
Aspects of chiral symmetry breaking
in holographic QCD

Partha Nag

Department of Theoretical Physics,

Tata Institute of Fundamental Research,

Mumbai, India

A thesis submitted for the degree of

Doctor of Philosophy
in

Physics



ii

Declaration

I state that the work embodied in the thesis forms my own contribution to the research work carried

out under the guidance of Prof. Avinash Dhar. This work has not been submitted for any other degree

to this or any other university or body. Whenever referenceshave been made to previous works of

others, it has been indicated.

Prof. Avinash Dhar Partha Nag

(Thesis supervisor) (Candidate)



iii

Acknowledgments

I would like to thank my thesis supervisor Prof. Avinash

Dhar whose constant guidance has made this thesis possible.

I thank Dr Gautam Mandal for the insightful discussions

carried out with him during one of the projects in this

thesis and at various other stages. I may not also

forget the contribution of my friends and other members

of the Department of Theoretical Physics for the fruitful

discussions which have added to my learning to a great

extent. Last but not the least, I wish to thank my family,

particularly, my mother and my wife whose patient support

has been one of the key ingredients of this thesis.



iv



Contents

Synopsis vii

1 Introduction 1

1.1 An overview of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2

1.1.1 Asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3

1.1.2 Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Perturbative tests of QCD . . . . . . . . . . . . . . . . . . . . . . . .. . . 6

1.1.4 Non-perturbative QCD . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 11

1.2 Chiral symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 14

1.2.1 NJL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 AdS/CFT correspondence and holographic QCD 19

2.1 The Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 20

2.1.1 OverlappingD3 branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 The duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 AdS/CFT in QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 AdS/QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Holographic QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Sakai Sugimoto model andχSB at weak coupling 33

3.1 SS model at weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 33

3.2 Low energy action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 35

3.3 Non-local NJL model from theD4− D8− D8 system. . . . . . . . . . . . . . . . . 35

3.3.1 Fermion effective action fromS1 . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Fermion effective action fromS0 . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 The ‘total’ action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 41

3.3.4 Non-local NJL action and the chiral bilinear . . . . . . . .. . . . . . . . . . 43

3.4 Chiral symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 46

v



vi CONTENTS

3.4.1 Numerical solutions of the gap equation . . . . . . . . . . . .. . . . . . . . 47

3.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 49

3.5 The non-compact limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 51

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 A review of Sakai-Sugimoto model at strong coupling 59

4.1 The strong coupling description . . . . . . . . . . . . . . . . . . . .. . . . . . . . 59

4.1.1 TheD8-D8 profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 65

5 Quark mass deformation of SS model 67

5.1 Modified Sakai-Sugimoto model with tachyon . . . . . . . . . . .. . . . . . . . . . 67

5.2 Brane-antibrane pair with tachyon . . . . . . . . . . . . . . . . . .. . . . . . . . . 68

5.3 Classical equations for brane profile and tachyon . . . . . .. . . . . . . . . . . . . 71

5.3.1 Solution for largeu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Solution foru ∼ u0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Quark mass and the ultraviolet cut-off . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 77

5.6 Verification of the UV and IR analytic solutions . . . . . . . .. . . . . . . . . . . . 78

5.7 Behaviour of the non-normalizable part . . . . . . . . . . . . . .. . . . . . . . . . 78

5.8 Behaviour of the asymptotic brane-antibrane separation . . . . . . . . . . . . . . . . 81

5.9 Comparison with the Sakai-Sugimoto solution . . . . . . . . .. . . . . . . . . . . . 82

5.10 The chiral condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 84

6 Mesons in the modified SS model 89

6.1 Vector mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 90

6.2 Axial vector and pseudoscalar mesons . . . . . . . . . . . . . . . .. . . . . . . . . 92

6.3 Relation between mass of pseudo-Goldstone boson and non-normalizable part of

tachyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Summary 101

A Alternate Green’s function for D4− D8− D8 at weak coupling 105

B Robustness of quark mass and chiral condensate 109

B.1 Method to study robustness . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 109



Synopsis

In the last forty years, Quantum Chromodynamics (QCD) has successfully emerged as the

microscopic theory of strong force, the force that binds neutrons and protons inside the nucleus of

an atom. The basic degrees of freedom in QCD are given by six flavors of quarks interacting through

the exchange of gluons, gauge fields sourced by color charge (hence the namechromodynamics).

With three kinds of colors, the gauge theory is an SU(3) non-abelian gauge theory. The full QCD

action is given by

S =
∫

d4x

{

−1
4

Fa
µνF

a µν + qf i

(

iγµ(∂µδi j − gAa
µt

a
i j ) −mfδ

i j
)

qf j

}

where Fa
µν = ∂µA

a
ν − ∂νAa

µ + gǫabcAb
µA

c
ν, (1)

whereg is the coupling strength, the indicesa, b, c = 1, ..., 8 run over the eight generatorsta of the

SU(3) color group andi, j = 1, 2, 3 run over the three colors. The quarks transform as fundamental

under the color gauge transformation and the gauge fields as adjoint. Therefore, the generatorsta

appearing in the action are in the fundamental representation of the color group. The indexf = 1, ..., 6

runs over the six flavors of quarks which are found to occur in abroad hierarchy of masses. Of these,

the light quarksu andd can be approximated to have nearly the same mass leading to anapproximate

SU(2) global flavor symmetry.

In 1963, Gell-Mann and Zweig proposed the quark model. This composite model of hadrons

had great successes in predicting new states and in explaining the strengths of transitions between

different hadrons through electromagnetic and weak interactions. However, the birth of QCD in the

present form was largely due to the works of Greenberg and Hanand Nambu which lead to the

concept of color gauge fields. The success of QCD as the theoryof strong interaction is backed by

a number of experimental data matching predictions from QCD. Most of these tests are provided by

scattering experiments involving large momentum transferin which the inside of a hadron can be

probed. A few examples are deep inelastic scattering, Drell-Yan process in colliders, heavy quark

production in hadron-hadron collisions etc. The predictions made in these processes are based on the

application of perturbative QCD. Such an approach is reasonable for scattering experiments involving

vii
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large momentum transfer due toasymptotic freedomin the theory. Perturbative calculations in QCD

show that the coupling strength decreases with energy and this phenomenon is known asasymptotic

freedom[see Figure 1]. This property was discovered by Politzer [8]and independently by Gross and

Wilczek[7].

logHE�LQCDL

g2

Figure 1: Flow of coupling squared with log of energy. The scale M is generated through
dimensional transmutation and may be taken to be the confinement scale in QCD.

Looking at the flow of coupling depicted in figure 1, it may be naively expected that it

keeps growing with decreasing energy giving a qualitative explanation of the phenomenon called

confinement. (it is only a ‘naive’ expectation, because perturbative arguments fail when the coupling

is order one.) Confinement prevents liberation of free quarks and gluons from hadrons. This is in

conformity with our observation that the physical states are always found to be in hadronic states. At

very high energies, RHIC experiments have shown evidence for the existence of a deconfined phase of

quark-gluon plasma (QGP), but the final states one observes are only hadrons. An analytic treatment

of confinement in QCD requires a non-perturbative treatmentwhich, however, is not available to us.

Another property of our interest in QCD (and in this thesis) ischiral symmetry breaking(χSB). It

is known that the masses ofu andd quarks are extremely small compared to other scales in QCD. In

fact, evens quark is pretty light from this point of view. Therefore one often considers the three to

constitute a massless flavor triplet. Under this approximation, QCD has a global symmetry given by

QL → eiαp
Lτ

p
QL QR→ eiαp

Rτ
p
QR, (2)

whereQL andQR are the left-handed and right-handed triplets respectively. p = 1, ..., 8 runs over

the eight generatorsτp of SU(3) flavor group in the fundamental representation. Thus, the action is

invariant under separate flavor group transformations in the left-handed and right-handed sectors. This

approximate global symmetry in QCD is referred to as anS U(3)L × S U(3)R chiral symmetry. If the

quarks were not massless but only had equal masses the symmetry would be only a subgroup of the

above given byαp
L = α

p
R, referred to as vector symmetry as opposed to axial symmetrycorresponding

to αp
L = −α

p
R. One should note that even though the action has chiral symmetry the vacuum may not

have it, leading to spontaneous breaking. For instance, dueto interactions, the vacuum may grow a

finite chiral condensate〈Q†LQR〉 leaving behind only the vector subgroup of chiral symmetry.Once it
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is known that spontaneousχSB has occurred, the low energy dynamics can be expressed in terms of

meson fields. It turns out that the low energy action is completely fixed by just the symmetries of the

QCD action (1) independent of its microscopic details.

Though large number of arguments indicate that QCD has both confinement andχSB, a derivation

is still missing. This is because, the scales ofχSB and confinement are nearly the same in QCD and

hence both require a non-perturbative treatment. However,these phenomena have been demonstrated

in other alternate QCD-like theories. A prime example is provided byN=2 SU(2) super Yang-Mills

theories considered by Seiberg and Witten. Because of an electric-magnetic duality, the strongly

coupled vacuum can be expressed as a weakly coupled theory ofmonopoles. Confinement can be

described perturbatively in the dual theory as monopole condensation [36]. Further, with additional

matter multiplet given byN=1 chiral and anti-chiral superfields, it is found to showχSB driven by

monopole condensation [37].

χSB has been studied in some other effective theories of QCD like sigma models and

Nambu−Jona-Lasinio model (NJL). The low energy and static properties of mesons are well described

by a non-linear sigma model. One can calculate the fermion determinant as a derivative expansion

of meson field. Terminating at the quadratic level, a sigma model is generated. The gauged sigma

model includes vector meson and axial-vector meson couplings also. A matching between the meson

masses and decay constants calculated from this model with the experimental values can be found

in [40]. Similarly, NJL model is a non-gauge theory involving chiral fermions interacting with each

other through a four-fermi interaction [41]. It can be thought of as a low energy effective theory

of QCD obtained after integrating out the gluons. Even though gluons are massless, an infrared

cutoff is provided due to confinement allowing us to integrate them leading to an effective four-fermi

interaction. The attractive interaction between the left-handed and the right-handed fermions leads to

a dynamical breaking of chiral symmetry.

In spite of developments in some special models, it still remains a challenge to present a derivation

of confinement andχSB in QCD because of the non-perturbative regime involved. An analytic tool to

study field theories non-perturbatively is provided by the largeN technique. One may wish to study

qualitative features of QCD non-perturbatively using thismethod. It involves defining a new coupling

constantλ (’t Hooft coupling) in terms of the Yang-Mills coupling asλ = g2N and looking at the

theory at a fixedλ. The perturbation series has two parameters given byλ and 1/N. For a large value

of N, it suffices to look at just the diagrams occurring with the leading power of 1/N, often referred

to as planar diagrams because of the associated topology. However, it still turns out to be difficult to

sum up all the planar diagrams as would be required forλ that is not small enough.

A powerful non-perturbative method is Wilson’s formulation of QCD on a space-time lattice.

This formulation, known as Lattice Gauge Theory (LGT), may be studied on a computer eventually
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taking the continuum limit. Significant progress has been made in calculating hadron masses and

decay constants in recent years [47]. The calculated valuesof decay constants of many of the light

mesons are found to lie within the experimental error thoughin some cases the combined statistical

and systematic error is as high as seven percent. Masses of hadrons have been calculated taking into

account the electromagnetic effects and the ground state values for many of them are found to be

within the experimental errors. A longstanding challenge before LGT methods has been to take into

account the dynamics of quarks. Many of the algorithms are based on quenched approximation where

the quarks are made infinitely massive. In the last few years,however, with improved algorithms and

better computers many of the works carried out in LGT have incorporated finite quark masses. But,

computation of various quantities still requires extrapolation to physical values of quark masses.

In the last decade, non-perturbative studies in QCD-like theories has taken a new turn. The seminal

work by Maldacena in 1998 [48] gave birth to what we today callAdS/CFT correspondence or more

generally, gauge/gravity correspondence or holography. It provides a duality between a gauge theory

and a string theory. Even though, it may be too difficult to solve the full string theory, when the

value of ’t Hooft coupling of the gauge theory is large, the string theory can be approximated at low

energies with a theory of gravity. The duality then goes between a quantum theory of gravity and a

strongly coupled gauge theory that lives in one lower dimension in the boundary of the space-time the

gravity theory lives in. This is precisely the region where non-perturbative methods become essential

in the gauge theory. Further, in the limit of largeN, the quantum corrections in the bulk theory are

suppressed giving rise to a classical theory of gravity as the dual. Thus, in the limit of largeN and

strong coupling, AdS/CFT becomes a very useful tool to study gauge theories as computations in the

classical theory of gravity are often quite simple to carry out.

This technique has been applied to many brane models whose low energy limits have QCD-like

features to varying degrees. The first attempt in this direction was due to Maldacena whose work

lead to a gauge/gravity correspondence for strongly coupledN = 4 super Yang-Mills theory obtained

in a setup of large number of overlappingD3 branes. Another example of the correspondence can

be found in the context of a largeN non-supersymmetric gauge theory as proposed by Witten using

overlappingD4 branes. Confinement in such gauge theories finds a gravity description in the form

of a blackhole geometry. Chiral symmetry and its breaking can be described by introducing flavors

to these gauge theories. This is done by introducing additional branes, often referred to as flavor

branes, to the setup. Karch and Katz proposed theD3 − D7 embedding introducing fundamental

hypermultiplets toN = 4 super Yang-Mills. The system breaks chiral symmetry and leads to a rich

spectrum of mesons. Meson spectrum has been obtained in other string embeddings like theD4−D6

system in the context of non-supersymmetric gauge theory.

Another such model that has found a considerable mention in literature, is Sakai-Sugimoto model
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(SS model) [67]. SS model (and its variations) has been one ofthe closest one has been able to get to

QCD using simple string embeddings. It gives an elegant description of confinement and non-abelian

χSB using gauge/gravity duality. It consists of large numberNc of overlappingD4 branes wrapped

on a circle of radiusRk providing the color degrees of freedom. Intersecting them are Nf D8 branes

andNf anti-D8 (D8) branes separated from each other along the compact direction x4 by a distance

L and providing the flavor degrees of freedom. This is shown in the first of Figure 2. At low energies,

this model gives rise to an effective QCD-like theory. Holographic calculations have been used to

obtain hadron spectra and decay rates which have often been found to be surprisingly close to the

experimental values. Studies of the model at finite temperature and finite baryon chemical potential

have also been made to obtain the phase diagram.

Unlike QCD, SS model provides a good handle to studyχSB both in the weak and strong coupling

limits. The weakly coupled model is actually a one parameterdeformation of QCD, with the extra

parameter provided by the ratio of the separationL to the radius of the circleRk. It turns out that by

tuning the parameter to smaller and smaller values one can tuneχSB energy scale to be much larger

than the confinement scale. This allows a perturbative treatment of the phenomenon.

Figure 2: Flavor brane embeddings in theU, x4-plane both in the weak coupling and strong
coupling limits. U is the direction perpendicular toD4 branes andUk is the value ofU at the
horizon.

In the strong coupling limit, theD4 branes can be replaced by the near horizon geometry and one

can study theD8, D8 branes as probes in the supergravity background. In the work carried out in [67],

Sakai and Sugimoto showed thatχSB acquires a geometric meaning in the form of the meeting of

separated flavor branes close to the horizon of theD4 geometry. This is shown in the second of Figure

2. They also studied the meson spectra arising from flavor brane gauge fields and obtained an infinite

tower of Kaluza-Klein states of mesons with the Kaluza-Klein scale of the order of confinement scale.

In particular, the analog of a massless pion was obtained in the model. With infinitely more states

of mesons than in QCD and no state higher than spin 2, the holographic description of SS model is

different from a largeNc QCD. But the hope is that many qualitative properties may be similar in

the two. This is based on the expectation that such properties may survive the tuning of coupling

from weak to strong. The model, however, does not have any parameter for quark masses. For

phenomenological reasons, it is important to incorporate it as observed quantities like hadron masses
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depend on it.

In this thesis, we mainly intend to study various aspects of chiral symmetry breaking in

holographic QCD. As mentioned above, SS model presents a good arena to study the phenomenon in

a holographic setup that resembles QCD to a good extent. Withthis motivation, we take up two major

problems in this direction which can be classified as:

• study ofχSB in weakly coupled SS modeland

• introducing a quark mass deformation to strongly coupled SSmodel.

In our study of the weakly coupled model reported in [70], we obtain the effective interaction between

the left-handed and right-handed quarks at low energies in asuitable hierarchy of scales. In order to

do this we take advantage of the fact that the model provides aparameter to tuneχSB energy scale to

be much larger than confinement scale, allowing a perturbative treatment. The effective action of the

quarks can be written in the form of a non-local NJL action. Weobtain numerical solutions to the gap

equation and inspect the conditions forχSB. We also study the model in the non-compact limit and

find that it does not admit any consistentχSB solution.

In the second work reported in [121, 122], we propose a quark mass deformation of strongly

coupled SS model by incorporating the 8− 8 open string tachyon in the holographic setup. In string

theory, all the physical parameters of a low energy effective theory should eventually come from

the condensation of some field. The tachyon field transforms as a bifundamental under the flavor

group and would couple to a bilinear of a left-handed and a right-handed quarks. This makes it a

good candidate to provide the quark mass parameter on condensation. It turns out that the field also

provides an order parameter forχSB in the model, something that was lacking in the original SS

model. Using the tachyon DBI action of the flavor branes in theD4 background, it is found that the

tachyon condenses and the UV behaviour has two modes. The non-normalisable mode provides the

quark mass parameter and the normalisable mode gives chiralcondensate. We also obtain the meson

spectra from the flavor brane gauge field fluctuations. In particular, the analog of a massive pion

appears with its mass satisfying the well known Gell-Mann−Oakes−Renner relation.

In the following, we present a more detailed exposition to these works.
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1. χSB in the weakly coupled SS model

In the weak coupling limit of the model, the brane configuration is given by the first of Figure 2. It

may also be summarised as below (the small circles denote theworld volume of the branes)

0 1 2 3 (4) 5 6 7 8 9

D4 ◦ ◦ ◦ ◦ ◦
D8-D8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

(3)

where the directionx4 is compact and the common world volume of the flavor and color branes,xµ,

µ = 0, .., 3 give the physical 3+ 1-dim space-time. Antiperiodic boundary conditions are applied on

the D4 brane adjoint fermions along the compact direction,x4. This leaves the model with SUSY

completely broken. After a GSO projection, the low energy spectrum consists of left-handed and

right-handed quarks in 3+ 1 dimensions interacting through the exchange ofD4-brane gauge fields.

These gauge fields lead to a five dimensionalU(Nc) Yang-Mills theory with couplingg2
5 = (2π)2gsls

of length dimension. In our analysis, the scales of the modelare assumed to be in the hierarchy

g2
5Nc ≪ ls≪ L ≪ πRk. g2

5Nc ≪ ls ensures that string loop corrections are small.ls≪ L allows us to

neglect non-trivial dilaton and RR ten-form field created byD8 branes.L ≪ πRk allows us to study

χSB perturbatively by tuningχSB length scale to be much below confinement scale as explained later

in this section.

The theory can be expressed in 3+ 1 dimensions by expanding theD4 gauge field in harmonic

functions ofx4. One is, thus, left with an infinite tower of KK modes of 3+1-dim fields. The massive

modes can be integrated out to give an effective non-local four fermi interaction between the left-

handed and right-handed quarks. Rest of the action, involving the zero mode of theD4 gauge field,

is given by QCD action. In general, it is not easy to integrateout the massless gauge field. However,

asymptotic freedom in QCD action allows computation of the high energy behaviour of the effective

interaction that would result from such an integration. Further, confinement provides an IR cutoff

of the order of glueball mass scale (confinement scale) on theinteraction. This allows us to write a

qualitative form for the effective interaction even at low energies. Note that forχSB length scale much

smaller than confinement scale, the nature of interaction only at high energies is important which we

know quite accurately.

Summing up the effects of both the zero mode and the non-zero modes, we arrive atthe effective

action given by

Seff = i
∫

d4x
(

q†αL (x)σ̄µ∂µq
α
L(x) + q†αR (x)σµ∂µq

α
R(x)

)

+g2
4

∫

d4x d4y G(x− y)[q†αL (x)qβR(y)][q†βR (y)qαL(x)], (4)
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whereα, β are flavor indices. The Fourier transform of the Green’s function, G̃(k) has a qualitative

form given byG̃(k) =
(

1+πRkk̄
k̄2+Λ2

)

e−k̄L in Euclidean momentum̄k. The form is based on the following

qualitative features that the Green’s function would have in various limits. Fork̄ ∼ Λ, G̃(k) ∼
1/(k̄2 + Λ2) connected to the fact that the range of the four fermi coupling is set by the glueball

mass of the order ofΛ. ForΛ ≪ k̄ ≪ 1/πRk, G̃(k) ∼ 1/k̄2 as the 3+1- dimensional description

remains valid in this region. For̄k ≫ 1/πRk, G̃(k) ∼ πRke−k̄L/k̄ where we have usedL ≪ πRk. This

reflects the necessity of the 4+ 1-dimensional description. The exponential behaviour indicates a

short-distance cutoff on the four fermi interaction.

For studies ofχSB we are interested in the dynamics of the chiral bilinearq†αL (x)qαR(y). Hence,

it is useful to introduce a bilocal auxiliary scalar field coupling with the bilinear field. One can

then integrate out the fermions to obtain an action for the scalar field and its equation of motion,

also called the gap equation. ForχSB, it has to admit a non-trivial solution. The gap equation

obtained for the chiral condensate can be written as follows. Let us denote the chiral condensate as
1
Nc
〈q†αL (x)qαR(0)〉 = φ(x) ≡ φ0

4π2l3ϕ(|x|/l) where the parameterl of length dimension gives the correct

dimensions to the condensate so thatφ0 andϕ can be assumed to be dimensionless. Notice that in

writing it in the above form we have used Poincare invarianceof the vacuum. Further, it is convenient

to use the notation,T(x) ≡ 4π2λ
Nc

GE(x)〈q†αL (x)qαR(0)〉 whereλ = g2
5Nc/8π3Rk. Defining dimensionless

functions f (kl) = φ̃(k)/lφ0 and t(kl) = T̃(k)/(λlφ0) wherel is a parameter of length dimension, the

gap equation can be expressed as

f (p) =
λ̄t(p)

p2 + λ̄2φ2
0t

2(p)
, λ̄ ≡ λlΛ. (5)

We often refer to therhs of the equation asft(p). In the above expression we use the subscriptΛ on

l to indicate that the quantity is expressed in dimensionlessunits ofΛ−1. We adopt a similar notation

for the other scales in the model too.

Gap equation (5) can now be solved numerically. From the expected physical properties of the

order parameterφ(x) associated with a nontrivial solution, we make an ansatz:

ϕ(x) =
e−x

(c2x2 + 1)σ
. (6)

From the form of the ansatz it may be noticed that the parameter l in the solution gives the length scale

of χSB. The shorter the scale, the narrower the bilocal chiral condensate is. We seek a solution of this

form using Mathematica. In particular, we adopt the following procedure. We choose a certain brane

configuration by making a choice for the parametersRΛ andLΛ. With this, for each value ofλ we

should now look for a solution i.e., a set of values of the parameterslΛ, φ0, σ andc that would solve

the equation. It turns out that it is easier to fixlΛ to a given value and then look for the set of values
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of λ̄, φ0, σ andc that would solve the equation. This exercise is repeated forvarious other values of

lΛ. We notice that the value ofc required to give a good fit always turns out to belΛ
LΛ

. The first of

Figure 3 indicates the matching between thelhsand therhsof the gap equation for a typical numerical

solution. In the second of Figure 3, we have plotted the variation of theχSB length scale with the

coupling. Notice that the model indicates a critical value of the coupling below which there is no

χSB. Also note that as we increaseλ we can have a wide range of solutions wherelΛ ≪ 1 for which

χSB can be described perturbatively. Further, it is found that there is no solution withλΛ < LΛ. This

implies, the smaller the value ofLΛ, the better it is from the point of view of applying perturbation

theory toχSB .

We also try to study the non-compact limit of the model maintaining the hierarchyL ≪ πRk ≪
Λ−1. However, we do not find any consistentχSB solution in this limit. This may indicate that the

weakly coupled non-compact SS model which does not confine also does not haveχSB.

2. Quark mass deformation to strongly coupled SS model

Like the weakly coupled model, the strong coupling version also displays various features associated

with χSB. In this limit, as worked on by Sakai and Sugimoto, theD4 branes are replaced by the near

horizon geometry and the flavor branes are treated as probes in this background. We modify their

model by incorporating the 8− 8 open string tachyon. The tachyon DBI action of a brane-antibrane

system in flat background was proposed by Ashok Sen [99]. Mohammed Garousi proposed a simple

extension of the action to curved background in non-compactspace [110].

With the assumption that the 8− 8 separation,L, is much smaller than the KK radiusRk, this

formula may also be applied to our system with compactx4. The fields involved are given byL, the

tachyonτ and the flavor brane gauge fields. The gauge fields are assumed to have dependence on

and components along the physical directionsxµ and the holographic coordinateU. Treating them as
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fluctuations, one can solve for the brane profileL(U) and the tachyon magnitudeT(U) from the DBI

action,

S = −V4

∫

d4x
∫

dU V(T)
(U
R

)−3/4

U4
(
√

DL,T +
√

DR,T

)

, (7)

whereDL,T = DR,T ≡ DT and DT = f (U)−1
(

U
R

)−3/2
+ f (U)

(

U
R

)3/2 L′(U)2

4 + T′(U)2 + T(U)2L(U)2.

The potentialV(τ) depends only on the modulusT of the complex tachyonτ. In particular, we use

the tachyon potential used in [114, 115, 116] for calculation of decay of unstable D-branes in two-

dimensional string theory,V(T) = T8 sech
√
πT. The equations of motion for the tachyon and the

brane profile are non-linear coupled equations and are difficult to solve exactly. However, one can

solve for the UV and the IR behaviour analytically and find a numerical solution matching the two.

In the UV, we seek a solution such that the 8− 8 separation approaches a constant and the tachyon

becomes small. The general solution with such a form is givenby T(u) = 1
u2 (T+e−h0u + T−eh0u),

h(u) = h0−h1u−9/2 where we have definedU = u/R3, L(U) = R3h(u). This behaviour, however, holds

only if the growing part of the tachyon is small enough which requires us to put an upper cutoff on

u given byT2
+e
−2h0umax + T2

−e
2h0umax <<

u5/2
max

2h2
0
. The parameterT−, associated with the non-normalisable

mode of the tachyon, is interpreted as the quark mass parameter.

One can also solve for the IR behaviour. For a smooth joining of the brane and antibrane atu0, the

derivative ofh must diverge at this point, and the solution works out toh(u) =
√

26
πu0 f0

u−3/4
0 (u−u0)1/2+

· · · , T(u) =
√
π

4 f0u
3/2
0 (u − u0)−2 + · · · . An important feature of the above solution is that it depends

only on a single parameter, namely the value ofu0. We have checked that this feature persists in the

next few higher orders in a power series expansion in (u− u0). The UV behaviour of the solution, on

the other hand, depends on all the four expected parameters,T+, T−, h0, h1. The solution foru ∼ u0

matches with only a one-parameter subspace of the four-parameter space of asymptotic solutions.

This one-parameter freedom of the classical solution turnsout to be analogous to the freedom to add

a bare quark mass in QCD.

The IR and the UV behaviour may be matched numerically and theprofiles are as shown in Figure

4. The left one of Figure 5 displays the variation of quark mass parameterT− with u0. We choose

the region with negativeT− as the physical regime as it is consistent with the fact that driving quark

mass to infinity removes the flavor branes (u0 increases with|T−|). The variation ofT+ with T− and

u0 can also be found as plotted in the right. The chiral condensate can be obtained by performing a

holographic renormalisation of the action and then taking the variation with respect to the quark mass

parameter. This givesχ ≈ 4h0V4V(0)
µR9 T+. Thus, the right of Figure 5 gives nothing but the variation of

chiral condensate with quark mass.

Finally, in order to obtain the meson spectrum, we look at theDBI action of the flavor brane

gauge field fluctuations in the background configuration and tachyon profile we have found. As stated
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before, the gauge fields form five dimensional vector fields along thexµ andU directions. Expressing

it in terms of vector and axial vector combinations of the gauge fields, it can be written as

Further, expanding them using a complete set of functions ofU, we get KK towers of meson

fields in 3+ 1-dimensions. The vector combination gives rise to the vector mesons and the axial-

vector combination gives rise to the axial-vector and pseudoscalar mesons. The lowest mode of the

pseudoscalar meson is found to satisfy the GOR relation

m2
π ≈

mqχ

f 2
π

. (8)

This connects with the fact that there exists a massless pseudoscalar when the quark mass parameter

T− vanishes. Further, when the quark mass is small but not zero,the pseudoscalar ceases to be

massless and obtains a mass precisely related throughGORrelation, a behaviour known to occur in

QCD.



xviii SYNOPSIS



Chapter 1

Introduction

There is by now impressive amount of evidence that the microscopic description of the observed

strong interactions among hadrons is provided by Quantum Chromodynamics (QCD). QCD is a gauge

theory which naturally emerged from the quark model of hadrons proposed by Gell-Mann and Zweig.

The Gell-Mann−Zweig model [1, 2] explains the spectrum of hadronic particles but does not provide

any information on the origin of strong interactions that bind the quarks inside them. It also has

problems with reconciling baryons (made up of three quarks)with the Fermi-Dirac statistics of quarks.

To overcome this difficulty, Greenberg [3], Gell-Mann [4] and Han and Nambu [5] introduced the

concept of “color” quantum number of quarks. The discovery of scaling in deep inelastic scattering

experiments [6] and that of asymptotic freedom in gauge theories [7, 8] gave a strong indication

towards the idea of color gauge degrees of freedom which was first coined in [9]. These gauge fields

(gluons) mediate interactions between the quarks (hence the namechromodynamics) constituting

hadrons. By now, a large number of experimental tests of QCD have been conducted. Today,

the theory is widely believed to provide the correct microscopic framework for describing strong

interactions.

In order to make this thesis self-contained, we present a brief introduction to QCD in this

chapter. We discuss various perturbative and non-perturbative aspects of strong interactions and

briefly describe different techniques used to study them. We also give a detailed introduction to the

phenomenon ofchiral symmetry breakingin QCD, a non-perturbative phenomenon that is the main

subject of this thesis. We refer the reader interested in seeking a thorough and in-depth discussion

on QCD to a large number of excellent textbooks and review articles available on the subject like

[10]-[22].

