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Thesis Synopsis

Looking for new physics beyond the Standard Model

through flavour transitions

Diptimoy Ghosh

Thesis advisor : Amol Dighe
Department of Theoretical Physics

Tata Institute of Fundamental Research, Mumbai, India

A Introduction

The term flavour was first used in particle physics in the context of the quark model of
hadrons. Flavour physics denotes physics of transitions among the three generations
of Standard Model (SM) fermions. In the standard model all the flavour and CP
violation arise solely through the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

The SM flavour Lagrangian, in the mass basis, is given by (in the unitary gauge),

LFm =
(
qiD/ qjδij

)

NC
+
(
uL cL tL

)



yu 0 0
0 yc 0
0 0 yt








uR
cR
tR



 (v + h) + (u, c, t) ↔ (d, s, b)

+
g2√
2
uLiγ

µVijdLjW
+
µ + h.c.,

(1)

where the subscript NC stands for neutral current interaction for the gluons, the photon
and the Z gauge bosons, W± stands for the charged electroweak gauge bosons, h is the
physical Higgs field, v ∼ 176GeV, yi are the Yukawa couplings, g2 is the weak coupling
constant and V is the CKM matrix.

To emphasize the physical transitions associated with the CKM matrix, it is usually
written as

V =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 , (2)

so that the entries are labeled by the quark flavours.
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Interesting constraints come from the orthogonality of columns (or rows) of the
unitary CKM matrix. Taking the first and third columns of V , one has

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (3)

Equation (3) says that the three terms in the sum trace out a triangle on the complex
plane – the unitarity triangle, shown in Fig. 1.

Vcd Vcb
*

VudVub
* Vtb

*Vtd

βγ

α

Vud Vub
*

Vcb
*Vcd Vcd

Vtd

Vcb
*

Vtb
*

βγ

α

(0,0)

(ρ,η)

(1,0)

Figure 1: The unitarity triangle. The figure on the left directly expresses Eq. (3). The
rescaled version on the right shows the triangle in the plane (ρ, η) which is defined later
in the text.

The lengths of the sides are simply |VudV ∗
ub|, etc., and the angles are

α = arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β = arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ = arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (4)

The notation β ≡ φ1, α ≡ φ2, γ ≡ φ3 is also used. By construction α + β + γ = π.
The area of the triangle is defined as |J |/2 where J is called the Jarlskog invariant. In
fact, there are five more unitarity triangles, all with area |J |/2.

A convenient parameterization of the CKM matrix is due to Wolfenstein. It stems
from the observation that the measured matrix obeys a hierarchy, with diagonal ele-
ments close to 1, and progressively smaller elements away from the diagonal. It has four
parameters λ, A, ρ, and η . From experiment λ ≈ 0.22, A ≈ 0.8, and

√
ρ2 + η2 ≈ 0.4,

so it is phenomenologically useful to expand V in powers of λ:

V =




1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 +O(λ4) . (5)

The Jarlskog invariant can now be expressed as J = A2λ6η ≈ (7×10−5)η. The unitarity
triangle in Eq. (3) is special, because its three sides are all of order Aλ3. The other
triangles are all long and thin, with sides (λ, λ, Aλ5) (e.g., for the kaon) or (λ2, λ2, Aλ4)
(e.g., for the Bs meson).

The rich phenomenology of weak decays has always been a source of information
about the nature of elementary particle interactions. Despite the impressive success
of the CKM picture of flavour changing interactions in which the GIM mechanism for
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the suppression of flavour changing neutral currents (FCNC) plays a very important
role, there are many open questions of theoretical and experimental nature that should
be answered before we can claim to have a theory of flavour. Weak decays of hadrons
containing heavy quarks are now being employed for precision tests of the Standard
Model and measurements of its parameters. In particular, they offer the most direct
way to determine the weak mixing angles, to test the unitarity of the CKM matrix, and
to explore the physics of CP violation. The existing tensions in some of the corners of
the SM and still a rather big room for new physics (NP) contributions in rare decays
of mesons and leptons and CP-violating observables give us hopes that indeed several
phenomena required to answer at least some of these questions could be discovered in
this decade. On the other hand, hadronic weak decays also serve as a probe of that
part of strong-interaction phenomenology which is least understood: the confinement
of quarks and gluons inside hadrons.

As far as high precision experiments are concerned a number of selected processes
and observables will play the leading role in learning about the NP. This selection
is based on the sensitivity to NP and theoretical cleanness. The former can be in-
creased with the increased precision of experiments and the latter can improve with
the progress in theoretical calculations, in particular the non-perturbative ones like
the lattice simulations. The decay modes involving b → sµ+µ− transitions and the
decay B+ → τντ are two important modes that are very sensitive to NP. Clearly, there
are other modes in flavour physics but the ones above will play very crucial role in
our search for the theory of flavour. Having experimental results on these decays and
observables with sufficient precision accompanied by improved theoretical calculations
will exclude several presently studied models reducing thereby our exploration of short
distance scales to a few avenues. We will study the above two modes in detail in this
thesis.

A.1 Operator Product Expansion(OPE)

To predict the decay rate of a B meson into some final state f , one must calculate
the transition amplitude M for B → f . In general there are many contributions to
M, each of which is, at the quark level, pictorially represented by Feynman diagrams
such as those in Fig. 2. The theoretical tool for the calculation of the amplitude is the
operator product expansion (OPE). Schematically the decay amplitude M is expressed
as

M = −4GF√
2
V
∑

j

Cj(µ) 〈f |Oj(µ)|B〉
[
1 +O

(
m2
b

M2
W

)]
, (6)

where µ is a renormalization scale. All dependence on heavy masses M ≫ µ such as
mt, MW or the masses of new undiscovered heavy particles is contained in Cj – the
wilson coefficients. The Hamiltonian for ∆B = 1 and ∆S = 1 transitions consists of

10



b

s

W−

u/c/t

W+

µ−

µ+

νµ

b s

u/c/t
u/c/t

W−

Z/γ

µ+ µ−

b su/c/t

W−

Z/γ

µ+ µ−

W+

Figure 2: Standard ModelW exchange box diagram and penguin diagram with internal
top quark loop for the decay b → sµ+µ−.

many operators,

Oc
1 = [s̄αLγµc

β
L] [c̄

β
Lγ

µbαL], O
u
1 = [s̄αLγµu

β
L] [ū

β
Lγ

µbαL], O
c
2 = [s̄αLγµc

α
L] [c̄

β
Lγ

µbβL],

Ou
2 = [s̄αLγµu

α
L] [ū

β
Lγ

µbβL], O3 =
∑

q=u,d,s,c,b

[s̄αLγµb
α
L] [q̄

β
Lγ

µqβL],

O4 =
∑

q=u,d,s,c,b

[s̄αLγµb
β
L] [q̄

β
Lγ

µqαL], O5 =
∑

q=u,d,s,c,b

[s̄αLγµb
α
L] [q̄

β
Rγ

µqβR],

O6 =
∑

q=u,d,s,c,b

[s̄αLγµb
β
L] [q̄

β
Rγ

µqαR], O8 =
g

16π2
mb [s̄Lσ

µνGa
µνT

abR] .

(7)

Some of these operators are depicted in Fig. 3. In O8, G
a
µν is the chromomagnetic field

strength tensor. The operators are grouped into classes, based on their origin: O1 and
O2 are called current-current operators, O3 through O6 are called four-quark penguin
operators, and O8 is called the chromomagnetic penguin operator.

In some cases, especially when isospin breaking plays a role, one also needs to
consider penguin diagrams which are of higher order in the electroweak fine structure
constant αew. They give rise to the electroweak penguin operators:

O7 =
e

16π2
mb [s̄

α
L σ

µνFµν b
α
R] ,

Oew
7 =

3

2

∑

q=u,d,s,c,b

eq [s̄
α
Lγµb

α
L] [q̄

β
Rγ

µqβR] , O
ew
8 =

∑

q=u,d,s,c,b

3

2
eq [s̄

α
Lγµb

β
L] [q̄

β
Rγ

µqαR] ,

Oew
9 =

3

2

∑

q=u,d,s,c,b

eq [s̄
α
Lγµb

α
L] [q̄

β
Lγ

µqβL] , O
ew
10 =

∑

q=u,d,s,c,b

3

2
eq [s̄

α
Lγµb

β
L] [q̄

β
Lγ

µqαL] .

(8)

Here F µν is the electromagnetic field strength tensor, and eq denotes the charge of
quark q. The magnetic (penguin) operator O7 is of key importance for the radiative
decay b→ sγ. For semileptonic decays the following additional operators occur:

O9 =
e2

16π2
[s̄L γµ bL] [ℓ̄ γ

µ ℓ] , O10 =
e2

16π2
[s̄L γµ bL] [ℓ̄ γ

µγ5 ℓ] ,

O11 =
e2

32π2 sin2 θW
[s̄L γµ bL] [ν̄L γ

µ νL] .

(9)
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Figure 3: Quark level diagrams for some of the effective operators of (7),(8),(9).

The operators introduced above are sufficient to describe nonleptonic transitions in
the Standard Model to order GF . In extensions of the Standard Model, on the other
hand, the short distance structure can be very different. Additional operators with
new Dirac structures, whose standard Wilson coefficients vanish, could also enter the
effective Hamiltonian.

B New Physics in b → sµ+µ−:CP-Conserving Ob-

servables

The decay b → sµ+µ− is extremely versatile with the possibility to measure, for in-
stance, the differential decay rate in bins of leptons’ invariant mass. One can also
construct asymmetries, like the well-known forward-backward asymmetry (AFB), with
differing sensitivity to NP effects. A full angular analysis of B → K∗(→ Kπ)µ+µ−

would give access to a multitude of observables. In this section we will study the
CP-conserving observables in different b→ sµ+µ− modes.

Within the SM, the effective Hamiltonian for the quark-level transition b→ sµ+µ−
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is

HSM
eff = −4GF√

2
V ∗
tsVtb

{ 6∑

i=1

Ci(µ)Oi(µ) + C7
e

16π2
[s̄σµν(msPL +mbPR)b]F

µν

+C9
αem
4π

(s̄γµPLb) µ̄γµµ+ C10
αem
4π

(s̄γµPLb) µ̄γµγ5µ
}
, (10)

where PL,R = (1∓γ5)/2. The operators Oi (i = 1, ..6) correspond to the Pi in Ref. [17],
and mb = mb(µ) is the running b-quark mass in the MS scheme. We use the SM Wilson
coefficients as given in Ref. [18]. In the magnetic dipole operator with the coefficient
C7, we neglect the term proportional to ms.

We now add new physics to the effective Hamiltonian and check their impact on
b→ sµ+µ−,

Heff(b→ sµ+µ−) = HSM
eff +HV A

eff +HSP
eff +HT

eff , (11)

where HSM
eff is given by Eq. (10), while

HV A
eff =−4GF√

2

αem
4π

V ∗
tsVtb

{
RV (s̄γµPLb) µ̄γµµ+RA (s̄γ

µPLb) µ̄γµγ5µ

+ R′
V (s̄γµPRb) µ̄γµµ+R′

A (s̄γµPRb) µ̄γµγ5µ
}
, (12)

HSP
eff =−4GF√

2

αem
4π

V ∗
tsVtb

{
RS (s̄PRb) µ̄µ+RP (s̄PRb) µ̄γ5µ

+ R′
S (s̄PLb) µ̄µ+R′

P (s̄PLb) µ̄γ5µ
}
, (13)

HT
eff =−4GF√

2

αem
4π

V ∗
tsVtb

{
CT (s̄σµνb)µ̄σ

µνµ+ iCTE(s̄σµνb)µ̄σαβµ ǫ
µναβ

}
(14)

are the new contributions. Here, RV , RA, R
′
V , R

′
A, RS, RP , R

′
S, R

′
P , CT and CTE are the

NP effective couplings. In the following section we will consider only real NP couplings
and concentrate only on CP conserving observables.

B.1 Constraints on NP couplings

The constraints on the NP couplings in b→ sµ+µ− come mainly from the upper bound
on the branching ratio B(B̄0

s → µ+µ−) and the measurements of the total branching
ratios B(B̄0

d → Xsµ
+µ−) and B(B̄0

d → K̄µ+µ−) [19–23].
For RV,A, the allowed parameter space is the region between two ellipses:

1.0 ∼<
|RV + 3.6|2

(4.7)2
+

|RA − 4.0|2
(4.8)2

,
|RV + 2.8|2

(6.5)2
+

|RA − 4.1|2
(6.6)2 ∼< 1 , (15)

while for R′
V,A, the allowed region is the intersection of an annulus and a circle:

22.2 ∼< |R′
V + 3.6|2 + |R′

A − 4.0|2 ∼< 56.6 , |R′
V |2 + |R′

A|2 ∼< 17 . (16)
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For the SP operators, the present upper bound on B(B̄0
s → µ+µ−) provides the

limit
|RS − R′

S|2 + |RP − R′
P |2 ∼< 0.44 . (17)

This constitutes a severe constraint on the NP couplings if only RS,P or R′
S,P are

present. However, if both types of operators are present, these bounds can be evaded
due to cancellations between the RS,P and R′

S,P . In that case, B(B̄0
d → Xsµ

+µ−) and
B(B̄0

d → K̄µ+µ−) can still bound these couplings. The stronger bound is obtained
from the measurement of the latter quantity, which yields

|RS|2 + |RP |2 ∼< 9 , RS ≈ R′
S , RP ≈ R′

P . (18)

Finally, the constraints on the NP tensor operators come entirely from B(B̄0
d →

Xsµ
+µ−). When only the T operators are present,

|CT |2 + 4|CTE|2 ∼< 1.0 . (19)

Our main results are summarized below.

B.2 B̄0
s → µ+µ−

The SM prediction for the branching ratio is B(B̄0
s → µ+µ−) = (3.35±0.32)×10−9 [24].

The Tevatron gives an upper bound on its branching ratio (BR) of 4.7× 10−8 at 90%
C.L. [19–21]. Our analysis shows that
(i)Both VA and SP operators can suppress B(B̄0

s → µ+µ−) significantly below the SM
prediction.
(ii)While VA operators can only marginally enhance B(B̄0

s → µ+µ−) above 10−8, mak-
ing the decay accessible at the Tevatron in an optimistic scenario, the SP operators
can enhance the branching ratio even up to the present experimental bound.

B.3 B̄0
d → Xsµ

+µ−

The BR of B̄0
d → Xsµ

+µ− in both the low-q2 and high-q2 regions has been measured
experimentally [22, 23]. The SM predictions for B(B̄ → Xs µ

+ µ−) in the low-q2 and
high-q2 regions are (1.59± 0.11)× 10−6 and (0.24± 0.07)× 10−6, respectively [25].

