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Chapter 1

The Contemporary Case for Extra Dimensions

1.1 One Extra Dimension : Unification of Long-range Forces

The idea of extra spacetime dimensions goes back to the early 20th century, when Nordström

[1, 2], Kaluza [3] and Klein [4] first introduced it in the context of unification of gravitational

and electromagnetic interactions – the two long-range interactions (and the only ones known in

those days). The original Kaluza-Klein theory was motivated by Einstein’s theory of General

Relativity where gravitational interactions are described by the geometrical features of the

spacetime M4 introduced by Minkowski. If an extra compact dimension is added to our known

1 + 3 spacetime dimensions (or 4D in short), then electromagnetic phenomena can also be

explained as a characteristic of spacetime geometry. One thus has a unified field theory of both

gravity and electromagnetism. For the simplest case, where the number of extra dimensions is

unity, the compact extra dimension refers to a circle S1. Some general features which arise due

to introduction of one circular extra dimension (or 5D in short) are discussed below.

In the following, we shall closely follow the notations and conventions of Ref. [5], viz.

• Greek indices for 4D, e.g. xµ with (µ = 0, 1, 2, 3).

• Upper case Latin indices for the full spacetime dimensions, including extra dimensions

~y = {y1, y2, . . . }.
• A ‘hatted’ symbol (e.g. â) for a quantity in the full spacetime dimensions and ‘non-hatted’

(e.g. a) for the corresponding 4D quantity.

As is usual in high energy physics, we shall set ~ = c = 1.

The line element in a 5D space which is a simple extension of Minkowski space to M4× S1, can

be written as

dŝ2 = ηµνdx
µdxν − dy2

= ηµνdx
µdxν −R2

cdφ
2

≡ ĝMNdx
MdxN (1.1)

where ηµν = diag(1,−1,−1,−1) is the usual Minkowski metric in 1 + 3 dimension, 0 ≤ φ < 2π

is angular coordinate and Rc is the radius of the extra compact dimension, so that y = Rcφ.

1



2 Chapter 1. The Contemporary Case for Extra Dimensions

Introducing this one extra circular dimension, Kaluza and Klein showed that the Einstein-

Hilbert action of General Relativity (GR)

Ŝ =
1

16πĜN

∫
d5x
√
ĝ R̂ (1.2)

in the 1+3+1 dimensional space (xµ, y), in the limit Rc → 0 (called the compactification limit),

can be decomposed as

Ŝ → 2πRc

16πĜN

∫
d4x
√−gR+

2πRc

16πĜN

∫
d4x
√−g

[
−κ2 1

4
FµνF

µν

]
(1.3)

where ĜN is the analogue of Newton’s constant in five-dimension, R̂ and R are Ricci scalars

in five and four-dimensions respectively, Fµν = ∂µĝ4ν − ∂ν ĝ4µ and κ is an adjustable constant.

The first term is the action for the General Relativity in 4D while the second term is the action

for 4D Maxwellian theory. Thus comparing with the usual action of electromagnetism it follows

that the off-diagonal elements ĝ4µ of the metric tensor behave as the electromagnetic vector

potential Aµ and

κ2 =
16πĜN
2πRc

= 16πGN
ĜN

2πRc
= GN (1.4)

where GN is Newton’s constant in four-dimensional space.

It is clear from the above Kaluza-Klein reduction that the gravitational constant in 5D is

different from the usual Newton constant in 4D and the difference is determined by the com-

pactification radius Rc.

1.1.1 Kaluza-Klein Modes

If we consider a 5D scalar field, Φ̂(xµ, y) with mass M0, the field should be periodic in the fifth

dimension y, i.e.

Φ̂(xµ, y) = Φ̂(xµ, y + 2πRc) (1.5)

We can then expand Φ̂(xµ, y) as a Fourier series

Φ̂(xµ, y) =

∞∑
n=0

φ(n)(xµ)einy/Rc (1.6)

where the φ(n)(xµ) are Fourier coefficients. If, now, in this 5D bulk, the field Φ̂(xµ, y) satisfies

Klein-Gordon equation (
�− ∂2

y +M2
0

)
Φ̂(xµ, y) = 0 (1.7)

then substitution of the Eq. (1.6) gives a set of linearly independent equations(
�+M2

0 +
n2

R2
c

)
φ(n)(xµ) = 0 (1.8)

for all values of n. These fields φ(n)(xµ) are 4D scalar fields satisfying the Klein-Gordon equation

and having masses

Mn =

√
M2

0 +
n2

R2
c

(1.9)
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These 4D scalar fields are called Kaluza-Klein modes (KK modes) of the 5D scalar field Φ̂(xµ, y).

The mass of the KK modes increases monotonically with n. If the bulk mass is M0 = 0, then

the these modes can still have mass except for the zero mode i.e. n = 0.

If we now consider a translation around the compact dimension y

xµ → x′µ = xµ

y → y′ = y + κ ξ(xµ) (1.10)

then the 5D scalar Φ̂(xµ, y) transforms as

Φ̂(xµ, y)→ Φ̂′(xµ, y) =

∞∑
0

φ(n)(xµ)ein{y−κ ξ(x
µ)}/Rc =

∞∑
0

φ′ (n)(xµ)einy/Rc (1.11)

where each KK mode φ(n)(xµ) transforms as

φ′ (n)(xµ) = φ(n)(xµ)e−inκ ξ(x
µ)/Rc (1.12)

This is clearly a gauge transformation of a charged 4D scalar field with charge

Qn = n
( κ
Rc

)
(1.13)

In the original Kaluza-Klein formalism, we can identify κ
Rc

to be the charge quantum e and this

requirement, except for the zero mode, leads us to the condition that

1

Rc
=
e

κ
=

√
4πα

16πGN
∼MP ∼ 1019 GeV (1.14)

where α = e2

4π is the fine structure constant. This means that all the KK modes – except the zero

mode which gives Einstein gravity – lie at the Planck scale MP and are not accessible to any

experiments in the current and foreseeable future. Therefore, the only practical manifestations

of the theory will be Einstein gravity and Maxwellian electrodynamics, both of which are well-

tested as separate theories, but there is no way to test the unified theory or even the existence

of an extra compact dimension. As a result, little progress was made in Kaluza-Klein theories

during the rest of the twentieth century.

On the other hand, it was soon found that electrodynamics can be better understood in terms

of a dynamical gauge symmetry of the action. Gauge symmetries extended to more complicated

non-Abelian forms give us a formalism to understand the different non-gravitational interactions

which appear in Nature in a systematic way. This framework is called the Standard Model (SM)

of particle physics. However, the SM, though very successful in explaining the experimental

results so far, has some theoretical problems when incorporated in a quantum field theory.

Extra dimensions have been revived again to solve these problems in the gauge theory — such

theories form the basis for a whole genre of contemporary research, including this thesis work.

However, before taking up the current case for extra dimensions, we briefly review the SM and

its most important aspects.
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1.2 Gauge Field Theories of Fundamental Interactions

The simplest field theory of gauge interactions is the one that leads to Maxwell’s equations

in the classical case, and quantum electrodynamics (QED) when incorporated into a quantum

theory. We review this first before going on to the SM. In this section, we consider only a 4D

Minkowski space.

1.2.1 QED

The Dirac Lagrangian for a free (i.e. non-interacting) fermion with mass m, which can be

written as

L0 = ψ̄(x) (iγµ∂µ −m)ψ(x) (1.15)

is invariant under a global phase transformation of the field

ψ(x)→ ψ′(x) = eiqαψ(x) (1.16)

where α is the (constant) parameter of the transformation and q is a constant specific to the

fermion ψ. This invariance guarantees that the set of all transformations obtained by varying

α form a Lie group, denoted by U(1). By Nöther’s Theorem, this symmetry then leads to the

conservation of a current given by

Jµ(x) = qψ̄(x)γµψ(x) (1.17)

with a constant charge given by∫
d3~x J0(x) = q

∫
d3~x ψ̄(x)γ0ψ(x) (1.18)

which is just q for a normalised field. The constant q is, therefore, the conserved U(1) charge

of the fermion field.

The above global transformation requires instant transmission of information as the change

must happen at every point in space simultaneously. This is in violation of special relativity. It

is more realistic if the transformation were to be local, i.e. α = α(x). This local transformation,

however, does not keep the Lagrangian of Eq. (1.15) invariant, as an extra term is generated

from ∂µ acting on α(x). However, we can still retain gauge invariance with the help of an

additional vector field Aµ, called a gauge field which transforms as

Aµ → A′µ = Aµ + ∂µα (1.19)

simultaneously with the fermion field ψ(x). This can be used to define a covariant derivative

Dµ = ∂µ − iqAµ (1.20)

which then transforms as

Dµψ(x)→ [Dµψ(x)]′ = eiqα(x)Dµψ(x) (1.21)

One can also show that the kinetic term of the gauge field

L = −1

4
FµνF

µν , (1.22)
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where Fµν = ∂µAν−∂νAµ, is also invariant under the gauge transformation. Now, we can write

the full QED Lagrangian for a fermion with mass m as

L = ψ̄(x) (iγµDµ −m)ψ(x)− 1

4
FµνF

µν (1.23)

which is invariant under the local gauge transformations for ψ(x) and Aµ(x) simultaneously.

We can expand the covariant derivative to write this in the form

L = L0 −
1

4
FµνF

µν + qJµ(x)Aµ(x) (1.24)

where the first two terms on the right correspond to free fields and the last terms is a gauge

interaction. The Euler-Lagrange equations for this are

∂µF
µν = −qJν (1.25)

which is identical in form with the Maxwell equations, and

iγµ (∂µ − iqAµ)ψ(x)−mψ(x) = 0 (1.26)

which is identical in form with the Dirac equation for a pointlike charged fermion in an elec-

tromagnetic field. To obtain a gauge theory of electromagnetism, we only have to identify the

conserved Nöther charge q with the electric charge of the fermion and the gauge field Aµ(x)

with the electromagnetic four-potential. If we set q = −e, the quantum version of this theory

will be QED, with the ψ and the Aµ fields representing electron and photon respectively.

One important thing to notice is that the gauge field Aµ cannot have a mass term, 1
2M

2
AA

µAµ

since inclusion of such a mass term no longer keeps the Lagrangian gauge invariant. This is, of

course, consistent with the well-known massless nature of the photon.

This elegant formalism thus enables us to develop the theory of the electromagnetic interaction

from the principle of local gauge symmetry. Similarly, theories of the strong and weak inter-

actions between elementary particles can also be developed from local gauge symmetries of a

somewhat more complicated form, but with essentially the same structure.

1.2.2 Non-Abelian gauge theories

The idea of a gauge transformation and symmetry under the gauge transformation can be ex-

tended to more complicated cases. Suppose we haveN degenerate Dirac fermions (ψ1, ψ2, . . . , ψN ),

each with mass m. Now, as before, we write down the Lagrangian for this system of N free

fermions as

L0 = Ψ(x) (iγµ∂µ −m) Ψ(x) (1.27)

where

Ψ =


ψ1

ψ2

...

ψN

 (1.28)

then, as before, a global N×N unitary transformation on Ψ is

Ψ→ Ψ′ = UΨ (1.29)
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where the unitary matrix U can be written in terms of a set of Hermitian generators Ta(a =

1, 2, . . . , n) as

U = eigαaTa (1.30)

with a summation over a implied, and the set of αa are constants. The constant g is analogous

to q in the Abelian case and is known as the coupling constant. This transformation clearly

keeps the Lagrangian invariant, which means that the set of U matrices forms a Lie group,

which is defined by the Lie algebra of generators

[Ta,Tb] = ifabcTc (1.31)

where the fabc are the structure constants. This symmetry then leads to a conserved Nöther

current (or a set of Nöther currents)

Jµa = gΨ(x)TaγµΨ(x) (a = 1, . . . , n) (1.32)

and a set of constant Nöther charges

Qa =

∫
d3~x J0

a = g

∫
d3~x Ψ(x)Taγ0Ψ(x) . (1.33)

As in the Abelian case, a local transformation with U = U(x) does not keep the Lagrangian

invariant because it generates extra terms proportional to ∂µU. In this case, we again need to

add gauge fields in order to retain the symmetry of the Lagrangian. Following the previous –

Abelian – case, we replace ∂µ by a covariant derivative

Dµ = I∂µ − igAµ (1.34)

where Aµ is a N×N matrix transforming as

Aµ → A′µ = U(x)
[
Aµ −

i

g
U†(x)∂µU(x)

]
U†(x) (1.35)

so that the covariant derivative transforms as

DµΨ(x)→ [DµΨ(x)]′ = U(x)DµΨ(x) (1.36)

from which it is easy to see that the replacement ∂µ → Dµ in Eq. 1.27 is sufficient to create a

(local) gauge invariant Lagrangian.

Since the number of independent gauge fields should be the same as the number of free param-

eters of the transformation, it is usual to define Aµ(x) = Aaµ(x)Ta and

Fµν(x) =
i

g
[Dµ,Dν ] . (1.37)

The gauge kinetic term can be written

L = −1

2
Tr (FµνFµν) (1.38)

or, expanding Fµν = Fµνa (x)Ta,
L = −1

4

∑
a

F aµν F
µν,a (1.39)
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where

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (1.40)

The gauge-invariant Lagrangian for this theory can now be written

L = Ψ(x) (iγµDµ −mI) Ψ(x)− 1

2
Tr (FµνFµν) (1.41)

or,

L = L0 −
1

2
Tr (FµνFµν) + gJµaAµa (1.42)

where the gauge interactions are given by the last term.

It is noteworthy that, as in the Abelian case, the gauge fields have to be massless since a

mass term for gauge fields would break gauge invariance. However, in the non-Abelian gauge

theory the Fµν has bilinear terms in AµaAνb which, after expansion, leads to cubic and quartic

self-couplings of the gauge fields, which do not appear in QED.

1.3 Construction of the Standard Model

The basis of the Standard Model is a non-Abelian local gauge theory as described above. The

Standard Model Lagrangian is symmetric under the gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y

where SU(3)c is the gauge group of colour, SU(2)L is the gauge group of weak interactions and

U(1)Y is the gauge symmetry corresponding to hypercharge.

1.3.1 Strong interactions

The gauge theory corresponding to the SU(3)c group gives us a theory of the strong interaction

and is known as Quantum Chromodynamics (QCD). The model assumes three generations of

elementary fermions, called quarks q, which carry the corresponding gauge charges — called

colour – and the gauge fields corresponding to this group are called gluons G. The gauge-

invariant Lagrangian for QCD, then, can be written as

LQCD = q̄f (iγµDµ −mf ) qf −
1

4
Gµν, aGaµν (1.43)

where the covariant derivative is

Dµ = I∂µ − igsKaGaµ (1.44)

with the Ka = 1
2λa being the 8 generators of the SU(3)c group, in terms of the Gell-Mann

matrices λa, and

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν (1.45)

with gs being the coupling constant of the strong interaction and fabc being the appropri-

ate structure constants. The subscript f represents a sum over six quark flavours, i.e. f =

u, d, s, c, b, t in order of mass.

1.3.2 Electroweak interactions

The group SU(2)L⊗U(1)Y corresponds to the Glashow-Salam-Weinberg model for electroweak

unification. The SU(2)L symmetry treats left-handed fermions differently from the right-handed
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ones. The left-handed u-quark and d-quark forms an SU(2)L doublet whereas the corresponding

right-handed ones are singlet under the SU(2)L group. The hypercharges for left-handed fields

also differ from the right-handed fields, so that the electric charges, given by Qf = T3 + 1
2Y

remain the same for the left- and right-handed components. The electroweak interaction is

also felt by the lepton sector which more-or-less follows the same pattern – with an important

difference being the absence of right-handed neutrinos. The different gauge charge assignments

of the Standard Model fields are shown in Table 1.1.

QL ≡
(
uL
dL

)
uR dR EL ≡

(
νL
eL

)
eR

SU(3)C 3 3 3 1 1

SU(2)L 2 1 1 2 1

U(1)Y 1/3 4/3 −2/3 −1 −2

Table 1.1: Charges of lepton and quark fields.

The Lagrangian for the electroweak part of the gauge theory is given by

LEW =
∑
f

iψ̄fLγ
µDµψfL +

∑
f

iψ̄fRγ
µDµψfR −

1

4
Wµν aW a

µν −
1

4
BµνBµν (1.46)

where the sum over f runs over all quarks (see above) as well as all the leptons e, µ, τ , νe, νµ,

ντ . The kinetic terms for gauge bosons are given by

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν

Bµν = ∂µBν − ∂νBµ (1.47)

and the gauge covariant derivatives for left- and right-handed fermions are given, respectively,

by

Dµ = ∂µ − igTaW a
µ − ig′

Y

2
IBµ

Dµ = ∂µ − ig′
Y

2
Bµ (1.48)

where Ta = 1
2σa and g, g′ are coupling constants. The gauge bosons cannot have masses if

the gauge invariance of the Lagrangian is to be maintained. Likewise, fermion mass terms will

break the gauge invariance because the left- and right-handed fermions have different gauge

charges — these are not demanded by the gauge theory, but have to be put in by hand to

explain maximal parity violation in weak interactions. The above Lagrangian is, thus, a theory

of massless particles – in fact, it has no parameter that can set a mass scale.

1.3.3 Electroweak symmetry-breaking

A model of massless elementary particles is clearly not realistic, for we have observed both

fermions and vector bosons which are massive — in fact, in the case of the W ’s and the t quark,

very massive, i.e. O(100mp). Such large masses cannot be explained away by introducing small

perturbations to break the gauge symmetry, but require a different mechanism altogether. This

is provided by a mechanism called spontaneous symmetry-breaking.
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To achieve spontaneous breaking of the electroweak symmetry we require to augment the field

content of the Standard Model with a SU(2)L doublet of scalar fields with hypercharge Y = 1,

viz.

Φ(x) =

(
φ+(x)

φ0(x)

)
= eigTaGa(x)

(
0

H(x)√
2

)
(1.49)

where we choose a polar parametrisation of the scalar doublet. An SU(2)L⊗U(1)Y -symmetric

Lagrangian for this scalar doublet

LΦ = (DµΦ)†DµΦ− V (Φ) (1.50)

where the covariant derivative is

Dµ = I∂µ − igTaW a
µ − i

g′

2
IBµ (1.51)

and the V (Φ) is

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 (1.52)

so that we have a doublet of massless scalars with a quadratic and a quartic self-coupling

respectively, with positive coupling constants µ2 and λ. We note that these self-couplings are

not demanded by the gauge symmetry, but do not violate it either. The parameter µ has the

dimension of mass and introduces a mass scale into the theory. Both parameters are put in by

hand.

Treating these interaction terms as a classical potential we find that the value Φ = 0 about

which the perturbation expansion is to be made in a quantum field theory, is an unstable point,

whereas the minima lie at

〈Φ†Φ〉0 =
µ2

2λ
≡ v2

2
(1.53)

Before quantising the theory, we should expand the scalar doublet about one of the minima,

i.e. we should re-define fields

Φ̃ = Φ− 〈Φ〉0 (1.54)

This will clearly break the SU(2)L symmetry by quantity proportional to v, which is not small,

but determined by the choice of parameters µ and λ.

With the benefit of hindsight, we can first make an SU(2)L gauge transformation with param-

eters αa(x) = −Ga(x), so that

Φ(x) =
H(x)√

2
(1.55)

In this specific gauge, called the unitary gauge, the scalar fields Ga(x) disappear and only the

field h remains. The former are referred to as Goldstone bosons and the latter as a Higgs boson.

We now have

Φ̃ =

(
0

H(x)√
2

)
−
(

0
v√
2

)
=

(
0
h(x)√

2

)
(1.56)
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parametrising 〈Φ〉0 suitably so that H = h+ v. The Lagrangian in Eq. (1.50) now assumes the

form

LΦ =
1

2
∂µh ∂

µh− µ2h2 − λvh3 − 1

4
λh4

+
1

8
g2(h+ v)2

(
W 1
µ − iW 2

µ

) (
W 1µ + iW 2µ

)
+

1

8
(h+ v)2

(
W 3
µ Bµ

)( g2 −gg′
−gg′ g′2

)(
W 3µ

Bµ

)
(1.57)

where now the quadratic interaction term for the scalar Higgs boson has disappeared – to be

replaced by a mass term, with mass
√

2µ. Moreover, the second line of Eq. (1.57) tells us that

if we define charged gauge bosons fields

W±µ ≡
1√
2

(
W 1
µ ∓ iW 2

µ

)
(1.58)

we will get a mass term for the particle-antiparticle pair W± which is

MW =
1

2
gv (1.59)

The last term in Eq. (1.57) is a mass-mixing term between the W 3
µ and Bµ. One can diagonalise

the matrix and obtain the mass eigenstates(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
(1.60)

with a mixing angle tan θW = g′/g, called the Weinberg angle. One of the mixed states, viz.

Aµ remains massless and the other vector field Zµ receives a mass MZ = MW sec θW . We note

that all these vector boson fields are defined in the unitary gauge mentioned above.

This 1967 model of symmetry-breaking correctly reproduces QED as a low-energy effective

theory at energies well below v, through the massless vector field Aµ, which we identify with the

photon. The weak interactions are correctly reproduced by the W± and Z interactions, though

historically, the Z boson-mediated interactions were discovered later (1973) as predictions of

the theory. The W± and Z boson themselves were discovered in the 1980s. Another major

prediction of the theory was the physical scalar, or the Higgs boson h, which was discovered

only recently in 2012. Its mass Mh =
√

2µ was found to be very close to 125 GeV.

It may be noted before proceeding further that though the SU(2)L and U(1)Y were standalone

symmetries in the massless model, the inclusion of scalars with self-couplings mixes them up

and they break down jointly to U(1)em, i.e. Maxwellian electrodynamics. This model, then is

a genuine model of electroweak unification. The SU(3)c symmetry, however, stays apart and

unbroken, and the gluons remain massless.

1.3.4 The Hierarchy Problem

The mass of the Higgs boson, viz. Mh = 125 GeV, made it accessible to the current generation

of experiments and led to its discovery. However, it has been known for a long time that such

a value of the Higgs mass leads to a deep theoretical problem when the Standard Model is
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considered as a quantum field theory. As we have seen, the Higgs bosons h have a self-coupling

term 1
4λh

4 and this leads to one-loop self-energy corrections of the form

δM2
h = λΛ2 ⊕ λ(Λ2 +M2

h) ln
Λ2

v2
⊕M2

h ln
M2
h

v2
⊕ . . . (1.61)

where Λ is the (presumably large) momentum cutoff of the Standard Model and the ⊕ symbols

denote linear combination with small numerical coefficients. This must be added on to the bare

mass Mh0 =
√

2µ to get the physical Higgs boson mass, i.e.

M2
h = M2

h0 + δM2
h (1.62)

So far, there is no problem, for one can always choose the bare mass M2
h0 to cancel any large

quantities in δM2
h , as prescribed in textbooks for mass renormalisation of any quantum field

theory. This prescription works well for gauge bosons and fermions, for once the divergent

terms containing Λ are removed at the one-loop level, they do not appear at higher orders, a

fact which can be traced to the existence of gauge and chiral symmetries (in the high energy

limit) respectively which forbid the appearance of quadratic divergences. For an elementary

scalar like the Higgs boson – the only one known – however, the quadratic divergence λΛ2 is

not only explicit, but it reappears at the two-loop level even after cancellation at the one-loop

level by the bare mass. This phenomenon can be traced to the fact that no symmetry protects

an elementary scalar mass in the high energy limit. If we tune the bare mass to cancel the total

divergence at one loop, not only will the one-loop result become divergent and tachyonic, but

yet another new divergence will appear at the three-loop level. As one cannot have more than

one bare mass parameter, an order-by-order re-definition of the bare mass makes perturbation

theory meaningless. It seems, then, that the mass of the Higgs boson will inexorably be drawn

to the cutoff of the theory, i.e. Mh ≈ Λ, in a quantum version of the Standard Model.

There will still be no problem if the cutoff Λ lies one to three orders of magnitude above Mh,

for there can always be small coefficients involving the coupling constants and the loop factor

(16π2)−1. However, if the cutoff lies much above this, i.e. there is a large hierarchy between

Mh and Λ, it becomes difficult to keep Mh ' 125 GeV in the quantum theory. This is known

as the hierarchy problem in the Standard Model.

The next question is if we have any hint as to where the cutoff for the Standard Model lies.

Here, from what is already known, we have four different possibilities.

(a) If we assume that there are no new interactions among elementary particles, we will still

have to include gravitation, which is left out of the Standard Model, as it is too weak

at laboratory energies, to have any effect on the experimental results. The strength of

gravity grows, however, with energy, and around a value MP = G
−1/2
N it becomes as

strong as the Standard Model interactions. At this energy, the excitations of spacetime

itself, considered as a field, will have to be taken into account and hence, MP will act as

cutoff for the Standard Model. As MP ∼ 1019 GeV, this will make the hierarchy problem

extremely acute.

(b) If we consider the running of the Higgs self-coupling λ, purely within the Standard Model,

it turns out that λ→ 0 at an energy scale which varies from 109 GeV to MP , depending

on the choice of experimentally measured parameters used in the calculation. This would
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destabilise the electroweak vacuum, leading to a catastrophic situation which we know

has not occurred as the Universe cooled down from the Big Bang. The only way to avoid

this is to have some new phenomena occurring at a fairly high scale, say, 1010 GeV, which

would then be the cutoff for the Standard Model, and make the hierarchy problem very

acute.

(c) If the strong interactions do unify with the electroweak interactions in some way, we would

get a grand unified theory (GUT). If the GUT scale is ΛGUT, we would predict proton

decay to non-baryons with a lifetime τp ∼ Λ−1
GUT. Current experimental lower bounds on

τp push up ΛGUT ∼ 1017 GeV, which is not far from the Planck scale. Once again, such

a cutoff would make the hierarchy problem serious.

(d) The extremely small masses of neutrinos, and the surprising non-observance of lepton

number violation in the neutrino sector can be understood if there exist additional very

heavy neutrinos which mix with the known ones, driving their mass eigenvalues to very

small values. The masses of these heavy neutrinos can be anything from 104 GeV to

1010 GeV. If these are indicative of new physics at the corresponding energy scale, this

will serve as a cutoff for the Standard Model. In this case, too, there will be a hierarchy

problem. Even though perhaps not as acute as the previous three cases, this cutoff is still

too large to be accommodated by any reasonable combination of coupling constants and

loop factors.

It is clear, then, that the hierarchy problem in the Standard Model is a serious one, and cannot

be removed by any kind of redefinitions within the Standard Model itself. Some new physics is

required to prevent the Higgs boson mass from shooting up to the cutoff scale. There are many

different ideas for this, including compositeness and supersymmetry, but the one considered in

this work will be a revival of the original ideas of Kaluza and Klein in a way which bring the

Planck scale itself down to a few TeV or tens of TeV. These are described in the next section.

1.3.5 Energy Momentum Tensor and Trace Anomaly

An important aspect of this thesis will be the coupling of gravity with the Standard Model

fields, which occurs through the energy-momentum tensor Tµν corresponding to the Standard

Model fields. This is simply the Nöther current corresponding to Poincaré invariance of the

Standard Model Lagrangian.

The simplest way to calculate the symmetric gauge-invariant energy-momentum tensor Tµν is

to couple the gauge-invariant Standard Model Lagrangian LSM with an arbitrary metric gµν

and then calculate

TµνSM =

[
−2

δLSM

δgµν
+ gµνLSM

]
gµν=ηµν

(1.63)
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One may now calculate the energy-momentum tensor in the unitary gauge as

TµνSM = −
∑
f

(
ψ̄f (γµDν + γνDµ)ψf + ηµνψ̄f (i /D −mf )ψf

)
+

∑
A

(
FµβF νβ −

1

4
ηµνFαβFαβ −M2

AA
µAν +

1

2
ηµνM2

AA
αAα

)
− DµhDνh+

1

2
ηµνDαhDαh−

1

2
ηµνM2

hh
2 (1.64)

where the ψf are generic fermion fields, the A are generic gauge fields and the h is the Higgs

scalar.

A particularly interesting scenario is invariance of a theory under a scale transformation xµ →
x′µ = eσxµ whose infinitesimal form

xµ → x′µ = 1 + σxµ (1.65)

is like a translation of coordinates, i.e. within the set of Poincaré transformations. The conserved

current can be calculated as

jµ = Tµνxν (1.66)

and is called the dilatation current. It follows that

∂µj
µ = ∂µ (Tµνxν) = Tµµ (1.67)

which is the trace of the energy-momentum tensor. One may now calculate the trace of TµνSM as

(TSM)µµ =
∑
A

M2
AA

µAν +
∑
f

mf ψ̄fψf − 2M2
hh

2. (1.68)

showing that the unbroken gauge theory with massless particles is a scale-invariant theory.

The above results, derived for the SM as a classical theory, does not hold when we consider the

corresponding quantum field theory. This can be easily understood from the fact that couplings

without any classical mass dimensions run as the scale changes. The running of the coupling

constants go as
∂g(t)

∂ ln t
= β(g) (1.69)

i.e.

g(t) =

∫ t

β (g) d ln t′ (1.70)

where t is the scale at which g is calculated and β(g) is the corresponding beta function. For

an infinitesimal scaling xµ → eσxµ

g → g + σβ(g) (1.71)

and the corresponding change in the Lagrangian is

L → L+ σβ(g)
∂

∂g
L (1.72)

This immediately implies that this change in the Lagrangian will contribute an extra term –

called the trace anomaly – to the right side of Eq. (1.67).
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If we calculate from the Lagrangian with this prescription, the energy-momentum tensor will

be neither symmetric nor gauge invariant. However, one can easily rescale Aµ → 1
gAµ to bring

all the g dependence to the gauge kinetic term

L = − 1

4g2
FαβFαβ (1.73)

This automatically gives a gauge invariant trace anomaly

AT =
β(g)

2g3
FαβFαβ (1.74)

We need to rescale Aµ → gAµ again, so that, the gauge fields are consistent with the Eq. (1.68).

The trace anomaly term finally reads as

AT =
β(g)

2g
FαβFαβ (1.75)

Without loss of generality, we can extend this analysis to all the gauge groups in the Standard

Model, obtaining

AT =
β(g′)

2g′
BαβBαβ +

β(g)

2g
Wαβ aW a

αβ +
β(gs)

2gs
Gαβ aGaαβ (1.76)

As the beta functions in the Standard Model are well-known, calculation of the trace anomaly

is a straightforward business.

