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Synopsis

1 Introduction:

Black holes have always been a fascinating object of study since the Schwarzchild metric
was found, shortly after the formulation of general theory of relativity. It is the region of
the Universe which essentially marks the closest encounter between quantum mechanics and
the general theory of relativity: the two cornerstones of modern science. It is natural to
expect such regions of space to provide the most stringent test to any putative Theory of
Everything. This viewpoint indeed has been especially fruitful. Although incomplete yet,
study of black holes in the context of string theory in fact gives a unified view of the Natural
world and provides relation between widely separated models and fields of Physics, the most
prominent recent developments being the AdS/CFT correspondence, or the Gauge/Gravity
duality. The basic idea of the AdS/CFT correspondence is that gravity in AdS space is
dual to a CFT living in the AdS boundary. The standard view of a black hole is that it
has a singularity and a horizon which is a null hypersurface enclosing the singularity, and
represents the limiting surface from within which even light cannot escape. In recent years,
there has been a lively debate on whether quantum mechanics is consistent with a smooth
horizon, or in other words whether the inside of a black hole makes sense. Maldacena and
Susskind [4] have suggested that the region inside the horizon is a geometric representation
of quantum mechanical entanglement. The proposal of [4], summarized by the symbolic
equation ER = EPR,1 is illustrated by the eternal black hole geometry which is dual to the
thermofield state [5]. It has been argued in several papers that although the proposal holds
for this illustrative special case, it does not hold in general.

Although, ER=EPR has been very interesting for the formalism, the more interesting
aspects of black holes are their formation and dynamics. In AdS/CFT correspondence, black
holes are dual to microcanonical (or, the equivalent canonical) ensembles in the boundary
CFT. Hence, according to AdS/CFT, the dynamical problem of thermalization where a pure
quantum mechanical state appears to evolve into a micro-canonical ensemble is analogous
to black hole formation. More generally, the question of whether a pure state can evolve
non-trivially into a stationary state is the larger issue of equilibration. In fact, in a broad
class of statistical mechanics and condensed matter examples, thermalization is said to occur
when the final state is effectively a microcanonical ensemble, that is, for a large number of
observables, the expectation values asymptote to those in a microcanonical ensemble with an
equivalent canonical temperature T = 1/β. Analytic examples of such asymptotia have been
found by Calabrese and Cardy [6] in two dimensional CFT’s following a quantum quench
where the quenching of the Hamiltonian to a critical Hamiltonian H is assumed to lead to
a boundary state normalized by the insertion of e−κ2H where H is the CFT Hamiltonian.
These special states (which we will call the CC states, for Calabrese-Cardy) were shown
by Hartman and Maldacena [7] to be dual to a segment of an eternal black hole geometry.

1ER signifies Einstein-Rosen bridge which is a spacelike surface connecting the two asymptotic exterior
regions of an eternal black hole. EPR stands for ‘spooky action at a distance’ of Einstein, Podolsky and
Rosen in quantum mechanics, which is now known as quantum entanglement.
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The ‘thermalization’ explored here is limited to entanglement entropy or one- or two-point
functions.

In this thesis, we address the above issues. The pertinent results are contained in [1], [2]
and [3]. The present synopsis which gives a technical summary of these results, is organized
as follows.

In section 2, based on [1], we address the question of eternal black hole geometry be-
ing dual to the thermofield state is a fine-tuned example of ER=EPR which is generically
untrue. We explicitly constructed a general class of two-sided geometries which represent
entangled CFTs. We compute correlators between general operators at the two boundaries
and find perfect agreement between CFT and bulk calculations. We calculate and match the
CFT entanglement entropy (EE) with the holographic EE which involves geodesics passing
through the wormhole. We also compute a holographic, non-equilibrium entropy for the
CFT using properties of the regular horizon. The construction of the bulk solutions here
uses an exact version of Brown-Henneaux type diffeomorphisms which are asymptotically
nontrivial and transform the CFT states by two independent unitary operators on the two
sides. Our solutions provide an infinite family of explicit examples of the ER=EPR relation.
This part does not appear in any other thesis/dissertation.

In section 3, based on [2], a definition of thermalization is adopted which is robust with
respect to specific choices of observables. We define thermalization as the approach of the
reduced density matrix of a finite subsystem, althought the full system is in a pure state,
to the reduced density matrix of the same subsystem when the full system is in a thermal
ensemble.2 We prove such thermalizations to occur under rather general assumptions, for
the special CC state described above, as well as for an infinite generalization of these states
(which we call generalized Calabrese-Cardy (gCC) states) characterizing additional conserved
charges W3,W4, ... besides the Hamiltonian. In the latter case, the ‘thermalization’ leads to
a Generalized Gibbs Ensemble (GGE) defined by the density matric e−κ2H−κ3W3−κ4W4−.../Z.
Similar results have also been subsequently reproduced by Cardy [8]. We proposed that
the bulk or gravity dual of this evolution is the formation of a higher spin(hs) black hole.
The equilibrium expectation values of observables match between AdS and CFT because
the GGE is the CFT dual of a higher-spin blackhole. We also showed (a) the thermalization
rate of the pure initial states, (b) the relaxation time of perturbation in a GGE and (c) that
the relaxation rate and the (imaginary part of the) quasinormal frequency of a higher spin
black hole match.

In the above work, we had to make certain assumptions to prove thermalization. In
section 4, based on [3], we examine quantum quenches to criticality in specific field theories.
In this work, we work without the assumptions. We calculate the exact wavefunction that
results from a quantum quench to a vanishing mass in a large class of examples: (i) in theories
of scalars and fermions, (ii) starting from various pre-quench states (e.g. ground state or
squeezed states), (iii) from an initially massive or critical Hamiltonian, and (iv) with a variety
of quench protocols. In all these situations, for quadratic theories, the resulting wavefunction
is of a generalized Calabrese-Cardy form |ψ〉 = exp[−

∑∞
n=2 κnWn]|Bd〉 (W2 = H), i.e., it

is a conformal boundary state deformed by an infinite number of W∞ charges. We find

2In Statistical Mechanics literature, this is called subsystem thermalization.
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special squeezed states in the pre-quench phase which lead to small κn>2; in these cases, the
exact correlators, in agreement with the analysis of [2], show equilibration to a GGE with
a relaxation rate determined up to O(κn>2). By contrast, with general pre-quench states,
including the ground state, we find the κn>2 are not small; exact correlators in these cases,
although equilibrating at long times, do not generically have a simple thermal or GGE form
even at large distances. The main lesson we draw is that in 2D critical quench, long time
and large distance physics can be sensitive to perturbations by high dimension operators, in
apparent contrast with general Wilsonian lore.

2 AdS3/CFT2(based on [1])

The objective is to explicitly construct a general class of time dependent two-sided geometries
3 which represent entangled time dependent states in a CFT. A useful approach to construct
the geometric dual to a CFT state is by using a Fefferman-Graham (FG) expansion, with
boundary data provided by the CFT state. To begin with, let us consider the case of a
single CFT. Since we are primarily interested in the metric, let us focus, for simplicity,
on states in which only the stress tensor is excited. The dual geometry would then be
given by the solution to the appropriate Einstein equations subject to the boundary data
provided by the stress tensor. This approach has been particularly fruitful in the context of
the AdS3/CFT2 duality where the Fefferman-Graham expansion has been shown, for pure
gravity, to terminate [9] , yielding the following exact metric derived by Banados et al. [10]

ds2 =
dz2

z2
− dx+dx−

(
1

z2
+ z2

L(x+)L̄(x−)

16

)
+

1

4

(
L(x+)dx

2
+ + L̄(x−)dx

2
−
)

(1)

The boundary data (z → 0) is represented by the following holographic stress tensors (we
choose −Λ = 1/ℓ2 = 1)

8πG3T++(x+) =
L(x+)

4
, 8πG3T−−(x−) =

L̄(x−)

4
(2)

The above metric becomes singular at the horizon

z = z0 ≡ 2
(
L(x+)L̄(x−)

)−1/4
, (3)

and therefore the metric (1), describes only an exterior geometry. When L and L̄ are
constants, the metric corresponds to the eternal BTZ blackhole solution [11] which has a
maximal extension with two exteriors(left and right) joined to the interior region across a
smooth horizon. There is also a past interior corresponding to a whitehole. The maximal
extension is obtained by transforming to Eddington-Finkelstein(EF) coordinate patches. We
will be using five coordinate patches.

3By two-sided, we mean geometries which have two asymptotically AdS regions.
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EF1 EF2 EF3 EF4

Figure 1: The (green parts of) the five figures on the right depict the five coordinate charts
used in [1] to cover the eternal BTZ solution. The coordinate chart K5 is needed to cover the
“bifurcation surface” where the past and future horizons meet (it is a point in the Penrose
diagram). The leftmost diagram (in blue) represents the coordinate chart used in (1). Each
of the coordinate charts is shown, for facility of comparison, within a Penrose diagram where
the parts not within the chart are shown in gray.

The EF1 coordinates represented in figure 1, are obtained from the coordinates of (1) by
the transformations

z

z0
=

√
1

λ0

(
λ−

√
λ2 − λ20

)
(4)

x+ = v − 1

2
√
L
ln

(
λ− λ0
λ+ λ0

)
, x− = w − 1

2
√
L̄
ln

(
λ− λ0
λ+ λ0

)

The metric, in these coordinates, becomes

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
dv2 +

L̄

4
dw2 − λ dvdw +

√
L

2(λ+ λ0)
dvdλ+

√
L

2(λ+ λ0)
dwdλ (5)

The subleading term in the metric corresponds to the normalizable metric fluctuation, which
gives the expectation value of the stress tensor; this is the holographic stress tensor [12], and
is given here by

8πG3Tvv(x+) =
L

4
, 8πG3Tww(x−) =

L̄

4
(6)

The IR cutoff surface and the boundary metric are

λir = 1/ǫ2, ds2bdry = −dvdw (7)

The event horizon λH , the inner horizon λi, and the singularity λs are at

λH = λ0 ≡
√
LL̄

2
, λi = −λ0, λs = −1

4
(L+ L̄) (8)

Note that for BTZ black holes without angular momentum L̄ = L and λi = λs. The other
coordinate systems - EF2, EF3, etc., are similar and details are in [1].
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2.1 Solution generating diffeomorphisms (SGD)

We will now proceed to construct new solutions with arbitrary boundary data at the two
boundaries (represented by two arbitrary holographic stress tensors TR,µν(x) and TL,µν(x))
by applying the method of solution generating diffeomorphisms to the above geometry. Nor-
mally one considers a geometry obtained by a diffeomorphism as indistinguishable from the
original one. However, this statement is untrue for diffeomorphisms which are symptotically
non-trivial(do not die off sufficiently fast).

The diffeomorphism in the EF1 coordinate chart is given by

λ =
λ̃

G′
+(ṽ)G

′
−(w̃)

, v = G+(ṽ), w = G−(w̃) (9)

The new metric g̃MN , written in terms of x̃M = (λ̃, ṽ, w̃), is

g̃MN(x̃)dx̃
Mdx̃N ≡ ds2 =

1

B2

[
dλ̃2 + A2

+dṽ
2 + A2

−dw̃
2 + 2A+dṽdλ̃+ 2A−dw̃dλ̃

− λ̃

(
B2 + 2

(
A+

G′′
−(w̃)

G′
−(w̃)

+ A−
G′′

+(ṽ)

G′
+(ṽ)

+ λ̃
G′′

+(ṽ)G
′′
−(w̃)

G′
+(ṽ)G

′
−(w̃)

))
dṽdw̃

]
(10)

where

A+ =
√
LG′

+(ṽ)(λ̃+ λ̃0)− λ̃
G′′

+(ṽ)

G′
+(ṽ)

, A− =
√
L̄G′

−(w̃)(λ̃+ λ̃0)− λ̃
G′′

−(w̃)

G′
−(w̃)

, B = 2(λ̃+ λ̃0)

The new IR cutoff surface and the boundary metric are

λ̃ir = (1/ǫ2) ⇒ λ = 1/(ǫ2G′
+(ṽ)G

′
−(w̃)), ds2bdry = −dṽdw̃ (11)

The diffeomorphism (SGD) used in the coordinate chart EF2 (see Fig 1), which is inde-
pendent of the one above used in EF1, is given by

λ1 =
λ̃1

H ′
+(ũ)H

′
−(ω̃)

, u = H+(ũ), ω = H−(ṽ) (12)

In a manner similar to the above, we apply the SGD characterized by G± on EF4 and
the SGD characterized by H± on EF3 (which shares the left exterior with EF2). We use the
identity diffeomorphism of Kruskal patch K5 (with ξM5 = 0). Away from the boundary, the
metrics obtained in the various EF coordinate charts differ from each other only by trivial
diffeomorphisms which become the identity transformation at infinity. Since the physical
content of each of these metrics is represented only by the boundary data, it ensures that
all the different metrics represent the same single spacetime metric in different charts. It
is clear that the SGDs lead to a smooth metric in each chart and their overlaps, provided
G±(x), H±(x) are differentiable and invertible functions. We will only consider such func-
tions. It can be verified that such a class of functions is sufficiently general to generate any
pair of physically sensible holographic stress tensors at both boundaries.

9



So far we have viewed the SGDs as a coordinate transformation. Alternatively, however,
we can also view the diffeomorphism as an active movement of points: xM → x̃M = xM+ξM .
In this viewpoint, the future horizon λ = λH = λ0 (see (8)) on the right moves to

λ̃H = G′
+(ṽ) G

′
−(w̃)λ0, λ̃1,H = H ′

+(ũ) H
′
−(ω̃)λ0 (13)

Similar statements can be made in the other coordinate charts. The horizons represented
this way are smooth but undulating.

2.2 The Dual Conformal Field Theory

The eternal BTZ black hole geometry corresponds to the following thermofield double state
[5, 7, 13, 14]

|ψ0〉 = Z(β+, β−)
−1/2

∑

n

exp[−β+E+,n/2− β−E−,n/2]|n〉|n〉 (14)

The states |n〉 denote all simultaneous eigenstates of H± = (H±J)/2 with eigenvalues E±,n.
|ψ0〉 here is a pure state in H ⊗ H obtained by the ‘purification’ of the thermal ensemble
with inverse temperature β and angular velocity Ω and β± = β(1 ± Ω). For non-spinning
BTZ black hole (Ω = 0 = J), the CFT dual is the standard thermofield double:

|ψ0,0〉 = Z(β)−1/2
∑

n

exp[−βEn/2]|n〉|n〉 (15)

CFT duals of our new solutions The SGD’s reduce to conformal transformations at
the boundary. So, we claim that the CFT-duals to the new solutions obtained using SDG are
described by the pure states |ψ〉 = ULUR|ψ0〉 where UR is the unitary transformation which
implements the conformal transformations on the CFT on the right boundary (characterized
by G±), and UL is the unitary transformation which implements the conformal transforma-
tions on the CFT on the left boundary (characterized by H±). This is the Schrödinger picture
of the conformal transformations. However, it is easier and more illuminating if we work
in Heisenberg picture. Here, we note that stress tensors and primary operators transform
under a conformal transformation (v, w) → (ṽ, w̃) as

Tṽṽ(P ) =

(
∂ṽ

∂v

)−2

[Tṽṽ(ṽ)−
c

12
S(v, ṽ)], O(ṽ, w̃) = O(v, w)

(
dv

dṽ

)h(
dw

dw̃

)h̄

(16)

where S(v, ṽ) is the usual Schwarzian derivative.

2.3 Duality Matching

Stress Tensor

We will first consider the stress tensor of the boundary theory on the right. The generalization
to the stress tensor on the left is trivial.We use the definition of holographic stress tensor in

10



[12, 15]. We find that

8πG3Tṽṽ =
L

4
G′

+(ṽ)
2 +

3G′′
+(ṽ)

2 − 2G′
+(ṽ)G

′′′
+(ṽ)

4G′
+(ṽ)

2
,

8πG3Tw̃w̃ =
L̄

4
G′

−(w̃)
2 +

3G′′
−(w̃)

2 − 2G′
−(w̃)G

′′′
−(w̃)

4G′
−(w̃)

2
(17)

This clearly is the original stress tensor (6) under the conformal transformations v = G+(ṽ)
and w = G−(w̃) of CFT stress tensor (16).

General two-point correlators

The holographic correspondence for the two point functions of scalar operators of large
conformal dimension in semiclassical limit can be written simply as [16]:

〈ψ0|O(P )O(Q)|ψ0〉CFT = exp[−2hL(P,Q)] (18)

where L(P,Q) is the length of the extremal geodesic connecting the two points P and Q,
which can be on the boundary of same exterior region(RR or LL) or on boundaries of different
exterior regions(RL or LR).

Gravity side The geodesic length from P(1/ǫ2R, v, w) on the right boundary to a point
Q = (1/ǫ2L, u, ω) on the left boundary is given by

L(P,Q) = log

[
4 cosh[

√
L(v − u)/2] cosh[

√
L(w − ω)/2]

LǫRǫL

]
(19)

With SGDs, the new geodesic length is given by the active transformation of the u,v,w and
ω and the new IR cutoff given by (11). Similar, results are also obtained when P and Q are
on same side.

CFT side Using Minkowski to Rindler coordinate transformation as done in [7], we get
the following result

〈ψ0|O(X+R, X−R)O(X+L, X−L)|ψ0〉 =
(4 cosh [

√
L(v − u)/2] cosh [

√
L(w − ω)/2]

Lǫ2

)−2h

(20)

where (X+R, X−R) and (X+L, X−L) are the boundary points corresponding to the bulk points
P and Q respectively. Operator O is assumed to have dimensions (h, h̄) and ǫ is a real space
field theory cut-off. We have related the temperature of the CFT to L(= L̄) by the equation√
L = 2π/β. It is easy to see that this correlator satisfies the relation (18) using ǫR = ǫL = ǫ.
In the new states, the correlators are found from (20) by a conformal transformation of

the boundary coordinates. The Jacobian factors have the effect of the replacement ǫ2 →
ǫ2
√
G′

+(ṽ)G
′
−(w̃)H

′
+(ũ)H

′
−(ω̃). With these ingredients, it is straightforward to verify that

(18) is satisfied with the new geodesics. Similar arguments apply to RR and LL correlators.

11



Entanglement entropy: We can calculate entanglement entropy(EE) of a region A =
AR∪AL, where AR is a half line (v−w)/2 > xR on the right boundary at ‘time’ (v+w)/2 = tR
and AL is a half line (u − ω)/2 > xL of the left boundary at ‘time’ (u + ω)/2 = tL. The
boundary of the regionA consists of a point P (v∂A, w∂A) on the right and a pointQ′(u∂A, ω∂A)
on the left, with coordinates

P : v∂A = tR + xR, w∂A = tR − xR (21)

Q′ : u∂A = tL + xL, ω∂A = tL − xL

The CFT EE is given by the logarithm of expectation value of twist operators, which are
primary operators, inserted at P and Q′, while the bulk EE is given by the extremal geodesic
length anchored at P andQ′. From RL two point function matching, it automatically follows
that CFT EE and bulk EE match perfectly.

Entropy

Inspecting (5), the entropy density matches the result from CFT using Cardy’s formula,
using the expression of stress tensor in (6). In the non-equlibrium situation, from the metric
(10) the entropy density is then given by

s̃ =
1

4G3

(
1

2

√
LG′

+(ṽ) +
1

2

√
L̄G′

−(w̃)

)
(22)

And from CFT, in adiabatic approximation, the leading G′
+(ṽ) and G

′
−(w̃) parts of the stress

tensors are

8πG3Tṽṽ =
L

4
G′

+(ṽ)
2, 8πG3Tw̃w̃ =

L̄

4
G′

−(w̃)
2 (23)

With this the same non-equilibrium entropy (22) is reproduced.

2.4 Conclusion

We have solved the boundary value problem for 3D gravity (with Λ < 0) with independent
boundary data on two asymptotically AdS3 exterior geometries. The boundary data, spec-
ified in the form of arbitrary holographic stress tensors, yields spacetimes with wormholes,
i.e. with exterior regions connected across smooth horizons. The explicit metrics are con-
structed by the technique of solution generating diffeomorphisms (SGD) from the eternal
BTZ black string. By using the fact that the SGD’s reduce to conformal transformations at
both boundaries, we claim that the dual CFT states are specific time-dependent entangled
states which are conformal transformations of the standard thermofield double. We com-
pute various correlators and a dynamical entanglement entropy, in the bulk and in the CFT,
to provide evidence for the duality. We also arrive at an expression for a non-equilibrium
entropy function from the area-form on the horizon of these geometries.

12



3 Thermalisation with Chemical Potentials(based on

[2])

The dynamics of systems undergoing a quantum quench has been extensively studied in
recent years[17]. In a quantum quench, some parameter of the Hamiltonian changes over a
brief period of time. The initial wavefunction in the pre-quench phase, whether it is a ground
state or otherwise, typically evolves to a non-stationary state, which then evolves by the post-
quench Hamiltonian which is time-dependent. An important question in such a dynamics is
whether correlators equilibrate at long times, and if so, whether the equilibrium is described
by a thermal ensemble or otherwise [17, 18, 19]. As mentioned in the Introduction, Calabrese
and Cardy [6] had found such thermalization in two dimensional quantum quench where the
quenching of the Hamiltonian to a critical Hamiltonian is assumed to lead to a boundary
state normalized by the insertion of e−κ2H where H is the CFT Hamiltonian. Generalizing
[20], we will consider the system at t = 0 to be in a “quenched state”

|ψ0〉 = exp[−κ2H −
∞∑

n=3

κnWn]|Bd〉 (24)

Here |Bd〉 is a conformal invariant boundary state; the exponential factors cut off the UV
modes to make the state normalizable. Wn denote the additional conserved charges in the
final theory. It has been argued in [8] that any CFT has an infinite number of conserved
charges. In the work presented below, we will assume that these charges correspond to
local conserved charges like charges of W∞ currents. More generally, our work applies also
to a finite number of conserved charges. We will focus on two-dimensional conformal field
theories (CFTs) on an infinite line σ ∈ R.

We find that the expectation values of local observables supported on a finite interval
A : σ ∈ [−l/2, l/2]) asymptotically approach their values in a Generalized Gibbs ensem-
ble(GGE),

ρeqm =
1

Z
exp[−βH −

∑

n

µnWn], Z = Tr exp[−βH −
∑

n

µnWn] (25)

whose temperature and chemical potentials are related to the cutoff scales in (24) as follows

β = 4κ2, µn = 4κn, n = 3, 4, ... (26)

With the above identification of parameters, we will rewrite the initial quenched state (24)
henceforth as

|ψ0〉 = exp[−(βH −
∞∑

n=3

µnWn)/4]|Bd〉 (27)

For single local observables, we find that at large times

〈ψ(t)|φk(σ)|ψ(t)〉 = Tr (φk(0)ρeqm(β, µi)) + ak e
−γkt + ... (28)
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where φk(σ) is an arbitrary quasiprimary field (labelled by an index k). Below we compute
the thermalization exponent γk in a perturbation in the chemical potentials and to linear
order it is given by

γk =
2π

β

[
∆k +

∑

n

µ̃nQn,k +O(µ̃2)

]
, µ̃n ≡ µn

βn−1
, (29)

Here ∆k = hk + h̄k is the scaling dimension and Qn,k are the (shifted) Wn-charges (see (40)
for the full definition) of the field φk (in case of primary fields) or of the minimum-dimension
field which appears in the conformal transformation of φk. More generally, we found

ρgCC,A(t) = ρGGE,A + a(t)e−γmint (30)

where ρgCC,A(t) and ρGGE,A are the reduced density matrices of a subsystem A in the gCC
state and GGE respectively. And γmin is the lowest value of γk among the operators of the
theory considered.

Our work, described above, constitutes a general proof of thermalization4 for integrable
systems in case of 2D conformal models. Thermalization in integrable systems is a rel-
atively new area of research. Earlier works include various isolated examples, e.g., (a)
one-dimensional hardcore bosons [21], (b) transverse field Ising model [22], and (c) ma-
trix quantum mechanics models [23]. The equilibrium ensembles in this context have been
called a generalized Gibbs ensemble (GGE).

One of the main technical advances made in this work is the resummation of leading-log
terms at large times, which leads to exponentiation of the perturbation series, leading to the
thermalization rate, presented in (28), (29), as a function of chemical potentials. This allows
us to also compute the effect of chemical potentials on the relaxation times of thermal Green’s
functions. Another technical advance consists of the computation of the long-time reduced
density matrix, using a short-interval expansion, which allows us to prove thermalization of
an arbitrary string of local observables.

3.1 Thermalization time scale for single local observables

We will briefly recall how these are computed in the absence of the chemical potentials
[20, 24]. The expectation value on r.h.s. of (28) corresponds to the one-point function on a
strip geometry, with complex coordinate w = σ + iτ , σ ∈ (−∞,∞), τ ∈ (−β/4, β/4) where
τ is eventually to be analytically continued to τ = it. This can be conformally transformed
to an upper half plane by using the map

z = ie(2π/β)w = ie2π(σ+iτ)/β = ie2π(σ−t)/β t→∞−−−→ z → 0 (31)

z̄ = −ie2π(σ−iτ)/β = −ie2π(σ+t)/β t→∞−−−→ z̄ → −i∞ (32)

For a primary field with hk = h̄k (of the form φk(w, w̄) = ϕk(w)ϕk(w̄)),

〈φk(σ, t)〉dyn = 〈φk(w, w̄)〉str =
(
∂z

∂w

)hk
(
∂z̄

∂w̄

)h̄k

〈φk(z, z̄)〉UHP

= ak
(
e2πt/β + e−2πt/β

)−2hk ∼ ake
−γ

(0)
k t + ..., γ

(0)
k = 2π∆k/β = 4πhk/β (33)

4in the sense of subsystem thermalization.
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where in going from the first line to the second line, we have used the method of images
[25, 24] with hk = h̄k, z

′ = z̄. In the above ak, Ak are known numerical constants.
Equilibrium expectation value in (28), for µn = 0, corresponds to a cylindrical geometry

in the w-plane, with τ = 0 identified with τ = β. By using the same conformal map
(31) this can be transformed to a one-point function on the plane. For a primary field the
latter vanishes. Hence (28) is trivially satisfied. For a quasiprimary field φk, its conformal
transformation generates additional terms, including possibly a c-number term.

For the general case with µn 6= 0, we will regard the Wn as conserved charges of a W-
algebra, although the results we derive will be equally valid as long as these charges, together
with H , form a mutually commuting set, and the currents (Wn(w), W̄n(w̄)) are quasiprimary
fields.

Wn =
1

2π

∫

Γ

Wττ...τdσ =
1

2π

∫

Γ

(
indw1Wn(w1) + (−i)ndw̄1 W̄n(w̄1)

)
(34)

Here the contour Γ is taken to be a τ = constant line along which dw1 = dw̄1 = dσ. Under
the conformal transformation (31) to the plane/UHP, the holomorphic part of the contour
integral becomes

Wn|hol =
in

2π

(
2π

β

)n−1 ∫

Γ1

dz1


zn−1

1 Wn(z1) +

⌊n/2⌋∑

m=1

an,n−2mz
n−2m−1
1 Wn−2m(z1)


 (35)

where the an,n−2m denote the mixing of Wn(z1) with lower orderW -currents under conformal
transformations [26, 27]. The contour Γ1 is an image of the contour Γ onto the plane. The
expression for the antiholomorphic part Wn|antihol is similar.

One-point function on the strip with chemical potentials

Consider only a single chemical potential µ3, using perturbation theory Feynman diagrams:

〈φk(w, w̄)〉µstr = 〈φk(w, w̄)〉str −
µ3

4
〈{W3, φk(w, w̄)}〉connstr

+

(
µ3

4

)2
1

2!
(〈{W3W3, φk(w, w̄)}〉connstr + 2〈W3φk(w, w̄)W3〉connstr ) +O(µ3

n) (36)

The { , } denotes an anticommutator. The operator ordering implies the following: when W3

appears on the left of φk(w, w̄), e.g., in 〈W3φk(w, w̄)〉, the integration contour (34) for W3

on the strip lies above the point (w, w̄); similarly when W3 appears on the right of φk(w, w̄),
e.g. in 〈φk(w, w̄)W3〉, the contour for W3 is below the point (w, w̄).

The first, µ-independent, term in the above expansion is already calculated in (33).
After conformally transforming to the UHP, we regard ϕ̄k on the UHP as ϕ∗

k at the
image point on the LHP (up to a constant). Combining with the arguments used for the
holomorphic operators, we eventually get

〈{W3, φk(w, w̄)}〉connstr

〈φk(w, w̄)〉str
= i3

2π

β2
(zz̄)hI3(z, z

′),

I3(z, z
′) ≡

∫

Γ1+Γ′
1+Γ̃1+Γ̃′

1

dz1 z
2
1〈W3(z1)ϕk(z)ϕ

∗
k(z

′)〉conn
C

/〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

(37)
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Figure 2: Various contours needed to compute the Wn insertions in (36). At late times, the insertion
of each contour, irrespective of the position of the contour, amounts to insertion of a given factor linear
in t. This allows to resum arbitrary orders of arbitrary Wn-charge insertions, leading to the exponential
time-dependence as in (28).

In the long time limit, O(µ3) correction is given by (using that all four contours Γ1, Γ̃1,Γ
′
1, Γ̃

′
1

contribute equally, cancelling the 1/4 in −µ3/4)

〈φk(σ, t)〉dyn = ake
−2π∆kt/β

(
1−Q3,kµ̃3 (

2πt

β
+ constant) +O(µ2

3)

)
+ ...,

Q3,k = i32q3,k(2π), µ̃3 =
µ3

β2
, ∆k = 2hk (38)

where q3 is the W3-charge of the field φk. For higher order µ3 terms, closing the contour
integrals and using the leading OPE terms and we find the re-exponentiation and get (28).
We note that the leading contribution had been isolated by considering a scaling

µ̃n → 0, t̃ ≡ t

β
→ ∞, such that µ̃nt̃ = constant. (39)

For higher Wn charges, due to the quasiprimary nature (35), the O(µ) correction with all
chemical potentials is given by

〈φk(σ, t)〉dyn = ake
−2π∆kt/β

(
1−

∑

n=3

Qn,kµ̃n (
2πt

β
+ constant) +O(µ2)

)
+ ...,

µ̃n =
µn

βn−1
, ∆k = hk + h̄k = 2hk

Qn,k = 2

⌊n/2−1⌋∑

m=0

an,mi
n−2m(2π)n−2m−2qn−2m,k

= in(2π)n−22qn,k + in−2(2π)n−4an,2 2qn−2,k + ..., (40)

3.2 Proof of thermalization: Reduced density matrix, Multiple
local observables

Besides the one-point functions discussed above, it turns our that we can demonstrate ther-
malization of all operators in an interval A of length l. It is convenient to define a ‘thermal-
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ization function’ IA(t) [28] as

IA(t) = Tr(ρ̂dyn,A(t)ρ̂eqm,A(β, µn)) =
Tr(ρdyn,A(t)ρeqm,A(β, µn))

[Tr(ρdyn,A(t)2)Tr(ρeqm,A(β, µi)2)]
1/2

ρdyn,A(t) = TrĀ |ψ(t)〉〈ψ(t)|, ρeqm,A(β, µn) = TrĀ ρeqm(β, µi) (41)

Here ρ̂ = ρ/
√

Trρ2 denotes a ‘square-normalized’ density matrix. Using the short-interval
expansion above, and the long time behaviour of one-point functions, it is easy to prove that
the system thermalizes

I(t) = 1− α exp[−2γmt] + ... ⇒ ρdyn,A(t)
t→∞−−−→ ρeqm,A(β, µn) +O(e−γmint) (42)

This implies thermalization for an arbitrary string of local operators (with σ1, σ2, ... ∈ A).

〈ψ(t)|O1(x1)O2(x2)....On(xn)|ψ(t)〉 t→∞−−−→ Tr (ρGGEO1(x1)O2(x2)....On(xn)) (43)

3.3 Decay of perturbations of a thermal state

We find that the long time behaviour (28) of an operator φk(0, t) in the quenched state is
the same as that of its two-point function (44) in the thermal state (25) (with chemical
potentials). The latter measures the thermal decay of a perturbation and is more directly
related to a black hole quasinormal mode.

We define the thermal two-point function as 5

G+(t, l; β, µ) ≡
1

Z
Tr(φk(l, t)φk(0, 0)e

−βH−
∑

n µnWn) (44)

For µ = 0, with φk of conformal dimensions hk = h̄k,

G+(t, l; β, 0)
t,l≫β−−−→

{
const e−2πt∆k/β, (t− l) ≫ β
const e−2πl∆k/β , (l − t) ≫ β

(45)

The effect of turning on the chemical potentials can be dealt with as in the previous sections.
By resumming the perturbative series in a straightforward fashion, we get,

G+(t, 0; β, µ)
t→∞−−−→ G+(0, 0; β, 0)b(µ)e

−γkt (46)

where b(µ) is time-independent, and is of the form b(µ) = 1+O(µ). This long time decay is
the same as that of the one-point function (28) in the quenched state, as claimed above.

3.4 Holography and higher spin black holes

Zero chemical potential: A global quantum quench described by an initial state of the
form (27), for large central charges and zero chemical potentials, has been shown in [5, 7, 14]
to be dual to one half of the eternal BTZ (black string) geometry, whose boundary represents
an end-of-the-world brane.

5We use the same notations as in [29].
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In an independent development, it was found in [30] that the quasinormal mode of a scalar
field Φk(σ, t, z) of mass m in a BTZ background (dual to a CFT operator φk of dimension
∆k ≡ 1 +

√
1 +m2) is of the form exp[−2π∆t/β] at large times. This time-dependence

agrees with the CFT exponent in (45) exactly. This shows that the exponential decay of a
CFT perturbation to a thermal state corresponds to the decay of the corresponding scalar
field in the bulk geometry. This result has been extended to higher spin fields in the BTZ
background in [31].

Non-zero chemical potentials: In case the CFT has additional conserved charges, in
particular if it has a representation of a W∞ algebra (and consequently the hs(λ) algebra
[32]), then the bulk dual corresponding to those conserved charges have been conjectured
to be the conserved higher spin charges of higher spin gravity. In particular, [33, 34] have
shown that if one interprets the grand canonical ensemble (26) (more generally, the GGE)
in the framework of an hs(λ) representation, then the bulk dual corresponds to a higher spin
black hole.

Thus, we would like to conjecture that the bulk dual of the quantum quench with chemical
potentials, would correspond to a gravitational collapse to a higher spin black hole.

As an important consistency check, by analogy with the case with zero potential, in the
present case too, the leading quasinormal mode (QNM) of a scalar field Φk(σ, t, z) should
have a time-dependence given by (46). Following the results in [35] we find that at late times
t≫ β the QNM for the hs(λ) scalar field Φ+ behaves, up to O(µ3), as e

−iω
k,0

t, where

ωk,0 = −i2π
β

(
1 + λ+ µ̃3

1

3
(1 + λ)(2 + λ)

)
(47)

where the index k here refers to the operator φk dual to the scalar field Φ+. Noting that for
this operator we have ∆k = 1+λ, and Q3,k = 1

3
(1+ λ)(2+λ) [36, 37], we see that the QNM

frequency ωk,0 agrees, to the relevant order, with the pole of the thermal 2-point function
which, in turn, is related to the thermalization exponent by the relation ωk,0 = −iγk, with
γk given in (28).

3.5 Conclusion

We considered 2D conformal field theories with additional conserved charges besides the
energy. We probed non-equilibrium physics starting from global quenches described by
conformal boundary states modified by multiple UV cut-off parameters. It was found that
local observables in such a state thermalize to an equilibrium described by a grand canonical
ensemble (26) with temperature and chemical potentials related to the cut-off parameters.
We computed the thermalization rate for various observables, including the reduced density
matrix for an interval. It was found that the same rate appears also in the long time decay
of two-point functions in equilibrium. In the context where the number of conserved charges
is infinite, and they are identified with commuting W∞ charges, the equilibrium ensemble (a
generalized Gibbs ensemble, GGE) corresponds to a higher spin black hole [33, 34]. We found
that the thermalization rate found above agrees with the leading quasinormal frequency of the
higher spin black hole; this constitutes an additional, dynamical, evidence for the holographic
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correspondence between the global quenches in this paper and the evolution into the higher
spin black hole.

4 Free Scalar and Fermion Quenches(based on [3])

In the previous section 3, the proof of thermalization required certain assumptions:
(a) the post-quench wavefunction is of the generalized Calabrese-Cardy (gCC) form.

|ψ〉 = exp[−κ2H −
∑

n>2

κnWn]|Bd〉 (48)

where Wn are additional conserved charges in the system (the results are valid even without
the additional charges present in the system). It was assumed that the charges are obtained
from local currents. For specificity, we have assumed that the system is integrable, with a
W∞ algebra and the Wn, n = 2, 3, ... (W2 = H) are W∞ charges.
(b) The spectrum of conformal dimensions in the post-quench critical theory has a gap.
(c) The dimensionless parameters κ̃n = κn/κ

n−1
2 , n > 2 are small and can be treated pertur-

batively.
(d) The size l of the interval is small compared to κ2.
In this section we will focus on our work [3] where working with theories of free scalars or
fermions with a time-dependent mass m(t) quenched to m = 0. we extend the proof of
thermlization, without making the assumptions above. One of the technical advances in this
paper is the use of nontrivial pre-quench states, which we take to be squeezed states. The
motivation for considering this class of states is that besides being technically accessible,
these states are experimentally realizable (see, e.g. [38, 39]) and carry non-trivial quantum
entanglement encoded by the squeezing function.

4.1 Critical quench of a scalar field: general strategy

An important example of quantum quench is provided by free scalar field theories with time-
dependent mass (our notations will closely follow [40]). We will consider critical quench, the
mass gap asymptotically vanishes following the quench.

The equations of motion of various Fourier modes get decoupled, where each mode sat-
isfies a Schrödinger-type equation with −m2(t) playing the role of a potential:

− d2φ(k, t)

dt2
+ V (t)φ(k, t) = Eφ(k, t), V (t) = −m2(t), E = k2. (49)

The solution for the field φ(k, t) =
∫
dx φ(x, t) e−ikx can be expressed in two distinct

bases,

φ(k, t) = ain(k)uin(k, t) + a†in(−k)u∗in(−k, t)
= aout(k)uout(k, t) + a†out(−k)u∗out(−k, t), (50)

where the ‘in’ and ‘out’ wavefunctions uin,out(k, t) are related by a Bogoluibov transformation.
The in- and out- oscillators are related to each other through the Bogoliubov coefficients
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α(k), β(k)

ain(k) = α∗(k)aout(k)− β∗(k)a†out(−k),
aout(k) = α(k)ain(k) + β∗(k)a†in(−k) (51)

The Bogoliubov coefficients are actually functions of |k|.

General proof of the gCC ansatz [2] for the ground state The two sets of oscillators
define two distinct vacua |0, in〉 and |0, out〉, defined by ain(k)|0, in〉 = 0 and aout(k)|0, out〉 =
0. Using the first line of (51), we can express the in-vacuum in terms of the out-vacua as
follows

|0, in〉 = exp[
1

2

∑

k

γ(k)a†out(k)a
†
out(−k)]|0, out〉, (52)

= exp[−
∑

k

κ(k)a†out(k)aout(k)]|D〉, (53)

where γ(k) = β∗(k)/α∗(k) κ(k) = −1

2
log(−γ(k)) (54)

where in the second line we have used Baker-Campbell-Hausdorff formula and |D〉 is a
Dirichlet boundary state defined in terms of the ‘out’ Fock space. Using the propeties
of quantum mechanical scattering problem, we find that γ(k) admits a small-momentum
expansion of the form

γ(k) = −1 + γ1|k|+ γ2|k|2 + γ3|k|3 + ..., Re(γ1) ≥ 0 (55)

⇒ κ(k) = κ2|k|+ κ3|k|2 + κ4|k|3 − ..., (56)

hence, this proves the ansatz (48), where W2n, n = 1, 2, ...,(W2 = H) are the even W∞
charges6 [41] of the final massless scalar field theory.

4.2 Thermalization to GGE

As we have shown in section 3, the post-quench state, which is of the form (48) shows
subsystem thermalization to the GGE:

|ψ(k2, {kn})〉gCC

subsystem−−−−−−−−−→
thermalization

ρ
GGE

(β, {µn}), β = 4κ2, µn = 4κn (57)

A reduced density matrix on the LHS asymptotically approaches that in the RHS. We will
compute explicit correlators below which satisfy the same property.

The energy and W -charges (as well as the number operator) are conserved in the post-
quench CFT dynamics, we have

〈H〉
gCC

= 〈H〉
GGE

, 〈Wn〉gCC
= 〈Wn〉GGE

, 〈N(k)〉
gCC

= 〈N(k)〉
GGE

(58)

6H ≡W2 =
∑

k |k|a
†
out(k)aout(k), W2n =

∑
k |k|2n−1a†out(k)aout(k), n = 2, 3, ...
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Thus, the charges measured for the post-quench state also refer to those of the GGE. In
particular, note that

〈N(k)〉 = |β(k)|2 = |γ(k)|2
1− |γ(k)|2 =

1

e4κ(k)−1
(59)

This relation can be identified with a similar relation in [21].

4.3 Specific quench protocols

Massive to critical scalar quench: For the specific mass function

m2(t) = m2
0(1− tanh(ρt))/2 (60)

ρ→∞−−−→ m2
0Θ(−t) (61)

ρ→ ∞ is the sudden limit. Solving (49), we find the following Bogoliubov coefficients

α(k) =

√
ωout

ωin

Γ
(
− iωout

ρ

)
Γ
(
1− iωin

ρ

)

Γ
(
− iω+

2ρ

)
Γ
(
1− iω+

2ρ

) ρ→∞−−−→ 1

2

|k|+ ωin√
|k|ωin

(62)

β(k) =

√
ωout

ωin

Γ
(

iωout

ρ

)
Γ
(
1− iωin

ρ

)

Γ
(

iω−
2ρ

)
Γ
(
1 + iω−

2ρ

) ρ→∞−−−→ 1

2

|k| − ωin√
|k|ωin

(63)

Using these values, and the general method of Section 4.1, we find that the ground state is
of the gCC form (48) where

κ2 =
1

m0

(
1 +

π2

12

m2
0

ρ2
− i

ζ(3)

4

m3
0

ρ3
+ ...

)
, κ4 =

1

m3
0

(
− 5

160
+

π2

288

m2
0

ρ2
+ ...

)
, ... (64)

Comparison with CC state ansatz of [20]: The propagator can be calculated in terms
of Meijer G-function. In the asymptotic limit t→ ∞, it becomes

Gq,0(0, t; r, t) =
1

8
(m0(2t− r)) +

1

8
√
2πm0

(
e−m0(2t−r)

√
2t− r

+
e−m0(r+2t)

√
r + 2t

+
2e−m0r

√
r

)
+ ... r < 2t

=
1

8
√
2πm0

(
e−m0(r−2t)

√
r − 2t

+
e−m0(r+2t)

√
r + 2t

+
2e−m0r

√
r

)
+ ... r > 2t

Using this, we can calculate 〈∂φ∂φ〉 and 〈∂φ∂̄φ〉 and it does not matches with the CC state
value calculated by BCFT techniques in [20] even in high effective temperature limit. The
Energy density in the t→ ∞ limit is,

H = m2
0/(16π) (65)

Again it does not agree with the thermal value[28] with β = 4/m0. In other words, the
higher chemical potentials affect the asymptotic energy density.
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We also consider critical to critical scalar quench with the mass function[40] given by
m2(t) = m2

0 sech
2(ρt) and found the various parameters. We also considered massive to crit-

ical fermionic quench with the mass profile[42, 40] given by m0

2
(1− tanh (ρt)) and identified

various κn’s.

4.4 Quenching squeezed states

Suppose, instead of the ground state we start with a squeezed state7 of the pre-quench
Hamiltonian:8

|ψ, in〉 = |f〉 ≡ exp

[
1

2

∑

k

f(k)a†in(k)a
†
in(−k)

]
|0, in〉 (66)

This is clearly a Bogoliubov transformation of |0, in〉. And the quench process is another
further bogoluibov transformation. So, the final state is a gCC state (48) where now the
γ(k) and κ(k) in (54) are modified due to the non-trivial initial state as

γ
eff
(k) =

β∗(k) + f(k)α(k)

α∗(k) + f(k)β(k)
, κ

eff
(k) ≡ −1

2
log (−γ

eff
(k)) (67)

Using elements of scattering theory and assuming f(k) to be regular at k = 0 so that it
admits an expansion f(k) = f(0) + O(k), we find that the first factor in the RHS has an
expansion −1 +O(k). This ensures an expansion of κeff in the form (56).

Explicit Examples: Starting from the squeezed state define by

f(k) = 1− 2|k|√
|k|2 +m0

2 tanh (κ2,0k + κ4,0k3) + k
(68)

the quench protocol of ‘tanh’ function (61), in the sudden limit ρ→ ∞ yields9

|f〉 = exp[− (κ2,0H + κ4,0W4) |D〉 (69)

κ4,0 = 0 is the special case which yields CC state.

Correlators in Squeezed States

The propagator and other correlators in a squeezed state (69) is given by

〈φφ〉 =
∫

dk

4π

eikr

k

(
coth

(
2k
(
κ2 + κ4k

2
))

− cos(2kt)cosech
(
2k
(
κ2 + κ4k

2
))

− 1
)

〈∂φ∂φ〉 =
∫

dk

8π
eikrk

(
coth

(
2kκ2 + 2k3κ4

)
− 1
)

〈∂φ∂̄φ〉 =
∫

dk

8π
e−2iktk cosech

(
2κ2k + 2k3κ4

)
(70)

7These states have importance in diverse contexts [38, 43] including quantum entanglement [39]. Time-
development of these states can address the issue of dynamical evolution of quantum entanglement, among
other things.

