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Synopsis

S.1 Introduction

Observations of the sky show that the Universe is isotropic on large scales.
A plausible additional assumption of homogeneity allows us to write down
the metric as the FRW metric

dτ 2 = dt2 − a2(t)[dx2 +K
(x.dx)2

1−Kx2
] (S.1.1)

where K = ±1 or 0. The evolution of the scale factor is governed by the
energy and pressure density of the Universe. The redshift data shows that
the scale factor a(t) has been increasing with time. Very far in the past the
scale factor was much smaller and the energy density of the Universe was
bigger. The Universe was radiation dominated (composed primarily of rela-

tivistic electrons and photons) and a(t) grew as a(t) ∝ t
1

2 . As the Universe
expanded, it cooled down and processes like nucleosynthesis and atom forma-
tion took place. The major contribution to the energy density was then from
the nonrelativistic matter and the scale factor varied as a(t) ∝ t

2

3 . In the
radiation dominated era there were frequent collisions between electrons and
photons that kept them in mutual equilibrium. As the Universe expanded the
rate of collisions decreased and was no longer sufficient to keep matter and
radiation in equilibrium. Using the Thomson relation for scattering cross-
section we can see that at 105K the photons stopped exchanging energies of
order kT with the electrons. However the rate of scattering was still quite
large and each photon would be scattered many times in each doubling of
the scale factor though without appreciable exchange of energy. As temper-
ature dropped further the scattering cross section dropped due to formation
of atoms and roughly at about 3000K the photons no longer interacted with
the matter appreciably. This is called the time of last scattering and denoted
by tL. The present value of the radiation temperature is about 2.75K.
The CMB spectrum is remarkably uniform in all directions apart from some
anisotropies of the order 1 part in 105. These anisotropies arise as a result of
fluctuations in the spacetime metric at the time of last scattering. Suppose
that there is a position dependent fluctuation in the metric at that time.
Then photons coming from different locations will have experienced different
amounts of redshift and thus shall have slightly different frequencies. This
has the effect of shifting the temperature corresponding to the radiation spec-
trum and is observed as the anisotropies in the sky.
The remarkable isotropy of the CMB poses a problem however. The horizon
size at the time of last scattering can be computed to be dH ≈ H−1

0 (1+zL)
− 3

2
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where H ≡ ȧ
a
, the subscript ’0’ indicates that the present value is to be taken

and zL is the redshift at last scattering defined by 1 + zL = a(t0)
a(tL)

. Also the

angular diameter distance of the surface of last scattering dA ≡ rLa(tL) is
of the order of H−1

0 (1 + zL)
−1. This means that the angle subtended by the

horizon at the time of last scattering is roughly (1 + zL)
− 1

2 or about 1.6 de-
grees. Thus regions of the sky separated by more than this value of the angle
should have been causally disconnected and no physical influence could have
smoothened out the original fluctuations in the CMB explaining the remark-
able isotropy. The hypothesis of inflation not only solves this problem but
also enables us to make quantitative predictions about the anisotropies.

The hypothesis of inflation says that the Universe underwent an era of ex-
ponential expansion during which the Hubble parameter was constant prior
to the radiation dominated era. If this took place for sufficiently long time
the horizon size at the time of last scattering would have been large enough
so as to account for the observed isotropy. Furthermore the quantum correla-
tion functions of various perturbations can be calculated in simple models of
inflation and tested against the observations. For more detailed explanations
see, for example, [1]. In the simplest model inflation is driven by a single
scalar field φ with two derivative gravity

S =

∫

d4x
√
−g 1

16πG
[R − 1

2
(∇φ)2 − V (φ)]. (S.1.2)

In the slow roll models of inflation potential function V (φ) is chosen so that
it is nearly flat and allows for a nearly constant Hubble rate till the scalar
field begins to couple to other fields. The three point correlation functions in
this and several other models have been determined by explicit computation,
see e.g. [2].
One of the reasons why inflation is interesting is that it not only explains
why the CMB is so uniform but gives quantitative predictions about the
anisotropies. Furthermore if the Hubble scale was as large as the scale of the
underlying fundamental theory, higher derivative corrections to (S.1.2) would
become important. Thus measurement of these correlators can possibly pro-
vide us clues about the higher derivative terms. One can systematically apply
the methods of effective field theory to this problem as done in [3]. However
the methods of effective field theory are applicable only if the Hubble scale
is lesser than the mass scale of the fundamental theory. This need not nec-
essarily be the case in practice. However there is another way to know the
correlation functions. The idea is that during inflation the Universe was ap-
proximately described by de-Sitter metric which has a large symmetry group
SO(1,4). We shall refer to this group as the conformal group. The correla-
tion functions must be invariant under the action of this group as both the
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de-Sitter geometry and the initial conditions enjoy this symmetry which is
respected under time evolution due to general covariance of the action. This
holds even if the Hubble scale is larger than the mass scale of the fundamen-
tal theory when the effective field theory approach is no longer valid. This
approach has been employed by [4] to constrain the three point graviton cor-
relator. In the thesis we consider the constraints of conformal symmetry on
the correlation function involving two scalars and one graviton . This is more
subtle than the correlator considered by Maldacena because the scalar degree
of freedom becomes a pure gauge transformation in the exact de-Sitter case.
This has to be taken into account in the analysis in a careful manner.
The use of conformal invariance has been made to constrain correlation func-
tions of operators in 3-dimensional Euclidean CFT in the position space [5].
For the purposes of cosmology the natural choice is to work in momentum
space however. The position space answers can not be used to get the mo-
mentum space result simply by taking Fourier transforms as the resulting
integrals are divergent and can not be regulated in an obvious way while
preserving conformal invariance. Furthermore a related issue is to take care
of the contact terms. Our approach avoids this issue by doing all analysis
entirely in the momentum space from the beginning.

We now describe the setup of our problem. First we decompose the fluctu-
ations about a given background metric into its rotational tensor components.
Thereafter we discuss possible choices of gauges.

S.2 Set-Up

We consider inflation driven by a single scalar field with the action

S =

∫

d4x
√−g 1

16πG
[R− 1

2
(∇φ)2 − V (φ) + · · · ]. (S.2.1)

The ellipses represent higher derivative corrections. As discussed previously,
during inflation the Universe is approximately described by de Sitter metric

ds2 = −dt2 + a2(t)

3
∑

i=1

dxidx
i, (S.2.2)

a2 = e2Ht, (S.2.3)

where H is the constant Hubble scale. The deviation from de-Sitter is cap-
tured in terms of the two parameters measuring the slow variation of the
Hubble scale

ǫ = − Ḣ

H2
, δ =

Ḧ

2HḢ
, (S.2.4)
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where dot denotes derivative with respect to t. During inflation both these
parameters are small and meet the slow roll conditions

ǫ, δ ≪ 1. (S.2.5)

We now examine the symmetry group of de-Sitter space. It is generated
by the scale transformation :

xi → λxi, t→ t− 1

H
log(λ), (S.2.6)

three translations and rotations in the xi coordinates and three special con-
formal transformations whose infinitesimal version is given by

xi → xi − 2(bjx
j)xi + bi(

∑

j

(xj)2 − e−2Ht), (S.2.7)

t→ t+ 2bjx
j . (S.2.8)

(where bi, i = 1, . . . , 3 are infinitesimal parameters.) We can see by a straight-
forward computation that these transformations keep the metric invariant.
Note that the inflaton sector need not necessarily preserve the full conformal
symmetry group.

Now we discuss the general theory of small fluctuations about a given
space-time background metric. The metric is the sum of an unperturbed
background metric and perturbations about the same. In general the equa-
tions governing the perturbations are quite complicated. However the per-
turbations can be decomposed into the rotational tensor components. The
equations governing these tensor modes are relatively simpler. Having done
so we fix the gauge so as to eliminate the unphysical degrees of freedom.

There is still a subtlety here. While we know the evolution of the scale
factor during the period of inflation, radiation dominance and matter dom-
inance, we do not know much about the Universe when inflation ended and
it was undergoing the ’reheating’ stage where the inflaton field coupled to
matter and gave away its energy to it. Even if one knows the initial fluctua-
tions produced during inflation, how could one compute the fluctuations at
the time of last scattering when the equations governing the dynamics in the
intervening reheating era are not known ? The answer to this question lies
in a theorem due to Weinberg which says that in single field inflation the low
momentum modes that were outside the horizon during the reheating era
were ’frozen’. Some of these modes entered back into the horizon after the
reheating era was over and the evolution of the scale factor was well known.

Let us define the fluctuations by gµν ≡ ḡµν + hµν where ḡµν denotes
the unperturbed metric. Decomposing the fluctuations as sum of rotational
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tensors we write
h00 = −E (S.2.9)

hi0 = a

[

∂F

∂xi
+Gi

]

(S.2.10)

hij = a2
[

Aδij +
∂2B

∂xi∂xj
+
∂Ci

∂xj
+
∂Cj

∂xi
+Dij

]

(S.2.11)

where ∂Ci

∂xi
= ∂Gi

∂xi
= 0,

∂Dij

∂xi = 0, Dii = 0 , Dij = Dji. However we have not
yet fixed the gauge. In a theory of gravity alone the coordinate invariance
(gauge freedom) can be used to gauge away the scalar and vector degrees
of freedom. The remaining degrees of freedom are the tensor modes which
represent physical gravitons. In our problem there is another scalar field
i.e. the inflaton and thus one more degree of freedom compared to the pure
gravity case. One can choose to work in a gauge where the inflaton field is
set to zero and the scalar component is a dynamical variable or in a gauge
where the scalar part of the metric fluctuation is chosen to be zero and the
inflaton field is a dynamical variable. In the first gauge the perturbations in
the inflaton vanish,

δφ = 0. (S.2.12)

The fluctuations are defined using the ADM formalism as in [2]

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (S.2.13)

the additional coordinate freedom can be fixed by choosing a gauge where

hij = a2[(1 + 2ζ)δij + γij], (S.2.14)

and γij is required to be transverse and traceless,

∂iγij = γii = 0, (S.2.15)

as discussed in [2]. The scalar and tensor perturbations are denoted by ζ and
γij respectively.

Alternatively, as mentioned above, we can choose to set ζ to vanish in-
stead of δφ. This second gauge is obtained by starting with the first gauge,
and carrying out a time re-parameterization

t→ t+
ζ

H
. (S.2.16)

This makes ζ vanish while γij remains unchanged. If the background value
of the inflaton is

φ = φ̄(t), (S.2.17)
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the resulting value for the perturbation δφ this gives rise to is

δφ = −
˙̄φζ

H
. (S.2.18)

Assuming that the two derivative approximation is good we can express this
relation as

δφ = −
√
2ǫζ. (S.2.19)

In our analysis we first work in the second gauge, where the leading effects
of the slow-roll parameters can be incorporated and then transform to the
first gauge, around the time when the mode crosses the horizon as ζ is the
variable which is meaningful at all times and constant outside the horizon.

In the single field slow roll case with two derivative theory, the calculation
of the three point functions of these fluctuations was carried out in [2]. In
a more recent paper [4] the conformal symmetries were used to constrain
the form of the three point tensor correlation function. In the thesis we ask
the following question : What are the constraints imposed by the isometries
of the de-Sitter space (i.e. the conformal symmetries) on the correlation
function of one tensor and two scalar modes in the models of inflation which
preserve the full symmetry group of the de-Sitter space ? Of course, as the
scalar fluctuations become pure gauge transformations in the exact de-Sitter
case, the answer that we seek refers to the leading contribution in the slow
roll parameters.