1.4 Solving the Hierarchy Problem with Extra Dimensions

The only new scale achievable in the Kaluza-Klein theory was, as we have seen, the Planck

scale, and this arose from the identification of the charge quantum κ/Rc with e, the coupling

constant of electromagnetism. Insofar as the original Kaluza-Klein theory was a unified theory

of gravity and electromagnetism, no other choice was possible. However, with the development

of gauge field theory, there was no further need to identify the off-diagonal block of the met-

ric tensor with the electromagnetic field, or the charge quantum κ/Rc with electric charge e.

This realisation inspired the development of the so-called brane-world models, some aspects of

whose experimental realisations form the theme of this thesis. The first of these was the model

with large extra dimensions, proposed by Arkani-Hamed, Dimopoulos and Dvali (1998) [6, 7],

which goes by the name ‘ADD model’. An improved variant was a model with a warped ex-

tra dimension, proposed (1999) by Randall and Sundrum [8, 9], which goes by the name ‘RS

model’. Countless variations of these original models have been proposed in the literature, but

the essential features of all these are borrowed from either the one or the other. In this section,

both the ideas are explained in brief.

1.4.1 Large Extra Dimensions

The idea of ADD was simply the introduction of n extra compact dimensions similar to the

Kaluza-Klein theory. Each of the n extra dimensions has the topology of a circle and together

they form a n-torus. If each of these circles has radius Rc, the line element of the free space

will be

dŝ2 = ηµνdx
µdxν −R2

c

(
dφ2

1 + dφ2
2 + · · ·+ dφ2

n

)
≡ ĝMNdx

MdxN (1.77)
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where ηµν = diag(1,−1,−1,−1) and 0 ≤ φi < 2π are angular coordinates of the extra dimen-

sions. Distortions of the off-diagonal components of ĝMN are not identified with any known

interaction field, and hence, there is no theoretical constraint on the value of Rc. The ADD

construction envisages values of Rc as large as a millimetre, or a tenth of a millimetre. However,

there exist stringent experimental constraints from experiments, including the ones at the LHC,

which seem to confirm the 4D Standard Model to a high degree of precision to energy scales of

a TeV or more, i.e. length scales as small as 10−20 m, and seem to rule out the possibility of

millimetre-sized extra dimensions. It is, therefore, postulated that the (4+n)-dimensional space

has a 4D topological defect – a vortex, or a domain wall, or a D-brane of string theory – and

that the Standard Model fields are confined to this 4D subspace. The whole (4+n)-dimensional

space is called the bulk while the 4D subspace supporting the Standard Model fields is called

the brane.

We now take up the question of why the ADD construction requires the assumption of large

extra dimensions (LED) of the size of a millimetre or so. This is because this would solve the

hierarchy problem in the Standard Model. To see this we start, as in the Kaluza-Klein theory,

from the 4D Einstein-Hilbert action of general relativity

S =
M̄2
P

2

∫
d4x
√
|g| R (1.78)

where M̄P = MP /
√

8π is the reduced Planck mass and R is the 4D Ricci scalar. In the

(4+n)-dimensional space, or the bulk, the Einstein-Hilbert action will be

Ŝ = K̂

∫
d4+nx

√
|ĝ| R̂ (1.79)

where d4+nx = d4xdn~y. We need to determine the constant factor K̂ in Eq. (1.79). Since the

action is invariant under general coordinate transformations, we can choose coordinates which

have the dimension of length, in which case, the mass dimensions of different quantities involved

in the action are given by [ĝMN ] = [ĝ] = 0 and
[
R̂
]

= 2. Now, in order for the action to be

dimensionless we need [
K̂
]

= 2 + n (1.80)

In analogy with the 4D action, we identify

K̂ =
M2+n
D

2(2π)n
(1.81)

where MD is the bulk Planck scale – or sometimes, string scale. For an n-torus, the volume of

the extra dimensional space is given by∫
dn~y = (2πRc)

n (1.82)

and the bulk action can be written as

Ŝ =
M2+n
D

2(2π)n

∫
d4+nx

√
|ĝ| R̂ (1.83)

=
M2+n
D Rnc

2

∫
d4x
√
|g| R (1.84)
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Comparing Eq. (1.78) with the first term in Eq. (1.84) leads to

M2+n
D =

M2
P

8πRnc
(1.85)

which relates the bulk Planck mass MD to the 4D Planck mass MP . This bulk Planck scale

plays the role of the cutoff Λ for the Standard Model in this scenario, for at these energies

gravity becomes strong in the bulk and these effects will manifest in the brane as well. Thus,

we can have a solution to hierarchy problem if we can bring the bulk Planck scale MD to be

in the range of a TeV, or a few tens of TeV. For this we must choose the size of the compact

dimensions as

Rc ∼ 10
30
n
−17 cm

(
1 TeV

MD

)1+ 2
n

(1.86)

If we put MD ∼ 1 TeV, then Rc ∼ 1013 cm for n = 1, which is not acceptable since this will

modify the laws of gravity at the scale of solar system (1 A.U. ' 1.5×1013). For n = 2, however,

Rc ∼ 0.1 mm, which is barely acceptable, since modern gravity experiments puts bounds on the

length of extra dimensions Rc ≤ 30 µm [10], but it becomes acceptable if we set MD ' 1.7 TeV.

If n > 2, the permissible values of Rc are perfectly consistent with pure gravity experiments, for

MD ∼ TeV or more. Thus, with these caveats in mind, it is perfectly possible to have MD of a

few TeV or more, providing an automatic cutoff for the Standard Model and hence ameliorating

the hierarchy problem. This ingenious idea is called the ADD model.

1.4.2 Warped Extra Dimensions

Though startling in its simplicity and elegance, the ADD model has a basic fault. It works

perfectly if gravity is considered as a classical background field, but the moment we allow gravity

to become dynamical and assume quantisation, it turns out that large compact dimensions are

unstable under radiative corrections and collapse to the Planck length Rc ∼M−1
P , sending MD

shooting up to MP and reinstating the original hierarchy problem.

A more subtle idea, which improves on the simple ADD Model was proposed by Randall and

Sundrum (RS). This solution also relies on bringing down the bulk Planck scale to a scale near

to Mh. The proposed solution is again introduction of one extra spatial dimension with a non-

factorizable geometry, being a circle folded about a diameter (S1/Z2). The line element in this

space is taken as (see below)

dŝ2 = e−2KRcφηµνdx
µdxν −R2

cdφ
2 ≡ ĝMNdx

MdxN (1.87)

where Rc is again the radius of the extra dimension and K is a constant curvature of the order

of Planck scale. We see that the 4D Minskowski metric ηµν is multiplied by a ‘warp’ factor

e−2KRcφ, and hence this is often called a warped extra-dimensional model. The Z2 orbifolding

with S1 corresponds to the symmetry associated with the transformation

φ→ φ+ 2π, φ→ −φ (1.88)

The points φ = 0 and φ = π are the fixed points under these transformations, and, in the 5D

bulk, represent topological defects, where it is natural to place two different branes, each with

some kind of matter confined on it. The mass parameter on the brane located at φ = 0 does not
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get warped while the mass parameter on the brane located at φ = π gets warped by a factor

e−πKRc . Hence these branes are called ultraviolet (UV) and infrared (IR) branes respectively.

The Standard Model fields are confined to the IR brane.

If we now take the usual action for a Higgs field h in the bulk

Sh =

∫
d5x
√
ĝ

[
1

2
ĝµν ∂µh ∂νh− µ2 h2 − λ

4
h4

]
(1.89)

this appears as a normal Higgs action on the UV brane, but on the IR brane, it becomes

Sh =

∫
d4x

[
e−2πKRc 1

2
ηµν ∂µh ∂νh− e−4πKRcµ2 h2 − e−4πKRc λ

4
h4

]
(1.90)

In order to get the kinetic term in canonical form we need to renormalise the scalar field by a

transformation h→ eπKRch, which gives

Sh =

∫
d4x

[
1

2
∂µh ∂µh− e−2πKRcµ2 h2 − λ

4
h4

]
(1.91)

It follows that the vev of the the Higgs field and its mass, which appear in the bulk as v0 =√
µ2/λ and Mh0 =

√
2µ will appear on the IR brane as

v = e−πKRc

√
µ2

λ
, and Mh = e−πKRc

√
2µ (1.92)

If we can now tune KRc ' 11.6, we can bring down the Higgs mass scale µ which is ∼MP in this

model, to ∼TeV. We have already seen that quantum corrections on a bare mass around MP

will keep it in the same ballpark. The physical mass, after inclusion of all corrections, will then

get ‘warped down’ on the IR brane to the observed value. In fact, any mass scale, including a

Planck-scale cutoff for the theory will get similarly ‘warped down’, so that a high-scale cutoff

of the theory will appear on the IR brane as a TeV-scale cutoff. This gives a nice solution to

the hierarchy problem in the SM without having any parameter which is unnaturally large or

small.

The RS solution obtained above depends crucially on having a metric of the form exhibited

in Eq. (1.87). The metric can be obtained from the solution of Einstein’s equations in the

bulk with a negative cosmological constant Λ̂. It also needs the existence on the two branes of

brane-localized 4D cosmological constants V0 and Vπ at φ = 0, and φ = π respectively. The 5D

bulk action becomes

Ŝ =

∫
d5x

[√
ĝ
(
−Λ̂ + 2M̂3R̂

)
+
√
−ĝ0 V0 δ(φ) +

√
−ĝπ Vπ δ(φ− π)

]
(1.93)

where ĝ0, ĝπ are the induced metric on the two UV and IR branes respectively, M̂ is the 5D

bulk Planck mass and R̂ is 5-dimensional Ricci scalar. Einstein’s equations for the above action

are√
ĝ

(
R̂MN −

1

2
ĝMNR̂

)
= − 1

4M̂3

[
Λ̂
√
ĝ ĝMN + V0 ĝ0,µν δ

µ
Mδ

ν
N δ(φ) + Vπ ĝπ,µν δ

µ
Mδ

ν
N δ(φ− π)

]
(1.94)

If we take an ansatz for the metric which obeys Poincaré invariance

ds2 = e−2A(φ)ηµνdx
µdxν +R2

cdφ
2 (1.95)
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then the equations for A(φ) are

6A′

R2
c

= − Λ̂

4M̂3
(1.96)

3A′′

R2
c

=
V0

4M̂3Rc
δ(φ) +

Vπ

4M̂3Rc
δ(φ− π) (1.97)

The solution to Eq. (1.96), consistent with the orbifold symmetry, is

A(φ) = KRc|φ| (1.98)

where K =

√
− Λ̂

24M̂3
. and, from Eq. (1.97) we get

V0 = −Vπ =

√
−24Λ̂M̂3 (1.99)

These relations between the boundary and bulk cosmological constant are required to obtain

the solution for the metric. We note that Λ < 0 in order to get a real curvature K, and this

makes the bulk an anti-de Sitter space, usually denoted AdS5.

The RS model, therefore, also requires a fine tuning – at the classical level – of the cosmological

constants in the bulk and on the two branes. The minimal model does not seek to find a

dynamical explanation of this. The viability of the model also depends crucially on the exact

tuning KRc ' 11.6, any deviation from which would cause large changes in the Higgs boson

mass. A dynamical explanation of this will be discussed in the next chapter.



Chapter 2

Phenomenology of Extra Dimensions

We now consider the models of extra dimensions introduced in the previous chapter and in-

vestigate their phenomenological consequences. We first discuss some generic features of 4D

Einstein gravity, which are reflected in higher-dimensional theories. We then take up the model

of large extra dimensions, where n compact spatial extra dimensions were introduced. Finally

we go on to the RS model, with a warped extra dimension, which has similar features, but also

important differences.

2.1 Einstein gravity in the weak-field limit

Though most of the material in this section is to be found in any textbook on General Relativity,

the discussions in this section closely follow the discussions of Refs. [5, 11].

The 4D invariant action of General Relativity, in the presence of matter fields, is given by

S =
1

κ2

∫
d4x
√−gR+

∫
d4x
√−gLm (2.1)

where κ2 = 16πGN and R is the Ricci Scalar. By varying the action, we get Euler-Lagrange

equations of motion which are the Einstein equations

Rµν −
1

2
gµνR =

κ2

√−g

[
∂ (
√−gLm)

∂gαβ
− ∂λ

∂ (
√−gLm)

∂ (∂λgαβ)

]
gαµ gβν ≡ −

κ2

2
Tµν (2.2)

where Tµν is the energy-momentum tensor and is given by Eq. (1.63). Multiplying by gµν both

the sides of Eq. (2.2) and summing over µ and ν indices, we get a relation between R and the

trace of the energy-momentum tensor

R =
κ2

2
Tαα (2.3)

and then substituting the value of R in Eq. (2.2), we get

Rµν = −κ
2

2

(
Tµν −

1

2
gµνT

α
α

)
≡ −κ

2

2
Sµν (2.4)

If the matter density Sµν is not very large, the right side can be treated perturbatively, and

the metric will be nearly flat and constant and can be expanded around a constant background

19
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metric. Since, in practice, the physical world can be described very well by Minkowski metric,

the background metric can be taken to be ηµν . So,

gµν = ηµν + κhµν +O(κ2) (2.5)

where κ is the parameter for expansion. This is known as the weak field approximation. One

can easily see that the value of κ =
√

16πGN ∼ 10−19 GeV−1 is indeed small compared to

the energy scale currently available in present day experiments, and therefore, the weak-field

approximation is justified.

Now, using this, the Ricci tensor and Ricci scalar can be computed as

Rµν =
1

2
κ
[
∂µ∂νh+�hµν − ∂µ∂λhλν − ∂λ∂νhλµ

]
+O(κ2) (2.6)

R = κ
[
�h− ∂µ∂ν hµν

]
+O(κ2) (2.7)

where h = hµµ = ηµνhµν , and, therefore, Einstein’s equation can be written as

�hµν + ∂µ∂νh− ∂µ∂λhλν − ∂λ∂νhλµ = −κSµν (2.8)

This is a linear inhomogeneous differential equation of second order in hµν , but obviously, finding

a Green’s function for it is extremely difficult. Fortunately, the equations can be simplified using

a standard trick.

We note that under an infinitesimal coordinate transformation

xµ → x′µ = xµ + ξµ(x) (2.9)

the metric transforms as

gµν → g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (2.10)

which gives

hµν → h′µν(x′) = hµν(x)− ∂µξν(x)− ∂νξµ(x) (2.11)

This looks exactly like a gauge transformation and it is straightforward to show that the action

is indeed invariant under this transformation (as it should be). Now, we simply choose a gauge

which will simplify the equation of motion for the field hµν , just as we choose the Lorenz gauge

in electromagnetism. Thus, we choose the harmonic or de Donder gauge

∂λh
λ
ν −

1

2
∂ν h = 0 (2.12)

which will simplify the Eq. (2.8) as

�hµν = −κSµν (2.13)

which is the familiar inhomogeneous wave equation. In absence of matter fields, the equation

reduces to free field equation for hµν

�hµν = 0 (2.14)

The solution to the equation can be obtained as the plane wave solution

hµν(x) = Nk

[
εµν(k)eik.x + ε∗µν(k)e−ik.x

]
(2.15)
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One can show that out of 10 independent component of εµν only two components are inde-

pendent. Such gravity waves have been recently observed by the LIGO Collaboration and are,

therefore, experimentally established.

In this work, however, our interest lies in a quantum description of gravity. So, we start with

the Lagrangian of General Relativity which can be written, in the weak-field limit, as

1

κ2

√−gR =
1

4

(
∂µhαβ∂µh

αβ − ∂µh∂µh− 2∂µhµα∂νh
να + 2∂µhµα∂

αh
)

(2.16)

which is known as the Fierz-Pauli approximation. The Euler-Lagrange equation for the above

action is then

�
(
hµν −

1

2
h ηµν

)
= 0 (2.17)

The equation reduces to previously obtained equation, �hµν = 0, for the fluctuation of metric

hµν if we can set h = 0. This can be obtained by redefining hµν → hµν − 1
4hηµν . Now, we can

quantise the fluctuation of the metric as we do in a gauge theory with addition of gauge fixing

term and ghost terms. The quanta of the fluctuation of spin-2 metric, hµν is called graviton.

Also, we assume that the Feynman rules can be derived from the interaction Lagrangian like

the other theories.

It is known that the quantisation of hµν involves many subtle issues like non-renormalisability

etc. These will not be discussed in this work and we only assume that we can quantise the

theory. For our purpose, we do not go beyond the tree-level and hence issues arising due to

loop corrections will be, as it were, swept under the carpet.

2.2 Phenomenology of the ADD Model

2.2.1 ADD Feynman rules

We now extend our discussion to the ADD model with n extra dimensions. Before starting

the discussion on the ADD model per se, we write the metric for linearised gravity in higher

dimensions as follows

ĝMN = η̂MN + κ̂ĥMN (2.18)

where η̂MN = diag.(1,−1,−1, · · · ,−1) and the fluctuation of the metric can be written as

ĥMN = V −1/2
n

(
hµν + φ ηµν Aµi

Aiν φij

)
(2.19)

where Vn is the volume of the extra dimensional space, φ = φii and Aµi are off-diagonal elements

of the metric, which are like vector fields in the 4D world – as was considered in the original

Kaluza-Klein theory. Now, the Ricci tensor and Ricci scalar can be calculated and once again,

we can write Fierz-Pauli Lagrangian in the bulk as

1

κ̂2

√
|ĝ|R̂ =

1

4

(
∂M ĥAB∂M ĥ

AB − ∂M ĥ∂M ĥ− 2∂M ĥMA∂N ĥ
NA + 2∂M ĥMA∂

Aĥ
)

(2.20)

The equation of motion for ĥMN is

�̂(ĥMN −
1

2
ĥ ηMN ) = 0 (2.21)
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where ĥ = η̂MN ĥMN = ηµνhµν +4φ−2φii = h+2φ. The above equation with a gauge condition

ĥ = 0 can be reduced to

�̂
(
hµν −

1

2
hηµν

)
= 0

�̂Aµi = 0

�̂φij = 0 (2.22)

for different components in the ĥMN . These fields can be expanded as Fourier series on a n-torus

as

hµν(x, y) =
∑
~n

h(~n)
µν (x)ei~n·

~φ/Rc (2.23)

Aµi(x, y) =
∑
~n

A
(~n)
µi (x)ei~n·

~φ/Rc (2.24)

φij(x, y) =
∑
~n

φ
(~n)
ij (x)ei~n·

~φ/Rc (2.25)

where h
(~n)
µν , A

(~n)
µi , and φ

(~n)
ij are called KK modes on the 4D brane. These KK modes satisfy(

�+M2
~n

)(
h(~n)
µν −

1

2
h(~n)ηµν

)
= 0(

�+M2
~n

)
A

(~n)
µi = 0(

�+M2
~n

)
φ

(~n)
ij = 0 (2.26)

with the common mass of these KK states h
(~n)
µν , A

(~n)
µi , φ

(~n)
ij being

M2
~n =

~n2

R2
c

(2.27)

After KK decomposition, the bulk de Donder gauge condition

∂̂M
(
ĥMN −

1

2
ĥ η̂MN

)
= 0 (2.28)

will now reduce to

∂µh(~n)
µν −

1

2
∂µh(~n)ηµν +

i

Rc
niA

(~n)
νi = 0 (2.29)

∂µAµi +
i

Rc
njφ

(~n)
ij +

i

2Rc
nih

(~n) +
i

Rc
niφ

(~n) = 0 (2.30)

If we take a bulk gauge transformation

ξ̂M (x, y) =
∑
{~n}

ξ
(~n)
M (x) ei~n·φ/Rc (2.31)

then the fields transforms according to Eq. (2.11) as

ĥMN (x, y)→ ĥMN (x, y)− ∂M ξ̂N − ∂N ξ̂M (2.32)

which will give

hµν → hµν − ∂µξ̂ν − ∂ν ξ̂µ + ∂iξ̂iηµν (2.33)

Aµi → Aµi − ∂µξ̂i − ∂iξ̂µ (2.34)

φij → φij −
1

2

(
∂iξ̂j + ∂j ξ̂i

)
(2.35)
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In the Fourier modes the relation will become

h(~n)
µν → h(~n)

µν − ∂µξ(~n)
ν − ∂νξ(~n)

µ +
i

Rc
niξ

(~n)
i ηµν (2.36)

A
(~n)
µi → A

(~n)
µi − ∂µξ

(~n)
i − i

Rc
niξ

(~n)
µ (2.37)

φ
(~n)
ij → φ

(~n)
ij −

i

2Rc
ni ξ

(~n)
j − i

2Rc
nj ξ

(~n)
i (2.38)

This clearly shows that these fields do not remain invariant under bulk gauge transformations.

Han, Lykken and Zhang showed that it is possible to get bulk gauge invariant fields [11]. For

that, two projection operators are defined, viz.,

P
(~n)
ij = δij −

ninj
~n2

, and P̃
(~n)
ij =

ninj
~n2

(2.39)

and they satisfy

P
(~n)
ij P

(~n)
jk = P

(~n)
ik , P

(~n)
ij P̃

(~n)
jk = 0, P̃

(~n)
ij P̃

(~n)
jk = P̃

(~n)
ik (2.40)

P
(~n)
ii = n− 1, P̃

(~n)
ii = 1, niP

(~n)
ij = 0, niP̃

(~n)
ij = nj (2.41)

Then, the fields are redefined as

h̃(~n)
µν = h(~n)

µν − iRc
ni
~n2

(
∂µA

(~n)
νi + ∂νA

(~n)
µi

)
−1

3

(
P

(~n)
ij + 3P̃

(~n)
ij

)( 2

M~n
∂µ∂ν − ηµν

)
φ

(~n)
ij (2.42)

Ã
(~n)
µi = P

(~n)
ij

(
A

(~n)
µj − 2i

nj
~n2
∂µφ

(~n)
ij

)
(2.43)

φ̃
(~n)
ij =

√
2
(
P

(~n)
ik P

(~n)
jl + aP

(~n)
ij P

(~n)
kl

)
φ

(~n)
kl (2.44)

with a satisfying 3(n− 1)a2 + 6a− 1 = 0. It can be shown that these redefined physical fields

are bulk gauge-invariant. The masses of these physical KK states h̃
(~n)
µν , Ã

(~n)
µi , φ̃

(~n)
ij are also the

same as those of the original fields. Furthermore, the new fields also satisfy

∂µh̃
(~n)
µν = 0, h̃(~n) = 0,

∂µÃ
(~n)
µi = 0, ni Ã

(~n)
µi = 0, (2.45)

ni φ̃
(~n)
ij = 0

The physical states can be identified as

• h̃(~n)
µν : massive spin-2 states including ~n = ~0, which is massless

• Ã(~n)
µi : n− 1 massive spin-1 states; no zero mode

• φ̃(~n)
ij : n(n− 1)/2 massive spin-0 states; no zero mode
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φ̃(~n) = φ̃
(~n)
ii , known as graviscalar, is the physical dilaton mode. In terms of these physical fields

we can now write the Fierz-Pauli Lagrangian given in Eq. (2.20) as

L =
∑
{~n}

1

2

[
∂µh̃(~n)αβ ∂µh̃

(−~n)
αβ − ∂µh̃(~n) ∂µh̃

(−~n) − 2 ∂µh̃
(~n)µα ∂ν h̃

(−~n)
να

+ ∂µh̃(~n)
µα∂

αh̃(−~n) + ∂µh̃(−~n)
µα ∂αh̃(~n) −M2

~n

(
h̃(~n)αβ h̃

(−~n)
αβ − h̃(~n) h̃(−~n)

)]
+
∑
{~n}

n∑
i=1

[
−1

2
F̃

(~n)µν
i F̃

(−~n)
i µν +M2

~n Ã
(~n)µ
i Ã

(−~n)
i µ

]

+
∑
{~n}

n∑
i,j=1

[
1

2
∂µφ̃

(~n)
ij ∂µφ̃

(−~n)
ij − 1

2
M2
~n φ̃

(~n)
ij φ̃

(−~n)
ij

]
(2.46)

with F̃
(~n)
i µν = ∂µÃ

(~n)
νi − ∂νÃ

(~n)
µi . We can now find the free field equation for h̃

(~n)
µν , Ã

(~n)
µi , and φ̃

(~n)
ij

fields as

�

(
h̃(~n)
µν −

1

2
h̃(~n)ηµν

)
− ∂µ∂ρ

(
h̃(~n)
ρν −

1

2
h̃(~n)ηρν

)
− ∂ν∂ρ

(
h̃(~n)
µρ −

1

2
h̃(~n)ηµρ

)
−∂λ∂ρ

(
h̃

(~n)
λρ −

1

2
h̃(~n)ηλρ

)
ηµν +M2

~n

(
h̃(~n)
µν − h̃(~n)ηµν

)
= 0 (2.47)

∂µF̃
(~n)
i µν +M2

~nÃ
(~n)
νi = 0 (2.48)(

�+M2
~n

)
φ̃

(~n)
ij = 0 (2.49)

and the propagators for these fields are given by

i∆h̃
{αβ, ~n},{µν, ~m}

(
k
)

=
iδ~n,−~mPαβ, µν

k2 −M2
~n + iε

(2.50)

i∆Ã
{iµ, ~n},{jν, ~m}

(
k
)

= −
iδ~n,−~mP

(~n)
ij

(
ηµν − kµkν

M2
~n

)
k2 −M2

~n + iε
(2.51)

i∆φ̃
{ij, ~n},{kl, ~m}

(
k
)

=
i

2

δ~n,−~m

(
P

(~n)
ik P

(~n)
jl + P

(~n)
il P

(~n)
jk

)
k2 −M2

~n + iε
(2.52)

where

Pαβ, µν
(
k
)

=

(
ηαµ −

kαkµ
M2
~n

)(
ηβν −

kβkν

M2
~n

)
+

(
ηαν −

kαkν
M2
~n

)(
ηβµ −

kβkµ

M2
~n

)
−2

3

(
ηαβ −

kαkβ
M2
~n

)(
ηµν −

kµkν
M2
~n

)
(2.53)

In the ADD model, SM fields are confined to the brane situated at ~y = ~0. The action for

minimal interactions of SM fields with gravity would be

S =

∫
d 4+nx

√
|ĝind| Lm

(
Φ, Vµ,Ψ

)
(2.54)

where ĝind is the induced metric on the 4D brane and Lm represents matter Lagrangian con-

taining scalar, vector, or fermionic fields which are represented by Φ, Vµ, and Ψ respectively.

The fluctuation of metric field, graviton, interacts with matter fields via the following action

S =

∫
d 4+nx

δ
(√
|ĝind| Lm

)
δĝMN

∣∣∣∣
η̂MN

δĝMN (2.55)
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Now, recalling that δĝMN = κ̂ĥMN and SM fields are confined to 4D brane, we can write the

above equation as

S =
κ̂√
Vn

∫
d 4x

δ (
√−gLm)

δgµν

∣∣∣∣
ηµν

(hµν + φ ηµν) (2.56)

= −κ
2

∫
d 4x Tµν (hµν + φ ηµν) (2.57)

where κ ≡ κ̂√
Vn

= 16πGN and Tµν is the energy-momentum tensor defined in Eq. (1.63). We

have used the approximation g = 1 +O(κ) in the expression of the energy-momentum tensor,

Tµν , in the Eq. (2.57) . In terms of physical KK modes, the interaction Lagrangian becomes

Lint = −κ
2

∑
{~n}

(
Tµν h̃(~n)

µν + ωφ̃(~n)Tµµ

)
(2.58)

with ω =
√

2
3(n+2) . We can now substitute the energy-momentum tensor for SM matter fields

as given in Eq. (1.64) to get interaction terms for gravity-matter interaction. The Lagrangian

for gravity-matter interaction becomes

• for a scalar field Φ,

L(~n)
Φ = −κ

[(
h̃(~n)
µν −

1

2
ηµν h̃

(~n)

)
DµΦ†DνΦ +

1

2
h̃(~n)m2

ΦΦ†Φ

− ωφ̃(~n)
(
DµΦ†DµΦ− 2m2

ΦΦ†Φ
)]

(2.59)

• for gauge bosons Vµ,

L(~n)
V = −κ

[
1

8

(
h̃(~n)ηµν − 4h̃(~n)

µν

)
Fµβ F

νβ − 1

4

(
h̃(~n)ηµν − 2h̃(~n)

µν

)
m2
V V

µV ν

− h̃
(~n)

2ξ

(
∂µ∂νV

µV ν +
1

2
∂µV

µ∂νV
ν

)
+
h̃

(~n)
µν

ξ
∂µ∂βV

βV ν

−ω
2
m2
V φ̃

(~n)V µVµ +
ω

ξ
∂µφ̃

(~n)∂νV
νV µ

]
(2.60)

• for fermion fields Ψ

L(~n)
Ψ = −κ

2

[(
h̃(~n)
µν − ηµν h̃(~n)

)
ΨiγµDνΨ +mΨh̃

(~n)ΨΨ +
1

2
Ψ iγµ

(
∂ν h̃(~n)

µν − ∂µh̃(~n)
)

Ψ

−3ωφ̃(~n)Ψi /DΨ + 4ωmΨφ̃
(~n)ΨΨ− 3ω

2
∂µφ̃

(~n)ΨiγµΨ

]
(2.61)

One can now get the Feynman rules at tree-level for the gravity-matter interaction and study

phenomenology of the model. However, we need to be cautious about studying higher order

correction in the loop level since quantum theory of gravity is nonrenormalizable.

From the above we can deduce some important features of ADD phenomenology.
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• There is one 4D spin-2 state h̃
(~n)
µν and one scalar state φ̃(~n) = φ̃

(~n)
ii for each KK mode which

will interact with SM fields, which are confined to the brane. The graviton couples to the

SM particles via energy-momentum tensor while the graviscalar interacts via the trace

of energy-momentum tensor. Since the graviscalar couples to the trace of the energy-

momentum tensor, it does not couple to the massless gauge bosons and fermions.

• The other states, Ã
(~n)
µi and φ̃

(~n)
ij , though they are there in bulk, do not interact with the

SM fields on the brane at the tree-level.

• The coupling of h̃
(~n)
µν and φ(~n) to the SM particles are independent of flavour and colour,

but depends on the spin of the particles.

• The coupling does not depend on the KK mode of the KK graviton or KK graviscalar.

Hence, in a process, all the KK modes contribute with equal strength as long as their

masses are below the cutoff relevant to the process.

• The coupling of each KK graviton and KK graviscalar to matter particles, which goes as

κ, is so feeble that there is almost no possibility of detecting them in an experimental

detector and hence it will be missing in the detector. Like supersymmetric particles, they

will give signatures of missing energy at collider experiments.

