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Synopsis

Introduction

One of the primary objectives of physics is to understand the basic struc-

ture of matter and the interactions among its constituents. It is known that

hadrons, such as protons, neutrons etc., account for almost all the mass of the

observable luminous matter of our universe. Hadrons are strongly interacting

particles. Quantum Chromodynamics (QCD) is the theory of strong interaction.

Nearly massless quarks and massless gluons are the elementary degrees of free-

dom of QCD. The interactions among them are governed by their intrinsic colour

charges. The hadrons are bound states of quarks (and/or anti-quarks). Most of

the mass of hadrons arise through the interactions of gluons and quarks. Inside a

hadron, the force between two quarks increases with separation. Thus an infinite

amount of energy would be needed to isolate a single quark. In other words, the

quark constituents of a hadron are not just bound but confined.

QCD is known to be an asymptotically free theory. This means that the

strength of the interaction among the quarks and gluons decreases with decreasing

distance, i.e. with increasing momentum transfer. This suggest that the quark

confinement ought to have its inherent limits. Under extreme conditions of high

density and/or temperature, when several hadrons are compressed into the the

volume normally occupied by one single hadron, it seems implausible to identify

a quark belonging to a certain hadron. In such a medium quarks are no longer

confined within the volume of a single hadron. Thus it is expected that with

increasing density and/or temperature, strongly interacting matter will undergo

a transition from the hadronic phase, in which constituents are colour-neutral
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SYNOPSIS

bound states, to a plasma of deconfined colour-charged quarks and gluons. Such

a state of matter is known as Quark Gluon Plasma (QGP).

Studies of QCD under extreme conditions of high temperature and/or high

density are much more than of mere theoretical interest. The QGP can actually

be produced in the laboratory if proper conditions are met. Behaviour of QCD

under such unusual conditions can also have astrophysical and cosmological con-

sequences. Thus, e.g. one may encounter very dense matter (density ∼ 1 fm−3) in

the core of the neutron stars or very hot (temperature ∼ 1012 K) QGP-like matter

immediately (few microseconds) after the Big Bang. The physics of nucleosyn-

thesis or the inflationary universe may depend on the properties of QCD under

those extreme conditions. In recent years, however, most attention has focused

on the possibility of creating QGP in laboratories by colliding highly energetic

nuclei such as sulphur (S), lead (Pb) and gold (Au). First such experiments were

performed at the Alternating Gradient Synchrotron (AGS) in Brookhaven and

the Super Proton Synchroton (SPS) at CERN, with center of mass energies of 2

GeV and 18 GeV per nucleon respectively. The Relativistic Heavy Ion Collider

(RHIC), with center of mass energy 200 GeV per nucleon, is currently running

at Brookhaven and providing us with vast amount of new data. A still higher

energy collider, namely the Large Hadron Collider (LHC) at CERN, will have a

center of mass energy of 5.5 TeV per nucleon and a dedicated heavy-ion detector

ALICE. Thus a variety of predictions of hot and/or dense QCD will hopefully be

checked against the data from these experiments.

While perturbative techniques have been highly successful in testing QCD

experimentally for large momenta (i.e. small coupling), in the interesting region

of the deconfining transition in QCD the coupling is large and non-perturbative

methods are called for. Lattice regularization of field theories provides such a

non-perturbative technique. Lattice field theory is a useful way of regularizing

a continuum field theory, which is otherwise plagued by ultraviolet divergences.

One formulates the theory on a discrete space-time lattice [1, 2] so that the lattice

spacing ‘a’ serves as an ultraviolet regulator (cut-off). Numerical simulations of

lattice field theories have a further advantage of obtaining the predictions of the

theory from first principles. All one needs is the Lagrangian of the theory and the

bare parameters. Over the past two decades or so, tremendous progress have been

ii



made in the field of numerical study of QCD formulated on discrete space-time

lattice. This approach has been very successful in providing detail information

about the thermodynamic properties of QCD at finite temperature.

The study of finite temperature QCD (or any field theory) starts from the

grand canonical partition function for a many-particle ensemble at temperature

T

Z = Tr e−β(Ĥ−µN̂). (1)

Here, Ĥ is the Hamiltonian of the system, N̂ is the operator for some conserved

charge, µ is the chemical potential corresponding to that conserved charge and

β = 1/T . We have chosen to work in terms of natural units, i.e. we have set

~ = c = k = 1. This partition function can be written in terms of a path integral

[2]. The goal of finite temperature lattice QCD is to obtain predictions for QGP

using the path integral form of the underlying partition function [2]

Z =

∫

bc

Dψ Dψ̄ DAµ exp

[

−
∫ β

0

dτ

∫

d3x L

]

. (2)

In the above equation L denotes the Lagrangian and τ is the Euclidean (imag-

inary) time. The notation ‘bc’ denotes collectively the boundary conditions (in

the temporal direction) on the fields, anti-periodic for the quark fields ψ, ψ̄ and

periodic for the gauge fields Aµ.

Just as an ordinary integration can be performed by taking a limit of sums on

discrete points, lattice QCD can be thought of as an attempt to define and perform

the functional integrals in ZQCD by discretizing the space-time (Euclidean) over

which the fields are defined. Let Ns and Nτ denote the number of points in the

spatial and the temporal (or equivalently the inverse temperature) direction and

let as and aτ be the corresponding lattice spacings. Then the volume V and the

temperature T are given by

V = (Nsas)
3 , and T =

1

Nτaτ
. (3)

The finite lattice spacings ai (i = s, τ) impose an ultraviolet cut-off a−1
i and

the finite volume V imposes an infrared cut-off. One, of course, needs to take a

continuum limit, ai → 0, at the end of the calculation. As ai → 0 the number
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of lattice points Ni → ∞, in order to keep the volume and temperature fixed in

the physical units. In addition, one also should take the thermodynamic limit,

V → ∞, to get the QCD thermodynamics.

In the conventional lattice QCD formulation the quark fields, ψ(x), reside

on the lattice site x = (x0, x1, x2, x3). The gauge fields are introduced as link

variables. Let Uµ(x) ∈ SU(Nc) be the gauge field associated with the directed

link from site x to site x+ µ̂, µ̂ being the unit vector in the µ-th direction. One

also has U †
µ(x) = U−µ(x + µ). A gauge invariant action can only be constructed

by taking traces of closed loops of Uµ(x). One defines the smallest such square

loop as a plaquette

Uµν(x) = Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x). (4)

We define Pµν(x) = 1−ℜ Tr Uµν(x)/Nc, where the ‘Tr’ denotes the trace in the

colour space. We also introduce the notation for the average spatial and temporal

plaquettes,

Ps =
3

∑

x;i>j,ij=1

Pij(x)/3N
3
sNτ , and Pτ =

3
∑

x,i=1

P0i(x)/3N
3
sNτ (5)

respectively.

The simplest possible lattice action for a pure SU(Nc) gauge theory that can

be constructed out of the plaquettes is the Wilson action [1, 2] —

SG[U ] = 6NcN
3
sNτ [KsPs +KτPτ ] , with Ks =

1

ξg2
s

, Kτ =
ξ

g2
τ

. (6)

Here gs and gτ are the gauge couplings along the spatial and the temporal direc-

tions. The quantity ξ = as/aτ is known as the anisotropy parameter. For ξ = 1,

in the continuum limit of vanishing lattice spacing the above action reduces, upto

O(a2) errors, to the standard continuum Yang-Mills action. However, since the

continuum limit correspond to the critical point of the theory a large class of

actions, differing by irrelevant terms (proportional to higher powers of the lattice

spacing), are expected to give the same continuum physics.

Choosing a fermionic lattice action is more difficult due to the well-known

conceptual problem [2], called the fermion doubling problem. A “No-Go” the-

orem [2] tells us that either one has to sacrifice continuous chiral symmetry or

iv



one ends up having too many (24) flavours in the continuum limit, unless one is

willing to use non-local actions. We will confine ourselves to one oft-used choice,

namely the staggered fermion action. The staggered fermions have a local near-

est neighbour action. On an asymmetric lattice staggered fermions with quark

chemical potential µf (corresponding to the flavour f) are defined as follows [2]—

SF [U ] =
n

∑

f=1

∑

x,x′

χ̄(f)(x)

[

3
∑

ν=1

D(ν)(x, x′) + γFD
(0)(x, x′) +mfasδx,x′

]

χ(f)(x′), (7)

where

D(ν)(x, x′) =
1

2
(−1)x0+···+xν−1

[

Uν(x)δx,x′−ν̂ − U †
ν(x

′)δx,x′+ν̂
]

· · · (ν = 1, 2, 3) ,

D(0)(x, x′) =
1

2

[

e(µfaτ)U0(x)δx,x′−0̂ − e−(µfaτ)U †
0(x

′)δx,x′+0̂

]

.

Here χ(f), χ̄(f) are single component spinors, mf is the bare quark mass and γF

is an extra coupling [3] which is unity for ξ = 1. Gauge invariance is assured

by the presence of U ’s in Eq. [7]. It is clear that χ(f) cannot be identified with

the quark fields in the continuum limit. It turns out, however, that 16n χ-

fields on the corners of an elementary 4-d hypercube can be combined to define

usual continuum quark fields of 4-component spinors, which for mf = 0 have

U(4n)×U(4n) symmetry in the continuum limit. For finite lattice spacing chiral

symmetry is broken down to U(n) × U(n). This facilitates the investigation of

the physics of spontaneous chiral symmetry breaking. The presence of discrete

chiral symmetries, in addition, forbids mass counterterms for staggered fermions,

thus rendering the bare quark mass a straightforward input in the calculation.

The disadvantage is that the full flavour symmetry is restored only for very small

lattice spacing, leaving the number of light flavours uncertain for coarser lattices.

Once the lattice actions SG[U ] and SF [U ] are defined, the finite temperature

lattice QCD formalism can be extended for the numerical evaluation of the equa-

tion of state (EoS) of QCD. The energy density (ǫ) and the pressure (P ) are

defined as

ǫ =
T 2

V

∂ ln Z(V, T )

∂T

∣

∣

∣

∣

V

, and P = T
∂ ln Z(V, T )

∂V

∣

∣

∣

∣

T

, (8)
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where the partition function Z for the case of SU(Nc = 3), which we shall be

considering in the first two sections, is given by

Z(V, T ) =

∫

bc

DUe−SG[U ]. (9)

The partial derivatives with respect to T and V can be written in terms of the

two lattice parameters ξ and as, keeping Ns and Nτ fixed,

T
∂

∂T

∣

∣

∣

∣

V

≡ ξ
∂

∂ξ

∣

∣

∣

∣

as

, and 3V
∂

∂V

∣

∣

∣

∣

T

≡ as
∂

∂as

∣

∣

∣

∣

ξ

+ ξ
∂

∂ξ

∣

∣

∣

∣

as

. (10)

Using these expressions, one obtains [4]

a4
sǫ = −6Ncξ

2

[

∂Ks

∂ξ
Ds +

∂Kτ

∂ξ
Dτ

]

, and (11a)

a4
s∆ ≡ a4

s (ǫ− 3P ) = 6Ncξas

[

∂Ks

∂as
Ds +

∂Kτ

∂as
Dτ

]

. (11b)

Since the functional integral formalism does not have normal ordering the energy

density obtained above contains a contribution from the vacuum, similar to the

zero-point energy of the continuum theory. This vacuum contribution can be

eliminated by subtracting ǫ(T = 0). For sufficiently large Ns, ǫ evaluated on the

symmetric N4
s lattice is a good approximation to ǫ(T = 0) ≡ ǫvac. A subtraction

of the corresponding vacuum (T = 0) quantities lead to Di = 〈Pi〉 − 〈P0〉 above,

where 〈P0〉 is the average plaquette value at T = 0. The notation 〈·〉 implies

average over gauge configurations.

Now we can turn our attention to a few quantities which are relevant for

lattice QCD studies at non-zero chemical potentials. For a theory with only u

and d flavours the diagonal and off-diagonal quark number susceptibilities (QNS)

are defined as

χf =

(

T

V

)

∂2 ln Z

∂µ2
f

, and χff ′ =

(

T

V

)

∂2 ln Z

∂µf∂µf ′
, (12)

respectively. Here, the partition function includes the quarks, i.e. ,

ln Z (T, V, {mf}, {µf}) =

∫

DU

[

∏

f=u,d

dχ(f)dχ̄(f)

]

exp (−SG[U ] − SF [U ]) . (13)

vi



Furthermore, if one introduces the quark chemical potential (µ0) and the isospin

(isovector) chemical potential (µI),

µ0 =
µu + µd

2
, and µI =

µu − µd
2

, (14)

then the corresponding susceptibilities will be

χ0

T 2
=

T

V
· ∂2 ln Z

∂(µ0/T )2
≡ 2(χu + χud)

T 2
, and (15a)

χI
T 2

=
T

V
· ∂2 ln Z

∂(µI/T )2
≡ 2(χu − χud)

T 2
. (15b)

Here, we have assumed degenerate (u, d)-quark masses to arrive at the second

equalities (marked by ≡) of the above relations. One can, further, perform Taylor

series expansions of P , χ0 and χI in (µ0/T ) (around µ0 = 0)—

P

T 4
=

∞
∑

n=0

cn(T )
(µ0

T

)n

,

χ0

T 2
= 2c2 + 12c4

(µ0

T

)2

+ 30c6

(µ0

T

)4

+ · · · , and

χI
T 2

= 2cI2 + 12cI4

(µ0

T

)2

+ 30cI6

(µ0

T

)4

+ · · · , (16)

where the coefficients cn(T ) and cIn(T ) are defined as,

cn(T ) =
1

(n!)V
· ∂n ln Z

∂(µ0/T )n
, and cIn(T ) =

1

(n!)V
· ∂n ln Z

∂(µ0/T )n−2∂(µI/T )2
.

(17)

These coefficients can be computed on the lattice. We will use these quantities

in the last two sections.

Speed of sound and specific heat in the QCD
plasma

EoS of a pure SU(3) gauge theory have been extensively studied using lattice

QCD. It is now a well-established fact that the pressure, P , and the energy

density, ǫ, deviate [5] in the high temperature phase of QCD by about 20% from

their ideal gas values at a temperature of about 3Tc, where Tc is the transition
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temperature. Early expectations that ǫ would count the number of degrees of

freedom in the QCD plasma through the Stefan-Boltzmann law are belied by the

fact that perturbation theory has had great difficulty in reproducing these lattice

results. In view of this, it is important to go beyond the EoS and study the

thermodynamic fluctuation measures in a QCD plasma. In the pure gluon gas

there is only one fluctuation measure, the specific heat at constant volume, CV .

Related to this is a kinetic variable, the speed of sound, Cs. These two quantities

are defined as

CV =
∂ǫ

∂T

∣

∣

∣

∣

V

, and C2
s ≡ ∂P

∂ǫ

∣

∣

∣

∣

s

=
∂P

∂T

∣

∣

∣

∣

V

(

∂ǫ

∂T

∣

∣

∣

∣

V

)−1

=
s/T 3

CV /T 3
, (18)

where we have used the thermodynamic identity

∂P

∂T

∣

∣

∣

∣

V

=
∂S

∂V

∣

∣

∣

∣

T

and
∂S

∂V

∣

∣

∣

∣

T

= s =
ǫ+ P

T
, (19)

in conjunction with the definition of the total entropy, S, and the entropy density,

s, above.

These quantities have direct physical relevance for the heavy-ion collision ex-

periments. It has been suggested that CV is directly related to the event-by-event

transverse momentum fluctuations, which are measurable in heavy ion collision

experiments. The speed of sound, on the other hand, controls the expansion rate

of the fire-ball produced in the heavy-ion collisions. Thus the value of Cs is an

important input parameter in the hydrodynamic studies. It has also been claimed

that the ratio of the event-by-event fluctuations of entropy and energy, if it turns

out to be measurable in heavy-ion collisions, provides a direct estimation of Cs.

In addition to their relevance in the heavy-ion collision experiments, these quan-

tities provide further tests of all the models and perturbative expansions which

try to explain the lattice data on the EoS.

In order to make a lattice determination of CV and Cs, first one needs the

appropriate (lattice) expressions for these quantities. We have shown [6] that

direct application of the derivatives in Eq. [10] to the expression for ǫ in Eq. [11a]

gives an incorrect result for CV , i.e., CV /T
3 does not give the correct ideal gas

value (4ǫ/T 4) in the weak coupling limit (g → 0). This is because we have to

work with the variables ξ and as, whereby the dimensions of both T and V come

viii



from powers of as. Naive application of the derivative formulæ therefore see false

scalings of these quantities. We have solved [6] this problem by choosing to work

in terms of a dimensionless ratio so that the scaling is automatically taken care

of. We define

C =
∆

ǫ
, and Γ = T

∂C

∂T

∣

∣

∣

∣

V

, (20)

Then, using Eqs. [18, 20] one can proceed straightaway to write

CV

T 3
=

(

ǫ/T 4

P/T 4

) [

s

T 3
+

Γ

3

ǫ

T 4

]

, and C2
s =

(

P/T 4

ǫ/T 4

) [

1 +
Γǫ/T 4

3s/T 3

]−1

. (21)

Expressions for ǫ and P are already known, Eqs. [11a, 11b]. We have evaluated

[6] the expression for Γ in terms of the average plaquettes and covariances of

plaquettes. The quantity Γ is proportional to the QCD β-function and hence

goes to zero in the weak coupling (g → 0) limit. This being the case, the correct

ideal gas limits of ǫ, P and s ensure that CV and Cs also reach their correct ideal

gas limits. The above expressions also involve both first and second derivatives of

the couplings gi with respect to the lattice variables. To evaluate these derivatives

we used the fact that in the weak coupling limit, g−2
i ’s can be expanded [7] around

their symmetric lattice value g−2(a),

g−2
i (as, ξ) = g−2(a) + ci(ξ) +O[g2(a)], (22)

where as = aτ = a for ξ → 1. So the first and second derivatives of gi’s with

respect to ξ are given by ∂ci/∂ξ and ∂2ci/∂ξ
2. The ∂ci/∂ξ have been computed to

one-loop order in the weak coupling limit for SU(Nc) gauge theories [7]. Following

[7], we evaluated [6] the quantities ∂2ci/∂ξ
2 using the weak coupling expansion

upto one-loop order. For consistency, the derivatives of gi with respect to the

lattice spacing a have been evaluated using the one-loop order perturbative β-

function of QCD.

Using the above mentioned formalism, in Ref. [6], we made a precise (with

errors ∼ 5%) determination of the continuum limit of CV and Cs in the high

temperature phase of the QCD plasma. In the process we have also recomputed

the EoS, i.e. the pressure, P , and the energy density, ǫ, by a method which has

not been used earlier to obtain the continuum limit. Working at temperatures
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2Tc and 3Tc, we made our continuum extrapolations by making linear fits in

a2 ∝ 1/N2
τ using lattices with large temporal extents (Nτ = 8, 10, 12). While our

results for ǫ, P and CV deviate from there respective ideal gas values by about

20% even at 3Tc, we found the the speed of sound Cs is very close to its ideal gas

value at these temperatures. A more surprising finding was that the ideal gas re-

lation CV /T
3 = 4ǫ/T 4 seems to hold, in spite of the non-ideal behaviour of these

quantities. We explained [6] these apparently contradicting behaviors by argu-

ing that, at these temperatures, the QCD plasma is very close to the conformal

symmetric limit. This explains the very small values of the conformal measure C

and hence, in turn, explains these puzzling behaviour of the QCD plasma. We

had also tested the quantitative predictions of the strong-coupling expansion of

the conformally symmetric N = 4 Supersymmetric Yang-Mills theory (SYM) [8]

by using our data on the entropy density.

EoS of QCD: improving the differential method

The method which we used, known as the differential method, to compute

CV and Cs produces negative pressure in the vicinity of Tc. This restricted us

to investigate only the high temperature region. But more interesting physics

is expected around the phase transition region. Hence a precise computation of

these quantities close to Tc is necessary.

The negativity of pressure in the differential method was attributed solely to

the use of perturbative formulae for various derivatives of the coupling. Hence

it was believed that this problem could be remedied if one goes to large enough

Nτ or equivalently to small enough lattice spacing. However, we found that [9]

even when one determines the continuum limit of the pressure, using temporal

lattices upto Nτ = 12, the negative pressure problem of the differential method

still persists.

The alternative technique which cures this negative pressure problem is known

as the integral method [5]. The integral method bypasses the use of one set of

derivatives by using the thermodynamic relation F = −PV , where F is the

x



free energy, and determined the other derivative (the QCD β-function) non-

perturbatively. The integral method has the drawback that the relation F =

−PV holds only for a homogeneous system, and therefore fails across a first or-

der phase transition. Also, avoiding derivatives has the practical drawback that

fluctuation measures can only be obtained by numerical differentiation, which is

prone to large errors.

In view of this situation we have proposed [9] a new variant of the differen-

tial method which gives positive pressure over the entire temperature range. In

contrast to the choice of the spatial lattice spacing in the previous approach of

the differential method, we choose the temporal lattice spacing to set the scale of

the theory. Thus our method could be called the t-favoured differential method

and the previous method may be called the s-favoured differential method. Once

a choice of the scale a = aτ is made, as opposed to the choice a = as of the

s-favoured scheme, the lattice version of the derivatives with respect to T and V

change from Eq. [10] to—

T
∂

∂T

∣

∣

∣

∣

V

= ξ
∂

∂ξ

∣

∣

∣

∣

a

− a
∂

∂a

∣

∣

∣

∣

ξ

, and V
∂

∂V

∣

∣

∣

∣

T

=
ξ

3

∂

∂ξ

∣

∣

∣

∣

a

. (23)

In [9] we have shown that the coefficients ci(ξ) remain same for both the schemes.

With these information one can proceed straightaway, as in the earlier s-favoured

scheme, to determine the expressions for the energy density and pressure. In the

ξ → 1 limit these become

ǫ

T 4
= 6NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

+ 6NcN
4
τ

B(αs)

2πα2
s

[

Ds +Dτ

]

, and

P

T 4
= 2NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

. (24)

Here the primes denote derivatives with respect to ξ, B(αs) is the QCD β-

function, with the usual definition of αs = g2(a)/4π. Comparison of the ex-

pressions of Eq. [24] with that of the s-favoured scheme shows that the P in the

t-favoured method is exactly ǫ/3 of the s-favoured method. The positivity of the ǫ

in the s-favoured scheme guarantees the positivity of P in the t-favoured scheme.

The interaction measure ∆ is same for both the t and s-favoured methods. Since

∆ is always positive the expression for ǫ (= ∆+3P ) is also bound to give positive
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values for the energy density. Being a differential method the t-favoured scheme

can be easily extended [9] for the calculation of CV and Cs, following exactly the

same formalism developed in [6].

Using the t-favoured method we determined [9] the continuum limit of P , ǫ,

CV and Cs for the temperature range 0.9Tc ≤ T ≤ 3Tc. Continuum extrapola-

tions were performed by making linear fits in a2 ∝ 1/N2
τ , using lattices with large

temporal extents Nτ = 8, 10, 12. High statistics (around few hundred thousand

measurements) were accumulated to get very precise (errors ∼ 5%) results. We

have showed that this method gives positive pressure for all temperatures and Nτ

used, even when the older s-favoured method gives negative pressure. Note that

this is so in spite of the use of the same perturbative values for the coefficients ci’s

in both cases. On the other hand in the phase transition region the t-favoured

method pressure shows a steeper rise than that of the integral method pressure.

Compared to the integral method the energy density in the t-favoured method is

harder near Tc and agrees with that of the integral method for T ≥ 2Tc. This in-

dicates a difference in the latent heat determined by the two methods. Part of the

difference between these two methods closer to Tc is most likely to be the use of

one-loop order perturbative Karsch coefficients. Inclusion of the effects of higher

order loops in the Karsch coefficient might improve the agreement. Also integral

method assumes that the pressure below Tc is zero. Relaxing this assumption can

restore agreement close to Tc, at the cost of the high-T region. Also the results

for the integral method were obtained on coarser lattices [5] and using different

renormalized coupling than what was used in our study. Surprisingly, we also

found that the pressure in the t-favoured method agrees with that obtained from

a dimensionally reduced theory, matched with the 4-d theory perturbatively upto

order g6 ln(1/g) [10], almost all the way down to Tc. Our continuum results CV

shows that for T ≥ 2Tc, CV /T
3 is far from its ideal gas value but is quite con-

sistent with the prediction in conformal theories that CV /T
3 = 4ǫ/T 4. In the

neighbourhood of Tc, CV shows a peak-like structure. Whereas Cs is consistent

with its ideal gas value (in accordance with the prediction for a conformal the-

ory) for T ≥ 2Tc, it decreases dramatically near Tc giving rise to a soft point in

the EoS. A comparison of our continuum entropy density with its quantitative

predictions [8] for a strongly coupled N = 4 SYM shows good agreement from

xii



T > 1.5Tc. This, along with our results for CV /T
3 and C2

s , gives a hint that the

SU(3) gauge theory behaves like a quasi-conformal theory for t’ Hooft couplings

g2Nc < 9. It will be very interesting to check whether this is also true for the full

QCD.

Degrees of freedom in QCD plasma: robust ob-
servables from lattice

As discussed earlier the lattice QCD studies show that the thermodynamic

quantities, like pressure and energy density, deviate from their respective ideal

gas (of free quarks and gluons) values by about 20% even at temperature T = 3Tc.

Also recent results from RHIC indicate the formation of a thermalized medium

endowed with large collective flow and very low viscosity. These findings suggest

that close to Tc the nature of the QGP is far from a gas of free quarks and

gluons, rather it is a strongly interacting system. In view of this situation, it

is very important to identify the degrees of freedom of such a strongly coupled

QGP.

If the relevant degrees of freedom of a strongly coupled QGP are quasi-quarks

then, different conserved charges, e.g. baryon number (B), electric charge (Q),

third component of isospin (I) etc. , are carried by different flavours (u, d, s) of

quarks. Thus in the conventional quasi-particle models conserved charges come

in strict proportion to number of u, d, s quarks. Hence conserved charges are

strongly correlated with the flavours and the flavours have no correlations among

themselves. Based on the above arguments, in [11], it has been suggested that

the baryon-strangeness correlation

CBS = −3
〈BS〉 − 〈B〉〈S〉
〈S2〉 − 〈S〉2 , (25)

can be used to probe the degrees of freedom of QGP. Here B = (U +D−S)/3 is

the net baryon number and U , D, S are the numbers of net (quarks minus anti-

quarks) up-quarks, down-quarks and strange-quarks respectively. The notation

〈·〉 denotes average taken over a suitable ensemble. The quantity CBS probes the

linkage of the strangeness carrying excitations to baryon number and hence gives
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an idea about the average baryon number of all the excitations carrying the s

flavours. The ratio is normalized such that for a pure quark gas, i.e. where unit

strangeness is carried by excitations having B = −1/3, CBS = 1. A value of CBS

significantly different from 1 will indicate that the QGP phase may contain some

other degrees of freedom apart form the quasi-quarks.

