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Synopsis

There exist condensed matter systems with competing interactions which show

very interesting and rich phase diagrams. Examples are provided by periodic

arrangements like spin density waves, charge density waves, periodic arrangement

of atoms on a crystalline substrate etc. When the periodicity of the modulated

structure is a (simple) rational multiple of the underlying lattice vector the system

is said to be in a commensurate phase and when it is not so, the system is in an

incommensurate phase.

In this thesis we review various aspects of three systems where competing

interactions lead to various commensurate and incommensurate phases and tran-

sition between them. Our first example is Frank and Van der Merwe model

which idealize rare-gas monolayers adsorbed on a host lattice (such as Krypton

on graphite) in one dimension. In this model point masses connected by identi-

cal springs are subject to an external periodic potential, the misfit between the

period of the potential and the natural length of the springs or the strength of

the potential relative to the spring constant being the parameters to be tuned.

This model shows commensurate-incommensurate phase transitions as these pa-

rameters are varied, a consequence of the competition between the elastic and

the potential energy.

The next example is the Axial Next Nearest Neighbour Ising (ANNNI) Model.

In this model spin- 1
2

objects reside on a cubic lattice and along one axis (say

z-axis) interact with nearest neighbours via a ferromagnetic exchange coupling

(J1 > 0) and with next nearest neighbours via an antiferromagnetic exchange

coupling (J2 < 0). In the plane perpendicular to this axis, the spins interact fer-

romagnetically with nearest neighbours. The ground state of this system depends

on the ratio of the couplings. In fact, at |J2|
J1

= 1
2

the ground state is not unique like

many other frustrated systems and there is an infinity of degenerate ground states



in the thermodynamic limit (the degeneracy increases exponentially with the sys-

tem size). This point is known as multiphase point. For |J2|
J1

< 1
2

the ground state

is ferromagnetic and for |J2|
J1

> 1
2

it has up-up-down-down spin structure (known

as (2,2) antiphase) along the axis, all the spins in the planes perpendicular to this

axis being aligned in the same direction in the absence of competing interactions

within a plane.

At low but non-zero temperatures, this model shows an infinite sequence

of phases of the sort < 2j−13 > ( j = 1, 2, . . . ; for example < 233 >=

. . . ↑↑↓↓↑↑↓↓↓ . . ., the sequence represents majority spins at successive planes

perpendicular to the z-axis) between the ferromagnetic and the (2,2) antiphase.

All these phases spring out from the multiphase point. At higher temperatures

various other commensurate and incommensurate spatially modulated phases are

obtained.

In this model the transitions between the ferromagnetic and other spatially

modulated phases are first order in nature, all the way from the multiphase point

up to the Lifshitz point, a special type of tricritical point at which ferromagnetic

phase coexists with paramagnetic and spatially modulated phase.

The next example of systems with competing interactions is real closed packed

materials like SiC, ZnS etc that show variable periodicity along some crystallo-

graphic axis, a phenomenon known as polytypism. Atomic layers can be stacked

in many ways along this axis like ...ABCABC... or ...ABABAB... or ...AB-

CACB... or any other sequence where same letters do not sit next to each other

and hence variable periodicity is observed. The letters A,B,C represent three pos-

sible relative positions for atoms in closed packed structure. Polytypism refers to

different structures of this type observed in crystals of same material. Transition

from one polytype structure to another is obtained as temperature, pressure or

chemical environment is varied.

The similarity between the sequence of phases in polytypes and the ANNNI

model motivates to cast the polytype problem to ANNNI model, extended to

include the third nearest neighbour interaction. Between successive layers in the

polytype, spin variables are introduced: spin ‘up’ if the letters A,B,C occur cycli-

cally and spin ‘down’ otherwise. Next we look at a plausible dynamics of trans-

formation and its consequences, from one polytypic structure (3C phase, ...AB-



CABC..., in spin language all ‘up’ phase) to another (6H phase, ...ABCACB...,

in spin language . . . ↑↑↑↓↓↓ . . .). In spin language the dynamics turns out to

be trimer flip under energetically favourable conditions. Using a Monte Carlo

simulation at T = 0 we looked at the system when it was quenched to 6H phase

suddenly. If the initial configuration was all ‘up-spins’ (3C phase) it turned out

that the system got stuck at some intermediate ‘metastable states’. If quenched

to the 3C-6H phase boundary, the spins remain active for a large number of Monte

Carlo steps. With a random initial configuration the final state was found to be

different. The system showed ‘active’ and ‘frozen’ spin patches when quenched

to 3C-6H phase boundary. Thus the final state reached through this dynamics is

dependent on the initial condition.
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Chapter 1

Introduction

Systems under the influence of competing ‘forces’ often show very interesting phe-

nomena. Simple examples are provided by oscillatory systems, like a pendulum

or a spring-mass system. The competing ‘forces’ might be gravity and elastic

forces as in case of a spring-mass system hanging from a point or might be the

‘Pauli degeneracy pressure’ and gravity as in the case of neutron stars on the

verge of collapsing into a black hole. There are also condensed matter systems

where competing interactions lead to interesting properties.

In this thesis, we shall try to look at a few examples where this is the case.

The first example will be a very simple model originally introduced by Frenkel

and Kontorowa but later studied by many authors, notably by Frank and Van

der Merwe and some others. The model is known as Frank and Van der Merwe

(FVdM) model and involves one dimensional array of masses connected by springs

and subject to an external periodic potential. This might be thought of an ideal-

ized one dimensional model for rare-gas monolayer adsorbed on graphite surface.

The periodic potential is due to the underlying graphite lattice. Competition be-

tween the elastic energy of the springs and the potential energy lead to interesting

properties of the system.

The second example is a simple Statistical Physics model, known as Axial

Next Nearest Neighbour Ising (ANNNI) model where scalar spins sitting on a

hypercubic lattice interact with nearest neighbours via ferromagnetic exchange

coupling and with next nearest neighbours via antiferromagnetic exchange cou-

pling along one axis. In the plane perpendicular to the axis, the spins interact

1
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Figure 1.1: Various possible cases of variation of ordering wave vector q

(the inverse period) with external tuning parameter x. (a) Smooth ana-

lytic behaviour. (b) Complete devil’s staircase. (c) Incomplete Devil’s stair-

case. (d) Harmless Devil’s Staircase.

ferromagnetically with nearest neighbours. Hence this model involves competing

interactions along one axis.

The last example will be provided by an interesting phenomenon called ‘Poly-

typism’ seen in some crystalline matter, the classic examples being SiC, ZnS etc.

These materials have closed packed structures and along some crystallographic

axis they show variable periodicity in their lattice structure.

In this chapter, we shall introduce various concepts and terms relevant to

systems with competing interactions. They will be made precise later when we

come to concrete examples in the later chapters.

Commensurate Phases : A modulated phase is said to be commensurate when

the period of the ordered phase is a (simple) commensurate multiple of the un-

derlying lattice periodicity.

Incommensurate Phases : When the period of the ordered phase is incom-

mensurate with the underlying lattice periodicity the phase is known as an in-

2
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commensurate phase.

Devil’s Staircase : As some external parameter (say x, it might be temper-

ature, pressure etc) is varied the ordering wave vector (say q) might change in

various possible ways as follows:

(a) q might change continuously as x is varied.

(b) q might lock at an infinity of commensurate values. In the case where lock-

ing happens q − x curve looks like a staircase and hence the picturesque name

‘Devil’s Staircase’ is given to it. There might be incommensurate phases between

commensurate phases. Then the Devil’s staircase is said to be incomplete.[1]

(c) The locked values, taking all possible commensurate numbers, fill up the whole

of the argument of x. There are no jumps of first order transition. This case is

known as a complete Devil’s staircase.

(d) q jumps between commensurate values for some range of x and changes con-

tinuously for some other range.

(e) q takes only one of a finite number of rational values as x is varied. This is

known as a harmless Devil’s staircase. Fig (1.1) shows various cases of Devil’s

staircase.

Commensurate Incommensurate Transition : The transition from the com-

mensurate to incommensurate structures are understood in terms of a soliton

theory[[2],[3]]. Within this framework ‘solitonic walls’ represent spatially incom-

mensurate regions between commensurate regions. If at some temperature the

formation energy of ‘solitonic walls’ becomes negative, the commensurate phase

will be unstable against an incommensurate phase. In chapter 2 where we have

discussed FVdM model in somewhat more detail, this point is elaborated.

