0, one can arrive at the the approximate second-order EoMs for Q, X,
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and Y by taking another time-derivative of Eqs.(4.3.1 - 4.3.3),

Q̈ =
µ

2
(1 + c)

[
µ c

{
(Y ·Q)Y − (Y ·Y)Q

}
− µ

2
(1− c)

{
(X ·X)Q− (X ·Q)X

}

+ω

(
3 + c

3− c

){
(Y ·B)Y − (Y ·Y)B

}
+ ω

(
2

3− c

){
(X ·X)B− (X ·B)X

}]
,

(4.3.4)

Ẍ = µ c

[
µ

2
(1 + c)

{
(Y ·X)Y − (Y ·Y)X

}
− µ

2
(1− c)

{
(Q ·X)Q− (Q ·Q)X

}

+ω

(
2

3− c

){
(Q ·X)B− (Q ·B)X

}]
+ ω

(
3 + c

3− c

)
B× Ẏ , (4.3.5)

Ÿ = −µ
2

(1− c)

[
µ

2
(1 + c)

{
(X ·X)Y − (X ·Y)X

}
+ µ c

{
(Q ·Y)Q− (Q ·Q)Y

}

+ω

(
3 + c

3− c

){
(Q ·Y)B− (Q ·B)Y

}]
+ ω

(
2

3− c

)
B× Ẋ . (4.3.6)

Recall that these equations are based on the assumption that D is approximately constant

and negligible. Also note that the apparently O(µ2) terms on the first line of the above

equations contain subleading O(ωµ) terms themselves. We will find that these subleading

terms become relevant while determining the onset period, as well as in the interim waiting

period.

4.3.1 Conserved quantities in the limit ω/µ = 0 and α = 0

In addition to the above conditionally but exactly conserved quantities, there are some

approximately conserved quantities. Setting ω/µ = 0 simplifies Eqs. (4.3.2 - 4.3.3) to

Q̇ =
µ

2
(1 + c) X×Y , (4.3.7)

Ẋ = µ cQ×Y , (4.3.8)

Ẏ = −µ
2

(1− c) Q×X . (4.3.9)

In this limit, the following quantities are found to be conserved: Q ·X, Q ·Y, and X ·Y,

as well as 2cQ · Q + (1 + c) X · X and (1 − c) Q · Q + (1 + c) Y · Y. These are the extra

conditionally conserved quantities of this problem.
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Differentiating Eq.(4.3.7), one finds

Q̈ = −µ2 c (1− c)
[
|Q0|2 −Q ·Q

]
Q , (4.3.10)

which is a closed equation for Q that derives from the Lagrangian

LQ =
1

2
|Q̇|2 − µ2 c (1− c)

[
|Q0|2 −

Q ·Q
2

]
Q ·Q

2
, (4.3.11)

where |Q0| is the modulus of Q at time t = 0. Using Eq.(4.3.10) one finds the total energy

is

E =
1

2
|Q̇|2 + µ2 c (1− c)

[
|Q0|2 −

Q ·Q
2

]
Q ·Q

2
, (4.3.12)

which is an additional constant of motion. Note that Q is confined to the x-z plane when

α = 0, and Qx can be eliminated using E, thereby reducing the problem to the study of

only the z component of Q to understand the flavor evolution shown in Fig. 4.2. Clearly, as

Qx ' O(ϑ0), the energy E is dominated by Qz.

Analogous to the closed set of equations and the Lagrangian governing Q given by Eq.(4.3.10),

one can find the closed equation for X and Y, each, by neglecting terms of order O(ω2) and

O(ωµ) relative to O(µ2),

Ẍ = µ2 c(1− c)
2

[
|Q0|2 −

(1 + c)

c
(X ·X)

]
X , (4.3.13)

Ÿ = µ2 c(1− c)
2

[
|Q0|2 − 2

(1 + c)

(1− c)
(Y ·Y)

]
Y . (4.3.14)

Their corresponding Lagrangians are

LX =
1

2
|Ẋ|2 − µ2

[
(1− c2)

(X ·X)

2
− c(1− c)

2
|Q0|2

]
(X ·X)

2
, (4.3.15)

LY =
1

2
|Ẏ|2 − µ2

[
c(1 + c)

(Y ·Y)

2
− c(1− c)

2
|Q0|2

]
(Y ·Y)

2
. (4.3.16)

The time evolution of X and Y, governed by the above Lagrangians, are already shown in

Fig. 4.4.

Finally, note that in this α = 0 limit, the neglect of the subleading contributions of O(ωµ)

and smaller endows a spurious Q → −Q symmetry to Eq.(4.3.10). As a result, solving

Eq.(4.3.10) leads to an evolution of Q that is exactly symmetric in Qz ↔ −Qz (the onset

and waiting times are equal to the fast oscillation time). Numerically however, we find that
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Figure 4.5: Left: The potential V (Qz) for two different values of c = 0.1 (solid red) and

c = −0.1 (dashed blue).

Q hovers longer around its initial position at the top, than it does at the bottom of the

potential V (Q), as seen in Fig. 4.2. We believe that this slow-down is due to the neglect of

subleading friction-like terms that arise at the same order as the terms necessary to seed the

fast oscillation.

4.4 Particle in a quartic potential

An interesting feature of this intersecting 4-beam system is that fast conversions exist only

for certain angular distributions of the neutrino beams. Using a linear stability analysis, it

was shown in [119] that fast conversions exist only for c ≡ cos θ > 0. The reason for this

becomes obvious if one observes the potential term V (Qz) in LQ. Classically, this relates to

motion of a particle in a quartic potential given by

V (Qz) ≈ µ2 c (1− c)
[
|Q0|2 −

Q2
z

2

]
Q2
z

2
. (4.4.1)

As shown in Fig. 4.5, the potential is an inverted quartic for c < 0 and a quartic for c >

0. The motion of Qz is governed by this potential. Given the initial condition Qz(0) =

4 [1− (ω cos 2ϑ0)/(2µ (3− c))], for c > 0 the potential causes Qz to roll down towards the

bottom of the potential well and subsequently oscillate in it. In flavor space, these are fast

conversions. On the other hand, for c < 0 a potential barrier is encountered by Qz. The

value of Qz therefore remains at its initial value and there are no fast conversions. Note that
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Figure 4.6: Time periods Tonset, Tfast and Twait and their linear dependence on 1/µ. Dots

show the the numerical data whereas the lines are the best fit through them. While the fit

for Tfast is given from Eq.(4.4.2), those for Tonset and Twait are obtained numerically.

the above initial condition for Qz is for the inverted mass ordering, where ω < 0. For normal

mass ordering, the same initial condition holds with the replacement ω → −ω. However, fast

conversions are essentially independent of the mass ordering. In fact, although the triggering

of fast conversions is dependent on ω, it does not seem to depend on the sign of ω.

In order to verify whether the above analytical approximations explain the evolution of

Q, we numerically solved Eqs.(4.2.7 - 4.2.10) and compared with the numerical solution of

Eq.(4.3.10). As mentioned before, from the time evolution of Q shown in Fig. 4.2, one

observes that there are three timescales: Tonset, the onset time; Tfast, characterizing the

time-period of fast oscillations; and Twait, the waiting period in between two oscillations.

We do not expect Eq.(4.3.10) to give the correct solution at initial times up to Tonset and

in between the oscillations for the periods designated Twait as these are dependent on the

subleading terms, which have been dropped in Eq.(4.3.10). To determine these periods

numerically, we have considered Qz & 0.99Qz(t = 0) so that the R.H.S. of Eq.(4.3.10) is

very small, i.e., . O(ω/µ) = 10−5. Thus the flavor evolution is governed by the ω-dependent

and otherwise sub-dominant terms which we have ignored. On the other hand, in this regime,

the solution is already very well understood using linear stability analysis. More interestingly,

the evolution of Qz is very well explained using Eq.(4.3.10) when it is strongly nonlinear,

i.e., deviates appreciably from its initial value.

One can compute the time-period of the fast oscillations, Tfast, using energy conservation,
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Figure 4.7: Variation of the time periods Tonset, Tfast and Twait. Dots show the the data

generated from simulations whereas the lines are the best fit curves through them. Here

µ0 = 105 km−1. Left: Variation with ω/µ0, for µ/µ0 = 1 and ϑ0 = 10−2. Right: Variation

with ϑ0, for ω/µ0 = 10−5 and µ/µ0 = 1.

to get

Tfast = 2

∫ Qmin
z

Qmax
z

dQz√
2
(
E − V (Qz)

) . (4.4.2)

This integral is in fact analytically expressible in terms of an elliptic function. Evaluating

the same, we find that it matches quite well with the numerical results shown in Fig. 4.6,

if we consider Qmax
z ≈ 0.99Qz(t = 0). The blue dots represent the fast time-period (ex-

cluding the onset and waiting times, as previously noted) obtained from numerical solution

of Eqs.(4.2.7 - 4.2.10), whereas the solid blue line is obtained by evaluating the integral in

Eq.(4.4.2).

Similar to how the onset period for the bipolar flavor pendulum depends on ϑ0, the time-

scales for the fast oscillation, i.e., Tonset, Tfast, as well as Twait, depend logarithmically on

these subleading parameters that seed the oscillations. In Fig. 4.7, we show the variation of

Tonset, Tfast and Twait with ω/µ0 and ϑ0, respectively, where µ0 = 105 km−1 is the value of µ

at the neutrinosphere. Clearly the time periods vary as µ−1 as shown in Fig. 4.6, but with

logarithmic corrections proportional to (ω/µ0) and ϑ0.
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Figure 4.9: Trajectory in phase space for varying µ. Redder colors refer to later times and

larger µ.

4.5 Varying neutrino density

In this section, we briefly discuss what happens if µ is not a constant, but rather varies

with time as µ(t). One expects that if µ(t) is time-dependent, the energy E(t) also becomes

time-dependent. Naturally, the time period Tfast also changes with time. In Fig. 4.8, we show

the evolution of Qz (left panel) for a time-dependent neutrino potential µ(t) = µ0(1+t/100).

While this is in general a much more complicated problem, if the rate of change of µ(t) is

much smaller than the frequency of fast oscillations (as chosen above) one can use adiabatic

invariance to derive some simple results. In the adiabatic limit, the action variable of the
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Figure 4.10: Variation of Tfast with time.

system

S(E, µ) =

∮
pQ dQz =

∮ √
2
(
E − V (Qz)

)
dQz , (4.5.1)

remains invariant to a good approximation. Here the generalized momentum for the system

is pQ = Q̇z, neglecting Qx ' 0. This action S(E(t), µ(t)) remains invariant under adiabatic

changes in µ(t) while energy changes appreciably, as shown in the right panel of Fig. 4.8.

In Fig. 4.9, we show the phase trajectory for the time-varying µ(t) above. As µ(t) increases

with time, the potential becomes deeper and the oscillation amplitude decreases but the

energy increases; the closed trajectory in phase space becomes more oblong along momentum,

keeping the enclosed area constant.

It is possible to analytically perform the integral in Eq.(4.5.1), giving a closed expression

for the adiabatic invariant S in terms of E(t) and µ(t). One can then compute an analytical

expression for the time-dependent time-period Tfast(t), using

Tfast(t) =
∂

∂E
S
(
E, µ(t)

)
. (4.5.2)

. In Fig. 4.10, we show the time period computed analytically in this manner (blue dots),

compared with the same measured from the numerical solutions of the EoMs (red dots). This

is based on a single calibration between our analytical estimate of Tfast and the numerics that

we used to identify Qmax
z = 0.99Qz(t = 0) as the boundary where the slower terms become

dominant. Subsequently, this agreement at different and changing µ highlights that the

agreement is not superfluous or accidental.
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The other two time scales, Tonset and Twait, are somewhat harder to estimate. We have

checked numerically that all of them vary as 1/µ, as seen in Fig. 4.6. In addition, we find

that Tonset depends logarithmically on the “seed” given in Eq.(4.2.7). Solving Eq.(4.3.10) for

Qz, and determining Tonset by checking for small deviations of Qz from its initial value gives,

Tonset ∝
1

µ
√

2c(1− c)
ln

[
(3− c)
cos 2ϑ0

µ0

ω

]
, (4.5.3)

which underestimates Tonset by approximately a factor of 2, relative to the numerical value

seen in Fig. 4.2. For Twait as well, we find numerically that it depends logarithmically on ϑ0

and ω, as demonstrated in the previous section.

4.6 Asymmetric fast oscillations

We now turn to the case when the initial neutrino-antineutrino asymmetry is nonzero, i.e.,

α 6= 0. As seen in Sec. 4.3, we notice that one can essentially treat D as a constant vector in

the limit ω/µ→ 0. Thus, in Eq.(4.2.7),Q acquires an extra precession around the D vector.

This precession is essentially around the z axis, and now allows the y component of Q to

evolve as well. The vectors X and Y also acquire similar precessions around D, but each

with a different precession frequency. As these frequencies are not all identical, there is no

“co-rotating” frame where all the effects of these additional precessions can be completely

removed.