1



2 CHAPTER 1. INTRODUCTION

1.1 An overview of QCD

The basic degrees of freedom in QCD are given by six flavors of quarks and eight SU(3) gauge fields

that mediate interactions between the quarks. It is described through an SU(3) non-abelian gauge

theory in the presence of the six flavors of quarks. The ‘3’ in SU(3) is referred to as three colors and

hence the gauge fields are also called color gauge fields. The action can be written as

S =
∫

d4x

{

−1
4

Fa
µνF

a µν + qiα

(

iγµ(∂µδαβ − gAa
µt

a
αβ) −miδαβ

)

qiβ

}

,

Fa
µν ≡ ∂µAa

ν − ∂νAa
µ + g fabcAb

µA
c
ν, (1.1)

whereg is the coupling strength. The gauge fieldsAa
µ represent the gluons which transform in the

adjoint representation of the SU(3) color gauge group. The indicesα, β = 1,2,3 denote three colors

and the indices a,b,c= 1,2,...,8 indicate the eight kinds of gluons in SU(3). The quarksqiα transform

in the fundamental representation 3 of the SU(3) color gaugegroup where the indexi is a flavor index.

The generators of the gauge group are given byta
αβ. Also, f abc is the structure constant of the SU(3)

group defined by the commutation relation [ta , tb] = i f abctc. Also, we use the space-time metric in

the mostly negative signature given byηµν = diag(1,-1,-1,-1).γµ, µ = 0, ..., 3 represent the 4× 4 Dirac

matrices. In this thesis, we will be using them in Weyl representation which is given by

γµ =

















0 σµ

σ̄µ 0

















. (1.2)

Hereσµ = (1, σ) andσ̄µ = (1,−σ), 1 being 2× 2 identity matrix andσ being the set of three Pauli

matrices.

The indexi = 1, ..., 6 runs over the six flavors of quarks which are found to occur ina broad

hierarchy of masses. Two of these flavors,u andd quarks are very light with masses much smaller

than the masses of other quarks and the confinement scale. In the approximation where these masses

are neglected, the theory has an extended global symmetry, the flavor chiral symmetry. Consider just

the matter terms in the QCD action. Suppressing the color indices and writing the action in terms of

two-component Weyl spinorsqL andqR
1, this can be rewritten as

Squark=

∫

d4x
{

q†Liσµ(i∂
µ − gAµ)qLi + q†Riσµ(i∂

µ − gAµ)qRi −mi(q
†
LiqRi + q†RiqLi)

}

. (1.3)

ForNf flavors, consider the U(Nf )×U(Nf ) transformationqLi → ULi j qL j andqRi→ URi j qR j whereUL

andUR are two separate unitary matrices in flavor space. It is easy to see that this transformation is a

1qL(x) andqR(x) are the two-component Weyl spinors obtained from the Diracspinorq(x) by the application of the

chiral projection operatorsPL andPR, PL =
1−γ5

2 , PR =
1+γ5

2 whereγ5 = iγ0γ1γ2γ3.
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symmetry of the massless part of the action. Alternatively,these symmetry transformations can also

be parametrised in terms of vector transformations which correspond toUL = UR and axial-vector

transformations, which correspond toUL = U†R. In the special case that the masses are non-zero but

equal, the vector part is a symmetry but the axial part is not.If some (nf < Nf ) flavors are massless

and the rest massive with unequal masses, then the mass termsrespect the subgroup U(nf )×U(nf ) of

chiral symmetry. This is the case for QCD if we approximate the two flavors with very small masses

to be nearly massless.

Even in the massless case, the quantum theory has subtleties. A U(1) part of the axial symmetry is

broken due to quantum effects. Furthermore, the axial SU(Nf ) undergoes spontaneous symmetry

breaking, leaving behind only a vector symmetry. The Goldstone bosons associated with this

symmetry breaking are identified with a triplet of pseudoscalar mesons (pions) in hadron physics

corresponding toNf=2. This is expected to hold true on neglecting the small quarkmasses for the

u andd flavors. In reality, however, one finds that the pions are not massless but have small masses.

This is because of the non-zero masses ofu andd quarks [39].

1.1.1 Asymptotic freedom

There are three kinds of interaction vertices in the QCD action given in (1.1). One of these involves

interaction of two quarks (straight line) with a gluon (wavycurve) while the other two give rise to

interactions among three and four gluons as shown in Figure 1.1.

Figure 1.1: QCD interaction vertices (adapted from [10]).

In perturbation theory, these interactions lead to a renormalisation group flow of the coupling

strength given by the beta function [10]

β(g) = − g3

(4π)2

(

11
3

Nc −
2
3

Nf

)

, (1.4)

whereNc denotes the number of colors (for SU(Nc) colour gauge group) andNf denotes the number

of quark flavors. ForNc/Nf > 2/11, the beta function is negative, i.e., the coupling constant decreases

with energy. In particular, for QCD we haveNc = 3,Nf = 6 and so it satisfies this condition. Thus,

QCD has the property that at high energies it approaches a free theory. This result, calledasymptotic

freedom, is at the basis of the many successful comparisons of perturbative QCD calculations with
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high energy scattering experiments involving strongly interacting particles. The key difference with

an abelian gauge theory, like Quantum Electrodynamics (QED), in which the coupling grows with

energy [10], is that the force carriers gluons interact among themselves. As in QED, the quark-gluon

interaction leads to a coupling increasing with energy, as reflected in the second term in equation

(1.4). In QCD, the self-interaction of the gluons leads to anadditional opposite effect and causes the

coupling to decrease with energy. The first term in (1.4) shows this. The net effect is determined by a

competition between the two terms and gives rise to asymptotic freedom in QCD.

The flip side to asymptotic freedom is that at low energies theQCD coupling becomes large. This

can be seen from the solution to (1.4) which is usually written in the form2

g(Q)2

4π
≡ αs =

2π
b0 ln(Q/ΛQCD)

, b0 = (
11
3

Nc −
2
3

Nf ). (1.5)

Here,g(Q) is the running coupling andΛQCD is the characteristic energy scale of QCD. We see that

as Q decreases, the QCD coupling grows until atQ = ΛQCD, it blows up. This behaviour can be

seen in the continuous curves in Figure 1.2 which have been drawn for different values ofΛQCD. The

striking agreement between the perturbative calculation and various experimental results can also be

seen from the figure. Of course, long before the energy scaleΛQCD is reached a perturbative treatment

of QCD is inadequate and non-perturbative effects take over. It is believed that these non-perturbative

effects lead to the confinement of quarks and gluons inside hadrons, thereby explaining their absence

from the observed spectrum of strongly interacting particles. Although we still lack an analytical

derivation of confinement in QCD, it has been demonstrated invery similar (supersymmetric) gauge

theories [36] and also using lattice gauge theory techniques (see [38] for a review and references).

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 1.2: Flow of coupling strength with energy as obtained from [39].

2See, for example, the book by Peskin and Schroeder [10]
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1.1.2 Confinement

Although it is hard to prove confinement in QCD, the phenomenological evidences for the

phenomenon are very strong. One does not observe free quarksand gluons in nature but they are

confined inside hadrons. To understand how it might happen, consider a high energy scattering

experiment where a quark is struck off from the rest of the hadron. As the quark separates, the

color electric field around it would approach the one due to a single quark. If the energy stored in this

field becomes too large it may lead to the production of a quark-antiquark pair. The antiquark can

then bind to the struck quark and the quark from the pair with the rest of the hadron resulting in color

singlet states in the final state. Such an experiment, therefore, will not let one measure the energy

associated with the color electric field of a lone quark. One can, however, resort to a study of this

energy through indirect means namely, the pattern of hadronspectrum called Regge trajectories and

numerical simulations of the problem.

If one plots the square of the masses of hadrons with their angular momentum, one finds that

hadrons with given flavor lie on nearly parallel straight lines referred to as Regge trajectories. This

is a feature that is particularly characteristic of the hadron spectrum. If one picturises a meson as a

string of constant mass per unit length (string tension) between the quark and antiquark, one arrives

at a similar spectrum. This gives an indication towards a string picture of a meson. One possible

way that such a string picture may arise from quarks and gluons is through the formation of a color

electric flux tube in which the color electric field between a static quark and antiquark is confined to

a thin cylindrical tube running between the two. Such a phenomenon would be similar to Meissner

effect in which magnetic field inside a type II superconductor gets collimated into thin flux tubes.

The electric-magnetic dual picture of this would give rise to a situation in which the electric field

between the quark and anti-quark is collimated into a flux tube in a dual superconductor consisting of

a monopole condensate.

Although, it has not been possible to derive such a result forQCD, it has been demonstrated in

alternate theories similar to QCD. A prime example is provided byN=2 SU(2) super Yang-Mills

theories considered by Seiberg and Witten. Because of an exact electric-magnetic duality in the

theory, the properties of the vacuum in the strongly coupled‘electric’ theory can be deduced from the

properties of a weakly coupled ‘magnetic’ theory. Confinement can be described perturbatively in the

dual theory as monopole condensation [36].

The most reliable evidence of the static quark potential is obtained using computer simulations

with very massive quarks where pair production can be ignored. These computations are carried out

using lattice gauge theory, a non perturbative technique which we will briefly describe later. This

involves computation of a Wilson loop from which the static quark potential can be derived. The

Wilson loop is found to satisfy an area law, indicating that the static potential between a quark and an
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antiquark grows linearly with the pair separation. This makes it highly probable that the phenomenon

of confinement is present in strong interactions.

1.1.3 Perturbative tests of QCD

Most experimental tests of QCD are based on perturbative calculations, which, as we saw now, are

valid at high energies because the QCD coupling is small at high energies. This allows us to compare

perturbative computations in QCD with scattering experiments involving exchange of momenta larger

than a few timesΛQCD. These comparisons have yielded a valueΛQCD ≈ 200MeV. This small

value of the characteristic QCD scale explains the early onset of scaling and is responsible for the

remarkable success of perturbative QCD in explaining a hostof experimental data on many strong

interaction processes [10]. In the following, we will briefly describe a few examples of such scattering

experiments which have provided us with a large number of successful tests of QCD.

• e+-e− annihilation: In this process, an electron-positron pair collides at a large center of mass

energy and annihilates into hadrons. The leading order Feynman diagram that contributes to

this process is shown in Figure 1.3(a). This involves annihilation of the pair into an offshell

photon which subsequently materialises into a quark-antiquark pair.

Figure 1.3: Feynman diagrams fore+e− scattering (adapted from [10]).

This diagram involves only QED interactions. However, the process receives corrections from

diagrams involving QCD interactions too. The leading ordercorrection in strong coupling is

provided by the diagram in Figure 1.3(c) where the two quarksalso exchange a gluon between

them. The diagrams in Figure 1.3(b) show processes with a gluon emission which cancel the

IR divergence present in the other. In all these, the quark, anti-quark and the radiated gluon

subsequently hadronise through soft processes leading to hadrons as the final states in the

scattering process. In the experiment, these appear as jetsof hadrons shooting in different

directions.

The scattering cross-section of the process can be computedusing perturbation theory. After

summing over all flavors (for quarks) and colors (for quarks and gluon) in the final state, it is
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given by [10]

σ
(

e+e− → hadrons
)

= 3
(

∑

i

e2
i

)4πα2

3s

(

1+
g2

4π2
+ ...

)

, (1.6)

wheres is the standard Mandelstam variable and the dots represent corrections in higher orders

of the QCD coupling. Here, we have neglected all masses, which makes sense for such high

energy scattering processes.α is the electromagnetic fine structure constant andei is the electric

charge of the quark with flavori. The factor of 3 in the expressions depicts the number of colors.

We may now worry how this cross-section is related to the cross-section for the experimentally

observed process with hadrons in the final state. The key point is that the quarks and gluons in

the final state of these QCD diagrams always hadronise with certainty. Hence the cross section

for the whole process is given by equation (1.6) (to leading order in electromagnetic and strong

couplings). This equation provides an additional way to experimentally verify the number of

colors (the factor of 3).

One of the very important implications of this kind of scattering is due to the QCD process of

the last two diagrams in the figure involving the radiated gluon. Letx1, x2 andx3 be the fractions

of energy of the annihilating electron-positron system in the center-of-mass frame shared by the

quark, antiquark and the emitted gluon respectively. In terms of the the four momenta, they are

given byxj = 2kj .q/q2 for j = 1, 2, 3 and satisfy
∑3

j=1 xj = 2. The differential cross section for

this process is given by [10]

d2

dx1dx2
σ = 3

(

∑

i

e2
i

)4πα2

3s
g2

6π2

x2
1 + x2

2

(1− x1)(1− x2)
. (1.7)

This expression has a singularity forx1 → 1 or x2 → 1. These limits pertain to the case

when the quark (antiquark) is scattered with the maximum possible energy and the antiquark

(quark) and the gluon are scattered in the opposite direction, collinear with each other. Thus,

the process shows a very large differential cross section with the gluon emitted collinear to the

quark or the antiquark. Subsequently, the quark, anti-quark and the gluon hadronise. However,

with the gluon collinear to the quark or the anti-quark, one has two back-to-back hadron jets,

indistinguishable from what happens in the processes without a gluon radiation. Such jets have

been observed in PETRA and LEP experiments [26]. One can havea tri-jet of hadrons only

when the gluon has a significant transverse momentum. In practice, this is implemented by

imposing an angular cut-off on separations of the jets. It has been possible to distinguish such

tri-jet events in LEP [26]. One can also have a four jet event,providing evidence of gluon

self interactions. It is extremely difficult to carry out the experimental analysis for this but the
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evidence of a three gluon interaction emerges [26].

• Deep inelastic scattering: This experiment involves scattering of a lepton (electron, muon or a

neutrino) from a nucleon (a proton or a neutron) at very high momentum transfers. The lepton

undergoes an electromagnetic interaction with one of the quarks inside the hadron (see Figure

1.4). When the momentum transferred to the quark is high enough, it is ripped off from the

Figure 1.4: Deep inelastic scattering (adapted from [10]).

rest of the hadron. Let the four momentum of the lepton bek and that of the quark bep. Let

the (space-like) momentum transferred to the quark beq = k − k′. Deep inelastic scattering

pertains to the scenario whenQ2 = −q2 is large such that the QCD coupling is small at this

scale. Because of this, strong interactions can not preventthe quark from getting ripped off

from the rest of the hadron. The quark, however hadronises through subsequent soft processes,

as in all QCD processes.

To find out the cross-section in deep inelastic scattering, it is useful to go to the centre-of-mass

frame of the lepton-hadron system. As the momenta of the lepton and the hadron are very

large, one may neglect their masses. Further, at high enoughmomentum, the hadron may be

thought of as being composed of quarks and gluons with momenta longitudinal to the hadron

momentum itself. This is because, the constituents can gaina large transverse momentum

only through the exchange of hard gluons. Such a process willbe highly suppressed due to

the smallness of the strong coupling at high energies. Hence, the momentump of the quark

undergoing the interaction may can be written asp = xP, wherex ∈ [0, 1]. However, the

probability distribution for the quark to have a momentum fraction x cannot be derived in

perturbative QCD. This depends on the soft processes involved in confinement of constituents

of a hadron, which is beyond the purview of a perturbative analysis.

The standard way to treat this is to parametrize our ignorance of the hadronic wave functions

in terms of probabilities that a quark or a gluon carries a fraction of the momentum of the
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hadron. These are known in the QCD literature as parton distribution functions. One relies on

experimental observations to determine these distribution functions. The leading contribution

to the cross-section in deep inelastic scattering in terms of these functions is given by [10]

σ(l + hadrons→ l′ + hadrons)=
∫ 1

0
dx

∑

i

fi(x)σ
(

l(k)q(xP) → l(k′) + q(q+ xP)
)

, (1.8)

where fi(x) denotes the distribution functions. In the leading approximation, one gets the

differential cross-section

d2

dxdQ2
σ
(

l + hadrons→ l′ + hadrons
)

=
∑

i

fi(x)e2
i

2πα2

Q4
{1+ (1− Q2/xs)2}, (1.9)

whereq2 = −Q2 and s is the standard Mandelstam variable of the lepton-hadron scattering.

Notice that if we remove the kinematic dependence of the QED cross section,1+(1−Q2/xs)2

Q4 , rest

of the the term depends only onx and not onQ2. This is known as Bjorken scaling and implies

that the structure of a hadron appears the same independent of the momentum transfer by

the probe. However, higher order QCD corrections lead to violation of the scaling law. The

quark undergoing electromagnetic interaction with the lepton can lead to emission of gluons

and quarks through soft processes. Processes with collinear emission of gluons or quarks lead

to large corrections, of the order of,αs(Q2) ln(Q2/m2) to the Parton distribution function, where

m is the mass of a quark. Thus, the distribution function is actually given by fi(xQ2) which

flows logarithmically inQ2, as governed by Altarelli-Parisi equations [10].

One of the earliest of the deep inelastic scattering experiments, the SLAC-MIT deep inelastic

scattering experiments, was done in 1960 (see [10]). These used a 20 GeV electron beam that

was scattered from a hydrogen target. The scattering rate was measured for large deflection

angles which correspond to deep inelastic scattering of electron off a proton. The largest part of

the cross-section came from deep inelastic scattering where the end state is comprised of a large

number of hadrons (apart from the deflected electron). The results from the parton model well

described the observations from these experiments. The experiments also showed that Bjorken

scaling holds true at 10 percent level for values ofQ upto about 1 GeV [10, 27]. Because of a

slow logarithmic flow of the parton distribution function with energy, violation of the scaling is

seen only after accumulating more data over a large range of energy transfers.

• Hard scattering processes: Apart from the type of processes discussed above, yet another class

providing perturbative tests of QCD is the hard scattering of high energy hadrons off each

other. However, this is the messiest class since in all such processes the particles in both

the initial and final states are hadrons. In this case, even initial states will involve some soft
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interactions of quarks and gluons with only a small transverse momentum being exchanged.

Such interactions can not be dealt with perturbatively. However, the underlying QCD process

in the hard scattering part can be computed perturbatively.Consider the example of two high

energy protons colliding with each other and leavinge+e− in the final state in addition to other

hadrons as shown in Figure 1.5. The leading order contribution to the scattering cross-section

Figure 1.5: Hard scattering (adapted from [10]).

(in the centre of mass frame) computed using perturbative QCD, is written as

σ
(

pp→ e+e− + hadrons
)

=

∫ 1

0
dx1

∫ 1

0
dx2

∑

i

fi(x1) fī(x2)σ
(

q̄i(x1P1)qi(x2P2)→ e+e−
)

,

σ
(

q̄iqi → e+e−
)

=
e2

i

3
4πα2

3ŝ
, (1.10)

wherex1 and x2 denote the fractional momenta of the quark and the anti-quark and ŝ is the

standard Mandelstam variable for the underlying QCD process. Thus, using inputs on parton

distribution functions derived, for example, from deep inelastic scattering experiments one can

calculate the cross section in hard scattering processes and compare with experiments.

Historically, the first of scattering experiments to study strong interactions was in proton-proton

collision [10]. At energies higher than 10 GeV or so, large number of pions were observed.

The characteristic feature of these experiments was that the pions were mostly found to be

collinear with the collision axis. Only a few events are observed where there are pions with

large transverse momentum. It has been possible to analyse such events in perturbation theory

and compare with experimental results. As an example, two-jet invariant mass distribution in

pp̄ collisions at 1.8TeV was measured by the CDF collaboration [10]. The results were found

to be comparable with leading order QCD calculations.
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1.1.4 Non-perturbative QCD

Although a non-perturbative study of non-abelian gauge theories is a difficult subject, considerable

progress has been made in this direction over the last 40 years. Some of the techniques which have

proven to be very important in this progress are as follows:

Lattice gauge theory

This is one of the most widely used techniques in non-perturbative QCD which allows numerical

computation of various experimentally measurable quantities in hadronic Physics. Lattice gauge

theory (LGT), invented by Wilson [23], is based on computation of Feynman path integral on a lattice

of Euclidean space-time restricted to a finite volume (see [28] for an introduction). The space-time

points are assumed to lie on the sites of a hyper-cubic lattice of sizeL with a unit cell of sizea (see

Figure 1.6). The finite lattice size provides an ultra violetcutoff while the finite volume provides

an infra red cutoff thereby making the theory finite and well defined. As one takesthe limit a → 0

and L → ∞, one approaches the infinite continuum space-time in Euclidean signature. Physical

predictions for the continuum Minkowski space-time are then extracted by an analytic continuation.

Figure 1.6: Space-time lattice.

The QCD action in such a discrete space-time involves quark fields sitting at the sites and gauge

fields on the bonds of the lattice. One is, therefore, faced with computingonly a finite number of

integrals in evaluating the Feynman path integral. The smaller the lattice spacinga and the larger

the sizeL, larger the number of integrals needed to evaluate the path integral. With faster and faster

computers one could approach the infinite continuum (Euclidean) space-time. One expects that the

results in actual space-time can be attained as a continuum limit of the results in finite discrete space-

time. Nevertheless, with the advent of very powerful computers, it has now been possible to carry

out lattice computations with dynamical fermions also in many cases. The computations are, by no

means, trivial and one has to address various issues as discussed in the following:
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• Doubling problem: If one naively extends the QCD action to discrete space-time one finds that

the fermion propagator has extra poles leading to the well knowndoubling problemof fermions

on a lattice. Removing these doublers requires one to add extra terms to the lattice action. This,

however, destroys the chiral symmetry of the action even in the limit of zero quark mass. Other

forms of action have been proposed which remove the doublersand restore chiral symmetry in

the continuum limit.

• Discretization error: In writing the lattice action, space-time derivatives have to be written

as finite differences. This leads to a discretization error. One is required to add a suitable

combination of irrelevant operators to cancel the errors order by order ina. This increases the

reliability of the results and may often be necessary due to limitations of computer power [38].

• Computation of background gauge field configuration: The Feynman path integrals are

associated with a factor of exp(-S) in Euclidean space-time. Thus, the contribution to the path

integral is dominant from configurations near whichS is minimised. Such configurations can

be generated using a Markov chain. The path integral, then, is carried out using Monte Carlo

techniques.

• Computation of quark propagator: Computation of quark propagator involves inversion of the

Dirac operator from a quark of a given spin and color at a site to a quark of another spin and

color at a different site. One is required to compute this between all the space-time points,

which turns out to be the most computationally expensive part in the problem. This makes one

often work in the quenched approximation where the quarks inthe QCD action are assumed to

be non-dynamical. In other words, they are assumed to be infinitely heavy.

Lattice calculations indicate that there is confinement of quarks inside hadrons and that there

is chiral symmetry breaking. Because of lattice gauge theory, it has also been possible to study

hadronization of jets through soft interactions of quarks and gluons. Another very important

contribution of LGT has been in calculating hadron masses and their decay constants. In many cases,

the technique yields values which are quite close to the experimentally measured values within the

error bounds. A summary of the achievements of the techniquecan be found in [26, 30]. A lot

of progress has been made in lattice gauge theory recently. One of the major issues before LGT

has been regarding the extrapolation of quark mass down to the physical values of up and down

quarks. The next to leading order (NLO) correction in chiralperturbation theory (ChPT) for pion

decay constant predicts a non-analytic behaviour−m2
π ln m2

π. The LGT simulation performed by the

MILC collaboration found a pion mass as low as 250 MeV and showed the existence of the chiral log

[24].
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LGT has also come a long way in the prediction of fundamental QCD parameters like the strong

coupling constant, light quark masses and heavy quark masses. The HPQCD collaboration carried out

three loop computations with dynamical quarks and obtainedresults for the coupling constant with

substantially reduced errors due to higher order terms [25]. These calculations have also been used to

obtain light quark masses to a good deal of accuracy (see [30]for a review). LGT calculations have

also been carried out in Kaon Physics, in particular to obtain mixing angles, with encouraging results.

Another application of LGT has been in the sector of finite temperature. At high temperatures

and densities quarks and gluons inside hadrons are believedto deconfine into a free state known as

quark-gluon plasma (QGP). There has been a lot of work in LGT literature that probed the nature of

this transition. Recent 2+1-flavor LGT calculations done using staggered fermions have shown that

there is no true phase transition but thermodynamic variables undergo a rapid crossover in a small

interval of temperature [32]. Because of this, quantities like the chiral condensate have a sharp peak

at some transition temperature. LGT calculations in [33] indicated it to be aroundTc = 176 MeV.

Using LGT calculations it has also been possible to evaluateequation of state at high temperatures.

At temperatures large compared toTc, QGP is found to approach the ideal gas state. Some of the

recent calculations can be found in [34, 35].

Large N

This technique was invented by ’t Hooft [45]. Many features of QCD can be understood by studying

a ‘slightly’ different gauge theory where one considers an SU(N) gauge group instead of SU(3) and

then takes the limitN → ∞. In this limit one is required to keepg2N fixed for a sensible expansion.

This combination ofN andg2, usually denoted asλ , is known as ’t Hooft coupling. The key feature

in this technique is that the perturbation theory can be arranged in a double expansion inλ and 1/N.

In the large-N limit, one is then left with a perturbation series in 1/N, each term of which is a further

expansion in the couplingλ. There is a prescription which associates diagrams at each order of 1/N

with surfaces of a given topology. The double expansion, canthen be written as a genus expansion

for surfaces of different topologies taking a form

∞
∑

g=0

N2−2g fg(λ), (1.11)

where fg(λ) arises in summing up all the diagrams with genusg. The leading order (in 1/N) diagrams

are associated with the topology of a sphere and are referredto as planar diagrams. In a pure gauge

theory, the first subleading diagrams in 1/N are associated with the topology of a torus. In the presence

of fundamental flavors however, the first subleading diagrams have the topology of a disc. The main

crux is that, for largeN one may neglect higher order terms in 1/N in the genus expansion, thus
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drastically reducing the number of diagrams to calculate. Even though SU(N) gauge theory with large

N is different from QCD, it is believed that many of the qualitative features of QCD are preserved in

this limit. A detailed review of this method applied to QCD can be found in [46].

Although the largeN limit leads to an immense simplification, calculations in asymptotically free

gauge theories turn out to be quite hard to carry out even in this limit. This is because one is still

left with an infinite number of planar diagrams (the expansion in λ) to sum over. However, with the

emergence of AdS/CFT correspondence3 it has now become possible to overcome this difficulty, at

least in some corners of the parameter space.

AdS-CFT correspondence

The AdS/CFT correspondence, first discussed by Maldacena and Klebanov, Polyakov and Gubser

[48, 49], conjectures a duality between an SU(N) gauge theory and string theory in one higher

dimension. When the value of ’t Hooft coupling of the gauge theory is large, the string theory reduces

to a theory of gravity. The duality then is between a quantum theory of gravity and a strongly coupled

gauge theory which lives on the boundary of the bulk space-time in which the theory of gravity lives.

Further, in the limit of largeN, the quantum corrections in the bulk theory are suppressed,giving rise

to a classical theory of gravity. Thus, in the limit of largeN and strong coupling, AdS/CFT becomes

a very useful tool to study strongly coupled gauge theories by computations in a classical theory of

gravity, which are often quite simple to carry out, certainly simpler than summing up the series of

planar diagrams in the gauge theory!

The original work of Maldacena discussed the correspondence between a strongly coupledN = 4

super Yang-Mills theory (which is obtained in the low energylimit in a setup of large number

of overlappingD3 branes) and a classical bulk AdS space. A precise rule exists for calculating

correlation functions of operators in the boundary gauge theory from computations in the bulk gravity

theory. Following this work, various authors have investigated the duality in a variety of settings. We

will provide a brief review of the working rules of the correspondence in the next chapter as we will

be using them extensively in this thesis.

1.2 Chiral symmetry breaking

In QCD, the scale of chiral symmetry breaking (χSB) is close to the confinement scale. As a

consequence,χSB in QCD is a strong coupling problem, not amenable to perturbative techniques. So

it has been difficult to study this phenomenon analytically in QCD. However,in the largeNc analogue

of QCD some general results can be obtained analytically since corrections, which are down by

3AdS stands for anti-deSitter space and CFT for conformal field theory
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powers of 1/Nc, can be controlled in this approximation [46]. An argument for χSB in large-Nc QCD

was presented by Coleman and Witten in [59]. The argument is based on the following assumptions:

1) the large-Nc QCD is confining, 2)χSB is characterised by an order parameter given by a fermion

bilinear that transforms as a bifundamental under the chiral group, 3) vacuum corresponds to a state

obtained by minimizing an effective potential as a function of the order parameter, and 4)the various

minima obtained do not have any accidental degeneracy with respect to the chiral group. In order to

calculate the effective potential a s a function of the chiral bilinear, one needs to sum up the connected

diagrams. In the limit ofNc → ∞, diagrams with more than one quark loop drop out. One is

eventually left with a form for the potential that involves asingle trace over flavors. Using this and

the assumption that there is no accidental degeneracy, the authors argued that there is a spontaneous

breaking of U(Nf ) × U(Nf ) chiral symmetry to vector U(Nf ) in an SU(Nc) gauge theory. An exact

derivation of bothχSB and confinement in a supersymmetric setup was given by Seiberg and Witten

in [36, 37]. χSB has been studied using largeN techniques also in models which do not show the

phenomenon of confinement. One such model which has been extensively studied in literature, and

is also a topic in this thesis, is the Nambu−Jona-Lasinio(NJL) model [41, 42]. The importance of

this model lies in the fact that it can be argued to arrive in the low energy limit of largeNc QCD. We

briefly review the model in the following.

1.2.1 NJL model

In their original paper, Nambu and Jona-Lasinio consideredtheir work as a model for nucleons

interacting through a four-fermi term. A nucleon-antinucleon bound state was identified as a pion. If

the nucleons are replaced by quarks, one gets NJL model for quarks. It has been argued [43, 44] that

such a model likely emerges from QCD as an effective low energy theory. The Lagrangian density of

this model is given by

L = qLα j iγ
µ∂µqLα j + qRα j iγ

µ∂µqRα j + g2(qLα jqRαk)(qRβkqLβ j), (1.12)

whereqL and qR denote Dirac spinors for left-handed and right-handed quarks respectively,α, β

are color indices andj, k are flavor indices. Note that the Lagrangian is symmetric under chiral

transformation

qLα j → UL jkqLαk, qRα j → UR jkqRαk, (1.13)

where UL, UR are unitary matrices in flavor space. The four-fermi term in the Lagrangian gives rise

to an attractive interaction between the quarks of the two chiralities. This leads to the formation of a
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chiral condensate in the vacuum through a dynamical breaking of chiral symmetry.