S.3 Methodology and Results

To approach this problem we use rotational and translational invariance to
write down the most general form of the correlator as

〈O(k1)O(k2)Tij(k3)〉 = [k1ik1jf1(k1, k2, k3) + k2ik2jf1(k2, k1, k3)

+ (k1ik2j + k2ik1j)f2(k1, k2, k3)

+ δijf3(k1, k2, k3)](2π)
3δ3(

∑

i

ki)

≡Mij(k1,k2,k3)(2π)
3δ(
∑

i

ki).

(S.3.1)

The overall delta function is a consequence of translational invariance. We
then derive the constraints of special conformal transformations and find
them to be (after simplification)

[k3 · k1Θ(k1) + (k3 · k2)Θ(k2) + k23Θ(k3)]S(k1, k2, k3) = 0, (S.3.2)
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−(k2 · k3)k1∂k1S + (k1 · k3)k2∂k2S − (k21 − k22)S +
3

2
(k31 − k32) = 0,(S.3.3)

and
(Θ(k1)−Θ(k2))S = 0, (S.3.4)

where

S(k1, k2, k3) =
1

2
[f1(k1, k2, k3) + f1(k2, k1, k3)− 2f2(k1, k2, k3)]. (S.3.5)

We then check that these are indeed satisfied by the answer computed by
Maldacena in the special case of single field slow roll two derivative theory.
Thereafter we attempt to find the most general solution of these equations.
This is found to be

S =
∑

n1,n2=±1

mn1n2

(

− n1n2
k2k3k1

(n1k1 + n2k2 + k3)2
+ n1k1 + n2k2 + k3

− n1n2k1k2 + n2k3k2 + n1k1k3
n1k1 + n2k2 + k3

)

.

(S.3.6)

where the mn1n2
satisfy

∑

n1,n2

mn1,n2
n3
1 = 1, (S.3.7)

∑

n1,n2

mn1,n2
n3
2 = 1. (S.3.8)

Only one of the terms, the one with both n1 and n2 equal to +1, behaves
consistently in the limits when one momentum is much smaller than the other
two. The normalization of our solutions is fixed by the Ward identity. We
thus conclude that the answer for the correlation functions in terms of the ζ
variable is given by

〈ζ(k1)ζ(k2)γs(k3)〉 = (2π)3δ(
∑

i

ki)
1

Πi(2k3i )
(
4H4

M4
plc

)(
H2

φ̇2
)es,ijk1ik2jS(k1, k2, k3),

(S.3.9)
with

S(k1, k2, k3) = (k1 + k2 + k3)−
∑

i>j kikj

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2
. (S.3.10)

and
γij(k3) = γs(k3)e

s
ij(k3), (S.3.11)
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where esij(k3) is the transverse and traceless polarization and c is a normal-
ization defined through the normalization conventions :

〈O(k1)O(k2)〉 = ck31(2π)
3δ3(k1 + k2), (S.3.12)

〈T s(k1)T
s′(k2)〉 = k31(2π)

3δ3(k1 + k2)(
δss

′

2
). (S.3.13)

S.4 Conclusions

In this work we have studied the three point tensor-scalar-scalar correlator
in single field slow roll models of inflation allowing for higher derivative
corrections but assuming that the full conformal symmetry is preserved by
the scalar sector as well. The analysis is based on the idea that the
symmetries of the unperturbed metric can be used to constrain the
correlation functions of the small perturbations about it. These techniques
were originally employed by Maldacena [4] for his study of the three point
graviton correlator. We find that our correlator is completely determined
by the symmetries of de-Sitter space in such models. The assumptions that
go into this derivation are that (i) the inflation is driven by a single scalar
field , (ii) both the scalar and tensor sectors preserve the full isometry
group of de-Sitter and that (iii) the Universe was in the Bunch-Davies
vacuum to start with. Other than these three assumptions the analysis is
model independent and applies to a large class of models. In particular the
analysis applies even if the Hubble scale was comparable to the scale of the
underlying fundamental theory when the methods of effective field theory
are not valid. We note that it is possible to have models of inflation where
translations, rotations and scale invariance are preserved but special
conformal invariance is broken. Our analysis does not apply to these
models. This work shows that the three point correlator considered here is
a good way to test if special conformal invariance was preserved during
inflation.

Note : The work outlined in this synopsis was done under the guidance of
Prof. Sandip Trivedi and in collaboration with him and Dr. Suvrat Raju.
This has been uploaded on arxiv hep-th/1211.5482 and submitted to Journal
of High Energy Physics.
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1 Introduction

It is consistent with observations to assume that our Universe is homoge-
neous and isotropic. These assumptions allow us to constrain the spacetime

metric to the form dτ 2 = dt2 − a2(t)[dx2 + K (x.dx)2

1−Kx2 ] where K = ±1 or 0
and a(t) is called the scale factor. In order to further determine the metric
we need to know the constituents of the Universe and use the Einstein equa-
tions. The very early Universe consisted of hot relativistic matter. Plugging
in the appropriate stress energy tensor in Einstein equations implies that the
scale factor increased as a(t) ∝ t

1

2 . As the Universe expanded it cooled and
the constituent particles slowed down. In this non-relativistic matter domi-
nated era, the scale factor varied as a(t) ∝ t

2

3 . This history of the Universe
predicts a finite Horizon size. Calculations show that after a certain time,
called the time of last scattering, tL the photons have moved relatively freely
and the gravitational redshift of these photons carries information about the
fluctuations in the metric at the time of last scattering.

Observations find that the radiation temperature is remarkably isotropic.
This raises a puzzle : Why is it that the temperatures of the radiation com-
ing from causally separated regions so remarkably uniform ? This is called
the ’Horizon problem’ in cosmology and is addressed by the idea of inflation.
Inflation states that our Universe underwent a period of exponentially rapid
expansion in its early history. This makes the Horizon size much bigger than
as computed in non-inflationary theories thereby solving the Horizon prob-
lem. What is particularly attractive is that the same exponential expansion
also results in small quantum perturbations being produced which account
for the observed anisotropies of the microwave background and also provide
the seed perturbations for the growth of large scale structure in the Universe.

The exponentially expanding Universe during inflation is well described
by the metric of de Sitter space, up to small corrections. It is well known
that de Sitter space is a maximally symmetric spacetime. In four dimensions
the group of isometries of de Sitter space is SO(1, 4) — the Lorentz group
in 4 + 1 dimensional flat spacetime. This large group of symmetries has ten
generators, which include translations and rotations along the three space di-
rections, scale transformations, and the three generators of special conformal
transformations. We will refer to it as the conformal group below.

So far, the experimental tests of inflation, coming for example from the
study of the CMB, have shown that the perturbations can be well approxi-
mated as being Gaussian. The good news is that future experiments, with
improved sensitivity, will be able to probe and possibly detect evidence for
non-Gaussianity in these perturbations. For example, it is hoped that the
Planck experiment will be able to provide significant constraints of this sort
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quite soon.
A Gaussian distribution is completely determined by its two point corre-

lation function. Any non-Gaussianity in the perturbations can therefore be
characterized by the three point or higher point correlations. Considerable
attention has been paid in the recent literature to the three-point function,
called the bispectrum; there is also a growing body of literature on the four
point function, called the trispectrum. We can refer to [1, 2, 3, 4] for a review
of these developments and to [5] for background material.

There are two kinds of perturbations of the metric that are relevant for
inflation: these transform as scalars and spin-2 representations of the rota-
tion group, and are called scalar and tensor perturbations respectively. In
addition each perturbation is characterized by a value for the spatial three-
momentum. It is easy to see that the momentum dependence of the two-point
function of the perturbations is simple and is fixed, up to small corrections,
by the approximate scale invariance of de Sitter space. One the other hand,
it is well known that the momentum dependence of the three point functions
can be much more complicated. For example, various different shapes which
characterize this momentum dependence have been obtained for the three
point scalar correlation function in different models of inflation. (See [1, 6]
and references there.)

The symmetries of de Sitter space need not be shared by the scalar sec-
tor in general. This happens for example in DBI inflation [7, 8] where the
non-canonical kinetic energy term for the inflaton results in a speed of sound
cs 6= 1.1 As a result, while scaling symmetry is preserved, the inflaton sec-
tor breaks special conformal invariance badly. Here we will assume that the
full conformal group is approximately preserved by the inflationary dynam-
ics, including both gravity and the inflaton field, and examine the resulting
constraints imposed on three point functions.

In particular, we will focus on the three point function involving two scalar
perturbations ζ(k) and one tensor perturbation γij(k), with polarization es,ij,
denoted by,

〈ζ(k1)ζ(k2)γij(k3)〉es,ij. (1.0.1)

We will show that this correlator is completely fixed by symmetry consid-
erations.2 Its overall normalization is determined in terms of the two point
functions of the scalar and tensor perturbations, and its momentum depen-
dence is determined by the SO(1, 4) symmetry group. It turns out that the
special conformal transformations play an especially important role in our

1Another example where the scalar sector violates special conformal symmetries is
ghost inflation [9].

2A complete complete definition of the perturbations etc. is given in section 2.
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analysis. They give rise to differential equations for the correlation func-
tion whose solution is essentially unique leading to the conclusion above. In
the absence of special conformal invariance in the full theory, including the
inflaton sector, our results for the correlator are not valid.

Our analysis applies to models with only one scalar field during inflation.
It also assumes that the initial state was the Bunch-Davies vacuum.3 Beyond
that, our analysis only relies on the conformal group and is essentially model
independent. In particular, our results also apply to models where higher
derivative corrections are important and gravity or the scalar field is not
well described by the two-derivative approximation. In the context of string
theory, such a situation would arise if the Hubble scale H during inflation was
of order the string scaleMst. Present bounds onH coming, for example, from
the absence of any observed effects due to tensor perturbations tell us that
H <∼ 1016Gev < MP l. So, for example, the higher derivative corrections
would be important if H and Mst are both comparable and of order the
Grand unification scale MGUT ∼ 1016Gev. Since very little is understood
about string theory in time dependent backgrounds the resulting correlation
functions in such a situation cannot be calculated directly from our present
knowledge of the theory. However symmetry considerations still hold and
our result for the correlation function (1.0.1) is valid for such a situation as
well.

The generality of our result makes the correlator given in (1.0.1) a good
test, in a model independent manner, of the full symmetry group during in-
flation. The two-point scalar correlator, which has now been measured, is
consistent with approximate scale invariance but this leaves open the pos-
sibility that the special conformal symmetries of de Sitter space are not
preserved by the scalar sector. In fact, as was mentioned above, it is easy
enough to construct models of inflation where this does happen and also
straightforward to see that this possibility is allowed in terms of an effective
field theory analysis [10]. The correlator discussed here, if observationally
measured, can conclusively settle whether the special conformal symmetries
were approximately preserved during inflation.

Unfortunately, experimental tests of this three point correlator are still
some way away since its magnitude is small. Even the detection of the two
point function for the tensor mode has not been made so far and would
be a great discovery in itself. The small value that the three point scalar
correlator has in conventional slow-roll inflation can be enhanced in models
like DBI inflation which involve the breaking of special conformal symmetries.

3These boundary conditions are restated in a way more convenient for our analysis in
section 2.3.
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However, with the special conformal symmetries intact our analysis fixes the
the overall normalization of the correlation function with two scalars and
one tensor, as was mentioned above, and rules out the possibility of any such
enhancement.

Therefore, we present the result of our analysis here not with any im-
mediate experimental contact in mind, but rather with a view to the future
when hopefully such contact will become possible and such model indepen-
dent tests of inflation might play a useful role in sharping our understanding
of the early Universe.

