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Synopsis

There exist condensedmatter systemswith competing interactions which shav
very interesting and rich phasediagrams. Examples are provided by periodic
arrangemeitts like spin density waves,chargedensity waves, periodic arrangemer
of atoms on a crystalline substrate etc. When the periodicity of the modulated
structure is a (simple) rational multiple of the underlying lattice vectorthe system
is said to be in a commensuratephaseand whenit is not so, the systemis in an
incommensuratephase.

In this thesis we review various aspects of three systemswhere competing
interactions lead to various commensurateand incommensuratephasesand tran-
sition betweenthem. Our rst exampleis Frank and Van der Merwe model
which idealize rare-gasmonolayers adsorked on a host lattice (sudh as Krypton
on graphite) in one dimension. In this model point massesconnectedby iderti-
cal springs are subject to an external periodic potertial, the mis't betweenthe
period of the potential and the natural length of the springsor the strength of
the potential relative to the spring constart being the parametersto be tuned.
This model shovs commensurate-incommensuratphasetransitions as thesepa-
rameters are varied, a consequencef the competition betweenthe elastic and
the potential energy

The next exampleis the Axial Next NearestNeighbour Ising (ANNNI) Model.
In this model spin-% objects reside on a cubic lattice and along one axis (say
z-axis) interact with nearestneighbours via a ferromagnetic exchange coupling
(J1 > 0) and with next nearestneighbours via an antiferromagnetic exchange
coupling (J2 < 0). In the plane perpendicular to this axis, the spinsinteract fer-
romagneticallywith nearestneighbours. The ground state of this systemdepends
onthe ratio of the couplings. In fact, at ‘j—i’ = % the ground state is not uniquelike
many other frustrated systemsand thereis anin nit y of degenerateground states



in the thermodynamic limit (the degeneracyncreasesxponertially with the sys-
tem size). This point is known as multiphase point. For ‘j—i’ < % the ground state
is ferromagneticand for ‘j—i’ > % it hasup-up-dowvn-down spin structure (known
as(2,2) antiphase) alongthe axis, all the spinsin the planesperpendicularto this
axis being alignedin the samedirection in the absenceof competing interactions
within a plane.

At low but non-zerotemperatures, this model shovs an in nite sequence
of phasesof the sort < 2113 > (j = 1;2;:::; forexample < 2°3 >=
o HETHHE o, the sequencerepreseltls majority spins at successig planes
perpendicular to the z-axis) betweenthe ferromagneticand the (2,2) antiphase.
All thesephasesspring out from the multiphase point. At higher temperatures
various other commensurateand incommensuratespatially modulated phasesare
obtained.

In this model the transitions betweenthe ferromagneticand other spatially
modulated phasesare rst orderin nature, all the way from the multiphase point
up to the Lifshitz point, a specialtype of tricritical point at which ferromagnetic
phasecoexists with paramagneticand spatially modulated phase.

The next exampleof systemswith competing interactionsis real closedpaded
materials like SiC, ZnS etc that shaw variable periodicity along somecrystallo-
graphic axis, a phenomenonknown as polytypism. Atomic layers can be stadked
in many ways along this axis like ...ABCABC... or ...ABABAB... or ...AB-
CACB... or any other sequencevhere sameletters do not sit next to ead other
and hencevariable periodicity is obsened. The letters A,B,C represen three pos-
sible relative positions for atomsin closedpaded structure. Polytypism refersto
di®eren structures of this type obsened in crystals of samematerial. Transition
from one polytype structure to another is obtained as temperature, pressureor
chemical environmert is varied.

The similarity betweenthe sequenceof phasesin polytypesand the ANNNI
model motivates to cast the polytype problem to ANNNI model, extendedto
include the third nearestneighbour interaction. Betweensuccessig layersin the
polytype, spin variablesare introduced: spin "up' if the letters A,B,C occur cycli-
cally and spin "down' otherwise. Next we look at a plausible dynamics of trans-
formation and its consequencedyom one polytypic structure (3C phase,...AB-



CABC..., in spin languageall "up' phase)to another (6H phase,...ABCACB...,
in spin language::: ""### :::). In spin languagethe dynamicsturns out to
be trimer °ip under energetically favourable conditions. Using a Monte Carlo
simulation at T = 0 we looked at the systemwhen it was quendedto 6H phase
suddenly If the initial con guration was all "up-spins' (3C phase)it turned out
that the systemgot stuck at someintermediate "metastablestates’. If quented
to the 3C-6H phaseboundary, the spinsremain active for alarge number of Monte
Carlo steps. With a random initial con guration the nal state wasfound to be
di®eren. The systemshowved “active' and “frozen' spin patcheswhen quended
to 3C-6H phaseboundary. Thusthe nal state readed through this dynamicsis
dependent on the initial condition.
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Chapter 1

Intro duction

Systemsunderthe in°uence of competing “forces'often show very interesting phe-
nomena. Simple examplesare provided by oscillatory systems,like a pendulum
or a spring-masssystem. The competing forces'might be gravity and elastic
forcesasin caseof a spring-masssystem hanging from a point or might be the
“Pauli degeneracypressure'and gravity as in the caseof neutron stars on the
verge of collapsinginto a black hole. There are also condensedmatter systems
where competing interactions lead to interesting properties.

In this thesis, we shall try to look at a few exampleswherethis is the case.
The rst examplewill be a very simple model originally introduced by Frenkel
and Kontorowa but later studied by many authors, notably by Frank and Van
der Merwe and someothers. The model is known as Frank and Van der Merwe
(FvdM) model andinvolvesonedimensionalarray of massesonnectedoy springs
and subject to an external periodic potertial. This might be thought of an ideal-
ized onedimensionalmodel for rare-gasmonolayer adsorked on graphite surface.
The periodic potential is dueto the underlying graphite lattice. Competition be-
tweenthe elasticenergyof the springsand the potential energyleadto interesting
properties of the system.

The secondexampleis a simple Statistical Physics model, known as Axial
Next NearestNeighbour Ising (ANNNI) model where scalar spins sitting on a
hypercubic lattice interact with nearestneighbours via ferromagnetic exdhange
coupling and with next nearestneighbours via antiferromagnetic exchange cou-
pling along one axis. In the plane perpendicular to the axis, the spins interact
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Figure 1.1: Various possible casesof variation of ordering wave vector g
(the inverse period) with external tuning parameter x. (a) Smaooth ana-
lytic behaviour. (b) Complete devil's staircase. (c) Incomplete Devil's stair-
case.(d) HarmlessDevil's Staircase.

ferromagneticallywith nearestneighbours. Hencethis model involvescompeting
interactions along one axis.

The last examplewill be provided by an interesting phenomenorcalled "Poly-
typism' seenin somecrystalline matter, the classicexamplesbeing SiC, ZnS etc.
These materials have closedpaded structures and along somecrystallographic
axis they shaw variable periodicity in their lattice structure.

In this chapter, we shall introduce various conceptsand terms relevant to
systemswith competing interactions. They will be made preciselater when we
cometo concreteexamplesin the later chapters.

Commensur ate Phases: A modulated phaseis saidto be commensuratevhen
the period of the orderedphaseis a (simple) commensuratemultiple of the un-
derlying lattice periodicity.

Inc ommensur ate Phases: When the period of the ordered phaseis incom-
mensuratewith the underlying lattice periodicity the phaseis known as an in-
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commensuratephase.

Devil's Stair case: As someexternal parameter (say X, it might be temper-
ature, pressureetc) is varied the ordering wave vector (say g) might changein
various possibleways as follows:

(a) g might changecortinuously asx is varied.

(b) g might lock at an in nit y of commensuratevalues. In the casewhere lock-
ing happensqi x curve looks like a staircaseand hencethe picturesque name
"Devil's Staircase'is givento it. There might be incommensuratephasesbetween
commensuratephases.Then the Devil's staircaseis said to be incomplete.[l]

(c) The lockedvalues,taking all possiblecommensuratenumbers, 1l up the whole
of the argumert of x. There are no jumps of rst order transition. This caseis
known as a completeDevil's staircase.

(d) qjumps betweencommensuratevaluesfor somerange of x and changescon-
tinuously for someother range.

(e) q takesonly one of a nite number of rational valuesasx is varied. This is
known as a harmlessDevil's staircase. Fig (1.1) shows various casesof Devil's
staircase.