In order to uncover the nature of QGP in the vicinity of Tc many different

suggestions have been made over the last decade. One such model which has gen-

erated considerable amount of interest in the recent years is the model proposed

by Shuryak and Zahed [12]. This model proposed a strongly interacting chromo-

dynamic system of quasi-particles (with large thermal masses) of quarks, anti-

quarks and gluons along with their numerous (possibly coloured) bound states. In

the model of [12], presence of bound states demands correlations among different

flavours. Hence correlations between conserved charges and flavours depend on

the mass-spectrum of the bound states and the strong correlations among them

are lost. For this model CBS = 0.62 at T = 1.5Tc [11], while for a gas of hadron

resonances CBS = 0.66 [11].

By extending the idea of [11], recently in [13], CBS has been calculated using

lattice QCD simulations with two flavours of dynamical light quarks and three

flavours (two light and one heavier) of valence quarks. The calculations of [13]

found that this ratio has values which are close to their respective ideal gas values

(= 1) even just above Tc. As the lattice study of [13] involved simulations with

dynamical quarks, they were done using small lattices having temporal lattice size

Nτ = 4. By comparing with the results from quenched simulations it has been

shown [13] that some ratios similar to CBS do not depend on Nτ for temperature

T = 2Tc. However, it is known that the contributions of the bound states of [12]

become more and more important as one approaches Tc. So on the lattice it is

necessary to investigate the continuum limit of CBS, in order to rule out that

CBS has values close to the predictions of the bound state QGP model [12].

Two quantities, CBS and CQS (electric charge-strangeness correlation), which

can directly probe the degrees of freedom in a QGP can be related to the quan-

tities measurable on the lattice by the following way [13]

CBS = 1 +
2χus
χs

and CQS = 1 − χus
χs

, (26)
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where χf is the diagonal QNS and χff ′ is the off-diagonal QNS, as defined in the

Introduction. A value of CBS and CQS significantly different from 1 will indicate

that the QGP phase may contain some other degrees of freedom apart form the

quasi-quarks. Similar ratios can also be formed for the light (u and d) quark

sector [13]. In [14], we have made a careful investigation of the continuum limit

of the ratios of off-diagonal to diagonal QNS like CBS, CQS etc. by going to large

lattices with Nτ = 4, 8, 10, and 12, for the temperatures 1.1Tc ≤ T ≤ 2Tc,

chemical potential µf = 0 and using quenched approximations. We have found

that for this whole range of temperature the lattice results for the ratios like CBS,

CQS etc. are almost independent (within ∼ 5%) of the lattice spacing, i.e. they

are robust. By comparing our results with that from [13] we also found that

these ratios have very mild dependence on the sea quark content of the theory.

Moreover, we have found that these quantities acquire values which are very close

to their respective ideal gas limits. Thus the lattice results of [13] and [14] favour

a quasi-particle like picture of QGP, as opposed to the bound state model of [12].

Wroblewski parameter (λs) is a quantity of extreme interest due to its relation

to the enhancement of strangeness production in QGP. Under certain conditions

it can be shown that [15]

λs =
2〈ss̄〉

〈uū+ dd̄〉 =
χs
χu
. (27)

In [14], we have also re-confirmed (see [13]) that λs is robust not only in the sense

that it does not depend on the lattice spacings but also has very mild dependence

on the see quark masses. The robustness of the Wroblewski parameter is very

encouraging specially since in the vicinity of Tc the lattice results for this quan-

tity almost coincide with the value extracted by fitting the experimental data of

RHIC with a hadron gas fireball model.

Testing the PNJL model against the lattice data

The lattice QCD studies have established that QGP is a strongly interacting

system in the vicinity of Tc, with quasi-particle like degrees of freedom. While

lattice studies are based on the first principles, in view of their numerical nature
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it is important to understand the underlying physics of the lattice results in terms

of QCD inspired effective models. On the other hand, it is necessary to put these

effective models under stringent tests against the lattice data in order to verify

that these models capture the correct physics.

It is known that in the limit of infinite quark mass (mq) the order parameter

for the deconfinement transition is the thermal average of the Polyakov loop

L(~x) = P exp

[

i

∫ β

0

dτ A0(~x, τ)

]

, (28)

where A0(~x, τ) is the gauge field in the Euclidean time direction and P denotes

path ordering. On the other hand, in the chiral limit, i.e. mq → 0, the order

parameter for the chiral transition in QCD is the chiral condensate
〈

ψ̄ψ
〉

,

ψ =

(

u
d

)

being the two component quark field corresponding to the ‘up’ (u) and ‘down’

(d) quarks. Lattice simulations have found a simultaneous deconfinement and

chiral transition at the same temperature. The primary aim of the Polyakov-

loop-extended Nambu Jona-Lasinio (PNJL) model [18] is to explain this lattice

finding, within the framework of a QCD inspired effective theory having quasi-

quark excitations. To achieve this the PNJL model couples the Polyakov loop,

which incorporates the physics of deconfinement, with the Nambu Jona-Lasinio

(NJL) model which is supposed to give the correct chiral properties.

The Lagrangian for the NJL model is

LNJL = ψ̄(i∂/−m)ψ +G
[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2

]

, (29)

where m = diag(mu, md). In the mu = md → 0 limit this Lagrangian is sym-

metric under SUV (2) × SUA(2) × UV (1), where SUV (2) is the isospin symmetry,

UV (1) is the baryonic symmetry and SUA(2) is the chiral symmetry. In the chiral

limit the NJL model shows a second order phase transition belonging to the O(4)

class. On the other hand, an effective Lagrangian for an SU(3) gauge theory can

be written as [16]

LSU(3) ≡ −U
(

Φ[A], Φ̄[A], T
)

= −b2(T )

2
ΦΦ̄ − b3

6

(

Φ3 + Φ̄3
)

+
b4
4

(

Φ̄Φ
)2
, (30)
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with Φ = Tr L/Nc and Φ̄ = Tr L†/Nc. Here ‘Tr ’ denote traces in the colour space.

This model has a Z(3) symmetry and shows a first order phase transition which

is similar to a deconfinement phase transition found in lattice QCD simulations.

The PNJL is a synthesis of these two models [17], namely

LPNJL = ψ̄(iD/−m)ψ + G
[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2

]

− U
(

Φ[A], Φ̄[A], T
)

. (31)

A mean field analysis of this model can be performed by treating
〈

ψ̄ψ
〉

, Φ and Φ̄

as classical fields. Using the mean field analysis at finite temperature and non-

zero quark chemical potential µ0 = (µu + µd)/2 (or baryon chemical potential,

µb = 3µ0), in [18] thermodynamic quantities like pressure, energy density etc.

were calculated and compared with the lattice results. This work found that,

indeed, PNJL model shows a coincidence of the onset of chiral restoration and

deconfinement in agreement with the lattice simulations. Moreover, in [18] it was

found that the pressure (for µ0 = 0) calculated from the PNJL model agrees

with the lattice data. However, the quark number density n0 = ∂ ln Z/∂µ0,

though reproducing the qualitative features of the lattice data, quantitatively

deviates from the lattice results for larger values of µ0. Later, in [19], cn (see the

Introduction section), were analyzed within the PNJL model. It was found that

while both the lattice and PNJL model have the same qualitative features for c2n

for n = 0, 1, 2, 3, the quantitative agreements are not so good.

In view of these results it is very important to perform more stringent tests on

the PNJL model, specially in presence of non-zero chemical potentials. In order

to do so, we have extended [20] the PNJL model for non-zero isospin chemical

potential µI = (µu − µd)/2. We have calculated the coefficients cI2n (see the

Introduction section for definitions) for n = 0, 1, 2, 3, for which lattice data are

available. This also allowed us to calculate the diagonal QNS [χu/T
2 = (cI2+c2)/2]

and the off-diagonal QNS [χud/T
2 = (cI2 − c2)/2]. Since the off-diagonal QNS

measures the correlation among the u and d flavours, this quantity provide a direct

understanding of the extent to which the PNJL model captures the underlying

physics of lattice QCD. We found [20] that though the PNJL model failed to

reproduce the lattice data for the diagonal QNS, the qualitative features were

more or less the same. On the other hand, for the off-diagonal QNS the PNJL

model was unable to reproduce even the qualitative features of the lattice results.
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The PNJL model predicts the correct sign for the χud, but for large temperature

χud do not approach zero. Instead it tends to saturate at some relatively large

negative value which is far from the lattice result. This implies that the flavour-

mixing in the PNJL model is much larger.

In an attempt to pin point the problem in PNJL model, further, we modified

the NJL part of the PNJL model by using the NJL Lagrangian proposed in [21].

This Lagrangian has two parts. One, L1, has the SUV (2)×SUA(2)×UV (1)×UA(1)

symmetry, while the other, L2, breaks the UA(1) axial symmetry. The second

term can be interpreted as an interaction induced by instantons and reflects the

UA(1)-anomaly of QCD. This term has the structure of a ’t-Hooft determinant in

the flavour space, leading to flavour-mixing. By adjusting the relative strength

of L1 and L2 one can explicitly control the amount of flavour-mixing in the NJL

sector. This modified NJL Lagrangian reduces to the standard NJL Lagrangian

of Eq. [29] when the strength of the L1 and L2 becomes equal. We recalculated

[20] the diagonal and off-diagonal QNS by coupling this modified form of the

NJL model with the Polyakov loop model for different amount of flavour-mixing.

We found no dependence of χud on the amount of flavour-mixing in the NJL

sector, both above and below Tc. This motivated us to conclude that in the

PNJL model, at the mean field level, the form of the interaction between the

gauge fields Φ, Φ̄ and the chemical potentials µf is insufficient to capture the

underlying physics of the lattice results. This is a very critical drawback of the

PNJL model as the lattice results of [14] show that correlation among the flavours

in the off-diagonal QNS is largely governed by the interaction of the quarks with

the gauge fields and is almost independent of the presence of the quarks loops.
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Chapter 1

Introduction

It has been established [1] that almost the entire mass of the visible matter

in our universe consists of baryonic particles. Baryons are strongly interacting

particles. Quantum ChromoDynamics (QCD) is the theory of strong interaction.

The basic degrees of freedom of QCD are quarks and gluons. Quarks and gluons

carry colour charges, analogous to the electric charge of an electron. However,

experimental searches [2] looking for the existence of isolated free quarks have

produced negative results. This experimental fact has motivated the hypothesis

of confinement. An important open problem regarding QCD is the phenomenon of

confinement [3]. Confinement is the phenomenon where the elementary particles

(fields) present in the Lagrangian of the theory are absent in its physical spectrum.

In the case of QCD it means that quarks, gluons and in general all colour-charged

objects cannot exist as separate asymptotic objects, rather they exist only as

bound states (hadrons and glueballs) which are colour neutral.

However, at energy densities large compared to the natural scale (Λ4
QCD ∼

200 MeV/fm3) quarks and gluons may not remain confined inside the volume of

a hadron [4]. At such high energy densities the average separation, d, between the

quarks and gluons may become d ≪ Λ−1
QCD ∼ 1 fm ∼ (volume of a hadron)1/3.

The strength of interaction between these closely packed quarks and gluons is

weak due to the asymptotic freedom of QCD [5], which says that the QCD cou-

pling decreases as the distance between quarks and gluons decreases or as the

exchanged momentum between them increases. Such high energy densities (or

small separation) can be reached at high temperature and/or densities. Thus it
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1. INTRODUCTION

is expected that with increasing temperature and/or density, strongly interacting

matter will undergo a transition from the hadronic phase, in which constituents

are colour-neutral bound states, to a plasma of deconfined colour-charged quarks

and gluons. Such a state of matter is known as Quark Gluon Plasma (QGP) [6].

Quark-hadron transition may have taken place during the evolution of early

universe. QGP-like matter may have been present immediately (at ∼ 10−5 sec)

after the Big Bang. At these stages our universe was very hot (temperature

& 1012 K), but close to net-baryon free. Cosmological QCD transition may have

some important consequences regarding the initial condition of the Big Bang

Nucleosynthesis, small scale structure and composition of Cold Dark Matter,

damping of gravitational waves etc. [7]. Another example where such extreme

conditions may arise are the compact stellar objects, such as the core of a neu-

tron star, where densities can be as high as 1016 − 1017 g/cm3 [4]. Quark matter

may also be found in such a situation, which in turn may have experimentally

verifiable implications on the cooling of those objects [8]. On the other hand,

there is a good possibility that this new form of matter might be produced in

the laboratory through the collisions of ultra-relativistic heavy nuclei [9]. Many

experimental signatures of the possible formation of QGP in heavy-ion collision

experiments have been proposed [10]. First such heavy-ion collision experiments

were performed at Alternating Gradient Synchrotron (AGS) [11] in Brookhaven

and Super Proton Synchroton (SPS) [12] at CERN, with center of mass ener-

gies per nucleon (
√
s/A) of

√
s/A = 2 GeV and

√
s/A = 18 GeV respectively.

Relativistic Heavy Ion Collider (RHIC), with
√
s/A = 200 GeV , is currently run-

ning at Brookhaven and providing us with vast amount of new data [13]. A still

higher energy collider, namely the Large Hadron Collider (LHC) at CERN, will

have
√
s/A = 5.5 TeV and a dedicated heavy-ion detector ALICE [14]. Thus a

variety of predictions of hot and/or dense QCD will hopefully be checked against

the data from these experiments.

Perturbative techniques have been highly successful [15] in testing QCD for

large momenta exchanges, i.e. for small couplings. The motivation for considering

QGP as a weakly coupled system is the asymptotic freedom [5], which suggest that

the effective QCD coupling used in thermodynamic calculations should be small

if either the temperature T or the baryon chemical potential µB is high enough.
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For instance, if the temperature is the largest scale in the problem then the QCD

coupling αs(µ̄) ≡ g2/4π ∝ 1/ ln(µ̄/ΛQCD), with typically µ̄ = 2πT . For T >

ΛQCD ∼ 200 MeV the coupling is reasonably small, αs < 0.3. Extensive weak-

coupling calculations have been performed to study the bulk thermodynamic

properties of QGP [16]. For example, at zero chemical potential the perturbative

expansion of pressure is—

P

T 4
= c0 + c2g

2 + c3g
3 + (c′4 ln g + c4) g

4 + c5g
5 + (c′6 ln g + c6) g

6 + · · · , (1.1)

where the coefficient

c0 =

[

2(N2
c − 1) + 2NcNf

(

7

4

)]

π2

90
, (1.2)

is the Stefan-Boltzmann constant corresponding to the ideal (non-interacting)

gas. The coefficient c2 [17] arises from the lowest-order (two-loop diagrams)

perturbative corrections to the pressure of an ideal gas. The computation of

the coefficient c3 [18] requires a resummation of plasmon ring diagrams in the

infrared limit. The coefficient c′4 has been computed in Ref. [19] and c4 [20] is

due to three-loop diagrams. The coefficient c5 [21, 22] arises from correction to

the three-loop diagrams due to Debye screening of chromo-electric gluons. The

coefficient c′6 can also be computed perturbatively [23] using four-loop diagrams.

c6 is genuinely non-perturbative and can only be computed using some non-

perturbative technique. This is where the perturbative expansion of the pressure

in QGP breaks down due to severe infra-red divergences, known as the Linde

problem [24]. At zero temperature and large chemical potentials the expansion in

known upto O(g4) [25, 26], and at high temperatures but finite chemical potentials

upto O(g6 ln g) [27, 28]. Very recently perturbative expansion, valid for all values

of T and µ, of QGP pressure have been computed [29] upto O(g4).

The perturbative series of Eq. [1.1] has poor convergence properties. The

second order terms ∼ c2g
2 gives a negative contribution to Stefan-Boltzmann

pressure (c0), which is less than 10% of c0 at T ∼ 103ΛMS and at most 40% of c0

at T ∼ ΛMS (∼ Tc, the transition temperature). However, the next contribution

∼ c3g
3 is positive and so large that the pressure overshoots c0 even upto T ∼

103ΛMS. The terms of order g4 are again small, but also positive, such that, to

3



1. INTRODUCTION

O(g4) the pressure is larger than c0. The terms of O(g5) are negative and so large

in magnitude, that the pressure even vanishes at T ∼ ΛMS. The convergence

of these expansions are reasonably good only for coupling constants as low as

αs < 0.05, corresponding to temperature as high as & 105ΛMS. Thus, naive

perturbation theory is clearly not applicable for temperatures of order Tc. Even

the results of improved perturbation techniques, such as dimensional reduction

[16, 23, 30], Hard Thermal Loop (HTL) resummations [16, 31, 32] etc. , show that

they are applicable only for temperatures & 3Tc. Hence, to study the properties

of QCD for T . 3Tc non-perturbative techniques are essential.

Lattice regularization of field theories provide such a non-perturbative tech-

nique. Lattice field theory is a useful way of regularizing a continuum field theory,

which is otherwise plagued by ultraviolet divergences. One formulates the theory

on a discrete space-time lattice [33, 34] so that the lattice spacing ‘a’ serves as

an ultraviolet regulator (cut-off). Numerical simulations of lattice field theories

have a further advantage of obtaining the predictions of the theory from first

principles. All one needs is the Lagrangian of the theory and the bare param-

eters. Over the past two decades or so, tremendous progress has been made in

the field of numerical study of QCD formulated on discrete space-time lattice.

This approach has been very successful in providing detail information about the

thermodynamic properties of QCD at finite temperature.

1.1 Basics of finite temperature lattice QCD

The study of finite temperature QCD (or any field theory) starts with the grand

canonical partition function for a many-particle ensemble at temperature T

Z = Tr e−β(Ĥ−µN̂). (1.3)

Here, Ĥ is the Hamiltonian of the system, N̂ is the operator for some conserved

charge (e.g. baryon number, electric charge etc. ), µ is the chemical potential

corresponding to that conserved charge and β = 1/T . We have chosen to work

in terms of natural units, i.e. we have set ~ = c = kB = 1. The above partition

4



1.1 Basics of finite temperature lattice QCD

function can be written in terms of a path integral [34]—

Z =

∫

bc

Dψ Dψ̄ DAµ exp

[

−
∫ β

0

dτ

∫

d3x L

]

. (1.4)

In the above equation L denotes the Lagrangian and τ is the inverse temperature,

i.e. the Euclidean (imaginary) time. The notation ‘bc’ denotes collectively the

boundary conditions on the fields, anti-periodic for the quark fields ψ, ψ̄ and

periodic for the gauge fields Aµ. The thermal expectation value of a physical

observable O, defined by

〈O〉 =
1

Z
Tr

[

Oe−β(Ĥ−µN̂)
]

, (1.5)

then takes the following form in the functional integral approach

〈O〉 =

∫

bc
Dψ Dψ̄ DAµ O exp

[

−
∫ β

0
dτ

∫

d3x L

]

∫

bc
Dψ Dψ̄ DAµ exp

[

−
∫ β

0
dτ

∫

d3x L

] . (1.6)

The primary goal of finite temperature Lattice QCD (LQCD) is to obtain

predictions for QGP using the path integral form of the underlying QCD partition

function [34]. Just as an ordinary integration can be performed by taking a limit

of sums on discrete points, LQCD can be thought of as an attempt to define

and perform the functional integrals in Z and 〈O〉 by discretizing the space-time

(Euclidean) over which the fields are defined. Let Ns and Nτ denote the number

of points in the spatial and the temporal (or equivalently the inverse temperature)

direction and let as and aτ be the corresponding lattice spacings. Then the volume

V and the temperature T are given by

V = (Nsas)
3 , and T =

1

Nτaτ
. (1.7)

The finite lattice spacings ai (i = s, τ) impose ultraviolet cut-offs a−1
i and the

finite volume V imposes an infrared cut-off.

In the LQCD formulation the quark fields, ψ(x), reside on the lattice site

x = (x0, x1, x2, x3). The gauge fields are introduced as directed link variables.

Let Uµ(x) ∈ SU(Nc) be the gauge field associated with the directed link from

site x to site x+ µ̂, µ̂ being the unit vector in the µ-th direction (see Fig. [1.1a]

5



1. INTRODUCTION

for a simplified illustration). Unitarity of U ’s also demands U †
µ(x) = U−µ(x+ µ).

Under a local gauge transformation V (x) ∈ SU(Nc) the fields transform as

ψ(x) −→ ψ′(x) = V (x)ψ(x), and

Uµ(x) −→ U ′
µ(x) = V (x)Uµ(x)V

†(x+ µ̂). (1.8)

N

N

aτ τ

ass
Uµ (x)

(x+ µ)Uν

(x+ )νUµ

Uν (x)

χ(x+µ)χ(x)

χ(x+ν) χ(x+µ+ν)

(a) (b)

Figure 1.1: (a) Illustration of the setup of (2-d) lattice gauge theory. The gauge

fields (U) reside on the links, while the matter fields (in this case the staggered

fermion fields, χ) reside on the sites. (b) Distributing 2d degrees of freedom on a

two dimensional (d = 2) lattice.

1.1.1 The Wilson gauge action

The above gauge transformation of the gauge variables implies that a gauge in-

variant action can only be constructed by taking traces of closed loops of Uµ(x).

One calls the smallest such square loop as a plaquette

Uµν(x) = Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x) (1.9)

(see Fig. [1.1a] for a simplified illustration). We define Pµν(x) = 1−ℜ Tr Uµν(x)/Nc,

where the ‘Tr’ denotes the trace in the colour space. We also introduce the no-

tation for the average spatial and temporal plaquettes,

Ps =

3
∑

x;j>i,ij=1

Pij(x)/3N
3
sNτ , and Pτ =

3
∑

x,i=1

P0i(x)/3N
3
sNτ (1.10)

6
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1.1 Basics of finite temperature lattice QCD

respectively.

The simplest possible lattice action for a pure SU(Nc) gauge theory that can

be constructed out of the plaquettes is the Wilson action [33, 35, 36]—

SG[U ] = 6NcN
3
sNτ [KsPs +KτPτ ] , with

Ks =
1

ξg2
s

, and Kτ =
ξ

g2
τ

. (1.11)

Here, gs and gτ are the gauge couplings along the spatial and the temporal di-

rections [37]. The quantity ξ = as/aτ is known as the anisotropy parameter.

In the ξ → 1 limit, expanding the Wilson action for small lattice spacings

as = aτ = a → 0 and using the fact that Uµ(x) ∼ e−igAµ(x) (g is the gauge

coupling) for a→ 0, one obtains [34] the continuum Yang-Mills action

SYM = −1

4

∫ β

0

dτ

∫

d3xF b
µνF

µν
b + O(a2). (1.12)

The correction to the continuum action is of order O(a2). However, since the

continuum limit corresponds to the critical point of the theory a large class of

actions, differing by irrelevant terms (proportional to higher powers of the lattice

spacing), are expected to give the same continuum physics. This fact is used to

construct improved actions [38]. A construction principle behind an improved

action is to add further terms to SG in Eq. [1.11] in order to eliminate corrections

of order O(a2). Repeating this procedure, one can systematically eliminate dis-

cretization error upto a given power of a. Extending the same procedure one can

also eliminate the all corrections, leading to the so-called perfect actions [39]. It is

also worth noting that it is not necessary to add a gauge fixing term Sgauge−fixing

with the latticized gauge action SG. This is because on a finite-size lattice the

integration over the gauge fields becomes convergent [33].

1.1.2 The staggered fermion action

The naive discretization of the fermionic part of the QCD action is not particu-

larly suitable because of the so-called fermion doubling problem [34] on the lattice.

Extra doubler states originate due to the periodicity of the fermionic dispersion

7



1. INTRODUCTION

relation within the Brillouin zone. One obtains one extra doubler state per space-

time dimension, such that there are in total 24 = 16 fermion species instead of

a single one. The doubling phenomenon must occur in any lattice regulariza-

tions which respects the usual hermiticity, locality and translational invariance

requirements. This follows from the ‘No Go’ theorem [40] which states that,

under the above assumptions, one cannot solve the fermion doubling problem

without breaking chiral symmetry for the vanishing fermion mass. This suggest

that one may get rid of the doubling problem at the expense of explicit breaking

of the chiral symmetry on the lattice. This leads to the so-called Wilson fermion

prescription [34].

As the fermion doubling problem owes its existence to the fact that the

fermionic dispersion relation vanishes at the corners of the Brillouin zone, one

possibility of eliminating the unwanted fermion modes is by reducing the Bril-

louin zone, i.e. by doubling the effective lattice spacing. The staggered fermion

formulation [41] achieves this by distributing the fermionic degrees of freedom

over the lattice in such a way that the effective lattice spacing for each type of

quark is twice the fundamental lattice spacing.

Let us consider a d-dimensional space-time lattice and subdivide it into el-

ementary d-dimensional hypercubes of unit length. At each site within a given

hypercube place a different (fermionic) degree of freedom, and repeat this struc-

ture periodically throughout the lattice. Then the effective lattice spacing have

been doubled for each degree of freedom. In Fig. [1.1b] this has been for shown

the case of a 2-dimensional lattice. Since there are 2d sites within a hypercube

but only 2d/2 components of a Dirac field (in even space-time dimensions), one

needs 2d/2 different fermionic fields to reduce the Brillouin zone by a factor of

half. In 4 space-time dimensions such a prescription may therefore be appropri-

ate for describing 22 = 4 different species of fermions. Thus staggered fermions do

not solve the doubling problem completely, rather the number of doubler states

are reduced to 4. These 4 different fermions are interpreted as the 4 degenerate

flavours of quarks and the standard staggered fermion action is interpreted as

describing QCD with Nf = 4 flavours. In numerical simulations with staggered

fermions the standard practice is to use the so-called fourth-root trick [42], i.e. use

8



1.1 Basics of finite temperature lattice QCD

different staggered fermions for each flavour and take the fourth-root of the stag-

gered fermion determinant corresponding to each flavour. The advantage of the

staggered fermion prescription is that, even for non-zero lattice spacings a 6= 0,

it preserves a U(1)×U(1) subgroup of the original U(4)×U(4) chiral symmetry

[43]. The chiral condensate is thus an order parameter for the chiral symmetry

restoration at the QCD transition. The presence of discrete chiral symmetries,

in addition, forbids mass counterterms for staggered fermions [44, 45, 46], thus

rendering the bare quark mass a straightforward input in the calculation.

