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1 Introduction

This thesis is divided into two parts. In the first part of this thesis follows up on the

recent discovery [4] that the dynamics of black holes in a large number of dimensions can be

reformulated as the dynamics of a non gravitational membrane propagating in flat space.

In Part A (Chapter 1 and Chapter 2) of this thesis I present work that further develops

this black hole - membrane correspondence, and in particular present two nontrivial checks

and applications of the correspondence.

In Part B (Chapter 3) of this thesis I present on the exact computation of S

matrices of supersymmetric matter Chern Simons theories in the large N limit. I obtain

these S matrices by solving for offshell four point functions of this theory in lightcone gauge

and then taking the onshell limit. I focus on the physical properties of the S channel S

matrix, and demonstrate that it has a bound state pole which goes massless at a particular

value of the coupling.

1.1 Black Holes in Large D

Black holes are simultaneously the best understood and most enigmatic solutions of

Einstein’s equations of general relativity. Black holes are well understood in the following

sense; several stationary black hole solutions (like the Schwarzschild, Kerr and Reisnner

Nordstrom solutions) are exactly known in every dimension and generally take a reasonably

simple form. Even at the classical level, however, the simplicity of stationary black holes

is deceptive. Black holes can undergo extremely complicated dynamical motions - like

the collisions recently observed by the LIGO experiment - which are very hard to capture

analytically.

The classical study of black holes has also played a key role in studies of the

AdS/CFT correspondence of string theory. This fascinating correspondence has allowed

18



us to compute all kinds of properties of strongly coupled field theories - ranging from the

detailed equations that govern their hydrodynamics to entanglement properties and the

study of thermalization in these theories - all by studying the classical dynamics of black

holes in Anti-de Sitter (AdS) space.

Although my work on black holes so far has focussed on their classical aspects,

I would like to parenthetically note that once quantum mechanics is added to the game,

the mysteries of black holes multiply. Even stationary black holes carry more entropy (and

so in that sense are more complex) than any other object of comparable volume. The

contrast between the classical simplicity and quantum complexity of black holes leads to

the fascinating - and in my view, as yet, unresolved - information paradox of black hole

physics, whose resolution may turn out to hold the key for the next revolution in the study

of quantum gravity.

Returning to the classical domain, it is clear that good control over the classical

dynamics of black holes in sufficiently complicated situations can teach us a great deal

about diverse aspects of theoretical physics. However the complicated nature of Einstein’s

equations make analytically controlling a violently dynamical process - like a black hole

collision - next to impossible. In this situation, the natural instinct of a theoretical physicist

is to search for a parameter in which to set up a perturbative expansion of the problem.

However Einstein’s equations in vacuum are parameter free.

It has recently been noted that the classical dynamics of black holes simplifies in

the limit of a large number of dimensions. The key observation - first made by Emparan,

Suzuki, Tanabe and collaborators in [5–11] - is that black holes at large D have two effective

length scales. The first of these, r0, is the size of the black holes. The second is the thickness

of the black hole’s gravitational tail, i.e. the distance beyond the black hole event horizon

after which the gravitational potential rapidly decays to zero. In four dimensions the black

hole size and thickness are comparable. In the large D limit, however, the thickness of the

gravitational tail turns out to scale like r0/D [5] and so is much smaller than the the black

19



hole size.

This observation suggests the possibility of an effective ‘dimensional reduction’ of

black hole dynamics to the membrane region; a slab of spacetime of thickness 1/D centered

around the codimension one event horizon. Motivated by this observation, several papers

written over the last three years have demonstrated that black hole physics at large D

can be reformulated in terms of dual non gravitational equations. In broad terms there

have been two different approaches to this problem. In this part of this introduction I will

first summarize the approach to this problem is called the ‘membrane paradigm’ approach.

In this subsection I will first proceed to give a detailed introduction to the approach to

this problem that I follow in my work- namely the membrane paradigm approach. I will

then briefly review a second approach to this problem (one developed by Emparan, Suzuki

Tanabe and collaborators) called the black brane approach. Finally I will give a brief

summary of the original work on this topic contained in this thesis.

1.1.1 The large D membrane Paradigm

The first of these approaches is laid out in the ‘membrane paradigm’ papers of [2, 4, 12] (see

also [13–15] 1) . The authors of these papers have demonstrated that nonlinear black hole

dynamics can be reformulated in terms of the equations of motion of a non gravitational

membrane that lives in flat space. The variables of this problem are the shape of the

membrane and a velocity field on this membrane2. Einstein’s equations force the membrane

variables to obey a set of equations of motion. There are as many equations of motion as

variables, so the membrane description defines a good initial value problem. We emphasize

that the membrane equations of [2, 4, 12] apply to arbitrarily nonlinear and completely

1 These papers worked out the equations that govern the shape of the membrane, described later in
this paragraph, for stationary configurations. Atleast in the absence of a cosmological constant, these
equations may be shown to follow from the more general dynamical membrane equations of [2, 4, 12] upon
inserting an appropriate stationary ansatz, and so are special cases of the general membrane equations.

2The variables of the membrane also include a charge field for charged black holes. In this chapter,
however, we focus solely on solutions of the vacuum Einstein equations RMN = 0.
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dynamical black hole motions. There are, in particular, no restrictions on the initial shape

of the membrane which can be chosen to be any sufficiently smooth codimension one

submanifold of flat spacetime; the evolution of this shape (and the membrane velocity

fields) in time is, of course, governed by the membrane equations of motion. We now

explain how this works in more detail.

Consider a class of D dimensional metrics of the form

gMN = ηMN +
(nM − uM)(nN − uN)

ψD−3
(1)

The metrics (1) are parametrized by a smooth D dimensional function ψ and a smooth

oneform field uM . nM in (1) is the normal field to surfaces of constant ψ, (i.e. nM =

∂Mψ√
∂Pψ∂QψηPQ

). The oneform field uM is assumed to be unit normalized (i.e. uNuMη
MN =

−1) and tangent to surfaces of constant ψ (i.e. uMnNη
MN = 0).

In order to gain intuition for space times of the form (1) it is useful to first consider

a special case. Working with coordinates in which the metric on Minkowski space takes

the form

ds2 = −dt2 + dr2 + r2dΩ2
D−2,

the choice u = −dt and ψ = r
r0

turns (1) into the metric of a Schwarzschild black hole of

radius r0 in the so called Kerr Schild coordinates.

Note ψ = 1 is the event horizon of the Schwarzschild black hole. More generally

the surface ψ = 1 is easily verified to be a null submanifold of (1) for every choice of ψ and

u. This null manifold coincides with the event horizon of the (1) provided that ψ and u

are chosen such that the metric (1) settles down into a collection of stationary black holes

at late times. Following [4, 12] we refer to the submanifold ψ = 1 as the membrane world

volume. 3

3Through this chapter we assume that ψ in (1) is chosen to ensure that the membrane surface is a
smooth codimension one surface that is timelike when viewed as a submanifold of flat space (we have
emphasized above that this surface is a null submanifold of the metric (1)). We also assume that ψ is
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Note that as ψ increases past unity 1
ψD−3 decays to zero very rapidly. This decay is

exponential in D once ψ−1� 1
D

. It follows that (1) represents a class of asymptotically flat

spacetimes with the following property; the spacetime outside the event horizon deviates

significantly from flat space only in a slab of thickness 1
D

around the event horizon. We

will refer to this as the membrane region.

[4, 12] set out to characterize solutions of the vacuum Einstein equations, RMN =

0, that reduce to metrics of the form (1) in the large D limit, with corrections in a power

series in 1
D

. As we have reviewed above, when ψ − 1 � 1
D

the spacetimes (1) reduce to

flat space. Deviations from flatness are nonperturbatively small in the 1
D

expansion. Thus

Einstein’s equations are automatically solved at all order in 1/D outside the membrane

region. In order to obtain a true solution of Einstein’s equations, the solution (1) needs to

be corrected order by order in the 1
D

expansion only in the membrane region.

Consider a region of size 1
D

centered around any point x0 on the event horizon of

(1). It may be shown that the metric of this ball is closely approximated by the metric

in an equivalent small region centered around the appropriate event horizon point of some

boosted Schwarzschild black hole provided that

∇2

(
1

ψD−3

)
= 0, ∇.u = 0, (2)

(the contraction of all indices is achieved by use of the metric ηMN in the equations above)

4

chosen to ensure that 1
ψD−3 decays at spatial infinity.

4 When an expression like ∇2 acts on 1
ψD−3 we get two distinct terms of order D2 in two ways. The

first term is ∝ (D − 3)(D − 2) (∇ψ)2
ψD−1 . The second term is ∝ (D − 3) ∇

2ψ
ψD−2 . Though the second term has

one less explicit factor of D than the first, it actually contributes at the same order in the 1/D expansion
- i.e. at leading order - because of the contraction of indices in ∇2. This is the reason that (1) solves the
leading order equations only if ∇2ψ takes the same value as it does in a Schwarzschild black hole, leading
to the first requirement listed in (2). In a similar manner worldvolume derivatives of the horizon shape
and velocity field - which are of order unity - compete with derivatives acting on 1

ψD−3 only if their order
is enhanced by the contraction of a worldvolume index. The only first derivative expression involving
the black hole velocity that has such a contraction is ∇.u. It follows that (1) satisfies the leading order
equations only if ∇.u takes the same value as it does on a Schwarzschild black hole. This leads to the
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. These equations need only be satisfied at leading order in D and can be violated

at subleading orders. As Schwarzschild black holes are exact solutions to Einstein’s equa-

tions, it follows as a consequence that the spacetimes (1) almost solve Einstein’s equations

in the membrane region, provided that (2) is satisfied at every point on the membrane.

The statement that Einstein’s equations are ‘almost’ solved in the membrane

region has the following precise meaning. When evaluated in the membrane region the

four derivative scalar RABR
AB is in general of order D4. This estimate follows immediately

from the fact that the metric varies on a length scale of order 1/D in the membrane region.

Once we impose (2), on the other hand, RABR
AB turns out to be of order D2, i.e. In a

coordinate system in which all components of the metric are of order unity, RAB is of order

D; one order lower than the generic order suggested by a dimensional estimate. In other

words (2) ensures that Einstein’s equations are obeyed to leading order - but are generically

violated at first subleading order. Consequently the metrics (1) - with the conditions (2)

imposed at leading order- are plausible starting points for the construction of true solutions

of Einstein’s equations in a power series in 1
D

.

The authors of [4, 12] were able to carry out this perturbative expansion to first

subleading order in 1
D

(see below for a review). Interestingly they discovered that arbitrary

metrics of the form (1) could not be corrected to yield regular solutions to Einstein’s

equations at next order in 1
D

. It turns out to be possible to correct (1) at first order in

1/D only when the fields ψ and u obey an integrability constraint - a membrane equation

of motion - that we will describe in considerable detail below. Whenever this condition is

obeyed, a regular correction (of order 1/D) to the metric (1) was found in [4, 12]. The

corrected metric obeys RAB = O(1) 5 ; i.e. once the corrections are taken into account,

Einstein’s equations are solved at leading and first subleading order in 1
D

.

We now turn to a description of the integrability constraints mentioned in the

second of (2).
5More precisely, RAB = O(1) in coordinates in which all metric components are of order unity. More

generally, RABR
AB is of order unity.
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previous paragraph. Consider the surface ψ = 1, viewed as a submanifold of flat space

with metric ηMN ; we refer to this submanifold as the membrane. Let KMN represent the

extrinsic curvature of this (generically timelike) submanifold. Recall also that the velocity

oneform field uM on the membrane surface is tangent to the membrane and so may be

regarded as a oneform field in the membrane world volume. The authors of [4, 12] found

that the metric (1) could be corrected to a regular 6 solution of Einsteins equations at first

order if and only if the following constraints are obeyed

(∇2uA
K − ∇AK

K + uCK
C
A − u.∇uA

)
PAB = 0 (3)

where PAB = δAB +uAuB is the projector orthogonal to the velocity vector on the membrane

world volume, and all covariant derivatives are taken with respect to the induced metric

on the membrane. The quantity K is the trace of the extrinsic curvature of the membrane

worldvolume.

The integrability conditions (3) have an interesting interpretation. They may

be thought of as a set of D − 2 equations for D − 2 variables (one of these variables is

the shape of the membrane, and the other D − 3 variables are the components of the

unit normalized, divergence free velocity field). In other words the equations (3) define

an initial value problem for membrane dynamics. As every configuration that obeys (3)

gives rise to a metric that obeys Einstein’s equations to the appropriate order in 1/D, it

follows that solutions of the membrane equations (3) are in one to one correspondence with

asymptotically flat dynamical black hole configurations that solve Einstein’s equations to

first subleading order in 1/D.

6By a regular solution we mean a solution with a smooth event horizon that is regular everywhere
outside the event horizon.
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1.1.2 The large D ‘black brane’ approach

A second approach is that of the ‘scaled black brane’ papers of [16, 17] (see also [18, 19]).

These papers study small fluctuations about the p dimensional ‘black brane’; a spacetime

given by the direct product of the Schwarzschild solution in RD−p−1,1 and Rp. The authors

of [16] consider fluctuations that preserve SO(D − p − 1) isometry but vary in the Rp

direction over length scales of order 1√
D

and time scales of order unity. Focusing attention

on wiggles of the event horizon of amplitude 1
D

and on boost velocities of the horizon

of order 1√
D

, the authors of [16] were able to derive a set of effective non gravitational

nonlinear equations that completely reproduce black brane dynamics in the scaled large D

limit described above. This scaling limit is of particular interest because it turns out to

capture the Gregory-Laflamme instability of black branes at large D. 7 8

1.1.3 Original Results in this Thesis

In this thesis I report two separate sets of original results pertaining to the dynamics

of black holes at large D. The first result pertains to the relationship between the two

approaches - namely the membrane paradigm and the black brane approaches reviewed

above. In Chapter 1 below I demonstrate that the equations of the ‘black brane’ ap-

proach follow as a special case (a particular scaling limit) of the more general membrane

paradigm equations. This observation unifies the two different approaches to large D black

hole physics. The material contained in chapter 1, though obtained in collaboration, is

principally my own work. The second result presented in Chapter 2 concerns a general-

ization of the derivation of the membrane equations - previously presented only to leading

order in 1/D - to arbitrary order (in principal) and first subleading order (in practice),

and the use of these results to obtain the quasinormal spectrum of black holes corrected

7 [16] has subsequently been generalized to the the study of charged black branes in [17]. As mentioned
above, however, in this chapter we focus attention on uncharged black holes and black branes.

8Additional recent studies of black hole physics at large D include [20–25]).
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to first subleading order in 1/D. The work presented in Chapter 2 was also obtained in

collaboration; though I collaborated in working out every aspect of the work presented in

the Chapter, the results of section 3.5 are principally my own work.

1.2 Scattering in N = 1 Susy Matter Chern Simons Theories

Non-Abelian U(N) gauge theories in three spacetime dimensions are dynamically rich.

At low energies parity preserving gauge self interactions are generically governed by the

Yang-Mills action
1

g2
YM

∫
d3x Tr F 2

µν . (4)

As g2
YM has the dimensions of mass, gluons are strongly coupled in the IR. In the absence

of parity invariance the gauge field Lagrangian generically includes an additional Chern-

Simons term and schematically takes the form

iκ

4π

∫
Tr

(
AdA+

2

3
A3

)
− 1

4g2
YM

∫
d3x Tr F 2

µν . (5)

The Lagrangian (5) describes a system of massive gluons; with mass m ∝ κg2
YM . At

energies much lower than g2
YM (5) has no local degrees of freedom. The effective low

energy dynamics is topological, and is governed by the action (5) with the Yang-Mills term

set to zero. This so called pure Chern-Simons theory was solved over twenty five years ago

by Witten [26]; his beautiful and nontrivial exact solution has had several applications in

the study of two dimensional conformal field theories and the mathematical study of knots

on three manifolds.

Let us now add matter fields with standard, minimally coupled kinetic terms,

(in any representation of the gauge group) to (5). The resulting low energy dynamics is

particularly simple in the limit in which all matter masses are parametrically smaller than

g2
YM . In order to focus on this regime we take the limit g2

YM →∞ with masses of matter
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fields held fixed. In this limit the Yang-Mills term in (5) can be ignored and we obtain

a Chern-Simons self coupled gauge theory minimally coupled to matter fields. While the

gauge fields are non propagating, they mediate nonlocal interactions between matter fields.

In order to gain intuition for these interactions it is useful to first consider the

special case N = 1, i.e. the case of an Abelian gauge theory interacting with a unit charge

scalar field. The gauge equation of motion

κεµνρFνρ = 2πJµ (6)

ensures that each matter particle traps 1
κ

units of flux (where i
∫
F = 2π is defined as

a single unit of flux). It follows as a consequence of the Aharonov-Bohm effect that

exchange of two unit charge particles results in a phase π
κ
; in other words the Chern-

Simons interactions turns the scalars into anyons with anyonic phase πν = π
κ
.

The interactions induced between matter particles by the exchange of non-abelian

Chern-Simons gauge bosons are similar with one additional twist. In close analogy with

the discussion of the previous paragraph, the exchange of two scalar matter quanta in

representations R1 and R2 of U(N) results in the phase
πTR1

.TR2

κ
where TR is the generator

of U(N) in the representation R. The new element in the non-abelian theory is that the

phase obtained upon interchanging two particles is an operator (in U(N) representation

space) rather than a number. The eigenvalues of this operator are given by

ν ′R =
c2(R1) + c2(R2)− c2(R′)

2κ
(7)

where c2(R) is the quadratic Casimir of the representation R and R′ runs over the finite set

of representations that appear in the Clebsh-Gordon decomposition of the tensor product

of R1 and R2. In other words the interactions mediated by non-abelian Chern-Simons

coupled gauge fields turns matter particles into non-abelian anyons.

In some ways anyons are qualitatively different from either bosons or fermions.
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For example anyons (with fixed anyonic phases) are never free: there is no limit in which the

multi particle anyonic Hilbert space can be regarded as a ‘Fock space’ of a single particle

state space. Thus while matter Chern-Simons theories are regular relativistic quantum

field theories from a formal viewpoint, it seems possible that they will display dynamical

features never before encountered in the study of quantum field theories. This possibility

provides one motivation for the intensive study of these theories.

Over the last few years matter Chern-Simons theories have been intensively stud-

ied in two different contexts. The N = 6 supersymmetric ABJ and ABJM theories

[27, 28] have been exhaustively studied from the viewpoint of the AdS/CFT correspondence

[29, 30]. Several other supersymmetric Chern-Simons theories with N ≥ 2 supersymme-

try have also been intensively studied, sometimes motivated by brane constructions in

string theory. The technique of supersymmetric localization has been used to perform

exact computations of several supersymmetric quantities [31–36] (indices, supersymmet-

ric Wilson loops, three sphere partition functions). These studies have led, in particular,

to the conjecture and detailed check for ‘Seiberg like’ Giveon-Kutasov dualities between

Chern-Simons matter theories with N ≥ 2 supersymmetry [37, 38]. Most of these impres-

sive studies have, however, focused on observables 9 that are not directly sensitive to the

anyonic nature of of the underlying excitations and have exhibited no qualitative surprises.

Qualitative surprises arising from the effectively anyonic nature of the matter

particles seem most likely to arise in observables built out of the matter fields themselves

rather than gauge invariant composites of these fields. There exists a well defined gauge

invariant observable of this sort; the S matrix of the matter fields. While this quantity

has been somewhat studied for highly supersymmetric Chern-Simons theories, the results

currently available (see e.g. [39–45]) have all be obtained in perturbation theory. Methods

based on supersymmetry have not yet proved powerful enough to obtain results for S

9These observables include partition functions, indices, Wilson lines and correlation functions of local
gauge invariant operators. Note that gauge invariant operators do not pick up anyonic phases when they
go around each other precisely because they are gauge singlets.
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matrices at all orders in the coupling constant, even for the maximally supersymmetric

ABJ theory. For a very special class of matter Chern-Simons theories, however, it has

recently been demonstrated that large N techniques are powerful enough to compute S

matrices at all orders in a ‘t Hooft coupling constant, as we now pause to review.

Consider large N Chern-Simons coupled to a finite number of matter fields in

the fundamental representation of U(N). 10 It was realized in [46] that the usual large N

techniques are roughly as effective in these theories as in vector models even in the absence

of supersymmetry (see [47–68] for related works). In particular large N techniques have

recently been used in [61] to compute the 2 → 2 S matrices of the matter particles in

purely bosonic/fermionic fundamental matter theories coupled to a Chern-Simons gauge

field.

Before reviewing the results of [61] let us pause to work out the effective anyonic

phases for two particle systems of quanta in the fundamental/ antifundamental represen-

tations at large N . 11 Following [61] we refer to any matter quantum that transforms

in the (anti)fundamental of U(N) a(n) (anti)particle. A two particle system can couple

into two representations R′ (see (7)); the symmetric representation (two boxes in the first

row of the Young Tableaux) and the antisymmetric representation (two boxes in the first

column of the Young Tableaux). It is easily verified that the anyonic phase νR′ (see (7))

is of order 1
N

(and so negligible in the large N limit) for both choices of R′. On the other

hand a particle - antiparticle system can couple into R′ which is either the adjoint of the

singlet. νR′ once again vanishes in the large N limit when R′ is the adjoint. However

when R′ is the singlet representation it turns out that νsing = N
κ

= λ and so is of order

10These theories were initially studied because of their conjectured dual description in terms of Vasiliev
equations of higher spin gravity.

11The application of large N techniques to these theories has led to conjectures for strong weak coupling
dualities between classes of these theories. The simplest such duality relates a Chern-Simons theory coupled
to a single fundamental bosonic multiplet to another Chern-Simons theory coupled to a single fermionic
multiplet. This duality was first clearly conjectured in [51], building on the results of [48, 49], and following
up on an earlier suggestion in [46]. The discovery of a three dimensional Bose-Fermi duality was the first
major qualitative surprise in the study of Chern-Simons matter theories, and is intimately connected with
the effectively anyonic nature of the matter excitations, as explained, for instance, in [61].
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unity in the large N limit. In summary two particle systems are always non anyonic in the

large N limit of these special theories. Particle - antiparticle systems are also non anyonic

in the adjoint channel. However they are effectively anyonic - with an interesting finite

anyonic phase- in the singlet channel. See [61] for more details. This preparation makes

clear that qualitative surprises related to anyonic physics in the two quantum scattering

in these theories might occur only in particle - antiparticle scattering in the singlet sector.

The authors of [61] used large N techniques to explicitly evaluate the S matrices

in all three non-anyonic channels in the theories they studied (see below for more details of

this process). They also used a mix of consistency checks and physical arguments involving

crossing symmetry to conjecture a formula for the particle - antiparticle S matrix in the

singlet channel. The conjecture of [61] for the S matrix in the singlet channel has two

unexpected novelties related to the anyonic nature of the two particle state

• 1. The singlet S matrix in both the bosonic and fermion theories has a contact term

localized on forward scattering. In particular the S matrix is not an analytic function

of momenta.

• 2. The analytic part of the singlet S matrix is given by the analytic continuation of

the S matrix in any of the other three channels × sinπλ
πλ

. In other words the usual rules

of crossing symmetry to the anyonic channel are modified by a factor determined by

the anyonic phase.

The modification of the usual rules of analyticity and crossing symmetry in the

anyonic channel of 2 × 2 scattering was a major surprise of the analysis of [61]. The

authors of [61] offered physical explanations - involving the anyonic nature of scattering in

the singlet channel for both these unusual features of the S matrix. The simple (though

non rigorous) explanations proposed in [61] are universal in nature; they should apply

equally well to all large N Chern-Simons theories coupled to fundamental matter, and not

just the particular theories studied in [61]. This fact suggests a simple strategy for testing
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the conjectures of [61] which we employ in chapter 3.

1.2.1 Original Results in this thesis

In this thesis I present the generalization of the scattering computations described

above to N = 1 and N = 2 supersymmetric matter Chern Simons theories. We find

explicit all orders formulae for the S matrices in these theories; our explicit results provide

a verification of the surprising crossing symmetry properties reviewed above. In order

to obtain these results we needed to develop extensive technical machinery. Though I

collaborated in every aspect of work presented in the Chapter, the work presented in 4.3,

4.4 and 4.5 of Chapter 3 is primarily my own work.
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Part A

2 Chapter 1: Unstable ‘black branes’ from scaled mem-

branes at large D

(This chapter is based on the published paper written in collaboration with Y. Dandekar,

S. Minwalla, A. Saha, “ Unstable ‘black branes’ from scaled membranes at large D,”

arXiv:1609.02912 , JHEP 1612 (2016) 140 )

2.1 Introduction

In this chapter we derive the ‘black brane’ equations of [16] starting from the membrane

equations of [2, 4, 12]. The starting point of our analysis is the simple exact solution to the

membrane equations of motion that is dual to the p dimensional ‘black brane’ described in

the previous paragraph. This solution is static, which means that the membrane velocity

field is simply given by u = −dt. The shape of the membrane on this solution is SD−p−2×
Rp,1. We then proceed to study the scaling limit of [16] directly within the membrane

picture. In other words we study fluctuations of the membrane that preserve SO(D−p−1)

isometry but vary in the Rp direction over length scales of order 1√
D

and time scales of order

unity. We then focus on wiggles of the shape of the membrane with amplitude of order 1
D

and on membrane velocities of order 1√
D

. At leading order in the large D limit we obtain

a simple set of scaled equations of membrane dynamics which (after the appropriate field

redefinitions) turn out to agree exactly with the equations of [16]. We view our derivation

of the (uncharged) black brane equations from the membrane equations as a unification of

these two approaches to horizon dynamics at large D. Note it follows, in particular, that

the dynamics of the Gregory Laflamme instability is captured by scaling limit of membrane

equations described above.
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The limit of the previous paragraph is loosely reminiscent of the scaling limit that

yields the nonrelativistic Navier-Stokes equations starting from the more general relativistic

equations [69]. The membrane equations may also admit other interesting scaling limits.

We leave the investigation of this point to future work.

2.2 A scaling limit of the membrane equations

In this chapter we study the equations of motion [2, 4, 12] of an uncharged large D mem-

brane propagating in flat Minkowski spacetime. To leading order in 1
D

these equations take

the form [
∇2uA
K − ∇AK

K + uBKBA − uB∇BuA

]
PAC = 0 (8)

with ,

∇.u = 0. (9)

Here KAB is the extrinsic curvature of the membrane, K is its trace and u is the local world

volume velocity field of the membrane. All covariant derivatives in (8) and (9) are defined

with respect to the induced metric on the membrane. Also

PAB = ĝAB + uAuB (10)

where ĝAB is the metric induced from the ambient flat space on the world volume of

the membrane. In other words PAB is the projector, on the membrane world volume,

orthogonal to the velocity field u.

33



2.2.1 Linearized Fluctuations

In our study we will find it useful to use coordinates in which the flat space D dimensional

metric takes the form

ds2 = −dt2 + dx̃adx̃a + dr2 + r2dΩ2
n (11)

where

n = D − p− 2.

and a = 1 . . . p label the spatial directions on the black brane. A simple solution to the

equations (8) and (9) is given by the membrane shape r = 1 and constant static velocity

field u = −dt. 12

The solution of the membrane equations described in the previous paragraph is

dual to a ‘black brane’ - the solution of general relativity given by the direct product of Rp

and the Schwarschild black hole in D− p dimensions. It is well known that this solution of

general relativity is unstable in an arbitrary number of dimensions. We will now use the

membrane equations to exhibit this instability, by linearizing these equations about the

simple solution. The Gregorry Laflamme instability of black branes is known to preserve

the SO(n + 1) symmetry of the sphere but to break translational invariance along Rp, so

we study fluctuations with the same property. In other words we set

r = 1 + δ̃r(t, x̃a)

u = −dt+ ˜δua(t, x̃
a)dx̃a

(12)

Note that our velocity fluctuations lie entirely in the black brane directions and none of

our fluctuations fields depend on the angular variables on Sn.

Following the method described in section 5 of [12], it is not difficult to linearize

12The choice r = 1 involves no loss of generality, as the scale invariance of the classical Einstein equations
relate the solution with r = 1 to the solution with r = r0 for any constant r0.
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the membrane equations around the ‘black brane’ solution. The equation (9) reduces to

n ∂tδ̃r + ∂̃a ˜δua = 0 (13)

(recall n = D − p − 2). 13 The equation with a free index in the (spatial) Rp direction

turns out to take the form

(
∂̃aδ̃r − ∂t∂̃aδ̃r − ∂t ˜δua

)
+

(
−∂2

t + ∂̃b∂̃
b

n

)(
˜δua + ∂̃aδ̃r

)
= 0 (14)

where ∂̃a is the derivative with respect to the coordinate x̃a defined in (11). When all

spatial and time derivatives are of order unity or smaller, the term(
−∂2

t + ∂̃b∂̃
b

n

)(
˜δua + ∂̃aδ̃r

)

in (14) is subleading in the 1
n

expansion and so can naively be dropped at leading order.

However we will soon find ourselves interested in configurations with spatial derivatives

of order
√
n but time derivatives of order unity. For such configurations the term pro-

portional to time derivatives in (14) is indeed subleading in 1
n
. On the other hand the

term proportional to the spatial laplacian is comparable to the other terms in (14) and so

must be retained. Over the parameter ranges of interest to this chapter, therefore, we can

replace (14) with the slightly simpler equation

(
∂̃aδ̃r − ∂t∂̃aδ̃r − ∂t ˜δua

)
+

(
∂̃b∂̃

b

n

)(
˜δua + ∂̃aδ̃r

)
= 0 (15)

14

13The factor of n, which plays a crucial role in the analysis below, has its origin in the fact that the
induced metric on the world volume of the membrane is given, to leading order in fluctuations by

ds2 = −dt2 + dx̃adx̃a + (1 + 2δ̃r)dΩ2
n

so that
√
g = 1 + nδ̃r in these coordinates.

14The membrane equations with free index in sphere direction is trivially satisfied, while the equation
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The equations (15) and (13) are easily analysed. Substituting the plane wave

expansion

δ̃r(t, x̃a) = δr0e−iωteik̃ax̃
a

˜δua(t, x̃
a) = δu0

ae
−iωteik̃ax̃

a

(16)

into (15) and (13) turns these equations into eigenvalue equations for the fluctuation fre-

quencies ω. Solving the resultant cubic equation in ω we find find that the most general

solution to these equations is given by

δ̃r(t, x̃a) = δr0
1e
−iω1teik̃ax̃

a

+ δr0
2e
−iω2teik̃ax̃

a

˜δua(t, x̃
a) = δr0

1k̃a

(
−i+

√
n

k̃

)
e−iω1teik̃ax̃

a

+ δr0
2k̃a

(
−i−

√
n

k̃

)
e−iω2teik̃ax̃

a

+ vae
−iω3teik̃ax̃

a

w1 = i

(
k̃√
n
− k̃2

n

)
, w2 = i

(
− k̃√

n
− k̃2

n

)
, w3 = −i k̃

2

n
, where k̃2 = k̃ak̃

a

(17)

(17) is a solution to the linearized membrane equations for arbitrary constant values of δr0
1

and δr0
2 and for any constant vector va s.t. k̃ava = 0.

Note that the mode proportional to δr0
1 - i.e. the mode with frequency ω1 - is

unstable when k̃ <
√
n. This IR instability (i.e. an instability that occurs at distance

scales lareger than a minimum) is the membrane dual of the Gregory Laflamme instability.

When k̃ is of order unity time scale associated with this frequency is of order
√
n and so

is very large. The minimum time scale for an instability, however, occurs at k̃ =
√
n

2
. At

this wavelength the time scale of the instability is order unity. 15

At the level of the linearized equations the Gregory - Laflamme unstable modes

simply grow forever. Nonlinear effects, however, stabilize these modes. The discussion

in the time direction is also a triviality (this is a consequence of the projector in (8)).
15 The expression for the unstable mode w1 was conjectured earlier from fluid/gravity methods in [70].

See also [71] and [5] for further evidence for the above proposal.
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of the previous paragraph makes it clear that the length scale relevant to this physics is

1√
n
. We will now proceed to find the effective nonlinear theory within which the Gregory-

Laflamme instability and its end point can be reliably studied.

2.2.2 Scaled nonlinear equations

In order to restrict attention to distance of order 1√
n

in the spatial black brane directions

we work with the scaled coordinate xa defined by x̃a = xa√
n
. Unstable modes with finite

wavelength in this new coordinate have frequencies of order unity. The background flat

space metric now takes the form

ds2 = −dt2 + dr2 +
1

n
dxadx

a + r2dΩ2
n (18)

As our fluctuations field all vary over distances of order unity and time scales of order unity

in scaled coordinates, the velocity field ua should thus also be of order unity. This implies

that ua ∼ O( 1
n
) . Translating back to unscaled coordinates it follows that ũa = O( 1√

n
). In

order to ensure this scaling in our solution (17) we must choose va ∼ O( 1√
n
), δr0

1 ∼ δr0
2 ∼

O( 1
n
). These choices, in turn, ensure that δ̃r ∼ O( 1

n
) (see (17)). It is thus natural to make

the further coordinate change

r = 1 +
y

n
(19)

The flat space metric is now given by

ds2 = −dt2 +
dy2

n2
+

1

n
dxadx

a +
(

1 +
y

n

)2

dΩ2
n (20)

With our scalings now in place we focus attention on membrane configurations of
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the form

y = y(xa, t)

ua = ua(xa, t)
(21)

where the functions y(xa, t) and ua(xa, t) are independent of n. We then evaluate the

membrane equations (9) and (8) for such configurations propagating on the metric (20).

Retaining only terms of leading order at large n we find that the equation (9) (which we

call Es below) and the a components of (8) (which we call Ev
a below) reduce to

Es ≡ ub∂by + ∂bub + ∂ty = 0

Ev
a ≡ ∂b∂bua + ∂ay − ub∂bua + ∂by∂bua − ub∂b∂ay

+ ∂by∂b∂ay + ∂b∂b∂ay − ∂tua − ∂t∂ay = 0

(22)

Note that the equations (22) are nonlinear. If we linearize these equations around the

background y = ua = 0 we obtain the linearized equations

∂bδub + ∂tδr = 0

∂b∂bδua + ∂aδr + ∂b∂b∂aδr − ∂tδua − ∂t∂aδr = 0
(23)

The first and second of (23) are simply (13) and (15) expressed in scaled variables. It

follows that (22) are nonlinear generalizations of the linearized fluctuation equations of the

previous subsection. The (23) are exact at large n within the scaling limit described in

this section.

The nonlinear equations (22) capture both the linear exponential growth as well

as the nonlinear settling down of the Gregory Laflamme instability. We do not need to

perform the analysis of this fact, however, because it has already been done! We will now

demonstrate that the equations (22) are equivalent to those that Emparan Suzuki and

Tanabe [16] derived to study large D ‘black branes’ - and used to perform an extensive

study of the Gregory Laflamme instability.
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In order to make contact with the work of [16] we make the following field redef-

initions

y(t, xa) = logm(t, xa)

ua(t, x
a) =

pa(t, x
a)− ∂a (m(t, xa))

m(t, xa)
(24)

and work with the following linear combinations of (22)

E1 = m(t, xa)Es and Ea = pa(t, x
a)Es −m(t, xa)Ev

a . (25)

It is easily verified that E1 and Ea take the form

E1 = ∂tm− ∂b∂bm+ ∂bp
b = 0

Ea = ∂tpa − ∂b∂bpa − ∂am+ ∂b

(
pap

b

m

)
= 0

(26)

The equations (26) are precisely the nonlinear black brane equations (11) and (12) of [16].

It follows that these black brane equations are simply a particular scaled limit of the general

leading order (in an expansion in 1
D

) equations (9) and (8).

2.3 Discussion

In this chapter we have demonstrated by explicit computation that the uncharged ‘black

brane’ equations of [16] may be obtained from a scaling limit of the general membrane

equations (9) and (8). The reader may, at first, find herself puzzled at this agreement,

given the scaling limit described in this chapter focuses on length scales of order 1√
D

while

that the membrane equations (9) and (8) were derived as the first term in a systematic

expansion in 1
D

under the assumption that the horizon and velocity fields all vary on length

scale unity. We will now explain why this agreement was infact to be expected despite the

apparent conflict of regimes of validity.
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The equations (9) and (8) would fail to accurately capture dynamics at leading

order in the large D limit if the explicit factors of D in the metric (20) ensured that a

higher order term16 were to contribute to the equations at same (or higher) order in 1
D

as the terms in (9) and (8). We will now explain that this never happens. Potentially

dangerous terms are those that contain one or more factors of the inverse metric gab where

the indices a and b are spatial black brane directions. These terms are potentially dangerous

as gab (see (20)) is of order D. However these factors never actually lead to a mixing of

orders because the extra indices a and b each need to contract with something. When these

indices contract with ua the extra factor of D is nullified by the fact that ua is of order 1
D

.

When these indices contract with a derivative, the derivative acts on some quantity built

out of fluctuation fields. However all such quantities are of order 1
D

(recall, for instance,

that every fluctuation component of the extrinsic curvature is proportional to δ̃r which

is of order 1
D

). The smallness of fluctuations in our scaling limit once again counteracts

the potential enhancement of powers of D. It follows that leading order equations (9) and

(8) is infact sufficient to capture the leading order large D dynamics of the scaling limit

described in this chapter despite the fact that the scaling limit zooms in on distance scales

of order 1√
D

.

It should not be difficult to generalize the discussion of this chapter to obtain

the first corrections, in an expansion in 1
D

, to the black brane equations of (26). These

corrections have been obtained from ‘scaled black brane’ approach in [18, 22, 23]. The

starting point for such an analysis would be the first order corrected membrane equations

derived in [2]. It would also be interesting to check whether the analysis of this chapter

generalizes to a derivation of the charged ‘black brane’ equations of [17] starting with the

charged membrane equations of [12]. 17 We leave a study of these issues to future work.