ANNNI Model Phase Diagram : Various commensurate and incommensu-

rate phases are obtained in the phase diagram of ANNNI model, topic of our

discussion in chapter 3. In this model the crucial parameter is the ratio of the

couplings, κ = −J2

J1
, J1 and J2 being the nearest neighbour ferromagnetic and

next nearest neighbour antiferromagnetic coupling respectively. Section (3.2)

gives an overview of the phase diagram before we discuss various parts of it

in detail in the remaining of the chapter 3. The ground state is ferromag-

netic for κ ≤ 1
2

and ‘up-up-down-down’ (↑↑↓↓) along z-axis for κ > 1
2
. All the

3



spins in the perpendicular plane is aligned in the same direction in the ground

state. The point (κ = 1
2
, T = 0) is a multiphase point where the degeneracy of

ground states is exponential in system size. From this point phases of the form

(< 2j−13 >, j = 1, 2, ...; < 233 >= ... ↑↑↓↓↑↑↓↓↓ ...for example) spring out at fi-

nite temperatures., as found by Fisher and Selke [[4],[5]]. At higher temperature,

various other commensurate phases and incommensurate phases are obtained be-

fore the system goes to a paramagnetic phase. The phase diagram has a Lifshitz

point where the paramagnetic phase and a uniformly ordered ferromagnetic phase

coexist with spatially modulated phases. The complete phase diagram is shown

in fig (3.3).

It is interesting to note that long range interaction is not necessarily needed to

explain the existence of very long period (or small wave vector) phases. ANNNI

model involves short range interactions and still it does show these kinds of phases.

Polytypes : Real materials like SiC,ZnS show very interesting phase diagrams.

These materials have closed packed structures where the smaller atoms sit in the

voids formed by the closed packing of larger atoms. These materials show variable

lattice periodicity along the direction of growth. This can be understood in the

following way. For a 2-dimensional layer of closed packed spheres (let us name

this as A layer) the next layer on top of it can be stacked in two ways. These two

positions correspond to centre of the spheres lying on up-void triangles (4,call

this position B) and on down-void triangles (5, call this position C). Similarly

for a B layer the next two possibilities are either A or C. The condition of closed

packing (‘Polytypic constraint’ ) is that in the packing sequence no two same

letters are next to each other. Hence the sequence might be (...ABABAB...), (...

ABCABC ...) or (... ABCACB ...) or any other sequence in which no two same

letter appear next to each other. In the above cases the periodicities are 2, 3

and 6 lattice spacings and the phases are 2H, 3C and 6H respectively (C refers

to the cubic symmetry and H refers to the hexagonal symmetry). Since there is

an infinite number of ways one can write down sequences, there can be infinite

possible periodicity along the stacking direction. This phenomenon is known

as ‘Polytypism’ and is discussed in Chapter 3. The crystal can undergo phase

transitions from one polytypic structure to another when external parameters like

4



pressure and temperature are changed. There are various theories available to

describe the transitions[6].

Figure 1.2: The three positions A,B,C in closed packing are shown.

At the left hexagonal closed packing (2H) and at the right cubic

closed packing (3C) are shown. This figure is taken from Wikipedia.

(http://en.wikipedia.org/wiki/Image:Close packing.png)

.

We have seen that the ANNNI model shows various spatially modulated

phases. Now, since there are binary options available for the closed pack stacking

at every stage, this problem can be mapped to ANNNI model, in fact an extended

ANNNI model which includes third nearest neighbour interaction (the coupling

is J3) also [7]. The similarity of the sequence of phases found in ANNNI model

with polytypes provides a motivation for this mapping [8]. Ising variables are

assigned on each bond along the growth direction. S = 1 if the letters A,B,C

appear in cyclic sequence (A→ B or B→ C or C→ A) and S = −1 if they appear

anti-cyclically, e.g.,(. . . ABC. . .)⇒(. . . ↑↑↑ . . .), (. . . ABCACB. . .)⇒(...↑↑↑↓↓↓...).
Dynamics of Transformation from one Polytype to another : We are

interested in understanding the dynamics of transitions. Now we need to be very

careful while casting the polytype problem in the spin language, for a local move

in the spin language might represent moves that are unfavourable in the original

problem.

5
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Hence we pick up a particular transition (3C→6H) and identify the local moves

in spin language. In this particular case, it turns out to be flipping of ‘trimers’-

three successive ‘up’ spins or ‘down’ spins when the flip is energetically favourable.

We do a Monte Carlo study at zero temperature to simulate the dynamics. The

system is quenched to T = 0 from an initial random or ferromagnetic state.

We find that the system might go to a locked state before going to the actual

thermodynamically stable phase. A ‘locked’ phase is a metastable state and

is at the local minimum of energy. The true thermodynamically stable phase

is at the global minimum of energy and hence once the system gets stuck at

the local minimum it has to cross an activation barrier in order to go to states

lower in energy, in particular to the thermodynamically stable state. At finite

temperatures the system can cross the activation energy barrier to go to other

states but the time taken to cross the barrier is exponentially large in the barrier

height. Interestingly, on the 3C-6H phase boundary the system shows ‘active’

and ‘locked’ patches of spins even after lots of Monte Carlo time steps.

An attempt had been made (Cheng, Needs and Heine [8]) to calculate the

couplings J1, J2 andJ3 from band structure calculations of various polytypes,

especially SiC. The calculation shows that J1 > 0, J2 < 0 andJ3 < 0 but small.

Moreover −J2

J1
= κ ' 1

2
. Also the free energy of various polytypes were found

to be very close to each other. This shows that the real material is close to the

degeneracy point in the ANNNI phase diagram and therefore capable of displaying

a large variety of phases, as seen in real polytypes. This is another motivation

for studying the Monte Carlo at T = 0. However, the absolute value quoted in

this calculation seems to be unrealistically low (J1 = 0.00485 ± 0.00120 eV, J2 =

−0.00256 ± 0.00032 eV and J3 = −0.00050 ± 0.00023 eV) for real polytypes.

We adopt a phenomenological point of view in taking the analogy of ANNNI

model with real polytypes. Also, it is an interesting theoretical problem, if not

fully realistic, to apply this model to get an insight into plausible dynamics of

transformation.

This is mainly a review work. There are lots of papers and articles available

on these topics. It was not possible to look at every article. An effort has been

made to understand the already established results. In chapter 3 the Monte

Carlo programme gives an opportunity to study various questions not previously

6



studied carefully. Dynamics of polytypic transitions between other phases like

6H-4H are interesting to explore. One needs to find plausible local moves for

transitions and then use Monte Carlo code to look at the dynamics.

7



Chapter 2

The One Dimensional Frank and

Van der Merwe Model

The model we are going to discuss in this chapter is probably the simplest

model involving competing interactions. Though this model was first proposed

by Frenkel and Kontorowa (1938) [9], it was extensively studied by several au-

thors like Frank and Van der Merwe (1949) [10], Theodorou and Rice (1978) [11],

Aubry (1979) [1] etc and in the literature this model is referred to as Frank and

Van der Merwe (FVdM) model [2].

2.1 The FVdM Model and its Hamiltonian

Our system is a one dimensional array of point masses connected with springs.

All the springs are identical and have natural lengths a0. The masses are subject

to an external periodic force with periodicity b. The system is shown in fig (2.1).

The Hamiltonian might be taken as,

H =
∑

n

1

2
k (xn+1 − xn − a0)

2 + V

(

1 − cos
2π

b
xn

)

. (2.1)

Here the nth mass has coordinate xn, k is the spring constant (all the springs

are assumed to be identical) and V is the strength of the potential. Let us

first note that the first term in (2.1), the elastic energy term will favour all

the masses separated by the natural length of the springs, a0. But the second

8



2.2 Minimization of the Energy: Sine Gordon Equation

Figure 2.1: The masses connected by springs and subject to an external poten-

tial (shown by the wavy line).(a) Commensurate structure,(b) Incommensurate

structure and (c) Chaotic structure. (taken from ref[2])

term, the potential energy term will favour the masses to sit at the minima of

the potential, i.e., separated by integer multiples of b. These two quantities,

namely a0 and b are in general different and their ratio might be irrational or

incommensurate also. The ground state of the problem will be dictated by these

two competing terms and might be a commensurate phase, an incommensurate

phase or a chaotic phase. In case of a commensurate phase the average separation

between the masses will bear a simple ratio with the period of the potential. In an

incommensurate phase the average distance between masses is incommensurate

to the period of the potential. Apart from these two phases there might be a

third type of phase where the potential is strong enough for the masses to sit at

the minima. This has been referred to as a ‘chaotic’ phase[2].

2.2 Minimization of the Energy: Sine Gordon

Equation

If we make a change of variable in (2.1)

xn = nb +
b

2π
φn, (2.2)

9
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2.2 Minimization of the Energy: Sine Gordon Equation

and then take the continuum limit, (2.1) reduces to the following form

H =

∫

(

1

2

(

dφ

dn
− δ

)2

+ V (1 − cos φ)

)

dn (2.3)

where k and other constants have been absorbed in H and V and δ = 2π
b
(a0 − b).

