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“Reality is a cloud of possibility, not a point.”

-Amos Tversky
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Understanding Quantum Gravity and Strongly Coupled Field theories is a challenge that lies

at the forefront of theoretical physics. This is fundamental to improving our understanding

of various problems in physics: both theoretical and practical. In the various works presented

in this thesis, an attempt has been made to improve our current understanding of the above

mentioned problems. This has been done through various techniques like AdS/CFT duality,

bootstrap of scattering amplitudes and other techniques that enable the computation of

arbitrary scattering amplitudes in a quantum field theory.
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Chapter 1

Synopsis

1.1 Motivation

The discovery that the world we live in is inherently quantum is one of the biggest discov-

eries in the history of physics. The most natural mathematical framework that is used to

describe the nature around us is in terms of certain classical fields, which when appropriately

quantized, give an apt understanding of the many-body physics that surrounds us. While

there is little doubt that these quantum fields describe almost everything that we see around

us, such a description of nature in terms of the quantum fields comes with its own problems

that are both conceptual and technical.

An important conceptual problem that has plagued physicists for a whole century is that of

writing down a quantum theory of gravity. General Relativity (GR), which is another big

discovery of the twentieth century, is a classical theory of gravity that has withstood the test

of time in its own right. While there are well-understood methods that enable us to build

a quantum theory given a classical theory, one encounters some impassable problems when

trying to do the same for GR. While these problems are well-studied and well-understood,

and answered to difficult levels of satisfaction, we will not go into those subtilties and details

in this introduction, introducing them as and when needed in later chapters.

A technical problem that plagues most field theories is our inability to solve them in com-

plete generality. Perturbation theory has proved to be a useful and powerful technique to

describe the theories that can be written in terms of deformations of a theory for which

the exact solutions are known. Such techniques provide a reasonably correct description

of the concerned quantum field theories as long as the deformations are ‘small’, and have

been successfully applied to quantum field theories that describe electrodynamics (QED)

and weak forces. Perturbative techniques are not applicable to the theories where these de-

formations are not small: the strongly coupled quantum field theories. Such theories form an

1



2 Chapter 1

Figure 1.1: A representative diagram to demonstrate the Feynman diagrams containing
topologies with holes and handles that are suppressed in large N counting. In all the dia-
grams the double line notations are used in which gluons (particles in adjoint representation)
of a gauge theory (say SU(N) or U(N) or SO(N)) are denoted by double line notations.
The single lines denote the quarks in the theory (particles in fundamental representation).
The first Feynman diagram is what we call a planar diagram, since it can be drawn on a
sheet of paper. The second diagram above is an example of non-planar diagram, no amount
of deformations done to the line will make the diagram planar. The loop on the top can be
thought of as a handle to lift this entire diagram. The third diagram is a typical example

of diagrams with holes in them. The quark loop in the center is what we call a hole

important part of the description of the nature around us, like the theory of strong nuclear

interactions and various condensed matter systems. Over the decades, physicists have come

up with various approaches to understand such theories but what we have come to realise

is that there is no one-size-fits-all solution. The use of various of these techniques will form

an important part of the work that is presented in this synopsis and it would be instructive

to review them once in the introduction.1

A very important approach in understanding strongly coupled quantum field theories was

initiated in the seminal work of ’t Hooft in early 1970s [5, 6]. It was shown that increasing

the number of degrees of freedom (∼ N) in a quantum field theory leads to an unexpected

simplification that provides an extremely useful organising principle for the Feynman dia-

grams: non-planar diagrams with holes and handles are increasingly suppressed in powers of

N that depend on the topology of the Feynman diagrams (see Figure 1.1). While in general,

this gives a very good qualitative and conceptual understanding of a large class of strongly

interacting quantum field theories, quantitative success has been achieved only in a few spe-

cific cases, precisely because in most theories it is not possible to sum all the planar Feynman

graphs. In some cases where it is possible to sum all the planar Feynman diagrams, it is

often possible to invent some new effective fields which provide a classical description of the

original theory. As will become clear in the discussion below, AdS/CFT provides one such

description of strongly coupled field theories in terms of some new variables which describe

the physics classically. Such a classical description is also useful because by studying the

fluctuations in such variables one can understand the 1/N corrections of the original theory

without actually having to sum the non-planar Feynman diagrams.2

1There are also various numerical techniques like Lattice Gauge theory, which are very important. Since
they don’t form part of the work presented in this thesis, we will not review them here.

2Another useful example of such description for the vector models is provided in [7]; and for SYK-model
(discussed in chapter 3) in [8]



Chapter 1 3

Another approach that has been used time and again to solve problems not only in strongly

coupled quantum field theories but in general is Bootstrap (see [9] and references therein).

G. Chew, one of the original proponents of bootstrap, once described it as a collection of

techniques to “pull themselves up by their own bootstraps” using some minimal set of prin-

ciples that underlie the theory of interest. In general, when studying any quantum field

theory we work to compute various quantities that are representative of quantities that we

measure in experiments. These could be correlation functions of various operators, as is the

case in most condensed matter applications; or, these could be scattering amplitudes, as in

the case of particle physics. The most common approach to bootstrapping involves identify-

ing the symmetries of our theory, and the behaviour of these observables under application

of these symmetries (often these behaviours manifest themselves as Ward identities or some

modification of them). Enforcing that the observables respect these symmetries without

referring to the underlying theory, in particular, is the common theme of almost all boot-

strap techniques known. This makes the bootstrap techniques quite amenable to the study

of strongly coupled field theories, providing in-depth insights into the particular constraints

imposed by various symmetries of the theory. Historically, the studies in S-matrix bootstrap

in 1960s had eventually led to the birth of String theory, which was originally proposed as a

theory of strong interactions, but finally became a UV-complete theory of quantum gravity.

It is interesting how two apparently different problems in quantum field theories found a

solution in a single theory! Over the next two decades, string theory was developed into a

tightly constrained structure that unifies all the forces of nature into one single theory.

A very important tool to understand the strongly coupled quantum field theories: the

AdS/CFT conjecture, eventually emerged out of the study of String theory [10]. Originally

conjectured as a strong-weak coupling duality between string theory on AdS5×S5 and N= 4

Supersymmetric Yang-Mills (SYM) theory in 4-dimensions, the conjecture has since been

extended to arbitrary dimensions as a duality between a classical gravity theory (GR) on

AdSd+1 background,

ds2 =
L2

z2

(
dz2 − dt2 + d~x2

d−1

)
(1.1)

and a d-dimensional quantum (conformal) field theory, CFTd. In the above coordinates,

the boundary of the AdSd+1 lies at z = 0, and is conformally flat.3 The dual field theory is

said to ‘live’ on this boundary.

The power of this conjecture lies in the particular order of limits: the large N limit in

the dual field theory corresponds to a classical theory of strings on AdSd+1 background,

where the (stringy-)loop corrections are suppressed; a further strong coupling limit in the ’t

Hooft coupling, λ = g2
YMN � 1 corresponds to a classical theory of gravity. Thus, using a

‘dictionary’ that defines the duality one can compute observables in a strongly coupled field

3The metric on the boundary is conformally scaled flat metric ∼ L2

z2
ηµν , where the boundary coordinates

are {t, ~xd−1}.
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theory by doing the computations in a classical theory of gravity. The different limits of

the AdS/CFT correspondence are summarized in Figure 1.2. Table 1.1 summarizes some of

the elements of the dictionary that relate various quantities in the bulk to the quantities in

the field theory. Due to the fact that this duality relates a theory of quantum gravity to a

non-gravitating quantum field theory, the AdS/CFT correspondence has emerged, over the

years, as a tool that enables us to use quantum field theories to understand various aspects

of quantum gravity; and also use classical theory of gravity to understand strongly-coupled

quantum field theories, which otherwise lie outside the realm of perturbation theory.

Figure 1.2: Behaviour of the Gravity and Field theory description of AdS/CFT corre-
spondence in different regimes of parameters.

Bulk Field theory

Generating Functions4 Zbulk[φ0] = lim
ε→0

∫

φ(ε,x)=φ0(x)∼J(x)
gµν (ε,x)∼δµν

e
1

16πGN
Sg [gµν ]+Sm[φ]

Z[J ] = 〈e
∫
J(x)O(x)〉

Parameters 1
GN

N2

(
l

ls

)4

= 4πgsN λ = g2
YMN

Bulk fields dual to field theory operators

Scalars φ(z, x) O(x)

Fermions Ψα(z, x) ψα(x)

Gauge Fields Aµ(z, x) Jµ(x)

Spin-2 fields gµν(z, x) Tµν(x)

Table 1.1: A summary of some elements in AdS/CFT dictionary. The dictionary for the
various parameters in this table is for the particular case of AdS5/CFT4 correspondence.

4Here we are using ∼ symbol to denote that the quantities are related upto some scaling in terms of ε.
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In the work that is summarized in this synopsis, we have used both these aspects of

AdS/CFT to learn new lessons in quantum gravity as well as quantum field theories. In

section 1.2 we elaborate on how the radial coordinate of the AdS bulk is same as the direc-

tion of the RG flow in the field theory. Using the dictionary for the ‘double-trace operators’

between the bulk and field theory we improve upon certain aspects of the duality and give

precise relations between the flow equations of certain couplings when computed using the

bulk dual and when computed in the field theory.

Studies of simpler systems instead of directly studying the system of interest has often pro-

vided great insights in the past. In section 1.3 we consider a simpler case of a 1-dimensional

quantum mechanical model that shows a behaviour that points towards a possible existence

of a 2-dimensional bulk dual. We propose a bulk theory of gravity that is able to reproduce

some universal features of the 1-dimensional quantum mechanical model. We expect that

the study of such simpler systems will prove to be extremely crucial in our understanding

of AdS/CFT correspondence and quantum gravity in general.

As emphasised above, the study of quantum field theories revolves around computing the

observables that are directly measurable in experiments and one such important quantity

is the S-matrix. S-matrices are directly measurable in high-energy scattering experiments,

and provide transition probabilities for evolving from some initial state to a final state.

They carry crucial information about the interactions of the theory, their symmetries, their

spectrum of states and other properties like causality of the theory, among others. So it

is hardly surprising that a lot of study is dedicated to understanding the properties of

S-matrices of various theories.

In section 1.4 we revisit the Bootstrap approach to understand quantum field theories with

a motivation to understand quantum gravity. In a simpler problem which we believe acts as

a proof of concept, we constrain 4-scalar scattering amplitudes that obey certain symmetry

principles, in particular, channel duality. In the process, we discover some constraints on

the asymptotic behaviour of such amplitudes and discover some bootstrap equations that

any amplitude obeying these assumptions needs to satisfy.

In section 1.5, we discuss a 3-dimensional supersymmetric theory, the study of which is in-

sightful for many reasons: firstly, due to its direct application to condensed matter systems;

and secondly, due to the implications it holds for a specific example of AdS/CFT correspon-

dence involving higher-spin fields. We show that in this theory one can compute arbitrary

n-point tree-level scattering amplitudes in terms of the 4-point functions of the theory. We

further argue about a possibility to generalise such recursion relations to arbitrary loop or-

der.

We conclude in section 1.6 with the discussion of important lessons that we have learnt

through the work that is presented here.
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1.2 Revisiting AdS/CFT at a Finite Radial Cut-off

1.2.1 Background & Motivation

Utility of any duality in physics lies in the knowledge of relation between the physically

relevant quantities between the two theories that are dual; because it is only then one can use

the computations in that one theory to draw inference about the other. The introduction to

this synopsis briefly introduced the duality between string theory in a AdS background and

a gauge theory theory in one lower dimension. Let us elaborate a little more on the duality

now. A more precise statement of the duality is presented in terms of the equality between

the full string theory partition function evaluated on AdS background and the generating

function of the field theory in one lower dimension evaluated at arbitrary value of coupling.5

However, in the more simplifying probe approximation, where gravitational backreaction

can be neglected, this is an equality between the gravity action coupled to matter evaluated

on a classical background and a generating function of the lower dimensional conformal field

theory, with the source, J(x), for some operator O(x) turned on:

Zbulk[φ0] = lim
ε→0

∫

φ(ε,x)=φ0(x)∼J(x)
gµν (ε,x)∼δµν

e
1

16πGN
Sg [gµν ]+Sm[φ]

= 〈e
∫
J(x)O(x)〉 = Z[J ] = eW [J ] (1.2)

In the AdS/CFT dictionary, the source, J(x) of the operator is related to the boundary

value of a bulk field [11, 12]. In Table 1.1 lists the dual bulk fields, the boundary value of

which acts as the source for various field theory operators. The duality as stated above can

immediately be extended to the computations of correlation functions of the field theory

operators using the gravity dual:6

〈O(x)〉 ∼ 1

Zbulk

δ

δφ0(x)
Zbulk

∣∣∣
φ0(x)=0

〈O(x)O(y)〉 ∼ 1

Zbulk

δ2

δφ0(x)δφ0(y)
Zbulk

∣∣∣
φ0(x)=0

(1.3)

Solving for the onshell solutions of the bulk fields results in two independent solutions (the

bulk action is quadratic): one of them dominates the other near the boundary:

φ(z, x) ∼
z→0

z∆+A(x) + z∆−B(x) ∆± =
d

2
±
√
d2

4
+m2L2 =

d

2
± ν 7 (1.4)

5Such an equality between partition function and generating function holds for all four corners of the
duality as presented in Figure 1.2.

6For the sake of definiteness, we will be considering the case of scalar field theory operators (and dual
scalar bulk fields) in subsequent discussions.
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Conventionally, the boundary values of the bulk fields refers to the value of the fields that

dominates near the boundary. In the AdS/CFT dictionary, B(x), the coefficient of the

dominating mode is related to the source of the dual operator, J(x); while the coefficient

A(x) is related to the expectation value of the dual operator, 〈O(x)〉. It is well known

that the computation of RHS in (1.2) involves renormalization to obtain meaningful ob-

servables. The dual bulk computation doesn’t come without its share of divergences. It

is very easy to see the source of divergences in the bulk: the bulk metric blows up near

the boundary of AdS, z → 0. One regulates the field theory computations by introduc-

ing a high energy/short-distance cut-off; likewise the bulk computations are regulated by

an introduction of a near boundary cut-off at z = ε.8 The treatment of these divergences

within the AdS/CFT correspondence has a history similar to the treatment in quantum

field theories. In the initial computations of observables, which also proved to be the first

checks of the conjecture, the polynomial divergences were simply dropped. In the subse-

quent works, a more refined understanding was developed through covariant counterterms

[13]. In a parallel approach to understanding β-functions of the field theory couplings [14]

made the observation that sources for operators in a field theory can be treated as couplings

in a long distance expansion:

Spert = SCFT +

∫
J(x)O(x) = SCFT +

∫
J(k)O(−k)

≈ SCFT +

∫
(J0 + kµJ

µ
1 + kµkνJ

µν
2 + . . .)O(−k) (1.5)

≈ SCFT +

∫
J0O(x) +

∫
Jµ1 ∂µO(x) +

∫
Jµν2 ∂µ∂νO(−k) + . . .

where, Ji are the couplings constants of the theory. In a Lorentz invariant theory, the terms

with odd number of derivatives don’t appear, and the perturbations take the form:

Spert ≈ SCFT + J0

∫
O(x) + J2

∫
∂2O(−k) + . . . (1.6)

This is consistent with the solutions of the bulk equations of motion, where (1.4) takes

following form in momentum space,

φ(z, k) ∼
z→0

z∆+A(kz) + z∆−B(kz) 9 (1.7)

where, A(kz), B(kz) are even functions of their argument. The fact that B(kz) is related to

the source of the boundary operator led [14] to proposed an interpretation of the coefficients

of B(kz) in small momentum expansion (or equivalently a derivative expansion) as boundary

7Here, m is the mass of the bulk scalar field φ(x). When ν takes integer values, one of the solutions
behaves logarithmically near the boundary. We will oversee these cases for the time being.

8We have been using this cut-off parameters in writing our equations in (1.2) and Table 1.1 without having
mentioned the meaning of it.

9Here k is the transverse momentum in the boundary directions.
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z=𐐩
0

z=𐐩

z=𐐩
0

Figure 1.3: A cartoon showing the integration of the near boundary degrees of freedom in
AdS. These degrees of freedom corresponds to UV degrees of freedom in the dual boundary

theory.

coupling constants; and the Hamilton-Jacobi equations for the bulk fields, which give the

evolution these coefficients with the radial direction (z) as the β-function equations for these

couplings. These works substantiate the relation between the radial direction of AdS bulk

dual and the energy scale of the field theory, an idea that was quite apparent in the original

D-brane construction of Maldacena, to a generalized AdS/CFT correspondence.

A more ‘Wilsonian’ understanding of these ideas was further developed in [15–17], where

the β-functions of the field theory couplings was computed by an explicit integration of

the degrees of freedom between two radial slices, z = ε0 and z = ε′ (see Figure 1.3). This

process of integration of degrees of freedom gives rise to a ‘wavefunctional’ on the new

boundary at z = ε′. AdS/CFT correspondence was generalized to accommodate multi-

trace interactions10 in [18]. The under-lying idea can be (slightly heuristically) explained

as follows. Consider a conformal field theory perturbed by an addition of some multi-trace

deformation,

Spert = SCFT + f [O] (1.8)

where, f [O] is an arbitrary polynomial function of the operator and its derivatives. Inside

a field theory path integral, we can rewrite this as,

Z =

∫
DΦDλ δ(λ(x)−O(x)) exp

(
− SCFT − f [λ(x)]

)

=

∫
DΦDλDσ exp

(
− SCFT −

∫
σ(x)

(
λ(x)−O(x)

)
− f [λ(x)]

)

=

∫
DσDλ exp

(
− f [λ(x)]−

∫
σ(x)λ(x)

)
Zbulk[σ(x)]

=

∫
Dφ0 exp

(
− f̃ [φ0(x)]

)
Zbulk[φ0(x)] 11

(1.9)

10In standard AdS/CFT dictionary only the gauge invariant operators are described by the bulk dual. In
a gauge theory, such operators are of the kind, Tr[Φm(x)], m ∈ Z. Double-trace operators, as name suggests,
are gauge-invariant operators of the kind Tr[Φm(x)]Tr[Φn(x)], m, n ∈ Z. In the subsequent, for any operator
(O) that has a dual bulk field (φ) under AdS/CFT, by a double trace operator we mean operators of kind:
Om and derivatives thereof.
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where, in the last line we have used AdS/CFT correspondence to write the generating

function of the field theory in terms of the bulk action, which has been evaluated with the

boundary conditions: φ(z, x) ∼
z→0

z∆−σ(x). Simply stated, multi-trace deformations in field

theory correspond to the addition of a ‘boundary wavefunctional’ on the boundary (z = 0)

of the AdS to the bulk action:

Ψ[φ0(x)] = exp
(
− f̃ [φ0(x)]

)
(1.10)

The wavefunctionals generated in the integration of the near boundary degrees of freedom

in [15, 16] has an interpretation of the generation of double-trace deformations. The bulk

Hamilton-Jacobi equations are subsequently used to compute the β-functions of these cou-

plings.

1.2.2 Summary & Results

We have developed these ideas of holographic renormalization into a more robust ‘Wilsonian

picture’. The two main results in this work are:

1. We started with the question: If the GKPW [11, 12] prescription of using AdS/CFT,

coupled with the counterterms computed in [13] is true in the limit cutoff, ε0 → 0;

what is the correct prescription for AdS/CFT at finite cut-off? Generalising in terms

of ‘wavefunctionals’ introduced above, the Dirichlet boundary condition of GKPW

prescription can be written as a δ-function wavefunctional on the boundary of AdS:

Ψ[φ0(x)] = lim
ε0→0

δ
(
φ0(x)− ε∆−0 J(x)

)
(1.11)

We find that the original GKPW δ-function prescription, coupled with the Solodukhin

counterterms and applied to a finite radial cut-off z = ε0, corresponds to a wavefunc-

tional which cannot be obtained by the evolution of the known GKPW δ-function

boundary condition at z = 0. We argued for this in multiple ways:

(a) If one uses the GKPW prescription at finite cut-off, along with the correct coun-

terterms then all the divergences in the correlators are cancelled. However, there

is still some non-trivial dependence on the cut-off of the correlators, which should

not be the case if we view the theory at finite cut-off as being obtained by in-

tegration of degrees of freedom starting with the continuum theory. This is in

contradiction with the Wilsonian philosophy that all the physical observables

remain unchanged in the process of renormalization.

11In this last line, we have just gone back to more familiar notation for the boundary value, φ0(x) of the
bulk field, φ(z, x). Moreover, we have also intergrated out the λ(x) field.
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(b) The β-functions computed using the techniques of [15, 16] for the double-trace

operators don’t vanish at what one would have expected to the fixed point theory.

We found two specific ‘wavefunctionals’ that correspond to a fixed point theory (CFT):

Ψ0
1[φ0; ε0] = exp

[
− 1

2

∫

z=ε0

ddk
√
γ0

(
φ+A ∗ST ·B

∗
ST (kε0) ε

d−∆+
0 J

)
k

(
φ+A ∗ST ·B

∗
ST (kε0) ε

d−∆+
0 J

)
−k

A ∗ST (kε0)

− 1

2

∫

z=ε0

√
γ0φkD̂ct(kε0)φ−k

]
(1.12)

Ψ0
2[φ0; ε0] = exp

[
− 1

2

∫

z=ε0

ddk
√
γ0

(
φkD̂ct(kε0)φ−k + 2ε

d−∆−
0 B∗AQ(kε0)φkJ−k

+ε
2(d−∆−)
0 C∗AQ(kε0)JkJ−k

)]
(1.13)

where, various functions above take the following specific values:

1

A ∗ST
= 2ν

(
1− 1

2 (1− ν2)
(kε0)2 −

(
5 + ν2

)

8 (4− ν2) (1− ν2)2 (kε0)4 + · · ·
)

(1.14a)

A ∗ST ·B∗ST (kε0) = −
(

1 +
1

4(1− ν)
(kε0)2 +

1

32(1− ν)(2− ν)
(kε0)4 + · · ·

)
(1.14b)

B∗AQ(kε0) = 1− 1

4(1− ν)
(kε0)2 +

(3− ν)

32(2− ν)(1− ν)2
(kε0)4 + · · · (1.14c)

C∗AQ(kε0) = − 1

2ν
+

1

4(1− ν2)
(kε0)2 − (5− 2ν)

32(1− ν)2 (4− ν2)
(kε0)4 + · · · (1.14d)

D̂ct(ε0k) = ∆− −
1

2(ν − 1)
(kε0)2 +

1

8(ν − 2)(ν − 1)2
(kε0)4 + · · · (1.14e)

They correspond to IR and UV (where it exists) fixed points, respectively, of the field

theory; and to standard and alternate (where it exists) quantization [19] in the bulk.

More generally, we consider a quadratic wavefunctional:

Ψ0[φ0; ε0] = exp

[
− 1

2

∫

z=ε0

ddk
√
γ0

(
A(k, ε0)φkφ−k + 2ε

d−∆+

0 B(k, ε0)Jkφ−k

+ε
2(d−∆+)
0 C(k, ε0)JkJ−k

)]
(1.15)

of which the above cases (Ψ0
1[φ0; ε0] and Ψ0

2[φ0; ε0]) are two particular cases. For this

more general wavefunctional, we give a field theory interpretation to various coeffi-

cients when they deviate from the special values in Ψ0
1[φ0; ε0] and Ψ0

2[φ0; ε0]. These

interpretations are summarized in Table 1.2:
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A(kε) B(kε) C(kε)

Double-trace deformation Wavefunction renormalization Contact terms

Table 1.2: Interpretation of different coefficients in wavefunctional (1.15) away from the
fixed point values, A∗, B∗, C∗.

2. How does the Holographic-scheme of renormalization match up with the Wilsonian-

scheme in a field theory computation? Through explicit computations of the β-

functions in the bulk as well as field theory12, we found that the β-functions have

the following structure:

β0 = 2νf̄0 −A0f̄
2
0

β1 = (2ν − 2)f̄1 −A1f̄
2
0 − 2A0f̄0f̄1

β2 = (2ν − 4)f̄2 −A2f̄
2
0 − 2A1f̄0f̄1 −A0

(
2f̄0f̄2 + f̄2

1

)

β3 = (2ν − 6)f̄3 −A3f̄
2
0 − 2A2f̄0f̄1 −A1

(
2f̄0f̄2 + f̄2

1

)
−A0

(
2f̄1f̄2 + 2f̄0f̄3

)

...

(1.16)

for some values of Ai that are different in field theory and bulk. However, we are able

to derive a coordinate redefinition in the coupling space that related the two schemes

of renormalization.

1.3 2-Dimensional Quantum Gravity Dual to SYK/tensor

Models

1.3.1 Background & Motivation

SYK-type [8, 20–24] models have drawn a lot of attention in the literature recently, primarily

because of the following features in a large N limit:

1. There is an infrared fixed point with an emergent time reparametrisation symmetry,

denoted henceforth as Diff.13 The symmetry is spontaneously broken, at the IR fixed

point, to SL(2,R) by the large N classical solution, leading to Nambu-Goldstone

(NG) bosons characterised by the coset Diff /SL(2,R).14 At the IR fixed point all

12The exact computations in the field theory are facilitated by the large N factorization.
13We use Diff to denote either Diff(R) or Diff(S1), depending on whether we are at zero temperature or

finite temperature. This group is alternatively called the Virasoro group.
14As explained later in more detail, unlike in higher dimensions where Nambu-Goldstone modes are zero

modes of the action promoted to spacetime fields, here they remain zero modes (do not acquire kinetic terms)
since they cannot be made dependent on any other dimension.



these are precise zero modes of the action as one might expect from a one-dimensional

CFT. Slightly away from the IR fixed point, the Diff symmetry is explicitly broken,

the ‘Nambu-Goldstone’ modes cease to be zero modes and their dynamics is described

by a Schwarzian term (which is the equivalent of a ‘pion mass’ term). The particular

interest in these modes arises due to the observation that they seem to be responsible

for the chaotic behaviour of the 4-point functions in the SYK-like models. Moreover, it

has been conjectured that (see, e.g. [25]) that this situation is similar to a bulk model

in which the AdS2 symmetry is slightly broken (this is called a near AdS2 geometry,

in the sense of an s-wave reduction from higher dimensions, as in [26]).

2. The possibility of a gravity dual is further reinforced by the fact that the Lyapunov

exponent in the SYK model saturates the chaos bound, which is characteristic of a

theory of gravity that has black hole solutions [27, 28].

3. The full model has an approximately linearly rising (‘Regge-type’) spectrum of confor-

mal weights, with O(1) spacing near the IR fixed point. This behaviour is unexpected

both from string theory in the limit α′ → 0, or from Vasiliev theory. Thus while the

dynamics of the soft modes appears to have a simple dual gravity description, it is not

clear if it can naturally incorporate the rest of the Regge-type spectrum description.

In this chapter we primarily concern ourselves with a bulk gravity dual which describes

the soft modes. We leave the larger issue for later work.

In short, a duality between SYK-like models and AdS2 gravity, if shown explicitly, might be

an extremely useful tool to understand the inner working and intricacies of the more general

AdS/CFT correspondence. The fact that the correspondence exists in low dimensions might

prove to be particularly useful in unravelling some key features of not just AdS/CFT duality

but also quantum gravity and strongly-coupled field theories; in a fashion that ’t Hooft’s

2-dimensional model of QCD was particularly enlightening in understanding the workings

of QCD in higher dimensions.

The strategy we pursue for the proposed bulk dual is as follows. As explained in [8, 21],

the NG modes of the SYK-type model can be characterised by Diff orbits of the classical

solution G0 (at the IR fixed point J =∞) or Diff orbits of G′0 which is the deformed value

of G0 after turning on a small value of 1/J (see figure 1.4). Any given point on the Diff

orbit can be obtained from the reference point, G0 or G′0, by the action of an appropriate

one-dimensional diffeomorphism.
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G0

G0[f]
f

G0'

f
G0'[f] ←→

AdS2

AdS2[f]
f

NAdS2

f
NAdS2[f]

Figure 1.4: In the left panel, the top curve represents the Diff(R)-orbit (or a Diff(S1)-orbit
in case of finite temperature), at the IR fixed point J =∞, of the classical large N solution
for the fermion bilocal G0(τ1, τ2) ∼ (τ1 − τ2)−2∆; this represents the Nambu-Goldstones of
Diff(R)/SL(2,R) . The lower curve represents the orbit of a deformed solution G′0 slightly
away from the IR fixed point, with a small positive 1/J . In the right panel, the top curve
represents the orbit of the AdS2 spacetime (these are asymptotically AdS2 spacetimes, the
two-dimensional equivalent of Brown-Henneaux geometries, which we will describe explicitly
in Section 3.5). The bottom curve represents the orbit of a slightly deformed AdS2 spacetime

NAdS2, with a controlled non-normalizable deformation (see section 3.5).

It is known from the previous work of [29, 30] that the quantization of the coset space

Diff/S1 of coadjoint orbits of Diff using the natural symplectic form a la Kirillov [31],

leads to Polyakov’s two-dimensional quantum gravity action [32]. Following this observation,

one might wonder whether such a two-dimensional quantum gravity action, obtained by

the coadjoint orbit method, naturally describes a bulk dual to the SYK model. For this

particular scenario we will be interested in the quantization of the orbits corresponding to

Diff/SL(2,R). While it is possible to follow the methods of Kirillov and write down an

action, it is not immediately clear what the covariant form of this action is. In this work

we conjecture that a generalization of the Polyakov action, which includes a cosmogical

constant and boundary terms (the boundary terms are found by requiring the existence of a

well-defined variational principle; these are also the terms required by consistency with the

Weyl anomaly in a manifold with a boundary):

Scov[g] =
1

16πb2

∫

Γ

√
g

[
R

1

�
R− 16πµ

]
+

1

4πb2

∫

∂Γ

√
γK 1

�
R+

1

4πb2

∫

∂Γ

√
γK 1

�
K (1.17)

is the correct covariant form of this action.

This new action has asymptotically AdS2 geometries as solutions,

ds2 =
1

4πµ ζ2

(
dζ2 + dτ2

(
1− ζ2 {f(τ), τ}

2

)2
)

(1.18)

which are all generated from AdS2, ds2 = 1
4πµζ2

(
dζ̃2 + dτ̃2

)
, by the action of following large

diffeomorphisms:

τ̃ = f(τ)− 2ζ2f ′′(τ)f ′(τ)2

4f ′(τ)2 + ζ2f ′′(τ)2
, ζ̃ =

4ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2
(1.19)
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Here, {f(τ), τ} denotes the Schwarzian derivative:

{f(τ), τ} =
f ′′′(τ)

f ′(τ)
−
(
f ′′(τ)

f ′(τ)

)2

(1.20)

The schematics of these solutions is described in the right panel of Figure 1.4. We find it

particularly useful to analyse the above action and its solutions in conformal gauge (gαβ =

e2φĝαβ), where the above action takes the following form:

Scov[g] = − 1

4π b2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)
+ 2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]

+
1

16π b2

∫

Γ

√
ĝR̂

1

�̂
R̂

(1.21)

The most general solution to the equations of motion derived from this action then are:

gαβ = e2φĝAAdSαβ

φ =
1

2
log

[
(z + z̄)2 ∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]
, with g(z), ḡ(z̄) satisfying following conditions:

{g(z), z} = 0, {ḡ(z̄), z̄} = 0⇒ g(z) =
az + ib

icz + d
, ḡ(z̄) =

āz̄ − ib̄
−ic̄z̄ + d̄

, a, b, c, d ∈ C,

ad+ bc = 1, 15

(1.22)

Here, z, z̄ = ζ̃ ± iτ̃ coordinates can be written in terms of ζ, τ coordinates using the

coordinate transformations (1.19) and ĝAAdSαβ geometries appearing the the first line are

the AAdS geometries of (1.18). When a, b, c, d are real parameters, then those solutions

correspond to global SL(2,R)rotations of the geometry, which is an isometry for all the

geometries in (1.18). The remaining 3-parameter set of solutions, which corresponds to the

point marked NAdS2 in Figure 1.4 are the solutions of our primary interest. These do not

preserve the boundary of AdS. In general, the boundary of the spacetime is given by the

curve, g(z) + ḡ(z̄) = 0, which for a general function of the kind, (1.22), is not the same as

z + z̄ = 0. These solutions will subsequently be referred to as non-normalizable solutions

following the standard AdS/CFT language. We are interested in small non-normalizable

deformations near the identity transformation which correspond to the choice,

a = 1 + δa b = δb c = δc d = 1− δa (1.23)

Here we assume that δa, δb, δc are complex numbers with non-zero imaginary parts (in fact,

we can take the real parts to be zero to separate these solutions from the SL(2,R) transfor-

mations that are the isometry of the AdS2 and AAdS2 geometries). With these parameters,

15The difference from the standard SL(2,R)condition ad− bc = 1 arises because we are working with the
right-half complex plane compared to upper-half complex plane as in standard treatments.
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the solution for the metric becomes

ds2 = e2φd̂s2 (1.24)

with d̂s2 given by the AdS2 metric (1.18), and φ, using (1.22) has the near-boundary form

φ =
δg(τ)

ζ
+O(δa2, δb2, δc2), δg(τ) = Im(δb) + 2 Im(δa)τ + Im(δc)τ2 (1.25)

For simplicity, we may choose δa = δc = 0, so that φ = Im(δb)/ζ. For the Liouville factor

e2φ not to destroy the asymptotic AdS2 structure altogether, we will assume here that δg . δ

which ensures that δg < ζ.16 These modes play the role of explicit symmetry breaking in

the IR limit of the SYK-like model.

1.3.2 Summary & Results

The main point of our work, [2], is that the two-dimensional quantum gravity theory, arrived

at in this fashion, provides a bulk dual to the Nambu-Goldstone sector of the SYK models.

We find a number of strong evidences for this duality:

1. the configuration space of the bulk theory reduces to Diff /SL(2,R) , which is the

same as the configuration space of the Nambu-Goldstone bosons. In the bulk theory

these degrees of freedom emerge as the space of large diffeomorphisms (analogous to

Brown-Henneaux diffeomorphisms in AdS3). In addition to these, the bulk metric

admits a fixed, non-dynamical conformal factor of a simple functional form. In the

SYK theory this parameterizes the departure from strong coupling.

2. The bulk path integral reduces to a path integral over Diff /SL(2,R) with a Schwarzian

action:

Shydro =
δg

2πb2

∫
dτ̃
{
f̃(τ̃), τ̃

}
(1.26)

characterized by a non-zero overall coefficient coming from the conformal factor, φ,

(1.25). This is the same Schwarzian action that is also obtained for the pseudo-

Goldstone modes from the field theory computations.

16There is a natural RG interpretation of this inequality in terms of the boundary theory. We will later
identify δg with ∼ 1/J (see (3.81)). Together with the natural identification of 1/ζ, for small ζ, with a
Wilsonian floating cut-off Λ (to be distinguished from the bare cut-off Λ0 = 1/δ, see [15, 16], also [1]), we
find δg/ζ ∼ Λ/J = 1/J̄ , where J̄ = J/Λ is the dimensionless coupling. Since J̄ grows large near the IR
cut-off, it follows that δg/ζ � 1 near the IR cut-off.
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3. the low temperature free energy qualitatively agrees with that of SYK model:

log(Z) = −βF = − 2

b2
log(β/δ) +

2 log(4π)− 3

b2
+

δg

2b2 β
+O(δg2) (1.27)

The qualitative features that match with that of the SYK-like models is the presence

of non-zero zero-temperature entropy and a specific heat that scales linearly with

temperature: both of which are the universal features of SYK-like models.

1.4 S-Matrix Bootstrap for Amplitudes with Linear Spec-

trum

1.4.1 Background & Motivation

This work, in a way, consists of going back to the basics of string theory. In this work

we have tried to take an approach very similar to the one taken by original proponents of

bootstrap in late 1960s and early 1970s [33–35]. The main motivation of development of

the S-matrix techniques then laid in the difficulty in understanding the physics of strong

interactions through conventional field theoretic approach, as explained in the introduction

to this synopsis. To recall, the main issues as they appeared then were: (1) inability to

use perturbation theory in a theory of strong interactions (2) the rich spectrum of hadrons

(particles interacting through strong interactions) made it impossible to write down a theory

using Lagrangian approach which had a field associated with each of these particles. The

interest then shifted from writing down a Lagrangian to directly constraining the S-matrices

for the theory of interest. As we discussed above, S-matrices are a very important class of

observables in particle-physics and are directly related to the experimental measurements.

What’s more, they directly shed light on various aspects of the interactions of the theory

under study. So the philosophy that was promoted under the S-matrix approach was to try

and restrict the space of analytic functions that obeyed the correct properties for them to

be considered as an S-matrix of a physical process. The main assumptions required of the

S-matrices that we are interested in are listed as follows [9]:

1. Poincare invariance

2. Causality

3. Unitarity

4. Crossing symmetry: it is a statement that when looking at two different scattering

process like a+ b→ c+ d and a+ c̄→ b̄+ d, then the amplitudes of the two processes

are related to each other by analytic continuations.
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5. Existence of only pole singularities in the amplitude; this basically is a statement that

we are restricting to tree-level amplitudes. Often the higher-loop amplitudes are con-

structed by stitching together the tree-level amplitudes using the Unitarity equation:

S†S = I. Demanding that the total amplitude thus constructed be ‘physically sensible’

again imposes additional constraints. However, in the work presented here we have

restricted ourselves to tree-level amplitudes.

6. Linear spectrum of poles that correspond to massive particle exchange at the tree-level.

7. Regge asymptotic behaviour: It is a statement about the asymptotic behaviour of the

scattering amplitudes:

A(s, t) −→
s→∞,t fixed

(−s)k(t) (1.28)

Here k(t) is a function such that k(t) < 0 for t < 0. In our work we work with the case

where k(t) = k t is a linear function of its argument. What we observe is that since

even the linear structure is tightly constrained, it is likely that no consistent amplitude

exists where this function is a polynomial.

This approach has received a renewed interest mainly based on the interesting result shown

in [36] that any theory of gravity for which the graviton 3-point function deviates from

the value given by Einstein-Hilbert action violates causality unless one includes infinitely

many higher spin fields. A more technical motivation of revisiting the bootstrap ways is the

recent success of similar ideology to conformal field theories, known as Conformal Bootstrap,

[37, 38].

A distinct advantage of such an approach lies in its power of generality, and how it helps us

develop insights into the precise role of various assumptions and symmetries in governing the

behaviour of the physical observables. While the original inventors of S-matrix approach

were mainly concerned with understanding a theory of strong interactions, in the work

that is presented here we are concerned about a different problem: what is the space of

physically consistent theories of quantum gravity that includes infinitely many spinning

particles (consistent with the results of [36])? Not many examples are known to us, basically

only the examples that arise in String theory. We wish to explore how similar/different is

the space of such theories from known examples through our study of S-matrices. While

this requires one to study graviton scattering amplitudes, we consider a ‘simpler’ problem

of 4-identical scalar scattering. We have left the study of gravitons for future.

1.4.2 Summary & Results

In [3] we have developed a systematic approach to consider a scattering amplitude as a sum

of poles in the s-channel and u-channel processes. We show that under the assumptions that
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are listed above, especially the assumption on the asymptotic behaviour, one can show that

an appropriate analytic continuation of this sum also includes the t-channel poles. Such

amplitudes that don’t require a sum over all three channels, and in which the sum of poles

in only one (or two) of the channels give you the complete amplitude are known as channel-

dual amplitudes or simply dual-amplitudes (see Figure 1.5).17 It can be argued that channel

∑
m,s m, sλm,s λm,s =

∑
m′,s′

m′, s′

λm′,s′

λm′,s′

Figure 1.5: Channel dual amplitudes are those in which the sum over the poles in one
channel automatically includes the poles in the other channel.

duality follows from crossing symmetry and Regge asymptotics of an amplitude. We have

developed a systematic technique to re-sum the amplitude written as a sum over poles in

s-complex plane (as a sum over s-channel and u-channel processes):

A(a, b) =
∞∑

n=0

fn(b)

a+ n
+
fn(b)

c+ n
, Re b > 0, 18 (1.29)

to extract the t-channel poles from it. It can be shown that the Regge behaviour of the full

amplitude translates to following behaviour of the residues:

fn(b) =
∞∑

j=0

gj(b)n
−k(b)−j . (1.30)

In the process of re-summing the amplitude in (1.29) we obtain poles in t-channel which (a)

correspond to the physical poles corresponding to the linear spectrum that we started with;

(b) some additional ‘spurious’ poles that are not present in the spectrum. We demand that

the residues at the physical poles be consistent with the residues of the corresponding poles

in the s-channel,

1

k

kn∑

J=0

gJ(−n)
{

(−a)kn−J + (a− n− P )kn−J
}

= fn(a) (1.31)

17Contrast this with the simple examples that one learns in a graduate QFT course, where one necessarily
has to consider a sum of diagrams in all three channels.

18a, b, c are some rescaled variables defined in terms of Mandelstam variables as: a = −α′s − α(0), b =
−α′t − α(0), c = −α′u − α(0), and are constrained by the equation: a + b + c ≡ P = −4α′M2

ext − 3α(0),
where Mext is the mass of the external particle.
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At the same time because the amplitude should not contain the above mentioned ‘spurious

poles’ we demand that the residues at such poles vanish identically,

N∑

J=0

gJ

(
−N
k

){
(−a)N−J +

(
a− N

k
− P

)N−J}
= 0 (1.32)

where in both the above equations, LHS is the residue at the poles of t-channel that have

been obtained by resumming (1.29).

Imposing these constraints on the amplitude we conclude:

1. That the only non-trivial solution to the above equations exists when the asymptotic

Regge fall-off is given by k(t) = kt with k = 2 in (1.28). This is the same asymptotic

behaviour that one finds in String theory.

2. For the case of k = 2 any amplitude that is consistent with the above assumption

should obey the following Bootstrap Equations:

Definitions: fn(b) =
∞∑

j=0

gj(b)n
−2b−j =

2n∑

J=0

hJ(−n)(−b)2n−J , (1.33)

Residue-Matching Eqns: gj(−n) = hj(−n), j ≤ 2n, (1.34)

Spurious-Pole Eqns:

gJ(b) = −1

2

J∑

j=1

(−1)j
Γ(−2b− J + j + 1)

Γ(j + 1)Γ(−2b− J + 1)
(P − b)jgJ−j(b), J odd,

0 =
J∑

j=1

(−1)j
Γ(−2b− J + j + 1)

Γ(j + 1)Γ(−2b− J + 1)
(P − b)jgJ−j(b), J even. (1.35)

We also found that in general if A0(a, b, c) is an amplitude that obeys the above

requirements then any amplitude that is constructed as follows also obeys it:

A(a, b, c) =

∞∑

m=0

amAm(a, b, c) ≡
∞∑

m=0

amA0(a+m, b+m, c+m) (1.36)

In particular, we can start with A0(a, b, c) to be Virasoro-Shapiro amplitude and con-

struct a whole family of amplitudes that obey the above requirements.

3. Imposing unitarity doesn’t reduce the above space of allowed amplitudes considerably.
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1.5 BCFW Recursion Relations in Chern-Simons Theories

Coupled to Vector Matter

1.5.1 Background & Motivation

Chern-Simons theories, given by the following action in 3-dimensions,

SCS =
iκ

4π

∫
d3xTr[A ∧ dA− 2i

3
εµνρAµAνAρ] (1.37)

have a very rich history of its application to various different fields in Mathematics and

physics. Pure Chern-Simons theory was used in the study of the knot-invariants and

Jones polynomials [39]. They are also used in the study of gravity in 3-dimensions [40].

Chern-Simons theories also have applications in Condensed matter theories and provide a

coarse-grained effective field theory description of the quantum Hall-effect. Supersymmetric

modifications of Chern-Simons theories with (bifundamental-)matter, like ABJM theory [41]

have been shown to be dual to M-theory on AdS4 × S7 and is an interesting example of

AdS/CFT correspondence. It has also been conjectured that the 3-d Chern-Simons theories

coupled to fundamental matter are dual to Vasiliev theory: a theory of higher spins in 4-

dimensions [42]. Such varied applications asks for a better understanding of these theories

in general. What is more, when the gauge group of the Chern-Simons theories is SU(N)

or U(N), then in the N → ∞ limit the theory becomes exactly solvable. Exactly solvable

quantum field theories are hard to come by, so it is only natural for one to try and un-

derstand such examples. These matter-Chern-Simons theories are also special because they

show some interesting dualities: Chern-Simons theory with gauge group SU(NF )κF coupled

to fundamental fermionic matter,

S =

∫
d3x

(
−κF

4π

)
εµνρ Tr(Aµ∂νAρ −

2i

3
AµAνAρ)

+ ψ̄ i /Dµψ +mreg
F ψ̄ψ

(1.38)

at the regular point (mreg
F = 0) has been shown to be dual to Chern-Simons theory with

gauge group SU(NB)κB coupled to fundamental bosons at Wilson-Fisher fixed point (mB =

0, λ4 →∞),

S =

∫
d3x

(
−κB

4π

)
εµνρ Tr(Aµ∂νAρ −

2i

3
AµAνAρ)

−Dµφ̄Dµφ− λ4(φ̄φ)2 −m2
B(φ̄φ)

(1.39)

The parameters of the two dual theories are related by the following relations:

NB = |κF | −NF , κB = −κF , λB = λF − sgn(λF ) (1.40)
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This is once again an example of a strong-weak duality19 and will provide us with a better

understanding of the strongly-coupled field theories. This fermion-boson duality is also the

only known example of bosonization in 3-dimensions.

While the above duality has been verified in the limit, NB →∞ or NF →∞, a lot of work

still needs to be done for theories at finite N . A N = 1 supersymmetric generalization of

the above duality is described in terms of,

SLN1 =

∫
d3x

[
− κ

4π
εµνρTr

(
Aµ∂µAρ −

2i

3
AµAνAρ

)
+ ψ̄(i /D +m0)ψ −Dµφ̄Dµφ−m2

0φ̄φ

− 4πm0

κ
(φ̄φ)2 − 4π2

κ2
w2(φ̄φ)3 +

2π

κ
(1 + w)(φ̄φ)(ψ̄ψ) +

2π

κ
w(ψ̄φ)(φ̄ψ)

− π

κ
(1− w)

(
(φ̄ψ)(φ̄ψ) + (ψ̄φ)(ψ̄φ)

)]
20 (1.41)

which is self dual under κ→ −κ. The above theory has an enhanced N = 2 symmetry for

the particular choice w = 1, and also has a conformal symmetry when m0 = 0. This N = 2

theory forms the subject of our study in the work presented in this section. We study arbi-

trary m-particle to n-particle S-matrices in these theories and comment on the self-duality of

the theory in terms of scattering matrices. Such studies of scattering amplitudes are quite

important from various points of views. As we have emphasised earlier, exactly solvable

quantum field theories are quite rare and even in perturbative field theories it is not possi-

ble to compute arbitrary scattering amplitudes even at tree levels. In the known examples

where it has been possible to do such computations, often a rich structure of symmetries

as been discovered. For example, integrability in N=4 SYM in 4-dimensions and in N=6

ABJM theories have been argued based on the BCFW recursion relations. In these known

works it has been anticipated that some minimum amount of supersymmetry is required

for BCFW recursion relations to work. Through our work we show that these recursion

relations are true for N=2 theories but don’t hold for N=1 theories. Quite interestingly, it

is also possible to understand arbitrary scattering amplitudes in non-supersymmetric theo-

ries using the supersymmetric results. One can immediately note that the fermionic sector

of the action Equation 1.41 is same as the non-supersymmetric theory of regular fermions

coupled to Chern-Simons theory. Scattering amplitudes involving only fermions are, hence,

same in the supersymmetric theory as in the non-supersymmetric theory at tree level. The

recursion relations that we derive for the supersymmetric theory also hold for the the non-

supersymmetric theory, despite the fact that the non-supersymmetric theory by itself doesn’t

19Strong-weak because the fermionic theory has no self interaction terms, while the critical bosonic theory
is defined at the Wilson-Fisher fixed point, which is a strongly interacting fixed point.

20In our notations,

Dµφ̄ = ∂µφ̄+ iφ̄Aµ , Dµφ = ∂µφ− iAµφ ,
/Dψ̄ = γµ(∂µψ̄ + iψ̄Aµ) , /Dψ = γµ(∂µψ − iAµψ) (1.42)
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obey the postulates needed for validity of BCFW relations.

Higher point scattering amplitudes will also shed light on the Aharonov-Bohm effect in

multi-particle systems in the non-relativistic limit. While it is common in literature to

study Aharonov-Bohm effect when one particle revolves around the other, it would be quite

interesting to predict the phases various particles pick up in a multi-particle system.

1.5.2 Summary & Results

In our work [4], we have shown that arbitrary m-particle to n-particle scattering amplitude

can be written in terms of 2-particle to 2-particle scattering amplitudes using the BCFW

recursion relations. BCFW recursion relations were originally discovered to compute arbi-

trary tree-level amplitudes in Yang-Mills theories in 4-dimensions. It relies on the following

ideas:

1. S-matrices in a theory are characterized by the momenta of the external particles,

pi, and the other quantum numbers of the particles (like helicity, spin, etc.). All the

external particles are onshell, and for massless particles we have, p2
i = 0. S-matrices

also obey the momentum conservation condition,
∑
i
pi = 0.