Taking a derivative of Eq.(4.2.7), one gets

Q̈ = −µ2 c (1− c)
[
|Q0|2 −Q ·Q

]
Q +

µ

2
(3− c) D× Q̇

+
µ2

2
(1 + c)

[
(D×X)×Y +

3 + c

2
X× (D×Y)

]
. (4.6.1)

The D× Q̇ term on the first line represents the action of a approximately constant magnetic

field D ≈ (0, 0, 2α) in the z direction. The terms on the second line are approximately equal

to (X.Y)D, which act like a time-varying electric field in the z direction. We may interpret

the situation as follows. For α = 0, the Qz already hovers close to its minimum around −4,

but |Q| is constrained to be ≤ 4. Now, with α 6= 0, the only possible effect of these new

terms can be that Qz becomes larger close to its minimum. This is exactly what is seen in
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Figure 4.11: Dynamics of the components of Q for a neutrino-antineutrino asymmetry α =

0.2. The parameters are chosen to be ω/µ0 = 10−5, ϑ0 = 10−2 and c = 0.5.

Fig. 4.11; the dips become less deep and are sharper. Essentially, these electric and magnetic

fields push the particle away from the minimum of the potential well.

4.7 Summarized Results

In this chapter, we have studied the simplest toy model of a homogeneous system of neutrinos

and antineutrinos that shows fast conversions. We have found that, in the limit that the

vacuum oscillation frequency ω is much smaller than the neutrino potential µ and there is

no net neutrino-antineutrino asymmetry, the system is described by a particle moving in a

quartic potential. Most importantly, the potential offers a barrier as opposed to a well, if the

angle of intersection of the beams is larger than π/2, which explains the dependence of fast

conversions on the angular distribution of the beams. Onset of fast conversions corresponds

to the particle rolling down the potential, thereby causing an instability. Using the action

variable and its adiabatic invariance, we have estimated the time-period of fast oscillation,

both when µ is constant and when µ(t) varies with time. We have given numerical and

semi-analytical evidence that the onset and waiting periods for the fast oscillations depend

logarithmically on ϑ0 and O(ω/µ). Finally, we have argued how our results generalize to

a situation when the number of neutrinos and antineutrinos is not equal. In this case, the

evolution may be interpreted as the motion of a particle in an external electric and magnetic

field. Thus, under certain approximations, this simple classical mechanical problem can be
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solved exactly.

The results in this chapter provide some useful insight of the flavor dynamics associated

with fast oscillations, that has so far only been understood in the linear regime or explored

numerically. Hopefully, these insights will be useful to understand the physics of fast oscil-

lations in more realistic models of neutrino flavor conversions in core collapse supernovae.



Chapter 5

Non-standard neutrino

self-interactions (NSSI) and collective

oscillations

The analyses presented in the last two chapters have been performed within the context

of the standard model (SM). However, extensions to the SM can give rise to new effective

self-interactions of neutrinos. The presence of these non-standard self-interactions (NSSI)

makes us reconsider many of the results of flavor evolutions of dense neutrino streams, which

were calculated assuming standard interactions. In this chapter, we study the new effects

of collective bipolar oscillations arising due to the presence of NSSI of neutrinos. We set up

the formalism and analyze the evolution for a system of ν and ν̄ in the presence of NSSI.

We highlight the presence of novel spectral splits during neutronization epoch as a result of

NSSI, and its observable signatures in a liquid Argon detector. 1

5.1 Introduction

We focus on NSSI that can be modeled by an effective four-Fermi operator of the form

GF

(
Gαβ ν̄Lαγ

µνLβ

) (
Gζη ν̄LζγµνLη

)
, where the coupling matrix G contains both standard

1The results in this chapter are based on the paper: A. Das, A. Dighe and M. Sen, “ New effects of

non-standard self-interactions of neutrinos in a supernova”, Journal of Cosmology and Astrophysics 1705

(2017) no.05, 051 [arXiv:1705.00468[hep-ph]].

83
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and non-standard components [130]. When α = β, the coupling Gαβ is flavor-preserving and

we call such interactions as flavor-preserving NSSI (FP-NSSI). Similarly, when α 6= β, then

Gαβ would be flavor-violating and we refer to such interactions flavor-violating NSSI (FV-

NSSI). Such NSSI of neutrinos within a core-collapse SN can have observable consequences

on collective oscillations and thus are very important to analyze.

The framework for analyzing the effect of NSSI on collective oscillations was first developed

in [130], which showed that FV-NSSI can cause complete flavor conversions even in the

absence of any mixing. Motivated by this observation, we perform a detailed study of the

effect of NSSI on supernova neutrino flavor evolution. We find that the presence of NSSI can

change many of the earlier results significantly. We briefly outline these ideas below, before

going into a more rigorous analysis in the following sections.

• It is well-known from previous literature that in a completely azimuthally symmetric

ensemble of neutrinos and antineutrinos of a single energy, flavor conversions happen

only in the inverted mass hierarchy (IH). In the case of the normal mass hierarchy

(NH), only a breaking of these azimuthal symmetries can lead to conversions [114].

We will find that the presence of NSSI couplings can lead to conversions even in NH,

without the need to break any of the symmetries of the initial setup. However, this

will need couplings larger than the SM couplings. In the flavor-pendulum language

discussed in 2.3.1, the NSSI act like an external force which can overturn the stable

position of the pendulum, thereby making it unstable. Thus with a large enough NSSI,

an NH scenario can mimic a standard IH scenario, and vice versa.

• Collective oscillations are known to conserve flavor lepton number, i.e., they always

cause the pairwise conversions νe, ν̄e ↔ νx, ν̄x, where x = µ, τ or any linear combina-

tion of both (see Chapter 1). This leads to spectral swaps developing around the zero

crossing of the difference in neutrino spectra gω, which is defined as [106]:

gω ∝ Fνe(ω)− Fνx(ω) for ω > 0 ,

∝ Fν̄x(ω)− Fν̄e(ω) for ω < 0 . (5.1.1)

We will find that FV-NSSI violates flavor lepton number, which may cause the swap

to develop away from the zero crossing of the gω spectra. A spectral crossing is then

no longer necessary for the development of swaps. This could give rise to collective
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oscillations during the neutronization epoch, which are absent otherwise. Distinct

observable splits in the neutrino spectra during this epoch can then be a signal of

NSSI.

We expand on these ideas in the following sections.

5.2 Flavor evolution in presence of NSSI

We consider a two-flavor setup, consisting of νe and νx in the presence of NSSI. We first

write down the entire formalism in terms of the occupation number matrices as illustrated

in 2.2:

∂t%p + vp · ∇x%p = −i[Hp, %p] . (5.2.1)

where the Hamiltonian matrix Hp,

Hp = Hvac
p +HMSW +Hνν

p , (5.2.2)

contains the vacuum, matter and self-interaction terms. While the Hvac and HMSW are

the same as before, the Hνν get additional contributions due to the non-standard self-

interactions. The most general form of the effective Hamiltonian due to self interactions

is given by

Hνν
p =

√
2GF

∫
d3q

(2π)3
(1− vp · vq) {G(%q − %̄q)G+G Tr [(%q − %̄q)G]} , (5.2.3)

where the term (1−vp ·vq) leads to multi-angle effects due to neutrinos moving on different

trajectories. In the SM, the dimensionless coupling matrix G is an identity matrix. After

including NSSI, the most general coupling matrix is given by

G =

1 + γee γex

γ∗ex 1 + γxx

 . (5.2.4)

The bounds on γαβ are very weak since processes involving neutrino self-interactions are rare

and difficult to observe. Loose bounds on these four-neutrino contact interactions can be

put from low-energy π+, K+ decays [190] and from SN1987A data [191]. However, much

stronger constraints on neutrino NSSI come from LEP data. The presence of non-standard

neutrino coupling can give rise to a new decay channel Z → νν̄ → νν̄νν̄, which modifies
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the invisible Z-width predicted by the SM [126]. Alternatively, such new interactions can

contribute to loop corrections in a SM process, for example, in the Z → νν decay channel.

The invisible Z-width is measured with an accuracy better than 1% and this can put more

stringent bounds on the coupling [127,129,192]. Assuming the NSSI are due to the presence

of a new gauge boson, these bounds directly translate into |γee|, |γxx| and |γex| ∼ O(1).

Stronger bounds can come from primordial nucleosynthesis, however one needs to assume

the presence of right-handed neutrinos [128]. Note that stringent bounds can be imposed on

neutrino NSSI from SU(2)L gauge invariance [193]. However, these can be evaded in certain

models, where active neutrinos mix with new Dirac fermions charged under a U(1)′ gauge

group [194]. In this thesis, the couplings are restricted to O(0.01− 0.1).

The coupling matrix G, being a 2× 2 matrix, can be represented in the Pauli basis as

G =
1

2
(g0I + g · σ) . (5.2.5)

The four-vector g = {g0, g} is a measure of the net neutrino-neutrino coupling. The SM

corresponds to g0 = 2 and |g| = 0. Thus, the vector g indicates the strength of NSSI.

Clearly, g0 = 2 + γee + γxx, g1 = 2 Re(γex), g2 = 2 Im(γ∗ex) and g3 = γee − γxx. Thus, g0 and

g3 are flavor-preserving NSSI (FP-NSSI) couplings while g1 and g2 are flavor-violating NSSI

(FV-NSSI) couplings. Note that we can redefine the phase of νx such that g2 = 0. The NSSI

can thus be parameterized by g0, g1 and g3.

There, using the polarization vector language, the EoMs take the form

Ṗp =
(
ωpB + λL +Hνν

p

)
×Pp,

Ṗp =
(
−ωpB + λL +Hνν

p

)
×Pp, (5.2.6)

where

Hνν
p = µ

∫
d3q

(2π)3
(1− vp · vq)

{
1

4

(
g2

0 − |g|2
) (

Pq −Pq

)
+
[
goξ + g ·

(
Pq −Pq

)]
g

}
.

(5.2.7)

and the other parameters are as described in 2.2.1. The variable ξ parameterizes the neutrino-

antineutrino asymmetry such that nν = (1 + ξ)nν̄ . We further note that the parameter g0

can be scaled away by the following redefinition in Eq. (5.2.7) :

µ→ µ(g0/2)2 , g → g/(g0/2). (5.2.8)
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This yields

Hνν
p = µ

∫
d3q

(2π)3
(1− vp · vq)

{(
1− |g|

2

4

)(
Pq −Pq

)
+
[
2ξ + g ·

(
Pq −Pq

)]
g

}
. (5.2.9)

Henceforth, we will work in terms of the rescaled g and Hνν
p .

It is interesting to note that Hνν
p in Eq. (5.2.9) has two types of terms: the first one is the

SM neutrino-neutrino interaction term modified due to |g|. If this were the only term present,

the EoMs would represent a precessing top with a modified µ given by µ → µ (1− |g|2/4).

However, there is a subtle difference. The modified µ term can now change sign depending

on the value of |g| and affect the motion of the top. The second term gives rise to a term of

the form χ(t)g×P(for neutrinos) or χ(t)g×P (for antineutrinos) in the EoMs [Eq. (5.2.6)] .

It represents the equation of a precessing top around the direction g with a time-dependent

frequency χ(t). This allows us to interpret the NSSI vector as an external force on the

precessing top.

In the further analysis, we work with a single-angle approximation, where the problem has

a azimuthal symmetry and all neutrinos are emitted with the same “emission angle” [91].

As explained in 2.2, in this scenario the factor of (1− vp · vq) drops out of the integral.

5.2.1 The flavor pendulum

To understand the flavor evolution more clearly, we follow the analysis in [97], and rewrite our

EoMs for a single momentum mode p in terms of the new vectors D ≡ P−P, S ≡ P + P.

The EoMs are exactly identical with

µ→ µ̃ ≡ µ
(
1− |g|2/4

)
, λL→ λ̃L̃ ≡ λL + µ (2ξ + D · g) g , (5.2.10)

where the vector L̃ is defined such that it is normalized to unity. In terms of the vector

Q ≡ S− (ω/µ̃)B (5.2.11)

the EoMs are

Q̇ = µ̃D×Q + λ̃ L̃× S

Ḋ = ωB×Q + λ̃ L̃×D . (5.2.12)
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Figure 5.1: Time evolution of Pz and P z for four different values of |g|, for NH (left) and IH

(right). The other parameters are µ = 10ω, λ = 0, and ϑ0 = 0.01 .

We observe that in the scenario λ̃ = 0, |Q| is conserved. Thus Q describes a spherical

pendulum in the flavor space with length |Q|, as in [97]. In the next sections, we study the

motion of this pendulum for a constant as well as a realistic, decreasing neutrino density

profile.

5.2.2 Constant neutrino-neutrino potential

5.2.2.1 Time evolution for a small mixing angle

In this section, we confine ourselves to a fixed neutrino density and study the flavor evolution

of the system. In Fig. 5.1, we show the variation of Pz, i.e., z-component of the polarization

vector P, with time for three different values of |g|. We consider zero asymmetry and for

simplicity, put g1, g2 = 0, hence |g| = g3. Note that D ·g = Dzg3 is almost conserved in this

case, as the mixing angle ϑ0 is small. Since Dz(0) = 0, we have D · g ' 0 and hence λ̃ ' λ.

We choose the matter potential λ = 0 to start with.

In NH, there is no instability in the SM, i.e., |g| = 0 , since this is similar to a normal

pendulum. With NSSI, since ξ = 0 and D · g ' 0, the second term in Eq. (5.2.9) vanishes

and µ is simply modified to µ̃. The stability of the pendulum holds for |g| ≤ 2. However,

if |g| > 2, i.e., when the sign of µ̃ reverses, collective oscillations start taking place. This

can be clearly seen in the left panel of Fig. 5.1. As |g| is increased further, the frequency of

collective oscillations also increases. The results in IH are complementary; for 0 ≤ |g| ≤ 2,
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we observe an instability, whereas for |g| > 2, the instability vanishes (Fig. 5.1, right panel).