A second motivation for our work comes from the study of conformal
field theory. The symmetry group mentioned above, SO(4, 1), is exactly the
same as the symmetry group of a 3 dimensional Euclidean conformal field
theory (CFT). This is in fact why we referred to this symmetry group as the
conformal group when we first introduced it above. The problem of studying
the constraints imposed by this symmetry group on the correlation functions
of the scalar and tensor perturbations in de Sitter space maps in a direct
way to the question of studying the constraints imposed in a 3 dimensional
conformal field theory on correlation functions involving a nearly marginal
scalar operator and the stress energy tensor. Thus our analysis is also of
interest in the study of 3 dimensional CFTs: a subject which has also been
of some considerable interest recently.4

The three point correlation function for two scalar operators and the
stress tensor is already well known in the CFT literature [11]. However this
result is in position space, while for cosmology one is interested in the answer
in momentum space. It is not easy to directly Fourier transform the position
space result. Moreover, the position space answer has divergences where the
operators come together. It is rather subtle to regulate these divergences
— which is necessary to define the Fourier transform — while preserving
conformal invariance. A closely related issue is that of contact terms, which
can also arise in position space. These were not determined in [11] but are
important for the momentum dependence of the correlator. As our analysis
shows, working directly in momentum space, the symmetry considerations
are powerful enough to fix these ambiguities for the correlator and determine
a unique answer.

Finally, a third motivation comes from attempts to study de Sitter space
and its possible dual description in terms of a CFT [15, 16, 17, 18]. It is
unclear at this point whether a precise correspondence of this type is possi-
ble. However, symmetry properties for correlators can be related between the
gravity description and the CFT, as mentioned above. These are analogous

4For some discussion of three-point functions in 3 dimensional CFTs see [11, 12, 13, 14].
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to and in fact follow after analytic continuation from the correspondence
between correlators in the AdS/CFT case. Since, as our results help show,
symmetry properties can significantly constrain at least some of the correla-
tors, the correspondence in this limited sense is still of some practical benefit.

Before going further we must mention the seminal papers of Maldacena
[17] and more recently Maldacena and Pimentel [19]. These papers lay out
the essential ideas on which our analysis is based. The precise nature of
the map between the gravity theory and the CFT using the wave function
of the Universe was first discussed in [17]. And the importance of special
conformal transformations was discussed in [19] where it was also shown that
these symmetries significantly constrain the three point function of tensor
perturbations. Our analysis is a modest extension of this approach for a
correlator involving scalar perturbations as well.

Other relevant works which explore similar ideas are [20, 21, 22, 23, 24,
25, 10, 26]. Two recent papers [27, 28] contain related material.

The work presented here was carried out jointly with Prof. Sandip Trivedi
and Dr. Suvrat Raju and published as a paper entitled ’CMB from CFT’
in the Journal of High Energy Physics, Vol 7, 2013. The text of this thesis
is taken largely from this paper with minor changes. Sections of the paper
relating to the spinor helicity formalism are solely the work of other two
authors and are hence not included this thesis. The organization is as follows.
In §2 we discuss the basic ideas behind the analysis and background material.
In §3 we set up the equations which arise due to conformal invariance. In §4
we discuss a solution to these equations and prove that it is unique. Our final
results are presented in §5. We end with conclusions in §6. Three Appendices
contain important supplementary material follow.

2 Basic Set-Up

We consider a theory of gravity coupled to a scalar field, the inflaton, with
action

S =

∫

d4x
√
−g 1

16πG
[R− 1

2
(∇φ)2 − V (φ) + · · · ]. (2.0.2)

The ellipses stand for higher derivative corrections involving, in general, both
gravity and the inflaton. Such corrections could be important, for example,
if the Hubble scale during inflation is of order the string scale. Note that
in (2.0.2) we are using conventions where the inflaton is dimensionless. Also
below we will choose conventions where the Planck scale

M2
P l ≡ 8πG = 1. (2.0.3)
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It is well known that during inflation the Universe is approximately described
by de Sitter space

ds2 = −dt2 + a2(t)
3
∑

i=1

dxidx
i, (2.0.4)

a2 = e2Ht, (2.0.5)

and hence undergoes exponential expansion. In (2.0.5), H is the Hubble scale
which is a constant in de Sitter space. The inflationary epoch is described
by de Sitter space with small corrections. These arise because of the slow
variation of the Hubble scale which can be parametrized in terms of the two
parameters

ǫ = − Ḣ

H2
, δ =

Ḧ

2HḢ
, (2.0.6)

where dot denotes derivative with respect to t. During inflation both these
parameters are small and meet the slow roll conditions

ǫ, δ ≪ 1. (2.0.7)

When the two-derivative approximation is good and the action can be
approximated by the terms given in (2.0.2), H is given in terms of V by

H =

√

V

3M2
P l

, (2.0.8)

and the slow roll parameters can be expressed in terms of of V by

ǫ =
1

2

M2
pl(V

′)2

V 2
, (2.0.9)

δ = −M2
pl

V ′′

V
+ ǫ, (2.0.10)

where prime denotes derivatives with respect to the scalar field.5 Also in the
two-derivative theory we have

ǫ =
1

2

φ̇2

H2
. (2.0.11)

When the two-derivative approximation is not valid ǫ defined in (2.0.6) and φ̇
will not be related by (2.0.11) in general. The slow-roll approximation then
requires that besides (2.0.7) being valid,

φ̇

H
≪ 1. (2.0.12)

5The slow-roll parameter η which is more conventionally used is given by η = M2

Pl
V ′′

V
.
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de Sitter space is well known to be conformally invariant. For example it
is easy to see that the scale transformation

xi → λxi, t→ t− 1

H
log(λ), (2.0.13)

leaves the metric (2.0.4) invariant. More generally the full isometry group
of de Sitter space is SO(1, 4). It consists of the usual three translations
and rotations in the xi coordinates, the scale transformation, (2.0.7), and
in addition three special conformal transformations. Infinitesimal special
conformal transformations are of the form

xi → xi − 2(bjx
j)xi + bi(

∑

j

(xj)2 − e−2Ht), (2.0.14)

t→ t+ 2bjx
j . (2.0.15)

Here bi, i = 1, . . . 3 are infinitesimal parameters. As mentioned above de
Sitter space is modified during inflation due to the time varying Hubble
scale. While translations and rotations in the xi directions are of course
unbroken, this modification results in the breaking of the scaling and special
conformal symmetries. However, as long as the slow roll parameters ǫ, δ, are
small this breaking is small and the resulting inflationary spacetime is still
approximately conformally invariant.

The inflaton sector need not preserve the full conformal group breaking
the SO(1, 4) symmetry of de Sitter space badly and only preserving trans-
lations, rotations and scale transformations, as was mentioned in the intro-
duction. Additional parameters enter in such a model which parameterize
this breaking. For example, the speed of sound, cs, is one such parameter.
When cs 6= 1 the special conformal symmetries are broken. See [10] for a
more general parametrization of such effects.
We note that the Planck 2015 observations are consistent with the choice
cs = 1. In [31], constraints on cs were determined for various models of in-
flation. One assumes a specific Lagrangian, and calculates the expression for
fNL in terms of cs for this model. Observations of fNL then give constraints
on cs. For DBI inflation, the estimate is cDBI

s > 0.087 with 95% confidence.
In what follows we will assume that the scalar sector also approximately
preserves the full symmetry group of de Sitter space.

2.1 The Perturbations

The inflationary space-time is a solution for the system consisting of gravity
and a scalar field. The rotational invariance in the xi directions can be used
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to characterize perturbations about this solution. There are two kinds of
perturbations which can arise, scalar and tensor perturbations. The scalar
perturbations have spin zero and the tensor perturbations have spin 2.

The tensor perturbations are easy to understand — they are gravity waves
in the inflationary background. The scalar perturbations essentially arise due
to the presence of the inflaton field. Depending on the gauge chosen they can
be thought of as perturbations in the inflaton, or in the spatial curvature or
in a combination of both of these modes.

2.1.1 Gauge 1

For example, we can choose a gauge where the perturbations in the inflaton
vanish,

δφ = 0. (2.1.1)

Starting with the form of the metric used in the ADM formalism

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (2.1.2)

the additional coordinate reparameterization can be fixed by choosing a
gauge where

hij = a2[(1 + 2ζ)δij + γij], (2.1.3)

where γij is transverse and traceless,

∂iγij = γii = 0, (2.1.4)

as discussed in [17]. The tensor perturbations are given by γij. And the
scalar perturbations are given by ζ and correspond to fluctuations in the
spatial curvature along the spatial directions.

2.1.2 Gauge 2

Alternatively, for the scalar perturbations, we can choose to set ζ instead of
δφ to vanish. The perturbations are now given by fluctuations in the inflaton,
δφ. This second gauge is obtained by starting with the coordinates in which
the perturbations take the form given in the previous paragraph, ζ, γij and
carrying out a time reparameterization

t→ t+
ζ

H
. (2.1.5)

It is easy to see that this sets ζ to vanish. The tensor perturbation γij is
unchanged by this coordinate transformation. If the background value of the
inflaton in the inflationary solution is

φ = φ̄(t), (2.1.6)
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the resulting value for the perturbation δφ this gives rise to is

δφ = −
˙̄φζ

H
. (2.1.7)

When the two derivative approximation is good we can using (2.0.11) express
this relation as

δφ = −
√
2ǫζ. (2.1.8)

We will find it useful to consider both gauges in our discussion below. As we
will discuss further in subsection 2.3 for our purposes it will be most conve-
nient to first work in gauge 2, where the scalar perturbation is given by δφ
and then transform to gauge 1, where the perturbation is given by ζ , around
the time when the mode crosses the horizon. This might seem conceptually
confusing at first but has the advantage of allowing us to incorporate both
the leading effects of the slow-roll parameters in a straightforward manner
and of eventually going over to the description in terms of ζ which is the
variable that it is defined for all time and also becomes constant once the
mode exits the horizon.

Let us also make one more comment here. The relation (2.1.7) has cor-
rections involving higher powers of the perturbation, δφ. For the scalar
three-point function in conventional slow-roll models, as studied in [17], the
first corrections to (2.1.7) need to be kept since the leading answer is sup-
pressed by an additional power of

√
ǫ. But these corrections can be ignored

for the correlator (1.0.1).

2.2 The Wave Function

The time dependence during the inflationary epoch gives rise to scalar and
tensor perturbations. Our main interest here is to ask about the constraints
that approximate conformal invariance imposes on the correlation functions
of these perturbations. In particular we will be interested in these correlation
functions at late enough times when the modes have crossed the horizon,
and their wavelength, λ, has become much bigger than the Hubble scale,
λ≫ H−1.

At such late times the correlations functions acquire a time independent
limiting form. The physical reason for this is well understood. Once the
wavelength of a mode gets much longer than the Hubble scale the evolution
of the mode gets dominated by Hubble friction and as a result it comes to
rest.

In our discussion it will be useful to think in terms of a wavefunction
which describes the state of the system at late times. The wavefunction tells
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us the amplitude to observe a particular perturbation and clearly encodes all
information about the correlation functions. Since the correlation functions
become time independent at late times the wave function also becomes time
independent in this limit.6

The wave function will be a convenient description for our analysis since
we are interested in the constraints imposed by symmetries and these can
be conveniently translated to invariances of the wavefunction as we will see
shortly. In turn this will allow us to map the constraints imposed by symme-
tries to an analysis of constraints imposed on correlators in a 3 dimensional
Euclidean conformal field theory. More generally, thinking in terms of the
wave function also allows us to exploit the analogy with calculations in AdS
space for our purpose.

The perturbations produced during inflation are known to be Gaussian
with small corrections. This allows the late time wave function to be written
as a power series expansion of the form

ψ[χ(x)] = exp
(

−1

2

∫

d3xd3yχ(x)χ(y)〈Ô(x)Ô(y)〉

+
1

6

∫

d3xd3yd3z χ(x)χ(y)χ(z)〈Ô(x)Ô(y)Ô(z)〉+ · · ·
)

.