Commensur ate Inc ommensur ate Transition : The transition from the com-
mensurateto incommensuratestructures are understood in terms of a soliton
theory[[2],[3]]. Within this framework "solitonic walls' represen spatially incom-
mensurateregions between commensurateregions. If at sometemperature the
formation energyof “solitonic walls' becomesnegative, the commensuratephase
will be unstable against an incommensuratephase. In chapter 2 where we have
discussed=VdM model in somewhatmore detail, this point is elaborated.
ANNNI Mo del Phase Diagr am: Various commensurateand incommensu-
rate phasesare obtained in the phasediagram of ANNNI model, topic of our
discussionin chapter 3. In this model the crucial parameteris the ratio of the
couplings, - = j j—i J; and J, being the nearestneighbour ferromagneticand
next nearest neighbour antiferromagnetic coupling respectively. Section (3.2
gives an overview of the phase diagram before we discussvarious parts of it
in detail in the remaining of the chapter 3. The ground state is ferromag-

netic for - - % and "up-up-donvn-down' ("“##) along z-axis for - > % All the



spinsin the perpendicular plane is aligned in the samedirection in the ground
state. The point (- = %;T = 0) is a multiphase point where the degeneracyof
ground statesis exponertial in systemsize. From this point phasesof the form
(< 2013>; j = 1,2 < 223 >= "y for example) spring out at -

nite temperatures.,asfound by Fisher and Selle [[4],[5]]. At higher temperature,
various other commensurategphasesand incommensuratephasesare obtained be-
fore the systemgoesto a paramagneticphase. The phasediagram hasa Lifshitz

point wherethe paramagneticphaseand a uniformly orderedferromagneticphase
coexist with spatially modulated phases.The complete phasediagram is shavn
in g (3.3.

It isinterestingto note that long rangeinteraction is not necessarilyneededo
explain the existenceof very long period (or small wave vector) phases.ANNNI
modelinvolvesshort rangeinteractionsand still it doesshaw thesekinds of phases.
Polytyp es: Real materials like SiC,ZnS shaw very interesting phasediagrams.
Thesematerials have closedpaded structures wherethe smalleratomssit in the
voidsformedby the closedpading of larger atoms. Thesematerials show variable
lattice periodicity alongthe direction of growth. This can be understood in the
following way. For a 2-dimensionallayer of closedpaded spheres(let us name
this asA layer) the next layer on top of it canbe stacked in two ways. Thesetwo
positions correspnd to certre of the sphereslying on up-void triangles (4 ,call
this position B) and on down-void triangles (5, call this position C). Similarly
for a B layer the next two possibilitiesare either A or C. The condition of closed
pading ("Polytypic constraint') is that in the padking sequenceno two same
letters are next to eat other. Hencethe sequencemight be (...ABABAB...), (...
ABCABC ... or (... ABCACB ...) or any other sequencen which no two same
letter appear next to ead other. In the above casesthe periodicities are 2, 3
and 6 lattice spacingsand the phasesare 2H, 3C and 6H respectively (C refers
to the cubic symmetry and H refersto the hexagonalsymmetry). Sincethere is
an in nite number of ways one can write down sequencesthere can be in nite
possible periodicity along the stadking direction. This phenomenonis known
as Polytypism' and is discussedin Chapter 3. The crystal can undergo phase
transitions from onepolytypic structure to anotherwhenexternal parameterslike



pressureand temperature are changed. There are various theories available to
descrike the transitions|6].

Figure 1.2: The three positions A,B,C in closed padking are shown.
At the left hexagonal closed paking (2H) and at the right cubic
closed paking (3C) are shawn. This gure is taken from Wikip edia.
(http://en.wikip edia.org/wiki/Image:Close padking.png)

We have seenthat the ANNNI model shaws various spatially modulated
phases.Now, sincethere are binary options available for the closedpad stadking
at every stage,this problem canbe mappedto ANNNI model, in fact an extended
ANNNI model which includesthird nearestneighbour interaction (the coupling
is J3) also[7]. The similarity of the sequenceof phasesfound in ANNNI model
with polytypes provides a motivation for this mapping [8]. Ising variables are
assignedon ead bond along the growth direction. S = 1 if the letters A,B,C
appearin cyclic sequencéA! BorB! CorC! A)andS = 1if they appear
anti-cyclically, e.g.,¢:: ABC::2)) (:::™" ::3), (:::ABCACB::2) (...""### ..).
Dynamics of Transformation from one Polytyp e to another : We are
interestedin understandingthe dynamicsof transitions. Now we needto be very
careful while castingthe polytype problemin the spin language,for a local move
in the spin languagemight represem movesthat are unfavourablein the original
problem.
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Hencewe pick up a particular transition (3C! 6H) andidentify the localmoves
in spin language. In this particular case,it turns out to be °ipping of “trimers'-
three successig up' spinsor "dovn’ spinswhenthe °ip is energeticallyfavourable.
We do a Monte Carlo study at zerotemperature to simulate the dynamics. The
systemis quencied to T = 0 from an initial random or ferromagnetic state.
We nd that the systemmight go to a locked state before going to the actual
thermodynamically stable phase. A ‘locked' phaseis a metastable state and
is at the local minimum of energy The true thermodynamically stable phase
is at the global minimum of energy and henceonce the system gets stuck at
the local minimum it hasto crossan activation barrier in order to go to states
lower in energy in particular to the thermodynamically stable state. At nite
temperaturesthe system can crossthe activation energy barrier to go to other
statesbut the time takento crossthe barrier is exponertially largein the barrier
height. Interestingly, on the 3C-6H phaseboundary the system shows “active'
and ‘locked' patchesof spinsewven after lots of Monte Carlo time steps.

An attempt had been made (Cheng, Needsand Heine [8]) to calculate the
couplings J;;J, andJs; from band structure calculations of various polytypes,
especially SiC. The calculation shows that J; > 0;J, < 0 andJz < 0 but small.
Moreover j j—i = . % Also the free energy of various polytypes were found
to be very closeto ead other. This shows that the real material is closeto the
degeneracyoint in the ANNNI phasediagramand thereforecapableof displaying
a large variety of phases,as seenin real polytypes. This is another motivation
for studying the Monte Carlo at T = 0. Howewer, the absolute value quoted in
this calculation seemdo be unrealistically low (J; = 0:004858 0:00120eV; J, =
i 0:002568 0:00032eV and J; = j 0:000508 0:00023eV) for real polytypes.
We adopt a phenomenologicalpoint of view in taking the analogy of ANNNI
model with real polytypes. Also, it is an interesting theoretical problem, if not
fully realistic, to apply this model to get an insight into plausible dynamics of
transformation.

This is mainly a review work. There are lots of papers and articles available
on thesetopics. It wasnot possibleto look at ewery article. An e®orthas been
made to understand the already establishedresults. In chapter 3 the Monte
Carlo programmegivesan opportunity to study various questionsnot previously



studied carefully. Dynamics of polytypic transitions between other phaseslike
6H-4H are interesting to explore. One needsto nd plausible local moves for
transitions and then useMonte Carlo code to look at the dynamics.



Chapter 2

The One Dimensional Frank and
Van der Merw e Mo del

The model we are going to discussin this chapter is probably the simplest
model involving competing interactions. Though this model was rst proposed
by Frenkel and Kontorowa (1938) [9], it was extensiwely studied by seeral au-
thors like Frank and Van der Merwe (1949)[10], Theodorou and Rice (1978)[11],
Aubry (1979)[1] etc and in the literature this model is referredto as Frank and
Van der Merwe (FVdM) model [2].

2.1 The FVdM Mo del and its Hamiltonian

Our systemis a one dimensionalarray of point massesconnectedwith springs.
All the springsare identical and have natural lengthsag. The massesare subject
to an external periodic forcewith periodicity b. The systemis shavn in g (2.1).
The Hamiltonian might be taken as,

X 1 H 2y
H = ék(xnﬂi Xni a)’+V 1j cosF“xn : (2.1)

n

Here the n'" masshas coordinate x,, k is the spring constart (all the springs
are assumedto be identical) and V is the strength of the potential. Let us
‘rst note that the rst term in (2.1), the elastic energy term will favour all
the massesseparatedby the natural length of the springs, ap. But the second



2.2 Minimization of the Energy: Sine Gordon Equation
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Figure 2.1: The massesconnectedby springsand subject to an external poten-
tial (showvn by the wavy line).(a) Commensuratestructure,(b) Incommensurate
structure and (c) Chaotic structure. (taken from ref[2])

term, the potertial energyterm will favour the massedo sit at the minima of
the potential, i.e., separatedby integer multiples of b. These two quartities,

namely ag and b are in generaldi®eren and their ratio might be irrational or

incommensuratealso. The ground state of the problem will be dictated by these
two competing terms and might be a commensuratephase,an incommensurate
phaseor a chaotic phase.In caseof a commensuratgphasethe averageseparation
betweenthe massewill beara simpleratio with the period of the potertial. In an

incommensuratephasethe averagedistance between masseds incommensurate
to the period of the potertial. Apart from thesetwo phasesthere might be a

third type of phasewherethe potertial is strong enoughfor the massedo sit at

the minima. This hasbeenreferredto asa "chaotic' phasep)].