8We assume that the norm of the squeezed state is finite, which is ensured by the finiteness of the integral∫
dk/(2π) log(1− |f(k)|2).
9Note that we choose here κ2,0, κ4,0 to be positive to ensure that the gCC state is of finite norm.
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The first two equations describe two-point functions with (x1, t1) = (0, t), (x2, t2) = (r, t),
whereas the third equation is a one-point function at a point (x, t) (which is independent
of x by translational invariance). For CC state(κ4 = 0), the fourier transforms can be
easily calculated, the results exactly match the results obtained using BCFT in [44]. The
equilibrium energy can also be calculated in the t→ ∞ limit as

H =
π

96κ22
(71)

This agrees with the thermal energy density with β = 4κ2.
With non-zero κ4, let us first consider 〈∂φ∂̄φ〉. The associated Fourier transform can

be computed by contour integration. Note that the cosech function has simple poles in the
k-plane at 2κ4k

3 + 2κ2k = iπn. Thus, there are three simple poles for each n. Out of these
poles, there is only one perturbative(κ4 ≪ κ32) branch, the total residue in this branch for
n = ±1 poles is

〈∂φ∂̄φ〉gCC = − π

16κ22

(
1 + 4π2κ̃4 + 48π4κ̃24

)
exp

(
−4 (π + 4π3κ̃4 + 48π5κ̃24) t

4κ2

)
(72)

where κ̃4 =
κ4

42κ3
2
.

Comparison with MSS: Using the charge under the µ4 current q4 = 3, β = 4κ2 and
κ̃4 = µ̃4, we match the results of MSS exactly. Note that above, µ̃2

4t also exponentiates, so
this gives the behaviour expected by MSS and higher orders.

The computation of 〈∂φ∂φ〉 follows along similar lines. Here, the poles are the same.
The only difference is the residue of coth.

Comparison with equilibrium GGE calculation: Using the Wightman function in a
GGE, the holomorphic two-point function is now given by

1

Z
Tr
(
∂φ(x2, t2)∂φ(x1, t1)e

−βH−µ4W4
)
=

1

2

∫
dk

2π

k e−ik(x+t)

eβ|k|+µ4|k|3 − 1

=
1

4

∫
dk

2π
k e−ik(x+t)

(
coth(β|k|/2 + µ4|k|3/2)− 1

)

(73)

which exactly matches (70) provided we define β = 4κ2, µ4 = 4κ4.

4.5 Conclusion

We found an exact agreement between t → ∞ correlators in the gCC state (68) and in
the corresponding GGE (cf. equations (70) and (73)) with chemical potentials µn = 4κ2.
The relaxation rate of one-point functions is seen to exactly exponentiate (see (72)), and
its perturbation expansion in the higher κn coefficients agrees with the value from section
3 calculation by CFT techniques. We also found that generically GGE correlators (equiva-
lently, late time correlators in a gCC state) and thermal correlators (equivalently late time
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correlators in a CC state), characterized by the same temperature (equivalently same κ2 are
different, even at large distance scales (e.g. κ4 appears in the correlation length in (72)).
So, it is clear that while the fact of thermalization is true, the late time exponents depend
nontrivially on the higher chemical potentials (or higher κn’s), even though these correspond
to perturbation by irrelevant operators in an Wilsonian RG sense.

At least for the free theories that we considered, the equilibrium chemical potentials allow
a reconstruction of the quench protocol (completely or partially depending on the situation).
Now, it is well-known that the potential of a one-dimensional Schrodinger problem [45] can
be reconstructed from the reflection amplitude. This implies, for the ground state quench,
that through correspondence between the quench problem and the scattering problem, m(t)
can be reconstructed from κ(k). This, in turn, means that the µn’s carry complete knowledge
of the quench protocol m(t). In case we consider a squeezed pre-quench state, the GGE is
characterized by the function κeff (k) which is given by a combination of the knowledge of
the squeezing function f(k) and the quench protocol m(t). Thus, in case the pre-quench
initial state as well as the quench protocol are unknown, the equilibrium ensemble has an
imperfect recollection of the history.
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Chapter I

AdS3/CFT2: Geometry of
entanglement1

1 Introduction and Summary

It has been a matter of lively debate whether the standard description of a large black hole
with a smooth horizon is quantum mechanically consistent, and is, in fact, consistent with
AdS/CFT. While the firewall hypothesis [46, 47] 2 argues against the validity of the standard
description, Maldacena and Susskind [4] have suggested that the region inside the horizon is
a geometric representation of quantum mechanical entanglement. Both the above proposals,
and related issues, are discussed in a number of papers; for a partial list, related to the
discussion in this chapter, see [46, 47, 49, 50, 51, 52, 53, 54, 55, 56]. The proposal of [4],
summarized by the symbolic equation ER = EPR, 3 is illustrated by the eternal black hole
geometry which is dual to the thermofield state [5].4 It has been argued in several papers
(see, e.g., [51, 56]) that although the proposal holds for this illustrative case, it does not hold
in general. One of the objectives of this chapter is to explicitly construct a general class of
two-sided geometries 5 which represent entangled CFT’s.

A useful approach to construct the geometric dual to a CFT state is by using a Fefferman-
Graham (FG) expansion, with boundary data provided by the CFT state. To begin with, let
us consider the case of a single CFT. Since we are primarily interested in the metric, let us
focus, for simplicity, on states in which only the stress tensor is excited. The dual geometry
would then be given by the solution to the appropriate Einstein equations subject to the
boundary data provided by the stress tensor. This approach has been particularly fruitful
in the context of the AdS3/CFT2 duality where the Fefferman-Graham expansion has been

1The contents of this chapter have partial overlap with Ritam Sinha’s thesis work.
2See also [48].
3Einstein-Rosen (wormhole) = Einstein-Podolsky-Rosen (entangled state).
4See [7] for an AdS/CFT check on the dynamical entanglement entropy which involves the wormhole

region, and [14] for generalization to include angular momentum and charge.
5By two-sided, we mean geometries which have two asymptotically AdS regions.
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shown, for pure gravity, to terminate [9] , yielding the following exact metric 6

ds2 =
dz2

z2
− dx+dx−

(
1

z2
+ z2

L(x+)L̄(x−)

16

)
+

1

4

(
L(x+)dx

2
+ + L̄(x−)dx

2
−
)

(I.1)

The boundary data (z → 0) is represented by the following holographic stress tensors (we
choose −Λ = 1/ℓ2 = 1)

8πG3T++(x+) =
L(x+)

4
, 8πG3T−−(x−) =

L̄(x−)

4
(I.2)

The above metric becomes singular at the horizon

z = z0 ≡ 2
(
L(x+)L̄(x−)

)−1/4
, (I.3)

and therefore the metric (I.1), describes only an exterior geometry. 7

How does one carry out such a construction with two boundaries, with two sets of bound-
ary data? Indeed, it is not even clear, a priori, whether simultaneously specifying two inde-
pendent pieces of boundary data can always lead to a consistent solution in the bulk (this
question has been raised in several recent papers, e.g. see [50]). A possible approach to this
problem is suggested by the fact that the eternal BTZ solution, which contains (I.1) with
constant stress tensors, admits a maximal extension with two exteriors, which are joined
to an interior region across a smooth horizon. The maximal extension is constructed by
transforming, e.g., to various Eddington-Finkelstein (EF) coordinate patches (described in
Appendix I.A). A naive generalization of such a procedure in case of variable L, L̄, of trans-
forming the metric (I.1) to EF type coordinates, does not seem to work since it leads to a
complex metric in the interior region 8. A second approach could be to solve Einstein’s equa-
tions, by using the constant L, L̄ (eternal BTZ) solution as a starting point and, incorporate
the effect of variable L, L̄ perturbatively, either in a derivative expansion or an amplitude
expansion. While this method may indeed work, at the face of it, it is far from clear how
the variation in L, L̄ can be chosen to be different at the two boundaries.

We will use the method of solution generating diffeomorphisms (SGD). In gauge theory
terms, these are asymptotically nontrivial gauge transformations which correspond to global
charge rotations; the use of these objects was introduced in [58, 59, 60], and used crucially by
Brown and Henneaux[61] to generate ‘Virasoro charges’ through asymptotically nontrivial
SGDs that reduced at the AdS boundary to conformal transformations. (We discuss these
in more detail in Section 2). Brown and Henneaux had discussed only the asymptotic
form of the SGDs. We apply two independent, exact Brown-Henneaux SGDs 9 to different

6In (I.1), x± = t± x, with x ∈ R. For L, L̄ constant, this corresponds to the BTZ black string.
7The inverse metric gMN blows up at the horizon, as in case of Schwarzschild geometry. However, unlike

there, here the other region z > z0 does not represent the region behind the horizon; rather it gives a second
coordinatization of the exterior region again. We will use a different set of coordinate systems to probe the
interior and a second exterior region.

8Such a coordinate transformation has been discussed in [57] in an asymptotic series near the boundary.
9 It has been shown by Roberts [62] that the exterior metric (I.1) can be obtained by an exact Brown-

Henneaux type diffeomorphism applied to the Poincare metric. See Appendix I.D for a discussion on this
and a different, new, transformation which is closer to the ones we use here.
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coordinate patches of the eternal BTZ geometry, yielding a black hole spacetime with two
completely general stress tensors on the two boundaries. In other words, our strategy for
solving the boundary value problem can be summarized as: given arbitrary boundary data
in terms of stress tensors TR, T̄R, and TL, T̄L, we (i) find the two specific sets of conformal
transformations (which we are going to call G+, G− and H+, H−) which, when acting on a
constant stress tensor, gives rise to these stress tensors, (ii) find the SGD’s which reduce to
these conformal transformations and (iii) apply the SGD’s to the eternal BTZ metric.

This solves the boundary value problem we posed above.

The results are organized as follows:
(1) The new solutions: In Section 2 we describe the explicit solution generating dif-

feomorphisms (SGDs) and construct the resulting two-sided black hole geometries. The
diffeomorphisms reduce to conformal transformations at each boundary, parameterized by
functions G± on the right and H± on the left. The SGD parameterized by G± is applied
to the Eddington-Finkelstein coordinate chart EF1 (which covers the right exterior and the
black hole interior, see Figure I.1) and to EF4 (right exterior + white hole interior), whereas
the SGD parameterized by H± is applied to the Eddington-Finkelstein coordinate chart EF2
(left exterior + black hole interior) and to EF3 (left exterior + white hole interior). To cover
the entire spacetime we also use a Kruskal chart K5 which covers an open neighbourhood
of the bifurcate Killing horizon; here we leave the original Kruskal metric unaltered. The
effect of the above SGDs is that we have a description of different metric tensors in differ-
ent charts. In Section 2.3 we show that all these can be pieced together to give a single
(pseudo-)Riemannian manifold; we prove this by showing that in the pairwise overlap of any
two charts N1 ∩N2 the different metrics constructed above differ only by a trivial diffeomor-
phism (see the definition 2.5); the full metric, specified with the help of the various charts,
is schematically represented in Figure I.3. An important manifestation of the asymptotic
nontriviality of the SGDs is to move and warp the infra-red regulator surface (see Figure I.2);
the change in the boundary properties, as found in later sections, can be directly attributed
to this.

The new spacetime so constructed inherits the original causal structure, with the event
horizon, the bifurcation surface, and the two exterior and interior regions (see also footnotes
10 and 32). The horizon is, therefore, regular by construction. In the new EF coordinates
(the tilded coordinates) the horizon consists of smoothly undulating surfaces (see Fig I.4).

(2) The CFT duals: In Section 3 the fact that the SGDs reduce asymptotically to con-
formal transformations is used to infer that the CFT duals to our geometries are given by
conformal unitary transformations UL ⊗UR to the thermofield double state. The correspon-
dence between various AdS and CFT quantities, implied by this, is explicitly verified in the
next few sections.

(3) The AdS/CFT checks: In section 4 we carry out this test for the stress tensor. We
compute the holographic stress tensor [12, 15] in the new geometry and show that it exactly
matches with the expectation value of the conformally transformed (including the Schwarzian
derivative) stress tensor in the thermofield double state. In section 5 we compare AdS and
CFT results for both 〈OLOR〉 and 〈OROR〉 types of correlators. The holographic two-point
function is found by computing geodesic lengths in the new geometries and we find that
it correctly matches with the two-point function of transformed operators. This can be
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regarded as an evidence for the ER=EPR relation in the presence of probes.
(4) Entanglement entropy: As a further check, in section 6 we apply the above result

for two-point functions to show that the entanglement entropy EE in CFT matches the
holographic EE [63, 13] including when the Ryu-Takayanagi geodesic passes through the
wormhole. This constitutes a direct proof of the ER=EPR conjecture for the entire class
of geometries constructed here. We work out the dynamical entanglement entropy in an
example (see fig I.5).

(5) Holographic entropy from horizon: In section 7, we make crucial use of the existence
of smooth horizons on both sides to compute a holographic entropy along the lines of [64].
We are able to compute the entropy in the CFT by using the Cardy formula and an adiabatic
limit (which allows the use of the ‘instantaneous’ energy eigenvalues to compute degenera-
cies); the holographic entropy agrees with this. The entropy turns out to be divergenceless,
reflecting the dissipationless nature of 2D CFT. There is, however, a nontrivial local flow of
entropy (see fig I.6).

(6) ER=EPR: In Section 8 we discuss some implications of our solutions vis-a-vis the
ER=EPR relation of Maldacena and Susskind [4]. Our solutions establish an infinite family
of quantum states entangling two CFTs which are represented in the bulk by wormhole
geometries. We show, in particular, that out of a given set of quantum states we consider,
all characterized by the same energy, there are states with low entanglement entropies, which
nevertheless are still represented by wormhole geometries; this is in keeping with the picture
of geometric entanglement suggested in [4].

2 The solutions

In this section we obtain the new solutions by carrying out the procedure outlined in the
Introduction. As explained in Section I.A, for constant L, L̄, the metric (I.1) represents
a BTZ black hole of constant mass and angular momentum (I.83). In that case, one can
construct EF coordinates (see Section I.A) to extend the spacetime to include the region
behind the horizon and a second exterior. We will, in fact, use five charts to cover the
extended geometry (see Fig I.1).
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EF1 EF2 EF3 EF4

Figure I.1: The (green parts of) the five figures on the right depict the five coordinate charts
used to cover the eternal BTZ solution.10The coordinate chart K5 is needed to cover the
“bifurcation surface” where the past and future horizons meet (it is a point in the Penrose
diagram). The leftmost diagram (in blue) represents the coordinate chart used in (I.1). Each
of the coordinate charts is shown, for facility of comparison, within a Penrose diagram where
the parts not within the chart are shown in gray.

2.1 The eternal BTZ geometry

We will now briefly review some properties of the eternal BTZ geometry. The maximal
extension of the eternal BTZ geometry, starting from (I.1) is described in detail in Section
I.A. We will briefly reproduce some of the formulae relevant to the coordinate system (“EF1”)
describing the right exterior and the interior. The EF1 coordinates are obtained from the
coordinates of (I.1) by the transformations

z

z0
=

√
1

λ0

(
λ−

√
λ2 − λ20

)
(I.4)

x+ = v − 1

2
√
L
ln

(
λ− λ0
λ+ λ0

)
, x− = w − 1

2
√
L̄
ln

(
λ− λ0
λ+ λ0

)

The metric, in these coordinates, becomes

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
dv2 +

L̄

4
dw2 − λ dvdw +

√
L

2(λ+ λ0)
dvdλ+

√
L

2(λ+ λ0)
dwdλ (I.5)

The event horizon λH , the inner horizon λi, and the singularity λs are at

λH = λ0 ≡
√
LL̄

2
, λi = −λ0, λs = −1

4
(L+ L̄) (I.6)

10 This is the entire geometry for the non-spinning BTZ; for spinning BTZ solutions, we do not attempt
to cover the region beyond the inner horizon, since we are interested in the asymptotic properties in the two
exteriors mentioned above. See also footnote 32.
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Note that for BTZ black holes without angular momentum L̄ = L and λi = λs. The location
of the event horizon corresponds to (I.3).

In order to regulate IR divergences coming from λ → ∞, we define a cut-off surface ΣB

at a constant large λ = λir; the metric (I.5) on ΣB turns out to be

λ = λir = 1/ǫ2 ⇒ ds2|ΣB
= −(1/ǫ2) dv dw(1 +O(ǫ2)) (I.7)

By the usual AdS/CFT correspondence the leading term defines the boundary metric (see
Section I.C)

ds2bdry = −dv dw (I.8)

The subleading term in the metric corresponds to the normalizable metric fluctuation, which
gives the expectation value of the stress tensor; this is the holographic stress tensor [12], and
is given here by

8πG3Tvv(x+) =
L

4
, 8πG3Tww(x−) =

L̄

4
(I.9)

It is easy to see that we will get the same boundary metric and stress tensor from an
analysis of the coordinate chart EF4. It is also straightforward to derive similar results for
the left exterior (which represent a state with the same mass and angular momentum) using
EF2 and EF3.

2.2 Solution generating diffeomorphisms (SGD)

We will now proceed to construct new solutions with arbitrary boundary data at the two
boundaries (represented by two arbitrary holographic stress tensors TR,µν(x) and TL,µν(x))
by applying the method of solution generating diffeomorphisms to the above geometry, as
explained in the introduction.

The solution generating diffeomorphisms can be described as follows. Suppose we start
with a certain metric gMN(x)dx

MdxN 11 in a certain coordinate chart UP containing a point
P. The new metric g̃MN , in this coordinate chart, is given in terms of a diffeomorphism
(active coordinate transformation) f : x̃M = x̃M(x), by the definition

g → g̃ ≡ f ∗g : g̃MN(x̃) ≡
∂xP

∂x̃M
∂xQ

∂x̃N
gPQ(x) (I.10)

In the above, f ∗g is a standard mathematical notation for the pullback of the metric g under
the diffeomorphism f . For diffeomorphisms differing infinitesimally from the identity map:
x̃M = xM − ξM(x), we, of course, have the familiar relation

δgMN(x) = DMξN +DNξM (I.11)

Normally, a diffeomorphism is considered giving rise to a physically indistinguishable solu-
tion; this, however, is not true when the diffeomorphism is non-trivial at infinity (this is
explained in more detail in Section 2.5).

As explained in Section I.A, we use five charts to cover the entire eternal BTZ geometry
(see Fig I.1). These charts are labelled as EF1, EF2, EF3, EF4 and K5. We use a nontrivial
diffeomorphism in each of EF1, EF2, EF3 and EF4, which overlap with the boundary and
the identity transformation in the Kruskal patch K5.

11Notation: xM = {λ, xµ}, xµ = {v, w}.
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The metric in the coordinate chart EF1

The diffeomorphism in the EF1 coordinate chart is given by

λ =
λ̃

G′
+(ṽ)G

′
−(w̃)

, v = G+(ṽ), w = G−(w̃) (I.12)

The new metric g̃MN , written in terms of x̃M = (λ̃, ṽ, w̃), is

g̃MN(x̃)dx̃
Mdx̃N ≡ ds2 =

1

B2

[
dλ̃2 + A2

+dṽ
2 + A2

−dw̃
2 + 2A+dṽdλ̃+ 2A−dw̃dλ̃

− λ̃

(
B2 + 2

(
A+

G′′
−(w̃)

G′
−(w̃)

+ A−
G′′

+(ṽ)

G′
+(ṽ)

+ λ̃
G′′

+(ṽ)G
′′
−(w̃)

G′
+(ṽ)G

′
−(w̃)

))
dṽdw̃

]
(I.13)

where

A+ =
√
LG′

+(ṽ)(λ̃+ λ̃0)− λ̃
G′′

+(ṽ)

G′
+(ṽ)

, A− =
√
L̄G′

−(w̃)(λ̃+ λ̃0)− λ̃
G′′

−(w̃)

G′
−(w̃)

, B = 2(λ̃+ λ̃0)

For infinitesimal transformations G±(x) ≡ x + ǫ±(x), this amounts to an asymptotically
nontrivial diffeomorphism ξM (see (I.11))12

ξv1 = ǫ+(v), ξ
w
1 = ǫ−(w), ξ

λ
1 = −λ

(
ǫ′+(v) + ǫ′−(w)

)
(I.14)

The behaviour of the metric (I.13) at a constant large λ surface is given by

ds2 = −λ̃ dṽdw̃ (1 +O(1/λ̃)) (I.15)

This, by following arguments similar to the previous case (see Section 2.1), identifies the IR
cutoff surface as

λ̃ir = (1/ǫ2) (I.16)

and the boundary metric as

ds2bdry = −dṽdw̃ (I.17)

The subleading term in (I.15), as explored in Section 4, gives the holographic stress tensor.
We will see there that the subleading term depends on the SGD functions G±; this feature
is what makes the SGD’s asymptotically nontrivial (see Section 2.5 for a more detailed
discussion on this).

In terms of the old λ-coordinate, the surface (I.16) is

λ = 1/(ǫ2G′
+(ṽ)G

′
−(w̃)) (I.18)

Note that this surface is different from (I.7), and is nontrivially warped, as in Figure I.2. This
is another manifestation of the asymptotic non-triviality of the diffeomorphism (I.12), which
is responsible for nontrivial transformation of bulk quantities, such as geodesic lengths.

12The subscript in ξM1 refers to the chart EF1.
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EF(1+4)EF(2+3) Kruskal

Figure I.2: This figure shows the IR cut-off (I.16) in the new geometries. The effect of the
SGDs, in the old (un-tilded) coordinates, is to deform the IR cut-off surfaces. The surface
deformation on the right exterior is given by the change from (I.7) to (I.18); there is a similar
surface deformation on the left exterior.

We note that the leading large λ̃ behaviour of (I.13) is that of AdS3

ds2 =
dλ̃2

4λ̃2
− λ̃ dṽ dw̃ + ... (I.19)

As mentioned before, and will be explored in detail in Section 4, the subleading terms,
represented by the ellipsis ..., are nontrivially different from that of AdS3.

The metric in the coordinate chart EF2

The diffeomorphism (SGD) used in the coordinate chart EF2 (see Fig I.1), which is inde-
pendent of the one above used in EF1, is given by

λ1 =
λ̃1

H ′
+(ũ)H

′
−(ω̃)

, u = H+(ũ), ω = H−(ṽ) (I.20)

which leads to the metric

ds2 =
1

B2

[
dλ̃21 + A2

+dũ
2 + A2

−dω̃
2 − 2A+dũdλ̃1 − 2A−dω̃dλ̃1

− λ̃1

(
B2 − 2

(
A+

H ′′
−(ω̃)

H ′
−(ω̃)

+ A−
H ′′

+(ũ)

H ′
+(ũ)

− λ̃1
H ′′

+(ũ)H
′′
−(ω̃)

H ′
+(ũ)H

′
−(ω̃)

))
dω̃dũ

]
(I.21)

where

A+ =
√
LH ′

+(ũ)(λ̃1 + λ̃0) + λ̃1
H ′′

+(ũ)

H ′
+(ũ)

, A− =
√
L̄H ′

−(ω̃)(λ̃1 + λ̃0) + λ̃1
H ′′

−(ω̃)

H ′
−(ω̃)

, B = 2(λ̃1 + λ̃0)

For infinitesimal transformations H±(x) = x+ε±(x), this implies a diffeomorphism ξM2 where

ξu2 = −ε+(u), ξω2 = −ε−(ω), ξλ2 = −λ
(
ε′+(u) + ε′−(ω)

)
(I.22)

Note, once again, the asymptotic nontriviality of the above diffeomorphism.
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2.3 The full metric

In a manner similar to the above, we apply the SGD characterized by G± on EF4 (which
shares the right exterior with EF1, see Appendix I.A.1): and the SGD characterized by H±
on EF3 (which shares the left exterior with EF2):

EF4 : λ =
λ̃

G′
+(ũ1)G

′
−(ω̃1)

, u1 = G+(ũ1), ω1 = G−(ω̃1)

infinitesimally
(
ξλ4 , ξ

u1
4 , ξ

ω1
4

)
=
(
−λ(ǫ′+(u1) + ǫ′−(ω1)), ǫ+(u1), ǫ−(ω1)

)

EF3 : λ =
λ̃1

H ′
+(ṽ1)H

′
−(w̃1)

, v1 = H+(ṽ1), w1 = H−(w̃1)

infinitesimally
(
ξλ4 , ξ

v1
4 , ξ

w1
4

)
=
(
−λ(ε′+(v1) + ε′−(w1)), ε+(v1), ε−(w1)

)
(I.23)

The infinitesimal transformations are similar to those in eqs. (I.14) and (I.22). As
mentioned above, we use the identity diffeomorphism of Kruskal patch K5 (with ξM5 = 0).
The expressions for the metric in various coordinate charts are given in (I.13), (I.21), (I.114),
(I.115) and (I.104).

We will now show that the five different metrics in the five coordinate charts define a single
metric in the entire spacetime. To see this, note that although the SGD’s applied on the five
charts are different, (equivalently, for infinitesimal transformations, the diffeomorphisms ξMi
in the five charts differ from each other), they satisfy the following sufficient criteria:

(i) At both the right (and left) exterior boundary, the diffeomorphisms coincide. For
example, in case of the right exterior (see (I.100)), as λ → ∞, u1 → v, ω1 → w.
Hence ũ1 = G−1

+ (u1) → G−1
+ (v) = ṽ. In other words, for infinitesimal transformations

ξM4 (P ) → ξM1 (P ) for a given point P with λ→ ∞. This implies that the metric (I.13)
coincides at the right boundary with the similar metric(I.114) obtained by applying the
G± transformations on the coordinate chart EF4. Similarly, the metric (I.21) obtained
by the H± transformations in EF2 and the similar metric (I.115) obtained by the H±
transformations in EF3 coincide at the left exterior boundary.

(ii) Away from the boundary, the metrics obtained in the various EF coordinate charts
differ from each other only by trivial diffeomorphisms which become the identity trans-
formation at infinity. Since the physical content of each of these metrics is represented
only by the boundary data, the above point (i) ensures that all the different metrics
represent the same single spacetime metric in different charts (see Figure I.3).

(iii) It is clear that the SGDs lead to a smooth metric in each chart, provided G±(x), H±(x)
are differentiable and invertible functions. In the rest of the chapter, we will only
consider such functions. It can be verified that such a class of functions is sufficiently
general to generate (through transformations such as (I.42)) any pair of physically
sensible holographic stress tensors at both boundaries.
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Figure I.3: A schematic illustration of the metrics related by trivial and nontrivial diffeo-
morphisms (see the definition 2.5). The metrics (I.5), (I.93), (I.96) and (I.99), represented
by the blue lines, define the eternal BTZ geometry; they are all related by trivial diffeomor-
phisms, which either do not extend to the boundaries or when they do, they become identity
asymptotically. The metrics (I.13), (I.21), (I.114) and (I.115), represented by the green lines,
define our new solution characterized by the functions G±, H±. These are also all related
by trivial diffeomorphisms, which satisfy the same criteria as above. The two sets however
represent physically different metrics since they are related to each other by nontrivial dif-
feomorphisms; for instance, (I.5) and (I.13) are related by a diffeomorphism, schematically
represented by their separation, which does not vanish (become identity) asymptotically.

Analogy with the Dirac monopole

It is important to note that our new solutions can only be specified in terms of a different
metric in different coordinate charts which are equivalent to each other. This is analogous
to case of the Dirac monopole: the gauge field Aµ for a static U(1) magnetic monopole of
charge qm at the origin needs to be specified separately on two separate coordinate charts:

F = qm sin θ dθ dφ : AN = qm(1− cos θ) dφ, AS = qm(−1− cos θ) dφ (I.24)

Here R3 − {0} is viewed as R× S2 where S2 is described by two coordinate charts NN and
NS (such as obtained by a stereographic projection on to the plane) which include all points
of S2 minus the south and north pole respectively. Aθ

N vanishes (and is hence regular) at the
north pole θ = 0, but develops a string singularity at the south pole θ = π (for each r > 0).
Similarly, AS is regular at the south pole, but has a string singularity at the north pole. The
important point to note is that in spite of appearances, AN and AS describe the same gauge
field in the region of overlap NN ∩NS. This is because in this region, AN = AS + dχ where
χ = 2qmdφ represents a pure gauge transformation for appropriately quantized qm (Dirac
quantization condition).

In the present case the metric (I.13) written in EF1, although non-singular on the future
horizon, is singular on the past horizon for general G±. In order to describe the metric in a
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neighbourhood of the past horizon, we must switch to the metric in EF4. Similarly, in order
to describe the diffeomorphism at the bifurcation surface, we must use the metric (I.104) in
the K5 coordinate chart.

Summary of this subsection:

The metrics (I.13), (I.21), (I.114), (I.115) and (I.104), valid in the coordinate charts EF1,
EF2, EF3, EF4 and K5 respectively, define a spacetime with a regular metric. The metrics
are asymptotically AdS3 at both the right and left boundaries; the subleading terms in
the metric are determined by the solution generating diffeomorphisms G±, H± and can be
chosen to fit boundary data specified by arbitrary holographic stress tensors. A schematic
representation of our solution is presented in Figure I.3.

2.4 Horizon

In Section 2.2 we viewed the SGDs as a coordinate transformation. Alternatively, however,
we can also view the diffeomorphism as an active movement of points: xM → x̃M = xM+ξM .
In this viewpoint, the future horizon λ = λH = λ0 (see (I.6)) on the right moves to

λ̃H = G′
+(ṽ) G

′
−(w̃)λ0, λ̃1,H = H ′

+(ũ) H
′
−(ω̃)λ0 (I.25)

Figure I.4: The figure on the right shows the location of the horizon on the right in the
λ̃, ṽ, w̃ coordinates. The figure on the left shows the location of the horizon on the left in the
λ̃1, ũ, ω̃ coordinates. These are described by (I.25). These surfaces are diffeomorphic to the
undeformed horizon (I.6) depicted in Figure I.2. Although the horizon has an undulating
shape in our coordinate system, the expansion parameter, measured by the divergence of the
area-form, vanishes (see Eq. (I.74)).

Similar statements can be made in the other coordinate charts. The horizons represented
this way are smooth but undulating (see figure I.4).

The geometry of warped horizons in [65, 64] was used to yield a holographic prescription
for computing local entropy current of a fluid. In Section 7 we use a similar technology to
compute a holographic entropy in our case.
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2.5 On the nontriviality of solution generating diffeomorphisms

It is natural to wonder how a metric such as (I.13) provides a new solution since it is
obtained by a diffeomorphism from (I.5); however, the fact that the diffeomorphism (I.12)
is asymptotically nontrivial makes the new solution physically distinct. Thus, in (I.12) λ̃
remains different from λ in the asymptotic region. Indeed, as we will see, the first subleading
term in the metric (I.13) carries nontrivial data about a holographic stress tensor (I.42) on
the right boundary.

Asymptotically AdS3 diffeomorphisms were first discussed by Brown and Henneaux [61]
who showed that such transformation led to an additional surface contribution to conserved
charges of the system. These observations were preceded by a general discussion of such
surface charges in the context of gauge theories and gravity in [58, 59, 60]. These authors
identified asymptotically non-vanishing pure gauge transformations as global charge rota-
tions.

In the current AdS/CFT context, the surface charges are encapsulated by the holographic
stress tensors on the two boundaries. As we will see shortly, they change nontrivially under
the solution generating diffeomorphisms (SGD’s). In fact, the SGD’s reduce to conformal
transformations on the boundary. As a result, the ‘global charge rotations’ mentioned above
correspond to a conformal transformation of the stress tensor. The important point is that
starting from a given constant stress tensor on each boundary, the two independent SGD’s
can generate two independent and completely general stress tensors by this method.

We should note that the diffeomorphisms define a new theory in which the appropriate
choice of the IR cutoff surface is (I.16). In this description, the horizon becomes an undulating
surface as in Fig I.4. An equivalent (‘active’) viewpoint is to describe the new geometry in
terms of the old coordinates (I.5), but to change the IR-cutoff surface from (I.7) to (I.16).
In either case, the holographic stress tensor changes.

We conclude this section with the following definition of a nontrivial diffeomorphism,
which has been implicit in much of the above discussion.

Definition

A local diffeomorphism which does not extend to either boundary (left or right), or a dif-
feomorphism which extends to a boundary but asymptotically approaches the identity dif-
feomorphism there, is called a ‘trivial’ diffeomorphism. Contrarily, a diffeomorphism which
extends to a boundary where it does not approach the identity diffeomorphism, is called
‘nontrivial’. Quantitatively, a nontrivial diffeomorphism (f) is one under which the holo-
graphic stress tensor computed from the existing metric g at the boundary is different from
that computed from the pulled back metric f ∗g.

3 The Dual Conformal Field Theory

As we saw above, the SGD’s reduce to conformal transformations at the boundary. We will
construct the CFT-dual to the new solutions using the above idea.

Note that the eternal BTZ black hole geometry, described by (I.5) and (I.93), corresponds
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to the following thermofield double state [5, 7, 13, 14]

|ψ0〉 = Z(β+, β−)
−1/2

∑

n

exp[−β+E+,n/2− β−E−,n/2]|n〉|n〉 (I.26)

The states |n〉 ∈ H denote all simultaneous eigenstates of H± = (H ± J)/2 with eigenvalues
E±,n. |ψ0〉 here is a pure state in H⊗H obtained by the ‘purification’ of the thermal state
(I.27). 13

Z(β+, β−) = Trρβ+,β− with ρβ+,β− = exp[−β+H+ − β−H−] = exp[−β(H + ΩJ)]
(I.27)

represents the grand canonical ensemble in H with inverse temperature β and angular ve-
locity Ω (which can be viewed as the thermodynamic conjugate to the angular momentum
J). Also β± = β(1± Ω). 14

Note that |ψ0〉 is a pure state in H ⊗ H , and is a ‘purification’ of the thermal state
(I.27). The non-spinning BTZ: The CFT dual for the more familiar case of non-spinning
eternal BTZ black hole (Ω = 0 = J) is the standard thermofield double:

|ψ0,0〉 = Z(β)−1/2
∑

n

exp[−βEn/2]|n〉|n〉 (I.28)

where |n〉 now denotes all eigenstates of H . 15

CFT duals of our solutions Following the arguments above (I.26), we claim that the
CFT-duals to the new solutions described in Section 2.3 are described by the following pure
states in H⊗H:

|ψ〉 = ULUR|ψ0〉 = Z(β+, β−)
−1/2

∑

n

exp[−β+E+,n/2− β−E−,n/2]UL|n〉UR|n〉 (I.29)

where UR is the unitary transformation which implements the conformal transformations on
the CFT on the right boundary (characterized by G±), and UL is the unitary transformation
which implements the conformal transformations on the CFT on the left boundary (charac-
terized by H±). See Appendix I.E for an explicit construction of a unitary transformations
UR.

In the following sections, we will provide many checks for this proposal. However, first we
shall discuss how to compute various correlators in the above state (I.29).

13For definiteness, we will sometimes call the two Hilbert spaces HL and HR, where L,R represent ‘left’
and ‘right’, corresponding to the two exterior boundaries of the eternal BTZ. Indeed, L,R also have an
alternative meaning. The left/right boundary of the eternal BTZ geometry maps to the left/right Rindler
wedge of the boundary of Poincare coordinates, respectively.

14The thermal state ρβ+,β
−

(see (I.27)) implies a field theory geometry where the light cone directions
have periods β±.

15An entanglement entropy for this state was calculated in [7] and matched with a bulk geodesic calculation.
This was generalized to the spinning eternal BTZ black hole in [14].
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3.1 Correlators

Let us first consider correlators in the standard thermofield double state (I.26). It is known
that correlators of one-sided CFT observables, say OR, satisfy an AdS/CFT relation of the
form 16

〈ψ0|OR(P1)OR(P2)...OR(Pn)|ψ0〉 ≡ Tr
(
ρβ+,β−OR(P1)OR(P2)...OR(Pn)

)
= Gbulk(P1,P2, ...Pn)

(I.30)
where the bulk correlator Gbulk is computed from the (right exterior region of) a dual black
hole geometry with temperature T = 1/β and angular velocity Ω. Two-sided correlators,
similarly, satisfy a relation like

〈ψ0|OR(P1)OR(P2)...OR(Pm)OL(P
′
1)...OL(P

′
n)|ψ0〉 = Gbulk(P1,P2, ...Pm;P

′
1, ...,P

′
n) (I.31)

where the bulk correlator on the RHS is computed from the two-sided geometry of the
eternal BTZ black hole [5, 7, 13, 14], given in (I.5) and (I.93). The bold-faced label P above
represents an image of the field theory point P on a cut-off surface in the bulk under the
usual AdS/CFT map. E.g. in the coordinates of (I.5), the map is given by

P 7→ P ≡ (λ = λir = 1/ǫ2, P ) (I.32)

where ǫ is the UV cut-off in the CFT, cf. (I.7)). There is a similar map for the left boundary.
In particular, the holographic correspondence for the two point functions of scalar operators
can be written simply as [16]:

〈ψ0|OR(P )OR(Q)|ψ0〉 = Tr(ρβ+,β−OR(P )OR(Q)) = exp[−2hL(P,Q)]

〈ψ0|OR(P )OL(Q
′)|ψ0〉 = exp[−2hL(P,Q′)] (I.33)

where L(P,Q) is the length of the extremal geodesic connecting P and Q (similarly with
L(P,Q′)).
It is easy to see that correlators in the new, transformed, state |ψ〉 (I.29) can be understood
as correlators of transformed operators in the old state |ψ0〉, i.e.

〈ψ|OR(P1)...OR(Pm)OL(P
′
1)...OL(P

′
n)|ψ〉 = 〈ψ0|ÕR(P1)...ÕR(Pm)ÕL(P

′
1)...ÕL(P

′
n)|ψ0〉

(I.34)

where

ÕR(P ) ≡ U †
ROR(P )UR, ÕL(P

′) ≡ U †
LOL(P

′)UL (I.35)

For a primary field OR with conformal dimensions (h, h̄), the conformally transformed oper-
ator satisfies the relation

ÕR(ṽ, w̃) = OR(v, w)

(
dv

dṽ

)h(
dw

dw̃

)h̄

(I.36)

16We will mostly use unprimed labels, P1, P2, ... for points on the spacetime of the ‘right’ CFT, and primed
labels, P ′

1, P
′
2, ... for the space of the ‘left’ CFT.
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3.2 Strategy for checking AdS/CFT

To check the claim that the states (I.29) are CFT-duals to the new bulk geometries found
in Section 2.3, we need to show a relation of the form (cf. (I.31))

〈ψ0|ÕR(P1)...ÕR(Pm)ÕL(P
′
1)...ÕL(P

′
n)|ψ0〉 = G̃bulk(P̃1, P̃2, ...P̃m; P̃

′
1, ..., P̃

′
n) (I.37)

where the RHS is computed in the new geometries. Here P̃ represents the image of the CFT
point P , under AdS/CFT, on the cut-off surface (I.16) in the new geometry. In the language
of (I.13), the map is

P 7→ P̃ = (λ̃ = λ̃ir = 1/ǫ2, P ) (I.38)

Two-point correlators: In the particular case of two-point functions

〈ψ0|ÕR(P )ÕR(Q)|ψ0〉 = Tr(ρβ+,β−ÕR(P )ÕR(Q)) = exp[−2hL̃(P̃, Q̃)]

〈ψ0|ÕR(P )ÕL(Q
′)|ψ0〉 = exp[−2hL̃(P̃, Q̃′)] (I.39)

where L̃(P̃, Q̃) is the length of the extremal geodesic connecting P andQ in the new geometry
(similarly with L̃(P̃, Q̃′)). One may wonder how a geodesic length in the new geometry can
be different from that in the original, eternal BTZ black hole geometry, since the former is
obtained by a diffeomorphism from the latter; the point is that the bulk points P̃, given by
(I.38) are not the same as the bulk points P given by (I.32). For example, a geodesic with
endpoints at a fixed IR cut-off λ̃ = 1/ǫ2 (both on the right exterior) corresponds, in the
eternal BTZ black hole, to a geodesic with two end-points at (I.18) λ = 1/(ǫ2G′

+(ṽ)G
′
−(w̃)).

As we will see below, it is this shift which ensures the equality in (I.39). This is one more
instance of how our geometries are nontrivially different from the original BTZ solution
although they are obtained by diffeomorphisms (see Section 2.5 for more detail).

4 Holographic Stress Tensor

In this section we will discuss our first observable O: the stress tensor. We will first consider
the stress tensor of the boundary theory on the right. The generalization to the stress tensor
on the left is trivial. The equation (I.37) now implies that we should demand the following
equality

〈ψ|Tvv(P )|ψ〉 ≡ Tr
(
ρβ+,β−U

†
RTvv(P )UR

)
= T̃bulk,ṽṽ(P̃) (I.40)

and a similar equation for the right-moving stress tensor Tww(w).

Bulk The RHS of this equation is simply the holographic stress tensor, computed in the
new geometry (I.13). We use the definition of holographic stress tensor in [12, 15]:17

8πG3Tµν = lim
ǫ→0

(Kµν −Khµν − hµν) (I.41)

17We drop the subscript bulk from the bulk stress tensor, as it should be obvious from the context whether
we are talking about the CFT stress tensor or the holographic stress tensor.
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where hµν is the induced metric on the cut-off surface Σ : λ̃ = λ̃ir = 1/ǫ2, chosen in
accordance with (I.38) which is the natural one in the new geometry (note that it is different
from the cut-off surface implied by (I.32)). Kµν andK are respectively the extrinsic curvature
and its trace on Σ. It is straightforward to do the explicit calculation; we find that

8πG3Tṽṽ =
L

4
G′

+(ṽ)
2 +

3G′′
+(ṽ)

2 − 2G′
+(ṽ)G

′′′
+(ṽ)

4G′
+(ṽ)

2
,

8πG3Tw̃w̃ =
L̄

4
G′

−(w̃)
2 +

3G′′
−(w̃)

2 − 2G′
−(w̃)G

′′′
−(w̃)

4G′
−(w̃)

2
(I.42)

This clearly looks like a conformal transformation of the original stress tensor (I.9). We will
explicitly verify below that it agrees with the CFT calculation. The generalization to Tww

and to the stress tensors of the second CFT is straightforward. This clearly has the form of a
conformal transformation of the original stress tensor (I.9). We will explicitly verify below in
the CFT that it indeed is precisely a conformal transformation, as demanded by (I.40). The
generalization of (I.42) to the stress tensors Tũũ, Tω̃ω̃ of the second CFT is straightforward.

We will sometimes use the notation TR, T̄R for Tṽṽ, Tw̃,w̃, and TL, T̄L
18 for Tũũ, Tω̃ω̃ re-

spectively. It is clear that by appropriately choosing the functions G± and H±, any set of
boundary stress tensors TR,L, T̄R,L can be generated. This is how our solutions described in
Section 2.3 solve the boundary value problem mentioned in the Introduction.

CFT The unitary transformation in the LHS of (I.40), implements, by definition, the
following conformal transformation (see Appendix I.E for more details) on the quantum
operator

U †
RTvv(P )UR =

(
∂ṽ

∂v

)−2

[Tṽṽ(ṽ)−
c

12
S(v, ṽ)] (I.43)

From (I.12), the relevant conformal transformation here is v = G+(ṽ). Using this, the
definition (I.122) of the Schwarzian derivative S(v, ṽ), and the identification [61]

G3 = 3/(2c), (I.44)

we find that (I.43) exactly agrees with (I.42).

This proves the AdS-CFT equality (I.40) for the stress tensor.

5 General two-point correlators

In this section we will discuss general two-point correlators, both from the bulk and CFT
viewpoints following the steps outlined in Section 3.1.

5.1 Boundary-to-Boundary Geodesics

As mentioned in (I.33), the holographic calculation of a two-point correlator reduces to com-
puting the geodesic length between the corresponding boundary points. We will first calcu-

18TR, T̄R represent the left-moving and right-moving stress tensors on the Right CFT; similarly for TL, T̄L.
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late correlators in the thermofield double state (I.26), which involves computing geodesics in
the eternal BTZ geometry (I.5).

In the eternal BTZ geometry

RL geodesic: Let us consider a geodesic running from a point P(1/ǫ2R, v, w) on the right
boundary to a point Q′ = (1/ǫ2L, u, ω) on the left boundary.19 As shown in Section I.A.3 (see
[7]) both the right exterior (⊂ EF1) and the left exterior (⊂ EF2) can be mapped to a single
coordinate chart in Poincare coordinates. Let the Poincare coordinates for P and Q′, be
(X+R, X−R, ζR) and (X+L, X−L, ζL) respectively. By using the coordinate transformations
given in (I.112) and (I.113), we find, upto the first subleading order in ǫR and ǫL,

X+R = e
√
Lv, X−R = −e−

√
Lw + Lǫ2Re

−
√
Lw, ζ2R = Lǫ2R e

√
L(v−w) (I.45)

X+L = −e
√
Lu + Lǫ2Le

√
Lu, X−L = e−

√
Lω, ζ2L = Lǫ2L e

√
L(u−ω)

with L = L̄.20 The geodesic in Poincare coordinates is given by

X+ = A tanh τ + C, X− = B tanh τ +D, ζ =

√
−AB

cosh τ

where τ is the affine parameter, which takes the values τR and τL at P and Q′ respectively.
The constants A,B,C,D, τL and τR are fixed by the endpoint coordinates given above. In
the limit ǫR, ǫL → 0, we obtain

τR = log
[e−(

√
Lv+

√
Lω)/2

√
2

√
(e

√
Lv + e

√
Lu)(e

√
Lw + e

√
Lω)

λ0ǫ2R

]

τL = − log
[e−

√
L(u+w)/2

√
2

√
(e

√
Lv + e

√
Lu)(e

√
Lw + e

√
Lω)

λ0ǫ2L

]

where λ0 = L/2 (see (I.6)). The geodesic length is now simply given by the affine parameter
length

L(P,Q′) = τR − τL = log

[
4 cosh[

√
L(v − u)/2] cosh[

√
L(w − ω)/2]

LǫRǫL

]
(I.46)

For comparison with CFT correlators in the thermofield double, we will put, in the above
expression, ǫL = ǫR = ǫ, where ǫ is the (real space) UV cut-off in the CFT.
RR geodesic: If we take the two boundary points on the same exterior region, say on the
right, P1(1/ǫ

2
1, v1, w1) and P2(1/ǫ

2
2, v2, w2), then the corresponding Poincare coordinates are

(using (I.112))

X+1 = e
√
Lv1 , X−1 = −e−

√
Lw1 + Lǫ21e

−
√
Lw1 , ζ21 = Lǫ21 e

√
L(v1−w1) (I.47)

X+2 = e
√
Lv2 , X−2 = −e−

√
Lw2 + Lǫ22e

−
√
Lw2 , ζ22 = Lǫ22 e

√
L(v2−w2)

19For the calculation at hand we need to put ǫL = ǫR = ǫ; however, we keep the two cutoffs independent
for later convenience.