(2.2.1)

Here χ stands for a generic perturbation which could be a scalar or tensor
perturbation. The ellipses stand for higher order terms involving more powers
of φ. The coefficients 〈Ô(x)Ô(y)〉, 〈Ô(x)Ô(y)Ô(z)〉 etc. are for now just
functions which determine the correlators.

The expression above is schematic. In the case at hand there are two
kinds of perturbations, scalar and tensor. Working in the gauge described
in subsection 2.1.2 these are δφ, γij. With a suitable choice of normalization
the wave function will then take the form

ψ[δφ, γij] = exp
[M2

pl

H2

(

−1

2

∫

d3xd3yδφ(x)δφ(y)〈O(x)O(y)〉

− 1

2

∫

d3xd3yγij(x)γkl(y)〈T ij(x)T kl(y)〉

− 1

4

∫

d3xd3yd3zδφ(x)δφ(y)γij(z)〈O(x)O(y)T ij(z)〉+ · · ·
)]

.

(2.2.2)

The ellipses stand for additional terms of various kinds involving three
powers of the perturbations with appropriate coefficient functions and then
higher order terms.

6More accurately, this happens after suitable infra-red divergences are subtracted.
Physical answers do not depend on the choice of subtraction procedure.
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Note, in our notation every additional power of the scalar perturbation
is accompanied by an additional factor of O(x) in the coefficient functions
and every additional power of the tensor perturbation is accompanied by an
additional factor of Tij(x). We will soon see that the coefficient functions
transform under the symmetries in the same way as correlation functions
involving a scalar operator and the stress energy tensor in a 3 dimensional
Euclidean conformal field theory.

We will be interested in the last term in the RHS of (2.2.2). Together
with the two point functions, this term determines the three point correlator
of interest to us.

2.3 Symmetries and Their Consequences

We have seen that the wave function at late times is a functional of the late
time values of the perturbations. Schematically we can write

ψ[χ(x)] =

∫ χ(x)

DχeiS, (2.3.1)

where χ again stands for the value a generic perturbation takes at late time
and the action for any configuration is denoted by S. We would now like to
derive constraints imposed by symmetries on this wavefunction.

Before doing so it is worth considering the boundary conditions in the
path integral in more detail. We will consider inflation with the standard
Bunch-Davies boundary conditions in the far past, when the modes of interest
had a wavelength much shorter than the Hubble scale. At these early times
the short wavelengths of the modes makes them insensitive to the geometry of
de Sitter space and they essentially propagate as if in Minkowski spacetime.
The Bunch Davies vacuum corresponds to taking the modes to be in the
Minkowski vacuum at early enough time.

An elegant way to impose this boundary condition in the path integral
above, as discussed in [17], is as follows. Consider de Sitter space in conformal
coordinates,

ds2 =
1

η2
(−dη2 + (dxi)

2), (2.3.2)

with the far past being η → −∞, and late time being η → 0. Continue η so
that it acquires a small imaginary part η → η(1− iǫ), ǫ > 0. Then the Bunch
Davies boundary condition is correctly imposed if the path integral is done
over configurations which vanish at early times when η → −∞(1− iǫ). Note
that in general the resulting path integral is over complex field configurations.
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As an example, consider a free field φ satisfying the equation

∇2φ = 0. (2.3.3)

A mode with momentum k is of the form, φ = fk(η)e
ik·x, where

fk = c1(1− ikη)eikη + c2(1 + ikη)e−ikη, (2.3.4)

and k ≡ |~k|. Requiring that the solution vanish when η → −∞(1− iǫ), sets
c2 = 0 and requiring fk equals the boundary value, fk = f 0

k
at the late time

η = ηc, gives

fk = f 0
k

(1− ikη)eikη

(1− ikηc)eikηc
. (2.3.5)

Since fk 6= f ∗
−k

the resulting field configuration is complex.
We are now ready to return to our discussion of the constraints imposed

by symmetries on the wave function. What is important for this purpose, as
far as the boundary conditions in the far past are concerned, is that the field
configurations we sum over in the path integral vanish in the far past.

Consider in fact a general situation where we have a wave function of the
form (2.3.1) for a general set of fields χ, with some boundary condition in
the far past. Now if the system has a symmetry which keeps the action and
the measure invariant and which also preserves the boundary conditions in
the far past and if under the symmetry the boundary value of the field χ
transforms as follows

χ(x) → χ′(x), (2.3.6)

then it follows from the definition of the wave function (2.3.1) that ψ[χ]
satisfies the condition

ψ[χ(x)] = ψ[χ′(x)], (2.3.7)

and is invariant under the symmetry.
For the case at hand where we work with de Sitter space, the symmetry

group is the conformal group SO(1, 4) of isometries discussed above. Be-
ing isometries, the action and measure are invariant under it on account of
reparameterization invariance. The boundary condition in the far past cor-
responding to the Bunch Davies vacuum is that the fields vanish. This is
indeed preserved by the conformal transformations since the field transform
homogeneously under these symmetries. For tensor perturbations this is all
we need to use the general argument above. It follows that the wave func-
tion must be invariant under a change of the boundary values of the tensor
perturbations which arise due to conformal transformations. As we will see
shortly this implies that the coefficient functions, which we have suggestively
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denoted as 〈TijTkl〉 etc., behave exactly like the correlations functions of
the stress energy tensor of a three dimensional conformal field theory under
conformal transformations. It is true, as we discussed above, that conformal
invariance is broken slightly during inflation but this leads to only subleading
corrections in the tensor mode correlations.

For the scalar mode the situation is a little more complicated. In pure
de Sitter space, without the inflaton, the scalar perturbation in the metric ζ ,
(2.1.2), is pure gauge. In the presence of the inflaton there is a genuine scalar
perturbation. However as (2.1.7), (2.1.8) which relates the perturbations in
the two gauges discussed in section 2.1 shows, the slow roll parameter ǫ which
is non-zero due to the breaking of conformal invariance is then involved in
the definition of the scalar perturbation itself. This can make it confusing to
apply the consequences of the small breaking of conformal invariance to the
scalar sector.

The simplest way to proceed is to work in the second gauge discussed
in subsection 2.1.2, where ζ = 0. The scalar perturbation is then just the
fluctuation in the scalar field. To leading order in the slow-roll parameters
these fluctuations can be calculated in de Sitter space and the time evolution
of the inflaton can be neglected for this process. As a result the full set of
perturbations, scalar and tensor, with Bunch-Davies boundary conditions,
then meet the conditions of the general argument given above and we learn
that the wave function must be invariant under conformal transformations
of the boundary values of these perturbations.

Once the results are obtained in this gauge one can always transform
to other gauges, in particular the first gauge considered in subsection 2.1.1
where ζ is non-vanishing. In fact this is very convenient to do for purposes of
following the evolution of the scalar mode after the end of inflation. Since ζ is
related to δφ by (2.1.7) the resulting correlation functions will depend on the
breaking of conformal invariance even to leading order but this dependence
arises solely due to the relation (2.1.7) and is easily obtained.

2.4 Constraints on Coefficient Functions

Let us now work out the constraints imposed by conformal symmetries on the
coefficient functions which arise in the expansion of the wave function (2.2.1)
in more detail. It is easy to see that the constraints of translational invariance
make the coefficient functions also translationally invariant. Under rotations
in the xi directions the wave function will be invariant if O(x) transforms
like a scalar and Tij like a two-index tensor within coefficient functions.

Next we come to the scale transformation and special conformal trans-
formations. Under the scale transformation (2.0.13) the scalar perturbation
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transforms by

δφ(x, t) → δφ′(x, t) = δφ(
x

λ
, t+

1

H
log(λ)). (2.4.1)

At late times δφ becomes independent of t, as a result this equation becomes

δφ(x) → δφ′(x) = δφ(
x

λ
). (2.4.2)

In particular this is true for the boundary value of δφ as well.
As a result, suppressing the dependence on tensor modes for the moment,

we learn that the wavefunction must satisfy the conditions

ψ[δφ(x)] = ψ[δφ′(x)] = ψ[δφ(
x

λ
)]. (2.4.3)

As mentioned above every additional factor of δφ(x) in the expansion of
the wave function involves an additional factor of O(x) in the corresponding
coefficient function and also an integral over the spatial position of δφ(x).
Thus schematically speaking the wave function will satisfy the condition
(2.4.3) if

∫

d3xδφ′(x)O(x) =

∫

d3xδφ(x)O(x), (2.4.4)

where more correctly we mean the coefficient functions involving O(x), rather
that O(x) itself. This leads to the condition

∫

d3xλ3δφ(x)O(λx) =

∫

d3xδφ(x)O(x). (2.4.5)

(In deriving this relation we first change variables in the middle expression
of (2.4.4) to y = x

λ
and then change y to x since it is a dummy variable of

integration.) Since (2.4.5) is true for an arbitrary function δφ(x) we learn
that coefficient functions are invariant under the replacement

O(x) → λ3O(λx). (2.4.6)

Or in infinitesimal form if λ = 1 + ǫ,

O(x) → O(x) + ǫδO(x), (2.4.7)

with
δO(x) = 3O(x) + xi∂iO(x). (2.4.8)

This is exactly the condition that would arise due to scale invariance if the
coefficient functions were the correlation functions in a conformal field theory
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with O(x) being an operator of dimension 3. Note that in 3 dimensions this
makes O(x) marginal.

A similar argument for the tensor perturbation shows that under the scal-
ing transformation, (2.0.13), the boundary value of the tensor perturbation
transforms like7

γij(x) → γ′ij(x) = γij(
x

λ
). (2.4.9)

This is entirely analogous to (2.4.2) and a similar argument leads to the
conclusion that Tij must behave like an operator of dimension 3 under scaling
transformations for the wave function to be invariant under it.

Finally we consider special conformal transformations. At late times when
e−Ht → 0 we see from (2.0.14) that the xi coordinates transform as

xi → xi + δxi, (2.4.10)

δxi = x2bi − 2xi(x · b). (2.4.11)

Henceforth we will use notation where (a · b) ≡ aibi and also raise and lower
indices along the spatial directions using the flat metric δij .

The boundary value of the scalar field perturbation transforms under this
as

δφ(x) → δφ′(x) = δφ(xi − δxi). (2.4.12)

Arguing as in the case of the scale transformation above we then learn that
for the wave function to be invariant coefficient functions must be invariant
when

O(x) → O(x) + δO(x), (2.4.13)

δO(x) = −6(x · b)O(x) +DO(x), (2.4.14)

D = x2(b · ∂)− 2(b · x)(x · ∂). (2.4.15)

This is exactly the transformation of an operator of dimension 3 under special
conformal transformations. Similarly from the transformation of the tensor
mode we learn that the coefficient functions must be invariant when

Tij(x) → Tij + δTij , (2.4.16)

δTij = −6(x · b)Tij + 2M̂k
i Tkj + 2M̂k

j Tik −DTij , (2.4.17)

M̂k
i ≡ 2(xkbi − xibk). (2.4.18)

7The reader might find this puzzling at first since the metric should transform as a
tensor under the coordinate transformation (2.0.13). In fact the metric hij , (2.1.2), does
transform like a tensor and goes to hij(x) → 1

λ2 hij(
x

λ
). However γij is related to hij after

multiplying by an additional factor of a2, (2.1.3). Since t shifts, (2.0.13), the a2 factor
also changes resulting in the transformation rule (2.4.9).
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These agree with the transformation rules for the stress energy tensor of a
3d CFT and also agree with eq.(4.9) in [19].