The SM predicts a positive zero crossing for AFB in B̄0
d → Xsµ

+µ− in the low-
q2 region, i.e. for q2 less than (greater than) the crossing point, the value of AFB
is negative (positive). The NNLO prediction [25] for the zero of AFB(q

2) is (taking
mb = 4.8 GeV) (q2)0 = (3.5 ± 0.12)GeV2.This quantity has not yet been measured.
Fig. 4 shows AFB(q

2) for B̄0
d → Xsµ

+µ− in the presence of NP in the form of RV,A

couplings, which are the ones that can most influence these observables. We observe
that
(i)The NP VA couplings can enhance AFB up to 30% at low q2, make it have either sign,
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and even make the zero crossing disappear altogether. Enhancement or suppression of
the DBR by a factor of 2 is possible.
(ii)At high q2, however, AFB can only be suppressed.
(iii)The R′

V,A couplings can only affect AFB mildly.
(iv)If SP or T couplings are individually present, their contribution to AFB is either
absent or suppressed by mµ/mb. However if both SP and T operators are present, their
interference term is not suppressed and some enhancement of AFB is possible.
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Figure 4: The left (right) panels of the figure show AFB for B̄0
d → Xsµ

+µ− in the
low-q2 (high-q2) region, in the scenario where only (RV , RA) terms are present. The
band corresponds to the SM prediction; its width is due to the uncertainties in the
input parameters. The lines show predictions for some representative values of NP
parameters.
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Figure 5: The left (right) panels of the figure show fL for B̄0
d → Xsµ

+µ− in the low-q2

(high-q2) region, in the scenario where only (RV , RA) terms are present. The same
conventions as in Fig. 4 are used.

Polarization fractions fL and fT

In Ref. [26] it was pointed out that, besides the dilepton invariant mass spectrum
and the forward-backward asymmetry, a third observable can be obtained from B̄0

d →

15



Xsµ
+µ−, namely the double differential decay width:

d2B

dz d cos θ
=

3

8

[
(1 + cos2 θ)HT (z) + 2 cos θHA(z) + 2(1− cos2 θ)HL(z)

]
. (20)

The polarization fractions fL and fT can be defined as

fL =
HL(z)

HL(z) +HT (z)
, fT =

HT (z)

HL(z) +HT (z)
. (21)

In the SM, fL can be as large as 0.9 at low q2, and it decreases to about 0.3 at high q2.
Fig. 5 shows that when only RV,A couplings are present, in the low-q2 region fL

can be suppressed substantially, or even enhanced up to 1. A similar effect – small
enhancement or a factor of two suppression – is possible at high q2. The suppression
at low-q2 is typically correlated with an enhancement at high-q2. The effect of R′

V,A

couplings is similar, but much milder, as expected. SP and T operators, individually
or together, can only have an marginal effect on fL.

B.4 B̄0
s → µ+µ−γ

This decay has not been detected as yet. The SM prediction for the BR in the range
q2 ≤ 9.5 GeV2 and q2 ≥ 15.9 GeV2 is ≈ 18.9× 10−9 [27]. Our analysis shows that

(i)In the presence of RV,A couplings, the maximum allowed value of DBR can be
2-3 times larger than the SM prediction. The BR can also be suppressed below the
SM prediction due to destructive interference. In the low-q2 region, the suppression
can be large. The features of the zero-crossing predicted by the SM can be affected:
it can be positive or negative, can take place at any value of q2, and can disappear
altogether. As expected, the impact of R′

V,A couplings is much milder. In particular,
the zero-crossing is always positive and in the low-q2 region.
(ii)The SP operators do not contribute to the amplitude of B̄0

s → µ+µ−γ and hence
do not play any role in the decay.
(iii)With new tensor couplings, an enhancement of the DBR by up to a factor of 3 in
comparison to the SM prediction is possible. Tensors can only suppress AFB from its
SM value.

B.5 B̄0
d → K̄µ+µ−

The total branching ratio of B̄0
d → K̄µ+µ− has been measured to be [21] B(B̄0

d →
K̄µ+µ−) =

(
4.5+1.2

−1.0

)
× 10−7 , which is consistent with the SM prediction [28] B(B̄0

d →
K̄µ+µ−)SM = (3.5± 1.2)× 10−7 . We find that

(i) New VA couplings alone cannot give rise to AFB, which vanishes in the SM in
any case.
(ii)If both the primed and unprimed SP couplings are present simultaneously, the
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Figure 6: The left (right) panels of the figure show AFB for B̄0
d → K̄µ+µ− in the low-q2

(high-q2) region, in the scenario where only NP SP(above) and T(below) couplings are
present. The lines show predictions for some representative values of NP parameters.

constraints on them are weakened. In such a situation, the peak value of AFB in the
low-q2 (high-q2) can become ∼ 5% (∼ 3%). This may be seen in Fig. 6. The DBR
also is significantly affected only if both the primed and unprimed SP couplings are
present: it can be enhanced by up to a factor of 3.
(iii)AFB(q

2) can be enhanced up to 5-6% in almost the entire q2 region in the presence
of T couplings. Moreover, at q2 ∼> 21 GeV2, the peak value of AFB(q

2) reaches a larger
value ( ∼ 30%).
(iv)When SP and T couplings are present simultaneously, their interference can have
a large impact on AFB which can be more than 30% in the whole high-q2 region.

B.6 B̄0
d → K̄∗µ+µ−

The decay B̄0
d → K̄∗µ+µ−, with K̄∗ decaying to K̄π, has four particles in the final

state. This implies that there are three physical angles (see Fig. 7)that can specify
the relative directions of these four final-state particles. The differential decay rate
as a function of these three angles has much more information than just the forward-
backward asymmetry.

Differential branching ratio and forward-backward asymmetry

In Fig. 8 we show the AFB in the presence of both the RV,A and R′
V,A couplings. Our

analysis shows that (i) If only RV,A couplings are present, AFB can be enhanced at low
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Figure 7: The description of the angles θµ,K and φ in the angular distribution of
B̄ → K̄∗(→ K̄π)µ+µ− decay.
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Figure 8: The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′
V , R

′
A) terms

are present. The band corresponds to the SM prediction; its width is due to the un-
certainties in the input parameters. The lines show predictions for some representative
values of NP parameters. For comparison, the experimental data are also displayed.

q2, while keeping it positive, so that there is no zero crossing. On the other hand, if
only R′

V,A couplings are present, AFB can become large and positive at high q2.
(ii)New SP couplings by themselves cannot significantly affect either the DBR or the
AFB predictions of the SM. New T couplings in general tend to enhance DBR signifi-
cantly, by up to a factor of 2 but can not enhance the AFB.
(iii)When SP and T couplings are present simultaneously, additional contributions to
AFB that are not suppressed by mµ/mB are possible. As a result, AFB obtained with
this combination can be marginally enhanced as compared to the case with only T
operators. It is then possible to have no zero crossing. However, the magnitude of AFB
cannot be large in the high-q2 region.
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Polarization fraction fL

The longitudinal and transverse polarization fractions, fL and fT , respectively, are
defined as

fL =
AL

AL + AT
, fT =

AT
AL + AT

, (22)

where AL and AT are the longitudinal and transverse polarization amplitudes. In the
SM, fL can be as large as 0.9 at low q2, and it decreases to about 0.3 at high q2. We
observe that
(i)New VA couplings can suppress fL substantially: it can almost vanish in some
allowed parameter range.
(ii)New SP couplings cannot change the value of fL outside the range allowed by the
SM. This may be attributed to the strong constraints on the values of these couplings.
(iii)New T couplings tend to suppress fL, except at q

2 ≈ 1-2 GeV2, where the value of
fL cannot be less than 0.5.
(iv) Since both VA and T couplings tend to suppress fL, their combined effect results
in a similar behaviour.

Angular asymmetries A
(2)
T and ALT

The CP-conserving transverse asymmetry A
(2)
T can be defined through the double dif-

ferential decay rate

d2Γ

dq2dφ
=

1

2π

dΓ

dq2

[
1 + fT

(
A

(2)
T cos 2φ+ A

(im)
T sin 2φ

) ]
. (23)

Here A
(im)
T depends on the imaginary part of a certain combination of amplitudes

and can be used to construct CP-violating observables. In the low-q2 region, which
corresponds to the LEET limit, A

(2)
T ≈ 0 in the SM and is independent of form factors

up to corrections of order ΛQCD/EK∗ , ΛQCD/mb and αs, i.e. the hadronic uncertainty
is small. This can be seen in Fig. 9. The longitudinal-transverse asymmetry ALT is
defined through

d2ΓLT
dq2dφ

=
dΓ

dq2

(
ALT cos φ+ A

(im)
LT sinφ

)
, (24)

where

d2ΓLT
dq2dφ

=

∫ 1

0

d cos θK
d3Γ

dq2d cos θKdφ
−
∫ 0

−1

d cos θK
d3Γ

dq2d cos θKdφ
. (25)

Just like AFB, the quantity ALT also has a zero crossing which is independent of form
factors in the LEET limit. Note that the zero crossing of ALT is different from that
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Figure 9: The left (right) panels of the figure show A
(2)
T and ALT for B̄0

d → K̄∗µ+µ− in
the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′

V , R
′
A) terms

are present. The same conventions as in Fig. 8 are used.

of AFB. Fig. 9 demonstrates that the zero crossing of ALT has a very small hadronic
uncertainty. Except at very low q2, the magnitude of ALT is generally suppressed by
new VA couplings. The primed VA couplings can be constrained by ALT better than
the unprimed VA couplings. In both cases, the value of ALT can be anywhere in the q2

range, and can be positive or negative. In particular, there may or may not be a zero
crossing, and if there is, its position can be different from that of the SM.

New VA couplings can affect A
(2)
T significantly: they can enhance its magnitude by

a large amount, change its sign, and change its q2-dependence. The zero-crossing point
may be at a value of q2 different from that predicted by the SM.

New SP couplings do not affect A
(2)
T , and ALT qualitatively behaves similarly to the

SM. New T couplings in general tend to suppress the magnitudes of both asymmetries.

C New Physics in b→ sµ+µ−:CP-Violating Observ-

ables

In the SM the CP-violating observables in b → sµ+µ− are extremely small, < 1%.
Hence, measurement of any such signal at the level of more than a few percent would
be a clear signature of new physics.

For non-zero CP-violation, existence of both the weak and strong phases are neces-
sary. In the SM Ceff

9 has a non trivial strong phase because of intermediate cc̄ states.
Since the SM operator (Ceff

9 ) is of VA type, the NP operator must also be VA in order
to generate a significant direct CP asymmetry through SM-NP interference. Other
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NP operators can also interfere with the SM, but the effect is suppressed by mµ/mb,
and hence expected to be very small. In this section we consider the CP-violating
observables in b→ sµ+µ− and study the impact of NP lorentz structures on them.

C.1 B̄0
s → µ+µ−

The measurement of either of these CP asymmetries requires the measurement of muon
polarization, which will be an impossible task for the upcoming experiments [29]. And
even if this were doable, the lack of any sources for different strong phases in the two
CP-conjugate final states implies that the direct CP asymmetry would vanish even
with NP. We therefore do not study CP violation in B̄0

s → µ+µ−.

C.2 B̄0
d → Xsµ

+µ−

The CP asymmetry in the differential branching ratio (DBR) of B̄0
d → Xsµ

+µ− is
defined as

ACP(q
2) =

(dB/dz)− (dB/dz)

(dB/dz) + (dB/dz)
, (26)

where z ≡ q2/m2
b , and dB/dz and dB/dz are the DBRs of B̄0

d → Xsµ
+µ− and its

CP-conjugate B0
d → Xsµ

+µ−, respectively. The expression for (dB/dz) has been given
in Ref. [29]. The CP asymmetry in the forward-backward asymmetry AFB is defined
as

∆AFB(q
2) ≡ AFB(q

2)− AFB(q
2) , (27)

where the definition of AFB is given in Ref. [29], and AFB is the analogous quantity
for the CP-conjugate decay.
(i)When only RV,A couplings are present, ACP(q

2) can be enhanced up to ±6% at low
q2. On the other hand, its value at high q2 can be as high as ±12%.
(ii)In the presence of RV,A couplings, ∆AFB can be enhanced up to 3% at low q2. At
high q2, the enhancement can be up to 12%.
(iii) When only R′

V,A couplings are present, ACP(q
2) cannot be enhanced above the SM

value. They can only affect the DBR, which may be enhanced by up to 50%. The
impact of R′

V,A couplings on ∆AFB is negligible (< 1%).

C.3 B̄0
s → µ+µ−γ

Fig. 10 shows ACP(q
2) and ∆AFB(q

2) for B̄0
s → µ+µ−γ in the presence of new VA

couplings. Our analysis shows that
(i)When only RV,A couplings are present, at low q2 the magnitude of ACP(q

2) can be
enhanced up to ±30% at certain q2 values. At high q2, the magnitude of ACP(q

2) is
almost independent of q2, and can be enhanced to about ±13%.
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Figure 10: The left (right) panels of the figure show ACP(q
2) and ∆AFB for B̄0

s →
µ+µ−γ in the low-q2 (high-q2) region, in the scenario where only (RV , RA) couplings
are present.

(ii)When only R′
V,A couplings are present, ACP(q

2) cannot be enhanced in magnitude
to more than 1.5% at low q2, or more than 3% at high q2.
(iii)The behaviour of ∆AFB(q

2) is similar to that of ACP (q
2). This quantity can be

enhanced up to 40% for some values in the low-q2 region. It can be as high as 18%
throughout the high-q2 region. The impact of R′

V,A couplings is negligible (< 1%).

C.4 B̄0
d → K̄µ+µ−

(i)When only RV,A couplings are present, ACP(q
2) can be enhanced up to ±7% at low

q2. On the other hand, its value at high q2 can be as high as ±12%.
(ii)When only R′

V,A couplings are present, ACP(q
2) can be enhanced up to ±4% at low

q2. On the other hand, its value at high q2 can be as high as ±12%.
(iii)New VA couplings do not contribute to ∆AFB.

C.5 B̄0
d → K̄∗µ+µ−

Direct CP asymmetries in the DBR and AFB

(i)If only RV,A couplings are present, ACP (q
2) can be enhanced up to ± 5% at low q2,

and up to ± 14 % at high q2. ∆AFB(q
2) can be enhanced up to ± 3% at low q2, and

up to ± 11 % at high q2.
(ii)If only R′

V,A couplings are present, ACP (q
2) can be enhanced up to ± 3% at low q2,

and up to ± 7% at high q2. ∆AFB(q
2) can be enhanced up to ± 1% at low q2, and up

to ±4 % at high q2.
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(iii)When both primed and unprimed VA couplings are present, ACP (q
2) can be en-

hanced up to ± 9% at low q2, and up to ± 14 % at high q2. ∆AFB(q
2) can be enhanced

up to ± 6% at low q2, and up to ± 19 % at high q2.

Direct CP asymmetry ∆fL(q
2) in the polarization fraction fL

(i)If only RV,A couplings are present, ∆fL(q
2) can be enhanced up to ± 2% at very low

q2. On the other hand, ∆fL(q
2) is almost the same as the SM at high q2.

(ii)If only R′
V,A couplings are present, ∆fL(q

2) can be enhanced up to ±2% at both
low and high q2.
(iii) When both primed and unprimed VA couplings are present, ∆fL(q

2) can be en-
hanced up to ±9% at low q2, and up to ±6% at high q2.