We end this chapter by reiterating that we have demonstrated that the black

16i.e. a term that appears at higher order in the expansion in 1
D in the membrane equations of [2]

17The discussion of the last paragraph suggests that this is guaranteed to work only if the scaling limit
of [17] turns on membrane charge fluctuations that scale like 1

D .
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brane equations of [16] can be derived as a special case of the more general membrane

equations of [2, 4, 12], leading to a satisfying unification recent attempts to reformulate

large D horizon dynamics in non gravitational terms.
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3 Chapter 2: Spectrum of Quasinormal modes from

subleading Large D Membrane Paradigm

(This chapter is based on the paper written in collaboration with Y. Dandekar, A. De,

S. Minwalla, A. Saha, “ The large D black hole Membrane Paradigm at first subleading

order,” arXiv:1607.06475, JHEP 1612 (2016) 113 )

3.1 Introduction

In this chapter we further develop the general nonlinear dynamical construction of

[4, 12]. In particular we demonstrate that the reduction of black hole dynamics to mem-

brane dynamics, worked out to leading nontrivial order in the 1/D expansion in [4, 12],

can be systematically generalized to every order in 1/D. As an application of this system-

atic framework we explicitly work out the first subleading corrections to the membrane

equations of motion in the 1/D expansion, and also determine the spacetimes dual to any

particular membrane solution at next subleading order in the 1/D expansion.

3.1.1 The membrane paradigm at higher orders in 1/D

In this chapter we demonstrate that first order perturbative procedure outlined above

extends systematically to arbitrary orders in the expansion in 1
D

. We will now very briefly

outline our inductive argument. We assume that the perturbative procedure has been

implemented upto nth order, i.e. that corrections to the metric (1) have been determined

upto nth order in the 1/D expansion in such a manner that RMN evaluated on the corrected

solution is of order D1−n. We then add further corrections of order 1/Dn+1 to the metric

(see (35) and (38)). At order Dn−1 we demonstrate that the Einstein constraint equations

are independent of the new unknown correction functions when evaluated on the event
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horizon ψ = 1. These equations determine the correction to the membrane equations (and

the divergence condition on the velocity) at order 1/Dn+1. Moving away from the horizon

we argue that the order D1−n part of RMN takes the form listed in table 2. Setting the

expressions in this table yields a set of inhomogeneous linear differential equations that

can be used to determine order 1/Dn+1 corrections to the metric. Explicit expressions for

the sources in these differential equations can only be obtained by grinding through the

perturbative procedure, but we use a contracted Bianchi identity to demonstrate that the

sources that occur in these equations are not all independent, but obey certain relations

(see (53)) at every order of perturbation theory. Using these relations we are able to

integrate the inhomogeneous differential equations for any source functions and obtain an

explicit and unique expressions for the metric corrections at order 1/Dn+1 (see Section 3.3)

that are manifestly regular and obey all required boundary conditions.

As an illustration of the general method outlined above we explicitly implement

the perturbative procedure to second subleading order in 1
D

. We find that the modified

membrane equations take the form[
∇2uA
K − ∇AK

K + uBKBA − u · ∇uA
]
PAC

+

[(
−u

CKCBK
B
A

K

)
+

(∇2∇2uA
K3

− u · ∇K∇AK
K3

− ∇
BK∇BuA
K2

− 2
KCD∇C∇DuA

K2

)

+

(
−∇A∇2K
K3

+
∇A

(
KBCK

BCK
)

K3

)
+ 3

(u ·K · u)(u · ∇uA)

K − 3
(u ·K · u)(uBKBA)

K

− 6
(u · ∇K)(u · ∇uA)

K2
+ 6

(u · ∇K)(uBKBA)

K2
+

3

(D − 3)
u · ∇uA −

3

(D − 3)
uBKBA

]
PAC = 0

(27)

while the divergence free condition on the velocity field is modified, at second subleading
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order, to the equation

∇ · u =
1

2K
(
∇(AuB)∇(CuD)PBCPAD

)
(28)

Note that the first line in (27) is simply a rewriting of (3); the 2nd-4th lines of

this equations represent corrections to (3). There is a well defined sense (see below) in

which each of these correction terms is of order 1
D

relative to the leading order terms in

the first line. It follows that the equations (27) represent small corrections to the leading

order equations (3). The first order corrected membrane equation of motion (27) and (28)

are the main result of this chapter.

We then present explicit expressions for the second order sources for all the in-

homogeneous differential equations (see table 6). Plugging these sources into the general

equations for the metric corrections at any order we obtain explicit results for the second

order correction to the spacetime metric dual to any particular solution of the membrane

equations of motion.

The second order corrected membrane equations (27) admit a simple solution; a

spherical membrane at rest. This solution is dual to the Schwarzschild black hole. As a

check of our second order corrections to the membrane equations we use (27) to compute the

spectrum of small fluctuations about this simple solutions. This spectrum is easy to obtain,

and turns out to be in perfect agreement with the second order corrected spectrum of

quasinormal modes obtained by Emparan Suzuki and Tanabe in [10], providing confidence

in the correctness of (27).
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3.2 Perturbation theory: general structure

3.2.1 A more detailed description of the starting ansatz

As we have explained in the introduction, the starting point of our perturbative construc-

tion of large D solutions to Einstein’s equations is the metric (1). In the introduction we

noted that the metrics (1) are parameterized by the D dimensional function ψ and the

oneform field u. We assume these fields have a good large D limit, i.e. that the length

scale of variation in ψ and u is of order unity. Following [4, 12], however, consider two

different functions ψ with the same membrane surface (i.e. with coincident zero sets for

ψ − 1). These two functions define metrics (1) that coincide (outside the event horizon)

at leading order in 1/D but differ at subleading orders in 1/D. Similarly u functions that

agree on the membrane but differ off it lead to metrics (1) that differ only at subleading

order in 1/D.

Any two metrics (1) that differ only at subleading orders in 1/D constitute equiv-

alent starting points for the perturbative construction of solutions in the following sense:

the end result of perturbation theory starting from the two different starting points will be

the same. In order to construct all distinct final metrics we need only consider one member

of each ‘equivalence class’ of metrics (1). As explained above the equivalence classes are

labeled by the zero set of the function ψ − 1 (the membrane world volume) and the value

of the velocity field on the membrane world volume. In order to pick a representative

from each equivalence class that we can use to set up our perturbation theory we invent an

arbitrary way of constructing the full function ψ from its zero set, and the full velocity field

u from its values on the membrane. Following [4, 12] we refer to the (essentially arbitrary)

rule for achieving this construction as a subsidiary condition on the functions ψ and u.

For technical reasons, in this chapter we utilize the subsidiary conditions of [4]

rather than that of [12]. We now describe these conditions in detail.
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Consider a given timelike membrane submanifold in flat space. At each point on

the manifold consider a geodesic that shoots outwards from the manifold along its nor-

mal vector. The resultant collection of curves 18 is a spacefilling congruence of spacelike

geodesics; caustics of this congruence, if any, only occur at distances of order unity (rather

than 1/D) away from the membrane. 19 We define the scalar function B in the neigh-

borhood of the membrane as follows; B at any point is defined to be the signed proper

distance, along the geodesic that passes through it, to the membrane. This distance is

defined to be positive outside the membrane and negative inside the membrane. Note that

B vanishes on the membrane. We define

nM = ∇MB (29)

It follows from our construction above that

n.n = 1 (30)

nA is the normal oneform to surfaces of constant B. We use the symbol KMN denote the

extrinsic curvature of surfaces of constant B. Note of course that nAKAB = 0. We also

define K = KA
A . We then proceed to define the function ψ as

ψ = 1 +
KB
D − 3

(31)

In a similar manner we use the velocity function on the membrane to define a

velocity oneform field in spacetime simply by parallel transport along our congruence of

18These ‘curves’ are actually straight lines as they are all geodesics in flat space. We use the term ‘curve’
to bring to mind the obvious generalization of this construction when the membrane is embedded in a
curved spacetime.

19The quantity D
K gives a rough estimate for the distance away from the membrane at which the geodesics

caustic. Below we explain that K is of order D so that this caustic length scale is of order unity.
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geodesics. It follows from our definitions above that

n.∇nA = 0

n.∇uA = 0
(32)

The first line of (32) follows upon differentiating 0 (30), using (29) and interchanging

derivatives. This equation is in fact simply the geodesic equations for the congruence of

geodesics that defines B. The equation on the second line of (32) follows from the fact

that u is defined off the membrane by parallel transport. It follows from (32) that

KAB = (ηCA − nAnC) (∇CnD)
(
ηDB − nDnB

)
= (∇A − nA(n.∇))nB = ∇AnB = ∇A∇BB

(33)

Note that our definition of nA in this section, and the rest of this chapter, differs

slightly from the definition given in the introduction. The two definitions agree at leading

order (which was all that was required in the discussion around (1) ) but differ at subleading

orders in 1/D. The vector nA defined in this section - rather than the normal vector defined

in the introduction - will be used through the rest of this chapter.

Using (31) it is easily verified that on the submanifold B = 0

ψ∇2ψ =
K2

D − 3
+ 2

n.∇K
D − 3

(D − 2)∇ψ.∇ψ =
D − 2

D − 3

K2

D − 3

(34)

As we explain below, in the large D limit taken in this chapter 2n.∇K
D−3

is of order unity

while K2

D−3
is order D. It follows that to leading order in D

(D − 2)∇ψ.∇ψ = ψ∇2ψ, i.e.∇2

(
1

ψD−3

)
= 0

In other words our construction satisfies the first equation of (2). We satisfy the second
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equation in (2) by construction; we simply choose our u oneform on the membrane such

that its divergence vanishes at leading order in D. The divergence of u will turn out not

to vanish at a subleading order.

3.2.2 Coordinate Choice for the correction metric

In this chapter we search for solutions of Einstein’s equations in a power series expansion

in 1
D

GMN = ηMN + hMN ,

hMN =
∞∑
n=0

h
(n)
MN

(D − 3)n
,

with, h
(0)
MN =

OMON

ψD−3
,

(35)

Here

OM = nM − uM (36)

We fix coordinate redefinition ambiguities by demanding

hMNO
N = 0, (37)

Consider any point in the metric (1). The tangent space built about this point

has two special vectors; the vector n and the vector u. All the other D − 2 directions

orthogonal to n and u are equivalent and can be rotated into each other. It is thus useful

to parameterize the most general fluctuation field hMN (subject to the gauge condition
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(37)) in the form

h
(n)
MN = H(S,n)OMON +O(MH

(V,n)
N) +H

(T,n)
MN +H(Tr,n)PMN ,

where,

PMN =ηMN −OMnN −ONnM +OMON ,

ONH
(V,n)
N = 0, nNH

(V,n)
N = 0, OMH

(T,n)
MN = 0, nMH

(T,n)
MN = 0, PMNH

(T,n)
MN = 0,

(38)

The superscripts S, V and T stand for scalar, vector and tensor respectively, and denote

the transformation properties of the relevant symbol under the SO(D − 2) rotations in

tangent space that leave n and u fixed. The superscript Tr stands for trace, and labels a

second scalar.

3.2.3 Orders of D

As we have explained above, in this chapter we solve Einstein’s equations in a systematic

expansion in 1
D

. In order for this process to be well defined, we need to be able to unam-

biguously estimate the scaling with D of various terms that appear in the metric and in the

membrane equation of motion. Such an estimation is only unambiguous within subclasses

of solutions, as we will now explain with an example.

Consider a membrane whose world volume is a D − 2 sphere (of radius R) times

time. The trace of extrinsic curvature, K, of this surface is easily shown to be D−2
R

and so

is of order D (assuming R is of order unity). On the other hand the surface Sp × RD−2−p

times time has K = p
R

. If p and R are both held fixed as D is taken to infinity, K is of order

unity for this surface. It follows that K cannot unambiguously be assigned a scaling with

D without making further assumptions. The same holds true of various other quantities

(e.g. ∇2uM) that enter the metric and equation of motion.

In this chapter we follow [4, 12] and estimate the D scalings of all terms as follows.
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We assume that

• Our starting ansatz is constructed by sewing together bits of the event horizon of

black holes of radii R and timelike velocity uM where R and uM are everywhere finite

and of order unity.

• Our starting configuration (and so our full solution) preserves an SO(D − p − 2)

rotational invariance with p held fixed as D is taken to infinity

As explained in [12], these assumptions unambiguously specify the scaling with D of all

quantities of interest (in particular they force K to be of order D).

We emphasize that in this chapter we use the assumptions listed above only to es-

timate the scalings of D of various quantities. When the assumptions listed in the previous

paragraph are obeyed, the membrane equations and metrics listed in this chapter certainly

apply. However the formulae of this chapter apply more generally to any spacetime whose

variables scale with D in the same manner in which they would if the assumptions above

were obeyed - a much larger class of configurations.

3.2.4 All orders definition of the membrane surface and velocity

As explained in subsection 3.2.1, the metric (1) - the starting point of our perturbative

expansion - is completely determined by the shape of a membrane and a velocity field on

the membrane. To what precision can this procedure be reversed? In other words if we

are given a solution to Einstein’s equations of the appropriate kind, how precisely can we

read off the corresponding ‘shape’ and ‘velocity’ of the membrane?

We could attempt to identify the membrane shape and velocity field by simply

expanding the exact solution in powers of 1/D and focusing attention on the leading order

term. By comparing with (1) we could then read off the membrane shape and velocity
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field. While this procedure is simple, a moment’s thought will convince the reader that it

is ambiguous at all orders in 1/D save the leading order. 20 In other words the requirement

that our solution reduce to (1) defines the membrane shape and velocity only at leading

order, leaving the subleading corrections to these quantities ambiguous. In this subsection

we will fix this ambiguity by adopting a more precise definition of the shape and velocity

field. This definition agrees with that of (1) at leading order, but is precise at all orders.

We use this precise definition in the computations presented in the rest of this chapter.

We define the membrane shape to be the location of the event horizon of our

spacetime, and will choose higher order corrections to the metric (1) to ensure that this

event horizon coincides with the surface ψ = 1.

Turning to the velocity field, let GAB denote the full spacetime inverse metric.

Let nA be the oneform normal to the event horizon. We define the velocity field on the

membrane by the requirement that

uA = GABnB (39)

on the event horizon (i.e. at ψ = 1). In other words the velocity field is a tangent vector to

the generators of the event horizon. It is easily verified that (39) is a true equation for the

starting point of perturbation theory (1). We will choose corrections to the perturbative

ansatz to ensure that (39) holds at all orders in 1/D.

The requirement (39) together with the requirement that ψ = 1 is the exact event

horizon of our spacetime are easily seen to be satisfied provided that

H(S)(ψ = 1) = 0

H
(V )
M (ψ = 1) = 0

(40)

20For instance, the velocity redefinition uµ → uµ + δuµ/D does not change the metric at leading order
in 1/D.
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The first condition ensures that GMN∂Mψ∂Nψ = 0, i.e. dψ is null at ψ = 1 while the

second condition then ensures that the full spacetime metric on the event horizon takes

the form

ηMN +OMON +H
(T )
MN +HTrPMN

Let us write this metric in a the local basis of oneforms (n, u, Ya) where Ya is any D − 2

dimensional basis of oneforms chosen orthogonal to n and u. In this basis the metric takes

a block diagonal form with a 2× 2 block (with basis n and u) and a D − 2×D − 2 block

(with basis Ya). It follows that the inverse metric also has this block diagonal structure.

Note that the 2 × 2 block is universal, i.e. it is the same at every order in perturbation

theory. This block is the only one that contributes in (39). As (39) holds at leading order,

it follows that the conditions (40) ensure that (39) holds at every order in perturbation

theory.

Recall that according to (2) the velocity field used in (1) is divergence free at

leading order in 1
D

. As we will see below, the divergence of the velocity field defined in this

subsection will not, in general, vanish at subleading orders in 1/D.

3.2.5 Structure of the equations of perturbation theory

Our perturbative procedure proceeds as follows. We assume that our solution takes the

form (35) together with (37) and (38). The Ricci tensor of this metric - evaluated in a slab

of spacetime of thickness 1/D around ψ = 1 - takes the schematic form

RMN =
∑
n

D2−nRn
MN (41)

Let us imagine that we have implemented our perturbative procedure to order

n− 1, i.e. that we have determined h
(m)
MN for m = 1 . . . n− 1 in a manner that ensures that

R
(m)
MN = 0 for m = 0 . . . n− 1. In order to go to one higher order in perturbation theory we
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must solve for h
(n)
MN to ensure that Rn

MN also vanishes.

Schematically

R
(n)
MN = CPQ

MNh
(n)
PQ + S(n)

MN

where CPQ
MN is a linear differential operator with derivatives only in the ψ direction and

S(n)
MN is a source function. As h

(n)
PQ is already of order n, the differential operator CPQ

MN

is built entirely out of the zero order background metric (1), and so is the same at every

order. On the other hand the source function S(n)
MN is proportional to expressions of nth

order in 1/D built out of derivatives of the membrane velocity and shape function, and is

different at every order.

At every point of the event horizon of the ansatz metric (1) there are two distin-

guished vectors; nA and uA. Let

PAB = ηAB − nAnB + uAuB

denote the projector orthogonal to these two vectors (all dot products taken in flat space).

Instead of dealing directly with the components of RMN we find it more convenient to use

a basis adopted to uA and nA listed in table 1.

Table 1: Basis of components of RMN

Scalar sector Vector sector Tensor sector

RS1 = OMRMNO
N RV1

L = OMRMNPNL RT
AB = PMA RMNP

N
B − PABD−2

PMNRMN

RS2 = OMRMNu
N RV2

L = uMRMNPNL
RS3 = uMRMNu

N

RS4 = RMNPMN

By explicit computation (plugging (35) into the formula for the Ricci tensor) we

find that the linear combinations listed in Table 1 of the curvature components Rn
MN (see
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(41)) are given by the expressions listed in Table 2. 21

In table 2, fluctuation fields HS, HTr HV
A and HT

MN are taken to be of nth order

and all source functions (e.g. SS1) also understood to be nth order sources. All appearances

of ∇.u 22 in the table 2 should also be understood as follows. Naively ∇.u is of order D.

For that reason we expand

∇.u = (D − 3)

(
∞∑
n=0

(∇.u)n
(D − 3)n

)
(42)

Every appearance of∇.u in table 2 should actually be replaced by (∇.u)n. We have already

seen in the introduction that (∇.u)0 = 0. We will see below that (∇.u)1 also vanishes, but

that (∇.u)2 is nonzero.

In order to obtain Table 2 we have worked in the neighbourhood of the surface

ψ = 1 and the variable R is defined by R = (D − 3)(ψ − 1). 23

21We evaluated the curvature components listed in Table 1 - including explicit results for sources pre-
sented later - using Mathematica as follows. Following [4, 12] we first focused on the special case in which
the metric preserves SO(D − p − 2) isometry with p held fixed as D is taken to infinity. Working with
p = 2, 3 we used Mathematica to explicitly evaluate the needed curvature components. We then uplifted
these explicit results to the unique consistent covariant expressions listed in table 2, 3. We followed this
procedure merely for convenience- in order to put the computation in a form in which it could be pro-
grammed into Mathematica. Were we to proceed by hand - as the authors of [72] are currently doing - we
would have directly obtained the covariant results of table 2, 3.

22∇.u is the divergence of the velocity field thought of as a vector field in RD−1,1. On the surface ψ = 1,
however, ∇.u coincides with the membrane worldvolume divergence of velocity field (this follows upon
using the second of (32)).

23We will explain below that the sources listed in Table 2 are not completely independent, but are
constrained by the well known relation

∇M
(
RMN −

R̃

2
GMN

)
= 0 (43)

.
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Table 2: Expressions for basis of RMN

Scalar sector

RS1 =
(
−K2

2(D−3)2

)
d2H(Tr)

dR2 + SS1(R)

RS2 =
(

K2

2(D−3)2

)
e−R d

dR

(
eR d

dR
H(S)

)
− K2

4(D−3)2
e−R d

dR
H(Tr) + K

2(D−3)
∇MH

(V )
M

+SS2(R) + K
2(D−3)

e−R ∇.u
RS3 =

(
K2

2(D−3)2

)
e−2R(1− eR) d

dR
(eR dH

(S)

dR
)

−
(

K2

4(D−3)2

)
e−2R(1− eR)dH

(Tr)

dR
− K

2(D−3)
e−R∇MH

(V )
M + SS3(R) + K

2(D−3)
e−2R ∇.u

RS4 =
(

K2

(D−3)2

)
e−R d

dR
(eRH(S)) +

(
K2

2(D−3)2

)
e−2R(1− eR) d

dR

(
eR d

dR
H(Tr)

)
−
(

K2

2(D−3)2

)
dH(Tr)

dR
+ K

D−3
∇MH

(V )
M + 2K

D−3
d
dR
∇MH

(V )
M +∇M∇NH

(T )
MN + SS4(R)− K

(D−3)
e−R∇.u

Vector sector

RV1
M =

(
K2

2(D−3)2

)
e−R d

dR
(eR d

dR
H

(V )
M ) + 1

2
K

(D−3)
d
dR

(
∇NH

(T )
NM

)
+ SV1M (R)

RV2
M =

(
K2

2(D−3)2

)
e−2R(1− eR) d

dR
(eR d

dR
H

(V )
M ) + SV2M (R)

Tensor sector

RT
AB =

(
−K2

2(D−3)2

)
e−R d

dR

((
eR − 1

) dH(T )
AB

dR

)
+ STAB(R)

3.2.6 The Einstein Constraint Equations

In the process of solving for the fluctuation fields h
(n)
MN we will find the Einstein constraint

equations (relevant to the foliation of our spacetime in slices of constant ψ) particularly

useful. We will now provide a careful definition of these equations.

Let us define

EMN ≡ RMN − R̃
GMN

2
(44)

where R̃ is the Ricci scalar. The constraint equations are defined by the relations

E
(ec)
M = EMNG

NLnL (45)

We have a total of D constraint equations. These equations decompose into two scalars

and one vector under local SO(D − 2) rotations.

Let us imagine we have solved for our membrane metric at (n − 1)th order in
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perturbation theory, and are now attempting to solve for the metric correction at nth

order. If, in this process, we evaluate the constraint equation (45) and retain terms only

up to nth order then we need use GNL on the RHS of (45) only at zero order (i.e. from

the metric (1)), because EMN is already of nth order. It follows that the nth order scalar

and vector constraint equations are simply linear combinations of the nth order scalars and

vectors listed in table 1. We will now determine the relevant linear combinations. In order

to to this we first determine the nth order Ricci scalar R̃ as a linear combination of the

scalars in table 1.

R̃ = RABG
AB =

(
RABPAB +O.R.O(1− e−R) + 2O.R.u

)
= (RS4 + (1− e−R)RS1 + 2RS2)

(46)

Using this equation we find

E
(ec)
M =

(
RMN −

R̃

2
GMN

)
GNLnL

= RMNO
N(1− e−R) +RMNu

N − 1

2
R̃ nM

(47)

By dotting (47) with n and u or by projecting it orthogonal to these vectors we finally

obtain the nth order constraint equations written as linear combinations of the scalars and

vectors in table 1.

ES1 = E
(ec)
M uM = (1− e−R)RS2 +RS3

ES2 = E
(ec)
M OM =

1

2

(
(1− e−R)RS1 −RS4

)
EV
L = E

(ec)
N PNL = (1− e−R)RV 1

L +RV2
L

(48)

The explicit form of the nth order constraint equations is listed in table 3 below

As in table 1, all fluctuation fields in table 3 should be taken to be of nth order. The source
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Table 3: Listing of constraint equations
Vector constraint

EV
M = E

(ec)
N PNM = (1− e−R)RV1

M +RV2
M

= 1
2
K

(D−3)
(1− e−R) d

dR

(
∇AH

(T )
AM

)
+ VVM(R)

Scalar constraint 1

ES1 = E
(ec)
M uM = (1− e−R)RS2 +RS3

= K
2(D−3)

(1− eR) d
dR

(
∇MH

(V )
M

)
− K

2(D−3)
e−R∇MH

(V )
M + VS1(R) + K

2(D−3)
e−R ∇.u

Scalar constraint 2

ES2 = E
(ec)
M OM = 1

2

(
(1− e−R)RS1 −RS4

)
= − K

2(D−3)
d
dR

(
∇MH

(V )
M

)
− K

(D−3)
∇MH

(V )
M

+ K2

4(D−3)2
(2− e−R) d

dR
H(Tr) − K2

2(D−3)2

(
d
dR
H(S) +H(S)

)
− 1

2
∇M∇NH

(T )
MN + VS2(R) + K

2(D−3)
e−R ∇.u

functions in table 3 are also of nth order and are given in terms of the sources in table 1

and the as yet unknown quantity ∇.u by

VS1(R) = (1− e−R)SS2(R) + SS3(R)

VS2(R) =
1

2

[
(1− e−R)SS1(R)− SS4(R)

]
VVL (R) = (1− e−R)SV1L (R) + SV2L (R)

(49)

Now it is well known that the Einstein tensor obeys the identity

∇ME
MN = 0 (50)

It is also well known (and easy to see) that this identity ensures that the ‘normal’ derivative

of the constraint equations is a linear combination of the ‘in plane’ derivatives of Einstein’s

equations. 24 Within the perturbation theory of interest to this chapter the equation

(50) may be evaluated and projected onto its scalar and vector sectors and shown to be

24This is the fact that ensures that if all Einstein constraint equations are solved on one ‘time’ slice then
they are automatically solved on the next ‘time’ slice. In other words, in order to solve Einstein’s equations
you need only solve the constraint equations on one time slice provided you solve the other equations -
lets call them the dynamical equations - everywhere.
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equivalent to the following relations

d

dR
EV
M + EV

M +
(D − 3)

K ∇NRT
NM = 0

d

dR
ES1 + ES1 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 + ES2 +

(
1

2
RS1 +RS2 +

1

2
RS4

)
+

(D − 3)

K ∇NRV1
N = 0

(51)

Using (48) the RHS of these relations may be recast in the equivalent form

d

dR
EV
M + (1− e−R)RV1

M +RV2
M +

(D − 3)

K ∇NRT
NM = 0

d

dR
ES1 + (1− e−R)RS2 +RS3 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 +

1

2
e−RRS1 + (1− e−R)RS1 +RS2 +

(D − 3)

K ∇NRV1
N = 0

(52)

In either form these equations express the R derivatives of the Einstein constraint equa-

tions (48) in terms of linear combinations of the Einstein equations. Using the explicit

expressions in tables 2 and 3, it is possible to verify that the equations (51) are indeed

obeyed, provided that the scalar and vector sources in table 2 and 3 are not all independent

but are constrained by the following relations

d

dR
VVM + VVM +

(D − 3)

K ∇NSTNM = 0

d

dR
VS1 + VS1 +

(D − 3)

K ∇NSV2N = 0

d

dR
VS2 + VS2 +

[
1

2
SS1 +

(
SS2 +

K
2(D − 3)

e−R ∇.u
)

+
1

2

(
SS4 − K

(D − 3)
e−R∇.u

)]
+

(D − 3)

K ∇NSV1N = 0

(53)

Note that we have two relations between the four scalar sources and one relation
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between the two vector sources in table 2. Note that the relations also involve the as yet

unknown quantity ∇.u. Later in this chapter we will explicitly verify that the sources

that appear in the first and second order calculation obey the relations (53). However we

would like to emphasize here that these relations are necessarily obeyed at every order in

perturbation theory.

3.2.7 Choice of basis for the constraint and dynamical equations

Because we have the linear relationship between constraint and dynamical equations we

use the following basis for solving the scalar, vector and tensor fluctuations

Tensor: RT
AB

Vector: RV2
M , EV

M

Scalar: RS1 , RS2 , ES1 , ES2

(54)

From now on we write every expression in this basis. The expressions that we get

from Bianchi identities i.e. equations (51),(52) can be converted to the basis (54) as

d

dR
EV
M + EV

M +
(D − 3)

K ∇NRT
NM = 0

d

dR
ES1 + ES1 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 + (1− 1

2
e−R)RS1 +RS2 +

1

1− e−R
(D − 3)

K ∇M
(
EV
M −RV2

M

)
= 0

(55)
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The corresponding relationship between the sources is given by

d

dR
VVM + VVM +

(D − 3)

K ∇NSTNM = 0

d

dR
VS1 + VS1 +

(D − 3)

K ∇NSV2N = 0

d

dR
VS2 + (1− 1

2
e−R)SS1 + SS2 +

1

1− e−R
(D − 3)

K ∇N
(
VVN − SV2N

)
= 0

(56)

3.3 Perturbation theory at first order

In this section we will explicitly solve for the first order correction metric h
(1)
MN . However

we will perform our analysis in a manner that makes the generalization to higher orders

obvious.

3.3.1 Listing first order source functions

As we have explained in the previous section, the components of R1
MN are given in terms

of h
(1)
MN by the expressions in Table 2 with particular values for the source functions in that

table. By explicit calculation at first order we find that these source functions are given

by the values listed in the table 4.

Moreover the constraint equations take the form listed in Table 3 with first order

source functions listed in Table 5. We list the corresponding sources to the constraint

equations at 1st order in table 5. We have verified that our explicit expressions for the

sources obey the constraints (53).

We now proceed to solve the metric corrections at 1st order i.e. h
(1)
MN . We impose
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Table 4: Sources of RMN equations at 1st order
Scalar sector
SS1(R) = 0

SS2(R) = K
2(D−3)

e−Ru.K.u− e−R(−1+R)
2

u.∇K
(D−3)

− K2

2(D−3)2
e−R(−3 + 2R)

SS3(R) = 1
2K(D−3)

Re−R∇2K − e−2R(−2+2eR+R)
2

u.∇K
(D−3)

+ K2

2(D−3)2
e−2R

(
3eR(R− 1)− 2R + 3

)
SS4(R) = e−R(−1 +R) u.∇K

(D−3)
+ K2

(D−3)2
e−R(−1 + 2R)

Vector sector

SV1A (R) = K
2(D−3)

e−R
(
uMKMN − uM∇MuN

)
PNA

SV2A (R) = K
2(D−3)

e−2R
(
uMKMN − uM∇MuN

)
PNA + e−R

2

(
∇2uA
(D−3)

− ∇AK
(D−3)

)
Tensor sector
STAB(R) = 0

Table 5: Sources to constraint equations at 1st order
Vector constraint source

VVM(R) = e−R

2

(
∇2uM
(D−3)

− ∇MK
(D−3)

+ K
(D−3)

(uAKAM − u.∇uM)
)

Scalar constraint 1 source

VS1(R) = 1
2K(D−3)

Re−R∇2K − −e−2R+e−R(1+R)
2

u.∇K
(D−3)

+ K
2(D−3)

e−R(1− e−R)u.K.u+Re−R K2

2(D−3)2

Scalar constraint 2 source

VS2(R) = e−R

2

(
K2

(D−3)2
(1− 2R) + u.∇K

(D−3)
(1−R)

)
the conditions (40) as discussed in section 3.2.4.

3.3.2 Tensor sector

In this sector we have a single equation for the single variable H
(T )
MN . This equation is

obtained by equating the last line of Table 2 to zero and takes the form

RT
AB = e−R

d

dR

((
eR − 1

) dH(T )
AB

dR

)( −K2

2(D − 3)2

)
+ STAB(R) = 0 (57)
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where STAB(R) is the source for the tensor sector. At first order it turns out that STAB(R) =

0 (see Table 5). In order to facilitate generalizations to higher orders however, in this

subsection we will solve (57) for an arbitrary source function, and substitute STAB(R) = 0

only at the end of the calculation.

Integrating (57) once we find

d

dR
(H

(T )
AB ) =

(−2(D − 3)2

K2

) −1

eR − 1

∫ R

0

exSTAB(x)dx (58)

The condition that H
(T )
AB (and so RHS of (58)) is regular at R = 0 fixes the lower limit of

the integral in (58). Integrating a second time we find

H
(T )
AB =

(−2(D − 3)2

K2

)∫ ∞
R

dy

ey − 1

∫ y

0

exSTAB(x)dx

=

(
2(D − 3)2

K2

)[
log(1− e−R)

∫ R

0

exSTAB(x)dx+

∫ ∞
R

log(1− e−x)exSTAB(x)

] (59)

where the upper limit in the outer integral in (59) is fixed by the requirement that H
(T )
AB

decay at large R.

In summary, the tensor fluctuation H
(T )
AB is given at any order, in terms of the

tensor source function STAB(x) at that order, by the expression (59). Note that H
(T )
AB is

uniquely determined by its source function; requirements of regularity at R = 0 and decay

at infinity unambiguously fix all integration constants in (57).

As we have mentioned above, at first order ST,1AB(R) = 0. It follows from (59) that

the first order tensor fluctuation H
(T )
AB also vanishes and so

H
(T,1)
AB = 0 (60)
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3.3.3 Vector Sector

Constraint Equation and the Membrane Equation of Motion In the

vector sector we have two equations for the single variable H
(V )
M . The two equations may

be chosen to be the vector constraint equation EV
M (see the first line of Table 3) and the

equation RV2
L = 0 (see Table 2).

One cannot, of course, solve two equations for a single variable unless one linear

combination of the two equations is an identity. Indeed the first equation of (55)

d

dR
EV
M + EV

M +
(D − 3)

K ∇NRT
NM = 0 (61)

asserts that the vector constraint equation is automatically solved at all values of R if its

solved at one value of R (we use here that we have already solved the tensor equation so

that RT
AB = 0).

We will find it convenient to solve the vector constraint equation at R = 0. From

Table 3 we see that

EV
M =

1

2

K
(D − 3)

(1− e−R)
d

dR

(
∇MH

(T )
MN

(D − 3)

)
+ VVM(R)

At R = 0

EV
M = VVM(0)

It follows that the constraint equation is solved at R = 0 if and only if VVM(0) vanishes

(here we use the fact that H
(T )
MN is regular at R = 0; see the previous subsection) . This

requirement is a statement of the membrane equations of motion.

We would like to reemphasize that the membrane equations of motion at nth order

are obtained simply by evaluating the nth order vector constraint equation at R = 0. At

R = 0 this equation is independent of all the unknown nth order fluctuation fields. As a

63



consequence the membrane equations of motion may be obtained at nth order before solving

for the fluctuation fields at nth order, as in studies of the fluid gravity correspondence.

The analysis presented in this subsection so far has been valid at every order in

perturbation theory. Specializing now to the first order, we read off the value of VVM(0)

from Table 5. Equating this expression to zero we find the first order membrane equation

of motion (∇2uA
K − ∇AK

K + uCK
C
A − u.∇uA

)
PAB = 0 (62)

While all fields in (62) live in the full bulk spacetime RD−1,1, and all derivatives in that

equation are bulk spacetime derivatives, the equation (62) itself holds only on the mem-

brane surface ψ = 1. Using the subsidiary conditions (32) it is possible to rewrite (62) as

an equation restricted to the membrane. As demonstrated in [12] the equation of motion

of motion turns out to take exactly the same form as (62) in this language. In other words

(62) also holds true if we think of KMN and uM as membrane world volume fields, and

regard every derivative in that equation as a covariant derivative on the membrane world

volume.

Solving for the vector fluctuation As we have explained in the previous

subsubsection, the constraint vector equation is automatically solved at every R provided

the membrane equation is obeyed. Assuming this is the case, we have already solved one

of the two vector equations.

In order to solve for the unknown function, H
(V )
M , in the vector sector, we now

turn to the second vector equation RV2
L = 0. This equation takes the form

( −K2

2(D − 3)2

)
e−2R(−1 + eR)

d

dR
(eR

d

dR
H

(V )
M ) + SV2M (R) = 0 (63)

As in the previous subsection we will proceed to solve (63) for an arbitrary source function,
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plugging in the first order result for the source

SV2,1A (R) = − K
2(D − 3)

e−2R(−1 + eR)
(
uMKMN − uM∇MuN

)
PNA (64)

only at the end of the computation.

Notice that the LHS of (63) vanishes at R = 0. It follows that (63) admits regular

solutions if and only if SV2M (R) also vanishes at R = 0. It would naively seem that this

requirement imposes a new constraint on membrane data, independent of (62). 25 However

it turns out that the vanishing of SV2M (R) is automatic; indeed it follows from (48) that

RV2
M is simply identical to the vector constraint equation EV

M at R = 0. It follows as a

consequence that SV2M (R) is proportional to the LHS of (62) at R = 0. 26.

Using the fact that SV2,1M (0) vanishes, we integrate (63) once to find

eR
d

dR
H

(V )
M =

(−2(D − 3)2

K2

)[∫ R

0

( −ey
1− e−y

)
SV2M (y)dy + CV2

M

]
(65)

where CV2
M is an as yet undetermined integration constant. Integrating a second time we

find

H
(V )
M =

(
2(D − 3)2

K2

)∫ ∞
R

e−x
[∫ x

0

( −ey
1− e−y

)
SV2M (y)dy

]
dx− CV2

M e
−R (66)

The upper limit on the the outer integral of (66) has been determined from the requirement

that H
(V )
M vanishes at large R. The expression for HV

M may be simplified by integrating by

parts; we find

H
(V )
M (R) =

(
2(D − 3)2

K2

)(
e−R

∫ R

0

( −ex
1− e−x

)
SV2M (x)dx−

∫ ∞
R

SV2M (x)

1− e−x
)
− CV2

M e
−R (67)

25Had this step of the programme imposed a new constraint, we would have obtained a new membrane
equation - and so obtained more membrane equations than membrane variables, leading to an inconsistent
dynamical system.

26 To see this we note that (63) reduces to SV2

M (R) at R = 0 while EVM reduces to the LHS of (62) at
R = 0.
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In particular that

H
(V )
M (0) = −

(
2(D − 3)2

K2

)∫ ∞
0

SV2M (x)

1− e−x − C
V2
M (68)

It follows (see (40)) that

CV2
M = −

(
2(D − 3)2

K2

)∫ ∞
0

SV2M (x)

1− e−x (69)

so that

H
(V )
M (R) =

(
2(D − 3)2

K2

)(
e−R

∫ R

0

( −ex
1− e−x

)
SV2M (x)dx−

∫ ∞
R

SV2M (x)

1− e−x + e−R
∫ ∞

0

SV2M (x)

1− e−x
)

(70)

The expression (70) is our final expression for H
(V )
M (R) at any order in perturba-

tion theory in terms of the source function at that order. Note that H
(V )
M (R) is uniquely

determined in terms of its source function; the integration constants in (63) are uniquely

determined by the requirement that H
(V )
M (R) vanish at infinity and that (40) is obeyed at

R = 0.