In terms of the spin-diagonal basis the the action for staggered fermion on an

anisotropic lattice is defined as [47, 43, 48, 49]—

SF [U ] =
∑

x,x′

χ̄(x)

[

3
∑

ν=1

D(ν)(x, x′) + γFD
(0)(x, x′) +mfasδx,x′

]

χ(x′), (1.13)

where

D(ν)(x, x′) =
1

2
(−1)x0+···+xν−1

[

Uν(x)δx,x′−ν̂ − U †
ν(x

′)δx,x′+ν̂
]

, (1.14a)

D(0)(x, x′) =
1

2

[

e(µaτ )U0(x)δx,x′−0̂ − e−(µaτ )U †
0(x

′)δx,x′+0̂

]

. (1.14b)

Here χ(x), χ̄(x) are one-component spinors and mf is the bare quark mass. The

anisotropic lattice introduces an extra coupling γF [48], which is unity for ξ = 1.

Gauge invariance is assured by the presence of U ’s in Eq. [1.13]. µ is the quark

chemical potential. It is known [49] that the naive way of introducing the chemical

potential on the lattice leads to quadratic divergences even for free fermions.

Though there are many ways of introducing the chemical potential on the lattice

[50], we have chosen to work with the prescription of Ref. [49]

1.1.3 Continuum limit

In order to extract the continuum physics from LQCD calculations, one has to

extrapolate the results to the case of vanishing lattice spacing a → 0. (Here,

and in the following discussion we assume that ξ = 1, i.e. one is working with

an isotropic lattice having as = aτ = a.) Any quantity which has a dimension in

units of a will give zero or infinity when extrapolated to a → 0. Hence such a

continuum extrapolation is meaningful only after converting a to some physically

9



1. INTRODUCTION

relevant dimensional quantity, which is expected to remain fixed as a → 0. For

our case this quantity is the temperature T . For Nc = 3, the temperature can be

related to the the bare coupling β = 2Nc/g
2 through the two-loop renormalization

group equation—

aΛL ≃
(

6b0
β

)−
b1

2b2
0

exp

(

− β

12b0

)

, (1.15)

and the relation T = 1/aNτ . Here,

b0 =
1

16π2

(

11 − 2

3
Nf

)

, and b1 =

(

1

16π2

)2 [

102 −
(

10 +
8

3

)

Nf

]

(1.16)

are the two universal (independent of the renormalization scheme) coefficients

and ΛL is a scale parameter which can be related to the scale parameter in other

regularization schemes, e.g. to ΛMS.

In Ref. [51] it has been shown that it is advantageous to use a renormalized

β [52] (since it gives better scaling of Tc/ΛMS with Nτ ) in Eq. [1.15], instead of

the bare β. Hence in this thesis, to determine the coupling β we always use the

method suggested in Ref. [51], where the one-loop order renormalized couplings

have been evaluated by using V -scheme [52], taking care of the scaling violations

due to finite lattice spacing errors using the method of Ref. [53]. Using this

method a precise determination of the transition temperature (Tc) for the pure

SU(3) gauge theory has been made in Ref. [51]. Through out this thesis (except

in Chapter [5]) we will use this value for Tc, namely Tc = 285 ± 10 MeV .

Following the above discussion one can choose a β for each Nτ , keeping T

fixed. Using these β as the input, one can perform numerical simulations for

different Nτ , keeping the aspect ratio Ns/Nτ fixed. This ensures simulations at

different lattice spacings a = 1/(TNτ ), keeping the temperature T and volume

V = (aNs)
3 = [(Ns/Nτ )/T ]3 fixed. Results of these simulations at different a can

then be extrapolated, using some fitting function, to a→ 0 to extract the contin-

uum physics. Since both the Wilson gauge action and the unimproved staggered

fermion action have O(a2) cut-off errors, in the present case, the fitting function

is conveniently chosen as c0 + c2a
2 [i.e. c0 + c2/(T

2N2
τ )], c0 and c2 being some con-

stants. Thus for our present purpose continuum extrapolation will simply mean

extrapolation to Nτ → ∞, by fitting with a+ b/N2
τ , for a fixed temperature and

aspect ratio.

10



1.1 Basics of finite temperature lattice QCD

Finally, not only one is interested in the continuum limit at finite volume V ,

one would also like to extrapolate to the thermodynamic limit V = (aNs)
3 =

[(Ns/Nτ )/T ]3 → ∞. This is done by taking the continuum limit at fixed T for

different aspect ratios Ns/Nτ , and extrapolating those results to (Ns/Nτ ) → ∞.

1.1.4 Equation of state from LQCD

Once the lattice actions are defined, the finite temperature LQCD formalism can

be extended for the numerical evaluation of the Equation of State (EoS) of QCD.

The energy density (ǫ) and the pressure (P ) are defined as

ǫ =
T 2

V

∂ ln Z(V, T )

∂T

∣

∣

∣

∣

V

, and P = T
∂ ln Z(V, T )

∂V

∣

∣

∣

∣

T

. (1.17)

For simplicity, here, we will restrict ourselves to the case of pure SU(Nc) gauge

theory. So in the present case the partition function Z is given by

Z(V, T ) =

∫

bc

DUe−SG[U ]. (1.18)

The two most popular methods that have been used for the determination of

the EoS from LQCD are— the differential method [36] and the integral method

[54].

1.1.4.1 Differential method

In order to distinguish between T and V derivatives, the differential method for-

mulate the theory on a 3+1 dimensional anisotropic lattice having different lattice

spacings in the spatial (as) and the temporal (aτ ) directions. In the differential

method one trades the variables {T, V } in terms of the anisotropy parameter ξ

and a scale a, defined as—

ξ =
as
aτ
, and a = as. (1.19)

The partial derivatives with respect to T and V can be written in terms of the

two lattice parameters ξ and a, keeping Ns and Nτ fixed,

T
∂

∂T

∣

∣

∣

∣

V

≡ ξ
∂

∂ξ

∣

∣

∣

∣

a

, and 3V
∂

∂V

∣

∣

∣

∣

T

≡ a
∂

∂a

∣

∣

∣

∣

ξ

+ ξ
∂

∂ξ

∣

∣

∣

∣

a

. (1.20)
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Using these expressions and the definitions of Eqs. [1.17, 1.18, 1.11], one obtains

[36]

a4ǫ = −6Ncξ
2

[

∂Ks

∂ξ
Ds +

∂Kτ

∂ξ
Dτ

]

, (1.21a)

a4P = −2Ncξ
2

[

∂Ks

∂ξ
Ds +

∂Kτ

∂ξ
Dτ

]

− 2Ncξa

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

, (1.21b)

a4∆ ≡ a4 (ǫ− 3P ) = 6Ncξa

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

. (1.21c)

The quantity ∆, the so-called interaction measure, is the trace anomaly of the

energy-momentum tensor of QCD, generated by the conformal invariance break-

ing of QCD at the quantum level. Since the functional integral formalism does not

have normal ordering the energy density obtained above contains a contribution

from the vacuum, similar to the zero-point energy of the continuum theory. This

vacuum contribution can be eliminated by subtracting ǫ(T = 0). For sufficiently

large Ns, ǫ evaluated on the symmetric N4
s lattice is a good approximation to

ǫ(T = 0) ≡ ǫvac. Its subtraction leads to Di = 〈Pi〉 − 〈P0〉 above, where 〈P0〉 is

the average plaquette value at T = 0.

The above expressions also involve derivatives of the couplings gi (see Eq.

[1.11]) with respect to the lattice variables. In the weak coupling limit, g−2
i ’s can

be expanded [56] around their symmetric lattice value g−2(a),

g−2
i (a, ξ) = g−2(a) + ci(ξ) +O[g2(a)], (1.22)

with the condition ci(ξ = 1) = 0. The quantities ci(ξ) ’s are known as the Karsch

coefficients. The computation of the first derivatives of the couplings requires

b(a) = a∂g−2/∂a. With the usual definition of the one-loop order perturbative

QCD β-function—

B(αs) =
µ

2

∂αs
∂µ

= − 33 − 2Nf

12π
α2
s + · · · , where αs = g2/4π, (1.23)
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1.1 Basics of finite temperature lattice QCD

one finds b(a) = B(αs)/2πα
2
s (Nf = 0 for the present case). Then,

a
∂Ks

∂a
=

B(αs)

2πα2
sξ
, (1.24a)

K ′
s = −g

−2
s

ξ2
+
c′s
ξ
, (1.24b)

a
∂Kτ

∂a
=

ξB(αs)

2πα2
s

, (1.24c)

K ′
τ = g−2

τ + ξc′τ , (1.24d)

where primes denote derivative with respect to ξ. The quantities c′s and c′τ have

been computed to one-loop order in the weak coupling limit for SU(Nc) gauge

theories [37].

Putting all these together, in the isotropic (ξ → 1) limit one obtains [36]—

ǫ

T 4
= 6NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

, (1.25a)

P

T 4
= 2NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

− 2NcN
4
τ

B(αs)

2πα2
s

[Ds +Dτ ] , (1.25b)

∆

T 4
= 6NcN

4
τ

B(αs)

2πα2
s

[Ds +Dτ ] . (1.25c)

1.1.4.2 Integral method

In computations on coarse lattices, it was found [57] that the differential method

yielded negative pressure near the transition temperature, Tc. At that time it

was argued that this problem is solely due to the use of perturbative formulae for

various derivatives of the coupling. To cure this problem about a decade back a

new method, called the integral method, was employed [54, 55] to determine the

EoS of QCD matter. The integral method is formulated on an isotropic lattice,

i.e. where as = aτ = a, and uses the fact that for a homogeneous system the

pressure is given by (see Eq. [1.17])

P =
T

V
· ln Z(T, V ). (1.26)

Hence, the task is to evaluate the partition function Z. For an isotropic lattice

(ξ = 1) the Wilson action is of the form SG[U ] = N3
sNτ · β(Ps + Pτ ), with

13
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β = 2Nc/g
2 and gs = gτ = g (see Eq. [1.11]). Then Eq. [1.18] immediately tells

us that

ln Z|β − ln Z|β0
= −N3

sNτ

∫ β

β0

dβ ′ [〈Ps(β ′)〉 + 〈Pτ (β ′)〉] . (1.27)

This in turn gives us the pressure upto an additive constant—

P

T 4

∣

∣

∣

∣

β

− P

T 4

∣

∣

∣

∣

β0

= −N4
τ

∫ β

β0

dβ ′ [〈Ps(β ′)〉 + 〈Pτ (β ′)〉] . (1.28)

Below Tc (∼ 200 MeV ) the pressure, P ∼ exp(−mg/T ), will be dominated by the

lightest glueball states, which has mass mg ∼ 1 GeV . This makes pressure rather

small for temperatures . Tc. Motivated by this fact, the additive constant in the

above equation is usually chosen to be zero at some coupling β0 corresponding to

temperature . Tc. Making this choice and doing the usual vacuum subtraction,

as in the earlier case, one finally gets

P (β)

T 4
= −N4

τ

∫ β

β0

dβ ′ [Ds(β
′) +Dτ (β

′)] , (1.29)

where β0 correspond to some temperature . Tc.

Once the pressure is known, one can use the thermodynamic identity that for

a homogeneous system the entropy density (s) is given by

∂P

∂T

∣

∣

∣

∣

V

=
∂S

∂V

∣

∣

∣

∣

T

= s =
ǫ+ P

T
, (1.30)

S being the total entropy, to arrive at the relation—

∆

T 4
=
ǫ− 3P

T 4
= T

∂ (P/T 4)

∂T

∣

∣

∣

∣

V

. (1.31)

Using the relation that for an isotropic lattice

T
∂

∂T

∣

∣

∣

∣

V

≡ −a ∂
∂a
, (1.32)

it is easy to see form Eqs. [1.31, 1.29]

∆

T 4
= N4

τ

(

a
∂β

∂a

)

[Ds +Dτ ] = 6NcN
4
τ

B(αs)

2πα2
s

[Ds +Dτ ] . (1.33)

Once both P and ∆ are known the energy density can easily be computed form

the relation ǫ = 3P + ∆. One can use a non-perturbative β-function, B(αs), to

determine ∆ [55]. Thus, no perturbative coupling is needed to compute the EoS

of QCD using the integral method.
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1.1 Basics of finite temperature lattice QCD

1.1.5 Taylor expansion in chemical potential

In presence of the quark chemical potential, µ, the fermion determinant, detM ,

becomes complex [49, 50]. Since a complex detM cannot be interpreted as the

probability with which important sampling can be performed, a direct Monte

Carlo simulations of LQCD is not possible at µ 6= 0. However, several techniques

have been invented [58, 59] to study LQCD at non-zero µ. One such method

is the Taylor expansion in chemical potential [60, 58, 59]. In this method any

quantity of interest is Taylor expanded in the chemical potential around µ = 0.

As, in that case, the coefficients of the Taylor expansion are defined at µ = 0, they

can be extracted from the usual LQCD simulations at µ = 0. These coefficients

can then be used to construct the Taylor series in µ, to get an idea about the

behaviour of the quantity at small but non-zero chemical potential. For example,

for a theory with two flavours, the Taylor expansion of pressure can be written

as [61, 62]—

P (T, µf , µf ′) =

∞
∑

n=0

n
∑

j=0

χj,n−j(T ) ·
µjfµ

n−j
f ′

j!(n− j)!
, (1.34)

where,

χj,n−j =

(

T

V

)

∂n ln Z

∂µ
(n−j)
f ′ ∂µjf

∣

∣

∣

∣

∣

µf =µf ′=0

. (1.35)

Here, µf is the quark chemical potential corresponding to the flavour f . All the

odd-order terms of the above expansion are zero due to CP symmetry. The lowest

(2-nd) order coefficients are known as the Flavour Diagonal Quark Number Sus-

ceptibility (FDQNS) and the Flavour Off-Diagonal Quark Number Susceptibility

(FODQNS), defined as [63]

χf =

(

T

V

)

∂2 ln Z

∂µ2
f

∣

∣

∣

∣

∣

{µf }=0

, and χff ′ =

(

T

V

)

∂2 ln Z

∂µf∂µf ′

∣

∣

∣

∣

{µf}=0

, (1.36)

respectively.

Furthermore, if one introduces the average quark chemical potential (µ0) and

the isospin/isovector chemical potential (µI),

µ0 =
µu + µd

2
, and µI =

µu − µd
2

, (1.37)
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1. INTRODUCTION

then the corresponding susceptibilities will be [64]

χ0

T 2
=

(

T

V

)

∂2 ln Z

∂(µ0/T )2
≡ 2(χu + χud)

T 2
, and (1.38a)

χI
T 2

=

(

T

V

)

∂2 ln Z

∂(µI/T )2
≡ 2(χu − χud)

T 2
. (1.38b)

Here, we have assumed degenerate (u, d)-quark masses to arrive at the second

equalities (marked by ≡) of the above relations. One can, further, perform Taylor

series expansions of P , χ0 and χI in (µ0/T ), around µ0 = 0, [64]—

P

T 4
=

∞
∑

n=0

cn(T )
(µ0

T

)n

, (1.39a)

χ0

T 2
= 2c2 + 12c4

(µ0

T

)2

+ 30c6

(µ0

T

)4

+ · · · , (1.39b)

χI
T 2

= 2cI2 + 12cI4

(µ0

T

)2

+ 30cI6

(µ0

T

)4

+ · · · , (1.39c)

where the coefficients cn(T ) and cIn(T ) are defined as—

cn(T ) =
1

(n!)V
· ∂n ln Z

∂(µ0/T )n
, and (1.40a)

cIn(T ) =
1

(n!)V
· ∂n ln Z

∂(µ0/T )n−2∂(µI/T )2
. (1.40b)

These coefficients can not only be computed from LQCD [64, 65], but also

within the framework of improved perturbation theory [66, 67]. We will use these

quantities in Chapter 4 and Chapter 5.

1.1.6 Brief outline of the thesis

In this thesis we have studied, using LQCD, different thermodynamic properties

of QCD. In Chapter [2] we go beyond the EoS to study the fluctuation measures,

like the specific heat at constant volume (CV ) and the speed of sound (Cs). We

have found appropriate lattice expressions for these quantities and made precise

determination of their continuum values for a Gluon Plasma at relatively high

temperatures [68]. Based on our data, we also discuss the significance of con-

formal symmetry breaking in QCD. In Chapter [3] we propose an improvement

of the differential method [69] for the computation of EoS using LQCD. Using
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1.1 Basics of finite temperature lattice QCD

this improved method we compute EoS of a pure SU(3) gauge theory both above

and below the transition temperature. We have extended this method for the

computation of CV and Cs. We also make comparison of our results with the pre-

dictions of the perturbation theory and AdS/CFT correspondence. After gaining

some insight about the bulk thermodynamic properties QGP, in Chapter [4] we

investigate the degrees of freedom which give rise to such properties of QGP. In

order to do so, we study different correlations between conserved charges and

flavours [70]. Our studies in Chapter [4] have shown that the FODQNS plays

an important role in capturing the underlying physics of the lattice results. In

view of this, we calculated those in a the QCD inspired effective model, namely

the Polyakov-loop Nambu Jona-Lasinio (PNJL) model, and compare with the

available LQCD data [71]. These stringent tests of the PNJL model is the topic

of Chapter [5]. Finally, in Chapter [6], we summarize all our works pertaining to

this thesis and conclude.
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Chapter 2

Speed of sound and specific heat

in QCD plasma

2.1 Introduction

EoS of pure SU(3) gauge theory has been extensively studied using lattice QCD.

It is now a well-established fact that the pressure, P , and the energy density,

ǫ, deviate [55] in the high temperature phase of QCD by about 20% from their

ideal gas values at a temperature of about 3Tc, where Tc is the transition temper-

ature. Early expectations that ǫ would count the number of degrees of freedom

in the QCD plasma through the Stefan-Boltzmann law are belied by the fact that

perturbation theory has had great difficulty in reproducing these lattice results

(see the discussion in Chapter [1]). In view of this, it is important to go beyond

the EoS and study the thermodynamic fluctuation measures in a gluonic plasma.

In the pure gluon gas there is only one fluctuation measure, the specific heat at

constant volume (CV ). Related to this is a kinetic variable, the speed of sound

(Cs).

The specific heat is a direct measure of fluctuations. It was suggested in

Ref. [72] that event-by-event temperature fluctuation in the heavy-ion collision

experiments can be used to measure CV . Also it has been argued in Ref. [73] that

CV is directly related to the event-by-event transverse momentum fluctuations.

In fact, recently there have been attempts to measure this quantity in the RHIC

experiments [74].
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2. SPEED OF SOUND AND SPECIFIC HEAT IN QCD PLASMA

The speed of sound, on the other hand, controls the expansion rate of the

fire-ball produced in the heavy-ion collisions and hence plays a crucial role in the

hydrodynamic studies of QGP. Elliptic flow is one of the most important quantity

that has been suggested for the signature of QGP formation in the heavy-ion

collision experiments. It has been shown [75, 76, 77, 78, 79] that elliptic flow is

sensitive to the value of Cs.

In recent years, event-by-event fluctuations of quantities have been of immense

interest as signatures of quark-hadron phase transition. In order to use fluctu-

ations as a probe of the plasma phase, one has to identify observables whose

fluctuations survive the freeze-out of the fireball. The evolution of these fluc-

tuations is sensitive to the values of Cs, as shown in Ref. [80] for the case of

net baryon number fluctuation. In Ref. [81] it has been claimed that, within the

regime of thermodynamics, the ratio of the event-by-event fluctuations of entropy

and energy is given by

Re =
(δS)2 /S2

(δE)2 /E2
=

1

(1 + C2
s )

2 , (2.1)

and hence provides an estimate of the speed of sound, if Re turns out to be

measurable in heavy-ion collisions. It has also been suggested that using the idea

of conical flow an average value of Cs can be extracted from the RHIC data on

di-hadron azimuthal correlations [82].

In this chapter we propose a method to obtain CV and Cs from LQCD simula-

tions. After introducing the method, in this chapter we determine the continuum

limit of these quantities in pure SU(3) gauge theory.

2.2 Formalism

The specific heat at constant volume (CV ) and the speed of sound (Cs) are defined

as

CV =
∂ǫ

∂T

∣

∣

∣

∣

V

, and (2.2a)

C2
s ≡ ∂P

∂ǫ

∣

∣

∣

∣

s

=
∂P

∂T

∣

∣

∣

∣

V

(

∂ǫ

∂T

∣

∣

∣

∣

V

)−1

=
s/T 3

CV /T 3
, (2.2b)
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2.2 Formalism

where we have used the thermodynamic identity of Eq. [1.30].

In order to make a lattice determination of CV and Cs, first one needs the

appropriate lattice expressions for these quantities. It turns out [68] that a naive

application of the temperature derivative of Eq. [1.20] to the expression for ǫ in Eq.

(1.21a) gives an incorrect lattice expression for CV . Below we, first, demonstrate

this fact and then propose a modification to get the appropriate lattice expression

for CV .

To lighten the subsequent formulæ we define the following functions (see Eq.

[1.21])—

F (ξ, a) =
∆a4

6Ncξ
= a

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

, and (2.3a)

G(ξ, a) =
−ǫa4

6Ncξ
= ξ

[

∂Ks

∂ξ
Ds +

∂Kτ

∂ξ
Dτ

]

. (2.3b)

2.2.1 Naive derivative

Applying the lattice version of the temperature derivative of Eq. [1.20] on the

expression of ǫ in Eq. [2.3] one gets

a4T

(

∂ǫ

∂T

)

V

= −6Ncξ (G+ ξG′) , (2.4)

where, as before, the prime denotes derivative with respect to ξ. Form the above

definition of G it is easy to see that

G′ = (K ′
sDs +K ′

τDτ ) + ξ (K ′′
sDs +K ′′

τDτ ) + ξ (K ′
sD

′
s +K ′

τD
′
τ ) . (2.5)

Since the plaquettes do not explicitly depend on ξ or a, we can easily take the

derivatives above—

D′
i = Di 〈S ′

G〉 − 〈(Pi − P0)S
′
G〉 = −6NcNτN

3
s (K ′

sσs,i +K ′
τστ,i) , (2.6a)

∂Di

∂a
= Di

〈

∂SG
∂a

〉

−
〈

(Pi − P0)

(

∂SG
∂a

)〉

= −6NcNτN
3
s

[

∂Ks

∂a
σsi +

∂Kτ

∂a
στi

]

. (2.6b)
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2. SPEED OF SOUND AND SPECIFIC HEAT IN QCD PLASMA

where σs,i = 〈DsDi〉 − 〈Ds〉〈Di〉 and στ,i = 〈DτDi〉 − 〈Dτ 〉〈Di〉 are the variances

and covariances of the plaquettes.

Besides the derivatives of the plaquettes (Di ’s), one also requires the deriva-

tives of the couplings Ki ’s. The first derivatives of the couplings are given by

Eq. [1.24]. Using Eqs. [1.22, 1.23], one can also compute all possible second

derivatives—

a
∂K ′

s

∂a
= − B(αs)

2πα2
sξ

2
, (2.7a)

K ′′
s =

2g−2
s

ξ3
− 2c′s

ξ2
+
c′′s
ξ
, (2.7b)

a2∂
2Ks

∂a2
= −B(αs)

2πα2
sξ

= −a∂Ks

∂a
, (2.7c)

a
∂K ′

τ

∂a
=

B(αs)

2πα2
s

, (2.7d)

K ′′
τ = 2c′τ + ξc′′τ , (2.7e)

a2∂
2Kτ

∂a2
= −ξB(αs)

2πα2
s

= −a∂Kτ

∂a
. (2.7f)

Putting all these pieces together, in the isotropic limit ξ → 1, one gets

CV

T 3
= 6NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

− 6NcN
4
τ

[

Ds +Dτ

g2
− c′sDs + 3c′τDτ + c′′sDs + c′′τDτ

]

+ 36N2
cN

5
τN

3
s

[

σs,s + στ,τ − 2σs,τ
g4

+
2(c′τστ,τ + c′sσs,τ − c′sσs,s − c′τσs,τ )

g2

]

+ 36N2
cN

5
τN

3
s

[

c′s
2
σs,s + c′τ

2
στ,τ + 2c′sc

′
τσs,τ

]

. (2.8)

A correct expression for CV must satisfy the proper ideal gas limit, i.e. one must

get the relation CV /T
3 = 4ǫ/T 4 in the ideal gas limit. In the ideal gas limit

T → ∞, which in turn means that g(T ) → 0 by asymptotic freedom. Since the

renormalized coupling goes to zero, one also expects that the bare coupling g also

goes to zero in the ideal gas limit. Hence one can take the ideal gas limit of the

above expression by sending the bare coupling g → 0. It is known [83] that in the

weak-coupling limit (g → 0) the dominant contribution to all plaquettes varies as
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2.2 Formalism

g2. Hence, in the g → 0 limit Di ∼ g2 and σi,j ∼ g4. Based on these information

it is clear that the above expression does not satisfy the correct ideal gas limit,

i.e. CV /T
3 6= 4ǫ/T 4 as g → 0 (see Eq. [1.25a] for the expression of ǫ/T 4).