In the absence of λ, Eq. (5.2.12) becomes,

Q̇ = µ̃D×Q

Ḋ = ωB×Q . (5.2.13)

Clearly B · D is conserved. Moreover, with initial conditions P(0) = P(0) = (0, 0, 1), the

scenario is equivalent to that of a pendulum whose oscillations are confined to a plane defined

by B and z-axis. In terms of Q = |Q| (sinϕ, 0, cosϕ), we have

ϕ̈ = −ωµ̃|Q| sin(ϕ+ 2ϑ0) . (5.2.14)

For small ϑ0 and ϕ, Eq. (5.2.14) corresponds to a harmonic oscillator for ωµ̃ > 0 and an

inverted pendulum for ωµ̃ < 0. This is the reason why we observe collective oscillations in

NH for |g| > 2 when the sign of ωµ̃ becomes negative and we enter the inverted pendulum

phase. Note that here the NSSI themselves have made the pendulum unstable, without

breaking the spherical symmetry of the system. On the other hand, in IH, when |g| > 2 ,

the sign of ωµ̃ becomes positive and collective oscillations are suppressed.

Using the initial conditions ϕ(0) ' − (ω/µ̃|Q|) 2ϑ0 and ϕ̇(0) = 0, the solution to the above

inverted pendulum (ωµ̃ < 0) for small ϑ0 and ϕ is

ϕ(t) = 2ϑ0

[
1−

(
1 +

ω

µ̃|Q|

)
cosh

(√
|ωµ̃Q| t

)]
. (5.2.15)

During the pendular oscillations, the time taken for ϕ(t) to become of order unity is then

τ '
∣∣∣∣ 1

|ωµ̃Q|
ln

[
ϑ0

(
1 +

ω

µ̃|Q|

)]∣∣∣∣ . (5.2.16)

Thus, the frequency of collective oscillations is larger when ωµ̃ becomes more negative. This

corresponds to |g| increasing beyond 2 in NH and |g| decreasing below 2 in IH, as observed

in Fig. 5.1.

Now that we have demonstrated that instabilities in NH for |g| > 2 are similar to IH for

|g| < 2, for further analysis we will confine ourselves to the scenario with IH and |g| < 2 .

Next we will show the effect of a non-zero λ̃ = λ. This term is identical for both neutrinos

and antineutrinos, and hence can be rotated away in a co-rotating frame, in the single-angle
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Figure 5.2: Left: Time evolution of Pz in IH with three different values of λ =

0, 100ω, 1000ω for g3 = 1.5. Right: Time evolution of Pz in IH with three different

values of g3 = 0, 1, 1.5 for λ = 100ω.

approximation, as shown in [97]. Now B ·D and |Q| are not exactly conserved, but exhibit

fluctuations with a frequency of λ. These can average out to zero for large λ. We plot the

time evolution of Pz with finite matter effect in Fig. 5.2 (left panel). It can be seen that the

presence of matter effects does not change the qualitative nature of the plots, however, the

value of τ increases with λ as has already been noticed [97]. The right panel of Fig. 5.2 shows

the effect of changing g3 in presence of a fixed matter density λ. We observe that changing

g3 also gives qualitatively similar results and leads to extension τ . Thus, a non-zero g3 acts

like an extra matter term in the system. This can also be discerned from Eq. 5.2.10.

5.2.2.2 Large mixing angle: double dip feature

If the vacuum mixing angle ϑ0 is large (and λ = 0, so the effective mixing angle is not

suppressed), the oscillations develop a doubly periodic pattern, as shown in Fig. 5.3. The

oscillation wavelength remains the same, however a new “double-dip” structure is seen in

the oscillation pattern.

This feature can be understood from the fact that when ϑ0 is large, the initial misalignment

angle 2ϑ0 is large. The pendular motion of P, which initially starts from the z-axis, is then

symmetric about this initial misalignment axis. However the motion of P is not exactly

symmetric about the z-axis. This asymmetry becomes more prominent and visible when

ϑ0 increases and this leads to the double-dip feature. If we realign our axis from which ϕ
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Figure 5.3: Time evolution of Pz and P z in IH for three different values of ϑ0 = 0.01, 0.4, 0.6.

We take g3 = 1.5 and µ = 10ω.

Figure 5.4: Parametric plot of Px(t), Py(t) and Pz(t) in IH for three different values of

ϑ0 = 0.01, 0.4, 0.6 (corresponding to those in Fig. 5.3). The pendular axis has also been

shown. We take g3 = 1.5 and µ = 10ω.

is measured with the pendular axis, then these features would vanish. In Eq. (5.2.14), this

amounts to a shifting of ϕ→ ϕ̃ = ϕ+ 2ϑ0.

When the initial neutrino-antineutrino flux asymmetry is vanishing, and stays zero since

g1 = 0, we have Pz(t) = Pz(t) = Sz/2, and Eq. (5.2.11) gives

Pz =
1

2

(
|Q| cosϕ+

ω

µ̃
cos 2ϑ0

)
. (5.2.17)

The maxima of Pz occur at ϕmax,1 = sin−1 [−ω sin 2ϑ0 / (µ̃|Q|)] and ϕmax,2 = 2π−4ϑ0+ϕmax,1 ,

while both the minima are at ϕmin = π. Equation (5.2.17) then explains the double-dip

feature. The heights of the two maxima are different, the larger maxima corresponding to

ϕmax,1 and the smaller maxima corresponding at ϕmax,2.

A clearer idea may be obtained if we study the motion of P in the 3-dimensional [Px(t), Py(t),
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Figure 5.5: Time evolution of Pz and P z in IH with decreasing neutrino potential as in

Eq. (5.2.18). The asymmetry is chosen to be ξ = 0.2 and ω = 0.3 km−1. Left: g1 = 0, g3 =

0.05. Right: g1 = 0.2, g3 = 0.

Pz(t)] space as shown in Fig. 5.4 . When ϑ0 is small, the motion is almost symmetric about

the z- axis, tracing an almost complete circle in the Px(t)− Pz(t) plane. It is interesting to

note that while the pendulum comes back to its initial position, it does not retrace its path.

For larger ϑ0, the axis tilts significantly, and P traces a trajectory symmetric about this new

axis. The double-dip features are therefore a result of an initial large misalignment.

5.2.3 Flavor conversions with a varying neutrino potential in a

supernova

Inside a core-collapse supernova, the neutrinos will experience a time-varying potential as

they travel outwards from the neutrinosphere. Moreover, the initial neutrino flux is typi-

cally more than the antineutrino flux. To take into account these features, we consider the

following spherically symmetric potential [106],

µ = 7.5× 105 km−1
(r0

r

)4

, r > r0 , (5.2.18)

where r0 = 10 km is taken to be the radius of the neutrinosphere. We choose ω = 0.3 km−1

corresponding to the atmospheric mass squared difference and E ' 20 MeV, and a neutrino-

antineutrino flux asymmetry of 20%. We take λ = 0 and study the effects of FP-NSSI and

FV-NSSI through the rescaled couplings g3 and g1 (see Eq. (5.2.8)), respectively. We show
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the evolution of Pz and P z in Fig. 5.5. The polarization vectors have been normalized such

that |P| = 1. The following observations may be made from the figure.

• FP-NSSI scenario: When only g3 is non-zero , the initial flux asymmetry is con-

served, a result of B · D conservation. The initial flat values of Pz and P z denotes

synchronized oscillations. It is important to note that the presence of g3 leads to an

extension of the time of onset of bipolar oscillations as explained in Section 5.2.2.1.

The bipolar oscillations, which would have started at r ' 100 km at g3 = 0, start

at r ' 130 km now for g3 = 0.05. Beyond that, almost complete flavor conversion

takes place, while conserving the total flavor lepton number, hence retaining the flux

asymmetry.

• FV-NSSI scenario: When only g1 is non-zero, the flavor lepton number is not con-

served. Rapid oscillations are observed to take place even at very low r values, due to

the “transverse” NSSI term proportional to ξµg1 x̂. With increasing r, the value of µ

decreases and so does the frequency of oscillation. During this evolution, the value of

the flux asymmetry ξ keeps on changing. It is finally frozen at large r when ξµg1 → 0.

Even in this scenario, almost complete flavor conversion may take place.

Thus, we find that even in the simple single-angle approximation, the introduction of NSSI

gives rise interesting results in the time evolution of system of neutrinos and antineutrinos of a

single energy. In the next section, we will focus on a spectrum of neutrinos and antineutrinos,

and study the effects of FP-NSSI and FV-NSSI on it.

5.3 Effects of NSSI on spectral swaps

Till now, we have studied the effects of NSSI on a single energy mode. In this section, we

explore its effects on a toy spectrum, over a range of ω values. This will help us get a clear

understanding of how NSSI can affect the spectral swaps. In this section, we explore the

NSSI effects in the g1 − g3 plane and illustrate our results with a box spectrum gin
ω (see

Eq. (5.1.1)). The spectrum, shown in Fig. 5.6 (left panel), corresponds to a flat ω spectrum

of neutrinos and antineutrinos, confined to 0 ≤ |ω| ≤ 1, with a ν− ν̄ flux asymmetry of 10%.

The neutrino flavors evolve while propagating through a medium with the neutrino-neutrino
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Figure 5.6: Initial spectrum and the background neutrino-neutrino potential for the analysis

in Section 5.3. Left: Initial spectrum gin
ω . Right: The neutrino-neutrino potential µ(r).

potential µ described by Eq. (5.2.18) and shown in Fig. 5.6 (right panel).

5.3.1 FP-NSSI scenario: pinching of spectral swaps

When g1 = 0, g3 6= 0, the NSSI terms play the same role in the EoMs as the matter term,

as we have seen in Sections 5.2.2.1 and 5.2.3. It is already known that presence of a matter

term tends to suppress collective oscillations [195]. So we expect that increasing values of

g3 would lead to suppression of spectral swaps. In Fig. 5.7, we show the final spectrum gfinal
ω

(left panel) and the swap factor Sω (right panel) for different values of g3, in IH.

It is observed that the swaps develop around the positive crossing at ω = 0, with their

relative extent on both sides of the crossing being fixed by approximate conservation of B·D.

The width of the swap is the greatest in the absence of g3 (SM scenario). With increasing g3,

the width of the swap is observed to decrease, i.e., the swaps get pinched. As g3 approaches

2, the height of the swap also decreases till the swap finally vanishes when g3 ' 1.7. Note

that the value of g3 at which the swap vanishes depends on initial spectrum, however our

arguments in Section 5.2.2.1 have already indicated that for g3 > 2 in IH, there would not

be any collective oscillations.

It is important to mention that in this case, the conservation of B ·D is approximately

valid in the limit of small mixing angle ϑ0. From Eq. (5.2.12), we find

d

dt
B ·D = λ̃ [B g D] , (5.3.1)
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Figure 5.7: The final spectrum gfinal
ω (left panel) and the swap factor Sω (right panel) for

g1 = 0 and g3 = 0, 1, 1.6, 1.7 .

where [· · · ] represents the scalar triple product (box product). If ϑ0 ' 0, the vectors B

and g = g3 ẑ are nearly parallel, the box product vanishes, and the flavor lepton number

conservation is valid.

The effect of the FP-NSSI coupling is thus to reduce both the height and width of the

spectral swaps.

5.3.2 FV-NSSI scenario: flavor lepton number violation

The presence of a non-zero g1 provides a more interesting scenario to study. The term ξµg1 x̂

essentially acts like an oscillation term between the two neutrino flavors. It causes flavor

lepton number violation and can give rise to flavor conversions even with ϑ0 = 0 [130].

The variation of Pz, P z in Fig. 5.5 (right panel) also illustrate the non-conservation of flavor

lepton number. Indeed with g = g1 x̂, Eq. (5.3.1) gives

d

dt
B ·D = −λ̃g1Dy cos 2ϑ0 , (5.3.2)

which is non-zero even for ϑ0 = 0. This non-conservation of B · D may have important

observations. We illustrate the effect of g1 on the same spectra as in Section 5.3.1 in Fig. 5.8.

The figure shows that the effect of g1 is felt at very low values. With our particular

spectrum, increasing g1 increases the width for ω > 0, while keeping the swap for ω < 0

unchanged. Clearly this implies that B · D =
∫
dω gω is not conserved. The width of the

swap on both sides of the split is now governed by the variation in Eq. (5.3.2).
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development of the swap factor Sω at different distances from the neutrinosphere for g1 = 0.1.

An important observation may be made at this stage. When B ·D is conserved,
∫
dω gω

over the swapped region should vanish. This implies that the swapped region must contain

at least one zero crossing in gω, by the intermediate value theorem. This is the essential

reason for swaps to develop around a crossing. Therefore in the SM as well as in FP-

NSSI, collective oscillations start taking place only when there is a gω crossing, which is the

common wisdom. However, this notion breaks down when we have FV-NSSI. Now B · D

is not conserved anymore and, depending on the evolution in Eq. (5.3.2), swaps may occur

away from the zero crossing of gω.

We illustrate an interesting consequences of this observation in Fig. 5.9, where we take the

same initial spectrum gin
ω as in Fig. 5.6 (left panel), however consider the NH case. In the SM,

we know that a swap cannot develop in such a case since the crossing at ω = 0 is positive.
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Even the discontinuity at ω = 1 is not a real negative crossing and cannot lead to a swap

as long as B ·D is conserved. However, as the Fig. 5.9 (right panel) shows, in presence of

g1, a swap starts developing for ω ' 1, resulting in collective oscillations in that region. To

understand the evolution of this swap further, we have added a gω = 10−5 (for 1 ≤ ω ≤ 10)

and observed the development of the swap at different distances from the neutrinosphere. As

the right panel of Fig. 5.9 shows, the swap clearly starts developing beyond the discontinuity

at ω = 1 where the spectrum virtually vanishes, a feature not seen in the case of the SM.