Plugging the first order expression for the source (64) into (70), at first order we

find

H
(V,1)
M =

(D − 3)

K Re−R
(
uAKAN − uA∇AuN

)
PN
M (71)

3.3.4 Scalar sector

In the scalar sector we have four equations for the two variables H(Tr) and H(S). As a basis

for the four equations we find it convenient to use the two scalar constraint equations ES1

and ES2 (see Table 3) together with the two additional equations RS1 = 0 and RS2 = 0

(see Table 1).
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Constraint Equations and ∇.u As in the previous subsection it is consistent

to have four equations for two variables only if two of the four equations are identities.

The last two equations in (55)

d

dR
ES1 + ES1 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 + (1− 1

2
e−R)RS1 +RS2 +

(D − 3)

K
1

1− e−R∇
M
(
EV
M −RV2

M

)
= 0

(72)

assert that this is indeed the case. As we have already solved the vector sector at nth order

RV2
N vanishes. It follows that the first equation in (72) asserts that if ES1 is solved at any

R it is automatically solved at every R. When evaluated at R = 0 this equation reduces

to the condition

VS1(0) +
K

2(D − 3)
∇.u = 0 (73)

Recall that at leading order ∇.u = 0. (73) determines the correction to this statement at

subleading orders.

As in the previous subsection we emphasize that the expression for ∇.u at nth

order is determined simply by evaluating the nth order constraint equation ES1 at R = 0.

In order to obtain this correction we do not need to solve for any of the nth order fluctuation

fields, all of which drop out in ES1 evaluated at R = 0.

The analysis of this subsection has, so far, been valid at every order in perturba-

tion theory. Specializing to first order it is easily verified from Table 5 that VS1(0) = 0.

It follows that the zero order relation ∇.u = 0 is uncorrected at first order (since

(∇.u)0 = VS1(0) = 0). As we will see in the next section, the situation is different at

second order.

The constraint equation ES2 plays a distinct logical role from ES1 in our pertur-

bative programme. Once the tensor and vector equations had been solved, (72) assured

us that ES1(R) obeys a homogeneous differential equation in R (see (51) which makes no

reference to any of the other equations in the scalar sector. On the other hand the differ-
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ential equation obeyed by ES2 involves the other scalar equations (see the last equation

in (52)). The most useful way to view the last equation in (52) is as follows. It might, a

priori, have seemed that we have 4 equations in the scalar sector. We have already dealt

with ES1 above leaving behind a three dimensional space of equations. A useful basis for

this space is given by ES2 , RS1 and RS2 . The last equation in (52) allows us to eliminate

RS2 from this basis. In order to complete solving in the scalar sector we need only solve

the equations ES2 , RS1 . In other words the constraint equation ES2 does not constrain

data: instead it may be used to solve for the scalar fluctuation. We turn to this task in

the next subsubsection.

Solving for the scalar fluctuations The equation RS1

RS1 =

( −K2

2(D − 3)2

)
d2H(Tr)

dR2
+ SS1(R) = 0 (74)

is easily solved. Integrating the above equation once we get

dH(Tr)

dR
=

(−2(D − 3)2

K2

)∫ ∞
R

dx SS1(x) (75)

Where we have fixed the boundary condition from the requirement that H(Tr) and so its

derivative dH(Tr)

dR
= 0 vanish at large R. Integrating this equation once again we have

H(Tr) =

(
2(D − 3)2

K2

)∫ ∞
R

dy

∫ ∞
y

dx SS1(x)

=

(
2(D − 3)2

K2

)[
−R

∫ ∞
R

dx SS1(x) +

∫ ∞
R

dx x SS1(x)

] (76)

where, once again we have fixed the integration constant from the requirement that H(Tr) =

0 at large R.
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Specializing now to first order we note SS1,1 = 0 so that

H(Tr,1) = 0 (77)

The equation ES2 takes the form

d

dR
(H(S)eR) =

2(D − 3)2

K2
eRSS(R) where,

SS(R) = − K
2(D − 3)

d

dR

(
∇MH

(V )
M

)
− K

(D − 3)
∇MH

(V )
M

+
K2

4(D − 3)2
(2− e−R)

d

dR
H(Tr) − 1

2
∇M∇NH

(T )
MN + VS2(R) +

K
2(D − 3)

e−R ∇.u

(78)

Plugging in the already obtained expressions of H
(V )
M , H

(T )
MN , H(Tr) (see (70),(76)

and (59)) and using (56), the source function SS(R) can be rewritten as a linear functional

of the elementary sources SS1 , SS2 and VS1 27. Upon simplifying (by integrating by parts

on several occasions) we find

SS(R) =

∫ ∞
R

SS2(x)dx+
1

2

∫ ∞
R

(2− e−x)SS1(x)dx− 1

2
(2− e−R)

∫ ∞
R

SS1(x)dx

−
(
1− e−R

) ∫ ∞
R

ex
(
VS1

′
(x) + VS1(x)

)
(ex − 1)

dx

 dy − VS1(R) + e−RVS1(0)

+ log(1− e−R)
(
VS1

′
(0) + VS1(0)

)
+ (∇ · u)

Ke−R
2(D − 3)

(79)

We note that SS is analytic at R = 0 if and only if

VS1
′
(0) + VS1(0) = 0 (80)

This condition is, in fact, automatic. It follows from the second of (56) that the LHS of

(80) is proportional to ∇NSV2N (0). We have already argued, however, that SV2N vanishes at

27It turns out that all dependence on the fourth independent scalar source, VS2 cancels.
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R = 0. Since this condition holds at every point on the membrane, it follows also that

∇NSV2N (0) = 0 establishing (80). 28

Plugging (79) into (78), integrating (and simplifying using integration by parts)

we find

HS(R) =
2(D − 3)2

K2
e−R

(
(K(∇ · u))R

2(D − 3)
+ eR

∫ ∞
R

SS2(x)dx−
∫ ∞

0

SS2(x)dx+

∫ R

0

exSS2(x)dx

+
eR

2

∫ ∞
R

(2− e−x)SS1(x)dx+
1

2

∫ R

0

ex(2− e−x)SS1(x)dx− 1

2

∫ ∞
0

(2− e−x)SS1(x)dx

− 1

2
(2eR −R)

∫ ∞
R

SS1(x)dx+

∫ ∞
0

SS1(x)dx− 1

2

∫ R

0

(2ey − y)SS1(x)dx

−
∫ R

0

(ey − 1)

∫ ∞
y

ex
(
VS1

′
(x) + VS1(x)

)
(ex − 1)

dx

 dy −
∫ R

0

exVS1(x)dx+RVS1(0)

)
(81)

Explicitly at first order

H(S,1) =
D − 3

K Re−R
(
R

(
− K
D − 3

− u · ∇K
K +

u ·K · u
2

)
+

( K
D − 3

+ u ·K · u
))

(82)

3.3.5 Final Result for the first order metric

After integrating the ordinary differential equations corresponding to Einstein’s equations

and imposing the condition that the metric is regular at the horizon, matches flat space

at the end of the membrane region and (40), we get the following solutions for the various

28In studies of the fluid gravity correspondence a derivative of the equation of the nth order equation
contributes to sources only at (n+ 1)th order in the derivative expansion. In the large D expansion of this
chapter, however, the suppression in order resulting from using an extra derivative can be compensated
for by an enhancement in order resulting from the contraction of a spacetime index. Consequently the
equation of motion and its contracted derivatives are of the same order in the large D expansion.
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components of the metric correction.

H
(T,1)
MN = 0

H(Tr,1) = 0

H
(V,1)
M =

(D − 3)

K Re−R
(
uAKAL − uA∇AuL

)
PLM

H(S,1) =
D − 3

K Re−R
(
R

(
− K
D − 3

− u · ∇K
K +

u ·K · u
2

)
+

( K
D − 3

+ u ·K · u
))

(83)

Thus we can write the 1st order corrected metric as

gMN = ηMN +
OMON

ψD−3

+
1

D − 3

[
D − 3

K Re−R
(
R

(
− K
D − 3

− u · ∇K
K +

u ·K · u
2

)
+

( K
D − 3

+ u ·K · u
))

OMON

+
(D − 3)

K Re−R
(
uAKAL − uA∇AuL

)
PL

(MON)

]
(84)

3.4 2nd order solution

The metric (84) solves Einstein equation to first subleading order. In this section we

implement the perturbative procedure to one higher order. In other words we determine

the correction H
(2)
MN in a way that ensures that RAB evaluated on the corrected metric is

of order 1/D (more precisely that RABR
AB is of order 1/D2).

The procedure we follow is exactly that of the previous section: in fact second

order corrections to the metric are given directly by the formulae of the previous subsection

with one modification: we need to use the second order rather than first order source func-

tions. In other words the computation at second order boils down entirely to determining

the second order sources.
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In order to determine the sources at second order we plug the first order corrected

metric (84) together with an as yet undetermined second order correction h2
MN into Ein-

stein’s equations. We use the fact that the shape and velocity functions in the first order

corrected metric obey the equation of motion

(∇2uA
K − ∇AK

K + uCK
C
A − u.∇uA

)
PAB +

1

D
EAPAB = 0 (85)

where EB is an as yet undetermined ‘2nd order’ correction to the equations of motion. As

in the previous subsection we solve the equations in the neighbourhood of a particular

point on the event horizon. In our analysis, however, we use the fact that the membrane

equations of motion (85) are obeyed not just at the particular point we are expanding about

but everywhere on the membrane. In other words we use the fact that the derivative of

(85) vanishes at the point of interest. Finally we also use the fact that ∇.u is an as yet

undetermined quantity of order 1/D.

We find by explicit computation that the curvature components listed table 1

do indeed take the form listed in table 2,3 once all metric fluctuation fields in that table

are identified with second order fluctuations. Our explicit computations also yield explicit

expressions for all the second order source functions. We present an explicit listing of these

source functions in Tables 6 and 7 in the Appendix.

In the rest of this section we obtain the second order correction to the metric by

inserting the second order sources listed above into the general integral formulae of the

previous section and performing all integrals.

3.4.1 Constraints on membrane data

Correction to the membrane equations from the vector sector As in

the previous subsection (61) guarantees that the vector constraint equation EV
M = 0 is

solved at any R if the equation is obeyed at R = 0. As in the previous subsection the
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constraint equation at R = 0 is independent of the second order fluctuation fields. From

table 7 we see that this constraint equation at R = 0 determines − 1
D
EAPAB - the second

order correction to the membrane equation of motion - in terms of appropriate expressions

involving the membrane extrinsic curvature and velocity fields. Adding these correction

terms to the first order membrane equation (3) we recover the second order corrected

membrane equation

[
∇2u

K − ∇KK + u ·K − (u · ∇)u

]
· P +

[∇2∇2u

K3
− ∇(∇2K)

K3

+ 3
(u ·K · u)(u · ∇u)

K − 3
(u ·K · u)(u · ∇n)

K − 6
(u · (∇2n))(u · ∇u)

K2

+ 6
(u · (∇2n))(u · ∇n)

K2
+

3

D − 3
u · ∇u− 3

D − 3
u · ∇n

]
· P = 0 (86)

where

PAB = ηAB − nAnB + uAuB (87)

The 1st square bracket in (86) is simply the 1st order equation of motion while the 2nd

square bracket represents subleading corrections. 29

We would like, however, to emphasize an important technical point. All the fields

in (86) are assumed to live in all of the embedding flat spacetime; they are extended off the

surface of the membrane by the subsidiary conditions listed earlier in this chapter. While

all covariant derivatives listed in (86) are evaluated on the surface of the membrane, they

act on fields defined in all of spacetime.

As the membrane equations of motion are intrinsic to the membrane, it is clearly

29Note that we can write the equation (86) in a nicer looking form by using the subsidiary conditions
(32), divergence of first order membrane equation of motion (3) and divergence of velocity condition (28).
The form is (∇2O

∇.O +O.∇O
)
· P +

(∇2∇2O

(∇.O)3
+ 3
∇2(∇.O)

(∇.O)3
O.∇O

)
· P = 0 (88)
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unnatural to write them in terms of spacetime derivatives of an essentially arbitrary exten-

sion of membrane fields into the embedding spacetime. The equation of motion (86) can be

rewritten so that all fields in that equation are purely membrane world volume fields, and

every derivative in the equation is a covariant derivative on the membrane world volume.

We now explain how this is done.

The relationship between the bulk covariant derivatives of tensors (e.g. uM) and

membrane worldvolume derivatives of the same quantities is quite straightforward when

no more than one derivative acts on the same object. The spacetime covariant derivative

is obtained from the corresponding bulk quantity by projecting every index (not just the

derivative indices) onto the membrane world volume. However this relationship is more

complicated when we have two or more derivatives acting on the same object; the reason

for the additional complication is that the formula for multiple worldvolume covariant

derivatives involves inserting projectors at each step (when you define the first derivative

in terms of bulk derivatives, then again when you define the second derivative in terms

of bulk derivatives etc); when such expressions are opened out, outer derivatives act on

projectors used to define the inner derivatives. Tracing through the required algebra we

find that the corrected second order membrane equation of motion, written in terms of

fields and covariant derivatives that live purely on the membrane world volume, takes the

form [
∇2uA
K − ∇AK

K + uBKBA − u · ∇uA
]
PAC

+

[(
−u

CKCBK
B
A

K

)
+

(∇2∇2uA
K3

− u · ∇K∇AK
K3

− ∇
BK∇BuA
K2

− 2
KCD∇C∇DuA

K2

)

+

(
−∇A∇2K
K3

+
∇A

(
KBCK

BCK
)

K3

)
+ 3

(u ·K · u)(u · ∇uA)

K − 3
(u ·K · u)(uBKBA)

K

− 6
(u · ∇K)(u · ∇uA)

K2
+ 6

(u · ∇K)(uBKBA)

K2
+

3

D − 3
u · ∇uA −

3

D − 3
uBKBA

]
PAC = 0

(89)
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The projector PAB used in this equation

PAB = g̃AB + uAuB (90)

where g̃AB is the induced metric on the world volume of the membrane.

The equation (89) can be slightly simplified as follows. Let us first note that (89)

takes the schematic form

FA +
SA

K = 0 (91)

where FA is the first order contribution to the equation of motion (the first line of (89))

while SA

K is the second order contribution (the second-fourth lines of (89)). FA and SA are

each vector fields of order unity.

Let us now consider the modified equation of motion

FA +
SA

K +∇.F ζ
A

K2
= 0 (92)

where ζA is any vector field of order unity. As ∇.F is naively of order D, the difference

between the equations (92) and (91) is naively of order 1
D

suggesting that (91) and (92)

differ at first subleading order. This is not the case. By taking a divergence of either (91)

or (92), the reader can easily convince herself that, onshell, ∇.F is of order unity (rather

than the naive estimate of order D). If follows that (92) and (91) actually differ only at

second subleading order ( 1
D2 ) and are equivalent at first subleading order. We are thus

allowed to simplify (89) by adding any expression of the form ∇.F ζA

K2 to it.

Now it was demonstrated in [12] that

∇.F
K =

∇2K
K2
− 2

u.∇K
K + u.K.u (93)
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Using this relation and making the the choice

ζA = −3
(
(u.∇u)A − uBKB

A

)
(94)

we find that (89) is equivalent to (92) whose explicit form is

[
∇2uA
K − ∇AK

K + uBKBA − u · ∇uA
]
PAC

+

[(
−u

CKCBK
B
A

K

)
+

(∇2∇2uA
K3

− u · ∇K∇AK
K3

− ∇
BK∇BuA
K2

− 2
KCD∇C∇DuA

K2

)

+

(
−∇A∇2K
K3

+
∇A

(
KBCK

BCK
)

K3

)
− 3
∇2K u · ∇uA

K3
+ 3
∇2K uBKBA

K3

+
3

D − 3
u · ∇uA −

3

D − 3
uBKBA

]
PAC = 0

(95)

Divergence of velocity from a scalar constraint As we have explained

in the previous section, the Einstein constraint equation ES1 is satisfied at all R if it is

satisfied at R = 0. As explained in the previous subsection, the equation at R = 0 simply

asserts that

∇.u2 = −2(D − 3)

K VS1(0)

Reading off the value of VS1(0) from the table 7 we find

∇ · u =
(∇.u)2

D − 3
=

1

2K
(
∇(AuB)∇(CuD)PBCPAD

)
(96)
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3.4.2 Second order corrections to the metric

Tensor Sector The metric correction in the tensor sector is given by (59)

H
(T )
AB =

(−2(D − 3)2

K2

)∫ ∞
R

dy

ey − 1

∫ y

0

exSTAB(x)dx

=

(
2(D − 3)2

K2

)[
log(1− e−R)

∫ R

0

exSTAB(x)dx+

∫ ∞
R

log(1− e−x)exSTAB(x)

] (97)

where STAB is the second order source listed in table 6. All the integrals that appear in

the final answer can easily be performed analytically, but the final results (given in terms

of polylogs) are not very illuminating; we prefer to leave our final result in terms of an

explicit integral.

Vector Sector The solution for H
(V )
M (R) at second order is given by (70)

H
(V )
M (R) =

(
2(D − 3)2

K2

)(
e−R

∫ R

0

( −ex
1− e−x

)
SV 2
M (x)dx−

∫ ∞
R

SV 2
M (x)

1− e−x + e−R
∫ ∞

0

SV 2
M (x)

1− e−x
)

(98)

with all sources read off at 2nd order from table 6. As in the tensor sector, all integrals that

appear in (98) can be explicitly performed in terms of polylogs, but we find the expression

(98) in terms of explicit integrals more illuminating.

Scalar Sector Equation RS1 is decoupled equation for H(Tr). The integrated

form is given by (76) which we write again

H(Tr) =

(
2(D − 3)2

K2

)∫ ∞
R

dy

∫ ∞
y

dx SS1(x)

=

(
2(D − 3)2

K2

)[
−R

∫ ∞
R

dx SS1(x) +

∫ ∞
R

dx x SS1(x)

] (99)
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The source SS1 for 2nd order is given in table 6. Substituting this we get the final

form of the metric correction

H(Tr,2) = −
(

2(D − 3)2

K2

)
e−R(1 +R) ((u ·K − u · ∇u) · P · (u ·K − u · ∇u)) (100)

In a similar manner the fluctuation HS can is given by (81) upon plugging in the

explicit values of the second order sources from Tables 6,7.

3.5 The spectrum of small fluctuations around a spherical mem-

brane

The simplest solution of the second order membrane equations of motion is a static spherical

membrane dual to a Schwarzschild Black hole. In this section we compute the spectrum of

small fluctuations about this solution. Our answers agree perfectly with earlier results for

the spectrum of light quasinormal modes obtained by direct gravitational analysis, in [10].

We regard this detailed agreement as a nontrivial consistency check of the second order

membrane equations of motion derived in this chapter.

The computation presented in this section is a straightforward extension of the

first order computation presented in section 5 of [12]. We have kept the discussion of this

section brief. We refer the reader to section 5 of [12] for a fuller discussion of the logic

behind our computation.

We work in standard spherical polar coordinates (see Eq 5.1 of [12]). The static

spherical membrane is given by

r = 1, u = −dt, (101)
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We study the small fluctuations

r = 1 + ε δr(t, θ),

u = −dt+ ε δuµ(t, θ)dxµ.
(102)

about this solution and work to linear order in ε. As explained in [12], to linear order the

metric on membrane worldvolume is given by

ds2 = −dt2 + (1 + 2εδr) dΩ2
D−2 . (103)

As in [12] we find it convenient to work with covariant derivatives with respect to the

unperturbed spherical metric

ds2 = −dt2 + dΩ2
D−2 , (104)

The derivatives appearing from now on are all with respect to metric (104). We use the

following notation for the laplacian with respect to this fixed metric

∇2
= ∇µ∇µ = −∂2

t +∇a∇a = −∂2
t +∇2

3.5.1 The divergence condition

The RHS of (28) is quadratic in ε, and so vanishes upon linearizing in ε. At linear order,

therefore, (28) reduces to ∇.u = 0 (where the divergence is taken along the dynamical

membrane world volume). As explained in [12], this equation can be rewritten as

∇µδu
µ = −(D − 2)∂tδr, (105)

where, the covariant derivatives (105) are now taken w.r.t. the fixed metric (104). u0

deviates from unity only at quadratic order in ε. For the linearized considerations of this
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section, therefore, the LHS of (105) is simply the spatial divergence of the velocity

∇aδu
a = −(D − 2)∂tδr. (106)

As in [12], (106) may be solved by separating u into its gradient and curl parts, i.e. by

setting

δua = ∇aΦ + δva, (107)

with

∇ · δv = 0. (108)

It follows from (106) that

∇2Φ = −(D − 2)∂tδr. (109)

3.5.2 Linearized equation of motion

In order to obtain the linearized membrane equations of motion we use Eq 5.7 of [12]

together with

uEKEBK
B
a

K = −ε(∇a∂tδr − δua)
D − 2

∇2∇2ua
K3

= ε
∇̄2∇̄2δua + ∇̄2∇a∂tδr

(D − 2)3

KCD∇C∇Dua
K2

= ε
∇̄2δua −∇a∂tδr

(D − 3)(D − 2)

∇a∇2K
K3

= −ε∇a∇̄2(∇̄2δr + δr(D − 2))

(D − 2)3

∇a(K
BCKBCK)

K3
= ε

3∇a(−∇̄2δr − δr(D − 2))

(D − 3)(D − 2)

(the equations above are accurate only to linear order in ε and all covariant
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derivatives are taken with respect to (104)). The linearized membrane equation is given

by[(
1 +

∇2

D − 2

)
δua +∇a

(
1 +

∇2

D − 2

)
δr − ∂t∇aδr

(
1− 1

D − 2

)
− ∂tδua

]

+

[∇a∂tδr − δua
D − 2

+
∇2∇2

δua +∇2∇a∂tδr

(D − 2)3
+ 2
−∇2

δua +∇a∂tδr

(D − 3)(D − 2)
+
∇a∇2

(∇2
δr + (D − 2)δr)

(D − 2)3

+ 3
∇a(−∇2

δr − (D − 2)δr)

(D − 3)(D − 2)
+ 3

∂tδua
(D − 3)

+ 3
∂t∇aδr − δua

(D − 3)

]
= 0.

(110)

((110) generalizes equation (5.9) of [12]). Substituting (107) into (110) we find the gener-

alized version of of (5.15) of [12],

(
∇2

D − 2
+ 1− ∂t +

∇2∇2

(D − 2)3
− 2(∇2)

(D − 2)2
+

3∂t
(D − 3)

− 3

(D − 3)

)
δva =

−
(
∂t∇a

D − 2
+
∇a∇2

D − 2
+∇a −∇a∂t +

2∇a∂t
(D − 2)2

− ∇a∇2
(∇2 + (D − 2))

(D − 2)3

− 9∇a((D − 2)2 − (D − 2)(9∇2 − ∂2
t ))

3(D − 2)3
+

3∂t∇a

(D − 3)

)
δr

−
(
∇2

D − 2
+ 1− ∂t +

∇2∇2

(D − 2)3
− 2(∇2)

(D − 2)2
+

3∂t
(D − 3)

− 3

(D − 3)

)
∇aΦ

(111)
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3.5.3 Scalar quasinormal modes

Using (106) and (109) we take the divergence of (111) to obtain

− (∇2
+D − 3)∂tδr +

∂t∇2δr

D − 2
+
∇2∇̄2δr

(D − 2)
+∇2δr − ∂t∇2δr − (D − 2)∂tδr + (D − 2)∂2

t δr

+
∇2∂tδr + (D − 2)∂tδr

D − 2
− (∇2

+D − 3)2(D − 2)∂tδr + (∇2
+D − 3)∇2∂tδr

(D − 2)3

+ 2
(∇2

+D − 3)(D − 2)∂tδr +∇2∂tδr

(D − 2)2
+
∇2∇̄2(∇̄2δr + δr(D − 2))

(D − 2)3

− ∇
2(3∇2δr − ∂2

t δr + 3δr(D − 2))

(D − 2)2
− 3

D − 2

(D − 3)
∂2
t δr +

3

(D − 3)
(∂t∇2δr + (D − 2)∂tδr) = 0

(112)

As in [12] we expand

δr =
∑
l,m

almYlme
−iωrl t . (113)

where the spherical harmonics Ylm obey

−∇2
SD−2Ylm = l(D + l − 3)Ylm. (114)

Inserting (113) into (112) we obtain

ωrl = ±
√
l − 1− i(l − 1) +

1

D

(
±
√
l − 1

(
3l

2
− 2

)
− i(l − 1)(l − 2)

)
(115)

The result (115) is in perfect agreement with the result obtained by EST in Equations

(5.30) and (5.31) of [10].

As explained in [12], the modes with l = 0 and l = 1 are special. At l = 0 the

formula (115) yields ω = 0, 2i − 4i
D

. The second solution is, however, spurious (see [12]).

The first solution is the zero mode corresponding to rescaling the black hole; this is an

exact zero mode at all orders in 1/D.
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At l = 1 (115) yields the frequencies ω = 0, 0. As explained in [12] these two

modes correspond to translations and boosts of the membrane.

3.5.4 Vector quasinormal modes

We expand the velocity fluctuations in a basis of vector spherical harmonic

δva =
∑
l,m

blmY
lm
a e−iω

v
l t (116)

Where, l = 1, 2, 3, .... The vector spherical harmonics satisfy the property

∇2V = −[(D + l − 3)l − 1]V (117)

Plugging (116) into (111), using (117) and equating the coefficients of independent

vector spherical harmonics (see [12] for more discussion) we obtain

ωvl = −i(l − 1)− i

D
(l − 1)2. (118)

(118) is in perfect agreement with the formula (5.22) of [10] derived earlier by EST

by purely gravitational analysis. Note that the mode with l = 1 has vanishing frequency.

As explained in [12] l = 1 is the exact zero mode corresponding to setting the black hole

spinning.

3.6 Discussion

In this chapter we have worked out the duality between the dynamics of black holes in a

large number of dimensions and the motion of a non gravitational membrane in flat space

to second subleading order in 1/D. Our work generalizes the analysis of [4, 12]. The
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concrete new results of this chapter are

• The second order corrected membrane equations of motion listed in (27).

• The formula (28) for the divergence of the velocity field (which vanished at first

order).

• The explicit form of the second order corrected metric dual to any given membrane

motion (see subsection 3.4.2

In addition to obtaining the new results listed above we have also achieved an

improved understanding of the structure of the perturbative expansion in 1/D. We have

demonstrated that the perturbative programme, implemented to first nontrivial order in

[4, 12], can systematically be extended to every order in the 1/D expansion. In particular

we have shown that the algebraically nontrivial ‘integrability’ properties that allowed for

the existence of a first order solution in [4, 12] are actually automatic at all orders as as a

consequence of the well known equation (50).

We have also explained that the membrane equations may directly be obtained

by evaluating the Einstein constraint equation on the event horizon. In particular the

membrane equations at (n + 1)th order in 1/D are obtained by evaluating the constraint

equations on nth order metric, without needing to solve for the (n+ 1)th order metric. We

have also explained that the assumption of SO(D − p − 2) isometry, made in [12], is not

necessary; the membrane equations can be derived under much more general conditions

The fact our membrane equations arise from the Einstein constraint equations at

the event horizon is strongly reminiscent of the ‘traditional’ membrane paradigm of black

hole physics. It would be very interesting to better understand the relationship between

the the large D membrane and the traditional membrane paradigm. [73–75].

As black holes are thermodynamical objects, the black hole membrane studied

in [4, 12] and this chapter should carry an entropy current. At leading order in 1/D it
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turns out (see [76]) that this entropy current is given simply by a constant times uM . The

divergence of this entropy current is thus proportional to ∇.u. It follows that the RHS of

the formula (28) gives an expression for the rate of entropy production on the membrane.

It would be interesting to further investigate this observation and its consequences.

On a related note, it would be interesting to derive the most general stationary

solution of the second order corrected equations of motion derived in this chapter and

compare our results with those of [14].

In this chapter we have focused our attention on black holes propagating in an

otherwise perfectly flat spacetime. It would be interesting to generalize our study to the

motion of black holes propagating in any vacuum solution of Einstein’s equations, e.g. a

gravity wave. Such a generalization would allow us, for instance, to study the absorption

of gravity waves by black holes at large D. At first order in the derivative expansion we

expect the generalized effective membrane equation to be given simply by covariantizing

first order flat space equations of motion. At second order, however, the equations of

motion could receive genuinely new contributions from the background Riemann tensor of

the space in which the black hole propagates 30. It would be interesting to work this out

in detail.

Finally, it would be interesting to put the membrane equations derived in this

chapter to practical use to allow us to learn new things about black holes. One possible

direction would be to test out how well the large D expansion does in astrophysical contexts

(i.e. when D = 4). Another direction would be to use the formalism developed herein to

address interesting unanswered structural questions about gravity, e.g. questions about the

second law of thermodynamics in higher derivative gravity. We leave such investigations

for the future.

30Something similar happens in the study of forced fluids in the fluid gravity correspondence [77]
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3.7 Appendices for Chapter 2

3.7.1 Method of calculation

In this Appendix we outline the method we have employed to obtain the results quoted in

tables 2, 3, 4, 5, 6, 7.

As we have mentioned in the main text, our starting point is the metric listed

in (35),(36),(37),(38). In order to obtain the equations of motion listed in table 2 (see

also table 3) we simply plugged this metric into the vacuum Einstein equations. Assuming

these equations are already obeyed at n − 1 order we then obtained the form of the nth

order equations. As emphasized in table 2, each of these equations have a ‘homogeneous’

contribution and a ‘source’ contribution. The homogeneous contribution is linear in the

(as yet unknown) nth order fluctuation, and takes the same form at all orders. In order

to evaluate the homogeneous contribution to all equations of motion, consequently, it is

sufficient to work at first order.

While the first order computation is straightforward to perform analytically in

principle, in practice the computations involved are rather lengthy . In order to guard

against error we employed Mathematica in our computations using the following device.

Following [4, 12] we specialized to the particular case of metrics that preserve an SO(D−
p− 2) isometry. Such special metrics effectively depend only on p+ 3 variables. For small

values of p, therefore, all computations can be effectively performed on Mathematica (see

[12] for a detailed explanation of how this is done). The first order computation performed

in this manner yields the homogeneous part of the differential equations listed in tables

2 and 3 in a straightforward manner. Note that the homogeneous part of the equations

are differential operators only in the variable R. They are ‘ultra-local’ on the membrane.

Consequently, even though the assumption of isometry was used as a trick to facilitate

the computation of the homogeneous part of the equation, the final result obtained for the

structure of the equations listed in tables 2 and 3 is valid assuming only that all background
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quantities (e.g. K) scale in the manner assumed in the text. In particular the homogeneous

contribution to these equations are independent of p. By repeating all of our computations

for p = 2 and p = 3 we have explicitly checked that this is the case.

Apart from the homogeneous pieces, the equations listed in tables 2 and 3 also

have contributions from sources. Source terms are different at different orders in the

computation. We obtained our explicit results for the first order sources listed in tables

4, 5 and second order sources listed in tables 6, 7 as follows. Working separately in the

scalar, vector and tensor channels we first explicitly listed all possible source structures

that could appear in any given equation both at first and second order in perturbation

theory. The source structures that appear in our classification are the analogues of the

’geometrical’ quantities listed in the LHS of Table 4 in [12]. At any given order, it follows

that the sources that appear in the equations of tables 2 and 3 are linear combinations of

these structures with coefficients that are as yet unknown functions of R. We then worked

out the analogue of the RHS of Table 4 of [12], i.e. we explicitly evaluated each of these

basis source terms in terms of ‘reduced source data’ - the analogue of the expressions listed

in table 1 of [12].

Using our explicit computations on Mathematica we read off the coefficients of all

reduced sources in all of the equations listed in table 2 and 3. We then used our reduction

formulae for ‘geometrical sources in terms of reduced sources’ (analogue of Table 4 in

[12]) to determine the coefficients of all source terms in the original geometrical basis of

possible source terms. The last step (determination of geometrical sources from the known

coefficients of reduced sources) is unambiguous provided the map between geometrical

and reduced sources in invertible, i.e. provided there does not exist a nontrivial linear

combination of geometrical sources that maps to zero when re expressed in terms of reduced

sources (i.e. vanishes under the the assumption of isometry). We have verified that this

condition is met at first order provided p ≥ 2 and at second order provided that p ≥ 3. 31.

31It is easy to understand the inequalities listed here. When p = 1, for instance, a potential source term
proportional to the shear of the velocity field trivially vanishes just because fluids in one spatial dimension
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This is the reason we performed our computations at p = 3. 32

3.7.2 Sources at second order

In this Appendix we present an explicit listing of all the sources that appear in the second

order computation.By explicit computation we find that the sources listed in tables 1 and

2) ’ are given at second order by the expressions we list in table 6 below

do not have a transverse direction in which to shear.
32 We also performed all computations in p = 2 and verified that we obtained the same results for all

sources from this computation - except in the case of a single second order source that vanished at p = 2
but not at p = 3. The coefficient of this term was left undetermined at p = 2 but we determined at p = 3.
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Table 6: Sources of RMN equations at 2nd order
Scalar sector

SS1(R) = e−R(1−R) ((u ·K − u · ∇u) · P · (u ·K − u · ∇u))

SS2(R) = −1
2
e−R(R− 2)

(
KMNKPQP

NPPMQ − K2

D−3

)
+ 1

2
e−R(R + 2)

(
∇MuN∇PuQP

NPPMQ

)
− e−R

2

(
∇[MuN ]∇[PuQ]P

NPPMQ

)
− e−RR

(
∇MuNKPQP

NPPMQ

)
+ 1
K
e−R(R−2)R

4
∇A
(
D−3
K

(
D−3
K3 (∇∇2K −∇2∇2u) + 8(u ·K − u · ∇u) + u ·K + ∇2u

K

)
B
PBA
)

− e−R(R−2)R
4

∇2∇2K
K3 + 1

4
e−2R

(
eR (R2 + 2R− 4)− 2(R− 2)R

)
(u.∇uM)(u.∇uN)PMN

+1
2
e−2R

(
2eR(R− 1)− (R− 2)R

)
(uAKAM)(uBKBN)PMN + e−2R(R− 2)R(u.∇uM)(uCKCN)PMN

+1
4
e−R(R− 2)R

(
∇2uM
K

)(
∇2uN
K

)
CPMN − e−R(R−2)R

2

(
∇2uM
K

)
(u.∇uN)PMN

+1
4
e−RR (2R2 − 3R− 6) (u.∇K)2

K2 − e−R(R3−14R2+20R+4)
4

u.K.u K
(D−3)

+
e−R(3R3−38R2+62R−4)

4
K

(D−3)
u.∇K
K − 1

4
e−RR (R2 − 6)u.K.uu.∇KK + e−R(R− 1) K2

(D−3)2

−1
4
e−R

(
∇(AuB)∇(CuD)PBCPAD

)
SS3(R) = VS1(R)− (1− e−R)SS2(R)
SS4(R) = (1− e−R)SS1(R)− 2VS2(R)

Vector sector

SV1M (R) = 1
(1−e−R)

(
VVL (R)− SV2L (R)

)
SV2A (R) = K2

2(D−3)2

[
− e−2R

(
eR − 1

)
(R2 − 2) 3

2
D−3
K

(
1 + 2u·∇K (D−3)

K2 − u·K·u (D−3)
K

)
(u · ∇u− u ·K)B

−e−2R
(
eR − 1

)
(R− 1) (D−3)

K

(
(D−3)
K3 (∇∇2K −∇2∇2u) + 8(u ·K − u · ∇u) + u ·K + ∇2u

K

)
B

+Re−R
(
−2 (D−3)2

K2

(∇MK
K − uDKDM

)
PMN (∇NuB −KNB) + (D−3)

K

(
uCKCB − ∇

2uB
K

))]
PBA

− e−R

2
K

(D−3)

[
− EM +D∇

2∇2uM
K3 −D∇M (∇2K)

K3 + 3D (u·K·u)(u·∇uM )
K − 3D (u·K·u)(uAKAM )

K

−6D (u·∇K)(u·∇u)
K2 + 6D (u·∇K)(uAKAM )

K2 + 3u · ∇u− 3uAKAM

]
PML

Tensor sector

STLP (R) =

[
e−R K

(D−3)

(
(KMN −∇(MuN))− PMN

D
(KAB −∇(AuB))PAB

)
−e−R

(
(KMC −∇CuM)PCD(KDN −∇DuN)− PMN

D
(KAC −∇CuA)PCD(KDB −∇DuB)PAB

)
−1

2
e−2R

(
R2 − 4R + 2eR(R− 1) + 2

)(
(uCK

C
M − u.∇uM)(uCK

C
N − u.∇uN)

−PMN

D
(uCK

C
A − u.∇uA)(uCK

C
B − u.∇uB)PAB

)]
PML PNP
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Table 7: Sources to constraint equations at 2nd order
Vector constraint source

VVL (R) = 1
(D−3)

∇P

[
e−RRD

K

(
(KMC −∇CuM)PCD(KDN −∇DuN)

− PMN

(D−3)
(KAC −∇CuA)PCD(KDB −∇DuB)PAB

)
PML PNP

−Re−R
(

(KMN −∇(MuN))− PMN

(D−3)
(KAB −∇(AuB))PAB

)
PML PNP

+(e−2R
(
eR − 1

)
(R− 2)R) (D−3)

2K

(
(uCK

C
M − u.∇uM)(uCK

C
N − u.∇uN)

− PMN

(D−3)
(uCK

C
A − u.∇uA)(uCK

C
B − u.∇uB)PAB

)
PML PNP

]
− e−R

2
K

(D−3)

[
− EM +D∇

2∇2uM
K3 −D∇M (∇2K)

K3 + 3D (u·K·u)(u·∇uM )
K − 3D (u·K·u)(uAKAM )

K

−6D (u·∇K)(u·∇u)
K2 + 6D (u·∇K)(uAKAM )

K2 + 3u · ∇u− 3uAKAM

]
PML

Scalar constraint 1 source
VS1(R)

=
(e−2RR(eR(R2−6)+3(R+2)))K

6(D−3)
∇M

(
3
2

(D−3)
K

(
1 + 2u·∇K (D−3)

K2 − u·K·u (D−3)
K

)
(u · ∇u− u ·K)B PBM

)
+

(e−2R(eR(R−2)+2)R)
4K ∇M

(
(D−3)
K

(
(D−3)
K3 (∇∇2K −∇2∇2u) + 8(u ·K − u · ∇u) + u ·K + ∇2u

K

)
B
PBM
)

+
(−e−RR2)

4K ∇M
((
−2 (D−3)2

K2

(∇MK
K − uDKDM

)
PMN (∇NuB −KNB) + (D−3)

K

(
uCKCB − ∇

2uB
K

))
PBM
)

−1
4
e−R

(
∇(AuB)∇(CuD)PBCPAD

)
+ Re−R

2
∇MEM

Scalar constraint 2 source

VS2(R) = −1
2
e−R(R− 1)

(
KMNKPQP

NPPMQ − K2

D−3

)
+ 1

2
e−R(3 +R)

(
∇MuN∇PuQP

NPPMQ

)
+1

2

(
−e−R

)(
∇[MuN ]∇[PuQ]P

NPPMQ

)
− e−R(1 +R)

(
∇MuNKPQP

NPPMQ

)
+ 1
K

(e−R(R+2)R)
4

∇M
[

(D−3)
K

(
(D−3)
K3 (∇∇2K −∇2∇2u) + 8(u ·K − u · ∇u) + u ·K + ∇2u

K

)
B
PBM
]

−(e−RR2)
4

∇2∇2K
K3 + 1

4

(
e−2RR

(
2 +R(eR − 1)

))
(u.∇uM)(u.∇uN)PMN

−1
4

(
e−2RR(R− 2)

)
(uAKAM)(uDKDN)PMN

+1
4
e−RR2∇2uM

K
∇2uN
K PMN − (e−RR2)

2
∇2uM
K u.∇uNPMN

+1
2

(
e−2RR(−2 + 4eR +R)

)
(u.∇uM)(uCKCN)PMN

+
(e−RR(2R2−R−12))

4
(u.∇K)2

K2 − (e−R(R3−14R2−8R+2))
4

u.K.u K
(D−3)

+
(e−RR(3R2−32R−2))

4
u.∇K
(D−3)

− (e−RR(R2−2R−18))
4

u.∇K
K u.K.u+ e−RR K2

(D−3)2

−1
4
e−R

(
∇(AuB)∇(CuD)PBCPAD

)
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Part B

4 Chapter 3: Scattering in N = 1 Susy matter Chern

Simons Theory

(This chapter is based on the published paper written in collaboration with K. Inbasekar, S.