Direct CP asymmetries in the angular asymmetries A
(2)
T

and ALT

Fig. 11 shows ∆A
(2)
T for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings. we
observe that
(i)If only RV,A couplings are present, ∆A

(2)
T cannot be enhanced more than ±1% at

both low and high q2.
(ii)If only R′

V,A couplings are present, ∆A
(2)
T can be enhanced up to ±4% at low q2,

and up to ±6% high q2.
(iii)When both primed and unprimed VA couplings are present, ∆A

(2)
T can be enhanced

up to ±11% at low q2, and up to ±13% at high q2.
(iv)With VA couplings we find that these couplings cannot enhance ∆ALT (q

2) to more
than 3% at both low and high q2.
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Figure 11: The left (right) panels of the figure show ∆A
(2)
T (q2) for B̄0

d → K̄∗µ+µ− in
the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′

V , R
′
A) terms

are present. The green line corresponds to the SM prediction. The other lines show
predictions for some representative values of NP parameters.

CP-violating triple-product asymmetries A
(im)
T

(q2) and A
(im)
LT

(q2)

Fig. 12 shows A
(im)
T (q2) for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings.If only

RV,A couplings are present, A
(im)
T (q2) can be enhanced up to 5% at low q2 and can have
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either sign. On the other hand, A
(im)
T (q2) is almost same as the SM prediction (≃ 0)

at high q2. If only R′
V,A couplings are present, A

(im)
T (q2) can be enhanced up to 49%

at low q2, and up to 46% at high q2. It can have either sign at both low and high q2.
When both primed and unprimed VA couplings are present, the results for A

(im)
T (q2)

are almost the same as those obtained with only R′
V,A couplings (see Fig. 12).
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Figure 12: The left (right) panels of the figure show A
(im)
T (q2) for B̄0

d → K̄∗µ+µ− in
the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′

V , R
′
A) terms

are present. The same conventions as in Fig. 11 are used.

If only RV,A couplings are present, A
(im)
LT (q2) can be enhanced up to 6% at very low

q2, and up to 3% at high q2. It can have either sign at both low and high q2. If only
R′
V,A couplings are present, A

(im)
LT (q2) can be enhanced up to 8% at low and high q2. It

can have either sign at both low and high q2. When both primed and unprimed VA
couplings are present, A

(im)
LT (q2) can be enhanced up to 11% at low and high q2. It can

have either sign at both low and high q2. In principle, A
(im)B̄(B)
LT can be generated due

to NP SP-T interference. However, we find that the effect is tiny: A
(im)
LT (q2) can be

enhanced up to 0.2% at low q2 and can have either sign; A
(im)
LT (q2) is same as the SM

(≃ 0) at high q2.

D The B+ → τ+ντ anomaly and constraints on Su-

persymmetric Models

The purely leptonic tree level decay B+ → τ+ντ is sensitive to charged Higgs boson
(H±) at the tree level and thus provide valuable probes of such particles which are
complementary to constraints provided by loop-induced decays. Importantly, in su-
persymmetric (SUSY) models the loop-induced decays are particularly sensitive to the
sparticle spectrum and the assumptions made for the SUSY breaking sector, and thus
the purely leptonic decays offer a more model-independent probe of parameters in the
Higgs sector. The unprecedented data samples provided by the B factories have en-
abled the first measurements of this decay mode despite its relatively small branching
ratio and challenging signature.
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In the SM, the branching ratio is given by the tree-level formula

BR(B+ → τ+ντ )SM =
G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)2

f 2
B |Vub|2 τB , (28)

where GF is the Fermi constant, τB is the B+ lifetime, fB = 192.8 ± 9.9 MeV [30]
is the B+ decay constant, and mB, mτ are the masses of B+, τ+, respectively. Here
|Vub| = (3.52±0.11)×10−3 is the relevant CKM matrix element, obtained through the
combined fit [31,32] to all the data excluding the B+ → τ+ντ measurements. The SM
prediction, including higher-order corrections, is

BR(B+ → τ+ντ )SM = (0.81± 0.15)× 10−4 . (29)

The experimental world average is [33]

BR(B+ → τ+ντ )exp = (1.68± 0.31)× 10−4 . (30)

Clearly, this measurement deviates significantly from the SM prediction given in Eq. (6.3).
Defining Rexp

τντ to be [34, 35]

Rexp
τντ ≡ BR(B+ → τ+ντ )exp

BR(B+ → τ+ντ )SM
, (31)

and using Eqs. (29) and (30), we get

Rexp
τντ = 2.07± 0.54 , (32)

which indicates a ∼ 2σ deviation. Following Ref. [34], we characterize the NP models
that could potentially explain this anomaly by a quantity RNP

τντ , defined as

RNP
τντ ≡ BR(B+ → τ+ντ ) SM+NP

BR(B+ → τ+ντ )SM
, (33)

where the subscript SM+NP represents the net branching ratio in the NP scenario,
including the SM contribution. The 95% C.L. allowed range for RNP

τντ then works out
to

0.99 < RNP
τντ < 3.14 , (34)

which essentially means that NP models with positive contributions are favored by
the data and those with negative contributions are quite strongly disfavored. In two-
Higgs doublet models, of which the cMSSM is an example – the branching ratio of
B+ → τ+ντ is given by [36]

BR(B+ → τ+ντ )NP =
G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)2

f 2
B |Ṽub|2 τB

(
1− tan2 β

m2
B

M2
+

)2

. (35)
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In the above formula |Ṽub| is the value of |Vub| obtained in the context of the NP model,
which in general will be different from |Vub| obtained from the data in the context of the
SM. In order to get rid of this uncertainty in the CKM parameter, we restrict ourselves
to the determination of |Vub| through only those measurements that are independent of
NP. Such a fit is called the fit to the universal unitarity triangle (UUTfit) [37], and it
uses only (i) the measurements of |Vub/Vcb| from semileptonic B decays, (ii) the ratio of
mass differences in the Bs and Bd systems: |∆Ms/∆Md|, and (iii) the measurement of
sin 2β from the time-dependent CP asymmetry in Bd → J/ψK(∗). The UUTfit value
of |Vub| comes out as [31]

|Vub|UUTfit = (3.50± 0.12)× 10−3 , (36)

which is actually very close to the global fit value. Once |Vub| is chosen in this ”model-

independent” way, we can take |Ṽub| = |Vub|UUTfit, and hence the theoretical MFV
prediction for RNP

τν at the tree level becomes

RNP
τντ |tree =

(
1− tan2 β

m2
B

M2
+

)2

. (37)

If higher-order corrections are included then this ratio gets modified [38] to a form

RNP
τντ =

(
1− tan2 β

1 + ǫ̃0 tanβ

m2
B

M2
+

)2

, (38)

where ǫ̃0 encodes all the higher-order corrections. The impact of the experimental
data on MFV models with a charged Higgs boson, as discussed above, can be clearly
discerned from Fig. 13(a), where we plot the value of RNP

τντ as a function of the charged
Higgs boson mass. Clearly, high tan β and low charged higgs mass is required for the
solution of the B+ → τ+ντ problem. Fig. 13(b) shows how severely the parameter
space is ruled out with the current data as compared to the 2008 measurement.

D.1 Constraining the cMSSM

Here we list briefly the theoretical, collider and low enrgy constraints other than the
B+ → τ+ντ branching ratio. These are (i)Requirement of correct electroweak symme-
try breaking, (ii)Requirement of neutral LSP, (iii)Nondiscovery in direct searches [20]
at the CERN LEP and Fermilab Tevatron of predicted particles, most notably the light
Higgs boson h0 and the lighter chargino χ̃+

1 , and (iv)Indirect bounds coming from the
measurements of (a) the anomalous magnetic moment of the muon, (b) the rate of the
radiative decay Bd → Xsγ, and (c) the BR for the leptonic decay Bs → µ+µ−. We now
analyse the constraints on the m0–m1/2 plane, keeping A0 floating between −2 TeV
and +2 TeV. In our analysis, a point in the m0–m1/2 plane, for a given tanβ, is taken
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Figure 13: (a) The dependence of RNP
τντ on the mass M+ of the charged Higgs boson in

MFV models for two values tan β = 10 and 50, and (b) the 95% C.L. constraints on the
M+–tan β plane. The vertically hatched regions in (a) correspond to higher order corrections
varying between ǫ̃0 = −0.01 and +0.01, while the 1σ (2σ) experimental measurements of
RNP
τντ are shown by horizontal broken (solid) lines. The dark band in (b) corresponds to the

LEP bound. The large, vertically hatched region in (b) is disallowed by the recent (2010)
RNP
τντ constraint, while the horizontally hatched region is disallowed by the 2008 data.

to be allowed at 95% C.L. by a given constraint if we can find any value of A0, lying
in the range −2 TeV ≤ A0 ≤ 2 TeV, for which the given constraint is satisfied. Our
results are exhibited in Fig. 14. We now plot, in the left panel of Fig. 15, the same
constraints in the plane of A0 and m1/2, keeping m0 fixed at the value m0 = 150 GeV,
for tan β = 10. The very first prediction one would naturally demand from a specific
point or region in the cMSSM parameter space is whether this can adequately explain
the dark-matter content of the Universe as a relic density of LSP’s. The CMBR data
indicate a relic density Ωh2 = 0.1123±0.007 at 95% C.L. [39]. In general, SUSY models
with a low-lying mass spectrum, such as the one in question, tend to predict too large
a density of LSP’s unless these are coannihilated by some reaction with a substantial
crosssection. This leads to a restriction on the cMSSM parameter space, which, given
the accuracy of the CMBR data, confines us, more or less, to a line passing through
the four-dimensional parameter space. The dark-matter requirement is known to favor
large negative values of A0 [40–42], and it is rather gratifying to see that this line
passes right through the allowed region in the parameter space discovered in this work
– which seems to indicate that a SUSY explanation of dark-matter may indeed be the
correct one. The line consistent with the dark-matter requirement1 is shown by red
dots on both panels in Fig. 15 and may be seen to pass clearly through the allowed
region, favoring a narrow range of A0 around −1.25 TeV and tan β in the range 9−11.
In order to make a clear prediction about the LHC signals, we choose the following

1We do not go so far as to call it a constraint, though this is not unheard of in the literature.
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benchmark point in the cMSSM parameter space:

m0 = 150 GeV , m1/2 = 400 GeV , A0 = −1250 GeV , tan β = 10 , µ > 0 .
(39)

At this benchmark point, we get the central values of the observables to be BR(B →
Xsγ) = 2.64 × 10−4, RNP

τν = 0.993, and aµ = 13.0 × 10−10. Clearly, all of these are
consistent with the measurements to within 2σ, though RNP

τν only barely survives the
2σ bound.

We now discuss the cMSSM mass spectrum expected with this benchmark point.
The lightest Higgs boson h0 is predicted to have a mass around 119 GeV, and hence
must be detected through the rare decay h0 → γγ, which is unlikely in the 7 TeV
run.The heavy Higgs bosons, including the H+, will lie in the range 835–840 GeV,
which is again kinematically inaccessible in the 7 TeV run.The gluino mass, however,
is as high as 934 GeV and the squark masses mostly populate the range 800–900 GeV,
except for the b̃1, with mass around 719 GeV, and a light stop t̃1 which lies as low as
393 GeV. An immediate consequence of these large squark and gluino masses is that
the sparticle production cross section at the LHC will be on the low side: at 7 TeV
it will be around 0.4 pb at the leading order (LO), while at 14 TeV, it will have the
much healthier value of 5.2 pb at LO. About 60% of these crosssections come from
squark pair production, of which roughly half is due to t̃1t̃

∗
1 production alone. The t̃1

will decay to a top quark and a neutralino with a BR ∼ 2/3, and hence, a possible
signal would be a top-enriched final state with large missing transverse energy (MET).
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However, the enormous tt̄ background to this process must be taken into consideration
when studying this signal. The other traditional signals for SUSY – cascade decays of
the gluino or squarks to charginos and heavy neutralinos, ending up in multileptons,
jets, and MET – in this case provide τ -rich final states because of the low-lying τ̃1. It
may be noted that the entire parameter space allowed by low-energy constraints at 95%
C.L., including our golden point, lies just outside the 5σ discovery limit of ATLAS [43].

D.2 NUHM : explaining B+ → τ+ντ

In the previous analysis, we have seen that the combination of constraints on the
cMSSM parameter space leads to the prediction of a small value of tan β and hence,
according to Fig. 13(b), the charged Higgs boson is necessarily heavy. Comparison
with Fig. 13(a) readily shows that in this limit, the model is only just consistent with
the B+ → τ+ντ constraint at 95% C.L. However, if we take the position that the
2σ discrepancy between the SM and the experimental result should be explained by
a positive NP contribution, then the cMSSM fails the test, for it actually tends to
diminish the SM prediction, and barely survives exclusion in a decoupling limit. This
bare survival, by the skin of its teeth, as it were, is the proximate cause of the stringent
constraints on the cMSSM parameter space discussed in the previous section.

As the cMSSM is the SUSY model with the maximum number of simplifying as-
sumptions (and hence the minimum number of free parameters), it is interesting to ask
if the relaxation of one or more of these assumptions could lead to a SUSY model which
actually explains, rather than merely remains consistent with, the B+ → τ+ντ discrep-
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ancy. Since the NP effect in B+ → τ+ντ involves the scalar sector of the cMSSM, an
obvious option would be to consider a model where the parameters of the Higgs sector
are given a greater degree of flexibility than in the highly constrained cMSSM.

In this context, an obvious choice of model is the so-called The nonuniversal Higgs-
mass (NUHM) model which is an extension of the cMSSM where the Higgs-mass pa-
rametersmH1 andmH2 are delinked from the universal scalar mass parameterm0 at the
GUT scale and are allowed to vary freely [44]. At the electroweak scale, these two extra
parameters mH1 and mH2 are usually traded for the Higgsino mixing parameter µ and
the pseudoscalar Higgs boson mass mA. This model, therefore, has six parameters, viz.
m0, m1/2, µ,MA, A0 and tanβ. While an exhaustive study of the NUHM parameter
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Figure 16: Constraints on the MA–µ parameter space in the NUHM model. Notations and

conventions are the same as in the previous plots, except that now there is a significant

constraint from Bs → µ+µ− rather than Bd → Xsγ. The yellow/light gray region is allowed

by all the constraints, and the black dot inside it is a benchmark point chosen for LHC

studies.

space vis-á-vis the present set of constraints would require a separate work in itself, it
is interesting to see if the NUHM model can at all provide regions in parameter space
which are consistent with all the constraints, and can simultaneously provide a NP
explanation of the B+ → τ+ντ discrepancy. To illustrate that this is, in fact, possible,
we show in Fig. 16 the regions allowed by the different constraints in the mA–µ plane,
keeping all the other parameters fixed at

m0 = 1.2 TeV , m1/2 = 180 GeV , A0 = 1.2 TeV , tanβ = 50 . (40)

As before, to be precise about the LHC signals, we choose a benchmark point, which
has the fixed parameter choices of Eq. (40) as well as

MA = 145 GeV , µ = 400 GeV , (41)

which is indicated in Fig. 16 by a small black dot in the middle of the allowed (yel-
low/light gray) patch. The central values of the observables at this point are BR(B →
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Xsγ) = 3.50×10−4, RNP
τν = 1.24,BR(Bs → µ+µ−) = 3.22×10−8, aµ = 12.8×10−10, all

of which are well within the 2σ range of the respective measurements. We note that the
relic density of LSP’s at this point is not enough to saturate the CMBR requirements,
which means that this model is not ruled out by the latter, but is not a solution to
that problem either.