It is believed that at energies below the QCD scaleΛQCD, the model captures the dynamics of

QCD. There is no systematic way of integrating out the gauge fields in QCD to derive a low energy

effective theory of fermions. However, a scenario for how one may try to do so was described in

[43, 44]. The basic point is that the integration of the gaugefields would lead to an effective multi-

fermi interaction that should be of short range of order 1/ΛQCD. The leading term corresponding to

one gluon exchange diagrams gives rise to a four-fermi term as in the NJL model. One important

fact about the NJL model is that it is not renormalisable and has to be thought of with a finite energy

cutoff. This cutoff should be of the order of QCD scale for applications to QCD.

The Lagrangian in (1.12) is equivalent to

L = qLiγµ∂µqL + qRiγµ∂µqR+ qLMqR+ qRM†qL −
1
g2

tr(M†M). (1.14)

whereM is color invariant. The operator ‘tr’ represents the trace on the spinor index. Solving the

equation of motion forM andM† and plugging into equation (1.14), one reproduces (1.12). This is

true even at the quantum level since the Lagrangian is quadratic in M andM†. The bosonic fieldM

plays the role of a chiral bilinear of the quarks given by

Mi j = g2q̄R jqLi, (1.15)

where we have now made the flavor indices explicit. The rhs involves a sum overNc colors.

To discuss symmetry breaking in this model, let us first express the action in (1.14) in terms of

Dirac spinorq such that the chiral spinors are given asqL = PLq andPRq. The action then takes the

form

L = qiγµ∂µq+ q(MPR + M†PL)q− 1
g2

tr(M†M). (1.16)

We now need to integrate out the fermionq to get an effective action purely in terms of the bosonic

fields,M, M†:

Se f f = Nc[ln detD − 1
Ncg2

∫

d4xtr(M†M)],

Dx,y = (iγµ∂µ + iMPL + iM†PR)δ4(x− y). (1.17)

For largeNc the effective dynamics becomes classical since fluctuations are suppressed by factors

of 1/Nc. Chiral symmetry breaking leads to a non trivial v.e.v for the chiral bilinear which can be

found from the classical equation of motion. In terms of the bosonic fieldsM andM†, it means a non
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trivial vev for M itself. For a Poincare invariant vacuum, the v.e.v forM should be a constant matrix.

Now, chiral symmetry of the Lagrangian (1.12) can be seen from its invariance under the following

transformation:

q′L = ULqL, q′R = URqR,

M′ = ULMU†R. (1.18)

The matrixM can be written asHU whereH is a Hermitian matrix andU a unitary matrix. Thus,

using the chiral transformationUL = UUR, we can go to a frame whereM is transformed into a real

diagonal matrix diag(λ1, λ2,...,λNf ). Using the relation ln detD = Tr lnD, we get the effective action

as

Se f f = Nc

Nf
∑

i=1

(

Trln(iγµ∂µ + iλi) −
1

g2Nc
λ2

i

∫

d4x
)

. (1.19)

In the above, we use the notation ‘Tr’ for trace on space-timeand Dirac indices. Clearly, the action

is symmetric with respect to interchange ofλis. Hence, in the absence of accidental degeneracies, the

vacuum must be characterised by the same value for all theλis. Let us denote this value asR. The

equation of motion (gap equation) inR is given by

iTr
〈 1
iγµ∂µ + iR

〉

=
2R

g2Nc
. (1.20)

The lhs can be computed in momentum space as follows:

iTr
〈 1
iγµ∂µ + iR

〉

= iV4

∫

d4k
(2π)4

Trspinor
γµkµ − iR

k2 + R2

= 4RV4

∫

d4k
(2π)4

1
k2 + R2

. (1.21)

The integral can be evaluated by analytically continuing toEuclidean time. Before we do that, recall

that NJL model is not renormalisable and requires an explicit UV cutoff. Thus the integral onk in

(1.21) should be computed with a cutoff Λ. With this, the gap equation yields

R

(

1− Ncg2

8π2
(Λ2 − R2ln(1+

Λ2

R2
))

)

= 0. (1.22)

This has two possible solutions:R = 0 and 1− R2

Λ2 ln
(

1+ Λ
2

R2

)

= 8π2

Λ2g2Nc
. The first one corresponds to a

vacuum that preserves chiral symmetry and the second one breaks it. However, the second solution

exists only when the four-fermi coupling exceeds a criticalvaluegc given byg2
cNc =

8π2

Λ2 . Further, one
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finds that for all values of coupling abovegc, only the second solution is the true vacuum solution. To

see this, consider the second derivative of the effective action wrtR. The Euclidean action gives the

Hamiltonian up to a sign change. Therefore, in the limitR→ 0, the second derivative of energy wrt

R is given by

d2E
dR2

= −2
d2Se f f

dR2
(1.23)

= V4

( 1
g2
− 1

g2
c

)

. (1.24)

For values ofg above the critical value, this expression is negative showing thatR= 0 is a maximum

of energy. Thus, for such values ofg, the vacuum with broken chiral symmetry is the true vacuum.

For values ofg below the critical value, the second derivative is positiveandR= 0 is the true vacuum.

The breaking of chiral symmetry is associated with masslessGoldstone bosons. (The analogs

of these in QCD, forNf = 2, are the pions.) In order to demonstrate this, let us consider the NJL

action given by (1.16). One can decompose the matrixM asM = H(x)exp(igπ(x)) whereH(x) is a

Hermitian and the exponential is a unitary matrix of rankNf . The matrix fieldπ(x) will turn out to be

the field representing the Goldstone boson. Clearly,π(x) does not appear in the last term of (1.16).

We will now argue that it can also be transformed away from theother non-kinetic term. To see this,

consider the following change of variableq(x) = exp(igγ5π(x)/2)q′(x), H(x) = eigπ/2H′e−igπ/2. Under

this change of variables, the middle term in (1.16) can be expressed as

q(MPR + M†PL)q= q′eigγ5π/2(HeigπPR + e−igπHPL)eigγ5π/2q′

= q′H′q′. (1.25)

The fieldπ(x) is completely removed from this term. However, these now reappear in the first term

of (1.16) on re expressing this term in the action in terms ofq′. Theπ(x) dependence of the action

would now be purely through derivative terms. Thus there can’t be any potential term for pions in the

effective action and hence they are massless.

Much of the work done in this thesis pertains to a scenario close to NJL model. We study various

aspects of chiral symmetry breaking in a string theory modelknown as Sakai-Sugimoto model that

gives rise to a non-local version of NJL model in the low energy, weak coupling limit. The model

can also be studied in the strong coupling limit for which onerequires the use of the AdS/CFT

correspondence. In the following chapter we will present a brief discussion on the correspondence

and its working rules.



Chapter 2

AdS/CFT correspondence and holographic

QCD

The large-N limit of a field theory is a mean field approximation in which one can study quantum

fluctuations as 1/N corrections. However, despite this drastic simplificationbecause of largeN limit,

it has not been possible to exactly identify the mean field in any gauge theory. This is because even

in the limit of N → ∞ one is left with an infinite perturbation series in ’t Hooft coupling which

can be evaluated only to a few orders. In recent years, however, the status has dramatically changed

with the emergence of a new tool to study large-N gauge theories at strong coupling: the AdS/CFT

correspondence [48]. This has been one of the very importantconceptual and technical advances in

the subject. Providing a duality with a theory containing gravity, it leads to a dramatic simplification

of the problem and allows one to identify the mean fields involved. In many cases, the AdS/CFT

correspondence has also aided quantitative study of strongly coupled gauge theories.

The origin of the correspondence dates back to 1997 when Maldacena conjectured a duality

between a gauge theory in (3+1)-dimensions and a string theory in anAdS5×S5 space-time [48, 49].

This was not the first time that a connection between string theory and a gauge theory was made.

In QCD, the phenomenon of confinement has been conjectured togive rise to an electric analog of

the standard Meissner effect for magnetic flux in a superconductor [20]. In this dual superconductor,

color electric flux lines between quarks and antiquarks arise due to condensation of color magnetic

monopoles in the QCD vacuum. This gives rise to effective string like degrees of freedom between

quarks and antiquarks. Although, in QCD itself it remains a conjecture, this picture has been verified

in a closely related supersymmetric analog of QCD [36]. However, attempts to explain these features

using fundamental strings did not meet with success. This isbecause fundamental strings give rise

to a spectrum of particles (like massless spin-2 states) which can not be seen in experiments. This,

along with the emergence of QCD as a successful theory of strong interactions shifted the focus of

19
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string theory to Planck scale physics. Slowly it began to emerge as the prime candidate for a quantum

theory of gravity. This string theory, also referred to as the theory of fundamental strings, is in a very

different context and is based on the assumption that the fundamental particles arise from string-like

degrees of freedom. The AdS/CFT correspondence arose from a rather surprising connection between

string theories and strongly coupled field theories uncovered in connection with studies of dualities

in string theory.

To make the thesis self-contained, in the following, we willbriefly review some salient features of

the AdS/CFT correspondence and its application to QCD-like theories. Since there are many excellent

reviews (e.g. [55]) of the subject available, we will not go into details and will concentrate only on

those aspects which are of direct relevance to our work in thethesis.

2.1 The Conjecture

One of the plausibility arguments for a connection between agauge theory and a string theory is

based on largeN limit of an SU(N) gauge theory. As mentioned before, the Feynman diagrams inthe

perturbation series can be arranged into a genus expansion as

∞
∑

g=0

N2−2g fg(λ). (2.1)

In the presence of only adjoint fields, the connected diagrams in the genus expansion are associated

with closed surfaces. The leading contribution comes from surfaces of spherical topology and

subleading contributions from spheres with one or more ‘handles’. This is similar to what one finds in

the perturbation series of closed oriented strings if one identifies 1/N with the closed string coupling

constant. In spite of such indications for a connection, attempts at a derivation by reformulating gauge

theory in terms of the gauge-invariant Wilson line operators met with only a limited success and to

this date this program remains incomplete (see [52] and references therein).

The work of Maldacena in [48] provided a different handle on this problem. He conjectured that

there exists a one to one correspondence between a string theory in (d + 1)-dimensional space-time

and a gauge theory living in thed-dimensional boundary of this bulk space-time. Since it wasfirst

proposed various examples of this duality have been constructed and tests have been devised. Perhaps

the simplest of these is the original proposal of Maldacena of a duality betweenN = 4 super Yang-

Mills theory in 4 space-time dimensions and a string theory in AdS5 × S5. The gauge theory arises

in the world volume of overlappingD3 branes1 at weak coupling in the decoupling limit, which is

defined as the limit in which the string lengthls→ 0 keeping the field theory quantities fixed. Strong

1An extensive discussion onD-branes can be found in [51].
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coupling limit of the same system gives rise to anAdS5×S5 geometry in the near horizon limit. This

indicates a connection between the two seemingly different kinds of theories. In the following, we

elaborate on this connection.

2.1.1 OverlappingD3 branes

D-branes are objects in string theory on which open strings end. A Dp brane, in particular, is a

p-dimensional extended object whose excitations are given by open strings with ends fixed on the

world volume spanned by theDp brane. One may also consider a set of overlappingDp branes.

An extensive study of branes and such systems of branes can befound in [51]. We briefly present

properties of such a system in this subsection.

Consider a set ofNc overlappingDp branes. Each open string describing the fluctuations of these

branes is associated with two Chan-Paton indices at the ends, each running from 1 toNc. Effectively,

the open string spectrum gives rise to an adjoint representation of U(Nc). The branes can also source

closed strings. They haveNc units of charge for a (p+1)-form RR potential. The interaction between

D-branes can be studied using interactions between open strings. TheD-brane interaction can be

treated perturbatively for weak string coupling. ForNc overlappingD-branes, perturbation theory

remains valid forgsNc ≪ 1.

In this approximation one may now like to study the system in the low energy limit. In this limit,

the brane system gives rise to a U(Nc) gauge theory in (p + 1)-dimensions with 16 supercharges

with the coupling given bygsNc. The casep = 3 is particularly interesting as this gives rise to

superconformal field theory in (3+ 1)-dimensions:N = 4 SU(Nc) super Yang-Mills theory2. The

spectrum consists of gauge fields, six scalars3 and four spinors, all transforming as adjoint under

the SU(Nc) gauge group. This is a CFT with the conformal symmetry groupSO(2, 4). There is an

R-symmetry group SU(4) that rotates the spinors and scalars among themselves. In all, the theory has

a symmetry under the superconformal group SU(2,2|4). One of the key things that makes the theory

simple to study is that due to superconformal symmetry the couplinggsNc does not get renormalised.

A singleD-brane in flat space does not backreact on the geometry strongly since for small string

coupling the coupling to gravity is also weak4. However, when we consider a very large number of

D-branes, the system leads to a significant backreaction ifgsNc > 1. In this case, the system can not

be studied perturbatively. However, there exists classical solutions to supergravity theories that arise

from string theories in the low energy limit which have properties expected of a system of overlapping

2The extra U(1) symmetry in U(Nc) describes only the dynamics of center of mass degree of freedom of the brane
system

3The six scalars correspond to six directions transverse to the branes along which they can be separated in the 10-
dimensional space-time in which string theory lives

4mass∝ 1/gs and Newton’s constant∝ g2
s



22 CHAPTER 2. ADS/CFT CORRESPONDENCE AND HOLOGRAPHIC QCD

D3 branes. To look at what these solutions are, consider a black hole solution in type II string theory

with an electric chargeNc for the same (3+1)-form RR potential as carried by the set ofD3 branes.

In the string frame, the metric and the dilaton of the supergravity solution with the same quantum

numbers as that of the brane system are given by

ds2 = − f −1/2
− (ρ) f+(ρ)dt2 + f 1/2

− (ρ)
3

∑

i=1

dxi2 +
1

f+(ρ) f−(ρ)
dρ2 + ρ2dω2

5,

eφ = gs, f±(ρ) = 1− r4
±/ρ

4. (2.2)

In the above,t, xi are the physical directions arising from the world volume ofthe D-branes. The

parametersr± are related to the RR chargeNc and the mass per unit volumeM as

r+r− =
√

4πgsNcl
2
s, 5r4

+ − r4
− = 8(2π)8g2

sl
8
sM. (2.3)

There is a horizon atr+ and a singularity atr−. The horizon should cover the singularity, i.e.r+ ≥ r−

to ensure that there is no time-like naked singularity. The extremal case,r+ = r− is particularly

interesting as it preserves one half of the supersymmetriesin ten dimensions (16 supercharges). This

is similar to what we have in theD3 brane system. Defining a new radial coordinater, by r4 = ρ4− r4
+,

the extremal solution looks like

ds2 = H−1/2(r)
(

−dt2 +
3

∑

i=1

dxi2
)

+ H1/2(r)
(

dr2 + r2dω2
5

)

,

eΦ = gs, H(r) = 1+ r4
+/r

4, r2
+ =

√

4πgsNcl
2
s. (2.4)

In the new radial coordinate the horizon is atr = 0. At this stage we should note that this description

requires the supergravity approximation of string theory.This is allowed only when the curvature of

the space-time is much smaller than the string scale. This requiresr+ ≫ ls and hencegsNc ≫ 1. We

have already learnt thatN = 4 super Yang-Mills theory arises from a system ofNc overlappingD3

branes in the weak coupling limit (gsNc ≪ 1) at low energies. Here we see a classical solution of the

supergravity theory with quantum numbers identical to a system of overlappingNc D3 branes, which

is a valid solution only in the semiclassical limit which requiresgsNc ≫ 1. 5

In effect, we may have a completely different looking gravity description in the strong coupling

limit of a large-Nc gauge theory. In fact, as we will discuss in the next section,it is the near horizon

region of the above geometry that emerges as the dual of theN = 4 super Yang-Mills theory. In the

5Also note, to suppress string loop diagrams, the dilaton must be small which requiresgs ≪ 1. Thus, the strong
coupling limit and suppression of string loops together also requireNc ≫ 1.
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near horizon limit (r ≪ r+), the metric in (2.4) reduces to

ds2 =

( r
r+

)2(

−dt2 +
3

∑

i=1

dxi2
)

+

(r+
r

)2

dr2 + r2
+dω

2
5. (2.5)

This is anAdS5×S5 geometry where both the spaces are of radiusr+. TheAdSspace has a boundary

at r → ∞. (A light ray can travel tor → ∞ in finite time.) The boundary at infiniter can be added to

the space and the metric can be written in Poincare coordinatez= r2
+/r which includes it:

ds2 =
r2
+

z2

(

−dt2 + d~x2 + dz2
)

+ r2
+dω

2
5. (2.6)

In these coordinates, the boundary of theAdS5 is atz = 0. Further, it is easy to see that the metric is

conformally flat near the boundaryz= 0.

One of the important things to note about the geometry in (2.6) is its isometry group. Clearly, the

S5 in the product space leads to an SO(6) symmetry. The isometries ofAdS5 are most easily seen in

the coordinates in which the space is defined as the followinghyperbolic surface:

X2
0 + X2

5 −
4

∑

i=1

X2
i = r2

+. (2.7)

TheAdS5 metric is inherited from the flat metric of the underlying space:

ds2 = −dX2
0 − dX2

5 +

4
∑

i=1

dX2
i . (2.8)

It can be verified that this gives rise to theAdS5 metric by comparing with its form in Poincare

coordinates in (2.6) using the following substitution:

X0 =
z
2

(

1+
r2
+ + ~x

2 − t2

z2

)

, X4 =
z
2

(

1− r2
+ − ~x2 + t2

z2

)

X5 =
r+
z

t, Xi =
r+
z

xi for i = 1, 2, 3. (2.9)

The form in equations (2.7), (2.8) shows that theAdS5 space has an isometry group SO(2,4). This

is also the conformal symmetry group ofN = 4 super Yang-Mills theory in (3+ 1)-dimensions.

The SO(6) symmetry can also be compared to theR-symmetry in the super Yang-Mills theory. On

inclusion of fermions, the isometry of near horizon geometry gets enhanced to SU(2,2|4). This is

precisely the super conformal symmetry of theN = 4 super Yang-Mills theory, indicating strongly a

connection between these two descriptions of a system ofNc overlappingD3 branes.
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2.1.2 The duality

In order to understand the duality in our example of overlapping D3 branes more precisely, let us

compare the two pictures of the system again. In the first picture of overlappingD3 branes at weak

coupling, one has open strings with ends confined on the branes and closed strings sourced by them

propagating in the bulk of (9+ 1)-dimensional space-time. The low energy effective action obtained

after integrating out the massive string states is of the form

Stot = Sbrane+ Sbulk + Sint. (2.10)

The partSbrane is given by theN=4 super Yang-Mills theory and higher derivative corrections coming

from integrating out the massive string modes.Sbulk is the supergravity action in the bulk plus

its higher derivative corrections.Sint gives the interaction between the Yang-Mills fields and the

supergravity fields, which will also have higher derivativecorrections. However, in the decoupling

limit (explained below), the rhs of (2.10) essentially reduces to the super Yang-Mills action plus a

free supergravity action. Let us see in detail how this happens.

The decoupling limit of the above system is defined as the limit in which ls → 0 keeping

field theory energy scales and Yang-Mills couplinggsNc fixed. In this limit Newton’s constant

κ ∼ gsl4s → 0. Therefore, gravity decouples from the Yang-Mills degrees of freedom and gives

rise to a free supergravity action. In this limit, the higherderivative corrections to the Yang-Mills

part of the action also drop out andSbrane reduces to pureN = 4 super Yang-Mills theory. The total

effective action is thus given by the sum of two decoupled parts:theN = 4 Yang-Mills action and the

free supergravity action.

Let us now study the system using the black 3-brane supergravity solution given by (2.4). Because

of the gravitational potential, the energyEr of a particle atr is redshifted as measured by an observer

at infinity sinceE∞ = H−1/4(r)Er . If the observer now decides to study the low energy excitations,

he will have to study two kinds of modes: the long wavelength (low energy) modes propagating in

the bulk and all modes (including short wavelength) propagating in the near horizon region of the

geometry which appear redshifted (atr →∞). In the decoupling limit, the size of the horizon shrinks

(r+ → 0) for a fixed wavelength of the bulk modes. Thus, the interaction between the low energy

modes in the bulk and the modes in the near horizon region is also turned off at low energies. One

is finally left with two decoupled theories: the bulk super gravity theory in flat space-time and the

supergravity theory in the near horizon region given by anAdS5 × S5 space-time. Thus, we find

that the bulk supergravity theory in flat space-time is a common decoupled part in each of the two

descriptions of the system. This strongly motivates us to identify the leftover parts, theN = 4 super-

Yang Mills theory with supergravity (type II superstring theory) inAdS5 × S5.
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AdS/CFT correspondence gives a precise recipe for calculating correlation functions of

observables in the gauge theory using the bulk string theory. These bulk calculations get simplified

for a largeNc boundary field theory in the strong coupling limit as explained before. To explain the

recipe, let us consider a massive scalar fieldφ(z, x) in the bulk ofAdSd+1 space-time whose value in

the boundary is given by a fieldφ0(x). AdS/CFT correspondence prescribes a relation between a field

in the bulk and a field theory operator in the boundary CFT. Thus, there is some operatorO in the

boundary theory which corresponds to the bulk scalar field.

Let us denote the string (or supergravity) partition function for the scalar fieldφ(z, x) in the bulk

(which becomesφ0(x) at the boundary) byZ[φ0(x)]. The AdS/CFT correspondence states that

Z[φ0(x)] =
〈

exp

(∫

Md

φ0(x)O(x)

)

〉

CFT
. (2.11)

In principle, thelhs can be computed independently of the rhs from the string theory propagating in

the bulk. In practice, this becomes simple essentially onlyin the semiclassical supergravity limit in

which we can setZ[φ0(x)] = exp(−I [φ0(x)]), whereI [φ0(x)] is the classical onshell action for the

field in the bulk with the boundary value given byφ0(x). Therhs gives the partition function of the

boundary theory evaluated after deforming it by a source term for the boundary CFT operatorO(x). It

is also clearly the generating function of correlation functions of the boundary operatorO(x). These

can be computed by taking appropriate derivatives w.r.t.φ0(x).

For our example of scalar field in the bulk, the classical supergravity action can be computed in

the following way. Consider theAdSd+1 metric in Poincare coordinates given earlier, which we repeat

here for convenience

ds2 =
1
z2

(ηµνdxµdxν + dz2). (2.12)

As explainedz is the extra spatial direction andηµν is the d-dimensional boundary (which is

approached asz → 0) Minkowski metric in the mostly positive signature. In theabove, we have

chosen the AdS radius to be unity without any loss of generality. The action for the scalar field with

massm in the bulkAdSspace-time is given by

I =
∫

AdS
dd+1x

√
g
(

gmn∂mφ∂nφ +m2φ2
)

, (2.13)

wherexm denotes the coordinates (z,xµ) andgmn is theAdS(d+1) metric in Poincare coordinates. For

simplicity, let us consider thex-independent solutions. Thez dependence is given by the equation of
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motion

z2∂2
zφ + z∂zφ − (m2 +

d2

4
)φ = 0. (2.14)

The solutions to the equation of motion has the UV (smallz) behaviour given by

φ(z) = φ−z
h− + φ+z

h+ (2.15)

where

h± =
d
2
± 1

2

√
d2 + 4m2. (2.16)

The second term in (2.15) is referred to as the normalisable solution and the first term as the non-

normalisable solution. This nomenclature can be understood as follows. Consider the on shell action

for the scalar fieldφ. It is given by the boundary term

So.s. = lim
z→0

∫

dzddx
√

ggzzφ∂zφ

= lim
z→0

∫

dzddxz(1−d)φ∂zφ. (2.17)

For the solution containing theφ+ term only the on-shell action is finite. It is in this sense a

normalisable solution. Theφ− part is non-normalisable wheneverd2 + 4m2 > 1. 6 A non-zero

non-normalisable mode is required in the solution wheneverthe boundary CFT is deformed by the

presence of a source term for the operatorO dual to the scalar field. One can now compute the

supergravity action for the scalar field (with x-dependencetoo) and the correlation functions for the

operatorO. In particular, the two point correlator obtained after regularising the action7, is given by

〈O(~x1)O(~x2)〉 =
(2h+ − d)Γ(h+)
πd/2Γ(h+ − d/2)

1
|~x1 − ~x2|2h+

. (2.18)

We see thath+ gives the conformal dimension of the CFT operatorO. This is in conformity with the

interpretation of the non-normalisable part of the bulk field as the source forO sinceh++h− = d. One

can also compute the vev of the operatorO:

〈O(~x)〉 = (2h+ − d)φ+(~x), (2.19)

where we have now given an~x dependence to the parameter multiplying the normalisable solution.

6Whend2 + 4m2 < 1, both the modes are normalisable and they give two equivalent descriptions of the same CFTs.
7Computation requires a careful renormalisation (see [56])
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We thus see that there is a connection of the source of the operator in the boundary CFT with the non-

normalisable mode of the bulk classical field and that of thevevof the boundary operator with the

normalisable mode. Although in this example we have considered only scalar fields in the bulk, the

duality actually extends to other kinds of fields too. As an example, the stress-energy tensor operator

in the boundary CFT is dual to the metric field in the bulk.

One of the very important concepts of the AdS/CFT duality relates to the interpretation of the

extra radial direction in the bulk as the energy scale of the boundary field theory and the IR/UV

connection between the two dual descriptions. This relation can be motivated from the scaling

symmetry of the AdS bulk metric in equation (2.5) (excludingthe last term which denotes anS5)

under (~x→ λ~x, t → λt, r → r/λ). Since the boundary coordinates and the radial coordinatescale in

the opposite way to keep the metric invariant, approaching the boundary of theAdS from the bulk

side (which is the IR limit in this description) is equivalent to taking the UV limit in the boundary

field theory.

It is well known that UV divergences appear in correlation functions in a quantum field theory.

According to AdS/CFT correspondence, UV divergences in the boundary field theory should appear

as IR divergences in the gravity theory in bulk. This gives rise to a novel prescription for dealing with

boundary field theory divergences through renormalisationof the IR divergences in the bulk. This is

called ‘Holographic Renormalisation’. In fact, the results for thevevof the CFT operator and the two

point correlator we quoted above are obtained only after performing a holographic renormalisation.

To carry out this procedure one has to isolate the divergent terms of the bulk action at the boundary.

One is then required to add boundary covariant counter termswhich cancel out these divergences.

This has developed into a whole new subject by itself and is beyond the scope of this short review of

AdS/CFT correspondence. We refer the interested reader to the detailed analysis given in [57].

2.2 AdS/CFT in QCD

Originally, AdS-CFT correspondence was proposed only for special theories where the string theory

lives in a bulk AdS space-time and the boundary field theory isa superconformal field theory.

However, the general idea of AdS/CFT correspondence has been extended beyond this and dual

pairs have been conjectured for theories with lesser numberof supersymmetries and even for non-

supersymmetric theories [53]. Gravity duals have also beensuggested for QCD like theories. In

practice, there are two approaches in applying AdS/CFT correspondence to QCD. In one approach,

one starts with QCD and attempts to construct a five-dimensional bulk theory by fitting some of the

parameters using QCD itself. This is usually referred to as AdS/QCD. In the other approach, one

starts with a basic string theory setup and tries to derive a QCD-like theory using the duality. This
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approach is known as holographic QCD.

2.2.1 AdS/QCD

In this approach, we look for a 5D bulk gravity theory with appropriate field content that reproduces

the properties of QCD. There have been several attempts at deriving various quantities in QCD using

such a setup. One of the first models to studyχSB using AdS/QCD was discussed in [54]. In this

work, the 5D theory has four free parameters. The number of colors fixes one of them and the other

three parameters are fitted using the measuredρ-meson mass, the pion mass and the pion decay

constant. Other hadronic properties can then be deduced from the model. ForχSB, the important

boundary operators are the chiral quark current and the chiral condensate. These are dual to bulk

chiral gauge fields and a pseudo-scalar respectively. The space-time chosen is anAdS5 space with

a short distance cutoff (the AdS5 metric in (2.6) withz cutoff before infinity). The cutoff in the

metric provides a scale which is crucial for reproducing properties of a confining gauge theory like

QCD. In this space-time one can solve for the classical configurations of the fields. The solutions

have parameters which are fixed using the operator-field correspondence and the data on theρ meson

mass, pion mass and pion decay constant. With this, one can calculate various other meson masses

and decay constants.

2.2.2 Holographic QCD

As stated earlier, multiple overlappingD-branes realise non-abelian gauge theories in the low energy

limit and therefore provide the basic setup to study holographic QCD theories. Flavor degrees of

freedom can be also be added to this setup using additionalD-branes intersecting the ‘color’ branes.

Below, we will describe earliest models along these lines.

Witten’s model

A holographic model for the Yang-Mills part of largeNc QCD was proposed by Witten [50]. At

strong coupling, it is provided by the near horizon limit of the supergravity solution (in Type IIA

theory) having the quantum numbers ofNc overlappingD4 branes, filling the (3+ 1)-dimensional

space-time directionsxµ (µ = 1, 2, 3 and 0) and wrapping a circle in thex4 direction of radiusRk.

At weak coupling and at energies much smaller than the stringscale, a set of overlappingD4

branes gives rise to gauge fieldsAµ, fermions and massless scalarsΦi, i being the index for directions

transverse to theD4 branes. All these fields arise from the massless open strings stretching between

theD4 branes and are in the adjoint representation of U(Nc), giving rise to a (4+1)-dimensional super
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Yang-Mills theory with ’t Hooft coupling

λ5 = (2π)2gslsNc. (2.20)

If one of the directionsx4 is compactified onS1 with radiusRk and we impose an antiperiodic

boundary condition on the fermions, then all the fermions will become massive with masses of the

order of the Kaluza-Klein scale, 1/Rk. Furthermore, scalars will also acquire masses of the same order

from fermion loops. This leaves out only the massless gauge fields at low energy. Supersymmetry

is completely broken and at energies much lower than the Kaluza-Klein scale, the theory on theD4

branes reduces to a pure U(Nc) Yang-Mills theory in (3+ 1) dimensions.

