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Synopsis

There exist condensedmatter systemswith competing interactions which show

very interesting and rich phasediagrams. Examples are provided by periodic

arrangements likespin density waves,chargedensity waves,periodic arrangement

of atoms on a crystalline substrate etc. When the periodicity of the modulated

structure is a (simple) rational multiple of the underlying lattice vector the system

is said to be in a commensuratephaseand when it is not so, the systemis in an

incommensuratephase.

In this thesis we review various aspects of three systemswhere competing

interactions lead to variouscommensurateand incommensuratephasesand tran-

sition between them. Our ¯rst example is Frank and Van der Merwe model

which idealize rare-gasmonolayers adsorbed on a host lattice (such as Krypton

on graphite) in one dimension. In this model point massesconnectedby identi-

cal springs are subject to an external periodic potential, the mis¯t betweenthe

period of the potential and the natural length of the springs or the strength of

the potential relative to the spring constant being the parametersto be tuned.

This model shows commensurate-incommensuratephasetransitions as thesepa-

rameters are varied, a consequenceof the competition between the elastic and

the potential energy.

The next exampleis the Axial Next NearestNeighbour Ising (ANNNI) Model.

In this model spin-1
2 objects reside on a cubic lattice and along one axis (say

z-axis) interact with nearestneighbours via a ferromagneticexchangecoupling

(J1 > 0) and with next nearestneighbours via an antiferromagnetic exchange

coupling (J2 < 0). In the plane perpendicular to this axis, the spins interact fer-

romagneticallywith nearestneighbours. The groundstate of this systemdepends

on the ratio of the couplings. In fact, at jJ2 j
J1

= 1
2 the groundstate is not uniquelike

many other frustrated systemsand there is an in¯nit y of degenerategroundstates



in the thermodynamic limit (the degeneracyincreasesexponentially with the sys-

tem size). This point is known asmultiphase point. For jJ2 j
J1

< 1
2 the ground state

is ferromagneticand for jJ2 j
J1

> 1
2 it has up-up-down-down spin structure (known

as(2,2) antiphase) alongthe axis, all the spinsin the planesperpendicular to this

axis being aligned in the samedirection in the absenceof competing interactions

within a plane.

At low but non-zero temperatures, this model shows an in¯nite sequence

of phasesof the sort < 2j ¡ 13 > ( j = 1; 2; : : : ; for example < 233 > =

: : : ""##""### : : :, the sequencerepresents majorit y spins at successive planes

perpendicular to the z-axis) betweenthe ferromagneticand the (2,2) antiphase.

All thesephasesspring out from the multiphase point. At higher temperatures

variousother commensurateand incommensuratespatially modulated phasesare

obtained.

In this model the transitions between the ferromagneticand other spatially

modulated phasesare ¯rst order in nature, all the way from the multiphase point

up to the Lifshitz point, a special type of tricritical point at which ferromagnetic

phasecoexists with paramagneticand spatially modulated phase.

The next exampleof systemswith competing interactionsis real closedpacked

materials like SiC, ZnS etc that show variable periodicity along somecrystallo-

graphic axis, a phenomenonknown aspolytypism. Atomic layerscan be stacked

in many ways along this axis like ...ABCABC... or ...ABABAB... or ...AB-

CACB... or any other sequencewheresameletters do not sit next to each other

and hencevariableperiodicity is observed. The letters A,B,C represent three pos-

sible relative positions for atoms in closedpacked structure. Polytypism refersto

di®erent structures of this type observed in crystals of samematerial. Transition

from one polytype structure to another is obtained as temperature, pressureor

chemical environment is varied.

The similarit y betweenthe sequenceof phasesin polytypesand the ANNNI

model motivates to cast the polytype problem to ANNNI model, extended to

include the third nearestneighbour interaction. Betweensuccessive layers in the

polytype, spin variablesare introduced: spin `up' if the letters A,B,C occur cycli-

cally and spin `down' otherwise. Next we look at a plausible dynamicsof trans-

formation and its consequences,from one polytypic structure (3C phase,...AB-



CABC..., in spin languageall `up' phase)to another (6H phase,...ABCACB...,

in spin language: : : """### : : :). In spin languagethe dynamics turns out to

be trimer °ip under energetically favourable conditions. Using a Monte Carlo

simulation at T = 0 we looked at the systemwhen it was quenched to 6H phase

suddenly. If the initial con¯guration was all `up-spins' (3C phase)it turned out

that the systemgot stuck at someintermediate `metastablestates'. If quenched

to the 3C-6Hphaseboundary, the spinsremainactive for a largenumber of Monte

Carlo steps. With a random initial con¯guration the ¯nal state was found to be

di®erent. The systemshowed `active' and `frozen' spin patcheswhen quenched

to 3C-6H phaseboundary. Thus the ¯nal state reached through this dynamicsis

dependent on the initial condition.
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Chapter 1

In tro duction

Systemsunder the in°uenceof competing `forces'often show very interestingphe-

nomena. Simple examplesare provided by oscillatory systems,like a pendulum

or a spring-masssystem. The competing `forces' might be gravit y and elastic

forcesas in caseof a spring-masssystemhanging from a point or might be the

`Pauli degeneracypressure'and gravit y as in the caseof neutron stars on the

vergeof collapsing into a black hole. There are also condensedmatter systems

wherecompeting interactions lead to interesting properties.

In this thesis, we shall try to look at a few exampleswhere this is the case.

The ¯rst examplewill be a very simple model originally introduced by Frenkel

and Kontorowa but later studied by many authors, notably by Frank and Van

der Merwe and someothers. The model is known as Frank and Van der Merwe

(FVdM) model and involvesonedimensionalarray of massesconnectedby springs

and subject to an external periodic potential. This might be thought of an ideal-

ized onedimensionalmodel for rare-gasmonolayer adsorbed on graphite surface.

The periodic potential is due to the underlying graphite lattice. Competition be-

tweenthe elasticenergyof the springsand the potential energyleadto interesting

properties of the system.

The secondexample is a simple Statistical Physics model, known as Axial

Next Nearest Neighbour Ising (ANNNI) model where scalar spins sitting on a

hypercubic lattice interact with nearestneighbours via ferromagneticexchange

coupling and with next nearestneighbours via antiferromagnetic exchangecou-

pling along one axis. In the plane perpendicular to the axis, the spins interact

1
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Figure 1.1: Various possible cases of variation of ordering wave vector q

(the inverse period) with external tuning parameter x. (a) Smooth ana-

lytic behaviour. (b) Complete devil's staircase. (c) Incomplete Devil's stair-

case.(d) HarmlessDevil's Staircase.

ferromagneticallywith nearestneighbours. Hencethis model involvescompeting

interactions along oneaxis.

The last examplewill be provided by an interesting phenomenoncalled`Poly-

typism' seenin somecrystalline matter, the classicexamplesbeing SiC, ZnS etc.

Thesematerials have closedpacked structures and along somecrystallographic

axis they show variable periodicity in their lattice structure.

In this chapter, we shall introduce various conceptsand terms relevant to

systemswith competing interactions. They will be made preciselater when we

cometo concreteexamplesin the later chapters.

Commensur ate Phases : A modulated phaseis saidto becommensuratewhen

the period of the orderedphaseis a (simple) commensuratemultiple of the un-

derlying lattice periodicity.

Inc ommensur ate Phases : When the period of the ordered phaseis incom-

mensuratewith the underlying lattice periodicity the phaseis known as an in-

2
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commensuratephase.

Devil's Stair case: As someexternal parameter (say x, it might be temper-

ature, pressureetc) is varied the ordering wave vector (say q) might changein

various possibleways as follows:

(a) q might changecontinuously as x is varied.

(b) q might lock at an in¯nit y of commensuratevalues. In the casewhere lock-

ing happens q ¡ x curve looks like a staircaseand hencethe picturesquename

`Devil's Staircase'is given to it. There might be incommensuratephasesbetween

commensuratephases.Then the Devil's staircaseis said to be incomplete.[1]

(c) The lockedvalues,taking all possiblecommensuratenumbers,¯ll up the whole

of the argument of x. There are no jumps of ¯rst order transition. This caseis

known as a completeDevil's staircase.

(d) q jumps betweencommensuratevaluesfor somerangeof x and changescon-

tinuously for someother range.

(e) q takesonly one of a ¯nite number of rational valuesas x is varied. This is

known as a harmlessDevil's staircase. Fig (1.1) shows various casesof Devil's

staircase.

Commensur ate Inc ommensur ate Transition : The transition from the com-

mensurate to incommensuratestructures are understood in terms of a soliton

theory[[2],[3]]. Within this framework `solitonic walls' represent spatially incom-

mensurateregionsbetween commensurateregions. If at sometemperature the

formation energyof `solitonic walls' becomesnegative, the commensuratephase

will be unstable against an incommensuratephase. In chapter 2 wherewe have

discussedFVdM model in somewhatmore detail, this point is elaborated.