2. The momenta of the external particles can be deformed in complex momentum plane,

p̂i(zi), as a function of complex variables zi, such that the momentum conservation

and on-shell conditions still hold (
∑
i
p̂i(zi) = 0 and p̂2

i (zi) = 0). In our case (and in

the general application of BCFW in the literature) only two of the external particles

(say, pj and pk) are deformed in terms of one complex variable, z.

3. For such deformations, for different values of the complex parameter, z leads to dif-

ferent internal particles going on-shell, and a tree-level amplitude has corresponding

poles. Moreover, in such a case the amplitude factorizes depicted in the following

diagram,

p1

pi(z)

pn

pn+1

pl(z)

p2n

p12...n(z)

Figure 1.6: Factorization of the higher point scattering amplitude under deformation of
external momenta pi(z), pl(z).



Chapter 1 23

where both the left and the right blobs are individually some on-shell S-matrices with

fewer number of particles. When the original amplitude has regular behaviour at

z → ∞, it is possible to write the original scattering amplitude of more number of

particles in terms of the scattering amplitudes of fewer particles.

In our work we show the following results:

1. It is possible to generalize the above ideas to 3-dimensions and check that the tree-level

super-amplitudes for the N2 theory, under appropriate deformations of the external

momenta can be written in terms of the smaller-point super-amplitudes:

A2n =
1

2πi

∮

C(1,ε)

dz
Â2n(z)

(z − 1)
= −

∑

f

∫
dθf

(−i)
p2
f

[
H(z1, z2)AL(z1)AR(z1) + {z1↔z2}

]

(1.43)

H(z1, z2) =





z1
z22−1

z21−z
2
2
, when an external boson

and a fermion are deformed
z2
1

z22−1

z21−z
2
2
, when the deformed particles are

either both bosons or both fermions

(1.44)

In the above expressions sum over f denotes different channels of factorizations cor-

responding to different intermediate particles going on-shell; AL/R are the super-

amplitudes corresponding to the left and right factorized amplitudes in Figure 1.6;

and, pf is the momentum of the intermediate particle with undeformed external mo-

menta. The θf is a Grassman integral corresponding to super-space coordinate of the

intermediate particle. zi are the values of the complex parameter z for which the given

intermediate particle in a given channel goes on-shell.

We have explicitly verified the validity of the BCFW recursion relations by directly

computing the 6-point super-amplitude, A6(Φ̄1Φ2Φ̄3Φ4Φ̄5Φ6) and also in terms of the

4-point amplitudes A4(Φ̄1Φ2Φ̄3Φ4) using the above equation.21 We find an exact

matching of the results.

2. It can be noted that the fermionic sector of the action in (1.41) is the same as the

non-supersymmetric theory. In a theory of only fermions, all the external particles

in any S-matrix can only be fermions. Such all-fermion scattering amplitudes appear

as component amplitudes in supersymmetric amplitudes. However, at tree level, even

in supersymmetric theory there are no internal bosons in the Feynman diagrams con-

tributing to such amplitudes. This is because all interaction vertices that appear in the

Lagrangian of the supersymmetric theory have 2 bosons in them, making it impossible

to contract them all without forming a loop. Now since the super-amplitudes factorize,

21Here Φ are the superfields in the N1 superspace language: Φ(θ, x) = φ(x) + θψ(x)
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it is not hard to see that one of the components of the super-amplitude, the one that

contains all external fermions would also factorize under BCFW deformations. Hence,

we argue that a modified BCFW recursion relation holds for the tree-level amplitudes

in non-supersymmetric fermionic theory, despite the fact that the amplitudes in that

theory doesn’t obey the requirements of BCFW.

1.6 Conclusion

Through the work presented in this synopsis we have made an attempt to improve our un-

derstanding of quantum theory of gravity as well as strongly coupled field theories through

techniques that tie these two important questions in modern day physics together.

We have discovered some interesting facts about the connection between the degrees of

freedom in the theory of gravity on AdS background and its dual conformal field theory.

We have developed a Wilsonian understanding of these degrees of freedom and developed

a precise improvement in AdS/CFT correspondence to account for field theories defined at

finite cut-off.

We also studied AdS/CFT correspondence in reference to a toy example of a 1-dimensional

field theory and showed how the states relevant to the effective low energy description of the

field theory are related to the classical geometries that are related to AdS2 through large

diffeomorphisms. We also proposed a dual theory and provided evidences for the validity of

this proposed duality.

Through S-matrix bootstrap techniques we have found some interesting constraints on the

space of dual-amplitudes. Using some novel techniques that we have developed to make

channel-duality explicit in certain kind of amplitudes, we have also presented a set of equa-

tions that every amplitude that obeys channel duality needs to satisfy.

Lastly, we have shown the existence of recursion relations in supersymmetric Chern-Simons

theories coupled to vector matter that enables one to compute arbitrary scattering am-

plitudes in this theory. We have discussed some interesting implications this has on the

non-supersymmetric theories. We find, quite surprisingly, that in some non-supersymmetric

theories that don’t obey the postulates of the BCFW recursion relations, it might still be

possible to discover recursion relations that relate the higher point scattering amplitudes in

terms of lower point scattering amplitudes.
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AdS/CFT at a finite radial cut-off

2.1 Introduction

In AdS/CFT, conformal field theory partition function at a finite UV cut-off (Λ) is given

by an AdS partition function at a finite radial cut-off z = ε = R2
AdS/Λ. The latter quantity,

of course, needs a boundary condition. For example, the original GKPW prescription is a

Dirichlet boundary condition. It is well-known, however, that the bulk path integral with this

boundary condition leads to correlators with contact terms some of which may diverge in the

limit ε→ 0. Following de Haro et al [13], it is possible to add bulk counterterms to remove

these contact terms (completely or partially). With recent insight from hWRG (holographic

Wilsonian RG [15, 16]), boundary conditions at z = ε can be treated as a wavefunction

Ψ0[φ0, ε] (e.g. Dirichlet b.c. is a delta-function wavefunction). More generally, it is possible

to impose a boundary condition on the bulk fields by introducing a boundary term in the

action. In the context of AdS/CFT correspondence it begs for a better understanding

of: (i) What are the physically allowed boundary wavefunctionals (equivalently, boundary

conditions)? (ii) What does a choice of boundary condition/wavefunction in the bulk path

integral correspond to in the CFT?

Since the AdS/CFT dictionary discusses a limited number of boundary conditions that

are relevant from the field theory point of view, one way to answer (i) is to study the

wavefunctionals that arise by the integration of the near boundary degrees of freedom in

the bulk geometry. Equivalently, this corresponds to integration of UV degrees of freedom

in the field theory. A boundary wavefunction Ψ0[φ0, ε] is allowed provided its ε-dependence

follows the radial Schrödinger equation ∂εΨ0[φ0, ε] = Hrad[φ0, ∂/∂φ0] Ψ0[φ0, ε]. In the limit

25
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of GN → 0 (implicit in the above equation), the Schrödinger equation reduces to a Hamilton-

Jacobi equation for S[φ0, ε] = log Ψ0[φ0, ε]:

∂εS = Hrad[φ0, ∂S/∂φ0]

For example, for a quadratic bulk action such as (2.4), the space of allowed boundary

wavefunctions Ψ0 = eS is given by the (2.10), which we reproduce schematically as (here we

suppress the ε-dependent factors in B,C)

Ψ0[φ0; ε] = exp

[
−1

2

∫√
γ0 (A(k, ε)φ0(k)φ0(−k) + 2B(k, ε)J(k)φ0(−k) + C(k, ε0)J(k)J(−k))

]

(2.1)

We will show below that the wavefunctional corresponding to GKPW [11, 12] boundary

conditions, normally taken to represent the CFTs (Dirichlet boundary condition for standard

quantization and Neumann for alternative quantization when the latter exists), correspond

to a wavefunctional with a wrong ε-dependence when taken with the counterterms in [13],

as they do not satisfy the radial Schrödinger equation. This wavefunctional also leads

to spurious double trace deformations in the dual CFT. The correct wavefunctions which

represent the IR and UV CFT’s (standard and alternative CFTs) are the wavefunctions Ψ0
1

and Ψ0
2 described below (Equation 2.16 and 2.23, respectively).1

A partial answer to question (2) appears in [18] where it is shown that a subset of the

above wavefunctions represents a CFT with double-trace deformations (see Section 2.4).

This chapter provides a detailed and improved interpretation of the A,B,C coefficients2. In

particular it is shown that various choices of the A,B,C terms correspond to (i) double-trace

deformations,

S = SCFT +

∞∑

n=0

fn

∫
On, On = O(x)(∂2)nO(x) (2.2)

and (ii) contact terms. We have summarized the interpretation of these coefficients in

Table 2.1. One of the main observations of the work presented in this chapter is that there

exist special wavefunctionals (with special choices of A,B,C) such that both (i) and (ii) are

absent and the correlators become pure power laws. Indeed, as mentioned above, there are

just two such special choices Ψ0
1 and Ψ0

2 in the context studied in this paper: one corresponds

to the IR CFT (standard quantization) without any deformations and the other corresponds

to the UV CFT (alternative quantization) without any deformation. In section 2.2 these

1Ψ0
2, the wavefunctional corresponding to the UV fixed point has an interpretation of a unitary quantum

field theory only inside the Klebanov-Witten window.
2J will continue to represent the source for the single trace operator O(x) dual to the bulk field φ.
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will correspond to setting a quantity χ(k) (characterizing A,B,C, and hence the boundary

wavefunctional) to zero or ∞.

We have shown (in section 2.3) that the wavefunctions Ψ0
1 and Ψ0

2 have a simple geometric

interpretation. Each of them corresponds to a specific smearing of the boundary points

in Witten diagrams; as mentioned above, the defining property of the above smearing is

that even when the cut-off surface is moved inside, the resulting correlators remain a power

law. As an application of the above insight, the Wilsonian holographic beta-functions of

the double-trace operators are computed and compared with those obtained from direct

calculations in field theory. We find that the infinite number of coupled beta-functions can

be exactly mapped between field theory and holographic calculations. The existence of such

a mapping is nontrivial since both the field theory and holographic beta-functions are exact

and strictly quadratic. The correct identification of the double trace deformations with the

boundary wavefunctionals plays here an essential role.

This chapter is organized as follows:

Section 2.2 discusses the allowed boundary conditions at finite cut-off and arrive at the two

wavefunctionals Ψ0
1 and Ψ0

2 which correctly represent the IR and UV CFTs respectively. In

section 2.3, a geometric interpretation of these wavefunctions is discussed. It can be shown

that these boundary wavefunctionals represent a specific kind of non-locality which smears

the boundary points in Witten diagrams in a particular way. Section 2.4 presents the exact

identification of the coefficients in a general boundary wavefunctional with coupling con-

stants of double trace deformations in Eq. (2.2) and the contact terms (a generic boundary

wavefunction represents both). In section 2.5, we use the above characterization of double

trace deformations to compute the infinite series of coupled beta-functions. A detailed dual

field theory computation of these infinite series of beta-functions is presented in section 2.6

and a discussion of the matching between the two results in section 2.7. The matching

works with a mapping between the field theory and the bulk couplings; such a map is highly

constrained because the beta-functions are quadratic and exact on both sides. The details

of various calculations have been reserved to appendices B-E.

The details of various calculations in the paper were shared along with the arXiv preprint and

are available at arXiv:1608.00411 as a Mathematica notebook named CalculationsFile.nb.

2.2 AdS/CFT at a finite radial cut-off: fixed points

The section presents a precise extension of the GKPW prescription ([11, 12]) to a finite cut-

off. We present the ideas in the context of correlation functions of a single trace operator

O(x), which is dual to a scalar field φ(z, x) in d + 1 dimensional AdS spacetime. The

https://arxiv.org/abs/1608.00411
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spacetime metric and the scalar action are given by3

ds2 ≡ gMNdX
MdXN =

dz2 + dxµdxµ
z2

, (2.3)

Sb =
1

2

∫
ddxdz

√
g
(
(∂φ)2 +m2φ2

)
(2.4)

Mass of the scalar field, φ, is related to the scaling dimension of the dual field theory scalar

operator, O, by the following relation 4

∆ = ∆+ ≡ d/2 + ν, ν =
√
d2/4 +m2R2

AdS , (2.5)

(we use units where RAdS = 1). This relation is commonly referred to as the mass-dimension

relation.5 This relation is just one entry of a more elaborate dictionary between the confor-

mal dimension of the field theory operators and mass of the dual bulk field in the AdS/CFT

dictionary. The generalization of such a mass-dimension relation for various fields appearing

in Table 1.1 can be found in [43]. For our current purposes, the scalar action is the only

relevant part of the bulk action since we will work in the “probe approximation” in which

the AdS metric gMN remains unaltered (see Appendix E).

2.2.1 Standard quantization

As explained in the introduction to this chapter, the title ‘standard quantization’ refers

to the quantum theory defined by the usual GKPW prescription, characterized by the

mass-dimension relation (2.5). Under special circumstances we can define an ‘alternative

quantization’ (see footnote 4 and more detailed discussions below). Recall that in our

notation, various quantities associated with the ‘standard quantization’ are denoted by a

subscript + (e.g. ∆+) (and similarly those associated with ‘alternative quantization’ by a

subscript −).

3Euclidean metric is considered for simplicity.
4As discussed in the introduction to this chapter, in the Klebanov-Witten window ν ∈ (0, 1), two distinct

unitary CFT duals can be found, corresponding to O(x) having scaling dimensions ∆± = d/2 ± ν. For the
new CFT, defined as ‘alternative quantization’, the conformal dimension is ∆−.

5Sometimes, in the literature, the relation ∆(∆− d) = m2R2
AdS is also known as the mass-dimension

relation, to which (2.5) is one of the solutions
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Let us begin with the following putative definition of AdS/CFT for standard quantization

(GKPW)

Z+[Jk] = 〈exp

[∫
ddkJkO−k

]
〉+ =

∫
Dφ0Ψ0[φ0; ε0]

∫

z>ε0

Dφe−Sb (2.6)

Ψ0[φ0; ε0] = ΨGKPW ×Ψct, ΨGKPW = δ
(
φ0(k)− εd−∆+

0 J(k)
)
,

Ψct = exp


−1

2

∫

z=ε0

√
γ0φkD̂ct(kε0)φ−k


 (2.7)

Here γ0 is the determinant of the induced metric γµν at a radial cut-off z = ε0.

The δ-function above is equivalent to imposing the Dirichlet boundary condition on the

bulk field at z = 0, where the boundary value of the bulk field is related to the source,

J(k), of the dual field theory operator O(k) with some appropriate renormalization. In

addition to the original δ-function of GKPW, (2.7) also includes the counter-terms denoted

by D̂ct(kε0) conventionally introduced to ensure finiteness of the bulk partition function in

the ε → 0 limit [13] (see also [19, 44]; soon we will rediscover these counterterms from the

requirement of a well-defined variational principle, cf. (2.35) below). Expanded to several

orders in (kε0)2, it reads ([13] gives the first two terms; the expansion can be worked out

to arbitrary orders with the help of the Mathematica notebook shared as Ancillary files on

arXiv:1608.00411, [1])

D̂ct(ε0k) = ∆− −
1

2(ν − 1)
(kε0)2 +

1

8(ν − 2)(ν − 1)2
(kε0)4 + · · · (2.8)

Quite interestingly, it is also possible to derive these counterterms by demanding exact

conformal invariance as explained below.

We now demonstrate the need for improvement of the conventional definition of AdS/CFT

(2.6) using the wavefunctional (2.7). It will be noticed that if the correlators of the dual

field theory operators are computed using the above prescription, (2.7), for ε0 > 0, then

the answer is not consistent with Ward identities of conformal symmetry. Rather, the

correlators are of the form (2.89), corresponding to correlators computed in a regulated field

theory perturbed by double trace operators. While, in some sense, these correlators do limit

to those expected from conformal symmetry, strictly speaking, these can’t be interpreted as

coming from an exact conformal field theory through Wilsonian philosophy. It could still be

argued that the above prescription is valid only at ε0 = 0, however, it is hardly clear how

to take this limit in (2.7). The resolution to this inconsistency lies in the modification of

the wavefunctional on the boundary. The subsequent analysis will also shed light on how to

take the limit ε0 → 0 in a well defined manner.

https://arxiv.org/abs/1608.00411
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The space of allowed wavefunctionals: The general form of the wavefunctional, Ψ0[φ0, ε0],

in particular the dependence on ε0, can be inferred from the fact that it must satisfy the

radial Schrödinger equation, which, in the case of a bulk theory with a free massive scalar

without gravitational back reaction, takes the form

−∂ε0Ψ[ψ0; ε0] = ĤradΨ[ψ0; ε0], where, (2.9)

Ĥrad =

∫
ddx Ĥrad =

1

2

(∫
ddk

1

z1−d Π̂kΠ̂−k + z−1−d (z2k2 +m2
)
φ̂kφ̂−k

)
and, Π̂ ≡ i δ

δφ

The general solution for the wavefunctional is of the following quadratic form in the bulk

field φ0, of the form 6

Ψ0[φ0; ε0] = exp

[
− 1

2

∫

z=ε0

ddk
√
γ0

(
A(k, ε0)φkφ−k + 2ε

d−∆+

0 B(k, ε0)Jkφ−k

+ε
2(d−∆+)
0 C(k, ε0)JkJ−k

)]
(2.10)

Eqn. (2.9), computed in the Hamilton-Jacobi approximation [15, 16] gives 7

Ȧ = −(A−∆+)(A−∆−) + (kε)2, Ḃ = ∆+ B −A B, Ċ = (2∆+ − d) C −B2 (2.11)

here, Ẋ denotes, ε0∂ε0X. The general closed form solution for A(k, ε0) is,

A(k, ε) =
χ(k)

(
(d2 + ν)I−ν(kε) + kε0I−ν−1(kε)

)
+ (−1)ν Γ(ν+1)

Γ(1−ν)

(
(d2 − ν)Iν(kε) + kεIν−1(kε)

)

χ(k) I−ν(kε) + (−1)ν Γ(ν+1)
Γ(1−ν)Iν(kε)

=
2νχ(k)

(
(d− 2ν) + (kε)2 (d−2ν+4)

4(1−ν) + . . .
)

+
(
−1

2

)ν
(kε)2ν

(
(d+ 2ν) + (kε)2 (d+2ν+4)

4(ν+1) + . . .
)

2ν+1χ(k)
(

1 + (kε)2 1
4(1−ν) + . . .

)
+ 2

(
−1

2

)ν
(kε)2ν

(
1 + (kε)2 1

2(4(ν+1)) + . . .
)

(2.12)

Here, χ(k) is a constant of integration, fixed by solving with a boundary condition at some

cut-off z = ε0. Note that the above solution in the series form has two independent series, a

series in integer powers of (kε0) and another series in powers of (kε0)2ν . It will be shown that

the series corresponding to (kε0)2ν contains information about the double trace deformations

6The explicit ε0-dependent factors in front of B and C are chosen so that the parameters A,B, and
C in the wavefunctional are dimensionless (note our choice of units where RAdS = 1). The form of the
wavefunctional can also be argued based on explicit integration of the near boundary degrees of freedom in
the bulk action, as is done in [15–17], and also in Appendix C. Without any interactions, the wavefunctional
obtained by integrating out degrees of freedom between z = 0 and some z = ε0 can only be quadratic.

7In this particular quadratic case, Hamilton-Jacobi approximation is equivalent to exact Schrödinger
equations. The second and third equations of (2.11) are slightly different from the corresponding equations
in [15, 16] due to the fact that the their B,C are dimensionful.
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z=𐐩
0

z=𐐩

z=𐐩
0

Figure 2.1: The wavefunctional with the coefficients A∗, B∗, C∗ gives the correct effective
description of the continuum theory, which was obtained by the ε0 = 0 bulk action. This
wavefunctional is effectively obtained by the integration of near boundary degrees of freedom

in AdS.

around the fixed point. Similar solutions exist for B(k, ε0) and C(k, ε0) but have not been

reproduced here because they aren’t particularly insightful.

Wavefunctional satisfying exact scaling In general, the partition function can be

computed by integrating out the bulk fields exactly,

Z[Jk] = exp


−1

2

∫
ddk JkJ−kε

d−2∆+

0


C(k, ε0)− B2(k, ε0)

kε0
Kν−1(kε0)
Kν(kε0) −∆− +A(k, ε0)






(2.13)

where, Kν(kε0) are the modified Bessel functions of second kind. There are two special

choices of χ(k) above, i.e. χ(k) = 0, or ∞, for which the partition function in (2.13)

becomes exactly that of a conformal theory.8

To the leading order in kε0, the solution for these particular choices of the wavefunctionals

are A = ∆+ or ∆−, as can also be seen from the leading order truncation of (2.12). Let

us consider the solution with A = ∆+. In this case, B-evolution equation is identically

satisfied, and the value of B is fixed by the boundary value enforced by (2.7) (to leading

order, in continuum limit) to B = −2ν. Finally, this fixes C = 2ν, and the wavefunctional

8 What we really mean here is that the partition function computed above doesn’t explicitly depend on
the cut-off ε0, thus obeying the correct scaling laws corresponding to the dual field theory operator O. This
is also the reason to claim that such a wavefunctional can be understood as being generated by integrating
out the degrees of freedom between z = 0 and z = ε0 in the bulk theory that is exactly dual to the conformal
field theory, the limiting action given by (2.7). This is consistent with the Wilsonian philosophy of RG.
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is given by,

Ψ0[φ0; ε0] ∼ exp

[
− 1

2

∫

z=ε0

ddk
√
γ0

(
∆+ φkφ−k − 4νε

d−∆+

0 Jkφ−k + 2νε
2(d−∆+)
0 JkJ−k

)]

∼ exp

[
− 1

2
× (2ν)

∫

z=ε0

ddk
√
γ0

(
φk − εd−∆+

0 Jk

)
k

(
φk − εd−∆+

0 Jk

)
−k

]

× exp


−1

2
∆−

∫

z=ε0

√
γ0φkφ−k


 9 (2.14)

Thus, with A = ∆+, B = −2ν, C = 2ν, we have an appropriately regulated, and correct form

of the wavefunctional (2.7). Clearly, (2.14) also reproduced the correct δ-function boundary

condition of GKPW in the ε0 → 0 limit.

The solution with the sub-leading corrections can be found to arbitrary order in (kε0) and

are given by,

A∗ST (kε0) = ∆+ +
1

2(1 + ν)
(kε0)2 − 1

8(2 + ν)(1 + ν)2
(kε0)4 + · · · (2.15a)

= D̂ct(kε0) + 2ν

(
1− 1

2 (1− ν2)
(kε0)2 +

(
5 + ν2

)

8 (4− ν2) (1− ν2)2 (kε0)4 + · · ·
)

(2.15b)

= D̂ct(kε0) + 1/A ∗ST (2.15c)

A ∗ST ·B∗ST (kε0) = −
(

1 +
1

4(1− ν)
(kε0)2 +

1

32(1− ν)(2− ν)
(kε0)4 + · · ·

)
(2.15d)

A ∗ST · C∗ST (kε0) = 1 +
1

2− 2ν
(kε0)2 +

(3− 2ν)

16(2− ν)(1− ν)2
(kε0)4 + · · · (2.15e)

where it can be checked that (A ∗ST ·B∗ST (kε0))2 = A ∗ST · C∗ST (kε0). So the wavefunctional

at the finite cut-off is,

Ψ0
1[φ0; ε0] = exp


−1

2

∫

z=ε0

ddk
√
γ0

(
φ+ A ∗ST ·B∗ST (kε0) ε

d−∆+

0 J
)
k

(
φ+ A ∗ST ·B∗ST (kε0) ε

d−∆+

0 J
)
−k

A ∗ST (kε0)

− 1

2

∫

z=ε0

√
γ0φkD̂ct(kε0)φ−k

]
(2.16)

9‘∼’ signifies that the subleading terms have not been included. Also, we are not careful about the
normalizations, since they are inconsequential in a quadratic theory.
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and A ∗ST is just the shorthand for the series,

1

A ∗ST
= 2ν

(
1− 1

2 (1− ν2)
(kε0)2 −

(
5 + ν2

)

8 (4− ν2) (1− ν2)2 (kε0)4 + · · ·
)

Two things can be noted from the above results:

1. δ-function of the GKPW prescription needs to be regularized at a finite radial cut-off.

2. The source, J , for the dual field theory operator, O, gets renormalized. The wavefunc-

tion renormalization at the finite cut-off is given by Z−1
J = (−A ∗ST (kε0) ·B∗ST (kε0))−1 =

ZO.10

With such a choice of wavefunction, the functional integral, (2.6), is actually independent

of the cut-off parameter ε0 (see (2.17) below)! This is true even when the holographic

computation is done with a finite radial cut-off, z = ε0. Consequently, as we see below, the

correlators computed from this prescription exhibit a pure power law behaviour, consistent

with the conformal Ward identities.

O(k)O(−k) correlator We compute the correlators with the new prescription for AdS/CFT

at finite radial cut-off with the inclusion of the boundary wavefunctional (2.16) by integrat-

ing out the bulk fields φ. The exact partition function becomes,

Z+[Jk] = exp

[
−1

2

∫
ddk Jk

(
k2ν 21−2νΓ(1− ν)

Γ(ν)

)
J−k

]
(2.17)

This is the exact partition function to all orders with the correct solutions of A ∗ST , B
∗, C∗.11

Thus the connected two point function for the boundary operator is,

〈O(k)O(−k)〉+ = k2ν 21−2νΓ(1− ν)

Γ(ν)
(2.18)

This is the correct 2-point function as governed by conformal symmetry. If one follows

the Wilsonian principles of integrating out the degrees of freedom such that all the physical

observables remain invariant, then this is the wavefunctional that will be obtained from (2.7).

This result is slightly surprising because it tells us that it is possible to define AdS/CFT

correspondence with a finite bulk cut-off, such that we still describe the field theory in

the continuum limit. Alternatively, from the conventional renormalization point of view,

in the field theory this is analogous to finding out all the correct counter-terms and/or

10Renormalization factors, ZO, ZJ are defined by O(ε) = ZO · O(0) and J(ε) = ZJ · J(0). Alternatively, one
can identify the source through (2.16), without any mention of wavefunction renormalization.

11We have checked it to the sixth order in kε expansion, but with the inclusion of the exact solutions for
A ∗ST , B

∗, C∗ this will hold true to all orders.
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vacuum energy terms that make the partition function at a finite cut-off exactly conformally

invariant. This view point is discussed in detail in subsection 2.2.3.

Correlator for a regulated field theory Since we want to find a bulk dual to field theory

that is regulated at short distances (section 2.6), we want to introduce an explicit cut-off

dependence in our correlator/partition function which replicates the regulation-dependence

in the field theory (see subsection 2.6.4). A position space regulated correlator, (2.73), in

momentum space is given by (2.84). To include a similar regulation in the bulk calculation,

we need to include an extra contact term piece in our bulk action,

Sextra =
1

2

∫
ddk ε

−d+2(d−∆+)
0 δC(kε0)JkJ−k (2.19)

which modifies the correlator (2.18) to,

〈O(k)O(−k)〉+ = k2ν 21−2νΓ(1− ν)

Γ(ν)
+ ε−2ν

0 δC(kε0) (2.20)

One could argue that any perturbation away from the fixed point could ideally be achieved

by changing any of A,B or C away from the fixed point values, A∗, B∗, C∗. But as can be

seen in section 2.4, each of these coefficients have a different field theory interpretation of

double-trace perturbation, wavefunction renormalization and contact terms in the correla-

tors/partition function, respectively. So the change of each one of them contributes in a

different manner to the observables like correlators of the theory.

A(kε) B(kε) C(kε)

Double-trace deformation Wavefunction renormalization Contact terms

Table 2.1: Interpretation of different coefficients in wavefunctional (2.10) away from the
fixed point values, A∗, B∗, C∗. This interpretation is slightly heuristic and the exact rela-

tions are given in section 2.4.

In what comes next, we study the RG flows of field theories regulated in this fashion through

direct as well as holographic computations. But before that we also establish the AdS/CFT

duality at a finite cut-off in alternative quantization.

2.2.2 Alternative Quantization

In Klebanov-Witten window ν = ∆+ − d/2 ∈ (0, 1) [19] the bulk gravitational theory is

dual to two different quantum field theories in the boundary which are related to each other

through Legendre transform. Thus, the generating function of one quantum field theory is
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the 1PI effective action of the other and vice versa, with the distinction that 1PI effective

action is itself a local action for such theories.

Alternative fixed point can be understood as a UV completion of the standard IR theory

within the Klebanov-Witten window by analysing the flow equations (2.11).12 However,

we treat this as a stand-alone prescription to begin with, and will connect them using the

flow in double trace couplings in Appendix C.1. The usual AdS/CFT prescription for the

alternative quantization is given by,

Z−[Jk] = 〈exp

∫
ddkJkO−k〉−

=

∫

z≥ε0

Dφ exp


−Sb − lim

ε0→0



∫

z=ε0

ddk
√
γ0ε

d−∆−
0 φkJ−k +

1

2

∫

z=ε0

ddx
√
γ0φkD̂ct(ε0k)φ−k






(2.21)

The boundary part of the action, which is also the wavefunctional Ψ[φ0], in the above

equation is such that the variation principle imposes a modified Neumann condition on

the boundary z = ε0 → 0. This relates the normalizable part of the classical solution

for π (conjugate momentum to the bulk field φ) to the source, J for the dual field theory

operator O, which now has the conformal dimension ∆− = d/2 − ν, [19, 45]. In this case,

the wavefunctional can be generalized to a finite cut-off without any ambiguity. Evolution

equations for alternative quantization in terms of A,B,C are (B,C equations are modified

due to difference in normalization of the sources with respect to the bulk field φ),

Ȧ = −(A−∆+)(A−∆−) + (kε0)2, Ḃ = ∆− B −A B, Ċ = (2∆− − d) C −B2 (2.22)

It can be checked immediately that D̂ct given by [13] is identically a stationary point for A.

At the leading order in kε0, A = ∆− and B = 1, and B equation is identically satisfied.

However, in the limiting prescription of (2.21), we don’t have any C, which clearly is not a

stationary point. The concluding discussion of the previous section emphasized the inter-

pretation of C-terms, that are quadratic in the sources Jk, as a choice of regulation scheme

at a finite cut-off; this term adds contact terms to the bulk action and the O correlators.

We modify the wavefunctional in (2.21) to include such terms and demand that this be at

a fixed point as we did for standard quantization. On the upside, inclusion of such a term

makes the alternative theory the exact Legendre transform of the standard theory along

with all the counter-terms in both the theories. Solving for the stationary point of C to the

12It is the solution corresponding to χ → ∞ in (2.12), with the corresponding solutions for B(k, ε0) and
C(k, ε0).
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leading order, the wavefunctional becomes,

Ψ0
2[φ0; ε0] = exp

[
− 1

2

∫

z=ε0

ddk
√
γ0

(
φkD̂ct(kε0)φ−k + 2ε

d−∆−
0 B∗AQ(kε0)φkJ−k

+ε
2(d−∆−)
0 C∗AQ(kε0)JkJ−k

)]
(2.23)

where,

B∗AQ(kε0) = 1− 1

4(1− ν)
(kε0)2 +

(3− ν)

32(2− ν)(1− ν)2
(kε0)4 + · · · (2.24a)

C∗AQ(kε0) = − 1

2ν
+

1

4(1− ν2)
(kε0)2 − (5− 2ν)

32(1− ν)2 (4− ν2)
(kε0)4 + · · · (2.24b)

It is interesting to note that, B∗AQ(kε0) = −1/(A ∗ST ·B∗ST (kε0)) and C∗AQ(kε0) = −1/(A ∗ST ·
B∗ST

2). This shows that the alternative theory given by the wavefunctional (2.23) is exactly

the Legendre transform of the standard theory defined by the wavefunctional (2.16) at cut-off

z = ε0.

O(k)O(−k) correlator The partition function and the correlator computation follows

similar to that in standard quantization and can be computed exactly by using the wave-

functional (2.23), and integrating out the φ fields in the bulk,

Z+[Jk] = exp

[
−1

2

∫
ddk Jk

(
−k−2ν 22ν−1Γ(ν)

Γ(1− ν)

)
J−k

]
(2.25)

Again, this is the exact correlator to all orders with the correct solutions of A∗, B∗, C∗. Thus

the connected two point function for the boundary operator is,

〈O(k)O(−k)〉− = −k−2ν 22ν−1Γ(ν)

Γ(1− ν)
(2.26)

This is the correct 2-point function as governed by conformal symmetry for a continuum

theory around the UV-fixed point.

Correlator for a regulated field theory Following the discussion in previous subsec-

tion, we can study a regulated field theory by including an extra piece in the wavefunctional,

(2.23),

Sextra =
1

2

∫
ddk ε

−d+2(d−∆−)
0 δC(kε0)JkJ−k (2.27)
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which once again modifies the correlator above to,

〈O(k)O(−k)〉− = −k−2ν 22ν−1Γ(ν)

Γ(1− ν)
+ ε2ν0 δC(kε0) (2.28)

2.2.3 Choice of regulation scheme and comparison with field theory

In a dual field theory calculation, Wilsonian principles demand that under integration of

degrees of freedom in a field theory, all physical observables remain unchanged. This gives us

an effective description of the same theory with reduced degrees of freedom. In particular,

if we start with a continuum quantum field theory and integrate out the UV degrees of

freedom (either in position or momentum space), then the correlation functions computed

using the new effective Lagrangian are the same as that of the continuum theory. In a

continuum conformal field theory in which the correlation functions of the primary operators

obey the scaling laws, an effective description with integration of certain degrees of freedom

will reproduce the same power law correlators. However, a particular choice of regulation

scheme in the field theory changes the short-distance/UV behaviour of the correlators (e.g.

(2.73)) by an addition of certain counter-terms in the momentum space (Equation 2.83).

For example, for the Θ-function regulated theory this choice corresponds to, (see (2.84)),

c0 = ± 2π
d−1

2

ν Γ

(
d− 1

2

) , c1 =
π
d−1

2

3(ν + 1)Γ

(
d− 1

2

) , c2 = − π
d−1

2

60(ν + 2)Γ

(
d− 1

2

) , · · ·
(2.29)

where, δC = c0 + c1(kε)2 + c2(kε)4 + · · · . These coefficients depend only on the choice

of regulation scheme and not on the cut-off ε at which the theory is regulated. Within

such a scheme, with the regulated correlator, one needs to modify the effective Lagrangian

appropriately to obtain the continuum power-law-obeying correlators. In conventional renor-

malization this is done by adding appropriate counter-terms in the Lagrangian. It is shown

in [46] that for a generic large N theory the conformal invariance is broken by the running of

double-trace couplings (which, as emphasized there, is a leading large N behaviour), unless

the theory is at a conformal fixed point of all the double-trace couplings. Since we identify

the alternative/standard quantizations with the UV/IR fixed points in the double-trace sec-

tors, we are assured that no new counter-terms are generated for double-trace deformations.

So, the corrections required in the regulated effective theory with certain UV cut-off can’t

be obtained by some double-trace counter terms. This argument is further strengthened

by an explicit calculation with the inclusion of double-trace counter terms. As shown in

various places in this chapter, inclusion of any double-trace interaction in the Lagrangian

(away from the fixed point values) necessarily modifies the correlators by addition of terms

proportional to k4ν , k6ν , . . . – which is not the same as the momentum space counter-terms

that are present in the regulated theory. However, the inclusion of terms quadratic in the
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Figure 2.2: Diagrams contributing to generation of terms quadratic in source, J(k). As
a standard convention throughout the chapter, colored propagators denote ‘heavy’ modes

(see section 2.6 for conventions used in Feynman diagrams).

source, J(k), of the operator, O(k) in the Lagrangian provides the required correction that

makes the correlators same as that of the continuum theory. Normally, in the partition

function (which is computed with J(k) = 0, as opposed to the generating function), one

would think that such terms are inconsequential. However, such terms necessarily correct

the generating function, W [J ] = logZ[J ], of the theory and hence all the correlators of the

theory. Particularly, in the quadratic effective action that we have in the large N theory,

we obtain the power-law 2-point functions with the inclusion of appropriate terms. Within

Wilson-Polchinski fRG treatment, such terms are necessarily generated as we integrate out

the degrees of freedom (Figure 2.2).

The bulk computation at finite radial cut-off, (2.17), automatically corresponds to the reg-

ulated field theory with the inclusion of such terms. However, we emphasise the need to

differentiate the contribution of the regulation scheme from that of the quadratic J term.

In a regulated field theory with a double-trace deformation the regulation of the correlators

(contact terms coming due to the regulation scheme) participates dynamically in the compu-

tation of the Feynman diagrams that gives rise to the rational fraction form of the correlator,

(2.85), in the perturbed theory. The quadratic J term corrects this correlator by an additive

term (which cancels the regulation-scheme contact terms in absence of the perturbation).

Analogously, in the bulk computation, we treat the two contributions separately. This is

done by a deviation of the boundary wavefunctional, Ψ, from C∗ by some δC corresponding

to the particular choice of scheme in the field theory. Then we use this wavefunctional in

our Hubbard-Stratonovic transformation to describe the regulated, double-trace deformed

field theory (as in (2.41) and (2.49)). It is hence important to compute the β-functions for

the double-trace couplings using this prescription.

2.3 Geometric interpretation: smeared Witten diagram

The above improvement of the AdS/CFT prescription at finite radial cut-off has a natural

generalization in the limit of massive, mRAdS � 1, bulk fields. It is known that in this limit,

the field theory correlators are approximated by geodesics between the points of operator
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insertions in the boundary, [47, 48] . Geodesic length between the points (ε, x1) and (ε, x2)

in AdS is given by

Lε(x1−x2) = cosh−1

(
1 +

1

2
(|x1 − x2|/ε)2

)
= 2 log[|x1−x2|/ε]+2(ε/|x1−x2|)2+O(ε/|x1−x2|)4

This is related to the correlator 〈O(x1)O(x2)〉ε for large ∆ ≈ m (with RAdS = 1) as (∆ is

the operator dimension of O)

Gε(x1−x2) = constant exp[−∆Lε(x1 − x2)] = (1/|x1−x2|)2∆e(1+2∆(ε/|x1−x2|)2+O(ε/|x1−x2|)4)

(2.30)

where the ‘constant’= ε−2∆ (in accordance with the dimension [O(x)] = ∆, and Zamolod-

chikov’s convention G(0, 1) = 1). The corrections that appear in the exponential of the

correlator above can be thought of as a regulation scheme for the correlator. It can be easily

checked that this scheme obeys all the general discussion of subsection 2.6.4 and has the

momentum space counter-terms as discussed there.

Like the conventional GKPW prescription, this should also be understood as a limiting

prescription which is well defined only in ε→ 0 limit. Our finite radial cut-off modification

to the GKPW prescription suggests that we need to modify the geodesic prescription too.

The source corresponding to the insertion of boundary operator O at x1, x2 is J(~x) =

δ(~x− ~x1) + δ(~x− ~x2). Using the boundary condition, (2.37) (with f = 0), we find that the

bulk field, φ, at finite radial cut-off in the momentum space is,

φ(k, ε0) =
21−νε

d/2
0

Γ(ν)

(
ei
~k·~x1 + ei

~k·~x2

)
kνKν(kε0) (2.31)

where we have used J(k) =
(
ei
~k·~x1 + ei

~k·~x2

)
. Similar to the law of superposition, we simply

add the field due to the presence of one source at ~x = ~x1 to that due to source at ~x = ~x2.

In position space, the field due to an individual source is given by,

φ(k, ε0) =
21−νε

d/2
0

Γ(ν)
ei
~k·~x1kνKν(kε0) Fourier

transform−−−−−→
2d−1π

d−2
2 ε
− d

2
−ν

0

(d+ 2ν − 1)

(
Γ
(
d
2

)
Γ
(
d
2 + ν

)

Γ
(
d+1

2

)
Γ(ν)

)((
1 +

ε20
ρ2

)
2F1

(
d

2
,
d

2
+ ν;−1

2
;−ρ

2

ε20

)

−
(

2(d+ ν) +
ε20
ρ2

)
2F1

(
d

2
,
d

2
+ ν;

1

2
;−ρ

2

ε20

))

(2.32)

This function is peaked around ρ = 0, where ~ρ = ~x − ~x1, with a half-width of the order of

O(ε0).
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Figure 2.3: Plots for the boundary fields at finite radial cut-off with double-centered delta
function source.

This solution for φ0 corresponds to a distribution for φ0 smeared around J(x) = δ(~x−~x1)+

δ(~x − ~x2). This is schematically represented by the right panel of the diagram, Figure 2.4.

Note that since the correlator at any cut-off surface is a pure power law by this device, the

motion of the cut-off surface into the AdS bulk does not change the correlator.

Figure 2.4: (Left) Witten diagram for a delta-function boundary term corresponds to a
scaling violation, as in (2.30). (Center) Witten diagram with our smearing over the delta-
function boundary condition gives the pure power law. (Right) Smearing increases as one
moves deeper in the radial direction. However, the exact correlator in both the centre and

the right diagram are equal.

2.4 Double trace perturbations

Having defined our fixed point theories with a finite cut-off and before we move on to

computation of β-function in dual bulk theory, we review ([18]) and extend the AdS/CFT

dictionary for the derivative double-trace operators. The same bulk field which is dual to

a scalar primary operator O of scaling dimension ∆ also describes the physics of derivative
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multi-trace operators with an appropriately modified boundary condition that is discussed

in this section.

The action with a double-trace perturbation and inclusion of a source term is given by (2.72)

S = S0 +
1

2

∫
ddk Of(∂2)O(x)−

∫
ddx J(x)O(x)

Since the bulk computations will give us different β-functions, to differentiate between the

two sets of couplings we have denoted the couplings used in the bulk calculations by f instead

of f for the dimensionful couplings, and f̄ instead f̄ for the dimensionless couplings. Same

notation is used for f(∂2) as in (2.71). In the subsequent discussions, we work in momentum

space,

f(k2) = f0 + f2k
2 + f4k

4 + . . .

We use Hubbard-Stratonovich trick to write the perturbation terms above as,

exp

[∫
J(k)O(−k) −

∫
f(k2)

2
O(k)O(−k)

]

=

∫
Dφ̃ exp



∫
(
φ̃− J

)
k

(
φ̃− J

)
−k

2f(k2)
+

∫
φ̃(k)O(−k)


 (2.33)

Standard Quantization Using (2.33), and the statement of duality for standard quan-

tization at finite radial cut-off given by the wavefunctional (2.16), a bulk partition function

dual to the double-trace perturbed field theory can be obtained,

Z+[J, f(k2)] =

∫
Dφ exp


−Sb −

∫

z=ε0

ddk
√
γ0

(
φ+ A ∗ST ·B∗ST (kε0) ε

d−∆+

0 J
)2

k

2A ∗ST (kε0)

(
1−B∗ST 2 A ∗ST

f(k2)

ε2ν0

)

−
∫
ddk

√
γ0

2
φkD̂ct(ε0k)φ−k

]
(2.34)

Variational principle imposes following condition at the boundary z = ε0,

π(k, ε0)−√γ0

(
φ+ A ∗ST ·B∗ST (kε0) ε

d−∆+

0 J
)
k

A ∗ST (kε0)

(
1−B∗ST 2 A ∗ST

f(k2)

ε2ν0

) −√γ0 D̂ct(ε0k)φ(k, ε0) = 0 (2.35)

where, π(k, z) =
√
g ∂zφ(k, z) is the conjugate momentum of the bulk field.

Using the near boundary expansion of the bulk field φ(k, z),

φ(k, z) = zd−∆+ a(k)

(
1− (kz)2

22(ν − 1)
+ · · ·

)
+ z∆+ b(k)

(
1 +

(kz)2

22(ν + 1)
+ · · ·

)
(2.36)
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the boundary condition becomes,

J(k) = 2νf(k2)b(k) + a(k) 13 (2.37)

In the above expression, in the ε0 → 0 limit, b(k) is the expectation value of the operator

O, and a(k) is the source. The above expression can be rewritten as,

a(k) = J(k)− 2νf(k2) b(k) = J(k)− 2νf(k2)〈O(k)〉

≡ a(x) = J(x)− 2ν
(
f0〈O(x)〉+ f2〈∂2O(x)〉+ f4〈∂4O(x)〉+ . . .

)
(2.38)

IR boundary condition in the bulk at z = ∞ imposes an additional condition on the on-

shell field φ(k, z). In the pure AdS geometry, demanding the regularity of the field at IR

determines b(k) in terms of a(k),

b(k) = 2−2νk2ν Γ(−ν)

Γ(ν)
· a(k)

So the improved relationship between the boundary value of the bulk field, φ(k, ε0), and the

field theory source for the dual operator O, in the absence of the double-trace deformation,

f(k2), is

φ(k, ε0) = ε
d−∆+

0 J(k)

[(
1− (kε0)2

22(ν − 1)
+ · · ·

)
+

(
kε0
2

)2ν Γ(−ν)

Γ(ν)

(
1 +

(kε0)2

22(ν + 1)
+ · · ·

)]

(2.39)

In the limit, ε0 → 0, this gives back the well known GKPW prescription between the field

and the source, lim
ε0→0

ε
∆+−d
0 φ(k, ε0) = J(k). This is a reaffirmation of the limiting δ-function

prescription, (2.7), originally known in the correspondence.

In the presence of the double-trace deformation this relation gets modified to,

φ(k, ε0) = ε
d−∆+

0 J(k)

[(
1− (kε0)2

22(ν−1)
+ · · ·

)
+
(
kε0
2

)2ν
Γ(−ν)
Γ(ν)

(
1 + (kε0)2

22(ν+1)
+ · · ·

)]

1 + 21−2ν f̄(k2ε20) (kε0)2ν νΓ(−ν)
Γ(ν)

(2.40)

With the regulator counter-terms Since we are particularly interested in field theories

that are regulated at short distances in position space (or equivalently, have certain counter-

terms in the momentum space) it is also important that we establish our duality for the

13This equation is correct to all orders with the inclusion of all the correct counterterms that we have
derived at finite cut-off, viz., the values of B∗ST ,A

∗
ST , D̂ct.
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double-trace perturbations with the inclusion of such regulators, (2.19).

Z+[J, f(k2)] =

∫
Dφ exp


−Sb −

1

2

∫

z=ε0

ddk
√
γ0




1− δC · f(k
2)

ε2ν0

A ∗ST

(
1−

(
δC +B∗ST

2 A ∗ST
) f(k2)

ε2ν0

)φkφ−k

+2
B∗ST ε

d−∆+

0(
1−

(
δC +B∗ST

2 A ∗ST
) f(k2)

ε2ν0

)Jkφ−k +

(
δC + A ∗ST ·B∗ST 2

)
ε
2(d−∆+)
0(

1−
(
δC +B∗ST

2 A ∗ST
) f(k2)

ε2ν0

) JkJ−k




−
∫

z=ε0

ddk

√
γ0

2
φkD̂ct(ε0k)φ−k


 (2.41)

Variational principle imposes following condition at the boundary z = ε0,

π(k, ε0)−
√
γ0

A ∗ST




1− δC · f(k
2)

ε2ν0

1−
(
δC +B∗ST

2 A ∗ST
) f(k2)

ε2ν0


φk −

√
γ0




ε
d−∆+

0 B∗ST

1−
(
δC +B∗ST

2 A ∗ST
) f(k2)

ε2ν0


 Jk

−√γ0 D̂ct(ε0k)φ(k, ε0) = 0 (2.42)

the boundary condition becomes,

J(k) = 2νf(k2)b(k) +

(
1− f(k2)

ε2ν0
δC(kε0)

)
a(k) (2.43)

In the double-trace perturbed theory the exact two point function, 〈O(k)O(−k)〉f is given

by the summing over all the connected diagrams. Since the bulk partition function of the

perturbed theory, (2.34) or (2.41), is quadratic in bulk fields φk, we can perform the gaussian

integral exactly and compute the 2-point function from the resulting generating function,

〈O(k)O(−k)〉(+)
f =

Gε0(+)(k)

1 + f(k2)Gε0(+)(k)
(2.44)

for any value of the coupling f(k2). Here G
(ε0)
+ is given by either (2.18) or (2.20).14

Alternative Quantization From the duality for alternative quantization without double-

trace perturbation (2.23) and (2.33), the bulk dual to double-trace deformed alternative

14Note that we have dropped the contribution coming from the quadratic J explained in subsection 2.2.3
as we won’t need them for the β-function calculation, but we should remember their presence.
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quantized theory is,

Z−[J, f(k2)] =

∫
DΦ exp

(
−S(−)

0 +

∫
ddk J(k)O(−k)−

∫
ddk

f(k2)

2
O(k)O(−k)

)

=

∫

z≥ε0

Dφ exp


−Sb −

∫

z=ε0

ddk

√
γ0

2

(
B∗AQ

2 f(k2)ε2ν0

1− C∗AQ f(k2)ε2ν0
+ D̂ct(ε0k)

)
φkφ−k

−
∫

z=ε0

ddk
√
γ0

(
B∗AQ

1− C∗AQ f(k2)ε2ν0

)
ε
d−∆−
0 φkJ−k

−1

2

∫

z=ε0

ddk
√
γ0

(
C∗AQ

1− C∗AQ f(k2)ε2ν0

)
ε
2(d−∆−)
0 JkJ−k




(2.45)

Variation of the fields on the boundary z = ε0 imposes the condition,

π(k, ε0)−√γ0 φ(k, ε0)

(
B∗AQ

2 f(k2)ε2ν0

1− C∗AQ f(k2)ε2ν0
+ D̂ct(ε0k)

)
=
√
γ0

(
B∗AQ

1− C∗AQ f(k2)ε2ν0

)
ε
d−∆−
0 J(k)

Using the near boundary expansion of the bulk field φ(k, z) in the boundary condition we

get, 15

J(k) = 2ν a(k)− f(k2)b(k) (2.46)

which can be rewritten as,

a(k) =
1

2ν

(
J(k) + f(k2)b(k)

)
=

1

2ν

(
J(k) + f(k2)〈O(k)〉

)

≡ a(x) =
1

2ν

(
J(x) + f0〈O(x)〉+ f2〈∂2O(x)〉+ f4〈∂4O(x)〉+ . . .