20For simplicity, we present the calculation here for L = L̄; the generalization to the spinning BTZ is
straightforward.
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Following steps similar to above, we have, in the ǫ1, ǫ2 → 0 limit,

τ1 = log
[e−(v1+w2)/2

√
2

√
(ev1 − ev2)(−ew1 + ew2)

λ0ǫ21

]

τ2 = − log
[e−(v1+w1)/2

√
2

√
(−ev1 + ev2)(ew1 − ew2)

λ0ǫ22

]

The geodesic length is then

L(P1,P2) = τ+1 − τ+2 = log

[
4 sinh[(v1 − v2)/2] sinh[(w1 − w2)/2]

Lǫ1ǫ2

]
(I.48)

For comparison with CFT, we will put ǫ1 = ǫ2 = ǫ.

In the new geometries

As explained in Section 2, the IR boundary in the new solutions, obtained by the SGDs,
is given by the equation (I.16) or equivalently by (I.18), and analogous equations on the
left. This is encapsulated by the CFT-to-bulk map (I.38). In case of the RL geodesic, the
CFT endpoints (P,Q′) now translate to new boundary points (P̃, Q̃′) with the following new
values of the old (λ, λ1) coordinates:

λ ≡ 1

ǫ2R
=

1

ǫ2G′
+(ṽ)G

′
−(w̃)

, λ1 ≡
1

ǫ2L
=

1

ǫ2H ′
+(ũ)H

′
−(ω̃)

(I.49)

which just has the effect of conformally transforming the boundary coordinates// ǫR = ǫ→
ǫR = ǫ

√
G′

+(ṽ)G
′
−(w̃), ǫL = ǫ → ǫL = ǫ

√
H ′

+(ũ)H
′
−(ω̃). Using these new values of ǫL,R, we

get

L(P̃, Q̃′) = log

[
4 cosh[

√
L(G+(ṽ)−H+(ũ))/2]√
Lǫ
√
G′

+(ṽ)H
′
+(ũ)

cosh[
√
L(G−(w̃)−H−(ω̃))/2]√
Lǫ
√
G′

−(w̃)H
′
−(ω̃)

]
(I.50)

Similarly,

L(P̃1, P̃2) = log

[
4 sinh[

√
L(G+(ṽ1)−G+(ṽ2))/2]√
Lǫ
√
G′

+(ṽ1)G
′
+(ṽ2)

sinh[
√
L(G−(w̃1)−G−(w̃2))/2]√
Lǫ
√
G′

−(w̃1)G
′
−(w̃2)

]

(I.51)

5.2 General two-point correlators from CFT

In the thermofield double state

RL correlator: For the eternal BTZ string, the coordinate transformations from the EF to
Poincare (see Appendix I.A.3) reduce, at the boundary, to a conformal transformation from
the Rindler to Minkowski coordinates, so that the boundary of the right (left) exterior maps
to the right (left) Rindler wedge [7]. It is expedient to compute the CFT correlations first
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in the Minkowski plane, and then conformally transform the result to Rindler coordinates.
Using this method of [7], we get the following result

〈ψ0|O(X+R, X−R)O(X+L, X−L)|ψ0〉 =
(
√
Le

√
Lv)h(

√
Le−

√
Lw)h̄(−

√
Le

√
Lu)h(−

√
Le−

√
Lω)h̄

( e
√
Lv+e

√
Lu

ǫ
)2h(−e−

√
Lw−e−

√
Lω

ǫ
)2h̄

=
(4 cosh [

√
L(v − u)/2] cosh [

√
L(w − ω)/2]

Lǫ2

)−2h

where the operator O is assumed to have dimensions (h, h̄) and we have used a real space
field theory cut-off ǫ. We have related the temperature of the CFT to L(= L̄) by the equation√
L = 2π/β. // It is easy to see that this correlator satisfies the relation (I.33)

〈ψ0|O(X+R, X−R)O(X+L, X−L)|ψ0〉 = e−2hL(P,Q) (I.52)

where in the expression on the right hand side for the geodesic length (I.46), we use ǫR =
ǫL = ǫ as explained before.

RR correlator: By following steps similar to the above, the two-point correlator between
the points (I.47) is given by

〈ψ0|O(X+1, X−1)O(X+2, X−2)|ψ0〉 =
(
√
Le

√
Lv1)h(

√
Le−

√
Lw1)h̄(

√
Le

√
Lv2)h(

√
Le−

√
Lw2)h̄

( (e
√

Lv1−e
√

Lv2

ǫ
)2h(−e−

√
Lw1+e−

√
Lw2

ǫ
)2h̄

=
(4 sinh [

√
L(v1 − v2)/2] sinh [

√
L(w1 − w2)/2]

Lǫ2

)−2h

It follows, therefore, that

〈ψ0|O(X+1, X−1)O(X+2, X−2)|ψ0〉 = e−2hL(P1,P2) (I.53)

where, again, the geodesic length on the right hand side is read off from (I.50) with ǫ1 =
ǫ2 = ǫ.

In the new states

As explained in (I.34), correlators in the state |ψ〉 (I.29) can be computed by using a
conformal transformation (I.36) of the operators. The new correlator is, therefore, found
from the old one (I.52) by a conformal transformation of the boundary coordinates and
an inclusion of the Jacobian factors. The latter has, in fact, the effect of the replacement
ǫ2 → ǫ2

√
G′

+(ṽ)G
′
−(w̃)H

′
+(ũ)H

′
−(ω̃). With these ingredients, it is straightforward to verify

that (I.39) is satisfied. Similar arguments apply to RR and LL correlators.

6 Entanglement entropy

We define an entangling region A = AR ∪ AL, where AR is a half line (v − w)/2 > xR on
the right boundary at ‘time’ (v + w)/2 = tR and AL is a half line (u − ω)/2 > xL of the
left boundary at ‘time’ (u + ω)/2 = tL. The boundary of the region A consists of a point
P (v∂A, w∂A) on the right and a point Q′(u∂A, ω∂A) on the left, with coordinates

P : v∂A = tR + xR, w∂A = tR − xR (I.54)

Q′ : u∂A = tL + xL, ω∂A = tL − xL
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Bulk calculations

In the BTZ geometry

We calculate the entanglement entropy SA of the region A using the holographic entangle-
ment formula of [63, 13]. The HEE is given in terms of the geodesic length L(P,Q′). The
geodesic length, as calculated in (I.46), is

L(P,Q′) = log

[
4 cosh[

√
L(v∂A − u∂A)/2] cosh[

√
L(w∂A − ω∂A)/2]

Mǫ2

]

(I.55)

The HEE is then given by SA = L(P,Q′)/4G3. Using (I.44), we get

SA =
c

6
log

[
4 cosh[

√
L((tR + xR)− (tL + xL))/2] cosh[

√
L((tR − xR)− (tL − xL))/2]

Mǫ2

]
(I.56)

Note that for xR = xL = 0 and t = tR = −tL (which correspond to a non-trivial time
evolution in the geometry) the HEE (I.56) reduces to

SA =
c

3
log

[
cosh

2πt

β

]
+
c

3
log
[β/π
ǫ

]
(I.57)

which reproduces the result for the HEE in [7].21

In the new geometries

The HEE corresponding to the conformally transformed state (I.29) is given by the length
L(P̃, Q̃′) connecting the end-points P and Q′ in the new geometries described in Section 2.3.
Working on lines similar to the derivation of (I.48), the HEE is given by

SA =
c

6
log
[4 cosh[

√
L(G+(t̃R + x̃R)−H+(t̃L + x̃L))/2]

√
Lǫ
√
G′

+(t̃R + x̃R)H
′
+(t̃L + x̃L)

cosh[
√
L(G−(t̃R − x̃R)−H−(t̃L − x̃L))/2]

√
Lǫ
√
G′

−(t̃R − x̃R)H ′
−(t̃L − x̃L)

]
(I.58)

CFT calculations

In the thermofield double state

The technique of calculating the entanglement entropy in the thermofield double state is
well-known [66]. The Renyi entanglement entropy S

(n)
A of the region A (I.54) is given by

the trace of the nth power of the reduced density matrix ρnA. The latter can be shown to be
a Euclidean path integral on an n-sheeted Riemann cylinder. This can then be calculated

21The UV cutoff in [7] is half of the cutoff, ǫ used here.
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in terms of the two point correlator, on a complex plane, of certain twist fields O, with
conformal dimensions

h =
c

24
(n− 1/n), h̄ =

c

24
(n− 1/n)

(I.59)

inserted at the end-points (P,Q′) of A. The two-point correlator is given by a calculation
similar to that in the previous section. Thus,

S
(n)
A = 〈OR(v∂A, w∂A)OL(u∂A, ω∂A)〉

=
(
√
L)2h+2h̄

(4 cosh[
√
L((tR + xR)− (tL + xL))/2]/ǫ)2h(cosh[

√
L((tR − xR)− (tL − xL))/2]/ǫ)2h̄

The entanglement entropy SA = −∂nS(n)
A |n=1 is

SA =
c

6
log

[
4 cosh[

√
L((tR + xR)− (tL + xL))/2] cosh[

√
L((tR − xR)− (tL − xL))/2]

Lǫ2

]
(I.60)

This proves that the CFT entanglement entropy and holographic entanglement entropy(I.56)
are equal.

In the new states

The EE of the region A, computed in the new state (I.29), is given in terms of the conformally
transformed two-point function described in (I.34). The conformally transformed points are
given by

v∂A = G+(ṽ∂A) = G+(t̃R + x̃R), w = G−(w̃∂A) = G−(t̃R − x̃R)

u∂A = H+(ũ∂A) = H+(t̃L + x̃L), ω = H−(ω̃∂A) = H−(t̃L − x̃L)

It follows that the entanglement entropy is

SA,CFT =
c

6
log
[4 cosh[

√
L(G+(t̃R + x̃R)−H+(t̃L + x̃L))/2]

ǫ
√
L
√
G′

+(t̃R + x̃R)H
′
+(t̃L + x̃L)

cosh[
√
L(G−(t̃R − x̃R)−H−(t̃L − x̃L))/2]

ǫ
√
L
√
G′

−(t̃R − x̃R)H ′
−(t̃L − x̃L)

]
(I.61)

which matches with the HEE (I.58).

6.1 Dynamical entanglement entropy in a specific new geometry

We now compute the entanglement entropy in an illustrative geometry specified by a partic-
ular choice of the functions G± and H±. In this example, we take

xR = 0, tR = t, xL = 0, tL = −t
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For simplicity, we consider G± and H± which satisfy

G+(x) ≡ G−(x) ≡ G(x), H+(x) ≡ H−(x) ≡ H(x)

With the transformations given above, we have

x̃R = 0, ṽ∂A = w̃∂A = t̃R = t̃, x̃L = 0, ũ∂A = ω̃∂A = t̃L = −t̃ (I.62)

The expression for the HEE (I.58) then reduces to

SA =
c

3
log

[
2 cosh[

√
L(G(t̃) +H1(t̃))/2]

ǫ
√
L
√
G′(t̃)H ′

1(t̃)

]
(I.63)

where we have defined the notation −H(−t̃) = H1(t̃).

Figure I.5: Time evolution of HEE. The red-line represents the linear growth of HEE for a
region consisting of spatial half-lines of both sides of a constant 2-sided BTZ geometry. The
blue-line represents the HEE growth of the region consisting of half-lines of both sides of the
SGD transformed geometry, for G(t̃) = t̃+ 1

6
cos(3t̃) and H1(t̃) = t̃+ 3

5
sin(t̃). The undulating

curve can be explained in terms of the quasiparticle picture of [20]; the entanglement entropy
departs from its usual linear behaviour as the quasiparticle pairs locally go out and back in
to the entangling region as the region is subjected to a conformal transformation.

7 Entropy

As discussed in previous sections, our solutions of Section 2.3 are characterized by a smooth,
albeit undulating, horizon (see Figure I.4). This allows us, following [64], to define a holo-
graphic entropy current. We will first review the equilibrium situation (static black string),
and then describe the calculation for the general, time-dependent solution. We will include
a comparison with CFT calculations in both cases.
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7.1 Equilibrium

Bulk calculation: In case L = L̄ = constant, our solutions represent BTZ black strings
(I.5) with a horizon at λ = λ0. The horizon H is a two-dimensional null surface, described
by the metric

ds2|H ≡ Hµνdx
µdxν =

(√
Ldv/2−

√
L̄dw/2

)2
(I.64)

Since the normal to H at any point, given by nM = ∂Mλ(M = {λ, v, w}), also lies on H,
H possesses a natural coordinate system (τ, α) where α labels the one-parameter family of
null geodesics, and τ measures the affine distance along the geodesics. In such a coordinate
system, we get, by construction

ds2|H = gdα2 (I.65)

The area 1-form and the entropy current on the horizon are defined by the equations [64] 22,

a ≡ 4G3ǫµνJ
µ
Sdx

ν =
√
gdα, (I.66)

By inspection, from (I.64) and (I.65), we find the following expressions for the area-form and
the entropy current

a =
√
Ldv/2−

√
L̄dw/2

Jv
s =

1

8G3

√
L̄, Jw

S =
1

8G3

√
L (I.67)

The holographic entropy current on the boundary B is obtained by using a map f : B → H
and pulling back the area-form (or alternatively the entropy current JS,µ) from the horizon
to the boundary. It turns out 23 that the natural pull back retains the form of the area-form
or entropy current, namely the expressions (I.67) still hold at the boundary.

To find the entropy density, we define the boundary coordinates t = (v + w)/2, x =
(v − w)/2 (see Section 6), (so that (I.8) has the canonical form −dt2 + dx2). With this the
entropy density becomes

s ≡ JT
S =

1

8G3

(√
L+

√
L̄
)

(I.68)

CFT calculation: The entropy density from the Cardy formula is 24

s =
√
cπTvv/3 +

√
cπTww/3 (I.69)

Using the identification (I.44) and (I.9), we can easily see that the two expressions (I.68)
and (I.69) exactly match.

22Our convention for ǫµν is ǫvw = −1.
23The map f is defined by shooting ‘radial’ null geodesics inwards from the boundary, and is found to be

of the form f : (λir , v, w) 7→ (λir , v + C1, w + C2).
24Recall that both Tvv, Tww are constant in this case. The more familiar form of (I.69), for a circular

spatial direction of length 2π, is obtained by putting S = 2πs, L0 = 2πTvv, and L̄0 = 2πTww, which gives
S = 2π(

√
cL0/6 +

√
cL̄0/6).
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7.2 New metrics: non-equilibrium entropy

Bulk calculation: We will now follow a similar procedure as above, for the general solution
in Section 2.3. We find that (in coordinate chart EF1)

ds2|H =
1

4
dα2 =

1

4
(
√
LG′

+(ṽ)dṽ −
√
L̄G′

−(w̃)dw̃)
2 (I.70)

leading to the following area one form on the horizon

a =
1

2

√
LG′

+(ṽ)dṽ −
1

2

√
L̄G′

−(w̃)dw̃ (I.71)

Note that this could alternatively be obtained from the area form in (I.67) by a diffeomor-
phism. The resulting expression for the entropy current, following the steps above, is

J̃ ṽ
s =

1

8G3

√
L̄G′

−(w̃), J̃
w̃
S =

1

8G3

√
LG′

+(ṽ) (I.72)

Let us define, as before, the spacetime coordinates as x̃, t̃ with (ṽ, w̃) = t̃± x̃. The entropy
density is then given by

s̃ = J̃ t̃
S =

1

4G3

(
1

2

√
LG′

+(ṽ) +
1

2

√
L̄G′

−(w̃)

)
(I.73)

Note that the entropy current is divergenceless

∂µJ̃
µ
S = ∂ṽJ̃

ṽ
S + ∂w̃J̃

w̃
S = 0 (I.74)

This has two implications:

1. No dissipation: We have entropy transfers between different regions with no net entropy
loss or production (see Figure I.6).

Figure I.6: The undulating horizon of Figure I.2 leads to the non-trivial entropy current
(I.73). In this figure, we plot the entropy density s̃ as a function of ṽ, w̃ for the right CFT.
Note that although the entropy density fluctuates, the entropy flow here is such that there
is no net entropy production (or destruction) (see Eq. (I.74)).
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2. Total entropy is not changed by the conformal transformation: The other implication
is that the integrated entropy over a space-like (or null) slice Σ

S̃ =

∫

Σ

ǫµνJ
µ
Sdσ

ν (I.75)

is independent of the choice of the slice. In particular, choosing the slice to be Σ0 : t =
v + w = 0, we get

S̃ =
1

8G3

∫

Σ0

(√
LG′

+(ṽ)dṽ −
√
L̄G′

−(w̃)dw̃
)
=

1

8G3

∫

Σ0

(√
Ldv −

√
L̄dw

)
(I.76)

=
1

8G3

∫
dx
(√

L+
√
L̄
)
=

∫
dx s = S (I.77)

Hence although the entropy density is clearly transformed, the total entropy is not
changed by the conformal transformation.

CFT calculation:

In a non-equilibrium situation, there is no natural notion of an entropy. However under the
adiabatic approximation, the instantaneous eigenstates of a time-dependent Hamiltonian are
a fair representation of the actual time-dependent wave functions. The consequent energy
level density can thus be used to define an approximate time-dependent entropy. Generalizing
this principle to slow time and space variations, and applying this to the stress tensor, one
expects a space-time dependent version of (I.69), namely

s̃ =

√
πc

3
T̃ṽṽ +

√
πc

3
T̃w̃w̃ (I.78)

where the stress tensors are given by (I.42). Since we have made the adiabatic approximation,
we expect the above formula to be valid only up to the leading order of space and time
derivatives. Under this approximation, we have

8πG3Tṽṽ =
L

4
G′

+(ṽ)
2, 8πG3Tw̃w̃ =

L̄

4
G′

−(w̃)
2 (I.79)

which exactly agrees with the holographic entropy density in (I.73). 25

Total entropy for HR is unchanged by the conformal transformation:

Under the conformal transformation (I.35), the reduced density matrix ρR is changed by
a unitary transformation:

ρR = TrHL
|ψ〉〈ψ| = UR ρ0,R U

†
R, ρ0,R = TrHL

|ψ0〉〈ψ0| (I.80)

The total entropy of the system after the transformation is given by the von Neumann
entropy S̃ = −TrρR ln ρR which, therefore, is equal to the entropy before; it is unchanged by
the unitary transformation.

25Note that we have not used the adiabatic approximation anywhere in this chapter. Thus, it is unsatis-
factory to use this approximation here. It is, in fact, tempting to believe that the entropy density in (I.73),
and not that in (I.78), actually gives the CFT entropy in general; however, this requires more investigation.
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8 Conclusion and open questions

We have solved the boundary value problem for 3D gravity (with Λ < 0) with independent
boundary data on two asymptotically AdS3 exterior geometries. The boundary data, spec-
ified in the form of arbitrary holographic stress tensors, yields spacetimes with wormholes,
i.e. with exterior regions connected across smooth horizons. The explicit metrics are con-
structed by the technique of solution generating diffeomorphisms (SGD) from the eternal
BTZ black string. By using the fact that the SGD’s reduce to conformal transformations at
both boundaries, we claim that the dual CFT states are specific time-dependent entangled
states which are conformal transformations of the standard thermofield double. We com-
pute various correlators and a dynamical entanglement entropy, in the bulk and in the CFT,
to provide evidence for the duality. We also arrive at an expression for a non-equilibrium
entropy function from the area-form on the horizon of these geometries.

Our work has implications for a number of other issues. We briefly discuss two of them
below; a detailed study of these is left to future work.

8.1 ER=EPR

As mentioned above, our work constructs an infinite family of AdS-CFT dual pairs in which
quantum states entangling two CFTs are holographically dual to spacetimes containing a
wormhole region which connects the two exteriors. Both the quantum states and the worm-
hole geometries are explicitly constructed (see eqns. (I.29) and (I.13,I.21)). Our examples
generalize the construction in [5, 7, 14]26 (for other remarks on unitary transformations of
the thermofield double and related geometries see [49, 51, 54, 55, 56]) and provide an infinite
family of examples of the relation ER=EPR, proposed in [4]. Since this relation has been
extensively discussed and debated in the literature ([49, 54, 55, 56]), we would like to make
some specific points pertaining to some of these discussions.

RR correlators vs RL correlators

It has been argued in [56],[49] and [54] that for typical entangled states connecting two CFTs,
HR and HL, correlators involving operators on the left and the right are suppressed relative
to those involving operators all on the right. In particular, according to [56], correlators of
the form 〈OROL〉 are of the order e−S〈OROR〉, where S is the entropy of the right sided
Hilbert space.

In Section 5 we have computed general two-point functions, both of the kind 〈OR(P )OR(Q)〉
and 〈OR(P )OL(Q

′)〉.27 In case of the eternal BTZ (dual to the standard thermofield double),
an inspection of (I.46) and (I.48) suggests that as the boundary point P goes off to infinity,
the cosh and sinh factors tend to be equal, thus L(P,Q) ≈ L(P,Q′), thus there is no extra
suppression in the two-sided correlator 〈OROL〉. Of course, such a statement, regarding the
standard thermofield double, has been regarded as somewhat of a special nature.

We are therefore naturally led to ask: what happens in case of the new solutions found
here? The geodesic lengths L(P,Q) and L(P,Q′) are now given by (I.50) and (I.51). Once

26See [4, 49, 54]
27We use unprimed labels for operators on the right and primed labels for those on the left.
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again, if the point P goes off towards the boundary of the Poincare plane, ṽ → ∞. Hence
G+(ṽ) → ∞ (since G+ is a monotonically increasing function). Hence, both the geodesic
lengths approach each other. Thus, we do not see any peculiar additional suppression, even
for our general entangled state, arising when the second point of the correlation function is
moved from the right to the left CFT.

On the genericity of our family of examples

We start with the following Lemma.
Lemma: Any state ∈ H ⊗H,

|Ψ〉 =
∑

i,j

Cij|i〉|j〉, Cij ∈ C, (I.81)

can be expressed in the form

|Ψ〉 =
∑

i,j,n

e−λnUL,inUR,jn|n〉|n〉 (I.82)

where UR, UL are two unitary operators and λn ≥ 0.

Proof: Using the canonical map H⊗H → H⊗H∗, we can regard the above state |Ψ〉 as an
operator Ψ in H, with matrix elements Cij. Using the singular value decomposition theorem

on a general complex matrix, we can write C = ULDU
†
R where D is a diagonal matrix with

real, non-negative entries. By denoting D as diag[e−λn ], we get (I.82).

The state (I.82) can be regarded as a thermofield double with HamiltonianH =
∑

n λn/β|n〉〈n|
transformed by unitary operators UL on the left and by UR on the right. Thus, the above
Lemma suggests that the most general entangled state (I.81) can be written as a unitary
transformation of some thermofield double state.

Now, note that the state (I.82) is of the same general form as that of (I.29) discussed
above. However, while the unitary operators appearing in (I.82) are arbitrary, the UL,R’s we
use in (I.29) are made of Virasoro generators, 28 hence although the states (I.29) constitute
a large class of states, they represent a subset of the most general entangled states (I.81).

Weakly entangled states

To assess the genericity of our states, we ask a different question now: do our set of states
(I.29), which are all explicitly dual to wormholes, include those with a very small entan-
glement entropy S for a given energy E?29 The answer to this question turns out to be
yes. As we have noted in the remarks around (I.77) and (I.80), the entropy S, which is
actually the entanglement entropy of the right Hilbert space, is the same for all our states.
However, the same manipulations as in (I.77) shows that the energy of these states are not

28If a CFT dual to pure gravity were to exist, then our states (I.29) in such a theory would indeed be the
most general state of the form (I.81). However, such a unitary theory is unlikely to exist [67, 68], although
chiral gravity theories which are dual to CFTs with only the Virasoro operator have been suggested (see,
e.g. [69]). We would like to thank Justin David for illuminating discussions on this point.

29This question was suggested to us by Sandip Trivedi.
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the same; indeed by choosing the derivatives G′
± to be large, we can make the energy of the

transformed state to be much larger than that of the standard thermofield double. Stated in
another way, for states of a given energy, our set of states includes states with entanglement
entropy much less than that of the thermofield double. This is consistent with the proposal
of [4] that even a small entanglement is described by a wormhole geometry.

8.2 Generalizations and open questions

It would be interesting to rephrase the results of this chapter in terms of the SL(2, R) ×
SL(2, R) Chern-Simons formulation [70] of three-dimensional gravity. By the arguments in
[70], all diffeomorphisms (together with appropriate local Lorentz rotations) can be under-
stood as gauge transformations of the Chern-Simons theory. The Chern-Simons formulation
has been extended to the gauge group SL(N,R) × SL(N,R) to describe higher spin theories
[9, 71]. It would be interesting to see whether our nontrivial gauge transformations generalize
to these higher gauge groups, and hence to higher spin theories. A possible application of
our methods in this case would be to compute HEE by the prescriptions in [72] and [73] in
the nontrivial higher spin geometries30. We hope to come back to this issue shortly.

The solutions presented in this chapter are generated by SGDs which can be regarded
as forming a group (Ṽir × Ṽir)L ×(Ṽir × Ṽir)R. Here the first Ṽir denotes a group of
SGDs which is parametrized by the function G+, and so on. As we emphasized in (I.80),
the reduced density matrix on the right ρR undergoes a unitary transformation under this
group of transformations, leaving the entropy unaltered. The family of pure states (I.29),
therefore, be considered as an infinite family of purifications of the class of density matrices
ρR; it would be interesting to see if these can be regarded as ‘micro-states’ which can ‘explain’
the entropy of ρR. We hope to return to this issue shortly.

It would also be interesting to use our work to explicitly study various types of holo-
graphic quantum quenches involving quantum states entangling two CFTs.31 It would be of
particular interest to study limiting cases of our solutions which correspond to shock-wave
geometries.

30We thank Rajesh Gopakumar for a discussion on this issue.
31For a single CFT, a similar computation was done in, e.g., [62, 74].
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I.A Coordinate systems for the eternal BTZ geometry

As we explained in the Introduction, the metric (I.1) describes only the region exterior to
the black hole horizon (I.3). As is well-known, for constant (L, L̄), (I.1) describes a standard
BTZ black hole with mass M and angular momentum J given by

L = 8G3(M + J), L̄ = 8G3(M − J) (I.83)

In this section we will describe various coordinate systems for this case. In particular, we
will describe the five coordinate charts of Figure I.1 which cover our spacetime.

I.A.1 Eddington-Finkelstein coordinates

EF1 (Right Exterior + Black Hole Interior) For a black hole with constant mass
and angular momentum, it is straightforward to find a coordinate transformation from the
(z, x+, x−) coordinates to a set of Eddington Finkelstein coordinates which we denote by
EF1 (λ, v, y)

x+ = v − 1

2
√
L
log

(
λ− λ0
λ+ λ0

)
, x− = y +

√
L

L̄
v − 1

2
√
L̄
log

(
λ2 − λ20

4L̄

)
(I.84)

z =

√
2

λ20

(
λ−

√
λ2 − λ20

)
(I.85)

Under these transformations, we obtain the following metric

ds2 = − 2

L̄
λ0(λ− λ0)dv

2 +
1√
L̄
dvdλ+

L̄

4
dy2 − (λ− λ0)dvdy (I.86)

The horizon (I.3) of the metric (I.1) is now located at λ0 =
√
LL̄/2. The metric is obviously

smooth and describes the black hole interior.32 To achieve a symmetry between the boundary
coordinates, we find it convenient to make one further coordinate transformation from y to
w

y = w −
√
L

L̄
v +

1√
L̄
log

(
λ+ λ0

2
√
L̄

)
(I.87)

In these new coordinates (λ, v, w), the metric becomes

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
dv2 +

L̄

4
dw2 − λdvdw +

√
L

2(λ+ λ0)
dvdλ+

√
L̄

2(λ+ λ0)
dwdλ, (I.88)

which is clearly symmetric between the ‘boundary coordinates’ v and w.

32 It develops a coordinate singularity at the inner horizon λ = −λ0; we do not discuss interpolation
beyond the inner horizon here, although it can be easily done. In any case, there are strong reasons to
believe that generically, the inner horizon and the associated exotic feature of infinitely repeating universes
are unstable against even infinitesimal perturbations.
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EF2 (Left Exterior + Black Hole Interior)

We can invent a second set of coordinate transformations starting from the metric in the
(z, x+, x−) coordinates which would describe the left exterior region of the black hole along
with the interior. This transformation is the following

x+ = u+
1

2
√
L
log

(
λ1 − λ0
λ1 + λ0

)
, x− = y1 +

√
L

L̄
u+

1

2
√
L̄
log

(
λ21 − λ20

4L̄

)
(I.89)

z =

√
2

λ20

(
λ1 −

√
λ21 − λ20

)
(I.90)

The Eddington-Finkelstein metric obtained via this transformation is

ds2 = − 2

L̄
λ0(λ1 − λ0)du

2 − 1√
L̄
dudλ1 +

L̄

4
dy21 − (λ1 − λ0)dudy1 (I.91)

As before, we make a further coordinate transformation y1 to ω

y1 = ω −
√
L

L̄
u− 1√

L̄
log

(
λ1 + λ0

2
√
L̄

)
(I.92)

to obtain the following metric in the (λ1, u, ω) coordinates

ds2 =
dλ21

4(λ1 + λ0)2
+
L

4
du2 +

L̄

4
dω2 − λ1dudω −

√
L̄

2(λ1 + λ0)
dωdλ1 −

√
L

2(λ1 + λ0)
dudλ1(I.93)

EF3 (Left Exterior + White Hole Interior)

Starting from (z, x+, x−) coordinates, we do the following transformations

x+ = v1 −
1

2
√
L
log

(
λ1 − λ0
λ1 + λ0

)
, x− = w1 −

1

2
√
L̄
log

(
λ1 − λ0
λ1 + λ0

)
(I.94)

z =

√
2

λ20

(
λ1 −

√
λ21 − λ20

)
(I.95)

The metric obtained is

ds2 =
dλ21

4(λ1 + λ0)2
+
L

4
dv21+

L̄

4
dw2

1−λ1dv1dw1+

√
L

2(λ1 + λ0)
dv1dλ1+

√
L̄

2(λ1 + λ0)
dw1dλ1 (I.96)

This metric covers the left exterior and the white hole interior.
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EF4(Right Exterior + White Hole Interior)

Starting from (z, x+, x−) coordinates, we do the following transformations

x+ = u1 +
1

2
√
L
log

(
λ− λ0
λ+ λ0

)
, x− = ω1 +

1

2
√
L̄
log

(
λ− λ0
λ+ λ0

)
(I.97)

z =

√
2

λ20

(
λ−

√
λ2 − λ20

)
(I.98)

The metric obtained is

ds2 =
dλ2

4(λ+ λ0)2
+
L

4
du21 +

L̄

4
dω2

1 − λdu1dω1 −
√
L

2(λ+ λ0)
du1dλ−

√
L̄

2(λ+ λ0)
dω1dλ (I.99)

This metric covers the right exterior and the white hole interior.

Regions of Overlap

Right Exterior The ‘Right Exterior’ region is described by both the EF1 (λ, v, w) and
EF4 (λ, u1, ω1) coordinates. These are related by the following smooth coordinate transfor-
mations

v = u1 +
1√
L
log

(
λ− λ0
λ+ λ0

)
w = ω1 +

1√
L̄
log

(
λ− λ0
λ+ λ0

)
(I.100)

Black Hole Interior The ‘Black Hole Interior’ region is described by both the EF1
(λ, v, w) and EF2 (λ1, u, ω) coordinates, which are related by the following smooth coordinate
transformations

v = u+
1√
L
log

(
λ0 − λ1
λ0 + λ1

)
, w = ω +

1√
L̄
log

(
λ0 − λ1
λ0 + λ1

)
, λ1 = λ (I.101)

Left Exterior The ‘Left Exterior’ region is described by both the EF2 (λ1, u, ω) and
EF3 (λ1, v1, ω1) coordinates, which are related by the following smooth coordinate transfor-
mations:

v1 = u+
1√
L
log

(
λ1 − λ0
λ1 + λ0

)
w1 = ω +

1√
L̄
log

(
λ1 − λ0
λ1 + λ0

)
(I.102)

White Hole Interior The ‘White Hole Interior’ finds a description in both the EF3
(λ1, v1, ω1) and EF4 (λ, u1, ω1) coordinates, which are related by the following smooth coor-
dinate transformations:

v1 = u1 +
1√
L
log

(
λ0 − λ

λ0 + λ

)
, w1 = ω1 +

1√
L̄
log

(
λ0 − λ1
λ0 + λ1

)
, λ = λ1 (I.103)
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I.A.2 Kruskal coordinates

The union of all the above coordinate patches, together with a neighbourhood (indicated by
K5 in Fig I.1) of the bifurcation surface (the meeting point of the past and future horizons in
the Penrose diagram) can be described by a set of Kruskal coordinates, in which the metric
reads

ds2 = − 1

2λ0
dUdV +

1√
L
UdV dy +

L̄

4
dy2 (I.104)

The coordinate transformation between various EF coordinates and the Kruskal coordinates
are given below.

1. Right exterior + Black Hole Interior : EF1 to Kruskal

The transformation from EF1 to the (U, V, y) coordinates is

U = − exp(−
√
Lv)(λ− λ0), V = exp(

√
Lv), y = w −

√
L

L̄
v +

1√
L̄
log

(
λ+ λ0

2
√
L̄

)
(I.105)

In the ‘Right Exterior’ region, λ > λ0, while in the ‘Black Hole Interior’, λ < λ0. The
above transformations give us the metric (I.104) in both the regions.

2. Left Exterior + Black Hole Interior : EF2 to Kruskal

The transformation from EF2 to (U, V, y) coordinates is

U = exp(−
√
Lu)(λ1 + λ0), V = − exp(

√
Lu)

λ1 − λ0
λ1 + λ0

, y = ω −
√
L

L̄
u+

1√
L̄
log(λ1 + λ0)

(I.106)
with,

y1 = y − 2√
L̄
log

(
λ1 + λ0

2
√
L̄

)
(I.107)

In the ‘Black Hole Interior’ λ1 < λ0, while in the ‘Left Exterior’ region λ1 > λ0. These
coordinate transformations give us the metric (I.104) in both the regions.

3. Left Exterior + White Hole Interior : EF3 to Kruskal

The transformations from EF3 to the (U, V, y) coordinates is

U = exp(−
√
Lv1)(λ1 − λ0), V = − exp(

√
Lv1), y = w1 −

√
L

L̄
v1 +

1√
L̄
log

(
λ1 + λ0

2
√
L̄

)

(I.108)
In the ‘Left Exterior’ region λ1 > λ0, while in the ‘White Hole Interior’, λ1 < λ0. These

transformations give us the metric (I.104) in both the regions.

4. Right Exterior + White Hole Interior : EF4 to Kruskal

The transformation from EF4 to the (U, V, y) coordinates is

U = − exp(−
√
Lu1)(λ+ λ0), V = exp(

√
Lu1)

λ− λ0
λ+ λ0

, y = ω1 −
√
L

L̄
u1 +

1√
L̄
log(λ+ λ0)

(I.109)
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with,

y1 = y − 2√
L̄
log

(
λ1 + λ0

2
√
L̄

)
(I.110)

In the ‘White Hole Interior’ λ < λ0, while in the ‘Right Exterior’ region λ > λ0. The
above transformations give us the metric (I.104) in both the regions.

I.A.3 Poincare

In this section we show how the EF1, EF2 coordinates can, in fact, be obtained from Poincare
coordinates ζ,X± = X0 ±X1, in terms of which the metric is written as

ds2 =
1

ζ2
(dζ2 − dX+dX−) (I.111)

We will choose L = L̄ for simplicity, so λ0 = L/2.
The coordinate transformation from X±, ζ to the EF1 coordinates is given by

v =
log(X+)√

L
, w = − 1√

L
log

(−X+X− + ζ2

X+

)
,
λ

λ0
=

−2X+X− + ζ2

ζ2
(I.112)

whereas the coordinate transformation from X±, ζ to the EF2 coordinates is given by

u =
1√
L
log

(−X+X− + ζ2

X−

)
, ω = − log(X−)√

L
,
λ1
λ0

=
−2X+X− + ζ2

ζ2
(I.113)

There are similar coordinate transformations between the other charts EF3/4 and Poincare.33

I.B The new metrics in the charts EF3 and EF4

EF3: ds2 =
1

B2

[
dλ̃21 + A2

+dṽ
2
1 + A2

−dw̃
2
1 + 2A+dũ1dλ̃1 + 2A−dw̃1dλ̃1

− λ̃1

(
B2 + 2

(
A+

H ′′
−(w̃1)

H ′
−(w̃1)

+ A−
H ′′

+(ṽ1)

H ′
+(ṽ1)

+ λ̃
H ′′

+(ṽ1)H
′′
−(w̃1)

H ′
+(ṽ1)H

′
−(w̃1)

))
dw̃1dṽ1

]
(I.114)

where

A+ =
√
LH ′

+(ṽ1)(λ̃1 + λ̃10)− λ̃1
H ′′

+(ṽ1)

H ′
+(ṽ1)

, A− =
√
L̄H ′

−(w̃1)(λ̃1 + λ̃10)− λ̃1
H ′′

−(w̃1)

H ′
−(w̃1)

, B = 2(λ̃1 + λ̃10)

EF4 : ds2 =
1

B2

[
dλ̃2 + A2

+dũ
2
1 + A2

−dω̃
2
1 − 2A+dũ1dλ̃− 2A−dω̃1dλ̃

− λ̃

(
B2 − 2

(
A+

G′′
−(ω̃1)

G′
−(ω̃1)

+ A−
G′′

+(ũ1)

G′
+(ũ1)

− λ̃
G′′

+(ũ1)G
′′
−(ω̃1)

G′
+(ũ1)G

′
−(ω̃1)

))
dω̃1dũ1

]
(I.115)

where

A+ =
√
LG′

+(ũ1)(λ̃+ λ̃0) + λ̃
G′′

+(ũ1)

G′
+(ũ1)

, A− =
√
L̄G′

−(ω̃1)(λ̃+ λ̃0) + λ̃
G′′

−(ω̃1)

G′
−(ω̃1)

, B = 2(λ̃+ λ̃0)

33 As explained in [7] , it is possible to describe the BTZ black string in terms of a single Poincare chart.
The BTZ black hole is a quotient of AdS3, which in appropriate coordinates [75] corresponds to the periodic
identification of the spatial direction; the BTZ string discussed in this chapter is obtained by decompactifying
the spatial circle, which gives back AdS3.
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I.C UV/IR cutoffs in EF coordinates

From AdS/CFT it is well-known that in a Fefferman-Graham coordinate system such as in
(I.1), an IR cutoff surface z = ǫ in the asymptotically AdS spacetime corresponds to a UV
cutoff ǫ in the CFT. We wish to express the IR cutoff in the geometry in terms of the EF
coordinates. By using the relation

z =

√
2

λ20

(
λ−

√
λ2 − λ20

)
(I.116)

we clearly see that z = ǫ for ǫ small, corresponds to λ = 1/ǫ2.

I.D An alternative to Banados’ metric

In [62], Roberts showed that the Banados metric (I.1) can be obtained from the Poincare
metric (I.111) by a Brown-Henneaux type diffeomorphism (an ‘SGD’ in the language we
have used), given by

X± = f±(x±) +
2z2f ′

±(x±)
2f ′′

∓(x∓)

8f ′
±(x±)f

′
∓(x∓)− z2f ′′

±(x±)f
′′
∓(x∓)

ζ = z

(
4f ′

+(x+)f
′
−(x−)

) 3
2

8f ′
+(x+)f

′
−(x−)− z2f ′′

+(x+)f
′′
−(x−)

(I.117)

It was shown in [62] that the above diffeomorphism reduces to a conformal transformation
on the boundary, with the the following asymptotic form (as z→0)

X± = f±(x±) +O(z2)

ζ = z
√
f ′
+(x+)f

′
−(x−) +O(z3) (I.118)

It was also shown here that L(x+), L̄(x−) appearing in (I.1) can be obtained from the zero
stress tensor through the conformal transformation f±.

A different choice of gauge: The SGD (I.117) used by Roberts seems fairly involved com-
pared to the ones we use here in this work, e.g. (I.12). Can we obtain the metric (I.1)
by a simpler SGD similar to ours, which nevertheless has the same conformal asymptotic
form (I.118)? The answer turns out to be yes. Indeed the simplest way of inventing such
a transformation is to take the asymptotic form (I.118) and gauge fix all the higher order
terms in z to 0. We then have a new, exact transformation of the form

X± = f±(x±), ζ = z
√
f ′
+(x+)f

′
−(x−) (I.119)

Note the similarity with our SGDs, say (I.12) (recall that z ∼ 1/
√
λ near the boundary).

(I.119) transforms the Poincare metric to

ds2 =
dz2

z2
+

f ′′
+(x+)

zf ′
+(x+)

dx+dz +
f ′′
−(x−)

zf ′
−(x−)

dx−dz +
1

4

(
f ′′
+(x+)

2

f ′
+(x+)

2
dx2+ +

f ′′
−(x−)

2

f ′
−(x−)

2
dx2−

)

−
(

2

z2
− f ′′

+(x+)f
′′
−(x−)

2f ′
+(x+)f

′
−(x−)

)
dx+dx− (I.120)
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A priori this is a new metric different from (I.1). However, the holographic stress tensor [12]
obtained from this metric is the same as obtained from (I.1) given by (I.42). As discussed in
Section 2.5 and 2.5, the above metric and (I.1) differ only by a trivial diffeomorphism, and are
hence essentially identical.34 Note that this example shows the enormous gauge ambiguity
in the choice of a metric in AdS3 (whose physical content is manifested in the boundary be-
haviour). Indeed, by the same token even the SGD’s are ambiguous; the solutions presented
in Section 2 are one of a gauge equivalent class of metrics.

I.E Unitary realization of conformal transformation

Under a finite, non-trivial, holomorphic coordinate transformation, w → w′ = f(w), the
stress tensor of a 2D CFT transforms as

T̃ (w′) =

(
∂w′

∂w

)−2

[T (w)− c

12
S(w′, w)] (I.121)

with the Schwarzian derivative S(w′, w) given by

S(w′, w) =

(
∂3w′

∂w3

)(
∂w′

∂w

)−1

− 3

2

(
∂2w′

∂w2

)2(
∂w′

∂w

)−2

(I.122)

For an infinitesimal transformation w → w′ = f(w) = w + ǫ(w), the Schwarzian derivative
turns out to be

S(w′, w) = ǫ′′′(w) +O(ǫ2) (I.123)

The change in the stress tensor, under such a transformation, becomes

δT (w) ≈ −ǫ(w)T ′(w)− 2ǫ′(w)T (w)− c

12
ǫ′′′(w) +O(ǫ2) (I.124)

Now, the Laurent expansion of T (w) and ǫ(w) is

T (w) =
∞∑

m=−∞

Lm

wm+2
ǫ(w) =

∞∑

m=−∞
ǫmw

−m+1 (I.125)

where L†
n = L−n, ǫ

†
n = −ǫ−n and the Ln’s satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (I.126)

Plugging (I.125) into (I.124), we get

δLm =

∞∑

n=−∞

{
(m+ n)Lm−nǫn +

c

12
n(n2 − 1)ǫnδm−n,0

}
(I.127)

34Note that in this new metric (I.120), the position of the horizon is at z = ∞. Of course, it can be
brought to a finite value by an additional coordinate transformation involving the radial coordinate.

59



We wish to construct a unitary operator U = U(ǫ) which implements the above conformal
transformations, namely that it satisfies

U(ǫ)†LmU(ǫ)− Lm = δLm +O(ǫ2) (I.128)

The required unitary operator, in fact, is

U(ǫ) = exp(

∞∑

n=−∞
ǫnL−n) (I.129)

The proof is straightforward. Note that the LHS of (I.128) becomes

(1−
∑

n

ǫ−nLn)Lm(1 +
∑

n

ǫnL−n)− Lm = −
∞∑

n=−∞
ǫ−n(LnLm) +

∞∑

n=−∞
ǫn(LmL−n) +O(ǫ2)

After flipping the sign of n in the first sum, this becomes

ǫn[Lm, L−n]

which reduces to the expression (I.127) upon using the Virasoro algebra (I.126).
Thus, we have explicitly constructed a unitary operator U such that U †T (w)U −T (w) is

given by (I.124).
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Chapter II

Thermalization with Chemical
Potentials1

1 Introduction and Summary

The study of thermalization in closed interacting quantum systems has a long history (see,
e.g. [17] for a review). It has been known ever since the celebrated work of Fermi, Pasta
and Ulam (FPU) that interacting classical systems need not necessarily equilibrate. The
question of finding sufficient conditions for thermalization in quantum systems is also an
open one. Recently, the advent of holography has linked the issue of thermalization in
strongly coupled quantum field theories to another important, classical, problem of black
hole formation (see, e.g. [76, 77, 78, 79] and references therein). In the latter setting too, the
issue of gravitational collapse of a given matter distribution is rather nontrivial; indeed there
is an interesting debate in the current literature (see, e.g., [80, 81, 82, 83, 84, 85]) regarding
the fate of perturbations in anti-de-Sitter spacetimes.

In this chapter, we will focus on two-dimensional conformal field theories (CFTs) on an
infinite line σ ∈ R. We will consider the system at t = 0 to be in a “quenched state”2

|ψ0〉 = exp[−ǫ2H −
∞∑

n=3

ǫnWn]|Bd〉 (II.1)

Here |Bd〉 is a conformal boundary state; the exponential factors cut off the UV modes to
make the state normalizable. Wn denote the additional conserved charges in the theory.3

1The contents of this chapter have partial overlap with the thesis work of Ritam Sinha. The conclusions
arrived at are results of joint effort.

2In the original sense of the term, a quantum quench is defined as a sudden change from a hamiltonian
H0 to a hamiltonian H which governs further evolution for t ≥ 0. The system is assumed to be in the ground
state of H0 at t = 0, which serves as an initial state for subsequent dynamics; the dynamics is nontrivial
since the initial state prepared this way is not an eigenstate of H . In this work, as in [20], we will mean
by a “quenched state” simply a pure state which is not an eigenstate of the Hamiltonian H . The kind of
quenched state defined in (II.1) is sometimes said to describe a global quench or a homogeneous quench, as
the state is translationally invariant. We will briefly mention inhomogeneous and local quenches in Section
6.

3For the purposes of this chapter, we will identify them with Wn-charges of 2D CFT, n = 3, 4, ... (with
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This choice of the quenched state is a generalization of that in [20] for which ǫn = 0, for
n > 3.

