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Synopsis

In the last forty years, Quantum Chromodynamics (QCD) hascessfully emerged as the
microscopic theory of strong force, the force that bindstroes and protons inside the nucleus of
an atom. The basic degrees of freedom in QCD are given by sorflaf quarks interacting through
the exchange of gluons, gauge fields sourced by color chaeecé the namehromodynamigs
With three kinds of colors, the gauge theory is an SU(3) noglian gauge theory. The full QCD
action is given by
1 . . .
S= f d*x {—ZFE‘VF""”V + Oy (Iy”(ﬁﬂélj - gAlt) - mfé”)qf,}
where F2, = 0,A2 - 0,A% + ge*™ALA;, (1)

whereg is the coupling strength, the indicasb,c = 1, ..., 8 run over the eight generatar’sof the
SU(3) color group and, j = 1, 2, 3 run over the three colors. The quarks transform as fundehen
under the color gauge transformation and the gauge fieldslja;ea Therefore, the generatot%
appearing in the action are in the fundamental representafithe color group. The indeik= 1, ..., 6
runs over the six flavors of quarks which are found to occurbnoad hierarchy of masses. Of these,
the light quarksi andd can be approximated to have nearly the same mass leadin@fpamximate
SU(2) global flavor symmetry.

In 1963, Gell-Mann and Zweig proposed the quark model. Tbremosite model of hadrons
had great successes in predicting new states and in exgdiné strengths of transitions between
different hadrons through electromagnetic and weak interectidowever, the birth of QCD in the
present form was largely due to the works of Greenberg and at@Nambu which lead to the
concept of color gauge fields. The success of QCD as the tlid@tyong interaction is backed by
a number of experimental data matching predictions from QK2Bst of these tests are provided by
scattering experiments involving large momentum transfexhich the inside of a hadron can be
probed. A few examples are deep inelastic scattering, I¥eall process in colliders, heavy quark
production in hadron-hadron collisions etc. The predidionade in these processes are based on the
application of perturbative QCD. Such an approach is resslerfor scattering experiments involving
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large momentum transfer due asymptotic freedorm the theory. Perturbative calculations in QCD
show that the coupling strength decreases with energy asghlenomenon is known asymptotic
freedom[see Figure 1]. This property was discovered by Politzeaf&] independently by Gross and
Wilczek[7].

log(E/Aqcp)

Figure 1: Flow of coupling squared with log of energy. Thelsda is generated through
dimensional transmutation and may be taken to be the conéinescale in QCD.

Looking at the flow of coupling depicted in figure 1, it may beiviely expected that it
keeps growing with decreasing energy giving a qualitatiglanation of the phenomenon called
confinement(it is only a ‘naive’ expectation, because perturbativguanents fail when the coupling
is order one.) Confinement prevents liberation of free guarkd gluons from hadrons. This is in
conformity with our observation that the physical statesaways found to be in hadronic states. At
very high energies, RHIC experiments have shown evidendbdeexistence of a deconfined phase of
guark-gluon plasma (QGP), but the final states one obsergesdy hadrons. An analytic treatment
of confinement in QCD requires a non-perturbative treatmdmth, however, is not available to us.

Another property of our interest in QCD (and in this thessghiral symmetry breakin¢ySB). It
is known that the masses ofandd quarks are extremely small compared to other scales in Q&€D. |
fact, evens quark is pretty light from this point of view. Therefore onftem considers the three to
constitute a massless flavor triplet. Under this approxmnaQCD has a global symmetry given by

Q- €7"Q Qr — €% Qr, (2)

whereQ_ and Qg are the left-handed and right-handed triplets respegtivel= 1, ..., 8 runs over
the eight generators® of SU(3) flavor group in the fundamental representation. sTtlue action is
invariant under separate flavor group transformationsaneft-handed and right-handed sectors. This
approximate global symmetry in QCD is referred to assd(3), x S U(3)r chiral symmetry. If the
quarks were not massless but only had equal masses the syymwmetd be only a subgroup of the
above given by = af, referred to as vector symmetry as opposed to axial symmetrgsponding

to a{ = —af. One should note that even though the action has chiral symithe vacuum may not
have it, leading to spontaneous breaking. For instancetalueractions, the vacuum may grow a
finite chiral condensateQ[QFo leaving behind only the vector subgroup of chiral symmedwce it
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is known that spontaneow$B has occurred, the low energy dynamics can be expresseuhis bf
meson fields. It turns out that the low energy action is cotepidixed by just the symmetries of the
QCD action (1) independent of its microscopic details.

Though large number of arguments indicate that QCD has lmottinrement ang SB, a derivation
is still missing. This is because, the scaleg 8B and confinement are nearly the same in QCD and
hence both require a non-perturbative treatment. How#wese phenomena have been demonstrated
in other alternate QCD-like theories. A prime example isvted by N=2 SU(2) super Yang-Mills
theories considered by Seiberg and Witten. Because of atrielenagnetic duality, the strongly
coupled vacuum can be expressed as a weakly coupled theamgraipoles. Confinement can be
described perturbatively in the dual theory as monopoleengation [36]. Further, with additional
matter multiplet given byv=1 chiral and anti-chiral superfields, it is found to she®B driven by
monopole condensation [37].

xSB has been studied in some othdfeetive theories of QCD like sigma models and
Nambu-Jona-Lasinio model (NJL). The low energy and static propedf mesons are well described
by a non-linear sigma model. One can calculate the fermiderokenant as a derivative expansion
of meson field. Terminating at the quadratic level, a sigmaehcs generated. The gauged sigma
model includes vector meson and axial-vector meson coggphiso. A matching between the meson
masses and decay constants calculated from this model w@texperimental values can be found
in [40]. Similarly, NJL model is a non-gauge theory involgiohiral fermions interacting with each
other through a four-fermi interaction [41]. It can be thbtgf as a low energyfeective theory
of QCD obtained after integrating out the gluons. Even thoglyons are massless, an infrared
cutadf is provided due to confinement allowing us to integrate theswling to an #ective four-fermi
interaction. The attractive interaction between the heftded and the right-handed fermions leads to
a dynamical breaking of chiral symmetry.

In spite of developments in some special models, it stillaigr® a challenge to present a derivation
of confinement angtSB in QCD because of the non-perturbative regime involvedadalytic tool to
study field theories non-perturbatively is provided by twgé&N technique. One may wish to study
gualitative features of QCD non-perturbatively using thisthod. It involves defining a new coupling
constantl ('t Hooft coupling) in terms of the Yang-Mills coupling as = g?N and looking at the
theory at a fixedl. The perturbation series has two parameters givehdnyd I/N. For a large value
of N, it suffices to look at just the diagrams occurring with the leadinggraof 1/N, often referred
to as planar diagrams because of the associated topologyevéq it still turns out to be dicult to
sum up all the planar diagrams as would be required fivat is not small enough.

A powerful non-perturbative method is Wilson’s formulatiof QCD on a space-time lattice.
This formulation, known as Lattice Gauge Theory (LGT), maystudied on a computer eventually
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taking the continuum limit. Significant progress has beemlena calculating hadron masses and
decay constants in recent years [47]. The calculated valudscay constants of many of the light
mesons are found to lie within the experimental error thomgéome cases the combined statistical
and systematic error is as high as seven percent. Massedrohisehave been calculated taking into
account the electromagnetiffects and the ground state values for many of them are founeé to b
within the experimental errors. A longstanding challengéole LGT methods has been to take into
account the dynamics of quarks. Many of the algorithms asedan quenched approximation where
the quarks are made infinitely massive. In the last few ydéawever, with improved algorithms and
better computers many of the works carried out in LGT haveriparated finite quark masses. But,
computation of various quantities still requires extrapioin to physical values of quark masses.

Inthe last decade, non-perturbative studies in QCD-liketies has taken a new turn. The seminal
work by Maldacena in 1998 [48] gave birth to what we today 2al§/CFT correspondence or more
generally, gauggravity correspondence or holography. It provides a dpaktween a gauge theory
and a string theory. Even though, it may be tofiidult to solve the full string theory, when the
value of 't Hooft coupling of the gauge theory is large, thangt theory can be approximated at low
energies with a theory of gravity. The duality then goes leetwva quantum theory of gravity and a
strongly coupled gauge theory that lives in one lower dinmens the boundary of the space-time the
gravity theory lives in. This is precisely the region wheomfperturbative methods become essential
in the gauge theory. Further, in the limit of larfe the quantum corrections in the bulk theory are
suppressed giving rise to a classical theory of gravity agdtiel. Thus, in the limit of larg&l and
strong coupling, AAECFT becomes a very useful tool to study gauge theories asutatigns in the
classical theory of gravity are often quite simple to camy. o

This technique has been applied to many brane models whasenlergy limits have QCD-like
features to varying degrees. The first attempt in this domacvas due to Maldacena whose work
lead to a gauggravity correspondence for strongly coupl§d= 4 super Yang-Mills theory obtained
in a setup of large number of overlappid$ branes. Another example of the correspondence can
be found in the context of a largé non-supersymmetric gauge theory as proposed by Witteig usin
overlappingD4 branes. Confinement in such gauge theories finds a grawstriggon in the form
of a blackhole geometry. Chiral symmetry and its breaking loa described by introducing flavors
to these gauge theories. This is done by introducing adhditibranes, often referred to as flavor
branes, to the setup. Karch and Katz proposediBe- D7 embedding introducing fundamental
hypermultiplets toV = 4 super Yang-Mills. The system breaks chiral symmetry aaddeo a rich
spectrum of mesons. Meson spectrum has been obtained irstiing embeddings like the4 — D6
system in the context of non-supersymmetric gauge theory.

Another such model that has found a considerable mentiotenafure, is Sakai-Sugimoto model
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(SS model) [67]. SS model (and its variations) has been otteeaflosest one has been able to get to
QCD using simple string embeddings. It gives an elegantrgegm of confinement and non-abelian
xSB using gaug@gravity duality. It consists of large numbBk. of overlappingD4 branes wrapped
on a circle of radiugk providing the color degrees of freedom. Intersecting thezrNa D8 branes
andN; anti-D8 (D8) branes separated from each other along the compactidireétby a distance

L and providing the flavor degrees of freedom. This is showhérfirst of Figure 2. At low energies,
this model gives rise to anffective QCD-like theory. Holographic calculations haverbesed to
obtain hadron spectra and decay rates which have often been to be surprisingly close to the
experimental values. Studies of the model at finite tempegaind finite baryon chemical potential
have also been made to obtain the phase diagram.

Unlike QCD, SS model provides a good handle to sty8# both in the weak and strong coupling
limits. The weakly coupled model is actually a one parameé&tormation of QCD, with the extra
parameter provided by the ratio of the separatido the radius of the circl&. It turns out that by
tuning the parameter to smaller and smaller values one ceny&B energy scale to be much larger
than the confinement scale. This allows a perturbativertreat of the phenomenon.

u

LU
™~ 7N 7\ " :
Do L L)) - &
D8
N4 NS D4

Figure 2: Flavor brane embeddings in tbex*-plane both in the weak coupling and strong
coupling limits. U is the direction perpendicular ©4 branes andJy is the value ofU at the
horizon.

In the strong coupling limit, th®4 branes can be replaced by the near horizon geometry and one
can study thé@8, D8 branes as probes in the supergravity background. In thiewaoried out in [67],
Sakai and Sugimoto showed tha@B acquires a geometric meaning in the form of the meeting of
separated flavor branes close to the horizon oDthigeometry. This is shown in the second of Figure
2. They also studied the meson spectra arising from flavarebgauge fields and obtained an infinite
tower of Kaluza-Klein states of mesons with the Kaluza-Kletale of the order of confinement scale.
In particular, the analog of a massless pion was obtainedemtodel. With infinitely more states
of mesons than in QCD and no state higher than spin 2, the tagbgs description of SS model is
different from a largedN, QCD. But the hope is that many qualitative properties mayitmda in
the two. This is based on the expectation that such propergy survive the tuning of coupling
from weak to strong. The model, however, does not have amgnpeter for quark masses. For
phenomenological reasons, it is important to incorpoitzds bbserved quantities like hadron masses
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depend on it.

In this thesis, we mainly intend to study various aspects lafat symmetry breaking in
holographic QCD. As mentioned above, SS model presentsdaeoa to study the phenomenon in
a holographic setup that resembles QCD to a good extent.tiWglmotivation, we take up two major
problems in this direction which can be classified as:

e study ofySB in weakly coupled SS modahd

e introducing a quark mass deformation to strongly coupledn®8el.

In our study of the weakly coupled model reported in [70], Wéain the &ective interaction between
the left-handed and right-handed quarks at low energiesuntable hierarchy of scales. In order to
do this we take advantage of the fact that the model provigesameter to tungSB energy scale to
be much larger than confinement scale, allowing a pertwdaiatment. ThefBective action of the
guarks can be written in the form of a non-local NJL action. &&ain numerical solutions to the gap
equation and inspect the conditions {&B. We also study the model in the non-compact limit and
find that it does not admit any consistg/8B solution.

In the second work reported in [121, 122], we propose a quaa&sndeformation of strongly
coupled SS model by incorporating the-8 open string tachyon in the holographic setup. In string
theory, all the physical parameters of a low energfgdaive theory should eventually come from
the condensation of some field. The tachyon field transforsng bifundamental under the flavor
group and would couple to a bilinear of a left-handed and ht+iginded quarks. This makes it a
good candidate to provide the quark mass parameter on csaititem It turns out that the field also
provides an order parameter fpEB in the model, something that was lacking in the original SS
model. Using the tachyon DBI action of the flavor branes inDdebackground, it is found that the
tachyon condenses and the UV behaviour has two modes. Thearoralisable mode provides the
guark mass parameter and the normalisable mode gives cbirdensate. We also obtain the meson
spectra from the flavor brane gauge field fluctuations. Iniqdar, the analog of a massive pion
appears with its mass satisfying the well known Gell-Ma®akes-Renner relation.

In the following, we present a more detailed exposition esthworks.
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1. ySB in the weakly coupled SS model

In the weak coupling limit of the model, the brane configunatis given by the first of Figure 2. It
may also be summarised as below (the small circles denotedhd volume of the branes)

0123 45673829
D4 o o o o o (3)
D8D8 o o o o o o o o o

where the direction* is compact and the common world volume of the flavor and calanés x,

u = 0,.., 3 give the physical 3 1-dim space-time. Antiperiodic boundary conditions arpligl on
the D4 brane adjoint fermions along the compact directixfh, This leaves the model with SUSY
completely broken. After a GSO projection, the low energgcspum consists of left-handed and
right-handed quarks in 8 1 dimensions interacting through the exchang®4#fbrane gauge fields.
These gauge fields lead to a five dimensidué.) Yang-Mills theory with couplingg? = (27)?gsls

of length dimension. In our analysis, the scales of the madelassumed to be in the hierarchy
0iN: < |s < L < 7R 2N; < |5 ensures that string loop corrections are sniak L allows us to
neglect non-trivial dilaton and RR ten-form field createdD#® branesL <« 7Ry allows us to study
xSB perturbatively by tuningSB length scale to be much below confinement scale as exglkitex

in this section.

The theory can be expressed ir3 dimensions by expanding thi&4 gauge field in harmonic
functions ofx*. One is, thus, left with an infinite tower of KK modes of3-dim fields. The massive
modes can be integrated out to give dfeetive non-local four fermi interaction between the left-
handed and right-handed quarks. Rest of the action, inwgliie zero mode of thB4 gauge field,
is given by QCD action. In general, it is not easy to integmtethe massless gauge field. However,
asymptotic freedom in QCD action allows computation of tighlenergy behaviour of thefective
interaction that would result from such an integration. tker, confinement provides an IR ctito
of the order of glueball mass scale (confinement scale) omtkeaction. This allows us to write a
gualitative form for the ffective interaction even at low energies. Note thagfeB length scale much
smaller than confinement scale, the nature of interactibpnairhigh energies is important which we
know quite accurately.

Summing up the fects of both the zero mode and the non-zero modes, we artilie @fective
action given by

S = 1 [ (A" P 0,09 + o (900,66

@ f d*x d'y G(x — VG LML) ). )
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whereq, B are flavor indices. The Fourier transform of the Green’s fionc G(k) has a qualitative

form given byG(k) = (i;jikf)e‘ﬁ in Euclidean momenturk. The form is based on the following
qualitative features that the Green’s function would havearious limits. Fork ~ A, G(k) ~
1/(E2 + A?) connected to the fact that the range of the four fermi cogpis set by the glueball
mass of the order oh. ForA < k < 1/7R, G(k) ~ 1/E2 as the 31- dimensional description
remains valid in this region. Foe > 1/7R, G(k) ~ ane‘EL/Ewhere we have usded <« nR. This
reflects the necessity of the+41-dimensional description. The exponential behaviouicatgs a

short-distance cutbon the four fermi interaction.

For studies ofySB we are interested in the dynamics of the chiral biIircq{é(x)qg(y). Hence,
it is useful to introduce a bilocal auxiliary scalar field pting with the bilinear field. One can
then integrate out the fermions to obtain an action for treasdield and its equation of motion,
also called the gap equation. Fp8B, it has to admit a non-trivial solution. The gap equation
obtained for the chiral condensate can be written as folldve$ us denote the chiral condensate as
Nic(q[“(x)qg(o» = ¢(X) = %goﬂxl/l) where the parametérof length dimension gives the correct
dimensions to the condensate so thatind¢ can be assumed to be dimensionless. Notice that in
writing it in the above form we have used Poincare invariasfdbe vacuum. Further, it is convenient
to use the notationT (x) = %GE(XXqTL“(x)qg(O)) whered = g2N./87°R,. Defining dimensionless
functions f (k) = ¢(K)/l¢o andt(kl) = T(K)/(1po) wherel is a parameter of length dimension, the
gap equation can be expressed as

f(p) = At(p)

-\ FEDIN 5
P? + 12¢2t2(p) ; ®)

We often refer to thehs of the equation a$(p). In the above expression we use the subsaipn
| to indicate that the quantity is expressed in dimensionlegéts of A1. We adopt a similar notation
for the other scales in the model too.

Gap equation (5) can now be solved numerically. From the @rpephysical properties of the
order parameteap(x) associated with a nontrivial solution, we make an ansatz:

—X

(A2 + 1)

¢(x) = (6)

From the form of the ansatz it may be noticed that the pararhet¢he solution gives the length scale
of ySB. The shorter the scale, the narrower the bilocal chinadleasate is. We seek a solution of this
form using Mathematica. In particular, we adopt the follogvprocedure. We choose a certain brane
configuration by making a choice for the paramef(sandL,. With this, for each value ot we
should now look for a solution i.e., a set of values of the paai®rd s, ¢o, o andc that would solve
the equation. It turns out that it is easier tofixto a given value and then look for the set of values
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Figure 3: Left: Fit betweerf(p) and f(p) with [,=1. Right: Variation ofl, with A. For both,
RA=1/20, L,=1/300.

of A, ¢o, o andc that would solve the equation. This exercise is repeatedaous other values of
I». We notice that the value afrequired to give a good fit always turns out to Jﬁe The first of
Figure 3 indicates the matching betweenltissand therhs of the gap equation for a typical numerical
solution. In the second of Figure 3, we have plotted the tianzof the ySB length scale with the
coupling. Notice that the model indicates a critical vallighe coupling below which there is no
xSB. Also note that as we increagave can have a wide range of solutions whigre< 1 for which
xSB can be described perturbatively. Further, it is found tivere is no solution witll, < L. This
implies, the smaller the value &fy, the better it is from the point of view of applying perturioat
theory toySB .

We also try to study the non-compact limit of the model mamtey the hierarchy. <« 7R, <
A~1. However, we do not find any consistgsBB solution in this limit. This may indicate that the
weakly coupled non-compact SS model which does not confstedides not haveSB.

2. Quark mass deformation to strongly coupled SS model

Like the weakly coupled model, the strong coupling versiso displays various features associated
with ySB. In this limit, as worked on by Sakai and Sugimoto, ERebranes are replaced by the near
horizon geometry and the flavor branes are treated as prolésibackground. We modify their
model by incorporating the 8 8 open string tachyon. The tachyon DBI action of a branesaatie
system in flat background was proposed by Ashok Sen [99]. khoied Garousi proposed a simple
extension of the action to curved background in non-comgate [110].

With the assumption that the-88 separationl., is much smaller than the KK radiug;, this
formula may also be applied to our system with compdcftThe fields involved are given by, the
tachyonr and the flavor brane gauge fields. The gauge fields are assonmede¢ dependence on
and components along the physical directighand the holographic coordinate Treating them as
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fluctuations, one can solve for the brane prafi{e)) and the tachyon magnitudgU) from the DBI
action,

S = —V4fd4xfdu V(T)(%)_3/4U4(\/D_u+ V1), (7)

whereD_r = Drr = Dy andDr = f(UY ()" + f(U) ()" £+ T/U)? + T(U)PLWU)>.

The potentiaM(7) depends only on the moduldsof the complex tachyom. In particular, we use

the tachyon potential used in [114, 115, 116] for calcutatd decay of unstable D-branes in two-
dimensional string theory/(T) = 7g sechy/zT. The equations of motion for the tachyon and the
brane profile are non-linear coupled equations and dfeuli to solve exactly. However, one can
solve for the UV and the IR behaviour analytically and find aneudical solution matching the two.

In the UV, we seek a solution such that the 8 separation approaches a constant and the tachyon
becomes small. The general solution with such a form is gy (u) = (T, e + T_ev),

h(u) = hy — hyu=¥2 where we have defindd = u/R®, L(U) = R®h(u). This behaviour, however, holds
only if the growing part of the tachyon is small enough whieluires us to put an upper ctiton

5/

2
u given by T2e2otime: 4 T2g2otmax << iz The parametef_, associated with the non-normalisable
0

mode of the tachyon, is interpreted as the quark mass pagamet

One can also solve for the IR behaviour. For a smooth joinfrigebrane and antibrane @&, the

derivative ofh must diverge at this point, and the solution works ouite) = ,/-2%u;>*(u—uo)? +
L T(U) = Y foud?(u - up) 2+ ---. An important feature of the above solution is that it depend

only on a single parameter, namely the valueiofWe have checked that this feature persists in the
next few higher orders in a power series expansioniin (). The UV behaviour of the solution, on
the other hand, depends on all the four expected parame@&ters, , hy, h;. The solution fou ~ ug
matches with only a one-parameter subspace of the fourrdea space of asymptotic solutions.
This one-parameter freedom of the classical solution taut$o be analogous to the freedom to add
a bare quark mass in QCD.

The IR and the UV behaviour may be matched numerically angrbies are as shown in Figure

4. The left one of Figure 5 displays the variation of quark snparametei_ with u,. We choose
the region with negativé_ as the physical regime as it is consistent with the fact thaind) quark
mass to infinity removes the flavor branesg increases withT_|). The variation ofT, with T_ and

Up can also be found as plotted in the right. The chiral condensan be obtained by performing a
holographic renormalisation of the action and then takinegvariation with respect to the quark mass
parameter. This giveg ~ %TP Thus, the right of Figure 5 gives nothing but the variatién o
chiral condensate with quark mass.

Finally, in order to obtain the meson spectrum, we look at@# action of the flavor brane
gauge field fluctuations in the background configuration antyton profile we have found. As stated
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before, the gauge fields form five dimensional vector fieldagthex* andU directions. Expressing
it in terms of vector and axial vector combinations of theggfields, it can be written as

Further, expanding them using a complete set of functiond,ofve get KK towers of meson
fields in 3+ 1-dimensions. The vector combination gives rise to theorectesons and the axial-
vector combination gives rise to the axial-vector and pesodlar mesons. The lowest mode of the
pseudoscalar meson is found to satisfy the GOR relation

Mgy
m ~ Tz (8)
This connects with the fact that there exists a masslessipsealar when the quark mass parameter
T_ vanishes. Further, when the quark mass is small but not #leeopseudoscalar ceases to be
massless and obtains a mass precisely related thi@@jkrelation, a behaviour known to occur in
QCD.
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Chapter 1

Introduction

There is by now impressive amount of evidence that the mtoqus description of the observed
strong interactions among hadrons is provided by Quanturar@bdynamics (QCD). QCD is a gauge
theory which naturally emerged from the quark model of hadq@roposed by Gell-Mann and Zweig.
The Gell-Mann-Zweig model [1, 2] explains the spectrum of hadronic pagsdbut does not provide
any information on the origin of strong interactions thatdthe quarks inside them. It also has
problems with reconciling baryons (made up of three quankts)the Fermi-Dirac statistics of quarks.
To overcome this diiculty, Greenberg [3], Gell-Mann [4] and Han and Nambu [5taduced the
concept of “color” quantum number of quarks. The discovdrgaaling in deep inelastic scattering
experiments [6] and that of asymptotic freedom in gaugerteed7, 8] gave a strong indication
towards the idea of color gauge degrees of freedom which wa<@ined in [9]. These gauge fields
(gluons) mediate interactions between the quarks (hereadamechromodynamigsconstituting
hadrons. By now, a large number of experimental tests of Q@i lbeen conducted. Today,
the theory is widely believed to provide the correct micogsc framework for describing strong
interactions.

In order to make this thesis self-contained, we present @f lmiroduction to QCD in this
chapter. We discuss various perturbative and non-petiuebaspects of strong interactions and
briefly describe dterent techniques used to study them. We also give a detailextiuction to the
phenomenon ofhiral symmetry breakingh QCD, a non-perturbative phenomenon that is the main
subject of this thesis. We refer the reader interested ikisgea thorough and in-depth discussion
on QCD to a large number of excellent textbooks and reviewlast available on the subject like
[10]-[22].
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1.1 Anoverview of QCD

The basic degrees of freedom in QCD are given by six flavorsiaflg and eight SU(3) gauge fields
that mediate interactions between the quarks. It is desgribrough an SU(3) non-abelian gauge
theory in the presence of the six flavors of quarks. The ‘3'UH3 is referred to as three colors and
hence the gauge fields are also called color gauge fields. ctiom &an be written as

1 —
S= f d4X {—ZFZ‘VFa‘uV + G, (|)/H(a‘u6(1ﬁ - gpﬁtzﬁ) - méaﬂ) qiﬂ} s
F2 = 0,A% - 9,A% + g Fe°ARAC, (1.1)

whereg is the coupling strength. The gauge fielfsrepresent the gluons which transform in the
adjoint representation of the SU(3) color gauge group. Tideese, 8 = 1,2,3 denote three colors
and the indices a,b€ 1,2,...,8 indicate the eight kinds of gluons in SU(3). Tharsq;, transform

in the fundamental representation 3 of the SU(3) color ggugep where the indexs a flavor index.
The generators of the gauge group are givemgpyAIso, fabe s the structure constant of the SU(3)
group defined by the commutation relatiad [t?] = i f2°%¢. Also, we use the space-time metric in
the mostly negative signature given#y = diag(1,-1,-1,-1)y,, u = 0, ..., 3 represent the 4 4 Dirac
matrices. In this thesis, we will be using them in Weyl repreation which is given by

Y= [ 0 Uﬂ]. (1.2)

o 0

Hereo* = (1,0) ando” = (1, —0), 1 being 2x 2 identity matrix andr being the set of three Pauli
matrices.