)
(2.47)

As in the standard quantization, demanding regular IR boundary condition in the pure AdS

bulk geometry, at z =∞, determines b(k) in terms of a(k),

b(k) = 22νk−2ν Γ(ν)

Γ(−ν)
· a(k)

15φ(k, z) = zd−∆− a(k)
(

1 + (kz)2

22(ν+1)
+ · · ·

)
+ z∆− b(k)

(
1− (kz)2

22(ν−1)
+ · · ·

)
where a(k) is the coefficient of

normalizable part and hence the source for alternative quantization. Also the expression in (2.46) is exact
to all orders.
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So the improved relationship between the boundary value of the bulk field, φ(k, ε0), and the

field theory source for the dual operator O, now of dimension ∆−, is

φ(k, ε0) = ε
∆−
0 J(k)

(
k

2

)−2ν

[(
kε0
2

)2ν (
1 + (kε0)2

22(ν+1)
+ · · ·

)
+ Γ(ν)

Γ(−ν)

(
1− (kε0)2

22(ν−1)
+ · · ·

)]

2ν − 22ν f̄(k2ε20) (kε0)−2ν Γ(ν)
Γ(−ν)

(2.48)

which, again limits to the known relationship between the source and the normalizable part

of the bulk field, J(k) = 2νa(k) in the ε0 → 0 limit in the absence of the double-trace

deformations.

With the regulator counter-terms If we however start with (2.27), then,

Z−[J, f(k2)] =

∫
DΦ exp

(
−S(−)

0 +

∫
ddk J(k)O(−k)−

∫
ddk

f(k2)

2
O(k)O(−k)

)

=

∫

z≥ε0

Dφ exp


−Sb −

1

2

∫

z=ε0

ddk
√
γ0

(
B∗AQ

2 ε2ν0 f(k2)

1− ε2ν0 f(k2)(C∗AQ + δC)
+ D̂ct(ε0k)

)
φkφ−k

−
∫

z=ε0

ddk
√
γ0

B∗AQ
1− ε2ν0 f(k2)(C∗AQ + δC)

ε
d−∆−
0 φkJ−k

−1

2

∫

z=ε0

ddk
√
γ0

C∗AQ + δC

1− ε2ν0 f(k2)(C∗AQ + δC)
ε
2(d−∆−)
0 JkJ−k




(2.49)

which leads to boundary condition,

π(k, ε0)−√γ0 φ(k, ε0)

(
B∗AQ

2 ε2ν0 f(k2)

1− ε2ν0 f(k2)(C∗AQ + δC)
+ D̂ct(ε0k)

)
=

√
γ0

B∗AQ
1− ε2ν0 f(k2)(C∗AQ + δC)

ε
d−∆−
0 J(k) (2.50)

J(k) = 2ν
(
1− ε2ν0 f(k2) δC(kε0)

)
a(k)− f(k2)b(k) (2.51)

As in standard quantization, the 2-point function is evaluated exactly by integrating out

(2.45) or (2.49),

〈O(k)O(−k)〉(−)
f =

Gε0(−)(k)

1 + f(k2)Gε0(−)(k)
(2.52)
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Equations (2.38), (2.43), (2.47) and (2.51) are our proposed generalisation of the boundary

prescription originally given by [18] for the derivative multi-trace deformations around a

conformal field theory in standard and alternative quantization, respectively. These have

the same structure as we had found for the field theory correlators in subsection 2.6.4.

For even more general higher-derivative multi-trace operators, we expect that the above

formulae generalises as long as we include all the derivative terms inside the expectation

values. Corresponding computation for triple-trace operators without derivatives is done in

[45], and we think the generalisation shouldn’t be difficult.

2.5 Holographic computation of β-functions

Having established the duality for the double-trace operators in previous section, we know

that the couplings of the field theory double-trace operators are contained in the coefficient

of the φkφ−k in the boundary part of the bulk action (2.34),(2.45). AdS/CFT naturally

incorporates a holographic version of RG flow, because of the correspondence between the

radial coordinate in the bulk and the energy scale in the boundary field theory, see, e.g.,

[14, 49–52]. Holographic Wilsonian RG flow of double-trace operators without derivatives

was considered in [15, 16], which was generalised in [17] to double trace operators with

derivatives. In the following we essentially build up on the treatment in [17]. For other rel-

evant work on renormalization of multi-trace operators from holographic and field theoretic

viewpoints, see, e.g. [45, 46, 53–55]).

An essential feature of the AdS/CFT correspondence is the connection between the energy

scale of the conformal field theory (CFT) and the radial coordinate of the AdS dual. More

precisely, AdS/CFT states that the bulk partition function in Euclidean AdS, defined with

a radial cut-off r = r0, equals the dual field theory partition function with a UV momentum

cut-off Λ given in terms of r0 (for large Λ, Λ = r0/R
2
AdS [56]). A corollary of this statement,

in the semi-classical limit, is that the running of field theory couplings is identified with the

radial dependence of classical field configurations in the dual gravitational theory (see, e.g.,

[14, 49–51]). Motivated by this feature, in [15, 16], the near-boundary degrees of freedom in

the bulk are identified with the heavy/short-distance modes of the dual field theory. They

work in probe approximation with a fluctuating field φ(x, z) on a fixed AdS background

given by,

ds2 =
1

z2

(
dz2 + ηµνdx

µdxν
)

(2.53)
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Integration of the near boundary modes in the bulk gives a new holographic version of

Wilsonian effective action in the field theory. Stated mathematically,

Zbulk,ε0 =

∫

z≥ε0
D[φ]e−S[φ]

=

∫
Dφ|z>ε Dφ̃ Dφ|ε0≤z<ε e−S[φ]|z>εe−S[φ]|z<ε

=

∫
Dφ̃ Zbulk,ε(ε, φ̃)ZUV (ε, φ̃) (2.54)

The role of ZUV is an addition of a boundary wavefunctional, Ψ[φ0; ε0] to the bulk action

at the new cutoff z = ε, Zbulk,ε. This, in the AdS/CFT dictionary has the interpretation

of addition of higher-trace terms in the field theory, as discussed in section 2.4. Following

Wilsonian principles, same as in the field theory computations, we demand,

d

dε
Zbulk,ε0 = 0

⇒
∫
Dφ̃
(
∂Zbulk,ε
∂ε

ZUV + Zbulk,ε
∂ZUV
∂ε

)
= 0 (2.55)

here, the evolution of ZUV can be computed using the Hamiltonian corresponding to radial

slicing,

∂ZUV
∂ε

(φ̃, ε) = −H(φ̃, π̃)ZUV (ε, φ̃) (2.56)

which will be henceforth refered to as radial Schrödinger evolution equations. Here π̃ =

−iκ2 δ/δφ̃. In general, ZUV contains the details of the various field theory couplings which

enables us to compute the β-functions of these couplings using (2.56). These ideas have

been worked out for the bulk duals of double-traced deformed field theories (2.34), (2.45) in

Appendix C. Only the final β-functions are quoted here.

Standard Quantization: Working with the bulk action, (2.41), which is dual to the

regulated field theory and keeping in mind the subtleties that we remarked upon in the
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subsection 2.2.3, we get the β-function equation,

ε∂εf̄ = f̄2 ×
(
B∗ST

2 A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− ε∂εδC

+
(δC)2

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST (d− 2D̂ct) + A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

))

− δC
(
−2ε∂εB

∗
ST

B∗ST
− 2 ε∂εA ∗ST

A ∗ST
− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct

))

+ f̄

(
− 2 ε∂εB

∗
ST

B∗ST
− 2 ε∂εA ∗ST

A ∗ST
− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct(kε)

− 2
δC

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST (d− 2D̂ct) + A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)))

+
ε∂εA ∗ST + A ∗ST (d− 2D̂ct) + A ∗ST

2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− 1

B∗ST
2 A ∗ST

2

(2.57)

Alternative Quantization: Bulk action, (2.49), corresponds to the regulated theory,

ε∂εf̄ =
1

B∗AQ
2

[
f̄2
(

2B∗AQ ε∂εB
∗
AQ

(
C∗AQ + δC

)
−B∗AQ2

(
ε∂εC

∗
AQ + ε∂εδC +

(
C∗AQ + δC

)
(d− 2D̂ct)

)

−B∗AQ4 +
(
C∗AQ + δC

)2 (D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2
))

+ f̄
(
−2B∗AQ ε∂εB

∗
AQ +B∗AQ

2(d− 2D̂ct)− 2
(
C∗AQ + δC

) (
D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

))

+ D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

]
(2.58)

The β-function equations for individual couplings f̄i are listed in (C.7) and (C.8). One can

note that they follow the same general structure as the β-functions computed from the field

theory. Although, even for the same choice of the regulator (or equivalently, δC) at a given

cut-off, the β-functions are different. We associate this additional ‘scheme-dependence’ of

the β-functions with reparametrization in the space of couplings as explained in section 2.7.
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2.6 β-function for double-trace operators from field theory

2.6.1 Warming up: β-function of f0

Before we get into a full-fledged calculations of β-function for general double trace couplings

mentioned above, let us first describe, following [18, 57], the Wilsonian computation of

the β-function in the space of the single coupling f0. Double-trace perturbations without

derivatives, i.e. (2.2) with only f0 6= 0 and their renormalizations have been discussed

extensively in the literature see, e.g. [15–18, 45, 46, 52–55, 57, 58].

Let us consider a double-trace perturbation given by,

S = SCFT +
f0

2

∫
ddx O2(x) (2.59)

The single-trace operator O(x) is a primary of conformal dimension ∆− =
d

2
− ν at the

fixed point given by fi = 0. The double-trace operator will then be a relevant operator with

dimension (at leading large N). 16

∆O2 = 2∆ ≡ d− ν, ν > 0 (2.60)

In [18] β-function for f0 was computed for a marginal double-trace deformation. This was

generalised in [57] to arbitrary ∆O2 , where a Wilsonian RG using real space integration

shells was used. See also [59] and [45] for a general perspective. Partition function of the

deformed theory is given by,

Z =

∫
DΦ e−S[Φ] =

∫
DΦ e−SCFT [Φ]

(
1− f0

2

∫
ddx O2(x) +

f2
0

4 · 2!

∫
ddx ddy O2(x)O2(y)− . . .

)

(2.61)

Here, Φ are the ‘fundamental fields’ in the theory. The omitted terms in (2.61) organise in

themselves in form of a Dyson-Schwinger sum in the final answer. If the theory is regulated

at some cut-off a, such that the correlator 〈O(x)O(y)〉 vanishes for |x − y| ≤ a, one can

write (for more general treatment see (2.73) and the discussion in Section 2.6.2)

Ga(w) = 〈O(x)O(x+ w)〉a =
Θ(|w|/a− 1)

|w|2∆
(2.62)

this regulator is also used in [57] (see Section 2.6.2, especially (2.74) for other choices). As

explained in detail in following subsection (Figure 2.6), the third term in parenthesis in

16This makes the theory at f0 = 0 a UV CFT. In earlier sections discussing the holographic setup, this
CFT was identified with the so-called ‘alternative quantization’. However, we keep our subsequent analysis
more general and won’t use any specific value of ∆. Only in (2.69a) is the specific value in (2.60) used.
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(2.61) can be rewritten as,

f2
0

4 · 2!

∫
ddx ddw O2(x)O2(x+ w) =

f2
0

2!

∫
ddx ddw O(x) Ga(w) O(x+ w)

=
f2

0

2!

∫
ddx ddw O(x)

(
Ga′(w) + (a− a′)G′a′(w)

+
(a− a′)2

2
G′′a′(w) + · · ·

)
O(x+ w) (2.63)

In (2.63) the terms that are suppressed in the large N limit (see subsection 2.6.3) have been

omitted. In the simple case of Θ-function cut-off as in (2.62), it can be written more simply

as,

f2
0

4 · 2!

∫

a
ddx ddw O2(x)O2(x+ w) =

f2
0

4 · 2!

(∫

a′
ddx ddw O2(x)O2(x+ w)

+ 4

∫ a′

a
ddx ddw O2(x)O2(x+ w)

)

=
f2

0

4 · 2!

(∫

a′
ddx ddw O2(x)O2(x+ w)

+ 4

∫ a′

a
ddx ddw O(x)

1

|w|2∆
O(x+ w)

)
(2.64)

The factors of 4 in both (2.63) and (2.64) are due to 4 possible combinations of contractions

between O(x) and O(x+ y). While the first term in (2.64) is the standard contribution for

a new theory defined at cut-off a′, the second term corrects the value of f0 in (2.61). In

second term on RHS of (2.64), expanding O(x+ w) in a Taylor series

f2
0

2

∫
ddx

(
O2(x)

∫ a′

a
ddw

1

|w|2∆
+O(x) ∂µO(x)

∫ a′

a
ddw

wµ

|w|2∆

+
1

2!
O(x) ∂µ∂νO(x)

∫ a′

a
ddw

wµwν

|w|2∆
+ ...

)
(2.65)

and using the result (B.1) in Appendix B,

=
f2

0

2

(
2πd/2

Γ
(
d
2

)
)(

a′d−2∆ − ad−2∆

d− 2∆

)(∫
ddx O2(x)

)

+
f2

0

2

(
πd/2

2 Γ
(
d
2 + 1

)
)(

a′d−2∆+2 − ad−2∆+2

d− 2∆ + 2

)(∫
ddx O (∂2)O(x)

)
+ . . . (2.66)
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we see that derivative double-trace couplings are automatically generated. The couplings at

the new cut-off a′ are then,

f ′0 = f0 − f2
0

(
2πd/2

Γ
(
d
2

)
)(

a′d−2∆ − ad−2∆

d− 2∆

)
+ . . .

f ′1 = −f2
0

(
πd/2

2 Γ
(
d
2 + 1

)
)(

a′d−2∆+2 − ad−2∆+2

d− 2∆ + 2

)
+ . . .

f ′2 = −f2
0

(
πd/2

16 Γ
(
d
2 + 2

)
)(

a′d−2∆+4 − ad−2∆+4

d− 2∆ + 4

)
+ . . . 17

(2.67)

The ellipsis in the above equations denotes higher order terms coming from ellipsis in (2.61).

(2.67) can be used to compute β-functions. The contributions coming from terms in ellipsis

above are ∼ (δa)2 and hence don’t contribute to β-function computations.

β
(d)
0 = lim

a→a′

(
a · f

′
0 − f0

a′ − a

)
= −f2

0 ad−2∆

(
2πd/2

Γ
(
d
2

)
)

(2.68a)

β
(d)
1 = lim

a→a′

(
a · f ′1

a′ − a

)
= −f2

0 ad−2∆+2

(
πd/2

2 Γ
(
d
2 + 1

)
)

(2.68b)

β
(d)
2 = lim

a→a′

(
a · f ′2

a′ − a

)
= −f2

0 ad−2∆+4

(
πd/2

16 Γ
(
d
2 + 2

)
)

(2.68c)

...

where, β(d) are the β-functions for the dimensionful couplings. In terms of the dimensionless

couplings, for the operators with dimension given by (2.60), these become,

β0 = 2νf̄0 − f̄2
0

(
2πd/2

Γ
(
d
2

)
)

(2.69a)

β1 = (2ν − 2)f̄1 − f̄2
0

(
πd/2

2 Γ
(
d
2 + 1

)
)

(2.69b)

β2 = (2ν − 4)f̄2 − f̄2
0

(
πd/2

16 Γ
(
d
2 + 2

)
)

(2.69c)

...

More generally, we can start with double-trace couplings with arbitrary number of deriva-

tives as in (2.2). By a simple generalisation of the above method, we get a closed set of

beta-functions. This is described in what follows.

17Recall, we had started with only f0 6= 0, rest all fi = 0∀i > 0.
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2.6.2 β-function of a general coupling with arbitrary cut-off regulator

In this section we generalise the above computations of the β-functions to couplings constants

of the double-trace operators with derivatives. The fixed point Lagrangian is perturbed by

a term as follows,

1

2

∫
ddx

(
f0O2(x) + f1O∂2O(x) + f2O∂4O(x) + · · ·

)
(2.70)

where fi are the dimensionful coupling constants for the operators of the type O(∂2)iO(x),

same as in (2.2), but written in a concise notation. These are the same class of operators

for which β-functions were computed in bulk in [15, 16]. In a large N theory, the anoma-

lous dimension of the double-trace operators are suppressed by 1/N , and so the conformal

dimension of any of the above double-trace operators is ∆i =
[
O(∂2)iO(x)

]
= d− 2ν + 2i.

18 We are considering appropriately orthogonalized single-trace operators at the fixed point

such that under RG only the multi-traces and their derivatives are generated. We package

the above couplings into a single function of ∂2 (or equivalently k2 in momentum space),

f(∂2) = f0 + f1(∂2) + f2(∂2)2 + · · · (2.71)

and hence the double-trace perturbations become,

LDT =
1

2

∫
ddx O f(∂2)O(x) (2.72)

In a large-N theory, all the O(1) connected diagrams factorise through the double-trace

vertices into chain-like diagrams,

Figure 2.5: Factorisation through double-trace vertices in Large-N limit. Each circle is
representative of 〈O(x1)O(x2)〉 contractions, or of their derivatives.

In the Figure 2.5, each circle is representative of 〈O(x1)O(x2)〉 contractions, or of their

derivatives coming from the double-trace vertices (although here it looks like O = Tr[Φ2],

it is representative of any arbitrary single-trace operator). In a regulated theory a UV cut-

off modifies the short-distance behaviour of any correlator. We capture the effect of such

regulations in our correlators by introducing a regulating-function, K(|x1−x2|/a), such that

18We only require ∆i = ∆O2 + 2i in most of our analysis, using the specific value only in β-function
computations.
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the new regulated correlator becomes,

Ga(x1 − x2) = 〈O(x1)O(x2)〉a =
K(|x1 − x2|/a)

|x1 − x2|2∆
. (2.73)

Here ‘a’ parametrises the length-scale of regulation, and the correlator shows deviation from

polynomial law only near length-scales . a, while long distance behaviour remains power-

law, as governed by conformal symmetry. Thus, K(|x1 − x2|/a) → 1, when |x1 − x2| � a,

but falls off faster than |x1 − x2|2∆, when |x1 − x2| . a. In our study, we assume that the

short-distance fall-off is fast enough to regulate all the correlators 〈(∂2)iO(x1) (∂2)jO(x2)〉
at short distances. An example of such a regulator is K(r/a) = Θ(r − a), where Θ is the

Heaviside-theta function, which was used in [18, 57, 58]. We also use a regulated form of

Θ-function,

K(ρ) =

√
πe1/ω2 (

ω2 + 2
) (

erf
(
ρ−1
ω

)
+ erf

(
1
ω

) )
+ 2ω − 2(ρ+ 1)ωe−(ρ2−2ρ)/ω2

√
πe1/ω2 (ω2 + 2)

(
erf
(

1
ω

)
+ 1
)

+ 2ω
(2.74)

The corresponding regulated δ-function that is

δr(ρ− 1) =
4ρ2e−

(ρ−2)ρ

ω2

ω
(√

πe
1
ω2 (ω2 + 2)

(
erf
(

1
ω

)
+ 1
)

+ 2ω
)

here, ω is the width of the regulated δ-function and regulated Θ-function.

Hence, computation of any physical observable involves evaluation of chain-diagrams with

regulated correlators.

Evaluation of β-functions involves studying the change of the coupling constants fi under the

change of the cut-off scale a→ a′. All the physical observables in this new theory are required

to remain unchanged and the chain diagrams involve the correlators, Ga′(|x1−x2|/a′). One

can relate the diagrams in the original theory at a to those in the new theory at cut-off a′

by relating the correlators.

Ga(x1 − x2) = Ga′(x1 − x2) + ∂a′Ga′(x1 − x2) (−δa) + . . . (2.75)

Note that the second term above involves derivative of K(|x−y|/a) and is supported only in

the region |x−y| ∼ a′. The first term on the RHS of (2.75) contributes to the chain-diagrams

at the new cut-off a′ and subsequent terms correct the coupling constant. Integration involv-

ing second and subsequent terms can be seen as coming from integration of heavy modes, as

they contribute only at short distances. They are denoted by coloured contractions in the

diagrammatic representations, as in Figure 2.6.

We compute the contribution of the second diagram on the RHS of Figure 2.6 with the
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Figure 2.6: Corrections to a vertex at new cut-off a′. The crossed vertex on LHS denotes
the vertex at new cut-off. Vertices on RHS are original vertices at a. Coloured contractions

denote integration of heavy modes coming from higher order corrections in (2.75).

vertices 1
2fn

∫
ddz1O (∂2)nO(z1) and 1

2fm
∫
ddz2O (∂2)mO(z2). There are 4 ways to choose

the heavy contractions between single-trace operators,

fnfm
4

(−δa′)
(∫

ddz1d
dz2 O(z1) ∂a′

[
(∂2)nGa′(z1 − z2)

]
(∂2)mO(z2)

+

∫
ddz1d

dz2 O(z1) ∂a′
[
(∂2)m+nGa′(z1 − z2)

]
O(z2)

+

∫
ddz1d

dz2 (∂2)nO(z1) ∂a′ [Ga′(z1 − z2)] (∂2)mO(z2)

+

∫
ddz1d

dz2 (∂2)nO(z1) ∂a′
[
(∂2)mGa′(z1 − z2)

]
O(z2)

)
(2.76)

Here we have kept only the linear variation in (δa′), since only that is required in the β-

function computations. All the subsequent terms in (2.75) (which are higher order in (δa′))

don’t contribute to the β-functions, even though they need to be considered in computation

of the exact vertex at the new cut-off. For the same reason second and following rows in

Figure 2.6 don’t contribute to the β-function computation. As in any differential equation,

their contribution is exactly captured in the solution. At this point the β-functions in

large-N limit are quadratic, whose exactness will be established in subsection 2.6.3. This is

consistent with the holographic computations of the β-functions.

In (2.76), the operator at O(z2) is written in a Taylor series expansion around z1.

(∂2)mO(z2) = (∂2)mO(z1) + (z2 − z1)µ∂µ

(
(∂2)mO(z1)

)

+
1

2!
(z2 − z1)µ(z2 − z1)ν∂µ∂ν

(
(∂2)mO(z1)

)
+ · · · (2.77)

From the conformal field theory point of few, this is same as translating the operator at z1

to z2. Furthermore, rotational invariance of the theory implies that only the vector-singlets

constructed at any level of Taylor series contribute, and hence odd-terms in the Taylor series
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don’t contribute. Thus a general term appearing in the Taylor series can be written as,

∫
ddz1d

dz2O(z1)∂a′
[
(∂2)nGa′(|z1 − z2|)

]
(

1

(2k)!
zµ1

21 . . . z
µ2k
21 ∂µ1 . . . ∂µ2k

(
(∂2)mO(z1)

))

= (a′)2k

(
21−2kπd/2

Γ(k + 1)Γ(k + d
2)

)
×
(∫

dρ ρd−1+2k ∂a′
[
(a′)−2n(∂2

ρ)nGa′(a
′ρ)
])

×
∫
ddz1O(z1)(∂2)(m+k)O(z1)

(2.78)

where, we have used the notation ~ρ =
~z21

a′
, zij = zi − zj , ρ = |~ρ|; and the first numerical

factor is coming from the angular integrations (see Appendix B).

Clearly, β-function of every coupling constant in the double-trace perturbation, fi, is quadratic

in every other coupling constant, fj . It is instructive to note that the contribution of some

coupling fn to the βi, where n > i comes only from those terms in (2.76) in which the

operator (∂2)nO is involved in a contraction.

We show here only first few β-functions, while the details of calculations have been relegated

to Appendix B:

β0 = 2νf̄0 + f̄2
0

(
α0GK

′
∆

)
+ f̄0f̄1 α0

[
ρd−2∆−1

(
ρ K(2)(ρ)− (2∆− 1)K(1)(ρ)

)]∞
0

+ f̄2
1 α0

[
ρd−2∆−3

(
ρ3K(4)(ρ)− ρ2(6∆− d− 2)K(3)(ρ)

+ ρ
(
12∆2 − (4d+ 2)∆ + d− 1

)
K(2)(ρ)

−
(
4∆2 − 1

)
(2∆− d+ 1)K(1)(ρ)

)]∞
0

(2.79a)

β1 = (2ν − 2)f̄1 + f̄2
0

(
α1GK

′
∆−1

)

+ f̄0f̄1

(
(α0 + 2d α1) GK

′
∆ + α1

[
ρd−2∆+1

(
ρK(2)(ρ)− (2∆ + 1)K(1)(ρ)

)]∞
0

)

+ f̄2
1

(
α1

[
ρd−2∆−1

(
ρ3K(4)(ρ)− ρ2(6∆− d)K(3)(ρ)

+ ρ
(
12∆2 − (4d+ 6)∆ + d− 3

)
K(2)(ρ)

−
(
4∆2 − 1

)
(2∆− d+ 3)K(1)(ρ)

)]∞
0

+ 2 α0

[
ρd−2∆−1

(
ρ K(2)(ρ)− (2∆− 1)K(1)(ρ)

)]∞
0

)
(2.79b)
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where, the following short-hand notations have been used to avoid clutter

αi =
21−2i πd/2

Γ(i+ 1)Γ(i+ 1
2d)

GK
(n)

∆ =

∫
dρ ρd−2∆ K(n)(ρ)

(2.80)

f̄i = a2ν−2ifi are the dimensionless coupling constants for the operator O (∂2)iO(x) (cor-

responding to choice (2.60)), and the β-functions are computed for these dimensionless

couplings.

It is apparent that some of the coefficients in the above β-functions are simply boundary

terms. With our assumption that the regulation scheme, K falls off fast enough at the origin

to regulate all the correlators, these coefficients vanish. Thus the β-functions become,

β0 = 2νf̄0 − f̄2
0

(
α0GK

′
∆

)
(2.81a)

β1 = (2ν − 2)f̄1 − f̄2
0

(
α1GK

′
∆−1

)
− f̄0f̄1

(
(α0 + 2d α1) GK

′
∆

)
(2.81b)

We find that the β-functions follow a pattern in which the coefficient of f̄if̄j in βk is only

a boundary term when i + j > k, and hence vanish. While we have checked it explicitly

for first four β-functions listed below but we could easily see it generalise to any arbitrary

order,

β0 = 2νf̄0 − f̄2
0

(
α0GK

′
∆

)

β1 = (2ν − 2)f̄1 − f̄2
0

(
α1GK

′
∆−1

)
− f̄0f̄1

(
(α0 + 2d α1) GK

′
∆

)

= (2ν − 2)f̄1 − f̄2
0

(
α1GK

′
∆−1

)
− 2f̄0f̄1

(
α0 GK

′
∆

)

β2 = (2ν − 4)f̄2 − f̄2
0

(
α2GK

′
∆−2

)
− f̄0f̄1

(
(α1 + 4(d+ 2)α2)GK

′
∆−1

)

− f̄0f̄2

(
(α0 + 8d(d+ 2)α2)GK

′
∆

)
− f̄2

1

1

4

(
(α0 + 4dα1 + 8d(d+ 2)α2)GK

′
∆

)

= (2ν − 4)f̄2 − f̄2
0

(
α2GK

′
∆−2

)
− 2f̄0f̄1

(
α1GK

′
∆−1

)
−
(
2f̄0f̄2 + f̄2

1

) (
α0GK

′
∆

)

β3 = (2ν − 6)f̄1 − f̄2
0

(
α3GK

′
∆−3

)
− 2f̄0f̄1

(
α2GK

′
∆−2

)
−
(
2f̄0f̄2 + f̄2

1

) (
α1GK

′
∆−1

)

− 2
(
f̄0f̄3 + f̄1f̄2

) (
α0GK

′
∆

)

...

(2.82)

We have used the identity αi = (2i+ 2)(d+ 2i)αi+1 to simplify coefficients, and αi and GK′∆

are given by (2.80). Table 2.2 summarises the values of the coefficients above for K = Θ
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Θ(ρ) Regulated-Θ(ρ)

α0GK
′

∆

2πd/2

Γ(d2)

4πd/2ω2ν+1
[
2Γ(ν+2) 1F1

(
ν+2; 3

2
; 1
ω2

)
+ωΓ(ν+ 3

2) 1F1

(
ν+ 3

2
; 1
2

; 1
ω2

)]
Γ( d2 )

[
√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω

]

α1GK
′

∆−1

πd/2

2Γ(d2 + 1)

πd/2ω2ν+3
[
2Γ(ν+3) 1F1

(
ν+3; 3

2
; 1
ω2

)
+ωΓ(ν+ 5

2) 1F1

(
ν+ 5

2
; 1
2

; 1
ω2

)]
Γ( d2 +1)

[
√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω

]

α2GK
′

∆−2

πd/2

16Γ(d2 + 2)

πd/2ω2ν+5
[
2Γ(ν+4) 1F1

(
ν+4; 3

2
; 1
ω2

)
+ωΓ(ν+ 7

2) 1F1

(
ν+ 7

2
; 1
2

; 1
ω2

)]
8Γ( d2 +2)

[
√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω

]

α3GK
′

∆−3

πd/2

192Γ(d2 + 3)

πd/2ω2ν+7
[
2Γ(ν+5) 1F1

(
ν+5; 3

2
; 1
ω2

)
+ωΓ(ν+ 9

2) 1F1

(
ν+ 9

2
; 1
2

; 1
ω2

)]
96Γ( d2 +3)

[
√
πe

1
ω2 (ω2+2)×(erf( 1

ω )+1)+2ω

]

Table 2.2: List of the coefficients appearing in (2.82) for choice of two different regulators
discussed in the text.

and K =(2.74), the regulated Θ-function.

2.6.3 Exactness of β-function

The usual Wilsonian or Polchinski-Wilsonian renormalization procedure involves integration

of UV/short-distance-degrees of freedom. In a continuum field theory defined around Gaus-

sian fixed point, momentum eigenvalues serve as adequate label to differentiate between UV

and IR degrees of freedom, and heavy modes are defined as those modes with momentum

greater than some arbitrary cut-off value. When we change the value of the cut-off, those

modes that lie between the old and new cut-offs are integrated over. Diagrammatically these

are denoted by bold lines, and in this chapter they are represented by coloured lines (see

Figure 2.7). In this chapter, we perform an integration of heavy modes in position space, as

demonstrated above and we justify our approach in this subsection.
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Figure 2.7: Types of diagrams that originate in Wilsonian RG due to integration of
heavy modes. Coloured lines represent heavy modes that are being integrated out. Above

diagrams show the origin of corrections to φ4 and φ6 vertices.

Figure 2.8: Diagrams that arise in contraction of heavy modes in a matrix theory from the
double-trace vertices. The first kind of diagrams correct the single-trace coupling constants
at sub-leading order of N counting. Only the second kind of diagrams correct the double-

trace coupling constants, at the leading order.

In a large-N matrix theory like the one that we are considering, integration of heavy modes

generates diagrams shown in Figure 2.8. With our normalisation of operators, it is clear that

the leading contribution comes from contracting all the heavy ‘legs’ between two double-

trace vertices, so one effectively has 〈O(x1)O(x2)〉. Fewer contractions of legs leaves us with

one more propagator (with a contribution of 1/N) than number of loops (which contribute

a factor of N each), and hence the contribution is suppressed. Moreover, such a diagram

with fewer heavy contractions contribute to a triple trace term, which even though comes

with the correct normalisation (of 1/N) in our N counting, doesn’t contribute to O(1) part

of the effective action.

Figure 2.9: An example of a 2-loop diagram that is suppressed in large-N counting.
Suppression of similar diagrams is also discussed in [46].

There is a class of diagrams as shown in Figure 2.9, which are suppressed by appearance

of internal propagators. In general, any diagram that involves internal propagators are

suppressed. A similar reasoning appears in [46] in terms of certain auxiliary fields that are

used to write the double-trace operators in terms of the single-trace operators. Thus, it is
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clear that the only diagrams that can possibly contribute at the leading order are the chain-

type diagrams discussed previously in this section, and hence the β-functions computed

using such diagrams are exact.

2.6.4 Field theory correlators in momentum space

Most of our computations in bulk are in momentum space. For sake of completeness and

to be able to compare the results, we will summarize some of the field theory results in

momentum space. The momentum space expression for the field theory correlator along

with the inclusion of the regulating function, (2.73), in general is of the form,

〈O(k)O(−k)〉ε = k2∆−d + εd−2∆
(
a0 + a1(kε)2 + a2(kε)4 + . . .

)
(2.83)

where, ai are some coefficients that are given by the choice of the regulating function K. For

example, for the θ-function regulation, we have following correlator in momentum space (to

keep in line with the bulk notations, we are using ∆ = d/2± ν),

〈O(k)O(−k)〉ε = k±2ν


−4π

d−1
2 cos(πν)

Γ(∓2ν − 1)

Γ

(
d− 1

2

)


± 2ε∓2ν π

d−1
2

× 1F2

(
∓ν; 3

2 ,∓ν + 1;−1
4(kε)2

)

ν Γ
(
d−1

2

)

= k±2ν


−4π

d−1
2 cos(πν)

Γ(∓2ν − 1)

Γ

(
d− 1

2

)




+ ε∓2ν


±

2π
d−1

2

ν Γ

(
d− 1

2

)



[
1± ν (kε)2

6(ν + 1)
∓ ν (kε)4

120(ν + 2)
± ν (kε)6

5040(ν + 3)
+ . . .

]

(2.84)

and the coefficients ai can be read from the above equation. Strictly speaking, in the cor-

rectly regulated IR theory, we don’t get the diverging counter terms in the above correlators.

That is to say, for example, if 0 < ν < 1, then around the IR fixed point, when ∆ = d/2+ν,

in a correctly regulated theory, the first counter term above, a0 = 0. ( i.e. we need to add

a counter-term with −a0).

In a more general case, it might happen that the kinematic term (the term proportional

to k2∆−d in the above equation) also has a multiplicative integer power series in kε. We

attribute such a series to a multiplicative wavefunction renormalization of the operator O.
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Thus, for any choice of a regulator the 2-point function in momentum space can be brought

to the above form. For reference, we have presented the correlator computations in a large

N bosonic vector model in Appendix D. There the correlator for the φ2 operator in the

regulated UV theory is given by, (D.1) which has the same form as presented above.

In a double-trace deformed field theory around a fixed point, the correlator of the O operator

in the large N limit is given by the Schwinger-Dyson series,

〈O(k)O(−k)〉fε = 〈O(k)O(−k)〉ε − f(k2)〈O(k)O(−k)〉2ε + f2(k2)〈O(k)O(−k)〉3ε + · · ·

=
〈O(k)O(−k)〉ε

1 + f(k2)〈O(k)O(−k)〉ε
(2.85)

IR fixed point from UV theory Now we analyse the UV and IR limit of the perturbed

correlators around the fixed points of the theory. Around the UV fixed point ∆ = d/2− ν,

and the dimensionless coupling constants are f̄−(kε) = ε2νf−(k2), so the perturbed correlator

is given by,

〈O(k)O(−k)〉f−ε =
k−2ν + ε2νδC(kε)

1 + ε−2ν f̄− (k−2ν + ε2νδC(kε))
(2.86)

Taking the IR limit of this correlator, kε→ 0, we get the following limit of the correlator,

lim
kε→0
〈O(k)O(−k)〉f−ε →

(
ε2ν

f̄−
− k2ν ε

4ν

f̄2
−

+ k4ν ε
6ν

f̄3
−

(
1 + f̄−δC

)
+ · · ·

)
(2.87)

Thus in the strict IR limit, only the second term survives, and in that case we get the

correlator of the IR theory upto some wavefunction renormalization, ε4ν f̄2, and the first

contact term, after the inclusion of this wavefunction renormalization becomes, f̄ · ε−2ν ,

lim
kε→0
〈Õ(k)Õ(−k)〉f

∗
−
ε →

(
f̄∗− · ε−2ν − p2ν

)
(2.88)

In this limit, even the coupling constants approach their respective IR fixed point value,

f̄ → f̄∗−. So the first term is precisely the type of contact term that one expects for the

regulated theory with the scaling dimension, ∆ = d/2 + ν.

UV fixed point from IR theory Let us analyse the correlator for a double-trace de-

formed theory around the IR fixed point, and take the UV limit of such a correlator.

The correlator given by the exact summation of the Schwinger-Dyson sum in this case

is also (2.85), but now with the correlators at the IR fixed point, and also the perturbation,
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f̄+(kε) = ε−2νf+(k2), around this fixed point,

〈O(k)O(−k)〉f+
ε =

k2ν + ε−2νδC(kε)

1 + ε2ν f̄+ (k2ν + ε−2νδC(kε))
(2.89)

The UV limit in this case is, kε→∞,

lim
kε→0
〈O(k)O(−k)〉f+

ε →
(
ε−2ν

f̄+
− k−2ν ε

−4ν

f̄2
+

+ k−4ν ε
−6ν

f̄3
+

(
1 + f̄+δC

)
+ · · ·

)

on wavefunction
renormalization−−−−−−−−−→

(
f̄∗+ · ε2ν − p−2ν

)
(2.90)

Thus, it can be seen that starting with either of the fixed points, in correct limits, one can

flow to the other fixed point. It is clear that the properties of the correlators and the β-

functions that are discussed in this section are also true for the holographic computations. A

few subtleties that are involved in the duality between the field theory and the gravitational

theory are discussed next.

2.7 Scheme-dependence and coupling constant redefinition

This section discusses (a) the relationship between the choice of regulator K in the field

theory and radial cut-off in the holographic computations, and (b) how are different choices

of regulators K related to diffeomorphisms in the space of couplings (or equivalently, in the

space of field theories).

In the derivation of β-functions for a general regulator K, (2.82), it is clear that all the

independent coefficients appearing there are of the form

GK
′

∆−j =

∫
dρ ρd−2∆+2j K′(ρ), j ∈ {Z+ ∪ 0} (2.91)

These are almost like moments of derivative of the regulating function, K.19 Thus knowledge

of all these coefficients, along with the behaviour of K at 0 and ∞, is, in principle, enough

to reconstruct K. From the holographic computation we only have a knowledge of the

coefficients and one would like to understand what choice of K it corresponds to?We next

discuss the class of diffeomorphisms in the space of couplings, f̄i, that correspond to different

choices of regulating function in the Wilsonian computation. The general structure of the

19we say almost, because d− 2∆ = 2ν is not an integer
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β-functions either in bulk (C.7) and (C.8) or field theory (2.82) is:

β0 = 2νf̄0 −A0f̄
2
0

β1 = (2ν − 2)f̄1 −A1f̄
2
0 − 2A0f̄0f̄1

β2 = (2ν − 4)f̄2 −A2f̄
2
0 − 2A1f̄0f̄1 −A0

(
2f̄0f̄2 + f̄2

1

)

β3 = (2ν − 6)f̄3 −A3f̄
2
0 − 2A2f̄0f̄1 −A1

(
2f̄0f̄2 + f̄2

1

)
−A0

(
2f̄1f̄2 + 2f̄0f̄3

)

...

(2.92)

for some values of Ai.
Above β-functions, βi and couplings, fi can be packaged into generating functions defined

as

β(κ) = β0 + κ2β1 + κ4β2 + κ6β3 + · · · (2.93a)

f̄(κ) = f̄0 + κ2f̄1 + κ4f̄2 + κ6f̄3 + · · · (2.93b)

and then (2.92) is re-packaged into a single equation,

β(κ) = 2νf̄(κ)−A(κ)f̄2(κ)− κ∂κf̄(κ) (2.94)

where,

A(κ) = A0 + κ2A1 + κ4A2 + κ6A3 + · · · (2.95)

Note that, with the identification κ = εk in (2.93b), we have the dimensionless version of

f(k) =
∑∞

n=0 fn(k2)
n

in (2.2). Then, (2.94) becomes,

˙̄f(κ) = ε∂εf̄(κ)|k = 2νf̄(κ)−A(κ)f̄2(κ)

Such a packaged form of β-functions appears naturally in the bulk computations (see (2.57)

and (2.58)).

The above differential equation can be rewritten as,

(
ε2ν

f̄(κ)

)·
= ε2νA(κ)

From the field theory computations, we see that different choices of regulating functions, K,

correspond to different Ai. Now, consider another set of β-function differential equations

with different coefficients, packaged into A(κ), which denotes a different scheme of renor-

malization. Then for the two different set of β-functions, the couplings in these two different
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schemes, f̄(κ) and f̄(κ), can be related by,20

(
ε2ν
(

1

f̄(κ)
− d

f̄(κ)

))·
= ε2ν (A(κ)− dA(κ))

here, we have allowed for a relative scaling by d, which is a consistent rescaling within a

scheme: the coefficients and the couplings need to be simultaneously scaled by d and 1/d,

respectively, which leaves the β-function equations invariant. Defining, c(κ) =
1

f̄(κ)
− d

f̄(κ)
,

which can be viewed as an expansion by itself, c(κ) = c0 + κ2c2 + κ4c4 + · · · , we can solve

for c(κ),21

e2νtc(etk)− lim
t→−∞

(
e2νtc(etk)

)
=

∫ t

−∞
dt e2νt

[
A(etk)− dA(etk)

]
(2.96)

here we have used, κ = εk and the redefinition ε = et. Solving the above equation (2.96)

term by term as a series in κ, we get,

c(etk) =
∑

j=0

[(
e2t
)j
k2jcj

]
=
∑

j=0

(
e2t
)j
k2j Aj − dAj

2ν + 2j

ci =
Ai − dAi
2ν + 2i

, i ≥ 0 (2.97)

The relation c(κ) =
1

f̄(κ)
− d

f̄(κ)
gives us a transformation in the coupling-space which

relates the two RG-schemes at an arbitrary cut-off.

2.8 Discussions

In this chapter we have determined all possible boundary conditions for a single bulk scalar

field in AdS/CFT. The principle is that these boundary conditions can be regarded as

wavefunctionals whose z-dependence is determined by a radial Schrödinger equation. It

was found that the original GKPW prescription [11, 12], coupled with the counterterms

discovered in [13] and applied to a finite radial cut-off z = ε0, corresponds to a wavefunc-

tional which cannot be obtained by the evolution of the known GKPW δ-function boundary

condition at z = 0. In addition, it contains some spurious double trace deformations. A

precise field theory correspondence for all allowed boundary conditions was found in the

discussion above. Moreover, two specific wavefunctionals: Ψ0
1 and Ψ0

2 (Equation 2.16 and

20For our interest, the Wilsonian/Polchinski-Wilsonian scheme and Holographic scheme are the ones that
we want to relate, and hence we use the same notations for couplings as those we have used previously in
this chapter, f̄ for dimensionless field theory couplings, and f̄ for dimensionless bulk couplings

21this expansion is motivated by RHS of the equation, and has some non-trivial implication. Since the
relation between f̄ and f̄ doesn’t depend explicitly on t, this can be directly understood as a diffeomorphism
in the space of couplings.
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2.23), were computed, which represent the pure CFTs (respectively, IR and UV CFT, cor-

responding to standard and alternative quantizations). This enabled us to isolate the real

double trace deformations from spurious ones and find that the holographic beta-functions

can be matched to the ones computed from field theory. A geometric interpretation of the

specific wavefunctionals in terms of a specific form of non-locality of the boundary ‘points’

in Witten diagrams was also presented in section 2.3.

As mentioned above, we have discussed the field theory equivalent of the above boundary

wavefunctional in terms of properties of the generating functional Z[J ]. In field theory, it is

in principle possible, though difficult in practice, to reproduce the continuum result (power

law scaling) at a finite cut-off scale, in terms of effective Wilsonian vertices plus a J2 term in

logZ[J ] However, holography gives such an ‘RG scheme’ in a rather straightforward fashion.

This is one of the important aspect of the results presented in this chapter.

Throughout this chapter, we considered a probe approximation; it was sufficient for our

purposes to consider a quadratic bulk scalar action. We expect that for an interacting

bulk action, with possibly multiple fields, it should again be possible to discover boundary

wavefunctionals defining AdS/CFT at a finite cut-off, such that the pure CFT correlators are

reproduced at a finite cut-off. The argument for the existence of such boundary conditions

follows from the abstract argument, presented in subsection 2.6.3 for existence of such RG

schemes in field theory.
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AdS2/CFT1 correspondence

3.1 Introduction

AdS/CFT conjecture has been subject to scrutinity of past 20 years. It has withstood

various tests of verification during this time and has simultaneously been used to perform

various computations in the strongly coupled field theories. However, it still holds various

mysteries from us: emergence of bulk locality from boundary field theory; resolution of the

information-loss paradox using the dual unitary field theory; description of the black-hole

interior and the resolution of the spacetime singularity in a blackhole background; to name

a few. It would be quite instructive if one could develop some simpler models of AdS/CFT

correspondence where these questions could be understood more unambiguously.

SYK model is a Quantum mechanical model of fermions which was originally proposed to

explain strange metal behaviour in the Condensed matter literature around 25 years back,

[20]. However, recent observations suggest that it might provide us with one of the simplest

models of holography between the theories which are moderately difficult (or moderately

easy, depending on one’s outlook), [8, 21]. The Sachdev-Ye-Kitaev (SYK) model and other

tensor models that have universal IR properties [8, 20–24, 60, 61], are described by a Hamil-

tonian which, for Euclidean time τ = it, can be viewed alternatively as a one-dimensional

statistical model of fermions. The SYK model has random couplings Ji1i2...iq , representing

disorder, and does not correspond to a unitary quantum mechanics. A different version

without the random disorder, but with the same leading large N behaviour, has been pro-

posed by Gurau [22, 62], Witten [23], and Klebanov and Tarnopolsky [24]. Here we are

interested only in the large N behaviour and will call the set of models SYK-type models.

More recently, higher dimensional generalizations of such models have also been a subject

of study with the expectation that various interesting properties that make such models a

65
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good playground to study black hole physics can be carried over to the higher dimensions,

[63–65].

The interest in these models as simpler models of holography is primarily because of the

following features in a large N limit:

(1) There is an infrared fixed point with an emergent time reparametrisation symmetry,

denoted henceforth as Diff.1 The symmetry is spontaneously broken, at the IR fixed point,

to SL(2,R) by the large N classical solution, leading to Nambu-Goldstone (NG) bosons

characterized by the coset Diff /SL(2,R).2 At the IR fixed point all these are precise zero

modes of the action as one might expect from a one-dimensional CFT. Slightly away from

the IR fixed point, the Diff symmetry is explicitly broken, the ‘Nambu-Goldstone’ modes

cease to be zero modes and their dynamics is described by a Schwarzian term (which is the

equivalent of a ‘pion mass’ term). It has been conjectured that (see, e.g. [25, 66]) that this

situation is similar to a bulk model in which the AdS2 symmetry is slightly broken (this is

called a near AdS2 geometry, in the sense of an s-wave reduction from higher dimensions,

as in [26]).

(2) The possibility of a gravity dual is further reinforced by the fact that the Lyapunov

exponent in the SYK model saturates the chaos bound, which is characteristic of a theory

of gravity that has black hole solutions [27, 28, 67].

(3) The full model has an approximately linearly rising (‘Regge-type’) spectrum of conformal

weights near the IR fixed point, with O(1) anomalous dimension even for operators with

spin higher than two. This behaviour is unexpected both from string theory in the limit

α′ → 0, or from Vasiliev theory (see, for example, [8]). Thus while the dynamics of the soft

modes appears to have a simple dual gravity description, it is not clear if it can naturally

incorporate the rest of the Regge-type spectrum description. In this chapter we primarily

concern ourselves with a bulk gravity dual which describes the soft modes.

A partial list of various works exploring SYK-type models and other related developments

is [8, 21–24, 63–65, 67–86].

In this regard, the work presented in this chapter has concentrated on trying to understand

the duality between SYK model and a two-dimensional theory of gravity. We have made our

own proposal of such a dual gravity theory using the geometrical techniques of co-adjoint

orbits and verified that certain features of the SYK model can be reproduced using this

proposed dual: (1) it reproduces correctly the effective low energy effective action of the

1We use Diff to denote either Diff(R) or Diff(S1), depending on whether we are at zero temperature or
finite temperature. This group is alternatively called the Virasoro group.

2As explained later in more detail, unlike in higher dimensions where Nambu-Goldstone modes are zero
modes of the action promoted to spacetime fields, here they remain zero modes (do not acquire kinetic terms)
since they cannot be made dependent on any other dimension.



SYK model, the Schwarzian action; (2) it reproduces the correct Thermodynamic behaviour

of the SYK model.

