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Chapter 1

Introduction

1.1 Thermalization

A BRIEF HISTORY OF QUANTUM STATISTICAL MECHANICS

By the end of the 19th century, the field of classical statistical mechanics was extremely

well developed. It owed most of its tremendous success to having provided a microscopic

understanding of some of the very fundamental ideas in classical thermodynamics, namely

temperature and entropy. The framework of classical statistical mechanics is very general, in

that it can accommodate a description of not just systems that are in equilibrium, but also

systems that are far away from it. So much so, that in the year 1894, the famous experimental

physicist Albert A. Michelson1 remarked that, ”The more important fundamental laws and

facts of physical science have all been discovered, and these are so firmly established that

the possibility of their ever being supplanted in consequence of new discoveries is exceedingly

remote.”2. His statement, however, turned out to be far from the truth.

The dawn of the 20th century marked the discovery of two immensely profound ideas in

the history of mankind, QuantumMechanics and General Relativity. Although developments

1Of the Michelson-Morley experiment fame, who also won a Nobel Prize in physics in 1907
2Fun fact: This quote is often misattributed to Lord Kelvin
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in General Relativity took a backseat during the first half of the century, Quantum Mechanics

was being developed at a break-neck speed during the 1920’s. In fact it required less than

a decade for the stalwarts of the time to lay out a complete and consistent mathematical

framework for this New Mechanics ! Quantum mechanics turned out to be an extremely

important tool for understanding the physics at the small scale. With its staggering success

in explaining phenomena such as the Zeeman e↵ect and the spectrum of Hydrogen, there

remained no doubt, whatsoever, that this was indeed the correct theory for describing the

physics of atoms and molecules.

This immediately inspired the pursuit for trying to understand how ideas in classical

statistical mechanics could be applied to quantum many body systems. Leading this

endeavour was the famous theoretical physics John von Neumann who, in 1929 and

thereafter, put forward some brilliant ideas. Using the newly developed language of

operators and Hilbert spaces, he proposed the idea of entropy maximisation to address the

issue of thermalisation in many-body, out-of-equilibrium quantum systems. These e↵orts

led to the very beginning of an entirely new disciple called Quantum Statistical Mechanics.

The amalgamation of the two ideas, however, had very deep-rooted problems, precisely

concerning the issue of how closed, isolated, quantum many-body systems thermalise. It is,

therefore, extremely important to understand how to define thermalisation in such quantum

systems that are described by pure states. It is important to mention that a comprehensive

list of necessary conditions for the thermalisation of such out-of-equilibrium quantum

systems, is still an open question, that has eluded a complete and satisfactory answer for

almost a century now. What has been formulated, however, is a list of su�cient conditions,

which when satisfied, lead to the thermalisation of the quantum system. We shall discuss

some of these ideas and conditions in detail.

WHAT IS THERMALIZATION?

Systems in thermal equilibrium are very well understood, both classically and quantum

mechanically, as being characterised by a set of mutually commuting, conserved, macroscopic

2



observables that label the final (Gibbs) density matrix of the system. The trouble occurs

when quantum many-body systems are driven out-of-equilibrium. Starting from a pure

state, that describes the many-body system, one unitarily evolves it using the Schroedinger’s

equation. From the tenets of quantum mechanics, one knows that unitary evolution will never

allow for a pure state to transition over to a mixed state. Since thermalisation requires the

appearance of a mixed state, it is, therefore, not clear whether and how such states would

ever attain thermal equilibrium. At this point then, it seems impossible that such states

would ever thermalise! However, what saves the day here are a special class of pure states

that are called typical. A typical state is such that the expectation value of any observable

in this state, integrated over a Haar measure of similar states chosen from a uniform random

distribution, is very close to its micro-canonical average. If in addition, the state has a small

variance, then one can further say that the expectation value in a single micro-state is well

approximated by the micro-canonical expectation value. In case the state describes a large

system, one can use the equivalence of ensembles to approximate the expectation values

with there canonical average values. In such an ensemble, all the thermodynamic notions of

macroscopic observables are very well defined. This realisation is extremely important, since

it tells us at least one way in which we understand how pure states can resemble thermal

states. Having said that, one must remember that such a definition is merely indicative.

It does not tell us about how generic pure states can dynamically achieve thermality (or

typicality). There are, in fact, quite a few other conditions that such states need to fulfil

in order to thermalise under a unitary time evolution. Motivated by this observation, we

shall, henceforth, describe and try to look for thermalising pure states in the two following

ways, 1. in terms of complete pure states that show the requisite microscopic properties

(for the equivalence of ensembles to hold), via ETH; 2. in terms of subsystems of pure

excited states that are mixed and hence allow for a description by a canonical ensemble

under time evolution. We shall deal with both these kinds of states in this thesis. However,

we shall postpone the discussion of ETH for the time being and focus only on the su�ciency

3



conditions for thermalisation of subsystems (which is what we would mean by a system

henceforth). We shall define a number of these su�cient conditions that have been found

to apply to a wide class of systems (including conformal field theories, that are the focus of

this thesis).

WHAT IS EQUILIBRATION?

One of the most important su�ciency conditions for understanding thermalisation

is equilibration. An out-of-equilibrium quantum system is said to have equilibrated, if

correlation functions of the system display tiny fluctuations around some fixed value for a

su�ciently large amount of time. If the fixed value is the long time average of the correlation

functions themselves, then the process is referred to as equilibration on average3. If the

operators, in this case belong to only a particular sub-system, then the above statement

would refer to the equilibration of such subsystems alone. This process is then referred to

as subsystem equilibration. One must mention that while considering subsystems, there is

an additional class of observables that can be used to display equilibration of the system,

namely the reduced density matrix of the subsystem itself4. It is important to note that

not all initial states equilibrate. This condition of equilibration rather singles out a very

specific class of initial states, by imposing constraints on the amplitudes of individual energy

eigenstates that comprise it. In other words, as mentioned above, if a pure state describing

a large enough quantum system approaches a typical state, then any of its sub-systems will

equilibrate under time evolution. This class is seemingly larger than the class which requires

the full state of the system approach an equilibrium configuration.

OTHER SUFFICIENCY CONDITIONS

One of the other very important su�ciency conditions is that the final equilibrium state

of the system be completely independent of any microscopic details of the initial state.

This is the property that is often referred to as coarse-gaining and is what results in the

3There is another sense in which systems may equilibrate, namely equilibration over intervals. However,
for the purpose of this thesis, by equilibration we shall always mean equilibration on average.

4In fact, we shall make exclusive use of this tool in chapter 4 of this thesis.
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loss-of-information about the initial state of the system. This implies that a large class of

initial states, with a given set of conserved macroscopic observables, would all correspond

to the same final equilibrium state as an end result of a unitary evolution. One needs to be

more careful for the case of sub-systems, since there might be some locally exact conserved

quantities that do not characterise the full system, but are important to describe the final

equilibrium state of the sub-system5. This also inherently implies that the final state of the

sub-system is in a way, completely independent of state of the rest of the system. There are

numerous reasons why such a loss of information corresponding to the microscopic details of

the system might happen. Intuitively, one may think of this information loss as happening

due to the rest of the system acting as a bath for the subsystem under consideration.

Such a process generally includes various mechanisms via which higher corrections to the

leading thermal behaviour are suppressed. Since this is a dynamic scenario, the corrections

generally involves functions of time that get smaller the longer we wait (indicating dissipative

behaviour). The suppression could also be facilitated due to the presence of a large number

of degrees of freedom of the quantum system. Another possibility is to look at only a specific

class of observables that very naturally coarse grain over the microscopic degrees of freedom

of the system. It is one of the goals of this thesis to explain some of these mechanisms in

the case of time evolving CFTs and even otherwise.

In the process of approaching thermal equilibrium, coarse-graining over the initial micro-

state generally requires the final density matrix to asymptotically approach a diagonal form.

This subsequently makes the o↵-diagonal elements of the density matrix of the subsystem

approach a vanishingly small value, while making the state more mixed. The ETH employs

this idea at the operator level in a very e�cient way which we shall explain shortly. For

the subsystems, the density matrix can be shown to dynamically become more diagonal.

We shall show this for a special class of initial states in Chapter 4. It is suggested that this

5Some examples of this include many-body localisation, discrete symmetries arising from broken
ergodicity, local magnetic fields, etc.
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happens mostly because of interactions between the subsystem and the bath, as stated above.

The vanishing of the o↵-diagonal elements is sometimes also referred to as decoherence.

Finally, fulfilling all the above conditions may still not be enough for the system to

thermalise. One ultimate requirement is for the density matrix of the sub-system to be very

close (in the sense of distances on the Hilbert space) to a Gibbs’ ensemble. Whether it is a

canonical or a grand canonical or a generalised Gibbs’ ensemble (GGE) will depends on how

many local exactly conserved quantities the subsystem has. We shall show how this idea

is realised for observables in the system in Chapters 2 and 3 and for the density matrix in

Chapter 4.

We are finally in a position to define what we mean by thermalization, at least in the

context of this thesis.

An out-of-equilibrium, many-body, quantum system undergoing unitary time evolution is said

to have thermalised, if the observables in the system equilibrate to a fixed value, where the

reduced density matrix of any sub-region admits a description in terms of a Gibbs and other

Generalised Gibbs ensembles.

Since, most of these conditions have been formulated for subsystems, we shall refer to this

phenomena as subsystem thermalisation. As has been emphasised throughout, these are

only the su�cient and not the necessary conditions for thermalisation. Also, there are no

rigorous proofs for most of these conditions, but only general observations that have been

accumulated through a case by case study of numerous quantum systems. Nevertheless, this

definition of thermalisation is exactly what is relevant in the context of this thesis, as we

shall see in the chapters to follow.

ISSUES WITH (SUBSYSTEM) THERMALIZATION

Having defined thermalisation, what now remains to be understood are the problems one

faces with these definitions. In a recent review, Cardy [72] listed some of the important

problems in the field that need to be addressed, accompanied by the answers to some others

that have already been solved. We shall paraphrase the problems here in a manner suited
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to the style of this thesis. The reason being, many of the problems listed shall be dealt with

in this thesis. The following is a list of some of the important questions:

1. To quantify how close the reduced density matrix (RDM) of a subsystem can approach

a thermal density matrix.

This problem was first dealt with in a paper by Cardy [71] himself, where he suggested

a particular measure (a variant of the trace distance in quantum information theory) to

study the overlap of the RDM with the thermal density matrix. In Chapter 4, we shall

study this problem in detail where we not only perform the explicit calculation for the

Candy-Calabrese state, but in fact generalise it to the generalised CC (gCC) state to

include an arbitrary number of higher spin conserved quantities. In general, this is a

di�cult question and a proof of the statement for any arbitrary quantum many-body

system is still lacking.

2. To understand how additional conserved quantities a↵ect the final thermal state of the

system described by a CFT.

Unlike the previous case, this phenomenon is much better understood in a plethora of

integrable models where the final state appears to be the Generalised Gibbs’ ensemble.

Again, Cardy [72] himself has tried to answer this question by generalising the CC

state to include various higher power and derivatives of the stress tensor. In Chapter

4, we too shall work with a more generalised CC state that include a di↵erent set of

higher spin conserved currents and show precisely how the density matrix of the CFT

approaches the GGE.

3. To understand the e↵ects of relaxing the CC ansatz on the thermalisation of the

system6.

6This should be understood in conjunction with the section on Quantum Quenches where the CC ansatz
is explained in detail.
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The answer to this question is somewhat related to which final state the system reaches,

in the manner in which it is dealt with in this thesis. This is because one way to relax

the CC state is to use conserved charges to perturb away from the CC state. However,

one could use non-conserved operators to deform the CC state. The understanding

then is that all such perturbations are microscopic details of the initial CC state that

should be lost in the unitary time evolution to obtain a truly thermal state. So, the

nature of perturbations should play an important role in understanding the e↵ects it

has on the thermalization of the system.

4. To understand how thermalization is a↵ected by the presence of spatial boundaries in

the system.

In [71], Cardy introduced a measure called the revival function that basically measures

the overlap of the CC state with its time-evolved version. If the overlap is low at all

times, it implies that the states are far away from each other and there is no revival at

any point. If, however, the overlap function is close to one after a su�cient amount of

time has lapsed, then that implies a revival of the full system to its initial state. He

showed that revival occurs in the presence of boundaries. We dedicate the entirety of

Chapter 5 to the study of revivals, where we try to understand the e↵ect of boundaries

on correlation functions of operators and the entanglement entropy of subsystems.

So to summarise, the important problems in the current literature, with respect to the

dynamics of quenches and thermalisation thereafter, deal entirely with the issue of how

systems approach thermal equilibrium. Many of them have been addressed in the Chapters 4

and 5 of this thesis. However, the proofs mostly remain within the confines of conformal field

theory. Nonetheless, any analytical result plays a key role in understanding the underlying

mechanism for the thermalisation of pure states. Especially since they are very hard problems

to be addressed in complete generality. In fact, most of these problems have been around

since the very inception of quantum statistical mechanics . The reason they have re-appeared
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in the recent literature is two-fold. The first reason is due to the tremendous advances that

have been made in the realms of experimental physics, in particular in the field of cold-atom

physics. The invention of ion-traps has made it possible to simulate 1-D lattices with the

trapped cold-atoms playing the role of the degrees of freedom on the lattice. They have,

therefore, formed a testing ground for a huge array of theoretical ideas pertaining to low

dimensional statistical mechanical and condensed matter systems. The second reason (more

relevant to the subject of this thesis) is the advent of the AdS/CFT correspondence, which

has been used to map the physics of strongly coupled gauge theories to that of weakly

coupled gravity. The CFT part of the correspondence implies that every statement that we

made in field theory should find a corresponding analogue on the gravitational side. The

correspondence has therefore given us a hope to relate problems in black hole physics to

that of table-top experiments, which is an extremely exciting idea in itself! We shall hereby

embark upon a more detailed discussion of the gravitational problems addressed in this thesis

in lieu of the aforementioned correspondence.

WHAT IS THE ADS/CFT CORRESPONDENCE?

There are many versions of the AdS/CFT correspondence that appear in the current

literature. We shall start by providing a precise statement for the version of the

correspondence that shall be of most concern to this thesis. The AdS/CFT correspondence

is originally a duality between string theory and superconformal gauge theory that was

proposed in [176, 238]. Since the Einstein theory of gravity emerges in the low-energy limit

of string theory, and the correspondence has been generalised to various dimensions, the

AdS/CFT correspondence in its modern avatar is essentially a duality between conformal

field theories (CFTs) in d-dimensions and theories of Einstein gravity in d+1 dimensions

in asymptotically AdS (AAdS) spaces. Owing to the time-like structure of the asymptotic

boundary in AAdS spacetimes, the CFTs can be thought of as living at the asymptotic

boundary of the d+1 dimensional gravitational theory (thereby, being described in one

lower dimension). There is a version of the duality involving higher spin theories of gravity
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in 2+1 dimensions and higher spin fields in the CFT in 2 dimensions describing a non-

supersymmetric set-up. This understanding is key to the realisation that supersymmetry

is not an essential ingredient for holography 7. As is true with any standard duality, the

AdS/CFT correspondence provides a map for the interpretation of all quantities on the

CFT side with corresponding quantities on the gravity side. It is a non-perturbative duality

that is true at the level of the partition function (and therefore, the Hilbert space) of the

theory. Namely,

ZAdSd+1
[M ] = ZCFTd

[@M = ⌃] (1.1)

Where @M is the boundary of the manifold @M . The gravitational picture emerges at the

large N limit of the CFT, where N corresponds to the SU(N) in a gauge theory or to the

number of degrees of freedom for a more general CFT. At the operator level, the AdS/CFT

dictionary suggests that single trace operators in the CFT must correspond to single particle

states in the bulk AdS. One way to see this is to consider a scalar field in the bulk, and solve

for its equations of motion with a negative cosmological constant. There are two possible

asymptotic solutions that appear: one solution (the normalisable mode), dies o↵ at infinity

and is associated with the expectation value of the spin zero single trace primary operator

in the CFT; the other solution (the non-normalisable mode) grows at infinity and acts as

a source in the boundary CFT for generating correlations of the same scalar primary. For

higher spin fields, the normalisable mode is associated with the corresponding higher spin s

current in the CFT. The non-normalisable mode, again sources the correlation functions of

the higher spin currents in the CFT. Of course there is a lot more to the duality, but this

is as much as we would be required to know to discuss the problems that concern us. Any

additional details shall be provided as we require them along the course of this thesis.

7The same, however, cannot be said for conformal symmetry with absolute certainty yet.
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HAWKING’S INFORMATION PUZZLE

One of the most intriguing objects in general relativity is a black hole. A black hole is a

solution to Einstein’s equations that has a horizon which divides the spacetime into interior

and exterior regions. In the language of mathematics, the horizon is a null surface which

hides the singularity from the outside world. Having said that, in classical general relativity,

the horizon is not a special place. This is because an observer falling into the black hole,

never senses the presence of a horizon. This fact becomes evident in an appropriate co-

ordinate system used to parametrise the black hole solution. For instance, consider the case

of a black hole whose metric is described in Schwarzschild co-ordinates. The metric displays

a singularity at the position of the horizon, which is just a co-ordinate singularity8. However,

if we go to the Eddington-Finkelstein (EF) co-ordinates (or the Kruskal co-ordinates), the

singularity disappears. One simple physical reason for that is, at least in the EF co-ordinate

system, we move to the frame of the in-falling observer, where we can cross the horizon

without any trouble. However, owing to the property of null surfaces, it is easy to see that

the nothing can escape from the interior of a black hole due to the presence of the horizon.

In this sense, the horizon somewhat safeguards the interior of a black hole. Thereby, the

ultimate fate of any in-falling observer would be to plunge to its death by falling into the

black hole singularity!

Based on this observation, in the year 1972, Jacob Bekenstein suggested an intriguing

thought experiment [35]. He suggested throwing buckets of hot water into a black hole! His

motive was very simple, to bring to light a contradiction. He argued that the hot water has

a finite amount of entropy. When thrown into the black hole, this entropy gets completely

lost to the outside world, thereby decreasing the entropy of the Universe! That, however,

cannot happen simply because it would violate the second law of thermodynamics, which

suggests that the entropy of any system can only increase. The second law is one of the most

fundamental laws of nature, much like the conservation of energy, and hence would lead to

8This is because the Ricci scalar and all other quantities related to curvature are regular at the horizon
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devastating consequences, if violated by physical systems. The only way out of this puzzle,

without dismissing the existence of black holes, was to associate some amount of entropy

to them. This way, when objects with finite entropy fall into the black hole, the entropy

of the black hole would increase by more than the amount falling in, thereby preserving

the second law. This simple suggestion had remarkable consequences for black hole physics.

That is because once you associate an entropy with a system, you usually also have to

associate a temperature with it. This observation then suggested that black holes must also

have a finite temperature. In fact, one could view a black hole as a complete thermodynamic

object [32,36,37]. In [139], Hawking famously calculated the temperature of a black hole using

semi-classical approximations. An important consequence of this realisation was that, as a

finite temperature thermodynamic object, the black hole could now emit thermal radiation

and evaporate away completely! This phenomena led to the formulation of Hawking’s famous

Black Hole Information Paradox !

Before we state the Black Hole information paradox, it is important to mention that

there exist numerous versions of the paradox in the literature that have been formulated

over the last 40 years. Some of them have been solved for, most still remain unsolved. One

way or the other, the paradox has exposed the grave shortcomings in our understanding

of the quantum structure of spacetime, besides underlining the approach to a viable and

acceptable candidate for the theory of quantum gravity. The older versions of the paradox

are too numerous, including a case by case discussion of the associated problems in spacetimes

with positive, negative and a zero value of the cosmological constant, and are way beyond

the scope of this thesis9. A relatively newer version of the paradox was formulated in the

context of the AdS/CFT correspondence and is much more in line with the topics discussed

in this thesis. That version goes by the name of the Firewall Paradox [14, 15].

9For a discussion, one should see [153,177,184,186,230] and references therein
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THE PROBLEM WITH BLACK HOLE FORMATION

Before the advent of the AdS/CFT correspondence, the information paradox was

formulated by Hawking in the following language. Suppose we consider an in-falling

shell of matter, which is collapsing under its own gravitational pull. This matter maybe

characterised by its mass, charge and various other parameters, all of which form the initial

state. Once the collapse starts and a su�cient amount of matter enters its Schwarzschild

radius, an apparent horizon begins to form which now no more allows anything inside of it

to escape. This apparent horizon gives way to the event horizon at the end of the collapse

process. However, once the black hole has formed, it is characterised by only its mass,

charge and angular momentum, all of which are macroscopic observables. These specify

the thermal Gibbs’ ensemble used to describe the state of the black hole. The information

about the specific initial state (all the microscopic details), which caused the black hole

to form in the first place, is no longer retained in the final state. This is the first version

of the information problem that we shall address in this thesis. This paradox becomes

much sharper in the context of AdS/CFT. The entire process can be viewed in the CFT

independently owing to the correspondence. We start by defining a pure state that contains

not just the macroscopic variables, but also the microscopic details of the specific initial

state dual to the pure shell of in-falling matter in the bulk. The CFT hamiltonian then

unitarily evolves this state, causing the matter to collapse in the bulk. After evolving the

state for a su�ciently long amount of time, a black hole appears in the bulk, although the

CFT state remains pure due to the constraints of unitarity! As one can observe, this is

precisely the problem we faced while defining the process of thermalisation entirely from the

field theory point of view above. So, the AdS/CFT correspondence makes the information

paradox much sharper by equating it with the problem of thermalisation in the CFT. It is

then a viable approach to start looking for a solution in the field theory itself. At this point,

it must be mentioned that in the Chapters 4 and 5 of this thesis, we shall address the black
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hole formation problem in conjunction with the thermalisation problem in field theory by

trying to understand how pure states correspond to black holes.

THE PROBLEM WITH BLACK HOLE EVAPORATION

The second version of the information problem, involves the evaporation of an already

formed black hole and problems therein. This version, therefore, mostly concerns the smaller

black holes that evaporate in all spacetimes (including AdS)10. Soon after Hawking’s paper,

outlining the evaporation of a Black Hole by emitting Hawking quanta, Page realised a very

peculiar feature of this process. His observation can be best stated from the point of view of

an observer at asymptotic infinity who wants to collect all the Hawking quanta coming out

of an evaporating black hole. We also suppose that such a black hole has been created by the

collapse of some pure shell of matter. Then, owing to the unitarity of quantum mechanics,

the observer at infinity must have a bunch of Hawking quanta, at the end of the black hole

evaporation process, all of which are described by a pure state. Having understood what to

expect at the beginning and in the end of the process of evaporation, let us ask what happens

at the intermediate time-scales. The quantity that the observer at infinity is measuring as a

function of time is the entanglement between the quanta it collects and the quanta that are

still to be radiated. According to Hawking, the quanta emitted by the black hole are a result

of the process of pair production happening very close to the horizon, where one particle

falls in while the other escapes to infinity. Needless to say, the pair of particles are entangled

amongst themselves11. Each such quanta that is collected at infinity results in an increase in

the entanglement. One might naively think that the profile of entanglement would keep rising

linearly till all the quanta have been radiated out. However, the end result of evaporation

should have been a pure state with zero entropy and not a finite value. So, e↵ectively, the

profile of entanglement (also called the Page Curve), must have a dip at some point in time

10Large Black Holes evaporate in flat spacetimes but in AdS, they may be in stable equilibrium due to
the timelike nature of its asymptotic boundary

11This pair is almost in a pure state and the entanglement between this pair is essential for the smoothness
of the horizon.
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and return to zero in the end. A possible resolution to the problem could come from taking

into account the entanglement between the early quanta (A) that was emitted a long time

ago, and the quanta that is recently produced via pair production near the horizon (B)12.

However, very recent arguments from strong-suadditivity of entanglement have suggested

that the entanglement between A and B (the early and late quanta) as a system with C (the

quanta inside the BH) is greater than the entanglement of A with the rest of the quanta. This,

however, is the paradox! Since, adding an additional quanta B to the additional radiation A

must decrease the the entropy of the observer beyond Page time13. Stated in another way,

the paradox brings to light an underlying tension between the unitary nature of quantum

mechanics (entanglement between A and B) and the monogamy of entanglement (B and C).

One way to resolve the paradox might be to modify the entanglement structure between the

various quanta. Trying to preserve unitarity and modifying the assumptions regarding the

entanglement between B and C, [13, 16, 187, 188] realised that the expectation value of the

stress-energy tensor increases drastically near the horizon, allowing for a firewall to open

up. By a firewall, they implied a very high number of highly energetic photons that reside

somewhere near the horizon, and were simply a result of severing the entanglement between

the outgoing quanta and the quanta inside the black hole. This implies that any in-falling

observer would instantly burn and perish at the horizon! However, what is more noticeable

is that the in-falling observer would in-fact perceive the horizon as a special place, which

(as we had discussed above), it should not! So, then trying to preserve unitarity and resolve

the information paradox, we would have compromised the di↵eomorphism invariance of the

bulk. After a lot of heated debates going back and forth, the most satisfactory resolution we

have till date is the work of Pappadodimas and Raju [204,205]. However, in Chapters 2 and

3 of this thesis, we would like to partially address this issue (based on the works [138, 175],

by showing that at least in the eternal black hole case dual to the TFD state, the spacetime

12We shall denote the quanta inside the black hole as C
13The time when half of the total quanta have been emitted by the black hole and the Page Curve has

started to dip.
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behind the horizon is smooth and can be probed by space-like geodesics that run between

the two boundaries through the black hole interior. Had there been a firewall, such a thing

would not have been possible.

ABOUT THE THESIS

In the above discussion, we have tried to present a general flow of ideas that have inspired

the works in this thesis. There are five di↵erent projects that have been presented in the form

of five di↵erent chapters. The context for each of these works has been introduced wherever

possible, in the discussion above. Nonetheless, it is necessary to once again highlight the

underlying theme of this thesis. In all of these works, we have tried to explore how to

understand thermalization in pure states. Owing to the AdS/CFT correspondence, we have

been able to apply these ideas to the physics of black holes in the bulk and answer some

questions with regard to their formation and evaporation. Below, we present a summary of

the thesis.

In Chapter 2 of this thesis, we add additional charges to the TFD state and study the

behaviour of time dependent entanglement entropy in it. The eternal black hole in the dual

bulk theory geometries this entanglement in the form of geodesics that pass through the black

hole interior, thereby suggesting the presence of a smooth geometry (and simultaneously, the

absence of a firewall). The growth of the EE in the CFT suggests a growth in the length of

the geodesics passing through the interior of the black hole, which in turn implies a growth

in the volume of the black hole interior. In Chapter 3, we try explore a bit further by starting

from the Fe↵erman-Graham metric describing the exterior geometry of a black hole in and

AAdS space, and constructing a set of co-ordinates, analogous to the Eddington-Finkelstein

co-ordinates, that allows us to go inside the black hole. The metric in these co-ordinates

is smooth beyond the horizon. In fact, we invoke four di↵erent sets of the metric covering

four di↵erent patches of the eternal black hole and smoothly transforming into each other

in the regions of overlap, which happen to the the interiors. A fifth patch smoothly patches

up the bifurcate horizon with the other metrics. This metric is special since it also describes
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perturbed black hole geometries obtained by applying unitary (Virasoro) transformations

independently on either boundary. In Chapter 4, we revisit the discussion of thermalisation

in the context of quantum quenches in 1+1 dimensional conformal field theories. Using the

aide of one-point functions of quasi-primary operators as well as the reduced density matrix

pertaining to a sub-system, we show how thermalization occurs in the case of a quench

from a gapped to a gapless phase; the ground state of the gapped phase being viewed as

a Cardy-Calabrese (CC) state. We then generalise the CC state to include a number of

higher spin conserved charges, pertaining to the currents in the W1 algebra, to try and

understand its e↵ects on thermalisation. We discover that the rate of decay gets modified by

a term proportional to the charges of the primary operators under the additional conserved

currents. Interestingly, we are able to match the rate of decay with the quasi-normal modes

of a black hole in AdS, with and without a higher spin charge, indicating at a connection

between the time-dependent CFT and the black hole geometry. In Chapter 5 of this thesis,

we try to understand the e↵ect of finite size on thermalization in the previous quench set-up.

We discover that quantities such as the one-point function of quasi-primaries, including the

stress tensor, and entanglement entropy, which intially thermalised in the infinite system,

now display a revival at time scales proportional to the system size. The same can be seen

on the gravitational side, where we discover a geometry oscillating between a black hole

and a thermal AdS. However, there are many open questions which are discussed further in

detail. In Chapter 6, we move to the regime of a large central charge CFT where we consider

the vacuum state perturbed by a heavy primary operator. We show the way such heavy

states are perceived as thermal states by the light primaries, presenting them as examples of

thermal eigenstates. These states can be understood as being dual to a black hole. This is

one instance where the sub-leading corrections, that render the state pure, are all suppressed

by 1/c. The crux of this chapter, however, is to show that the thermal behaviour persists

even if we consider higher point correlation functions. Such correlators are extremely useful
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in the present context to calculate quantities like, mutual information, out-of-time-ordered

correlators, etc. We end with the conclusion and a discussion of possible open problems.

Before we proceed further, we would like to introduce some very important concepts that

shall be extensively used throughout this thesis.

1.2 Pure States

1.2.1 The Thermofield Double State

The Thermo-field double (TFD) state was introduced in the 1970’s in the field of statistical

mechanics to facilitate the calculation of correlation functions in thermal systems. Usually

calculating the expectation value of an observable, Â say, in a thermal state involves

performing a sum over the energy levels of the systems, each associated with a particular

weight. Performing this sum can, however, be a daunting task. Instead, an easier way is to

introduce an exact second copy of the system and create a very particular pure state out of

it. This state is what is referred to as the TFD state, and mathematically it is defined as,

| i =
X

n

e��En/2|ni1 ⌦ |ni2 (1.2)

where |ni is an energy eigenstate with energy En. The subscripts denote the system to which

the eigenstates belongs. This state has the curious feature that if one of its constituent

systems is traced over, we recover the thermal density matrix corresponding to the other

system. So the construction of a pure state like (1.2) is what is fittingly called purification.

This is a very general feature, where any mixed state can be made pure by adding additional

d.o.f. and entangling them in a specific way to the d.o.f. of the original system. More often

than not, the system and it’s complement do not even have the same size (or d.o.f.). The

TFD state is, therefore, very special since it is constructed out of two copies of the exact

same system.
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Coming back to the issue of calculating expectation values of observables, an operator on

either one of the systems acts as a very e↵ective coarse-grainer, since its expectation value

in the TFD state doesn’t care about the presence of the other system. Thus,

h |Â1| i = Tr1(⇢1�1Â1) (1.3)

All calculations involving traces reduce to that of expectation values in the TFD state. Since

calculating expectation values is seemingly simpler, this serves the original motivation for

introducing this state.

The TFD state was, however, re-introduced in its recent context of the AdS/CFT

correspondence, in a paper by Maldacena [177] in 2001. In this paper, he conjectured that

the TFD state describing entangled CFTs in d-dimensions, was dual to an eternal black hole

in d+1 dimensional asymptotically AdS spacetime. Such a black hole has a common interior,

two horizons, two exteriors and two asymptotically AdS boundaries where the CFTs live.

The system has two Hamiltonians, namely,

H+ = HR +HL, H� = HR �HL (1.4)

It is easy to check that the TFD state is an eigenstate of the H� Hamiltonian, while it

undergoes a non-trivial time evolution under the H+ Hamiltonian.

The TFD state prepares an initial entangled state for the boundary CFTs, while

simultaneously inducing a Hartle Hawking state for the bulk gravitational theory, at the

t = 0 slice. Thereafter, evolving the state with the H+ Hamiltonian, creates a black hole

in the bulk with two exteriors and a common interior. In the bulk theory, one can reflect

about the t = 0 slice to get the entire eternal BH geometry, while always remembering that

the two boundaries and hence the two exteriors are entangled.
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For the two exterior regions , each of which is hidden from the other by its own horizon,

the other exterior is just part of the spacetime forming the interior of the black hole. Living

at the asymptotic infinity of these exterior regions, each of the two CFTs are also oblivious

to the presence of each other. Hence,

h |[OL,OR]| i = 0 (1.5)

where (OL,OR) are generic operators on either CFT. This implies that the two CFTs are

completely causally disconnected. However, a very intriguing feature of this construction,

despite the causal dissociation of the CFTs, is that the two sided correlation functions, in

this state, are non-zero! It is very important to emphasise that this is a property of the state

in which this expectation value is evaluated.

Ideally, the two CFTs belong to two di↵erent Hilbert spaces HL and HR respectively. So,

operators in these two disjoint CFTs do not allow for any OPE between them, and hence

their correlation function is zero. However, if we consider a state in the enlarged Hilbert

space HL ⌦HR, which entangles the two CFTs, then the correlation function between the

operators of the two CFTs becomes non-zero, when evaluated in this state. This happens

because the state induces a map between the operators in the two CFTs which then allows

for them to have a non-zero OPE and therefore a non-zero correlation. The TFD is one such

realisation of an entangled state in the enlarged Hilbert space that induces a map between

two CFTs. For the TFD, this map can be better understood as an analog of the KMS

condition, which is stated as,

Tr(⇢̂1/2AL(t)⇢̂
1/2BR(0)) = Tr(⇢̂BR(0)AR(t� i�/2)) = Tr(⇢̂1/2BL(�I�/2)⇢̂1/2AR(t� i�/2))

(1.6)
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This relation just emphasises that within correlation functions in the TFD state, operators

on the left CFT can be understood as operators on the right CFT with a shift of �i�/2

along the Euclidean time circle.

This short description makes clear the importance of the TFD state as a unique state

with very interesting properties. The most interesting of these is the fact that it is the only

kind of purification that has a holographic dual. This raises the question as to whether it is

really fine-tuned for the purposes of holography or whether there are other generalisations

of it that allow for a holographic dual14. It is also important to ask how stable it is to

perturbations. That would tell us how stable its dual gravitational theory is15.

An important physical idea, that came about more recently [138, 175], is the way the

entanglement between the CFTs is realised in the dual bulk theory. It was suggested that

a physical realisation of the entanglement comes about by realising that there are space-like

pathways, also called wormholes, that run between the left and right boundaries through

the black hole interior. In fact, there had been speculations, since the discovery of the Ryu-

Takayanagi surfaces [149,220], about space-time being completely made out of entanglement

in the underlying quantum theory. This physical realisation of the CFT entanglement has

been suggested to give rise to the geometry of the interior of the eternal BH. Further still,

this seems to be a very e�cient set-up (and currently, the only one) that allows access to

the interior of the black hole using non-local boundary operators. We shall elaborate on this

further. More immediately, we shall elaborate on some other ways to understand the TFD

setup and how it induces a Hartle-Hawking wave function in the bulk.

14As far as we know, with a factor of �/2 separation along the thermal circle, this is the only state with
a holographic dual. Whether there are other kinds of holographic duals possible for arbitrary separations
between the CFTs is not known.

15A lot of work has been done recently in trying to understand perturbations of the TFD state and its
consequences for holography. We will not cover this question in detail in this thesis. However, some of the
recent works in this direction include [225,226]
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1.2.2 The Pair-Production Representation

On the CFT side, the path integral that prepares the TFD state, is over an interval of length

�/2 times a sphere. In other words,

⌃ = I�/2 ⇥ Sd�1 (1.7)

To get a pictorial understanding of the geometry, let us confine ourselves to d = 2, where ⌃

is just a cylinder of length �/2. The two ends of the cylinder are the two boundaries that

specify the initial state of the two CFTs. The cylinder itself is a geometric realisation of the

entanglement between the CFTs. In order to check if this manifold really produces the TFD

state, one should be able to reproduce the matrix elements of the TFD state starting from

the transition amplitude of the state on the left CFT (|�Li) to the state on the right CFT

(|�Ri) along ⌃. Thus,

h�̃L| exp(��H/2)|�Ri =
X

n

exp(��En/2)h�̃L|nihn|�Ri

=
X

n

exp(��En/2)hn|�Lihn|�Ri

= h |(|�Li ⌦ |�Ri) (1.8)

This proves that the TFD state is indeed equivalent to doing the path integral over ⌃. A

similar statement carries forth in higher dimensions, where instead of a circle we would have

a d� 1 dimensional sphere. Now, the bulk dual of this state should be a Euclidean gravity

solution, on a manifold M , that has the surface @M = ⌃ as its boundary. Next, we shall

discuss one such possible solution in gravity.
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1.2.3 The Hartle-Hawking Representation

Euclidean geometries necessarily use the imaginary time prescription, which has been very

successfully understood and applied to various problems relating to quantum gravity by

Hawking and collaborators since the 1970’s. One such solution is simply the Euclidean

version of the Schwarzchild solution in AdS space, given by

ds2 = (r � r0)
2d⌧ 2 +

dr2

(r � r0)2
+ r2d⌦2

d�1
(1.9)

As is understandable from the above metric, it describes a Euclidean black hole with r > r0,

where r0 is the black hole radius. Interesting properties of the geometry are revealed in a

set of near -horizon co-ordinates, defined in terms of (⇢, ⌧). The first simplification happens

in the form of a factorisation of the 2-sphere from the rest of the geometry. In the (⇢, ⌧)

co-ordinates, the geometry resembles a cylinder, a little far away from the horizon. At

this point, ⌧ ⇠ ⌧ + �. Near the horizon, however, one must carefully define the boundary

conditions so as not to get a singularity at ⇢ = ⇢0. This regulated solution happens to be disc

near the horizon. The entire geometry is sometimes referred to as the cigar solution, owing

to its appearance. Choosing the correct periodicity defines for us the Hawking temperature,

which is related to the inverse of �. One can now imagine the surface ⌃ appearing as the

boundary of this geometry, if we only let ⌧ 2 [0, �/2]. This is exactly the geometry in the

Euclidean section of the eternal BH and hence appears to be the dual of our solution above.

This, of course, does not prove the uniqueness of the solution16.

The Schwinger-Keldysh Representation

The Schwinger-Keldysh formalism, also called the in-in formalism, was introduced

independently by Schwinger [222] and Keldysh [155] to study specific out-of-equilibrium

16For more details one must look at the comprehensive lecture notes by T. Hartman, and the original
paper of Maldacena [177]
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quantum systems. It was later generalised to study many-body out-of-equilibrium quantum

systems, by Feynman and Vernon [109]. Since then it has found applications in numerous

areas such as cosmology, hydrodynamics and various other open quantum systems17.

The basic idea of the SK formalism is to understand how the density matrix can be

used to study physical observables such as expectation values and correlation functions, in

an out-of-equilibrium quantum system. The di�culty in performing such calculations, in a

time-dependent system, lies in the fact that the final state, as an end-result of the evolution,

is not always known 18. To remedy this problem, the SK formalism completely by-passes

the final state by introducing a second copy of the original system which evolves in exactly

the same way, but in the opposite time-direction. The two copies do not interact in any

physical way, except at the boundaries where the (right-most) fields on either contour are

identified. As for the initial state, it is assumed to be the same for both the systems, since

they are exact replicas of each other. In fact the initial density matrix determines the exact

entanglement pattern between the two systems.19.

To understand the mathematical set-up better, let us define the time-evolved density

matrix as:

⇢̂(t) = U(t, T )⇢̂(T )U †(t, T ) = U(t, T )⇢̂(T )U(T, t)

where U(t, T ) is just the unitary evolution matrix from t to T . The generating functional

can then be defined as,

ZSK(JL,JR) = Tr(U(JR)⇢̂U(JL)
†) (1.10)

where (JL,JR) are the sources for the operators on the left and right contour, respectively.

This generating functional can be used to compute all possible correlation functions of

operators placed on either boundary. It is easy to see that all possible combinations would

17See [132,133] for a recent review.
18This is in contrast with an equilibrium system, where the final state for an interacting theory di↵ers

from the initial state by just an overall phase factor.
19If the initial density matrix is thermal, then there are additional analytic properties that arise, such as

the KMS condition, which can be visualised by considering the Euclidean time direction to be a circle.
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calculate the advanced, retarded, Feynman and anti-Feynman correlators. Putting the left

and right sources to be equal projects us onto a sector of the theory that has an additional

U(1)T topological symmetry20.

The reason for introducing the SK formalism is that the TFD state can actually be viewed

as an SK contour, with equal sources, but now with the two time contours separated over a

distance of �/2 along the imaginary time direction. For calculating correlation functions

of operators in the TFD set-up, one can consider the initial density matrix to be the

TFD density matrix and view the real time contours as containing the left and right CFT

operators. This implies that each of the two copies of the Hilbert space, HR ⌦H⇤

L, belong

to one of the two time contours. The TFD calculates the same out-of-equilibrium quantities

as the original SK contour. This is because, as in the case of a thermal state, the TFD state

also has a time circle. This gives rise to certain additional analytic properties (related to

the KMS condition). From (1.10), we can derive the analogous generating functional for the

TFD system as,

ZTFD(JL = JR) = Tr(⇢̂
1
2U(J )⇢̂

1
2U(J )†) (1.11)

Although not obvious how this calculates the same correlation functions as the SK contour,

the circle along the imaginary time direction gives rise to additional analyticity properties

(1.6), and the condition,

U(J ) = ⇢̂�
1
2U(J )⇢̂

1
2 (1.12)

Which makes clear how they are the same. The most important application that this property

has found is in the recent developments of discussions on chaos and scrambling in many body

systems, where it has been used extensively to calculate out-of-time-ordered correlation

functions [172].

20See [132,133] for a recent review for the consequences of such an additional symmetry
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1.2.4 CC states

One often hears about quenching in the context of metallurgy, where certain metals, mostly

iron, is heated to extremely high temperatures and then cooled suddenly, mostly to obtain

certain desirable properties. On a broader context, the word quenching refers to the process

of a rapidly changing environment around a system to drive it out-of-equilibrium. In the

context of theoretical and experimental physics, the word quenching has now come to refer

to both rapid and not-so-rapid processes to drive quantum systems (including relativistic

QFTs) out-of-equilibrium.

The way it is achieved in theoretical systems is very simple. To begin with, the system is

prepared in an eigenstate of a given Hamiltonian H0({�i}). Thereafter, a certain parameter

(could even be more than one) of H0({�i}) is changed suddenly to a new value. Let us call

the new Hamiltonian H({�f}). It is important that the change of the parameter(s) happens

over a time-scale which is smaller than the relaxation time of the system. This then does not

allow for the system to relax and adjust to the change in the parameter, thereby driving it

out-of-equilibrium. This process is what has come to be know as a quantum quench. The old

eigenstate now evolves non-trivially under the new Hamiltonian, since it is not an eigenstate

of H({�f}).

There is a huge literature dealing with how to compute correlation functions of operators

following a quantum quench in various statistical mechanical models21. Of much interest

are states that describe closed, isolated quantum systems undergoing a quantum quench.

The interest in such systems stems from trying to understand whether such states reach an

equilibrium following a quench, and if so, via what underlying mechanism. It is a separate

question altogether to understand if the equilibrium values can be described by some Gibbs’

ensemble. In case it is so, the system will be understood to have thermalised.

21See [56–58,209] for a comprehensive review and list of references.
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Usually, calculating physical observables, such as correlation functions and entanglement

entropy, analytically, in time-dependent systems is very di�cult. One can still make

considerable progress by considering integrable systems or resorting to numerical computations.

However, in recent years, performing analytic computations has received a tremendous boost

due to the insights of Cardy and Calabrese [55,59,61,65] who suggested that one could gain

a lot of mileage by carefully choosing the final values of the parameters in a quench. They

suggested that at least in case of the simplest 1+1 dimensional quantum systems, we could

choose the final values of the parameters to be the values defining a critical point of the

system. The critical point is a point in the phase space which is scale invariant and often

allows for a description by a conformal field theory (CFT). Thus, all correlation functions

in the time-evolving, post-quench phase of the system could be evaluated using symmetries

of the CFT. This makes it possible to obtain analytic results for any quench achieved via

any protocol, as long as the end result of the quench puts the system in a gapped phase. It

is of course true that these ideas apply to only a very small class of quenches. In fact, one

might consider more exotic quenches across critical points [84–87,158,192,247], or quenches

from an ungapped to an ungapped phase through a gapped phase (which maybe useful in

holography), or even fermionic quenches [206, 215]. There has been a significant amount of

progress made in performing analytical calculations along all these directions. However, in

this thesis, we shall only concern ourselves with gapped to gapless quenches.

Let us outline the proposal of Cardy and Calabrese for the simplest case of a 1+1

dimensional free massive bosonic QFT, undergoing a mass quench. We begin by preparing

the system in an eigenstate | i of the initial Hamiltonian H0(m0) and subsequently tuning

the mass to zero (m0 ! 0) over a time scale much smaller than m�1

0
(which is the typical

relaxation time scale in this case). The final Hamiltonian, of course, describes a Gaussian

fixed point, which is scale invariant. Since the change is very sudden, the state | i remains

oblivious to the change in the Hamiltonian and hence, is no longer an eigenstate. It thereby

undergoes non-trivial time-evolution when evolved with the new Hamiltonian. The insight
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of Cardy and Calabrese was to suggest an ansatz for the form of this eigenstate in terms of

a conformal boundary state |Bi which is perturbed away from its fixed point by a relevant

(or marginal) operator. In the case of the mass quench, their ansatz reads,

| i / exp(�⌧HCFT )|Bi (1.13)

Here, HCFT refers to the final Hamiltonian at the Gaussian fixed point. However, for more

general Hamiltonians, it could be any other fixed point of the system. In 1+1 D, the

Hamiltonian is a relevant operator, being obtained from the spatial integration of the stress

tensor. The factor of ⌧0 is related to the initial mass of system in the gapped phase. This

factor is fixed by requiring that the expectation value of HCFT in | i is the same as in the

deformed boundary state. This also fixes the proportionality constant to 1. This ansatz

raises a lot of questions and we shall dedicate Chapters 4 and 5 of this thesis discussing

various generalisations and subtleties of this ansatz alone. For the time-being, we shall try

to motivate this ansatz further along the lines of [59, 65].

Although (1.13) has been presented in the context of a massive quench in a 1+1 D bosonic

QFT, it describes a much larger class of systems. To begin with, the initial state must be

translationally invariant and must correspond to a system with short-range correlations.

Ideally, the ground state of a gapped Hamiltonian displays such properties, although other

excited eigenstates may also be considered. The conformal boundary state |Bi usually

appears as the boundary conditions of a CFT (for eg. the Ising model at its fixed point), so

as not to break the conformal invariance of the bulk. The reason why it makes an appearance

here can be explained in two ways,

1. In the quench from a massive to a massless phase, all possible modes of the final system

are excited. This leads to a non-renormalizable state which is the state |Bi. However,

to describe subsequent time evolution of the system, such a state is useless and must

be supplied with a UV cut-o↵. The factor of exp(�⌧HCFT ) serves exactly that purpose

28



to make the state normalizable. The normalised state describes only long wavelength

(low-energy) modes with the pre-factor correlating it over scales of ⌧ . This way the

cut-o↵ parameter also gets related to the energy pumped into (or taken out-of) the

system. In the simple case of the mass quench, ⌧ = �/4 = 1/(4m0)22.

2. Every bulk CFT has its own set of allowed conformal boundary states that sit at a

fixed point of the boundary RG flow. Each such state has its own basin of attraction

that contains the ground states of all possible gapped Hamiltonians. Hence, starting

from the ground-state of a gapped Hamiltonian, one can reach the conformal boundary

state by acting on it with relevant deformations. This is exactly what is expressed in

(1.13).

Having argued for the use of (1.13) as an ansatz, it is important to state what

simplifications it brings about in the calculations. Confining our attention only to CC

states, we can’t help but notice the intriguing geometrical picture that it reveals. We

can imagine the state |Bi to be defined along the imaginary time slice ⌧ = 0. Then the

deformation can be thought of as an evolution along the imaginary time direction for a

duration of ⌧ = �/4. This gives us a strip geometry of width �/4. Similarly, we can consider

the ket state as another strip geometry of the same width. Together then the normalised

state h | i corresponds to a strip of width �/2. Note that the width is not �, which

would correspond to a cylinder geometry representing a thermal state. Instead, this is the

geometrical representation of a state following a quench to a gapless phase. For convenience,

we can re-label the state as running between ⌧ 2 [��/4, �/4]. The simplification comes

22In the original work of CC, they suggested that starting from the ground state of a free massive scalar
theory, and quenching the mass parameter to zero, gives rise to (1.13). This was pointed out to be an
erroneous conclusion in [180], in which they suggested that starting from the ground state in such a quench,
one can never discard the other irrelevant operators that may arise in a generalisation of (1.13) and whose
conjugate variables are higher inverse powers of the mass. The argument was based on the absence of a
second scale in the system, with respect to which the mass could be taken to zero. One instance of such a
general state has been discussed in Chapter 4 of this thesis. The authors of [180], however, also suggested
that the CC state could be produced if one instead started with an excited state of the gapped Hamiltonian.
In such a case, the excitation scale provides for the second scale factor with respect to which the coe�cient
of the higher irrelevant operators could be taken to zero.
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about from realising that the states along the boundaries of the strip are conformally

invariant, as the bulk itself. Thereafter one can calculate all correlation functions in the

time-evolving, post-quench state as operator insertions on the strip along the ⌧ = 0 slice,

analytically continued along the real time-direction and using conformal symmetries to map

them to suitable manifolds (the upper-half plane or the full plane) for evaluation. We shall

discuss more about such calculations in Chapters 4 and 5.

It is intriguing to understand how robust this ansatz is and what are the possible

generalisations of this state that one might consider. One very obvious generalisation is

to add more irrelevant terms in the exponent in (1.13) and understand the consequences

within correlation functions. Cardy has already considered a generalisation of the state

by adding higher powers and derivatives of the stress tensor, integrated over space, in the

exponent [72]. Another possible generalisation is to perturb the state by adding the higher

spin conserved charges, Wn, of a 2D CFT. This analysis has been carried out in [182] and is

the subject of discussion in Chapter 3.

These states also have the property that correlators of quasi-primary operators in a

CFT, thermalise in them [72, 182]. This property has necessitated the use of such states in

studies of thermalisation of closed, isolated, out-of-equilibrium quantum systems. However,

they have also been shown to display non-thermal behaviour in case the system has finite

boundaries [71, 73, 163, 183]. A detailed discussion of this issue and possible ways to re-

approach thermalisation shall form the subject matter of Chapter 5.

1.2.5 Heavy states

Heavy states are the simplest of the pure states that we consider in this thesis. They are

created by acting upon the vacuum with a ”heavy” primary operator in a two-dimensional
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CFT. Thus23,

|OHi = OH(0)|vaci (1.14)

By heavy, we mean here an operator whose conformal dimension scales with the central

charge with (at least) an order one coe�cient. Thus, hH/c ⇠ O(1) in the c ! 1 limit.

These operators were used for the first time in the context of Liouville theories [223], and

have been recently revived in the context of 2D CFTs [20, 31, 135] to understand black

holes. This part is owing to a novel property of such heavy states: when viewed from a low-

energy theory, they appear to be thermal. This was shown to be the case, in the context of

calculating correlators of ”light” quasi-primary operators in these states. By ”light” again,

we mean here operators that scale with the central charge with a coe�cient much smaller

than one, however. Thus, hL/c ⌧ hH/c, in the c ! 1 limit. In this sense, these heavy

states are like micro states of a black hole. The one point function of a light primary in this

state (calculated on a cylinder with a compact spatial direction) is,

hOH |OL(x)|OHi
hOH |OHi

' CHHL exp(�hLt) (1.15)

The decay of a primary operator is the characteristic signature of its expectation value in

a thermal state. This, therefore, proves the statement regarding the thermal behaviour of

the pure heavy state. The two point function can be similarly shown to be thermal, but

requires a bit more work. A two-point function of light operators in the heavy state becomes

a four point function in the vacuum and starts receiving contributions from the conformal

blocks of all primary operators in the theory. The interesting part of the large central

charge limit is then that, 1. conformal blocks corresponding to all primary operators can

be exponentiated as exp�cf(zi, hi/c), 2. the conformal block corresponding to the identity

operator contributes the most, thereby dominating the sum, in this limit. So, the two

point function of light operators in the heavy states is given by the exchange of the identity

23The conjugate state is hOH | = hvac|O†
H
(1).
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operator and its descendants [135]. The exponentiated vacuum (and even the non-vacuum)

conformal block can be computed using certain monodromy methods that shall be outlined

in detail in Chapter 6 of this thesis. The result then is a thermal two point function that

decays at large times. The interesting and extremely educational part about this calculation

is how leaving out the 1/c corrections in a vacuum correlator gives us a thermal result! This

is also one of the ways in which we would want to understand pure states as describing black

holes. In Chapter 6, we shall show how to calculate higher point correlations in these heavy

states and whether and how, they too appear to be in a thermal background. Finally, we

should mention that inserting a heavy operator in the vacuum backreacts on the geometry

non-trivially, providing it with a description in terms of a stress-tensor. In [20, 31, 135], it

was shown how to write down a metric corresponding to this perturbed geometry in the

Fe↵erman-Graham co-ordinates. The two point functions and entanglement entropy results

were matched between the bulk and the CFT providing evidence for the validity of this

conjecture. In Chapter 6, we shall provide further evidence by providing a match at the

level of higher-point functions.

1.3 General Notions

1.3.1 Entanglement Entropy

In Conformal Field Theory

Entanglement provides a way to understand and quantify correlations between the degrees

of freedom (d.o.f.) in quantum systems. One possible measure of such entanglement is the

entanglement entropy (EE), which is defined along the lines of von Neumann entropy, but

now for reduced density matrices describing the d.o.f. in spatial sub-regions (A = [iAi). It

is defined as,

SA = �Tr(⇢A log ⇢A) with ⇢A = TrAc⇢tot (1.16)
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For most states (including the ground state of simple models), the reduced density matrices

are horribly complicated objects. This makes EE a hard quantity to compute. In 2-d CFTs,

however, this calculation was performed analytically using the replica method in [61, 64].

The idea is to first calculate an auxilliary quantity, called the Rényi entropy and obtain the

EE from an analytic continuation of that. The calculation of the Rényi entropy relies on

considering n replicas of the original CFT and sewing them along the intervals Ai using twist

and anti-twist operators. With appropriate conformal transformations to a single sheet, one

can reduce the calculation to that of a two-point function of n-th order twist operators (�pm)

on the appropriate geometry. The mathematical expression for the Rényi entropy of a single

interval A is,

S(n)
A =

1

1� n
log(Tr⇢nA) = h�+(z1, z̄1)��(z2, z̄2)iM (1.17)

The EE is then obtained from the above quantity by analytically continuing n ! 1. An

extension of this calculation to very specific time-dependent states was done in [59] where

the EE also becomes time-dependent. We shall use these ideas explicitly in Chapters 2

and 3, and again in Chapters 5 and 6 to obtain various results with interesting physical

interpretations.

In AdS Gravity

Due to the AdS/CFT correspondence, one might expect an extension of the idea of EE into

the bulk as well. The first prescription for calculating EE in the AdS bulk was outlined

by Ryu and Takayanagi in [220] (also called the RT prescription). For every region A in a

d-dimensional CFT, the prescription requires one to construct a minimal surface ⌃ in the

d+ 1-dimensional AdS bulk, such that the boundary of the surface @⌃ intersects @A at the

asymptotic infinity. The EE is then given in terms of the area of the d-dimensional minimal

surface in the following way,

SA =
Area(⌃)

4GN
(1.18)
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where GN is the Newton’s constant in d+1-dimensions. Since, we know how to analytically

obtain the EE in a 2-d CFT, we would be interested in the analogous 3-d gravity calculation.

In 3-dimensions, the area of the minimal surface corresponds to the length of the geodesic

that joins the two end-points of the interval in the CFT, through the bulk. The single interval

EE in the vacuum and the thermal state of the CFT were shown to match the corresponding

calculations in a Global AdS and a BTZ black hole background, respectively [220].

The prescription was extended to include time-dependent geometries in the bulk (dual to

time-dependent CFT states) in [149]. The EE is also time-dependent in such states. The new

prescription in the bulk is now to compute the area of the extremal (instead of the minimal)

surface that intersects the boundary of the entangling region at asymptotic infinity. We

shall use these ideas related to time-dependent pure states and their bulk duals extensively

(in Chapters 2 and 5) to explore a great deal about universal behaviour during approach to

thermalization in both field theories and their gravitational counterparts.

1.3.2 Eigenstate Thermalization Hypothesis (ETH)

The eigenstate thermalisation hypothesis was first proposed my Srednicki, as a condition

that systems should display in order they thermalize. Details about the ETH can be found

in the original paper [229] and a number of recent reviews [83, 124]. Here we wish to just

provide the statement for what we mean by the ETH.