ANNNI Mo del Phase Diagr am : Various commensurateand incommensu-

rate phasesare obtained in the phasediagram of ANNNI model, topic of our

discussionin chapter 3. In this model the crucial parameter is the ratio of the

couplings, · = ¡ J2
J1

, J1 and J2 being the nearestneighbour ferromagneticand

next nearest neighbour antiferromagnetic coupling respectively. Section (3.2)

gives an overview of the phase diagram before we discussvarious parts of it

in detail in the remaining of the chapter 3. The ground state is ferromag-

netic for · · 1
2 and `up-up-down-down' (""## ) along z-axis for · > 1

2. All the

3



spins in the perpendicular plane is aligned in the samedirection in the ground

state. The point (· = 1
2 ; T = 0) is a multiphase point where the degeneracyof

ground states is exponential in systemsize. From this point phasesof the form

(< 2j ¡ 13 >; j = 1; 2; :::; < 233 > = ::: ""##""### :::for example)spring out at ¯-

nite temperatures.,as found by Fisher and Selke [[4],[5]]. At higher temperature,

variousother commensuratephasesand incommensuratephasesare obtained be-

fore the systemgoesto a paramagneticphase.The phasediagram hasa Lifshitz

point wherethe paramagneticphaseand a uniformly orderedferromagneticphase

coexist with spatially modulated phases.The completephasediagram is shown

in ¯g (3.3).

It is interesting to note that long rangeinteraction is not necessarilyneededto

explain the existenceof very long period (or small wave vector) phases.ANNNI

model involvesshort rangeinteractionsandstill it doesshow thesekinds of phases.

Polytyp es: Real materials like SiC,ZnSshow very interesting phasediagrams.

Thesematerials have closedpacked structures wherethe smalleratomssit in the

voidsformedby the closedpacking of largeratoms. Thesematerialsshow variable

lattice periodicity along the direction of growth. This can be understood in the

following way. For a 2-dimensionallayer of closedpacked spheres(let us name

this asA layer) the next layer on top of it can be stacked in two ways. Thesetwo

positions correspond to centre of the sphereslying on up-void triangles (4 ,call

this position B) and on down-void triangles (5 , call this position C). Similarly

for a B layer the next two possibilitiesare either A or C. The condition of closed

packing (`Polytypic constraint' ) is that in the packing sequenceno two same

letters are next to each other. Hencethe sequencemight be (...ABABAB...), (...

ABCABC ...) or (... ABCACB ...) or any other sequencein which no two same

letter appear next to each other. In the above casesthe periodicities are 2, 3

and 6 lattice spacingsand the phasesare 2H, 3C and 6H respectively (C refers

to the cubic symmetry and H refersto the hexagonalsymmetry). Sincethere is

an in¯nite number of ways one can write down sequences,there can be in¯nite

possibleperiodicity along the stacking direction. This phenomenonis known

as `Polytypism' and is discussedin Chapter 3. The crystal can undergo phase

transitions from onepolytypic structure to anotherwhenexternal parameterslike

4



pressureand temperature are changed. There are various theories available to

describe the transitions[6].

Figure 1.2: The three positions A,B,C in closed packing are shown.

At the left hexagonal closed packing (2H) and at the right cubic

closed packing (3C) are shown. This ¯gure is taken from Wikip edia.

(http://en.wikip edia.org/wiki/Image:Close packing.png)

.

We have seen that the ANNNI model shows various spatially modulated

phases.Now, sincethere are binary options available for the closedpack stacking

at every stage,this problemcanbemappedto ANNNI model, in fact an extended

ANNNI model which includes third nearestneighbour interaction (the coupling

is J3) also [7]. The similarit y of the sequenceof phasesfound in ANNNI model

with polytypes provides a motivation for this mapping [8]. Ising variables are

assignedon each bond along the growth direction. S = 1 if the letters A,B,C

appear in cyclic sequence(A! B or B! C or C! A) and S = ¡ 1 if they appear

anti-cyclically, e.g.,(: : : ABC: : :)) (: : : """ : : :), (: : : ABCACB: : :)) (..."""### ...).

Dynamics of Transformation fr om one Polytyp e to another : We are

interestedin understandingthe dynamicsof transitions. Now we needto be very

careful while casting the polytype problem in the spin language,for a local move

in the spin languagemight represent movesthat are unfavourable in the original

problem.

5
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Hencewepick up a particular transition (3C! 6H) and identify the localmoves

in spin language. In this particular case,it turns out to be °ipping of `trimers'-

threesuccessive`up' spinsor `down' spinswhenthe °ip is energeticallyfavourable.

We do a Monte Carlo study at zero temperature to simulate the dynamics. The

system is quenched to T = 0 from an initial random or ferromagnetic state.

We ¯nd that the system might go to a locked state before going to the actual

thermodynamically stable phase. A `locked' phase is a metastable state and

is at the local minimum of energy. The true thermodynamically stable phase

is at the global minimum of energy and henceonce the system gets stuck at

the local minimum it has to crossan activation barrier in order to go to states

lower in energy, in particular to the thermodynamically stable state. At ¯nite

temperatures the system can crossthe activation energybarrier to go to other

statesbut the time taken to crossthe barrier is exponentially large in the barrier

height. Interestingly, on the 3C-6H phaseboundary the system shows `active'

and `locked' patchesof spinseven after lots of Monte Carlo time steps.

An attempt had been made (Cheng, Needsand Heine [8]) to calculate the

couplings J1; J2 andJ3 from band structure calculations of various polytypes,

especially SiC. The calculation shows that J1 > 0; J2 < 0 andJ3 < 0 but small.

Moreover ¡ J2
J1

= · ' 1
2. Also the free energy of various polytypes were found

to be very closeto each other. This shows that the real material is closeto the

degeneracypoint in the ANNNI phasediagramand thereforecapableof displaying

a large variety of phases,as seenin real polytypes. This is another motivation

for studying the Monte Carlo at T = 0. However, the absolutevalue quoted in

this calculation seemsto be unrealistically low (J1 = 0:00485§ 0:00120eV; J2 =

¡ 0:00256§ 0:00032eV and J3 = ¡ 0:00050§ 0:00023eV) for real polytypes.

We adopt a phenomenologicalpoint of view in taking the analogy of ANNNI

model with real polytypes. Also, it is an interesting theoretical problem, if not

fully realistic, to apply this model to get an insight into plausible dynamics of

transformation.

This is mainly a review work. There are lots of papers and articles available

on thesetopics. It was not possibleto look at every article. An e®ort has been

made to understand the already establishedresults. In chapter 3 the Monte

Carlo programmegivesan opportunit y to study variousquestionsnot previously

6



studied carefully. Dynamics of polytypic transitions between other phaseslike

6H-4H are interesting to explore. One needsto ¯nd plausible local moves for

transitions and then useMonte Carlo code to look at the dynamics.

7



Chapter 2

The One Dimensional Frank and

Van der Merw e Mo del

The model we are going to discuss in this chapter is probably the simplest

model involving competing interactions. Though this model was ¯rst proposed

by Frenkel and Kontorowa (1938) [9], it was extensively studied by several au-

thors like Frank and Van der Merwe (1949) [10], Theodorou and Rice (1978) [11],

Aubry (1979) [1] etc and in the literature this model is referred to as Frank and

Van der Merwe (FVdM) model [2].

2.1 The FVdM Mo del and its Hamiltonian

Our systemis a one dimensionalarray of point massesconnectedwith springs.

All the springsare identical and have natural lengthsa0. The massesare subject

to an external periodic forcewith periodicity b. The systemis shown in ¯g (2.1).

The Hamiltonian might be taken as,

H =
X

n

1
2

k (xn+1 ¡ xn ¡ a0)2 + V
µ

1 ¡ cos
2¼
b

xn

¶
: (2.1)

Here the nth masshas coordinate xn , k is the spring constant (all the springs

are assumedto be identical) and V is the strength of the potential. Let us

¯rst note that the ¯rst term in (2.1), the elastic energy term will favour all

the massesseparatedby the natural length of the springs, a0. But the second

8



2.2 Minimization of the Energy: Sine Gordon Equation

Figure 2.1: The massesconnectedby springsand subject to an external poten-

tial (shown by the wavy line).(a) Commensuratestructure,(b) Incommensurate

structure and (c) Chaotic structure. (taken from ref[2])

term, the potential energy term will favour the massesto sit at the minima of

the potential, i.e., separatedby integer multiples of b. These two quantities,

namely a0 and b are in generaldi®erent and their ratio might be irrational or

incommensuratealso. The ground state of the problem will be dictated by these

two competing terms and might be a commensuratephase,an incommensurate

phaseor a chaotic phase.In caseof a commensuratephasethe averageseparation

betweenthe masseswill beara simpleratio with the period of the potential. In an

incommensuratephasethe averagedistancebetweenmassesis incommensurate

to the period of the potential. Apart from these two phasesthere might be a

third type of phasewherethe potential is strong enoughfor the massesto sit at

the minima. This hasbeenreferredto as a `chaotic' phase[2].

2.2 Minimization of the Energy: Sine Gordon

Equation

If we make a changeof variable in (2.1)

xn = nb+
b

2¼
Án ; (2.2)

9
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2.2 Minimization of the Energy: Sine Gordon Equation

and then take the continuum limit, (2.1) reducesto the following form

H =
Z Ã

1
2

µ
dÁ
dn

¡ ±
¶ 2

+ V(1 ¡ cosÁ)

!

dn (2.3)

wherek and other constants have beenabsorbed in H and V and ± = 2¼
b (a0 ¡ b).