We reiterate that NUHM models which explain the B+ → τ+ντ discrepancy and, at
the same time, remain consistent with the data on Bs → µ+µ−, will generically come
with light gauginos, and lead to collider signals somewhat similar to those discussed
above. However, what we have studied is just one portion of the NUHM parameter
space, inasmuch as we fixed m0 and A0 to very large values. A more comprehensive
scan over the NUHM parameter space might reveal more patches consistent with all
the constraints, and some of these may lead to collider signals which are different from
those discussed in the context of our benchmark point. The detailed exploration of the
NUHM parameter space in this context calls for a separate study.

E Conclusions

Flavour-changing neutral current (FCNC) processes are expected to be incisive probes
of new physics. In the SM, they occur only at loop level, and hence are suppressed.
This may allow the new-physics (NP) effects to be identifiable. Of course, since we have
no clue about what form the NP takes, the observations from a variety of processes are
necessary. In this thesis, we have focussed on the processes that involve the effective
transition b→ sµ+µ−. While specific models of NP may be used and their effect on the
relevant observables studied, we have chosen to explore the NP in a model-independent
way, in terms of the Lorentz structures of the NP operators that contribute to the
effective b→ sµ+µ− Hamiltonian. We have performed a general analysis that includes
NP vector-axial vector (VA), scalar-pseudoscalar (SP), and/or tensor (T) operators.
We have considered both CP conserving as well as CP violationg observables. In the
remaining part of this thesis we have investigated the departure of the branching ratio
of B+ → τ+ντ from its SM value and the resulting constraints on MFV models. Though
improved values for fB from lattice and |Vub| from tree level decays will be important to
confirm any true departure from SM, in any case, values of Br(B+ → τ+ντ ) significantly
above 1× 10−4 will signal NP contributions either in this decay or somewhere else.

In the transition b → sµ+µ− new VA operators are the ones that influence the
observables strongly in most cases. They typically can interfere with the SM terms
constructively or destructively, thus enhancing or suppressing the differential branch-
ing ratios by up to factors of 2 or 3. They also are able to enhance almost all the
asymmetries, the notable exception being AFB in B̄0

d → K̄µ+µ−, where the VA opera-
tors cannot contribute. But for most other observables, this kind of NP can potentially
be observed. This can be traced to the large magnitudes of the NP couplings still al-
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lowed by data, which in turn can be traced to the possibility of interference between
the new VA operators with the SM operators that allows more freedom for the new VA
couplings. Typically, the RV,A couplings are constrained more weakly than the R′

V,A

couplings, since the corresponding operators have the same structure as those of the
SM, allowing strong destructive interferences. Consequently, the operators with RV,A

couplings are more likely to show themselves over and above the SM background. We
point out that the exception to this rule is the AFB in B̄0

d → K̄∗µ+µ− at large q2,
where the R′

V,A couplings can cause a larger enhancement.
The SP operators, on the other hand, are handicapped by the stringent constraints

from the upper bound on B(B̄0
s → µ+µ−). If only RS,P or R′

S,P couplings are present,
the constraints become even more severe. It is for this reason that, even when the SP
contributions are unsuppressed by mµ/mb, they are not often large enough to stand
apart from the SM background. The couplings of the T operators, viz. CT and CTE,
are not as suppressed as those of the SP operators. Therefore, they typically contribute
significantly to the DBRs. However, the interference terms of these operators with the
SM operators often suffer from the mµ/mb helicity suppression, and hence they tend
to suppress the magnitudes of the asymmetries. It is crucial to understand this SM
background, which makes it imperative to use observables whose values are predicted
reasonably accurately within the SM.

The main source of the SM uncertainties is the hadronic matrix elements, whose
theoretical calculations often have errors of the order of tens of percent. We have
handled this on many levels. First, we have tried to identify observables that will
not be very sensitive to the hadronic uncertainties. For example in B̄0

d → K̄µ+µ−,
the SM prediction for the forward-backward asymmetry is simply zero, independent of
any hadronic elements. Also, while the differential branching ratios may be strongly
dependent on the hadronic matrix elements, the forward-backward asymmetries are
less so. Furthermore, the large-energy effective theory (LEET) limits can be used to

control the uncertainties in the low-q2 region for observables like AFB and A
(2)
T . For

example, certain observables, such as the zero-crossing of AFB in B̄0
d → K̄∗µ+µ−, can

be shown to be robust under form-factor uncertainties in the LEET limit. The new
observable ALT in B̄0

d → K̄∗µ+µ− that is introduced in this paper also has a zero
crossing in the SM with small hadronic uncertainties. These measurements can even
be used to extract the parameters of the NP operators, to a very good approximation.

In the last part of this thesis, we have shown that the combined effect many low-
energy measurements – those consistent with the SM (e.g. the branching ratios of
Bd → Xsγ and Bs → µ+µ−) as well as those showing deviations from the SM (e.g. the
anomalous magnetic moment of the muon, and the branching ratio of the B+ → τ+ντ )
– results not only in indicating new physics, but also in pinpointing the relevant new
physics parameters. In particular, we have pointed out that the latest measurement of
B+ → τ+ντ branching ratio has a large impact on a large class of NP models, especially
those which include a charged Higgs boson H+. In fact, the decay B+ → τ+ντ , by
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itself, can constrain most of the models with minimal flavour violation that involve an
H+. This is because the latest measurement gives a branching ratio ∼ 2σ more than
the SM prediction. If this discrepancy is to be explained by a MFV model, one needs
very light charged Higgs bosons (M+ ∼< 200 GeV) and large tanβ (∼> 20). On the other
hand, a heavy charged Higgs boson (M+ ∼> 300 GeV) and a small tan β can be barely
consistent with the data to within 2σ, but cannot be considered an explanation for the
gap between theory and experiment. This is a general result that can be applied to
any member of the MFV models, and we choose to apply it to the constrained MSSM,
which is motivated by mSUGRA and is one of the most predictive SUSY models. Our
results indicate a rather specific region of parameter space which is allowed by all the
low energy measurements. We also discuss the specific signals at the LHC which can
be used to look for SUSY in that parameter space.

We will finish by saying that flavour physics is a very rich field which necessarily will
be a prominent part of a future theory of fundamental interactions both at large and
short distance scales. Flavour Physics is characterized by a fruitful interplay between
theory and experiments. This has led to many significant discoveries and developments.
B physics has the potential to determine many important parameters of the electroweak
theory and to test the Standard Model at low energies. At the same time, through
the study of CP violation it provides a window to physics beyond the Standard Model.
Indeed, there is a fair chance that such New Physics will be seen in the present collider
experiment like the Large Hadron Collider and also in the high-luminosity experiments
to come in future.
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Chapter 1

Introduction

It is now common knowledge that matter is made from atoms, which stick together
to form molecules. There are simple substances like water which is made of simple
molecules containing only two or three atoms. More complicated objects like animals
are made from more complicated molecules such as proteins and DNA, and contain
millions of atoms, which stick together to make cells, tissue, fur and brains. There
are around a hundred different types of atoms known as elements, from hydrogen to
uranium, catalogued by chemists in the periodic table. Chemistry of these elements can
be understood by learning the properties of 3 particles – proton, neutron and electron,
and the influence of the electromagnetic force. In the same spirit, the Standard Model
(SM) [45, 46] describes the chemistry of all the fundamental particles known till date.
The theories and discoveries of thousands of physicists over the past century have
resulted in a remarkable insight into the fundamental structure of matter: all the
visible matter in the Universe is found to be made from twelve fundamental matter
particles, their interactions governed by four fundamental forces carried by force carriers
called gauge bosons. Seven of these particles – charm, bottom, top, tau neutrino,
W, Z and gluon were predicted by the Standard Model before they were observed
experimentally! There is one additional particle predicted by the Standard Model
called the Higgs, which has not yet been observed. Our best understanding of how these
twelve matter particles and three of the forces are related to each other is encapsulated
in the Standard Model of particles and forces. Developed in the early 1970s, it has
successfully explained a large number of experimental results and precisely predicted
a wide variety of phenomena. Over time and through many experiments by many
physicists, the Standard Model has become established as a well-tested theory.

The SM consists of three types of fields, the spin one fields, the spin half fields and
a spin zero field. The spin-one fields are described by introducing gauge redundancies
in the fields that appear in the Lagrangian. This means that a particular symmetry
of the Lagrangian is treated as a redundancy, i.e., two field configurations related
by that symmetry transformation are identified with the same physical state. The
spectrum of spin-one particles is described by the lie algebra of gauge redundancies
SU(3)C×SU(2)W×U(1)Y where C stands for ‘Color’, W stands for ‘Weak’ and Y stands
for ‘hYpercharge’. The number of spin-one particles turns out to be the dimension of
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the adjoint representation which works out to be (32 − 1) = 8 for SU(3)C, (2
2 − 1) = 3

for SU(2)W and 1 for U(1)Y.
The spin-half sector of the SM can be conveniently discussed in terms of the Weyl

fields which are irreducible representation (1/2,0) of the Lorentz lie-algebra SO(3, 1).
These fileds lie in particular representations of the lie-algebra of the SM gauge group,

Q ≡ (3, 2)1/6, Uc ≡ (3̄, 1)−2/3, Dc ≡ (3̄, 1)1/3, L ≡ (1, 2)−1/2, Ec ≡ (1, 1)+1, (1.1)

where the first number in the bracket is the SU(3)C representation and the second
number refers to the SU(2)W representation. The number outside the bracket is the
Hypercharge of the multiplet. In the SM there are 3 copies of each of these irreducible
representations. These correspond to three generations of spin-half fields. The fields
which transform non-trivially under SU(3)C are called quarks and the fields which are
singlets of SU(3)C are called Leptons.

The spin zero sector of the SM contains only one field, the Higgs field which lie in
the representation (1, 2)1/2 of the SM lie-algebra. Till now the Higgs particle which is
last missing part for the experimental confirmation of the SM, has escaped the direct
detection at high energy colliders.

The local gauge invariance of SM implies that all the spin-one gauge bosons have
to be massless and should carry long range forces. As we have experimentally ob-
served massive gauge bosons which mediate the short range weak force, there must be
something beyond the local gauge symmetry which can generate masses of these gauge
bosons. This was achieved with the help of spontaneous symmetry breaking through
the Higgs mechanism [47]. In the Higgs mechanism the local gauge symmetry is spon-
taneously broken by the Vacuum Expectation Value (VEV) of the scalar Higgs SU(2)W
doublet of the SM. This is a superconductivity-like phase transition, the electroweak
phase transition which removes some of the spin-one bosons from the low energy spec-
trum (by making them masive) reducing the gauge algebra to SU(3)C ×U(1)em where
’em’ refers to electromagnetism. This can be compared with the Meissner effect in
Superconductivity. This at low energies is followed by another phase transition: the
confinement phase transition1, which again removes some more spin-one fields from the
low energy spectrum reducing the gauge algebra to electromagnetism only. Another
unique property of the SM is that the lie-algebra representation (RSM) for the matter
fields is chiral i.e., the representation RSM⊗RSM does not have any trivial subrepresen-
tation. This means that the gauge invariance also forbids masses for all the fermions.
After the symmetry breaking these fermions acquire masses due to their couplings,
called the Yukawa couplings, to the Higgs field.

Spontaneously broken non-abelian Yang-Mills gauge theories were also proved to
be renormalizable in the early seventies [48]. The reason why physicists prefer renor-

1One of the most important physics experiment that aims to study this phase transition from the
de-confined phase called the Quark Gluon Plasma to the confined phase of Mesons and Hadrons is
the so called Relativistic Heavy Ion Collider (RHIC in short).
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malizable field theories is that they are more predictive. Renormalizability allows us to
make precise predictions for measurable quantities also in higher orders of the pertur-
bative expansion. A renormalizable field theory’s predictions only depend on a finite
number of low-energy parameters that may be determined by a comparison with the
experiments. With a fixed value of the low-energy parameters such as the couplings
and masses, a renormalizable theory may be uniquely extrapolated to arbitrarily high
scales and it remains predictive at arbitrarily high scales.

On the other hand, in the modern way to understanding quantum field theory as
an effective field theory, the theory includes all renormalizable (relevant and marginal)
operators, which give the largest contribution to any low energy process, but when we
are interested in either high precision or high energy processes, we have to systemati-
cally include non-renormalizable terms as well, which come from some more complete
theory at a higher energy scale. This also means that if we postulate that the new
physics only occurs at some extremely high scale Λ, all effects of the new physics are
suppressed by positive powers of 1/Λ. This assumption makes life controllable. How-
ever, nothing guarantees that we immediately get the right description that is valid
to an arbitrarily high energy scale. By studying particle physics at ever higher energy
scales, we may equally well unmask just another layer of the onion that would break
down at slightly higher energies and needs to be fixed by another layer.

Another important triumph for the structure of the SM was the absence of axial
vector anomalies among the gauge currents, which is a fundamental consistency check
on any chiral gauge theories. Technically this means that the fermionic measure ap-
pearing in the path-integral is gauge-invariant. Though individual multiplets in Eq. 1.1
contribute non-trivially to the anomaly, when the contributions from all the multiplets
in a generation are summed up, the anomalies cancel each other quite miraculously.
This cancellation happens within each fermionic generation of the SM.

Both, the Higgs mechanism and the proof of renormalizability were the foundations
of the application of local gauge theories to describe short range weak interactions
and the starting point of the formulation of the SM. As was mentioned before, the
spontaneous breaking of gauge symmetry needs the introduction of at least one scalar
particle – the Higgs. At this point it is worth mentioning that the single-Higgs model is
an extremely economical way to perturbatively unitarize the theory and also accomplish
the symmetry breaking 2. In extensions of SM, more number of Higgs doublets can
also be realized. There are two interesting virtues of the weakly-interacting Higgs
model: (i) it is calculable, and (ii) it is so far phenomenologically successful, as it is
consistent with the LEP and SLD electroweak precision data [49]. Both calculability
(which results from perturbativity) and the success in passing the precision tests follow
from the Higgs boson being light. It is however well known that an elementary light
scalar is unstable under radiative corrections, its mass receives quadratically divergent

2But we know that in another similar physical system, the QCD, it is not the solution that Nature
has chosen.
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corrections, which makes a light Higgs scalar highly unnatural in the absence of some
symmetry which protects its mass (like the chiral symmetry for fermions). An old
and still attractive idea is that the Higgs boson might be a bound state of a new
strongly interacting dynamics not much above the weak scale. Being composite, it
would solve the SM hierarchy problem if the scale of the strong dynamics is not too
high, as quantum corrections to its mass are now saturated at the compositeness scale.
Significant theoretical progress on the construction of these theories has recently come
from the intriguing connection between gravity in certain higher dimensional curved
spacetimes and strongly coupled gauge theories [50].