2.2.2 ADD Mass Spectra of KK Modes

As we have seen in the previous subsection, the masses of ~n th KK state goes as

M2
~n =

~n2

R2
c

(2.62)

and hence the mass difference between nearest KK states is

∆M~n =
1

Rc
(2.63)

If we take large extra dimensions — e.g. Rc ∼ 10−10 m, which is many orders larger than the

Planck length 10−35 m — then

∆M~n =
1

Rc
∼ 2 keV (2.64)

If the typical energy of collider experiment is ∼TeV, there would be 109 states of KK gravitons

accessible in a typical scattering process. Hence, this mass spectrum, as far as today’s collider

experiments are concerned may be considered to form a quasi-continuum. On this nearly con-

tinuum mass spectrum sum on the modes can be replaced by an integral with density-of-states

of KK gravitons ∑
{~n}

−→
∫
dM ρ(M) (2.65)

where ρ(M) is the number density of KK graviton having mass between M and M + dM . As

the KK gravitons satisfy a mass relation

n2
1

R2
c

+
n2

2

R2
c

+ · · ·+ n2
n

R2
c

= M2
~n (2.66)
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the density-of-state function will be

ρ(M) dM =
2π

n
2Rnc

Γ
(
n
2

) Mn−1dM (2.67)

Since MD is a more convenient parameter to work with, we replace Rc using Eq. (1.85) to get

ρ(M) dM =
1

κ2

4π
n
2

Γ
(
n
2

) Mn−1

Mn+2
D

dM (2.68)

where κ =
MP√
16π

. This κ−2 factor in front of the density-of-state expression will be cancelled

by the coupling κ2 of the graviton in the squared amplitude. Thus, in a process where a real

graviton is emitted, if the centre-of-momentum energy of the experiment is E, the number of

KK modes, collectively, gives a contribution

∼
(
E

MD

)n+2

(2.69)

This is suppressed by the bulk Planck scale, MD, rather than the 4D Planck scale, MP , and

makes the effective interaction of electroweak strength rather than the much weaker gravitational

strength.

2.2.3 Graviton Processes

At the tree-level, there are two types of processes where ADD graviton KK modes can contribute

[5, 11]. We discuss these separately in the following.

Emission of Real KK States

Like other particles in the Standard Model, KK states – both graviton and graviscalar – can be

produced in scattering processes. An example of such a process is

A+B −→ X + h̃(~n)
µν (2.70)

This type of process will be relevant in different types of experiments as well as in astrophysical

considerations.

In astrophysical processes, emission of KK gravitons will accelerate cooling of supernova by

carrying away a substantial part of the energy. As explained in the previous subsection, there

will be a huge number of KK modes contributing to the cooling dynamics of astrophysical

bodies. These types of processes in the ADD model has been studied in the literature in the

context of neutron stars [12] and supernovae [13] cooling. These give lower bounds on MD at

∼10 TeV for n = 3; the bound is less for higher numbers of extra dimensions.

At a collider, as mentioned earlier, KK gravitons cannot be detected in a detector and will give

rise to missing energy signals. All the KK modes with masses upto the kinematical limit, which

is close to the machine energy in most of the processes, will contribute to the same signal. The

processes with each KK mode labelled by ~n correspond to different processes and will be added

incoherently. If the centre-of-mass energy of a collider is Ecm, the total cross-section will go as

σ =
∑
{~n}

σ~n ∼
1

E2
cm

(
Ecm
MD

)n+2

(2.71)
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This, again, is suppressed only by powers of the bulk Planck scale and may be observable. This

will be discussed more elaborately in Chapters 5 and 6.

Exchange of Virtual KK States

KK gravitons and graviscalars can also appear as virtual states in a scattering process. Since

KK modes couple to SM particles irrespective of their flavour or colour, every neutral current

interaction, mediated by photon, Z boson or Higgs boson, will also have a graviton/graviscalar-

mediated counterpart. One such example is shown in Figure 2.1 where a KK graviton and a

f

f̄

f ′

f̄ ′

φ̃(~n)

f

f̄

f ′

f̄ ′

h̃(~n)
µν

Figure 2.1: Feynman diagram of a process involving exchange of virtual KK states.

graviscalar is getting exchanged in the process ff̄ → f ′f̄ ′, and there are, of course, SM diagrams

in addition to the diagrams shown in Figure 2.1. The amplitude for the process can be written

as

iM = iMSM +
∑
{~n}

iM(~n) (2.72)

where the subscript ‘SM’ stands for the Standard Model contribution and the sum is over KK

modes. Here, unlike the real graviton emission process, the final states are the same for all

values of ~n and hence the the summation over KK modes are done in a coherent fashion, i.e.

at the amplitude level. The summation can then be approximated as an integration with the

appropriate density-of-states function described in the previous subsection. Since the mass of

the KK mode appears only in the propagators, we can factor out the summation part and the

part which is not dependent on the KK mode [5]

∑
{~n}

M~n =

∑
{~n}

κ2

q2 −M2
~n + iε

M−→ (∫
dM

κ2ρ(M)

q2 −M2 + iε

)
M (2.73)

where M is the part independent on KK mode numbers and is like a contact interaction.

The upper limit for the integration in Eq. (2.73) is not pre-defined. A natural choice is the

bulk Planck scale, MD, where the quantum effects for gravity becomes important and the

decomposition into KK modes should break down. The term in parentheses in Eq. (2.73) can

now be treated as an effective coupling for the contact interaction [5]

Geff '
λn
M4
D

(2.74)

where λn is a constant dependent on the number n of extra dimensions. Thus, we get an effective

contact interaction, with the scale being the bulk Planck mass. The dependence on the exact
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choice of the cut off for the mass of accessible KK mode is very small, but the dependence is

slightly more sensitive to the number of extra dimensions [5].

2.3 RS Model and Phenomenology

When we consider the RS model with a warped extra dimension, we again have a spacelike extra

dimension of length very close to the Planck length. The Standard Model fields are confined

to the IR brane and hence, we need to develop Feynman rules on the IR brane, in a manner

similar to that done for the ADD model. However, in this case, the geometry is not flat, as it

was in the ADD model, and hence we must take into account the metric

dŝ2 = e−2KRcφ ηµν dx
µdxν −R2

cdφ
2 ≡ ĝMNdx

MdxN (2.75)

with

φ→ φ+ 2π, φ→ −φ (2.76)

We require to find the KK modes of the graviton in this geometry and then determine their

interactions with the fields confined to the IR brane.

2.3.1 RS Graviton

If we start from the general coordinate invariant Lagrangian in RS model given in Eq. (1.93),

we can get 4D effective action after integrating over the extra dimension

Seff = 2M̂3

∫
d4x

∫ π

−π
dφRc e

−2KRc|φ|√gR (2.77)

where g, and R are the determinant of the 4D metric and the 4D Ricci scalar respectively. On

the IR brane, the action becomes

S
(IR)
eff =

2M̂3

K
[
1− e−2πKRc] ∫ d4x

√
gR (2.78)

This should correctly reproduce the 4D effective action given in Eq. (1.78) on IR brane since

all the experimental results are consistent with the 4D universe. Hence, matching this with the

4D action gives a relation between the 4D Planck mass and the 5D Planck mass

M2
P =

32πM̂3

K
[
1− e−2πKRc] (2.79)

This tells us that the Planck mass is not very sensitive to the radius of the extra dimension.

However, as we noticed in Chapter 1, the stability of the size of the extra dimension plays an

important role in warping down the mass scale at the TeV brane.

If we now consider the fluctuation of the 4D metric with respect to the background metric ηµν ,

just as we did in the previous section, the line element in the bulk with the fluctuation is given

by

dŝ2 = e−2KRc|φ|(ηµν + hµν
)
dxµdxν −R2

cdφ
2 (2.80)

The equation of motion of the graviton, hµν , can be obtained by varying the action. In the

warped geometry, the harmonics are Bessel functions of order unity and it is in terms of these
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Figure 2.2: Branching fraction of lightest RS graviton in different decay channels.

that the Fourier expansion should be made. The Fourier coefficients, as in the ADD case, will be

the KK modes of the 5D graviton on the 4D IR brane. The mass spectrum of the KK graviton

is given by [14,15]

Mn = πjnKe−πKRc (2.81)

where jn are the zeros of Bessel function i.e. J1(jn) = 0. The values of jn roughly go as

(n + 0.25), which means that the masses of KK gravitons are well separated and separation

is around the scale of a TeV. This is quite different from the gravitons in the ADD model

where the KK modes form a quasi-continuum of masses. In the RS model, the graviton KK

modes, having masses ∼TeV, can be observed as resonances at a TeV collider such as the LHC.

As we can see from Figure 2.2 the dominant decay mode for such a graviton is into dijets.

However, the cleanest channels in a hadron collider are diphoton and dilepton, hence, even if

the corresponding branching ratios are small, they give stronger bounds on the graviton masses.

At the 13 TeV LHC, these have been studied by ATLAS (CMS) in diphoton (dilepton) channel

with 36.7 (2.7) fb−1 of data yielding a bound of 4.1 (3.1) TeV bound on the mass of lightest

KK graviton.

2.3.2 Goldberger-Wise Stabilisation and the Radion

In the RS model, there is a single graviscalar, but its phenomenology is somewhat different

from the ADD case. We have already mentioned that in the case of a warped extra dimension

the solution to the hierarchy problem relies on bringing down the mass scale at TeV brane by a

factor of e−πKRc with respect to the mass scale at the UV brane i.e. MPl ∼ 1019 GeV to a TeV,

for which we need KRc ' 11.6. Since the factor is in the exponent, a small fluctuation in the

radius of the extra dimension, which may be generated from the fluctuation of the background

geometry, leads to large fluctuations in the mass scale at the TeV brane. Thus, a dynamical

means of stabilisation requires to be added to the minimal RS model. To see this, with the
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fluctuation the distance function can be written as

dŝ2 = e−2T (x)|φ|gµν(x)dxµdxν −
[
T (x)

K

]2

dφ2 (2.82)

where gµν is the 4D metric and T (x) is called the modulus field. With this geometry, the

Einstein-Hilbert action in 5D

Ŝ = 2M̂3

∫
d4x dφ

√
ĝ R̂ (2.83)

can be reduced to an effective action in terms of 4D massless modes T (x) and gµν(x) as

Ŝ =
2M̂3

K

∫
d4x dφ

√−g e−2|φ|T
[
6|φ|∂µT∂µT − 6φ2T∂µT∂

µT + T R
]

(2.84)

where g, and R are the determinant of the metric and the Ricci scalar in 4D respectively. After

integrating over φ we get

Ŝ =
2M̂3

K

∫
d4x
√−g

(
1− e−2πT

)
R+

12M3

K

∫
d4x
√−g∂µ

(
e−2T

)
∂µ
(
e−2T

)
. (2.85)

If we reparametrise the modulus field T (x) as a graviscalar

χ(x) = fe−πT (x) (2.86)

with f =

√
24M̂3

K then the action becomes

Ŝ =
2M̂3

K

∫
d4x
√−g

[
1−

(
χ(x)

f

)2
]
R+

1

2

∫
d4x
√−g ∂µχ(x) ∂µχ(x) . (2.87)

The last term in the action is, clearly, the kinetic term of the graviscalar χ(x). We observe that

this is a massless free field and it can have any vacuum expectation value 〈χ(x)〉 whatsoever.

Since Rc = 〈T (x)〉 = − 1
π ln

(
1
f 〈χ(x)〉

)
it follows that Rc can be completely arbitrary.

A mechanism for stabilization of Rc was proposed by Goldberger and Wise [16]. For this, a real

scalar bulk field B̂(x̂) is added with potential terms on the Planck (UV) and TeV (IR) brane

at φ = 0 and φ = π respectively. The action is, then, given by

S = Sbulk + SUV + SIR (2.88)

where Sbulk, SUV and SIR are the action in the bulk, the UV brane and the IR brane respectively.

They are given by

Sbulk =

∫
d4x dφ

√
ĝ

(
1

2
∂AB̂ ∂

AB̂ − 1

2
M2
BB̂

2

)
, (2.89)

SUV = −
∫
d4x dφ

√
−ĝ0 λh

(
B̂2 − V 2

0

)2
δ(φ), (2.90)

SIR = −
∫
d4x dφ

√
−ĝπ λh

(
B̂2 − V 2

π

)2
δ(φ− π) (2.91)

where the subscripts 0 and π represent the labels for UV and IR branes respectively. Due to

the presence of these brane potential terms, B̂ develops a φ-dependent vev. The vev for B̂ can
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be determined by solving the equations of motion. Then, inserting the solution into the bulk

scalar action, and integrating over φ, we get a potential term for the field χ(x)

V (χ) =
K3

144M̂6
χ4

[
Vπ − V0

(
χ

f

)α]
(2.92)

with α = M2
B/4K2 � 1. It is clear from Eq. (2.92) that the potential has a minimum at

〈χ〉
f

=

(
Vπ
V0

)1/α

(2.93)

or

KRc = 〈T (x)〉 =
4K2

πM2
B

ln
Vπ
V0

(2.94)

The value of KRc can be set to ' 11.6 without any extreme fine tuning of the parameters of

the theory. If, however, one calculates V ′′(χ) at χ = 〈χ〉, we will get

V ′′(〈χ〉) ∝ e2πKRc (2.95)

which is very large since e2πKRc ∼ 1032. This shows that the minimum is a very sharp one and

hence we get a good mechanism for stabilisation of the modulus field T (x).

Now, if we expand the graviscalar field χ around 〈χ〉 = Λϕ

χ = Λϕ + ϕ. (2.96)

the value at the minimum of the potential gives the mass and coupling of the ϕ field to other

fields. This ϕ field is usually called the radion. The mass of radion is obtained as

M2
ϕ =

∂2V (χ)

∂χ2

∣∣∣∣
Λϕ

=
a2V 2

IRK3

72M6
Λ2
ϕ =

V 2
IRK2a2

3M3
e−2πKRc (2.97)

where we replace Λϕ with fe−πKRc which is the expectation value for the radius. Clearly, the

mass is suppressed by the same exponential factor e−πKRc as the KK gravitons and hence the

mass of the radion also comes in the TeV range. In fact, it is suppressed by another factor

of a and hence it is logical to think that the radion is lighter than the KK states of the bulk

graviton. Hence, it might well be the first signal for RS model to be discovered at colliders.

In the minimal RS model, as mentioned previously, all the matter fields are confined to the IR

brane situated at φ = π. Hence, the interaction between SM fields and radion – a part of the

5D gravitational field – arises from 4D general coordinate invariant matter field action

S =

∫
d4x dφ

√
|ĝπ| L̂m(ĝµνπ ) δ(φ− π) (2.98)

where L̂m is the Lagrangian containing matter fields and ĝπ, µν is the induced metric on the 4D

IR brane. For RS geometry with Goldberger-Wise stabilization mechanism, the latter is

ĝπ, µν = e−2πT (x)gµν (2.99)

where gµν is the usual 4D metric. After integration over φ, the 4D action will be

S =

∫
d4x
√−g e−4πT (x)L̂m(ĝµνπ ) (2.100)
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If we expand the the matter Lagrangian as a series in the metric,

L̂m = L̂(0)
m + L̂(1)

m + L̂(2)
m + · · · (2.101)

where L̂(n)
m contains nth powers of ĝµνπ , then on the TeV brane the Lagrangian will be expanded

as

L̂m = L(0)
m + e2πTL(1)

m + e4πTL(2)
m + · · · (2.102)

where the L(n)
m are terms containing nth powers of 4D gµν . Eq. (2.100), then, can be written as

S =

∫
d4x
√−g

[
e−4πT (x)L(0)

m + e−2πT (x)L(1)
m + L(2)

m + · · ·
]

(2.103)

=

∫
d4x
√−g

[(
χ(x)

f

)4

L(0)
m +

(
χ(x)

f

)2

L(1)
m + L(2)

m + · · ·
]

(2.104)

=

∫
d4x
√−g

[(
1 +

ϕ

Λϕ

)4

e−4πKRc L(0)
m

+

(
1 +

ϕ

Λϕ

)2

e−2πKRc L(1)
m + L(2)

m + · · ·
]

(2.105)

where we now write g for gπ in view of the fact that the IR brane is the observed Universe. After

absorbing powers of e−πKRc into the terms L(n)
m to redefine fields and mass parameters as was

also done in Eqs. (1.89 – 1.91), we get the four dimensional Lagrangian. After the expansion,

we get the action for radion field interacting with the matter field as

S =

∫
d4x
√−gLm +

∫
d4x
√−g ϕ

Λϕ

(
4L0

m + 2L1
m + · · ·

)
(2.106)

Clearly, the first integral is the general coordinate invariant Lagrangian on the IR brane and the

second term represents the coupling of radion field with the matter fields. The terms with matter

couplings with more than one radion which can be derived from Eq. (2.105) are not included in

the Eq. (2.106). On the other hand, Tµν as defined in Eq. (1.63) with the Lagrangian given in

Eq. (2.101), but in 4D, can be calculated as

Tµν = −2
∂

∂gµν

(
L(0)
m + L(1)

m + L(2)
m + · · ·

)
+ gµν

(
L(0)
m + L(1)

m + L(2)
m + · · ·

)
(2.107)

The trace of the energy-momentum tensor is given by

Tµµ = gµν Tµν (2.108)

= − 2gµν
∂

∂gµν

(
L(0)
m + L(1)

m + L(2)
m + · · ·

)
+ gµνgµν

(
L(0)
m + L(1)

m + L(2)
m + · · ·

)
(2.109)

= − 2
(

0 + L(1)
m + 2L(2)

m + · · ·
)

+ 4
(
L(0)
m + L(1)

m + L(2)
m + · · ·

)
(2.110)

= 4L(0)
m + 2L(1)

m + · · · (2.111)

where we use Euler’s theorem for homogeneous function to get the result after summing over

µ and ν. The term within parentheses in the last integral of Eq. (2.106) is the same as Tµµ

as given in Eq. (2.111). We can therefore conclude that the radion couples to the trace of the
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four-dimensional energy-momentum tensor. Hence, the coupling of ϕ to the matter field on 4D,

is given by

Lint(ϕ) =
ϕ

Λϕ
Tµµ (2.112)

The form of Tµµ for the SM Lagrangian as given in Eq. (1.68) suggests that the coupling of the

radion field is very similar to that of the SM Higgs. However, The Eq. (1.68) is not complete

since there is also a trace anomaly term. This makes the phenomenology of radion slightly

different for the massless gauge bosons. So, the complete Lagrangian for radion coupling to SM

fields is given by

Lint (ϕ) =
ϕ

Λϕ

(
Tµµ +AT

)
(2.113)

where, for SM Lagrangian, Tµµ and AT are given in Eq. (1.68) and Eq. (1.76) respectively. This

will play an important role in Chapter 3 and especially Chapter 4.



Chapter 3

Mixed Higgs-Radion States at the LHC

3.1 Introduction

In the previous chapter, we have discussed the model of Goldberger and Wise (1999) [16] who

rewrite the metric in Eq. (2.75) as

dŝ2 = e−2T (x)φηµνdx
µdxν −

[
T (x)

K

]2

dφ2 (3.1)

where the modulus field T (x) can be parametrised as a radion

ϕ(x) = Λϕ

(
e−π{T (x)−KRc} − 1

)
(3.2)

which has a vacuum expectation value

Λϕ =

√
24M̂3

K e−πKRc (3.3)

and a mass

M2
ϕ =

2K2

M̂3
(V0 − Vπ)2 e−2πKRc (3.4)

Because of the warp factor e−πKRc , both the radion mass Mϕ and the radion vacuum expectation

value Λϕ lie at or around the electroweak scale. Hence, it is easier, for phenomenological

purposes, to treat them as the free parameters in the theory, rather than the set
{
K, M̂ , V0, Vπ

}
.

It is also worth noting that if we let V0 = Vπ, in which case Eq. (3.4) tells us that the radion is

massless, we would also have Rc = 0 from Eq. (2.94), i.e. the two branes would coalesce and MH

immediately shoot up to M̂ — which takes us back to the Standard Model and the hierarchy

problem. We conclude, therefore, that V0 > Vπ and hence the radion must be massive. We have

also seen that its interactions with matter on the IR brane can be written as

Lint(ϕ) =
1

Λϕ
ϕ
(
Tµµ +AT

)
(3.5)

where Tµν is the tree-level energy-momentum tensor and AT is the trace anomaly. For on-shell

particles, the tree-level Tµµ has the explicit form

Tµµ =
∑
f

mf f̄f +M2
HH

2 − 2M2
WW

+µW−µ −M2
ZZ

µZµ (3.6)

35
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where the sum runs over all fermions f and the anomaly term is

AT =
∑
i

β(gi)

2gi
FµνiF iµν (3.7)

where β(gi) is the beta function corresponding to the coupling gi of the gauge field Ai which

has the field strength tensor F iµν . The sum over i runs over all the gauge fields in the SM,

including photons, gluons and W± and Z bosons. The AT term induces substantial couplings

of the radion to γγ and gg pairs, which are completely absent in Eq. (3.6). On the other

hand, similar anomaly-induced contributions to radion couplings with W+W− and ZZ pairs

are usually negligible compared to the corresponding terms in Eq. (3.6), because of the large

masses of these particles, and only become significant when their tree-level couplings to one of

the scalars vanishes.

The tree-level radion couplings in Eq. (3.5) would be subject, in addition to the trace anomaly

contributions, to radiative corrections, especially from loops involving the top quark. Moreover,

it is worth mentioning that there could be large brane corrections to the above couplings if the

mass of the radion is comparable to the Kaluza-Klein scale [17–20], determined by the mass

of the lightest graviton mode in the minimal RS construction. To avoid this, we require a

radion which is comparatively light, and this requires a modest level of fine tuning [17–20]. The

discussions in this thesis are, therefore, subject to this assumption.

As remarked above, the phenomenological behaviour of such a light radion is rather similar to

that of the Higgs boson. This naturally leads one to ask whether these two low-lying elementary

scalar states can mix, since they carry the same set of conserved quantum numbers, once the

electroweak symmetry has been broken. In fact, this is possible, as was first pointed out in

Ref. [21] and has been discussed by many others [21–23]. Before proceeding further, it may be

noted that there are several phenomenological models with fermions and gauge bosons accessing

the bulk [24–28], which have better control over the flavour problem. In these models, the top

quark remains close to the TeV brane along with the Higgs field while the other fermions

are close to the UV brane. This suppresses the higher-dimensional operators contributing to

flavour-changing neutral currents, since the effective interaction of fermions with the Higgs field

is governed by the overlap of their profiles and hence this scenario naturally generates the

pattern of fermion masses and mixings. These models predict heavy Kaluza-Klein particles on

the TeV brane having masses in the range of a TeV. However, the radion and Higgs fields,

being still close to the TeV brane, mix more-or-less without bulk effects [29]. Hence, the mixing

can be understood fairly accurately using a minimal model where all the relevant particles are

confined to the TeV brane1, for this is, after all, no more than approximating a sharply-peaked

function by a delta function.

In the following section, therefore, we briefly discuss, following Refs. [22,23] how the radion-Higgs

field mixing may be described in terms of a single mixing parameter ξ. The next section then

describes constraints on the mixed Higgs-Radion scenario, as obtained using all experimental

1The only caveat to this is the fact that heavy Kaluza-Klein excitations of the top quark may contribute to
Higgs production at a hadron collider through loop diagrams. However, if these excitations are at the level of a
TeV, the corresponding loop contributions are not more than a few percent and may be safely neglected — as
we have done in this work.
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inputs currently available, especially those from the LHC. For easy comparison, we include

projections of the discovery reach of the LHC alongside the current constraints. While some of

the observations in this work echo previous ones [30–47], the data used are current, leading to

new bounds, and, for ease of reading, we have presented our findings in a manner such that this

chapter can be read, as far as possible, independently of the preceding literature.

3.2 Radion-Higgs mixing

Mixing of the radion field ϕ(x) with the Higgs scalar h(x) of the SM has been discussed by several

authors [21–23], with the same broad features, but we choose to closely follow the formalism of

Ref. [22, 23].

The mixing occurs through the kinetic terms

L =
1

2
∂µh ∂µh−

1

2
M2
hh

2 +
β

2
∂µϕ∂µϕ−

1

2
M2
ϕϕ

2 + 6γξ ∂µϕ∂µh (3.8)

where γ ≡ v/Λϕ, v being the SM Higgs vacuum expectation value. In this formalism, the mixing

parameter appears twice – once in the mixing term 6γξ ∂µϕ∂µh, and once in the non-canonical

normalisation β ≡ 1+6γ2ξ of the radion kinetic term. As is usual, the Higgs boson mass is given

by M2
h = 2λv2, where λ is the Higgs quartic coupling and v is the Higgs vacuum expectation

value.

We note that the presence of the non-canonical normalisation β means that the identification

of physical states H and Φ will involve a scaling as well as a rotation of states, i.e. a non-

unitary transformation. Hence, we write the unphysical states ϕ, h as linear combinations of

the physical ones Φ, H, with real coefficients A,B,C and D, thus

ϕ = AΦ +BH

h = C Φ +DH , (3.9)

where the coefficients A,B,C and D are given by

A = − 1

Z
cos θ B =

1

Z
sin θ

C = sin θ +
6γξ

Z
cos θ D = cos θ − 6γξ

Z
sin θ (3.10)

in terms of

Z2 = β − (6γξ)2 (3.11)

and a mixing angle θ, defined by

tan 2θ =
12γξZM2

h

M2
ϕ −M2

h (Z2 − 36γ2ξ2)
(3.12)

The mixing parameter ξ is immediately constrained by the requirement that Z2 > 0 to get a

real mixing angle. The mass eigenvalues of the physical eigenstates Φ and H are now given by

M2
Φ,H =

1

2Z2

(
M2
ϕ + βM2

h ±
√(

M2
ϕ + βM2

h

)2 − 4Z2M2
ϕM

2
h

)
(3.13)
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where the sign is chosen to ensure that MH < MΦ. We identify the lighter state H as the scalar

state of mass around 125 GeV which was discovered at the CERN LHC in 2012, while the other

state Φ is a heavier scalar state predicted in the model. From these formulae, it is clear that the

free parameters in question are Mh, Mϕ, Λϕ and ξ, everything else being computable in terms

of them. We also note in passing that since M2
h = 2λv2, this makes the Higgs quartic coupling

λ an unknown quantity in this model, just as it used to be in the Standard Model before the

identification of the 125 GeV scalar with the Higgs boson2.

Instead of the Lagrangian parameters Mh and Mϕ, however, we find it more convenient to use

the physical masses MH and MΦ, which can be traded for the previous two by some simple

algebra, leading to

M2
ϕ =

Z2

2

[
M2

Φ +M2
H +

√
(M2

Φ +M2
H)2 − 4βM2

ΦM
2
H

Z2

]

M2
h =

Z2

2β

[
M2

Φ +M2
H −

√
(M2

Φ +M2
H)2 − 4βM2

ΦM
2
H

Z2

]
(3.14)

Since we identify MH = 125 GeV, we are left with a set of only three independent parameters,

viz. MΦ, Λϕ and ξ. The rest of our analysis will be presented in terms of these variables.

We now have another theoretical constraint, apart from Z2 > 0. This is the requirement that

the parameters Mϕ and Mh be real (to keep the Lagrangian Hermitian), which automatically

means that (
M2

Φ +M2
H

)2
>

4βM2
ΦM

2
H

Z2
(3.15)

Imposing both these constraints reduces the possible range of ξ, for a given MΦ and Λϕ, quite

significantly (see below).

Since the mixing of the h and the ϕ to produce the physical H and the Φ is non-unitary, we

define two mixing indicators as follows. We first invert Eq. (3.9) to write

Φ = aϕ+ b h

H = c ϕ+ d h , (3.16)

where (
a b

c d

)
=

(
A B

C D

)−1

. (3.17)

In terms of this, we now define indicators

fϕ/H =
|c|

|c|+ |d| fh/Φ =
|b|

|a|+ |b| (3.18)

which, in a sense, indicate the fraction of radion ϕ in the light state H, and the fraction of Higgs

boson h in the heavy state Φ. These, together with the mixing angle θ defined in Eq. (3.12),

are plotted in Figure 3.1, as a function of the mixing parameter ξ.

2This is a reflection of the fact that we still do not have a direct measurement of λ. All that we have is the
estimate λ = (125 GeV)2/2v2 ' 0.129 — which is true only if the 125 GeV state is purely a SM Higgs boson
without any admixture of new states.
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Figure 3.1: The variation with ξ of the mixing parameters (a) θ, (b) fϕ/H and (c) fh/Φ. In each panel,
the four boxes, from bottom to top, show the behaviour when Λϕ = 1, 5, 10 and 20 TeV respectively, as marked.
Inside the boxes, the curves are coloured black, green, red and blue for MΦ = 250 GeV, 500 GeV, 750 GeV
and 1 TeV respectively. Observe that all these parameters vanish when ξ = 0, as expected. The lines break off
abruptly for larger values of |ξ| because of the theoretical constraints discussed in the text.

In each of the three panels in Figure 3.1, we have four boxes placed one above the other,

corresponding to choices of four different values of the radion vacuum expectation value, viz.

Λϕ = 1, 5, 10 and 20 TeV respectively (marked in the respective boxes). Within each box, the

curves are colour-coded, with black, green, red and blue indicating benchmark choices of the

heavy scalar mass as MΦ = 250 GeV, 500 GeV, 750 GeV and 1 TeV respectively (indicated at

the top of the figure). Each curve ends abruptly at some maximum and minimum values of the

mixing parameter ξ – this is a reflection of the theoretical limitations (see above). As may be

seen from the different plots, this restriction is extremely stringent when Λϕ is small, and even

when we push Λϕ as high as 20, does not permit the value of |ξ| to exceed 15. If we consider the

panel on the left, it is clear that we get significant values of the mixing angle θ only when the

heavy Φ state is as light as around 250 GeV. For values of MΦ of 500 GeV or greater, θ does

not exceed 10◦. However, since the mixing is not unitary, the smallness of θ is not necessarily

an indicator of small mixing. This becomes clear if we look at the central and right panels of

Figure 3.1, which tell us the proportion of the radion in the 125 GeV state, and the proportion

of the Higgs boson in the heavier state respectively. In each case, as |ξ| increases, the mixing

becomes more, starting from zero when |ξ| = 0 to about equal mixtures when |ξ| reaches its

maximum theoretically-permitted value. The purpose of this chapter is, as explained above, to

see how far such large mixings are allowed in the light of current experimental data.

We next consider the effect of mixing on the couplings of the two scalar states to the SM fields.