The wavefunction for t > 0 is given by

|ψ(t)〉 = exp[−iHt]|ψ0〉 (II.2)

The questions we will explore, and answer, are: what is the long time behaviour of
various observables in |ψ(t)〉? In particular, does the expectation value of an operator (or
a string of operators) approach a constant? If so, (i) is the constant value characterized by
a thermodynamic equilibrium, and (ii) what is the rate of approach to the constant value?
More generally, we would also address, and partially answer, the questions: how does the
existence and rate of thermalization depend on the initial state and the choice of observables?

Thermalization We find in this work that the expectation values of local observables
(supported on a finite interval A : σ ∈ [−l/2, l/2]) asymptotically approach (see (II.12) for
the precise statement) their values in an equilibrium ensemble,

ρeqm =
1

Z
exp[−βH −

∑

n

µnWn], Z = Tr exp[−βH −
∑

n

µnWn] (II.3)

whose temperature and chemical potentials are related to the cutoff scales in (II.5) as follows

β = 4ǫ2, µn = 4ǫn, n = 3, 4, ... (II.4)

The relations (II.4) are uniquely dictated by the requirement that the expectation values of
the conserved charges H,W3,W4, ... in the initial state match those in the mixed state (II.3)
(see (II.52)). In the absence of the extra parameters ǫn, n = 3, 4, ... this result is derived by
the elegant method of conformal transformations [20]. In the presence of these parameters,
this method is not available; in this work, we deal with the extra exponential factors in terms
of an infinite series and do a resummation.

We emphasize that the thermalization we found above persists even when we have an
integrable model with an infinite number of conserved charges. Relaxation in integrable
systems has been found in recent years in the context of, e.g., (a) one-dimensional hardcore
bosons [21], (b) transverse field Ising model [22], and (c) matrix quantum mechanics models
[23]. The equilibrium ensembles in this context have been called a generalized Gibbs en-
semble (GGE). Our present result on integrable conformal field theories adds to the list of
these examples. Interestingly, the thermalization we find works even for free conformal field
theories, e.g. a free scalar field theory.4

With the above identification of parameters, we will rewrite the initial quenched state
(II.1) henceforth as

|ψ0〉 = exp[−(βH −
∞∑

n=3

µnWn)/4]|Bd〉 (II.5)

W2 ≡ H), although much of what we say will go through independent of this specific choice as long as these
charges mutually commute and are defined from currents which are quasiprimary fields of the conformal
algebra.

4This happens essentially due to the fact that we consider here thermalization of local observables and
that local field modes are mutually coupled even in a free field theory. Thermalization happens at times
greater than the scale of localization, as we will see below.
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We find the following specific results:

1. Thermalization time scale for single local observables: We find that at large
times

〈ψ(t)|φk(σ)|ψ(t)〉 = Tr (φk(0)ρeqm(β, µi)) + ak e
−γkt + ... (II.6)

where φk(σ) is an arbitrary quasiprimary field (labelled by an index k). Below we compute
the thermalization exponent γk in a perturbation in the chemical potentials and to linear
order it is given by

γk =
2π

β

[
∆k +

∑

n

µ̃nQn,k +O(µ̃2)

]
, µ̃n ≡ µn

βn−1
, (II.7)

Here ∆k = hk+ h̄k is the scaling dimension and Qn,k are the (shifted) Wn-charges (see (II.37)
for the full definition) of the field φk (in case of primary fields) or of the minimum-dimension
field which appears in the conformal transformation of φk. To obtain this result, we perform
the infinite resummation mentioned below (II.4). At large times, the perturbation series
for the one-point function in the chemical potentials exponentiates (see (II.37)), to give
the corrected exponent in the above equation. In various related contexts, finite orders of
perturbation terms in chemical potentials have been computed before [36, 37, 86]. Our finding
in this work is that at large times, there is a regularity among the various orders leading to
an exponential function as in (II.6) (see Section 2.2 for details).
Universality: In the case of zero chemical potentials, it has been noted in [87], that although
the relaxation time τk = πǫ2/(2∆k) = 2πβ/(∆k) is non-universal (in the sense that it depends
on the specific initial state (II.1)), the ratio of relaxation times for two different fields, namely,
τk1/τk2 = ∆k2/∆k1 is universal (it depends only on the CFT data and not on the initial state
and is hence expected to be valid for a general class of initial states). In the presence of
the additional cut-off parameters ǫi, i = 3, ... in the initial state (II.1), the ratio τk1/τk2 =
γk2/γk1= (∆k2 +

∑
n µ̃nQn,k2)/(∆k1 +

∑
n µ̃nQn,k1) is, however, not independent of the initial

state.
However, as we will briefly discuss in Section 6, for a large class of quench states

(e.g. where the energy density is uniform outside of a domain of compact support) the
β-dependence of τk, in the absence of chemical potentials, can be understood as the depen-
dence on the uniform energy density (see a related discussion in [57]). The time scales τk,
therefore, do have a limited form of universality in the sense that it depends on a rather ro-
bust feature of the initial state. Our calculations in this chapter leads us to believe that this
feature will continue in the presence of chemical potentials, in the sense that the additional
dependence of the time scales 1/γk on the µn is fixed by the charge densities corresponding
to the additional conserved charges. We hope to address this in [88].

2. Multiple local observables, reduced density matrix: Besides the one-point func-
tions discussed above, it turns our that we can demonstrate thermalization of all operators
in an interval A of length l. It is convenient to define a ‘thermalization function’ IA(t) [28]
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as

IA(t) = Tr(ρ̂dyn,A(t)ρ̂eqm,A(β, µn)) =
Tr(ρdyn,A(t)ρeqm,A(β, µn))

[Tr(ρdyn,A(t)2)Tr(ρeqm,A(β, µi)2)]
1/2

ρdyn,A(t) = TrĀ |ψ(t)〉〈ψ(t)|, ρeqm,A(β, µn) = TrĀ ρeqm(β, µi) (II.8)

Here ρ̂ = ρ/
√

Trρ2 denotes a ‘square-normalized’ density matrix.56 We show below that at
large times the thermalization function has the form

IA(t) = 1− α(l̃) e−2γmt + ..., l̃ ≡ l/β (II.9)

where γm refers to the exponent (III.9) for the operator φm with minimum scaling dimension.7

α(l̃) is computed as a power series in l̃ which we find using the short interval expansion, valid
for l̃ ≪ 1, i.e. l ≪ β.

Two immediate consequences of (II.9) are

(i) Thermalization of an arbitrary string of operators: Note, from (II.9), that

IA(t)
t→∞−−−→ 1, (II.10)

Since the square-normalized density matrices can be regarded as unit vectors (in the
sense of footnote 5), and IA(t) can be regarded as the scalar product ρ̂dyn,A(t)·ρ̂eqm,A,
(II.10) clearly implies

ρ̂dyn,A(t)
t→∞−−−→ ρ̂eqm,A (II.11)

This implies the following statement of thermalization for an arbitrary string of local
operators (with σ1, σ2, ... ∈ A)

〈ψ(t)|O(σ1, t1)O(σ2, t2)...|ψ(t)〉 = Tr(ρ̂dyn,A(t)O(σ1, t1)O(σ2, t2)...)
t→∞−−−→ Tr(ρ̂eqm,AO(σ1, t1)O(σ2, t2)...).

(II.12)

(ii) Long time behaviour of reduced density matrix:

Carrying on with the interpretation of IA(t) as a scalar product, we can infer following
asymptotic behaviour of ρ̂dyn(t) from (II.9):

ρ̂dyn,A(t) = ρ̂eqm,A(β, µi)
(
1− α e−2γmt + ...

)
+ Q̂

(√
2α e−γmt + ...

)
(II.13)

5Note that operators in a Hilbert space H can themselves be regarded as vectors in H × H
∗; under this

interpretation Tr(A B) defines a positive definite scalar product. With this understanding, we will regard
the hatted density matrices as unit vectors.

6Throughout this chapter, we will consider field theories with an infinite spatial extent. The entire Hilbert
space is assumed to be of the form HA ⊗ HĀ. TrĀ implies tracing over HĀ.

7We will assume here that the spectrum of such ∆’s is bounded below by a finite positive number. In
case of a free scalar field theory, we can achieve this by considering a compactified target space.
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where Tr(Q̂2) = 1, Tr(ρ̂eqm,A(β, µi)Q̂) = 0. We will specify further properties of Q̂
later on.

Importance of local observables: In case of a free massless scalar field, it is easy
to show that quantities like 〈ψ(t)|α2

1α
†
1|ψ(t)〉 perpetually oscillate and never reach a

constant (see a related calculation in [23]). The modes αn represent Fourier modes and
are non-local. Indeed, as [28, 44, 87] showed, in the absence of chemical potentials,
the exponential term in (II.9) is e−2γm(t−l/2) and the thermalization sets in only after
t exceeds l/2. Thus, for l = ∞, there is no thermalization, which is consistent with
the above observation about perpetual oscillations. We expect the form e−2γm(t−l/2) to
continue to hold in the presence of chemical potentials8, since the effect of the chemical
potentials on the exponent γk can be viewed as a shift of the anomalous dimension
δ∆k =

∑
n µ̃nQn,k + O(µ̃2) (see, e.g. (II.64)). This shows that, as in the case of zero

chemical potentials, equilibration sets in only after t exceeds l/2. We will see a similar
phenomena next in the context of a decay of perturbations to a thermal state.

3. Decay of perturbations to a thermal state: We compute (see Section 4 for details)
the time-dependent two-point Green’s function G+(t, l; β, µ) for two points spatially sepa-
rated by a distance l. We find that for t, l, t − l ≫ β, the time-dependence is exponential,
with the same exponent as in (II.6):

G+(t, l; β, µ) ≡
1

Z
Tr
(
φk(l, t)φk(0, 0)e

−βH−
∑

n µnWn
)
= const e−γkt (II.14)

Note that the above thermalization sets in for t > l. For t < l, the two-point function has
an exponential decay in the spatial separation (see Section 4 and Figure II.3).

The computation of the above relaxation times in the presence of an arbitrary number of
chemical potentials uses the technique, described above, of summing over an infinite number
of Feynman diagrams, and is one of the main results of our work.

4. Collapse to higher spin black holes: In [5, 7] the bulk dual to the time-dependent
state (II.2) corresponding to initial condition (II.5), for large central charges, has been con-
structed in the case of zero chemical potentials. The dual geometry corresponds to one half
of the eternal BTZ (black string) geometry, whose boundary represents an end-of-the-world
brane. In [14] the result has been extended to the case of non-zero angular momentum and a
Chern-Simons charge. In case of an infinite number of chemical potentials, a bulk dual to the
equilibrium ensemble (II.3) has been identified, in the context of the Gaberdiel-Gopakumar
hs(λ) theory [32], as a higher spin black hole with those chemical potentials [33, 34]. It is
natural to conjecture [14, 23] that the time-development (II.2) should be dual to a collapse
to this higher spin black hole. At late times, therefore, the thermalization exponent found
above should correspond to the quasinormal frequency of the higher spin black hole. We
find that (see Section 5 and [89]) this is indeed borne out in a specific example.

8Although, in the short-interval expansion employed in this chapter to derive (II.9), which uses t ggβ ≫ l,
such an l-dependence in the exponent cannot be easily seen from the pre-factor α(l̃) unless one sums over
an infinite orders in l̃.
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The plan of the chapter is as follows. The results 1, 2, 3 and 4 above are described in
Sections 2, 3, 4 and 5, respectively. The resummation of an infinite number of Feynman
diagrams (corresponding to insertions of arbitrary number of chemical potential terms) is
discussed in Section 2.2, which uses results in Appendix II.A. The calculation of the overlap of
reduced density matrices in Section 3 needs the use of the short-interval expansion, which is
described in Appendix II.B. In Section 6 we present our conclusions and make some remarks
on inhomogeneous quench [88].

2 One-point functions

In this section we will consider the behaviour of the following one-point functions of a
quasiprimary field φk(σ)

〈φk(σ, t)〉dyn ≡ 〈ψ(t)|φk(σ)|ψ(t)〉,
〈φk(σ)〉eqm ≡ Tr (φk(σ)ρeqm(β, µn)) (II.15)

We will briefly recall how these are computed in the absence of the chemical potentials [20,
24]. The first expectation value corresponds to the one-point function on a strip geometry,
with complex coordinate w = σ + iτ , σ ∈ (−∞,∞), τ ∈ (−β/4, β/4) where τ is eventually
to be analytically continued to τ = it. This can be conformally transformed to an upper
half plane by using the map

z = ie(2π/β)w (II.16)

For a primary field with hk = h̄k (of the form φk(w, w̄) = ϕk(w)ϕk(w̄)), this procedure gives
9(for other primary fields, the one-point function vanishes)

〈φk(σ, t)〉dyn = 〈φk(w, w̄)〉str =
(
∂z

∂w

)hk
(
∂z̄

∂w̄

)h̄k

〈φk(z, z̄)〉UHP

= ak
(
e2πt/β + e−2πt/β

)−2hk ∼ ake
−γ

(0)
k t + ..., γ

(0)
k = 2π∆k/β = 4πhk/β (II.17)

We have used the following result for the one-point function on the UHP:

〈φk(z, z̄)〉UHP = Ak〈ϕk(z)ϕ
∗
k(z

′)〉UHP = Ak(z − z′)−2hk , hk = h̄k, z
′ = z̄ (II.18)

which follows by using the method of images where the antiholomorphic factor of φk(z, z̄)
on the upper half plane at the point (z, z̄) is mapped (up to a constant) to the holomorphic
ϕ∗
k

10 on the lower half plane at the image point (z′, z̄′) with z′ = z̄, z̄′ = z [25, 24]. In the
above ak, Ak are known numerical constants. Note that

z = ie2π(σ+iτ)/β = ie2π(σ−t)/β , z′ = z̄ = −ie2π(σ−iτ)/β = −ie2π(σ+t)/β (II.19)

so that in the large time limit we have

t→ ∞ ⇒ z → 0, z̄ → −i∞. (II.20)

9The subscripts str, cyl will denote a ‘strip’ and a ‘cylinder’, respectively.
10We distinguish ϕ∗

k from ϕk to allow for charge conjugation.
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The second, thermal, expectation value in (II.15), for µn = 0, corresponds to a cylindrical
geometry in the w-plane, with τ = 0 identified with τ = β. By using the same conformal
map (II.16) this can be transformed to a one-point function on the plane. For a primary
field the latter vanishes. Hence (II.6) is trivially satisfied.

For a quasiprimary field φk, its conformal transformation generates additional terms,
including possibly a c-number term ck (e.g. the Schwarzian derivative term for φk = Tww)
and generically lower order operators. The c-number term does not distinguish between a
plane and an UHP. This leads to the following overall result (for µn = 0):

〈φk(σ)〉eqm = 〈φk(w, w̄)〉cyl = ck,

〈φk(σ, t)〉dyn = 〈φk(w, w̄)〉str = ck + ake
−γ

(0)
k t + ..., γ

(0)
k = 2π∆k/β, (II.21)

where ∆k now is the scaling dimension of the minimum-dimension operator in a T (z1)φk(z)
OPE. This is clearly of the general form (II.6) for µn = 0.

We now turn to a discussion of these expectation values (II.15) in the presence of chemical
potentials µn, n = 3, 4, ..., as in (II.5) and (II.3). We will denote the new conserved currents
as Wn(w) and W̄n(w̄), n = 3, 4, .... The conserved charge, Wn, is defined as

Wn =
1

2π

∫

Γ

Wττ...τdσ =
1

2π

∫

Γ

(
indw1Wn(w1) + (−i)ndw̄1 W̄n(w̄1)

)
(II.22)

Here the contour Γ is taken to be a τ = constant line along which dw1 = dw̄1 = dσ. Under
the conformal transformation (II.16) to the plane/UHP, the holomorphic part of the contour
integral becomes

Wn|hol =
in

2π

(
2π

β

)n−1 ∫

Γ1

dz1


zn−1

1 Wn(z1) +

⌊n/2⌋∑

m=1

an,n−2mz
n−2m−1
1 Wn−2m(z1)


 (II.23)

where the an,n−2m denote the mixing of Wn(z1) with lower orderW -currents under conformal
transformations [26, 27]. The contour Γ1 is an image of the contour Γ onto the plane. The
expression for the antiholomorphic part Wn|antihol is similar.

As mentioned before, in this chapter we will regard the Wn as conserved charges of a
W-algebra, although the results we derive will be equally valid as long as these charges,
together with H , form a mutually commuting set, and the currents (Wn(w), W̄n(w̄)) are
quasiprimary fields.

2.1 One-point function on the cylinder with chemical potentials

For simplicity we first consider the equilibrium expectation value in (II.15). Unfortunately,
unlike the thermal factor above, the factor e−

∑

n µnWn in (II.3) cannot be dealt with in terms
of a conformal map. We will, therefore, treat this factor as an operator insertion, and write

〈φk(σ)〉eqm ≡ Tr (φk(w, w̄)ρeqm(β, µn)) =
〈e−

∑

n µnWnφk(w, w̄)〉cyl
〈e−

∑

n µnWn〉cyl
≡ 〈φk(w, w̄)〉µcyl (II.24)
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We will now illustrate how to compute this for a single chemical potential, say µ3, using
perturbation theory Feynman diagrams:11

〈φk(w, w̄)〉µcyl = 〈φk(w, w̄)〉cyl − µ3〈W3φk(w, w̄)〉conncyl +
µ2
3

2!
〈 W3W3φk(w, w̄)〉conncyl +O(µ3

3)

(II.25)

The first term in the above expression is the constant ck that we already encountered in
(II.21). For a holomorphic primary field φk, the second, O(µ3), term, transformed on to the
plane, gives

〈W3φk(w)〉conncyl =
2π

β2
zhk

[
i3
∫

Γ1

dz1 z
2
1〈W3(z1)φk(z)〉connC

+ (−i)3
∫

Γ1

dz̄1 z̄
2
1〈W̄3(z̄1)φk(z)〉connC

]

(II.26)

Here we have used the contour representations (II.22) and (II.23). The correlator inside the
second integral obviously vanishes (it factorizes into a holomorphic and an antiholomorphic
one-point functions, leading to a vanishing connected part). The first integral vanishes unless
φk = W3 (this uses the orthogonality of the basis of quasiprimary fields). In the latter case,
using

〈W3(z1)W3(z)〉C =
c/3

(z1 − z)6

the integral evaluates to c/(90z3); combining with the factor of z3 outside (hk = 3 in this
case) we get a z-independent constant, as we must, because of translational invariance on
the plane. With an antiholomorphic primary field φk, the calculation is isomorphic. For a
primary field with nonvanishing hk, h̄k the result vanishes. For quasiprimary φk, as well as
for otherWn charges, the conformal transformation to the plane additionally generates lower
order operators (see, e.g. (II.23))), each of which can be dealt with as in (II.26). The result
is a finite constant which we will denote as

〈Wnφk(w, w̄)〉 = cn,k

(this will be non-vanishing only for special choices of φk, e.g. φk = Wn). As explained above,
for n = 3 and φk(w, w̄) = W3(w), cn,k = −2πc/(90β2).

In a similar fashion, the O(µ2
3) term in (II.25) can be transformed to the plane. Again,

we present the explicit expression for the simple case of a holomorphic primary field φk.

〈W3W3φk(w)〉conncyl =
(2π
β2

)2
zhk

[
i6
∫

Γ1

dz1

∫

Γ2

dz2〈W3(z1)W3(z2)φk(z)〉connC
z21z

2
2

+ (−i)6
∫

Γ1

dz̄1

∫

Γ2

dz̄2〈W̄3(z̄1)W̄3(z̄2)φk(z)〉connC
z̄21 z̄

2
2 +

∫

Γ1

dz1

∫

Γ2

dz̄2〈W3(z1)W̄3(z̄2)φk(z)〉connC
z21 z̄

2
2

+

∫

Γ1

dz̄1

∫

Γ2

dz2〈W̄3(z̄1)W3(z2)φk(z)〉connC
z̄21z

2
2

]
(II.27)

For holomorphic quasiprimary φk, additional, similar, terms appear due to the generation of
lower order operators under conformal transformation to the plane. Only the holomorphic

11The superscript conn denotes ‘connected’.
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correlator survives (as in the O(µ3) calculation). Thus, e.g. if φk = T (z), the stress tensor,
we have

〈W3(z1)W3(z2)T (z)〉C =
c

(z1 − z2)4(z1 − z)2(z2 − z)2

Again, after performing the integration over z1 and z2, we obtain a z-independent constant,
as we must. The analysis of more general fields φk and two arbitrary W -charges is straight-
forwardly generalizable. The result is a finite constant (can be zero for a particular φk) which
we denote as

〈WmWnφk(w, w̄)〉 = cmn,k

Note that in (II.27) the result does not depend on the location of the contours Γ1,Γ2 on the
plane, since the W -currents are conserved.

Summarizing, we get

〈φk(w, w̄)〉µcyl = ck −
∑

n

µn cn,k +
1

2!

∑

m,n

µmµn cmn,k +O(µ3) (II.28)

2.2 One-point function on the strip with chemical potentials

Similarly to the previous subsection, we will treat the µ-deformations in (II.5) as operator
insertions:

〈φk(σ, t)〉dyn ≡ 〈ψ(t)|φk(σ)|ψ(t)〉 =
〈e−

∑

n µnWn/4 φk(w, w̄) e
−

∑

n µnWn/4〉str
〈e−

∑

n µnWn/2〉str
≡ 〈φk(w, w̄)〉µstr

(II.29)

As before, we begin by illustrating the calculation of this quantity with the simplest case of
a single chemical potential µ3, using perturbation theory Feynman diagrams:

〈φk(w, w̄)〉µstr = 〈φk(w, w̄)〉str −
µ3

4
〈{W3, φk(w, w̄)}〉connstr

+

(
µ3

4

)2
1

2!
(〈{W3W3, φk(w, w̄)}〉connstr + 2〈W3φk(w, w̄)W3〉connstr ) +O(µ3

n) (II.30)

The { , } denotes an anticommutator. The operator ordering implies the following: when W3

appears on the left of φk(w, w̄), e.g., in 〈W3φk(w, w̄)〉, the integration contour (II.22) for W3

on the strip lies above the point (w, w̄); similarly when W3 appears on the right of φk(w, w̄),
e.g. in 〈φk(w, w̄)W3〉, the contour for W3 is below the point (w, w̄).

The first, µ-independent, term in the above expansion is already calculated in (II.21).

O(µn) Calculation

As before, we find it convenient to use the conformal transformation (II.16). The correlator
on the strip then reduces to that on the UHP, as in the µ = 0 case before. For a holomorphic
primary field φk, this gives

〈W3φk(w)〉connstr =
2π

β2
zhk

[
i3
∫

Γ1

dz1 z
2
1〈W3(z1)φk(z)〉connUHP + (−i)3

∫

Γ1

dz̄1 z̄
2
1〈W̄3(z̄1)φk(z)〉connUHP

]

(II.31)
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where the operator ordering explained above implies that the contour Γ1 lies to the left of
the point (z, z̄) on the UHP. Now, in the analogous calculation (II.26), the second connected
correlator on the complex plane vanished because of factorization into one-point functions.
Correlators on the UHP are, however, related to those on the plane by the method of images
(an example of which we saw in (II.18)). In particular, W̄3 at the point (z1, z̄1) on the UHP
becomes the holomorphic operator W∗

3 = −W3 on the LHP at the point (z′1, z̄
′
1) with z

′
1 = z̄1

[25, 24]. The contour Γ1 gets mapped to its mirror image Γ′
1 on the lower half plane. With

this, we get

〈W3φk(w)〉connstr =
2π

β2
zhk

[
i3
∫

Γ1+Γ′
1

dz1 z
2
1〈W3(z1)φk(z)〉connC

]
(II.32)

On the complex plane, the contour Γ1 on the UHP can be deformed to Γ′
1 on the LHP, hence

the two contours simply yield a factor of 2. In fact, combining with the other ordering, and
applying a similar reasoning, we get an overall factor of 4. Thus, combining with results
from Section 2.1, we get, for holomorphic primary fields

−µ3

4
〈{W3, φk(w)}〉connstr = −µ3〈W3φk(w)〉conncyl (II.33)

A similar statement is true for an antiholomorphic primary field.
Let us turn now to primary fields φk(w, w̄) with hk, h̄k 6= 0 (of the form φk(w, w̄) =

ϕk(w)ϕk(w̄), as discussed before in the context of (II.18)). In the cylinder calculation in
Section 2.1 the µ-corrections for these vanished. In the present case, they are non-zero for
operators of the form φk(w, w̄)= ϕk(w)ϕ̄k(w̄), with hk = h̄k (as in (II.17)). After conformally
transforming to the UHP, we regard ϕ̄k on the UHP as ϕ∗

k at the image point on the LHP
(up to a constant). Combining with the arguments used for the holomorphic operators, we
eventually get

〈{W3, φk(w, w̄)}〉connstr

〈φk(w, w̄)〉str
= i3

2π

β2
(zz̄)hI3(z, z

′),

I3(z, z
′) ≡

∫

Γ1+Γ′
1+Γ̃1+Γ̃′

1

dz1 z
2
1〈W3(z1)ϕk(z)ϕ

∗
k(z

′)〉conn
C

/〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

(II.34)
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Figure II.1: Various contours needed to compute the Wn insertions in (II.30). At late times, the insertion
of each contour, irrespective of the position of the contour, amounts to insertion of a given factor linear
in t. This allows to resum arbitrary orders of arbitrary Wn-charge insertions, leading to the exponential
time-dependence as in (II.6). See Figure II.2 for more.

The ratio of correlators inside the integral is given by

〈W3(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

/〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

= q3
(z − z′)3

(z1 − z)3(z1 − z′)3
(II.35)

where q3 is the W3-charge of the field φk. Integrals of the kind (II.34) are discussed in detail
in Appendix II.A.2. The final result (see (II.71)) is that the O(µ3) correction, in the long
time limit (II.20), is given by (using that all four contours Γ1, Γ̃1,Γ

′
1, Γ̃

′
1 contribute equally,

cancelling the 1/4 in −µ3/4)

〈φk(σ, t)〉dyn = ake
−2π∆kt/β

(
1−Q3,kµ̃3 (

2πt

β
+ constant) +O(µ2

3)

)
+ ...,

Q3,k = i32q3,k(2π), µ̃3 =
µ3

β2
, ∆k = 2hk (II.36)

Up to O(µ3), it agrees with (III.9).
In case of a quasiprimary field φk(w, w̄), it mixes, under conformal transformation to

the plane, with lower dimension operators. The most relevant operator among these, which
is of the form ϕk(z)ϕk(z̄), is then to be used in (II.34) for obtaining the dominant time-
dependence; in that case ∆k, Q3,k refer to this operator (rather than to the original φk).

For higher Wn charges, the currents Wn(w) are typically quasiprimary, and hence they
mix with lower order Wm(z) under conformal transformation to the UHP. Thus the O(µn)
correction to the dynamical one-point function 〈φk〉dyn is a linear combination of terms of
the form (II.68) (weighted by a set of coefficients an,m, as in (II.37) below). Collecting all
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this, the O(µ) correction with all chemical potentials is given by

〈φk(σ, t)〉dyn = ake
−2π∆kt/β

(
1−

∑

n=3

Qn,kµ̃n (
2πt

β
+ constant) +O(µ2)

)
+ ...,

µ̃n =
µn

βn−1
, ∆k = hk + h̄k = 2hk

Qn,k = 2

⌊n/2−1⌋∑

m=0

an,mi
n−2m(2π)n−2m−2qn−2m,k

= in(2π)n−22qn,k + in−2(2π)n−4an,2 2qn−2,k + ..., (II.37)

Note that for W3 deformations, the expression for Q3 as in (II.36) corresponds only to the
first term in the above series expression for Qn. This is because the W3 current is a primary
field and does not mix with any lower W current under a conformal transformation. From
n = 4 onwards, the additional terms in Qn,k’s represent the mixing of Wn currents with
Wn−2m under conformal transformations.

Higher order µ-corrections

Let us first consider that O(µ2
n) correction:

〈φk(w, w̄)〉connstr |µn

2 ≡ (µn/4)
2

2!
(〈{WnWn, φk(w, w̄)}〉connstr + 2〈Wnφk(w, w̄)Wn〉connstr ) (II.38)

Again, for holomorphic (or antiholomorphic) primary fields φk(w), it is straightforward to
generalize (II.33) to this order.

〈φk(w)〉connstr |µn

2 =
µ2
n

2!
〈WnWnφk(w)〉conncyl (II.39)

For a primary field of the form φk(w, w̄) = ϕk(w)ϕk(w̄), proceeding as in the previous
subsection, we get

〈φk(w)〉connstr |µn

2 =
1

2!

(
Qn,kµ̃nt

2π

β

)2

+ µ2
n(constant× t+ constant) + ... (II.40)

The essential ingredient in this calculation is

Inm(z, z
′|Γ1,Γ2) ≡

∫

Γ1

dz1 z
n−1
1

∫

Γ2

dz2 z
m−1
2 fnm(z1, z2, z, z

′),

fnm(z1, z2, z, z
′) =

〈Wn(z1)Wm(z2)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

(II.41)

By repeating the strategy of (II.75), we get

Coefficient of [log(−z′)− log(−z)]2 in Inm(z, z
′|Γ1,Γ2)

= Residuez1=z

[
Residuez2=z

(〈Wn(z1)Wm(z2)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ∗
k(z

′)〉conn
C

)]
= qn,k qm,k (II.42)
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where we have first used theWm(z2)ϕk(z) OPE, and then theWn(z1)ϕk(z) OPE. In a manner
similar to that in Appendix II.A.2, we conclude the following structure of Inm(z, z

′):

Inm(z, z′|Γ1,Γ2) = qn,k qm,k([log(−z′)− log(−z)] + constant)× ([log(−z′)− log(−z)] + constant) (II.43)

Note that at late times t ≫ β, ([log(−z′) − log(−z)] → 2(2πt)/β and dominates over
the constant term (the precise sense is that of (II.48)). Similar to Appendix II.A.2, the
4×4 = 16 locations of the contour-pairs (Γ1,Γ2),(Γ1,Γ

′
2), (Γ1, Γ̃2),(Γ1, Γ̃

′
2), ...., all contribute

equally, therefore converting (µn/4)(µm/4) → µnµm. Combining all these, we get (II.40).
The charges qn that are defined by the Wnϕ OPE and appear in (II.42), get multiplied by
some constants 12 and shifted by lower Wn−2k charges to give the Qn in (II.42), as in (II.37).

Arbitrary orders and Exponentiation:

It is straightforward to generalize the above O(µ̃2) calculation to higher orders in the per-
turbation in chemical potentials. Thus, at the order

∏r
i=1 µni

, there are r insertions of
W-currents, leading to integrals of the form

In1n2...nr(z, z
′|Γ1,Γ2, ...,Γr) ≡

∫

Γ1

dz1 z
n1−1
1

∫

Γ2

dz2 z
n2−1
2 ...

∫

Γr

dz2 z
nr−1
r fn1n2...nr(z1, z2, ..., zr; z, z

′),

fn1n2...nr(z1, z2, ..., zr; z, z
′) =

〈Wn1(z1)Wn2(z2)...Wnr(zr)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

(II.44)

Again, repeating the strategy of (II.75), we get the following leading (viz. (log)r) contribution
(see (II.48) for the definition of the leading-log contribution)

Coefficient of [log(−z′)− log(−z)]r in In1n2...nr
(z, z′|Γ1,Γ2, ...,Γr)

= Residuez1=z

[
...Residuezr−1=z

{
Residuezr=z

( 〈Wn1(z1)...Wnr−1 (zr−1)Wnr
(zr)ϕk(z)ϕ

∗
k(z

′)〉conn
C

〈ϕk(z)ϕ∗
k(z

′)〉conn
C

)}]

= qn1,k...qnr−1,k qnr,k (II.45)

where we have first used the Wnr(zr)ϕk(z) OPE, then Wnr−1(zr−1)ϕk(z) OPE, etc. As in
the O(µ2) calculation above, we obtain the following behaviour at late times

In1n2...nr
(z, z′|Γ1,Γ2, ...,Γr)

= qn1,k...qnr−1,k qnr ,k ([log(−z′)− log(−z)] + constant)× ...× ([log(−z′)− log(−z)] + constant)︸ ︷︷ ︸
r terms

(II.46)

The two equations above show that the leading log contribution to (II.44) from every contour
integral of the Wni

current contributes the factor qni
[log(−z′) − log(−z)]. This is the first

basic ingredient for the exponentiation we are going to find. Furthermore, it is easy to see
that the leading log contribution is the same irrespective of where each contour Γi is placed
(out of 4 possible choices, e.g. Γ1,Γ

′
1, Γ̃1, Γ̃

′
1 in Figure II.1). As before we must combine the

contribution of all positions of the contours, which, therefore, amounts to multiplying the re-
sult for (II.44) by 4r which converts the original coefficients coming from exp[−

∑
n µnWn/4]

as follows ∏r
i=1 µi/4

r!
→
∏r

i=1 µi

r!
.

12Each Wn current comes with a factor of in

2π

(
2π
β

)n−1

, as in (II.23).
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This is the second basic factor leading to the exponentiation. Combining all these, and
incorporating some additional constants (see footnote 12) we get the following, leading,
order (µn1...µnr) contribution

〈φk(w)〉connstr |µn1 ...µnr
r =

1

r!

r∏

i=1

(
Qni,kµ̃ni

2π

β

)
+O(µrtr−l) (II.47)

Once again, the constants Qn are related to the qn as in (II.37)) in a manner similar to the
O(µ̃) and the O(µ̃2) calculation above. We note that the leading log contribution used in
this chapter can be isolated by considering a scaling

µ̃n → 0, t̃ ≡ t

β
→ ∞, such that µ̃nt̃ = constant. (II.48)

The second term in (II.47), or for that matter, in (II.40), is subleading at large times in the
sense of this scaling.

Using the above results, we now have, for primary fields of the form φk(w, w̄) = ϕk(w)ϕk(w̄)

〈φk(w, w̄)〉str = ake
− 2π∆kt

β

[
1−

∑

n

µ̃n Qn,k(
2πt

β
+ const)

+
1

2!

∑

n,m

µ̃nµ̃m Qn,k(
2πt

β
+ const) Qm,k(

2πt

β
+ const) + ...

+
1

r!

∑

{ni}

r∏

i=1

µ̃ni
Qni,k


(

2πt

β
+ const)...(

2πt

β
+ const)

︸ ︷︷ ︸
r terms


+ ...




= ake
−2πt/β(∆k+

∑

n µ̃nQn,k+O(µ̃2)) = ake
−γkt (II.49)

where we have absorbed some constant factors in ak. γk is given by (III.9); Qn,k are the
shifted Wn charges of φk as defined in (II.37). The proof of the above equation for general
quasiprimary operators φk(w, w̄) works out much the same way as in case of the O(µ) terms,
as discussed in Section 2.2. We emphasize that it is only the leading contributions at large
times which we have proved here to exponentiate. Thus, we do not claim that the constant
terms marked “const” in the above equation are all the same. As we have remarked before,
the leading contributions can be isolated using the scaling mentioned in (II.48).

The schematics of the above calculation is explained in the Figure II.2.
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G0(z) G0(z) fn log(z) G0(z) fnfm  log(z)2/2!

Wn
Wn

Wm

+ + +...

z zz

Figure II.2: The schematics of the calculation of the one-point function. The first term represents the zero-
order boundary Green’s function (II.17) without chemical potentials (the shading indicates the boundary of
the upper half plane). The second term represents the O(µn) correction, which involves one insertion of a
Wn-charge (which is an integral over the z1-contour. As explained in the text, at long times, this insertion
amounts to multiplying the zero order term by a term of the form fn log(z), where fn is described in (II.37).
The third term represents insertion of two such W -charges; as we explained in the text (see (II.40) and
below), each insertion again amounts to multiplying by the factor mentioned above, along with a factor of
1
2! . The pattern continues, to ensure an exponentiation to G0(z) z

∑
n
fn , as in (II.49). Since at long times

G0(z) ∼ e−γ
(0)
k

t (see (II.17)), and z ∼ e−2πt/β, adding the chemical potentials amount to a shift of the

exponent γ
(0)
k → γk as in (II.6).

3 Calculation of I(t)

Let us rewrite the expression for the thermalization function I(t) (II.8) in the form

I(t) = Zsc/
√
ZssZcc = Ẑsc/

√
ẐssẐcc,

Zsc ≡ Tr(ρdyn,A(t)ρeqm,A(β, µ)), Ẑsc = Zsc/(ZsZc)

Zss ≡ Tr(ρdyn,A(t)ρdyn,A(t)), Ẑss = Zss/Z
2
s ,

Zcc ≡ Tr(ρeqm,A(β, µ)ρeqm,A(β, µ)), Ẑcc = Zcc/Z
2
c ,

Zs = Tr(ρdyn(t)) = 〈ψ0|ψ0〉, Zc = Tr(ρβ,µ) (II.50)

In Appendix II.B we explain how to compute I(t) using the short interval expansion, valid
when the length of the interval l is small compared with the other time scales β and t in
the problem. We reproduce the main formula (II.79) for our purpose, where we explicitly
denote the dependencies on the length l of the interval, the inverse temperature β and the
chemical potentials µ (the dependence on β on the RHS is implicit; the one-point functions
depend on both β and µ— see Section 2).

Ẑsc(l, β, µ) =
∑

k1,k2

Ck1,k2(l)〈φk1(w1, w̄1)〉µstr〈φk2(w2, w̄2)〉µcyl,

Ẑss(l, β, µ) =
∑

k1,k2

Ck1,k2(l)〈φk1(w1, w̄1)〉µstr〈φk2(w2, w̄2)〉µstr,

Ẑcc(l, β, µ) =
∑

k1,k2

Ck1,k2(l)〈φk1(w1, w̄1)〉µcyl〈φk2(w2, w̄2)〉µcyl (II.51)

It is understood, for the logic of the short interval expansion to go through, that all contours
which represent insertion of the W -charges (see Fig II.1) are drawn outside of the small
disc-like region of both sheets of Fig II.4.
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3.1 Proof of thermalization

Using the short-interval expansion above, and the long time behaviour of one-point functions
from Section 2), it is easy to prove that the system thermalizes in the sense of (II.10) or
(II.11).

To prove this, note that it is only the holomorphic (or antiholomorphic) fields φk which
possibly have non-zero expectation values in the long time limit (II.20). For these fields, the
one-point functions on the cylinder and on the strip agree (see (II.21), (II.33), (II.39) ). By
virtue of (II.51), we therefore have in the long time limit Zsc = Zss = Zcc. Hence using the
expression (II.50) for the thermalization function we get I(t→ ∞) = 1 which proves (II.10)
and consequently (II.11).

The above-mentioned equality of one-point functions between the strip and cylinder ge-
ometries for holomorphic (or antiholomorphic) fields imply the same for the conserved Wn-
(or W̄n)- currents. This, therefore, proves that

〈ψ(t)|Wn|ψ(t)〉 = Tr(Wnρeqm) (II.52)

Note that in proving this, we have used the correspondence (II.4) between the parameters
of the initial state and the putative equilibrium state. The above equation, therefore, proves
the correspondence (II.4).

3.2 Thermalization rate

To evaluate the rate of approach of I(t) to its asymptotic value 1, we organize the terms in
Ẑsc, Ẑss, Ẑcc as follows

Ẑsc = C0,0(1 + Ssc
1 ), Ssc

1 =
∑

a

Ĉa,0(〈φa〉µstr + 〈φa〉µcyl) +
∑

ab

Ĉa,b〈φa〉µstr〈φb〉µcyl

Ẑss = C0,0(1 + Sss
1 + Sss

2 ), Sss
1 = 2

∑

a

Ĉa,0〈φa〉µstr +
∑

ab

Ĉa,b〈φa〉µstr〈φb〉µstr, Sss
2 =

∑

k

Ĉk,k(〈φk〉µstr)2

Ẑcc = C0,0(1 + Scc
1 ), Scc

1 = 2
∑

a

Ĉa,0〈φa〉µcyl +
∑

ab

Ĉa,b〈φa〉µcyl〈φb〉µcyl (II.53)

where a, b, ... denote descendents of the identity operator, k labels other primaries (than the
identity) and their descendents. Ĉ ≡ C/C0,0.
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µ = 0

Let us first consider the case of zero chemical potentials. Using the results in Sections 2, and
Appendices II.A and II.B.1, we get

Ssc
1 = −aT l̃2

(
1 +O(l̃)2

)
+ aT T̄ l̃

4e−8πt/β
(
1 +O(l̃)2

)
+O(e−8πt̃)

Sss
1 = −aT l̃2

(
1 +O(l̃)2

)
+ 2aT T̄ l̃

4e−8πt̃
(
1 +O(l̃)2

)
+O(e−8πt̃)

Sss
2 =

∑

k

[
ak l̃

4hke−8πhkt/β
(
1 +O(l̃)2

)
+O(e−12πhk t̃)

]

Scc
1 = −aT l̃2

(
1 +O(l̃)2

)

aT =
cπ2

24
, aT T̄ =

AT T̄π
4

8c
ak =

A2
k

nk

(π
2

)4hk

(II.54)

To this order, it is easy to see that the contribution to I(t) from descendents of identity,
demarcated by aT , aT T̄ , vanishes. The leading contribution to I(t), demarcated by ak, occurs
only in Ẑss and comes from (〈φm(z, z̄)〉str)2 for which hk is the minimum (= hm) (this could
be a field which appears after a conformal transformation of the original quasiprimary field).
The time-dependence shown of Sss

2 comes from (II.17). Using this, we get

I(t) = 1− α exp[−2γ(0)m t] + ..., γ(0)m = 2π∆m/β (II.55)

This is of the form (II.9) for µ = 0, with

α ≡ A2
m

nm

(π
2

)4hm

(l̃)4hm

(
1 +O(l̃)2

)
(II.56)

The discarded terms in (II.55) are faster transients. This proves (II.9) for zero chemical
potential. This result has already appeared in [28].13

µ 6= 0

The generalization of the above result to the case of non-zero chemical potentials is straight-
forward. Once again, the dominant time-dependence arises from (〈φm(z, z̄)〉µstr)2 in the Sss

2

or Ẑss. The time-dependence (II.9) follows by using (II.49) in Sss
2 .

3.3 Properties of Q̂

From the asymptotic behaviour (II.9) of the thermalization function we indicated the asymp-
totic behaviour (II.13) of the dynamical reduced density matrix ρ̂dyn(t). By using the long
time behaviour of the one-point functions (II.6), we can easily deduce the following dominant
behaviour of overlaps of Q̂ with various quasiprimary fields at late times

Tr(Q̂φk(t)) ∝ e−(γk−γm)t, Tr(Q̂φm(t)) → constant.

13Our exponent differs from Cardy’s value by a factor of 2.
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4 Decay of perturbations of a thermal state

We found in the previous sections that the long time behaviour of the reduced density
matrix ρdyn,A(t) resembles that of a thermal ensemble plus a small deformation which decays
exponentially. We will find in the next section that the thermal ensemble (or more accurately
the generalized Gibbs ensemble) corresponds to a (higher spin) black hole geometry in the
bulk. The small perturbation of the equilibrium ensemble is thus expected to correspond to
a small deformation of the black hole geometry. Consequently, the exponential decay of the
deformation in the CFT should correspond to a ‘ringing-down’ or a quasinormal mode in
the bulk.

We will address the above issue in the next section which deals with bulk geometry.
However, in order to make the correspondence of the above paragraph more precise, in this
section we will directly present a CFT computation of the decay of a perturbation to a
thermal state. Note that this computation is, in principle, different from the exponential
decay of the one-point function in the quenched state, (II.6). However, what we will find is
that the long time behaviour (II.6) of an operator φk(0, t) in the quenched state is the same
as that of its two-point function (II.57) in the thermal state (II.3) (with chemical potentials).
The latter measures the thermal decay of a perturbation and is more directly related to a
black hole quasinormal mode. Throughout this section, we will assume that the conformal
dimensions of φk satisfy hk = h̄k.

We define the thermal two-point function as 14

G+(t, 0; β, µ) ≡
1

Z
Tr(φk(0, t)φk(0, 0)e

−βH−
∑

n µnWn) (II.57)

By the techniques developed in the earlier sections, a computation of this quantity amounts
to calculating the following correlator on the plane

〈φk(z, z̄)φk(y, ȳ)e
−
∑

n µnWn〉, z = ie−2πt/β , z̄ = −ie2πt/β , y = i, ȳ = −i (II.58)

where the µn-deformations are understood as an infinite series of contours as in the previous
section.

For µ = 0, the above two-point function is standard. Including the Jacobian of transfor-
mation, we get

G+(t, 0; β, 0) = (
2π

β
)4hk

[
(ie−2πt/β − i)(−ie2πt/β + i)

]−2hk t→∞−−−→ const e−2πt∆k/β, (II.59)

which clearly matches the long time behaviour of the one-point function (II.6) in the quenched
state for µ = 0. Here ∆k = 2hk.

In the above, we considered the thermal Green’s function for two points which are both
at the same spatial point σ = 0. It is easy to compute the Green’s function when the two
points are spatially separated by a distance l, say with σ1 = l and σ2 = 0. We get

G+(t, l; β, 0) ≡
1

Z
Tr(φk(l, t)φk(0, 0)e

−βH) =

[
2π

β
eπl/β

]4hk(
(ie2π(l−t)/β − i)(−ie2π(l+t)/β + i)

)−2hk

t,l≫β−−−→
{

const e−2πt∆k/β, (t− l) ≫ β
const e−2πl∆k/β , (l − t) ≫ β

(II.60)

14We use the same notations as in [29].
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The coordinates of the two points, in the notation of (II.58) are modified here to z =
ie2π(l−t)/β , z̄ = −ie2π(l+t)/β , y = i, ȳ = −i. The prefactor with the square bracket comes from
the Jacobian of the transformation from the cylinder to the plane. The behaviour of the
Green’s function is shown in Figure II.3. It is important to note that the exponential decay,
found in (II.6) shows up only for time scales t≫ l.

|G+(t,l)|

t

l=6
l=8

Figure II.3: Plots of the thermal Green’s function G+(t, l;β, 0) for β = 2π, ∆k = 1.5. The curve on the
left (blue) is for l = 6, and the curve on the right (orange) is for l = 8. Note that the exponential decay in
time occurs for times larger than l.