The ETH is a very general statement made at the level of a class of operators in any

system. The statement begins by supposing that we have a pure state | i that can be

written in the energy eigen-basis |ni, with the support of n 2 [E,E + �E] and �E ⌧ E.

This implies that | i is a micro state with support on a certain band of the spectrum. Now

suppose we have a class of operators {A}, whose expectation values we wish to calculate in

the above state. For that, we consider the time dependent expectation value of an operator
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Â belonging to the above class,

h (t)|Â| (t)i =
X

n

|cn|2Ann +
X

n 6=m

c⇤mcnAmn exp(�i(En � Em)t) (1.19)

In the above expression, we have taken the liberty to separate out the diagonal and the o↵-

diagonal components of the matrix corresponding to the operator. Usually, while calculating

long time averages, one simply integrates over a su�ciently long time interval. That is good

enough to kill all the oscillating time phases and provide one with a fixed value for the

one-point functions. The idea of ETH instead is to get rid of the time dependent phases in

the o↵-diagonal sector by putting certain assumptions on the o↵-diagonal matrix elements

of the operator in the energy eigenbasis, namely the Anm’s. The first condition of ETH is

to assume that the o↵-diagonal elements Anm, are exponentially small in the no. of d.o.f. of

the system, namely Anm ⇠ exp(�O(N)) with n 6= m. The idea behind this is the following:

at t = 0, all phases in the system are aligned and the second term (a sum over O(N2) terms)

is comparable to ( or probably even larger than) the first term in (1.19). However, soon

after the beginning of time-evolution of the system, the phases corresponding to various

energy intervals begin to decohere, leading to a fall in the amplitude of the term. However,

if the Anm are not considered to be small, there is a possibility that these terms would

still be comparable to the first term. Thus, at long times, only the first term survives.

This is indeed the phenomenon of equilibration, as discussed in the introduction. Now,

although the first term appears to be diagonal, it is still not thermal since it does not admit

a description in terms of an ensemble. This can however, be achieved by making a second

assumption on the diagonal matrix elements, as dictated by ETH. This assumption says that

the diagonal matrix elements Ann are the same over all the basis states, while being an O(1)

quantity. This in a way implies that the operator ”coarse-grains”24 over the energy levels in

the energy band �E around E. This allows for Ann to be taken out of the sum. The sum

24By ”coarse-graining” we mean the mechanism via which the operator forgets about the initial state.
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then just evaluates to one, owing to the normalisability of the coe�cients cn. Thermalisation

is, hence, achieved where the time-dependent one-point function of the operator equals its

micro-canonical ensemble average value. Thus,

h (t)|Â| (t)i ' Ann (1.20)

For su�cient degrees of freedom in the system, this value can be equated with the canonical

and grand canonical ensemble average values, via the equivalence of ensemles thereby

introducing the notion of temperature and chemical potentials in the system.
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Chapter 2

Dynamical Entanglement Entropy

with Angular Momentum and a U(1)

charge

2.1 Introduction and Summary

Entanglement entropy (EE) of a quantum system has turned out be a useful observable in

many areas of physics; see reviews [61,62,99,198]. In this chapter, we will primarily use EE

as a dynamical tool, especially to describe equilibration in 1+1 dimensional quantum field

theories. Time-dependent EE in 1+1 dimensional CFT has been studied in detail in [59,61].

Let us consider a CFT with an infinite spatial direction; the EE for a single interval of length

l, is found to saturate, according to the formula 1

Sent(t, l| )
t�l��! l seqm(E), seqm(E) =

p
2⇡cE/3 (2.1)

1In [59, 61], the entropy density is given by seqm = c⇡/(3�), where � is the inverse temperature of a
canonical ensemble equivalent to a microcanonical ensemble at energy E, given by � =

p
⇡c/6E. With this,

we recover the RHS of 2.1.
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In the above equation, the LHS is the EE of an interval of length l, computed in the state

| i at time t; we will denote the energy density of the state as E. seqm(E) is the equilibrium

entropy density in the microcanonical ensemble as a function of energy density E. It is

assumed here that length of the interval l is greater than the characteristic length scale 1/
p
E

associated with the state | i (this condition will play an important role in Section 2.8). [138]

showed that the time-development in 2.1 can be interpreted holographically in terms of a

BTZ black hole, and derived 2.1 using the Ryu-Takayanagi definition of holographic EE [220]

(see [2, 7, 25, 168] for other recent works on holographic thermalization using dynamic EE).

The linear growth in time was given an intuitive explanation in terms of oppositely moving

entangled pair of excitations [59]; one of the objectives of this chapter is to explain the

saturation value in terms of quantum ergodicity. An important point to note about 2.1 is

the information loss aspect of this equation: on the RHS of 2.1, all information about the

specific state | i appears to be lost, other than energy E of the state. We will elaborate on

this further in Section 2.2.3. Indeed, the above statement of equilibration is similar in spirit

to the following statement of quantum ergodicity (see [209], Section III-A)

Tr (⇢pureO)
t!1���! Tr (⇢mcO) , ⇢pure = | ih |, ⇢mc =

1

⌦(E)

X

i2HE

|iihi|, (2.2)

which is believed to be true for a class of “macroscopic” observables O. Here, ⇢mc defines a

microcanonical ensemble at energy E; HE denotes the subspace of states with this energy,

and ⌦(E) is the dimension of HE. We will, in fact, derive 2.1 from 2.2, modulo some

assumptions, in Section 2.7. Thus, in the time-development described in 2.1 not only is the

memory of the initial state lost, the RHS is given in terms of a mixed state. It is worth noting

that in 2.2 no mention is made about the time scale of change; thus, the time-development

in 2.1 provides a time scale for equilibration. In this chapter, we will show that the above

statement of equilibration also holds in the presence of additional conserved charges, besides

the energy E. In particular, we will show that if the initial state | i has a non-zero angular
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momentum J 2 and a U(1) charge Q, we have 3

Sent(t, l| )
t�l��! l seqm(E, J,Q) (2.3)

Here seqm(E, J,Q) equals the equilibrium entropy density in a microcanonical ensemble,

described in Eqs.2.23 and 2.49, which give the detailed form of the time-dependence. Eq.

2.3 is the main result of this chapter; it is presented here in the limit in which the excitation

energy of the initial state is much higher than 1/t, 1/l. The precise version of this statement

as well as the exact expression for the LHS without this restriction is given in Sections 2.2 and

2.4). We derive 2.3 also from a holographic set-up (Sections 2.3 and 2.5). The holographic

dual consists of a spinning BTZ black hole plus a U(1) gauge field described by a CS theory.

Eq. 2.3 leads us to the following natural conjecture for an integrable 1+1 dimensional

CFT. Suppose the initial state | i has an infinite number of non-zero conserved charges

Qi, i = 1, ...,1 (including energy). We conjecture that the long time behaviour of the EE

in this case is given by

Sent(t, L| )
t�l��! l seqm({Qi})

seqm({Qi}) = sGGE({µi}) (2.4)

where µi are values of chemical potentials conjugate to the infinite number of charges Qi

carried by the quantum state | i. In the second line, we have used the equivalence between

the microcanonical ensemble (with infinite number of charges) and the generalized Gibbs

ensemble (GGE). The corresponding generalization of 2.2 to 2-dimensional integrable systems

2In this paper, we will mostly be concerned with a non-compact spatial direction, so J is actually a linear
momentum. However, we regard this non-compact direction as arising in the limit of a large circle (the bulk
dual is a BTZ black string which can be regarded as the limit of a BTZ black hole), and will continue to call
J an ‘angular momentum’.

3The divergent piece Sdiv is the same as in the previous literature, including in [59,138]. We do not have
anything new to add regarding this term; for a recent discussion, see [167].
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has already been proved [57, 179, 216]. A natural speculation about a holographic dual of

the above involves higher spin black holes [18] (see Section 2.5.2 for a brief discussion).

A few remarks are in order:

1. We reproduce the CFT results In this chapter from AdS in two ways: (a) by an explicit

evaluation of the Ryu-Takayanagi (RT) formula for holographic EE and matching with

CFT, and (b) showing that the RT formula follows from a conventional AdS/CFT dual

of the CFT correlators of twist fields in a double scaling limit. Method (b) constitutes a

‘proof’ of the RT prescription for 1+1 dimensional CFT (see Section 2.3.1 for details).

2. We encounter a puzzle in applying the RT prescription for holographic EE in the

presence of the U(1) charge. The U(1) charge we consider is implemented in the

AdS dual by a U(1) Chern-Simons (CS) theory, and addition of a U(1) charge does

not change the metric. Therefore the RT holographic EE is independent of the U(1)

charge, which seems to be in conflict with the CFT expressions which clearly depend

on this charge. We resolve this puzzle in Section 2.5.1.

2.2 Entanglement Entropies with spin: CFT

2.2.1 Thermofield double

Let us consider a 2D CFT at a finite temperature, which is represented by a thermofield

double consisting of two identical copies of the CFT [231]. Consider the following initial

(pure) state, belonging to the thermofield double, on the time slice t = 0:

| i = C
X

i

exp[��(Ei +⌦Ji)/2] |ii ⌦ |ii (2.5)

40



The normalization constant C is given in terms of the partition function

|C|�2 ⌘ Z(�,⌦) ⌘ Tr e��(H+⌦J) = Tr exp[��+L0 � ��L̄0], (2.6)

and we use the following identifications

H = L0 + L̄0, J = L0 � L̄0, �± = �(1±⌦) (2.7)

The index i of the sums goes over a complete set of states of H1 (equivalently H2). The

definition implies that the expectation values hEi, hJi in this state are non-zero, and are

related to the inverse temperature � and the ‘angular velocity’ ⌦ (which is essentially a

chemical potential for the conserved angular momentum).4 In a Euclidean spacetime, ⌦

must be chosen to be purely imaginary:

⌦ = i⌦E (2.8)

Now, consider two identical entangling regions A ⇢ R in both copies of the field theory and

compute the time evolution of the EE. First, we take A to be a semi-infinite line. Following

the prescription in [64] (see review [61]) the entanglement Renyi entropy (ERE) is given by

the CFT functional integral over a Riemann surface obtained by gluing n copies of a cylinder

5 along two semi-infinite cuts from z1 = z̄1 = 0 and from z2 = i�+/2, z̄2 = �i��/2, both

running o↵ to infinity (see Figure 1). Such a partition function, in turn, boils down to the

two-point function of twist fields �± [64] at the two branch points. Thus, the ERE is given

by

S(n) =
1

1� n
logh�+(z1, z̄1)�

�(z2, z̄2)i (2.9)

4As mentioned in footnote 2, for a non-compact spatial direction, J is actually a linear momentum; ⌦ is
the corresponding chemical potential.

5We will use complex coordinates (z, z̄) = �1 ± i�2 on the cylinder, with �H and iP as the generator
of translation along �2 and �1. The formula 2.6 implies the following twisted identification (�1,�2) ⌘
(�1 � �⌦E ,�2 + �); in terms of the complex coordinates z ⌘ z + i�+,z̄ ⌘ z̄ � i��, where we have used 2.7
and 2.8.
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z z
_

Figure 2.1: The lower branch cuts on left and right represent the (holomorphic and
antiholomorphic coordinates) of the entangling interval in the first copy of the CFT. The
upper branch cuts represent the second CFT.

To obtain this two-point function we first map the cylinder to the plane with coordinates

given by

w(z) = exp

✓
2⇡ z

�+

◆
, w̄(z̄) = exp

✓
2⇡ z̄

��

◆
(2.10)

The two-point function on the plane of an operator O with conformal dimensions (h, h̄) is

given by

hO(w1, w̄1)O(w2, w̄2)i =
1

(w2 � w1)2h(w̄2 � w̄1)2h̄
(2.11)

Now, under a conformal mapping (w, w̄) ! (z, z̄), correlators transform as

hO(z1, z̄1)O(z2, z̄2)...i =
Y

i

✓
dwi

dzi

◆h✓dw̄i

dz̄i

◆h̄

hO(w1, w̄1)O(w2, w̄2)...i (2.12)

The ERE 2.9 can be obtained by using these results and the fact that for the twist fields �±

of order n

� =
1

T
, �± = �(1± ⌦), h = h̄ =

c

24

✓
n� 1

n

◆
(2.13)

As explained in [64], the EE is obtained by taking the n ! 1 limit. This gives

SEE = S(1) =
c

6
log

✓
�+��
⇡2✏2

sinh
⇡(z2 � z1)

�+
sinh

⇡(z̄2 � z̄1)

��

◆
(2.14)
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The cut-o↵ ✏ is used to regularize the expression, as in [64]. 6 To explicitly evaluate 2.14 we

substitute the values of (z1,2, z̄1,2) mentioned above 2.9, and obtain the divergent value

SEE = SEE,0 =
c

6
log

✓
�+��
⇡2✏2

◆
(2.15)

Here the subscript zero indicates that the EE is computed at t = 0.

Time-dependent EE

We will now consider the (Lorentzian) time-evolution of the thermofield state 2.5:

| (t)i = exp[�iHt]| i = C
X

i

exp[��(Ei +⌦Ji)/2� i2Eit] |ii ⌦ |ii (2.16)

and will compute the time-dependent ERE and EE based on this time-dependent state. In

the notation of footnote 5, the total evolution operator in 2.16 translates (�1, �2) = (0, 0) !

(�1, �2) = (��⌦E/2, �/2 + 2it). This implies the following analytically continued location

of the two branch points

z1 = z̄1 = 0, z2 = �2t+ i �+/2, z̄2 = 2t� i ��/2 (2.17)

Note that z̄2 6= z⇤
2
; this happens because �2 is now complex. By using the new locations of

the branch points in 2.14

SEE =
c

6
log

✓
�+��
⇡2✏2

cosh
2⇡t

�+
cosh

2⇡t

��

◆
(2.18)

6This equation appears in Ref. [149], where it signifies the equilibrium EE of a finite interval of length
|z2 � z1|.
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Clearly at large t � �, �⌦E, the cosh terms can be replaced by exponentials, which show

that the finite part grows linearly with time:

SEE(t) = SEE,0 + t (2seqm), seqm =
⇡c

3�(1� ⌦2)
t � �, �⌦E (2.19)

where seqm is the equilibrium entropy density, further elaborated below 2.23. SEE,0 is already

defined in 2.15.

Finite interval

Now, take A be a finite interval of length l. In this case, we need to consider a functional

integral over the cylinder with two finite cuts. The locations of the branch points (zi, z̄i) are

z1 = z̄1 = 0, z2 = z̄2 = l,

z3 = l � 2t+ i
�+
2
, z̄3 = l + 2t� i

��
2
, z4 = �2t+ i

�+
2
, z̄4 = 2t� i

��
2

(2.20)

As described in [59,138], the entanglement Renyi entropy is given by the four-point correlator

of the twist fields

Sn =
1

1� n
logh�+(z1, z̄1)�

�(z2, z̄2)�
+(z3, z̄3)�

�(z4, z̄4)i (2.21)

As before, a way to compute this would be by mapping the points to the plane using (2.10),

computing the correlator there and transforming back to the cylinder by using 2.12. The

details of this calculation are similar to the ⌦ = 0 case discussed in [138]. The 4-point

function on the plane depends on the cross-ratio

x =
w12w34

w13w24

=
2 sinh2 ⇡l

�+

cosh 2⇡l
�+

+ cosh 4⇡ t
�+

, x̄ =
w̄12w̄34

w̄13w̄24

=
2 sinh2 ⇡l

��

cosh 2⇡l
��

+ cosh 4⇡ t
��

(2.22)
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where wij = w(zi)� w(zj) and similarly for w̄. Let us assume that l, t � �, �⌦E. We then

have: x ⇠ (1 + exp[ 4⇡�+ (t� l/2)])�1 up to O(exp[�t/�+], exp[�l/�+]).

Case (i): For t < l/2 7, we then have x ! 1, which, in terms of the original coordinates,

implies z2 ! z3 and hence a factorization h1 4ih2 3i. Once we realize this, we can go back

to 2.21 and evaluate the four-point function as

h�+(z1, z̄1)�
�(z4, z̄4)ih��(z2, z̄2)�

+(z3, z̄3)i

Case (ii): For t > l/2 8, by similar reasonings, we have x ! 0, which implies the other

factorization for the 4-point function

h�+(z1, z̄1)�
�(z2, z̄2)ih�+(z3, z̄3)�

�(z4, z̄4)i

Using our results from the previous subsections about the two-point function, we find the

following behaviour of the EE:

SEE =

8
>>>><

>>>>:

2t (2seqm) + Sdiv t  l/2

l (2seqm) + Sdiv t � l/2

seqm =
⇡c

3�(1� ⌦2)
=

r
⇡c

6
(E + J) +

r
⇡c

6
(E � J) (2.23)

Clearly the EE saturates after time t = l/2. Here seqm is the equilibrium entropy density

of (either copy of) the CFT; the first expression on the second line gives its value in the

canonical ensemble and the second expression gives the microcanonical value (see Section

2.9.1 for the relation between the two ensembles). For ⌦ = 0 the results of this section

7Strictly speaking, we need here (l/2� t) � �±, to ensure x ! 1.
8We actually need (t� l/2) � �±. See footnote 7.
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correctly reduce to those derived in [138]. 9 The divergent part Sdiv is the same as SEE,0 is

2.15 and 2.19.

We have thus proved 2.3 starting from a rather special pure state of the form 2.5. We

will now present a more general derivation starting from an arbitrary initial state.

2.2.2 Single CFT, arbitrary state

Let us now consider a single CFT, defined on a cylinder (with coordinates described in

footnote 5). We start with a pure state |Bi at time �2 = 0, and evolve it by (i) translating

in �2 by �/4 (as in [138]) and (ii) in �1 by ��⌦E; this leads to another pure state

| i = exp[��(H +⌦J)/4]|Bi, (2.24)

We will regard this as the initial state for further, Lorentzian, time evolution, and compute

the time-dependent EE for a single interval in the state

| (t)i = exp[�iHt]| i = exp[�(�/4 + it)H � �⌦J/4]|Bi. (2.25)

By choosing |Bi arbitrarily, we can obtain an arbitrary initial state | i. We will comment in

Section 2.2.3 on the independence of the EE with respect to the choice of this initial state.

Let us first consider the case where the interval is a half-line. Suppose at �2 = 0, the half-

line ends at �1 = 0. Then after the evolution, this point is translated to �1 = ��⌦E/4, �2 =

�/4 + it 10, or, in terms of the z, z̄ coordinates (see footnote 5), to the point

z1 = t+ i�+/4, z̄1 = �(t+ i��/4) (2.26)

9 The expression for the time-dependent entanglement entropy for the finite interval, in 2.23, is twice
that for the half-line 2.19, as observed in [138] for ⌦ = 0. We will encounter the same feature for a single
CFT, as well as for the bulk duals.

10Recall that in 2.25, �H, iJ are, respectively, the translation operators in �2,�1, and ⌦ = i⌦E . See
below 2.16.
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The computation of the time-dependent EE, in part similar to that described above, involves

a generalization of the techniques in [59, 138]. The entanglement Renyi entropy involves

computing the one-point function of the twist fields �+(z1, z̄1) (of 2.9) on an (analytically

extended) strip (�1 2 R, 0  Re(�2)  �/2, Im(�2) = t > 0) with boundary conditions

specified by the state |Bi. As before, we will map this geometry to the (upper half) plane

by using 2.10, where the boundary condition now applies to the boundary of the UHP. As

discussed in [74], as long as the state |Bi represents a conformally invariant condition (more

on this in Section 2.2.3), the one-point function h�+(w1, w̄1)i in the UHP is given by

h�+(w1, w̄1)i|UHP = (w1 � w̄1)
�h�h̄ (2.27)

which equals the two-point function of �+ at w1 with its image �� at w̄1 in the full plane.

The original one-point function on the strip is now obtained by 2.10

h�+(z1, z̄1)i =
✓
�+
⇡ ✏

sinh

✓
⇡ z1
�+

� ⇡ z̄1
��

◆◆�h✓��
⇡ ✏

sinh

✓
⇡ z1
�+

� ⇡ z̄1
��

◆◆�h̄

(2.28)

By putting the values 2.26, we can compute the Renyi entropy. Taking the n ! 1 limit, we

obtain the EE

SEE =
c

6
log

✓
cosh

✓
2⇡ t

�(1� ⌦2)

◆◆
+

c

12
log

�2(1� ⌦2)

⇡2✏2
(2.29)

For large t � �, �⌦, the EE evolves linearly with a coe�cient equal to half of the one for

the thermofield double. For ⌦ = 0 we recover the result of [138].

In the case of finite interval, let us suppose that the interval stretches from �1 = �l/2

and �1 = l/2 at �2 = 0. At time t these end-points are translated to (z1, z̄1) and (z2, z̄2),

where

z1 = � l

2
+ i

�+
4

� t, z̄1 = � l

2
� i

��
4

+ t, z2 =
l

2
+ i

�+
4

� t, z̄2 =
l

2
� i

��
4

+ t
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The computation of the EE follows by using a slight modification of [59, 138]. The Renyi

entropy is given in terms of a two-point function on the above-mentioned strip which can be

obtained, from the UHP result

h�+(w1)��(w2)i ⇠
✓

|w1 � w̄2||w2 � w̄1|
|w1 � w2||w̄1 � w̄2||w1 � w̄1||w2 � w̄2|

◆h+h̄

(2.30)

using the conformal transformation (2.10). The EE turns out to be

SEE =
c

6
log

 
�+��
⇡2✏2

(cosh 2⇡⌦ l
�(1�⌦2)

+ cosh 4⇡ t
�(1�⌦2)

) sinh ⇡l
�(1+⌦) sinh

⇡l
�(1�⌦)

cosh 2⇡ l
�(1�⌦2)

+ cosh 4⇡ t
�(1�⌦2)

!
(2.31)

As in case of the thermo-field double, we again have, for large t/� and l/�, two cases

(depending on the relative magnitude of t and l/2), that clearly illustrate the saturation of

the entanglement entropy (see Fig 2.2)

SEE =

8
>>>><

>>>>:

2t seqm + Sdiv t  l/2

l seqm + Sdiv t � l/2

(2.32)

where seqm is the equilibrium entropy density given in 2.23. Note that the saturation value

of the entanglement entropy for the single CFT is expectedly half of that in the case of the

thermofield double given by 2.23. Also note that the saturation value depends on the angular

momentum (see Fig 2.2).

The above equation 2.32 is again of the form of 2.3. Thus, we have now proved this

equation starting from an arbitrary initial state 2.24.
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Figure 2.2: Saturation of the Entanglement Entropy for di↵erent values of ⌦

2.2.3 Information loss

We wish to mention a rather remarkable feature of the EE described in this subsection. By

choosing the state |Bi in 2.24 appropriately, we can make the initial state | i completely

arbitrary (contrast this with the state 2.5 which is fixed by the choice of �,⌦); however, the

entanglement entropy of an interval in any such state is independent of the choice of the state

(this statement is even true for EE at any finite time). The feature of the calculation that

makes this happen is the following. Recall that the choice of | i corresponds to the choice

of a boundary condition for the two-dimensional CFT (in an appropriate coordinate system,

the state specifies a boundary condition on the boundary of the upper half plane (UHP)).

As has been shown in [59], as long as the state | i is a conformally invariant boundary

state, the correlation function of twist fields in the UHP, involved in computing the Reny

entropy boils down to correlators on the plane involving the original twist fields and their

images in the lower half plane. This result is universal and is independent of the choice

of the specific conformal boundary state, of which there is an infinite tower (the so-called

Ishibashi states). Furthermore, as emphasized in [59], even if our initial state is not one of

the conformally invariant boundary states, RG flow takes it to the nearby Ishibashi state;

thus, for su�ciently large length scales/time scales the result becomes completely universal.

From the holographic viewpoint, the universality is encapsulated by the fact that the bulk

is given by a BTZ black hole geometry. These features have already appeared in the work
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of [138]. Such universalities with respect to the initial state have also been remarked upon

in [25, 168].

2.3 EE with spin: holographic calculation

As shown in [151, 177] (see also [54, 138, 149]) the above CFT calculations find natural

duals in BTZ geometries. For non-zero angular momentum J , the holographic dual of the

thermofield double involves (a Euclidean continuation of) the eternal (2+1)-dimensional BTZ

black hole [23], given by

ds2 = �
(r2 � r2

+
)(r2 � r2

�
)

r2
dt2 +

r2

(r2 � r2+)(r2 � r2�)
dr2 + r2

⇣
d�� r+r�

2 r2
dt
⌘2

(2.33)

Here � ⇠ � + 2⇡ for the BTZ black hole, and � 2 R for the BTZ black string. 11 The

mass M , angular momentum J , temperature T and angular velocity ⌦ are determined by

the inner (r�) and outer (r+) horizons, as follows:

M = r2
+
+ r2

�
, J = 2 r+r�, T = 1/� =

2⇡r+
r2+ � r2�

, ⌦ =
r�
r+

(2.34)

The BTZ metric can be mapped into the Poincare patch of Euclidean AdS3 (ds2 = (dy2 +

dw+dw�)/y2) via

w± =

s
r2 � r2+
r2 � r2�

e2⇡u±/�± , y =

s
r2+ � r2�
r2 � r2�

e⇡(u+/�++u�/��) (2.35)

where u± = �± t, and �± = �(1±⌦) (see, e.g., [157], Eq. (21)). The Euclidean continuation

of the above geometry 2.33 is given by t ! it, u± ! (z, z̄), w± ! (w, w̄), ⌦ ! i⌦E. Note

11 The BTZ string can be obtained from the BTZ black hole by scaling (r, r±, t,�) with a parameter �
such that, as �! 1, �r,�r±, t/�,�/� are held fixed. In this chapter, we will mostly be concerned with the
black string, since the dual CFT has non-compact space. For the black string, the angular momentum J
actually becomes the linear momentum; however, as declared in footnote 2, we continue using the notation
J and the misnomer ‘angular momentum’.
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that in the limit r >> r+, the (Euclidean continuation of the) map 4.16 precisely reduces to

the transformation (2.10) in the CFT, as it must for consistency with holography.

We will now compute the holographic EE (hEE) for an interval A by using the Ryu-

Takayanagi (RT) proposal [220], or more precisely the generalization in [149] for computing

covariant EE, according to which the hEE is given by the length of the extremal 12 geodesic(s)

that connects the boundary of A. The precise formula reads

ShEE =
L(�)
4GN

(2.36)

where, in our case, L(�) is the length computed with the metric (2.33) and GN is the Newton

constant in 3 dimensions. Following along the lines of [138], it is easy to verify that 2.36

indeed reproduces the CFT results 2.23 and 2.32. We will skip the explicit expressions since

they are a straightforward generalization of [138] (we will make some more remarks on the

geodesic lengths below in Section 2.3.2), and prefer to include an alternative ‘derivation’,

which is more closely related to standard AdS/CFT arguments.

2.3.1 A ‘proof’ of Ryu-Takayanagi formula for 1+1 dimensional

CFT

Recall that, in CFT, Entanglement Renyi Entropy (ERE) of a single interval [u, v] is

computed by the two-point function of the twist fields h�+(u)��(v)i with dimension13

h =
c

24

✓
n� 1

n

◆
=

1

16GN

✓
n� 1

n

◆
(2.37)

12The original RT prescription faces a subtlety for Lorentzian backgrounds. Namely, in general, geodesics
that connect the boundaries do not lie on fixed time slices. In these cases EE is given by the area of the
extremal surface given by the saddle point of the area action [149].

13In the second equality we inserted the Brown-Henneaux relation RAdS/GN = 2c/3. In our formulas
RAdS = 1.
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Figure 2.3: A sketch of the ‘proof’ of the Ryu-Takayanagi formula. The use of AdS/CFT
map in the left vertical arrow is justified in the limit of n = 1 + ✏ (see text).

More precisely the ERE, from CFT, is given by

S(n)
[u,v] =

1

1� n
logh�+(u)��(v)i (2.38)

We will now show how in a double scaling limit fixed, the expression 2.38 reduces to the

Ryu-Takayanagi expression 2.36 through more or less standard AdS/CFT arguments.

Our strategy of computing 2.38 would be to compute the CFT two-point function

holographically. We need to take the limit c ! 1 to ensure semiclassical gravity. The CFT

two-point function will be given in terms of a bulk propagator of a dual scalar field whose

mass m (see the paragraph around 2.41 for subtle assumptions involved in the existence

of such dual scalar fields), by the standard mass-dimension formula for large c, will be

m = h. The bulk propagator between two points, on the other hand, is given in terms of

the geodesic length of a particle of mass m connecting the two points. Using these results,

the CFT two-point function in 2.38 boils down to

lim
c!1

h�+(u)��(v)i
AdS3/CFT2�������! e�2hL(�[u,v]) (2.39)
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where L(�[u,v]) is the length of the geodesic, in the BTZ geometry, connecting the two

boundary points u and v. Using this and 2.37, the holographic entanglement Renyi entropy

2.38 reduces to

S(n)
[u,v] =

2hL(�[u,v])
n� 1

=
L(�[u,v])
8GN

(1 + 1/n) (2.40)

Taking the n ! 1 limit, we recover the formula prescribed by Ryu and Takayanagi (2.36).

The steps mentioned in the above ‘proof’ are symbolically represented in the

‘commutative diagram’ in Fig 2.3.

The importance of double scaling: In order to have a semiclassical gravity dual, we

must take the limit c ! 1. Now, the conventional relation between two-point functions of

CFT primary fields and two-point functions of the corresponding bulk duals assumes that

dimensions of the CFT fields do not scale with the central charge (this ensures the use of

linear response under deformation of the CFT by these fields). This assumption appears

to be, a priori, violated by the twist operators with scaling dimensions 2.37. However, we

should recall that eventually we are interested in the entanglement entropy which involves

taking the limit n ! 1. What we propose here is that we should take a judicious combination

of the c ! 1 and n ! 1 limits; to be precise, let us define the following double scaling limit

c ! 1, n ! 1, c(n� 1) = fixed (2.41)

It is easy to see that in this limit the dimension h of the twist operator remains finite; hence

computation of its two-point function by the method described above should be justified. In

terms of the commutative diagram Fig. 2.3, the above remarks justify the use of AdS/CFT

in the left vertical arrow for n = 1 + ✏.

A remark: it would be interesting to understand the connection of the above argument

with that of Lewkowycz and Maldacena in [165]. If one took the c ! 1 limit without

the concurrent n ! 1, the bottom left of the commutative diagram in Fig. 2.3 would
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be represented by the back-reacted conical geometry sourced by the world-line of the very

massive quantum of the scalar field described above [94]; this is, at least qualitatively, similar

to the picture of [165]. However, in view of the above discussion, it appears that in the double

scaling limit described above, the bulk partition function with the conical geometry is given

in terms of a propagator of the scalar particle in the undeformed geometry. We hope to

come back to this interesting issue in the future.

2.3.2 Conclusion of this section

In the light of our arguments above, the holographic computation and its agreement with

results of Section 2.2 become very transparent. In fact, to reproduce the CFT results now,

we only need to know the length of a massive geodesic (with mass equal to h) between two

points at the boundary of the spinning BTZ background. This length was found in [157]

(formula (34))14. Using it in our algorithm precisely reproduces the CFT two point function

from bulk:

h�+(z1, z̄1)�
�(z2, z̄2)i =

✓
�+
⇡ ✏

sinh
⇡ l

�+

◆�2h✓��
⇡ ✏

sinh
⇡ l̄

��

◆�2h̄

(2.42)

Since the CFT two-point function itself is reproduced, we get the same entanglement entropy

as in the CFT.

For two finite intervals (which appear here for the thermofield double) we use the same

arguments since the four point correlator factorizes into a product of two-point functions

(see also [135]), which are then computed using the bulk propagator, as above. Similarly,

the holographic EE for the pure B-state is just the half of the full space answer, as found

earlier in the ⌦ = 0 case in [138]).

We have thus holographically derived 2.23 and 2.32 and hence holographically proved 2.3

for the case with non-zero angular momentum.

14see also [169] for more discussion on the geodesic length and AdS/CFT correlators
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2.4 EE for a charged state: CFT

In this section, we will suppose that the CFT has a global U(1) charge, and that the initial

state has a non-zero value of this charge. For simplicity, we will first consider the case of

zero angular momentum. In this case, the counterpart of 2.5 will be given by

| i = C
X

i

exp[��(Ei � µQi)/2] |ii ⌦ |ii (2.43)

The U(1) symmetry implies that the CFT has a U(1) Kac-Moody algebra

J(z)J(0) = k/(2z2) + regular terms (2.44)

plus its antiholomorphic counterpart. The Kac-Moody currents have the usual OPE with

the stress tensor Tzz, T̄z̄z̄.

It is well-known, e.g. in the context of N = 2 superconformal field theories, that the Kac-

Moody and Virasoro algebras admit an automorphism called “spectral flow”. By choosing

a flow parameter ⌘ = µ/2, (using the conventions of [161], Eq. (2.7)) we find the following

expression for the automorphism

L0 ! L(µ)
0

= L0 �
µ

k
Q/2 +

µ2

4k
, Q ! Q(µ) = Q� µ/k (2.45)

where k is the level of the U(1) Kac-Moody algebra, defined in 2.44. Although it is perhaps

best studied in the context of N = 2 superconformal theories, the phenomenon of spectral

flow is very generic; it exists for simple systems such as free massless charged fermions (see

Section 2.9.1) for which half-integral spectral flows connect the NS and R sectors; indeed in

[120] arguments have been presented for its appearance under rather general circumstances.

With this proviso, we will assume that the charged models we have possess a spectral

flow. It is easy, then, to see that the CFT calculations in previous sections can be simply
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generalized by using the unitary transformation implementing the spectral flow. For example,

consider the Renyi entropy for the CFT on the plane which has the generic form

S(n)
Renyi = Zn/Z

n
1

(2.46)

where Zn is a partition function of an appropriate n-sheeted surface and Z1 is the partition

function on the plane. Now note that, by spectral flow (using H = 2L0 for J = 0),

Tr exp[��(H � µQ+ kµ2/2)] = Tr exp[��H], (2.47)

which trivially leads to

Tr exp[��(H � µQ)] = Tr exp[��(H � µ2/4k)] (2.48)

Thus, the e↵ect of adding the µQ term is equivalent, in the partition function and hence in

5.27, to the universal shift 2.48 to the Hamiltonian. Using this line of reasoning, it is easy

to show that the time-dependent EE is given by applying this shift to the energy E in the

expression for seqm. The generalization to non-zero J is straightforward, in that the same

shift again applies to the energy E. Using this shift to 2.23, and the relation between µ and

Q as in Section 2.9.1 (this relation is also discussed in [120, 161]), we now get the general

result for the dynamical EE for non-zero E, J and Q

Sent(t, l| ) =

8
><

>:

t
2
seqm(E, J,Q) + Sdiv, t  l/2

l seqm(E, J,Q) + Sdiv, t > l/2

seqm =

r
⇡c

6
(E + J � ⇡

2k
Q2) +

r
⇡c

6
(E � J � ⇡

2k
Q2) (2.49)

The dynamical EE for the pure state and single CFT with non-zero Q follows similarly and

it is given by half of the above result for the thermofield double.
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We have thus derived the form of the dynamical EE, 2.3, for arbitrary E, J,Q.

2.5 Holographic EE with charge: BTZ plus CS U(1)

The bulk dual of the above CFT has been described in various places; in particular, we will

follow the account given in [161]. The bulk dual consists of AdS gravity plus a bulk U(1)

CS gauge field. The metric is given, as in Sec 2.3, by a spinning black hole 2.33; in addition,

there is a bulk gauge field solution given by the flat connection

A =
µ

k
(dz + dz̄) (2.50)

Before proceeding, we now encounter an obvious puzzle.

2.5.1 A puzzle

In the previous section (Section 2.4) we found that the entropy density clearly depends

on the charge Q. The grand canonical expression of such an entropy density is, therefore,

expected to be of the form s(�,⌦, µ). In the bulk dual, as we just mentioned, µ appears

only in the gauge field solution 2.50 and not in the metric which retains the µ = 0 form,

2.33. The Ryu-Takayanagi prescription, therefore, will give the time-dependent EE as in the

uncharged case. In particular, we will again obtain 2.23 and 2.32. This clearly appears to

contradict 2.49 which we derived in the CFT.

Indeed, rather than for the EE, one could ask the same question about the BH entropy.

By the black hole area law,

s = s(�) = ⇡c/(3�(1�⌦2)) (2.51)
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which is clearly independent of the chemical potential µ for the charge. Indeed, in terms

of the microcanonical ensemble, the above entropy density precisely agrees with 2.23. The

puzzle is, how can we get the entropy density in 2.49 from gravity?

The resolution of this puzzle can be described in two equivalent ways, one in the language

of the microcanonical ensemble and the second in the language of the (equivalent) grand

canonical ensemble.

• ‘Microcanonical’ resolution:

Although the U(1) CS action in the bulk is topological and hence does not couple to

the metric, it has a boundary term of the form A2 (see, e.g. [161]). This leads to an

additional contribution to Tzz at the boundary, resulting in the following shift

L0 = L0,bulk +Q2/(4k), L̄0 = L̄0,bulk +Q2/(4k), (2.52)

This shift, in fact, is the bulk equivalent of 2.48. See also Sec 2.6 for another application

of this shift.

• ‘Grand Canonical’ resolution:

The microcanonical expression for the entropy density in 2.49 can be converted into

the grand canonical form using the formulae in Section 2.9.1. Surprisingly, from that

expression, the µ-dependence drops out, leaving the expression 2.51! The temperature

and the two ‘chemical potentials’ ⌦, µ are of course the same in the CFT and in the

AdS dual; hence we get agreement between the bulk and boundary expressions.

Summary We have thus proved 2.3 holographically in the presence of both angular

momentum and charge.
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2.5.2 Higher Spin

It is natural to speculate how to extend the above calculations to the case of further additional

charges. A natural setting for this is to consider higher spin black hole backgrounds whose

CFT dual corresponds to coset models [119] (this speculation was made earlier in [179]).

There exist limits of the parameter space of this duality, which are described by free fermions

which describe a particularly simple form of an integrable CFT. A similar integrable system

of free fermions was recently discussed in [179] where a version of 2.2 was found to be true

in the framework of the generalized Gibbs ensemble, and it was speculated there that the

equilibrium configuration of the Gaberdiel-Gopakumar free fermions could be given by the

higher spin black holes. This makes it rather natural to conjecture that 2.4 should be true

in this case, where the bulk dual geometry should be that of a higher spin black hole. See

the most recent progress in this direction [17,93].

2.6 Universal limits

By now, there is a lot of evidence that in the limit of a small entangling region15 A, EE

obeys the analogue of the first law of thermodynamics [9, 42, 200,240]

�EA = Tent�SA (2.53)

Here, the increase of energy in an interval A = l is computed by integrating the holographic

energy-momentum tensor Ttt over the entangling interval, �SA is a leading-l di↵erence

between the EE computed in an excited state and that in the vacuum, and Tent is a universal

constant that depends on the number of dimensions. More explicitly

�EA =

Z

A=l

dx Ttt =
MR l

16⇡GN
(2.54)

15Or in the limit of � ! 1
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where R is the radius of asymptotically AdS3 background with time component of the metric

given by f(z)�1 ⇠ 1 +Mz2.

For spinning BTZ solution (2.33), the increase EE of a single interval of length l [149] is

given by

�Sl =
c

6
log

✓
�+��
⇡2✏2

sinh
⇡l

�+
sinh

⇡l

��

◆
� c

3
log

l

✏
⇠ c⇡2(1 + ⌦2)T 2 l2

18(1� ⌦2)2
(2.55)

Using the relation between the mass and the temperature

M = (2⇡T )2
1 + ⌦2

(1� ⌦2)2
(2.56)

the first law relation for EE becomes

�El =
3

⇡l
�Sl (2.57)

in agreement with [42].

On the other hand, in the limit of large l or large temperature T , the EE reaches the extensive

form given by the thermal entropy of the system (see the review [61])

Sl ⇡ l seqm(�) (2.58)

For spinning BTZ, seqm can be read o↵ from 2.23. Thus,

Sl ⇡
c⇡ l

3�(1� ⌦2)
(2.59)

The result depends only on the central charge of the CFT and on � and ⌦, and is, therefore,

a universal limiting value.
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Let us now look how the universal limits incorporate the presence of the U(1) CS fields. As

explained in the previous section, U(1) gauge fields give an additional boundary contribution

to the energy-momentum tensor

Ttt = T grav

tt + T gauge

tt =
MR

16⇡GN
+

µ2

2⇡
=

⇡c

6�2
+

µ2

4⇡k
⌘ Ebulk +

µ2

4⇡k
(2.60)

This is consistent with (5.4) noting Ttt = L0/⇡. This way, using the spectral flow argument,

we have, as in 2.52

Ebulk = Ebdry �
µ2

4⇡k
(2.61)

and the first law-like relation remains the same.

The value of the thermal entropy at which EE saturates can be expressed in terms of

microcanonical energy density E and potential µ. However, in the grand canonical ensemble

it is only a function of � that matches the holographic prescription that is“blind” to the

gauge fields, as we noted in the previous section.

2.7 Relation with quantum ergodicity

The idea of ergodicity is that given su�cient time, the “time average of various properties

of a system”, evolving from some initial state S0 can be equated to an “ensemble average of

those properties”, where the ensemble is constructed out of all possible states S of the system

which have the same conserved charges as S0. In the classical version, the initial state is a

point in the phase space; ergodicity says that under dynamical evolution the point moves

“democratically” in the submanifold M of the phase space, allowed by conservation laws,

so that the time average of a phase space function f(q, p) can be equated to an average of

f taken over M with uniform weight. In quantum mechanics, under the usual conservation
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law of energy, the statement boils down to (see, e.g., the review in [209])

(1/T )

Z T

0

dt Tr (⇢pure(t) O)
T!1���! Tr (⇢micro O) , ⇢pure = | ih |,

⇢micro =
1

N

NX

i=1

|iihi| ⇡ ⇢thermal =
1

Z
exp[��H] (2.62)

Sometimes an alternative statement (Eq. 2.2) is made [209]

Tr (⇢pure O)
t!1���! Tr (⇢thermal O) (2.63)

with respect to a certain class of “macroscopic” observables, for which the time averaging

in 2.62 is not necessary. Let us now consider a partition A [ B of space, say for quantum

field theory, or for spins on a lattice. Consider a basis of states |iAi|nBi where the states

|iAi are supported entirely on A, and the states |nBi are supported entirely on B (it could

consist of spins in A and B. Let us consider the projection operator PB =
P

n |nBihnB| onto

the states of B. To make connection with the discussion above, we choose O = PB |iAihjA|

in 2.2, assuming that this is an appropriate “macroscopic” operator. Eq. 2.2 then gives

us the following limiting value of the matrix element of the reduced density matrix ⇢A =

Tr(PB ⇢pure)

hiA|⇢A|jAi
t!1���! hiA|⇢A,�|jAi, ⇢A,� ⌘ Tr (PB exp[��H]/Z) (2.64)

The asymptotic value of the time-dependent EE, then would be

SEE

t!1���! S[⇢A,�] ⌘ �Tr (⇢A,� log ⇢A,�) (2.65)
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The latter entropy measures the von Neumann entropy of the reduced density matrix in an

overall mixed state. Now we expect that for a large enough l = lA

S[⇢A,�]/l = s(�) (2.66)

where s(�) is the thermal entropy density at an inverse temperature �. In Section 2.9.2

we present a proof of this statement using a discrete system and assuming the equivalence

between microcanonical and grand canonical ensembles. Additionally, in Section 2.8 we

explicitly verify 2.66 in the case of a massive, charged scalar field.

We have therefore proved

SEE

t!1���! l s (2.67)

This is the same as 2.1, where a time scale of saturation is set by l.

The proof of saturation outlined above holds in principle for any field theory and in any

number of dimensions. Hence, we expect the behaviour 2.67 to be valid quite generally.

For integrable systems and the generalized Gibbs ensemble, the story of quantum

ergodicity is less developed, although we still expect an equation of the form 2.63 to hold

for a suitable class of “macroscopic” observables (see [209]). 16

2.8 Non-CFT: EE for charged, massive scalar field

In this section, we consider an a priori calculation of EE for a charged, massive scalar

field. The motivation for this calculation is to have an additional evidence for 2.66. Our

CFT calculations for the saturation value of the time-dependent EE already provide indirect

evidence for this formula. However, in this section we consider a non-conformal system and

perform a direct computation of the EE using the methods of [144].

16These observables typically display some non-locality; however, see [76] for the behaviour of local
observables.
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Figure 2.4: Plot of S[⇢A,�]/l (the LHS of 2.66 vs �µ, for �m = 10. The plot marked
with squares has l/� = 10; the plot marked with triangles has l/� = 25. The solid line
corresponds to the RHS of 2.66, viz. the thermal entropy density, which is obtained using
standard formulae, and Mathematica. It is clear that 2.66 holds to a good accuracy. The
agreement is better for small �µ than for large �µ; however, this could be due to some
numerical instability.

The charged scalar field is described by a Hamiltonian

H =

Z
dx
�
⇡†⇡ + (r�)†(r�) +m2�†�

�
(2.68)

and a conserved U(1) charge

Q = i

Z
dx(⇡†�� �†⇡) (2.69)

We will suppose that the full system (with spatial partition A and its complement B) is in

a grand canonical ensemble

⇢total =
exp[��(H � µQ)]

Tr[exp[��(H � µQ)]]
(2.70)
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We are interested in computing the reduced density matrix ⇢A = TrB⇢total, and the EE

SA = �Tr⇢A log ⇢A. We will proceed using a generalization of the formalism described

in [144], and describe only the essentially new features. Note that formalism in [144] permits

a straightforward generalization from the case of a single scalar � to multiple flavours �a, a =

1, 2, ..., Nf , with the C-matrix generalized to

(C2)abij =
nX

k=1

< �a
i �

c
k >< ⇡c

k⇡
b
j > (2.71)

The EE is given by (using the notation from 2.65)

S[⇢A,�] = Tr[(C + 1/2) log(C + 1/2)� (C � 1/2) log(C � 1/2)] (2.72)

where the trace is now over both the {i, j} and {a, b} indices. For the free complex scalar at

hand, Nf = 2, and Cab
ij = Cij�ab. We compute C2 using 2.71 and the following ingredients:

< �j�
†

k >=
1

2N

N�1X

a=0

1

2✏!i
[coth(

!i + µ

2T
) + coth(

!i � µ

2T
)] cos[

2⇡

N
a(j � k)]

< ⇡j⇡
†

k >=
1

2N

N�1X

a=0

✏!i

2
[coth(

!i + µ

2T
) + coth(

!i � µ

2T
)] cos[

2⇡

N
a(j � k)]

< ⇡j⇡
†

k >=< ⇡†

j⇡k >, < �j�
†

k >=< �†

j�k > (2.73)

The computation of 2.72 is performed numerically. We reproduce a representative plot in

Fig. 2.4.
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2.9 Appendix

2.9.1 Microcanonical vs grand canonical quantities

Consider a grand canonical ensemble given by the following density matrix and partition

function

⇢ = (1/Z) exp[��(H +⌦P � µQ)], Z = Tr exp[��(H +⌦P � µQ)] (2.74)

The partition function can be written as

Z ⌘ exp[��G] =
X

E,J,Q

exp[S(E,Q, J)� �(E +⌦P � µQ)] (2.75)

If the summand in the last function has a single sharp maximum around a unique set of

values E,P,Q, the distribution essentially becomes equivalent to that of a microcanonical

ensemble, where we have

@S/@E = �, @S/@J = ��⌦, @S/@Q = ��µ (2.76)

This gives us the grand canonical parameters in terms of the microcanonical ones. The

converse relations are also easy to derive:

@(�G)/@� = E �⌦J � µQ, � 1/� @(�G)/@⌦ = J, � 1/� @(�G)/@µ = Q (2.77)

This gives us the following relation

S = �2@G/@� (2.78)
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Using the above relations, we can prove that if the microcanonical entropy density is given

by

S =
p

aE + bJ � dQ2 +
p
aE � bJ � dQ2 (2.79)

the grand canonical expression for the entropy is

s =
2a

�(1� a2⌦2/b2)
(2.80)

Surprisingly, S(�,⌦, µ) = S(�,⌦), which is independent of �.

Notation: In the body of the chapter, we have used the notations E, J,Q as the energy

density, J as the angular momentum density and Q as the charge density whereas s

denotes the entropy density. Equations (2.79) and (2.80) hold for the densities with trivial

modifications.

Free massless charged fermion in 1+1

We consider free massless charged fermions in 1+1 dimension, at a temperature 1/� and

chemical potential µ. Explicit calculation gives the following Gibbs free energy

g(�, µ) = �
✓

⇡

6�2
+

µ2

2⇡

◆
(2.81)

The energy density e and the charge density q are given by

e =
⇡

6�2
+

µ2

2⇡
, q =

µ

⇡
(2.82)

For this system the grand canonical entropy density is given by

s(�, µ) = s(�) =
⇡

3�
(2.83)
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and the microcanonical entropy density is given by

s(e, q) =

r
2⇡

3
(e� ⇡

2
q2) (2.84)

2.9.2 Proof of 2.66

Consider a basis of the Hilbert space {|i, Ai, |k,Bi}, i = 1, ..., NA; k = 1, ...NB, where NA, NB

denote the number of independent states |i, Ai belonging to the partition A, and similarly

for NB. A microcanonical density matrix ⇢mc is given by

⇢mc =
1

NANB

X

i,A;k,B

|i, Ai|k,Bihi, A|hk,Bi (2.85)

By tracing over the B states, we get

⇢A,mc ⌘ TrB⇢mc =
1

NA

X

i,A

|i, Aihi, A|

The von Neumann entropy of this density matrix is given by

SA = logNA

Now imagine that our system is a lattice of n-level ‘spins’ (n = 2 is Ising), and that there

are lA spins in the partition A; then

SA = lA log n

Now we can easily show that the von Neumann entropy of 2.85 is

S = (lA + lB) log n
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Hence the entropy density is

s = log n

Now by denoting lA as l, and assuming the equivalence between the microcanonical ensemble

in 2.85 and the canonical ensemble as in 2.64 we obtain 2.66.
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Chapter 3

The inside/outs of AdS3/CFT2
1

3.1 Introduction and Summary

It has been a matter of lively debate whether the standard description of a large black

hole with a smooth horizon is quantum mechanically consistent, and is, in fact, consistent

with AdS/CFT. While the firewall hypothesis [13, 16] 2 argues against the validity of the

standard description, Maldacena and Susskind [175] have suggested that the region inside

the horizon is a geometric representation of quantum mechanical entanglement. Both the

above proposals, and related issues, are discussed in a number of papers; for a partial list,

related to the discussion in this chapter, see [13, 16, 22, 27, 185, 204, 205, 225, 226, 235]. The

proposal of [175], summarized by the symbolic equation ER = EPR, 3 is illustrated by the

eternal black hole geometry which is dual to the thermofield state [177].4 It has been argued

in several papers (see, e.g., [27, 185]) that although the proposal holds for this illustrative

1The contents of this chapter have partial overlap with the thesis work of Sorokhaibam Nilakash Singh.
The conclusions arrived at are results of joint e↵ort.

2See also [48].
3Einstein-Rosen (wormhole) = Einstein-Podolsky-Rosen (entangled state).
4See [138] for an AdS/CFT check on the dynamical entanglement entropy which involves the wormhole

region, and [67] for generalization to include angular momentum and charge.
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case, it does not hold in general. One of the objectives of the present work is to explicitly

construct a general class of two-sided geometries 5 which represent entangled CFT’s.

A useful approach to construct the geometric dual to a CFT state is by using a Fe↵erman-

Graham (FG) expansion, with boundary data provided by the CFT state. To begin with, let

us consider the case of a single CFT. Since we are primarily interested in the metric, let us

focus, for simplicity, on states in which only the stress tensor is excited. The dual geometry

would then be given by the solution to the appropriate Einstein equations subject to the

boundary data provided by the stress tensor. This approach has been particularly fruitful

in the context of the AdS3/CFT2 duality where the Fe↵erman-Graham expansion has been

shown, for pure gravity, to terminate [30] , yielding the following exact metric 6

ds2 =
dz2

z2
� dx+dx�

✓
1

z2
+ z2

L(x+)L̄(x�)

16

◆
+

1

4

�
L(x+)dx

2

+
+ L̄(x�)dx

2

�

�
(3.1)

The boundary data (z ! 0) is represented by the following holographic stress tensors (we

choose �⇤ = 1/`2 = 1)

8⇡G3T++(x+) =
L(x+)

4
, 8⇡G3T��(x�) =

L̄(x�)

4
(3.2)

The above metric becomes singular at the horizon

z = z0 ⌘ 2
�
L(x+)L̄(x�)

��1/4
, (3.3)

and therefore the metric 5.57, describes only an exterior geometry. 7

How does one carry out such a construction with two boundaries, with two sets of

boundary data? Indeed, it is not even clear, a priori, whether simultaneously specifying

5By two-sided, we mean geometries which have two asymptotically AdS regions.
6In 5.57, x± = t± x, with x 2 R. For L, L̄ constant, this corresponds to the BTZ black string.
7The inverse metric gMN blows up at the horizon, as in case of Schwarzschild geometry. However, unlike

there, here the other region z > z0 does not represent the region behind the horizon; rather it gives a second
coordinatization of the exterior region again. In this chapter, we will use a di↵erent set of coordinate systems
to probe the interior and a second exterior region.
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two independent pieces of boundary data can always lead to a consistent solution in the

bulk (this question has been raised in several recent papers, e.g. see [235]). A possible

approach to this problem is suggested by the fact that the eternal BTZ solution, which

contains 5.57 with constant stress tensors, admits a maximal extension with two exteriors,

which are joined to an interior region across a smooth horizon. The maximal extension is

constructed by transforming, e.g., to various Eddington-Finkelstein (EF) coordinate patches

(described in Appendix 3.9.1). A naive generalization of such a procedure in case of variable

L, L̄, of transforming the metric 5.57 to EF type coordinates, does not seem to work since

it leads to a complex metric in the interior region 8. A second approach could be to solve

Einstein’s equations, by using the constant L, L̄ (eternal BTZ) solution as a starting point

and, incorporate the e↵ect of variable L, L̄ perturbatively, either in a derivative expansion

or an amplitude expansion. While this method may indeed work, at the face of it, it is far

from clear how the variation in L, L̄ can be chosen to be di↵erent at the two boundaries.

In this chapter, we will use the method of solution generating di↵eomorphisms (SGD).

In gauge theory terms, these are asymptotically nontrivial gauge transformations which

correspond to global charge rotations; the use of these objects was introduced in [123,

214, 236], and used crucially by Brown and Henneaux [50] to generate ‘Virasoro charges’

through asymptotically nontrivial SGDs that reduced at the AdS boundary to conformal

transformations. (We discuss these in more detail in Section 3.2). Brown and Henneaux had

discussed only the asymptotic form of the SGDs. We apply two independent, exact Brown-

Henneaux SGDs 9 to di↵erent coordinate patches of the eternal BTZ geometry, yielding

a black hole spacetime with two completely general stress tensors on the two boundaries.

In other words, our strategy for solving the boundary value problem can be summarized

as: given arbitrary boundary data in terms of stress tensors TR, T̄R, and TL, T̄L, we (i) find

the two specific sets of conformal transformations (which we are going to call G+, G� and

8Such a coordinate transformation has been discussed in [129] in an asymptotic series near the boundary.
9 It has been shown by Roberts [218] that the exterior metric 5.57 can be obtained by an exact Brown-

Henneaux type di↵eomorphism applied to the Poincare metric. See Appendix 5.56 for a discussion on this
and a di↵erent, new, transformation which is closer to the ones we use in this chapter.
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H+, H�) which, when acting on a constant stress tensor, gives rise to these stress tensors, (ii)

find the SGD’s which reduce to these conformal transformations and (iii) apply the SGD’s

to the eternal BTZ metric.

This solves the boundary value problem we posed above.