As shown in Ref. [23], the tree-level couplings of the heavy Φ state to pairs of SM fields XX̄

(except X = H) have the form

gΦXX̄ = gϕXX̄ (C + γA) ≡ cΦ gϕXX̄ (3.19)

where gϕXX̄ can be read off from Eqs. (3.5 – 3.6), and cΦ = C+γA is a scaling factor. Similarly,
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the couplings of the light 125 GeV state have the form

gHXX̄ = ghXX̄ (D + γB) ≡ cH ghXX̄ (3.20)

where ghXX̄ are the SM couplings and cH = D + γB is a scaling factor. Very different from

these is the coupling of the heavy scalar to a pair of light scalars, since all three fields are mixed

states, and this can be written [23] for a Φ(p)−H(k1)−H(k2) vertex, as

gHH =
1

Λϕ

[(
k2

1 + k2
2

) {
AD2 + 6ξB (CD + γAD + γBC)

}
(3.21)

+ D {12γξAB + 2BC + (6ξ − 1)AD} p2 − 4M2
hD(AD + 2BC)− 3M2

hCD
2/γ
]

The couplings of the scalars H and Φ with other particles are conveniently listed in the Appendix

of Ref. [23].
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Figure 3.2: The variation with ξ of the (dimensionless) scaling factors (a) cΦ and (b) cH is shown in the
left and central panels, while the right panel shows the ΦHH coupling gHH , in units of TeV. The layout and
colour conventions of this figure closely follow those of Figure 3.1.

To get a feeling of how these couplings are affected by the variation in the basic parameters ξ, Λϕ

and MΦ, we plot them in Figure 3.2 on a scheme similar to that in Figure 3.1. The three panels

show, from left to right, the scaling factors cΦ and cH , and the coupling gHH respectively. As

in Figure 3.1 it is immediately clear that for ξ = 0, cΦ is very small (small enough to appear as

zero on this scale), as befits a radion with a small coupling to matter, whereas cH = 1 indicating

that the lighter scalar is the SM Higgs boson. Similarly, for ξ = 0, the gHH coupling is very

small (small enough to appear as zero on this scale), indicating that the heavy scalar couples

only weakly to a pair of light scalars. There are also genuine zeroes in the couplings, which are

discussed in more detail in the next chapter.

An interesting feature of both Figure 3.1 and Figure 3.2 is the fact that the variation in pa-

rameters is rather slow for smaller values of ξ, but is very sharp for larger values just before
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the unphysical region. These larger values of the scaling factor and ΦHH coupling are likely

to have phenomenological consequences at observable levels, and hence are more likely to be

constrained by experimental data. In the next section, we shall see that this is indeed the case.

3.3 Experimental Constraints

We are now in a position to apply the experimental constraints to this model. Since the two

scalars H and Φ are the crucial elements, the main constraints will come from

(a) the measured signal strengths µXX of the 125 GeV scalar in its decay channels to XX̄

pairs – these are known to match reasonably closely to the SM predictions, leaving only

limited room for a mixed state;

(b) the lack of signals for a heavy scalar in the range of a few hundred GeV to about a TeV

– by implication, any new scalar would be very heavy and mix only marginally with the

SM Higgs boson.

In principle, the scalars could also contribute as virtual states to any neutral current processes.

However, as most of these are suppressed by the small masses of the initial states (either e± or u

and d quarks), we do not really get any useful constraints from these processes. Constraints from

electroweak precision tests are not very strong [22, 48]. In the rest of this sections, therefore,

we concentrate on the two issues listed above.

Signal Strength 8 TeV limits 13 TeV limits

µγγ 0.68 – 1.70 [49]

{
0.31− 1.27 [50] (CMS)

0.03− 1.17 [51] (ATLAS)

µWW 0.58 – 1.42 [49] —

µZZ 0.76 – 2.16 [49] 0.78 – 1.62 [52] (CMS)

µττ 0 – 2.26 [49] —

µbb 0 – 3.13 [49] 0 – 1.23 [53] (ATLAS)

Table 3.1: LHC results on the Higgs signals strengths at 95% confidence level. The 8 TeV limits are from
ATLAS and CMS combined. Production is through gluon fusion, except for the last entry, which is through
vector boson fusion.

We first take up the signal strengths of the 125 GeV scalar H. This decays into several channels

H −→ X + X̄ (3.22)

where X = `−, u, d, s, c, b,W,Z, γ, g with one of X or X̄ being off-shell in the case of W and Z.

At the LHC, the H is produced dominantly through gluon-gluon fusion3. Hence, we can define

signal strengths µXX as

µXX =
σ(pp→ gg → H)exp B(H → XX̄)exp

σ(pp→ gg → H)SM B(H → XX̄)SM
(3.23)

where σ and B stand for cross-section and branching ratio respectively, and the subscripts ‘SM’

and ‘exp’ mean the SM prediction and the experimental value respectively. If we are making

3In our numerical analysis, we have also included the vector boson fusion mode.
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a theoretical prediction, then ‘exp’ will stand for the expected value in the theoretical model

in question — in the present case, the model with radion-Higgs mixing. Of course, in an

experiment only the entire numerator on the right side of Eq. (3.23) can be measured and not

the individual factors. By this definition, then, all the SM signal strengths are normalised to

unity, and experimental deviations from it constitute the leeway for new physics. These allowed

experimental deviations are given in Table 3.1.

MΦ = 250 GeV MΦ = 500 GeV MΦ = 750 GeV

_
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Figure 3.3: The variation of the predicted signal strengths with the mixing parameter ξ, for different
choices of Λϕ (in TeV), marked alongside each curve. Each panel corresponds to a different mass MΦ as marked.
The experimental constraints at 95% C.L. are shown on the right. Superscripts (8) and (13) indicate results from
Run-1 and Run-2 respectively of the LHC.

Obviously, for zero mixing, the signal strengths predicted for the H scalar will be the same as the

SM values, i.e. unity. As ξ increases, we should expect deviations from unity, and indeed that

is what happens, as illustrated, in Figure 3.3. The three panels, from left to right, correspond

to choices of MΦ = 250, 500 and 750 GeV respectively. The graph for MΦ = 1 TeV is very

similar to that for MΦ = 750 GeV, and hence we do not show it explicitly. Likewise, the actual

graphs for µγγ are slightly different, but not enough to show up on a plot at this scale. Each

curve in the panels corresponds to the value of Λϕ, in TeV, written alongside, i.e. 1, 2, 3, 5

and 10 TeV respectively. The steepness of the curves decreases with increasing Λϕ, for which

we also have larger permitted ranges in ξ, as we have earlier shown in Figure 3.2. Horizontal

broken lines in Figure 3.3 represent the useful 95% C.L. constraints from the signal strengths

in Table. 3.1, and are marked on the right side of the figure.

The behaviour of the predicted signal strengths with increasing ξ is quite as expected, remaining

close to the SM value for small ξ and showing large deviations near the edge of the theoretically-

allowed range. This, as we have seen earlier, is due to the large deviations of the coupling of

the H from the SM coupling at such values of ξ. It is thus obvious that the present constraints

from signal strengths will only affect narrow strips of the parameter space adjacent to the

theoretically-disallowed region, and this, in fact, is what we find (see below). It may be noted

in passing that a region of the parameter space where D + γB ' 0 would be very strongly

constrained from the signal strengths, but this does not happen anywhere inside the region

allowed by theoretical considerations.

When we turn to the heavy Φ state, once again the main production mode is through gluon-
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Figure 3.4: Two-body branching ratios of the heavy scalar Φ as a function of its mass MΦ, for different
choices of the mixing parameter ξ = 0, 1, 2 and 3. The extreme left panel, viz. ξ = 0, corresponds to a pure
radion state. Branching ratios for the diphoton channel are not shown as they are too small to appear on the
chosen scale. For these plots, we have set Λϕ = 5 TeV. Variation with Λϕ exists, but is slight.

gluon fusion, but now there is no analogous SM prediction and hence one looks for the direct

signals in the various decay channels of the Φ. As in the case of the light scalar, the potentially

observable ones are Φ→ γγ [54–56], WW [57–60], ZZ [58,61–63] and τ+τ− [64–67] to which we

can now add Φ→ tt̄ and Φ→ HH [68–78]. The bb̄ [79] signal would be difficult to distinguish

from the QCD background, unless the mass of the Φ scalar is very well known, as in the case

of the H scalar. The behaviour of all these branching ratios, as functions of the scalar mass

MΦ is shown in Figure 3.4, where Λϕ is fixed to 5 TeV and the panels, from left to right,

correspond to ξ = 0 (no mixing), and ξ = 1, 2 and 3 respectively. The relevant decay channel

is marked alongside each curve. These curves terminate at the left end where they correspond

to theoretically-disallowed regions in the parameter space.

One feature which is immediately obvious from these curves is the fact that the scalar Φ decays

dominantly through the WW and ZZ channels. When the mixing is low, the HH channel is

also competitive, but as ξ rises, it gets suppressed. In any case, the signals from the WW and

ZZ channels are leptonic and clean, whereas the signals arising from HH, dominantly leading

to 4b final states, are hadronic, as are those arising from the direct decays of the Φ into quark

pairs. These hadronic channels are generally suppressed compared to WW and ZZ, and, in any

case, would be plagued by large QCD backgrounds. It may be still possible to investigate the tt̄

and HH channels, using jet substructure-based tagging methods for boosted particles, but such

experimental searches are still not competitive [80]. Thus, in principle, we get constraints from

every decay channel of the Φ, but the most useful ones will arise from the ATLAS and CMS

search results for a heavy scalar resonance decaying to WW and ZZ pairs, which are equally

applicable to the Φ scalar in the model under consideration. As is well-known, the experimental

results are all negative, and hence the 95% C.L. upper limits on the cross-section are given in

Table 3.2.

We are now in a position to compare these data with the predictions of our theory. As in the
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pp→ S →WW MS = 250 GeV MS = 500 GeV MS = 750 GeV MS = 1 TeV

ATLAS (Run I) [57] — 0.191 0.039 0.020

CMS (Run I) [58] 1.590 0.287 0.221 0.064

ATLAS (Run II) [59] — 0.884 0.253 0.066

CMS (Run II) [60] 51.395 4.866 2.882 1.708

pp→ S → ZZ MS = 250 GeV MS = 500 GeV MS = 750 GeV MS = 1 TeV

ATLAS (Run I) [61] 0.298 0.044 0.012 0.011

CMS (Run I) [58] 0.110 0.089 0.040 0.025

ATLAS (Run II) [62] 0.758 0.111 0.068 0.050

CMS (Run II) [63] 0.416 0.136 0.070 0.060

Table 3.2: LHC 95% upper limits on the cross-section, in pb, for a heavy scalar S decaying to a WW or a
ZZ pair, for the benchmark values MS = 250, 500, 750 and 1000 GeV respectively. In our work, we have used
only the Run-2 data for the constraints.

case of the H state, the cross-section for pp→ Φ→ V V , where V = W,Z, can be written

σ(pp→ Φ→ V V ) = σ(pp→ gg → Φ) B(Φ→ V V ) (3.24)

where B(Φ → V V ) is the branching ratio of the Φ to a V V pair. These can be calculated in

terms of the free parameters ξ, MΦ and Λϕ respectively. Our results are shown in Figure 3.5.

The four upper panels of Figure 3.5 represent the cross-section, in pb, for the process pp→ Φ→
WW and the lower four panels represent the process pp → Φ → ZZ. In each row the panels

correspond, from left to right, to MΦ = 250 GeV, 500 GeV, 750 GeV and 1 TeV, respectively.

Within each panel, the curves show the variation of the cross-section with the mixing parameter

ξ, for different values of the radion vacuum expectation value, corresponding to different colours,

as marked in the legend above the panels. The horizontal solid lines correspond to the CMS

bounds from the 13 TeV data, as shown in Table. 3.2, while the broken lines correspond to the

ATLAS 13 TeV data.

All the curves have a distinct minimum at a small value of ξ varying from 0.2 to 2 — this

corresponds to a minimum in the cross-section σ(pp → gg → Φ) where there is maximal

cancellation in the amplitude for gg → Φ due to the top quark loop and the trace anomaly

term. In this region, the heavy scalar can be produced in association with a W±/Z and it

further decays to WW or ZZ pairs, leading to a final state with three gauge bosons or their

decay products. In view of the low production cross-sections for higher values of Λϕ, one has

to consider hadronic decays of one or more of these gauge bosons, and this immediately invites

a large QCD background at the LHC. However, the region can be successfully probed at a high

energy e+e− collider (such as the proposed ILC) with
√
s = 1 TeV [81].

In addition to the dip described above, there is a very sharp minimum, very close to the

vertical axis, which corresponds to the so-called ‘conformal’ point, where cΦ → 0. We defer the
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Figure 3.5: Predictions of this model vis-á-vis LHC searches for a heavy ‘SM-like’ scalar. The upper set
of panels are for a WW final state and the lower set of panels are for a ZZ final state. Each panel shows the
variation with ξ for a definite MΦ as marked, and the different curves correspond to different values of Λϕ, as
indicated in the legend above the panels. Horizontal solid (dashed) lines indicate the 95% C.L. CMS (ATLAS)
13 TeV constraints as in Table 3.2.

discussion of this point to the next chapter and focus here on the constraints obtainable from

the rest of the parameter space. Here, as in the case of signal strengths the constraints rule out

larger values of ξ, with the exact bound depending on the other two parameters of the theory.

From Figs. 3.3 and 3.5 we can draw some general conclusions. The first is that the effect of

increasing the mixing parameter ξ becomes weaker and weaker as the vacuum expectation value

Λϕ keeps increasing. This is true both for the signal strengths in Figure 3.3 as well the cross-

section in Figure 3.5 and is easy to track down as due to the limiting case γ → 0. A similar

argument may be made for the parameter MΦ – at least numerically – though the parameter

dependence here is much more complicated. We may argue, therefore, that for a fixed ξ, the

region with small MΦ and small Λϕ is more constrained — which also corresponds to the

commonsense argument that if these parameters are small, radion-mediated processes are large

and vice versa. These expectations are corroborated by our results shown in Figure 3.6. Here

we show the Λϕ–MΦ plane for four different values of ξ, viz. ξ = −0.5, 0, 1 and 1.5, as marked

on each panel. As indicated in the key at the top, the region shaded grey corresponds to the

theoretically disallowed region, and includes all values of Λϕ < 1 TeV, except in the panel on

the top left, marked ξ = 0, which corresponds to the case of an un-mixed radion of mass MΦ.

Here, though values of Λϕ < 1 TeV are theoretically permitted, the experimental constraints do

not allow them, as is apparent from the figure. In all the panels, the dark grey shaded region is
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Figure 3.6: Constraints from LHC data on the Λϕ–MΦ plane for different values of the mixing parameter
ξ. The region shaded grey is theoretically disallowed and the region shaded dark grey is ruled out by the Higgs
boson signal strengths. Hatching with opposite slants correspond to the ATLAS and CMS constraints from
the heavy scalar search. The red-shaded region represents a projection of constraints from the signal strengths,
assuming µXX = 1 ± 0.05 for all channels. Finally, the yellow-shaded region represents a combination of the
ATLAS and CMS projected discovery limits from the ZZ channel, assuming a data collection of 3000 fb−1 at
14 TeV.

ruled out by the signal strengths at Runs 1 and 2 and the hatched regions by the ATLAS and

CMS searches for a heavy scalar at Run-2 of the LHC. These are the strongest constraints and

represent the state of the art as far as current experimental data are concerned4. The jagged

shape of the curves reflects the fact that the LHC has, till now, collected quite a small amount

of data for rare processes like the decay of a heavy scalar. However, the LHC has the potential

to search much further, and this is shown by the red and yellow-shaded regions, which represent,

respectively, the expectations from the signal strength measurements if µXX = 1± 0.05 for all

X, and the ATLAS and CMS discovery limits at 95% C.L. for the heavy Φ if the LHC were to

run at 14 TeV and collect 3000 fb−1 of data [82,83] — which may not be too far from the reality.

For the panel with ξ = 0, there are no constraints from the signal strengths, since the H is

completely SM-like; but the constraints from the heavy scalar searches are quite strong because

that scalar is a pure radion. A comparative study of the four plots indicates that the value

4We have, in fact, considered constraints from all the channels separately, but the others are subsumed in
the ones shown in the figure, and hence are not shown in order to have uncluttered figures.
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ξ ≈ 1 would permit the largest part of the parameter space to survive consistently negative

results from LHC, while negative values of ξ are better suited to a discovery of the heavy scalar

predicted in this theory.
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Figure 3.7: Constraints from LHC data on the Λϕ-ξ plane for different values of the heavy scalar mass
MΦ. The region shaded grey is theoretically disallowed and the region shaded dark grey is ruled out by the Higgs
boson signal strengths. Hatching with opposite slants correspond to the ATLAS and CMS constraints from the
heavy scalar search. As in Figure 3.6, the red-shaded region represents a projection of constraints from the signal
strengths, assuming µXX = 1 ± 0.05 for all channels and the yellow-shaded region represents a combination of
the ATLAS and CMS projected discovery limits, assuming a data collection of 3000 fb−1 at 14 TeV.

Coming to constraints on ξ, it is clear from Figs. 3.3 and 3.5 that ξ = 0, which corresponds

to the 125 GeV scalar being the Standard Model Higgs boson — not surprisingly — is always

allowed by the signal strength data. For given values of MΦ and Λϕ, ξ can range on the positive

and negative side, but when its magnitude grows larger, all new physics effects grow and, at

some point, higher magnitudes of ξ get disallowed – first by the experimental constraints and

then by the requirement of theoretical consistency. For low values of Λϕ and MΦ, we arrive at

this point for fairly low values of ξ. As both these parameters increase, however, the allowed

range grows, creating a funnel-like shape, which grows wider as Λϕ and MΦ increase. This is

illustrated in Figure 3.7, where we show the Λϕ–ξ plane for the same choices of MΦ as in the

earlier figures. The shading and hatching conventions of this figure are exactly the same as those

of Figure 3.6. It is immediately obvious that for low values of Λϕ close to 1 TeV, the range of

ξ is severely constrained by theoretical consistency alone. A heavy scalar of mass 250 GeV is

also rather severely constrained, except for a narrow cone, which will shrink further when the
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LHC finishes its run. Constraints ease up for a heavier scalar, since that is much more difficult

to find. It is interesting that even if LHC completes its run without finding any evidence for

a heavy scalar up to 1 TeV, there will be a range of parameter space where this model is still

allowed. However, for these parameters, the 125 GeV will be so similar to the SM Higgs boson,

and the interactions of the heavy scalar will be so heavily suppressed that the model may no

longer be interesting, at least from a phenomenological point of view.

An interesting feature of all the plots in Figure 3.7 is the needle-thin sliver of allowed parameter

space which appears in every graph close to the vertical axis. This corresponds, in every case, to

the ‘conformal point’ mentioned above, where all constraints from a heavy scalar search weaken

considerably.

3.4 Summary and Outlook

The minimal Randall-Sundrum model continues to be one of the most elegant ways of solving

the hierarchy problem, and it works best if there is a Goldberger-Wise stabilisation, which works

best if there is a light radion state. Though there are strong constraints on such a light radion

per se, there remains room for a light radion mixed with the SM Higgs boson to survive. In

this thesis, we have explored this possibility, using an existing formalism, in the light of current

data from the LHC Runs 1 and 2. Our findings are summarised below.

The possibility of a radion-Higgs mixing arises essentially because we have no independent

measurement of the Higgs boson self coupling λ, so that the SM formula M2
h = 2λv2 is open

to other interpretations. One of these is the mixed radion-Higgs scenario, where the lighter

eigenstate is identified with the 125 GeV scalar discovered at the LHC. In this model, there are

three free parameters, viz. the mixing parameter ξ, the mass MΦ of the heavy scalar Φ, and

the radion vacuum expectation value Λϕ. However, self-consistency of the theory imposes fairly

stringent constraints on the choices of the mixing parameter ξ. These, as we show, are further

constrained by (a) the signal strengths measured for the decays of the 125 GeV scalar at the

LHC, and (b) the search for a heavy scalar decaying into a pair of electroweak vector bosons,

be they W ’s, Z’s or photons. These lead to further bounds on the parameter space, essentially

pushing Λϕ above a TeV (and hence reducing all radion-mediated effects) and MΦ to values

closer to a TeV, though here some avenues for a lighter MΦ remain.

In addition to the current data, we have tried to predict discovery limits at the LHC in two

ways. One way is to use the signal strengths, and assume that they will eventually converge

within 5% of the SM prediction. This leads to modestly enhanced bounds on the radion-Higgs

mixing scenario. The other way is to use the projected discovery limits from the ATLAS and

CMS Collaborations for a heavy scalar in Run-2, where we identify that heavy scalar with our

heavier eigenstate Φ. This, in fact, is very effective for most choices of the mixing parameter

ξ and is sensitive to rather high values of MΦ and Λϕ. The only exception is at the so-called

conformal point, which is a peculiar feature of this model, involving a value of the mixing

parameter where the heavy scalar essentially decouples from SM fields.

It is interesting to ask how our results would be modified if we replace the simplistic model used

above with a more phenomenologically-relevant model where the fields can access the bulk. As
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explained in the Introduction, the radion and Higgs fields, being still close to the TeV brane,

mix in the same manner [29]. The decay of the radion to the light quarks is severely suppressed

because of the small overlap [84] of their wavefunctions in the bulk. Decays of the radion

to massive gauge bosons are governed by an additional coupling that can be safely neglected

for Λϕ & 1 TeV. Radions decaying to massless gauge boson pairs (especially to diphotons)

is significantly enhanced, however, due to the tree-level coupling in the case of bulk scenario.

However, this doesn’t really effect our region of interest [81]. We feel, therefore, that the results

of this work are robust against more realistic variations of the minimal model and may be safely

adopted in such cases.

To conclude, then, we have shown that a mixed radion-Higgs scenario is quite consistent with

the current experimental data at the LHC, and there is every possibility that the heavy scalar

predicted in this model could be discovered as the LHC continues to run at its present energy

of 13 TeV. Discovery of this would certainly be one of the most exciting things to happen in

the near future, and, if, the branching ratios turn out to be consistent with this model, could

provide a powerful insight into the nature of spacetime itself. Such a happy consummation is

to be devoutly hoped for, but, for the present, we must reconcile ourself to a fairly long wait as

the Run-2 of the LHC continues.





Chapter 4

Radion Signals at the Conformal Point

4.1 The Conformal Point

In the last chapter, we have repeatedly commented on a specific feature of the radion-Higgs

mixing. For every choice of MΦ and Λϕ, there is a fixed value ξ = ξ0 which satisfies the

equation cΦ = 0, and hence

C(ξ) + γA(ξ) = 0 (4.1)

and this is known as the ‘conformal’ point1. It corresponds to the case when the tree-level

couplings gΦXX̄ of both the fermions and gauge bosons – generically denoted X – with the

heavy scalar Φ vanish. This is a curious situation and corresponds to the case when the mixing

is fine-tuned to be such that the parts of the coupling arising from the SM h and the radion ϕ

cancel each other. Like all fine-tuned situations, if this is the reality, it can hardly be a random

effect, and must represent some deeper structure in the theory, which is not addressed in our

present formulation. Nevertheless, it is interesting to explore the phenomenological implications

of this scenario. In this section, therefore, we investigate the conformal point and see how it can

be constrained using current and projected data, just as the other points can. It is important

to note that though most of the tree-level couplings of the Φ to pairs of SM particles vanish at

the conformal point (except for the coupling to HH pairs), there exist one-loop couplings to

pairs of gauge bosons through the trace anomaly. This makes the pattern of branching ratios

at the conformal point very different from that in other regions of parameter space. The most

important feature of this is the fact that the decays Φ → gg and Φ → γγ are considerably

enhanced with respect to the others – in fact the former is the dominant decay mode. This

behaviour is nicely exhibited in Figure 4.1, where we exhibit the behaviour of the relevant

branching ratios in the immediate vicinity of the conformal point.

In Figure 4.1, it is immediately apparent that for the particular value ξ = ξ0, the tree-level

decay modes of Φ → XX̄, where X is a massive gauge boson or a fermion, drop sharply by

many orders of magnitude. This is particularly true for the cases X = t, b and H, with the

minimum for the last case occurring at a slightly displaced point from the others (best seen

in the zoomed panel on the right). On the other hand, the branching ratios for the purely

1From this stage we drop the quotes on ‘conformal’.
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Figure 4.1: Branching ratios of the heavy scalar Φ in the neighbourhood of the conformal point. Note
that the conformal point is quite sensitive to the value of MΦ. There is some minor dependence on the radion
vacuum expectation value Λϕ, but for purposes of comparison it has been set at 2 TeV for every plot in this
figure. The sharp drop in the tree-level decays at the conformal point may be noted. The conformal point for the
decay Φ → HH is close to, but different from that for other decays, as is clear in the panel on the right, which
is a zoomed version of the central panel.

one-loop decays, viz. Φ → gg and Φ → γγ exhibit a growth at the same point, attributable

to their partial decay widths being finite, whereas the others drop almost to zero. However,

the decays to WW and ZZ states do not disappear altogether because they too have anomaly

contributions. Naturally the decay Φ → gg dominates the others because of the appearance

of the strong coupling as well as the colour factor. The decay Φ → γγ also shows a gentle

increase, but is intrinsically much more rare than the digluon mode. At the conformal point,

therefore, constraints on the model will have to be sought in a different fashion. One obvious

way is to consider Higgs boson signal strengths, for if the couplings of the Φ vanish that does

not mean that the couplings of the H will also vanish. Accordingly, there will be contributions

to the signal strengths and these can be used to constrain the model. In fact, even the heavy

scalar searches, i.e. pp→ S → V V , where V = W,Z can be used to a limited extent, since the

branching ratios Φ → V V , though small at ξ = ξ0, are not absolutely negligible. However –

and this is a distinct feature of the conformal point – the strongest bounds come from diphoton

searches, which is not entirely surprising, given that this mode is considerably enhanced at the

conformal point.

In trying to understand how the conformal point is constrained by the data, we need to recognise

that the conformal point ξ0 is not unique, but a function of MΦ and Λϕ, with the dependence

on the former being much stronger than that on the latter. Its variation with MΦ is shown in

the left panel of Figure 4.2, where the thickness of the line corresponds to variation of Λϕ from

1 TeV to 20 TeV. This plot shows that the variation flattens out as MΦ grows above 500 GeV,

and has a very weak dependence on Λϕ. Nevertheless, we have scanned a sizeable portion of

the MΦ–Λϕ plane and calculated the values of ξ0 at every point by solving Eq. (4.1).

With these parameters, we now evaluate the measurables, viz. the signal strengths and the

cross-sections for pp → S → V V , where V = W,Z. These are then compared with existing

data to yield the constraints on the plane, as shown in the right panel of Figure 4.2. The

conventions of this panel are exactly the same as those of Figs. 3.6 and 3.7, but the constraints

follow a different pattern. As usual, low values of MΦ and Λϕ are excluded. However, there are
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Figure 4.2: Constraints on the conformal point ξ0. The variation of ξ0 with MΦ is shown in the left panel.
The thickness of the line corresponds to variation of Λϕ from 1 to 20 TeV. The right panel shows the MΦ–Λϕ
plane, assuming that at every point the mixing parameter ξ = ξ0.

no theoretical constraints, showing that there will always be a conformal point for any choice

of model parameters. For small values of MΦ, the strongest constraints come from the signal

strengths (dark grey shaded area), while for higher values, it is the ATLAS and CMS data on

diphotons – not WW and ZZ – from a heavy scalar resonance, which yield the best constraints.

Projecting signal strength measurements at the level of µXX = 1±0.05 for allX provides the red-

shaded band, showing that moderate improvement can be obtained if these measurements yield

results much closer to the SM prediction. The shaded yellow region represents the predictions

from ZZ decay modes of a heavy scalar for the LHC running at 14 TeV with 3000 fb−1 [82,83]

of data (which is all that is currently available), and it does worse than the Run-2 data. It may

be expected that diphoton searches would provide better discovery limits — when the Run-2

projections become available.

All in all, we can conclude that the conformal point is somewhat less constrained than the rest

of the parameter space. It was this narrow window which had been used [85,86] to explain the

purported discovery of a heavy 750 GeV scalar during 2015-2016 [87, 88], though that proto-

signal did not survive the test of time [55, 56]. In the next section, we include a discussion of

this idea.

4.2 Explaining the Erstwhile 750 GeV Resonance

The joint announcement in December 2015, by the ATLAS and CMS Collaborations at the

CERN LHC [87, 88], of a modest excess in the pp→ γγ channel, with a clustering of invariant

mass around 750 − 760 GeV, sparked a great deal of speculation in the literature about the

possible origins of this excess. The fact that both the ATLAS and the CMS Collaborations

observed excess events in precisely the same invariant mass bin was an unusual happenstance

and could well have been the harbinger of a momentous discovery, such as the Higgs boson

proto-signals in 2011 [89, 90] proved in the next year to be [91, 92]. Therefore, this excess

attracted interest to study the possible origins of this ‘signal’, which cannot be explained within

the framework of the Standard Model (SM) of strong and electroweak interactions.

The principal features of the CERN observations [87,88] were as follows.
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A. The ATLAS (CMS) Collaboration had seen a modest ‘bump’ in the invariant mass distri-

bution of γγ final states of 14 (10) events clustered around 750 (760) GeV in 3.2 (2.6) fb−1

of data at the Run-2 of the LHC at a centre-of-mass energy
√
s = 13 TeV.

B. The statistical significance of these results at the ATLAS (CMS) was 3.9σ (2.6σ) when

considered for the individual invariant mass bin, but reduced to 2.3σ (2.0σ) when one

considered the look-elsewhere effect (a width around 45 GeV).

C. The width of this proto-resonance appeared to be around 6% of its mass, i.e. around

45 GeV.

D. The tagging efficiency for the diphoton signal, as estimated by the ATLAS (CMS) Collab-

orations, was 0.4 (0.6).

E. No excess over the SM predictions had been observed in other channels, such as dileptons,

dijets, WW , ZZ, jets + MET, etc. as searched by both Collaborations in Run-2 of the

LHC.

These observations were consistent with the resonant production, in 13 TeV pp collisions, of a

new particle of mass in the range 750− 760 GeV. This new particle must decay to γγ pairs at

a rate large enough to yield the observed signal. At the same time, its possible decays to other

channels must be suppressed to the extent of going undetected at the LHC (or elsewhere), at

least at the present level of statistics. It was also obvious that such a particle could not belong

to the SM, whose particle spectrum was completed by the discovery of the Higgs boson in 2012,

and which does not contain any particle with a mass as high as 750 GeV.