The minimization condition of ((2.1) is given by the Sine-Gordonequation,

d2Á
dn2

¡ V sinÁ = 0 (2.4)

Since (2.4) is an ordinary secondorder di®erential equation, we need two con-

stants. Upon ¯rst integration of (2.4) we get,

_Á2 = ¡ 2V cosÁ+ c1: (2.5)

Here c1 is an integration constant. Hence,integrating again, we get
Z

dÁ
p

c1 ¡ 2V cosÁ
=

Z
dn + c2 (2.6)

The integration constant c2 is arbitrary since (2.4) is translationally invariant

along n. If we choosec1 = 2V the solution of (2.4) is a singlesoliton,

Á = 4arctan exp
³

n
p

V
´

: (2.7)

For n ! ¡1 , Á = 0 and for n ! 1 , Á = 2¼. The solution looks like as shown

in ¯g (2.2), Á haschangedfrom 0 to 2¼within a region of width 1p
V

.

For general values of c1, the solution comesin terms of Elliptic functions.

The function looks like what is shown in ¯g (2.3). There are soliton like walls

separatingspatially commensurateregions. Within a `wall' the systemis incom-

mensurate.This regular arrangement of soliton like walls is known asa `solitonic

lattice'.

Now, the averagemis¯t between the chain and the lattice, ¹q = 2¼
b (a ¡ b) is

given by,

¹q =
2¼
l

(2.8)

where l is the distance between the solitons. Since ¹q is inversely proportional

to the distance between the solitonic walls it can be thought of as the soliton

density.

10



2.3 Transition to Incommensurate Structure

Figure 2.2: A single solitonic solution for Á(n).p = 1 here. The position of the

massesare shown. The soliton spatially separatestwo commensurateregions.

(taken from ref[2])

Near the commensuratephasewhen the soliton density is low, the energy

density takesthe form [12],

E =

Ã
4
p

V
¼

¡ ±

!

¹q+
16

p
V

¼
¹q exp

Ã

¡
2¼

p
V

¹q

!

: (2.9)

Sincethe ¯rst term in (2.9) is proportional to the soliton density, it canbethought

of as soliton formation energyand the secondterm might be thought of as weak

repulsionbetweenthe solitons.

2.3 Transition to Incommensurate Structure

We seethat for su±cient large ± and small V the formation energy becomes

negative. Then soliton formation is energeticallyfavourableand the systemgoes

to an incommensuratephase.

Hencethe critical valueof the potential V at the commensurate-incommensurate

transition is

Vc =
¼2±2

16
: (2.10)

If the potential is weaker than this critical value, the `elasticenergy'of the springs

wins in its competition with the potential energy.

11
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2.3 Transition to Incommensurate Structure

Figure 2.3: Regular solitonic lattice solution for Á(n) (p = 1).The straight line

shows the unperturbed line that correspondsto an incommensuratephase.(taken

from ref[2])

Hence this simple model has a phasetransition from commensurateto in-

commensuratephase. We shall comeacrossthis Hamiltonian again in the next

chapter. The free energy functional in ANNNI model near some commensu-

rate phasescan be cast, with proper variable substitution, into this form. That

will help us understandthe commensurate-incommensuratetransition in ANNNI

model in the sameway.

Conclusion : Experimentally much attention hasbeenpaid to commensurateto

incommensuratetransition in krypton adsorbed on graphite lattice (seeref [13]

and referencesthere in). Even though FVdM model is very idealized, it does

show commensurate-incommensuratetransition. In reality, the adsorbed atoms

will alsodistort the potential. FVdM model needsto be modi¯ed to capture this

aspect.

12

Chapter1/Chapter1Figs/soliton_lattice2.eps


Chapter 3

The Axial Next Nearest

Neigh bour Ising (ANNNI) Mo del

The Axial Next NearestNeighbour Ising (ANNNI) model is one of the simplest

spin models involving competing interactions. In spite of the simplicity of the

model, it doesshow a very rich and interesting phasediagram. The three dimen-

sional versionof this model was ¯rst introducedby Elliot [14]. Fisher and Selke

¯rst gave the name`ANNNI model' to it [4]. In the following we shall ¯rst de¯ne

the model and then look at the various possiblephasesthat the model supports.

3.1 Description of the Mo del

On a d-dimensionalhypercubic lattice scalar spins S = § 1 resideon each site.

(We shall often denoteS = 1 state as " and S = ¡ 1 as #. )Each spin interacts

with nearest neighbour and next nearest neighbour spins along one axis, say

z¡ axis, the exchangecouplingsbeing J1 and J2, and with all other spins in the

hyperplaneperpendicular to z¡ axis by a strong ferromagneticexchangecoupling

J0. The Hamiltonian is given by

H = ¡ J0

X

<ij >;z

Siz Sj z ¡ J1

X

iz

Siz Siz § 1 ¡ J2

X

iz

Siz Siz § 2; (3.1)

where indices i and j refer to coordinates (sites) in the (d ¡ 1) dimensional

hyperplaneand angular bracket in < ij > meansnearestneighbour interaction.

13



3.1 Description of the Mo del

We shall be using periodic boundary conditions. In order to have ferromagnetic

coupling in (d ¡ 1) dimensionalhyperplane perpendicular to z¡ axis we choose

J0 > 0. We assumethat the magnitude of J0 is large enoughand we may neglect

any major °uctuation in spinswithin a hyperplane. Variousexchangeinteractions

(Jij ) are shown in ¯g (3.1).

77z1

________

id

2

Figure 3.1: The exchangecouplingsin the Hamiltonian (3.1). (takenfrom ref[15])

The phasediagram of the model will depend on the signsof J1 and J2. In the

(d ¡ 1) dimensionalhyperplane,there are only ferromagneticinteractions unlike

along z¡ axis where there might be competing interactions betweennearestand

next neighbouring spins. Hencewe can assumethe spins to be oriented along

the samedirection within a hyperplane and focus on ¯nding out various spin

con¯gurations along the z¡ axis. Clearly four options are possible:

A. J1 > 0 and J2 > 0 ) The ground state is ferromagneticfor all valuesof

J1 and J2 .

B. J1 < 0 and J2 > 0 ) The ground state is antiferromagnetic for all values

of J1 and J2.

C. J1 > 0 and J2 < 0 ) The ground state depends on the relative values

of the couplings. The systemshows frustration as all bonds cannot be satis¯ed

simultaneously. J1 > 0 will prefer an all up (or all down) ground state (..."""" ...)

where as J2 < 0 will prefer up-up-down-down phase(...""## ...) as the ground

14
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3.1 Description of the Mo del

Figure 3.2: The phasesat T=0 in the J1 ¡ J2 plane. There is a hugedegeneracy

of ground stateson the dotted lines, the degeneracybeing exponential in system

sizeas will be calculated later [section(3.3.1)]. (taken from ref[15])

.

state. Hencethe ground state will depend on the ratio of these two couplings.

Sincethis ratio recursoften, let us reserve a symbol for it. Let · = ¡ J2
J1

.

D. J1 < 0 and J2 < 0 ) The systemis frustrated asbefore. J1 < 0 will prefer

a up-down-up-down phase(..."#"# ...) while J2 < 0 will prefer up-up-down-down

phase(...""## ...) as the ground state. Hancethe ground state dependson · .

The last two casesareexamplesof what areknown asfrustrated spin systems.

Another famousexampleof frustrated spin systemis the antiferromagnetic near-

est neighbour Ising model on a triangular lattice. (SeeMoessner2001,[16] and

referencetherein.) The ground states in casesC and D (T = 0) are shown in

Figure 3.2. From now on, we shall be working with the caseC i.e. J1 > 0 and

J2 < 0.

Hence,the model we are interested in is Axial Next Nearest Neighbour Ising

model with nearest neighbour ferromagneticand next nearest neighbour antifer-

romagneticexchangeinteraction.

15
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3.2 Overview of the Phase Diagram of the Mo del

3.2 Overview of the Phase Diagram of the Mo del

Beforegoinginto a detailedanalysisof the model, let usdiscussthe main features

of the phasediagramto gainan overview. Weshall explainmostof the statements

and derive most of the results presented here in later sections.

The phasediagramdependson the dimensionality of the lattice. Hereweshall

be discussing3 lattice dimensionsand brie°y mention the properties of phase

diagram in 1 and 2 dimensionsat the end of this chapter. Since the in-plane

coupling, J0 is ferromagnetic,it is reasonableto considerthe spatial modulation

along z¡ axis only. We represent various ground state spin con¯gurations of the

3 dimensionalsystemas a chain of spins along z¡ axis. For example,""# ::: will

mean that all the spins in the ¯rst plane are `up' spins, all in the secondplane

are `up' spinsand all in the third plane are `down' spinsand so on. At non-zero

temperaturesalsothis notation can be usedaslong asthe in-layer magnetization

is non-zero.

Gr ound State and Low Temperatur e Phases : At zero temperature there

is a ¯rst order phasetransition from ferromagnetic(..."""" ...) to `up-up-down-

down' phase(...""## ..., known as Antiphase) at · = 1
2.