The results in this chapter are organized as follows:

(1) The new solutions: In Section 3.2 we describe the explicit solution generating

di↵eomorphisms (SGDs) and construct the resulting two-sided black hole geometries. The

di↵eomorphisms reduce to conformal transformations at each boundary, parameterized by

functions G± on the right and H± on the left. The SGD parameterized by G± is applied

to the Eddington-Finkelstein coordinate chart EF1 (which covers the right exterior and

the black hole interior, see Figure 3.1) and to EF4 (right exterior + white hole interior),

whereas the SGD parameterized by H± is applied to the Eddington-Finkelstein coordinate

chart EF2 (left exterior + black hole interior) and to EF3 (left exterior + white hole

interior). To cover the entire spacetime we also use a Kruskal chart K5 which covers an open

neighbourhood of the bifurcate Killing horizon; here we leave the original Kruskal metric

unaltered. The e↵ect of the above SGDs is that we have a description of di↵erent metric

tensors in di↵erent charts. In Section 3.2.3 we show that all these can be pieced together to

give a single (pseudo-)Riemannian manifold; we prove this by showing that in the pairwise

overlap of any two charts N1 \ N2 the di↵erent metrics constructed above di↵er only by a

trivial di↵eomorphism (see the definition 3.2.5); the full metric, specified with the help of

the various charts, is schematically represented in Figure 3.3. An important manifestation

of the asymptotic nontriviality of the SGDs is to move and warp the infra-red regulator

surface (see Figure 3.2); the change in the boundary properties, as found in later sections,

can be directly attributed to this.
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The new spacetime so constructed inherits the original causal structure, with the event

horizon, the bifurcation surface, and the two exterior and interior regions (see also footnotes

10 and 32). The horizon is, therefore, regular by construction. In the new EF coordinates

(the tilded coordinates) the horizon consists of smoothly undulating surfaces (see Fig 3.4).

(2) The CFT duals: In section 3.3 we use the observation that the SGDs reduce

asymptotically to conformal transformations to assert that the CFT duals to our geometries

are given by unitary transformations UL ⌦ UR to the thermofield double state. Since the

unitary transformations implement conformal transformations, AdS/CFT implies that CFT

correlators in the transformed state are holographically computed by the new spacetime

geometry. We posit this as a test of the proposed AdS/CFT correspondence.

(3) The AdS/CFT checks: In section 3.4 we carry out this test for the stress tensor. We

compute the holographic stress tensor [28,227] in the new geometry and show that it exactly

matches with the expectation value of the conformally transformed (including the Schwarzian

derivative) stress tensor in the thermofield double state. In section 3.5 we compare AdS and

CFT results for both hOLORi and hORORi types of correlators. The holographic two-point

function is found by computing geodesic lengths in the new geometries and we find that

it correctly matches with the two-point function of transformed operators. This can be

regarded as an evidence for the ER=EPR relation in the presence of probes.

(4) Entanglement entropy: As a further check, in section 3.6 we apply the above result

for two-point functions to show that the entanglement entropy EE in CFT matches the

holographic EE [149, 220] including when the Ryu-Takayanagi geodesic passes through the

wormhole. This constitutes a direct proof of the ER=EPR conjecture for the entire class of

geometries constructed in this chapter. We work out the dynamical entanglement entropy

in an example (see fig 3.5).

(5) Holographic entropy from horizon: In section 3.7, we make crucial use of the existence

of smooth horizons on both sides to compute a holographic entropy along the lines of [43].

We are able to compute the entropy in the CFT by using the Cardy formula and an
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adiabatic limit (which allows the use of the ‘instantaneous’ energy eigenvalues to compute

degeneracies); the holographic entropy agrees with this. The entropy turns out to be

divergenceless, reflecting the dissipationless nature of 2D CFT. There is, however, a nontrivial

local flow of entropy (see fig 3.6).

(6) ER=EPR: In Section 3.8 we discuss some implications of our solutions vis-a-vis

the ER=EPR relation of Maldacena and Susskind [175]. Our solutions establish an infinite

family of quantum states entangling two CFTs which are represented in the bulk by wormhole

geometries. We show, in particular, that out of a given set of quantum states we consider, all

characterized by the same energy, there are states with low entanglement entropies, which

nevertheless are still represented by wormhole geometries; this is in keeping with the picture

of geometric entanglement suggested in [175].

3.2 The solutions

In this section we obtain the new solutions by carrying out the procedure outlined in the

Introduction. As explained in Section 3.9.1, for constant L, L̄, the metric 5.57 represents

a BTZ black hole of constant mass and angular momentum 3.82. In that case, one can

construct EF coordinates (see Section 3.9.1) to extend the spacetime to include the region

behind the horizon and a second exterior. We will, in fact, use five charts to cover the

extended geometry (see Fig 3.1).
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EF1 EF2 EF3 EF4

Figure 3.1: The (green parts of) the five figures on the right depict the five coordinate charts
used in this chapter to cover the eternal BTZ solution.10The coordinate chart K5 is needed
to cover the “bifurcation surface” where the past and future horizons meet (it is a point in
the Penrose diagram). The leftmost diagram (in blue) represents the coordinate chart used
in 5.57. Each of the coordinate charts is shown, for facility of comparison, within a Penrose
diagram where the parts not within the chart are shown in gray.

3.2.1 The eternal BTZ geometry

We will now briefly review some properties of the eternal BTZ geometry. The maximal

extension of the eternal BTZ geometry, starting from 5.57 is described in detail in Section

3.9.1. We will briefly reproduce some of the formulae relevant to the coordinate system

(“EF1”) describing the right exterior and the interior. The EF1 coordinates are obtained

from the coordinates of 5.57 by the transformations

z

z0
=

s
1

�0

✓
��

q
�2 � �2

0

◆
x+ = v � 1

2
p
L
log

✓
�� �0
�+ �0

◆
, x� = w � 1

2
p
L̄
log

✓
�� �0
�+ �0

◆

The metric, in these coordinates, becomes

ds2 =
d�2

4(�+ �0)2
+

L

4
dv2 +

L̄

4
dw2 � � dvdw +

p
L

2(�+ �0)
dvd�+

p
L

2(�+ �0)
dwd� (3.4)

10 This is the entire geometry for the non-spinning BTZ; for spinning BTZ solutions, we do not attempt to
cover the region beyond the inner horizon, since in this chapter we are interested in the asymptotic properties
in the two exteriors mentioned above. See also footnote 32.
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The event horizon �H , the inner horizon �i, and the singularity �s are at

�H = �0 ⌘
p
LL̄

2
, �i = ��0, �s = �1

4
(L+ L̄) (3.5)

Note that for BTZ black holes without angular momentum L̄ = L and �i = �s. The location

of the event horizon corresponds to 3.3.

In order to regulate IR divergences coming from � ! 1, we define a cut-o↵ surface ⌃B

at a constant large � = �ir; the metric 3.4 on ⌃B turns out to be

� = �ir = 1/✏2 ) ds2|⌃B
= �(1/✏2) dv dw(1 +O(✏2)) (3.6)

By the usual AdS/CFT correspondence the leading term defines the boundary metric (see

Section 3.9.3)

ds2bdry = �dv dw (3.7)

The subleading term in the metric corresponds to the normalizable metric fluctuation, which

gives the expectation value of the stress tensor; this is the holographic stress tensor [28], and

is given here by

8⇡G3Tvv(x+) =
L

4
, 8⇡G3Tww(x�) =

L̄

4
(3.8)

It is easy to see that we will get the same boundary metric and stress tensor from an

analysis of the coordinate chart EF4. It is also straightforward to derive similar results for

the left exterior (which represent a state with the same mass and angular momentum) using

EF2 and EF3.
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3.2.2 Solution generating di↵eomorphisms (SGD)

We will now proceed to construct new solutions with arbitrary boundary data at the two

boundaries (represented by two arbitrary holographic stress tensors TR,µ⌫(x) and TL,µ⌫(x))

by applying the method of solution generating di↵eomorphisms to the above geometry, as

explained in the introduction.

The solution generating di↵eomorphisms can be described as follows. Suppose we start

with a certain metric gMN(x)dxMdxN 11 in a certain coordinate chart UP containing a point

P. The new metric g̃MN , in this coordinate chart, is given in terms of a di↵eomorphism

(active coordinate transformation) f : x̃M = x̃M(x), by the definition

g ! g̃ ⌘ f ⇤g : g̃MN(x̃) ⌘
@xP

@x̃M

@xQ

@x̃N
gPQ(x) (3.9)

In the above, f ⇤g is a standard mathematical notation for the pullback of the metric g under

the di↵eomorphism f . For di↵eomorphisms di↵ering infinitesimally from the identity map:

x̃M = xM � ⇠M(x), we, of course, have the familiar relation

�gMN(x) = DM⇠N +DN⇠M (3.10)

Normally, a di↵eomorphism is considered giving rise to a physically indistinguishable

solution; this, however, is not true when the di↵eomorphism is non-trivial at infinity (this

is explained in more detail in Section 3.2.5).

As explained in Section 3.9.1, we use five charts to cover the entire eternal BTZ geometry

(see Fig 3.1). These charts are labelled as EF1, EF2, EF3, EF4 and K5. We use a nontrivial

di↵eomorphism in each of EF1, EF2, EF3 and EF4, which overlap with the boundary and

the identity transformation in the Kruskal patch K5.

11Notation: xM = {�, xµ}, xµ = {v, w}.

78



The metric in the coordinate chart EF1

The di↵eomorphism in the EF1 coordinate chart is given by

� =
�̃

G0
+(ṽ)G

0
�(w̃)

, v = G+(ṽ), w = G�(w̃) (3.11)

The new metric g̃MN , written in terms of x̃M = (�̃, ṽ, w̃), is

g̃MN(x̃)dx̃
Mdx̃N ⌘ ds2 =

1

B2

h
d�̃2 + A2

+
dṽ2 + A2

�
dw̃2 + 2A+dṽd�̃+ 2A�dw̃d�̃

� �̃

✓
B2 + 2

✓
A+

G00

�
(w̃)

G0
�(w̃)

+ A�

G00

+
(ṽ)

G0
+(ṽ)

+ �̃
G00

+
(ṽ)G00

�
(w̃)

G0
+(ṽ)G

0
�(w̃)

◆◆
dṽdw̃

�
(3.12)

where

A+ =
p
LG0

+
(ṽ)(�̃+ �̃0)� �̃

G00

+
(ṽ)

G0
+(ṽ)

,

A� =
p

L̄G0

�
(w̃)(�̃+ �̃0)� �̃

G00

�
(w̃)

G0
�(w̃)

,

B = 2(�̃+ �̃0)

For infinitesimal transformations G±(x) ⌘ x + ✏±(x), this amounts to an asymptotically

nontrivial di↵eomorphism ⇠M (see 3.10)12

⇠v
1
= ✏+(v), ⇠

w
1
= ✏�(w), ⇠

�
1
= ��

�
✏0
+
(v) + ✏0

�
(w)
�

(3.13)

The behaviour of the metric 3.12 at a constant large � surface is given by

ds2 = ��̃ dṽdw̃ (1 +O(1/�̃)) (3.14)

12The subscript in ⇠M1 refers to the chart EF1.
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This, by following arguments similar to the previous case (see Section 3.2.1), identifies the

IR cuto↵ surface as

�̃ir = (1/✏2) (3.15)

and the boundary metric as

ds2bdry = �dṽdw̃ (3.16)

The subleading term in 3.14, as explored in Section 3.4, gives the holographic stress tensor.

We will see there that the subleading term depends on the SGD functions G±; this feature

is what makes the SGD’s asymptotically nontrivial (see Section 3.2.5 for a more detailed

discussion on this).

In terms of the old �-coordinate, the surface 3.15 is

� = 1/(✏2G0

+
(ṽ)G0

�
(w̃)) (3.17)

Note that this surface is di↵erent from 3.6, and is nontrivially warped, as in Figure 3.2. This

is another manifestation of the asymptotic non-triviality of the di↵eomorphism 3.11, which

is responsible for nontrivial transformation of bulk quantities, such as geodesic lengths.

EF(1+4)EF(2+3) Kruskal

Figure 3.2: This figure shows the IR cut-o↵ 3.15 in the new geometries. The e↵ect of the
SGDs, in the old (un-tilded) coordinates, is to deform the IR cut-o↵ surfaces. The surface
deformation on the right exterior is given by the change from 3.6 to 3.17; there is a similar
surface deformation on the left exterior.
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We note that the leading large �̃ behaviour of 3.12 is that of AdS3

ds2 =
d�̃2

4�̃2
� �̃ dṽ dw̃ + ... (3.18)

As mentioned before, and will be explored in detail in Section 3.4, the subleading terms,

represented by the ellipsis ..., are nontrivially di↵erent from that of AdS3.

The metric in the coordinate chart EF2

The di↵eomorphism (SGD) used in the coordinate chart EF2 (see Fig 3.1), which is

independent of the one above used in EF1, is given by

�1 =
�̃1

H 0
+(ũ)H

0
�(!̃)

, u = H+(ũ), ! = H�(ṽ) (3.19)

which leads to the metric

ds2 =
1

B2

h
d�̃2

1
+ A2

+
dũ2 + A2

�
d!̃2 � 2A+dũd�̃1 � 2A�d!̃d�̃1

� �̃1

✓
B2 � 2

✓
A+

H 00

�
(!̃)

H 0
�(!̃)

+ A�

H 00

+
(ũ)

H 0
+(ũ)

� �̃1
H 00

+
(ũ)H 00

�
(!̃)

H 0
+(ũ)H

0
�(!̃)

◆◆
d!̃dũ

�
(3.20)

where

A+ =
p
LH 0

+
(ũ)(�̃1 + �̃0) + �̃1

H 00

+
(ũ)

H 0
+(ũ)

, A� =
p
L̄H 0

�
(!̃)(�̃1 + �̃0) + �̃1

H 00

�
(!̃)

H 0
�(!̃)

, B = 2(�̃1 + �̃0)

For infinitesimal transformations H±(x) = x+"±(x), this implies a di↵eomorphism ⇠M
2

where

⇠u
2
= �"+(u), ⇠!2 = �"�(!), ⇠�2 = ��

�
"0
+
(u) + "0

�
(!)
�

(3.21)

Note, once again, the asymptotic nontriviality of the above di↵eomorphism.
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3.2.3 The full metric

In a manner similar to the above, we apply the SGD characterized by G± on EF4 (which

shares the right exterior with EF1, see Appendix 3.9.1): and the SGD characterized by H±

on EF3 (which shares the left exterior with EF2):

EF4 : � =
�̃

G0
+(ũ1)G0

�(!̃1)
, u1 = G+(ũ1), !1 = G�(!̃1)

infinitesimally
�
⇠�
4
, ⇠u1

4
, ⇠!1

4

�
=
�
��(✏0

+
(u1) + ✏0

�
(!1)), ✏+(u1), ✏�(!1)

�

EF3 : � =
�̃1

H 0
+(ṽ1)H

0
�(w̃1)

, v1 = H+(ṽ1), w1 = H�(w̃1)

infinitesimally
�
⇠�
4
, ⇠v1

4
, ⇠w1

4

�
=
�
��("0

+
(v1) + "0

�
(w1)), "+(v1), "�(w1)

�
(3.22)

The infinitesimal transformations are similar to those in eqs. 3.13 and 3.21. As mentioned

above, we use the identity di↵eomorphism of Kruskal patch K5 (with ⇠M
5

= 0). The

expressions for the metric in various coordinate charts are given in 3.12, 3.20, 3.113, 3.114

and 3.103.

We will now show that the five di↵erent metrics in the five coordinate charts define a single

metric in the entire spacetime. To see this, note that although the SGD’s applied on the five

charts are di↵erent, (equivalently, for infinitesimal transformations, the di↵eomorphisms ⇠Mi

in the five charts di↵er from each other), they satisfy the following su�cient criteria:

(i) At both the right (and left) exterior boundary, the di↵eomorphisms coincide. For

example, in case of the right exterior (see 3.99), as � ! 1, u1 ! v, !1 ! w.

Hence ũ1 = G�1

+ (u1) ! G�1

+ (v) = ṽ. In other words, for infinitesimal transformations

⇠M
4
(P ) ! ⇠M

1
(P ) for a given point P with � ! 1. This implies that the metric 3.12

coincides at the right boundary with the similar metric3.113 obtained by applying the

G± transformations on the coordinate chart EF4. Similarly, the metric 3.20 obtained
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by the H± transformations in EF2 and the similar metric 3.114 obtained by the H±

transformations in EF3 coincide at the left exterior boundary.

(ii) Away from the boundary, the metrics obtained in the various EF coordinate charts

di↵er from each other only by trivial di↵eomorphisms which become the identity

transformation at infinity. Since the physical content of each of these metrics is

represented only by the boundary data, the above point (i) ensures that all the di↵erent

metrics represent the same single spacetime metric in di↵erent charts (see Figure 3.3).

(iii) It is clear that the SGDs lead to a smooth metric in each chart, provided G±(x), H±(x)

are di↵erentiable and invertible functions. In the rest of the chapter, we will only

consider such functions. It can be verified that such a class of functions is su�ciently

general to generate (through transformations such as 3.41) any pair of physically

sensible holographic stress tensors at both boundaries.

Analogy with the Dirac monopole

It is important to note that our new solutions can only be specified in terms of a di↵erent

metric in di↵erent coordinate charts which are equivalent to each other. This is analogous

to case of the Dirac monopole: the gauge field Aµ for a static U(1) magnetic monopole of

charge qm at the origin needs to be specified separately on two separate coordinate charts:

F = qm sin ✓ d✓ d� : AN = qm(1� cos ✓) d�, AS = qm(�1� cos ✓) d� (3.23)

Here R3 � {0} is viewed as R⇥ S2 where S2 is described by two coordinate charts NN and

NS (such as obtained by a stereographic projection on to the plane) which include all points

of S2 minus the south and north pole respectively. A✓
N vanishes (and is hence regular) at the

north pole ✓ = 0, but develops a string singularity at the south pole ✓ = ⇡ (for each r > 0).

Similarly, AS is regular at the south pole, but has a string singularity at the north pole. The

83



right boundaryright exterior

EF1 (5)

new EF1 (13)

EF4 (99)

v
ar

io
u

s 
m

et
ri

cs

black hole interiorleft exteriorleft boundary

new EF4 (115)

EF2 (93)

EF3 (96)

new EF2 (21)

new EF3 (114)

Figure 3.3: A schematic illustration of metrics in this chapter related by trivial and
nontrivial di↵eomorphisms (see the definition 3.2.5). The metrics 3.4, 3.92, 3.95 and 3.98,
represented by the blue lines, define the eternal BTZ geometry; they are all related by
trivial di↵eomorphisms, which either do not extend to the boundaries or when they do, they
become identity asymptotically. The metrics 3.12, 3.20, 3.113 and 3.114, represented by
the green lines, define our new solution characterized by the functions G±, H±. These are
also all related by trivial di↵eomorphisms, which satisfy the same criteria as above. The
two sets however represent physically di↵erent metrics since they are related to each other
by nontrivial di↵eomorphisms; for instance, 3.4 and 3.12 are related by a di↵eomorphism,
schematically represented by their separation, which does not vanish (become identity)
asymptotically.

important point to note is that in spite of appearances, AN and AS describe the same gauge

field in the region of overlap NN \NS. This is because in this region, AN = AS + d� where

� = 2qmd� represents a pure gauge transformation for appropriately quantized qm (Dirac

quantization condition).

In the present case the metric 3.12 written in EF1, although non-singular on the future

horizon, is singular on the past horizon for general G±. In order to describe the metric in a

neighbourhood of the past horizon, we must switch to the metric in EF4. Similarly, in order

to describe the di↵eomorphism at the bifurcation surface, we must use the metric 3.103 in

the K5 coordinate chart.

84



Summary of this subsection:

The metrics 3.12, 3.20, 3.113, 3.114 and 3.103, valid in the coordinate charts EF1, EF2,

EF3, EF4 and K5 respectively, define a spacetime with a regular metric. The metrics are

asymptotically AdS3 at both the right and left boundaries; the subleading terms in the metric

are determined by the solution generating di↵eomorphisms G±, H± and can be chosen to fit

boundary data specified by arbitrary holographic stress tensors. A schematic representation

of our solution is presented in Figure 3.3.

3.2.4 Horizon

In Section 3.2.2 we viewed the SGDs as a coordinate transformation. Alternatively, however,

we can also view the di↵eomorphism as an active movement of points: xM ! x̃M = xM+⇠M .

In this viewpoint, the future horizon � = �H = �0 (see 3.5) on the right moves to

�̃H = G0

+
(ṽ) G0

�
(w̃)�0, �̃1,H = H 0

+
(ũ) H 0

�
(!̃)�0 (3.24)

Figure 3.4: The figure on the right shows the location of the horizon on the right in the
�̃, ṽ, w̃ coordinates. The figure on the left shows the location of the horizon on the left in
the �̃1, ũ, !̃ coordinates. These are described by 3.24. These surfaces are di↵eomorphic to
the undeformed horizon 3.5 depicted in Figure 3.2. Although the horizon has an undulating
shape in our coordinate system, the expansion parameter, measured by the divergence of the
area-form, vanishes (see Eq. 3.73).
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Similar statements can be made in the other coordinate charts. The horizons represented

this way are smooth but undulating (see figure 3.4).

The geometry of warped horizons in [43,44] was used to yield a holographic prescription

for computing local entropy current of a fluid. In Section 3.7 we use a similar technology to

compute a holographic entropy in our case.

3.2.5 On the nontriviality of solution generating di↵eomorphisms

It is natural to wonder how a metric such as 3.12 provides a new solution since it is

obtained by a di↵eomorphism from 3.4; however, the fact that the di↵eomorphism 3.11 is

asymptotically nontrivial makes the new solution physically distinct. Thus, in 3.11 �̃ remains

di↵erent from � in the asymptotic region. Indeed, as we will see, the first subleading term

in the metric 3.12 carries nontrivial data about a holographic stress tensor 3.41 on the right

boundary.

Asymptotically AdS3 di↵eomorphisms were first discussed by Brown and Henneaux [50]

who showed that such transformation led to an additional surface contribution to conserved

charges of the system. These observations were preceded by a general discussion of such

surface charges in the context of gauge theories and gravity in [123, 214, 236]. These

authors identified asymptotically non-vanishing pure gauge transformations as global charge

rotations.

In the current AdS/CFT context, the surface charges are encapsulated by the holographic

stress tensors on the two boundaries. As we will see shortly, they change nontrivially under

the solution generating di↵eomorphisms (SGD’s). In fact, the SGD’s reduce to conformal

transformations on the boundary. As a result, the ‘global charge rotations’ mentioned above

correspond to a conformal transformation of the stress tensor. The important point is that
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starting from a given constant stress tensor on each boundary, the two independent SGD’s

can generate two independent and completely general stress tensors by this method.

We should note that the di↵eomorphisms define a new theory in which the appropriate

choice of the IR cuto↵ surface is 3.15. In this description, the horizon becomes an undulating

surface as in Fig 3.4. An equivalent (‘active’) viewpoint is to describe the new geometry in

terms of the old coordinates 3.4, but to change the IR-cuto↵ surface from 3.6 to 3.15. In

either case, the holographic stress tensor changes.

We conclude this section with the following definition of a nontrivial di↵eomorphism,

which has been implicit in much of the above discussion.

Definition

A local di↵eomorphism which does not extend to either boundary (left or right), or a

di↵eomorphism which extends to a boundary but asymptotically approaches the identity

di↵eomorphism there, is called a ‘trivial’ di↵eomorphism. Contrarily, a di↵eomorphism

which extends to a boundary where it does not approach the identity di↵eomorphism, is

called ‘nontrivial’. Quantitatively, a nontrivial di↵eomorphism (f) is one under which the

holographic stress tensor computed from the existing metric g at the boundary is di↵erent

from that computed from the pulled back metric f ⇤g.

3.3 The Dual Conformal Field Theory

As we saw above, the SGD’s reduce to conformal transformations at the boundary. We will

construct the CFT-dual to the new solutions using the above idea.
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Note that the eternal BTZ black hole geometry, described by 3.4 and 3.92, corresponds

to the following thermofield double state [67, 138,149,177]

| 0i = Z(�+, ��)
�1/2

X

n

exp[��+E+,n/2� ��E�,n/2]|ni|ni (3.25)

The states |ni 2 H denote all simultaneous eigenstates of H± = (H ± J)/2 with eigenvalues

E±,n. | 0i here is a pure state in H ⌦H obtained by the ‘purification’ of the thermal state

3.26. 13

Z(�+, ��) = Tr⇢�+,�� with ⇢�+,�� = exp[��+H+ � ��H�] = exp[��(H + ⌦J)]

(3.26)

represents the grand canonical ensemble in H with inverse temperature � and angular

velocity ⌦ (which can be viewed as the thermodynamic conjugate to the angular momentum

J). Also �± = �(1± ⌦). 14

Note that | 0i is a pure state in H⌦H , and is a ‘purification’ of the thermal state 3.26.

The non-spinning BTZ: The CFT dual for the more familiar case of non-spinning eternal

BTZ black hole (⌦ = 0 = J) is the standard thermofield double:

| 0,0i = Z(�)�1/2
X

n

exp[��En/2]|ni|ni (3.27)

where |ni now denotes all eigenstates of H. 15

13For definiteness, we will sometimes call the two Hilbert spaces HL and HR, where L,R represent ‘left’
and ‘right’, corresponding to the two exterior boundaries of the eternal BTZ. Indeed, L,R also have an
alternative meaning. The left/right boundary of the eternal BTZ geometry maps to the left/right Rindler
wedge of the boundary of Poincare coordinates, respectively.

14The thermal state ⇢�+,�� (see 3.26) implies a field theory geometry where the light cone directions have
periods �±.

15An entanglement entropy for this state was calculated in [138] and matched with a bulk geodesic
calculation. This was generalized to the spinning eternal BTZ black hole in [67]
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CFT duals of our solutions Following the arguments above 3.25, we claim that the

CFT-duals to the new solutions described in Section 3.2.3 are described by the following

pure states in H⌦H:

| i = ULUR| 0i = Z(�+, ��)
�1/2

X

n

exp[��+E+,n/2� ��E�,n/2]UL|niUR|ni (3.28)

where UR is the unitary transformation which implements the conformal transformations on

the CFT on the right boundary (characterized by G±), and UL is the unitary transformation

which implements the conformal transformations on the CFT on the left boundary

(characterized by H±). See Appendix 3.10.1 for an explicit construction of a unitary

transformations UR.

In the following sections, we will provide many checks for this proposal. However, first

we shall discuss how to compute various correlators in the above state 3.28.

3.3.1 Correlators

Let us first consider correlators in the standard thermofield double state 3.25. It is known

that correlators of one-sided CFT observables, say OR, satisfy an AdS/CFT relation of the

form 16

h 0|OR(P1)OR(P2)...OR(Pn)| 0i ⌘ Tr
�
⇢�+,��OR(P1)OR(P2)...OR(Pn)

�
= Gbulk(P1,P2, ...Pn)

(3.29)

where the bulk correlator Gbulk is computed from the (right exterior region of) a dual black

hole geometry with temperature T = 1/� and angular velocity ⌦. Two-sided correlators,

similarly, satisfy a relation like

h 0|OR(P1)OR(P2)...OR(Pm)OL(P
0

1
)...OL(P

0

n)| 0i = Gbulk(P1,P2, ...Pm;P
0

1
, ...,P0

n) (3.30)

16We will mostly use unprimed labels, P1, P2, ... for points on the spacetime of the ‘right’ CFT, and primed
labels, P 0

1, P
0
2, ... for the space of the ‘left’ CFT.
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where the bulk correlator on the RHS is computed from the two-sided geometry of the eternal

BTZ black hole [67,138,149,177], represented in this chapter by 3.4 and 3.92. The bold-faced

label P above represents an image of the field theory point P on a cut-o↵ surface in the bulk

under the usual AdS/CFT map. E.g. in the coordinates of 3.4, the map is given by

P 7! P ⌘ (� = �ir = 1/✏2, P ) (3.31)

where ✏ is the UV cut-o↵ in the CFT, cf. 3.6). There is a similar map for the left boundary.

In particular, the holographic correspondence for the two point functions of scalar operators

can be written simply as [169]:

h 0|OR(P )OR(Q)| 0i = Tr(⇢�+,��OR(P )OR(Q)) = exp[�2hL(P,Q)]

h 0|OR(P )OL(Q
0)| 0i = exp[�2hL(P,Q0)] (3.32)

where L(P,Q) is the length of the extremal geodesic connecting P and Q (similarly with

L(P,Q0)).

It is easy to see that correlators in the new, transformed, state | i 3.28 can be understood

as correlators of transformed operators in the old state | 0i, i.e.

h |OR(P1)...OR(Pm)OL(P
0

1
)...OL(P

0

n)| i = h 0|ÕR(P1)...ÕR(Pm)ÕL(P
0

1
)...ÕL(P

0

n)| 0i

(3.33)

where

ÕR(P ) ⌘ U †

ROR(P )UR, ÕL(P
0) ⌘ U †

LOL(P
0)UL (3.34)
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For a primary field OR with conformal dimensions (h, h̄), the conformally transformed

operator satisfies the relation

ÕR(ṽ, w̃) = OR(v, w)

✓
dv

dṽ

◆h✓dw

dw̃

◆h̄

(3.35)

3.3.2 Strategy for checking AdS/CFT

To check the claim that the states 3.28 are CFT-duals to the new bulk geometries found in

Section 3.2.3, we need to show a relation of the form (cf. 3.30)

h 0|ÕR(P1)...ÕR(Pm)ÕL(P
0

1
)...ÕL(P

0

n)| 0i = G̃bulk(P̃1, P̃2, ...P̃m; P̃
0

1
, ..., P̃0

n) (3.36)

where the RHS is computed in the new geometries. Here P̃ represents the image of the CFT

point P , under AdS/CFT, on the cut-o↵ surface 3.15 in the new geometry. In the language

of 3.12, the map is

P 7! P̃ = (�̃ = �̃ir = 1/✏2, P ) (3.37)

Two-point correlators: In the particular case of two-point functions

h 0|ÕR(P )ÕR(Q)| 0i = Tr(⇢�+,��ÕR(P )ÕR(Q)) = exp[�2hL̃(P̃, Q̃)]

h 0|ÕR(P )ÕL(Q
0)| 0i = exp[�2hL̃(P̃, Q̃0)] (3.38)

where L̃(P̃, Q̃) is the length of the extremal geodesic connecting P andQ in the new geometry

(similarly with L̃(P̃, Q̃0)). The discerning reader may justifiably wonder how a geodesic

length in the new geometry can be di↵erent from that in the original, eternal BTZ black

hole geometry, since the former is obtained by a di↵eomorphism from the latter; the point is

that the bulk points P̃, given by 3.37 are not the same as the bulk points P given by 3.31.

For example, a geodesic with endpoints at a fixed IR cut-o↵ �̃ = 1/✏2 (both on the right

exterior) corresponds, in the eternal BTZ black hole, to a geodesic with two end-points at
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3.17 � = 1/(✏2G0

+
(ṽ)G0

�
(w̃)). As we will see below, it is this shift which ensures the equality

in 3.38. This is one more instance of how our geometries are nontrivially di↵erent from the

original BTZ solution although they are obtained by di↵eomorphisms (see Section 3.2.5 for

more detail).

3.4 Holographic Stress Tensor

In this section we will discuss our first observable O: the stress tensor. We will first consider

the stress tensor of the boundary theory on the right. The generalization to the stress tensor

on the left is trivial. The equation 3.36 now implies that we should demand the following

equality

h |Tvv(P )| i ⌘ Tr
⇣
⇢�+,��U

†

RTvv(P )UR

⌘
= T̃bulk,ṽṽ(P̃) (3.39)

and a similar equation for the right-moving stress tensor Tww(w).

Bulk The RHS of this equation is simply the holographic stress tensor, computed in the

new geometry 3.12. We use the definition of holographic stress tensor in [28, 227]:17

8⇡G3Tµ⌫ = lim
✏!0

(Kµ⌫ �Khµ⌫ � hµ⌫) (3.40)

where hµ⌫ is the induced metric on the cut-o↵ surface ⌃ : �̃ = �̃ir = 1/✏2, chosen in

accordance with 3.37 which is the natural one in the new geometry (note that it is di↵erent

from the cut-o↵ surface implied by 3.31). Kµ⌫ and K are respectively the extrinsic curvature

17We drop the subscript bulk from the bulk stress tensor, as it should be obvious from the context whether
we are talking about the CFT stress tensor or the holographic stress tensor.
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and its trace on ⌃. It is straightforward to do the explicit calculation; we find that

8⇡G3Tṽṽ =
L

4
G0

+
(ṽ)2 +

3G00

+
(ṽ)2 � 2G0

+
(ṽ)G000

+
(ṽ)

4G0
+(ṽ)2

,

8⇡G3Tw̃w̃ =
L̄

4
G0

�
(w̃)2 +

3G00

�
(w̃)2 � 2G0

�
(w̃)G000

�
(w̃)

4G0
�(w̃)2

(3.41)

This clearly looks like a conformal transformation of the original stress tensor 3.8. We will

explicitly verify below that it agrees with the CFT calculation. The generalization to Tww

and to the stress tensors of the second CFT is straightforward.This clearly has the form of a

conformal transformation of the original stress tensor 3.8. We will explicitly verify below in

the CFT that it indeed is precisely a conformal transformation, as demanded by 3.39. The

generalization of 3.41 to the stress tensors Tũũ, T!̃!̃ of the second CFT is straightforward.

In this chapter, we will sometimes use the notation TR, T̄R for Tṽṽ, Tw̃,w̃, and TL, T̄L
18 for

Tũũ, T!̃!̃ respectively. It is clear that by appropriately choosing the functions G± and H±,

any set of boundary stress tensors TR,L, T̄R,L can be generated. This is how our solutions

described in Section 3.2.3 solve the boundary value problem mentioned in the Introduction.

CFT The unitary transformation in the LHS of 3.39, implements, by definition, the

following conformal transformation (see Appendix 3.10.1 for more details) on the quantum

operator

U †

RTvv(P )UR =

✓
@ṽ

@v

◆�2

[Tṽṽ(ṽ)�
c

12
S(v, ṽ)] (3.42)

From 3.11, the relevant conformal transformation here is v = G+(ṽ). Using this, the

definition 3.121 of the Schwarzian derivative S(v, ṽ), and the identification [50]

G3 = 3/(2c), (3.43)

we find that 3.42 exactly agrees with 3.41.

18TR, T̄R represent the left-moving and right-moving stress tensors on the Right CFT; similarly for TL, T̄L.
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This proves the AdS-CFT equality 3.39 for the stress tensor.

3.5 General two-point correlators

In this section we will discuss general two-point correlators, both from the bulk and CFT

viewpoints following the steps outlined in Section 3.3.1.

3.5.1 Boundary-to-Boundary Geodesics

As mentioned in 3.32, the holographic calculation of a two-point correlator reduces to

computing the geodesic length between the corresponding boundary points. We will first

calculate correlators in the thermofield double state 3.25, which involves computing geodesics

in the eternal BTZ geometry 3.4.

In the eternal BTZ geometry

RL geodesic: Let us consider a geodesic running from a point P(1/✏2R, v, w) on the right

boundary to a point Q0 = (1/✏2L, u,!) on the left boundary.19 As shown in Section 3.9.1

(see [138]) both the right exterior (⇢ EF1) and the left exterior (⇢ EF2) can be mapped to a

single coordinate chart in Poincare coordinates. Let the Poincare coordinates for P and Q0,

be (X+R, X�R, ⇣R) and (X+L, X�L, ⇣L) respectively. By using the coordinate transformations

given in (3.111) and (3.112), we find, upto the first subleading order in ✏R and ✏L,

X+R = e
p
Lv, X�R = �e�

p
Lw + L✏2Re

�
p
Lw, ⇣2R = L✏2R e

p
L(v�w) (3.44)

X+L = �e
p
Lu + L✏2Le

p
Lu, X�L = e�

p
L!, ⇣2L = L✏2L e

p
L(u�!)

19For the calculation at hand we need to put ✏L = ✏R = ✏; however, we keep the two cuto↵s independent
for later convenience.
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with L = L̄.20 The geodesic in Poincare coordinates is given by

X+ = A tanh ⌧ + C, X� = B tanh ⌧ +D, ⇣ =

p
�AB

cosh ⌧

where ⌧ is the a�ne parameter, which takes the values ⌧R and ⌧L at P and Q0 respectively.

The constants A,B,C,D, ⌧L and ⌧R are fixed by the endpoint coordinates given above. In

the limit ✏R, ✏L ! 0, we obtain

⌧R = log
he�(

p
Lv+

p
L!)/2

p
2

s
(e

p
Lv + e

p
Lu)(e

p
Lw + e

p
L!)

�0✏2R

i

⌧L = � log
he�

p
L(u+w)/2

p
2

s
(e

p
Lv + e

p
Lu)(e

p
Lw + e

p
L!)

�0✏2L

i

where �0 = L/2 (see 3.5). The geodesic length is now simply given by the a�ne parameter

length

L(P,Q0) = ⌧R � ⌧L = log

"
4 cosh[

p
L(v � u)/2] cosh[

p
L(w � !)/2]

L✏R✏L

#
(3.45)

For comparison with CFT correlators in the thermofield double, we will put, in the above

expression, ✏L = ✏R = ✏, where ✏ is the (real space) UV cut-o↵ in the CFT.

RR geodesic: If we take the two boundary points on the same exterior region, say on the

right, P1(1/✏21, v1, w1) and P2(1/✏22, v2, w2), then the corresponding Poincare coordinates are

(using (3.111))

X+1 = e
p
Lv1 , X�1 = �e�

p
Lw1 + L✏2

1
e�

p
Lw1 , ⇣2

1
= L✏2

1
e
p
L(v1�w1) (3.46)

X+2 = e
p
Lv2 , X�2 = �e�

p
Lw2 + L✏2

2
e�

p
Lw2 , ⇣2

2
= L✏2

2
e
p
L(v2�w2)

20For simplicity, we present the calculation here for L = L̄; the generalization to the spinning BTZ is
straightforward.
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Following steps similar to above, we have, in the ✏1, ✏2 ! 0 limit,

⌧1 = log
he�(v1+w2)/2

p
2

s
(ev1 � ev2)(�ew1 + ew2)

�0✏21

i

⌧2 = � log
he�(v1+w1)/2

p
2

s
(�ev1 + ev2)(ew1 � ew2)

�0✏22

i

The geodesic length is then

L(P1,P2) = ⌧+1 � ⌧+2 = log


4 sinh[(v1 � v2)/2] sinh[(w1 � w2)/2]

L✏1✏2

�
(3.47)

For comparison with CFT, we will put ✏1 = ✏2 = ✏.

In the new geometries

As explained in Section 3.2, the IR boundary in the new solutions, obtained by the SGDs, is

given by the equation 3.15 or equivalently by 3.17, and analogous equations on the left. This

is encapsulated by the CFT-to-bulk map 3.37. In case of the RL geodesic, the CFT endpoints

(P,Q0) now translate to new boundary points (P̃, Q̃0) with the following new values of the

old (�, �1) coordinates:

� ⌘ 1

✏2R
=

1

✏2G0
+(ṽ)G

0
�(w̃)

, �1 ⌘
1

✏2L
=

1

✏2H 0
+(ũ)H

0
�(!̃)

(3.48)

which just has the e↵ect of conformally transforming the boundary coordinates// ✏R = ✏!

✏R = ✏
p

G0
+(ṽ)G

0
�(w̃), ✏L = ✏ ! ✏L = ✏

p
H 0

+(ũ)H
0
�(!̃). Using these new values of ✏L,R, we

get

L(P̃, Q̃0) = log

"
4 cosh[

p
L(G+(ṽ)�H+(ũ))/2]p
L✏
p

G0
+(ṽ)H

0
+(ũ)

cosh[
p
L(G�(w̃)�H�(!̃))/2]p
L✏
p

G0
�(w̃)H

0
�(!̃)

#
(3.49)
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Similarly,

L(P̃1, P̃2) = log

"
4 sinh[

p
L(G+(ṽ1)�G+(ṽ2))/2]p
L✏
p

G0
+(ṽ1)G

0
+(ṽ2)

sinh[
p
L(G�(w̃1)�G�(w̃2))/2]p
L✏
p
G0

�(w̃1)G0
�(w̃2)

#

(3.50)

3.5.2 General two-point correlators from CFT

In the thermofield double state

RL correlator: For the eternal BTZ string, the coordinate transformations from the EF to

Poincare (see Appendix 3.9.1) reduce, at the boundary, to a conformal transformation from

the Rindler to Minkowski coordinates, so that the boundary of the right (left) exterior maps

to the right (left) Rindler wedge [138]. It is expedient to compute the CFT correlations first

in the Minkowski plane, and then conformally transform the result to Rindler coordinates.

Using this method of [138], we get the following result

h 0|O(X+R, X�R)O(X+L, X�L)| 0i =
(
p
Le

p
Lv)h(

p
Le�

p
Lw)h̄(�

p
Le

p
Lu)h(�

p
Le�

p
L!)h̄

( e
p
Lv+e

p
Lu

✏ )2h(�e�
p
Lw�e�

p
L!

✏ )2h̄

=
⇣4 cosh [

p
L(v � u)/2] cosh [

p
L(w � !)/2]

L✏2

⌘�2h

where the operator O is assumed to have dimensions (h, h̄) and we have used a real space

field theory cut-o↵ ✏. We have related the temperature of the CFT to L(= L̄) by the equation
p
L = 2⇡/�. // It is easy to see that this correlator satisfies the relation 3.32

h 0|O(X+R, X�R)O(X+L, X�L)| 0i = e�2hL(P,Q) (3.51)

where in the expression on the right hand side for the geodesic length (3.45), we use ✏R =

✏L = ✏ as explained before.
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RR correlator: By following steps similar to the above, the two-point correlator between

the points (3.46) is given by

h 0|O(X+1, X�1)O(X+2, X�2)| 0i =
(
p
Le

p
Lv1)h(

p
Le�

p
Lw1)h̄(

p
Le

p
Lv2)h(

p
Le�

p
Lw2)h̄

( (e
p
Lv1�e

p
Lv2

✏ )2h(�e�
p
Lw1+e�

p
Lw2

✏ )2h̄

=
⇣4 sinh [

p
L(v1 � v2)/2] sinh [

p
L(w1 � w2)/2]

L✏2

⌘�2h

It follows, therefore, that

h 0|O(X+1, X�1)O(X+2, X�2)| 0i = e�2hL(P1,P2) (3.52)

where, again, the geodesic length on the right hand side is read o↵ from 3.49 with ✏1 = ✏2 = ✏.

In the new states

As explained in 3.33, correlators in the state | i 3.28 can be computed by using a

conformal transformation 3.35 of the operators. The new correlator is, therefore, found

from the old one 3.51 by a conformal transformation of the boundary coordinates and an

inclusion of the Jacobian factors. The latter has, in fact, the e↵ect of the replacement

✏2 ! ✏2
p

G0
+(ṽ)G

0
�(w̃)H

0
+(ũ)H

0
�(!̃). With these ingredients, it is straightforward to verify

that 3.38 is satisfied. Similar arguments apply to RR and LL correlators.

3.6 Entanglement entropy

We define an entangling region A = AR [ AL, where AR is a half line (v � w)/2 > xR on

the right boundary at ‘time’ (v + w)/2 = tR and AL is a half line (u � !)/2 > xL of the

left boundary at ‘time’ (u + !)/2 = tL. The boundary of the region A consists of a point
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P (v@A, w@A) on the right and a point Q0(u@A,!@A) on the left, with coordinates

P : v@A = tR + xR, w@A = tR � xR (3.53)

Q0 : u@A = tL + xL, !@A = tL � xL

Bulk calculations

In the BTZ geometry

We calculate the entanglement entropy SA of the region A using the holographic

entanglement formula of [149, 220]. The HEE is given in terms of the geodesic length

L(P,Q0). The geodesic length, as calculated in (3.45), is

L(P,Q0) = log

"
4 cosh[

p
L(v@A � u@A)/2] cosh[

p
L(w@A � !@A)/2]

M✏2

#

(3.54)

The HEE is then given by SA = L(P,Q0)/4G3. Using 5.60, we get

SA =
c

6
log

"
4 cosh[

p
L((tR + xR)� (tL + xL))/2] cosh[

p
L((tR � xR)� (tL � xL))/2]

M✏2

#
(3.55)

Note that for xR = xL = 0 and t = tR = �tL (which correspond to a non-trivial time

evolution in the geometry) the HEE 3.55 reduces to

SA =
c

3
log


cosh

2⇡t

�

i
+

c

3
log
h�/⇡
✏

�
(3.56)

which reproduces the result for the HEE in [138].21

21The UV cuto↵ in [138] is half of the cuto↵, ✏ used here.
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In the new geometries

The HEE corresponding to the conformally transformed state 3.28 is given by the length

L(P̃, Q̃0) connecting the end-points P and Q0 in the new geometries described in Section

3.2.3. Working on lines similar to the derivation of 3.47, the HEE is given by

SA =
c

6
log
h4 cosh[

p
L(G+(t̃R + x̃R)�H+(t̃L + x̃L))/2]

p
L✏
q

G0
+(t̃R + x̃R)H 0

+(t̃L + x̃L)

cosh[
p
L(G�(t̃R � x̃R)�H�(t̃L � x̃L))/2]

p
L✏
q

G0
�(t̃R � x̃R)H 0

�(t̃L � x̃L)

i
(3.57)

CFT calculations

In the thermofield double state

The technique of calculating the entanglement entropy in the thermofield double state is

well-known [75]. The Renyi entanglement entropy S(n)
A of the region A (3.53) is given by

the trace of the nth power of the reduced density matrix ⇢nA. The latter can be shown to be

a Euclidean path integral on an n-sheeted Riemann cylinder. This can then be calculated

in terms of the two point correlator, on a complex plane, of certain twist fields O, with

conformal dimensions

h =
c

24
(n� 1/n), h̄ =

c

24
(n� 1/n)

(3.58)

inserted at the end-points (P,Q0) of A. The two-point correlator is given by a calculation

similar to that in the previous section. Thus,

S(n)
A = hOR(v@A, w@A)OL(u@A,!@A)i

=
(
p
L)2h+2h̄

(4 cosh[
p
L((tR + xR)� (tL + xL))/2]/✏)2h(cosh[

p
L((tR � xR)� (tL � xL))/2]/✏)2h̄
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The entanglement entropy SA = �@nS(n)
A |n=1 is

SA =
c

6
log

"
4 cosh[

p
L((tR + xR)� (tL + xL))/2] cosh[

p
L((tR � xR)� (tL � xL))/2]

L✏2

#
(3.59)

This proves that the CFT entanglement entropy and holographic entanglement entropy(3.55)

are equal.

In the new states

The EE of the region A, computed in the new state 3.28, is given in terms of the conformally

transformed two-point function described in 3.33. The conformally transformed points are

given by

v@A = G+(ṽ@A) = G+(t̃R + x̃R), w = G�(w̃@A) = G�(t̃R � x̃R)

u@A = H+(ũ@A) = H+(t̃L + x̃L), ! = H�(!̃@A) = H�(t̃L � x̃L)

It follows that the entanglement entropy is

SA,CFT =
c

6
log
h4 cosh[

p
L(G+(t̃R + x̃R)�H+(t̃L + x̃L))/2]

✏
p
L
q
G0

+(t̃R + x̃R)H 0
+(t̃L + x̃L)

cosh[
p
L(G�(t̃R � x̃R)�H�(t̃L � x̃L))/2]

✏
p
L
q

G0
�(t̃R � x̃R)H 0

�(t̃L � x̃L)

i
(3.60)

which matches with the HEE (3.57).
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3.6.1 Dynamical entanglement entropy in a specific new geometry

We now compute the entanglement entropy in an illustrative geometry specified by a

particular choice of the functions G± and H±. In this example, we take

xR = 0, tR = t, xL = 0, tL = �t

For simplicity, we consider G± and H± which satisfy

G+(x) ⌘ G�(x) ⌘ G(x), H+(x) ⌘ H�(x) ⌘ H(x)

With the transformations given above, we have

x̃R = 0, ṽ@A = w̃@A = t̃R = t̃, x̃L = 0, ũ@A = !̃@A = t̃L = �t̃ (3.61)

The expression for the HEE (3.57) then reduces to

SA =
c

3
log

"
2 cosh[

p
L(G(t̃) +H1(t̃))/2]

✏
p
L
p

G0(t̃)H 0

1
(t̃)

#
(3.62)

where we have defined the notation �H(�t̃) = H1(t̃).
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Figure 3.5: Time evolution of HEE. The red-line represents the linear growth of HEE for a
region consisting of spatial half-lines of both sides of a constant 2-sided BTZ geometry. The
blue-line represents the HEE growth of the region consisting of half-lines of both sides of the
SGD transformed geometry, for G(t̃) = t̃+ 1

6
cos(3t̃) and H1(t̃) = t̃+ 3

5
sin(t̃). The undulating

curve can be explained in terms of the quasiparticle picture of [59]; the entanglement entropy
departs from its usual linear behaviour as the quasiparticle pairs locally go out and back in
to the entangling region as the region is subjected to a conformal transformation.

3.7 Entropy

As discussed in previous sections, our solutions of Section 3.2.3 are characterized by a

smooth, albeit undulating, horizon (see Figure 3.4). This allows us, following [43], to define

a holographic entropy current. We will first review the equilibrium situation (static black

string), and then describe the calculation for the general, time-dependent solution. We will

include a comparison with CFT calculations in both cases.

3.7.1 Equilibrium

Bulk calculation: In case L = L̄ = constant, our solutions represent BTZ black strings

3.4 with a horizon at � = �0. The horizon H is a two-dimensional null surface, described by
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the metric

ds2|H ⌘ Hµ⌫dx
µdx⌫ =

⇣p
Ldv/2�

p
L̄dw/2

⌘2
(3.63)

Since the normal to H at any point, given by nM = @M�(M = {�, v, w}), also lies on H,

H possesses a natural coordinate system (⌧,↵) where ↵ labels the one-parameter family of

null geodesics, and ⌧ measures the a�ne distance along the geodesics. In such a coordinate

system, we get, by construction

ds2|H = gd↵2 (3.64)

The area 1-form and the entropy current on the horizon are defined by the equations [43] 22,

a ⌘ 4G3✏µ⌫J
µ
Sdx

⌫ =
p
gd↵, (3.65)

By inspection, from 3.63 and 3.64, we find the following expressions for the area-form and

the entropy current

a =
p
Ldv/2�

p
L̄dw/2

Jv
s =

1

8G3

p
L̄, Jw

S =
1

8G3

p
L (3.66)

The holographic entropy current on the boundary B is obtained by using a map f : B ! H

and pulling back the area-form (or alternatively the entropy current JS,µ) from the horizon

to the boundary. It turns out 23 that the natural pull back retains the form of the area-form

or entropy current, namely the expressions 3.66 still hold at the boundary.

To find the entropy density, we define the boundary coordinates t = (v + w)/2, x =

(v � w)/2 (see Section 3.6), (so that 3.7 has the canonical form �dt2 + dx2). With this the

entropy density becomes

s ⌘ JT
S =

1

8G3

⇣p
L+

p
L̄
⌘

(3.67)

22Our convention for ✏µ⌫ is ✏vw = �1.
23The map f is defined by shooting ‘radial’ null geodesics inwards from the boundary, and is found to be

of the form f : (�ir, v, w) 7! (�ir, v + C1, w + C2).
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CFT calculation: The entropy density from the Cardy formula is 24

s =
p

c⇡Tvv/3 +
p
c⇡Tww/3 (3.68)

Using the identification 5.60 and 3.8, we can easily see that the two expressions 3.67 and

3.68 exactly match.

3.7.2 New metrics: non-equilibrium entropy

Bulk calculation: We will now follow a similar procedure as above, for the general solution

in Section 3.2.3. We find that (in coordinate chart EF1)

ds2|H =
1

4
d↵2 =

1

4
(
p
LG0

+
(ṽ)dṽ �

p
L̄G0

�
(w̃)dw̃)2 (3.69)

leading to the following area one form on the horizon

a =
1

2

p
LG0

+
(ṽ)dṽ � 1

2

p
L̄G0

�
(w̃)dw̃ (3.70)

Note that this could alternatively be obtained from the area form in 3.66 by a di↵eomorphism.

The resulting expression for the entropy current, following the steps above, is

J̃ ṽ
s =

1

8G3

p
L̄G0

�
(w̃), J̃ w̃

S =
1

8G3

p
LG0

+
(ṽ) (3.71)

Let us define, as before, the spacetime coordinates as x̃, t̃ with (ṽ, w̃) = t̃± x̃. The entropy

density is then given by

s̃ = J̃ t̃
S =

1

4G3

✓
1

2

p
LG0

+
(ṽ) +

1

2

p
L̄G0

�
(w̃)

◆
(3.72)

24Recall that both Tvv, Tww are constant in this case. The more familiar form of 3.68, for a circular
spatial direction of length 2⇡, is obtained by putting S = 2⇡s, L0 = 2⇡Tvv, and L̄0 = 2⇡Tww, which gives
S = 2⇡(

p
cL0/6 +

p
cL̄0/6).
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Note that the entropy current is divergenceless

@µJ̃
µ
S = @ṽJ̃

ṽ
S + @w̃J̃

w̃
S = 0 (3.73)

This has two implications:

1. No dissipation: We have entropy transfers between di↵erent regions with no net entropy

loss or production (see Figure 3.6).

Figure 3.6: The undulating horizon of Figure 3.2 leads to the non-trivial entropy current
3.72. In this figure, we plot the entropy density s̃ as a function of ṽ, w̃ for the right CFT.
Note that although the entropy density fluctuates, the entropy flow here is such that there
is no net entropy production (or destruction) (see Eq. 3.73).

2. Total entropy is not changed by the conformal transformation: The other implication

is that the integrated entropy over a space-like (or null) slice ⌃

S̃ =

Z

⌃

✏µ⌫J
µ
Sd�

⌫ (3.74)

is independent of the choice of the slice. In particular, choosing the slice to be ⌃0 : t =

v + w = 0, we get

S̃ =
1

8G3

Z

⌃0

⇣p
LG0

+
(ṽ)dṽ �

p
L̄G0

�
(w̃)dw̃

⌘
=

1

8G3

Z

⌃0

⇣p
Ldv �

p
L̄dw

⌘
(3.75)

=
1

8G3

Z
dx
⇣p

L+
p

L̄
⌘
=

Z
dx s = S (3.76)
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Hence although the entropy density is clearly transformed, the total entropy is not

changed by the conformal transformation.

CFT calculation:

In a non-equilibrium situation, there is no natural notion of an entropy. However under the

adiabatic approximation, the instantaneous eigenstates of a time-dependent Hamiltonian are

a fair representation of the actual time-dependent wave functions. The consequent energy

level density can thus be used to define an approximate time-dependent entropy. Generalizing

this principle to slow time and space variations, and applying this to the stress tensor, one

expects a space-time dependent version of 3.68, namely

s̃ =

r
⇡c

3
T̃ṽṽ +

r
⇡c

3
T̃w̃w̃ (3.77)

where the stress tensors are given by 3.41. Since we have made the adiabatic approximation,

we expect the above formula to be valid only up to the leading order of space and time

derivatives. Under this approximation, we have

8⇡G3Tṽṽ =
L

4
G0

+
(ṽ)2, 8⇡G3Tw̃w̃ =

L̄

4
G0

�
(w̃)2 (3.78)

which exactly agrees with the holographic entropy density in 3.72. 25

Total entropy for HR is unchanged by the conformal transformation:

Under the conformal transformation 3.34, the reduced density matrix ⇢R is changed by

a unitary transformation:

⇢R = TrHL
| ih | = UR ⇢0,R U †

R, ⇢0,R = TrHL
| 0ih 0| (3.79)

25Note that throughout this chapter, we have not used the adiabatic approximation anywhere else. Thus,
it is unsatisfactory to use this approximation here. It is, in fact, tempting to believe that the entropy
density in 3.72, and not that in 3.77, actually gives the CFT entropy in general; however, this requires more
investigation.
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The total entropy of the system after the transformation is given by the von Neumann

entropy S̃ = �Tr⇢R log ⇢R which, therefore, is equal to the entropy before; it is unchanged

by the unitary transformation.

3.8 Conclusion and open questions

In this chapter we have solved the boundary value problem for 3D gravity (with ⇤ < 0)

with independent boundary data on two asymptotically AdS3 exterior geometries. The

boundary data, specified in the form of arbitrary holographic stress tensors, yields spacetimes

with wormholes, i.e. with exterior regions connected across smooth horizons. The explicit

metrics are constructed by the technique of solution generating di↵eomorphisms (SGD)

from the eternal BTZ black string. By using the fact that the SGD’s reduce to conformal

transformations at both boundaries, we claim that the dual CFT states are specific time-

dependent entangled states which are conformal transformations of the standard thermofield

double. We compute various correlators and a dynamical entanglement entropy, in the bulk

and in the CFT, to provide evidence for the duality. We also arrive at an expression for a

non-equilibrium entropy function from the area-form on the horizon of these geometries.