Interestingly, the swap factor remains at Sω = −1 and does not change to Sω = 1 even for

large enough ω.

Thus, introduction of an off-diagonal NSSI leads to unexpected swaps in the neutrino

spectrum. This flavor number non-conservation can also lead to new spectral splits even in

the neutronization burst epoch, as we will see in the next section.

5.4 Collective effects during neutronization burst

In the SM, collective effects cause pairwise conversions νe ↔ νx and ν̄e ↔ ν̄x due to flavor

lepton number conservation. During the neutronization burst, only νes are present. As a

result, there is no zero-crossing in the spectrum gω and hence bipolar oscillations do not

occur. However, as we have shown in Section 5.3, the presence of FV-NSSI can provide

the necessary seed for collective oscillations to develop. As a result, spectral splits may be

observed even during the neutronization burst. Note that during this epoch, none of the

other collective effects, including the fast flavor conversions, can give rise to this phenomenon.

In Fig. 5.10, we demonstrate this novel phenomenon with an initial box spectrum consisting

only of νes. This spectrum is non-zero for ωmin ≤ ω ≤ ωmax, which represents a cut-off in

the νe spectra at low and high energies. We observe that

• In NH (left panels), the presence of a non-zero g1 leads to the development of a swap

around ωmax, which corresponds to conversions of low energy νes to νxs. With increasing

value of g1, the swap becomes broader, thereby converting more of the νes to νxs. For

the spectrum used here, this phenomenon is visible for a non-zero FV-NSSI as low as

10−3.
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Figure 5.10: Effects of collective oscillations due to NSSI on a pure νe spectrum restricted

to 0.2 ≤ ω ≤ 2, shown in solid line. Left Panels: NH, Right Panels: IH. Top Panels: The

final spectra with g3 = 0 (solid) and g1 = 0.001 (dotted), and g1 = 0.01 (dashed). Bottom

Panels: The pinching of final spectra for g1 = 0.01 with g3 = 0 (dashed), g3 = 0.05 (dotted)

and g3 = 0.1 (dotdashed) in NH (left). Similar plot in IH (right) for g1 = 0.01 with g3 = 0

(dashed), g3 = 0.001 (dotted) and g3 = 0.005 (dotdashed).

• In IH (right panels), the presence of a non-zero g1 leads to the development of a

swap around ωmin, which corresponds to conversions of high energy νes to νxs. With

increasing value of g1, the swap becomes broader, thereby converting more of the νes

to νxs. For the spectrum used here, this phenomenon is visible for a non-zero FV-NSSI

as low as 10−3.

• If a non-zero g3 is also present, the swap is pinched, as shown in the lower panels.

In order to see how the presence of FV-NSSI affects the neutrino spectrum during neu-

tronization burst, we consider the following initial flux [79]

F 0
ν (Eν) ∝

E3
ν

〈Eν〉4
e−4 Eν

〈Eν〉 . (5.4.1)



99

NH, g1=0.02

gω
in

gω
final

-2 -1 0 1 2
-0.2

-0.1

0.0

0.1

0.2

0.3

ω [km-1]

gω

IH, g1=0.02

gω
in

gω
final

-2 -1 0 1 2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

ω [km-1]

gω

NH, g1=0.02
e,initial

e,final

x,final

0 10 20 30 40 50

0

5

10

15

E [MeV]

F
ν
(E
)
(a

.u
)

IH, g1=0.02
e,initial

e,final

x,final

0 10 20 30 40 50

0

5

10

15

E [MeV]

F
ν
(E
)
(a

.u
)

Figure 5.11: Effects of νe ↔ νx collective oscillations on an initial νe spectrum during the

neutronization burst, for g1 = 0.02, g3 = 0. Left panels: NH. Right panels: IH. We have

taken E = ∆m2
atm/(2ω).

We choose the average energy 〈Eνe〉 = 12 MeV. The fluxes for the ν̄e, νx and ν̄x have all

been taken to be zero during the neutronization epoch. With these parameters, the initial νe

spectra gin
ω , and the final νe spectra gfin

ω , just after the νe ↔ νx collective oscillations are over,

are shown in Fig. 5.11 for both NH (left panel) and IH (right panel). Indeed, we observe a

distinct split in the νe spectrum in both hierarchies.

• In NH, for high energies, the final spectrum is identical to the original νe spectrum,

whereas at lower energies, all the νes get converted to νxs. As a result, the average

energy of the νe spectrum will increase and a sharp rise would be observed after a

certain critical energy.

• In IH, the exact opposite behavior is observed. For low energies, the final spectrum

is identical to the original νe spectrum, whereas at higher energies, all the νes get

converted to νxs. As a result, the average energy of the νe spectrum will decrease and
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and its tail would be replaced by a sharp drop.

The analysis so far takes into account only two-flavor collective conversions. This could be

followed further by another collective flavor conversion, in the stepwise process. In principle,

collective conversions νe ↔ νy and νe ↔ νx may happen in a stepwise manner [95, 107, 109],

where

νy ≡ cos θ23 νµ + sin θ23 ντ , νx ≡ − sin θ23 νµ + cos θ23 ντ . (5.4.2)

The spectra after these collective transformations will further be affected by MSW flavor

conversions at the H and L-resonances [28,77]. The final spectra arriving at the Earth would

be

FNH
νe =

[
|Ue3|2 (1− Pey − Pex) + |Ue2|2Pey + |Ue1|2Pex

]
F 0
νe ,

F IH
νe =

[
|Ue2|2 (1− Pey − Pex) + |Ue3|2Pey + |Ue1|2Pex

]
F 0
νe , (5.4.3)

where Pey and Pex are the collective flavor conversion probabilities for νe ↔ νy and νe ↔ νx

respectively. We have taken the H and L-resonances to be adiabatic as is clear from the large

values of the corresponding mixing angles [34,35,77]. In the absence of NSSI, Pey = Pex = 0

and hence

FNH
νe = |Ue3|2 F 0

νe , F IH
νe = |Ue2|2F 0

νe . (5.4.4)

Since |Ue3|2 ' 0.025 , |Ue2|2 ' 0.3 and the flux during the neutronization burst is well-

predicted [131], the two hierarchies can be distinguished by observing the number of events

during the first ∼ 20 ms of a SN neutrino signal.

This picture changes with the introduction of NSSI. The non-zero values of Pey and Pex,

combined with the sharp energy dependent spectral split features in these quantities will

affect the final number of events as well as the νe spectral shape. For an illustration, we

choose the scenario where Pex = 0 and show the quantity (flux × cross-section) for νe at a

liquid Argon (LAr) detector in Fig. 5.12. Note that the exact position of the spectral split

would depend on the initial flux as well as the values of NSSI parameters. In the scenario

shown in the figure, increasing the value of g1 tends to shift the split to higher energies in

NH and lower energies in IH. On the other hand, the presence of a non-zero g3 would cause

pinching of the swap. This corresponds to shifting the split to lower energies in NH and to
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Figure 5.12: The quantity (flux × cross-section) for charged-current events (νe +40 Ar →40

K∗+e−) in a liquid Argon detector in different scenarios. The cross-sections have been taken

from [196]. The threshold energy of the detector is taken to be E = 5 MeV [197], as shown

in grey dotdashed lines. Left panel: NH. Right panel: IH.

higher energies in IH. If further Pex 6= 0, it could give rise to multiple spectral splits. Since

such features can be present in both hierarchies, the identification of mass hierarchy from

the neutronization burst [77,131] would become difficult.

The observation of such a spectral split during the neutronization epoch would indicate

the presence of NSSI. This however would need a sufficiently large number of events and

a very good resolution in time and energy to resolve these splits. With a neutrino flux of

∼ 1057 νes during the neutronization burst of a SN at 10 kpc, one would expect up to O(100)

events in a 40 kt liquid Argon detector. In water Cherenkov detectors, where νe flux will

be detected through the elastic scattering νe + e− → νe + e− and the energy determination

is not so good, the signals of NSSI may be discerned if the expected number of events are

observed to be too high for the NH scenario and too low for the IH scenario. For the 500 kt

Hyper-Kamiokande, one would expect up to O(100) of events during this neutronization

burst.

Note that the above results are obtained under the single-angle approximation. Multi-angle

effects and possible consequent effects of matter may modify the final spectra. However the

distinctive effects of NSSI, in particular the formation of spectral splits where none would

be present otherwise, could survive and are worth exploring further.
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5.5 Summarized Results

In this work, we have investigated the effects of non-standard self-interactions (NSSI) on

collective oscillations of supernova (SN) neutrinos. Using a flavor-pendulum picture to get an

analytical understanding, we have performed a comprehensive study of the impact of flavor-

preserving (FP-NSSI) as well as flavor-violating NSSI (FV-NSSI) on the flavor evolution of

neutrinos. Indeed, many interesting results significantly distinct from the Standard Model

(SM) expectations are seen to emerge with the addition of NSSI.

For an ensemble of neutrinos and antineutrinos of a fixed energy, we have showed that

for large enough NSSI, the predictions for the two mass hierarchy interchange, i.e., flavor

conversions can happen in NH, whereas they can vanish in IH. For a typical neutrino-neutrino

potential in a SN, the FP-NSSI are observed to act like a matter term, causing a delay in

the onset of flavor conversions. The FV-NSSI result in the violation of flavor lepton number,

and hence do not preserve the initial neutrino-antineutrino flux asymmetry.

We have also analyzed the effects of NSSI on a box-spectrum of neutrinos and antineutrinos

over a range of energy modes, in order to clarify how NSSI affects the spectral swaps. In the

presence of FP-NSSI, spectral swaps develop around a spectral crossing. The FP-NSSI lead

to the pinching of the spectral swaps, i.e., a decrease in their width and height. The flavor

lepton number violation arising from FV-NSSI leads to interesting observations: while in the

SM, the swaps have to develop around the zero crossing of the gω-spectra, the presence of

FV-NSSI may cause swaps to appear away from spectral crossings, and even in the absence

of spectral crossings.

An important consequence of such a flavor lepton violation with FV-NSSI is the presence

of collective oscillations during the neutronization burst epoch of a SN leading to low (high)

energy conversion of νe to νx in NH (IH). This would alter the neutronization burst signal.

Using a realistic νe spectrum during the neutronization burst and taking into account the

effect of MSW resonance inside the star, we have demonstrated the presence of spectral

splits in the final spectra. Since collective effects would otherwise be absent during this

epoch, the presence of such splits can be a clear indication of NSSI. This could also make

the identification of hierarchy during neutronization burst harder.
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Naturally, this motivates two questions:

(i) Why do FP-NSSI lead to suppression of collective oscillations, while FV-NSSI seem to

aid in collective oscillations even in situations where there would have been none in the SM?

(ii) Can NSSI have any significant impact on fast flavor conversions?

In the next chapter, we provide an analytical understanding of the enhancement and

suppression of collective oscillations by FV-NSSI and FP-NSSI respectively. We also study

the effects of NSSI on fast flavor conversions in the simple intersecting 4-beam model, both

analytically through a linear stability analysis as well as numerically.





Chapter 6

Analytical aspects of NSSI in a

supernova and fast flavor conversions

In this chapter, we further explore the effects of non-standard self-interactions (NSSI) of

neutrinos streaming out of a core-collapse supernova, in order to understand their features

analytically. Using the standard linear stability analysis (LSA), we show that presence of

NSSI gives rise to linearly as well as exponentially growing solutions. Using a simple toy

models, we demonstrate analytically that flavor-preserving NSSI lead to a suppression of

bipolar collective oscillations. We also study the impact of NSSI on fast flavor conversions

using the simple intersecting 4-beam model as an example. We solve the full non-linear

equations of motion in the 4-beam model numerically, and explore the interplay of fast and

slow flavor conversions in the long-time behavior, in the presence of NSSI. 1

6.1 Introduction

In the previous chapter, we made a detailed study of the effects of flavor-violating NSSI (FV-

NSSI) and flavor-preserving NSSI (FP-NSSI) on collective oscillations. We demonstrated

1The results in this chapter are based on the paper: A. Dighe and M. Sen, “ Nonstandard neutrino

self-interactions in a supernova and fast flavor conversions”, Physical Review D97 (2018) no.4, 043011

[arXiv:1709.06858[hep-ph]].
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using box spectra and single-angle analysis that FP-NSSI leads to the pinching of spectral

swaps, hence the suppression of collective oscillations, whereas FV-NSSI may lead to the

development of swaps away from (or even in the absence of) a spectral crossing. In particular,

FV-NSSI can cause collective oscillations during the neutronization burst epoch for both

hierarchies, leading to distinct features in the neutronization spectra. In this chapter, we

will try to understand these effects analytically.

We perform a LSA in the two-neutrino flavor space to analytically understand the effects

of NSSI on the onset of collective oscillation. As explained before, such an analysis typically

leads to an eigenvalue equation [96], whose exponentially growing eigenvalues correspond to

an instability. We find that when both FP-NSSI and FV-NSSI are present, one gets linearly

increasing solutions along with the exponentially increasing ones. These linear solutions may

lead to an earlier onset of flavor instability. Furthermore, presence of FV-NSSI may obviate

the need for a seed to start collective oscillations.