The indexi = 1,...,6 runs over the six flavors of quarks which are found to occua broad
hierarchy of masses. Two of these flavargndd quarks are very light with masses much smaller
than the masses of other quarks and the confinement scalee &pproximation where these masses
are neglected, the theory has an extended global symnterilator chiral symmetry. Consider just
the matter terms in the QCD action. Suppressing the colacésdand writing the action in terms of
two-component Wey! spinorg andag ?, this can be rewritten as

Squark = f d*x {QLF#(W - gA)a + QLm(ia“ - gA)ORri — m(qTLiqRi + qr?iqLi)} . (1.3)

ForN; flavors, consider the W;)xU(N¢) transformatiorg; — Uyj; g anddr; — Ugij 0rj WhereU
andUg are two separate unitary matrices in flavor space. It is easgé that this transformation is a

LgL(x) andgr(X) are the two-component Weyl spinors obtained from the Da@inorq(x) by the application of the
chiral projection operato®_ andPg, P, = 1’—275 Pr = 1+Ty5 wherey® = iy%y1y2y3.
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symmetry of the massless part of the action. Alternativiblyse symmetry transformations can also
be parametrised in terms of vector transformations whiaghespond tdJ, = Ur and axial-vector
transformations, which correspondil = U;. In the special case that the masses are non-zero but
equal, the vector part is a symmetry but the axial part is Hi®ome g < N¢) flavors are massless
and the rest massive with unequal masses, then the massréspest the subgroup ki)xU(n¢) of
chiral symmetry. This is the case for QCD if we approximaeetikio flavors with very small masses

to be nearly massless.

Even in the massless case, the quantum theory has subtheti€4) part of the axial symmetry is
broken due to quantumffects. Furthermore, the axial SN) undergoes spontaneous symmetry
breaking, leaving behind only a vector symmetry. The Goldstbosons associated with this
symmetry breaking are identified with a triplet of pseudtscenesons (pions) in hadron physics
corresponding tdN;=2. This is expected to hold true on neglecting the small quaakses for the
u andd flavors. In reality, however, one finds that the pions are na¢stess but have small masses.
This is because of the non-zero masses afidd quarks [39].

1.1.1 Asymptotic freedom

There are three kinds of interaction vertices in the QCDoaagiiven in (1.1). One of these involves
interaction of two quarks (straight line) with a gluon (wasyrve) while the other two give rise to
interactions among three and four gluons as shown in Figdre 1

L

Figure 1.1: QCD interaction vertices (adapted from [10]).

In perturbation theory, these interactions lead to a reabsation group flow of the coupling
strength given by the beta function [10]

3
p(9) = —% (%Nc - ng), (1.4)
whereN, denotes the number of colors (for SWJ colour gauge group) and; denotes the number
of quark flavors. FoN./N; > 2/11, the beta function is negative, i.e., the coupling cortstacreases
with energy. In particular, for QCD we haw = 3, N; = 6 and so it satisfies this condition. Thus,
QCD has the property that at high energies it approachesdHesry. This result, callegisymptotic
freedom is at the basis of the many successful comparisons of jpatiue QCD calculations with
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high energy scattering experiments involving stronglgiatting particles. The keyféerence with
an abelian gauge theory, like Quantum Electrodynamics (QEDwhich the coupling grows with
energy [10], is that the force carriers gluons interact agriibemselves. As in QED, the quark-gluon
interaction leads to a coupling increasing with energy,edlected in the second term in equation
(2.4). In QCD, the self-interaction of the gluons leads t@dditional oppositeféect and causes the
coupling to decrease with energy. The first term in (1.4) shibws. The netfect is determined by a
competition between the two terms and gives rise to asymegteedom in QCD.

The flip side to asymptotic freedom is that at low energieQ® coupling becomes large. This
can be seen from the solution to (1.4) which is usually writtethe form?

9(Q)? 2r 11 2

= dg = m, b() = (gNC - :—)’Nf) (15)

Here,g(Q) is the running coupling andqcp is the characteristic energy scale of QCD. We see that
as Q decreases, the QCD coupling grows untilat= Aqcp, it blows up. This behaviour can be
seen in the continuous curves in Figure 1.2 which have besmrdior diferent values ol qocp. The
striking agreement between the perturbative calculati@harious experimental results can also be
seen from the figure. Of course, long before the energy 2cadg is reached a perturbative treatment
of QCD is inadequate and non-perturbatifieets take over. It is believed that these non-perturbative
effects lead to the confinement of quarks and gluons inside hagdiizereby explaining their absence
from the observed spectrum of strongly interacting pagsicl Although we still lack an analytical
derivation of confinement in QCD, it has been demonstrateeip similar (supersymmetric) gauge
theories [36] and also using lattice gauge theory techsigsee [38] for a review and references).
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Figure 1.2: Flow of coupling strength with energy as obtdifrem [39].

2See, for example, the book by Peskin and Schroeder [10]
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1.1.2 Confinement

Although it is hard to prove confinement in QCD, the phenonh@yioal evidences for the
phenomenon are very strong. One does not observe free garaadkgluons in nature but they are
confined inside hadrons. To understand how it might happensider a high energy scattering
experiment where a quark is struckf &rom the rest of the hadron. As the quark separates, the
color electric field around it would approach the one due tngls quark. If the energy stored in this
field becomes too large it may lead to the production of a gaatiquark pair. The antiquark can
then bind to the struck quark and the quark from the pair Wighrest of the hadron resulting in color
singlet states in the final state. Such an experiment, tierewill not let one measure the energy
associated with the color electric field of a lone quark. Ome, tiowever, resort to a study of this
energy through indirect means namely, the pattern of hasipentrum called Regge trajectories and
numerical simulations of the problem.

If one plots the square of the masses of hadrons with theinlangnomentum, one finds that
hadrons with given flavor lie on nearly parallel straighekrreferred to as Regge trajectories. This
is a feature that is particularly characteristic of the lbbadspectrum. If one picturises a meson as a
string of constant mass per unit length (string tensionybet the quark and antiquark, one arrives
at a similar spectrum. This gives an indication towards mg@picture of a meson. One possible
way that such a string picture may arise from quarks and glimthrough the formation of a color
electric flux tube in which the color electric field betweentatis quark and antiquark is confined to
a thin cylindrical tube running between the two. Such a phamon would be similar to Meissner
effect in which magnetic field inside a type Il superconductds gellimated into thin flux tubes.
The electric-magnetic dual picture of this would give riseatsituation in which the electric field
between the quark and anti-quark is collimated into a fluwetmba dual superconductor consisting of
a monopole condensate.

Although, it has not been possible to derive such a resulQioD, it has been demonstrated in
alternate theories similar to QCD. A prime example is predidby N=2 SU(2) super Yang-Mills
theories considered by Seiberg and Witten. Because of att electric-magnetic duality in the
theory, the properties of the vacuum in the strongly coufabsttric’ theory can be deduced from the
properties of a weakly coupled ‘magnetic’ theory. Confinahman be described perturbatively in the
dual theory as monopole condensation [36].

The most reliable evidence of the static quark potentiabigioed using computer simulations
with very massive quarks where pair production can be ighofé@ese computations are carried out
using lattice gauge theory, a non perturbative techniquietvwive will briefly describe later. This
involves computation of a Wilson loop from which the statitack potential can be derived. The
Wilson loop is found to satisfy an area law, indicating tlneg $tatic potential between a quark and an
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antiquark grows linearly with the pair separation. This ek highly probable that the phenomenon
of confinement is present in strong interactions.

1.1.3 Perturbative tests of QCD

Most experimental tests of QCD are based on perturbativailedions, which, as we saw now, are
valid at high energies because the QCD coupling is smalight énergies. This allows us to compare
perturbative computations in QCD with scattering expenta@volving exchange of momenta larger
than a few timesAqcp. These comparisons have yielded a valugp ~ 200MeV. This small
value of the characteristic QCD scale explains the earlgbofscaling and is responsible for the
remarkable success of perturbative QCD in explaining a dbskperimental data on many strong
interaction processes [10]. In the following, we will brieflescribe a few examples of such scattering
experiments which have provided us with a large number afessgful tests of QCD.

e €'-¢ annihilation In this process, an electron-positron pair collides atrgdaenter of mass

energy and annihilates into hadrons. The leading ordermapndiagram that contributes to
this process is shown in Figure 1.3(a). This involves atatiion of the pair into an fishell
photon which subsequently materialises into a quark-aatigpair.

q q g 9 g
7

e et
(a) (b) (c)

Figure 1.3: Feynman diagrams fefre” scattering (adapted from [10]).

This diagram involves only QED interactions. However, thecess receives corrections from
diagrams involving QCD interactions too. The leading orclarrection in strong coupling is
provided by the diagram in Figure 1.3(c) where the two quatks exchange a gluon between
them. The diagrams in Figure 1.3(b) show processes with@ghmission which cancel the
IR divergence present in the other. In all these, the quark;cuark and the radiated gluon
subsequently hadronise through soft processes leadingdmihs as the final states in the
scattering process. In the experiment, these appear asfjédrons shooting in ffierent
directions.

The scattering cross-section of the process can be compsiegd perturbation theory. After
summing over all flavors (for quarks) and colors (for quankd gluon) in the final state, it is
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given by [10]

a(e*e‘ - hadron% = 3(2 e,-2)47;0;2(1 + 49—7:2 + ) (1.6)

wheresis the standard Mandelstam variable and the dots represerttons in higher orders
of the QCD coupling. Here, we have neglected all masses,hahikes sense for such high
energy scattering processess the electromagnetic fine structure constantgigithe electric
charge of the quark with flavar The factor of 3 in the expressions depicts the number ofsolo
We may now worry how this cross-section is related to thesssestion for the experimentally
observed process with hadrons in the final state. The key [gdihat the quarks and gluons in
the final state of these QCD diagrams always hadronise withingy. Hence the cross section
for the whole process is given by equation (1.6) (to leadmgpoin electromagnetic and strong
couplings). This equation provides an additional way toesxpentally verify the number of
colors (the factor of 3).

One of the very important implications of this kind of scaittg is due to the QCD process of
the last two diagrams in the figure involving the radiateaglu_etx,, X, andxs be the fractions

of energy of the annihilating electron-positron systenhmdenter-of-mass frame shared by the
quark, antiquark and the emitted gluon respectively. Imgeof the the four momenta, they are
given byx; = 2k;.q/qg? for j = 1,2,3 and satisfﬁf‘=l Xj = 2. The diferential cross section for
this process is given by [10]

d? 4ra® of X2 + X2
dxdx” B(Z q'z) 3s 672 (1— x)(1- %)’ (2.7)

This expression has a singularity fsf — 1 or x, — 1. These limits pertain to the case
when the quark (antiquark) is scattered with the maximunsipée energy and the antiquark
(quark) and the gluon are scattered in the opposite dimgctiollinear with each other. Thus,
the process shows a very largéfdiential cross section with the gluon emitted collineaht® t
quark or the antiquark. Subsequently, the quark, antilqaad the gluon hadronise. However,
with the gluon collinear to the quark or the anti-quark, oas two back-to-back hadron jets,
indistinguishable from what happens in the processes witagluon radiation. Such jets have
been observed in PETRA and LEP experiments [26]. One candnrget of hadrons only
when the gluon has a significant transverse momentum. Irtipeacthis is implemented by
imposing an angular cutfbon separations of the jets. It has been possible to disshgiich
tri-jet events in LEP [26]. One can also have a four jet evprbyiding evidence of gluon
self interactions. It is extremely fiiicult to carry out the experimental analysis for this but the
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evidence of a three gluon interaction emerges [26].

Deep inelastic scattering his experiment involves scattering of a lepton (electranon or a

neutrino) from a nucleon (a proton or a neutron) at very higimantum transfers. The lepton
undergoes an electromagnetic interaction with one of tlelguinside the hadron (see Figure
1.4). When the momentum transferred to the quark is high gimoit is ripped @ from the

electron

Figure 1.4: Deep inelastic scattering (adapted from [10]).

rest of the hadron. Let the four momentum of the leptork laed that of the quark bp. Let
the (space-like) momentum transferred to the quarkjbek — k’. Deep inelastic scattering
pertains to the scenario wh&)? = —q? is large such that the QCD coupling is small at this
scale. Because of this, strong interactions can not prahenguark from getting rippedfio
from the rest of the hadron. The quark, however hadronisesi¢in subsequent soft processes,
as in all QCD processes.

To find out the cross-section in deep inelastic scattertrig useful to go to the centre-of-mass
frame of the lepton-hadron system. As the momenta of thetephd the hadron are very
large, one may neglect their masses. Further, at high enmaghentum, the hadron may be
thought of as being composed of quarks and gluons with marengitudinal to the hadron
momentum itself. This is because, the constituents can gaange transverse momentum
only through the exchange of hard gluons. Such a procesdwilighly suppressed due to
the smallness of the strong coupling at high energies. Haheemomentunp of the quark
undergoing the interaction may can be writtenpas: xP, wherex € [0,1]. However, the
probability distribution for the quark to have a momentumactron x cannot be derived in
perturbative QCD. This depends on the soft processes iegtaivconfinement of constituents
of a hadron, which is beyond the purview of a perturbativdyss

The standard way to treat this is to parametrize our ign@afthe hadronic wave functions
in terms of probabilities that a quark or a gluon carries atfom of the momentum of the
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hadron. These are known in the QCD literature as partonifalision functions. One relies on
experimental observations to determine these distribdtioctions. The leading contribution
to the cross-section in deep inelastic scattering in terfiisese functions is given by [10]

(1 + hadrons— |’ + hadrons)= fo 1 dxy. fi(x)o-(l(k)q(xP) S I(K) + g + xP)), (1.8)

where fi(x) denotes the distribution functions. In the leading appration, one gets the
differential cross-section

2

dxd@

0'(| + hadrons— I’ + hadron§ = Z f-(x)q22ﬂ—a2{l +(1- Q?/x9% (1.9)
i Q4 » .

whereg? = —Q? ands is the standard Mandelstam variable of the lepton-hadrattesing.
Notice that if we remove the kinematic dependence of the Q@%ection%ﬂ, rest
of the the term depends only orand not onQ?. This is known as Bjorken scaling and implies
that the structure of a hadron appears the same indepenfiémt snomentum transfer by
the probe. However, higher order QCD corrections lead ttatio;m of the scaling law. The
guark undergoing electromagnetic interaction with theédepcan lead to emission of gluons
and quarks through soft processes. Processes with colingasion of gluons or quarks lead
to large corrections, of the order af;(Q?) In(Q?/n?) to the Parton distribution function, where
mis the mass of a quark. Thus, the distribution function isiality given by f;(xQ?) which

flows logarithmically inQ?, as governed by Altarelli-Parisi equations [10].

One of the earliest of the deep inelastic scattering exparia) the SLAC-MIT deep inelastic
scattering experiments, was done in 1960 (see [10]). These a 20 GeV electron beam that
was scattered from a hydrogen target. The scattering radenveasured for large deflection
angles which correspond to deep inelastic scattering ofrele df a proton. The largest part of
the cross-section came from deep inelastic scatteringantherend state is comprised of a large
number of hadrons (apart from the deflected electron). Tédtsefrom the parton model well
described the observations from these experiments. Thexiexgnts also showed that Bjorken
scaling holds true at 10 percent level for value€uafipto about 1 GeV [10, 27]. Because of a
slow logarithmic flow of the parton distribution functiontiienergy, violation of the scaling is
seen only after accumulating more data over a large rangesofjg transfers.

e Hard scattering processespart from the type of processes discussed above, yet anoldiss

providing perturbative tests of QCD is the hard scatterihdpigh energy hadronsfbeach
other. However, this is the messiest class since in all suobegses the particles in both
the initial and final states are hadrons. In this case, eviéialistates will involve some soft
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interactions of quarks and gluons with only a small transsenomentum being exchanged.
Such interactions can not be dealt with perturbatively. E\esv, the underlying QCD process
in the hard scattering part can be computed perturbativadysider the example of two high
energy protons colliding with each other and leavig in the final state in addition to other
hadrons as shown in Figure 1.5. The leading order contdbut the scattering cross-section

Figure 1.5: Hard scattering (adapted from [10]).

(in the centre of mass frame) computed using perturbativ® Q€ written as

1 1
O'(pp —e'e + hadron% = f dxlf dxzz fi(x1) fﬂxz)a(d(lel)qi(szz) - e*e‘),
0 0 i

6,2 Ana?

§ fna” 1.10
3 38 (1.10)

a(dqi - e+e‘) =
wherex; and x, denote the fractional momenta of the quark and the antikgaad S'is the
standard Mandelstam variable for the underlying QCD pracé@$us, using inputs on parton
distribution functions derived, for example, from deepaséic scattering experiments one can
calculate the cross section in hard scattering processkesaanpare with experiments.

Historically, the first of scattering experiments to stuttysg interactions was in proton-proton
collision [10]. At energies higher than 10 GeV or so, largenber of pions were observed.
The characteristic feature of these experiments was tleapitbtns were mostly found to be
collinear with the collision axis. Only a few events are alisd where there are pions with
large transverse momentum. It has been possible to analgheesents in perturbation theory
and compare with experimental results. As an example, évowariant mass distribution in
pp collisions at 1.8TeV was measured by the CDF collaborati®j. [The results were found
to be comparable with leading order QCD calculations.
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1.1.4 Non-perturbative QCD

Although a non-perturbative study of non-abelian gaugeribs is a dificult subject, considerable
progress has been made in this direction over the last 48.y&ame of the techniques which have
proven to be very important in this progress are as follows:

Lattice gauge theory

This is one of the most widely used techniques in non-peativé QCD which allows numerical
computation of various experimentally measurable quastin hadronic Physics. Lattice gauge
theory (LGT), invented by Wilson [23], is based on compuataf Feynman path integral on a lattice
of Euclidean space-time restricted to a finite volume (s& fi@ an introduction). The space-time
points are assumed to lie on the sites of a hyper-cubic éatticizeL with a unit cell of sizea (see
Figure 1.6). The finite lattice size provides an ultra viatatof while the finite volume provides
an infra red cutfi thereby making the theory finite and well defined. As one tdkedimita — 0
andL — oo, one approaches the infinite continuum space-time in Eemfidsignature. Physical
predictions for the continuum Minkowski space-time arenthgtracted by an analytic continuation.

Figure 1.6: Space-time lattice.

The QCD action in such a discrete space-time involves queldsfisitting at the sites and gauge
fields on the bonds of the lattice. One is, therefore, facatli somputingonly a finite number of
integrals in evaluating the Feynman path integral. The lem#ie lattice spacing and the larger
the sizel, larger the number of integrals needed to evaluate the pttgral. With faster and faster
computers one could approach the infinite continuum (Eeali) space-time. One expects that the
results in actual space-time can be attained as a continoutof the results in finite discrete space-
time. Nevertheless, with the advent of very powerful corepsjtit has now been possible to carry
out lattice computations with dynamical fermions also imngnaases. The computations are, by no
means, trivial and one has to address various issues asskstin the following:
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e Doubling problem If one naively extends the QCD action to discrete space-bme finds that
the fermion propagator has extra poles leading to the welkrdoubling problenof fermions
on a lattice. Removing these doublers requires one to ada &xtns to the lattice action. This,
however, destroys the chiral symmetry of the action eveherlitnit of zero quark mass. Other
forms of action have been proposed which remove the doubhelsestore chiral symmetry in
the continuum limit.

e Discretization error In writing the lattice action, space-time derivatives @do be written
as finite diterences. This leads to a discretization error. One is reduw add a suitable
combination of irrelevant operators to cancel the errodeoby order ina. This increases the
reliability of the results and may often be necessary dumtitdtions of computer power [38].

e Computation of background gauge field configuratiomhe Feynman path integrals are
associated with a factor of ex®} in Euclidean space-time. Thus, the contribution to thé pat
integral is dominant from configurations near whighs minimised. Such configurations can
be generated using a Markov chain. The path integral, tiserarried out using Monte Carlo
techniques.

e Computation of quark propagato€omputation of quark propagator involves inversion of the
Dirac operator from a quark of a given spin and color at a site tuark of another spin and
color at a diterent site. One is required to compute this between all theesfime points,
which turns out to be the most computationally expensiveipahe problem. This makes one
often work in the quenched approximation where the quarkiserQCD action are assumed to
be non-dynamical. In other words, they are assumed to beteijimeavy.

Lattice calculations indicate that there is confinement wdirgs inside hadrons and that there
is chiral symmetry breaking. Because of lattice gauge thabihas also been possible to study
hadronization of jets through soft interactions of quarksl gluons. Another very important
contribution of LGT has been in calculating hadron massedlagir decay constants. In many cases,
the technique yields values which are quite close to theraxpatally measured values within the
error bounds. A summary of the achievements of the techntgnebe found in [26, 30]. A lot
of progress has been made in lattice gauge theory recenthe dDthe major issues before LGT
has been regarding the extrapolation of quark mass downetghlgsical values of up and down
quarks. The next to leading order (NLO) correction in chpatturbation theory (ChPT) for pion
decay constant predicts a non-analytic behavieuf Inm2. The LGT simulation performed by the
MILC collaboration found a pion mass as low as 250 MeV and #tbilie existence of the chiral log
[24].
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LGT has also come a long way in the prediction of fundamen@D@arameters like the strong
coupling constant, light quark masses and heavy quark maske HPQCD collaboration carried out
three loop computations with dynamical quarks and obtamesdlts for the coupling constant with
substantially reduced errors due to higher order terms [P3¢se calculations have also been used to
obtain light quark masses to a good deal of accuracy (se€¢B@]review). LGT calculations have
also been carried out in Kaon Physics, in particular to olt@king angles, with encouraging results.

Another application of LGT has been in the sector of finite genature. At high temperatures
and densities quarks and gluons inside hadrons are beliewégtonfine into a free state known as
guark-gluon plasma (QGP). There has been a lot of work in Li€@fature that probed the nature of
this transition. Recentl-flavor LGT calculations done using staggered fermioneshown that
there is no true phase transition but thermodynamic vasabhdergo a rapid crossover in a small
interval of temperature [32]. Because of this, quantitiks the chiral condensate have a sharp peak
at some transition temperature. LGT calculations in [38]dated it to be around, = 176 MeV.
Using LGT calculations it has also been possible to evalegtgtion of state at high temperatures.
At temperatures large comparedTg QGP is found to approach the ideal gas state. Some of the
recent calculations can be found in [34, 35].

Large N

This technique was invented by 't Hooft [45]. Many featuréQ&D can be understood by studying
a ‘slightly’ different gauge theory where one considers am\§ldauge group instead of SU(3) and
then takes the limiN — oo. In this limit one is required to keegfN fixed for a sensible expansion.
This combination oN andg?, usually denoted a%, is known as 't Hooft coupling. The key feature
in this technique is that the perturbation theory can benged in a double expansion inand I/N.

In the largeN limit, one is then left with a perturbation series ifiNl, each term of which is a further
expansion in the coupling. There is a prescription which associates diagrams at ealen of 1/N
with surfaces of a given topology. The double expansion,tban be written as a genus expansion
for surfaces of dierent topologies taking a form

i NZ29£4(2), (1.11)
g=0

wherefy(1) arises in summing up all the diagrams with gegu$he leading order (in/N) diagrams

are associated with the topology of a sphere and are refeyrasl planar diagrams. In a pure gauge
theory, the first subleading diagrams ifiNlare associated with the topology of a torus. In the presence
of fundamental flavors however, the first subleading diagraave the topology of a disc. The main
crux is that, for largeN one may neglect higher order terms iyNLin the genus expansion, thus
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drastically reducing the number of diagrams to calculaterEhough SU{) gauge theory with large
N is different from QCD, it is believed that many of the qualitativatiees of QCD are preserved in
this limit. A detailed review of this method applied to QCDndae found in [46].

Although the largeN limit leads to an immense simplification, calculations igraptotically free
gauge theories turn out to be quite hard to carry out eveniglithit. This is because one is still
left with an infinite number of planar diagrams (the expansiol) to sum over. However, with the
emergence of AJEFT correspondenceit has now become possible to overcome thifidlilty, at
least in some corners of the parameter space.

AdS-CFT correspondence

The AdSCFT correspondence, first discussed by Maldacena and Kdgp&olyakov and Gubser
[48, 49], conjectures a duality between an SIy@auge theory and string theory in one higher
dimension. When the value of 't Hooft coupling of the gaugentty is large, the string theory reduces
to a theory of gravity. The duality then is between a quantueoty of gravity and a strongly coupled
gauge theory which lives on the boundary of the bulk spawe-th which the theory of gravity lives.
Further, in the limit of largeN, the quantum corrections in the bulk theory are suppregpadg rise

to a classical theory of gravity. Thus, in the limit of larfjyeand strong coupling, AJQEFT becomes

a very useful tool to study strongly coupled gauge theonesdmputations in a classical theory of
gravity, which are often quite simple to carry out, certgisimpler than summing up the series of
planar diagrams in the gauge theory!

The original work of Maldacena discussed the corresporelbatween a strongly coupled = 4
super Yang-Mills theory (which is obtained in the low enetgyit in a setup of large number
of overlappingD3 branes) and a classical bulk AdS space. A precise rulesefastcalculating
correlation functions of operators in the boundary gaugehfrom computations in the bulk gravity
theory. Following this work, various authors have investagl the duality in a variety of settings. We
will provide a brief review of the working rules of the corpgsidence in the next chapter as we will
be using them extensively in this thesis.

1.2 Chiral symmetry breaking

In QCD, the scale of chiral symmetry breakingSB) is close to the confinement scale. As a
consequencg;SB in QCD is a strong coupling problem, not amenable to pleatire techniques. So
it has been diicult to study this phenomenon analytically in QCD. Howeuethe largeN, analogue

of QCD some general results can be obtained analyticallgesaorrections, which are down by

3AdS stands for anti-deSitter space and CFT for conformal fletory
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powers of IN., can be controlled in this approximation [46]. An argumentyfSB in largeN. QCD
was presented by Coleman and Witten in [59]. The argumeragsdbon the following assumptions:
1) the largeN. QCD is confining, 2)SB is characterised by an order parameter given by a fermion
bilinear that transforms as a bifundamental under the kcraup, 3) vacuum corresponds to a state
obtained by minimizing anfeective potential as a function of the order parameter, artdelyarious
minima obtained do not have any accidental degeneracy egbect to the chiral group. In order to
calculate the #ective potential a s a function of the chiral bilinear, onedgto sum up the connected
diagrams. In the limit oN, — oo, diagrams with more than one quark loop drop out. One is
eventually left with a form for the potential that involvesiagle trace over flavors. Using this and
the assumption that there is no accidental degeneracyuthera argued that there is a spontaneous
breaking of UN;) x U(N;) chiral symmetry to vector W{;) in an SU{.) gauge theory. An exact
derivation of bothySB and confinement in a supersymmetric setup was given begedimd Witten

in [36, 37]. xSB has been studied using larijetechniques also in models which do not show the
phenomenon of confinement. One such model which has beemsesdly studied in literature, and

is also a topic in this thesis, is the Nambklona-Lasinio(NJL) model [41, 42]. The importance of
this model lies in the fact that it can be argued to arrive anltdw energy limit of largeN. QCD. We
briefly review the model in the following.

1.2.1 NJL model

In their original paper, Nambu and Jona-Lasinio consideheir work as a model for nucleons
interacting through a four-fermi term. A nucleon-antireah bound state was identified as a pion. If
the nucleons are replaced by quarks, one gets NJL model &mksgjult has been argued [43, 44] that
such a model likely emerges from QCD as d#lieetive low energy theory. The Lagrangian density of
this model is given by

L =T,170,0L0) + Trej17*0u0R0j + 97 (0Laj ORek) CrailiLs))- (1.12)

whereq,. and gr denote Dirac spinors for left-handed and right-handed lquagspectivelyw, S
are color indices and, k are flavor indices. Note that the Lagrangian is symmetriceurathiral

transformation

Otej = ULikOLoks ORej = URjkOReks (1.13)

where U, Ug are unitary matrices in flavor space. The four-fermi termhim Lagrangian gives rise
to an attractive interaction between the quarks of the twiakities. This leads to the formation of a
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chiral condensate in the vacuum through a dynamical brgaKichiral symmetry.

It is believed that at energies below the QCD scatgp, the model captures the dynamics of
QCD. There is no systematic way of integrating out the gawgd<iin QCD to derive a low energy
effective theory of fermions. However, a scenario for how ong tmato do so was described in
[43, 44]. The basic point is that the integration of the gafigjels would lead to anféective multi-
fermi interaction that should be of short range of ordekdcp. The leading term corresponding to
one gluon exchange diagrams gives rise to a four-fermi texrim ahe NJL model. One important
fact about the NJL model is that it is not renormalisable aasitb be thought of with a finite energy
cutaof. This cutdt should be of the order of QCD scale for applications to QCD.