The strategy pursued in this chapter to build a bulk-dual of the SYK-type models can be

summarized as follows:

As explained in [8, 21], the NG modes of the SYK-type model can be characterized by Diff

orbits of the classical solution G0 (at the IR fixed point J =∞) or Diff orbits of G′0 which

is the deformed value of G0 after turning on a small value of 1/J (see figure 3.1). Any given

point on the Diff orbit can be obtained from the reference point, G0 or G′0, by the action

of an appropriate one-dimensional diffeomorphism.

G0

G0[f]
f

G0'

f
G0'[f] ←→

AdS2

AdS2[f]
f

NAdS2

f
NAdS2[f]

Figure 3.1: In the left panel, the top curve represents the Diff(R)-orbit (or a Diff(S1)-orbit at
finite temperature), at the IR fixed point J = ∞, of the classical large N solution for the fermion
bilocal G0(τ1, τ2) ∼ (τ1− τ2)−2∆; this represents the Nambu-Goldstones of Diff(R)/SL(2,R) . The
lower curve represents the orbit of a deformed solutionG′0 slightly away from the IR fixed point, with
a small positive 1/J . In the right panel, the top curve represents the orbit of the AdS2 spacetime
(these are asymptotically AdS2 spacetimes, the two-dimensional equivalent of Brown-Henneaux
geometries, which we will describe explicitly in Section 3.5). The bottom curve represents the orbit
of a slightly deformed AdS2 spacetime NAdS2, with a controlled non-normalizable deformation (see

section 3.5).

It is shown in [29, 30] that the space of coadjoint orbits of Diff can be quantized using a

natural symplectic form a la Kirillov [31], leading to Polyakov’s two-dimensional quantum

gravity action [32]. This observation is reminiscent of the emergent two-dimensional bulk

description from the c = 1 model, which is a matrix quantum mechanics. It was found in [87,

88] that the semiclassical (large N) singlet configurations of the matrix quantum mechanics,

described by fermion droplets on a two-dimensional phase plane, could be understood as

coadjoint orbits of W∞ algebra generated by bi-local boson operators made out of fermions.

A representation of this algebra in c = 1 was found in [89]. The coadjoint orbit action a la

Kirillov [31] in the space of these configurations gave rise to a two-dimensional action whose

low energy sector reproduced the (massless) tachyons of two-dimensional string theory.3 A

similar approach was taken in [91] to arrive at a moduli space action of LLM geometries

[92] describing half-BPS giant gravitons.

Following the above examples, one might wonder whether such a two-dimensional quantum

gravity action, obtained by the coadjoint orbit method, naturally describes a bulk dual to

3The precise correspondence required some additional structure (‘leg-poles’); see [90] for some recent
insight.
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the SYK model. It turns out that a priori it is not possible since the gravity action does not

have a cosmological constant and it describes asymptotically flat spaces. This prompts one

to consider a generalization of the Polyakov action, which includes a cosmological constant

and boundary terms (the boundary terms are found by requiring the existence of a well-

defined variational principle; these are also the terms required by consistency with the Weyl

anomaly in a manifold with a boundary, see Appendix K for details). The new action,

described in Section 3.3, has asymptotically AdS2 geometries as solutions (see Section 3.5

and 3.4), which are all generated from AdS2 by the action of Diff. The schematics of these

solutions is described in the right panel of Figure 3.1.

The main point of this chapter is that the two-dimensional quantum gravity theory, arrived

at in this fashion, provides a bulk dual to the Nambu-Goldstone sector of the SYK models.

We find a number of strong evidences for this duality:

(a) the space on which path integral of the bulk theory is performed reduces to Diff /SL(2,R) ,

which is the same as that of the Nambu-Goldstone bosons in the SYK model. In the

bulk theory these degrees of freedom emerge as the space of large diffeomorphisms

(analogous to Brown-Henneaux diffeomorphisms in AdS3). In addition to these, the

bulk metric admits a fixed, non-dynamical conformal factor of a simple functional

form. In the SYK theory this parameterizes the departure from strong coupling.

(b) The bulk path integral reduces to a path integral over Diff /SL(2,R) with a Schwarzian

action section 3.6, characterized by a non-zero overall coefficient coming from the

conformal factor.

(c) the low temperature free energy qualitatively agrees with that of SYK model, sec-

tion 3.6. In the Discussion section, we show how to go beyond the low energy sector,

and describe the higher mass modes of the SYK model, by introducing bulk matter

fields. We show, up to quadratic order, how to couple an infinite series of bulk scalars

to the Polyakov model and show that it reproduces the coupling of the higher modes

of the SYK model with the NG bosons.

Subsequently in this chapter, Section 3.2 briefly reviews the SYK model and summarizes

the key features. Section 3.3 motivates our proposed bulk action (3.28) from the viewpoint

of coadjoint orbits of Diff /SL(2,R). The two subsequent sections analyze the theory in

the conformal gauge ds2 = e2φd̂s2. In Section 3.4, solutions of the equation of motion

where d̂s2 represents pure AdS2 geometry are described; it turns out that the ‘Liouville

mode’ φ gets completely fixed by the equations of motion (in fact, by just the Virasoro

constraints, as shown in Appendix H), up to three real parameters which define boundary

conditions for the metric. In Section 3.5 we find a larger class of solutions, which represent
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large diffeomorphisms of AdS2 (similar to Brown-Henneaux geometries in asymptotically

AdS3 spacetimes). These are normalizable modes of the metric (‘boundary gravitons’)

and represent dynamical variables of the path integral, which is described in Section 3.5.1.

In Section 3.6 the effective action of these boundary gravitons is obtained by an on-shell

evaluation of the path-integral; it is found to be given by a Schwarzian (3.67). Thus,

the boundary gravitons are found to represent the pseudo-Nambu-Goldstone modes of the

SYK model. Section 3.7 focuses on a large diffeomorphism which leads to a Euclidean

black hole geometry (this turns the boundary direction into a circle). On-shell action for

this geometry reproduces the qualitative features of the free energy of the SYK models.

Detailed comparison with the SYK model is carried out in Section 3.8. Finally, in Section

3.9, we discuss how to describe the ‘hard’ modes of the SYK model in terms of external

probe scalars coupled to the metric. The Appendices contain detailed derivations of some

formulae and supplementary arguments.

3.2 Review of SYK model

SYK-model

As mentioned above, SYK-model is a model of N -interacting fermions in which q of the N

fermions interact via a Hamiltonian given by,

H =
(i)q/2

q!

∑

1≤i1<i2...iq≤N
Ji1i2...iq ψ

i1ψi2 · · ·ψiq (3.1)

The corresponding Lagrangian can be written as,

L =
i

2

∑

1≤i≤N
ψi∂tψ

i − 1

q!
(i)q/2

∑

1≤i1<i2...iq≤N
Ji1i2...iq ψ

i1ψi2 · · ·ψiq (3.2)

The original model proposed in [20] was in terms of the Dirac fermions, however, the key

features of the theory can be captured by the Majorana fermions.

In general a well defined large N limit is one where the contribution to partition function

coming from the action and entropy is comparable in large N counting. In a system with N

fermions the entropy contributes at O(N). Thus we require that the above Lagrangian also

shows similar behaviour under large N scaling. The interaction term, naively behaves as

O(N q) and hence for a well-defined large N behaviour, we require that the coupling scale as

O(N1−q). Moreover, in this model the coupling Ji1...iq is chosen from a Gaussian ensemble
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of zero mean and variance given by,

〈J2
i1...iq〉 =

J2 (q − 1)!

N q−1
(3.3)

The physical observables in this theory are given by,

〈O1(t1) · · ·Oi(ti)〉 =

∫
DJi1...iq exp

[
−Nq−1 J2

i1...iq

2J2

]
〈O1(t1) · · ·Oi(ti)〉

∫
DJi1...iq exp

[
−Nq−1 J2

i1...iq

2J2

] (3.4)

where, 〈O1(t1) · · ·Oi(ti)〉 =

∫
Dψiei

∫
dtL O1(t1) · · ·Oi(ti)∫
Dψiei

∫
dtL

However, even though this is technically what we are interested in computing, this isn’t

what we can compute! But following observation comes to our rescue here: treat Js as a

field of the theory and define a new path integral as follows:

〈O1(t1) · · ·Oi(ti)〉 =

∫
DJi1...iq Dψi exp

[
−Nq−1 J2

i1...iq

2J2

]
ei
∫
dtL O1(t1) · · ·Oi(ti)

∫
DJi1...iq Dψi exp

[
−Nq−1 J2

i1...iq

2J2

]
ei
∫
dtL

(3.5)

The integration in (3.4) is called quenching while the one in (3.5) is called annealing. It can

be argued that the two theories given by (3.4) and (3.5) differ only at subleading order of

large N counting, [93, 94].

One way to understand the equivalence between the quenching and annealing in the large

N limit due to [93]. Note that the equation(3.4) can be interpreted as starting with some m

copies of the system, each with different values of the couplings. The observables of interest

are computed in each of the system and then averaged over using the Gaussian weights

to compute the average value of the observables. Think of this as a quadratic theory of

Ji1...iq with no interactions. However, when we consider the expression in (3.5), then we

are essentially considering a theory of Ji1...iq that has interactions with the fermions. So to

show that the two theories are equivalent, it suffices to show that the interactions generate

corrections that are suppressed in large N .

3.2.1 Physical Quantities

Now let us look into the computation of some physical quantities in the annealed model.

The Feynman rules are listed as below:
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ψi
On

ψj −δij/(iOn)

J2/N q−1

−iq/2+1

Figure 3.2: Feynman Rules. Here for demonstration we have chosen q = 4. The first
diagram denotes the fermion propagator. The second diagram is the value of propagator
of Ji1i2i3i4 fields in the annealed model. The third diagram is the value of the interaction

vertex Ji1i2i3i4 ψ
i1ψi2ψi3ψi4 .

Partition function Diagrams contributing to the Partition function are:

Figure 3.3: Melonic diagram contributing to the computation of the partition function.
The rightmost diagram demonstrates an example of non-melonic diagram that doesn’t con-

tribute at the leading large N order.

2-pt function Diagrams contributing to the 2-pt function are:

Figure 3.4: Melonic diagram contributions to the 2-point function.

4-pt function Diagrams contributing to the 4-pt function are:
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Figure 3.5: Diagrams contributing to the 4-point function to the leading large N counting.

The dominating diagrams that we have introduced above are known as Melonic diagrams.

SYK-model is not the only theory where these diagrams dominate. In fact, the dominance

of such diagrams had been known in a different type of theories that we explore next.

Tensor models

It was noticed by Witten that there is a class of theories which shows similar behaviour

in terms of perturbative diagrammatic computations as the SYK model, called the Tensor

Models.4 Moreover, it has an inherent advantage over SYK model. In SYK model the

couplings are quenched, i.e, they are chosen arbitrarily from an ensemble. Thus the compu-

tation of the observables involves averaging over measurements across various instances of

the system with different values of the couplings. Such a system is inherently non-unitary.

Moreover, in the annealed model instead, where we treated the couplings as some slowly

varying fields, it is important to note that the thermodynamic entropy of these Ji1···iq fields

is ∼ N q/q! far exceeds the entropy of the fermions. Thus all the computations done us-

ing the above action are subleading. Alternatively, since the tensor models are inherently

unitary but with same physics, the observations of chaotic behaviour is more significant in

such models. It is clear that such unitary models will do more justice in our attempt to

explain the problems surrounding balck hole thermodynamics that the SYK model. Also,

this model is closer to the conventional models of bulk-boundary dualities than SYK model.

For one, in SYK model, as we will see later, there are certain fields bilinear in ψi fermions,

which have been conjectured to have dual bulk fields; however the same is not true with the

fermions themselves. At least from our knowledge of the dualities in higher dimensions we

know that such fields don’t have a bulk dual. Gauged tensor models provide a natural set-up

of gauge-singlet operators that, in line with our understanding of the higher dimensional

dualities have a bulk dual. In this subsection we will discuss some of these nuances and in

4These models were originally proposed to generalize the construction of 2-dimensional geometries from
matrix models in higher dimensions.
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the rest of the lectures, we will try to make our analysis as independent of specific details

of the models as possible.

Following the initial suggestion [23] there have been various proposed tensor models that

are different in ways that doesn’t affect the physics governed by the melonic diagrams, see

[24, 78–86]. This section should serve as a brief collection of the references where such

models are discussed in literature with a short discussion of their properties.

Witten’s model We replace the SYK Lagrangian with the following Lagrangian,

L =
i

2

∑

i=1...q

ψi∂tψi − iq/2jψ1 . . . ψq (3.6)

The contraction of indices in the above vertices is as follows:

ψ1ψ2ψ3ψ4 = ψl14l13l12
1 ψl12l24l23

2 ψl23l13l34
3 ψl34l24l14

4 (3.7)

In this model the fermions are coloured under q−1 copies of gauge group (SO(n) or SU(n),

let’s call them Gij , labelled by the two particles it ‘runs in between’), hence there are a

total of q(q − 1)/2 copies of the gauge group. The total fermionic degrees of freedom are:

qnq−1; while the degrees of freedom in the gauge group is: ∼ q(q− 1)n2. Thus, the effective

‘large N ’ in this theory is: N = qnq−1. Again for a good large N limit, we should scale the

coupling constant as,

j =
J

n(q−1)(q−2)/4

Klebanov-Tarnopolsky model This is a simplification of the Witten’s model by taking

‘same’ fermions on the diagonal elements of the q-simplex that is formed in the Witten’s

vertex. Thus the vertex contraction now becomes,

ψ1ψ2ψ3ψ4 ≡ ψψψψ = ψb1c1a1ψa1c2b1ψb1c1a2ψa2c2b2 (3.8)

While in Witten’s model lij represented the index of the gauge group between ψi and ψj

(Gij), in this model the gauge groups are labelled by indices a, b, c. So while each fermion is

coloured under the same gauge groups (lets call them Ga, Gb, Gc), they are charged under

different copies of the groups and hence are technically distinct fermions and can have

coincident insertions.
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Klebanov’s Bosonic model We replace the SYK Lagrangian with the following La-

grangian,

L =
1

2
∂µφabc∂

µφabc +
1

4
gφb1c1a1φa1c2b1φb1c1a2φa2c2b2 (3.9)

Such models also have a Wilson-Fisher fixed points and the analysis of the same is provided

in [24].

Computing the Physical Quantitites

Now let us go back to the computation of the 2-point function. From now on we will concen-

trate on the diagrams, which are not model specific. We can write down the Schwinger-Dyson

equation for the computation of the 2-point function as follows:

G(τ1, τ2) = G0(τ1, τ2) + J2

∫
dτdτ ′G0(τ1, τ)

[
G0(τ, τ ′)

]q−1
G0(τ ′, τ2) + · · ·

= G0 +G0 ∗ Σ ∗G0 +G0 ∗ Σ ∗G0 ∗ Σ ∗G0 + · · ·

where, Σ(τ1, τ2) = J2G(τ1, τ2)q−1 (3.10)

G0(τ1, τ2) =
1

2
sgn(τ1 − τ2), is the free propagator

⇒ G(τ1, τ2) =
[
G0 ∗ [1− Σ ∗G0]−1

]
(τ1, τ2) (3.11)

The above equation is easier written in momentum space as,

G−1(p) = G−1
0 (p)− Σ(p)

⇒G−1(p) = −ip− Σ(p)
(3.12)

Writing (3.12) back in position space it reads:

− δ(τ1 − τ2) = ∂τ1G(τ1, τ2) +

∫
dτ G(τ1, τ)Σ(τ, τ2) (3.13)

Now we want to solve this equation. It is not an easy problem in general, and therefore

one can take a simplifying assumption: J → ∞. In this case we can drop the first term in

(3.13),

− δ(τ1 − τ2) =

∫
dτ G(τ1, τ)Σ(τ, τ2) (3.14)

To interpret this assumption, recall that around the UV fixed point, [J ] = 1, and hence it

is a relevant coupling. In absence of an IR fixed point (which can be argued for given that

there is no other length scale in the problem), the coupling flows to infinity. Hence, our

simplifying assumption is really the computation at the IR fixed point. Other way to arrive

at the same conclusion is through working it out in position space: the condition under
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Figure 3.6: Diagramatic representation of the Schwinger-Dyson equations in (3.10) and
(3.11)

which the first term becomes unimportant is when the length scales at which the correlator

starts varying is significantly bigger than the natural length scale in the problem: 1/J .

At this stage we conclude that:

(1) The scaling above is the same as what one expects from a scaling field of scaling dimension

∆ and ∆(q − 1) respectively in a conformal field theory. Since G(τ, τ ′) is related to the

fermion 2-point function, the fermions appear to obtain an anomalous dimension 1/q at the

IR fixed point.

(2) If this is true, then we can guess a solution to the above integral equation:

G(τ, τ ′) =
b sgn(τ − τ ′)
|τ − τ ′|2∆

(3.15)

What is the conformal symmetry in one dimension? Every redefinition of the coordinate,

f(τ). Hence what above symmetry tells us is that there is an emergent reparametrization

invariance in the IR limit.5

The above invariance of the theory under reparametrizations can be used to compute the

2-point function on a circle. Idea being that when we are working with a Euclidean theory,

a theory on a circle is like a theory with finite temperature. Using the transformation,

τ = tan(πθ/β), where θ ∈ [−β/2, β/2] we find that,

Gβ(τ, τ ′) = b


 π

β sin
(
π(τ−τ ′)

β

)




2∆

sgn(τ − τ ′) (3.16)

5The word emergent has been emphasized because there is no strict IR fixed point here, unlike, say,
Wilson-Fisher fixed point; it is only a limiting statement. Any measurement of finitely separated correlators
will necessarily deviate from the ansatz that we have computed above.
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What is more important, one can write an effective low energy theory in terms of the path

integral variables G̃(τ1, τ2), Σ̃(τ1, τ2) which reproduces the correct large N dynamics of all

the above theories. The effective action is given by,

S

N
= −1

2
log det

(
∂t − Σ̃

)
+

1

2

∫
dτ1dτ2

[
Σ̃(τ1, τ2)G̃(τ1, τ2)− J2

q
G̃(τ1, τ2)q

]
(3.17)

If one defines the fluctuations as, G̃ = Ḡ + |G| 2−q2 g and Σ̃ = Σ̄ + |G| 2−q2 σ,6 and integrates

out the σ modes in the resulting quadratic fluctuation action then one obtains an action for

the g-modes:
S

N
= −J

2(q − 1)

4
g ∗
(
K̃−1 − 1

)
∗ g (3.18)

where K̃ is the same kernel that is used to define the 4-point function, [25]:

K̃(τ1, τ2; τ3, τ4) = −J2(q − 1)|G(τ12)| q−2
2 G(τ13)G(τ24)|G(τ34)| q−2

2 (3.19)

Specifically, the action for the reparametrization modes of the theory corresponding to

g(τ1, τ2) = δεG(τ1, τ2) = [∆ (∂τ1ε(τ1) + ∂τ2ε(τ2)) + ε(τ1)∂τ1 + ε(τ2)∂τ2 ] Ḡ(τ1, τ2) (3.20)

is given by the Schwarzian action:

S

N
∼
∫
dτ{f(τ), τ} (3.21)

where, f(τ) = τ+ε(τ) has been used. These modes are essentially responsible for the chaotic

behaviour of this theory and will also form the subject of study from the holographic point

of view in the remaining part of this chapter.

3.3 2D quantum gravity action

This section briefly reviews some of the material on coadjoint orbits of Diff in [29, 30, 95],

focussing on the emergence of 2D quantum gravity represented by the Polyakov action [32].

As explained in [8, 21], and briefly mentioned in the Introduction, the zero modes of the

SYK model at the IR fixed point (these modes are suggestively called the Nambu-Goldstone

(NG) modes, although they differ somewhat from their higher dimensional counterpart, as

explained below) are given by Diff transforms of the large N condensate of the bilocal

6Ḡ, Σ̄ are the saddle point solutions of the above action.
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‘meson’ variable G(τ1, τ2) = ψI(τ1)ψI(τ2)7

G0(τ1, τ2) ∼ 1

(τ1 − τ2)2∆

f∈Diff(R1)−−−−−−−→ G0[f ](τ1, τ2)

G0[f ](f(τ1), f(τ2)) ≡ G0(τ1, τ2)

(
∂f(τ1)

∂τ1

∂f(τ2)

∂τ2

)−∆

(3.22)

Here f : τ → f(τ) represents an element of Diff(R1). This orbit is represented pictorially by

the top curve in the left panel of Fig 3.1. In case of finite temperature, the time direction

is considered Euclidean and compactified into a circle of size β = 1/T : in that case the

appropriate group of transformations is Diff(S1).

The second line of the above equation essentially says that G transforms as a bilocal tensor

of weight 2∆ under the diffeomorphism f . For later reference, the infinitesimal version of

this transformation as represented in the space of bilocal variables is given by (for f(τ) =

τ + ε(τ)),

δεG(τ1, τ2) = [∆ (∂τ1ε(τ1) + ∂τ2ε(τ2)) + ε(τ1)∂τ1 + ε(τ2)∂τ2 ]G(τ1, τ2) (3.23)

Note that G0, as defined in the first line, is invariant under SL(2,R), i.e. under Diff elements

of the form h(τ) = (aτ + b)/(cτ +d), with ad− bc = 1. This implies that the orbit described

above parameterizes a coset Diff /SL(2,R), namely the set of Diff elements quotiented by

the identification f(τ) ∼ f(h(τ)).

An important issue in the context of the SYK model is the quantum mechanical realization

of the Diff algebra; in particular, it is an important question what the central charge of the

corresponding Virasoro algebra is. We will find below, in terms of the bulk dual described

by (3.28), that the central charge of the two-dimensional realization is proportional to N .8

In higher dimensions, such as in pion physics, the elements of the coset represent Nambu-

Goldstone bosons, with kinetic terms given by a nonlinear sigma model (see, e.g. the

discussion of pions in [96], Chapter 19). The Nambu-Goldstone bosons are zero-modes

promoted to spacetime-dependent fields. In the SYK model, the zero-modes are described

by f(τ), or in the infinitesimal form ε(τ), (3.23). Their definition already uses up the only

dimension available in the model, and hence they cannot be made dependent on any other

coordinate and remain zero modes (do not pick any kinetic terms). As explained above,

following [8, 21], when one moves away from the strict IR limit (i.e. a small value of 1/J

is turned on), these modes cease to be zero modes and pick up a non-zero action, given in

7We are using a generalized notation here, in which ‘I’ denotes the appropriate indices of a given SYK/ten-
sor model. For example, in SYK model it denotes the ‘flavour indices’ of fermions ψi, while in Witten-Gurau
model it denotes the tri-fundamental index the fermions carry.

8More precisely, the Diff group is realized here as a subgroup of a two-dimensional conformal algebra
which is unbroken by the presence of the boundary.
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terms of the Schwarzian derivative

Seff ∼
N

J

∫
dτ{f, τ}, where {f, τ} ≡ f ′′′(τ)

f ′(τ)
− 3

2

(
f ′′(τ)

f ′(τ)

)2

(3.24)

In spite of the appearance of the derivatives, the above is a ‘potential’ term for the zero

modes, similar to a pion mass term.9

3.3.1 Coadjoint orbits

The above discussion shows that the degrees of freedom of the low energy (NG) sector of

the SYK theory are characterized by elements of M= Diff /SL(2,R). In particular, the free

energy is given by a path integral over M with the above Schwarzian action.

In this subsection, the question of possible quantization of this configuration space is ad-

dressed. This question has a natural interpretation in terms of AdS/CFT correspondence,

since the bulk path integral can, in a sense, be regarded as a radial quantum evolution of

boundary data [15, 16, 56]. [15, 16, 56]10

The quantum theory envisaged above has a configuration space given by the group of paths

in M (the group of closed paths in M is called loop(M)). An action functional on this

space was formulated in [29, 30], using the formalism of coadjoint orbits and the resulting

symplectic form in M [31, 95]. Let’s consider a path P(σ) in the space of Diff elements, with

P(0) = P0, P(1) = P1. Since each point of the path is represented by a diffeomorphism, we

can label the path as f(τ, σ) where the initial point P0 corresponds to some diffeomorphism

f0(τ) and the final point P1 to another diffeomorphism f1(τ). The above mentioned action

functional for such a path, also called the coadjoint orbit action or the Kirillov action, is

given by [29, 30] (where the symplectic form is Ω = dΘ)

SKirillov =

∫
dσΘ(σ, {f(τ, σ)})

=

∫
dσdτ

[
−b0({f(τ)}) f ′ḟ +

c

48π

f ′

ḟ

( ...
f

ḟ
− 2

f̈2

ḟ2

)]
(3.25)

where ḟ = ∂τf, f
′ = ∂σf etc. Here c represents a possible central term in the coadjoint

representation of Diff [29, 30, 95]; b0 is an arbitrary functional, representing the choice of a

reference point on the orbit (different inequivalent orbits correspond to different inequivalent

choices of b0.)

9One way to appreciate this is to regard the Euclidean time as a discrete lattice and think of the ‘time’
derivatives in terms of discrete differences f ′(τ) ∼ fi+1−fi where f(τ) is regarded as a collection of constant
zero modes fi.

10See [1] for a detailed treatment of the boundary wavefunction which represents the CFT data accurately.
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It was observed in [29, 30] that, with the choice b0 = 0 (we discuss this more later), the

Kirillov action becomes the same as the two-dimensional quantum gravity action of Polyakov

[32]

S[g] =
c

24π

∫

Γ

√
gR

1

�
R (3.26)

where the metric is [29]11

ds2 = ∂σf dτdσ (3.27)

Here, R is the Ricci scalar of the geometry, 1
� is a notation used for the inverse of the scalar

Laplacian in the geometry.

3.3.2 Two-dimensional quantum gravity action

It is rather remarkable that the two-dimensional quantum gravity action of Polyakov emerges

from the quantization of the Diff configuration space.12 Identifying such a quantization with

the holographic path integral, as mentioned in the previous subsection, one would tend to

identify (3.26) with a possible bulk dual for the Nambu-Goldstone sector of the SYK model.

This does not work, however, since the action (3.26) does not have a cosmological constant

and therefore pertains to asymptotically flat spaces without a boundary. To qualify as the

bulk dual, the classical action must admit asymptotically AdS2 spaces as solutions. Is there

a natural generalization of the Polyakov action (3.26) which admits such solutions?

It turns out that there is such an action, given by13

Scov[g] =
1

16πb2

∫

Γ

√
g

[
R

1

�
R− 16πµ

]
+

1

4πb2

∫

∂Γ

√
γK 1

�
R+

1

4πb2

∫

∂Γ

√
γK 1

�
K (3.28)

Here K is the extrinsic curvature of the boundary. The constant b2 = 3
2c is the dimensionless

Newton’s constant in two dimensions; we are interested in the classical limit b→ 0. A bulk

cosmological constant, (−µ) < 014, is also included (to accommodate asymptotically AdS2

spaces). The boundary terms are dictated by the requirement of a well-defined variational

principle (see Appendix G for derivation); these terms can also be independently derived

from the considerations of Weyl anomaly on manifolds with a boundary, see Appendix K.

11The function f(τ, σ) here should be compared with F (x, t) of [29]
12In the foregoing discussion, the fact that the Diff symmetry is slightly broken does not appear to be

taken into account. Shortly we discuss how the broken Diff symmetry gets incorporated from the 2D gravity
perspective.

13One might wonder whether other non-local terms like
(

1
�R
)n

, n ∈ Z+ are allowed in the action. It can
be shown that including such higher order terms in general leads to equations of motion that do not admit
an asymptotically AdS2 spacetime.

14We have already incorporated a negative sign while writing the action, thus leaving µ > 0
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We have presented a discussion of the quantum corrections contributing to the action in

Appendix J.

The main proposal in the work [2], on which this chapter is based, is that the modified

quantum gravity action (3.28) describes a bulk dual of the low energy sector of the SYK

model. The remaining chapter is a presentation of the evidence in support of this conjectured

duality.

The next section discusses the above action in more detail. We will discuss in the subsequent

section the Diff orbit of AdS2 (asymptotically AdS2 metrics) in detail, and show that they

are solutions of the equations of motion. We should note that the specific realization of

this Diff orbit will differ somewhat from that of the above discussion. The most important

difference is that in the above discussion (which assumes spacetime without a boundary)

various points of the Diff orbit are actually diffeomorphic in 2D; in our construction below,

the Diff orbits involve large diffeomorphisms in 2D which are nontrivial near the boundary,

and hence constitute physically distinguished configurations.

Before we proceed we would like to emphasize following points:

1. The action (3.26) involves the dynamical variables f(τ, σ) representing the loop space

L(Diff) (more precisely, L(M), M = Diff /SL(2,R)). It describes a quantization of

M , which is different from simply integrating over M . The latter emerges in the

description of the pseudo-Nambu-Goldstone modes of the SYK model. It is possible

to identify the quantization of M as the two-dimensional boundary dual to gravity on

AdS3 (see, e.g., [97]).15

2. In this work, however, we consider a different variant of the model, namely (3.28),

which, in addition to the term in (3.26) includes a negative cosmological constant and

boundary terms, and consequently defines a theory of gravity in asymptotically AdS2

spaces.

3. As we will find, the only physical degrees of freedom of (3.28), reduce toM , parametrized

by f(τ) (see, e.g. (3.48)) which lives on the boundary. The bulk-boundary correspon-

dence in this case essentially follows from two-dimensional diffeomorphism (this is

somewhat reminiscent of Chern-Simon theories on a manifold with boundaries, or of

AdS3/CFT2 duality). We will also find that the action describing the modes f(τ) is the

Schwarzian action of SYK-type model and that the low temperature thermodynamics

also have qualitative agreement with that of SYK.

4. We would like to emphasize that while (3.26), in the gauge (3.27), arises from a

coadjoint orbit action of Diff, we do not yet have an explicit proof that our proposed

15We thank D. Stanford and E. Witten for illuminating correspondences on these points.
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bulk dual, described by (3.28), is also a coadjoint orbit action of Diff for asymptotically

AdS2 geometries in some gauge. While this may eventually turn out to be true, the

verification of our proposed duality in the rest of chapter is independent of such a

connection.

3.4 Solutions of equations of motion and the Liouville action

This section starts with a discussion of the equations of motion arising from the action

(3.28). The solutions describe spacetimes of constant negative curvature, which include

AdS2 as well as a three-parameter ‘non-normalizable’ deformation, which correspond to

geometries whose boundary is displaced with respect to the original boundary of AdS2. We

will subsequently discuss the on-shell action.

Equations of motion

We now discuss the solutions of the above action, (3.28). The details of the computations of

the equations of motion have been relegated to Appendix G and only the important results

are summarized here. The equations of motion are,

0 =
1

16πb2

(
gµν(w)

(
2R(w) + 8πµ

)
+

∫ x

Γ

[
−2∇(w)

µ ∇(w)
ν G(w, x)R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]
R(x)R(y)

)

(3.29)

It is more instructive to study the trace and traceless part of the equations separately,16

Trace part: R(x) = −8πµ (3.30)

Traceless part: 0 =

∫ x

Γ

[
−2

(
∇(w)
µ ∇(w)

ν G(w, x)− 1

2
gµν(w)�(w)G(w, x)

)
R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]
R(x)R(y)

(3.31)

Note that since µ > 0, the first equation, (3.30), signifies that the metric must have a

constant negative curvature, which of course includes AdS2. However, one still needs to

check if AdS2 still satisfies (3.31). Moreover, one should also ask what is the most general

solutions to these equations?

16We will subsequently write the action, (3.28) itself as sum over the trace and traceless part.
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In the following paragraphs we summarize the mail results, while the details are discussed

in Appendix G. Let us write the metric in conformal gauge around an AdS2 background,

gαβ = e2φĝαβ, where

d̂s2 ≡ ĝαβdxµdxν =
1

πµ(z + z̄)2
dz dz̄ =

1

4πµζ2

(
dζ2 + dτ2

)
(3.32)

Eq. (3.30) then becomes the same as Liouville equation of motion (see below for detail),

2�̂φ = R̂+ 8πµe2φ (3.33)

which has the general solution [98, 99],

φ =
1

2
log

[
(z + z̄)2 ∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]
(3.34)

where g, ḡ are arbitrary complex functions, conjugate of each other.17 In the same gauge

and background, (3.31) gives us the following Virasoro constraints ,

∂2φ(z, z̄)− (∂φ(z, z̄))2 + 2
∂φ(z, z̄)

z + z̄
= 0, ∂̄2φ(z, z̄)−

(
∂̄φ(z, z̄)

)2
+ 2

∂̄φ(z, z̄)

z + z̄
= 0

(3.35)

Solving (3.30) and (3.31) (or, equivalently (3.35)) simultaneously, one gets solutions (3.34)

with following conditions on g, ḡ,

{g(z), z} = 0, {ḡ(z̄), z̄} = 0⇒ g(z) =
az + ib

icz + d
, ḡ(z̄) =

āz̄ − ib̄
−ic̄z̄ + d̄

, a, b, c, d ∈ C 18

(3.36)

Here, and subsequently in this chapter we denote the Schwarzian derivative of a function,

f(τ), by {f(τ), τ} = f ′′′(τ)
f ′(τ) − 3

2

(
f ′′(τ)
f ′(τ)

)2
. Of these solutions, the choice a, b, c, d ∈ R corre-

sponds to SL(2,R)transformations of AdS2 coordinates, and are the exact isometries of the

geometry.

The remaining 3-parameter set of solutions, which corresponds to the point marked NAdS2

in Figure 3.1 are the solutions of our primary interest. These do not preserve the boundary of

AdS2. In general, the boundary of the spacetime is given by the curve, g(z)+ḡ(z̄) = 0, which

for a general function of the kind, (3.36), is not the same as z + z̄ = 0. These solutions will

subsequently be referred to as non-normalizable solutions following the standard AdS/CFT

language.

The set of non-normalizable solutions obtained above is parameterized by (a, b, c, d) ∈
SL(2,C)/SL(2,R), which can be identified with a hyperboloid (see Appendix H, especially

17In Lorentzian signature, these functions can be chosen to be two independent real functions.
18Here the independent set of parameters are constrained by ad+ bc = 1, which is the same as SL(2,C).
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(H.7) for more details). The point (a, b, c, d) = (1, 0, 0, 1) corresponds to the identity trans-

formation g(z) = z in (3.36). We are interested in small non-normalizable deformations near

the identity transformation. It is possible to choose a set of coordinates of SL(2,C)/SL(2,R),

in which such deformations are given by

a = 1 + i δaI b = i δbI c = i δcI d = 1− i δaI , (3.37)

where δaI , δbI , δcI are real numbers. With these parameters, the solution for the metric

becomes

ds2 = e2φd̂s2 (3.38)

with d̂s2 given by the AdS2 metric (3.32), and φ, using (3.34) and (3.36) has the near-

boundary form

φ = −δg(iτ)

ζ
+O(δa2, δb2, δc2), −δg(iτ) = δbI + 2δaIτ + δcIτ2 (3.39)

Eventually, δaI = δcI = 0 is chosen, so that δg = −δbI , and φ = δbI/ζ. We will find

that the δbI deformation (more precisely, −δbI) corresponds to the irrelevant coupling 1/J

of the SYK model. The other parameters δaI and δcI are physically distinct; it would be

interesting to explore their significance, which we leave for future work.

For the Liouville factor e2φ not to destroy the asymptotic AdS2 structure altogether, we

will assume here that δg ∼< δ;19 this ensures that δg < ζ.20 Note that the expression for

the Liouville field in (3.39) is similar to that of the dilaton in [25], and plays a somewhat

similar role as we will see later. In the next section, more solutions are generated from the

above three-parameter solutions by using large diffeomorphisms, which we cannot capture

staying within the conformal gauge.

Liouville action

We now show that the above analysis of equations of motion with separation into trace and

traceless parts also works for the classical action. Writing the induced gravity action in a

19δ is a radial cut-off that we have introduced to regulate the UV divergences in the bulk computations,
akin to ε0 of previous chapter.

20There is a natural RG interpretation of this inequality in terms of the boundary theory. We will later
identify δg with ∼ 1/J (see (3.81)). Together with the natural identification of 1/ζ, for small ζ, with a
Wilsonian floating cut-off Λ (to be distinguished from the bare cut-off Λ0 = 1/δ, see [15, 16], also [1]), we
find δg/ζ ∼ Λ/J = 1/J̄ , where J̄ = J/Λ is the dimensionless coupling. Since J̄ grows large near the IR
cut-off, it follows that δg/ζ � 1 near the IR cut-off.



84 Chapter 3

conformal gauge around an arbitrary fiducial metric, ĝαβ, one gets the action,21

Scov[g] = − 1

4π b2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)
+ 2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

− 1

2

∫

∂Γ

√
γ̂n̂µ ∇̂µ

(
φ

1

�̂
R̂

)]
+

1

16π b2

∫

Γ

√
ĝR̂

1

�̂
R̂+

1

4π b2

∫

∂Γ

√
γK̂ 1

�̂
R̂

= − 1

4π b2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)
+ 2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]

+
1

16π b2

∫

Γ

√
ĝR̂

1

�̂
R̂

(3.40)

In all the above equations, the coordinate dependence of the functions is understood. In

the second line above, the boundary terms containing the Green’s function, 1
�̂

, have been

dropped, given the fall-off properties of the Green’s function. The part of the action in

(3.40) which depends on φ field can be identified with Liouville action on a background with

metric ĝ.

SL[φ, ĝ] = − 1

4π b2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)
+ 2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]

(3.41)

We are interested in computing the above action in the classical limit, b→ 0. The classical

equation of motion for the φ field turns out to be exactly the same as (3.33), the trace part

of the equations of motion coming from the Polyakov action, as expected. We emphasize

the fact that if one chooses to study (3.40) as a theory of quantum gravity, then the trace of

background metric appearing there should not be treated as independent degree of freedom.

One-dimensional Liouville equation of motion has appeared in [68, 73, 100] in the context of

boundary dynamics. However, their connection to the induced gravity action that we have

discussed here is not clear.

No dynamical Liouville mode: It is important to note that in the above system there

are no dynamical Liouville modes at all. The Liouville mode is entirely fixed in terms of

three parameters which, furthermore, correspond to non-normalizable modes. These are

specified as boundary conditions of the path integral and are not dynamical variables. This

point is elaborated further in Appendix H where it is shown that the form of the Liouville

mode, with three real constants, is completely fixed by the Virasoro constraints alone.

21Later in this chapter we will choose the fiducial metric from a class of Asymptotic AdS2 (AAdS2)
geometries. Although none of the analysis depends on the choice of this fiducial metric, it is only economical
for a classical analysis that we choose it to be one of the saddle point solutions.
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3.5 Asymptotically AdS2 geometries

In this section, we will construct asymptotically AdS2 geometries as a Diff orbit of the

solutions constructed in (3.38) (see the orbits in the right panel of Figure 3.1). To begin

with, we will construct these asymptotic geometries purely kinematically, from an analysis of

asymptotic Killing vectors (AKV) of AdS2 geometry (also see Appendix I for some details).

Later, we argue that they solve the equations of motion and evaluate the on-shell action

for these configurations. AKV’s of AdS2 have been studied earlier in [101, 102] in the near-

boundary region, inspired by earlier work of Brown and Henneaux in one higher dimension

[103]. We show below that it is possible to integrate the infinitesimal diffeomorphisms

exactly to find the full nonlinear solution. This will lead to a class of AAdS2 geometries

that are related to each other by diffeomorphisms that become tangential at the boundary.

These geometries are dual to the conformally transformed states in the 1-D field theory.22

We mainly consider Euclidean metrics below.

Euclidean AdS2 metric in Poincare coordinates is defined by (3.32). The AAdS2 geometries

are defined by the fall-off conditions [101–103],

gζζ =
1

4πµ ζ2
+O(ζ0), gζτ = O(ζ0), gττ =

1

4πµ ζ2
+O(ζ0) (3.42)

Variation of the metric under most general diffeomorphism is,

δgαβ = ∇αεβ +∇βεα =



−ε

ζ(ζ, τ)− ζ∂ζεζ(ζ, τ)

2πµζ3

∂τ ε
ζ(ζ, τ) + ∂ζε

τ (ζ, τ)

4πµζ2

∂τ ε
ζ(ζ, τ) + ∂ζε

τ (ζ, τ)

4πµζ2
−ε

ζ(ζ, τ)− ζ∂τ ετ (ζ, τ)

2πµζ3


 (3.43)

The asymptotic Killing vectors can be solved for by imposing on (3.43) the fall-off conditions

in (3.42), [101, 102]. However, we choose to work in Fefferman-Graham gauge which is

defined by,

δgζζ = 0, δgζτ = 0 (3.44)

The solution for the asymptotic Killing vectors is given in terms of an arbitrary function,

δf(τ),

εζ(ζ, τ) = ζδf ′(τ), ετ (ζ, τ) = δf(τ)− 1

2
ζ2δf ′′(τ) (3.45)

22As indicated before, precisely at the conformal point, the stress tensor vanishes trivially; hence all states
are ground states. However, slightly away from the conformal point, the (broken) conformal transformations
lead to nontrivial states.
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It is clear from the above solution, that the diffeomorphism is tangential at the boundary

of AdS2, ζ = 0. The integrated form of the coordinate transformations is,

τ̃ = f(τ)− 2ζ2f ′′(τ)f ′(τ)2

4f ′(τ)2 + ζ2f ′′(τ)2
, ζ̃ =

4ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2
(3.46)

Although we think that this choice of gauge should not be necessary and it should be possible

to integrate the diffeomorphisms more generally, we found it easier to do so with this gauge

choice. This was largely motivated by [104, 105] who performed similar integrations of

diffeomorphisms in AdS3 case. The details of this computation are presented in Appendix I.

The result of this diffeomorphism can be stated as follows. If we start with the AdS2 metric

in the ζ̃-τ̃ coordinates

d̂s2 =
1

4πµ ζ̃2

(
dζ̃2 + dτ̃2

)
,

in the original ζ-τ coordinates it becomes

d̂s2 =
1

4πµ ζ2

(
dζ2 + dτ2

(
1− ζ2 {f(τ), τ}

2

)2
)

(3.47)

Recall that {f(τ), τ} = f ′′′(τ)
f ′(τ) − 3

2

(
f ′′(τ)
f ′(τ)

)2
is the standard notation for Schwarzian derivative

that we use throughout our discussion. We emphasize that the class of geometries given by

(3.47) also have constant negative curvature, R̂ = −8πµ. As in AdS3, it should be possible to

identify these geometries as different sections of the global AdS2 geometry. Some discussion

of how various AdS2 geometries are related is provided in [102].

One can carry out the above diffeomorphism in the presence of the non-normalizable solu-

tions described in the previous section. To do this, begin with the metric (3.38) in the ζ̃-τ̃

coordinates:

ds2 = e2φ̃(x̃µ)d̂s2, φ̃(x̃µ) =
δ̃g

ζ̃
+O(δa2, δb2, δc2), δ̃g = Im(δb) + 2 Im(δa)τ̃ + Im(δc)τ̃2

and transform to ζ-τ coordinates, yielding the metric

ds2 = e2φd̂s2, d̂s2 =
1

4πµ ζ2

(
dζ2 + dτ2

(
1− ζ2 {f(τ), τ}

2

)2
)
,

φ = − δg(iτ̃)

ζ̃(ζ, τ)
+O(δa2, δb2, δc2), −δg(iτ̃) = δbI + 2δaI τ̃ + δcI τ̃2, τ̃ = f(τ) (3.48)

In terms of the Figure 3.1, the above solutions (3.47), (3.48) represent the Diff orbit of AdS2

and NAdS2 on the right panel.
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As remarked below (3.39), only the one-parameter deformation parameterized by δbI is

eventually chosen, which will turn out to correspond to the 1/J deformation of the strong

coupling fixed point of the SYK theory. However, for the sake of generality, we will for now

continue with the more general form of δg.

3.5.1 Proper treatment of the bulk path integral

To this point we have not discussed the issue of gauge fixing inside the quantum mechanical

path integral. While we are largely interested in a classical computation in the bulk, where

the path integral measure due to gauge fixing is not important, we now shed some light on

this issue. The computation of the ghost action is discussed in detail in Appendix J. The

gauge fixing δ-function and the corresponding Faddeev-Popov determinant is given by,

1 = ∆FP

[
ĝ[f(τ)], φ

]
×
∫

[Dε(s)][Dφ][Df(τ)] δ
(
gε

(s) − e2φĝ[f(τ)]
)

× δ
(
ε(s)(z1)

)
δ
(
ε(s)(z2)

)
δ
(
ε(s)(z3)

) (3.49)

In line with the discussion of the previous sections, we gauge fix an arbitrary metric to be

conformally related to the AAdS2 metrics. In the choice of this gauge, there is an additional

SL(2,R)residual gauge freedom that has been fixed using the δ-functions that anchor three

arbitrary points in the geometry.23 Going through the standard procedure of introducing

the fermionic ghosts, we obtain a ghost action (J.3). This procedure should not only capture

the correct Jacobian required for the gauge fixing, but also for defining an invariant measure

on the space of f(τ) integrations.

With the above ingredients, the path integral is given by

Z =

∫ Df(τ)′

f ′(τ)
exp[−Shydro + ...] (3.50)

where Shydro is the effective action (3.67), describing the hydrodynamic modes (see the next

section). The terms in the ellipsis denote subleading terms which get contribution from

the Faddeev-Popov determinant mentioned above and discussed in detail in Appendix J.

The integration measure is the invariant integration measure in the space of f(τ) functions.

The prime on the measure denotes the exclusion of the integration over SL(2,R) degrees of

freedom due to the treatment of SL(2,R) modes discussed above.24

23This is the standard prescription followed in open-string path integral computations. See also the relevant
discussion in [8].

24This measure should appear from a proper treatment of the Faddeev-Popov procedure which is sketched
in Appendix J. We leave details of this to subsequent work.
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3.6 Action of hydrodynamics modes

In this section, the on-shell action of the above geometries is computed to determine the

contribution of the large diffeomorphisms to the partition function of the system.

3.6.1 Boundary action

It is clear from the analysis of equations of motion in Appendix G that all of AAdS2 ge-

ometries satisfy the bulk equations of motion. Thus we can safely anticipate that the major

contribution to the action of hydrodynamics modes will come from the boundary terms in

(3.40). The boundary terms of the action are given by,

SbdyL [φ, ĝ] = − 1

4π b2

[
2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]
(3.51)

The second term above doesn’t contribute at the leading order. The contribution of this

term starts at O(δg)2 and hence won’t contribute to the leading order answers that are

subsequently computed.

We also emphasize on the correct way to regulate the geometries for the subsequent com-

putations. To keep the notations unambiguous, the coordinates of AdS2 are denoted by ζ̃, τ̃

and that of AAdS2 geometries by ζ, τ . We know that AAdS2 geometries are related to AdS2

geometry by large diffeomorphisms. Hence, the application of these large diffeomorphisms

on a radial cut-off in AdS2 at ζ̃ = δ maps the boundary at constant ζ̃ to some wiggly-curves

in ζ-τ coordinates,25

δ =
4ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2

⇒ ζ =
2 f ′(τ)

δ f ′′(τ)2

[
f ′(τ)2 −

√
f ′(τ)4 − δ2 f ′′(τ)2

] (3.52)

These are the same wiggles as discussed in [25]. To consider physically distinct geometries

in ζ-τ coordinates, we put a cut-off at ζ = δ and compare the action with that of geometry

corresponding to ζ̃ = δ.

25There are two solutions for ζ satisfying ζ̃ = δ (because the second equation in (3.46) is a quadratic in
ζ), one of which doesn’t satisfy the boundary condition, ζ → 0 as δ → 0, and hence is unphysical.
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In AdS2 On the boundary ζ̃ = δ,
√
γ̂K̂ = 1

δ

SbdyL [φ̃, g̃αβ] = − 1

2π b2

∫

∂Γ

√
γ̂K̂φ̃ = − 1

2π b2

∫
dτ̃

[(
δg(iτ̃)

δ2
− 1

2
δg′′(iτ̃) +O(δ2)

)

+O
[
δg(iτ̃)2

]
]

(3.53)

where, δg(τ̃) was defined in (3.39). To be able to compare with the AAdS2 answer later, we

do the coordinate transformation from τ̃ → τ coordinates,

SbdyL [φ̃, g̃αβ] = − 1

2π b2

∫

∂Γ

√
γ̂K̂φ̃

= − 1

2π b2 δ

∫
dτ
∂τ̃(τ)

∂τ

[(
δg(iτ̃(τ))

δ
− δ

2
δg′′(iτ̃(τ)) +O(δ2)

)
+O

[
δg(iτ̃(τ))2

]
]

(3.54)

τ̃ = f(τ)− f ′(τ)2

f ′′(τ)


1−

√
1− δ2

(
f ′′(τ)

f ′(τ)2

)2

 (3.55)

Here, it is important to note that we need to implement the coordinate transformation at

the ζ̃ = δ slice. To this effect, we need to solve for ζ at ζ̃ = δ using the second equation in

(3.46) and substitute it back in the first equation there.