Our work has implications for a number of other issues. We briefly discuss two of them

below; a detailed study of these is left to future work.

3.8.1 ER=EPR

As mentioned above, our work constructs an infinite family of AdS-CFT dual pairs in which

quantum states entangling two CFTs are holographically dual to spacetimes containing

a wormhole region which connects the two exteriors. Both the quantum states and the

wormhole geometries are explicitly constructed (see eqns. 3.28 and (3.12,3.20)). Our

examples generalize the construction in [67, 138, 177]26 (for other remarks on unitary

26See [175,225,226]
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transformations of the thermofield double and related geometries see [22, 27, 185, 225, 226])

and provide an infinite family of examples of the relation ER=EPR, proposed in [175]. Since

this relation has been extensively discussed and debated in the literature ( [22,27,225,226]),

we would like to make some specific points pertaining to some of these discussions.

RR correlators vs RL correlators

It has been argued in [27], [226] and [225] that for typical entangled states connecting two

CFTs, HR and HL, correlators involving operators on the left and the right are suppressed

relative to those involving operators all on the right. In particular, according to [27],

correlators of the form hOROLi are of the order e�ShORORi, where S is the entropy of

the right sided Hilbert space.

In Section 3.5 we have computed general two-point functions, both of the kind

hOR(P )OR(Q)i and hOR(P )OL(Q0)i.27 In case of the eternal BTZ (dual to the standard

thermofield double), an inspection of 3.45 and 3.47 suggests that as the boundary point P

goes o↵ to infinity, the cosh and sinh factors tend to be equal, thus L(P,Q) ⇡ L(P,Q0),

thus there is no extra suppression in the two-sided correlator hOR OLi. Of course, such a

statement, regarding the standard thermofield double, has been regarded as somewhat of a

special nature.

We are therefore naturally led to ask: what happens in case of the new solutions found

in this chapter? The geodesic lengths L(P,Q) and L(P,Q0) are now given by 3.49 and

3.50. Once again, if the point P goes o↵ towards the boundary of the Poincare plane,

ṽ ! 1. Hence G+(ṽ) ! 1 (since G+ is a monotonically increasing function). Hence,

both the geodesic lengths approach each other. Thus, we do not see any peculiar additional

suppression, even for our general entangled state, arising when the second point of the

correlation function is moved from the right to the left CFT.

27We use unprimed labels for operators on the right and primed labels for those on the left.
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On the genericity of our family of examples

We start with the following Lemma.

Lemma: Any state 2 H⌦H,

| i =
X

i,j

Cij|ii|ji, Cij 2 C, (3.80)

can be expressed in the form

| i =
X

i,j,n

e��nUL,inUR,jn|ni|ni (3.81)

where UR, UL are two unitary operators and �n � 0.

Proof: Using the canonical map H ⌦H ! H ⌦H⇤, we can regard the above state | i

as an operator  in H, with matrix elements Cij. Using the singular value decomposition

theorem on a general complex matrix, we can write C = ULDU †

R where D is a diagonal

matrix with real, non-negative entries. By denoting D as diag[e��n ], we get 3.81.

The state 3.81 can be regarded as a thermofield double with HamiltonianH =
P

n �n/�|nihn|

transformed by unitary operators UL on the left and by UR on the right. Thus, the above

Lemma suggests that the most general entangled state 3.80 can be written as a unitary

transformation of some thermofield double state. Now, note that the state 3.81 is of the

same general form as that of 3.28 discussed in this chapter. Are our states 3.28 the most

general entangled states then?

The answer is no, since the UL,R we use are made of Virasoro generators (see Appendix

3.10.1), and are not the most general unitaries of 3.81. However, in spite of this restriction,

it is clear that the states 3.28 do form a fairly general class. Furthermore, if the states 3.81
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are states in which only the stress tensor is excited, then indeed these states are all contained

in our class of states 3.28. 28

Weakly entangled states

To assess the genericity of our states, we ask a di↵erent question now: do our set of states

3.28, which are all explicitly dual to wormholes, include those with a very small entanglement

entropy S for a given energy E?29 The answer to this question turns out to be yes. As

we have noted in the remarks around 3.76 and 3.79, the entropy S, which is actually the

entanglement entropy of the right Hilbert space, is the same for all our states. However, the

same manipulations as in 3.76 shows that the energy of these states are not the same; indeed

by choosing the derivatives G0

±
to be large, we can make the energy of the transformed state

to be much larger than that of the standard thermofield double. Stated in another way, for

states of a given energy, our set of states includes states with entanglement entropy much

less than that of the thermofield double. This is consistent with the proposal of [175] that

even a small entanglement is described by a wormhole geometry.

3.8.2 Generalizations and open questions

It would be interesting to rephrase the results in this chapter in terms of the SL(2, R) ⇥

SL(2, R) Chern-Simons formulation [237] of three-dimensional gravity. By the arguments

in [237], all di↵eomorphisms (together with appropriate local Lorentz rotations) can be

understood as gauge transformations of the Chern-Simons theory. The Chern-Simons

formulation has been extended to the gauge group SL(N,R) ⇥ SL(N,R) to describe

higher spin theories [30, 66]. It would be interesting to see whether the nontrivial gauge

transformations in this chapter generalizes to these higher gauge groups, and hence to higher

28If a CFT dual to pure gravity were to exist, then our states 3.28 in such a theory would indeed be the
most general state of the form 3.80. However, such a unitary theory is unlikely to exist [118, 178], although
chiral gravity theories which are dual to CFTs with only the Virasoro operator have been suggested (see,
e.g. [5]). We would like to thank Justin David for illuminating discussions on this point.

29This question was suggested to us by Sandip Trivedi.
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spin theories. A possible application of our methods in this case would be to compute HEE

by the prescriptions in [17] and [93] in the nontrivial higher spin geometries30. We hope to

come back to this issue shortly.

The solutions presented in this chapter are generated by SGDs which can be regarded

as forming a group (fVir ⇥ fVir)L ⇥(fVir ⇥ fVir)R. Here the first fVir denotes a group of

SGDs which is parametrized by the function G+, and so on. As we emphasized in 3.79, the

reduced density matrix on the right ⇢R undergoes a unitary transformation under this group

of transformations, leaving the entropy unaltered. The family of pure states 3.28 considered

in this chapter can, therefore, be considered as an infinite family of purifications of the class

of density matrices ⇢R; it would be interesting to see if these can be regarded as ‘micro-states’

which can ‘explain’ the entropy of ⇢R. We hope to return to this issue shortly.

It would also be interesting to use our work to explicitly study various types of

holographic quantum quenches involving quantum states entangling two CFTs.31 It would

be of particular interest to study limiting cases of our solutions which correspond to

shock-wave geometries.

3.9 Appendix

3.9.1 Coordinate systems for the eternal BTZ geometry

As we explained in the Introduction, the metric 5.57 describes only the region exterior to

the black hole horizon 3.3. As is well-known, for constant (L, L̄), 5.57 describes a standard

BTZ black hole with mass M and angular momentum J given by

L = 8G3(M + J), L̄ = 8G3(M � J) (3.82)

30We thank Rajesh Gopakumar for a discussion on this issue.
31For a single CFT, a similar computation was done in, e.g., [218,234].
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In this section we will describe various coordinate systems for this case. In particular, we

will describe the five coordinate charts of Figure 3.1 which cover our spacetime.

Eddington-Finkelstein coordinates

EF1 (Right Exterior + Black Hole Interior) For a black hole with constant mass

and angular momentum, it is straightforward to find a coordinate transformation from the

(z, x+, x�) coordinates to a set of Eddington Finkelstein coordinates which we denote by

EF1 (�, v, y)

x+ = v � 1

2
p
L
log

✓
�� �0
�+ �0

◆
, x� = y +

r
L

L̄
v � 1

2
p
L̄
log

✓
�2 � �2

0

4L̄

◆
(3.83)

z =

s
2

�2
0

✓
��

q
�2 � �2

0

◆
(3.84)

Under these transformations, we obtain the following metric

ds2 = � 2

L̄
�0(�� �0)dv

2 +
1p
L̄
dvd�+

L̄

4
dy2 � (�� �0)dvdy (3.85)

The horizon 3.3 of the metric 5.57 is now located at �0 =
p
LL̄/2. The metric is obviously

smooth and describes the black hole interior.32 To achieve a symmetry between the boundary

coordinates, we find it convenient to make one further coordinate transformation from y to

w

y = w �
r

L

L̄
v +

1p
L̄
log

✓
�+ �0

2
p
L̄

◆
(3.86)

In these new coordinates (�, v, w), the metric becomes

ds2 =
d�2

4(�+ �0)2
+

L

4
dv2 +

L̄

4
dw2 � �dvdw +

p
L

2(�+ �0)
dvd�+

p
L̄

2(�+ �0)
dwd�, (3.87)

32 It develops a coordinate singularity at the inner horizon � = ��0; we do not discuss interpolation
beyond the inner horizon in this chapter, although it can be easily done. In any case, there are strong
reasons to believe that generically, the inner horizon and the associated exotic feature of infinitely repeating
universes are unstable against even infinitesimal perturbations.
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which is clearly symmetric between the ‘boundary coordinates’ v and w.

EF2 (Left Exterior + Black Hole Interior)

We can invent a second set of coordinate transformations starting from the metric in the

(z, x+, x�) coordinates which would describe the left exterior region of the black hole along

with the interior. This transformation is the following

x+ = u+
1

2
p
L
log

✓
�1 � �0
�1 + �0

◆
, x� = y1 +

r
L

L̄
u+

1

2
p
L̄
log

✓
�2
1
� �2

0

4L̄

◆
(3.88)

z =

s
2

�2
0

✓
�1 �

q
�2
1
� �2

0

◆
(3.89)

The Eddington-Finkelstein metric obtained via this transformation is

ds2 = � 2

L̄
�0(�1 � �0)du

2 � 1p
L̄
dud�1 +

L̄

4
dy2

1
� (�1 � �0)dudy1 (3.90)

As before, we make a further coordinate transformation y1 to !

y1 = ! �
r

L

L̄
u� 1p

L̄
log

✓
�1 + �0

2
p
L̄

◆
(3.91)

to obtain the following metric in the (�1, u,!) coordinates

ds2 =
d�2

1

4(�1 + �0)2
+

L

4
du2 +

L̄

4
d!2 � �1dud! �

p
L̄

2(�1 + �0)
d!d�1 �

p
L

2(�1 + �0)
dud�1(3.92)

EF3 (Left Exterior + White Hole Interior)
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Starting from (z, x+, x�) coordinates, we do the following transformations

x+ = v1 �
1

2
p
L
log

✓
�1 � �0
�1 + �0

◆
, x� = w1 �

1

2
p
L̄
log

✓
�1 � �0
�1 + �0

◆
(3.93)

z =

s
2

�2
0

✓
�1 �

q
�2
1
� �2

0

◆
(3.94)

The metric obtained is

ds2 =
d�2

1

4(�1 + �0)2
+
L

4
dv2

1
+
L̄

4
dw2

1
��1dv1dw1+

p
L

2(�1 + �0)
dv1d�1+

p
L̄

2(�1 + �0)
dw1d�1 (3.95)

This metric covers the left exterior and the white hole interior.

EF4(Right Exterior + White Hole Interior)

Starting from (z, x+, x�) coordinates, we do the following transformations

x+ = u1 +
1

2
p
L
log

✓
�� �0
�+ �0

◆
, x� = !1 +

1

2
p
L̄
log

✓
�� �0
�+ �0

◆
(3.96)

z =

s
2

�2
0

✓
��

q
�2 � �2

0

◆
(3.97)

The metric obtained is

ds2 =
d�2

4(�+ �0)2
+

L

4
du2

1
+

L̄

4
d!2

1
� �du1d!1 �

p
L

2(�+ �0)
du1d��

p
L̄

2(�+ �0)
d!1d� (3.98)

This metric covers the right exterior and the white hole interior.

Regions of Overlap
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Right Exterior The ‘Right Exterior’ region is described by both the EF1 (�, v, w)

and EF4 (�, u1,!1) coordinates. These are related by the following smooth coordinate

transformations

v = u1 +
1p
L
log

✓
�� �0
�+ �0

◆
w = !1 +

1p
L̄
log

✓
�� �0
�+ �0

◆
(3.99)

Black Hole Interior The ‘Black Hole Interior’ region is described by both the EF1

(�, v, w) and EF2 (�1, u,!) coordinates, which are related by the following smooth coordinate

transformations

v = u+
1p
L
log

✓
�0 � �1
�0 + �1

◆
, w = ! +

1p
L̄
log

✓
�0 � �1
�0 + �1

◆
, �1 = � (3.100)

Left Exterior The ‘Left Exterior’ region is described by both the EF2 (�1, u,!)

and EF3 (�1, v1,!1) coordinates, which are related by the following smooth coordinate

transformations:

v1 = u+
1p
L
log

✓
�1 � �0
�1 + �0

◆
w1 = ! +

1p
L̄
log

✓
�1 � �0
�1 + �0

◆
(3.101)

White Hole Interior The ‘White Hole Interior’ finds a description in both the EF3

(�1, v1,!1) and EF4 (�, u1,!1) coordinates, which are related by the following smooth

coordinate transformations:

v1 = u1 +
1p
L
log

✓
�0 � �

�0 + �

◆
, w1 = !1 +

1p
L̄
log

✓
�0 � �1
�0 + �1

◆
, � = �1 (3.102)

Kruskal coordinates

The union of all the above coordinate patches, together with a neighbourhood (indicated by

K5 in Fig 3.1) of the bifurcation surface (the meeting point of the past and future horizons in

the Penrose diagram) can be described by a set of Kruskal coordinates, in which the metric
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reads

ds2 = � 1

2�0
dUdV +

1p
L
UdV dy +

L̄

4
dy2 (3.103)

The coordinate transformation between various EF coordinates and the Kruskal coordinates

are given below.

1. Right exterior + Black Hole Interior : EF1 to Kruskal

The transformation from EF1 to the (U, V, y) coordinates is

U = � exp(�
p
Lv)(�� �0), V = exp(

p
Lv), y = w �

r
L

L̄
v +

1p
L̄
log

✓
�+ �0

2
p
L̄

◆
(3.104)

In the ‘Right Exterior’ region, � > �0, while in the ‘Black Hole Interior’, � < �0. The

above transformations give us the metric 3.103 in both the regions.

2. Left Exterior + Black Hole Interior : EF2 to Kruskal

The transformation from EF2 to (U, V, y) coordinates is

U = exp(�
p
Lu)(�1 + �0), V = � exp(

p
Lu)

�1 � �0
�1 + �0

, y = ! �
r

L

L̄
u+

1p
L̄
log(�1 + �0)

(3.105)

with,

y1 = y � 2p
L̄
log

✓
�1 + �0

2
p
L̄

◆
(3.106)

In the ‘Black Hole Interior’ �1 < �0, while in the ‘Left Exterior’ region �1 > �0. These

coordinate transformations give us the metric 3.103 in both the regions.

3. Left Exterior + White Hole Interior : EF3 to Kruskal

The transformations from EF3 to the (U, V, y) coordinates is

U = exp(�
p
Lv1)(�1 � �0), V = � exp(

p
Lv1), y = w1 �

r
L

L̄
v1 +

1p
L̄
log

✓
�1 + �0

2
p
L̄

◆

(3.107)
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In the ‘Left Exterior’ region �1 > �0, while in the ‘White Hole Interior’, �1 < �0. These

transformations give us the metric 3.103 in both the regions.

4. Right Exterior + White Hole Interior : EF4 to Kruskal

The transformation from EF4 to the (U, V, y) coordinates is

U = � exp(�
p
Lu1)(�+ �0), V = exp(

p
Lu1)

�� �0
�+ �0

, y = !1 �
r

L

L̄
u1 +

1p
L̄
log(�+ �0)

(3.108)

with,

y1 = y � 2p
L̄
log

✓
�1 + �0

2
p
L̄

◆
(3.109)

In the ‘White Hole Interior’ � < �0, while in the ‘Right Exterior’ region � > �0. The

above transformations give us the metric 3.103 in both the regions.

Poincare

In this section we show how the EF1, EF2 coordinates can, in fact, be obtained from Poincare

coordinates ⇣, X± = X0 ±X1, in terms of which the metric is written as

ds2 =
1

⇣2
(d⇣2 � dX+dX�) (3.110)

We will choose L = L̄ for simplicity, so �0 = L/2.

The coordinate transformation from X±, ⇣ to the EF1 coordinates is given by

v =
log(X+)p

L
, w = � 1p

L
log

✓
�X+X� + ⇣2

X+

◆
,
�

�0
=

�2X+X� + ⇣2

⇣2
(3.111)

whereas the coordinate transformation from X±, ⇣ to the EF2 coordinates is given by

u =
1p
L
log

✓
�X+X� + ⇣2

X�

◆
, ! = � log(X�)p

L
,
�1
�0

=
�2X+X� + ⇣2

⇣2
(3.112)
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There are similar coordinate transformations between the other charts EF3/4 and Poincare.33

3.9.2 The new metrics in the charts EF3 and EF4

EF3: ds2 =
1

B2

h
d�̃2

1
+ A2

+
dṽ2

1
+ A2

�
dw̃2

1
+ 2A+dũ1d�̃1 + 2A�dw̃1d�̃1

� �̃1

✓
B2 + 2

✓
A+

H 00

�
(w̃1)

H 0
�(w̃1)

+ A�

H 00

+
(ṽ1)

H 0
+(ṽ1)

+ �̃
H 00

+
(ṽ1)H 00

�
(w̃1)

H 0
+(ṽ1)H

0
�(w̃1)

◆◆
dw̃1dṽ1

�
(3.113)

where

A+ =
p
LH 0

+
(ṽ1)(�̃1 + �̃10)� �̃1

H 00

+
(ṽ1)

H 0
+(ṽ1)

, A� =
p

L̄H 0

�
(w̃1)(�̃1 + �̃10)� �̃1

H 00

�
(w̃1)

H 0
�(w̃1)

, B = 2(�̃1 + �̃10)

EF4 : ds2 =
1

B2

h
d�̃2 + A2

+
dũ2

1
+ A2

�
d!̃2

1
� 2A+dũ1d�̃� 2A�d!̃1d�̃

� �̃

✓
B2 � 2

✓
A+

G00

�
(!̃1)

G0
�(!̃1)

+ A�

G00

+
(ũ1)

G0
+(ũ1)

� �̃
G00

+
(ũ1)G00

�
(!̃1)

G0
+(ũ1)G0

�(!̃1)

◆◆
d!̃1dũ1

�
(3.114)

where

A+ =
p
LG0

+
(ũ1)(�̃+ �̃0) + �̃

G00

+
(ũ1)

G0
+(ũ1)

, A� =
p

L̄G0

�
(!̃1)(�̃+ �̃0) + �̃

G00

�
(!̃1)

G0
�(!̃1)

, B = 2(�̃+ �̃0)

3.9.3 UV/IR cuto↵s in EF coordinates

From AdS/CFT it is well-known that in a Fe↵erman-Graham coordinate system such as in

5.57, an IR cuto↵ surface z = ✏ in the asymptotically AdS spacetime corresponds to a UV

cuto↵ ✏ in the CFT. We wish to express the IR cuto↵ in the geometry in terms of the EF

33 As explained in [138] , it is possible to describe the BTZ black string in terms of a single Poincare
chart. The BTZ black hole is a quotient of AdS3, which in appropriate coordinates [29] corresponds to
the periodic identification of the spatial direction; the BTZ string discussed in this chapter is obtained by
decompactifying the spatial circle, which gives back AdS3.
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coordinates. By using the relation

z =

s
2

�2
0

✓
��

q
�2 � �2

0

◆
(3.115)

we clearly see that z = ✏ for ✏ small, corresponds to � = 1/✏2.

3.10 An alternative to Banados’ metric

In a beautiful paper [218], Roberts showed that the Banados metric 5.57 can be obtained

from the Poincare metric 5.54 by a Brown-Henneaux type di↵eomorphism (an ‘SGD’ in the

language of this chapter), given by

X± = f±(x±) +
2z2f 0

±
(x±)2f 00

⌥
(x⌥)

8f 0
±(x±)f 0

⌥(x⌥)� z2f 00
±(x±)f 00

⌥(x⌥)

⇣ = z

�
4f 0

+
(x+)f 0

�
(x�)

� 3
2

8f 0
+(x+)f 0

�(x�)� z2f 00
+(x+)f 00

�(x�)
(3.116)

It was shown in [218] that the above di↵eomorphism reduces to a conformal transformation

on the boundary, with the the following asymptotic form (as z!0)

X± = f±(x±) +O(z2)

⇣ = z
q

f 0
+(x+)f 0

�(x�) +O(z3) (3.117)

It was also shown in this chapter that L(x+), L̄(x�) appearing in 5.57 can be obtained from

the zero stress tensor through the conformal transformation f±.

A di↵erent choice of gauge: The SGD 3.116 used by Roberts seems fairly involved

compared to the ones we use in this chapter, e.g. 3.11. Can we obtain the metric 5.57

by a simpler SGD similar to ours, which nevertheless has the same conformal asymptotic

form 3.117? The answer turns out to be yes. Indeed the simplest way of inventing such a
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transformation is to take the asymptotic form 3.117 and gauge fix all the higher order terms

in z to 0. We then have a new, exact transformation of the form

X± = f±(x±), ⇣ = z
q
f 0
+(x+)f 0

�(x�) (3.118)

Note the similarity with our SGDs, say 3.11 (recall that z ⇠ 1/
p
� near the boundary).

3.118 transforms the Poincare metric to

ds2 =
dz2

z2
+

f 00

+
(x+)

zf 0
+(x+)

dx+dz +
f 00

�
(x�)

zf 0
�(x�)

dx�dz +
1

4

✓
f 00

+
(x+)2

f 0
+(x+)2

dx2

+
+

f 00

�
(x�)2

f 0
�(x�)2

dx2

�

◆

�
✓

2

z2
�

f 00

+
(x+)f 00

�
(x�)

2f 0
+(x+)f 0

�(x�)

◆
dx+dx� (3.119)

A priori this is a new metric di↵erent from 5.57. However, the holographic stress tensor [28]

obtained from this metric is the same as obtained from 5.57 given by 3.41. As discussed in

Section 3.2.5 and 3.2.5, the above metric and 5.57 di↵er only by a trivial di↵eomorphism,

and are hence essentially identical.34 Note that this example shows the enormous gauge

ambiguity in the choice of a metric in AdS3 (whose physical content is manifested in the

boundary behaviour). Indeed, by the same token even the SGD’s employed in this chapter

are ambiguous; the solutions presented in Section 3.2 are one of a gauge equivalent class of

metrics.

3.10.1 Unitary realization of conformal transformation

Under a finite, non-trivial, holomorphic coordinate transformation, w ! w0 = f(w), the

stress tensor of a 2D CFT transforms as

T̃ (w0) =

✓
@w0

@w

◆�2

[T (w)� c

12
S(w0, w)] (3.120)

34Note that in this new metric 3.119, the position of the horizon is at z = 1. Of course, it can be brought
to a finite value by an additional coordinate transformation involving the radial coordinate.
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with the Schwarzian derivative S(w0, w) given by

S(w0, w) =

✓
@3w0

@w3

◆✓
@w0

@w

◆�1

� 3

2

✓
@2w0

@w2

◆2✓@w0

@w

◆�2

(3.121)

For an infinitesimal transformation w ! w0 = f(w) = w + ✏(w), the Schwarzian derivative

turns out to be

S(w0, w) = ✏000(w) +O(✏2) (3.122)

The change in the stress tensor, under such a transformation, becomes

�T (w) ⇡ �✏(w)T 0(w)� 2✏0(w)T (w)� c

12
✏000(w) +O(✏2) (3.123)

Now, the Laurent expansion of T (w) and ✏(w) is

T (w) =
1X

m=�1

Lm

wm+2
✏(w) =

1X

m=�1

✏mw
�m+1 (3.124)

where L†

n = L�n, ✏†n = �✏�n and the Ln’s satisfy the Virasoro algebra

[Lm, Ln] = (m� n)Lm+n +
c

12
m(m2 � 1)�m+n,0 (3.125)

Plugging 3.124 into 3.123, we get

�Lm =
1X

n=�1

⇢
(m+ n)Lm�n✏n +

c

12
n(n2 � 1)✏n�m�n,0

�
(3.126)

We wish to construct a unitary operator U = U(✏) which implements the above conformal

transformations, namely that it satisfies

U(✏)†LmU(✏)� Lm = �Lm +O(✏2) (3.127)
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The required unitary operator, in fact, is

U(✏) = exp(
1X

n=�1

✏nL�n) (3.128)

The proof is straightforward. Note that the LHS of 3.127 becomes

(1�
X

n

✏�nLn)Lm(1 +
X

n

✏nL�n)� Lm = �
1X

n=�1

✏�n(LnLm) +
1X

n=�1

✏n(LmL�n) +O(✏2)

After flipping the sign of n in the first sum, this becomes

✏n[Lm, L�n]

which reduces to the expression 3.126 upon using the Virasoro algebra 3.125.

Thus, we have explicitly constructed a unitary operator U such that U †T (w)U �T (w) is

given by 3.123.
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Chapter 4

Thermalization with chemical

potentials and Higher Spin Black

Holes1

4.1 Introduction and Summary

In this chapter, we will focus on two-dimensional conformal field theories (CFTs) on an

infinite line � 2 R. We will consider the system at t = 0 to be in a “quenched state”

| 0i = exp[�✏2H �
1X

n=3

✏nWn]|Bdi (4.1)

with |Bdi being the conformal boundary state (as discussed in the introduction). The

exponential factors cut o↵ the UV modes to make the state normalizable. Wn denote

1The contents of this chapter have partial overlap with the thesis work of Sorokhaibam Nilakash Singh.
The conclusions arrived at are results of joint e↵ort.
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the additional conserved charges in the theory.2 This choice of the quenched state is a

generalization of that in [59] for which ✏n = 0, for n > 3.

The wavefunction for t > 0 is given by

| (t)i = exp[�iHt]| 0i (4.2)

The questions we will explore, and answer, are: what is the long time behaviour of various

observables in | (t)i? In particular, does the expectation value of an operator (or a string

of operators) approach a constant? In other words, do they equilibrate? If so, (i) is the

constant value characterized by a thermodynamic equilibrium, and (ii) what is the rate of

approach to the constant value? More generally, we would also address, and partially answer,

the questions: how does the existence and rate of thermalization depend on the initial state

and the choice of observables?

Thermalization We find in this chapter that the expectation values of local observables

(supported on a finite interval A : � 2 [�l/2, l/2]) asymptotically approach (see 4.12 for the

precise statement) their values in an equilibrium ensemble,

⇢eqm =
1

Z
exp[��H �

X

n

µnWn], Z = Tr exp[��H �
X

n

µnWn] (4.3)

whose temperature and chemical potentials are related to the cuto↵ scales in 5.1 as follows

� = 4✏2, µn = 4✏n, n = 3, 4, ... (4.4)

The relations 4.4 are uniquely dictated by the requirement that the expectation values of

the conserved charges H,W3,W4, ... in the initial state match those in the mixed state 4.3

2For the purposes of this chapter, we will identify them with Wn-charges of 2D CFT, n = 3, 4, ... (with
W2 ⌘ H), although much of what we say will go through independent of this specific choice as long as these
charges mutually commute and are defined from currents which are quasiprimary fields of the conformal
algebra.
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(see 4.52). In the absence of the extra parameters ✏n, n = 3, 4, ... this result is derived by

the elegant method of conformal transformations [59]. In the presence of these parameters,

this method is not available. In this chapter, we deal with the extra exponential factors in

terms of an infinite series and do a resummation.

We emphasize that the thermalization we found above persists even when we have an

integrable model with an infinite number of conserved charges. Relaxation in integrable

systems has been found in recent years in the context of, e.g., (a) one-dimensional hardcore

bosons [216], (b) transverse field Ising model [56], and (c) matrix quantum mechanics

models [179]. The equilibrium ensembles in this context have been called a generalized

Gibbs ensemble (GGE). Our present result on integrable conformal field theories adds to the

list of these examples. Interestingly, the thermalization we find works even for free conformal

field theories, e.g. a free scalar field theory.3

With the above identification of parameters, we will rewrite the initial quenched state

4.1 henceforth as

| 0i = exp[�(�H �
1X

n=3

µnWn)/4]|Bdi (4.5)

We find the following specific results:

1. Thermalization time scale for single local observables: We find that at large

times

h (t)|�k(�)| (t)i = Tr (�k(0)⇢eqm(�, µi)) + ak e
��kt + ... (4.6)

where �k(�) is an arbitrary quasiprimary field (labelled by an index k). Below we compute

the thermalization exponent �k in a perturbation in the chemical potentials and to linear

3This happens essentially due to the fact that we consider here thermalization of local observables and
that local field modes are mutually coupled even in a free field theory. Thermalization happens at times
greater than the scale of localization, as we will see below.
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order it is given by

�k =
2⇡

�

"
�k +

X

n

µ̃nQn,k +O(µ̃2)

#
, µ̃n ⌘ µn

�n�1
, (4.7)

Here �k = hk + h̄k is the scaling dimension and Qn,k are the (shifted) Wn-charges (see 4.37

for the full definition) of the field �k (in case of primary fields) or of the minimum-dimension

field which appears in the conformal transformation of �k. To obtain this result, we perform

the infinite resummation mentioned below 4.4. At large times, the perturbation series for the

one-point function in the chemical potentials exponentiates (see 4.37), to give the corrected

exponent in the above equation. In various related contexts, finite orders of perturbation

terms in chemical potentials have been computed before [34, 89, 121]. Our finding in this

chapter is that at large times, there is a regularity among the various orders leading to an

exponential function as in 4.6 (see Section 4.2.2 for details).

Universality: In the case of zero chemical potentials, it has been noted in [60], that although

the relaxation time ⌧k = ⇡✏2/(2�k) = 2⇡�/(�k) is non-universal (in the sense that it depends

on the specific initial state 4.1), the ratio of relaxation times for two di↵erent fields, namely,

⌧k1/⌧k2 = �k2/�k1 is universal (it depends only on the CFT data and not on the initial state

and is hence expected to be valid for a general class of initial states). In the presence of the

additional cut-o↵ parameters ✏i, i = 3, ... in the initial state 4.1, the ratio ⌧k1/⌧k2 = �k2/�k1=

(�k2 +
P

n µ̃nQn,k2)/(�k1 +
P

n µ̃nQn,k1) is, however, not independent of the initial state.

However, as we will briefly discuss in Section 4.6, for a large class of quench states

(e.g. where the energy density is uniform outside of a domain of compact support) the �-

dependence of ⌧k, in the absence of chemical potentials, can be understood as the dependence

on the uniform energy density (see a related discussion in [129]). The time scales ⌧k, therefore,

do have a limited form of universality in the sense that it depends on a rather robust feature

of the initial state. Our calculations in this chapter leads us to believe that this feature will

continue in the presence of chemical potentials, in the sense that the additional dependence of
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the time scales 1/�k on the µn is fixed by the charge densities corresponding to the additional

conserved charges.

2. Multiple local observables, reduced density matrix: Besides the one-point

functions discussed above, it turns out that we can demonstrate thermalization of all

operators in an interval A of length l. It is convenient to define a ‘thermalization function’

IA(t) [71] as

IA(t) = Tr(⇢̂dyn,A(t)⇢̂eqm,A(�, µn)) =
Tr(⇢dyn,A(t)⇢eqm,A(�, µn))

[Tr(⇢dyn,A(t)2)Tr(⇢eqm,A(�, µi)2)]
1/2

⇢dyn,A(t) = TrĀ | (t)ih (t)|, ⇢eqm,A(�, µn) = TrĀ ⇢eqm(�, µi) (4.8)

Here ⇢̂ = ⇢/
p

Tr⇢2 denotes a ‘square-normalized’ density matrix.45 We show below that at

large times the thermalization function has the form

IA(t) = 1� ↵(l̃) e�2�mt + ..., l̃ ⌘ l/� (4.9)

where �m refers to the exponent 4.7 for the operator �m with minimum scaling dimension.6

↵(l̃) is computed as a power series in l̃ which we find using the short interval expansion,

valid for l̃ ⌧ 1, i.e. l ⌧ �.

Two immediate consequences of 4.9 are

(i) Thermalization of an arbitrary string of operators: Note, from 4.9, that

IA(t)
t!1���! 1, (4.10)

4Note that operators in a Hilbert space H can themselves be regarded as vectors in H ⇥ H
⇤; under this

interpretation Tr(A B) defines a positive definite scalar product. With this understanding, we will regard
the hatted density matrices as unit vectors.

5Throughout this chapter, we will consider field theories with an infinite spatial extent. The entire Hilbert
space is assumed to be of the form HA ⌦ HĀ. TrĀ implies tracing over HĀ.

6We will assume here that the spectrum of such �’s is bounded below by a finite positive number. In
case of a free scalar field theory, we can achieve this by considering a compactified target space.
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Since the square-normalized density matrices can be regarded as unit vectors (in the

sense of footnote 4), and IA(t) can be regarded as the scalar product ⇢̂dyn,A(t)·⇢̂eqm,A,

4.10 clearly implies

⇢̂dyn,A(t)
t!1���! ⇢̂eqm,A (4.11)

This implies the following statement of thermalization for an arbitrary string of local

operators (with �1, �2, ... 2 A)

h (t)|O(�1, t1)O(�2, t2)...| (t)i = Tr(⇢̂dyn,A(t)O(�1, t1)O(�2, t2)...)

t!1���! Tr(⇢̂eqm,AO(�1, t1)O(�2, t2)...).

(4.12)

(ii) Long time behaviour of reduced density matrix:

Carrying on with the interpretation of IA(t) as a scalar product, we can infer following

asymptotic behaviour of ⇢̂dyn(t) from 4.9:

⇢̂dyn,A(t) = ⇢̂eqm,A(�, µi)
�
1� ↵ e�2�mt + ...

�
+ Q̂

⇣p
2↵ e��mt + ...

⌘
(4.13)

where Tr(Q̂2) = 1, Tr(⇢̂eqm,A(�, µi)Q̂) = 0. We will specify further properties of Q̂

later on.

Importance of local observables: In case of a free massless scalar field, it is easy

to show that quantities like h (t)|↵2

1
↵†

1
| (t)i perpetually oscillate and never reach a

constant (see a related calculation in [179]). The modes ↵n represent Fourier modes

and are non-local. Indeed, as [60,65,71] showed, in the absence of chemical potentials,

the exponential term in 4.9 is e�2�m(t�l/2) and the thermalization sets in only after t

exceeds l/2. Thus, for l = 1, there is no thermalization, which is consistent with

the above observation about perpetual oscillations. We expect the form e�2�m(t�l/2) to
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continue to hold in the presence of chemical potentials7, since the e↵ect of the chemical

potentials on the exponent �k can be viewed as a shift of the anomalous dimension

��k =
P

n µ̃nQn,k + O(µ̃2) (see, e.g. 4.64). This shows that, as in the case of zero

chemical potentials, equilibration sets in only after t exceeds l/2. We will see a similar

phenomena next in the context of a decay of perturbations to a thermal state.

3. Decay of perturbations to a thermal state: We compute (see Section 4.4 for

details) the time-dependent two-point Green’s function G+(t, l; �, µ) for two points spatially

separated by a distance l. We find that for t, l, t�l � �, the time-dependence is exponential,

with the same exponent as in 4.6:

G+(t, l; �, µ) ⌘
1

Z
Tr
�
�k(l, t)�k(0, 0)e

��H�
P

n
µnWn

�
= const e��kt (4.14)

Note that the above thermalization sets in for t > l. For t < l, the two-point function has

an exponential decay in the spatial separation (see Section 4.4 and Figure 4.3).

The computation of the above relaxation times in the presence of an arbitrary number of

chemical potentials uses the technique, described above, of summing over an infinite number

of Feynman diagrams, and is one of the main results of this chapter.

4. Collapse to higher spin black holes: In [138, 177] the bulk dual to the time-

dependent state 5.2 corresponding to initial condition 5.1, for large central charges, has

been constructed in the case of zero chemical potentials. The dual geometry corresponds

to one half of the eternal BTZ (black string) geometry, whose boundary represents an end-

of-the-world brane. In [67] the result has been extended to the case of non-zero angular

momentum and a Chern-Simons charge. In case of an infinite number of chemical potentials,

a bulk dual to the equilibrium ensemble 4.3 has been identified, in the context of the

7Although, in the short-interval expansion employed in this chapter to derive 4.9, which uses t � � � l,
such an l-dependence in the exponent cannot be easily seen from the pre-factor ↵(l̃) unless one sums over
an infinite orders in l̃.
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Gaberdiel-Gopakumar hs(�) theory [119], as a higher spin black hole with those chemical

potentials [131, 162]. It is natural to conjecture [67, 179] that the time-development 5.2

should be dual to a collapse to this higher spin black hole. At late times, therefore, the

thermalization exponent found above should correspond to the quasinormal frequency of the

higher spin black hole. We find that (see Section 4.5) this is indeed borne out in a specific

example.

The plan of this chapter is as follows. The results 1, 2, 3 and 4 above are described

in Sections 5.2.2, 4.3, 4.4 and 4.5, respectively. The resummation of an infinite number of

Feynman diagrams (corresponding to insertions of arbitrary number of chemical potential

terms) is discussed in Section 4.2.2, which uses results in Appendix 5.7.3. The calculation

of the overlap of reduced density matrices in Section 4.3 needs the use of the short-interval

expansion, which is described in Appendix 4.7.2. In Section 4.6 we present our conclusions

and make some remarks on inhomogeneous quenches.

4.2 One-point functions

In this section we will consider the behaviour of the following one-point functions of a

quasiprimary field �k(�)

h�k(�, t)idyn ⌘ h (t)|�k(�)| (t)i,

h�k(�)ieqm ⌘ Tr (�k(�)⇢eqm(�, µn)) (4.15)

We will briefly recall how these are computed in the absence of the chemical potentials [59,96].

The first expectation value corresponds to the one-point function on a strip geometry, with

complex coordinate w = � + i⌧ , � 2 (�1,1), ⌧ 2 (��/4, �/4) where ⌧ is eventually to

be analytically continued to ⌧ = it. This can be conformally transformed to an upper half
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plane by using the map

z = ie(2⇡/�)w (4.16)

For a primary field with hk = h̄k (of the form �k(w, w̄) = 'k(w)'k(w̄)), this procedure gives

8(for other primary fields, the one-point function vanishes)

h�k(�, t)idyn = h�k(w, w̄)istr =
✓
@z

@w

◆hk
✓
@z̄

@w̄

◆h̄k

h�k(z, z̄)iUHP

= ak
�
e2⇡t/� + e�2⇡t/�

��2hk ⇠ ake
��

(0)
k

t + ..., �(0)k = 2⇡�k/� = 4⇡hk/� (4.17)

We have used the following result for the one-point function on the UHP:

h�k(z, z̄)iUHP = Akh'k(z)'
⇤

k(z
0)iUHP = Ak(z � z0)�2hk , hk = h̄k, z

0 = z̄ (4.18)

which follows by using the method of images where the antiholomorphic factor of �k(z, z̄)

on the upper half plane at the point (z, z̄) is mapped (up to a constant) to the holomorphic

'⇤

k
9 on the lower half plane at the image point (z0, z̄0) with z0 = z̄, z̄0 = z [74, 96]. In the

above ak, Ak are known numerical constants. Note that

z = ie2⇡(�+i⌧)/� = ie2⇡(��t)/�, z0 = z̄ = �ie2⇡(��i⌧)/� = �ie2⇡(�+t)/� (4.19)

so that in the large time limit we have

t ! 1 ) z ! 0, z̄ ! �i1. (4.20)

The second, thermal, expectation value in 4.15, for µn = 0, corresponds to a cylindrical

geometry in the w-plane, with ⌧ = 0 identified with ⌧ = �. By using the same conformal

8The subscripts str, cyl will denote a ‘strip’ and a ‘cylinder’, respectively.
9We distinguish '⇤

k
from 'k to allow for charge conjugation.
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map 4.16 this can be transformed to a one-point function on the plane. For a primary field

the latter vanishes. Hence 4.6 is trivially satisfied.

For a quasiprimary field �k, its conformal transformation generates additional terms,

including possibly a c-number term ck (e.g. the Schwarzian derivative term for �k = Tww)

and generically lower order operators. The c-number term does not distinguish between a

plane and an UHP. This leads to the following overall result (for µn = 0):

h�k(�)ieqm = h�k(w, w̄)icyl = ck,

h�k(�, t)idyn = h�k(w, w̄)istr = ck + ake
��

(0)
k

t + ..., �(0)k = 2⇡�k/�, (4.21)

where �k now is the scaling dimension of the minimum-dimension operator in a T (z1)�k(z)

OPE. This is clearly of the general form 4.6 for µn = 0.

We now turn to a discussion of these expectation values 4.15 in the presence of chemical

potentials µn, n = 3, 4, ..., as in 5.1 and 4.3. We will denote the new conserved currents as

Wn(w) and W̄n(w̄), n = 3, 4, .... The conserved charge, Wn, is defined as

Wn =
1

2⇡

Z

�

W⌧⌧...⌧d� =
1

2⇡

Z

�

�
indw1 Wn(w1) + (�i)ndw̄1 W̄n(w̄1)

�
(4.22)

Here the contour � is taken to be a ⌧ = constant line along which dw1 = dw̄1 = d�. Under

the conformal transformation 4.16 to the plane/UHP, the holomorphic part of the contour

integral becomes

Wn|hol =
in

2⇡

✓
2⇡

�

◆n�1 Z

�1

dz1

2

4zn�1

1
Wn(z1) +

[n/2]X

m=1

an,n�2mz
n�2m�1

1
Wn�2m(z1)

3

5 (4.23)

where the an,n�2m denote the mixing of Wn(z1) with lower order W -currents under conformal

transformations [47, 210]. The contour �1 is an image of the contour � onto the plane. The

expression for the antiholomorphic part Wn|antihol is similar.
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As mentioned before, in this chapter we will regard the Wn as conserved charges of a

W-algebra, although the results we derive will be equally valid as long as these charges,

together with H, form a mutually commuting set, and the currents (Wn(w), W̄n(w̄)) are

quasiprimary fields.

4.2.1 One-point function on the cylinder with chemical potentials

For simplicity we first consider the equilibrium expectation value in 4.15. Unfortunately,

unlike the thermal factor above, the factor e�
P

n
µnWn in 4.3 cannot be dealt with in terms

of a conformal map. We will, therefore, treat this factor as an operator insertion, and write

h�k(�)ieqm ⌘ Tr (�k(w, w̄)⇢eqm(�, µn)) =
he�

P
n
µnWn�k(w, w̄)icyl

he�
P

n
µnWnicyl

⌘ h�k(w, w̄)iµcyl (4.24)

We will now illustrate how to compute this for a single chemical potential, say µ3, using

perturbation theory Feynman diagrams:10

h�k(w, w̄)iµcyl = h�k(w, w̄)icyl � µ3hW3�k(w, w̄)iconncyl +
µ2

3

2!
h W3W3�k(w, w̄)iconncyl +O(µ3

3
)

(4.25)

The first term in the above expression is the constant ck that we already encountered in 4.21.

For a holomorphic primary field �k, the second, O(µ3), term, transformed on to the plane,

gives

hW3�k(w)iconncyl =
2⇡

�2
zhk


i3
Z

�1

dz1 z2
1
hW3(z1)�k(z)iconnC + (�i)3

Z

�1

dz̄1 z̄2
1
hW̄3(z̄1)�k(z)iconnC

�

(4.26)

Here we have used the contour representations 4.22 and 4.23. The correlator inside the

second integral obviously vanishes (it factorizes into a holomorphic and an antiholomorphic

10The superscript conn denotes ‘connected’.
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one-point functions, leading to a vanishing connected part). The first integral vanishes unless

�k = W3 (this uses the orthogonality of the basis of quasiprimary fields). In the latter case,

using

hW3(z1)W3(z)iC =
c/3

(z1 � z)6

the integral evaluates to c/(90z3); combining with the factor of z3 outside (hk = 3 in this

case) we get a z-independent constant, as we must, because of translational invariance on

the plane. With an antiholomorphic primary field �k, the calculation is isomorphic. For a

primary field with nonvanishing hk, h̄k the result vanishes. For quasiprimary �k, as well as

for other Wn charges, the conformal transformation to the plane additionally generates lower

order operators (see, e.g. 4.23)), each of which can be dealt with as in 4.26. The result is a

finite constant which we will denote as

hWn�k(w, w̄)i = cn,k

(this will be non-vanishing only for special choices of �k, e.g. �k = Wn). As explained above,

for n = 3 and �k(w, w̄) = W3(w), cn,k = �2⇡c/(90�2).

In a similar fashion, the O(µ2

3
) term in 4.25 can be transformed to the plane. Again, we

present the explicit expression for the simple case of a holomorphic primary field �k.

hW3W3�k(w)iconncyl =
�2⇡
�2

�2
zhk


i6
Z

�1

dz1

Z

�2

dz2hW3(z1)W3(z2)�k(z)iconnC z2
1
z2
2

+ (�i)6
Z

�1

dz̄1

Z

�2

dz̄2hW̄3(z̄1)W̄3(z̄2)�k(z)iconnC z̄2
1
z̄2
2
+

Z

�1

dz1

Z

�2

dz̄2hW3(z1)W̄3(z̄2)�k(z)iconnC z2
1
z̄2
2

+

Z

�1

dz̄1

Z

�2

dz2hW̄3(z̄1)W3(z2)�k(z)iconnC z̄2
1
z2
2

�
(4.27)

For holomorphic quasiprimary �k, additional, similar, terms appear due to the generation of

lower order operators under conformal transformation to the plane. Only the holomorphic

correlator survives (as in the O(µ3) calculation). Thus, e.g. if �k = T (z), the stress tensor,
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we have

hW3(z1)W3(z2)T (z)iC =
c

(z1 � z2)4(z1 � z)2(z2 � z)2

Again, after performing the integration over z1 and z2, we obtain a z-independent constant,

as we must. The analysis of more general fields �k and two arbitrary W -charges is

straightforwardly generalizable. The result is a finite constant (can be zero for a particular

�k) which we denote as

hWmWn�k(w, w̄)i = cmn,k

Note that in 4.27 the result does not depend on the location of the contours �1,�2 on the

plane, since the W -currents are conserved.

Summarizing, we get

h�k(w, w̄)iµcyl = ck �
X

n

µn cn,k +
1

2!

X

m,n

µmµn cmn,k +O(µ3) (4.28)

4.2.2 One-point function on the strip with chemical potentials

Similarly to the previous subsection, we will treat the µ-deformations in 5.1 as operator

insertions:

h�k(�, t)idyn ⌘ h (t)|�k(�)| (t)i =
he�

P
n
µnWn/4 �k(w, w̄) e�

P
n
µnWn/4istr

he�
P

n
µnWn/2istr

⌘ h�k(w, w̄)iµstr

(4.29)

As before, we begin by illustrating the calculation of this quantity with the simplest case of

a single chemical potential µ3, using perturbation theory Feynman diagrams:

h�k(w, w̄)iµstr = h�k(w, w̄)istr �
µ3

4
h{W3,�k(w, w̄)}iconnstr

+

✓
µ3

4

◆2 1

2!
(h{W3W3,�k(w, w̄)}iconnstr + 2hW3�k(w, w̄)W3iconnstr ) +O(µ3

n) (4.30)
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The { , } denotes an anticommutator. The operator ordering implies the following: when W3

appears on the left of �k(w, w̄), e.g., in hW3�k(w, w̄)i, the integration contour 4.22 for W3

on the strip lies above the point (w, w̄); similarly when W3 appears on the right of �k(w, w̄),

e.g. in h�k(w, w̄)W3i, the contour for W3 is below the point (w, w̄).

The first, µ-independent, term in the above expansion is already calculated in 4.21.

O(µn) Calculation

As before, we find it convenient to use the conformal transformation 4.16. The correlator on

the strip then reduces to that on the UHP, as in the µ = 0 case before. For a holomorphic

primary field �k, this gives

hW3�k(w)iconnstr =
2⇡

�2
zhk


i3
Z

�1

dz1 z2
1
hW3(z1)�k(z)iconnUHP

+ (�i)3
Z

�1

dz̄1 z̄2
1
hW̄3(z̄1)�k(z)iconnUHP

�

(4.31)

where the operator ordering explained above implies that the contour �1 lies to the left of

the point (z, z̄) on the UHP. Now, in the analogous calculation 4.26, the second connected

correlator on the complex plane vanished because of factorization into one-point functions.

Correlators on the UHP are, however, related to those on the plane by the method of

images (an example of which we saw in 4.18). In particular, W̄3 at the point (z1, z̄1) on the

UHP becomes the holomorphic operator W⇤

3
= �W3 on the LHP at the point (z0

1
, z̄0

1
) with

z0
1
= z̄1 [74,96]. The contour �1 gets mapped to its mirror image �0

1
on the lower half plane.

With this, we get

hW3�k(w)iconnstr =
2⇡

�2
zhk

"
i3
Z

�1+�
0
1

dz1 z2
1
hW3(z1)�k(z)iconnC

#
(4.32)

On the complex plane, the contour �1 on the UHP can be deformed to �0

1
on the LHP, hence

the two contours simply yield a factor of 2. In fact, combining with the other ordering, and

applying a similar reasoning, we get an overall factor of 4. Thus, combining with results
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from Section 4.2.1, we get, for holomorphic primary fields

�µ3

4
h{W3,�k(w)}iconnstr = �µ3hW3�k(w)iconncyl (4.33)

A similar statement is true for an antiholomorphic primary field.

Let us turn now to primary fields �k(w, w̄) with hk, h̄k 6= 0 (of the form �k(w, w̄) =

'k(w)'k(w̄), as discussed before in the context of 4.18). In the cylinder calculation in

Section 4.2.1 the µ-corrections for these vanished. In the present case, they are non-zero for

operators of the form �k(w, w̄)= 'k(w)'̄k(w̄), with hk = h̄k (as in 4.17). After conformally

transforming to the UHP, we regard '̄k on the UHP as '⇤

k at the image point on the LHP

(up to a constant). Combining with the arguments used for the holomorphic operators, we

eventually get

h{W3,�k(w, w̄)}iconnstr

h�k(w, w̄)istr
= i3

2⇡

�2
(zz̄)hI3(z, z

0),

I3(z, z
0) ⌘

Z

�1+�
0
1+�̃1+�̃

0
1

dz1 z2
1
hW3(z1)'k(z)'

⇤

k(z
0)iconnC /h'k(z)'

⇤

k(z
0)iconnC (4.34)

Figure 4.1: Various contours needed to compute the Wn insertions in 4.30. At late times, the insertion
of each contour, irrespective of the position of the contour, amounts to insertion of a given factor linear
in t. This allows to resum arbitrary orders of arbitrary Wn-charge insertions, leading to the exponential
time-dependence as in 4.6. See Figure 4.2 for more.
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The ratio of correlators inside the integral is given by

hW3(z1)'k(z)'
⇤

k(z
0)iconnC /h'k(z)'

⇤

k(z
0)iconnC = q3

(z � z0)3

(z1 � z)3(z1 � z0)3
(4.35)

where q3 is the W3-charge of the field �k. Integrals of the kind 4.34 are discussed in detail in

Appendix 4.7.1. The final result (see 4.71) is that the O(µ3) correction, in the long time limit

4.20, is given by (using that all four contours �1, �̃1,�0

1
, �̃0

1
contribute equally, cancelling the

1/4 in �µ3/4)

h�k(�, t)idyn = ake
�2⇡�kt/�

✓
1�Q3,kµ̃3 (

2⇡t

�
+ constant) +O(µ2

3
)

◆
+ ...,

Q3,k = i32q3,k(2⇡), µ̃3 =
µ3

�2
, �k = 2hk (4.36)

Up to O(µ3), it agrees with 4.7.

In case of a quasiprimary field �k(w, w̄), it mixes, under conformal transformation to the

plane, with lower dimension operators. The most relevant operator among these, which is of

the form 'k(z)'k(z̄), is then to be used in 4.34 for obtaining the dominant time-dependence;

in that case �k, Q3,k refer to this operator (rather than to the original �k).

For higher Wn charges, the currents Wn(w) are typically quasiprimary, and hence they

mix with lower order Wm(z) under conformal transformation to the UHP. Thus the O(µn)

correction to the dynamical one-point function h�kidyn is a linear combination of terms of

the form 4.68 (weighted by a set of coe�cients an,m, as in 4.37 below). Collecting all this,
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the O(µ) correction with all chemical potentials is given by

h�k(�, t)idyn = ake
�2⇡�kt/�

 
1�

X

n=3

Qn,kµ̃n (
2⇡t

�
+ constant) +O(µ2)

!
+ ...,

µ̃n =
µn

�n�1
, �k = hk + h̄k = 2hk

Qn,k = 2
[n/2�1]X

m=0

an,mi
n�2m(2⇡)n�2m�2qn�2m,k

= in(2⇡)n�22qn,k + in�2(2⇡)n�4an,2 2qn�2,k + ..., (4.37)

Note that for W3 deformations, the expression for Q3 as in 4.36 corresponds only to the first

term in the above series expression for Qn. This is because the W3 current is a primary field

and does not mix with any lower W current under a conformal transformation. From n = 4

onwards, the additional terms in Qn,k’s represent the mixing of Wn currents with Wn�2m

under conformal transformations.

Higher order µ-corrections

Let us first consider that O(µ2

n) correction:

h�k(w, w̄)iconnstr |µn

2
⌘ (µn/4)2

2!
(h{WnWn,�k(w, w̄)}iconnstr + 2hWn�k(w, w̄)Wniconnstr ) (4.38)

Again, for holomorphic (or antiholomorphic) primary fields �k(w), it is straightforward to

generalize 4.33 to this order.

h�k(w)iconnstr |µn

2
=

µ2

n

2!
hWnWn�k(w)iconncyl (4.39)
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For a primary field of the form �k(w, w̄) = 'k(w)'k(w̄), proceeding as in the previous

subsection, we get

h�k(w)iconnstr |µn

2
=

1

2!

✓
Qn,kµ̃nt

2⇡

�

◆2

+ µ2

n(constant⇥ t+ constant) + ... (4.40)

The essential ingredient in this calculation is

Inm(z, z
0|�1,�2) ⌘

Z

�1

dz1 zn�1

1

Z

�2

dz2 zm�1

2
fnm(z1, z2, z, z

0),

fnm(z1, z2, z, z
0) =

hWn(z1)Wm(z2)'k(z)'⇤

k(z
0)iconnC

h'k(z)'⇤

k(z
0)iconnC

(4.41)

By repeating the strategy of 4.75, we get

Coe�cient of [log(�z0)� log(�z)]2 in Inm(z, z
0|�1,�2)

= Residuez1=z


Residuez2=z

✓
hWn(z1)Wm(z2)'k(z)'⇤

k(z
0)iconnC

h'k(z)'⇤

k(z
0)iconnC

◆�
= qn,k qm,k (4.42)

where we have first used theWm(z2)'k(z) OPE, and then theWn(z1)'k(z) OPE. In a manner

similar to that in Appendix 4.7.1, we conclude the following structure of Inm(z, z0):

Inm(z, z0|�1,�2) = qn,k qm,k([log(�z0)� log(�z)] + constant)⇥ ([log(�z0)� log(�z)] + constant) (4.43)

Note that at late times t � �, ([log(�z0) � log(�z)] ! 2(2⇡t)/� and dominates over the

constant term (the precise sense is that of 4.48). Similar to Appendix 4.7.1, the 4⇥ 4 = 16

locations of the contour-pairs (�1,�2),(�1,�0

2
), (�1, �̃2),(�1, �̃0

2
), ...., all contribute equally,

therefore converting (µn/4)(µm/4) ! µnµm. Combining all these, we get 4.40. The charges

qn that are defined by the Wn' OPE and appear in 4.42, get multiplied by some constants

11 and shifted by lower Wn�2k charges to give the Qn in 4.42, as in 4.37.

11Each Wn current comes with a factor of i
n

2⇡

⇣
2⇡
�

⌘n�1
, as in 4.23.
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Arbitrary orders and Exponentiation:

It is straightforward to generalize the above O(µ̃2) calculation to higher orders in the

perturbation in chemical potentials. Thus, at the order
Qr

i=1
µni

, there are r insertions

of W-currents, leading to integrals of the form

In1n2...nr
(z, z0|�1,�2, ...,�r) ⌘

Z

�1

dz1 zn1�1

1

Z

�2

dz2 zn2�1

2
...