In the dual bulk picture, the decoupling limit for a set of overlapping D4 branes allows us to

replace it by the dual geometry. This geometry can be obtained from the type IIA supergravity solution

for non-extremalD4-branes by making wick rotation of one of Euclidean spatialdirections into a time

direction. In the near horizon limit, it is given by

ds2 =

(U
R

)3/2
(

ηµνdxµdxν + f (U) (dx4)2
)

+

( R
U

)3/2 (

dU2

f (U)
+ U2dΩ2

4

)

,

eφ = gs

(U
R

)3/4

, F4 =
2πNc

V4
ǫ4, f (U) = 1−

U3
k

U3
, (2.21)

whereηµν = diag(−1,+1,+1,+1) andUk is a constant parameter of the solution.R is related to the 5-d

Yang-Mills coupling byR3 =
λ5α

′

4π . Also, dΩ4, ǫ4 andV4 = 8π2/3 are respectively the line element,

the volume form and the volume of a unitS4.

The above metric has a conical singularity atU = Uk in theU − x4 subspace which can be avoided

only if x4 has a specific periodicity. This condition relates the radius of the circle in thex4 direction

to the parameters of the background as

Rk =
2
3

(

R3

Uk

)
1
2

. (2.22)

For λ5 >> Rk the curvature is small everywhere and so the approximation to a classical gravity

background is reliable. Thus, the model presents a setup suitable for studying strongly coupled gauge

theories without supersymmetry. Extensive studies of confinement have been carried out in the model

by Witten [50] and Gross and Ooguri [64].

An important fact to note is that the the model actually givesrise to the gauge part of a U(Nc) QCD

only in the weak coupling regime, i.e., whenλ5 << Rk. Consider the confinement scale generated
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through dimensional transmutation in the effective Yang-Mills theory in (3+ 1) dimensions,

Λ ∼ 1
πRk

exp(−48π3Rk/11λ5). (2.23)

In the weak coupling region, it is much smaller than the Kaluza-Klein scale, which is the high energy

cut-off for the effective theory. In the strong coupling regime,λ5 >> Rk, this relation gives the two

scales to be of the same order. Therefore, in this regime there is no separation between the masses of

glueballs and Kaluza-Klein states. Since the supergravityregime is obtained precisely in the strong

coupling limit, the bulk theory cannot exactly reproduce U(Nc) Yang-Mills. However, one might

expect, qualitative features like confinement andχS B, which are easy to study in the strong coupling

regime, survive tuning of the dimensionless parameterλ5/Rk to low values. Another difficulty with

the model in the strong coupling limit is that the backgroundsolution for the dilaton (hence the string

coupling) diverges withU (see (2.21)).

Models with Flavors

So far, our discussion of AdS/CFT correspondence has not included flavors. In the large-Nc limit,

1/Nc expansion gets reorganised like a genus expansion in closedstring theory. Since the addition of

fundamental flavor leads to surfaces with boundaries in the ’t Hooft expansion, we expect that we will

need to consider open strings in the dual bulk theory. This can be achieved by the addition of branes in

the bulk. These branes are referred to as flavor branes. The first work that incorporated flavor branes

was due to Karch and Katz [62]. They consideredD3− D7 system where the overlappingD3 branes

discussed earlier, realise the gauge theory andD7 branes provide flavor degrees of freedom. Flavors

were also added to Witten’s model in [63] where the authors consideredD6 flavor branes intersecting

theD4 system.

In general, one may considerNf flavor branes intersectingNc color branes. In the region of

their intersection there are massless open strings betweenthe flavor and color branes transforming

like fundamentals under both U(Nc) and U(Nf ). These provide the fundamental flavor degrees of

freedom. One might worry that a holographic treatment of an intersecting brane system will turn out

to be immensely difficult even in the supergravity limit. However, if the number of the flavor branes,

Nf ≪ Nc, the backreaction of the flavor branes on the background geometry due to theNc color branes

can be ignored. They can then be considered as probes in the background geometry of the overlapping

color branes. With this qualification, the authors of [63] used the DBI action of the aD6 probe brane

in D4 background and showed that the model displays an abelian chiral symmetry breaking and gives

rise to a massless Goldstone boson analogous to pion (which corresponds to a massless quark). A

more elaborate model due to Sakai and Sugimoto [67] has been extensively studied since this model
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exhibits non-abelianχSB. The model involves a set ofD8 and anti-D8 branes intersecting theD4

branes in Witten’s model. In the strong coupling limit, it gives rise to a holographic description for a

QCD-like theory. The model provides a geometrical description for χSB in which, separatedD8 and

anti-D8 branes meet each other in Witten’s background. It gives rise to states which can be identified

with analog of massless pions. In the following, we will elaborate further on this model at appropriate

places since it is the core work of this thesis.
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Chapter 3

Sakai Sugimoto model andχSB at weak

coupling

In this chapter, we intend to study the phenomenon of chiral symmetry breaking (χSB) in the low

energy and weak coupling limit of Sakai-Sugimoto model (SS model) [67]. In this limit, the model

gives rise to a weakly coupled QCD-like theory and is therefore particularly interesting to study. As

we will see in detail, the model provides a one parameter deformation to U(Nc) QCD withNf flavors,

tuning which, it is possible to separateχSB scale from confinement scale making the phenomenon

accessible to perturbative methods. This is one of the most important features of the model that

allows us to findχSB solutions. In the next section we will give a brief review of the SS model at

weak coupling and in the remaining sections of this chapter we will present our work onχS Bin the

model carried out in [70], giving references to the originalliterature wherever appropriate.

3.1 SS model at weak coupling

SS model is an intersecting brane model withNf D8 and anti-D8 (D8) branes intersecting theNc D4

branes in Witten’s model discussed in the previous chapter (see Figure 3.1). The configuration may

also be summarised as below (circles denoting the world volume of branes):

0 1 2 3 (4) 5 6 7 8 9

D4 ◦ ◦ ◦ ◦ ◦
D8-D8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

(3.1)

Here, the directionx4 is compactified onS1 and the common (3+1)-dimensional world volume of the

flavor and color branes is parametrised byxµ, µ = 0, 1, 2, 3.

As mentioned in the last chapter, the massless open string spectrum onD4 branes in Witten’s

33
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Figure 3.1: The brane configuration in weakly coupled SS model (adapted
from [67]).

model leads to the realisation of a U(Nc) gauge theory in (3+1)-dimensions. In SS model, the

additional flavor branes (D8 and D8) lead to massless open string states arising from 4− 8 and

4 − 8̄ strings living in the common region of intersection with the D4 branes. These transform as

fundamentals under both the U(Nc) and U(Nf ) groups. This is because one of the ends of such strings

lies onNc D4 branes and has a Chan-Paton index running from 1 toNc and the other onD8 branes

running from 1 toNf . The Ramond sector states arise, as usual, because the contribution to zero

point energy,aR vanishes. All states in the Neveu-Schwarz sector are massive. This is because the

contribution to the zero point energyaNS = −1/2 + ν/8 = 1/4 (in string units), sinceν, which

denotes the number of Neumann-Dirichlet directions of the intersecting brane system [66], equals 6

for the present system. Thus, the massless sector emerges only from the Ramond sector. Further, the

worldsheet fermions can have zero modes only along the directions common to theD4-D8 or D4-D8

world volume along which the string can be freely moved. These zero modes in the Ramond sector

give rise to (3+1)-dimensional space-time fermions. To get the physical states we must impose the

GSO projection which leaves fermions of opposite parity arising from 4− 8 strings and 4− 8 strings

[67]. Without any loss of generality, the former can be identified with left-handed quarks and the

latter with right-handed quarks.

The model also gives rise to massless 8− 8 and8̄− 8̄ open strings. At low energies, they lead to

an (8+ 1)-dim super Yang-Mills theory with couplingg2
9 = (2π)6gsl5s. In the decoupling limit where

we takels → 0 with λ5 in equation (2.20) held fixed,g9 vanishes. Thus, the states arising from the

4−4, 4−8 and 4− 8̄ strings are decoupled from the 8−8 and8̄− 8̄ states. This allows us to study the

model with the low energy spectrum consisting of left-handed fermionsqL, right-handed fermionsqR

and color gauge fields only. The left-handed fermions live inthe (3+1)-dimensional common world

volume of theD4 with D8 branes and the right-handed fermions in that ofD4 branes withD8 branes.

These fermions interact with each other through the exchange ofD4 brane gauge fieldsAM, (M =µ,4)

living in (4+1) dimensions. At energies much below the Kaluza-Klein scale 1/Rk, one is left with a
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(3+1)-dim U(Nc) QCD-like theory.

3.2 Low energy action

Having motivated the low energy spectrum of the brane systemin the weak coupling limit, we can

now write down the action that describes the low energy dynamics of the system. Before we do

that, it is important to discuss the hierarchy of scales involved in the low energy limit we will be

discussing here. The model has the following scales:L, which is theD8− D8 separation;Rk, which

is the radius of the compactS1; g2
5, the D4 brane gauge coupling which has dimensions of length;

and of course the string lengthls. Here, we will be interested in the the hierarchy of scales given by

g2
5Nc ≪ ls ≪ L ≪ Rk. The conditionls ≪ L allows us to neglect non trivial dilaton and RR fields

created by theD8 branes [72] whileg2
5Nc ≪ ls allows us to neglect string loop corrections. Further,

as we will see later, the conditionL ≪ Rk allows us to studyχSB perturbatively.

We can now write the low energy action of the weakly coupled SSmodel as

S = − 1

4g2
5

∫

d4x
∫ 2πRk

0
dx4 (Fa

MN(x, x4))2 +

∫

d4x qi†
L (x)σ̄µ

(

i∂µ + taAa
µ(x,−L/2)

)

qi
L(x)

+

∫

d4x qi†
R(x)σµ

(

i∂µ + taAa
µ(x, L/2)

)

qi
R(x), (3.2)

whereqL and qR denote two-component left-handed and right-handed fermions respectively. The

indicesµ, ν refer only to the (3+1)-dimensional physical space-time whileM, N also include the

compact directionx4. Rest of the indices are the same as in (1.1). The matricesσµ have been defined

right below equation (1.2). Notice that the gauge fields are in the world volume ofD4-branes and

hence the first term involves an integral over all the five directions. However, the fermions are located

at the intersections of theD4-D8 and theD4-D8 branes. Therefore, the left-handed fermions interact

only with Aµ(x,−L/2) and the right-handed fermions interact only withAµ(x,+L/2), where we assume

that theD8 branes are located atx4 = −L/2 and theD8 branes atx4 = L/2. We have included the

effects of Kaluza-Klein modes which will turn out to be crucial for separatingχS Bscale from the

confining dynamics of QCD. For the given hierarchy of scales,this is the first non-trivial effect away

from the extreme low energy limit.

3.3 Non-local NJL model from theD4− D8− D8 system.

The directionx4 being compact, the gauge fieldsAM(x, x4) must be periodic inx4. Hence, the

dependence of theD4 brane gauge fields on thexµ and x4 directions can be separated out using a
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Kaluza-Klein expansion given by

Aa
M(x, x4) = Aa(0)

M (x) +
∞
∑

n=1

(

Aa(n)
M (x)einx4/Rk + Aa(n)

M

∗
(x)e−inx4/Rk

)

. (3.3)

Using this expression, action (3.2) can be written in terms of the fields in (3+ 1) dimensions given by

the Kaluza-Klein modes in equation (3.3).

In our studies ofχSB, we are interested in knowing howqL andqR effectively interact with each

other. Although there is no explicit coupling between the two in the action, the gauge fields lead to

an effective interaction betweenqL andqR. Further, at weak coupling this interaction is primarily

mediated by one gauge particle exchange diagrams. Notice that the componentAa
4(x, x

4) does not

interact directly with the fermions. Any effective interaction of the fermions withA4 throughAµ is

suppressed in the coupling. Hence, the componentAa
4(x, x

4) can be neglected in the leading order

approximation in which we are working.

With the mode expansion (3.3), the action splits into two parts, one purely consisting of the zero

mode of the gauge field, its interaction with fermions and thekinetic term of the fermions and the

other purely of the non-zero modes of the gauge fields and their interaction with the fermions. We

call the first termS0 and the secondS1 so that,

S = S0 + S1 (3.4)

with

S0 = −
1

4g2
4

∫

d4x (Fa(0)
µν (x))2 +

∫

d4x q̄i(x)γµ
(

i∂µ + taAa(0)
µ (x)

)

qi(x), (3.5)

where, we have defined the 4-dimensional YM coupling asg2
4 = g2

5/2πRk. The partS0 is a QCD-like

action in (3+1) dimensions with the YM coupling given byg4. The second part is given by

S1 =
1

g2
4

∞
∑

n=1

∫

d4x
(

−1
2
|∂µAa(n)

ν (x) − ∂νAa(n)
µ (x)|2 + n2

R2
k

|Aa(n)
µ (x)|2

)

+

∞
∑

n=1

∫

d4x
(

Jaµ
n
∗(x)Aa(n)

µ (x) + Jaµ
n (x)Aa(n)

µ

∗
(x)

)

(3.6)

with the currentJaµ
n (x) defined as

Jaµ
n (x) =

(

q†L(x)σ̄µtaqL(x)einL/2Rk + q†R(x)σµtaqR(x)e−inL/2Rk

)

. (3.7)

In writing equation (3.6), we have neglected cubic and quartic interaction terms of the gauge fields.
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This is because we are interested in the first non-trivial contribution to the effective interaction

between the left-handed and right-handed fermions and thisarises from one gauge particle exchange

diagrams. In the weak coupling limit, the cubic and quartic interactions give rise to contributions

which are higher order in the coupling and therefore smaller. Both S0 andS1 need to be considered

to get the effective interaction between the left-handed and right-handed fermions.

3.3.1 Fermion effective action fromS1

Let us begin with the computation of the effective interaction between fermions that arises out ofS1

in equation (3.6). The non-zero modes of the gauge fields inS1 are massive, and in the weak coupling

can be easily integrated out to arrive at a fermion effective interaction. For this, it is useful to write

the actionS1 in terms of momentum space fields. Putting into (3.6) the Fourier transforms defined

through the equations

Aa(n)
µ (x) =

∫

d4k
(2π)4

Aa(n)
µ (k)eik.x

Ja
nµ(x) =

∫

d4k
(2π)4

Ja
nµ(k)eik.x, (3.8)

we get

S1 =

∞
∑

n=1

1

g2
4

∫

d4k
(2π)4

{

−Aa(n)
µ (k)

((

k2 − n2

R2
k

)

ηµν − kµkν
)

Aa(n)∗
ν (k)

}

(3.9)

+

∞
∑

n=1

∫

d4k
(2π)4

(

Jaµ∗
n (k)Aa(n)

µ (k) + Jaµ
n (k)Aa(n)∗

µ (k)
)

.

Leading interaction between left-handed and right-handedfermions can be obtained from this action

simply by substituting classical solution for the gauge field in it. Doing this in the transverse gauge,

kµAa(n)
µ = 0, we get the effective interaction. (Of course, the result is gauge invariant.) Using equations

(3.7) and (3.8), it can be written as follows:

S1e f f = 2g2
4

∞
∑

n=1

∫

d4k
(2π)4

cos(nL/Rk)

k2 − n2/R2
k

∫

d4x
∫

d4y
(

q†iαL(x)σ̄µta
αβq

i
βL(x)

) (

q† j
γR(y)σµta

γδq
j
δR(y)

)

eik.(x−y) + ....

(3.10)

where the dots indicate interactions among the fermions of the same parity. Since these terms will

not contribute toχS B, henceforth they will be dropped in the rest of this chapter.Therhsof equation
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(3.10) can be further simplified using the Fierz identity1

(

q†iαL(x) σ̄µ qi
βL(x)

) (

q† j
γR(y) σµ q j

δR(y)
)

= −2
(

q†iαL(x) q j
δR(y)

) (

q† j
γR(y) qi

βL(x)
)

, (3.11)

and relation among the generators given by

ta
αβ ta

γδ =
1
2
δαδ δβγ. (3.12)

This gives

S1e f f = 2g2
4

∫

d4x d4y
( ∞
∑

n=1

cos
(nL
Rk

)

∆n(x− y)
)

[q†iL (x)q j
R(y)][q† j

R (y)qi
L(x)], (3.13)

where the massive propagator is given by

∆n(x− y) = −
∫

d4k
(2π)4

eik.(x−y)

(k2 − n2/R2
k)
, (3.14)

signifying an exchange of a whole tower of particles of masses n
Rk

.

The sum in (3.14) can be carried out in the Euclidean momentumspace using the identity 1.445.2

given in [90]:

∞
∑

n=1

cosns
n2 + a2

=
π

2a
cosha(π − s)

sinhπa
− 1

2a2
. (3.15)

The final result we get is

S1e f f = g2
4

∫

d4x d4y G1(x− y)[q†iL (x)q j
R(y)][q† j

R (y)qi
L(x)], (3.16)

where the propagatorG1 is given by

G1(x) =
∫

d4k
(2π)4

eik.x G̃1(k),

G̃1(k) =
πRk coshk̄(πRk − L)

k̄sinhk̄πRk
− 1

k̄2
. (3.17)

Here, k̄µ is the Euclidean continuation of the four momentumkµ and k̄ =
√
−k2 . In arriving at

equations (3.16), (3.17), we have assumed the weak couplinglimit and neglected stringy corrections

and have as yet not applied any constraint on the relation betweenL and Rk (though, of course,

1This can be derived from equations (3.77) and (3.80) in [10].
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L ≤ πRk). This is because, we have included the effect of all the Kaluza-Klein modes.

So far, we have considered the effective interaction between the left-handed and right-handed

fermions mediated by massive Kaluza-Klein modes of theD4 gauge fields. An effective interaction

also arises due to the zero modes. Before we go on to study thiseffect, it is interesting to look at

the Euclidean propagator̃G1(k) in (3.17) in various limits of parameters. An interesting case arises

when we take the non-compact limit,Rk → ∞, with L fixed. In this limit, the propagator can be

approximated to

G̃1(k) ≈ πRk

k
e−kL − 1

k
2

≈ πRk

k
e−kL, (3.18)

where in the last line we have neglected the power law in favour of the exponentially decaying term

because the latter has a factor ofRk associated with it. This function reflects a UV cutoff 1/L in the

limit of infinite Rk. On the other hand, for finite values ofRk, and at momenta much smaller than

1/πRk i.e.,k≪ 1/πRk, the Green’s function reduces to

G̃1(k) ≈ πRk

k
e−kL

{

1+ e−2(πRk−L)k
} {

1− e−2πRkk
}−1
− 1

k
2

≈ 1

k
2
+

1
3
π2R2

k −
1

k
2
. (3.19)

Thus, in this limit, the singularity at̄k = 0 cancels out between the two terms ofG̃1(k) and we are

left with a constant. This can be understood from the fact that at momenta much lower than the

Kaluza-Klein mass, propagator is essentially given by a constant 1/m2 ∼ R2
k.

In the other extreme limit given byk ≫ 1/L, which of course also means thatk ≫ 1/πRk, G̃1(k)

has the behaviour

G̃1(k) ≈ πRk

k
e−kL − 1

k
2
. (3.20)

The leading behaviour of this Green’s function is given by− 1

k
2 since for very largēk, ek̄L ≫ k̄ (for

fixed L andRk). As we will see in the next subsection, the contribution coming from S0e f f to the full

effective action cancels this term leaving behind the result for the full Green’s function,πRk

k
e−kL. This

result can be understood as due to an effective UV cutoff on the momentum at 1/L.
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3.3.2 Fermion effective action fromS0

In this subsection we will compute the leadingS0 contribution to the full effective fermion action. We

have seen thatS0 is given by a QCD-like action in (3+1) dimensions. Unlike the non-zero modes of

theD4 gauge field inS1, Aa(0)
µ is massless and it can not be integrated out in a true sense. Consider,

however, a scenario in which the energy scale of chiral symmetry breaking is made much higher than

the confinement scale2. In this case, to studyχS B, we need the effective fermion coupling at energies

much above the confinement scale. At such high energies, asymptotic freedom allows a perturbative

computation of the effective fermion coupling due to exchange of gauge fieldsAa(0)
µ . We do this in the

following.

Since we wish to study only the effective interaction between the fermions, it suffices to consider

the terms inS0 involving the gauge fields. This can be written as

S0 gauge= −
1

4g2
4

∫

d4x (Fa(0)
µν (x))2 +

∫

d4xJaµ(x)Aa(0)
µ (x) (3.21)

where the current is given by

Jaµ(x) =
(

q†L(x)σ̄µtaqL(x) + q†R(x)σµtaqR(x)
)

. (3.22)

In the following parts of this subsection, we will drop the superscript (0) in the gauge field byAa(0)
µ

for convenience. Then, using the Fourier transforms

Aa
µ(x) =

∫

d4k
(2π)4

Aa
µ(k)eik.x,

Ja
µ(x) =

∫

d4k
(2π)4

Ja
µ(k)eik.x, (3.23)

we can write equation (3.21) as

S0 gauge= −
1

2g2
4

∫

d4k
(2π)4

Aa
µ(−k)

(

k2ηµν − kµkν
)

Aa
ν(k) +

∫

d4k
(2π)4

Jaµ(−k) Aa
µ(k). (3.24)

Proceeding as in the previous section and using the classical solution for gauge field in (3.24) we get

the fermion effective interaction. The result can be written as

Sint
0 eff =

g2
4

2

∫

d4x d4y G0(x− y) Jaµ(x)Ja
µ(y), (3.25)

2SS model has an extra parameterL/Rk that can allow this tuning.
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where the propagatorG0(x), given by

G0(x) =
∫

d4k
(2π)4

G̃0(k)eik.x, (3.26)

with G̃0(k) = − 1
k2 . This can be seen as coming from one gluon exchange between fermions in the tree

level approximation. For Euclidean momentak̄µ, this is given by

G0(k) =
1

k̄2
(3.27)

This justifies the statement made after equation (3.20). As before, using Fierz identity, the full

effective fermion action that arises fromS0 is given by

S0 eff = i
∫

d4x
(

q†iL (x) σ̄µ ∂µq
i
L(x) + q†iR(x) σµ ∂µq

i
R(x)

)

+g2
4

∫

d4x d4y G0(x− y)
(

q†iL (x) q j
R(y)

) (

q† j
R (y) qi

L(x)
)

. (3.28)

3.3.3 The ‘total’ action

Putting the two pieces together, we get the total fermion effective action

Seff = i
∫

d4x
(

q†iL (x)σ̄µ∂µq
i
L(x) + q†iR(x)σµ∂µq

i
R(x)

)

+g2
4

∫

d4x d4y G(x− y)[q†iL (x)q j
R(y)][q† j

R (y)qi
L(x)], (3.29)

where

G(x)=
∫

d4k
(2π)4

eik.x G̃(k),

G̃(k)= G̃0(k) + G̃1(k). (3.30)

A rather remarkable thing about the effective fermion action in equation (3.29) is that the four-

fermi interaction is non-local. This is in contrast with theusual local four-fermi interaction in the

NJL model. This can be understood as follows. The local NJL model is believed to emerge from

QCD as an effective theory of quarks at energies of the order of the confinement scaleΛQCD. The

range of the interactions in the NJL model for quarks arises from the mass gap due to confinement in

QCD. Therefore, at distances of the order of this range, the interaction looks essentially local. Is the

non-locality in equation (3.29) relevant to the study ofχS Bin the present model? As we will show

in the following by numerical computations, this model shows χS Bat a length scale much smaller

thanΛ−1. This provides a posteriori justification for retaining thenon-locality in (3.29) for the study
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of χS Bin the present case.

Before we proceed to findχS Bsolutions, let us summarise the properties of the Green’s function

G̃(k). Two regimes can be identified in the momentum space:

• k̄ ≫ Λ: In this regime, we have obtained an exact expression for thepropagator in the leading

order of the coupling which is given bỹG(k) = πRk coshk̄(πRk−L)
k̄sinhk̄πRk

. Here, two further sub-regimes

can be identified as follows :

i) Λ≪ k̄≪ 1/πRk: G̃(k) ∼ 1/k
2

. In this region, like before, the Kaluza-Klein excitationsare

too heavy to appear and hence the four-dimensional physics with single gluon exchange at weak

coupling is still a good approximation.

ii) k̄≫ 1/πRk: G̃(k) ∼ πRke−k̄L/k̄ . In this regime, the physics is essentially five-dimensional

since the whole tower of Kaluza-Klein modes comes into play.The high momentum cutoff

present in the propagator is a reflection of the fact that the five-dimensional propagator is

constant∼ 1/L3 for four-dimensional distances much smaller thanL.

• k̄ . Λ: In this regime, the theory is essentially given by a (3+1)-dimensional QCD-like theory

and is confining. Our perturbative computation can not capture this physics. To proceed further,

therefore, we simply assume that the propagatorG̃(k) essentially becomes a constant of order

Λ−2 for such momenta. We will give evidence in the following thatthe precise value ofΛ does

not matter for determining properties ofχS B in the present model. However, the fact of its

existence does. It provides an IR cutoff on the interactions between quarks, limiting these to a

finite range.

Putting together the two regimes, we can write

G̃(k)=
πRk coshk̄(πRk − L)

k̄sinhk̄πRk

, for |k̄| > Λ

= constant, for |k̄| . Λ. (3.31)

For practical reasons, it is more convenient to use a smooth functional form forG̃(k). A function that

captures the properties of̃G(k) in the various regimes discussed above is

G̃(k) =
(1+ πRkk̄

k̄2 + Λ2

)

e−k̄L. (3.32)

This is the form we have used for obtaining numerical solutions in this chapter. The solutions obtained

using relation (3.31) have the same qualitative behaviour.This is discussed in appendix A.
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3.3.4 Non-local NJL action and the chiral bilinear

We have now found a fermion effective action (3.29) arising from the SS model. However, only the

dynamics of chiral bilinears of fermions is relevant for studyingχS B. For this reason, let us introduce

a bosonic auxiliary fieldT i j (x, y). We can write the action in equation (3.29) in terms of this auxiliary

field as

Seff = i
∫

d4x
(

q†iL (x)σ̄µ∂µq
i
L(x)) + q†iR(x)σµ∂µq

i
R(x)

)

+

∫

d4x
∫

d4y
[

−T i j ∗(x, y)T i j (x, y)

g2
4G(x− y)

+ T i j ∗(x, y)q† j
R (y)qi

L(x)

+T i j (x, y)q†iL (x)q j
R(y)

]

. (3.33)

This can be easily verified by substituting the equation of motion for the fieldT i j (x, y)3,

T i j (x, y) = g2
4 G(x− y) q† j

R (y)qi
L(x). (3.34)

To study the dynamics of this bilinear, we can integrate out the fermions and arrive at an effective

action for T i j (x, y). To do this, let us first consider the terms in equation (3.33) which contain

fermionic fields:

S f
eff = i

∫

d4x
(

q†iL (x)σ̄µ∂µq
i
L(x)) + q†iR(x)σµ∂µq

i
R(x)

)

+

∫

d4x
∫

d4y
[

T i j ∗(x, y)q† j
R (y)qi

L(x)

+T i j (x, y)q†iL (x)q j
R(y)

]

. (3.35)

The partition function for this action can be written as

Z =
∫

DqDqexp

{

i
∫

d4x
∫

d4yqi(x)
(

iδi jδ4(x− y)γµ∂µ + T i j (x, y)PR + T i j ∗(x, y)PL

)

q j(y)

}

.

(3.36)

Integration of the fermions gives rise to the fermion effective action

S f
eff = NcTr ln

(

iδi jδ4(x− y)γµ∂µ + T i j (x, y)PR + T i j ∗(x, y)PL

)

, (3.37)

where we have explicitly written a factor ofNc obtained after integrating out fermions ofNc color

degrees of freedom. The notation ‘Tr’ stands for a trace withrespect to flavor degrees of freedom,

3Since the fieldT i j (x, y) appears only to quadratic order, the two forms are equivalent even in the quantum level.
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Dirac indices and space-time. The bosonic field can now be broken into the classical and quantum

parts:T i j (x, y) = T i j
cl (x, y) + 1√

Nc
T i j

q (x, y). (Since the effective action has an explicit factor ofNc, the

factor of 1/
√

Nc with T i j
q (x, y) is required to give it a canonically normalised kinetic term.) In the large

Nc limit, the quantum corrections drop out and the dominant part is the classical contribution. For a

Poincare invariant vacuum which is also invariant under vector U(Nf ) transformation, we should have

T i j
cl (x, y) = δi j T(|x − y|). With this, we can now compute therhs of equation (3.37) and add this to

the non-fermionic part of (3.33). We get the total effective action for the functionT(|x|) (in Euclidean

space-time) as

SE
e f f

VNcNf
=

1
λ

∫

d4x
|T(x)|2
GE(x)

−
∫

d4k̄
(2π)4

ln

(

1+
|T̃(k̄)|2

k̄2

)

, λ ≡ g2
4Nc, (3.38)

whereGE(x) is the Green’s function in Euclidean space-time derived earlier.

As mentioned earlier, we will carry out the numerical computations using the momentum space

(Euclidean) Green’s function given by (3.32). The coordinate space Green’s function can be written

as

GE(x) =
∫

d4k̄
(2π)4

G̃(k)e−ik̄.x =
1

4π2|x|

∫ ∞

0
dk̄k̄2J1(k̄|x|)

(

1+ πRkk̄

k̄2 + Λ2

)

e−k̄L =
Λ2

4π2
g(|x|Λ),

g(r) ≡ RΛ
(L2
Λ
+ r2)3/2

+ (cosLΛ + RΛ sinLΛ)I1(r) − (RΛ cosLΛ − sinLΛ)I2(r), (3.39)

where in writingg(r) we have used a notation in which all length scales with subscript Λ imply

dimensionless quantities obtained after a scaling with respect to the confinement length scaleΛ−1.

ThusRΛ=RkΛ andLΛ=LΛ. Also,

I1(r)=
∫ ∞

LΛ

ds
coss

(s2 + r2)3/2
=

K1(r)
r
−

∫ LΛ

0
ds

coss
(s2 + r2)3/2

,

I2(r)=
∫ ∞

LΛ

ds
sins

(s2 + r2)3/2
=

1
r
− π

2r
(I1(r) − L1(r)) −

∫ LΛ

0
ds

sins
(s2 + r2)3/2

, (3.40)

where the functionsK1(r) andI1(r) are Bessel functions andL1(r) is a Struve function [90]. Numerical

computation is easier to carry out withg(r) written in terms of these functions and this is what we

have used.