The effect of turning on the chemical potentials can be dealt with as in the previous sec-
tions. At O(µn), we will have, as before, a holomorphic contribution and an antiholomorphic
contribution. The former is proportional to

〈φk(z̄)φk(ȳ)〉 ×
∫

Γ

dz1z
n−1
1 〈Wn(z1)φk(z)φk(y)〉 (II.61)

As we see, the structure of the integral is the same as in the previous section. As before,
logarithmic terms appear in the above integrals which give the leading, linear, t-dependence.
Similar remarks also apply to the antiholomorphic contour. Since the calculations are very
similar to those in the previous two sections, we do not provide all details. By resumming
the series over the infinite number of contours, we find in a straightforward fashion that

G+(t, 0; β, µ)
t→∞−−−→ G+(0, 0; β, 0)b(µ)e

−γkt (II.62)

where b(µ) is time-independent, and is of the form b(µ) = 1 + O(µ). This long time decay
is the same as that of the one-point function (II.6) in the quenched state, as claimed above.
For points separated by a distance l, the above exponential decay shows up for t ≫ l, as in
(II.60).

In the above, we have discussed the two-point function in real space. It is straightforward
to convert the result (II.60) without chemical potentials to Fourier space, which develops
poles at

ωk,m|µ=0 = −i2π
β
(∆k + 2m), m = 0, 1, 2, ... (II.63)
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Our results in (II.6) can be interpreted as a shift, caused by the presence of the chemical
potentials µn, of the dominant pole ωk,0|µ=0 to

ωk,0 = −i2π
β
(∆k +

∑

n

µ̃nQn,k) = −iγk, (II.64)

where the notation is the same as that of (II.6). In this chapter we will not address the ques-
tion of the shift of the subdominant poles ωk,m (for m = 1, 2, ...) due to chemical potentials
(the current status of these can be found in [35, 36, 37]).

Two-point functions of the kind (II.57), for a single chemical potential µ3, and up to order
µ2
3, have appeared earlier in [36] (calculations up to O(µ5

3) have appeared in [37]). What we
find in this work is that at large times, the perturbation series in µn, up to all orders in all
chemical potentials, can be resummed, to yield the leading correction to the thermalization
rate in the presence of chemical potentials.

At a technical level, the one-point function in the quenched state corresponds to a one-
point function in a geometry with a boundary, and for operators considered here, these turn
into a two-point function on the plane, by virtue of the method of images. The thermal decay
naturally involves a two-point function on the plane 15 and agrees with the above two-point
function at late times.

5 Holography and higher spin black holes

Zero chemical potential: As remarked in the Introduction, a global quantum quench
described by an initial state of the form (II.5), for large central charges and zero chemical
potentials, has been shown in [5, 7, 14] to be dual to one half of the eternal BTZ (black
string) geometry, whose boundary represents an end-of-the-world brane.

In an independent development, it was found in [30] that the quasinormal mode of a scalar
field Φk(σ, t, z) of mass m in a BTZ background (dual to a CFT operator φk of dimension
∆k ≡ 1 +

√
1 +m2) is of the form exp[−2π∆t/β] at large times. This time-dependence

agrees with the CFT exponent in (II.60) exactly. This shows that the exponential decay of
a CFT perturbation to a thermal state corresponds to the decay of the corresponding scalar
field in the bulk geometry. This result has been extended to higher spin fields in the BTZ
background in [31].

Non-zero chemical potentials: In case the CFT has additional conserved charges, in
particular if it has a representation of a W∞ algebra (and consequently the hs(λ) algebra
[32]), then the bulk dual corresponding to those conserved charges have been conjectured
to be the conserved higher spin charges of higher spin gravity. In particular, [33, 34] have
shown that if one interprets the grand canonical ensemble (II.4) (more generally, the GGE)
in the framework of an hs(λ) representation, then the bulk dual corresponds to a higher spin
black hole.

15Actually the thermal calculation involves a product of two such factors, one holomorphic and the other
antiholomorphic, but one of the factors just gives an overall constant and only one factor leads to the
important time-dependence.
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Thus, we would like to conjecture that the bulk dual of the quantum quench with chemical
potentials, would correspond to a gravitational collapse to a higher spin black hole.

As an important consistency check, by analogy with the case with zero potential, in the
present case too, the leading quasinormal mode (QNM) of a scalar field Φk(σ, t, z) should
have a time-dependence given by (II.62). Following the results in [35] (see also [36, 37, 89])
16 we find that at late times t ≫ β the QNM for the hs(λ) scalar field Φ+ behaves, up to
O(µ3), as e

−iω
k,0

t, where

ωk,0 = −i2π
β

(
1 + λ+ µ̃3

1

3
(1 + λ)(2 + λ)

)
(II.65)

where the index k here refers to the operator φk dual to the scalar field Φ+. Noting that
for this operator we have ∆k = 1 + λ, and Q3,k = 1

3
(1 + λ)(2 + λ) [36, 37], we see that

the QNM frequency ωk,0 agrees, to the relevant order, with the pole (II.64) of the thermal
2-point function which, in turn, is related to the thermalization exponent by the relation
ωk,0 = −iγk, with γk given in (II.6).

6 Discussion

In this work, 2D conformal field theories were considered with additional conserved charges
besides the energy. We probed non-equilibrium physics starting from global quenches de-
scribed by conformal boundary states modified by multiple UV cut-off parameters (II.1). It
was found that local observables in such a state thermalize to an equilibrium described by a
grand canonical ensemble (II.4) with temperature and chemical potentials related to the cut-
off parameters. We computed the thermalization rate for various observables, including the
reduced density matrix for an interval. It was found that the same rate appears also in the
long time decay of two-point functions in equilibrium (see (II.6) and (II.14)). In the context
where the number of conserved charges is infinite, and they are identified with commuting
W∞ charges, the equilibrium ensemble (a generalized Gibbs ensemble, GGE) corresponds
to a higher spin black hole [33, 34]. We found that the thermalization rate found above
agrees with the leading quasinormal frequency of the higher spin black hole; this constitutes
an additional, dynamical, evidence for the holographic correspondence between the global
quenches in this work and the evolution into the higher spin black hole.

One of the main technical advances made in this chapter is the resummation of leading-log
terms at large times, presented in Section 2.2, which leads to exponentiation of the pertur-
bation series, leading to the thermalization rate, presented in (II.6), (II.49), as a function
of chemical potentials. This allows us to also compute the effect of chemical potentials on
the relaxation times of thermal Green’s functions. Another technical advance consists of the
computation of the long-time reduced density matrix (II.9), using a short-interval expansion,
which allows us to prove thermalization of an arbitrary string of local observables.

One might wonder whether the results presented in this chapter are tied to the use of
translationally invariant quenched states such as (II.1), whose energy density and various

16We wish to thank Alejandro Cabo-Bizet and Viktor Giraldo-Rivera for informing us that the difference
between equation (II.65) above and the corresponding equation (4.2) in a previous version of their paper [35]
was due to a typo, which has now been corrected in the new version of their paper.
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charge densities are uniform. We will address the question of inhomogeneous quench in a
forthcoming paper [88], both in the CFT and in the holographic dual, using the methods of
[1] where we create an inhomogeneous energy density by applying conformal transformations.
It turns out [88] that if the initial state has inhomogeneities in a compact domain and has
uniform energy densities outside, local observables again thermalize asymptotically with
exponents governed by the uniform densities. Other important issues involve local quenches
(see, e.g. [90, 91]), and compact spatial dimensions. The issue of thermalization when space
is compact is quite subtle. It has been shown in [28] that at large times one can have
the phenomenon of revival (observables effectively returning to their initial values). The
dynamical entanglement entropy for a quantum quench in a space with boundaries is an
interesting, related, issue; we hope to come back to this in a forthcoming publication [92].
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II.A Some details on one-point functions

Here we collect some additional helpful material on the one-point functions discussed in this
chapter.

II.A.1 A few explicit one-point functions with zero chemical po-

tentials

Case k = descendent of identity: In this case, φk(w, w̄) is of the form T, T̄ , or : T T̄ : or some
descendents thereof. Under a conformal transformation (II.16), these operators pick up a
c-number term in addition to a term proportional to the corresponding operator on the
plane/UHP. We will give some examples to illustrate the calculation
1. cylinder: In this case

〈T (w)〉cyl = 〈
(
− cπ

2

6β2
− 4π2

β2
z2T (z)

)
〉UHP = − cπ

2

6β2

〈: T T̄ :(w, w̄)〉cyl = 〈
(
[− cπ

2

6β2
− 4π2

β2
z2T (z)][− cπ

2

6β2
− 4π2

β2
z̄2T̄ (z̄)]

)
〉UHP = (

cπ2

6β2
)2 (II.66)

2. strip: In this case

〈T (w)〉str = 〈
(
− cπ

2

6β2
− 4π2

β2
z2T (z)

)
〉UHP = − cπ

2

6β2
= 〈T (w)〉cyl

〈: T T̄ :(w, w̄)〉str = 〈
(
[− cπ

2

6β2
− 4π2

β2
z2T (z)][− cπ

2

6β2
− 4π2

β2
z̄2T̄ (z̄)]

)
〉UHP

= (
cπ2

6β2
)2 + AT T̄ (z − z̄)−4 = (

cπ2

6β2
)2 + aT T̄ e

−8πt/β + ... (II.67)

where AT T̄ , aT T̄ are constants as in (II.17) and (II.18).
Case k = descendent of other primaries: In this case,
1. cylinder: The one-point function vanishes as in the case of primaries.
2. strip: The one-point function can be related to one-point function of primaries which is
dealt with above.

II.A.2 Some details on O(µn) correction to the one-point function

In this section we will consider the following integrals which arise in connection with O(µn)
correction to the one-point function 〈φ(σ, t)〉dyn:

In(z, z
′|Γ1) ≡

∫

Γ1

dz1 z
n−1
1 fn(z1, z, z

′), gn(z1, z, z
′) ≡

∫
dz1 z

n−1
1 fn(z1, z, z

′)

fn(z1, z, z
′) =

〈Wn(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

= qn,k
(z − z′)n

(z1 − z)n(z1 − z′)n
(II.68)
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The second integral on the first line is an indefinite integral. The integrals above can be
explicitly computed. E.g.

g3(z1, z, z
′) = q3,k[R3(z, z

′)(log(z1 − z)− log(z1 − z′))− z2

2(z1 − z)2
+

z′2

2(z1 − z′)2

+
z′(2z + z′)

(z − z′)(z1 − z′)
+

z(2z′ + z)

(z − z′)(z1 − z)
]

I3(z, z
′|Γ1) = q3,k[R3(z, z

′)(− log(−z) + log(−z′)) + 3
(z + z′)

(z − z′)
]

R3(z, z
′) ≡ (z2 + 4zz′ + z′2)

(z − z′)2
(II.69)

Note that I3 is essentially obtained from the lower limit of the integral, i.e. from −g(0, z, z′).
The contour Γ1 in I3 specifies which branch of the log is to be taken. In particular

I3(z, z
′|Γ1)− I3(z, z

′|Γ̃1) = −2πiq3,k R3(z, z
′) (II.70)

In the long time limit (II.20), we get

I3(z, z
′|Γ1) = I3(z, z

′|Γ̃1) = 2q3,kt(2π/β) + q3,k × const +O(e−2πt/β) (II.71)

In this equation we have displayed the principal value of the relevant integrals (the discon-
tinuity (II.70) tells us the coefficient of the log term or the linear t term).

However, we would like to understand the above results more simply, by using the
Wn(z1)ϕk(z) OPE which is of the form:

Wn(z1)ϕk(z) = qn,k
ϕk(z)

(z1 − z)n
+

n−1∑

i=1

αn,i
ϕk,i(z)

(z1 − z)n−i
+ regular terms (II.72)

where ϕk,i(z) is of dimension hk + i.17 Using this, we get an expansion for the connected
3-point function of the form:

〈Wn(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ
∗
k(z

′)〉conn
C

=
qn,k

(z1 − z)n
+

Cn,1

(z1 − z)n−1(z − z′)
+O(z − z′)−2 (II.73)

Performing the integral in (II.68),

gn(z1, z, z
′) = qn,k

(
log[z1 − z]− (n− 1)

z

z1 − z
+ ...

)

+
Cn,1

z − z′
(z1 − z + (n− 1)z log[z1 − z] + ...) + ...

The ellipsis in each round bracket represents terms with higher powers of 1/(z1− z) (up to a
maximum of (z1−z)−n); successive round brackets themselves are arranged in higher inverse

17This is the general form; some of the αn,i coefficients may, of course, vanish.
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powers of z − z′. Using the Wn(z1)ϕ
∗
k(z

′) OPE in a similar fashion and using the symmetry
property gn(z1, z, z

′) = (−1)ngn(z1, z
′, z) we can arrive at a general structure

gn(0, z, z
′) = qn,k(log[−z]− log[−z′])Rn(z, z

′) + ...

where Rn(z, z
′) = (−1)n−1Rn(z

′, z) is of the form Pn−1(z, z
′)/(z − z′)n−1 (Pn−1(z, z

′) is a
homogeneous symmetric polynomial of degree zero). See the explicit form of Rn for n = 3 in
(II.69). The omitted terms are all ratios of homogeneous polynomials in (z, z′) of the same
degree in the numerator and in the denominator. This implies that we have, in the long time
limit (II.20)

In(z, z
′|Γ1) = I3(z, z

′|Γ̃1) = 2qn,k(2π/β)t+ qn,k × const +O(e−2πt/β) (II.74)

which, of course, agrees with (II.71).
Note that the dominant time-dependence 2qn,kt(2π/β) comes from the long-time limit

of the coefficient Rn(z, z
′) of the log terms, which can be read off from the discontinuity

In(z, z
′|Γ1) − In(z, z

′|Γ̃1) (see (II.70)). Now, the contour
∫
Γ1−Γ̃1

dz1 can be deformed to

a very small circle
∮
Γzdz1 around the point z; therefore the leading long-time behaviour

R
(0)
n (z, z′) can be derived by using the leading OPE singularity in (II.72) and computing the

residue at z1 = z:

Coefficient of [log(−z′)− log(−z)] in In(z, z′)

= Residuez1=z

(〈Wn(z1)ϕk(z)ϕ
∗
k(z

′)〉conn
C

〈ϕk(z)ϕ∗
k(z

′)〉conn
C

)
≡ qn,kR

(0)
n (z, z′) = qn,k (II.75)

II.B Short interval expansion

In this section we will explain a formalism suitable for computing partition functions of
the kind that appear in (II.50). For convenience we will first compute these quantities in
Euclidean time τ = it and later analytically continue back to Lorentzian time. With this,
each of the expressions Zsc, Zss, Zcc is of the form

Tr(ρA,1ρA,2) =

∫

geometry 1

Dϕ1

∫

geometry 2

Dϕ2 δ(F [ϕ1, ϕ2]) exp (−S[ϕ1]− S[ϕ2]) (II.76)

where S[ϕ] represents the action for the CFT (with fields ϕ) and the delta-functional in the
measure represents a gluing condition between a geometry ‘1’ and a geometry ‘2’ along a
‘cut’ which is the location, at a particular time τ , of the spatial interval A : σ ∈ (−l/2, l/2)
18 For Zss, both geometries are that of a strip of the Euclidean plane described by complex
coordinates (w, w̄) = σ ± iτ defined by boundaries at τ = ±β/4 with boundary conditions
determined by the boundary state |Bd〉 introduced in (II.5). For Zcc, both geometries are
that of a cylinder cut of the Euclidean plane with identified boundaries at τ = −β/4, 3β/4.
The geometries for both Zss and Zcc are familiar from calculations of Entanglement Renyi

18To be precise, δ[F ] = δ(ϕ1(A<)−ϕ2(A>)) δ(ϕ1(A>)−ϕ2(A<)), where A< (A>) represents the limiting
value from below (above) the cut.
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entropy (of order 2) and can be calculated from appropriate correlation functions of twist
fields [93] which exchange two identical geometries. For Zsc, the two glued geometries are
different (that of a strip and a cylinder), hence the method of twist operators do not apply
in a straightforward fashion. (See Figure II.4). In this work, we will therefore, employ the
method of the short interval expansion.

Figure II.4: Two different geometries, the strip and the cylinder, glued along the cut as described in the
text. The method of the short interval expansion allows us to compute the functional integral over this
geometry by replacing a small tube enclosing the two glued cuts by a complete basis of operators φk1 ⊗ φk2

where the operators live in the two Hilbert spaces.

The idea of the short interval expansion [94] is as follows. To begin, we express the
functional integral (II.76) as an overlap of two wavefunctions in H1 ⊗ H2, as follows

Z12 = Tr(ρA,1ρA,2) = 〈ψout|ψin〉 =
∫

w1∈D1

Dϕ1(w1)

∫

w2∈D2

Dϕ2(w2) ψin[ϕ1, ϕ2] ψ
∗
out[ϕ1, ϕ2]

ψin[ϕ1, ϕ2] ≡
∫

w1∈D1

Dϕ1(w1)

∫

w2∈D2

Dϕ2(w2)δ(ϕ1|∂D1 − ϕ1)δ(ϕ2|∂D2 − ϕ2)δ(F [ϕ1, ϕ2]) exp (−S[ϕ1]− S[ϕ2])

ψout[ϕ1, ϕ2] ≡
∫

w1 /∈D1

Dϕ1(w1)

∫

w2 /∈D2

Dϕ2(w2)δ(ϕ1|∂D1 − ϕ1)δ(ϕ2|∂D2 − ϕ2) exp (−S[ϕ1]− S[ϕ2])

(II.77)

Here D1 (respectively, D2) is a small disc drawn around the cut in geometry 1 (respectively,
geometry 2).

Note that only |ψin〉 depends on the gluing condition since the delta functional in the
measure does not affect |ψout〉. The basic point of the short interval is that in the limit
when the length l of the cut is small compared with the characterizing length scale of the
geometries (in our case, when l ≪ β), the wavefunction ψin[ϕ1, ϕ2] becomes jointly localized
at the centre (w1, w̄1) of the disc D1 and at the centre (w2, w̄2) of the disc D2

19, and hence
can be expanded in terms of local operators, as follows

|ψin〉 =
∑

k1,k2

Ck1,k2 φk1(w1, w̄1)φk2(w2, w̄2)|0〉1 ⊗ |0〉2 (II.78)

Here k1, k2 label a complete basis of quasiprimary operators of the CFT Hilbert space. Each
term in the sum represents a factorized wavefunction (between geometries 1 and 2), which,

19We will take the centre of the disc in each geometry to coincide with the centre of the cut, which has
coordinates w = iτ, w̄ = −iτ .
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therefore, gives 20

Ẑsc =
∑

k1,k2

Ck1,k2〈φk1(w1, w̄1)〉str〈φk2(w2, w̄2)〉cyl,

Ẑss =
∑

k1,k2

Ck1,k2〈φk1(w1, w̄1)〉str〈φk2(w2, w̄2)〉str,

Ẑcc =
∑

k1,k2

Ck1,k2〈φk1(w1, w̄1)〉cyl〈φk2(w2, w̄2)〉cyl (II.79)

Here the subscripts str and cyl refer to “strip”, and “cylinder” respectively. The one-point
functions are evaluated on the respective geometries without any cut (see Section 2 for
more details). The glued functional integral (II.76), (II.77) is recovered by summing over
k1, k2 with the coefficients Ck1,k2; , as clear from (II.79) these are determined by the gluing
condition and depend on the size of the cut [94] (see Section II.B.1 for more details).

II.B.1 The coefficients Ck1,k2

As explained in [94] (see also Section II.B), the coefficients Ck1,k2 are determined by the
equation

Ck1,k2 =
Z2

Z2
1

(nk1nk2)
− 1

2 lim
z1→∞1,z2→∞2

(z1z2)
2(hk1

+hk2
)(z̄1z̄2)

2(h̄k1
+h̄k2

)〈φk1(z1, z̄1)φk2(z2, z̄2)〉C2

(II.80)

where C2 represents two infinite planes glued along a cut A, Z2 is the functional integral such
a glued geometry and Z1 is the functional integral over a single plane. This equation can be
easily proved by inserting quasiprimary a operator at infinity in each plane in an equation
like (II.76) or (II.77). The two point function in the glued geometry is to be determined by
using the uniformizing map:

y =
√
(z + l/2)/(z − l/2) (II.81)

The normalization constants nk are determined by the following orthogonality condition of
the quasiprimary operators

〈φk1(z1, z̄1)φk2(z2, z̄2)〉C =
nk1δk1,k2

z
hk1

+hk2
12 z̄

h̄k1
+h̄k2

12

(II.82)

where nk1 is a normalization constant. Note that Ck1,k2 = Ck2,k1. Below we will use the
notation

Ĉk1,k2 = Ck1,k2/C0,0 (II.83)

Case (k1, k2) = (0, 0): We will denote the identity operator as φ0 = 1. It is obvious that

C0,0 = Z2/Z
2
1 (II.84)

20In case geometries 1 and 2 are identical, the superscripts in wi, w̄i, i = 1, 2 indicate which sheet we are
considering.
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Case (k1, k2) = (k, 0): The only case where Ck,0 6= 0 is when φk(z, z̄) is a descendent of the
identity operator, e.g. T (z), T̄ (z̄), : T (z)T̄ (z̄) :, Λ(z), Λ(z̄) etc.21 E.g.

ĈT,0 = CT,0/C0,0 = ĈT̄ ,0 =
l2

16
; ĈT T̄ ,0 =

l4

256
; ... (II.85)

All other Ck,0 vanish as they are proportional to a one-point function of a primary operator
on the Riemann surface (and hence to that on the complex plane).
Case (k1, k2) = (primary, primary): In case φk1, φk2 are primary operators, (II.80) gives

Ĉk1,k2 =
1

nk1

δk1,k2

(
leiπ/2

4

)2(hk1
+h̄k1

)

(II.86)

Case (k1, k2) = (descendent, descendent): In case φk1 is of the form L−n1L−n2 ...L̄−m1L̄−m2 ...φl1

and φk2 is of the form L−r1L−r2 ...L̄−s1L̄−s2...φl2 , we can show that

Ĉk1,k2 = δl1,l2 δ
∑

n,
∑

r δ
∑

m,
∑

sA(n1, n2, ..., m1, m2, ...; r1, r2, ..., s1, s2, ...) l
2(hk1

+h̄k1
),

hk1 = hl1 +
∑

n, hk2 = hl2 +
∑

m (II.87)

where A(...) is a numerical coefficient.

21Here Λ(z) = :TT :(z)− 3
10∂

2
zT is the level 4 quasiprimary descendent of the identity.
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Chapter III

Free Scalar and Fermion Quenches

1 Introduction and Summary

The dynamics of systems undergoing a quantum quench has been extensively studied in
recent years [17]. In a quantum quench, some parameter of the Hamiltonian changes over
a brief period of time. The initial wavefunction in the pre-quench phase, whether it is a
ground state or otherwise, typically evolves to a non-stationary state, which then evolves by
the post-quench Hamiltonian which is time-independent. An important question in such a
dynamics is whether correlators equilibrate at long times, and if so, whether the equilibrium
is described by a thermal ensemble or otherwise [17, 18, 19]. With the advent of AdS/CFT,
the issue of thermalization has assumed additional significance as it maps to the subject of
gravitational collapse to a black hole [78, 95]. This has given rise to an extensive literature on
holographic thermalization (see, e.g. [76, 96, 97], for some of the early papers on the subject).
This correspondence has a direct bearing on the issue of universality of thermalization since
a collapse to a black hole state is also typically associated with loss of most memory of the
collapsing matter. In this chapter, we will find that the final equilibrium state is characterized
by an infinite number of thermodynamic paramaters (chemical potentials) which retain a
partial memory of the quench protocol1; in the holographic dual, this corresponds to retention
of memory by the final black hole of the collapsing matter.

A significant step in proving thermalization in a closed 2D system was taken in a recent
paper (MSS) [2] (similar results have subsequently appeared in [8]). MSS considered 1+1
dimensional quenches2, ending with a critical post-quench Hamiltonian and made the fol-
lowing assumptions:
(a) the post-quench wavefunction is of the generalized Calabrese-Cardy (gCC) form3

|ψ〉gCC = exp[−κ2H −
∑

n>2

κnWn]|Bd〉 (III.1)

1For a quench from a ground state, the final chemical potentials retain a full memory of the quench
process. When the initial state is different, the final chemical potentials retain partial information about the
initial state and the quench protocol.

2Unless otherwise stated, the spatial direction will be regarded as non-compact.
3In an obvious notation, we will define the boundary state with an energy cut-off, exp[−κ2H ]|Bd〉 as the

Calabrese-Cardy state |ψ〉CC . These states were introduced in [44] to describe 2D critical quenches.
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where Wn are additional conserved charges in the system (the results are valid even without
the additional charges present in the system). It was assumed that the charges are obtained
from local currents. Below, for specificity, we will assume that the system is integrable, with
a W∞ algebra4 and the Wn, n = 2, 3, ... (W2 = H) are W∞ charges.
(b) The spectrum of conformal dimensions in the post-quench critical theory has a gap.
(c) The dimensionless parameters κ̃n = κn/κ

n−1
2 , n > 2 are small and can be treated pertur-

batively.
(d) The size l of the interval is small compared to κ2.

5

With these assumptions in place, MSS proved that the reduced density matrix of an
interval of size l in the state (III.1) asymptotes to that in a GGE 6, defined by

ρ
GGE

=
e−βH−

∑∞
n=3 µnWn

Z
, β = 4κ2, µn = 4κn, n > 2 (III.2)

with a relaxation rate given by7

γ =
2π

β

[
∆+

∞∑

n=3

µ̃nQn +O(µ̃2)

]
, µ̃n ≡ µn

βn−1
, (III.3)

where ∆, Qn are given by the conformal dimension and otherW∞ charges of the most relevant
operator of the CFT (by assumption (b) above, ∆ > 0). A consequence of this result is that
the expectation value of an arbitrary string of local operators, which can be enclosed in an
interval of length l, exponentially thermalizes to its expectation value in the GGE.

One of the motivations of the present work is to extend the proof of thermlization,
without making the assumptions made in MSS, in theories of free scalars or fermions with a
time-dependent mass m(t) quenched to m = 0. We allow for nontrivial pre-quench states.

We proceed in two ways:

• We consider arbitrary quench protocols m(t) and arbitrary squeezed states as pre-
quench states (including the ground state) and show, by mapping the quench problem
to an auxiliary one-dimensional scattering problem, that the quench leads to a wave-
function of the gCC form. This proves the main ansatz of MSS (assumption (a) above).
We also show that by judiciously choosing the pre-quench states one can satisfy the per-
turbative assumption (c). Thus, for theories satisfying (b) and, for intervals satisfying
(d), thermalization follows from first principles.

4This clearly holds for the theory of free scalars and fermions discussed in this work.
5The assumptions (c) and (d) were made for technical reasons, which can, in principle, be obviated in

other methods, e.g. if the higher spin deformations κn>2 can be represented geometrically (like κ2 which
is treated as an imaginary time). Assumption (b) appears to be more essential. In case of the scalar field
model discussed in the present work, this condition implies compactifying the range of φ on a circle.

6GGE refers to a generalized Gibbs ensemble; see, e.g. [98] for a review. Thermalization to a GGE in
the context of an integrable CFT was anticipated earlier in [99, 14], and, for more general general integrable
models, in [100, 101, 21, 102, 103, 104, 22, 105, 99, 23, 106].

7To be precise the overlap of the square-normalized reduced density matrix in the pure state (III.1) with
that in the mixed state (III.2), behaves like 1− (const)e−2γt. See MSS for more details.
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• For specific quench protocols, but with arbitrary pre-quench states as above, we com-
pute exact time-dependent correlators, and explicitly show thermalization of one- and
two-point functions, without making any of the assumptions of MSS.8

One of the technical advances in this work is the use of non-trivial pre-quench states,
which we take to be squeezed states. The motivation for considering this class of states is
that besides being technically accessible, these states are experimentally realizable (see, e.g.
[38, 39]) and carry non-trivial quantum entanglement encoded by the squeezing function.

We list below some salient features of our analysis:

1. Memory retention by the equilibrum ensemble: By using inverse scattering
methods applied to the above-mentioned auxiliary potential scattering, we are able to
relate the post-quench wavefunction, in particular κn-parameters of the gCC state, to
the quench protocol m(t). In fact, if we start with the ground state of the pre-quench
Hamiltonian, the κn parameters completely encode m(t), implying that the equilibrium
ensemble specified by µn = 4κn, carries a precise memory of the quench protocol! In
case we start with a squeezed state, the equilibrium ensemble remembers a combination
of the quench protocol and the knowledge of the initial state.

2. UV/IR mixing (IR sensitivity to irrelevant operators): As already found in
MSS, the relaxation rate of various operators (III.3), which govern late time dynamics,
depends on all the chemical potentials µn, equivalently on the κn. Now from (III.1)
it is clear that the κn represent perturbing a given initial state by higher dimensional
(irrelevant) operators. Indeed, our computation of the exact correlators, shows that
for a large class of operators, these correlators at long times and large distances, are
affected by all these chemical potentials, in apparent contradiction to IR universality
(this is elaborated in Section 6). This phenomenon is actually related to the memory
retention mentioned above.

3. Holographic correspondence: Our results show that for a given quench protocol, a
GGE with a finite number of specified chemical potentials can be obtained by taking
the pre-quench state to be a suitably chosen squeezed state. By using this result and
the correspondence shown in MSS between thermalization to GGE and quasinormal
decay to a higher spin black hole, we infer that higher spin black holes with an arbitrary
set of chemical potentials get related to thermalization of squeezed states in the field
theory.

Outline: The outline and organization of the chapter is as follows:

In Section 2 we consider mass quenches in a free scalar in two dimensions. We relate
the dynamics to an equivalent potential scattering problem, discussed further in Appendix
III.A. We find that the exact time-dependent wavefunction can be related to a Bogoliubov
transform of the ‘out’ vacuum (the post-quench ground state). Using this fact we write

8Of course, as we mentioned above, the assumption (a) about the gCC form of the wavefunction is in any
case true.
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down the exact form of the scalar propagator. These results hold for a general mass quench,
including quenches from a massless to a massless theory. We find that the quenched state
is always describable in terms of a gCC state (using an application of the BCH formula,
as described in Apendix III.B). In Section 2.4 we work out all this for a specific quench
protocol (i.e. specific time dependence of the mass parameter). In Section 2.6 we consider
cases where the pre-quench state is a squeezed state. We show that this gives us a large
class of initial conditions, by tuning which we can prepare a quench state in the exact form
exp[−∑n κnWn]|D〉 which has a finite number of given κn coefficients.

In Section 3 we show how to generalize the above results to fermions.

In Section 4 we work out the scalar propagator for the specific quench protocol of Section
2.4. This allows us to compute various exact correlators, starting either from a ground state
or from specific quench states leading to a gCC state with a finite number of κn parameters.
We show that these correlators thermalize exponentially to a GGE; the relaxation rate is
found non-perturbatively, which agrees with (III.3) in the perturbative regime.

In Section 5 real time Wightman correlators in a GGE are computed.

In Section 6 we show that the IR behaviour of exact correlators is sensitive to all the
chemical potentials even though these represent perturbation by irrelevant operators. We
also show that the equilibrium ensemble remembers the quench protocol.

In Section 7 we make concluding remarks and mention some open problems. In Ap-
pendices III.C and III.D we discuss some notations and general results about bosonic and
fermionic theories.

2 Critical quench of a scalar field: general strategy

An important example of quantum quench is provided by free scalar field theories with time-
dependent mass (our notations will closely follow [107, 40], which also contain an extensive
reference to the relevant literature).

S = −1

2

∫
d2x(∂µφ ∂

µφ−m2(t)φ2)

=
1

2

∫
dkdt

2π

(
|φ̇(k, t)|2 − (k2 +m2(t))|φ(k, t)|2

)
, φ(−k, t) = φ∗(k, t) (III.4)

In this section we will consider a mass functionm(t) (this is referred to as a ‘quench protocol’)
which decreases from an asymptotic value m0 in the past to the asymptotic value m = 0 in
the future. This is called a critical quench since mass gap vanishes following the quench.

The equations of motion of various Fourier modes in (III.4) get decoupled, where each
mode satisfies a Schrödinger-type equation with −m2(t) playing the role of a potential:

− d2φ(k, t)

dt2
+ V (t)φ(k, t) = Eφ(k, t), V (t) = −m2(t), E = k2. (III.5)
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m2(t)

- m0
2

V(t)

t

m0
2

Figure III.1: The equivalent Scrhödinger problem. We have assumed a quench of the mass

parameter from m0 to 0, so that m2(t)
t→−∞−−−−→ m2

0, m
2(t)

t→∞−−−→ 0.

As explained in Appendix III.A (see, e.g. [108], Chapter 3 for details), the solution for
the field φ(k, t) can be expressed in two distinct ways, as (cf. (III.98))

φ(k, t) = ain(k)uin(k, t) + a†in(−k)u∗in(−k, t) = aout(k)uout(k, t) + a†out(−k)u∗out(−k, t),

φ(x, t) =

∫
dk

2π
φ(k, t) eikx (III.6)

where the ‘in’ and ‘out’ wavefunctions uin,out(k, t) are defined as in (III.99). The in- and out-
oscillators are related to each other through the Bogoliubov coefficients α(k), β(k)

ain(k) = α∗(k)aout(k)− β∗(k)a†out(−k),
aout(k) = α(k)ain(k) + β∗(k)a†in(−k), (III.7)

which are related to the potential scattering data as explained in Appendix III.A. The
Bogoliubov coefficients are actually functions of |k|, as explained in Appendix III.A.2.

2.1 General proof of the gCC ansatz [2] for the ground state

The two sets of oscillators define two distinct vacua |0, in〉 and |0, out〉, defined by ain(k)|0, in〉 =
0 and aout(k)|0, out〉 = 0. Using the first line of (III.7), we can express the in-vacuum in
terms of the out-vacua as follows9

|0, in〉 = exp[
1

2

∑

k

γ(k)a†out(k)a
†
out(−k)]|0, out〉, (III.8)

where

γ(k) =β∗(k)/α∗(k) = r∗(k). (III.9)

In the last step we have used the expression for the reflection amplitude in (III.101). Equation
(III.9) establishes the relation between the quantum quench problem in the QFT and the
auxiliary potential scattering problem discussed in Appendix III.A.

9This is proved by simply checking that the right hand side is annihilated by α∗(k)aout(k)−β∗(k)a†out(−k).
Here

∑
k is defined as the sum over discretized values of k, as elaborated in Appendix III.C.
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In the above expression (III.8) we represent the states in the Heisenberg picture, as is
customary in QFT in curved spacetime.

With the above ingredients in place, it’s a simple exercise, using the Baker-Campbell-
Hausdorff formula (see Appendix III.B), to show that the in-vacuum can be written in the
following form10

|0, in〉 = exp[
1

2

∑

k

γ(k)a†out|(k)a†out(−k)]0, out〉 = exp[−
∑

k

κ(k)a†out(k)aout(k)]|D〉,

κ(k) = −1

2
log(−γ(k)) (III.10)

where |D〉 is a Dirichlet boundary state (III.113), defined in terms of the ‘out’ Fock space:

|D〉 = exp[−1

2

∑

k

a†out(k)a
†
out(−k)]|0, out〉. (III.11)

Using the relation with the scattering problem (as described in Appendix III.A), especially
(III.9) and (III.104) we find that γ(k) admits a small-momentum expansion of the form

γ(k) = −1 + γ1|k|+ γ2|k|2 + γ3|k|3 + ..., γn = r∗n, Re(γ1) ≥ 0 (III.12)

Using this power series expansion, and the expression for κ(k) in (III.10), we can expand
κ(k) also in a power series, as follows:

κ(k) = κ2|k|+ κ3|k|2 + κ4|k|3 − ...,

κ2 =
γ1
2
, κ3 =

1

4

(
γ21 + 2γ2

)
, κ4 =

1

6

(
γ31 + 3γ1γ2 + 3γ3

)
, ... (III.13)

Note that it follows that Re κ2 ≥ 0. Below we will find explicit examples of this power
series for specific quench protocols m(t) which interpolate from m0 to m = 0. For quenches
involving a single real scalar field, we will find that the above expansion (III.13) has only
odd powers of |k|,11 and, explicitly κ2 > 0.12 Putting everything together, we find the
following expression for the ground state |0, in〉, in a gCC form (III.1) with the boundary
state identified as a Dirichlet state (III.11):

|0, in〉 = exp[−κ2H −
∞∑

n=2

κ2nW2n]|D〉 (III.14)

where W2n, n = 1, 2, ...,(W2 = H) are the even W∞ charges [41] of the final massless scalar
field theory, which we define here as follows13,14

H ≡W2 =
∑

k

|k|a†out(k)aout(k), W2n =
∑

k

|k|2n−1a†out(k)aout(k), n = 2, 3, ... (III.15)

10This result was independently found some time ago, for the quench protocol discussed in Section 2.4, in
[109]. We thank Sumit Das for sharing these results with us.

11This is consistent with the fact that a real scalar field provides a representation of the W∞ algebra [41]
where the odd Wn’s vanish. See below.

12For massless→massless quench, κ2 turns out to be purely imaginary (see Section 2.5).
13The normalization convention here for the W -charges differs from that of [41].
14If the time-dependence of the Hamiltonian stops after a finite time, the post-quench Hamiltonian coin-

cides with the W2 charge, and the other W2n charges also represent conserved charges of the post-quench
evolution.
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The values of these charges are given by

〈W2l〉 =
∑

k

|k|2l−1〈N(k)〉, l = 1, 2, 3, ...,

where 〈N(k)〉 ≡ 〈0in|a†out(k)aout(k)|0in〉 = |β(k)|2 (III.16)

The last step famously follows by expressing the out-oscillators in terms of the in-oscillators
using (III.7).

Note that (III.14) is a relation between Heisenberg states, that is, the LHS, evolved to any
time t, equals the RHS evolved to the same time t. Thus, if the time-dependence of the
Hamiltonian stops at time t = t0, then we have15

T
(
ei

∫ t
−∞ H(t′)dt′

)
|0, in〉 = e−κ2H−∑∞

n=2 κ2nW2n |D〉, t ≥ t0 (III.17)

Conclusion: Thus, we find that the ground state, under a quantum quench to zero mass, is
exactly represented in the generalized Calabrese-Cardy (gCC) form, as predicted in [2].

We will indeed, find below that the above conclusion holds even when we start from more
general states in the initial massive theory.

2.2 Thermalization to GGE

As proved for general initial gCC-type initial states (III.1) in MSS [2], for a perturbative do-
main in the κn parameters, and as we will show below explicitly for a large number of specific
cases, the post-quench state, which is of the form (III.1) shows subsystem thermalization to
the GGE (III.2):

|ψ(κ2, {κn})〉gCC

subsystem−−−−−−−−−→
thermalization

ρ
GGE

(β, {µn}), β = 4κ2, µn = 4κn (III.18)

Note the alternative form of this equation:

exp[−
∑

k

κ(k)N̂(k)]|D〉 subsystem−−−−−−−−−→
thermalization

1

Z
exp[−

∑

k

µ(k)N̂(k)], µ(k) = 4κ(k) (III.19)

Both equations are to be interpreted as the statement that a reduced density matrix on the
LHS asymptotically approaches that in the RHS. We will compute explicit correlators below
which satisfy the same property.

The energy and W -charges (as well as the number operator) are conserved in the post-
quench CFT dynamics, we have

〈H〉
gCC

= 〈H〉
GGE

, 〈Wn〉gCC
= 〈Wn〉GGE

, 〈N(k)〉
gCC

= 〈N(k)〉
GGE

(III.20)

15In case the time-development continues asymptotically, but as e−t/t0 as in (III.24), then (III.17) is again
true for t≫ t0, up to terms of magnitude e−t/t0 .
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Thus, the charges (III.16) measured for the post-quench state also refer to those of the GGE.
In particular, note that

〈N(k)〉 = |β(k)|2 = |γ(k)|2
1− |γ(k)|2 =

1

e4κ(k) − 1
(III.21)

This relation can be identified with a similar relation in [21]. To prove the above equation,
we have used (III.9), (III.10) and (III.102).

2.3 The propagator

Using the defining property of the in-vacuum |0, in〉, and the mode expansion of φ(x, t) in
terms of the in-modes, it is easy to derive the following basic two-point function

〈0, in|φ(x1, t1)φ(x2, t2)|0, in〉 =
∫

dk

2π
uin(k, t1)u

∗
in(k, t2) e

ik(x1−x2)

=

∫
dk

2π

[
|α(k)|2uout(k, t1)u∗out(k, t2) + α(k)β∗(k)uout(k, t1)uout(−k, t2)

+α∗(k)β(k)u∗out(−k, t1)u∗out(k, t2) + |β(k)|2u∗out(−k, t1)uout(−k, t2)
]
eik(x1−x2) (III.22)

In the second step we have used the relation (III.103) between the ‘in’ and ‘out’ modes.
Using (III.9) and (III.102), we can find

|α(k)|2 = 1

1− |γ(k)|2 , |β(k)|
2 =

|γ(k)|2
1− |γ(k)|2 ,

α(k)β∗(k) =
γ(k)

1− |γ(k)|2 , α
∗(k)β(k) =

γ∗(k)

1− |γ(k)|2 (III.23)

The propagator (III.22) has recently appeared in [110] who used it to study the relation
between smooth fast quenches and instantaneous quenches. Related expressions, in a some-
what different form, have appeared in [111].
Using the relation (III.9) to relate γ(k) to the reflection coefficient r∗(k) (see Appendix III.A),
we find that the above propagator can be expressed in terms of the solution of the auxiliary
potential scattering problem. In Section 4 we will determine this propagator exactly for a
specific quench protocol.

2.4 A specific quench protocol

We will now work out some of the above ideas for the specific mass function

m2(t) = m2
0(1− tanh(ρt))/2 (III.24)

The Schrödinger problem with a tanh potential can be exactly solved (see, e.g. [108], Chapter
3, where this model appears in a simple model of cosmological particle creation). Using this
fact, we can find the following explicit solutions for uin(k, t) and uout(k, t):

uin(k, t) =
e−iωint

√
2ωin

2F1

(
iω−
ρ
,−iω+

ρ
; 1− iωin

ρ
;−e2ρt

)
(III.25)

uout(k, t) =
e−iωoutt

√
2ωout

2F1

(
iω−
ρ
,
iω+

ρ
;
iωout

ρ
+ 1;−e−2ρt

)
(III.26)
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where 2F1 is a hypergeometric function and

ωin =
√
k2 +m2

0, ωout = |k|, ω± =
1

2
(ωout ± ωin)

Using (III.103) (see Appendix III.A for details) and properties of hypergeometric functions
[112] for large arguments, we find the following Bogoliubov coefficients

α(k) =

√
ωout

ωin

Γ
(
− iωout

ρ

)
Γ
(
1− iωin

ρ

)

Γ
(
− iω+

2ρ

)
Γ
(
1− iω+

2ρ

) , β(k) =

√
ωout

ωin

Γ
(

iωout

ρ

)
Γ
(
1− iωin

ρ

)

Γ
(

iω−
2ρ

)
Γ
(
1 + iω−

2ρ

)

Using these values, and the general method of Section 2, we find that the ground state is of
the gCC form (III.14),

|0, in〉 = exp[−κ2H −
∞∑

n=2

κ2nW2n]|D〉

where the κn’s are found by using (III.10), as follows:

κ2 =
i
(
γ + ψ(0)

(
− im0

ρ

))

ρ
, κ4 =

−im0ψ
(2)
(
− im0

ρ

)
+ 6ρψ(1)

(
− im0

ρ

)
+ 7im0ψ

(2)(1) + π2ρ

24m0ρ3

(III.27)

where ψ(n)(z) is the n-th derivative of the digamma function ψ(z) = Γ′(z)/Γ(z). In an
expansion in 1/m0, m0/ρ (to be interpreted in the sense of Appendix III.E), these coefficients
read as follows

κ2 =
1

m0

(
1 +

π2

12

m2
0

ρ2
− i

ζ(3)

4

m3
0

ρ3
+ ...

)
, κ4 =

1

m3
0

(
− 5

160
+

π2

288

m2
0

ρ2
+ ...

)
, ... (III.28)

Note that these are functions of both the scales m0, ρ characterizing the quench protocol.
The coefficient of odd powers of (m0/ρ) in this expansion turns out to be purely imaginary.
Note that the κn’s (in this case the first two, κ2 and κ4) encode the quench protocol (III.24)
completely; since the κn’s are related in a one-to-one fashion to equilibrium chemical poten-
tials µn = 4κn (III.2), it follows that from the equilibrium state one can retrieve the quench
history (see Section 6.2 for more details).
For later reference, the “out”-number operator (III.16) turns out to be

〈N(k)〉 = csch

(
πk

ρ

)
sinh2



π
(
k −

√
k2 +m2

0

)

2ρ


 csch

(
π
√
k2 +m2

0

ρ

)
(III.29)

Once again, we verify, as in (III.17), that the time-evolved ground state can be exactly
described by a gCC state, of the form (III.1).16

16We should note the distinction of this statement with the exact form in (III.17). Since for the “tanh”
protocol, there is no finite time t0 beyond which the Hamiltonian is time-dependent, one should use (III.17)
here as an asymptotic statement, for t≫ 1/ρ, with exponentially small corrections O(e−ρt).
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Sudden limit

We will be especially interested in the sudden limit (ρ→ ∞) of the above quench protocol

m2(t) = m2
0Θ(−t) (III.30)

For later use, we note that in the sudden limit

ρ→ ∞, (III.31)

the Bogoliubov coefficients become

α(k) =
1

2

|k|+ ωin√
|k|ωin

, β(k) =
1

2

|k| − ωin√
|k|ωin

(III.32)

whereas the in- and out- waves become

uin(k, t) =
e−iωint

√
2ωin

, uout(k, t) =
e−iωoutt

√
2ωout

(III.33)

The κn coefficients in this limit are given by taking the ρ→ ∞ limit of (III.28):

κ2 =
1

m0
, κ4 =

1

m3
0

(
− 5

160

)
, ... (III.34)

Thus,

|0, in〉 = exp[− H

m0

+
5W4

160m3
0

+ ...]|D〉 (III.35)

which is a gCC state.17 In the sudden limit, the number operator (III.29) becomes

〈N(k)〉 =

(√
k2 +m2

0 − |k|
)2

4
√
k2 +m2

0|k|
(III.36)

A more precise and careful version of the sudden limit, than (III.31) is described in Appendix
III.E.