The Lagrangian in (1.12) is equivalent to
_ . _ . _ _ 1
L£=70,iy0,0. + Griy"9,0r + G.Mar + GrM gL — @tr(MTM). (1.14)

whereM is color invariant. The operator ‘tr’ represents the trandlte spinor index. Solving the
equation of motion foM andM™ and plugging into equation (1.14), one reproduces (1.1B)s iB
true even at the quantum level since the Lagrangian is gtiadnaM andM’. The bosonic fieldv
plays the role of a chiral bilinear of the quarks given by

Mij = 0°0r;0Lis (1.15)

where we have now made the flavor indices explicit. The rhalu@s a sum ovel, colors.

To discuss symmetry breaking in this model, let us first exptae action in (1.14) in terms of
Dirac spinorg such that the chiral spinors are givengas= P.q andPrg. The action then takes the
form

£ =Giy*8,q+G(MPg + M'P)q - g—lztr(MTM). (1.16)

We now need to integrate out the fermiqro get an &ective action purely in terms of the bosonic
fields,M, MT:

1
Seft = Nc[ln detD — Ncngd4XtF(MTM)],
Dyy = (iy"d, +iMP_ +iMPR)s*(x - y). (1.17)

For largeN. the dfective dynamics becomes classical since fluctuations geresssed by factors
of 1/N.. Chiral symmetry breaking leads to a non trivial v.e.v foe tthiral bilinear which can be
found from the classical equation of motion. In terms of thednic fieldsM andM?, it means a non
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trivial vev for M itself. For a Poincare invariant vacuum, the v.e.vibshould be a constant matrix.
Now, chiral symmetry of the Lagrangian (1.12) can be seem fits invariance under the following

transformation:

oL = ULaL, Gr = UrGr,
M’ = U MU/, (1.18)

The matrixM can be written a$iU whereH is a Hermitian matrix and) a unitary matrix. Thus,
using the chiral transformatidd, = UUg, we can go to a frame wheM is transformed into a real
diagonal matrix diag{i, 4z,...An;). Using the relation In d& = Tr InD, we get the fective action
as

N¢
Setf = NCZ(TrIn(iy"ﬁﬂH/li) —/lzfd“ (1.19)
i=1

In the above, we use the notation ‘Tr’ for trace on space-tme Dirac indices. Clearly, the action

is symmetric with respect to interchangeds. Hence, in the absence of accidental degeneracies, the
vacuum must be characterised by the same value for alljtheLet us denote this value & The
equation of motion (gap equation) s given by

1 2R
Tr<iy#6# + iR> RN (1.20)

The lhs can be computed in momentum space as follows:

1 ~ 7“k/,
Tf<m> - '%f )i 1P -
d*k 1
= 4RV, TR (1.21)

The integral can be evaluated by analytically continuingaclidean time. Before we do that, recall
that NJL model is not renormalisable and requires an expligi cutoff. Thus the integral ok in
(1.21) should be computed with a ctite.. With this, the gap equation yields

R

AZ
- Rin(1 + @))) =0. (1.22)

This has two possible solution® = 0 and 1- %In(l + Q—i) = AngN The first one corresponds to a

vacuum that preserves chiral symmetry and the second oa&sdite However, the second solution
exists only when the four-fermi coupling exceeds a criticlieg, given bygzN, = ‘f\—’f Further, one
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finds that for all values of coupling abogg, only the second solution is the true vacuum solution. To
see this, consider the second derivative of tfieative action wriR. The Euclidean action gives the
Hamiltonian up to a sign change. Therefore, in the liRis 0, the second derivative of energy wrt

Ris given by
&’E d?Ser
R - YR (1.23)
1 1
- (V“(@_g_%)' (1.24)

For values ofy above the critical value, this expression is negative shgwhatR = 0 is a maximum
of energy. Thus, for such values gfthe vacuum with broken chiral symmetry is the true vacuum.
For values ofy below the critical value, the second derivative is posiéimeR = 0 is the true vacuum.

The breaking of chiral symmetry is associated with masdisdsistone bosons. (The analogs
of these in QCD, foNs = 2, are the pions.) In order to demonstrate this, let us censite NJL
action given by (1.16). One can decompose the matriasM = H(X)exp(gn(X)) whereH(x) is a
Hermitian and the exponential is a unitary matrix of rék The matrix fieldr(x) will turn out to be
the field representing the Goldstone boson. Cleaily) does not appear in the last term of (1.16).
We will now argue that it can also be transformed away fromather non-kinetic term. To see this,
consider the following change of varialiiéx) = exp(igys(X)/2)q (X), H(X) = €97/?H’e797/2_ Under
this change of variables, the middle term in (1.16) can beesged as

G(MPg + MTP)q= G €9/?(HEY P + e '9"HP, )e¥s" 2
=gHq. (1.25)

The fieldr(x) is completely removed from this term. However, these naappear in the first term
of (1.16) on re expressing this term in the action in termg ofThen(x) dependence of the action
would now be purely through derivative terms. Thus therétdmnany potential term for pions in the
effective action and hence they are massless.

Much of the work done in this thesis pertains to a scenarisecto NJL model. We study various
aspects of chiral symmetry breaking in a string theory médelvn as Sakai-Sugimoto model that
gives rise to a non-local version of NJL model in the low egemeak coupling limit. The model
can also be studied in the strong coupling limit for which aequires the use of the AASFT
correspondence. In the following chapter we will presentiefliscussion on the correspondence
and its working rules.



Chapter 2

AdS/CFT correspondence and holographic
QCD

The largeN limit of a field theory is a mean field approximation in whicheocan study quantum
fluctuations as AN corrections. However, despite this drastic simplificati@cause of largsl limit,

it has not been possible to exactly identify the mean fieldhyn gauge theory. This is because even
in the limit of N — oo one is left with an infinite perturbation series in 't Hooftuging which
can be evaluated only to a few orders. In recent years, howeestatus has dramatically changed
with the emergence of a new tool to study lafgegauge theories at strong coupling: the AQBT
correspondence [48]. This has been one of the very impoctandeptual and technical advances in
the subject. Providing a duality with a theory containing\wpy, it leads to a dramatic simplification
of the problem and allows one to identify the mean fields wedl In many cases, the AT
correspondence has also aided quantitative study of $yrongpled gauge theories.

The origin of the correspondence dates back to 1997 whenadaith conjectured a duality
between a gauge theory in{3)-dimensions and a string theory in AdS; x S° space-time [48, 49].
This was not the first time that a connection between striegrihand a gauge theory was made.
In QCD, the phenomenon of confinement has been conjecturgdéaise to an electric analog of
the standard Meissneffect for magnetic flux in a superconductor [20]. In this dugdemeonductor,
color electric flux lines between quarks and antiquarkseadise to condensation of color magnetic
monopoles in the QCD vacuum. This gives rise fi@etive string like degrees of freedom between
guarks and antiquarks. Although, in QCD itself it remain®njecture, this picture has been verified
in a closely related supersymmetric analog of QCD [36]. Hmveattempts to explain these features
using fundamental strings did not meet with success. THectause fundamental strings give rise
to a spectrum of particles (like massless spin-2 statesyiwdan not be seen in experiments. This,
along with the emergence of QCD as a successful theory afigirdgeractions shifted the focus of

19
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string theory to Planck scale physics. Slowly it began torgeas the prime candidate for a quantum
theory of gravity. This string theory, also referred to asttmeory of fundamental strings, is in a very
different context and is based on the assumption that the fumdaihparticles arise from string-like
degrees of freedom. The AAS-T correspondence arose from a rather surprising commmdogitween
string theories and strongly coupled field theories uncayén connection with studies of dualities
in string theory.

To make the thesis self-contained, in the following, we Wilefly review some salient features of
the ADSCFT correspondence and its application to QCD-like thesoi&@nce there are many excellent
reviews (e.g. [55]) of the subject available, we will not ga details and will concentrate only on
those aspects which are of direct relevance to our work ithtbss.

2.1 The Conjecture

One of the plausibility arguments for a connection betwegaage theory and a string theory is
based on larg#l limit of an SUN) gauge theory. As mentioned before, the Feynman diagrathg in
perturbation series can be arranged into a genus exparssion a

i NZ294(). (2.1)
g=0

In the presence of only adjoint fields, the connected diagranthe genus expansion are associated
with closed surfaces. The leading contribution comes frafases of spherical topology and
subleading contributions from spheres with one or moredhesi. This is similar to what one finds in
the perturbation series of closed oriented strings if oeatifies N with the closed string coupling
constant. In spite of such indications for a connectioemafits at a derivation by reformulating gauge
theory in terms of the gauge-invariant Wilson line operatmet with only a limited success and to
this date this program remains incomplete (see [52] andarbes therein).

The work of Maldacena in [48] provided affirent handle on this problem. He conjectured that
there exists a one to one correspondence between a striony ithed + 1)-dimensional space-time
and a gauge theory living in theedimensional boundary of this bulk space-time. Since it Wz
proposed various examples of this duality have been cartettand tests have been devised. Perhaps
the simplest of these is the original proposal of Maldacdreaduality betweenV = 4 super Yang-
Mills theory in 4 space-time dimensions and a string theordSs x S°. The gauge theory arises
in the world volume of overlappin®3 branes' at weak coupling in the decoupling limit, which is
defined as the limit in which the string lendth— 0 keeping the field theory quantities fixed. Strong

LAn extensive discussion dd-branes can be found in [51].
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coupling limit of the same system gives rise toAahSs x S° geometry in the near horizon limit. This
indicates a connection between the two seeminghedint kinds of theories. In the following, we
elaborate on this connection.

2.1.1 OverlappingD3 branes

D-branes are objects in string theory on which open strings ek Dp brane, in particular, is a
p-dimensional extended object whose excitations are giyeopen strings with ends fixed on the
world volume spanned by thep brane. One may also consider a set of overlapfimgbranes.
An extensive study of branes and such systems of branes ctmuibe in [51]. We briefly present
properties of such a system in this subsection.

Consider a set dfl; overlappingDp branes. Each open string describing the fluctuations oéthes
branes is associated with two Chan-Paton indices at the eads running from 1 tdl.. Effectively,
the open string spectrum gives rise to an adjoint repregentaf U(N.). The branes can also source
closed strings. They haw, units of charge for a (p1)-form RR potential. The interaction between
D-branes can be studied using interactions between opewgstriTheD-brane interaction can be
treated perturbatively for weak string coupling. Ry overlappingD-branes, perturbation theory
remains valid folgsN, < 1.

In this approximation one may now like to study the systenhalow energy limit. In this limit,
the brane system gives rise to aNd) gauge theory inf + 1)-dimensions with 16 supercharges
with the coupling given bygsN.. The casep = 3 is particularly interesting as this gives rise to
superconformal field theory in (8 1)-dimensions: N = 4 SUN.) super Yang-Mills theory. The
spectrum consists of gauge fields, six scafaamd four spinors, all transforming as adjoint under
the SUN,) gauge group. This is a CFT with the conformal symmetry gr8@42 4). There is an
R-symmetry group SU(4) that rotates the spinors and scataosg themselves. In all, the theory has
a symmetry under the superconformal group SU&,2ne of the key things that makes the theory
simple to study is that due to superconformal symmetry thipliog gsN. does not get renormalised.

A single D-brane in flat space does not backreact on the geometry streinge for small string
coupling the coupling to gravity is also wedkHowever, when we consider a very large number of
D-branes, the system leads to a significant backreactigyNif > 1. In this case, the system can not
be studied perturbatively. However, there exists classwations to supergravity theories that arise
from string theories in the low energy limit which have prdpes expected of a system of overlapping

2The extra U(1) symmetry in U.) describes only the dynamics of center of mass degree addraeof the brane
system

3The six scalars correspond to six directions transverskedtanes along which they can be separated in the 10-
dimensional space-time in which string theory lives

4massx 1/gs and Newton’s constant g2
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D3 branes. To look at what these solutions are, consider & hlale solution in type Il string theory
with an electric chargél, for the same (31)-form RR potential as carried by the set@8 branes.
In the string frame, the metric and the dilaton of the sumeity solution with the same quantum
numbers as that of the brane system are given by

3
__§-12 2 1/2 i2 1 2., 24 2
d& = —f-Y2(p)f, (0)dt2 + f (p);dx + f+(p)f_(p)dp + p?dw?,

& =gy flo)=1-r/p" (2.2)

In the abovet, x are the physical directions arising from the world volumelw D-branes. The
parameters, are related to the RR charf& and the mass per unit voluni as

rr_ = /4ngsNel2,  5r% —r* = 8(2r)3g2IEM. (2.3)

There is a horizon at, and a singularity at_. The horizon should cover the singularity, irg.> r_

to ensure that there is no time-like naked singularity. Tkieeenal caser, = r_ is particularly
interesting as it preserves one half of the supersymmetriies) dimensions (16 supercharges). This
is similar to what we have in the3 brane system. Defining a new radial coordimatey r* = p*—r,

the extremal solution looks like

3
ds = H‘l/z(r)(—dt2 + Z d)&z) + Hl/z(r)(dr2 + rzdwg),
i1
e =gs, H) =1+ri/r', 12 = VargNiI2. (2.4)

In the new radial coordinate the horizon igat 0. At this stage we should note that this description
requires the supergravity approximation of string thedityis is allowed only when the curvature of
the space-time is much smaller than the string scale. Thisnesr, > | and hencgsN, > 1. We
have already learnt tha' = 4 super Yang-Mills theory arises from a system\@foverlappingD3
branes in the weak coupling limig{N. < 1) at low energies. Here we see a classical solution of the
supergravity theory with quantum numbers identical to daesyf overlappindN. D3 branes, which

is a valid solution only in the semiclassical limit which tegsgsN, > 1.°

In effect, we may have a completelyfidirent looking gravity description in the strong coupling
limit of a largeN. gauge theory. In fact, as we will discuss in the next secitas,the near horizon
region of the above geometry that emerges as the dual o¥/tke4 super Yang-Mills theory. In the

SAlso note, to suppress string loop diagrams, the dilatontroessmall which requiregs < 1. Thus, the strong
coupling limit and suppression of string loops togetheo aéxjuireN, > 1.
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near horizon limit{ < r,), the metric in (2.4) reduces to
M\ o : i2 M\ 2 20 o
d< = (r—) (—dt + > d )+ (T) dr? + r2daw? (2.5)
+ i=1

This is anAdSs; x Ss geometry where both the spaces are of radju3he AdS space has a boundary
atr — oo. (A light ray can travel t& — oo in finite time.) The boundary at infinitecan be added to
the space and the metric can be written in Poincare cootinat?/r which includes it:

r2

de = ; (-dt® + d® + dZ) + r2dw?. (2.6)

In these coordinates, the boundary of &&Ss is atz = 0. Further, it is easy to see that the metric is
conformally flat near the boundary= 0.

One of the important things to note about the geometry in) (8.68s isometry group. Clearly, the
S® in the product space leads to an SO(6) symmetry. The isasaifAdS; are most easily seen in
the coordinates in which the space is defined as the followymgrbolic surface:

4
X+xZ- D Xe=r2 2.7)
i=1
The AdSs metric is inherited from the flat metric of the underlying spa
4
ds' = -dX¢ - dX¢ + > dX. (2.8)

It can be verified that this gives rise to tRelS; metric by comparing with its form in Poincare
coordinates in (2.6) using the following substitution:

z r2 4+ x2 —t? z r2 —x2 +t?
=21 +—), — _(1_ +—)
%o 2( - z2 X 2 z2
Xg = %t, X = %x‘ for i=1,23. (2.9)

The form in equations (2.7), (2.8) shows that théS; space has an isometry group SO(2,4). This
is also the conformal symmetry group 8f = 4 super Yang-Mills theory in (3 1)-dimensions.
The SO(6) symmetry can also be compared toRhgymmetry in the super Yang-Mills theory. On
inclusion of fermions, the isometry of near horizon geomegets enhanced to SU(242. This is
precisely the super conformal symmetry of iINe= 4 super Yang-Mills theory, indicating strongly a
connection between these two descriptions of a systela oferlappingD3 branes.
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2.1.2 The duality

In order to understand the duality in our example of overilagD3 branes more precisely, let us
compare the two pictures of the system again. In the firsupodf overlappind3 branes at weak
coupling, one has open strings with ends confined on the brame closed strings sourced by them
propagating in the bulk of (9 1)-dimensional space-time. The low enerdieetive action obtained
after integrating out the massive string states is of thefor

Stot = Sbrane+ Sbulk + Sint- (2-10)

The partSprane IS given by the\=4 super Yang-Mills theory and higher derivative correcsicoming
from integrating out the massive string modeSy i iS the supergravity action in the bulk plus
its higher derivative correctionsS;,; gives the interaction between the Yang-Mills fields and the
supergravity fields, which will also have higher derivatoarections. However, in the decoupling
limit (explained below), the rhs of (2.10) essentially redsi to the super Yang-Mills action plus a
free supergravity action. Let us see in detail how this happe

The decoupling limit of the above system is defined as thetlimwhich |s — 0 keeping
field theory energy scales and Yang-Mills coupligg\. fixed. In this limit Newton’s constant
k ~ gd? — 0. Therefore, gravity decouples from the Yang-Mills degreé freedom and gives
rise to a free supergravity action. In this limit, the higlderivative corrections to the Yang-Mills
part of the action also drop out aisy,ane reduces to puréy’ = 4 super Yang-Mills theory. The total
effective action is thus given by the sum of two decoupled pé#ntsA = 4 Yang-Mills action and the
free supergravity action.

Let us now study the system using the black 3-brane supeétgsalution given by (2.4). Because
of the gravitational potential, the energy of a particle at is redshifted as measured by an observer
at infinity sinceE.,, = HV4(r)E,. If the observer now decides to study the low energy exoitati
he will have to study two kinds of modes: the long wavelendstv (energy) modes propagating in
the bulk and all modes (including short wavelength) progiagan the near horizon region of the
geometry which appear redshifted (at> ). In the decoupling limit, the size of the horizon shrinks
(r, — 0) for a fixed wavelength of the bulk modes. Thus, the intévadbetween the low energy
modes in the bulk and the modes in the near horizon regiorscstatned & at low energies. One
is finally left with two decoupled theories: the bulk supeawgty theory in flat space-time and the
supergravity theory in the near horizon region given byAaiss x S° space-time. Thus, we find
that the bulk supergravity theory in flat space-time is a cammecoupled part in each of the two
descriptions of the system. This strongly motivates us ¢aiidly the leftover parts, th&/ = 4 super-
Yang Mills theory with supergravity (type Il superstringetiry) inAdSs x S°.
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AdS/CFT correspondence gives a precise recipe for calculatimgelation functions of
observables in the gauge theory using the bulk string thelimgse bulk calculations get simplified
for a largeN. boundary field theory in the strong coupling limit as expéarbefore. To explain the
recipe, let us consider a massive scalar figld x) in the bulk ofAdS;,; space-time whose value in
the boundary is given by a fielgh(x). ADSCFT correspondence prescribes a relation between a field
in the bulk and a field theory operator in the boundary CFT.sThliere is some operatorin the
boundary theory which corresponds to the bulk scalar field.

Let us denote the string (or supergravity) partition fumetior the scalar fielg(z x) in the bulk
(which becomegy(x) at the boundary) b¥Z[¢o(X)]. The ADSCFT correspondence states that

Z0s(9) = (e [ 4o90W)) 211)

CFT

In principle, thelhs can be computed independently of the rhs from the stringyhempagating in
the bulk. In practice, this becomes simple essentially amlype semiclassical supergravity limit in
which we can seZ[¢o(X)] = exp(—1[#o(X)]), wherel[¢o(X)] is the classical onshell action for the
field in the bulk with the boundary value given by(x). Therhs gives the partition function of the
boundary theory evaluated after deforming it by a souraa fer the boundary CFT operatoX(x). It

is also clearly the generating function of correlation fiuimas of the boundary operat6h(x). These
can be computed by taking appropriate derivatives wg(ix).

For our example of scalar field in the bulk, the classical syia&ity action can be computed in
the following way. Consider th&dSy,; metric in Poincare coordinates given earlier, which we a¢pe
here for convenience

ds? = Z—lz(nde‘de +d2). (2.12)

As explainedz is the extra spatial direction angl, is the d-dimensional boundary (which is
approached ag — 0) Minkowski metric in the mostly positive signature. In tabove, we have
chosen the AdS radius to be unity without any loss of gertgrdlihe action for the scalar field with
massmin the bulkAdS space-time is given by

| = f A" X VG (9" OmpOngs + MP¢7), (2.13)
AdS

wherex™ denotes the coordinatez¥‘) andg™ is the AdSyq.1) metric in Poincare coordinates. For
simplicity, let us consider the-independent solutions. Ttrdependence is given by the equation of
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motion
d2
Z02¢ + 20,4 — (NP + Z)gb =0. (2.14)
The solutions to the equation of motion has the UV (smdtlehaviour given by
$(2) = ¢-2" + ¢.2" (2.15)
where

42 + 4. (2.16)

4
I
Nl
H
NI

The second term in (2.15) is referred to as the normalisaidigisn and the first term as the non-
normalisable solution. This nomenclature can be undedsasdollows. Consider the on shell action
for the scalar field. It is given by the boundary term

Sos = Izin?)fdzd’x\/@gzngazqﬁ
- IZingfdchxz(l‘d)w@. (2.17)

For the solution containing the, term only the on-shell action is finite. It is in this sense a
normalisable solution. The_ part is non-normalisable whenevet + 4n? > 1. & A non-zero
non-normalisable mode is required in the solution whend#weiboundary CFT is deformed by the
presence of a source term for the operadodual to the scalar field. One can now compute the
supergravity action for the scalar field (with x-dependetocy and the correlation functions for the
operatoiO. In particular, the two point correlator obtained afterutagising the action, is given by

(2h, -dr(h,) 1

(O(X)0(X)) = 920 (h, — d/2) |%, — K2

(2.18)

We see thah, gives the conformal dimension of the CFT operaiorThis is in conformity with the
interpretation of the non-normalisable part of the bulldfia$ the source f@ sinceh, + h_ = d. One
can also compute the vev of the operaior

<0()?)> = (2h+ - d)¢+()?), (2-19)

where we have now given atidependence to the parameter multiplying the normalisailgisn.

5Whend? + 4n? < 1, both the modes are normalisable and they give two equivdéscriptions of the same CFTs.
’Computation requires a careful renormalisation (see [56])
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We thus see that there is a connection of the source of thatmpén the boundary CFT with the non-
normalisable mode of the bulk classical field and that ofwéeof the boundary operator with the
normalisable mode. Although in this example we have comsdenly scalar fields in the bulk, the
duality actually extends to other kinds of fields too. As aaraple, the stress-energy tensor operator
in the boundary CFT is dual to the metric field in the bulk.

One of the very important concepts of the AGET duality relates to the interpretation of the
extra radial direction in the bulk as the energy scale of thenbary field theory and the JBV
connection between the two dual descriptions. This relatan be motivated from the scaling
symmetry of the AdS bulk metric in equation (2.5) (excludthg last term which denotes &)
under K — AX,t — At,r — r/2). Since the boundary coordinates and the radial coordsgtie in
the opposite way to keep the metric invariant, approachiegobundary of thédS from the bulk
side (which is the IR limit in this description) is equivaten taking the UV limit in the boundary
field theory.

It is well known that UV divergences appear in correlationdtions in a quantum field theory.
According to AASCFT correspondence, UV divergences in the boundary fieloryh&hould appear
as IR divergences in the gravity theory in bulk. This giveg ttio a novel prescription for dealing with
boundary field theory divergences through renormalisatiche IR divergences in the bulk. This is
called ‘Holographic Renormalisation’. In fact, the resuttr thevevof the CFT operator and the two
point correlator we quoted above are obtained only aftelopaing a holographic renormalisation.
To carry out this procedure one has to isolate the divergentg of the bulk action at the boundary.
One is then required to add boundary covariant counter tarhish cancel out these divergences.
This has developed into a whole new subject by itself andysi@ the scope of this short review of
AdS/CFT correspondence. We refer the interested reader to tagedkanalysis given in [57].

2.2 AdSCFTin QCD

Originally, AdS-CFT correspondence was proposed only pecgl theories where the string theory
lives in a bulk AdS space-time and the boundary field theorg superconformal field theory.
However, the general idea of AAS-T correspondence has been extended beyond this and dual
pairs have been conjectured for theories with lesser numibsupersymmetries and even for non-
supersymmetric theories [53]. Gravity duals have also lseygested for QCD like theories. In
practice, there are two approaches in applying /&F correspondence to QCD. In one approach,
one starts with QCD and attempts to construct a five-dimeasioulk theory by fitting some of the
parameters using QCD itself. This is usually referred to d§YACD. In the other approach, one
starts with a basic string theory setup and tries to deriveC®<Qke theory using the duality. This
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approach is known as holographic QCD.

2.2.1 AdSQCD

In this approach, we look for a 5D bulk gravity theory with apgpriate field content that reproduces
the properties of QCD. There have been several attemptsiaindevarious quantities in QCD using
such a setup. One of the first models to sty@®B using AAEQCD was discussed in [54]. In this
work, the 5D theory has four free parameters. The numberlof€dixes one of them and the other
three parameters are fitted using the measprateson mass, the pion mass and the pion decay
constant. Other hadronic properties can then be deducedtfie model. FoxSB, the important
boundary operators are the chiral quark current and thalctandensate. These are dual to bulk
chiral gauge fields and a pseudo-scalar respectively. Taeesiime chosen is af\dS; space with

a short distance cufib(the AdSs metric in (2.6) withz cutof before infinity). The cutfi in the
metric provides a scale which is crucial for reproducingpemties of a confining gauge theory like
QCD. In this space-time one can solve for the classical cordigons of the fields. The solutions
have parameters which are fixed using the operator-fiel@spandence and the data on ghmeson
mass, pion mass and pion decay constant. With this, one ¢euiate various other meson masses
and decay constants.

2.2.2 Holographic QCD

As stated earlier, multiple overlappimtbranes realise non-abelian gauge theories in the low gnerg
limit and therefore provide the basic setup to study holphi@QCD theories. Flavor degrees of
freedom can be also be added to this setup using additidpabnes intersecting the ‘color’ branes.
Below, we will describe earliest models along these lines.

Witten’s model

A holographic model for the Yang-Mills part of largé. QCD was proposed by Witten [50]. At
strong coupling, it is provided by the near horizon limit betsupergravity solution (in Type lIA
theory) having the quantum numbersNf overlappingD4 branes, filling the (3 1)-dimensional
space-time directiong’ (u = 1, 2,3 and 0) and wrapping a circle in tix& direction of radiusR,.

At weak coupling and at energies much smaller than the stuade, a set of overlapping4
branes gives rise to gauge fiells fermions and massless scaléxsi being the index for directions
transverse to th®4 branes. All these fields arise from the massless open stsingtching between
the D4 branes and are in the adjoint representation ®.)J(@iving rise to a (4 1)-dimensional super
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Yang-Mills theory with 't Hooft coupling
As = (27T)ng|ch- (2.20)

If one of the directionsx, is compactified orS* with radius R, and we impose an antiperiodic
boundary condition on the fermions, then all the fermionls m@come massive with masses of the
order of the Kaluza-Klein scale/R,. Furthermore, scalars will also acquire masses of the satee 0
from fermion loops. This leaves out only the massless gaaigsfiat low energy. Supersymmetry
is completely broken and at energies much lower than thezqaklein scale, the theory on th4
branes reduces to a pureNyj Yang-Mills theory in (3+ 1) dimensions.