We can analytically find the behaviour ofg(r) in various regions as in the following. In the region

r ≪ RΛ, it is given by

g(r) ≈ RΛ/L
3
Λ for r ≪ LΛ,

g(r) ≈ RΛ/r
3 for LΛ ≪ r ≪ RΛ. (3.41)



3.3. NON-LOCAL NJL MODEL FROM THED4− D8− D8 SYSTEM. 45

This behaviour can be understood as follows. Since the region r≪RΛ is associated with energies

which can probe the Kaluza-Klein scale, the Kaluza-Klein modes must have an impact. Hence, the

associated physics must be 5-dimensional. So we expect the propagator to be of the form of a 5-

dimensional propagator as above. In the regionr ≫ RΛ, the Green’s function should be such that the
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Figure 3.2: Variation of the kernelg(r) with r. The figure shown
corresponds to the setRΛ = 1/5 andLΛ = 1/100.

associated energies can’t probe the Kaluza-Klein mass scale. So the 4-dimensional physics is a good

approximation. In this region,g(r) is given by

g(r) ≈ 1/r2 for RΛ ≪ r ≪ 1,

g(r) ≈
√

π

2
e−r

r3/2
− 3

RΛ
r5

for r ≫ 1. (3.42)

In the second line of equation (3.42), we have not kept the higher powers of 1/r although we have

kept the exponentially decaying part. This is because, witha sufficiently smallRΛ, the exponentially

decaying part may be significant. In fact, with

r ≫ 1, r7/2 ≫ 3

√

2
π

RΛer , (3.43)

the exponentially decaying term is dominant over the other.Thus, there is a region inr in which g(r)

is essentially exponentially decaying. For even larger values ofr, however, the power law takes over.

Because of the negative sign of the power law term,g(r) can be negative for sufficiently larger. In

fact, we see this in numerical computation. This is, presumably, an artifact of the choice of̃G(k) that

we made in (3.32). Physically we expect the Green’s functionto die-off exponentially beyond the

confinement length scale. We will, therefore, assume this and impose a cutoff rmax on g(r) beyond
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which it will be set to zero. The cutoff rmax required becomes smaller as we increaseRΛ. Figure 3.2

shows the variation ofg(r) with r for a particular set of valuesRΛ = 1/5, LΛ = 1/100.

3.4 Chiral symmetry breaking

Let us now proceed to study chiral symmetry breaking in the non-local NJL action (3.38). A

dynamical breaking of chiral symmetry gives rise to a non-zero vev of the chiral bilinear of fermions.

As mentioned before, equation (3.34) then implies a non-trivial classical value for the bosonic field

Tαβ(x). In the limit of largeNc, one can ignore the quantum fluctuations of the bosonic fields.

Therefore, its classical value can be obtained by solving its equation of motion, called the gap

equation, which in momentum space is given by

φ̃(k) =
T̃(k)

k2 + |T̃(k)|2
, (3.44)

whereφ̃(k) is the Fourier transform ofφ(x) which is defined through

T(x) = 4π2λGE(x)φ(x). (3.45)

As can be seen using equation (3.34),φ(x) is the quark condensate,

φ(x) =
1
Nc
〈q†αL (x)qαR(0)〉. (3.46)

The fieldφ(x) is of mass dimension 3. Introducing a length scalel (as we will see later, this will turn

out to be theχS Blength scale), this fact may be expressed explicitly by writing φ(x) as follows:

φ(x) =
φ0

4π2l3
ϕ(|x|/l). (3.47)

The field ϕ(|x|/l) is dimensionless. We have introduced a normalisation factor φ0/4π2 for later

convenience. We can now find the Fourier transforms:

φ̃(k) = lφ0 f (kl), f (p) ≡ 1
p

∫ ∞

0
dyy2J1(py)ϕ(y),

T̃(k) = λlΛ2φ0t(kl), t(p) ≡ 1
p

∫ ∞

0
dyy2J1(py)g(lΛy)ϕ(y), (3.48)
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where f (kl) andt(kl) are dimensionless. Also note thatlΛ ≡ lΛ. With this, the gap equation (3.44)

can be expressed as

f (p) =
λ̄t(p)

p2 + λ̄2φ2
0t(p)2

≡ fT(p), λ̄ ≡ λlΛ. (3.49)

All quantities appearing in this equation are dimensionless. We also notice that the cutoff Λ does

not explicitly appear in the equation after we have used it toscale out various other dimensionful

parameters.

3.4.1 Numerical solutions of the gap equation

Since equation (3.49) is non-linear, it is difficult to solve it analytically and we must resort to a

numerical approach. However, we can make general observations in some limiting cases analytically.

It can be seen from equation (3.48) thatt(p) gets a significant contribution only from the region

y . 1/lΛ sinceg(lΛy) decays exponentially beyond this region. Thus, forp≪ lΛ, the Bessel function

inside the integral is essentially linear in the argument. Therefore, for small enough values ofp,

t(p) goes to a constant. In this limit then, the second term in thedenominator of therhs of (3.49)

dominates, so that this equation becomes

f (p) ≈ 1

λ̄φ2
0

1
t(p)

, (3.50)

which implies f (p)t(p)→ constant forp→ 0. On the other hand, for very large values ofp, the first

term in the denominator of therhsof (3.49) dominates. This is becauset(p) remains finite in the limit

of p→ ∞. Therefore, in this limit the gap equation becomes

f (p) ≈ λ̄t(p)
p2

. (3.51)

As we will see, numerical computations provide evidence for(3.50) and (3.51) in the two limits.

In order to solve the gap equation (3.49) numerically, we start with an ansatz for the solution given

by

ϕ(r) =
exp(−r)

(c2r2 + 1)σ
. (3.52)

This form is motivated by the fact that the condensate must goto a constant at small distances and

vanish beyond a certain length scale. We then adopt the following procedure. We choose values for

the parametersRΛ andLΛ4 consistent with the constraintLΛ ≪ RΛ ≪ 1. With this, we need to look

4This corresponds to a particular brane configuration.
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for a solution with a set of values of the parameterslΛ, φ0, σ andc for different values ofλ. It turns

out, as we will explain later, that it is easier to fixlΛ to a given value and then look for the set of values

of λ̄, φ0, σ andc that would solve the equation. For this, we compute the difference of thelhsand the

rhs of equation (3.49). We try to find values of the parametersλ̄, φ0, c andσ such that the ratio

ρ =

(∫ ∞

0
dp| f (p) − fT(p)|2

)

/

∫ ∞

0
dp| f (p)|2 (3.53)

is minimised. We find that the value ofc that gives the best fit always turns out to belΛ/LΛ. This set

of values (along withlΛ) provides theχS Bsolution to equation (3.49) for the corresponding value of

λ. This exercise is then repeated for various values oflΛ.

We have carried out the numerical computations using ‘Mathematica’. The equation solving

essentially involves two parts. One is the computation off (p) and t(p) using equation (3.48) and

the ansatz (3.52), and the other is the minimisation ofρ. The first step involves numerical integration

and is more computationally expensive than the second step.Computation oft(p) depends onlΛ

whereas the parametersλ̄ andφ0 appear only in the second step. Therefore, it is numericallyeasier to

choose a particular value oflΛ and then adjust̄λ andφ0 to minimise the value ofρ instead of choosing

a value forλ̄ and then trying to find the correctlΛ and other parameters.
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Figure 3.3: The first figure shows that there is no good matching between
f (p) and fT(p) for lΛ ≪ LΛ and the second shows that the ratio t(p)/f(p)
becomes a constant which is impossible for a solution to the gap equation.

Before we discuss the numericalχS B solutions in detail, it is worthwhile pointing out a few

important features of the solutions:

• Using equation (3.48) we can see thatt(p) gets a significant contribution only in the regiony . 1

sinceϕ(y) decays exponentially beyond this region. Now let us look atthe parameter regime

with lΛ . LΛ. In this regimeg(lΛy) is essentially a constant becauseg(r) is a constant forr . LΛ
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as can be seen from (3.41). Thus,t(p) ∝ f (p) and hence the gap equation (3.49) can not be

satisfied. We conclude that there are noχS Bsolutions withlΛ . LΛ. Numerical computations

confirm this as can be seen from Figure 3.3 which shows the bestfit for a particular value of the

parameters. The fit is clearly poor.

• SinceχS Bsolutions exist only in the parameter regimelΛ & LΛ, it follows that if we want

χS B length scale to be much smaller than the confinement scale (aswe have assumed in our

derivation of the effective model) we must haveLΛ ≪ 1. This can be attained by appropriately

tuningL/Rk keeping the couplingλ fixed.

• Just like the local NJL model, it turns out that in the presentcase also there is a critical value

of the coupling below which there is noχS B. This happens forlΛ & 1. We will see numerical

evidence for this in the following subsection. This phenomenon can be understood as follows.

In this parameter regime the non-local NJL model can essentially be approximated as a local

NJL model5 which is known to have a critical coupling forχSB. However, note that the near

critical regime corresponds to a region where a perturbative treatment of the underlying gauge

theory is not trustworthy.

3.4.2 Numerical results

Let us now discuss the best fit numericalχS Bsolutions of the gap equation in the parameter regime

lΛ & LΛ. As mentioned earlier, we choose a set of values forRΛ andLΛ consistent with the constraint

LΛ ≪ RΛ ≪ 1 and then obtain the values forσ, λ and φ00 ≡ (λ̄φ0)2 for each value oflΛ that

are consistent with the gap equation. Consider the setRΛ=1/5, LΛ=1/100. Table 3.1 lists all the

parameters involved in the numerical solutions for this setfor different values of the couplingλ.

In order to show the numerical agreement, we provide figures for two representative values oflΛ

showing the fit betweenf (p) and fT(p). Figure 3.4 shows the fits obtained for the valueslΛ= 1/10,

1. Numerical calculations also show that the UV behaviour ofthe solution is given byt(p) ∝ p2 f (p)

as derived analytically. This can be easily seen from Figure3.5 where we plot the ratiop2 f (p)/t(p).

The left panel of Figure 3.6 shows the variation oflΛ with λ. We find that as we decreaseλ from a

large value,lΛ slowly increases until it reaches a ‘knee’ where it rapidly starts increasing and hits a

‘wall’, an artifact of a critical couplingλc below which there is noχS B. This happens aroundlΛ = 1.

After that, the curve slowly turns back indicating two possible solutions for eachλ. A more detailed

investigation of this feature requires considerably longer computation time but is clearly desirable. It

5This can be understood by looking at the behaviour of the Green’s functionGE(x) in (3.39). Sinceg(r) vanishes
exponentially forr & 1, GE(x) vanishes exponentially for|x| & l in the regionlΛ & 1. Therefore, the Green’s function
essentially looks like a Dirac delta function at distances of the order or greater than theχS B length scale and hence
approximates a local NJL model.
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turns out that as we increase the value oflΛ, the energy of the solution increases as shown in the right

panel of Figure 3.6. This implies that among the two solutions for the same value ofλ, the one with

lower value oflΛ is preferred.

Before we close this section, we would like to mention that wehave obtainedχS Bsolutions for

multiple sets of values ofRΛ andLΛ. All these solutions share the same qualitative features. For

the sake of comparison, we provide the data and figures for twoother sets{RΛ=1/20, LΛ=1/300} and

{RΛ=1/5, LΛ=1/200} in the list of tables and figuresat the end of this chapter.

RΛ=1/5 LΛ=1/100
lλ σ λ φ00

1/100 0.005 0.31266l 3.3538×10−10

3/200 0.250 0.28873 5.6739×10−9

3/100 0.500 0.2570 8.6961×10−7

3/50 0.650 0.2363 0.00017609
1/10 0.730 0.2135 0.0097973
1/4 0.800 0.1988 12.5067
3/5 0.835 0.1972 12176.4
4/5 0.845 0.1983 121168
1 0.853 0.1969 724447
8/5 0.870 0.1944 3.2694×107

5/2 0.880 0.1976 1.1888×109

4 0.888 0.2031 5.2297×1010

5 0.890 0.2085 3.1255×1011

Table 3.1: Table of parameters for the solution to gap equation for the set
RΛ=1/5 andLΛ=1/100.
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Figure 3.4: Fits betweenf (p) and fT(p) for two different values oflΛ with
RΛ=1/5 andLΛ=1/100 corresponding to the data in Table 3.1.
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Figure 3.5: Plot to demonstrate the UV behaviour of the solution
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Figure 3.6: Left: Variation oflΛ with λ for the setRΛ=1/5, LΛ=1/100; Right:
Energy variation withlΛ

3.5 The non-compact limit

Till now, we have considered a finite value forRk that leads to a non-local NJL action with an effective

(3+1)-dimensional ’t Hooft couplingλ. We have presented strong numerical evidence that this theory

has a critical valueλc below which there is no dynamical breaking of chiral symmetry. We will now

try to find out what happens when one takes a non-compact limit(Rk → ∞). In order to keep intact

the vital assumptions made in our computation ofχS Bsolutions in this model, we must maintain the

hierarchy of scalesL ≪ Rk ≪ Λ−1 as we take the non-compact limit. To incorporate confinement

in this model, we would also like to use the relation among thequantitiesΛ, Rk andg2
4 (henceg2

5)

as given by (2.23). If we define exp
(

−2πRk

β0g2
5

)

asb then with a scale transformationRk → ηRk, we get
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b→ bη. Further, equation (2.23) leads to a scaling ofΛ such thatRΛ → Rη

Λ
. Since we are keepingL

fixed as we take the non-compact limit,LΛ scales asLΛ → LΛRη−1
Λ
/η. The model can now be studied

in the non-compact limit by taking theη→ ∞ limit of the compact model.

From our numerical study of the compact case we have seen thatthere is a critical value of the

coupling below which there is noχS B. This critical value is achieved forlΛ ≈ 1. We now wish to

find what happens toλc as we take the non-compact limit. In order to carry out this exercise we begin

with an initial set of values ofRΛ andLΛ and find the value ofλc and the correspondingχS Bsolution.

We then try to find how this solution evolves as one approachesthe non-compact limit by scaling

RΛ andLΛ using the scale factorη as mentioned above. As we decrease 1/η from η=1, the value of

λc starts decreasing linearly. Such a linear behaviour would give rise to a finite critical value for the

5-dimensional ’t Hooft coupling. However, on further increasingη, we find that the linear behaviour

is not satisfied any more. Rather the curve actually bends andapparently approaches a constant value,

which would imply that the critical value of the 5-dimensional ’t Hooft coupling blows up in the limit

η → ∞, leading to no sensible result. We present an example in which we choose the initial set

of values,RΛ=1/2 andLΛ=1/100. The evolution of theχS Bsolution (corresponding to the critical

coupling) with the scalingη has been tabulated in Table 3.2. Figure 3.7 shows the variation of the

critical coupling with the scaling parameterη.

Initial RΛ=1/2 Initial LΛ=1/100
η σ λc φ00

1.0 0.871 0.084302 1.5834× 105

1.5 0.881 0.061379 1.6846× 106

2.0 0.885 0.050870 1.1915× 107

2.4 0.888 0.045603 5.2653× 107

2.8 0.889 0.042359 2.1624× 108

3.0 0.890 0.040758 4.3096× 108

3.3 0.890 0.039170 1.1719× 109

3.5 0.891 0.037928 2.2875× 109

4.0 0.891 0.036500 9.8027× 1010

4.5 0.892 0.035382 5.9672× 1010

5.0 0.891 0.035535 2.9431× 1011

5.5 0.892 0.035071 1.4229× 1012

6.0 0.892 0.035423 6.7879× 1012

Table 3.2: Table of parameters for the solution to the gap equation withlΛ=1
and initialRΛ=1/2 and initialLΛ=1/100

In the above approach to the non-compact limit, we have maintained the relation between scales

implied by (2.23). However, since NJL model is a non-renormalisable model, it might be suitable to

relax this condition. Nevertheless, we still want to maintain the hierarchy of scalesL ≪ πRk ≪ Λ−1.

A simple way to do this is to keepRΛ fixed at a value much smaller than 1 and then takeLΛ to zero.
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RΛ=1/2, LΛ=1/100 corresponding to Table 3.2.

This corresponds to the scalingRk→ ηRk,Λ→ Λ/η so that, for a fixedL, LΛ → LΛ/η. As above, here

also we study the evolution of the critical coupling with thescale factor as we take the non-compact

limit. In this case also we find that the 5-dimensional critical coupling blows up in the non-compact

limit and hence this way of taking the non-compact limit alsodoes not lead to a sensible result. We

present an explicit example where the initial set of values are set toRΛ=1/5 andLΛ=3/200 . Figure

3.8 shows the variation ofλc with the scaling parameter. The curve actually fits with the behaviour

λc = 0.271339/η0.817788 leading the 5-dimensional critical coupling to blow up in the non-compact

limit. Thus, in both these ways of approaching the non-compact limit we have ended up unsuccessful.

This may be an indication that there are no consistentχSB solutions in the non-compact limit of this

model. This clears up a confusion in the treatment ofχSB in [72] and indicates why the corresponding

gap equation might not actually have anyχSB solution.
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3.6 Summary

The study ofχSB in QCD is made complicated by the fact that the scale at which chiral symmetry

is broken is of the order of the confinement scale. If QCD couldbe deformed to enable “tuning”

of theχSB scale to be much smaller than the confinement scale, then one would have separated the

complications of the dynamics of confinement from a study ofχSB, which could then be handled by

perturbative methods. The intersecting brane configuration of Sakai and Sugimoto, which gives rise

to a QCD-like theory at low energies, admits just such a possibility; it has an additional parameter,

the flavour brane-anti-brane separation, which can be tuned.

In this chapter, we have discussed the weakly coupled SS model in the low energy limit. For any

finite radiusRk of the circle which the colourD4-branes wrap, there is confinement and a mass gap

in the low energy theory. The interaction between the flavor branes can be described in terms of a

non-local NJL model whose behaviour can be derived exactly at energies higher than the confinement

scale. If the energy scale ofχSB is also large, it allows one to study the phenomenon perturbatively.

The NJL model reflects the confinement scale,Λ, in the length scale over which the non-local four-

fermi interaction extends. The fact that this range is finiteturns out to be crucial in getting consistent

χSB solutions. In the largeNc limit, the question ofχSB amounts to finding appropriate solutions to

the non-linear gap equation. For solutions withχSB length scalel much larger than the confinement

scaleΛ−1, it is reasonable to replace the non-local NJL model by the local NJL model. Hence these

solutions must reveal the existence of a critical coupling,which is known to determineχSB in the

local NJL model. In this work we have numerically solved the non-linear gap equation and verified

the existence of a critical coupling below which chiral symmetry is unbroken. Roughly speaking,

only solutions withχSB scale greater than the brane-anti-brane separationL exist. TheχSB scalel

increases as the ’t Hooft coupling is decreased, until a critical value is reached forl ∼ Λ−1. Solutions

with l > Λ−1 do not lead to any further decrease in the coupling.

Our analysis is valid for any finite value of the radiusRk, which may be large. We have briefly

addressed the question of what happens whenRk → ∞. Two different ways of taking this limit, each

one obtained from a well-motivated one-parameter scaling of the parameters of the SS model, were

discussed. We found from our numerical data that neither of them leads to a sensible limit. The

tentative conclusion is that simple ways of implementing this limit do not lead to a consistent picture

of χSB in the non-compact version of the non-local NJL model. This seems to reinforce the critical

role that the confinement scale plays in the compact model; the infrared cut-off provided by it enables

the existence of consistent solutions to the gap equation. However, more work needs to be done to

clarify this issue further.

Finally, most of the calculations reported in this chapter were done numerically because the gap

equation is non-linear and we could not solve it analytically. It would, however, be useful to have
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some analytic handle on the calculations, especially in theparameter region near the critical coupling.

This could be important for a better understanding of the non-compact limit. A possible hint in this

respect is the fact that excellent numerical solutions wereobtained using the ansatz (3.52), with the

constantc turning out to be almost exactly equal tol/L in all cases.
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List of tables and figures

RΛ=1/20,LΛ=1/300 RΛ=1/5, LΛ=1/200
lλ σ λ φ00 lλ σ λ φ00

1/300 0.01 0.40707 7.167× 10−12 1/1000 0.005 0.5 6.512× 10−14

2/300 0.27 0.3737 5.531× 10−10 1/200 0.01 0.16156 5.7492× 10−12

1/100 0.50 0.3336 1.792× 10−10 1/100 0.430 0.13945 9.98934×10−10

4/100 0.7 0.28772 0.0005542 1/50 0.620 0.12410 1.76125×10−7

1/10 0.775 0.268637 0.73002 3/50 0.765 0.10902 0.0008285
1/4 0.808 0.27007 893.65 1/10 0.810 0.10382 0.048126
3/5 0.833 0.27417 882330 1/4 0.850 0.10064 66.118
1 0.849 0.27274 5.3738× 107 3/5 0.870 0.10382 67550.4
8/5 0.863 0.27094 2.4385× 109 1 0.885 0.10302 4.1827× 106

5/2 0.875 0.27013 9.29622×1010 8/5 0.892 0.10583 1.797× 108

4 0.886 0.26933 4.3044× 1012 5/2 0.890 0.11559 6.0005× 109

5 0.889 0.27257 2.5899× 1019 5 0.890 0.12620 1.786× 1012

Table 3.3: Table of parameters for the solution to gap equation for the sets{RΛ=1/20,
LΛ=1/300} and{RΛ=1/5, LΛ=1/200}
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Chapter 4

A review of Sakai-Sugimoto model at strong

coupling

In the previous chapter, we have discussed aspects ofχS B in the weakly coupled limit of the

SS model which gives rise to a modified QCD-like theory with anadditional parameter. In this

chapter, we will review the original work of Sakai and Sugimoto [67] in which they introduced

the model and discussed its strong coupling limit obtained through an application of the AdS/CFT

correspondence. In the strong coupling limit, the SS model reproduces many qualitative features of

the non-perturbative aspects of QCD like confinement and a non-abelian chiral symmetry breaking. In

particular, an elegant geometrical picture of chiral symmetry breaking emerges from the holographic

dual bulk geometry. Here, we will only provide a compact review of the work of Sakai and Sugimoto

and refer the interested reader to the original work [67] fora more detailed exposition. As we will

see, while the SS model captures some aspects ofχS B in an elegant way, other aspects require

modification of the model.

4.1 The strong coupling description

In the discussion on Witten’s model (p. 28), we have mentioned that at low energies and in the strong

coupling limit a set of large numberNc of overlappingD4 branes can be replaced by the near horizon

limit of the supergravity bulk solution having the quantum numbers of the brane system. Sakai and

Sugimoto studied the strongly coupled model by consideringthe flavor branesD8 andD8 as probes

in the D4 background. Such a treatment is allowed provided the number of flavor branes is much

smaller than the number of color branes (Nf ≪ Nc) so that the backreaction of the flavor branes on
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the geometry is small. In this limit, the dynamics of this system is captured by the action

S = Ssugra+ SDBI + SCS. (4.1)

The termSsugra is the supergravity action of theD4 background and gives the holographic description

for the pure gauge theory. The dynamics of the flavor branes isgiven by the DBI action for the

D8 − D8 system in the presence of this background geometry,SDBI, and the Chern-Simons action,

SCS, arising from the interaction of the flavor brane gauge fieldswith the background RR field. Since

this is the main focus of the SS model, in the following we willconcentrate only on these terms in the

full action (4.1).

In our study of the weakly coupled SS model, we saw that there is a U(Nf ) symmetry associated

with the each of the two sets of overlappingNf D8 branes andD8 branes. We studied the dynamics

of the system and saw how a dynamical breaking of chiral U(Nf ) symmetry occurs in it. In the strong

coupling picture, theD4 background geometry leads the branes and the anti-branes to meet each other

in the bulk leaving behind only a U(Nf ) symmetry. This presents a geometrical picture ofχS Bin the

model in the strong coupling limit. We will see a demonstration for this in the following.

4.1.1 TheD8-D8 profile

Although the model consists ofNf D8−D8 pairs and leads to a non-abelian chiral symmetry breaking,

it is instructive to consider the simpler case ofNf = 1 1 which has most of the essential elements of

the model. Sakai and Sugimoto consider theD8−D8 branes as probeD8 branes. They study the DBI

action of aD8 in theD4 background which involves a scalar field corresponding to the position of the

brane in thex4 coordinate and the 8-brane gauge fields. The DBI action is given by

S = −µ8

∫

d9σ e−φ
√
−detA,

Aab = gMN∂axM∂bxN + 2πα′Fab, (4.2)

whereµ8 = 1/(2π)8l9s. The integral is carried out in theD8-brane world volume. The first term in

the second line of (4.2) gives the induced metric on the braneand the second one the field strength

of the flavor gauge fields. The indicesa, b run over the world-volume directions of the branes while

the indicesM,N run over the background ten-dimensional space-time directions. HeregMN is the

metric dual to theD4 brane system andφ is the dilaton. For the reader’s convenience, we repeat the

1The associated U(1) chiral symmetry of the classical theoryis broken by the well known quantum anomaly. In the
largeNc limit, however, the anomaly vanishes. Therefore, it is meaningful to study U(1)χS Bin this limit.



4.1. THE STRONG COUPLING DESCRIPTION 61

expressions for the dual fields given in (2.21):

ds2 =

(U
R

)3/2
(

ηµνdxµdxν + f (U) (dx4)2
)

+

( R
U

)3/2 (

dU2

f (U)
+ U2dΩ2

4

)

,

eφ = gs

(U
R

)3/4

, F4 =
2πNc

V4
ǫ4, f (U) = 1−

U3
k

U3
, (4.3)

whereUk is defined through relation (2.22) i.e.Uk = 4R3/9R2
k. The impact ofD4 background on

the configuration of the flavor branes can be seen by putting the flavor brane gauge fields to zero and

then solving the equation of motion. Using the static gauge and assuming thatx4 depends on the

coordinateU only, which is the case for a classical vacuum solution, the DBI action becomes

S = −T8V4

∫

d4x
∫

dU
(U

R

)−3/4

U4
√

D, (4.4)

whereT8 = µ8/gs is theD8 brane tension and

D = f (U)−1
(U
R

)−3/2

+ f (U)
(U
R

)3/2 x4′(U)
2

4
. (4.5)

Here and in the following, a prime denotes derivative with respect toU.

In this setup, chiral symmetry breaking has a geometrical description where asymptotically

separated branes meet each other in the bulk. This can be seenby explicitly solving the equation

of motion forx4(U) obtained from the action (4.4). This equation is





















(

U
R

)13/4

√
D

f (U)
4

(U
R

)3/2

x4′(U)





















′

= 0, (4.6)

which has the solution

x4(U) = U4
0 f (U0)

1/2

∫ U

U0

dy
f (y)−1

(

y
R

)−3/2

√

y8 f (y) − U8
0 f (U0)

. (4.7)

Thus,x4(U0) = 0 and the asymptotic value ofx4(U) asU → ∞ is a monotonically decreasing function

of U0. The maximal asymptotic values occurs forU0 = Uk and isπRk/2. TheD8 andD8 are at

antipodal points on thex4 circle and are separated by a distancel(U) = πRk. To see this, note from

(4.6) thatx4′(U) = 0 is a solution. The background geometry is such that the radius of the circle

x4 remains fixed atRk for all values ofU. Therefore, the antipodal configuration is such that the

separationl(U) remains constant inU. In the generic case, the system comprises asymptotically

separated brane and antibrane bending towards each other asthey approach smaller values ofU and
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then smoothly meeting atU = U0 as shown in Figure 4.1. Expanding around the pointU = U0, we

Figure 4.1: The brane configuration in strongly coupled SS model.

get from equation (4.7)

x4(U) =
R3/2

U0

√

f (U0)

(U − U0)1/2

√

3+ 5 f (U0)
[1 +O(U − U0)]. (4.8)

It can be seen thatx4′(U) ∼ (U −U0)−1/2 diverges atU0, as required by a smooth joining of the brane

with the anti-brane.

Excitations about the ground state are simpler to analyze for the antipodal configurationU0 = UK.

In this case, it is useful to define the new coordinates (r, θ) through

U3 = U3
K + UKr2, θ =

3
4

U1/2
K

R3/2
x4. (4.9)

We can further define the coordinates (y, z) as

y = r cosθ, z= r sinθ. (4.10)

In these coordinates, the configuration of theD8− D8 can be expressed as the functiony(xµ, z). The

antipodal configuration corresponds toy(xµ, z) = 0. The horizon, where the two branes meet, appears

at z = 0 and the asymptotic infinity on theD8 andD8 are atz→ ∞ andz→ −∞. All computations

carried out in the rest of this chapter will assume this configuration.

4.1.2 Mesons

In the discussion carried out till now, the flavor gauge fieldshave been neglected since we were

interested only in the profile of the branes. However, chiralsymmetry breaking must also be
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associated with massless Goldstone bosons2. To see this, one needs to look at the excitations in

the model. The mesonic excitations arise by switching on theflavor gauge fields on theD8 andD8

branes, which, as we shall see, contain the Goldstone boson as well as the vector and axial-vector

mesonic analogs of QCD. In principle, the index on the gauge field AM can run over space-time and

S4 directions and the holographic directionz. The components along the directions of the space-time

andz respectively will be denoted byAµ andAz. The components along theS4 directions must be

associated with an SO(5) symmetry. Since the intention hereis to study the qualitative features of

QCD, which does not have such a symmetry, these components are put to zero by hand. Further,

the symmetry of the system also allows us to restrict the fluctuations to zero modes inS4, so thatAµ

andAz do not have any dependence on theS4 coordinates. With this, the action for the gauge field

fluctuations is given by

S = −T (2πα′)2

∫

d4xdz

(

R3

4Uz
ηµνηλσFµλFνσ +

9
8

U3
z

UK
ηµνFµzFνz

)

(4.11)

whereU3
z = U3

K +UKz2 and we have definedT ≡ 2
3R3/2U1/2

K V4T8. Only terms upto quadratic order in

fluctuations are kept. There is also a Chern-Simons actionSCS arising from the four-form background

RR field strength and the flavor gauge fields. However, such a term is cubic in the flavor gauge field

strength and is therefore neglected here in the fluctuationsanalysis.