2.2.2 Correct expressions

The reason behind the failure of the naive application of the temperature deriva-

tive is as follows— for an anisotropic lattice one has two dimensional variables as

and aτ . For convenience, one trades these two dimensional variables in terms of

a dimensionless variable ξ and a dimensional variable a. Hence the dimensions

of both T and V come from powers of a alone. Application of the tempera-

ture derivative, which contains only the dimensionless variable ξ (see Eq. [1.20]),

therefore sees inadequate scalings of T and V . Thus if one chooses a quantity

which is dimensionless in units of a, like the partition function Z, then derivative

of that quantity will not see any false dimensional scaling coming from powers of

a. For this purpose we choose the dimensionless quantity

C =
∆

ǫ
= −F

G
. (2.9)

We also define

Γ = T
∂C

∂T

∣

∣

∣

∣

V

. (2.10)

Then, using Eqs. [2.2, 2.10] one can proceed straightaway to write

CV

T 3
=

(

ǫ/T 4

P/T 4

) [

s

T 3
+

Γ

3

ǫ

T 4

]

, and (2.11a)

C2
s =

(

P/T 4

ǫ/T 4

) [

1 +
Γǫ/T 4

3s/T 3

]−1

. (2.11b)

In order to complete these expressions, one needs to express Γ in terms of

quantities computable on the lattice. From Eqs. [2.10, 2.9] one finds that

Γ = −T
G

∂F

∂T

∣

∣

∣

∣

V

+
TF

G2

∂G

∂T

∣

∣

∣

∣

V

. (2.12)
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2. SPEED OF SOUND AND SPECIFIC HEAT IN QCD PLASMA

Again from the form of the lattice derivative, Eq. [1.20], it is clear that one needs

to find the quantities—

F ′ = a

[

∂K ′
s

∂a
Ds +

∂K ′
τ

∂a
Dτ

]

+ a

[

∂Ks

∂a
D′
s +

∂Kτ

∂a
D′
τ

]

, (2.13)

and G′, which is given by Eq. [2.5]. With the help of Eq. [2.6, 2.7] it is easy to

see that in the ξ → 1 limit—

F ′ =
B(αs)

2πα2
s

[Dτ −Ds]

− 6NcNτN
3
s

B(αs)

2πα2
s

[

στ,τ − σs,s
g2

+ c′sσs,s + c′τστ,τ + (c′s + c′τ )σs,τ

]

, (2.14a)

G′ =
Ds +Dτ

g2
− c′sDs + 3c′τDτ + c′′sDs + c′′τDτ

− 6NcNτN
3
s

[

σs,s + στ,τ − 2σs,τ
g4

+
2(c′τστ,τ + c′sσs,τ − c′sσs,s − c′τσs,τ )

g2

]

− 6NcNτN
3
s

[

c′s
2
σs,s + c′τ

2
στ,τ + 2c′sc

′
τσs,τ

]

. (2.14b)

As argued earlier, Di ∼ g2 and σi,j ∼ g4 in the limit g → 0. Thus F, F ′ → 0

but G and G′ remain finite, and as a result Γ → 0 in this limit. As can be

seen form Eq. [2.11], Γ → 0 means that CV /T
3 = (ǫs)/(PT 3) and C2

s = P/ǫ.

Since the in the ideal gas limit ǫ = 3P and s/T 3 = 4P/T 4, in the same limit

CV /T
3 → 4ǫ/T 4 and C2

s → 1/3. This shows that these expressions reproduce the

correct ideal gas limits.

2.2.3 Second order derivatives of Karsch coefficients

As can be seen form the above expressions, in order to compute CV and Cs on

the lattice second derivatives of the Karsch coefficients ci(ξ) are needed. The

first order derivatives c′i(ξ) have been computed to one-loop order in the weak

coupling limit for SU(Nc) gauge theories [37]. We have computed these second

order derivatives c′′i (ξ) [68].

For an SU(Nc) gauge theory the expressions for cs(ξ) and cτ (ξ) in the weak-
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coupling limit are [37]

cs(ξ) = 4Nc

[

N2
c − 1

24N2
c

(

I1(ξ) −
3

4

)

− 5

288
I2a(ξ)

+
1

48
I3(ξ) +

1

128
I4(ξ) +

11

12
FIN(ξ) + 0.010245

]

, (2.15a)

cτ (ξ) = 4Nc

[

N2
c − 1

24N2
c

(

1

3ξ2
I1(ξ) +

1

ξ
I5(ξ) −

1

2

)

+
1

64
I3(ξ) −

5

576
I2a(ξ)

+
1

256ξ2
I4(ξ) −

1

48ξ2
I6(ξ) −

1

192ξ2
I7(ξ) +

11

12
FIN(ξ) + 0.010245

]

.(2.15b)

Here b2 = sin2 x1 + sin2 x2 + sin2 x3, and

I1(ξ) = ξ

(

2

π

)3 ∫

d3xb(ξ2 + b2)−1/2, (2.16a)

I2a(ξ) = ξ

(

2

π

)3 ∫

d3xb−1(ξ2 + 2b2)(ξ2 + b2)−3/2, (2.16b)

I2b(ξ) = ξ3

(

2

π

)3 ∫

d3x
[

b(ξ2 + b2)1/2
(

b+ (ξ2 + b2)1/2
)2

]−1

, (2.16c)

I3(ξ) = ξ

(

2

π

)3 ∫

d3x sin2 x1 sin2 x2
ξ2 + 2b2

b3(ξ2 + b2)3/2
, (2.16d)

I4(ξ) = ξ

(

2

π

)3 ∫

d3x sin2 2x1
ξ2 + 2b2

b3(ξ2 + b2)3/2
, (2.16e)

I5(ξ) = ξ2

(

2

π

)3 ∫

d3x(ξ2 + b2)−1/2
[

b+ (ξ2 + b2)1/2
]−1

, (2.16f)

I6(ξ) = ξ3

(

2

π

)3 ∫

d3xb−1(ξ2 + b2)−3/2 cos2 x1, (2.16g)

I7(ξ) = ξ3

(

2

π

)3 ∫

d3xb−1(ξ2 + b2)−3/2. (2.16h)

Limits of all the above integrals are [0, π/2]. Also—

DIV (ξ) =
1

(2π)4

∫ ∫ π/2

−π/2

∫

d3x

∫ πξ/2

−πξ/2

dx4

[

b2 + ξ2 sin2(x4/ξ)
]−2

, (2.17a)

FIN(ξ) = DIV (ξ) −DIV (1). (2.17b)

The integral DIV (ξ) is infrared divergent. However, what actually needed

here is FIN(ξ). FIN(ξ) is not divergent as it is constructed by subtracting the
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2. SPEED OF SOUND AND SPECIFIC HEAT IN QCD PLASMA

Integrals 1-st derivatives 2-nd derivatives

I1 0.750000 0.440133 -0.518412

I2a 0.929600 0.208546 -0.663270

I2b 0.119734 0.190133 0.030921

I3 0.103289 0.033774 -0.088777

I4 0.478934 0.065779 -0.262319

I5 0.250000 0.309867 -0.101321

I6 0.206578 0.238384 -0.146561

I7 0.309867 0.411188 -0.159106

FIN 0.0 0.003166 -0.014471

Table 2.1: Values of the integrals Ix(ξ) ’s and FIN(ξ) and their derivatives with

respect to ξ at ξ = 1.

integral DIV (1), having the same infrared divergence as that of DIV (ξ). The

derivatives of FIN(ξ) are just the derivatives of DIV (ξ) which are not divergent.

We have calculated FIN ′′(1) by direct numerical integration and also by taking

a derivative of FIN ′(ξ), at ξ = 1, numerically. We found that values obtained

from both the methods are consistent.

The numerical values of all these above integrals and their derivatives with

respect to ξ, at ξ = 1, are tabulated in Table [2.1]. Using these values we obtain

ξ derivatives of the Karsch coefficients at ξ = 1

c′s = 4Nc

[

N2
c − 1

32N2
c

0.586844 + 0.000499

]

, (2.18a)

c′′s = 4Nc

[

1 −N2
c

32N2
c

0.691216 − 0.005649

]

, (2.18b)

c′τ = 4Nc

[

1 −N2
c

32N2
c

0.586844 + 0.005306

]

, (2.18c)

c′′τ = 4Nc

[

N2
c − 1

32N2
c

1.038595 − 0.001044

]

. (2.18d)
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While the c′′i (ξ) ’s are computed by us, our values for all the integrals and

their first derivatives as well as the regular Karsch coefficients match with their

respective values mentioned in Ref. [37].

2.2.4 On the method

The formalism outlined in the previous section is based on the differential method.

As discussed in Chapter [1], this method requires the use of perturbative cou-

plings. On the other hand, the integral method evades this problem relying on

the assumption of homogeneity (see Chapter [1] for details). If the EoS were to

be evaluated by the integral method then CV and Cs can only be evaluated by

numerical differentiation, which is prone to large errors [84]. Moreover, since the

pure gauge phase transition in QCD is of first order, the system is not homo-

geneous at Tc and the method may not be applicable there. Thus one makes

an unknown systematic error in integrating through Tc. This is in addition to

a small systematic error due to setting P = 0 just below Tc and the numerical

integration errors.

 0

 0.5
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Figure 2.1: ∆/T 4 as a function of the bare coupling β using a non-perturbative

(squares) [55] and the one-loop order perturbative (pentagons) β-function, B(αs).

The results agree for β ≥ 6.5. The plaquette values for Nτ = 8 given Ref. [55]

have been used in this analysis.
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2. SPEED OF SOUND AND SPECIFIC HEAT IN QCD PLASMA

Two methods must agree if one uses sufficiently small lattice spacings, viz.

when the use of perturbative couplings is justified, in the differential method com-

putation. A reanalysis of the data of Ref. [55] showed that the two methods agreed

to within 5% (i.e. within statistical errors) for T ≥ 2Tc [51] already for Nτ = 8,

i.e. for a = 1/16Tc. In fact a criterion for the agreement is straightforward, and

follows from the fact the expression for ∆/T 4 (see Eqs. [1.25c, 1.33]) is common

to both the methods. Since the integral method does not need the Karsch coef-

ficients, it allows one to use a non-perturbatively determined β-function B(αs).

On the other hand, the differential method requires, for internal consistency, that

the Karsch coefficients and B(αs) be obtained at the same order, i.e. at one-loop

order in the present state of the art.

Thus, a comparison between the values of ∆/T 4 extracted for a given Nτ using

the two techniques would reveal at what T the two methods become identical.

Then, using asymptotic scaling, one could also give the minimum value of Nτ

which would be required for the same level of agreement as a function of T . Such

a comparison is shown in Fig. [2.1], which demonstrates that a bare coupling of

β ≥ 6.55 already suffices.

2.3 Simulation details

The simulations have been performed using the Cabbibo-Marinari pseudo-heatbath

[85] algorithm with Kennedy-Pendleton updating [86] of three SU(2) subgroups

on each sweep. Plaquettes were measured on each sweep. For each simulation

we discarded around 5000 initial sweeps for thermalization. We found that inte-

grated autocorrelation time for the plaquettes never exceeded 3 sweeps. In Table

[2.2] we give the details of our runs. All errors were calculated by the jack-knife

method, where the length of each deleted block was chosen to be at least six times

the maximum integrated autocorrelation time of all the simulations used for that

calculation.
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2.3 Simulation details

T/Tc β Asymmetric Lattice Symmetric Lattice

size stat. size stat.

2.0 6.0625 4 × 83 60000 224 38000

×103 56000

×123 50000

×143 51000

×163 51000

6.5500 8 × 183 1100000 124 800000

164 626000

184 802000

224 552000

324 330000

6.7500 10 × 223 1100000 224 969000

6.9000 12 × 263 1040000 264 550000

7.0000 14 × 303 425000 304 146000

3.0 6.3384 4 × 103 220000 224 75000

×123 200000

×163 200500

×203 210000

×223 150000

7.0500 10 × 323 560000 324 146000

7.2000 12 × 383 315000 384 58000

Table 2.2: The coupling (β), lattice sizes (Nτ × N3
s ), statistics and symmetric

lattice sizes (N4
s ) are given for each temperature. Statistics means number of

sweeps used for measurement of plaquettes after discarding for thermalization.
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Figure 2.2: Stability of Ds against the statistics in T > 0 (a) and T = 0 (b)

simulations. The coupling corresponds to 3Tc on a 12 × 383 lattice and the

corresponding T = 0 simulation was performed on a 384 lattice. In both the

figures we have also plotted the 1-σ error band of the final errors.

2.3.1 Stability against statistics

Of all the quantities which go into determining the equation of state, viz. Ds, Dτ

and (Ds−Dτ ), we found that Ds was the smallest. Hence control over the errors

of Ds was the most stringent requirement on the amount of statistics needed.

In Fig. [2.2] we show the stability of Ds against the finite temperature and zero

temperature statistics for the case where we have minimum statistics, viz. for the

3Tc run on the 12×383 lattice and the run at the same coupling on the 384 lattice.

Note that the plaquette values are of the order of unity, and the first four digits

cancel in computing Ds. Thus, the control over errors shown in Fig. [2.2] was due

to reducing the errors in the plaquette variables to a few parts per million.

2.3.2 Volume dependence

We checked the stability of Ds against the spatial size of the T > 0 lattice. Fig.

[2.3a] displays the dependence of Ds on Ns forNτ = 4 when the temperature is 2Tc

and the symmetric lattice size is 224. We have also shown a fit to a constant using

the data on the three largest lattices. These fits pass through the data collected

on the Ns = (T/Tc)Nτ + 2 lattice. We have checked that this condition holds for

3Tc also. This observation is consistent with the results of earlier investigation of
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Figure 2.3: (a) Dependence of Ds against the spatial size, Ns, of the T > 0

lattice for 2Tc and 224 lattice for the T = 0 computation. We have shown a fit

to a constant through the three largest lattices. (b) Dependence of Ds on Ns for

the T = 0 lattice when the 2Tc computation is performed on an 8 × 183 lattice.

A fit to a constant with the two largest sizes is also shown.

finite size effects for T > 0 [87] and motivated our choice of Ns = (T/Tc)Nτ + 2.

We also investigated the dependence of Ds on the size of the symmetric N4
s

lattice used for the T = 0 subtraction. Fig. [2.3b] exhibits the dependence of Ds

on Ns for a run at 2Tc on a 8×183 lattice. Ds is seen to be constant for Ns ≥ 22.

In view of this we have used 224 as our minimum T = 0 lattice size, and scaled

this up with changes in the lattice spacing.

2.3.3 Plaquette covariances

Nτ V σs,s V στ,τ V σs,τ

10 0.08 ± 0.1 0.08 ± 0.1 0.04 ± 0.07

12 0.1 ± 0.2 0.1 ± 0.3 0.1 ± 0.2

14 0.1 ± 0.2 0.1 ± 0.2 0.1 ± 0.2

Table 2.3: Contributions of different covariances, with their respective errors, are

tabulated for different Nτ at 2Tc. This shows all the contributions are negligible.

We evaluated the contributions of the terms containing different covariances of
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the plaquettes and found them to be negligible, as shown in Table [2.3]. It is worth

noting that a previous computation close to Tc, but in SU(2) pure gauge theory,

found significantly larger and clearly non-vanishing variances of the plaquettes

[88]. This suggests that the variance terms might make significant contributions

to the specific heat and speed of sound closer to the softest point of the EoS.

2.4 Results

Following the observation illustrated in Fig. [2.1], all our continuum extrapola-

tions have been done with lattice spacings which are smaller than that at β = 6.55.

For T = 2Tc this leaves three values of Nτ from which a continuum extrapolation

linear in a2 ∝ 1/N2
τ can be performed (as discussed in Chapter [1]). However,

at T = 3Tc, the continuum extrapolation has been performed with two values

of Nτ . This completely fixes the two parameters of the linear extrapolation and

the error in the continuum extrapolated value is by definition zero. In this case

the error in the continuum value was estimated by three methods. Two of these

consisted of first making the best fit using two parameters, and then keeping one

fixed while allowing the other to vary in order to make an estimate of the error

in that parameter. We also made extrapolations using the upper end of one error

bar and the lower end of the other. This last procedure gave the maximum errors

in the continuum extrapolated values, and we choose to quote this, since it is the

most conservative error estimate.

As mentioned in Chapter [1], the energy density (ǫ) and pressure (P ) can be

computed using Eq. [1.25]. In Fig. [2.4] we present our continuum extrapolations

for ǫ and P using the differential method, which have not been used earlier to

obtained the continuum results for the EoS. At 3Tc the continuum limit values of

ǫ/T 4 and P/T 4 differ from their respective ideal gas values (8π2/15 and 8π2/45)

by about 24%, and by about 40% at 2Tc. This is consistent with previous mea-

surements of the equation of state at these temperatures. At 2Tc our results differ

from the ideal gas value by almost 7-σ.

Similar continuum extrapolation of CV /T
3 and C2

s are shown in Fig. [2.5]. Fig.

[2.6] shows the continuum extrapolated results for these quantities. Continuum

extrapolated values of different quantities for two temperatures are tabulated in
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Figure 2.4: Dependence of ǫ/T 4 (squares) and 3P/T 4 (pentagons) on 1/N2
τ for

T = 2Tc (a) and T = 3Tc (b). The 1-σ error band of the continuum values has

been indicated by arrows (for ǫ/T 4) and lines (for 3P/T 4).
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Figure 2.5: Dependence of CV /T
3 (a) and C2

s (b) on 1/N2
τ at T = 2Tc. The 1-σ

error band of the continuum values has been indicated by the arrows.

T/Tc ǫ/T 4 P/T 4 s/T 3 CV /T
3 C2

s

2.0 3.3 (3) 1.0 (1) 4.2 (3) 15 (1) 0.30 (1)

3.0 4.2 (5) 1.3 (2) 5.6 (6) 18 (2) 0.30 (2)

Table 2.4: Continuum values of some quantities at the two temperatures we have

explored. The numbers in brackets are the error on the least significant digit.
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Figure 2.6: (a) We show the continuum values of 4ǫ/T 4 (pentagons) and CV /T
3

(squares) against T/Tc. (b) We show the temperature dependence of the contin-

uum extrapolated values of C2
s .

Table [2.4]. It can be seen that although ǫ/T 4 and P/T 4 differ significantly from

their ideal gas values, C2
s is quite close to 1/3, being within 2-3 σ. Similarly,

it can be seen that CV /T
3 is completely compatible with 4ǫ/T 4. However, its

deviation from the ideal gas value is seen to be more significant.

2.5 Discussion
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Figure 2.7: Continuum values of the conformal measure, C, (squares) and the

negative of the one-loop order β-function (circles) evaluated at the scale 2πT
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2.6 Summary

It is quite remarkable that while ǫ, P and CV deviate significantly from their

respective ideal gas values, Cs is pretty close to its ideal gas limit. Moreover, the

ideal gas relation CV /T
3 = 4ǫ/T 4 seems to hold even for T ∼ 2Tc. Below, we will

try to give a possible explanation for this apparently contradictory behaviour of

QCD plasma.

It is common knowledge that QCD generates a scale (ΛQCD), microscopically,

and thus breaks conformal invariance. The strength of the breaking of this sym-

metry at any scale is parametrized by the β-function. At finite temperature there

is a scale, T , which appears in, for example, ǫ as a factor of T 4. However, the

strength of the breaking of conformal symmetry must be measured as always,

through the trace of the stress-tensor. After subtracting the ultraviolet divergent

(T = 0) pieces, this is given by the so-called interaction measure, ∆ = ǫ − 3P .

Thus the ratio C = ∆/ǫ, which we call the conformal measure, parametrizes the

departure from conformal invariance at the long-distance scale. Note that in any

conformal invariant theory in d+ 1 dimensions one has ǫ = d · P , i.e. C = Γ = 0,

and hence, by Eq. [2.11], C2
s = 1/d and CV /T

3 = (d+ 1)ǫ/T 4. We show our con-

tinuum results for C in Fig. [2.7]. As the generation of a scale and the consequent

breaking of conformal invariance at short distances in QCD is quantified by the

β-function of QCD and at long distance in the finite temperature plasma by the

conformal measure C, in the same figure we also compare these two quantities.

The smallness of the conformal measure C suggest that the plasma phase is not

far from the conformal symmetric limit, in which C2
s = 1/3 and CV /T

3 = 4ǫ/T 4

(for 3 + 1 dimensions).

2.6 Summary

In this chapter we have extended the differential method for the computation

of the specific heat at constant volume and the speed of sound, and computed

them in the continuum limit of the pure gluon plasma. We have limited our

computations to lattice spacings where the method is guaranteed to work because

of the observed scaling of results with the correct QCD beta function, as shown

in Fig. [2.1]. The main advantage of this method is the relatively noise-free

determination of Cs and CV . In the process we have also recomputed the EoS,
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Figure 2.8: The equation of state of QCD matter. The diagonal line denotes

possible EoS for theories with conformal symmetry. The circle on the diagonal

denotes the ideal gluon gas, whose EoS in this form is temperature independent.

The ellipses denote 66% error bounds on the measured EoS. The ratio of the axes

is a measure of the covariance in the measurements of ǫ/T 4 and P/T 4, which is

about 90%. The wedges piercing these ellipses have average slope C2
s , and the

opening half-angle of these wedges indicate the error in C2
s .

i.e. the pressure P and the energy density ǫ by a method which has not been used

earlier to obtain the continuum limit. Based on our results we have also argued

that the plasma phase is not far from the conformal symmetric limit.

A partial summary of our results is illustrated by plotting the equation of

state as P/T 4 against ǫ/T 4, as in Fig. [2.8]. In this plot, the ideal gas for fixed

number of colours is represented by a single point, and theories with conformal

symmetry by the line ǫ = 3P . Pure gauge QCD lies close to the conformal line

at high temperature, as shown. One expects the EoS to drop well below this line

near Tc, since the theory then contains massive hadrons (glueballs in pure gluon

QCD) with masses in excess of Tc. Thus one expects the origin to be approached

almost horizontally as T → 0. We will present data closer to, and below, Tc in

the next chapter.
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Chapter 3

EoS of QCD: improving the

differential method

3.1 Introduction

In the previous chapter we used the differential method to determine the specific

heat at constant volume (CV ) and the speed of sound (Cs). Since the differential

method is known to produce negative pressure in the vicinity of the transition

temperature (Tc) [57], we had to restrict our investigation to the high temperature

region where the method gives correct results (see Chapter [2] for details). But

more interesting physics is expected around the phase transition region. Hence a

precise computation of these quantities close to Tc is necessary. A computation

of CV and Cs close to Tc using the differential method is thus desirable. But in

order to do so, first, one has to improve the differential method so that it can be

used in the vicinity of Tc.

The negativity of pressure in the differential method has been attributed solely

to the use of perturbative formulae for various derivatives of the coupling. Hence

it was believed that this problem could be remedied if one goes to small enough

lattice spacing. However, we found that [69] even when one determines the con-

tinuum limit of the pressure, using temporal lattices upto Nτ = 12, the negative

pressure problem of the differential method still persists. One does not have

this negative pressure problem in the integral method. However, as discussed in

Chapter [2], the integral method has the practical drawback that a fluctuation
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3. EOS OF QCD: IMPROVING THE DIFFERENTIAL METHOD

measure like CV can only be obtained by numerical differentiation, which is prone

to large errors.

In view of this, in this chapter we propose a new variant of the differential

method which gives positive pressure over the entire temperature range. We

choose the temporal lattice spacing to set the scale of the theory, in contrast to

the choice of the spatial lattice spacing in the approach of Ref. [36] (see Chapter

[1] for the details). This change of scale is analogous to the use of different renor-

malization schemes. As a consequence, our method could be called the t-favoured

scheme [69] and the method of Ref. [36] may be called the s-favoured scheme. This

choice of scale has already been used in Ref. [89]. What we show here is that

with this choice one gets a positive pressure for the entire temperature range,

even when one uses one-loop order perturbative couplings. Since the operator

expressions are derived with an asymmetry between the two lattice spacings as

and aτ , the s-favoured and t-favoured schemes give different expressions for the

pressure. In that sense the use of t-favoured scheme is tantamount to the use

of improved operators. Being a differential method the t-favoured scheme can

be easily extended for the calculation of CV and Cs, following exactly the same

formalism developed in Chapter [2] and Ref. [68].

3.2 Formalism

From the relations of Eq. [1.7], one can write the lattice version of the temperature

and the volume derivatives as

T
∂

∂T

∣

∣

∣

∣

V

= −aτ
∂

∂aτ

∣

∣

∣

∣

as

, and 3V
∂

∂V

∣

∣

∣

∣

T

= as
∂

∂as

∣

∣

∣

∣

aτ

. (3.1)

In the t-favoured scheme one trades the thermodynamic variables {T, V } in favour

of the the lattice variables {ξ, a}, where the the anisotropy parameter ξ and the

scale a are given by the relations

ξ =
as
aτ
, and a = aτ . (3.2)

With these choices, the partial derivatives with respect to T and V now become

T
∂

∂T

∣

∣

∣

∣

V

= ξ
∂

∂ξ

∣

∣

∣

∣

a

− a
∂

∂a

∣

∣

∣

∣

ξ

, and 3V
∂

∂V

∣

∣

∣

∣

T

= ξ
∂

∂ξ

∣

∣

∣

∣

a

. (3.3)

38



3.2 Formalism

One obtains the second expression by writing as = aξ and taking a partial deriva-

tive keeping a fixed. For the first expression, one takes a derivative with respect

to a and then introduces constraints on the differentials dξ and da in order to

keep as fixed. This choice of scale a = aτ seems to be natural, since most nu-

merical work at finite temperature sets the scale by T = 1/Nτaτ . For example,

continuum limits are taken at fixed physics by keeping T fixed while increasing

Nτ , i.e. decreasing aτ . This is done not only when isotropic lattices are used, but

also when the simulation is performed with anisotropic lattices [90].

In the s-favoured scheme [36], by contrast, the scale of the theory is set by the

spatial lattice spacing, a = as, at every ξ and only after taking the ξ → 1 limit

this natural choice of scale emerges. The corresponding derivatives in this case

are given in Eq. [1.20].

3.2.1 Energy density and pressure

The energy density (ǫ) and pressure (P ) are given by Eq. [1.17], where the gauge

action SG and the corresponding partition function Z are given Eq. [1.11] and

Eq. [1.18]. One can then proceed, as in the s-favoured case presented in Chapter

[1], by using the derivatives of Eq. [3.3] to derive lattice expressions for ǫ, P and

∆ in the t-favoured scheme—

a4ǫ = −6Nc

ξ2
[K ′

sDs +K ′
τDτ ] +

6Nca

ξ3

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

, (3.4a)

a4P = −2Nc

ξ2
[K ′

sDs +K ′
τDτ ] , (3.4b)

a4∆ =
6Nca

ξ3

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

. (3.4c)

Here, as before, the primes denote derivatives with respect to ξ. One can further

use the expressions in Eq. [1.24] for the derivatives of the couplings Ki ’s and

take the isotropic limit ξ → 1 to arrive at

ǫ

T 4
= 6NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

+ 6NcN
4
τ

B(αs)

2πα2
s

[Ds +Dτ ] , (3.5a)

P

T 4
= 2NcN

4
τ

[

Ds −Dτ

g2
− (c′sDs + c′τDτ )

]

, (3.5b)

∆

T 4
= 6NcN

4
τ

B(αs)

2πα2
s

[Ds +Dτ ] . (3.5c)
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3. EOS OF QCD: IMPROVING THE DIFFERENTIAL METHOD

On comparing these expressions with those obtained using the s-favoured

differential method in Eq. [1.25], one can easily see that the new expression for

pressure is exactly 1/3 of the old expression for the energy density. Since the

energy density in the s-favoured scheme comes out to be non-negative, our new

expression for the pressure is therefore expected to give non-negative pressure.