2.5 Quenching from critical to critical

We will consider a quantum quench for the scalar field where both the initial and final masses
vanish (i.e. a quench from a critical Hamiltonian to a critical Hamiltonian).

17One might be alarmed by the positive sign of the W4-coefficient in this state. This would mean that if
all the higher κn>3 were absent, κ(k) would have grown as +k3, hence implying a divergent norm of the gCC
state e−

∑
k
κ(k)N(k)|D〉. However, such catastrophies are avoided by higher κn coefficients, as they must,

since the gCC state is equal, as a Heisenberg state, to the initial ground state, which has a finite norm. We
will have more to say in Appendix III.E on other possible divergences associated with the sudden limit.
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m2(t)

t

Figure III.2: A mass-profile describe quantum quench from a critical Hamiltonian back to the critical

Hamiltonian. Here m2(t)
t→±∞−−−−→ 0.

A typical mass function which follows this property is [40]:

m2(t) = m2
0 sech2(ρt). (III.37)

Using the coordinate transformation y = e2ρt. The equation of motion, analogous to (III.5),
becomes

φ′′(k, y) +
φ′(k, y)

y
+

(
k2

4ρ2y
+

m2
0

ρ2(1 + y)2

)
φ(k, y) = 0 (III.38)

With α = 1/2 + 1
ρ

√
4m2

0 + ρ2, this equation can be solved to give

u(k, t) = e−ikt(1 + e2ρt)α
[
C1 e

2ikt
2F1

(
α,
ik

ρ
+ α, 1 +

ik

ρ
,−e2ρt

)

+ C2 2F1

(
α,−ik

ρ
+ α, 1− ik

ρ
,−e2ρt

)]
(III.39)

C1 = 1 and C2 = 0 gives the incoming solution uin(k) which satisfies the property (III.99). On
taking the t→ +∞ limit of uin(k) we can express uin(k) in the form α(k)uout(k)+β(k)u

∗
out(k)

(see Appendix III.A for more details), where

α(k) =
Γ
(

ik
ρ
+ 1
)
Γ
(

ik
ρ

)

Γ
(

ik
ρ
− α + 1

)
Γ
(

ik
ρ
+ α

) (III.40)

β(k) = i sin(πα)cosech

(
πk

ρ

)
(III.41)

Using (III.9) and (III.10), we can express the in-vacuum in a gCC form (III.1) with

κ(k) =
ikρ

2m2
0

− k2ρ2

4m4
0

− ik3ρ3

6m6
0

+
k4ρ4

8m8
0

+
ik5ρ5

10m10
0

+ . . . , (III.42)

which leads to

κ2 =
iρ

2m2
0

, κ3 =
−ρ2
4m4

0

.

Note that κ2 is imaginary. By contrast, κ2 in a massive quench, is real and positive (see
e.g. (III.34)), and is identified with β/4 where β is the inverse temperature of the associated
thermal state. With imaginary κ2, such an identification is clearly problematic. We will find
in the next section that starting with an appropriate squeezed state, one can manufacture a
CC state with positive κ2.
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2.6 Quenching squeezed states

Suppose, instead of the ground state we start with a squeezed state18 of the pre-quench
Hamiltonian:19

|ψ, in〉 = |f〉 ≡ exp

[
1

2

∑

k

f(k)a†in(k)a
†
in(−k)

]
|0, in〉 (III.43)

This is clearly a Bogoliubov transformation of |0, in〉. To see this, note that |f〉 is annihilated
by ain(k)− f(k)ain(−k),

0 =
[
ain(k)− f(k)a†in(−k)

]
|f(k), in〉

=
[
α∗(k)aout(k)− β∗(k)a†out(−k)− f(k)

{
α(k)a†out(−k)− β(k)aout(k)

}]
|f(k), out〉

=
[
{α∗(k) + f(k)β(k)}aout(k)− {β∗(k) + f(k)α(k)}a†out(−k)

]
|f(k), out〉 (III.44)

Thus, it follows that the squeezed pre-quench state is also expressible as a generalized
CC state

|ψ, in〉 = |f〉 = exp

[
1

2

∑

k

γ
eff
(k)a†out(k)a

†
out(−k)

]
|0, out〉 (III.45)

where the effective γ
eff
(k) is

γ
eff
(k) =

β∗(k) + f(k)α(k)

α∗(k) + f(k)β(k)
(III.46)

Using the result (III.45) and the method leading to (III.10), we can again show

|f〉 = exp[
∑

k

−κ
eff
(k)a†out(k)aout(−k)]|D〉,

κ
eff
(k) ≡ −1

2
log (−γ

eff
(k)) (III.47)

where κeff(k) has an expansion of the form (III.13) as argued below.

General arguments from scattering theory: Using elements of scattering theory de-
scribed in Appendix III.A, we can rewrite (III.46) as follows

γ
eff
(k) =

(
f(k)− r′(k)

1− r′∗(k)f(k)

)(
α∗(k)

α(k)

)
(III.48)

18These states have importance in diverse contexts [38, 43] including quantum entanglement [39]. Time-
development of these states can address the issue of dynamical evolution of quantum entanglement, among
other things.

19We assume that the norm of the squeezed state is finite, which is ensured by the finiteness of the integral∫
dk/(2π) log(1− |f(k)|2).
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Here we have used β∗(k) = −r′(k)α(k), where r′(k) is the dual reflection coefficient (III.97),
which has a small momentum expansion (III.105) r′(k) = 1 + O(k). Assuming f(k) to be
regular at k = 0 so that it admits an expansion f(k) = f(0) + O(k), we find that the first
factor in the RHS has an expansion −1 +O(k). Using (III.106), the RHS has an expansion
−1+O(k), which ensures an expansion of κeff in (III.47) of the form (III.13).20 We will list
a number of examples below to find such an expansion of κ(k).

Explicit Examples: In the first two examples, we fix the quench protocol to be given by
the ‘tanh’ function (III.24), in the sudden limit ρ→ ∞. We will determine the κeff explicitly
by using (III.47) and the expressions for the Bogoliubov coefficients (III.32). In the

• Gaussian: For a Gaussian squeezing function with variance proportional to m2
0, ie.

f = exp[−k2/(a2m2
0)], we get

κeff (k) =
|k|
a2m0

+
(6a4 + 1) |k|3
12a6m0

3
− (30a8 − 10a4 − 3) |k|5

240a10m0
5

+O(|k|7) (III.49)

• Preparing CC states and gCC states with specified parameters: It is clear
from (III.47) that given specific Bogoliubov coefficients, e.g. (III.32), we can obtain
any desired expression for κeff (k) by tailoring the choice of the squeezing function
f(k). Thus, e.g.

f(k) = 1− 2|k|√
k2 +m0

2 tanh (κ2,0|k|+ κ4,0|k|3) + |k|
(III.50)

yields a function κeff(k) = κ2,0|k|+ κ4,0|k|3 with specified parameters κ2 = κ2,0, κ4 =
κ4,0. This identifies the squeezed state with a gCC state with these κ-parameters:21

|ψ, in〉 = |f〉 = exp[− (κ2,0H + κ4,0W4) |D〉 (III.51)

Specializing even more, we can manufacture κ2,0 = 1/m0, κ4 = 0, i.e. κeff = κ2,0k, (cf.
(III.34)) by choosing

f(k) = 1− 2|k|√
k2 +m0

2 tanh (|k|/m0) + |k|
(III.52)

which yields a CC state of the form

|ψ, in〉 = |f〉 = exp

[
− 1

m0

∑

k

|k|a†kak
]
|D〉 (III.53)

We note that these squeezing functions are localised functions which vanish at both
k → 0 and k → ∞ limits and hence the resultant squeezed state is normalisable. Note
that the functions f(k) are even functions, and hence are actually functions of |k|.

20This does not ensure Re(κ2) > 0 by itself. We have to tailor the choice of f(k)’s to ensure it, as done in
the examples below.

21Note that we choose here κ2,0, κ4,0 to be positive to ensure that the gCC state is of finite norm; see
footnote 19.
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• Critical to critical: Applying the above method to the quench protocol discussed in
Section 2.5, we find that the following choice of the squeezing function

f(k) =
a
(
−e2|k|(κ2,0+κ4,0k2)

)
+ a− i|k|

−a + (a+ i|k|)e2|k|(κ2,0+κ4,0k2)

leads to a gCC state e−κ2,0H−κ4,0W4 |D〉. Specializing to

f(k) =
a
(
−e2κ2,0|k|

)
+ a− i|k|

−a + (a+ i|k|)e2κ2,0|k|

leads to a CC state e−κ2,0H |D〉.

The propagator in a squeezed state

The propagator in a squeezed state |ψ, in〉 = |f〉 is obtained by replacing α→ αeff , β → βeff
in (III.22):

〈ψ, in|φ(x1, t1)φ(x2, t2)|ψ, in〉

=

∫
dk

2π

[
|αeff(k)|2uout(k, t1)u∗out(k, t2) + αeff (k)β

∗
eff(k)uout(k, t1)uout(−k, t2)

+α∗
eff (k)βeff(k)u

∗
out(−k, t1)u∗out(k, t2) + |βeff(k)|2u∗out(−k, t1)uout(−k, t2)

]
eik(x1−x2)

(III.54)

3 Fermion theories with time-dependent mass

We will now consider fermion field theories with a time-dependent mass:

S = −
∫
d2x(iΨ̄γµ∂µΨ−m(t)Ψ̄Ψ)

Once again, a general analysis of an auxiliary Schrödinger problem can be performed [42], to
infer the emergence of the general Calabrese-Cardy (gCC) state. However, we present below
the analysis for a mass quench specific quench protocol, involving a tanh function, which
describes quantum quench from a non-critical to a critical Hamiltonian.

We start with the Dirac equation with the following time-dependent mass:[42, 40]

m(t) =
m0

2
(1− tanh (ρt))

The Dirac equation is
(iγµ∂µ −m(t)) Ψ = 0 (III.55)

The ansatz for a solution of this equation is

Ψ(k; x, t) =
(
γ0∂t − γ1∂x − im(t)

)
e±ikxΦ(k, t) (III.56)
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where Φ(k, t) is a two-component spinor that satisfies the following equation

(
∂2t + k2 +m2(t)− iγ0ṁ(t)

)
Φ(k, t) = 0 (III.57)

Defining Φ = (φ+, φ−)
T , the equations decouple in the eigenbasis of γ0 in Dirac basis,

(
∂2t + k2 +m2(t)∓ iṁ(t)

)
φ±(k, t) = 0 (III.58)

where φ+(t) is the solution corresponding to γ0 eigenvalue 1 and its part with asymptotic
positive energy eigenvalues appears with the spinor u(0) in the mode expansion of Ψ(x, t).
Similarly, φ−(t) is the solution corresponding to γ0 eigenvalue −1 and its part with asymp-
totic negative energy eigenvalues appears with the spinor v(0) in the mode expansion of
Ψ(x, t). The conventions and the explicit solutions are described in Appendix III.D. The
explicit solutions lead to the following expressions of Bogoluibov coefficients α±(k) and β±(k)

α±(k) =
Γ
(
− i|k|

ρ

)
Γ
(
1− iωin

ρ

)

Γ
(
1− i(|k|∓m0+ωin)

2ρ

)
Γ
(
− i(|k|±m0+ωin)

2ρ

) (III.59)

β±(k) =
Γ
(

i|k|
ρ

)
Γ
(
1− iωin

ρ

)

Γ
(
− i(−|k|±m0+ωin)

2ρ

)
Γ
(
1− i(−|k|∓m0+ωin)

2ρ

) (III.60)

In terms of the ‘out’ oscillators, the ‘in’ ground state is

|ψ〉 = exp

[ ∞∑

k=−∞
γ(k)a†k,outb

†
−k,out

]
|0, in〉

where γ(k) = χ(k) β+(k)∗

α+(k)∗ (III.122). Using a similar BCH formula to (III.10) for fermionic
creation and annihilation operators, we get

|Ψ〉 = e−κ2H+κ4W4−κ6W6−...|D〉 (III.61)

where κ2 =
1

2m
+
π2m

12ρ2
+

1

m
O(m/ρ)3, κ4 =

1

12m3
− π2

24mρ2
+

1

m3
O(m/ρ)3,

κ6 =
3

80m5
− π2

96m3ρ2
+

1

m5
O(m/ρ)3

and |D〉 is the Dirichlet state of the fermionic theory. Using the chiral mode expansion
(IV.116) and (IV.117),

|D〉 = e
∑

k sign(k)a†kb
†
−k |0〉 (III.62)

In writing the W∞ charges for the fermions, we have used the currents mentioned in the
Appendix III.D.22

22We choose the overall normalization of the W2n(z)-currents so that the W2n charges are given by W2n =∑
k |k|2n−1

[
a†(k)a(k) + b†(k)b(k)

]
.
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4 Exact time-dependent correlators

4.1 Ground state

In this section, we will consider the specific quench protocol discussed in Section 2.4.23

Using the general computation (III.22) of the propagator and the specific values (III.32) and
(III.33), we find

Gq,0(x1, t1; x2, t2) ≡ 〈0, in|φ(x1, t1)φ(x2, t2)|0, in〉 =∫
dk

2π
Gq,0(k)

[(
2|k|

(
|k|+

√
k2 +m2

0

)
+m2

0

)(
Θ(k)e−ik(x−

2 −x−
1 ) +Θ(−k)eik(x+

2 −x−
1 )
)

+

(
2|k|

(
|k| −

√
k2 +m2

0

)
+m2

0

)(
Θ(k)e−ik(x+

2 −x+
1 ) +Θ(−k)eik(x−

2 −x−
1 )
)

−m2
0

(
Θ(k)e−ik(x+

2 −x−
1 ) +Θ(−k)e−ik(x−

2 −x+
1 )
)

−m2
0

(
Θ(k)e−ik(x−

2 −x+
1 ) +Θ(−k)e−ik(x+

2 −x−
1 )
)]

(III.63)

where we have defined x±i = xi ± ti, i = 1, 2. Note that the last two lines involve the
combinations t1+ t2, which reflect the fact that time-translation invariance is lost due to the
time-dependent perturbation. In the above expression

Gq,0(k) =
1

8|k|2
√
k2 +m2

0

(III.64)

is the significant part of the above propagator. Singularities of this quantity in the k-plane
are explained Figure III.3: these are a double pole at k = 0 and two branch points on the
imaginary axis, at k = ±im0.

After performing the Fourier transforms, the propagator is given by:

Gq,0(x1, t1; x2, t2)

=
1

8π

(
−G2,1

1,3

(
m2

0

4

(
x−2 − x+1

)
2

∣∣∣∣
3
2

0, 1, 1
2

)
+G2,1

1,3

(
m2

0

4

(
x−2 − x−1

)
2

∣∣∣∣
3
2

0, 1, 1
2

)

+G2,1
1,3

(
m2

0

4

(
x+2 − x+1

)
2

∣∣∣∣
3
2

0, 1, 1
2

)
−G2,1

1,3

(
1

4
m2

0

(
x+2 − x−1

)
2

∣∣∣∣
3
2

0, 1, 1
2

)

+ 4K0

(
m0

∣∣x−2 − x−1
∣∣)+ 4K0

(
m0

∣∣x+2 − x+1
∣∣)

+2iπ sgn
(
x−2 − x−1

)
− 2iπ sgn

(
x+2 − x+1

))
(III.65)

For x2 − x1 = r and t1 = t2 = t, in the asymptotic limit this becomes

Gq,0(0, t; r, t) =
1

8
(m0(2t− r)) +

1

8
√
2πm0

(
e−m0(2t−r)

√
2t− r

+
e−m0(r+2t)

√
r + 2t

+
2e−m0r

√
r

)
+ ... r < 2t

=
1

8
√
2πm0

(
e−m0(r−2t)

√
r − 2t

+
e−m0(r+2t)

√
r + 2t

+
2e−m0r

√
r

)
+ ... r > 2t

23Note that the quantities defined in Section 2.4 are obtained by a naive definition of the sudden limit
(III.31). As explained in Appendix III.E, although for W4 and higher charges, this definition has be refined
as in (III.123), for correlator calculations we can continue to use the naive definition.
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The linear terms are dictated by the double pole at the origin of the k-plane. These agree
with the expressions obtained by [111] in the so-called deep quench limit (see Section 6 for
more details). The ellipsis represent higher transients.

Correlators:

• Two-point functions of vertex operators Oq = eiqφ: The dominant behaviour in the
IR limit is given by exponentiaing the linear part in the above 〈φφ〉 propagator (after
subtracting the coincident part). We get

〈0, in|eiqφ(0,t)e−iqφ(r,t)|0, in〉 = e−
q2

8
m0r, t > r/2 (III.66)

This result agrees with that in [111]. The dominant exponential is, again, given by
the double pole at the origin of the k-plane. As remarked in Figure III.3, the thermal
correlator is also dominated by this double pole at the origin. It is no surprise therefore
that the above result (III.66) exactly agrees with the thermal result (III.87), with the
identification β = 4κ2 = 4/m0.

• Two-point functions of the holomorphic operator: O = ∂φ,24

〈0, in|∂φ(x1, t1)∂φ(x2, t2)|0, in〉

=

∫
dk eikr

2π
√
k2 +m2

0

[
Θ(−k)(2|k|(k2 +m2

0)
1/2 + 2k2 +m2

0) + Θ(k)(−2|k|(k2 +m2
0)

1/2 + 2k2 +m2
0)
]

= −m
2
0

8π
K2(m0r)

r→∞−−−→ −e−m0r


+

m
3/2
0

√
1
r

8
√
2π

+
15
√
m0

(
1
r

)3/2

64
√
2π

+O

[
1

r

]5/2

 (III.67)

where we have chosen r = x1 − x2, t1 = t2 (note that there is no time-dependence for
equal times in this case, as we expect for holomorphic operators since these do not
‘see’ the boundary that represents the quench).

Note that the derivatives annihilate the double pole at the origin of the k-plane, hence
the two-point function is dictated solely by the distant singularity. Consequently, the
rate of fall-off is NOT universal (see Section 6 for further details).

• Two-point functions 〈∂φ ∂̄φ〉:

〈0, in|∂φ(x1, t)∂̄φ(x2, t)|0, in〉

= −
∫

dk

2π

m2
0 e

ik(r+2t)

8(k2 +m2
0)

1/2
= −m

2
0

8π
K0(m0(r + 2t)) (III.68)

24We define ∂ = 1
2 (∂x + ∂t), ∂̄ = 1

2 (∂x − ∂t).
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• One-point function 〈∂φ∂̄φ〉:

〈0, in|∂φ∂̄φ(x, t)|0, in〉

= −
∫

dk

2π

m2
0 e

i2kt

8(k2 +m2
0)

1/2
= −m

2
0

8π
K0(2m0t)

t→∞−−−→ −e−2m0t



m

3/2
0

√
1
t

16
√
π

−
√
m0

(
1
t

)3/2

256
√
π

+O

(
1

t

)5/2

 (III.69)

We also present a calculation of the energy density. In the t→ ∞ limit,

E

L
= m2

0/(8π) (III.70)

Note that it does not agree with (III.88) with β = 4/m0. In other words, the higher chemical
potentials affect the asymptotic energy density.

4.2 Correlators in Squeezed States

The expression for the 〈f |φφ|f〉 propagator in a squeezed is given in (III.54). In this section
we will compute these in the squeezed states (III.50) which are tailored to produce a given
real value of κ2 > 0 and κ4 (with all other κn = 0). We find

〈φφ〉 =
∫

dk

4π

eikr

|k|
(
coth

(
2|k|

(
κ2 + κ4k

2
))

− cos(2|k|t)cosech
(
2|k|

(
κ2 + κ4k

2
)))

=

∫
dk

2π

eikr

|k|

(
1

e4|k|(κ2+κ4k2) − 1
− 1

2
cos(2|k|t)cosech

(
2|k|

(
κ2 + κ4k

2
))

+
1

2

)

〈∂φ∂φ〉 =
∫ ∞

0

dk

8π
eikrk

(
coth

(
2kκ2 + 2k3κ4

)
− 1
)

〈∂φ∂̄φ〉 =
∫

dk

8π
e−2iktk cosech

(
2κ2k + 2k3κ4

)
(III.71)

The first two equations describe two-point functions with (x1, t1) = (0, t), (x2, t2) = (r, t),
whereas the third equation is a one-point function at a point (x, t) (which is independent of
x by translational invariance). In the propagator, the last term in the second line gives the
usual −log(r) term of free scalar in 2D spacetime.

With κ4 = 0, i.e., for the CC state e−κ2H |D〉, the integrals can be done exactly and
energy density can also be calculated exactly,

〈φφ〉 =
log
(

1
2
csch2

(
πr
4κ2

)(
cosh

(
πr
2κ2

)
+ cosh

(
πt
κ2

)))

8π
(III.72)

〈∂φ∂φ〉CC = −
πcosech2

(
πr
4κ2

)

64κ22
(III.73)

〈∂φ∂̄φ〉CC = − π

64κ22
sech2

(
2πt

4κ2

)
(III.74)
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These results have also been obtained using BCFT in [44]. The energy density is

E

L
=

π

96κ22
(III.75)

This agrees with the thermal energy density in (III.88) with β = 4κ2.
With non-zero κ4, let us first consider 〈∂φ∂̄φ〉. The associated Fourier transform can

be computed by contour integration. Note that the cosech function has simple poles in the
k-plane at 2κ4k

3 + 2κ2k = iπn. Thus, there are three simple poles for each n (see Figure
III.3), given by

k1 =
−2 62/3κ2 +

3
√
6
(√

48κ32 − 81π2κ4n2 + 9iπ
√
κ4n
)2/3

6 3

√√
3
√
κ34 (16κ

3
2 − 27π2κ4n2) + 9iπκ24n

k2 =
4 3
√
−6κ2 + i

(√
3 + i

) (√
48κ32 − 81π2κ4n2 + 9iπ

√
κ4n
)2/3

2 62/3 3

√√
3
√
κ34 (16κ

3
2 − 27π2κ4n2) + 9iπκ24n

k3 = −
3
√
−1

(
2 3
√
−6κ2 +

(√
48κ32 − 81π2κ4n2 + 9iπ

√
κ4n
)2/3)

62/3
√
κ4

3

√√
48κ32 − 81π2κ4n2 + 9iπ

√
κ4n

(III.76)

In an expansion in small κ4, we get

k1 =
iπn

2κ2
+
iπ3κ4n

3

8κ42
+

3iπ5κ24n
5

32κ72
+

3iπ7κ34n
7

32κ102
(III.77)

k2 =
i
√
κ2√
κ4

− iπn

4κ2
− 3iπ2√κ4n2

32κ
5/2
2

− iπ3κ4n
3

16κ42
(III.78)

k3 = −i
√
κ2√
κ4

− iπn

4κ2
+

3iπ2√κ4n2

32κ
5/2
2

− iπ3κ4n
3

16κ42
(III.79)

Out of these poles, it is clear that in the perturbative regime (κ4 ≪ κ32), only k1 will
contribute. This is because a pole at k = −ik0 will turn up in e−2k0t and so large values of
k2 and k3 will contribute highly damped solutions (note that poles in the upper half plane
do not contribute for t > 0). Thus, k1 is the pole whose residue we are interested in for
comparison with perturbative results. In practice, to get non-perturbative results, we would
have to take into account the residues at the other two poles as well. Note that the pole at
the origin (for n = 0) is cancelled by the k multiplying the cosech.

From the expansion of cosech (2κ4 (k − k1) (k − k2) (k − k3) + iπn) around k1, we find
the residue of cosech to be

(−1)n

2κ4 (k1 − k2) (k1 − k3)
(III.80)
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Taking the leading order of the cosech residue which is given by the n = ±1 poles, we find
the total residue

= − π

16κ22

(
1 + 4π2κ̃4 + 48π4κ̃24

)
exp

(
−4 (π + 4π3κ̃4 + 48π5κ̃24) t

4κ2

)
(III.81)

where κ̃4 =
κ4

42κ3
2
.

Comparison with MSS: Using the charge under the µ4 current q4 = 3, β = 4κ2 and
κ̃4 = µ̃4, we match the results of MSS exactly. Note that above, µ̃2

4t also exponentiates, so
this gives the behaviour expected by MSS and higher orders.

The computation of 〈∂φ∂φ〉 follows along similar lines. Here, the poles are the same.
The only difference is the residue of coth at k1 which is

1

2κ4 (k1 − k2) (k1 − k3)
(III.82)

Thus the total residue is similar to the earlier case.

=
π

16κ22

(
1 + 4π2κ̃4 + 48π4κ̃24

)
exp

(
−2 (π + 4π3κ̃4 + 48π5κ̃24) r

4κ2

)
(III.83)

which shows twice the relaxation rate as before (as expected from MSS).

5 Real time propagator in a GGE

We first review the purely thermal case briefly.

Real time propagator in a thermal ensemble Consider the real time, thermal Wight-
man propagator (see, e.g. [29] for the various definitions of propagators)

G+(x1, t1; x2, t2; β) ≡
1

Z
Tr
(
e−βHφ(x2, t2)φ(x1, t1)

)

=
1

Z

∑

{Nn}
〈{Nn}|φ(x1)e−itHφ(x2)e

−itHe−βH |{Nn}〉 (III.84)

By using the occupation number representation of the Hamiltonian, it is easy to derive the
following result (x = x2 − x1, t = t2 − t1):

G+(x1, t1; x2, t2; β) =
1

2

∫
dk

2π

[
G+(k; β)e

ikx−i|k|t +G−(k; β)e
−ikx+i|k|t] ,

G±(k, β) =
1

|k|(±e±β|k| ∓ 1)
(III.85)

The two-point function of ∂φ is, therefore,

1

Z
Tr
(
e−βH∂φ(x2, t2)∂φ(x1, t1)

)
=

1

2

∫
dk

2π

k e−ik(x+t)

eβ|k| − 1
= − π

4β2

1

sinh2(π(x+ t)/β)
(III.86)
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which is the well-known result obtained from CFT techniques [44].
It is also easy to compute from the above the thermal two-point function of exponential

vertex operators

〈exp[iqφ(0, t)] exp[−iqφ(r, t)]〉β = exp[−q2r/2β] (III.87)

Note that this result agrees with the expected result [44] from conformal field theory exp[−2π∆r/β],
using ∆ = q2/4π (see Appendix III.C).

The energy density in a thermal ensemble is

E

L
=

π

6β2
(III.88)

We will now define the Wightman function in a GGE in an analogous fashion (for simplic-
ity we consider only one chemical potential µ4 here; the generalization to arbitrary number
of chemical potentials is obvious):

G+(x1, t1; x2, t2; β, µ4) ≡
1

Z
Tr
(
e−βH−µ4W4φ(x2, t2)φ(x1, t1)

)

≡ 1

Z

∑

{Nn}
〈{Nn}|φ(x1)e−itHφ(x2)e

−itHe−βH−µ4W4 |{Nn}〉 (III.89)

By a simple evaluation, this turns out to be

G+(x1, t1; x2, t2; β, µ4) =
1

2

∫
dk

2π

[
G+(k; β, µ4)e

ikx−i|k|t +G−(k; β, µ4)e
−ikx+i|k|t] ,

G±(k; β, µ4) =
1

|k|(±e±(β|k|+µ4|k|3) ∓ 1)
(III.90)

The holomorphic two-point function is now given by

1

Z
Tr
(
e−βH∂φ(x2, t2)∂φ(x1, t1)

)
=

1

2

∫ ∞

0

dk

2π

k e−ik(x+t)

eβ|k|+µ4|k|3 − 1

=
1

4

∫ ∞

0

dk

2π
k e−ik(x+t)

(
coth(β|k|/2 + µ4|k|3/2)− 1

)

(III.91)

which exactly matches (III.71) provided we define, in keeping with (III.2)

β = 4κ2, µ4 = 4κ4 (III.92)

The explicit evaluation of this Fourier transform is carried out below (III.71).

6 Thermalization

In the previous two sections, we found that the exact correlators show thermalization at late
times. Here’s a brief summary for some specific correlators
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Ground state |0, in〉 CC state e−H0/m0 |D〉 Thermal state

〈∂φ(0, t)∂φ(r, t)〉 ∼ e−m0r/
√
r ∼ e−πm0r/2 ∼ e−πm0r/2

〈eiqφ(0,t)e−iqφ(r,t)〉 ∼ e−q2m0r/8 ∼ e−q2m0r/8 ∼ e−q2m0r/8

energy density 〈H〉 m2
0/(16π) πm2

0/96 πm2
0/96

〈∂φ∂̄φ(0, t)〉 ∼ e−2m0t/
√
t ∼ e−πm0t 0

Table III.1: The 2nd and 3rd columns give equal time correlators at late times for a mass quench (III.30);
the 4th column gives the same correlator (time-independent) in a thermal state with β = 4/m0. In the 2nd-
column the initial state is the ground state |0, in〉; in the 3rd column, the initial state is a special squeezed
state (III.53) which is of the Calabrese-Cardy form e−H/m0 |D〉. In the first two rows, we list two-point
functions at seperated points. In the 3rd row we list the asymptotic energy density. In the 4th row, we
list the late time behaviour of a one-point function; the vanishing asymptotic value agrees with the thermal
state— but we compare here the exponential decay in time between the second and third columns. Note
that the asymptotic values always agree between the CC state and the thermal state, but barring the case
of the exponential vertex operator, the late time behaviour differs from the CC state, signifying nontrivial
modification of the behaviour by the higher chemical potentials.

Besides this, we also find an exact agreement between t→ ∞ correlators in the gCC state
(III.50) and in the corresponding GGE (cf. equations (III.71) and (III.91)) with chemical
potentials µn = 4κ2. The relaxation rate of one-point functions is seen to exactly exponenti-
ate (see (III.81)), and its perturbation expansion in the higher κn coefficients agrees with the
MSS value (III.3). We also found in the previous two sections that generically GGE correla-
tors (equivalently, late time correlators in a gCC state) and thermal correlators (equivalently
late time correlators in a CC state), characterized by the same temperature (equivalently
same κ2) are different, even at large distances (e.g. κ4 appears in the correlation length in
(III.83)).

It is clear from the above discussion and Table III.1 that while the fact of thermalization
is true, the late time exponents depend nontrivially on the higher chemical potentials (or
higher κn’s), even though these correspond to perturbation by irrelevant operators in an RG
sense. In the next subsection we address this issue of sensitivity to irrelevant operators in
some detail. In the following subsection we will discuss a second (related) issue of memory
retention by the equilibrium ensemble through the higher chemical potentials.

6.1 UV/IR mixing

In this section we will discuss the issue of large distance/time universality (or the lack
thereof) in a critical quench. A useful guide in this turns out to be the pole structure of the
propagator 〈φ(k)φ(−k)〉, which is explained in Figure III.3.
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(a) (b)

k

(c)

Figure III.3: Singularities governing the two-point function in the complex k-plane: (a) of the quantity
Gq,0(k) for the ground state quench propagator (III.63), (b) of the quantity G±(k;β) in the thermal prop-
agator (III.86), (c) of the quantity G±(k;β, µ4) in the GGE propagator (III.90) with β = 2, µ4 = 0.2; we
have shown 30 leading poles. In each case the pole at the origin is a double pole, and yields the universal
linear large distance behaviour of 〈φφ〉. Due to the equivalence between the quenched state and the gCC
state (III.14), the branch cut in (a) can be seen as a limiting case of an accumulation of single poles in a
generalized version of (c) with an infinite number of chemical potentials determined by (III.34),(III.92). In

two-point functions such as 〈∂φ∂φ〉, the double poles disappear and the large distance behaviour is sensi-

tive to the sub-leading singularities, which are clearly different. This shows different types of large distance

behaviour which are sensitive to the presence of higher dimensional operators.

Universality: Let us first discuss the naive argument for universality in the present con-
text. Note that in case of the sudden quench we found (III.35)

|0, in〉 = exp[− H

m0
− 5W4

160m3
0

+ ...]|D〉

which would appear to imply that, in the limit when the scale of the quench is very high:
m0 → ∞, the contribution of the Hamiltonian is the most dominant and those of the higher
dimensional operators W2n, n > 1, are subdominant. This argument, of course, is flawed,
since m0 is dimensionful, and we have to specify m0 is large compared to what.

There are, of course, more refined arguments for universality which define an IR limit in
terms of dimensionless distances and times

m0r,m0t≫ 1 (III.93)

which is called the deep quench limit in [111]. Ref. [111] argues that in this limit, the
propagator in (III.63) is dominated by the leading expansion of the integrand in |k|/m0,
which is given by a double pole. From (III.65), we find that the leading behaviour of this
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propagator is indeed given by the linear term which is solely determined by this double pole.
We find that this double pole and the consequent leading behaviour exactly coincides with
that of the thermal propagator (III.86). Indeed, all the three propagators, the quenched
one (III.63), the thermal one (III.86) and the GGE one (III.90), coincide in the leading
behaviour. Thus, the higher order chemical potentials do not modify the leading behaviour.
Note, however, that the subleading behaviours are rather different in the three cases: the
exponents are different, as well as in the quenched propagator there is a prefactor involving
a square root.

Lack of Universality: The long-distance/time leading behaviour of the 〈φφ〉 propagator
is, of course, a rather limited part of the story. Does the above universality hold for correlators
involving other operators, in particular, primary fields (recall that φ is not a primary field)?

To address this issue for one-point functions of primary fields of the kind O(z, z̄) =
ϕ(z)ϕ∗(z̄) which has a decay rate given by (III.2), (III.3). For the sudden quench discussed
in Section 2.4, using (III.34), we find that the fractional contribution ofW2n to the relaxation
rate (III.3) is determined by the dimensionless quantity

µ̃n = µn/β
n−1 ∼ 1

mn−1
0

/

(
1

m0

)n−1

which is of order one! What has happened is that, since the quench is characterized by a
single scale, the chemical potentials due to the higher dimensional operators are determined
by the same mass scale as the temperature, thus the dimensionless contribution due toWn>2

is necessarily of order one. We would expect this kind of behaviour in any single-scale quench.
Indeed, we find in (III.68) that the leading behaviour of the one-point function of ∂φ∂̄φ

is not given by the thermal value (nor with any finite number of chemical potentials). This
is best understood by looking at the Figure III.3. The derivatives ∂, ∂̄ kill off the double
pole at the origin in all three diagrams, leaving singularities away from the origin. These in
Figure (a) differ from those in Figure (b) or in Figure (c). Figure (c), if redone with infinite
number of chemical potentials as given by (III.34), reproduce the singularities of Figure (a).

Thus, we find that ALL higher dimensional operators are equally important in determining
the long time behaviour of this operator. This is what we anticipated also from the MSS
expression for the relaxation rate, as explained above.

The same story holds for two-point functions 〈O(x1, t1)O(x2, t2)〉. The exact quench
computation, even in the deep quench limit (III.93) is not reproduced by the thermal result
or any finite number of chemical potentials. This can be explicitly seen for O = ∂φ in the
previous two sections. We have also verified this lack of universality for operators which
are a composite of ‘derivative’ operators and exponential vertex operators, e.g. O = ∂φeiqφ.
Once again, the reason is the annihilation of the double pole at the origin by these generic
operators.

It is only the pure exponential vertex operators O = eiqφ whose two-point functions
(III.66) respect universality in the deep quench limit, that is it is reproduced by the thermal
behaviour (these operators do not annihilate the pole at the origin).

Conclusion Generically universality, as defined above, is violated. Long time/distance
behaviour is affected by perturbing the initial state by higher dimensional operators.
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6.2 Memory retention

In this section we will discuss the issue of non-standard thermalization in the models studied
where the equilibrium chemical potentials allow a reconstruction of the quench protocol
(completely or partially depending on the situation).

Let us first consider the case of quenches from a ground state. As is clear from (III.10)
and (III.9), the κn-coefficients of the gCC state (III.14) have a one-to-one relation to the
reflection amplitude r(k) of the potential scattering problem discussed in Appendix III.A.
Now, it is well-known that the potential of a one-dimensional Schrodinger problem [45]25

can be reconstructed from the reflection amplitude r(k). This implies, through the above
correspondence between the quench problem and the scattering problem, that m(t) can be
reconstructed from κ(k). This, in turn, means that the µn’s carry complete knowledge of
the quench protocol m(t). Thus, the equilibrium ensemble remembers the quench protocol!
As an example, the coefficients κn in (III.28) can be used to determine the parameters m0

and ρ which specify the quench protocol m(t) completely.
In case we consider a squeezed pre-quench state, the GGE is characterized by the function

κeff(k) (III.47) which is given by a combination of the knowledge of the squeezing function
f(k) and the quench protocol m(t) (see (III.48)). For a given quench protocol, the initial
state, characterized by f(k) can be completely determined by the κn-parameters (see, e.g.
(III.50)).

Thus, in case the pre-quench initial state as well as the quench protocol are unknown,
the equilibrium ensemble has an imperfect recollection of the history.

7 Discussion

In this work, we explicitly verify for actual critical quenches the ansatz made in MSS for
the generalized Calabrese-Cardy form (gCC) (III.1) of the initial state. We show that for
an arbitrary mass quench in a theory of free scalars as well as in a theory of free fermions,
a large choice of pre-quench initial states (ground state or squeezed states) leads to a gCC
state. We find that our results hold even when the quantum quench begins and ends in a
massless theory, although in this case, the putative temperature sometimes turns out to be
imaginary and the issue of thermalization in these cases is subtle.

We find that while the ground state and generic squeezed states lead to gCC states
with all infinite number of κn parameters present, one can choose special squeezed states
to prepare gCC states with specific values of any given number of the κn-parameters; in
particular we can prepare a CC state of the form e−κ2H |D〉 from special squeezed states.

We compute the exact propagator in these quenches and hence the exact time-dependence
of correlators. We find that the correlators thermalize at long times and the results verify
those of MSS wherever a comparison is possible. We have a simple understanding of the
identification (III.2) of the κn’s with the chemical potentials µn in terms of poles of the
propagator. In specially prepared gCC states with non-zero values of κ2 and κ4, we show
that the exponential decay given by the relaxation rate (III.3) persists non-perturbatively in
κ4.

25We thank Basudeb Dasgupta for pointing out this reference to us.
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We point out that the presence of the extra charges in the gCC state, which are higher
dimensional operators, non-trivially modify the long distance and long time behaviour of
correlators, in apparent contradiction to Wilsonian universality. This is an example of a
UV/IR mixing; operators which are expected to be relevant in the UV by usual RG arguments
are found here to affect the IR behaviour of various correlators. We present an understanding
of this in terms of poles of the propagator in the complex momentum plane. We find that
while exponential vertex operators do not suffer from these ‘non-universal’ corrections, all
other operators (derivatives and composites of derivatives and exponentials) do show this
non-universal behaviour.

We also find another atypical behaviour, related to the above: the equilibrium ensemble
remembers about the quench protocol. In case we start from the ground state of the pre-
quench Hamiltonian, the chemical potentials of the GGE encode a complete knowledge of
the quench protocol m(t). With pre-quench squeezed state, the chemical potentials encode
a combination of information about the initial state and the quench protocol.

7.1 Higher spin black holes

In MSS we have established a relation between thermalization to a GGE and, in the holo-
graphic dual, quasinormal decay to a higher spin(hs) black hole. In particular, we have found
that relaxation rate in the former process is equal to the imaginary part of the quasinormal
frequency involved in the latter process.

The demonstration above depended on an ansatz about the initial state being given by
a gCC state. In this work (see, e.g. (III.51)) we have shown explicitly that by choosing
to start with a squeezed state with an appropriate squeezing function, one can explicitly
generate such gCC states. In Section 4.2 we have shown explicitly (see (III.81)) that the
exact formula for relaxation rate supports the perturbative formula (III.3). This, therefore,
explicitly proves the relation between the quench dynamics and the quasinormal decay to
higher spin black holes. Note that we now have the relaxation rate non-perturbatively,
including the two non-perturbative branches (III.76). It would be interesting to compare
these two branches with the corresponding non-perturbative branches of the hs black hole
quasinormal frequency [35].

Although we have not computed an explicit collapse process to a higher spin black hole,
it is natural to speculate that the memory retention by the thermal state in the field theory,
discussed above, would imply that the higher spin black hole obtained from such a collapse
starting from a pure AdS vacuum would remember the dynamics of the collapse which is
governed by the dynamics of the quench.

We note that a massive to massless quench does not have a direct holographic dual since
the theory in the past is not conformal. In this work we have included a discussion of quenches
from a critical Hamiltonian to a critical Hamiltonian, starting from ground states/excited
states. This can potentially describe a collapse geometry. We hope to return to this issue at
a later point.

Other open problems: Some of the obviously important extensions of the above work are
to the case of (i) massive to massive quenches, (ii) higher dimensions, (iii) interacting theories.
In particular, it would be interesting if the phenomena of IR non-universality persists in
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higher dimensions. The calculation of Bogoliubov coefficients and exact propagator for the
tanh protocol appears to go through [40] in higher dimensions in a straightforward manner.
However, the analysis of the poles requires more care. We hope to come back to this issue
shortly.
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III.A Potential scattering and Bogoliubov transforma-

tion

In the text (see (III.5)) it has been shown that the scalar mass quench is equivalent to the
following Schrödinger problem:

− d2ψ(E, x)

dx2
+ V (x)ψ(E, x) = Eψ(E, x)

with the mapping (for a given fixed k)

x t
E k2

V (x) −m2(t)
ψ(E, x) φ(k, t)
ψ∗(E, x) φ∗(k, t) = φ(−k, t)

We will focus on the potentials of the form depicted in Figure III.1. The generalization
to the case of Figure III.2 is straightforward.

The wavefunctions in such a potential, which asymptotes to a constant at both ends (see
Figure III.1) are of the general form26

φ(k, t) =

{
A1(k)e

iωint +B1(k)e
−iωint, t→ −∞ ωin =

√
k2 +m2

0

A2(k)e
iωoutt +B2(k)e

−iωoutt, t→ ∞ ωout = |k| (III.94)

where

A2(k) = α∗
LL(k)A1(k) + βLL(k)B1(k), B2(k) = αLL(k)B1(k) + β∗

LL(k)A1(k). (III.95)

The coefficients αLL(k), βLL(k) are determined by the shape of the potential V = −m2(t)27

The reflection coefficient from the right is given in our conventions, by

r(k) = A2(k)/B2(k)|A1=0 = βLL(k)/αLL(k) (III.96)

For later reference we note the reflection coefficient from the left is

r′(k) = B1(k)/A1(k)|B2=0 = −β∗
LL(k)/αLL(k) (III.97)

To make connections with QFT later, let us write28

φ(k, t) = ain(k)uin(k, t) + a∗in(−k)u∗in(−k, t) = aout(k)uout(k, t) + a∗out(−k)u∗out(−k, t)
(III.98)

26We will closely follow the treatment in Landau and Lifshitz [113], Section 25.
27The suffix LL indicates the Landau-Lifshitz convention ([113], Section 25). Our α, β’s (III.101) will differ

from these by a normalization factor.
28Note that our conventions ensure φ(−k, t) = φ∗(k, t) which is the reality condition for φ(x, t) =∫
(dk/2π)φ(k, t) exp[ikx].
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in terms of two separate sets of linearly independent solutions: (see, e.g. [108], Chapter 3)
with the defining properties:

t→ −∞ : uin → e−iωint

√
2ωin

, t→ ∞ : uout →
e−iωoutt

√
2ωout

(III.99)

Thus, uin does not have a negative energy wave component ∝ eiωint in the past),29, similarly
uout does not have a negative energy wave component ∝ eiωoutt in the future.

These expressions for φ agree with the earlier ones (III.94), if we identify

A1(k) =
1√
2ωin

a∗in(k), B1(k) =
1√
2ωin

ain(−k), A2(k) =
1√
2ωout

a∗out(k), B2(k) =
1√
2ωout

aout(−k)

This implies

ain(k) = α∗(k)aout(k)− β∗(k)a∗out(−k) (III.100)

where the new scattering data {α, β}, to be identified with Bogoliubov coefficients in the
quantum theory, are related to old one (III.95) by some normalization factors

α(k) =

√
ωout

ωin

αLL(k), β(k) =

√
ωout

ωin

βLL(k), (III.101)

r(k) = βLL(k)/αLL(k) = β(k)/α(k)

Note that the reflection amplitudes r(k) remain unaltered. The new scattering data satisfy
the normalization conditions

|α(k)|2 − |β(k)|2 = 1 (III.102)

which follows from probability conservation in the scattering problem. Upon quantization,
the coefficients ain,out(k) are treated as operators in the Fock space (with a∗in,out(k) rewritten

as a†in,out(k)), as in the text (see (III.6)).
Note that the in- and out- wavefunctions are related to each other as follows:

uin(k) = α(k)uout(k) + β(k)u∗out(−k) (III.103)

One of the important points of this analysis is that under some broad conditions on the
potential (see [113], Section 25, also [114]), the reflection amplitude has a Taylor expansion30

r(k) = −1 + r1|k|+ r2|k|2 + r3|k|3 + ..., Re(r1) ≥ 0 (III.104)

It is also of interest to note that the other reflection amplitude r′(k) has an expansion

r′(k) = 1 + r′1|k|+ r′2|k|2 + r′3|k|3 + ... (III.105)

Note that

−r∗(k)/r′(k) = α(k)/α∗(k) = 1 + o(|k|). (III.106)
29We consider exp(∓iωt) to be future/past directed, with energy defined by i∂/∂t. This is to be contrasted

with p = −i∂/∂x with exp[±ikx] identified as right/left directed.
30Roughly speaking, r(0) = −1 is due to a hard-wall reflection, and Re(r1) ≥ 0 follows from 1−|r(k)|2 ≥ 0

which, in turn, follows from (III.102).
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III.A.1 Examples of potentials

Below we describe a few examples of potential scattering (see [113], Section 25) to test the
validity of the power series expansions (III.104) and (III.105).

1. Consider a step potential U0Θ(x). Let us choose a wavefunction in the past to come
from the left, with energy slightly above the barrier U0. We will denote the transmitted
wave as ∼ eikx; this plays the role of the ‘out’ wave. It is easy to find the left31

reflection coefficient r(k) = (|k| −
√
k2 + U2

0 )/(|k| +
√
k2 + U2

0 ). This admits the
following expansion in the right momentum |k| :

r(k) = −1 +
2|k|
U0

− 2k2

U2
0

+
|k|3
U3
0

− · · ·

which is consistent with the nature of the power series expansion (III.104) which was
inferred from general arguments.

It is easy to show that the right reflection coefficient is r′(k) = −r(k). This clearly
satisfies an expansion of the form (III.105).