Jain, S. Minwalla, V. Umesh, S. Yokoyama , “ Unitarity, crossing symmetry and duality

in the scattering of N = 1 susy matter Chern-Simons theories”, arXiv:1505.06571, JHEP

1510 (2015) 176 )

4.1 Introduction

In this chapter we redo the S matrix computations of [61] in a different class of

Chern-Simons theory coupled to fundamental matter and check that the conjectures of

[61] - unmodified in all details - indeed continue to yield sensible results (i.e. results that

pass all necessary consistency checks) in the new system. We now describe the system we

study and the nature of our results in much more detail.

The theories we study are the most general power counting renormalizable N = 1

U(N) gauge theories coupled to a single fundamental multiplet (see (119) below). In order

to study scattering in these theories we imitate the strategy of [61]. The authors of [61]

worked in lightcone gauge; in this chapter we work in a supersymmetric generalization of

lightcone gauge (4.3.1). In this gauge (which preserves manifest offshell supersymmetry)

the gauge self interaction term vanishes. This fact - together with planarity at large N

- allows us to find a manifestly supersymmetric Schwinger-Dyson equation for the exact

propagator of the matter supermultiplet. This equation turns out to be easy to solve;

the solution gives simple exact expression for the all orders propagator for the matter
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supermultiplet (see subsection §4.3.3).

With the exact propagator in hand, we then proceed to write down an exact

Schwinger-Dyson equation for the offshell four point function of the matter supermultiplet.

The resultant integral equation is quite complicated; as in [61] we have been able to solve

this equation only in a restricted kinematic range (q± = 0 in the notation of fig 4). In this

kinematic regime, however, we have been able to find a completely explicit (if somewhat

complicated) solution of the resulting equation(see subsection §4.3.5-§4.3.6).

In order to evaluate the S matrices we then proceed to take the onshell limit

of our explicit offshell results. As explained in detail in [61], the 3 vector qµ has the

interpretation of momentum transfer for both channels of particle- particle scattering and

also for particle antiparticle scattering in the adjoint channel. In these channels the fact

that we know the offshell four point amplitudes only when q± = 0 forces us to study

scattering in a particular Lorentz frame; any frame in which momentum transfer happens

along the spatial q3 direction. In any such frame we obtain explicit results for all 2 × 2

scattering matrices in these three channels. The results are then covariantized to formulae

that apply to any frame. Following this method we have obtained explicit results for the S

matrices in these three channels. Our results are presented in detail in subsections §4.3.7 -

§4.3.11. As we explain in detail below, our explicit results have exactly the same interplay

with the proposed strong weak coupling self duality of the set of N = 1 Chern-Simons

fundamental matter theories (see subsection 4.2.2) as that described in [61]; duality maps

particle - particle S matrices in the symmetric and antisymmetric channels to each other,

while it maps the particle - antiparticle S matrix in the adjoint channel to itself.

As in [61] our explicit offshell results do not permit a direct computation of the

S matrix for particle - antiparticle scattering in the singlet channel. This is because the

three vector qµ is the center of mass momentum for this scattering process and so must be

timelike, which is impossible if q± = 0. Our explicit results for the S matrices in the other

channels, together with the conjectured modified crossing symmetry rules of [61], however,
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yield a conjectured formula for the S matrix in this channel.

In section 4.4 we subject our conjecture for the particle - antiparticle S matrix to

a very stringent consistency check; we verify that it obeys the nonlinear unitarity equation

(178)33. From the purely algebraic point of view the fact that our complicated S matrices

are unitary appears to be a minor miracle- one that certainly fails very badly for the S

matrix obtained using the usual rules of crossing symmetry. We view this result as very

strong evidence for the correctness of our formula, and indirectly for the modified crossing

symmetry rules of [61].

Our proposed formula for particle - antiparticle scattering in the singlet channel

has an interesting analytic structure. As a function of s (at fixed t) our S matrix has

the expected two particle cut starting at s = 4m2. In a certain range of interaction

parameters it also has poles at smaller (though always positive) values of s. These poles

represent bound states; when they exist these bound states must be absolutely stable even

at large but finite N , simply because they are the lightest singlet sector states (baring the

vacuum) in the theory; recall that our theory has no gluons. Quite remarkably it turns

out that the mass of this bound state supermultiplet vanishes at w = wc(λ) where w is

the superpotential interaction parameter of our theory (see (119)) and wc(λ) is the simple

function listed in (331). In other words a one parameter tuning of the superpotential is

sufficient to produce massless bound states in a theory of massive ‘quarks’; we find this

result quite remarkable. Scaling w to wc permits a parametric separation between the

mass of this bound state and all other states in the theory. In this limit there must exist

a decoupled QFT description of the dynamics of these light states even at large but finite

N ; it seems likely to us that this dynamics is governed by a N = 1 Wilson-Fisher fixed

point. We leave the detailed investigation of this suggestion to future work.

The S matrices computed and conjectured in this chapter turn out to simplify

dramatically at w = 1, at which point the system (119) turns out to enjoy an enhanced

33At large N this equation may be shown to close on 2× 2 scattering.
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N = 2 supersymmetry. In the three non-anyonic channels our S matrix reduces simply to

its tree level counterpart at w = 1. It follows, in other words, that the S matrix is not

renormalized as a function of λ in these channels. This result illustrates the conflict between

naive crossing symmetry and unitarity in a simple setting. Naive crossing symmetry would

yield a singlet channel S matrix that is also tree level exact. However tree level S matrices

by themselves can never obey the unitarity equations (they do not have the singularities

needed to satisfy the Cutkosky’s rules obtained by gluing them together). The resolution

to this paradox appears simply to be that the naive crossing symmetry rules are wrong in

the current context. Applying the conjectured crossing symmetry rules of [61] we find a

singlet channel S matrix that continues to be very simple, but is not tree level exact, and

in fact satisfies the unitarity equation.

In this chapter we have limited our attention to the study of N = 1 theories with

a single fundamental matter multiplet. Were we to extend our analysis to theories with

two multiplets we would encounter, in particular, the N = 3 theory. Extending to the

study of a theory with four multiplets (and allowing for the the gauging of a U(1) global

symmetry) would allow us to study the N = 6 U(N) × U(1) ABJ theory. We believe

it would not be difficult to adapt the methods of this chapter to find explicit all orders

results for the S matrices of all these theories at leading order in large N . We expect to

find scattering matrices that are unitary precisely because they transform under crossing

symmetry in the unusual manner conjectured in [61]. It would be particularly interesting

to find explicit results for the N = 6 theory in order to facilitate a detailed comparison

with the perturbative computations of S matrices in ABJM theory [39–45], which appear

to report results that are crossing symmetric but (at least naively) conflict with unitarity.
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4.2 Review of Background Material

4.2.1 Renormalizable N = 1 theories with a single fundamental multiplet

In this chapter we study 2× 2 scattering in the most general renormalizable N = 1 super-

symmetric U(N) Chern-Simons theory coupled to a single fundamental matter multiplet.

Our theory is defined in superspace by the Euclidean action [78, 79]

SN=1 = −
∫
d3xd2θ

[
κ

4π
Tr

(
− 1

4
DαΓβDβΓα +

i

6
DαΓβ{Γα,Γβ}+

1

24
{Γα,Γβ}{Γα,Γβ}

)
− 1

2
(DαΦ̄ + iΦ̄Γα)(DαΦ− iΓαΦ) +m0Φ̄Φ +

πw

κ
(ΦΦ)2

]
.

(119)

The integration in (119) is over the three Euclidean spatial coordinates and the

two anticommuting spinorial coordinates θα (the SO(3) spinorial indices α range over

two allowed values ±). The fields Φ and Γα in (119) are, respectively, complex and real

superfields 34. They may be expanded in components as

Φ = φ+ θψ − θ2F ,

Φ̄ = φ̄+ θψ̄ − θ2F̄ ,

Γα = χα − θαB + iθβA α
β − θ2(2λα − i∂αβχβ) , (120)

where Γα is an N ×N matrix in color space, while Φ is an N dimensional column.

The superderivative Dα in (119) is defined by

Dα =
∂

∂θα
+ iθβ∂αβ , D

α = CαβDβ , (121)

where Cαβ is the charge conjugation matrix. See Appendix §4.7.1 for notations and con-

34 See Appendix §4.7.1 for our conventions for superspace
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ventions.

The theories (119) are characterized by one dimensionless coupling constant w,

a dimensionful mass scale m0, and two integers N (the rank of the gauge group U(N))

and κ, the level of the Chern-Simons theory. 35 In the large N limit of interest to us in

this chapter, the ‘t Hooft coupling λ = N
κ

is a second effectively continuous dimensionless

parameter.

The action (119) enjoys invariance under the super gauge transformations

δΦ = iKΦ ,

δΦ̄ = −iΦ̄K ,

δΓα = DαK + [Γα, K] , (122)

where K is a real superfield (it is an N ×N matrix in color space).

(119) is manifestly invariant under the two supersymmetry transformations gen-

erated by the supercharges Qα

Qα = i(
∂

∂θα
− iθβ∂βα) (123)

that act on Φ and Γα as

δαΦ = QαΦ ,

δαΓβ = QαΓβ . (124)

35The precise definition of κ is defined as follows. Let k denote the level of the WZW theory related to
Chern-Simons theory after all fermions have been integrated out. κ is the related to k by κ = k+ sgn(k)N
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The differential operators Qα and Dα obey the algebra

{Qα, Qβ} = 2i∂αβ ,

{Dα, Dβ} = 2i∂αβ ,

{Qα, Dβ} = 0 . (125)

At the special value w = 1, the action (119) actually has enhanced supersymme-

try; it is N = 2 (four supercharges) supersymmetric. 36

The physical content of the theory (119) is most transparent when the Lagrangian

is expanded out in component fields in the so called Wess-Zumino gauge - defined by the

requirement

B = 0 , χ = 0 . (126)

Imposing this gauge, integrating over θ and eliminating auxiliary fields we obtain

36This may be confirmed, for instance, by checking that (129) at w = 1 is identical to the N = 2
superspace Chern-Simons action coupled to a single chiral multiplet in the fundamental representation
with no superpotential (see Eq 2.3 of [80]) expanded in components in Wess-Zumino gauge.
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the component field action 37

SN=1 =

∫
d3x

(
iκ

4π
εµνρTr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
+Dµφ̄Dµφ+m2

0φ̄φ− ψ̄(i /D +m0)ψ

+
4πwm0

κ
(φ̄φ)2 +

4π2w2

κ2
(φ̄φ)3 − 2π

κ
(1 + w)(φ̄φ)(ψ̄ψ)− 2πw

κ
(ψ̄φ)(φ̄ψ)

+
π

κ
(1− w)

(
(φ̄ψ)(φ̄ψ) + (ψ̄φ)(ψ̄φ)

))
(129)

displaying that (119) is the action for one fundamental boson and one funda-

mental fermion coupled to a Chern-Simons gauge field. Supersymmetry sets the masses

of the bosonic and fermionic fields equal, and imposes several relations between a priori

independent coupling constants.

4.2.2 Conjectured Duality

It has been conjectured [58] that the theory (119) enjoys a strong weak coupling self duality.

The theory (119) with ‘t Hooft coupling λ and self coupling parameter w is conjectured to

be dual to the theory with ‘t Hooft coupling λ′ and self coupling w′ where

λ′ = λ− Sgn(λ) , w′ =
3− w
1 + w

m′0 =
−2m0

1 + w
. (130)

37Our trace conventions are

Tr(T aT b) =
1

2
δab ,

∑
a

(T a) ji (T a) lk =
1

2
δ li δ

j
k . (127)

The gauge covariant derivatives in (129) are

Dµφ̄ = ∂µφ̄+ iφ̄Aµ , Dµφ = ∂µφ− iAµφ ,
/Dψ̄ = γµ(∂µψ̄ + iψ̄Aµ) , /Dψ = γµ(∂µψ − iAµψ). (128)
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As we will explain below, the pole mass for the matter multiplet in this theory is given by

m =
2m0

2 + (−1 + w)λ Sgn(m)
. (131)

It is easily verified that under duality

m′ = −m . (132)

The concrete prior evidence for this duality is the perfect matching of S2 partition

functions of the two theories. This match works provided [58]

λm(m0, w) ≥ 0 , (133)

Through this chapter we will assume that (133) is obeyed. Note that the condition (133)

is preserved by duality (i.e. a theory and its conjectured dual either both obey or both

violate (133)).

Note that w = 1 is a fixed point for the duality map (130); this was necessary

on physical grounds (recall that our theory has enhanced N = 2 supersymmetry only

at w = 1). In the special case w = 1 and m0 = 0, the duality conjectured in this

subsection reduces to the previously studied duality [37] (a variation on Giveon- Kutasov

duality [38]). Over the last few years this supersymmetric duality has been subjected to

(and has successfully passed) several checks performed with the aid of supersymmetric

localization, including the matching of three sphere partition function, superconformal

indices and Wilson loops on both sides of the duality [31–36, 55] .
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4.2.3 Properties of free solutions of the Dirac equation

In subsequent subsections we will investigate the constraints imposed supersymmetry on

the S matrices of the the theory (119). Our analysis will make heavy use of the properties

of the free solutions to Dirac’s equations, which we review in this subsection.

Let uα and vα are positive and negative energy solutions to Dirac’s equations with

mass m. Let pµ = (
√
m2 + p2,p). Then uα and vα obey

(/p−m)u(p) = 0 , (134)

(/p+m)v(p) = 0 .

We choose to normalize these spinors so that

ū(p) · u(p) = −2m v̄(p) · v(p) = 2m

u(p)u∗(p) = −(/p+m)C v(p)v∗(p) = −(/p−m)C .
(135)

C in (135) is the charge conjugation matrix defined to obey the equation

CγµC−1 = −(γµ)T . (136)

Throughout this chapter we use γ matrices that obey the algebra38

{γµ, γν} = −2ηµν . (137)

We also choose all three γµ matrices to be purely imaginary 39 and to obey

(γµ)† = −ηµµγµ no sum (138)

38We use the mostly plus convention for ηµν , the corresponding Euclidean algebra obeys {γµ, γν} =
−2δµν . See Appendix §4.7.1 for explicit representations of the γ matrices and charge conjugation matrix
C.

39This is possible in 3 dimensions; recall the unconventional choice of sign in (137).
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with these conventions it is easily verified that C = γ0 obeys (136) and so we choose

C = γ0 .

Using the conventions spelt out above, it is easily verified that u(p) and v∗(p)

obey the same equation (i.e. complex conjugation flips the two equations in (134)), and

have the same normalization. It follows that it is possible to pick the (as yet arbitrary)

phases of u(p) and v(p) to ensure that

uα(p) = −v∗α(p), vα(p) = −u∗α(p) (139)

40. We will adopt the choice (139) throughout our chapter.

Notice that the replacement m→ −m interchanges the equations for u and v. It

follows that u(m) ∝ v(−m). Atleast with the choice of phase that we adopt in this chapter

(see below) we find

u(m, p) = −v(−m, p), v(m, p) = −u(−m, p) . (140)

To proceed further it is useful to make a particular choice of γ matrices and to

adopt a particular choice of phase for u. We choose the γµ matrices listed in §4.7.1 and

40Note that ūα = u∗α = Cαβu∗β and not (uα)∗. Thus, (u∗α)∗ = −uα, where we have used the fact

that C = γ0 is imaginary. Similarly (uα)∗ = −u∗α. Likewise for v. Care should be taken while com-
plex conjugating dot products of spinors, for instance (v∗(pi)v

∗(pj))
∗ = −(v(pi)v(pj)), (u(pi)u(pj))

∗ =
−(u∗(pi)u

∗(pj)), and so on.
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take u(p) and v(p) to be given by

u(p) =

−√p0 − p1

p3+im√
p0−p1

 , ū(p) =

(
ip3+m√
p0−p1

i
√
p0 − p1

)
,

v(p) =

√p0 − p1

−p3+im√
p0−p1

 , v̄(p) =

(
−ip3+m√
p0−p1

−i
√
p0 − p1

)
, (141)

where

p0 = +
√
m2 + p2 .

Notice that the arguments of the square roots in (141) are always positive; the square roots

in (141) are defined to be positive (i.e.
√
x2 = |x|). It is easily verified that the solutions

(141) respect (140) as promised.

In the rest of this section we discuss an analytic rotation of the spinors to complex

(and in particular negative) values of the pµ (and in particular p0). This formal construction

will prove useful in the study of the transformation properties of the S matrix under crossing

symmetry.

Let us define
√
aeiα = |√a|eiα2 .

Clearly our function is single valued only on a double cover of the complex plane. In other

words our square root function is well defined if α is specified modulo 4π, but is not well
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defined if α is specified modulo 2π. We define

u(p, α) = u(eiαpµ) =

−eiα2√p0 − p1

p3ei
α
2 +ime−i

α
2√

p0−p1

 ,

v(p, α) = v(eiαpµ) = −

−eiα2√p0 − p1

p3ei
α
2 −ime−i

α
2√

p0−p1

 ,

u∗(p, α) =

−e−iα2√p0 − p1

p3e−i
α
2 −imei

α
2√

p0−p1

 ,

v∗(p, α) = −

−e−iα2√p0 − p1

p3e−i
α
2 +ime+i

α
2√

p0−p1

 ,

(142)

with α ∈ [0, 4π). It follows immediately from these definitions that

u(p, α + π) = −iv(p, α) , v(p, α + π) = −iu(p, α) ,

u(p, α− π) = iv(p, α) , v(p, α− π) = iu(p, α) ,

u∗(p, α) = −v(p,−α) , v∗(p, α) = −u(p,−α) . (143)

Notice, in particular, that the choice α = π and α = −π both amount to the

replacement of pµ with - pµ. Note also that the complex conjugation of u(p, α) is equal to

the function u∗(p) with p rotated by −α.

4.2.4 Constraints of supersymmetry on scattering

In this chapter we will study 2 × 2 scattering of particles in an N = 1 supersymmetric

field theory. In this subsection we set up our conventions and notations and explore the

constraints of supersymmetry on scattering amplitudes.
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Let us consider the scattering process

1 + 2→ 3 + 4 (144)

where 1, 2 represent initial state particles and 3, 4 are final state particles. Let the ith

particle be associated with the superfield Φi. As a scattering amplitude represents the

transition between free incoming and free outgoing onshell particles, the initial and final

states of Φi are effectively subject to the free equation of motion

(
D2 +mi

)
Φi = 0 (145)

where D2 = 1
2
DαDα. The general solution to this free equation of motion is

Φ(x, θ) =

∫
d2p√

2p0(2π)2

[(
a(p)(1 +mθ2) + θαuα(p)α(p)

)
eip.x

+

(
ac†(p)(1 +mθ2) + θαvα(p)αc†(p)

)
e−ip.x

]
(146)

where a/a† are annihilation/creation operator for the bosonic particles and α/α† are an-

nihilation/creation operators for the fermionic particles respectively 41. The bosonic and

fermionic oscillators obey the commutation relations

[a(p), a†(p′)] = (2π)2δ2(p− p′), [a(p), a†(p′)] = (2π)2δ2 (p− p′) . (147)

(ac and αc obey analogous commutation relations).

41Similarly ac/ac† and αc/αc† are the annihilation/creation operators for the bosonic and fermionic
anti-particles respectively.
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The action of the supersymmetry operator on a free onshell superfield is simple

[Qα,Φi] =

QαΦi = i

∫
d2p

(2π)2
√

2p0

[(
uα(p)(1 +mθ2)α(p) + θβ(−uβ(p)u∗α(p))a(p)

)
eip.x

+

(
vα(p)(1 +mθ2)αc†(p) + θβ(vβ(p)v∗α(p))ac†(p)

)
e−ip.x

]
.

In other words, the action of the supersymmetry generator on onshell superfields is given

by

−iQα = uα(pi) (a∂α + ac∂αc) + u∗α(pi) (−α∂a + αc∂ac)

+ vα(pi)
(
a†∂†α + (ac)†∂(αc)†

)
+ v∗α(pi)

(
α†∂†a + (αc)†∂(ac)†

)
.

(148)

The explicit action of Qα on onshell superfields may be repackaged as follows.

Let us define a superfield of annihilation operators, and another superfield for creation

operators:

Ai(p) = ai(p) + αi(p)θi ,

A†i (p) = a†i (p) + θiα
†
i (p) .

(149)

Here θi is a new formal superspace parameter (θi has nothing to do with the θα that appear

in the superfield action (119) ). It follows from (148) and (149) that

[Qα, Ai(pi, θi)] = Q1
αAi(pi, θi)

[Qα, A
†
i (pi, θi)] = Q2

αA
†
i (pi, θi)

(150)
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where

Q1
β = i

(
−uβ(p)

−→
∂

∂θ
+ u∗β(p)θ

)

Q2
β = i

(
vβ(p)

−→
∂

∂θ
+ v∗β(p)θ

)
.

(151)

We are interested in the S matrix

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4)
√

(2p0
1)(2p0

2)(2p0
3)(2p0

4) =

〈0|A4(p4, θ4)A3(p3, θ3)UA†2(p2, θ2)A†1(p1, θ1)|0〉 (152)

where U is an evolution operator (the RHS denotes the transition amplitude from the in

state with particles 1 and 2 to the out state with particles 3 and 4).

The condition that the S matrix defined in (152) is invariant under supersymme-

try follows from the action of supersymmetries on oscillators given in (148). The resultant

equation for the S matrix may be written in terms of the operators defined in (151) as

(−→
Q 1
α(p1, θ1) +

−→
Q 1
α(p2, θ2)

+
−→
Q 2
α(p3, θ3) +

−→
Q 2
α(p4, θ4)

)
S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = 0 . (153)
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We have explicitly solved (153); the solution42 is given by

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = SB + SF θ1θ2θ3θ4 +

(
1

2
C12SB −

1

2
C∗34SF

)
θ1θ2

+

(
1

2
C13SB −

1

2
C∗24SF

)
θ1θ3 +

(
1

2
C14SB +

1

2
C∗23SF

)
θ1θ4 +

(
1

2
C23SB +

1

2
C∗14SF

)
θ2θ3

+

(
1

2
C24SB −

1

2
C∗13SF

)
θ2θ4 +

(
1

2
C34SB −

1

2
C∗12SF

)
θ3θ4 (154)

where

1

2
C12 = − 1

4m
v∗(p1)v∗(p2)

1

2
C23 = − 1

4m
v∗(p2)u∗(p3)

1

2
C13 = − 1

4m
v∗(p1)u∗(p3)

1

2
C24 = − 1

4m
v∗(p2)u∗(p4)

1

2
C14 = − 1

4m
v∗(p1)u∗(p4)

1

2
C34 = − 1

4m
u∗(p3)u∗(p4) (155)

and

1

2
C∗12 =

1

4m
v(p1)v(p2)

1

2
C∗23 =

1

4m
v(p2)u(p3)

1

2
C∗13 =

1

4m
v(p1)u(p3)

1

2
C∗24 =

1

4m
v(p2)u(p4)

1

2
C∗14 =

1

4m
v(p1)u(p4)

1

2
C∗34 =

1

4m
u(p3)u(p4) (156)

Note that the general solution to (153) is given in terms of two arbitrary functions SB
and SF of the four momenta; (153) determines the remaining six functions in the general

expansion of the S matrix in terms of these two functions. See Appendix 4.7.2 for a check

of these relations from another viewpoint (involving offshell supersymmetry of the effective

action, see section §4.3.4)

42The superspace S matrix (154) encodes different processes allowed by supersymmetry in the theory. In
particular, the presence of grassmann parameters indicates fermionic in (θ1, θ2) and fermionic out (θ3, θ4)
states. The absence of grassmann parameter indicates a bosonic in/out state. Thus, the no θ term SB
encodes the 2 → 2 S matrix for a purely bosonic process, while the four θ term SF encodes the 2 → 2 S
matrix of a purely fermionic process. Note in particular that S matrices corresponding to all other 2→ 2
processes that involve both bosons and fermions are completely determined in terms of the S matrices SB
and SF together with (155) and (156).
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Although we are principally interested in N = 1 supersymmetric theories in this

chapter, we will sometimes study the special limit w = 1 in which (119) enjoys an enhanced

N = 2 supersymmetry. In this case the additional supersymmetry further constrains the S

matrix. In Appendix 4.7.3 we demonstrate that the additional supersymmetry determines

SB in terms of SF . In the N = 2 case, in other words, all components of the S matrix are

determined by supersymmetry in terms of the four boson scattering matrix.

4.2.5 Supersymmetry and dual supersymmetry

The strong weak coupling duality we study in this chapter is conjectured to be a Bose-Fermi

duality. In other words

aD = α, αD = a (157)

together with a similar exchange of bosons and fermions for creation operators (the super-

script D stands for ‘dual’). Suppose we define

ADi (p) = aDi (p) + αDi (p)θi ,

(AD)†i (p) = (aD)†i (p) + θi(α
D
i )†(p) .

(158)

The dual supersymmetries must act in the same way on AD and (AD)† as ordinary super-

symmetries act on A and AD. In other words the action of dual supersymmetries on AD

and (AD)† is given by

[QD
α , A

D
i (pi, θi)] = (QD)1

αA
D
i (pi, θi) ,

[QD
α , (A

D)†i (pi, θi)] = (QD)2
α(AD)†i (pi, θi) ,

(159)
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where

(QD)1
β = i

(
−uβ(p,−m)

−→
∂

∂θ
− vβ(p,−m)θ

)
,

(QD)2
β = i

(
vβ(p,−m)

−→
∂

∂θ
− uβ(p,−m)θ

)
.

(160)

The spinors in (160) are all evaluated at −m as duality flips the sign of the pole mass.

The action of the dual supersymmetries on A and A† is obtained from (160)

upon performing the interchange θ ↔ ∂θ (this accounts for the interchange of bosons and

fermions). Using also (140) we find that

[QD
α , Ai(pi, θi)] = −Q1

αA
D
i (pi, θi) ,

[QD
α , A

†
i (pi, θi)] = Q2

α(AD)†i (pi, θi) .
(161)

It follows, in particular, that an S matrix invariant under the usual supersymmetries is au-

tomatically invariant under dual supersymmetries. In other words onshell supersymmetry

‘commutes’ with duality.

4.2.6 Naive crossing symmetry and supersymmetry

Let us define the analytically rotated supersymmetry operators 43

Q1
β(p, α, θ) = i

(
−uβ(p, α)

−→
∂

∂θ
+ u∗β(p,−α)θ

)
,

Q2
β(p, α, θ) = i

(
vβ(p, α)

−→
∂

∂θ
+ v∗β(p,−α)θ

)
.

(162)

43Note that the notation u∗β(p,−α) means that the analytically rotated function of u∗ in (142) is eval-
uated at the phase −α.
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It is easily verified from these definitions that

Q2
α(p, 0,−iθ) = Q1

α(p, π, θ) . (163)

Using (163) the equation (153) may equivalently be written as

(−→
Q 1
α(p1, 0, θ1) +

−→
Q 1
α(p2, 0, θ2)

+
−→
Q 1
α(p3, π, θ3) +

−→
Q 1
α(p4, π, θ4)

)
S(p1, θ1,p2, θ2,p3,−iθ3,p4,−iθ4) = 0

(164)

with p1 + p2 = p3 + p4.

The constraints of supersymmetry on the S matrix are consistent with (naive)

crossing symmetry. In order to make this manifest, we define a ‘master’ function SM

SM(p1, φ1, θ1,p2, φ2, θ2,p3, φ3, θ3,p4, φ4, θ4) .

The master function SM is defined so that

S(p1, θ1,p2, θ2,p3,−iθ3,p4,−iθ4) = SM(p1, 0, θ1,p2, 0, θ2,p3, π, θ3,p4, π, θ4) (165)

In other words SM is S with the replacement −iθ3 → θ3, −iθ4 → θ4, analytically rotated

to general values of the phase φ1, φ2, φ3 and φ4. It follows from (164) that the master

equation SM obeys the completely symmetrical supersymmetry equation

(−→
Q 1
α(p1, φ1, θ1) +

−→
Q 1
α(p2, φ2, θ2) +

−→
Q 1
α(p3, φ3, θ3)

+
−→
Q 1
α(p4, φ4, θ4)

)
SM(p1, φ1, θ1,p2, φ2, θ2,p3, φ3, θ3,p4, φ4, θ4) = 0 (166)
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The function SM encodes the scattering matrices in all channels. In order to

extract the S matrix for pi + pj → pk + pm with pi + pj = pk + pm (with (i, j, k, m) being

any permutation of (1, 2, 3, 4)) we simply evaluate the function SM with φi and φj set

to zero, φk and φm set to π, θi and θj left unchanged and θk and θm replaced by iθk and

iθm. The fact that the master equation obeys an equation that is symmetrical in the labels

1, 2, 3, 4 is the statement of (naive) crossing symmetry.

The solution to the differential equation (166) is

SM(p1, φ1, θ1,p2, φ2, θ2,p3, φ3, θ3,p4, φ4, θ4) = S̃B + S̃F θ1θ2θ3θ4

+
S̃B
4

4∑
i,j=1

Dij(pi, φi,pj, φj)θiθj −
S̃F
8

4∑
i,j,k,l=1

εijklD̃ij(pi, φi,pj, φj)θkθl (167)

where

1

2
Dij(pi, φi,pj, φj) = − 1

4m
u∗(pi,−φi)u∗(pj,−φj) ,

1

2
D̃ij(pi, φi,pj, φj) =

1

4m
u(pi, φi)u(pj, φj) . (168)

In the above equations ‘∗’ means complex conjugation and the spinor indices are con-

tracted from NW-SE as usual. To summarize, SM obeys the supersymmetric ward iden-

tity and is completely solved in terms of two analytic functions S̃B(p1,p2,p3,p4) and

S̃F (p1,p2,p3,p4) of the momenta.

As we have explained under (166), the S matrix corresponding to scattering

processes in any given channel can be simply extracted out of SM . For example, let S

denote the the S matrix in the channel with p1, p2 as in-states and p3, p4 as out-states.

Then

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = SM(p1, π, iθ1,p2, π, iθ2,p3, 0, θ3,p4, 0, θ4) . (169)
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It is easily verified that (168) together with (143) imply (155).

Notice that (169) maps S̃B to SB while S̃F is mapped to −SF 44. The minus

sign in the continuation of SF has an interesting explanation. The four fermion amplitude

SF has a phase ambiguity. This ambiguity follows from the fact that SF is the overlap of

initial and final fermions states. These initial and final states are written in terms of the

spinors uα and vα, which are defined as appropriately normalized solutions of the Dirac

equation are inherently ambiguous upto a phase. It is easily verified that the quantity

(u∗(p1,−φ1)u(p3, φ3)) (u∗(p2,−φ2)u(p4, φ4))

has the same phase ambiguity as SF . If we define an auxiliary quantity S̃f by the equation

S̃F = − 1

4m2
(u∗(p1,−φ1)u(p3, φ3)) (u∗(p2,−φ2)u(p4, φ4)) S̃f (170)

and Sf by

SF = − 1

4m2
(u∗(p1)u(p3)) (u∗(p2)u(p4))Sf (171)

then the phases of Sf and S̃f are unambiguous and so potentially physical. As the quantity

(u∗(p1,−φ1)u(p3, φ3)) (u∗(p2,−φ2)u(p4, φ4))

picks up a minus sign under the phase rotation that takes us from SM to S. It follows that

S̃f rotates to Sf with no minus sign.

44Of course S̃B and S̃F are evaluated at φ1 = φ2 = π while SB and SF are evaluated at φ1 = φ2 = 0;
roughly speaking this amounts to the replacement pµ1 → −pµ1 , pµ2 → −pµ2 .
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4.2.7 Properties of the convolution operator

Like any matrices, S matrices can be multiplied. The multiplication rule for two S matrices,

S1 and S2, expressed as functions in onshell superspace is given by

S1 ? S2 ≡
∫
dΓS1(p1, θ1,p2, θ2,k3, φ1,k4, φ2) exp(φ1φ3 + φ2φ4)2k0

1(2π)2δ(2)(k3 − k1)

2k0
2(2π)2δ(2)(k4 − k2)S2(k1, φ3,k2, φ4,p3, θ3,p4, θ4)

(172)

where the measure dΓ is

dΓ =
d2k3

2k0
3(2π)2

d2k4

2k0
4(2π)2

d2k1

2k0
1(2π)2

d2k2

2k0
2(2π)2

dφ1dφ3dφ2dφ4 . (173)

It is easily verified that the onshell superfield I

I(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = exp(θ1θ3 + θ2θ4)I(p1,p2,p3,p4)

I(p1,p2,p3,p4) = 2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4) (174)

is the identity operator under this multiplication rule, i.e.

S ? I = I ? S = S (175)

for any S. It may be verified that I defined in (174) obeys (153) and so is supersymmetric.

In Appendix §4.7.4 we demonstrate that if S1 and S2 are onshell superfields that

obey (153), then S1?S2 also obeys (153). In other words the product of two supersymmetric

S matrices is also supersymmetric.

The onshell superfield corresponding to S† is given in terms of the onshell super-
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field corresponding to S by the equation

S†(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = S∗(p3, θ3,p4, θ4,p1, θ1,p2, θ2) . (176)

The equation satisfied by S† can be obtained by complex conjugating and inter-

changing the momenta in the supersymmetry invariance condition for S (see (415)). It

follows from the anti-hermiticity of Q that

(
Q∗u(p1) +Q∗u(p2) +Qu(p3) +Qu(p4)

)
S∗(p3, θ3,p4, θ4,p1, θ3,p2, θ4) = 0 (177)

which implies [Q,S†] = 0. Thus S† is supersymmetric if and only if S is supersymmetric.

4.2.8 Unitarity of Scattering

The unitarity condition

SS† = I (178)

may be rewritten in the language of onshell superfields as

(S ? S† − I) = 0 . (179)

45

It follows from the general results of the previous subsection that the LHS of

(179) is supersymmetric, i.e it obeys (153). Recall that any onshell superfield that obeys

(153) must take the form (154) where SB and SF are the zero theta and 4 theta terms in

the expansion of the corresponding object. In particular, in order to verify that the LHS

of (179) vanishes, it is sufficient to verify that its zero and 4 theta components vanish.

45As explained in [61], the unitarity equation for 2×2 does not receive contributions from 2×n scattering
in the large N limits studied in the current chapter as well.

114



Inserting the explicit solutions for S and S†, one finds that the no-theta term of

(179) is proportional to (we have used that k3 · k4 = p3 · p4 onshell)

∫
d2k3

2k0
3(2π)2

d2k4

2k0
4(2π)2

[SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

− 1

16m2

(
2(p3 · p4 +m2)SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

+u∗(k3)u∗(k4) v∗(p3)v∗(p4)SB(p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+v(p1)v(p2) u(k3)u(k4)SF (p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

+v(p1)v(p2) v∗(p3)v∗(p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4))]

= 2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4) . (180)

The four theta term in (179) is proportional to

∫
d2k3

2k0
3(2π)2

d2k4

2k0
4(2π)2

[−SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+
1

16m2

(
2(p3 · p4 +m2)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+u(k3)u(k4) v(p3)v(p4)SF (p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

+v∗(p1)v∗(p2) u∗(k3)u∗(k4)SB(p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+v∗(p1)v∗(p2) v(p3)v(p4)SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4))]

= −2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4) . (181)

The equations (180) and (181) are necessary and sufficient to ensure unitarity.