The expression for the interaction measure is same for both the cases. Since

both the pressure and the interaction measure are non-negative in the t-favoured

formalism, the energy density must also be non-negative.

3.2.2 Specific heat and speed of sound

As argued in Chapter [2], a direct application of the lattice version of the tem-

perature derivative on the expression of the energy density produces incorrect

expression for the specific heat at constant volume and it can be most easily be

obtained by working with the conformal measure C = ∆/ǫ. In that case the spe-

cific heat (CV ) and the speed of sound (Cs) are given by Eq. [2.11]. To compute

CV and Cs one needs the lattice expression for Γ = T (∂C/∂T )V . To this end we

introduce the two functions

X(ξ, a) =
∆a4ξ3

6Nc
= a

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

, (3.6a)

Y (ξ, a) =
−ǫa4ξ3

6Nc

= ξ [K ′
sDs +K ′

τDτ ] −X(ξ, a). (3.6b)

Since C = −X/Y , one finds that

Γ = −C
T

X

∂X

∂T

∣

∣

∣

∣

V

+ C
T

Y

∂Y

∂T

∣

∣

∣

∣

V

. (3.7)

Form Eq. [3.3] it is clear that we need the following derivatives—

ξ
∂X

∂ξ
= ξa

[

∂K ′
s

∂a
Ds +

∂K ′
τ

∂a
Dτ

]

+ ξa

[
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D′
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∂Kτ
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D′
τ

]

, (3.8a)

a
∂X
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= a

[

∂Ks

∂a
Ds +

∂Kτ

∂a
Dτ

]

+ a2

[

∂2Ks

∂a2
Ds +

∂2Kτ

∂a2
Dτ

]

+ a2

[

∂Ks

∂a

∂Ds

∂a
+
∂Kτ

∂a

∂Dτ

∂a

]

, (3.8b)
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and

ξ
∂Y

∂ξ
= ξ [K ′

sDs +K ′
τDτ ] + ξ2 [K ′′

sDs +K ′′
τDτ ] + ξ2 [K ′

sD
′
s +K ′

τD
′
τ ] − ξ

∂X

∂ξ
, (3.9a)

a
∂Y
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[

∂K ′
s
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τ
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Dτ
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∂Ds
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+K ′

τ

∂Dτ
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]

− a
∂X

∂a
. (3.9b)

Using the expressions for the derivatives of the plaquettes from Eq. [2.6] and the

derivatives of the couplings form Eqs. [1.24, 2.7], in the ξ → 1 limit one finally

gets

T
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∂T
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∣

∣

V
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B(αs)

2πα2
s

[Dτ −Ds] + 6NcNτN
3
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+ c′sσss + c′τσττ + (c′s + c′τ )σsτ

]

, (3.10a)

T
∂Y

∂T

∣

∣

∣

∣

V

=
Ds +Dτ

g2
− c′sDs + 3c′τDτ + c′′sDs + c′′τDτ −

B(αs)

2πα2
s

[Dτ −Ds] − T
∂X

∂T

∣

∣

∣

∣

V

− 6NcNτN
3
s

[

σs,s + στ,τ − 2σs,τ
g4

+
2(c′τστ,τ + c′sσs,τ − c′sσs,s − c′τσs,τ)

g2
+ c′s

2
σs,s

+ c′τ
2
στ,τ + 2c′sc

′
τσs,τ −

B(αs)

2πα2
s

(

σττ − σss
g2

+ c′sσss + c′τσττ + (c′s + c′τ )σsτ

)]

(3.10b)

As discussed in Section [2.2], taking an ideal gas limit means sending the

bare coupling g → 0 and in that limit Di ∝ g2 and σij ∝ g4 [83]. Hence in

this limit, X and its temperature derivative are negligible compared to Y and

its temperature derivative, and consequently Γ → 0 in this limit. It was shown

in Section [2.2], that once Γ → 0 the correct ideal gas limit of CV and Cs are

automatically reproduced, i.e. CV /T
3 → 4ǫ/T 4 and C2

s → 1/3. Note that in any

conformal invariant theory in d + 1 dimensions one has ǫ = dP , i.e. C = Γ = 0,

and hence by Eq. [2.11] one has C2
s = 1/d and CV /T

3 = (d+ 1)ǫ/T 4.

3.2.3 Equivalence of the Karsch coefficients in the t-favoured

and s-favoured schemes

As can be seen from the Eq. [1.22], the Karsch coefficients ci(ξ) ’s are differences

between the isotropic and anisotropic couplings. Hence they do not depend on the
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3. EOS OF QCD: IMPROVING THE DIFFERENTIAL METHOD

scale a of the isotropic lattice, but only depend on a parameter which quantifies

the difference between the isotropic and the anisotropic lattice, i.e. the anisotropy

parameter ξ. Thus a change of scale from as to aτ do not change the Karsch

coefficients. Below, we derive this equality explicitly for the derivatives of the

Karsch coefficients, which we actually need.

Let us assume that the one-loop order perturbative expansions for g2
i ’s,

around the isotropic lattice coupling g, have the following forms [56]

g−2
i (as, ξ) = g−2(as) + ci(ξ) + O[g2(as)], (3.11a)

g−2
i (aτ , ξ) = g−2(aτ ) + αi(ξ) + O[g2(aτ )]. (3.11b)

Our aim here is to show that [∂ci(ξ)/∂ξ]as
= [∂αi(ξ)/∂ξ]aτ

. In order to do so we

make a Taylor series expansion of gi(as, ξ) around as = aτ , at any fixed ξ 6= 1

g−2
i (as, ξ) = g−2

i (aτ , ξ) +
∞

∑

n=1

(as − aτ )
n

n!

[

∂ng−2
i (x, ξ)

∂xn

∣

∣

∣

∣

ξ

]

x=aτ

. (3.12)

So by applying ξ derivative, at constant as, on the above relation

∂g−2
i (as, ξ)

∂ξ

∣

∣

∣

∣

as

=
∂g−2

i (aτ , ξ)

∂ξ

∣

∣

∣

∣

as

+
∞

∑

n=1

nans
n!ξ2

(

1 − 1

ξ

)n−1
∂ng−2

i (aτ , ξ)

∂anτ

∣

∣

∣

∣

ξ

+
∞

∑

n=1

ans
n!

(

1 − 1

ξ

)n
∂

∂ξ

[

∂ng−2
i (aτ , ξ)

∂anτ

∣

∣

∣

∣

ξ

]

as

. (3.13)

Keeping in mind that though [∂g(as)/∂ξ]as
= 0, but [∂g(aτ )/∂ξ]as

= [∂g(as/ξ)/∂ξ]as

6= 0, it follows that

∂g−2
i (aτ , ξ)

∂ξ

∣

∣

∣

∣

as

=
∂g−2(aτ )

∂ξ

∣

∣

∣

∣

as

+
∂αi(ξ)

∂ξ

∣

∣

∣

∣

as

=
∂

∂ξ

[

g−2(as) +
∞

∑

n=1

(aτ − as)
n

n!

∂ng−2(as)

∂ans

]

as

+
∂αi(ξ)

∂ξ

∣

∣

∣

∣

as

= −
∞

∑

n=1

nans
n!ξ2

(

1

ξ
− 1

)n−1
∂ng−2(as)

∂ans
+
∂αi(ξ)

∂ξ

∣

∣

∣

∣

as

. (3.14)

On substituting Eq. [3.14] in Eq. [3.13] and using relations mentioned in Eq. [3.11]
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to calculate the various derivatives one gets

∂ci(ξ)

∂ξ

∣

∣

∣

∣

as

= −
∞

∑

n=1

nans
n!ξ2

(

1

ξ
− 1

)n−1
∂ng−2(as)

∂ans
+
∂αi(ξ)

∂ξ

∣

∣

∣

∣

as

+

∞
∑

n=1

nans
n!ξ2

(

1 − 1

ξ

)n−1
∂ng−2(aτ )

∂anτ

∣

∣

∣

∣

ξ

+

∞
∑

n=1

ans
n!

(

1 − 1

ξ

)n
∂

∂ξ

[

∂ng−2(aτ )

∂anτ

]

as

. (3.15)

Hence by taking ξ → 1 limit, i.e. when as = aτ , one gets

∂ci(ξ)

∂ξ

∣

∣

∣

∣

as

=
∂αi(ξ)

∂ξ

∣

∣

∣

∣

as

(3.16)

Since a variable transformation from {as, ξ} to {aτ , ξ} gives ξ (∂/∂ξ)as
≡ ξ (∂/∂ξ)aτ

−
aτ (∂/∂aτ )ξ, using it on Eq. [3.16] one conclusively proves that

∂ci(ξ)

∂ξ

∣

∣

∣

∣

as

=
∂αi(ξ)

∂ξ

∣

∣

∣

∣

aτ

(3.17)

Since the derivatives of the Karsch coefficients remain same for both the

schemes one can use their known values, viz. values of first derivatives from Ref.

[37] and that for the second derivatives form Chapter [2] [68].

3.2.4 On the method

Since the Karsch coefficients are same for both the t-favoured and the s-favoured

schemes, from Eq. [1.22] it is clear that the anisotropic coupling constants gi(a, ξ)

are different for the two schemes due to the scale dependence of the isotropic cou-

pling constant g(a). Therefore the expressions for ǫ and P are different (see Eqs.

[1.25, 3.5]) at finite (but small) lattice spacing in the two different approaches.

Since the s-favoured and t-favoured schemes are different due to the scale depen-

dence of the isotropic coupling constant g(a), the difference between the expres-

sions in both the schemes goes as ln a, compared to the 1/a2 cut-off dependence

of the lattice Wilson action. So it is expected that the continuum limit results

from both the methods will match only for very large temporal lattice size Nτ .

Thus, the difference between the two methods is tantamount to improving the
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3. EOS OF QCD: IMPROVING THE DIFFERENTIAL METHOD

operators. Moreover, for the usual choice of scale setting by T = 1/Nτaτ , our

approach corresponds to the natural choice of scale in Eq. [1.22].

Following the observation that the expression for ∆/T 4 is identical (see Eqs.

[1.33, 3.5c]) for both integral method and t-favoured scheme, the criterion for

agreement between these two methods is exactly the same as the criterion for the

agreement between the s-favoured scheme and the integral method (see Chapter

[2] for detail discussion). Since the expression for ∆/T 4 is also same for the t-

favoured and the s-favoured scheme, the analysis of Chapter [2] can be directly

applied to the present case. So from those analysis we can conclude that a bare

coupling of β ≥ 6.55 should suffice to give an agreement between the t-favoured

scheme and the integral method. For β ≤ 6.55 use of one-loop order perturbative

Karsch coefficients may give rise to some systematic effects. A comparison with

the non-perturbatively determined Karsch coefficients [89, 91] shows that the

difference between the perturbative and non-perturbative values are significant.

For example, while at around β = 6.55 the one-loop order perturbative and non-

perturbative c′i differ by ∼ 20%, around β = 6 this difference increases to ∼ 80%.

In the present work we show that within the framework of differential method

it possible to get a positive pressure for all temperatures if one uses the improved

operators of the t-favoured scheme. This is so in spite of the use of one-loop

order perturbative Karsch coefficients. Although one has to keep in mind that

the use of one-loop order perturbative Karsch coefficients [37, 68] may give some

systematic effects if the lattice spacing not small enough. For consistency, we

also use one-loop order perturbative β-function (Eq. [1.23]).

3.3 Simulation details

Our simulations have been performed using the Cabbibo-Marinari [85] pseudo-

heatbath algorithm with Kennedy-Pendleton [86] updating of three SU(2) sub-

groups on each sweep. Plaquettes were measured on each sweep. For each simu-

lation we discarded around 5000 initial sweeps for thermalization. We found that

the maximum value for the integrated autocorrelation time for the plaquettes is

about 12 sweeps for the T = 0 run at β = 6 and the minimum is 3 sweeps for the

T = 3Tc run for Nτ = 12. Table [3.1] lists the details of these runs. All errors
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3.3 Simulation details

T/Tc β Asymmetric Lattice Symmetric Lattice

size stat. size stat.

6.0000 8 × 183 1565000 224 253000

0.9 6.1300 10 × 223 725000 224 543000

6.2650 12 × 263 504000 264 256000

6.1250 8 × 183 1164000 224 253000

1.1 6.2750 10 × 223 547000 224 280000

6.4200 12 × 263 212000 264 136000

6.2100 8 × 183 1903000 224 301000

1.25 6.3600 10 × 223 877000 224 217000

6.5050 12 × 263 390000 264 240000

6.3384 8 × 183 1868000 224 544000

1.5 6.5250 10 × 223 1333000 224 605000

6.6500 12 × 263 882000 264 335000

6.5500 8 × 183 2173000 224 534000

2.0 6.7500 10 × 223 1671000 224 971000

6.9000 12 × 263 1044000 264 553000

6.9500 8 × 263 1300000 264 433000

3.0 7.0500 10 × 323 563000 324 148000

7.2000 12 × 383 317000 384 60000

Table 3.1: The coupling (β), lattice sizes (Nτ × N3
s ), statistics and symmetric

lattice sizes (N4
s ) are given for each temperature. Statistics means number of

sweeps used for measurement of plaquettes after discarding for thermalization.

were calculated by the jack-knife method, where the length of each deleted block

was chosen to be at least six times the maximum integrated autocorrelation time

of all the simulations used for that calculation.
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3. EOS OF QCD: IMPROVING THE DIFFERENTIAL METHOD

As discussed in Chapter [2], at sufficiently high temperatures, finite size effects

are under control if one chooses Ns = (T/Tc)Nτ + 2 for the asymmetric (Nτ ×
N3
s ) lattice. We have chosen the sizes of the lattices used at finite T based on

this investigation. Close to Tc the most stringent constraint on allowed lattice

sizes comes from the A++
1 screening mass determined in Ref. [92]. Among the

temperature values we investigated, this screening mass is smallest at 1.1Tc where

it is a little more than 2T . The choice of Ns = 2Nτ + 2 satisfies this constraint

sufficiently. At T = 0 the constraints are simpler because glueball masses are

larger, and also smoother functions of β. For the symmetric (N4
s ) lattices we

have chosen Ns = 22 as the minimum lattice size and scaled this up with changes

in the lattice spacing in accordance with the analysis done in Chapter [2].

3.4 Results

As discussed in Chapter [1], we have performed continuum extrapolations by

linear fits in a2 ∝ 1/N2
τ at all temperatures using the three values Nτ = 8, 10,

and 12. In Fig. [3.1a] we show our data on P/T 4 at finite lattice spacings and

the continuum extrapolations for different temperatures, both above and below

Tc. We draw attention to the fact that the pressure is positive on each of the

lattices we have used, and also in the continuum limit. It is interesting to note

that the slope of the continuum extrapolation changes sign at Tc; its relevance

to the continuum physics is however unclear. This is also true of the continuum

extrapolation for ǫ/T 4 as shown in Fig. [3.1b]. The extrapolations of both P/T 4

and ǫ/T 4 between 1.1Tc and 3Tc are similar to those shown and have therefore

been left out of the figure to avoid repetition.

Similar continuum extrapolations are shown for CV /T
3 and C2

s in the two

panels of Fig. [3.2]. In all cases, the continuum extrapolations are smooth, and

well fitted by a straight line in the range of Nτ used in this study. Also for

CV /T
3 the slope of the continuum extrapolation flips sign at Tc. This does not

happen for C2
s . Since this is the derivative of the energy density with respect to

the pressure, the slope of this quantity depends on the slopes of the continuum

extrapolations of ǫ/T 4 and P/T 4.
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Figure 3.1: (a) We show the dependence of P/T 4 on 1/N2
τ for different tempera-

ture values. (b) We show the same for ǫ/T 4. The 1-σ error band of the continuum

extrapolations have been indicated by the lines.
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Figure 3.2: (a) We show the dependence of CV /T
3 on 1/N2

τ for different values of

temperature. (b) We show the same for C2
s . The 1-σ error band of the continuum

extrapolations have been indicated by the lines.

In the various panels of Fig. [3.3] we show a comparison between the con-

tinuum results for different quantities obtained using the t-favoured scheme, s-

favoured scheme and the integral method. While the results of the t-favoured and

the s-favoured schemes are obtained from the analysis of our data, the results of

the integral method are taken form Ref. [55].

First we note that unlike the s-favoured differential method, the t-favoured

differential method yields a positive pressure (Fig. [3.3a]) at all T . There is ap-

parent agreement between the integral and the t-favoured operator method for
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Figure 3.3: We show comparisons between the continuum results of different ther-

modynamic quantities for the t-favoured scheme (boxes), the s-favoured scheme

(triangles) and the integral method (line). In panel (d) we show a comparison be-

tween our continuum results for CV /T
3 (open boxes) and continuum 4ǫ/T 4 (filled

boxes). In panel (f) we show the continuum values of the conformal measure C,

(boxes) and the negative of the one-loop order β-function (circles) evaluated at

the scale 2πT . The data for the integral method has been taken form Ref. [55].
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3.4 Results

T ≥ 2Tc, both differing from the ideal value by about 20%. Only at these temper-

atures the coupling β becomes ≥ 6.55 for all the lattices (see Table [3.1]) that has

been used to extract the continuum values in the t-favoured scheme. Hence, from

our earlier discussion it is clear that an agreement between the two methods is

expected to take place at these temperatures. There can be several causes for the

difference between these two methods closer to Tc— (i) The use of one-loop order

perturbative Karsch coefficients in the t-favoured scheme is probably the primary

cause for this difference. Use of larger lattices (i.e. larger β) or inclusion of the

effects of higher order loops in the Karsch coefficients is expected to improve the

agreement. (ii) Another possible source of disagreement is that the results for the

integral method shown here were obtained on coarser lattices [55] than the ones

used in this study. (iii) The integral method assumes that the pressure below

some β0, corresponding to some temperature T < Tc, is zero. By changing β0 one

can change the integral method pressure by a temperature independent constant.

This may restore the agreement close to Tc, although in that case the agreement

at the high-T region may get spoiled. (iv) Also different schemes have been used

to define the renormalized coupling in the two cases. This can also make some

contribution to the different results of the two methods.

The energy density (Fig. [3.3b]) is harder near Tc, showing a significantly less-

ened tendency to bend down. This could indicate a difference in the latent heat

determined by the two methods. Fig. [3.3c] shows the continuum extrapolated

results for C2
s . At temperatures of 2Tc and above, the speed of sound is consistent

with the ideal gas value within 95% confidence limits. It is seen that C2
s decreases

sharply near Tc. Below Tc there is again a fall in C2
s , the numerical values being

very close 10% below and above Tc. The behaviour of CV /T
3, shown in Fig. [3.3

d], is the most interesting. At 2Tc and above it disagrees strongly with the ideal

gas value, but is quite consistent with the prediction in conformal theories that

CV /T
3 = 4ǫ/T 4. Closer to Tc, however, this simplification vanishes. The specific

heat peaks at Tc. This is expected as the pure gauge theory has a first order

transition. Below Tc the specific heat is very small.

In view of the rise in CV /T
3 near Tc, we studied the contributions of the terms

containing different covariances of the plaquettes. As can be seen from the Eq.

[3.10] among all the terms containing covariances, the term (σss + σττ − 2σsτ )/g
4
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Figure 3.4: (a) We show the temperature dependence of the contribution of one

of the covariance terms in CV /T
3. (b) We show the the individual contribution

of the two factors in Eq. [2.11] for CV /T
3. See the text for a detailed discussion.

will have the largest contribution to CV /T
3. All the other terms containing the

covariances are multiplied either by one of the c′i, or by B(αs)/2πα
2
s and hence

become at least one order of magnitude smaller than this term. In Fig. [3.4a]

we show the contribution of the above term, as a function of T in the continuum

limit. However, the contribution of this term is very small: comparable to the

errors in CV . The origin of the peak in CV therefore lies elsewhere. In Fig. [3.4b]

we separately plot the two factors, ǫ/P and s/T 3 +Γǫ/3T 4, in the the expression

for CV in Eq. [2.11]. The factor s/T 3+Γǫ/3T 4 is smooth in the whole temperature

range, and it is the first factor ǫ/P , which has a peak near Tc. Rewriting this as

3/(1 − C), we can recognize that the peak in CV is related to that in ∆.

It has been argued in Chapter [2] that the conformal measure C = ∆/ǫ

parametrizes the departure from the conformal invariance at the long distance

scale. In Fig. [3.3f] we plot C and the modulus of the β-function, which quan-

tifies the breaking of conformal invariance at short distances. It is clear that at

high temperature, 2–3Tc, conformal invariance is better respected in the finite

temperature effective long-distance theory than at the microscopic scale. Closer

to Tc conformal symmetry is badly broken even in the thermal effective theory.

It is interesting to note that the t-favoured differential method yields marginally

smaller values of C than the integral method.
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3.5 Discussion

T/Tc g2Nc ǫ/T 4 P/T 4 s/T 3 CV /T
3 C2

s

0.9 11.5(3) 1.09(4) 0.14(1) 1.23(5) 8.0(5) 0.162(7)

1.1 10.4(2) 4.31(9) 0.49(1) 4.80(6) 26(2) 0.18(1)

1.25 9.8(2) 4.6(1) 0.82(2) 5.4(1) 25(1) 0.21(1)

1.5 9.0(1) 4.5(1) 1.06(4) 5.6(2) 22.8(7) 0.25(1)

2.0 8.1(1) 4.4(1) 1.26(4) 5.7(2) 17.9(7) 0.31(1)

3.0 7.0(1) 4.4(1) 1.37(3) 5.8(1) 17.9(8) 0.32(1)

Table 3.2: Continuum values of some quantities at all temperatures we have

explored. The numbers in brackets are the error on the least significant digit.

For the convenience of the readers here we also list the numerical values of these

quantities for an ideal gas : ǫ/T 4 ≈ 5.26, P/T 4 ≈ 1.75, s/T 3 ≈ 7.02, CV /T
3 ≈

21.06 and C2
s = 1/3. The value of the t’Hooft coupling g2Nc is computed at the

scale 2πT using the Tc/ΛMS quoted in [51].

The continuum extrapolations of our measurements are collected in Table

[3.2].

3.5 Discussion

In view of the fact the perturbation theory fails to reproduce the lattice data

on EoS (see Chapter [1] for details), specially close to Tc, it is interesting to

compare our t-favoured scheme results with that of the perturbation theory. In

Fig. [3.5a] we compare the pressure obtained in the t-favoured scheme with that

from a dimensionally reduced theory, matched with the 4-d theory perturbatively

upto order g6 ln(1/g) [23]. Writing PSB for the ideal gas (Stefan-Boltzmann)

value of the pressure, the ratio for P/PSB found in the dimensionally reduced

theory [23] has an undetermined adjustable constant, c. Surprisingly, the pressure

determined through dimensional reduction agrees with our results almost all the

way down to Tc, for that value of the constant (c = 0.7) for which it matches
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Figure 3.5: (a) We compare the pressures obtained by t-favoured method (boxes),

integral method (dotted line) and the g6 ln(1/g) order perturbative expansion

(solid line). The data for the integral method and the perturbative expansion are

taken from Ref. [55] and Ref. [23] respectively. The values of the T/ΛMS in Ref.

[23] has been converted to T/Tc using the Tc/ΛMS quoted in Ref. [51]. (b) We

show the deviation of s/s0 from 3/4 (boxes) as a function of the t’Hooft coupling.

We also show the prediction of Eq. [3.18] (solid line).

with the integral method in the high temperature range. It would be interesting

to check whether an equally good description is available in this approach for the

full entropy. This would be a non-trivial extension because perturbation theory

misses ∆ completely. The question, therefore, addresses the non-perturbative

dynamics of the dimensionally reduced theory.

A recent suggestion is that an effective theory which reproduces the results

of thermal QCD at long-distance scales may somehow be close to a conformal

theory. The result of Ref. [93] for the entropy density s, in a Yang-Mills theory

with four supersymmetry charges (N = 4 SYM) and large number of colours Nc,

at strong coupling, is

s

s0
= f(g2Nc), where

f(x) =
3

4
+

45

32
ζ(3)x−3/2 + · · · , and s0 =

2

3
π2N2

c T
3. (3.18)

Here, g is the Yang-Mills coupling. (In some early literature the factor x−3/2,

in the right hand side of Eq. [3.18], appear as (2x)−3/2, due to the use of some

different normalization.) For the Nc = 3 case at hand, the well-known result for
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the ideal gas, s0 = 4(N2
c − 1)π2T 3/45 takes into account the difference between a

SU(Nc) and an U(Nc) theory. Since in the present case the theory we are dealing

with is definitely strongly coupled (see Table [3.2]) and also close to its conformal

symmetric limit at relatively high temperature, one can attempt a comparison

between our results and that of Eq. [3.18]. This has to be done in an appropriate

window of T where the ’t Hooft coupling g2Nc is large and the conformal measure

C is small. The strong coupling series is an expansion in (g2Nc)
−1/2. For N = 4

SYM, the first term vanishes due to a delicate cancellation and the series starts

with the (g2Nc)
−3/2 term [93]. When some of the supersymmetry is broken, this

cancellation need not occur and the series could start with a term in (g2Nc)
−1/2.

Needless to say, the theory we are studying here, pure QCD, lacks supersymmetry.

In Fig. [3.5b] we show the deviation of s/s0 from 3/4 as a function of the ’t Hooft

coupling (s and g2Nc are listed in Table [3.2]). Also shown is the prediction of

Eq. [3.18]. Very interestingly, comparison of our data with the latter shows that

the AdS/CFT based theory agrees with our data for g2Nc < 9, or in other words

for C < 0.3.

3.6 Summary

In this chapter we have proposed the t-favoured differential method for compu-

tation of the QCD EoS. We have shown that this method gives positive pressure

for all temperatures, even when the older s-favoured differential method gives

negative pressure. Note that this is so in spite of the use of the same one-loop

order perturbative values for the Karsch coefficients in both cases. Using this

method we have found the continuum limit of energy density and pressure for a

pure gluon theory in the temperature range 0.9 ≤ T/Tc ≤ 3. These differ from

their respective ideal gas values by about 20% at 3Tc, and by much more as one

approaches Tc. On comparing our results with those of the integral method, we

found that ours are larger for T < 2Tc. Possible reasons for this difference have

also been discussed. We have also extended the t-favoured scheme to compute

the continuum limit of the specific heat at constant volume and the speed of

sound. We found that CV peaks near Tc where, in addition, Cs becomes small.