In addition, note that the above study was performed assuming the absence of fast oscil-

lations. This assumption was valid in the neutronization burst epoch, since only electron

neutrinos are emitted in this phase and hence there can be no collective effects or fast oscil-

lations in SM. It would be interesting to see how NSSI affects fast conversions, since these

rapid conversions near the neutrinosphere might play an important role in SN explosion. In

this chapter, we carry out a detailed study of the effects of NSSI on fast as well as slow

collective flavor conversions.

We then proceed to analyze the effects of NSSI on fast oscillations. Using the intersecting

4-beam model of neutrinos and antineutrinos illustrated in Chapter 4, we demonstrate that

fast oscillations are suppressed by FP-NSSI even for rapidly growing temporal solutions.

This could not have been possible in the SM, where temporal instabilities are unsuppressed

by matter effects [178,180]. On the other hand, FV-NSSI enhance fast oscillations and also

cause them to start even earlier than in the SM.

In the context of the 4-beam model, we had demonstrated in Chapter 4 that fast oscilla-

tions are absent when the angle between the neutrino and the antineutrino is obtuse. This

corresponds to a potential barrier in terms of the classical analog presented earlier. However,

we find that FV-NSSI allow fast oscillations to take place even when the angle between the
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neutrino and the antineutrino is obtuse. An important consequence of the last result above

is that FV-NSSI can induce fast oscillations in even simpler systems like a two back-to-back

beams of neutrino-antineutrino. In such a system, it was shown that spatial inhomogeneities

are necessary for an instability to exist [119]. However, this no longer remains a necessity

in the presence of FV-NSSI, and fast oscillations take place even in absence of a spatial

inhomogeneity.

Finally, we also study the effects of NSSI on the long-time flavor evolution of the 4-beam

model by solving the fully non-linear equations of motion numerically. We demonstrate

that the fast oscillations appear as modulations on the slow oscillations. The frequency and

amplitude of the modulations are influenced by the values of the NSSI parameters.

We demonstrate these ideas in the following sections.

6.2 Linear Stability analysis with NSSI

We work in terms of the 2 × 2 occupation number matrices %p. Following 5.2.3, the most

general neutrino self-interaction Hamiltonian in presence of NSSI is

Hνν
p =

√
2GF

∫
d3q

(2π)3
(1− vp · vq)×

{
G(%q − %̄q)G+G Tr [(%q − %̄q)G]

}
, (6.2.1)

Here G is the coupling matrix defined as (see Eq. (5.2.4) )

G =
1

2
(g0I + g · σ) . (6.2.2)

The parameter g0 can be scaled away using the redefinitions

g → g/(g0/2) , µR → µR(g0/2)2 , (6.2.3)

where µR will be defined presently. Note that in this case, µR is defined through Eq. (6.2.9).

Further simplification can be achieved by redefining the phase of νx such that g2 = 0. This

allows us to write the redefined coupling matrix as

G =

1 + g3 g1

g1 1− g3

 . (6.2.4)

Henceforth, we will work with this coupling matrix.
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To understand the results of the previous chapter analytically, we perform an LSA to

check for onset on an instability far away from the neutrinosphere. The formalism for the

LSA has already been developed in 2.4. We redo the stability analysis in the presence of

NSSI in this section.

We confine ourselves to a spherically symmetric setup, where neutrinos are emitted from a

fiducial neutrinosphere of radius R. Following [96], we label them by the variable u = sin2 ϑR,

where ϑR is the emission angle of the neutrinos. For simplicity, we assume that the solution

is stationary and has an axial symmetry. The radial velocity for a mode u at the radius r is

vr,u =
√

1− uR2/r2 .

In terms of the flux matrices F [96, 114]

Fω,udω du = 2πr2 vr,u%p
d3p

(2π)3
, (6.2.5)

the EoMs, in presence of NSSI, become

i∂rFω,u = [Hω,u, Fω,u] , (6.2.6)

where

Hω,u = (ω + λr)v
−1
r,u + µR

R2

r2

∫
dΓ′

1− vr,uv′r,u′
vr,uv′r,u′

×
{
GFω,uG+G Tr [Fω,uG]

}
, (6.2.7)

where the symbols have the usual meaning as 2.4. Following 2.4, the quantities λr (matter

potential at a radius r) and µR (neutrino-neutrino potential at the neutrinosphere) are defined

as

λr =
√

2GF ne(r) , (6.2.8)

µR =

√
2GF

[
F ē
ω,u(R)− F x̄

ω,u(R)
]

4πR2
, (6.2.9)

The flux matrix can be written as a sum of a trace part, and a traceless part:

Fω,u =
Tr (Fω,u)

2
+
gω,u

2

 sω,u Sω,u

S∗ω,u −sω,u

 , (6.2.10)

where

gω,u =

 F e
ω,u − F x

ω,u for ω > 0 ,

F x̄
ω,u − F ē

ω,u for ω < 0 .
(6.2.11)
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At t = 0, we have sω,u = 1 and Sω,u = 0 in Eq. (6.2.10). As flavor evolution begins, Sω,u

starts developing a non-zero value. Since s2
ω,u + S2

ω,u = 1, a small amplitude expansion may

be performed with the approximation sω,u ≈ 1, Sω,u � 1, and where terms of O(S2) are

dropped. This is equivalent to linearizing the equations in Sω,u.

We arrive at the linearized EoMs in presence of NSSI:

i∂r Sω,u =

[
(ω + λr) v

−1
u,r + µR

R2

r2
(1− g2

1 + 3g2
3 + 4g3)×

∫
dΓ′

1− vu,rvu′,r′
vu,rvu′,r′

gω′,u′

]
Sω,u

− µR

R2

r2

∫
dΓ′

(1− vu,rvu′,r′)
vu,rvu′,r′

gω′,u′ ×
[
(1 + g2

1 − g2
3)Sω′,u′ + 2g2

1S
∗
ω′,u′ + 4 g1g3

]
.

(6.2.12)

Eq. (6.2.12) clearly is not an eigenvalue equation, as it would have been in the SM limit

[96,114]. This would lead to the following interesting consequences. (While describing these

observations, we will drop the subscripts for simplicity of notation.)

(i) Only FP-NSSI: In this limit, Eq. (6.2.12) is an eigenvalue equation and the standard

analysis of [96] holds. One can look for exponentially growing solutions of the form S =

Qe−iΩt, where Ω = γ + iκ is complex. A positive non-zero value of κ indicates an instability

growing with a rate eκ t.

(ii) Only FV-NSSI: The EoMs governing S are not simple eigenvalue equations in S

anymore. However one may combine the pair of coupled differential equations for S and

S∗ to get an eigenvalue equation. This may be done by looking for solutions of the form

S = AeΓt, where A can be complex and Γ is real. Positive solutions of Γ indicate a runaway

solution and hence signal an instability.

(iii) Both FP-NSSI and FV-NSSI: Eq. (6.2.12) cannot be converted to a simple eigen-

value equation. The term proportional to g1g3 would generate S even if it were vanishing at

t = 0. As long as S is sufficiently small, the growth rate will be dominated by a linear rise

owing to this term. However, as S grows, the exponential growth may take over. Hence one

expects to find a linear rise, followed by an exponential one in the instability growth rates.

Using Eq. (6.2.12) we shall demonstrate these observations explicitly using a simple two-

box spectrum in the single-angle approximation and far away from the neutrinosphere. This

will also provide an analytical understanding of the numerical results presented in [198].
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6.2.1 Analytical understanding of the evolution of a two-box spec-

trum

In the previous chapter, we showed that in the single-angle approximation and far away

from the neutrinosphere, FP-NSSI can cause suppression of collective oscillations, leading to

pinching of spectral swaps in a two-box spectrum. Conversely, presence of FV-NSSI leads

to a gradual widening of spectral swaps. We will now try to explain these observations

analytically using the formalism developed in the earlier section.

Far away from the neutrinosphere (r � R), we can drop terms of O(R2/r2) in Eq. (6.2.12).

In this limit, the EoMs are given by

i∂rSω,u =
[
ω + λr + uλ̃r + uµ̃rε (1− g2

1 + 3g2
3 + 4g3)

]
Sω,u

− µ̃r (1− g2
3 + g2

1)

∫
du′ dω′ (u+ u′) gω′,u′ Sω′,u′

− 2µ̃r g
2
1

∫
du′ dω′ (u+ u′) gω′,u′ S

∗
ω′,u′

− 4µ̃r g1g3

∫
du′ dω′ (u+ u′) gω′,u′ , (6.2.13)

where

λ̃r =
√

2GF ne(r)
R2

2 r2
,

µ̃r =

√
2GF

4πR2

R4

2 r4

[
F ē
ω,u(R)− F x̄

ω,u(R)
]
. (6.2.14)

Here ε =
∫
dω′du′gω′,u′ encodes the net neutrino-antineutrino asymmetry. This is the gener-

alization of the multi-angle evolution equation derived for the SM, and reduces to it in the

limit g1, g3 → 0 [Eq. (31) in [96]].

For demonstrating the effects of NSSI, we consider the scenario where all the neutrinos

have the same emission angle and hence may be labeled by a single angular mode u0. We

take the initial spectrum to be the two-box spectrum, as shown in the left panel of Fig. 6.1:

gω ≡ gω,u0 =

−1 −A < ω < 0 ,

+1 0 < ω < B .

(6.2.15)

Such a simple box spectrum has the advantage of making the eigenvalues analytically

tractable and hence the effects of NSSI become clear. Following [96], one can define

λr ≡ λr + u
[
λ̃r + µ̃r ε (1− g2

1 + 3g2
3 + 4g3)

]
, (6.2.16)
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Figure 6.1: Left panel: a two-box spectrum [Eq. (6.2.15)] with A = 1 and B = 1.6. Right

panel: Plot showing growth rates κ in units of
√
ωµ̃ for u = 1/2. Red (solid) indicates

the SM, whereas blue (dashed) represents g1 = 0 , g3 = 0.5 and black (dotted) shows g1 =

0.5 , g3 = 0.

which acts as the effective matter term in the equations. In the following discussions in this

section, we drop the subscript r of µ̃ for simplicity of notation.

The suppression and the enhancement of collective oscillations can be characterized in

terms of the change of the growth rate κ. The growth rates in this case are proportional to√
ωµ̃, and hence come under slow collective oscillations. The right panel of Fig. 6.1 shows

the growth rates in units of
√
ωµ̃ for u = u0 = 1/2. For any other value of u0, the results will

be identical with µ̃ replaced by 2u0 µ̃. The effects of NSSI may be observed and interpreted

as follows:

(i) Only FP-NSSI: As noted before, in this case Eq. (6.2.13) is a simple eigenvalue

equation. The effective matter term can be rotated away by going to the appropriate co-

rotating frame. The analytical results for SM [see Eq. (47) of [96]] then carry through with

µ̃ replaced by µ̃(1− g2
3), and hence the collective oscillations are suppressed due to g3.

(ii) Only FV-NSSI: In this scenario, Eq. (6.2.13) is not a simple eigenvalue equation.

However, if the term g2
1S
∗
ω,u can be neglected when compared to (1+g2

1)Sω,u, then Eq. (6.2.13)

may be approximated by an eigenvalue equation, and the effective matter term can be co-

rotated away. The numerical observation of enhancement of collective oscillations due to g1

may be then qualitatively interpreted as a result of the µ̃(1 + g2
1) factor. The effect of the

neglected g2
1S
∗
ω,u term is difficult to determine analytically, however.
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Figure 6.2: The intersecting 4-Beam Model, consisting of two left-going and two right-going

neutrinos and antineutrinos.

When both FP-NSSI and FV-NSSI are present, Eq. (6.2.13) cannot be converted to an

eigenvalue equation and hence an analytical understanding in terms of linear stability analysis

seems elusive.

This provides us with a semi-analytical understanding of the effects of NSSI on collective

bipolar oscillations. Now, we turn our attention to analyzing the impact of NSSI on fast

flavor conversions.

6.3 Fast flavor oscillations: the 4-beam model

We demonstrate the effects of neutrino NSSI on a simple system that shows fast flavor oscil-

lations, an intersecting 4-beam model consisting of two right-going and left-going neutrinos

and antineutrinos each [119], as shown in Fig. 6.2 and considered earlier in Chapter 4. Since

our understanding of the fast oscillations phenomenon is still in an exploratory phase, we

have considered the simplest system showing such an effect [119, 183, 199], to analytically

understand the phenomenon without delving deeper into a more realistic spectra.

Following [119], the amplitudes for the corresponding modes are denoted by QL (QL̄)

for neutrinos (antineutrinos) coming from left, and QR (QR̄) for neutrinos (antineutrinos)

coming from right. Their corresponding spectra are gL, gL̄, gR and gR̄. The spectra here are

taken to be left-right symmetric, i.e,

gR = gL =
1

2
(1 + a) ,

gR̄ = gL̄ = −1

2
(1− a) , (6.3.1)

where a gives the net neutrino-antineutrino asymmetry in the system. The range of a is
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chosen to be −1 ≤ a ≤ 1. The angle at the intersection of the two beams is denoted by θ as

shown in the figure.

Since we are interested in conversions taking place very close to the neutrinosphere, the

effective neutrino-neutrino potential µ ≈ µR, and the effective matter potential λ ≈ λR =
√

2GFne(R). Also, it is more useful to label the modes using the velocity vector v rather

than the variable u = sin2 ϑR. The EoM for the off-diagonal parameter Sp for each mode p

is given by

i(∂t + vp · ∇)Sp =

[
ω + λ+ µ (1− g2

1 + 3g2
3 + 4g3)×

∑
q

(1− vp · vq)gq

]
Sp

− µ
∑
q

(1− vp · vq)gq ×
[
Sq + (g2

1 − g2
3)Sq + 2g2

1S
∗
q + 4 g1g3

]
, (6.3.2)

where q stands for the other three modes.