(180) and (181) may be thought of as constraints imposed by unitarity on the four

boson scattering matrix SB and the four fermion scattering matrix SF . These conditions

are written in terms of the onshell spinors u and v (rather than the momenta of the

scattering particles for a reason we now pause to review. Recall that the Dirac equation

and normalization conditions define uα and vα only upto an undetermined phase (which

could be a function of momentum). An expression built out of u’s and v’s can be written

unambiguously in terms of onshell momenta if and only if all undetermined phases cancel
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out. The phases of terms involving SF in (180) and (181) do not cancel. This might at

first appear to be a paradox; surely the unitarity (or lack) of an S matrix cannot depend

on the unphysical choice of an arbitrary phase. The resolution to this ‘paradox’ is simple;

the function SF is itself not phase invariant, but transforms under phase transformations

like (u(p1)u(p2)) (v(p3)v(p4)). It is thus useful to define

SF =
1

4m2
(u(p1)u(p2)) (v(p3)v(p4))Sf . (182)

The utility of this definition is that Sf does not suffer from a phase ambiguity. Rewritten in

terms of SB and Sf , the unitarity equations may be written entirely in terms of participating

momenta (with no spinors) 46. In terms of the quantity

Y (p3,p4) =
2(p3 · p4 +m2)

16m2
(183)

and

dΓ′ =
d2k3

2k0
3(2π)2

d2k4

2k0
4(2π)2

∫
dΓ′
[
SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

−Y (p3,p4)

(
SB(p1,p2,k3,k4) + 4Y (p1,p2)Sf (p1,p2,k3,k4)

)
(
S∗B(p3,p4,k3,k4) + 4Y (p3,p4)S∗f (p3,p4,k3,k4)

)]
= 2p0

3(2π)2δ(2)(p1 − p3)2p0
4(2π)2δ(2)(p2 − p4)

(184)

46See §4.7.5 for a derivation of this result.
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and

∫
dΓ′
[
− 16Y 2(p3,p4)Sf (p1,p2,k3,k4)S∗f (p3,p4,k3,k4)

+Y (p3,p4)

(
SB(p1,p2,k3,k4) + 4Y (p1,p2)Sf (p1,p2,k3,k4)

)
(
S∗B(p3,p4,k3,k4) + 4Y (p3,p4)S∗f (p3,p4,k3,k4)

)]
= −2p0

3(2π)2δ(2)(p1 − p3)2p0
4(2π)2δ(2)(p2 − p4).

(185)

The equations (184) and (185) followed from (178). It is useful to rephrase the

above equations in terms of the “T matrix” that represents the actual interacting part

of the “S matrix”. Using the definition of the Identity operator (174) we can write a

superfield expansion to define the “T matrix” as

S(p1, θ1,p2, θ2,k3, θ3,k4, θ4) =I(p1, θ1,p2, θ2,k3, θ3,k4, θ4)

+ i(2π)3δ3(p1 + p2 − p3 − p4)T (p1, θ1,p2, θ2,k3, θ3,k4, θ4) .

(186)

The identity operator is defined in (174) is a supersymmetry invariant. It follows that the

“ T matrix” is also invariant under supersymmetry. In other words the “T matrix” obeys

(153) and has a superfield expansion 47

T (p1, θ1,p2, θ2,p3, θ3,p4, θ4) = TB + TF θ1θ2θ3θ4 +

(
1

2
C12TB −

1

2
C∗34TF

)
θ1θ2

+

(
1

2
C13TB −

1

2
C∗24TF

)
θ1θ3 +

(
1

2
C14TB +

1

2
C∗23TF

)
θ1θ4 +

(
1

2
C23TB +

1

2
C∗14TF

)
θ2θ3

+

(
1

2
C24TB −

1

2
C∗13TF

)
θ2θ4 +

(
1

2
C34TB −

1

2
C∗12TF

)
θ3θ4 (187)

47The matrices TB and TF correspond to the T matrices of the four boson and four fermion scattering
respectively.
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where

TF =
1

4m2
(u(p1)u(p2)) (v(p3)v(p4)) Tf . (188)

and the coefficients Cij are given as before in (155) and (156).

It follows from (186) that

SB(p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)TB(p1,p2,p3,p4) ,

Sf (p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)Tf (p1,p2,p3,p4) .

(189)

Substituting the definitions (189) into (184) and (185) the unitarity conditions

can be rewritten as

∫
dΓ̃

[
TB(p1,p2,k3,k4)T ∗B (p3,p4,k3,k4)

−Y (p3,p4)

(
TB(p1,p2,k3,k4) + 4Y (p1,p2)Tf (p1,p2,k3,k4)

)
(
T ∗B (p3,p4,k3,k4) + 4Y (p3,p4)T ∗f (p3,p4,k3,k4)

)]
= i(TB(p1,p2,p3,p4)− T ∗B (p3,p4,p1,p2))

(190)

and

∫
dΓ̃

[
− 16Y 2(p3,p4)Tf (p1,p2,k3,k4)T ∗f (p3,p4,k3,k4)

+Y (p3,p4)

(
TB(p1,p2,k3,k4) + 4Y (p1,p2)Tf (p1,p2,k3,k4)

)
(
T ∗B (p3,p4,k3,k4) + 4Y (p3,p4)T ∗f (p3,p4,k3,k4)

)]
= 4iY (p3,p4)

(
T ∗f (p3,p4,p1,p2)− Tf (p1,p2,p3,p4)

)
(191)
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where

dΓ̃ = (2π)3δ3(p1 + p2 − k3 − k4)
d2k3

2k0
3(2π)2

d2k4

2k0
4(2π)2

.

The equations (190) and (191) can be put in a more user friendly form by going to the

center of mass frame with the definition

p1 =
(√

p2 +m2, p, 0
)
, p2 =

(√
p2 +m2,−p, 0

)
p3 =

(√
p2 +m2, p cos(θ), p sin(θ)

)
, p4 =

(√
p2 +m2,−p cos(θ),−p sin(θ)

)
(192)

where θ is the scattering angle between p1 and p3. In terms of the Mandelstam variables

s = −(p1 + p2)2 , t = −(p1 − p3)2, u = (p1 − p4)2, s+ t+ u = 4m2 ,

s = 4(p2 +m2) , t = −2p2(1− cos(θ)) , u = −2p2(1 + cos(θ)) . (193)

Using the definitions we see that (183) becomes

Y =
2(p3 · p4 +m2)

16m2
=
−s+ 4m2

16m2
= Y (s) . (194)

Then (190) and (191) can be put in the form (See for instance eq 2.58-eq 2.59 of [61])

1

8π
√
s

∫
dθ

(
− Y (s)(TB(s, θ) + 4Y (s)Tf (s, θ))(T ∗B (s,−(α− θ)) + 4Y (s)T ∗f (s,−(α− θ)))

+TB(s, θ)T ∗B (s,−(α− θ))
)

= i(T ∗B (s,−α)− TB(s, α))

(195)

1

8π
√
s

∫
dθ

(
Y (s)(TB(s, θ) + 4Y (s)Tf (s, θ))(T ∗B (s,−(α− θ)) + 4Y (s)T ∗f (s,−(α− θ)))

−16Y (s)2Tf (s, θ)T ∗f (s,−(α− θ))
)

= i4Y (s)(−Tf (s, α) + T ∗f (s,−α))

(196)

119



In a later section §4.4 we will use the simplified equations (195) and (196) for the unitarity

analysis.

4.3 Exact computation of the all orders S matrix

In this section we will present results and conjectures for the the 2 × 2 S matrix of the

general N = 1 theory (198) at all orders in the t’Hooft coupling. In §4.3.2 we recall

the action for our theory and determine the bare propagators for the scalar and vector

superfields. At leading order in the 1
N

the vector superfield propagator is exact (it is not

renormalized). However the propagator of the scalar superfield does receive corrections. In

§4.3.3, we determine the all orders propagator for the superfield Φ by solving the relevant

Schwinger-Dyson equation. We will then turn to the determination of the exact offshell four

point function of the superfield Φ. As in [61], we demonstrate that this four point function

is the solution to a linear integral equation which we explicitly write down in §4.3.5. In a

particular kinematic regime we present an exact solution to this integral equation in §4.3.6.

In order to obtain the S matrix, in §4.3.7 we take the onshell limit of this answer. The

kinematic restriction on our offshell result turns out to be inconsistent with the onshell

limit in one of the four channels of scattering (particle - antiparticle scattering in the singlet

channel) and so we do not have an explicit computation of the S matrix in this channel.

In the other three channels, however, we are able to extract the full S matrix (with no

kinematic restriction) albeit in a particular Lorentz frame. In §4.3.7 we present the unique

covariant expressions for the S matrix consistent with our results. In §4.3.8 we report

our result that the covariant S matrix reported in §4.3.7 is duality invariant. We present

explicit exact results for the S matrices in the T and U channels of scattering in §4.3.9. In

§4.3.10 we present the explicit conjecture for the S matrix in the singlet (S) channel. In

§4.3.11 we report the explicit S matrices for the N = 2 theory.
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4.3.1 Supersymmetric Light Cone Gauge

We study the general N = 1 theory (119). Wess-Zumino gauge, employed in subsection

§4.2.1 to display the physical content of our theory, is inconvenient for actual computations

as it breaks manifest supersymmetry. In other words if Γα is chosen to lie in Wess-Zumino

gauge, it is in general not the case that QβΓα also respects this gauge condition. In all

calculations presented in this chapter we will work instead in ‘supersymmetric light cone

gauge’ 48

Γ− = 0 (197)

As Γ− transforms homogeneously under supersymmetry (see (124)) it is obvious that this

gauge choice is supersymmetric. It is also easily verified that all gauge self interactions in

(119) vanish in our lightcone gauge and the action (119) simplifies to

Stree = −
∫
d3xd2θ

[
κ

16π
Tr(Γ−i∂−−Γ−)− 1

2
DαΦ̄DαΦ− i

2
Γ−(Φ̄D−Φ−D−Φ̄Φ)

+m0Φ̄Φ +
πw

κ
(Φ̄Φ)2

]
. (198)

Note in particular that (198) is quadratic in Γ+.

The condition (197) implies, in particular, that the component gauge fields in Γα

obey

A− = A1 + iA2 = 0

(see Appendix §4.7.6 for more details and further discussion about this gauge). In other

words the gauge (197) is a supersymmetric generalization of ordinary lightcone gauge.

48We would like to thank S. Ananth and W. Siegel for helpful correspondence on this subject.
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4.3.2 Action and bare propagators

The bare scalar propagator that follows from (198) is

〈Φ̄(θ1, p)Φ(θ2,−p′)〉 =
D2
θ1,p
−m0

p2 +m2
0

δ2(θ1 − θ2)(2π)3δ3(p− p′) . (199)

wherem0 is the bare mass. We have chosen the convention for the momentum flow direction

Φ̄(p, θ1) Φ(−p, θ2)

pθ1 θ2

Figure 1: Scalar superfield propagator

to be from Φ̄ to Φ (see fig 1). Our sign conventions are such that the momenta leaving a

vertex have a positive sign. The notation D2
θ1,p

means that the operator depends on θ1 and

the momentum p, the explicit form for D2 and some useful formulae are listed in §4.7.1.

The gauge superfield propagator in momentum space is

〈Γ−(θ1, p)Γ
−(θ2,−p′)〉 = −8π

κ

δ2(θ1 − θ2)

p−−
(2π)3δ3(p− p′) (200)

where p−− = −(p1 + ip2) = −p−. Inserting the expansion (120) into the LHS of (200) and

θ1 θ2

Γ−(θ1, p) Γ−(θ2,−p)

Figure 2: Gauge superfield propagator, the arrow indicates direction of momentum flow
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matching powers of θ, we find in particular that

〈A+(p)A3(−p′)〉 =
4πi

κ

1

p−
(2π)3δ3(p− p′) , 〈A3(p)A+(−p′)〉 = −4πi

κ

1

p−
(2π)3δ3(p− p′) ,

(201)

is in perfect agreement with the propagator of the gauge field in regular (non-supersymmetric)

lightcone gauge (see Appendix A ,Eq A.7 of [46])

4.3.3 The all orders matter propagator

Constraints from supersymmetry The exact propagator of the matter su-

perfield Φ enjoys invariance under supersymmetry transformations which implies that

(Qθ1,p +Qθ2,−p)〈Φ̄(θ1, p)Φ(θ2,−p)〉 = 0 (202)

where the supergenerators Qθ1,p were defined in (123). This constraint is easily solved. Let

the exact scalar propagator take the form

〈Φ̄(p, θ1)Φ(−p′, θ2)〉 = (2π)3δ3(p− p′)P (θ1, θ2, p) . (203)

The condition (202) implies that the function P obeys the equation

[
∂

∂θα1
+

∂

∂θα2
− pαβ(θβ1 − θβ2 )

]
P (θ1, θ2, p) = 0 . (204)

The most general solution to (204) is

C1(pµ) exp(−θα1 pαβθβ2 ) + C2(pµ)δ2(θ1 − θ2) (205)

or equivalently

P (θ1, θ2, p) = exp(−θα1 pαβθβ2 )
(
C1(pµ) + C2(pµ)δ2(θ1 − θ2)

)
(206)
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49 where C1(pµ) is an arbitrary function of pµ of dimension m−2, while C2(pµ) is another

function of pµ of dimension m−1.

It is easily verified using the formulae (368) that the bare propagator (199) can

be recast in the form (206) with

C1 =
1

p2 +m2
0

, C2 =
m0

p2 +m2
0

. (207)

In a similar manner supersymmetry constrains the terms quadratic in Φ and Φ̄

in the quantum effective action. In momentum space the most general supersymmetric

quadratic effective action takes the form

S = −
∫

d3p

(2π)3
d2θΦ̄(p, θ)

(
A(p)D2 +B(p)

)
Φ(−p, θ) (208)

= −
∫

d3p

(2π)3
d2θ1d

2θ2Φ̄(p, θ1) exp(−θα1 pαβθβ2 )(A(p) +B(p)δ2(θ1 − θ2))Φ(−p, θ2) (209)

50 The tree level quadratic action of our theory is clearly of the form (208) with A(p) = 1

and B(p) = m0.

All orders two point function Let the exact 1PI quadratic effective action

take the form

S2 =

∫
d3p

(2π)3
d2θ1d

2θ2Φ̄(−p, θ1)
(

exp(−θα1 pαβθβ2 ) +m0δ
2(θ1 − θ2) + Σ(p, θ1, θ2)

)
Φ(p, θ2) .

(210)

It follows from (208) that the supersymmetric self energy Σ is of the form

Σ(p, θ1, θ2) = C(p) exp(−θα1 pαβθβ2 ) +D(p)δ2(θ1 − θ2) (211)

49The equivalence of (206) and (205) follows from the observation that θaAabθ
b vanishes if Aab is

symmetric in a and b.
50In going from the first line to the second line of (208) we have integrated by parts and used the identity

(368). See Appendix §4.7.1 for the expressions of superderivatives and operator D2 in momentum space.
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where C(p) and D(p) are as yet unknown functions of momenta.

Imitating the steps described in section 3 of [46], the self energy Σ defined in

+Σ(p, θ1, θ2) =

Figure 3: Integral equation for self energy

(210) may be shown to obey the integral equation 51

Σ(p, θ1, θ2) = 2πλw

∫
d3r

(2π)3
δ2(θ1 − θ2)P (r, θ1, θ2)

− 2πλ

∫
d3r

(2π)3
Dθ2,−p
− Dθ1,p

−

(
δ2(θ1 − θ2)

(p− r)−−
P (r, θ1, θ2)

)
+ 2πλ

∫
d3r

(2π)3

δ2(θ1 − θ2)

(p− r)−−
Dθ1,r
− Dθ2,−r

− P (r, θ1, θ2) (212)

where P (p, θ1, θ2) is the exact superfield propagator. 52 Note that the propagator P

depends on Σ (in fact P is obtained by inverting quadratic term in effective action (210)).

In other words Σ appears both on the LHS and RHS of (212); we need to solve this equation

to determine Σ.

Using the equations (369), the second and third lines on the RHS if (212) may

51We work at leading order in the large N limit
52The first line in the RHS of (212) comes from the quartic interaction in Fig 3 while the second and

third lines in (212) comes from the gaugesuperfield interaction in Fig 3 . Note that each vertex in the
diagram corresponding to the gaugesuperfield interaction in Fig 3 contains one factor of D, resulting in
the two powers of D in the second and third line of (212).
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be considerably simplified (see Appendix §4.7.7) and we find

Σ(p, θ1, θ2) = 2πλw

∫
d3r

(2π)3
δ2(θ1 − θ2)P (r, θ1, θ2)

− 2πλ

∫
d3r

(2π)3

p−−
(p− r)−−

δ2(θ1 − θ2)P (r, θ1, θ2)

+ 2πλ

∫
d3r

(2π)3

r−−
(p− r)−−

δ2(θ1 − θ2)P (r, θ1, θ2) (213)

Combining the second and third lines on the RHS of (213) we see that the factors of p−−

and r−− cancel perfectly between the numerator and denominator, and (213) simplifies to

Σ(p, θ1, θ2) = 2πλ(w − 1)

∫
d3r

(2π)3
δ2(θ1 − θ2)P (r, θ1, θ2) . (214)

Notice that the RHS of (214) is independent of p, so it follows that

Σ(p, θ1, θ2) = (m−m0)δ2(θ1 − θ2)

for some as yet undetermined constant m. It follows that the exact propagator P takes

the form of the tree level propagator with m0 replaced by m i.e.

P (p, θ1, θ2) =
D2 −m
p2 +m2

δ2(θ1 − θ2) . (215)

Plugging (215) into (214) and simplifying we find the equation

m−m0 = 2πλ(w − 1)

∫
d3r

(2π)3

1

r2 +m2
. (216)

The integral on the RHS diverges. Regulating this divergence using dimensional regular-

ization, we find that (216) reduces to

m−m0 =
λ|m|

2
(1− w) (217)
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and so

m =
2m0

2 + (−1 + w)λ Sgn(m)
. (218)

Let us summarize. The exact 1PI quadratic effective action for the Φ superfield

has the same form as the tree level effective action but with the bare mass m0 replaced by

the exact mass m given in (218). 53 As explained in §4.2.2 the exact mass (218) is duality

invariant.

Note also that the N = 2 point, w = 1 there is no renormalization of the mass,

and the bare propagator is exact and the bare mass (which equals the pole mass) is itself

duality invariant.

4.3.4 Constraints from supersymmetry on the offshell four point function

Much as with the two point function, the offshell four point function of matter superfields

is constrained by the supersymmetric Ward identities. Let us define

〈Φ̄((p+ q +
l

4
), θ1)Φ(−p+

l

4
, θ2)Φ(−(k + q) +

l

4
, θ3)Φ̄(k +

l

4
, θ4)〉

= (2π)3δ(l)V (θ1, θ2, θ3, θ4, p, q, k). (219)

It follows from the invariance under supersymmetry that

(Qθ1,p+q +Qθ2,−p +Qθ3,−k−q +Qθ4,k)V (θ1, θ2, θ3, θ4, p, q, k) = 0 . (220)

53Note that propagator for the fermion in the superfield Φ is the usual propagator for a relativistic
fermion of mass m. Recall, of course, that the propagator of Φ is not gauge invariant, and so its form
depends on the gauge used in the computation. If we had carried out all computations in Wess-Zumino
gauge (which breaks offshell supersymmetry) we would have found the much more complicated expression
for the fermion propagator reported in section 2.1 of [58]. Note however that the gauge invariant physical
pole mass m of (218) agrees perfectly with the pole mass (reported in eq 1.6 of [58]) of the complicated
propagator of [58]. The agreement of gauge invariant quantities in these rather different computations
constitutes a nontrivial consistency check of the computations presented in this subsection.
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The general solution to (220) is easily obtained (see Appendix §4.7.8). Defining

X =
4∑
i=1

θi ,

X12 = θ1 − θ2 ,

X13 = θ1 − θ3 ,

X43 = θ4 − θ3 . (221)

we find

V = exp

(
1

4
X.(p.X12 + q.X13 + k.X43)

)
F (X12, X13, X43, p, q, k) . (222)

where F is an unconstrained function of its arguments. In other words supersymmetry

fixes the transformation of V under a uniform shift of all θ parameters θi → θi + γ. (for

i = 1 . . . 4 where γ is a constant Grassman parameter). The undetermined function F is a

function of shift invariant combinations of the four θi.

Let us now turn to the structure of the exact 1PI effective action for scalar

superfields in our theory. The most general effective action consistent with global U(N)

invariance and supersymmetry takes the form

S4 =
1

2

∫
d3p

(2π)3

d3k

(2π)3

d3q

(2π)3
d2θ1d

2θ2d
2θ3d

2θ4(
V (θ1, θ2, θ3, θ4, p, q, k)Φm(−(p+ q), θ1)Φ̄m(p, θ2)Φ̄n(k + q, θ3)Φn(−k, θ4)

)
.

(223)

It follows from the definition (223) that the function V may be taken to be invariant under

the Z2 symmetry

p→ k + q, k → p+ q, q → −q ,

θ1 → θ4, θ2 → θ3, θ3 → θ2, θ4 → θ1 . (224)
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As in the case of two point functions, it is easily demonstrated that the invariance

of this action under supersymmetry constraints the coefficient function V that appears in

(223) to obey the equation (220). As we have already explained above, the most general

solution to this equation is given in equation (222) for a general shift invariant function F .

4.3.5 An integral equation for the offshell four point function

The coefficient function V of the quartic term of the exact IPI effective action may be

shown to obey the integral equation (see Fig 4 for a diagrammatic representation of this

equation)

V (θ1, θ2, θ3, θ4, p, q, k) = V0(θ1, θ2, θ3, θ4, p, q, k)

+

∫
d3r

(2π)3
d2θad

2θbd
2θAd

2θB

(
NV0(θ1, θ2, θa, θb, p, q, r)

P (r + q, θa, θA)P (r, θB, θb)V (θA, θB, θ3, θ4, r, q, k)

)
(225)

In (225) V0 is the tree level contribution to V . V0 receives contributions from the

two diagrams depicted in Fig 4. The explicit evaluation of V0 is a straightforward exercise

and we find (see Appendix §4.7.8 for details)

V0(θ1, θ2, θ3, θ4, p, q, k) = exp

(
1

4
X.(p.X12 + q.X13 + k.X43)

)
(
−iπw

κ
X−12X

+
12X

−
13X

+
13X

−
43X

+
43

− 4πi

κ(p− k)−−
X+

12X
+
13X

+
43(X−12 +X−34)

)
. (226)

In the above, the first term in the bracket is the delta function from the quartic interaction,

the second term is from the tree diagram due to the gauge superfield exchange computed

in §4.7.8.
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p + q

p

k + q

k

θ1 θ3

θ2 θ4

=
+p− k

θ1

θ2

θ3

θ4

p+ q

p

p− r

k + q

k

r + q

r

r − k

θa

θb

θA

θB

+

p

k + q

k

θ3

θ4

p+ qθ1

θ2

p− k

θ1 θ3

θ2
θ4

p+ q

p

k + q

k
=

θ1 θ3

θ2 θ4

p− r

θ1 θ3

θ2 θ4

p− k

θ1 θ3

θ2 θ4

p− k

Figure 4: The diagrams in the first line pictorially represents the Schwinger-Dyson equa-
tion for offshell four point function (see (225)). The second line represents the tree level
contributions from the gauge superfield interaction and the quartic interactions.

We now turn to the evaluation of the coefficient V in the exact 1PI effective ac-

tion. There are 26 linearly independent functions of the six independent shift invariant

Grassman variables X±12, X±13 and X±43. Consequently the most general V consistent with

supersymmetry is parameterized by 64 unknown functions of the three independent mo-

menta. V (and so F ) is necessarily an even function of these variables. It follows that

the most general function F can be parameterized in terms of 32 bosonic functions of p, k

and q. In principle one could insert the most general supersymmetric F into the integral

equation (225) and equate equal powers of θi on the two sides of (225) to obtain 32 coupled

integral equations for the 32 unknown complex valued functions. One could, then, attempt

to solve this system of equations. This procedure would obviously be very complicated and

difficult to implement in practice. Focusing on the special kinematics q± = 0 we were able

to shortcircuit this laborious process, in a manner we now describe.
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After a little playing around we were able to demonstrate that V of the form 54

V (θ1, θ2, θ3, θ4, p, q, k) = exp

(
1

4
X.(p.X12 + q.X13 + k.X43)

)
F (X12, X13, X43, p, q, k)

F (X12, X13, X43, p, q, k) =

X+
12X

+
43

(
A(p, k, q)X−12X

−
43X

+
13X

−
13 +B(p, k, q)X−12X

−
43

+ C(p, k, q)X−12X
+
13 +D(p, k, q)X+

13X
−
43

) ,

(227)

is closed under the multiplication rule induced by the RHS of (225) (see Appendix §4.7.8).

Plugging in the general form of V (227) in the integral equation (225) and performing

the grassmann integration, (225) turns into to the following integral equations for the

coefficient functions A, B, C and D:

A(p, k, q) +
2πiw

κ

+ iπλ

∫
d3rE
(2π)3

2A(q3p− + 2(q3 − im)r−) + (q3r− + 2imp−)(2Bq3 + Ck−)−Dr−(q3p− + 2imr−)

(r2 +m2)((r + q)2 +m2)(p− r)−
− iπλw

∫
d3rE
(2π)3

4iAm+ 2Bq2
3 + Cq3k− + 2D(q3 + im)r−

(r2 +m2)((r + q)2 +m2)
= 0 (228)

B(p, k, q) + iπλ

∫
d3rE
(2π)3

2A(p+ r)− + 4B(q3r− + im(p− r)−)− Ck−(p+ r)− −Dr−(p− 3r)−
(r2 +m2)((r + q)2 +m2)(p− r)−

− iπλw
∫

d3rE
(2π)3

2A+ 4imB − Ck− −Dr−
(r2 +m2)((r + q)2 +m2)

= 0 (229)

C(p, k, q)− 4πi

κ(p− k)−
+ iπλ

∫
d3rE
(2π)3

2C
(
q3(p+ 3r)− + 2im(p− r)−

)
(r2 +m2)((r + q)2 +m2)(p− r)−

− iπλw
∫

d3rE
(2π)3

2C(q3 + 2im)

(r2 +m2)((r + q)2 +m2)
= 0 (230)

54The variables X,Xij are defined in terms of θi in (221).
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D(p, k, q)− 4πi

κ(p− k)−

+ iπλ

∫
d3rE
(2π)3

−A(4q3 − 8im) + (q3 − 2im)(4Bq3 + 2Ck−) + 2D(3q3 + 2im)r−
(r2 +m2)((r + q)2 +m2)(p− r)−

= 0 .

(231)

We will sometimes find it useful to view the four integral equations above as a

single integral equation for a four dimensional column vector E whose components are the

functions A, B, C, D, i.e.

E(p, k, q) =


A(p, k, q)

B(p, k, q)

C(p, k, q)

D(p, k, q)

 . (232)

The integral equations take the schematic form

E = R + IE (233)

where R is a 4 column of functions and I is a matrix of integral operators acting on E.

The integral equation (233) may be converted into a differential equation by differentiating

both sides of (233) w.r.t p+. Using (476) and performing all d3r integrals (using (474) for

the integral over r3) we obtain the differential equations

∂p+E(p, k, q) = S(p, k, q) +H(p, k−, q)E(p, k, q) , (234)

where

S(p, k, q) = −8iπ2

κ
δ2((p− k)−, (p− k)+)


0

0

1

1

 (235)
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H(p, k−, q3) =
1

a(ps, q3)


(6q3 − 4im)p− 2q3(2im+ q3)p− (2im+ q3)k−p− −(2im+ q3)p2

−

4p− 4q3p− −2k−p− 2p2
−

0 0 8q3p− 0

8im− 4q3 4q3(q3 − 2im) 2(q3 − 2im)k− (4im+ 6q3)p−


(236)

and

a(ps, q3) =

√
m2 + p2

s (4m2 + q2
3 + 4p2

s)

2π
. (237)

As we have explained above, the exact vertex V enjoys invariance under the Z2

transformation (224). In terms of the functions A,B,C,D, the Z2 action is given by

E(p, k, q) = TE(k, p,−q) , (238)

where

T =


1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0

 . (239)

The differential equations (234) do not manifestly respect the invariance (238). In fact in

Appendix §4.7.8 we have demonstrated that the differential equations (234) admit solutions

that enjoy the invariance (238) if and only if the following consistency condition is obeyed:

[H(p, k−, q), TH(k, p−,−q)T ] = 0 . (240)

In the same Appendix we have also explicitly verified that this integrability condition is in

fact obeyed; this is a consistency check on (234) and indirectly on the underlying integral

equations.
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4.3.6 Explicit solution for the offshell four point function

In this subsection, we solve the system of integral equations for the unknown functions

A,B,C,D presented in the previous subsection. We propose the ansatz

A(p, k, q) = A1(ps, ks, q3) +
A2(ps, ks, q3)k−

(p− k)−
,

B(p, k, q) = B1(ps, ks, q3) +
B2(ps, ks, q3)k−

(p− k)−
,

C(p, k, q) = −C2(ps, ks, q3)− C1(ps, ks, q3)k+p−
(p− k)−

,

D(p, k, q) = −D2(ps, ks, q3)−D1(ps, ks, q3)k−p+

(p− k)−
. (241)

Our ansatz (241) 55 fixes the solution in terms of 8 unknown functions of ps, ks and q3.

Plugging the ansatz (241) into the integral equations (228)-(231), one can do the

angle and r3 integrals (using the formulae (475) and (474) respectively) leaving only the

rs integral to be performed. Differentiating this expression w.r.t. to ps turns out to kill

the rs integral yielding differential equations in ps for the eight equations above. 56 The

resulting differential equations turn out to be exactly solvable. Assuming that the solution

respects the symmetry (238), it turns out to be given in terms of two unknown functions

of ks and q3. These can be thought of as the integration constants that are not fixed by

the symmetry requirement (238). Plugging the solutions back into the integral equations

we were able to determine these two integration functions of ks and q3 completely. We now

report our results.

55We were able to arrive at this ansatz by first explicitly computing the one loop answer and observing
the functional forms. Moreover, in previous work a very similar ansatz was already used to solve the
integral equations for the fermions (see Appendix F of [61]).

56Another way to obtain these differential equations is to plug the ansatz (241) directly into the differ-
ential equations (234).
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The solutions for A and B are

A1(ps, ks, q3) =e
−2iλ tan−1

2

√
m2+p2s
q3

(
G1(ks, q3)

+
2π(w − 1)(2m− iq3)e

2iλ
(

tan−1
2

√
k2s+m

2

q3
+tan−1

2

√
m2+p2s
q3

)
κ(e

iπλq3
|q3| (q3(w + 3)− 2im(w − 1)) + i(w − 1)(2m+ iq3)e

2iλ tan−1 2|m|
q3 )

)
,

A2(ps, ks, q3) =e
−2iλ tan−1

(
2

√
m2+p2s
q3

)
G2(ks, q3) ,

B1(ps, ks, q3) =
2πA1(ps, ks, q3)

q3

+
2π

b1b2

(
−i(w − 1)2(4m2 + q2

3)e
iλ
(
πq3
|q3|
−2 tan−1

2

√
m2+p2s
q3

+4 tan−1 2|m|
q3

)
+ i(w − 1)2(−4m2 + 8imq3 + 3q2

3)e
iλ
(
πq3
|q3|

+2 tan−1
2

√
k2s+m

2

q3

)
− 8iq2

3(w + 1)e
iλ
(
πq3
|q3|

+2(tan−1
2

√
k2s+m

2

q3
−tan−1

2

√
m2+p2s
q3

+tan−1 2|m|
q3

)
)

+ (w − 1)(q3 + 2im)(2m(w − 1) + iq3(w + 3)) + e
2iλ(

πq3
|q3|
−tan−1

2

√
m2+p2s
q3

+tan−1 2|m|
q3

)

+ (w − 1)(2m− 3iq3)(q3(w + 3) + 2im(w − 1)) + e
2iλ
(

tan−1
2

√
k2s+m

2

q3
+tan−1 2|m|

q3

))
,

B2(ps, ks, q3) =
A2(ps, ks, q3)

q3

,

G1(ks, q3) =− 2π

κ

1

g1

(
−8iq2

3(w + 1)e
iλ
(
πq3
|q3|

+2(tan−1
2

√
k2s+m

2

q3
+tan−1 2|m|

q3
)
)

+ i(w − 1)2(q3 − 2im)2e
iλ
(
πq3
|q3|

+4 tan−1 2|m|
q3

)
− (w − 1)(q3 − 2im)(2m(w − 1) + iq3(w + 3))e

2iλ
(
πq3
|q3|

+tan−1 2|m|
q3

))
,

G2(ks, q3) =0 , (242)
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where we have defined some parameters as given below for ease of presentation.

g1 =(w − 1)(q3 + 2im)e
2iπλq3
|q3| (q3(w + 3)− 2im(w − 1)) ,

+ (w − 1)(4m2(w − 1)− 8imq3 + q2
3(w + 3))e

4iλ tan−1 2|m|
q3 ,

− 2(4m2(w − 1)2 + q2
3(w2 + 2w + 5))e

iλ(
πq3
|q3|

+2 tan−1 2|m|
q3

)
,

b1 =κq3((w − 1)(q3 + 2im)e
iπλq3
|q3| + (−q3(w + 3)− 2im(w − 1))e

2iλ tan−1 2|m|
q3 ) ,

b2 =e
iπλq3
|q3| (q3(w + 3)− 2im(w − 1)) + i(w − 1)(2m+ iq3)e

2iλ tan−1 2|m|
q3 ,

(243)

The solutions for C and D are

C1(ps, ks, q3) =
4π(q3 + 2im)(e

2iλ tan−1 2|m|
q3 − e2iλ tan−1

2

√
k2s+m

2

q3 )e
iλ(

πq3
|q3|
−2 tan−1

2

√
m2+p2s
q3

)

κk2
s(i(q3 + 2im)e

iπλq3
|q3| + (2m− iq3

(
w+3
w−1

)
)e

2iλ tan−1 2|m|
q3 )

,

C2(ps, ks, q3) =
4πe

2iλ(tan−1 2|m|
q3
−tan−1

2

√
m2+p2s
q3

)
((q3 + 2im)e

iπλq3
|q3| − (q3

(
w+3
w−1

)
+ 2im)e

2iλ tan−1
2

√
k2s+m

2

q3 )

κ(i(q3 + 2im)e
iπλq3
|q3| + (2m− iq3

(
w+3
w−1

)
)e

2iλ tan−1 2|m|
q3 )

,

D1(ps, ks, q3) =C1(ks, ps,−q3) ,

D2(ps, ks, q3) =C2(ks, ps,−q3) . (244)

It is straightforward to show that the above solutions satisfy the various symmetry require-

ments that follow from (238).

Although the solutions (242) and (244) are quite complicated, a drastic simplifi-
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cation occurs at the N = 2 point w = 1

A =− 2iπe
2iλ
(

tan−1
2

√
k2s+m

2

q3
−tan−1

2

√
m2+p2s
q3

)
κ

,

B = 0 ,

C =− 4iπe
2iλ
(

tan−1
2

√
k2s+m

2

q3
−tan−1

2

√
m2+p2s
q3

)
κ(k − p)−

,

D =− 4iπe
2iλ
(

tan−1
2

√
k2s+m

2

q3
−tan−1

2

√
m2+p2s
q3

)
κ(k − p)−

. (245)

It is satisfying that the complicated results of the general N = 1 theory collapse to an

extremely simple form at the N = 2 point.

4.3.7 Onshell limit and the S matrix

The explicit solution for the functions A, B, C and D, presented in the previous subsection,

completely determine V in (223), and so the quadratic part of the exact (large N) IPI

effective action. The most general 2 × 2 S matrix may now be obtained from (223) as

follows. We simply substitute the onshell expressions

Φ(p, θ) = (2π)δ(p2 +m2)

[
θ(p0)

(
a(p)(1 +mθ2) + θαuα(p)α(p)

)
+ θ(−p0)

(
ac†(−p)(1 +mθ2) + θαvα(−p)αc†(−p)

)]
(246)

into (223) (here a and α are the effectively free oscillators that create and destroy particles

at very early or very late times; these oscillators obey the commutation relations (147)).

Performing the integrals over θα reduces (223) to a quartic form (let us call it L) in bosonic

and fermionic oscillators. The S matrix is obtained by sandwiching the resultant expression

between the appropriate in and out states, and evaluating the resulting matrix elements

using the commutation relations (147).
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It may be verified that the quartic form in oscillators takes the form 57

L =
∑
φi=0,π

∫ 4∏
i=1

dθi
d3pi

((2π)3)4
δ(p2

i +m2)SM(p1, φ1, θ1, p2, φ2, θ2, p3, φ3, θ3, p4, φ4, θ4)

(
δφi,0θ(p

0
i )A(pi, φi, θi) + δφi,πθ(−p0

i )Ã(−pi, φi, θi)
)

(2π)3δ3(p1 + p2 + p3 + p4)

where

A(pi, φi, θi) = a(pi) + α(pi)e
− iφi

2 θi ,

Ã(pi, φi, θi) = a†(pi) + e−
iφi
2 θiα

†(pi) , (247)

where the one component fermionic variables θi are the fermionic variables that param-

eterize onshell superspace (see §4.2.4 ) and the master formula is defined in (167). Note

that the phase variables φi are summed over two values 0 and π; the symbol δφ,0 is unity

when φ = 0 but zero when φ = π and δφ,π has an analogous definition. (247) compactly

identifies the coefficient of every quartic form in oscillators. For instance it asserts that

the coefficient of a1a2a
†
3a
†
4 is the S matrix for scattering bosons with momentum p1, p2 to

bosons with momenta p3, p4, while the the coefficient of α2α4a
†
1a
†
3 is minus the S matrix

for scattering fermions with momentum p2, p4 to bosons with momentum p1, p3, etc.

We can use the δ function in (247) to perform the integral over one of the four

momenta; the integral over the remaining momenta may be recast as an integral over the

momenta p k and q employed in the previous section; specifically (see Fig 4 )

p1 = p+ q , p2 = −k − q , p3 = −p , p4 = k . (248)

From the explicit results we get by substituting (246) into (223) we can read off all S

matrices at q± = 0.