The minimization condition of ((2.1) is given by the Sine-Gordon equation,

d2φ

dn2
− V sin φ = 0 (2.4)

Since (2.4) is an ordinary second order differential equation, we need two con-

stants. Upon first integration of (2.4) we get,

φ̇2 = −2V cos φ + c1. (2.5)

Here c1 is an integration constant. Hence, integrating again, we get
∫

dφ√
c1 − 2V cos φ

=

∫

dn + c2 (2.6)

The integration constant c2 is arbitrary since (2.4) is translationally invariant

along n. If we choose c1 = 2V the solution of (2.4) is a single soliton,

φ = 4 arctan exp
(

n
√

V
)

. (2.7)

For n → −∞, φ = 0 and for n → ∞, φ = 2π. The solution looks like as shown

in fig (2.2), φ has changed from 0 to 2π within a region of width 1√
V

.

For general values of c1, the solution comes in terms of Elliptic functions.

The function looks like what is shown in fig (2.3). There are soliton like walls

separating spatially commensurate regions. Within a ‘wall’ the system is incom-

mensurate. This regular arrangement of soliton like walls is known as a ‘solitonic

lattice’.

Now, the average misfit between the chain and the lattice, q̄ = 2π
b
(a − b) is

given by,

q̄ =
2π

l
(2.8)

where l is the distance between the solitons. Since q̄ is inversely proportional

to the distance between the solitonic walls it can be thought of as the soliton

density.

10



2.3 Transition to Incommensurate Structure

Figure 2.2: A single solitonic solution for φ(n).p = 1 here. The position of the

masses are shown. The soliton spatially separates two commensurate regions.

(taken from ref[2])

Near the commensurate phase when the soliton density is low, the energy

density takes the form [12],

E =

(

4
√

V

π
− δ

)

q̄ +
16
√

V

π
q̄ exp

(

−2π
√

V

q̄

)

. (2.9)

Since the first term in (2.9) is proportional to the soliton density, it can be thought

of as soliton formation energy and the second term might be thought of as weak

repulsion between the solitons.

2.3 Transition to Incommensurate Structure

We see that for sufficient large δ and small V the formation energy becomes

negative. Then soliton formation is energetically favourable and the system goes

to an incommensurate phase.

Hence the critical value of the potential V at the commensurate-incommensurate

transition is

Vc =
π2δ2

16
. (2.10)

If the potential is weaker than this critical value, the ‘elastic energy’ of the springs

wins in its competition with the potential energy.

11
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2.3 Transition to Incommensurate Structure

Figure 2.3: Regular solitonic lattice solution for φ(n) (p = 1).The straight line

shows the unperturbed line that corresponds to an incommensurate phase.(taken

from ref[2])

Hence this simple model has a phase transition from commensurate to in-

commensurate phase. We shall come across this Hamiltonian again in the next

chapter. The free energy functional in ANNNI model near some commensu-

rate phases can be cast, with proper variable substitution, into this form. That

will help us understand the commensurate-incommensurate transition in ANNNI

model in the same way.

Conclusion : Experimentally much attention has been paid to commensurate to

incommensurate transition in krypton adsorbed on graphite lattice (see ref [13]

and references there in). Even though FVdM model is very idealized, it does

show commensurate-incommensurate transition. In reality, the adsorbed atoms

will also distort the potential. FVdM model needs to be modified to capture this

aspect.

12
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Chapter 3

The Axial Next Nearest

Neighbour Ising (ANNNI) Model

The Axial Next Nearest Neighbour Ising (ANNNI) model is one of the simplest

spin models involving competing interactions. In spite of the simplicity of the

model, it does show a very rich and interesting phase diagram. The three dimen-

sional version of this model was first introduced by Elliot [14]. Fisher and Selke

first gave the name ‘ANNNI model’ to it [4]. In the following we shall first define

the model and then look at the various possible phases that the model supports.

3.1 Description of the Model

On a d-dimensional hypercubic lattice scalar spins S = ±1 reside on each site.

(We shall often denote S = 1 state as ↑ and S = −1 as ↓. )Each spin interacts

with nearest neighbour and next nearest neighbour spins along one axis, say

z−axis, the exchange couplings being J1 and J2, and with all other spins in the

hyperplane perpendicular to z−axis by a strong ferromagnetic exchange coupling

J0. The Hamiltonian is given by

H = −J0

∑

<ij>,z

SizSjz − J1

∑

iz

SizSiz±1 − J2

∑

iz

SizSiz±2, (3.1)

where indices i and j refer to coordinates (sites) in the (d − 1) dimensional

hyperplane and angular bracket in < ij > means nearest neighbour interaction.

13



3.1 Description of the Model

We shall be using periodic boundary conditions. In order to have ferromagnetic

coupling in (d − 1) dimensional hyperplane perpendicular to z−axis we choose

J0 > 0. We assume that the magnitude of J0 is large enough and we may neglect

any major fluctuation in spins within a hyperplane. Various exchange interactions

(Jij) are shown in fig (3.1).

77z1

________

id

2

Figure 3.1: The exchange couplings in the Hamiltonian (3.1). (taken from ref[15])

The phase diagram of the model will depend on the signs of J1 and J2. In the

(d − 1) dimensional hyperplane, there are only ferromagnetic interactions unlike

along z−axis where there might be competing interactions between nearest and

next neighbouring spins. Hence we can assume the spins to be oriented along

the same direction within a hyperplane and focus on finding out various spin

configurations along the z−axis. Clearly four options are possible:

A. J1 > 0 and J2 > 0 ⇒ The ground state is ferromagnetic for all values of

J1 and J2 .

B. J1 < 0 and J2 > 0 ⇒ The ground state is antiferromagnetic for all values

of J1 and J2.

C. J1 > 0 and J2 < 0 ⇒ The ground state depends on the relative values

of the couplings. The system shows frustration as all bonds cannot be satisfied

simultaneously. J1 > 0 will prefer an all up (or all down) ground state (...↑↑↑↑...)
where as J2 < 0 will prefer up-up-down-down phase (...↑↑↓↓...) as the ground

14
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3.1 Description of the Model

Figure 3.2: The phases at T=0 in the J1 − J2 plane. There is a huge degeneracy

of ground states on the dotted lines, the degeneracy being exponential in system

size as will be calculated later [section (3.3.1)]. (taken from ref[15])

.

state. Hence the ground state will depend on the ratio of these two couplings.

Since this ratio recurs often, let us reserve a symbol for it. Let κ = − J2

J1
.

D. J1 < 0 and J2 < 0 ⇒ The system is frustrated as before. J1 < 0 will prefer

a up-down-up-down phase (...↑↓↑↓...) while J2 < 0 will prefer up-up-down-down

phase (...↑↑↓↓...) as the ground state. Hance the ground state depends on κ.

The last two cases are examples of what are known as frustrated spin systems.

Another famous example of frustrated spin system is the antiferromagnetic near-

est neighbour Ising model on a triangular lattice. (See Moessner 2001,[16] and

reference therein.) The ground states in cases C and D (T = 0) are shown in

Figure 3.2. From now on, we shall be working with the case C i.e. J1 > 0 and

J2 < 0.

Hence, the model we are interested in is Axial Next Nearest Neighbour Ising

model with nearest neighbour ferromagnetic and next nearest neighbour antifer-

romagnetic exchange interaction.

15
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3.2 Overview of the Phase Diagram of the Model

3.2 Overview of the Phase Diagram of the Model

Before going into a detailed analysis of the model, let us discuss the main features

of the phase diagram to gain an overview. We shall explain most of the statements

and derive most of the results presented here in later sections.

The phase diagram depends on the dimensionality of the lattice. Here we shall

be discussing 3 lattice dimensions and briefly mention the properties of phase

diagram in 1 and 2 dimensions at the end of this chapter. Since the in-plane

coupling, J0 is ferromagnetic, it is reasonable to consider the spatial modulation

along z−axis only. We represent various ground state spin configurations of the

3 dimensional system as a chain of spins along z−axis. For example,↑↑↓ ... will

mean that all the spins in the first plane are ‘up’ spins, all in the second plane

are ‘up’ spins and all in the third plane are ‘down’ spins and so on. At non-zero

temperatures also this notation can be used as long as the in-layer magnetization

is non-zero.

Ground State and Low Temperature Phases : At zero temperature there

is a first order phase transition from ferromagnetic (...↑↑↑↑...) to ‘up-up-down-

down’ phase (...↑↑↓↓..., known as Antiphase) at κ = 1
2
.

The point (κ = 1
2
, T = 0) is a multiphase point where there is a large degen-

eracy ( ∼ µL, µ is the golden ratio,
√

5+1
2

' 1.618... and L is the system size, see

section (3.3.1)) of ground states. At this point, any spin configuration formed by

successive patches of alternate spins of size greater than one is a ground state.