One of the most interesting feature seen in all lattice computations of EoS is the
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Figure 3.6: The equation of state of QCD matter. The diagonal line denotes

possible EoS for theories with conformal symmetry. The circle on the diagonal

denotes the ideal gluon gas, whose EoS in this form is temperature independent.

The ellipses denote 66% error bounds on the measured EoS. The ratio of the

axes is a measure of the covariance in the measurements of ǫ/T 4 and P/T 4. The

wedges piercing these ellipses have average slope C2
s , and the opening half-angle

of these wedges indicate the error in C2
s .

peak in ∆ just above Tc. Apart from influencing the EoS, it manifests itself as

a peak in CV . Since CV could be directly measurable through energy or effective

temperature fluctuations in heavy-ion collisions, understanding ∆ should be one

of the prime goals of theory. We have also compared our data with the predic-

tions of the perturbation theory and the AdS/CFT correspondence, and found

reasonable agreements in certain temperature ranges.

A partial summary of our results is shown in Fig. [3.6], by making a similar

plot as that of Fig. [2.8]. Pure gauge QCD lies close to the conformal line at high

temperature, as shown, but deviates strongly nearer Tc. The slope of the wedges

piercing the ellipses indicates the speed of sound— when these are parallel to

the conformal line then C2
s = 1/3. This is clearly the case at high temperature.

However, there is an increasing flattening of the axis, denoting a drop in C2
s as one

approaches Tc. Two other physically important effects can be read off the figure.

First, the softening of the equation of state just above Tc is shown by the rapid
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3.6 Summary

drop in pressure at roughly constant ǫ/T 4. Second, a large latent heat is indicated

by the jump between the last two points, at almost the same pressure but very

different energy densities. A final piece of physics can be deduced from the fact

that the low temperature phase shows a very small P/T 4 at a significantly large

value of ǫ/T 4 > 1 just below Tc. This is an indication that there are very massive

modes in the hadron (glueball) gas which contribute large amounts to ǫ without

contributing to P . The small value of CV /T
3 at the same T also indicates that

the energy required to excite the next state is rather large.
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Chapter 4

Robustness of baryon-strangeness

correlation and related ratios of

susceptibilities

4.1 Introduction

Results of Chapter [2] and Chapter [3] show that for the gluonic plasma thermo-

dynamic quantities like pressure, energy density, specific heat etc. deviate form

there respective ideal gas values by about 20% even at temperature T = 3Tc.

Similar LQCD results also exist for the full QCD plasma [94, 95]. Also the recent

results from the RHIC [13] suggest the formation of a thermalized medium en-

dowed with large collective flow and very low viscosity [96]. On the other hand,

other lattice studies indicate the smallness of the viscous forces in QGP [97]. All

these findings suggest that close to Tc nature of QGP is far from a gas of free

quarks and gluons, rather it is a strongly interacting system. In view of this

situation, it is very important to find out more about the degrees of freedom of

such a strongly coupled QGP.

If the relevant degrees of freedom of a strongly coupled QGP are quasi-quarks

then different conserved charges, e.g. baryon number (B), electric charge (Q),

third component of isospin (I) etc., are carried by different flavours (u, d, s) of

quarks. Thus in the conventional quasi-particle models conserved charges come

in strict proportion to number of u, d, s quarks. Hence conserved charges are
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strongly correlated with the flavours and the flavours have no correlations among

themselves. Based on the above arguments, in Ref. [98] it has been suggested

that the baryon-strangeness correlation

CBS = −3
〈BS〉 − 〈B〉〈S〉
〈S2〉 − 〈S〉2 , (4.1)

can be used to probe the degrees of freedom of QGP. Here B = (U +D−S)/3 is

the net baryon number and U , D, S are the numbers of net (quarks minus anti-

quarks) up-quarks, down-quarks and strange-quarks respectively. The quantity

CBS probes the linkages of the strangeness carrying excitations to baryon number

and hence give an idea about the average baryon number of all the excitations

carrying the s flavour. The ratio is normalized such that for an ideal gas of

quarks, i.e. where unit strangeness is carried by excitations having B = −1/3,

CBS = 1. A value of CBS significantly different from 1 will indicate that the QGP

phase may contain some other degrees of freedom apart form the quasi-quarks.

In order to uncover the nature of QGP in the vicinity of Tc many different

suggestions have been made over the last decade. Descriptions in terms of various

quasi-particles [99, 100, 101], resummed perturbation theories (see Chapter [1]

for details), effective models [102, 103] etc. are few among many such attempts.

Apart from all these, the newly proposed model of Shuryak and Zahed [104] has

generated considerable amount of interest in the recent years. Motivated by the

lattice results for the continued existence of charmonium in QGP [105] till T ∼
2Tc, this model proposed a strongly interacting chromodynamic system of quasi-

particles (with large thermal masses) of quarks, anti-quarks and gluons along with

their numerous bound states (which also include colour non-singlet states). In the

model of Ref. [104], presence of bound states demand correlations among different

flavours. Hence correlations between conserved charges and flavours depend on

the mass-spectrum of the bound states and the strong correlations among them

are lost. For this model CBS = 0.62 at T = 1.5Tc [98], while for a gas of hadron

resonances CBS = 0.66 around Tc [98].

By extending the idea of Ref. [98], recently in Ref. [106], many ratios like

C(KL)/L =
〈KL〉 − 〈K〉〈L〉
〈L2〉 − 〈L〉2 ≡ χKL

χL
. (4.2)
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have been proposed to study the properties of QGP. Here χL and χKL denote

the diagonal and off-diagonal susceptibilities corresponding to conserved charge

L and correlation among conserved charges K and L, respectively. The physical

meaning of the ratios like C(KL)/L can be interpreted as follows [106]— Create

an excitation with quantum number L and then observe the value of a different

quantum number K associated with this excitation. Thus these ratios identify the

quantum numbers corresponding to different excitations and hence provide infor-

mation about the degrees of freedom. The ratios C(KL)/L can be expressed [106] in

terms of Flavour Diagonal Quark Number Susceptibilities (FDQNS) and Flavour

Off-Diagonal Quark Number Susceptibilities (FODQNS) (defined in Eq. [1.36]),

which are computable on the lattice. For example, the baryon-strangeness cor-

relation and the electric charge-strangeness correlation can be written as [106]—

CBS ≡ −3C(BS)/S = −3
χBS
χS

=
χs + 2χus

χs
= 1 +

2χus
χs

, and (4.3a)

CQS ≡ 3C(QS)/S = 3
χQS
χS

=
χs − χus

χs
= 1 − χus

χs
. (4.3b)

Using this fact many C(KL)/L ’s have been computed [106] using LQCD simu-

lations with two flavours of dynamical light quarks and three flavours (two light

and one heavy) of valance quarks. These calculations found no evidence for the

existence of bound states [104] even at temperatures very close to Tc. These

finding are consistent with the results of Ref. [107], where the hypothesis of Ref.

[104] has been tested by investigating the ratios of higher order baryon number

susceptibilities obtained from lattice simulations.

As these lattice studies [106] involved simulations with dynamical quarks, they

were done using small lattices having temporal lattice size Nτ = 4. By comparing

with the results from quenched [108] simulations it has been shown [106] that

the ratios of the diagonal susceptibilities do not depend on Nτ for temperature

T = 2Tc. It is clearly important to verify whether the same conclusion holds even

for the ratios of the off-diagonal to diagonal susceptibilities, like CBS, specially

close to Tc. Furthermore, it is known that in the case of quenched QCD with

standard staggered quarks the FDQNS have strong dependence on the lattice

spacing even for the free theory [108, 109]. On the other hand, the FODQNS are
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identically zero for an ideal gas and acquire non-zero value only in the presence

of interactions. So the lattice spacing dependence of the FODQNS may be more

complicated, as opposed to that for the FDQNS where these corrections are

dominated by the lattice artifacts of the naive staggered action. Thus if these

two QNS become comparable the ratios mentioned in Eq. [4.2] can have non-

trivial dependence on the lattice spacing a and hence the continuum limit of

these ratios can be different from that obtained using small lattices. Since the

perturbative expressions for FDQNS and FODQNS (for vanishingly small quark

mass and chemical potential) are respectively [66]—

χff
T 2

≃ 1 + O(g2), and
χff ′

T 2
≃ − 5

144π6
g6 ln g−1, (4.4)

it is reasonable to expect that the FODQNS may not be negligible at the vicinity

of Tc where the coupling g is large. Since the contributions of the bound states

in the QNS become more and more important as one approaches Tc [112], on

the lattice it is necessary to investigate the continuum limit of the these ratios

in order to check whether CBS etc. can have values close to the predictions of

the bound state QGP model [104]. At present a continuum extrapolation of this

kind can only be performed using quenched approximation [110, 111] due to the

limitations of present day computational resources. A quenched result for these

ratios will also provide an idea about the dependence of these ratios on the sea

quark mass. Since the present day dynamical lattice calculations are performed

with bare quark masses heavier than the physical quark masses, such information

is very important for estimating the systematic effects in these computations.

The aim of this chapter is to make careful investigation of the continuum

limit of the ratios of the kind C(KL)/L for temperatures Tc < T ≤ 2Tc using

quenched LQCD simulations [70]. By doing so we will gain knowledge about the

degrees of freedom which gave rise to the bulk thermodynamic behavior of QGP,

investigated in the previous two chapters.
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4.2 Simulation details

4.2 Simulation details

The partition function of QCD forNf flavours, each with quark chemical potential

µf and mass mf , at temperature T has the form

Z (T, {µf}, {mf}) =

∫

DU e−SG[U ]
∏

f

detMf (T, µf , mf), (4.5)

where SG is the gauge part of the action and Mf is the Dirac operator. We

have used standard Wilson action for SG and staggered fermions to define M

(see Chapter [1] for details). Using this partition function and the definitions of

FDQNS and FODQNS in Eq. [1.36] one can easily see that

χff =

(

T

V

)

∂2 ln Z

∂µ2
f

∣

∣

∣

∣

∣

{µf }=0

=

(

T

V

)

[

〈

Tr
(

M−1
f M ′′

f −M−1
f M ′

fM
−1
f M ′

f

)〉

+
〈

{

Tr
(

M−1
f M ′

f

)}2
〉]

, (4.6a)

χff ′ =

(

T

V

)

∂2 ln Z

∂µf∂µf ′

∣

∣

∣

∣

{µf }=0

=

(

T

V

)

〈

Tr
(

M−1
f M ′

f

)

Tr
(

M−1
f ′ M

′
f ′

)〉

. (4.6b)

Here the single and double primes denote first and second derivatives with respect

to the corresponding µf and the angular brackets denote averages over the gauge

configurations.

We have investigated these susceptibilities on lattices with Nτ = 4, 8, 10 and

12, for the temperatures 1.1Tc ≤ T ≤ 2Tc, chemical potential µf = 0 and using

quenched approximation [110, 111]. The gauge configurations were generated in

using exactly the same procedure mentioned in Chapter [2]. Since formq/Tc ≤ 0.1

QNS are almost independent of the bare valance quark mass (mq) [108], we have

used mq/Tc = 0.1 for the light u and d flavours. Motivated by the fact that for

the full theory ms/Tc ∼ 1 we have used mq/Tc = 1 for the heavier s flavour.

Since we use degenerate u and d flavours the following relations hold— χu = χd,

χud = χdu and χus = χds.

As can be seen from Eq. [4.6], in order to obtain χf , χff ′ one requires inverse

of the fermion matrix Mf . These fermion matrix inversions were done by using
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conjugate gradient method [84] with the stopping criterion |rn|2 < ǫ|r0|2, rn being

the residual after the n-th step and ǫ = 10−4 (see Ref. [65] for details).

The traces have been estimated by using the stochastic estimator for traces

[60]. In this method the trace of any matrix A is given by

Tr A =
1

2Nv

Nv
∑

i=1

R†
iARi, (4.7)

where Ri is a complex vector whose components have been drawn independently

from a Gaussian ensemble with unit variance. The square of a trace has been

calculated by dividing Nv vectors into L non-overlapping sets and then using the

relation

(Tr A)2 =
2

L(L− 1)

L
∑

i>j=1

(Tr A)i(Tr A)j . (4.8)

We have observed that as one approaches Tc from above these products, and

hence χff ′ , become more and more noisy for larger volumes and smaller quark

masses. So in order to reduce the errors on χff ′ number of vectors Nv have been

increased for the larger lattices and the smaller quark masses with decreasing

temperature.

Details of all our runs are provided in Table [4.1].

4.3 Results

4.3.1 Susceptibilities

In order to understand the cut-off dependence of C(KL)/L let us start by examining

the same for the FDQNS and FODQNS. We found that for all temperatures

the FDQNS (χu and χs) depend linearly on a2 ∝ 1/N2
τ , i.e. the finite lattice

spacing corrections to the FDQNS have the form χff (a,mf , T ) = χff (0, mf , T )+

b(mf , T )a2 + · · · . As an illustration of this we show our data for 1.1Tc and 1.25Tc

in Fig. [4.1]. Similar variations were found for the other temperatures also. We

have made continuum extrapolations of the FDQNS by making linear fits in 1/N2
τ .

Our continuum extrapolated results match, within errors, with the available data
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T/Tc β Lattice size Nstat Nv

mq/Tc = 0.1 mq/Tc = 1

5.7000 4 × 103 44 250 100

×163 50 250 100

×203 30 250 100

1.1 6.1250 8 × 183 48 250 100

6.2750 10 × 223 38 250 100

6.4200 12 × 263 41 250 100

5.7880 4 × 103 52 100 100

1.25 6.2100 8 × 183 49 200 100

6.3600 10 × 223 46 200 100

6.5050 12 × 263 45 200 100

5.8941 4 × 103 51 100 100

1.5 6.3384 8 × 183 49 150 100

6.5250 10 × 223 49 150 100

6.6500 12 × 263 48 150 100

6.0625 4 × 103 51 100 100

2.0 6.5500 8 × 183 50 100 100

6.7500 10 × 223 46 100 100

6.9000 12 × 263 49 100 100

Table 4.1: The couplings (β), lattice sizes (Nτ × N3
s ), number of independent

gauge configurations (Nstat) and number of vectors (Nv) that have been used for

our simulations are given for each temperature. The gauge configurations were

separated by 100 sweeps.
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Figure 4.1: We show the Nτ (∝ 1/a) dependence of χu/T
2 (squares) and χs/T

2

(circles) for 1.1Tc (a) and for 1.25Tc (b). The continuum extrapolations (linear

fits in 1/N2
τ ) are shown by the lines.
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Figure 4.2: Nτ dependence of the FODQNS χud/T
2 at 1.5Tc (a) and χus/T

2 at

1.1Tc (b) have been shown.

of [108] at 1.5Tc and 2Tc. Results of our continuum extrapolations for the FDQNS

are listed in Table [4.2].

In Fig. [4.2] we present some of our typical results for the FODQNS. Note

that here the scales are ∼ 100 magnified as compared to Fig. [4.1]. The sign

of our FODQNS is consistent with the perturbative predictions of Ref. [66], as

well as with the lattice results of Refs. [64, 65]. The order of magnitude of our

FODQNS matches with the results of Ref. [65] which uses the same staggered

fermion action as in the present case. As can be seen from Fig. [ 4.2] we have not

found any perceptible dependence of χff ′ on the lattice spacing a within errors.
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4.3 Results

T/Tc χu/T
2 χs/T

2

a b χ2
d.o.f a b χ2

d.o.f

1.1 0.79(1) 11.3(5) 0.3 0.33(1) 5.4(1) 0.1

1.25 0.84(1) 15(1) 0.5 0.45(1) 10(1) 0.8

1.5 0.83(1) 17.3(3) 0.5 0.55(1) 12.5(5) 0.9

2.0 0.86(2) 19.7(2) 0.7 0.70(2) 17(2) 0.8

Table 4.2: Parameters for the continuum extrapolations of the FDQNS (χu, χs).

Continuum extrapolations are made by fitting a+ b/N2
τ to our data for the three

largest lattice sizes. Numbers in the bracket denote the errors on the fitting

parameters and χ2
d.o.f refers to the value of the chi-square per degrees of freedom

for that particular fit.

T/Tc χud/T
2 χus/T

2

c× 103 χ2
d.o.f c× 103 χ2

d.o.f

1.1 -4(4) 0.5 -6(4) 0.1

1.25 -0.2(1.0) 0.1 -0.7(1.0) 0.6

1.5 -7(5) 0.1 2(2) 0.6

2.0 2(3) 0.5 -0.1(1.0) 0.8

Table 4.3: Parameters for the continuum extrapolations of the FODQNS (χud,

χus). Continuum extrapolations are made by fitting our data to a constant c.

Numbers in the bracket denote the errors on the fitting parameters and χ2
d.o.f

refers to the value of the chi-square per degrees of freedom for that particular fit.

Hence to good approximation χff ′(a,mf , mf ′ , T ) ≈ χff ′(0, mf , mf ′, T ). Also for

the other temperatures, which are not shown in Fig. [4.2], similar behaviour was

found. Results of our continuum extrapolations for the FODQNS are listed in

Table [4.3].

We also present our continuum extrapolated results for the two very important
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Figure 4.3: The continuum results for χB/T
2 (squares) and χQ/T

2 (circles) have

been shown.

quantities, the baryon number susceptibility (χB) and the electric charge suscep-

tibility (χQ). These quantities are related to the event-by-event fluctuations of

baryon number and electric charge [113] which have already been measured at

RHIC [114]. The definitions that we use for χB and χQ are [106]

χB =
1

9
(2χu + χs + 2χud + 4χus) , and (4.9a)

χQ =
1

9
(5χu + χs − 4χud − 2χus) . (4.9b)

In Fig. [4.3] we show the continuum results for χB/T
2 and χQ/T

2. Continuum

extrapolations have been performed by making linear fits in a2 ∝ 1/N2
τ . Con-

tinuum limit of these quantities were also obtained in Ref. [108] for T ≥ 1.5Tc,

though using different definitions for these quantities. Nevertheless, given the

compatibility of our FDQNS with that of Ref. [108] and the smallness of the

FODQNS for T ≥ 1.5Tc our continuum results for χB and χQ are compatible

with that of Ref. [108].

4.3.2 Ratios

Wroblewski parameter (λs) [115] is a quantity of extreme interest due to its

relation to the enhancement of strangeness production in QGP [116]. The rate of
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a constant fit to this data. (b) We show our continuum results for λs (see text

for details).

production of quark pairs in an equilibrated plasma is related to the imaginary

part of the complex QNS by fluctuation-dissipation theorem. If one assumes that

the plasma is in chemical (and thermal) equilibrium and the typical energy scales

for the production of u, d and s quarks are well separated from the inverse of the

characteristic time scale of the QCD plasma, then using Kramers-Kronig relation

one can relate λs to the ratio of QNS [117]—

λs =
2〈ss̄〉

〈uū+ dd̄〉 =
χs
χu
. (4.10)

In the above equation 〈f f̄〉 denotes the number of quark pairs f f̄ .

We have found that λs, which is a ratio of two FDQNS, remains constant

(within ∼ 5%) with varying lattice spacings for all temperatures in 1 < T/Tc ≤ 2.

We have illustrated this in Fig. [4.4a] by plotting λs with 1/N2
τ for the temperature

1.1Tc. These results are somewhat surprising since the order a2 corrections are

not negligible for the individual FDQNS. But for the ratio of the FDQNS for

two different bare valance quark masses these order a2 corrections happen to be

negligible and thus seems to be quark mass independent. This indicates that the

finite lattice spacing corrections to the FDQNS is constrained to have the form

χff (a,mf , T ) ≈ χff (0, mf , T )[1 + b(T )a2 + · · · ], as opposed to the more general

form χff (a,mf , T ) = χff (0, mf , T ) + b(mf , T )a2 + · · · .
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Our continuum results for the Wroblewski parameter have been shown in Fig.

[4.4b]. In view of the constancy of λs we have made the continuum extrapolations

by making a constant fit to a2 ∝ 1/N2
τ . Our Continuum limit for λs are consis-

tent with the previously reported [108] continuum values for T ≥ 1.5Tc. Our

continuum results for λs are very close to the results of Ref. [106] for the whole

temperature range of Tc < T ≤ 2Tc. Closeness of our quenched results with the

results from the dynamical simulations of Ref. [106] suggest that the Wroblewski

parameter has practically no dependence on the mass of the sea quarks. This

observation, along with the fact that λs has very mild dependence on the valance

quark mass [108, 118], shows that the present day LQCD results for the Wrob-

lewski parameter are very reliable. The robustness of the Wroblewski parameter

is very encouraging specially since in the vicinity of Tc the lattice results for this

quantity almost coincides with the value (λs ≈ 0.43) extracted by fitting the

experimental data of RHIC with a hadron gas fireball model [119], as first noted

in Ref. [108].

Given our results for the FDQNS and FODQNS it is clear that the ratio of

FODQNS to FDQNS will have the form— χff ′(a,mf , mf ′ , T )/χff(a,mf , T ) ≈
[χff ′(0, mf , mf ′ , T )/χff(0, mf , T )][1 − b(T )a2]. Since b(T ) is positive, i.e. χff

decreases with decreasing lattice spacing, this ratio is expected to decrease (as

χff ′ is negative) and move away from zero. However, due smallness of these ratios

itself, within our numerical accuracies, we were unable to identify any such effect.

This has been exemplified in Fig. [4.5] where χud/χu at 1.5Tc (a) and χus/χs at

1.1Tc (b) have been shown.

Ratios, like CBS and CQS (see Eq. [4.3]), can also be formed for the light quark

sector [106], e.g. for the u flavour the ratios

CBU ≡ 3C(BU)/U = 3
χBU
χU

=
χu + χud + χus

χu
= 1 +

χud
χu

+
χus
χu

, and (4.11a)

CQU ≡ 3C(QU)/U =
3χQU
χU

=
2χu − χud − χus

χu
= 2 − χud

χu
− χus
χu

(4.11b)

quantify the average baryon number (CBU) and and the average electric charge

(CQU) of all the excitations carrying u quarks. For a medium of pure quarks,

i.e. where the u flavours are carried by excitations with baryon number 1/3 and
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Figure 4.5: (a) Nτ dependence of χud/χu at 1.5Tc. (b) Shows the same for χus/χs

at 1.1Tc

electric charge 2/3, CBU = 1 and CQU = 2. Similar ratios can also be formed for

the d quarks [106].

As can be seen seen from Eqs. [4.3, 4.11] the lattice spacing dependence of

CBS etc. is governed by the cut-off dependence of the ratios χff ′/χff . Since

we have already emphasized that, within our numerical accuracies, the ratios

χff ′/χff are almost independent of lattice spacings it is expected that the same

will also happen for the ratios C(KL)/L. In accordance with this expectation we

found that for temperatures 1.1Tc ≤ T ≤ 2Tc these ratios are independent of

lattice spacings within ∼ 5% errors, see Fig. [4.6]. Note that these ratios are not

only independent of the lattice spacings but also acquire values which are very

close to their respective ideal gas limits.

Fig. [4.7] shows our continuum results for CXS (b) and CXU (a), where X =

B,Q. Since these ratios remain almost constant with changing 1/N2
τ (see Fig.

[4.6]) we have made continuum extrapolations by making constant fits of our

data to 1/N2
τ . For the whole temperature range of interests (Tc < T ≤ 2Tc) these

ratios have values which are compatible with that for a gas of pure quarks. This

is exactly what has been found in Ref. [106] using dynamical simulations with

smaller lattices. For the d quarks also we have found similar results.
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Figure 4.6: Lattice spacing dependence of CXU and CXS are shown for tempera-

tures 2Tc [panel (a)], 1.5Tc [panel (b)], 1.25Tc [panel (c)] and 1.1Tc [panel (d)] by

plotting these quantities as a function of 1/N2
τ (∝ a2), for Nτ = 4, 8, 10, 12. The

lines indicate the ideal gas values for these ratios.

4.4 Discussion

For all our computations we have used spatial lattice sizesNs = 2Nτ+2, i.e. aspect

ratiosNs/Nτ = 2.5−2.17. In view of the fact that quenched QCD has a first order

phase transition it is important to have some idea about the volume dependence

of our results, specially in the vicinity of the transition temperature Tc. To check

this dependence we have performed simulations using lattices having aspect ratios

Ns/Nτ = 2.5− 5, for our smallest temporal lattice Nτ = 4, at temperature 1.1Tc.

In these simulations we have not found any significant volume dependence of
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Figure 4.7: Continuum results for CXU (a) and CXS (b). The lines indicate the

ideal gas values for these quantities. See text for details.

any relevant quantity. As an illustration, in Fig. [4.8], we show the dependence

of χus/χs on the aspect ratio, for Nτ = 4 at 1.1Tc. The volume dependence

is expected to be even smaller as one goes further away from first order phase

transition point. Also the agreement of our results with that of [106], where an

aspect ratio of 4 have been used, shows that the these ratios have almost no

volume dependence for Ns ≥ Nτ + 2.
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Figure 4.8: Dependence of the ratio χus/χs on the aspect ratio has been shown

for Nτ = 4 at temperature 1.1Tc.

Also it is very important to have some idea about how unquenching may
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change our results. It has been found Ref. [120] that in the temperature range

T ≥ 1.25Tc there is only 5 − 10% change in the QNS in going from quenched

to Nf = 2 dynamical QCD. On the other hand, since the order of the phase

transition depends strongly on the number of dynamical flavours the change in

QNS is likely to be much larger in the vicinity of the transition temperature for

the quenched theory which has a first order phase transition. Though this may be

true for the individual QNS, their ratios may have very mild dependence on the

sea quark content of the theory. Given the good compatibility of our results with

that of Ref. [106] it is clear that indeed these ratios have very mild dependence on

the sea quark content of the theory. It is also known [108] that for bare valance

quark mass of mq/Tc ≤ 0.1 the dependence of the QNS on the valance quarks

mass is very small. Hence our results show that the ratios like C(KL)/L are not

only independent on the lattice spacings but also they have very mild dependence

on the quark masses.