A quite remarkable and intriguing property of SM is that all the fermion represen-
tations repeat themselves thrice in what are called generations. The only difference
from one generation to another is the masses of the fermions. Flavor physics denotes
physics of transitions among these three generations of Standard Model fermions and
that the fermions of different generations have different masses plays a crucial role here.
A unique property built in the structure of the SM is that there are tree level flavour-
changing charged current processes, but there are no flavour changing tree level current
interactions, due to the famous Glashow-Iliopoulos-Maiani (GIM) mechanism [51]. In
fact, the charmed quark was predicted to explain the lack of flavour-changing neutral
currents (FCNC). The FCNC processes happen only through loop diagrams in the
SM and therefore their rates are suppressed. As unknown heavy particles can propa-
gate and make their existance feel through loops, flavour physics can probe such new
physics (NP) through loop corrections, before those NP particles themselves are pro-
duced on-shell in energy frontier experiments. For example, the mass of charm quark
was successfully predicted from ∆mK before it was discovered in 1975 [52]. The large
mixing observed in the neutral B system led to the speculation that the top quark
must be quite heavier than the rest of the quarks [53, 54], and the rate of radiative B
decays [55] predicted the correct ballpark for top quark mass before its direct discovery.

Flavor physics is also intimately connected with the origin of fermion masses. In the
limit of vanishing masses the flavour physics is trivial –no intergenerational transitions
occur since weak and mass eigenbases coincide with each other. It is the misalignment
of weak and mass eigenstates or the mismatch between the basis states in which Yukawa
terms in the up and down sectors are diagonal that makes flavour physics interesting.
In the quark sector of SM this mismatch is described by a single unitary matrix -
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [56, 57]. In the lepton sector, on the
other hand, flavour violation is described by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) [58–60] matrix. The Charge-Parity (CP) violation in the SM is also closely
related to flavour physics. It crucially relies on the fact that there are (at least) three
generations of fermions. In the Standard Model the CP violation in the quark sector,
in neutral K and B meson systems, has been observed experimentally and it is well
accounted by the CKM mechanism and no CP violation has been measured yet in the
lepton sector.
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In this context, another important question is to ask whether the standard model of
particle physics combined with the standard model of cosmology can explain the value
of the observed Baryon Asymmetry of the Universe (BAU). This has been answered
in recent years and, surprisingly, the answer does not refer to the role the CKM phase
may play in these explanatory attempts. Theoretical progress in understanding the SM
electroweak phase transition in the early universe in conjunction with the experimental
lower bound on the mass of the SM Higgs boson, mh > 114 GeV, leads to the conclusion:
no! But even in models beyond SM, the existence of new sources of CP violation beyond
the CKM picture is required to be able to account for the observed BAU through
baryogenesis [61,62] and hence it is important to investigate possible new source of CP
violation in both the quark and the lepton sectors.

The rich phenomenology of weak decays of Hadrons and Mesons has always been a
source of information about the nature of elementary particle interactions. The CKM
picture which was borne out of experimental necessity, has been able to explain with
good accuracy all the empirical observations in the flavour sector till date. But despite
the impressive success of the CKM picture where the GIM mechanism plays a very
crucial role, there are many avenues where existence of new physics contribution can
not be ruled out. In particular, weak decays of hadrons containing heavy quarks are
good candidates for precision tests of the Standard Model and measurements of its
parameters. They offer the most direct way to determine the weak mixing angles, to
test the unitarity of the CKM matrix, and to explore the physics of CP violation.

A number of selected processes and observables have played a leading role in learn-
ing about the quantum mechanical structure of the SM through high precision experi-
ments. This selection is based on the sensitivity to NP and theoretical cleanness. The
former can be increased with the increased precision of experiments and the latter can
improve with the progress in theoretical calculations, in particular the non-perturbative
methods like the lattice simulations. In this regard, the flavour-changing semileptonic
decay, b→ sl+l− is an ideal choice especially because its amplitude is very sensitive to
the presence of heavy quarks, scaling as mass2quark. This mode is useful because apart
from Branching Ratios (BR) it also provides a great deal of other observables like
dilepton invariant mass spectrum, forward-backward asymmetry etc. The full angular
distribution of all the final state particles in case of exclusive decays like B → K∗l+l−

contains large number of terms which can be used to form various asymmetries. In
general, these asymmetries are sensitive to different Lorentz Structures of the under-
lying Lagrangian in different ways and therefore can be used to identify the nature of
NP.

An important issue here is to realize that the claim of existence of NP in some
observable can only be made in an unambiguous way only if the SM prediction for that
observable is known reasonably precisely. This is where hadronic uncertainties come
into picture. The theory predictions are more reliable for the inclusive modes. For
the exclusive modes the uncertainties are larger mainly because of their dependence
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on form factors, which are manifestly properties of bound states and therefore of non-
perturbative character. This is why it is extremely important to construct observables
which are less prone to hadronic uncertainties. The different asymmetries fall into
this category because they are ratios of certain quantities and theoretical uncertainties
are expected to cancel to a good extent. Similarly vanishing of certain quantities are
sometimes relates to the presence of some (approximate) symmetries of the theory and
thus are useful to look for new physics. The CP violating effects in this b → s mode
is also expected to be extremely tiny in the SM. Hence, CP violating asymmetries are
good places to verify whether any dynamics beyond the the CKM picture is at work.

As opposed to the b → s transitions which is a loop process, the theoretically
much cleaner tree level decays probe individual entries of the CKM matrix directly
and hence are indispensable for the vindication of the CKM structure. The leptonic
decay B+ → τντ is one such example which directly probes the (1,3) element of the
CKM matrix, Vub. As the decay rate of this process is also proportional to the B
meson decay constant fB, precise lattice calculation of fB is also required to determine
the value of Vub. Recently, the directly measured branching fraction for this decay
has shown a considerable deviation from the global fit prediction and this deviation
persists then that would call for possible NP explanations.

Indeed there is big room for new physics (NP) contributions in rare decays of mesons
and also in CP-violating observables. With more and more data on these decays and
observables accompanied by improved theoretical calculations will possibly exclude
several of presently studied models. There are two approaches one can take to study
the effect of new physics on a particular process. One approach is to choose a specific
microscopic model and examine the possible ways one one can get deviations from SM.
This in turn can also restrict the parameter space of that Model. The other approach
is to abandon specific models and write down all possible operators respecting only the
Lorentz Symmetry (and may be the SM gauge symmetry). This would allow us to make
model independent statements about how these operators are constrained, which can
also be translated to bounds on specific couplings or specific combination of couplings
in a particular Model. In this thesis, for the b → sl+l− mode we follow the second
approach and for the B+ → τντ mode we restrict our discussion to Supersymmetric
Models. Theoretical analysis of these modes requires a familiarity with the flavour
structure of the SM as well as with the language of effective theories. Therefore, in the
next two chapters we will review the necessary concepts of the Standard Model CKM
mechanism and the notion of effective theories respectively. In Chapter 4 we shall
consider the CP conserving observables in the decay modes involving the b → sl+l−

transition, while the CP violating observables will be presented in Chapter 5. The
repercussion of the measurement of the branching ratio of B+ → τντ and the latest
CKM Global Fit on the parameter spaces of the Supersymmetric model will be taken
up in Chapter 6. We will close our journey in Chapter 7 with a critical summary of
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our findings along with some concluding remarks.
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Chapter 2

The CKM Paradigm

The fantastic performance of the two asymmetric B-factories, the Belle and BaBar, in
the last decade has led to a significant progress in our understanding of the flavour
sector of the SM. The CKM mechanism which was put forward as an ansatz in 1970’s,
is now a well established theory and any new physics can only be a correction to it.
Be it a simple tree level or a more complicated rare decay or some CP asymmetry,
the CKM structure has consistently explained all experimental numbers with sufficient
accuracy. Quite interestingly, a single phase in the CKM matrix could accommodate
both the small CP violation in the K system as well as comparatively large CP violation
in the B system.

In this chapter we will recapitulate some of the basic virtues of the Standard Model
CKM picture and set up some notations. This would be useful for our arguments from
time to time in the subsequent chapters.

2.1 The Flavour parameters of the SM

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the SU(2) doublet Higgs,

LY = −Yd
ijQ̄iΦDj −Yu

ijQ̄i ǫΦ
∗Uj + h.c., (2.1)

where Yu,d are 3× 3 complex matrices, Φ is the Higgs field, i, j are generation labels,
and ǫ is the 2 × 2 antisymmetric tensor. Qi are left-handed quark doublets, and
Dj and Uj are right-handed down- and up-type quark singlets, respectively, in the
flavour eigenstate basis. When Φ acquires a vacuum expectation value, < Φ >=
(0, v/

√
2)T, it yields mass terms for the quarks. In general, the matrices Yu,d have

off-diagonal elements which lead to flavour violationg processes. The physical states
(mass eigenstates) are obtained by diagonalizing Yu,d.

From Eq. 2.1 we can see that the SM lagrangian has two Yukawa matrices Yu,d. As
both Yu and Yd are in general complex 3 × 3 matrices, naively one might think that
the number of the SM flavour parameters is given by 18 real and 18 imaginary ones.
However, a closer look into the structure of SM shows that some of the parameters
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which appear in the Yukawa matrices are unphysical. A simple way to understand this
is to realize the fact that a flavour basis transformation,

Q → VQQ , U → VUU , D → VDD , (2.2)

leaves the SM Lagrangian invariant, apart from redefinition of the Yukawas,

Yu → VQY
uV†

U , Yd → VQY
dV†

D , (2.3)

where Vi are 3×3 unitary matrices. Each of the three rotation matrices VQ,U,D contains
three real parameters corresponding to the three rotation generators of the subgroup
SO(3) and six imaginary ones corresponding to the remaining generators of U(3). The
elements of VQ,U,D can now be chosen appropriately to eliminate some of the parameters
of Yu,d.

Let us identify all the flavour parameters of the SM in a systematic way. After the
symmetry breaking of the Higgs field 〈Φ〉 = (0, v/

√
2)T, Eq. 2.1 gives the mass term

for the d-type quarks:

L(d) = − v√
2
[Yd

ijd̄LidRj + h.c.] . (2.4)

Here Yd
ij is a 3×3 complex matrix. Such a matrix can always be put into real diagonal

form with the help of two unitary matrices, so that we can write,

Yd = D†
Lm̂

dDR , (2.5)

where m̂d is a real diagonal matrix, and DL , DR are unitary matrices. If the diagonal
elements are distinct, as appears experimentally to be the case, DL , DR are unique,
except that both may be multiplied on the left by the same phase factor matrix,




eiα1 0 0
0 eiα2 0
0 0 eiα3



 .

Similarly for the u quarks, on symmetry breaking, Eq. 2.1 gives the u-quark mass
terms,

L(u) = − v√
2
[Yu

ijūLiuRj + h.c.] (2.6)

It can be brought into real diagonal form in a similar way:

Yu = U†
Lm̂

uUR , (2.7)

where UL and UR are unitary matrices, and m̂u is diagonal. UL and UR may be both
multiplied on the left by a phase factor matrix, say



eiβ1 0 0
0 eiβ2 0
0 0 eiβ3


 .
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It is useful to define the ’true’ quark fields for which the mass matrices are diagonal:

d′
Li = DL ijdLj , d

′
Ri = DR ijdRj,

u′
Li = UL ijuLj , u

′
Ri = UR ijuRj. (2.8)

Dropping the primes, the SM flavour Lagrangian in the mass basis is given by,

LF
m =

(
uL cL tL

)


yu 0 0
0 yc 0
0 0 yt





uR

cR
tR


 (v + h) + (u, c, t) ↔ (d, s, b)

+
g2√
2
uLiγ

µVCKM
ij dLjW

+
µ + h.c.,

(2.9)

where W± stands for the charged electroweak gauge bosons, h is the physical Higgs
field, v ∼ 246GeV, mi = yiv/

√
2 and VCKM is the CKM matrix:

VCKM = ULD
†
L. (2.10)

There is a freedom in defining VCKM in that we can permute between the various
generations. This permutation ambiguity for ordering the CKM entries is removed by
arranging the fields in Eq. (2.9) according to their masses in the increasing order. The
elements of VCKM are therefore written as follows:

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 . (2.11)

Here the entries are labeled by the quark flavours. The vertex at which a b-quark
decays to a W− and c-quark is proportional to Vcb; similarly, the vertex at which a
c-quark decays to a W+ and s-quark is proportional to V∗

cs.
Since the product of two unitary matrices is unitary, VCKM is a 3×3 unitary matrix.

A 3 × 3 unitary matrix is specified by 32 = 9 parameters, so we apparently have nine
parameters to be measured experimentally. But using the six arbitrary phases in the
matrices DL and UL, five out of the nine parameters can be removed. One can only
remove five parameters and not six because in the CKM matrix only phase differences
appear and only five independent phase differences can be constructed out of the six
phases. We are now in a position to count and identify the physical parameters of the
Flavor sector of SM. There are 6 masses for the up and down type quarks. The CKM
matrix, on the other hand, has 4 independent parameters, 3 of them are angles and
the remaining one is a phase –the sole source of CP violation in the SM.

So to make the long story short, the charged current interactions are the only terms
in the SM Lagrangian which are not invariant under the vectorial U(1)6 transformations
on the quark fields (as evident from Eq. (2.9)),

ui → eiβiui , di → eiαidi. (2.12)
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The diagonal part of this transformation corresponds to the classically conserved baryon
current, while the non-diagonal, U(1)5, part of the transformation can be used to re-
move 5 out of the 6 phases, leaving the CKM matrix with a single physical phase.

It is worth mentioning here that though both the Baryon number(B) and the Lep-
ton number(L) are classically conserved quantum numbers in the renormalisable La-
grangian of the Standard Model, quantum mechanically both B and L are anomalous
and the associated currents have a non zero divergence induced by instanton effects,
which are of the form ∂µj

µ
B ,L = aWµνW̃µν + bBµνB̃µν , where Wµν and Bµν are the

field strength tensors of the SU(2) and U(1) gauge fields and a, b are some numerical
coefficients. It turns out that though both B and L are violated quantum mechanically
(B - L) is a true conserved quantity. This is also the reason behind why neutrino mass
can not be generated in the SM even by non-perturbative effects.

2.2 CP Violation and the Unitarity Triangle

It is clear from the definition of the CKM matrix VCKM in the previous section that it
is a measure of the mis-allignment of the flavour eigenstates of the up and down type
quarks. Hence, all the flavour and CP violation in the SM arise solely through the
CKM matrix. It alone governs the interaction strength and mixing of all the charged
current interactions in the SM. In theories beyond the SM, there can be in general, other
sources of flavour and CP violation. But if VCKM is the only source of CP violation
(for example, in any Minimal Flavour Violating (MFV) models which will be discussed
later), there are many relations between CP-conserving and CP violating observables.
This is a remarkable property of the CKM picture of CP violation: measuring a number
of CP conserving quantities can tell us whether all CP violation is predicted by the
same quantity in the SM. This property stems from the fact that the CKM matrix
VCKM is by definition a unitary matrix in the flavour space.