The stress energy tensor of a CFT also satisfies one additional condition
— it is conserved. This gives rise to Ward identities that must be satisfied
by correlations functions in the CFT involving the stress energy tensor. The
same conditions also arise for the coefficient functions at hand here. The
wave function must be reparameterization invariant with respect to general
coordinate transformations,

xi → xi + vi, (2.4.19)

under which the metric and scalar perturbations transform as

γij → γij −∇ivj −∇jvi, (2.4.20)

δφ → δφ− vk∂kδφ. (2.4.21)

Invariance of the wave function ψ[γij, δφ] then leads to the condition

∫

d3xvj∂xi〈Tij(x)Ô(y1)Ô(y2) · · · Ô(yn)〉 = −
∑

i

〈Ô(y1) · · · δÔ(yi) · · · Ô(yn)〉,

(2.4.22)
where Ô is a schematic notation standing for both Tij , O, and δÔ(yi) is the

change in operator Ô(yi) at the point yi. In particular when Ô = O is a
scalar we get for the three point function

∂xi〈Tij(x)O(y1)O(y2)〉 =[∂xjδ3(x− y1)]〈O(y1)O(y2)〉
+ [∂xjδ3(x− y2)]〈O(y1)O(y2)〉.

(2.4.23)

To summarize, the coefficient functions which arise in the wave function
(2.2.1) satisfy all the symmetry properties of correlations functions involving
a scalar operator of dimension 3 and the stress energy tensor in a conformal
field theory. Namely, they are invariant under the conformal symmetry group
SO(1, 4) and satisfy the Ward identities due to conservation of the stress
energy tensor.

3 Constraints of Conformal Invariance on the

Correlation Function

In this section we will discuss how the correlation function (1.0.1) is con-
strained by the symmetries. This correlation function is obtained from the
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coefficient function, 〈OOTij〉, of the wave function in (2.2.1). We have ar-
gued in the previous section that as far as symmetries are concerned the
coefficient functions behave in exactly the same manner as corresponding
correlation functions of a CFT. In our discussion below we will find it con-
venient to adopt the language of CFT. We remind the reader that this is
only a kind of short-hand for analyzing the consequences of symmetries. In
particular, we will not be assuming any kind of deeper dS/CFT type relation
in our analysis. We will obtain the constraints by applying the generators of
conformal transformations to the momentum space correlator.
Notation:

Before proceeding let us list our conventions. We denote the three mo-
mentum by k below. Its magnitude will be denoted simply by k ≡ |k|.
Components will be denoted by ki, i = 1, ..., 3 and indices will be raised and
lowered by the flat space metric δij.

3.1 Direct Momentum Space Analysis

In our conventions the momentum space scalar operator is given by

O(k) ≡
∫

d3xO(x)e−ik·x, (3.1.1)

and similarly for Tij(k).
Translational and rotational invariance allows us to express the correlators

in the form

〈O(k1)O(k2)Tij(k3)〉 = [k1ik1jf1(k1, k2, k3) + k2ik2jf1(k2, k1, k3)

+ (k1ik2j + k2ik1j)f2(k1, k2, k3)

+ δijf3(k1, k2, k3)](2π)
3δ3(

∑

i

ki).
(3.1.2)

The overall delta function arises due to translational invariance. In the dis-
cussion below we will use Mij(k1,k2,k3) to denote the correlation function
without the overall delta function factor,

〈O(k1)O(k2)Tij(k3)〉 =Mij(k1,k2,k3)(2π)
3δ(
∑

i

ki). (3.1.3)

The three functions f1, f2, f3 in (3.1.2) at first sight could have also de-
pended on inner products k1 ·k2 etc. However using momentum conservation
these can be expressed in terms of the three scalars ki. For example

k1 · k2 =
1

2
(k23 − k21 − k22). (3.1.4)
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The correlator is symmetric under the exchange of k1 ↔ k2. As a result
f2, f3 are symmetric under the exchange of their first two arguments. Since
the operators O and Tij are dimension 3 in position space and thus dimension
0 in momentum space, scale invariance tells us that the fi’s are dimension 1.

Next we come to the non-trivial constraints due to special conformal
transformations. The transformation in position space of the operatorsO and
Tij under an infinitesimal special conformal transformation with parameter
bi is given in (2.4.14) and (2.4.17) respectively. In momentum space these
take the form,

δO(k) = −D̃O(k), (3.1.5)

δTij(k) = 2M̃ l
iTlj + 2M̃ l

jTil − D̃Tij, (3.1.6)

M̃ l
i ≡ bl∂ki − bi∂kl , (3.1.7)

D̃ ≡ (b · k)∂ki∂ki − 2kj∂kj(b · ∂k). (3.1.8)

These expressions agree with eq.(4.12) in [19] and in fact we have chosen
essentially the same conventions to try and ensure readability.

The condition for invariance of the correlator is

〈δO(k1)O(k2)Tij(k3)〉+ 〈O(k1)δO(k2)Tij(k3)〉+ 〈O(k1)O(k2)δTij(k3)〉 = 0.
(3.1.9)

As was argued in [19] all terms involving derivatives that act on the over-
all momentum conserving delta function sum to zero so we will henceforth
neglect the effect of the derivative operators acting on the delta function.

Defining the operator

Θ(k) ≡ −2

k

∂

∂k
+

∂2

∂k2
, (3.1.10)

where k ≡ |k| one can then show after some algebra that

〈δO(k1)O(k2)Tij(k3)〉 = −2(b · k1)δijf1 + 2(bik1j + bjk1i)(1 + k1∂k1)f1

+ 2(bik2j + bjk2i)k1∂k1f2 + (b · k1)Θ(k1)[f1k1ik1j + fT
1 k2ik2j + f2(k1ik2j + k2ik1j) + f3δij ].

(3.1.11)

Here we have omitted the overall delta function. We have also introduced
the notation

fT
1 (k1, k2, k3) ≡ f1(k2, k1, k3). (3.1.12)

At this stage it is useful to contract the LHS of (3.1.11) with the sym-
metric (real) polarization tensor esij which is traceless and transverse to k3,

es,ii = esijk
i
3 = 0. (3.1.13)
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The s here indicates that there are two possible choices for this tensor. This
gives

〈δO(k1)O(k2)Tij(k3)〉es,ij = 4bik1je
s,ij[(1 + k1∂k1)f1 − k1∂k1f2]

+(b · k1)Θ(k1)(2f2 − f1 − fT
1 )k1ik2je

s,ij,(3.1.14)

where we have used the condition

es,ijk1i = −es,ijk2i = 0. (3.1.15)

Similarly we get

〈O(k1)δO(k2)Tij(k3)〉es,ij =− 4bik1je
s,ij[(1 + k2∂k2)f

T
1 − k2∂k2f2]

+ (b · k2)Θ(k2)(2f2 − f1 − fT
1 )k1ik2je

s,ij.

(3.1.16)

And also

〈O(k1)O(k2)δTij(k3)〉es,ij =− 4

k3
bik1je

s,ij[(k3 · k1)∂k3(f1 − f2)− (k3 · k2)∂k3(f
T
1 − f2)]

+ b · k3Θ(k3)(2f2 − f1 − fT
1 ).

(3.1.17)

Adding (3.1.14), (3.1.16) and (3.1.17) and setting the total change to vanish
finally gives the equation

4bik1je
s,ij
[

(1 + k1∂k1)f1 − (1 + k2∂k2)f
T
1 + (k2∂k2 − k1∂k1)f2

− (k3 · k1)

k3
∂k3(f1 − f2) +

(k3 · k2)

k3
∂k3(f

T
1 − f2)

]

+k1ik2je
s,ij
[

(b · k1)Θ(k1) + (b · k2)Θ(k2) + (b · k3)Θ(k3)
]

(2f2 − f1 − fT
1 ) = 0.

(3.1.18)

This is the main equation we will use to derive the constraints imposed by
the special conformal transformations.

There are three linearly independent values that b can take in (3.1.18).
Choosing b ∝ k3 gives

[k3 · k1Θ(k1) + (k3 · k2)Θ(k2) + k23Θ(k3)]S(k1, k2, k3) = 0, (3.1.19)

where

S(k1, k2, k3) =
1

2
[f1(k1, k2, k3) + f1(k2, k1, k3)− 2f2(k1, k2, k3)]. (3.1.20)
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Choosing b ∝ k1⊥ = k1 − k3
(k1·k3)

k2
3

gives

4[
−k2 · k3

k23
k1∂k1S +

k1 · k3

k23
k2∂k2S − (k21 − k22)

k23
S +

3

2

(k31 − k32)

k23
]

−(k21 −
(k3 · k1)

2

k23
)(Θ(k1)−Θ(k2))S = 0,(3.1.21)

as shown in Appendix B. The term inhomogeneous in S above arises due to
the use of the Ward identity for conservation of the stress tensor. We take
the two-point function of the scalar O(k) to be normalized so that

〈O(k1)O(k2)〉 = (2π)3δ(k1 + k2)|k1|3. (3.1.22)

The Ward identity for conservation of the stress tensor, (2.4.23) then takes
the form

Mijk
j
3 = −k31kj1 − k32k

j
2, (3.1.23)

where Mij is defined in (3.1.3).
Finally we can choose b to be orthogonal to all the ki’s so that b ·ki = 0.

For a suitable choice of polarization bik1je
s,ij will not vanish and as discussed

in Appendix B (3.1.18) then becomes

−(k2 · k3)k1∂k1S + (k1 · k3)k2∂k2S − (k21 − k22)S +
3

2
(k31 − k32) = 0.(3.1.24)

Subtracting (3.1.21) and (3.1.24) then gives

(Θ(k1)−Θ(k2))S = 0. (3.1.25)

Substituting this in (3.1.19) then gives

(Θ(k1)−Θ(k3))S = 0. (3.1.26)

Equations (3.1.24), (3.1.25) and (3.1.26) can be taken to be the three final
equations which arise because of special conformal invariance.

Before proceeding let us note here that from (3.1.2), (3.1.15) and (3.1.20)
we get that

〈O(k1)O(k2)Tij(k3)〉es,ij = −2(2π)3δ(
∑

i

ki)e
s,ijk1ik2jS, (3.1.27)

where esij is a traceless polarization tensor transverse to k3.
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4 Solving the Conformal Constraints

The three point correlator involving two scalar and one tensor perturbations
was calculated for a model of inflation in [17]. The answer is given in equa-
tions (4.10) and (4.11) of [17] in terms of the function

I = −(k1 + k2 + k3) +

∑

i>j kikj

(k1 + k2 + k3)
+

k1k2k3
(k1 + k2 + k3)2

. (4.0.28)

From this result we can read off the functional form for the corresponding
〈OOTij〉 coefficient. This gives

S = −I = −[−(k1 + k2 + k3) +

∑

i>j kikj

(k1 + k2 + k3)
+

k1k2k3
(k1 + k2 + k3)2

]. (4.0.29)

It is easy to check that this function solves the three equations (3.1.21),
(3.1.25), (3.1.26) above.

4.1 Uniqueness

In this subsection we will see that (4.0.29) is the unique solution to (3.1.24),
(3.1.25), (3.1.26) which meets all the required conditions.

We begin by noting that the set of functions

fz(k) = (1 + ikz)e−ikz, (4.1.1)

with z allowed to range over both positive and negative values forms a com-
plete set. Any function H(k) can be expanded in terms of this set,

H(k) =

∫ ∞

−∞

φ̃(z)fz(k)dz. (4.1.2)

The point is that φ̃ is a kind of souped up Fourier transform of H(k). Let
φ(k) be the Fourier transform of φ̃(z). Then (4.1.2) gives

H(k) = φ(k)− kφ′(k) = −k2 d
dk

(

φ(k)

k

)

, (4.1.3)

which can be solved to obtain

φ(k) = −k
∫ k H(x)

x2
dx, (4.1.4)
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and correspondingly

φ̃(z) =

∫ ∞

−∞

−
[

keikz
∫ k H(x)

x2
dx

]

dk

2π
. (4.1.5)

Note that (4.1.4) determines φ(k) up to a term proportional to k and this in
turns leads to an ambiguity proportional to δ′(z) in φ̃(z), but this ambiguity
drops out of the integral in (4.1.2) leading to a well defined value for H(k).