In the dual bulk picture, the decoupling limit for a set of dapping D4 branes allows us to
replace it by the dual geometry. This geometry can be olddmen the type I1A supergravity solution
for non-extremabD4-branes by making wick rotation of one of Euclidean spalii@ctions into a time
direction. In the near horizon limit, it is given by

U 3/2 R 3/2 du2
4 = (ﬁ) (nﬂvdX‘de+f(U)(d)(‘)2)+(U) (f(u)+u2dgi),
UL _ 21N, LW
& = gs(ﬁ) , Fa= e f(U)=1- g5 (2.21)

wherern,, = diag(-1, +1, +1, +1) andUy is a constant parameter of the soluti&is related to the 5-d

Asa’
4 *

the volume form and the volume of a ut.

Yang-Mills coupling byR® = Also, dQ,, e, andV, = 87?/3 are respectively the line element,

The above metric has a conical singularityJat U in theU — x* subspace which can be avoided
only if x* has a specific periodicity. This condition relates the radifithe circle in thex* direction
to the parameters of the background as
2 (R3\?

For 15 >> R the curvature is small everywhere and so the approximatoa tlassical gravity
background is reliable. Thus, the model presents a settgb$eifor studying strongly coupled gauge
theories without supersymmetry. Extensive studies of cenfient have been carried out in the model
by Witten [50] and Gross and Ooguri [64].

An important fact to note is that the the model actually gies to the gauge part of a N{) QCD
only in the weak coupling regime, i.e., whda << R¢. Consider the confinement scale generated
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through dimensional transmutation in thiéegetive Yang-Mills theory in (3 1) dimensions,
1 3
A ~ — exp(-487°R¢/111s). (2.23)
7Ry

In the weak coupling region, it is much smaller than the Kalzein scale, which is the high energy
cut-of for the dfective theory. In the strong coupling regimi, >> Ry, this relation gives the two
scales to be of the same order. Therefore, in this regime thero separation between the masses of
glueballs and Kaluza-Klein states. Since the supergraegyme is obtained precisely in the strong
coupling limit, the bulk theory cannot exactly reproduceNy)(Yang-Mills. However, one might
expect, qualitative features like confinement g%B which are easy to study in the strong coupling
regime, survive tuning of the dimensionless parametgR, to low values. Another diiculty with

the model in the strong coupling limit is that the backgrosaotlition for the dilaton (hence the string
coupling) diverges wittJ (see (2.21)).

Models with Flavors

So far, our discussion of AGSFT correspondence has not included flavors. In the [Bkgkmit,
1/N. expansion gets reorganised like a genus expansion in cédsed theory. Since the addition of
fundamental flavor leads to surfaces with boundaries inttHeoft expansion, we expect that we will
need to consider open strings in the dual bulk theory. Tmdeeachieved by the addition of branes in
the bulk. These branes are referred to as flavor branes. Bheéirk that incorporated flavor branes
was due to Karch and Katz [62]. They consideB®l— D7 system where the overlappim branes
discussed earlier, realise the gauge theory@rdbranes provide flavor degrees of freedom. Flavors
were also added to Witten’s model in [63] where the authorsicieredD6 flavor branes intersecting
the D4 system.

In general, one may considé; flavor branes intersectiniy. color branes. In the region of
their intersection there are massless open strings bettheeitavor and color branes transforming
like fundamentals under both Nf) and UN;). These provide the fundamental flavor degrees of
freedom. One might worry that a holographic treatment of@rsecting brane system will turn out
to be immensely diicult even in the supergravity limit. However, if the numbéttee flavor branes,

N: < N, the backreaction of the flavor branes on the background gegmiue to thé\, color branes
can be ignored. They can then be considered as probes indkgrband geometry of the overlapping
color branes. With this qualification, the authors of [63¢dishe DBI action of the ®6 probe brane
in D4 background and showed that the model displays an abelieat spmmetry breaking and gives
rise to a massless Goldstone boson analogous to pion (whrcesponds to a massless quark). A
more elaborate model due to Sakai and Sugimoto [67] has beensévely studied since this model
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exhibits non-abeliaySB. The model involves a set @8 and antib8 branes intersecting tHa4
branes in Witten’s model. In the strong coupling limit, ivgs rise to a holographic description for a
QCD-like theory. The model provides a geometrical desianiptor ySB in which, separateD8 and
anti-D8 branes meet each other in Witten’s background. It givestoistates which can be identified
with analog of massless pions. In the following, we will ededite further on this model at appropriate
places since it is the core work of this thesis.
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Chapter 3

Sakal Sugimoto model angySB at weak
coupling

In this chapter, we intend to study the phenomenon of chynairsetry breaking ¥SB) in the low
energy and weak coupling limit of Sakai-Sugimoto model (S&let) [67]. In this limit, the model
gives rise to a weakly coupled QCD-like theory and is therefmarticularly interesting to study. As
we will see in detail, the model provides a one parameterdettion to UN,) QCD with N flavors,
tuning which, it is possible to separag¢&B scale from confinement scale making the phenomenon
accessible to perturbative methods. This is one of the nmogbitant features of the model that
allows us to findySB solutions. In the next section we will give a brief revieirloe SS model at
weak coupling and in the remaining sections of this chaptemill present our work oy S Bin the
model carried out in [70], giving references to the origilitarature wherever appropriate.

3.1 SS model at weak coupling

SS model is an intersecting brane model WithD8 and antib8 (D8) branes intersecting thé, D4
branes in Witten’s model discussed in the previous chapts Figure 3.1). The configuration may
also be summarised as below (circles denoting the worldwelaf branes):

0123 @H56789
D4 o o o o o (3.1)

D8D8 o o o o o o o o o

Here, the directionx* is compactified 018, and the common &1)-dimensional world volume of the
flavor and color branes is parametrisedyu = 0,1, 2, 3.
As mentioned in the last chapter, the massless open strexgrspn onD4 branes in Witten'’s

33
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/" \ VAN
D8
D4 >\x4
D8

Figure 3.1: The brane configuration in weakly coupled SS m@dapted
from [67]).

model leads to the realisation of a Nlj gauge theory in (81)-dimensions. In SS model, the
additional flavor branesD8 andD8) lead to massless open string states arising from&and
4-8 strings living in the common region of intersection witle th4 branes. These transform as
fundamentals under both the NK) and U(N) groups. This is because one of the ends of such strings
lies onN, D4 branes and has a Chan-Paton index running fromN, tand the other o8 branes
running from 1 toN;. The Ramond sector states arise, as usual, because théaiorto zero
point energyag vanishes. All states in the Neveu-Schwarz sector are nmeassivis is because the
contribution to the zero point energygs = —-1/2 + v/8 = 1/4 (in string units), since’,, which
denotes the number of Neumann-Dirichlet directions of tiiersecting brane system [66], equals 6
for the present system. Thus, the massless sector emeigdsoom the Ramond sector. Further, the
worldsheet fermions can have zero modes only along thetidirsccommon to th®4-D8 or D4-D8
world volume along which the string can be freely moved. Bhwso modes in the Ramond sector
give rise to (31)-dimensional space-time fermions. To get the physi@kstwe must impose the
GSO projection which leaves fermions of opposite paritgiag from 4— 8 strings and 4- 8 strings
[67]. Without any loss of generality, the former can be idiead with left-handed quarks and the
latter with right-handed quarks.

The model also gives rise to massless 8 and8 — §open strings. At low energies, they lead to
an (8+ 1)-dim super Yang-Mills theory with coupling = (2r)°gdl3. In the decoupling limit where
we takels — 0 with A5 in equation (2.20) held fixedy vanishes. Thus, the states arising from the
4-4,4-8and 4 §strings are decoupled from the-8 and8 - 8 states. This allows us to study the
model with the low energy spectrum consisting of left-hahfilgmionsq, , right-handed fermiongg
and color gauge fields only. The left-handed fermions livthim (3+1)-dimensional common world
volume of theD4 with D8 branes and the right-handed fermions in thabdfbranes wittD8 branes.
These fermions interact with each other through the exalhahD4 brane gauge field&y, (M =u,4)
living in (4+1) dimensions. At energies much below the Kaluza-Kleinesd#&®,, one is left with a
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(3+1)-dim U(N.) QCD-like theory.

3.2 Low energy action

Having motivated the low energy spectrum of the brane systetime weak coupling limit, we can
now write down the action that describes the low energy dyosuof the system. Before we do
that, it is important to discuss the hierarchy of scales lwved in the low energy limit we will be
discussing here. The model has the following scalesvhich is theD8 — D8 separationR,, which

is the radius of the compa&;; g2, the D4 brane gauge coupling which has dimensions of length;
and of course the string length Here, we will be interested in the the hierarchy of scalesmgby
gch < ls < L < R¢. The conditionls <« L allows us to neglect non trivial dilaton and RR fields
created by th®8 branes [72] whilegZN. < |5 allows us to neglect string loop corrections. Further,
as we will see later, the conditidh< Ry allows us to studySB perturbatively.

We can now write the low energy action of the weakly coupledré@el as

_ 1 4 2R a 2 4y, AT —ul(: apa i
= —4—92 d xfo dx* (Fiyn(x x%) +f d*x q' ()0 (Iay +t Aﬂ(x,—L/Z))qL(x)
+ f ' (90, + A6 L/2)ok(9) (3.2)

whereq. andgr denote two-component left-handed and right-handed fersnrespectively. The
indicesy, v refer only to the (31)-dimensional physical space-time whil¢, N also include the
compact directionx*. Rest of the indices are the same as in (1.1). The matitésve been defined
right below equation (1.2). Notice that the gauge fields arthe world volume oD4-branes and
hence the first term involves an integral over all the fiveatioms. However, the fermions are located
at the intersections of tHe4-D8 and theD4-D8 branes. Therefore, the left-handed fermions interact
only with A, (x, —L/2) and the right-handed fermions interact only wAlfx, +L/2), where we assume
that theD8 branes are located &t = —L/2 and theD8 branes ax* = L/2. We have included the
effects of Kaluza-Klein modes which will turn out to be crucial Separating'S Bscale from the
confining dynamics of QCD. For the given hierarchy of scatleis, is the first non-trivial fect away

from the extreme low energy limit.

3.3 Non-local NJL model from theD4 — D8 — D8 system.

The directionx* being compact, the gauge fieldg,(x, x*) must be periodic ix*. Hence, the
dependence of thB4 brane gauge fields on thé and x* directions can be separated out using a
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Kaluza-Klein expansion given by

AL (x, X = A (x) + Z(Aﬁﬁ”’(x)ei”"‘lmk + Aﬁgm*(x)e—i”X“/Rk). (3.3)

n=1
Using this expression, action (3.2) can be written in terfrie@fields in (3+ 1) dimensions given by
the Kaluza-Klein modes in equation (3.3).

In our studies 0fySB, we are interested in knowing hay andgg effectively interact with each
other. Although there is no explicit coupling between the iwthe action, the gauge fields lead to
an dfective interaction betweeqy andgg. Further, at weak coupling this interaction is primarily
mediated by one gauge particle exchange diagrams. Notatetth componenti(x, x*) does not
interact directly with the fermions. Anyfiective interaction of the fermions with, throughA, is
suppressed in the coupling. Hence, the compoAéft, x*) can be neglected in the leading order
approximation in which we are working.

With the mode expansion (3.3), the action splits into twdgame purely consisting of the zero
mode of the gauge field, its interaction with fermions andkimetic term of the fermions and the
other purely of the non-zero modes of the gauge fields and ititeraction with the fermions. We
call the first termSy and the secon8, so that,

S=Sp+S; (3.4)
with
f d*x (FEO(x))? + f d4xq(x)y i, +taA2(°)(x))qi(x), (3.5)

where, we have defined the 4-dimensional YM couplingzas g2/27R.. The partSy is a QCD-like
action in (3+1) dimensions with the YM coupling given lg4. The second part is given by

2
f 0~ A - AP + A
g4 n=1 Rk
+Z f d4x(Jgﬂ*(x)A3(”>(x) ; Jﬁ“‘(x)A;'j‘(”)*(x)) (3.6)
n=1
with the currentl¥ (x) defined as
I¥(x) = (q’[(x)EﬂtaqL(x)é"L/ZRk ; q;(x)aﬂtaqR(x)e-i”L/ZRk). (3.7)

In writing equation (3.6), we have neglected cubic and guanteraction terms of the gauge fields.
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This is because we are interested in the first non-trivialrdaution to the éective interaction
between the left-handed and right-handed fermions andttgss from one gauge particle exchange
diagrams. In the weak coupling limit, the cubic and quamieriactions give rise to contributions
which are higher order in the coupling and therefore smaBeth Sy andS; need to be considered
to get the &ective interaction between the left-handed and right-kedridrmions.

3.3.1 Fermion dfective action fromS;

Let us begin with the computation of th&ective interaction between fermions that arises ou#of
in equation (3.6). The non-zero modes of the gauge fiel&s are massive, and in the weak coupling
can be easily integrated out to arrive at a fermiffie@ive interaction. For this, it is useful to write
the actionS; in terms of momentum space fields. Putting into (3.6) the ieouransforms defined
through the equations

d*k

AZ‘(”)()() = WAz(n)(k)eik'x
K :
we get
> 1 d*k an 2 o) s
. Z;g_if (20" {_A“()(k)((kz_%)”ﬂ o k)Av“ (k)} (3.9)
' ilf (g:)( (I (AL () + ¥ (AL (k).

Leading interaction between left-handed and right-haridedions can be obtained from this action
simply by substituting classical solution for the gaugedfiel it. Doing this in the transverse gauge,
kf‘Aﬁ(”) = 0, we get the ffective interaction. (Of course, the result is gauge invarjdJsing equations
(3.7) and (3.8), it can be written as follows:

- [~ d*k cosfL Ao : o e
Sieri= 2013 [ i /F;kg [t [ty (a9t 09) (GA0I s le3)) 0 + .

(3.10)

where the dots indicate interactions among the fermions@isame parity. Since these terms will
not contribute ta'S B henceforth they will be dropped in the rest of this chapleerhs of equation
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(3.10) can be further simplified using the Fierz idertity

(AL ™ s (9) (AR o Ale) = ~2(AfL (9 AG) (ARO) G (). (311)

and relation among the generators given by

2, 12, = ; Sus O3 (3.12)
This gives
Su =26, [ a3 co ot )il ko 03 01, 313)
where the massive propagator is given by
d*k gkt

An(X-y) = - (3.14)

(2m)* (k2 - ?/RE)’

signifying an exchange of a whole tower of particles of ma%e

The sum in (3.14) can be carried out in the Euclidean momespane using the identity 1.445.2

given in [90]:
o cosns  w cosha(n 9 1
nZ:; 2+a sinhra  2a?’ (3.15)
The final result we get is
Sierr = 0 f d*x dy Gi(x - Y)[a!' (YakMIL AR ()d (], (3.16)
where the propagat@s; is given by
d*K ey
G0 = | e € GiK.
Gyly = TROOMKER-L) 1 (3.17)
k sinhkrR k2

Here, k* is the Euclidean continuation of the four momentitnandk = V—kZ . In arriving at
equations (3.16), (3.17), we have assumed the weak couptitgand neglected stringy corrections
and have as yet not applied any constraint on the relatiomdsgtL and R, (though, of course,

1This can be derived from equations (3.77) and (3.80) in [10].
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L < 7Ry). This is because, we have included tlfieet of all the Kaluza-Klein modes.

So far, we have considered théextive interaction between the left-handed and right-ednd
fermions mediated by massive Kaluza-Klein modes oflidegauge fields. Anféective interaction
also arises due to the zero modes. Before we go on to studefthig, it is interesting to look at
the Euclidean propagat@; (k) in (3.17) in various limits of parameters. An interestirage arises
when we take the non-compact limR, — oo, with L fixed. In this limit, the propagator can be
approximated to

Gi(k) ~ @e-“—_—lz
k K
N %e‘h, (3.18)

where in the last line we have neglected the power law in faebthe exponentially decaying term
because the latter has a factorRyfassociated with it. This function reflects a UV cfiitd/L in the
limit of infinite R.. On the other hand, for finite values Bf, and at momenta much smaller than
1/7R i.e.,k < 1/7R,, the Green’s function reduces to

Gi(k) ~ %e_m‘ {1 + e‘z(”Rk—'-)R} {1 _ e—ankR}‘l 3 __12
1 1 1
i (3.19)

Thus, in this limit, the singularity adt = 0 cancels out between the two terms@f(k) and we are
left with a constant. This can be understood from the fact #hanomenta much lower than the
Kaluza-Klein mass, propagator is essentially given by astamt ¥n? ~ R2.

In the other extreme limit given bl > 1/L, which of course also means that> 1/7R, él(k)
has the behaviour

~ o 1
Gi(K) ~ AR _ . (3.20)

k K
The leading behaviour of this Green’s function is given—t,%/ since for very Iargé?, el > E(for
fixed L andRy). As we will see in the next subsection, the contribution oavirom Sge¢ ¢ to the full
effective action cancels this term leaving behind the resultfe full Green’s function%e‘h. This

result can be understood as due to finaive UV cutdf on the momentum at/IL.
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3.3.2 Fermion dfective action from Sy

In this subsection we will compute the leadiBgcontribution to the full &ective fermion action. We
have seen th&, is given by a QCD-like action in (81) dimensions. Unlike the non-zero modes of
the D4 gauge field irS;, AZ(O) is massless and it can not be integrated out in a true sensesideo,
however, a scenario in which the energy scale of chiral syimnheeaking is made much higher than
the confinement scafe In this case, to studyS B we need theféective fermion coupling at energies
much above the confinement scale. At such high energies,stimfreedom allows a perturbative
computation of thefective fermion coupling due to exchange of gauge fiéﬁ@. We do this in the

following.

Since we wish to study only thetective interaction between the fermions, iffsztes to consider
the terms inSgy involving the gauge fields. This can be written as

1
So gauge = i f d*x (F30(x))* + f d*xJ¥ (x)AZO(x) (3.21)
4
where the current is given by
3% = ({00709 + G ar()). (3.22)

In the following parts of this subsection, we will drop thepsuscript (0) in the gauge field bé)f(o)
for convenience. Then, using the Fourier transforms

a d4k a iK.X
d*k :
B = (%)4Jﬁ(k)é"-x, (3.23)

we can write equation (3.21) as

4k 4k
So gauge = _2_:;‘21 (gﬂ_)4 Az(_k) (kzn”" _ k/‘k") As(k) + f (;)4 Ja“(_k) Az(k) (324)

Proceeding as in the previous section and using the classicaion for gauge field in (3.24) we get
the fermion &ective interaction. The result can be written as

2
Spa= 2 [ dtx fy Golx ) JRI0) (3.25)

2SS model has an extra parametgR, that can allow this tuning.
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where the propagat@y(x), given by

d*k
(2r)*

Go(X) = Go(K)e<X, (3.26)
with Go(K) = —k—lz. This can be seen as coming from one gluon exchange betwagiofs in the tree
level approximation. For Euclidean momektathis is given by

Go(K) = % (3.27)

This justifies the statement made after equation (3.20). &erb, using Fierz identity, the full
effective fermion action that arises froy is given by

Soar = 1 [ (60 7 0,600 + () o 0,k

+df [ dixdy Go(x-) (/00 o) () ). (3.28)

3.3.3 The ‘total’ action

Putting the two pieces together, we get the total fermtbective action

Ser=1 [ (o090, + X3,
s f d*x d'y G(x - )l (Y ILa )l (], (3.29)

where
4
G(X) = f K gex G(K),

(2r)*
G(K) = Go(K) + G1(K). (3.30)

A rather remarkable thing about thé&ective fermion action in equation (3.29) is that the four-
fermi interaction is non-local. This is in contrast with thsual local four-fermi interaction in the
NJL model. This can be understood as follows. The local NJdehcs believed to emerge from
QCD as an ffective theory of quarks at energies of the order of the comfer¢ scaleAqcp. The
range of the interactions in the NJL model for quarks arisa® fthe mass gap due to confinement in
QCD. Therefore, at distances of the order of this range,itezaction looks essentially local. Is the
non-locality in equation (3.29) relevant to the study&Bin the present model? As we will show
in the following by numerical computations, this model sko¥$ Bat a length scale much smaller
thanA~1. This provides a posteriori justification for retaining then-locality in (3.29) for the study
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of xS Bin the present case.
Before we proceed to fingdS Bsolutions, let us summarise the properties of the Greenstion
G(K). Two regimes can be identified in the momentum space:

e k> A: In this regime, we have obtained an exact expression fopitygagator in the leading

7R« coshE(yrRk— L)

SRR Here, two further sub-regimes

order of the coupling which is given bg(k) =
can be identified as follows :

) A< k < 1/7R¢: G(K) ~ 1/E2 . In this region, like before, the Kaluza-Klein excitatica®

too heavy to appear and hence the four-dimensional physiesingle gluon exchange at weak
coupling is still a good approximation.

ii)E>> 1/7R: G(K) ~ ane‘EL/E. In this regime, the physics is essentially five-dimensiona
since the whole tower of Kaluza-Klein modes comes into plage high momentum cufb
present in the propagator is a reflection of the fact that ¥edimensional propagator is
constant- 1/L3 for four-dimensional distances much smaller than

e k< A:Inthis regime, the theory is essentially given by a13-dimensional QCD-like theory
and is confining. Our perturbative computation can not aagtus physics. To proceed further,
therefore, we simply assume that the propag@i) essentially becomes a constant of order
A~? for such momenta. We will give evidence in the following ttiae precise value ok does
not matter for determining properties @6 Bin the present model. However, the fact of its
existence does. It provides an IR cfiiton the interactions between quarks, limiting these to a

finite range.
Putting together the two regimes, we can write
Ry coshE(an -L)

EsinhEan B
= constant for |k < A. (3.31)

G(Kk) = , for |kl > A

For practical reasons, it is more convenient to use a smoatttibnal form forG(k). A function that
captures the properties 6{k) in the various regimes discussed above is

(3.32)

This is the form we have used for obtaining numerical sohgio this chapter. The solutions obtained
using relation (3.31) have the same qualitative behavibhis is discussed in appendix A.
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3.3.4 Non-local NJL action and the chiral bilinear

We have now found a fermiorffective action (3.29) arising from the SS model. Howevery tné
dynamics of chiral bilinears of fermions is relevant fordsting yS B For this reason, let us introduce
a bosonic auxiliary field(x, y). We can write the action in equation (3.29) in terms of thizikary
field as

S = 1 [ (a9, 00) + G97*0,ck09)

ij ij
o [ [T ;;(’;?XT_S’V) T (el (9

+T9x )] 09ek )] (3:33)

This can be easily verified by substituting the equation ofiomdfor the fieldT' (x, y)®,

TI(xy) = 65 G(x - y) a5 (V) (X). (3.34)

To study the dynamics of this bilinear, we can integrate betfféermions and arrive at affective
action for T'i(x,y). To do this, let us first consider the terms in equation (B\8Bich contain
fermionic fields:

slo= i f d4x(q“(x)o_'“8#qi|_(x))+qg(x)0'#3uqiR(X))
f d*x f d“y T (x, V) ()l (%)

Ty (ak)| (3.35)

The partition function for this action can be written as

Z= fZ)qZ)qexp{ fd“ fd“ g (X) |5”64(x Y)Y0, + TI(x, y)Pr + T (%, y)PL) j(y)}.
(3.36)

Integration of the fermions gives rise to the fermidfeetive action
Ser = NeTrin(i66%(x = y)y*6, + T (X Y)Pr+ TV (x y)PL). (3.37)

where we have explicitly written a factor ®&f; obtained after integrating out fermions Nf color
degrees of freedom. The notation ‘Tr’ stands for a trace wapect to flavor degrees of freedom,

3Since the fieldr'i (x, y) appears only to quadratic order, the two forms are equivaeen in the quantum level.
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Dirac indices and space-time. The bosonic field can now bkebrinto the classical and quantum
parts: T (x,y) = TU(xy) + ﬁﬂf (x,y). (Since the fective action has an explicit factor b, the
factor of I/ VN, with T4 (x, y) is required to give it a canonically normalised kinetiower In the large
N limit, the quantum corrections drop out and the dominant igathe classical contribution. For a
Poincare invariant vacuum which is also invariant undetardd(N¢) transformation, we should have
TJ(xy) = §1T(x - yl). With this, we can now compute thls of equation (3.37) and add this to
the non-fermionic part of (3.33). We get the totbetive action for the functiom (|x|) (in Euclidean

space-time) as

Set TP [ d% TP

= Inf1+ —— = N :
VNN Afd G J @ n( T ) 4= Gl (8:39)
whereGE(x) is the Green’s function in Euclidean space-time derivatieza

As mentioned earlier, we will carry out the numerical congpiains using the momentum space
(Euclidean) Green’s function given by (3.32). The coortBngpace Green’s function can be written

as
c d*K o~ i 1+7aRK) o
G = | GyiCMe™ = 1o f ki 3, (kx |)( _~ )ek Ao
g(r) = W + (cosbka + Ry sinLA)Z1(r) — (Ry cosLy — sinLy)Z,(r), (3.39)

where in writingg(r) we have used a notation in which all length scales with suyfisa imply
dimensionless quantities obtained after a scaling witpheeisto the confinement length scale?.
ThusR,=R«A andL,=LA. Also,

coss  Ky(r) La COSS
I,(r) = d"(32+r2)3/2 -y 0 d (S + r2)3/2’
sins 1 La sins
1= f dsgtms = 7~ 5 (M0 -Li) - [ dsSn (@40)

where the functionk(r) andl,(r) are Bessel functions ad (r) is a Struve function [90]. Numerical
computation is easier to carry out wigjr) written in terms of these functions and this is what we
have used.

We can analytically find the behaviour gfr) in various regions as in the following. In the region

r < Ry, itis given by

g(r) = Ry/L3 for r <Ly,
g(r) = Ry/r® for L, <r < Ry. (3.41)
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This behaviour can be understood as follows. Since the megidR, is associated with energies
which can probe the Kaluza-Klein scale, the Kaluza-Kleirde®must have an impact. Hence, the
associated physics must be 5-dimensional. So we expectrdpagnator to be of the form of a 5-
dimensional propagator as above. In the region R,, the Green'’s function should be such that the

()
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Figure 3.2: Variation of the kernef(r) with r. The figure shown
corresponds to the sBj, = 1/5 andL, = 1/100.

associated energies can't probe the Kaluza-Klein mass.s8althe 4-dimensional physics is a good
approximation. In this regiorg(r) is given by

gr) ~1/r’forRy <r < 1,

e’ R
on) ~ 59~ 3r_5A forr > 1. (3.42)

In the second line of equation (3.42), we have not kept thadrigowers of 1Ir although we have
kept the exponentially decaying part. This is because, sviltficiently smallR,, the exponentially
decaying part may be significant. In fact, with

r>1 r?> 3\/§RAer, (3.43)
T

the exponentially decaying term is dominant over the othiBus, there is a region inin which g(r)

is essentially exponentially decaying. For even largeneslofr, however, the power law takes over.
Because of the negative sign of the power law teg(n) can be negative for s$iciently larger. In
fact, we see this in numerical computation. This is, presalypan artifact of the choice ab(k) that
we made in (3.32). Physically we expect the Green’s fundimodie-df exponentially beyond the
confinement length scale. We will, therefore, assume thisisapose a cutd r,.x on g(r) beyond
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which it will be set to zero. The cufbr .4 required becomes smaller as we increBse Figure 3.2
shows the variation af(r) with r for a particular set of valueR, = 1/5,L, = 1/100.