The point (· = 1
2; T = 0) is a multiphase point wherethere is a large degen-

eracy ( » ¹ L , ¹ is the goldenratio,
p

5+1
2 ' 1:618::: and L is the systemsize,see

section(3.3.1)) of ground states. At this point, any spin con¯guration formed by

successive patches of alternate spins of sizegreater than one is a ground state.

At non zero temperaturesvarious phasesspring out from this multiphase point.

At low temperatures,there is an in¯nite number of phasesbetweenthe ferromag-

netic and antiphase states. The phasesare characterizedby spin con¯gurations

< 2j ¡ 13 >; j = 1; 2; 3; ::: (e.g., < 233 > = ::: ""##""### :::) with wave vectors

¼j =(2j + 1) [5]. The transition betweenvarious phasesare ¯rst order in nature

and the extent of the phasesdecreaseexponentially as j increases(seesection

(3.3.2)). At j ! 1 the antiphase state is obtained which is stable over a large

T ¡ · region.

High Temperatur e Phases: Me an Field Theory : At su±ciently high tem-

peraturesa paramagneticphaseis found for ¯nite valueof · . As the temperature

is lowered the systemgoeseither to a ferromagneticor to a spatially modulated

16



3.2 Overview of the Phase Diagram of the Mo del

Figure 3.3: The complete phasediagram of the ANNNI model. For simplicity

J0 is taken to be equal to J1. The black and white stripped region consistsof

variouscommensuratephasesstableover small T ¡ · rangeand incommensurate

phases.The diagram is taken from ref [3].

phasedepending on the value of · . Within mean¯eld theory, the ferromagnetic

phaseis obtained for · · 1
4 and spatially modulated phasefor · > 1

4 . Both

the transitions are of secondorder in nature. While the transition to the ferro-

magnetic phasefalls in the Ising universality class,those to various modulated

phasesfall in the X ¡ Y universality class [17]. An exception is provided for
1
· = 0 (· ! 1 ) wherethe `antiphase' state meetsthe paramagnetic-modulated

phasetransition line and the transition again becomesthat of Ising universality

classas the model breaks into two decoupledIsing models on two independent

sublattices. This point is known as`Decouplingpoint' and the scalingproperties

near this point have beenstudied by Huseand Fisher [18]. The wave vector of

spatially modulated phaseat the transition temperature,within mean¯eld theory,

is given by,

2¼qc = arccos
1

4·
(3.2)

where we have set the lattice spacingalong z¡ axis to unity. We shall stick to

this convention in our entire discussion.

It is interesting to note that accordingto (3.2) the wave vector might be an

17
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

irrational number also, showing transition to a phase that is incommensurate

with the underlying lattice periodicity.

The point (· = 1
4; T = 5:5J1, the co-ordinate is calculated using mean ¯eld

theory) is a special type of triple point since here a uniformly ordered phase

coexists with paramagneticand spatially modulated phase.This point is known

asLifshitz Point. The ¯rst order transition line from ferromagneticto modulated

phasesmeets with the secondorder transition line from the paramagnetic to

modulated phaseat Lifshitz point. So at this point the jump in the value of

magnetizationvanishesasonecrossesferromagnetic-modulated phaseboundary.

Among the modulated phases,q = 1
4 and q = 1

6 phasesarestableover a larger

areain the phasediagramcomparedto other phases.The stabilit y of thesephases

can be understood within a soliton picture where solitonic walls separatecom-

mensurateregionsspatially (seesection(3.4.3)). The positive energyof solitonic

wall formation for these two phasesover large temperature and · rangesguar-

antee the stabilit y of these phases. In the following we try to understand the

featuresof the phasediagram in detail.

3.3 Ground State of the Mo del and Low Tem-

perature Phase Diagram

The ground state of the model can be solved exactly by looking at energiesof

variousspin con¯gurations asa function of · . The non-zerobut low temperature

phasediagram can be obtained using low temperature expansiontechnique.

3.3.1 Ground State: T = 0 phase diagram

For · = 0, the model is simply an Ising model with nearestneighbour ferromag-

netic interaction, hencethe ground state is all `up' (or all `down' sincethere is

no external magnetic ¯eld) con¯guration and the excited states are states with

°ipp ed spins. Finite valuesof · will lower energiesof someof the excited states,

but the all `up' (or all `down') state is the lowest in energy until · = 1
2 when

all the states having no singlespin surroundedby opposite spins have the same

energy. For · > 1
2 `...up-up-down-down...' state crossesall other statesto become
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

Figure 3.4: The ground state spin con¯guration of the ANNNI model. (a) 0 <

· = ¡ J2
J1

< 1
2 , the ground state is ferromagnetic.(b) At · = 1

2 there are many

ground states possible,one of them shown here. (c) For · > 1
2, `up-up-down-

down' state (also known as (2,2)-`antiphase' or simply `antiphase') is the ground

state. (from ref [3])

the new ground state and it remains the samefor all larger valuesof · . Hence

the transition is a ¯rst order transition and is brought about by a level crossing.

Degeneracy at the Multiphase Point: Transfer Matrix Metho d : The

point · = 1
2 is a multiphase point whereany spin con¯guration with more than

onespinsof samesign side by side is a ground state. The degeneracyof ground

statesat this point canbe calculatedusingtransfer matrix method. We note that

the Boltzmann weight at T = 0 is 1 for any ground state and 0 for all excited

states. Hencethe partition function

Z =
X

all con¯gurations

e¡ E
k B T

= º (0) (3.3)

whereº (0) is the degeneracyof the ground states(E = 0). Now, we work out the

partition function using transfer matrix method. At this point it is convenient

to map this model onto an Ising model with nearestneighbour antiferromagnetic

interaction in an external ¯eld using the substitution ¾i = Si Si +1 . Then the

19
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

ANNNI Hamiltonian (3.1) transforms to

H = ¡ J1

X

i

¾i ¡ J2

X

i

¾i ¾i +1 : (3.4)

Here we have written the Hamiltonian in the form of a one dimensional spin

systemand left the in plane contribution to the energy, as we arguedearlier.

Now, using standard transfer matrix method the Hamiltonian is given by

H = Trace(TL ); (3.5)

L being the system size i.e., number of sites along z¡ axis. The 2 £ 2 transfer

matrix T is given by,

T =

Ã " #

" 1 1

# 1 0

!

: (3.6)

We note that at the multiphase point spin con¯gurations having one spin sur-

roundedby oppositespinsare not allowed (e.g. Si = " , Si +1 = # Si +2 = " ) and hence

in our transformedvariable ¾the matrix entry corresponding to (¾i = Si Si +1 = #

; ¾i +1 = Si +1 Si +2 = #) is zero.

The characteristic equation for the eigenvaluesof T is given by,
¯
¯
¯
¯

1 ¡ ¸ 1
1 ¡ ¸

¯
¯
¯
¯ = 0

) ¸ 2 ¡ ¸ ¡ 1 = 0: (3.7)

The solutions of (3.7) are non degenerateand the larger one is ¸ 1 = 1+
p

5
2 (=

¹; the Golden Ratio), the smaller one is ¸ 2 = 1¡
p

5
2 . Hence,by virtue of (3.5),

Z = Trace(T)L

= ¸ 1
L + ¸ 2

L

= ¸ 1
L

µ
1 + (

¸ 2

¸ 1
)L

¶

= ¹ L ; as L ! 1

) º (0) = ¹ L : (3.8)

The last step follows from (3.3).
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

Figure 3.5: Low temperature sequenceof phasesof the ANNNI model. (taken

from ref [4])

Without going to the transformedvariable, it is alsopossibleto calculate the

partition function. In that casewe can take blocks of two spinsand transfer it to

the next block of two spins. The transfer matrix is 4 £ 4 then and the partition

function Z = Trace(T
L
2 ).

The entropy of the systemis S = L ln ¹ , but entropy per spin

S
LM

=
L ln ¹
LM

! 0

as L; M ! 1 ; M being the number of sites in a plane perpendicular to the

z¡ axis.

3.3.2 Low temp erature phase diagram: sequence of phases

The low temperaturephasediagramof the ANNNI model wasstudiedby Michael

Fisher and Walter Selke [5]. They found that from the highly degeneratemulti-

phasepoint (· = 1
2; T = 0), lots of phasesspring out at ¯nite temperature.

The low temperature phasediagram can be obtained by systematiclow tem-

perature expansionin the variables w = e¡ 2K 0 and x = e¡ 2K 1 , the elementary
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

Boltzmann factors whereK 0 = J0
kB T and K 1 = J1

kB T . Near the multiphase point

· =
1
2

+ ± > 0; (3.9)

where± is small and measuresthe deviation from the multiphase point along ·

axis. ± = 0 corresponds to the multiphase point at T = 0.

Notation : Beforewe proceedto the low temperature expansioncalculationslet

us explain the notation. We de¯ne structural variablesL k = Ll k as the number

of spin bandsof length k,L being the systemsizealong the z¡ axis. A spin band

is surroundedby bandsof oppositespins. The variablesf lkg satisfy the following

constraints X

k¸ 0

klk = 1 (3.10)

and

lk ¸ 0 (3.11)

For a detailed analysisof the processthe original paper [5] is referred. Here we

present the main schemeof the treatment.