At non zero temperatures various phases spring out from this multiphase point.

At low temperatures, there is an infinite number of phases between the ferromag-

netic and antiphase states. The phases are characterized by spin configurations

< 2j−13 >, j = 1, 2, 3, ... (e.g., < 233 >= ... ↑↑↓↓↑↑↓↓↓ ...) with wave vectors

πj/(2j + 1) [5]. The transition between various phases are first order in nature

and the extent of the phases decrease exponentially as j increases(see section

(3.3.2)). At j → ∞ the antiphase state is obtained which is stable over a large

T − κ region.

High Temperature Phases: Mean Field Theory : At sufficiently high tem-

peratures a paramagnetic phase is found for finite value of κ. As the temperature

is lowered the system goes either to a ferromagnetic or to a spatially modulated

16



3.2 Overview of the Phase Diagram of the Model

Figure 3.3: The complete phase diagram of the ANNNI model. For simplicity

J0 is taken to be equal to J1. The black and white stripped region consists of

various commensurate phases stable over small T −κ range and incommensurate

phases. The diagram is taken from ref [3].

phase depending on the value of κ. Within mean field theory, the ferromagnetic

phase is obtained for κ ≤ 1
4

and spatially modulated phase for κ > 1
4

. Both

the transitions are of second order in nature. While the transition to the ferro-

magnetic phase falls in the Ising universality class, those to various modulated

phases fall in the X − Y universality class [17]. An exception is provided for
1
κ

= 0 (κ → ∞ ) where the ‘antiphase’ state meets the paramagnetic-modulated

phase transition line and the transition again becomes that of Ising universality

class as the model breaks into two decoupled Ising models on two independent

sublattices. This point is known as ‘Decoupling point’ and the scaling properties

near this point have been studied by Huse and Fisher [18]. The wave vector of

spatially modulated phase at the transition temperature,within mean field theory,

is given by,

2πqc = arccos
1

4κ
(3.2)

where we have set the lattice spacing along z−axis to unity. We shall stick to

this convention in our entire discussion.

It is interesting to note that according to (3.2) the wave vector might be an

17
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3.3 Ground State of the Model and Low Temperature Phase Diagram

irrational number also, showing transition to a phase that is incommensurate

with the underlying lattice periodicity.

The point (κ = 1
4
, T = 5.5J1, the co-ordinate is calculated using mean field

theory) is a special type of triple point since here a uniformly ordered phase

coexists with paramagnetic and spatially modulated phase. This point is known

as Lifshitz Point. The first order transition line from ferromagnetic to modulated

phases meets with the second order transition line from the paramagnetic to

modulated phase at Lifshitz point. So at this point the jump in the value of

magnetization vanishes as one crosses ferromagnetic-modulated phase boundary.

Among the modulated phases, q = 1
4

and q = 1
6

phases are stable over a larger

area in the phase diagram compared to other phases. The stability of these phases

can be understood within a soliton picture where solitonic walls separate com-

mensurate regions spatially (see section (3.4.3)). The positive energy of solitonic

wall formation for these two phases over large temperature and κ ranges guar-

antee the stability of these phases. In the following we try to understand the

features of the phase diagram in detail.

3.3 Ground State of the Model and Low Tem-

perature Phase Diagram

The ground state of the model can be solved exactly by looking at energies of

various spin configurations as a function of κ. The non-zero but low temperature

phase diagram can be obtained using low temperature expansion technique.

3.3.1 Ground State: T = 0 phase diagram

For κ = 0, the model is simply an Ising model with nearest neighbour ferromag-

netic interaction, hence the ground state is all ‘up’ (or all ‘down’ since there is

no external magnetic field) configuration and the excited states are states with

flipped spins. Finite values of κ will lower energies of some of the excited states,

but the all ‘up’ (or all ‘down’) state is the lowest in energy until κ = 1
2

when

all the states having no single spin surrounded by opposite spins have the same

energy. For κ > 1
2

‘...up-up-down-down...’ state crosses all other states to become

18



3.3 Ground State of the Model and Low Temperature Phase Diagram

Figure 3.4: The ground state spin configuration of the ANNNI model. (a) 0 <

κ = −J2

J1
< 1

2
, the ground state is ferromagnetic. (b) At κ = 1

2
there are many

ground states possible, one of them shown here. (c) For κ > 1
2
, ‘up-up-down-

down’ state (also known as (2,2)-‘antiphase’ or simply ‘antiphase’) is the ground

state. (from ref [3])

the new ground state and it remains the same for all larger values of κ. Hence

the transition is a first order transition and is brought about by a level crossing.

Degeneracy at the Multiphase Point: Transfer Matrix Method : The

point κ = 1
2

is a multiphase point where any spin configuration with more than

one spins of same sign side by side is a ground state. The degeneracy of ground

states at this point can be calculated using transfer matrix method. We note that

the Boltzmann weight at T = 0 is 1 for any ground state and 0 for all excited

states. Hence the partition function

Z =
∑

all configurations

e
− E

kBT

= ν(0) (3.3)

where ν(0) is the degeneracy of the ground states (E = 0). Now, we work out the

partition function using transfer matrix method. At this point it is convenient

to map this model onto an Ising model with nearest neighbour antiferromagnetic

interaction in an external field using the substitution σi = SiSi+1. Then the

19
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3.3 Ground State of the Model and Low Temperature Phase Diagram

ANNNI Hamiltonian (3.1) transforms to

H = −J1

∑

i

σi − J2

∑

i

σiσi+1. (3.4)

Here we have written the Hamiltonian in the form of a one dimensional spin

system and left the in plane contribution to the energy, as we argued earlier.

Now, using standard transfer matrix method the Hamiltonian is given by

H = Trace(TL), (3.5)

L being the system size i.e., number of sites along z−axis. The 2 × 2 transfer

matrix T is given by,

T =

(

↑ ↓
↑ 1 1

↓ 1 0

)

. (3.6)

We note that at the multiphase point spin configurations having one spin sur-

rounded by opposite spins are not allowed (e.g. Si=↑, Si+1=↓ Si+2=↑) and hence

in our transformed variable σ the matrix entry corresponding to (σi = SiSi+1 =↓
, σi+1 = Si+1Si+2 =↓) is zero.

The characteristic equation for the eigen values of T is given by,
∣

∣

∣

∣

1 − λ 1
1 −λ

∣

∣

∣

∣

= 0

⇒ λ2 − λ − 1 = 0. (3.7)

The solutions of (3.7) are non degenerate and the larger one is λ1 = 1+
√

5
2

(=

µ, the Golden Ratio), the smaller one is λ2 = 1−
√

5
2

. Hence, by virtue of (3.5),

Z = Trace(T)L

= λ1
L + λ2

L

= λ1
L

(

1 + (
λ2

λ1

)L

)

= µL, as L → ∞
⇒ ν(0) = µL. (3.8)

The last step follows from (3.3).
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3.3 Ground State of the Model and Low Temperature Phase Diagram

Figure 3.5: Low temperature sequence of phases of the ANNNI model. (taken

from ref [4])

Without going to the transformed variable, it is also possible to calculate the

partition function. In that case we can take blocks of two spins and transfer it to

the next block of two spins. The transfer matrix is 4 × 4 then and the partition

function Z = Trace(T
L

2 ).

The entropy of the system is S = L ln µ, but entropy per spin

S

LM
=

L ln µ

LM
→ 0

as L,M → ∞, M being the number of sites in a plane perpendicular to the

z−axis.

3.3.2 Low temperature phase diagram: sequence of phases

The low temperature phase diagram of the ANNNI model was studied by Michael

Fisher and Walter Selke [5]. They found that from the highly degenerate multi-

phase point (κ = 1
2
, T = 0), lots of phases spring out at finite temperature.

The low temperature phase diagram can be obtained by systematic low tem-

perature expansion in the variables w = e−2K0 and x = e−2K1 , the elementary
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3.3 Ground State of the Model and Low Temperature Phase Diagram

Boltzmann factors where K0 = J0

kBT
and K1 = J1

kBT
. Near the multiphase point

κ =
1

2
+ δ > 0, (3.9)

where δ is small and measures the deviation from the multiphase point along κ

axis. δ = 0 corresponds to the multiphase point at T = 0.

Notation : Before we proceed to the low temperature expansion calculations let

us explain the notation. We define structural variables Lk = Llk as the number

of spin bands of length k,L being the system size along the z−axis. A spin band

is surrounded by bands of opposite spins. The variables {lk} satisfy the following

constraints
∑

k≥0

klk = 1 (3.10)

and

lk ≥ 0 (3.11)

For a detailed analysis of the process the original paper [5] is referred. Here we

present the main scheme of the treatment.