2.2 Minimization of the Energy: Sine Gordon
Equation

If we make a changeof variable in (2.1)

b .
Xn = nb+ 2—1/4An, (2.2)
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2.2 Minimization of the Energy: Sine Gordon Equation

and then take the cortinuum limit, (2.1) reducesto the following form
2R mgs T |
H = - i+ + V(1 A 2.
5 dn (1i cosA) dn (2.3)
wherek and other constaris have beenabsorbedin H andV and £ = 2—;/“(aoi b).
The minimization condition of ((2.1) is given by the Sine-Gordonequation,
d?A .«
W i VsinA=0 (24)
Since (2.4) is an ordinary secondorder di®eretial equation, we needtwo con-
stants. Upon rst integration of (2.4) we get,

AZ = i 2V cosA+ c;: (2.5)
Herec; is an integration constart. Hence,integrating again, we get
Z . Z
8} —dA = dn+c (2.6)
Y'Cli 2V CcosA z '

The integration constant ¢, is arbitrary since (2.4) is translationally invariant

alongn. If we choosec; = 2V the solution of (2.4) is a single soliton,
5 .

o p_—
A= 4arctan exp n V (2.7)

Forn! i1 ,A=0andforn! 1 ,A= 2¥% The solution looks like as shavn
in "g (2.2, A haschangedfrom 0 to 2%within a region of width 917

For generalvalues of c¢;, the solution comesin terms of Elliptic functions.
The function looks like what is shovn in g (2.3). There are soliton like walls
separatingspatially commensurateregions. Within a "‘wall' the systemis incom-
mensurate. This regular arrangemen of soliton like walls is known asa “solitonic
lattice'.

Now, the averagemis t betweenthe chain and the lattice, § = %/“(ai b) is
given by, 1
4= 2"
where | is the distance betweenthe solitons. Since ¢ is inversely proportional
to the distance betweenthe solitonic walls it can be thought of as the soliton
density.

(2.8)

10



2.3 Transition to Incommensurate Structure
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Figure 2.2: A single solitonic solution for A(n).p = 1 here. The position of the
massesare shovn. The soliton spatially separatestwo commensurateregions.
(taken from ref[2])

Near the commensuratephase when the soliton density is low, the energy
density takesthe form [12],

Ap ! o A 1

isv; _ 16"V 2Ya V

E= 1/4|J—fe|"‘ 1/46|expi g

(2.9)

Sincethe rst termin (2.9) is proportional to the soliton density, it canbe thought
of as soliton formation energyand the secondterm might be thought of asweak
repulsion betweenthe solitons.

2.3 Transition to Incommensurate Structure

We seethat for suzcient large + and small V the formation energy becomes
negative. Then soliton formation is energeticallyfavourable and the systemgoes
to an incommensuratephase.

Hencethe critical valueof the potertial V at the commensurate-incommensurate

transition is
7=

c — T .
16
If the potertial is weaker than this critical value, the “elasticenergy'of the springs
wins in its competition with the potential energy

(2.10)

11
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2.3 Transition to Incommensurate Structure
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Figure 2.3: Regular solitonic lattice solution for A(n) (p = 1).The straight line
shows the unperturbed line that correspndsto an incommensuratephase.(talen
from ref[2])

Hencethis simple model has a phasetransition from commensurateto in-

commensuratephase. We shall comeacrossthis Hamiltonian againin the next
chapter. The free energy functional in ANNNI model near some commensu-
rate phasescan be cast, with proper variable substitution, into this form. That
will help us understandthe commensurate-incommensuratgansition in ANNNI
model in the sameway.
Conclusion : Experimenrtally much attention hasbeenpaid to commensurateo
incommensuratetransition in krypton adsorbed on graphite lattice (seeref [13]
and referencesthere in). Even though FVdM model is very idealized, it does
shav commensurate-incommensurat&ansition. In reality, the adsorked atoms
will alsodistort the potertial. FVdM model needsto be modi ed to capture this
aspect.

12
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Chapter 3

The Axial Next Nearest
Neigh bour Ising (ANNNI) Mo del

The Axial Next NearestNeighbour Ising (ANNNI) model is one of the simplest
spin models involving competing interactions. In spite of the simplicity of the
model, it doesshaw a very rich and interesting phasediagram. The three dimen-
sional version of this model was rst introducedby Elliot [14]. Fisher and Selke
‘rst gave the name ANNNI model' to it [4]. In the following we shall rst de ne
the model and then look at the various possiblephasesthat the model supports.

3.1 Description of the Mo del

On a d-dimensionalhypercubic lattice scalarspinsS = 81 resideon ead site.
(We shall often denoteS = 1 stateas” and S = j 1 as#. )Each spin interacts
with nearest neighbour and next nearest neighbour spins along one axis, say
zj axis, the exdhangecouplingsbeing J; and J,, and with all other spinsin the
hyperplaneperpendicularto zj axis by a strong ferromagneticexchangecoupling
Jo. The Hamiltonian is given by

X X X
H=1iJo SSjzi J1 SizSizs1i J2 SizSizsz; (3.2)

<ij >z iz iz

where indicesi and j refer to coordinates (sites) in the (dj 1) dimensional
hyperplaneand angular bradket in < ij > meansnearestneighbour interaction.

13



3.1 Description of the Mo del

We shall be using periodic boundary conditions. In order to have ferromagnetic
coupling in (dj 1) dimensional hyperplane perpendicular to zj axis we choose
Jo > 0. We assumethat the magnitude of Jg is large enoughand we may neglect
any major °uctuation in spinswithin a hyperplane. Variousexdangeinteractions
(Jj ) areshovnin g (3.1).

Figure 3.1: The exdhangecouplingsin the Hamiltonian (3.1). (takenfrom ref[15])

The phasediagram of the model will depend on the signsof J, and J,. In the
(dj 1) dimensionalhyperplane,there are only ferromagneticinteractions unlike
along zj axis wherethere might be competing interactions betweennearestand
next neighbouring spins. Hencewe can assumethe spinsto be oriented along
the samedirection within a hyperplane and focus on nding out various spin
con gurations alongthe zj axis. Clearly four options are possible:

A. J; > 0andJ, > 0) The ground state is ferromagneticfor all valuesof
Ji and J, .

B.J; < 0andJ, > 0) The ground state is antiferromagnetic for all values
of J; and J.

C.J; > 0andJ; < 0) The ground state dependson the relative values
of the couplings. The systemshaws frustration as all bonds cannot be satis ed
simultaneously J; > O will preferan all up (or all down) ground state (..."™™" ...)
whereas J, < 0 will prefer up-up-dovn-dowvn phase(...""##...) asthe ground

14
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Figure 3.2: The phasesat T=0 in the J; i J, plane. Thereis a huge degeneracy
of ground stateson the dotted lines, the degeneracybeing exponertial in system
sizeaswill be calculatedlater [section(3.3.1)]. (taken from ref[19])

state. Hencethe ground state will depend on the ratio of thesetwo couplings.
Sincethis ratio recursoften, let us resene a symbol for it. Let - = j j—i

D.J;<0andJ,; < 0) The systemis frustrated asbefore. J; < O will prefer
a up-down-up-down phase(..."#"#...) while J, < O will prefer up-up-dovn-down
phase(...""##...) asthe ground state. Hancethe ground state dependson - .

The last two casesare examplesof what are known asfrustrated spin systems.
Another famousexampleof frustrated spin systemis the antiferromagnetic near-
est neighbour Ising model on a triangular lattice. (SeeMoessner2001,[L6 and
referencetherein.) The ground statesin casesC and D (T = 0) are shown in
Figure 3.2 From now on, we shall be working with the caseC i.e. J; > 0 and
J, < 0.

Hence,the model we are interestedin is Axial Next Nearest Neighlour Ising
maodel with nearest neighlour ferromagneticand next nearest neighlour antifer-
romagneticexchangeanteraction.

15
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3.2 Overview of the Phase Diagram of the Mo del

3.2 Overview of the Phase Diagram of the Mo del

Beforegoinginto a detailed analysisof the model, let us discussthe main features
of the phasediagramto gain an overview. We shall explain most of the statemeris
and derive most of the results preserted herein later sections.