Theoretical speculations about the nature of this new particle started from the observation that

it must decay into two spin-1 photons, and therefore, must be electrically neutral and have spin

0, or 1, or 2. However, the Landau-Yang theorem [93,94] forbids a massive spin-1 particle from

decaying into two massless spin-1 particles (photons), and hence, the resonance had to be either

spin-0 or spin-2. The spin-2 option was easily dismissed, for the only known spin-2 particles in

elementary particle models are the gravitons, or rather their Kaluza-Klein excitations in models

with large or warped extra dimensions [6, 8]. Such gravitons would have universal couplings,

and one cannot reconcile an observed excess in the diphoton channel with the absence of similar

excesses in the dilepton, dijet, WW and ZZ channels. There remained the possibility that the

resonance was a neutral scalar.

Neutral scalars are ubiquitous in models of physics beyond the SM. Ever since the 1964 discovery

by Englert and Brout [95, 96], and by Higgs [97, 98], that such fields can develop a vacuum

expectation value (vev) which breaks a local gauge symmetry spontaneously, the same idea has

been invoked in diverse models with extra gauge symmetries at high scales which are made to

break spontaneously through the vev’s of postulated extra neutral scalars. These have been used,

among other things, to explain parity violation [99, 100], achieve grand unification [101–103],

solve the strong CP problem [104] and induce inflation in the early Universe [105]. Scalars also

play an important role in giving mass to sequential fermions of the SM through their Yukawa

interactions [106]. Not surprisingly, therefore, the bulk of theoretical speculations were attempts

to fit in the proto-resonance at 750 GeV with one or the other of these postulated scalars2.

2An early study can be found in Ref. [107]
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Some of these theoretical studies had already thrown up interesting results. It is clear, for

example, that the 750 GeV resonance could be

1. one of the heavy scalars H0 and A0 postulated in the minimal supersymmetric SM, despite

the possibility of varying all the 105 new parameters in the model ( [108–111]);

2. any minimal version of the two-Higgs doublet model, i.e. without the addition of new

fermion states [108,109]; however, a more optimistic result was claimed in Refs. [110,112];

3. a sneutrino ν̃ in the R-parity-violating version of the above, for its branching ratio to two

photons is mediated by a one-loop diagram which is suppressed by a factor not larger

than mb/750 GeV ∼ 10−5, which renders the production of diphoton signals too low to

be observed;

4. a massive dilaton arising in a model with an extra dimension [109]; however, [113] claimed

a positive result with this scenario.

On the other hand, it was claimed that the signals in question could be explained by

1. an axion field arising in a model with a broken Peccei-Quinn symmetry [114,115];

2. models with additional vector-like fermions [108,109,116–121];

3. a radion in a Randall-Sundrum model where the Higgs boson or the entire SM fields live

in the five-dimensional bulk [85,122];

4. a generic singlet scalar or pseudoscalar [123–126], or specifically, one that may arise in the

context of SUSY inspired simplified models [127]

5. a composite scalar coming from strong dynamics [128–133];

6. dark matter models having a scalar mediator [134–136]

7. a pseudo-Goldstone boson or a scalar superpartner to the goldstino [137–141] or to a Dirac

bino [142] in a supersymmetric model;

8. a scalar which couples only to photons [143];

9. more imaginative ideas like heavy messenger multiplets, cascade decays, hidden valley

theories etc. [144–147].

Some of these works discussed model-independent studies of the signal and eventually focussed

on specific models [133, 148, 149]. However, we may note that several of the long list of ex-

planations were clearly devised in haste – not surprisingly under the circumstances – and had

not studied the backgrounds very seriously. It was possible, however, to isolate the most seri-

ous background to the signal in a very simple-minded construction, which also highlights the

difficulty of fitting any of the known models of physics beyond the SM to the observed facts.

In order to be produced in pp collisions at the LHC, a CP -even scalar resonance ϕ must have

a coupling (fundamental or effective) to a pair of partons, and in order to decay to diphoton

states it must have a coupling (fundamental or effective) to a pair of photons. These are the

absolutely minimum requirements to see a diphoton resonance at the LHC. These couplings can

be parametrised in a gauge-invariant way as

Lint = yqϕ q̄q +
cg
Mϕ

8∑
a=1

ϕGaµνG
µν,a +

cγ
Mϕ

ϕFµνF
µν (4.2)
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Here q stands for any of the light quarks and could even be summed over all quark flavours,

while Gaµν and Fµν denote the field strength tensors for gluons and photons respectively. Before

proceeding further, it should be noted that this is a really minimal construction, as it respects

the symmetries SU(3)c and U(1)em, which are known to be unbroken, but not the SU(2)L of

the electroweak theory, which should hold at energy scales above the Higgs vev of 246 GeV.

This means that this model assumes an explicit breaking of the SU(2)L × U(1)Y symmetry of

the SM by the cγ term, which would not be observed at lower energies because of the 1/Mϕ

suppression.

Once we have fixed the above couplings, we can easily calculate the partial decay widths to a

qq̄, gg and γγ final state. These turn out to be

Γ(ϕ→ qq̄) =
3

8π
y2
qMϕ , Γ(ϕ→ gg) =

2

π
c2
gMϕ , Γ(ϕ→ γγ) =

1

4π
c2
γMϕ

(4.3)

from which it follows that the total decay width of the ϕ is

Γϕ =
2Mϕ

π

(
c2
g +

3

16
y2
q +

1

8
c2
γ

)
(4.4)

and the branching ratios to diphotons and dijets are

Bγγ =
1
8c

2
γ

c2
g + 3

16y
2
q + 1

8c
2
γ

BJJ =
c2
g + 3

16y
2
q

c2
g + 3

16y
2
q + 1

8c
2
γ

(4.5)

where J denotes a jet arising from a final state quark or a gluon.

We can calculate the production cross-section for the ϕ as

σϕ =
y2
q

96πs
Fq +

c2
g

128πs
Fg (4.6)

where

Fq =

∫ 1

r2

dx

x

[
fq/p(x)fq̄/p

(
r2

x

)
+ fq̄/p(x)fq/p

(
r2

x

)]
Fg =

∫ 1

r2

dx

x

[
fg/p(x)fg/p

(
r2

x

)]
(4.7)

with r = Mϕ/
√
s ' 5.77× 10−2 if we take Mϕ ' 750 GeV and

√
s = 13 TeV. Using CTEQ-6L

structure functions, we then find the following values

Fu = 2.177× 102 Fg = 2.914× 103 (4.8)

with other quarks giving smaller results. Not surprisingly, since r is small, the gluon PDFs

dominate all the others.

We are now in a position to put together all the factors and compute the production cross-section

for the ϕ as

σϕ = 33.36 c2
g + 1.66 y2

u (4.9)

in units of picobarn. Thus, we predict that some tens of thousands of these heavy scalars must

have been produced at the LHC Run-2 in order to obtain the signal which has been observed.
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It is now a straightforward matter to calculate the cross-sections for diphoton and dijet produc-

tion at the LHC Run-2. We get

σ(pp→ ϕ→ γγ) = σϕ Bγγ σ(pp→ ϕ→ JJ) = σϕ BJJ (4.10)

where the quantities on the right side can be read off from Eq. (4.5) and Eq. (4.9). For this part

of the analysis, we use the leading- order results. QCD corrections will change the numerics

somewhat, but will not affect the qualitative features of the analysis.

This simple-minded model must now be subjected to three experimental constraints, viz.,

A. The total decay width Γϕ as given in Eq. (4.4) should not exceed about 50 GeV. Any

larger value would be invalidated by the best fit width [87] of about 45 GeV.

B. The diphoton cross-section, as given in Eq. (4.10), should lie in the range 5− 15 fb, which

would make it consistent with both the ATLAS and CMS observations.

C. The dijet cross-section, as given in Eq. (4.10), should not exceed a value around 1.2 pb

(at the 1σ level) or 2.5 pb (at the 2σ level). These constraints arise from the fact that the

dijet signals observed at the LHC Run-2 are consistent with the SM prediction of around

12.5 ± 1.2 pb (scaled up from the 8 TeV results [150]), leaving no scope for any excess

over the experimental errors.

An analysis of the allowed values of cg and cγ , for different choices of yu, is extremely instructive.

To illustrate this, we have plotted, in Figure 4.3, the allowed region in the cγ–cg plane, for two

different values (a) yu = 0, and (b) yu = 0.3 of the Yukawa couplings in Eq. (4.2), setting q = u.
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Figure 4.3: Illustrating regions in the cγ–cg plane which can give rise to the signal in question for (a)
yu = 0, and (b) yu = 0.3. All points above and to the right of the blue line marked ‘Width’ are disallowed
by the Γϕ constraint. All points to the right of the red lines marked ‘Dijet’ would lead to unacceptable
dijet rates. The yellow shaded region indicates the permitted region which yields the correct diphoton
cross-section. The straight (magenta) lines correspond to a radion scenario as described in this work,
with a purely SM-like content (marked ‘SM’) and with the SM content augmented by one generation of
heavy vectorlike fermions (marked ‘SM + VF’).

A glance at Figure 4.3 shows that only a narrow band of allowed cγ values can give rise to the

observed signal. In the panel marked (a), the graphs curve upward, since cg is the only source

of production and hence cannot be zero. This is no longer the case in the panel marked (b),
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where some production occurs through the nonvanishing Yukawa coupling. The requirement of

a scalar width less than about 50 GeV constrains large values of cg – as expected – but leaves

much of the allowed parameter space unaffected. The dijet constraint is more restrictive at the

1σ level, but at 95% confidence level it is no more constraining than the total width.

On the lower right corner of the panel marked (b), we have plotted a straight line in black,

which has been marked ‘SM-like’. This corresponds to the case when the scalar has effective

couplings to a gluon pair and a photon pair through one loop diagrams with SM particles in

the loop. Using the standard computation of the SM partial widths [151] the two parameters

will be related by

cγ = 0.075 cg (4.11)

which is illustrated by the straight line as shown. The fact that this line is far away from

the allowed region only emphasises the difficulty of fitting the observed signal with any of the

usual models, as mentioned above. In fact, perhaps the only way in which this line can be

shifted towards the allowed region is to include fermions with exotic electromagnetic charges in

the loop. In fact, it is not enough to have fermions with charges 5/3, but we also need [108]

fermions with charge 8/3 and multiple generations of those to boot. Most of the usual models

also predict large WWand ZZ decay modes of the resonant scalar, which may have avoided

detection in the current searches, but are sure to be detected in the next LHC run [152,153].

It is clear, therefore, that any explanation of the observed diphoton excess requires an extra

effort of imagination and perhaps a large degree of fine-tuning as well, inasmuch as the observed

scalar does not seem to have the usual decay modes other than the diphoton one. As we have

remarked already, it is very difficult to invent a scenario in which we have a scalar which couples

only to a pair of partons and a pair of photons, and at the same time, obtain values of cγ which

are large enough compared to cg as illustrated in Figure 4.3. However, we wish to point out

that there exists one new physics scenario where this is a basic feature of the model, albeit in

a fine-tuned situation.

The model which, in our view, provided one of the neatest solutions to the enigma of the 750 GeV

resonance, was the variant of the Randall-Sundrum model stabilised by the Goldberger-Wise

mechanism, where we have a scalar radion, possibly of electroweak scale mass, which couples

to matter through the trace of the energy-momentum tensor. This results in couplings which

are very Higgs boson-like, with the SM vev v replaced by the radion vev Λϕ. However, there

exists one major difference, which is that the radion couplings to a γγ or a gg pair contain

contributions from the trace anomaly, which are absent in the case of a Higgs boson.

Of course, if we consider a radion in isolation, its behaviour is so much like a Higgs boson,

that it is precluded from being a solution to the 750 GeV resonance problem by the very same

arguments that apply to a heavy Higgs boson [108]. However, there exists the very interesting

possibility that the radion may mix with the Higgs boson of the SM, with the lighter component

being the 125 GeV boson observed at CERN in 2012, and the heavier component being the

750 GeV resonance in question, as described in thee previous section. We may reiterate that

such mixings through kinetic terms [21–23,38], are controlled by a parameter ξ. At the conformal

point ξ = ξ0 ≈ 1/6, we have seen that the tree-level couplings of the heavier scalar state to

all matter particles vanish, leaving only the one- loop couplings to γγ and gg pairs, which are
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mediated by the trace anomaly. The latter, as shown above, depend on the beta functions of the

gauge theory rather than direct couplings of the radion to matter. Apart from the fact that such

radions escape all constraints from precision electroweak tests and heavy Higgs boson searches

at the LHC, this scenario is highly conducive to an explanation of the diphoton resonance [85].

Thus, we obtain Eq. (4.2) with the specific couplings

yq = 0 ∀q cg =
αs

16π

Mϕ

Λϕ
gϕ(ξ0) |b3| cγ =

α

16π

Mϕ

Λϕ
gϕ(ξ0) |b1 + b2| (4.12)

where the b1, b2, b3 correspond to the U(1)Y , SU(2)L and SU(3)c gauge groups respectively.

The function gϕ(ξ) arises from the mixing, but for the choice ξ = ξ0 is approximately unity.

The beta functions in the above couplings are given, as usual, by

b1 = −20

9
Nf −

1

6
Ns , b2 =

22

3
− 4

3
Nf −

1

6
Ns , b3 = 11− 4

3
Nf (4.13)

where Nf and Ns represent the number of fermion and scalar doublets, respectively, in the

model. If the particle content on the ‘infrared’ brane matches with that of the SM, we will have

Nf = 3 and Ns = 1, and hence obtain the usual values b1 = −41/6, b2 = 19/6 and b3 = 7. In

terms of these, we can write

cγ ' 0.045cg (4.14)

The corresponding curve is plotted in Figure 4.3, on the panel marked (a), and indicated as

‘SM’. It is clear that this is far away from the allowed region and therefore, this version of the

model fails to explain the 750 GeV observation. In fact, this version hardly does better than

models where the γγ and gg couplings are generated from loops containing matter particles (see

panel (b) and the discussions following Figure 4.3).

Though the above result is rather disappointing and belies the optimistic claims made just

before, a small addition to the model can provide a scenario which works very nicely. This

is the addition, on the ‘infrared’ brane, of a single family of vectorlike fermions, which are

doublets under SU(2)L. The presence of such fermions, so long as their masses lie below that

of the resonance, changes Nf from 3 to 5. As a result, we get b1 = −203/18, b2 = 1/2 and

b3 = 13/3, and this leads to

cγ ' 0.216cg (4.15)

In Figure 4.3(a), this curve is plotted and marked ‘SM + VF’. Obviously, it passes through the

allowed region — somewhat marginally if the absence of dijet signals is demanded at 1σ, but

much more comfortably, if we relax it to 2σ. Thus, it seems that we can obtain a solution to

the 750 GeV resonance by postulating the following:

• A Randall-Sundrum type scenario, with modulus stabilisation through the Goldberger-

Wise mechanism;

• Mixing of the scalar radion with the Higgs boson, with a mixing parameter precisely tuned

so that the heavier eigenstate decouples from matter fields on the brane;

• Augmentation of the particle content on the ‘infrared’ brane by one full generation of

vectorlike doublet fermions.

An encouraging feature of adding vectorlike fermions is the fact that they are not constrained

seriously by electroweak precision tests. However, the story is not completed yet, for we still
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have to check that the actual values of cg and cγ are adequate for our purposes, and do not

induce new constraints on the model from, for example, the couplings of the light 125 GeV

scalar, which does not decouple from matter. This is shown in Figure 4.4, where we have

plotted the diphoton signal as a function of the radion vev Λϕ – the only free parameter once

we set ξ = ξ0. For this part of the analysis, QCD corrections to the production cross-section

have been included in the form of a factor K ≈ 2. The blue curve marked ‘SM’ shows the

cross-section when we consider only SM particles on the brane. Corresponding constraints on

the radion vev Λϕ from the signal strengths (in particular, µWW at the CMS [154]) of the

125 GeV scalar are shown as the blue shading. Obviously, this scenario fails to produce enough

diphoton events. In any case, it is ruled out by the fact that even with this low level of diphoton

production, it would lead to an observable dijet excess (see above).
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Figure 4.4: Cross-sections for diphoton production as a function of the radion vev Λϕ, in the case
ξ = ξ0, in two different scenarios. The yellow shading indicates the region of interest for the 750 GeV
resonance.

The red curve, marked ‘SM + VF’, on the other hand, provides very reasonable cross-sections

for values of Λϕ > 700 GeV. This corresponds, as explained before, to the SM augmented by

a vectorlike family of doublet fermions. Interestingly, this scenario is less constrained by signal

strengths than the previous case. The pink shading shows the bounds on Λϕ from the Higgs

signal strengths. We have already verified (Figure 4.3) that this model will not lead to an

observable dijet excess.

To summarise, in this work we considered a simple scenario in which the proto-resonance at

750 GeV was a scalar radion of the Randall-Sundrum model, which has a mixing with the Higgs

boson, carefully fine-tuned so that the heavier eigenstate decouples from matter. Identifying this

with the possible resonance at 750 GeV, we could explain the observations, including the lack of

a dijet signal, provided the SM stands augmented by a single family of vectorlike fermions. As

we included just a single family of such fermions, which live purely on the ‘infrared’ brane, and

that too, with canonical gauge charges, this appeared to be a more economical solution than

many of the ones provided in the literature. Of course, like all the other ingenious explanations

for this transient excitement, this work has no relevance to the real world. It has been included

mainly as an indicator of the unique features of the conformal point in radion-Higgs mixing.



Chapter 5

Missing pT Signals for LED at the LHC

5.1 Introduction

The successful run of the LHC has marked, in many ways, a new era in particle physics. The

LHC has now been upgraded from 8 TeV to an increased centre-of-mass energy of 13 TeV and

will continue to run for few years to search for new physics. The machine energy is already high

enough to potentially search for TeV range physics. With the increased energy, it has already

looked for new physics in various channels and found a null result in almost every obvious

channel suggested for new physics searches. However, the LHC is expected to run for several

more years, and it is entirely possible that new physics may be found when it has collected

enough data. It is, therefore, the right time to study newer search channels for the models

which predict TeV-range physics.

One such well-known new physics model is the model of Large Extra Dimensions (ADD model)

discussed in Chapters 1 and 2 where a number of extra spatial dimensions are introduced.

We may recall that in this model the Standard Model fields are confined to a 4D brane, but

a massless graviton is free to propagate in the higher-dimensional bulk. On the brane, this

appears as a tower of massive KK modes, each a spin-2 field propagating in 4D. Mass of each

of these modes is inversely proportional to R
(n)
c where n is the number of extra dimensions.

We also recall that due to the large size of the extra dimensions, the mass spectrum of the KK

gravitons becomes a quasi-continuum. The coupling of each KK graviton to matter remains

small in this case, but the contribution from a huge number of accessible KK modes make the

effect substantial enough to be observed in a TeV range experiment. However, due to the feeble

coupling of individual mode, each graviton KK mode does not leave any trace in a detector

when it passes through it.

These KK graviton states may appear as (a) emission of real KK gravitons, or (b) as virtual

states contributing to the modification of the strength of a process. The behaviour of both

types of processes has already been discussed in Chapter 2, and it has been explained how real

graviton emission processes can be used as a probe for the model. This forms the theme for the

present chapter and the next.

The chapter is organised as follows. First, we consider the simplest process that can be used to

61
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look for this model, viz. pp→ jG~n
1 which has already been studied in the literature [11,155,156]

and analysed in the experiments to constrain the bulk Planck scale, MD [157, 158]. We will

then discuss in detail a complementary study to probe the model via the process pp → tt̄ G~n.

We will then make a correlated study of these two processes together.

5.2 Monojet + MET signals

The simplest process involving real gravitons at a hadron collider is emission of a real KK mode

in association with a jet. The contribution for this process comes from the following parton-level

subprocesses.

gg −→ g G~n, qq −→ g G~n, and qg −→ q G~n

where q and g represent quark and gluon partons from the colliding hadrons. The biggest

contribution comes from the subprocess qg → qG~n. The KK graviton, being invisible to the

detectors, will contribute to the missing transverse energy (MET). This process will give a

signal for jet + MET at a hadron collider. The collider signatures for this process has already

been studied in Refs. [11, 155, 156]. However, we will discuss this process to some extent for

completeness. A representative diagram for this process is shown in Figure 5.1 where a G~n is

emitted in association with a quark. In addition to the quark final state, final state with a gluon

will also contribute to the jet + MET final state which will come from the other two subprocesses.

Figure 5.1: A sketch of representative subprocess for the process pp→ jG~n.

As described in Chapter 2, each KK mode ~n corresponds to different final state. Hence, the

calculation of total cross-section involves incoherent sum of all such final states with different

KK indices ~n, i.e.

σtot =
∑
{~n}

σ~n (5.1)

where σ~n represents the cross-section corresponding to the final state involving KK mode G~n.

The sum can be approximated by an integral with an appropriate upper cutoff. As argued

previously, the cutoff should be the centre-of-mass energy of the collider.

1KK gravitons, denoted as h̃
(~n)
µν in Chapter 2, will be denoted as G~n in this chapter.
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It may be noted in passing that we are trying to probe a theory with a cutoff scale atMD ∼5 TeV

which is lower than the centre-of-mass energy ' 13 TeV of the currently-running LHC. However,

this is not a serious problem since the actual centre-of-mass energy available in an individual

partonic event is usually much lower than the machine energy and the number of events where

the parton-level collision energy is greater than the cutoff scale is negligibly small. We of course

safely probe the cutoff scale of a new theory to a higher value than the machine energy. However,

we need to do a systematic study of how low the cutoff scale can be taken for that new theory.

A systematic study for the cutoff scale, MD, in the case of Large Extra Dimensions from the

perturbativity considerations in the jet + MET has been done in Ref. [155]. For this process, the

conclusions is that MD can be taken to be ∼ 4 TeV or more for all permissible values of the

number of extra dimensions n.

At the 13 TeV LHC, a search for LED has already been carried out by ATLAS [157] and

CMS [158] in the jet + MET channel at ∼36 fb−1 luminosity. We list the lower bounds on MD

obtained by both ATLAS and CMS collaborations in Table 5.1. It may be seen that this gives

fairly stringent bounds on the model in question.

n ATLAS [157] CMS [158]

2 7.7 9.9

3 6.2 7.5

4 5.5 6.3

5 5.1 5.7

6 4.8 5.3

Table 5.1: Lower bound (in TeV) on MD for different values of extra dimensions n from the LHC.

So long as the LHC (and other machines) continue to find no evidence for physics beyond the

SM, this process will be enough to constrain the model — that is all that can be done. If,

however, deviations from the SM are seen in this channel, then it would be necessary to look

for some confirmatory process to check if the deviation is, indeed, due to LED. It is with such

an optimistic scenario in mind that the following study was undertaken.

5.3 MET Signals in Association with tt̄

As a confirmatory process for the LED model, we have studied production of KK gravitons in

association with tt̄ at the LHC, i.e. the process

p p −→ t t̄ G~n

The top quark, whose lifetime is much shorter than the hadronisation timescale, decays promptly

to a b quark and a W boson with almost 100% branching ratio. The W boson then decays,

also promptly, either to a lepton-neutrino pair or to a quark-antiquark pair, while b quarks will

hadronise to jets with a large probability of displaced vertices due to the long lifetime of the b

quark. The other light quarks coming from W bosons will hadronise to prompt jets. Neutrinos
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and graviton KK states will provide missing transverse energy (MET). Depending on the decay

channels of the two W bosons, then, we can predict three possible final states, viz.

1. `+`− + jets + MET,

2. `± + jets + MET,

3. jets + MET

where `± can be an electron (e), a muon (µ) or a tau (τ) lepton. The b-quark jets can be tagged,

with an efficiency which can be as high as 70%, and the t-quarks, if the initial t energy is high

enough, would lead to a fat jet which can be tagged as a t-jet reasonably efficiently (40− 50%)

using jet substructure-based methods [159].

The main SM backgrounds for the above final states will come from the events with tt̄ and

tt̄Z(νν̄) final states when, in the latter case, Z decays invisibly to a pair of neutrinos. Sketches
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Figure 5.2: Figure shows diagrams of the signal and background processes at the LHC.

of the signal and background processes are shown in Figure 5.2. The top panel consisting of

three diagrams (a1), (b1) and (c1) represents quark-initiated processes while the bottom ones

(a2), (b2) and (c2) are for gluon-initiated processes. If we divide the figure vertically then the

right most panel consisting of diagrams (c1) and (c2) represents the sketches for tt̄G~n signal.

The left most panel containing diagrams (a1) and (a2) are for tt̄ background and the central

panel containing (b1) and (b2) diagrams are for tt̄Z background processes. The amplitudes for

these processes are given in Appendix A. Computation of the signal cross-section is analytically

and numerically challenging, as it involves 7 quark-initiated and 21 gluon-initiated Feynman
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diagrams. Similarly, computation of the tt̄Z background involves 12 diagrams. As the cross-

section formulae are very long, they had to be calculated piecemeal to prevent fatal roundoff

errors in the numerical analysis. The final results were then subjected to stringent tests to

ensure that they were, indeed, free from such errors. The calculation is slightly more difficult

than a typical cross-section calculation since we need to sum over all the KK graviton processes

by approximating the sum as an integration with a proper density-of-states as described in

Chapter 2.

The decays of the top quarks of the tt̄ and tt̄Z background then lead to exactly the same three

kinds of final states as listed above. However, the cross-section, particularly for the tt̄ is orders

of magnitude larger than the signal cross-section, suppressed as it is by values of MD larger

than 4 TeV. We have, therefore, made a kinematic cut-based analysis optimised to enhance the

signal with respect to the backgrounds.

The cuts are based on the following kinematic considerations. In the SM top-pair production

process, where no third particle is present in the final state, the ~pT of top and anti-top will

be the same but opposite in direction. Produced leptons after decay of a top and then further

decay of a W+ will also be highly boosted, and hence, will emerge in almost the same direction

as the original top. However, if a third particle is produced with the tt̄ pair, in most cases

the pT -balance will be lost and this will be reflected as a significant deviation from the SM /pT
distribution of top-pair production in any channel. For the tt̄ background to dilepton events,

/pT will almost be nil as the two neutrinos will emerge practically back-to-back in the transverse

plane. In the purely hadronic case, we expect almost no missing pT from the tt̄ background. The

invisible gravitons will, therefore, in every case, enhance the missing pT . The tt̄Z background,

however, will be, at some level, irreducible, because a massive Z boson, decaying invisibly, is

not so different from a massive KK graviton mode, also invisible. However, the mass of the

Z is fixed whereas there is a continuous spectrum of graviton masses, ranging from the near

massless to a few TeV. This makes for some kinematic differences, which we have exploited

through kinematic cuts. In each of the three types of final states, the best set of cuts were

found by considering 103 sets of random cuts and optimising for the signal significance and the

number of signal events. This has been done in the following way. A set of kinematic cuts

was first chosen which matches closely with experimental top quark searches at hadron colliders

and was possible to implement in a parton-level study. Maximum ranges of these cuts were

assigned, using the acceptance criteria, and then a random values of these cuts was generated

using a simple pseudorandom number generator. These kinematic cuts were applied to the final

states and signal significance S/
√
B, where S is number of signal event and B is number of

background events with a given luminosity, was calculated. The procedure was repeated 1000

times, and the optimal set of cuts was chosen as the set that yielded at least 10 events for

3 ab−1 luminosity and gave the best signal significance. As the actual numbers came out to be

fractional, they were rounded off to the nearest plausible value.

Before going into the details of the results we have obtained, we may note the tools and pro-

cedures adopted for the study. We used the Feynman Rules given in the appendix of Ref. [11]

to calculate the diagrams in the ADD Model and standard SM Feynman Rules consistent with

Ref. [11] for calculating the SM background processes. For the trace calculations we used the
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public domain tool Form [160]. The cross-section calculation and differential distribution of the

event variables were obtained by an author-developed Monte-Carlo integrator built around the

CERN library package SAMPLE, which uses an importance sampling algorithm. In each case,

in the integrator, depending upon the convergence rate, 106 to 107 sample points were taken

to calculate cross-sections and to generate differential distributions by numerical integration.

The estimates for SM backgrounds were also obtained by the same integrator in order to be

consistent with the estimates for signal. With such numbers, we felt confident that tails of the

kinematic distributions were well estimated.

For all the cross-section calculation in this chapter we used the CTEQ6M [161] PDF sets, which

uses standard MSbar scheme to calculate PDF values at Next to Leading Order (NLO), with the

factorization scale set at the centre-of-mass (
√
ŝ) of the parton-level hard scattering process. For

the SM background estimates, we estimated NLO QCD effects by a short cut, i.e. we multiplied

the LO cross-section by a
√
ŝ-dependent scale factor (K-factor), calculated using Ref. [162] for

parton-level heavy quark production process at NLO. For the parton-level hard processes, the

value of αS was also taken to be the usual
√
ŝ-dependent running value with five flavours and

αS(MZ) = 0.118 [10].

5.3.1 Dilepton final states

At the LHC, the cleanest of these three channels is the final state with 2 leptons, viz. `+`− + jets

+ MET final state, since the efficiency for detecting leptons is almost 100%. The efficiency of tau-

lepton tagging is slightly less ∼ 80%. In the analysis, we, therefore, assume the efficiency of

detecting electron and muon to be 100% while the efficiency for tau to be 80%. The b-tagging

efficiency was taken to be 70%. With these assumptions, we carried out a kinematic cut-based

analysis on the parton level events.

In Table 5.2, we show the principal cuts and their effects on the signal as well as background.

The different sets of cuts in Table 5.2 may be characterised as follows. Set A is essentially the

minimal set of cuts, mostly dictated by fiducial considerations. Set B contains the selection

cuts – except for the cut on /pT – which optimise the signal-to-background ratio. The ‘Final’ set

then adds a lower cut on missing pT . The LHC being a hadron collider, the QCD background

is also very large, but it can be reduced greatly with lower cuts on the pT of the final states.

The cross-sections in the third, fourth and fifth columns of Table 5.2 tell their own story. The

enormous tt̄ backgrounds are removed almost completely by the cuts, and the tt̄Z background

is reduced around 120 times, at a cost to the signal of a reduction to about 20%. To fur-

ther illustrate the effect of these cuts, we have plotted the distribution of /pT in events with

`+`− + jets + MET final states in the left panel of Figure 5.3 for n = 6 in the ADD model with

MD = 4.8 TeV, which represents the current lower bound on MD from the LHC data at
√
s = 13

TeV machine energy by the ATLAS Collaboration [157] as listed in Table 5.1. For this plot,

the integrated luminosity has been taken to be 3000 fb−1. For number of extra dimensions less

than 6, distribution patterns will be similar but cross-sections are different.