3.4 Chiral symmetry breaking

Let us now proceed to study chiral symmetry breaking in the-lecal NJL action (3.38). A
dynamical breaking of chiral symmetry gives rise to a norezev of the chiral bilinear of fermions.
As mentioned before, equation (3.34) then implies a namatrclassical value for the bosonic field
T®(x). In the limit of large N;, one can ignore the quantum fluctuations of the bosonic fields
Therefore, its classical value can be obtained by solviageguation of motion, called the gap
equation, which in momentum space is given by

~ T(K)
K) = ———, 3.44
309 = T F (3.44)
whereg(K) is the Fourier transform af(x) which is defined through
T(X) = 41°AGE(X)¢(X). (3.45)
As can be seen using equation (3.3%)) is the quark condensate,
1 fa 13
0(%) = 1L (IGRO)- (3.46)
C

The field¢(x) is of mass dimension 3. Introducing a length sddkes we will see later, this will turn
out to be therS Blength scale), this fact may be expressed explicitly byiagit(x) as follows:

o

4723

$(x) = e(IX|/1). (3.47)

The field ¢(|x|/1) is dimensionless. We have introduced a normalisatiorofagg/4x> for later
convenience. We can now find the Fourier transforms:

309 = lgof (K1), 1(p) = % fo " dyy I (pyey).

T = AAct(Kl), t(p) = § fo " dyy? 3 (pYaay)e). (3.48)
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where f(kl) andt(kl) are dimensionless. Also note tHat= IA. With this, the gap equation (3.44)
can be expressed as

at(p)

= T R = fr(p), A= Al,. (3.49)

f(p)
All quantities appearing in this equation are dimensiasleéd/e also notice that the cdfA does
not explicitly appear in the equation after we have used gdale out various other dimensionful
parameters.

3.4.1 Numerical solutions of the gap equation

Since equation (3.49) is non-linear, it isfltbult to solve it analytically and we must resort to a
numerical approach. However, we can make general obsengati some limiting cases analytically.
It can be seen from equation (3.48) thgb) gets a significant contribution only from the region
y < 1/1, sinceg(l,y) decays exponentially beyond this region. Thus,de« |,, the Bessel function
inside the integral is essentially linear in the argumenher€fore, for small enough values pf
t(p) goes to a constant. In this limit then, the second term indér@ominator of thehs of (3.49)
dominates, so that this equation becomes

1 1
f(p) » ——, 3.50
(p) ~ ~ 21D (3.50)
which impliesf(p)t(p) — constant forp — 0. On the other hand, for very large valuegopthe first
term in the denominator of thdas of (3.49) dominates. This is becau$p) remains finite in the limit

of p — 0. Therefore, in this limit the gap equation becomes

at(p)

f(p) ~ 2

(3.51)

As we will see, numerical computations provide evidenc&3d80) and (3.51) in the two limits.
In order to solve the gap equation (3.49) numerically, we stdéh an ansatz for the solution given

by

o(r) = %. (3.52)

This form is motivated by the fact that the condensate mugbgoconstant at small distances and
vanish beyond a certain length scale. We then adopt thenfmitpprocedure. We choose values for
the parameterR, andL,* consistent with the constraibt, < R, < 1. With this, we need to look

4This corresponds to a particular brane configuration.
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for a solution with a set of values of the paramelgtspo, o andc for different values oft. It turns
out, as we will explain later, that it is easier to Fixto a given value and then look for the set of values
of 4, ¢o, o andc that would solve the equation. For this, we compute tifieince of théhsand the
rhs of equation (3.49). We try to find values of the parameteis, ¢ ando such that the ratio

e B 2 00 2
p—(fo dpif(p) fT(p)|)/fo dpif (p) (3.53)

is minimised. We find that the value ofthat gives the best fit always turns out tolR¢lL ,. This set
of values (along with,) provides the'S Bsolution to equation (3.49) for the corresponding value of
A. This exercise is then repeated for various valudg .of

We have carried out the numerical computations using ‘Mattea'. The equation solving
essentially involves two parts. One is the computatiorf (@) andt(p) using equation (3.48) and
the ansatz (3.52), and the other is the minimisation dfhe first step involves numerical integration
and is more computationally expensive than the second sTgmputation oft(p) depends or,
whereas the paramete?and% appear only in the second step. Therefore, it is numerieas$fer to
choose a particular value bf and then adjusfandqﬁo to minimise the value gb instead of choosing
a value ford and then trying to find the correlt and other parameters.

3.0
2.5
20
15-

1.0

50000(-
05-

‘2”‘4‘ ‘6‘”8”‘1‘0p
Figure 3.3: The first figure shows that there is no good matchetween

f(p) and fr(p) for I, < L, and the second shows that the ratio /(p)
becomes a constant which is impossible for a solution to #peegjuation.

Before we discuss the numericgb B solutions in detail, it is worthwhile pointing out a few

important features of the solutions:

e Using equation (3.48) we can see tt(@l gets a significant contribution only in the regipg 1
sinceg(y) decays exponentially beyond this region. Now let us loothatparameter regime
with |, < La. Inthisregimey(l,y) is essentially a constant becawgge) is a constant for < L,
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as can be seen from (3.41). Tht&p) « f(p) and hence the gap equation (3.49) can not be
satisfied. We conclude that there arey®Bsolutions withl, < L,. Numerical computations
confirm this as can be seen from Figure 3.3 which shows thdib&sta particular value of the
parameters. The fit is clearly poor.

e SinceyS Bsolutions exist only in the parameter regime> L,, it follows that if we want
xS Blength scale to be much smaller than the confinement scalegdsave assumed in our
derivation of the &ective model) we must haue, < 1. This can be attained by appropriately
tuningL/Ry keeping the coupling fixed.

¢ Just like the local NJL model, it turns out that in the presade also there is a critical value
of the coupling below which there is & B This happens for, > 1. We will see numerical
evidence for this in the following subsection. This phenaorecan be understood as follows.
In this parameter regime the non-local NJL model can esslgnbie approximated as a local
NJL mode? which is known to have a critical coupling fISB. However, note that the near
critical regime corresponds to a region where a perturbdateatment of the underlying gauge
theory is not trustworthy.

3.4.2 Numerical results

Let us now discuss the best fit numerig& Bsolutions of the gap equation in the parameter regime
I = LA. As mentioned earlier, we choose a set of valuefRfoandL, consistent with the constraint
L, < Ry, < 1 and then obtain the values for, 1 and ¢os = (A¢o)? for each value of, that
are consistent with the gap equation. Consider theRgetl/5, L,=1/100. Table 3.1 lists all the
parameters involved in the numerical solutions for thisfeetdifferent values of the coupling.

In order to show the numerical agreement, we provide figuneswo representative values bf
showing the fit betweerfi(p) and f+(p). Figure 3.4 shows the fits obtained for the valles 1/10,

1. Numerical calculations also show that the UV behaviouthefsolution is given by(p) « p?f(p)

as derived analytically. This can be easily seen from Figusevhere we plot the ratip?f (p)/t(p).
The left panel of Figure 3.6 shows the variation pfwith 2. We find that as we decreagdrom a
large value], slowly increases until it reaches a ‘knee’ where it rapidbris increasing and hits a
‘wall’, an artifact of a critical couplingl. below which there is ngS B This happens arourid = 1.
After that, the curve slowly turns back indicating two ptsisolutions for eachi. A more detailed
investigation of this feature requires considerably lorgenputation time but is clearly desirable. It

5This can be understood by looking at the behaviour of the @sdeanctionGE(x) in (3.39). Sinceg(r) vanishes
exponentially for > 1, GE(x) vanishes exponentially fgx| > | in the regionl, > 1. Therefore, the Green’s function
essentially looks like a Dirac delta function at distancéshe order or greater than theS Blength scale and hence
approximates a local NJL model.
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turns out that as we increase the valué\othe energy of the solution increases as shown in the right
panel of Figure 3.6. This implies that among the two soludifor the same value of, the one with
lower value ofl , is preferred.

Before we close this section, we would like to mention thathaee obtaineg'S Bsolutions for
multiple sets of values dR, andL,. All these solutions share the same qualitative features. F
the sake of comparison, we provide the data and figures foother set§R,=1/20, L,=1/300} and
{RA=1/5, LA=1/200} in thelist of tables and figureat the end of this chapter.

RA=1/5 L,=1/100
4 o A )
1/100 | 0.005| 0.31266l| 3.3538x10°1°
3/200 | 0.250| 0.28873 | 5.6739x107°
3/100| 0.500| 0.2570 | 8.6961x10°’
3/50 | 0.650| 0.2363 | 0.00017609
1/10 | 0.730| 0.2135 | 0.0097973
1/4 0.800| 0.1988 | 12.5067
3/5 0.835] 0.1972 | 12176.4
4/5 0.845] 0.1983 | 121168
1 0.853| 0.1969 | 724447
8/5 0.870| 0.1944 | 3.2694x10’
5/2 0.880| 0.1976 | 1.1888x10°
4 0.888| 0.2031 | 5.2297x10'
5 0.890| 0.2085 | 3.1255x10"

Table 3.1: Table of parameters for the solution to gap eqodtr the set
R,=1/5 andL,=1/100.

ol 00002(;
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Figure 3.4: Fits betweef(p) and fr(p) for two different values of, with
Rx=1/5 andL,=1/100 corresponding to the data in Table 3.1.
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Figure 3.5: Plot to demonstrate the UV behaviour of the smrhut
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Figure 3.6: Left: Variation of, with A for the seR,=1/5, L,=1/100; Right:
Energy variation witH ,

3.5 The non-compact limit

Till now, we have considered a finite value ferthat leads to a non-local NJL action with afieetive
(3+1)-dimensional 't Hooft coupling. We have presented strong numerical evidence that thisjtheo
has a critical value; below which there is no dynamical breaking of chiral symmeive will now

try to find out what happens when one takes a non-compact(Rpit> ). In order to keep intact
the vital assumptions made in our computatioy8fBsolutions in this model, we must maintain the
hierarchy of scalet < R, < A~ as we take the non-compact limit. To incorporate confinement
in this model, we would also like to use the relation amongdbantitiesA, R, andg3 (henceg?)

as given by (2.23). If we define e{qe%) asb then with a scale transformatid — 7R, we get
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b — b’. Further, equation (2.23) leads to a scalinghasuch thaR, — R]. Since we are keeping
fixed as we take the non-compact liniif, scales ag, — LARj’\‘l/n. The model can now be studied
in the non-compact limit by taking thg— oo limit of the compact model.

From our numerical study of the compact case we have seethérat is a critical value of the
coupling below which there is ngS B This critical value is achieved fdg ~ 1. We now wish to
find what happens t@, as we take the non-compact limit. In order to carry out thexeise we begin
with an initial set of values dR, andL, and find the value ol and the correspondingS Bsolution.
We then try to find how this solution evolves as one approatmeson-compact limit by scaling
Ry andL, using the scale factor as mentioned above. As we decreage ftom n=1, the value of
A starts decreasing linearly. Such a linear behaviour woiviel igse to a finite critical value for the
5-dimensional 't Hooft coupling. However, on further inastngn, we find that the linear behaviour
is not satisfied any more. Rather the curve actually bendspparently approaches a constant value,
which would imply that the critical value of the 5-dimens&bit Hooft coupling blows up in the limit
n — oo, leading to no sensible result. We present an example inhwivee choose the initial set
of values,Ry=1/2 andL,=1/100. The evolution of thgS Bsolution (corresponding to the critical
coupling) with the scalingy has been tabulated in Table 3.2. Figure 3.7 shows the \@riafithe
critical coupling with the scaling parameter

Initial R\=1/2 Initial L,=1/100

n |o Ac )

1.0| 0.871 0.084302| 1.5834x 10°
1.5] 0.881 0.061379| 1.6846x 10°
2.0 0.885 0.050870| 1.1915x 10’
2.4 0.888 0.045603| 5.2653x 10’
2.8 0.889 0.042359| 2.1624x 10°
3.0 0.890 0.040758| 4.3096x 10°
3.310.890 0.039170| 1.1719x 10°
3.5/ 0.891 0.037928| 2.2875x 10°
4.0 0.891 0.036500| 9.8027x 101
45| 0.892 0.035382| 5.9672x 1019
5.0| 0.891 0.035535| 2.9431x 10
5.5|0.892 0.035071| 1.4229x 10*
6.0| 0.892 0.035423| 6.7879x 10*

Table 3.2: Table of parameters for the solution to the gap@guiwithl ,=1
and initialRy,=1/2 and initialL,=1/100

In the above approach to the non-compact limit, we have rai@ed the relation between scales
implied by (2.23). However, since NJL model is a non-rendisalle model, it might be suitable to
relax this condition. Nevertheless, we still want to maimtae hierarchy of scalds < 7R, < A~
A simple way to do this is to keeR, fixed at a value much smaller than 1 and then tiakeo zero.
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Figure 3.7: Variation ofi. with 1/n for the set with starting values of
Rx=1/2, L,=1/100 corresponding to Table 3.2.

This corresponds to the scaliRg — 7R, A — A/nsothat, forafixed, Ly — L,/n. As above, here
also we study the evolution of the critical coupling with $eale factor as we take the non-compact
limit. In this case also we find that the 5-dimensional caiticoupling blows up in the non-compact
limit and hence this way of taking the non-compact limit adiges not lead to a sensible result. We
present an explicit example where the initial set of valuessat toR,=1/5 andL,=3/200 . Figure
3.8 shows the variation of, with the scaling parameter. The curve actually fits with tebdviour

Ac = 0.2713391°817788 |eading the 5-dimensional critical coupling to blow up ire thon-compact
limit. Thus, in both these ways of approaching the non-carirait we have ended up unsuccessful.
This may be an indication that there are no consig¢&i solutions in the non-compact limit of this
model. This clears up a confusion in the treatment®B in [72] and indicates why the corresponding
gap equation might not actually have gyfyB solution.
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Figure 3.8: Variation ofi, with 1/n for the set with starting values of
RA=1/5, L,=3/200
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3.6 Summary

The study ofySB in QCD is made complicated by the fact that the scale atiwthiral symmetry
is broken is of the order of the confinement scale. If QCD cddddeformed to enable “tuning”
of the y'SB scale to be much smaller than the confinement scale, treewould have separated the
complications of the dynamics of confinement from a study®B, which could then be handled by
perturbative methods. The intersecting brane configuraifSakai and Sugimoto, which gives rise
to a QCD-like theory at low energies, admits just such a |badggi it has an additional parameter,
the flavour brane-anti-brane separation, which can be tuned

In this chapter, we have discussed the weakly coupled SSinmote low energy limit. For any
finite radiusRy of the circle which the coloub4-branes wrap, there is confinement and a mass gap
in the low energy theory. The interaction between the flavanbs can be described in terms of a
non-local NJL model whose behaviour can be derived exatdpeargies higher than the confinement
scale. If the energy scale 6B is also large, it allows one to study the phenomenon peatively.
The NJL model reflects the confinement scalejn the length scale over which the non-local four-
fermi interaction extends. The fact that this range is fitutes out to be crucial in getting consistent
xSB solutions. In the largBl. limit, the question 0fySB amounts to finding appropriate solutions to
the non-linear gap equation. For solutions wi®B length scalé much larger than the confinement
scaleA™, it is reasonable to replace the non-local NJL model by toalldlJL model. Hence these
solutions must reveal the existence of a critical couplimgich is known to determingSB in the
local NJL model. In this work we have numerically solved tlem#inear gap equation and verified
the existence of a critical coupling below which chiral syetmg is unbroken. Roughly speaking,
only solutions withySB scale greater than the brane-anti-brane separatexist. TheySB scald
increases as the 't Hooft coupling is decreased, until &ativalue is reached fdr~ A~1. Solutions
with | > A~* do not lead to any further decrease in the coupling.

Our analysis is valid for any finite value of the radigg which may be large. We have briefly
addressed the question of what happens Wlier co. Two different ways of taking this limit, each
one obtained from a well-motivated one-parameter scalfripeoparameters of the SS model, were
discussed. We found from our numerical data that neithehemtleads to a sensible limit. The
tentative conclusion is that simple ways of implementirig limit do not lead to a consistent picture
of ySB in the non-compact version of the non-local NJL model.sBa&ems to reinforce the critical
role that the confinement scale plays in the compact modelnfrared cut-& provided by it enables
the existence of consistent solutions to the gap equatiamwedMer, more work needs to be done to
clarify this issue further.

Finally, most of the calculations reported in this chapteravdone numerically because the gap
equation is non-linear and we could not solve it analyticalt would, however, be useful to have
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some analytic handle on the calculations, especially ip#tameter region near the critical coupling.
This could be important for a better understanding of the-cmmpact limit. A possible hint in this
respect is the fact that excellent numerical solutions wétained using the ansatz (3.52), with the
constant turning out to be almost exactly equallid in all cases.
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List of tables and figures

RA=1/20,L,=1/300 RA=1/5, LA=1/200
I, o A $o0 4 o A $oo
1/300| 0.01 | 0.40707 | 7.167x 10*? | 1/1000| 0.005| 0.5 6.512x 1014
2/300| 0.27 | 0.3737 5.531x101° | 1/200 | 0.01 | 0.16156| 5.7492x 10°*°
1/100| 0.50 | 0.3336 1.792x 1019 | /100 | 0.430| 0.13945| 9.98934x10°19
4/100| 0.7 0.28772 | 0.0005542 1/50 0.620| 0.12410| 1.76125%10°’
1/10 | 0.775| 0.268637| 0.73002 3/50 0.765| 0.10902| 0.0008285
1/4 0.808| 0.27007 | 893.65 1/10 0.810| 0.10382| 0.048126
3/5 0.833| 0.27417 | 882330 1/4 0.850| 0.10064| 66.118
1 0.849] 0.27274 | 5.3738x 10’ 3/5 0.870| 0.10382| 67550.4
8/5 0.863| 0.27094 | 2.4385x 10¢° 1 0.885| 0.10302| 4.1827x 10°
5/2 0.875| 0.27013 | 9.29622x10% | 8/5 0.892| 0.10583| 1.797x 10°
4 0.886| 0.26933 | 4.3044x 10 | 5/2 0.890/| 0.11559| 6.0005% 10°
5 0.889] 0.27257 | 2.5899x 10 | 5 0.890| 0.12620| 1.786x 102

Table 3.3: Table of parameters for the solution to gap eqondbr the set§R,=1/20,
LA=1/300 and{R,=1/5, L,=1/200}
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Chapter 4

A review of Sakal-Sugimoto model at strong
coupling

In the previous chapter, we have discussed aspecisSd in the weakly coupled limit of the
SS model which gives rise to a modified QCD-like theory withaalditional parameter. In this
chapter, we will review the original work of Sakai and Sugtm@7] in which they introduced
the model and discussed its strong coupling limit obtaifmedugh an application of the A@SFT
correspondence. In the strong coupling limit, the SS mogj@laduces many qualitative features of
the non-perturbative aspects of QCD like confinement andhaahelian chiral symmetry breaking. In
particular, an elegant geometrical picture of chiral syrrgnereaking emerges from the holographic
dual bulk geometry. Here, we will only provide a compact egwdf the work of Sakai and Sugimoto
and refer the interested reader to the original work [67]aanore detailed exposition. As we will
see, while the SS model captures some aspecjsSd in an elegant way, other aspects require
modification of the model.

4.1 The strong coupling description

In the discussion on Witten’s model (p. 28), we have mentidhat at low energies and in the strong
coupling limit a set of large numb®&i. of overlappingD4 branes can be replaced by the near horizon
limit of the supergravity bulk solution having the quantuommbers of the brane system. Sakai and
Sugimoto studied the strongly coupled model by considetieglavor brane®8 andD8 as probes

in the D4 background. Such a treatment is allowed provided the nuwibiavor branes is much
smaller than the number of color brand§ (< N;) so that the backreaction of the flavor branes on
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the geometry is small. In this limit, the dynamics of thisteys is captured by the action
S= Ssugra"‘ Spgei + Scs. (4-1)

The termSg,4rais the supergravity action of tHa4 background and gives the holographic description
for the pure gauge theory. The dynamics of the flavor branggven by the DBI action for the
D8 — D8 system in the presence of this background geomsty,, and the Chern-Simons action,
Scs, arising from the interaction of the flavor brane gauge figldk the background RR field. Since
this is the main focus of the SS model, in the following we widhcentrate only on these terms in the
full action (4.1).

In our study of the weakly coupled SS model, we saw that treeaeli(Ns) symmetry associated
with the each of the two sets of overlappiNg D8 branes an@®8 branes. We studied the dynamics
of the system and saw how a dynamical breaking of chirdl{))Symmetry occurs in it. In the strong
coupling picture, th&®4 background geometry leads the branes and the anti-bi@aneset each other
in the bulk leaving behind only a Bf;) symmetry. This presents a geometrical picturg 8Bin the
model in the strong coupling limit. We will see a demonstmatior this in the following.

4.1.1 TheD8-D8 profile

Although the model consists df; D8—D8 pairs and leads to a non-abelian chiral symmetry breaking,
it is instructive to consider the simpler caseMf = 1 1 which has most of the essential elements of
the model. Sakai and Sugimoto considerE&- D8 branes as prod28 branes. They study the DBI
action of aD8 in theD4 background which involves a scalar field correspondingegsition of the
brane in thex* coordinate and the 8-brane gauge fields. The DBI action sngdy

S= —,ugfdga e’ V-detA,
Aap = gun0axXM XN + 270’ F o, (4.2)

whereug = 1/(27)82. The integral is carried out in th@8-brane world volume. The first term in
the second line of (4.2) gives the induced metric on the beartkthe second one the field strength
of the flavor gauge fields. The indicasb run over the world-volume directions of the branes while
the indicesM, N run over the background ten-dimensional space-time dorest Heregyn is the
metric dual to théd4 brane system anglis the dilaton. For the reader’s convenience, we repeat the

1The associated U(1) chiral symmetry of the classical th&obroken by the well known quantum anomaly. In the
largeN; limit, however, the anomaly vanishes. Therefore, it is niregfial to study U(1)yS Bin this limit.
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expressions for the dual fields given in (2.21):

U 3/2 R 3/2 du2
d¢ = (ﬁ) (nﬂvdX‘de+f(U)(d)(‘)2)+(U) (f(u)+u2dgi),
Uy _ 21N, W
¢ = gs(ﬁ) , Fa= e f(U)=1- g5 (4.3)

whereUy is defined through relation (2.22) i.¢Jy = 4R*/9R2. The impact ofD4 background on
the configuration of the flavor branes can be seen by puttedakor brane gauge fields to zero and
then solving the equation of motion. Using the static gaugg @ssuming thax* depends on the
coordinated only, which is the case for a classical vacuum solution, tBé &tion becomes

] -3/4
S-= —T8V4fd4xfdu(ﬁ) u* VD, (4.4)
where7g = ug/gs is theD8 brane tension and
u\2 U\¥2 x* (U)°
_ -1(¥ el
D = f(U) (R) ; f(U)(R) — (4.5)

Here and in the following, a prime denotes derivative witpect toU.

In this setup, chiral symmetry breaking has a geometricatmjation where asymptotically
separated branes meet each other in the bulk. This can béygemtplicitly solving the equation
of motion forx*(U) obtained from the action (4.4). This equation is

B 1w e )
o “(g) ¥v]|-=o (4.6)

which has the solution

()L y\32
o) = vty [ oy 1O

b JPT) - Ugf(Uo)

4.7)

Thus,x*(U,) = 0 and the asymptotic value &f(U) asU — o is a monotonically decreasing function

of Uo. The maximal asymptotic values occurs fdg = Uy and is7R/2. TheD8 andD8 are at
antipodal points on th&* circle and are separated by a distatt) = 7R,. To see this, note from
(4.6) thatx*(U) = 0 is a solution. The background geometry is such that theusaoli the circle

X4 remains fixed aR for all values ofU. Therefore, the antipodal configuration is such that the
separatior(U) remains constant itJ. In the generic case, the system comprises asymptotically
separated brane and antibrane bending towards each otteyaspproach smaller valuesdfand
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then smoothly meeting & = Uy as shown in Figure 4.1. Expanding around the pbint Uy, we

U ...
Uk anti-D8
e X4
D8

D4

Figure 4.1: The brane configuration in strongly coupled S8e&ho

get from equation (4.7)

R Uy
Uo v/ f(Uo) 3+ 5f(Uo)

x*(V) [1+O(U - Ug)]. (4.8)

It can be seen that” (U) ~ (U — Uy)~¥2 diverges atJo, as required by a smooth joining of the brane
with the anti-brane.

Excitations about the ground state are simpler to analyzihéoantipodal configuratiody = Uk.
In this case, it is useful to define the new coordinate®) through

3U1/2
U3 =U3 +Uxr?, 0= Z@X“' (4.9)
We can further define the coordinatgsz) as
Yy =rcosd, z=rsiné. (4.10)

In these coordinates, the configuration of B@— D8 can be expressed as the functigrt, z). The
antipodal configuration correspondsy(o, z) = 0. The horizon, where the two branes meet, appears
atz = 0 and the asymptotic infinity on tH28 andD8 are atz — « andz — —co. All computations
carried out in the rest of this chapter will assume this camégon.

4.1.2 Mesons

In the discussion carried out till now, the flavor gauge fidddse been neglected since we were
interested only in the profile of the branes. However, cha@hmetry breaking must also be
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associated with massless Goldstone bo%o® see this, one needs to look at the excitations in
the model. The mesonic excitations arise by switching orfléver gauge fields on thB8 andD8
branes, which, as we shall see, contain the Goldstone basarelaas the vector and axial-vector
mesonic analogs of QCD. In principle, the index on the gawgld Ay can run over space-time and
S, directions and the holographic directisnThe components along the directions of the space-time
andz respectively will be denoted b&, andA,. The components along tf& directions must be
associated with an SO(5) symmetry. Since the intention iset@ study the qualitative features of
QCD, which does not have such a symmetry, these componenfsuato zero by hand. Further,
the symmetry of the system also allows us to restrict the’fatatns to zero modes B*, so thatA,
andA, do not have any dependence on 8fecoordinates. With this, the action for the gauge field
fluctuations is given by

R3 9U;}
S = —T(Zﬂ'a,)zfd‘lez(mnuvnﬂo—Fy/vaa + éu_;nqu#ZF"Z (411)
z

whereU? = U2 + UxZ2 and we have definefl = 2R¥/2U,/*V,75. Only terms upto quadratic order in
fluctuations are kept. There is also a Chern-Simons a8grarising from the four-form background
RR field strength and the flavor gauge fields. However, suchmaigecubic in the flavor gauge field
strength and is therefore neglected here in the fluctuatinakysis.