The phasediagram dependson the dimensionality of the lattice. Herewe shall
be discussing3 lattice dimensionsand brie°y mertion the properties of phase
diagram in 1 and 2 dimensionsat the end of this chapter. Sincethe in-plane
coupling, Jo is ferromagnetic,it is reasonableto considerthe spatial modulation
along zj axis only. We represen various ground state spin con gurations of the
3 dimensionalsystemas a chain of spinsalong zj axis. For example}"# ::: will
meanthat all the spinsin the rst plane are "up' spins, all in the secondplane
are "up' spinsand all in the third plane are ‘dowvn' spinsand soon. At non-zero
temperaturesalsothis notation canbe usedaslong asthe in-layer magnetization
iS non-zero.

Ground State and Low Temperatur e Phases: At zerotemperature there
is a rst order phasetransition from ferromagnetic(...""" ...) to ‘up-up-down-
down' phase(...""## ..., known as Antiphase) at - = %

The point (- = %;T =0)isa m%ltiphase point wherethere is a large degen-
eracy( » 1,1 isthe goldenratio, —> ' 1:61&:: and L is the systemsize,see
section(3.3.1)) of ground states. At this point, any spin con guration formed by
successig patches of alternate spins of size greater than oneis a ground state.
At non zerotemperaturesvarious phasesspring out from this multiphase point.
At low temperatures,thereis anin nite number of phasesbetweenthe ferromag-
netic and antiphase states. The phasesare characterizedby spin con gurations
< 2i13> j = 1,23 (e.9., < 223 >=  "##"###H D) with wave vectors
¥4=(2] + 1) [5]. The transition betweenvarious phasesare rst order in nature
and the extent of the phasesdecreaseexponertially as| increases(sesection
(3.3.2). Atj ! 1 the antiphase state is obtained which is stable over a large
Ti - region.

High Temperatur e Phases: Mean Field Theory : At suzciently high tem-
peraturesa paramagneticphaseis found for nite valueof - . As the temperature

is loweredthe systemgoeseither to a ferromagneticor to a spatially modulated

16



3.2 Overview of the Phase Diagram of the Mo del

Figure 3.3. The complete phasediagram of the ANNNI model. For simplicity

Jo is taken to be equalto J;. The black and white stripped region consistsof

various commensuratephasesstable over small T j - rangeand incommensurate
phases.The diagram is taken from ref [3].

phasedepending on the value of - . Within mean eld theory, the ferromagnetic
1

phaseis obtained for - - % and spatially modulated phasefor - > 7 . Both
the transitions are of secondorder in nature. While the transition to the ferro-
magnetic phasefalls in the Ising universality class,those to various modulated
phasesfall in the X j Y universality class[17]. An exceptionis provided for
1=0( ! 1 )wherethe “artiphase' state meetsthe paramagnetic-malulated
phasetransition line and the transition again becomeghat of Ising universality
classas the model breaksinto two decoupledising models on two independert
sublattices. This point is known as Decouplingpoint’ and the scalingproperties
near this point have beenstudied by Huse and Fisher [18]. The wave vector of
spatially modulated phaseat the transition temperature,within mean eld theory,
is given by,

1
Y = arccos4— (3.2)

where we have set the lattice spacingalong zj axis to unity. We shall stick to
this cornvertion in our ertire discussion.
It is interesting to note that accordingto (3.2) the wave vector might be an
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3.3 Ground State of the Mo del and Low Temperature Phase Diagram

irrational number also, showing transition to a phasethat is incommensurate
with the underlying lattice periodicity.

The point (- = %;T = 5:5J,, the co-ordinate is calculated using mean eld
theory) is a special type of triple point since here a uniformly ordered phase
coexists with paramagneticand spatially modulated phase. This point is known
asLifshitz Point. The rst ordertransition line from ferromagneticto modulated
phasesmeets with the secondorder transition line from the paramagneticto
modulated phaseat Lifshitz point. So at this point the jump in the value of
magnetization vanishesas one crossederromagnetic-malulated phaseboundary.

Among the modulated phasesg = % andqg= % phasesare stable over a larger
areain the phasediagram comparedto other phases.The stability of thesephases
can be understood within a soliton picture where solitonic walls separatecom-
mensurateregionsspatially (seesection(3.4.3). The positive energyof solitonic
wall formation for thesetwo phasesover large temperature and - rangesguar-
antee the stability of these phases. In the following we try to understand the
featuresof the phasediagram in detail.

3.3 Ground State of the Mo del and Low Tem-
perature Phase Diagram

The ground state of the model can be solved exactly by looking at energiesof
various spin con gurations asa function of - . The non-zerobut low temperature
phasediagram can be obtained using low temperature expansiontechnique.

3.3.1 Ground State: T = 0 phase diagram

For - = 0, the model is simply an Ising model with nearestneighbour ferromag-

netic interaction, hencethe ground state is all "up’ (or all "dovn’ sincethere is

no external magnetic eld) con guration and the excited states are states with

°ipp ed spins. Finite valuesof - will lower energiesof someof the excited states,

but the all "up' (or all "dowvn’) state is the lowest in energyuntil - = % when

all the states having no single spin surroundedby opposite spins have the same
1

energy For - > 35 "...up-up-davn-down..." state crossesall other statesto become

18
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T=0 -J,/J,<05

LT,

e[,
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Figure 3.4: The ground state spin con guration of the ANNNI model. (a) 0<
C = j—i < % the ground state is ferromagnetic.(b) At - = %there are many
ground states possible,one of them shown here. (c) For - > % “up-up-dovn-
down' state (also known as(2,2)- artiphase' or simply "artiphase’) is the ground
state. (from ref [3])

the new ground state and it remainsthe samefor all larger valuesof - . Hence
the transition is a rst order transition and is brought about by a level crossing.
Degeneracy at the Multiphase Point: Transfer Matrix Metho d: The
point - = % is a multiphase point where any spin con guration with more than
one spins of samesign side by sideis a ground state. The degeneracyof ground
statesat this point canbe calculatedusingtransfer matrix method. We note that
the Boltzmann weight at T = 0 is 1 for any ground state and O for all excited
states. Hencethe partition function

X e
Z = el kg T
all congurations

°(0) (3.3)

where? (0) is the degeneracyof the ground states(E = 0). Now, we work out the
partition function using transfer matrix method. At this point it is conveniert
to map this model onto an Ising model with nearestneighbour antiferromagnetic
interaction in an external eld using the substitution 3% = S;Si.;. Then the
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3.3 Ground State of the Mo del and Low Temperature Phase Diagram

ANNNI Hamiltonian (3.1) transformsto
X X
H=iJ Yoi Jo YY1 (3.4)
i i
Here we have written the Hamiltonian in the form of a one dimensional spin
systemand left the in plane cortribution to the energy aswe arguedearlier.

Now, using standard transfer matrix method the Hamiltonian is given by
H = TracgT"); (3.5)

L being the systemsizei.e., number of sites along zj axis. The 2£ 2 transfer
matrix T is given by,

A|| #'

T= b1 (3.6)
# 1 0

We note that at the multiphase point spin con gurations having one spin sur-
roundedby opposite spinsare not allowed (e.g. Si=", Sj+1 =# Sj+»=") and hence
in our transformed variable %the matrix entry correspndingto (3% = S;Sj+1 =#

1Y = Siv1 S+ =#) is zero.

The characteristic equation for the eigenvaluesof T is given by,
—1i, 1=
1 i,

) L, l

=0

0: (3.7)

p_
The solutions of (3.7) are non degenerateand pthe larger oneis |, = %(z
1. the Golden Ratio), the smalleroneis , , = 1'—25 Hence,by virtue of (3.5),

Z = TracgT)"

—_ L L
- s 1 ﬁ;Z ﬂ
= " 1+ (D)t
s 1
= tl-asL! 1
) °(0) = th: (3.8)

The last step follows from (3.3).
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3.3 Ground State of the Mo del and Low Temperature Phase Diagram

(2*3) = (2,2,3) =>"’HH’HHH¢H“'

K(T) K,(T)

(3,3) Antiphase

(2,2) Antiphase

£3 K= "Jz/J1

Figure 3.5: Low temperature sequenceof phasesof the ANNNI model. (taken
from ref [4])

Without goingto the transformedvariable, it is alsopossibleto calculate the
partition function. In that casewe cantake blocks of two spinsand transfer it to
the next block of two spins. The transfer matrix is 4 £ 4 then and the partition
function Z = TracgTz).

The entropy of the systemis S= L In1, but entropy per spin

i = Lin* 10
LM LM
asL;M ! 1; M being the number of sitesin a plane perpendicular to the

Zi axis.

3.3.2 Low temp erature phase diagram: sequence of phases

The low temperature phasediagram of the ANNNI model was studied by Michael
Fisher and Walter Selle [5]. They found that from the highly degeneratemulti-
phasepoint (- = %;T = 0), lots of phasesspring out at nite temperature.