Vcd Vcb
*

Vud Vub
* Vtb

*Vtd

βγ

α

VudVub
*

Vcb
*Vcd Vcd

Vtd

Vcb
*

Vtb
*

βγ

α

(0,0)

(ρ,η)

(1,0)

Figure 2.1: (Left panel) The unitarity triangle directly expressing Eq. (2.13) in pictorial
form. (Right panel) The rescaled version of the Unitarity Triangle in the (ρ, η) plane,
which is discussed later in the text.
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Because VCKM is unitary, |Vud|2+|Vus|2+|Vub|2 = 1, and similarly for all other rows
and columns. These constraints can be used to obtain information about unmeasured
or poorly measured elements of VCKM. For example, because |Vcb| and |Vub| are known
to be small, |Vtb| should be very close to 1—if, indeed, there are only three generations.
By similar arguments, |Vts| and |Vtd| must also be small. More interesting constraints
come from the orthogonality of columns (or rows) of VCKM. For example, taking the
first and third columns of VCKM, one has

VudV
∗
ub +VcdV

∗
cb +VtdV

∗
tb = 0 . (2.13)

Equation (2.13) is a sum of three complex numbers that add up to zero. One can
draw these complex numbers as vectors in the complex plane, and since they sum up
to zero they will have to form a closed triangle. Because it is a consequence of the
unitarity property of VCKM, this triangle is called the “unitarity triangle”, shown in
the left panel of Fig. 2.1. The lengths of the sides are |VudV

∗
ub|, |VcdV

∗
cb| and |VtdV

∗
tb|.

The relative angles between two sides are the arguments of the ratios of these complex
numbers

α = arg

[
−VtdV

∗
tb

VudV∗
ub

]
, β = arg

[
−VcdV

∗
cb

VtdV∗
tb

]
, γ = arg

[
−VudV

∗
ub

VcdV∗
cb

]
. (2.14)

An equivalent notation β ≡ φ1, α ≡ φ2, γ ≡ φ3 is also used in the literature. By
definition, α + β + γ = π. One can normalize one of the sides to length one and turn
it such that it lies on the real axis. The resulting triangle is what we see in the right
panel of Fig. 2.1.

In fact, here are five more unitarity triangles which come from the orthogonality
of other rows and columns. The unitarity triangles are extremely useful because they
provide a simple and vivid summary of the CKM mechanism. The area of all these
unitarity triangles can be shown to be equal and denoted by |J|/2. A good confirmation
of the CKM mechanism is to check whether the lengths and angles determined through
the measurements of various decays, mixing rates and CP asymmetries are consistent
with each other. Furthermore, when one combines independent measurements—from
the B, Bs, K, and D systems, all triangles should have the same area. If there are non-
CKM contributions beyond the SM then there should be conflicts among the different
independent measurements because the interpretation of rates and asymmetries as
measurements of the sides and angles of the unitarity triangles will no longer hold.

The size of the CP violation can be written in terms of a rephasing invariant (inde-
pendent of the phase redefinitions of the quark fields) quantity involving the commu-
tator of the up and down type mass matrices,

det C = det[m̂um̂u†, m̂dm̂d†] = −2iFuFdJ. (2.15)
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where

Fu = (m2
u −m2

c)(m
2
c −m2

t )(m
2
t −m2

u) , (2.16)

Fd = (m2
d −m2

s )(m
2
s −m2

b)(m
2
b −m2

d) , (2.17)

J = Im[VijV
∗
kjVkℓV

∗
iℓ]
∑

m

εikm
∑

n

εjℓn . (2.18)

The definition of J is valid for all combinations of i, j, k, and ℓ. J is called the Jarlskog
invariant [63].

Ignoring the Θ term of QCD (which leads to the so-called strong CP problem, for
a review see [64]), the CP violation in the SM from the CKM mechanism is solely
determined by the determinant det C. It is clear from the definition of J that for CP
violation in the SM, complex nature of the CKM matrix is necessary. This reminds us
that CP violation stems from complex couplings. It is also important to notice that
there is no CP violation unless Fu, Fd, and J are all different from zero. Hence all the
up and down type quarks have to be non-degenerate in mass so as to have non zero
CP violation in the SM.

2.3 Parameterization of CKM Matrix

The fact that there are only three real and one imaginary physical parameters in V can
be made manifest by choosing an explicit parametrization. A general unitary matrix
can be constructed as a product of rotation matrices and unitary matrices made up of
phase factors. There is no unique parameterisation of the KM matrix by this method.
The one advocated by the Particle Data Group (PDG) [65] is

VCKM =




1 0 0
0 c23 s23
0 −s23 c23






e−iδ/2 0 0
0 1 0
0 0 eiδ/2






c13 0 s13
0 1 0

−s13 0 c13


 ×




eiδ/2 0 0
0 1 0
0 0 e−iδ/2








c12 s12 0
−s12 c12 0
0 0 1





=




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13


 ,(2.19)

where cij = cos θij and sij = sin θij . Each angle is here labelled with the indices
corresponding to the mixing of two families, so that θij = 0 would indicate that families
i and j are decoupled; all these angles can always be chosen to lie in the first quadrant
and the phase of δ13 is chosen so that 0 ≤ δ13 < 2π.
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Using the parameterization of Eq. (2.19) the Jarlskog invariant can be writen as

J = c12c23c
2
13s12s23s13 sin δ13 . (2.20)

From the above explicit expression the fact of the disappearance of CP violation with
the vanishing of any mixing angle θij is manifest. On the other hand the product of all
three mixing angles appears in J, so that the hierarchical structure of the CKM matrix,
with relatively small inter-family mixing, suppresses any CP-violating amplitude even
for δ = π/2. So the CKM matrix must not only have complex entries, but also non-
trivial mixing; otherwise the KM phase δ13 can be removed. From Eq. 2.18 one can also
see that at least four different quarks (real or virtual) must be involved for a process
to exhibit CP violation.

In nature the mixing angles are such that the matrix elements of VCKM have very dif-
ferent magnitudes. In 1983 it was realized that the bottom quark decays predominantly
to charm quark so that |Vcb| ≫ |Vcb|. Wolfenstein then noticed that |Vcb| ∼ |Vus|2 and
introduced an approximate parameterization of VCKM. It is approximate in the sense
that the unitarity only holds approximately. The Wolfenstein parameterization [66]
which has become popular till then and has been used extensively in phenomenological
studies has the following form,

VCKM =




1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) . (2.21)

It has four real parameters λ, A, ρ, and η all of which should be determined exper-
imentally. From experiments λ ≈ 0.22, A ≈ 0.8, and

√
ρ2 + η2 ≈ 0.4, so it was indeed

phenomenologically useful to expand VCKM in powers of λ.
The above approximate form of the VCKM can also be derived from the exact

parameterization of Eq. 2.19 by setting

λ ≡ s12 , A ≡ s23/λ
2 , ρ+ iη ≡ s13e

iδ13/Aλ3 . (2.22)

The Wolfenstein parametrization is indeed a good approximation to the actual
numerical values. That is, the CKM matrix is very close to a unit matrix with off
diagonal terms that are small. The order of magnitude of each element can be read
from the power of λ. Each up-type quark preferably couples to the down-type quark
of the same family, and to other ones with couplings which are smaller, the more
the two families are distant; indeed the off-diagonal elements are of order λ between
generations 1 and 2, λ2 between 2 and 3 and λ3 between 1 and 3 : |θ12| ≫ |θ23| ≫ |θ13|
in the parameterisation of Eq. 2.19. One can easily check that the unitarity relations –
normalisation of each row and column of VCKM and orthogonality of each pair of rows
and columns is satisfied up to order λ3. An expansion of VCKM up to a higher power
of λ must be made if better experimental accuracy is reached. Another observation is
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that η/ρ ∼ O(1) shows that CP is not even an approximate symmetry of the SM: the
smallness of CP-violating effects is just due to the small mixing angles which appear
together with the complex phase δ13 in the expression for specific observables, rather
than a necessity. Conversely, it should be observed that the CP-violating parameter η
can be determined also from experiments on CP-conserving processes, since the CKM
matrix is uniquely determined by the moduli of its elements; for example if A is known
the knowledge of |Vub| and |Vtd| gives ρ and η. The knowledge of the moduli of the
CKM matrix elements is thus sufficient to put a limit on the amount of CP violation
in the SM.

It is important to note that the position in which complex terms appear in the
CKM matrix is not physically significant, as in different parametrizations the complex
phase shifts to different matrix elements. Clearly, the physics should not depend on the
choice of the parametrization, and quantities must be identified which are insensitive
to such choice; again, CP violation will only be present if a complex term appears
which cannot be made real with any choice of arbitrary phases. The Jarlskog invariant
J, as was already mentioned before is such a rephasing invariant quantity and hence a
measure of true CP violation.

The Jarlskog invariant can now be expressed J = A2λ6η ≈ (7 × 10−5)η. It is also
clear from the above expression that the CKM CP violation is small not only because
δ13 is small but also because flavour violation in the SM is suppressed, empirically, by
powers of λ.

The unitarity triangle which we wrote in Eq. (2.13) is special, because its three
sides are all of order Aλ3. The angles α, β, γ of the triangle defined in Eq. 2.14 can be
easily expressed in terms of the parameters of the Wolfenstein Parameterisation as 1

α = tan−1

(
η̄

η̄2 + ρ̄(ρ̄− 1)

)
, β = tan−1

(
η̄

1− ρ̄

)
, γ = tan−1

(
η̄

ρ̄

)
. (2.23)

The triangle formed from the orthogonality of the first and third rows also has
this property, but it is not accessible, because the top quark decays before the mesons
needed to measure the angles are bound:

VtdV
∗
ud +VtsV

∗
us +VtbV

∗
ub = 0 . (2.24)

The other triangles are all long and thin, with sides (λ, λ, Aλ5) (e.g., for the Kaon
system)

VudV
∗
us +VcdV

∗
cs +VtdV

∗
ts = 0 , (2.25)

or (λ2, λ2, Aλ4) (e.g., for the Bs meson),

VusV
∗
ub +VcsV

∗
cb +VtsV

∗
tb = 0 . (2.26)

1The replacements ρ → ρ̄ = ρ(1 − λ2/2) and η → η̄ = η(1 − λ2/2) improve the accuracy of the
Unitarity Triangle apex.
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In Eq. (2.26) the third term is much smaller than the other two. This makes the
angle

βs = arg

[
−VtsV

∗
tb

VcsV
∗
cb

]
= λ2η +O(λ4) (2.27)

very small, of order one degree. Therefore, the CP asymmetry in for example, Bs →
J/ψφ is expected to be smaller in the SM than the corresponding asymmetry in the B
decays. The precise measurement of βs is thus important to identify the existence of any
NP. Furthermore, this asymmetry is also sensitive to new physics in B0

s − B̄0
s mixing.

The Tevatron experiments have discovered and precisely quantified B0
s − B̄0

s mixing
oscillations [67–69] whose frequency is in good agreement with the Standard Model
prediction, and presented first determinations of the associated CP-violating phase
from tagged analyses of Bs → J/ψφ decays [70, 71]. Recently, possible New Physics in
the B0

s − B̄0
s mixing amplitude has received considerable attention after the Tevatron

measurement of dimuon charge asymmetry which disagrees with the Standard Model
prediction by more than 3 standard deviations [72]. The most recent measurement of
βs and the width difference of the B0

s − B̄0
s system by the LHCb collaboration [73] is

though in good agreement with the SM prediction.
The orthogonality of the first two rows of the CKM matrix gives the unitarity

triangle for the D system,

VudV
∗
cd +VusV

∗
cs +VubV

∗
cb = 0 . (2.28)

The three sides of this triangle are of order (λ, λ, Aλ5) and thus it is even thinner than
the one for the Bs system. This makes its determination in the current flavour physics
experiments extremely challenging but a non-zero measurement of the CP asymmetry
in the D system would be clear sign of new physics.

2.4 The Global CKM fit

The CKM matrix elements are fundamental parameters of the SM and should be
determined as precisely as possible from experiments. The measurements of CP asym-
metries, mixing, semileptonic, and rare decays give us valuable information about the
the magnitudes and phases of these parameters.

CP-violation measurements in B-meson decays provide direct information on the
angles of the unitarity triangle. These overconstraining measurements serve to improve
the determination of the CKM elements, or to reveal effects also beyond the SM. The
b → cc̄s decays to CP eigenstates (B0 → charmonium K0

S,L) are the theoretically
cleanest examples, measuring the angle β (sin(2β), to be more precise). Since α is
the phase between V∗

tbVtd and V∗
ubVud, only time-dependent CP asymmetries in b →

uūd decay dominated modes can directly measure sin(2α). Since b → d penguin
amplitudes have a different CKM phase than b → uūd tree amplitudes, and their
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magnitudes are of the same order, the penguin contribution can be sizable, which
makes the determination of α complicated. To date, α has been measured in B → ππ,
ρπ and ρρ decay modes. The angle γ does not depend on CKM elements involving
the top quark, so it can be measured in tree level B decays. This is an important
distinction from the measurements of α and β, and implies that the measurements of γ
are unlikely to be affected by physics beyond the SM. The angle γ has been measured
from the B → DK and B → Dπ modes.

The average directly measured values of these three angles are [74] :

α = 89.0+4.4
−4.2

◦
, β = 21.38+0.79

−0.77
◦
, γ = 68+10

−11
◦
. (2.29)

Details of these measurements along with references can be found in [75]. An important

Figure 2.2: Global fit to the unitarity triangle based on all available data. [74]

goal of flavour physics is to overconstrain the CKM elements from various independent
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measurements. Many measurements can be conveniently displayed and compared in
the ρ̄, η̄ plane and if the SM CKM picture is the correct one then the different mea-
surements should give unique values of ρ̄ and η̄. One should remember that processes
dominated by loop contributions in the SM are sensitive to new physics, and can be
used to extract CKM elements only if the SM is assumed. Even then, this is an ex-
tremely challenging task for both experimentalists and theorists because SM has a large
number of parameters which are not predicted from theory. On top of that theoretical
calculations are often plagued with large uncertainties because of the strong interac-
tion. Fig. 2.2 is the most recent compilation of all the results from different flavour
physics experiments. What we see here are many bounds all overlapping at one small
area in the ρ̄− η̄ plane. It is worth mentioning that not all the observables in flavour
physics can be used as inputs for the global fit, due to limitations on our experimental
and theoretical knowledge on these quantities. Only those quantities are used which
enjoy good theoretical control and also good accuracy in their measurements.

We can see clearly from Fig. 2.2 that several independent measurements are con-
sistent with each other for values of ρ̄, η̄ lying in very small region. This confirms that
the Cabibbo-Kobayashi-Maskawa mechanism is at least the dominant source of flavour
and CP violation in flavour-changing processes. Indeed the Nobel prize was awarded
to Kobayashi and Maskawa in 2008 because it is now experimentally proven that the
CKM phase is the one which explains the observed CP violation in Nature.
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Chapter 3

Effective Theory Formalism

Einstein once said that most un-understandable thing about the universe is that it is
understandable. But the main reason it is understandable is that the universe sep-
arates itself into different pieces or layers. Each layer is characterized by a different
scale or size, that can be studied and modeled independently of the other layers. For
example, typical scales might be the size of the observable universe, a galaxy, the solar
system, the earth, people, the atom, the nucleus or the Plank length. One does not
have to understand the universe as a whole, one can study it one piece or layer at a
time. Dynamics at low energies (or large distances) does not depend on the details of
the dynamics at high energies (or short distances). Hence, low energy physics can be
described using an effective Hamiltonian that contains only a few degrees of freedom,
ignoring additional degrees of freedom present at higher energies. This is the essence
of Effective Field Theories(EFT) [76]. An EFT is an approximate theory, that includes
appropriate degrees of freedom to describe physical phenomena occurring at a chosen
length scale, while ignoring substructure and degrees of freedom at shorter distances
(or, equivalently, at higher energies). As a simple example, the multipole expansion in
electrodynamics works because the substructure or short-distance details of charge dis-
tribution are not important while calculating the field at far away distances. Similarly,
one does not need to worry about the sizes and shapes of the planets, when studying
orbital motions in the Solar System. Another text-book example is the calculation of
the energy levels of the Hydogen atom. Only the mass and charge of the proton are
necessary for the calculation and the quark structure of proton is unimportant for this
purpose. But one should also keep in mind that the above statement is true only if the
answer which has some theoretical uncertainty is sufficient. By sufficient we mean that
the experimental accuracy is worse than the theoretical uncertainty. Of course, a more
accurate calculation of the energy levels, including the hyperfine splitting, requires that
we also know the spin and magnetic moment of the proton to a good precision. More
details of the proton structure are needed as we require a more accurate answer for the
energy levels.