The finiteness of the action (4.11) requires the field strength to vanish atz→ ±∞. By a choice

of gauge we can assume that the gauge field vanishes atz→ ±∞. Note that this still allows a further

gauge freedom

Az→ Az + ∂zΛ(x, z), Aµ → Aµ + ∂µΛ(x, z) with lim
z→±∞

Λ(x, z) = 0. (4.12)

To proceed further, we use a mode expansion of the fields in terms of a complete set of functions in

the holographic coordinateZ ≡ z/UK:

Aµ(x,Z) =
∑

n

A(n)
µ (x)Pn(Z), AZ(x,Z) =

∑

j

φ( j)(x)Q j(Z). (4.13)

Since the gauge fields vanish atz → ±∞, the functionsPn(Z) and Q j(Z) must satisfy the same

boundary condition. With this, the five dimensional action can now be written as

S = −T (2πα′)2R3

∫

d4xdZ
{ 1

4
K−1/3F(n)

µν F(m)µνPnPm +
K

2R2
k

(

A(m)
µ A(n)µ∂ZPn∂ZPm

+∂µφ
(i)∂µφ( j)QiQ j − 2∂µφ

(i)A(n)µQi∂ZPn

)}

, (4.14)

2As mentioned earlier, forNf = 1, there is a single Goldstone boson in the largeNc limit.
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where K(Z)=1+Z2 and the repeated indicesi, j, m, n are summed over. The set of functions

Pn(Z), n ≥ 1 can be chosen such that they satisfy

−K1/3∂Z(K∂ZPn) = λnPn, T (2πα′)2R3

∫

dZK−1/3Pn(Z)Pm(Z) = δnm. (4.15)

With this, in the absence of the fieldφ(i), the four dimensional action forA(n)
µ s would reduce to the

action for a tower of massive vectors given by

S[Aµ] =
∫

d4x
∞
∑

n=1

(

1
4

F(n)
µν F(n)µν +

m2
n

2
A(n)
µ Aµ(n)

)

, (4.16)

wherem2
n=λn/R2

k. The following orthonormality condition should be imposedon the set of functions

Qi :

T (2πα′)2R3

R2
k

∫

dZKQi Q j = δi j . (4.17)

Note that the set of functionsQn = m−1
n ∂ZPn(n ≥ 1) satisfy the above condition. Now, the function

Q0 = C/K also satisfies the orthonormality condition. Thus, the setQi(i ≥ 0) now provides a complete

set of functions consistent with the orthonormality condition (4.17). Using this, the total action (4.14)

then reduces to

S= −
∫

d4x
{1
2
∂µφ

(0)∂µφ(0) +
∑

n≥1

(1
4

F(n)
µν F(n)µν +

m2
n

2
(A(n)

µ −m−1
n ∂µφ

(n))(Aµ(n) −m−1
n ∂

µφ(n))
)}

≡ −
∫

d4x
{1
2
∂µφ

(0)∂µφ(0) +
∑

n≥1

(1
4

F(n)
µν F(n)µν +

m2
n

2
B(n)
µ Bµ(n)

)}

. (4.18)

Let us now invoke the additional gauge freedom (4.12) we mentioned before. Since we have

limZ→∞Λ(x,Z)=0 3, Λ(x,Z) can be written in termsPn(Z)s asΛ(x,Z) =
∑

n≥1Λ
(n)(x)Pn(Z). It can

be easily seen using this that the fieldsφ(0)(x) andB(n)
µ (x) are gauge invariant under this additional

gauge degree of freedom and are therefore physical in nature. Sakai and Sugimoto numerically

solved the eigenvalue equations for the basis functions anddetermined the parity of the fields. The

field φ(0)(x) is of odd parity and is identified with the analog ofη′ meson. The fieldsB(n)
µ (x) give the

analogs of the vector and axial-vector mesons. Although, for simplicity, we have discussed the case

with single flavor, it is not difficult to analyse the case with multiple flavors. Using a non-abelian

generalisation Sakai and Sugimoto show that the model givesrise to analogs of massless pions and

massive vector and axial-vector mesons. The authors also reproduced the chiral anomaly in QCD

3We useZ instead ofz.
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using their model. This arises from the Chern-Simons actioninvolving interaction between the RR

4-form field strength and flavor gauge field strength. The gauge transformation of the Chern-Simons

term precisely matches the chiral anomaly of QCD and precisely reproduces the WZW term of chiral

lagrangian. They have also studied baryons in the model. A baryon is realised as aD4 brane wrapped

on S4 which in turn can be realised as an instanton configuration ofthe flavor gauge fields. The

Chern-Simons term leads to a potential for the vector U(1) part of the flavor gauge field fluctuation

coupled to a point source of chargenNc wheren is the instanton number. This identifies the instanton

configuration to a baryon with the instanton number giving the baryon number (since each baryon has

Nc quarks). Just as in QCD, the baryon mass turns out to beO(Nc).

4.2 Summary and discussion

Before we end this chapter, let us summarise some of the salient points of the model. The model is

an important qualitative step towards a holographic description of a QCD-like theory. It reproduces

many of the qualitative features of QCD-like theory including the strong coupling phenomena of

confinement and chiral symmetry breaking. However, the model also has problems because of which

it is actually expected to describe a theory that is different from QCD. The first problem is that at

strong coupling, the masses of Kaluza-Klein modes are of theorder ofΛQCD as we have argued in

the discussion on Witten’s model. Thus, the model has infinitely many more glueball and meson

states than in QCD. Moreover, there are no low lying states with spin higher than 2, these having

been pushed to very high masses (of the order of string scale). This makes it different from properties

expected of QCD.

The second problem is the absence of any parameter corresponding to the quark mass deformation.

The quarks in the Sakai-Sugimoto model are massless and there is no simple way of switching on a

quark mass. This masslessness of quarks can be deduced from the masslessness of the Goldstone

bosons of theχS B. The model has no parameter describing massive quarks. For phenomenological

reasons, having nonzero quark masses is important. The firstof these problems is generic to all

holographic models of QCD. The hope is that despite this, many qualitative features survive the

tuning of coupling from weak to strong. One of the main aims ofthis thesis is to present a proposal

to solve the second problem. We will do this in the next two chapters. Our proposal is to modify

the SS model by taking into account the tachyon fluctuations which we expect to be relevant in the

region where the branes meet. As we will see, introduction ofthe tachyon will allow the model to

accommodate a non-zero quark mass.
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Chapter 5

Quark mass deformation of SS model

In the last chapter, we saw a beautiful geometrical picture of spontaneous breaking of chiral symmetry

arising in the strongly coupled Sakai-Sugimoto model. In the dual geometry of theD4-branes, the

global chiral symmetry of asymptotically separatedD8 − D8 branes is broken in the bulk where

the branes meet. The model also gives rise to a meson spectrumwhere the associated massless

pseudoscalar Goldstone bosons can be identified with some ofthe flavor gauge field fluctuations of

theD8-D8 branes. As mentioned before, however, one of the main drawbacks of the model is that it

does not have any parameter corresponding to quark masses. Further, it lacks an order parameter for

χSB too.

In this chapter and the following, we present a proposal for overcoming these drawbacks. Our

proposal provides a setup in which one can take into account anon-zero quark mass. Our setup

also has an explicit order parameter forχSB. The model is a modification of the strongly coupled

SS model involving a study of the dynamics of the open string tachyon betweenD8 andD8 branes

in the D4 background. Note that the open string tachyon between the flavor branes transforms as a

bifundamental under the flavor group. Thus, it couples to a chiral bilinear of fermions in the boundary

field theory. Therefore, condensation of this field can potentially lead to the analog of a quark mass

term in the boundary QCD-like theory. The transformation under the flavor group also suggests that

it can give rise to an order parameter forχSB. In this chapter, we will provide details of our proposal

and in the following chapter, we describe the meson spectrumand study the impact of a non-zero

quark mass on it. The matter covered in these two chapters is based on our work in [121, 122].

5.1 Modified Sakai-Sugimoto model with tachyon

In the last chapter we discussed the strongly coupled SS model in which theD8 andD8 branes attain a

U-shaped configuration in theD4 background. In order to arrive at such a configuration one may have

67
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to study the tachyon dynamics arising from open strings between theD8 andD8 branes. For a large

separation, these modes are massive. However, it is naturalthat they give rise to tachyonic modes

whenever theD8 − D8 separation is smaller than the string scale. In the region of small separation

where theD8 andD8 branes meet each other, the tachyonic mode is expected to become important

and can no longer be neglected. This requires us to consider the effect of the tachyon in theD8-D8

DBI action. In particular, its coupling with the flavour gauge fields modifies the spectrum of the

mesons. It turns out that the tachyonic mode has a parameter for the quark mass which gives rise to a

non-zero mass to the pseudo-Goldstone boson analogous to pion and also one for the order parameter

associated with chiral symmetry breaking, i.e., the chiralcondensate. We will see this in detail in the

following.

5.2 Brane-antibrane pair with tachyon

Studies of various aspects of tachyon dynamics on a non-BPS D-brane have been carried out in

superstring theory. The proposed tachyon effective action for a non-BPS Dp-brane in flat space is

given by [100] - [106]:

S = −
∫

dp+1xV(τ)
√
−detA,

Aab = ηab + ∂aT∂bT + ∂aXi∂bX
i + Fab,

Fab = ∂aAb − ∂bAa, (5.1)

where 0≤ a, b ≤ p are the indices for the directions in theDp brane world-volume and (p+1) ≤ i ≤ 9

is the index for the transverse directions. The fieldAa is theDp brane gauge field andXis are the

transverse scalars.τ denotes the tachyon field.V(τ) is the tachyon potential and depends only on the

magnitudeT = |τ| of the tachyon. It is believed to satisfy the following general properties [107]:

• V(T) has a maximum atT = 0 and a minimum atT = ∞ where it vanishes.

• The normalization ofV(T) is fixed by the requirement that with tachyon put to zero it should

correctly produce theDp brane tension, so thatV(0) = Tp = 1/(2π)p lp+1
s gs.

• The expansion ofV(T) aroundT = 0 up to terms quadratic inT gives rise to a tachyon with

mass-squared equal to−1/2α′.

There are several proposals forV(T) which satisfy these requirements [107], although no rigorous

derivation exists. Examples are (i) the potential used in [114, 115, 116] for calculation of decay of
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unstableD-branes in two-dimensional string theory

V(T) = Tp sech
√
πT; (5.2)

and (ii) the potential obtained using boundary string field theory computation [117, 118, 119, 120]

V(T) = Tp e−
π
2T2
. (5.3)

Both these potentials satisfy the properties listed above.Note that the asymptotic form of the potential

in (5.2) for largeT is ∼ e−
√
πT . The linear growth of the exponent withT should be contrasted with

the quadratic growth for the potential in (5.3).

A generalisation of (5.1) was proposed to describe the tachyon effective action for the brane-

antibrane system by Sen in [108]. It is given by

S = −
∫

dp+1xV(T,Xi
(1) − Xi

(2))(
√

−detA(1) +
√

−detA(2)),

A(J)ab = ηab + F(J)
ab + ∂aX

i
(J)∂bX

i
(J) +

1
2

(Daτ)
⋆(Dbτ),

F(J)
ab = ∂aA

(J)
b − ∂bA

(J)
a , Daτ = (∂a − iA(1)

a + iA(2)
a )τ, (5.4)

whereτ is complex andT is its magnitude. For small values ofT, the potential has a behaviour given

by

V(T,Xi
(1) − Xi

(2)) = Tp

[

1+
1
2

{(Xi
(1) − Xi

(2)

2π

)2

− 1
2

}

T2 + O(T4)
]

. (5.5)

Although the form of the action is not based on an exact derivation but it satisfies the following

consistency conditions:

• The action is invariant under the gauge transformation given by

τ→ ei(λ1(x)−λ2(x))τ, A(1)
a → A(1)

a + ∂aλ1(x), A(2)
a → A(2)

a + ∂aλ2(x).

• With tachyonτ put to zero we get the sum of the actions of two BPSD-branes.

• If we demand that the fields be invariant under (−1)FL that interchanges the brane and anti-brane

then we have

τ = real, A(1)
a = A(2)

a , Xi
(1) = Xi

(2).

With this the action becomes proportional to that of a singlenon-BPS Dp-brane given by (5.1).

In [109], Sen investigated the result of orbifolding (modding wrt (−1)FL ) a Dp-Dp system. He
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showed that the result is a single non-BPSDp brane. Thus, the present case is consistent with

this result.

A proposal for the brane-antibrane effective action was also made by Garousi in [110, 111]. The

line of argument for this proposal is based on the work done in[101] which proposes an effective

action for multiple non-BPSDp branes in a given background space-time. It uses a non-abelian

generalisation of the action for a single non-BPSDp brane. It is the easiest to obtain such a non-

abelian generalisation for multiple non-BPSD9 branes which have no transverse scalars. One can

then find the effective action forDp branes using a T-duality along the (9-p) directions. The effective

action forDp-Dp is then found from the effective action for two non-BPSDp-branes by restricting

the Chan-paton factors to the subgroup corresponding to theDp-Dp system. The effective action so

generated is consistent with disk level S-matrix elements in string theory [110, 111].

An alternate proposal for the effective action for aDp-Dp pair has also been made in [112]

building upon the work carried out in [113] describing the dynamics of the system. This is based on

the abelian tachyon-DBI action for a single non-BPSD(p+ 1) brane. TheDp-Dp system arises as a

kink-antikink solution in this description. (Kink solution in non-BPS D-brane was previously studied

by Sen in [108].) The complex tachyon, the U(1)×U(1) gauge field and the additional transverse

scalars are emergent quantities in this setup.

In the following, we apply the proposal made in [110, 111] to the D8-D8 system inD4

background. The simplest case occurs when the brane and antibrane are on top of each other since in

this case all the transverse scalars are set to zero. This is the situation considered in [85]. To retain

the nice geometrical picture ofχS Bof the SS model, one needs to separate the brane and anti-brane.

This requires an effective tachyon action on a brane-antibrane pair interacting with the transverse

scalars. Although the work carried out in [110, 111] proposes an effective action with the brane and

antibrane separated along a noncompact direction, a generalization of this action to the case when

the brane and antibrane are separated along a periodic direction (like ours) is not known. However,

for small separationl(U) compared to the radiusRk of the circle, the action in [110] should provide

a reasonable approximation to the compact case. In the following we will assume this to be true. A

posteriori justification for this assumption, as we shall see later, is provided by the classical solutions

for the brane-antibrane profile. In these solutions, for small asymptotic separation, the brane and

antibrane meet far away from the central region. In this case, to a good approximation, the factor

f (U) in the background metric can be set to identity, which is equivalent to setting the radiusRk to

infinity.
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With this, the effective low-energy tachyon action for aD8 andD8-brane pair forl(U) << Rk is

given, in theD4 background by

S = −
∫

d9σ V(T, l)e−φ
( √

−detAL +
√

−detAR

)

,

(Ai)ab =

(

gMN −
T2l2

2πα′Q
gM4g4N

)

∂axM
i ∂bxN

i + 2πα′F i
ab +

1
2Q

(

2πα′(Daτ(Dbτ)
∗ + (Daτ)

∗Dbτ)

+il (ga4 + ∂ax4
i g44)(τ(Dbτ)

∗ − τ∗Dbτ) + il (τ(Daτ)
∗ − τ∗Daτ)(g4b − ∂bx4

i g44)
)

,

(5.6)

where

Q = 1+
T2l2

2πα′
g44, Daτ = ∂aτ − i(AL,a − AR,a)τ, V(T, l) = gsV(T)

√

Q. (5.7)

T = |τ|, i = L,R and we have used the fact that the background does not depend on x4. V(T) is called

the tachyon potential. The complete action also includes terms involving Chern-Simons couplings of

the gauge fields and the tachyon to the RR background sourced by theD4-branes. In the following,

we will be interested in knowing the classical vacuum configuration of theD8− D8 system in which

the gauge fieldsAL andAR do not acquire any vev. The Chern-Simons terms vanish in the absence of

gauge fields and therefore play no role in determining the vacuum configuration. In the next chapter

also, we will study only the implications of the vacuum configuration we determine here, on the flavor

gauge field fluctuations. Therefore, we omit the Chern-Simons terms. It may, however, be important

to mention that a study of chiral anomaly requires one to takeinto account these terms.

We end this section with the following observation. It can beeasily seen that in the decoupling

limit all factors ofα′ scale out of the entire action, without requiring any scaling of the transverse

scalarl or the tachyonτ. In fact, the entire action can be rewritten in terms ofλ5 andU, quantities

that are kept fixed in the scaling limit. Henceforth, we will use the convention 2πα′ = 1.

5.3 Classical equations for brane profile and tachyon

In this section, we look for an appropriate classical groundstate solution of the brane-antibrane-

tachyon system. We, therefore, set the gauge fields to zero and assume thatT andx4
i depend only on

U. Guided by symmetry and with no loss of generality, we choosex4
L = l(U)/2 andx4

R = −l(U)/2 so

that the separation between the brane and antibrane isl. With this, the action (5.6) in the static gauge,

simplifies to

S = −V4

∫

d4x
∫

dU V(T)
(U
R

)−3/4

U4
(
√

DL,T +
√

DR,T

)

, (5.8)
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whereDL,T = DR,T ≡ DT and

DT = f (U)−1
(U

R

)−3/2

+ f (U)
(U
R

)3/2 l′(U)2

4
+ T′(U)2

+ T(U)2l(U)2. (5.9)

It is convenient to remove the dependence onR (except for an overall factor in the action) through a

redefinition of variables,

U = u/R3, l(U) = R3h(u), Uk = uk/R
3. (5.10)

In terms of the new variables, we get

S = −V4R
−9

∫

d4x
∫

du u13/4 V(T)
(
√

dL,T +
√

dR,T

)

, (5.11)

where

dL,T = dR,T ≡ dT = f (u)−1u−3/2 + f (u) u3/2h′(u)2

4
+ T′(u)2

+ T(u)2h(u)2, (5.12)

with f (u) = (1− u3
k/u

3).

The effective potential for the tachyon can be obtained from this action by settingT′ = h′ = 0 and

is given by

Veff(T, l) ∼ sech
√
πT
√

1+ u3/2T2h2. (5.13)

In Figure 5.1 we have plottedVeff as a function ofT for various values ofu. We see that a

perturbatively stable minimum atT = 0 for large values ofu turns into an unstable maximum at

a sufficiently small value ofu. This is true for any fixed, non-zero value ofh. Moreover, the value of

u at which there is an unstable maximum atT = 0 increases ash decreases.

Veff

T

u=5

u=20

u=50

u=70

1 2 3 4

0.5

1.0

1.5

Figure 5.1: The effective potentialVeff as a function ofT for different values ofu for a fixed non-zero
value ofh.
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The equations of motion obtained from the action (5.11) are given by













u
13
4

√
dT

T′(u)













′

=
u

13
4

√
dT

[

T(u)h(u)2 +
V′(T)
V(T)

(dT − T′(u)2)

]

, (5.14)













u
13
4

√
dT

f (u)
4

u
3
2 h′(u)













′

=
u

13
4

√
dT

[

T(u)2h(u) − V′(T)
V(T)

f (u)
4

u
3
2 h′(u)T′(u)

]

,

(5.15)

where the ‘prime’ onV(T) denotes a derivative w.r.t. its argumentT (and not a derivative w.r.t.u).

This is a complicated set of coupled nonlinear differential equations which can be solved completely

only numerically. However, for largeu andu near the place in bulk where the brane and anti-brane

join, these equations simplify and can be treated analytically. To get some insight into the kind

of solutions that are possible, we will, therefore, first analyse these equations in these two special

cases before proceeding on to describe the complete numerical solutions which we have obtained

[121, 122]. Note that we are looking for solutions in which the brane and antibrane have a given

asymptotic separationh0, i.e. h(u) → h0 asu→ ∞, and they join at some interior point in the bulk,

i.e. h(u) → 0 at u = u0 ≥ uk (sinceuk provides a lower bound onu). Such a solution will help us

preserve the geometrical picture ofχSB in SS model. Moreover, we desire the tachyon solution to

vanish asu→ ∞. This implies that in the UV limit, the vev of the tachyon vanishes and the full chiral

symmetry is preserved, as in the massless QCD action. The tachyon solution is also desired to blow

up asu approachesu0. As we will see, this will allow us to relate bulk calculations with boundary

field theory quantities in the UV only. This is because the tachyon potential becomes zero when the

tachyon blows up.

5.3.1 Solution for largeu

Here we seek a solution in whichh(u) approaches a constanth0 andT becomes small asu→ ∞. For

smallT one can approximateV′/V ∼ −πT which follows from the general properties of the potential

discussed in section 5.2. IfT andh′ go to zero sufficiently fast asu → ∞ then to the leading order,

one might approximatedT ∼ u−3/2. With this, (5.14) can be approximated to

(

u4 T′(u)
)′
= h2

0 u4 T. (5.16)

The general solution of this equation is

T(u) =
1
u2

(T+e
−h0u + T−e

h0u). (5.17)



74 CHAPTER 5. QUARK MASS DEFORMATION OF SS MODEL

In writing this solution we have ignored a higher order term in 1/u for consistency with other terms

in equation (5.14) of this order that we have neglected.

The fact that the tachyon becomes small for largeu makes it irrelevant for the leading asymptotic

behaviour ofh. Thus, (5.15) simplifies to

(

u
11
2 h′(u)

)′
= 0, (5.18)

which has the solution

h(u) = h0 − h1u
−9/2. (5.19)

Hereh1 is restricted to positive values so that the branes come together in the bulk. For SS model

without the tachyon,h1 =
4
9u4

0 f 1/2
0 , where f0 = f (u0), u0 being the value ofu where the branes meet

in the bulk.

It is easy to convince oneself that the only solution to equations (5.14) and (5.15) in whichT

vanishes asymptotically andh goes to a constant is (5.17) withT− = 0. In particular, for example,

these equations have no solutions in whichT vanishes asymptotically as a power law.

5.3.2 Solution foru ∼ u0

Here we look for a solution in whichh → 0 andT → ∞ asu → u0. Let us assume a power law

ansatz, namely

h(u) ∼ (u− u0)
α, T(u) ∼ (u− u0)

−β. (5.20)

For a smooth joining of the brane and antibrane atu0, the derivative ofh must diverge at this point,

which is ensured ifα < 1. With this ansatz, the leading contribution todT comes fromT′2. Hence,

we can approximatedT ∼ T′(u)2. We will also need the asymptotic form of the potentialV(T)

for large T, which depends on the specific potential being used. The tachyon potential in (5.2)

leads to an asymptotic form given byV′(T)/V(T) ∼ −
√
π, while for the potential in (5.3), we get

V′(T)/V(T) ∼ −πT. Using this in (5.14) and (5.15), it is easy to verify that theequations cannot be

satisfied by the ansatz for the potential (5.3). They are, however, satisfied for the potential in (5.2). In

fact, in this case the powers as well as the coefficients all get fixed:

h(u) =

√

26
πu0 f0

u−3/4
0 (u− u0)

1/2 + · · · , (5.21)

T(u) =

√
π

4
f0u

3/2
0 (u− u0)

−2 + · · · , (5.22)

where f0 = f (u0).
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An important feature of the above solution is that it dependsonly on a single parameter, namely the

value ofu0. We have checked that this feature persists in the next few higher orders in a power series

expansion in (u−u0). This is in sharp contrast to the asymptotic solution (5.17), (5.19) which depends

on all the four expected parameters,T+, T−, h0, h1. This reduction in the number of parameters is

similar to what happens in the SS model where the solution foru ∼ u0 depends only on one parameter,

although the asymptotic solution depends on two parameters. In the present case the reduction in the

number of parameters is even more severe; the solution foru ∼ u0 matches with only a one-parameter

subspace of the four-parameter space of asymptotic solutions. As we will discuss later, this one-

parameter freedom of the classical solution turns out to be analogous to the freedom to add a bare

quark mass in QCD.

For completeness, we note that there exists another solution in whichT does not diverge but goes

to a nonzero constant asu→ u0. In this case we can approximatedT ∼ f (u)u3/2h′(u)2/4. Substituting

in (5.14) we see that thelhs diverges as (u − u0)−α. The first term on therhs vanishes as a positive

power, but the second term diverges as (u − u0)α−1, sinceα < 1. For consistency we must have

α = 1/2. The resulting solution

h(u) =
4
u0

( f0(5 f0 + 3))−1/2(u− u0)
1/2 + · · · , (5.23)

T(u) = t0 +
2u−1/2

0

(5 f0 + 3)
V′(u0)
V(u0)

(u− u0) + · · · , (5.24)

also satisfies (5.15). Note that no special condition was required for the tachyon potential to get this

solution; this solution exists for any potential.

5.4 Quark mass and the ultraviolet cut-off

In the tachyon solution (5.17), the exponentially falling part satisfies the approximations under which

(5.16) was derived for any large value ofu. The exponentially rising part will, however, eventually

become large and cannot be self-consistently used. This is because for sufficiently largeu, there is no

consistent solution forT which grows exponentially or even as a power-law to the original equations

(5.14) and (5.15), if we impose the restriction thath(u) should go to a constant asymptotically. This

puts a restriction on the value ofu beyond which the generic solution (5.17) cannot be used. Themost

restrictive condition comes from the approximationdT ∼ u−3/2. This requires the maximum value,

umax, to satisfy the condition

T2
+e
−2h0umax + T2

−e
2h0umax <<

u5/2
max

2h2
0

(5.25)
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For generic values of|T±| andh0, this inequality determines a range of values ofumax for which the

solution (5.17) can be trusted. The valueT− = 0 is special since in this case there is no upper limit on

umax, except the cut-off that comes from the fact that the 10-dimensional description of the background

geometry breaks down beyond some very large value (∼ N4/3
c ) of u. However, as is clear from (5.25),

for nonzero|T−| one needs to choose a much smaller value ofumax. Numerical calculations reported

in the next section bear out this expectation.

It is important to emphasize that the ultraviolet cut-off we are talking about here does not merely

play the usual role of a cut-off needed in any example of AdS/CFT with a non-normalizable part

present in a solution to the bulk equations. The point is thatthere is no growing solution to the tachyon

equation in the ultraviolet which is consistent with a braneprofile that goes to a finite asymptotic

brane-antibrane separation. This constraint limits the value ofu up to which the asymptotic solutions,

(5.17) and (5.19), can be trusted.

One way to think about the inequality (5.25) is the following. Suppose for given values of|T±| we

have chosen the largest value ofumax consistent with (5.25). Increasingumax further would then be

possible only if|T−| is decreased appropriately, while|T+| can be kept fixed, asumax is increased. To be

concrete, let us keep|T+| and|T−|eh0umax fixed asumax is increased. The process of “removing the cut-

off” can then be understood as increasingumax and simultaneous decreasing|T−| while keeping|T+|
and the combination|T−|eh0umax fixed. In this process, at some point|T+|e−h0umax would become much

smaller than|T−|eh0umax. As we shall see in the next section, however, limitations due to numerical

accuracy prevent us from tuning|T−| to very small values, or equivalently tuningumax to be very large.

Thus we are numerically restricted to rather small values ofumax. For values ofu larger thanumax,

the inequality (5.25) breaks down and consequently the asymptotic solution (5.17) is not applicable.

Clear evidence for this breakdown is seen in the numerical calculations reported in the next section.

It is natural to associateT− with the quark mass since this parameter comes with the growing

solution. Evidence for this will be given in later where we will show that for a small nonzero

value of this parameter, the mass of the pseudo-Goldstone boson analogous to pion is nonzero and

proportional to it. It is also natural to associateT+ with the chiral condensate because it comes with

the normalizable solution. It turns out that this association too is consistent, though this part of the

story is somewhat more complicated, as we shall see in section 5.10.

It is interesting to mention here that keeping the combination |T−|eh0umax = ρ fixed as the cut-off

becomes large implies an exponential dependence of|T−| on theumax, i.e. |T−| = ρe−h0umax. A similar

dependence of the quark mass on the cut-off has been observed in [124, 125], though the methods

used for computing quark mass in these works are quite different from ours. In [124] the cut-off arises

from the location of aD6-brane, which is additionally present in that model, thereby giving a physical

meaning to the cut-off.
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5.5 Numerical solutions

The equations (5.14), (5.15) cannot be solved analytically. One needs to use numerical tools to get a

solution. We have made use of Mathematica for this. Also, fornumerical calculations we have chosen

the potential (5.2), since there is no diverging solution for T(u) for u ∼ u0 for the potential (5.3), as

discussed above.

The numerical calculations are easier to do if we start from the u = u0 end and evolve towards

the largeu end. This avoids the fine-tuning one would have to do if one were to start from large

values ofu, where the general solution has four parameters, and end on aone-parameter subspace for

u ∼ u0. We must also satisfy the requirement of working in the parameter region of the background

geometry corresponding to the strong coupling. In addition, we need to ensure that the asymptotic

separation between flavour branes and antibranes is small compared to the radius of thex4 circle.

Mathematically, these requirements areλ5 = 8π2R3 ≫ 2πRk andl0 ≪ πRk. Using (2.22) and (5.10),

one getsR3 = 3
2Rk
√

uk. Then, these requirements become1
36π2 ≪ uk ≪ 4π2

9h2
0
. Throughout our numerical

calculations we will work withuk = 1, which satisfies the first condition easily, while it requires from

the second thath0 ≪ 2π
3 . As we shall see below, the asymptotic separation decreaseswith increasing

value ofu0, as is the case for the SS model. Therefore, the condition is easily satisfied by choosing

u0 ≫ uk = 1. For such values ofu0, f (u) ∼ 1 for all u ≥ u0.

The boundary conditions are imposed using (5.21), (5.22) ata pointu = u1 which we choose as

close tou0 as allowed by numerics. Generally we were able to reduce (u1 − u0) down to about 0.1

percent of the value ofu0. Starting from the values ofT(u1), T′(u1), h(u1) andh′(u1) obtained from

(5.21), (5.22) atu = u1, the system was allowed to evolve to larger values ofu. Figure 5.2 shows an

example foru0 = 12.7. Solutions for bothh(u) andT(u) are shown.
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Figure 5.2: The brane profile and the tachyon solution foru0 = 12.7.
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5.6 Verification of the UV and IR analytic solutions

From the numerical solutions one can verify thath(u) andT(u) are given by the forms (5.21), (5.22),

for u ∼ u0. Figure 5.3 shows the impressive fits between the numerical data and the analytical

expectations for the powers of (u− u0) for h(u) andT(u). We have plottedh(u)/h′(u) andT(u)/T′(u),

calculated from the numerical solutions, as functions ofu. The numerical data are plotted in dashed

lines while the theoretical solutions are plotted in solid lines. As one can see, these graphs are linear

at the IR end and their slopes turn out to be close to the expected values 2 and−0.5 respectively. In

fact, the numerical and the theoretical curves entirely overlap in the IR region ofu, as shown in Figure

5.3. At the other end also, namely for largeu, one can verify that the numerical solutions have the
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Figure 5.3: Numerical verification of exponents in the IR behaviour of brane profile and tachyon. The
fits give the two exponents respectively to be 0.50 and−2.07 foru = 13.1.

analytic forms (5.19), (5.17). The goodness of the fits of these analytic forms to numerical data is

shown in Figure 5.4 where again the two curves overlap in the asymptotic region ofu. The fits yield

values of the four parameters:h0 = 0.224, h1 = −16068, T+ = 29194.5, T− = −1.25× 10−4 for

u0 = 13.1. It may be noted here that the numerical relation between the IR parameteru0 and the UV

parameters may depend on the cutoff umax. However, we find that they are actually quite robust with

respect to small changes inumax. We discuss this issue in detail in appendix B.