To start with, let us restrict our attention to the bosonic sector. From direct

57The definition of A and Ã reduces to the definition (149) for φ = 0. While for φ = π, it reduces to
(149) together with the identification θ → iθ. With these definitions Ã = A† both at φ = 0, π.
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computation 58 we find that in this sector (247) reduces to

LB =
∑
φi=0,π

∫
d3p

(2π)3

dq3

(2π)

d3k

(2π)3
δ((p+ q)2 +m2)δ((k + q)2 +m2)

δ(p2 +m2)δ(k2 +m2)TB(p, k, q3)(
δφi,0θ(p

0)a(p + q) + δφi,πθ(−p0)a†(−p− q)
)

(
δφi,0θ(−k0)a(−k− q) + δφi,πθ(k

0)a†(k + q)
)

(
δφi,0θ(−p0)a(−p) + δφi,πθ(p

0)a†(p)
)

(
δφi,0θ(k

0)a(k) + δφi,πθ(−k0)a†(−k)
)

(250)

while for the purely fermionic sector (247) reduces to

LF =
∑
φi=0,π

∫
d3p

(2π)3

dq3

(2π)

d3k

(2π)3
δ((p+ q)2 +m2)δ((k + q)2 +m2)

δ(p2 +m2)δ(k2 +m2)TF (p, k, q3)(
δφi,0θ(p

0)α(p + q) + δφi,πθ(−p0)α†(−p− q)
)

(
δφi,0θ(−k0)α(−k− q) + δφi,πθ(k

0)α†(k + q)
)

(
δφi,0θ(−p0)α(−p) + δφi,πθ(p

0)α†(p)
)

(
δφi,0θ(k

0)α(k) + δφi,πθ(−k0)α†(−k)
)

(251)

58Note that the onshell delta functions in the equations (250) and (251) ensure that

p3 = k3 = −q3
2
, ps = ks , ks =

i

2

√
q23 + 4m2 . (249)
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where 59

TB =
4iπ

κ
εµνρ

qµ(p− k)ν(p+ k)ρ

(p− k)2
+ JB(q, λ) , (252)

TF =
4iπ

κ
εµνρ

qµ(p− k)ν(p+ k)ρ

(p− k)2
+ JF (q, λ) , (253)

where the J functions60 are

JB(q, λ) =
4πq

κ

N1N2 +M1

D1D2

,

JF (q, λ) =
4πq

κ

N1N2 +M2

D1D2

, (254)

59Our actual computations gave the functions JB and JF in the special case q± = 0. We obtained the
answers reported in (252) and (253) by determining the unique covariant expression that reduce to our
answers for our special kinematics. While this procedure is completely correct (with standard conventions)
for JB , it is a bit inaccurate for JF . The reason for this is that JF is Lorentz invariant only upto a phase.
As we have explained around (170), the phase of JF depends on the (arbitrary) phase of the u and v
spinors of the particles in the scattering process. The accurate answer is obtained by covariantizing the
unambiguous Sf defined in (171). SF is obtained by multiplying this result by the quadrilinear term in
spinor wavefunctions as defined in (182). This gives an explicit but cumbersome expression for SF , which
agrees with the result presented above upto an overall convention dependent phase. This phase vanishes
near identity scattering (where it could have interfered with identity), and we have dealt with this issue
carefully in deriving the unitarity equation. In the equation above we have simply ignored the phase in
order to aid readability of formulas.

60The J functions are quite complicated and can be written in many avatars. In this section we have
written the most elegant form of the J function, the other forms are reported in Appendix §4.7.9
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where

N1 =

((
2|m|+ iq

2|m| − iq

)−λ
(w − 1)(2m+ iq) + (w − 1)(2m− iq)

)
,

N2 =

((
2|m|+ iq

2|m| − iq

)−λ
(q(w + 3) + 2im(w − 1)) + (q(w + 3)− 2im(w − 1))

)
,

M1 =− 8mq((w + 3)(w − 1)− 4w)

(
2|m|+ iq

2|m| − iq

)−λ
,

M2 =− 8mq(1 + w)2

(
2|m|+ iq

2|m| − iq

)−λ
,

D1 =

(
i

(
2|m|+ iq

2|m| − iq

)−λ
(w − 1)(2m+ iq)− 2im(w − 1) + q(w + 3)

)
,

D2 =

((
2|m|+ iq

2|m| − iq

)−λ
(−q(w + 3)− 2im(w − 1)) + (w − 1)(q + 2im)

)
. (255)

The equations (252) and (253) capture purely bosonic and purely fermionic S

matrices in all channels (particle-particle scattering in the symmetric and antisymmetric

channels as well as particle-antiparticle scattering in the adjoint channel) restricted to the

kinematics q± = 0. Recall that supersymmetry (see §4.2.4) determines all other scattering

amplitudes in terms of the four boson and four fermion amplitudes, so the formulae (252)

and (253) are sufficient to determine all 2→ 2 scattering processes restricted to our special

kinematics. In other words SM in (247) is completely determined by (252) and (253)

together with (167).

4.3.8 Duality of the S matrix

Under the duality transformation (see (130))

w′ =
3− w
w + 1

, λ′ = λ− sgn(λ),m′ = −m,κ′ = −κ (256)
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we have verified that

JB(q, κ′, λ′, w′,m′) = −JF (q, κ, λ, w,m) ,

JF (q, κ′, λ′, w′,m′) = −JB(q, κ, λ, w,m) . (257)

provided (133) is respected. In other words duality maps the purely bosonic and purely

fermionic S matrices into one another. It follows that (252) and (253) map to each other

under duality upto a phase. As we have explained in subsection §4.2.5, this result is

sufficient to guarantee that the full S matrix (including, for instance, the S matrix for Bose-

Fermi scattering) is invariant under duality, once we interchange bosons with fermions.

4.3.9 S matrices in various channels

In this subsection we explicitly list the purely bosonic and purely fermionic S matrices

in every channel, as functions of the Mandelstam variables of that channel. These results

are, of course, easily extracted from (250) and (251). There is a slight subtlety here; even

though (252) and (253) are manifestly Lorentz invariant, it is not possible to write them

entirely in terms of Mandelstam variables. 61 This is because (as was noted in [61]) 2 + 1

dimensional kinematics allows for an additional Z2 valued invariant (in addition to the

Mandelstam variables)

E(q, p− k, p+ k) = Sign (εµνρq
µ(p− k)ν(p+ k)ρ) . (259)

62 The sign of the first term in (252) and (253) is given by this new invariant as we will

see in more detail below.

61We define the Mandelstam variables as usual

s = −(p1 + p2)2 , t = −(p1 − p3)2 , u = −(p1 − p4)2 . (258)

62Note, in particular that the expression (259) changes sign under the interchange of any two vectors.
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U channel For particle-particle scattering

Pi(p1) + Pj(p2)→ Pi(p3) + Pj(p4)

we have the direct scattering referred to as the Ud (Symmetric) channel. 63 Our momenta

assignments (see LHS of fig 4) are

p1 = p+ q , p2 = k , p3 = p , p4 = k + q . (260)

In terms of the Mandelstam variables

s = −(p+ q + k)2 , t = −q2 , u = −(p− k)2 , (261)

the Ud channel T matrices for the boson-boson and fermion-fermion scattering are

T UdB = E(q, p− k, p+ k)
4πi

k

√
ts

u
+ JB(

√
−t, λ) ,

T UdF = E(q, p− k, p+ k)
4πi

k

√
ts

u
+ JF (

√
−t, λ) . (262)

For the exchange scattering, referred to as the Ue (Antisymmetric) channel the

momenta assignments are (see LHS of fig 4)

p1 = k , p2 = p+ q , p3 = p , p4 = k + q . (263)

In terms of the Mandelstam variables

s = −(p+ q + k)2 , t = −(p− k)2 , u = −q2 , (264)

63We adopt the terminology of [61] in specifying scattering channels; we refer the reader to that chapter
for a more complete definition of the Ud, Ue, T, and S channels that we will repeatedly refer to below.
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the Ue channel T matrices for the boson-boson and fermion-fermion scattering are

T UeB = E(q, p− k, p+ k)
4πi

k

√
us

t
+ JB(

√
−u, λ) ,

T UeF = E(q, p− k, p+ k)
4πi

k

√
us

t
+ JF (

√
−u, λ) . (265)

T channel For particle-antiparticle scattering

Pi(p1) + Aj(p2)→ Pi(p3) + Aj(p4)

S matrix in the adjoint channel is referred to as the T channel. The momentum assignments

are (see LHS of fig 4)

p1 = p+ q , p2 = −k − q , p3 = p , p4 = −k . (266)

In terms of the Mandelstam variables

s = −(p− k)2 , t = −q2 , u = −(p+ q + k)2 , (267)

the T channel T matrices for the boson-boson and fermion-fermion scattering are

T TB = E(q, p− k, p+ k)
4πi

k

√
tu

s
+ JB(

√
−t, λ) ,

T TF = E(q, p− k, p+ k)
4πi

k

√
tu

s
+ JF (

√
−t, λ) . (268)

In particle-anti particle scattering there is also the singlet channel that we describe below.
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4.3.10 The Singlet (S) channel

We now turn to the most interesting scattering process; the scattering of particles with

antiparticles in the S (singlet) channel. In this channel the external lines on the LHS of

Fig. 4 are assigned positive energy (and so represent initial states) while those on the right

of the diagram are assigned negative energy (and so represent final states). It follows that

we must make the identifications

p1 = p+ q , p2 = −p , p3 = k + q , p4 = −k , (269)

so that the Mandelstam variables for this scattering process are

s = −q2 , t = −(p− k)2 , u = −(p+ k)2 . (270)

Note, in particular, that s = −q2, and so is always negative when q± = 0. As we have been

able to evaluate the offshell correlator V (see (227)) only for q± = 0, it follows that we

cannot specialize our offshell computation to an onshell scattering process in the S channel

in which s ≥ 4m2. In other words we do not have a direct computation of S channel

scattering in any frame.

It is nonetheless tempting to simply assume that (252) and (253) continue to

apply at every value of qµ and not just when q± = 0; indeed this is what the usual

assumptions of analyticity of S matrices (and crossing symmetry in particular) would

inevitably imply. Provisionally proceeding with this ‘naive’ assumption, it follows upon

performing the appropriate analytic continuation (q2 → −s for positive s; see sec 4.4 of

[61]) that

T S;naive
B = E(q, p− k, p+ k)4πiλ

√
su

t
+ JB(

√
s, λ) ,

T S;naive
F = E(q, p− k, p+ k)4πiλ

√
su

t
+ JF (

√
s, λ) , (271)

145



where

JB(
√
s, λ) =− 4πiλ

√
s
N1N2 +M1

D1D2

,

JF (
√
s, λ) =− 4πiλ

√
s
N1N2 +M2

D1D2

, (272)

where

N1 =

(
(w − 1)(2m+

√
s) + (w − 1)(2m−√s)eiπλ

(√
s+ 2|m|√
s− 2|m|

)λ)
,

N2 =

(
(−i√s(w + 3) + 2im(w − 1)) + (−i√s(w + 3)− 2im(w − 1))eiπλ

(√
s+ 2|m|√
s− 2|m|

)λ)
,

M1 =8mi
√
s((w + 3)(w − 1)− 4w)eiπλ

(√
s+ 2|m|√
s− 2|m|

)λ
,

M2 =8mi
√
s(1 + w)2eiπλ

(√
s+ 2|m|√
s− 2|m|

)λ
,

D1 =

(
i(w − 1)(2m+

√
s)− (2im(w − 1) + i

√
s(w + 3))eiπλ

(√
s+ 2|m|√
s− 2|m|

)λ)
,

D2 =

(
(
√
s(w + 3)− 2im(w − 1)) + (w − 1)(−i√s+ 2im)eiπλ

(√
s+ 2|m|√
s− 2|m|

)λ)
. (273)

Including the identity factors, the naive S channel S matrix that follows from the

usual rules of crossing symmetry are

SS;naive
B (p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)T S;naive

B (p1,p2,p3,p4) ,

SS;naive
F (p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)T S;naive

F (p1,p2,p3,p4) ,

(274)

where the identity operator is defined in (174).

We pause here to note a subtlety. The quantity SS;naive
F quoted above equals the

S matrix in the S channel only upto phase. In order to obtain the fully correct S matrix
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we analytically continue the phase unambiguous quantity SS;naive
f

64. The result of that

continuation is given by

SS;naive
f =

SS;naive
F

X(s)
(275)

where65

X(s) = −−s+ 4m2

4m2
= −4Y (s) . (277)

The full four fermion amplitude in the S channel, including phase is then given by

AS;naive
F = SS;naive

f X(p, k, q)

where66

X(p, k, q) =
1

4m2
(u(p+ q)u(−p)) (v(k + q)v(−k)) . (278)

It is not difficult to check that

|X(p, k, q)| = X(s) .

It follows that the S channel 4 fermion amplitude agrees with SF upto a convention de-

pendent phase. This phase factor may be shown to vanish near the identity momentum

configuration (p1 = p3, p2 = p4) and so does not affect the interference with identity, and

in general has no physical effect; it follows we would make no error if we simply regarded

SF as the four fermion scattering amplitude. At any rate we have been careful to express

the unitarity relation in terms of the phase unambiguous quantity Sf given unambiguously

by (171).

64Indeed it does not make sense to analytically continue SF as the ambiguous phases of this quantity
are not necessarily Lorentz invariant, and so are not functions only of the Mandelstam variables.

65The factor of X(s) is the analytic continuation of (see (171))

(ū(p)u(p+ q)) (v̄(−k − q)v(−k)) = X(q) = −q
2 + 4m2

4m2
. (276)

The analytic continuation of the above formula is same as −4Y (s) (see (194).)
66The spinor quadrilinear is as defined in (182) with momentum assignments corresponding to the S

channel (269).
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The naive S channel S matrix (274) is not duality (130) invariant. In later section,

we also show that it also does not obey the constraints of unitarity, leading to an apparent

paradox.

A very similar paradox was encountered in [61] where it was conjectured that the

usual rules of crossing symmetry are modified in matter Chern-Simons theories. It was

conjectured in [61] that the correct transformation rule under crossing symmetry for any

matter Chern-Simons theory with fundamental matter in the large N limit is given by

SSB(p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)T SB (p1,p2,p3,p4) ,

SSF (p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)T SF (p1,p2,p3,p4) ,

(279)

where

T SB (p1,p2,p3,p4) = −i(cos(πλ)− 1)I(p1,p2,p3,p4) +
sin(πλ)

πλ
T S;naive
B (p1,p2,p3,p4) ,

T SF (p1,p2,p3,p4) = −i(cos(πλ)− 1)I(p1,p2,p3,p4) +
sin(πλ)

πλ
T S;naive
F (p1,p2,p3,p4) ,

(280)

where (271) defines the T matrices obtained from naive crossing rules. In the center of

mass frame the conjectured S matrix (279) has the form

SSB(s, θ) = 8π
√
sδ(θ) + iT SB (s, θ) ,

SSF (s, θ) = 8π
√
sδ(θ) + iT SF (s.θ) , (281)

where

T SB (s, θ) = −8πi
√
s(cos(πλ)− 1)δ(θ) +

sin(πλ)

πλ
T S;naive
B (s, θ) ,

T SF (s, θ) = −8πi
√
s(cos(πλ)− 1)δ(θ) +

sin(πλ)

πλ
T S;naive
F (s, θ) . (282)
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The naive analytically continued T matrices are

T S;naive
B (s, θ) = 4πiλ

√
s cot(θ/2) + JB(

√
s, λ) ,

T S;naive
F (s, θ) = 4πiλ

√
s cot(θ/2) + JF (

√
s, λ) , (283)

where the J functions are as defined in (272). In other words the conjectured S matrix

takes the following form

SSB(s, θ) = 8π
√
s cos(πλ)δ(θ) + i

sin(πλ)

πλ

(
4πiλ
√
s cot(θ/2) + JB(

√
s, λ)

)
,

SSF (s, θ) = 8π
√
s cos(πλ)δ(θ) + i

sin(πλ)

πλ

(
4πiλ
√
s cot(θ/2) + JF (

√
s, λ)

)
. (284)

It was demonstrated in [61] that the conjecture (280) yields an S channel S matrix

that is both duality invariant and consistent with unitarity in the the systems under study

in that paper. In this chapter we will follow [61] to conjecture that (280) continues to

define the correct S channel S matrix for the theories under study. In the next section

we will demonstrate that (280) obeys the nonlinear unitarity equations (190) and (191).

We regard this fact as highly nontrivial evidence in support of the conjecture (280). As

(280) appears to work in at least two rather different classes of large N fundamental matter

Chern-Simons theories (namely the purely bosonic and fermionic theories studied in [61]

and the supersymmetric theories studied in this chapter) it seems likely that (280) applies

universally to all Chern-Simons fundamental matter theories, as suggested in [61].

Straightforward non-relativistic limit The conjectured S channel S matrix

has a simple non-relativistic limit leading to the known Aharonov-Bohm result (see section

2.6 of [61] for details). In this limit we take (in the center of mass frame)
√
s→ 2m in the
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T matrix (282) with all other parameters held fixed. In this limit we find

T SB (s, θ) = −8πi
√
s(cos(πλ)− 1)δ(θ) + 4

√
s sin(πλ) (i cot(θ/2)− 1) ,

T SF (s, θ) = −8πi
√
s(cos(πλ)− 1)δ(θ) + 4

√
s sin(πλ) (i cot(θ/2) + 1) . (285)

The non-relativistic limit also coincides with the N = 2 limit of the S matrix (279) as we

show in the following subsection. In §4.5.5 we describe a slightly modified non-relativistic

limit of the S matrix.

4.3.11 S matrices in the N = 2 theory

As discussed in §4.2.1 the N = 1 theory (119) has an enhanced N = 2 supersymmetric

regime when the Φ4 coupling constant takes a special value w = 1. We have already

seen that the momentum dependent functions in the offshell four point function simplify

dramatically (245), and so it is natural to expect that the S matrices at w = 1 are much

simpler than at generic w. This is indeed the case as we now describe.

By taking the limit w → 1 in the S matrix formulae presented in (252) and (253),

we find that the four boson and four fermion N = 2 S matrices take the very simple form

67

T N=2
B =

4iπ

κ
εµνρ

qµ(p− k)ν(p+ k)ρ

(p− k)2
− 8πm

κ
, (286)

T N=2
F =

4iπ

κ
εµνρ

qµ(p− k)ν(p+ k)ρ

(p− k)2
+

8πm

κ
. (287)

The S matrices above are simply those for tree level scattering. It follows that the tree

level S matrices in the three non-anyonic channels are not renormalized, at any order in

the coupling constant, in the N = 2 theory.

67This is because the J functions reported in (252) and (253) have an extremely simple form at w = 1
(see (492)).
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There is an immediate (but rather trivial) check of this result. Recall that accord-

ing to §4.7.3 the four boson and four fermion scattering amplitudes are not independent

in the N = 2 theory; supersymmetry determines the former in terms of the latter. The

precise relation is derived in 4.7.3 and is given by (404) for particle-antiparticle scattering

and (409) for particle-particle scattering. It is easy to verify that (286) and (287) trivially

satisfy (404) (or (409)) using (155),(156) and appropriate momentum assignments for the

channels of scattering discussed in section §4.3.9. 68

For completeness we now present explicit formulae for the S matrices of theN = 2

theory in the three non-anyonic channels.

For the Ud channel

T Ud;N=2
B = E(q, p− k, p+ k)

4πi

k

√
ts

u
− 8πm

κ
,

T Ud;N=2
F = E(q, p− k, p+ k)

4πi

k

√
ts

u
+

8πm

κ
. (289)

For the Ue channel

T Ue;N=2
B = E(q, p− k, p+ k)

4πi

k

√
us

t
− 8πm

κ
,

T Ue;N=2
F = E(q, p− k, p+ k)

4πi

k

√
us

t
+

8πm

κ
. (290)

68As an example, in the T channel (see (266)) we substitute the coefficients (155), (156) into (404) and
evaluate it to get

SB = SF
−2m(k − p)− + iq3(k + p)−
2m(k − p)− + iq3(k + p)−

. (288)

It is clear that the covariant form of the S matrices given in (286) and (287) trivially satisfy (288). Similarly
it can be easily checked that the result (288) follows from (409) for particle-particle scattering.
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For the T channel

T T ;N=2
B = E(q, p− k, p+ k)

4πi

k

√
tu

s
− 8πm

κ
,

T T ;N=2
F = E(q, p− k, p+ k)

4πi

k

√
tu

s
+

8πm

κ
. (291)

Let us now turn to the singlet channel. As described in §4.3.10, we cannot com-

pute the S channel S matrix directly because of our choice of the kinematic regime q± = 0.

The naive analytic continuation of (286) and (287) to the S channel gives

T S;naive;N=2
B = E(q, p− k, p+ k)4πiλ

√
su

t
− 8πmλ ,

T S;naive;N=2
F = E(q, p− k, p+ k)4πiλ

√
su

t
+ 8πmλ . (292)

Thus the naive S channel S matrix for the N = 2 theory is

SS;naive;N=2
B (p1,p2,p3,p4) =I(p1,p2,p3,p4)

+ i(2π)3δ3(p1 + p2 − p3 − p4)T S;naive;N=2
B (p1,p2,p3,p4) ,

SS;naive;N=2
F (p1,p2,p3,p4) =I(p1,p2,p3,p4)

+ i(2π)3δ3(p1 + p2 − p3 − p4)T S;naive;N=2
F (p1,p2,p3,p4) .

(293)

As explained in the introduction §4.1, this result is obviously non-unitary. Applying the

modified crossing symmetry transformation rules (279) we obtain our conjecture for the

N = 2 S matrix in the singlet channel

SS;N=2
B (p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)T S;N=2

B (p1,p2,p3,p4) ,

SS;N=2
F (p1,p2,p3,p4) = I(p1,p2,p3,p4) + i(2π)3δ3(p1 + p2 − p3 − p4)T S;N=2

F (p1,p2,p3,p4) ,

(294)
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where

T S;N=2
B (p1,p2,p3,p4) = −i(cos(πλ)− 1)I(p1,p2,p3,p4) +

sin(πλ)

πλ
T S;naive;N=2
B (p1,p2,p3,p4) ,

T S;N=2
F (p1,p2,p3,p4) = −i(cos(πλ)− 1)I(p1,p2,p3,p4) +

sin(πλ)

πλ
T S;naive;N=2
F (p1,p2,p3,p4) .

(295)

In the center of mass frame the conjectured S channel S matrix in the N = 2 theory takes

the form

SS;N=2
B (s, θ) = 8π

√
sδ(θ) + iT SB (s, θ) ,

SS;N=2
F (s, θ) = 8π

√
sδ(θ) + iT SF (s.θ) , (296)

where

T S;N=2
B (s, θ) = −8πi

√
s(cos(πλ)− 1)δ(θ) + sin(πλ)(4i

√
s cot(θ/2)− 8m) ,

T S;N=2
F (s, θ) = −8πi

√
s(cos(πλ)− 1)δ(θ) + sin(πλ)(4i

√
s cot(θ/2) + 8m) . (297)

Note that as
√
s → 2m (297) reproduces the straightforward non-relativistic limit of the

N = 1 theory (285).

In other words the conjectured S channel S matrix for the N = 2 theory takes

the following form in the center of mass frame

SS;N=2
B (s, θ) = 8π

√
s cos(πλ)δ(θ) + i sin(πλ)

(
4i
√
s cot(θ/2)− 8m

)
,

SS;N=2
F (s, θ) = 8π

√
s cos(πλ)δ(θ) + i sin(πλ)

(
4i
√
s cot(θ/2) + 8m

)
. (298)

We explicitly show that the conjectured S channel S matrix is unitary in the following

section.
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4.4 Unitarity

In this section, we first show that the S matrices in the T and U channel obey the unitarity

conditions (190) and (191) at leading order in the large N limit. As the relevant unitarity

equations are linear, the unitarity equation is a relatively weak consistency check of the S

matrices computed in this chapter.

We then proceed to demonstrate that the S matrix (279) also obeys the con-

straints of unitarity. As the unitarity equation is nonlinear in the S channel, this constraint

is highly nontrivial, we believe it provides an impressive consistency check of the conjecture

(279).

4.4.1 Unitarity in the T and U channel

We begin by discussing the unitarity condition for the T (adjoint) and U (particle - particle)

channels. Firstly we note that the S matrices in these channels are O(1/N). Therefore

the LHS of (190) and (191) are O(1/N2). It follows that the unitarity equations (190) and

(191) are obeyed at leading order in the large N limit provided

TB(p1,p2,p3,p4) = T ∗B (p3,p4,p1,p2) ,

TF (p1,p2,p3,p4) = T ∗F (p3,p4,p1,p2) . (299)

The four boson and four fermion S matrices in the T channel are given in terms

of the universal functions in (252) and (253) after applying the momentum assignments

(266). It follows that (299) holds in the T channel provided

T TB (p+ q,−k − q, p,−k) = T T∗B (p,−k, p+ q,−k − q) ,

T TF (p+ q,−k − q, p,−k) = T T∗F (p,−k, p+ q,−k − q) . (300)
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This equation may be verified to be true (see below for some details).

Similarly the Ud channel S matrix is obtained via the momentum assignments

(260); It follows that (299) is obeyed provided

T UdB (p+ q, k, p, k + q) = T Ud∗B (p, k + q, p+ q, k) ,

T UdF (p+ q, k, p, k + q) = T Ud∗F (p, k + q, p+ q, k) , (301)

which can also be checked to be true.

Finally in the Ue channel it follows from the momentum assignments (263) that

(299) holds provided

T UeB (k, p+ q, p, k + q) = T Ue∗B (p, k + q, k, p+ q) ,

T UeF (k, p+ q, p, k + q) = T Ue∗F (p, k + q, k, p+ q) , (302)

which we have also verified.

The T matrices for all the above channels of scattering are reported in §4.3.9.

Note that the starring of the T matrices in (299) also involves a momentum exchange

p1 ⇔ p3 and p2 ⇔ p4. It follows that under this exchange q → −q. 69

In verifying (300), (301) and (302) we have used the fact that the functions JB and

JF are both invariant under the combined operation of complex conjugation accompanied

by the flip q → −q (see (488)). We also use the fact that in each case (T, Ud and Ue) the

factor E(q, p − k, p + k) flips sign under the momentum exchange p1 ⇔ p3 and p2 ⇔ p4;

the sign obtained from this process compensates the minus sign from complex conjugating

69For instance in the T channel, we get the equations

p′ + q′ = p , p′ = p+ q , −k′ − q′ = −k , −k′ = −k − q . (303)

It follows that q′ = −q.
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the explicit factor of i. 70

4.4.2 Unitarity in S channel

The S matrix in the S channel is of O(1) and one has to use the full non-linear unitarity

conditions (195) and (196) . We reproduce them here for convenience.

1

8π
√
s

∫
dθ

(
− Y (s)(T SB (s, θ) + 4Y (s)T Sf (s, θ))(T S∗B (s,−(α− θ)) + 4Y (s)T S∗f (s,−(α− θ)))

+T SB (s, θ)T S∗B (s,−(α− θ))
)

= i(T S∗B (s,−α)− T SB (s, α)) ,

(304)

1

8π
√
s

∫
dθ

(
Y (s)(T SB (s, θ) + 4Y (s)T Sf (s, θ))(T S∗B (s,−(α− θ)) + 4Y (s)T S∗f (s,−(α− θ)))

−16Y (s)2T Sf (s, θ)T S∗f (s,−(α− θ))
)

= i4Y (s)(−T Sf (s, α) + T S∗f (s,−α)) ,

(305)

where

Y (s) =
−s+ 4m2

16m2
(306)

is as defined in (183), and T SB corresponds to the bosonic T matrix while T Sf corresponds

to the phase unambiguous part of the fermionic T matrix in the Singlet (S) channel given

in (280) (also see (275)). In center of mass coordinates it takes the form

T Sf (s, θ) = −T
S
F (s, θ)

4Y (s)
. (307)

70The unitarity conditions in these channels are simply the statement that the S matrices are real. The
reality of S matrices is tightly connected to the absence of two particle branch cuts in the S matrices in
these channels at leading order in large N .
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Substituting the above into (304) and (305), the conditions for unitarity may be rewritten

as

1

8π
√
s

∫
dθ

(
− Y (s)(T SB (s, θ)− T SF (s, θ))(T S∗B (s,−(α− θ))− T S∗F (s,−(α− θ)))

+T SB (s, θ)T S∗B (s,−(α− θ))
)

= i(T S∗B (s,−α)− T SB (s, α)) , (308)

1

8π
√
s

∫
dθ

(
Y (s)(T SB (s, θ)− T SF (s, θ))(T S∗B (s,−(α− θ))− T S∗F (s,−(α− θ)))

−T SF (s, θ)T S∗F (s,−(α− θ))
)

= i(T SF (s, α)− T S∗F (s,−α)) . (309)

Let us pause to note that under duality TB → TF and vice versa; it follows then (308)

and (309) map to each other under duality. In other words the unitarity conditions are

compatible with duality.

We will now verify that our S channel S matrix is indeed compatible with unitar-

ity. Let us recall that the angular dependence of the S matrix, in the center of mass frame

is given by

T SB = HBT (θ) +WB − iW2δ(θ) ,

T SF = HFT (θ) +WF − iW2δ(θ) , (310)

where

T (θ) = i cot(θ/2).

We will list the particular values of the coefficient functions HB(s) etc below; we will be

able to proceed for a while leaving these functions unspecified.
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Substituting (310) in (308) and doing the angle integrations71 we find that (308)

is obeyed if and only if

HB −H∗B =
1

8π
√
s

(W2H
∗
B −HBW

∗
2 ) ,

W2 +W ∗
2 = − 1

8π
√
s

(W2W
∗
2 + 4π2HBH

∗
B) ,

WB −W ∗
B =

1

8π
√
s

(W2W
∗
B −W ∗

2WB)− i

4
√
s

(HBH
∗
B −WBW

∗
B)− iY

4
√
s

(WB −WF )(W ∗
B −W ∗

F ) .

(312)

Similarly (309) is obeyed if and only if

HF −H∗F =
1

8π
√
s

(W2H
∗
F −HFW

∗
2 ) ,

W2 +W ∗
2 = − 1

8π
√
s

(W2W
∗
2 + 4π2HFH

∗
F ) ,

WF −W ∗
F =

1

8π
√
s

(W2W
∗
F −W ∗

2WF )− i

4
√
s

(HFH
∗
F −WFW

∗
F )− iY

4
√
s

(WB −WF )(W ∗
B −W ∗

F ) .

(313)

The first two equations of (312) and (313) are entirely identical to the first two equations of

equation 2.66 in [61] for the non-supersymmetric case. The third equation has an additional

contribution due to supersymmetry. Note that (312) and (313) are compatible with duality

under HB → HF and WB → WF and vice versa.

Let us now proceed to verify that the equations (312) and (313) are indeed obeyed;

for this purpose we need to use the specific values of the coefficient functions in (310).

These functions are easily read off from the formulae (282) (that we reproduce here for

71The angle integrations in (308) can be done by using the formula∫
dθPv cot

(
θ

2

)
Pv cot

(
α− θ

2

)
= 2π − 4π2δ(α), (311)

where Pv stands for principal value. See (478) for a simple check of this formula.
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convenience)

T SB = −8πi
√
s(cos(πλ)− 1)δ(θ) +

sin(πλ)

πλ

(
4πiλ
√
s cot(θ/2) + JB(

√
s, λ)

)
,

T SF = −8πi
√
s(cos(πλ)− 1)δ(θ) +

sin(πλ)

πλ

(
4πiλ
√
s cot(θ/2) + JF (

√
s, λ)

)
, (314)

from which we find

WB = JB(
√
s, λ)

sin(πλ)

πλ
,

WF = JF (
√
s, λ)

sin(πλ)

πλ
, (315)

where the explicit form of the J functions are given in (272). While we also identify

HB = HF = 4
√
s sin(πλ), W2 = 8π

√
s(cos(πλ)− 1), T (θ) = i cot(θ/2) . (316)

Using the above relations it is very easy to see that the first two equations in each of (312)

and (313) are satisfied. The first equation in each of (312) and (313) holds because HB, HF

and W2 are all real. The second equation in each case boils down to a true trigonometric

identity.

The functions WB and WF occur only in the third equation in (312) and (313).

These equations assert two nonlinear identities relating the (rather complicated) JB and

JF functions. We have verified by explicit computation that these identities are indeed

obeyed. It follows that the conjectured S matrix (279) is indeed unitary.

At the algebraic level, the satisfaction of the unitarity equation appears to be a

minor miracle. A small mistake of any sort (a factor or two or an incorrect sign) causes

this test to fail badly. In particular, unitarity is a very sensitive test of the conjectured

form (279) of the S matrix. Let us recall again that this conjecture was first made in [61],

where it was shown that it leads to a unitary 2 → 2 S matrix. The supersymmetric S

matrices of this chapter are more complicated than the S matrices of the purely bosonic
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or purely fermionic theories of [61]. In particular the unitarity equation for four boson and

four fermion S matrices is different in this chapter from the corresponding equations in

[61] (the difference stems from the fact that two bosons can scatter not just to two bosons

but also to two fermions, and this second process also contributes to the quadratic part of

the unitarity equations). Nonetheless the prescription (279) adopted from [61] turns out

to give results that obey the modified unitarity equation of this chapter. In our opinion

this constitutes a very nontrivial check of the crossing symmetry relation (279) proposed

in [61].

The unitarity equation is satisfied for the arbitrary N = 1 susy theory, and so is,

in particular obeyed for the N = 2 theory. Recall that the N = 2 theory has a particularly

simple S matrix (297). In fact in the T and U channels the N = 2 S matrix is tree level

exact at leading order in large N . According to the rules of naive crossing symmetry the

S channel S matrix would also have been tree level exact. This result is in obvious conflict

with the unitarity equation: in the equation −i(T − T †) = TT † the LHS vanishes at tree

level while the RHS is obviously nonzero. The modified crossing symmetry rules (279)

resolve this paradox in a very beautiful way. According to the rules (279), the T matrix is

not Hermitian even if T naive is; as the term in (279) proportional to identity is imaginary.

It follows from (279) that both LHS and the RHS of the unitarity equation are nonzero;

they are infact equal, as we now pause to explicitly demonstrate. In the N = 2 limit (see

(297)) we have

HB = HF = 4
√
s sin(πλ) ,

WB = −8m sin(πλ) ,

WF = 8m sin(πλ) ,

W2 = 8π
√
s(cos(πλ)− 1) . (317)

The first equation in (312) is satisfied because everything is real. We have checked that the
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second equation is satisfied using a trigonometric identity. 72 The third equation works

because we have

(HBH
∗
B −WBW

∗
B) = −16 sin2(πλ)(−s+ 4m2) (318)

and

Y (WB −WF )(W ∗
B −W ∗

F ) = 16 sin2(πλ)(−s+ 4m2) (319)

the other terms don’t matter because everything else is real. The same thing is true for

(313) since

(HFH
∗
F −WFW

∗
F ) = −16 sin2(πλ)(−s+ 4m2) (320)

and thus the unitarity conditions are satisfied by the conjectured S matrix (280) in the

N = 2 theory as well.

4.5 Pole structure of S matrix in the S channel

The S channel S matrix studied in the last two sections turns out to have an interesting

analytic structure. In this section we will demonstrate that the S matrix has a pole

whenever w < −1. As we demonstrate below the pole is at threshold at w = −1, migrates

to lower masses as w is further reduced until it actually occurs at zero mass at a critical

value w = wc(λ) < −1. As w is further reduced, the squared mass of the pole increases

again, until the pole mass returns to threshold at w = −∞.

In order to establish all these facts let us recall the structure of four boson and

four fermion S matrix in the S channel. The S matrices take the form (see (272))

T SB =
nb
d1d2

, T SF =
nf
d1d2

, (321)

72This is the only equation in which the LHS and RHS are both nonzero. The LHS is the imaginary
part of the coefficient of identity.
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where

d1 =− 4|m|2
(

sgn(λ)(w − 1)

((
1 + y

1− y

)λ
− 1

)
+ y

(
−w

(
1 + y

1− y

)λ
+ w +

(
1 + y

1− y

)λ
+ 3

))
,

d2 = sgn(λ)(w − 1)

((
1 + y

1− y

)λ
− 1

)
+ y

(
w

((
1 + y

1− y

)λ
− 1

)
+ 3

(
1 + y

1− y

)λ
+ 1

)
,

(322)

nb =− 32|m|3y sin(πλ)

(
8 sgn(λ)(w + 1)y

(
1 + y

1− y

)λ
+ (w − 1)(sgn(λ)− y)

(
1 + y

1− y

)2λ

(sgn(λ)(w − 1) + (w + 3)y)

− (w − 1)(sgn(λ) + y)(sgn(λ)(w − 1)− (w + 3)y)

)
,

nf =32|m|3y sin(πλ)

(
8 sgn(λ)(w + 1)y

(
1 + y

1− y

)λ
− (w − 1)(sgn(λ)− y)

(
1 + y

1− y

)2λ

(sgn(λ)(w − 1) + (w + 3)y)

+ (w − 1)(sgn(λ) + y)(sgn(λ)(w − 1)− (w + 3)y)

)
, (323)

where y =
√
s/2|m|. Through this discussion we assume that λm > 0 (recall this condition

was needed for duality invariance).

The denominators d1, d2 and the numerators are all polynomials of y and the

quantity

X =

(
1 + y

1− y

)λ
.

Most of the interesting scaling behaviors we will encounter below are a consequence of the

dependence of all quantities on X. Note that d1 and d2 are linear functions of X while nb

and nf are quadratic functions of X. It is consequently possible to recast nb and nf in the
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form

nb = abd1d2 + bbd1 + cbd2 ,

nf = afd1d2 + bfd1 + cfd2 .

Here ab, bb, cb, af , bf and cf are polynomials of y (but are independent of X) and are given

by

ab = y ,

bb = (w − 1)(sgn(λ) + y)2 ,

cb = −4|m|2(sgn(λ)− y)(sgn(λ)(w − 1)− (w + 3)y) ,

af = y ,

bf = −(w − 1)
(
1− y2

)
,

cf = 4|m|2(sgn(λ) + y)(sgn(λ)(w − 1)− (w + 3)y) . (324)

In order to study the poles of the S matrix we need to investigate the zeroes of

the functions d1 and d2. Let us first consider the case λ > 0. In this case it turns out that

d1(y) has a zero for w ∈ (−∞, wc], while d2(y) has a zero in the range w ∈ [wc,−1] where

wc(λ) = 1− 2

|λ| . (325)

At w = −∞ the zero of d1 occurs at y = 1. As w is increased the y value of the zero

decreases, until it reaches y = 0 at w = wc. At larger values of w, d1 no longer has a zero.