Expansion of Partition Function about a Ground State : As the temper-

ature is raised from T = 0 some of the spins will be flipped from the ground state

configuration. The partition function can be expanded about a given ground

state structure ({lk}) as

ZN{lk} = e
−NE0{lk}

kBT [1 +
∑

n=1

∆Z
(n)
N ]. (3.12)

E0 is the energy per spin in the ground state and the second term in the square

bracket in (3.12) is the contribution due to various number n of flipped spins.

In the following we list various environments of a spin we need to consider

in order to calculate their contribution to the ground state energy. Energy con-

tribution to ground state per spin and number of each type of spins in a given

sequence ({lk}) are given.
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3.3 Ground State of the Model and Low Temperature Phase Diagram

Description of Symbol Energy,∆Eλ, No. of such
the configuration in excess to the spins in a given

in-layer contribution sequence {lk},
-1
2
q⊥J0 Nk

Bulk spin (↑ ↑ ↑̂ ↑ ↑) o −1
2
(1 − 2δ)J1 N

∑

k≥5

(k − 4)lk

Near edge spin (↑ ↑ ↑̂ ↑ ↓) π −J1 N
∑

k≥4

2lk

Centre spin (↓ ↑ ↑̂ ↑ ↓) ρ −1
2
(3 + 2δ)J1 Nl3

Edge spin (↑ ↑ ↑̂ ↓ ↓) σ 0 N
∑

k≥3

2lk

Two band spin (↓ ↑ ↑̂ ↓ ↓) τ −1
2
(1 + 2δ)J1 2Nl2

Combining all these the ground state energy can be written

E0{lk} = −1

2
q⊥J0 + ∆EλNλ

= −1

2
q⊥J0 −

1

2
J1 − J1δ[2l2 + l3 −

∑

k≥5

(k − 4)lk] (3.13)

subject to the constraints (3.10) and (3.11). In any ground state l1 = 0. This is

because an ‘up’-spin surrounded by two ‘down’-spins can be obtained by flipping

the middle one of three consecutive ‘down’-spins. Now the next nearest neigh-

bours can be either both ‘up’, or both ‘down’ or one ‘up’ one ‘down’. In all the

three cases the energy cost is positive for − 3
2

< δ < 1
2
.

When the spins as listed in the table are flipped the energy change for each

type of spin becomes,

ελ = 2q⊥J0 − 4∆Eλ. (3.14)

Hence the relevant Boltzmann factors in terms of the variables w and x are

wq⊥x1−2δ, wq⊥x2, wq⊥x3+2δ, wq⊥ , wq⊥x1+2δ corresponding to types o, π, ρ, σ, τ re-

spectively. Also,

∆Z
(1)
N

N
=

∑

λ

(
Nλ

N
)e

− ελ

kBT

= wq⊥

(

x1−2δ
∑

k≥5

(k − 4)lk + 2x2
∑

k≥4

lk + x3+2δl3

+ 2
∑

k≥3

lk + 2x1+2δl2

)

(3.15)
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3.3 Ground State of the Model and Low Temperature Phase Diagram

We can now calculate the variational free energy for ({lk}) and then minimize

the free energy with respect to ({lk}).
The reduced free energy per spin

f{lk} =
F{lk}
NkBT

= − 1

N
lnZN{lk}

=
E0{lk}
kBT

− ∆Z
(1)
N

N
+ O

(

w2q⊥−2
)

. (3.16)

Using (3.13) and (3.15),

f{lk} = −1

2
q⊥K0 −

K1

2
− K1δ

3
+

1

3
wq⊥

(

x3+2δ + 2
)

+ a
(1)
2 (δ)l2 +

∑

k≥4

ka
(1)
k (δ)lk (3.17)

where

a
(1)
2 (δ) = −4

3
K1δ +

2

3
wq⊥

(

x3+2δ + 2 − 3x1+2δ
)

(3.18)

ka
(1)
k (δ) =

4

3
K1δ(k − 3) − wq⊥

(

(k − 4)x1−2δ + 2x2−
k

3
x3+2δ − 2

3
(k − 3)

)

. (3.19)

The last expression is for k ≥ 4.

Minimization of the Free Energy : We note that a
(1)
2 (δ) is negative for δ >

δ
(1)
1 where δ

(1)
1 is defined through the equation

a
(1)
2 (δ

(1)
1 (T )) = 0. (3.20)

On the other hand a
(1)
k (δ) is negative for δ < δ

(1)
−∞ where δ

(1)
1 is defined through

the equation

a
(1)
k (δ(1)

∞ (T )) = 0. (3.21)

Now, for δ > δ
(1)
1 ,a

(1)
2 (δ) < 0 and hence the minimum of free energy (3.17) is

obtained by having maximum number of 2-bands, i.e., l2 = 1
2

and this indicates

that for δ > δ
(1)
1 the ‘antiphase’ is stable. for δ < δ

(1)
−∞, the minimum of free energy

is obtained by putting Ll∞ = 1 and all other lk = 0, showing a ferromagnetic

phase.

In between these limits, for δ
(1)
−∞ < δ < δ

(1)
1 both a

(1)
2 (δ) and a

(1)
k (δ), k ≥ 4 are

positive and hence the minimum free energy is obtained by putting l2 = 0, lk = 0
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3.3 Ground State of the Model and Low Temperature Phase Diagram

for k ≥ 4,l3 = 1
3

so that a new phase (... ↑↑↑↓↓↓ ...) interpolates between the

< ∞ > and < 2 > phase.

Ferromagnetic to < 3 > Transition : By equating the free energies of < ∞ >

and < 3 > phases the phase boundary is obtained. The calculation of the phase

boundary can be improved by considering higher orders of w corresponding to

multiple spin flip.

The order of transition from < ∞ > to < 3 > can be found out by looking

at the surface energy Σ0(x,w, δ) when a surface is created by inserting some

three-‘up’-three-‘down’ spin patches in an all-‘up’ environment. Upto O(wq⊥) the

surface tension is
Σ0

kBT
≈ 1

2
wq⊥x(1 − x)2 (3.22)

so that for the entire range of x, 0 < x < 1 the surface tension is positive, thereby

showing that the transition is of first order.

It is to be noted that the complete phase diagram as calculated by Monte

Carlo and other methods show that the ferromagnetic phase can coexist with

< 3 > phase upto a temperature T = TF above which there are transitions

from ferromagnetic to other sinusoidally ordered phases. However, the transition

remains first order all the way upto the Lifshitz point.

Low Temperature Sequence of Phases : It is important to note that at the

other phase boundary, namely that between < 3 > and < 2 >, a
(1)
2 (δ) = 0 and

hence all the states consisting of length two and three bands coexist on this line.

This degeneracy is lifted when we consider contribution from multiple spin flips.

A calculation similar to the previous one at the next higher order in w reveals

that a new phase < 23 > becomes stable for some range of δ(T ) in between < 3 >

and < 2 > states. Again we find that there is a degeneracy at the boundary of

this new phase and < 2 >, the antiphase. At the next order, another phase,

namely < 223 > is found to interpolate between < 23 > and < 2 > phase.

Thus we find the sequence of phases as < ∞ >,< 3 >,< 23 >,< 223 >,<

233 >, ..., < 2j−13 >, ..., < 2 >, j being a positive integer when we move from

the ferromagnetic phase to the right at a fixed low temperature in the phase

diagram. Conversely if we start from the ‘antiphase’ state at T = 0 and close to

the multiphase point and then move to higher temperatures keeping δ fixed, we
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3.4 High Temperature Phase Diagram

encounter the phases in reverse i.e.,< 2 >, ..., < 2j−13 >, ..., < 223 >,< 23 >,<

3 >. This is easy to check from fig (3.5).

Comments : A few comments are in order:

(i) The width of the phases (of < 2j−13 > type) decreases with increasing j. The

boundary lines are given by,

κj+1(T ) − κj(T ) ∼ wq⊥j. (3.23)

(ii) The wave vector characterising the states are given by,

2πqj =
πj

(2j + 1)
, j = 1, 2, 3, ... (3.24)

As j → ∞, the wave vector varies as,

q∞ − q(T, κ) ∼ 1

ln{[κ∞(T) − κ]−1} . (3.25)

(iii) At relatively higher temperatures states of < 2j−132j3 > and other compli-

cated form exists. If we treat the 3-bands as walls placed within 2-band spins,

various interactions between the walls namely 2-wall, 3-wall, ..., n-wall interac-

tions need to be considered carefully in order to find out for other possible stable

phases [[19],[20],[21]].

3.4 High Temperature Phase Diagram

For finite values of κ, at high enough temperatures a paramagnetic phase is

expected. As the temperature is lowered we might come across an instability in

the paramagnetic phase against a ferromagnetic or a spatially modulated phase

with wave vector ~q. The instability is expected to show up as a divergence in the

susceptibility χ(~q, T ). The susceptibility χ(~q, T ) is defined in the following way.