In AAdS2 On the boundary ζ = δ,
√
γ̂K̂ = 1

δ + δ {f(τ),τ}
2

SbdyL [φ, gαβ] = − 1

2π b2

∫

∂Γ

√
γ̂K̂φ = − 1

2π b2

∫
dτ

[
1

δ
+ δ
{f(τ), τ}

2

]
×
[(

1

δ

δg(if(τ))

f ′(τ)

− δ

(
− δg(if(τ))f ′′(τ)2 + 2f ′(τ)4δg′′(if(τ)) + 2if ′(τ)2f ′′(τ)δg′(if(τ))

)

4f ′(τ)3

+O(δ2)

)
+O

[
δg(if(τ))2

]
]

(3.56)

Hence,

δSbdyL = SbdyL [φ, gαβ]− SbdyL [φ̃, g̃αβ] =
1

2π b2

∫
dτ

[(
δg(if(τ))

δ2

(
f ′(τ)− 1

f ′(τ)

)

− δg(if(τ))

f ′(τ)
{f(τ), τ}+O(δ2)

)
+O

[
δg(if(τ))2

]
] (3.57)
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The O(1/δ2) divergent term can be subtracted by introducing following counterterm in the

action (3.41),

Sct =
4
√
πµ

4π b2

∫

∂Γ

√
γ̂φ (3.58)

which essentially replaces
√
γ̂K̂ → √γ̂(K̂−1).26 To the linear order in δg under consideration

here, this is the same as the fully covariant counterterm −4
√
πµ 1

4πb2

∫
∂Γ

√
γ 1
�R. The finite

part of the answer is,

δSbdyL = − 1

2πb2

∫
dτ
δg(if(τ))

f ′(τ)
{f(τ), τ} =

1

2πb2

∫
dτ̃ δg(iτ̃)

{
f̃(τ̃), τ̃

}
(3.59)

Here the third term is written in terms of the τ̃ coordinate, the boundary coordinate of

the unperturbed AdS2.
27 Also, note that we have defined f̃(τ̃) = τ as the reparametrized

coordinate starting with the unperturbed AdS2coordinate τ̃ .28

The function δg(τ) is given by (3.39). As indicated below that equation, henceforth δg

= constant is chosen. One might wonder if one can absorb the τ and τ2 deformations

in δg, parameterized by δaI and δcI , by a possible reparameterization of the boundary

coordinate τ ; this, however, turns out impossible for any value of these parameters since

the corresponding transformation turns out to be singular. Thus, the δbI , δaI , δcI represent

different physics, and we will find that it is only the δbI deformation, that is, a constant δg,

which will correspond to the SYK model. It will be seen that the non-normalizable mode

corresponding to constant δg, corresponds to the irrelevant coupling 1/J of the SYK model.

Section 3.8 details the matching of the above results with the boundary field theory. Note

that the SL(2,R)transformations that correspond to the ‘global conformal transformations’

of one dimensional space remain the symmetry of this action. Moreover, a discussion of

the correct measure of integration over the f̃(τ) modes is presented in subsection 3.5.1 and

Appendix J.

26A similar counterterm is also implied in [8] in removing a quadratic divergence from their computation
of the Schwarzian term.

27In going from the second expression to the third term, we have first transformed to the time coordinate
τ̃ = f(τ), with τ = f̃(τ̃), f̃ ≡ f−1, and used the Schwarzian composition rule

{f̃(f(τ)), τ} = {f̃(f(τ)), f(τ)}f ′(τ)2 + {f(τ), τ} = {f̃(τ̃), τ̃}f ′(τ)2 + {f(τ), τ},

The LHS equals {τ, τ} and vanishes.
28It is important to note that the large diffeomorphism f̃ is what corresponds to the pseudo-Nambu-

Goldstone mode f of the SYK model.
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3.6.2 Bulk action

The bulk part of the Liouville action is,

SbulkL [φ, ĝ] = − 1

4π b2

∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ−

1

4πb2

∫

Γ

√
ĝ
(
−φ�̂φ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ−

1

4πb2

∫

Γ

√
ĝ

(
1

2
R̂φ+ 4πµe2φ(1− φ)

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ−

µ

b2

∫

Γ

√
ĝ
(
−φ+ e2φ(1− φ)

)
(3.60)

here in the second line we have shifted the derivatives, while in the second term we have

used the equation of motion of the φ field, �̂φ = 1
2R̂ + 4πµe2φ. In the last line, the value

of R̂ = −8πµ has been substituted. The first term in the above equation contributes at

subleading order, as argued under (3.51). Using the on-shell value of the φ we evaluate the

above action in AdS2 and AAdS2 backgrounds.

In AdS2 For AdS2 background metric, the action is given by,

SbulkL [φ̃, g̃αβ] = − µ
b2

∞∫

−∞

dτ̃

∞∫

ζ̃=δ

dζ̃
√
g̃
(
−φ̃+ e2φ̃

(
1− φ̃

))

= − µ
b2

∞∫

−∞

dτ

∞∫

ζ>∂Γ

dζ
√
g
(
−φ+ e2φ(1− φ)

)
(3.61)

Here, in the second line we have used the coordinate transformations, (3.46) and the bound-

ary in ζ coordinates is now given by the wiggly curve, (3.52),

∂Γ ≡ ζ =
2

δ f ′′(τ)2

[
f ′(τ)3 −

√
f ′(τ)6 − δ2 f ′(τ)2 f ′′(τ)2

]

in AAdS2 Similarly for the AAdS2 background we have the action,

SbulkL [φ, gαβ] = − µ
b2

∞∫

−∞

dτ

∞∫

ζ=δ

dζ
√
g
(
−φ+ e2φ(1− φ)

)
(3.62)

Thus we have,

δSbulkL = SbulkL [φ, gαβ]− SbulkL [φ̃, g̃αβ] = − µ
b2

∞∫

−∞

dτ

ζ=∂Γ∫

δ

dζ
√
g
(
−φ+ e2φ(1− φ)

)
(3.63)
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It is easy to approximate this expression close to the boundary of the geometry, i.e. when

δ → 0. In that case the difference between ζ = ∂Γ and ζ = δ reduces to a small strip as

shown in Figure 3.7.

Figure 3.7: The difference in bulk action between AdS2 and AAdS2 geometries gets contribution
only from the shaded region

Moreover (−φ + e2φ(1 − φ)) ∼ 1 + O[δ3, δg(iτ)2], and hence, that part of the integrand

becomes trivial. The integrand can be approximated by,

δSbulkL =
1

4πb2

∞∫

−∞

dτ̃


1

δ

(
f̃ ′(τ̃)− 1

)
+
δ

4




(
2f̃ ′(τ̃)− 3

)
f̃ ′′(τ̃)2 − 2f̃ ′′′(τ̃)

(
f̃ ′(τ̃)− 1

)
f̃ ′(τ̃)

f̃ ′(τ)3






(3.64)

The first term is linearly divergent,29 however while considering the coordinate transforma-

tions which approach identity transformations asymptotically this term integrates to zero.

In other words if we consider a transformation, f̃(τ̃) = τ̃ + ε(τ̃)30, then f̃ ′(τ̃) = 1 + ε′(τ̃). In

this case the first term becomes,

1

4πb2

∞∫

−∞

dτ̃
1

δ
ε′(τ̃) =

1

4πb2 δ
[ε(∞)− ε(−∞)] (3.65)

Clearly a good coordinate transformation has to be monotonically increasing. Additionally

we require, for the transformation to remain invertible, that ε(∞) = 0 = ε(−∞). In fact,

the transformation that is used to map the theory on a line to a theory on a thermal circle is

not of this kind and the regulation scheme adopted in that case is explained in section 3.7.

29We thank Shiraz Minwalla for a crucial discussion on this point.
30Here ε(τ̃) is not necessarily small, but just a rewriting of the coordinate transformations.
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Leaving aside the issue of the regulation, the reparametrization of a thermal quantum me-

chanical theory can be achieved starting from a quantum mechanical theory in two steps:

firstly, the straight line is mapped to a thermal circle using the map τ̃ = tan
(
πθ̃/β

)
;

then, one reparametrizes the thermal circle with appropriate boundary conditions, ensuring

reparametrization doesn’t change the winding around the circle and is invertible. In this

case, the Schwarzian action becomes [8, 25]:

Sβhydro =
δg

2πb2

∫
dθ̃

{
β

2
tan

(
π
f(θ̃)

β

)
, θ̃

}
(3.66)

3.6.3 Summary

From the preceding discussion, the following low energy effective action (in the leading large

1/b limit) for the ‘hydrodynamic modes’ can be deduced,

Shydro =
δg

2πb2

∫
dτ̃
{
f̃(τ̃), τ̃

}
(3.67)

In section 3.8 we will compare this with the Schwarzian term which appears in the SYK-type

models.

It is important to mention that the bulk dual discussed in [25, 26], leads to a similar

Schwarzian term starting from a dilaton gravity model, while the bulk dual presented here

has only the metric field described by the Polyakov action. The source of the hydrodynamic

modes in both cases involves the large diffeomorphisms which are nontrivial at the boundary.

In a very recent paper [106], another proposal for a bulk dual has appeared which has a

Liouville field and the Almheiri-Polchinski action, [26]. They also appear to get a Schwarzian

term rather differently, from the Liouville fluctuations similar to our functions g(z), ḡ(z̄) in

(3.34). However, as explained in detail above, except for an SL(2,R)worth of degrees of

freedom (see (3.36), (3.37)), these Liouville fluctuations are frozen by the Virasoro gauge

conditions (3.35). It is also pertinent here to mention the theorems due to Schwarz and

Pick [107]; these restrict the class of conformal transformations that map the boundary of

Poincare half-plane to itself to only SL(2,R)transformations.

3.7 Thermodynamic partition function from bulk dual

This section discusses the computation of the Euclidean bulk partition function in the classi-

cal limit for a black hole geometry. The standard prescription of [108] is used to renormalize

the bulk partition function by subtracting the partition function of thermal AdS2 geometry
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from the Euclidean black-hole geometries that we describe below.31 Following [8, 25], we can

do a reparametrization of the Euclidean time to study a field theory defined on a thermal

circle of length β,

τ̃ = tan

(
πθ̃

β

)
(3.68)

Using (3.47), one can compute the Euclidean geometry that is dual to the thermal field

theory,

ds2 =
1

4πµ ζ̃2


dζ̃2 +

(
1− π2 ζ̃

2

β2

)2

dτ̃2


, τ̃ ∈

(
−β

2
,
β

2

)
and ζ̃ ∈

(
0,
β

π

)
(3.69)

This geometry is a capped AdS2 geometry in two dimensions. There is no deficit angle near

the horizon of the geometry, which can be easily checked by doing a near horizon expansion,

ζ̃ = β/π − ρ,

ds2 ∼ π

4µβ2

[
dρ2 + 4

π2

β2
ρ2dθ̃2

]

Analytically continuing this geometry to Lorentzian space we get,

ds2 =
1

4πµ ζ̃2


dζ̃2 −

(
1− π2 ζ̃

2

β2

)2

dt2


 (3.70)

which is a geometry with a horizon at ζ̃ = β/π.

To get the free energy of the theory, we compute the on-shell bulk action for this geome-

try, but with a small non-normalizable deformation turned on (smallness is understood as

explained in the previous section).

Bulk action We first compute the bulk part of the action given in (3.41). The bulk part

of the Liouville action is,

SbulkL [φ, ĝ] = − 1

4π b2

∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ−

1

4πb2

∫

Γ

√
ĝ
(
−φ�̂φ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ−

1

4πb2

∫

Γ

√
ĝ

(
1

2
R̂φ+ 4πµe2φ(1− φ)

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ−

µ

b2

∫

Γ

√
ĝ
(
−φ+ e2φ(1− φ)

)
(3.71)

here in the second line we have shifted the derivatives, while in the third line we have used

the equation of motion of φ field, �̂φ = 1
2R̂+4πµe2φ. In the last line we have substituted the

31Thermal AdS2 geometry is obtained simply by identifying the boundary time coordinate in (3.32) over
a period β.
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value of R̂ = −8πµ. The first boundary term in the last line combines with the boundary

term already present in (3.41). However, these terms are not important for our analysis

because they only contribute at O(δg3). We don’t have any leading contribution coming

from the δg modes from the bulk action,

SbulkL [φ̃, g̃αβ] =
1

2b2
− β

4πb2 δ
− π δ

4b2 β
+O(δg3) (3.72)

As was the case with the previous Hydrodynamics calculation, all the divergent as well as

finite terms above are cancelled by subtraction of the thermal AdS2 partition function. This

is the standard prescription to regulate the partition function of the black hole geometries

(see [108]). Thus the bulk contribution starts only at O(δg3).

Boundary action Computing the boundary terms of the action (3.41). Again, as argued

above, the last term in (3.41) doesn’t contribute at leading order. The term containing

extrinsic curvature when evaluated on the boundary gives,

SbdyL [φ̃, g̃αβ] =
δg

2b2 β
+

β δg

4π2b2 δ2
+O(δg2) (3.73)

In both the above expressions we have taken the boundary value of the δg(iτ̃) field to be

constant, as explained earlier, and have denoted it by δg. Again, the quadratically divergent

term is cancelled by inclusion of the counterterm discussed in (3.58).

One last piece that needs to be evaluated is the bulk term
∫ √

ĝR̂ 1
�̂
R̂ that depends only

on the background geometry. The Green’s function in hyperbolic spaces is a well studied

subject. In Green’s function can be evaluated by taking a limit of the ‘resolvent’ of the

Laplacian.32 The resolvent of the Laplacian on right half Poincare-plane, H, is given by,

(
−�̂z + 4πµs(s− 1)

)
RH(s; z, w) = 4πµδ(2)(z − w)

RH(s; z, w) =
1

4π

Γ(s)2

Γ(2s)

(
1 +

|z − w|2
4 Re(z) Re(w)

)−s
2F1


s, s; 2s;

1

1 + |z−w|2
4 Re(z) Re(w)


 (3.74)

Here, z, w are the complexified coordinates, z = ζ1 + iτ1 and w = ζ2 + iτ2. The s→ 1 limit

of this function is,

G({ζ1, τ1}; {ζ2, τ2}) = − 1

4π
log

(
1− 4ζ1ζ2

(ζ1 + ζ2)2 + (τ1 − τ2)2

)
(3.75)

However, the above results are in H, while we are interested in solving the Green’s function

for the geometry in (3.69). The Green’s function can be obtained easily using the coordinate

32A resolvent in defined as the classical Green’s function of the operator −� + 4πµs(s − 1). Thus the
required Green’s function is the s→ 1 limit of the resolvent.
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transformations in (3.46) with the choice of function in (3.68). We get,

G = − 1

4π
log




1− 8π2β2ζ1ζ2

β4 + π2β2

(
ζ2

1 + 4ζ1ζ2 + ζ2
2

)
+ π4ζ2

1ζ
2
2

−(β2 − π2ζ2
1 )(β2 − π2ζ2

2 ) cos

(
2π(θ1 − θ2)

β

)






(3.76)

With this Green’s function we solve the

∫ √
ĝR̂

1

�̂
R̂ =

∫ √
ĝ(ζ1, τ1)

∫ √
ĝ(ζ2, τ2)R1G({ζ1, τ1}; {ζ2, τ2})R2

term for the geometry, (3.69). We get,

∫ √
ĝR̂

1

�̂
R̂ =

β

πb2δ
− 2

b2
log(β/δ) +

2 log(4π)− 3

b2
− πδ

3b2β
(3.77)

Again, the linearly divergent piece that appears above is cancelled by the contribution

coming from the thermal AdS2 partition function.33

Thus, the total action is

log(Z) = −βF = − 2

b2
log(β/δ) +

2 log(4π)− 3

b2
+

δg

2b2 β
+O(δg2) (3.78)

3.8 Comparison with field theory

Finally, it is important that the results obtained from the above bulk dual are compared with

the field theory results directly obtained from the SYK-model. This section is a summary

of such comparisons.

3.8.1 Hydrodynamics and a double scaling

The gravity dual leads to the following low energy effective action

Shydro =
δg

2πb2

∫
dτ̃
{
f̃(τ̃), τ̃

}
(3.79)

while the SYK model has the following expression for the same quantity [8, 21]

Shydro = N
α(q)

J

∫
dτ
{
f̃(τ), τ

}
(3.80)

33It can be seen easily by doing a similar computation using the Green’s function, (F.12), on the thermal
AdS2 geometry as discussed in Appendix F.
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As argued above, δg plays the role of the explicit symmetry breaking parameter 1/J in the

SYK model. Further, the classical limit in the bulk model corresponds to b → 0, which,

therefore corresponds to the limit N →∞. Therefore, these quantities can be identified up

to constants, thus:

1

b2
= c1N, δg = c2

1

J (3.81)

For the two hydrodynamic expressions above to match, we need to have c1c2 = α(q). A

q-dependence in the coefficients c1, c2 may appear strange; however, it may indicate the

existence of a double scaling in the theory. Note that at large q, α(q) = a0/q
2 (a0=constant).

A possible choice of the coefficients is c1 = α(q), c2 = 1. In this case, we are essentially

identifying

1

b2
= a0N/q

2, δg = c2
1

J (3.82)

Thus, if we take the limit N →∞, and q2/N fixed (cf. [73] appendix B), the corresponding

scaled quantity corresponds to the bulk Newton’s constant:

q2/N = a0b
2

3.8.2 Thermodynamics

At low temperatures, the bulk partition function is given by (3.78), with a divergence of

the form log(β/δ). With the logarithmically divergent term we might typically be left with

finite parts, say P0, after cancellation of the divergence. The low temperature partition

function will then be given by, ignoring subleading order terms in δg/δ,

log(Z) = −βF =
1

b2

[(
−2P0 +

4 log(4π)− 5

2

)
+
δg

2β
+O(δg2)

]
(3.83)

The corresponding expression in the SYK model is [8, 73, 74]

log(Z) = −βF = N

[
βJ 1

q2
+

1

2
log 2− π2

4q2
+

1

βJ
π2

2q2
+O(

1

q4
)

]
(3.84)

It is then possible that by suitably adjusting the finite part P0 and the constant c2 introduced

above, one can match the zero-temperature entropy and the low temperature specific heat.

The SYK zero-temperature entropy here does not seem to be universal; however, in the

double scaling limit mentioned above, the N/q2 term is universal.
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3.9 Discussion

In this chapter, we arrive at a proposal for a gravity dual of the low energy sector of SYK-

type models from symmetry considerations, more precisely from the fact that the coadjoint

orbit action of the Diff group is the Polyakov action (3.28). Subsequently, the classical

equations of motion were solved and it was found that the solutions are parametrized by a

large diffeomorphism together with a specific conformal factor (value of the Liouville mode)

representing a non-normalizable deformation. We compute the on-shell action which evalu-

ates the classical contribution to logZ. The computation leads to a Schwarzian action for

the low energy hydrodynamic modes and a specific heat which is linear at low temperatures.

Thus, the low energy behaviour of our proposed gravity dual reproduces that of SYK-type

models.

Let’s end this chapter with some remarks about possible UV properties of the bulk dual.

Recall that in usual AdS/CFT, such as in the example of N = 4 SYM theory on S3 × R,

states with spin > 2 acquire very large anomalous dimensions γ ∼ (g2
YMN)1/4 at strong

coupling 34 The energy grows as E ∼ γ/RAdS and the corresponding bulk state is identified

as a string state with mass ms = (g2
YMN)1/4/RAdS . This corresponds to the fact that the

UV completion of the gravity theory is string theory in AdS. In case of SYK-type models, the

anomalous dimensions of operators with spin higher than two, which form an approximate

Regge trajectory, remain O(1) even at strong coupling. From the point of the bulk dual,

the usual mass-dimension formula (which follows by using the relation between the AdS

Laplacian and Casimir of SL(2,R)) implies E ∼ ∆/RAdS (in our model, RAdS ∼ 1/
√
µ, see

(3.30)). If we wish to identify the ‘Reggeons’ with possible string states, this would imply

that the ‘string length’ is of the same order as the AdS radius. It is not clear what such a dual

string theory of light strings is. On the other hand, the spectrum of these massive modes

suggests that it may be possible to incorporate these states in our bulk dual by adding to the

Polyakov action (3.28) an infinite number of matter fields ηr minimally coupled to the metric

(see [25] for related ideas), with masses mr given in terms of the conformal dimensions ∆r.

In such a scenario, the Polyakov action (3.28) would still continue to represent the physics

of the ‘Nambu-Goldstone’ modes. The full action will have the structure

S = Scov[g] + Smatter[g, {ηr}] (3.85)

34Primary operators with spin ≤ 2 retain O(1) anomalous dimensions. These correspond to spherical
harmonics of gravitons with E ∼ O(1)/RAdS .
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where Scov[g] is the Polyakov action, given by (3.28). The matter action

Smatter[g, {ηr}] =
1

2

∫

Γ

√
g

[∑

r

(
gαβ∂αηr∂βηr +m2

rη
2
r

)
+ ...

]

=
1

2

∫

Γ

√
ĝ

[∑

r

(
ĝαβ∂αηr∂βηr +m2

re
2φη2

r

)
+ ...

]
(3.86)

where in the second step, we have used (3.48). Note that since the metric ĝ contains

the Nambu-Goldstone modes f (see (3.47)), the above action automatically incorporates a

coupling between these modes and the higher mass modes ηr; this fact plays an important

role in computing the chaotic growth of the out-of-time correlator. Using the action (8.1) we

can derive the exponentially growing behaviour of the out-of-time ordered 4- point functions,

〈O(τ)O(0)O(τ)O(0)〉 (where τ > 0), which gives the Lyapunov exponent, 2π/β, consistent

with the bound on chaos derived in [27]. Note also the appearance of the Liouville factor in

the mass term (this is to be contrasted with proposed bulk duals based on Jackiw-Teitelboim

models, e.g. in [25]). This implies subleading correction to the mass term proportional to

1/J (see (3.48)). However, as shown in [8, 66] one doesn’t need to break the conformal

symmetry explicitly to study the physics of these excited states. In fact, the 1/J corrections

for these states are truly subleading. The terms in the ellipsis above denote interaction

terms, which are suppressed in large N counting. Whether the procedure of incorporating

bulk fields outlined above can be consistently extended to an interacting level with local

interactions in the bulk, of course, remains an interesting question.





Chapter 4

Interlude

The chapter 2 and chapter 3 in this thesis were a study of AdS/CFT correspondence. The

chapter 2 was a study of renormalization group flows of a particular kind of operators in a

general conformal field theory through its gravity dual. It was shown that the integration

of near boundary degrees of freedom in the AdS space correspond to a particular choice

of Polchinski-Wilsonian RG scheme in which the short-distance degrees of freedom in the

dual field theory are integrated over. This observation was used to improve the AdS/CFT

dictionary to propose bulk duals to regulated conformal field theories. These results are

important not only because they make certain aspects of the duality more robust, but also

because they can be used to predict the behavior of certain class of irrelevant operators in

a field theory: something that is in general extremely difficult to achieve.

While AdS/CFT conjecture has been verified quite robustly over the past two decades, it

has still not been able to answer some very important questions in physics. One of them

is the problem of apparent non-unitarity in gravitating systems. Creation of blackholes is

an ‘apparently’ non-unitary phenomenon within semi-classical analysis. This is because the

final blackhole, or the Hawking radiation that fills the universe after the blackhole evapora-

tion doesn’t seem to contain the information of the constituents that created the black-hole.

This is in contrast with quantum mechanics and this problem is even more apparent within

AdS/CFT correspondence, where a gravity theory allowing blackhole solutions is dual to a

good old unitary quantum field theory; an apparent non-unitary theory can’t be dual to a

unitary theory. This puzzle stays unresolved even now. In general, it is quite difficult to

resolve this issue in the context of the duaity between (super-)gravity on AdS5 × S5 back-

ground and N=4 SYM theory. The need of the hour is to understand a resolution in simpler

systems. SYK model provides one such model where we can hope to be able to resolve such

issues. Chapter 3 forms the discussion of AdS/CFT correspondence in this light.
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While AdS/CFT correspondence tells us a lot about both the gravitational theories and the

strongly coupled quantum field theories, it doesn’t tell us: (1) about the gravity in flat space,

precisely because there is no known example of Flat-space holography; (2) some interesting

details specific to some particular strongly coupled field theories.

In the subsequent chapters, we attempt to answer such questions using the tools of S-

matrices. S-matrices, as we have discussed above, are powerful observables in a theory

that contain the information about the interactions of the theory, its symmetries, its states,

among other things. It is often possible to restrict the space of theories by imposing the

symmetries of the theory directly on the S-matrices. This procedure is referred to as Boot-

strap. In chapter 5 we use such ideas to restrict S-matrices in a certain class of theories that

have been motivated by known String theories; with an aim to generalize these techniques

to theories that necessarily have a massless spin-2 gauge boson (a graviton).

Chapter 6 is a study of S-matrices in strongly interacting N=2 Chern-Simons theories with

fundamental matter. While in a general quantum field theory, computation of the S-matrices

is, in general, an arduous task; in these class of theories we observe that the computation

of an arbitrary tree-level n-point function is facilitated by some recursion relations: BCFW

relations. We compute the arbitrary n-point function in the above mentioned theory and

make some comments about possible implications on non-supersymmetric theories. We also

comment on possibilities of some additional symmetries in these theories that were not

known to this point.



Chapter 5

S-Matrix Bootstrap for Amplitudes

with Linear Spectrum

5.1 Introduction

String theory arose from an attempt to write down scattering amplitudes for strong in-

teractions from consistency conditions rather than from a Lagrangian, also known as the

S-Matrix bootstrap program. This program, however, was eventually abandoned in favour

of SU(3) Yang-Mills theory. The amplitudes written by Veneziano [33] and generalised by

Virasoro [34, 35], while they didn’t prove very useful for understanding strong interactions,

eventually gave rise to string theory, which then shed its roots in this program to become a

field in its own right.

This program has, in some sense, seen a revival in recent years, both indirectly through

applications in conformal bootstrap [37, 38, 109] and more directly through a striking result

about the three-point functions between two gravitons and higher-spin fields: [36] proved

that the three-point functions must either match Einstein gravity, or there must exist an

infinite tower of higher-spin fields in the theory.

This last result raises a very interesting question. This question is predicated on the fact

that there are only a few classical, tree-level, amplitudes known that have an infinite tower of

higher spins: as many as there are different string theories. While, quantum-mechanically,

string theory is plagued by a large number of possible compactifications – the so-called

“landscape” problem –, each string theory gives a unique tree-level amplitude, for the sim-

ple reason that without the moduli space integrations required at loop level the different

dimensions of space-time correspond to decoupled CFTs on the worldsheet. The question

is this: given that there are so few examples known of tree-level graviton amplitudes, could
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it be that these are the only examples? In other words, could it be that the string theories

are the only consistent extensions of classical gravity?

The obvious question is: consistent with what? A minimal list of conditions would include:

Lorentz-invariance, causality, unitarity and crossing symmetry. So, we could ask the ques-

tion of what the most general four-point graviton scattering amplitude consistent with this

minimal set of consistency conditions is.

This chapter heads towards this problem via a simpler, more restricted problem. We con-

sider the scattering of four identical scalars (instead of gravitons), and further assume a

linear spectrum of exchanged particles and Regge behaviour at large energies; and arrive

at the conclusion that crossing symmetry restricts the Regge asymptotic behaviour to be

A(s, t)
s→∞−−−→ (−s)2t but still allows for an infinite-dimensional parameter space of ampli-

tudes, and argue numerically that unitarity doesn’t significantly reduce the dimensionality

of this allowed space.

This problem has been addressed recently, using very different methods, in [110–113]. The

results of [110, 111] are more or less assumed in our work, in the assumption of linear

spectrum. Those of [112] are not relevant for this work, since the case of linear spectrum

is a very degenerate one and that work goes beyond this case. Finally, the authors of

[113] are able to show that string theory amplitudes can be derived from monodromy and

BCFW recursion relations. It would be interesting to use the recursion relations that they

have developed for the string theory amplitudes to constraint the higher-point scattering

amplitudes using our techniques.

More precisely, for tree-level four-point amplitudes of four identical scalars, we impose the

conditions that its behaviour at large s is1

A(s, t)
s→∞−−−→ (−s)−k(−t), (5.1)

and, that the mass-squared of exchanged particles are evenly spaced,

m2
n =

n− α0

α′
, (5.2)

along with some other conditions listed in section 5.2. The restrictions imposed first by

crossing symmetry and then by unitarity are investigated.

It should be mentioned here that, throughout this chapter, we don’t work with the standard

Mandelstam variables s, t, u, but with their shifted and rescaled versions a, b, c (see (5.7))

such that the poles from the intermediate particles going on-shell are at a = 0,−1,−2, · · ·
for the s-channel, b = 0,−1,−2 · · · for the t-channel and c = 0,−1,−2 · · · for the u-channel.

1This equation is missing some factors. See (5.10) for a more precise statement.
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For clarity, however, the remainder of this introduction is written in terms of the standard

Mandelstam variables while being cavalier about factors.

With the asymptotic Regge behaviour, (5.1), it is known that crossing symmetry must be

implemented not by an independent sum of s-channel, t-channel and u-channel diagrams

but by “channel duality”: the t-channel poles have to be hidden in an infinite sum over s-

channel poles, as illustrated schematically in figure 5.1. This is because a t-channel diagram

with an exchange of a spin l particle behaves as sl at large s, which necessarily overpowers

the exponential falloff that is the Regge behaviour. Therefore, it must not be possible to

write the entire amplitude in the region s > 0 without summing over t-channel diagrams.

See [110, 111] for further discussion.

∑
m,s m, sλm,s λm,s =

∑
m′,s′

m′, s′

λm′,s′

λm′,s′

Figure 5.1: Crossing symmetry in theories with Regge asymptotic behvaiour is imposed
by “channel duality,” the requirement that the sum over s-channel poles be equal to the

sum over t-channel poles.

In section 5.3, the condition of channel duality are reduced to a countably infinite set of

equations (5.27) in terms of the values at a discrete set of points of the coefficients (5.19)

of the Laurent expansion of the amplitude about s = ∞ (they are still functions of t). We

also obtain a physical interpretation of the function k(−t) that appears in the exponent in

the Regge behaviour, (5.1): −k(−n) is the maximum spin exchanged at level n (where the

lightest exchanged particle corresponds to n = 0).

Furthermore, the condition that the function k is linear in its argument is imposed in section

5.4. Although, it’s taken as an external condition to facilitate the solutions of the equations,

one can see that a more general function is unlikely to have a consistent set of solutions.

First, using various complex analysis techniques (mostly Carlson’s theorem), we’re able to

show that the function k can’t be just any linear function but has to be k(−t) = 2(−t) + l,

which is exactly the sort of behaviour shown by the amplitudes in string theory! This is one
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of the main results presented in this chapter.2 The final conclusion of section 5.4, the channel

duality equations (5.39), (5.40) and (5.41) are among the other major results discussed in

this chapter; they are necessary and sufficient conditions for an amplitude that satisfies our

assumptions to be channel-dual. In the discussion subsection, we try to relate each of these

equations to some physical meaning.

Section 5.5 discusses the solutions to these equations. While these equations are rather hard

to solve, it is shown that starting with a channel-dual amplitude Aa,b,c one can construct

an infinite-dimensional parameter space of amplitudes
∑∞

m=0 amA(a+m, b+m, c+m) that

are all channel dual with the same poles. That these class of 4-point amplitudes satisfy all

the assumptions of dual amplitudes is known from the works of [114–117].

Finally, the section 5.6 is a discussion of unitarity of these amplitudes. It is shown that for

the Virasoro-Shapiro amplitude and the dilaton amplitude in closed bosonic string theory,

many perturbations of these base amplitudes seem to be consistent with unitarity. This

section consists only of numerical arguments.

Appendix L summarises some useful facts about the kinematics of the amplitudes we consider

here. Appendix M shows explicitly how our analytic continuation and other techniques

and results apply to the Euler beta function, which is the building block of the Veneziano

amplitude.

Mathematica files containing parts of relevant computations of are available as ancillary files

at arXiv:1707.08135.

5.2 Postulates

We begin by laying out the properties that we require the amplitude to satisfy. The phys-

ical situation under consideration is the 2-2 tree-level scattering of four identical scalars of

mass Mext in a D-dimensional Minkowski spacetime. The incoming particles are labelled 1

through 4, with ki labelling their respective momenta. All four momenta are taken to be

ingoing and the momentum conservation with this convention reads, k1 + k2 + k3 + k4 = 0.

We take the metric to have mostly positive signature, {−1, 1, 1, . . . , 1}. The Mandelstam

variables are

s = −(k1 + k2)2

t = −(k1 + k3)2

u = −(k1 + k4)2. (5.3)

2This result was indicated by, though not quite proved, by previous work [114].

https://arxiv.org/abs/1707.08135
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Having set the stage, let us list the assumptions. For a more detailed review, see [9].

1. Lorentz-Invariance: The amplitude A is only a function of the Mandelstam variables

s, t, u, and momentum is conserved at every vertex.

2. Causality, or analyticity: In the two-dimensional complex s, t plane the singularities

occur only when one or more intermediate particles go on-shell. This allows both tree-

level and loop diagrams (in which case the singularities are branch cuts). In particular,

the singularities in the amplitude appear only for real values of s, t or u = 4M2
ext−s−t.

3. Restriction to Tree-Level Amplitudes: The amplitude is a sum of only tree-

level diagrams. Combined with the previous assumption, this means that the only

singularities of the amplitude are poles, at values of s, t, u equal to the mass-squared

of a particle in the spectrum of the theory.

4. Unitarity, or Cutting Rules: Unitarity of scattering amplitudes is generally ensured

by cutting rules. Suppose there are particles of spin 0 through L at some mass m.

Then, the residue of the amplitude at the pole s = m2 must be

Ress=m2A(s, t) =
L∑

l=0

λ2
m,lC

(D−3
2 )

l

(
1 +

2t

s−M2
ext

)
, λ2

m,l ≥ 0. (5.4)

Here, each λ2
m,l =

∑
i λ

2
m,l,i is the sum of squares of cubic couplings λm,l,i of two

external scalars and all the particles of mass m and spin l (which we have labelled

by i), and the functions C
(α)
l are Gegenbauer polynomials (which reduce to Legendre

polynomials for D = 4); the argument of the Gegenbauers is cos θ, where θ is the

scattering angle in the centre-of-momentum frame, see appendix L for details.

It should be noted that this requirement is only a necessary and not a sufficient

condition for unitarity, because of the possibility of many particles with the same

mass and spin. In the case when there are multiple such particles, it doesn’t restrict

all the λ2
m,l,is to be positive but only their sum,

∑
i λ

2
m,l,i.

5. Crossing Symmetry: The amplitude should be invariant under exchange of any pair

of external particles, since all four particles are identical. In terms of the Mandelstam

variables, this means that the amplitude should, as a function, satisfy the relations

A(s, t) = A(t, s) = A(s, u = −4M2
ext − s− t). (5.5)

6. Linear Spectrum: The mass-squareds of the exchanged particles are spaced linearly,

that is

m2
n =

n− α(0)

α′
,
/
n ∈ {0, 1, 2 · · · }. (5.6)
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This is the first really non-trivial assumption here, it gives us a lot of control over the

problem. The ones earlier were all properties that we must require of all tree-level

amplitudes.

To take advantage of this simple behaviour, we define proxy variables a, b, c for s, t, u

as, 3

a = −α′s− α(0), (5.7)

and similarly for b and c, so that the poles in the amplitude are at a = −n,

s = m2
n ⇔ a = −n (5.8)

and similarly for t, u and b, c. Also note that this α′ isn’t the constant that appears

in the string action, but just the inverse of the level spacing; in particular for closed

bosonic string theory our α′ is related to that one as α′us = 1
4α
′
closed bosonic.

Because s + t + u = 4M2
ext is a constant, so is a + b + c. We call this constant P for

the remainder of this note,

a+ b+ c ≡ P = −4α′M2
ext − 3α(0). (5.9)

For later convenience, we note that in these variables, the physical s-channel scattering

region is given by a < 0,−α(0) < b < −a− α(0).

7. Regge Asymptotic Behaviour, or “Analyticity of the Second Kind”: At large

s (or t or u), the amplitude behaves as

A(a, b, c)
a→−∞−−−−→ a−k(b) ∼ (−s)−k(−t). (5.10)

where k(b) > 0 in the physical s-channel region, b > 0.

This appears to be non-analytic at a = −∞ because k(b) need not be an integer.

However, this is not a true non-analyticity of the amplitude, but the result of the

fact that we are restricting ourselves to physical scattering wedge in writing the above

asymptotic behaviour.

In particular, we will heavily use the fact that the amplitude admits a Laurent ex-

pansion around infinity once we factor out this apparent non-analyticity. Before we

go ahead to discuss the implications of this assumption, we wish to mention that

“analyticity of the second kind” often refers to a class of assumptions on the asymp-

totic behaviour of the amplitudes. These assumptions are used as additional postulates

3These were called −α(s),−α(t),−α(u) in the old bootstrap literature, but we use this notation to avoid
clutter, and also because these are the natural variables that turn up in the Virasoro-Shapiro amplitude, as
named in [118].
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that differentiate the amplitudes of weakly interacting theories like QED and the weak

force from those of strongly interacting theories, [9]. Moreover, these assumptions are

independent of the bounds that are implied on the asymptotic behaviour of any gen-

eral amplitude that obeys all the previous assumptions, like the Froissart and Martic

bounds.

The above assumption, (5.10), is inconsistent with the amplitude being a sum of

separate diagrams in the s, t and u channels, because a t-channel diagram of spin l

behaves as sl at large s, and the fact that l ≥ 0 means that this will overpower the

Regge falloff; see [110, 111] for more details. So, the assumption of Regge behaviour

means that crossing symmetry is implemented by channel duality; the sum over all

s-channel diagrams has all the t-channel poles hidden in it. The main thrust of this

work is to understand how they’re hidden in it.

Before going ahead, we note that these assumptions are all true for the Virasoro-Shapiro am-

plitude. The Virasoro-Shapiro amplitude, which is the scattering amplitude of four tachyons

in bosonic string theory, is
Γ(a)Γ(b)Γ(c)

Γ(a+ b)Γ(b+ c)Γ(c+ a)
, (5.11)

with

a = −α
′

4
s− 1, (5.12)

where α′ is not the Regge slope from (5.7) but is related to the inverse of string tension.

In this case, the external mass-squared is M2
ext = − 4

α′ and a + b + c = 1. The asymptotic

behaviour is

A(a, b, c)
a→∞−−−→ a−2b, (5.13)

as can be easily shown using Stirling’s approximation.

5.3 Channel Duality Equations

Having set up the problem, we now try to understand the constraints imposed by channel

duality. In this section, we show that the constraints can be reduced to a countably infinite

set of equations that have to be simultaneously satisfied. The strategy will be to take the

pole-sum form in the a and c channels,

A(a, b) =
∞∑

n=0

fn(b)

a+ n
+
fn(b)

c+ n
, Re b > 0, (5.14)
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and recreate the poles in the b-channel by a suitable analytic continuation. Since there are

no explicit poles in b,4 it must be the case that these poles come from the infinite sum. To

see that this is the case, we can ask how the above function can diverge for a particular value

of b; the answer is clearly that the infinite sum may diverge for particular values of b. In

particular, that means that this sum must converge for all positive values of b, where there

are no poles (the c-channel poles are being ignored here because they are already explicit

in the above expression). Appendix M demonstrates the ideas discussed in this and the

next section by implementing them on Euler beta functions, which are the building blocks

of Veneziano amplitudes.

Our first step is to realise that the assumptions about analyticity allow us to say something

about the residues in the pole-sum form (5.14). First of all, by the fact that the sum

converges for a 6= −n (since otherwise it would be a non-analyticity away from the physical

poles, which is not allowed), it can be deduced that for large enough n for fixed b, fn(b) ≤
n−K , where K > 0; a good way to see this is to take a = 5.5 and demand convergence of

the sum from n = 6 to ∞. By the Euler-Maclaurin formula,

∞∑

n=0

fn(b)

a+ n
.
b|a|c∑

n=0

fn(b)

a+ n
+
∑

d|a|e

(
n−K−1 + subleading

)

.
b|a|c∑

n=0

fn(b)

a+ n
+ |a|−K + subleading. (5.15)

This tells us that K = k(b) is an allowed bound, since otherwise the |a|−K term would

swamp out the Regge behaviour. By taking a = −n+ ε, we find that the amplitude is

A(−n+ ε, b) ∼ 1

ε
f−n+ε(b) ≤

1

ε
n−k(b). (5.16)

The 1
ε part is just the oscillatory envelope one expects to find close to the negative real line

in the a complex plane, and so we see that

fn(b) = g0(b)n−k(b) + subleading at large n. (5.17)

Now, consider the auxiliary function

f̃n(b) = nk(b)fn(b). (5.18)

This function can be analytically continued to the complex n-plane. Because it doesn’t

diverge exponentially at large n and is defined on all the positive integers, there is a unique

analytic continuation that doesn’t diverge exponentially (roughly speaking) by Calrson’s

4Technically, the 1/(P − a− b+ n) part has singularities in the b complex plane, but we’re only looking
for b-channel poles, whose positions are independent of a
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theorem, described in further detail in section 5.4, specifically in the paragraphs following

(5.36). In particular, we expect it to have a Laurent expansion about n = ∞, since it is

analytic there. Thus, the residue can be written as

fn(b) =
∞∑

j=0

gj(b)n
−k(b)−j . (5.19)

We assume that this expansion converges for n > 1; we expect that the details will not

be substanitally different if we take a smaller radius of convergence, as long as it is finite.

Also note that we chose to do the expansion in n instead of −n ∼ a; this is a matter of

convenience and will have implications later.

We proceed by subsituting the 1/n expansion of the residue (5.19) into the pole-sum form

of the amplitude (5.14),

A(a, b)=

∞∑

n=2



∞∑

j=0

gj(b)n
−k(b)−j



(

1

a+ n
+

1

P − a− b+ n

)

+

1∑

n=0

fn(b)

(
1

a+ n
+

1

P − a− b+ n

)
,

(5.20)

where the n ≤ 1 terms have been split off because they’re clearly outside the radius of

convergence of the 1/n expansion. However, since the part in the second line above is

clearly regular in b – it’s just a polynomial, we may safely ignore it; to put this another

way, the divergence must come from the tail end of the sum so dropping a finite sum in the

beginning should not be a problem.

For all n > |a|, we can also expand

1

a+ n
=

∞∑

r=0

(−a)r

nr+1
, (5.21)

and similarly for the 1/(c+ n) term.
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Plugging this into the amplitude (5.20) gives5

A(a, b) =
∞∑

n=[a]







∞∑

j=0

gj(b)n
−k(b)−j



∞∑

r=0

(−a)r

nr+1





+

∞∑

n=[P−a−b]







∞∑

j=0

gj(b)n
−k(b)−j



∞∑

r=0

(a+ b− P )r

nr+1



+ reg.

=

∞∑

n=1



∞∑

j=0

gj(b)n
−k(b)−j



( ∞∑

r=0

(−a)r + (a+ b− P )r

nr+1

)
+ reg. (5.22)

where we have again ignored all finite sums in n, which are denoted by reg. The sum in the

last expression can be rearranged as follows:

A(a, b) =

∞∑

j,r=0

gj(b) {(−a)r + (a+ b− P )r}
∞∑

n=1

n−k(b)−j−r−1 + reg. (5.23)

So far, all the manipulations are valid only for Re b > 0. To find the poles in b, which reside

at b = −n, we need to analytically continue the expression (5.23) to the left half plane of b.

The innermost sum in (5.23) diverges for all b whenever k(b) ≤ 0; this is an artefact of the

fact that the expression isn’t valid in that region. To analytically continue, the sum over

n is replaced by Riemann zeta functions – that is, only the logarithmic divergences in the

sum over n are kept,6

A(a, b) =
∞∑

j,r=0

gj(b) {(−a)r + (a+ b− P )r} ζ(k(b) + j + r + 1) + reg.

=
∞∑

N=0

N∑

J=0

gJ(b)
{

(−a)N−J + (a+ b− P )N−J
}
ζ(k(b) +N + 1) + reg. (5.24)

This expression now makes sense for Re b < 0 as well. While this analytic continuation can

be justified merely on the grounds of being an analytic continuation and therefore unique,

we also show in appendix M in more detail how it works.

The Riemann zeta function ζ(z) has a pole at z = 1 with residue 1. Thus, the expression

(5.24) has poles at k(b) = −N with residues

Resb=k−1(−N)A(a, b) =

∑N
J=0 gJ(k−1(−N))

{
(−a)N−J + (a+ k−1(−N)− P )N−J

}

k′(k−1(−N))
(5.25)

5Here [a] denotes smallest integer greater than a.
6This is the well-known Zeta function regularization.
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Consistency with crossing symmetry therefore gives us a condition on the function k(b),

k(−n) = −N, so that there are poles at b = −n, (5.26)

and two countably infinite sets of conditions on the functions gJ ,

k−1(−N) /∈ {0,−1, · · · }⇒
∑N

J=0 gJ(k−1(−N))
{

(−a)N−J + (a+ k−1(−N)− P )N−J
}

k′(k−1(−N))

= 0

k−1(−N) = −n⇒ 1

k′(−n)

N∑

J=0

gJ(−n)
{

(−a)N−J + (a− n− P )N−J
}

= fn(a).

(5.27)

The first equation ensures that the spurious poles occuring at non-integer values of b vanish,

and the second ensures that the real poles have the correct residues, those required by

channel duality. Eqns (5.26) and (5.27) are the general conditions for duality.

5.3.1 Discussion

Before going ahead, we note that the linearity of the spectrum has not been substantially

used anywhere yet. In the case of a nonlinear spectrum, we can take a to be a non-linear

function of s such that the poles are at a = −n and similarly for b and c. The major

difference in this case is that there’s no expression of the form c = P − a− b; however, it is

still true that c can be determined given a and b, since a must still be an invertible function

of s. Then, eqns (5.26) and (5.27) will be valid with the modification that a+ k−1(N)− P
must be replaced by c|b=k−1(−N).

Another point worth noting is that the function k(b) has a physical meaning – the residue

fn(b) is a polynomial of degree −k(−n), which means that −k(−n) is the spin of the max-

imum spin particle exchanged at level n. This might seem odd at first, since the function

was defined in terms of not the physical variables s, t, u but the made-up variables a, b, c.

The point is that the normalisation for a – that the poles are at a = −n – is important.

If we redefined a, then the degree of the nth polynomial wouldn’t match the function in

the exponent of the asymptotic behaviour. They will still be related by a simple algebraic

relation.

Having noted that, it should also be noted that these general conditions aren’t very easy

to solve. Hence, in the following discussion the asymptotic function k(b) will be restricted

to be linear. Although this might look like an ad-hoc simplification, it will be noted after

solving the case of linear k(b) that it is unlikely to find solutions for the case of non-linear
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functions. This is because the (5.27) will provide more constraints than variables (both in

the sense of counting infinities).

5.4 The Case of a Linear Asymptotic Function

The necessary conditions that a channel-dual amplitude needs to satisfy, equations (5.26)

and (5.27), that were computed in the previous section, aren’t very easy to solve. To facilitate

control over the equations, the following discussion is restricted to the case of linear k(b),

k(b) = kb. (5.28)

With this restriction, we show that the only consistent value of k is 2. The main reason

k = 2 is special is that the duality equations simplify greatly at this value; we end this

section with the simplest form of these equations. The details for the case k(b) = kb− l are

not substantially different, so we drop it to aid clarity.

When k(b) is a linear function, the condition (5.26) is automatically satisfied, and the

countably infinite set of constraints (5.27) on the gJs become

N 6= kn⇒
N∑

J=0

gJ

(
−N
k

){
(−a)N−J +

(
a− N

k
− P

)N−J}
= 0

N = kn⇒ 1

k

kn∑

J=0

gJ(−n)
{

(−a)kn−J + (a− n− P )kn−J
}

= fn(a). (5.29)

We expand the residue fn(a) in powers of −a as

fn(a) =

kn∑

J=0

hJ(−n)(−a)kn−J . (5.30)

The choice of −a instead of a in this equation is parallel to the choice of expanding in n

instead of −n in (5.19). Using this and the binomial expansion of
(
a− N

k − P
)N−J

, we find

hJ

(
−N
k

)
=

1

k



gJ

(
−N
k

)
+ (−1)N−J

J∑

j=0

(−1)j
(
N − J + j

j

)(
N

k
+ P

)j
gJ−j

(
−N
k

)


=
1

k



[1 + (−1)N−J ]gJ

(
−N
k

)
+ (−1)N−J

J∑

j=1

(−1)j
(
N − J + j

j

)(
N

k
+ P

)j
gJ−j

(
−N
k

)
 ,

(5.31)
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with the definition

hJ(non-integer) = 0. (5.32)

The first line in (5.31) is written in a form such that the a-channel and c-channel contibutions

are separate from each other, while the second line collects the gjs together.

The notation that is used for the hJs is (almost falsely) suggestive – we’ve covertly treated

them as functions of the level n. The reason for this is that in the equations (5.31) the right

hand side are in fact functions, and therefore we can promote h to a function of the level

by requiring equality with the right hand side. This has to be consistent with the analytic

continuation that allowed us to expand the residues fn(b) in a 1/n expansion. But, notice

that the right hand side has the factor (−1)N , which has an essential singularity at ∞; this

contradicts our assumption about analyticity at ∞, as used in (5.19).

For odd values of k, this poses an insurmountable problem. Consider k = 1 for example, so

that the left hand side of (5.31) is non-zero for all values of N . Then, the residue at level n

is

fn(a) =
n∑

J=0

gJ(−n)(−a)n−J + (−1)n
n∑

J=0

J∑

j=0

(−1)j+J
(
n− J + j

j

)
(n+P )jgJ−j(−n)(−a)n−J

(5.33)

Because of the (−1)n, this can’t be analytic at ∞, assuming the gjs are analytic at ∞.