In Figure 5.3, the black histograms correspond to the tt̄ background process. It is immediately

clear that for the tt̄Z(νν̄) and tt̄ G~n processes, shown as blue and red histograms respectively,
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Set Cuts σtt̄ [fb] σtt̄Z [fb]
∑

n σtt̄Gn [fb]

A η` < 3, ηj < 3 17590.2 5.1997 0.0716

∆R`j > 0.4, ∆R`1`2 > 0.2, ∆Rj1j2 > 0.7

pT` > 20 GeV, pTj > 20 GeV, /pT > 20 GeV

B Set A + η` < 2.2, ηj < 2.5 940.41 0.4151 0.0237

pT`1 > 80 GeV, pT`2 > 30 GeV

pTj1 > 35 GeV, pTj2 > 25 GeV

∆Rj1j2 < 3.0, ∆R`1`2 < 2.2

Final Set B + /pT > 360 GeV 0.0028 0.0444 0.0145

Table 5.2: List of sets of cuts for `+`− + jets + MET signal and their effects on the cross-sections at
√
s = 13

TeV. The signal is computed for n = 6 and MD = 4.8 TeV.
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Figure 5.3: Analysis of the `+`− + jets + MET vis-á-vis background at the LHC. The left panel (a) shows the

/pT distribution of signal vs. tt̄ and tt̄Z backgrounds, represented by red, black and blue histograms respectively.
The cuts sets indicated in Table 5.2 are marked alongside the relevant histograms in the same colour. The
hatched regions indicate the final set of cuts. The right panel (b) shows the 95% discovery plot (red lines) as a
function of integrated luminosity, where the numbers of extra dimensions are indicated next to the curves. The
dashed parts are already excluded by the LHC [157].

the /pT distributions are shifted toward the right, indicative of increased missing pT . Our results

corresponding to sets ‘A’ and ‘B’ are marked alongside the corresponding histograms. The Final

Set, which has a lower cut on /pT , has not been labelled in the plot but is represented by the

hatched regions with the same colour scheme as used for the histogram plots.

The right panel of Figure 5.3 shows discovery limits at 95% C.L. of the above-mentioned signal

for the ADD model in the plane of MD versus the machine luminosity. Each curve corresponds

to a signal significance of 95% C.L. for different numbers of extra dimensions indicated by the

numbers marked next to the lines. The dashed lines terminating at black circular dots indicate

ranges of MD already excluded by ATLAS [157] at the LHC. The black square dots on the lines

indicate the current LHC bounds on MD by CMS [158]. The corresponding abscissa indicates
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the integrated luminosity required to obtain a 95% C.L. signal at the LHC. As it can be seen

in the figure, for n = 5, 6, a luminosity of ≈ 1000 fb−1 is needed in order to reach the current

lower bound on MD given by ATLAS. For n = 3, 4, the luminosity requirement is slightly more

≈ 3000 fb−1.

5.3.2 Single lepton final states

Though dilepton signal is the cleanest channel, the advantage is weakened by the smallness

of branching ratio of leptonic decays of W compared to its hadronic branching fraction. This

increase in branching ratio increases the signal significance more effectively. In fact, as we

will see that `± + jets + MET signal gives us the best sensitivity among all the three signals.

Here again we carried out a kinematic cut-based analysis similar to the case of dilepton final

state. The sets of cuts are listed in Table 5.3. In this case, the huge tt̄ background is completely

removed by the choice of cuts. In addition to the tt̄ and tt̄Z background, tb̄ production, with top

Set Cuts σtt̄ [fb] σtb̄ [fb] σtt̄Z [fb]
∑

n σtt̄Gn [fb]

A η` < 3, ηj < 3 104,805.3 440.59 33.4049 0.4949

∆R`j > 0.4, ∆Rj1j2 > 0.7

pT` > 20 GeV, pTj > 20 GeV,

/pT > 20 GeV

B Set A + pT` > 40, η` < 2.5, ηj < 2.5 565.09 3.4336 1.0985 0.1558

0.4 < ∆R`j < 2.2, 0.7 < ∆Rj1j2 < 2.7

Final Set B + /pT > 480 GeV 0.0 0.0 0.1535 0.0980

Table 5.3: List of sets of cuts for `± + jets + MET signal and their effects on the cross-sections at
√
s = 13

TeV. The signal is computed for n = 6 and MD = 4.8 TeV.

decaying leptonically, gives a non-negligible contribution to the background for `± + jets + MET

signal2. However, like the tt̄ background, tb̄ can also be removed completely with a proper

choice of cuts. This is clearly evident from the last entry in the column of Table 5.3 marked as

σtb̄. Only irreducible background is that is coming from tt̄Z.

Like the previous case, the effect of the cuts has been shown graphically in the left panel of

Figure 5.4 using notations and conventions similar to that of Figure 5.3. The new addition in

Figure 5.4(a) is the green histogram representing the tb̄ background which goes to zero after

imposing the Final set of cuts. As the cross-sections for tt̄ and tb̄ backgrounds are effectively

zero after the final cut, the black and the green hatched regions are absent. In Figure 5.4(b),

the discovery limit at 95% C.L. is plotted following the convention set in Figure 5.3(b). We see

that the luminosity requirement in this case is almost a tenth with respect to that in the case

of dilepton signal.

2Here tb̄ represents all the single top production signals, viz. tb, tb̄, t̄b and t̄b̄, but contribution for tb̄ is the
largest.
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Figure 5.4: Analysis of the `± + jets + MET signal vis-á-vis background at the LHC. The left panel (a) shows
the /pT distribution of signal vs. tt̄, tb̄ and tt̄Z backgrounds and the right panel (b) shows the 95% discovery plot
as a function of integrated luminosity. The notations and conventions are exactly as in Figure 5.3.

5.3.3 Hadronic final states

Since the hadronic branching ratio for a W is bigger than its leptonic branching ratio, we made

similar kinematic cut-based analysis in the hadronic channel. Energy of the collider being high

enough, the LHC can produce energetic top. These energetic top quarks, if decay hadronically,

can be tagged quite effectively with ∼ (40 − 50)% efficiency by boosted top technique [159].

However, the cross-section for the signal as well as for the backgrounds will be small. This can

be seen from the last three columns of Table 5.4 where the cut sets are also listed in the second

column. The notations and conventions for the cut sets are very similar to Table 5.2. In this

case, we demand at least 2 jets in the process, one of which has to be tagged as a top quark.

This helps to reduce the QCD background, at the cost of a top quark efficiency factor which is

40% or less.

Set Cuts σtt̄ [fb] σtt̄Z [fb]
∑

n σtt̄Gn [fb]

A Nj ≥ 2, ηj < 3, pTj > 20 GeV, /pT > 20 GeV 0.0669 0.9342 0.0795

B Set A + 20 GeV< pTj2 < 220 GeV, ηj < 2.7, 0.0012 0.1954 0.0460

∆Rj1j2 < 2.7

Final Set B + /pT > 660 GeV 0.0000 0.0738 0.0317

Table 5.4: List of sets of cuts for jets + MET signal and their effects on the cross-sections at
√
s = 13 TeV.

The signal is computed for n = 6 and MD = 4.8 TeV.

In this case, we can see that tt̄ background has much smaller cross-section compared to tt̄Z

background. It may be noted that the zero value in the table is not strictly zero, but indicates

that it is smaller than the number of decimal places shown. This smallness in cross-section in tt̄

background is because cross-section of high missing-pT in tt̄ event is very small. The reason is

there is no hard source of /pT in a fully hadronic event, unlike the case of tt̄Z background, where

Z decaying to neutrinos is invisible. In fact, the only source of missing pT in an actual event
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mainly comes from the detector effect, i.e. when a final state hadron is not detected by the

detectors due to its small momentum or due to its production in forward or backward direction

which is outside the detector coverage. As we have not done a detector simulation, we do not

have an exact estimate for this, but it is unlikely that these effects can produce /pT greater than

a few GeV at most. That is why selection cut with /pT > 20 GeV gives very small number of

events and this result is quite robust. When we include the top-quark tagging efficiency, the

background is further diminished, but, of course, the signal is also similarly affected, and that

is why we tag only one top quark instead of both the top quarks.
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Figure 5.5: Analysis of the jets + MET signal vis-á-vis background at the LHC. The left panel (a) shows
the /pT distribution of signal vs. tt̄, tt̄Z backgrounds and the right panel (b) shows the 95% discovery plot as a
function of integrated luminosity. The notations and conventions are exactly as in Figure 5.3.

Figure 5.5(a) shows the distribution of the signal and background events. The number of events

are very small since we demanded one top to be tagged. The tt̄ background is removed to almost

zero even in the set ‘B’. Figure 5.5(b) shows 95% C.L. discovery limit with this signal. This

signal does better than the dilepton signal but slightly worse than the monolepton signal. With

better top tagging efficiency, the signal sensitivity can be improved further.

Before going to the next section, it is worth mentioning one important aspect of the projected

limits on MD presented in this chapter of the thesis. This is that the bounds on MD can be

as low as 4.5 TeV, whereas the beam energies at the LHC are as high as 6.5 TeV. In the usual

ADD formalism, the sum over Kaluza-Klein modes diverges as
√
s→ MD and above the scale

MD we may expect new physics in which strong gravity (with perhaps stringy states) plays an

important role. Thus, if there are events which have a partonic centre-of-mass energy above

MD, we do not know how to calculate the cross-section, and this, at first glance, would seem

to make our results invalid. On deeper reflection, however, it may be seen that these effects, if

any, must be very small and hence, our results are reasonably robust. The reasons for this are

as follows.

If MD is taken to be the higher-dimensional Planck scale, it enters the cross-section from two

sources. One is from the density of states, where it is used to replace the radius of curvature
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Rc of the compact dimensions. The other is as a cutoff for the sum over KK states, which

appears when we sum over graviton states. The cutoff in the latter may actually be somewhat

smaller than MD, and hence, the value of MD used in our computations is not quite the higher-

dimensional Planck scale. This is a level of inaccuracy which we share with all the existing

literature, including the experimental bounds. It may be noted, however, that as MD appears

as the fourth power, and factor in the cross-section will change it only by the fourth root, and

this may not be very significant.

Of more importance is the fact that when we consider energies as high as 4.5 TeV at the LHC,

the PDF factors, especially for gluon-induced processes, become very small, and hence, the

probability of having events with energy greater than MD = 4.5 TeV is quite negligible. We do

not expect the parton-level cross-sections in the unknown theory above MD to have enormous

values since the full theory is supposed to maintain unitarity. Therefore, multiplication by the

very small PDF factors leads to negligible cross-section. The only exception to this would be

if we have resonant states at or around MD, such as, for example, stringy states of the full

theory (if it is a string theory). However, such high-mass resonant states would most probably

have been already discovered at the LHC, and in any case, they would certainly affect the LED

discovery process with a monojet and missing energy. We may, then, safely assume, for the

present, that such resonant states are absent at or around MD. If, at a later stage, some weak

resonant states are indeed discovered, this work may have to be suitably modified.

It may be mentioned in passing that in the experimental papers by ATLAS [157] and CMS [158],

a factor ofM4
D/ŝ

2 is multiplied in the simulated events whenever
√
ŝ > MD to suppress any extra

contributions. Moreover, in Ref [157], it is shown that the bounds obtained are independent of

this dampening condition for Monojet + /pT signal in the same model. However, this dampening

condition is completely ad hoc, and hence we did not implement any dampening condition in

any of our analyses. We did, however, check that if we had implemented it, our results would

have changed only very slightly.

5.4 Correlation between monojet + MET and tt̄ + MET

It has already been stated that the process pp → gG~n, leading to a signal with a monojet and

large /pT is the leading process at the LHC and is the source of the dots indicating ATLAS and

CMS constraints [157, 158] in Figures 5.3(b), 5.4(b) and 5.5(b) with an integrated luminosity

around 35 fb−1, which is far more efficient than the process considered here which requires at

100 fb−1 or more to reach the same bounds. However, the usefulness of this process will become

apparent when we consider a correlation between the two processes, viz. monojet + MET and

`± + jets + MET which gives the best discovery limit at 95% C.L. Figure 5.6 shows just such a

correlation plot between monojet + /pT vs. `± + jets + /pT event numbers at 13 TeV with 3 ab−1

luminosity. The lines in the plot are generated by varying the string scale MD, increasing

towards the bottom left corner. The colour convention of the lines are similar to that of the

plot in the right panel of Figure 5.3. The grey shaded region is the 95% C.L. fluctuation of SM

background. This immediately tells that MD corresponding to the lines inside the shaded region

will not be probed upto 95% C.L. by either of the processes. There are, however, substantial

parts of the correlation lines which are outside the shaded box, and hence can be probed by
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Figure 5.6: Correlation plot showing events numbers for monojet+ /pT vs. `± + jets + /pT events at 13 TeV

with 3 ab−1 luminosity. The lines varying string scale MD, increasing in a south-west direction. The colour
convention of the lines are similar to Figure 5.3(b). The shaded region represents the 95% C.L. fluctuation of the
SM background.

the 13 TeV LHC at 3 ab−1 luminosity. What is interesting about this plot, however, is that if

the observed numbers of events do fall outside the grey-shaded region, one can at once tell if

the cause of this deviation is due to LED or some other model, and if it is LED, the number of

extra dimensions can simply be read off from the curve to which the experimental point is in

closest proximity.

5.5 Summary and Outlook

The ADD model of Large Extra Dimensions provides one of the most elegant solution to the

Hierarchy problem in the SM. The bulk graviton in this model is seen as a collection of KK

gravitons in the 4-dimensional brane where SM fields are confined. These KK states can be

produced as final state particles in processes at the currently running hadron collider, the LHC,

with observable strength. Two such graviton emission processes have been studied in this work,

with the monojet process being already available in the literature and the study of tt̄ states

constituting a new study.

Expecting that the LHC will continue to run for few more years and will collect sizeable data

to probe for new physics, we have studied real graviton emission process in association with the

production of a pair of top quarks. This graviton emission process with top quark pair, gives

rise to 3 types of final states, namely `+`− + jets + MET, `± + jets + MET and jets + MET. The

final state with single lepton gives the best signal for this process since it has advantages from

cleaner signal from leptonic final state and higher branching fraction from the hadronic side.

Purely hadronic final state with a top being tagged is also useful since the background can be

reduced greatly in this case.
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At a hadron collider, the best signal for ADD model is monojet + MET signal. This process

already puts fairly stringent bounds on the bulk Planck scale MD from LHC data. However, a

correlation between the monojet + MET signal and the tt̄ + MET, studied in this work, will help to

probe the ADD model at the LHC. Though the bounds from monojet + MET is the best signal to

look for at the LHC, one may search for tt̄ + MET process as a confirmatory process. Moreover,

if the errors are small enough, we can read the number of extra dimensions n off from a single

correlation plot, something which cannot be done by considering a single process.

It is natural to ask about the prospects of the process at higher energy hadron collider such

as VLHC which will be running at 27 TeV or 100 TeV. It is difficult to answer this question

offhand for a very high energy hadron machine because the analysis strategy is likely to be quite

different at a very high energy machine due to the enormous boost all Standard Model particles

will have. A future study of this is certainly to be desired.

Another important issue at a very high energy machine is that the machine energy could lie

far above the string scale MD of a few TeV which we have considered in the study. At such

energies, gravity would be strong and the underlying physics could be quite different, unless,

of course, MD is even higher — but that would lead to a little hierarchy problem in the Higgs

boson mass, removing the strongest motivation for LED.

The other kind of proposed future colliders are e+e− colliders. We will focus on a similar process

at the future e+e− colliders in the next chapter.





Chapter 6

Missing pT Signals for LED at e+e− Colliders

6.1 Introduction

The discovery of the Higgs boson at the LHC, and the lack of further signal for new particles

and interactions has provided strong motivation for precision measurement of the parameters of

the Standard Model. Precision measurement at a hadron collider, like the LHC, is not efficient

due to the uncertainties arising from strong interactions. It is, therefore, natural to look for

other types of colliders where precision measurement will be more effective. It has long been

known that linear colliders with colliding electrons and positrons are more useful for precision

measurements. Thus, the Linear Collider Collaboration (LCC) has proposed the construction

of two linear colliders. One is the International Linear Collider (ILC) which will start operating

in a few years at a centre-of-mass energy of 500 GeV initially and will then be upgraded to

1 TeV [163]. The other one is the Compact Linear Collider (CLIC) which will start at 380 GeV

and will go upto 3 TeV in its final stage of run [164]. This is expected to come somewhat later,

perhaps as the LHC is finishing its run.

Though the primary goal for the proposed e+e− colliders is precision measurement, they also

provide an excellent opportunity for searches for new physics beyond the SM. In the previous

chapter, we see that the study of the LED model at the LHC shows the moderate usefulness of

a hadron collider. We, therefore, study an analogous process in the context of proposed linear

colliders.

In this chapter, we describe our studies of the signal for LED at the two proposed e+e− colliders,

using the analogous process e+e− → tt̄ G~n
1. As in a hadron collider, however, the dominant

process will be e+e− → γ G~n, leading to a final state with an isolated photon and large missing

pT . At projected ILC centre-of-mass energies like 250 GeV and 500 GeV, the cross-sections

with MD ∼ 5 TeV are so low even for this dominant process that nothing will be detectable

above the SM background from e+e− → γνν̄. However, for machine energies like 1 TeV at the

final run of ILC or 3 TeV at the CLIC, cross-sections will be sizeable and may prove enough to

probe the model.

1KK gravitons, denoted as h̃
(~n)
µν in Chapter 2, will be denoted as G~n in this chapter.

75
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Though the analysis techniques in this work are very similar to those described in the previous

section, important differences arise because of the nature of the machine. At a hadron collider

like the LHC, the available centre-of-mass energy is variable from event to event and is also,

for all practical purposes, considerably less than the machine energy. On the other hand, at an

e+e− machine, the centre-of-mass energy is constant and equal to the machine energy. Thus,

even a 1 TeV e+e− collider could lead (for a very high luminosity) to observable signals, and

a 3 TeV machine can actually improve on the 13 TeV LHC projections even with moderate

luminosity.

6.2 tt̄G~n signal at the ILC

At the ILC, the proposed energy for initial run is 500 GeV with an option of upgrading it

to 1 TeV. With machine energy as low as 500 GeV, the ILC will not be very effective to

search for LED signals with MD >∼ 5 TeV which is the current lower bound on MD from LHC

monojet + MET searches [157,158]. Therefore, we start our analysis assuming
√
s = 1 TeV at the

ILC.
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Figure 6.1: Tree-level Feynman diagrams for the process e+e− → tt̄G~n.

We have considered the process

e+e− −→ t t̄ G~n
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The tree-level Feynman diagrams for the process can easily be drawn from the SM diagrams for

e+e− → tt̄ process. Since KK graviton couples to all the matter particles irrespective of their

spin, flavour or colour, we obtain diagrams for the process with a graviton emitted from one of

the legs or the propagators or the vertices. The tree-level Feynman diagrams for the process are

shown in Figure 6.1. There are total 14 diagrams with 7 diagrams for photon mediated and 7

for Z mediated. The calculation is considerably simpler than the hadronic production since we

have 14 diagrams instead of 28. The amplitudes for the process are given in Appendix B. The

principal backgrounds are again tt̄ production and tt̄Z(νν̄) production, the latter arising from

9 Feynman diagrams. Once again the results were subjected to different analytic and numerical

checks to ensure their correctness.

Depending upon the decay mode of top-pair, as described before in Chapter 5, we will again have

three types of final states viz. `+`− + jets + MET, `± + jets + MET, and jets + MET. Here again we

made a cut-based analysis to increase signal significance. As in the analysis for LHC, at 1 TeV,

we found a useful set of kinematic cuts by searching over 103 random sets and optimising for

signal significance and a reasonable number of events.

6.2.1 Dilepton final states

The signal cross-sections at a 1 TeV machine are rather poor, and the dilepton signal, though

clear, is doubly suppressed by the leptonic branching ratio of the W . In our cut-based analysis,

we divided these cuts into four different sets more-or-less according to the conventions estab-

lished in Chapter 5. Once again, pT cuts on visible final state particles are less effective than

angular cuts, but a lower cut on /pT is very effective in background suppression. These results

are shown in Table 6.1 which is analogous, for the `+`− + jets + MET signal, to Table 5.3 in the

previous chapter.

Set Cuts σtt̄ [ab] σtt̄Z [ab]
∑

n σtt̄Gn [ab]

A η` < 3, ηj < 3.5 4329.4 26.029 0.7552

∆R`j > 0.4, ∆R`1`2 > 0.2, ∆Rj1j2 > 0.7

pT`1 > 20 GeV, pT`2 > 20 GeV, pTj > 20 GeV

/pT > 20 GeV

B Set A + pT`1 < 250 GeV 2564.1 22.746 0.7212

pT`2 < 200 GeV, pTj < 250 GeV

C Set B + ∆Rj1j2 < 2.0, ∆R`1`2 < 2.2 1.4740 1.6125 0.1777

Final Set C + /pT > 150 GeV 0.4872 1.0917 0.1437

Table 6.1: List of sets of cuts for `+`− + jets + MET signal and their effects on the cross-sections at
√
s = 1

TeV. The signal is computed for n = 3 and MD = 6.2 TeV.

The cuts in Table 6.1 are slightly less effective than those in Table 5.3, for the reduction in the

tt̄ and tt̄Z backgrounds are by factors around 9,000 and 25 respectively, whereas the signal is

reduced by a factor of 5, as before. The significance can certainly be improved by making the

cuts more stringent, but this would completely remove the already vanishingly-small signal. The

effectiveness of these cuts are represented graphically in the left panel of the Figure 6.2. The
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notations and conventions of this figure closely follow those of Figure 5.4. It may be seen from
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Figure 6.2: Analysis of the `+`− + jets + MET signal vis-á-vis background at a 1 TeV e+e− collider. The left
panel (a) shows the /pT distribution of signal vs. tt̄ and tt̄Z backgrounds and the right panel (b) shows the 95%
discovery plot as a function of integrated luminosity. The notations and conventions are exactly as in Figure 5.3.

the left panel (a) that the signal, after imposing all the cuts, is well below the irreducible tt̄Z

background. Observation of such a small signal is difficult unless one can achieve the enormous

value of ∼ 100 ab−1 luminosity at a 1 TeV machine. This is apparent from the right panel (b)

showing the 95% C.L. discovery limit of MD as a function of integrated luminosity for different

(marked) numbers of extra dimensions.

6.2.2 Single lepton final states

The mono-lepton signal is also very poor although we gain a factor of 3 from the hadronic

branching ratio of W . Unlike the LHC case where the mono-lepton signal was the best signal,

here it is slightly less useful than the dilepton final state. In Table 6.2, we show the sets of

cuts. The conventions and notations are exactly same as those of Table 6.1. In this case, the tt̄

Set Cuts σtt̄ [ab] σtt̄Z [ab]
∑

n σtt̄Gn [ab]

A η` < 3, ηj < 3.5, ∆R`j > 0.4, ∆Rj1j2 > 0.7 10164.1 84.783 2.3646

pT` > 20 GeV, pTj > 30 GeV, /pT > 20 GeV

B Set A + 40 GeV< pT` < 225 GeV

30 GeV< pTj1 < 180 GeV

30 GeV< pTji < 110 GeV (i = 2, 3, 4) 1807.2 29.51 1.0926

C Set B + 0.4 < ∆R`j < 3.0, 0.7 < ∆Rj1j2 < 3.0 0.8738 8.4515 0.6954

Final Set C + /pT > 200 GeV 0.0 2.7763 0.3952

Table 6.2: List of sets of cuts for `± + jets + MET signal and their effects on the cross-sections at
√
s = 1

TeV. The signal is computed for n = 3 and MD = 6.2 TeV.

background is removed almost completely, but tt̄Z remains as an irreducible background.
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Figure 6.3: Analysis of the `± + jets + MET signal vis-á-vis background at a 1 TeV e+e− collider. The left
panel (a) shows the /pT distribution of signal vs. tt̄ and tt̄Z backgrounds and the right panel (b) shows the 95%
discovery plot as a function of integrated luminosity. The notations and conventions are exactly as in Figure 6.2.

In Figure 6.3(a), we show the effect of the cuts for `± + jets + MET final state events following

the conventions of Figure 6.2. As we see from the figure that the blue histogram corresponding

to tt̄Z background remains as an irreducible background. Figure 6.3(b) shows discovery limit

at 95% C.L. above the SM background. It can be seen that the luminosity requirement for this

channel is almost the same as the dilepton channel. The advantage due to hadronic decay of

one of the W does not remain effective due to lower efficiency in the jet tagging.

6.2.3 Hadronic final states

For hadronic final states, although we gain from the hadronic branching faction, we do not get

much to be observed within few ab−1 of luminosity. The cross-section is rather poor due to

the low machine energy. With the same convention as set in Table 6.1, we list in Table 6.3 the

kinematic sets of cuts that gives best significance with 10 ab−1 luminosity. Since there is no

source for /pT in case of pure hadronic decay of tt̄ background, the tt̄ background events have /pT
smaller than 60 GeV. Hence, in this case, slightly hard lower cut on missing pT removes the tt̄

background completely. However, background events from tt̄Z process will remain irreducible.

Though the signal significance is small, the effects of the sets of cuts is very apparent from the

cross-section listed in the table.

Set Cuts σtt̄ [ab] σtt̄Z [ab]
∑

n σtt̄Gn [ab]

A Nj ≥ 2, ηj < 3.5 213.5 91.65 2.832

pTj > 20 GeV, /pT > 20 GeV

B Set A + 20 GeV< pTj < 200 GeV 160.8 57.71 1.945

C Set B + ∆Rj1j2 < 2.5 6.129 24.02 1.532

Final Set C + /pT > 200 GeV 0.0 9.178 0.9775

Table 6.3: List of sets of cuts for jets + MET signal and their effects on the cross-sections at
√
s = 1 TeV.

The signal is computed for n = 3 and MD = 6.2 TeV.
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The effect of the cuts can be seen graphically in Figure 6.4(a). The reduction in tt̄Z background

is high, but signal is too low to be observed above the background fluctuation at 10 ab−1

luminosity. However, this is the best signal among all three at a 1 TeV e+e− collider. This

can be seen in the right panel of Figure 6.4(b). The conventions for this plot same as those of

Figure 6.2.
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Figure 6.4: Analysis of the jets + MET signal vis-á-vis background at a 1 TeV e+e− collider. The left panel
(a) shows the /pT distribution of signal vs. tt̄ and tt̄Z backgrounds and the right panel (b) shows the 95% discovery
plot as a function of integrated luminosity. The notations and conventions are exactly as in Figure 6.2.

It is quite clear from the above analyses that for n = 3, a string scale up 7 TeV may be observable

— provided one can achieve the absurdly high luminosity of ∼ 103 ab−1. The signals for n ≥ 4

are impossible to observe at a 1 TeV machine. This is not unexpected, but our analysis simply

makes precise what can be guessed qualitatively. In effect, there will be no observable signals

for gravitons in top-quark pair production at the ILC. However, the story is very different at a

3 TeV machine.

6.3 tt̄G~n Signals at the CLIC

Given that LED signals are typically suppressed by a factor (s/M2
D)n/2, it is easy to see that

the rise in centre-of-mass energy from 1 TeV to 3 TeV will improve the cross-section by a factor

that varies from around 27 to 729 as n changes from 3 to 6. Accordingly, projections for LED

at a 3 TeV machine like the CLIC will be far more optimistic than at a 1 TeV machine. This

is borne out by our detailed analysis.

Once again, our choice of cuts and total cross-sections after imposing these for all three types

of final states are shown in Table 6.4 which is analogous, in all respects, to the two previous

ones. However, in this case, the cuts are very effective in reducing the tt̄ background, but the

tt̄Z background is reduced only about 10 times. Nevertheless, the signal drops only marginally,

to about half, so the significance is still good. Moreover, the signal is much larger, as expected.

The larger signal emboldens us to take, in all the panels of Figure 6.5, a higher value of MD =

15 TeV, which may well be the experimental limit by the time a 3 TeV machine could become
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`+`− + jets + /pT

Set Cuts σtt̄ [ab] σtt̄Z [ab]
∑

n σtt̄Gn [ab]

A η` < 3, ηj < 3.5 151.84 4.732 8.696

∆R`j > 0.4, ∆R`1`2 > 0.2, ∆Rj1j2 > 0.7

pT` > 50 GeV, pTj > 50 GeV, /pT > 50 GeV

B Set A + pT`1 < 1000 GeV, pT`2 < 800 GeV 132.18 4.543 8.601

pTj < 800 GeV

C Set B + ∆Rj1j2 < 2.5, ∆R`1`2 < 2.5 0.0 0.6241 5.717

Final Set C + /pT > 400 GeV 0.0 0.5146 5.134

`± + jets + /pT

Set Cuts σtt̄ [ab] σtt̄Z [ab]
∑

n σtt̄Gn [ab]

A η` < 3, ηj < 3.5, ∆R`j > 0.4, ∆Rj1j2 > 0.7 692.2 14.41 20.670

pT` > 50 GeV, pTj > 30 GeV, /pT > 20 GeV

B Set A + 50 GeV< pT` < 800 GeV 186.5 6.490 12.085

30 GeV< pTj1 < 800 GeV

30 GeV< pTji < 600 GeV (i = 2, 3, 4)

C Set B + 0.4 < ∆R`j < 3.0, 0.7 < ∆Rj1j2 < 3.0 0.0 1.402 10.147

Final Set C + /pT > 500 GeV 0.0 1.043 8.866

tt̄ + /pT

Set Cuts σtt̄ [ab] σtt̄Z [ab]
∑

n σtt̄Gn [ab]

A Nj ≥ 2, ηj < 3.5, pTj > 20 GeV 775.8 11.13 4.991

B Set A + 20 GeV< pTj1 < 1300 GeV 160.8 7.859 4.887

20 GeV< pTji < 1000 GeV (i > 1)

C Set B + ∆Rj1j2 < 3.0 0.0 1.834 4.441

Final Set C + /pT > 600 GeV 0.0 1.174 3.646

Table 6.4: List of sets of cuts and their effects on the cross-sections at
√
s = 3 TeV for three types of final

states. The signals are computed for n = 3 and MD = 15 TeV.

operational, assuming that the LHC continues to find results consistent with the SM. Even with

this higher value of MD, the signal at 3 TeV is significantly larger than the tt̄Z background.