However d2(y) develops a zero. The zero of d2(y) starts out at y = 0 when w = wc, and

then increases, reaching y = 1 at w = −1. At larger values of w neither d1 nor d2 have a

zero.

When λ < 0 we have an identical situation except that the roles of d1 and d2

are reversed. d2(y) has a zero for w ∈ (−∞, wc], while d1(y) has a zero in the range
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w ∈ [wc,−1]. At w = −∞ the zero of d2 occurs at y = 1. As w is increased the y value of

the zero decreases, until it reaches y = 0 at w = wc. At larger values of w, d2 no longer

has a zero. However d1(y) develops a zero. The zero of d1(y) starts out at y = 0 when

w = wc, and then increases, reaching y = 1 at w = −1. At larger values of w neither d1

nor d2 have a zero.

In summary our S matrix has a pole for w ∈ (−∞,−1]. The pole lies at threshold

at the end points of this range, and becomes massless at w = wc. There are clearly three

special values of w in this range: w = −1, w = wc and w = −∞. In the rest of this section

we examine the neighborhood of three special points in turn.

4.5.1 Behavior near w = −1− δw

In this subsection we study the pole in the neighborhood of w = −1. When w → −1− δw
with 0 < δw << 1, we also expand y → 1− δy (where 0 < δy << 1) and find that

d1 ∼4|m|2
(

(sgn(λ)− 1)

(
δw − 2

(
2

δy

)λ)
+ 2(sgn(λ) + 1)

)
,

d2 ∼(sgn(λ) + 1)

(
2−

(
2

δy

)λ
δw

)
− 2

(
2

δy

)λ
(sgn(λ)− 1) ,

ab ∼1− δy ,

bb ∼− (2 + δw)(sgn(λ) + 1− δy)2 ,

cb ∼4|m|2(sgn(λ)− 1 + δy)(sgn(λ)(2 + δw) + (2− δw)(1− δy)) ,

af ∼1− δy ,

bf ∼2δy(2 + δw)(2− δy) ,

cf ∼− 4|m|2(sgn(λ) + 1− δy)(sgn(λ)(δw + 2) + (2− δw)(1− δy)) . (326)

164



Let us first consider the case λ > 0. In this case d1 equals 16m2 at leading order and so

does not have a zero for δw and δy small. On the other hand

d2 ∝
(

2−
(

2

δy

)λ
δw

)

and so vanishes when
δw

2
=

(
δy

2

)|λ|
,

δy

2
=

(
δw

2

) 1
|λ|

. (327)

When λ < 0, d2 is a monotonic function that never vanishes. However d1 vanishes

provided the condition (327) is met. It follows that the S matrix has a pole when (327) is

satisfied for both signs of λ.

The pole in the S matrix occurs due to the vanishing of the denominator d1d2.

As this denominator is the same for both the boson boson→ boson boson and the fermion

fermion → fermion fermion S matrices, both these scattering processes have a pole at the

value of y listed in (327). The residue of this pole is, however, significantly different in

the four boson and four fermion scattering processes. Let us first consider the four boson

scattering term. The residue of the pole is determined by bb evaluated at (327) (in the case

λ > 0) and cb evaluated at the same pole (in the case λ < 0). In either case we find the

structure of the pole for four boson scattering to be

TB ∼
(
δy
2

)|λ|
δw − 2

(
δy
2

)|λ| . (328)

In a similar manner the residue of the pole for four fermion scattering is determined by

bf evaluated at (327) (in the case λ > 0) and cf evaluated at the same pole (in the case

λ < 0). In either case we find that

TF ∼
(
δy
2

)1+|λ|

δw − 2
(
δy
2

)|λ| . (329)
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Notice that while the residue of the pole for four fermion scattering is suppressed compared

to the residue of the same pole for four boson scattering by a factor of (δw)
1
|λ| .

4.5.2 Pole near y = 0

There exists a critical value, w = wc(λ), at which both d1 and d2 have zeroes at y = 0. In

order to locate wc we expand d1 and d2 about y = 0. To linear order we find

d1 = d2 ∼y(λsgn(λ)(w − 1) + 2) . (330)

Clearly d1 and d2 have a common zero at y = 0 provided

w = wc(λ) = 1− 2

|λ| . (331)

In order to study this pole in the neighborhood of w = wc we set w = wc + δw

(with |δw| < 1) near y = δy (with 0 < δy << 1); expanding in δw and δy we find

d1 ∼
8|m|2δy (δwλ+ 2δy(1− |λ|))

sgn(λ)
,

d2 ∼
δy (δwλ− 2δy(1− |λ|))

sgn(λ)
,

nb ∼−
512|m|3 sin(πλ)δy2(−1 + |λ|)

λ
,

nf ∼
512|m|3 sin(πλ)δy2(−1 + |λ|)

λ
. (332)

The product d1d2 vanishes when

δy =
|λδw|

2(1− |λ|) , i.e. δy2 =
λ2δw2

4(1− |λ|)2
. (333)
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73 The residue of the pole at y = 0 for any sign of λ is given by substituting (333) into

the functions nb and nf in (332). We find the pole structure of the bosonic S matrix near

y = 0 to be

TB ∼ −
64|m| sin(πλ)(−1 + |λ|)
|λ| (δw2λ2 − 4δy2(1− |λ|)2)

. (334)

In a similar manner we find the pole structure of the fermion S matrix near y = 0 to be

TF ∼
64|m| sin(πλ)(−1 + |λ|)
|λ| (δw2λ2 − 4δy2(1− |λ|)2)

. (335)

4.5.3 Behavior at w → −∞

We now turn to the analysis of the pole structure at w → −∞. This is easily achieved by

setting w = − 1
δw

with 0 < δw << 1 and y → 1 − δy with 0 < δy << 1 . The various

functions (322) in the S matrix (321) have the behavior

d1 ∼
4|m|2
δw

(
(δy + sgn(λ)− 1)

(
1−

(
2

δy

)λ)
+ (sgn(λ) + 3)δw

)
,

d2 ∼
1

δw

(
(−δy + sgn(λ) + 1)−

(
2

δy

)λ
((sgn(λ)− 3)δw + sgn(λ) + 1)

)
,

ab ∼1− δy ,

bb ∼−
1

δw
(sgn(λ) + 1− δy)2 ,

cb ∼− 4|m|2(sgn(λ)− 1 + δy)(−sgn(λ)(1 +
1

δw
)− (3− 1

δw
)(1− δy)) ,

af ∼1− δy ,

bf ∼
δy

δw
(2− δy) ,

cf ∼4|m|2(sgn(λ) + 1− δy)(−sgn(λ)(1 +
1

δw
)− (3− 1

δw
)(1− δy)) . (336)

73 d1d2 also vanishes quadratically at δy = 0. Note however that both nb and nf are proportional to
δy2. Consequently the factors of δy2 cancel between the numerator and denominator.

167



Let us first consider the case λ > 0. In this case d2 is a monotonic function that never

vanishes and so does not have a zero for δw and δy small. On the other hand

d1 ∝
(
δw − 1

2

(
δy

2

)1−|λ|
)

and so vanishes when

δw =
1

2

(
δy

2

)1−|λ|

, δy =

(
4δw

2|λ|

) 1
1−|λ|

. (337)

When λ < 0, d1 is a constant −8m2. However d2 vanishes provided the condition (337) is

met. It follows that the S matrix has a pole when (337) is satisfied for both signs of λ.

The pole in the S matrix occurs due to the vanishing of the denominator d1d2.

As this denominator is the same for both the boson boson→ boson boson and the fermion

fermion → fermion fermion S matrices, both these scattering processes have a pole at the

value of y listed in (337). The residue of this pole is different in the four boson and four

fermion scattering processes as before. Let us first consider the four boson scattering term.

The residue of the pole is determined by cb evaluated at (337) (in the case λ > 0) and bb

evaluated at the same pole (in the case λ < 0). In either case we find the structure of the

pole for four boson scattering to be

TB ∼
(
δy
2

)2−|λ|

δw − 1
2

(
δy
2

)1−|λ| . (338)

In a similar manner the residue of the pole for four fermion scattering is determined by

cf evaluated at (327) (in the case λ > 0) and bf evaluated at the same pole (in the case

λ < 0). In either case we find that

TF ∼
(
δy
2

)1−|λ|

δw − 1
2

(
δy
2

)1−|λ| . (339)
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Notice that the residue of the pole for four boson scattering is suppressed by a factor of

(δw)
1

1−|λ| compared to the residue for four fermion scattering.

4.5.4 Duality invariance

It is most interesting to note that the statements and results obtained in the above sections

((327), (331) and (337)) are all duality invariant. This is most transparent from the

observation that under the duality transformation (130)74

d1 ↔ d1 ,

d2 ↔ d2 . (340)

Hence the zeroes of d1 and d2 ((327) and (337)) should map to themselves, and wc (331)

should be duality invariant. Also recollect that under duality the bosonic and fermionic S

matrices map to one another. Thus it is natural to expect that the pole in the bosonic S

matrix at w = −1 (327) should map to the pole of the fermionic S matrix at w = −∞
(337) and vice versa. Since both the bosonic and fermionic S matrices have a pole at

w = wc (331) at y = 0, this pole should be self dual.

Upon using (130) on (331) it is straightforward to see that it is duality invariant.

The slightly non-trivial part is the mapping of the two scaling regimes (327) and (337). It

is straightforward to obtain the identification from w = −∞ to w = −1 from (130)

− 1

δw∞
=

3− (−1− δw−1)

1 + (−1− δw−1)
∼ − 4

δw−1

(341)

Using the above result in (337) and applying (130) for λ it is easy to check that (327)

follows (and vice versa).

74Under duality transformation d1 and d2 transform into one another upto an overall non-zero factor.
This overall factor is cancelled by an identical contribution from the duality transform of the numerator.
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4.5.5 Scaling limit of the S matrix

In this subsection we discuss a particularly interesting near-threshold limit of the S-matrix.

It was shown in [64] that in this limit the S matrices for the boson-boson and fermion-

fermion reduce to the ones that are obtained by solving the Schrodinger equation with

Amelino-Camelia-Bak boundary conditions [81, 82]. In this subsection we illustrate that

the analysis of [64] applies for our results as well. We consider the near threshold region

y = 1 +
k2

2m2
(342)

with k << 1 and

w = −1− δw (343)

where 0 < δw << 1. In the limit

k → 0, δw → 0, ,
k2

4m2

(
δw

2

)− 1
|λ|

= fixed (344)

the J function in the bosonic S matrix ((321)) reduces to 75

JB = 8|m sin(πλ)|1 + eiπ|λ| AR
k2|λ|

1− eiπ|λ| AR
k2|λ|

. (345)

where

AR =
4|λ|

2
|m|2|λ|δw . (346)

Comparing our Lagrangian (129) with that of eq 1.1 of [64] we make the parameter iden-

tifications

δw =
δb4

8|m|πλ .

Substituting δw in (346) we see that (345) matches exactly with eq 1.12 of [64].

75Here we work in the regime
√
s > 2m i.e y > 1 and hence the appearance of the factors of eiπλ.
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4.5.6 Effective theory near w = wc?

As we have explained above, our theory develops a massless bound state at w = wc; the

mass of this bound state scales like w−wc in units of the mass of the scattering particles.

76 When w − wc � 1 there is a separation of scales between the new bound state and

all other excitations in our theory. In this regime the effective dynamics of the nearly

massless particles should be governed by an autonomous quantum field theory that makes

no reference to UV degrees of freedom. It seems likely that the superfield that creates the

bound states is a real N = 1 superfield. The fixed point that governs the dynamics of

this field presumably has a single relevant deformation; as it was possible to approach this

theory with a single fine tuning (setting w = wc). These considerations suggest that the

dynamics of the light bound state is governed by an N = 1 Wilson-Fisher theory built out

of a single real superfield. If this suggestion is correct it would imply that the long distance

dynamics of the light bound states is independent of λ. Given that the bound states are

gauge neutral this possibility does not seem absurd to us. It would be interesting to study

this suggestion in future work.

4.6 Discussion

In this chapter we have presented computations and conjectures for the all orders S matrix

in the most general renormalizable N = 1 Chern-Simons matter theory with a single

fundamental matter multiplet. Our results are consistent with unitarity if we assume that

the usual results of crossing symmetry are modified in precisely the manner proposed in

[61], whereas the usual crossing symmetry rules are inconsistent with unitarity. We view

this fact as a nontrivial consistency check of the crossing symmetry rules proposed in [61].

The ‘particle - antiparticle’ S matrix in the singlet channel conjectured in this

76We expect all of these results to continue to hold at finite N at least when N is large; in the rest of
the discussion we assume that N is finite, and so the interactions between two bound state particles is not
parametrically suppressed.
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chapter has an interesting analytic structure. In a certain range of superpotential pa-

rameters the S matrix has a bound state pole; a one parameter tuning of superpotential

parameters can be used to set the pole mass to zero. We find the existence of a mass-

less bound state in a theory whose elementary excitations are all massive fascinating. It

would be interesting to further investigate the low energy dynamics of these massless bound

states. It would also be interesting to investigate if these bound states are ‘visible’ in the

explicit results for the partition functions of Chern-Simons matter theories.

As we have explained in the previous section, our singlet sector particle - an-

tiparticle S matrix has a simple non-relativistic limit. It would be useful to reproduce

this scattering amplitude from the solution of a manifestly supersymmetric Schrodinger

equation.

The results of this chapter suggest many natural extensions and questions. First it

would be useful to generalize the computations of this chapter to the mass deformed N = 3

and especially to the mass deformed N = 6 susy gauge theories (the later is necessarily

a U(N) × U(M) theory; the methods of this chapter are likely to be useful in the limit

N → ∞ with M held fixed). This generalization should allow us to make contact with

earlier studies of scattering in ABJ theory [39–45] that were performed arbitrary values of

M and N but perturbatively (to given loop order) in λ.

At the N = 2 point the S matrices presented in this chapter are tree level exact

in the three non anyonic channels, and depend on λ in a very simple way in the singlet

channel. It is possible that this very simple result can be deduced in a more structural

manner using only general principles and N = 2 supersymmetry. It would be interesting

if this were the case.

As an intermediate step in the computation of the S matrix we evaluated the

off shell four point function of four superfields. This four point correlator was rather

complicated in the general N = 1 theory, but extremely simple at the N = 2 point. The
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four point correlator (or sum of ladder diagrams) is a useful intermediate piece in the

evaluation of two, three and four point functions of gauge invariant operators [51, 54, 65,

67]. The simplicity of the N = 2 results suggest that it would be rather easy to explicitly

evaluate such correlators, at least in special kinematic limits. Such computations could be

used as independent checks of duality as well as well as inputs into N = 2 generalizations of

the Maldacena-Zhiboedov solutions of Chern-Simons fundamental matter theories [48, 49].

All of the computations in this chapter have been performed under the assumption

λm ≥ 0. Atleast naively all of the checks of duality (including earlier checks involving the

partition function) fail when λm < 0. It would be interesting to understand why this is

the case. It is possible that our theory undergoes a phase transition as λm changes sign

(see [55, 58] for related discussion). It would be interesting to understand this better.

We believe that the results of this chapter put the crossing symmetry relations

conjectured in [61] on a firm footing. It would be interesting to find a rigorous proof of

these crossing relations, and even more interesting to hit upon a plausible generalization

of these relations to finite N and k. From a traditional perturbative point of view the

modified crossing symmetry rules are presumably related to infrared divergences. It thus

seems possible that one route to a proof and generalization of these relations lies in a

detailed study of the infrared divergences of the relevant Feynman graphs. We hope to

return to several of these questions in the future.

4.7 Appendices for Chapter 3

4.7.1 Notations and conventions

Gamma matrices In this section, we list the various notations and conventions used in

this chapter. We follow those of [83]. We list them here for convenience.

The metric signature is ηµν = {−,+,+}. In three dimensions the Lorentz group
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is SL(2,R) and it acts on two component real spinors ψα, where α are the spinor indices.

A vector is represented by either a real and symmetric spinor Vαβ or a symmetric traceless

spinor V β
α , where Vαβ = Vµγ

µ
αβ. We will choose our gamma matrices in the real and

symmetric form [84]

γµαβ = {I, σ3, σ1} . (347)

The charge conjugation matrix Cαβ is used to raise and lower the spinor indices

Cαβ = −Cβα =

0 −i
i 0

 = −Cαβ . (348)

In the above, note that Cβα = CT and Cαβ = (CT )−1. It follows that

CαγC
γβ = −δ β

α , (349)

where δ β
α is the usual identity matrix. The spinor indices are raised and lowered using the

NW-SE convention

ψα = Cαβψβ , ψα = ψβCβα . (350)

We also use the notation ψ2 = 1
2
ψαψα = iψ+ψ−. Note that ψ2 is Hermitian. Since ψα is

real, it is clear that ψα is imaginary since the charge conjugate matrix is imaginary.

The Clifford algebra is defined using the matrices (γµ) β
α and these can be obtained

by raising the indices using Cαβ as illustrated above

(γµ) β
α = {σ2,−iσ1, iσ3} . (351)

Note that these matrices are purely imaginary. Choosing the γµαβ as real and symmetric

always yields this and vice versa. Our µ = 0, 1, 3, since at some point we will do an

euclidean rotation from the µ = 0 direction to µ = 2. It is clear that (γ0)2 = 1, (γ1)2 =
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−1, (γ3)2 = −1, therefore with our metric conventions the Clifford algebra is satisfied by

(γµ) τ
α (γν) β

τ + (γν) τ
α (γµ) β

τ = −2ηµνδ β
α . (352)

Another very useful relation is

[γµ, γν ] = −2iεµνργρ , ε
013 = −1 . (353)

For completion we also note that

(γµ)αβ = {−I, σ3, σ1} . (354)

As a consequence of the Clifford algebra (352), we get a minus sign in the trace

k β
α k

α
β = −2k2 . (355)

The Euclidean counterpart of (352) is obtained by the standard Euclidean rotation γ0 →
iγ2

(γµ) β
α = {iσ2,−iσ1, iσ3} , µ = 2, 1, 3, (356)

and they satisfy the Euclidean Clifford algebra

(γµ) τ
α (γν) β

τ + (γν) τ
α (γµ) β

τ = −2δµνδ β
α . (357)

where δµν = (+,+,+). Note that the euclidean continuation of the formula (353) is

[γµ, γν ] = 2εµνργρ , ε
123 = 1 . (358)
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Superspace The two component Grassmann parameters θ that appear in various places

in superspace have the properties

∫
dθ = 0 ,

∫
dθθ = 1 ,

∫
d2θθ2 = −1 ,

∫
d2θθαθβ = Cαβ ,

∂θα

∂θβ
= δ α

β , Cαβ ∂

∂θβ
∂

∂θα
θ2 = −2 , θαθβ = −Cαβθ2 , θαθβ = −Cαβθ2 . (359)

The definition of the delta function in superspace follows from the relation

∫
d2θθ2 = −1 =⇒ δ2(θ) = −θ2 . (360)

Formally we write

δ2(θ1 − θ2) = −(θ1 − θ2)2 = −(θ2
1 + θ2

2 − θ1θ2). (361)

The superspace derivatives are defined as

Dα =
∂

∂θα
+ iθβ∂αβ , D

α = CαβDβ . (362)

We will mostly use the momentum space version of the above in which we replace i∂αβ →
kαβ

Dα =
∂

∂θα
+ θβkαβ . (363)

Note that the choice of the real and symmetric basis in 347 makes the momentum operator

Hermitian. The superspace derivatives satisfy the algebra

{Dα, Dβ} = 2kαβ . (364)
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The tracelessness of (γµ) β
α implies that

{Dα, Dα} = 0 . (365)

Care has to be taken when integrating by parts with superderivatives due to their anti-

commuting nature. From the expression for Dα we can construct

D2 =
1

2
DαDα =

1

2

(
Cβα ∂

∂θα
∂

∂θβ
+ 2θαk β

α

∂

∂θβ
+ 2θ2k2

)
. (366)

From the above it is easy to verify

(D2)2 = −k2,

D2Dα = −DαD
2 = kαβD

β

DαDβDα = 0 . (367)

using the properties given in (359). Yet another extremely useful relation is the action of

the superderivative square (366) on the delta function (361)

D2
θ1,k

δ2(θ1 − θ2) = 1− θα1 θβ2kαβ − θ2
1θ

2
2k

2 = exp(−θα1 θβ2kαβ) . (368)

We will often suppress the spinor indices in the exponential with the understanding that

the spinor indices are contracted as indicated above. Some useful formulae are

δ2(θ1 − θ2)δ2(θ2 − θ1) = 0 ,

δ2(θ1 − θ2)Dα
θ2,k

δ2(θ2 − θ1) = 0 ,

δ2(θ1 − θ2)D2
θ2,k

δ2(θ2 − θ1) = δ2(θ1 − θ2) , (369)

and the transfer rule

Dθ1,p
α δ2(θ1 − θ2) = −Dθ2,−p

α δ2(θ2 − θ1) . (370)
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The supersymmetry generators

Qθ,k
α = i

(
∂

∂θα
− θβkαβ

)
, (371)

satisfy the anticommutation relations

{Qα, Qβ} = 2kαβ ,

{Qα, Dβ} = 0 . (372)

It is also clear that the transfer rule (370) is the statement that the delta function of θ is

a supersymmetric invariant.

Superfields The scalar superfield Φ(x, θ) contains a complex scalar φ, a complex fermion

ψα, and a complex auxiliary field F . The vector superfield Γα(x, θ) consists of the gauge

field Vαβ, the gaugino λα, an auxiliary scalar B and an auxiliary fermion χα. The following

superfield expansions are used repeatedly in several places. We list them here for easy

reference.

Φ = φ+ θψ − θ2F ,

Φ̄ = φ̄+ θψ̄ − θ2F̄ ,

Φ̄Φ = φ̄φ+ θα(φ̄ψα + ψ̄αφ)− θ2(F̄ φ+ φ̄F + ψ̄ψ) ,

DαΦ = ψα − θαF + iθ2∂ β
α ψβ + iθβ∂αβφ ,

DαΦ̄DαΦ
∣∣
θ2

= θ2(2F̄F + 2iψ̄α∂ β
α ψβ − 2∂φ̄∂φ) ,

D2
q,θ(Φ̄Φ) = (φ̄F + F̄ φ+ ψ̄ψ) + θαq β

α (φ̄ψ + ψ̄φ) + θ2q2(φ̄φ)2 ,

Γα = χα − θαB + iθβA α
β − θ2(2λα − i∂αβχβ) . (373)
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4.7.2 A check on the constraints of supersymmetry on S matrices

In §4.2.4 we demonstrated that the manifestly supersymmetric scattering of any N = 1

theory in three dimensions is described by two independent functions. In this section, we

directly verify this result in theories whose offshell effective action takes the form (223) with

the function V that takes the particular supersymmetric form (227) (and so is determined

by four unspecified functions A, B C and D).

We wish to use (223) to study scattering. In order to do this we evaluate (223)

with the fields Φ and Φ̄ in that action chosen to be the most general linearized onshell

solutions to the equations of motion. In this appendix we focus on a particular scattering

process - scattering in the adjoint channel. At leading order in the large N limit we can

focus on this channel by choosing the solution for Φm and Φ̄m in (223) to be positive

energy solutions (representing initial states), while Φ̄m and Φn are expanded in negative

energy solutions (representing final states). The negative and positive energy solutions

are both allowed to be an arbitrary linear combination of bosonic and fermionic solutions.

Plugging these solutions into (223) yields a functional of the coefficients of the bosonic and

fermionic solutions in the four superfields in (223). The coefficients of various terms in this

functional are simply the S matrices. For instance the coefficient of the term proportional

to the product of four bosonic modes is the four boson scattering amplitude, etc.

Let us schematically represent the scattering process we study by Φ(θ1, p1)

Φ̄(θ2, p2)

→
 Φ̄(θ3, p3)

Φ(θ4, p4)


where the LHS represents the in-states and the RHS represents the out-states. The mo-

mentum assignments in (223) are

p1 = p+ q , p2 = −k − q , p3 = p , p4 = −k . (374)
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In component form (374) encodes the following S matrices

SB :

 φ(p1)

φ̄(p2)

→
 φ̄(p3)

φ(p4)

 , SF :

 ψ(p1)

ψ̄(p2)

→
 ψ̄(p3)

ψ(p4)



H1 :

 φ(p1)

φ̄(p2)

→
 ψ̄(p3)

ψ(p4)

 , H2 :

 ψ(p1)

ψ̄(p2)

→
 φ̄(p3)

φ(p4)



H3 :

 φ(p1)

ψ̄(p2)

→
 φ̄(p3)

ψ(p4)

 , H4 :

 ψ(p1)

φ̄(p2)

→
 ψ̄(p3)

φ(p4)



H5 :

 φ(p1)

ψ̄(p2)

→
 ψ̄(p3)

φ(p4)

 , H6 :

 ψ(p1)

φ̄(p2)

→
 φ̄(p3)

ψ(p4)

 (375)

These S matrix elements are all obtained by the process spelt out above in terms of the

four unknown functions A,B,C,D (which we will take to be arbitrary and unrelated). The

functions A,B,C,D are to be evaluated at the onshell conditions that follow from taking

the momenta onshell, but that will play no role in what follows.

It is not difficult to demonstrate that the boson-boson → boson boson and the

fermion-fermion → fermion fermion S matrices are given in terms of the functions A, B,
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C and D by 77

SB = (−4iAm+ 4Bm2 −Bq2
3 − q3(Ck− +Dp−)) ,

SF = (BCβαCδγ − iC CβαC+γC+δ + iDCδγC+αC+β)ūα(p3)uβ(p1)vγ(p2)v̄δ(p4)

= −B(4m2 + q2
3) + Ck−(2im− q3)−Dp−(q3 + 2im) . (377)

The S matrices for the remaining processes in (375) are also easily obtained: we

find

Hi = aiSB + biSF (378)

where the coefficients are given by

a1 =
(4m2 + q2

3) (q3(p− k)− + 2im(k + p)−)

32mk−p−
√
k+p+

, b1 =
(4m2 + q2

3) (q3(k − p)− + 2im(k + p)−)

32mk−p−
√
k+p+

a2 =
(4m2 + q2

3) (q3(p− k)− + 2im(k + p)−)

32mk−p−
√
k+p+

, b2 =
(4m2 + q2

3) (q3(k − p)− + 2im(k + p)−)

32mk−p−
√
k+p+

a3 = −2m+ iq3

4m
, b3 =

2m+ iq3

4m

a4 =
2m− iq3

4m
, b4 = −2m− iq3

4m

a5 =
(4m2 + q2

3) (q3(k + p)− − 2im(k − p)−)

32mk−p−
√
k+p+

, b5 = −i (4m2 + q2
3) (2m(k − p)− − iq3(k + p)−)

32mk−p−
√
k+p+

a6 =
i (4m2 + q2

3) (2m(k − p)− + iq3(k + p)−)

32mk−p−
√
k+p+

, b6 =
(4m2 + q2

3) (q3(k + p)− + 2im(k − p)−)

32mk−p−
√
k+p+

(379)

The above set of coefficients match with the coefficients directly evaluated from (155) and

77For the T channel we have used

vα(−k) =

(
−
√
k+

(q3−2im)

2
√
k+

)
, v̄α(−k − q) =

(
− 2m+iq3

2
√
k+

i
√
k+
)

uα(p+ q) =

(
−i√p+
2m−iq3
2
√
p+

)
, ūα(p) =

(
− (2im+q3)

2
√
p+

−√p+
)

(376)
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(156). This is a consistency check of the results of §4.2.4.

For theN = 2 theory the S matrix (154) should also obey an additional constraint

(see §4.7.3) that relates SB and SF through (404). For the T channel this relation was

evaluated in (288), substituting this in (378) it is easy to verify that the θ2θ3 and θ1θ4

terms in (154)

H5 :

 φ(p1)

ψ̄(p2)

→
 ψ̄(p3)

φ(p4)

 , H6 :

 ψ(p1)

φ̄(p2)

→
 φ̄(p3)

ψ(p4)

 (380)

vanish for the N = 2 theory. This is consistent with the fact that the corresponding terms

in the tree level component Lagrangian (129) vanish at the N = 2 point w = 1.

4.7.3 Manifest N = 2 supersymmetry invariance

In this appendix we discuss the general constraints on the S matrix obtained by impos-

ing N = 2 supersymmetry. In subsection 4.2.4 we have already solved the constraints

coming from N = 1 supersymmetry. As an N = 2 theory is in particular also N = 1

supersymmetric, the results of this appendix will be a specialization of those of subsection

4.2.4.

In the case of N = 2, we have to recall the notion of chirality. A ‘chiral’ (antichi-

ral) N = 2 superfield Φ is defined as

D̄αΦ = 0, DαΦ̄ = 0. (381)

We define the following:

θα =
1√
2

(θ(1)
α − iθ(2)

α ), θ̄α =
1√
2

(θ(1)
α + iθ(2)

α ). (382)

Where the superscripts (1) and (2) indicate the two (real) copies of the N = 1 superspace.
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With these definitions, we can define the supercharges

Qα =
1√
2

(Q(1)
α + iQ(2)

α ) = i

(
∂

∂θα
− iθ̄β∂βα

)
, (383)

Q̄α =
1√
2

(Q(1)
α − iQ(2)

α ) = i

(
∂

∂θ̄α
− iθβ∂βα

)
. (384)

Likewise, we can define the supercovariant derivative operators

Dα =
1√
2

(D(1)
α + iD(2)

α ) =

(
∂

∂θα
+ iθ̄β∂βα

)
, (385)

D̄α =
1√
2

(D(1)
α − iD(2)

α ) =

(
∂

∂θ̄α
+ iθβ∂βα

)
. (386)

The solutions to the constraints (381) for (off-shell) chiral and anti-chiral fields are

Φ = φ+
√

2θψ − θ2F + iθθ̄∂φ− i
√

2θ2(θ̄ /∂ψ) + θ2θ̄2∂2φ, (387)

Φ̄ = φ̄+
√

2θ̄ψ̄ − θ̄2F̄ − iθθ̄∂φ̄− i
√

2θ̄2(θ/∂ψ̄) + θ2θ̄2∂2φ̄. (388)

Here θθ̄∂φ = θαθ̄β∂αβ and θ̄ /∂ψ = θ̄α∂ β
α ψβ and so on.

In the context of the current chapter the chiral matter superfield transforms in

the fundamental representation of the gauge group while the antichiral matter superfield

transforms in the antifundamental representation of the gauge group. It follows that it is

impossible to add a gauge invariant quadratic superpotential to our action (recall that an

N = 2 superpotential can only depend on chiral multiplets) in order to endow our fields

with mass. However it is possible to make the matter fields massive while preserving N = 2

supersymmetry; the fields can be made massive using a D term.

As our theory has no superpotential, it follows that F = F̄ = 0 on shell. We are

interested in the action of supersymmetry on the on-shell component fields φ (φ̄) which
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are defined as

φ(x) =

∫
d2p

(2π)2
√

2p0

[
a(p)eip·x + ac†(p)e−ip·x

]
, (389)

φ̄(x) =

∫
d2p

(2π)2
√

2p0

[
ac(p)eip·x + a†(p)e−ip·x

]
. (390)

Likewise, for ψ (ψ†) we have

ψ(x) =

∫
d2p

(2π)2
√

2p0

[
uα(p)α(p)eip·x + vα(p)αc†(p)e−ip·x

]
, (391)

ψ†(x) =

∫
d2p

(2π)2
√

2p0

[
uα(p)αc(p)eip·x + vα(p)α†(p)e−ip·x

]
. (392)

In order to obtain this action we used the transformation properties listed in equations F.16-

F.20 of [52] and then specialized to the onshell limit. 78 The results may be summarized

as follows. As before, we define the (super) creation and annihilation operators

A(p) = a(p) + α(p)θ, Ac(p) = ac(p) + αc(p)θ, (393)

A†(p) = a†(p) + θα†(p), Ac†(p) = ac†(p) + θαc†(p). (394)

The action of Qα (and Q̄α) on A and A† is

[Qα, A(p)] = −i
√

2uα(p)

−→
∂

∂θ
, [Q̄α, A(p)] = i

√
2u∗α(p)θ,

[Qα, A
†(p)] = i

√
2v∗α(p)θ, [Q̄α, A

†(p)] = i
√

2vα(p)

−→
∂

∂θ
. (395)

78Note that the action of Qα on the chiral field Φ is different from the action on the anti-chiral field Φ̄.
Similar remarks apply for Q̄α.
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Similarly, the action of Qα (and Q̄α) on Ac and Ac† is

[Qα, A
c(p)] = i

√
2u∗α(p)θ, [Q̄α, A

c(p)] = −i
√

2uα(p)

−→
∂

∂θ
,

[Qα, A
c†(p)] = i

√
2vα(p)

−→
∂

∂θ
, [Q̄α, A

c†(p)] = i
√

2v∗α(p)θ. (396)

It is clear from (395) that (Qα + Q̄α)/
√

2 produces the action of the first supercharge Q
(1)
α ,

which we have seen earlier. That this action produces the correct differential operator

given earlier is obvious as well. Therefore, in order to obtain the second supercharge Q
(2)
α ,

we simply operate with the other linear combination (Qα − Q̄α)/i
√

2.

Note that for the N = 1 case, it doesn’t matter if we used A† or Ac† for the initial

states (A or Ac for the final states), as is clear from (396). This agrees with the fact that

the linear combination (Qα+Q̄α)/
√

2 produces the same equation on all S matrix elements.

However other linear combinations of the two N = 2 supersymmetries act differently on A

and Ac, and so the constraints of N = 2 supersymmetry are different depending on which

scattering processes we consider.

Particle - antiparticle scattering Let us first study the invariance of the following S

matrix element

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = 〈0|A4(p4, θ4)Ac3(p3, θ3)A†2(p2, θ2)Ac†1 (p1, θ1)|0〉. (397)

In the context of our chapter, this is the S matrix for particle - antiparticle scattering.

The full N = 2 invariance of the S matrix is expressed as(
4∑
i=1

Qi
α(pi, θi)

)
S(pi, θi) = 0, and

(
4∑
i=1

Q̄i
α(pi, θi)

)
S(pi, θi) = 0. (398)
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The above conditions (398) produce the following constraints for the S matrix element

(397)

(
4∑
i=1

Qi
α(pi, θi)

)
S(pi, θi) = 0⇒(
ivα(p1)

−→
∂

∂θ1

+ iv∗(p2)θ2 + iu∗α(p3)θ3 − iuα(p4)

−→
∂

∂θ4

)
S(pi, θi) = 0,(

4∑
i=1

Q̄i
α(pi, θi)

)
S(pi, θi) = 0⇒(
iv∗α(p1)θ1 + ivα(p2)

−→
∂

∂θ2

− iuα(p3)

−→
∂

∂θ3

+ iu∗α(p4)θ4

)
S(pi, θi) = 0.

(399)

We check in what follows that the combination(
1√
2

4∑
i=1

Qi
α(pi, θi) + Q̄i

α(pi, θi)

)
S(pi, θi) = 0 (400)

produces the same equation (and therefore solution) of N = 1 which we have already

found. We easily find that this gives(
ivα(p1)

−→
∂

∂θ1

+ivα(p2)

−→
∂

∂θ2

− iuα(p3)

−→
∂

∂θ3

− iuα(p4)

−→
∂

∂θ4

+ iv∗α(p1)θ1 + iv∗α(p2)θ2 + iu∗α(p3)θ3 + iu∗α(p4)θ4

)
S(pi, θi) = 0. (401)

Now, we turn to the other linear combination, which is(
1

i
√

2

4∑
i=1

Qi
α(pi, θi)− Q̄i

α(pi, θi)

)
S(pi, θi) = 0. (402)
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This readily gives the differential equation(
ivα(p1)

−→
∂

∂θ1

−ivα(p2)

−→
∂

∂θ2

+ iuα(p3)

−→
∂

∂θ3

− iuα(p4)

−→
∂

∂θ4

− iv∗α(p1)θ1 + iv∗α(p2)θ2 + iu∗α(p3)θ3 − iu∗α(p4)θ4

)
S(pi, θi) = 0. (403)

The equation (401) is the same as it was for the N = 1 theory, whereas the second

equation (403) must be obeyed by the same S matrix in the N = 2 point. Thus (408) is

an additional constraint obeyed by the N = 2 S matrix (154). It follows that (403) gives

a relation between SB and SF

SB (C12vα(p1)− C23uα(p3) + C24uα(p4) + v∗α(p2)) = SF (C∗13uα(p4) + C∗14uα(p3) + C∗34vα(p1))

(404)

Thus, the N = 2 S matrix for particle-antiparticle scattering consists of only one indepen-

dent function, with the other related by (404).

Particle - particle scattering Now, consider the other S matrix element (which was

considered in the previous N = 1 computation)

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = 〈0|A4(p4, θ4)A3(p3, θ3)A†2(p2, θ2)A†1(p1, θ1)|0〉. (405)
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The conditions (398) produce the following for the S matrix element (405)

(
4∑
i=1

Qi
α(pi, θi)

)
S(pi, θi) = 0⇒(
iv∗α(p1)θ1 + iv∗(p2)θ2 − iuα(p3)

−→
∂

∂θ3

− iuα(p4)

−→
∂

∂θ4

)
S(pi, θi) = 0,(

4∑
i=1

Q̄i
α(pi, θi)

)
S(pi, θi) = 0⇒(
ivα(p1)

−→
∂

∂θ1

+ ivα(p2)

−→
∂

∂θ2

+ iu∗α(p3)θ3 + iu∗α(p4)θ4

)
S(pi, θi) = 0.