2. For a rectangular barrier potential U0Θ(x)−U0Θ(x−a) with width a, for E > U0 the left

reflection coefficient r(k) = −
√

(U4
0 sin

2
(
a
√
k2 + U2

0

)
)/(U4

0 sin
2
(
a
√
k2 + U2

0

)
+ 4|k|2(k+U2

0 ))

admits the following expansion in the left momentum |k| :

r(k) = −1 +
2k2cosec2 (aU0)

U2
0

+ · · ·

3. For a smooth barrier potential U0 (1 + e−ax)
−1
, the left reflection coefficient r(k) =

sinh

(
π
(

|k|−
√

k2+U2
0

)

a

)
cosech

(
π
(

|k|+
√

k2+U2
0

)

a

)
admits the following expansion in the

left momentum |k| :

r(k) = −1 +
2π|k| coth

(
πU0

a

)

a
− 2π2k2 coth2

(
πU0

a

)

a2
+ · · ·

III.A.2 Even parity of the Bogoliubov coefficients

It is clear from the correspondence between the QFT problem and the potential scattering
problem that the Ai, Bi are actually functions of the energy E, implying that α(k), β(k) are
all actually functions of k2. In particular, for real k, the Bogoliubov coefficients have even
parity

α(k) = α(−k) = α(|k|), β(k) = β(−k) = β(|k|), r(k) = r(−k) = r(|k|), r′(k) = r′(−k) = r′(|k|)
(III.107)

31Note the left-right flip due to the mapping −x→ t, as explained in footnote 29.
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III.B Baker-Campbell-Hausdorff Calculation

We will show that

|ψ〉 ≡ exp

(
1

2

∑

k

γ(k)a†(k)a†(−k)
)
|0〉 = exp

(
−
∑

k

κ(k)a†(k)a(k)

)
|Bd〉 (III.108)

where32

κ(k) = −1

2
log(γ(k)/γ0) (III.109)

and

|Bd〉 ≡ exp

(
1

2

∑

k

γ0a
†(k)a†(−k)

)
|0〉, (III.110)

The choice γ0 = −1 corresponds to the Dirichlet state (III.113) (similarly, γ0 = 1 corresponds
to Neumann boundary condition). To derive (III.108), we note that the right hand side can
be written as

exp

[
∑

k

B(k)

]
exp

[
∑

k

A(k)

]
|0〉 = exp

[
∑

k

B(k)

]
exp

[
∑

k

A(k)

]
exp

[
−
∑

k

B(k)

]
|0〉

where we have defined B(k) = −κ(k)a†(k)a(k) and A(k) = γ0a
†(k)a†(−k). The identity

(III.108) follows by noting that [B(l), A(k)] = −κ(k)A(k) (δk,l + δk,−l), and by using the
following form of the Baker-Campbell-Hausdorff (BCH) formula

eXeY e−X = eexp(s)Y (III.111)

where [X, Y ] = sY .
In the context of this chapter, we will be interested in evaluating κ(k) from (III.109) in

a power series in k, using (III.12). Since the leading term in γ(k) is −1, with the choice of
the Dirichlet boundary state γ0 = −1, we get the equation (III.10) in the text.

III.C Bosons

The action for a free massless scalar is

S =
1

2

∫
dxdt

[
(∂tφ)

2 − (∂xφ)
2
]
= −1

2

∫
dxdt ∂µφ∂

µφ

32We thank Samir Mathur for drawing our attention to [115] where a relation of the form (III.109) was
derived earlier in a somewhat different context for a single oscillator.
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The normal mode expansion is (we use “box normalization” k = 2πn/L,
∫

dk
2π

= 1
L

∑
n

)33

φ(x, t) =

∫
dk

2π

[
a(k)√
2|k|

exp (ikx− i|k|t) + a†(k)√
2|k|

exp (−ikx+ i|k|t)
]

=
∑

n 6=0

1√
4πL|n|

an exp

(
2π

L
(inx− i|n|t)

)
+ h.c

≡
∑

k 6=0

[
a(k)√
2|k|

exp (ikx− i|k|t) + a†(k)√
2|k|

exp (−ikx+ i|k|t)
]

(III.112)

We will often use an ≡ a(k), with a slight abuse of notation. The commutation relations are
[a(k), a†(l)] = δkl.

Boundary states In terms of standard CFT oscillators αn, α̃n, the Dirichlet boundary
state is given by (see, e.g. [116] Eq. 4.1.13)

|D〉 = exp[
∞∑

n=1

1

n
α−nα̃−n]|0〉

In terms of our oscillators an ≡ ak

α−n = i
√
na†−n, α̃−n = i

√
na†n

|D〉 = exp[−
∑

n>0

a†na
†
−n]|0〉 = exp[−1

2

∑

n 6=0

a†na
†
−n]|0〉 = exp[−1

2

∑

k 6=0

a†(k)a†(−k)]|0〉 (III.113)

In the first step we used the relation between our oscillators here and the standard CFT
conventions (see [24], Chap. 6).

Euclidean CFT We define w = x+ iτ , w̄ = x− iτ , τ = it. The Euclidean Propagator is

〈φ(0, 0)φ(x, τ)〉 = 〈φ(0, 0)φ(w, w̄)〉 = − 1

4π
(lnw + ln w̄)

Vertex operators Consider the exponential vertex operator O(w, w̄) = exp[iqφ(w, w̄)].

〈exp[iqφ(0, 0)] exp[−iqφ(w, w̄)]〉 = w−q2/4πw̄−q2/4π

Hence h = h̄ = q2/8π, ∆ = q2/4π.

Boson W-currents We have used the following definitions of the W∞ currents [41] (nor-
mal ordering is implicit),

T (z) = ∂φ(z)∂φ(z) (III.114)

W4(z) = 2∂3φ∂φ − 3∂2φ∂2φ (III.115)

33We use the conventions of [24].
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III.D Fermions

We have used the following conventions in the text.

ηµν =

[
1 0
0 −1

]
, ∂µ = (∂t, ∂x), γµ∂µ = γ0∂t − γ1∂x,

γ0d =

[
1 0
0 −1

]
, γ1d =

[
0 1
−1 0

]
, in Dirac basis.

S =
1√
2

[
1 −1
1 1

]
, γ0c = Sγ0dS

−1 =

[
0 1
1 0

]
, γ1c = Sγ1dS

−1 =

[
0 1
−1 0

]
, in chiral basis.

u(0) =

(
1
0

)
, v(0) =

(
0
1

)
are the spinors in the rest frame.

The spinors in a general frame are

u(k,m) =
1√

(ω +m)

[
(ω +m)

−k

]
, v(k,m) =

1√
(ω +m)

[
k

−(ω +m)

]

ū(k,m) =
1√

(ω +m)

[
(ω +m) k

]
, v̄(k,m) =

1√
(ω +m)

[
k (ω +m)

]

(III.116)

where we have used the normalization ū(k,m)u(k,m) = −v̄(k,m)v(k,m) = 2m. In the
chiral basis, the mode expansion in the massless limit is

Ψc(x, t) = S ·Ψ(x, t) =
1√
2

[
1 −1
1 1

]
·
∫

dk

2π

1√
2

[
ake

−ik·x + sgn(k)b†ke
ik·x

−sgn(k)ake
−ik·x − b†ke

ik·x

]

=

∫ ∞

−∞

dk

2π

1

2

[
(1 + sgn(k))(ake

−ik·x + b†ke
ik·x)

(1− sgn(k))(ake
−ik·x − b†ke

ik·x)

]
(III.117)

Writing as ψ(x, t) and ψ̄(x, t),

ψ(x, t) =

∫ ∞

0

dk

2π
(ake

−ik·x + b†ke
ik·x) (III.118)

ψ̄(x, t) =

∫ 0

−∞

dk

2π
(ake

−ik·x − b†ke
ik·x) (III.119)

Solution of Dirac equation and Bogoliubov coefficients Using the coordinate trans-
formation y = e−ρt and the ansatz, we get the following equation:

φ′′
±(y) +

φ′
±(y)

y
+ φ±(y)

(
k2

ρ2y2
+
m2

0y
2 ± 2im0ρ

ρ2 (y2 + 1)2

)
= 0 (III.120)

The ‘in’ solutions are solutions which become plane waves in far past and the ‘out’
solutions are solutions which become plane waves in far future. Due to the explicit i in the
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equation of φ±, the positive energy solutions φ±,in/out,p(k, t) and the negative energy solutions
e−iωin/outt are related as

φ+,in/out,m(k, t) = φ−,in/out,p(k, t)
∗, φ−,in/out,m(k, t) = φ+,in/out,p(k, t)

∗

So, the solutions can be written as

φ+,in/out(k, t) = φ+,in/out,p(k, t) + φ−,in/out,p(k, t)
∗

φ−,in/out(k, t) = φ−,in/out,p(k, t) + φ+,in/out,p(k, t)
∗

The explicit solutions are

φ+,in(k, t) =
(
e−2ρt + 1

)− im0
2ρ eit(ωin+m0)

2F1

(
i (k −m0 − ωin)

2ρ
,
i (−k −m0 − ωin)

2ρ
; 1− iωin

ρ
; e2ρt

)

φ−,in(k, t) =
(
e−2ρt + 1

) im0
2ρ e−it(ωin−m0)

2F1

(
i (k +m0 − ωin)

2ρ
,
i (−k +m0 − ωin)

2ρ
; 1− iωin

ρ
; e2ρt

)

φ+,out(k, t) = e−ikt
(
e−2ρt + 1

)− im0
2ρ

2F1

(
i (k −m0 + ωin)

2ρ
,
i (k −m0 − ωin)

2ρ
; 1 +

ik

ρ
;−e−2ρt

)

φ−,out(k, t) = e−ikt
(
e−2ρt + 1

) im0
2ρ

2F1

(
i (k +m0 − ωin)

2ρ
,
i (k +m0 + ωin)

2ρ
; 1 +

ik

ρ
;−e−2ρt

)

(III.121)

Defining the Dirac spinors as

Uin/out(k, x, t) = Kin/out

(
γ0∂t − ikγ1 − im(t)

)
eikxφ+,in/out,p(k, t)u(0)

Vin/out(k, x, t) = −Kin/out

(
γ0∂t + ikγ1 − im(t)

)
e−ikxφ+,in/out,p(k, t)

∗v(0)

where Kin/out = i
(

1
ωin/out+min/out

)1/2
. For constant mass, U(k, x, t) = u(k,m)e−ik·x and

V (k, x, t) = v(k,m)eik·x where u(k,m) and v(k,m) have been defined in (IV.114). The mode
expansion of Ψ(x, t) in terms of in/out modes are

Ψ(x, t) =

∫ ∞

−∞

dk√
2ωin/out

[
ak,in/outUin/out(k, x, t) + b†k,in/outVin/out(k, x, t)

]

Using properties of hypergeometric functions [112], the Bogoliubov transformations between
‘in’ and ‘out’ solutions are

φ+,in,p(k, t) = α+(k)φ+,out,p(k, t) + β+(k)φ−,out,p(k, t)
∗

φ−,in,p(k, t) = α−(k)φ−,out,p(k, t) + β+(k)φ+,out,p(k, t)
∗

Hence, the Bogoliubov transformations between the ‘in’ and ‘out’ operators are

ak,in =

(
ωin

ωout

)1/2
Kout

Kin

(
α+(k)

∗ak,out − χ(k)β+(k)
∗b†−k,out

)

bk,in =

(
ωin

ωout

)1/2
Kout

Kin

(
α+(k)

∗bk,out + χ̃(k)β−(k)
∗a†−k,out

)
(III.122)

where χ(k) = χ̃(k) = sgn(k). It is straightforward now to find the expressions for the
Bogoliubov coefficients which are reproduced in the text (III.60).
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Fermion W-currents We have used the following definitions of the super-W∞ currents
[117] (normal ordering is implicit),

T (z) = − i

2
(ψ∗∂ψ(z)− ∂ψ∗ψ(z))

W4(z) =
4

5
q2
(
∂3ψ∗ψ(z)− 9∂2ψ∗∂ψ(z) + 9∂ψ∗∂2ψ(z)− ψ∗∂3ψ(z)

)

+ 25∂ψ∗∂4ψ − ψ∗∂5ψ(z))

III.E Subtleties of the sudden limit

In Section 2.4 we analyzed the behaviour of the quench under the “tanh” protocol for large
ρ in a power series in m0/ρ. In particular, in Section 2.4, we defined the sudden limit as the
limit (III.31). In this section we will give a more precise definition of this limit. In certain
quantities, like the number operator (III.29) in Section 2.4 and the propagator in Section 4.1
etc. the distinction is not essential, but in general the naive limit entails UV divergences.
E.g. all W -charges, including the energy density, under a naive m0/ρ expansion introduced
in Section 2.4 appear to have progressively higher UV divergences as one goes down the
order. To treat these divergences properly, let us first analyze these. Later on, we will find
that terms in this expansion can be resummed to yield finite expressions, provided we define
the sudden limit by the equation (III.123).

Energy density

E/L =
1

2π

∫ Λ

−Λ

dk|k|Nk = m2
0

(
1

8π
− m2

0

32πΛ2
+O

(m0

Λ

)4
− m2

0

ρ2

[
1

48
π log

(
Λ

m0

)

+
1

96
π log(4) +

πm2
0

192Λ2
+O

(m0

Λ

)4]
+O

(
m0

ρ

)4
)

where we have used the asymptotic number density (III.29), in an m0/ρ expansion:

Nk =

(
k −

√
k2 +m2

0

)2

4k
√
k2 +m2

0

−
(
m0

ρ

)2
π2m2

0

48
(
k
√
k2 +m2

) +O

(
m0

ρ

)4

W4 density

W4/L =

∫ Λ

−Λ

dk

2π
|k|3Nk = m4

0

[
4 log(Λ/m0)− 3 + log(16)

64π
+

m2
0

32πΛ2
+O

(m0

Λ

)4

+

(
m0

ρ

)2(
− πΛ2

96m2
0

+
1

192
π(2 log(Λ/m0)− 1 + log(4)) +

πm2
0

256Λ2
+O

(m0

Λ

)4)
+O

(
m0

ρ

)4
]
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W6 density

W6/L =

∫ Λ

−Λ

dk

2π
|k|5Nk =m6

0

[(
Λ2

32πm2
0

+

(
log
(
m0

Λ

)

16π
+

1

24π
− log(4)

32π

)
− 15m2

0

512πΛ2
+O

(m0

Λ

)4
)
+

+
m2

0

ρ2

(
− πΛ4

192m4
0

+
πΛ2

192m2
0

+
1

128
π log

(m0

Λ

)

− 1

256
π log(4) +

7π

1536
− 5πm2

0

1536Λ2
+O

(m0

Λ

)4
)

+O

(
m0

ρ

)4
]

III.E.1 Resumming the divergences

It turns out that the terms with growing UV-divergences with growing powers of m0/ρ can
be resummed to the following form.
Introduce the scaling functions

E/L = m2
0E(x, y), W4/L = m4

0F (x, y), W6/L = m6
0G(x, y), x = m2

0/ρ
2, y = m2

0/Λ
2

The leading singularities in the above expressions for the charges are captured by

E(x, y) = 1

8π
+

(
5π2x
8

+ y
)
log (π2x+ y)

60π
+ · · · = 1

8π
+ · · ·

F (x, y) = −

(
log
(

2π4x2

5
+ y2

)
+ log (π2x+ y)

)
(40 (5y + 3) + π4x2 + 20π2x)

11520π
+ · · ·

G(x, y) =
1

1536π

(
π4x2

120
+

1

32
π2x(9y + 4) + y2 + y + 1

)
8


 25√

26π4x2

3
+ 25y2

+
1

π2x+ y




+19 log

(
74π4x2

285
+ y2

)
+ 10 log

(
π2x+ y

)]
+ · · ·

The correct version of the “sudden” limit, therefore, is to take the limit Λ → ∞ first, for
finite, large ρ/m0 (see Figure III.4). , i.e.

y =
m2

0

Λ2
→ 0, x =

m2
0

ρ2
= small, fixed (III.123)

In this limit, as we can see from the above expressions:

E(x, 0) = 1

8π
+
π

96
x log(x)+· · · = 1

8π
+· · · , F (x, 0) ∝ log(x)+· · · , G(x, 0) ∝ log(x)/x+· · · ,

which implies

E/L = m2
0

(
1

8π
− π

48

m2
0

ρ2
log(

ρ

m0

)

)
+ · · · = m2

0

1

8π
+ · · ·

W4/L ∝ m4
0 log(

ρ

m0
) + · · ·

W6/L ∝ m6
0

ρ2

m2
0

log(
ρ

m0

) + · · · (III.124)
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y=(m0/�)
2

x=(m0/ρ)
2

Figure III.4: The sudden limit.

III.E.2 Summary

In those quantities, which are UV-convergent in the limit Λ/m0 → ∞ (irrespective of the
value of m0/ρ), e.g. the energy density and the correlators discussed in the text, it is okay to
use the naive definition of the sudden limit (III.31). However, for W4 and the higher charges
which have log(Λ/m0) and higher UV divergences, the only uniformly sensible way to define
this limit is (III.123), as in figure III.4.
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Chapter IV

Exact Growth of Entanglement in
Fermionic Quenches1

1 Introduction and Summary

Thermalization in unitary quantum field theories has been a topic of great significance. Using
AdS/CFT correspondence, it has also been linked to black hole formation [78, 95]. One of the
current views of thermalization is that of the thermalization of a finite subsystem, in which
the conjugate subsystem is considered the heat bath. In other words, it is the thermalization
observed by an observer who has access to only a subsystem of the full system. It can
also be considered as if the ‘fine-grained’ observables2 are spatially widely separated bilocal
or higher point observables. Starting from a pure state, in the high energy (high effective
temperature) limit, the final thermal entropy observed by such an observer is actually the
entanglement entropy of the subsystem with its conjugate. Obviously, the pure state has to
be a time-dependent state. Closely related to thermalization(equilibration in general), the
study of time-dependent states after a quantum quench has also been of great interest[17, 19].
Quantum quench is the process in which the parameters of the Hamiltonian of a system in a
certain state are changed with time. After the quantum quench, in the long time limit, if the
subsystem of our interest looks like a thermal ensemble, in the sense that the expectation
values of observables in the finite subsystem have the same expectation values as in a thermal
ensemble, then we say that the system has thermalized. In this work, we will be mainly
considering quantum quench as the preparation of the time-dependent states of our interest.

We will also restrict ourself to critical quantum quenches, in which the final Hamiltonian
is a critical Hamiltonian, i.e., the corresponding theory is a conformal field theory (CFT).
More specifically, we will be considering free fermions in which starting from a certain state in
the massive theory, the mass is set to zero gradually or suddenly. In more general theories,
starting from the ground state of a gapped theory, it has been proposed [20, 6] that the
state obtained after the critical quench is a Calabrese-Cardy(CC) state which has the form

1The contents of this chapter have partial overlap with the M.Sc. thesis of Shruti Paranjape. The author
made leading contributions in all the sections below.

2Observables which show the non-thermal behaviour of the pure state, in contrast to ‘coarse-grained’
observables which cannot distinguish between the pure state and the thermal ensemble.
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e−κ2H |B〉, where κ2 is a scale given by the initial gap and the other scales of the quench
process, H is the Hamiltonian of the CFT and |B〉 is a conformally invariant boundary state.
It has been shown that such a state thermalizes to a thermal ensemble with temperature
T = 1/β = 1/(4κ2). This result has also been generalised to the case in which the final
theory has other conserved charges of local currents [2]. The corresponding ansatz for the
state after quench from ground state is a generalized Calabrese-Cardy(gCC) states which
have the form e−κ2H−κ4W4−κ6W6−...|D〉 where again the parameters κ2, κ4, κ6, · · · are given by
the initial gap and other scales in the quench process, e.g. δt = 1/ρ the time taken to set the
mass to zero, and W4,W6, · · · are the conserved charges of local currents. In this case also,
it has been shown that the state thermalizes into a generalized Gibb’s Ensemble(GGE) with
the density matrix e−βH−µ4W4−µ6W6−... where the corresponding temperature and chemical
potentials are T = 1/β = 1/(4κ2), µ4 = 4κ4, µ6 = 4κ6, · · · .

The gCC state ansatz has been shown to be true for mass quenches in free scalar and
free fermion theories in a recent paper(MPS) [3]. Starting from the ground state of the
massive theories, the quenched states obtained are of the gCC form with infinite number of
charges W2n with n ∈ N (W2 = H). For the scalar theory, it was also found that naively
taking the sudden limit when the mass profile is taken to be a step function, the final state
is non-normalizable. For massless free scalar theory, W2n =

∑ |k|2n−1d†kdk, where d
†
k and dk

are the bosonic annihilation and creation operators.3 It was also shown that starting from
specially prepared squeezed states of the massive scalar theory, CC state and gCC state with
finite number of charges can also be created. By calculating correlators, thermalization of
these states were explicitly shown.

In this work, we find similar results for the fermionic mass quench. In the sudden limit,
starting from the ground state, we observe that the final state has divergent energy density,
W4,W6, · · · . Again, as in the case of scalar fields in MPS, starting from specially prepared
squeezed states using the sudden quench limit, we can prepare CC state and gCC state with
a finite number of charges of our choice. For the CC state and the gCC state with finite
number of charges, we calculate correlators and explicitly show thermalization to thermal
ensemble and GGE respectively.

Among the other calculable quantities, entanglement entropy(EE) is the most interesting
one. The EE growth has been calculated(mostly numerically) in many dynamical systems,
see for e.g. [20, 90, 118, 119, 120, 121, 122]. It has also been extensively examined in
holographic systems [123, 7, 14, 77, 124]. Recently, non-monotonic EE growth consisting of
an initial dip around the quench time has also been observed in a holographic set-up in [125].

Since our final theory consists of only massless Dirac fermions, so using bosonization, we
could calculate EE in some of our time-dependent states. We are interested in EE of a single
interval only. For CC states, we find that EE grows monotonically. The asymptotic time limit
is given by the well-known expression from CFT in a thermal ensemble, SA = c

3
log(sinh(πr

β
)),

where for Dirac fermions c = 1 and the effective temperature 1/β = 1/4κ. In case of gCC
states, we are not able to calculate EE with the charges of the usual fermionic bilinear W1+∞
currents. But we are able to calculate the EE with the fermionic charge corresponding to
the bosonic charges W2n =

∑ |k|2n−1d†kdk. These are the charges of bosonic bilinear W2n

currents for n > 1. For such gCC states with the W4 charge, we found a dynamical phase

3The normalization of the charges differ from the normalization in [41, 26].
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transition in which EE grows non-monotonically when the effective chemical potential µ4 is
greater than a critical value. Below this critical value, the EE growth is strictly monotonic.

In summary, the key results of the present work are:

1. For ground state quench, similar to the scalar quench, a naive sudden quench limit gives
divergent conserved charges. Calculation of the correlators show equilibration explic-
itly. But the long distance and time and ultimately the stationary limit is significantly
different from thermalization to a thermal ensemble. This is the same manifestation
of the UV/IR mixing found in MPS.

2. Starting from appropriately prepared squeezed states of the massive theory, we can
prepare CC and gCC states with specific W2n charges using quench. Calculation of
correlators in CC state and gCC states explicitly show thermalization to thermal en-
semble and GGE respectively. Here again, for gCC state, the long time and long
distance limit of the correlators have significant dependence on the chemical poten-
tials. This is again another avatar of the UV/IR mixing.

3. For CC state, we are able to calculate the growth of entanglement entropy of a single
interval explicitly in analytic form. The EE growth is strictly monotonically increasing
for CC state. The stationary limit is, as expected, the entanglement entropy of a single
interval in thermal ensemble.

4. We also calculate the EE growth of a single interval in gCC state with W4 charge of
the W2n representation of fermion corresponding to the W2n bilinear bosonic represen-
tation. We find dynamical phase transition in which the EE growth is monotonically
increasing upto a critical value of κ4. Beyond the critical value, the EE growth is
non-monotonic.

The outline of the chapter is as follows:
In section 2, we solve the Dirac equation with time-dependent mass and from explicit solu-
tions for a specific mass profile, we calculate the Bogoliubov coefficients for the transforma-
tion between the massive and massless modes. In section 3, we find the final state after the
quench starting from the ground state and a few squeezed states of our interest. In sections
4 and 5, we calculate energy density and some correlators in the different quenched states
that we obtained. The EE growth of a single subsystem in CC state is explicitly calculated
in section 6. In section 7, we show the dynamical phase transition in the EE growth of a
subsystem in a particular gCC state. Section 8 contains some discussions. The appendix
contains details that we have omitted in the main sections.

2 Free Dirac fermions with time-dependent mass

The action for Dirac fermions with time-dependent mass is

S = −
∫
dx2

[
iΨ̄γµ∂µΨ−m(t)Ψ̄Ψ

]
(IV.1)
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The equation of motion (EOM) is

[
iγ0∂t − iγ1∂x −m(t)

]
Ψ(x, t) = 0 (IV.2)

and we are interested in the solvable mass profile[42, 40]

m(t) = m[1 − tanh(ρt)]/2 (IV.3)

m is the initial mass and ρ is the only scale of the quench process. ρ → ∞ is the sudden
limit in which the mass is set to zero suddenly - much faster than any other length scale in
the theory. It is easier to solve (IV.2) in the Dirac basis in which γ0 is diagonal. Since the
system is translation invariant in the spatial x-direction, the solution ansatz is

Ψ(x, t) =
[
γ0∂t − γ1∂x − im(t)

]
e±ikxΦ(t) (IV.4)

Substitution in the EOM gives,

[
∂2t + k2 +m(t)2 − iγ0ṁ(t)

]
e±ikxΦ(t) = 0

where ṁ(t) = ∂tm(t).
Φ(t) is solved in the eigenbasis of γ0. For the two eigenvalues of γ0 (1 and -1), the two

solutions φ+(t) and φ−(t) are given by,

[
∂2t + k2 +m(t)2 − iṁ(t)

]
φ+(t) = 0[

∂2t + k2 +m(t)2 + iṁ(t)
]
φ−(t) = 0 (IV.5)

where Φ(t) =
[
φ+(t) φ−(t)

]T
. The eigenstates of γ0 are u0 =

[
1
0

]
and v0 =

[
0
1

]
, they are

the spinors in the rest frame.
For the mass profile (IV.3), there are two important bases of solutions in which we are

interested in. The first one is the ‘in’ basis in which the two independent solutions of the
second order linear differential equations become different single frequency modes in the
t → −∞ limit. In other words, one solution becomes the negative energy mode and the
other solution becomes the positive energy mode. Similarly, there is also an ‘out’ basis of
solutions in which one solution becomes the negative energy mode and the other becomes
the positive energy mode in the t → ∞ limit. Accordingly, we will also have different ‘in’
and ‘out’ creation and annihilation operators. Consider the solutions of (IV.5) in the two
bases to be

φ±(t, k) = φin,±p(t, k) + φin,±m(t, k) (IV.6)

φ±(t, k) = φout,±p(t, k) + φout,±m(t, k) (IV.7)

where the limits are

lim
t→−∞

φin,±p(t, k) = e−iωint, lim
t→−∞

φin,±m(t, k) = eiωint

lim
t→∞

φout,±p(t, k) = e−iωoutt, lim
t→∞

φout,±m(t, k) = eiωoutt
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where ‘p’ means positive energy and ‘m’ means negative energy. The above solutions are the
same but written in two different bases for simplicity in the appropriate time limits, they
are related by Bogoliubov transformations.
But from (IV.5), we see that the equations of φ+ and φ− are the complex conjugates of each
other, so

φin,+p(t, k) = φ∗
in,−m(t, k), φin,+m(t, k) = φ∗

in,−p(t, k) (IV.8)

φout,+p(t, k) = φ∗
out,−m(t, k), φout,+m(t, k) = φ∗

out,−p(t, k) (IV.9)

The Bogoliubov transformations are

φin,+p(t, k) = α′
+(k)φout,+p(t, k) + β ′

+(k)φout,+m(t, k)

= α′
+(k)φout,+p(t, k) + β ′

+(k)φ
∗
out,−p(t, k) (IV.10)

φin,−p(t, k) = α′
−(k)φout,−p(t, k) + β ′

−(k)φout,−m(t, k)

= α′
−(k)φout,−p(t, k) + β ′

−(k)φ
∗
out,+p(t, k) (IV.11)

where α′
±(k) an β

′
±(k) are actually functions of |k|, since the equations of motion have only

k2 terms.
Now, suppressing the basis labels ‘in’ and ‘out’ since they apply to both bases, we write

the u0 part of Ψ(x, t) as (upto normalization)

Ũ(x, t; k) =
[
γ0∂t + γ1∂x − im(t)

]
eikxφ+p(t)

[
1
0

]
(IV.12)

And the v0 part of Ψ(x, t) as

Ṽ (x, t; k) =
[
γ0∂t + γ1∂x − im(t)

]
e−ikxφ−m(t)

[
0
1

]

=
[
γ0∂t + γ1∂x − im(t)

]
e−ikxφ∗

+p(t)

[
0
1

]
(IV.13)

We can define the spinors as (upto normalization)

ũ(t, k) =
1

eikxφ+p(t)
Ũ(x, t; k)

ṽ(t, k) =
1

e−ikxφ−m(t)
Ṽ (x, t; k)

With proper normalization, the final Dirac fermion mode expansion is

Ψ(x, t) =

∫
dk

2π

1√
2ω

[
akU(x, t; k) + b†kV (x, t; k)

]

=

∫
dk

2π

1√
2ω

[
aku(t; k)e

ikxφ+p(t) + b†kv(t; k)e
−ikxφ−m(t)

]
(IV.14)

130



2.1 Bogoliubov transformation of oscillators

The initial mass is taken to be limt→−∞m(t) = m. It is convenient to take the final mass
limt→∞m(t) to be some mout, because of the spinor convention (in P&S), although we are
interested in mout = 0.

With time-dependent mass, as mentioned above, the spinors are functionals of m(t), but
their normalizations are constants or else they will not solve the Dirac equations. So, we
have to differentiate between ‘in’ spinors and ‘out’ spinors. Taking this into account, the
mode expansion of Ψ(x, t) starting from ‘in’ basis to ‘out’ basis is

Ψ(x, t) =

∫
dk

2π

1√
2ωin

[
ain,kuin(k,m)φin,+p(t, k)e

ikx + b†in,kvin(k,m)φ∗
in,+p(t, k)e

−ikx
]

=

∫
dk

2π

1√
2ωin

[{α′
+(k)ain,kuin(k,m)φout,+p(t, k) + b†in,−kvin(−k,m)β ′∗

+(k)φout,−p(t, k)}eikx

+{α′∗
+(k)b

†
in,kvin(k,m)φ∗

out,+p(t, k) + ain,−kuin(−k,m)β ′
+(k)φ

∗
out,−p(t, k)}e−ikx]

(IV.15)

where we have used the facts that the k integral is from −∞ to ∞ and α′
±, β

′
± and φ±p are

functions of |k|. In t→ ∞ limit, m(t) → mout, so,

lim
t→∞

Ψ(x, t) =

∫
dk

2π

1√
2ωout

√
ωout

ωin
[{α′

+(k)ain,kuin(k,mout) + b†in,−kvin(−k,mout)β
′∗
+(k)}e−ik·x

+{α′∗
+(k)b

†
in,kvin(k,mout) + ain,−kuin(−k,mout)β

′
+(k)}eik·x]

Comparing with the mode expansion in the ‘out’ solution basis in the same limit t→ ∞,

lim
t→∞

Ψ(x, t) =

∫
dk

2π

1√
2ωout

[
aout,kuout(k,mout)φout,+p(t, k)e

ikx + b†out,kvout(k,mout)φ
∗
out,+p(t, k)e

−ikx
]

we get the Bogoliubov transformations of the creation and annihilation operators.

aout,k = α+(k)ain,k + b†in,−k χ(k,mout)β
∗
+(k) (IV.16)

b†out,k = α∗
+(k)b

†
in,k + ain,−k χ̃(k,mout)β+(k) (IV.17)

where α+(k) =
√

ωout(ωout+mout)
ωin(ωin+min)

α′
+ and β+(k) =

√
ωout(ωout+mout)
ωin(ωin+min)

β ′
+(k). Using (IV.114)

χ(k,mout) =
1

2mout

√
ωin +min

ωout +mout

ūout(k,mout, ωout)vin(−k,mout,−ωout)

= sgn(k) when mout → 0 (IV.18)

where we have to be careful that vin(k,mout) is a functional of the accompanying mode,
which is ∼ e−iωoutt in the above case. Similarly, with mout → 0,

χ̃(k) = − 1

2mout

√
ωin +min

ωout +mout
v̄(k,mout, ωout)u(−k,mout, ωout) = sgn(k) (IV.19)
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taking into account the normalization of v̄outvout = −2mout. Inverting (IV.16) and (IV.17),
we get

ain,k = α∗
+(k)aout,k − sgn(k)β∗

+(k)b
†
out,−k (IV.20)

b†in,−k = α+(k)b
†
out,−k + sgn(k)β+(k)aout,k (IV.21)

From here on, we will suppress the subscript ‘out’ on creation and annihilation operators,
so aout,k = ak, similarly for bout,k and their Hermitian conjugates. Also, since χ(k) and χ̃(k)
are simple sign functions, with a slight abuse of the nomenclature, we will call α+(k) and
β+(k) as the Bogoluibov coefficients. Moreover, χ(k)2 and χ̃(k)2 are identically equal to 1.
So, the fermionic anti-commutation relations of the ‘in’ and ‘out’ operators constraint the
Bogoluibov coefficients as

|α+(k)|2 + |β+(k)|2 = 1 (IV.22)

2.2 Explicit solutions

In the ‘in’ basis, for our choice of mass profile, the solutions are

φin,+p = e−it(ω+m)
(
e−2ρt + 1

)− im
2ρ

2F1

(
i (|k| −m− ω)

2ρ
,−i (|k|+m+ ω)

2ρ
; 1− iω

ρ
;−e2tρ

)

φin,−m = eit(ω−m)
(
e−2ρt + 1

)− im
2ρ

2F1

(
i (−|k| −m+ ω)

2ρ
,
i (|k| −m+ ω)

2ρ
;
iω

ρ
+ 1;−e2tρ

)

where ω =
√
k2 +m2. While in the ‘out’ basis, the solutions are

φout,+p = e−i|k|t (e−2ρt + 1
)− im

2ρ
2F1

(
i|k| − im+ iω

2ρ
,
i|k| − im− iω

2ρ
; 1 +

i|k|
ρ

;−e−2ρt

)

φout,−m = ei|k|t
(
e−2ρt + 1

)− im
2ρ

2F1

(−i|k| − im+ iω

2ρ
,
−i|k| − im− iω

2ρ
; 1− i|k|

ρ
;−e−2ρt

)

Using the properties of confluent hypergeometric functions 2F1 given in [112], the Bogoli-
ubov coefficients of the frequency modes as defined in (IV.10) are

α′
+ =

Γ
(
− i|k|

ρ

)
Γ
(
1− iω

ρ

)

Γ
(
− i(|k|+m+ω)

2ρ

)
Γ
(
1 + −i|k|+im−iω

2ρ

) (IV.23)

β ′
+ =

Γ
(

i|k|
ρ

)
Γ
(
1− iω

ρ

)

Γ
(
1− i(−|k|−m+ω)

2ρ

)
Γ
(
− i(−|k|+m+ω)

2ρ

) (IV.24)

In the sudden limit(ρ→ ∞). the Bogoliubov coefficients of the frequency modes are

α′
+(k) =

|k|+min +
√
k2 +m2

2|k| (IV.25)

β ′
+(k) =

|k| −min −
√
k2 +m2

2|k| (IV.26)
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As mentioned above, for a quench starting from the ground state of the massive theory, the
naive sudden limit gives a non-normalizable state in the massless theory [3]. The problem
arises only for a quench starting from the ground state. In case the quench is starting from
squeezed states of our interest, the naive sudden limit given above works well. As defined
in (IV.16) and (IV.17), the Bogoluibov coefficients of the oscillator modes differ from α′

+(k)
and β ′

+(k) by an overall factor.

α+ =

√
1− m√

k2 +m2

Γ
(
− i|k|

ρ

)
Γ
(
1− iω

ρ

)

Γ
(
− i(|k|+m+ω)

2ρ

)
Γ
(
1 + −i|k|+im−iω

2ρ

) (IV.27)

β+ =

√
1− m√

k2 +m2

Γ
(

i|k|
ρ

)
Γ
(
1− iω

ρ

)

Γ
(
1− i(−|k|−m+ω)

2ρ

)
Γ
(
− i(−|k|+m+ω)

2ρ

) (IV.28)

In the sudden limit, they are

α+(k) =

√
1− m√

k2 +m2

|k|+m+
√
k2 +m2

2|k| (IV.29)

β+(k) =

√
1− m√

k2 +m2

|k| −m−
√
k2 +m2

2|k| (IV.30)

For completeness, the expressions of α′
− and β ′

− in (IV.11) for our particular quench
protocol are

α′
− =

Γ
(
− i|k|

ρ

)
Γ
(
1− iω

ρ

)

Γ
(
− i(|k|−m+ω)

2ρ

)
Γ
(
1− i(|k|+m+ω)

2ρ

) (IV.31)

β ′
− =

Γ
(

i|k|
ρ

)
Γ
(
1− iω

ρ

)

Γ
(

i(|k|+m−ω)
2ρ

)
Γ
(
1− i(−|k|+m+ω)

2ρ

) (IV.32)

3 Quenched states

3.1 From ground state

Starting from the ground state of the massive theory |Ψ〉 = |0, in〉, using Eq (IV.20), the
state in terms of ‘out’ operators is given by

ain,k|Ψ〉 = 0 ⇒
[
α∗
+(k)ak − sgn(k)β∗

+(k)b
†
−k

]
|Ψ〉 = 0

⇒ |Ψ〉 = e
∑

k sgn(k)γ(k)a†kb
†
−k |0〉 (IV.33)

where γ(k) =
α∗
+(k)

β∗
+(k)

(IV.34)
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where we have taken |0〉 to be the ground state of ‘out’ oscillators. Using the Baker-Campbell-
Hausdorff(BCH) formula derived in appendix (IV.E), the above state can be written in gCC
form. For the particular mass profile (IV.3), α+(k) and β+(k) are given in (IV.27) and
(IV.28). The gCC form which was first obtained in MPS is

|Ψ〉 = e−κ2H−κ4W4−κ6W6−...|D〉 (IV.35)

where

κ2 =
1

2m
+
π2m

12ρ2
+

1

m
O
(
m

ρ

)3

, κ4 = − 1

12m3
+

π2

24mρ2
+

1

m3
O
(
m

ρ

)3

,

κ6 =
3

80m5
− π2

96m3ρ2
+

1

m5
O
(
m

ρ

)3

, ... (IV.36)

and |D〉 is the Dirichelet state and the explicit expression is in Appendix IV.C. It should be
noted that since the mass does not go to zero at any finite time, the above state should is
only valid in sufficiently long time limit and the correction due to the non-vanishing mass is
O(e−ρt).

3.2 From squeezed states: CC state and gCC states

We could start with specially prepared squeezed states so that after the quench, the states
become CC states or gCC states. Here, we will consider only the simple case of sudden
quench (ρ→ ∞). For our aim of creating a CC state or a gCC state, finite ‘ρ’ quenches are
an unnecessary complication.

We start with a squeezed state of ‘in’ modes

|S〉 = exp

( ∞∑

k=−∞
f(k)a†in,kb

†
in,−k

)
|0, in〉 (IV.37)

where unlike γ(k), f(k) need not be an even function of k, but |f(k)|2 is an even function of
k.

It is easier to work with |S〉 as an operator relation. |S〉 can also be defined as

ãk|S〉 = b̃k|S〉 = 0 and
{
ãk, ã

†
k′

}
=
{
b̃−k, b̃

†
−k′

}
= δ(k − k′) (IV.38)

where the new operators in terms of the out modes using (IV.20) and (IV.21) are

ãk =
1√

(1 + |f(k)|2)
ain,k −

f(k)√
(1 + |f(k)|2)

b†in,−k

= A∗(k)aout,k − sgn(k)B∗(k)bout,−k

b̃−k =
1√

(1 + |f(k)|2)
bin,−k +

f(k)√
(1 + |f(k)|2)

a†in,k

= A∗(k)bout,−k + sgn(k)B∗(k)a†out,k (IV.39)
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where A(k) and B(k) are the Bogoliubov coefficients for the transformation from ‘tilde’
operators to ‘out’ operators and are given by

A(k) =
α+(k)− sgn(k)β∗

+(k)f
∗(k)√

(1 + |f(k)|2)
, B(k) =

β+(k) + sgn(k)α∗
+(k)f

∗(k)√
(1 + |f(k)|2)

(IV.40)

|A(k)|2 + |B(k)|2 = 1 (IV.41)

Now using the BCH formula (IV.133) from appendix (IV.E),

|S〉 = exp

{
−
∑

k

κ̃(k)
(
a†out,kaout,k + b†out,kbout,k

)}
|D〉 (IV.42)

where γ̃(k) =
B∗(k)

A∗(k)
, and κ̃(k) = −1

2
log(γ̃(k))

For a CC state, i.e., so that |S〉 in eqn (IV.42) is e−κ2H |D〉, f(k) should be tuned as

f(k) =

(√
k2 +m2 +m

)
cosh(κ2k)− k sinh(κ2k)(√

k2 +m2 +m
)
sinh(κ2k) + k cosh(κ2k)

(IV.43)

Starting with

f(k) =
k − k e2|k|(κ2+κ4k2) + sgn(k)

(√
k2 +m2 +m

) (
e2|k|(κ2+κ4k2) + 1

)

|k| (e2|k|(κ2+κ4k2) + 1) +
(√

k2 +m2 +m
)
(e2|k|(κ2+κ4k2) − 1)

(IV.44)

we get a gCC state of the form e−κ2H−κ4W4|D〉, where as mentioned earlier, W4 is the con-
served charge of the W4 current of free Dirac fermions4. Note that f(k) are odd functions
of k. For future reference, we can invert Eq (IV.39) and we write down the ‘in’ and ‘out’
operators in terms of the ‘tilde’ operators.

ain,k =
1√

(1 + |f(k)|2)
ãk +

f(k)√
(1 + |f(k)|2)

b̃†−k (IV.45)

b†in,−k =
1√

(1 + |f(k)|2)
b̃†−k −

f ∗(k)√
(1 + |f(k)|2)

ãk (IV.46)

aout,k = A(k)ãk + sgn(k)B∗(k)b̃†−k (IV.47)

b†out,−k = A∗(k)b̃†−k − sgn(k)B(k) ãk (IV.48)

4 Energy density

In the post-quench theory, the occupation number is given by

N̂k = a†kak + b†kbk (IV.49)

4For the action (IV.1), H =
∑

k |k|(a
†
kak + b†kbk) or H =

∫
dk
2π |k|(a

†
kak + b†kbk). W4 has been normalized

so that W4 =
∑

k |k|3(a
†
kak + b†kbk) or W4 =

∫
dk

(2π)3 |k|3(a
†
kak + b†kbk) in the continuum limit.
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using the Bogoliubov transformations (IV.47) and (IV.48) and definition of |0̃〉 in (IV.38),
the expectation value of the occupation number is given by

Nk = lim
t→∞

〈0̃|a†kak + b†kbk|0̃〉

= B∗(k)B(k)〈0̃|b̃†−k b̃−k|0̃〉+B∗(−k)B(−k)〈0̃|ã†−kã−k|0̃〉+ ...

= B∗(k)B(k) +B∗(−k)B(−k) (IV.50)

The expression of B(k) is given in (IV.40). For ground state, we have to use f(k) = 0 in the
expression of B(k). So, energy density of the post-quench state is given by

E =

∫ ∞

−∞

dk

2π
|k| [B∗(k)B(k) +B∗(−k)B(−k)] (IV.51)

Ground state quench

For ground state quench, the occupation number is given by

Nk = lim
t→∞

〈0, in|N̂k|0, in〉 = |β+(k)|2 + |β+(−k)|2

Since α+(k) and β+(k) are even functions of k. Using (IV.22), (IV.34) and (IV.134), we have

|β+(k)|2 =
|γ(k)|2

1 + |γ(k)|2 , |γ(k)|2 = e−4κ(k) (IV.52)

Hence, the occupation number in the ground state in the asymptotically long time limit is
given by

Nk =
2

e4κ(k) + 1
(IV.53)

This is the occupation number in a GGE defined as

Tr e−
∑

k 4κ(k)N̂k = Tre−4κ2H−4κ4W4−κ6W6−··· (IV.54)

where the κ’s are given in (IV.36). Using the expressions of β+(k) from (IV.28), the explicit
expression of the occupation number is

Nk = csch

(
πk

ρ

)(
cosh

(
πm

ρ

)
− cosh

(
π
(
k −

√
k2 +m2

)

ρ

))
csch

(
π
√
k2 +m2

ρ

)

ρ→∞−−−→ 1− k√
k2 +m2

It is interesting that in m→ ∞ limit, Nk → 1, not 2. This is because limρ→∞ |α+(k)|2 = 1/2
and we have the constraint |α+(k)|2 + |β+(k)|2 = 1.
For arbitrary ρ, the energy density cannot be calculated in closed form. In the sudden limit
ρ → ∞, the energy density diverges as log(Λ) where Λ is the UV cutoff. Hence, all other
W charges also diverge in the sudden limit. Hence, naively taking ρ → ∞ produce a non-
renormalizable state. So, the sudden limit has to be taken as in MPS where m/Λ → 0 while
m/ρ → ǫ+. Simply put, the quench rate parameter ρ should be much small than the UV
cut-off.
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Squeezed state quench: CC and gCC states

For CC state given by (IV.43), the expectation value of occupation number is given by

Nk =
2

1 + e4κ2|k| (IV.55)

This is the occupation number of fermions in a thermal ensemble of temperature 1/β =
1/4κ2. The enengy density is

E =

∫ ∞

−∞

dk

2π
Nk =

π

96κ22
(IV.56)

Similarly, for gCC state given by (IV.44), the expectation value of occupation number is
given by

Nk = 〈gCC|N̂k|gCC〉 =
2

1 + e4κ2|k|+4κ4|k|3
(IV.57)

This is same as the occupation number of fermions in a generalised Gibbs ensemble of
temperature 1/β = 4κ2 and chemical potential µ4 = 4κ4 of W4 charge. The enengy density
cannot be calculated in closed form.