In the 4-beam model, λ = 0. For the linear stability analysis, we look for exponentially

growing solutions of the form Sq = Qqe
−iΩt, where Ω = γ + i κ is complex. A positive

non-zero κ indicates an instability in the system and κ ∼ µ indicates fast oscillations.

6.3.1 Linearized analysis of the model

The left-right symmetry of the intersecting 4-beam model can be used to combine the

neutrino-antineutrino amplitudes into Q± ≡ (QL ± QR)/2 and Q̄± ≡ (QL̄ ± QR̄)/2. This

allows us to decouple the equations for four modes into two sets of two. Within the SM,

the first set consists of (Q+, Q̄+), which is the left-right symmetric solution that undergoes

slow collective oscillations, and the second set consists of (Q−, Q̄−), which is the left-right

symmetry-breaking solution that undergoes fast oscillations [119].

We find that the narrative of fast oscillations changes significantly in the presence of NSSI.

(i) For the symmetry breaking solution, FV-NSSI (FP-NSSI) increases (decreases) the

available parameter space for fast oscillations. In fact, for FV-NSSI, oscillations can happen

even for cos θ < 0 which was not possible in the SM.

(ii) Within the SM, fast oscillations are possible for (Q+, Q̄+) only if spatial homogeneity
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Figure 6.3: Dependence of growth rates on c ≡ cos θ and the ν − ν̄ asymmetry a, for the

left-right symmetry-breaking solution (Q−, Q̄−). Left: g1, g3 = 0, Middle: g1 = 0 , g3 = 0.3,

Right: g1 = 0.3 , g3 = 0.

of the beam is broken. However, the presence of FV-NSSI allows for fast oscillations even

for homogeneous beams.

We now demonstrate the above features in the context of linear stability analysis. We work

in the approximation where only either g1 or g3 is non-zero, and the g2
1S
∗
q from Eq. (6.3.2)

can be neglected. We have numerically checked that the latter is a good approximation for

g1 . O(0.5). It is now possible to understand the above features analytically, by writing

down eigenvalue equations in the form

Ω

Q±
Q̄±

 =

H11 H12

H21 H22

Q±
Q̄±

 , (6.3.3)

where Hij’s and the corresponding eigenvalues are given in Appendix A. Note that in order

to isolate fast oscillations, the eigenvalues are calculated in the limit ω/µ → 0. This also

automatically makes the analysis energy independent.

In the case of left-right symmetry breaking solution (Q−, Q̄−), non-zero complex eigenval-

ues are obtained for ω/µ → 0, indicating the presence of fast oscillations. In Fig. 6.3, we

show the growth rates in units of µ in the a−cos θ plane, in the absence of NSSI (left panel),

as well as in the presence of either FP-NSSI (middle panel) or FV-NSSI (right panel). The

following observations can be made.

(i) In the absence of NSSI, one finds non-zero growth rates only for cos θ > 0. This can

be easily understood from Eq. (A1) and Eq. (A2) for g3 = 0 and g1 = 0 respectively. In
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Figure 6.4: Growth rates at a = 0, as functions of c ≡ cos θ, for the left-right symmetry-

breaking solution (Q−, Q̄−). Left: Only FP-NSSI. Right: Only FV-NSSI.

both cases, the argument of the square-root is never negative for cos θ ≤ 0 and hence no

instability occurs. In the scenario with instability, the growth rates do not depend on the

sign of the neutrino-antineutrino asymmetry since the argument of the square-root depends

on a2 [119].

(ii) The presence of FP-NSSI suppresses fast oscillations, shifting the non-zero growth

rates to higher values of cos θ. Larger values of FP-NSSI shift the domain of fast oscillations

to more acute-angle modes. This results in the effective pinching of the allowed region in

the a− cos θ parameter space.

(iii) The presence of FV-NSSI, on the other hand, expands the domain of fast oscillations.

As can be seen from the right panel of Fig. 6.3, FV-NSSI can lead to fast oscillations even

with negative cos θ, i.e., the ν and ν̄ modes with obtuse intersection angles start showing

fast oscillations. This effect becomes significant for g1 ∼ O(0.1).

In Fig. 6.4, we show the variation of the growth rates as a function of cos θ for different

values of g3 (left) and g1 (right). This gives a quantitative idea of the suppression and

enhancement of the growth rate, with increasing g3 and g1, respectively. Although both the

plots are for zero neutrino-antineutrino asymmetry, we have checked that the features of the

plot would remain unchanged with a non-zero asymmetry.

In the case of the left-right symmetric solution (Q+, Q̄+), the SM predicts no fast oscilla-

tions, since the eigenvalues in the limit ω/µ→ 0 are (see Appendix A)

Ω±SM =
µ

2

[
a(3− c)±

√
a2(3− c)2

]
, (6.3.4)
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Figure 6.5: Dependence of growth rates on c ≡ cos θ and the ν − ν̄ asymmetry a, for the

left-right symmetric solution (Q+, Q̄+), for g1 = 0.1 and g3 = 0.

which are always real. Also, in the presence of only FP-NSSI, the eigenvalues in Eq. (A3)

can become complex only for g3 & O(1).

However, even with values of g1 as small as 0.01, it is possible to get complex eigenvalues

for Eq. (A4). In Fig. 6.5, we show the variation of the growth rates in the a− cos θ plane for

g1 = 0.1. Clearly, large growth rates of O(µ) are observed in the low-asymmetry region.

This opens up a new possibility for the back-to-back two-beam model, considered in [119],

where spatial inhomogeneities were needed in order to start fast oscillations. In our intersect-

ing 4-beam model, the scenario corresponds to the left-right symmetric solution (Q+, Q̄+)

with c = −1. In the presence of FV-NSSI, the eigenvalues are [see Eq. (A4)]

Ω+
g1

= 2µ

[
a
(
1− g2

1

)
±
√
a2 (1 + g2

1)
2 − 4g2

1

]
. (6.3.5)

Though g1 = 0 would exhibit no instabilities, even for small values of g1, an instability

would be developed for

|a| < 2g1

(1 + g2
1)
. (6.3.6)

Thus, no spatial inhomogeneities would be needed for fast oscillations as long as the neutrino-

antineutrino asymmetry a is sufficiently small. In Fig. 6.6, we show the growth rates as

functions of a for different values of g1. Clearly larger g1 values allow larger growth rates
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Figure 6.6: Growth rates in the effective two-beam scenario [the left-right symmetric solu-

tion (Q+, Q̄+) with c = −1], as functions of neutrino-antineutrino asymmetry a.

and lead to instabilities even for larger asymmetries.

6.3.2 Interplay of fast and slow oscillations and NSSI

In this section, we demonstrate the effect of NSSI by numerically solving the fully non-linear

equations of motion for the intersecting 4-beam system. The results relevant for the onset of

fast oscillations are shown in Fig. 6.7. Note that the magnitude of the off-diagonal parameter

|S| is same for all the modes, and characterizes flavor conversions. The left panel shows the

quantity Aeµ ≡ log10|S|, which gives the amplitude of the flavor conversions, while the right

panel shows Pe→e, the νe survival probability. The following observations may be made.

(i) The time evolution of Aeµ in the SM shows an initial flat phase, followed by a sharp

rise. This sharp rise corresponds to the onset of fast oscillations. The initial flat phase is an

effect of non-zero ω. It does not succeed in causing large flavor conversions as can be seen

from Pe→e in the left panel of Fig. 6.7.

(ii) As expected from the linear analysis, a non-zero g3 delays the onset, whereas a non-

zero g1 reduces this initial waiting period. These effects start becoming appreciable when

g1 , g3 & O(0.1).

(iii) The growth rate obtained from the numerical simulation is in good agreement with

the calculations from the linear stability analysis.
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Figure 6.7: Onset of fast oscillations from the numerical solution of the fully nonlinear EoM,

for a = 0 and c = 0.5. The other parameters are chosen to be ω/µR = 10−5, and ϑ0 = 10−2.

The left panel shows quantity Aeµ = log10|S| which gives the extent of flavor conversion.

The right panel shows the νe survival probabilities Pe→e.

(iv) An eigenvalue equation was not possible when both FP-NSSI and FV-NSSI are present.

However, the numerical solution verifies that the initial part of the dynamics is governed by

a linear growth, as expected. As can be seen from Pe→e, significant flavor conversion starts

happening only when the exponential growth of oscillations takes over.

(v) Note that fast flavor oscillations are only sensitive to the asymmetries in the angular

distributions of the neutrino-antineutrino beams, and energy only affects the onset, and not

the rate. The subleading terms of order ω/µ act as a seed necessary for the onset of the

oscillations. This does not affect the rate of oscillations, but only changes the initial waiting

period [200].

This point is further elucidated in the left panel of Fig. 6.8, where we plot the quantity

|S|. Small values of g1, in the absence of g3, do not affect the fast oscillations at all. On the

other hand, when both g1 and g3 are non-zero, even when their values are O(0.01), an early

linear rise as well as an early onset of exponential growth of oscillations may be observed.

The fast oscillations seen at slightly later times seem to be riding on a slowly rising curve.

This turns out to be a combined effect of slow oscillations and the early linear rise.

The right panel of Fig. 6.8 demonstrates the effect of NSSI on slow oscillations when fast

oscillations are absent. Clearly, g1 ∼ O(0.01), even in the absence of g3, can shift the

onset of slow oscillations to much earlier times. With the addition of a similar magnitude
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Figure 6.8: Onset of oscillation in terms of the off-diagonal parameter |S| from the numerical

solution of the fully nonlinear EoM for a = 0. The left panel shows the plot for c = 0.5 where

we expect fast oscillations. The right panel shows the case c = −0.5, when fast oscillations

are absent. The other parameters are chosen to be ω/µR = 10−5, and ϑ0 = 10−2.

of g3, the onset may be further hastened, bringing it in the domain of the onset of fast

oscillations. Thus, it is possible for the oscillations to start deep inside the core, still keeping

their frequencies small.

The long-time behavior of the non-linear oscillations would be an interplay of the fast and

slow oscillations, influenced by NSSI. In Fig. 6.9, we show this long-time evolution of |S| for

different cases.

(i) In the SM (g1 = 0 , g3 = 0), one can see fast oscillations with frequency ∼ µ =

104 km−1 = 0.03 s−1, modulated by an envelope of slow oscillations with frequency ∼ √ωµ ≈

100 km−1 = 0.0003 s−1.

(ii) Small values of g1 ∼ 0.005 affect the slow oscillation frequency appreciably, while

keeping the fast oscillations relatively unchanged. The modulating envelope increases in

magnitude as well as frequency if g1 is increased.

(iii) Non-zero values of g3 does not affect the frequencies of fast and slow oscillation.

However the modulating envelope decreases in amplitude. This is true both in the presence

and absence of g1.

Larger values of NSSI also start affecting the frequency of fast oscillations. However, we

will not explore such scenarios in this thesis.
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Figure 6.9: Long-time behavior of collective oscillations in terms of the off-diagonal param-

eter |S| from the numerical solution of the fully nonlinear EoM for a = 0 and c = 0.5.

The other parameters are chosen to be ω/µR = 10−4, and ϑ0 = 10−2. The rapid variations

correspond to the fast oscillation frequency while the slowly changing envelope correspond

to the slow oscillation frequency. The comparison of two columns indicates the effect of g1

while the comparison of the rows indicates the effects of g3.

6.4 Summarized Results

We have investigated the effects of NSSI of neutrinos on collective flavor oscillations of neu-

trinos exiting a SN. Employing a linearized stability analysis, we have demonstrated how the

exponentially growing flavor conversion modes are affected by the NSSI. While the linear

stability analysis in SM leads to an eigenvalue equation, the most general EoM incorporating

NSSI does not do so. Therefore, the problem of onset of oscillations, in complete generality,

cannot be solved analytically. However, we have found that, if the system has only FP-NSSI,

we get a straightforward eigenvalue equation, whose complex eigenvalue directly signals an

instability. We have showed that if only FV-NSSI are present, an approximate eigenvalue

equation can still be obtained, which motivates the enhanced growth rates observed in nu-
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merical simulations. However, in the presence of both kinds of NSSI, we have found an

additional linear contribution to Sω,u, which further complicates its evolution.

Using a simple two-box spectrum, we have analytically demonstrated the suppression of

collective bipolar oscillations by FP-NSSI. This corresponds to the pinching of spectral swaps

in presence of FP-NSSI, thereby explaining the results from previous literature. We have

also shown that the presence of FV-NSSI increases the growth rate of flavor instabilities in

the two-box spectrum.

We have also illustrated the NSSI effects on fast flavor oscillations, focussing on the in-

tersecting 4-beam model, which is the simplest model where such effects can be analytically

studied. For the symmetry-breaking modes, we have observed that the instability is re-

stricted to a smaller region in the a− cos θ plane with FP-NSSI, while FV-NSSI widens the

corresponding region. Moreover, while the SM allows an instability only for cos θ > 0, the

presence of FV-NSSI allows an instability even for an obtuse angle θ.