Expansion of Partition Function about a Gr ound State : As the temper-

ature is raisedfrom T = 0 someof the spinswill be °ipp ed from the ground state

con¯guration. The partition function can be expandedabout a given ground

state structure (f lkg) as

ZN f lkg = e¡
N E 0 f l k g

k B T [1 +
X

n=1

¢ Z (n)
N ]: (3.12)

E0 is the energyper spin in the ground state and the secondterm in the square

bracket in (3.12) is the contribution due to various number n of °ipp ed spins.

In the following we list various environments of a spin we need to consider

in order to calculate their contribution to the ground state energy. Energy con-

tribution to ground state per spin and number of each type of spins in a given

sequence(f lkg) are given.
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

Description of Symbol Energy,¢ E ¸ , No. of such
the con¯guration in excessto the spins in a given

in-layer contribution sequencef lkg,
-1

2q? J0 Nk

Bulk spin (" " "̂ " " ) o ¡ 1
2(1 ¡ 2±)J1 N

P

k¸ 5
(k ¡ 4)lk

Near edgespin (" " "̂ " #) ¼ ¡ J1 N
P

k¸ 4
2lk

Centre spin (# " "̂ " #) ½ ¡ 1
2(3 + 2±)J1 N l3

Edgespin (" " "̂ # #) ¾ 0 N
P

k¸ 3
2lk

Two band spin (# " "̂ # #) ¿ ¡ 1
2(1 + 2±)J1 2N l2

Combining all thesethe ground state energycan be written

E0f lkg = ¡
1
2

q? J0 + ¢ E¸ N¸

= ¡
1
2

q? J0 ¡
1
2

J1 ¡ J1±[2l2 + l3 ¡
X

k¸ 5

(k ¡ 4)lk ] (3.13)

subject to the constraints (3.10) and (3.11). In any ground state l1 = 0. This is

becausean `up'-spin surroundedby two `down'-spins can be obtained by °ipping

the middle one of three consecutive `down'-spins. Now the next nearestneigh-

bours can be either both `up', or both `down' or one `up' one `down'. In all the

three casesthe energycost is positive for ¡ 3
2 < ± < 1

2.

When the spins as listed in the table are °ipp ed the energychangefor each

type of spin becomes,

²¸ = 2q? J0 ¡ 4¢ E¸ : (3.14)

Hence the relevant Boltzmann factors in terms of the variables w and x are

wq? x1¡ 2±; wq? x2; wq? x3+2 ±; wq? ; wq? x1+2 ± corresponding to types o;¼; ½;¾; ¿ re-

spectively. Also,

¢ Z (1)
N

N
=

X

¸

(
N¸

N
)e¡

² ¸
k B T

= wq?

Ã

x1¡ 2±
X

k¸ 5

(k ¡ 4)lk + 2x2
X

k¸ 4

lk + x3+2 ±l3

+ 2
X

k¸ 3

lk + 2x1+2 ±l2

!

(3.15)

23



3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

We can now calculate the variational free energy for (f lkg) and then minimize

the free energywith respect to (f lkg).

The reducedfree energyper spin

f f lkg =
F f lkg
N kB T

= ¡
1
N

lnZN f lkg

=
E0f lkg
kB T

¡
¢ Z (1)

N

N
+ O

¡
w2q? ¡ 2

¢
: (3.16)

Using (3.13) and (3.15),

f f lkg = ¡
1
2

q? K 0 ¡
K 1

2
¡

K 1±
3

+
1
3

wq?
¡
x3+2 ± + 2

¢

+ a(1)
2 (±)l2 +

X

k¸ 4

ka(1)
k (±)lk (3.17)

where

a(1)
2 (±) = ¡

4
3

K 1±+
2
3

wq?
¡
x3+2 ± + 2 ¡ 3x1+2 ±

¢
(3.18)

ka(1)
k (±) =

4
3

K 1±(k ¡ 3) ¡ wq?
¡
(k ¡ 4)x1¡ 2± + 2x2¡

k
3

x3+2 ± ¡
2
3

(k ¡ 3)
¶

: (3.19)

The last expressionis for k ¸ 4.

Minimization of the Free Ener gy : We note that a(1)
2 (±) is negative for ± >

±(1)
1 where±(1)

1 is de¯ned through the equation

a(1)
2 (±(1)

1 (T)) = 0: (3.20)

On the other hand a(1)
k (±) is negative for ± < ±(1)

¡1 where±(1)
1 is de¯ned through

the equation

a(1)
k (±(1)

1 (T)) = 0: (3.21)

Now, for ± > ±(1)
1 ,a(1)

2 (±) < 0 and hencethe minimum of free energy (3.17) is

obtained by having maximum number of 2-bands,i.e., l2 = 1
2 and this indicates

that for ± > ±(1)
1 the `antiphase' is stable. for ± < ±(1)

¡1 , the minimum of freeenergy

is obtained by putting Ll 1 = 1 and all other lk = 0, showing a ferromagnetic

phase.

In betweentheselimits, for ±(1)
¡1 < ± < ±(1)

1 both a(1)
2 (±) and a(1)

k (±); k ¸ 4 are

positive and hencethe minimum freeenergyis obtained by putting l2 = 0; lk = 0
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3.3 Ground State of the Mo del and Low Temp erature Phase Diagram

for k ¸ 4,l3 = 1
3 so that a new phase(::: """### :::) interpolates between the

< 1 > and < 2 > phase.

Ferr omagnetic to < 3 > Transition : By equatingthe freeenergiesof < 1 >

and < 3 > phasesthe phaseboundary is obtained. The calculation of the phase

boundary can be improved by consideringhigher orders of w corresponding to

multiple spin °ip.

The order of transition from < 1 > to < 3 > can be found out by looking

at the surface energy § 0(x; w; ±) when a surface is created by inserting some

three-`up'-three-`down' spin patchesin an all-`up' environment. Upto O(wq? ) the

surfacetension is
§ 0

kB T
¼

1
2

wq? x(1 ¡ x)2 (3.22)

sothat for the entire rangeof x; 0 < x < 1 the surfacetensionis positive, thereby

showing that the transition is of ¯rst order.

It is to be noted that the complete phasediagram as calculated by Monte

Carlo and other methods show that the ferromagnetic phasecan coexist with

< 3 > phaseupto a temperature T = TF above which there are transitions

from ferromagneticto other sinusoidally orderedphases.However, the transition

remains¯rst order all the way upto the Lifshitz point.

Low Temperatur e Sequence of Phases : It is important to note that at the

other phaseboundary, namely that between< 3 > and < 2 > , a(1)
2 (±) = 0 and

henceall the statesconsistingof length two and three bandscoexist on this line.

This degeneracyis lifted when we considercontribution from multiple spin °ips.

A calculation similar to the previous one at the next higher order in w reveals

that a newphase< 23 > becomesstablefor somerangeof ±(T) in between< 3 >

and < 2 > states. Again we ¯nd that there is a degeneracyat the boundary of

this new phaseand < 2 > , the antiphase. At the next order, another phase,

namely < 223 > is found to interpolate between< 23 > and < 2 > phase.

Thus we ¯nd the sequenceof phasesas < 1 >; < 3 >; < 23 >; < 223 >; <

233 >; :::; < 2j ¡ 13 >; :::; < 2 > , j being a positive integer when we move from

the ferromagnetic phase to the right at a ¯xed low temperature in the phase

diagram. Converselyif we start from the `antiphase' state at T = 0 and closeto

the multiphase point and then move to higher temperatureskeeping± ¯xed, we
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3.4 High Temp erature Phase Diagram

encounter the phasesin reversei.e.,< 2 >; :::; < 2j ¡ 13 >; :::; < 223 >; < 23 >; <

3 > . This is easyto check from ¯g (3.5).

Comments : A few comments are in order:

(i) The width of the phases(of < 2j ¡ 13 > type) decreaseswith increasingj . The

boundary lines are given by,

· j +1 (T) ¡ · j (T) » wq? j : (3.23)

(ii) The wave vector characterisingthe statesare given by,

2¼qj =
¼j

(2j + 1)
; j = 1; 2; 3; ::: (3.24)

As j ! 1 , the wave vector variesas,

q1 ¡ q(T; · ) »
1

lnf [· 1 (T) ¡ · ]¡ 1g
: (3.25)

(iii) At relatively higher temperaturesstatesof < 2j ¡ 132j 3 > and other compli-

cated form exists. If we treat the 3-bandsas walls placed within 2-band spins,

various interactions between the walls namely 2-wall, 3-wall, ..., n-wall interac-

tions needto be consideredcarefully in order to ¯nd out for other possiblestable

phases[[19],[20],[21]].

3.4 High Temp erature Phase Diagram

For ¯nite values of · , at high enough temperatures a paramagnetic phase is

expected. As the temperature is loweredwe might comeacrossan instabilit y in

the paramagneticphaseagainst a ferromagneticor a spatially modulated phase

with wave vector ~q. The instabilit y is expectedto show up asa divergencein the

susceptibility Â(~q; T). The susceptibility Â(~q; T) is de¯ned in the following way.

We put an external ¯eld h0 at onesite only in the uniformly orderedphase.Then

the translational invarianceof the phaseis broken. However, if the ¯eld is small

enough,we can break up the magnetization at i th site as a sum of an average
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3.4 High Temp erature Phase Diagram

magnetization plus a small °uctuation about that average,i.e., m i = m + ±mi .