However, we know that the gjs are, in fact, analytic at ∞, which can be seen by taking the

limit b → ∞ of their definition (5.19), where it must exhibit Regge behaviour.7 Thus, the

channel duality equations for k = 1 are inconsistent with our assumptions about analyticity

at ∞. It is easy enough to see that this extends to all odd values of k, and therefore that

our assumptions aren’t compatible with k being odd.

What saves the case of even k is that the physical poles are all at even values of N in (5.31);

that means we can promote the hJs to two sets of functions, heJ obtained from analytically

continuing off even N and hoJ obtained from analytically continuing off odd N ; note here

that the hoJs are identically 0, because only then can the residue vanish for these spurious

poles.

So we consider the equations for odd N and even N separately. For odd N , the equations

are

{
1− (−1)J

}
gJ

(
−N
k

)
=

J∑

j=1

(−1)J+j

(
N − J + j

j

)(
N

k
+ P

)j
gJ−j

(
−N
k

)
, N odd.

(5.34)

7One may object that (5.33) is a polynomial not in a but in −a; pulling out those signs merely shifts the
problematic (−1)n to the other term and the non-analyticity remains. It is also useful to remember to note
that, while Γ(z) has an essential singularity at ∞, the binomial coefficients diverge only polynomially.
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It is useful to again split these into two sets of equations, those in which J is odd and those

in which J is even. For even J , the left hand side is 0 and we find

0 =
J∑

j=1

(−1)j
(
N − J + j

j

)(
N

k
+ P

)j
gJ−j

(
−N
k

)
, N odd, J even. (5.35)

And for odd J we find

gJ

(
−N
k

)
= −1

2

J∑

j=1

(−1)j
(
N − J + j

j

)(
N

k
+ P

)j
gJ−j

(
−N
k

)
, N odd, J odd.

(5.36)

As can be seen, these are all constraints that relate various gJs evaluated at the same point,

for a countably infinite set of points. Moreover, (5.36) can be used recursively to evaluate

gJs.

As it happens, this is enough to argue that equations (5.35) and (5.36) are valid everywhere

– that is, that they are functional relations among the gJs. This is possible because of a

theorem in complex analysis called Carlson’s theorem:

Carlson’s theorem If f(z) is an entire function8 that satisfies following prop-

erties:

• |f(z)| ≤ Ceτ |z|, ∀ z ∈ C, for some C, τ ∈ R,

• ∃ µ < π, such that |f(iy)| ≤ Ceµ|y|, ∀ y ∈ R,

• f(n) = 0, ∀ n ∈ Z+ ∪ )0

then, f is identically 0.

Given that the gJs satisfy the conditions of this theorem, we can see that equations (5.35)

and (5.36) must be valid everywhere very easily. Take, for example, eqn (5.36) and separately

analytically both the left and the right hand sides. The analytic continuation of the left

hand side is clearrly gJ . The analytic continuation of the right hand side is also unique,

since it behave roughly as
∑
N2jgJ−j and if the gJs satisfy the conditions so do these. Thus,

eqn (5.36) is a functional relation. One can similarly argue for eqn (5.35).

What remains is to show that the gJs in fact satisfy the conditions of Carlson’s theorem.

Since we are analytically continuing off the negative integers, we need to bound the growth

of gJ(b) in the left-half plane. Suppose it grows exponentially on the left half plane, gJ(b) ∼
8An entire function is a complex-valued function that is holomorphic at all finite points over the whole

complex plane.
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e−νb. Then, because of the duality equations (5.31) and the definition (5.30) of the hJs,

fn(a) ∼ eνn
∑

J

(−a)kn−J . (5.37)

This blow-up at large n contradicts Regge behaviour. This means that the gJs can’t grow

exponentially in the left-half plane, and by continuity can’t grow expnonentially on the

(upper or lower) imaginary axis either. It is worth noting that this doesn’t constrain the

behaviour on the right-half plane; in particular, for the Virasoro-Shapiro amplitude, it

behaves like bb, which is super-exponential on the right-half plane and goes to 0 on the

left-half plane while being oscillatory on the imaginary axis. Thus, we have proved that the

relations (5.36) and (5.35) are functional relations valid for all values of N (but, remember,

not J).

Having dealt with the odd N equations, we can now deal with those for even N . The major

difference is that the heJs that appear in these equations are not 0. The equations are

hJ

(
−N
k

)
=

1

k




[
1+(−1)J

]
gJ

(
−N
k

)
+ (−1)J

J∑

j=1

(−1)j
(
N − J + j

j

)(
N

k
+ P

)j
gJ−j

(
−N
k

)


=
2

k
gJ

(
−N
k

)
, (5.38)

where we have used the functional relations (5.35) and (5.36) – for odd J the first term in

the first line vanished and the second term becomes the final answer, and for even J the

second term vanishes.

These are nearly the final forms of the duality equations. To see where the final simplification

comes from, consider the case k = 4. In this case, N = 4n+ 2 are all spurious poles; thus,

hJ(−n−1/2) = 0 and therefore gJ(−n−1/2) = 0. Since the gJs are 0 at an infinite number

of evenly spaced points and gJ can’t grow exponentially, the only solution is gJ(b) = 0. This

argument clearly generalises to all values of k except 2, since for all k > 2 we can find an

infinite set of evenly spaced points where N is even and N/k isn’t an integer.
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Thus, the final forms of the duality equations are

Definitions: fn(b) =
∞∑

j=0

gj(b)n
−2b−j =

2n∑

J=0

hJ(−n)(−b)2n−J , (5.39)

Residue-Matching Eqns: gj(−n) = hj(−n), j ≤ 2n, (5.40)

Spurious-Pole Eqns: gJ(b) = −1

2

J∑

j=1

(−1)j
Γ(−2b− J + j + 1)

Γ(j + 1)Γ(−2b− J + 1)
(P − b)jgJ−j(b), J odd,

0 =
J∑

j=1

(−1)j
Γ(−2b− J + j + 1)

Γ(j + 1)Γ(−2b− J + 1)
(P − b)jgJ−j(b), J even.

(5.41)

The reason for naming the equations such is that, when k = 2, all the equations from even

N involve matching the residues of poles that in fact exist in the amplitude and all those

from odd N are those that involve demanding that the residues of the spurious poles vanish.

These equations are among the main results of this chapter.

5.4.1 Discussion

The first order of business for this duiscussion section is to dispel an obvious objection,

which is that the Veneziano amplitude

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

a→∞−−−→ a−b, (5.42)

which flatly contradicts our assertion that the asymptotic behaviour has to be a−2b. The

answer, of course, is that this is not actually the Veneziano amplitude; the full Veneziano

amplitude is the sum of three terms

AV en(a, b) = B(a, b) +B(a, c) +B(b, c),
a→∞−−−→ a−2b, (5.43)

In fact, the full Veneziano amplitude can be written in the functional form of the Virasoro-

Shapiro amplitude, see [34] for details.

Turning to other things, one might wonder if these duality equations (5.39), (5.40), (5.41)

mean anything physically. While it is hard to give an overarching narrative to these equa-

tions, various aspects of them reflect various physical facts.

Most obviously, the value of k is related to the particle with highest spin at every level, as

seen in (5.29) for example – the highest spin particle propagating at level n has spin kn.

This throws some light on why k = 2 is special. If k is odd, then levels at odd values of n
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have a highest spin particle with odd spin, but odd spins can’t propagate in the scattering

of identical scalar bosons; thus, k being odd would require an infinite number of intricate

cancellations, and our analyticity arguments are essentially that they can’t actually happen.

It’s not as clear why k = 2 is preferred over a generic even k.

First, note that the RMEs (5.40) can be obtained from the definitions of the hJs and gJs

(5.39) by a very simple prescription: interchanging b and −n interchanges the roles of the

hjs and gjs in (5.39) (up to problems with the summation limits). It seems that a very

simple prescription ensures channel duality.

The SPEs are equations that express the coefficients of odd powers of b in terms of the

coefficients of the even powers of b, as can clearly be seen by their explicit solutions9

g2j+1(−n) =

j∑

p=0

(−1)p(n+ P )2p+1 2n+ 1− 2j + 2p

2n− 2j
Z(p+ 1)g2j−2p(−n), (5.44)

where

Z(x) =
4

π2x

∞∑

k=−∞
(4k + 1)−2x =

4

(4π)2x

{
ζ

(
2x,

1

4

)
+ (−1)2xζ

(
2x,

3

4

)}
. (5.45)

This fact suggests that the content of the SPEs is that there are no odd spin particles

propagating in the amplitude. And this is in fact the case; an arbitrary sum of even-spin

Gegenbauer polynomials satsifies these equations, assuming the RMEs.

Thus, the value of k encodes the spin spectrum of the exchanged paricles, the RMEs encode

the actual non-trivial s-t crossing symmetry, and the SPEs (given the RMEs) encode the

much simpler t-u crossing symmetry (which is equivalent to there not being any odd-spin

particles).

5.5 Solving the Bootstrap Equations

These equations can be solved for the scattering of four identical scalars. In this section,

we show that in this case there is an infinite-dimensional parameter space of solutions.

In particular, it is shown using the bootstrap equations that given a proposed amplitude

A0(a, b, c) that is symmetric in its arguments and has the correct poles and asymptotics,

any amplitude of the form

A(a, b, c) =

∞∑

m=0

amAm(a, b, c) ≡
∞∑

m=0

amA0(a+m, b+m, c+m) (5.46)

9This is shown numerically in the Mathematica notebook available as ancillary file at arXiv:1707.08135.

https://arxiv.org/abs/1707.08135
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also satisfies these same conditions [114–117].

One can start with comparing the poles of the new amplitude with the required poles.

The term Am has poles at a = −m,−m − 1,−m − 2, · · · and similarly for b and c, all of

which are the poles of A0, and therefore the entire sum has the same set of poles as the

first term. Similarly, the mth term has asymptotic behaviour n−2b−2m, which is dominated

by the asymptotic behaviour of A0. Finally, it is manifestly crossing symmetric. Thus, we

expect these class amplitudes to satisfy the crossing equations, (5.39)-(5.41). This is verified

in the subsequent discussion of this section.

To usefully solve the bootstrap equations, we need to parametrise the residues in some

fashion, so that we work with the minimum amount of independent data. The natural way

to parametrise residues in a scattering amplitude is as sums of Gegenbauer polynomials

with different spins. For our purpose, however, this is an inconvenient basis, because it is

very hard to find the combination of Gegenbauers that has Regge asymptotic behaviour;

even in the case of the simplest example of the Virasoro-Shapiro amplitude, the general

decomposition of the residues into Gegenbauers is not known, and thus even in that case

we can’t ascertain exactly how the sum of Gegenbauers attains this behaviour. Much more

convenient would be a basis which has the correct asymptotic behaviour. Luckily, there is

one right at hand, given by the Ams in (5.46). Using this decomposition, we’ll see that there

are no constraints on the coefficients am coming from crossing symmetry.

We write the residue as

fn(b) =

n∑

m=0

amFn,m(b),
/
Fn.m(b) = Fn−m,0(b+m), (5.47)

where Fn,m(b) is the residue of Am at a = −n. The expansion of Fn,m(b) about n =∞ is

Fn,m(b) =

∞∑

j=0

Gmj (b)n−2b−j /
Gmj<2m(b) = 0. (5.48)

The condition on the Gmj s comes from the fact that Am ∼ n−2b−2m.
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Because the Ams satisfy the bootstrap equations themselves, we can apply the RMEs (5.40)

to rerwrite the full residue as

fn(b) =
n∑

m=0

amFn,m(b)

=
n∑

m=0

am

2n∑

j=0

Gmj (−n)(−b)2n−j

=

2n∑

j=0

{
n∑

m=0

amG
m
j (−n)

}
(−b)2n−j . (5.49)

From here, we can again apply the RMEs to the full amplitude to find

gj(−n) =
n∑

m=0

amG
m
j (−n). (5.50)

Now,we can plug this form for the gj to find

n∑

m=0

amG
m
2J+1(−n) =

n∑

m=0

am



−

1

2

2J+1∑

j=1

(−1)j
(

2n− 2J + j

j

)
(P + n)jGm2J+1−j(−n)





0 =

n∑

m=0

am

2J∑

j=1

(−1)j
(

2n− 2J + j + 1

j

)
(P + n)jGm2J−j(−n). (5.51)

We see that the expression multiplying each am exactly vanishes by the fact that the Ams

satisfy crossing, and thus it has been established, using the bootstrap equations, that (5.46)

is crossing symmetric.

5.5.1 Discussion

An important question the above analysis leaves unanswered is whether the form (5.46) is

the most general allowed form of the amplitude. For tachyons, it is, but not for particles of

positive mass-squared.

One way we could have gone about solving the bootstrap equations might have been to

parametrise the residues by an arbitrary sum of even-spin polynomials (polynomials that

can be written as a sum of even-spin Gegenbauers). Given that the bootstrap equations

guarantee us that the residue at level n is a polynomial of degree 2n, and that the Gegenbauer

with spin s is a polynomial of degree s, the nth residue is a sum of n+1 even-spin Gegenbauers

(of spins 0, 2, · · · 2n); in other words, the residue at level n is given by n+ 1 real numbers.

We already used such a paramterisation, (5.47), in which the residue is given by am,m =

0, 1 · · ·n. Each polynomial used in this parametrisation, further, is guaranteed to be a
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positive sum of even-spin Gegenbauers, because of the b−c (t−u) symmetry of the different

components in (5.46). Thus, it naively seems that this is the most general parametrisation

and thus (5.46) is the most general amplitude allowed by the bootstrap equations.

There is a problem, however, because some of these polynomials are in general either 0 or

a constant. The problem stems due to the special kinematics of the three-point function

of two particle at mass m and one particle at mass 2m. By going to the rest frame of the

heavy particle, one realises that both light particles have 0 spatial momentum. Because the

incoming state has no orbital momentum, the heavy particle has to be a scalar. Another

way to see the same thing is that if the heavy particle weren’t a scalar the interaction vertex

would necessarily have some derivatives acting on the light particles, and because of the lack

of momentum these derivatives owuld be 0. Further, in the case of three massless particles,

the three-point function has to be 0 on-shell.

Because of this, in the case of massless or massive particles, when the particle of mass 2m is

necessarily in the spectrum, one of the residues of the original amplitude A0 has a residue

which isn’t a polynomial of degree 2n but a constant. And because of the structure of (5.47),

this means that every subsequent residue is short a polynomial. Thus, it is not obviously

true that (5.46) is the most general amplitude satisfying our conditions when the external

particles aren’t tachyons. We have not been able to usefully add a polynomial at each level

that corrects this problem to check whether it is the most general form, however.

5.6 Unitarity

Having shown that crossing symmetry allows for an infinite-dimensional parameter space

of amplitudes, we may still hope that unitarity constrains it more. While unitarity is hard

to analyse in general, we numerically argue in this section that unitarity still alows for an

open set in this infinite-dimensional paramter space – that is, we argue that arbitrary small

perturbations don’t violate unitarity. It is difficult to make an argument in the general

case, so the class of amplitudes that can be constructed with A0 as the Virasoro-Shapiro

amplitude is considered in 4 spacetime dimensions.

First, ampltiudes of the form A0 + amAm are considered for a particular value of m. The

coupling constant of the lth Regge trajectory (set of particles with spin 2(n− l) for all levels

n) takes the form

λ2
n,2n−2l = fl(n) + amgl(n). (5.52)

The unitarity constraint, that this be positive, provides a lower bound for am for values of

n such that gl(n) is positive; and an upper bound when gl(n) is negative. Maximising the
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lower bound and minimising the lower bound over all n in the respective regions gives the

unitarity constraint on am coming from the lth Regge trajectory.

We calculated it for m = 1, 2 · · · 6 using 8 Regge trajectories. The bounds obtained on the

various coefficients are as follows,10

−8. <a1 < 246

−1230. <a2 < 1744

−753408. <a3 < 545260

−6.19451× 108 <a4 < 5.61988× 108

−1.04535× 1012 <a5 < 1.30753× 1012

−3.5675× 1015 <a6 < 5.70538× 1015. (5.53)

Second, we consider perturbations with two subleading Virasoro-Shapriros at a time, A0 +

am1Am1 + am2Am2 . The cases where (m1,m2) takes the values (1, 2), (1, 3) and (2, 3) are

considered. Then, we consider 25× 25 points in the region allowed by eqn (5.53) and check

(again, a Regge trajectory at a time) whether each of these points is allowed by unitarity

or not. For this, we used 5 Regge trajectories. The allowed values of the parameters are

coloured in yellow in fig Figure 5.2.

5.6.1 Discussion

It can be seen from the above numerical results that the unitarity of the Virasoro-Shapiro

ampltude is stable to perturbations. The cases of three or more subleading Virasoro-Shapiros

was not subsequently considered because it seems pretty apparent from the above numbers

and graphs that unitarity doesn’t strongly constrain the amplitude.

One explanation of this observed stability of the Virasoro-Shapiro amplitude to perturba-

tions is that it doesn’t seem to have any couplings that are 0, [119], and so there’s always

a perturbation small enough that it doesn’t cause a problem. Further, even if one of the

couplings were 0, it would only put a hard constraint on perturbation in one direction. Thus,

to get a non-trivial unitarity constraint, it must be that the same perturbation moves two

couplings that are 0 in oppposite directions.

10Numerical computations of these bounds are available in the Mathematica files at arXiv:1707.08135.

https://arxiv.org/abs/1707.08135
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Figure 5.2: We checked unitarity for 25 × 25 points for amplitudes of the form A0 +
am1

Am1
+ am2

Am2
, using couplings from 5 Regge trajectories. The yellow regions are the

ones allowed by unitarity, The three cases are (a) m1 = 1,m2 = 2 (b) m1 = 1,m2 = 3 (c)
m1 = 2,m2 = 3. The ranges scanned were decided by the bounds shown in eqn (5.53).

5.7 Conclusions

In this work, the conditions imposed by Regge asymptotic behaviour, crossing symmetry and

unitarity on the scattering amplitude of four identical scalars was studied in the case when

the exchanged particles have a linear spectrum. In the general case, a countably infinite

set of bootstrap equations required for channel duality, (5.27), were found. Moreover, the

exponent in the Regge behaviour is restricted to be k(b) = 2b, and in this case the bootstrap

equations are reduced to a simpler form given in (5.39), (5.40) and (5.41). We’ve shown

that these equations allow an infinite-dimensional parameter space of solutions and that

unitarity doesn’t seem to impose strong enough constraints to reduce the dimensionality of

the parameter space.

The above results can be improved by calculating many different amplitudes featuring over-

lapping sets of cubic couplings; and to truly understand the conditions posed by unitarity,

one must grapple with this whole morass of amplitudes. Not only is it a much tougher

problem, it is also apparent that the study of unitarity of the Virasoro-Shapiro amplitude

is extremely cumbersome without resorting to the worldsheet (in fact, the worldsheet was
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discovered in the process of investigating the unitarity of these amplitudes). However, a

problem of immediate interest that begs further investigation is to try and understand what

happens if we demand that the spectrum of intermediate particles be only asymptotically

linear (the spectrum becomes linear only for very massive exchanged particles). Besides

this, the original problem of understanding graviton scattering amplitudes still remains an

important open problem.
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Tree-Level Scattering Amplitudes

in Chern-Simons Theories with

Fundamental Matter

6.1 Introduction

Chern Simons gauge theories (with gauge group SU(N) or U(N)) coupled to matter fields

have a wide variety of applications in areas as diverse as quantum hall physics, anyonic

physics, topology of three manifolds, quantum gravity via the AdS/CFT correspondence,

etc. These theories are conjectured to enjoy a strong-weak duality that has been tested in

several intense computations at large N and κ, while keeping the ’t Hooft coupling λ = N
κ

fixed [42, 120–147]. Recently, a finite N,κ form of the duality was proposed [148–158].

An example of the strong-weak duality is the duality between Chern-Simons gauge theory

coupled to fundamental fermions and Chern-Simons gauge theory coupled to fundamental

critical bosons. Other examples include self dual theories, such as N = 1, N = 2 supersym-

metric CS matter theories. Very recently, at large N it was demonstrated that the S matrix

for the 2→ 2 scattering computed exactly to all orders in the ’t Hooft coupling displays an

unusual modified crossing relation [133, 142, 159]. Moreover, for N = 2 theory, the result is

tree level exact [159] except in the anyonic channel, where it gets renormalized by a simple

function of the ’t Hooft coupling.

A natural question to ask would be, is it possible to compute arbitrary m → n scattering

amplitudes at all values of the ’t Hooft coupling at large N,κ? Given the simplicity of the

results at least in the supersymmetric case, it is also interesting to ask if the computability

of scattering amplitudes extends to finite N,κ. However, the usual method of computing

these amplitudes via the Feynman diagrams, though very useful, is restricted only to low

127
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orders in perturbation theory and small number of scattering particles as the computational

difficulty rapidly increases with the number of loops and particles involved (and especially

with the number of particles involved, [160]). And despite this computational difficulty, it

has been observed in various cases that the final result of the scattering amplitudes is rather

simple [161–165]. This leads to the following conclusions:

1. The dramatic cancelation between the Feynman diagrams that leads to simpler am-

plitudes implies not all Feynman diagrams are independent and are probably highly

redundant.

2. Secondly, most probably the use of Feynman diagrams is not the most efficient way

to compute the scattering amplitudes.

A case for the first point above is made in various papers (see [166, 167] for original work

and [168, 169] and references therein for recent reviews) in context of Yang-Mills theory

where they show that of the ∼ n! color-ordered Feynman diagrams that one would draw,

only (n − 3)! are independent. However, this isn’t yet drastically simplifying. Over the

past decade or so, significant progress has been made by approaching this problem mainly

from two ways. Firstly, methods have been developed in which an arbitrary higher n-

point function can be recursively computed in terms of the lower point functions, which are

comparatively easy to compute, [170–172]. This provides an excellent tool for both analytical

as well as numerical computations. Secondly, a lot of progress has been made in developing

alternative ways to compute amplitudes that utilize hidden symmetry structures not visible

directly from the Lagrangian [173–175], both for tree amplitudes as well as for efficient loop

computations (see [169] and reference therein for more details). In these works, these novel

tools have been used in context of both supersymmetric and non-supersymmetric Yang-Mills

theories and N = 6 ABJM theory, which is a Chern-Simons gauge theory in 3-dimensions

coupled to bi-fundamental matter.

In this chapter, these techniques are to both supersymmetric and non-supersymmetric

Chern-Simons theories coupled to vector matter to compute the scattering amplitudes in

these theories. As a first step towards these questions, we compute all tree level amplitudes

for the N = 2 theory and the regular fermionic theory. The self-dual N = 2 supersymmetric

theory is particularly interesting and important since via RG flow, we can obtain non su-

persymmetric dual pairs such as critical bosons coupled to CS and regular fermions coupled

to CS [131, 138].

The introduction to the special 3-dimensional kinematics that are used in this chapter

are available in Chapter 11 of [169]. The remaining chapter is organized as follows. In

section 6.2 the four point scattering amplitude in the fermionic andN = 2 theory is reviewed.
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In section 6.3 general criteria for the BCFW recursions to hold for the N = 2 theory is

presented. In section 6.4, we give a formal argument using background field method to show

that BCFW works for the N = 2 theory. In section 6.5 we present a recursion relation for

all tree level amplitudes for the N = 2 theory. Furthermore in section 6.6, we discuss how to

use the N = 2 results to obtain recursion relations for all tree level amplitudes in fermionic

theory. We end the letter with a discussion and possible future directions.

6.2 Four point scattering amplitude

In this section, the scattering amplitudes are computed in following theories:

1. Fermion coupled to SU(N) Chern-Simons theory (FCS)

∫
d3x

[
− κ

4π
εµνρTr

(
Aµ∂µAρ −

2i

3
AµAνAρ

)
+ ψ̄i /Dψ

]
, (6.1)

2. N = 2 Chern-Simons matter theory coupled to a Chiral multiplet given by

SLN=2 =

∫
d3x

[
− κ

4π
εµνρTr

(
Aµ∂µAρ −

2i

3
AµAνAρ

)

+ ψ̄i /Dψ −Dµφ̄Dµφ+
4π2

κ2
(φ̄φ)3 +

4π

κ
(φ̄φ)(ψ̄ψ)

+
2π

κ
(ψ̄φ)(φ̄ψ)

]
. (6.2)

For our purposes, it is convenient to introduce the spinor helicity basis [169] defined by

pαβi = pµi σ
αβ
µ = λαi λ

β
i , (pi + pj)

2 = 2pi.pj = 〈λαi λi,α〉2 . (6.3)

A shorthand notation is used 〈λαi λj,α〉 = 〈ij〉 in the following discussion. For a super-

symmetric amplitude, the standard procedure involves introduction of on-shell Grassmann

variables θ such that the super-creation and super-annihilation operators are given by

Ai = ai + θiαi, A†i = θia
†
i + α†i , (6.4)

where
(
a†i , ai

)
/
(
α†i , αi

)
create and annihilate a boson/fermion with momenta pi respec-

tively. The two on-shell supercharges for n point scattering amplitudes are given by

Q =
n∑

i=1

qi =
n∑

i=1

λiθi, Q̄ =
n∑

i=1

q̄i =
n∑

i=1

λi∂θi . (6.5)
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For FCS theory in (6.1), the tree level 2→ 2 scattering amplitude is given by [133]

AF4 = 〈ψ̄(p1)ψ(p2)ψ̄(p3)ψ(p4)〉 =
〈12〉〈24〉
〈23〉 δ(

4∑

i=1

pi) . (6.6)

For N = 2 theory in (6.2), the tree level 2→ 2 super amplitude is given by

AS4 =
〈12〉
〈23〉Q

2 =
〈12〉
〈23〉δ(

4∑

i=1

pi)

4∑

1=i<j

〈ij〉θiθj . (6.7)

Here AS4 is the super-amplitude computed using the super-creation/annihilation operators

defined in (6.4). Any component amplitude can be obtained from (6.7) by picking up the

coefficient of products of two θ’s. For example, the four fermion amplitude is given by the

coefficient of θ2θ4 that coincides precisely with (6.6).

6.3 Higher point scattering amplitude

BCFW recursion relations are an efficient method to compute and express arbitrary higher

point scattering amplitudes in terms of product of lower point amplitudes. Standard pro-

cedure for BCFW involves the deformation of two external momenta of the particles by

a complex parameter z. The deformation is such that the particles continue to remain

‘on shell’ and the total momentum conservation of the process continues to hold. In 3-

dimensions, BCFW deformations are a little more involved than in 4-dimensions and were

first discussed in [176] (the discussion in section 2 of this reference is followed closely here).

BCFW recursion relations are applicable in 3-dimensions provided that the higher point

amplitudes are regular functions at z →∞ and z → 0. In the following section the z →∞
(and z → 0) behavior of the amplitudes in the theories described earlier is studied. We find

it convenient to deform color contracted (we label them as ‘1’ and ‘2’) external legs. In

3-dimensions, momentum deformation of particles 1 and 2 can be written in terms of the

spinor-helicity variables as

(
λ̂1

λ̂2

)
= R

(
λ1

λ2

)
, where R =

(
z+z−1

2 − z−z−1

2 i
z−z−1

2 i
z+z−1

2

)
. (6.8)

In the theories (6.1),(6.2), all 3-point vertices involve gauge fields and since the Chern-

Simons gauge field does not have an on shell propagating degree of freedom, it follows that

only even-point functions are non-zero. This also implies that the 4-point functions are

fundamental building blocks for higher point functions.
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Under the deformation (6.8), any tree-level scattering amplitude for FCS in (6.1) is not

well behaved at large z and hence doesn’t obey the requirements of BCFW. However this

situation is cured for the N = 2 theory defined in (6.2). Additionally, conservation of the

super-charges in (6.5) require that the on-shell spinor variables θ be deformed as

(
θ̂1

θ̂2

)
= R

(
θ1

θ2

)
, (6.9)

where the R matrix is defined by (6.8).

Here, the 2n-point super-amplitude is denoted by A2n(λ1, λ2, · · ·λ2n, θ1, θ2, · · · θ2n) and the

deformed amplitude by A2n(λ̂1, λ̂2, · · ·λ2n, θ̂1, θ̂2, · · · θ2n, z). The deformed super-amplitude

can be explicitly written as an expansion in the θ variables as follows

A2n(z) = A0(z) +A1(z)θ̂1(z) +A2(z)θ̂2(z)

+A12(z)θ̂1(z)θ̂2(z)

= A0(z) + Ã1(z)θ1 + Ã2(z)θ2 +A12(z)θ1θ2, (6.10)

where in the last line of (6.10) we have used (6.8) and the fact that θ̂1(z)θ̂2(z) = θ1θ2. We

have also defined

(
Ã1(z)

Ã2(z)

)
= RT

(
A1(z)

A2(z)

)
, (6.11)

where RT is the transpose of the R matrix defined in (6.8), with RRT = 1. The super-

momentum conservation implies that the large z behavior of the super-amplitude A2n(z)

is identical to that of the components A0, A12. Hence it is sufficient to show that either

of A0 or A12 are well behaved since supersymmetric Ward identity guarantees the required

behavior for the rest of the amplitudes. It is convenient to write the fields in pair wise

contractions since they transform in the fundamental representation of the gauge group. For

instance we are interested in the large z behavior of amplitudes such as (ψ̄i1φ2i)(φ̄
j
3ψ4j) . . .

and (φ̄i1ψ2i)(ψ̄
j
3φ4j) . . ., where . . . represent color contracted bosonic or fermionic particles

allowed by interactions in (6.2). These amplitudes appear in A0, A12 in (6.10) respectively.

The explicit Feynman diagram computations of the amplitude A0 = A6(ψ̄1φ2φ̄3ψ4φ̄5φ6) and

the verification that its z →∞ behaviour is well behaved, is presented in Appendix N. We

discuss the large z behavior of the general 2n point amplitude using the background field

method [165] in the next section.
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Figure 6.1: The diagrams that have a non-regular z → ∞ behavior. O(z) part of these
two diagrams cancel against each other to give a regular z → ∞ behavior of the total
amplitude. In the above diagram, the solid lines correspond to fermions and the dashed
lines correspond to bosons. This amplitude appears in A0 in (6.10). The blue color lines

corresponds to deformed hard particle.

6.4 Asymptotic behavior of amplitudes

To understand the large z behavior of various scattering amplitudes, it is extremely useful to

think from the background field method point of view introduced in [165]. Here z-deformed

particles are considered as hard particles propagating in a background of soft particles. The

amplitude is modified due to (a) modified propagator of intermediate hard particle; (b) the

modified contribution of various vertices; and, (c) modified fermion wave function, in case

an external deformed particle is a fermion. Detailed analysis shows (see Appendix O) that

the non-trivial z →∞ behavior of the amplitude is due to diagrams of the kind depicted in

fig. 6.1. The values of these diagrams are:

Gauge-field exchange:
4πi

κ
〈k4|γµ|1〉

kν3p
ρ
2

(k3 + p2)2
εµνρ (6.12)

Contact vertex: − 2π

κ
〈k4|1〉 (6.13)

Under the 1-2 z-deformations, (6.8), in the z → ∞ limit the O(z) part of the amplitude

cancels and the amplitude behaves as O(1/z). Hence this amplitude has a regular z → ∞
behavior forN = 2 theory. This cancellation works even for the 4-point function 〈ψ̄1φ2φ̄3ψ4〉,
which receives contributions from the diagrams in fig. 6.1 with the blob removed and

k3 → p3, k4 → p4 are taken to be on-shell momenta. It is important to emphasize that we

need minimum N = 2 amount of supersymmetry for this to work. 1

6.5 Recursion relations in N = 2 theory

In the last section, it was demonstrated that A0 is well behaved in large z. Hence we can

apply the BCFW recursion relation directly to the super amplitude in the left hand side of

1see Appendix O
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Figure 6.2: Recursion formula for a 2n point amplitude: The black lines denote the
undeformed legs, the external blue lines represent the deformed legs and pf represents the

momentum in the factorization channel.

(6.10). The recursion formula for a 2n point superamplitude can be expressed in terms of

lower point superamplitudes as follows (see fig 6.2)

A2n(z = 1) =
∑

f

∫
dθ

p2
f

(
za;f

z2
b;f − 1

z2
a;f − z2

b;f

AL(za;f , θ)AR(za;f , iθ)

+ (za;f ↔ zb;f )

)
, (6.14)

where the integration is over the intermediate Grassmann variable θ and A2n(z = 1) is the

undeformed 2n-point amplitude that we are interested in computing. In the above, pf is

the undeformed momentum that runs in the factorization channel f and the summation

in (6.14) runs over all the factorization channels corresponding to different intermediate

particles going on-shell. Here, za;f and zb;f are given by

(
z2
a;f , z

2
b;f

)
=
−(pf − p2).(pf + p1)±

√
(pf − p2)2(pf + p1)2

4q.(pf − p2)
, (6.15)

where the null momenta q are defined in terms of the spinor helicity variables as

qαβ =
1

4
(λ2 + iλ1)α(λ2 + iλ1)β , q̃αβ =

1

4
(λ2 − iλ1)α(λ2 − iλ1)β . (6.16)

Note that the formula (6.14) has a very similar form (but not quite the same as discussed

below) to the one obtained in [176] for the ABJM theory2 that enjoys N = 6 supersym-

metry. It is remarkable that such recursion formulae exist in a theory with much lesser

supersymmetry such as the one in discussion.

As an explicit demonstration, consider the six point3 amplitudeA6(λ1 . . . λ6) ≡ (φ̄ψ)(ψ̄φ)(φ̄φ)

2 Although, formula (6.14) looks very similar to ABJM case, the details are different since the external
matter particles are in fundamental representation. For example, in general there will be more factorization
channels in this case as compared to the ABJM case. For example, in the six point function, as will be clear
below, there are two factorized channels, where as for the corresponding deformation in ABJM, there is only
one factorized channel.

3A general six point super amplitude inN = 2 theory can be written in terms of two independent functions
as

A6 = Q2

(
f1(p)

3∑
i=1

εijkλ(pj)λ(pk)θi + f2(p)

6∑
i=4

εilmλ(pl)λ(pm)θi

)
(6.17)
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Figure 6.3: BCFW recursion for the six point amplitude: Factorization into two channels:
Each four point amplitude on the RHS is on shell. Two adjacent lines with the same color
are color contracted. Note that the blue lines in particular represent the BCFW deformed

legs.

in the N = 2 SCS theory. This is the same as the A0 component amplitude in (6.10) for

Φ̄1Φ2Φ̄3Φ4Φ̄5Φ6 scattering. This amplitude factorizes into two channels as shown in fig 6.3

(and discussed in detail in Appendix N). The recursion formula can be explicitly written as

〈φ̄1ψ2ψ̄3φ4φ̄5φ6〉 =

(
za;f

z2
b;f − 1

z2
a;f − z2

b;f

〈 ˆ̄φ1φ̂f φ̄5φ6〉za;f
〈 ˆ̄φ(−f)ψ̂2ψ̄3φ4〉za;f

+ (za;f ↔ zb;f )

)
i

p2
f

∣∣∣∣
pf=p234

+

(
za;f

z2
b;f − 1

z2
a;f − z2

b;f

〈 ˆ̄φ1ψ̂f ψ̄3φ4〉za;f
〈 ˆ̄ψ(−f)ψ̂2φ̄5φ6〉za;f

+ (za;f ↔ zb;f )

)
i

p2
f

∣∣∣∣
pf=p256

, (6.18)

where za;f , zb;f are defined in (6.15). Fields with hats corresponds to deformed momenta.

We have checked (6.18) explicitly by computing the relevant Feynman diagrams. It is a

curious fact that, the total number of Feynman graphs that contribute to A6 is 15. Of

these, eleven are reproduced by the channel pf = p234 and the remaining four in the channel

pf = p256.

6.6 Recursion Relations in the Fermionic Theory

In this section, it is shown that the BCFW recursion relations can be used to compute

2n−point amplitude A2n = (ψ̄1ψ2) · · · (ψ̄2n−1ψ2n) for the regular fermionic theory coupled

to CS gauge field (6.1). If the deformations (6.8) are applied to this amplitude, it is easy

to show that, it does not have a good large z (as well as z → 0) behavior, hence we

cannot readily apply the BCFW recursion relation4 to determine all higher point fermionic

amplitudes. However, we show below that we can use the recursion relation of the N = 2

to write a recursion relation for the fermionic theory.

where Q =
∑6
i=1 λiθi as defined in (6.5).

4There will be some non-trivial boundary terms that do not vanish and in general there are no good
prescriptions to compute them systematically.
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As a first step towards this, let us note that the Feynman diagrams for any tree-level all-

fermion scattering amplitude in the N = 2 theory (6.2) is identical to that of the tree-level

scattering amplitude in the fermionic theory (6.1). In the previous section it was proved

for the N = 2 theory that an arbitrary higher-point super-amplitude can be written only

in terms of the 4-point super-amplitude. Same can be said for the component amplitudes

including the purely fermionic component amplitude.5 Let us note that for the four point

super-amplitude, supersymmetry relates all the component 4-point amplitudes to one com-

ponent amplitude, which for instance can be taken to be 4-fermion scattering amplitude (see

(6.7)). Thus an arbitrary higher-point component amplitude can be written only in terms

of 4-fermion amplitude. This can be recursively done for an arbitrary 2n point amplitude,

however for simplicity we write the recursion relation for the six point amplitude below

〈ψ̄1ψ2ψ̄3ψ4ψ̄5ψ6〉 =

(
za;f

z2
b;f − 1

z2
a;f − z2

b;f

[
−
z2
a;f + 1

2za;f
+ i

z2
a;f − 1

2za;f

〈1̂4〉
i〈f̂4〉

〈f̂6〉
〈2̂6〉

]

× 〈 ˆ̄ψ1ψ̂f ψ̄3ψ4〉〈 ˆ̄ψ(−f)ψ̂2ψ̄5ψ6〉za;f

+ (za;f ↔ zb;f )

)
i

p2
f

∣∣∣∣
pf=p234

−
(
za;f

z2
b;f − 1

z2
a;f − z2

b;f

[
−
z2
a;f + 1

2za;f
+ i

z2
a;f − 1

2za;f

〈1̂6〉
i〈f̂6〉

〈f̂4〉
〈2̂4〉

]

× 〈 ˆ̄ψ1ψ̂f ψ̄5ψ6〉〈 ˆ̄ψ(−f)ψ̂2ψ̄3ψ4〉za;f

+ (za;f ↔ zb;f )

)
i

p2
f

∣∣∣∣
pf=p256

(6.19)

Hence, while the amplitudes in the fermionic theory by themselves don’t obey the require-

ments for BCFW relations, using N = 2 theory we can find out the recursion relations for

the fermionic theory too.

6.7 Discussion

This chapter established the validity of BCFW recursion relations for all tree level am-

plitudes in N = 2 CS matter theory and CS theory coupled to regular fermions. The

knowledge of arbitrary scattering amplitudes to all loop-orders is important to verify the

duality statements that were made in the starting of this chapter. Computation of these

5Note that the recursion relation in the N = 2 theory (6.14) does not directly give (ψ̄1ψ2) · · · (ψ̄2n−1ψ2n)
in terms of the lower point fermionic amplitude. However, we can use BCFW relations recursively to
write down any higher point amplitude in terms of four point amplitudes such as (ψ̄ψ)(ψ̄ψ), (φ̄φ)(φ̄φ),
(φ̄φ)(ψ̄ψ), (φ̄ψ)(ψ̄φ) etc. Moreover, at the level of the four point amplitude, one can rewrite this in terms

of (ψ̄ψ)(ψ̄ψ). For example, (ψ̄ψ)(φ̄φ) = 〈23〉
〈24〉 (ψ̄ψ)(ψ̄ψ). This implies that we get a recursion relation for

(ψ̄1ψ2) · · · (ψ̄2n−1ψ2n) in terms of lower point fermionic amplitudes only. Hence this can be interpreted as a
BCFW recursion relation in the regular fermionic theory coupled to CS gauge field (6.1).
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scattering amplitudes is a first step in this direction. Moreover, it was shown in [159], that

the 2 → 2 scattering amplitude in the N = 2 theory does not get renormalized except in

the anyonic channel, where it gets renormalized by a simple function of the ’t Hooft cou-

pling. A natural question is, why in the N = 2 theory the scattering amplitude has such

a simple form, whereas the corresponding amplitudes in the fermionic [133] and other less

susy N = 1 [159] theories are quite complicated. A possible explanation is that there exists

some symmetry such as dual conformal invariance that appears in the N = 2 theory and it

protects the amplitude from loop corrections [177]. It is natural to ask, if the simplicity of

the amplitudes continues to persist with higher point amplitudes. It is also interesting to

explore an analog of the Aharonov-Bohm phase for higher point amplitudes. It may very

well turn out that the Aharanov-Bohm phases of higher point amplitudes are products of

the Aharonov-Bohm phases of the 2 → 2 amplitude. BCFW recursion relations provide a

strong indication towards this result.

To answer the above questions, one needs to compute higher scattering amplitudes to all

orders in λ. A possible way is to investigate the Schwinger-Dyson equation. However, the

Schwinger-Dyson equation approach is quite complicated even at the 6-point level. A refined

approach might be to look for a larger class of symmetries such as Yangian symmetry [177]

and use the powerful formulation of [178] to obtain results. Given the fact that, these theories

are exactly solvable at large-N as well as the fact that N = 2 theory is self-dual, it could

turn out that the N = 2 theory may be one of the simplest play grounds to develop new

techniques in computing S-matrices to all orders [178]. Furthermore exact solvability at large

N indicates that these models might even be integrable. One possible way to investigate

integrability is to show the existence of an infinite dimensional Yangian symmetry. Since

these theories relate to various physical situations, any of the above exercises may provide

insight into finite N,κ computations.
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Notations & Identities

A.1 For Chapter 2

We will generally use the notation fn for the double-trace couplings introduced in (2.2),

and f̄n for their dimensionless counterparts. In addition, depending on the context we will

denote these couplings by the following specialized notations:

Field Theory Dimensionful: f Dimensionless: f̄

Bulk Dimensionful: f Dimensionless: f̄

A.2 For Chapter 3

For gαβ = e2φĝαβ

R = e−2φ
(
R̂− 2�̂φ

)
(A.1a)

� = e−2φ�̂ (A.1b)

g := det(gαβ) = e4φĝ (A.1c)

nµ = eφn̂µ (A.1d)

nµ = e−φnµ (A.1e)

γ := det{γαβ} = e2φγ̂ (A.1f)

√
γK =

√
γ̂
(
K̂ + n̂µ∂µφ

)
(A.1g)
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A.3 For Chapter 5

A.3.1 Notations and Conventions for 2 + 1D N = 1, 2 SUSY

In this section, we present some notations and conventions that we will use throughout the

article. These are taken from [179] and [159].

A.3.2 Spinors

We work with the metric signature (−,+,+). The Lorentz group in 2+1D is SL(2,R). The

fundamental representation of the group acts on two-component real spinors ψα ≡ (ψ+, ψ−).

These are also referred to as Majorana spinors. The spinor indices are raised and lowered

using the antisymmetric symbol Cαβ, defined by

Cαβ = −Cβα =

(
0 −i
i 0

)
= −Cαβ. (A.2)

Notice that Cαβ is same as the Pauli matrix σ2. Spinor index raising and lowering follows

the NW-SE convention, which implies

ψα = Cαβψβ,

ψα = ψβCβα.
(A.3)

Thus, ψα is purely imaginary. A crucial property satisfied by the antisymmetric symbol Cαβ

is

CαβC
στ = δσαδ

τ
β − δσβδτα. (A.4)

As a consequence of eq.(A.4), we get

CαγC
γβ = − δ βα ,

CαβC
αβ = 2.

(A.5)

Note that the expression for the square of spinorial quantities has an additional factor of

half in front; for instance,

ψ2 ≡ 1

2
ψαψα = iψ+ψ−. (A.6)

An interesting property following from the antisymmetry of Cαβ is

AαBα = −AαBα. (A.7)
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A.3.3 γ-matrices

We choose the γ-matrices (with both spinor indices lowered) to be real and symmetric, given

by

(γµ)αβ = {I, σ3, σ1}. (A.8)

Here, the spacetime index µ runs over the set (0, 1, 3).1 From eq.(A.8), we can write

(γµ) β
α = {σ2,−iσ1, iσ3}, (A.9)

all of which are purely imaginary. The Clifford algebra satisfied by the γ-matrices is given

by

(γµ) τ
α (γν) β

τ + (γν) τ
α (γµ) β

τ = −2ηµνδβα. (A.10)

As a consequence, we have

(γµ) β
α (γν) α

β = − 2ηµν . (A.11)

Note that

(γ0)2 = I, (γ1)2 = −I, (γ3)2 = −I. (A.12)

The γ-matrices with both upper indices are given by

(γµ)αβ = {−I, σ3, σ1}. (A.13)

An important property satisfied by the γ-matrices is

[γµ, γν ] = −2iεµνργρ. (A.14)

Another useful identity is

(γµ) β
α (γµ) δ

γ = CαγC
βδ − δ δ

α δ
β
γ . (A.15)

We also have

(γµ) τ
α (γν) β

τ = − ηµνδ β
α − iεµνρ(γρ) β

α ,

(γµ)ατ (γν) β
τ = − ηµνCαβ − iεµνρ(γρ)αβ ,

(γµ) τ
α (γν)τβ = − ηµνCαβ − iεµνρ(γρ)αβ ,

(γµ)ατ (γν)τβ = ηµνδαβ − iεµνρ(γρ)αβ .

(A.16)

1This seemingly arbitrary choice has been made to facilitate the process of Wick rotation later. Under
a Wick rotation, the index 0 goes over to 2. Our convention for the completely antisymmetric Levi-Civita
symbol is ε013 = −1; therefore, after Wick rotation it becomes ε213 = −1. This matches with the standard
Euclidean convention ε123 = 1.
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The Euclidean γ-matrices can be obtained from the Lorentzian definition eq.(A.9) by using

the rule γ0 → −iγ2
E ,

(γµE) β
α = {iσ2,−iσ1, iσ3}, µ = (2, 1, 3). (A.17)

The Clifford algebra satisfied by the Euclidean γ-matrices is

(γµE) τ
α (γνE) β

τ + (γνE) τ
α (γµE) β

τ = −2δµνδβα. (A.18)

Spacetime three-vectors are represented by symmetric second rank spinors. For instance,

for a three-vector Vµ we have the spinor representation Vαβ, defined via

Vαβ = Vµ(γµ)αβ. (A.19)

Using the Clifford algebra eq.(A.10), this gives

k β
α k α

β = −2k2, (A.20)

where k2 = ηµνkµkν .

A.3.4 Superspace

The superspace consists of three spacetime coordinates xαβ, and two anticommuting spinor

coordinates θα. The ordinary derivatives are defined by2

∂θα

∂θβ
= δαβ ,

∂xαβ

∂xστ
=

1

2
(δασ δ

β
τ + δατ δ

β
σ).

(A.21)

The momentum operators have the Hermiticity property

(
i
∂

∂θα

)†
= − i ∂

∂θα
,

(
i

∂

∂xαβ

)†
= i

∂

∂xαβ
.

(A.22)

2For notational convenience, we will sometimes use the shorthand notation

∂

∂θα
= ∂α,

∂

∂xαβ
= ∂αβ .
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The defining properties for Grassmannian integration on the superspace are3

∫
dθ = 0,

∫
dθ θ = 1. (A.23)

As a consequence, we get4 ∫
d2θ θ2 = −1, (A.24)

∫
d2θ θαθβ = Cαβ. (A.25)

Eq.(A.24) is used to give the definition of the δ-function on the superspace,

δ2(θ) = − θ2. (A.26)

This implies

δ2(θ1 − θ2) = −( θ 2
1 + θ 2

2 − θ1θ2), (A.27)

where θ1θ2 = θα1 θ2α. Note that δ2(θ1 − θ2) = δ2(θ2 − θ1). We also have

δ2(θ1 − θ2) δ2(θ2 − θ1) = 0. (A.28)

Some more useful properties are

Cαβ
∂

∂θβ
∂

∂θα
θ2 = −2. (A.29)

and

θαθβ = −Cαβθ2,

θαθβ = −Cαβθ2.
(A.30)

Also, the D’Alembertian operator is given by

� =
1

2
∂αβ∂αβ. (A.31)

3Note that Grassmann integration is equivalent to differentiation,∫
dθ ≡ ∂

∂θ
.

4As already mentioned before eq.(A.6), the square of spinorial quantities is defined with an extra factor
of half. Thus,

θ2 =
1

2
θαθα, d2θ =

1

2
dθαdθα.



142 Appendix A

Superspace covariant derivatives are defined by

Dα =
∂

∂θα
+ iθβ

∂

∂xαβ
. (A.32)

with Dα = CαβDβ. Also

Dαβ = ∂αβ =
∂

∂xαβ
. (A.33)

They satisfy the algebra

{Dα, Dβ} = 2iDαβ,

[Dα, Dβγ ] = 0,

[Dαβ, Dγδ] = 0.