A striking corollary of the last result is that fast oscillations can take place for the two-

beam system consisting of opposing neutrino and antineutrino beams, even in the absence

of inhomogeneities. Indeed this scenario is equivalent to the left-right symmetric solution of

the intersecting 4-beam model with cos θ = −1, where instability can be developed in the

presence of FV-NSSI. This is in stark contrast to previous results in SM, where the two-beam

system could exhibit fast oscillations only if spatial inhomogeneities were present. Clearly,

the lepton flavor universality-breaking NSSI couplings now play the role of the symmetry-

breaking seed required to give rise to an instability.

We have also solved the complete non-linear EoMs numerically for the 4-beam system, for

the onset of oscillations as well as long-time behavior. It is observed that when both FP-

NSSI and FV-NSSI are present, the extra linear contribution to S results in an initial linear

growth, which may later be dominated by fast oscillations. However, in the situations where

fast oscillations are absent, the same linear term helps in bringing the onset of slow collective

oscillations to significantly earlier times. We have found that the long-time behavior of the

system may be described by fast collective oscillations modulated by the slow ones. It is

observed that FP-NSSI suppress the amplitude of these modulations while FV-NSSI enhance

their amplitude and frequency.
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Our main conclusion from this work is that NSSI can bring the fast as well as slow oscil-

lations nearer to the core. Hence, they can have important consequences for the explosion

mechanism and nucleosynthesis as flavor conversions can start occurring earlier. This in-

dicates the importance of going beyond the approximation of a neutrinosphere and taking

care of collisions in a neutrino oscillation analysis. Note that the effect of NSSI on the

neutronization burst as calculated in [198] still stays valid.



Chapter 7

Conclusion

Neutrinos streaming through a dense media, like a core-collapse SN, may undergo non-linear

flavor oscillations due to neutrino-neutrino forward scattering. Depending on the angular

distributions of the emitted neutrinos, these oscillations can be “bipolar”, occurring with a

rate proportional to
√
ωµ, or “fast”, occurring with a rate proportional to µ itself, where ω

is a measure of the vacuum oscillation frequency, and µ is a measure of the neutrino density

inside the supernova (SN). These oscillations are self-induced and collective. The work

presented in this thesis aims to highlight some aspects of the collective flavor conversions of

SN neutrinos, in the Standard Model (SM) and beyond.

While the bipolar oscillations have been a topic of intense research for more than a decade,

fast oscillations are a relatively new topic. The study of fast oscillations has thus far been

restricted to simple toy models of SN spectra. In these cases, the phenomenon was found to

happen in physically less motivated scenarios for a SN, i.e., when the ν̄es are in excess of νes,

but have a more forward peaked distribution [119]. It was also shown that fast conversions

were suppressed by the background matter density. Ref. [118], on the other hand, found that

these fast conversions were unaffected by the background matter. The results of these two

groups were in contradiction. In [180], we made a detailed study of the presence fast flavor

conversions in a SN, for realistic angular distributions of neutrinos, and a physically more

plausible scenario, where νes are in excess of ν̄es. We focused on neutrino flavor dependent

angular emission models, and studied flavor instabilities close to the neutrinosphere. Using

a linear stability analysis, we categorized fast oscillations as temporal or spatial instabili-
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ties. We found that while spatial instabilities are suppressed by ordinary matter, temporal

instabilities are unaffected. This allowed us to resolve the contradictions among different

groups in the existing literatures. We also performed a detailed numerical solution of the

fully non-linear equations of motion for realistic angular emission spectra of neutrinos. We

showed that an essential condition for the presence of fast oscillations is a crossing in the

zenith angle spectra of neutrinos and antineutrinos. Using fluxes and angular distributions

predicted by supernova simulations, we found that fast conversions can occur within tens of

nanoseconds, only a few meters away from the neutrinosphere. If these fast flavor conver-

sions indeed take place, they would have important implications for the supernova explosion

mechanism and nucleosynthesis.

To get a more intuitive understanding of fast flavor conversions, in [200] we developed the

analytical framework of the simplest system that exhibits fast flavor conversions: a set of four

intersecting beams of neutrinos and antineutrinos. Under certain simplifying assumptions,

we analytically demonstrated that a simple classical analog with a quartic oscillator can

explain fast flavor conversions in this system. Fast oscillations correspond to inversion of

this quartic potential, leading to an instability in the system. We identified that although

the fast oscillations are governed mainly by the neutrino self-potential, the onset depends

logarithmically on the subleading terms associated with the vacuum mixing. We provided a

semi-analytical expression of the time period of fast oscillations. This vastly simplified our

understanding of fast oscillations, and allowed us to associate an elegant classical picture

with this quantum phenomenon.

Another fairly unexplored topic in collective oscillations was the impact of non-standard

self-interactions (NSSI) of neutrinos on these self-induced flavor conversions. While the

framework for studying such flavor-violating NSSI in the context of collective oscillations

was developed a decade ago, much remains to be explored. Motivated by this, in [198] we

redevelop the formalism to study the impact of both flavor-violating NSSI (FV-NSSI) and

flavor-preserving NSSI (FP-NSSI) in the context of collective oscillations. Surprisingly, we

found that the presence of NSSI questions many of the well-known results of flavor evolu-

tions of dense streams. Numerically, we found that FP-NSSI suppresses collective oscilla-

tions, while FV-NSSI aids in flavor conversion. One of the most interesting and unexpected

observations was that presence of FV-NSSI can allow for collective oscillations even during
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the neutronization burst phase, which was not possible within the SM. This would result in

distinct observable splits in the νe spectrum during the neutronization burst epoch, which

would be a smoking-gun signal for the presence of NSSI. Using a realistic νe spectrum during

the neutronization burst and taking into account the effect of MSW resonance inside the SN,

we showed the observable effects of collective oscillations on the neutrino spectra in the up-

coming liquid Argon based detectors. We found that large number of events are expected in

next generation detectors, and therefore, it should be possible to distinguish these spectral

splits, leading to identification of NSSI.

We realized that the behavior of collective oscillations in the presence of NSSI could

be motivated analytically by the linear stability analysis. We redid the stability analysis

in presence of NSSI in [201]. Using it, we demonstrated that indeed FP-NSSI suppresses

collective oscillations, while FV-NSSI enhances them. Furthermore, we found that if both

FP-NSSI and FV-NSSI are present, one encounters linearly increasing solutions, in addition

to exponentially growing ones. Using simple toy models, we showed that such linear solutions

may lead to an earlier onset of collective oscillations, leading to substantial flavor conversions

behind the stalled shockwave.

Finally, we focused on the impact of NSSI on fast flavor conversions in simple toy models.

In order to study their effects, we took resort to both numerical simulations as well as

the stability analysis. We observed that for rapidly growing temporal solutions, FP-NSSI

suppresses fast conversions. This is highly relevant, as within the SM, it is not possible to

suppress fast-growing time instabilities even with a finite matter density. Furthermore, FV-

NSSI increases the growth rate of fast oscillations, causing them to happen even deeper inside

the neutrinosphere. This immediately calls for a study of fast oscillations, incorporating

inelastic collisions into account. We also numerically studied the long-term behavior of

the system in presence of FP-NSSI and/or FV-NSSI. We showed that typically the fast

oscillations appear as rapid fluctuations modulated by the comparatively slower bipolar

oscillations. This allowed for a clear demonstration of the different oscillation timescales

associated with flavor conversion of dense neutrino streams.

However, note that all works on neutrino flavor conversions in this thesis neglect non-

forward scatterings and collisions of neutrinos with the surrounding. This is justified because
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the slow bipolar collective oscillations as well as the MSW flavor conversions take place far

away from the neutrinosphere, and hence collisions are negligible in that domain. However,

as we indicated in Chapter 6, presence of fast flavor conversions indicates the importance of

going beyond the approximation of a neutrinosphere and taking care of collisions in a neutrino

oscillation analysis. The study of flavor evolution in presence of collisions is a boundary value

problem, where neutrinos of definite flavor stream out from the neutrinosphere. Therefore,

given the initial conditions at an inner boundary, one can solve a system of coupled partial

differential equations to study flavor evolution. However, the presence of very rapid flavor

conversions deep inside a SN invalidates the concept of a sharp emission boundary, from

where the unoscillated neutrino fluxes emerge. The boundary conditions become fuzzy and

complete flavor averaging takes place within a few nanoseconds, leading to loss of flavor

information. A consistent study of flavor evolution in presence of collisions is ongoing [202].

In Appendix B, we give a brief discussion of the effects of collision on fast flavor conversions.

Finally, all works in this thesis use a two-neutrino framework and a single-angle approxima-

tion. A more realistic treatment will require a detailed three flavor study, with the inclusion

of multi-angle effects and matter effects. This will indeed be relevant in the formation of the

neutrino spectra and dynamics of the SN core.

Thus, summarizing, the crux of the thesis broadly consists of two aspects of self-induced

collective oscillations of neutrinos in dense environments. The first aspect focused on fast

conversions, causing rapid flavor conversions immediately close to the neutrinosphere. The

second aspect considered effects of NSSI of neutrinos on collective oscillations. Finally, we

combined the two aspects and studied the effects of NSSI on fast flavor conversions. We hope

that this thesis helps in a better understanding of the dynamics of neutrino flavor evolution

in a core-collapse supernova.



Appendix A

Analytical aspects of NSSI and fast

flavor conversions

A.1 The eigenvalues of the Hamiltonian in the 4-beam

model

The expressions of theHmatrix elements in Eq. (6.3.3), for the L-R symmetric and symmetry

breaking solutions, are given below. 1

A.1.1 L-R Symmetric solution (Q+, Q̄+)

For g1 = 0 , g3 6= 0, one has

H11 = ω +
µ

2

[
(1 + g3)

(
c− 3 + g3(−5 + 7c) + a (3− c+ 13g3 + cg3)

)]
,

H12 =
µ

2
(1− a)(3− c)(1− g2

3) ,

H21 = −µ
2

(1 + a)(3− c)(1− g2
3) ,

H22 = −ω +
µ

2

[
(1 + g3)

(
(1 + a)(3− c) + g3 (5− 7c+ 13a+ ac)

)]
.

Similarly, for g1 6= 0 , g3 = 0, one has

1This is relevant to Chapter 6 of this thesis.
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Solution Eigenvalue

(Q−, Q̄−) Ω−g3
=

µ

2

{
a
[
5 + c + 16g3 + (11 − c)g2

3

]
±√

a2(1 + c)2(1− g2
3)2 − 8(1− c)(1 + g3)2(1 + 3g3)

[
c(1 + g3)− 2g3

]}
g1 = 0 , g3 6= 0 (A1)

(Q−, Q̄−) Ω−g1
=

µ

2

{
a
[
5 + c − g2

1(3 − c)
]

±√
a2(1 + c)2(1 + g2

1)2 − 8(1− c)(1− g2
1)(c+ g2

1)

}
(A2)

g1 6= 0 , g3 = 0

(Q+, Q̄+) Ω+
g3

=
µ

2
(1 + g3)

{
a
[
3 − c(1 − g3) + 13g3

]
±√

a2(3− c)2(1− g3)2 + 16g3(1− c)
[
3− c+ g3(1− 3c)

]}
(A3)

g1 = 0 , g3 6= 0

(Q+, Q̄+) Ω+
g1

=
µ

2

{
−a
[
(c + 5)g2

1 + c − 3
]

±√
a2(c− 3)2(1 + g2

1)2 − 8g2
1(1− c)

[
(1 + c)g2

1 − c+ 3
]}

(A4)

g1 6= 0 , g3 = 0

Table A.1: Eigenvalues of Eq. (6.3.3) for the four cases described in this Appendix, with

ω = 0.

H11 = ω +
µ

2

[
g2

1 − 3cg2
1 + c− 3− a

(
(c+ 5)g2

1 + c− 3
)]
,

H12 =
µ

2
(1− a)(3− c)(1 + g2

1) ,

H21 = −µ
2

(1 + a)(3− c)(1 + g2
1) ,

H22 = −ω − µ

2

[
(1 + a)(c− 3) + g2

1(1− 3c+ a (c+ 5))

]
.



Appendix 129

A.1.2 L-R Symmetry breaking solution (Q−, Q̄−)

For g1 = 0 , g3 6= 0, one has

H11 = ω + µ

[
1

2
(1 + a)(1 + c)

(
1− g2

3

)
+ (1 + 4g3 + 3g2

3)(2a+ c− 1)

]
,

H12 = −µ
2

(1− a)(1 + c)(1− g2
3) ,

H21 =
µ

2
(1 + a)(1 + c)(1− g2

3) ,

H22 = −ω + µ

[
−1

2
(1− a)(1 + c)

(
1− g2

3

)
+ (1 + 4g3 + 3g2

3)(2a− c+ 1)

]
.

Similarly, for g1 6= 0 , g3 = 0, one has

H11 = ω + µ

[
1

2
(1 + a)(1 + c)

(
1 + g2

1

)
+ (1− g2

1)(2a+ c− 1)

]
,

H12 = −µ
2

(1− a)(1 + c)(1 + g2
1) ,

H21 =
µ

2
(1 + a)(1 + c)(1 + g2

1) ,

H22 = −ω + µ

[
−1

2
(1− a)(1 + c)

(
1 + g2

1

)
+ (1− g2

1)(2a− c+ 1)

]
.

The corresponding eigenvalues, in the limit ω/µ → 0, are listed in Table A.1. We put

ω = 0 since we are only interested in the coefficient of µ for fast oscillations.
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Collisions and flavor conversions

B.1 What role does collision play?