Â(~q; T) is de¯ned as,

Â(~q; T) = lim
h0 ! 0

±m~q

h0
(3.26)

where±m~q is the Fourier transform of ±mi at wave vector ~q. Hencethis suscep-

tibilit y measuresthe responsedue to a localisedin¯nitesimal ¯eld.

3.4.1 Instabilit y of the paramagnetic phase

Within the Ornstein-Zernike theory the mean ¯eld susceptibility Â(~q; T) in the

disorderedphaseis given by the following expression:

Â(~q; T) =
¯

1 ¡ ¯ J(~q)
(3.27)

where ¯ = 1
kB T ,kB is the Boltzmann constant. Taking the wave vector ~q of the

form 2¼(0; 0; q),

J(~q) = 4J0 + 2J1 cos2¼q+ 2J2 cos4¼q (3.28)

So, the paramagneticsusceptibility diverges¯rst when 1 ¡ ¯ cJ(~qc) = 0, where

~q = ~qc maximizesJ(~q).

i.e.,

kB Tc = 4J0 + 2J1 cos2¼qc + 2J2 cos4¼qc (3.29)

Here qc is obtained by maximizing (3.28) with respect to q.

2¼qc = arccos
1

4·
(3.30)

Equation (3.30) restricts the values of · in order to obtain a real qc. Since

cosqc < 1, · > 1
4 . For · < 1

4, qc = 0 maximizes(3.28). This shows a transition

from the paramagneticto a ferromagneticphasefor · < 1
4.

Inserting (3.30) into (3.29) we get the mean¯eld phaseboundary for param-

agnetic to modulated phasetransition,

kB Tc = 4J0 + J1

µ
2· +

1
4·

¶
; · >

1
4

: (3.31)
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3.4 High Temp erature Phase Diagram

whereas,the mean¯eld boundarybetweenparamagneticphaseand ferromagnetic

phaseis obtained by putting qc = 0 in (3.29) and it is,

kB Tc = 4J0 + J1 (2 ¡ 2· ) ; · ·
1
4

: (3.32)

The mean¯eld transition lines are shown approximately in ¯g (3.6).

3.4.2 Instabilit y of the ferromagnetic phase

Within the ferromagneticphasewe canuseOrnstein-Zernike expressionfor mean

¯eld susceptibility:

Â(~q; T) =
(1 ¡ m2)¯

1 ¡ (1 ¡ m2)¯ J(~q)
(3.33)

wherem is the magnetizationper site at temperature T. An estimateof m could

be obtained by minimizing Landau freeenergyfunctional per spin F. Within the

ferromagneticphase,

F (m; T) = ¡
1
2

(J(0) ¡ kB T) m2 +
kB T
12

m4 (3.34)

upto fourth order in m. Minimizing F (m; T) w.r.t m, we get the squaredspon-

taneousmagnetization

m2 =
3(J(0) ¡ kB T)

kB T
(3.35)

Now that we have an estimate of m, we can look at the wave vector q = qc for

which the susceptibility in (3.33) ¯rst diverges.When it happens,the ferromag-

netic phasewill be unstable against the modulated phasecorresponding to that

wave vector.The criterion for the instabilit y is,

1 ¡ (1 ¡ m2)¯ cJ(~qc) = 0: (3.36)

Henceusing (3.35) in (3.36) we get the phaseboundary by solving the following

equation for Tc as a function of · ,

(4 ¡ 3¯ cJ(0)) ¯ c

µ
4J0 + J1

µ
1

4·
+ 2·

¶¶
= 1 (3.37)

This expressionfor the transition line is basedon an estimate of m which was

assumedto be small, so that we neglectedhigher orders in m in (3.34). Hence
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3.4 High Temp erature Phase Diagram

Figure 3.6: The transition lines in the phasediagramof the ANNNI model shown

approximately with J0 = J1. (from ref [3])

we can trust this result closeto the Lifshitz point. It is to be noted that on this

transition line, magnetization doesnot go to zeroand this shows that the phase

transition from the ferromagneticto the spatially modulated phaseis ¯rst order

in nature, at least closeto Lifshitz point 1. At the Lifshitz point ferromagnetic

phase,paramagneticphaseand spatially modulated phasecoexist and hencethe

jump in the magnetization vanishes. The wave vector for which the instabilit y

occurs is given by (3.30) as a function of · .

3.4.3 Mean ¯eld theory and the soliton picture

The phasediagram at high temperatures can be analyzed using a mean ¯eld

theory. One starts by assuminga mean¯eld Hamiltonian

H M F = ¡
X

i

H i Si +
1
2

H i < Si >; (3.38)

1In section(3.3.2) it waspointed out that the whole phaseboundary betweenferromagnetic
to modulated phase,from the multiphase point to the Lifshitz point is of ¯rst order in nature.
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3.4 High Temp erature Phase Diagram

< Si > being the thermal average of the spin at i th layer,i = 1; 2; :::; L: Hi

is the e®ective ¯eld at i arising from the interactions with surrounding spins.

Minimization of trial free energyleadsto the self consistent setsof equation,

< Si > = tanh(¯ Hi) (3.39)

H i =
X

j

Jij < Sj > : (3.40)

Unlike in the caseof Ising model with nearestneighbour ferromagneticcoupling,

these sets of equationscannot be reducedto just a couple of equations for we

cannot use translational invariance in general for spatially modulated phases.

It turns out to be very di±cult task to solve these self-consistent equations.

However,they can be analyzedin the following way.

If we supposethat the spin sequencerepeats after L sites along z¡ axis, the

free energyper site becomes,

F (L; T) = ¡
1

L¯

L ¡ 1X

j = o

ln Tr e¡ ¯ H MF : (3.41)

This free energyis minimized w.r.t. L numerically. In principle the calculation

should be performedupto L ! 1 in order to allow for any possibleincommen-

surate phase. But in practice numerical calculation upto L=17 were carried out

[3]. Most of the phasediagram is ¯lled up by variouscommensuratephases.Near

the paramagnetictransition line this numerical mean¯eld theory fails.

Imp ortant Featur es of the Mo dulate d Phases as Found by Me an Field

Theory : Fig (3.7) shows wave vector vs temperature for · = 0:6 and · = 0:7.

The following points are interesting to note:

(i) Most of the phasediagram is ¯lled by the wave vectorsq = 1
4 ; 1

5 and 1
6 .

(ii) Somewave vectors are stable only for a very small temperature range.e.g.

q = 2
9 is stable for a temperature range¢ T ' 0:0004Tc.

(iii) Someof the wave vectors do not occur at all as stable phase,like q jumps

from 2
11 to 1

6 without assumingthe value 3
17(= 2+1

11+6 ). Hencethe `Devil's staircase'

is not complete.

(iv) For · = 0:6 the wave vector vs temperature curve is not monotonic.

Most of the featuresof the wave vector vs T curve can be understood within

a soliton picture. The basicschemeof the soliton picture is portrayed here.
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3.4 High Temp erature Phase Diagram

Figure 3.7: Wave vector vs temperature for (a)· = 0:6 and (b)· = 0:7 as calcu-

lated numerically by Bak and Boehm [3]

If F be the Landau functional in the presenceof an external ¯eld H ext ,then

±F
± < Si >

= Hext (< Si > ): (3.42)

Hence,

< Si > = tanh ¯ (Hi + Hext )

= tanh ¯

Ã
X

j

Jij < Sj > +H ext

!

(3.43)

so;

Hext = ¡
X

j

Jij < Sj > +
1
¯

tanh¡ 1 < Si > : (3.44)
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Hence,using (3.42), we get,

F = ¡
1

2L

X

j

Jij < Si >< Sj > +
1

L¯

X

i

<S i >Z

0

tanh¡ 1 ¾d¾: (3.45)

Expanding the free energyin powers of S~q, the Fourier transform of < Si > , we

get

F = ¡
1
2

X

~q

[J(~q)¡ T]S~qS¡ ~q+
T
12

X

¿

X

~q1

:::
X

~q4

S~q1 S~q2 S~q3 S~q4 ±( ~q1+ ~q2+ ~q3+ ~q4¡ ~¿)+ O(S6
~q):

(3.46)

Here ¿ is a reciprocal lattice vector and its presencere°ects the basic fact that

the spinsare sitting on a lattice.

Free Ener gy near the q = 1
4 Phase : To ¯nd the stabilit y of the phasewith

wave vector q0 = 1
4 we expandthe free energyabout q = q0 = 1

4.

Let us de¯ne S1
4
(~r ) and S¡ 1

4
(~r ) as,

S1
4
(~r ) =

p
2

µ
1

2¼

¶ 3 Z
d~q ei ~q:~r S¡ ~q0+ ~q (3.47)

S¡ 1
4
(~r ) =

p
2

µ
1

2¼

¶ 3 Z
d~q e¡ i ~q:~r S¡ ~q0 ¡ ~q: (3.48)

S1
4
(~r ) describesa spin density wave

S(~r ) =
1

p
2

S1
4
(~r )e2¼i ( z

4 ) : (3.49)

The last term arisesfrom Umklapp terms. Also, becausethe wave vector ~q has

only z-component, S1
4
(~r ) dependson z only.