The finiteness of the action (4.11) requires the field stietgtvanish az — +co0. By a choice
of gauge we can assume that the gauge field vanistes>atco. Note that this still allows a further
gauge freedom

A, = A+ 0,A(X2), Ay — A +0,A(X2) with Iim A(X,2) =0. (4.12)
Z—+00

To proceed further, we use a mode expansion of the fieldsnamstef a complete set of functions in
the holographic coordinate = z/U:

J

A(Z) = ) APIPA(2), A(x2) = > eV (NQ;(2). (4.13)

Since the gauge fields vanish at— +co, the functionsP,(Z) and Q;(Z) must satisfy the same
boundary condition. With this, the five dimensional actiam oow be written as

1 K
S = -7 (2na’)*R® f d“de{ ZK‘1/3F£’1)F(m)“VPan + —(Ag@A(”)ﬂaz PndzPrm

2R

10,6990 Q Q,  20,6OAMQ 5, pn)}, (4.14)

2As mentioned earlier, foK; = 1, there is a single Goldstone boson in the laxgdimit.
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where K(Z)=1+Z2 and the repeated indices j, m, n are summed over. The set of functions
Pn(Z),n > 1 can be chosen such that they satisfy

—KY30,(KozPy) = APn, T (27/)°R® f dZKYPPy(Z2)Pn(2) = S (4.15)

With this, in the absence of the fielif), the four dimensional action fo&’s would reduce to the
action for a tower of massive vectors given by

S[A] = f d4xZ( 4F31>F(”>W %A}PA#(”)), (4.16)

wheremg=1,/RZ. The following orthonormality condition should be imposztthe set of functions

Qi
R
fr(zm')ZQIdZKQQ,- = 5jj. (4.17)

Note that the set of function®, = m,*9,P,(n > 1) satisfy the above condition. Now, the function
Qo = C/K also satisfies the orthonormality condition. Thus, th&k@t> 0) now provides a complete

set of functions consistent with the orthonormality corait(4.17). Using this, the total action (4.14)
then reduces to

f dx 5 0360 4 Z(4F$)F(W %AL”) 9,6 ™) (A m;lauqﬁ(n)))}

n>1

f d4 a¢(°>aﬂ¢(°>+2( RO ”jB}PEf(m)}. (4.18)

n>1

Let us now invoke the additional gauge freedom (4.12) we mopad before. Since we have
limz_. A(X, Z)=0 3, A(X, Z) can be written in term®,(2)s asA(X,Z) = Y1 AQ(X)Py(2). It can

be easily seen using this that the fielf9(x) and Bf{‘)(x) are gauge invariant under this additional
gauge degree of freedom and are therefore physical in natBedkai and Sugimoto numerically
solved the eigenvalue equations for the basis functiondatetrmined the parity of the fields. The
field ©(x) is of odd parity and is identified with the analogrpfmeson. The field8{"(x) give the
analogs of the vector and axial-vector mesons. Althoughsifaplicity, we have discussed the case
with single flavor, it is not dficult to analyse the case with multiple flavors. Using a noeliah
generalisation Sakai and Sugimoto show that the model gisedo analogs of massless pions and
massive vector and axial-vector mesons. The authors gisodeced the chiral anomaly in QCD

SWe useZ instead ofz
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using their model. This arises from the Chern-Simons adtigalving interaction between the RR
4-form field strength and flavor gauge field strength. The gatansformation of the Chern-Simons
term precisely matches the chiral anomaly of QCD and pricisproduces the WZW term of chiral
lagrangian. They have also studied baryons in the model.nfobas realised as B4 brane wrapped
on S, which in turn can be realised as an instanton configuratiothefflavor gauge fields. The
Chern-Simons term leads to a potential for the vector U(1) @lethe flavor gauge field fluctuation
coupled to a point source of charghl, wheren is the instanton number. This identifies the instanton
configuration to a baryon with the instanton number givirglthryon number (since each baryon has
N. quarks). Just as in QCD, the baryon mass turns out @(bk).

4.2 Summary and discussion

Before we end this chapter, let us summarise some of thensalents of the model. The model is
an important qualitative step towards a holographic dpson of a QCD-like theory. It reproduces
many of the qualitative features of QCD-like theory inchglithe strong coupling phenomena of
confinement and chiral symmetry breaking. However, the halde has problems because of which
it is actually expected to describe a theory that gedent from QCD. The first problem is that at
strong coupling, the masses of Kaluza-Klein modes are obtter of Aqcp as we have argued in
the discussion on Witten’s model. Thus, the model has iefiynitnany more glueball and meson
states than in QCD. Moreover, there are no low lying statél spin higher than 2, these having
been pushed to very high masses (of the order of string sddieg makes it dierent from properties
expected of QCD.

The second problem is the absence of any parameter corgiagda the quark mass deformation.
The quarks in the Sakai-Sugimoto model are massless argitheo simple way of switching on a
guark mass. This masslessness of quarks can be deducedhzamasslessness of the Goldstone
bosons of thggeS B The model has no parameter describing massive quarks.hémomenological
reasons, having nonzero quark masses is important. Theofitbiese problems is generic to all
holographic models of QCD. The hope is that despite this,yntaralitative features survive the
tuning of coupling from weak to strong. One of the main aimshig thesis is to present a proposal
to solve the second problem. We will do this in the next twoptbes. Our proposal is to modify
the SS model by taking into account the tachyon fluctuation€hvwe expect to be relevant in the
region where the branes meet. As we will see, introductiotheftachyon will allow the model to
accommodate a non-zero quark mass.
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Chapter 5
Quark mass deformation of SS model

In the last chapter, we saw a beautiful geometrical pictispontaneous breaking of chiral symmetry
arising in the strongly coupled Sakai-Sugimoto model. k& dioal geometry of th®4-branes, the
global chiral symmetry of asymptotically separat®8 — D8 branes is broken in the bulk where
the branes meet. The model also gives rise to a meson speathene the associated massless
pseudoscalar Goldstone bosons can be identified with sortie dlavor gauge field fluctuations of
the D8-D8 branes. As mentioned before, however, one of the main dreksof the model is that it
does not have any parameter corresponding to quark mass#iserf-it lacks an order parameter for
xSB too.

In this chapter and the following, we present a proposal f@rcoming these drawbacks. Our
proposal provides a setup in which one can take into accounanazero quark mass. Our setup
also has an explicit order parameter §8B. The model is a modification of the strongly coupled
SS model involving a study of the dynamics of the open strimipyon betwee®8 andD8 branes
in the D4 background. Note that the open string tachyon betweenadkerfbranes transforms as a
bifundamental under the flavor group. Thus, it couples tai@thilinear of fermions in the boundary
field theory. Therefore, condensation of this field can piaéy lead to the analog of a quark mass
term in the boundary QCD-like theory. The transformatiodemthe flavor group also suggests that
it can give rise to an order parameter f&@B. In this chapter, we will provide details of our proposal
and in the following chapter, we describe the meson spectmighstudy the impact of a non-zero
guark mass on it. The matter covered in these two chapteesexdkon our work in [121, 122].

5.1 Modified Sakai-Sugimoto model with tachyon

In the last chapter we discussed the strongly coupled SSlimahich theD8 andD8 branes attain a
U-shaped configuration in tH4 background. In order to arrive at such a configuration onglmase
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to study the tachyon dynamics arising from open strings eeiitheD8 andD8 branes. For a large
separation, these modes are massive. However, it is naatalhey give rise to tachyonic modes
whenever théd8 — D8 separation is smaller than the string scale. In the regi@mall separation
where theD8 andD8 branes meet each other, the tachyonic mode is expecte¢ameemportant
and can no longer be neglected. This requires us to consideffect of the tachyon in th®8-D8
DBI action. In particular, its coupling with the flavour gafelds modifies the spectrum of the
mesons. It turns out that the tachyonic mode has a paraneetiref quark mass which gives rise to a
non-zero mass to the pseudo-Goldstone boson analogoustamd also one for the order parameter
associated with chiral symmetry breaking, i.e., the clucadensate. We will see this in detail in the
following.

5.2 Brane-antibrane pair with tachyon

Studies of various aspects of tachyon dynamics on a non-BB&ie have been carried out in
superstring theory. The proposed tachydie&ive action for a non-BPS brane in flat space is
given by [100] - [106]:

S=- f dP*1xV(r) V-det A,

Aab = Nab + 02T T + 9 X'9pX" + Fap,

Fab = 0aPb — OpAa, (5.1)
where 0< a, b < pare the indices for the directions in tBg brane world-volume andp+1) <i <9
is the index for the transverse directions. The fidldis the Dp brane gauge field and's are the

transverse scalars.denotes the tachyon fiel¥.(r) is the tachyon potential and depends only on the
magnitudel = |7| of the tachyon. It is believed to satisfy the following gealearoperties [107]:

e V(T) has a maximum af = 0 and a minimum at = co where it vanishes.

e The normalization o¥/(T) is fixed by the requirement that with tachyon put to zero awgd
correctly produce th®p brane tension, so that(0) = 7, = 1/(2n)° P+l Os.

e The expansion o¥(T) aroundT = 0 up to terms quadratic il gives rise to a tachyon with
mass-squared equal +d./2«’.

There are several proposals ¥(T) which satisfy these requirements [107], although no ngsr
derivation exists. Examples are (i) the potential used i#[1115, 116] for calculation of decay of
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unstableD-branes in two-dimensional string theory

V(T) = 7, sechynT; (5.2)

and (ii) the potential obtained using boundary string figkelory computation [117, 118, 119, 120]

V(T)=T,e%". (5.3)

Both these potentials satisfy the properties listed abNwge that the asymptotic form of the potential
in (5.2) for largeT is ~ e V*T. The linear growth of the exponent wihshould be contrasted with
the quadratic growth for the potential in (5.3).

A generalisation of (5.1) was proposed to describe the t@tlgfective action for the brane-
antibrane system by Sen in [108]. It is given by

S=- f dP V(T Xy — Xip)(v/—-detAq) + /~detA),
. 1
Aab = Mab + F ) + 02X 06X() + E(DaT )*(Dp7),
FO = 3,AY — 5,AY, Dar = (0a— AP +iAP)r, (5.4)
wherer is complex and’ is its magnitude. For small values f the potential has a behaviour given
by

. . Xl =X \2
VT, Xiy = Xig) = Tp| 1 + %{(—(” ) - %}TZ +o(r)| (5.5)

Although the form of the action is not based on an exact deonebut it satisfies the following
consistency conditions:

e The action is invariant under the gauge transformationrgibxe

7 — =Lz A 5 AD 4 9 21 (x), AP — AP + 9,15(X).

¢ With tachyonr put to zero we get the sum of the actions of two HP-Branes.

¢ If we demand that the fields be invariant undet ™ that interchanges the brane and anti-brane
then we have

= real AP = A2, Xy = Xy

With this the action becomes proportional to that of a simgle-BPS p-brane given by (5.1).
In [109], Sen investigated the result of orbifolding (mauglivrt (-1)7) a Dp-Dp system. He
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showed that the result is a single non-BB brane. Thus, the present case is consistent with
this result.

A proposal for the brane-antibranffextive action was also made by Garousi in [110, 111]. The
line of argument for this proposal is based on the work dond@i] which proposes anfiective
action for multiple non-BP®p branes in a given background space-time. It uses a nonaabeli
generalisation of the action for a single non-BB§ brane. It is the easiest to obtain such a non-
abelian generalisation for multiple non-BE® branes which have no transverse scalars. One can
then find the &ective action foiDp branes using a T-duality along the @-directions. The fiective
action forDp-Dp is then found from theféective action for two non-BP®p-branes by restricting
the Chan-paton factors to the subgroup corresponding tBhB p system. The fective action so
generated is consistent with disk level S-matrix elemengdring theory [110, 111].

An alternate proposal for theffective action for aDp-Dp pair has also been made in [112]
building upon the work carried out in [113] describing thendgnics of the system. This is based on
the abelian tachyon-DBI action for a single non-BB&® + 1) brane. Thédp-Dp system arises as a
kink-antikink solution in this description. (Kink solutidn non-BPS D-brane was previously studied
by Sen in [108].) The complex tachyon, the WL)(1) gauge field and the additional transverse
scalars are emergent quantities in this setup.

In the following, we apply the proposal made in [110, 111] ke D8-D8 system inD4
background. The simplest case occurs when the brane araar@iare on top of each other since in
this case all the transverse scalars are set to zero. This stuation considered in [85]. To retain
the nice geometrical picture @fS Bof the SS model, one needs to separate the brane and argi-bran
This requires an féective tachyon action on a brane-antibrane pair intergatiith the transverse
scalars. Although the work carried out in [110, 111] propsose éfective action with the brane and
antibrane separated along a noncompact direction, a desagicn of this action to the case when
the brane and antibrane are separated along a perioditiairéitke ours) is not known. However,
for small separatioh(U) compared to the radiug, of the circle, the action in [110] should provide
a reasonable approximation to the compact case. In theniolgpwe will assume this to be true. A
posteriori justification for this assumption, as we shad kger, is provided by the classical solutions
for the brane-antibrane profile. In these solutions, forlsasymptotic separation, the brane and
antibrane meet far away from the central region. In this cas@ good approximation, the factor
f(U) in the background metric can be set to identity, which isijant to setting the radiui, to
infinity.



5.3. CLASSICAL EQUATIONS FOR BRANE PROFILE AND TACHYON 71

With this, the &ective low-energy tachyon action for28 andD8-brane pair fol(U) << Ry is
given, in theD4 background by

S

—fdga V(T,I)e‘¢(\/—detﬂL + \/—detﬂR),
(Aap = L XM ApxN + 2710’ F! b

iJao = |9mN 2jm,le\/|494N aX; OpX; @ Fap 20
il (Gt + 0aX/aa)(r(Do7)" = Dor) + 11 (r(Dar)” = 'Dar)(G — ')}

(Zﬂa’(DaT(DbT)* + (Dat)"Dy7)

(5.6)

where
212

oGt Dat = a7 —i(ALa— Ara)T. V(T.1) = goV(T) N(e) (5.7)

T =|7],i = L, Rand we have used the fact that the background does not depedd\&(T) is called
the tachyon potential. The complete action also includesdenvolving Chern-Simons couplings of

Q=1+

the gauge fields and the tachyon to the RR background souyctie D4-branes. In the following,
we will be interested in knowing the classical vacuum configion of theD8 — D8 system in which
the gauge fieldé andAg do not acquire any vev. The Chern-Simons terms vanish inlikerece of
gauge fields and therefore play no role in determining thewarcconfiguration. In the next chapter
also, we will study only the implications of the vacuum coof@tion we determine here, on the flavor
gauge field fluctuations. Therefore, we omit the Chern-Sgrterms. It may, however, be important
to mention that a study of chiral anomaly requires one to takeaccount these terms.

We end this section with the following observation. It cangasily seen that in the decoupling
limit all factors of @’ scale out of the entire action, without requiring any sagalif the transverse
scalarl or the tachyorr. In fact, the entire action can be rewritten in termstgfandU, quantities
that are kept fixed in the scaling limit. Henceforth, we wakuthe conventionzy’ = 1.

5.3 Classical equations for brane profile and tachyon

In this section, we look for an appropriate classical grostate solution of the brane-antibrane-
tachyon system. We, therefore, set the gauge fields to zerassume thal andx' depend only on
U. Guided by symmetry and with no loss of generality, we chodse I(U)/2 andxg, = —1(U)/2 so
that the separation between the brane and antibrdn&Jih this, the action (5.6) in the static gauge,
simplifies to

S= —V4fd4xfdu V(T)(%)_3/4U4( Dot + \Prr ). (5.8)
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whereD, 1 = Dgt = Dt and

3/2 I/(U)Z

7t T'(U)? + T(U)A(U)?. (5.9)

U )—3/2

Dy = f(U)—l(ﬁ ; f(U)(%)

It is convenient to remove the dependenceRdexcept for an overall factor in the action) through a
redefinition of variables,

U=u/R, U =Rh), U=u/R. (5.10)

In terms of the new variables, we get

S=-VR?® f d*x f du u¥* V(T) (vt + ydrT ). (5.11)
where e
dur = drr = dr = F(U) U2 + f(u) u3/2—(:) + T'(u)* + T(u)*h(u)?, (5.12)

with f(u) = (1 - ud/ud).

The dfective potential for the tachyon can be obtained from thi®ady settinglT’ = h' = 0 and
is given by

Veir(T, 1) ~ sechy/aT V1 + ud/2T2h2, (5.13)

In Figure 5.1 we have plottes as a function ofT for various values ou. We see that a
perturbatively stable minimum &t = 0 for large values ofi turns into an unstable maximum at
a suficiently small value ofi. This is true for any fixed, non-zero valuelofMoreover, the value of
u at which there is an unstable maximunilat O increases as decreases.

Figure 5.1: The fective potentiaVg; as a function ofl for different values ofi for a fixed non-zero
value ofh.
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The equations of motion obtained from the action (5.11) arergby

(%T’(u)) - \lj—z_T[T(u)h(u)2+\\//,((_-ll_-)) —T’(u)z)], (5.14)
u¥ f() s u? 2y YD W e
(=4 ()) = [rrn - GRS,
(5.15)

where the ‘prime’ orV(T) denotes a derivative w.r.t. its argumé@n{and not a derivative w.r.tu).
This is a complicated set of coupled nonlinedfetiential equations which can be solved completely
only numerically. However, for large andu near the place in bulk where the brane and anti-brane
join, these equations simplify and can be treated analijicdo get some insight into the kind
of solutions that are possible, we will, therefore, firstlgsa these equations in these two special
cases before proceeding on to describe the complete nwahsalutions which we have obtained
[121, 122]. Note that we are looking for solutions in whicle thrane and antibrane have a given
asymptotic separatidm, i.e. h(u) — hy asu — oo, and they join at some interior point in the bulk,
i.e. h(u) - 0 atu = uy > Uk (sinceuy provides a lower bound om). Such a solution will help us
preserve the geometrical picture B in SS model. Moreover, we desire the tachyon solution to
vanish as1 — oo. This implies that in the UV limit, the vev of the tachyon vsinés and the full chiral
symmetry is preserved, as in the massless QCD action. Thgdasolution is also desired to blow
up asu approachesiy. As we will see, this will allow us to relate bulk calculat®with boundary
field theory quantities in the UV only. This is because théyan potential becomes zero when the
tachyon blows up.

5.3.1 Solution for largeu

Here we seek a solution in whidtfu) approaches a constamtandT becomes small as— co. For
smallT one can approximaté’/V ~ —xT which follows from the general properties of the potential
discussed in section 5.2. Tf andh’ go to zero sfficiently fast aas — oo then to the leading order,
one might approximatd; ~ u=%2. With this, (5.14) can be approximated to

(U T'(W) =3 u*T. (5.16)
The general solution of this equation is

T(u) = é(ne-hou + T_). (5.17)
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In writing this solution we have ignored a higher order temiju for consistency with other terms
in equation (5.14) of this order that we have neglected.

The fact that the tachyon becomes small for laxgeakes it irrelevant for the leading asymptotic
behaviour oth. Thus, (5.15) simplifies to

(u¥h (W) =0 (5.18)

which has the solution
h(u) = hg — hyu/2, (5.19)

Hereh, is restricted to positive values so that the branes comdahege the bulk. For SS model
without the tachyonhy, = 2udf,’%, wheref, = f(uo), U being the value ofi where the branes meet
in the bulk.

It is easy to convince oneself that the only solution to eignat (5.14) and (5.15) in which
vanishes asymptotically ardgoes to a constant is (5.17) with = 0. In particular, for example,
these equations have no solutions in whictianishes asymptotically as a power law.

5.3.2 Solution foru ~ ug

Here we look for a solution in which - 0 andT — o0 asu — Up. Let us assume a power law
ansatz, namely
h(u) ~ (U-W)*,  T(U) ~ (U—uo)™”. (5.20)

For a smooth joining of the brane and antibranepathe derivative oh must diverge at this point,
which is ensured ifr < 1. With this ansatz, the leading contributiondp comes fromT’?. Hence,
we can approximate; ~ T’(u)®2. We will also need the asymptotic form of the potent4IT)
for large T, which depends on the specific potential being used. Theydacpotential in (5.2)
leads to an asymptotic form given b/(T)/V(T) ~ —+/x, while for the potential in (5.3), we get
V'(T)/V(T) ~ —xT. Using this in (5.14) and (5.15), it is easy to verify that #gpiations cannot be
satisfied by the ansatz for the potential (5.3). They are gvew satisfied for the potential in (5.2). In
fact, in this case the powers as well as thefioents all get fixed:

h(u) = Au53/4(u—u0)1/2+~~, (5.21)
ﬂUofo
T = ﬁfoug/z(U—Uo)‘2+---, (5.22)

4

wherefy = f(up).
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An important feature of the above solution is that it depesrdg on a single parameter, namely the
value ofuy. We have checked that this feature persists in the next fghehniorders in a power series
expansion in—up). This is in sharp contrast to the asymptotic solution (5.(57.19) which depends
on all the four expected parameters, T_, hg, h;. This reduction in the number of parameters is
similar to what happens in the SS model where the solution fouy depends only on one parameter,
although the asymptotic solution depends on two paramdtetke present case the reduction in the
number of parameters is even more severe; the solutianfan, matches with only a one-parameter
subspace of the four-parameter space of asymptotic sofutids we will discuss later, this one-
parameter freedom of the classical solution turns out tortadogous to the freedom to add a bare
guark mass in QCD.

For completeness, we note that there exists another solatiwhichT does not diverge but goes
to a nonzero constant as— Up. In this case we can approximate ~ f(u)u®2h’(u)?/4. Substituting
in (5.14) we see that thids diverges asy — up)™. The first term on thehs vanishes as a positive
power, but the second term diverges as-(up)* %, sincea < 1. For consistency we must have
a = 1/2. The resulting solution

h(u) uio(fo(Sfo + 3 M2u—-ug)? 4, (5.23)

12,
- 2u,7" V' (Ug)

Tw ° (5fo + 3) V(W)

(u _ UO) +oe (524)

also satisfies (5.15). Note that no special condition wasired for the tachyon potential to get this
solution; this solution exists for any potential.

5.4 Quark mass and the ultraviolet cut-df

In the tachyon solution (5.17), the exponentially falliraytsatisfies the approximations under which
(5.16) was derived for any large value wf The exponentially rising part will, however, eventually
become large and cannot be self-consistently used. Thecmuse for sticiently largeu, there is no
consistent solution fof which grows exponentially or even as a power-law to the nabequations
(5.14) and (5.15), if we impose the restriction that) should go to a constant asymptotically. This
puts a restriction on the value obeyond which the generic solution (5.17) cannot be used nTdst
restrictive condition comes from the approximatitn ~ u=>2. This requires the maximum value,

Umax, tO satisfy the condition
5/2
u
T2 2Notimax 4 T 2gPotimax < < —Z’FIZX (5.25)
0
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For generic values dff.| andhy, this inequality determines a range of valuesugiy for which the
solution (5.17) can be trusted. The vallie= 0 is special since in this case there is no upper limit on
Umax, €XCept the cutddthat comes from the fact that the 10-dimensional descnpifahe background
geometry breaks down beyond some very large valusd*) of u. However, as is clear from (5.25),
for nonzergT_| one needs to choose a much smaller value,@f. Numerical calculations reported
in the next section bear out this expectation.

It is important to emphasize that the ultraviolet ctitswe are talking about here does not merely
play the usual role of a cutfoneeded in any example of AASFT with a non-normalizable part
presentin a solution to the bulk equations. The point isttierte is no growing solution to the tachyon
equation in the ultraviolet which is consistent with a bramefile that goes to a finite asymptotic
brane-antibrane separation. This constraint limits theevaf u up to which the asymptotic solutions,
(5.17) and (5.19), can be trusted.

One way to think about the inequality (5.25) is the followiiBuppose for given values ff. | we
have chosen the largest valuewpf,, consistent with (5.25). Increasing,a further would then be
possible only if T_| is decreased appropriately, while | can be kept fixed, as,axis increased. To be
concrete, let us kegy, | and|T_|e"!= fixed asumax is increased. The process of “removing the cut-
oftf” can then be understood as increasipgy and simultaneous decreasifig| while keeping T, |
and the combinatiofT_|e"!= fixed. In this process, at some pojfit |e "' would become much
smaller thanT_|e*Um As we shall see in the next section, however, limitations tunumerical
accuracy prevent us from tunifif_| to very small values, or equivalently tuninga.y to be very large.
Thus we are numerically restricted to rather small values,@f. For values olu larger thanuyay,
the inequality (5.25) breaks down and consequently the gyt solution (5.17) is not applicable.
Clear evidence for this breakdown is seen in the numeridallzgions reported in the next section.

It is natural to associat&_ with the quark mass since this parameter comes with the gopwi
solution. Evidence for this will be given in later where wellvahow that for a small nonzero
value of this parameter, the mass of the pseudo-Goldstos@nbanalogous to pion is nonzero and
proportional to it. It is also natural to associdtewith the chiral condensate because it comes with
the normalizable solution. It turns out that this assoecratoo is consistent, though this part of the
story is somewhat more complicated, as we shall see in segtid.

It is interesting to mention here that keeping the combamgii_|e' = o fixed as the cut£
becomes large implies an exponential dependen¢E pbn theumay, i.e. [T_| = pe U A similar
dependence of the quark mass on the d¢tithas been observed in [124, 125], though the methods
used for computing quark mass in these works are quiferdnt from ours. In [124] the cutfcarises
from the location of @6-brane, which is additionally present in that model, tbgrgiving a physical
meaning to the cut{b.
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5.5 Numerical solutions

The equations (5.14), (5.15) cannot be solved analytic@llye needs to use numerical tools to get a
solution. We have made use of Mathematica for this. Alsoptonerical calculations we have chosen
the potential (5.2), since there is no diverging solutionT¢u) for u ~ ug for the potential (5.3), as
discussed above.

The numerical calculations are easier to do if we start froeut= up end and evolve towards
the largeu end. This avoids the fine-tuning one would have to do if oneewerstart from large
values ofu, where the general solution has four parameters, and endoe-parameter subspace for
U ~ Up. We must also satisfy the requirement of working in the pat@mregion of the background
geometry corresponding to the strong coupling. In addjtwa need to ensure that the asymptotic
separation between flavour branes and antibranes is srmpared to the radius of the* circle.
Mathematically, these requirements aee= 87°R® > 27R, andly < nR,. Using (2.22) and (5.10),
one getR’ = %Rk 4/Uc. Then, these requirements becogé{@ < U < glhg. Throughout our numerical
calculations we will work withu, = 1, which satisfies the first condition easily, while it re@sifrom
the second thdt, < %” As we shall see below, the asymptotic separation decr@atescreasing
value ofup, as is the case for the SS model. Therefore, the conditioassyesatisfied by choosing

Up > Ux = 1. For such values afy, f(u) ~ 1 for all u > uy.

The boundary conditions are imposed using (5.21), (5.28)@intu = u; which we choose as
close touy as allowed by numerics. Generally we were able to reduge (1) down to about
percent of the value afy. Starting from the values af (u;), T’(u;), h(u;) andh’(u;) obtained from
(5.21), (5.22) atl = uy, the system was allowed to evolve to larger values.dfigure 5.2 shows an
example fory = 12.7. Solutions for bottn(u) andT (u) are shown.

h(u) T(u)

0.25; 107
0.20 8F
0.15 6
0.10 4r

0.05 2r

000t v v v e u ] S S s e e u
15 20 25 30 35 15 20 25 30 35

Figure 5.2: The brane profile and the tachyon solutiorufos 12.7.
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5.6 Verification of the UV and IR analytic solutions

From the numerical solutions one can verify th@t) andT (u) are given by the forms (5.21), (5.22),
for u ~ ug. Figure 5.3 shows the impressive fits between the numereta dnd the analytical
expectations for the powers af £ ug) for h(u) andT (u). We have plottedh(u)/h’(u) andT (u)/T’(u),
calculated from the numerical solutions, as functions.of he numerical data are plotted in dashed
lines while the theoretical solutions are plotted in salies. As one can see, these graphs are linear
at the IR end and their slopes turn out to be close to the exgeetiues 2 and 0.5 respectively. In
fact, the numerical and the theoretical curves entirelylapen the IR region ofi, as shown in Figure
5.3. At the other end also, namely for largeone can verify that the numerical solutions have the

h(u) T(u)
() ()
5.
5 o
o 4
4 o"’ --------
R 3t e
3 'o' &
2t ,oo"’ 2r
1k 1
0 u 0 u

135 14.0 145 15.0 14 16 18 20 22

Figure 5.3: Numerical verification of exponents in the IRdabur of brane profile and tachyon. The
fits give the two exponents respectively to b8®and-2.07 foru = 131.

analytic forms (5.19), (5.17). The goodness of the fits os¢hanalytic forms to numerical data is
shown in Figure 5.4 where again the two curves overlap in sigenatotic region ofi. The fits yield
values of the four parameterby = 0.224 h; = -16068 T, = 291945, T_ = -1.25x 10 for

Up = 13.1. It may be noted here that the numerical relation betweenRlparameteu, and the UV
parameters may depend on the ¢litg,.x. However, we find that they are actually quite robust with
respect to small changesiun.,. We discuss this issue in detail in appendix B.