While the closeness of CXU and CXS (X = B,Q) to their respective ideal

gas values do support the notion of quasi-particle like excitations in QGP, a

significant deviation of these ratios from their ideal gas values neither rule out

the quasi-particle picture nor confirms the existence of the bound states proposed

in Ref. [104]. Large contributions from the chemical potential dependence of the

quasi-particle masses may lead to significant deviation of these ratios, especially

in the vicinity of Tc. It has already been pointed out [101, 112] that, near Tc,

the chemical potential dependence of the quasi-particle masses becomes crucial

for the baryonic susceptibilities. Nevertheless, it may be interesting to compare

our results with the predictions of the bound state model of Ref. [104]. Based on

the model of Ref. [104] (and assuming that the mass formulae given in Ref. [104]

hold right down to Tc) the predicted values of CBS are approximately 0.62 at

1.5Tc [98], 0.11 at 1.25Tc and almost zero at 1.1Tc [121]. Clearly, as can be seen

form Fig. [4.7b], these values are very much different from our continuum results.

However, it has been argued in Ref. [112] that apart from all the bound states

mentioned in Ref. [104], baryon like bound states may also exist in QGP. These

baryons make large contributions to the baryonic susceptibilities, especially close

to Tc [112]. Taking account of the contributions from the strange baryons may

increase the value of CBS. In Ref. [112] it has also been argued that for two
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light flavours if one considers the contributions of the baryons only then close

to Tc the ratio of 2-nd order isospin susceptibility cI2 to the 2-nd order baryonic

susceptibility c2 (see Eq. [1.40]) is cI2/c2 = (χu−χud)/(χu+χud) = 0.467. Clearly

this is inconsistent with our results since a value of cI2/c2 = 0.467 gives a positive

χud/χu (= 0.363). Whereas, the lattice results for χud/χu are negative and much

smaller in magnitudes. This suggest that the contribution of the mesons (also

possibly of the quarks, diquarks and qg-states) are definitely important in the

isospin susceptibility cI2. If one takes into account of the contributions from

the mesons (pions and rhos) and assumes that the Boltzmann weight of the

mesons are equal to that of the baryon one gets a lower bound for cI2/c2, namely

cI2/c2 ≥ 0.644 [122]. But this lower bound gives χud/χu ≤ 0.217 and hence very

far from our results. Moreover, very recently it has been argued [123] that one

can carefully tune the densities of the baryon and meson like bound states in the

model of Refs. [104, 112] to reproduce the lattice results for FODQNS. But even

those carefully tuned values fail to reproduce [123] the lattice results for higher

order susceptibilities. In view of all these, the lattice results of Ref. [106] favour

a quasi-particle like picture of QGP, as opposed to the bound state model of Ref.

[104, 112]. The results of this chapter show that these lattice results are really

robust in the sense that they have very mild dependence on the lattice spacing

and on the sea quark content of the theory [70].

4.5 Summary

In this chapter we have made a careful investigation of the continuum limit

of FODQNS, FDQNS and their different ratios in quenched QCD at vanishing

chemical potentials. We have performed continuum extrapolations using lattices

with large temporal extents, Nτ = 12, 10, 8, 4, and in the temperature range

Tc < T ≤ 2Tc, where QGP is likely to be strongly coupled. Using these results we

have looked at the continuum limits of different conserved charge-flavour correla-

tions. These observables are helpful in identifying the degrees of freedom of the

strongly interacting QGP. Our study shows that the LQCD estimates of these

quantities are robust— (i) they are almost independent of the lattice spacing,

(ii) they have very mild dependence on the sea quark content of the theory. We
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have also investigated the volume dependence of these ratios and found that the

finite volume effects are under control. Finally, we have found that all these

quantities acquire values very close to their respective ideal gas limits, even for

temperatures just above Tc. All these results indicate that the degrees of freedom

of the strongly coupled QGP are quasi-quark like. We have also confirmed the

robustness of the Wroblewski parameter, which is of interest to the experiments

in RHIC and LHC.
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Chapter 5

PNJL model and lattice results

5.1 Introduction

Our LQCD studies of previous chapters indicate that in the vicinity of Tc QGP

is a strongly interacting system with quasi-particle like degrees of freedom. As

mentioned earlier, similar indications have been found in numerous other LQCD

studies, as well as from the experimental results of RHIC. While lattice studies

are based on the first principles, in view of their numerical nature it is important

to understand the underlying physics of these lattice results in terms of QCD in-

spired effective models. Apart from the understanding of the underlying physics,

an added advantage of such models is that they can be used to investigate the

properties of QCD in the parameter region inaccessible to LQCD studies, e.g. in

the region of large chemical potentials. But in order to make those predictions,

first, these models must reproduce the known LQCD results to verify that they

capture the correct physics. Hence it is necessary to put these effective models

to stringent tests against the available LQCD data.

Out of many such effective models which have been proposed (e.g. see Refs.

[99, 100, 101, 102, 104]), we concentrate on one such model, viz. the Polyakov

loop coupled Nambu-Jona-Lasinio (PNJL) model [124, 125, 103], in this chapter.

QCD exhibits dynamical chiral symmetry breaking and confinement properties.

Both these features of QCD are related to two different global symmetries of

the QCD Lagrangian in appropriate limits. However, the relation between the

spontaneous chiral symmetry breaking and confinement still remains an open
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issue. The primary aim of the PNJL model is to provide a unified picture of

these two features of QCD.

In the limit of infinite quark mass, the thermal average of the Polyakov

loop (i.e. the Wilson line) can be considered as the order parameter for the

confinement-deconfinement transition [126]. Though in presence of dynamical

quarks the Polyakov loop is not a rigorous order parameter for this transition, it

still serves as an indicator of a rapid quark-hadron crossover. Motivated by this

observation, Polyakov loop based effective theories have been suggested [127, 128,

129] to capture the underlying physics of the confinement-deconfinement transi-

tion. The essential ingredient of these models is an effective potential constructed

out of the Polyakov loop (and its complex conjugate). More recently, the param-

eters in these effective theories have been fixed [130, 131] using the data from

LQCD simulations.

In the limit of vanishing quark masses the QCD Lagrangian has a global

chiral symmetry, which is however broken spontaneously at low temperatures

(and hence the absence of chiral partners of low-lying hadrons). This symmetry

is expected to be restored at higher temperatures and chemical potentials. The

chiral condensate is considered to be the order parameter in this case. Various

effective chiral models exist for the study of physics related to the chiral dynamics.

One such oft-used model is the Nambu-Jona-Lasinio (NJL) model [132, 133]. The

parameters of this model are fixed from the phenomenology of the hadronic sector

at zero temperature.

In the PNJL model one is able to couple the chiral and deconfinement order

parameters within a single framework. This is done by extending the NJL La-

grangian through the introduction of a Polyakov loop based effective Lagrangian

and by replacing the ordinary derivatives of the NJL Lagrangian by covariant

derivatives, which takes care of the interactions of quarks with effective gluon

fields. While the NJL part is supposed to give the correct chiral properties, the

Polyakov loop part captures the deconfinement physics. Thus, such a model

can be considered as a testing ground to study the phase structure and critical

phenomena related with deconfinement and chiral phase transitions.

The initial motivation to couple the Polyakov loop to the NJL model was to

provide some understanding of the coincidence of chiral symmetry restoration and
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deconfinement transitions observed in LQCD simulations [134, 135] . (A some-

what different claim has been made in Ref. [136]). Indeed the PNJL model worked

well to obtain the coincidence of onset of chiral restoration and deconfinement

[124, 125]. Recently the introduction of the Polyakov loop potential has made it

possible to extract estimates of various thermodynamic quantities [103]. In Ref.

[103] it was found that the QCD EoS, at µ0 = 0 (for the definition of µ0 see Eq.

[1.37]), calculated from the PNJL model agrees with the LQCD data. However,

though the PNJL model reproduces the qualitative features of LQCD data for the

quark number density n0 = ∂ ln Z/∂µ0, quantitative deviations are significant for

larger values of µ0. Later in Ref. [137] cn ’s (see Eq. [1.40]) were analyzed within

the PNJL model. It was found that while both the lattice and PNJL model have

the same qualitative features for cn, the quantitative agreements are not so good.

In view of these results it is very important to perform more stringent tests on

the PNJL model, specially in presence of non-zero chemical potentials. In Chapter

[4] we have seen that the Flavour Off-Diagonal Quark Number Susceptibilities

(FODQNS) play a crucial role in capturing the underlying physics of the lattice

results. Hence the main aim of this chapter is to calculate the FODQNS within the

framework of the PNJL model and compare them against the available LQCD

data. In order to do so, we extend [71] the PNJL model for non-zero isospin

chemical potential µI (see Eq. [1.37] for the definition) to calculate the coefficients

cIn ’s (see Eq. [1.40]). Once both cn and cIn are known the FDQNS and FODQNS

are given by the relations [64]—

χu
T 2

=
cI2 + c2

2
, and

χud
T 2

=
cI2 − c2

2
. (5.1)

So by making this extension to the PNJL model one will be able to compute the

FODQNS, as well as the FDQNS.

As discussed in Chapter [4], the FODQNS can be thought of as a measure

of the correlations among different flavours. In order to have a closer look at

the FODQNS we, further, modify the NJL part of the PNJL model by using

the NJL Lagrangian proposed in [138]. This Lagrangian has a term that can

be interpreted as an interaction induced by instantons and reflects the UA(1)-

anomaly of QCD. It has the structure of a ’t-Hooft determinant in the flavour

space [139], leading to flavour-mixing. By adjusting the relative strength of this
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term one can explicitly control the amount of flavour-mixing in the NJL sector.

This modified NJL Lagrangian reduces to the standard NJL Lagrangian [132, 133]

in some particular limit. This modification of the PNJL model will allow us to

study the effects of such flavour-mixing on various susceptibilities, specially on

the FODQNS which measures the u-d flavour correlation (for a Nf = 2 theory).

Such flavour-mixing effect is also related to an important issue regarding the

NJL-type models. Within the framework of an NJL model it has been found

[140] that for µI = 0, in the T − µ0 plane, there is a single first order phase

transition line (which ends at a critical endpoint) at low temperatures. But for

µI 6= 0 this single line separates into two first order phase transition lines because

of the different behaviour of the u and d quark condensates [141]. Thus there is a

possibility of having two critical end-points in the QCD phase diagram [141]. This

has also been observed in Random Matrix models [142], in ladder QCD models

[143] as well as in hadron resonance gas models [144]. It was then argued in Ref.

[138] that the flavour-mixing through the instanton effects [145, 146] may wipe

out this splitting. By comparing various susceptibilities for different amount of

flavour-mixing one may have some idea about the amount of the flavour-mixing

favoured by the LQCD simulations. This in turn may shed some light on the

phase structure of the NJL model itself.

5.2 Formalism

5.2.1 The model

Following Refs. [140, 138] we chose the two flavour (u and d) NJL part of the

Lagrangian to be

LNJL = L0 + L1 + L2, with (5.2a)

L0 = ψ̄(i∂/−m)ψ, (5.2b)

L1 = G1

[

(

ψ̄ψ
)2

+
(

ψ̄~τψ
)2

+
(

ψ̄iγ5ψ
)2

+
(

ψ̄iγ5~τψ
)2

]

, (5.2c)

L2 = G2

[

(

ψ̄ψ
)2 −

(

ψ̄~τψ
)2 −

(

ψ̄iγ5ψ
)2

+
(

ψ̄iγ5~τψ
)2

]

. (5.2d)

Here,

ψ = (u, d)T , and m = diag(mu, md). (5.3)
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G1 and G2 are two coupling constants with dimensions [G1] = [G2] = [energy]−2.

We will also assume flavour degeneracy, i.e. mu = md = m0. For m0 = 0 different

parts of the Lagrangian LNJL have the following global symmetries—

L0 : SUV (2) × SUA(2) × UV (1) × UA(1), (5.4a)

L1 : SUV (2) × SUA(2) × UV (1) × UA(1), (5.4b)

L2 : SUV (2) × SUA(2) × UV (1), (5.4c)

where SUV (2) is the isospin symmetry, UV (1) is the baryonic symmetry, SUA(2)

is the chiral symmetry and UA(1) is the axial symmetry. L2 has the structure

of a ’t-Hooft determinant, det
[

ψ̄(1 + γ5)ψ
]

+ det
[

ψ̄(1 − γ5)ψ
]

[133, 139], and

breaks UA(1) axial symmetry. This interaction can be interpreted as induced by

instantons and reflects the UA(1)-anomaly of QCD [139].

Once the NJL part of the Lagrangian is chosen one can then introduce the

Polyakov loop part (at non-zero quark chemical potentials µf) [125, 103]—

LPNJL = L
′
NJL + ψ̄µγ0ψ − U

(

Φ[A], Φ̄[A], T
)

= L
′
0 + L1 + L2 + ψ̄µγ0ψ − U

(

Φ[A], Φ̄[A], T
)

, (5.5)

where µ = diag(µu, µd). The difference between the kinetic terms L0 and L′
0 is

that one has replaced the partial derivative of L0 by a covariant derivative, i.e.

L
′
0 = ψ̄ (iD/−m)ψ. (5.6)

Here,

Dµ = ∂µ − iAµ, Aµ = δµ0A
0, and Aµ(x) = gA(a)

µ (x)λa/2. (5.7)

A
(a)
µ (x) are SU(3) gauge fields, λa are Gell-Mann matrices and g denotes the

QCD coupling.

U
(

Φ[A], Φ̄[A], T
)

is an effective potential expressed in terms of the traced

(over color) Polyakov loop (L), with periodic boundary conditions, and its charge

conjugate—

L(~x) = P exp

[

i

∫ β

0

dτ A4(~x, τ)

]

, Φ =
Tr L

Nc

, Φ̄ =
Tr L†

Nc

. (5.8)
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Here the notation P denotes the path order product, β is the inverse temperature

and A4 = iA0. Following Ref. [103] the gauge part of the Lagrangian is chosen

to be

U(Φ, Φ̄, T )

T 4
= −b2(T )

2
ΦΦ̄ − b3

6

(

Φ3 + Φ̄3
)

+
b4
4

(

Φ̄Φ
)2
, with (5.9a)

b2(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

. (5.9b)

The effective Lagrangian U for the gauge field has a global Z(3) symmetry,

corresponding to the center symmetry of QCD’s SU(3) gauge symmetry. At low

temperatures U has a single minimum at Φ = 0, while at high temperatures it

develops a second one which turns into the absolute minimum above a critical

temperature T0. Φ and Φ̄ are treated as independent classical fields.

One can proceed along the standard way [133] to perform a mean field analysis

of the NJL part of the PNJL action, by expanding L′
NJL around the independent

u and d quarks condensates σu ≡ 〈ūu〉 and σd ≡
〈

d̄d
〉

[138, 103], to obtain the

thermodynamic potential (Ω = −T ln Z/V )

Ω(T, µu, µd) = U
(

Φ, Φ̄, T
)

+
∑

f=u,d

Ω0(T, µf ;Mf ) + 2G1

(

σ2
u + σ2

d

)

+ 4G2σuσd, where (5.10a)

Ω0(T, µf ;Mf) = −2Nc

∫

d3p

(2π)3
Efθ(Λ

2 − ~p 2)

− 2T

∫

d3p

(2π)3Tr ln
[

1 + Le−(Ef−µf )/T
]

− 2T

∫

d3p

(2π)3Tr ln
[

1 + L†e−(Ef +µf )/T
]

. (5.10b)

Here the effective energies (Ef ) and the effective masses (mf ) of the quarks are

given by

Eu,d =
√

m2
u,d + p2, and mu,d = m0 − 4G1σu,d − 4G2σd,u. (5.11)

The momentum integral has an ultraviolet cut-off Λ. This is because the NJL

model contains four-fermion interactions, which are non-renormalizable operators

in 3 + 1 dimensions.
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For an SU(3) gauge theory the Polyakov loop L satisfies the conditions LL† =

1, detL = 1 and hence can be diagonalized as L = diag(eiψ, eiψ
′

, e−i(ψ+ψ′)). Using

this fact and the identity Tr lnX = ln detX one can easily see that

ln det
[

1 + Le−(Ef−µf )/T
]

+ ln det
[

1 + L†e−(Ef +µf )/T
]

= ln
[

1 + 3
(

Φ + Φ̄e−(Ef−µf )/T
)

e−(Ef−µf )/T + e−3(Ef−µf )/T
]

+ ln
[

1 + 3
(

Φ̄ + Φe−(Ef +µf )/T
)

e−(Ef +µf )/T + e−3(Ef +µf )/T
]

. (5.12)

With the help of the above relation one arrives at the final form of the thermo-

dynamic potential

Ω(T, µu, µd) = U
(

Φ, Φ̄, T
)

+
∑

f=u,d

Ω0(T, µf ;Mf ) + 2G1

(

σ2
u + σ2

d

)

+ 4G2σuσd, (5.13)

where

Ω0(T, µf ;Mf ) = −2Nc

∫

d3p

(2π)3Efθ(Λ
2 − ~p 2)

− 2T

∫

d3p

(2π)3
ln

[

1 + 3
(

Φ + Φ̄e−(Ef−µf )/T
)

e−(Ef−µf )/T + e−3(Ef−µf )/T
]

− 2T

∫

d3p

(2π)3
ln

[

1 + 3
(

Φ̄ + Φe−(Ef +µf )/T
)

e−(Ef +µf )/T + e−3(Ef +µf )/T
]

. (5.14)

The equations of motion for the mean field variables (σu, σd, Φ, Φ̄) are

obtained by minimizing the thermodynamic potential Ω with respect to those

variables—

∂Ω

∂σu
= 0,

∂Ω

∂σd
= 0,

∂Ω

∂Φ
= 0,

∂Ω

∂Φ̄
= 0. (5.15)

These coupled equations can then be simplified to obtain

σf = −6

∫

d3p

(2π)3

mf

Ef

[

θ(Λ2 − p2) − N(Ef )M(Ef) − N̄(Ef )M̄(Ef)
]

, (5.16a)

∂U

∂Φ
= 6T

∑

f=u,d

∫

d3p

(2π)3

[

N(Ef )e
−(Ef−µf )/T + N̄(Ef )e

−2(Ef +µf )/T
]

, (5.16b)

∂U

∂Φ̄
= 6T

∑

f=u,d

∫

d3p

(2π)3

[

N(Ef )e
−2(Ef−µf )/T + N̄(Ef)e

−(Ef +µf )/T
]

, (5.16c)
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where

N(Ef ) =
[

1 + 3
(

Φ + Φ̄e−(Ef−µf )/T
)

e−(Ef−µf )/T + e−3(Ef−µf )/T
]−1

, (5.17a)

N̄(Ef ) =
[

1 + 3
(

Φ̄ + Φe−(Ef +µf )/T
)

e−(Ef +µf )/T + e−3(Ef +µf )/T
]−1

, (5.17b)

M(Ef ) =
(

Φ + 2Φ̄e−(Ef−µf )/T
)

e−(Ef−µf )/T + e−3(Ef−µf )/T , (5.17c)

M̄(Ef ) =
(

Φ̄ + 2Φe−(Ef +µf )/T
)

e−(Ef +µf )/T + e−3(Ef +µf )/T , (5.17d)

and f ∈ {u, d}.
For convenience, following Ref. [138], we parametrize the two couplings G1

and G2 —

G1 = (1 − α)G0, and G2 = αG0. (5.18)

Before proceeding further we note some important features of this model:

• Since the gluons in this model are contained only in a static background

field, the model would be suitable to study the physics below T = 2.5Tc.

It has been argued in Ref. [147] that above this temperature the transverse

degrees of freedom become important.

• In general, pion condensation takes place in NJL model for µI > mπ/2, mπ

being the pion mass. Also there is a chiral transition for µ0 ∼ 340 MeV (at

small T ), above which diquark physics becomes important. For simplicity

we have neglected both the pion condensates and diquarks in our mean field

analysis. This will restrict us in the parameter range µI < 70 MeV and

µ0 < 200 MeV .

• The NJL part of our PNJL model is a generalization of the standard NJL

model. It can be easily seen form Eqs. [5.13, 5.14] that for α = 1/2 (i.e.

for G1 = G2) and µu = µd (i.e. for σu = σd) our thermodynamic potential

reduces exactly to that of Ref. [103], where standard NJL Lagrangian have

been used to formulate the PNJL model, if one puts G0 equals to half the

four-point coupling G of that reference.

As discussed earlier, for G2 = 0, in the chiral limit (m0 = 0), the full

symmetry of the Lagrangian is SUV (2) × SUA(2) × UV (1) × UA(1). The
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coefficient G2 is inducing the instanton effects, as it breaks the UA(1) sym-

metry explicitly by mixing the quark flavours. This flavour-mixing is very

clearly seen from Eqs. [5.13, 5.11], where G2 = 0 makes u and d flavours

independent. Thus for α = 0 there is no instanton induced flavour-mixing.

On the other hand, for α = 1 the UA(1) preserving L1 vanishes and the

Lagrangian only contains the UA(1) breaking L2. Hence in this limit the

flavour-mixing becomes maximal.

• For the NJL sector, without coupling to the Polyakov loop (i.e. setting

Φ = Φ̄ = 1), one can easily see that the expression for Ω in Eqs. [5.13, 5.14]

is invariant under the transformations µu → −µu and/or µd → −µd. This

implies that the physics along the directions of µ0 = 0 and µI = 0 at any

given temperature are equivalent. However, inclusion of the Polyakov loop

makes Ω invariant only under the simultaneous transformations Φ → Φ̄ and

µu,d → −µu,d and vice-verse. This is a manifestation of the CP symmetry.

Thus coefficients of Φ and Φ̄ are found to be equal when µ0 = 0, and

different when µI = 0. So in the T − µI plane one is expected to have

Φ = Φ̄, and everywhere else Φ 6= Φ̄. This feature is reminiscent of the

complex fermion determinant of LQCD at µ0 6= 0.

• Quark condensates σu and σd are equal to each other whenever µ0 = 0 or

µI = 0 (see Eqs. [5.16, 5.17]) in the NJL as well as PNJL model. It is clear

from Eq. [5.13] that whenever σu = σd, the couplings G1 and G2 come in

the combination G1 +G2 = G0 = constant. This means that the physics is

completely independent of the relative strength of these couplings whenever

either µ0 = 0 or µI = 0.

5.2.2 Taylor expansion of pressure in chemical potentials

Once the thermodynamic potential is known the pressure, as function of T , µ0

and µI , can be easily computed using the relation

P (T, µ0, µI) = −Ω(T, µ0, µI). (5.19)
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The above relation assumes the system to be homogeneous. One can, further,

expand the pressure in a Taylor series of the two chemical potentials µ0 and µI ,

around µ0 = µI = 0 —

P (T, µ0, µI)

T 4
=

∞
∑

n=0

n
∑

j=0

n!

j! k!
cjkn (T )

(µ0

T

)j (µI
T

)k

, (5.20)

where

cjkn (T ) =
∂n (P/T 4)

∂
(

µ0

T

)j
∂

(

µI

T

)k

∣

∣

∣

∣

∣

µ0=µI=0

, and k = n− j. (5.21)

The n = odd terms vanish due to CP symmetry. Even for the n = even terms,

all the coefficients cjkn with j and k both odd vanish identically due to flavour

degeneracy.

These coefficients can easily be related to cn and cIn, defined in Eq. [1.40]—

cn = cn0
n , and cIn = c(n−2)2

n (n ≥ 2). (5.22)

Flavour diagonal (cuun ) and flavour off-diagonal (cudn ) susceptibilities can also be

defined in terms of these coefficients [64]

cuun =
cn0
n + c

(n−2)2
n

4
, and cudn =

cn0
n − c

(n−2)2
n

4
. (5.23)

For n = 2 these relations give the FDQNS and FODQNS (see Eqs. [1.36])—

χu
T 2

= 2cuu2 , and
χud
T 2

= 2cud2 . (5.24)

5.2.3 Specific heat and speed of sound

Given the thermodynamic potential Ω, the energy density ǫ is obtained from the

relation

ǫ = −T 2 ∂(Ω/T )

∂T

∣

∣

∣

∣

V

= −T ∂Ω

∂T

∣

∣

∣

∣

V

+ Ω. (5.25)

While the specific at constant volume (CV ) is given by

CV =
∂ǫ

∂T

∣

∣

∣

∣

V

= −T ∂2Ω

∂T 2

∣

∣

∣

∣

V

, (5.26)

the speed of sound (Cs) can be computed using the relation—

C2
s =

∂P

∂ǫ

∣

∣

∣

∣

S

=
∂P

∂T

∣

∣

∣

∣

V

/

∂ǫ

∂T

∣

∣

∣

∣

V

=
∂Ω

∂T

∣

∣

∣

∣

V

/

T
∂2Ω

∂T 2

∣

∣

∣

∣

V

. (5.27)
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5.3 Results

The NJL sector of the PNJL model has three parameters, viz. the four-fermion

coupling G0, the ultraviolet cut-off Λ and the bare quark mass m0 (we will keep

α as a free parameter to tune the amount of flavour-mixing). These three pa-

rameters are usually chosen by demanding that the NJL sector reproduces the

three physical quantities in the hadronic sector (at T = 0), viz. the pion mass

mπ, the pion decay constant fπ and quark condensates σu = σd at zero temper-

ature. On the other hand, the gauge potential U has seven parameters, viz. T0,

ai (i = 0, · · · , 3), b3 and b4. These parameters are fixed by demanding that U

reproduces the LQCD data on the EoS of a pure SU(3) gauge theory. Using

these criteria, all these ten parameters have been fixed in Ref. [103]. Except for

T0, values of all the other parameters of the PNJL model have been chosen to be

the same as in Ref. [103].

The parameter T0 is precisely the transition temperature for this theory. Mo-

tivated by LQCD data for the pure SU(3) gauge theory [55, 148] its value was

chosen to be 270 MeV [137, 71]. With the coupling to NJL model the transi-

tion does not remain first order, as opposed to the pure gauge theory. In this

case from the peak in dΦ/dT the transition (or crossover) temperature Tc comes

around 230 MeV [103, 137, 71]. Due to this the authors of Ref. [103] have chosen

T0 = 190 MeV such that the Tc becomes about 180 MeV , commensurate with

lattice data with two flavours of dynamical fermions [94, 134]. However, following

Ref. [137], we shall keep using T0 = 270 MeV , since for T0 = 190 MeV there is

about 25 MeV shift in the chiral and deconfinement transitions with all other

model parameters remaining fixed. Whereas, for T0 = 270 MeV this shift is less

than 5 MeV . We have checked that for both the values of T0 the susceptibilities

we compute, when plotted against T/Tc, show very little dependence on T0.

Values that we use for all the parameters are listed in Table [5.1] and Table

[5.2].