If we assumethat near the commensuratephase(q = 1
4) the amplitude of

the order parameter S§ 1
4
(z) while the phase (Á(z)) is allowed to vary with z

[[12],[22],[23]],

S§ 1
4
(z) = A eiÁ(z) : (3.50)

The commensuratephaseis given by (3.49) and (3.50) with Á = constant. The

amplitude A might be obtained by minimizing the Landau functional in the

commensuratephase.
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3.4 High Temp erature Phase Diagram

If we chooseÁ(z) = ´ z, this describesan incommensuratemodulated phase.

The free energytakesthe form [3],

F =
Z

dz cA2

"
1
2

µ
dÁ
dz

¡ ´
¶ 2

+ º (1 + cospÁ)

#

(3.51)

with p = 4; ´ = ¡ 1
4· ; º = ¡ kB T A 2

96J2
.

This is of the sameform as the energyof FVdM model discussedin Chapter

2.

The ¯rst term in (3.51) favours Á = ´ z, i.e., an incommensuratephasewhile

the secondterm favours Á = ¼
4 , the commensuratephase.

Sine-Gor don Equation as the Minimization Condition for Free En-

ergy: The solitonic solutions : Minimizing the free energyleadsto the Sine-

Gordon equation,
d2Á
dz2

+ 4º sin 4Á = 0: (3.52)

One of the solution of (3.52) is given by,

Á(z) =
¼
4

¡ tan¡ 1 e4
p

º z (3.53)

and this represents an anti-soliton. In general the solution is given by a set of

regularly spacedsoliton or a `soliton lattice' with lattice constant l such that,

¹q =
2¼
pl

; (3.54)

¹q being the deviation of the averagewave vector from q0 in z-direction.

The solitons can be thought of as walls betweencommensuratephases.Near

the commensuratephase,the free energytakesthe asymptotic form,

F
cA2

=
µ

4
p

º
¼

¡ j´ j
¶

¹q+
16

p
º

¼
¹q exp

µ
¡

2¼
p

º
¹q

¶
: (3.55)

The ¯rst term canbe thought of assoliton formation energyand the secondterm

as a weak repulsionbetweenthe solitons.

A phasewith q = 1
5 may be regardedas a phasewith one soliton inserted

every period,that with q = 3
13 asa phasewith onesoliton every three periods etc.
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3.4 High Temp erature Phase Diagram

Figure 3.8: The phasediagram of ANNNI model in 3 dimensionsas found out

by Bak and Boehm using mean¯eld numerical calculations(ref [3])

For small º or large j´ j, the soliton formation energygoesnegative and hence

the commensuratephasebecomesunstableagainst formation of an incommensu-

rate phase.

The transition temperature is obtained from (3.55) asa function of J1 and J2,

kB TCI = 4J1 ¡ 2J2 +
¼2J 2

1

8J2
(3.56)

The soliton formation energyremainspositive for a large range of T and · ,

showing the stabilit y of the phase.

In a similar treatment the Landau freeenergycanbe written about other sta-

ble wave vectors like q = 1
6. The phaseboundary as calculatedusing the soliton

picture matcheswell with other numerical studies. The phasediagram as found

out numerically is shown in ¯g (3.8).
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3.4 High Temp erature Phase Diagram

Crucial Featur es of the Phase Diagr am in One and Two Lattic e Di-

mensions : The phasediagram in one lattice dimensionscan be solved exactly

using transfer matrix method. At T=0, entropy per spin doesnot vanish in 1-D.

In the thermodynamic limit, the entropy per site becomes,

S
L

=
L ln ¹

L
= ln ¹ (3.57)

as L ! 1 . This di®ersfrom the casein higher dimensions.

Also long rangeorder is destroyed in 1-D for ¯nite temperature ascanbe seen

from the exponential decay in the spin spin correlation function. In the phase

diagram there exists local spatially modulated phasesbut the stabilit y of these

phasesget enhancedin higher dimensionsbecauseof the in-layer spins coupled

ferromagnetically.

In 2-D the entropy per spin again vanishes,like in 3-D at T=0 and ® = 1
2 .

The most interesting feature of the 2-D phasediagram is that the paramagnetic

phasetouches T=0 axis so that there is always a paramagneticphasebetween

ferromagneticand spatially modulated phase.A detailed account is provided at

the review article by W. Selke [24].

Summary : To summarise,the phasediagram of ANNNI model is su±ciently

rich. It shows a uniformly ordered state, a disorderedstate and a number of

spatially modulated phases(commensurateand incommensurate)that arise out

of competition betweennearestand next nearestneighbour couplings. Though it

involvesshort rangeinteraction, it doesshow very long periodic structures.

The in¯nite sequenceof phasesshown by ANNNI model providesa motivation

to usethis model to explain `polytypism' in closedpacked materials, as we shall

discussin the next chapter.
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Chapter 4

Polyt yp es and Application of

ANNNI Mo del to Polyt yp es

Materials like SiC, ZnS etc having closedpacked structures show a wide rangeof

lattice periodicity along somecrystallographic axis. This phenomenonis known

as`Polytypism' and results from competing interactionspresent within the mate-

rials. As the temperature, pressureand other chemicalenvironments arechanged

one polytypic form of these materials can transform to other polytypic forms

[[25],[26]].

There are excellent reviewsavailable on Polytypism (for exampleseeVerma

and Krishna (1966) [6]). Hundredsof papers in various journals, especially those

devoted to crystallography reported new polytypic structures in di®erent mate-

rials. Instead of presenting all those information, our aim will be to describe

the phenomenonof polytypism brie°y, also to look at someplausible explana-

tions of polytypism. We shall try to understandthe dynamicsof transition from

onepolytypic structure to another. Sincethere doesnot seemto be onegeneral

framework for understanding every transformation between polytypic variants,

we shall be very speci¯c. We shall pick up a particular transition, namely from

3C to 6H phaseand look at the dynamicsusing Monte Carlo algorithm. First of

all let us de¯ne polytypism and describe the notations usedto represent various

polytypes.
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4.1 De¯nition of Polyt ypism and Notations used

4.1 De¯nition of Polyt ypism and Notations used

First discoveredby Baumhauer[[27],[28]] in SiC, polytypism refersto the abilit y

of a substanceto crystallize into a number of di®erent modi¯cations in all of

which two dimensionsof the unit cell are the samewhile the third is a variable

integral multiple of a commonunit [6].

There are various notations available to describe polytypism. The most pop-

ular onesare described below:

(a) ABC notation

Various Polytypic modi¯cations can be represented by specifying stacking

sequence(A,B,C) of successive closedpacked layers. The unit layer of structure

might be polyatomic and then the symbols A,B,C represent one kind of atoms,

the relative positions of the other being ¯xed.

(b) The Ramsdel l notation [29]

In this convention the symbols nH or nR means that there are n layers

along the c-axis in a unit cell and the symmetry of the crystal is H exagonal

or Rhombohedral. 3C is the only structure with cubic symmetry.

(c) Zhdanov Symbol : [30]

The stacking sequencein polytypescanbe mapped to a binary variable, `plus'

and `minus' or `up' spin and `down' spin. `Plus' is assignedat each bond between

two neighbouring layersif the letters occur cyclically in ABC notation and `minus'

is assignedwhen if neighbouring letters is anti-cyclic.

Zhdanov symbol consistsof pairs of numbers, the ¯rst denoting the number

of plus signsand the seconddenoting the number of minus signs following the

plus one. For example 6H is denoted as (3 3). 15R is represented as (2 3)3,

the subscript 3 denoting that the sequence(2 3) has to be repeated 3-times to

completethe unit cell.

4.2 Examples of Polyt ypism

In more than 40 polytypic structures of SiC, the hexagonalunit cell has a =

b = 3:078ºA, while c is a variable multiple of 2:518ºA. The variation of c might

be surprising to note. In 2H polytype c ¼ 5ºA.[31] while c ¼ 1500ºA in 594R.[32]
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Apart from the hexagonaland rhombohedralmodi¯cation, known as®-SiC, there

is a cubic modi¯cation, known as ¯ -SiC [[33],[34]]. Apart from SiC, polytypism

is observed in lots of materials. Here are a few notable examples:

(a) ZnS: There are about 200 identi¯ed polytypesof ZnS.[35]

(b) CdTe: 2H, 3R, 5H, 6H, 6R, 15R, 3C etc phasesare observed.[36]

(c) SnS2: 2H, 4H, 6H, 18R, 8H, 10H, 22H, 24H, 24R, 30H (or 90R), 36R (or12H),

40H, 72R etc modi¯cations are observed.[37]

(d) CdI2: About 250polytypesof this substancehasbeenreported and complete

crystal structures of 90 polytypeshave beenworked out.[38]

Sincevariouspolytypesof a material di®eronly in the stacking sequencealong

oneaxis, the bulk densitiesare almost the same.