The low temperature phasediagram can be obtained by systematiclow tem-
perature expansionin the variablesw = e 2o and x = & X1, the elemetary

21


Chapter2/Chapter2Figs/lowtempphases.eps

3.3 Ground State of the Mo del and Low Temperature Phase Diagram

Boltzmann factors whereK ; = |<.J3—°T and K, = |<.J3—1T Near the multiphase point

1
: =§+ > 0 (3.9

where £ is small and measureshe deviation from the multiphase point along -
axis. += 0 correspndsto the multiphase point at T = 0.

Notation : Beforewe proceedto the low temperature expansioncalculationslet
us explain the notation. We de ne structural variablesL, = Ll asthe number
of spin bandsof length k,L being the systemsizealongthe zj axis. A spin band
is surroundedby bandsof opposite spins. The variablesf | g satisfy the following
constrains

X
Kl = 1 (3.10)

and
e, O (3.11)

For a detailed analysisof the processthe original paper [5] is referred. Here we
presen the main schemeof the treatment.

Expansion of Partition Function about a Ground State : As the temper-
ature is raisedfrom T = 0 someof the spinswill be °ipp ed from the ground state
con guration. The partition function can be expandedabout a given ground
state structure (flxg) as

NEpflkg

Znflg=€ FT [1+ * ¢ zM: (3.12)
n=1
Eo is the energyper spin in the ground state and the secondterm in the square
bracket in (3.12 is the cortribution dueto various number n of °ipp ed spins.

In the following we list various ervironments of a spin we needto consider
in order to calculate their cortribution to the ground state energy Energy con-
tribution to ground state per spin and number of ead type of spinsin a given
sequenc€f I Q) are given.
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3.3 Ground State of the Mo del and Low Temperature Phase Diagram

Description of Synmbol Energy¢ E No. of sud
the con guration in excesdo the spinsin a given
in-layer cortribution | sequencd lyg,
-3% Jo L\
Bulk spin (" " o ") o] i %(1; 24)J, N (ki 4l
k, 5
il
Near edgespin (" " * " #) Yy i J1 N 2
k, 4
Certre spin (#" * " #) Y i 23+ 20, Nls
Edgespin (" " * # #) Yy 0 N 2
k, 3
Two band spin (#" ® # #) ¢ i $(1+ 28, 2N 1,
Combining all thesethe ground state energycan be written
1
Eoflkg = i éq_;\]o+ CE N
1 1 X
= EO(?Joi 5311 12 + I3 (ki 4] (3.13)
k, 5

subject to the constrairts (3.10 and (3.11). In any ground state |I; = 0. This is
becausean "up'-spin surroundedby two "dowvn’-spins can be obtained by °ipping
the middle one of three consecutie "dovn'-spins. Now the next nearestneigh-
bours can be either both "up’, or both "down' or one "up' one ‘down'. In all the
three caseshe energycostis positive for j g < %< %

When the spins aslisted in the table are °ipp ed the energychangefor eah
type of spin becomes,

2 =2mpJoi 4CE : (3.14)

Hence the relevant Boltzmann factors in terms of the variablesw and x are
w x1i 25wk x2, W x3v2E Wk o w® x1+2* correspnding to types 0;Y4 %% ¢, re-
spectively. Also,

(1) X 2
ta = T (e s
N N
A
X X
= w® xUZE (ki D+ 2% I+ x32H,
k. 5 | k, 4
« !
+2 o+ 22, (3.15)
k. 3
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3.3 Ground State of the Mo del and Low Temperature Phase Diagram

We can now calculate the variational free energyfor (flyg) and then minimize
the free energywith respectto (flyg).
The reducedfree energyper spin

_ Ff|kg . 1
fflkg— NkBT = NanNflkg
Eof'kg ¢Z,(\ll) [ 2 .2¢
i + ®ic .
Ko T N Ow (3.16)
Using (3.13 and (3.195,
1 K K 1 i ¢
ffhg = i 5®Koi 71i —+ §Wq-° 'x32% 4 2
+all @+ kal (Bl (3.17)
k, 4
where
4 2 i ¢
() = i gKut+ Zw? 'X32t 4 2 3l (3.18)
kal’(+) = gKl"—'(ki 3)i wr (ki XY 2+ 2
1
K si2e 2
X Sk : 1
3¢ i gki 3 (3.19)

The last expressionis for k ;| 4.
Minimization  of the Free Ener gy: We note that a(zl) (¥) is negative for +>

+Y where+" is dened through the equation
8 (1 (T)) = O (3.20)

On the other hand af(l)(t) is negative for + < il(i) where i&l) is de ned through
the equation
al’ (4(T)) = 0 (3.21)

Now, for + > £ al’(#) < 0 and hencethe minimum of free energy (3.17) is
obtained by having maximum number of 2-bands,i.e., |, = % and this indicates
that for +> i&l) the "artiphase'is stable. for £ < ii(i) , the minimum of freeenergy
is obtained by putting LI; = 1 and all other Iy = 0, showing a ferromagnetic
phase.
i (1) (1) (1) (1) r1y.

In betweentheselimits, for +;" < < &~ both a;”(+) and a;’(¥);k , 4 are

positive and hencethe minimum free energyis obtained by putting I, = 0;l, = 0
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3.3 Ground State of the Mo del and Low Temperature Phase Diagram

fork , 4]l;3 = % so that a new phase(::: ""### :..) interpolates betweenthe
<1 > and< 2> phase.

Ferr omagnetic to < 3> Transition : By equatingthe freeenergienf< 1 >

and < 3> phasesthe phaseboundary is obtained. The calculation of the phase
boundary can be improved by consideringhigher orders of w correspnding to

multiple spin °ip.

The order of transition from < 1 > to < 3> can be found out by looking
at the surface energy 8o(x; w;+) when a surfaceis created by inserting some
three-"up'-three-"'daevn' spin patchesin an all-'up' ervironmert. Upto O(w® ) the
surfacetensionis

§0 1 1 Q> ; 2

sothat for the ertire rangeof x; 0 < x < 1 the surfacetensionis positive, thereby
showing that the transition is of rst order.

It is to be noted that the complete phasediagram as calculated by Monte

Carlo and other methods showv that the ferromagnetic phase can coexist with
< 3 > phaseupto a temperature T = Tg above which there are transitions
from ferromagneticto other sinusoidally orderedphases.Howeer, the transition
remains rst order all the way upto the Lifshitz point.
Low Temperatur e Sequence of Phases: It isimportant to note that at the
other phaseboundary, namely that between< 3> and < 2>, a’ (¥) = 0 and
henceall the statesconsistingof length two and three bands coexist on this line.
This degeneracyis lifted when we considercortribution from multiple spin °ips.
A calculation similar to the previous one at the next higher order in w reveals
that a newphase< 23> becomesstablefor somerangeof £(T) in between< 3 >
and < 2 > states. Again we nd that there is a degeneracyat the boundary of
this new phaseand < 2 >, the antiphase. At the next order, another phase,
namely < 223 > is found to interpolate between< 23> and < 2> phase.

Thus we nd the sequenceof phasesas< 1 >;< 3>;< 23>; < 223>; <
223 >; < 2113 >; < 2 >, | being a positive integer when we move from
the ferromagnetic phaseto the right at a xed low temperature in the phase
diagram. Converselyif we start from the “artiphase' state at T = 0 and closeto
the multiphase point and then move to higher temperatureskeeping+ xed, we
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3.4 High Temperature Phase Diagram

encourter the phasesin reversei.e.< 2>; i< 213> ;< 223>; < 23>; <
3>. This is easyto chek from g (3.5).

Comments : A few commeris are in order:

(i) The width of the phasegof < 21 13> type) decreasesvith increasingj. The
boundary lines are given by,

(M) i - (T) » wl: (3.23)

(i) The wave vector characterisingthe statesare given by,

Vg = A e 1,2;3;:: (3.24)
q (21 + 1)1 J ’ ] y e .
Asj ! 1 ,the wave vector variesas,
1

@ i oT;-)» (3.25)

Infl-2 (1) T g

(i) At relatively higher temperaturesstatesof < 2/i 1323 > and other compli-
cated form exists. If we treat the 3-bandsas walls placed within 2-band spins,
various interactions betweenthe walls namely 2-wall, 3-wall, ..., n-wall interac-
tions needto be consideredcarefully in orderto nd out for other possiblestable
phaseq[19,[20],[21]].