That the dynamics at high energies is unimportant for the description of low energy
phenomena is a subtle statement and needs some clarification. For this purpose we
will closely follow the excellent discussion presented in the lecture note by Aneesh V.
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Manohar [77]. To be precise, it is not true that energy levels of Hydrogen atom does not
depend on the mass of the top quark. If we keep the electromagnetic coupling constant
fixed at high energies then a change in the top mass changes the low energy value of
the electromagnetic coupling constant according to the equation [77]: mtd(1/α)/dmt =

−1/3π. In fact, the top quark mass also contributes to the proton mass, mp ∝ m
2/27
t .

In spite of this fact that both α and mp are dependent on the top quark mass mt still,
for the calculation of Hydrogen atom energy levels the value of mt is irrelevant because
in Schrodinger equation both α and mp are input parameters whose values have to
be obtained by fitting to the experimentally observed energy levels. “The value of mt

is irrelevant for atomic physics if the Schrodinger equation is treated as a low energy
theory whose parameters α, me , mp are determined from low energy experiments” [77].

If there is a single mass scale M in the microscopic theory, then the effective field
theory can be seen as an expansion in 1

M
. The construction of an effective field theory

accurate to some power of 1
M

requires a new set of free parameters at each order of the
expansion in 1

M
. This technique is useful for scattering or other processes where the

maximum momentum scale k satisfies the condition k
M
≪ 1. Since effective field theories

are not valid at small length scales, they need not be renormalizable. Indeed, the ever
expanding number of parameters at each order in 1

M
required for an effective field

theory means that they are generally not renormalizable in the same sense as quantum
electrodynamics which requires only the renormalization of three parameters. This
observation about decoupling of large energy scales also follows from the equations of
mechanics, electrodynamics, or quantum mechanics. But calculations in field theory
require extra care because of the fact that integration over loop momenta involves
all scales [78,79]. The effective field theory expansion breaks down if one introduces a
mass-dependent subtraction scheme such as a momentum space cutoff. However, this is
only a superficial obstacle as this problem can be cured if one uses a mass-independent
subtraction scheme, such as dimensional regularization and minimal subtraction. The
decoupling of heavy states is, of course, the reason for building high-energy accelerators.
If quantum field theories were sensitive to all energy scales, it would be sufficient more
useful to increase the precision of low-energy experiments instead of building large
colliders. There are many precision calculations that agree with experiments in spite of
neglecting the contribution from heavy particles. At the time of the original calculation
of the anomalous magnetic moment of the electron, by Schwinger, weak interactions
were not understood. Yet the result based on only the photon contribution agreed with
the experiment within a few percent [80].

There are many more examples of EFTs. Here we mention some of them very
briefly.

• The best-known example of is the Fermi theory of beta decay. This theory was
developed during the early study of weak decays of nuclei when only the hadrons and
leptons undergoing weak decay were known. This theory posited a pointlike inter-
action between the four fermions involved in these reactions. The theory had great
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phenomenological success and was eventually understood to arise from the gauge the-
ory of electroweak interactions, which forms a part of the standard model of particle
physics. In this more fundamental theory, the interactions are mediated by a flavour-
changing gauge boson, the W±. The immense success of the Fermi theory was because
the W particle has mass of about 80 GeV, whereas the early experiments were all done
at an energy scale of less than 10 MeV.

• Another famous example is the BCS theory of superconductivity. Here the un-
derlying theory is of electrons in a metal interacting with lattice vibrations called
phonons. The phonons cause attractive interactions between some electrons, causing
them to form Cooper pairs. The length scale of these pairs is much larger than the
wavelength of phonons, making it possible to neglect the dynamics of phonons and
construct a theory in which two electrons effectively interact at a point. This theory
has had remarkable success in describing and predicting the results of experiments.

• The effective field theory of low energy QCD, the so called chiral perturbation
theory which deals with the interactions of hadrons with pions or kaons, which are the
Goldstone bosons of spontaneous chiral symmetry breaking. The expansion parameter
is the pion energy/momentum.

• For hadrons containing one heavy quark (such as the bottom or charm), an
effective field theory which expands in powers of the quark mass, called the heavy-
quark effective theory (HQET), has been found useful. For hadrons containing two
heavy quarks, an effective field theory which expands in powers of the relative velocity
of the heavy quarks, called non-relativistic QCD (NRQCD), has been found useful,
especially when used in conjunctions with lattice QCD.

There are many ways EFTs are useful. If the full theory is not known then EFTs can
be usesd to parameterize the unknown interactions and estimate their relative impor-
tance. On the other hand, even if the full theory is known sometimes the calculations
are very complicated and EFTs often simplify calculations. Complex computations
can be broken into several easier tasks.

Before we end the discussion on EFTs we should stress a few points. EFTs are
nonrenormalizable as they contain operators of mass dimension higher than four. In
order to maintain a consistent expansion in the inverse of large mass scales and preserve
power counting arguments it is mandatory to use a mass independent regularisation
scheme so that the renormalization scale only appears in dimensionless ratios inside
logarithms and does not alter power counting. In the effective lagrangian, not only
higher dimensional terms get contributions from the heavy particles, in general, the
heavy states also contribute to the renormalizable terms. But sometimes the contri-
bution of the heavy particles to a renormalizable operator is unobservable because the
effect of existence of the heavy particles is only to redefine the coefficient of the oper-
ator which is determined from experiments instead of being predicted by the theory.
On the other hand the coefficients of the higher-dimensional operators are suppressed
by inverse powers of the heavy masses. These coefficients decrease as one increases the
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Figure 3.1: Standard Model W exchange box diagram and penguin diagram with
internal top quark for the decay b→ sµ+µ−.

masses of the heavy particles.

3.1 Effective Hamiltonian for B Meson Decays

The mass of B meson is much smaller than the Weak interaction gauge bosons as well
as the top quark; hence we can switch to an effective field theory for the description of
its properties. At the quark level there are many contributions to the amplitude M for
the decay rate of a B meson into some final state f. These are pictorially represented
by Feynman diagrams like those shown in Fig. 3.1 which represents for example, the
decay Bs → µ+µ− in the SM.

Unlike the leptons, quarks feel strong interactions whose strength depends on the
distance scales at which it is probed. Due to the crucial property of asymptotic freedom,
the strong interaction can be described perturbatively at short distances much smaller
than 1/ΛQCD [81–86]. Higher order QCD corrections can be taken into account by
dressing the lowest order diagrams in Fig. 3.1 with gluons. Over a distance scale of order
1/ΛQCD, however, quarks and gluons hadronize and QCD becomes nonperturbative [87]
so that it should be treated differently. One theoretical tool for this is the operator
product expansion(OPE) [88] which allows to separate the short distance(SD) and long
distance(LD) contributions to the weak decay amplitudes. Schematically the decay
amplitude M is expressed as

M = −4GF√
2

VCKM

∑

j

Cj(µ) 〈f|Oj(µ)|B〉
[
1 +O

(
m2

b

M2
W

)]
. (3.1)

Here GF is the Fermi constant and Oi are the relevant local operators which govern
the decay in question. The local operators Oi are built out of light quarks, lepton,
photon and gluon fields. The scale µ is a renormalization scale. Physics from distances
shorter than µ−1 is contained in the Wilson coefficients Cj, and physics from distances
longer than µ−1 is accounted for by the hadronic matrix elements 〈f|Oj |B〉 of the local
operators Oj. The CKM factor VCKM and the Wilson coefficients Cj determine the
strength with which a given operator enters the effective Hamiltonian. In principle,
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there are infinitely many terms in the OPE, but higher dimension operators yield con-
tributions suppressed by powers of m2

b/m
2
W. From a practical point of view, therefore,

the sum in (3.1) ranges over operators of dimension five and six. All dependence on
masses of heavy particles M ≫ µ such as mt, MW or the masses of new undiscovered
heavy particles is contained in Cj. On the other hand, the matrix element 〈f|Oj|B〉
of the B → f transition contains information about non perturbative dynamics from
scales, such as ΛQCD, that are below µ. Therefore, they can only be evaluated us-
ing some nonperturbative methods. There are many approaches such as QCD sum
rules [91–94], lattice calculations [89, 90], 1/N expansion [95–99], chiral perturbation
theory etc. In addition heavy quark effective theory (HQET) [100–102] and heavy
quark expansions (HQE) have been widely used for B decays. In spite of the excellent
progress in these non-pertubative techniques, especially in lattice gauge theory, the
problem is not yet solved satisfactorily.

One can view theWilson Coefficients Cj’s in Eq. (3.1) as effective coupling constants
and the Oj’s in Eq. (3.1) as the corresponding interaction vertices. Thus one can write
the effective Hamiltonian in the form

H =
4GF√

2
VCKM

∑

j

Cj Oj + h.c. (3.2)

The Effective Hamiltonian in Eq. (3.2) reproduces the Standard Model result mod-

ulo corrections which are of order O
(

m2
b

M2
W

)
compared to Eq. (3.2). The flavour struc-

ture of the set of operators Oj needed to describe a particular physical process depends
on the process itself.

Note that, in this thesis, as we are interested in flavour transitions we will only con-
sider operators which contain some fermionic fields. There is another class of operators
in the SM which do not contain any quark or lepton field, that is, these operators con-
sist only of gauge and Higgs fields. Clearly, these operators are irrelevant with respect
to flavour physics, but they have been used to parameterize new physics effects in the
gauge sector. Such operators originate whenever heavy fields directly couple only to
the SM gauge fields and the Higgs doublet. These operators are “universal“ in the
sense that they universally affect all quarks and leptons through fermion couplings to
the SM gauge fields. Sometimes such operators are referred to as ”oblique“. In fact,
one may reformulate the analysis of Peskin and Takeuchi [103] in terms of this class of
dimension six operators [104].

The Effective Hamiltonian for ∆B = 1 and ∆S = 1 transitions consist of many
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Figure 3.2: Quark level diagrams for some of the effective operators of (3.3),(3.4),(3.5).

operators. The corresponding operator basis reads (for a recent review see [105])

Oc
1 = [s̄αLγµc

β
L] [c̄

β
Lγ

µbαL], O
u
1 = [s̄αLγµu

β
L] [ū

β
Lγ

µbαL], O
c
2 = [s̄αLγµc

α
L] [c̄

β
Lγ

µbβL],

Ou
2 = [s̄αLγµu

α
L] [ū

β
Lγ

µbβL], O3 =
∑

q=u,d,s,c,b

[s̄αLγµb
α
L] [q̄

β
Lγ

µqβL],

O4 =
∑

q=u,d,s,c,b

[s̄αLγµb
β
L] [q̄

β
Lγ

µqαL], O5 =
∑

q=u,d,s,c,b

[s̄αLγµb
α
L] [q̄

β
Rγ

µqβR],

O6 =
∑

q=u,d,s,c,b

[s̄αLγµb
β
L] [q̄

β
Rγ

µqαR], O8 =
g

16π2
mb [s̄Lσ

µνGa
µνT

abR] .

(3.3)

The Feynman diagrams leading to these operators are shown in in Fig. 3.2. The op-
erators have different names depending on the structural form. O1 and O2 are called
current-current operators, O3 through O6 are called four-quark penguin operators, and
O8 is called the chromomagnetic penguin operator. In O8, G

a
µν is the chromomag-

netic field strength tensor. The operators in (3.3) arise from the lowest order in the
electroweak coupling constant , i.e., diagrams involving a single W bosons plus QCD
corrections to it. In case of isospin breaking transitions the above set of operators are
not sufficient and one also needs to extend the set to include penguin diagrams which
are of higher order in the electroweak fine structure constant αew. They give rise to
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the electroweak penguin operators:

O7 =
e

16π2
mb [s̄

α
L σ

µνFµν b
α
R] ,

Oew
7 =

3

2

∑

q=u,d,s,c,b

eq [s̄
α
Lγµb

α
L] [q̄

β
Rγ

µqβR] , O
ew
8 =

∑

q=u,d,s,c,b

3

2
eq [s̄

α
Lγµb

β
L] [q̄

β
Rγ

µqαR] ,

Oew
9 =

3

2

∑

q=u,d,s,c,b

eq [s̄
α
Lγµb

α
L] [q̄

β
Lγ

µqβL] , O
ew
10 =

∑

q=u,d,s,c,b

3

2
eq [s̄

α
Lγµb

β
L] [q̄

β
Lγ

µqαL] .

(3.4)

Here F µν is the electromagnetic field strength tensor, and eq denotes the charge of quark
q. The magnetic (penguin) operator O7 is also of key importance for the radiative decay
b→ sγ.

For semileptonic decays some more operators need to be considered which are of
the form

O9 =
e2

16π2
[s̄L γµ bL] [ℓ̄ γ

µ ℓ] , O10 =
e2

16π2
[s̄L γµ bL] [ℓ̄ γ

µγ5 ℓ] ,

O11 =
e2

32π2 sin2 θW
[s̄L γµ bL] [ν̄L γ

µ νL] .

(3.5)
Hence the effective Hamiltonian for radiative b→ s transitions reads

Heff = −4GF√
2

(
λ
(s)
t H(t)

eff + λ(s)u H(u)
eff

)
+ h.c., (3.6)

with the CKM matrix combinations λ
(s)
q = VqbV

∗
qs, and

H(t)
eff = C1Oc

1 + C2Oc
2 +

11∑

i=3

CiOi +
10∑

i=7

Cew
i Oew

i ,

H(u)
eff = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ). (3.7)

Note that the unitarity relation λ
(s)
u + λ

(s)
c + λ

(s)
t = 0 has been used in Eq.3.6. The

contribution of H(u)
eff is usually dropped for being doubly Cabibbo-suppressed with

respect to that of H(t)
eff .