Thus the most general solution can be expanded as

S(k1, k2, k3) =

∫

[

(1 + ik1z1)e
−ik1z1(1 + ik2z2)e

−ik2z2

× (1 + ik3z3)e
−ik3z3M(z1, z2, z3)

]

dz1dz2dz3,

(4.1.6)

where each zi integral runs over (−∞,∞).
Now note that since

Θ(k)fz(k) = −z2fz(k), (4.1.7)

the functions fz(k) are eigenvectors of the operator Θ(k).8 It then follows
that (3.1.25), (3.1.26), for S given in (4.1.6) lead to the conditions

z21 = z22 = z33 . (4.1.8)

As a result an allowed solution can be written in the following form:

S =
∑

n1,n2,n3=±1

∫ ∞

0

Fn1n2n3(z)Mn1n2n3
(z)dz, (4.1.9)

where Mn1,n2,n3
are a set of 8 functions for the 8 possible combinations of

n1, n2, n3 and

Fn1n2n3
(z) = (1 + in1k1z)e

−in1k1z(1 + in2k2z)e
−in2k2z(1 + in3k3z)e

−in3k3z.
(4.1.10)

Next, we apply the dilatation constraint:

(

k1
∂

∂k1
+ k2

∂

∂k2
+ k3

∂

∂k3

)

S = S. (4.1.11)

8The functions fz(k) are in fact solutions to the massless scalar equation in de Sitter
space with z being conformal time.
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We notice that:
(

k1∂

∂k1
+
k2∂

∂k2
+
k3∂

∂k3

)

S − S =
∑

n1,n2,n3=±1

∫ ∞

0

Mn1n2n3
(z)

(

z
∂

∂z
− 1

)

Fn1n2n3
(z)

(4.1.12)

= −
∑

n1,n2,n3=±1

∫ ∞

0

(

∂

∂z
z + 1

)

Mn1n2n3
(z)Fn1n2n3

(z)dz, (4.1.13)

which leads to

− ∂

∂z
zMn1,n2n3

(z) = Mn1,n2,n3
(z). (4.1.14)

This provides us with

Mn1,n2,n3
=
mn1,n2,n3

z2
, (4.1.15)

where mn1,n2,n3
is an arbitrary constant. Essentially all that we are saying

that the z dependence of Mn1,n2,n3
is fixed by noting that it must have

dimension 2 and z has dimension −1.
In going from (4.1.12) to (4.1.13), we tacitly assumed that M was regular

at the origin so that we could drop the boundary term at 0. However, the
result in (4.1.15) makes (4.1.12) divergent both at 0 and at ∞. We can be
more careful as follows. To define the integral at z = ∞, we can analytically
continue the correlator to give the ki a small imaginary part. To define the
integral at z = 0, we can define it by:

S =
∑

n1,n2,n3=±1

mn1n2n3

∫ ∞

0

Fn1n2n3
(z)

dz

z2
≡

∑

n1,n2,n3=±1

mn1n2n3

∫ ∞

ǫ

Mn1n2n3
(z)

∣

∣

∣

∣

ǫ0

,

(4.1.16)

which means that we regulate the integral, by changing the range to (ǫ,∞)
and then pick up the ǫ0 term. This prescription now makes the resulting
integral well defined while preserving its behaviour under scale transforma-
tions.

The prescription above leads to:

S =
∑

n1,n2,n3=±1

mn1n2n3

(

− n1n2n3
k2k3k1

(n1k1 + n2k2 + n3k3)2
+ n1k1 + n2k2 + n3k3

− n1n2k1k2 + n2n3k3k2 + n1n3k1k3
n1k1 + n2k2 + n3k3

)

.

(4.1.17)

Actually there are only four distinct terms in the sum above since the function
of ki’s within the bracket on the RHS above only changes by an overall sign
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when the sign of all three ni’s is changed. We can use this property to fix
n3 = +1 so that S is given by a sum over four terms

S =
∑

n1,n2=±1

mn1n2

(

− n1n2
k2k3k1

(n1k1 + n2k2 + k3)2
+ n1k1 + n2k2 + k3

− n1n2k1k2 + n2k3k2 + n1k1k3
n1k1 + n2k2 + k3

)

.

(4.1.18)

where mn1,n2
= mn1n2+1.

So far we have used (3.1.25), (3.1.26). It is easy to show that the re-
maining equation (3.1.24) acting on the solution above gives rise to the two
conditions

∑

n1,n2

mn1,n2
n3
1 = 1, (4.1.19)

∑

n1,n2

mn1,n2
n3
2 = 1. (4.1.20)

4.2 Various Limits For The Momenta

In this subsection we will show by considering two different limits for the
momenta that one can rule out three of the four terms which appear in the
sum in (4.1.18) leaving only the term with n1 = n2 = 1. The normalization
of this term is then fixed by (4.1.19),(4.1.20) leading to the unique result
given in (4.0.29).

4.2.1 First Limit

First consider the limit where the momentum carried by the tensor pertur-
bation is much smaller than that of the two scalar perturbations,

k3 ≪ k1 ≃ k2. (4.2.1)

In this limit the scalar perturbations can be taken to be propagating in an
essentially constant metric γij. The resulting wave function (2.3.1) can be
calculated in two ways. Either by working directly with the boundary values,
γij , δφ. Or by first taking a boundary metric which is flat, γij = δij , and then
transforming the answer by a coordinate transformation to the case of the
constant metric γij. The two answers must of course agree.

This gives rise to the condition, [17], that in this limit

〈Tij(k3)O(k1)O(k2)〉′es,ij = −es,ijk2ik2j
d

dk22
〈O(k2)O(−k2)〉′, (4.2.2)
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where the superscript prime on the two sides stands for the correlator without
the factor of (2π)3δ3(

∑

ki). From (A.0.10) and (3.1.27) this gives that in
the limit (4.2.1)

S → 3

2
k2. (4.2.3)

One finds that this condition rules out the two terms in (4.1.18) where n1, n2

have the opposite sign so that

S =
∑

{(n1,n2)=(+,+),(n1,n2)=(−,−)}

mn1n2

(

− n1n2
k2k3k1

(n1k1 + n2k2 + k3)2
+ n1k1 + n2k2 + k3

− n1n2k1k2 + n2k3k2 + n1k1k3
n1k1 + n2k2 + k3

)

.

(4.2.4)

4.2.2 Second Limit and the OPE

Next we examine the limit where k2 ≃ k3 ≫ k1. The behaviour in this limit
is most easily understood if we can appeal to the operator product expansion
(OPE). We have seen that the coefficient functions which appear in the wave
function (2.2.1), (2.2.2), transform under the conformal symmetries like the
correlation functions of a CFT. It is well known that in a CFT operators
satisfy the operator product expansion. For the arguments that follow we
will assume that this is true for the coefficient functions in the wave function
as well. While this assumption is quite plausibly true we do not provide
a proof for it here.9 In the next section we provide another argument for
uniqueness that does not reply on the OPE.

To see how the argument goes let us first examine the limit which was
studied above, where k1, k2 are large compared to k3, but now using the OPE.
We take

k2 = K, k1 = −K + k3, with K ≡ |K| ≫ k3. (4.2.5)

In position space we are considering the limit x1 → x2 for the correlation
function

〈O(x1)O(x2)Tµν(x3)〉. (4.2.6)

9In the AdS/CFT correspondence which is related by analytic continuation to the dS
case one can plausibly provide an argument for the operator product expansion from the
bulk using the prescription for calculating the boundary correlation functions from the
bulk, the properties of the bulk to boundary propagator, etc. By analytic continuation
one would expect then to be able to show this for the coefficient functions in the dS case
as well.
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The operator product expansion tells us that in this limit the leading contri-
bution comes from the term

O(0)O(x) =
xµxν
x5

T µν(x) + . . . , (4.2.7)

where x ≡ x2 − x1.
The momentum space correlator is obtained by taking a Fourier transform

of (4.2.6)
∫

〈O(x1)O(x2)T
µν(x3)〉ei((k1·x1)+(k2·x2)+(k3·x3))d3x1d

3x2d
3x3

=

∫

〈O(0)O(x2 − x1)T
µν(x3 − x1)〉ei((k1+k2+k3)·x1+k2·(x2−x1)+k3(x3−x1))d3x1d

3x2d
3x3

= (2π)3δ3(k1 + k2 + k3)

∫

〈O(0)O(x2 − x1)T
µν(x3 − x1)〉ei(k2·(x2−x1)+k3·(x3−x1))d3x2d

3x3.

(4.2.8)

In the limit (4.2.5) it follows from (4.2.7) that the momentum space cor-
relator should go like

∫

xµxν

x5
eiK·xd3x ∼ O(K0). (4.2.9)

Since the expression (3.1.27) already has a factor of K2 outside, we learn
that

S ∼ k33
K2

, (4.2.10)

where we have inserted the correct factor of k3 by dimensional analysis. It
is easy to check that this only happens in the sum in (4.1.18) if n1, n2 have
the same sign.

For example, consider the term in (4.1.18) with n1 = n2 = 1. And scale
k3 → λk3 and expand in powers of λ, for small λ. We get:

−S =
3k1
2

+
3(k1 · k3)λ

4k1
+

(

k3
2

k1
− (k1 · k3)

2

4k1
3

)

λ2

+ λ3

(

3(k1 · k3)
3

16k1
5 − 9k3

2(k1 · k3)

16k1
3 − 3k3

3

8k1
2

)

.

(4.2.11)

One might naively believe that this contradicts (4.2.10). However, it is rather
interesting that all the terms that grow too fast with K are actually analytic
in at least two momenta and so lead to contact terms when transformed to
position space.
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For example, we have

∫

k1ik2j
3k1
2
δ3(k1 + k2 + k3)e

−i(k1·x1+k2·x2+k3·x3)d3k1d
3k2d

3k3

= − ∂

∂xi1

∂

∂xj2

∫

3k1
2
e−i(k1·(x1−x2)+k3·(x3−x2))d3k1d

3k3

= −(2π)3
∂

∂xi1

∂

∂xj2
δ(x3 − x2)

∫

3k1
2
e−i(k1·(x1−x2))d3k1 + . . .

(4.2.12)

where . . . are subleading in λ.

The first non-analytic term in (4.2.11) is the term that goes like
k3
3

k2
1

, which

is indeed of the form that we expected in (4.2.10)!
It is easy to check that if we consider a term in (4.1.18) where n1, n2

have opposite sign we will not get an answer consistent with the OPE. For
example consider the term with n1 = −1, n2 = n3 = 1, we have

−S =
1

λ

2k3k1
4 + (k1 · k3)k1

3

((k1 · k3) + k1k3)2
. (4.2.13)

This is already non-analytic and is clearly of the wrong form.
Having considered the limit where k1, k2 are large compared to k3 we can

finally turn to the limit of interest where k2, k3 are large compared to k1. In
position space this corresponds to the case where x2 → x3, in which case we
expect the dominant OPE

O(x2)Tµν(x3) =A
(x2 − x3)µ(x2 − x3)ν

x2 − x53
O(x3) +B

(x2 − x3)µ∂ν + (x2 − x3)ν∂µ
x2 − x43

O(x3)

+
C

x33
∂µ∂νO(x3).