3.4 High Temperature Phase Diagram

For nite valuesof -, at high enoughtemperatures a paramagnetic phaseis
expected. As the temperature is lowered we might comeacrossan instability in
the paramagneticphaseagainst a ferromagneticor a spatially modulated phase
with wave vector . The instability is expectedto shov up asa divergencen the
susceptibility A(e; T). The susceptibility A(e; T) is de ned in the following way.
We put an external eld hg at onesite only in the uniformly orderedphase. Then
the translational invariance of the phaseis broken. However, if the “eld is small
enough, we can break up the magnetization at i"" site as a sum of an average
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3.4 High Temperature Phase Diagram

magnetization plus a small °uctuation about that average,i.e., m; = m + #m;.
A& T) is de ned as,

~ . m
A T) = lim h—oe‘ (3.26)

where timq is the Fourier transform of #m; at wave vector . Hencethis suscep-
tibilit y measureghe responsedue to a localisedin nitesimal eld.

3.4.1 Instabilit y of the paramagnetic phase

Within the Ornstein-Zernike theory the mean eld susceptibility A(e; T) in the
disorderedphaseis given by the following expression:

i (e

kg is the Boltzmann constart. Taking the wave vector ¢ of the

A T) = (3.27)

where™ = o,
form 2%40; 0; g),
J(g) = 4Jp + 2J; cos2Vg + 2], cosdvy (3.28)

So, the paramagnetic susceptibility diverges rst when 1l . J(&) = 0, where
6= 6 maximizesJ(g).
ie.,
kg Tc = 4Jp + 2J; cOS2Yg, + 2], cOsAYay (3.29)

Here . is obtained by maximizing (3.28 with respect to q.

Y = arccos4i (3.30)

Equation (3.30 restricts the values of - in order to obtain a real g.. Since
cosg < 1,- > 7. For- < 1, g = 0 maximizes(3.28. This shows a transition

from the paramagneticto a ferromagneticphasefor - < 1.
Inserting (3.30 into (3.29 we get the mean eld phaseboundary for param-

agneticto modulated phasetransition,

ooy T 1
kBTC: 4Jo+ Jqy 2- + 4— ;> Z: (331)
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3.4 High Temperature Phase Diagram

whereasthe mean eld boundary betweenparamagneticphaseand ferromagnetic
phaseis obtained by putting g. = 0in (3.29 andit is,

1
ke Te= 4o+ J1 (2§ 2°); - - 2 (3.32)

The mean eld transition lines are shavn appraximately in g (3.6).

3.4.2 Instabilit y of the ferromagnetic phase

Within the ferromagneticphasewe can useOrnstein-Zernike expressiorfor mean
“eld susceptibility:

(1i m*)~
1i (i m?) J(e)
wherem is the magnetization per site at temperature T. An estimate of m could
be obtained by minimizing Landau free energyfunctional per spin F. Within the

ferromagneticphase,

AgT) = (3.33)

F(m;T) =i %(J(O)i ks T) m? + ki—;m“ (3.34)

upto fourth order in m. Minimizing F(m; T) w.r.t m, we get the squaredspon-
taneousmagnetization
m2 = 3(J(0)i keT)
kg T
Now that we have an estimate of m, we can look at the wave vector g = g for
which the susceptibility in (3.33 rst diverges.When it happens,the ferromag-
netic phasewill be unstable againstthe modulated phasecorrespnding to that

wave vector.The criterion for the instability is,

(3.35)

i (1i m?) J(&) = O: (3.36)

Henceusing (3.39 in (3.36 we get the phaseboundary by solving the following

equationfor T, asa function of -,
M H 1 19
(4i 3J0) ¢ Ao+ Iy 72 =1 (3.37)

This expressionfor the transition line is basedon an estimate of m which was
assumedto be small, sothat we neglectedhigher ordersin m in (3.34. Hence
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0] 0.5 1.0

Figure 3.6: The transition linesin the phasediagram of the ANNNI model shovn
approximately with Jo = J;. (from ref [3])

we can trust this result closeto the Lifshitz point. It is to be noted that on this
transition line, magnetizationdoesnot go to zeroand this shaws that the phase
transition from the ferromagneticto the spatially modulated phaseis rst order
in nature, at least closeto Lifshitz point!. At the Lifshitz point ferromagnetic
phase,paramagneticphaseand spatially modulated phasecoexist and hencethe
jump in the magnetization vanishes. The wave vector for which the instability
occursis given by (3.30 asa function of - .

3.4.3 Mean eld theory and the soliton picture

The phasediagram at high temperatures can be analyzed using a mean eld
theory. One starts by assuminga mean eld Hamiltonian

X 1
Huer = i HiS + éHi < S >; (3.38)

In section(3.3.2) it waspointed out that the whole phaseboundary betweenferromagnetic
to modulated phase,from the multiphase point to the Lifshitz point is of rst order in nature.
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< S > being the thermal average of the spin at i"" layeri = 1;2;::;L: H;
is the e®ectie eld at i arising from the interactions with surrounding spins.
Minimization of trial free energyleadsto the selfconsisten setsof equation,

< SS(>: tanh(" H;) (3.39)
Hi = Jj < § > (3.40)
j

Unlike in the caseof Ising model with nearestneighbour ferromagneticcoupling,
these sets of equations cannot be reducedto just a couple of equationsfor we
cannot use translational invariance in general for spatially modulated phases.
It turns out to be very ditcult task to solve these self-consisteh equations.

Howewer,they can be analyzedin the following way.
If we supposethat the spin sequenceepeats after L sites along zj axis, the

free energyper site becomes,
1 X!t o

F(L;T) = = In Tr e Hwe: (3.41)

j=o0

This free energyis minimized w.r.t. L numerically. In principle the calculation
should be performedupto L ! 1 in orderto allow for any possibleincommen-
surate phase. But in practice numerical calculation upto L=17 were carried out
[3]. Most of the phasediagramis Tled up by variouscommensuratgphases.Near
the paramagnetictransition line this numerical mean eld theory fails.
Imp ortant Featur es of the Mo dulate d Phases as Found by Mean Field
Theory : Fig (3.7) shows wave vector vs temperature for - = 0:6 and - = 0:7.
The following points are interesting to note:
(i) Most of the phasediagram is Tled by the wave vectorsg= %; { and L.
(i) Somewave vectors are stable only for a very small temperature range.e.g.
gq= % is stable for a temperaturerange¢ T ' 0:0004T.
(i) Someof the wave vectorsdo not occur at all as stable phase,like g jumps
from Z to £ without assumingthe value (= Z%). Hencethe "Devil's staircase’
is not complete.
(iv) For - = 0:6 the wave vector vs temperature curve is not monotonic.

Most of the featuresof the wave vector vs T curve can be understood within
a soliton picture. The basic schemeof the soliton picture is portrayed here.
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Figure 3.7: Wave vector vs temperature for (a)- = 0:6 and (b)- = 0:7 ascalcu-
lated numerically by Bak and Boehm [3]

If F be the Landau functional in the presenceof an external eld H e ,then

+F
i< g - el S>)
Hence,
< Si > = tanh _ﬂ"i + Hext)
X
= tanh Ji <S> +Hex
j
SQ
X 1
Hext = i Jij <Sj>+:tanh'1< S >:
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Hence,using (3.42), we get,
1 X 1 X ET
F=ig Ji<S><§>+= tanhi * %d% (3.45)
j i
Expanding the free energyin powers of Sq, the Fourier transform of < §; >, we
get
X TX X X .
[(e)i TISeS; 4+ == o St Sep S S HEn+ o+ g+ i &)+ O(Sy):

i & 12
& ¢ 4 G

F =i %
(3.46)
Here ¢, is a reciprocal lattice vector and its presencere®ects the basicfact that
the spinsare sitting on a lattice.
Free Ener gy near the q= %1 Phase: To nd the stability of the phasewith
wave vector ¢p = 1 we expandthe free energyabout q= ¢p = 3.
Let usde ne S: (r) and S, %(F) as,

p_MqTez
$i) = 2 5 d9e¥S guq (3.47)
p_ M qlez

S% (r) descrilbesa spin density wave
1 Vi 2
S(r) = %s%(ﬂe”(ﬂ: (3.49)

The last term arisesfrom Umklapp terms. Also, becausethe wave vector g has
only z-componert, S%(F) dependson z only.