We put an external field h0 at one site only in the uniformly ordered phase. Then

the translational invariance of the phase is broken. However, if the field is small

enough, we can break up the magnetization at ith site as a sum of an average
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3.4 High Temperature Phase Diagram

magnetization plus a small fluctuation about that average, i.e., mi = m + δmi.

χ(~q, T ) is defined as,

χ(~q, T ) = lim
h0→0

δm~q

h0

(3.26)

where δm~q is the Fourier transform of δmi at wave vector ~q. Hence this suscep-

tibility measures the response due to a localised infinitesimal field.

3.4.1 Instability of the paramagnetic phase

Within the Ornstein-Zernike theory the mean field susceptibility χ(~q, T ) in the

disordered phase is given by the following expression:

χ(~q, T ) =
β

1 − βJ(~q)
(3.27)

where β = 1
kBT

,kB is the Boltzmann constant. Taking the wave vector ~q of the

form 2π(0, 0, q),

J(~q) = 4J0 + 2J1 cos 2πq + 2J2 cos 4πq (3.28)

So, the paramagnetic susceptibility diverges first when 1 − βcJ(~qc) = 0, where

~q = ~qc maximizes J(~q).

i.e.,

kBTc = 4J0 + 2J1 cos 2πqc + 2J2 cos 4πqc (3.29)

Here qc is obtained by maximizing (3.28) with respect to q.

2πqc = arccos
1

4κ
(3.30)

Equation (3.30) restricts the values of κ in order to obtain a real qc. Since

cos qc < 1, κ > 1
4
. For κ < 1

4
, qc = 0 maximizes (3.28). This shows a transition

from the paramagnetic to a ferromagnetic phase for κ < 1
4
.

Inserting (3.30) into (3.29) we get the mean field phase boundary for param-

agnetic to modulated phase transition,

kBTc = 4J0 + J1

(

2κ +
1

4κ

)

, κ >
1

4
. (3.31)
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3.4 High Temperature Phase Diagram

whereas, the mean field boundary between paramagnetic phase and ferromagnetic

phase is obtained by putting qc = 0 in (3.29) and it is,

kBTc = 4J0 + J1 (2 − 2κ) , κ ≤ 1

4
. (3.32)

The mean field transition lines are shown approximately in fig (3.6).

3.4.2 Instability of the ferromagnetic phase

Within the ferromagnetic phase we can use Ornstein-Zernike expression for mean

field susceptibility:

χ(~q, T ) =
(1 − m2)β

1 − (1 − m2)βJ(~q)
(3.33)

where m is the magnetization per site at temperature T. An estimate of m could

be obtained by minimizing Landau free energy functional per spin F. Within the

ferromagnetic phase,

F (m,T ) = −1

2
(J(0) − kBT ) m2 +

kBT

12
m4 (3.34)

upto fourth order in m. Minimizing F (m,T ) w.r.t m, we get the squared spon-

taneous magnetization

m2 =
3 (J(0) − kBT )

kBT
(3.35)

Now that we have an estimate of m, we can look at the wave vector q = qc for

which the susceptibility in (3.33) first diverges. When it happens, the ferromag-

netic phase will be unstable against the modulated phase corresponding to that

wave vector.The criterion for the instability is,

1 − (1 − m2)βcJ(~qc) = 0. (3.36)

Hence using (3.35) in (3.36) we get the phase boundary by solving the following

equation for Tc as a function of κ,

(4 − 3βcJ(0)) βc

(

4J0 + J1

(

1

4κ
+ 2κ

))

= 1 (3.37)

This expression for the transition line is based on an estimate of m which was

assumed to be small, so that we neglected higher orders in m in (3.34). Hence
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3.4 High Temperature Phase Diagram

Figure 3.6: The transition lines in the phase diagram of the ANNNI model shown

approximately with J0 = J1. (from ref [3])

we can trust this result close to the Lifshitz point. It is to be noted that on this

transition line, magnetization does not go to zero and this shows that the phase

transition from the ferromagnetic to the spatially modulated phase is first order

in nature, at least close to Lifshitz point1. At the Lifshitz point ferromagnetic

phase, paramagnetic phase and spatially modulated phase coexist and hence the

jump in the magnetization vanishes. The wave vector for which the instability

occurs is given by (3.30) as a function of κ.

3.4.3 Mean field theory and the soliton picture

The phase diagram at high temperatures can be analyzed using a mean field

theory. One starts by assuming a mean field Hamiltonian

HMF = −
∑

i

HiSi +
1

2
Hi < Si >, (3.38)

1In section (3.3.2) it was pointed out that the whole phase boundary between ferromagnetic

to modulated phase, from the multiphase point to the Lifshitz point is of first order in nature.
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3.4 High Temperature Phase Diagram

< Si > being the thermal average of the spin at ith layer,i = 1, 2, ..., L. Hi

is the effective field at i arising from the interactions with surrounding spins.

Minimization of trial free energy leads to the self consistent sets of equation,

< Si >= tanh(βHi) (3.39)

Hi =
∑

j

Jij < Sj > . (3.40)

Unlike in the case of Ising model with nearest neighbour ferromagnetic coupling,

these sets of equations cannot be reduced to just a couple of equations for we

cannot use translational invariance in general for spatially modulated phases.

It turns out to be very difficult task to solve these self-consistent equations.

However,they can be analyzed in the following way.

If we suppose that the spin sequence repeats after L sites along z−axis, the

free energy per site becomes,

F (L, T ) = − 1

Lβ

L−1
∑

j=o

ln Tr e−βHMF . (3.41)

This free energy is minimized w.r.t. L numerically. In principle the calculation

should be performed upto L → ∞ in order to allow for any possible incommen-

surate phase. But in practice numerical calculation upto L=17 were carried out

[3]. Most of the phase diagram is filled up by various commensurate phases. Near

the paramagnetic transition line this numerical mean field theory fails.

Important Features of the Modulated Phases as Found by Mean Field

Theory : Fig (3.7) shows wave vector vs temperature for κ = 0.6 and κ = 0.7.

The following points are interesting to note:

(i) Most of the phase diagram is filled by the wave vectors q = 1
4
, 1

5
and 1

6
.

(ii) Some wave vectors are stable only for a very small temperature range.e.g.

q = 2
9

is stable for a temperature range ∆T ' 0.0004Tc.

(iii) Some of the wave vectors do not occur at all as stable phase, like q jumps

from 2
11

to 1
6

without assuming the value 3
17

(= 2+1
11+6

). Hence the ‘Devil’s staircase’

is not complete.

(iv) For κ = 0.6 the wave vector vs temperature curve is not monotonic.

Most of the features of the wave vector vs T curve can be understood within

a soliton picture. The basic scheme of the soliton picture is portrayed here.
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3.4 High Temperature Phase Diagram

Figure 3.7: Wave vector vs temperature for (a)κ = 0.6 and (b)κ = 0.7 as calcu-

lated numerically by Bak and Boehm [3]

If F be the Landau functional in the presence of an external field Hext,then

δF

δ < Si >
= Hext(< Si >). (3.42)

Hence,

< Si > = tanh β (Hi + Hext)

= tanh β

(

∑

j

Jij < Sj > +Hext

)

(3.43)

so,

Hext = −
∑

j

Jij < Sj > +
1

β
tanh−1 < Si > . (3.44)
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3.4 High Temperature Phase Diagram

Hence, using (3.42), we get,

F = − 1

2L

∑

j

Jij < Si >< Sj > +
1

Lβ

∑

i

<Si>
∫

0

tanh−1 σ dσ. (3.45)

Expanding the free energy in powers of S~q, the Fourier transform of < Si >, we

get

F = −1

2

∑

~q

[J(~q)−T ]S~qS−~q+
T

12

∑

τ

∑

~q1

...
∑

~q4

S~q1
S~q2

S~q3
S~q4

δ(~q1+~q2+~q3+~q4−~τ)+O(S6
~q ).

(3.46)

Here τ is a reciprocal lattice vector and its presence reflects the basic fact that

the spins are sitting on a lattice.

Free Energy near the q = 1
4

Phase : To find the stability of the phase with

wave vector q0 = 1
4

we expand the free energy about q = q0 = 1
4
.

Let us define S 1

4

(~r) and S− 1

4

(~r) as,

S 1

4

(~r) =
√

2

(

1

2π

)3 ∫

d~q ei~q.~rS−~q0+~q (3.47)

S− 1

4

(~r) =
√

2

(

1

2π

)3 ∫

d~q e−i~q.~rS−~q0−~q. (3.48)

S 1

4

(~r) describes a spin density wave

S(~r) =
1√
2
S 1

4

(~r)e2πi( z

4
). (3.49)

The last term arises from Umklapp terms. Also, because the wave vector ~q has

only z-component, S 1

4

(~r) depends on z only.