Z

�r

dz2 znr�1

r fn1n2...nr
(z1, z2, ..., zr; z, z

0),

fn1n2...nr
(z1, z2, ..., zr; z, z

0) =
hWn1(z1)Wn2(z2)...Wnr

(zr)'k(z)'⇤

k(z
0)iconnC

h'k(z)'⇤

k(z
0)iconnC

(4.44)

Again, repeating the strategy of 4.75, we get the following leading (viz. (log)r) contribution

(see 4.48 for the definition of the leading-log contribution)

Coe�cient of [log(�z0)� log(�z)]r in In1n2...nr (z, z
0|�1,�2, ...,�r)

= Residuez1=z


...Residuezr�1=z

⇢
Residuezr=z

✓ hWn1(z1)...Wnr�1(zr�1)Wnr (zr)'k(z)'⇤
k
(z0)iconnC

h'k(z)'⇤
k
(z0)iconnC

◆��

= qn1,k...qnr�1,k qnr,k (4.45)

where we have first used the Wnr
(zr)'k(z) OPE, then Wnr�1(zr�1)'k(z) OPE, etc. As in

the O(µ2) calculation above, we obtain the following behaviour at late times

In1n2...nr (z, z
0|�1,�2, ...,�r)

= qn1,k...qnr�1,k qnr,k ([log(�z0)� log(�z)] + constant)⇥ ...⇥ ([log(�z0)� log(�z)] + constant)| {z }
r terms

(4.46)

The two equations above show that the leading log contribution to 4.44 from every contour

integral of the Wni
current contributes the factor qni

[log(�z0) � log(�z)]. This is the first

basic ingredient for the exponentiation we are going to find. Furthermore, it is easy to see

that the leading log contribution is the same irrespective of where each contour �i is placed

(out of 4 possible choices, e.g. �1,�0

1
, �̃1, �̃0

1
in Figure 4.1). As before we must combine the

contribution of all positions of the contours, which, therefore, amounts to multiplying the

result for 4.44 by 4r which converts the original coe�cients coming from exp[�
P

n µnWn/4]
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as follows Qr
i=1

µi/4

r!
!
Qr

i=1
µi

r!
.

This is the second basic factor leading to the exponentiation. Combining all these, and

incorporating some additional constants (see footnote 11) we get the following, leading,

order (µn1 ...µnr
) contribution

h�k(w)iconnstr |µn1 ...µnr

r =
1

r!

rY

i=1

✓
Qni,kµ̃ni

2⇡

�

◆
+O(µrtr�l) (4.47)

Once again, the constants Qn are related to the qn as in 4.37) in a manner similar to the

O(µ̃) and the O(µ̃2) calculation above. We note that the leading log contribution used in

this chapter can be isolated by considering a scaling

µ̃n ! 0, t̃ ⌘ t

�
! 1, such that µ̃nt̃ = constant. (4.48)

The second term in 4.47, or for that matter, in 4.40, is subleading at large times in the sense

of this scaling.

Using the above results, we now have, for primary fields of the form �k(w, w̄) =

'k(w)'k(w̄)

h�k(w, w̄)istr = ake
�

2⇡�
k
t

�

"
1�

X

n

µ̃n Qn,k(
2⇡t

�
+ const)

+
1

2!

X

n,m

µ̃nµ̃m Qn,k(
2⇡t

�
+ const) Qm,k(

2⇡t

�
+ const) + ...

+
1

r!

X

{ni}

rY

i=1

µ̃ni
Qni,k

0

BB@(
2⇡t

�
+ const)...(

2⇡t

�
+ const)

| {z }
r terms

1

CCA+ ...

3

775

= ake
�2⇡t/�(�k+

P
n
µ̃nQn,k+O(µ̃2

)) = ake
��kt (4.49)
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where we have absorbed some constant factors in ak. �k is given by 4.7; Qn,k are the shifted

Wn charges of �k as defined in 4.37. The proof of the above equation for general quasiprimary

operators �k(w, w̄) works out much the same way as in case of the O(µ) terms, as discussed

in Section 4.2.2. We emphasize that it is only the leading contributions at large times which

we have proved here to exponentiate. Thus, we do not claim that the constant terms marked

“const” in the above equation are all the same. As we have remarked before, the leading

contributions can be isolated using the scaling mentioned in 4.48.

The schematics of the above calculation is explained in the Figure 4.2.

G0(z) G0(z) fn log(z) G0(z) fnfm  log(z)2/2!

Wn
Wn

Wm+ + +  ......

z zz

Figure 4.2: The schematics of the calculation of the one-point function. The first term represents the
zero-order boundary Green’s function 4.17 without chemical potentials (the shading indicates the boundary
of the upper half plane). The second term represents the O(µn) correction, which involves one insertion
of a Wn-charge (which is an integral over the z1-contour. As explained in the text, at long times, this
insertion amounts to multiplying the zero order term by a term of the form fn log(z), where fn is described
in 4.37. The third term represents insertion of two such W -charges; as we explained in the text (see 4.40
and below), each insertion again amounts to multiplying by the factor mentioned above, along with a factor
of 1

2! . The pattern continues, to ensure an exponentiation to G0(z) z
P

nfn , as in 4.49. Since at long times

G0(z) ⇠ e��
(0)
k t (see 4.17), and z ⇠ e�2⇡t/� , adding the chemical potentials amount to a shift of the exponent

�(0)
k

! �k as in 4.6.
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4.3 Calculation of I(t)

Let us rewrite the expression for the thermalization function I(t) 4.8 in the form

I(t) = Zsc/
p

ZssZcc = Ẑsc/

q
ẐssẐcc,

Zsc ⌘ Tr(⇢dyn,A(t)⇢eqm,A(�, µ)), Ẑsc = Zsc/(ZsZc)

Zss ⌘ Tr(⇢dyn,A(t)⇢dyn,A(t)), Ẑss = Zss/Z
2

s ,

Zcc ⌘ Tr(⇢eqm,A(�, µ)⇢eqm,A(�, µ)), Ẑcc = Zcc/Z
2

c ,

Zs = Tr(⇢dyn(t)) = h 0| 0i, Zc = Tr(⇢�,µ) (4.50)

In Appendix 4.7.2 we explain how to compute I(t) using the short interval expansion, valid

when the length of the interval l is small compared with the other time scales � and t in the

problem. We reproduce the main formula 4.79 for our purpose, where we explicitly denote

the dependencies on the length l of the interval, the inverse temperature � and the chemical

potentials µ (the dependence on � on the RHS is implicit; the one-point functions depend

on both � and µ— see Section 5.2.2).

Ẑsc(l, �, µ) =
X

k1,k2

Ck1,k2(l)h�k1(w1, w̄1)iµstrh�k2(w2, w̄2)iµcyl,

Ẑss(l, �, µ) =
X

k1,k2

Ck1,k2(l)h�k1(w1, w̄1)iµstrh�k2(w2, w̄2)iµstr,

Ẑcc(l, �, µ) =
X

k1,k2

Ck1,k2(l)h�k1(w1, w̄1)iµcylh�k2(w2, w̄2)iµcyl (4.51)

It is understood, for the logic of the short interval expansion to go through, that all contours

which represent insertion of the W -charges (see Fig 4.1) are drawn outside of the small

disc-like region of both sheets of Fig 4.4.
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4.3.1 Proof of thermalization

Using the short-interval expansion above, and the long time behaviour of one-point functions

from Section 5.2.2), it is easy to prove that the system thermalizes in the sense of 4.10 or

4.11.

To prove this, note that it is only the holomorphic (or antiholomorphic) fields �k which

possibly have non-zero expectation values in the long time limit 4.20. For these fields, the

one-point functions on the cylinder and on the strip agree (see 4.21, 4.33, 4.39 ). By virtue

of 4.51, we therefore have in the long time limit Zsc = Zss = Zcc. Hence using the expression

4.50 for the thermalization function we get I(t ! 1) = 1 which proves 4.10 and consequently

4.11.

The above-mentioned equality of one-point functions between the strip and cylinder

geometries for holomorphic (or antiholomorphic) fields imply the same for the conserved

Wn- (or W̄n)- currents. This, therefore, proves that

h (t)|Wn| (t)i = Tr(Wn⇢eqm) (4.52)

Note that in proving this, we have used the correspondence 4.4 between the parameters of

the initial state and the putative equilibrium state. The above equation, therefore, proves

the correspondence 4.4.
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4.3.2 Thermalization rate

To evaluate the rate of approach of I(t) to its asymptotic value 1, we organize the terms in

Ẑsc, Ẑss, Ẑcc as follows

Ẑsc = C0,0(1 + Ssc
1
), Ssc

1
=
X

a

Ĉa,0(h�aiµstr + h�aiµcyl) +
X

ab

Ĉa,bh�aiµstrh�biµcyl

Ẑss = C0,0(1 + Sss
1
+ Sss

2
), Sss

1
= 2

X

a

Ĉa,0h�aiµstr +
X

ab

Ĉa,bh�aiµstrh�biµstr, Sss
2

=
X

k

Ĉk,k(h�kiµstr)2

Ẑcc = C0,0(1 + Scc
1
), Scc

1
= 2

X

a

Ĉa,0h�aiµcyl +
X

ab

Ĉa,bh�aiµcylh�biµcyl (4.53)

where a, b, ... denote descendents of the identity operator, k labels other primaries (than the

identity) and their descendents. Ĉ ⌘ C/C0,0.

µ = 0

Let us first consider the case of zero chemical potentials. Using the results in Sections 5.2.2,

and Appendices 5.7.3 and 4.7.2, we get

Ssc
1

= �aT l̃
2

⇣
1 +O(l̃)2

⌘
+ aT T̄ l̃

4e�8⇡t/�
⇣
1 +O(l̃)2

⌘
+O(e�8⇡t̃)

Sss
1

= �aT l̃
2

⇣
1 +O(l̃)2

⌘
+ 2aT T̄ l̃

4e�8⇡t̃
⇣
1 +O(l̃)2

⌘
+O(e�8⇡t̃)

Sss
2

=
X

k

h
ak l̃

4hke�8⇡hkt/�
⇣
1 +O(l̃)2

⌘
+O(e�12⇡hk t̃)

i

Scc
1
= �aT l̃

2

⇣
1 +O(l̃)2

⌘

aT =
c⇡2

24
, aT T̄ =

AT T̄⇡
4

8c
ak =

A2

k

nk

⇣⇡
2

⌘4hk

(4.54)

To this order, it is easy to see that the contribution to I(t) from descendents of identity,

demarcated by aT , aT T̄ , vanishes. The leading contribution to I(t), demarcated by ak, occurs

only in Ẑss and comes from (h�m(z, z̄)istr)2 for which hk is the minimum (= hm) (this could

be a field which appears after a conformal transformation of the original quasiprimary field).
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The time-dependence shown of Sss
2

comes from 4.17. Using this, we get

I(t) = 1� ↵ exp[�2�(0)m t] + ..., �(0)m = 2⇡�m/� (4.55)

This is of the form 4.9 for µ = 0, with

↵ ⌘ A2

m

nm

⇣⇡
2

⌘4hm

(l̃)4hm

⇣
1 +O(l̃)2

⌘
(4.56)

The discarded terms in 4.55 are faster transients. This proves 4.9 for zero chemical potential.

This result has already appeared in [71].12

µ 6= 0

The generalization of the above result to the case of non-zero chemical potentials is

straightforward. Once again, the dominant time-dependence arises from (h�m(z, z̄)iµstr)
2 in

the Sss
2

or Ẑss. The time-dependence 4.9 follows by using 4.49 in Sss
2
.

4.3.3 Properties of Q̂

From the asymptotic behaviour 4.9 of the thermalization function we indicated the

asymptotic behaviour 4.13 of the dynamical reduced density matrix ⇢̂dyn(t). By using the

long time behaviour of the one-point functions 4.6, we can easily deduce the following

dominant behaviour of overlaps of Q̂ with various quasiprimary fields at late times

Tr(Q̂�k(t)) / e�(�k��m)t, Tr(Q̂�m(t)) ! constant.
12Our exponent di↵ers from Cardy’s value by a factor of 2.
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4.4 Decay of perturbations of a thermal state

We found in the previous sections that the long time behaviour of the reduced density

matrix ⇢dyn,A(t) resembles that of a thermal ensemble plus a small deformation which decays

exponentially. We will find in the next section that the thermal ensemble (or more accurately

the generalized Gibbs ensemble) corresponds to a (higher spin) black hole geometry in the

bulk. The small perturbation of the equilibrium ensemble is thus expected to correspond to

a small deformation of the black hole geometry. Consequently, the exponential decay of the

deformation in the CFT should correspond to a ‘ringing-down’ or a quasinormal mode in

the bulk.

We will address the above issue in the next section which deals with bulk geometry.

However, in order to make the correspondence of the above paragraph more precise, in this

section we will directly present a CFT computation of the decay of a perturbation to a

thermal state. Note that this computation is, in principle, di↵erent from the exponential

decay of the one-point function in the quenched state, 4.6. However, what we will find is

that the long time behaviour 4.6 of an operator �k(0, t) in the quenched state is the same

as that of its two-point function 4.57 in the thermal state 4.3 (with chemical potentials).

The latter measures the thermal decay of a perturbation and is more directly related to a

black hole quasinormal mode. Throughout this section, we will assume that the conformal

dimensions of �k satisfy hk = h̄k.

We define the thermal two-point function as 13

G+(t, 0; �, µ) ⌘
1

Z
Tr(�k(0, t)�k(0, 0)e

��H�
P

n
µnWn) (4.57)

13We use the same notations as in [108].
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By the techniques developed in the earlier sections, a computation of this quantity amounts

to calculating the following correlator on the plane

h�k(z, z̄)�k(y, ȳ)e
�

P
n
µnWni, z = ie�2⇡t/�, z̄ = �ie2⇡t/�, y = i, ȳ = �i (4.58)

where the µn-deformations are understood as an infinite series of contours as in the previous

section.

For µ = 0, the above two-point function is standard. Including the Jacobian of

transformation, we get

G+(t, 0; �, 0) = (
2⇡

�
)4hk

⇥
(ie�2⇡t/� � i)(�ie2⇡t/� + i)

⇤�2hk t!1���! const e�2⇡t�k/�, (4.59)

which clearly matches the long time behaviour of the one-point function 4.6 in the quenched

state for µ = 0. Here �k = 2hk.

In the above, we considered the thermal Green’s function for two points which are both

at the same spatial point � = 0. It is easy to compute the Green’s function when the two

points are spatially separated by a distance l, say with �1 = l and �2 = 0. We get

G+(t, l; �, 0) ⌘
1

Z
Tr(�k(l, t)�k(0, 0)e

��H) =


2⇡

�
e⇡l/�

�4hk�
(ie2⇡(l�t)/� � i)(�ie2⇡(l+t)/� + i)

��2hk

t,l�����!

8
><

>:

const e�2⇡t�k/�, (t� l) � �

const e�2⇡l�k/�, (l � t) � �
(4.60)

The coordinates of the two points, in the notation of 4.58 are modified here to z =

ie2⇡(l�t)/�, z̄ = �ie2⇡(l+t)/�, y = i, ȳ = �i. The prefactor with the square bracket comes from

the Jacobian of the transformation from the cylinder to the plane. The behaviour of the

Green’s function is shown in Figure 4.3. It is important to note that the exponential decay,

found in 4.6 shows up only for time scales t � l.
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|G+(t,l)|

l=6 l=8

t

Figure 4.3: Plots of the thermal Green’s function G+(t, l;�, 0) for � = 2⇡, �k = 1.5. The curve on the
left (blue) is for l = 6, and the curve on the right (orange) is for l = 8. Note that the exponential decay in
time occurs for times larger than l.

The e↵ect of turning on the chemical potentials can be dealt with as in the previous

sections. At O(µn), we will have, as before, a holomorphic contribution and an

antiholomorphic contribution. The former is proportional to

h�k(z̄)�k(ȳ)i ⇥
Z

�

dz1z
n�1

1
hWn(z1)�k(z)�k(y)i (4.61)

As we see, the structure of the integral is the same as in the previous section. As before,

logarithmic terms appear in the above integrals which give the leading, linear, t-dependence.

Similar remarks also apply to the antiholomorphic contour. Since the calculations are very

similar to those in the previous two sections, we do not provide all details. By resumming

the series over the infinite number of contours, we find in a straightforward fashion that

G+(t, 0; �, µ)
t!1���! G+(0, 0; �, 0)b(µ)e

��kt (4.62)

where b(µ) is time-independent, and is of the form b(µ) = 1+O(µ). This long time decay is

the same as that of the one-point function 4.6 in the quenched state, as claimed above. For

points separated by a distance l, the above exponential decay shows up for t � l, as in 4.60.
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In the above, we have discussed the two-point function in real space. It is straightforward

to convert the result 4.60 without chemical potentials to Fourier space, which develops poles

at

!k,m|µ=0 = �i
2⇡

�
(�k + 2m), m = 0, 1, 2, ... (4.63)

Our results in 4.6 can be interpreted as a shift, caused by the presence of the chemical

potentials µn, of the dominant

!k,0 = �i
2⇡

�
(�k +

X

n

µ̃nQn,k) = �i�k, (4.64)

where the notation is the same as that of 4.6. In this chapter we will not address the question

of the shift of the subdominant poles (the current status of these can be found in [34,52,121]).

Two-point functions of the kind 4.57, for a single chemical potential µ3, and up to order

µ2

3
, have appeared earlier in [121] (calculations up to O(µ5

3
) have appeared in [34]). What we

find in this chapter is that at large times, the perturbation series in µn, up to all orders in all

chemical potentials, can be resummed, to yield the leading correction to the thermalization

rate in the presence of chemical potentials.

At a technical level, the one-point function in the quenched state corresponds to a one-

point function in a geometry with a boundary, and for operators considered here, these turn

into a two-point function on the plane, by virtue of the method of images. The thermal decay

naturally involves a two-point function on the plane 14 and agrees with the above two-point

function at late times.
14Actually the thermal calculation involves a product of two such factors, one holomorphic and the other

antiholomorphic, but one of the factors just gives an overall constant and only one factor leads to the
important time-dependence.
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4.5 Holography and higher spin black holes

Zero chemical potential: As remarked in the Introduction, a global quantum quench

described by an initial state of the form 5.1, for large central charges and zero chemical

potentials, has been shown in [67,138,177] to be dual to one half of the eternal BTZ (black

string) geometry, whose boundary represents an end-of-the-world brane.

In an independent development, it was found in [45] that the quasinormal mode of a scalar

field �k(�, t, z) of mass m in a BTZ background (dual to a CFT operator �k of dimension

�k ⌘ 1 +
p
1 +m2) is of the form exp[�2⇡�t/�] at large times. This time-dependence

agrees with the CFT exponent in 4.60 exactly. This shows that the exponential decay of a

CFT perturbation to a thermal state corresponds to the decay of the corresponding scalar

field in the bulk geometry. This result has been extended to higher spin fields in the BTZ

background in [88].

Non-zero chemical potentials: In case the CFT has additional conserved charges, in

particular if it has a representation of a W1 algebra (and consequently the hs(�) algebra

[119]), then the bulk dual corresponding to those conserved charges have been conjectured

to be the conserved higher spin charges of higher spin gravity. In particular, [131,162] have

shown that if one interprets the grand canonical ensemble 4.4 (more generally, the GGE) in

the framework of an hs(�) representation, then the bulk dual corresponds to a higher spin

black hole.

Thus, we would like to conjecture that the bulk dual of the quantum quench with chemical

potentials, would correspond to a gravitational collapse to a higher spin black hole.

As an important consistency check, by analogy with the case with zero potential, in the

present case too, the leading quasinormal mode (QNM) of a scalar field �k(�, t, z) should
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have a time-dependence given by 4.62. Following the results in [52] (see also [34,121]) 15 we

find that at late times t � � the QNM for the hs(�) scalar field �+ behaves, up to O(µ3),

as e�i!
k,0 t, where

!k,0 = �i
2⇡

�

✓
1 + �+ µ̃3

1

3
(1 + �)(2 + �)

◆
(4.65)

where the index k here refers to the operator �k dual to the scalar field �+. Noting that

for this operator we have �k = 1 + �, and Q3,k = 1

3
(1 + �)(2 + �) [34, 121], we see that

the QNM frequency !k,0 agrees, to the relevant order, with the pole 4.64 of the thermal

2-point function which, in turn, is related to the thermalization exponent by the relation

!k,0 = �i�k, with �k given in 4.6.

4.6 Discussion

In this chapter, 2D conformal field theories were considered with additional conserved

charges besides the energy. We probed non-equilibrium physics starting from global quenches

described by conformal boundary states modified by multiple UV cut-o↵ parameters 4.1. It

was found that local observables in such a state thermalize to an equilibrium described by

a grand canonical ensemble 4.4 with temperature and chemical potentials related to the

cut-o↵ parameters. We computed the thermalization rate for various observables, including

the reduced density matrix for an interval. It was found that the same rate appears also in

the long time decay of two-point functions in equilibrium (see 4.6 and 4.14). In the context

where the number of conserved charges is infinite, and they are identified with commuting

W1 charges, the equilibrium ensemble (a generalized Gibbs ensemble, GGE) corresponds

to a higher spin black hole [131, 162]. We found that the thermalization rate found above

agrees with the leading quasinormal frequency of the higher spin black hole; this constitutes

15We wish to thank Alejandro Cabo-Bizet and Viktor Giraldo-Rivera for informing us that the di↵erence
between equation 4.65 above and the corresponding equation (4.2) in a previous version of their paper [52]
was due to a typo, which has now been corrected in the new version of their paper.
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an additional, dynamical, evidence for the holographic correspondence between the global

quenches in this chapter and the evolution into the higher spin black hole.

One of the main technical advances made in this chapter is the resummation of leading-

log terms at large times, presented in Section 4.2.2, which leads to exponentiation of the

perturbation series, leading to the thermalization rate, presented in 4.6, 4.49, as a function

of chemical potentials. This allows us to also compute the e↵ect of chemical potentials on

the relaxation times of thermal Green’s functions. Another technical advance consists of the

computation of the long-time reduced density matrix 4.9, using a short-interval expansion,

which allows us to prove thermalization of an arbitrary string of local observables.

One might wonder whether the results presented in this chapter are tied to the use

of translationally invariant quenched states such as 4.1, whose energy density and various

charge densities are uniform. It turns out that if the initial state has inhomogeneities in a

compact domain and has uniform energy densities outside, local observables again thermalize

asymptotically with exponents governed by the uniform densities. Other important issues

involve local quenches (see, e.g. [55, 201]), and compact spatial dimensions. The issue of

thermalization when space is compact is quite subtle. It has been shown in [71] that at large

times one can have the phenomenon of revival (observables e↵ectively returning to their

initial values). The dynamical entanglement entropy for a quantum quench in a space with

boundaries is an interesting, related, issue; which we shall discuss in the next chapter.

NOTE: We would also like to thank Juan Pedraza for drawing our attention to Ref. [53]

and Alejandro Cabo-Bizet and Viktor Giraldo-Rivera for a useful correspondence regarding

Ref. [52].
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4.7 Appendix

4.7.1 Some details on one-point functions

Here we collect some additional helpful material on the one-point functions discussed in this

chapter.

A few explicit one-point functions with zero chemical potentials

Case k = descendent of identity: In this case, �k(w, w̄) is of the form T, T̄ , or : T T̄ : or

some descendents thereof. Under a conformal transformation 4.16, these operators pick up

a c-number term in addition to a term proportional to the corresponding operator on the

plane/UHP. We will give some examples to illustrate the calculation

1. cylinder: In this case

hT (w)icyl = h
✓
� c⇡2

6�2
� 4⇡2

�2
z2T (z)

◆
iUHP = � c⇡2

6�2

h: T T̄ :(w, w̄)icyl = h
✓
[� c⇡2

6�2
� 4⇡2

�2
z2T (z)][� c⇡2

6�2
� 4⇡2

�2
z̄2T̄ (z̄)]

◆
iUHP = (

c⇡2

6�2
)2 (4.66)

2. strip: In this case

hT (w)istr = h
✓
� c⇡2

6�2
� 4⇡2

�2
z2T (z)

◆
iUHP = � c⇡2

6�2
= hT (w)icyl

h: T T̄ :(w, w̄)istr = h
✓
[� c⇡2

6�2
� 4⇡2

�2
z2T (z)][� c⇡2

6�2
� 4⇡2

�2
z̄2T̄ (z̄)]

◆
iUHP

= (
c⇡2

6�2
)2 + AT T̄ (z � z̄)�4 = (

c⇡2

6�2
)2 + aT T̄ e

�8⇡t/� + ... (4.67)

where AT T̄ , aT T̄ are constants as in 4.17 and 4.18.

Case k = descendent of other primaries: In this case,

1. cylinder: The one-point function vanishes as in the case of primaries.

156



2. strip: The one-point function can be related to one-point function of primaries which is

dealt with above.

Some details on O(µn) correction to the one-point function

In this section we will consider the following integrals which arise in connection with O(µn)

correction to the one-point function h�(�, t)idyn:

In(z, z
0|�1) ⌘

Z

�1

dz1 zn�1

1
fn(z1, z, z

0), gn(z1, z, z
0) ⌘

Z
dz1 zn�1

1
fn(z1, z, z

0)

fn(z1, z, z
0) =

hWn(z1)'k(z)'⇤

k(z
0)iconnC

h'k(z)'⇤

k(z
0)iconnC

= qn,k
(z � z0)n

(z1 � z)n(z1 � z0)n
(4.68)

The second integral on the first line is an indefinite integral. The integrals above can be

explicitly computed. E.g.

g3(z1, z, z
0) = q3,k[R3(z, z

0)(log(z1 � z)� log(z1 � z0))� z2

2(z1 � z)2
+

z02

2(z1 � z0)2

+
z0(2z + z0)

(z � z0)(z1 � z0)
+

z(2z0 + z)

(z � z0)(z1 � z)
]

I3(z, z
0|�1) = q3,k[R3(z, z

0)(� log(�z) + log(�z0)) + 3
(z + z0)

(z � z0)
]

R3(z, z
0) ⌘ (z2 + 4zz0 + z02)

(z � z0)2
(4.69)

Note that I3 is essentially obtained from the lower limit of the integral, i.e. from �g(0, z, z0).

The contour �1 in I3 specifies which branch of the log is to be taken. In particular

I3(z, z
0|�1)� I3(z, z

0|�̃1) = �2⇡iq3,k R3(z, z
0) (4.70)

In the long time limit 4.20, we get

I3(z, z
0|�1) = I3(z, z

0|�̃1) = 2q3,kt(2⇡/�) + q3,k ⇥ const +O(e�2⇡t/�) (4.71)

157



In this equation we have displayed the principal value of the relevant integrals (the

discontinuity 4.70 tells us the coe�cient of the log term or the linear t term).

However, we would like to understand the above results more simply, by using the

Wn(z1)'k(z) OPE which is of the form:

Wn(z1)'k(z) = qn,k
'k(z)

(z1 � z)n
+

n�1X

i=1

↵n,i
'k,i(z)

(z1 � z)n�i
+ regular terms (4.72)

where 'k,i(z) is of dimension hk + i.16 Using this, we get an expansion for the connected

3-point function of the form:

hWn(z1)'k(z)'⇤

k(z
0)iconnC

h'k(z)'⇤

k(z
0)iconnC

=
qn,k

(z1 � z)n
+

Cn,1

(z1 � z)n�1(z � z0)
+O(z � z0)�2 (4.73)

Performing the integral in 4.68,

gn(z1, z, z
0) = qn,k

✓
log[z1 � z]� (n� 1)

z

z1 � z
+ ...

◆

+
Cn,1

z � z0
(z1 � z + (n� 1)z log[z1 � z] + ...) + ...

The ellipsis in each round bracket represents terms with higher powers of 1/(z1� z) (up to a

maximum of (z1�z)�n); successive round brackets themselves are arranged in higher inverse

powers of z � z0. Using the Wn(z1)'⇤

k(z
0) OPE in a similar fashion and using the symmetry

property gn(z1, z, z0) = (�1)ngn(z1, z0, z) we can arrive at a general structure

gn(0, z, z
0) = qn,k(log[�z]� log[�z0])Rn(z, z

0) + ...

where Rn(z, z0) = (�1)n�1Rn(z0, z) is of the form Pn�1(z, z0)/(z � z0)n�1 (Pn�1(z, z0) is a

homogeneous symmetric polynomial of degree zero). See the explicit form of Rn for n = 3

in 4.69. The omitted terms are all ratios of homogeneous polynomials in (z, z0) of the same

16This is the general form; some of the ↵n,i coe�cients may, of course, vanish.
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degree in the numerator and in the denominator. This implies that we have, in the long time

limit 4.20

In(z, z
0|�1) = I3(z, z

0|�̃1) = 2qn,k(2⇡/�)t+ qn,k ⇥ const +O(e�2⇡t/�) (4.74)

which, of course, agrees with 4.71.

Note that the dominant time-dependence 2qn,kt(2⇡/�) comes from the long-time limit

of the coe�cient Rn(z, z0) of the log terms, which can be read o↵ from the discontinuity

In(z, z0|�1)� In(z, z0|�̃1) (see 4.70). Now, the contour
R
�1��̃1

dz1 can be deformed to a very

small circle
H
�zdz1 around the point z; therefore the leading long-time behaviour R(0)

n (z, z0)

can be derived by using the leading OPE singularity in 4.72 and computing the residue at

z1 = z:

Coe�cient of [log(�z0)� log(�z)] in In(z, z
0)

= Residuez1=z

✓
hWn(z1)'k(z)'⇤

k(z
0)iconnC

h'k(z)'⇤

k(z
0)iconnC

◆
⌘ qn,kR

(0)

n (z, z0) = qn,k (4.75)

4.7.2 Short interval expansion

In this section we will explain a formalism suitable for computing partition functions of the

kind that appear in 4.50. For convenience we will first compute these quantities in Euclidean

time ⌧ = it and later analytically continue back to Lorentzian time. With this, each of the

expressions Zsc, Zss, Zcc is of the form

Tr(⇢A,1⇢A,2) =

Z

geometry 1

D'1

Z

geometry 2

D'2 �(F ['1,'2]) exp (�S['1]� S['2]) (4.76)

where S['] represents the action for the CFT (with fields ') and the delta-functional in the

measure represents a gluing condition between a geometry ‘1’ and a geometry ‘2’ along a

‘cut’ which is the location, at a particular time ⌧ , of the spatial interval A : � 2 (�l/2, l/2)
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17 For Zss, both geometries are that of a strip of the Euclidean plane described by complex

coordinates (w, w̄) = � ± i⌧ defined by boundaries at ⌧ = ±�/4 with boundary conditions

determined by the boundary state |Bdi introduced in 5.1. For Zcc, both geometries are

that of a cylinder cut of the Euclidean plane with identified boundaries at ⌧ = ��/4, 3�/4.

The geometries for both Zss and Zcc are familiar from calculations of Entanglement Renyi

entropy (of order 2) and can be calculated from appropriate correlation functions of twist

fields [64] which exchange two identical geometries. For Zsc, the two glued geometries are

di↵erent (that of a strip and a cylinder), hence the method of twist operators do not apply

in a straightforward fashion. (See Figure 4.4). In this chapter, we will therefore, employ the

method of the short interval expansion.

Figure 4.4: Two di↵erent geometries, the strip and the cylinder, glued along the cut as described in the
text. The method of the short interval expansion allows us to compute the functional integral over this
geometry by replacing a small tube enclosing the two glued cuts by a complete basis of operators �k1 ⌦ �k2

where the operators live in the two Hilbert spaces.

The idea of the short interval expansion [63] is as follows. To begin, we express the

functional integral 4.76 as an overlap of two wavefunctions in H1 ⌦ H2, as follows

Z12 = Tr(⇢A,1⇢A,2) = h out| ini =
Z

w12D1

D'
1
(w1)

Z

w22D2

D'
2
(w2)  in['1,'2]  

⇤

out['1,'2]

 in['1,'2] ⌘
Z

w12D1

D'1(w1)

Z

w22D2

D'2(w2)�('1|@D1 � '1)�('2|@D2 � '2)�(F ['1,'2]) exp (�S['1]� S['2])

 out['1,'2] ⌘
Z

w1 /2D1

D'1(w1)

Z

w2 /2D2

D'2(w2)�('1|@D1 � '1)�('2|@D2 � '2) exp (�S['1]� S['2])

(4.77)

17To be precise, �[F ] = �('1(A<)�'2(A>)) �('1(A>)�'2(A<)), where A< (A>) represents the limiting
value from below (above) the cut.
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Here D1 (respectively, D2) is a small disc drawn around the cut in geometry 1 (respectively,

geometry 2).

Note that only | ini depends on the gluing condition since the delta functional in the

measure does not a↵ect | outi. The basic point of the short interval is that in the limit

when the length l of the cut is small compared with the characterizing length scale of the

geometries (in our case, when l ⌧ �), the wavefunction  in['1,'2] becomes jointly localized

at the centre (w1, w̄1) of the disc D1 and at the centre (w2, w̄2) of the disc D2
18, and hence

can be expanded in terms of local operators, as follows

| ini =
X

k1,k2

Ck1,k2 �k1(w1, w̄1)�k2(w2, w̄2)|0i1 ⌦ |0i2 (4.78)

Here k1, k2 label a complete basis of quasiprimary operators of the CFT Hilbert space. Each

term in the sum represents a factorized wavefunction (between geometries 1 and 2), which,

therefore, gives 19

Ẑsc =
X

k1,k2

Ck1,k2h�k1(w1, w̄1)istrh�k2(w2, w̄2)icyl,

Ẑss =
X

k1,k2

Ck1,k2h�k1(w1, w̄1)istrh�k2(w2, w̄2)istr,

Ẑcc =
X

k1,k2

Ck1,k2h�k1(w1, w̄1)icylh�k2(w2, w̄2)icyl (4.79)

Here the subscripts str and cyl refer to “strip”, and “cylinder” respectively. The one-point

functions are evaluated on the respective geometries without any cut (see Section 5.2.2 for

more details). The glued functional integral 4.76, 4.77 is recovered by summing over k1, k2

with the coe�cients Ck1,k2 ; , as clear from 4.79 these are determined by the gluing condition

and depend on the size of the cut [63] (see Section 4.7.2 for more details).

18We will take the centre of the disc in each geometry to coincide with the centre of the cut, which has
coordinates w = i⌧, w̄ = �i⌧ .

19In case geometries 1 and 2 are identical, the superscripts in wi, w̄i, i = 1, 2 indicate which sheet we are
considering.

161



The coe�cients Ck1,k2

As explained in [63] (see also Section 4.7.2), the coe�cients Ck1,k2 are determined by the

equation

Ck1,k2 =
Z2

Z2

1

(nk1nk2)
�

1
2 lim
z1!11,z2!12

(z1z2)
2(hk1

+hk2
)(z̄1z̄2)

2(h̄k1
+h̄k2

)h�k1(z1, z̄1)�k2(z2, z̄2)iC2

(4.80)

where C2 represents two infinite planes glued along a cut A, Z2 is the functional integral

such a glued geometry and Z1 is the functional integral over a single plane. This equation

can be easily proved by inserting quasiprimary a operator at infinity in each plane in an

equation like 4.76 or 4.77. The two point function in the glued geometry is to be determined

by using the uniformizing map:

y =
p

(z + l/2)/(z � l/2) (4.81)

The normalization constants nk are determined by the following orthogonality condition of

the quasiprimary operators

h�k1(z1, z̄1)�k2(z2, z̄2)iC =
nk1�k1,k2

z
hk1

+hk2
12

z̄
h̄k1

+h̄k2
12

(4.82)

where nk1 is a normalization constant. Note that Ck1,k2 = Ck2,k1 . Below we will use the

notation

Ĉk1,k2 = Ck1,k2/C0,0 (4.83)

Case (k1, k2) = (0, 0): We will denote the identity operator as �0 = 1. It is obvious that

C0,0 = Z2/Z
2

1
(4.84)
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Case (k1, k2) = (k, 0): The only case where Ck,0 6= 0 is when �k(z, z̄) is a descendent of the

identity operator, e.g. T (z), T̄ (z̄), : T (z)T̄ (z̄) :, ⇤(z), ⇤(z̄) etc.20 E.g.

ĈT,0 = CT,0/C0,0 = ĈT̄ ,0 =
l2

16
; ĈT T̄ ,0 =

l4

256
; ... (4.85)

All other Ck,0 vanish as they are proportional to a one-point function of a primary operator

on the Riemann surface (and hence to that on the complex plane).

Case (k1, k2) = (primary, primary): In case �k1 ,�k2 are primary operators, 4.80 gives

Ĉk1,k2 =
1

nk1

�k1,k2

✓
lei⇡/2

4

◆2(hk1
+h̄k1

)

(4.86)

Case (k1, k2) = (descendent, descendent): In case �k1 is of the form L�n1L�n2 ...L̄�m1L̄�m2 ...�l1

and �k2 is of the form L�r1L�r2 ...L̄�s1L̄�s2 ...�l2 , we can show that

Ĉk1,k2 = �l1,l2 �
P

n,
P

r �Pm,
P

s A(n1, n2, ...,m1,m2, ...; r1, r2, ..., s1, s2, ...) l
2(hk1

+h̄k1
),

hk1 = hl1 +
X

n, hk2 = hl2 +
X

m (4.87)

where A(...) is a numerical coe�cient.

20Here ⇤(z) = : TT :(z)� 3
10@

2
z
T is the level 4 quasiprimary descendent of the identity.
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Chapter 5

Non-Thermalization and Revivals in

Cardy-Calabrese States

5.1 Introduction and Summary

In the previous chapter, we understood how one could generalise the CC state to the more

general gCC state with a large number of additional conserved charges. In either case, both

the correlation functions and reduced density matrices, seemed to thermalise. This implied

that these states can be extremely useful in understanding the underlying mechanism via

which closed, isolated, out-of-equilibrium quantum systems approached thermal equilibrium.

In this chapter, we shall try to understand how such is not always the case. We shall do so

by restricting the spatial extent of the 1-D quantum systems to a finite value and trying to

understand its e↵ects on thermalization of the system.

In much of the above discussion, the spatial extent of the system is infinite (or much

larger than any other length scale in the problem). The e↵ect of a finite spatial extent on

thermalization has long been a topic of interest, e.g. in the context of the FPU problem

[90, 106, 217]. From the point of view of experimental realizations, in case of 2D CFTs,

the spatial boundaries can be thought of as representing impurities in a quantum critical
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system. Thermalization, or lack thereof, for global quenches in a finite system of length

L has recently been studied in [71], where it has been shown that for rational CFT’s, the

quenched state returns to itself after a finite period of time which is a multiple of L/2.

The reason for this ‘revival’ was roughly that the time-dependence of the wavefunction, for

rational highest weights, is a sum of terms with rational periods. Correlation functions and

entanglement entropy of subsystems also follow a periodic behaviour. The periodic behaviour

of entanglement entropy was explicitly confirmed in the global quench on a circle for free

fermions in [233]. In [163], the periodic behaviour observed in [71] is explained by interpreting

the quenched state in terms of a Lorentzian-signature conformal transformation of the ground

state on the strip. The authors this paper also comment on a corresponding holographic

formulation. For other discussions on quenches on the segment, we refer to [82,102,128] and

the recent discussion [92]. Revival in higher dimensional field theories has been considered

in [73]; holographic entanglement entropy has also been discussed in 2+1 dimensional systems

with finite size [3] where a partial revival has been found.

The main focus of this chapter will be to study the e↵ect of finite system size on various

time-dependent phenomena. Below we summarize the contents and main results of this

chapter:

(i) We study the time evolution of observables in a 2-D CFT starting from a quenched

state with a UV cuto↵ scale 1/� (as described above) in the presence of finite spatial

boundaries (with system size L). The tool used in the CFT computations is a conformal map

(the Christo↵el-Schwarz transformation), as in [163], which converts a rectangular geometry

to an upper half plane (see Section 5.2.1 and Appendix 5.7.1). The map gets simplified in

the limits of large L and large � respectively and can be identified with known versions of

the map from a cylinder to a plane.
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(ii) We show that the spatial boundaries lead to locally thermalized regions (characterized

by a temperature 1/�) which merge and split periodically at regular time intervals given by

the system size. We also quantitatively compute thermalization of certain observables on

intermediate time scales prior to the occurrence of the ‘revival’ phenomena discussed above.

We show that in the limit of large L, the relaxation rate agrees with the known results

for infinite systems (see Sections 5.2.2, 5.2.3, 5.2.4 and Appendix 5.7.3). Part of the above

discussion has already appeared in [102,163] (see also [92]).

(iii) In Section 5.4 we present a bulk dual of the CFT on a rectangle, following the

AdS/CFT proposal for CFT with boundaries [95, 117, 154, 203, 232], coupled with [181, 218,

234] which discuss a large di↵eomorphism (see Eqn. (5.56)) that reduce to the (analytically

continued) conformal map discussed above. The periodicity of various observables mentioned

above can be interpreted in terms of the time-periodicity of the above large di↵eomorphism,

which e↵ects a time-periodic change of the (regulated) AdS boundary and, in turn, causes

changes in geometric quantities such as lengths of geodesics tied to the boundary.

(iv) The main results of this chapter, presented in Sections 5.3, 5.4 and 5.5, concern the

computation of the entanglement entropy (EE) of a single interval of length l. We use the

conformal map described above, and the method of images, to relate the CFT computation of

EE to a four-point function of ‘twist operators’ on the plane. We also compute the EE using

holographic methods (Section 5.4.1), developing on earlier work by one of the authors [234].

The holographic result is universal and does not depend on the specific CFT (except on the

central charge). The CFT result, on the other hand, involves a four-point function which

generically depends on the specific CFT. At large L, the CFT four-point function factorizes,

becomes universal, and readily agrees with the holographic result. The analysis for general

L/�, however, is much more subtle. We show that (see Section 5.3.4), although the CFT

four-point function does not a priori factorize, it takes a universal form provided one takes

an appropriate large c limit discussed recently [20, 112, 135, 164]. We show that this new

universal form then agrees with the result obtained from holography.
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(vi) Another novel computation in this chapter (see Section 5.5) is that of the EE by

adapting the quasiparticle method [59] to the presence of spatial boundaries. The boundaries

lead to hard wall reflection of the quasiparticles, causing periodic entry and exit of EPR

partners to and from the interval of interest. We compute the resulting entanglement entropy.

The result quantitatively agrees with the large L results discussed in the last paragraph.

(vii) We should remark that in [71], revival was investigated by using the fidelity function

|h 0| exp[�iHt] 0i|2 1; it was pointed out that no such revival was expected in the presence of

a continuum of (or more generally, incommensurate) conformal weights, e.g. in an irrational

conformal field theory. The periodicity we find in this chapter in entanglement entropy

and other observables is observed, however, in any CFT, including large c theories with

a holographic dual. This is tied to the fact that these observables are not su�cient to

distinguish between rational and irrational theories (see [92] for a recent discussion).

5.2 CFT with finite spatial boundary

In this section, we will describe a quantum quench in the presence of a spatial boundary

using conformal field theory methods. We will review some known results [71,163] and some

new results for time-dependent one-point functions. We will discuss CFT computation of

EE in the next section.

Lewt us consider spatial boundaries at x = ±L/2 and, following [59], an initial state of

the form,

| 0i = e��H/4|Bi. (5.1)

where the state |Bi is a conformal boundary state (the state | 0i can be regarded as an

approximation to a realistic quench state [85,87,180]). The parameter � can be regarded as

1This is a simpler version of the so-called Loschmidt echo.
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a length scale which cuts o↵ the UV modes to render the state normalizable.2 Following [59],

we will view this wavefunction as the result of a Euclidean time evolution from a boundary

state |Bi at ⌧ = ��/4 to | 0i at ⌧ = 0. Real time evolution of (5.1) is described by

continuing ⌧ to complex values:

| (t)i = e�iHt| 0i = e�⌧H |Bi, ⌧ = �/4 + it. (5.2)

We would be interested in time-dependent quantities such as (a) the equal-time correlators

hO1(x1, t)...On(xn, t)i ⌘ h (t)|O1(x1)...On(xn)| (t)i. (5.3)

or (b) the entanglement entropy SEE(t) of an interval A = [�l/2, l/2] when the system as

a whole is described by the wavefunction (5.2). As discussed in [59] (see below), SEE(t) is

related to a two-point correlator of the above kind.

As mentioned above, the boundary state |Bi implements a certain boundary condition

on the time boundary ⌧ = ��/4. When the same boundary conditions are also imposed at

the spatial boundaries x = ±L/2, then the correlators (5.3) can be evaluated by a functional

integral over a rectangle (see figure 5.1), with boundary condition relevant to the boundary

state |Bi imposed on all sides of the rectangle.3

5.2.1 Mapping the rectangle to the upper half plane

Functional integrals over a rectangular region are not easy to compute directly. However,

since we are dealing with a CFT, and the boundary conditions do not break conformal

symmetry, the CFT correlators (5.3) are covariant under conformal transformations. We can

2We will find below that for large enough L/�, the energy of this state coincides with the energy of a
thermal ensemble characterized by an inverse temperature � (see (2.1)). Hence, from here on we will refer
to 1/� as a ‘temperature’, although we should remember that we are still dealing with a pure state and the
nomenclature is only a formal one.

3In case the spatial boundary conditions are di↵erent from the temporal boundary conditions, one needs
to insert some boundary operators at the corners of the rectangle [74].
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-1/b

Figure 5.1: Maps between the upper half plane and the rectangle. The colour coding represents the
mapping of the corners to the boundary of the UHP. See (5.88) and (5.87). The time evolution contours in
the rectangle are mapped to the UHP as shown on the right. We have chosen L = � = 1.

thus reduce the computation to that on the upper half plane (UHP) by using a conformal map

from the rectangle to the UHP. The necessary map for this purpose is a Christo↵el-Schwarz

transformation4, defined by

w(z) = A

Z z

0

dzq
(z2 � b2)(z2 � 1

b2 )
+B, (5.4)

Here, z is a complex coordinate on the UHP (defined by the region Im(z) � 0 of the plane),

whereas w = x+ i⌧ is a complex coordinate parametrizing the above-mentioned rectangular

region (bounded by the lines |Re(w)|  L/2, |Im(w)|  �/4, see figure 5.1). A,B are

constants which determine the images of the corners of the rectangle on the boundary of the

UHP. Without loss of generality, the four image points can be chosen to have z-coordinates:

(z1, z2, z3, z4) = (�1/b,�b, b, 1/b) with (0  b  1). We will look for a map which sends

these points to the following corners of the rectangle respectively:

w

✓
�1

b

◆
= �L

2
� i

�

4
, w(�b) =

L

2
� i

�

4
, w(b) =

L

2
+ i

�

4
, w

✓
1

b

◆
= �L

2
+ i

�

4
. (5.5)

4The transformation we use here is a little di↵erent from that found in literature. The reason is that we
want to explore both the low and the high values of L/� using this map by simply tuning the parameter b.
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The required map is discussed in [163] (see also Appendix 5.7.1). For convenience, we

reproduce here the map z(w) (5.88) from the rectangle to the UHP

z(w) = b sn


4K(b4)

i�

✓
w � L

2

◆
, b4
�
, z̄(w̄) = b sn


4K(b4)

�i�

✓
w̄ � L

2

◆
, b4
�
. (5.6)

The parameter b determines the aspect ratio of the rectangle:

�

L
=

4K(b4)

K(1� b4)
. (5.7)

We show in Appendix 5.7.1 that the map (5.6) can also be regarded as a map from the torus

(a product of two circles of sizes 2L, �) owing to the periodicity properties (5.91). The map

also has a large L limit (5.96)

z(w) = i exp[�2⇡w/�], (5.8)

and a low temperature5 limit (5.97)

z(w) = i cot
⇣⇡
4
+
⇡w

2L

⌘
. (5.9)

5.2.2 One Point Function

In this section, we will evaluate a one-point function hO(x, t)i as defined in (5.3) (part

of the above discussion has already appeared in [102, 163], see also [92]). The evaluation

would include calculating the one point function in Euclidean time ⌧ and then analytically

continuing to Lorentzian time t. We shall however, first, use the map z(w) (5.6) to relate

the one-point function on the rectangle to that on the UHP.

5We use the word ‘temperature’ to refer to 1/� in the sense of footnote 2.

170



Primary operators For a primary operator O(w, w̄), of dimension (h, h̄), the one-point

function on the rectangle becomes

hO(w, w̄)irect =
✓
@z

@w

◆h✓ @z̄
@w̄

◆h̄

hO(z, z̄)iUHP. (5.10)

For a holomorphic operator, or an operator with h̄ 6= h, the above one-point function on

the UHP vanishes. However, for a primary operator of the form Oh,h(w, w̄) = �h(w)�
†

h(w̄),

(with h̄ = h) 6 the above one-point function on the UHP is non-zero and is given by the

‘method of images’ [74]. According to this method, the conformal boundary condition on

the UHP amounts to replacing the antiholomorphic operator �†

h(z̄) from the point P = (z, z̄)

by a holomorphic operator �h(z0) at the image point P 0 = (z0, z̄0) (with z0 = z̄, z̄0 = z). The

one-point function is now given by the holomorphic 2-point function on the plane7

hOh,h(P )iUHP = Abh�h(P )�†

h(P
0)iC = Abh�h(z)�

†

h(z
0)iC

Hence, the original one-point function, for primary operators Oh,h(w, w̄) ⌘ �h(w)�
†

h(w̄)

reduces to

hOh,h(w, w̄)irect =
✓
@z

@w

◆h✓ @z̄
@w̄

◆h

h�h(z)�
†

h(z
0)iC (5.11)

Quasiprimary operators In case the operator O(w, w̄) is quasiprimary, it mixes with

lower dimension operators under conformal transformations, leading to additional terms

in (5.10). For example, for the holomorphic stress tensor T (w) ⌘ Tww(w), the conformal

transformation to the UHP is given by

hT (w)irect =
✓
@z

@w

◆2

hT (z)iUHP � c

12
{z, w} = � c

12
{z, w} (5.12)

6Here we allow for complex operators �; �† denotes the hermitian conjugate.
7Up to a constant Ab which depends on the operator O and the boundary state |Bi. We will assume that

Ab 6= 0; the precise value of this constant will be unimportant and we will drop it henceforth.

171



In the second equality we have used the fact that hT (z)i on the UHP is the same as that on

the plane (since it does not have an antiholomorphic factor), and hence vanishes. The last

expression contains the Schwarzian derivative

{z, w} =
2(@3wz)(@wz)� 3(@2wz)

2

2(@wz)2
(5.13)

A similar formula is true for the antiholomorphic stress tensor T̄ (w̄).

For the operator O(w, w̄) =: T (w)T̄ (w̄) :, by using a combination of the above techniques,

we get a generalization of the formula (5.11):

h: T (w)T̄ (w̄) :irect =
✓
@z

@w

◆2✓ @z̄
@w̄

◆2

hT (z)T (z1)iC +
���
c

12
{z, w}

���
2

(5.14)

Analytic continuation to real time correlators

As discussed before, the time-dependent wavefunction (5.2), or equivalently the time-

dependent Heisenberg operators O(x, t) can be realized by analytically continuing ⌧ to

imaginary values ⌧ = it. Thus, O(w, w̄) = O(x, ⌧) can be interpreted as the time-dependent

operator O(x, it). In terms of the coordinates on the rectangle, the analytic continuation

reads8

{w, w̄} = x± i⌧
⌧=it��! x⌥ t ⌘ x± (5.15)

This ‘Wick rotates’ the Euclidean rectangle to the Lorentzian geometry,

ML = I⇥Rx± = x⌥ t, x 2 I = [�L/2, L/2], t 2 R (5.16)

Note that such an analytic continuation is possible since the Euclidean observables are

separately analytic in (z, z̄), and hence in (w, w̄). We will use this rule below to explicitly

8Note the convention x± ⌘ x⌥ t.
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compute the time-dependence of one-point functions and later on, the single interval

entanglement entropy.

We note here that although for these applications, we do not need to have an analytic

continuation of the complex z, z̄ plane, we will indeed find an analytic continuation of the

Euclidean map (5.6), viz. (5.55), from the the above geometry ML to the Lorentzian R2.

The above map is many-to-one and one can choose a fundamental domain of the map to

be a diamond-shaped region D : {x± 2 (�L/2, L/2)} ⇢ ML in Section 5.4 to build a bulk

geometry dual to a CFT on ML. It has been suggested in [163], and further elaborated

in [92], that thermalization appears to happen when one confines to this diamond (which

is natural from the viewpoint of the R2, whereas the actual spacetime is all of ML, with

its built-in recurrence. In Section 5.4, the map (5.55) is crucially used to construct a dual

geometry for the CFT state. We will discuss this map in detail in Appendix 5.7.2.

5.2.3 Behavior of the Energy density

In Euclidean CFT, the energy density is given by

EEucl(w, w̄) = hT⌧⌧ i = �
�
hT (w)i+ hT̄ (w̄)i

�
=

c

12
({z, w}+ {z̄, w̄}) (5.17)

where in the last step we have used (5.12) and its antiholomorphic counterpart. In the limits

of high and low temperature, (5.8) and (5.9) respectively, the Schwarzian derivative is easy

to compute, leading to the constant values

EEucl =

8
><

>:

�c⇡2/3�2, � ⌧ L

+c⇡2/12L2, � � L
(5.18)
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Using the methods of Section 5.2.2 and the analytic continuation(5.15), the energy density

in the Lorentzian theory is,

E(x, t) = hT++(x+) + T��(x�)i = hTtti = �hT⌧⌧ i = �EEucl(w = x+, w̄ = x�) (5.19)

Now, the high and low temperature limits are,

E(x, t) = +c⇡2/3�2, � ⌧ L (5.20)

= �c⇡2/12L2, � � L. (5.21)

which can be identified with the well-known expressions for the thermal energy and Casimir

energy respectively.

We note here that some of the results in this subsection have been obtained and discussed

in [71, 163]; we include these here for the sake of completeness.

Time-dependence

Away from the above two limits, the energy density (5.19) is both space and time-dependent.

We display the behaviour of the ‘normalized’ dimensionless quantity

eE =
EL2

c
(5.22)

in Figures 5.2 and 5.3. In Figure 5.2, one can clearly see two crests getting reflected back

and forth periodically at the boundary walls. These correspond to the holomorphic and

antiholomorphic stress tensors respectively.
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Figure 5.2: The time evolution of the normalized energy density eE (Eq. (5.22)) in the quench geometry.
In both the figures we have chosen � = L = 10. Left panel: The time range is taken to be t 2 [0, 2L]. Note
that there are two crests, one moving initially to the right (corresponding to T++(x+) of (5.19)), and the
other moving to the left (corresponding to T��(x�)). Both are reflected at the wall at t = (n+1/2)L, n 2 Z.
Right panel: Here we display, in a 2D plot, some of the features of the 3D plot at t = 0, L/4, L/2. At t = 0
there is a single local thermal region in the middle. As time progresses, it splits into two separate regions
(see the curve for t = L/4), reaching the two ends at t = L/2. After this time, the two regions turn back
and merge at t = L, as is clear from the 3D plot on the left.

Space dependence: Localized thermal region

In Figure 5.3, we plot the energy density at a fixed time t = 0 as a function of x for various

values of the ratio �/L, with temperature increasing from left to right. In the figure, we

see that for temperatures T . 1/L, the energy density profile has a localized region in the

middle where it agrees with the thermal density. In Section 5.4, we will provide a holographic

interpretation of this observation.

thermal

casimirenergy

x

β/L=4

thermal

β/L=1

e
n
e
rg
y

casimir
x

e
n
e
rg
y

thermal

casimir
x

β/L=0.3

Figure 5.3: Plot of the normalized energy density eE(x, t) at t = 0 for various values of �

L
= 4, 2, 0.3. Left:

�

L
= 4. This can be interpreted as low temperature or small ‘box size’ L. The energy density approaches the

uniform limiting value, the Casimir energy density computed in (5.21) in the low temperature limit �

L
= 1.