If we assumethat near the commensuratephase(q = 7) the amplitude of
the order parameter Sq 4;(z) while the phase (A(z)) is allowed to vary with z

[[14,[22,[23]], ,
Ss1(z) = A eh@: (3.50)

The commensuratephaseis given by (3.49 and (3.50 with A = constart. The
amplitude A might be obtained by minimizing the Landau functional in the
commensuratephase.
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3.4 High Temperature Phase Diagram

If we chooseA(z) = ~ z, this descritesan incommensuratemodulated phase.
The free energytakesthe form [3],

z "1“dA T2 i
F= dzcA? Z —Zi’ + 9(1+ cospA) (3.51)

: — - —: 1.0 — . kgTA?
Wlthp—4, =iz T Teey,

This is of the sameform asthe energyof FVdM model discussedn Chapter

The Trst term in (3.51) favours A= "z, i.e., an incommensuratephasewhile
the secondterm favours A = Z/ the commensuratephase.
Sine-Gor don Equation as the Minimization  Condition for Free En-
ergy: The solitonic solutions : Minimizing the free energyleadsto the Sine-
Gordon equation,
@+ 4° sin 4A= O (3.52)
dz?
One of the solution of (3.52 is given by,

1

p L , Ps
A(z) = fi tani t e* °? (3.53)

and this represems an anti-soliton. In generalthe solution is given by a set of
regularly spacedsoliton or a “soliton lattice' with lattice constart | suc that,
2Y.
= (3.54)
pl
¢ being the deviation of the averagewave vector from ¢ in z-direction.
The solitons can be thought of aswalls betweencommensuratephases.Near
the commensuratephase,the free energytakesthe asymptotic form,

LT LY
= a0 e Caexn |
4 G

cA? Ya
The rst term canbe thought of assoliton formation energyand the secondterm

as a weak repulsion betweenthe solitons.

A phasewith g = % may be regardedas a phasewith one soliton inserted

ewvery period,that with q= % asa phasewith onesoliton every three periods etc.

: (3.55)
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3.4 High Temperature Phase Diagram

Figure 3.8: The phasediagram of ANNNI model in 3 dimensionsas found out
by Bak and Boehm using mean eld numerical calculations (ref [3])

For small® or largej j, the soliton formation energygoesnegative and hence
the commensurategphasebecomeaunstable againstformation of an incommensu-
rate phase.

The transition temperature is obtained from (3.55 asa function of J; and J,,

1232

2

kBTCI = 4\]1| 2J2+ (356)

The soliton formation energyremains positive for a large rangeof T and -,
shawing the stability of the phase.

In a similar treatment the Landau free energycan be written about other sta-
ble wave vectorslike q = % The phaseboundary as calculated using the soliton
picture matcheswell with other numerical studies. The phasediagram as found
out numerically is shovn in g (3.8).
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3.4 High Temperature Phase Diagram

Crucial Featur es of the Phase Diagr am in One and Two Lattic e Di-

mensions : The phasediagram in one lattice dimensionscan be solved exactly
using transfer matrix method. At T=0, ertropy per spin doesnot vanishin 1-D.
In the thermodynamic limit, the ertropy per site becomes,

S _ Lint
L L
= Int (3.57)

asL ! 1 . This di®ersfrom the casein higher dimensions.

Also long rangeorder is destroyedin 1-D for nite temperature ascanbe seen
from the exponertial deca in the spin spin correlation function. In the phase
diagram there exists local spatially modulated phasesbut the stability of these
phasesget enhancedin higher dimensionsbecauseof the in-layer spins coupled
ferromagnetically

In 2-D the entropy per spin again vanishes,like in 3-D at T=0 and ® = %

The most interesting feature of the 2-D phasediagram is that the paramagnetic
phasetouches T=0 axis so that there is always a paramagneticphasebetween
ferromagneticand spatially modulated phase. A detailed accourn is provided at
the review article by W. Selle [24].
Summary : To summarise,the phasediagram of ANNNI model is suzciently
rich. It shows a uniformly ordered state, a disordered state and a number of
spatially modulated phases(commensurateand incommensurate)that arise out
of competition betweennearestand next nearestneighbour couplings. Though it
involvesshort rangeinteraction, it doesshawv very long periodic structures.

The in nite sequenc®f phasesshovn by ANNNI model providesa motivation
to usethis model to explain "polytypism' in closedpadked materials, as we shall
discussin the next chapter.
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Chapter 4

Polyt yp es and Application of
ANNNI Mo del to Polyt ypes

Materials like SiC, ZnS etc having closedpadked structures shov a wide range of
lattice periodicity along somecrystallographic axis. This phenomenonis known
as Polytypism' and results from competing interactions presen within the mate-
rials. As the temperature, pressureand other chemicalenvironmens are changed
one polytypic form of these materials can transform to other polytypic forms
[[23],[26]].

There are excellen reviewsavailable on Polytypism (for exampleseeVerma
and Krishna (1966) [6]). Hundredsof papersin various journals, esgecially those
dewted to crystallography reported new polytypic structures in di®eren mate-
rials. Instead of preseriing all those information, our aim will be to descrike
the phenomenonof polytypism brie°y, alsoto look at someplausible explana-
tions of polytypism. We shall try to understandthe dynamicsof transition from
one polytypic structure to another. Sincethere doesnot seemto be one general
framework for understanding every transformation between polytypic variants,
we shall be very speci c. We shall pick up a particular transition, namely from
3C to 6H phaseand look at the dynamicsusing Monte Carlo algorithm. First of
all let us de ne polytypism and descrite the notations usedto represemn various

polytypes.
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4.1 De nition of Polyt ypism and Notations used

4.1 De nition of Polyt ypism and Notations used

First discoveredby Baumhauer([[27],[28]] in SIC, polytypism refersto the ability
of a substanceto crystallize into a number of di®eren modi cations in all of
which two dimensionsof the unit cell are the samewhile the third is a variable
integral multiple of a commonunit [6].

There are various notations available to descrite polytypism. The most pop-
ular onesare described below:

(&) ABC notation

Various Polytypic modi cations can be represeted by specifying stacking
sequencdA,B,C) of successie closedpadked layers. The unit layer of structure
might be polyatomic and then the symbols A,B,C represen onekind of atoms,
the relative positions of the other being xed.

(b) The Ramsdel | notation [29

In this corverntion the symbols nH or nR meansthat there are n layers
along the c-axis in a unit cell and the symmetry of the crystal is Hexagonal
or Rhombohedral. 3C is the only structure with cubic symmetry.

(c) Zhdanov Symbol: [3(]

The stadking sequenceén polytypescanbe mappedto a binary variable, plus’
and ‘minus' or "up' spin and ‘down' spin. "Plus'is assignedat ead bond between
two neighbouring layersif the letters occur cyclically in ABC notation and "minus'
is assignedwhen if neighbouring letters is anti-cyclic.

Zhdanor symbol consistsof pairs of numbers, the rst denoting the number
of plus signsand the seconddenoting the number of minus signs following the
plus one. For example 6H is denotedas (3 3). 15R is represeted as (2 3)s,
the subscript 3 denoting that the sequencg?2 3) hasto be repeated 3-times to
completethe unit cell.

4.2 Examples of Polyt ypism

In more than 40 polytypic structures of SiC, the hexagonalunit cell hasa =
b= 3:078\, while c is a variable multiple of 2:518\. The variation of ¢ might
be surprising to note. In 2H polytype ¢ ¥ 5A.[31] while ¢ ¥4 1500\ in 594R.[37]
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4.3 Theories to explain Polyt ypism

Apart from the hexagonaland rhombohedralmodi cation, known as®-SiC, there

is a cubic modi cation, known as -SiC [[33],[34]]. Apart from SiC, polytypism

is obsened in lots of materials. Here are a few notable examples:

(@) ZnS: There are about 200identi ed polytypesof ZnS.[35

(b) CdTe: 2H, 3R, 5H, 6H, 6R, 15R, 3C etc phasesare obsened.[36]

(c) SnS: 2H, 4H, 6H, 18R, 8H, 10H, 22H, 24H, 24R, 30H (or 90R), 36R (or12H),

40H, 72R etc modi cations are obsened.[37]

(d) Cdl,: About 250polytypesof this substancehasbeenreported and complete

crystal structures of 90 polytypeshave beenworked out.[3§]
Sincevariouspolytypesof a material di®eronly in the stadking sequencealong

one axis, the bulk densitiesare almost the same.

4.3 Theories to explain Polyt ypism

Many theories have beenput forward to explain polytypism. An earlier school

of thought suggestedthat polytypism is essetially a non-equilibrium process
and arisesdue to di®eren gronth medtanisms(e.g., spiral growth medanism by

Frank 1951[39). Howewer, these medanismscannot explain the relative sta-
bility of various polytypic structures. Jeppsand Page[4(0] characterizedse\eral
reversible phasetransitions between SiC polytypes. This suggestedthat poly-

typism might be an equilibrium phenomenonand led peopleto use equilibrium

modelsto explain it (Price 1983,[41]). The remarkable similarity of SiC poly-

typesto the in nite sequencef phasesfound in ANNNI model was a motivation

to take this idea seriously[8].