5.7 Behaviour of the non-normalizable part

ForT− , 0, extending numerical calculations much beyond the valuesof u shown in Figure 5.2 meets

with a difficulty. It turns out that for smallu0, T− is positive. SinceT− is the coefficient of the rising

exponential inT(u), for a sufficiently large value ofu this term dominates and soT(u) begins to rise.

Eventually,T becomes so large that the conditions under which the asymptotic solutions (5.19), (5.17)

were obtained no longer apply. Figure 5.5 illustrates this;it shows the solutions foru0 = 12.7 for two

different large values ofu. In Figure 5.5(a), after falling very fast,T rises and then falls again. Almost
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Figure 5.4: Numerical verification of the asymptotic form ofthe brane profile and the tachyon.
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Figure 5.5: Solutions for two different large values ofu.

simultaneous with this is a rapid rise ofh from one nearly constant value to a higher constant value.

Evidently, this behaviour continues indefinitely withu, as can be seen in Figure 5.5(b).

The value ofT− decreases with increasingu0. This can be easily deduced from the fact that the

maximum value ofu up to which the asymptotic solutions (5.17), (5.19) apply, namely before the

oscillations begin, increases with increasingu0. Figure 5.6 illustrates this by showing the solutions

for increasing values ofu0, close to whereT− is small. As one can see, increasing the value ofu0 by a

very small amount, fromu0 = 13 tou0 = 13.0878, dramatically increases the threshold for oscillatory

behaviour ofT from u ∼ 50 tou ∼ 120! Asu0 increases further,T− decreases, becomes zero1 and
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Figure 5.6: Numerical solutions for increasing values ofu0 for positiveT−.
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eventually negative. Since we want to interpretT− as the bare quark mass parameter, negative values

for it are allowed. However, a large value for|T−| will eventually again makeT large in magnitude for

large enoughu. So once again we expect that at some sufficiently largeu, T will become so large that

the conditions under which the asymptotic solutions (5.17), (5.19) were obtained no longer apply. So,

as before, one should find oscillations inT(u), which now start at smaller and smalleru asu0 grows.

This is indeed seen to be the case, as is evident in Figure 5.7.This happens because|T−| grows with
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Figure 5.7: Numerical solutions for increasing values ofu0 for negativeT−.

u0, beyond the value at which it becomes zero. Figure 5.8 shows the change ofT− with u0. We see
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Figure 5.8:T− as a function ofu0.

that T− vanishes atu0 ∼ 13.0878 and|T−| grows on both sides away from this value. It is hard to

understand what is special about this value ofu0. One might have thought that the role of zero mass

would be played by the antipodal configuration, which hasu0 = uk, and is beyond our approximation.

It is possible that this is an artifact of using the approximate action, (5.6), valid for a noncompact

x4 coordinate, although the valueu0 ∼ 13.0878 is fairly large and seems to be within the validity of

our approximation. We also note that for negativeT−, negativeT(u) can be avoided by imposing a

1We have found thatT− = 1.92× 10−9 at u0 ∼ 13.0877781. Fine-tuningu0 such thatT− is precisely zero is hard and
this is the best we could attain. However, the trend is clear from Figure 5.6 and Figure 5.7.
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suitable cut-off on u. As we have already discussed, the cut-off is in any case required to fulfill the

condition (5.25) so that the asymptotic solutions (5.17), (5.19) may apply.

5.8 Behaviour of the asymptotic brane-antibrane separation

Another interesting feature of the classical solution is the variation of asymptotic brane-antibrane

separation,h0, as a function ofu0. This has been plotted in Figure 5.9. We see thath0 steadily
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Figure 5.9:h0 as a function ofu0.

decreases through the special valueu0 ∼ 13.0878. Although we do not have an analytical formula for

the dependence ofh0 onu0 for large values of the latter, the trend in Figure 5.9 seems to indicate that

it decreases to zero asu0 becomes large. Presumably the brane-antibrane pair overlap and disappear

asu0 goes to infinity. This is consistent with the trend of increasing T− for increasing values ofu0 (far

beyondu0 ∼ 13.0878) which we have seen in Figure 5.8, provided this parameter is interpreted as the

bare quark mass, since in that case the disappearance of the brane-antibrane pair foru0 = ∞ can be

understood as the infinite bare quark mass limit. Within the SS model there is no explanation for this

phenomenon. It should be clear from the above discussion that the limit h0 → 0 does not reduce to

the case of overlappingD8 branes andD8 branes considered in [85]. For this case, one must begin

afresh withx4
i = 0, l = 0 in the action (5.6).
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5.9 Comparison with the Sakai-Sugimoto solution

Finally, we must ensure that the solution with the tachyon has lower energy compared to the SS model.

The energy density in the modified model is given by

ET = 2V4R
9 V(0)

∫ umax

u0

du ET(u),

ET(u) = u13/4 V(T)
V(0)

√

u−3/2 +
1
4

u3/2h′(u)2 + T′(u)2 + T(u)2h(u)2, (5.26)

while for the SS model it is given by

ESS = 2V4R
9 V(0)

∫ umax

u0

du ESS(u),

ESS(u) = u13/4

√

u−3/2 +
1
4

u3/2h′SS(u)2. (5.27)

To get these expressions for energy density, we have setf (u) to unity, which is a good approximation

for large u0. Also, in the SS model one must use the solution of the tachyonfree equation,

h′SS(u) = 2u4
0u
−3/2(u8 − u8

0)
−1/2.

Close tou0, in the IR, the exponentially vanishing tachyon potential suppresses contribution to

ET compared toESS. Since the UV solutions for the two models are almost identical 2, one might

argue that the energy for the modified model must be lower thanthat for the SS model. However, for

u & u0 there is a competition between the exponentially vanishingtachyon potential and the power

law increase of the square-root factor coming from|T′| in the integrandET(u) in (5.26). This results

in a local maximum inET(u) at some value ofu, which can be easily estimated analytically. The

relevant quantity,

e−
π
4u3/2

0 (u−u0)−2
(u− u0)

−3,

has a maximum atu = u0 + (π6)1/2u3/4
0 . For smallu0, the position of the maximum is close tou0, so in

this case the argument about the IR behaviour of the integrand in (5.26) is not very clean, except in the

very deep IR. But since the position of the maximum grows withincreasingu0 asu3/4
0 , our argument

should hold for large values ofu0, which is precisely where the action for the modified model can be

trusted. However, the expression used for estimating the position of the local maximum breaks down

if it is too far away fromu0. So, in practice we need to do a numerical calculation to see what the real

story is. As we will see in the numerical plots given below, what really happens is that for relatively

2There is a caveat here. Strictly speaking this is true only when the coefficient of the non-normalizable term,T−, in
the asymptotic tachyon solution (5.17) vanishes. As we havediscussed, whenT− is nonzero, one must introduce a cut-off,
umax, chosen carefully such that the asymptotic solution is satisfied. In particular, one must ensureT is positive in the
region belowumax. In the calculations reported here and earlier in this section, this is what we have done.
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large values ofu0 the integrandET(u) increases rapidly at first, then slows down almost to a constant

and finally settles into an asymptotic power law increase similar to that of the integrandESS(u) for

the SS model. Moreover, the place where the rapid increase begins shifts to larger values ofu asu0

increases, in accordance with the above expectation.

We have numerically evaluated the integrals in (5.26) and (5.27). Because the relation between

u0 and the asymptotic brane-antibrane separation is different in the two models, a given value ofu0

corresponds to two different values of the latter and vice versa. We have chosen to dothe comparison

for the same value of the asymptotic brane-antibrane separation in the two models, but the conclusions

are similar with the other choice as well. In Figure 5.10 we have plotted numerical solutions forh(u)
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Figure 5.10:h(u) andT(u) profiles foru0 = 17. For comparison,hSS profile has also been plotted
after adjusting the value ofu0 to 16.4 for it since this value ofu0 produces the same asymptotic
brane-antibrane separation.
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Figure 5.11: The energy density integrandsESS(u) andET(u). The rapid rise of the latter in the IR is
clearly seen. The divergence between the two curves in the asymptotic region,u & umax, is due to a
nonzeroT−.

andT(u) for u0 = 17. For comparison with the SS model, we have also plottedhSS after adjusting

the value ofu0 for it to produce the same value of the asymptotic brane-antibrane separation. The

required value turns out to beu0 = 16.4. The corresponding energy density integrands,ET(u) and
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ESS(u), have been plotted in Figure 5.11. We can clearly see the rapid rise of E(u) in the IR, the

subsequent flattening out and finally the power-law rise in the asymptotic region. Usingumax = 35.32
3, numerical evaluation of the integrals gives (ET − ESS) = −300.3. Therefore, the solution with the

tachyon taken into account corresponds to a lower energy state. Similar behaviour is seen for values

of u0 & 14. Belowu0 ∼ 14, however, the energy difference becomes very small and even reverses

sign. This may be connected with the breakdown of the approximate action in this region, similar to

the observation of a zero quark mass atu0 ∼ 13.01.

5.10 The chiral condensate

By the standard dictionary of AdS/CFT [55, 50, 94, 95], once we have identifiedT− with the quark

mass parameter, we should identifyT+ with the chiral condensate. However, it is not clear that the

standard rules apply to the present case of a boundary theorywhich is not a CFT and has a scale.

Moreover, the fact that there is no known lift ofD8 brane to 11-dimensions forces an essential cut-off

in the theory with flavours. In fact, for a non-zero value ofT−, the real cut-off is much lower, as we

have seen from numerical computations in the last section. Despite these difficulties, we will assume

that the identification of sources in the boundary theory with boundary values of bulk fields holds in

the theory with cut-off.

To derive an expression for the condensate, we calculate thevariation of the action in (5.11) under

a general variation ofT and use the equations of motion to reduce it to a boundary term:

δS = −2V4

R9

∫

d4x
V(T)u13/4

√
dT

T′(u)δT(u)|u=umax. (5.28)

Only the UV boundary contributes to the on-shell action; there is no IR contribution because the

tachyon potential vanishes exponentially for the diverging tachyon in the IR. For calculation of the

chiral condensate, we are only interested in retaining the variationδT−, so we setδT+ to zero. Doing

this and using (5.17) in (5.28), we get the leading contribution for largeumax,

δS ≈ 2h0V4V(0)
R9

(T+ − T−e
2h0umax)

∫

d4x δT−. (5.29)

On-shell brane actions have UV divergences which need to be removed by the holographic

renormalization procedure to get finite answers for physical quantities. One adds boundary counter

terms to the brane action to remove the divergences, following a procedure described in [130]. Our

3This is the value at whichT(u) vanishes. The asymptotic form, (5.17), fits the numerically computedT(u) in the
range 33≤ u ≤ umax to better than a percent with the parameter valuesh0 = 0.179, T+ = 28904, T− = −0.0937. In
appendix B, we also study the robustness of the parameters with changes inumax.
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on-shell action (5.29) diverges as the cut-off is removed. This is because, as discussed in section 5.4,

we are keepingT+ andT−eh0umax fixed as the cut-off is removed and the last term in (5.29) diverges as

eh0umax in this limit. The holographic renormalization procedure has been developed for examples with

CFT boundary theories. Since, with theD8 branes present, there is no 11-dimensional description

available to us, it is not clear that the procedure describedin [130] is applicable to the present case.

We will proceed on the assumption that this is the case. Therefore, to subtract the UV divergent term

in (5.29), we will add the following counter term to the boundary action,

Sct =
V4V(0)

R9

∫

d4x
√−γ h(u)T2(u)|umax, (5.30)

whereγ = −u8
max is the determinant of the metric on the 8-dimensional boundary orthogonal to the

slice atu = umax. Note that the counter terms must be even in powers of the tachyon because of gauge

symmetry. Using the solution (5.17) and retaining only the parameterT−, we find that the variation

of the counter term action is

δSct =
2h0V4V(0)

R9
(T+ + T−e

2h0umax)
∫

d4x δT−. (5.31)

Adding to (5.29), the divergent term drops out and we get the variation of the renormalized action

δSrenorm≈
4h0V4V(0)

R9
T+

∫

d4x δT−. (5.32)

Note that the variation of the renormalized action is twice as large as it would have been if we had

simply dropped the divergent term4 in (5.29).

We are now ready to calculate an expression for the chiral condensate in terms of the parameters

of the tachyon solution. The parametersT± are dimensionless. To construct a parameter of dimension

mass fromT−, we introduce a scaleµ and definemq = µ|T−|. Then, identifying the chiral condensate

χ ≡< q̄LqR >, with δSrenorm/µδT−(x), we get

χ ≈ 4h0V4V(0)
µR9

T+ (5.33)

We see that the parameterT+ determines the condensate. Figure 5.12 shows a plot ofT+ as a function

of T− for T− ∼ 0. Also shown is the variation withu0 which corresponds to a set of values forT− and

T+. T+ seems to attain a maximum value atT− = 0 and drops off rapidly, at least for small values of

4In (5.29), it is inconsistent to drop the term proportional to T− in the limit of large cut-off, holdingT+ andT−eh0umax

fixed. In fact, it is theT− term that dominates in the action (5.29) in this limit. Taking a different limit that allows one
to simply drop this term creates difficulties in the calculation of the mass of pseudo-Goldstone boson as we will see in
section 6.3 in the next chapter. Consistency with the chiralcondensate calculation then demands that the term proportional
to T+T− be dropped in the mass calculation since it is smaller than theT2

+ term.
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Figure 5.12:T+ as a function ofT−.

|T−|.
Let us now summarise the discussion in this chapter. In the work presented in this chapter, we

have proposed a modification of the SS model that may allow oneto consider a non-zero quark mass

within the setup. The model also provides an explicit order parameter forχSB. The SS model, on

the other hand, is known to lack both of these features. Our model involves a study of theD8 − D8

open string tachyon dynamics in theD4− D8− D8 system. The open string tachyon, that transforms

as a bifundamental under the flavor group, has the right quantum numbers to give rise to an order

parameter forχSB. Further, it can couple to a chiral bilinear in such a way that its condensation gives

rise to a ‘quark’ mass term.

In this chapter, we studied the vacuum configuration of theD8−D8 profile given by the separation,

h(u) and the tachyon,T(u). We saw that even in the presence of the tachyon, the geometrical picture

of chiral symmetry breaking of the SS model is essentially preserved. Asymptotically separatedD8

andD8 branes meet each other in the bulk of the backgroundD4 geometry. Further, there is a vacuum

solution for the tachyonT(u) which blows up in the bulk at the point in which the branes meet. The

UV behaviour is associated with normalisable and non-normalisable parts,T+ andT− respectively.

Similarly, the UV behaviour ofh(u) is associated with two parameters. The IR behaviour ofT(u)

andh(u), on the other hand, is associated with just a single parameter u0. Therefore, all the four

parameters in the UV are determined by the IR parameteru0.

Using AdS/CFT correspondence, we expect that the parameterT− sources the chiral bilinear and

is hence the ‘quark’ mass. We find that increasingu0 corresponds to tuning the parameterT− to large

values. This implies increasing the parameterT− removes the flavor branes to infinity. This is found
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to be consistent with the expectation that the flavors becomenon-dynamical in this limit. We also find

that the chiral condensate, obtained after differentiating the renormalised action withT−, is given by

a factor ofT+, the parameter associated with normalisable part of the tachyon solution. We find that

for a small quark mass, the chiral condensate decreases withan increase in the mass.
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Chapter 6

Mesons in the modified SS model

Having introduced the tachyon modified Sakai-Sugimoto model, in this chapter, let us discuss the

spectra for various low spin mesons described by the fluctuations of the flavour branes around the

classical solution. In the last chapter, we obtained the classical vacuum configuration of aD8-D8

pair, described byh(u) andT(u), with UV behaviour given by equations (5.19) and (5.17) andIR

behaviour governed by equations (5.21) and (5.22). In this chapter, our aim is to study the spectrum

of fluctuations around this configuration and, in particular, identify the meson spectra. To proceed

we first write the complex tachyonτ in terms of its magnitude and phase,τ = T(u)eiθ. Then, we

re-express the brane-antibrane action (5.6) in terms of thegauge field combinationsV = (AL + AR)

andA = (AL − AR − ∂θ). The fieldV is invariant under the axial transformations of the flavor gauge

group U(1)× U(1) but transforms (as an adjoint) under the vector subgroup. On the other, the field

A is a gauge invariant object (for the full flavor gauge group) since the gauge transformations of the

combinationAL-AR is compensated by the change ofθ under gauge transformation. We will treatV

andA as small fluctuations and expand upto quadratic order in these fields. This gives the following

action for the fluctuations:

∆Sgauge = −
∫

d4x du
[

a(u)A2
u + b(u)A2

µ + c(u)
(

(FV
µν)

2 + (FA
µν)

2
)

+ e(u)FA
µuA

µ

+d(u)
(

(FV
µu)

2 + (FA
µu)

2
)

]

, (6.1)

where

a(u) = R−15V4V(T)u13/4 T2

√
dT

, (6.2)

b(u) = R−3V4V(T)u7/4
√

dT
T2

Q

(

1+
f 2T2h2h′2

4dT
u3

)

, (6.3)

89
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c(u) =
R3

8
V4V(T)u1/4

√

dT , (6.4)

d(u) = R−9V4V(T)u7/4 Q

4
√

dT

, (6.5)

e(u) = R−6V4V(T)u13/4 f T2hh′

2
√

dT

. (6.6)

HereFV
µν is the usual field strength for the U(1) vector gauge fieldV andFA

µν is the field strength for

the U(1) axial vector fieldA. The mixed components are given by

FV
µu = −FV

uµ = ∂µVu − R3∂uVµ, FA
µu = −FA

uµ = ∂µAu − R3∂uAµ. (6.7)

The relative factor ofR3 simply reflects the change of variables (5.10).

As we shall see, the gauge fieldVµ(x, u) gives rise to a tower of vector mesons while the fields

Aµ(x, u) and Au(x, u), which are gauge invariant, lead to towers of axial-vectorand pseudoscalar

mesons respectively. Note that the coefficientsa(u), b(u) and e(u) vanish if the tachyon is set to

zero. In the absence of the tachyon, the vector and axial vector mesons acquire masses because of a

nonzerod(u), but there is always a massless pseudoscalar Goldstone boson arising fromAu as can be

seen on comparing the action to the strongly coupled Sakai-Sugimoto model discussed before. The

presence of the tachyon is thus essential to give a mass to theanalog of pion. Also note that with the

tachyon present, the masses of the vector and axial vector mesons are in principle different.

6.1 Vector mesons

The vector field (Vµ(x, u), Vu(x, u)) is not gauge invariant. We will choose the gauge in which

Vu(x, u) = 0. Note that this still allows the freedom to makeu-independent gauge transformations.

We will discuss this further in the following. Expanding in modes, we have

Vµ(x, u) =
∑

m

V(m)
µ (x)Wm(u), (6.8)

where{Wm(u)} form a complete set of basis functions. These satisfy orthonormality conditions which

will be determined presently. The fields{V(m)
µ (x)} form a tower of vector mesons in the physical

(3 + 1)-dimensional space-time. In terms of these fields, the vector part of the action (6.1) takes the

form,

∆SV
gauge= −

∫

d4x
∑

m,n

[

QV
mnF

V(m)
µν FV(n)µν + LV

mnV
(m)
µ V(n)µ

]

, (6.9)
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whereFV(m)
µν are the usual (3+ 1)-dimensional U(1)-invariant field strengths for the vector potentials

{V(m)
µ }. Also, we have defined

QV
mn =

∫

du c(u)Wm(u)Wn(u), LV
mn = R6

∫

du d(u)W′
m(u)W′

n(u). (6.10)

Let us now choose the basis functions{Wm(u)} to satisfy the eigenvalue equation

−R6 (

d(u)W′
m(u)

)′
= 2λV

mc(u)Wm. (6.11)

With this, we get

LV
mn= R6

(

d(u)W′
m(u)Wn(u)

)

∂u
+ 2λV

mQV
mn

=
1
2

[

R6
(

d(u)W′
m(u)Wn(u)

)

∂u
+ 2λV

mQV
mn

]

+m↔ n, (6.12)

where,∂u refers to boundaries in theu-direction. The second line follows from the symmetry ofLV
mn

andQV
mn under the interchange of indicesm andn.

Let us now come back to the residual symmetry of makingu-independent gauge transformations

which is still available after fixing the gaugeVu = 0. We can use this freedom, together with the

requirement of finiteness of the action, (6.9), to gauge awaythe zero mode in the expansion (6.8) that

corresponds to zero eigenvalueλV
m = 0. Let this mode correspond tom = 0. According to (6.11),

W0(u) goes to a constant atu→∞. Sincec(u) ∼ u−1/2 at largeu, QV
00 diverges. Then, finiteness of the

action (6.9) requires that we setFV(0)
µν = 0. Therefore,V(0)

µ is a pure gauge which can be gauged away

using the residual gauge freedom.

For the nonzero modes we may, without loss of generality, choose

QV
mn =

1
4
δmn. (6.13)

Then, using the requirement of finiteness ofLV
mn in (6.12), gives

LV
mn =

1
2
λV

mδmn. (6.14)

Finally, using (6.13) and (6.14) in (6.9), we get

∆SV
gauge= −

∫

d4x
∑

m

[1
4

FV(m)
µν FV(m)µν +

1
2
λV

mV(m)
µ V(m)µ

]

. (6.15)

This is the expected infinite tower of massive vector mesons.
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6.2 Axial vector and pseudoscalar mesons

As we have already noted,Aµ andAu are gauge invariant. There is no gauge freedom that can put any

of these to zero and both provide physical fields. Expanding in modes, we have

Aµ(x, u) =
∑

m

A(m)
µ (x)Pm(u), Au(x, u) =

∑

i

φ(i)(x)Si(u), (6.16)

where {Pm(u)} and {Si(u)} form complete sets of basis functions. These satisfy orthonormality

conditions which will be determined presently. The fields{A(m)
µ (x)} and{φ(i)(x)} form towers of axial

vector and pseudoscalar mesons in the physical (3+ 1)-dimensional space-time. In terms of these

fields, the axial-vector and pseudoscalar part of the action(6.1) takes the form,

∆SA
gauge = −

∫

d4x
[

QA
mnF

A(m)
µν FA(n)µν + LA

mnA
(m)
µ A(n)µ + Ti jφ

(i)φ( j)

+Ki j∂µφ
(i)∂µφ( j) + JmiA

(m)µ∂µφ
(i)
]

, (6.17)

where the repeated indicesm, n, i and j are summed over.FA(m)
µν are the usual (3+ 1)-dimensional

U(1)-invariant field strengths for the axial-vector fields{A(m)
µ }. Also, we have defined

QA
mn =

∫

du c(u)Pm(u)Pn(u),

LA
mn =

∫

du
(

R6d(u)P′m(u)P′n(u) + (b(u) +
1
2

R3e′(u))Pm(u)Pn(u)
)

,

Jmi =

∫

du
(

e(u)Pm(u) − 2R3d(u)P′m(u)
)

Si(u),

Ki j =

∫

du d(u)Si(u)S j(u),

Ti j =

∫

du a(u)Si(u)S j(u). (6.18)

We note that because of the last term in (6.17), the longitudinal component ofA(m)
µ andφ(i) mix.

So we need to define new field variables in terms of which the action (6.17) is diagonal. Before we

do that, let us first note that the axial vector potentialAµ(x, u) has a possible zero mode provided

the corresponding (3+ 1)-dimensional field strength vanishes, for reasons explained in the previous

subsection. Hence the zero mode, which we shall denote byA(0)
µ , can only have a longitudinal

component. The zero mode is gauge-invariant and, because ofits mixing with the pseudoscalars,

plays a special role. Let us see this in some detail.
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Let us choose the basis functions{Pm(u)} to satisfy the eigenvalue equation

−R6
(

d(u)P′m(u)
)′
+

(

b(u) +
1
2

R3e′(u)
)

Pm(u) = 2λA
mc(u)Pm(u). (6.19)

Using this we see that

LA
mn= R6

(

d(u)P′m(u)Pn(u)
)

∂u
+ 2λA

mQA
mn

=
1
2

[

R6
(

d(u)P′m(u)Pn(u)
)

∂u
+ 2λA

mQA
mn

]

+m↔ n, (6.20)

where, as before,∂u refers to boundaries in theu-direction and the second line follows from the

symmetry ofLA
mn andQA

mn. The zero modeA(0)
µ is conjugate to the eigenfunctionP0(u) which satisfies

the equation

−R6
(

d(u)P′0(u)
)′
+

(

b(u) +
1
2

R3e′(u)
)

P0(u) = 0. (6.21)

If there is no solution to this equation, then the zero mode does not exist and we should proceed

directly to diagonalize the action (6.17). If, however, a solution P0(u) to this equation exists and is

such that it goes to a constant at infinity, then the zero modeA(0)
µ exists. SinceQA

00 blows up for this,

A(0)
µ must be purely longitudinal, for a reason identical to that discussed in the vector case. We make

this explicit by writing it in terms of a pseudoscalar field,A(0)
µ = ∂µα(x).

The terms in the action (6.17) which containα(x) can be separated out. Let us first see if there

is any mixing between the zero mode and non-zero modes of the axial-vector fields. Since the field

strength vanishes for the zero mode, the only possible mixing can arise from theLA
0n term forn , 0.

It can be seen from the first line of equation (6.20) thatLA
0n can get any contribution only from the

boundary term. The contribution atu = u0 vanishes as the tachyon potential vanishes. As we will

see later, the zero mode exists whenT− is zero for the background tachyon solution. The solution is

such thatd(u)P′0(u) goes to a constant asu→ ∞. Further,Pn(u) for n , 0 vanishes atu→ ∞ so that

LA
0n = 0. Therefore, the only terms containingα(x) are:

LA
00∂µα∂

µα +
∑

i

J0i∂µα∂
µφ(i).

Without loss of generality, we may chooseLA
00 = 1/2 (to get the normalization of the kinetic term of

φ(0) right). Then, we can rewrite the above as

1
2
∂µπ∂

µπ − 1
2

∑

i, j

J0i J0 j∂µφ
(i)∂µφ( j), (6.22)

whereπ ≡ (α +
∑

i J0iφ
(i)).
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With the zero modes explicitly separated out in this way, forthe nonzero modes we may, without

loss of generality, choose

QA
m̄n̄ =

1
4
δm̄n̄. (6.23)

Note thatc(u) ∼ u−1/2 asu→ ∞ so that normalizability of the kinetic term requires thatPm̄(u) should

fall faster thanu−1/4 at largeu. Equation (6.19) furher implies thatd(u)P′m̄(u) . u1/2Pm̄(u) so that the

boundary term inLA
m̄n̄ vanishes. (The contribution from boundary atu0 anyway vanishes because of

the tachyon potential.) Therefore, on using (6.23) in (6.20), we get

LA
m̄n̄ =

1
2
λA

m̄δm̄n̄. (6.24)

Putting (6.22), (6.23) and (6.24) in the action (6.17), we get

∆SA
gauge = −

∫

d4x
[(

Ti jφ
(i)φ( j) +

1
4

FA(m̄)
µν FA(m̄)µν +

1
2
λA

m̄A(m̄)
µ A(m̄)µ

)

+
1
2
∂µπ∂

µπ +
(

K̃i j∂µφ
(i)∂µφ( j) + Jm̄iA

(m̄)µ∂µφ
(i)
)]

, (6.25)

whereK̃i j = (Ki j − 1
2J0i J0 j). The above action describes a massless particle,π, besides other massive

particles. The existence of this massless particle dependson the existence of a solution to the equation

(6.21), and reproduction of the canonical kinetic term for it through the normalization condition

R6
(

d(u)P0(u)P′0(u)
)

∂u
=

1
2
. (6.26)

Later we will see that the existence of the desired solutionP0(u) depends on the absence of a non-

normalizable part inT(u).

To diagonalize the action (6.25) for the massive modes, we define the new variables

A(m̄)
µ = Ã(m̄)

µ −
∑

i

(λA
m̄)−1Jm̄i∂µφ

(i). (6.27)

Putting in (6.25), we get

∆SA
gauge = −

∫

d4x
[(

Ti jφ
(i)φ( j) +

1
4

F Ã(m̄)
µν F Ã(m̄)µν +

1
2
λA

m̄Ã(m̄)
µ Ã(m̄)µ

)

+
1
2
∂µπ∂

µπ + K′i j∂µφ
(i)∂µφ( j)

]

,

(6.28)

whereK′i j = (K̃i j − 1
2

∑

m̄(λA
m̄)−1Jm̄iJm̄ j). The modes have now been decoupled. To get the standard
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action for massive pseudoscalars we may, without loss of generality, set

Ti j =
1
2
λ
φ

i δi j , (6.29)

and

K′i j =
1
2
δi j = Ki j −

1
2

J0i J0 j −
1
2

∑

m̄

(λA
m̄)−1Jm̄iJm̄ j (6.30)

Equation (6.30) can be rewritten in a more conventional formas follows. We define

ψi(u) ≡
∑

m̄

(λA
m̄)−1Pm̄(u)Jm̄i + P0(u)J0i , (6.31)

and using (6.19) note that it satisfies the equation

−R6
(

d(u)ψ′i (u)
)′
+

(

b(u) +
1
2

R3e′(u)
)

ψi(u) =
1
2

e(u)Si(u) + R3
(

d(u)Si(u)
)′
. (6.32)

Using (6.31) in (6.30), we get

δi j =

∫

du
(

d(u)Si(u)(S j(u) + R3ψ′j(u)) − 1
2

e(u)Si(u)ψ j(u)
)

+ i ↔ j. (6.33)

In terms of new variables defined by

Si(u) ≡ R3η′i (u), θi(u) ≡ ψi(u) + ηi(u), (6.34)

(6.33) can be written as

∫

duη′i (u)
(

R6d(u)θ′j(u) − 1
2

R3e(u)(θ j(u) − η j(u))
)

+ i ↔ j = δi j . (6.35)

Moreover, in terms of these variables the differential equation (6.32) reads

−R6
(

d(u)θ′i (u)
)′
+

(

b(u) +
1
2

R3e′(u)
)(

θi(u) − ηi(u)
)

− 1
2

R3e(u)η′i (u) = 0, (6.36)

From these two equations one can obtain the orthonormality condition

∫

du
(

R6d(u)θ′i (u)θ′j(u) + (b(u) +
1
2

R3e′(u))(θi(u) − ηi(u))(θ j(u) − η j(u))

−1
2

R3e(u)η′i (u)(θ j(u) − η j(u)) − 1
2

R3e(u)η′j(u)(θi(u) − ηi(u))
)

=
1
2
δi j .