5.7 Behaviour of the non-normalizable part

ForT_ # 0, extending numerical calculations much beyond the vasfiashown in Figure 5.2 meets
with a difficulty. It turns out that for smallp, T_ is positive. Sincél_ is the codicient of the rising
exponential inT (u), for a suficiently large value ofi this term dominates and Squ) begins to rise.
Eventually,T becomes so large that the conditions under which the asymptdutions (5.19), (5.17)
were obtained no longer apply. Figure 5.5 illustrates ihshows the solutions fanp = 12.7 for two
different large values af. In Figure 5.5(a), after falling very fast, rises and then falls again. Almost
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Figure 5.4: Numerical verification of the asymptotic forntloé brane profile and the tachyon.
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Figure 5.5: Solutions for two éterent large values af.

simultaneous with this is a rapid rise lofrom one nearly constant value to a higher constant value.

Evidently, this behaviour continues indefinitely withas can be seen in Figure 5.5(b).

The value ofT_ decreases with increasing. This can be easily deduced from the fact that the

maximum value ofu up to which the asymptotic solutions (5.17), (5.19) appbmely before the

oscillations begin, increases with increasing Figure 5.6 illustrates this by showing the solutions

for increasing values afy, close to wherd _ is small. As one can see, increasing the valueydfy a

very small amount, fromy = 13 toug = 13.0878, dramatically increases the threshold for oscillator

behaviour ofT from u ~ 50 tou ~ 120! Asug increases furtheil_ decreases, becomes zérand
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eventually negative. Since we want to interpFetas the bare quark mass parameter, negative values
for it are allowed. However, a large value for | will eventually again maké& large in magnitude for
large enoughu. So once again we expect that at somi@siently largeu, T will become so large that

the conditions under which the asymptotic solutions (5.(&719) were obtained no longer apply. So,
as before, one should find oscillationsTifu), which now start at smaller and smalleasuy grows.

This is indeed seen to be the case, as is evident in Figure Big happens becau$k | grows with

20p

2T
10f
05} hu)

0.0mwww\ww\\\\\\\\\\\\\\\\
2 4 60 8 N\100_ 120 140

-0.5F

-1.0+

Figure 5.7: Numerical solutions for increasing valuesigfor negativer _.

Up, beyond the value at which it becomes zero. Figure 5.8 shiogvshiange off _ with uy. We see

T
o,

Uo

Figure 5.8:T_ as a function ofi.

that T_ vanishes atiy ~ 130878 andT_| grows on both sides away from this value. It is hard to
understand what is special about this valueifOne might have thought that the role of zero mass
would be played by the antipodal configuration, which tias uy, and is beyond our approximation.
It is possible that this is an artifact of using the approxenaction, (5.6), valid for a noncompact
x* coordinate, although the valug ~ 13.0878 is fairly large and seems to be within the validity of
our approximation. We also note that for negafive negativeT (u) can be avoided by imposing a

We have found thaf_ = 1.92x 10°° atup ~ 13.0877781. Fine-tuningp such thafl_ is precisely zero is hard and
this is the best we could attain. However, the trend is cleanfFigure 5.6 and Figure 5.7.
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suitable cut-& onu. As we have already discussed, the cfiti® in any case required to fulfill the
condition (5.25) so that the asymptotic solutions (5.15)19) may apply.

5.8 Behaviour of the asymptotic brane-antibrane separatio

Another interesting feature of the classical solution is Wariation of asymptotic brane-antibrane
separationhy, as a function ofuy. This has been plotted in Figure 5.9. We see tipasteadily

L L L
16 18 20

Figure 5.9:hy as a function ofi,.

decreases through the special valye- 13.0878. Although we do not have an analytical formula for
the dependence bf onug for large values of the latter, the trend in Figure 5.9 seenisdicate that

it decreases to zero ag becomes large. Presumably the brane-antibrane pair pwanih disappear
asup goes to infinity. This is consistent with the trend of inciegd _ for increasing values af, (far
beyondu, ~ 13.0878) which we have seen in Figure 5.8, provided this parantetnterpreted as the
bare quark mass, since in that case the disappearance afthedntibrane pair falp = co can be
understood as the infinite bare quark mass limit. Within tBex®del there is no explanation for this
phenomenon. It should be clear from the above discussidrittedimit hy — 0 does not reduce to
the case of overlappinB8 branes and8 branes considered in [85]. For this case, one must begin
afresh withx! = 0, | = 0 in the action (5.6).
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5.9 Comparison with the Sakai-Sugimoto solution

Finally, we must ensure that the solution with the tachy@lbaer energy compared to the SS model.
The energy density in the modified model is given by

Er = 2V,R°V(0) f umaxdu Er(u),
Er(u) = u®* % u-3/2 4+ 211u3/2h'(u)2 + T’(u)? + T(u)2h(u)2, (5.26)

while for the SS model it is given by

ESS

Umax
2V,R° V(0) f du Esqu),
Uo

1
Ess(u) = u'¥* \/ u-32 + Zu3/2h’ss(u)2. (5.27)

To get these expressions for energy density, we havi(ggto unity, which is a good approximation
for large up. Also, in the SS model one must use the solution of the tacHye® equation,
hsg(u) = 2ugu=3/2(u® — ud)~/2.

Close touy, in the IR, the exponentially vanishing tachyon potentigh@esses contribution to
Er compared tdEss. Since the UV solutions for the two models are almost idahficone might
argue that the energy for the modified model must be lower ttatrfor the SS model. However, for
U > Ug there is a competition between the exponentially vaniskagfyon potential and the power
law increase of the square-root factor coming fridifh in the integrander(u) in (5.26). This results
in a local maximum inEt(u) at some value ofi, which can be easily estimated analytically. The

relevant quantity,
e_ % ug/Z(U—UO)_Z (u _ uo)_3’

has a maximum at = up + (£)*2u3*. For smallu, the position of the maximum is close g, S0 in
this case the argument about the IR behaviour of the intelgrafd.26) is not very clean, exceptin the
very deep IR. But since the position of the maximum grows witlteasingug asug/“, our argument
should hold for large values of, which is precisely where the action for the modified model loa
trusted. However, the expression used for estimating tegipo of the local maximum breaks down
if itis too far away fromuy. So, in practice we need to do a numerical calculation to e the real

story is. As we will see in the numerical plots given belowatteally happens is that for relatively

2There is a caveat here. Strictly speaking this is true onlgmihe cofficient of the non-normalizable terr, , in
the asymptotic tachyon solution (5.17) vanishes. As we d@as@issed, whel_ is nonzero, one must introduce a ctt;o
Umax, Chosen carefully such that the asymptotic solution iss8atl. In particular, one must ensureis positive in the
region belowunax. In the calculations reported here and earlier in this eacthis is what we have done.
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large values ofly the integrande+(u) increases rapidly at first, then slows down almost to a eonst
and finally settles into an asymptotic power law increaselaino that of the integranss(u) for
the SS model. Moreover, the place where the rapid increagadshifts to larger values afasug
increases, in accordance with the above expectation.

We have numerically evaluated the integrals in (5.26) an@i7)5 Because the relation between
Up and the asymptotic brane-antibrane separationfisrént in the two models, a given value gf
corresponds to two ffierent values of the latter and vice versa. We have chosentteedmmparison
for the same value of the asymptotic brane-antibrane séara the two models, but the conclusions
are similar with the other choice as well. In Figure 5.10 weehalotted numerical solutions f&xu)

35)
0.15} 300
25
0.10- zo%
h(u) s
0.051 LO%

0.5

Figure 5.10:h(u) and T (u) profiles forug = 17. For comparisoss profile has also been plotted
after adjusting the value af, to 164 for it since this value ofly produces the same asymptotic
brane-antibrane separation.
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Figure 5.11: The energy density integrartis(u) andE+(u). The rapid rise of the latter in the IR is
clearly seen. The divergence between the two curves in gra@stic regionu > Unax IS due to a
nonzerof _.

andT(u) for ug = 17. For comparison with the SS model, we have also plditgdfter adjusting
the value ofug for it to produce the same value of the asymptotic brandseante separation. The
required value turns out to hg = 16.4. The corresponding energy density integrariigy) and
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Ess(u), have been plotted in Figure 5.11. We can clearly see thd rege of E(u) in the IR, the
subsequent flattening out and finally the power-law rise énatsymptotic region. Usingy,, = 35.32

3, numerical evaluation of the integrals givés; (-~ Esg) = —3003. Therefore, the solution with the
tachyon taken into account corresponds to a lower energg. ssamilar behaviour is seen for values
of up > 14. Belowu, ~ 14, however, the energyftitrence becomes very small and even reverses
sign. This may be connected with the breakdown of the apprata action in this region, similar to
the observation of a zero quark massi@t 13.01.

5.10 The chiral condensate

By the standard dictionary of AdSFT [55, 50, 94, 95], once we have identifi€d with the quark
mass parameter, we should identify with the chiral condensate. However, it is not clear that the
standard rules apply to the present case of a boundary thduoh is not a CFT and has a scale.
Moreover, the fact that there is no known lift OB brane to 11-dimensions forces an essential dut-o
in the theory with flavours. In fact, for a non-zero valueTaf the real cut-& is much lower, as we
have seen from numerical computations in the last sectiesple these eliculties, we will assume
that the identification of sources in the boundary theorhwidundary values of bulk fields holds in
the theory with cut-f.

To derive an expression for the condensate, we calculateatiaion of the action in (5.11) under
a general variation of and use the equations of motion to reduce it to a boundary term

N [ V(MU
6S = =g fdx NG T (WOT (Wluzuya- (5.28)

Only the UV boundary contributes to the on-shell action;réhis no IR contribution because the
tachyon potential vanishes exponentially for the diveggachyon in the IR. For calculation of the
chiral condensate, we are only interested in retaining #matronsT_, so we seb T, to zero. Doing
this and using (5.17) in (5.28), we get the leading contidsutor largeumay,

EAYE)

0S =g

(T, — T_eouma) f d*x6T_. (5.29)

On-shell brane actions have UV divergences which need toebeved by the holographic
renormalization procedure to get finite answers for physgjoantities. One adds boundary counter
terms to the brane action to remove the divergences, fatigwiprocedure described in [130]. Our

3This is the value at whicff (u) vanishes. The asymptotic form, (5.17), fits the numenjcaimputedT (u) in the
range 33< U < Umax to better than a percent with the parameter valyes 0.179 T, = 28904 T_ = —-0.0937. In
appendix B, we also study the robustness of the parametérehanges itimax.
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on-shell action (5.29) diverges as the ctitis removed. This is because, as discussed in section 5.4,
we are keepind@, andT_evU fixed as the cut4b is removed and the last term in (5.29) diverges as
gloumax in this limit. The holographic renormalization procedusstbeen developed for examples with
CFT boundary theories. Since, with tB8 branes present, there is no 11-dimensional description
available to us, it is not clear that the procedure describg¢ti30] is applicable to the present case.
We will proceed on the assumption that this is the case. Torereto subtract the UV divergent term

in (5.29), we will add the following counter term to the boanglaction,

Su= ~g 2 [ d'x v BT Wl (530)

wherey = -8 _ is the determinant of the metric on the 8-dimensional boondethogonal to the
slice atu = unax Note that the counter terms must be even in powers of thgéadbhecause of gauge
symmetry. Using the solution (5.17) and retaining only taeameteiT_, we find that the variation
of the counter term action is

2hoV4V(0)

6SCt = Rg

(T, + T_e?houma) f d*x6T_. (5.31)

Adding to (5.29), the divergent term drops out and we get dr@tion of the renormalized action

4hoV4V (0
5Srenorm ~ %()n f d*xsT_. (5.32)

Note that the variation of the renormalized action is twisdaage as it would have been if we had
simply dropped the divergent terhin (5.29).

We are now ready to calculate an expression for the chiradeasate in terms of the parameters
of the tachyon solution. The parametétsare dimensionless. To construct a parameter of dimension
mass fromT_, we introduce a scale and definan, = u|T_|. Then, identifying the chiral condensate
X =< QqLORr >, With 6Sienom/uoT_(X), we get

4hoV,V(0)
X =T,

= (5.33)

We see that the parameter determines the condensate. Figure 5.12 shows a plot a$ a function
of T_ for T_ ~ 0. Also shown is the variation witty which corresponds to a set of values Tarand
T,. T, seems to attain a maximum valueTat= 0 and drops fi rapidly, at least for small values of

“4In (5.29), it is inconsistent to drop the term proportioralt in the limit of large cut-@, holding T, andT_g%tmx
fixed. In fact, it is theT_ term that dominates in the action (5.29) in this limit. Takim diferent limit that allows one
to simply drop this term createsfliculties in the calculation of the mass of pseudo-Goldstas®b as we will see in
section 6.3 in the next chapter. Consistency with the choatiensate calculation then demands that the term propatti
to T, T_ be dropped in the mass calculation since it is smaller thai frterm.
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Figure 5.12.T, as a function off _.

IT.

Let us now summarise the discussion in this chapter. In thé waesented in this chapter, we
have proposed a modification of the SS model that may allow@nensider a non-zero quark mass
within the setup. The model also provides an explicit ordeameter forySB. The SS model, on
the other hand, is known to lack both of these features. Owfefriavolves a study of th®8 — D8
open string tachyon dynamics in tBel — D8 — D8 system. The open string tachyon, that transforms
as a bifundamental under the flavor group, has the right goamumbers to give rise to an order
parameter fox SB. Further, it can couple to a chiral bilinear in such a wat its condensation gives
rise to a ‘quark’ mass term.

In this chapter, we studied the vacuum configuration ofBe D8 profile given by the separation,
h(u) and the tachyonl (u). We saw that even in the presence of the tachyon, the geicalgticture
of chiral symmetry breaking of the SS model is essentialgsprved. Asymptotically separatbd®
andD8 branes meet each other in the bulk of the backgrdhdeometry. Further, there is a vacuum
solution for the tachyoil (u) which blows up in the bulk at the point in which the branes m&ae
UV behaviour is associated with normalisable and non-nbsaiale parts,;T, and T_ respectively.
Similarly, the UV behaviour oh(u) is associated with two parameters. The IR behaviour (of
andh(u), on the other hand, is associated with just a single paermgt Therefore, all the four
parameters in the UV are determined by the IR paramgter

Using AdSCFT correspondence, we expect that the paranietepurces the chiral bilinear and
is hence the ‘quark’ mass. We find that increasipgorresponds to tuning the parameterto large
values. This implies increasing the paramdteremoves the flavor branes to infinity. This is found
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to be consistent with the expectation that the flavors becmmedynamical in this limit. We also find
that the chiral condensate, obtained aftéfedentiating the renormalised action wikh, is given by
a factor ofT,, the parameter associated with normalisable part of the/tacsolution. We find that
for a small quark mass, the chiral condensate decreaseamititrease in the mass.
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Chapter 6
Mesons in the modified SS model

Having introduced the tachyon modified Sakai-Sugimoto madehis chapter, let us discuss the
spectra for various low spin mesons described by the fluongbf the flavour branes around the
classical solution. In the last chapter, we obtained thesital vacuum configuration of B8-D8
pair, described by(u) and T (u), with UV behaviour given by equations (5.19) and (5.17) #Rd
behaviour governed by equations (5.21) and (5.22). In tmégpter, our aim is to study the spectrum
of fluctuations around this configuration and, in particuidentify the meson spectra. To proceed
we first write the complex tachyonin terms of its magnitude and phage= T(u)e’. Then, we
re-express the brane-antibrane action (5.6) in terms ofj#luge field combinationg = (A_ + Ar)
andA = (AL — Agr — d6). The fieldV is invariant under the axial transformations of the flavaugm
group U(1)x U(1) but transforms (as an adjoint) under the vector sugr@n the other, the field
Ais a gauge invariant object (for the full flavor gauge groupe the gauge transformations of the
combinationA_-Ar is compensated by the changedainder gauge transformation. We will treét
andA as small fluctuations and expand upto quadratic order irethekls. This gives the following
action for the fluctuations:

ASgauge = - f d*x dL{a(u)Aﬁ + b(u)AZ + c(u) ((FL’V)Z + (F;\V)Z) + (U)F A

+d(u) ((FYL)? + (FA 2)], 6.1)
where

au) = R‘15V4V(T)u13/4T—\/d_i, (6.2)

b(u = R3V,V(T)u”’* dT%Z(u %ﬁzh'zu’*), (6.3)

89
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cu) = §V4V(T)u1/4\/a, (6.4)

du) = R‘WN(T)U”“%, (6.5)

eu) = R“MN(T)UBM%. (6.6)
T

Here F){ is the usual field strength for the U(1) vector gauge fiéldnd Fﬁv is the field strength for

v

the U(1) axial vector fieldh. The mixed components are given by
Fr,=-Fy, =0, Vu—R0\V,, FL =-F} =8,A-R0OA,.. (6.7)

The relative factor oR® simply reflects the change of variables (5.10).

As we shall see, the gauge fiekj(x, u) gives rise to a tower of vector mesons while the fields
A, (x,u) and Ay(x,u), which are gauge invariant, lead to towers of axial-veeod pseudoscalar
mesons respectively. Note that the fiméentsa(u), b(u) and e(u) vanish if the tachyon is set to
zero. In the absence of the tachyon, the vector and axiabvestsons acquire masses because of a
nonzerod(u), but there is always a massless pseudoscalar Goldstooe hasing fromA, as can be
seen on comparing the action to the strongly coupled Sakgin®to model discussed before. The
presence of the tachyon is thus essential to give a mass &mé#theg of pion. Also note that with the
tachyon present, the masses of the vector and axial vectwmaeare in principle éierent.

6.1 Vector mesons

The vector field V,(x, u), Vy(x, u)) is not gauge invariant. We will choose the gauge in which
Vu(x,u) = 0. Note that this still allows the freedom to malkéndependent gauge transformations.
We will discuss this further in the following. Expanding iroates, we have

VL0 = > VD) Win(u), (6.8)

where{Wn(u)} form a complete set of basis functions. These satisfy odhuality conditions which
will be determined presently. The fiel({lvﬁm)(x)} form a tower of vector mesons in the physical
(3 + 1)-dimensional space-time. In terms of these fields, théovgrart of the action (6.1) takes the

form,
ASY o= — f d*x Z[ v FVMEVOR |V /| (6.9)

gauge —
mn
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WhereFV(m) are the usual (3 1)-dimensional U(1)-invariant field strengths for the \wegtotentials
(V™). Also, we have defined

V= f du qU)Wn(WWh(u), LY. =R f du d(u)W, (U)W (u). (6.10)
Let us now choose the basis functigiié,(u)} to satisfy the eigenvalue equation
—R® (d(uW)W,,(u))" = 22Y-c(u) Wiy, (6.11)
With this, we get

L= RAUWG W) -+ 20Qh

dUW (WWh(u) | +22%QY | + m e n, (6.12)
Al ), * 247Q]

where,du refers to boundaries in thedirection. The second line follows from the symmetryL¢if.
andQY,, under the interchange of indicesandn.

Let us now come back to the residual symmetry of makingdependent gauge transformations
which is still available after fixing the gaugé, = 0. We can use this freedom, together with the
requirement of finiteness of the action, (6.9), to gauge aWwayero mode in the expansion (6.8) that
corresponds to zero eigenvala$ = 0. Let this mode correspond ta = 0. According to (6.11),

W (u) goes to a constant at— oo. Sincec(u) ~ u™*/2 at largeu, Qy, diverges. Then, finiteness of the
action (6.9) requires that we se¥” = 0. ThereforeV”) is a pure gauge which can be gauged away
using the residual gauge freedom.

For the nonzero modes we may, without loss of generalitypsbo

1
M Smn- (6.13)

mn:Z mn

Then, using the requirement of finitenesd.¢f in (6.12), gives

1
LY = Ea‘,{]amn. (6.14)

Finally, using (6.13) and (6.14) in (6.9), we get

1
ASyoge= f d*x 4FZ§m>FV(m>ﬂV+ SAVPVO. (6.15)

This is the expected infinite tower of massive vector mesons.
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6.2 Axial vector and pseudoscalar mesons

As we have already noted,, andA, are gauge invariant. There is no gauge freedom that can put an
of these to zero and both provide physical fields. Expandingades, we have

AU) = Y ADOIPR(U),  Auxu) = > 60(0Si(u), (6.16)

where {P(u)} and {S;(u)} form complete sets of basis functions. These satisfy odfmality
conditions which will be determined presently. The field&”(x)} and{¢®(x)} form towers of axial
vector and pseudoscalar mesons in the physical {3-dimensional space-time. In terms of these
fields, the axial-vector and pseudoscalar part of the a¢@idt) takes the form,

ASA = _fd“x[ ﬁ;nFﬁV(m)FA(n)’” + LﬁwnALm)A(n)# + Tij¢(i)¢(j)

gauge

1K 9,000 + JmiA(m)*‘a#(p(i)], (6.17)

where the repeated indices n, i and j are summed overF,’;\V(m) are the usual (3 1)-dimensional
U(1)-invariant field strengths for the axial-vector field§"}. Also, we have defined

A f du q)Pu(U)Pa(Y),
A f au (REA(U)P(LP() + (B(U) + SREE(U)Pr(uP() )

—
>
Il

Iy = f du(e(u)Pm(u)—2R3d(u)P;n(u))Si(u),
K = f du d(u)S: (1)S;(u).
Tij = fdu dU)Si(U)Sj(U). (618)

We note that because of the last term in (6.17), the longildiomponent oA™ and¢® mix.
So we need to define new field variables in terms of which thiem¢6.17) is diagonal. Before we
do that, let us first note that the axial vector potenfiglx, u) has a possible zero mode provided
the corresponding (3 1)-dimensional field strength vanishes, for reasons exgthin the previous
subsection. Hence the zero mode, which we shall denotA,EcBycan only have a longitudinal
component. The zero mode is gauge-invariant and, because mixing with the pseudoscalars,
plays a special role. Let us see this in some detail.
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Let us choose the basis functiofi®,(u)} to satisfy the eigenvalue equation
—R6(d(u)P;n(u)) ; (b(u) ; %F?ef(u))Pm(u) = 22A0(U)Pum(U). (6.19)
Using this we see that

Linn= R(AWPWP(W) +213Qh,
ou

= %[RG(ol(u)P;n(u)Pn(u))au + 22, gn] +me n, (6.20)

where, as beforeju refers to boundaries in tha-direction and the second line follows from the
symmetry ofLA_ andQZ,. The zero mod@\flo) Is conjugate to the eigenfunctidiy(u) which satisfies
the equation

—RG(d(u)Pg)(u))' ; (b(u) ; %R*’e((u))Po(u) _0. (6.21)

If there is no solution to this equation, then the zero modesdwot exist and we should proceed
directly to diagonalize the action (6.17). If, however, &uion Py(u) to this equation exists and is
such that it goes to a constant at infinity, then the zero mké?i@xists. SinceQy, blows up for this,
Af,o) must be purely longitudinal, for a reason identical to thatdssed in the vector case. We make
this explicit by writing it in terms of a pseudoscalar fiehf? = d,a(x).

The terms in the action (6.17) which contai(x) can be separated out. Let us first see if there
is any mixing between the zero mode and non-zero modes ofxiakwector fields. Since the field
strength vanishes for the zero mode, the only possible mieam arise from théf, term forn # 0.

It can be seen from the first line of equation (6.20) th@tcan get any contribution only from the
boundary term. The contribution at= uy vanishes as the tachyon potential vanishes. As we will
see later, the zero mode exists whienis zero for the background tachyon solution. The solution is
such thatl(u)Py(u) goes to a constant as— co. Further,P,(u) for n # 0 vanishes at — co so that

Lg, = 0. Therefore, the only terms containia¢x) are:

Looduada + > Jud,ad ¢,

Without loss of generality, we may chookg, = 1/2 (to get the normalization of the kinetic term of
#© right). Then, we can rewrite the above as

1 1 -
S0umd'n 5 Z‘ 3o Joj0, 60 ¢, (6.22)

wherer = (a + 3 JoigD).
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With the zero modes explicitly separated out in this wayf@ nonzero modes we may, without
loss of generality, choose
A= %(s,m. (6.23)
Note thatc(u) ~ u"¥2 asu — oo so that normalizability of the kinetic term requires tRa{u) should
fall faster tharu=Y/# at largeu. Equation (6.19) furher implies the{u)P4(u) < u*2Pg(u) so that the
boundary term irL4- vanishes. (The contribution from boundaryugtanyway vanishes because of

the tachyon potential.) Therefore, on using (6.23) in (5.2@ get

1
LA = Eagamﬁ. (6.24)

Putting (6.22), (6.23) and (6.24) in the action (6.17), we ge

P | , 1
ASgAauge = _fd4x [(Tij¢(l)¢(l)+ZF§V(@FA®# +§/1%A£@A(rﬁ)#)

1 ~ , : _
S0 + (Ki 0,605 ¢0) 1 JmiA<@#aﬂ¢<'>)], (6.25)
whereK;; = (Kij — $J0Joj). The above action describes a massless particlgesides other massive

particles. The existence of this massless particle depmmtise existence of a solution to the equation
(6.21), and reproduction of the canonical kinetic term fdhfough the normalization condition

Re(d(u)Po(u)Pg,(u)) - % (6.26)

ou

Later we will see that the existence of the desired solulgin) depends on the absence of a non-
normalizable part ifT (u).

To diagonalize the action (6.25) for the massive modes, iiaalthe new variables

A = A _ Z(ﬂfﬁ)ﬂﬁaﬂqs“). (6.27)
i
Putting in (6.25), we get
ASA  _ dx (T 600D 4 TEAmEAm . 1Az g
gauge — X IJ¢¢ +Z uv +§rﬁy

1 . .
+50,m0'7 + K 3,00 g0,

(6.28)

where K = (Kij - %Z,ﬁ(ﬂ%)‘lJmiij). The modes have now been decoupled. To get the standard
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action for massive pseudoscalars we may, without loss afrgédity, set

1
Ty = E/l?éij,

and
1 1 1
6ij = Kij — zJoidoj — 5 Z(/l%)_laniij
m

K/
2

ijzé

Equation (6.30) can be rewritten in a more conventional fasnfiollows. We define

viU) = ) (4R Pa(u)Jmi + Po(u)Joi

m

and using (6.19) note that it satisfies the equation

—RG(d(u)wi’(u)), ; (b(u) ; %RSef(u))glq () = %e(u)Si(u) ; R3(d(u)Si (u))
Using (6.31) in (6.30), we get

6y = [ dudUS WS + Rwi(W) - 3eS W)+ §
In terms of new variables defined by
S =Ry, 6 = i) +nu,
(6.33) can be written as
| duriw(Rawee - SREW - 1) i o | =

Moreover, in terms of these variables thé&eliential equation (6.32) reads

~R(dwr @) + (b + 3R~ m@) - JRe @) = 0.

From these two equations one can obtain the orthonormalitglion

[ auRaawew + 6 + FREWGW - nWEW - 1)

-SRI W0,) - 1y(W) - SR - (W) = 36,

’

95

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)
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Also, rewriting (6.29) in terms of the new variables, we have
1
R [ du et i) = 54 (6.38)
Finally, (6.35) and (6.38) give
1
Rea(uri(u) = A Red(We() - SReeu)(6; () - (W) ). (6.39)

Equations (6.36) and (6.39) are the final form of the eigarevalquations and (6.37) and (6.38) are
the orthonormality conditions in the pseudoscalar sector.

It is interesting to note from (6.36) that if is constant, then the variablé { ) satisfies a
differential equation that is identical to the equation (6.z)séed by the zero modB,. Also,
using (6.36) and (6.37) one can show that for consja(tt — n) satisfies the normalization condition
(6.26). From (6.39) it follows that if is constant, the eigenvalué vanishes. Thus, the presence of a
massless pseudoscalar can be naturally considered toriiead¢o the question of the existence of a
solution to the equations (6.36)-(6.39) with zero eigemgabnd so it becomes a part of the spectrum
in the pseudoscalar tower of states. Hence, the actionsrs#dator can be written in the form

1 imeime LA xm »
AShuge = — f d4x[ZF§§@FA@# +§a¢inAg@A(@#

1 i i 1 i) 4
+§6ﬂ¢()6ﬂ¢() + E/l?qb()qb() : (6.40)

where the repeated indices are summed over. Note that wadhepped the fieldr(x), but extended
the sum over to cover a zero mode as well. If there is a solution to the egog{6.36)-(6.39) with
constantyy and/l‘g = 0, then a massless pseudoscalar Goldstone boson will rieagpehe zero mode
#© in the pseudoscalar tower. Otherwise, the lowest mode srstigtor will be massive, whose mass
can be computed as in the following section.