If we assume that near the commensurate phase (q = 1
4
) the amplitude of

the order parameter S± 1

4

(z) while the phase (φ(z)) is allowed to vary with z

[[12],[22],[23]],

S± 1

4

(z) = A eiφ(z). (3.50)

The commensurate phase is given by (3.49) and (3.50) with φ = constant. The

amplitude A might be obtained by minimizing the Landau functional in the

commensurate phase.
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3.4 High Temperature Phase Diagram

If we choose φ(z) = ηz, this describes an incommensurate modulated phase.

The free energy takes the form [3],

F =

∫

dz cA2

[

1

2

(

dφ

dz
− η

)2

+ ν(1 + cos pφ)

]

(3.51)

with p = 4, η = − 1
4κ

, ν = −kBTA2

96J2
.

This is of the same form as the energy of FVdM model discussed in Chapter

2.

The first term in (3.51) favours φ = ηz, i.e., an incommensurate phase while

the second term favours φ = π
4
, the commensurate phase.

Sine-Gordon Equation as the Minimization Condition for Free En-

ergy: The solitonic solutions : Minimizing the free energy leads to the Sine-

Gordon equation,
d2φ

dz2
+ 4ν sin 4φ = 0. (3.52)

One of the solution of (3.52) is given by,

φ(z) =
π

4
− tan−1 e4

√
νz (3.53)

and this represents an anti-soliton. In general the solution is given by a set of

regularly spaced soliton or a ‘soliton lattice’ with lattice constant l such that,

q̄ =
2π

pl
, (3.54)

q̄ being the deviation of the average wave vector from q0 in z-direction.

The solitons can be thought of as walls between commensurate phases. Near

the commensurate phase, the free energy takes the asymptotic form,

F

cA2
=

(

4

√
ν

π
− |η|

)

q̄ +
16
√

ν

π
q̄ exp

(

−2π
√

ν

q̄

)

. (3.55)

The first term can be thought of as soliton formation energy and the second term

as a weak repulsion between the solitons.

A phase with q = 1
5

may be regarded as a phase with one soliton inserted

every period,that with q = 3
13

as a phase with one soliton every three periods etc.
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3.4 High Temperature Phase Diagram

Figure 3.8: The phase diagram of ANNNI model in 3 dimensions as found out

by Bak and Boehm using mean field numerical calculations (ref [3])

For small ν or large |η|, the soliton formation energy goes negative and hence

the commensurate phase becomes unstable against formation of an incommensu-

rate phase.

The transition temperature is obtained from (3.55) as a function of J1 and J2,

kBTCI = 4J1 − 2J2 +
π2J2

1

8J2

(3.56)

The soliton formation energy remains positive for a large range of T and κ,

showing the stability of the phase.

In a similar treatment the Landau free energy can be written about other sta-

ble wave vectors like q = 1
6
. The phase boundary as calculated using the soliton

picture matches well with other numerical studies. The phase diagram as found

out numerically is shown in fig (3.8).
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3.4 High Temperature Phase Diagram

Crucial Features of the Phase Diagram in One and Two Lattice Di-

mensions : The phase diagram in one lattice dimensions can be solved exactly

using transfer matrix method. At T=0, entropy per spin does not vanish in 1-D.

In the thermodynamic limit, the entropy per site becomes,

S

L
=

L ln µ

L
= ln µ (3.57)

as L → ∞. This differs from the case in higher dimensions.

Also long range order is destroyed in 1-D for finite temperature as can be seen

from the exponential decay in the spin spin correlation function. In the phase

diagram there exists local spatially modulated phases but the stability of these

phases get enhanced in higher dimensions because of the in-layer spins coupled

ferromagnetically.

In 2-D the entropy per spin again vanishes, like in 3-D at T=0 and α = 1
2
.

The most interesting feature of the 2-D phase diagram is that the paramagnetic

phase touches T=0 axis so that there is always a paramagnetic phase between

ferromagnetic and spatially modulated phase. A detailed account is provided at

the review article by W. Selke [24].

Summary : To summarise, the phase diagram of ANNNI model is sufficiently

rich. It shows a uniformly ordered state, a disordered state and a number of

spatially modulated phases (commensurate and incommensurate) that arise out

of competition between nearest and next nearest neighbour couplings. Though it

involves short range interaction, it does show very long periodic structures.

The infinite sequence of phases shown by ANNNI model provides a motivation

to use this model to explain ‘polytypism’ in closed packed materials, as we shall

discuss in the next chapter.
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Chapter 4

Polytypes and Application of

ANNNI Model to Polytypes

Materials like SiC, ZnS etc having closed packed structures show a wide range of

lattice periodicity along some crystallographic axis. This phenomenon is known

as ‘Polytypism’ and results from competing interactions present within the mate-

rials. As the temperature, pressure and other chemical environments are changed

one polytypic form of these materials can transform to other polytypic forms

[[25],[26]].

There are excellent reviews available on Polytypism (for example see Verma

and Krishna (1966) [6]). Hundreds of papers in various journals, especially those

devoted to crystallography reported new polytypic structures in different mate-

rials. Instead of presenting all those information, our aim will be to describe

the phenomenon of polytypism briefly, also to look at some plausible explana-

tions of polytypism. We shall try to understand the dynamics of transition from

one polytypic structure to another. Since there does not seem to be one general

framework for understanding every transformation between polytypic variants,

we shall be very specific. We shall pick up a particular transition, namely from

3C to 6H phase and look at the dynamics using Monte Carlo algorithm. First of

all let us define polytypism and describe the notations used to represent various

polytypes.
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4.1 Definition of Polytypism and Notations used

4.1 Definition of Polytypism and Notations used

First discovered by Baumhauer [[27],[28]] in SiC, polytypism refers to the ability

of a substance to crystallize into a number of different modifications in all of

which two dimensions of the unit cell are the same while the third is a variable

integral multiple of a common unit [6].

There are various notations available to describe polytypism. The most pop-

ular ones are described below:

(a) ABC notation

Various Polytypic modifications can be represented by specifying stacking

sequence (A,B,C) of successive closed packed layers. The unit layer of structure

might be polyatomic and then the symbols A,B,C represent one kind of atoms,

the relative positions of the other being fixed.

(b) The Ramsdell notation [29]

In this convention the symbols nH or nR means that there are n layers

along the c-axis in a unit cell and the symmetry of the crystal is Hexagonal

or Rhombohedral. 3C is the only structure with cubic symmetry.

(c) Zhdanov Symbol : [30]

The stacking sequence in polytypes can be mapped to a binary variable, ‘plus’

and ‘minus’ or ‘up’ spin and ‘down’ spin. ‘Plus’ is assigned at each bond between

two neighbouring layers if the letters occur cyclically in ABC notation and ‘minus’

is assigned when if neighbouring letters is anti-cyclic.

Zhdanov symbol consists of pairs of numbers, the first denoting the number

of plus signs and the second denoting the number of minus signs following the

plus one. For example 6H is denoted as (3 3). 15R is represented as (2 3)3,

the subscript 3 denoting that the sequence (2 3) has to be repeated 3-times to

complete the unit cell.

4.2 Examples of Polytypism

In more than 40 polytypic structures of SiC, the hexagonal unit cell has a =

b = 3.078Å, while c is a variable multiple of 2.518Å. The variation of c might

be surprising to note. In 2H polytype c ≈ 5Å.[31] while c ≈ 1500Å in 594R.[32]
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4.3 Theories to explain Polytypism

Apart from the hexagonal and rhombohedral modification, known as α-SiC, there

is a cubic modification, known as β-SiC [[33],[34]]. Apart from SiC, polytypism

is observed in lots of materials. Here are a few notable examples:

(a) ZnS: There are about 200 identified polytypes of ZnS.[35]

(b) CdTe: 2H, 3R, 5H, 6H, 6R, 15R, 3C etc phases are observed.[36]

(c) SnS2: 2H, 4H, 6H, 18R, 8H, 10H, 22H, 24H, 24R, 30H (or 90R), 36R (or12H),

40H, 72R etc modifications are observed.[37]

(d) CdI2: About 250 polytypes of this substance has been reported and complete

crystal structures of 90 polytypes have been worked out.[38]

Since various polytypes of a material differ only in the stacking sequence along

one axis, the bulk densities are almost the same.

4.3 Theories to explain Polytypism

Many theories have been put forward to explain polytypism. An earlier school

of thought suggested that polytypism is essentially a non-equilibrium process

and arises due to different growth mechanisms (e.g., spiral growth mechanism by

Frank 1951 [39]). However, these mechanisms cannot explain the relative sta-

bility of various polytypic structures. Jepps and Page [40] characterized several

reversible phase transitions between SiC polytypes. This suggested that poly-

typism might be an equilibrium phenomenon and led people to use equilibrium

models to explain it (Price 1983, [41]). The remarkable similarity of SiC poly-

types to the infinite sequence of phases found in ANNNI model was a motivation

to take this idea seriously [8].