Middle: �

L
= 2. The energy density approaches the thermal value in a small region near the middle. Right:

�

L
= 1

4 . This can be interpreted as a high temperature or large box size L. The energy density matches in

a large region the uniform thermal energy density computed in (2.1) in the limit �

L
= 0. In the first panel,

the one-point functions actually have a periodicity with a period 2L (see Section 5.4.2).
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5.2.4 Thermalization and ‘revival’ of a local operator

In this section, we discuss some features of time and position dependence of one-point

functions, using the formulae derived in Section 5.2.2. We consider primary operators of

the form Oh,h(x, t) whose one-point functions are given by (5.11) with ⌧ = it. We also

consider a particular quasiprimary operator T T̄ (x, t), whose one-point function is given by

(5.14). The results are presented in Figure 5.4. An important feature of the time-dependence

of these operators, for a given x (see the left panel of Figure 5.4), is that there is a time

window, t1 < t < t2, in which all these local operators ‘thermalize’, i.e., they approach their

‘thermal’ values:

hO(x, t)i ! hO(x)i� + a exp[��(t� t1)] (5.23)

In case of primary operators the thermal average hO(x)i� vanishes, whereas for T T̄ , it is

non-zero. It can be seen that the thermalization rate � is given by

� = 2⇡�/�, � = h+ h̄ = 2h (5.24)

As t exceeds t2 (which is of order L/2 for the operator T T̄ ), the one-point function starts

deviating from the thermal value and eventually goes back to its original value at t = nL

for some integer n (this is to be compared with the periodic behaviour termed as ‘revival’

in [71]).
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<O(x=0,t)>
L=10, β=6

h=1

h=1.5

t

t

L=10,  β=3

T T (x=0,t)
_

h=1
h=1.5

x

<O(x,t=L/4)> L=10, β=6

Figure 5.4: Plot of one-point functions as a function of x and t. The left panel shows the time-dependence
of one-point functions of two primary fields hO(x, t)i with h = h̄ = 1 (blue), and h = h̄ = 3/2 (orange) at a
fixed spatial position x = 0 (see (5.11)). The right panel shows the x-dependence of the same operators at a
fixed t = L/4, which displays a homogeneous intermediate region. The middle panel shows h: T T̄ : (x, t)i at
x = 0 as a function of t (see (5.14)). The left and middle panels show the exponential decay at intermediate
times to the thermal value and the eventual revival, at t = L/2 [71]. In the left panel the thermal value is
zero. In the middle panel, the horizontal (orange) line represents the thermal value, which is non-zero since
: T T̄ : is a quasiprimary operator. More generally, arbitrary one-point functions show a time periodicity of
2L (see the derivation in Section 5.4.2).

5.3 Evolution of entanglement entropy following a

quench

In this section we would like to compute the time-evolution of entanglement entropy (EE)

of a single interval in a CFT with boundaries, following a quantum quench (as described

in Section 5.2). We will follow up the CFT calculation in this section by a holographic

computation in Section 5.4, and a computation using a quasiparticle picture in Section 5.5.

Let us consider a 2D CFT, defined by the wavefunction (5.1) representing a quantum

quench. As explained in Section 5.2, the norm of the wavefunction (5.2), evolved over

Euclidean time ⌧ = �/4 9, is given by a functional integral over a Euclidean rectangle ⌃.

Let us define the reduced density matrix for a spatial interval A = {�l/2, l/2} by

⇢A =
1p
Z

TrAc | 0ih 0| , Tr(⇢A) = 1 (5.25)

9Quantities depending on real time are obtained by continuing to ⌧ = �/4 + it.
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where Z is a normalization factor. The EE for this interval is then defined as

SA = �Tr⇢A log ⇢A (5.26)

A standard procedure to compute this quantity, called the replica trick, is to first calculate

the Renyi entropy

S(n)
A ⌘ 1

1� n
Tr(⇢nA) (5.27)

and then take the limit (after analytically continuing n to real values).

SA = lim
n!1

S(n)
A = � @

@n

��
n=1

Tr⇢nA (5.28)

Computing (5.27) involves evaluating the partition function on the manifold ⌃n, which is

an n-fold cover of the rectangle ⌃ branched over A. As shown in [64], this amounts to

computing a two-point function, on the rectangle, of the so called nth order twist and

anti-twist operators, �+(w, w̄) and ��(w, w̄) respectively, each with a conformal dimension

hn = h̄n = 1

2
�n = c

24
(n� 1

n). Thus,

Tr⇢nA = h�+(w1, w̄1) ��(w2, w̄2)irect. (5.29)

where (wi, w̄i), i = 1, 2 are the complex coordinates (5.15) of the end-points of the interval

A. Let us choose the position of the end-points of the interval at a Lorentzian time t to be,

w1 = � l

2
� t, w̄1 = � l

2
+ t, w2 =

l

2
� t, w̄2 =

l

2
+ t (5.30)

This 2-point function is obtained by pulling back a corresponding 2-point function on the

upper half plane by the conformal maps (5.105), (5.87), in a generalization of Section 5.2.2.
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Hence,

Tr⇢nA =
2Y

i=1

✓
dzi
dwi

◆hn
✓
dz̄i
dw̄i

◆h̄n

h�+(z1, z̄1)��(z2, z̄2)iUHP (5.31)

To evaluate such a 2-point function on the UHP one needs to use the method of images.

However, there are subtleties associated with this method which limits its range of validity.

We shall point them out in the next section before we proceed to calculate the above 2 point

function using the method.

5.3.1 Method of Images

In [74], Cardy showed that an n-point function on the UHP satisfies the same di↵erential

equation (corresponding to a Ward Identity) as a 2n-point function of purely holomorphic

operators on the full complex plane C. The two-point function h�+(z1, z̄1)��(z2, z̄2)iUHP is

thus related, in this sense, to the 4-point function

h�+(z1)��(z̄1)��(z2)�+(z̄2)iC =

✓
(z1 � z̄2)(z2 � z̄1)

(z1 � z2)(z̄1 � z̄2)(z1 � z̄1)(z2 � z̄2)

◆�n

F (⌘), (5.32)

where function F (⌘) is a (non-universal) function of the cross ratio

⌘ =
(z1 � z̄1)(z2 � z̄2)

(z1 � z̄2)(z2 � z̄1)
(5.33)

The relation mentioned above does not imply, however, that the two-point function on the

UHP is always equal to the 4-point function on the plane, since, for one thing, the UHP

correlator involves information about the boundary condition on the boundary of the UHP

whereas the planar correlator does not involve any such information10.

Having said this, it turns out that there are certain limits where the two correlators are, in

fact, essentially 11 equal. One of them is the high temperature limit where both the 2 and the

10We thank Justin David and Tadashi Takayanagi for crucial discussions on this issue.
11In this subsection, we use the word “essentially” to mean up to an irrelevant proportionality constant.
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4-point functions factorize in one way or the other. In such a case, the UHP correlator does

turn out to be essentially independent of the boundary state. For intermediate temperatures,

however, there is no such factorization and the two-point function on the UHP is di↵erent

from the 4-point function on C due to the presence of the boundary.

There is another limit, as we will study, in which the equality holds (in fact, at all

temperatures this time). This is the large central charge limit. As we shall see in Section

5.3.4, in this limit, the four point function is easily evaluated and becomes essentially equal to

the two-point function on the UHP. Here too the information about the boundary condition

is lost in the large c limit.

5.3.2 Large L/� limit

In the limit of large system size L12, the conformal map is given by (5.8). The computation

of EE described above reduces, in this limit, to the analysis of [59, 138]. The complex

coordinates (5.30) are mapped to

z1 = ie�
2⇡
�
(�

l

2�t), z̄1 = �ie�
2⇡
�
(�

l

2+t), z2 = ie�
2⇡
�
(
l

2�t), z̄2 = �ie�
2⇡
�
(
l

2+t) (5.34)

on the upper half plane. Here we have assumed that t/l ⌧ L. Therefore, the cross ratio ⌘

in (5.33) becomes

⌘ =
2 cosh2 2⇡t

�

cosh 2⇡l
� + cosh 4⇡t

�

(5.35)

When t/�, l/� � 1, the cross ratio behaves as

⌘ ' e
4⇡t
�

e
4⇡t
� + e

2⇡l
�

(5.36)

12Defined in the sense of the limit (a) of footnote 21.
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It is easy to verify that,

⌘ �!

8
><

>:

0 for t < l/2

1 for t > l/2
(5.37)

where we have assumed |t � l/2| � �. Both the limits of ⌘ correspond to a factorization

of the four-point function (5.32) into a product of two-point functions in the two crossed

channels, respectively. This leads to a simpler calculation of the EE which gives

SA =

8
><

>:

2c⇡t
3� for t < l/2

c⇡l
3� for t > l/2

(5.38)

where a divergent constant has been subtracted [59].

These results are universal since they depend only on the central charge of the CFT.

The behaviour (5.38) represents the linear rise of the EE followed by the saturation to the

thermal value (see Figure 5.6, left part of the third panel). By the periodicity properties

mentioned in Section 5.4.2, we can also show that CFT results reproduce the right part of

the third panel of Figure 5.6. One way to see this is to note that for L � t, l ⌧ L the map

(5.6) reduces to a map similar to (5.34), with t ! L� t.

5.3.3 Low temperature (L/� small)

In the low temperature limit13, the conformal map is given by (5.9). Using this, the w-

coordinates (5.30) are mapped to

z1 = i cot

✓
⇡

4
+
⇡(�l/2� t)

2L

◆
, z̄1 = �i cot

✓
⇡

4
+
⇡(�l/2 + t)

2L

◆

z2 = i cot

✓
⇡

4
+
⇡(l/2� t)

2L

◆
, z̄2 = �i cot

✓
⇡

4
+
⇡(l/2 + t)

2L

◆
. (5.39)

13Defined in the sense of limit (c) of footnote 21.
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The cross-ratio (5.33) now becomes

⌘ = cos2
⇡l

2L
(5.40)

Thus, unlike in the high temperature limit, the cross ratio does not take a special value.

Depending on the size of the interval l, it can lie anywhere between 0 and 1. Consequently,

the four-point function (5.32) does not factorize into two-point functions. This implies that

the CFT EE remains a non-universal quantity, depending on the particular CFT under

consideration.

A puzzle The above remark immediately raises the following puzzle. We will see in Section

5.4.1, the holographic EE, as computed using (5.61) and (5.66), is independent of the details

of the dual CFT (except for the dependence on the central charge c which determines the

Newton’s constant through (5.60)). 14

The puzzle is that while the holographic EE is universal, the CFT EE certainly does

not appear to be so. How does one reconcile this with AdS/CFT? Also, what is the CFT

calculation which will agree with the hEE at all temperatures and exhibit universality?

Resolution This puzzle will be resolved in the next subsection, by appealing to the large

central charge limit.

14This is a recurrent theme in AdS/CFT. A similar observation is: many di↵erent CFT states appear to
evolve into states described by black holes. The emergence of universality in the bulk in that context is
related to the universality of thermal physics.
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5.3.4 Universality of the Entanglement Entropy at large central

charge

At Low Temperature

One way of obtaining universal results for the EE, (as will be shown in the low temperature

bulk calculations), from the CFT, is by looking at the large c systematics (similar issues have

been addressed in [164]). As has been mentioned, the calculation of Tr⇢nA on the manifold

⌃n, can be mapped to the calculation of the two point correlator of n-th order twist and

anti-twist operators on the UHP. Using the method of images, this is equivalent to a four

point function of two twist and two anti-twist operators on C. The four point function is

then,

Tr⇢nA =
2Y

i=1

✓
dzi
dwi

◆hn
✓
dz̄i
dw̄i

◆h̄n

G4, G4 ⌘ h�+(z1)��(z̄1)�+(z̄2)��(z2)iC

For convenience, we send the four points (z1, z̄1, z2, z̄2) to (1, 1, 0, ⌘), such that

G4 = (z12̄z1̄2)
�2hnGn(⌘), Gn(⌘) = h�+(1)��(1)�+(⌘)��(0)iC (5.41)

Consider the scaled 4 point function in the ⌘ ! 0 channel. In the large central charge limit,

all the conformal blocks exponentiate ( [243]). The form of the function is,

Gn(⌘) =
X

p

ape
�

nc

6 fp(hn,⌘;nc) (5.42)

Recent results ( [135]) suggest that it is only the vacuum block that dominates the above

sum over intermediate operators. In that case, the 4-point function is,

Gn(⌘) ⇡ e�
nc

6 f0(hn,⌘;nc) (5.43)
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Taking the four points z1,2, z̄1,2 to be given by (5.39), we get the cross-ratio to be,

⌘ =
z11̄z22̄
z12̄z21̄

= cos2
⇡l

2L
(5.44)

From ( [135]), one knows that the result for the vacuum block (in the ⌘ ! 0 channel) is,

f0(hn, ⌘;nc) = 12↵ log(⌘) +O(↵2) (5.45)

where ↵ = 1

12
(n � 1)(= hn/c). Hartman’s result tells us that we can extrapolate the result

found around ⌘ = 0 up till ⌘ = 1

2
owing to monotonicity of the conformal blocks as a function

of ⌘ for light operator exchanges. A similar statement holds in the other channel around

⌘ = 1. The vacuum block in that case is,

f0(hn, ⌘;nc) = 12↵ log(1� ⌘) +O(↵2) (5.46)

Here, again, the results can again be extrapolated up to ⌘ = 1

2
. This enables us to state that

the purely holomorphic Euclidean 4-point function is in fact equal to the 2-point function on

the UHP. Again, the interesting thing to notice is that the information about the boundary

gets completely lost in this equivalence at large c!

The Entanglement Entropy in the s-channel (⌘ ! 0) is then,

SA = lim
n!1

1

1� n
log Tr⇢nA = lim

n!1


4hn

1� n
log(

⇡

2L
)� nc

6

1

1� n
12↵ log(⌘)

�
(5.47)

where the first term comes from the Jacobian and the prefactor in 5.41. With ↵ = hn/c and

⌘ = cos2( ⇡l
2L), we get,

SA =
c

3
log

✓
2L

⇡a
cos

⇡l

2L

◆
(5.48)
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This result is, of course, valid up to ⌘ = 1/2 and hence, for L/2  l < L. In the other

channel ⌘ ! 1,

SA =
c

3
log

✓
2L

⇡a
sin

⇡l

2L

◆
(5.49)

This is valid for 0  l  L/2. In both the above cases, we have introduced the UV cut-o↵

a by hand to regulate the answers. As, we will see later, these answers match exactly with

the holographic results in the low-temperature limit.

For All Temperatures

The results obtained at low temperatures for large c are much more general. In fact, we

would like to show the equivalence of these results with the lengths of the bulk geodesics,

which can be calculated for all temperatures. The analysis of the four point function on C

is completely general. The information about the initial nature of the geometry (a rectangle

in this case), is contained in the pull-back maps and hence in the Jacobian factors. Only

the cross-ratio on the plane knows about the initial geometry through the pull back maps.

Let us calculate the entanglement entropy on the plane and use an unspecified conformal

transformation to pull it back onto a non-trivial geometry.

On the plane,

Tr⇢nA =
2Y

i=1

✓
dzi
dwi

◆hn
✓
dz̄i
dw̄i

◆h̄n

G4 (5.50)

Let us call the Jacobian factors J =
Q

2

i=1
( dzi
dwi

)( dz̄i
dw̄i

) for simplicity. Then (as we saw in the

previous section), for the ⌘ ! 1 channel,

SA = lim
n!1

1

1� n


hn log

✓
a4J

(z12̄z1̄2)2

◆
� nc

6
12↵ log ⌘)

�

= lim
n!1

2hn

n� 1


log

✓
z12̄z1̄2
a2
p
J

◆
+ n log(⌘)

�

=
c

6
log

✓
⌘

a2
z12̄z1̄2p

J

◆
(5.51)

185



Note, the factor of a4 in the first line of the expression has been introduced for dimensional

reasons and has a length dimension. With the identifications, c = 3

2G3
and ⌘ = z11̄z22̄

z12̄z21̄
, the

above EE is,

SA =
1

4G3

log

✓
z11̄z2̄2
a2
p
J

◆
(5.52)

This expression for the entanglement entropy exactly coincides the sum of the bulk

geodesic lengths between the boundary points (z1, z̄1) and (z2, z̄2) (with the identifications

z± = f(x±)), in the geometry corresponding to the pulled back (non-trivial) surface, at all

temperatures. This is the ‘disconnected’ channel in (5.66).

Similarly, when ⌘ ! 0, we shall have to use the conformal block in the other channel.

Now, (1� ⌘) = z12z1̄2̄
z12̄z1̄2

. Using this, the entanglement entropy is,

SA = lim
n!1

1

1� n


hn log

✓
a4J

(z12̄z1̄2)2

◆
� nc

6
12↵ log(1� ⌘)

�

=
c

6
log

✓
(1� ⌘)

a2
z12̄z1̄2p

J

◆

=
1

4G3

log

✓
z12z1̄2̄
a2
p
J

◆
(5.53)

This matches with the bulk entropy in the ‘connected’ channel in (5.66) with geodesics

joining the points (z1, z2) and (z̄1, z̄2).

5.4 Bulk dual

In this section we discuss a holographic dual to the above two dimensional quenches [234].

It is known that a class of two dimensional CFTs with a large central charge c have an

equivalent description in terms of gravity in three dimensional anti de Sitter space (AdS3).

In Poincaré coordinates the metric of AdS3 is given by

ds2 =
d⇣2 + dz+dz�

⇣2
. (5.54)
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Here ⇣ = 0 is the conformal boundary of AdS3. The boundary coordinates z± = z1 ⌥ z0

describe the plane where the dual (Lorentzian) CFT lives. We will also consider the Euclidean

continuation of the above metric where we will set z± = ⌥i{z, z̄} (see (5.101), Appendix

5.7.2). The corresponding dual CFT on the complex z-plane will then be Euclidean.

A holographic description of the CFT on a space with boundaries (BCFT) has been

proposed in [95, 117, 154, 203, 232]. According to this proposal, the holographic dual of the

BCFT on the upper half plane {(z1, z0)|z0 > 0} is given by the z0 > 0 region of the Poincare

AdS3. The z0 = 0 plane serves as a boundary of the holographic spacetime15, with the

boundary condition that the extrinsic curvature of the boundary vanishes Kµ⌫ = 016, and

ends (at ⇣ = 0) on the boundary of the UHP. A schematic picture is presented in Figure 5.5.

Figure 5.5: Holographic dual to BCFT on the UHP (upper half plane). A one-point function in the UHP
is given by an extremal geodesic emanating from the relevant boundary point and ending on the boundary
plane (the length of this is half of the geodesic connecting the boundary point and its image). Entanglement
entropy of the interval connecting two boundary points P1 and P2 is given by the minimum (5.64) of the
length of extremal geodesics connecting these points and their images pairwise. We call the ‘blue’ and ’red’
configurations the ‘connected’ and ‘disconnected’ channels respectively.

The above description gives the bulk dual of a Lorentzian CFT on the UHP; we would,

however, like to obtain the bulk dual for a CFT on a manifold (5.16), ML = interval ⇥R.
15In a recent proposal [171] a stress-tensor has been ascribed to this plane as in the case of a D-brane.
16This boundary condition has a one parameter generalization [117, 232] which corresponds to available

boundary conditions in the BCFT.
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Now, in Appendix 5.7.2 we will find a map from the manifold ML to the UHP, given by

(5.102):

z± = f±(x±), f+(x) = f�(x) = f(x) ⌘ �b
sn
h
4K(b4)
� (x� L/2), 1� b4

i

cn
h
4K(b4)
� (x� L/2), 1� b4

i (5.55)

Bulk dual through large di↵eomorphisms Our strategy to find a bulk dual to the CFT

on ML will be to find a solution to Einstein’s equations with a negative cosmological constant

whose boundary is ML. This problem can be solved by the method introduced in [218],

where it was shown (building on the works of [50] and [30]) how solutions di↵eomorphic to

the AdS3 geometry (5.54) (which are hence solutions to Einstein equations) can be found

where the di↵eomorphism is non-trivial at the boundary and reduce to the map (5.55). The

di↵eomorphisms alluded to here are analogous to ‘large gauge transformations’ [214,236] and

are called ‘large’ di↵eomorphisms or ‘solution generating di↵eomorphisms’ [181]. Of course,

large di↵eomorphisms which reduce to a specific conformal transformation f± are not unique

since one can always compose with any local di↵eomorphism which reduces to identity at

the boundary. This ambiguity can be removed, however, if one demands that the resulting

bulk metric is in the Fe↵erman-Graham gauge. These ideas have been used in the study of

quantum quenches in [181, 218, 234]. The quantitative form of ‘large’ di↵eomorphism was

found by ( [218]) and is given by

⇣ = 4z

�
f 0

+
f 0

�

�3/2

D
, z± = f±(x±)�

2z2f 0

±

2f 00

⌥

D
, D = 4f 0

+
f 0

�
+ z2f 00

+
f 00

�
(5.56)

Note, as a check, that as ⇣ ! 0 (the boundary of the Poincare metric (5.54)), we have

z ! 0 (assuming that D remains finite), and z± ! f±(x±). It is important to note that for

functions f±(x±) which are not one-to-one and have vanishing Jacobians at the boundaries

of fundamental domains, one must restrict the above transformation (5.56) to a given choice

of fundamental domain.
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Applying this large di↵eomorphism to the Poincaré metric, we get the following metric

[30]

ds2 =
dz2

z2
+

1

4

�
L+dx

2

+
+ L�dx

2

�

�
+

✓
1

z2
+

z2

16
L+L�

◆
dx+dx�. (5.57)

where L± are given in terms of Schwarzian derivatives (5.13) of the boundary conformal map

L± = �2{z±, x±} =
3f 002

±
� 2f 0

±
f 000

±

f 02
±

(5.58)

The metric ((5.57)) is called the Fe↵erman-Graham metric and has been written in the

Fe↵erman Graham gauge. Note that as z ! 0, the leading terms of this metric reduce to

that of the Poincaré metric (5.54). The two metrics, however, represent physically di↵erent

solutions of the theory due to the existence of the subleading terms of the metric (5.57)

involving the L± terms which represent nontrivial stress tensors at the boundary [28]. These

L±’s capture the ‘surface charges’ of [50] characterizing the quantum state. The precise

relation ( [30], [28]) between L± and the CFT stress tensors is,

T±,±(x±) =
L±

16G3

=
c

24
L± (5.59)

where we have used the following relation between the central charge of the CFT and the

3D Newton’s constant

c =
3

2G3

. (5.60)

Properties of the metric: The metric (5.57), therefore, provides the promised solution to

the Einstein’s equations (with ⇤ < 0) whose conformal boundary coincides with the manifold

ML. Hence, gravity on this metric provides the geometric dual to the CFT on ML (which is

the CFT of our interest).
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We have shown in Appendix 5.7.4 the high temperature limits and low temperature limits

of the geometry (5.57) represent the BTZ black hole and the global AdS respectively. We

can show that at su�ciently high temperatures the geometry contains a horizon. For the

purposes of the rest of the chapter, the important property of the metric (5.56) is that the

spatial direction x is compactified with a periodicity L (i.e. equal to the spatial size L).

This follows as a consequence of the periodicity properties of the Elliptic functions (see, e.g.

(5.91) and similar statements for the Lorentzian map).

The periodicity properties of the CFT observables can be holographically interpreted in

terms of the above periodicity property of the bulk metric. Thus, e.g. a two-point function,

which can be specified by the geometric properties of a geodesic with end-points at the

boundary, are periodic because the geodesic will come back to itself after a time period L.

We will find below an explicit example of how this happens in case of the holographic EE.

Other candidate bulk duals It is important to note that in related contexts, somewhat

di↵erent proposals for bulk dual geometries have appeared. For example, the bulk dual to

the large L limit of the CFT studied here, used by [138] is obtained by first dividing the

Penrose diagram of an eternal BTZ black string geometry vertically by an end-of-the world

brane and then taking the top half of it as the relevant bulk dual geometry. We are currently

investigating the relation between our proposal and this geometry. The hEE computed in

both geometries turn out to be the same. Some other proposals for bulk geometries dual to

quantum quench involve the AdS-Vaidya metric, see, e.g. [26].

5.4.1 Holographic quantum quench and entanglement entropy

As mentioned in Section 5.4, for a class of 2D CFTs with a large central charge c,

a holographic description is available in terms of a weakly coupled gravity dual in

asymptotically AdS3 spaces. A computation of the CFT partition function over the branched

cover ⌃n maps to a computation of the bulk partition function over a dual geometry whose
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conformal boundary coincides with ⌃n [104, 135, 165]. As shown in [165], this observation

leads to the well-known Ryu-Takayanagi formula [149,220] for the holographic entanglement

entropy (hEE) of an interval A

Shol,A = ext
l(�A)

4G3

, (5.61)

where �A is the extremal curve in the bulk ending at the boundary of the interval A, l(�A) is

the length of this curve, and G3 is Newton’s constant which is related to the central charge c

of the dual CFT by (5.60). The extremum is taken among all curves �A which are homotopic

to the subsystem A.

Let us first compute (5.61) in the bulk dual of the BCFT on the upper half plane. The

dual geometry is the upper half of the spacetime (5.54). Suppose that the boundary of the

subsystem A consists of two points P1 = zµ,1= (z+,1, z�,1),P2 = zµ,2= (z+,2, z�,2), µ = +,�.

In this case we have two extremal geodesics, as shown in Figure 5.5:

(i) One is a geodesic connecting P1 and P2, which we call the connected geodesic, whose

length is

l(�A)c = 2 log
|P1 � P2|
⇣min

= 2 log

p
(z+,1 � z+,2)(z�,1 � z�,2)

⇣min
, (5.62)

where ⇣min denotes the UV cut-o↵ in the CFT which, by the rules of AdS/CFT, corresponds

to placing the asymptotic boundary at ⇣ = ⇣min (this regulates the extremal surface area

which will diverge otherwise). |P1 � P2| denotes the distance measured in the flat boundary

metric ds2 = dz+dz�.

(ii) The presence of the additional spacetime boundary at z0 = 0, leads to the existence of

an extra geodesic consisting of two independent geodesic segments, each of which connects

P1 (or P2) to this new boundary. We will call this the disconnected geodesic; the length of

each segment, say the first one, is half of that of a geodesic connecting P1 to each its ‘image
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point’ P 0

1
below the boundary (similarly with P2). Combining the two segments, we get

l(�A)dc = log
|P1 � P 0

1
|

⇣min
+ log

|P2 � P 0

2
|

⇣min
(5.63)

The entanglement entropy (5.61) is determined by taking the minimum among these [149].

Shol,A =
1

4G3

⇥min{l(�(A))c, l(�A)dc} ⌘ min{Sc, Sdc} (5.64)

Fluctuation of the UV cut-o↵ with a large di↵eomorphism The construction here

gives the hEE for the bulk dual of a CFT on the UHP, which is (5.54) with an additional

boundary. As we found in Section 5.4, the bulk dual to the BCFT on the rectangle, which is

of our original interest, is given by the geometry (5.57). Since the latter metric is related to

the former by a di↵eomorphism (which is non-trivial at the boundary), the extremal geodesics

in the latter metric can be obtained by pulling back (5.62), (5.63) into the geometry. This

prescription is known to reproduce the time evolution of entanglement entropy in various

quantum quenches [228, 234]. The e↵ect of the large di↵eomorphism can be represented by

a fluctuation of the end-points P1, P2 [181,234], while the inside geometry remains identical.

The e↵ect of this is that the point P1, represented by the coordinates (⇣min, z±,1) in the

Poincare geometry (5.54) is transformed to (zmin, x±,1) according to (5.56). We define the

original CFT to be that on the rectangle, with a lattice cut-o↵ a. In AdS/CFT, this instructs

to introduce a UV cut-o↵ surface zmin = a in the geometry (5.57). Near the horizon, using

the z ! 0 limit of (5.56), we have

⇣1,min = a
q
f 0
+(x+,1)f 0

�(x�,1) (5.65)

and similarly for the point P2. In other words, insisting on a given cut-o↵ in the original CFT

leads to a local definition of the UV cut-o↵, as above. The prescription for generalization of
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formulae like (5.62) to take this into account is simple [181, 234]: just replace ⇣min in (5.62)

by
p
⇣1,min⇣2,min.

Expression for the hEE Using these ingredients we get the following formulae for the

extremal length of two geodesics in the new bulk geometry (5.57):

l(�A)c = log
(f(x+,1)� f(x+,2))(f(x�,1)� f(x�,2))

a2
p
f 0(x+,1)f 0(x+,2) f 0(x�,1)f 0(x�,2)

,

l(�A)dc = log
(f(x+,1)� f(x�,1))(f(x+,2)� f(x�,2))

a2
p
f 0(x+,1)f 0(x�,1) f 0(x+,2)f 0(x�,2)

(5.66)

Here f+ = f� = f is as defined in (5.55).

The boundary points of interest in this problem are given by the coordinates (which are

Lorentzian versions of the points (5.30))

x±,1 = �l/2⌥ t, x±,2 = l/2⌥ t (5.67)

These represent the end-points of the entangling interval (region A) at time t.

5.4.2 Evolution of holographic entanglement entropy

In this section, we compute time evolution of holographic entanglement entropy in the global

quench with boundaries, using the prescription we mentioned in the previous subsection.

We mainly focus on the low temperature limit L
� ! 0 as well as the high temperature

limit L
� ! 1. We also compare the result to the naive CFT entanglement entropy derived

by neglecting the function F (z) in (5.32) which is the theory dependent part of the four

point function (5.32). We find that whereas they do not agree in the low temperature

limit, they do agree in the high temperature limit. This suggests that the behavior of the

entanglement entropy, as computed from the bulk dual, is universal, which coincides with
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the usual universality (coming from the factorization limit) at high temperatures, but it is

a new universality at low temperatures (see Section 5.3.4).

β=2,L=1,l=2/3

SEE

t
ldc

lc β=1,L=1,l=2/3
SEE

t
ldc

lc β=1,L=4,l=2/3

SEE

t

ldc
lc

Figure 5.6: Plot of the time evolution of the length of geodesics which determine, via (5.61), (5.64), the
entanglement entropy (SEE) of an interval with end-points at ⌥l/2 (for convenience we have rescaled the
geodesic lengths by a factor of 1

2 and adjusted the height of each curve by choosing the UV cut-o↵ a in (5.66)
appropriately). The length of the connected path, lc (5.62) is shown in blue, and that of the disconnected, ldc
(5.63) is shown in red. The left panel corresponds to low temperature with L/� = 1/6, the middle panel to
intermediate temperature with L/� = 1 and the right panel corresponds to large L (or high temperature17)
with L/� = 4. By the minimum prescription of [149], (5.64), SEE is given by the curve segments which lie
lower; these are represented by solid lines in the figures. The curve segments lying higher are not relevant
in the computation of EE, and are represented by dotted lines. Note the exchange of dominance (‘phase
transition’) for intermediate and high temperatures. The above EE is exactly reproduced by the CFT
calculations in the large c limit (see Section 5.3.4). For the rightmost panel, except for the central dip, the
EE can be seen to match the CFT result even without the help of large c asymptotics, using factorization
into appropriate two-point functions at large L/�.

Time periodicity of two-point functions and the hEE

Note that the map f(x±) appearing in the above expressions satisfies (cf. (5.91)) f(x±) =

f(x± + 2L). Since the spatial locations of the boundary points are fixed as in (5.67), the

above periodicity implies a periodicity in time t ⌘ t+2L of two-point functions of operators

whose AdS representation is in terms of geodesics. The periodicity here can be geometrically

understood as follows. The map (5.56) with periodic f± = f e↵ects a quotienting of the

Poincare geometry. As time progresses, each end-point of a geodesic climbs along a straight

line in the x-t plane; the light-cone coordinates both trace out a periodic path on the cylinder

(which is double the manifold ML (5.16)), leading to the time-periodicity mentioned above.

For the hEE of a centrally located interval (with end-points located at x = ⌥l/2), the

period, in fact, turns out to be L rather 2L, as in Figure 5.6. This periodicity holds for both

17Strictly speaking, we distinguish between L ! 1 and � ! 0 in the sense of footnote 21.

194



the connected or the disconnected expression (lc or ldc) in (5.66). To see this, note that the

odd (even) parity of the sn (respectively, cn) functions imply that f(x±,1 + L) = �f(x⌥,2),

f(x±,2 + L) = �f(x⌥,1). Here we have used the definitions (5.67). In a similar way we can

also show the symmetry lc(t) = lc(L� t), ldc(t) = ldc(L� t), which is evident in Figure 5.6.

Low temperature limit L
� ! 0

In this limit the map f± of (5.55) reduces to the analytic continuation of (5.9), namely

z±(x±) = cot (⇡/4 + ⇡x±/(2L)) (5.68)

By using this conformal map, and the formalism described above, we can calculate the

contribution of the connected surface to the holographic entanglement entropy Sc, and the

contribution of the disconnected surface Sdc.

Sc =
c

3
log


2L

a⇡
sin

✓
⇡l

2L

◆�
, Sdc =

c

3
log


2L

a⇡
cos

✓
⇡l

2L

◆�
(5.69)

In this case the entanglement entropy does not depend on time, hence we are interested in

how this depends on the size of the subsystem A. By taking the minimum between Sc and

Sdc we get,

ShEE =

8
><

>:

c
3
log
⇥
2L
a⇡ sin

�
⇡l
2L

�⇤
l < L

2

c
3
log
⇥
2L
a⇡ cos

�
⇡l
2L

�⇤
l > L

2

(5.70)

When the size of the subsystem is smaller than the half of the subsystem l < L
2
, the result is

the same as that in the vacuum state on a cylinder with circumference 2L. This is natural

because the local physics is the same in both cases. When l > L
2
, they become di↵erent.

This is necessary because entanglement entropy has to vanish if we take the subsystem to

be the total system.
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Nontrivial agreement with CFT Note that the holographic EE obtained above exactly

agrees with the CFT EE, discussed in Section 5.3.4 (see (5.51)). As explained before, this

is a nontrivial agreement, since in general, including at low temperatures, the CFT EE is, a

priori, non-universal, being given by a four-point function. However, as we found in Section

5.3.4, in an appropriate limit of large central charge, one recovers a universal result (5.51)

which depends only on the central charge and no other feature of the CFT. This then agrees

with the hEE obtained above.

Large L limit L
� ! 1

If we slightly turn on the temperature, the area of the extremal surfaces starts to depend

on time. In the low temperature regime, the area of one extremal surface (the disconnected

one) is always smaller than the other one (the connected one) for a fixed subsystem size l

(see Figure 5.6). However above some value of the temperature, there are phase transitions.

When 0 < t < L/2, it happens twice. We can check that for su�ciently large L
� , the area

of disconnected surface is smaller at early times, but since Sdc linearly grows in time, the

connected surface becomes the minimal surface at some critical time. This is the first phase

transition. As we will see in the next section, this critical time tc depends on the size of

the subsystem. When l > L
2
, this is given by tc = L�l

2
. When l < L

2
, this critical time

is tc = l
2
. This is natural because if we take a small subsystem limit l

L ⌧ 1, L� � 1, the

result should approach that of the usual global quenches without boundary walls (see Figure

5.6). As is obvious from the periodicity mentioned in Section 5.4.2), we encounter a second

phase transition after t crosses L/2, when the disconnected surface becomes minimal again.

The central dip in this figure cannot be understood from CFT, but in the next section on

quasiparticles, we have an accurate understanding of the entire plot of the third panel.
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5.5 The quasiparticle picture of the evolution of the

entanglement entropy

The evolution of the entanglement entropy at su�ciently high temperatures limit can be

interpreted by the free-streaming quasiparticle picture of [59]. In this picture, one models

the quenched state as populated by entangled quasiparticles pairs at every point consisting

of a left- and a right-moving particle, each moving at the speed of light. The entanglement

entropy of an interval A increases by ⇡c
6� when a quasiparticle goes outside (inside) the interval

while its entangled partner is still inside (outside) the interval.

5.5.1 The quasiparticle interpretation for global quench for

infinite spatial size

In this subsection we will review the interpretation of the time evolution of the entanglement

entropy in the global quench on the non-compact line R. The contribution of the quasi-

particle pairs, which are located in [�(|x|+d|x|),�|x|] initially, to the entanglement entropy

at a fixed time, depends on the value of |x|. If the quasiparticles are located inside the

interval, A = {|x| < l
2
} at the initial time, the contribution to the entanglement entropy

s(1)A (|x|, t) is given by

s(1)A (|x|, t) = c⇡

6�


✓

✓
t� (�|x|+ l

2
)

◆
� ✓

✓
t� (|x|+ l

2
)

◆�
(5.71)

This is because, when t = �|x|+ l
2
, the left moving partner of the entangled pair goes outside

the interval, and when t = |x|+ l
2
the right moving partner goes outside the interval.

Similarly, the contribution of the quasi-particles outside the interval A is

s(2)A (|x|, t) = c⇡

6�


✓

✓
t� (|x|� l

2
)

◆
� ✓

✓
t� (|x|+ l

2
)

◆�
(5.72)
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The total entanglement entropy SA(l, t) for the interval A is then given by

SA(l, t) = 2

Z
1

l

2

s(2)A (|x|, t)d|x|+ 2

Z l

2

0

s(1)A (|x|, t)d|x|. (5.73)

Here we incorporate the factor 2 to include the contribution of x > 0 region. Performing the

integral we get

SA(l, t) =
2c⇡t

3�
✓

✓
l

2
� t

◆
+

c⇡l

3�
✓

✓
t� l

2

◆
. (5.74)

which gives us the result from a CFT calculation [59, 64].

5.5.2 The evolution of entanglement entropy in the presence of

boundaries

We would now like to discuss the time evolution of the entanglement entropy in the presence

of the boundaries. The new physics in this case comes from the reflection of the quasiparticles

o↵ the boundary walls.The entanglement entropy consists of two contributions. One is the

contribution from the inside of the interval, and the other is the contribution from the outside

of the interval. As we will see below the form of the each contribution is further classified

by the ratio l
L of size of the interval l to the size of the total system L.

Let us consider the motion of the left moving and the right moving quasiparticles which

are located inside the interval A, say �|x| 2 A at the initial time t = 0. The left mover goes

outside A at t = l
2
� |x|, then it bounces o↵ the boundary wall at t = L

2
� |x|, and becomes a

right mover. When t = L� |x|� l
2
, it enters the interval A again. Similarly the right mover

goes outside the interval A at t = l
2
+ |x|, bounces o↵ the boundary wall at L

2
+ |x|, and

enters the interval again at t = L+ |x|� l
2
.
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5.5.3 l
L > 1

2

Let us consider the contribution of the quasiparticle pairs which are located in [�(|x| +

d|x|),�|x|] at the initial time t = 0 to the entanglement entropy when l
L > 1

2
. The

contribution of those inside the interval depends on the precise value of |x|. For |x| < L�l
2
,

since |x|+ l
2
< (L� |x|� l

2
),

sin(1)A =
c⇡

6�


✓

✓
t� (

l

2
� |x|)

◆
� ✓

✓
t� (

l

2
+ |x|)

◆�

+
c⇡

6�


✓

✓
t� (L� |x|� l

2
)

◆
� ✓

✓
t� (L+ |x|� l

2
)

◆�
(5.75)

When L�l
2

< |x| < l
2
, since (L� |x|� l

2
) < |x|+ l

2

sin(2)A =
c⇡

6�


✓

✓
t� (

l

2
� |x|)

◆
� ✓

✓
t� (L� |x|� l

2
)

◆�

+
c⇡

6�


✓

✓
t� (

l

2
+ |x|)

◆
� ✓

✓
t� (L+ |x|� l

2
)

◆�
(5.76)

The contribution of the quasiparticles located outside the interval is

soutA =
c⇡

6�


✓

✓
t� (|x|� l

2
)

◆
� ✓

✓
t� (L� |x|� l

2
)

◆�

+
c⇡

6�


✓

✓
t� (

l

2
+ |x|)

◆
� ✓

✓
t� (L+ |x|� l

2
)

◆�
(5.77)

The total entanglement entropy is then given by integrating all contribution of the

quasiparticles.

SA(l, t) = 2

Z L�l

2

0

sin(1)A d|x|+
Z l

2

L�l

2

Sin(2)

A (|x|, t) +
Z L

2

l

2

soutA (|x|, t)d|x| (5.78)

The form of the integral of sin(2)A depends on whether l
L > 3

4
or not. The sum of the remaining

two terms also depends on the size of the interval, ie l
L > 3

4
, 3

4
> l

L > 2

3
or 2

3
> l

L > 1

2
. At

the end of the day, these di↵erent cases give the same net entanglement entropy.
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SA(l, t) =
⇡c

6�
⇥

8
><

>:

2t, (0 < t < L�l
2
) L� l, (L�l

2
< t < l

2
) � 2t+ L, ( l

2
< t < L

2
)

2t� L (L
2
< t < 2L+l

2
) L� l, (2L+l

2
< t < 2L�l

2
), �2t+ 2L, (L+l

2
< t < L)

In figure 5.7, we plot the EE obtained above from the quasiparticle picture and compare

it to the holographic result. It is clear that the comparison works rather well.

It is important to note that in this case l > L
2
, and the entanglement entropy is not

thermalized at any time, i.e. it does not become proportional to the interval size l.

5.5.4 l
L < 1

2

The contribution from inside the interval is now given by

sinA =
c⇡

6�


✓

✓
t� (

l

2
� |x|)

◆
� ✓

✓
t� (

l

2
+ |x|)

◆�

+
c⇡

6�


✓

✓
t� (L� |x|� l

2
)

◆
� ✓

✓
t� (L+ |x|� l

2
)

◆�
(5.79)

The contribution of the region l
2
< |x| < L�l

2
is

sout(1)A =
c⇡

6�


✓

✓
t� (|x|� l

2
)

◆
� ✓

✓
t� (|x|+ l

2
)

◆�

+
c⇡

6�


✓

✓
t� (L� |x|+ l

2
)

◆
� ✓

✓
t� (L+ |x|� l

2
)

◆�
(5.80)

The contribution of the region is L�l
2

< |x| < L
2
is

sout(1)A =
c⇡

6�


✓

✓
t� (|x|� l

2
)

◆
� ✓

✓
t� (|x|+ l

2
)

◆�

+
c⇡

6�


✓

✓
t� (L� |x|+ l

2
)

◆
� ✓

✓
t� (L+ |x|� l

2
)

◆�
(5.81)
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Figure 5.7: Plot of the time evolution of entanglement entropy in the quench in the high
temperature regime (blue). We also plot the evolution of the entanglement entropy expected
from the quasiparticle picture (red). We take L = 1, � = 1

8
, l = 1

8
(left panel), l =

3

8
(right panel).
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Figure 5.8: Plot of the time evolution of entanglement entropy in the quench in the high
temperature regime (blue). We also plot the evolution of the entanglement entropy expected
from the quasiparticle picture (red). We take L = 1, � = 1

8
, l = 5

6
(left panel), l =

6

8
(right panel).

Combining everything, the total EE is

SA(l, t) =
⇡c

6�
⇥

8
><

>:

2t, (0 < t < l
2
) l, ( l

2
< t < L�l

2
) � 2t+ L, (L�l

2
< t < L

2
)

2t� L (L
2
< t < L+l

2
) l, (L+l

2
< t < 2L�l

2
), �2t+ 2L, (2L�l

2
< t < L)

As we can see, this behavior of the entanglement entropy is very similar to that of

global quenches for infinite spatial size (5.74). This is natural because it takes a while

until the reflections o↵ the walls start a↵ecting the entanglement entropy when the size

of the subsystem A is small. As a result the entanglement entropy is thermalized when

l
2
 t  L�l

2
. This is expected from the analysis of [71]. When t � L�l

2
, it starts decreasing,

leading to the ‘revival’ behavior discussed in this chapter.
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5.6 Conclusion

In this chapter we have explored the properties of single-interval entanglement entropy (EE)

in the presence of spatial boundaries. The distinguishing feature arising from such boundaries

is the appearance of time-periodicity of the observables, arising from a bulk geometry which

is a quotient of the AdS-Poincaré spacetime. The periodicity of the entanglement entropy

can be understood in terms of a periodic motion of geodesic end-points. Another feature,

for quench states corresponding18 to high temperatures, is the appearance of thermalization

with universal exponents, followed by a revival [71, 163]. For quenches corresponding to

intermediate or low temperatures, there is an apparent puzzle: the CFT EE depends on

a four-point function which does not factorize and is hence non-universal; the holographic

result however does not depend on details of the CFT except for the central charge c. We

apply recent large-c techniques to resolve this puzzle. The large c limit of the CFT EE

becomes universal and exactly matches the holographic computation at all temperatures. It

would be interesting to see, following [111], whether corrections to the leading large c limit

are captured by subdominant saddle points in the bulk.

In this chapter, we have particularized to quenches to critical theories and modelled the

quenched state by a Calabrese-Cardy (CC) type state [59, 64]. It would be interesting to

(a) generalize our results to more general states with higher chemical potentials as discussed

in [182], (b) explore realistic quenches with boundaries in the limit of fast ramping speed

(some interesting issues have recently been raised in this context in [85, 87]) and (c) relate

our results to the study of spatial boundaries in non-conformal theories (see, e.g. [150]). The

presence of spatial boundaries can be regarded as a model for impurities or defects in a

one-dimensional lattice. It would be interesting to relate some of our results to experimental

situations.
18In the sense of footnote 2.
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An issue which has not been explored in detail in this chapter, and is currently under

investigation, is the precise nature of the bulk geometry found here. In particular, we would

like to understand the geometrical interpretation of the approximate thermalization of the

one-point function and EE and subsequent revival. These issues have been commented upon

in [92, 163]. However the explicit bulk metric we have found should shed more light on this

issue. It is also interesting to see if the phenomenon of revival has a bearing on the issue

of stability of the AdS geometry discussed in, e.g. [46, 51, 97].19 We hope to return to these

issues shortly.

5.7 Appendix

5.7.1 Derivation of conformal maps

In this appendix, we discuss in more detail the conformal map mentioned in Section 5.2.1.

5.7.2 Map from the rectangle to the complex plane (Euclidean)

We consider a rectangle parametrized by

w = x+ i⌧, w̄ = x� i⌧, x 2 [�L

2
,
L

2
], ⌧ 2 [��

4
,
�

4
] (5.82)

which we wish to map to the upper half plane

z = z2 + iz1, z̄ = z2 � iz1, z1 � 0, z2 2 R (5.83)

19We thank Shiraz Minwalla for discussions on this issue.
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As mentioned in Section 5.2.1, such a map is given by the Christo↵el-Schwarz transformation

(5.4)

w(z) = A

Z z

0

dzq
(z2 � b2)(z2 � 1

b2 )
+B, (5.84)

By definition this map satisfies the following conditions

w(b) =
L

2
+ i

�

4
, w(�b) =

L

2
� i

�

4

w

✓
1

b

◆
= �L

2
+ i

�

4
, w

✓
�1

b

◆
= �L

2
� i

�

4
(5.85)

It is easy to see that � is given by 20

� = 2i(w(�b)� w(b) = �2iA

Z b

�b

dzq
(z2 � b2)(z2 � 1

b2 )
= 4iA bK(b4), (5.86)

where K(m) is the Elliptic K function

K(m) =

Z
1

0

dxp
(1� x2)(1�mx2)

Similarly

L = w(b)� w(1/b) = iA bK(1� b4)

The constant B can now be determined from, say, the first of the conditions (5.85). We get

B = L/2. The map, therefore, is given by

w(z) =
i�

4K(b4)
sn�1(

z

b
, b4) +

L

2
(5.87)

20We have used the convention

1q
(z2 � b2)(z2 � 1

b2
)
= � 1q

(b2 � z2)( 1
b2

� z2)

.
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where we have used the following result about the Jacobi sn function

Z z

0

dzq
(z2 � b2)(z2 � 1

b2 )
= sn�1(

z

b
, b4)

The inverse map is

z = b sn


4K(b4)

i�

✓
w � L

2

◆
, b4
�

(5.88)

where we can regard b as determined from

�

L
=

4K(b4)

K(1� b4)
(5.89)

The antiholomorphic map reads as

z̄ = b sn


�4K(b4)

i�

✓
w̄ � L

2

◆
, b4
�

(5.90)

Periodicity properties: Note the periodicity properties

z(w) = z(w + 2L), z(w) = z(w + i�) (5.91)

and the parity property

z(w + i�/4) = �z(w � i�/4) (5.92)

which follow from the following properties of the Jacobi sn function [4]

sn(u+ 2K(m),m) = �sn(u,m) = sn(u� 2K(m),m), sn(u+ 2iK(1�m),m) = sn(u,m)
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Map from T2 ! C: The above periodicity properties (5.91) imply that the map w ! z(w)

can be viewed from a complex torus to the complex plane:

T2w 7! z(w) = b sn

✓
4K(b4)

i�
(w � L

2
), b4

◆
2 C,

w ⌘ x+ i⌧, x 2 [�L

2
,
3L

2
], ⌧ 2 [��

4
,
3�

4
], z = z2 + iz1, z1, z2 2 R (5.93)

Here the torus is represented as a rectangle (whose opposite sides are to be identified). The

earlier rectangle (5.82) is the bottom left ‘quadrant’ of this larger rectangle.

We should note here that the rectangle (5.82) (or rather the Lorentzian continuation

of that) is the appropriate geometry for the quench problem, whereas the torus described

above is the appropriate geometry for a thermal problem (where we have a periodicity in

the imaginary time).

Large L limit: To see this limit, we note the following small m behaviour [4]

K(1�m) ⇡ 1

2
log(16/m) +O(m), K(m) = ⇡/2 +O(m) (5.94)

Thus, the large L limit corresponds to small b, with

�

L
=

4K(b4)

K(1� b4)
⇡ ⇡

log(2/b)
+O(b4)

Using (5.94) and

sn(u,m) = sin(u)� 1

4
m(u� sin u cos u) cosu+O(m2),

sin(u/i) = �i sinh(u) (5.95)
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we get from (5.88)

z ⇡ �ib sinh

✓
2⇡w

�
� log(2/b)

◆
⇡ �ib(�1

2
) exp

✓
�2⇡w

�
+ log(2/b)

◆
⇡ ie�2⇡w/� (5.96)

Hence, in this limit, we recover the map (5.8) from the cylinder to the complex plane with

periodicity w ⌘ w+ i�. This periodicity is consistent with the (5.91) described above, in the

limit where the aspect ratio �/L ! 0, which we can regard as an infinitely wide rectangle

with width � whose opposite sides are identified (hence, a cylinder).

Low temperature limit: Using (5.94), and (5.89), we can find the following b ! 1 � ✏

behaviour
�

L
⇡ 4

⇡
log

✓
16

1� b4

◆

which shows that b ! 1� ✏ corresponds to the low temperature �/L ! 1 limit. Using the

formula

sn(iu, 1�m) = i tan(u) +O(m)

we can then easily derive the following low temperature limit of (5.88):

z(w) = i cot
⇣⇡
4
+
⇡w

2L

⌘
(5.97)

This shows a periodicity w ⌘ w+2L, and is consistent with (5.91). The rectangle representing

the torus (5.93) becomes in this limit an infinitely high strip of width L (with opposite sides

identified, hence leading to a cylinder).

Lorentzian map

As we saw in the text, the map (5.88) described above helps convert observables computed

in the UHP (5.83) to those in the Euclidean rectangle (5.82). As we indicated above, the

same map also converts the complex plane to the torus (5.93). As described in Section 5.2.2,
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for real-time observables we are interested in a Lorentzian CFT on the manifold (5.16)

ML = I⇥Rx± = x⌥ t, x 2 I = [�L/2, L/2], t 2 R (5.98)

which describes the Wick-rotated rectangle (5.82) (it is an infinite strip of width L). We

obtain them by analytically continuing CFT observables on the rectangle according to (5.15):

⌧ = it,! w = x+ i⌧ = x� t ⌘ x+, w̄ = x� i⌧ = x+ t ⌘ x� (5.99)

For the holographic calculations described in Section 5.4, we need to also analytically

continue the Euclidean z, z̄ plane to a Lorentzian plane z+, z� 2 R2. Thus, we need an

analytic continuation of the Euclidean map (5.88), (5.90). To do this, we note the identity [4]

sn(x/i,m) = �i
sn(x, 1�m)

cn(x, 1�m)
(5.100)

Since under the analytic continuation (5.99), both w, w̄ become real, the above identity

implies that both z and z̄, become purely imaginary. We, therefore, define the following

analytic continuation of the complex z-plane to the real plane

z = iz+, z̄ = �iz�,

z± =

8
><

>:

�iz ⌘ �i(z2 + iz1) = z1 � z0,

+iz̄ ⌘ +i(z2 � iz1) = z1 + z0,
z0 ⌘ iz2 (5.101)

where, z± are given by the following functions (using (5.100))

z± = f±(x±), f+(x) = f�(x) = f(x) ⌘ �b
sn
h
4K(b4)
� (x� L/2), 1� b4

i

cn
h
4K(b4)
� (x� L/2), 1� b4

i (5.102)
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Note that in this map, x± = x⌥ t, with x 2 I = [�L/2, L/2], t 2 R, whereas z± = z1 ⌥ z0,

z0,1 2 R. Thus the above map is a map from the strip ML (5.16) to the real plane R2. The

map is clearly conformal, which satisfies the property dz+dz� = f 0(x+)f 0(x�)dx+dx�. Note

that the Lorentzian version of the high temperature map (5.96) becomes the Rindler map:

z± = exp(�2⇡x±

�
) (5.103)

A di↵erent Euclidean map

We note that the map (5.88) is not the unique one that maps the rectangle to the UHP. We

may consider, e.g., a di↵erent assignment of the corners to the boundary of the UHP:

w

✓
�1

b

◆
=

L

2
� i�

4
, w

✓
1

b

◆
= �L

2
� i�

4

w(�b) =
L

2
+

i�

4
, w(b) = �L

2
+

i�

4
(5.104)

By using methods similar to Section 5.7.2, we arrive at the following map

z = �b sn


2K(b4)

L
(w � i�

4
), b4

�
(5.105)

where b now is given by
�

L
=

K(1� b4)

K(b4)
.
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-1/b
-b b

1/b

Figure 5.9: The second map between the upper half plane and the rectangle. The colour coding represents
the mapping of the corners to the boundary of the UHP. See (5.88) and (5.87). The time evolution contours
in the rectangle are mapped to the UHP as shown on the right. We have chosen L = � = 1. It is clear that
this second map is roughly obtained from the first map by exchanging the horizontal and vertical axes of
the complex plane.

The periodicity property of this map is the same as in (5.91). This map has the property

that its low temperature limit is the standard cylinder map (with periodicity 2L), as

z ⇡ i exp(i
⇡w

L
) (5.106)

The Euclidean map (5.105) cannot be analytically continued to a Lorentzian map as in

(5.15). Here the continuation is w = ix+, w̄ = �ix�. This means that in the Euclidean

theory we need to call w =: ⌧ + ix, w̄ = ⌧ � ix, and then analytically continue ⌧ = it (here

x± = x ± t). The accompanying continuation of the z-plane is z = iz+, z̄ = �iz�. As a

simple check, note that (5.106) now becomes a real conformal map

z± = exp(�⇡x±

L
)

Comparing with (5.103), we can see that this second map is indeed related to the first map by

an exchange of the horizontal and vertical axes, along with � $ 2L (also, compare Figures

5.1 and 5.9).
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5.7.3 Decay rate in the high temperature limit

We will consider a one point function at the point x = 0 and at time t in the high temperature

limit, where L
� � t

� � 1. Using the high temperature Lorentzian map (5.103), we find that

the Lorentzian continuation of the connected correlator h...iC in (5.11) gives

✓
(z+ � z�)

b

◆�2h

' 22h exp(�2⇡

�
(2h)(t+

L

2
)) (5.107)

The Jacobian terms in (5.11) become

✓
z0
+
(x+)z0�(x�)

b

◆h

' (
2⇡

�
)2h2�2h

✓
exp(

4⇡t

�
) + exp(

2⇡L

�
)

◆h

(5.108)

In the limit L
2� � t

� , the second term in the above expression dominates over the first.

Combining the above two expressions, we get,

h�(w, w̄)irect '
✓
2⇡

�

◆2h

exp

✓
�4⇡h

�
t

◆
(5.109)

Thus, the decay rate of the one point function in the limit L
� � t

� � 1 matches exactly with

the decay rate obtained in [71] and [182] in the case of an infinite strip (L ! 1).