This happy state of affairs is reflected in Figure 6.6, where for all the values of n, the discovery

range would clearly be better than the current LHC bounds even with very modest values of

integrated luminosity.

It appears, then, that if there are large extra dimensions, and the value of the string scale lies

somewhere in the range of 10− 20 TeV, a 3 TeV e+e− collider like the proposed CLIC, would

be an ideal machine to search for such LED effects as studied above. However, one would then

expect even larger signals for the dominant e+e− → γG~n channel. Thus, as at the LHC, the
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Figure 6.5: The /pT distributions of signal vs. tt̄ and tt̄Z backgrounds are shown for (a) `+`− + jets + MET,

(b) `± + jets + MET and (c) jets + MET signals. The notations and conventions are exactly as in Figure 6.2(a).

tt̄G~n process should only be thought of as a confirmatory process. We now take up this issue

in more detail.
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Figure 6.6: Analysis of the signal vis-á-vis background at a 3 TeV e+e− collider. The 95% discovery plots
as a function of integrated luminosity are shown (a) `+`− + jets + MET, (b) `± + jets + MET and (c) jets + MET

signals. The notations and conventions are exactly as in Figure 6.2(b).

6.4 Correlation between mono-photon + MET and tt̄ + MET

In Chapter 5, it was shown that the usefulness of the tt̄G~n final states becomes apparent when

we make a correlation plot of its cross-section against that of the monojet process. In the

present case, similar results may be obtained by plotting against the mono-photon process.

These are shown in Figure 6.7, where we have chosen the signals which gives the best significance

at two different energies, i.e. jets + /pT signal at 1 TeV machine and `± + jets + /pT signal for

3 TeV machine. The left panel, i.e. Figure 6.7(a) shows the correlation between γ + /pT vs.

jets + /pT events at 1 TeV with 100 ab−1 luminosity. The right panel, on the other hand, shows

the correlation between γ + /pT vs. `± + jets + /pT events at 3 TeV with 1 ab−1 luminosity.
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The colour convention is the same as Figure 5.6. The figure clearly illustrates the difficulty of

identifying LED signals at 1 TeV and the comparative ease of doing the same at 3 TeV.
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Figure 6.7: Correlation plots showing events numbers for (a) mono-photon + /pT vs. jets + /pT events at

1 TeV with 100 ab−1 luminosity, and for (b) mono-photon + /pT vs. `± + jets + MET events at 3 TeV with 1 ab−1

luminosity. All notations and conventions are identical to Figure 5.6.

6.5 LED Signals at Very High Energy e+e− Colliders

After the analysis at 1 TeV and 3 TeV e+e− colliders, it is natural to explore for ADD signals at a

very high energy linear collider. Unlike a hadron collider, an e+e− machine has two advantages.

First, unitarity guarantees us that the cross-sections for SM background processes decrease with

machine energy and thereby less SM background at higher energies. Secondly, the cross-sections

for signals increase with machine energy as it approaches to the cutoff scale of the theory after

which the perturbativity is no longer applied to the processes. This is because gravitons couple

to the energy-momentum of the initial and final states, and these grow larger as the energy

increases. Even within the perturbative region, the cross-section increases dramatically with

the energy. Unitarity is not an issue since this is just a low-energy effective theory of some

(presumably UV-complete) theory beyond the cutoff.

The results of our first attempt at a numerical analysis are shown in Figure 6.8. In the three

panels of Figure 6.8, we have plotted the signal cross-section in red for different values of

extra dimensions written alongside the curves. The three panels from left to right are for (a)

`+`− + jets + MET, (b) `± + jets + MET and (c) jets + MET final state processes. The SM tt̄ and

tt̄Z backgrounds are plotted in black and blue respectively. The signals and backgrounds are

computed with cuts pTl , pTj , pTmis > 100 GeV and ηl,j < 3.0 and MD = 50 TeV.

Of course, as expected, for
√
s = 1 and 3 TeV, the signals are much smaller than the SM

backgrounds (we must note that the cuts applied here are minimal and not optimised for

background elimination). As machine energy increases, the signal increases rapidly with a

typical scaling (s/M2
D)n/2 and SM backgrounds decrease as 1/s.

These figures make it quite clear that a high energy e+e− collider will be more effective in

finding ADD signal than a corresponding high energy hadron collider.
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6.6 Summary

In this chapter we have investigated the prospects of probing the TeV-range bulk Planck scale

MD at the proposed linear colliders, viz. ILC and CLIC.

We have studied missing energy signal of the process e+e− → tt̄G~n at the ILC and CLIC.

The process will give rise to three types of final states viz. `+`− + jets + MET, `± + jets + MET

and jets + MET. At the 1 TeV ILC machine, the signal for ADD in all the three types of final

states is very poor. For n = 3, luminosity requirement is more than 100 ab−1 to reach the

current bounds from the LHC on MD even for best signal of jets + MET in the process. Signals

for n = 4, 5 and 6 are almost impossible to observe even with this impossibly large projected

luminosity. This implies that there is almost no possibility of finding ADD effects in top-antitop

processes at the ILC at 1 TeV.

At the 3 TeV CLIC, however, much better results can be obtained, even with moderate lumi-

nosity. The results at the CLIC are better than the LHC result since each event at the CLIC

has a centre-of-mass energy of 3 TeV, but it is generally much lower in the case of the LHC.

The luminosity requirement is less than 1 fb−1 to reach current LHC bounds for n = 3, 4, 5

and 6. A correlated study between e+e− → γG~n vs. e+e− → tt̄G~n has also been done in this

work. This correlation, though not very effective at 1 TeV ILC, gives a very good resolution to

probe ADD model at the 3 TeV CLIC.

We also made a simple study of the same processes at very high energy e+e− colliders. The

study shows that a very high energy e+e− collider is better to search for ADD model with

higher bulk Planck scale MD. The advantages in high energy linear collider are because (a) SM

backgrounds decrease at high energies and (b) cross-sections for the signals increase since the

collider energy approaches to cutoff scale. It also suggests that a linear collider will be better

to look for ADD signals than a hadron collider.



Chapter 7

Summary and Conclusions

Models with extra spatial dimensions remain one of the most elegant explanations to address

the hierarchy problem of the Standard Model. This thesis made some collider studies of two

well-known types of model with extra dimensions.

The RS model of warped extra dimension of topology S1/Z2 has two branes situated at the two

fixed points. One of which is called the IR brane where the SM fields remain confined and the

other is the UV brane where gravitational interactions become strong. The stabilisation of the

inter-brane distance is the key to its success to solve the hierarchy problem. The stabilisation

is achieved via a Goldberger-Wise mechanism. The minimal RS model stabilized by GW mech-

anism predicts a light dilatonic scalar called radion. This radion, which interacts with the 4D

SM fields via the trace of the energy-momentum tensor can, in principle, mix with the Higgs

boson of the SM. While a pure radion is constrained from LHC data, a mixed radion has some

room in the parameter space. We investigated direct and indirect signals for a mixed radion

state, with kinetic mixing with the SM Higgs, occurring through a parameter ξ. Constraints on

this from measurement of the properties of the observed 125 GeV scalar are not very strong,

but non-observation of the counterpart heavy scalar puts stringent constraint on the parameter

space of the study. A 13-14 TeV machine will rule out a significant part of the parameter space

if a heavy scalar is not found.

An interesting region of the parameter space in the mixed-radion case, called the ‘conformal

point’, is where the tree-level couplings of the heavy scalar to SM particles vanish except for the

couplings with the gauge bosons of the Standard Model which have extra contributions from the

trace anomaly term. This region is very weakly constrained by current measurements by both

ATLAS and CMS. Interestingly, an explanation for the highly-exotic 750 GeV proto-resonance

in γγ final states at the LHC could have been in terms of the heavy scalar at the conformal

point. However, with the demise of the 750 GeV ‘resonance’, this explanation is now purely

academic.

The model with Large Extra Dimensions considers more than one extra compact spatial dimen-

sions. The large size of the extra dimensions reduces the fundamental scale of gravity in the

bulk to as low as the scale of the electroweak interaction. In the ADD framework, the SM fields

are confined to a single brane and the gravity can propagate to the bulk. Here, only the graviton

85
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has massive KK states and they form a quasi-continuum of masses. These KK gravitons, being

weakly coupled to the SM fields, are not detectable individually in an experiment, and hence,

contribute to the missing transverse energy and momentum in the collider experiments. We

investigated, successively, direct signals in MET in ADD model in processes where a graviton

is produced along with a top-quark pair at the currently-running 13 TeV hadron collider, viz.

the LHC. It turns out that the LHC may verify the signal at 95% C.L. in the near future with

300 fb−1 of luminosity. A comparative study with the monojet + MET signal would also be useful

to confirm the ADD signal.

We further studied an analogous process at the future e+e− colliders. At a 1 TeV e+e− collider,

the machine energy is too low to yield good signal significance and the signal is difficult to

observe beyond the current lower bound from the LHC. However, at a 3 TeV machine, there

are good chances of observing this signal, along with others. A high energy e+e− collider will

be more useful to observe the ADD signal since the cross-section for the signal increases and

that of the SM backgrounds decrease with the increase of machine energy.

Although this thesis primarily focuses on the extra dimensional models, it focusses on some

specific studies. There is, of course, scope for many more studies of extra dimensional models

in the context of colliders or other experiments. In the case of RS model of warped extra

dimension, there is an interesting possibility of allowing the SM fields to access the bulk. These

bulk fields will have their own KK modes. Direct and indirect signatures for these KK modes

are an interesting area of new physics searches. On the other hand, the study of signature

for ADD model from astrophysical observations is also interesting. The possibility that LED

model can provide an explanation for small masses of neutrino, the study of the signatures of

this possibility also remains an interesting region to look for. Another possibility, where the

hierarchy problem is not addressed, is the universal extra dimensions (UED) class of models,

where there is an extra dimension of the form S1/Z2 which can be accessed by all fields.

Extra dimensional models are interesting theoretically, but the fate of the models relies heavily

on the current and future collider experiments. Though the LHC runs, with their negative

results for all physics beyond the Standard Model, have pushed the constraints on models with

extra dimensions to the edge, so far as the LHC is concerned, these models are still very much

viable, when more data accumulate. If and when a high-energy e+e− collider is built, we can

also get information about such models. It may be hoped that, with more data from the LHC

as well as the running of proposed linear colliders, some of the works presented in this thesis

will become useful to study the models with extra dimensions.



Appendix A

Amplitudes for LED Signals at the LHC

A.1 Radiated tensor graviton KK modes :

P(k1) + P(k2)→ t(P1) + t̄(P2) + h
(ñ)
αβ (P3)
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Figure A.1: Figure shows diagrams of the signal processes at the LHC.

where, for quark-initiated processes,

M2 =
(
M(1)

2A +M(1)
2B +M(1)

2C +M(1)
2D +M(1)

2E +M(1)
2F +M(1)

2G

)
(A.1)
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and for gluon-initiated processes,

M2 =
4∑
i=2

(
M(i)

2A +M(i)
2B +M(i)

2C +M(i)
2D +M(i)

2E +M(i)
2F +M(i)

2G

)
(A.2)

where the indices A to G refer to the diagrams in Figure A.1. The label should be read only

one of the A to G. The individual terms are listed below.

For quark-initiated processes :

M(1)
2A =

iκ g2
s

8
[Tc]nm [Tc]ij

1

q′2 (k1 − P3)2
εαβ(P3)∗

× v̄n(k2) γρ
(
/k1 − /P 3

) [
γα (2k1 − P3)β + γβ (2k1 − P3)α

]
um(k1)

× ūi(P1) γρ vj(P2) (A.3)

M(1)
2B =

iκ g2
s

8
[Tc]nm [Tc]ij

1

q′2 (k2 − P3)2
εαβ(P3)∗

× v̄n(k2)
[
γα (2k2 − P3)β + γβ (2k2 − P3)α

] (
/k2 − /P 3

)
γρ um(k1)

× ūi(P1) γρ vj(P2) (A.4)

M(1)
2C =

iκ g2
s

8
[Tc]nm [Tc]ij

1

q2
[
(P1 + P3)2 −m2

t

] εαβ(P3)∗

× v̄n(k2) γρ um(k1)

× ūi(P1)
[
γα (2P1 + P3)β + γβ (2P1 + P3)α

] (
/P 1 + /P 3 +mt

)
γρ vj(P2) (A.5)

M(1)
2D =

iκ g2
s

8
[Tc]nm [Tc]ij

1

q2
[
(P2 + P3)2 −m2

t

] εαβ(P3)∗

× v̄n(k2) γρ um(k1)

× ūi(P1) γρ
(
/P 2 + /P 3 −mt

) [
γα (2P2 + P3)β + γβ (2P2 + P3)α

]
vj(P2) (A.6)

M(1)
2E =

iκ g2
s

2
[Tc]nm [Tc]ij

1

q2 q′2
εαβ(P3)∗

[
q · q′Cαβ,ρσ +Dαβ,ρσ(q, q′)

]
× v̄n(k2) γρ um(k1)

× ūi(P1) γσ vj(P2) (A.7)

M(1)
2F = − iκ g2

s

4
[Tc]nm [Tc]ij

1

q′2
εαβ(P3)∗

[
Cαβ,ρσ − ηαβ ηρσ

]
× v̄n(k2) γσ um(k1)

× ūi(P1) γρ vj(P2) (A.8)

M(1)
2G = − iκ g2

s

4
[Tc]nm [Tc]ij

1

q2
εαβ(P3)∗

[
Cαβ,ρσ − ηαβ ηρσ

]
× v̄n(k2) γρ um(k1)

× ūi(P1) γσ vj(P2) (A.9)
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For gluon-initiated processes :

M(2)
2A = − κ g2

s

2
fabc [Tc]ij

1

(k1 − P3)2 q′2
εµa(k1) ενb (k2) εαβ(P3)∗ ηρσ

×
[
k1 · (P3 − k1) Cαβ,µλ +Dαβ,µλ(k1, P3 − k1)

]
×
[
ηλν (k1 − P3 − k2)ρ + ηνρ (k2 + q′)λ + ηρλ (−q′ − k1 + P3)ν

]
× ūi(P1) γσ vj(P2) (A.10)

M(2)
2B = − κ g2

s

2
fabc [Tc]ij

1

(k2 − P3)2 q′2
εµa(k1) ενb (k2) εαβ(P3)∗ ηρσ

×
[
k2 · (P3 − k2) Cαβ,νλ +Dαβ,νλ(k2, P3 − k2)

]
×
[
ηλρ (k2 − P3 + q′)µ + ηρµ (−q′ − k1)λ + ηµλ (k1 − k2 + P3)ρ

]
× ūi(P1) γσ vj(P2) (A.11)

M(2)
2C =

κ g2
s

8
fabc [Tc]ij

1[
(P1 + P3)2 −m2

t

]
q2

εµa(k1) ενb (k2) εαβ(P3)∗ ηρσ

×
[
ηµν (k1 − k2)ρ + ηνρ (k2 + q)µ + ηρµ (−q − k1)ν

]
× ūi(P1)

[
γα(2P1 + P3)β + γβ(2P1 + P3)α

] (
/P 1 + /P 3 +mt

)
γσ vj(P2) (A.12)

M(2)
2D =

κ g2
s

8
fabc [Tc]ij

1[
(P2 + P3)2 −m2

t

]
q2
εµa(k1) ενb (k2) εαβ(P3)∗ ηρσ

×
[
ηµν (k1 − k2)ρ + ηνρ (k2 + q)µ + ηρµ (−q − k1)ν

]
× ūi(P1)

(
/P 2 + /P 3 −mt

) [
γα(2P2 + P3)β + γβ(2P2 + P3)α

]
γσ vj(P2) (A.13)

M(2)
2E = − κ g2

s

2
fabc [Tc]ij

1

q2q′2
εµa(k1) ενb (k2) εαβ(P3)∗

×
[
ηµν (k1 − k2)ρ + ηνρ (k2 + q)µ + ηρµ (−q − k1)ν

]
×
[
− q · q′ Cαβ,ρσ +Dαβ,ρσ(q,−q′)

]
× ūi(P1) γσ vj(P2) (A.14)

M(2)
2F = − κ g2

s

2
fabc [Tc]ij

1

q′2
εµa(k1) ενb (k2) εαβ(P3)∗ ηρσ

×
[
Cαβ,µν (k1 − k2)ρ + Cαβ,νρ (k2 + q′)µ + Cαβ,ρµ (−q′ − k1)ν + Fαβ,ρνµ(−q′, k2, k1)

]
×
[
− q · q′ Cαβ,ρσ +Dαβ,ρσ(q,−q′)

]
× ūi(P1) γσ vj(P2) (A.15)

M(2)
2G = − κ g2

s

4
fabc [Tc]ij

1

q2
εµa(k1) ενb (k2) εαβ(P3)∗ ηρσ (Cαβ,σλ − ηαβ ησλ)

×
[
ηµν (k1 − k2)ρ + ηνρ (k2 + q)µ + ηρµ (−q − k1)ν

]
× ūi(P1) γλ vj(P2) (A.16)
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M(3)
2A =

i κ g2
s

2
[TaTb]ij

1

(k1 − P3)2
[
(k2 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

×
[
k1 · (P3 − k1) Cαβ,µλ +Dαβ,µλ(k1, P3 − k1)

]
× ūi(P1) γλ (/k2 − /P 2 +mt) γν vj(P2) (A.17)

M(3)
2B =

i κ g2
s

2
[TaTb]ij

1

(k2 − P3)2
[
(k1 − P1)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

×
[
k2 · (P3 − k2) Cαβ,νλ +Dαβ,νλ(k2, P3 − k2)

]
× ūi(P1) γµ (/P 1 − /k1 +mt) γ

λ vj(P2) (A.18)

M(3)
2C = − i κ g2

s

8
[TaTb]ij

1[
(P1 + P3)2 −m2

t

] [
(k2 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× ūi(P1)
[
γα(2P1 + P3)β + γβ(2P1 + P3)α

]
× (/P 1 + /P 3 +mt) γµ (/k2 − /P 2 +mt) γν vj(P2) (A.19)

M(3)
2D = − i κ g2

s

8
[TaTb]ij

1[
(P2 + P3)2 −m2

t

] [
(k1 − P1)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× ūi(P1) γµ (/P 1 − /k1 +mt) γν (/P 2 + /P 3 −mt)

×
[
γα(2P2 + P3)β + γβ(2P2 + P3)α

]
vj(P2) (A.20)

M(3)
2E = − i κ g2

s

8
[TaTb]ij

1[
(P1 − k1)2 −m2

t

] [
(k2 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× ūi(P1) γµ
(
/P 1 − /k1 +mt

) [
γα(2P1 − 2k1 + P3)β + γβ(2P1 − 2k1 + P3)α

]
(/k2 − /P 2 +mt) γν vj(P2) (A.21)

M(3)
2F =

i κ g2
s

4
[TaTb]ij

1[
(k2 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× (Cαβ,µρ − ηαβ ηµρ)
× ūi(P1) γρ (/k2 − /P 2 +mt) γν vj(P2) (A.22)

M(3)
2G =

i κ g2
s

4
[TaTb]ij

1[
(P1 − k1)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× (Cαβ,νρ − ηαβ ηνρ)
× ūi(P1) γµ (/P 1 − /k1 +mt) γ

ρ vj(P2) (A.23)

M(4)
2A =

i κ g2
s

2
[TbTa]ij

1

(k1 − P3)2
[
(P1 − k2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

×
[
k1 · (P3 − k1) Cαβ,µλ +Dαβ,µλ(k1, P3 − k1)

]
× ūi(P1) γν (/P 1 − /k2 +mt) γ

λ vj(P2) (A.24)

M(4)
2B =

i κ g2
s

2
[TbTa]ij

1

(k2 − P3)2
[
(k1 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

×
[
k2 · (P3 − k2) Cαβ,νλ +Dαβ,νλ(k2, P3 − k2)

]
× ūi(P1) γλ (/k1 − /P 2 +mt) γµ vj(P2) (A.25)



A.2. Radiated Z boson : 91

M(4)
2C = − i κ g2

s

8
[TbTa]ij

1[
(P1 + P3)2 −m2

t

] [
(k1 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× ūi(P1)
[
γα(2P1 + P3)β + γβ(2P1 + P3)α

]
×
(
/P 1 + /P 3 +mt

)
γν (/k1 − /P 2 +mt) γµ vj(P2) (A.26)

M(4)
2D = − i κ g2

s

8
[TbTa]ij

1[
(P2 + P3)2 −m2

t

] [
(k2 − P1)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× ūi(P1) γν (/P 1 − /k2 +mt) γµ
(
/P 2 + /P 3 −mt

)
×
[
γα(2P2 + P3)β + γβ(2P2 + P3)α

]
vj(P2) (A.27)

M(4)
2E = − i κ g2

s

8
[TbTa]ij

1[
(P1 − k2)2 −m2

t

] [
(k1 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× ūi(P1) γν
(
/P 1 − /k2 +mt

) [
γα(2P1 − 2k2 + P3)β + γβ(2P1 − 2k2 + P3)α

]
×
(
/k1 − /P 2 +mt

)
γµ vj(P2) (A.28)

M(4)
2F =

i κ g2
s

4
[TbTa]ij

1[
(P1 − k2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× (Cαβ,µρ − ηαβ ηµρ)
× ūi(P1) γν (/P 1 − /k2 +mt) γ

ρ vj(P2) (A.29)

M(4)
2G =

i κ g2
s

4
[TbTa]ij

1[
(k1 − P2)2 −m2

t

] εµa(k1) ενb (k2) εαβ(P3)∗

× (Cαβ,νρ − ηαβ ηνρ)
× ūi(P1) γρ (/k1 − /P 2 +mt) γµ vj(P2) (A.30)

where q = k1 + k2 and q′ = P1 + P2 and the graviton couplings include the tensors

Cµν,αβ = ηµαηνβ + ηµβηνα − ηµνηαβ (A.31)

Dµν,αβ(k1, k2) = ηµνkβ1 k
α
2 −

{(
ηµβkν1k

α
2 + ηµαkβ1 k

ν
2 − ηαβkµ1kν2

)
+ (µ↔ ν)

}
(A.32)

Fµν,αβγ(k1, k2, k3) = ηµαηβγ (k2 − k3)ν + ηµβηαγ (k3 − k1)ν (A.33)

+ ηµγηαβ (k3 − k1)ν + (µ↔ ν) (A.34)

Finally, the sum over graviton polarisations will be

Pµν,αβ(p3) = ΠµαΠνβ + ΠµβΠνα − 2

3
ΠµνΠαβ (A.35)

where Πµν = ηµν − pµ3pν3/M2
~n.

A.2 Radiated Z boson :

P(k1) + P(k2)→ t(P1) + t̄(P2) + Z(ñ)
α (P3)

where, for quark-initiated processes,

M1 =
(
M(1)

2A +M(1)
2B +M(1)

2C +M(1)
2D

)
(A.36)



92 Appendix A. Amplitudes for LED Signals at the LHC

and for gluon-initiated processes,

M2 =
(
M(2)

2A +M(2)
2B +M(1)

2A +M(1)
2B +M(1)

2C +M(1)
2A +M(1)

2B +M(1)
2C

)
(A.37)

where the indices A to D refer to the diagrams in Figure A.2. The label should be read only

one of the A upto D. The individual terms are listed below.
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Figure A.2: Figure shows diagrams of the signal and background processes at the LHC.

For quark-initiated processes :

M(1)
1A = ig g2

s [Tc]nm [Tc]ij
1

q′2 (k1 − P3)2
εα(P3)∗

× v̄n(k2) γρ
(
/k1 − /P 3

)
γα (Aq +Bqγ5)um(k1)

× ūi(P1) γρ vj(P2) (A.38)

M(1)
1B = ig g2

s [Tc]nm [Tc]ij
1

q′2 (k2 − P3)2
εα(P3)∗

× v̄n(k2) γα (Aq +Bqγ5)
(
/P 3 − /k2

)
γρ um(k1)

× ūi(P1) γρ vj(P2) (A.39)

M(1)
1C = ig g2

s [Tc]nm [Tc]ij
1

q2
[
(P1 + P3)2 −m2

t

] εα(P3)∗

× v̄n(k2) γρ um(k1)

× ūi(P1) γα (At +Btγ5)
(
/P 1 + /P 3 +mt

)
γρ vj(P2) (A.40)
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M(1)
1D = ig g2

s [Tc]nm [Tc]ij
1

q2
[
(P2 + P3)2 −m2

t

] εα(P3)∗

× v̄n(k2) γρ um(k1)

× ūi(P1) γρ
(
−/P 1 − /P 3 +mt

)
γα (At +Btγ5) vj(P2) (A.41)

For gluon-initiated processes :

M(2)
1A = g g2

s f
abc [Tc]ij

1

q2
[
(P1 + P3)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

×
[
ηµν (k1 − k2)ρ + ηνρ (k2 + q)µ + ηρµ (−q − k1)ν

]
× ūi(P1)γα

(
At +Btγ5

)(
/P 1 + /P 3 +mt

)
γρ vj(P2) (A.42)

M(2)
1B = − g g2

s f
abc [Tc]ij

1

q2
[
(P2 + P3)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

×
[
ηµν (k1 − k2)ρ + ηνρ (k2 + q)µ + ηρµ (−q − k1)ν

]
× ūi(P1) γρ

(
/P 2 + /P 3 +mt

)
γα
(
At +Btγ5

)
vj(P2) (A.43)

M(3)
1A = − ig g2

s [TaTb]ij
1[

(P1 + P3)2 −m2
t

] [
(k2 − P2)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

× ūi(P1) γα
(
At +Btγ5

)(
/P 1 + /P 3 +mt

)
γµ
(
/k2 − /P 2 +mt

)
γν vj(P2) (A.44)

M(3)
1B = − ig g2

s [TaTb]ij
1[

(P2 + P3)2 −m2
t

] [
(k1 − P1)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

× ūi(P1) γµ
(
/k1 − /P 1 −mt

)
γν
(
/P 2 + /P 3 −mt

)
γα
(
At +Btγ5

)
vj(P2) (A.45)

M(3)
1C = − ig g2

s [TaTb]ij
1[

(k2 − P2)2 −m2
t

] [
(k1 − P1)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

× ūi(P1) γµ
(
/P 1 − /k1 +mt

)
γα
(
At +Btγ5

)(
/k2 − /P 2 +mt

)
γν vj(P2) (A.46)

M(4)
1A = − ig g2

s [TbTa]ij
1[

(P1 + P3)2 −m2
t

] [
(k1 − P2)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

× ūi(P1) γα
(
At +Btγ5

)(
/P 1 + /P 3 +mt

)
γν
(
/k1 − /P 2 +mt

)
γµ vj(P2) (A.47)

M(4)
1B = − ig g2

s [TbTa]ij
1[

(P2 + P3)2 −m2
t

] [
(k2 − P1)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

× ūi(P1) γν
(
/k2 − /P 1 −mt

)
γµ
(
/P 2 + /P 3 −mt

)
γα
(
At +Btγ5

)
vj(P2) (A.48)

M(4)
1C = − ig g2

s [TbTa]ij
1[

(k1 − P2)2 −m2
t

] [
(k2 − P1)2 −m2

t

] εµa(k1) ενb (k2) εα(P3)∗

× ūi(P1) γν
(
/P 1 − /k2 +mt

)
γα
(
At +Btγ5

)(
/k1 − /P 2 +mt

)
γµ vj(P2) (A.49)
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where the gauge boson couplings are the SM ones, as shown below.

q = Aq Bq

u, c, t −1− 8
3 sin2 θW

4 cos θW

1

4 cos θW

d, s, b
1− 4

3 sin2 θW

4 cos θW
− 1

4 cos θW



Appendix B

Amplitudes for LED Signals at e+e− Colliders

B.1 Radiated tensor graviton KK modes:

e−(p1) + e+(p2)→ h(ñ)
µν (p3) + t(p4) + t̄(p5)

where

M2 =
∑

V=γ,Z

(
M(V )

2a +M(V )
2b +M(V )

2c +M(V )
2d +M(V )

2e +M(V )
2f +M(V )

2g

)
(B.1)

where the indices a to g refer to the diagrams in Figure 6.1. The individual terms are listed

below.

M(V )
2a = v̄e(p2) (−ig) γλ

(
A(V )
e +B(V )

e γ5

) i

/p1 − /p3

(−iκ
8

)
{(2p1 − p3)

µ
γν + (2p1 − p3)

ν
γµ}ue(p1)

× −iηλρ
(p4 + p5)2 −M2

V + iMV ΓV
ūt(p4) (−ig) γρ

(
A

(V )
t +B

(V )
t γ5

)
vt(p5) ε(~n)µν (p3)∗ (B.2)

M(V )
2b = v̄e(p2)

(−iκ
8

)
{(−2p2 + p3)

µ
γν + (−2p2 + p3)

ν
γµ} −i

/p2 − /p3
(−ig) γλ

(
A(V )
e +B(V )

e γ5

)
ue(p1)

× −iηλρ
(p4 + p5)2 −M2

V + iMV ΓV
ūt(p4) (−ig) γρ

(
A

(V )
t +B

(V )
t γ5

)
vt(p5) ε(~n)µν (p3)∗ (B.3)

M(V )
2c = ūt(p4)

(−iκ
8

)
{(p3 + 2p4)

µ
γν + (p3 + 2p4)

ν
γµ} i

/p3 + /p4 −mt
(−ig) γρ

(
A

(V )
t +B

(V )
t γ5

)
vt(p5)

× −iηλρ
(p1 + p2)2 −M2

V + iMV ΓV
v̄e(p2) (−ig) γλ

(
A(V )
e +B(V )

e γ5

)
ue(p1) ε(~n)µν (p3)∗ (B.4)

M(V )
2d = ūt(p4) (−ig) γρ

(
A

(V )
t +B

(V )
t γ5

) −i
/p3 + /p5 +mt

(−iκ
8

)
{(−p3 − 2p5)

µ
γν + (−p3 − 2p5)

ν
γµ} vt(p5)

× −iηλρ
(p1 + p2)2 −M2

V + iMV ΓV
v̄e(p2) (−ig) γλ

(
A(V )
e +B(V )

e γ5

)
ue(p1) ε(~n)µν (p3)∗ (B.5)

95
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M(V )
2e = v̄e(p2) (−ig) γλ

(
A(V )
e +B(V )

e γ5

)
ue(p1)

−iηλα
(p1 + p2)2 −M2

V + iMV ΓV

×
(−iκ

2

)[{
M2
V + (p1 + p2) · (−p4 − p5)

}
Cµν,αβ +Dµν,αβ(p1 + p2,−p4 − p5)

]
× −iηβρ

(p4 + p5)2 −M2
V + iMV ΓV

ūt(p4) (−ig) γρ
(
A

(V )
t +B

(V )
t γ5

)
vt(p5) ε(~n)µν (p3)∗ (B.6)

M(V )
2f = v̄e(p2)

(
igκ

4

)(
Cµν,λσ − ηµνηλσ

)
γσ

(
A(V )
e +B(V )

e γ5

)
ue(p1)

× −iηλρ
(p4 + p5)2 −M2

V + iMV ΓV
ūt(p4) (−ig) γρ

(
A

(V )
t +B

(V )
t γ5

)
vt(p5) ε(~n)µν (p3)∗ (B.7)

M(V )
2g = v̄e(p2) (−ig) γλ

(
A(V )
e +B(V )

e γ5

)
ue(p1)

−iηλρ
(p1 + p2)2 −M2

V + iMV ΓV

× ūt(p4)

(
igκ

4

)
(Cµν,ρσ − ηµνηρσ) γσ

(
A

(V )
t +B

(V )
t γ5

)
vt(p5) ε(~n)µν (p3)∗ (B.8)

where the gauge boson couplings are the SM ones, as shown below.