(A.34)

We often work in momentum space. To convert the above equations into momentum space

expressions, we use the replacement i∂αβ → kαβ. This gives

Dα =
∂

∂θα
+ θβkαβ, (A.35)

and the algebra becomes

{Dα, Dβ} = 2kαβ. (A.36)

Using the tracelessness of (γµ) β
α in eq.(A.36), we get

{Dα, Dα} = 0. (A.37)

From the expression for Dα, we find

D2 ≡ 1

2
DαDα

=
1

2

(
Cαβ

∂

∂θβ
∂

∂θα
+ 2θαk β

α

∂

∂θβ
+ 2θ2k2

)
.

(A.38)

This leads to the following identities

DαDβ = kαβ + CβαD
2,

(D2)2 = � = −k2,

DαDβDα = 0,

D2Dα = −DαD
2 = kαβD

β.

(A.39)

The derivatives of the δ-function satisfy the identities

Dθ1,k
α δ2(θ1 − θ2) = − θ1α + θ2α − kαβ θ β1 θ 2

2 + kαβ θ
β
1 (θ1θ2), (A.40)
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and

D2
θ1,kδ

2(θ1 − θ2) = 1− kαβ θ α1 θ β2 − θ 2
1 θ

2
2 k

2 = exp(−kαβ θ α1 θ β2 ). (A.41)

Using these identities, we get

δ2(θ1 − θ2)Dα
θ2,kδ

2(θ2 − θ1) = 0,

δ2(θ1 − θ2)D2
θ2,kδ

2(θ2 − θ1) = δ2(θ1 − θ2),

Dθ1,k
α δ2(θ1 − θ2) = −Dθ2,−k

α δ2(θ2 − θ1).

(A.42)

The third identity in eq.(A.42) above is also referred to as the “transfer rule.”

The supersymmetry generators Qα have the superspace representation

Qα = i

(
∂

∂θα
− θβkαβ

)
, (A.43)

and satisfy the anti-commutation relations

{Qα, Qβ} = 2kαβ,

{Qα, Dβ} = 0.
(A.44)

A.3.5 Superfields

Superfields are functions of the superspace coordinates (x, θ). For N = 1 SUSY, we work

with a scalar and a vector superfield. The scalar superfield Φ(x, θ) consists of a complex

scalar field φ(x), a complex spinor field ψα(x) and an auxiliary complex scalar F (x). The

θ-expansion for the scalar superfield is given by

Φ = φ+ θψ − θ2F. (A.45)

This implies that5

Φ̄ = φ̄+ θψ̄ − θ2F̄ . (A.46)

The component fields can be extracted from the scalar superfield by using

φ(x) = Φ(x, θ)|θ=0,

ψα(x) = DαΦ(x, θ)|θ=0,

F (x) = D2Φ(x, θ)|θ=0.

(A.47)

From eq.(A.45) and eq.(A.46), it is easy to compute that

Φ̄Φ = φ̄φ+ θα(φ̄ψα + ψ̄αφ)− θ2(F̄ φ+ φ̄F + ψ̄ψ). (A.48)

5Note that θα are real valued Grassmann variables.
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We also have

DαΦ = ψα − θαF + iθβ∂αβφ+ iθ2∂ β
α ψβ,

DαΦ̄ = ψ̄α − θαF̄ + iθβ∂αβφ̄+ iθ2∂ β
α ψ̄β.

(A.49)

These equations can be combined to give

DαΦ̄DαΦ|θ2 = θ2
(
2F̄F − 2∂φ̄ ∂φ+ 2iψ̄α∂ β

α ψβ
)

+ iθ2∂αβ
(
ψ̄αψβ

)
. (A.50)

The last term in eq.(A.50) is a total derivative term; it can therefore be dropped out of

integrals over the superspace. Note that ∂φ̄ ∂φ ≡ ηµν∂µφ̄ ∂νφ. Another result of interest is

D2
k,θ(Φ̄Φ) = (F̄ φ+ φ̄F + ψ̄ψ) + θαk β

α (φ̄ψβ + ψ̄βφ) + 2θ2k2(φ̄φ). (A.51)

The vector superfield Γα(x, θ) is composed of a gauge field Aαβ(x), the gaugino λα(x),

an auxiliary scalar B(x), and an auxiliary fermion χα(x). The θ-expansion for the vector

superfield is given by

Γα = χα − θαB + iθβA α
β − θ2

(
2λα − i∂αβχβ

)
. (A.52)
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Some mathematical results

Integrals

Integrals of the following type appear in the calculation of β-functions,

∫

a′>|w|>a

ddw
wµ1wµ2 · · ·wµ2n

|w|p =

∫

a′>w>a

dw
1

|w|p−d+1−2n

∫
dΩd−1ŵ

µ1ŵµ2 · · · ŵµ2n

=
1

d+ 2n− p
(
a′d+2n−p − ad+2n−p

)

×




21−2nπd/2

Γ

(
d

2
+ n

)
Γ(n+ 1)



∑

P∈S2n

(
δµP(1)µP(2) δµP(3)µP(4) · · · δµP(2n−1)µP(2n)

)
(B.1)

here, P runs over all permutations of 2n numbers, and hence a lot of terms in the parenthesis

in the last line are equivalent. The pre-factor has been accordingly calculated to account

for these redundancies. This convention is useful because contractions of the (2n)! different

permutations of Kronecker-δ above with ∂µ1 . . . ∂µ2n generates (2n)!(∂2)n, and the (2n)!

here exactly cancels with 1/(2n)! coming from the Taylor series. We have used the following

short-hand notation for the pre-factor in the paper,

αn =




21−2nπd/2

Γ

(
d

2
+ n

)
Γ(n+ 1)


 (B.2)

This factor also obeys an identity,

αn
αn+1

= 2(n+ 1)(d+ 2n) (B.3)

which is useful in simplifying the coefficients of the β-functions.
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Variation of derivatives of propagators

Coefficients of all the terms in the β-function equations are of the form (see (2.78)),

(∫
dρ ρd−1+2k ∂a′

[
(a′)−2n(∂2

ρ)nGa′(a
′ρ)
])

In this appendix, we list first few expressions for (∂2)nGa′(w) and ∂a′
[
(∂2)nGa′(w)

]
, in

terms of various derivatives of the regulating function, K(n).

n (∂2)nGa′(w)

0
K(w/a)

w2∆

1
K′′(w/a)

a2 w2∆
− (4∆− d+ 1)

K′(w/a)

a w2∆+1
+ 2∆(2∆− d+ 2)

K(w/a)

w2(∆+1)

2
K(4)(w/a)

a4 w2∆
− 2(4∆− d+ 1)

K(3)(w/a)

a3 w2∆+1
+
(
d2 − 4d(3∆ + 1) + 3

(
8∆2 + 8∆ + 1

) )
×

K′′(w/a)

a2 w2(∆+1)
− (4∆− d+ 3)(4∆(2∆ + 3)− 4d∆− d+ 1)

K′(w/a)

a w2∆+3

+4∆(∆ + 1)(2∆− d+ 4)(2∆− d+ 2)
K(w/a)

w2(∆+2)

...
...

Table B.1: List of various powers of Laplacian acting on propagator Ga′(w), which are needed in
the computation of β-functions.

n ∂a′
[
(∂2)nGa′(w)

]

0 − K
′(w/a)

a2 w2∆−1

1 −K
(3)(w/a)

a4 w2∆−1
+ (4∆− d− 1)

K′′(w/a)

a3 w−2∆
−
(
4∆2 − 2d∆ + d− 1

) K′(w/a)

a2 w2∆+1

2 −K
(5) (w/a)

a6 w2∆−1
+ 2(4∆− d− 1)

K(4) (w/a)

a5 w2∆
−
(
24∆2 − 12d∆ + d(d+ 2)− 3

) K(3) (w/a)

a4 w2∆+1

+(4∆− d+ 1)
(
8∆2 − 4d∆ + 4∆ + d− 3

) K′′ (w/a)

a3 w2(∆+1)

−
(
4∆2 − 1

)
(2∆− d+ 3)(2∆− d+ 1)

K′ (w/a)

a2 w−2∆−3

...
...

Table B.2: List of variation of (∂2)nGa′(w) with respect to a′.
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These expressions listed in Table B.2 are part of the integrands that appear in (2.78). For

a general coefficient, we use following notation for these integrals (2.80),

GK
(n)

∆ =

∫
dρ ρd−2∆ K(n)(ρ) (B.4)

and corresponding values from Table B.2 have been used to exactly compute the coefficients

in (2.79), (2.82) and Table 2.2 for the choices K(ρ) = Θ(ρ−1) and K(ρ) = regulated-Θ(ρ−1)

for the regulating function.
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Holographic Wilsonian

Renormalization: Explicit solution

In this appendix we compute the β-functions using Holographic Wilsonian RG techniques.

Calculations are based on the work that appears in [15–17] with modifications called for by

introducing finite cut-off as discussed in section 2.2.

As explained in section 2.5 we separate the bulk degrees of freedom into UV and IR degrees

of freedom and integrate out the near boundary (UV) degrees of freedom, as we change

the radial cut-off surface from z = ε0 to z = ε. In the process we generate a modified

wavefunctional Ψ[φ0; ε] = ZUV at the new boundary z = ε, whose coefficients contain that

information about the couplings of double-trace operators in the field theory at the new

cut-off as given by (2.34) and (2.45).

The bulk evolution equation in radial direction can be determined by computing the radial

Hamiltonian.

H =
1

2

(
π2

z1−d +
z−1−d

2

(
∂µφ∂µφ+m2φ2

))
(C.1)

in operator language, the evolution Hamiltonian in the radial direction is,

Ĥ =

∫
ddx Ĥ =

1

2

(∫
ddk

1

z1−d Π̂kΠ̂−k + z−1−d (z2k2 +m2
)
φ̂kφ̂−k

)
(C.2)
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here Π̂ ≡ i δδφ in the ‘field basis’, where φ̂(x) |φ〉 = φ(x) |φ〉 . The radial Schrödinger equation

for the radial wavefunctional ZUV is given by (2.56), 1

− ∂εZUV = ĤZUV

Since we are working with a quadratic theory and the boundary wavefunctional at z = ε0

is also quadratic, the wavefunctional generated at any other cut-off z = ε, ZUV = Ψ[φε; ε] is

also quadratic. So let us consider a general form of the wavefunctional,

ZUV = exp

[
−1

2

∫
ddk
√
γ
(
A(kε; kε0)φεkφ

ε
−k + 2εd−∆B(kε; kε0)J0

kφ
ε
−k

+ε2(d−∆)C(kε; kε0)J0
kJ

0
−k

)]
(C.3)

to keep the calculation more general, we don’t specify ∆ here. In subsequent computations

∆ = ∆+ for standard quantization and ∆ = ∆− for alternative quantization. We now

derive the general evolution equations for the coefficients A(k, ε, ε0), B(k, ε, ε0), C(k, ε, ε0).

The exact form of these coefficients can be obtained by starting with the appropriate wave-

functionals (2.34) or (2.45) at z = ε0 but since the evolution equation doesn’t depend on the

initial wavefunctional it is not required here. When substituted in the radial Schrödinger

equation we get,

−∂εZUV =

(
1

2

∫
ddk

[
∂ε

(
ε−dA(kε; kε0)

)
φεkφ

ε
−k + 2∂ε

(
ε−∆B(kε; kε0)

)
φεkJ

0
−k

+∂ε

(
εd−2∆C(kε; kε0)J0

kJ
0
−k

)])
× ZUV

ĤZUV =

(
1

2

∫
ddkε−d−1

[ (
ε2k2 +m2 −A2(kε; kε0)

)
φεkφ

ε
−k

− 2A(kε; kε0)B(kε; kε0)εd−∆φεkJ
0
−k − ε2(d−∆)B2(kε; kε0)J0

kJ
0
−k

]
+ · · ·

)
× ZUV

(C.4)

the terms in the ellipsis in the above equation are not important and don’t arise when we

keep track of the overall normalisation of ZUV . J0 above is the source for the operator O
at z = ε0. This implies following evolution equations for the coefficients,

ε∂εA = −A2 + dA+ (ε2k2 +m2) (C.5a)

ε∂εB = ∆ B −A B (C.5b)

ε∂εC = (2∆− d) C −B2 (C.5c)

1In the particular case of quadratic bulk action, the case we are demonstrating here, the Schrödinger
equation and the semi-classical Hamiltonian-Jacobi equations are equivalent.
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the field theory double-trace couplings are related to A(k, ε, ε0) by (2.34) and (2.45) (recall,

f̄ denotes dimensionless coupling),

f̄ST (k2ε2) =

(
A(kε; kε0)− D̂ct(kε)

)
A ∗ST − 1

B∗ST
2f̄∗ST

2
(
A(kε; kε0)− D̂ct(kε)

) (C.6a)

while, with the inclusion of the counter-term,

f̄ST (k2ε2) =

(
A(kε; kε0)− D̂ct(kε)

)
A ∗ST − 1

(
B∗ST

2f̄∗ST
2 + A ∗ST · δC

) (
A(kε; kε0)− D̂ct(kε)

)
− δC

(C.6b)

f̄AQ(k2ε2) =
A(kε; kε0)− D̂ct(kε)

C∗AQ

(
A(kε; kε0)− D̂ct(kε; kε0)

)
+B∗AQ

2
(C.6c)

and with the inclusion of the counter-terms,

f̄AQ(k2ε2) =
A(kε; kε0)− D̂ct(kε)(

C∗AQ + δC
)(

A(kε; kε0)− D̂ct(kε; kε0)
)

+B∗AQ
2

(C.6d)

Equations (C.5) can be used to compute the β-function equations for these couplings,

For standard quantization (see (2.57)),

ε∂εf̄ = f̄2 ×
(
B∗ST

2 A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− ε∂εδC

+
(δC)2

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST (d− 2D̂ct) + A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

))

− δC
(
−2ε∂εB

∗
ST

B∗ST
− 2 ε∂εA ∗ST

A ∗ST
− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct

))

+ f̄

(
− 2 ε∂εB

∗
ST

B∗ST
− 2 ε∂εA ∗ST

A ∗ST
− 2A ∗ST

(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− d+ 2D̂ct(kε)

− 2
δC

B∗ST
2A ∗ST

2

(
ε∂εf̄

∗ − 1 + A ∗ST (d− 2D̂ct) + A ∗ST
2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)))

+
ε∂εA ∗ST + A ∗ST (d− 2D̂ct) + A ∗ST

2
(
k2ε2 +m2 + D̂ct(d− D̂ct)− ε∂εD̂ct

)
− 1

B∗ST
2 A ∗ST

2
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And for alternative quantization (2.58),

ε∂εf̄ =
1

B∗AQ
2

[
f̄2
(

2B∗AQ ε∂εB
∗
AQ

(
C∗AQ + δC

)
−B∗AQ2

(
ε∂εC

∗
AQ + ε∂εδC +

(
C∗AQ + δC

)
(d− 2D̂ct)

)

−B∗AQ4 +
(
C∗AQ + δC

)2 (D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2
))

+ f̄
(
−2B∗AQ ε∂εB

∗
AQ +B∗AQ

2(d− 2D̂ct)− 2
(
C∗AQ + δC

) (
D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

))

+ D̂ct(d− D̂ct)− ε∂εD̂ct + k2ε2 +m2

]

In the above equations, we have suppressed the functional dependence of D̂ct(kε), B∗ST (kε)

and A ∗ST (kε) to avoid clutter. Although the above equations look horrendous, when resolved

in components of the coupling f̄ = f̄0 + f̄1(kε)2 + f̄2(kε)4 + · · · , and on substituting the values

of D̂ct(kε), B∗ST (kε) and A ∗ST (kε) given by (2.8), (2.15), (2.24), the β-functions for individual

couplings become quite simple,

Standard Quantization:

˙̄f0 = −2ν f̄0 + 2ν c0 f̄20
˙̄f1 = −(2ν + 2) f̄1 − 2(1− ν) c1 f̄20 + 4ν c0 f̄0f̄1

˙̄f2 = −(2ν + 4) f̄2 − 2(2− ν) c2 f̄20 − 4(1− ν) c1 f̄0f̄1 + 4ν c0 f̄0f̄2 + 2ν c0 f̄21

...

(C.7)

Alternative Quantization:

˙̄f0 = 2ν f̄0 − 2ν c0 f̄20
˙̄f1 = (2ν − 2)̄f1 − 2(1 + ν) c1 f̄20 − 4ν c0 f̄0f̄1

˙̄f2 = (2ν − 4)̄f2 − 2(2 + ν) c2 f̄20 − 4(1 + ν) c1 f̄0f̄1 − 4ν c0 f̄2f̄0 − 2ν c0 f̄21

...

(C.8)

The fixed point values for the coupling constants given by solving the stationary points of

the above equations are (for both standard and alternative quantization),

Trivial Fixed Point: f̄i = 0 ∀ {i ∈ Z+ ∪ 0}

Non-Trivial Fixed Point: f̄0 →
1

c0
, f̄1 → −

c1

c2
0

, f̄2 →
c2

1 − c0c2

c3
0

. . . (C.9)

It might look strange that the fixed point for both standard and alternative quantization

in (C.9) is the same. This happens because the counter-terms, δC in one theory aren’t the
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same as those in the other theory. Here we have only used them as a notational device

and so they should not be confused to be equivalent. We discuss the relation between the

non-trivial fixed points of one theory with the trivial fixed point of the other theory in the

next subsection.

C.1 Relation between Standard and Alternative Quantiza-

tions

We had remarked in subsection 2.2.2 how the undeformed alternative and standard quan-

tized theories are Legendre transform of each other. This relationship doesn’t hold exactly

anymore for the regulated theories given by the inclusion of (2.19) and (2.27). However,

as one would expect, the UV fixed point of the regulated standard quantized theory is the

alternative theory and vice versa. In the following discussion we show this relationship

explicitly.

From (C.9) we see that the non-trivial fixed point corresponds to couplings f̄(k2ε2) =
1

δC(kε)
.

So the correlators at the non-trivial fixed points are given by, (2.44) and (2.52),

〈O(k)O(−k)〉fp+ =

k2ν 21−2νΓ(1− ν)

Γ(ν)
+ ε−2ν δCST (kε)

2 +
(kε)2ν

δCST (kε)

21−2νΓ(1− ν)

Γ(ν)

(C.10a)

〈O(k)O(−k)〉fp− =

−k−2ν 22ν−1Γ(ν)

Γ(1− ν)
+ ε2ν δCAQ(kε)

2− (kε)−2ν

δCAQ(kε)

22ν−1Γ(ν)

Γ(1− ν)

(C.10b)

here, the superscript fp signifies that we are computing the correlator at the non-trivial

fixed point of the theory. The flow towards UV starting from the standard quantization

is defined by taking the limit kε → ∞ in (C.10a). In this limit the correlation function

becomes,

〈O(k)O(−k)〉fp+

∣∣∣
kε→∞

=
(
ε−2νδCST

)2
[
ε2ν

δCST
− k−2ν 22ν−1Γ(ν)

Γ(1− ν)

]
(C.11)

which is the same as the correlator of the regulated alternative theory if we identify δCAQ =

1/δCST , upto some overall multiplicative wavefunctional renormalization, O−(k) = (ε−2νδCST )−1·
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O+(k) = f∗+O+(k).2 Similarly for the flow towards IR fixed point from the alternative fixed

point, we take the IR limit, kε→ 0 in (C.10b),

〈O(k)O(−k)〉fp−
∣∣∣
kε→0

=
(
ε2νδCAQ

)2
[
ε−2ν

δCAQ
+ k2ν 21−2νΓ(1− ν)

Γ(ν)

]
(C.12)

which again is the same as the correlator of the regulated standard theory with the iden-

tification δCST = 1/δCAQ, and O+(k) = (ε2νδCAQ)−1 · O−(k) = f∗−O−(k). Thus clearly,

the standard quantized theory and alternative quantized theory are connected to each other

with RG flow as IR and UV fixed points.

All the results discussed here are parallel to the field theory calculations that were presented

in subsection 2.6.4.

2This wavefunctional renormalization is well known in the literature and provides for the correct scaling
dimension of the operators at the non-trivial fixed point.
Also, for clarification of notation, f∗± are the non-trivial fixed points for the standard and alternative theories.
O+ and O− are the operators dual to the bulk field φ at the standard and alternative fixed points respectively.
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Large N limit of O(N)

Wilson-Fisher model

Let us consider the following Euclidean action in d = 4− ε dimensions (see, e.g. [7])

S =

∫
ddx

{
1

2
(∂µφi)

2 +
1

2
m2

0O(x) +
1

4!

g0

N
ΛεO(x)2

}
, O(x) = φiφi(x)

The phase diagram and fixed points of this model are shown in Fig. D.1. The model

possesses a critical surface (where the correlation length diverges) given by

m2
0 = −g0

1

6
ΛεΩd(0), Ωd(0) ≡ 1

(2π)d

∫ Λ ddk

k2
∝ Λd−2

The β-function is given by

m0
2

g0

Figure D.1: Large-N Wilson-Fisher: fixed points and phase diagram.

Λ∂Λg0 = β(g0) = −εg0 +
N + 8

N

g2
0

48π2
+O(g3

0)
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which shows a UV fixed point at g0 = 0 and an IR fixed point at

g∗0 = ε
48π2N

N + 8
+O(ε2)

The two-point function ofO(x) can be obtained in the largeN limit by saddle point methods,

and is given by (see Sections 2.3 and 2.4 of [7], especially Eqs. (2.57) and (2.59))

〈O(p)O(q)〉 = G(p)δ(p+ q), G(p) = −Λ−ε
12
g0

1 + Λε g0

6 BΛ(p)

BΛ(p) =

∫ Λ ddk

k2(k − p)2
= p−ε

(
b0 + b1(p/Λ)2 + · · ·

)
+ Λ−ε

(
a0 + a1(p/Λ)2 + · · ·

)
(D.1)

where b, a are some constants.

The IR behaviour: IR limit is given by p/Λ→ 0,

GIR(p) = −72Λ−2ε

g2
0Z

2
pε
[
1 +

( p
Λ

)ε(
δC +

6

g0Z2

)]−1

p/Λ→∞−−−−→ − 72Λ−2ε

g2
0Z

2
pε (D.2)

where, we have used the notation, Z2 =
(
b0 + b1(p/Λ)2 + · · ·

)
, Z2·δC =

(
a0 + a1(p/Λ)2 + · · ·

)
.

The renormalized IR operators are given by OIR =
(
g0 Λε

12

)2
OUV , which is well known for

the Wilson-Fisher fixed point.1

The UV behaviour: In the limit p/Λ→∞, we get2

GUV (p) = −
12Λ−ε

g0

1 + g0

6 Z
2 · δC

[
1 +

g0

6 Z
2

1 + g0

6 Z
2 · δC

(
Λ

p

)ε]−1

p/Λ→∞−−−−→ −
12Λ−ε

g0

1 + g0

6 Z
2 · δC +

2Z2

(
1 + g0

6 Z
2 · δC

)2 p−ε (D.3)

which again agrees with the general analysis presented in subsection 2.6.4, upto some nor-

malization and contact terms which can be attributed different regulation used in [7].

1Note that there is a slight difference in the correlator here compared to subsection 2.6.4 because the
correlator in (D.1) is not of the form G

1+fG
, and the conventions in [7] are such that the IR correlator appears

without the contact-terms.
2Note that the normalization of the two-point function differs from the main text, due to a different

normalization of the operator O(x). We can identify correctly normalized UV operator as, OUV =
√

2 Z O
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Large N , Probe approximation and

Hamilton-Jacobi

Probe approximation: Let us consider a free massive scalar field described by (2.4) but

coupled to a perturbed metric of the form gMN = ḡMN +
√
κ hMN where ḡMN is now the

AdS metric (2.3). In this case the bulk action is of the schematic form (where we focus on

the κ-dependence)

S ∼ Sb + Sgrav + Sint,

Sb ∼
∫

(∂φ)2 +m2φ2, Sgrav ∼
∫

(∂h)2, Sint ∼
∫ √

κ(h∂φ∂φ+ h∂h∂h) + κ hh∂h∂h

(E.1)

The bulk partition function, computed from the above, clearly matches (in large N counting)

a field theory partition of the form 〈exp
[∫
φ0(x)O(x)

]
where the connected two-point func-

tion is normalized as 〈OO〉 ∼ O(1). The connected 3-point function 〈OT̃ T̃ (where T̃ is the

normalized stress tensor satisfying 〈T̃ T̃ 〉 ∼ O(1)) from the AdS computation is now ∼ √κ
which matches with the field theory result O(1/N).1 In the above we have assumed that the

scaling dimension of O(x) is O(1) (compared with N , or more generally, with the central

charge c of the CFT). The back-reaction on the metric is then given by the equation of mo-

tion for the graviton ∂2h ∼ √κ〈∂φ∂φ〉. Now 〈φφ〉 ∼ O(1) since φ is canonically normalized.

(Alternatively, 〈φφ〉 is related to 〈OO〉 by bulk-boundary correspondence and the latter is,

by convention, O(1). We could also arrive at this result by noting that δg ∼ GNTbulk,µν

which is ∼ GN 〈O|Tµν |O〉 ∼ GN ∼ 1/N2 (which matches h ∼ 1/N . From the last point of

view, it is clear that we need the single trace operator to have scaling dimension ∆ ∼ O(1).

1We made these arguments for a large N gauge theory such as N = 4 SYM, but for vector models and
other examples, this counting can be appropriately modified.
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The above argument about probe approximation can be easily extended to the case when

the CFT is deformed by both single trace and double trace operators. The zero-th order

bulk scalar action, Sb remains quadratic.

We should make a remark here about self-interaction of the bulk scalar. Typically the

connected 3-point function 〈OOO〉 will be non-vanishing. But this will also be O(1/N).

Hence Sint will have a term ∼
∫ √

κφ3.

Justification of Hamilton-Jacobi: We argued above that in the large N approximation,

it suffices to consider a quadratic action, making Hamilton-Jacobi approximation to the

Schrödinger equation is exact (up to a pre-factor which is not important for our purpose).



Appendix F

Green’s function of Laplacian in

AdS2

Green’s functions in hyperbolic spaces are well studied. Therefore, in this appendix, follow-

ing [180], we only provide a quick review of some results that are important for this paper.

In the Poincare half plane, H, the Laplacian is given by,

�̂ = ζ2
(
∂2
ζ + ∂2

τ

)
(F.1)

We are interested in solving the Green’s function equation,

�̂G(~x, ~x′) = ζ2δ(2)(~x− ~x′) (F.2)

It is convenient to work with the coordinates, z = ζ + iτ, z̄ = ζ − iτ . Geodesic distances

between two points, z, z′, on H are given by,

d(z, z′) =
1√
4πµ

arccos

(
1 +

|z − z′|2
2 Re[z] Re[z′]

)
(F.3)

Hyperbolic symmetry implies that the Green’s function depends only on the geodesic dis-

tance, G(z, z′) = f(d). Switching to geodesic polar coordinates centered around z′,

ds2 = dr2 + sinh2(2
√
πµ r)dθ2 (F.4)

In these coordinates, (F.2) becomes,

[
1

sinh
(
2
√
πµ r

) ∂r(sinh(2
√
πµ r)∂r)

]
f(r) =

δ(r)

sinh
(
2
√
πµ r

) (F.5)
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We regulate the above equation by first solving the resolvent for the operator −�+4πµ s(s−
1), and then taking the limit, s → 1. Moreover, we first solve the homogeneous condition

and then impose an appropriate condition on the discontinuity of the resolvent at origin to

solve for the Green’s function. The solution to the regulated homogeneous equation,

[
1

sinh
(
2
√
πµ r

) ∂r(sinh(2
√
πµ r)∂r) + s(s− 1)

]
fs(r) = 0 (F.6)

is given by,

fs(r) = a1Qs−1(cosh(2
√
πµ r)) + a2Ps−1(cosh(2

√
πµ r)) (F.7)

where, Ps, Qs are Legendre functions of first and second kind respectively, and a1, a2 are

some constant of integrations. To fix the normalization and the discontinuity at the origin,

we substitute (F.7) into (F.5) and integrate on both sides. This fixes the solution for the

resolvent to be,

fs(r) = − 1

2π
Qs−1(cosh(2

√
πµr))

Gs(z, z
′) = − 1

2π
Qs−1

(
1 +

|z − z′|2
2 Re[z] Re[z′]

)

= − Γ(s)2

4πΓ(2s)

(
1 +

|z − z′|2
4 Re[z] Re[z′]

)−s
2F1

(
s, s; 2s;

(
1 +

|z − z′|2
4 Re[z] Re[z′]

)−1
)

(F.8)

Taking s→ 1, the Green’s function is given by,

G(z, z′) =
1

4π
log

[
1−

(
1 +

|z − z′|2
4 Re[z] Re[z′]

)−1
]

(F.9)

In terms of the ζ − τ coordinates, this is,

G({ζ1, τ1}, {ζ2, τ2}) =
1

4π
log

[
(ζ1 − ζ2)2 + (τ1 − τ2)2

(ζ1 + ζ2)2 + (τ1 − τ2)2

]
(F.10)

The Green’s function is quite instructive in this form. It is same as the flat space Green’s

function in 2-dimensions with an additional contribution coming from the ‘mirror charge’

at {−ζ2, τ2}. This is not surprising because AdS2 is Weyl scaled flat metric and hence has

the same Green’s function up to imposition of boundary conditions.

F.1 Green’s function for thermal AdS2

Thermal AdS2 is defined by periodic identification of τ coordinate over a length β. Thus

the metric remains same as pure AdS2 and so does the Laplacian given in (F.1). However,

now the Green’s function should be invariant under the shift ∆τ = τ1− τ2 → ∆τ +nβ, with
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n ∈ Z. This can be achieved by taking using the method of images,

Gthermal({ζ1, τ1}, {ζ2, τ2}) =
1

4π

∞∑

n=−∞
log

[
(ζ1 − ζ2)2 + (∆τ + nβ)2

(ζ1 + ζ2)2 + (∆τ + nβ)2

]
(F.11)

This sum can be computed explicitly,

Gthermal({ζ1, τ1}, {ζ2, τ2}) =
1

4π
log




cosh
(

2π(ζ1−ζ2)
β

)
− cos

(
2π∆τ
β

)

cosh
(

2π(ζ1+ζ2)
β

)
− cos

(
2π∆τ
β

)


 (F.12)

This Green’s function was used in the computations of the partition function in section 3.7

which was then subtracted from the partition function in black hole geometries discussed in

that section.





Appendix G

Variation of the induced gravity

(Polyakov) action

In this appendix we will study the exact variation of the Polyakov action, (3.28). We haven’t

found a discussion of these covariant equations of motion anywhere in literature, we think

that it might have been worked out personally, they haven’t been presented in published

form. Since the action is non-local, so are the equations of motion.1 While we won’t be

solving the equations in full generality, we show,

1. That the diagonal part of the equations of motion are the same as the one we obtain

for the Liouville mode, φ, in conformal gauge. These is the equation of motion that

one obtains for Liouville field theory with a background metric, ĝ.

2. AdS2 and AAdS2 geometries that we have discussed in the paper satisfy the equations

of motion.

3. The most general solutions ([98, 99]) of the Liouville mode, φ, in AdS2 background,

φ =
1

2
log

[
(z + z̄)2 ∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]

obtain further constraints from the equations of motion. That is not surprising because

the above solutions were obtained from solving only the Liouville equation. This

also bodes well with the degree of freedom counting in 2d theory of gravity. These

constraints force the solutions of g(z), ḡ(z̄) to be SL(2,C) transformations of complex

plane, (3.36). However, the boundary conditions reduce it to SL(2,R) transformations,

which are the isometries of the geometries that we are interested in. The remaining

1This also makes this section pretty ugly in terms of the equations.
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solutions that don’t satisfy the boundary conditions are what we call non-normalizable

solutions.

4. This exercise also justifies the boundary terms that we have introduced in (3.28) that

we have argued are required for a well defined variational principle.

We use following notations to avoid clutter in the forthcoming equations:

∫ x

Γ
≡
∫

Γ
d2x
√
g(x) (G.1a)

∫ s

∂Γ
≡
∫

∂Γ
ds
√
γ(s) where s is the boundary coordinate (G.1b)

G(x, y) is the Green’s function of the Laplacian satisfying, �(x)G(x, y) =
δ2(x− y)√

g(x)

(G.1c)

∇(x)
µ denotes the covariant derivative with respect to variable x (G.1d)

Bulk Term We start with varying the bulk term in (3.28).

δSbulkcov [g] =
1

16πb2

∫

Γ
δ

(√
g

[
R

1

�
R− 16πµ

])

=
1

16πb2

∫

Γ
d2x

∫

Γ
d2y δ

[√
g(x)

√
g(y)R(x)G(x, y)R(y)

]
+

1

16πb2

∫

Γ
d2x δ

[√
g(x)

]
(−16πµ)

=
1

16πb2

∫

Γ
d2x

∫

Γ
d2y

(
2 δ
[√

g(x)R(x)
]√

g(y)R(y)G(x, y) +
√
g(x)R(x)

√
g(y)R(y) δ[G(x, y)]

)

+
1

16πb2

∫

Γ
d2x δ

[√
g(x)

]
(−16πµ)

Here, in the last equation on RHS we have used the symmetry of Green’s function in x− y
coordinates to multiply the first term by 2. In the above equation, the first and last term

are very easy to compute while the second term is slightly more non-trivial. The variations

of the Ricci scalar and metric determinant are:

δ
[√

g(x)
]

= −1

2

√
g(x)gµν(x)δgµν(x)

δ[R(x)] = Rµνδg
µν +∇µvµ

where, vσ = gµν∇σ(δgµν)−∇α(δgασ)
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Henceforth, we are dropping the overall factor of 1/16πb2 and will reinstate it at the end.

δSbulkcov [g] = 2

∫ x

Γ

∫ y

Γ

(
Rµν(x)− 1

2
gµν(x)R(x)

)
δgµν(x)R(y)G(x, y) + 2

∫ x

Γ

∫ y

Γ
∇(x)
µ vµR(y)G(x, y)

+

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)] +

∫ x

Γ
8πµ gµν(x)δgµν(x)

= 2

∫ x

Γ

∫ y

Γ
∇(x)
σ

[
gµν(x)∇σ(x)(δg

µν(x))−∇(x)
α (δgασ(x))

]
R(y)G(x, y)

+

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)] +

∫ x

Γ
8πµ gµν(x)δgµν(x)

where, in the second line we have dropped the term containing Einstein tensor which is

identically zero in 2 dimensions. Subsequently, we integrate by parts, keeping track of all

the boundary terms that we pick in the process.

δSbulkcov [g] = −2

∫ x

Γ

∫ y

Γ

[
∇σ(x)(gµν(x)δgµν(x))−∇(x)

α (δgασ(x))
]
R(y)∇(x)

σ G(x, y)

+ 2

∫ y

Γ

∫ x

Γ
∇(x)
σ [vσ(x)R(y)G(x, y)] +

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)] +

∫ x

Γ
8πµ gµν(x)δgµν(x)

= −2

∫ x

Γ

∫ y

Γ

[
∇σ(x)(gµν(x)δgµν(x))−∇(x)

α (δgασ(x))
]
R(y)∇(x)

σ G(x, y)

+ 2

∫ y

Γ

∫ s

∂Γ
n̂σ(s)vσ(s) R(y)G(x, y) +

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)] +

∫ x

Γ
8πµ gµν(x)δgµν(x)

= −4

∫ y

Γ

∫ s

∂Γ
δK R(y)G(x, y)− 2

∫ x

Γ

∫ y

Γ
∇σ(x)

(
gµν(x)δgµν(x) R(y)∇(x)

σ G(x, y)
)

+

∫ x

Γ
gµν(x)δgµν(x)

(
2R(x) + 8πµ

)
+ 2

∫ x

Γ

∫ y

Γ
∇(x)
α

(
δgασ(x) R(y)∇(x)

σ G(x, y)
)

− 2

∫ x

Γ

∫ y

Γ
δgασ(x)∇(x)

α ∇(x)
σ G(x, y) R(y) +

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)]

in the second line on RHS, we have used the Gauss’s law to make the bulk integral into a

surface integral. The first term in the second line is also the term that needs to be cancelled

because it involves derivatives of variation of metric. Using n̂σvσ = −2δK, one can clearly

see that this term is cancelled by the variation of second term in (3.28). In the third line, we

have used integration by parts in the second term of the second line. We have obtained two

boundary terms in the process (2nd and 4th term in the third line), both of which involve

variation of the metric on the boundary, and under Dirichlet boundary condition, are zero.

They will be dropped from here onwards.

δSbulkcov [g] = −4

∫ y

Γ

∫ s

∂Γ
δK R(y)G(x, y) +

∫ x

Γ
gµν(x)δgµν(x)

(
2R(x) + 8πµ

)

− 2

∫ x

Γ

∫ y

Γ
δgασ(x)∇(x)

α ∇(x)
σ G(x, y) R(y) +

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)]

(G.2)
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Now we embark upon the computation of δ[G(x, y)]. The Green’s function in a curved

background is defined in a covariant manner by (G.1c). Varying this equation with respect

to metric,

δ�(x)G(x, y) +�(x)δG(x, y) =
1

2
√
g(x)

gµν(x)δgµν(x) δ2(x− y)

δG(x, y) =
1

2
gµν(y)δgµν(y) G(x, y)−

∫ w

Γ
G(x,w)δ�(w)G(w, y)

(G.3)

Here in the second line we have integrated both sides with a Green’s function. The action

of Laplacian on a scalar is also given by, �(x)f(x) = 1√
g(x)

∂µ

(√
g(x)gµν(x)∂νf(x)

)
. Thus

the variation of the � operator is,

δ�(x) f(x) =
1

2
gµν(x)δgµν(x) �(x)f(x)− 1

2
√
g(x)

∂µ

(√
g(x)gρσ(x)δgρσ(x)gµν(x)∂νf(x)

)

+
1√
g(x)

∂µ

(√
g(x)δgµν(x)∂νf(x)

)

= −1

2
gµν(x)∂νf(x) ∇µ

(
gρσ(x)δgρσ(x)

)
+

1√
g(x)

∂µ

(√
g(x)δgµν(x)∂νf(x)

)

= −1

2
gµν(x)∂νf(x) ∇µ

(
gρσ(x)δgρσ(x)

)
+ ∂µ(δgµν(x)) ∂νf(x) + δgµν(x) ∂µ∂νf(x)

+
1

2g(x)
∂µ(g(x)) δgµν(x)∂νf(x)

= −1

2
gµν(x)∂νf(x) ∇µ

(
gρσ(x)δgρσ(x)

)
+ ∂µ(δgµν(x)) ∂νf(x) + δgµν(x) ∂µ∂νf(x)

+ Γσµσ δg
µν(x)∂νf(x)

⇒ δ�(x) f(x) = −1

2
gµν(x)∂νf(x) ∇µ

(
gρσ(x)δgρσ(x)

)
+∇µ(δgµν(x)) ∂νf(x) + δgµν(x) ∇µ∂νf(x)

(G.4)

We have used chain rule of differentiation to come from the first line on RHS to the second

line. We have also changed the normal derivative acting on gρσ(x)δgρσ(x) into a covariant

derivative because it is a scalar. In the fourth line we have used the identity, ∂µg(x) =

2g(x)Γνµν . We have also converted some of the differentiations into covariant derivatives

in last line. For our computations, the role of f in the above computations is played by,



Appendix G 167

∫ y
Γ

√
g(y)R(y)G(w, y). Using (G.4) in (G.3) and substituting back into last term of (G.2),

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)] =

∫ x

Γ

∫ y

Γ
R(x)R(y)

[
1

2
gµν(y)δgµν(y) G(x, y)−

∫ w

Γ
G(x,w)δ�(w)G(w, y)

]

=
1

2

∫ x

Γ

∫ y

Γ
R(x)R(y)gµν(y)δgµν(y) G(x, y)

+
1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)G(x,w)

[
gµν(w)

∂

∂wν
G(w, y) ∇wµ

(
gρσ(w)δgρσ(w)

)

− 2∇wµ (δgµν(w))
∂

∂wν
G(w, y)− 2δgµν(w) ∇wµ

∂

∂wν
G(w, y)

]

=
1

2

∫ x

Γ

∫ y

Γ
R(x)R(y)gµν(y)δgµν(y) G(x, y)

− 1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
G(x,w) �(w)G(w, y) gρσ(w)δgρσ(w)

]

− 1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
gρσ(w) gµν(w)

∂

∂wµ
G(x,w)

∂

∂wν
G(w, y)

]
δgρσ(w)

+
1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)∇wµ

[
G(x,w)gµν(w)

∂

∂wν
G(w, y) gρσ(w)δgρσ(w)

]

−
∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)∇wµ

[
G(x,w)δgµν(w)

∂

∂wν
G(w, y)

]

+

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
∇wµG(x,w)δgµν(w)

∂

∂wν
G(w, y)

]

+

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)G(x,w) δgµν(w) ∇wµ

∂

∂wν
G(w, y)

−
∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)G(x,w)δgµν(w) ∇wµ

∂

∂wν
G(w, y)

in the third line on RHS, the first two terms cancel between themselves, while the last two

terms also cancel between themselves. The fourth and the fifth terms are total derivative

terms that are essentially some boundary terms. These terms vanish since we are working

with Dirichlet boundary conditions such that the Green’s function vanishes on the boundary.

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)] =

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]
δgµν(w)

(G.5)
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Thus, the final expression of the variation of the bulk action is (with the reinstating of the

overall 1
16πb2

factor),

δSbulkcov [g] = − 1

4πb2

∫ y

Γ

∫ s

∂Γ
δK R(y)G(x, y) +

1

16πb2

∫ x

Γ
gµν(w)δgµν(w)

(
2R(w) + 8πµ

)

− 1

8πb2

∫ x

Γ

∫ y

Γ
δgασ(w)∇(w)

α ∇(w)
σ G(w, y) R(y)

+
1

16πb2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]
δgµν(w)

(G.6)

The bulk equations of motion are non local and given by:

0 =
1

16πb2

(
gµν(w)

(
2R(w) + 8πµ

)
+

∫ x

Γ

[
−2∇(w)

µ ∇(w)
ν G(w, x)R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]
R(x)R(y)

)

(G.7)

Now let us look at the trace part of the equations of motion. The last term in the above

equation doesn’t contribute in that case.

0 =

(
2[2R(w) + 8πµ] +

∫ x

Γ

[
−2�(w)G(w, x)R(x)

])

= R(w) + 8πµ

(G.8)

In conformal gauge, where gµν(x) = e2φ(x)ĝµν(x), this is same as, (3.33),

R̂(x)− 2�̂φ(x) = −8πµe2φ(x) (G.9)

which is also the equation of motion for the Liouville mode φ with background metric ĝ. In

AdS2 background (dŝ2 =
(
1/πµ(z + z̄)2

)
dz dz̄), the most general solution of this equation

is, [98, 99],

φ =
1

2
log

[
(z + z̄)2 ∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]
(G.10)

where, in Euclidean space, g(z), ḡ(z̄) are complex function which are complex conjugate of

each other. Equivalently, in Lorentzian space, they can be chosen to be two independent

real functions.

Solving (G.7) in full generality is a daunting task that we don’t undertake. We show that
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AdS2 satisfies these equations of motion, and also provide an argument that AAdS2 geome-

tries satisfy them too. Traceless part of (G.7) is,

0 =

∫ x

Γ

[
−2

(
∇(w)
µ ∇(w)

ν G(w, x)− 1

2
gµν(w)�(w)G(w, x)

)
R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]
R(x)R(y)

(G.11)

One way to check that AdS2 satisfies the on-shell equations of motion is to directly use

the (F.9) in the above expression and do the exact computation. However, it is much

easier if we think of AdS2 as Weyl scaling of flat space, gAdSαβ = e2Ωηαβ, where for H,

Ω = − log
(√
πµ(z + z̄)

)
= − log

(√
4πµζ

)
. We use the formula for Ricci scalar, R(x) =

−2e−2Ω�flatΩ(x) to write (G.11) as,

0 = 4

∫

Γ
d2xe2Ω

[(
∇(w)
µ ∇(w)

ν G(w, x)− 1

2
gµν(w)�(w)G(w, x)

)(
e−2Ω�(x)

flatΩ(x)
)]

+ 4

∫

Γ
d2x

∫

Γ
d2ye2Ω(x)e2Ω(y)

[
∂G(w, x)

∂wµ
∂G(w, y)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, y)

∂wβ

]

×
(
e−2Ω(x)�(x)

flatΩ(x)
)(
e−2Ω(y)�(y)

flatΩ(y)
)

= 4

∫

Γ
d2x

[(
∇(w)
µ ∇(w)

ν �
(x)
flatG(w, x)− 1

2
gµν(w)�(w)�(x)

flatG(w, x)

)
Ω(x)

]

+ 4

∫

Γ
d2x

∫

Γ
d2y

[
∂
(
�(x)
flatG(w, x)

)

∂wµ

∂
(
�(y)
flatG(w, y)

)

∂wµ

− 1

2
gµν(w)gαβ(w)

∂
(
�(x)
flatG(w, x)

)

∂wα

∂
(
�(y)
flatG(w, y)

)

∂wβ

]
× Ω(x)Ω(y)

= 4

[
∇(x)
µ ∇(x)

ν Ω(x)− 1

2
gµν(w)�(w)Ω(x)

]
+ 4

[
∂Ω(x)

∂wµ
∂Ω(y)

∂wµ
− 1

2
gµν(x)gαβ(x)

∂Ω(x)

∂xα
∂Ω(y)

∂xβ

]

= 0

(G.12)

In the second line we have used integration by parts to shift �flat on the corresponding

Green’s functions; we have dropped the vanishing boundary terms on our way. We also use

the fact discussed at the end of Appendix F, that the Green’s function remain unchanged for

the Weyl scaled metrics, upto impositions of boundary condition. In this case the boundary

condition, G({ζ,τ}, {0, τ2}) = 0, is imposed by adding a contribution of a ‘mirror charge’ at

a point reflected across the boundary. Thus the flat space Laplacian acting on this Green’s

function gives two δ-functions, one each for the ‘original charge’ and ‘mirror charge’.2 The

δ-function of the mirror charge lies outside the region of integration and hence doesn’t

contribute.

2The δ-function is a flat space δ-function.
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The equations of motion (G.9),(G.11) are covariant equations under diffeomorphisms. Thus

they will also be satisfied for the class of geometries that we constructed in section 3.5.

We can still do slightly better and solve the equations of motion for Weyl scaled metrics

around a given background. Around AdS2 background, from (G.11) we get following Vira-

soro constraints for φ,

4


 ∂2φ(z, z̄)− (∂φ(z, z̄))2 + 2

∂φ(z, z̄)

z + z̄
0

0 ∂̄2φ(z, z̄)−
(
∂̄φ(z, z̄)

)2
+ 2

∂̄φ(z, z̄)

z + z̄


 = 0

(G.13)

Solving (G.9) and (G.13) simultaneously, we get solutions of the type (G.10), but with g, ḡ

additionally restricted by the conditions,

0 =




2

(
g(3)(z)

g′(z)
− 3

2

g′′(z)2

g′(z)2

)
0

0 2

(
ḡ(3)(z)

ḡ′(z)
− 3

2

ḡ′′(z)2

ḡ′(z)2

)




(G.14)

which is basically the Schwarzian derivatives of g(z) and ḡ(z̄). This restricts g(z) to be of

the form,

g(z) =
az + ib

icz + d
(G.15)

for a, b, c, d ∈ C, and ḡ(z̄) is its complex conjugate. Imposing the boundary condition,

g(z) + ḡ(z̄)|z+z̄=0 = 0 further restricts a, b, c, d ∈ R. These precisely corresponds to the

isometries of the geometries that we are considering. However, more general choice of these

parameters gives us solutions that we call non-normalizable in this paper. These solutions

diverge as 1/ζ for small deviations around identity,

a = 1 + δa

b = δb

c = δc

d = 1− δa

(G.16)
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Boundary Term A similar analysis for the variation of boundary terms in (3.28) gives,

δSbdycov [g] =
1

16πb2

∫

Γ
δ

(
4
√
γK 1

�
R

)

=
1

4πb2

∫ x

Γ

∫ s

∂Γ
δK(s) G(x, s)R(x)− 1

4πb2

∫ x

Γ

∫ s

∂Γ
δgµν(x)

[
∇(x)
µ ∇(x)

ν G(x, s)K(s)
]

+
1

4πb2

∫ s

∂Γ

∫ x

Γ

∫ w

Γ
δgµν(w)

[
∂G(w, x)

∂wµ
∂G(w, s)

∂wµ
− 1

2
gµν(w)gαβ(w)

∂G(w, x)

∂wα
∂G(w, s)

∂wβ

]
K(s)R(x)

− 1

2πb2

∫ s

∂Γ

∫ s′

∂Γ
δK(s)G(s, s′)K(s′)

(G.17)

Note that the first term in RHS of (G.17) exactly cancels the last term in RHS of (G).

Moreover, the last term in (G.17) exactly cancels the variation arising from the last term

in (3.28). Also in writing the above expressions we have made use of the fact that we are

imposing Dirichlet boundary conditions on the metric, δgµν |∂Γ = 0
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Analysing off-shell constraints

In this section we demonstrate that the constraints coming from the traceless part of the

equations of motion in the conformal gauge, viz. the ‘Virasoro constraints’ (3.35), do not

permit any off-shell degrees of freedom apart from those representing large diffeomorphisms

of AdS2 geometry.

It is enough to carry out this analysis in absence of the large diffeomorphisms, with d̂s2

as in (3.32). The generalization to (3.47) is obtained by applying the large diffeomorphism

(3.46), in the manner explained in Section 3.5.