The most abundant phases in common polytypes (like SiC) are obtained in

the zero temperature phase diagram of the extended ANNNI model (it involves

interactions upto third nearest neighbours). The phase diagram of the extended

ANNNI model is shown in fig (4.1). 3C, 4H, 2H and 6H are stable phases at T =

0. The 3C-6H transition line is highly degenerate. Here all spin configurations

having three or more number of successive spins of same sign are ground states.

Hence the degeneracy is exponential in the system size along the stacking axis.
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4.4 Dynamics of Transformation

3C

6H

2H

4H

−1/2

−1

J J3 1/

J2 / J11

Figure 4.1: Ground state phase diagram of extended ANNNI model. Ji, i = 1, 2, 3

are the first, second and third nearest neighbour couplings. J1 > 0 and we

have shown only the lower half of the phase diagram since we are interested in

3C-6H phase diagram. On the thick boundaries there are exponentially large

degeneracies of ground states.

In the next section we shall use Monte Carlo algorithm1 at T = 0 to look at

the transition from 3C to 6H. A similar approach has been adopted by Dhananjai

Pandey to study 2H to 6H transformation [42].

4.4 Dynamics of Transformation

In order to study the dynamics of transformation from 3C to 6H phase using

Monte Carlo simulation, we have to find out the rules for allowed ‘moves’ in spin

language.

3C: . . . A B C A B C A B C A B C . . .

6H: . . . A B C A C B A B C A C B . . .

We note that a pair of neighbouring ‘B’ and ‘C’ interchanged in this transforma-

tion. Now exchange of positions of two atomic layers by coherent movement of all

1The Monte Carlo work was done in collaboration with Tridib Sadhu, Department of The-

oretical Physics.
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4.4 Dynamics of Transformation

the individual atoms seems unlikely to happen in a real system. A more plausible

mechanism for the exchange might be that ‘cracks’ are created in successive B

and C layers. By a ‘crack’ we mean an interface between atoms of B and C posi-

tions in a layer. It is important to note that closed packing constraint demands

the creation of identical ‘cracks’ in the neighbouring layers, for otherwise two B’s

or two C’s would be next to each other in the stacking sequence. There is some

room for the atoms to move near a ‘crack’. This permits ease of motion and leads

to the diffusion of the ‘crack’ by flipping B and C atoms. Thus the layers B and

C interchange positions. This seems plausible since the only energy cost is for

the creation of the ‘crack’; once created it can diffuse almost freely.

A

B

C

A

C

A

B

A

B

C

‘Crack’

A

A

C

B

Figure 4.2: A plausible mechanism for interchange of B and C layers. ‘Cracks’

are formed as a result of B atoms moving to C positions in a plane and C atoms

moving to B positions in the neighbouring plane. The crack diffuses to interchange

B and C planes.

Dynamics in spin language : In spin language, each move (ABCA→ACBA)

consists of a trimer flip.

3C: . . . ↑ ↑ ↑ ⇑ ⇑ ⇑ ↑ ↑ ↑ . . .

6H: . . . ↑ ↑ ↑ ⇓ ⇓ ⇓ ↑ ↑ ↑ . . .

Here for ease of visualization, we have used ⇑ and ⇓ instead of ↑ and ↓ respectively

for the flipped spins. Hence the dynamics we need to consider is the trimer flip

dynamics.

We proceed by writing a Monte Carlo code. We consider the system to be at

zero temperature. The rules are the following:
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4.5 Results of Monte Carlo: Metastable States

(a) start with an initial configuration of one dimensional array of spins,

(b) randomly choose three consecutive spin of same sign (that is all ‘up’ or all

‘down’),

(c) evaluate the energy cost, ∆E of flipping the spins (Extended ANNNI Hamil-

tonian is used for this).

If ∆E < 0, the spins are flipped with probability 1.

If ∆E = 0, the spins are flipped with probability 1
2
.

If ∆E > 0, the spins are not flipped.

4.5 Results of Monte Carlo: Metastable States

The final state reached under the dynamics was found to be sensitive to the

initial configuration. When it was quenched from 3C phase to 6H phase (J1 =

0.9, J2 = 0, J3 = −0.6) at T = 0, it did not go to the thermodynamically stable

6H phase. Rather, the system went to a locked metastable state. Locally the

spin configuration showed ‘three-up-three-down’ structure but globally the phase

was not 6H. For a random initial configuration1 also the system did not go the

thermodynamically stable phase but ‘active’ and ‘frozen’ patches of spins were

observed for large number of Monte Carlo steps. The ‘residual activity’ ( the

number of active spins after large number of Monte Carlo steps) was found not

to go to zero even after 800 Monte Carlo steps per site while in the first case it

approached zero after ∼200 Monte Carlo steps per site. The result of the Monte

Carlo simulation is shown in fig (4.3), at the end of this chapter. Number of sites

that remain active after large number of Monte Carlo time steps was found to be

proportional to the system size.

When the system was quenched to the multiphase line i.e., the phase bound-

ary between 3C and 6H phases (J1 = 0.9, J2 = 0, J3 = −0.6), the spins remained

active if started from 3C phase (800 Monte Carlo steps were observed) but went

1There is no analogue known to us that corresponds to random configuration in polytypes.

However, we might ask a theoretical question whether the dynamics under consideration has

dependence on initial configuration. This is the motivation for considering random initial

configuration.
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to a state with alternate ‘frozen’ and ‘active’ spins if started from random con-

figuration (fig (4.5)).

We can rationalize the results for quenching to the degeneracy line in the

following way . Since the energy cost of flipping a trimer is zero when it is sur-

rounded by patches of spin of same sign of length greater than two, there might be

sites where no move is allowed, e.g., the middle three of an ‘up-down-up-down...’

configuration of length 9. Next, even if some initial moves are allowed, after some

time the system can go a similar configuration to get locked. On the other hand

when the system starts from all ‘up’ configuration, we get only spin patches of

length at least three in successive Monte Carlo steps. Hence even if some sites

remain inactive for sometime, there is a possibility that it might become active

again when the neighbours have flipped to produce energetically favourable con-

ditions.

Discussion : Hence we see that the system might go to a metastable state

for some initial configurations. The thermodynamically stable phase is of course

lower in energy than any of the metastable states, but in order to reach there, the

system has to overcome an activation barrier since the metastable states are at

the local minima of energy. The time taken to overcome this activation barrier is

exponential in the barrier height. The thermodynamically stable state is at the

global minimum of energy, but reaching it is not easy. The dependence of the

final state on the initial configuration is observed for many frustrated systems.

We again emphasize that the actual problem is very complicated. The use

of this spin model was motivated from a phenomenological point of view and it

did show some interesting properties, which may relate to some aspects of the

transformation of polytypic structures.
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Figure 4.3: The final state reached by the system is dependent on the initial

configuration. The system was quenched to the 6H phase (J1 = 0.9, J2 = 0.0, J3 =

−0.6) from a. 3C phase,T = 0 and b. random configuration. In the first case

the system goes to a ‘locked’ state but in the second case there are ‘active’ spins

even after large number of Monte Carlo steps. Here a black dot denotes that the

spin at that site is active, i.e., it flips at that Monte Carlo step. The system size

was taken to be 2400. Here the Monte Carlo steps shown is steps per site.
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4.5 Results of Monte Carlo: Metastable States

Figure 4.4: Number of site that are active at different Monte Carlo time steps

when quenched to 6H phase. System size=480,J1 = 0.9, J2 = 0.0, J3 = −0.6,

The initial configuration is a. all ‘up’, b. random. The data were averaged over

histories. Number of active sites after large number of Monte Carlo steps are

proportional to the system size. Here the Monte Carlo steps shown is steps per

site.
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4.5 Results of Monte Carlo: Metastable States

Figure 4.5: The system of size 2400 was quenched to the 3C-6H degeneracy line.

The final state was again found to depend on the initial states: a. 3C state, all

‘up’ spins and b. random configuration. When the system starts from all ‘up’ it

does not go to a ‘locked’ state but for the other case we observe patches of ‘active’

and ‘locked’ sites. ‘Black’ dots represent activity at that Monte Carlo step. Here

the Monte Carlo steps shown is steps per site.
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Figure 4.6: Number of site that are active at different Monte Carlo time steps

when quenched to 3C-6H multiphase line. System size=480,J1 = 0.9, J2 =

0.0, J3 = −0.3, The initial configuration is a. all ‘up’, b. random. The data

were averaged over histories. Here the Monte Carlo steps shown is steps per site.
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