V = MV ΓV A
(V )
e B

(V )
e A

(V )
t B

(V )
t

γ 0 0 sin θW 0 −2
3 sin θW 0

Z MZ ΓZ
1− 4 sin2 θW

4 cos θW
− 1

4 cos θW
−1− 8

3 sin2 θW

4 cos θW

1

4 cos θW

and the graviton couplings include the tensors

Cµν,αβ = ηµαηνβ + ηµβηνα − ηµνηαβ (B.9)

Dµν,αβ(k, `) = ηµνkβ`α −
{(
ηµβkν`α + ηµαkβ`ν − ηαβkµ`ν

)
+ (µ↔ ν)

}
(B.10)

Finally, the sum over graviton polarisations will be

Pµν,αβ(p3) = ΠµαΠνβ + ΠµβΠνα − 2

3
ΠµνΠαβ (B.11)

where Πµν = ηµν − pµ3pν3/M2
~n.

B.2 Radiated Z boson:

e−(p1) + e+(p2)→ Zµ(p3) + t(p4) + t̄(p5)

where

M1 =
∑

V=γ,Z

(
M(V )

1a +M(V )
1b +M(V )

1c +M(V )
1d +M(V )

1e

)
(B.12)
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Figure B.1: Figure shows diagrams of the tt̄Z background processes at an e+e− collider.

where

M(V )
1a = v̄e(p2) (−ig) γλ

(
A(V )
e +B(V )

e γ5

) i

/p1
− /p3

(−ig) γµ
(
A(Z)
e +B(Z)

e γ5

)
ue(p1)

× −iηλρ
(p4 + p5)2 −M2

V + iMV ΓV
ūt(p4) (−ig) γρ

(
A

(V )
t +B

(V )
t γ5

)
vt(p5) εµ(p3)∗ (B.13)

M(V )
1b = v̄e(p2) (−ig) γµ

(
A(Z)
e +B(Z)

e γ5

) −i
/p2
− /p3

(−ig) γλ
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A(V )
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e γ5

)
ue(p1)

× −iηλρ
(p4 + p5)2 −M2

V + iMV ΓV
ūt(p4) (−ig) γρ

(
A
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)
vt(p5) εµ(p3)∗ (B.14)

M(V )
1c = ūt(p4) (−ig) γµ

(
A
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t γ5

) i

/p3
+ /p4

−mt
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ūt(p4)

(−ig
2

mt

MW

)
vt(p5) εµ(p3)∗ (B.17)





Bibliography

[1] G. Nordström, Relativitätsprinzip und Gravitation, Phys. Zeit. 13 (1912) 1126–1129.

[2] G. Nordström, On the possibility of unifying the electromagnetic and the gravitational

fields, Phys. Z. 15 (1914) 504–506, [physics/0702221].

[3] T. Kaluza, On the Problem of Unity in Physics, Sitzungsber. Preuss. Akad. Wiss. Berlin

(Math. Phys.) 1921 (1921) 966–972.

[4] O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Zeitschrift für Physik

37 (Dec, 1926) 895–906.

[5] S. Raychaudhuri and K. Sridhar, Particle Physics of Brane Worlds and Extra

Dimensions. Cambridge University Press, 2016.

[6] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, The Hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B429 (1998) 263–272, [hep-ph/9803315].

[7] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, New dimensions at a

millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B436 (1998) 257–263,

[hep-ph/9804398].

[8] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension,

Phys. Rev. Lett. 83 (1999) 3370–3373, [hep-ph/9905221].

[9] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83

(1999) 4690–4693, [hep-th/9906064].

[10] Particle Data Group Collaboration, C. Patrignani et al., Review of Particle Physics,

Chin. Phys. C40 (2016), no. 10 100001.

[11] T. Han, J. D. Lykken, and R.-J. Zhang, On Kaluza-Klein states from large extra

dimensions, Phys. Rev. D59 (1999) 105006, [hep-ph/9811350].

[12] S. Hannestad and G. G. Raffelt, Stringent neutron star limits on large extra dimensions,

Phys. Rev. Lett. 88 (2002) 071301, [hep-ph/0110067].

[13] V. D. Barger, T. Han, C. Kao, and R.-J. Zhang, Astrophysical constraints on large extra

dimensions, Phys. Lett. B461 (1999) 34–42, [hep-ph/9905474].

99

http://arxiv.org/abs/physics/0702221
http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/hep-ph/9804398
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/hep-ph/9811350
http://arxiv.org/abs/hep-ph/0110067
http://arxiv.org/abs/hep-ph/9905474


100 Bibliography

[14] C. Csaki, TASI lectures on extra dimensions and branes, in From fields to strings:

Circumnavigating theoretical physics. Ian Kogan memorial collection (3 volume set),

pp. 605–698, 2004. hep-ph/0404096. [,967(2004)].

[15] T. Gherghetta, A Holographic View of Beyond the Standard Model Physics, in Physics

of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study

Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1-26 June 2009,

pp. 165–232, 2011. arXiv:1008.2570.

[16] W. D. Goldberger and M. B. Wise, Modulus stabilization with bulk fields, Phys. Rev.

Lett. 83 (1999) 4922–4925, [hep-ph/9907447].

[17] Z. Chacko, R. K. Mishra, and D. Stolarski, Dynamics of a Stabilized Radion and

Duality, JHEP 09 (2013) 121, [arXiv:1304.1795].

[18] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning, A Higgslike Dilaton, Eur.

Phys. J. C73 (2013), no. 2 2333, [arXiv:1209.3299].

[19] Z. Chacko, R. K. Mishra, D. Stolarski, and C. B. Verhaaren, Interactions of a Stabilized

Radion and Duality, Phys. Rev. D92 (2015), no. 5 056004, [arXiv:1411.3758].

[20] D. Elander and M. Piai, Calculable mass hierarchies and a light dilaton from gravity

duals, Phys. Lett. B772 (2017) 110–114, [arXiv:1703.09205].

[21] G. F. Giudice, R. Rattazzi, and J. D. Wells, Graviscalars from higher dimensional

metrics and curvature Higgs mixing, Nucl. Phys. B595 (2001) 250–276,

[hep-ph/0002178].

[22] C. Csaki, M. L. Graesser, and G. D. Kribs, Radion dynamics and electroweak physics,

Phys. Rev. D63 (2001) 065002, [hep-th/0008151].

[23] D. Dominici, B. Grzadkowski, J. F. Gunion, and M. Toharia, The Scalar sector of the

Randall-Sundrum model, Nucl. Phys. B671 (2003) 243–292, [hep-ph/0206192].

[24] S. J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a

Randall-Sundrum model, Phys. Lett. B498 (2001) 256–262, [hep-ph/0010195].

[25] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl.

Phys. B586 (2000) 141–162, [hep-ph/0003129].

[26] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable

geometry, Phys. Lett. B474 (2000) 361–371, [hep-ph/9912408].

[27] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, A Custodial symmetry for Zbb̄,

Phys. Lett. B641 (2006) 62–66, [hep-ph/0605341].

[28] A. M. Iyer, K. Sridhar, and S. K. Vempati, Bulk Randall-Sundrum models, electroweak

precision tests, and the 125 GeV Higgs, Phys. Rev. D93 (2016), no. 7 075008,

[arXiv:1502.06206].

[29] C. Csaki, J. Hubisz, and S. J. Lee, Radion phenomenology in realistic warped space

models, Phys. Rev. D76 (2007) 125015, [arXiv:0705.3844].

http://arxiv.org/abs/hep-ph/0404096
http://arxiv.org/abs/1008.2570
http://arxiv.org/abs/hep-ph/9907447
http://arxiv.org/abs/1304.1795
http://arxiv.org/abs/1209.3299
http://arxiv.org/abs/1411.3758
http://arxiv.org/abs/1703.09205
http://arxiv.org/abs/hep-ph/0002178
http://arxiv.org/abs/hep-th/0008151
http://arxiv.org/abs/hep-ph/0206192
http://arxiv.org/abs/hep-ph/0010195
http://arxiv.org/abs/hep-ph/0003129
http://arxiv.org/abs/hep-ph/9912408
http://arxiv.org/abs/hep-ph/0605341
http://arxiv.org/abs/1502.06206
http://arxiv.org/abs/0705.3844


Bibliography 101

[30] K.-m. Cheung, Phenomenology of radion in Randall-Sundrum scenario, Phys. Rev. D63

(2001) 056007, [hep-ph/0009232].

[31] M. Chaichian, A. Datta, K. Huitu, and Z.-h. Yu, Radion and Higgs mixing at the LHC,

Phys. Lett. B524 (2002) 161–169, [hep-ph/0110035].

[32] A. Datta and K. Huitu, Hunting radions at linear colliders, Phys. Lett. B578 (2004)

376–383, [hep-ph/0306241].

[33] P. K. Das, S. K. Rai, and S. Raychaudhuri, On distinguishing radions from Higgs

bosons, Phys. Lett. B618 (2005) 221–228, [hep-ph/0410244].

[34] H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs

Searches, Phys. Rev. D85 (2012) 053003, [arXiv:1111.2006].

[35] V. Barger, M. Ishida, and W.-Y. Keung, Differentiating the Higgs boson from the dilaton

and the radion at hadron colliders, Phys. Rev. Lett. 108 (2012) 101802,

[arXiv:1111.4473].

[36] H. Kubota and M. Nojiri, Radion-higgs mixing state at the LHCwith the KK

contributions to the production and decay, Phys. Rev. D87 (2013) 076011,

[arXiv:1207.0621].

[37] G.-C. Cho, D. Nomura, and Y. Ohno, Constraints on radion in a warped extra

dimension model from Higgs boson searches at the LHC, Mod. Phys. Lett. A28 (2013)

1350148, [arXiv:1305.4431].

[38] N. Desai, U. Maitra, and B. Mukhopadhyaya, An updated analysis of radion-higgs

mixing in the light of LHC data, JHEP 10 (2013) 093, [arXiv:1307.3765].

[39] P. Cox, A. D. Medina, T. S. Ray, and A. Spray, Radion/Dilaton-Higgs Mixing

Phenomenology in Light of the LHC, JHEP 02 (2014) 032, [arXiv:1311.3663].

[40] J. Cao, Y. He, P. Wu, M. Zhang, and J. Zhu, Higgs Phenomenology in the Minimal

Dilaton Model after Run I of the LHC, JHEP 01 (2014) 150, [arXiv:1311.6661].

[41] D.-W. Jung and P. Ko, Higgs-dilaton(radion) system confronting the LHC Higgs data,

Phys. Lett. B732 (2014) 364–372, [arXiv:1401.5586].

[42] H. Kubota and M. Nojiri, Prospect for a study of Randall-Sundrum models from Higgs

bosons decay at future colliders, Phys. Rev. D90 (2014), no. 3 035006,

[arXiv:1404.3013].

[43] E. Boos, S. Keizerov, E. Rahmetov, and K. Svirina, Higgs boson-radion similarity in

production processes involving off-shell fermions, Phys. Rev. D90 (2014), no. 9 095026,

[arXiv:1409.2796].

[44] S. Bhattacharya, M. Frank, K. Huitu, U. Maitra, B. Mukhopadhyaya, and S. K. Rai,

Probing the light radion through diphotons at the Large Hadron Collider, Phys. Rev.

D91 (2015) 016008, [arXiv:1410.0396].

http://arxiv.org/abs/hep-ph/0009232
http://arxiv.org/abs/hep-ph/0110035
http://arxiv.org/abs/hep-ph/0306241
http://arxiv.org/abs/hep-ph/0410244
http://arxiv.org/abs/1111.2006
http://arxiv.org/abs/1111.4473
http://arxiv.org/abs/1207.0621
http://arxiv.org/abs/1305.4431
http://arxiv.org/abs/1307.3765
http://arxiv.org/abs/1311.3663
http://arxiv.org/abs/1311.6661
http://arxiv.org/abs/1401.5586
http://arxiv.org/abs/1404.3013
http://arxiv.org/abs/1409.2796
http://arxiv.org/abs/1410.0396


102 Bibliography

[45] P. R. Archer, M. Carena, A. Carmona, and M. Neubert, Higgs Production and Decay in

Models of a Warped Extra Dimension with a Bulk Higgs, JHEP 01 (2015) 060,

[arXiv:1408.5406].

[46] A. Efrati, E. Kuflik, S. Nussinov, Y. Soreq, and T. Volansky, Constraining the

Higgs-Dilaton with LHC and Dark Matter Searches, Phys. Rev. D91 (2015), no. 5

055034, [arXiv:1410.2225].

[47] E. E. Boos, V. E. Bunichev, M. A. Perfilov, M. N. Smolyakov, and I. P. Volobuev,

Higgs-radion mixing in stabilized brane world models, Phys. Rev. D92 (2015), no. 9

095010, [arXiv:1505.05892].

[48] J. F. Gunion, M. Toharia, and J. D. Wells, Precision electroweak data and the mixed

Radion-Higgs sector of warped extra dimensions, Phys. Lett. B585 (2004) 295–306,

[hep-ph/0311219].

[49] ATLAS, CMS Collaboration, G. Aad et al., Measurements of the Higgs boson

production and decay rates and constraints on its couplings from a combined ATLAS and

CMS analysis of the LHC pp collision data at
√
s = 7 and 8 TeV, JHEP 08 (2016) 045,

[arXiv:1606.02266].

[50] CMS Collaboration, C. Collaboration, Updated measurements of Higgs boson production

in the diphoton decay channel at
√
s = 13 TeV in pp collisions at CMS.,

CMS-PAS-HIG-16-020.

[51] ATLAS Collaboration, T. A. collaboration, Measurement of fiducial, differential and

production cross sections in the H → γγ decay channel with 13.3 fb−1 of 13 TeV

proton-proton collision data with the ATLAS detector, ATLAS-CONF-2016-067.

[52] CMS Collaboration, C. Collaboration, Measurements of properties of the Higgs boson

decaying into four leptons in pp collisions at sqrts = 13 TeV, CMS-PAS-HIG-16-041.

[53] ATLAS Collaboration, T. A. collaboration, Search for the Standard Model Higgs boson

produced in association with a vector boson and decaying to a bb̄ pair in pp collisions at

13 TeV using the ATLAS detector, ATLAS-CONF-2016-091.

[54] CMS Collaboration, V. Khachatryan et al., Search for diphoton resonances in the mass

range from 150 to 850 GeV in pp collisions at
√
s = 8 TeV, Phys. Lett. B750 (2015)

494–519, [arXiv:1506.02301].

[55] ATLAS Collaboration, T. A. collaboration, Search for scalar diphoton resonances with

15.4 fb−1 of data collected at
√
s=13 TeV in 2015 and 2016 with the ATLAS detector,

ATLAS-CONF-2016-059.

[56] CMS Collaboration, C. Collaboration, Search for resonant production of high mass

photon pairs using 12.9 fb−1 of proton-proton collisions at
√
s = 13 TeV and combined

interpretation of searches at 8 and 13 TeV, CMS-PAS-EXO-16-027.

[57] ATLAS Collaboration, G. Aad et al., Search for a high-mass Higgs boson decaying to a

W boson pair in pp collisions at
√
s = 8 TeV with the ATLAS detector, JHEP 01 (2016)

032, [arXiv:1509.00389].

http://arxiv.org/abs/1408.5406
http://arxiv.org/abs/1410.2225
http://arxiv.org/abs/1505.05892
http://arxiv.org/abs/hep-ph/0311219
http://arxiv.org/abs/1606.02266
http://arxiv.org/abs/1506.02301
http://arxiv.org/abs/1509.00389


Bibliography 103

[58] CMS Collaboration, V. Khachatryan et al., Search for a Higgs boson in the mass range

from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144,

[arXiv:1504.00936].

[59] ATLAS Collaboration, T. A. collaboration, Search for diboson resonance production in

the `νqq final state using pp collisions at
√
s = 13 TeV with the ATLAS detector at the

LHC, ATLAS-CONF-2016-062.

[60] CMS Collaboration, C. Collaboration, Search for high mass Higgs to WW with fully

leptonic decays using 2015 data, CMS-PAS-HIG-16-023.

[61] ATLAS Collaboration, G. Aad et al., Search for an additional, heavy Higgs boson in the

H → ZZ decay channel at
√
s = 8 TeV in pp collision data with the ATLAS detector,

Eur. Phys. J. C76 (2016), no. 1 45, [arXiv:1507.05930].

[62] ATLAS Collaboration, T. A. collaboration, Study of the Higgs boson properties and

search for high-mass scalar resonances in the H → ZZ∗ → 4` decay channel at
√
s = 13

TeV with the ATLAS detector, ATLAS-CONF-2016-079.

[63] CMS Collaboration, C. Collaboration, Measurements of properties of the Higgs boson

and search for an additional resonance in the four-lepton final state at sqrt(s) = 13 TeV,

CMS-PAS-HIG-16-033.

[64] ATLAS Collaboration, G. Aad et al., Search for neutral Higgs bosons of the minimal

supersymmetric standard model in pp collisions at
√
s = 8 TeV with the ATLAS

detector, JHEP 11 (2014) 056, [arXiv:1409.6064].

[65] CMS Collaboration, C. Collaboration, Search for additional neutral Higgs bosons

decaying to a pair of tau leptons in pp collisions at
√
s = 7 and 8 TeV,

CMS-PAS-HIG-14-029.

[66] ATLAS Collaboration, T. A. collaboration, Search for Minimal Supersymmetric

Standard Model Higgs Bosons H/A in the ττ final state in up to 13.3 fb−1 of pp

collisions at
√
s= 13 TeV with the ATLAS Detector, ATLAS-CONF-2016-085.

[67] CMS Collaboration, C. Collaboration, Search for a neutral MSSM Higgs boson decaying

into ττ at 13 TeV, CMS-PAS-HIG-16-006.

[68] ATLAS Collaboration, G. Aad et al., Search For Higgs Boson Pair Production in the

γγbb̄ Final State using pp Collision Data at
√
s = 8 TeV from the ATLAS Detector,

Phys. Rev. Lett. 114 (2015), no. 8 081802, [arXiv:1406.5053].

[69] ATLAS Collaboration, G. Aad et al., Search for Higgs boson pair production in the bb̄bb̄

final state from pp collisions at
√
s = 8 TeVwith the ATLAS detector, Eur. Phys. J. C75

(2015), no. 9 412, [arXiv:1506.00285].

[70] ATLAS Collaboration, G. Aad et al., Searches for Higgs boson pair production in the

hh→ bbττ, γγWW ∗, γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D92

(2015) 092004, [arXiv:1509.04670].

http://arxiv.org/abs/1504.00936
http://arxiv.org/abs/1507.05930
http://arxiv.org/abs/1409.6064
http://arxiv.org/abs/1406.5053
http://arxiv.org/abs/1506.00285
http://arxiv.org/abs/1509.04670


104 Bibliography

[71] CMS Collaboration, V. Khachatryan et al., Search for resonant pair production of

Higgs bosons decaying to two bottom quarkantiquark pairs in protonproton collisions at 8

TeV, Phys. Lett. B749 (2015) 560–582, [arXiv:1503.04114].

[72] CMS Collaboration, V. Khachatryan et al., Search for two Higgs bosons in final states

containing two photons and two bottom quarks in proton-proton collisions at 8 TeV,

Phys. Rev. D94 (2016), no. 5 052012, [arXiv:1603.06896].

[73] CMS Collaboration, C. Collaboration, Model independent search for Higgs boson pair

production in the bbτ+τ− final state, CMS-PAS-HIG-15-013.

[74] ATLAS Collaboration, T. A. collaboration, Search for Higgs boson pair production in

the bb̄γγ final state using pp collision data at
√
s = 13 TeV with the ATLAS detector,

ATLAS-CONF-2016-004.

[75] ATLAS Collaboration, T. A. collaboration, Search for pair production of Higgs bosons

in the bb̄bb̄ final state using proton-proton collisions at
√
s = 13 TeV with the ATLAS

detector, ATLAS-CONF-2016-017.

[76] CMS Collaboration, C. Collaboration, Search for resonant pair production of Higgs

bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 13

TeV, CMS-PAS-HIG-16-002.

[77] CMS Collaboration, C. Collaboration, Search for H(bb)H(γγ) decays at 13TeV,

CMS-PAS-HIG-16-032.

[78] CMS Collaboration, C. Collaboration, Search for pair production of Higgs bosons in the

two tau leptons and two bottom quarks final state using proton-proton collisions at√
s = 13 TeV, CMS-PAS-HIG-17-002.

[79] CMS Collaboration, C. Collaboration, Search for a narrow heavy decaying to bottom

quark pairs in the 13 TeV data sample, CMS-PAS-HIG-16-025.

[80] ATLAS Collaboration, T. A. collaboration, Search for pair production of Higgs bosons

in the bb̄bb̄ final state using proton−proton collisions at
√
s = 13 TeV with the ATLAS

detector, ATLAS-CONF-2016-049.

[81] M. Frank, K. Huitu, U. Maitra, and M. Patra, Probing Higgs-radion mixing in warped

models through complementary searches at the LHC and the ILC, Phys. Rev. D94

(2016), no. 5 055016, [arXiv:1606.07689].

[82] Beyond Standard Model Higgs boson searches at a High-Luminosity LHC with ATLAS,

Tech. Rep. ATL-PHYS-PUB-2013-016, CERN, Geneva, Oct, 2013.

[83] CMS Collaboration, C. Collaboration, 2HDM Neutral Higgs Future Analysis Studies,

CMS-PAS-FTR-13-024.

[84] M. Toharia, Higgs-Radion Mixing with Enhanced Di-Photon Signal, Phys. Rev. D79

(2009) 015009, [arXiv:0809.5245].

http://arxiv.org/abs/1503.04114
http://arxiv.org/abs/1603.06896
http://arxiv.org/abs/1606.07689
http://arxiv.org/abs/0809.5245


Bibliography 105

[85] A. Ahmed, B. M. Dillon, B. Grzadkowski, J. F. Gunion, and Y. Jiang, Implications of

the absence of high-mass radion signals, Phys. Rev. D95 (2017), no. 9 095019,

[arXiv:1512.05771].

[86] D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri, and T. Samui,

Radion Candidate for the LHC Diphoton Resonance, arXiv:1512.06674.

[87] ATLAS Collaboration, T. A. collaboration, Search for resonances decaying to photon

pairs in 3.2 fb−1 of pp collisions at
√
s = 13 TeV with the ATLAS detector,

ATLAS-CONF-2015-081.

[88] CMS Collaboration, C. Collaboration, Search for new physics in high mass diphoton

events in proton-proton collisions at 13TeV, CMS-PAS-EXO-15-004.

[89] ATLAS Collaboration, G. Aad et al., Combined search for the Standard Model Higgs

boson using up to 4.9 fb−1 of pp collision data at
√
s = 7 TeV with the ATLAS detector

at the LHC, Phys. Lett. B710 (2012) 49–66, [arXiv:1202.1408].

[90] CMS Collaboration, S. Chatrchyan et al., Combined results of searches for the standard

model Higgs boson in pp collisions at
√
s = 7 TeV, Phys. Lett. B710 (2012) 26–48,

[arXiv:1202.1488].

[91] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for

the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716

(2012) 1–29, [arXiv:1207.7214].

[92] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125

GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30–61,

[arXiv:1207.7235].

[93] L. D. Landau, On the angular momentum of a system of two photons, Dokl. Akad. Nauk

Ser. Fiz. 60 (1948), no. 2 207–209.

[94] C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons,

Phys. Rev. 77 (1950) 242–245.

[95] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons,

Phys. Rev. Lett. 13 (1964) 321–323. [,157(1964)].

[96] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation Laws and

Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587. [,162(1964)].

[97] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12

(1964) 132–133.

[98] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13

(1964) 508–509. [,160(1964)].

[99] R. N. Mohapatra and J. C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D11

(1975) 2558.

http://arxiv.org/abs/1512.05771
http://arxiv.org/abs/1512.06674
http://arxiv.org/abs/1202.1408
http://arxiv.org/abs/1202.1488
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235


106 Bibliography

[100] G. Senjanovic and R. N. Mohapatra, Exact Left-Right Symmetry and Spontaneous

Violation of Parity, Phys. Rev. D12 (1975) 1502.

[101] J. C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974)

275–289. [Erratum: Phys. Rev.D11,703(1975)].

[102] J. C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the

Basic Interactions, Phys. Rev. D8 (1973) 1240–1251.

[103] H. Georgi and S. L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett.

32 (1974) 438–441.

[104] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys.

Rev. Lett. 38 (1977) 1440–1443. [,328(1977)].

[105] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness

Problems, Phys. Rev. D23 (1981) 347–356. [Adv. Ser. Astrophys. Cosmol.3,139(1987)].

[106] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The Higgs Hunter’s Guide,

Front. Phys. 80 (2000) 1–404.

[107] J. Jaeckel, M. Jankowiak, and M. Spannowsky, LHC probes the hidden sector, Phys.

Dark Univ. 2 (2013) 111–117, [arXiv:1212.3620].

[108] A. Angelescu, A. Djouadi, and G. Moreau, Scenarii for interpretations of the LHC

diphoton excess: two Higgs doublets and vector-like quarks and leptons, Phys. Lett.

B756 (2016) 126–132, [arXiv:1512.04921].
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Inspired Simplified Model for the 750 GeV Diphoton Excess, Phys. Lett. B756 (2016)

36–41, [arXiv:1512.05961].

[128] S. Matsuzaki and K. Yamawaki, 750 GeV Diphoton Signal from One-Family Walking

Technipion, Mod. Phys. Lett. A31 (2016), no. 17 1630016, [arXiv:1512.05564].

[129] K. Harigaya and Y. Nomura, Composite Models for the 750 GeV Diphoton Excess, Phys.

Lett. B754 (2016) 151–156, [arXiv:1512.04850].

[130] Y. Bai, J. Berger, and R. Lu, 750 GeV dark pion: Cousin of a dark G-parity odd WIMP,

Phys. Rev. D93 (2016), no. 7 076009, [arXiv:1512.05779].

[131] E. Molinaro, F. Sannino, and N. Vignaroli, Minimal Composite Dynamics versus Axion

Origin of the Diphoton excess, Mod. Phys. Lett. A31 (2016), no. 26 1650155,

[arXiv:1512.05334].

http://arxiv.org/abs/1512.05327
http://arxiv.org/abs/1512.05439
http://arxiv.org/abs/1512.05585
http://arxiv.org/abs/1512.05738
http://arxiv.org/abs/1512.05751
http://arxiv.org/abs/1512.05618
http://arxiv.org/abs/1512.05777
http://arxiv.org/abs/1512.05328
http://arxiv.org/abs/1512.06091
http://arxiv.org/abs/1512.06028
http://arxiv.org/abs/1512.05961
http://arxiv.org/abs/1512.05564
http://arxiv.org/abs/1512.04850
http://arxiv.org/abs/1512.05779
http://arxiv.org/abs/1512.05334


108 Bibliography

[132] J. S. Kim, J. Reuter, K. Rolbiecki, and R. Ruiz de Austri, A resonance without

resonance: scrutinizing the diphoton excess at 750 GeV, Phys. Lett. B755 (2016)

403–408, [arXiv:1512.06083].

[133] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, A. Pomarol,

R. Rattazzi, M. Redi, F. Riva, A. Strumia, and R. Torre, What is the γγ resonance at

750 GeV?, JHEP 03 (2016) 144, [arXiv:1512.04933].

[134] Y. Mambrini, G. Arcadi, and A. Djouadi, The LHC diphoton resonance and dark

matter, Phys. Lett. B755 (2016) 426–432, [arXiv:1512.04913].

[135] M. Backovic, A. Mariotti, and D. Redigolo, Di-photon excess illuminates Dark Matter,

JHEP 03 (2016) 157, [arXiv:1512.04917].

[136] R. Martinez, F. Ochoa, and C. F. Sierra, Diphoton decay for a 750 GeV scalar boson in

a U(1)X model, Nucl. Phys. B913 (2016) 64–78, [arXiv:1512.05617].

[137] Y. Nakai, R. Sato, and K. Tobioka, Footprints of New Strong Dynamics via Anomaly and

the 750 GeV Diphoton, Phys. Rev. Lett. 116 (2016), no. 15 151802, [arXiv:1512.04924].

[138] J. M. No, V. Sanz, and J. Setford, See-saw composite Higgs model at the LHC: Linking

naturalness to the 750 GeV diphoton resonance, Phys. Rev. D93 (2016), no. 9 095010,

[arXiv:1512.05700].

[139] C. Petersson and R. Torre, 750 GeV Diphoton Excess from the Goldstino Superpartner,

Phys. Rev. Lett. 116 (2016), no. 15 151804, [arXiv:1512.05333].

[140] S. V. Demidov and D. S. Gorbunov, On sgoldstino interpretation of the diphoton excess,

JETP Lett. 103 (2016), no. 4 219–222, [arXiv:1512.05723]. [Pisma Zh. Eksp. Teor.

Fiz.103,no.4,241(2016)].

[141] B. Bellazzini, R. Franceschini, F. Sala, and J. Serra, Goldstones in Diphotons, JHEP 04

(2016) 072, [arXiv:1512.05330].

[142] L. M. Carpenter, R. Colburn, and J. Goodman, Supersoft SUSY models and the 750

GeV diphoton excess, beyond effective operators, Phys. Rev. D94 (2016), no. 1 015016,

[arXiv:1512.06107].
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