(4.2.14)

We are now concerned with the limit where k3 = K, k2 = −K − k1 and
K
k1

is large. The terms that multiply A and B might seem like they scale like

K0 in this limit, but this is deceptive. In fact, if we work through the Fourier
transform, we expect that these terms give rise to

KµKν +K(µk1ν) + k1µk1ν

K2
, (4.2.15)

in Fourier space. Of these terms only the last one — k1µk1ν is meaningful,
since the others point alongK, and yield 0 when contracted with a transverse
polarization tensor for the stress-tensor. A similar logic applies for the term
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that multiplies B. So, in fact, all the three terms in (4.2.14) should give
terms that scale like 1

K2 when transformed to momentum space.
This now implies that S itself must scale like 1

K2 since the full correlator
is given by S multiplied with es,ijk1ik2j (3.1.27), and even though k2 =
−K − k1, since e

s,ijKj = 0, this factor scales like O(K0). It is now simple
to see that of the two terms that remain in (4.2.4) the only one which gives
the correct behaviour for S is the one with n1 = n2 = 1. The analysis of
expanding the terms in this limit and comparing with the required behaviour
is completely analogous to the one above and we will skip the details.

To summarize, by considering two limits for the momenta we learn that
of the four terms which could have been present in S, (4.1.18) only one term
survives giving the final result in (4.0.29).

4.3 Final Solution

As mentioned above the unique solution for S was obtained above in (4.0.29).
The overall normalization followed from the use of the normalization of the
two point function 〈O(k1)O(k2)〉 given in (3.1.22) which in turn determined
the Ward identity (3.1.23).

Instead as discussed in Appendix A it is convenient to take the two point
function 〈O(k1)O(k2)〉 to be normalized as given in (A.0.10) so that its nor-
malization differs from (3.1.22) by a factor of10 c. With this choice the
solution for the correlator becomes

〈O(k1)O(k2)Tij(k3)〉es,ij = −2(2π)3cδ(
∑

i

ki)e
s,ijk1ik2jS. (4.3.1)

From the general arguments of section 2 this should be the value for the
coefficient function, 〈OOTij〉es,ij, in the wave function (2.2.1).

5 Final Result

Using the wave function (2.2.1) and (2.1.7) it is now a simple matter to find
the three point correlator involving two scalar perturbations ζ(k1), ζ(k2) and
one tensor perturbation γij(k3) with polarization es,ij.

One finds that it is given by

〈ζ(k1)ζ(k2)γs(k3)〉 = (2π)3δ(
∑

i

ki)
1

Πi(2k3i )
(
4H4

M4
plc

)(
H2

φ̇2
)es,ijk1ik2jS(k1, k2, k3),

(5.0.2)

10The constant c can be set to unity by rescaling the inflaton, but keeping it explicit
allows for the normalization of the inflaton to be determined in an independent manner.

39



with

S(k1, k2, k3) = (k1 + k2 + k3)−
∑

i>j kikj

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2
. (5.0.3)

In this formula φ̇ is the time derivative of the inflaton and c is a constant
which is defined from the normalization of the scalar two-point function given
in (A.0.10). This constant can be set to unity by rescaling φ̇. When the two
derivative approximation is valid, in the normalization where c = 1, φ̇ is
related to the slow roll parameter ǫ by (2.0.11). γs is related to the tensor
perturbation by

γij(k3) = γs(k3)e
s
ij(k3), (5.0.4)

where esij(k3) is the polarization which is transverse and traceless, (3.1.13),
with normalization given in (A.0.8).

Equation (5.0.2) is the main result of this thesis.
By comparing this result with the two point functions for the scalar and

tensor perturbations given in (A.0.10), (A.0.11) of the appendix A we see
that the normalization of the correlator is completely fixed in terms of the
normalization of these two two-point functions.

For conventional slow-roll inflation the answer above agrees, up to an
overall sign, with that obtained in [17], with c = 1 and φ being the canoni-
cally normalized inflaton.

It should be attempted to cast the result (5.0.2) in a form which does not
involve the time derivative of the background inflaton field. This can provide
a starting point for further generalization of the result to single-clock models
of inflation not necessarily driven by a single scalar field.11 To do this, we
proceed as follows. In case when the two derivative approximation is valid,

we have H2 = V (φ)

3M2

Pl

. Differentiating and rearranging, we get φ̇

H
=

6M2

Pl

V ′(φ)
Ḣ.

Eliminating V ′ using the relation ǫ = 1
2
(V

′

V
)2, and eliminating V in favour of

the Hubble parameter, we get φ̇

H
= (−2Ḣ

H2 )
1

2 . Using this, we can re-write our
result (5.0.2) as
〈ζ(k1)ζ(k2)γs(k3)〉 = −(2π)3δ(

∑

i ki)
1

Πi(2k3i )
( 2H6

M4

Pl
cḢ

)es,ijk1ik2jS(k1, k2, k3).

11I am thankful to Prof. Anshuman Maharana, the external thesis examiner for sug-
gesting this point to me.
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6 Conclusions

In this thesis we have studied the three point function involving two scalars
and one tensor perturbation. We showed that this correlator is completely
fixed by the SO(1, 4) symmetries of de Sitter space, up to small corrections.
Our final result is given in (5.0.2). The normalizations for the scalar and
tensor two point functions are given in (A.0.10) and (A.0.11); we see that the
normalization of the three point function is fixed in terms of the normalization
of the two point functions.

Our result is based on three main assumptions. First, that the inflation-
ary dynamics— including the scalar sector—approximately preserves the full
SO(1, 4) conformal group of isometries of de Sitter space. Second, that there
is only one scalar field during inflation. And third, that the initial state is the
Bunch-Davies vacuum. Other than these assumptions the result is general
and essentially model independent. In particular it should apply to models
where higher derivative corrections in gravity are important, as was discussed
in the introduction.

The general nature of this result means that this three point function
is observationally a good way to test if the inflationary dynamics had the
full conformal group including the special conformal transformations as its
symmetries. It is worth emphasizing that the two point functions do not by
themselves allow for a test of this feature. In conventional slow-roll inflation
there is one relation between the various parameters which arises as follows.
The tensor two point function allows for a determination of H2/M2

P l from
its normalization and for ǫ, defined in (2.0.6), from its tilt. The normaliza-
tion of the scalar two-point function goes like H2

M2

Pl

H2

φ̇2
and is then fixed since

φ̇

H
is determined in terms of ǫ by (2.0.11). However, once higher derivative

corrections are included (2.0.11) need not be valid any longer even when
the full conformal group is approximately preserved. For example (2.0.8)
could receive corrections due to higher powers of curvature becoming impor-
tant in the action (2.0.2). Thus this relation between the parameters of the
two point functions does not allow us to test whether the special conformal
transformations were good symmetries during inflation.

Corrections to our result for the three point function will arise from effects
which break the SO(1, 4) symmetries. These can be of two kinds. Effects
which break the special conformal symmetries but preserve scale invariance
and effects which break scale invariance. Examples of the breaking of special
conformal invariance include a speed of sound which is different from unity.
More generally, these effects can be parameterized using the effective La-
grangian approach discussed in [10]. The breaking of scale invariance occurs
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because the Hubble constant and the inflaton slowly evolve during inflation
and are not constant. When the momenta of the three perturbations in the
correlator are of the same order of magnitude one immediate way to incor-
porate some of the resulting corrections is to set the parameters, H, φ̇ which
enter in (5.0.2), to take their values at the time of horizon crossing for the
modes.12 More generally, corrections due to the breaking of scale invariance
are of order the slow roll parameters and about 1% in order of magnitude.

As stated above our result applies to models of single field inflation. When
more than one scalar is present both adiabatic and isocurvature perturbations
can be present and it is harder to come up with model independent results.
We can always still go to the gauge where ζ = 0, discussed for the single scalar
case in 2.1.2. And then work in a basis where the scalar field perturbations,
δφi, i = 1, · · ·N, have a diagonal two point function. Assuming that scalars
are approximately massless we get the two-point functions to be13

〈δφi(k1)δφj(k2)〉 = δij(2π)
3δ3(k1 + k2)

H2

M2
pl

1

2

1

k31
. (6.0.5)

The three point functions for the scalar and tensor perturbations then easily
follows and is again diagonal in this basis of scalar perturbations and takes
the model independent form (5.0.2) (with c = 1). The model dependence in
the result enters when we try to obtain the three point function in terms of
the the curvature perturbation, ζ , which is defined for all time and conserved
after the modes cross the horizon. The value of this perturbation and its
correlations depend on how the various scalars affect the end of inflation and
this is model dependent.

The analysis here is based on earlier papers [17, 19]. In [19] it was shown
that working in the de Sitter approximation the three point tensor pertur-
bation can be significantly constrained from symmetry considerations alone.
Unlike tensor perturbations when dealing with scalars the small breaking of
de Sitter symmetries in the inflationary background cannot be totally ig-
nored. However for the correlation function of interest in this thesis this
breaking can be incorporated, at least to leading order in the slow-roll pa-
rameters, in a straightforward manner. As explained in section 2 one first
works in the gauge where ζ = 0 and calculates the correlation function in
terms of the scalar perturbation δφ, then transforms to the gauge where the
ζ 6= 0 using (2.1.7). The calculation in terms of δφ can be done in de Sit-
ter space and the breaking of de Sitter invariance enters only in the last step

12In the squeezed limit, when one momentum is much smaller one can also incorporate
similar effects by carrying out an analysis along the lines of section 4.2.

13Here we have rescaled δφ to set a possible constant c which appears in the normaliza-
tion on the RHS to unity.
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through the factor of φ̇

H
in (2.1.7). This is analogous to using the relation (??)

in conformal perturbation theory and computing the correlation function in
terms of the scalar operator O in the CFT.

It is important to try to extend this analysis to other correlation functions
especially the three point scalar correlator which is observationally most sig-
nificant. The analysis is more complicated here since in general one cannot
get away by simply taking the breaking of the de Sitter symmetries into ac-
count in the manner described in the previous paragraph. This can be seen
from the results for the conventional slow-roll case in [17] where it was found
that the scalar three-point function is suppressed by an additional factor of√
ǫ leading to an answer that goes like14 H4

M4

Pl
ǫ
. Despite these complications, it

would be worthwhile to consider a CFT which has say just the stress tensor
and a scalar as its low dimension operators and ask how much the scalar
correlators are constrained by CFT considerations alone along the lines of
[29].

We have used both scale and special conformal invariance in deriving our
result. We have already discussed the possibility that the scalar sector could
break the special conformal symmetries badly. On the gravity side transla-
tions, rotations and scale invariance uniquely lead to de Sitter space, which is
then also invariant under special conformal transformations. However, more
generally, when higher spin fields are also excited it is conceivable that one
has time dependent solutions with translations, rotations and scale invari-
ance symmetry but without special conformal invariance. It would be worth
developing an understanding of such solutions and their possible role in the
early Universe.15 The correlator studied here could be used to distinguish
solutions of this type also from de Sitter space.

A The Two Point Function and Normaliza-

tions

In this appendix we discuss the two point function and related issues about
normalizations of correlation functions. The wave function at quadratic order

14This fact also follows from CFT by noting that the three-point function of an exactly
marginal operator must vanish.

15For a review of higher spin fields and related issues see [30].
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can be read off from (2.2.2)

ψ = exp

(

M2
pl

H2

[

− 1

2

∫

d3k

(2π)3
d3k′

(2π)3
δφ(k)δφ(k′)〈O(−k)O(−k′)〉

− 1

2

∫

d3k

(2π)3
d3k′

(2π)3
γs(k)γs′(k

′)〈T s(−k)T s′(−k′)〉
]

)

.