5.3.1 Taylor expansion of pressure

In general, to obtain the Taylor coefficients of pressure one can use either of the

two methods— (i) obtain the expressions for cjkn by taking derivatives of pressure
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Inputs Parameters

mπ = 139.3 MeV Λ = 0.651 GeV

fπ = 92.3 MeV G0 = 5.04 GeV −2

| 〈ūu〉 |1/3 = |
〈

d̄d
〉

|1/3 = 251 MeV m0 = 5.5 MeV

Table 5.1: Parameters for the NJL sector, taken form Ref. [103].

T0 (MeV ) a0 a1 a2 a3 b3 b4

270 6.75 −1.95 2.625 −7.44 0.75 7.5

Table 5.2: Parameters of the Polyakov loop potential U, fixed by fitting the LQCD

data on EoS of Ref. [55]. Values of these parameters have been from Ref. [103]

with respect to µ0 and µI and then use the values of σu, σd, Φ and Φ̄ at zero

chemical potentials into those expressions; (ii) compute the pressure as a function

of µ0 and µI for each value of T , and then fit that pressure to a polynomial in µ0

and µI . In that case the cjkn will be the coefficients (i.e. the fitting parameters)

of that fitted polynomial. In any exact computation, these two methods should

yield identical results. LQCD, however, at present cannot use method (ii) due

to the complex determinant problem. On the other hand, since we are using the

mean field analysis, the method (i) may give us wrong results as the mean fields

used would be insensitive to µ0 and µI . In this work we have computed the cjkn

using method (ii).

We extract the Taylor expansion coefficients of Eq. [2.9] by fitting, with a

polynomial 6-th order in both µ0 and µI , the pressure as a function of µ0 and µI at

each temperature. Data for pressure was obtained in the range 0 < µ0 < 50 MeV

and 0 < µI < 50 MeV at all the temperatures. Spacing between consecutive data

was kept at 0.1MeV . We obtain all possible coefficients upto 6-th order. We have

checked the reliability of our fits by changing the order of the fitting polynomial,

ranges of µ0 and µI and value of m0. We have done satisfactory reproduction

all the coefficients computed in Ref. [137]. In this section we, first, present the

results for the standard flavour-mixing in the NJL model parametrization (i.e.

with G1 = G2), and then present the results for minimal (G2 = 0) and maximal

86



5.3 Results

(G1 = 0) flavour-mixing.

5.3.1.1 G1 = G2

In this section we present our results for the PNJL model with the standard NJL

Lagrangian with G1 = G2 = G0/2 (i.e. α = 1/2). Note that this case has been

studied earlier in Refs. [125, 103, 137], but without the isospin chemical potential.

In Fig. [5.1] we show our results for cn and cIn. We have also plotted the LQCD

data from Ref. [64] for quantitative comparison. At the second order of Taylor

expansion we find (also observed earlier in Ref. [137]) that c2 compares well with

the LQCD data. But cI2 quickly reaches its ideal gas value above Tc (around 2Tc)

in our model calculations, whereas the LQCD values are lower and match with

the value of c2. At the 4-th order we see that the values of c4 (also observed in

Ref. [137]) in the PNJL model matches closely with those of LQCD data for upto

T ∼ 1.05Tc and deviates significantly thereafter. The coefficient cI4 is close to the

LQCD data for the full range of T upto 2Tc. The 6-th order coefficients c6 and

cI6 are quite consistent with the LQCD results.

In order to investigate these discrepancies between the the PNJL model results

and the LQCD data more closely, we have calculated the flavour diagonal (cuun )

and off-diagonal (cudn ) susceptibilities, defined in Eq. [5.23], upto 6-th order. The

diagonal flavour susceptibilities cuun are shown in Fig. [5.2]. Except for cuu2 , all

the other LQCD results for flavour diagonal susceptibilities are close to their

respective ideal gas values from around 1.2Tc onwards. While cuu2 and cuu6 are more

or less consistent with the LQCD data, cuu4 deviate significantly from T ∼ 1.05Tc

onwards.

The flavour off-diagonal susceptibilities cudn for the PNJL model are shown,

and compared with the LQCD data, in Fig. [5.3]. The LQCD values for all the cudn

are close to their respective ideal values for T & 1.2Tc. While cud6 from the PNJL

model follows the LQCD data quite nicely, cud4 starts deviating for & 1.05Tc.

However, the most striking discrepancy with the LQCD data shows up in the 2-

nd order flavour off-diagonal susceptibility cud2 . The PNJL result for this quantity

is very far away form the corresponding LQCD data for the whole temperature

range. While for T > Tc the PNJL results do not even start approaching the
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Figure 5.1: cn and cIn as functions of T/Tc. Symbols are LQCD data [64]. Arrows

on the right indicate the corresponding ideal gas values.
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Figure 5.2: The flavour diagonal susceptibilities, for n = 2, 4 and 6, as functions

of T/Tc. Symbols are LQCD data [64]. The arrows on the right indicate the

respective ideal gas values.
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Figure 5.3: The flavour off- diagonal susceptibilities, for n = 2, 4 and 6, as

functions of T/Tc. Symbols are LQCD data [64]. The arrows on the right indicate

the respective ideal gas values.
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corresponding ideal gas value and seems to saturate for T ∼ 1.8Tc, the LQCD

results are very close to the ideal gas value even for temperatures just above Tc.
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Figure 5.4: c044 , c066 and c246 as functions of T/Tc. Arrows on the right indicate the

respective ideal gas values.

We also present the temperature dependence of the remaining nonzero coef-

ficients (Fig. [5.4]), for which the LQCD data are not available. c044 is the 4-th

order diagonal coefficient in the isospin direction. In contrast to c404 we see that

c044 approaches the ideal gas value quite fast above Tc. The behaviour of c066 is

quite similar to its counterpart c606 . Same is also true for the coefficient c246 .

5.3.1.2 G1 6= G2

As can be seen from Eq. [5.24] cud2 is very closely related to the FODQNS, which is

a measure of the flavour-flavour correlation (see Chapter [4] for detail discussion).

The fact that the PNJL model has problem in reproducing the LQCD data for

cud2 motivates us to have a closer look at the effects of flavour-mixing on different

susceptibilities. As discussed earlier, the instanton induced flavour-mixing can

be tuned by varying the value of α between 0 − 1. Here we discuss the two

extreme cases of α = 1 (maximal mixing) and α = 0 (zero mixing). We have

re-calculated all cn and cIn, upto n = 6, for α = 0, and 1. We found that all the

diagonal coefficients, including cI2 and c4 whose behaviour are the most drastically

different in the PNJL model and in LQCD, are independent of the values of α.

As a consequence, the FODQNS [χud/T 2 = (cI2 − c2)/2] is also unaffected by

the instanton induced flavour-mixing effects (see Fig. [5.5a]). This fact can be
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understood from the following reasoning. In Section [5.2] we have discussed that

the physics is completely independent on the value of α whenever either µ0 = 0

or µI = 0. This in turn implies that all the diagonal coefficients (i.e. with no

mixed derivatives in µ0 and µI) are expected to be unaffected by amount of

flavour-mixing.

However, the mixed derivatives in µ0 and µI can have dependence on α. This is

because the values of σu and σd can be different when both µ0 and µI are together

nonzero. This was observed in Ref. [138] for NJL model. But those authors also

found that there is a critical value of αc ≈ 0.11 above which the condensates

σu and σd become equal even for both µ0 and µI being nonzero. Here, for the

PNJL model we have found that all the mixed derivatives upto 6-th order are

exactly equal for the two cases α = 0.5 (standard mixing used in NJL and PNJL

models) and α = 1 (maximal mixing), which is in accordance to the results of

the above reference. For α = 0 all the off-diagonal coefficients were found to

differ from those at α = 0.5. The dependence of the mixed susceptibilities on the

flavour-mixing have been illustrated in Fig. [5.5b] and Fig. [5.5c] by showing one

representative coefficient each for n = 4, and 6. As can be seen, the instanton

effects significantly suppress the temperature variation of these coefficients near

Tc. Also it can be observed from Fig. [5.5], that the LQCD data favours larger

amount of instanton induced flavour-mixing.

5.3.2 Specific heat and speed of sound

We have also investigated the chemical potential dependence of specific heat CV

and the speed of sound Cs. As discussed in Section [5.2], in order to compute CV

and Cs one requires temperature derivatives of Ω. These derivatives were obtained

using the standard finite difference method. To get points close enough we have

used cubic spline interpolations. The range of the three representative values of

µ0 and µI are such that neither the diquark physics nor the pion condensation

become important.

In the ideal gas limit the expression for CV as a function of temperature T

and either of the chemical potentials µ0 or µI is given by, CV /T
3 = (74π2/15) +

6(µ2
0,I/T

2). Thus, for large temperatures and not so large chemical potentials, it
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Figure 5.5: (a) cud2 is independent of α. (b) & (c) Dependence of some off-

diagonal coefficients on the flavour mixing parameter α. Symbols are lattice data

[64]. Arrows on the right indicate the corresponding ideal gas values.
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5. PNJL MODEL AND LATTICE RESULTS

is expected that the CV is more or less independent of µ0,I ’s. This is borne out

in the PNJL model as seen in Fig. [5.6]. At low temperatures, however, there

can be non-trivial contributions from chemical potentials. As illustrated in Fig.

[5.6a], at low temperatures there is significant dependence of CV on µ0. In the

range of µI considered, even for T < Tc there seems to be no significant isospin

effect. Another interesting feature is that with increasing µ0 the peak of CV shifts

towards lower temperatures. This signifies that the transition temperature may

decrease and also the nature of transition may change as the chemical potentials

increase. A decrease of Tc with increasing µ0 and µI is consistent with what have

been found in LQCD studies [149, 150].
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Figure 5.6: CV as a function of T/Tc. (a) Shows the variation with µ0. (b)

Shows the variation with µI . Arrows on the right indicate the ideal gas value for

µ0 = µI = 0.

The speed of sound in the ideal gas limit is the same
√

3 for any given tem-

perature and chemical potential. As shown in Fig. [5.7] the C2
s for different µ0

and µI merge towards the ideal gas value at large temperatures. However, even

just above Tc, there is significant increase in C2
s for increase in µ0. So for nonzero

quark matter density the speed of sound is higher near Tc and this may have

important contribution to thermalization of the matter created in relativistic

heavy-ion collision experiments. There seems to be negligible isospin dependence

of Cs in the range of temperatures studied here.
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Figure 5.7: Cs as a function of T/Tc. (a) Shows the variation with µ0. (b)

Shows the variation with µI . Arrows on the right indicate the ideal gas value for

µ0 = µI = 0.

5.4 Discussion

Earlier expectation of Refs. [137, 151] was that the mean field analysis may not

be adequate and hence the higher order coefficient c4 in the PNJL model shows

significant departure from lattice results. This should have also meant that the

cI2 should be more closer to LQCD data than cI4. However, our results show that

the cI2 is significantly different from the LQCD data above Tc, but cI4 is quite

consistent (see Fig. [5.1]). Further, as can be seen from Fig. [5.1] that both the

6-th order coefficients c6 and cI6 are quite consistent with the LQCD results. Here

we try to present a qualitative explanation of the above mentioned facts.

As pointed out in Section [5.2], in the thermodynamic potential of Eqs. [5.13,

5.14] Φ couples to µ0 and its conjugate Φ̄ couples to −µ0 due to CP symmetry. As

observed in Refs. [103, 137], in the PNJL model this difference in coupling leads

to splitting of Φ and Φ̄ for any nonzero µ0. (Note that this same phenomenon has

also been observed in SU(N) matrix model [152].) Thus even at high tempera-

tures when Φ is close to 1, it decreases with increasing µ0 and its conjugate Φ̄

increases with increasing µ0 (see Fig. [5.8a]). This means that the µ0 dependence

of pressure is not the same as that for an ideal gas. Hence the coefficients c2 and

c4 are both away from their respective ideal gas values. Also note that though c6

is close enough, it is still distinctly different from zero. On the other hand, for

µ0 = 0, Φ as well as Φ̄ couples to both the µI and −µI . They are, thus, equal
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Figure 5.8: (a) Φ (solid lines) decreases and Φ̄ (dotted lines) increases as a func-

tion of µ0/T (µI = 0). (b) Φ (solid lines) and Φ̄ (dotted lines) are equal and

almost constant as a function of µI/T (for µ0 = 0).

for all temperatures (see Fig. [5.8b]). Also, both of them remain almost constant

with changing µI . So the temperature dependence of the cI2 and its µI derivatives

are expected to reach the ideal gas behaviour above Tc. Indeed this is exactly

what we have found in our studies, see Fig. [5.1a] and Fig. [5.4].

We have seen that the PNJL model fails to reproduce the LQCD results for

the FODQNS. As observed in Chapter [4], the correlation among the flavours in

FODQNS is largely governed by the interaction of the quarks with the gauge fields

and is almost independent of the presence of the quarks loops. This, along with

our discussion in the above paragraph, indicates that a modification of the gauge

potential in the PNJL model may improve the agreement. (Very recently, in Refs.

[154, 155] some studies along this line have been made.) Also, the negativity of

cud2 (see Fig. [5.3a]) indicates that the dominant correlation is between u and d̄

and vice-verse, i.e. pion-like. Hence inclusion of dynamical pion condensate may

also improve the agreement between PNJL model results and LQCD data on

FODQNS . (Recently some studies along this line have been made in Refs. [153])

Finally, we have found that a larger amount of instanton induced flavour-

mixing is favoured by the LQCD data (see Figs. [5.5b, 5.5b]). We note that value

of α which is favoured by the LQCD results is larger than αc ≈ 0.11 [138], above

which the u and d quark condensates become equal in the NJL model at large

µ0 (but small T and µI 6= 0). This observation implies that the NJL model may
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5.5 Summary

have only one first order transition at large values of µ0, as opposed to the case

of two when the flavour-mixing is negligible (see the discussion in Section [5.1]

for references).

5.5 Summary

We have extended the PNJL model of Ref. [103] by the introduction of isospin

chemical potential. Using this we have studied, within the framework of mean

field approximation, the behaviour of strongly interacting matter with two de-

generate quark flavours in the phase space of T , µ0 and µI , for small values of

the chemical potentials. We have extracted 10 coefficients of Taylor expansion of

pressure in the two chemical potentials (µ0 and µI) upto 6-th order. Some of these

coefficients were compared with available LQCD data. Since (see Chapter [4])

the FODQNS plays an important role in capturing the underlying physics of the

lattice results , we have also computed the FDQNS and FODQNS using the above

mentioned coefficients. We found that although the PNJL model reproduces the

LQCD data on FDQNS satisfactorily, it fails to do so for FODQNS. We have ar-

gued that this discrepancy is probably not due to the limitation of our mean field

approximation and use of a modified gauge potential may improve the agreement

with the LQCD data. Motivated by the fact that the FODQNS is a measure

of flavour-flavour correlations we have, further, extended the model to study the

effects of instanton induced flavour-mixing. Unfortunately, we found no effect of

flavour-mixing on any diagonal susceptibilities of µ0 and µI , and hence on the

FODQNS. However, flavour-mixing effects on the mixed susceptibilities of quark

and isospin chemical potentials indicate that large flavour-mixing is favoured by

the LQCD data. This may have important consequences [138] on the phase dia-

gram of the NJL model at low temperatures and large chemical potentials. We

have also investigated chemical potential dependence of specific heat and speed

of sound. Consistent with LQCD findings [149, 150], the peak in specific heat

shifts towards lower temperatures with increasing chemical potentials indicating

a decrease in the transition temperature.
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Chapter 6

Summary and conclusion

Recent experimental results from RHIC indicate the formation of a thermalized

medium endowed with large collective flow and very low viscosity. These findings

suggest that close to the transition temperature (Tc) nature of Quark Gluon

Plasma (QGP) is far from a gas of free quarks and gluons, rather it is a strongly

interacting system. Since at these temperatures the QCD coupling is rather

large, perturbative studies are not suitable for studying the strongly coupled

QGP and non-perturbative techniques are called for. At present, Lattice QCD

(LQCD) is the most viable and successful non-perturbative technique for studying

such a system. Moreover, numerical simulations of LQCD have the advantage of

obtaining almost parameter free predictions for the theory from first principles.

This approach has been very successful in providing detail information about the

thermodynamic properties of QCD at finite temperature. In this thesis we have

studied different thermodynamic properties of QGP using LQCD.

Specific heat at constant volume (CV ) is directly related to the event-by-event

transverse momentum fluctuations, which are measurable in heavy ion collision

experiments. The speed of sound (Cs), on the other hand, controls the expansion

rate of the fire-ball produced in the heavy-ion collisions. Thus the value of Cs is an

important input parameter for hydrodynamic studies. Moreover, these quantities

provide further tests of all the models and perturbative expansions which try to

explain the lattice data on the equation of state (EoS) of QGP. In Chapter [2]

we have determined of the continuum limit of CV and Cs in pure SU(3) gauge

theory, for relatively high temperatures (T ≥ 2Tc). Such a lattice determination
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6. SUMMARY AND CONCLUSION

of CV and Cs needs the appropriate lattice expressions for these quantities. In

Chapter [2] we have shown that a naive application of the lattice temperature

derivative on the corresponding energy density (ǫ) leads to incorrect expression

for CV , since CV /T
3 does not give the correct ideal gas value (4ǫ/T 4) in the high

temperature (T → ∞ or g → 0). We then derived the correct expressions for

CV and Cs by employing a dimensionless quantity C = ∆/ǫ, ∆ = ǫ − 3P being

the so-called interaction measure. Using those expressions we made a precise

(with errors ∼ 5%) determination of the continuum limit of CV and Cs in the

high temperature (T = 2Tc and 3Tc) phase of the gluonic plasma. In the process

we also recomputed the EoS by a method which has not been used earlier to

obtain the continuum limit. While we found that ǫ, P and CV deviate from there

respective ideal gas values by about 20% even at 3Tc, the the speed of sound

Cs is very close to its ideal gas value at these temperatures. More surprisingly,

the ideal gas relation CV /T
3 = 4ǫ/T 4 seems to hold in spite of the non-ideal

behaviour of these quantities. We argued that these apparently contradictory

behaviour of the gluonic plasma follows from the smallness of the quantity C.

Furthermore, we have argued that the quantity C gives a measure of the breaking

of conformal symmetry in QCD at the long distance scales. Hence our results

indicate that, at these temperatures the pure SU(3) gauge theory is close to

its conformal symmetric limit. Since the formalism presented in Chapter [2]

can easily be extended for the case of fermions, it would be very interesting to

recalculate CV and Cs for the full theory and check whether the above conclusion

also holds in that case.

The method (known as the differential method) which we used in Chapter [2]

to compute CV and Cs produces negative pressure in the vicinity of Tc. This re-

stricted us to investigate only the high temperature region. But more interesting

physics is expected around the phase transition region. Hence a precise computa-

tion of these quantities close to Tc is necessary. The alternative technique which

solves this negative pressure problem is known as the integral method. But within

the framework of the integral method a quantity like CV can only be computed

using numerical differentiations, which are prone to larger errors. In view of this

situation, in Chapter [3] we proposed an improvement for the differential method.

In contrast to the choice of the spatial lattice spacing in the previous approach of
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the differential method, we chose the temporal lattice spacing to set the scale of

the theory. We have shown that this improved method gives positive pressure for

all temperatures and lattice spacings that we have studied, even when the earlier

method gave negative pressure. Note that this is so in spite of the use of the same

perturbative values for the couplings (Karsch coefficients), which was thought to

be the cause behind the negative pressure. Moreover, being a differential method,

this method can be easily extended for the calculations of CV and Cs. Using this

improved differential method we determined the continuum limit of P , ǫ, CV and

Cs for a pure SU(3) gauge theory in the temperature range 0.9Tc ≤ T ≤ 3Tc.

A comparison with the integral method showed that both the methods agree for

T ≥ 2Tc. Around Tc pressure and energy density obtained by our method rise

more sharply than those for the integral method. We discussed possible sources

for these differences. These include coarser lattices, higher order Karsch coeffi-

cients, subtraction constant in the integral method etc. . Our continuum results

showed that for T ≥ 2Tc, CV /T
3 and ǫ/T 4 are far from its ideal gas value but

are consistent with the prediction in conformal theories that CV /T
3 = 4ǫ/T 4. At

these temperatures we have found that Cs is also quite close to its ideal gas limit,

supporting the hypothesis that the pure SU(3) gauge theory is close to its con-

formal symmetric limit for these temperatures. We also compared our data with

the predictions of the perturbation theory and the AdS/CFT correspondence,

and found reasonable agreements in certain temperature ranges. A more detailed

study regarding the systematic difference between the integral method and our

improved differential method is clearly desirable before applying our improved

method to the full theory including the quarks.

As mentioned earlier, the results form RHIC experiments as well as different

LQCD studies indicate that the QGP is a strongly interacting system in the

vicinity of the transition region. In view of this situation, it is very important

to identify the degrees of freedom of a strongly coupled QGP. In Chapter [4] we

have studied different correlations among the conserved charges and flavours, viz.

the baryon-strangeness correlation (CBS), electric charge-strangeness correlation

(CQS) etc. , to do so. Previously it was argued [98, 106] that these correlations

help in the identification of the degrees of freedom of QGP. If the relevant degrees

of freedom of QGP are quasi-quarks then these quantities will have values close
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to their respective ideal gas limit. These quantities can be expressed as ratios

of Flavour Off-Diagonal Quark Number Susceptibilities (FODQNS) to Flavour

Diagonal Quark Number Susceptibilities (FDQNS), which are computable on the

lattice. In Chapter [4] we argued that in general these ratios can depend on

the lattice cut-off, and hence their continuum values can be different form those

obtained [106] for full QCD but on coarser lattices. In order to have a closer

look at these correlations in Chapter [4] we made a careful investigation of the

continuum limits of the FDQNS and FODQNS. For these studies we employed the

quenched approximation, i.e. we neglected the quark loops, due the limitation of

present day computer resources. We performed these continuum extrapolations

using lattices with large temporal extents, up to temporal lattice size of 12, and in

the temperature range Tc < T ≤ 2Tc, where QGP is likely to be strongly coupled.

Using continuum results for FODQNS and FDQNS we studied their ratios, and

hence the correlations like CBS, CQS etc. . We found that these quantities are

almost independent (within 5%) of the lattice spacing over the whole temperature

range that we studied. Furthermore, a comparison of our results with that of the

previous dynamical simulations [106] also showed that these correlations have

very mild dependence on the sea quark content of the theory. We checked the

volume dependence of these quantities and found that the finite-volume effects

are under control. Hence we conclude that these observables are robust, in the

sense that they are almost independent on the lattice spacing and have very mild

dependence on the sea quark content of the theory. Moreover, our results showed

that all these correlations acquire values very close their respective ideal gas limits,

even when the temperature is just above Tc. All these results indicate that the

excitations in the strongly coupled QGP are quasi-quark like. In this chapter we

have also confirmed the robustness of the Wroblewski parameter, which is related

to the strangeness enhancement in QGP and hence relevant for the experiments

of RHIC and LHC.

While the LQCD studies have the advantage of being based on first principles,

in view of their numerical nature it is important to understand the LQCD results

in terms of some QCD inspired effective models. These models have an advantage

that they can be used to study the region of the phase space where lattice studies

are currently not possible, e.g. in the region of large chemical potentials. For
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better acceptance, these models should reproduce the known lattice results in

order to prove that they capture the correct physics. In Chapter [5] we focus on

one such QCD inspired effective model, viz. the Polyakov loop coupled Nambu

Jona-Lasinio (PNJL) model. In Chapter [4] we found that the FODQNS plays an

important role in capturing the underlying physics of the LQCD results. Hence,

our aim in Chapter [5] was to calculate this quantity within the framework of the

PNJL model and perform a stringent test of the model by comparing those results

with that obtained from the LQCD simulations. The primary goal of the PNJL

model is to provide a unified picture of the spontaneous chiral symmetry breaking

and the confinement phenomenon of QCD. These two features of QCD are related

to two different global symmetry of the QCD Lagrangian, viz. the approximate

chiral symmetry (exact in the limit of vanishing bare quark masses) and the Z(3)

center symmetry of the SU(3) gauge symmetry. The PNJL model tries to provide

a unified framework for these two phenomena by the coupling a Polyakov loop

based effective Lagrangian (which has Z(3) global symmetry) for the gauge fields

to the Lagrangian of Nambu Jona-Lasinio (NJL) model (which has the global

chiral symmetry for vanishing bare quark masses). The coupling of these two

part is done by replacing the ordinary derivatives in the kinetic term of the NJL

Lagrangian by covariant derivatives. This takes care of the interactions of quarks

with effective gluon fields. In order to compute the FODQNS, we extended the

PNJL model (with two degenerate quark flavours) to non-zero isospin chemical

potential (µI). This enabled us to study, within the framework of mean field

approximation, the Taylor expansion of the pressure in the average quark chemical

potential (µ0) and in the isospin chemical potential, around µ0 = µI = 0. We

extracted 10 coefficients of Taylor expansion of pressure upto 6-th order in µ0

and µI . We compared some of these coefficients with available lattice results.

Using these coefficients we have calculated the FODQNS, as well as the FDQNS.

Although the FDQNS showed reasonably good agreement with the lattice data,

the PNJL model failed to reproduce the LQCD results for the FODQNS. While

the lattice results on the FODQNS are very close to zero starting from just above

Tc, the PNJL model results are far from zero even for temperature as high as 2Tc.

In Chapter [5] we have also argued that this disagreement is probably not due

the mean field approximation. We have also provided a qualitative explanation
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that these discrepancies are probably caused by the gauge part of the PNJL

model. This, along with the fact that the LQCD results for the FODQNS are

largely governed by the interactions between the quarks and the gauge fields

(as found in Chapter [4]), motivated us to conclude that a modified form of

the gauge part of the PNJL Lagrangian may improve its agreement with the

lattice results. As the FODQNS is a measure of the flavour-flavour correlation,

in order to look at this quantity more closely we modified the NJL part of the

PNJL Lagrangian such that it can incorporate the effects of instanton induced

flavour-mixing. Unfortunately, we did not find any effect of instanton induced

flavour-mixing on the FODQNS. However, comparison of other susceptibilities

with the lattice results showed that a larger amount of flavour-mixing is favoured

by the LQCD results. This may have an important consequence on the phase

structure of NJL-type models, i.e. for large µ0, small T and non-zero µI the NJL-

type models may have only one first order phase transition line as opposed to

two for the case of small flavour-mixing. In future it would be very interesting to

perform these analyses using an improved form the gauge Lagrangian (and also

possibly including the dynamical pion condensates) in the PNJL model. If these

modifications reproduce the LQCD results satisfactorily, one can then employ

this model to make predictions for QCD at large chemical potentials.
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