Simplifying the holomorphic part of the constraints,

∂2φ(z, z̄)− (∂φ(z, z̄))2 + 2
∂φ(z, z̄)

z + z̄
= 0

⇒ ∂
(

(z + z̄)2 ∂
(
e−φ(z,z̄)

))
= 0 (H.1)

⇒ ∂
(
e−φ(z,z̄)

)
=

A(z̄)

(z + z̄)2

⇒ e−φ(z,z̄) = − A(z̄)

(z + z̄)
+B(z̄) (H.2)

Similarly, solving the anti-holomorphic part gives,

e−φ(z,z̄) = − C(z)

(z + z̄)
+D(z) (H.3)

In the above equations, the functions A,B,C,D are arbitrary and independent, to begin

with, as they appear as “constants’ of integration. However, they must satisfy the require-

ment that the two expressions (H.2) and (H.3) for the same quantity e−φ(z,z̄) must be (i)

equal to each other and (ii) real. Assuming a general power series form of each of the func-

tions, we find that these two requirements can only be met if A,C are quadratic and B,D
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are linear, and, in particular, of the form

A(z̄) = az̄2 + 2ibz̄ + c, B(z̄) = az̄ + d + ib

C(z) = az2 − 2ibz + c, D(z) = az + d− ib,
(H.4)

leading to the following solution for the Liouville field,

e−φ(z,z̄) =
azz̄ + (d + ib)z + (d− ib)z̄ − c

z + z̄

⇒ φ(z, z̄) =
1

2
log

[
(z + z̄)2

(azz̄ + (d + ib)z + (d− ib)z̄ − c)2

]
(H.5)

Here the constants a,b, c,d are real. Out of these four, only three are physical. The reason

is that the Virasoro constraints, expressed as in (H.1) (and the similar, antiholomorphic

equation) are homogeneous linear equations in the variable e−φ(z,z̄), which implies that

e−φ(z,z̄) → constant×e−φ(z,z̄) is a symmetry of the equations. Hence, the constants a,b, c,d

are only determined up to a (real) scale factor.

It is important to check that the solution (H.5) of the Virasoro constraints satisfies the

equation of motion (3.33). This can be done in two ways:

(i) By direct substitution of (H.5) into (3.33), we find that (3.33) is satisfied up to a term

proportional to ac + (d + ib)(d− ib)− 1. By using the scale symmetry mentioned above,

we can clearly make this vanish, e.g. by treating a,b and d as independent variables and

fixing c = (1− (d + ib)(d− ib)) /a (this is equivalent to choosing a gauge).

(ii) Alternatively, one can match (H.5) with the solution (3.34). We find that the parameters

of the two solutions are related as follows

āc− ac̄ = −ia, b̄d− bd̄ = −ic, b̄c+ ad̄ = d− ib (H.6)

The SL(2,C) conditions ad+ bc = 1 translate to the condition

ac + (d + ib)(d− ib) = 1, (H.7)

As mentioned before, on this surface (H.5) solves the equation of motion (3.33). Further-

more, in the analysis of (3.34), we found that the SL(2,R)subgroup, parameterized by real

values of a, b, c, d, correspond to trivial isometries of AdS2, and did not generate a new solu-

tion; there is a natural interpretation of this fact according to (H.6): real a, b, c, d translate

to a = b = c = 0, d = 1, leading to the trivial solution φ = 0. Thus the variables a,b, c,d,

given by (H.6) actually parameterize the nontrivial coset SL(2,C)/SL(2,R). In fact, the

hyperboloid (H.7) parameterizes this coset.

As mentioned before, the above analysis can be generalized to the case of the reference

metric (3.47) by applying the large diffeomorphism (3.46) to the solution (H.5).
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Conclusion: The Virasoro constraints completely fix the Liouville field φ (up to three real

constants). As explained in the text (see Section 3.5), the three constants need to be fixed

as boundary conditions for the path integral (since they correspond to non-normalizable

deformations). Thus, there are no off-shell variables (i.e. variables appearing in the path

integration) that come from the Liouville field φ. The only off-shell variables are represented

by the large diffeomorphisms as in (3.50).





Appendix I

Exact computation of asymptotic

AdS2 geometries

We use the knowledge of exact asymptotically AdS3 geometries to construct AAdS2 geome-

tries. In AdS3 the space of solutions of spacetimes with constant negative curvature is is

given by, [104, 105],

ds2 = L2
(AdS3)

(
dζ2 + 2dxdx̄

ζ2
+ L(x)dx2 + L̄(x̄)dx̄2 − ζ2

2
L(x)L̄(x̄)dxdx̄

)
(I.1)

where, L(x), L̄(x̄) are holomorphic and anti-holomorphic functions, and related to the holo-

graphic stress tensor, [44]. In the above references it is discussed how following large dif-

feomorphisms generate the above class of geometries from the Poincare AdS3 geometry

(ds2 = L2
(AdS3)(du

2 + 2dydȳ)/u2),

y = f(x) +
2ζ2f ′(x)2f̄ ′′(x̄)

8f ′(x)f̄ ′(x̄)− ζ2f ′′(x)f̄ ′′(x̄)

y = f̄(x̄) +
2ζ2f̄ ′(x̄)2f ′′(x)

8f ′(x)f̄ ′(x̄)− ζ2f ′′(x)f̄ ′′(x̄)

u = ζ

(
4f ′(x)f̄ ′(x̄)

)3/2

8f ′(x)f̄ ′(x̄)− ζ2f ′′(x)f̄ ′′(x̄)

(I.2)

In general, in any arbitrary dimensions, it is not difficult to solve for the asymptotic Killing

vectors for any spacetime. The special feature of AdS3 is the fact that these infinitesimal

diffeomorphisms can be integrated to non-linear order. AdS2 being a more constrained ge-

ometry, also enjoys this same feature. Here, we use the known results of the exact non-linear

diffeomorphisms in AdS3 to construct the class of asymptotic AdS2 solutions. In Cartesian

coordinates, y = (x+ iτ)/
√

2, ȳ = (x− iτ)/
√

2, one can obtain AdS2 as a reduction of AdS3

b y restricting to x = 0 slice. Restricting ourselves to those transformations that keeps this
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AdS2 slice invariant, i.e., for f(x) + f̄(x̄)|x+x̄=0 = 0, we find that the following coordinate

transformations are precisely those which generate large diffeomorphisms in AdS2, (3.46),

while keeping us within Fefferman-Graham gauge,

τ̃ = f(τ)− 2ζ2f ′′(τ)f ′(τ)2

4f ′(τ)2 + ζ2f ′′(τ)2
, ζ̃ =

4 ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2

These transformations map the AdS2 metrics, ds2 = (dζ̃2 +dτ̃2)/(4πµ ζ̃2) to AAdS2 geome-

tries, ds2 =

(
dζ2 +

(
1− ζ2

2 {f(τ), τ}
)2
dτ2

)
/(4πµ ζ2).
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Quantum corrections to the

classical action

In this section we discuss the issue of gauge fixing the action (3.28). The idea and Faddeev-

Popov procedure to arrive at the same: We introduce a functional delta-function in our

path integral using the Faddeev-Popov prescription. The corresponding determinant is then

written in terms of fermionic ghosts, which gives rise to new ghost-graviton interaction

vertices.1

The Faddeev-Popov determinant is defined in terms of the gauge-fixing δ-function as follows,

1 = ∆FP

[
ĝ[f(τ)], φ

]
×
∫

[Dε(s)][Dφ][Df(τ)] δ
(
gε

(s) − e2φĝ[f(τ)]
)
×δ
(
ε(s)(z1)

)
δ
(
ε(s)(z2)

)
δ
(
ε(s)(z3)

)

(J.1)

Here, we are denoting the small diffeomorphisms (these are the gauge-symmetry of the

theory) by ε(s). In the subsequent discussion we will drop the (s) superscript to conciseness.

φ denotes the Weyl degree of freedom and will eventually become the Liouville mode. Since

our theory is not Weyl-invariant, unlike in String theory, we don’t factor out these degrees

of freedom. Finally, f(τ) denotes the degree of freedom due to large diffeomorphisms that is

discussed in section 3.5. We are gauge fixing (using only small diffeomorphisms) an arbitrary

metric to a metric that is Weyl equivalent to metrics (3.47). This procedure will give us the

Jacobian corresponding to change of integration ‘variable’ from [Dg] to [Dφ][Df(τ)]. The

δ-functions have been included in the above expression to fix the residual gauge symmetry

corresponding to our gauge choice. This is precisely the SL(2,R) isometry of the geometries

(3.47), and hence we choose to fix three arbitrary points in the interior of AAdS2 geometries.

1In the subsequent discussion in this particular appendix, we call the f degree of freedom of section 3.5
corresponding to large diffeomorphisms of AdS2 as ‘gravitons’.
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The path integral that we are interested in computing is formally written as,

Z =

∫
[Dg]

Vε
e−S[g], Vε is the volume of the symmetry group

and inserting (J.1) into this path integral, we get,

Z =

∫
[Dg][Dε][Dφ][Df(τ)]

Vε
×∆FP

[
ĝ[f(τ)], φ

]
δ
(
gε − e2φĝ[f(τ)]

)
× e−S[g] × (δ-functions)

=

∫
[Dg̃][Dε][Dφ][Df(τ)]

Vε
×∆FP

[
ĝ[f(τ)], φ

]
δ
(
g̃ − e2φĝ[f(τ)]

)
× e−S[g̃] × (δ-functions)

=

∫
[Dε][Dφ][Df(τ)]

Vε
×∆FP

[
ĝ[f(τ)], φ

]
× e−S[e2φĝ[f(τ)]] × (δ-functions)

=

∫
[Dφ][Df(τ)]×∆FP

[
ĝ[f(τ)], φ

]
× e−S[e2φĝ[f(τ)]] × (δ-functions) (J.2)

In the second line on RHS, we have changed integration ‘variables’ from Dg to Dg̃, where,

g =: g̃ε
−1

and used the fact that action and measure are both gauge invariant. In the third

line we have integrated over the metric degrees of freedom using the δ-function. In the last

line we have used the fact that the integrand of third line doesn’t depend on ε anymore,

integration over which simply gives us the volume of the symmetry group.

Faddeev Popov determinant can be easily written in terms of the b and c ghosts as,

∆FP

[
ĝ[f(τ)], φ

]
=

∫
Dcα Dbαβ Dfα exp

[
−
(
bαβ(P̂ c)αβ − bαβ(P̂ f)αβ

)]
×
[

c(z1)c(z2)c(z3)

(z1 − z2)(z2 − z3)(z3 − z1)

]

(J.3)

here, c-insertions are equivalent to the δ-functions appearing in the previous expressions.

bαβ is a symmetric-traceless tensor, and thus has only 2 degrees of freedom. We have defined

operator P̂ such that,

(P̂ x)αβ := (f)∇(αxβ) − ((f)∇ · x) ĝ[f(τ)]αβ

(f)∇ is the covariant derivative w.r.t geometries in (3.47). f is defined in terms of the

fermionized large diffeomorphisms (3.45) as,

f =

(
ζ k′(τ)

k(τ)− ζ2

2 k′′(τ)

)
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where again, k are the fermionized ghost counter-part of the field appearing in (3.45). The

above action can be expanded and written in terms of the components.

P̂ f =




1

({f(τ),τ}ζ2−2)3

[
−2ζ4 ∂τ

(
{f(τ),τ}

)
k′′(τ)

+4ζ2 ∂τ
(
{f(τ),τ}

)
k(τ)+2ζ2 ({f(τ),τ}ζ2−2)k(3)(τ)

+({f(τ),τ}ζ2−2)({f(τ),τ}({f(τ),τ}ζ2−8)ζ2+8)k′(τ)

]
(ζ2{f(τ),τ}+2)(ζ2k′′(τ)−2k(τ))

ζ(ζ2{f(τ),τ}−2)

(ζ2{f(τ),τ}+2)(ζ2k′′(τ)−2k(τ))
ζ(ζ2{f(τ),τ}−2)

1
4{f(τ),τ}ζ2−8

[
16k′(τ)+2ζ4∂τ

(
{f(τ),τ}

)
k′′(τ)

−ζ2{f(τ),τ}({f(τ),τ}ζ2−6)({f(τ),τ}ζ2−4)k′(τ)

−4ζ2∂τ
(
{f(τ),τ}

)
k(τ)−2ζ2({f(τ),τ}ζ2−2)k(3)(τ)

]




(J.4)

P̂ c =




1

ζ({f(τ),τ}ζ2−2)3

[
4ζ3 ∂τ

(
{f(τ),τ}

)
cτ (ζ,τ)

−4ζ ({f(τ),τ}ζ2−2)c(0,1)
τ (ζ,τ)

+ζ ({f(τ),τ}ζ2−2)
3
c
(1,0)
ζ (ζ,τ)

−4({f(τ),τ}ζ2−2)
2
cζ(ζ,τ)

]

(
c
(0,1)
ζ (ζ,τ)+c

(1,0)
τ (ζ,τ)

)
−2

(ζ2{f(τ),τ}+2)cτ (ζ,τ)

ζ(ζ2{f(τ),τ}−2)

(
c
(0,1)
ζ (ζ,τ)+c

(1,0)
τ (ζ,τ)

)
−2

(ζ2{f(τ),τ}+2)cτ (ζ,τ)

ζ(ζ2{f(τ),τ}−2)

1
4ζ({f(τ),τ}ζ2−2)

[
−4ζ3 ∂τ

(
{f(τ),τ}

)
cτ (ζ,τ)

+4ζ ({f(τ),τ}ζ2−2)c(0,1)
τ (ζ,τ)

+4({f(τ),τ}ζ2−2)
2
cζ(ζ,τ)

−ζ ({f(τ),τ}ζ2−2)
3
c
(1,0)
ζ (ζ,τ)

]




(J.5)
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Weyl anomaly in manifolds with

boundary

In this section we compute the most general boundary term for Weyl anomaly in 2-dimensions

on a manifold with a boundary allowed by the Wess-Zumino consistency condition. Let us

start with the variation of (3.28) under a Weyl transformation,

δWScov = − 1

4πb2

∫

Γ

√
g(R+ 8πµ)δω +

1

4πb2

∫

∂Γ

√
γ(s)

∫

Γ

√
g(x) δω(s)R(x) n̂µ(s)

∂

∂yµ
G(x, y)|y=s

+
1

2πb2

∫

∂Γ

√
γ(s1)

∫

∂Γ

√
γ(s2) δω(s2)K(s1) n̂µ(s2)

∂

∂yµ
G(s1, y)|y=s2

− 1

2πb2

∫

∂Γ

√
γ(s) K(s)δω(s) (K.1)

Under a second Weyl transformation

δW2(δW1Scov) = − 1

2πb2

∫

∂Γ

√
γ(s) ∂µδω(s) ∂µδω2(s)− 4µ

b2

∫

Γ

√
g δω2(x) δω1(x)

+
1

2πb2

∫

∂Γ

√
γ(s1)

∫

∂Γ

√
γ(s2) δω1(s1)δω2(s2) n̂µ(s1)n̂ν(s2) ∂µ∂νG(s1, s2)

(K.2)

therefore, since all the terms in the above equation are symmetric in δω1 and δω2, we have,

δW2(δW1Scov)− δW1(δW2Scov) = 0 (K.3)

Thus the boundary terms that we have introduced are consistent with the Wess-Zumino

conditions. All the boundary terms that we have introduced are consistent with the general

analysis in [181].
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Appendix L

Kinematics

In this appendix, we collect some useful facts about the kinematics of the scattering we’re

considering. The basic setup is the tree-level scattering of four identical scalars. We ignore

any four-point coupling between these scalars (since it’s channel-dual already), and focus

on the particles the scalars have a three-point coupling with. These intermediate particles

are exchanged in the s, t and u channels.

L.1 Spinning intermediate particles

Most general scalar-scalar-spin(l) interaction The most general 3-point interaction

between 2 scalars and a spin-l particle is given by:

Sint = λ

∫
dDxσµ1···µl(x)

(
φ(x)

(↔
∂ (µ1

↔
∂ µ2 . . .

↔
∂ µl)

)
φ(x)

)
,

↔
∂ = i(

←
∂ −

→
∂ ) (L.1)

In writing the above interaction term we have taken into account the symmetric-transverse-

traceless representation of an arbitrary spin-l particle.1

Note that the vertex identically vanishes when l is odd. This happens because the above

vertex picks up a sign (−1)l under the exchange of the two φ fields, which is basically a

symmetry. Another way to see this is to consider a 3-point interaction as shown below. The

amplitude should not change under the exchange of particle 1−2. However, this corresponds

to a rotation by an angle π in the center of mass frame and the odd-spin particle picks up

a phase, (−1). Thus for consistency, this 3-point interaction vanishes identically.

1In symmetric-transverse-traceless representation, the polarization of the spinning particle can be ex-
panded in a basis like: ε(µ1εµ2 · · · εµl), where ε · ε = 0, ε · p = 0. Here p is the momentum of the spinning
particle and ε is its polarization.
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Propagator of a spin-l particle Finding the propagator of a general spin-l particle is

a matter of projecting out a l-tensor in the correct symmetric-transverse-traceless represen-

tation and has been worked out in [182, 183]. We quote the momentum space propagator

here:

−iΘ(l)
µ1...µs,ν1...νl |p2=m2

−p2 +m2
(L.2)

where Θ
(l)
(µ),(ν) is the spin-(l) analogue of the projection operator given by:

Θ(s)
µ1...µs,ν1...νl

=

{
[l/2]∑

p=0

(−1)pl!(2l +D − 2p− 5)!!

2pp!(l − p)!(2l +D − 5)!!
Θµ1µ2Θν1ν2 . . .Θµ2p−1µ2pΘν2p−1ν2p

×Θµ2p+1ν2p+1 . . .Θµl,νl

}

sym(µ),sym(ν)

, (L.3)

where Θµν = ηµν − pµpν/p2 is the spin one projection operator and [l/2] gives the largest

integer lesser than l/2. In the above expression {·}sym(µ),sym(ν) denotes that the expression

needs to be symmetrized in all the µ, ν indices.

4-scalar scattering with spin(l) exchange Using the expressions for the interaction

between scalar and spin-l in (L.1) and the propagator, (L.3), one can easily write down the

4-scalar scattering amplitude with spin-l intermediate particle.

m, l
λ λ

Figure L.1: 4-scalar scattering with an exchange of particle of spin (l) and mass (m)

〈φ(k1)φ(k2)φ(k3)φ(k4)〉l = λ2

(
l! Γ
(
D−3

2

)(
s− 4M2

)l

2lΓ
(
D−3

2 + l
) × C

D−3
2

l

[
1 +

2t

s− 4M2

])
× 1

s−m2

(L.4)

Here, C
D−3

2
l are the Gegenbauer polynomials, which originate in the above expression due

the particular structure of contractions that appears in (L.3). The Gegenbauer polynomials

obey the following orthogonality condition:

π∫

0

dθ(sin θ)D−3 C
D−3

2
l [cosθ]C

D−3
2

l′ [cosθ] = 24−Dπ
Γ(l +D − 3)

(
l + D−3

2

)
Γ(l + 1)Γ

(
D−3

2

)2 δll′ (L.5)
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The residue of the pole at s = m2 is given by,

λ2

(
l! Γ
(
D−3

2

)(
m2 − 4M2

)l

2lΓ
(
D−3

2 + l
) × C

D−3
2

l [cos(θ)]

)
(L.6)

here, cos(θ) is the angle of scattering in the center of mass coordinates and is related to the

Mandelstam variables by following relations,

cos(θ) = 1 +
2t

s− 4M2
=
u− t
u+ t

L.2 Threshold kinematics

We show that for the scattering of massive scalar particles of massM , there exists a threshold

at mass 2M , at which the kinematics becomes trivial. This is clear from the expression (L.6)

for the residue of a physical pole. If the pole occurs at s = m2 = 4M2, corresponding to

a particle of mass 2M , then the residue vanishes identically, for l 6= 0. Thus, at such a

threshold mass only scalar particles are allowed. Consequently, the residue, instead of being

a polynomial of appropriate degree in t or cos(θ) is a constant. For the case of massless

external particles the threshold particle is also massless and hence the residue vanishes

identically even for l = 0.

For the class of amplitudes that interest us: those one with a linear spectrum, the threshold

condition is always met for particles with positive or zero mass. For such particles, the

residue of the amplitude becomes a constant at some excited level. However, this doesn’t

happen for tachyonic particles, for which the threshold mass is a particle with an even more

negative mass.





Appendix M

Explicit Demonstration of Channel

Duality

In this appendix, we explicitly show how channel duality works in the case of the Euler Beta

function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (M.1)

which is the building block of the Veneziano amplitude. This serves both as an intuition-

building exercise, and as a demonstration of the vailidity of our techniques in the main

text. We choose this function for simplicity; it doesn’t have any c-poles, which makes the

equations significantly shorter. However, precisely because it doesn’t have these poles, it

also lacks full crossing symmetry under arbitrary permutations of a, b, c; it is, however, still

invariant under the exchange of a and b.

First, we go to the region a < 0, b > 0, which is the physical s-channel scattering regime.

There, we may write

B(a, b) =
∞∑

n=0

1

a+ n

(1− b)(2− b) · · · (n− b)
n!

. (M.2)

This sum converges for Re b > 0, since the summand behaves for large n as n−b−1.

At the edge of this region of convergence, b = 0, all the residues in the expansion are 1. We

can recreate this result from the t-channel expansion, valid for a > 0, b < 0,

B(a, b) =
∞∑

n=0

1

b+ n

(1− a)(2− a) · · · (n− a)

n!
(M.3)
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by the following (strictly invalid) trick. First, we take b = 0 and a = −m (which, notice, is

outside the region of convergence); the expression (M.3) then becomes

B(a, 0)
a→0−−−→

∑

n

1

n

a→−1−−−−→
∑

n

1 +
1

n

a→−2−−−−→
∑

n

n

2
+

3

2
+

1

n

a→−m−−−−→
∑

n

· · ·+ 1

n
. (M.4)

It seems that the coefficient of the
∑ 1

n term gives the correct residue for this value of b.

While recreating a factor of 1 is neither useful nor kosher, it is still valid for the reason that

we can recreate it using a lot less arbitrary prescription: replacing
∑
n−s by the Riemann

zeta function ζ(s), which has a simple pole at s = −1! This prescription is less arbitrary

for the simple reason that it provides an analytic continuation off the right-half-plane, and

it is therefore the unique prescription.

It is useful to do this in a more systematic manner. We rewrite the s-channel expansion as

B(a, b) =
∞∑

n=0

fn(b)

a+ n

/
fn(b) =

Γ(n+ 1− b)
Γ(n+ 1)Γ(1− b) . (M.5)

We can expand the residues fn(b) in a 1/n-series,

fn(b) =
∞∑

j=0

gj(b)n
−b−j , (M.6)

where, for reference, the first few gjs are

g0(b) =
1

Γ(1− b)

g1(b) =
b(b− 1)

2Γ(1− b)

g2(b) =
b(2− 3b− 2b2 + 3b3)

24Γ(1− b)

g3(b) =
(−1 + b)2b2(2 + 3b+ b2)

48Γ(1− b)

g4(b) =
b(−48 + 20b+ 180b2 − 25b3 − 192b4 − 10b5 + 60b6 + 15b7)

5760Γ(1− b) . (M.7)

The manipulations from eqn (5.20) to eqn (5.27) go through essentially as in the main text,

except without the terms coming from the poles in c, with k(b) = b. Eqn. (5.27) then
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becomes

fn(b) =

n∑

j=0

gj(−n)(−b)n−j , (M.8)

which are exactly the residue-matching equations (5.40). As an aside, we note the lack of

any spurious-pole equations (5.41); this is because of the lack of poles in c, giving further

credence to their interpretation as arising from b− c symmetry.

The reader may readily check using the gjs listed here that eqn (M.8) is indeed correct. A

much simpler way to check is to note the eqn (M.8) is the same as eqn (M.6) with b and

−n interchanged. The exact expression for the residue, eqn (M.5), is manifestly invariant

under that interchange, and therefore we must have arrived at the right answer.





Appendix N

Large z behavior of the component

6-point scattering amplitude

In this section, we compute the six point scattering amplitude
(
φ̄(p1)ψ(p2)

)(
ψ̄(p3)φ(p4)

)(
φ̄(p5)φ(p6)

)

and demonstrate that it is well behaved under the BCFW deformations. The Feynman di-

agrams that contribute to the six point function under consideration are displayed in fig

N.1.

p1

p2 p3

p6

p5p4

p4

p3 p2

p5

p6p1

p2

p1 p6

p3

p4p5

p1

p2 p3

p6

p5p4
A.1 A.2 A.3

p4p1

p2

p3 p6

p5

p4p1

p2

p3

p6

p5

B.1 B.2B.1
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p1

p1

p2

p2

p3

p3p4

p4 p5

p6 p5

p6

C.2C.1

p2

p4

p1

p3

p5

p6 p3

p1 p2

p6

p4 p5

D.1 D.2

p3 p2

p4

p5
p6

p1

E

p2

p1

p5

p6

p4

p3

p6

p5p4

p1

p3p2
p2

F.1 F.2

p1

p6

p2

p5

p3

p4

G

H.1

p6p1

p2

p5
p4

p3

p4p5

p6

p3

p2

p1

H.2

Figure N.1: Feynman diagrams for the amplitude (φ̄(p1)ψ(p2))(ψ̄(p3)φ(p4))(φ̄(p5)φ(p6))
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We give below explicit expression for each diagram appearing in Fig.N.1

A1 =− 16π2i

κ2

p1.(p2 − p3)

p2
23p

2
45p

2
123

〈23〉〈45〉〈56〉〈46〉 (N.1)

A2 =
16π2i

κ2

p4.(p2 − p3)

p2
23p

2
16p

2
234

〈23〉〈16〉〈65〉〈15〉 (N.2)

A3 =
4iπ2

κ2

〈16〉〈45〉
p2

16p
2
45p

2
126

(〈21〉(〈34〉〈5|p12|6〉+ 〈35〉〈6|p12|4〉) + 〈26〉(〈34〉〈1|p26|5〉+ 〈35〉〈1|p26|4〉))

(N.3)

B1 =
8π2i

κ2
〈14〉

(〈1|p56|3〉〈24〉+ 〈3|p56|4〉〈21〉
p2

14p
2
356

)
(N.4)

B2 =
8π2i

κ2
〈14〉

(〈1|p56|2〉〈34〉+ 〈2|p56|4〉〈31〉
p2

14p
2
256

)
(N.5)

C1 =− 8π2i

κ2

(〈2|p1|3〉(p23.p6)− 〈2|p6|3〉(p23.p1)

p2
23p

2
16

)
(N.6)

C2 =− 8π2i

κ2

(〈2|p5|3〉(p23.p4)− 〈2|p4|3〉(p23.p5)

p2
23p

2
45

)
(N.7)

D1 =
8π2i

κ2

〈2|p14|3〉
p2

124

(N.8)

D2 =
8π2i

κ2

〈2|p56|3〉
p2

256

(N.9)

E =− 4π2i

κ2
〈45〉〈23〉

(
(〈12〉2 − 〈13〉2)〈46〉〈56〉 − (〈26〉2 − 〈36〉2)〈14〉〈15〉

p2
23p

2
45p

2
16

)
(N.10)

F1 =
8π2i

κ2

〈23〉〈16〉〈65〉〈15〉
p2

16p
2
234

(N.11)

F2 =
8π2i

κ2

〈23〉〈45〉〈56〉〈46〉
p2

45p
2
231

(N.12)

G =
4π2i

κ2

〈2|p16|3〉
p2

126

(N.13)

H1 =
4π2i

κ2
〈16〉

(〈12〉〈6|p12|3〉 − 〈26〉〈1|p26|3〉
p2

16p
2
126

)
(N.14)

H2 =− 4π2i

κ2
〈45〉

(〈35〉〈2|p16|4〉+ 〈34〉〈2|p16|5〉
p2

45p
2
126

)
(N.15)

It is easy to verify that the the asymptotic behavior of the full set of diagram is well behaved

by deforming the momentum p1 and p2, as discussed in section 6.3 and 6.4. We apply the

BCFW deformations in the large z limit using

p2 → qz2

p1 → −qz2 1
(N.16)
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and obtain the asymptotic behavior of the amplitudes to leading order in z as follows. The

diagrams A2, C1, D2, F1 in (N.1) go as O(1/z) to the leading order in the large z limit.

A2 ∼
2π2i

κ2z

(q.p4)〈q3〉〈q6〉〈65〉〈q5〉
(q.p3)(q.p34)(q.p6)

+O
(

1

z3

)
(N.17)

B2 ∼
2π2i

κ2z

〈q4〉(〈q|p56|q〉〈34〉+ 〈q|p56|4〉〈3q〉)
(q.p4)(q.p56)

+O
(

1

z3

)
(N.18)

C1 ∼
2π2i

κ2z

〈q|p6|3〉
(q.p6)

+O
(

1

z3

)
(N.19)

D2 ∼
4π2i

κ2z

〈q|p56|3〉
q.p56

+O
(

1

z3

)
(N.20)

F1 ∼
2π2i

κ2z

〈q3〉〈q6〉〈65〉〈q5〉
(q.p6)(q.p34)

+O
(

1

z3

)
(N.21)

(N.22)

For the remaining diagrams we just display the leading large z behavior. They are given by

A1 ∼ −
8π2iz

κ2

〈q3〉〈45〉〈56〉〈46〉
p2

45p
2
123

+O
(

1

z

)
F2 ∼

8π2iz

κ2

〈q3〉〈45〉〈56〉〈46〉
p2

45p
2
123

+O
(

1

z

)

(N.23)

B1 ∼
8π2iz

κ2

〈q|p56|3〉
p2

356

+O
(

1

z

)
D1 ∼ −

8π2iz

κ2

〈q|p56|3〉
p2

356

+O
(

1

z

)

(N.24)

A3 ∼ −
4π2iz

κ2

〈45〉(〈34〉〈q|p34|5〉+ 〈35〉〈q|p35|4〉)
p2

45p
2
126

+O
(

1

z

)

H2 ∼
4π2iz

κ2

〈45〉(〈34〉〈q|p34|5〉+ 〈35〉〈q|p35|4〉)
p2

45p
2
126

+O
(

1

z

)
(N.25)

C2 ∼
2π2iz

κ2

〈q4〉〈q5〉〈3q〉〈45〉
p2

45(q.p3)
+O

(
1

z

)
E ∼ −2π2iz

κ2

〈q4〉〈q5〉〈3q〉〈45〉
p2

45(q.p3)
+O

(
1

z

)

(N.26)

G ∼ −4π2iz

κ2

〈q|p45|3〉
p2

126

+O
(

1

z

)
H1 ∼

4π2iz

κ2

〈q|p45|3〉
p2

126

+O
(

1

z

)
(N.27)

Even though some of the individual diagrams are divergent linearly in z, the divergences

in the total amplitude cancel pair wise in the large z limit as is evident from the way

we have written the results. For example linear in z behavior cancelling pair wise in

(A1, F2) , (B1, D1) etc. Thus the total amplitude is well behaved as z → ∞. A straight-

forward computation yields the analogous result for the z → 0 limit. Thus the amplitude

A6

(
(φ̄(p1)ψ(p2))(ψ̄(p3)φ(p4))(φ̄(p5)φ(p6))

)
is well behaved under the BCFW deformations

both at z →∞ and z → 0.

1q is defined in (6.16)
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Towards the end of section 6.5 we had mentioned that four of the diagrams are reproduced

in the factorization channel pf = p256, these diagrams are B1, B2, D1, D2 in fig N.1. The

remaining eleven diagrams in fig N.1 are reproduced in the factorization channel pf = p234.

N.1 A Dyson-Schwinger equation for all loop six point cor-

relator

As we saw earlier in section 6.2, the basic building block of higher point amplitudes in the

Chern-Simons matter theories at the tree level is the four point amplitude. In this section

we describe the Dyson-Schwinger construction of the all loop six point correlator2

〈 ¯̂
P i(p+ q, θ1)P̂i(−p, θ2)

¯̂
P j(k + q′, θ3)P̂j(−k − q, θ6)

¯̂
P k(r, θ5)P̂k(−r − q′, θ4)〉 (N.28)

using the superspace Schwinger-Dyson construction developed in [159]. In the above Φi is

a complex scalar superfield in N = 1 superspace defined by

Φi = φi + θψi − θ2F i (N.29)

where φi is a complex scalar, ψi is a complex fermion and F i is a complex auxiliary field.

The N = 2 theory can be written in N = 1 superspace in terms of Φi. For more details see

[159]. Before presenting the central idea it is informative to understand the color structure

of the tree level and one loop amplitudes in the theory. In the supersymmetric Light cone

gauge these are described succinctly in fig N.2 and in fig N.3. It turns out that, there are

Figure N.2: Six point correlator: We display tree diagrams in supersymmetric light cone
gauge. For simplicity we have only displayed the ladder diagrams.The tree diagrams are of

order O( 1
κ2 ) since the gauge field propagator contributes a factor of O( 1

κ ).

six different diagrams for a given color contracted correlator. We have displayed only one

in Fig.N.2 for brevity. The situation is a little bit more complicated at one loop as three

different type of diagrams can appear as displayed in fig N.3. Note that diagrams like fig N.3

b) are suppressed in the large N,κ limit (keeping λ = N
κ fixed). So they don’t contribute to

2A similar discussion can be carried out for higher point function.
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a)

b)

c)

Figure N.3: Six point correlator: We have listed the various contributions to the one
loop correlator in supersymmetric light cone gauge. For simplicity we have displayed only
the ladder diagrams. In fig a) and c) the three gauge field propagators contribute a factor
of O( 1

κ3 ) and the single color loop gives a factor of N , leading to a contribution of the order
λ
κ2 . Note that this is of the same order in κ as the tree level diagram displayed in fig N.2.
On the other hand fig b) has three gauge fields and no color loops, rendering it to be O( 1

κ3 ).

the Schwinger-Dyson equation at this order. It can be checked that these type of diagrams

continue to remain suppressed at higher loops.

This paves way for the construction of all loop higher point correlators entirely in terms of

all-loop four point correlators at least in the planar approximation. The case for the six point

correlator is displayed in (see fig N.4). It is straightforward to write down the correlator for

p+ q k + q

p rk

k + q′ r + q′

p+ q

p s r

r + q′

k
+
q
′k

+
q

s
+
q

s
+
q ′

Figure N.4: Six point correlator in superspace: The grey boxes represent the N = 2
all-loop four point correlator computed in [159]
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the first diagram in N.4, the second contribution however requires a loop integration over

both intermediate grassmann and momentum variables and is quite complicated, we defer

a detailed treatment to future works.





Appendix O

Large z behaviour of arbitrary

2n-point amplitudes

This appendix provides the arguments for a good large z behaviour of arbitrary tree-level

amplitudes in N = 2 theory. In section O.1 we argue why same is not true for N = 1 theory.

Backgound Field Method We use the backgound field method of [165] to understand

the large z behaviour of the amplitudes in N=2 theory. All the fields in the theory are

expanded into a background part plus a quantum fluctuation,

Φ→ Φ̃ + P̂ , Γα
β → Γ̃α

β + gα
β

for on-shell component fields: φ→ φ̃+ φ, ψ → ψ̃ + ψ, Aα
β → Ãα

β + aα
β

(O.1)

In the first line we have expanded the superfields around a background field while the

expression in the second line is the background field expansion for the component fields.1

In this section we will need to use only the expansion in the component fields. In the above

expansion the background fields, ·̃, are solutions to the classical equations of motion.

In the z → ∞ limit, the two external particles with shifted momenta (which we have

labeled ‘1’ and ‘2’ in chapter 6) are extremely hard light-like particles scattering through

a background of soft-particles. Such interactions can be captured by diagrams represented

in (Figure O.1). Since in the problems that we are considering only two external momenta

are shifted, which corresponds to only two fluctuation fields, we only need to expand out

Lagrangian to quadratic order in the fluctuations. Let us now discuss the z →∞ behaviour

of various terms that contribute to Lagrangian at quadratic order. The kinetic terms in the

1Here and in all subsequent discussion of this section, the Hermitian conjugate fields won’t be mentioned
separately. In fact we will use a schematic notation where φ, ψ denote both the fields and their Hermitian
conjugates.
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Figure O.1: Diagram depicting the interaction of hard particle (denoted by blue) with the
soft background particles. The blob in the above diagram denotes the remaining Feynman

diagram which contains no hard particle.

Lagrangian are:2

εµνρaµ∂νaρ, φ̄
(
−�+m2

0

)
φ, −ψ̄

(
/∂ +m0

)
ψ (O.2)

The momentum space propagators and their z →∞ behaviour is given by (for gauge field,

boson and fermions, in that order),

Ga(p̂) = iεµνρ
(p1+pl

2 + z2q + z−2q̃)ρ

(p1+pl
2 + z2q + z−2q̃

)2 z →∞−−−−→ iεµνρ
qρ

(p1 + pl) · q
∼ O(1) (O.3)

Gφ(p̂) =
i

(p1+pl
2 + z2q + z−2q̃

)2
+m2

0

z →∞−−−−→ i
1

z2(p1 + pl) · q
∼ 1

z2
(O.4)

Gψ(p̂) = −i (
/p1

+/pl
2 + z2/q + z−2/̃q) +m0

(p1+pl
2 + z2q + z−2q̃

)2
+m2

0

z →∞−−−−→ − i /q

(p1 + pl) · q
∼ O(1) (O.5)

Recall that the sources of the z-dependence in the amplitudes are:

1. modified propagator of intermediate hard particle

2. the modified contribution of various vertices; and,

3. modified fermion wave function, in case an external deformed particle is a fermion

Vertices in the theory are modified only then there is momentum factor arising due to

derivatives acting on the vertices. Hence, following interaction vertices without derivatives

don’t have any z dependence in them and hence behave as O(1) at z →∞.

φ2φ̃4, φ̃2ψ2, ψ̃2φ2, ψ̃φ̃ψφ, Ãµψ2, ψ̃aµψ, ÃµÃµφ
2, Ãµφ̃aµφ, φ̃

2aµaµ, ε
µνρÃµaνaρ (O.6)

2see Equation (2.11) of [159]. In the massive case, p2
1 = −m2

0 = p2
l . Moreover, of all the conditions that

are imposed in massless case on q, q̃, viz., q2 = 0 = q̃2, (p1 + pl) · q = 0 = (p1 + pl) · q̃, q · q̃ = −p1 · pl/4, the
last one gets modified to 2q · q̃ = (p1 − pl)2/4. With respect to q, q̃ satisfying this new criterion, we again
define p̂1/l = (p1 + pl)/2± z2q ± q̃/z2
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Additional vertices coming from gauge-boson interaction terms are,

aµφ∂µφ̃, aµφ̃∂µφ, Ãµφ∂µφ (O.7)

The first term above contains a derivative of the background field and is independent of the

momentum of the fluctuation, hence it has O(1) behaviour. Recall that the gauge fields are

not dynamical and any gauge field appearing in the vertices are essentially internal fields

in a diagram. Thus the contribution of vertices like the second one above always has an

accompanying gauge propagator with it,

εµνρ
(z2q)ρ(k + z2q)µ

(k + z2q)2
∼ 1 (O.8)

The last term in (O.7) can be set to 0 by the choice of background gauge condition, q ·Ã = 0.

Thus all the vertices and propagators behave at worst as O(1). However, since external

fermion wavefunction itself behaves as O(z), the n-point function can possibly behave as

O(z) in z →∞ limit. To understand how this large z behaviour is tamed we study how the

external fermion is connected to the rest of the diagram though various vertices:

ψ̃φ̃ψφ, φ̃2ψ2, Ãµψ2, ψ̃aµψ (O.9)

Recall that the boson propagators are suppressed as 1/z2, and hence all diagrams with

at least one internal boson will have a good z → ∞ behaviour and subsequently we will

assume that the Feynman diagrams that we are studying this section don’t have internal

boson propagators. For the same reason, if the external fermion is connected through the

first vertex in (O.9) then the only diagram of concern is where the boson will be hard

external particle Figure O.2.

ψ̄ φ

p̂

k2k1

Figure O.2: The only diagram involving quartic (ψ̄φ)(φ̄ψ) which contributes
in z →∞ limit is where the hard boson is an external perticle.

The contribution of this diagram is cancelled against other vertices that are discuss below.

Essentially, this cancellation happens because of the particular vertex factors that appear in

N=2 Lagrangian. In fact even for N=1 theory, where the interactions are less constrained,

this doesn’t happen and we don’t get a good large z behaviour. If the fermion is connected
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through second or third vertex above,3 then the contribution coming from these terms is,

lim
z→∞

〈ψ(p̂)| ¯̃φφ̃ψ̄βψβ . . . , lim
z→∞

〈ψ(p̂)| ψ̄α /̃Aα
β
ψβ . . . (O.10)

where the ellipsis denotes the subsequent vertices in the Feynman diagram. Each of the

above vertices contains another fermion propagator that connects it to the rest of the dia-

gram. So the contribution becomes,

lim
z→∞

(
〈ψ(p̂)| ψ̄β

)(/k + z2/q
)
βγ

(k + z2q)2 . . . =
2zλβq /kβγ
2z2k · q . . . ∼

1

z
(O.11a)

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
/̃Aα

β

(
/k + z2/q

)
βγ

(k + z2q)2 . . . =
2zλβq /kβγ
2z2k · q . . . ∼

1

z
(O.11b)

Here, we have used
(
〈ψ(p̂)| ψ̄β

)
→ zλβq . Now let us look at the last term in (O.9). In this

case, aµ will propagate to another internal vertex in the diagram.4 We will next consider

all possible vertices that this gauge field can connect to:

ψ̃aµψ, Ãµφ̃aµφ, φ̃
2aµaµ, ε

µνρÃµaνaρ, a
µφ∂µφ̃, a

µφ̃∂µφ (O.12)

Connection though ψ̃aµψ

When the gauge field in ψ̃aµψ connects to another fermion vertex, then we typically have a

diagram as in Figure O.3,

ψ̄ · · ·
p̂+ k1p̂

k2k1

Figure O.3: Gluon propagator connecting through fermion vertex.

This subgraph contributes,

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
aµγµα

βψ̃β(k1) aνγνδ
γ ¯̃
ψδ(k2)ψγ(k1 + k2 + φ) . . .

= zλαq γµα
βψ̃β ε

µνρ γρε
κqκ

ε

2k1 · q
γνγ

δ ¯̃
ψγ(k2)

/qδσ
2(k1 + k2) · q . . . (O.13)

3The origin of such terms in the Lagrangian are: φ̄ψ ψ̄φ and φ̄φ ψ̄ψ for φ̃2ψ̄ψ; and, ψ̄ /̃Aψ for Ãµψ̄ψ .
4Unlike the discussion of (O.11) where the fermion on the right hand side could directly be connected

to an external leg, aµ necessarily has to connect to an internal vertex since gauge fields are not dynamical
degrees of freedom.
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Here in the second line, we have taken into account the subsequent fermion propagator that

connects this sub-diagram to the rest of the diagram on the RHS. Now using the identity,

εµνργµα
β γνγ

δ γρε
κ = i

(
− δβε CγαCδκ − δβγCδκCεα − δδεCβκCγα − δδαδβε δκγ
+ δκγCεαC

βδ + δδαC
βκCεγ + δκαCεγC

βδ + δβγ δ
κ
αδ

δ
ε

)
5

(O.14)

the above expression vanishes as long as q is light-like (see footnote 2).

Connection though Ãµφ̃aµφ

The corresponding diagram is given by Figure O.4,

ψ̄ · · ·
p̂+ k1p̂

k3k2

k1

Figure O.4: Gluon propagator connecting through boson vertex.

We have already argued above that internal boson propagators are well behaved as z →∞.

Thus this diagram contributes only when the fluctuation boson on RHS is an external

particle. Then the value of this diagram is,

zλαq (γµ)α
βψ̃β(k1) εµνρ

qρ
2q · k1

Ãν φ̃ =
z

2q · k1

(
−iÃ · q

)
λβq ψ̃β (O.15)

This is zero by our gauge choice for background gauge field.

Connection though φ̃2aµaµ

The Feynman diagram corresponding the interaction with φ̃2aµaµ is (Figure O.5),

ψ̄ · · ·
p̂+ k1p̂

k3k2

k1

Figure O.5: Gluon propagator connecting through background boson vertex.

5Here Cαβ , Cαβ are as defined in [159].
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and the corresponding value of the diagram is,

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
aµ(γµ)α

βψ̃β(k1) aν aν . . .

∼ zλαq (γµ)α
βψ̃β(k1) εµνρ

qρ
2q · k1

ενκω
qω

2q · (k1 + k2 + k3)
. . .

∼ z

8
λαq (γµ)α

βψ̃β(k1)
1

q · k1

1

q · (k1 + k2 + k3)

[
qκq

µ − δµκq2
]
. . .

∼ z

8

1

q · k1

1

q · (k1 + k2 + k3)

[
λαq /qα

βψ̃βqκ − λαq (γκ)α
βψ̃βq

2
]
. . . = 0 (O.16)

above in the second line, we have also included the propagator of the next gauge field. We

have used the identity, εµνρενκω = 1
2δ
µ
[ωδ

ρ
κ] and λq · /q = 0, q2 = 0.

Connection though εµνρÃµaνaρ

ψ̄ · · ·
p̂+ k1p̂

k2k1

Figure O.6: Gluon propagator connecting through gluon vertex.

The gauge field in vertex, ψ̃aµψ, to which the external field is connected has two choices

of contractions in the vertex εµνρÃµaνaρ, see Figure O.6. But this vertex is anti-symmetric

with respect to these two choices and hence vanishes. Mathematically,

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
aµ(γµ)α

βψ̃β(k1) εσκρÃσaκaρ . . .

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
(γµ)α

βψ̃β(k1) Ãσ

(
εσκρεµκω

qω

2k1 · q
aρ − εσρκεµρω

qω

2k1 · q
aκ

)
. . . = 0 (O.17)

Where the term in the parenthesis is exactly zero.

Connection though aµφ∂µφ̃ and aµφ̃∂µφ

These vertices come as a part of current-gauge field interaction in the Lagrangian. So the

actual vertex that appears in the Lagrangian is,

iaµ
(

¯̃
φ∂µφ− ∂µ ¯̃

φφ
)

(O.18)

We need to consider only those diagrams in which the bosonic propagator is external. There-

fore the diagram that has non-trivial large z contribution is,
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ψ̄ · · ·
p̂+ k1p̂

k2k1

Figure O.7: Gluon propagator connecting through fermion vertex.

The contribution coming from this Feynman graph is cancelled against the contribution

coming from the Feynman graph Figure O.2. Thus total contribution coming from the

contact interaction term is,

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
(γµ)α

βψ̃β(k1)

(
−2πi

κ

)
φ̃(k2)

∼ z
(
−2πi

κ

)
λαq (γµ)α

βψ̃β(k1) φ̃(k2)

(O.19)

and the contribution coming from Figure O.7 is,

lim
z→∞

(
〈ψ(p̂)| ψ̄α

)
(γµ)α

βψ̃β(k1)

(
−2πi

κ
εµνσ

(p̂+ k1)σ
(p̂+ k1)2

)
(O.20)

O.1 Un-improved z →∞ behaviour of N = 1 theory

In the previous section it was shown that certain diagrams that don’t have a good z → ∞
behaviour in N=2 theory cancel against each other, giving us a good overall behaviour

of the amplitude in large z limit. In the less restricting N=1 theory, not only does this

cancellation not happen, there are additional contributions coming from the new vertices

that are present in the =1 Lagrangian but not in N=2 Lagrangian. These vertices are of

the form
(
φ̄ψ
)(
φ̄ψ
)

+
(
ψ̄φ
)(
ψ̄φ
)

and contribute to diagrams similar to Figure O.2, as well

as (O.11a). Thus clearly, one can’t use the BCFW recursion relations in N=1 SCS theory

to compute the higher point scattering matrices.

O.2 Fermioninc CS theory

Based on the above discussion we can easily argue that any tree-level diagram in pure

fermion coupled to Chern-Simons theory is not well behaved in the z →∞ limit, and hence,

a priori, there is no reason to assume that one can use the BCFW recursion relations. The

Lagrangian of this theory is simply,

LF =

∫
d3x

[(
− κ

2π

)
εµνρTr[Aµ∂νAρ−

2i

3
AµAνAρ]− ψ̄(i /D +m0)ψ

]
(O.21)



The large z behaviour of the propagator and the vertices is the same as discussed in the

previous section (every thing behaves at O(1)). The external hard fermions can be attached

to the rest of the diagram only through vertices: Ãµψ2, ψ̃aµψ, and subsequently, the gauge

propagator can connect only through vertices: ψ̃aµψ, εµνρÃµaνaρ.

However, there is an alternate way to argue that the BCFW relations should be applicable

to this theory despite it not obeying the postulates of BCFW recursion relations. In a

theory of only fermions, all the external particles in any S-matrix can only be fermions.

Such all-fermion scattering amplitudes appear as component amplitudes in supersymmetric

amplitudes. However, at tree level, even in supersymmetric theory there are no internal

bosons in the Feynman diagrams contributing to such amplitudes. This is because all

interaction vertices that appear in the Lagrangian of the supersymmetric theory have 2

bosons in them, making it impossible contract them all without forming a loop.
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