(A.0.6)

Here the labels s, s′ denote the two polarizations of the graviton. In our
notation a graviton can be written as a linear combination of its two polar-
izations

γij(k) =
∑

s=1,2

γse
s
ij(k), (A.0.7)

where the polarization tensors are normalized so that

es,ijes
′

ij = 2δs,s
′

. (A.0.8)

For the stress energy tensor we define

T s(k) ≡ Tij(k)e
s,ij(−k). (A.0.9)

Translational and rotational invariance along with scaling symmetry fixes
the form of the two point functions to be

〈O(k1)O(k2)〉 = ck31(2π)
3δ3(k1 + k2), (A.0.10)

〈T s(k1)T
s′(k2)〉 = k31(2π)

3δ3(k1 + k2)(
δss

′

2
). (A.0.11)

A constant could have appeared on the RHS of (A.0.11) but that can be
absorbed into a redefinition of H . The constant c which appears on the
RHS of (A.0.10) could also have been set to unity by rescaling the operator
O. However doing so also requires us to rescale the inflaton perturbation δφ
which is the source for O. It is convenient instead to not do this rescaling
and keep the constant c explicit in (A.0.10).

Substituting (A.0.10), (A.0.11) in the wave function one can easily show
that the resulting two-point functions for the perturbations are

〈δφ(k1)δφ(k2)〉 = (2π)3δ3(k1 + k2)
H2

M2
pl

1

2c

1

k31
, (A.0.12)

〈γs(k1)γs′(k2)〉 = (2π)3δ(k1 + k2)
H2

M2
pl

1

2k31
(2δs,s′). (A.0.13)

44



Using (2.1.7) we get from (A.0.12) that the two point function of the scalar
perturbation is

〈ζ(k1)ζ(k2)〉 = (2π)3δ3(k1 + k2)
H2

M2
pl

1

2c

H2

φ̇2

1

k31
. (A.0.14)

(A.0.13), (A.0.14) agree with the results of the standard slow-roll two -
derivative theory when c = 1 and φ is the canonically normalized inflaton.
More generally c can be set to unity by rescaling φ.

B Details of the Equations for Special Con-

formal Invariance

From (3.1.2) and (3.1.3) we learn that

Mij(k1,k2,k3) = k1ik1jf1(k1, k2, k3) + k2ik2jf1(k2, k1, k3)

+(k1ik2j + k2ik1j)f2(k1, k2, k3) + δijf3(k1, k2, k3).(B.0.15)

Multiplying by k3i(k1j − k3j(k1.k3)

k2
3

) we get

k3i(k1j−
k3j(k1.k3)

k23
)Mij(k1,k2,k3) = [k21−

(k1 · k3)
2

k23
]
(

(k1 · k3)(f1 − f2) + (k2 · k3)(f2 − fT
1 )
)

.

(B.0.16)

Now, choosing b ∝ k1 − k3(k1·k3)
k2
3

in (3.1.18) we get

4k1ik1je
s,ij
[

(1 + k1
∂

∂k1
)f1 − (1 + k2

∂

∂k2
)fT

1 + (k2
∂

∂k2
− k1

∂

∂k1
)f2

− (k1 · k3)

k3

∂

∂k3
(f1 − f2) +

(k3 · k2)

k3

∂

∂k3
(fT

1 − f2)
]

+k1ik2je
s,ij
[

k21 −
(k1 · k3)

k23

]

(Θ(k1)−Θ(k2))(2f2 − f1 − fT
1 ) = 0.

(B.0.17)

Using k2je
s,ij = −(k1j + k3j)e

s,ij = −k1jes,ij, (B.0.17) reduces to

es,ijk1ik1j

{

4[(1 + k1
∂

∂k1
)f1 − (1 + k2

∂

∂k2
)fT

1 + (k2
∂

∂k2
− k1

∂

∂k1
)f2

− (k1 · k3)

k3

∂

∂k3
(f1 − f2) +

(k2 · k3)

k3

∂

∂k3
(fT

1 − f2)]

− (k21 −
(k1 · k3)

2

k23
)(Θ(k1)−Θ(k2))(2f2 − f1 − fT

1 )

}

= 0.

(B.0.18)
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Since the polarization can be chosen so that es,ijk1ik1j does not vanish the
quantity within the curly brackets must vanish leading to

4
[

(k1
∂

∂k1
− (k1 · k3)

k3

∂

∂k3
)(f1 − f2)− (k2

∂

∂k2
− (k2 · k3)

k3

∂

∂k3
)(fT

1 − f2)

+ (f1 − f2)− (fT
1 − f2)

]

− (k21 −
(k1 · k3)

2

k23
)(Θ(k1)−Θ(k2))(2f2 − f1 − fT

1 ) = 0.

(B.0.19)

In terms of S ≡ [(f1 − f2) + (fT
1 − f2)]/2 and A ≡ [(f1 − f2)− (fT

1 − f2)]/2
this becomes

4
[

(k1
∂

∂k1
− k1 · k3

k3

∂

∂k3
)(S + A)− (k2

∂

∂k2
− k2 · k3

k3

∂

∂k3
)(S − A) + 2A

]

− 2(k21 −
(k1 · k3)

2

k23
)(Θ(k1)−Θ(k2))S = 0.

(B.0.20)

Similarly, (B.0.16) in terms of S,A becomes,

k3i(k1j−
k3j(k1 · k3)

k23
)Mij(k1,k2,k3) = [k21−

(k1 · k3)
2

k23
]((k1·k3)(S+A)−(k2·k3)(S−A)),

(B.0.21)
which can be used to solve for A and gives

A =
(k1 − k2) · k3

k23
S − Mijk3iǫ⊥j

k23ǫ
2
⊥

, (B.0.22)

where ǫ⊥j ≡ k1j − k3j(k1·k3)

k2
3

.(We caution the reader that this is different

from the null transverse vector ǫ3 that has appeared above.) Substituting in
(B.0.20) this leads to

4
[

(
k2 · k3

k23
k1

∂

∂k1
− k1 · k3

k23
k2

∂

∂k2
)S +

k3 · (k2 − k1)

k23
S

+ (k1
∂

∂k1
+ k2

∂

∂k2
+ k3

∂

∂k3
)(
Mijk3iǫ⊥j

2k23ǫ
2
⊥

) +
Mijk3iǫ⊥j

k23ǫ
2
⊥

]

+ (k21 −
(k1 · k3)

2

k23
)(Θ(k1)−Θ(k2))S = 0.

(B.0.23)

Next, using the Ward identity, (3.1.23) we get

Mijk3iǫ⊥j

ǫ2⊥
= −k31 + k32. (B.0.24)
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Substituting (B.0.24) in (B.0.23) after some algebra gives (3.1.21).
Finally we consider taking b to be orthogonal to all ki so that b · k = 0.

We can also choose a polarization so that bik1je
s,ij 6= 0. (3.1.18) then gives

(1 + k1∂k1)f1 − (1 + k2∂k2)f
T
1 + (k2∂k2 − k1∂k1)f2 −

(k3 · k1)

k3
∂k3(f1 − f2)

+
(k3 · k2)

k3
∂k3(f

T
1 − f2) = 0.

(B.0.25)

The reader will notice that the LHS above is the first two lines of the LHS
of (B.0.18). Thus the analysis above when applied to (B.0.25) directly leads
to (3.1.24).

References

[1] E. Komatsu, Hunting for Primordial Non-Gaussianity in the Cosmic
Microwave Background, Class.Quant.Grav. 27 (2010) p. 124010,
[arXiv:1003.6097].

[2] E. Komatsu, N. Afshordi, N. Bartolo, D. Baumann, J. Bond, et. al.,
Non-Gaussianity as a Probe of the Physics of the Primordial Universe
and the Astrophysics of the Low Redshift Universe, arXiv:0902.4759.

[3] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Non-Gaussianity
from inflation: Theory and observations, Phys.Rept. 402 (2004)
pp. 103–266, [astro-ph/0406398].

[4] E. Komatsu, The pursuit of non-gaussian fluctuations in the cosmic
microwave background, astro-ph/0206039.

[5] S. Weinberg, Cosmology. Oxford University Press, 2008.

[6] X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, Observational
signatures and non-Gaussianities of general single field inflation,
JCAP 0701 (2007) p. 002, [hep-th/0605045].

[7] E. Silverstein and D. Tong, Scalar speed limits and cosmology:
Acceleration from D-cceleration, Phys.Rev. D70 (2004) p. 103505,
[hep-th/0310221].

[8] M. Alishahiha, E. Silverstein, and D. Tong, DBI in the sky, Phys.Rev.
D70 (2004) p. 123505, [hep-th/0404084].

47



[9] N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga,
Ghost inflation, JCAP 0404 (2004) p. 001, [hep-th/0312100].

[10] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and
L. Senatore, The Effective Field Theory of Inflation, JHEP 0803
(2008) p. 14, [arXiv:0709.0293].

[11] H. Osborn and A. Petkou, Implications of conformal invariance in field
theories for general dimensions, Annals Phys. 231 (1994) pp. 311–362,
[hep-th/9307010].

[12] S. Giombi, S. Prakash, and X. Yin, A Note on CFT Correlators in
Three Dimensions, arXiv:1104.4317.

[13] J. Maldacena, A. Zhiboedov, and A. Zhiboedov, Constraining
conformal field theories with a slightly broken higher spin symmetry,
arXiv:1204.3882.

[14] J. Maldacena and A. Zhiboedov, Constraining Conformal Field
Theories with A Higher Spin Symmetry, arXiv:1112.1016.

[15] A. Strominger, The dS / CFT correspondence, JHEP 0110 (2001)
p. 034, [hep-th/0106113].

[16] E. Witten, Quantum gravity in de Sitter space, hep-th/0106109.

[17] J. M. Maldacena, Non-Gaussian features of primordial fluctuations in
single field inflationary models, JHEP 0305 (2003) p. 013,
[astro-ph/0210603].

[18] D. Anninos, T. Hartman, and A. Strominger, Higher Spin Realization
of the dS/CFT Correspondence, arXiv:1108.5735.

[19] J. M. Maldacena and G. L. Pimentel, On graviton non-Gaussianities
during inflation, arXiv:1104.2846.

[20] I. Antoniadis, P. O. Mazur, and E. Mottola, Conformal Invariance,
Dark Energy, and CMB Non-Gaussianity, JCAP 1209 (2012) p. 024,
[arXiv:1103.4164].

[21] A. Bzowski, P. McFadden, and K. Skenderis, Holographic predictions
for cosmological 3-point functions, JHEP 1203 (2012) p. 091,
[arXiv:1112.1967].

48



[22] P. McFadden and K. Skenderis, Cosmological 3-point correlators from
holography, JCAP 1106 (2011) p. 030, [arXiv:1104.3894].

[23] P. McFadden and K. Skenderis, Holographic Non-Gaussianity, JCAP
1105 (2011) p. 013, [arXiv:1011.0452].

[24] F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP
0307 (2003) p. 051, [hep-th/0307026].

[25] F. Larsen, J. P. van der Schaar, and R. G. Leigh, De Sitter holography
and the cosmic microwave background, JHEP 0204 (2002) p. 047,
[hep-th/0202127].

[26] S. Weinberg, Effective Field Theory for Inflation, Phys.Rev. D77
(2008) p. 123541, [arXiv:0804.4291].

[27] K. Schalm, G. Shiu, and T. van der Aalst, Consistency condition for
inflation from (broken) conformal symmetry, arXiv:1211.2157.

[28] A. Bzowski, P. McFadden, and K. Skenderis, Holography for inflation
using conformal perturbation theory, arXiv:1211.4550.

[29] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, Holography
from Conformal Field Theory, JHEP 0910 (2009) p. 079,
[arXiv:0907.0151].

[30] M. Vasiliev, Higher spin gauge theories in any dimension, Comptes
Rendus Physique 5 (2004) pp. 1101–1109, [hep-th/0409260].

[31] Planck Collaboration, Planck 2015 results. XVII. Constraints on
primordial non-Gaussianity, arxiv:1502.01592

49