5.7.4 The BTZ and the global AdS metric

We will work out the metric (5.57) in case the maps f±(x±) are given by the non-compact

limit L ! 1 limit (5.8) and the low temperature � ! 1 limits (5.9) of the general

transformation (5.6).21

21 We must distinguish between (a) the non-compact limit L ! 1 and (b) the high temperature
limit � ! 0, although in both cases the aspect ratio L/� ! 1. The di↵erence is that in (a), ratios
such as �/L, x±/L, l/L ! 0 while ratios such as x±/�, l/� are not scaled, whereas in (b) ratios such
L/�, x±/�, l/� ! 1, while x±/L, l/L are not scaled. In other words, in (a) only L ! 1 and all other
length scales are held fixed, while in (b) only � ! 0 and all other length scales are held fixed. Similarly
limits of (c) low temperature � ! 1 (where L, x±, l are held fixed) and (d) small system size L ! 0 (where
�, x±, l are held fixed), are di↵erent. In this section we consider the limits (a) and (c).
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Large L: BTZ Using the map (5.8) we first find that

L+ = L� ⌘ L = 4⇡2/�2 (5.110)

which is consistent with (5.59) and (2.1). This allows us to write the map (5.8) as

z± = f±(x±) = exp[�
p
Lx±] (5.111)

The denominator D in (5.56) becomes

D = L
�
Lz2 + 4

�
e�2

p
Lx, (5.112)

The ‘large di↵eomorphism’ (5.56) in this case is, therefore, given by

z+ = f(x+) ⌘
e�

p
Lx+ (4� Lz2)

Lz2 + 4
, z� = f(x) ⇣ =

4z
p

Le�
p
L(x�+x+)

Lz2 + 4
(5.113)

The resulting metric (5.57), turns out to be (see [181,218,234] for more details)

ds2 =
dz2

z2
� (Lz2 � 4)2

16z2
dt2 +

(Lz2 + 4)2

16z2
dx2, (5.114)

which represents a BTZ black hole with horizon at

zh = 2/
p
L (5.115)

In the large L limit the size of the spatial cycle e↵ectively becomes decompactified; thus

the above metric represents a BTZ black string. Thus, the BTZ black string is the bulk

dual of the CFT on the (analytically continued) cylinder, which, of course, is the Lorentzian

equivalent of the statement that the Euclidean black string is the bulk dual of the thermal

CFT which is represented by the Euclidean cylinder.
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The low temperature limit: Global AdS In the limit � � L, we apply the map (5.9)

to the transformation (5.56). Here we find that

L+ = L� ⌘ L = �⇡2/L2 (5.116)

which is consistent with (5.59) and (5.21).

By going through similar steps as the above, we find the final form of the metric (5.57)

as

ds2 =
dz2

z2
� (Lz2 + 4)2

16z2
dt2 +

(Lz2 � 4)2

16z2
dx2 (5.117)

which represents global AdS, since it is the spatial cycle x which shrinks to zero size at

z = 2/
p
L.
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Chapter 6

Higher-point conformal blocks and EE

in Heavy States

6.1 Introduction

Much of the power and appeal of holography [176] rests on features of conformal field

theories which find natural analogues in gravity. There are several of these features of

holographic field theories which are universal and can be captured without reliance to a

specific theory. Examples of these include thermodynamic features like the Cardy formula

[75] and entanglement entropy [64, 220]. Moreover, it is of substantial interest to identify

and explore the ‘universality class’ of CFTs which admit a holographic description [38, 40,

41,100,134,137,142,156].

The evaluation of correlation functions by decomposing into conformal blocks is a

minimalistic and powerful approach to extract very general features of CFTs [98, 107, 242,

244]. This direction, recently harnessed by the conformal bootstrap programme, has led to

strong results on anomalous dimensions of operators [101, 213, 219] and bounds on central

charges [212]. In the AGT correspondence, conformal blocks of Liouville theory (or more
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generally Toda theories) are related to the instanton partition functions of 4-dimensional

N = 2 SCFTs [8, 241].

Conformal blocks also play an important role in the context of holography since they

serve as the CFT detectors of bulk locality and gravitational scattering [100, 113, 142, 143,

152,173,207]. Conjunctively, there has also been very strong evidence that conformal blocks

are intimately related to geodesics in AdS [10–12,145–147]. One of the important objects in

this context, for a 2d CFT, is the correlator of two heavy operators with two light operators

[10–12,113–115,145–147]1. As c ! 1, the ratio of the conformal dimension with the central

charge remains fixed for heavy operators, whilst that of light operators is much smaller than

unity. One can think of these heavy operators being responsible for creating an excited state

after a global quench [21, 68]. On the gravity side, this excited state corresponds to the

conical defect background [21]. It has been shown that the conformal block of this correlator

is precisely reproduced from holography from an appropriate worldline configuration in this

bulk geometry [145, 147]. Moreover, the correlation functions in this excited state mimic

thermal behaviour if the conformal dimension of the heavy operator exciting the state is

greater than c/24 [114, 115]. This is an example of a pure microstate (with a su�ciently

high energy eigenvalue) behaving e↵ectively like a mixed state being a part of the thermal

ensemble.

In this work, we evaluate conformal blocks of two heavy operators and arbitrary number

(m) of light operators. We work in the heavy-light approximation and utilize the monodromy

method to derive the (m + 2)-point conformal block. We expand the correlation function

in a basis which involves pairwise fusion of the light operators (see Fig 6.1). In the strict

heavy-light limit and at large central charge, we show that, for this class of OPE channels :

1See references [77, 110, 141, 166, 189–191, 208] for further interesting aspects of conformal blocks in 2d
CFTs.
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• The conformal block having an even number of light operators and two heavy operators

factorizes into a product of 4-point conformal blocks of two heavy and two light

operators.

• The conformal block having an odd number of light operators and two heavy operators

factorizes into a product of 4-point conformal blocks of two heavy and two light

operators and a 3-point function involving one light and two heavy operators.

Our monodromy analysis is developed mostly based on the work [12] which made use of the

accessory parameters of the 4-point conformal block as a seed solution in order to obtain

those for the 5-point conformal block. Although the factorization we observe is special to

the OPE channel configurations we have chosen, the conformal blocks in other bases can be

related to ours by performing linear operations. Furthermore, since the correlator itself is

a basis independent object, all bases of conformal blocks are on an equal footing. We shall

demonstrate this picture by using the correspondence relating CFT correlators to punctured

Riemann surfaces.

Our results for conformal blocks from the CFT are reproduced from the bulk by

considering suitable generalizations of the worldline configurations considered in [147].

The choice of OPE channels in the CFT are in one-to-one correspondence to geodesic

✏̃p✏̃p

✏L ✏L ✏L ✏L

✏H ✏H
1

1

0

x3 x4 x5

✏̃p

✏L ✏L

x6 x7

✏̃p

✏L ✏L

xm xm+1

✏̃Q ✏̃R

Figure 6.1: The OPE channel which we shall consider here for the conformal block of an even
number light operators and two heavy operators. The conformal dimensions are scaled as ✏i = 6hi/c.
Note the pairwise fusion of the light operators into operators of conformal dimension h̃p which are
same in the intermediate channels shown in the figure – this provides a major simplification for the
monodromy analysis.
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configurations in the bulk. This implies that these higher-point conformal blocks can

be fully recast in terms of bulk quantities. This outcome nicely fits within the notion

of emergence of locality from a conformal field theory [100] and serves as an explicit

demonstration of the same not only for higher-point correlation functions but also for

non-vacuum states. It was also shown previously that correlation functions of free theories

can be rewritten in terms of closed string amplitudes in AdS [125–127]. Although our

correlator is in a very di↵erent regime of the parameter space of couplings, it bears in the

same spirit the pertinent analogue of admitting an Einstein gravity description instead of

the stringy one for free theories.

This circle of ideas finds a natural home in the context of entanglement entropy of heavy

states [21]. The light operators then correspond to twist operators, with conformal dimension

c/24 (n � 1/n), (which implement the replica trick) in the limit n ! 1, where n is the

replica index [64]. One can then utilize the higher-point conformal block to obtain the

entanglement entropy of an arbitrary number of disjoint intervals. Our choice of monodromy

contours, similar to those used in [105, 136], are well-suited to computing entanglement

entropy. Furthermore, these results can be straightforwardly used to evaluate the mutual

information of two disjoint intervals, A and B, which is defined as

I(A,B) = S(A) + S(B)� S (A [ B) .

On the holographic side, the Ryu-Takayanagi prescription [220] instructs us to calculate

minimal areas (or geodesics for the case of 3d gravity). Our CFT results for entanglement

entropy of disjoint intervals agree precisely with that obtained from the bulk using the

minimal area prescription. Furthermore, we show that for two or more disjoint intervals,

there are multiple geodesic configurations which are possible in the bulk and these are in

one-to-one correspondence with various OPE channels or monodromy contours which one

chooses to consider in the CFT.
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The outline of this chapter is as follows. In Section 6.2, we introduce the correlation

function whose conformal block we wish to evaluate and specify the regime of validity of our

analysis. The relation of CFT correlators with punctured Riemann surfaces is reviewed in

this section. Section 6.3 contains the explicit evaluation of the conformal block. We consider

the 5- and 6-point conformal blocks before generalizing the result to arbitrary odd- and even-

point blocks. Specializing to the case of light primaries being twist operators, we evaluate

the entanglement entropy and mutual information in Section 6.4. In Section 6.5, we consider

worldline configurations in the bulk and reproduce the CFT result for odd- and even-point

blocks. This section also contains the analysis of the holographic entanglement entropy using

the Ryu-Takayanagi formula. We describe the moduli space of the conformal block in Section

6.6. Finally, Section 6.7 has our conclusions along with some future directions.

6.2 On heavy-light correlators and Riemann surfaces

Consider the following p-point correlation function of primary operators Oi, each located at

the points (zi, z̄i) on a plane. By inserting (p�3) number of complete sets of states equivalent

to the identity (Fig 6.1), we can expand in terms of the conformal partial waves as

*
O1(z1, z̄1)O2(z2, z̄2) · · ·Op(zp, z̄p)

+
=
X

{h̃i}

d
{h̃i}

F(zi, hi, h̃i)F̄(z̄i, hi, h̃i). (6.1)

The complete set of states ih̃i, running in the (p � 3) intermediate channels, is labelled in

terms of representations of the Virasoro algebra which includes the primaries as well as their

descendants. Here, d
{h̃i}

are constructed out of the structure constants cijk of the algebra of

operators in the theory. In what follows, we shall be interested in the following (m+2)-point
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correlator of two heavy operators and m light operators2

hOH(z1, z̄1)
m+1Y

i=2

OL(zi, z̄i) OH(zm+2, z̄m+2)i. (6.2)

We shall work with CFTs, which in the c ! 1 regime, admit a holographic description

in terms of Einstein gravity. We make use of the property that, in this regime, the p-point

conformal blocks are expected to exponentiate as [242,244,245]

F(p)(zi, hi, h̃i) = exp
h
� c

6
f(p)(zi, ✏i, ✏̃i)

i
. (6.3)

Furthermore, the points z1, z2 and zm+2, in (6.2), can be sent to 1, 1 and 0 respectively via

the projective transformation

xi =
(zm+2 � zi)(z2 � z1)

(zm+2 � z2)(zi � z1)
. (6.4)

Upto factors of the Jacobians arising from usual rules of conformal transformations of primary

operators, the correlator of interest is now expressed in terms of the cross-ratios, xi, as

D
OH(1)

"
OL(1)

m+1Y

i=3

OL(xi)

#
OH(0)

E
. (6.5)

We shall be interested in contributions of Virasoro conformal blocks, F(p)(xi, hi, h̃i), to the

above correlation function. In addition to the c ! 1 limit, we shall also work in the

heavy-light limit, for which the dimensions of the operators scale as

✏H =
6hH

c
⇠ O(1) , ✏L =

6hL

c
⌧ 1 . (6.6)

In words, the ratio of the conformal dimension with central charge of the heavy operators

remains fixed and is of order-one in the c ! 1 regime whilst that of the light operators

2In this section and the next we move back and forth between using p and m. p = m+ 2.
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much lesser than unity3. By referring to this as the ‘heavy-light limit’, we mean to consider

contributions to the conformal block to the leading order in ✏L.

The four-point version of the above conformal block was considered in [113] and the

five-point in [12]. The conformal block was used to calculate the entanglement entropy of a

single interval in heavy states in [21].

It is important to note, that there are several choices of OPE channels along which one

can expand a CFT correlation function. Each of these channels correspond to di↵erent basis

choices of the conformal blocks to rewrite the correlator. The correlation function is a single-

valued real analytic function of the coordinates zi and z̄i. However, this is not true for the

conformal blocks themselves (due to presence of branch cuts) and the correlation function

is, therefore, independent of the basis of conformal blocks. It can be shown that conformal

blocks in di↵erent bases are related by the linear operations of braiding, fusion and modular

transformation [152, 193–195]. These operations have finite-dimensional representations for

rational CFTs but can, nevertheless, be performed on conformal blocks of a generic CFT

since these are duality transformations purely arising from associativity of OPEs (crossing-

symmetry) and modular invariance4. In this chapter, we shall work in a specific basis in

which light operators fuse in pairs. As we shall show, this basis admits a generalization to

higher point conformal blocks and is geared towards the analysis of entanglement entropy

of disjoint intervals [105, 136]. The OPE channel considered for the 5-point function in [12]

is di↵erent from the one we are about to use but is, however, related to ours by a series of

fusion operations5.

The statements above can be manifestly portrayed if one associates, a Riemann sphere

with p punctures, �0,p, with a p-point CFT correlation function on the plane [152, 193–195,

3In Section 6.4, we specialize to the case of the light operators being twist operators with conformal
dimension c/24 (n� 1/n) in the limit n ! 1. Here, n is the index for the number of replicas.

4See, for example, [152] which explicitly constructs the duality transformations in terms of quantum 6j-
symbols for Liouville theory. Quite intriguingly, the authors also show that the braiding matrix is related to
gravitational scattering amplitudes.

5See Fig. 18 of [194] to relate the basis used in [12] to the one used here.
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248]. Strictly speaking, there is a vector space of conformal blocks H(�) associated to every

Riemann surface � [116]. The di↵erent bases of conformal blocks (or OPE channel choices)

are the various ways in which this Riemann surface can be sewn from 3-holed spheres (or as

is graphically called ‘a pair of pants’). Stated di↵erently, the decomposition of the correlator

into conformal blocks is equivalent to the pant-decomposition of the punctured sphere. The

intermediate channels in the conformal blocks correspond to the states passing through the

sewed holes. The number of intermediate sewings necessary for the p-punctured sphere is

(p� 3).

Moreover, a p-point CFT correlation function on the plane is related to a moduli space,

M0,p, (corresponding to the Riemann surface �0,p) [116, 194, 248]. For our correlator (6.5)

on the sphere, this is M0,m+2. There are (m� 1) complex moduli formed by the cross-ratios

{xi}. This picture will turn out to be relevant later on in Section 6.6.

6.3 Monodromy problem for conformal blocks

In this section we briefly review the monodromy method to evaluate the Virasoro conformal

block. The discussion closely follows [91, 113]. We then proceed to use it for calculating 5-

and 6-point conformal blocks and then generalize to blocks with an arbitrary number of light

operator insertions.

Let us consider the correlation function we started with,

*
O1(z1)O2(z2)O3(z3) · · ·Op(zp)

+
.

As mentioned before, in order to decompose this p-point correlator into a sum of products

of 3 point functions we need to insert p � 3 resolutions of identity. In terms of these

intermediate states, a typical conformal block would read as6

F(p)(zi, hi, h̃i) =

*
O1(z1)O2(z2)i↵ h↵O3(z3)i� h�O4(z4)i� · · · h⇣Op�1(zp�1)Op(zp)

+
. (6.7)

6Henceforth, we focus attention on the holomorphic part.
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Now, one can insert into this conformal block an additional operator,  ̂(z), whose conformal

dimension remains fixed in the c ! 1 limit. This defines the following quantity

 (z, zi) ⌘
*
O1(z1)O2(z2)i↵ h↵ ̂(z)O3(z3)i� · · · h⇣Op�1(zp�1)Op(zp)

+
.

It can then be argued [113] that the insertion of  ̂ changes the leading semi-classical

behaviour of the conformal block just by multiplication of a wavefunction

 (z, zi) =  (z, zi)F(p)(zi, hi, h̃i). (6.8)

We can now choose that the operator  ̂ obeys the null-state condition at level 2.


L�2 �

3

2(2h + 1)
L2

�1

�
i = 0, with, h 

c!1
= �1

2
� 9

2c
. (6.9)

Acting  (z, zi) by (L�2 � 3

2(2h +1)
L2

�1
), therefore, leads to

h
L�2 +

c

6
L2

�1

i
 (z, zi) = 0. (6.10)

Translating this into a di↵erential equation by using the di↵erential operator realization of

Virasoro generators, one arrives at a Fuchsian equation

d2 (z)

dz2
+ T (z) (z) = 0, with, T (z) =

pX

i=1


✏i

(z � zi)2
+

ci
z � zi

�
. (6.11)

Here, ✏i = 6hi/c and ci are the accessory parameters related to the conformal block as

ci = �
@f(p)(zi, ✏i, ✏̃i)

@zi
. (6.12)

The function f(p) is the same as the one appearing in the exponential in equation (6.3)

and forms the essential ingredient of the conformal block. Equation (6.12) implies that the
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following integrability condition should be satisfied

@ci
@zj

=
@cj
@zi

. (6.13)

The asymptotic behaviour T (z) ⇠ 1/z4, at z ! 1, imposes the conditions

pX

i=1

ci = 0,
pX

i=1

(cizi + ✏i) = 0,
pX

i=1

(ciz
2

i + 2✏izi) = 0. (6.14)

We shall now work in the coordinate system xi as defined in (6.4) and also consider two

heavy operators at 0 and 1 and (p� 2) light operators at 1, x3, · · · , xp�1. Using the above

three relations, we can re-express c1,2,p in terms of other accessory parameters c3,··· ,p�1 and

cross-ratios as

c1 =
p�1X

i=3

(xi � 1)ci + (p� 2) ✏L, c2 = �
p�1X

i=3

xici � (p� 2) ✏L, cp = 0. (6.15)

Substituting (6.6) and (6.15) in the expression for T (z) we get

T (z) =
✏H
z2

+
✏L

(z � 1)2
+

p�1X

i=3

✏L
(z � xi)2

� (p� 2) ✏L
z(z � 1)

+
p�1X

i=3

xi(1� xi)

z(z � 1)(z � xi)
ci. (6.16)

One can solve for the accessory parameters, ci, by using the monodromy properties of the

solution  (z) around the singularities of T (z). The main ingredient of the conformal block

f(p)(xi, ✏i, ✏̃i) can, in turn, be obtained from the accessory parameters upon integrating,

ci = �@f(p)/@xi. Thinking of the conformal block F(p)(xi, hi, h̃i) as a partition function

dominated by the saddle-point action (c/6)f(p)(xi, ✏i, ✏̃i), the accessory parameters ci serve

as conjugate variables for the cross-ratios xi
7. As emphasized in [147], the saddle-point

7It was pointed out in [152] that the corresponding Teichmüller space inherits the complex structure
(xi, �i) from the punctured Riemann sphere. The authors had also studied quantization arising from the
conjugate variables xi and �i. The wavefunction  (z, zi) in (6.8) can then be thought to be living in the
associated Hilbert space.
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action dominating the conformal block is closely related to the worldline action in AdS. The

accessory parameter can then be identified as the momentum along the geodesic.

We shall now consider two warmup examples of the 5- and 6-point conformal blocks to

gain some intuition before analyzing the arbitrary p-point case. Let us reiterate the notation

for the number of insertions of operators

total number of operator insertions = p,

number of light operator insertions = m,

number of heavy operator insertions = 2.

Therefore, p = m + 2. The variable n is reserved for the replica index which will appear in

the context of entanglement entropy. Along the way, we also mention the procedure to be

used and fix the notation and conventions further.

6.3.1 Warmup examples

Warmup example I : 5-point conformal block

Let us consider the conformal block of the 5-point function

*
OH(1)OL(1)OL(x3)OL(x4)OH(0)

+
. (6.17)

This is the case of m = 3 or p = 5.

Perturbative expansion of the monodromy equation

We shall solve for the unknown accessory parameters c3,4 in perturbation theory in the

parameter ✏L which is the scaled conformal dimension of the light operator (6.6). We shall

be following the procedure used in [12, 113, 147]. However, as mentioned earlier, unlike [12]
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which studied the 5-point block in much greater detail, our choice of monodromy contours

will be di↵erent and we shall be working only up to linear order in ✏L which is the light

parameter of all our light operators.

The quantities in the monodromy equation (6.11) can be expanded implicitly in powers

of the light parameter, ✏L, as

 (z) =  (0)(z) +  (1)(z) +  (2)(z) + · · · ,

T (z) = T (0)(z) + T (1)(z) + T (2)(z) + · · · , (6.18)

ci(z) = c(0)i (z) + c(1)i (z) + c(2)i (z) + · · · , for i = 3, 4, . . . ,m+ 1.

For the case at hand, m = 3. Following [12], we also assume that the expansion of the

accessory parameters starts at linear order in ✏L and hence c(0)i = 0. The equation (6.11) at

the first two orders is

d2 (0)(z)

dz2
+ T (0)(z) (0)(z) = 0, (6.19)

d2 (1)(z)

dz2
+ T (0)(z) (1)(z) = �T (1) (0)(z). (6.20)

From (6.16), the stress-tensor at these orders is

T (0)(z) =
✏H
z2

, (6.21)

T (1)(z) =
✏L

(z � 1)2
+

✏L
(z � x3)2

+
✏L

(z � x4)2
� 3✏L

z(z � 1)
(6.22)

+
x3(1� x3)

z(z � 1)(z � x3)
c(1)
3

+
x4(1� x4)

z(z � 1)(z � x4)
c(1)
4
.

As in [12], we shall also supress the superscript of c(1)i and simply call it ci since the accessory

parameters at the linear order are su�cient information for the heavy-light limit. In other

words, we shall confine our attention to the linear order in ✏L which is the extreme heavy-light

limit.
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The solution to the zeroth order ODE in (6.19) is straightforward

 (0)

± (z) = z(1±↵)/2, ↵ =
p
1� 4✏H . (6.23)

Let us calculate the monodromy of this first order solution about the points 0 and 1. It

can be easily seen that taking z to e2⇡iz, results in

0

B@
 (0)

+ (e2⇡iz)

 (0)

� (e2⇡iz)

1

CA = �

0

B@
e⇡i↵ 0

0 e�⇡i↵

1

CA

0

B@
 (0)

+ (z)

 (0)

� (z)

1

CA . (6.24)

The 2⇥2 matrix above is therefore the monodromy matrix for a contour containing the point

z = 0. In a similar fashion the monodromy around z = 1 can also be seen by performing

the transformation y = 1/z

0

B@
 (0)

+ (e2⇡iy)

 (0)

� (e2⇡iy)

1

CA = �

0

B@
e�⇡i↵ 0

0 e⇡i↵

1

CA

0

B@
 (0)

+ (y)

 (0)

� (y)

1

CA . (6.25)

Since ↵ =
p
1� 4✏H , the monodromies above detect the conformal dimensions of the heavy

operators inserted at 0 and 1.

The first order corrections (6.20) can be obtained by the standard method of variation

of parameters. The Wronskian is W (z) = ↵. We have

 (1)

+ (z) =
1

↵
 (0)

+ (z)

Z
dz (0)

� (z)T (1)(z) (0)

+ (z)� 1

↵
 (0)

� (z)

Z
dz (0)

+ (z)T (1)(z) (0)

+ (z),

 (1)

� (z) =
1

↵
 (0)

+ (z)

Z
dz (0)

� (z)T (1)(z) (0)

� (z)� 1

↵
 (0)

� (z)

Z
dz (0)

� (z)T (1)(z) (0)

+ (z). (6.26)

226



Monodromy conditions

T (1)(z) has three singular points at 1, x3 and x5 i.e. at the location of the light operators.

Our choice of contours shall involve one contour enclosing a pair of points and another one

enclosing the remaining single point. There are three such possibilities

• ⌦1 : �1 enclosing {1, x3} and �2 enclosing {x4}

• ⌦2 : �1 enclosing {1, x4} and �2 enclosing {x3}

• ⌦3 : �1 enclosing {x3, x4} and �2 enclosing {1}

These contour configurations are in one-to-one correspondence with the OPE channel along

which one chooses to expand. For instance, for ⌦1, we consider the OPE, OL(1)OL(x3). We

shall elaborate on this further below.

The monodromy matrix upto first order in ✏L is

M(�k) = I+

0

B@
I(k)++ I(k)+�

I(k)�+ I(k)��

1

CA , (6.27)

where, the I(k)pq are contour integrals

I(k)++ =
1

↵

I

�k

dz  (0)

� (z)T (1)(z) (0)

+ (z), I(k)+� = � 1

↵

I

�k

dz  (0)

+ (z)T (1)(z) (0)

+ (z)

I(k)�+ =
1

↵

I

�k

dz  (0)

� (z)T (1)(z) (0)

� (z), I(k)�� = � 1

↵

I

�k

dz  (0)

+ (z)T (1)(z) (0)

� (z) (6.28)

Note that, I(k)++ = �I(k)��.

The monodromy conditions we shall impose are [113]

eM(�k) = �

0

B@
e+⇡i⇤ 0

0 e�⇡i⇤

1

CA , ⇤ =
p
1� 4✏̃p . (6.29)
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In words, the above equation means that the monodromy matrix picks up the conformal

dimension, h̃p = c ✏̃p/6, of the operator Op which arises upon fusing the operators living

inside the contour. The tilde on M above denotes that this diagonal form of the monodromy

matrix is related by similarity transformations to (6.27). Comparing the eigenvalues of (6.27)

with that of eM(�k) we get the condition

X [�k] ⌘
⇣
I(k)++

⌘2
+ I(k)+�I

(k)
�+ = �4⇡2✏̃2p. (6.30)

Here, we have defined X [�k] as the monodromy condition for the contour �k at the linear order

in ✏L. We shall now impose this condition for each of the contours in the configurations, ⌦i.

It is worthwhile remarking at this point that, these configurations of monodromy contours

are in one-to-one correspondence with the OPE channels. The residues provide information

about the singular structure due to the operators residing within the contours.

⌦1 channel

The ⌦1 channel – Fig 6.2 – corresponds to case when we consider the fusion of the light

primaries OL(1) and OL(x3). The monodromy conditions for this configuration is

X [�1] = �4⇡2x�↵/2
3

↵
[✏L(↵� 1 + (↵ + 1)x↵

3
) + (x↵

3
� 1)x3c3]

⇥ [✏L(↵� 2 + (↵ + 2)x↵
3
) + (x↵

3
� 1)(c3x3 + c4x4)] = �4⇡2✏̃2p, (6.31)

and

X [�2] = �4⇡2✏2L = �4⇡2✏̃2q. (6.32)

The last equation above is fairly obvious. The residue merely picks up the conformal

dimension of the single operator OL(x4) living inside the contour �2. Hence, ✏̃q = ✏L, which

is consistent with the conformal block diagram shown in Fig 6.2.
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Figure 6.2: OPE channel and monodromy contours for ⌦1 for the 5-point block.

We are now presented with the task of solving (6.31) for the accessory parameters c3

and c4. This is the point where one can utilize the method of seed solutions introduced

in [12]. The idea behind this method is that, in order to solve the monodromy problem for

the conformal block having m light operators, accessory parameters can be inherited from

a lower point conformal block having (m� 1) light operators. More precisely, for the block

with m light insertions one uses the accessory parameters of the block with (m � 1) light

insertions as zeroth-order solutions and then deforms these by the light parameter ✏L.

Following [12], we choose a seed solution for the accessory parameter c3 to be the same

of that of the 4-point conformal block [113].

c3 =
�✏L(↵� 1 + x↵

3
(↵ + 1)) + ✏̃px

↵/2
3
↵

x3(x↵3 � 1)
+O(✏2L). (6.33)

(Since, we shall be working the heavy-light limit – i.e. c(0)i in (6.18) – we shall drop the O(✏2L)

from now on for brevity.) Substituting this in (6.31) we get

c4 = �✏L
x4

. (6.34)

The integrability condition (6.13) is trivially satisfied.

It is crucial to note that in [12] an additional expansion was considered in their parameter

✏3 corresponding to one of the light operators8. In our case, all light parameters have the

8See equation (3.5) of [12].
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same conformal dimension ✏L. One can still consider a correction term of the form ✏Lc
(corr)

3

to c3 above. However, it can be explicitly seen that c(corr)
3

= 0 because (6.33) and (6.34)

are indeed the solutions to linear order in ✏L for the monodromy condition (6.31). Hence,

unlike [12], there are no additional corrections to (6.33) and the seed solution for c3 fully

captures the accessory parameter in the heavy-light limit. This simplifying feature is special

to the OPE channels or the corresponding monodromy contours we have considered and is

also due the fact that all the light operators here have the same conformal dimension.

We can now use (6.12) to obtain the conformal block. Upon integrating the accessory

parameters, we get

f(5)(x3, x4; ✏L, ✏H ; ✏p) =

"
✏L

✓
(1� ↵) log x3 + 2 log

1� x↵
3

↵

◆
+ 2✏̃p log

"
4↵

1 + x↵/2
3

1� x↵/2
3

##

+ ✏L log x4

= f(4)(1, x3; ✏L, ✏H ; ✏̃p) + ✏L log x4. (6.35)

The integration constants are chosen to be such that f(5) ⇠ (2✏L � ✏̃p) log(1� x3) for x3 ! 1

[113, 147]9. Here, f(4) is the function appearing in the exponential of the conformal block

(F(4) = exp(�cf(4)/6)) of the 4-point function

*
OH(1)OL(xi)OL(xj)OH(0)

+
[113].

f(4)(xi, xj; ✏L, ✏H ; ✏p) = ✏L

✓
(1� ↵) log xixj + 2 log

x↵i � x↵j
↵

◆
+ 2✏̃p log

"
4↵

x↵/2j + x↵/2i

x↵/2j � x↵/2i

#
.

(6.36)

9This follows from (6.7) and considering the behaviour of the 3-point function

*
OL(1)OL(x3)eOp(0)

+
in

the limit x3 ! 1.
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We now use the exponentiation of the conformal block (6.3) to obtain

F(5)(1, x3, x4; ✏L, ✏H ; ✏̃p)⌦1 = exp
h
� c

6
f(4)(1, x3; ✏L, ✏H ; ✏̃p)

i
⇥ x�hL

4

= F(4)(1, x3; ✏L, ✏H ; ✏̃p)⇥ x�hL

4
. (6.37)

The first factor here is the conformal block of the 4-point function

*
OH(1)OL(1)OL(x3)OH(0)

+
.

The second factor of x�hL

4
is due to the 3-point function of

*
OH(1)OL(x4)OH(0)

+

normalized by

*
OH(1)OH(0)

+
.

It is worthwhile noting that this factorization shown above is true only at the level of

conformal blocks – and not correlators – for a generic OL. This is because not much is known

about precise spectrum at low conformal dimension. In order to make a rigorous statement

on the correlation function, one would require information about the structure constants

cLLa.

However, for the light operators being twist operators �n, �̄n, in the limit n ! 1 (relevant

for entanglement entropy) the factorization (6.37) shown above can be independently seen

(at the level of correlation functions) in terms of the OPE in the regime x3 ! 1. This was

previously shown in [69]. It is known that twist operators fuse into the identity [64, 170]10

�n(1)�̄n(x3) ⇠ I+O((1� x3)
r) , r 2 Z+ (6.38)

This means that ✏̃p is 0 in the intermediate channel after fusion of two light operators.

Moreover, the only operators which will arise in the intermediate channel are the identity

and its descendants – this includes the stress tensor and operators made of the derivatives

and powers of the stress-tensor [21].

10We shall be implicitly working in the n ! 1 limit to ensure the operators are light.
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Let us insert a complete set of states in the 5-point function and make use of the OPE

(6.38)

*
OH(1)�n(1)�̄n(x3)�n(x4)OH(0)

+

x3!1

=
X

↵

*
OH(1)�n(1)�̄n(x3)i↵h↵�n(x4)OH(0)

+
. (6.39)

Since the leading term in the OPE (6.38) is the identity operator, the only non-zero

contribution will arise from i↵ =iOH , due to orthonormality of states. Hence, just a single

term in the above sum contributes and we have the factorization

*
OH(1)�n(1)�̄n(x3)�n(x4)OH(0)

+

x3!1

=

*
OH(1)�n(1)�̄n(x3)OH(0)

+*
OH(1)�n(x4)OH(0)

+
. (6.40)

The 4-point function above will receive contributions solely from the identity block owing to

(6.38).

⌦2 channel

The contour configuration for this case is equivalent to that of ⌦1 upon the replacements

x3 $ x4 and c3 $ c4. The analysis for this channel is therefore exactly the same as that of

⌦1 with these exchanges. The final result for the conformal block in this channel is

F(5)(1, x3, x4; ✏L, ✏H ; ✏̃p)⌦2 = F(1, x4; ✏L, ✏H ; ✏̃p)⇥ x�hL

3
(6.41)

⌦3 channel

This is the OPE channel which considers fusion of the light primaries OL(x3) and OL(x4).

The monodromy contours are shown in Fig. 6.3. The monodromy conditions (6.30) for the
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Figure 6.3: OPE channel and monodromy contours for ⌦3 for the 5-point block.

two contours are

X [�1] = �4⇡2✏2L = �4⇡2✏̃2p (6.42)

and

X [�2] = �4⇡2x�↵/2
3

x�↵/2
4

↵2
[✏L((↵� 1)x↵

4
+ (↵ + 1)x↵

3
) + (x↵

3
� x↵

4
)x3c3]

⇥ [✏L((↵� 1)x↵
3
+ (↵ + 1)x↵

4
) + (x↵

4
� x↵

3
)x4c4] = �4⇡2✏̃2q. (6.43)

(6.42) gives ✏L = ✏̃q. Inspired by the accessory parameters of the ⌦1 and ⌦2 channels, one

can make an educated guess for the seed solution c3

c3 =
�✏L(x↵4 (↵� 1) + x↵

3
(↵ + 1) + ✏̃px

↵/2
3

x↵/2
4

x3(x↵3 � x↵
4
)

. (6.44)

Substituting this in (6.43) we obtain

c4 =
�✏L(x↵3 (↵� 1) + x↵

4
(↵ + 1) + ✏̃px

↵/2
4

x↵/2
3

x4(x↵4 � x↵
3
)

. (6.45)
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The integrability condition (6.13) is non-trivally satisfied in this case. Integrating the

accessory parameters, we obtain

f(5)(1, x3, x4; ✏L, ✏H ; ✏̃p) = ✏L

✓
(1� ↵) log x3x4 + 2 log

x↵
3
� x↵

4

↵

◆
+ 2✏̃p log

"
1

4↵

x↵/2
4

+ x↵/2
3

x↵/2
4

� x↵/2
3

#
.

(6.46)

This result can also be written in terms of f(4) appearing in the 4-point conformal block

(6.36)

f(5)(1, x3, x4; ✏L, ✏H ; ✏̃p) = f(4)(1, x3, x4; ✏L, ✏H ; ✏̃p) + ✏L log 1 (6.47)

The second term is obviously zero but we have retained it to preserve the structure we found

in the previous channels. Exponentiating the above expression using (6.3), we get

F(5)(1, x3, x4; ✏L, ✏H ; ✏̃p)⌦3 = F(x3, x4; ✏L, ✏H ; ✏̃p)⇥ (1)�hL . (6.48)

which is the same factorization observed in the channels ⌦1 and ⌦2.

Warmup example II : 6-point function

Our second example is the conformal block of the 6-point function

*
OH(1)OL(1)OL(x3)OL(x4)OL(x5)OH(0)

+
. (6.49)

This is the case of m = 4.

Perturbative expansion of the monodromy equation

Once again, we start with the perturbative expansion in the parameter ✏L for  (z), T (z) and

ci(z) (6.18). The zeroth and first order equations are the same as that of (6.19) and (6.20).
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Figure 6.4: The OPE channel and contour configuration of ⌦1 for the case of the 6-point block.

The stress-tensor at the first two orders is

T (0)(z) =
✏H
z2

, (6.50)

T (1)(z) =
✏L

(z � 1)2
+

✏L
(z � x3)2

+
✏L

(z � x4)2
+

✏L
(z � x5)2

� 4✏L
z(z � 1)

(6.51)

+
x3(1� x3)

z(z � 1)(z � x3)
c(0)
3

+
x4(1� x4)

z(z � 1)(z � x4)
c(0)
4

+
x5(1� x5)

z(z � 1)(z � x5)
c(0)
5
.

The solution to the zeroth order ODE in (6.19) remains the same

 (0)

± (z) = z(1±↵)/2, ↵ =
p
1� 4✏H . (6.52)

Similar to the 5-point case, we proceed to study monodromy constraints of the first order

solution  (1)(z) which in turn is obtained by the method of variation of parameters (6.26).

Monodromy conditions

There are three choices of contours in this case

• ⌦1 : �1 enclosing {1, x3} and �2 enclosing {x4, x5}

• ⌦2 : �1 enclosing {1, x5} and �2 enclosing {x3, x4}

• ⌦3 : �1 enclosing {1, x4} and �2 enclosing {x3, x5}
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The above channels are often referred to as s, t and u respectively. The monodromy contour

and the corresponding OPE channel for ⌦1 are shown in the Fig. 6.4.

The monodromy matrix for the contours �k above upto first order in ✏L has the same form

as the one which we encountered in the 5-point block case (6.27) with the elements given

by the contour integrals in (6.28). Furthermore, we impose the same monodromy condition

X [�i] for each of the contours in the configurations above (6.30).

⌦1 channel

For the contours of the ⌦1 channel we have

X [�1] =� 4⇡2

↵2
x�↵
3

[✏L(↵� 1 + x↵
3
(↵ + 1)) + c3x3(x

↵
3
� 1)]

⇥ [✏L(↵� 3 + x↵
3
(↵ + 3) + (x↵

3
� 1)(c3x3 + c4x4 + c5x5))] = �4⇡2✏̃2p, (6.53)

X [�2] =� 4⇡2x�↵
4

x�↵
5

↵2
[✏L((↵� 1)x↵

5
+ (↵ + 1)x↵

4
) + x4(x

↵
4
� x↵

5
)c4]

⇥ [✏L(↵� 1)x↵
4
+ (↵ + 1)x↵

5
)� c5x5(x

↵
4
� x↵

5
)] = �4⇡2✏̃2q. (6.54)

We shall focus on the case when the conformal dimensions of the operators in the channels

right after fusion with the light primaries are the same. That is, ✏̃p = ✏̃q. This is a major

simplification, which was also used in [12], to facilitate the analysis. We use the result of the

accessory parameter c3 from the 4-point (or 5-point) conformal block as the seed solution.

As we had seen in the previous subsection, this seed solution is

c3 =
�✏L(↵� 1 + x↵

3
(↵ + 1)) + x↵/2

3
↵✏̃p

x3(x↵3 � 1)
. (6.55)
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Substituting this into the monodromy conditions (6.53) and (6.54) we have two simultaneous

equations in c4 and c5 which can be solved

c4 =
�✏L(x↵5 (↵� 1) + x↵

4
(↵ + 1)) + x↵/2

4
x↵/2
5
↵✏̃p

x4(x↵4 � x↵
5
)

, (6.56)

c5 =
�✏L(x↵4 (↵� 1) + x↵

5
(↵ + 1)) + x↵/2

4
x↵/2
5
↵✏̃p

x5(x↵5 � x↵
4
)

. (6.57)

It can be verified that the integrability condition (6.13) is satisfied.

We can now use (6.12) to obtain the conformal block.

f(6)(x3, x4, x5; ✏L, ✏H ; ✏̃p)

=

"
✏L

✓
(1� ↵) log x3 + 2 log

1� x↵
3

↵

◆
+ 2✏̃p log

"
4↵

1 + x↵/2
3

1� x↵/2
3

##
(6.58)

+

"
✏L

✓
(1� ↵) log x4x5 + 2 log

x↵
4
� x↵

5

↵

◆
+ 2✏̃p log

"
4↵

x↵/2
4

+ x↵/2
5

x↵/2
4

� x↵/2
5

##
.

The structure of each of the terms in square brackets is yet again of the same form as that of

4-point conformal block case (6.36). We now use the exponentiation of the conformal block

(6.3), to obtain

F(6)(1, x3, x4, x5; ✏L, ✏H ; ✏̃p)⌦1 = exp
h
� c

6
f(4)(1, x3; ✏L, ✏H ; ✏̃p)

i
⇥ exp

h
� c

6
f(4)(x4, x5; ✏L, ✏H ; ✏̃q)

i

= F(4)(1, x3; ✏L, ✏H ; ✏̃p)F(4)(x4, x5; ✏L, ✏H ; ✏̃q). (6.59)

The 6-point conformal block, therefore, factorizes into a product of two 4-point ones.

Note that this factorization is not due to a decoupling of equations involving accessory

parameters and is therefore not a mere doubling of the reduced problem for a single conformal

block. In particular, equation (6.53) contains all the accessory parameters and it is not a

priori obvious from the monodromy method that this factorization will happen.

237



Just like the case of the 5-point conformal block this factorization can be anticipated for

the special case of twist operators (in the limit n ! 1). Inserting a complete set of states in

the 6-point function and using the OPE channels (6.38) relevant in the regimes x3 ! 1 or

x4 ! x5 we have

*
OH(1)�n(1)�̄n(x3)�n(x4)�̄n(x5)OH(0)

+

x3!1 and/or x4!x5

=
X

↵

*
OH(1)�n(1)�̄n(x3)i↵h↵�n(x4)�̄n(x5)OH(0)

+
. (6.60)

Due to orthonomality of the complete set of states inserted, the only contribution will arise

from i↵ =iOH , leading to the factorization

*
OH(1)�n(1)�̄n(x3)�n(x4)�̄n(x5)OH(0)

+

x3!1 and/or x4!x5

=

*
OH(1)�n(1)�̄n(x3)OH(0)

+*
OH(1)�n(x4)�̄n(x5)OH(0)

+
. (6.61)

⌦2 and ⌦3 channels

The analysis in the ⌦2 and ⌦3 channels proceeds exactly in the same manner as that of

the ⌦1 channel with the replacements x3 $ x4 and x3 $ x5 respectively. We obtain the

factorizations

F(6)(1, x3, x4, x5; ✏L, ✏H ; ✏̃p)⌦2 = F(4)(1, x4; ✏L, ✏H ; ✏̃p)F(4)(x3, x5; ✏L, ✏H ; ✏̃q) (6.62)

F(6)(1, x3, x4, x5; ✏L, ✏H ; ✏̃p)⌦3 = F(4)(1, x5; ✏L, ✏H ; ✏̃p)F(4)(x4, x3; ✏L, ✏H ; ✏̃q) (6.63)
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6.3.2 Conformal block for an arbitrary number of light operator

insertions

Equipped with the examples considered above, we now come to the discussion of the

correlator

D
OH(1)

"
OL(1)

m+1Y

i=3

OL(xi)

#
OH(0)

E
(6.64)

which has an arbitrary (even or odd) number of light operator insertions.

Perturbative expansion of the monodromy equation

We are interested in studying the monodromy properties of the ODE (6.11) with T (z) given

in (6.16). Just like the warmup examples considered above, we start with the perturbative

expansion in the parameter ✏L for the quantities  (z), T (z) and ci(z) (6.18). The zeroth and

first order equations are the same as that of (6.19) and (6.20). The stress-tensor at the first

two orders is

T (0)(z) =
✏H
z2

(6.65)

T (1)(z) =
✏L

(z � 1)2
+

m+1X

i=3

✏L
(z � xi)2

� m ✏L
z(z � 1)

+
m+1X

i=3

xi(1� xi)

z(z � 1)(z � xi)
ci (6.66)

The solution to the zeroth order ODE in (6.19) is

 (0)

± (z) = z(1±↵)/2, ↵ =
p
1� 4✏H (6.67)

We now consider the monodromy constraints of the first order solution  (1)(z) which is

obtained by the method of variation of parameters (6.26).
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Figure 6.5: OPE channel and monodromy contours for ⌦1 for the 8-point block.

Contour configurations and their enumerations

The analysis of the 5- and 6-point conformal blocks posits that the choice of contour

configurations is slightly di↵erent for even or odd m.

For the case of an even number of light operator insertions, we can form contours

containing a pair of points each in ⌫(even)m = m!/(2m/2(m/2)!) ways. Each contour contains

two light operators located within. The contours fall under two major classes.

• �(1,r) : containing the points 1 and xr with r � 3 .

• �(p,q) : containing the points xp and xq with p 6= q and p, q � 3 .

We use ⌦i as a label for the ith contour configuration which includes information of all the

contours �(i)k

⌦i =
[

{(p,q)}

�i
(p,q) . (6.68)

See Fig 6.5 for an example involving 6 light operators and 2 heavy operators.

When an odd number of light operators are present there are ⌫(odd)m = m!/(2(m�1)/2

((m� 1)/2)!) such contour configurations. For each contour configuration, there is a single

contour containing just one light operator. All the other contours enclose a pair of light

operators. The classes of contours in this case are four.

• �(1) : containing the point 1

• �(s) : containing the point xs with s � 3

240



• �(1,r) : containing the points 1 and xr

• �(p,q) : containing the points xp and xq with p 6= q and p, q � 3

The set of contour configurations are of two types

⌦A
i = �(r) [

[

{(p,q)}

�i
(p,q) and ⌦B

i = �(1) [
[

{(p,q)}

�i
(p,q) . (6.69)

An example of the A-type contour configuration is ⌦1 for the 5-point case shown in Fig 6.2

whereas the ⌦3 shown in Fig 6.3 is a B-type configuration.

The contour configuration for the odd case (m = 2j+1) is equivalent to that of the even

case (m = 2j) with an additional contour enclosing the extra point. Moreover, it can be

seen that ⌫(even)
2j = ⌫(odd)

2j�1
. (This number is 3 for both the 5- and 6-point cases.)

It can be seen that there is a one-to-one mapping between the contour configurations

⌦i and the paired fusions of the light operators whose OPEs we consider to calculate the

conformal block. We label this set of pairs as {(p, q)}. Often, we shall denote this map

between the contour configurations and the set of fusions as

⌦i 7! {(p, q)} .

Monodromy conditions

The monodromy conditions are the same as the ones which we had imposed for the 5- and

6-point blocks. The final constraint is X [�i] in equation (6.30). We shall now consider

the even and odd number of insertions of light operators separately. Additionally, we shall

perform the analysis for the specific case of the conformal block in which the resulting

intermediate channels from all pairwise fusions of light operators give the operators with the

same conformal dimension.
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Case I : Even number of light operator insertions

Consider a specific contour configuration ⌦i. The monodromy condition for a contour

enclosing 1 and xr with r = 3, 4, 5, · · · ,m is

X [�(1,r)] =� 4⇡2

↵2
x�↵
r [✏L((↵� 1) + (↵ + 1)x↵r ) + (x↵r � 1)crxr] (6.70)

⇥
"
✏L((↵�m+ 1) + (↵ +m� 1)x↵r ) + (x↵r � 1)

m+1X

i=3

cixi

#
= �4⇡2✏̃a.

and that for a contour enclosing xp and xq is

X [�(p,q)] =� 4⇡2

↵2
(xpxq)

�↵
⇥
✏L((↵� 1)x↵q + (↵ + 1)x↵p ) + (x↵p � x�↵

q )cpxp

⇤
(6.71)

⇥
⇥
✏L((↵� 1)x↵p + (↵ + 1)x↵q ) + (x↵q � x�↵

p )cqxq

⇤
= �4⇡2✏̃b.

As mentioned above, we shall set ✏̃a = ✏̃b = ✏̃p.

Unlike the case of conformal blocks involving only an even number (m) of light operators

considered in [136], the system of monodromy conditions with the additional heavy operators

does not decouple into m/2 independent monodromy problems. It can be seen that the

monodromy condition (6.70) involves all the accessory parameters.

The analysis of the 6-point conformal block strongly suggests a guess for the solution of

the above coupled equations

cr =
�✏L(↵� 1 + x↵r (↵ + 1)) + x↵/2r ↵✏̃p

xr(x↵r � 1)
, (6.72)

cp =
�✏L(x↵q (↵� 1) + x↵p (↵ + 1)) + (xpxq)↵/2↵✏̃p

xp(x↵p � x↵q )
, (6.73)

cq =
�✏L(x↵p (↵� 1) + x↵q (↵ + 1)) + (xqxp)↵/2↵✏̃p

xq(x↵q � x↵p )
. (6.74)

This obeys the integrability condition @xp
cq = @xq

cp. Also, all other integrability conditions

get trivially satisfied.
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Let us now verify this is indeed a solution to the coupled monodromy constraints (6.70)

and (6.71). It can be easily seen that X [�(p,q)] is obeyed by cp and cq above. Consider the

monodromy condition X [�(1,r)] in (6.70) in which one of the contours contain 1 and xr. This

monodromy condition involves all the accessory parameters. Note that, equations (6.73) and

(6.74) give

cpxp + cqxq = �2✏L. (6.75)

From (6.75) and (6.72), we have

m+1X

i=3

cixi = crxr � (m� 2)✏L

=
�✏L((↵�m+ 1) + (↵ +m� 1)x↵r ) + x↵/2r ↵✏̃p

(x↵r � 1)
. (6.76)

The first equality follows from (6.75) and the fact that there are (m� 2)/2 pairs of contours

other than the one containing 1 and xr. Note that r is fixed and there is no sum over r in

the first term crxr. It can then be very explicitly checked that substituting (6.76) along with

(6.72) in the LHS of equation (6.70) satisfies it giving �4⇡2✏̃2q (with ✏̃a = ✏̃p).

We can now use (6.12) to obtain the conformal block by integrating the accessory

parameters (6.73), (6.74) and (6.72). The integration constants are fixed in the same manner

as the warmup examples, by demanding the expected behaviour (2✏L � ✏̃p) log(xp � xq) as

xp ! xq.

f({xi}; ✏L, ✏H ; ✏̃p)

=
X

⌦i 7!{(p,q)}

 
✏L(1� ↵) log xpxq + 2✏L log

x↵p � x↵q
↵

+ 2✏̃p log

"
4↵

x↵/2p + x↵/2q

x↵/2p � x↵/2q

#!

=
X

⌦i 7!{(p,q)}

f(4)(xp, xq; ✏L, ✏H ; ✏̃p). (6.77)
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Here the sum is over the set of m/2 contours containing a pair of light operators located at

xp and xq respectively. This set also includes the contour containing 1 and xr. Equivalently

the set {(p, q)} is also the OPE channel along which we perform the conformal partial wave

expansion.

Equation (6.77) upon exponentiation clearly shows the factorization of the (m+2)-point

conformal block into m/2 4-point blocks.

F(m+2)({xi}; ✏L, ✏H ; ✏̃p) =
Y

⌦i 7!{(p,q)}

exp
h
� c

6
f(4)(xp, xq; ✏L, ✏H ; ✏̃p)

i

=
Y

⌦i 7!{(p,q)}

F(4)(xp, xq; ✏L, ✏H ; ✏̃p). (6.78)

This proves that the (m+ 2)-point conformal block, in the specific classes of OPE channels

analysed above, factorizes into 4-point conformal blocks. This is a central result of this

chapter.

Case II : Odd number of light operator insertions

As noted before, the contour configurations for an odd number of insertions, m, is the sum

of the even number contour configurations for m � 1 light operator insertions plus another

contour enclosing a single point.

For the contour configuration of the first kind (6.69), the monodromy conditions are

X [�(1,r)] =� 4⇡2

↵2
x�↵
r [✏L((↵� 1) + (↵ + 1)x↵r ) + (x↵r � 1)crxr] (6.79)

⇥
"
✏L((↵�m+ 1) + (↵ +m� 1)x↵r ) + (x↵r � 1)

m+1X

i=3

cixi

#
= �4⇡2✏̃a,
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and that for a contour enclosing xp and xq is

X [�(p,q)] =� 4⇡2

↵2
(xpxq)

�↵
⇥
✏L((↵� 1)x↵q + (↵ + 1)x↵p ) + (x↵p � x�↵

q )cpxp

⇤
(6.80)

⇥
⇥
✏L((↵� 1)x↵p + (↵ + 1)x↵q ) + (x↵q � x�↵

p )cqxq

⇤
= �4⇡2✏̃b.

For the contours enclosing the single points, they are

X [�(r)] = �4⇡2✏2L = �4⇡2✏̃2c , (6.81)

X [�(1)] = �4⇡2✏2L = �4⇡2✏̃2d. (6.82)

X [�(s)] and X [�(1)] imply that the conformal dimension of the operator living within the

contour is picked by the residue.

Similar to the previous cases, we shall now set ✏̃a = ✏̃b = ✏̃p. For the configuration of the

first kind, ⌦A
i in (6.69), consisting of the contours �(r), �(p,q) and �(1,r), the solutions for the

accessory parameters are

cr =
�✏L(↵� 1 + x↵r (↵ + 1)) + x↵/2r ↵✏̃p

xr(x↵r � 1)
, (6.83)

cp =
�✏L(x↵q (↵� 1) + x↵p (↵ + 1)) + (xpxq)↵/2↵✏̃p

xp(x↵p � x↵q )
, (6.84)

cq =
�✏L(x↵p (↵� 1) + x↵q (↵ + 1)) + (xqxp)↵/2↵✏̃p

xq(x↵q � x↵p )
, (6.85)

cs = �✏L
xs

. (6.86)
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The above accessory parameters can be integrated (6.12) to obtain the function appearing

in the exponential of the conformal block.

f({xi}; ✏L, ✏H ; ✏̃p)

= ✏L log xs +
X

⌦A

i
7!{(p,q)}

 
✏L(1� ↵) log xpxq + 2✏L log

x↵p � x↵q
↵

+ 2✏̃p log

"
4↵

x↵/2p + x↵/2q

x↵/2p � x↵/2q

#!

= ✏L log xs +
X

⌦A

i
7!{(p,q)}

f(4)(xp, xq; ✏L, ✏H ; ✏̃a). (6.87)

This upon exponentiation gives

F(m+2)({xi}; ✏L, ✏H ; ✏̃p) = (xs)
�✏L

Y

⌦A

i
7!{(p,q)}

exp
h
� c

6
f(4)(xp, xq; ✏L, ✏H ; ✏̃p)

i

= (xs)
�✏L

Y

⌦A

i
7!{(p,q)}

F(4)(xp, xq; ✏L, ✏H ; ✏̃p). (6.88)

This shows the factorization of the (m+ 2)-point block with odd m into a 3-point function

(without the structure constant) and (m� 1)/2 number of 4-point conformal blocks.

For the second kind of contour configuration, ⌦B
i in (6.69), consisting of �(1) and �(p,q)

we have

cp =
�✏L(x↵q (↵� 1) + x↵p (↵ + 1)) + (xpxq)↵/2↵✏̃p

xp(x↵p � x↵q )
, (6.89)

cq =
�✏L(x↵p (↵� 1) + x↵q (↵ + 1)) + (xqxp)↵/2↵✏̃p

xq(x↵q � x↵p )
. (6.90)
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Integrating these, we obtain (6.12)

f({xi}; ✏L, ✏H ; ✏̃p)

= ✏L log 1 +
X

⌦B

i
7!{(p,q)}

 
✏L(1� ↵) log xpxq + 2✏L log

x↵p � x↵q
↵

+ 2✏̃p log

"
4↵

x↵/2p + x↵/2q

x↵/2p � x↵/2q

#!

= ✏L log 1 +
X

⌦B

i
7!{(p,q)}

f(4)(xp, xq; ✏L, ✏H ; ✏̃a). (6.91)

Exponentiating this to obtain the conformal block using (6.3), we have

F(m+2)({xi}; ✏L, ✏H ; ✏̃a) = (1)�✏L
Y

⌦B

i
7!{(p,q)}

exp
h
� c

6
f(4)(xp, xq; ✏L, ✏H ; ✏̃a)

i

= (1)�✏L
Y

⌦B

i
7!{(p,q)}

F(4)(xp, xq; ✏L, ✏H ; ✏̃a). (6.92)

Hence, the factorization is also clear for the contour configuration, ⌦B
i .

As we had seen the 5- and 6-point examples, the factorization for an arbitrary number

of light operator insertions can be expected for the light operators being twist and anti-

twist operators. Since, twist operators fuse into the identity (6.38), the correlator with 2N

number of twist and anti-twist insertions will factorize into N 4-point functions each having

two heavy and two twists. This factorization will occur only in specific regimes in the space

of {xi} where one can use the OPEs within the correlator.

There is one additional caveat to our monodromy analysis. A curious feature of the

above conformal blocks is that they are apparently independent of the conformal dimensions

of operators in other intermediate channels — the horizontal channels ✏̃Q,R,··· in Fig 6.1 and

Fig 6.6. Let us evaluate the conformal dimensions of the operators in these intermediate

channels. Consider, ✏̃Q in Fig 6.6. This can be obtained by evaluating the monodromy

around the contour containing OH(0), OL(1) and OL(x3) — �(0,1,x3) in Fig 6.6. At the

leading order (✏0L) the only contribution arises from z = 0. This is equation (6.24). At
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Figure 6.6: Monodromy contours to calculate ✏̃Q and ✏̃R.

the linear order in ✏L, there is a vanishing contribution from the residue at z = 0 and the

monodromy is e↵ectively the same as that of the contour �1 in Fig. 6.2 and leads to equation

(6.31). Hence, from (6.24) and (6.27), we have

M(�(0,1,x3)) = �

0

B@
e⇡i↵ 0

0 e�⇡i↵

1

CA+

0

B@
I(k)++(�2) I(k)+�(�2)

I(k)�+(�2) I(k)��(�2)

1

CA , with, ↵ =
p
1� 4✏H . (6.93)

Therefore, comparing (6.93) with (6.29) for the contour �(0,1,x3) which has ⇤ =
p

1� 4✏̃Q,

results in ✏̃Q = ✏H + O(✏̃p). Here, the O(✏̃p) term arises from the second term in (6.93) or

equivalently from the contour �1 in Fig. 6.2 as explained above.