In this appendix, we study the effects of collisions on fast flavor conversions deep inside a

SN core. Very close to the neutrinosphere, collisions might happen with a rate similar to

the rate of fast oscillations and hence cannot be neglected. A typical back-of-the-envelope

calculation, using a nucleon density nB = ρnuc/mN ≈ 1.8 × 1038 cm−3 and the neutrino-

nucleon scattering cross-section σ ∼ G2
FE

2 ∼ 10−42 cm−2 for Eν ∼ 10 MeV, suggests that

the scattering rate is Γ = σnB ∼ 107 s−1. Thus, neutrinos produced inside a supernova

undergo a number of collisions before they can finally free-stream. The stellar medium

consists of protons, neutrons, electrons, positrons and neutrinos of all flavors. As explained

in Chapter 1, a huge fraction of the emitted neutrinos is composed of electron neutrinos,

while muon and tau neutrinos are much more scarce. These electron neutrinos are kept in

thermal equilibrium due to charged current beta processes of the form νe + n→ e− + p and

νe + p→ e+ + n. Beyond the neutrinosphere ≡ RNS, these neutrinos can free-stream. Their

spectrum is usually considered to be a quasi thermal spectrum with the temperature being

that of the medium. While the electron flavor can undergo charged current(CC) interactions

as well as neutral current (NC), the other flavors interact primarily by NC processes. The

neutrinosphere might contain a few muons, however the emitted neutrinos do not carry

enough energy to undergo CC interactions with muons.

Therefore, the neutrino interactions within a SN core can be classified into two main
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Types of Scattering Examples Decouples at

Charged Current νen↔ pe− , RNS

Number Changing (CCNC) νep↔ ne+ , RNS

νeνe ↔ e+e− . RES

Charged Current νee
− ↔ νee

− , RES

Momentum Changing (CCMC) νee
+ ↔ νee

+ , RES

Neutral Current NNνe,xνe,x ↔ NN , RES

Number Changing (NCNC) νeνe ↔ e+e− , RES

νeνe ↔ νxνx . RES

Neutral Current νe,xX ↔ νe,xX . RTS

Momentum Changing (NCMC) νxe
− ↔ νxe

− , RES

νxe
+ ↔ νxe

+ , RES

Table B.1: Table showing the different neutrino interactions within a SN core. The radii of

the different decoupling regions follow RES < RTS < RNS.

categories: CC interactions and NC interactions. Furthermore, these processes can either

conserve the number of neutrinos or modify it. The classification is shown in Table B.1.

All these interactions occur at different rates and play an important role in keeping the

neutrinos in local thermal equilibrium. For example, neutrino bremsstrahlung as well as pair

production and absorption allow for exchange of energy with the medium, thereby keeping

the neutrinos in thermal equilibrium up to the energysphere ≡ RES. Beyond this, the

neutrinos can still undergo nucleonic collisions without exchanging energy and can diffuse

upto the transportsphere ≡ RTS, after which they can stream out freely. The different

regions are shown in Fig .B.1.

In Fig .B.2, we plot the various interaction rates as a function of distance from the SN
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Free
Streaming

Free
Streaming

Thermal Equilibrium
 𝜈ep ↔ 𝑛𝑒+

𝜈𝑒𝑛 ↔ 𝑝𝑒−

Scattering Atmosphere
𝜈𝑁 → 𝑁𝜈

Diffusion

𝜈𝑁 ↔ 𝑁𝜈
𝜈𝑒 ↔ 𝜈𝑒
𝑁𝑁 ↔ 𝑁𝑁𝜈  𝜈
𝑒+𝑒− ↔ 𝜈  𝜈
𝜈𝑒  𝜈𝑒 ↔ 𝜈𝜇  𝜈𝜇

Electron flavor (𝝂𝒆 and  𝝂𝒆)

Other flavors (𝝂𝝁,  𝝂𝝁, 𝝂𝝉,  𝝂𝝉)
Neutrino sphere

Energy sphere Transport sphere

Figure B.1: Schematic plot showing the neutrinosphere, energysphere and transportsphere

[68]. The different interaction channels decoupling at different radii are also shown.
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Figure B.2: Plot showing the different interaction rates as a function of the distance from

the SN core. Processes occurring with rates smaller than bremsstrahlung are not shown.

core. We consider the density and temperature profiles given by [68] :

ρ =

2× 1014 g cm−3 r ≤ r0

2× 1014 g cm−3
(
r0
r

)10
r > r0

T =

31.66 MeV r ≤ r0

31.66 MeV
(
r0
r

)2.5
r > r0
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where r0 = 10 km is taken to be the radius of the core. The profile for µ is taken from [91]

Our results indicate that very close to the neutrinosphere, the charged current interactions

and neutrino-nucleon scatterings clearly dominate all other interaction rates, as indicated in

Fig .B.2. In this case, these can be comparable to the neutrino self interaction potential µ.

The rates involving neutrino pair-production are clearly much smaller (by a factor of O(103))

because the neutrino density near the core is much smaller than the electron density. The

other interaction rates are smaller and hence not shown in the figure. Hence, while studying

fast conversions, one has to consider the impact of charged current processes and neutrino-

nucleon scatterings. Note that we have considered that µ is also a constant immediately

below the neutrinosphere. Strictly, this need not be the case. Certain simulations show that

even below the neutrinosphere, µ can dominate over the collision rates [203].

B.1.1 Flavor evolution in presence of collisions

In presence of collisions, one cannot neglect the C[%p,x,t] term in Eq .[2.2.1]. The contribution

to C[%p,x,t] can come from net neutrino number-preserving as well as net neutrino number-

changing processes. As a result, Tr[%] (which measures the total number of neutrinos in

the system) as well as Tr[%2] (which is a measure of coherence) need not be preserved. This

renders linearization of the problem difficult and one must work in the fully non-linear regime

to have a correct understanding of the effect of collisions.

The collision term, including all types of relevant scattering terms, is given by [170]:

C[%p,x,t] =

∫
dp′

(
MνX

p′,pG
NC%p′ GNC (1− %p)− MνX

p,p′%pG
NC (1− %p′)GNC + h.c

)
︸ ︷︷ ︸

νX scattering

+

∫
ω′<0

dp′
(
MY→ννX

p′,p (1− %p)GNC (1− %p′)GNC −MννX→Y
p,p′ %pG

NC%p′GNC + h.c

)
︸ ︷︷ ︸

ν pair−creation/annihilation terms

+

∫
dp′

({
MCCprod

p,p′ GCC, 1− %p
}
−
{
MCCann

p,p′ GCC, %p
})

︸ ︷︷ ︸
CCNC νe,νe terms

,

(B.1.1)

where Mα
(p,p′) gives the matrix-amplitude squared for a particular process denoted by α,
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and {·, ·} denotes the anticommutator. The coupling matrices GNC give the NC coupling of

the different neutrino flavors to the SM particles. From Fig. B.2, one can see that among

all possible NC inelastic scattering processes taking place, those with nucleons dominate,

and we only consider them in our analysis. This simplifies the scenario since neutrinos have

a flavor independent NC coupling to nucleons, and therefore GNC is proportional to the

identity matrix. It must also be remembered that within a SN, only the electron neutrinos

have CC interactions and hence GCC ∝ diag{1, 0}.

Further simplifications may be achieved by assuming a dilute gas approximation and

neglecting the Pauli blocking factors arising due to the fermionic nature of neutrinos. This

leads to the following form for Eq. (B.1.1)

C[%p,x,t] = −ΓνX
p

[
GNC,

[
GNC, %p,x,t

]]︸ ︷︷ ︸
νX→νX

+ 2 Γ(Y→ννX)
p GNC GNC︸ ︷︷ ︸

ν pair production terms

+ 2 Γ
CCprod
p GCC︸ ︷︷ ︸

CCNC νe,νe production

− Γ(ννX→Y )
p

{
%p,x,t, G

NC%p′,x′,tG
NC
}︸ ︷︷ ︸

ν pair annihilation terms

−
{

ΓCCann
p GCC, %p,x,t

}
︸ ︷︷ ︸
CCNC νe,νe annihilation

,

(B.1.2)

where the quantity Γαp =
∫
dp′Mα

(p,p′). We have also assumed thatMα
(p,p′) =Mα

(p′,p). Note

that since GNC is proportional to the identity matrix, the terms that originate from neutrino-

nucleon scattering (νX → νX) drop out of the EoMs. Recently, an attempt to study the

effect of collisions on neutrino flavor evolution in a dense media was made in [204]. The

authors considered neutral current momentum changing processes of the form νX → νX

and found that at small scales, flavor instabilities can be suppressed by collisions. Since

the process considered preserves Tr[%], a linearized stability analysis can be performed in

a straightforward manner. The authors, following [205], use a form of the collision kernel

involving anticommutators of %, which is more similar to the CC form. However, as outlined

in [50], processes of the form νX → νX contribute to the EoM in the form
[
GNC,

[
GNC, %

]]
,

where GNC is proportional to identity. As a result, such processes do not lead to damping.

In this appendix, we follow the latter convention.

Working in the 2-neutrino flavor approximation, one can expand all the 2× 2 matrices in
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Eq. (B.1.2 ) in the Pauli basis (see Eq. (2.2.6)). However, since the total number of neutrinos

is not conserved in the presence of collisions, we consider a different normalization for the

polarization vectors than what is considered in Eq. ([2.2.6]). In particular, we consider

%p =
fp
2

(I + Pp · σ) ,

%p =
f̄p
2

(
I + Pp · σ

)
,

GCC =
1

2
(I + ẑ · σ)

GNC = I (B.1.3)

since now fp and f̄p have dynamics of their own. The rest of the definition remains the same

as Eq. (2.2.6).

Using Eq. (B.1.3), the corresponding polarization vector equations take the following form:

Ṗp =

[
ωpB + λL + µ

∫
dp′ (1− v · v′)Pp′

]
×Pp −

ḟp
fp

Pp

−Γ(ννX→Y )
p f̄p′

(
Pp′ + Pp

)
+ 2

(
Γ

CCprod
p

fp
ẑ−

ΓCCann
p

2
(Pp + ẑ)

)
, (B.1.4)

ḟp =

(
4Γ(Y→ννX)

p − Γ(ννX→Y )
p

[
fpf̄p′ + fpf̄p′ Pp ·Pp′

])
+ 2

(
Γ

CCprod
p − fp

2
ΓCCann
p − fp

2
ΓCCann
p ẑ ·Pp

)
. (B.1.5)

Similar equations also hold for the antineutrinos with the following replacements, ω →

−ω ,Pp → Pp and fp → f̄p.

This is the most general EoM for neutrinos propagating in a dense medium and undergoing

non-forward scatterings. As is clear from Fig .B.2, the only relevant processes which occur

with a rate comparable to µ are the CC interactions. All the other processes have rates

much smaller than µ and are neglected in this study. Although, the rates for production and

annihilation can be different, we confine ourself to the regime of detailed balance and hence

set Γ
CCprod
p = ΓCCann

p = ΓCC.

Ideally, one should perform a self-consistent study of the formation of neutrino angular

distributions by collisions and then track the possible flavor changes due to fast oscillations.

However, the relevant length scales for fast conversions are too small to be resolved by

current SN simulations. Hence we do a parametric study of the effects of ΓCC on fast flavor
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Figure B.3: Dynamics of the z-components of Q, given by Qz in presence of collisions. The

parameters are chosen to be ω/µ0 = 10−5, ϑ0 = 10−2 and c = 0.5. Here µ = µ0 = 105 km−1

is the value of µ at the neutrinosphere. All the ΓCC are chosen in units of µ0. Left:ΓCC = 0.

Middle: ΓCC = 0.01. Right: ΓCC = 1.

conversions in the simple intersecting 4-beam model considered in Chapters 4 and 6. We also

confine ourselves to temporal evolution, and drop the spatial derivatives in Eq. (B.1.4).

In Fig. B.3, we plot the evolution of the νe flavor content in terms of the z-component

of Q (see Eq. (4.2.3) for the definition of Q). We observe that in absence of collisions, for

a small seed set by ω, we find an initial flat phase, followed by oscillations, which signals

fast growths (left panel). However, as soon as CC interactions are switched on, they start

suppressing flavor oscillations for values of ΓCC as low as O(0.01)µ (middle panel). As ΓCC

is increased, this suppression becomes stronger until for values of ΓCC ∼ µ, the quantum

Zeno regime is reached (right panel). Here, collisions are so rapid that the flavor content

freezes in and does not change appreciably from its initial value.

Inclusion of NC pair production-annihilation interactions in this setup is more complicated

as this couples the neutrino and antineutrino modes. Furthermore, with respect to the CC

interactions, they are tiny, smaller by a factor of 103. Typically, larger values of these

interactions can lead to complete damping of oscillations. Since these processes produce and

annihilate both the flavors at the same rate, they do not lead to any extra flavor asymmetry.

Any νeν̄e excess is wiped out, leading to flavor equilibrium. We have checked that if both

CC and NC interactions are present, an interplay between the two effects can happen.

Thus, using such a simple toy model involving four neutrino beams, one can conclude

that while fast conversions take place in absence of collisions, introduction of collision terms

with a rate similar to µ may tend to damp out the fast growths. However, note that recent
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simulations [203] find that the neutrino potential is always larger by ∼ 5 order of magnitude

than the νe collisional rate. This latter is a factor ∼ 3 larger than the ν̄e collisional term.

Surprisingly, even in the deepest regions at r . 10 km, where these quantities flatten out, the

neutrino dominance remains strong. These findings would imply that once fast conversions

are generated above the neutrinosphere, they quickly propagate unimpeded.
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