4.3 Theories to explain Polyt ypism

Many theories have beenput forward to explain polytypism. An earlier school

of thought suggestedthat polytypism is essentially a non-equilibrium process

and arisesdue to di®erent growth mechanisms(e.g., spiral growth mechanismby

Frank 1951 [39]). However, these mechanismscannot explain the relative sta-

bilit y of various polytypic structures. Jeppsand Page[40] characterizedseveral

reversible phasetransitions between SiC polytypes. This suggestedthat poly-

typism might be an equilibrium phenomenonand led peopleto useequilibrium

models to explain it (Price 1983, [41]). The remarkable similarit y of SiC poly-

typesto the in¯nite sequenceof phasesfound in ANNNI model wasa motivation

to take this idea seriously[8].

The most abundant phasesin commonpolytypes (like SiC) are obtained in

the zero temperature phasediagram of the extendedANNNI model (it involves

interactions upto third nearestneighbours). The phasediagram of the extended

ANNNI model is shown in ¯g (4.1). 3C, 4H, 2H and 6H are stablephasesat T =

0. The 3C-6H transition line is highly degenerate.Here all spin con¯gurations

having three or more number of successive spinsof samesign are ground states.

Hencethe degeneracyis exponential in the systemsizealong the stacking axis.
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3C

6H

2H

4H

-1/2

-1

J J3 1/

J2/ J11

Figure 4.1: Ground statephasediagramof extendedANNNI model. J i ; i = 1; 2; 3

are the ¯rst, secondand third nearest neighbour couplings. J1 > 0 and we

have shown only the lower half of the phasediagram sincewe are interested in

3C-6H phasediagram. On the thick boundaries there are exponentially large

degeneraciesof ground states.

In the next sectionwe shall useMonte Carlo algorithm1 at T = 0 to look at

the transition from 3C to 6H. A similar approach hasbeenadoptedby Dhananjai

Pandey to study 2H to 6H transformation [42].

4.4 Dynamics of Transformation

In order to study the dynamics of transformation from 3C to 6H phaseusing

Monte Carlo simulation, we have to ¯nd out the rules for allowed `moves' in spin

language.

3C: : : : A B C A B C A B C A B C : : :

6H: : : : A B C A C B A B C A C B : : :

We note that a pair of neighbouring `B' and `C' interchangedin this transforma-

tion. Now exchangeof positionsof two atomic layersby coherent movement of all
1The Monte Carlo work was done in collaboration with Tridib Sadhu, Department of The-

oretical Physics.
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4.4 Dynamics of Transformation

the individual atomsseemsunlikely to happen in a real system. A moreplausible

mechanism for the exchangemight be that `cracks' are created in successive B

and C layers. By a `crack' we meanan interfacebetweenatoms of B and C posi-

tions in a layer. It is important to note that closedpacking constraint demands

the creation of identical `cracks' in the neighbouring layers, for otherwisetwo B's

or two C's would be next to each other in the stacking sequence.There is some

room for the atomsto move neara `crack'. This permits easeof motion and leads

to the di®usionof the `crack' by °ipping B and C atoms. Thus the layers B and

C interchangepositions. This seemsplausible since the only energy cost is for

the creation of the `crack'; oncecreatedit can di®usealmost freely.

A

B

C

A

C

A

B

A

B

C

`Crack'

A

A

C

B

Figure 4.2: A plausible mechanism for interchangeof B and C layers. `Cracks'

are formed asa result of B atoms moving to C positions in a plane and C atoms

moving to B positionsin the neighbouring plane. The crack di®usesto interchange

B and C planes.

Dynamics in spin language : In spin language,each move (ABCA ! ACBA)

consistsof a trimer °ip.

3C: : : : " " " * * * " " " : : :

6H: : : : " " " + + + " " " : : :

Herefor easeof visualization, wehaveused* and + insteadof " and # respectively

for the °ipp ed spins. Hencethe dynamicswe needto consideris the trimer °ip

dynamics.

We proceedby writing a Monte Carlo code. We considerthe systemto be at

zero temperature. The rules are the following:
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4.5 Results of Mon te Carlo: Metastable States

(a) start with an initial con¯guration of onedimensionalarray of spins,

(b) randomly choosethree consecutive spin of samesign (that is all `up' or all

`down'),

(c) evaluate the energycost, ¢ E of °ipping the spins(Extended ANNNI Hamil-

tonian is usedfor this).

If ¢ E < 0, the spinsare °ipp ed with probability 1.

If ¢ E = 0, the spinsare °ipp ed with probability 1
2.

If ¢ E > 0, the spinsare not °ipp ed.

4.5 Results of Mon te Carlo: Metastable States

The ¯nal state reached under the dynamics was found to be sensitive to the

initial con¯guration. When it was quenched from 3C phaseto 6H phase(J1 =

0:9; J2 = 0; J3 = ¡ 0:6) at T = 0, it did not go to the thermodynamically stable

6H phase. Rather, the system went to a locked metastable state. Locally the

spin con¯guration showed `three-up-three-down' structure but globally the phase

was not 6H. For a random initial con¯guration1 also the systemdid not go the

thermodynamically stable phasebut `active' and `frozen' patches of spins were

observed for large number of Monte Carlo steps. The `residual activit y' ( the

number of active spins after large number of Monte Carlo steps) was found not

to go to zero even after 800 Monte Carlo stepsper site while in the ¯rst caseit

approached zeroafter » 200Monte Carlo stepsper site. The result of the Monte

Carlo simulation is shown in ¯g (4.3), at the end of this chapter. Number of sites

that remain active after largenumber of Monte Carlo time stepswasfound to be

proportional to the systemsize.

When the systemwas quenched to the multiphase line i.e., the phasebound-

ary between3C and 6H phases(J1 = 0:9; J2 = 0; J3 = ¡ 0:6), the spinsremained

active if started from 3C phase(800 Monte Carlo stepswereobserved) but went

1There is no analogueknown to us that corresponds to random con¯guration in polytypes.
However, we might ask a theoretical question whether the dynamics under consideration has
dependenceon initial con¯guration. This is the motivation for considering random initial
con¯guration.
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4.5 Results of Mon te Carlo: Metastable States

to a state with alternate `frozen' and `active' spins if started from random con-

¯guration (¯g (4.5)).

We can rationalize the results for quenching to the degeneracyline in the

following way . Sincethe energycost of °ipping a trimer is zero when it is sur-

roundedby patchesof spin of samesignof length greaterthan two, theremight be

siteswhereno move is allowed, e.g., the middle three of an `up-down-up-down...'

con¯guration of length 9. Next, even if someinitial movesareallowed, after some

time the systemcan go a similar con¯guration to get locked. On the other hand

when the systemstarts from all `up' con¯guration, we get only spin patchesof

length at least three in successive Monte Carlo steps. Henceeven if somesites

remain inactive for sometime,there is a possibility that it might becomeactive

again when the neighbours have °ipp ed to produceenergeticallyfavourablecon-

ditions.

Discussion : Hence we seethat the system might go to a metastable state

for someinitial con¯gurations. The thermodynamically stable phaseis of course

lower in energythan any of the metastablestates,but in order to reach there, the

systemhas to overcomean activation barrier sincethe metastablestates are at

the local minima of energy. The time taken to overcomethis activation barrier is

exponential in the barrier height. The thermodynamically stable state is at the

global minimum of energy, but reaching it is not easy. The dependenceof the

¯nal state on the initial con¯guration is observed for many frustrated systems.

We again emphasizethat the actual problem is very complicated. The use

of this spin model was motivated from a phenomenologicalpoint of view and it

did show someinteresting properties, which may relate to someaspects of the

transformation of polytypic structures.
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Figure 4.3: The ¯nal state reached by the system is dependent on the initial

con¯guration. The systemwasquenchedto the 6H phase(J1 = 0:9; J2 = 0:0; J3 =

¡ 0:6) from a. 3C phase,T = 0 and b. random con¯guration. In the ¯rst case

the systemgoesto a `locked' state but in the secondcasethere are `active' spins

even after large number of Monte Carlo steps. Herea black dot denotesthat the

spin at that site is active, i.e., it °ips at that Monte Carlo step. The systemsize

was taken to be 2400. Here the Monte Carlo stepsshown is stepsper site.
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Figure 4.4: Number of site that are active at di®erent Monte Carlo time steps

when quenched to 6H phase. System size=480,J1 = 0:9; J2 = 0:0; J3 = ¡ 0:6,

The initial con¯guration is a. all `up', b. random. The data were averagedover

histories. Number of active sites after large number of Monte Carlo steps are

proportional to the systemsize. Here the Monte Carlo stepsshown is stepsper

site.
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Figure 4.5: The systemof size2400wasquenched to the 3C-6H degeneracyline.

The ¯nal state was again found to depend on the initial states: a. 3C state, all

`up' spinsand b. random con¯guration. When the systemstarts from all `up' it

doesnot go to a `locked' state but for the other casewe observe patchesof `active'

and `locked' sites. `Black' dots represent activit y at that Monte Carlo step. Here

the Monte Carlo stepsshown is stepsper site.
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4.5 Results of Mon te Carlo: Metastable States

Figure 4.6: Number of site that are active at di®erent Monte Carlo time steps

when quenched to 3C-6H multiphase line. System size=480,J1 = 0:9; J2 =

0:0; J3 = ¡ 0:3, The initial con¯guration is a. all `up', b. random. The data

wereaveragedover histories. Herethe Monte Carlo stepsshown is stepsper site.
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