(6.37)
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Also, rewriting (6.29) in terms of the new variables, we have

R6

∫

du a(u)η′i (u)η′j(u) =
1
2
λ
φ

i δi j . (6.38)

Finally, (6.35) and (6.38) give

R6a(u)η′j(u) = λφj

(

R6d(u)θ′j(u) − 1
2

R3e(u)(θ j(u) − η j(u))
)

. (6.39)

Equations (6.36) and (6.39) are the final form of the eigenvalue equations and (6.37) and (6.38) are

the orthonormality conditions in the pseudoscalar sector.

It is interesting to note from (6.36) that ifη is constant, then the variable (θ − η) satisfies a

differential equation that is identical to the equation (6.21) satisfied by the zero modeP0. Also,

using (6.36) and (6.37) one can show that for constantη, (θ − η) satisfies the normalization condition

(6.26). From (6.39) it follows that ifη is constant, the eigenvalueλφ vanishes. Thus, the presence of a

massless pseudoscalar can be naturally considered to be identical to the question of the existence of a

solution to the equations (6.36)-(6.39) with zero eigenvalue, and so it becomes a part of the spectrum

in the pseudoscalar tower of states. Hence, the action in this sector can be written in the form

∆SA
gauge = −

∫

d4x
[1
4

F Ã(m̄)
µν F Ã(m̄)µν +

1
2
λA

m̄Ã(m̄)
µ Ã(m̄)µ

+
1
2
∂µφ

(i)∂µφ(i) +
1
2
λ
φ

i φ
(i)φ(i)

]

, (6.40)

where the repeated indices are summed over. Note that we havedropped the fieldπ(x), but extended

the sum overi to cover a zero mode as well. If there is a solution to the equations (6.36)-(6.39) with

constantη0 andλφ0 = 0, then a massless pseudoscalar Goldstone boson will reappear as the zero mode

φ(0) in the pseudoscalar tower. Otherwise, the lowest mode in this sector will be massive, whose mass

can be computed as in the following section.

6.3 Relation between mass of pseudo-Goldstone boson and non-

normalizable part of tachyon

In this section we will derive a relation between the mass of pseudo-Goldstone boson and the non-

normalizable part of tachyon parametrized byT−. This will give us further evidence for identifying

the parametersT+ andT− with the chiral condensate and quark mass respectively. We first note that

for T(u) = 0, a(u) vanishes and henceλφi also vanishes by (6.39). However, as we will see from the

following calculations,T(u) = 0 is a sufficient condition, but not necessary to guarantee the presence
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of a massless Goldstone boson. The necessary condition is that the non-normalizable piece inT(u)

should be absent, i.e.T− = 0.

Let us assume thatT(u) , 0 so thata(u) , 0. Then, (6.39) can be used to solve forηi(u) in terms

of ψi(u), which is related toθi(u) andηi(u) by (6.34). We get,

η′i (u) =
λ
φ
i

a(u) − λφi d(u)

(

d(u)ψ′i (u) − e(u)
2R3

ψi(u)
)

(6.41)

Let us now denote byλφ0 the lowest mass eigenvalue. The corresponding eigenfunctions areψ0(u) and

η0(u). Assumingλφ0 ≪ a(u)/d(u) 1, we can approximate the above equation forη0(u):

η′0(u) ≈
λ
φ

0

a(u)

(

d(u)ψ′0(u) − e(u)
2R3

ψ0(u)
)

(6.42)

If we knowψ0(u), then using the above in (6.38) we can compute the mass. Now,ψ0(u) satisfies the

following differential equation, which can be obtained from (6.36) using (6.42) and the approximation

λ
φ

0 ≪ a(u)/d(u):

−R6
(

d(u)ψ′0(u)
)′
+

(

b(u) +
1
2

R3e′(u)
)

ψ0(u) ≈ 0. (6.43)

Also, using (6.43) and the approximation under which it was obtained, the normalization condition

onψ0(u) given by (6.37) can be approximated as

R6d(u)ψ′0(u)ψ0(u)|u=umax ≈
1
2
. (6.44)

These equations cannot be solved analytically in general. However, analytic solutions can be

obtained in the IR and UV regimes. In the UV regime, foru . umax, we use (5.17) and (5.19) to

approximate the coefficients in (6.43); we get

b(u) ≈ V4V(0)
R3

uT2(u), d(u) ≈ V4V(0)
4R9

u5/2, e(u) ≈ 9V4V(0)
4R6

h0h1u
−3/2T2(u). (6.45)

In writing these, we have usedf (u) ≈ 1, which is a good approximation for largeu. We see that we

can clearly neglecte(u) compared tob(u) in (6.43), whileb(u) is itself negligible compared tod(u).

Using these approximations in (6.43) and (6.44) then gives

−
(

u
5
2ψ′0(u)

)′
≈ 0,

V4V(0)
4R3

u
5
2ψ′0(u)ψ0(u)|u=umax ≈

1
2
, (6.46)

1This approximation can be justified a posteriori by the solution because the eigenvalueλφ0 turns out to be
parametrically much smaller by a factor of 1/R3, see (6.57), compared to the ratioa(u)/d(u).
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which are solved by

ψ0(u) ≈ c0 −
1

3c0

4R3

V4V(0)
u−3/2. (6.47)

In the above expressionc0 is a parameter which is related to the decay constant of the analog of

pion. This can be argued as follows. The decay constantfπ is related to a two-point correlator of the

axial-vector current as

∫

d4x eik.x〈0| jaµA (x) jbµA (0)|0〉 = f 2
π kµkν δab. (6.48)

Using the AdS/CFT dictionary, one can use duality of the axial vector current in the boundary theory

to the axial vector bulk field. The axial current correlator can then be computed from the action (6.17),

evaluated on-shell, by differentiating twice with respect to the transverse part of theaxial vector field

on the UV boundary. This is the source which couples to the axial current on the boundary. The

source arises from the same zero mode solution,P0(u), which we discussed in connection with a

possible zero mode (the pseudo-Goldstone boson analogous to pion) in the longitudinal component

of the axial gauge field.P0(u) satisfies the equation (6.21), which is identical to that satisfied byψ0(u),

(6.43). However, the boundary condition now is different; it is the boundary condition for a source,

P0(umax) = 1. In addition, one imposes the condition

R6d(u)P′0(u)P0(u)|u=umax ≈
f 2
π

2
, (6.49)

which is required to reproduce the correct zero momentum axial current correlator. This follows from

the action (6.17). Now,P0(u) satisfies (6.21) and the condition (6.49) if we setP0(u) = fπψ0(u). Then,

requiringP0(umax) = 1 givesc0 = 1/ fπ.

In the IR regime,u & u0, we use (5.21) and (5.22) to approximate the coefficients in (6.43); we

get

b(u) ≈
π3/2V4u

17/4
0

26R3

V(T)
(u− u0)4

, d(u) ≈
13V4u

9/4
0

32
√
πR9

V(T), e(u) ≈
13V4u

9/4
0

16
√
πR6

V(T)
(u− u0)

. (6.50)

In writing these, we have usedf (u0) ≈ 1, which is a good approximation for largeu0. Using

dV(T)/du= T′(u)V′(T), we see thatb(u) andR3e′(u) both go as (u− u0)−4 in this regime. However,

the coefficient of the latter is suppressed by a relative factor ofu−1/2
0 , so for largeu0 we may neglect it

compared tob(u). But, unlike in the UV regime,b(u) cannot be neglected compared tod(u). In fact,

this term is crucial for getting a nontrivial solution. In this regime, then, the leading terms in equation

(6.43) give

ψ′0(u) ≈
32πR6u1/2

0

169
ψ0(u)

(u− u0)
, (6.51)
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which has the solution

ψ0(u) ≈ c̃0(u− u0)
32πR6u1/2

0
169 , (6.52)

where ˜c0 is an integration constant. Note that the normalization condition remains unchanged and

cannot be used here because it receives contribution only from the UV end due to the exponentially

vanishing tachyon potential for largeT(u) at the IR end.

Let us now consider the formula, (6.38), for the lowest mode,using which one can compute the

eigenvalueλφ0:

R6

∫ umax

u0

du a(u)(η′0(u))2 =
1
2
λ
φ

0. (6.53)

Using a(u) ≈
√
πV4u19/4

0

8R15
V(T)

(u−u0) in the IR and (6.52) in (6.42), we see thatη′0(u) ∝ ψ0(u) vanishes very

rapidly asu → u0, with a power which grows asu1/2
0 for largeu0. Moreover, sinceV(T) vanishes

exponentially for largeT, the IR region makes a negligible contribution to the integral. Therefore, it

is reasonable to calculate the integral by substituting theUV estimate of the integrand in it. In the UV

region,a(u) ≈ V4V(0)
R15 u4T2(u). Moreover, in this region the second term on the right hand side of (6.42)

can be neglected. So, we get

1
2
λ
φ

0 = R6

∫ umax

u0

du a(u)(η′0(u))2 ≈ R6(λφ0)2

∫ umax

ũ0

du
d2(u)
a(u)

(ψ′0(u))2

≈ (λφ0)2κ

∫ umax

ũ0

h0 du
(T+e−h0u + T−eh0u)2

,

whereũ0 > u0 avoids the IR region in the integral and we have defined

κ ≡ f 2
π R9

4h0V4V(0)
. (6.54)

The integral is easily done, giving

λ
φ

0 ≈
1
κ

(T+e−h0ũ0 + T−eh0ũ0)(T+e−h0umax + T−eh0umax)
eh0(umax−ũ0) − e−h0(umax−ũ0)

. (6.55)

From our numerical solutions we see that it is possible to chooseũ0 to be relatively large and also

satisfy the conditions|T+|e−h0ũ0 ≫ |T−|eh0ũ0 and eh0(umax−ũ0) ≫ e−h0(umax−ũ0). For such values of the

parameters, then, to a good approximation (6.55) gives

λ
φ

0 ≈
1
κ

(T+T− + T2
+e
−2h0umax). (6.56)

Now, let us tuneumax to large values. We will do this in a manner consistent with the inequality (5.25).

As explained in section 5.4, one way of maintaining this inequality is to keep|T+| and |T−|eh0umax
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fixed asumax becomes large. In that case, the second term on the right handside of (6.56) becomes

exponentially smaller than the first term as the cut-off is increased beyond some value. We may then

neglect this term compared with the first term. This gives

λ
φ

0 ≈
1
κ

T+T−. (6.57)

Finally, usingλφ0 = m2
π and (5.33) in this relation, we get

m2
π ≈

mqχ

f 2
π

, (6.58)

This is the well-known Gell-Mann−Oakes−Renner formula, up to a factor of 2.

Let us now summarize our discussion in this chapter. We have studied in detail the fluctuations

of flavour gauge fields on the brane-antibrane system. These give rise to vector, axial vector and

pseudoscalar towers of mesons, which become massive through a kind of Higgs mechanism, except

for the Goldstone boson. These arise from a gauge-invariantcombination of the tachyon phase and

the longitudinal zero mode of the axial vector field. We have shown that the Goldstone boson,

the analog of pion, remains massless, unless a quark mass (non-normalizable part of the tachyon

solution) is switched on. For small quark mass, we have derived an expression for the mass of the

lowest pseudoscalar meson in terms of the chiral condensateand shown that it satisfies the Gell-

Mann−Oakes−Renner relation. The vector and axial vector spectra are expected to be non-degenerate

because they arise from eigenvalue equations with different tachyon contributions.

A non-zero quark mass is essential to correctly reproduce phenomenology in the low-energy sector

of QCD. Although the model, like Sakai-Sugimoto model, has aspects that make it very different from

QCD, it can be the starting point of a more quantitative version of the phenomenology initiated in [67].

The model can be extended to the case with multiple flavors by anon-abelian extension of the action

for flavor gauge field fluctuations.

It would be worth noting that since the work presented in thisthesis was completed, a few alternate

proposals of introducing quark mass in Sakai-Sugimoto model appeared in the literature. In [124],

the authors consider a deformation of Sakai-Sugimoto modelusing additionalD4 or D6 branes. This

deformation leads to an introduction of quark mass in the model. In [125] the authors consider long

open strings between the flavor branes in Sakai-Sugimoto model and show that it gives rise to a

non-zero quark mass. In the work presented in [126] also, theauthors study non-local operators to

add quark mass to the model. A possible connection among these different models, including ours,

deserves further investigation.



Chapter 7

Summary

The central topic of interest in this thesis has been the phenomenon of chiral symmetry breaking

which is known to play a significant role in strong interactions. However, it has not been possible

till date to provide an exact derivation of the phenomenon inQCD. The scale of chiral symmetry

breaking is believed to be of the order of confinement scale and this makes the phenomenon of

chiral symmetry breaking inaccessible to perturbative methods. Although it is difficult to study the

phenomenon analytically in QCD, it is possible to obtain some general results analytically in the

largeNc analog of QCD. An argument for chiral symmetry breaking in such a theory was given by

Coleman and Witten. The emergence of AdS/CFT correspondence in string theory has provided a

further leap in understanding many of these non-perturbative phenomena in gauge theories using a

dual gravity picture. It has been possible to extend many features of this correspondence to QCD-like

gauge theories. One such string theory model is due to Sakai and Sugimoto. The model consists of

a setup of intersecting branes (D4-D8-D8) in which theD4 branes are wrapped on a SUSY breaking

circle of radiusRk. TheD4 branes provide the color degrees of freedom and a finite value ofRk leads

to confinement in the model. TheD8 andD8 branes are the flavor branes and are separated from each

other by a distanceL along this direction. This system reproduces a QCD-like model at low energies.

Using holographic techniques, the authors showed that the model gives rise to a non-abelian chiral

symmetry breaking and also identified the meson spectra.

In this thesis, we first carried out a thorough study of the phenomenon in the weak coupling limit

(and at energies low compared to string scale and high compared to the confinement scale) of Sakai-

Sugimoto model. In this limit, the spectrum consists of left-handed and right-handed fermions at the

D4 − D8 andD4 − D8 intersections interacting through exchange ofD4 gauge fields. We saw that

the parameterL in the model, the separation between theD8 andD8 branes, gives rise to be a one

parameter deformation of U(Nc) QCD. Furthermore, we saw that tuningL/Rk, it becomes possible

to drive the energy scale associated with chiral symmetry breaking to values which are much larger

101
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than the confinement scale. On doing so, the phenomenon of chiral symmetry breaking becomes

accessible to perturbative techniques. This was the motivation behind studying the phenomenon of

chiral symmetry breaking in the weakly coupled Sakai-Sugimoto model.

In our study of the model, we restricted to the hierarchy of scalesg2
5Nc ≪ ls≪ L ≪ πRk, whereg5

is theD4 brane gauge coupling. We saw thatg2
5Nc ≪ ls ensures that string loop corrections are small,

ls ≪ L allows us to neglect non-trivial dilaton and RR ten-form created byD8 branes andL ≪ πRk

allows us to study chiral symmetry breaking perturbatively. We then studied the model by expressing

it as a theory in (3+1) dimensions obtained after expanding theD4 gauge field in harmonic functions

of x4. This left an infinite tower of KK modes ofD4 gauge fields interaction with left-handed and

right-handed fermions.

In order to study chiral symmetry breaking it was useful to study the effective coupling between

the left-handed and right-handed fermions. We saw that at energies higher than the confinement

scale, it becomes possible to carry out an exact integrationof the D4 gauge fields in the largeNc

limit. This led to an effective non-local four-fermi interaction which has a finite range determined by

the confinement scale,Λ (arising fromRk). The final effective action for fermions was found to be a

non-local generalisation of Nambu−Jona-Lasinio model. We then derived the gap equation for a non

local chiral condensate of left-handed and right-handed fermions separated by a distance. We also

obtained numerical chiral symmetry breaking solutions starting with an ansatz motivated by the fact

that the condensate should go to a constant at small separations and vanish beyond a certain length

scalel.

One of the notable features of the solutions we obtained is the following. We found that as

we decrease the coupling from a large value, the length scalel, characterising the solutions, keeps

increasing with an increasing rate. We saw that forl & Λ−1, the profile hits a wall and there is no

further decrease in the coupling. This indicates a criticalvalue of the coupling below which there is

no chiral symmetry breaking. To understand this, we note that for l ≫ Λ−1, the non-local NJL model

essentially approximates to a usual local NJL model. Such a model, on the other hand, is well known

to have a critical value of coupling for chiral symmetry breaking. Another important feature of the

solutions obtained is the following. We found that there areno solutions withl . L. Therefore, as

L/Rk is tuned in such a way thatLΛ becomes smaller and smaller, it becomes possible to get a wider

range of solutions for whichlΛ ≪ 1, that is, the energy scale of chiral symmetry breaking is far

above the confinement scale. This was considered as an a posteriori justification for the application

of perturbative techniques to study the solutions.

We also tried to study the non-compact limit of the model in the weak coupling limit. We

considered two different approaches of taking the non-compact limit while maintaining the hierarchy

L ≪ πRk ≪ Λ−1. However, we were unable to find any consistent chiral symmetry breaking solutions
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in both the approaches. This may indicate that the weakly coupled non-compact Sakai Sugimoto

model does not show chiral symmetry breaking.

Like the weakly coupled model, the strongly coupled model also displays various features of

chiral symmetry breaking. In this limit, Sakai and Sugimotostudied the model by considering the

flavor branesD8 andD8 as probes in the near horizon geometry ofD4 branes. The model leads to

a geometrical picture for chiral symmetry breaking in whichasymptotically separatedD8 andD8

branes meet each other in the bulk. The model, however, does not have any parameter that allows

us to turn on a quark mass term. Further, it does not have any explicit order parameter for chiral

symmetry breaking. A major part of the work done in this thesis consists of a modification of the

strongly coupled SS model that we proposed to resolve these two issues.

We studied the dynamics of theD8-D8 system inD4 background taking into account the brane-

antibrane open string tachyon. The motivation it was that the tachyon transforms like a bifundamental

under the flavor group transformations and couples to a chiral bilinear of left-handed and right-handed

fermions. Thus, condensation of tachyon can lead to a mass term for the fermions. In order to carry

out an extensive investigation we needed to have an action for the system. Proposals for effective

action for such brane-antibrane systems in curved background are available in the literature. However,

these proposals exist for non-compact space-time directions only. On the other hand, our model

involved a compact direction along which theD8 andD8 branes are separated. We, therefore, applied

these results to our model with the supposition that theD8− D8 separation is much smaller than the

size, 2πRk of the compact direction.

To proceed, we first obtained the classical vacuum configuration for the profiles of theD8-D8

separation and the magnitude of the tachyon field. Since the equations of motion are non-linear, it

is difficult to find exact analytical solutions to them. However, we obtained analytical results for the

behaviour of the solution in the IR and UV regions which were then verified using numerical solutions.

We found that the geometrical picture of chiral symmetry breaking in SS model, where asymptotically

separated brane and anti-brane meet in bulk, is still preserved in this model. In addition, there is a

vacuum expectation value acquired by the tachyon that blowsup at the point where theD8 andD8

meet. In the UV region of the holographic coordinate, it is associated with a ‘normalisable’ and a

‘non-normalisable’ components. This UV behaviour was, however, obtained under the assumption

that the tachyon becomes small in this region. It cannot, therefore, be extended to a region where

the non-normalisable component becomes very large. This forced us to use an upper cutoff on the

holographic coordinate in the model. Although, the choice of this cutoff involved some degree of

arbitrariness, we found that the parameters associated with the solutions obtained are sufficiently

robust under small changes in the cutoff.

Since the tachyon couples to a chiral bilinear of fermions, AdS/CFT correspondence says that the
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non-normalisable component sources the chiral bilinear inthe boundary field theory. Therefore, we

identified this mode with the quark mass parameter. After carrying out a holographic renormalisation,

we also showed that the normalisable component of the background tachyon solution gives the

vacuum expectation value of chiral condensate, an order parameter for chiral symmetry breaking.

The fact that the the tachyon blows up at the point in bulk where theD8 andD8 meet, played an

important role in this. This ensured that the tachyon potential vanishes at this point and there is no

contribution from the IR boundary to the calculation of chiral condensate.

After finding the classical vacuum configuration, we also carried out a fluctuations analysis of

the flavor brane gauge fieldsAL andAR and the phase of the tachyon fieldθ. We observed that the

action for these fluctuations can be written in terms of a vector combinationV = (AL + AR) and an

axial-vector combinationA = (AL − AR− ∂θ). The fieldV is invariant under the axial transformations

of the flavor gauge group U(1)×U(1) but transforms as an adjoint under the vector subgroup.The

field A, on the other hand, is invariant under the full flavor gauge group. We showed that, after fixing

a gauge, the fieldV gives rise to a tower of vector meson in (3+ 1) dimensions. The field,A, on the

other hand gives rise to a tower of axial-vector and pseudo-scalar mesons in (3+ 1) dimensions. In

particular, when the non-normalisable component of the tachyon solution is zero, we found that the

field A has a zero mode that gives rise to a massless pseudo-Goldstone boson, the analog of a massless

pion. When the non-normalisable component does not vanish,the zero mode ceases to exist and the

lightest pseudo-scalar is also massive. Further, the mass squared is proportional to this component

and satisfies the GOR relation. This was, therefore, identified as the analog of a massive pion in

phenomenology.

Since the work presented in this thesis was completed, some alternate proposals of introducing

quark mass in Sakai-Sugimoto model have also appeared in theliterature. In [124], a model involving

a deformation of Sakai-Sugimoto model using additionalD4 orD6 branes was proposed. The authors

showed that this deformation leads to an introduction of quark mass in the model. In [125] the authors

incorporated quark mass in Sakai-Sugimoto model using longopen strings between the flavor branes.

In yet another work carried out in [126], the authors studiednon-local operators to add quark mass

to the model. The possibility of a connection among these different models and ours deserves further

investigation.



Appendix A

Alternate Green’s function for D4− D8− D8

at weak coupling

In this appendix we tabulate the data for solutions to the gapequation we obtained using Green’s

function (3.31). In the tables below, we have tabulated the values of parameters of solutions viz.

lΛ, σ, andφ00 corresponding to each value of the couplingλ for three sets of values of
{

RΛ, LΛ
}

.

The value of the parameterc turns out to be given bylΛ/LΛ in each case. We have also plotted the

variation oflΛ with λ corresponding to each of the three sets. We see that the qualitative behaviour of

the variation remains the same as obtained with Green’s function (3.32).

RΛ=1/5 LΛ=1/100
lλ σ λ φ00

0.02 0.380 0.0949 5.60×10−9

0.04 0.626 0.0831 1.32×10−6

0.06 0.700 0.0784 3.08×10−5

0.08 0.745 0.0751 2.34×10−4

0.1 0.779 0.0721 1.86×10−3

0.25 0.825 0.0712 2.27
0.6 0.865 0.0700 2.55×103

1 0.884 0.0693 1.60×105

1.5 0.8963 0.0689 4.31×106

2.5 0.903 0.0738 2.60×108

3 0.903 0.0738 1.11×109

3.5 0.904 0.0752 3.80×109

Table A.1: Table of parameters for the solution to gap equation with the setRΛ = 1/5 andLΛ = 1/100.
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Figure A.1: Variation of lΛ with λ for the set RΛ=1/5, LΛ=1/100
corresponding to the data in Table A.1.

RΛ=1/5 LΛ=1/200
lλ σ λ φ00

0.015 0.540 0.0439 2.10×10−9

0.03 0.700 0.0392 4.81×10−7

0.05 0.755 0.0376 2.48×10−5

0.10 0.825 0.03469 6.60×10−3

0.25 0.870 0.03345 10.08
0.50 0.888 0.03392 2.58×103

0.75 0.894 0.03486 6.58×104

1.00 0.898 0.03569 6.57×105

Table A.2: Table of parameters for the solution to gap equation with the setRΛ = 1/5 andLΛ = 1/200.
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Figure A.2: Variation of lΛ with λ for the set RΛ=1/5, LΛ=1/200
corresponding to the data in Table A.2.
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RΛ=1/20 LΛ=1/300
lλ σ λ φ00

0.01 0.545 0.1167 3.02× 10−9

0.02 0.700 0.1045 6.76×10−7

1/30 0.780 0.0959 4.10×10−5

1/15 0.820 0.0935 4.16×10−4

1/6 0.860 0.0920 12.84
7/30 0.865 0.0944 1.80×102

8/30 0.868 0.09494 5.20×102

0.30 0.870 0.09569 1.32×103

1/3 0.870 0.0972 3.00×103

Table A.3: Table of parameters for the solution to gap equation with the setRΛ = 1/20 and
LΛ = 1/300.
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Figure A.3: Variation of lΛ with λ for the set RΛ=1/20, LΛ=1/300
corresponding to the data in Table A.3.
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Appendix B

Robustness of quark mass and chiral

condensate

We have seen that the equations of motion derived from the DBIaction of theD8−D8 in the modified

Sakai-Sugimoto model admit a solution where the tachyon profile has a quadratically diverging IR

behaviour given by equation (5.22) and a UV behaviour has a double exponential factor divided by

square of the holographic coordinate given by equation (5.17). The solutions can have two different

forms namely, one in which the tachyon amplitude is positiveeverywhere and the other in which

it crosses to negative values at some value ofu as seen for the solutions withu0 > 13.0877781.

Physically speaking, the profile being the amplitude of tachyon should be positive everywhere since

any change in the sign of the tachyon field should be taken careof by the phase of the field. Hence, for

the second kind of solution, one needs to truncate it at some point umax restricting it to only positive

values. Moreover,umax should be such that the solution has a double exponential fit near it. Satisfying

these two criteria does not, however, lead to a specific valueof umaxbut only suggests a possible range.

In the following, we show that this freedom of choice ofumax does not impact the robustness of the

parametersT− andT+ we have reported.

B.1 Method to study robustness

In this sub-section we introduce a method to study the robustness of the parametersT− and T+

under small changes in the cut-off umax. We choose a range of values ofu0 and truncate all of the

corresponding tachyon profiles at a commonumax such that it lies in the region where the tachyon

values are positive and asymptotic behaviour (5.17) is satisfied. Then we change the value ofumax for

a fixedu0, still maintaining the asymptotic conditions. This changes the values of the parametersT−
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andT+. The fractional change inT− for a given value ofu0 is

δ2T− =
T−(u

(2)
max) − T−(u

(1)
max)

T−
|u0, (B.1)

where the value ofumax is changed fromu(1)
max to u(2)

max. Similarly we defineδ2T+.

These are then compared to the changes occurring in the parametersT− andT+ for an equal shift

in u0 keepingumax the same. The fractional change inT−, in this case, is given by

δ1T− =
T−(u

(2)
0 ) − T−(u

(1)
0 )

T−
|umax, (B.2)

whereu(2)
0 −u(1)

0 = u(2)
max−u(1)

max. δ1T+ is defined in a similar way. The changes in the parametersT− and

T+ caused by the variation ofu0 are understood as physical changes due to considering configurations

with different values of bare quark mass. As we will show numerically,it turns out thatδ2T− ≪ δ1T−

andδ2T+ ≪ δ1T+. Thus, the change due to ambiguity in the choice ofumax is small compared to the

physical change. Hence, it demonstrates that the parameters are robust under small changes in the

cutoff umax.

In order to numerically demonstrate the above statements, arange of values ofu0 is chosen from

15 to 15.7 in steps of 0.1. We have plotted the corresponding figures for tachyon profile in Figure

B.1. Then we choose two values of the cutoff given byumax = 33 andumax = 32.9. For each of these

20 25 30
u0
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15

20
THuL

31.5 32.0 32.5 33.0 33.5 34.0
u

-0.01

0.00

0.01
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0.03

0.04

0.05

THuL

u0 � 15

u0 � 15.7

Figure B.1: The tachyon profiles corresponding tou0 from 15.0 to 15.7 in steps of 0.1. The inset
figure shows the asymptotic behaviour. The dotted lines showthe two values ofumax used in studying
the robust

tachyon profiles we carry out an asymptotic fitting for each ofthe two values ofumax. In order to track

the quality of fit we use the quantity

δT =
|T(umax) − T f (umax)| + |T(ui) − T f (ui)|

T(umax+u1
2 )

(B.3)



B.1. METHOD TO STUDY ROBUSTNESS 111

whereu1 andumax are the two ends of the fitted region andT f gives the fitted value of the tachyon

at the corresponding point. Figures B.2-B.4 show some of thefits we have done. In fitting the

data we have ensured thatδT ≤ 0.01 (varies from 0.0095 to 0.01 in our set) and the value of

k ≡ 2h2
0u
−2.5
i (T2

+e
−2h0ui + T2

−e
2h0ui ) ≤ 0.07 (kept between 0.045 to 0.07 in our set) for the validity

of double exponential asymptotic form. Notice that in the figures we have indicated the ranges of

values ofu over which the fitting is done with the above criterion although we have shown the profile

over a larger region. Using these, we computeδ1T−, δ2T−, δ1T+ andδ2T+.
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Figure B.2: Fits foru0=15 with the asymptotic behaviour.
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Figure B.3: Fits foru0=15.4 with the asymptotic behaviour.
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Figure B.4: Fits foru0=15.7 with the asymptotic behaviour.

In the left panel of Figure B.5 we have plottedδ2T− in red andδ1T− in blue for various values ofu0.

In the right panel, the same thing is done forT+ instead ofT−. This example shows thatδ2T± ≪ δ1T±,

indicating that the parameters are quite robust with respect to small variations inumax. We verified
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Figure B.5: Fractional changes inT− andT+ for change inumax from 33 to 32.9

this over a larger range of values ofumax. In the set of figures given by Figure B.6 we have shown the

asymptotic fitting of the tachyon profile whereu0 is fixed to 15.2 and the cutoff umax is varied from

33 to 32.3 in steps of 0.1. In each part of the figure the fitting range is suitably changed such thatδT

varies only from 0.0089 to 0.01 andk varies from 0.029 to 0.05. We calculate the fractional changes

in T− andT+ using equation (B.1) and the corresponding one forT+, as we changeumax from 33 to

the values indicated in the figures. Figure B.7 shows them as afunction ofumax. We can easily see

that these values are much smaller than the values ofδ1T± for u0=15.2 displayed in Figure B.5. This

demonstrates the robustness ofT± with respect to small changes inumax.
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Figure B.6: Fits for varyingumax with u0=15.2
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