5 Correlation functions

Since our theory is a free theory, all the observables can be explicitly calculated. In the
following subsections we calculate 〈ψ†(r, t)ψ(0, t)〉 correlation functions for the three differ-
ent states obtained above. The quench process cannot differentiate between holomorphic
dof(‘left-movers’) and anti-holomorphic dof(‘right-movers’), so 〈ψ̄†(0, t)ψ̄(r, t)〉 is equal to
〈ψ†(r, t)ψ(0, t)〉 and they are time independent quantities.5 We also calculated 〈ψ̄†(r, t)ψ(0, t)〉
which has non-trivial time-dependence. Also as expected, −〈ψ†(0, t)ψ̄(r, t)〉 is the com-
plex conjugate of 〈ψ̄†(r, t)ψ(0, t)〉. Since, we are calculating equal-time correllation func-
tions, so for example for 〈ψ†(r, t)ψ(0, t)〉, we would rather be calculating 1

2
〈ψ†(r, t)ψ(0, t)−

ψ(0, t)ψ†(r, t)〉.
Using the Bogoluibov transformations (IV.47) and (IV.48) in the chiral mode expansions
(IV.116) and (IV.117) we get

ψ(w) =

∫ ∞

0

dk

2π

[
A(k)ãke

−ikw + sgn(k)B∗(k)b̃†−ke
−ikw + A∗(−k)b̃†keikw + sgn(k)B(−k)ã−ke

ikw
]

(IV.58)

ψ̄(w̄) =

∫ ∞

0

dk

2π

[
A(−k)ã−ke

−ikw̄ − sgn(k)B∗(−k)b̃†ke−ikw̄ − A∗(k)b̃†−ke
ikw̄ + sgn(k)B(k)ãke

ikw̄
]

(IV.59)

5A simple reason why these quantities are time independent is the fact that they are holomorphic-
holomorphic and antiholomorphic-antiholomorphic quantities and they cannot ‘see’ the presence of the
boundary state |D〉. They are already thermalized/equilibrated.
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where w = t− x and w̄ = t+ x. For the ground state quench, f(k) = 0, ãk = ain,k, b̃ = bin,k
and |0̃〉 = |0, in〉.
For a general f(k) corresponding to some |0̃〉, the correlation functions are

〈0̃|ψ†(0, t)ψ(r, t)|0̃〉 =
1

2

∫ ∞

0

dk

2π

[
(2|B(k)|2 − 1)eikr − (2|B(−k)|2 − 1)e−ikr

]
(IV.60)

〈0̃|ψ̄†(0, t)ψ(r, t)|0̃〉 = −
∫ ∞

0

dk

2π

[
sgn(k)A∗(−k)B(−k)eik(2t−r) + sgn(k)A(k)B∗(k)e−ik(2t−r)

]

(IV.61)

where we have used (IV.41) to write A(k) in terms of B(k) in the first equation.

Ground state quench:

Taking careful limit, for ground state quench, we have

〈0, in|ψ†(0, t)ψ(r, t)|0, in〉 = −1

2

∫ ∞

−∞

dk

2π

|k|√
k2 +m2

=
1

4
m [LLL−1(mr)− I1(mr)]

m→∞−−−→ 1

2πmr2
+

3

2πm3r4
+O

(
1

m4

)
(IV.62)

〈0̃|ψ̄†(0, t)ψ(r, t)|0̃〉 =

∫ ∞

0

dk

2π

i sgn(k)m sin(k(2t− r))√
k2 +m2

= −im
4

[sgn(r − 2t)I0(m(r − 2t))−LLL0(m(r − 2t))]

m→∞−−−→
t>r/2

i

2π(2t− r)
+

i

2πm2(2t− r)3
+O

(
1

m4

)
(IV.63)

where Iν(x) is Modified Bessel Function of the First Kind and LLLν(x) is Modified Struve
Function.
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Quenched squeezed state - CC state:

For CC state, all the calculations are done in |SCC〉 defined as the state (IV.37) with the
expression of f(k) given in (IV.43).

〈CC|ψ†(0, t)ψ(r, t)|CC〉 = −i
∫ ∞

0

dk

2π
tanh(2κ2|k|) sin(kr) (IV.64)

= −i
∫ ∞

0

dk

2π
sin(kr)

[
1

e4κ2|k| + 1
− 1

2

]
(IV.65)

= −
i csch

(
πr
4κ2

)

8κ2
(IV.66)

〈CC|ψ̄†(0, t)ψ(r, t)|CC〉 = −i
∫ ∞

0

dk

2π
sech(2kκ2) cos(k(2t− r)) (IV.67)

= −
i sech

(
π(2t−r)

4κ2

)

8κ2
(IV.68)

These are exactly what have been calculated using BCFT techniques [44]. It is evident from
(IV.65) that ψ†ψ expectation value is already the thermal expectation value at temperature
T = 1/β = 1/(4κ2), i.e., it is already thermalized.

Quenched squeezed state - gCC state with W4:

Similarly, for gCC state, all the calculations are done in |SfCC〉 defined as the state (IV.37)
with the expression of f(k) given in (IV.44).

〈ψ†(0, t)ψ(r, t)〉gCC = −i
∫ ∞

0

dk

2π
tanh

(
2κ2|k|+ 2κ4|k|3

)
sin(kr) (IV.69)

= −i
∫ ∞

0

dk

2π
sin(kr)

[
1

e4κ2|k|+4κ4|k|3 + 1
− 1

2

]
(IV.70)

〈ψ̄†(r, t)ψ(0, t)〉gCC = −i
∫ ∞

0

dk

2π
sech(2κ2k + 2κ4k

3) cos(k(2t− r)) (IV.71)

Again, it is evident from (IV.70) that ψ†ψ expectation value is already thermalized into
the expectation value in a GGE with T = 1/β = 1/4κ2 and µ = 4κ4. A possible way of
evaluating these integrals (which yield no closed form answer) is via the residue theorem.
The integrands in both cases, have poles at the solutions of 2κ2k + 2κ4k

3 = 2n+1
2
iπ, where

n ∈ Z. These poles and their residues have been treated in detail in [3]. The sum of residues
is still an infinite sum which cannot be performed. In the perturbative regime (κ4/κ

3
2 << 1),

we see that our correlators match the general form presented in [2] with h = 1/2 as expected.

As expected form MPS, here in the fermionic theory also we see the UV/IR mixing. For
the ground state quench, all the charges affect the long distance and long time limit of the
correlators. This is explicit seen in the case of gCC state with W4 charge only. The long
time and large distance limit or the correlators are very much dependent upon k4, although
a naive Wilsonian RG argument would show that k4 is an irrelevant coupling.
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6 Exact Growth of Entanglement in CC state

We will consider only a finite single interval or subsystem A, with its endpoints at (w1, w̄1)
and (w2, w̄2) in light-cone coordinates, or (0, t) and (r, t) in space and time coordinates.
Using the replica trick ([126], [93]), the nth Rényi entropy Sn(A) of the interval is given
by the logarithm of the expectation value of twist and antitwist operators inserted at the
end-points.

Sn(A) =
1

1− n
log〈Ψ(t)|Tn(w1, w̄1)T̃n(w2, w̄2)|Ψ(t)〉 (IV.72)

The entanglement entropy(EE) SA is given by limn→1 Sn(A). We can diagonalize the twist
operators and write them as products of twist fields. Hence,

Tn(w, w̄) =

k=(n−1)/2∏

k=−(n−1)/2

Tk,n(w, w̄), T̃n(w, w̄) =

k=(n−1)/2∏

k=−(n−1)/2

T̃k,n(w, w̄) (IV.73)

In CC state, in Heisenberg picture, the quantity of our interest is

Zk = 〈Df |e−κ2HfTk,n(0, t)T̃k,n(r, t)e
−κ2Hf |Df 〉 (IV.74)

The subscript ‘f’ means we are working in the fermionic theory and the subscript ‘b’ would
mean we are working in the bosonic theory. To find the exact expression of the entangle-
ment entropy of a spatial region in our free fermionic CFT, we will use the method using
bosonization described in [127]. Moreover, as shown in Appendix(IV.D), Dirichlet state
|Df〉 in fermionic theory corresponds to a Dirichlet state in the bosonic theory |Db〉 and Hf

corresponds to Hb. So, we get

Zk = 〈Db|e−κ2Hbei
√
4π k

n
(φ(0,t)−φ(r,t))e−κ2Hb |Db〉 (IV.75)

This is a free scalar theory in a strip geometry with Dirichlet boundary conditions and
operator insertions at (0, t) and (r, t). It can be calculated explicitly

log [Zk] = −4π
2k2

n2
(〈φ(0, t)φ(0, t)〉 − 〈φ(0, t)φ(r, t)〉) (IV.76)

The nth Rényi entropy of interval A is given by

Sn(A) = −4π
1

1− n

k=(n−1)/2∑

k=−(n−1)/2

2k2

n2
(〈φ(0, t)φ(0, t)〉 − 〈φ(0, t)φ(r, t)〉)

= 4π
n + 1

6n
(〈φ(0, t)φ(0, t)〉 − 〈φ(0, t)φ(r, t)〉) (IV.77)

Taking n→ 1 limit, we get the entanglement entropy,

SA = 4π
1

3
(〈φ(0, t)φ(0, t)〉 − 〈φ(0, t)φ(r, t)〉) (IV.78)
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Remark on winding number: While the free boson considered in MPS [3] is the uncompactified
free boson, the boson in (IV.75) is a compactified free boson. So, Hamiltonian of the compactifed
boson has zero mode terms but the winding number is not important for our analysis. In the large
system size limit(L → ∞), the zero modes vanished. Even if we are taking the limiting case of a
finite size system, the zero momentum modes do not play any role in our calculation. Using the
mode expansion of the boson φ(w, w̄) = ϕ(w) + ϕ̄(w̄) in [128],

ϕ(w) = Q+
P

2L
w +

∑

n>0

1√
4πn

(
dne

−inw + d†ne
inw
)

(IV.79)

ϕ̄(w̄) = Q̄+
P̄

2L
w̄ +

∑

n>0

1√
4πn

(
d−ne

−inw̄ + d†−ne
inw̄
)

(IV.80)

First, Q and Q̄ are cancelled identically in (IV.75). Moreover, by bosonization formulae [128, 129],

P =
√
4πNf P̄ =

√
4πN̄f (IV.81)

Nf = J0 = −
∞∑

k=0

[
a†kak − b†kbk

]
N̄f = J̄0 = −

∞∑

k=0

[
a†−ka−k − b†−kb−k

]
(IV.82)

But for our particular CC state, from (IV.131), Nf |CCf 〉 = 0 and N̄f |CCf 〉 = 0. Now, P and P̄

commute with all the other bosonic creation and annihilation operators of non-zero momentum,

hence they don’t play any role in the calculation of (IV.75). If we still keep the system size finite,

the winding number would be important to interpret the stationary limit as a thermal ensemble.

But we must take the L→ ∞ limit, if we want to examine the stationary limit. In other words, L

is the largest length scale in our theory and time t << L.

The bosonic propagator in CC state has been calculated in [3]. It is given by

〈CC|φ(0, t)φ(r, t)|CC〉 = − 1

8π
log




2 sinh2
(

πr
4κ2

)

cosh
(

πr
2κ2

)
+ cosh

(
πt
κ2

)


 (IV.83)

r → 0 gives the UV divergence of scalar field theory in 2D spacetime. The nth Rényi entropy
and entanglement entropy of interval A in CC state is given by

Sn(A) =
n+ 1

12n


log



sinh2

(
πr
4κ2

)(
1 + cosh

(
πt
κ2

))

cosh
(

πr
2κ2

)
+ cosh

(
πt
κ2

)


− lim

ǫ→0+
2 log(ǫ)− log

(
π2

16κ22

)


(IV.84)

SA =
1

3


1
2
log



sinh2

(
πr
4κ2

)(
1 + cosh

(
πt
κ2

))

cosh
(

πr
2κ2

)
+ cosh

(
πt
κ2

)


− lim

ǫ→0+
log(ǫ)− 1

2
log

(
π2

16κ22

)
(IV.85)

Taking the stationary limit t→ ∞ gives the entanglement entropy of A in a thermal ensemble
at temperature T = 1/β = 1/(4κ2).

SA =
1

3

[
log

(
sinh

(
πr

4κ2

))
− lim

ǫ→0+
log(ǫ)− 1

2
log

(
π2

16κ22

)]
(IV.86)
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Figure IV.1: Entanglement entropy growth of an interval(r=5) in CC state.

This exactly matches the thermal value which has been calculated using CFT techniques
[93]. It is fixed only by the temperature, the central charge of the CFT(c = 1 for dirac
fermion), and ‘r’ the length of the interval. Taking the high temperature limit κ2 → 0, we
get the extensive thermal entropy formula Stherm = 1

3
πr
β
.

Besides the thermalization, the most interesting aspect of figure (IV.1) is that the entan-
glement entropy grows monotonically. The first derivative of SA w.r.t. time is

〈
∂SA

∂t

〉

CC

=
π sinh2

(
πr
4κ2

)
tanh

(
πt
2κ2

)

3κ2

[
cosh

(
πr
2κ2

)
+ cosh

(
πt
κ2

)] (IV.87)

=
π

12κ2

[
2 tanh

(
πt

2κ2

)
− tanh

(
π(r + 2t)

4κ2

)
+ tanh

(
π(r − 2t)

4κ2

)]
(IV.88)

From the first expression, as a function of time t > 0, it is clear that there are no finite zero.
Hence, the EE growth of CC state is always monotonically increasing. Also note that in the
high effective temperature limit κ2 → 0, the approach to thermal value is sharper. In the
limiting case, from the second expression, it is clear that the thermalization time is

t =
r

2
(IV.89)

which has also been calculated using BCFT techniques in [20].
It would be interesting to check the monotonicity of EE growth in gCC states. Unfor-

tunately, even for the free fermions with explicit twist operators, the entanglement entropy
in gCC state with W4 charge cannot be explicitly calculated. The bilinear fermionic W4(w)
current when bosonized gives φ4 terms[26], so the bosonized theory is an intereacting theory.

7 Non-Monotonic EE Growth and Dynamical Phase

Transition

Although we could not calculate EE in gCC state with W4 charge of the fermionic bilin-
ear W4 current, we can still calculate entanglement entropy explicitly with the fermionic
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Figure IV.2: Entanglement entropy growth of an interval(r=5) for different choice of κ4 and
κ2 = 1.

charge corresponding to the bosonic charge W4(w) =
∑

k |k|3d
†
kdk, where d

†
k and dk are the

bosonic annihilation and creation operators. As mentioned above, the zero modes do not
play any role. Refermionization of the bosonic bilinear W4 is done in Appendix IV.F.6 So,
the fermionic state that we are considering is

|Ψ〉 = e−κ2Hf−κ4W̃4|Df〉 (IV.90)

where the expression for W̃4 is given in (IV.137).
Again, the Rényi and entanglement entropies are given by the expression (IV.77) and

(IV.78). The scalar propagator with the bosonic W4 charge has also been calculated in
MPS.

〈φ(0, t)φ(r, t)〉 =
∫ ∞

−∞

dk

8π

eikr

k

[
coth

(
2k
(
κ2 + κ4k

2
))

− cos(2kt)cosech
(
2k
(
κ2 + κ4k

2
))]
(IV.91)

The momentum integral cannot be done explicitly. But we still can plot the entanglement
entropy numerically. Figure (IV.2) are the plots of EE growth with ‘small’ and ‘large’ values
of κ4. As expected, the entanglement entropy reaches an equilibrium quickly.

The most interesting aspect of Figure (IV.2) is the non-monotonic growth of EE in the
gCC state with ‘large’ κ4. As in case of CC state, to study the monotonic or non-monotonic
behaviour of SA, the more appropriate quantity is not SA but rather ∂SA

∂t
, the expression also

simplifies tremendously.
〈
∂SA

∂t

〉

gCC

=
1

3

∫ ∞

−∞
dk (1− eikr)cosech(2κ2k + 2κ4k

3) sin(2kt)

=
1

3

∫ ∞

−∞
dk (1− cos(kr))cosech(2κ2k + 2κ4k

3) sin(2kt) (IV.92)

Unfortunately, the above integral still cannot be done in closed form. The objective is to find
finite positive real zeroes of the above expression as a function of time t. But, calculating

6We would like to thank Justin David for informing us that this refermionization could be done in principle
using U(1) currents and it has not been done anywhere.
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zeroes of Fourier transforms, unless it can be done in closed form, is notoriously hard, the
most famous example being the Riemann hypothesis.

The most interesting question that can be asked in Figure (IV.2) is whether even a small
infinitesimal κ4, although not visible in the numerical plot, gives rise to the non-monotonic
EE growth or whether the non-monotonic behaviour starts from a sharp finite value of κ4.
If it is the second case, then it is a dynamical phase transition. In other words, the question
is whether (IV.92) has finite zeroes as a function of time even for an infinitesimal κ4 or do
the finite zeroes appear for κ4 greater than a critical value.

We found that the non-monotonic behaviour starts abruptly at a critical value of κ4 =
16κ32/27π

2, i.e., it is a dynamical phase transition. In terms of the effective temperature
and chemical potential in the stationary limit, β = 4κ2 and µ4 = 4κ4, the critical value is
µ4 = β3/27π2.

Althought the integral (IV.92) cannot be done in closed form, we can take advantage of
the fact that for our question we do not need to know the precise zeroes. Using contour
integration, the integral is given by the sum of residues of the poles given by 2κ2k+2κ4k

3 =
inπ where n ∈ Z − {0}. n = 0 is not a pole of (IV.92). The expressions of the poles(from
MPS)7 are

k1 =
−2 62/3κ2 +

3
√
6
(√

48κ32 − 81π2κ4n2 + 9iπ
√
κ4n
)2/3

6 3

√√
3
√
κ34 (16κ

3
2 − 27π2κ4n2) + 9iπκ24n

(IV.93)

k2 =
4 3
√
−6κ2 + i

(√
3 + i

) (√
48κ32 − 81π2κ4n2 + 9iπ

√
κ4n
)2/3

2 62/3 3

√√
3
√
κ34 (16κ

3
2 − 27π2κ4n2) + 9iπκ24n

(IV.94)

k3 = −
3
√
−1

(
2 3
√
−6κ2 +

(√
48κ32 − 81π2κ4n2 + 9iπ

√
κ4n
)2/3)

62/3
√
κ4

3

√√
48κ32 − 81π2κ4n2 + 9iπ

√
κ4n

(IV.95)

Out of the three poles, only one is perturbative. In κ4 → 0 series expansion, the other two
start with O( 1√

κ4
). One of the three poles is always imaginary for arbitrary n and arbitrary

positive κ4.
There are three important ingredients for the proof of the dynamical phase transition:

1. All three nth poles become purely imaginary when 16κ32 − 27π2κ4n
2 is negative, or κ4

is greater than 16κ32/27π
2n2, we will call this the nth critical value κ4c,n,

κ4c,n =
16κ32

27π2n2
(IV.96)

7The numerical values of the poles may get interchanged for specific values of the parameters but the
result will always be the same set of roots. This arises from the particular method used for solving the cubic
equation.

144



Below this value, the residues of the nth poles are exponential decaying functions of
time t, with no oscillatory factor. Obviously, (n = ±1) critical8 value κ4c is larger than
κ4c,n for |n| > 1. With κ scaled to 1, κ4c is 16κ

3
2/27π

2 ∼ 0.0600422.

2. With κ4 less than (n = ±1) critical value, the sum of the residues of (n = ±1) poles
is larger than the sum of the residues of all the other (|n| > 1) poles. Hence, the
behaviour of the first poles of n = ±1 dictate the behaviour of the integral (IV.92)
when κ4 < 16κ32/27π

2.

3. Above this critical value, for each n, two of the poles have real parts while one of them,
say k1, is imaginary. The poles are

k1 = −2i sgn(n) b, k2 = a + i sgn(n) b, k3 = −a+ i sgn(n) b (IV.97)

a =
B2/3 − 2 3

√
6κ2

2 22/3 6
√
3 3
√
B
√
κ4
, b =

B2/3 + 2 3
√
6κ2

2 62/3 3
√
B
√
κ4

B =
√

81π2κ4n2 − 48κ32 + 9π|n|√κ4

where we have to take the real roots of the radicals. k1’s have the largest imaginary
parts and the exponential decay of their residues as a function of time are faster while
the other poles k2 and k3 have comparatively large magnitudes and ocsillations.9 In
the total integral, the contributions of the imaginary poles k1’s cannot compete with
the contributions of the oscillating poles. Lastly, it would be a very special arrangment
if all ocsillating terms conspire to give a non-oscillatory sum. Hence, the total integral
is oscillatory as a function of time and the EE growth is non-monotonic.

For future reference, we also note that the expansion of the real part ‘a’ in (IV.97) around
the nth critical value κ4c,n is

a =
3
√
π 3
√

|n|√κ4 − κ4c,n

22/3
√
3κ

5/6
4c,n

−
35
(

3
√
π 3
√
|n|
)
(κ4 − κ4c,n)

3/2

54
(
22/3

√
3κ

11/6
4c,n

)

+
1001 3

√
π 3
√

|n|(κ4 − κ4c,n)
5/2

1944 22/3
√
3κ

17/6
4c,n

+O(κ4 − κ4c,n)
7/2 (IV.98)

For all our calculations below, we have scaled κ2 to be 1. The first point is clear from
figure (IV.3). The real parts of (n = ±1) poles vanish at κ4 ∼ 0.060, which is the critical
value found above. The critical value of (n = ±2) poles is κ4 ∼ 0.015.

8We will call this value just ‘critical value’ without the ‘nth’ specification because, as shown below, this
is the critical value of κ4 where the dynamical phase transition happens.

9This competition between poles of each nmight be important, if we have turned onW6 chemical potential
instead of W4, in which case there will be five poles, or W8 in which case there will be seven poles and so on.
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Figure IV.3: Real parts of poles of n ∈ {±1,±2} as a function of κ4 with κ2 scaled to 1.

Below the critical value, we will show that the total contributions from n = ±1 poles
is larger than the sum of all residues of |n| > 1 poles. We will concentrate on the late
time period, t > r/2. For ei2kt of sin(2kt) factor in (IV.92), the contour is closed upward
encircling the upper half plane, and for e−i2kt, the contour is closed downward encircling the
lower half plane. From the expansion of cosech (2κ4 (k − k1) (k − k2) (k − k3) + iπn) around
k1, the contribution from k1 poles for arbitrary n are the real parts of

Pn(k1) = 2πiR1(k1) =
(−1)n

6κ4(k1 − k2)(k1 − k3)

(
ei2k1t − eik1(r+2t) + eik1(−r+2t)

2

)
if Im[k1] > 0

(IV.99)

Qn(k1) = −2πiR2(k1) =
(−1)n

6κ4(k1 − k2)(k1 − k3)

(
e−i2k1t − eik1(r−2t) + e−ik1(r+2t)

2

)
if Im[k1] < 0

(IV.100)

where R1 and R2 denote the residues. Similarly, cyclic replacements of k1 with k2 and k3
give the contributions of k2 and k3 poles. For the poles in the lower half of the complex
plane, since the contour is anticlockwise, Qn have an extra minus sign in the residue. We
will call the contributions to the integral form n = ±1 poles as I0(t) and the contributions
of the |n| > 1 poles as I1(t). The other parameters (κ4, r and κ which is already scaled to
1) are suppressed.

As a first visual evidence, Figure (IV.4) is the comparison of numerical integration of
(IV.92) and I0(t). It is evident that the residues of (n = ±1) poles dominate the contour
integration. We have chosen κ4 = 0.0600420 which is very close to the critical value. As
mentioned above, with this choice, all the poles except the n = ±1 poles give ocsillating
residues as a function of time. Although it is not very conspicuous, it is also evident from
the graph that I1(t) is oscillating around I0(t), the value of the numerical integration is above
the I0(t) curve in some regions and below in other regions of time t.
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Figure IV.4: Comparison of numerical integration of 〈∂SA/∂t〉gCC (blue curve) and I0(t)
(purple curve) as a function of time t. The parameters are κ4 = 0.0600420, r = 5.

The numerical integration is unreliable in the long time limit. So, to complete our
argument, we will calculate an upper bound of I1(t) and compare it with I0(t) for a specific
time t. The choice of the parameters are

κ = 1, κ4 = 0.0600420, r = 5, t = 4r = 20, (IV.101)

With these parameters, the n = 1 and n = −1 poles are

k1 = 2.3538234i k2 = 2.3585719i k3 = −4.7123954i ; n = 1 (IV.102)

k1 = 4.7123954i k2 = −2.3538234i k3 = −2.3585719i ; n = −1 (IV.103)

and I0(t) is given by

I0(t)|t=20 = P (k1)|n=1 + P (k2)|n=1 +Q(k3)|n=1 + P (k1)|n=−1 +Q(k2)|n=−1 +Q(k3)|n=−1

= 6.646589× 10−35 (IV.104)

We can show that I1(t)|t=20 is less than I0(t)|t=20. The first few poles are

k1 = 5.5495551i k2 = 2.5383386− 2.7747775i k3 = −2.5383386− 2.7747775i ; n = −3

k1 = 5.1737935i, k2 = 1.8496206− 2.5868967i k3 = −1.8496206− 2.5868967i ; n = −2

k1 = −5.1737935i k2 = −1.8496206 + 2.5868967i k3 = 1.8496206 + 2.5868967i ; n = 2

k1 = −5.54955505i k2 = −2.5383386 + 2.7747775i k3 = 2.5383386 + 2.7747775i ; n = 3

The residues of these (|n| > 1) poles cannot be summed up into a closed form, as that would
amount to doing the integral in closed form. We are interested in an upper bound. The
residues of two of the three poles of every (|n| > 1) have an oscillation factor. As we saw,
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even each residue has a separate 3-6 real oscillating terms as a function of time. So, we can
represent the sum of the modulus (absolute value of the amplitude) of the oscillating terms
of the three residues for each n, by a bigger function which has the analytic sum from |n| > 1
to infinity. And if the sum is less I0(t), then I0(t) dominates the contribution from all the
other poles.10
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Figure IV.5: Comparison of sum of modulus of residues of (|n| > 1) poles with the approx-
imating function f(n) = 10−39/n2. The dots are the discrete n values of the corresponding
functions.

Figure (IV.5) are the plots of the sum of the moduli separately for the oscillating terms
of the three residues as a function of n and the approximating function f(n) = 10−39/n2.
Now, we have

n=−2∑

−∞

10−39

n2
+

∞∑

n=2

10−39

n2
= 1.289868× 10−39 (IV.105)

This is much less than I0(t)|t=20 in (IV.104) and is of the order of 10−5 of I0(t)|t=20. So, the
non-oscillating I0(t) dominates I1(t), the contribution from the other poles. Hence, below
κ4 = 16κ32/27π

2, the EE growth is monotonic.
Visually from figure (IV.4), t = 3.7 is a time-slice where the difference between I0(t)

and the numerical integration has a local maxima. At this time slice, repeating the above
exercise, I0(t)|t=3.7 = 0.109727 and repeating the same exercise of estimating the upper
bound of I1(t)|t=3.7 with the same parameters as (IV.101) except the change in t, we get a
good upper bound to be 0.0064493 which is less than I0(t)|t=3.7 and is of the order of 60%
of I0(t)|t=3.7. So, the approximation of the full integral by I0(t) gets better with increasing
time. In the long time limit, we can effectively take the only time-dependence to be the

10A simplified example of our strategy is the comparison between say X and a sin(x) + b cos(y) where
{X, a, b, x, y} ∈ R, while A > |a| and B > |b| and {A,B} ∈ R+, then A+B > |a|+ |b| > a sin(x) + b cos(y)
and if X > A+B then X > a sin(x) + b cos(y).
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time-dependence of I0(t). It is worth mentioning here that even (n = ±1) pole calculations
take into account κ4 non-perturbatively, since two of the poles of each n are non-perturbative
in κ4.

As listed above as one of the main points, above the critcal value, each n has an imaginary
pole but the other two poles have real parts and also have larger magnitudes so the total
residue of the three poles of each n is oscillatory. It would also be a very special arrangement
if all the oscillatory contributions of each n conspire to give a non-oscillatory ∂SA/∂t. Hence,
we conclude that the EE growth is non-monotonic above the critical value.

Near the critical point (κ4 − κ4c) → 0+, we can try to estimate an upper bound of the
time upto which the EE growth is monotonic. The upper bound is half of the longest time
period. Using the leading term in expansion of ‘a’ from (IV.98) and the expressions of the
residues (IV.99) and (IV.100), the lowest frequency(|n| = 1) gives the upper bound as

3
√
π
√
κ4 − κ4c

22/3
√
3κ

5/6
4c

(2t− r) = π ⇒ t =
(2π)2/3

√
3κ

5/6
4c

2
√
κ4 − κ4c

+
r

2
∼ 2.95 κ

5/6
4c√

κ4 − κ4c
(IV.106)

where finite ‘r’ can be neglected in the limit (κ4 − κ4c) → 0+.
The critical value in terms the effective temperature β = 4κ2 and chemical potential

µ4 = 4κ4 in the stationary limit is

µ4 =
β3

27π2
(IV.107)

Figure IV.6: The critical curve µ4 = β3/27π2 in terms of the effective temperature and
chemical potential in the stationary limit and the phase diagram.

For the early times t < r/2, in the residue calculations (IV.99) and (IV.100), we have to
replace the sign of the exponents with r−2t so the magnitudes of the exponentials decreases
as time increases. Upto the critical value of κ4, the EE growth is always monotonic for this
time period.
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7.1 Turning on other charges

We could also calculate the EE growth of gCC states with other charges of the fermionic the-
ory corresponding to bosonic bilinear W2n =

∑
|k|2n−1d†kdk where n = 3, 4, 5, .... Repeating

the exercise of quenching tuned squeezed states of scalar field theory in MPS, the propagator
with these charges are simply given by

〈φ(0, t)φ(r, t)〉 =
∫

dk

4π

eikr

k

(
coth

(
2κ2k +

∞∑

n=2

κ2nk
2n−1

)

− cos(2kt)cosech

(
2κ2k +

∞∑

n=2

κ2nk
2n−1

)
− 1

)
(IV.108)

Substituting this propagator in the general formula (IV.77) and (IV.78) give the Rényi
entropy and entanglement entropy. The first derivative of EE w.r.t. time is

〈
∂SA

∂t

〉

gCC

=
1

3

∫ ∞

−∞
dk (1− cos(kr))cosech

(
2κk +

∞∑

n=2

κ2nk
2n−1

)
sin(2kt) (IV.109)

We believe the dynamics will be much richer with these other charges, with much more
complex phase diagrams which can be in a n− 1 dimensional space. But the general poles
analysis cannot be done in these cases because the poles will be given by quintic and higher
order equations. Considering gCC states with W4 andW6 charges, the numerical plots of EE
growth looks the same as (IV.2) where by trial and error method, some parameter subspace
gives monotonic growth and some subspaces do not give monotonic growth. Considering
n = ±1, the poles are given by 2κ2k + 2κ4k

3 + 2κ6k
5 = iπ. For κ2 = 1 and κ4 = 0.06,

numerically we find two interesting parameter subspaces of κ6. The first one is when all the
poles become imaginary when κ4 is decreased.

k1 = 2.0887597 sgn(n) i, k2 = 2.9527785 sgn(n) i, k3 = −6.5425830 sgn(n) i,

k4 = −6.6158300 sgn(n) i, k5 = 8.1168748 sgn(n) i for κ6 = 0.0007249 (IV.110)

k1 = −0.0076887− 6.5788763 sgn(n) i, k2 = 2.0887456 sgn(n) i, k3 = 2.9528549 sgn(n) i,

k4 = 8.1161520 sgn(n) i, k5 = 0.0076887− 6.5788763 sgn(n) i for κ6 = 0.0007250
(IV.111)

This looks like the same transition if n = ±1 dominates, but the poles with real parts have
large imaginary part also, so they would be highly damped. The other case is

k1 = −0.8215058 + 1.9681831 sgn(n) i, k2 = −5.2389645 sgn(n) i, k3 = −5.2472000 sgn(n) i,

k4 = 6.5497983 sgn(n) i, k5 = 0.8215058 + 1.9681831 sgn(n) i for κ6 = 0.0019179
(IV.112)

k1 = −0.8215060 + 1.9681836 sgn(n) i, k2 = −0.0040372− 5.2430724 sgn(n) i,

k3 = 6.5497775 sgn(n) i, k4 = 0.0040372− 5.2430724 sgn(n) i,

k5 = 0.8215060 + 1.9681836 sgn(n) i for κ6 = 0.0019180 (IV.113)

for the smaller κ4, although two of the poles have real parts, they have to compete with the
three imaginary poles. So, this could also be phase transition.
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8 Discussion

In this work, we have examined free fermionic mass quench. We find that the ground
state quench equilibrates but not to a thermal ensemble. Starting from specially prepared
squeezed states, we get CC and gCC states with fermionic bilinear W2n charges. Calculation
of correlators in CC and gCC states explicitly shows thermalization to thermal emsemble
and GGE respectively.

For CC state, we calculate EE growth exactly. The EE growth is strictly monotonically
increasing. For gCC state with a particular charge, we find dynamical phase transition in
which the EE growth is monotonic upto a critical value of the effective chemical potential.
In the pure state, the effective chemical potential is the coupling constant of the current
corresponding to the charge. Above the critical value, the EE growth is non-monotonic. It
would be interesting to reproduce our result in large c holographic CFTs and examine what
it would mean for Black hole physics.
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IV.A Conventions

ηµν =

[
1 0
0 −1

]
, ∂µ = (∂t, ∂x), γµ∂µ = γ0∂t − γ1∂x,

w = t− x, w̄ = t+ x, ∂ =
∂

∂w
=

1

2

(
∂

∂t
− ∂

∂x

)
, ∂̄ =

∂

∂w̄
=

1

2

(
∂

∂t
+

∂

∂x

)

γ0d =

[
1 0
0 −1

]
, γ1d =

[
0 1
−1 0

]
, in Dirac basis.

S =
1√
2

[
1 −1
1 1

]
, γ0c = Sγ0dS

−1 =

[
0 1
1 0

]
, γ1c = Sγ1dS

−1 =

[
0 1
−1 0

]
, in chiral basis.

{
ak, a

†
k′

}
= 2π δ(k − k′),

{
bk, b

†
k′

}
= 2π δ(k − k′), other anticommutators are zero.

{
an, a

†
n′

}
= δ(n− n′),

{
bn, b

†
n′

}
= δ(n− n′), other anticommutators are zero.

We will use k = 2πn
L

for continuum limit(L → ∞) and n for quantization in a finite box of
size L, where n = n′ + 1/2 and n′ ∈ Z.

IV.B Spinors and transformation to chiral basis:

Taking constant mass m, we can easily find the boosted spinors, u(k,m) and v(k,m). For
constant m, φ+p(t) = e−iωt and φ−m(t) = eiωt. So from (IV.4),

U(x, t) =
[
γ0∂t − γ1∂x − im

]
e−iωt+ikx

[
1
0

]
= i

[
−(ω +m)

k

]
e−ik·x

V (x, t) =
[
γ0∂t − γ1∂x − im

] [0
1

]
eik·x = i

[
k

−(ω +m)

]
eik·x

Hence, upto normalizations fixed by inner products, the boosted spinors are

u(k,m) = i

[
−(ω +m)

k

]
, v(k,m) = i

[
k

−(ω +m)

]

We have the adjoint spinors as,

ū(k,m) = u†(k,m)γ0 = −i
[
−(ω +m) k

] [1 0
0 −1

]
= i
[
−(ω +m) −k

]

v̄(k,m) = v†(k,m)γ0 = −i
[
k −(ω +m)

] [1 0
0 −1

]
= i
[
k (ω +m)

]

Now borrowing Peskin & Schroeder(P&S) conventions of spinors, we want to fix the inner
products ū(k,m)u(k,m) = 2m and v̄(k,m)v(k,m) = −2m,

ū(k,m)u(k,m) =
[
−(ω +m) −k

] [−(ω +m)
k

]
= 2m(ω +m)

v̄(k,m)v(k,m) =
[
k (ω +m)

] [ k
−(ω +m)

]
= −2m(ω +m)
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So the normalized spinors are

u(k,m) =
1√

(ω +m)

[
(ω +m)

−k

]
, v(k,m) =

1√
(ω +m)

[
k

−(ω +m)

]

ū(k,m) =
1√

(ω +m)

[
(ω +m) k

]
, v̄(k,m) =

1√
(ω +m)

[
k (ω +m)

]

(IV.114)

The spinors with time-dependent mass m(t) are obtained by just substituting m(t) in the
place of ‘m’ only inside the matrices, which is clearly seen from (IV.12) and (IV.13). The
normalization cannot be changed to time-dependent mass else the spinors won’t be solutions
of the corresponding Dirac equation.

The transformation to chiral basis is accomplished by using the transformation matrix

S = 1√
2

[
1 −1
1 1

]
. The mode expansion as in P&S is

Ψ(x, t) =

∫
dk

2π

1√
2ω

[
aku(k,m)e−ik·x + b†kv(k,m)eik·x

]

=

∫
dk

2π

1√
2ω

[
ak

1√
(ω +m)

[
(ω +m)

−k

]
e−ik·x + b†k

1√
(ω +m)

[
k

−(ω +m)

]
eik·x

]

m→0−−−→
∫

dk

2π

1√
2

[
ak

[
1

−sgn(k)

]
e−ik·x + b†k

[
sgn(k)
−1

]
eik·x

]

=

∫
dk

2π

1√
2

[
ake

−ik·x + sgn(k)b†ke
ik·x

−sgn(k)ake
−ik·x − b†ke

ik·x

]

In the chiral basis,

Ψc(x, t) = S ·Ψ(x, t) =
1√
2

[
1 −1
1 1

]
·
∫

dk

2π

1√
2

[
ake

−ik·x + sgn(k)b†ke
ik·x

−sgn(k)ake
−ik·x − b†ke

ik·x

]

=

∫ ∞

−∞

dk

2π

1

2

[
(1 + sgn(k))(ake

−ik·x + b†ke
ik·x)

(1− sgn(k))(ake
−ik·x − b†ke

ik·x)

]
(IV.115)

Writing this as ψ(x, t) and ψ̄(x, t),

ψ(x, t) =

∫ ∞

0

dk

2π
(ake

−ik·x + b†ke
ik·x) (IV.116)

ψ̄(x, t) =

∫ 0

−∞

dk

2π
(ake

−ik·x − b†ke
ik·x) (IV.117)

IV.C Fermionic Boundary State

The action (IV.1) with m(t) = 0 in the chiral basis is

S = −
∫
dx2

[
iΨ̄γµ∂µΨ+Ψγµ∂µΨ̄

]

= − i

2

∫
dwdw̄

(
ψ†∂̄ψ + ψ̄†∂ψ̄ + ψ∂̄ψ† + ψ̄∂ψ̄†)
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On varying the action and collecting terms, we get the following

δS =

∫
d2x

(
δψ†∂̄ψ + δψ∂̄ψ† + δψ̄†∂ψ̄ + δψ̄∂ψ̄†) (IV.118)

Given a boundary at t = 0, it will also have certain boundary terms, which we want to be
zero.

ψ†δψ + ψδψ† + ψ̄†δψ̄ + ψ̄δψ̄†∣∣
t=0

= 0 (IV.119)

We impose this as an operator equation on the boundary state |B〉. The condition for a
boundary state can be achieved via two identifications

ψ = iψ̄†, and ψ† = iψ̄ (IV.120)

ψ = −ψ̄, and ψ† = ψ̄† (IV.121)

Now we impose the boundary conditions at t = 0 in terms of the mode expansions (IV.116)
and (IV.117):

1. The boundary condition of (IV.120) gives ak ∓ ia†−k = 0 for k > 0 and bk ∓ ib†−k = 0

for k < 0. Similarly, the second condition is ak ± ia†−k = 0 for k < 0 and bk ± ib†−k = 0

for k > 0. Combining the separate conditions, we get ak ∓ i sgn(k)a†−k = 0 and

bk±i sgn(k)b†−k = 0. Hence, the boundary state corresponding to the first identification
is

|N〉 = exp

(
∑

k

i sgn(k)(a†ka
†
−k − b†kb

†
−k)

)
|0〉 (IV.122)

2. The boundary condition (IV.121) is ak ∓ sgn(k)b†−k = 0 for k > 0, ak ± b†−k = 0 for

k < 0 and bk ± a†−k = 0 for k < 0 and bk ∓ a†−k = 0 for k > 0. The boundary state for
the first identification is

|D〉 = exp

(
∑

k

sgn(k)a†kb
†
−k

)
|0〉 (IV.123)

From the action S, we can find the non-zero components of the energy-momentum tensor
T = Tww and T̄ = Tw̄w̄, and the components of the U(1) current are Jw = J and Jw̄ = J̄ ,

T =
i

2

(
ψ†∂ψ + ψ∂ψ†) T̄ =

i

2

(
ψ̄†∂̄ψ̄ + ψ̄∂̄ψ̄†) (IV.124)

J = ψ†ψ J̄ = ψ̄†ψ̄ (IV.125)

The boundary conditions (IV.120) and (IV.121) satisfy the condition

T (w)|t=0 = T̄ (w̄)|t=0, on the cylinder. (IV.126)

or,
(
z2Tzz(z)

)
|z(t=0) =

(
z̄2T̄z̄z̄(z̄)

)
|z̄(t=0), on the plane. (IV.127)
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where z = e2π(t−ix)/L and z̄ = e2π(t+ix)/L. Thus |N〉 and |D〉 are conformal invariant boundary
states. It is also worth noting that the boundary conditions also satisfy

J(w)|t=0 = −J̄(w̄)|t=0, on the cylinder. (IV.128)

or, (zJz(z)) |z(t=0) =
(
z̄J̄z̄(z̄)

)
|z̄(t=0), on the plane. (IV.129)

Considering the zero modes in the cylinder, it means that the above boundary states are not
charged. With Q = J0 + J̄0,

Q|N〉 = 0, Q|D〉 = 0 (IV.130)

Besides, specially for the state |D〉, (J0 − J̄0)|D〉 = 0. Hence

J0|D〉 = 0 J̄0|D〉 = 0 (IV.131)

IV.D Bosonised Boundary State

Consider a Dirichlet boundary state ϕ |D〉 = −ϕ̄ |D〉. Using the bosonised fermions :

ψ = e−i
√

π
4

P̄ : e−i
√
4πϕ(w) : ψ† = ei

√
π
4

P̄ : ei
√
4πϕ(w) :

ψ̄ = e−i
√

π
4

P : ei
√
4πϕ̄(w̄) : ψ̄† = ei

√
π
4

P : e−i
√
4πϕ̄(w̄) :

To translate the boson Dirichlet condition into the fermionic one, we get

ψ |D〉 = e−i
√

π
4

P̄ : e−i
√
4πϕ : |D〉

= e−
π
2
[Q,P ]e−i

√
π
4

P̄ e−i
√

π
4

P : e−i
√
4πϕ : |D〉

= e−
π
2
[Q,P ]e−i

√
π
4

P̄ e−i
√

π
4

P : ei
√
4πϕ̄ : |D〉

= e
π
2
([Q,P ]−[P̄ ,Q̄]) ψ̄ |D〉

= e−iπ ψ̄ |D〉 = −ψ̄ |D〉

where we have used the relation ex ey = ey+[x,y]+... ex and [Q,P ] = [Q̄, P̄ ] = i. We have also
used (IV.131) which gives P |D〉 = J0|D〉 = 0 and P̄ |D〉 = J̄0)|D〉 = 0.

Similarly, we can show that (ψ†− ψ̄†) |D〉, (ψ− iψ̄†) |N〉 and (ψ†− iψ̄) |N〉 vanish, where
|N〉 is defined by (ϕ− ϕ̄) |N〉 = 0 which is the Neumann boundary condition for scalar fields.

IV.E Baker-Campbell-Hausdorff(BCH) formula

Although we are interested in the ‘out’ massless oscillators, the BCH formula is valid for
both massive and massless oscillators. So, we will suppress the ‘in’ or ‘out’ identification of
the oscillators. Starting from

|Ψ〉 = exp

(
∑

k

sgn(k)γ(k)a†kb
†
−k

)
|0〉 (IV.132)
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we wish to obtain an expression of the form

|ψ〉 = exp

(
−
∑

k

κ(k)(a†kak + b†kbk)

)
exp

(
∑

k

sgn(k)a†kb
†
−k

)
|0〉 (IV.133)

Commuting exp

(
−∑

k

κ(k)(a†kak + b†kbk)

)
through exp

(∑
k

sgn(k)a†kb
†
−k

)
, we get

exp

(
∑

k

sgn(k)e−2κ(k)a†kb
†
−k

)
|0〉

Thus,

sgn(k)γ(k) = e−2κ(k) sgn(k)

⇒ κ(k) = −1

2
log(γ(k)) (IV.134)

IV.F Refermionization of bosonic bilinear W4

The bosonic(real scalar) bilinear W4 current [41, 26] is

W4(w) = 2∂φ∂3φ− 3∂2φ∂2φ (IV.135)

Using U(1) current relation J = ψ†ψ = i√
4π
∂φ and normal ordering gives the refermionized

W4 current. Because of the fermionic anti-commutation relation most of the four fermion
terms drop out and the only four fermion term that survives is ∂ψ†∂ψψ†ψ. Finally, the
expression is

W̃4(w) =
7i

6
ψ†∂3ψ +

3i

2
∂2ψ†∂ψ − 3i

2
∂ψ†∂2ψ − 7i

6
∂3ψ†ψ − 2 ∂ψ†∂ψψ†ψ (IV.136)

And the corresponding charge is

W̃4 =
1

4π

(
14

3

∫ ∞

−∞

dk

2π
|k|3

[
a†kak + b†kbk

]

+ 2

∫ ∞

−∞

dk1dk2dk3dk4
(2π)4

|k1||k2|
[
a†k1ak2a

†
k3
ak4δ(k1 − k2 + k3 − k4) + a†k1ak2bk3b

†
k4
δ(k1 − k2 − k3 + k4)

− a†k1b
†
k2
bk3ak4δ(k1 + k2 − k3 − k4)− bk1ak2a

†
k3
b†k4δ(−k1 − k2 + k3 + k4)

+ bk1b
†
k2
a†k3ak4δ(−k1 + k2 + k3 − k4) + bk1b

†
k2
bk3b

†
k4
δ(−k1 + k2 − k3 + k4)

])

(IV.137)
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