(406)

For the combination (400) we get

(
ivα(p1)

−→
∂

∂θ1

+ivα(p2)

−→
∂

∂θ2

− iuα(p3)

−→
∂

∂θ3

− iuα(p4)

−→
∂

∂θ4

+ iv∗α(p1)θ1 + iv∗α(p2)θ2 + iu∗α(p3)θ3 + iu∗α(p4)θ4

)
S(pi, θi) = 0, (407)

and for the combination (402) we have

(
−ivα(p1)

−→
∂

∂θ1

−ivα(p2)

−→
∂

∂θ2

− iuα(p3)

−→
∂

∂θ3

− iuα(p4)

−→
∂

∂θ4

+ iv∗α(p1)θ1 + iv∗α(p2)θ2 − iu∗α(p3)θ3 − iu∗α(p4)θ4

)
S(pi, θi) = 0. (408)

Similar to the particle-anti particle case discussed in the previous section. The

equation (407) is the same as it was for the N = 1 theory, whereas the second equation

(408) must be obeyed by the same S matrix in the N = 2 point. It follows that (408) gives

a relation between SB and SF

SB (C13uα(p3) + C14uα(p4) + C12vα(p2) + v∗α(p1)) = SF (C∗24uα(p3)− C∗23uα(p4) + C∗34vα(p2))

(409)
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The N = 2 S matrix for particle-particle scattering consists of only one independent

function, with the other related by (409).

Thus in the N = 2 theory the S matrix is only made of one independent function.

Note that the results of this section are true for any three dimensional N = 2 theory. It

simply follows from the supersymmetric ward identity (398) and is independent of the

details of the theory.

4.7.4 Identities for S matrices in onshell superspace

In this subsection we demonstrate that the product of two supersymmetric S matrices is

supersymmetric. In other words we demonstrate that(
4∑
i=1

Qi
α(pi, θi)

)
S1 ? S2 = 0. (410)

provided S1 and S2 independently obey the same equation.

This can be analyzed as follows. We have the invariance (differential) equation

for S1 and S2

(−→
Q ṽ(p1) +

−→
Q ṽ(p2) +

−→
Qu(p3) +

−→
Qu(p4)

)
Si(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = 0

with p1 + p2 = p3 + p4. (411)

where the left-acting supercharges
−→
Q ṽ(p) are defined as

−→
Q ṽ(p) = i

(
vα(p)

−→
∂

∂θ
+ v∗α(p)θ

)
(412)

in contrast to (150), because we’re acting from the left. It may be easily checked that

this indeed produces the correct action of Q on A†. The reader is reminded that the (left-
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acting) supercharges
−→
Qu(p) are defined as

−→
Qu(p) = i

(
−uα(p)

−→
∂

∂θ
+ u∗α(p)θ

)
. (413)

Note that

(
−→
Q ṽ(p))

∗ =
−→
Qu(p) ,

(
−→
Qu(p))

∗ =
−→
Q ṽ(p) . (414)

We have used the fact that while complex conjugating, the grassmannian derivatives acting

from the left act from the right (and vice-versa) and to bring any such right acting derivative

to the left involves introducing an extra minus sign. Armed with the definitions above,

we can rewrite (411) as (all differential operators henceforth, unless noted otherwise, are

taken to act from the left)

(
Q∗u(p1) +Q∗u(p2) +Qu(p3) +Qu(p4)

)
Si(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = 0 .

(415)

The next step is to observe that

(
Q∗u(p1) +Q∗u(p2) +Qu(p3) +Qu(p4)

)
exp(θ1θ3 + θ2θ4)2p0

3(2π)2δ(2)(p1 − p3)

2p0
4(2π)2δ(2)(p2 − p4) = 0 (416)

after we set p1 = p3 and p2 = p4. We now act on (172) with

(
Q∗u(p1) +Q∗u(p2) +Qu(p3) +Qu(p4)

) ∫
dΓ

[
S1(p1, θ1,p2, θ2,k3, φ1,k4, φ2)

exp(φ1φ3 + φ2φ4)2k0
1(2π)2δ(2)(k3 − k1)2k0

2(2π)2δ(2)(k4 − k2)

S2(k1, φ3,k2, φ4,p3, θ3,p4, θ4)

]
. (417)
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Proceeding with (417), one finds

−
∫
dΓ

[ (
Qu(k3) +Qu(k4)

)
S1(p1, θ1,p2, θ2,k3, φ1,k4, φ2) exp(φ1φ3 + φ2φ4)

2k0
1(2π)2δ(2)(k3 − k1)2k0

2(2π)2δ(2)(k4 − k2)S2(k1, φ3,k2, φ4,p3, θ3,p4, θ4)

+ S1(p1, θ1,p2, θ2,k3, φ1,k4, φ2) exp(φ1φ3 + φ2φ4)2k0
1(2π)2δ(2)(k3 − k1)

2k0
2(2π)2δ(2)(k4 − k2)

(
Q∗u(k1) +Q∗u(k2)

)
S2(k1, φ3,k2, φ4,p3, θ3,p4, θ4)

]
. (418)

We next integrate by parts keeping in mind that only the derivative parts of the Q change

sign (as a consequence of the integration by parts). This gives

∫
dΓ

[
S1(p1, θ1,p2, θ2,k3, φ1,k4, φ2)(
Q̃u(k3) + Q̃u(k4) + Q̃∗u(k1) + Q̃∗u(k2)

)
exp(φ1φ3 + φ2φ4)2k0

1(2π)2δ(2)(k3 − k1)

2k0
2(2π)2δ(2)(k4 − k2)S2(k1, φ3,k2, φ4,p3, θ3,p4, θ4)

]
. (419)

Here, by Q̃u(p) and Q̃∗u(p) we mean

Q̃u(p) = i

(
uα(p)

−→
∂

∂θ
+ u∗α(p)θ

)
, (420)

Q̃∗u(p) = i

(
u∗α(p)

−→
∂

∂θ
− uα(p)θ

)
. (421)

It can be easily checked (just like (416)) that (on setting k3 = k1 and k4 = k2)

(
Q̃u(k3) + Q̃u(k4) + Q̃∗u(k1) + Q̃∗u(k2)

)
exp(φ1φ3 + φ2φ4)2k0

1(2π)2δ(2)(k3 − k1)

2k0
2(2π)2δ(2)(k4 − k2) = 0, (422)

completing the proof.

191



4.7.5 Details of the unitarity equation

In this section, we simplify the unitarity equations (180) and (181). We define

Z(pi) =
1

4m2
v∗(p1)v∗(p2) v(p3)v(p4)

and rewrite (180) and (181) as

∫
dΓ′ [SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

−Y (p3,p4) (SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

+4Y (p3,p4) (SB(p1,p2,k3,k4)S∗F (p3,p4,k3,k4) + SF (p1,p2,k3,k4)S∗B(p3,p4,k3,k4))

+16Y 2(p3,p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)
)]

= 2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4)

(423)

and

Z(pi)

∫
dΓ′ [−4Y (p3,p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+
(
4Y 2(p3,p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+Y (p3,p4) (SB(p1,p2,k3,k4)S∗F (p3,p4,k3,k4) + SF (p1,p2,k3,k4)S∗B(p3,p4,k3,k4))

+
1

4
SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

)]
= −2p0

3(2π)2δ(2)(p1 − p3)2p0
4(2π)2δ(2)(p2 − p4).

(424)
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Since the factor Z(pi) depends only on the external momenta pi, we may evaluate it on

the delta functions and this simply yields Z(pi) = 4Y (p3,p4). We finally arrive at

∫
dΓ′
[
SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

−Y (p3,p4)

(
SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

+4Y (p3,p4)
(
SB(p1,p2,k3,k4)S∗F (p3,p4,k3,k4) + SF (p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

)
+ 16Y 2(p3,p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

)]
= 2p0

3(2π)2δ(2)(p1 − p3)2p0
4(2π)2δ(2)(p2 − p4)

(425)

and

∫
dΓ′
[
− 16Y 2(p3,p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

+Y (p3,p4)

(
SB(p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

+4Y (p3,p4)
(
SB(p1,p2,k3,k4)S∗F (p3,p4,k3,k4) + SF (p1,p2,k3,k4)S∗B(p3,p4,k3,k4)

)
+ 16Y 2(p3,p4)SF (p1,p2,k3,k4)S∗F (p3,p4,k3,k4)

)]
= −2p0

3(2π)2δ(2)(p1 − p3)2p0
4(2π)2δ(2)(p2 − p4).

(426)

The above equations can be more compactly written as (184) and (185) respectively (since

p3 · p4 = p1 · p2).

4.7.6 Going to supersymmetric Light cone gauge

In this brief appendix we will demonstrate that (upto the usual problem with zero modes) it

is always possible to find a super gauge transformation that takes us to the supersymmetric

lightcone gauge Γ− = 0

Let us start with a gauge configuration that obeys our gauge condition Γ− = 0.

Starting with this gauge configuration, we will now demonstrate that we can perform a
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gauge transformation that will take Γ− to any desired value, say Γ̃−.

Performing the gauge transformation (122) we find that the new value of Γ− is

simply D−K. Let

K = M + θζ − θ2P, (427)

where M, ζα, P are gauge parameters. It follows that

D−K = ζ− − θ−(∂−+M + P ) + θ+∂−−M − iθ+θ−(∂−+ζ− − ∂−−ζ+) (428)

Now let us suppose that

−Γ̃− = χ− − θ−(B + A+−) + θ+A−− + iθ+θ−(2λ− + ∂−−χ+ − ∂−+χ−)

We need to find K so that

D−K = Γ̃−

Equating coefficients on the two sides of this equation we find

χ− + ζ− = 0 ,

B + A+− + P + ∂−+M = 0 ,

A−− + ∂−−M = 0 ,

2λ− + ∂−−(χ+ + ζ+)− ∂−+(χ− + ζ−) = 0 , (429)

which are then solved to get,

ζ− = −χ− ,

ζ+ = −2∂−1
−−λ− − χ+ ,

M = −∂−1
−−A−− ,

P = −B − A+− + ∂−+(∂−1
−−A−−) . (430)
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Substituting the above expressions in the expansion for K, we can write

K = −∂−1
−−A−− − iθ−(2∂−1

−−λ− + χ+) + iθ+χ− + iθ+θ−(∂−+∂
−1
−−A−− −B − A+−) . (431)

It can be checked that the form of K obtained above follows from

K = i∂−1
−−D−Γ− , (432)

which is a supersymmetric version of the gauge transformation used to generate an arbitrary

A− starting from usual lightcone gauge.

4.7.7 Details of the self energy computation

In this subsection, we will demonstrate that the self energy Σ(p, θ1, θ2) is a constant inde-

pendent of the momenta p. As discussed in §4.3.3 Σ(p, θ1, θ2) obeys the integral equation

Σ(p, θ1, θ2) = 2πλw

∫
d3r

(2π)3
δ2(θ1 − θ2)P (r, θ1, θ2)

− 2πλ

∫
d3r

(2π)3
Dθ2,−p
− Dθ1,p

−

(
δ2(θ1 − θ2)

(p− r)−−
P (r, θ1, θ2)

)
+ 2πλ

∫
d3r

(2π)3

δ2(θ1 − θ2)

(p− r)−−
Dθ1,r
− Dθ2,−r

− P (r, θ1, θ2, ) . (433)

We will now simplify the second and third terms in (433). In §4.3.3 we already observed

that the general form of the propagator is of the form given by (206). Using the formulae

(368) and (369) we can write (206) as

P (p, θ1, θ2) =
(
C1(p)D2

θ1,p
+ C2(p)

)
δ2(θ1 − θ2) (434)

195



In the second term of (433) we have to evaluate

C1(p)Dθ2,−p
− Dθ1,p

−
(
δ2(θ1 − θ2)D2

θ1,p
δ2(θ1 − θ2)

)
, (435)

since the product of δ2(θ1 − θ2) vanishes. We further use the formulae (369) and then the

transfer rule (370) to get

−C1(p)Dθ2,−p
− Dθ2,−p

− δ2(θ1 − θ2) = p−−C1(p)δ2(θ1 − θ2)

= p−−δ
2(θ1 − θ2)P (r, θ1, θ2) , (436)

where we have used the algebra (364) in the first line and (369) in the second.

Let us now proceed to simplify the third term in (433). We need to evaluate

δ2(θ1 − θ2)Dθ1,r
− Dθ2,−r

−
(
C1(p)D2

θ1,r
δ2(θ1 − θ2) + C2(p)δ2(θ1 − θ2)

)
= C1(p)δ2(θ1 − θ2)Dθ1,r

− Dθ2,−r
− D2

θ1,r
δ2(θ1 − θ2) , (437)

where we have used the transfer rule (370) and the fact that the product of δ2(θ1 − θ2)

vanishes. We further simplify

C1(p)δ2(θ1 − θ2)Dθ1,r
− Dθ2,−r

− D2
θ1,r
δ2(θ1 − θ2) = −C1(p)δ2(θ1 − θ2)rβ−D

θ1,r
− Dθ2,−r

β δ2(θ1 − θ2)

= C1(p)δ2(θ1 − θ2)r+
−D

θ1,r
− Dθ1,r

+ δ2(θ1 − θ2)

= C1(p)δ2(θ1 − θ2)(−ir+
−)D2

θ1,r
δ2(θ1 − θ2)

= r−−δ
2(θ1 − θ2)P (r, θ1, θ2) , (438)

where in the first line we have used (367), in the second line the expression is nonzero

for β = − and we have used the transfer rule (370), while the third line follows from the

identity −iD2 = D−D+ and the last line follows from the arguments used before.

Thus, using the results (438) and (436) in (433) we get the final form as given in
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(213)

Σ(p, θ1, θ2) = 2πλw

∫
d3r

(2π)3
δ2(θ1 − θ2)P (r, θ1, θ2)

− 2πλ

∫
d3r

(2π)3

p−−
(p− r)−−

δ2(θ1 − θ2)P (r, θ1, θ2)

+ 2πλ

∫
d3r

(2π)3

r−−
(p− r)−−

δ2(θ1 − θ2)P (r, θ1, θ2) . (439)

From the above it is clear that the momentum dependence cancels between the second and

third terms and we get

Σ(p, θ1, θ2) = 2πλ(w − 1)

∫
d3r

(2π)3
δ2(θ1 − θ2)P (r, θ1, θ2) . (440)

4.7.8 Details relating to the evaluation of the offshell four point function

Supersymmetry constraints on the offshell four point function In this section we

will constrain the most general form of the four point function using supersymmetry (see

fig 5). Supersymmetric invariance of the four point function in superspace (219) implies

p + q

p

k + q

k

θ1 θ3

θ2 θ4

p− k

Figure 5: Four point function in superspace
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that

(Qθ1,p+q +Qθ2,−p +Qθ3,−k−q +Qθ4,k)V (θ1, θ2, θ3, θ4, p, q, k) = 0 . (441)

This can be simplified using (371) and written as

4∑
i=1

(
∂

∂θαi
− pαβ(θ1 − θ2)β − qαβ(θ1 − θ3)β − kαβ(θ4 − θ3)β

)
V (θ1, θ2, θ3, p, q, k) = 0 . (442)

We can make the following variable changes to simplify the equation (we suppress spinor

indices for simplicity in notation)

X =
4∑
i=1

θi ,

X12 = θ1 − θ2 ,

X13 = θ1 − θ3 ,

X43 = θ4 − θ3 . (443)

The inverse coordinates are

θ1 =
1

4
(X +X12 + 2X13 −X43) ,

θ2 =
1

4
(X − 3X12 + 2X13 −X43) ,

θ3 =
1

4
(X +X12 − 2X13 −X43) ,

θ4 =
1

4
(X +X12 − 2X13 + 3X43) . (444)
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In terms of the new coordinates, the derivatives are then expressed as

∂

∂θ1

=
∂

∂X
+

∂

∂X12

+
∂

∂X13

,

∂

∂θ2

=
∂

∂X
− ∂

∂X12

,

∂

∂θ3

=
∂

∂X
− ∂

∂X13

− ∂

∂X43

,

4∑
i=1

∂

∂θi
= 4

∂

∂X
. (445)

Using the above, one can rewrite (442) as

(4
∂

∂X
− p.X12 − q.X13 − k.X43)V (X,X12, X13, X43, p, q, k) = 0, (446)

where p.X12 = pαβX
β
12. The above equation can be thought of as a differential equation in

the variables Xij and is solved by

V (θ1, θ2, θ3, θ4, p, q, k) = exp

(
1

4
X.(p.X12 + q.X13 + k.X43)

)
F (X12, X13, X43, p, q, k) .

(447)

This is the most general form of a four point function in superspace that is invariant under

supersymmetry.

Explicitly evaluating V0 In this subsection, we will compute the tree level diagram for

the four point function due to the gauge superfield interaction. (see fig 6). In fig 6 the two

diagrams are equivalent ways to represent the same process.

V0(θ1, θ2, θ3, θ4, p, q, k)gauge =
−2π

κ(p− k)−−
(Dθ2,−p
− −Dθ4,k

− )(Dθ1,p+q
− −Dθ3,−(k+q)

− )(δ2
13δ

2
24δ

2
12) ,

(448)
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p+ q

p

k + q

k

θ1

θ2

p+ q

p

k + q

k

θ1p+ q

p

k + q

k

θ1p+ q

p

k + q

k

θ1p+ q

p

k + q

k

θ3

θ4

p+ q

≡

θ1

θ2

δ2(θ1 − θ3)δ
2(θ2 − θ4)

p− k p− k

Figure 6: Four point function for gauge interaction: Tree diagram

where δ2
ij = δ2(θi − θj). 79

It can be explicitly checked that (see (221) for definition of Xij)

(Dθ2,−p
− −Dθ4,k

− )(Dθ1,p+q
− −Dθ3,−(k+q)

− )(δ2
13δ

2
24δ

2
12) = exp

(
1

4
X.(p.X12 + q.X13 + k.X43)

)
Ftree(X12, X13, X43) , (449)

where

Ftree = 2iX+
12X

+
13X

+
43(X−12 +X−34) . (450)

Thus the final result for the tree level diagram is given by

V0(θ1, θ2, θ3, θ4, p, q, k)gauge =− 4πi

κ(p− k)−−
exp

(1

4
X1234.(p.X12 + q.X13 + k.X43)

)
X+

12X
+
13X

+
43(X−12 +X−34) . (451)

It is clear that the shift invariant function (450) has the general structure of (227), with

79Note that each vertex factor in Fig 6 has a factor of D, resulting in two powers of D in (448).
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the appropriate identification

A(p, q, k) = −4πi

κ

1

(p− k)−−
, B(p, q, k) = −4πi

κ

1

(p− k)−−
(452)

Note that the Fig 6 has the Z2 symmetry (224). It is straightforward to check that (451)

is invariant under (224).

Closure of the ansatz (227) In this section, we establish the consistency of the ansatz

(227) as a solution of the integral equation (225). Consistency is established by plugging

the ansatz (227) into the RHS of this integral equation, and verifying that the resultant θ

structure is once again of the form given in (227). In other words we will show that the

dependence of

∫
d3r

(2π)3
d2θad

2θbd
2θAd

2θB

(
NV0(θ1, θ2, θa, θb, p, q, r)P (r + q, θa, θA)

P (r, θB, θb)V (θA, θB, θ3, θ4, r, q, k)

)
(453)

on θ1, θ2, θ3 and θ4 is given by the form (227) with appropriately identified functions A,

B, C D.

The algebraic closure described above actually follows from a more general closure

property that we now explain. Note that the tree level four point function V0 (226) is itself

of the form (227). The more general closure property (which we will explain below) is that

the expression

V12 = V1 ? V2 ≡
∫

d3r

(2π)3
d2θad

2θbd
2θAd

2θB

(
V1(θ1, θ2, θa, θb, p, q, r)P (r + q, θa, θA)

P (r, θB, θb)V2(θA, θB, θ3, θ4, r, q, k)

)
(454)

takes the form (227) whenever V1 and V2 are both also of the form (227). In other words

(454) defines a closed multiplication rule on expressions of the form (227).
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The explicit verification of the closure described the last paragraph follows from

straightforward algebra. Let 80

V1(θ1, θ2, θa, θb, p, q, r) = exp
(1

4
X12ab.(p.X12 + q.X1a + r.Xba)

)
F1(X12, X1a, Xba, p, q, r)

(455)

where

F1(X12, X1a, Xba, p, q, r) = X+
ABX

+
43

(
A1(p, r, q)X−12X

−
baX

+
1aX

−
1a +B1(p, r, q)X−12X

−
ba

+ C1(p, r, q)X−12X
+
1a +D1(p, r, q)X+

1aX
−
ba

)
. (456)

and

V2(θA, θB, θ3, θ4, r, q, k) = exp
(1

4
XAB34.(r.XAB + q.XA3 + k.X43)

)
F2(XAB, XA3, X43, r, q, k) ,

(457)

where

F2(XAB, XA3, X43, r, q, k) = X+
ABX

+
43

(
A2(r, k, q)X−ABX

−
43X

+
A3X

−
A3 +B2(r, k, q)X−ABX

−
43

+ C2(r, k, q)X−ABX
+
A3 +D2(r, k, q)X+

A3X
−
43

)
.

(458)

Evaluating the integrals over θa, θb, θA, θB, we find that V12 in (454) is of the form (227)

with

A12 = −1

4
q3

∫
d3R

(
(C1C2k− −D1D2p− + 2B2C1q3 − 2B1D2q3)r−

+ 2A2(D1p− + 2B1q3 + 2C1r−) + 2A1(C2k− + 2B2q3 + 2D2r−)

)
,

80We have used the notations X12ab = θ1 + θ2 + θa + θb and XAB34 = θA + θB + θ3 + θ4.
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B12 = −1

4

∫
d3R

(
(2A2 − C2k−)(2A1 +D1p−) + 4B1B2q

2
3 + 3C1D2r

2
−

+ (2A2C1 − 2A1D2 − C1C2k− −D1D2p− + 4B2C1q3 + 4B1D2q3)r−

)
,

C12 =− 1

2

∫
d3RC2q3(2A1 +D1p− + 2B1q3 + 3C1r−) ,

D12 =− 1

2

∫
d3RD1q3(−2A2 + C2k− + 2B2q3 + 3D2r−) . (459)

where

d3R =
d3r

(2π)3

1

(r2 +m2)((r + q)2 +m2)

It follows from (454) that

(V1 ? V2) ? V3 = V1 ? (V2 ? V3) (460)

as both expressions in (460) are given by the same integral (the expressions differ only

in the order in which the θ and internal momentum integrals are performed). In other

words the product defined above is associative. We have directly checked that the explicit

multiplication formula (459) defines an associative product rule.

Consistency check of the integral equation In this section, we demonstrate that the

integral equations (228)-(231) are consistent with the Z2 symmetry (224). First we note

that the Z2 invariance (224) of (227) imposes the following conditions on the unknown

functions of momenta

A(p, k, q) = A(k, p,−q) , B(p, k, q) = B(k, p,−q) ,

C(p, k, q) = −D(k, p,−q) , D(p, k, q) = −C(k, p,−q) . (461)
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These conditions can be written in the form of a matrix given by

E(p, k, q) = TE(k, p,−q) , (462)

where

T =


1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0

 , E(p, k, q) =


A

B

C

D

 (463)

The integral equations (228)-(231) can be written in differential form by taking

derivatives of p+ and using the formulae in Appendix §4.7.8 81

∂p+E(p, k, q) = S(p, k, q) +H(p, k−, q)E(p, k, q) (464)

where S(p, k, q) is a source term. The equation for k+ can be obtained from the above

equation as follows

∂k+E(p, k, q) = T∂k+E(k, p,−q) ,

= TS(k, p,−q) + TH(k, p−,−q)E(k, p,−q) ,

= TS(k, p,−q) + TH(k, p−,−q)TE(p, k, q) , (465)

where we have used (462). Applying k+, p+ derivative on (464) and (465) respectively and

81Taking derivatives with respect to p+ eliminates the r± integrals because of the delta functions. The
remaining r3 integrals can be easily performed (see Appendix §4.7.8).
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taking the difference we get

∂k+S(p, k, q) +H(p, k−, q)

(
TS(k, p,−q) + TH(k, p−,−q)TE(p, k, q)

)
= T∂p+S(k, p,−q) + TH(k, p−,−q)T

(
S(p, k, q) +H(p, k−,−q)E(p, k, q)

)
. (466)

Comparing coefficients of E(p, k, q) in the above equation we get the condition

[H(p, k−, q), TH(k, p−,−q)T ] = 0 . (467)

For the integral equations (228)-(231), the H(p, k−, q) are given by

H(p, k−, q3) =
1

a(ps, q3)


(6q3 − 4im)p− 2q3(2im+ q3)p− (2im+ q3)k−p− −(2im+ q3)p2

−

4p− 4q3p− −2k−p− 2p2
−

0 0 8q3p− 0

8im− 4q3 4q3(q3 − 2im) 2(q3 − 2im)k− (4im+ 6q3)p−


(468)

where

a(ps, q3) =

√
m2 + p2

s (4m2 + q2
3 + 4p2

s)

2π
. (469)

The matrix TH(k, p, − q3)T is

TH(k, p,−q3)T =
1

a(ks, q3)


−(4im+ 6q3)k− 2q3(q3 − 2im)k− −(q3 − 2im)k2

− (q3 − 2im)k−p−

4k− −4q3k− −2k2
− 2k−p−

−8im− 4q3 4(−2im− q3)q3 (4im− 6q3)k− −(4im+ 2q3)p−

0 0 0 −8q3k−

 ,

(470)

It is straightforward to check that (468) and (470) commute. Thus the system of differential

equations (464) obey the integrability conditions (467). Thus the differential equations

(464) will have solutions that respect the Z2 symmetry.
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Useful formulae The Euclidean measure for the basic integrals are

∫
(d3r)E
(2π)3

=
1

(2π)3

∫
rsdrsdr3dθ , (471)

where r2
s = r+r− = r2

1 +r2
2 and r2 = r2

s +r2
3. Here the integration limits are −∞ ≤ r3 ≤ ∞,

0 ≤ rs ≤ ∞. Most often we encounter integrals of the type,

H(q) =

∫
d3r

(2π)3

1

(r2 +m2)((r + q)2 +m2)
=

1

4π|q3|
tan−1

(∣∣∣ q3

2m

∣∣∣) (472)

where we have set q± = 0. Another frequently appearing integral is

∫
d3r

(2π)3

1

r2 +m2
= −|m|

4π
(473)

where we have regulated the divergence using dimensional regularization.

In the integral equations (228)-(231), there are no explicit functions of r3 appear-

ing in the integral equations and the r3 integral can be exactly done

∫ ∞
−∞

dr3

(r2
s + r2

3 +m2)(r2
s + (r3 + q3)2 +m2)

=
2π√

r2
s +m2(4m2 + q2

3 + 4r2
s)
. (474)

The results for the angle integrals are

∫ 2π

0

dθ

(r − p)− (k − r)−
=

2π

(k − p)−

(
k+

k2
s

θ[ks − rs]−
p+

p2
s

θ[ps − rs]
)
,∫ 2π

0

dθ r−
(r − p)− (k − r)−

=
2π

(k − p)−

(
θ[ks − rs]− θ[ps − rs]

)
,∫ 2π

0

dθ r2
−

(r − p)− (k − r)−
= − 2π

(k − p)−

(
k−(1− θ[ks − rs])− p−(1− θ[ps − rs])

)
. (475)

while the rs integrals are done with the limits from 0 to ∞. We will also make use of the

formula

∂z̄

(
1

z

)
= 2πδ2(z, z̄) (476)
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to derive the differential form of the integral equations.

For doing the angle integrations in (308) we used the formula (311)

∫
dθPv cot

(
θ

2

)
Pv cot

(
α− θ

2

)
= 2π − 4π2δ(α), (477)

where Pv stands for principal value. This formula is easily verified by calculating the

Fourier coefficients as follows∫
dα

2π
e−iα

∫
dθPv cot

(
θ

2

)
Pv cot

(
α− θ

2

)
=

∮
dω

2πω
ω−m

∮
dz

z
Pv

(
z + 1

z − 1

)
Pv

(
z + ω

ω − z

)

=


−i
∮
dz Pv

(
z+1
z−1

)
z−m−1 = −2π (m > 0)

0 (m = 0)

i
∮
dz Pv

(
z+1
z−1

)
z−m−1 = −2π (m < 0)

(478)

where z = eiθ and ω = eiα. By comparing (478) with Fourier coefficients of delta function,

δ(α) =
1

2π

∞∑
m=−∞

eimα, (479)

we can immediately check (311).

4.7.9 Properties of the J functions

The J functions are given by

JB(q3, λ) =
4πq3

κ

n1 + n2 + n3

d1 + d2 + d3

,

JF (q3, λ) =
4πq3

κ

−n1 + n2 + n3

d1 + d2 + d3

, (480)
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where the parameters are

n1 =16mq3(w + 1)e
iλ
(

2 tan−1 2|m|
q3

+πsgn(q3)
)
,

n2 =(w − 1)(q3 + 2im)(2m(w − 1) + iq3(w + 3))
(
−e2iπλsgn(q3)

)
,

n3 =(w − 1)(2m+ iq3)(q3(w + 3) + 2im(w − 1))e
4iλ tan−1 2|m|

q3 ) ,

d1 =(w − 1)
(
4m2(w − 1)− 8imq3 + q2

3(w + 3)
)
e

4iλ tan−1 2|m|
q3 ,

d2 =(w − 1)
(
4m2(w − 1) + 8imq3 + q2

3(w + 3)
)
e2iπλsgn(q3) ,

d3 =− 2
(
4m2(w − 1)2 + q2

3(w(w + 2) + 5)
)
e
iλ
(

2 tan−1 2|m|
q3

+πsgn(q3)
)
. (481)

Both the J functions (480) are even functions of q3

JB(q3, λ) = JB(−q3, λ) , JF (q3, λ) = JF (−q3, λ) . (482)

Therefore in (480) we can replace q3 with |q3| and rewrite them as

JB(|q3|, λ) =
4π|q3|
κ

(ñ1 + ñ2 + ñ3)

(d̃1 + d̃2 + d̃3)
,

JF (|q3|, λ) =
4π|q3|
κ

(−ñ1 + ñ2 + ñ3)

(d̃1 + d̃2 + d̃3)
, (483)

where

ñ1 =16m|q3|(w + 1)e
iλ
(

2 tan−1 2|m|
|q3|

+π
)
,

ñ2 =(w − 1)(|q3|+ 2im)(2m(w − 1) + i|q3|(w + 3))
(
−e2iπλ

)
,

ñ3 =(w − 1)(2m+ i|q3|)(|q3|(w + 3) + 2im(w − 1))e
4iλ tan−1 2|m|

|q3| ) ,

d̃1 =(w − 1)
(
4m2(w − 1)− 8im|q3|+ |q3|2(w + 3)

)
e

4iλ tan−1 2|m|
|q3| ,

d̃2 =(w − 1)
(
4m2(w − 1) + 8im|q3|+ |q3|2(w + 3)

)
e2iπλ ,

d̃3 =− 2
(
4m2(w − 1)2 + |q3|2(w(w + 2) + 5)

)
e
iλ
(

2 tan−1 2|m|
|q3|

+π
)
. (484)
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Another useful way to write the J function is to use the following identities

tan−1 2m

q
=
π

2
− tan−1 q

2m

tan−1 q

2m
=

1

2i
log

(
1 + iq

2m

1− iq
2m

)
(485)

Using this relations, it is easy to write the J functions in a factorized form as given in

(254)

JB(q, λ) =
4πq

κ

N1N2 +M1

D1D2

,

JF (q, λ) =
4πq

κ

N1N2 +M2

D1D2

, (486)

where

N1 =

((
2|m|+ iq

2|m| − iq

)−λ
(w − 1)(2m+ iq) + (w − 1)(2m− iq)

)
,

N2 =

((
2|m|+ iq

2|m| − iq

)−λ
(q(w + 3) + 2im(w − 1)) + (q(w + 3)− 2im(w − 1))

)
,

M1 =− 8mq((w + 3)(w − 1)− 4w)

(
2|m|+ iq

2|m| − iq

)−λ
,

M2 =− 8mq(1 + w)2

(
2|m|+ iq

2|m| − iq

)−λ
,

D1 =

(
i

(
2|m|+ iq

2|m| − iq

)−λ
(w − 1)(2m+ iq)− 2im(w − 1) + q(w + 3)

)
,

D2 =

((
2|m|+ iq

2|m| − iq

)−λ
(−q(w + 3)− 2im(w − 1)) + (w − 1)(q + 2im)

)
. (487)

Another useful property of the J function is manifest in the above form is its reality under

complex conjugation

JB(q, λ) = J∗B(−q, λ) , JF (q, λ) = J∗F (−q, λ) . (488)
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Yet another useful way to write the J function is to note that the basic integral

which appears in the four point function of scalars in an ungauged theory has the form

H(q) =

∫
d3r

(2π)3

1

(r2 +m2)((r + q)2 +m2)
=

1

4π|q3|
tan−1

(∣∣∣ q3

2m

∣∣∣) (489)

for q± = 0. Thus we can also write

JB(|q|, λ) =
4π|q|
κ

N1N2 +M1

D1D2

,

JF (|q|, λ) =
4π|q|
κ

N1N2 +M2

D1D2

, (490)

where

N1 =
(
e−8πiλ|q|H(q)(w − 1)(2m+ i|q|) + (w − 1)(2m− i|q|)

)
,

N2 =
(
e−8πiλ|q|H(q)(|q|(w + 3) + 2im(w − 1)) + (|q|(w + 3)− 2im(w − 1))

)
,

M1 =− 8m|q|((w + 3)(w − 1)− 4w)e−8πiλ|q|H(q) ,

M2 =− 8m|q|(1 + w)2e−8πiλ|q|H(q) ,

D1 =
(
ie−8πiλ|q|H(q)(w − 1)(2m+ i|q|)− 2im(w − 1) + |q|(w + 3)

)
,

D2 =
(
e−8πiλ|q|H(q)(−|q|(w + 3)− 2im(w − 1)) + (w − 1)(|q|+ 2im)

)
. (491)

Limits of the J function

N = 2 point The N = 1 theory studied in this chapter enjoys an enhanced

N = 2 supersymmetry when w = 1. Naturally in this limit we expect the J functions to

have a simplification. In particular we get

Jw=1
B =− 8πm

κ
,

Jw=1
F =

8πm

κ
. (492)
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Massless limit There exists a consistent massless limit for the J functions

Jm=0
B = Jm=0

F =
4π|q3|
κ

(w − 1)(w + 3) sin(πλ)

(w − 1)(w + 3) cos(πλ)− w(w + 2)− 5
. (493)

This expression is self dual under the duality map (130). Note that when w = 1 this

vanishes and is consistent with the m→ 0 limit of (492).

Non relativistic limit in the singlet channel The J functions for the S

channel are given in (272). The non-relativistic limit of the J functions is obtained by

taking
√
s → 2m with all the other parameters held fixed. In this limit, remarkably we

recover the N = 2 result.

J
√
s→2m

B =− 8πm

κ
,

J
√
s→2m

F =
8πm

κ
. (494)
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5 Conclusion

I conclude my thesis by summarizing the results in the topics presented in the thesis.

In the first part of the thesis is build upon the idea that in large spacetime dimensions

the nonlinear black hole dynamics is dual to equations of motion of a codimension one

non-gravitational “Membrane” moving in flat space-time.

In chapter 1 we have shown that membrane equations admit a simple static

solution with shape SD−p−2×Rp,1 . We studied the equations for small fluctuations about

this solution in a limit in which the amplitude and length scale of the fluctuations are

simultaneously scaled to zero as D is taken to infinity. We have demonstrated that the

resultant nonlinear equations, which capture the Gregory-Laflamme instability and its end

point, exactly agree with the effective dynamical ‘black brane’ equations due to Emparan,

Suzuki and Tanabe. Our results thus identify the ‘black brane’ equations as a special limit

of the membrane EOMs and so unify these approaches to large D black hole dynamics.

In chapter 2 we have demonstrated that this duality extends to all orders in a 1
D

expansion and outlined a systematic method for deriving the corrected membrane equation

in a power series of 1
D

. Through this method we determined the first subleading corrections

to the membrane equations of motion. We found a qualitatively new effect and showed

that the divergence of the membrane velocity is nonzero and proportional to the square

of the shear tensor in this order of perturbation theory; this is reminiscent of the entropy

current of hydrodynamics. We calculated the frequencies of light quasinormal modes from

our second order EOM about the Schwarzschild black hole. We noticed a perfect match

with earlier computations performed directly in the gravitational bulk.
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It would be interesting in future if we could simulate some of the membrane

EOM’s and see how much we can capture about the dynamics of the real black holes.

In future I would also like to address interesting unanswered structural questions about

gravity, viz. to understand about the second law (Wald Entropy) of thermodynamics in

higher derivative gravity.

In chapter 3 we studied the most general renormalizable N = 1 U(N) Chern-

Simons gauge theory coupled to a single (generically massive) fundamental matter multi-

plet. We presented computations and conjectures for the 2× 2 S-matrix in these theories

at leading order in the ‘t Hooft large N limit but can be applied at all orders in the ‘t

Hooft coupling and the matter self interaction. We have shown that our results are consis-

tent with unitarity if and only if we assume that the textbook results of channel crossing

symmetry are modified in precisely the manner proposed in [61]. We view this fact as a

nontrivial consistency check of the crossing symmetry rules proposed in [61]. The ‘particle-

antiparticle’ S-matrix in the singlet channel conjectured in this chapter has an interesting

analytic structure. In a specific range of superpotential parameters, the S-matrix has a

bound state pole. We have seen that one can tune the only arbitrary parameter superpo-

tential to set the pole mass to zero. We found the existence of a massless bound state in

a theory whose elementary excitations are all massive very much interesting.

Let me finish by mentioning that the Chern-Simons Matter theories, which I

have worked on, are also connected to many interesting areas like Bosonization and Quan-

tum Hall Physics and dualities (generalization of Particle/Vortex dualities) in 3D [85–87],

Trace Identities, modified crossing symmetry rules, relationship with ABJM theories, non-

supersymmetric modified Giveon-Kutasov dualities with two bosons and two fermions(one

fundamental and one antifundamental) and so on. However, the things we know today

might be the tip of the iceberg, and in the future, I would like to understand them better

and would try to contribute along these lines of research.
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