The most abundart phasesin common polytypes (like SiC) are obtained in
the zerotemperature phasediagram of the extended ANNNI model (it involves
interactions upto third nearestneighbours). The phasediagram of the extended
ANNNI modelis shavn in g (4.1). 3C, 4H, 2H and 6H are stablephasesat T =
0. The 3C-6H transition line is highly degenerate.Here all spin con gurations
having three or more number of successig spins of samesign are ground states.
Hencethe degeneracyis exponertial in the systemsizealongthe stadking axis.
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4.4 Dynamics of Transformation

By
-1/2 1 APYIN]

4H 3C
6H

2H

Figure 4.1: Ground state phasediagramof extendedANNNI model. J;; i = 1;2;3
are the rst, secondand third nearest neighbour couplings. J; > 0 and we
have shovn only the lower half of the phasediagram sincewe are interestedin
3C-6H phasediagram. On the thick boundariesthere are exponertially large
degeneraciesf ground states.

In the next sectionwe shall use Monte Carlo algorithm* at T = 0 to look at
the transition from 3C to 6H. A similar approad hasbeenadoptedby Dhananjai
Pandeyto study 2H to 6H transformation [42].

4.4 Dynamics of Transformation

In order to study the dynamics of transformation from 3C to 6H phaseusing
Monte Carlo simulation, we have to nd out the rulesfor allowed ‘moves'in spin
language.

3C: ::ABCABCABCABC::
6H: :::ABCACBABCACB:::

We note that a pair of neighbouring 'B' and "C' interchangedin this transforma-
tion. Now exchangeof positions of two atomic layersby coheremn movemert of all

1The Monte Carlo work was donein collaboration with Tridib Sadhu, Department of The-
oretical Physics.
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4.4 Dynamics of Transformation

the individual atomsseemaunlikely to happenin areal system. A more plausible
medanism for the exdhange might be that "craks' are createdin successig B
and C layers. By a ‘crak’ we meanan interface betweenatoms of B and C posi-
tions in a layer. It is important to note that closedpading constrairt demands
the creation of idertical "cradks' in the neighbouring layers, for otherwisetwo B's
or two C's would be next to ead other in the staking sequence.There is some
room for the atomsto move neara “crad'. This permits easeof motion and leads
to the di®usionof the “crad' by °ipping B and C atoms. Thus the layersB and
C interchange positions. This seemsplausible sincethe only energy cost is for
the creation of the “crad’; oncecreatedit can di®usealmost freely.

A N 1
A Crack A

Figure 4.2: A plausible medanism for interchangeof B and C layers. "Cradks'
are formed as a result of B atoms moving to C positionsin a plane and C atoms
moving to B positionsin the neighbouring plane. The cradk di®usego interchange
B and C planes.

Dynamics in spin language : In spin language,ead move (ABCA! ACBA)
consistsof a trimer °ip.

3C: syt R R e nomon
6H: R T

Herefor easeof visualization, we have used* and + insteadof " and # respectively
for the °ipp ed spins. Hencethe dynamicswe needto consideris the trimer °ip
dynamics.

We proceedby writing a Monte Carlo code. We considerthe systemto be at
zerotemperature. The rules are the following:
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4.5 Results of Mon te Carlo: Metastable States

(a) start with an initial con guration of one dimensionalarray of spins,

(b) randomly choosethree consecutie spin of samesign (that is all "up’ or all
“down’),

(c) ewaluate the energycost, ¢ E of °ipping the spins (Extended ANNNI Hamil-
tonian is usedfor this).

If ¢E <O, the spinsare °ipp ed with probability 1.
If ¢E = 0, the spinsare °ipp ed with probability %
If ¢E > 0, the spinsare not °ipp ed.

45 Results of Monte Carlo: Metastable States

The nal state reaced under the dynamics was found to be sensitive to the
initial con guration. When it was quendied from 3C phaseto 6H phase(J; =
0:9;J,=0;J3=j 06)at T = 0,it did not goto the thermodynamically stable
6H phase. Rather, the systemwen to a locked metastable state. Locally the
spin con guration shaved “three-up-three-devn' structure but globally the phase
was not 6H. For a random initial con guration! alsothe systemdid not go the
thermodynamically stable phasebut "active' and “frozen' patches of spins were
obsened for large number of Monte Carlo steps. The ‘residual activity' ( the
number of active spins after large number of Monte Carlo steps)was found not
to goto zeroewen after 800 Monte Carlo stepsper site while in the rst caseit
approaded zeroafter » 200 Monte Carlo stepsper site. The result of the Monte
Carlo simulation is showvn in g (4.3), at the end of this chapter. Number of sites
that remain active after large number of Monte Carlo time stepswasfound to be
proportional to the systemsize.

When the systemwas quendtied to the multiphase line i.e., the phasebound-
ary between3C and 6H phases(J; = 0:9;J, = 0;J3 = | 0:6), the spinsremained
active if started from 3C phase(800 Monte Carlo stepswere obsened) but wert

1There is no analogueknown to usthat correspondsto random con guration in polytypes.
However, we might ask a theoretical question whether the dynamics under consideration has
dependenceon initial con guration. This is the motivation for considering random initial
con guration.
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4.5 Results of Mon te Carlo: Metastable States

to a state with alternate “frozen'and "active' spinsif started from random con-
“guration (g (4.9).

We can rationalize the results for quending to the degeneracyline in the
following way . Sincethe energycost of °ipping a trimer is zerowhenit is sur-
roundedby patchesof spin of samesign of length greaterthan two, there might be
siteswhereno move is allowed, e.g.,the middle three of an "up-dovn-up-down...'
con guration of length 9. Next, evenif someinitial movesare allowed, after some
time the systemcan go a similar con guration to get locked. On the other hand
when the systemstarts from all "up' con guration, we get only spin patches of
length at least three in successig Monte Carlo steps. Henceeven if somesites
remain inactive for sometime,there is a possibility that it might becomeactive
again when the neighbours have °ipp ed to produce energeticallyfavourable con-
ditions.

Discussion : Hencewe seethat the system might go to a metastable state
for someinitial con gurations. The thermodynamically stable phaseis of course
lower in energythan any of the metastablestates,but in orderto read there, the
systemhasto overcomean activation barrier sincethe metastable states are at
the local minima of energy The time takento overcomethis activation barrier is
exponertial in the barrier height. The thermodynamically stable state is at the
glolal minimum of energy but reading it is not easy The dependenceof the
“nal state on the initial con guration is obsened for many frustrated systems.

We again emphasizethat the actual problem is very complicated. The use
of this spin model was motivated from a phenomenologicapoint of view and it
did shov someinteresting properties, which may relate to someaspects of the
transformation of polytypic structures.
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4.5 Results of Mon te Carlo: Metastable States

Figure 4.3: The nal state reated by the systemis dependert on the initial
con guration. The systemwasquendedto the 6H phase(J; = 0:9;J, = 0:0;J5 =

i 0:6) from a. 3C phaseT = 0 and b. random con guration. In the rst case
the systemgoesto a "locked' state but in the secondcasethere are "active' spins
ewven after large number of Monte Carlo steps. Here a black dot denotesthat the
spin at that site is active, i.e., it °ips at that Monte Carlo step. The systemsize
was takento be 2400. Here the Monte Carlo stepsshawn is stepsper site.
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4.5 Results of Mon te Carlo: Metastable States

Figure 4.4: Number of site that are active at di®eren Monte Carlo time steps
when quended to 6H phase. Systemsize=480J; = 0:9;J, = 0:.0;J3 = j 0:6,
The initial con guration is a. all “up', b. random. The data were averagedover
histories. Number of active sites after large number of Monte Carlo stepsare
proportional to the systemsize. Here the Monte Carlo stepsshown is stepsper

site.
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4.5 Results of Mon te Carlo: Metastable States

Figure 4.5: The systemof size2400was quended to the 3C-6H degeneracyline.
The nal state was again found to depend on the initial states: a. 3C state, all
‘up' spinsand b. random con guration. When the systemstarts from all "up' it
doesnot goto a ‘locked' state but for the other casewe obsene patchesof "active'
and “locked' sites. ‘Blad' dots represen activity at that Monte Carlo step. Here
the Monte Carlo stepsshawn is stepsper site.
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4.5 Results of Mon te Carlo: Metastable States

Figure 4.6: Number of site that are active at di®eren Monte Carlo time steps
when quendied to 3C-6H multiphase line. System size=480J, = 0:9;J, =
0:0;J; = j 0:3, The initial con guration is a. all "up', b. random. The data

were averagedover histories. Herethe Monte Carlo stepsshaown is stepsper site.
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