6.3 Relation between mass of pseudo-Goldstone boson and non

normalizable part of tachyon

In this section we will derive a relation between the masssgugo-Goldstone boson and the non-
normalizable part of tachyon parametrizedhy This will give us further evidence for identifying
the parameter$, andT_ with the chiral condensate and quark mass respectively. Mlenfote that

for T(u) = 0, a(u) vanishes and henoé” also vanishes by (6.39). However, as we will see from the
following calculations T (u) = O is a sdficient condition, but not necessary to guarantee the presenc
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of a massless Goldstone boson. The necessary conditioatith#hnon-normalizable piece T(u)
should be absent, i.d_ = 0.

Let us assume thdt(u) # O so thata(u) # 0. Then, (6.39) can be used to solve #u) in terms
of y;(u), which is related t@;(u) andn;(u) by (6.34). We get,

A oy €
a(m_—m(d(u)wi (1) - e ti 1)) (6.41)

ni(u) =
Let us now denote byg the lowest mass eigenvalue. The corresponding eigenturscéira/o(u) and
no(u). Assuming/l‘g < a(u)/d(u) %, we can approximate the above equationvfgu):

Ay e(u)

O COI DR A®) (6.42)

If we know yo(u), then using the above in (6.38) we can compute the mass. Pfw), satisfies the
following differential equation, which can be obtained from (6.36) ushdfl) and the approximation
A < a(u)/d(u):

—Re(d(u)%(u))' ; (b(u) ; %R3ef(u))¢o(u) ~ 0, (6.43)

Also, using (6.43) and the approximation under which it watamed, the normalization condition
onyo(u) given by (6.37) can be approximated as

NI

R (U)o (UYo(U)lumtpe, ~ (6.44)

These equations cannot be solved analytically in generawener, analytic solutions can be
obtained in the IR and UV regimes. In the UV regime, DK Unay, We use (5.17) and (5.19) to
approximate the cdkcients in (6.43); we get

V4V(O) 9V,V(0)

4R6

b(u) ~ uT?(u), d(u )~V4V(O)u5/2, eU) ~ hohyu=3/2T2(u). (6.45)

In writing these, we have usedu) ~ 1, which is a good approximation for large We see that we
can clearly negleat(u) compared tdo(u) in (6.43), whileb(u) is itself negligible compared td(u).
Using these approximations in (6.43) and (6.44) then gives

V4V( ). 3

5 ’ 1
~(utus) ~o, YW, ~ 5 (6.46)

1This approximation can be justified a posteriori by the sotutbecause the eigenvalu’% turns out to be
parametrically much smaller by a factor ofR¥, see (6.57), compared to the ragiq),/d(u).
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which are solved by

4R3
y-32

1
" VO (6.47)

Yo(U) = Co

In the above expressian is a parameter which is related to the decay constant of thi®@uof
pion. This can be argued as follows. The decay condtaistrelated to a two-point correlator of the
axial-vector current as

f d*x d(01j# (%) ¥ (0)0y = 2 ki'k” 6%, (6.48)

Using the ADECFT dictionary, one can use duality of the axial vector aurie the boundary theory
to the axial vector bulk field. The axial current correlatan¢hen be computed from the action (6.17),
evaluated on-shell, by filerentiating twice with respect to the transverse part obthial vector field
on the UV boundary. This is the source which couples to thalaxirrent on the boundary. The
source arises from the same zero mode soluti®(i)), which we discussed in connection with a
possible zero mode (the pseudo-Goldstone boson analogguasn) in the longitudinal component
of the axial gauge fieldP?y(u) satisfies the equation (6.21), which is identical to thés&ad byy(u),
(6.43). However, the boundary condition now igfélient; it is the boundary condition for a source,
Po(Umax) = 1. In addition, one imposes the condition

f2
Red(U) P (U) Po(U)yzyyay ~ > (6.49)
which is required to reproduce the correct zero momentusad axrrent correlator. This follows from
the action (6.17). NowRy(u) satisfies (6.21) and the condition (6.49) if we Bgfu) = f,yo(u). Then,
requiringPo(Umax) = 1 givescy = 1/ f,..

In the IR regimeu > ug, we use (5.21) and (5.22) to approximate thefioents in (6.43); we

get

PR (T 13V 13V,

~ N V(T)
26R3  (U— Up)* d(u) ~ 32\/7—TR9V(T)’ e(u) ~

16+/7R8 (U — Ug)’

b(u) ~ (6.50)

In writing these, we have usef{uy) ~ 1, which is a good approximation for largg. Using
dV(T)/du = T'(u)V'(T), we see thab(u) andR®¢ (u) both go as i — uy)™ in this regime. However,
the codficient of the latter is suppressed by a relative facto:gc"f?, so for largeuy we may neglect it
compared tdo(u). But, unlike in the UV regimeh(u) cannot be neglected comparedi{@). In fact,
this term is crucial for getting a nontrivial solution. Inghiegime, then, the leading terms in equation

(6.43) give
327RUy yo(u)

169 (u-—uw)’

wolU) ~ (6.51)
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which has the solution
32:RBuY/2

Yo(U) ~ Go(u— ug) T, (6.52)
wherecy is an integration constant. Note that the normalizationdd@gn remains unchanged and
cannot be used here because it receives contribution amy fine UV end due to the exponentially
vanishing tachyon potential for larggu) at the IR end.

Let us now consider the formula, (6.38), for the lowest maggng which one can compute the
eigenvaluell:

RS f ™ du AUy (W)? = %ag. (6.53)

VaVag”t vy . -
R gy N the IR and (6.52) in (6.42), we see thg(u) o« y(u) vanishes very
1/2

rapidly asu — up, with a power which grows as;

Using a(u) =~
for largeug. Moreover, sincé/(T) vanishes
exponentially for largd’, the IR region makes a negligible contribution to the in&kgifherefore, it

is reasonable to calculate the integral by substitutingJ¥ieestimate of the integrand in it. In the UV

region,a(u) =~ %@u“Tz(u). Moreover, in this region the second term on the right hade sf (6.42)

can be neglected. So, we get

X

Umax 2
RO(1%)? f du T e wyy?

o a(u)

Umax ho du
/l¢ 2 f ,
( 0) K . (T+e_h0u + T_é”lou)z

2 =F [ dudn(y

X

whereu > Up avoids the IR region in the integral and we have defined

f2RO
= —1 .54
“= JhoVav(0) (6-54)
The integral is easily done, giving
1(T.eholo o T gholio)(T. @ houmax 4 T ghotimax
i e o) (T, e o + T_glotnr) (6.55)

K eho(umax— o) — e—hO(Umax— lio)

From our numerical solutions we see that it is possible tashkd, to be relatively large and also
satisfy the conditiongT, et > |T_|gelo gand gholimaxlo) . golunacto)  For such values of the
parameters, then, to a good approximation (6.55) gives

1
A~ ;(T+T_ + T2g 2Notmax) (6.56)

Now, let us tuneiay to large values. We will do this in a manner consistent withittequality (5.25).
As explained in section 5.4, one way of maintaining this iy is to keep|T,| and |T_|efotmax
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fixed asumax becomes large. In that case, the second term on the rightdideaf (6.56) becomes
exponentially smaller than the first term as the ciii®increased beyond some value. We may then
neglect this term compared with the first term. This gives

1
A~ ;T+T_. (6.57)

Finally, using/l?; = mZ and (5.33) in this relation, we get

e ~ % (6.58)
This is the well-known Gell-MannOakes-Renner formula, up to a factor of 2.

Let us now summarize our discussion in this chapter. We hiadies! in detail the fluctuations
of flavour gauge fields on the brane-antibrane system. Thigeerige to vector, axial vector and
pseudoscalar towers of mesons, which become massive theokipd of Higgs mechanism, except
for the Goldstone boson. These arise from a gauge-invar@nbination of the tachyon phase and
the longitudinal zero mode of the axial vector field. We hakeven that the Goldstone boson,
the analog of pion, remains massless, unless a quark massi¢nmalizable part of the tachyon
solution) is switched on. For small quark mass, we have ddran expression for the mass of the
lowest pseudoscalar meson in terms of the chiral condemsateshown that it satisfies the Gell-
Mann-Oakes-Renner relation. The vector and axial vector spectra areagd to be non-degenerate
because they arise from eigenvalue equations witkrmint tachyon contributions.

A non-zero quark mass is essential to correctly reprodueaqinenology in the low-energy sector
of QCD. Although the model, like Sakai-Sugimoto model, hgsezts that make it veryfiierent from
QCD, it can be the starting point of a more quantitative \@rsif the phenomenology initiated in [67].
The model can be extended to the case with multiple flavorsrmnaabelian extension of the action
for flavor gauge field fluctuations.

It would be worth noting that since the work presented intiésis was completed, a few alternate
proposals of introducing quark mass in Sakai-Sugimoto rmagpeared in the literature. In [124],
the authors consider a deformation of Sakai-Sugimoto magialy additionaD4 or D6 branes. This
deformation leads to an introduction of quark mass in theehdd [125] the authors consider long
open strings between the flavor branes in Sakai-Sugimotcehat show that it gives rise to a
non-zero quark mass. In the work presented in [126] alsoatitleors study non-local operators to
add quark mass to the model. A possible connection among thi&srent models, including ours,
deserves further investigation.



Chapter 7
Summary

The central topic of interest in this thesis has been the @inenon of chiral symmetry breaking
which is known to play a significant role in strong interan8o However, it has not been possible
till date to provide an exact derivation of the phenomeno®®@D. The scale of chiral symmetry
breaking is believed to be of the order of confinement scatethis makes the phenomenon of
chiral symmetry breaking inaccessible to perturbativeho@s$. Although it is diicult to study the
phenomenon analytically in QCD, it is possible to obtain sogeneral results analytically in the
large N. analog of QCD. An argument for chiral symmetry breaking inotsa theory was given by
Coleman and Witten. The emergence of AT correspondence in string theory has provided a
further leap in understanding many of these non-pertwdgthenomena in gauge theories using a
dual gravity picture. It has been possible to extend mantyfea of this correspondence to QCD-like
gauge theories. One such string theory model is due to Sakiabagimoto. The model consists of
a setup of intersecting brane®4-D8-D8) in which theD4 branes are wrapped on a SUSY breaking
circle of radiusR¢. TheD4 branes provide the color degrees of freedom and a finitee\al, leads

to confinement in the model. TH&8 andD8 branes are the flavor branes and are separated from each
other by a distanck along this direction. This system reproduces a QCD-like @hatlow energies.
Using holographic techniques, the authors showed that tieehygives rise to a non-abelian chiral
symmetry breaking and also identified the meson spectra.

In this thesis, we first carried out a thorough study of thenpimeenon in the weak coupling limit
(and at energies low compared to string scale and high cadpgarthe confinement scale) of Sakai-
Sugimoto model. In this limit, the spectrum consists of-feihded and right-handed fermions at the
D4 — D8 andD4 — D8 intersections interacting through exchang®dfgauge fields. We saw that
the parametet in the model, the separation between B®@ andD8 branes, gives rise to be a one
parameter deformation of BIf) QCD. Furthermore, we saw that tunihgRy, it becomes possible
to drive the energy scale associated with chiral symmetghing to values which are much larger
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than the confinement scale. On doing so, the phenomenon @ slyimmetry breaking becomes
accessible to perturbative techniques. This was the ntmtivhehind studying the phenomenon of
chiral symmetry breaking in the weakly coupled Sakai-Sugommodel.

In our study of the model, we restricted to the hierarchy afesspZN; < s < L < 7R, wheregs
is theD4 brane gauge coupling. We saw tlggl. < | ensures that string loop corrections are small,
|s < L allows us to neglect non-trivial dilaton and RR ten-formatesl byD8 branes and. <« 7Ry
allows us to study chiral symmetry breaking perturbativéle then studied the model by expressing
it as a theory in (31) dimensions obtained after expanding Bvegauge field in harmonic functions
of x*. This left an infinite tower of KK modes db4 gauge fields interaction with left-handed and
right-handed fermions.

In order to study chiral symmetry breaking it was useful tadgtthe éfective coupling between
the left-handed and right-handed fermions. We saw that atgées higher than the confinement
scale, it becomes possible to carry out an exact integratidhe D4 gauge fields in the largi,
limit. This led to an &ective non-local four-fermi interaction which has a finismge determined by
the confinement scal@, (arising fromRy). The final éfective action for fermions was found to be a
non-local generalisation of Nambdona-Lasinio model. We then derived the gap equation foma no
local chiral condensate of left-handed and right-handeahifens separated by a distance. We also
obtained numerical chiral symmetry breaking solutiongtisig with an ansatz motivated by the fact
that the condensate should go to a constant at small sepeaind vanish beyond a certain length
scalel.

One of the notable features of the solutions we obtainedasfahowing. We found that as
we decrease the coupling from a large value, the length $caleracterising the solutions, keeps
increasing with an increasing rate. We saw thatlfar A1, the profile hits a wall and there is no
further decrease in the coupling. This indicates a critieddie of the coupling below which there is
no chiral symmetry breaking. To understand this, we noteftdrd > A1, the non-local NJL model
essentially approximates to a usual local NJL model. Sucbd@emon the other hand, is well known
to have a critical value of coupling for chiral symmetry boeg. Another important feature of the
solutions obtained is the following. We found that there rwesolutions witH < L. Therefore, as
L/R¢ is tuned in such a way th&atA becomes smaller and smaller, it becomes possible to getex wid
range of solutions for whichA <« 1, that is, the energy scale of chiral symmetry breakingiis fa
above the confinement scale. This was considered as an aiposgtestification for the application
of perturbative techniques to study the solutions.

We also tried to study the non-compact limit of the model ie theak coupling limit. We
considered two dierent approaches of taking the non-compact limit while ta@mmng the hierarchy
L < nR« < A~1. However, we were unable to find any consistent chiral symnieeaking solutions
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in both the approaches. This may indicate that the weaklyledunon-compact Sakai Sugimoto
model does not show chiral symmetry breaking.

Like the weakly coupled model, the strongly coupled modsbalisplays various features of
chiral symmetry breaking. In this limit, Sakai and Sugimetadied the model by considering the
flavor branesD8 andD8 as probes in the near horizon geometnpdf branes. The model leads to
a geometrical picture for chiral symmetry breaking in whasymptotically separatefi8 andD8
branes meet each other in the bulk. The model, however, dudsane any parameter that allows
us to turn on a quark mass term. Further, it does not have golickorder parameter for chiral
symmetry breaking. A major part of the work done in this teeginsists of a modification of the
strongly coupled SS model that we proposed to resolve thesessues.

We studied the dynamics of tHiz8-D8 system inD4 background taking into account the brane-
antibrane open string tachyon. The motivation it was thataichyon transforms like a bifundamental
under the flavor group transformations and couples to aldsinaear of left-handed and right-handed
fermions. Thus, condensation of tachyon can lead to a mamsfiee the fermions. In order to carry
out an extensive investigation we needed to have an actiothéosystem. Proposals foffective
action for such brane-antibrane systems in curved backgrarte available in the literature. However,
these proposals exist for non-compact space-time directomly. On the other hand, our model
involved a compact direction along which tB& andD8 branes are separated. We, therefore, applied
these results to our model with the supposition thatDBe- D8 separation is much smaller than the
size, ZziR of the compact direction.

To proceed, we first obtained the classical vacuum configurdor the profiles of theD8-D8
separation and the magnitude of the tachyon field. Sincedhat®ns of motion are non-linear, it
is difficult to find exact analytical solutions to them. However, ygamed analytical results for the
behaviour of the solutionin the IR and UV regions which wésentverified using numerical solutions.
We found that the geometrical picture of chiral symmetryakieg in SS model, where asymptotically
separated brane and anti-brane meet in bulk, is still predan this model. In addition, there is a
vacuum expectation value acquired by the tachyon that bigwet the point where thB8 andD8
meet. In the UV region of the holographic coordinate, it iscasated with a ‘normalisable’ and a
‘non-normalisable’ components. This UV behaviour was, éesv, obtained under the assumption
that the tachyon becomes small in this region. It cannotetbee, be extended to a region where
the non-normalisable component becomes very large. Thigdous to use an upper ctton the
holographic coordinate in the model. Although, the choitéhts cutdt involved some degree of
arbitrariness, we found that the parameters associatédtigt solutions obtained are fEaiently
robust under small changes in the diito

Since the tachyon couples to a chiral bilinear of fermiordS&EFT correspondence says that the
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non-normalisable component sources the chiral bilineéinenboundary field theory. Therefore, we
identified this mode with the quark mass parameter. Aftetyaay out a holographic renormalisation,
we also showed that the normalisable component of the bagkgrtachyon solution gives the
vacuum expectation value of chiral condensate, an ordempeter for chiral symmetry breaking.
The fact that the the tachyon blows up at the point in bulk whbeD8 andD8 meet, played an
important role in this. This ensured that the tachyon paémanishes at this point and there is no
contribution from the IR boundary to the calculation of ethitondensate.

After finding the classical vacuum configuration, we alsaiedrout a fluctuations analysis of
the flavor brane gauge fields and Ar and the phase of the tachyon figld We observed that the
action for these fluctuations can be written in terms of aarecombinationv = (A_ + Ag) and an
axial-vector combinatio’ = (A — Ag — d6). The fieldV is invariant under the axial transformations
of the flavor gauge group U(%V(1) but transforms as an adjoint under the vector subgrdupe
field A, on the other hand, is invariant under the full flavor gaugmigr We showed that, after fixing
a gauge, the fiel¥ gives rise to a tower of vector meson in€3.) dimensions. The field}, on the
other hand gives rise to a tower of axial-vector and psewdtas mesons in (3 1) dimensions. In
particular, when the non-normalisable component of thibytae solution is zero, we found that the
field A has a zero mode that gives rise to a massless pseudo-G@dsteon, the analog of a massless
pion. When the non-normalisable component does not vatiislzero mode ceases to exist and the
lightest pseudo-scalar is also massive. Further, the ntpesed is proportional to this component
and satisfies the GOR relation. This was, therefore, idedtiis the analog of a massive pion in
phenomenology.

Since the work presented in this thesis was completed, sttereate proposals of introducing
quark mass in Sakai-Sugimoto model have also appeared litettzture. In [124], a model involving
a deformation of Sakai-Sugimoto model using additidlor D6 branes was proposed. The authors
showed that this deformation leads to an introduction ofkjogass in the model. In [125] the authors
incorporated quark mass in Sakai-Sugimoto model usingdmeg strings between the flavor branes.
In yet another work carried out in [126], the authors studied-local operators to add quark mass
to the model. The possibility of a connection among theffer@int models and ours deserves further
investigation.



Appendix A

Alternate Green’s function for D4 — D8 — D8
at weak coupling

In this appendix we tabulate the data for solutions to the egamtion we obtained using Green’s
function (3.31). In the tables below, we have tabulated @lees of parameters of solutions viz.
IA, o, and¢gg corresponding to each value of the couplihdor three sets of values ({RA, LA}.
The value of the parameterturns out to be given bi, /L, in each case. We have also plotted the
variation ofl, with A corresponding to each of the three sets. We see that theajivalibehaviour of
the variation remains the same as obtained with Green’sim(3.32).

RA=1/5 L,=1/100
14 o A $oo
0.02| 0.380 | 0.0949| 5.60x10°°
0.04| 0.626 | 0.0831| 1.32<10°
0.06| 0.700 | 0.0784| 3.08x10°
0.08] 0.745 | 0.0751]| 2.34x10*
0.1 | 0.779 | 0.0721]| 1.86x10°
0.25] 0.825 | 0.0712| 2.27
0.6 | 0.865 | 0.0700| 2.55¢10°
1 0.884 | 0.0693| 1.60x10°
1.5 | 0.8963| 0.0689| 4.31x1(°
2.5 10.903 | 0.0738| 2.60x10°
3 0.903 | 0.0738| 1.11x10°
3.5 [0.904 | 0.0752| 3.80x10°

Table A.1: Table of parameters for the solution to gap equatiith the seR, = 1/5andL, = 1/100.
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Figure A.1:
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corresponding to the data in Table A.1.

Table A.2: Table of parameters for the solution to gap equatiith the seR, = 1/5andL, = 1/200.
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A

$oo

0.015

0.540

0.0439
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0.700
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0.755
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Figure A.2: Variation ofl, with A for the setR,=1/5, L,=1/200
corresponding to the data in Table A.2.




RA:

1/20

LA:

1/300

|4

(o

A

$oo

0.01

0.545

0.1167

3.02x107°

0.02

0.700

0.1045

6.76x10°'

1/30

0.780

0.0959

4.10x10°

1/15

0.820

0.0935

4.16x104

1/6

0.860

0.0920

12.84

7/30

0.865

0.0944

1.80x10°

8/30

0.868

0.09494

5.20x10°

0.30

0.870

0.09569

1.3%10°

1/3

0.870

0.0972

3.00x10°

Table A.3: Table of parameters for the

L, =1/300.
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Figure A.3: Variation ofl, with A2 for the setR,=1/20, L,=1/300
corresponding to the data in Table A.3.
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Appendix B

Robustness of quark mass and chiral
condensate

We have seen that the equations of motion derived from thesd@bn of theD8— D8 in the modified
Sakai-Sugimoto model admit a solution where the tachyofilpribas a quadratically diverging IR
behaviour given by equation (5.22) and a UV behaviour hasubldcexponential factor divided by
square of the holographic coordinate given by equation/§5.The solutions can have twoft#rent
forms namely, one in which the tachyon amplitude is posiéverywhere and the other in which
it crosses to negative values at some valuel @ seen for the solutions witly > 13.0877781.
Physically speaking, the profile being the amplitude of yachshould be positive everywhere since
any change in the sign of the tachyon field should be takenatdnmethe phase of the field. Hence, for
the second kind of solution, one needs to truncate it at sayme g, restricting it to only positive
values. Moreovelnax Should be such that the solution has a double exponentigditin Satisfying
these two criteria does not, however, lead to a specific \@lug,x but only suggests a possible range.
In the following, we show that this freedom of choicewf,x does not impact the robustness of the
parameter3_ andT, we have reported.

B.1 Method to study robustness

In this sub-section we introduce a method to study the rolesst of the parametefis and T,
under small changes in the cuffoi,.x. We choose a range of valuesuf and truncate all of the
corresponding tachyon profiles at a commagq, such that it lies in the region where the tachyon
values are positive and asymptotic behaviour (5.17) isfsadi. Then we change the valueugf,, for

a fixeduyp, still maintaining the asymptotic conditions. This chasitfee values of the parametdrs
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andT,. The fractional change i_ for a given value ofy, is

T (U2, - T_(u
(52T_ — ( maX)T ( ma |uo’ (Bl)

where the value finay is changed fromut), to u2),. Similarly we defines, T, .

These are then compared to the changes occurring in the pmam. andT, for an equal shift
in Uy keepingumax the same. The fractional changeTin, in this case, is given by

T_(u?) - T_(u)

61T_ = T_ Umax®

(B.2)

whereu® — ul! = u@),— uShe 61T, is defined in a similar way. The changes in the paraméteend
T, caused by the variation of are understood as physical changes due to considering cratf@ns
with different values of bare quark mass. As we will show numericaliyrns out that,T_ < §;T_
andés, T, < 6,T,. Thus, the change due to ambiguity in the choicegf is small compared to the
physical change. Hence, it demonstrates that the parasreterobust under small changes in the
cutof Umax.

In order to numerically demonstrate the above statememége of values ofiy is chosen from
15 to 15.7 in steps of 0.1. We have plotted the correspondguyds for tachyon profile in Figure
B.1. Then we choose two values of the diiiven byunax = 33 andunax = 329. For each of these

T
20

20 25 30

Figure B.1: The tachyon profiles correspondingugarom 15.0 to 15.7 in steps of 0.1. The inset
figure shows the asymptotic behaviour. The dotted lines shewwo values ofi,x Used in studying
the robust

tachyon profiles we carry out an asymptotic fitting for eactheftwo values ofiay In order to track
the quality of fit we use the quantity

_ |T(Umax) - Tf(umax)| + |T(ui) - Tf(ui)|

oT
T ( Uma;‘*'ul )

(B.3)
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whereu; anduna are the two ends of the fitted region aid gives the fitted value of the tachyon
at the corresponding point. Figures B.2-B.4 show some offitkeve have done. In fitting the
data we have ensured th&f < 0.01 (varies from 0.0095 to 0.01 in our set) and the value of
k = 2h2u-25(T2e 24 4 T2e204) < 0.07 (kept between 0.045 to 0.07 in our set) for the validity
of double exponential asymptotic form. Notice that in theifegs we have indicated the ranges of
values ofu over which the fitting is done with the above criterion altgbwe have shown the profile

over a larger region. Using these, we compyfe , 5,T_, 5; T, ands,T,.

T(uw) T)

0.14

0.14
Umax = 32.€
0.12
range= 2.1¢

0.10F

0.08f

0.06

0.04r

0.02

o1sp Umax = 32.8

N range= 1.9€

0.15 umax =33

N range= 2

Umax = 32.€
range= 1.8¢

28 29 30 31 32 33

Figure B.4: Fits fouy=15.7 with the asymptotic behaviour.

In the left panel of Figure B.5 we have plott@&d _ in red and, T_ in blue for various values af,.
In the right panel, the same thing is done Tarinstead ofT _. This example shows thatT., <« §,T.,
indicating that the parameters are quite robust with rdsjgesmall variations inum.x. We verified
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0.07
0.06
0.05
0.04
0.03
0.02
0.01

15.0

0.008

[ )
o« o o o °
0T
0.00€ L
0.004

0.002 | | [ | | | | | [ | | |

0 T,

S | |

150 151 152 153 154 155 156

Figure B.5: Fractional changesTn andT, for change inuyaxfrom 33 to 32.9

this over a larger range of valueswf,,. In the set of figures given by Figure B.6 we have shown the

asymptotic fitting of the tachyon profile wheug is fixed to 15.2 and the cufioun.y is varied from

33 to 32.3 in steps of 0.1. In each part of the figure the fittangge is suitably changed such that

varies only from 0.0089 to 0.01 arkdvaries from 0.029 to 0.05. We calculate the fractional cleang

in T_ andT, using equation (B.1) and the corresponding onelfgras we changemax from 33 to

the values indicated in the figures. Figure B.7 shows themfaedaion of un.. We can easily see

that these values are much smaller than the valuésglaffor u,=15.2 displayed in Figure B.5. This

demonstrates the robustnesdefwith respect to small changesuRax.
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0.14 Umnax = 33 0.14 Umax = 32.€

range= 2.18 range= 2.1€

u
T(w
T(w
0.14 Umax = 32.7
0.14 Umax = 32.8 -
range— 2.14 0.12 range= 2.12
0.10
0.081
0.06
0.041
u 0.021
28 29 30 a1 D u
T(w TW
0.14 Umax = 32.€ 0.14 Umax = 32.5
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012 range= 2.05 012 range= 2.03
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Figure B.6: Fits for varyin@iynax with up=15.2
oT_ 5T,
0.03Cr 0.012¢
° °
0.025F L
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0.02CF ° 0.00€F °
0.015] ° 0.00€} °
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0.01c} ° 0.004}
. °
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Figure B.7: The behaviour of fractional changes in value3 ofand T, for Aumna=0.1 with Unax
corresponding taiy = 15.2
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