We shall now make our only assumption on the spectrum and OPEs. This is, the

intermediate operator (✏̃p) appearing after fusion of two light operators has ✏̃p ⌧ ✏L (and

this automatically implies, ✏̃p ⌧ ✏H). This is a reasonable assumption since the exchanged

operators (similar to the identity and stress tensor in the case of twist operators) do not scale

as the central charge unlike the light and heavy operators. Hence, the dominant contribution

to this monodromy (6.93) comes from the heavy operator at z = 0. This shows that in the

248



heavy-light regime, this intermediate channel ✏̃Q is dominated by a heavy operator exchange

✏H 11.

In order to obtain ✏̃R, one can repeat the above exercise by considering the monodromy

of the contour containing 0, 1, x3, x4 and x5 — �(0,1,x3,x4,x5) in Fig 6.6. Once again, the

dominant contribution will arise from the heavy operator at z = 0, which leads to ✏̃R = ✏H .

Continuing in this fashion, it can therefore be seen, that all the horizontal intermediate

channels in Fig 6.6 are dominated by heavy operator exchanges in the heavy-light limit12.

The dependence on the conformal dimension of these channels then enters the conformal

block via the relation ✏̃Q = ✏̃R = · · · = ✏H . Therefore, the assumption, ✏̃p ⌧ ✏L is necessary

to have the heavy exchanges in the horizontal channels which results in the factorization of

the higher-point block into 4-point blocks.

It is worthwhile mentioning that there are other branches of solutions to the monodromy

constraints for the accessory parameters. This point was emphasized in [12]. It was shown

in [12] that only one of these branches matches with the one obtained from gravity. In our

analysis above, we have restricted our attention solely to the branch which is relevant to

make contact with holography in Section 6.5.

6.4 Entanglement entropy and mutual information of

heavy states

The results on conformal blocks obtained in the previous section can be utilized to evaluate

the entanglement entropy of disjoint intervals in states excited by the heavy operator OH .

The single interval entanglement entropy of heavy states was considered in [21]. Using the

11This fact is also supported by i↵ = OH(0)i0 in equations (6.39) and (6.40). We shall also see the bulk
counterpart of ✏̃p ⌧ ✏L in Section 6.5 which was also previously used in [147].

12It is reassuring to observe that this also gives the same spectrum of eigenvalues for M(�(0,1,x3,··· ,xm+1))
and M(�(1)) – as one should expect from the Riemann sphere.
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state-operator correspondence, these ‘heavy states’ can be obtained from the vacuum as13

i = OH(0)i0 and h = lim
z,z̄!1

z̄2hHz2hH h0OH(z, z̄).

We briefly review the definitions of entanglement entropy and the replica trick used to

calculate it. The entanglement entropy is defined as the von-Neumann entropy corresponding

to the reduced density matrix ⇢A

SA = �TrA ⇢A log ⇢A (6.94)

whilst the Rényi entropy is obtained from the moments of ⇢A

S(n)
A

=
1

1� n
log TrA (⇢A)

n. (6.95)

The reduced density matrix is, in turn, obtained by tracing out the Hilbert space lying

outside A, i.e. ⇢A = TrA0⇢. The full density matrix ⇢ in our case in terms of the excited state

is ⇢ =i h . The Rényi entropies are a convenient computational tool, as it can be used to

obtain the entanglement entropy by the analytic continuation to n ! 1. It can be shown via

the path integral [64] that the quantity TrA (⇢A)n can be written in terms of the partition

function of the n-sheeted Riemann surface (with each copy glued along A) as

Gn ⌘ TrA (⇢A)
n =

Zn

Zn
1

, (6.96)

where, we have defined the normalized partition function Gn. The replica trick can be

implemented by means of the twist operators, �n, �̄n, which impose the required boundary

conditions as one moves from one sheet to another. The conformal dimensions of the (anti-

13There is a slight abuse of notation here. The  or  appearing in this section is neither the same nor
related in any way to  or  which appeared in Section 6.3.
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Figure 6.7: Configuration of disjoint intervals on a line.

)twist operators are

h�n = h�̄n =
c

24

✓
n� 1

n

◆
. (6.97)

Hence, these operators become light in the limit relevant for entanglement entropy, n ! 1.

We shall focus on the case in which the sub-system A is made of N disjoint intervals

i.e. A = [iAi
14. As shown in Fig. 6.7, these intervals are located at [1, x3], [x4, x5],

. . . [x2N , x2N+1]. In this setup, xi < xj for all i < j. This ordering of the locations reduce

the number of possible OPE channels. Also, the OPEs are non-vanishing only for a twist

with an anti-twist operator and vanishing for a pair of twists (or a pair of anti-twists). The

number of allowed OPE channels for N disjoint intervals is actually, given by the Fibonacci

number F2N�1. (This is discussed further in Section 6.6.)

For heavy states, the partition function on the n-sheeted Riemann surface is the following

correlation function of twist operators

Gn(xi, x̄i) = h �n(1)�̄n(x3)�n(x4)�̄n(x5)�n(x6)�̄n(x7) . . . �n(x2N)�̄n(x2N+1)i . (6.98)

Here, the state i is the state in the n-sheeted replica which has insertions of OH throughout

all its copies. That is,

 =
nY

i=1

(OH)i, and h = nhH . (6.99)

14 It might be worth mentioning here, that the replica geometry for N disjoint intervals is a surface of genus
(n� 1)(N � 1) from the Riemann-Hurwitz theorem [105]. However, since we are interested in entanglement

entropy (which is the n ! 1 limit of the Rényi entropy, S(n)
A ) this is the limiting case of genus-0 or a sphere.

We are therefore allowed use the results for correlation functions on the plane.
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The correlator (6.98) can be rewritten as

Gn(xi, x̄i) = h0  (1) �n(1)�̄n(x3)
2NY

i=4,6,···

�n(xi)�̄n(xi+1)  (0) i0. (6.100)

One can evaluate this correlation function by decomposing into conformal blocks. As argued

in [21], for a CFT at large central charge with a sparse spectrum of low-dimension operators,

the dominant contribution to this correlator will arise from the identity block. We can

therefore use the results derived in the previous section for the conformal block with an

arbitrary even number of light operator insertions. However, it is important to remember

that the number of OPE channels in this case will be reduced for reasons we mentioned

earlier. We denote these allowed OPE channels by e⌦i (which is a subset of the channels ⌦i

in the case of even number of light insertions considered in the previous section). Thus, from

equation (6.78), we have, with ✏̃p = 0 for the identity block

Gn(xi, x̄i)|n!1 ⇡ F(2N+2)({xi}; ✏L, ✏H ; 0)F̄(2N+2)({x̄i}; ✏L, ✏H ; 0)

=
Y

e⌦i 7!{(p,q)}

exp
h
�nc

6
f(4)(xp, xq; ✏L, ✏H ; 0)

i
exp

h
�nc

6
f(4)(x̄p, x̄q; ✏L, ✏H ; 0)

i

=
Y

e⌦i 7!{(p,q)}

F(4)(xp, xq; ✏L, ✏H ; 0) F̄(4)(x̄p, x̄q; ✏L, ✏H ; 0). (6.101)

Note that the central charge above is nc owing to n replicas of the original theory. The

essential object here is the function f(4) given by (6.36). For this specific case, we have

f(4)(xi, xj; ✏L, ✏H ; 0) = 2✏L log
x↵i � x↵j

↵(xixj)
↵�1
2

. (6.102)
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For the twist operators, ✏L = n2
�1

4n , from (6.97). Using the above relations in the limit n ! 1,

the entanglement entropy is given by

SA = lim
n!1

S(n)
A

=
c

3
min

i

(
X

e⌦i 7!{(p,q)}

log
(x↵p � x↵q )

↵(xpxq)
↵�1
2

)
. (6.103)

This is the final result for the entanglement entropy of N disjoint intervals in the heavy

state. The minimal condition above implies that one need to pick the relevant OPE channel

(e⌦i) depending on the values of the cross-ratios xi (cf. [136]). The cross-ratios above are

taken to be real (xi = x̄i) since in the Lorentzian picture the intervals are spacelike and one

can consider them to be lying on the time slice t = 0 without any loss of generality. The

above result is the excited state analogue to the one for vacuum derived in [136,140]15.

For the case of two intervals, the mutual information can be straightforwardly calculated

from (6.103). Its definition is

IAi,Aj
= SAi

+ SAj
� SAi[Aj

. (6.104)

Without any loss of generality, we can choose the two intervals to be [1, x3] and [x4, x5].

From the channels ⌦1,3 for the 6-point block (consisting of 4 twists and 2 heavy operators)

considered in subsection 6.3.1, we have

IA1,A2 =

8
>><

>>:

0 for s-channel or ⌦1

c

3
log

|1� x↵
3
| |x↵

4
� x↵

5
|

|1� x↵
5
| |x↵

3
� x↵

4
| for t-channel or ⌦3

(6.105)

15This result was independently derived in [114] in the lightcone OPE limit. This requires the light
operators OL to be far from the heavy operators OH .
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6.5 Conformal blocks and entanglement entropy from

holography

In this section, we shall reproduce the conformal blocks considered in Section 6.3 from the

gravity dual. This will involve a simple generalization of the bulk picture developed in [147].

As we had noticed before, the heavy operators in the CFT creates an excited state. In the

bulk, this state can be thought in terms of a deformation of global AdS3 into a conical defect

geometry. From the conventional holographic dictionary, the primaries in the CFT are dual

scalar fields in the bulk. However, since the conformal dimension of these operators scale as

the central charge, the mass of the bulk scalar also scales as c (M =
p

hL(hL � 1) ⇠ c � 1)

and can be approximated by worldlines of point-particles. It was shown in [147], that the

momenta along these worldlines are equal to the accessory parameters of the conformal block.

We work with asymptotically AdS3 space in the global co-ordinates in which the dual

CFT lives on a cylinder. The metric of the geometry dual to the heavy state is given

by [10,11, 147]

ds2 =
↵2

cos2⇢

✓
�dt2 +

1

↵2
d⇢2 + sin2⇢ d�2

◆
, with ↵ =

p
1� 24hH/c. (6.106)

Depending on whether ↵2 > 0 or ↵2 < 0 the metric represents a conical defect with the

singularity at ⇢ = 0 or a BTZ black hole with the event horizon at ⇢ = 0, respectively. The

boundary is at ⇢ = ⇡
2
. To avoid potential divergences, we use the regularization cos ⇢|⇢!⇡

2
=

⇤�1 (where ⇤ is the UV cuto↵ in the dual field theory for momenta or energies). We shall

work with a constant time slice of (6.106) which is a disc with radial and angular variables

as ⇢ and � respectively.

The motion of the particle on the background above is described by the worldline action

S = M

Z �f

�i

d�
q
gttṫ2 + g⇢⇢⇢̇2 + g���̇2 . (6.107)
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We restrict our attention to the constant time slice ṫ = 0. The required geodesic segments

between any two points on the disc can be obtained by extremizing the worldline action

(6.107). If we choose the parameter � as the proper length, the geodesic equation reads

[10, 147]

1

cos2⇢
⇢̇2 +

p2�
↵2

cot2⇢ = 1 , (6.108)

where, p� = ↵2 tan2 ⇢ �̇, is the conserved momentum conjugate to �. The solution to the

geodesic equation is

cos ⇢ =
1q

1 + p2�/↵
2

1

cosh�
, (6.109)

Using these relations one can compute the regularized length of geodesics which will be

shown to reproduce the corresponding conformal blocks.

In what follows, we illustrate the worldline configurations corresponding to the 3-point

function and the 4-point conformal block in the CFT. Then we shall generalize the bulk

picture for conformal blocks with arbitrary number of odd and even operator insertions.

Worldlines corresponding to 3-point function

Let us consider the bulk realization of the 3-point function hOH(1)OL(z)OH(0)i. This is

e↵ectively a 1-point function in an excited state. In terms of the cylinder coordinates on

the CFT, (w = �i log z), this is realized in the bulk as a radial geodesic from the point of

insertion of the light operator to the singularity (see Fig 6.8). The corresponding conformal

block can be computed by determining the regulated length of the geodesic from the position
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✏̃p

Figure 6.8: Bulk picture of the 3-point function (left) and 4-point conformal block (right) in CFT.
Two of the operators are heavy which deform the background geometry (from the vacuum AdS
to the conical defect) and the other light operators are described by geodesics of massive probe
particles.

of defect ⇢ = 0 to the boundary i.e, cos ⇢|⇢!⇡/2 = ⇤�1.

lL =

Z
cos ⇢=⇤�1

0

d⇢

cos ⇢
= log

"
sin
�
⇢
2

�
+ cos

�
⇢
2

�

cos
�
⇢
2

�
� sin

�
⇢
2

�
#cos ⇢=⇤�1

0

= log(2⇤) +O(⇤�2) . (6.110)

The contribution to the correlator is given by

G(w) = e�hL lL ⇡ (2⇤)�hL . (6.111)

This function is independent of w and just depends on the cut-o↵ ⇤. However, this is still

a result on the cylinder. To obtain the conformal block on the plane, we use the standard

exponential map z = eiw to obtain

G(z) = z�hLG(w)
��
w=�i log z

= (2⇤z)�hL / z�hL . (6.112)

There are no additional bulk worldlines possible in this case unlike the higher point

functions as we shall see below. Equation (6.112) precisely reproduces the z dependence of

the normalized 3-point function, hOH(1)OL(z)OH(0)i/hOH(1)OH(0)i, which is fixed by

conformal invariance.
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Worldlines corresponding to 4-point conformal block

The conformal block of the 4-point function hOH(1)OL(xi)OL(xj)OH(0)i is described in the

bulk by the geodesic configuration shown in Fig. 6.8 [147]. The configuration consists of a

geodesic anchored at the points of insertion of light operators, namely wi and wj on the

cylinder16. In addition to this, there is another geodesic – which represents exchange of

primary operator with conformal dimension h̃p – stretched between the singularity (⇢ = 0)

and the former geodesic (see Fig 6.8). The point of intersection of the geodesic segments can

be determined by minimizing the worldline action [147]. For the case we are considering, in

which the two light operators have same conformal dimensions, the dotted worldline joins

the mid-point of the geodesic connecting wi and wj (see Fig 6.8). Therefore, the worldline

action becomes

S = ✏LlL + ✏̃plp, (6.113)

Here, lL is the length of the geodesic joining the light operators at the boundary whilst lp

is the length of the other geodesic joining the singularity and the mid-point of the former

geodesic. We also assume ✏̃p ⌧ ✏L, such that the radial geodesic does not backreact to the

other one [147]. Recall, that in our CFT analysis, ✏̃p ⌧ ✏L led to the dominant contribution

by heavy operators in the horizontal intermediate channels. For the ✏L geodesic (here,

wij = wi � wj), we have

cos ⇢ =
sin (↵wij

2
)

cosh�
(6.114)

16This geodesic is same as the Ryu-Takayanagi one.
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The regulated ✏L and ✏p geodesic lengths are given by

lL(wij) = 2�
��
cos ⇢=⇤�1 = 2 log

⇣
sin

↵wij

2

⌘
+ 2 log

✓
⇤

2

◆
, (6.115)

lp(wij) =

Z
cos ⇢=sin

↵wij

2

0

d⇢

cos ⇢
= � log

⇣
tan

↵wij

4

⌘
. (6.116)

The limits of integration for lp are the ones corresponding to the singularity and the mid-point

of the ✏L geodesic. The (wi dependent) contribution to the correlator is given by [147]

G(wi, wj) = e�
c

6S(wi,wj) = e�hL lL(wij)�h̃p lp(wij) =

�
tan↵wij

4

�h̃p

�
sin↵wij

2

�2hL

. (6.117)

Once again, to obtain the conformal block on the plane we need to perform the conformal

transformations, xi = eiwi and xj = eiwj

F(4)(xi, xj) = x�hL

i x�hL

j G(wi, wj)
��
wi,j=�i log xi,j

. (6.118)

The extra prefactor comes due to the conformal transformation of the light operator OL(x).

In terms of the following function

f(xi, xj) =
h
✏L log(xixj) + 2✏L log

⇣
sin

↵wij

2

⌘
� ✏̃p log

⇣
tan

↵wij

4

⌘i

wi,j=�i log xi,j

= 2 ✏L log
x↵i � x↵j

(xixj)
↵�1
2

+ ✏̃p log
x↵/2i + x↵/2j

x↵/2i � x↵/2j

, (6.119)

the conformal block F(4)(xi, xj) is then given as

F(4)(xi, xj) = exp(�cf(xi, xj)/6) . (6.120)

which indeed agrees with the CFT result (6.36) up to the constant (✏̃p log 4↵� 2✏L log↵).
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Worldlines corresponding to higher-point conformal blocks

Largely motivated by the Ryu-Takayanagi proposal for disjoint intervals, the worldline

configurations above can be extended to conformal blocks of arbitrary (m+2)-point functions

of two heavy operators and an arbitrary number (m) of light operators

D
OH(1)

"
OL(1)

m+1Y

i=3

OL(xi)

#
OH(0)

E

The basic constituents of the holographic representation of these higher conformal blocks are

the worldline configurations for the 3-point function and the 4-point block. One then needs

to add up lengths of the geodesic segments in the bulk (lv), weighted with the corresponding

scaled conformal dimensions (✏v), to obtain the worldline action

S(wi) =
X

v

✏vlv (6.121)

and the conformal block is given by exp[� c
6
S(wi)]. Additionally, we need to perform

a conformal transformation to go from the cylinder to the plane. Like the 3- and 4-

point examples considered above, we shall mostly concern ourselves with the dependence

of conformal block on the cross-ratios (xi). We now describe the bulk pictures of the two

distinct cases.

Odd number of light insertions

Let us consider a [(2k + 1) + 2]-point function in the CFT where two of them are heavy

operators whereas an odd number 2k + 1 of them are light (k 2 N). Generalizing the

previous bulk descriptions, we can see that amongst these 2k + 1 points, 2k points of light

operator insertions will pairwise form k geodesic segments (see Fig 6.9). These worldlines

joining a pair of points in the boundary will also have an additional geodesic segment

representing the intermediate exchange of primaries of dimension h̃p whose common origin is
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✏L ✏L ✏L ✏L

✏H ✏H
1

1

0

x3 x4 x5 x6

0

w3 w4

w5

w6
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Figure 6.9: Worldline configuration corresponding to [(2k + 1) + 2]-point conformal block (with
k = 2 above). There are k geodesics connecting 2k points of light insertions of the CFT whereas
one geodesic segment connects the remaining point of insertion to the singularity. Also, there are
intermediate exchanges described by the dotted geodesics from the singularity to mid points of the
boundary-to-boundary geodesics.

the singularity and each one ends on the mid-points of the boundary-to-boundary geodesic

segments. There is another geodesic segment originating from the remaining (or unpaired)

light operator insertion will anchor into the singularity at the centre (⇢ = 0). This is precisely

the factorization of [(2k + 1) + 2] point conformal block into k 4-point blocks and a 3-point

function. After summing the geodesic lengths, the net contribution to correlator is (here,

|j| =
Qm+1

s=3
x�hL

s is the factor arising from the conformal transformation from the cylinder

to the plane xs = eiws)

F((2k+1)+2) = |j|G(wi(xi)) = |j|e� c

6S(wi(xi)) = |j|e�hL lLa

Y

⌦i 7!{(i,j)}

e�hL lL(wij)e�h̃p lp(wij)

= x�hL

a

Y

⌦i 7!{(i,j)}

F(4)(xi, xj) . (6.122)

The prefactor x�hL

a represents any one of the points of insertion which is left over after

connecting the others pairwise by the boundary-to-boundary geodesic segments. The choice

of pairings via the geodesics in the bulk is in one-to-one correspondence with OPE channels,
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Figure 6.10: Worldline configuration corresponding to (2k+2)-point conformal block (with k = 3).
There are k geodesics connecting 2k points of light insertions on the CFT.

⌦i, in the CFT17. Therefore, the above equation (6.122) precisely matches with the CFT

result for odd-point blocks – (6.88) or (6.92).

Even number of light insertions

For an even number (2k) of light operator insertions, we can form k boundary-to-boundary

geodesics joining a pair of light operator insertions (k 2 N). Again there are additional

worldlines starting from the singularity and ending on the mid-point of each boundary-to-

boundary geodesic which geometrically describe the intermediate exchanges (h̃p). This case

is, therefore, e↵ectively equivalent to the odd-point block upon removal of the extra geodesic

from the unpaired light insertion. The contribution to the correlator is given once again in

terms of the worldline action as

F(2k+2) = |j|G(wi(xi)) = |j|e� c

6S(wi(xi)) = |j|
Y

⌦i 7!{(i,j)}

e�hL lL(wij)e�h̃p lp(wij)

=
Y

⌦i 7!{(i,j)}

F(4)(xi, xj) . (6.123)

17It may be of potential concern that the worldlines in channels other than the s-channel may intersect
each other. Such issues can be avoided by suitably considering infinitesimally separated constant time slices
each containing contributions for 4-point block(s) or a 3-point function. In any case, the sum of lengths of
geodesics will not change.
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(The factor |j| used here, once again, arises from conformal transformations from the cylinder

to the plane and is given by
Qm+1

s=3
x�hL

s .) This agrees with the CFT result for even point

blocks obtained in (6.78).

It can therefore be seen that, the conformal blocks in the OPE channels we have

considered bears a very natural interpretation in terms of bulk worldline diagrams.

Furthermore, the network of geodesics considered here are simpler compared to those

in [10, 11] which correspond to other OPE channels. Evidently, the basis, which we have

chosen to work with, admits the straightforward generalization to an arbitrary number of

light operator insertions.

Holographic entanglement entropy

The Ryu-Takayanagi prescription [220], prescribes that the entanglement entropy is given

by the minimal area of a surface in AdS anchored at the endpoints of the interval(s)

SA =
min[�A]

4GN
.

For the case of AdS3, the minimal area surface is equivalent to a geodesic. For the case of

multiple intervals, there are several of these geodesic configurations, Gi, which are possible

in the bulk, out of which we need to choose the one with the minimal length. Furthermore,

GN is related to the central charge by the Brown-Henneaux relation c = 3`/2GN [49].

For the metric (6.106), the length of the geodesic joining two points in the boundary

(CFT on the cylinder) has been calculated in (6.115) – see also [218] and Appendix A

of [21]. Considering the CFT on the boundary to be living on a plane, the length of the bulk

geodesic joining the points xi and xj (both real) is

lij = 2 log
x↵i � x↵j

↵(xixj)
↵�1
2

. (6.124)
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Hence, summing over all the geodesics and applying the minimal-area condition, the result

for holographic entanglement entropy is

SA =
c

3
min

i

(
X

Gi 7!{(p,q)}

log
x↵p � x↵q

↵(xpxq)
↵�1
2

)
. (6.125)

This agrees exactly with (6.103) – provided the bulk geodesic configurations Gi are identified

with the OPE channels e⌦i in the CFT (cf. [105, 136, 140] for the vacuum case). Hence,

depending on the values of the cross-ratios xi the relevant OPE channel is chosen in the CFT

and analogously the geodesic configuration of minimal length is the one that reproduces the

corresponding entanglement entropy of the heavy excited state18.

6.6 Moduli space of the correlation function

As remarked earlier, the correlation function of m light operators and 2 heavy operators

on the plane is associated with the Riemann sphere with (m + 2) punctures, �0,m+2. This

can also be seen by thickening the diagrams of the conformal blocks. The expansion in

terms of conformal partial waves is, then, the decomposition of this Riemann surface into

3-holed spheres. The moduli space of �0,m+2 is M0,m+2 which has (m� 1) complex moduli

(xi, x̄i) [194,248].

The OPE channels, which involve the pairwise fusion of two light operators, located at

1, x3, · · · , xm+1, describe the moduli space around some specific regions. For instance, the

6-point function in the s-channel, ⌦1, is restricted to the disjoint regimes around x3 ! 1

and x4 ! x5. Whereas, the t-channel, ⌦2, describes the region around x5 ! 1 and x3 ! x4.

The u-channel or ⌦3 describes the region around x4 ! 1 and x3 ! x5. The three worldline

configurations are the bulk duals equivalently describing these OPE channels. In general,

at large central charge, the (m + 2)-point correlation function switches from regions of one

18See [68,70,78,196,199,202] for other results on entanglement entropy in excited states.
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OPE channel of M0,m+2 to another in the moduli space upon tuning the cross-ratios19.

Furthermore, the worldline configurations in the bulk also correspond to each of the possible

ways of decomposing the punctured Riemann sphere into 3-holed spheres.

In the context of entanglement entropy of N disjoint intervals, the correlator has N twist

and N anti-twist operators in addition to two heavy operators. It was shown in [105], that

the number of Ryu-Takayanagi geodesic configurations, NN , is given by the recursive formula

NN = 3NN�1 �NN�2 . (6.126)

Interestingly, NN above is given by the alternating Fibonacci numbers, F2N�1 [1]. As we

had seen, the geodesic configurations Gi are in one-to-one correspondence with the contours

considered in the monodromy problem, e⌦i. In fact, the contours in the CFT are smoothly

shrinkable into the bulk without ever crossing its corresponding geodesic [105]. Therefore,

F2N�1 also counts the number of possible OPE channels of the conformal blocks (equaling the

number of allowed pant-decompositions of the (2N + 2)-punctured Riemann sphere) in the

basis of pairwise fusion of the twist and anti-twist operators. Each of these OPE channels

has its regime of validity in N disconnected regions of the moduli space, x2i+1 ! 1 and

x2j ! x2k+1
20.

6.7 Conclusions

In this work, we have studied higher-point conformal blocks of two heavy operators and an

arbitrary number of light operators in a CFT with large central charge. We focused our

19It is worthwhile to note, that this jump is seemingly discrete since we are strictly working in the c ! 1
limit. In fact, it can be explicitly shown that quantum corrections to mutual information smoothen this
discrete jump [33]. We are grateful to Arnab Rudra for pointing this possibility.

20The twist operators (located at 1 and xeven) have non-vanishing OPEs with anti-twist operators (located
at xodd). The OPE of (anti-)twist with itself is zero. Moreover, the location of the endpoints of the intervals
are 1 < x3 < x4 < · · · < xm�1. This is the reason why the number of OPE channels gets reduced to F2N�1

from ⌫(even)2N = (2N)!/(2NN !).
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attention to a specific class of OPE channels in which the light operators fuse in pairs and

the conformal dimension of the operator in the intermediate channels (after fusion of two

OLs) are the same. In the heavy-light limit, we have been able to show that these blocks

factorize into products of 4-point blocks. This was achieved using the monodromy method

and the exponentiation of the block at large central charge. These CFT results could be

reproduced from bulk worldline configurations using the methods presented in [147]. We

have also applied these results to study the entanglement entropy of an arbitrary number

of disjoint intervals for excited states. Hence, this work serves as a twofold generalization

of the results of [136, 140] to excited states and that of [21] to multiple intervals. If further

information about the spectrum (like structure constants and operator content) of large-c

theories is available, these results can be possibly used to know higher-point heavy-light

correlation functions in holographic CFTs21.

It would be interesting to find subleading corrections both in the light parameter ✏L as

well as in 1/c to the higher point conformal block [110]. The 1/c corrections would lead to

corrections in entanglement entropy as well. One can then try to see whether these can be

holographically reproduced by considering one-loop determinants in handlebody geometries

obtained from orbifolding the conical defect [33]. Moreover, it can then be seen how 1/c

e↵ects smoothen the jumps in mutual information.

An immediate application of our results on higher-point conformal blocks is to study

time-dependent entanglement entropy of disjoint intervals and mutual information in local

quenches. The evolution of entanglement entropy of a single interval in this scenario has

been studied in [21] and also the mutual information for joining quenches have been studied

in [19].

As we had mentioned in the introduction, there is a fascinating connection between

conformal blocks (of a specific pant decomposition) and Nekrasov partition functions arising

from the AGT correspondence [8,197,241]. This relation was utilized in [10] to derive results

21See [137,156] for some progress along these lines.
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for heavy-light blocks. Although, their conformal blocks are in a di↵erent basis and explicit

results exist only for the 4- and 5-point blocks, it would be interesting to precisely relate the

results of [10] to those found here via fusion transformations. Furthermore, it also known

that the one-point function of chiral ring elements in the 4d gauge theory are related to CFT2

conformal blocks with insertions of conserved charges [6]. This presents the exciting prospect

of utilizing this connection to find the entanglement entropy of heavy states in presence of

chemical potentials22.

Another intriguing direction is to see how the above results for higher-point conformal

blocks generalize to theories with additional conserved currents – these include supersymmetric

and higher-spin extensions. Our analysis suggests that the factorization could happen for

conformal blocks of these theories as well. For the case of CFTs which have higher-spin

gravity duals, the bulk Wilson line prescription [91,145] may also suggest such a factorization

of the higher-point blocks.

Finally, it would be exciting to see to what extent our analysis of conformal blocks have

analogues in higher dimensions. From the holographic side, one can make use of the geodesic

Witten diagram prescription of [146]. In a related context, correlation functions of heavy and

light operators have also been considered in the context of N = 4 super Yang-Mills and also

from the dual string theory [24,79,103,148,246]. The heavy operators correspond to classical

string solutions and the typically protected light operators correspond to supergravity modes.

The heavy states can be expressed in terms of Bethe states in the spin-chain description of the

planar limit. The correlation function is then reduced to finding expectation values of light

operators in these states. Although the existing results (involving a su�ciently intricate

analysis) are mostly for the structure constant cHHL appearing in the 3-point function, it

would be interesting to see a whether a higher point generalization of the same shares any

features with its lower dimensional counterpart considered here.

22We are grateful to Sujay Ashok for making us aware of this and for related discussions.
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Chapter 7

Conclusion

7.1 A Summary

In this thesis, we tried to explore the general idea of how thermalization occurs in pure states

describing out-of-equilibrium quantum systems. The motivation for this exploration was

many-fold and depended on what kind of states we were considering. Overall, we considered

three di↵erent types of pure states, namely the thermofield double (TFD) state, the CC (or

gCC) state and the heavy primary state. Based on the underlying mechanism for obtaining

thermal answers, we can classify the aforesaid states into two separate categories: 1. states

that show sub-system thermalization, namely the TFD and the CC (or gCC) state; 2. states

that display ETH, namely the heavy primary state. In the former class of states, we were

interested in studying time dependent scenarios that may help us understand how the sub-

system approaches thermal equilibrium. In the TFD state we used the entanglement entropy

as a very important tool for the aforesaid purpose. The entanglement entropy behaved in

a very characteristic fashion, showing a linear growth followed by a saturation at exactly

t = l/2, with l being the length of the entangling interval. This behaviour was (previously)

shown to be related to how the volume of spacetime grows in the interior of an eternal black

hole, starting from a Hartle Hawking state (with the TFD state at its boundary) [138].
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In Chapter 2 of this thesis we showed that the time for the saturation of entanglement

entropy remains unchanged when we add additional conserved charges to the TFD state,

including angular momentum and a U(1) charge. The only di↵erence one could find was in

the final thermal value of entanglement entropy which now carried the additional conserved

charge and hence, corresponded to a grand canonical ensemble.

In Chapter 3 of this thesis, we wished to investigate exactly how fine-tuned the TFD state

was, and whether it could actually accommodate perturbations of any kind without allowing

for a firewall to open up near the horizon. To understand that, we acted on the left and

right CFTs of the TFD state separately with unitary transformations, made completely out

of the Virasoro generators. We found that the bulk geometry could very nicely accommodate

these changes by adjusting the position of the horizon (in a given set of co-ordinates). A

calculation of the two sided entanglement entropy via the bulk geometry confirmed that

the geometry was still smooth, especially the black hole interior. So, besides displaying

thermalisation at the level of entanglement entropy, these two chapters also provided more

evidence that despite the arguments of AMPS [16], the horizon seems to be a smooth place

and the firewall paradox definitely needs to be re-visited!

In Chapter 4 of this thesis, we used the method of quantum quenches to drive systems

out-of-equilibrium. We then used the ansatz of Cardy-Calabrese (CC) to model the ground

state of the gapped Hamiltonian. Using this state, we not only showed the thermalization

of the one-point function of quasi-primary operators, but also calculated their rate of decay.

Interestingly, this decay rate turned out to be proportional to the quasi-normal mode of a

bulk scalar field in a black hole background. This fact might be related to how the rest of the

system acts as a bath for a small subsystem where the operator is located. The calculation for

the time-dependent EE in these states was performed a long time ago [59,65], and had turned

out to display the exact linear growth and saturation as was found in the TFD states, much

later. The prime reason for the similarity seems to be how the entanglement structure is

encoded in the state of the system. Like in the CC state, one can think of the second system,
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in the TFD state, as a bath for the first system. To further probe the thermalisation process,

in Chapter 4, we introduce another measure. First suggested by Cardy [71], the measure

involves computing directly the overlap of the reduced density matrix (RDM) corresponding

to a subsystem being evolved in time, with that of the RDM obtained from a thermal state

at inverse temperature �, corresponding to the same subsystem. This is what we also refer

to as the quantum indistinguishability of states, which tells us about how far away two states

are in the Hilbert space. In the context of thermalisation, it is an extremely useful tool,

since it provides us with the exact sense in which subsystem thermalisation takes place.

Physically, the idea is to look at a small sub-region in a time-evolved system upto the point

where the d.o.f. of this local sub-region are so very entangled with the rest of the system,

that it is impossible to tell whether the global state of the system is pure, or whether it

is thermal! This, of course, happens only when there is a complete overlap between the

two RDMs suggesting that the system has thermalised. It is important to understand that

thermalisation takes longer and longer to set in with an increase in the size of the subsystem.

Thus, in the limit when the subsystem starts approaching the system size, the thermalisation

time scale also increases becoming almost infinite, suggesting that thermalisation never takes

place in this limit. This is exactly what we expect, since the full system is in a pure state. In

the later part of this Chapter, we repeat most of the analysis for the gCC state, which carries

an arbitrary number of higher spin conserved charges. The only change is in the decay rate

of both the one point function and the RDM, which now get shifted by the charges of the

primary operators under the additional Wn currents. We even match the decay rate with

the quasi-normal mode of a scalar in the background of a higher spin three black hole1.

In Chapter 5, we seriously discuss the question of the e↵ects that spatial boundaries

might have on thermalisation, in quench scenarios. In the spirit of the discussion above and

still considering CC states, we see that introducing spatial boundaries never lets the system

truly thermalise. An earlier analysis [163] had shown this to be the case by analysing the

1The quasi-normal mode for black holes with spin greater than 3 have not been calculated. For such
cases, our CFT results remain a prediction.
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one point function of primary operators and the stress tensor, both of which had shown

revivals at times of the order of the system size. In Chapter 5, we additionally calculate the

entanglement entropy of a finite size interval and show that it revives in a similar way. The

reason for calculating the entanglement entropy is to be able to geometrise it in the form

of geodesics in the dual bulk theory. In fact, we are able to reconstruct the entire metric

for the oscillating bulk geometry that seems to interpolate between a BTZ black hole and

a thermal AdS geometry. This construction therefore seems very intriguing, since it might

then help us understand exactly how black holes form and tend to evaporate.

In Chapter 6 of this thesis, we work with the third kind of pure state, namely the heavy

primary state. The most intriguing feature of this pure state is that it looks thermal from

the low energy point of view. This means that if one computes correlation functions of light

operators in this state, they resemble the calculation in a thermal state. Thermalization, in

this sense, is more in line with the idea of ETH. The calculation for the one and two point

functions in the heavy states were already known. In this chapter, using the monodromy

method for evaluating conformal blocks, we show how the higher point correlation functions

behave in such states. We find a factorisation of the higher point conformal blocks in terms of

the four point conformal blocks. This factorisation boils down to the level of the correlators

in case all the external operators have the same scaling dimension. One instance of this

is the entanglement entropy where both the twist and anti-twist operators have the same

conformal dimension. Thus, the entanglement entropy of a number of finite intervals in such

heavy states can be expressed as all possible products of the entanglement entropy of single

intervals. The bulk dual of this state is easy to construct and is, in fact, given by a Euclidean

black hole geometry. The results for the entanglement entropy of multiple intervals is also

easily geometrised. The most interesting part of the result is how the thermal correlators

emerge from a seemingly simple vacuum correlation function. This is made possible by

suppressing the 1/c contributions to the correlators in the large c limit. Including these

corrections order by order in c, one should be able to ”purify” the thermal correlator. So,
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this is yet another way in which we get thermalisation starting from pure states, without

any time evolution whatsoever.

To conclude, the pursuit for understanding thermalisation has been a long sought after

goal. One of the greatest achievements of modern day physics is having related the problems

concerning thermalisation in closed, isolated, quantum systems to that of the problem of

black hole formation and evaporation, the understanding for which has remained equally

elusive. From the point of view of the AdS/CFT correspondence, solving one problem would

be tantamount to solving the other. Another reason why this problem is interesting from

the gravity side is because it involves understanding the quantum nature of black holes, in

terms of their micro states. A satisfactory solution to the problem in gravity would be a leap

ahead towards finding a satisfactory theory of quantum gravity. This makes understanding

the tenets of thermalisation all the more important. This thesis has been a small e↵ort

towards understanding the very problem of thermalisation better, especially in the light of

recent developments.

7.2 Discussions

While the works presented in this thesis were still in progress, a lot of interesting work

had begun to appear surrounding the topics presented here. We would like to discuss some

that seemed to be the most interesting. One of the earliest developments took place when

the paper [226] initiated the study of shockwave geometries in AdS gravity to analyse the

sensitive dependence on initial conditions in strongly coupled field theories. The calculation

involved perturbing a TFD state at very early times and observing how such perturbations

grow, such that at exactly the scrambling time(t⇤ ⇠ � logN2) the two-sided correlations in

the TFD state get completely destroyed. This growth of mild perturbations at very early

times is what [226] attributed to the chaotic nature of black holes. In a follow-up work [225],

they sent out multiple shock waves by placing local operators at di↵erent times in the CFT
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to create longer and longer wormholes without severing the entanglement between the two

sides of the TFD state. Putting these works in the context of this thesis, there are two

possible things that one could think of. Owing to the work in Chapter 3, one could try

to realise such shockwave geometries by acting with our unitary operators on either of the

boundaries, to mimic the action of the aforesaid local primaries. From our calculations, it

seemed possible to accommodate the action of any unitary by re-defining the stress-tensor

dependent terms in the metric. It would be nice to see how the shockwave geometry arises

in our context. Another reason why this might be reasonable is because in Chapter 3,

we already commented about how to get geometries with very large wormholes without

destroying the two-sided correlations. Thus, the ideas in [225] seem to be realisable in the

context of unitary transformations alone. Another possible generalisation is to add a spin

to the eternal black hole (and hence to the TFD state) in the spirit of the construction in

Chapter 2, and try to see how the scrambling time is a↵ected by it.

Owing to the calculation of scrambling time in shockwave geometries, two very

interesting papers appeared almost simultaneously. The first paper [69] wanted to calculate

the scrambling time from the CFT side of the shockwave geometries. For that, they

came up with the idea of calculating mutual information between the two boundaries

of the TFD state in the presence of a perturbation. The technical di�culty with this

calculation was to obtain the result for a six-point function. They made an assumption

on the factorisation of the six point correlation function of twist operators into a product

of two four point functions of twist operators in the perturbed geometry, which made the

calculation possible. The justification provided for performing the factorisation, however,

was not very rigorous mathematically. It just seemed to give the right answer as seen from

the bulk shockwave geometry calculation. In Chapter 6, we reasoned via calculations how

higher point correlation functions of twist operators in heavy states should factorise in

the large c limit, thereby justifying the assumption of [69]. The second paper [172] that

appeared, seemed to take a very general stance on how to look at the CFT calculation that
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so far, had only been performed for the TFD state. They considered arbitrary large N CFTs

with a gap in the spectrum separating the stress tensor from the rest of the levels (basically,

the assumptions for a holographic CFT) in a thermal state. They generalised the TFD

calculation by considering two heavy and two light operators on the thermal circle while

always placing a heavy operator beside a light one, and analytically continuing only the

light operators in real time. They called this the out-of-time ordered correlator (OTOC).

The TFD state was only one special case of such a correlator. The idea of [172] was to

give a very general diagnosis for understanding chaotic systems. They proposed that the

decay of the OTOC correlators was enough to render a system chaotic. They went further

to provide a bound on the Lyapunov exponent in quantum chaotic systems. Note that this

bound was strictly quantum and went all the way to infinity in the classical limit of h ! 0.

Since this proposal was made, a huge number of papers have appeared in the literature

discussing OTOCs in a huge variety of quantum systems. To the best of our knowledge,

most of these papers agree on the idea of the OTOCs as a diagnostic for quantum chaos.

However, most of these papers consider a quantum system in the thermal state. One very

interesting problems that might follow from the calculations in Chapter 6, in this context,

is to understand how chaos happens in pure states. The heavy states considered in Chapter

6 are not simple pure states, but rather look thermal from the low energy perspective. It

would be very interesting to see how OTOCs of lighter operators display chaotic behaviour,

while saturating the Lyapunov bound (since the heavy states are e↵ectively like black holes).

However, the more interesting thing to understand would be the 1/c corrections to the

leading answer that take us away from thermality and hence should correct the Lyapunov

exponents in a systematic way. Such a calculation would then tell us one possible way in

which the chaotic behaviour emerges in quantum systems.

One of the most intriguing features of the diagnosis of chaos in the context of black holes

is that it gives us a new time scale t⇤, called scrambling time, much larger that the thermal

time scale of a quantum system. In the introduction and various chapters of this thesis, we
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studied extensively the phenomenon of thermalization, with an inherent time scale specified

by the temperature of the system, td ⇠ �. However, for systems with a large number of

d.o.f., there seems to be another parametrically large time scale present, which is more

relevant for the diagnosis of quantum chaos in the system. This implies that much after

these systems have settled down or thermalised, there is still an ”afterlife” that is invisible

from the point of view of the time-ordered correlators, and are only visible to the OTOCs.

In case of a black hole, one can imagine a scalar field decaying into it. The relaxation time

scale for the black hole is specified by the frequency of the lowest quasi-normal mode (as

shown in Chapter 3). However, it seems that there is a lot more that happens to the bits

of information that have fallen into the black hole, much after it has thermalised completely

from the point of view of an external observer. This could be attributed to the dynamics

on the horizon (or perhaps even in the interior of the black hole). One could gather some

clue from a much earlier work [224]. Since chaos and thermalization are usually thought of

as being closely related, this new definition of quantum chaos seems to open a whole new

window for exploring dynamics of thermal systems beyond thermalization.

Having said all the above, quantum chaos is not a new phenomenon. It was discovered

a very long time ago and there exists a huge literature on the subject. In the earlier days,

quantum chaos was best understood from the point of view of random matrix theories

(RMTs) (see [83] for a recent review). In fact, the best definition of chaotic quantum

systems is also formulated best in the context of RMTs. According to an earlier definition, a

system is said to be quantum chaotic, if the nearest neighbour spacing distribution (NNSD)

of its eigenvalues follows the Wigner-Dyson distribution. There is no satisfactory proof of the

statement. However, it has been verified in a very large number of quantum systems. The

question then is what is the relation between this definition of quantum chaos and the newer

definition in terms of the OTOCs. To the best of our knowledge, this still remains an open

question. A natural direction to look into would be systems where chaotic behaviour can be

diagnosed using both these techniques. Sadly, there are not many systems where such is the
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case. One such system is the RMT itself, where one could try to formulate a definition of

OTOCs and try to analyse the relation with the NNSD definition. Some attempts have been

made in this direction [80, 122]. Another system that has been at the centre of attention of

the high energy community is the Sachdev-Ye-Kitaev (SYK) model.

The SYK model was proposed a long time ago by Sachdev and Ye in the context of spin

glass systems for a wholly di↵erent purpose. They first came to light when Kitaev [159]

showed that, in a slightly modified version of the model containing Majorana fermions in

0+1 dimensions, the OTOCs of the system not only vanish but rather saturate the Lyapunov

bound, rendering the system maximally chaotic. This led to the speculation that they maybe

dual to black holes in 2 dimensional AdS spaces. The only trouble was that these models

were not conformal to begin with. In [174], it was shown in great gory detail that the model

admitted a near conformal limit in the IR and hence could be dual to a near AdS geometry in

the bulk. Thereafter, numerous attempts have been made towards constructing the correct

bulk dual for the SYK model (see [159] and [221] for a recent review and references therein).

In [81], the authors wanted to understand the similarities between the NNSDs of RMTs and

the way they become relevant for understanding quantum chaos in black holes. For this, they

modelled the black holes with the SYK model and showed a similarity with the NNSDs of

the two systems using a tool called the Spectral Form Factor (SFF). This work was however,

mostly numerical and a precise analytic calculation to understand the NNSD of the SYK

model remains an open question. Nonetheless, the SYK model is a very simple model that

perhaps holds the key to a lot of unanswered questions in the context of chaos specifically,

and black holes in general.

To conclude the discussion one must mention some other recent advances that have

occurred and that might drive future research. One such field is that of the tensor models.

The tensor models are truly quantum models, unlike the SYK model, that display the exact

same behaviour as the SYK models in the large N limit. By that we mean they have the

same form for the Schwinger-Dyson equations. The tensor models may contain bosons or
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fermions (complex and real) [130, 160, 239], all of which would contain tensor indices in

the fundamental representation of the global symmetry groups. Due to their true quantum

nature, and the fact that they allow for a well defined large N limit, these models seem to

be very promising. One of the main purposes they serve is to allow for an extension into

higher dimensions [39, 211] where the possibility of another AdS/CFT like correspondence

can be explored further. One only hopes that these models are able to pave the way for a

lot more interesting physics in the future!
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[76] Jean-Sébastien Caux and Fabian H. L. Essler. Time evolution of local observables after
quenching to an integrable model. Phys. Rev. Lett., 110:257203, Jun 2013.

[77] Chi-Ming Chang and Ying-Hsuan Lin. Bootstrapping 2D CFTs in the Semiclassical
Limit. 2015.

[78] Bin Chen, Wu-Zhong Guo, Song He, and Jie-qiang Wu. Entanglement Entropy for
Descendent Local Operators in 2D CFTs. JHEP, 10:173, 2015.

[79] Miguel S. Costa, Ricardo Monteiro, Jorge E. Santos, and Dimitrios Zoakos. On three-
point correlation functions in the gauge/gravity duality. JHEP, 11:141, 2010.

[80] Jordan Cotler, Nicholas Hunter-Jones, Junyu Liu, and Beni Yoshida. Chaos,
Complexity, and Random Matrices. JHEP, 11:048, 2017.

[81] Jordan S. Cotler, Guy Gur-Ari, Masanori Hanada, Joseph Polchinski, Phil Saad,
Stephen H. Shenker, Douglas Stanford, Alexandre Streicher, and Masaki Tezuka. Black
Holes and Random Matrices. JHEP, 05:118, 2017.

[82] Emilia da Silva, Esperanza Lopez, Javier Mas, and Alexandre Serantes. Collapse and
Revival in Holographic Quenches. JHEP, 1504:038, 2015.

[83] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol. From quantum
chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv.
Phys., 65(3):239–362, 2016.

[84] Sumit R. Das. Holographic Quantum Quench. J.Phys.Conf.Ser., 343:012027, 2012.

[85] Sumit R. Das, Damian A. Galante, and Robert C. Myers. Universal scaling in fast
quantum quenches in conformal field theories. Phys.Rev.Lett., 112:171601, 2014.

[86] Sumit R. Das, Damián A. Galante, and Robert C. Myers. Smooth and fast versus
instantaneous quenches in quantum field theory. JHEP, 08:073, 2015.

[87] Sumit R. Das, Damián A. Galante, and Robert C. Myers. Universality in fast quantum
quenches. JHEP, 1502:167, 2015.

[88] Shouvik Datta and Justin R. David. Higher Spin Quasinormal Modes and One-Loop
Determinants in the BTZ black Hole. JHEP, 1203:079, 2012.

[89] Shouvik Datta, Justin R. David, Michael Ferlaino, and S. Prem Kumar. Universal
correction to higher spin entanglement entropy. Phys.Rev., D90(4):041903, 2014.

282



[90] Thierry Dauxois and Stefano Ru↵o. Fermi-Pasta-Ulam nonlinear lattice oscillations.
2008. Scholarpedia article.

[91] Jan de Boer, Alejandra Castro, Eliot Hijano, Juan I. Jottar, and Per Kraus. Higher
spin entanglement and WN conformal blocks. JHEP, 07:168, 2015.

[92] Jan de Boer and Dalit Engelhardt. Comments on Thermalization in 2D CFT. 2016.

[93] Jan de Boer and Juan I. Jottar. Entanglement entropy and higher spin holography in
ads3. Journal of High Energy Physics, 2014(4):89, Apr 2014.

[94] Stanley Deser and R. Jackiw. Three-Dimensional Cosmological Gravity: Dynamics of
Constant Curvature. Annals Phys., 153:405–416, 1984.

[95] Oliver DeWolfe, Daniel Z. Freedman, and Hirosi Ooguri. Holography and defect
conformal field theories. Phys.Rev., D66:025009, 2002.

[96] P. Di Francesco, P. Mathieu, and D. Senechal. Conformal field theory. 1997. Springer,
New York, USA, 890 p, ISBN: 038794785X.

[97] Oscar J.C. Dias, Gary T. Horowitz, and Jorge E. Santos. Gravitational Turbulent
Instability of Anti-de Sitter Space. Class.Quant.Grav., 29:194002, 2012.

[98] F. A. Dolan and H. Osborn. Conformal partial waves and the operator product
expansion. Nucl. Phys., B678:491–507, 2004.

[99] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entanglement
entropy. Rev. Mod. Phys., 82:277–306, Feb 2010.

[100] Sheer El-Showk and Kyriakos Papadodimas. Emergent Spacetime and Holographic
CFTs. JHEP, 10:106, 2012.

[101] Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-
Du�n, and Alessandro Vichi. Solving the 3D Ising Model with the Conformal
Bootstrap. Phys. Rev., D86:025022, 2012.

[102] Dalit Engelhardt. Quench Dynamics in Confined 1+1-Dimensional Systems. 2015.

[103] Jorge Escobedo, Nikolay Gromov, Amit Sever, and Pedro Vieira. Tailoring Three-Point
Functions and Integrability II. Weak/strong coupling match. JHEP, 09:029, 2011.

[104] Thomas Faulkner. The Entanglement Renyi Entropies of Disjoint Intervals in
AdS/CFT. 2013.

[105] Thomas Faulkner. The Entanglement Renyi Entropies of Disjoint Intervals in
AdS/CFT. 2013.

[106] Pasta J. Fermi E. and Ulam S. Studies of nonlinear problems. University of Chicago
Press, 1955. Los Alamos report LA-1940, published later in Collected Papers of Enrico
Fermi, E. Segre (Ed.).

283



[107] S. Ferrara, A. F. Grillo, and R. Gatto. Manifestly conformal covariant operator-product
expansion. Lett. Nuovo Cim., 2S2:1363–1369, 1971. [Lett. Nuovo Cim.2,1363(1971)].

[108] Guido Festuccia and Hong Liu. The Arrow of time, black holes, and quantum mixing
of large N Yang-Mills theories. JHEP, 0712:027, 2007.

[109] R.P Feynman and F.L Vernon. The theory of a general quantum system interacting
with a linear dissipative system. Annals of Physics, 24:118 – 173, 1963.

[110] A. Liam Fitzpatrick and Jared Kaplan. Conformal Blocks Beyond the Semi-Classical
Limit. 2015.

[111] A. Liam Fitzpatrick, Jared Kaplan, Daliang Li, and Junpu Wang. On Information
Loss in AdS3/CFT2. 2016.

[112] A. Liam Fitzpatrick, Jared Kaplan, and Matthew T. Walters. Universality of Long-
Distance AdS Physics from the CFT Bootstrap. JHEP, 1408:145, 2014.

[113] A. Liam Fitzpatrick, Jared Kaplan, and Matthew T. Walters. Universality of Long-
Distance AdS Physics from the CFT Bootstrap. JHEP, 08:145, 2014.

[114] A. Liam Fitzpatrick, Jared Kaplan, and Matthew T. Walters. Virasoro Conformal
Blocks and Thermality from Classical Background Fields. JHEP, 11:200, 2015.

[115] A. Liam Fitzpatrick, Jared Kaplan, Matthew T. Walters, and Junpu Wang. Hawking
from Catalan. 2015.

[116] Daniel Friedan and Stephen H. Shenker. The Analytic Geometry of Two-Dimensional
Conformal Field Theory. Nucl. Phys., B281:509, 1987.

[117] Mitsutoshi Fujita, Tadashi Takayanagi, and Erik Tonni. Aspects of AdS/BCFT. JHEP,
1111:043, 2011.

[118] Matthias R. Gaberdiel. Constraints on Extremal Self-Dual CFTs. JHEP, 0711:087,
2007.

[119] Matthias R. Gaberdiel and Rajesh Gopakumar. An ads3 dual for minimal model cfts.
Phys. Rev. D, 83:066007, Mar 2011.

[120] Matthias R. Gaberdiel, Thomas Hartman, and Kewang Jin. Higher spin black holes
from cft. Journal of High Energy Physics, 2012(4):103, Apr 2012.

[121] Matthias R. Gaberdiel, Kewang Jin, and Eric Perlmutter. Probing higher spin black
holes from CFT. JHEP, 1310:045, 2013.

[122] Adwait Gaikwad and Ritam Sinha. Spectral Form Factor in Non-Gaussian Random
Matrix Theories. 2017.

[123] Jean-Loup Gervais, B. Sakita, and S. Wadia. The Surface Term in Gauge Theories.
Phys.Lett., B63:55, 1976.

284



[124] Christian Gogolin and Jens Eisert. Equilibration, thermalisation, and the emergence
of statistical mechanics in closed quantum systems. Rept. Prog. Phys., 79(5):056001,
2016.

[125] Rajesh Gopakumar. From free fields to AdS. Phys. Rev., D70:025009, 2004.

[126] Rajesh Gopakumar. From free fields to AdS. 2. Phys. Rev., D70:025010, 2004.

[127] Rajesh Gopakumar. From free fields to AdS: III. Phys. Rev., D72:066008, 2005.

[128] Wu-Zhong Guo and Song He. Renyi entropy of locally excited states with thermal and
boundary e↵ect in 2D CFTs. JHEP, 1504:099, 2015.

[129] Rajesh Kumar Gupta and Ayan Mukhopadhyay. On the Universal Hydrodynamics of
Strongly Coupled CFTs with Gravity Duals. JHEP, 0903:067, 2009.

[130] Razvan Gurau. Colored Group Field Theory. Commun. Math. Phys., 304:69–93, 2011.

[131] Michael Gutperle and Per Kraus. Higher Spin Black Holes. JHEP, 1105:022, 2011.

[132] Felix M. Haehl, R. Loganayagam, and Mukund Rangamani. Schwinger-Keldysh
formalism. Part I: BRST symmetries and superspace. JHEP, 06:069, 2017.

[133] Felix M. Haehl, R. Loganayagam, and Mukund Rangamani. Schwinger-Keldysh
formalism. Part II: thermal equivariant cohomology. JHEP, 06:070, 2017.

[134] Felix M. Haehl and Mukund Rangamani. Permutation orbifolds and holography.
JHEP, 03:163, 2015.

[135] Thomas Hartman. Entanglement Entropy at Large Central Charge. 2013.

[136] Thomas Hartman. Entanglement Entropy at Large Central Charge. 2013.

[137] Thomas Hartman, Christoph A. Keller, and Bogdan Stoica. Universal Spectrum of 2d
Conformal Field Theory in the Large c Limit. JHEP, 09:118, 2014.

[138] Thomas Hartman and Juan Maldacena. Time evolution of entanglement entropy from
black hole interiors. Journal of High Energy Physics, 2013(5):14, May 2013.

[139] S. W. Hawking. Particle creation by black holes. Comm. Math. Phys., 43(3):199–220,
1975.
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