The Wilson coefficients Ci at the low scale are calculated in two steps. At first,
some physical quantities (like amplitudes) in the full theory are compared to those
calculated in the effective theory(containing only the light fields) to extract the Wilson
coefficients at the high scale µh ∼ mW where both the theories are expected to work.
This step is called the ”matching” of the full theory onto the effective theory. The
scale at which this is done is called the matching scale. The weak scale perturbative
matching is performed in a mass-independent scheme such as MS, giving the Wilson
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coefficients expanded in powers of αs(µh) and αem(µh)

Ci(µh) = C
(0)
i +

αs(µh)

4π
C

(1)
i (µh)

+
(αs(µh)

4π

)2
C

(2)
i (µh) +

αem(µh)

4π
C

(1e)
i (µh) + · · ·

(3.8)

One should note that, αs(µ) is small enough in the full range of relevant short distance
scales of O(MW ) down to O(1 GeV) to serve as a reasonable expansion parameter.
Both the hard gluons and electroweak loops are included in the matching calculation.
Here C

(0)
i is the tree level contribution which vanishes for all operators except the

operator O2. Till date, the matching conditions at µ = mW have been calculated with
two loop accuracy [106].

Because of the presence of vastly different scales in the problem(MW ≫ mb) large
logarithms appear in the calculation. This is a general property of Quantum Field
Theories. The presence of such large logarithms ln(MW/µ) multiplying αs(µ) (where
µ = O(1GeV )) in the calculation of the coefficients Ci(µ,MW ) spoils the validity of
the usual perturbation series. This problem is cured by performing a renormalization
group analysis which allows an efficient summation of logarithmic terms to all orders
in perturbation theory. Hence in the second step, the Wilson coefficients are evolved
from µh down to the relevant scale in the problem (say, µ ∼ mb) by solving the
Renormalization Group Equations(RGE)

µ
d

dµ
C(µ)i = (γ̂)jiC(µ)j, (3.9)

where γ̂ is called the anomalous dimension matrix which is also expanded as

γ̂ =
αs
4π
γ̂(0)s +

α2
s

(4π)2
γ̂(1)s +

αem

4π
γ̂(0)em + · · · . (3.10)

Two loop matching requires the inclusion of anomalous dimensions matrix in the renor-
malization group equations to three loop Oα3

s accuracy which have been calculated
in [107–109]. In this way the usual perturbation theory is replaced by the renormaliza-
tion group improved perturbation theory in which the leading order (LO) corresponds
to summing the leading logarithmic terms ∼ (αs(µ)ln(MW/µ))

n. Then at next-to-
leading order (NLO), all terms of the form ∼ αs(µ)(αs(µ)ln(MW/µ))

n are summed in
addition,and so on.

Another important point is the choice of the scale µ. In principle, the value of
µ is arbitrary. In order that the final result is µ-independent, it must be that the
µ-dependence of the short distance coefficients Ci(µ) has to cancel the µ-dependence
of the long distance matrix element 〈Qi(µ)〉. However, in order to cancel the µ -
dependence completely large number of terms in the OPE have to be calculated which
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is, in practice, an impossible task. Hence, in real calculations there is always some
µ dependence which reduces as we go to more and more higher orders. Although µ
is in principle arbitrary, it is customary to choose µ to be of the order of the mass
of the decaying hadron. For example, in B meson decays µ is chosen to O(mb). For
the estimation of theoretical uncertainty due to scale dependence, conventionally µ is
varied from mb/2 to 2mb in calculations. For D meson decays it is O(mc) but in the
case of K decays the typical choice is µ = O(1 − 2 GeV) instead of O(mK), which is
much too low for any perturbative calculation of the couplings Ci.

There is also a question of renormalization scheme dependence of the coefficients
Ci(µ). One of the type of scheme dependences is the manner in which γ5 is defined in
D = 4 − 2ε dimensions implying for instance the three schemes: Naive Dimensional
Regularization(NDR), t’Hooft Veltmann(HV) and Dimensional Reduction(DRED). In
dimensional regularization D=4 dimensional space-time is analytically continued to D
= 4 − 2ε which requires the generalization of the Dirac algebra to D 6= 4 dimensions.
In the naive dimensional regularization (NDR) scheme γ5 is assumed to anticommute
with the D dimensional Dirac matrices. This leads to inconsistencies in the evaluation
of closed Fermi lines. For example calculations adopting the NDR scheme are not able
to reproduce chiral anomalies correctly. Several schemes which consistently define the
Dirac algebra have been proposed having in common complicated and tedious algebraic
manipulations. For example in the ’t Hooft-Veltman (HV) scheme γ5 anticommutes
with the 4-dimensional parts of the Dirac matrices and commutes with the elements
of the (D - 4) dimensional subspace of the Dirac matrices. However, in many practical
calculations the appearance of Dirac traces containing γ5 can be avoided and hence
NDR scheme can be used. The related technical issues with original references are dis-
cussed in detail in [110]. The numerical values for the renormalization group improved
Wilson coefficients can be found in [110, 111].

So in brief, the steps of the calculation for the radiative B decays can be summarized
as follows:

• At first, the Wilson coefficients are determined by matching the full theory and
the effective theory amplitudes at the electroweak scale µ ∼ MW . This is equiv-
alent to integrating out the heavy degrees of freedom in the path integral.

• The Wilson coefficients are then renormalization group evolved down to the rele-
vant low energy scale µ ∼ mb. This step resums the large logarithms to all orders
in the strong coupling constant αs. This is reminiscent of a renormalization group
improved perturbation theory.

• Physical observables of our interest such as branching ratios and various asym-
metries are now calculated in the effective theory which requires the evaluation of
matrix elements of the effective theory operators between the physical states. For
precise predictions the inclusion of the corresponding bremsstrahlung corrections
is also essential.
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3.2 Beyond the Standard Model

The Standard Model can always be thought as the renormalizable part of an Effective
Theory which can be obtained from an underlying microscopic theory which is valid at
a scale(say, Λ) much larger than the Electroweak scale. It is well established by diverse
experimental efforts over many decades that the Standard Model is a successful effective
theory of particle interactions valid up to the high scale Λ which is the ultraviolet cut-
off of the SM. But the value of Λ is still unknown. In some sense, the goal of the particle
physics experiments is to find evidence of a finite Λ because in the limit of Λ → ∞
all the NP effects beyond the SM will go to zero. We have already probed such a NP
through the experimental observation of Neutrino mass, but the scale of NP for that is
expected to be very high ∼ 108 GeV. Similarly the lower bound on proton lifetime has
pushed the scale Baryon(B) and Lepton(L) number violating interactions close to the
GUT scale. On the other hand, a natural solution of the higgs mass hierarchy problem
requires that Λ should be O(TeV). Stringent bounds also come from meson mixing. In
we do not assume any non generic flavour structure then K0 − K̄0 mass difference sets
a lower bound of about at least 102 TeV [112] on the new physics scale if fine tuning is
avoided. In the context of NP models like Supersymmetry or Technicolour, this is also
referred to as the “flavour problem“. A detail compilation of these bounds (and also
from Bd, Bs and D systems) can be found in [112]. So if we demand NP to emerge
in the TeV scale then the structure of that should be highly non trivial. For example,
B, L, have to be at least approximate symmetries of the new underlying theory at the
TeV scale. The new theory must also be approximately CP conserving because the
CP violation observed in nature is beautifully accounted for by the CKM picture (The
case of BAU is still not clear though). The flavour sector of the NP should also be
highly non generic.

To study the effect of NP on B decays in a model independent fashion, the same
effective Hamiltonian approach as described above can be used. As in the SM, NP
contribution to the B decays can also be parameterised in terms of effective Wilson
coefficients at the weak scale. The effect of NP on the Wilson coefficients can be
categorised in two types. First, it shifts the values of the SM Wilson coefficients away
from the SM values

λ(q)p Ci = λ(q)p CSM
i + CNP

i . (3.11)

Second, NP contributions can also enlarge the basis of the operators, for instance by
introducing operators of opposite chirality, or even introducing operators with scalar
and tensor interactions. We will see the effect of introducing such new operators in
detail in the subsequent chapters. The evolution of the new Wilson Coefficients from
the weak scale to the lower scales is determined by the SM. Note that in general, the
NP contribution to the Wilson coefficients will not respect the CKM hierarchy of the
SM Wilson coefficients and can also have new weak phases in them.
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To discuss the effect of CNP
i on a specific process we do not at all need to refer to a

particular model. But just to give an example of a specicfic kind of new physics which
can generate the CNP

i s, let us consider the b → s FCNC transition discussed before.
While in the SM these are dominated by one-loop contributions with the exchange of a
virtual W and the top quark, in Supersymmetry several competing sources of FCNC are
present. To begin with, in SUSY models the Higgs sector is richer than in the SM, since
at least two Higgs doublets must be present both for theoretical and phenomenological
reasons. Consequently, there exists at least one physical charged scalar H± which
can be exchanged in the one-loop contributions to b → s, together with an up quark.
This will generate new scalar operators for the b→ s transition with some NP Wilson
coefficients. The SM Wilson coefficients C7 and C8 will also get modified by these
new charged Higgs contributions. The second obvious source of FCNC comes from the
supersymmetrization of the W and the charged Higgs contribution, where the up quark
is replaced by an up squark and W− and H− are respectively replaced by their SUSY
partners wino and higgsino. To be more precise, since wino and higgsino are only gauge
eigenstates, the eigenstates of the 2 × 2 charged fermion mass matrix, the so-called
charginos have actually to be considered. A less obvious source of FCNC, peculiar
of SUSY theories, comes from the flavour changing vertices quark-squark-neutralino
or quark-squark-gluino. This is due to a characteristic renormalization effect of the
quark and squark mass matrices when the effective low-energy Lagrangian is derived.
Depending on the masses of the SUSY particles all these new contributions will modify
the SM wilson coefficients in different ways. But, given the complexity of the above
FCNC contributions it is phenomenologically useful to exactly define the particular
SUSY model in which the analysis of rare B-processes is to be performed.

3.3 Minimal Flavor Violation:An Organizing Prin-

ciple

It is clear from the discussion in the previous section that there is already good ex-
perimental evidence that some powerful organizing principle must govern the Flavour
sector of the New Physics underlying the SM. A key virtue of that organizing prinple
should be that the structure of FCNC processes present in the SM has to be preserved.
Such a scenario goes under the name of Minimal Flavour violation(MFV). We know
that in the SM without Yukawa interactions there is a global flavour symmetry SU(3)5:

SU(3)Q × SU(3)U × SU(3)D × SU(3)L × SU(3)E .

Yukawa interactions break this symmetry and give rise to all the flavour violation. In
MFV, all flavour violating interactions are generated only by the SM Yukawa couplings
and hence are governed solely by the CKM matrix with the CKM phase being the only
source of CP violation, in particular there are no FCNC processes at the tree level. One
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should note that MFV does not refer to a particular model, in fact, it arises naturally
as a low energy limit of a sizable class of models like supersymmetric models with
gauge or anomaly mediation [113–115]. In the case of MSSM, the MFV hypothesis is
valid when all the supersymmetry breaking soft scalar masses are universal and the
trilinear soft terms are proportional to Yukawa couplings, at an arbitrary high-energy
scale (one should keep in mind that MFV is not an RG invariant statement but taken
to be valid at the high scale).

In this thesis we shall consider the minimal supergravity model (mSUGRA) which
also falls in the category of MFV. Apart from rare B-processes we will also consider
the anomalous magnetic moment of muon and the tree level decay B+ → τ+ντ to
identify regions in the mSUGRA parameter space which are favoured by data. As far
as the muon anomalous magnetic moment is concerned, there is a growing consensus
that the SM prediction for the hadronic vacuum polarization contributions to the
anomalous dipole moment of the muon based on data on e+e− → γ∗ → hadrons (from
CMD2, SND, KLOE, B-factories) is more reliable, which again elevates the discrepancy
between the measurement of gµ−2 and its SM prediction to the level of ∼ 3.5 standard
deviations.1 On the other hand, the decay B+ → τ+ντ is theoretically clean and on the
experimental side, there are a few independent determinations of the branching ratio
(using different techniques) which are all consistent with each other. In addition to
these, constraints also come from the by now quite accurate determination of the relic
density of Dark Matter particles under the standard assumption that all DM is formed
by lightest superparticles(LSPs). A detailed study of the five dimensional parameter
space of the mSUGRA model in view of the above experimental data along with the
information obtained from the direct collider searches will be discussed in great detail
in chapter 6.
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Chapter 4

New Physics in b→ sµ+µ−:
CP-Conserving Observables

4.1 Introduction

In recent years, there have been quite a few measurements of quantities in B decays
which differ from the predictions of the Standard Model (SM) by ∼ 2σ. For example,
in B → πK, the SM has some difficulty in accounting for all the experimental measure-
ments [117]. The measured indirect (mixing-induced) CP asymmetry in some b → s
penguin decays is found not to be identical to that in B0

d → J/ψKS [118–120], counter
to the expectations of the SM. While the SM predicts that the indirect CP asymmetry
in B̄0

s → J/ψφ should be ≃ 0, the measurement of this quantity by the CDF and DO
/ collaborations shows a deviation from the SM [121]. One naively expects the ratio
of transverse and longitudinal polarizations of the decay products in B → φK∗ to
be fT/fL ≪ 1, but it is observed that fT/fL ≃ 1 [122, 123]. It may be possible to
explain this value of fT/fL within the SM, but this is not certain. Finally, the recent
observation of the anomalous dimuon charge asymmetry by the DO/ collaboration [124]
also points towards some new physics in Bs mixing that affects the lifetime difference
and mixing phase involved therein (for example, see Ref. [125]). Though none of the
measurements above show a strong enough deviation from the SM to claim positive
evidence for new physics (NP), they are intriguing since (i) the effects are seen in sev-
eral different B decay channels, (ii) use a number of independent observables, and (iii)
all involve b→ s transitions.

A further hint has recently been seen in the leptonic decay channel: in the exclusive
decay B̄0

d → K̄∗µ+µ−, the forward-backward asymmetry (AFB) has been found to

This chapter is based on JHEP 1111, 121 (2011) by Ashutosh Kumar Alok, Alakabha Datta, Amol
Dighe, Murugeswaran Duraisamy, Diptimoy Ghosh and David London [116]. The analytic expressions
for the decay rates and asymmetries existed partly (for a subset of new operators) in the literature.
I have brought all the earlier results together in a consistent notation and completed them using all
the Lorentz Structures. All the numerical analysis for the modes B̄0

s → µ+µ−γ, B̄0
d → K̄µ+µ−, and

B̄0
d → Xsµ

+µ− were performed by me with some initial help from Ashutosh Kumar Alok.
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deviate somewhat from the predictions of the SM [126–129] 1.
This is interesting since it is a CP-conserving process, whereas most of the other

effects involve CP violation. Motivated by this hint of NP in B̄0
d → K̄∗µ+µ−, we

explore the consequences of such NP in related decays. We do not restrict ourselves to
any particular model, but work in the framework of effective operators with different
Lorentz structures.

If NP affects B̄0
d → K̄∗µ+µ−, it must be present in the decay b → sµ+µ−, and

will affect the related decays B̄0
s → µ+µ−, B̄0

d → Xsµ
+µ−, B̄0

s → µ+µ−γ, and B̄0
d →

K̄µ+µ−. The analyses of these decays in the context of the SM as well as in some
NP models have been performed in the literature: B̄0

s → µ+µ− [131–141], B̄0
d →

Xsµ
+µ− [142–151], B̄0

s → µ+µ−γ [152–160], B̄0
d → K̄µ+µ− [148, 161–167], B̄0

d →
K̄∗µ+µ− [168–183]. Correlations between some of these modes have been studied in
Refs. [184–186].

In this chapter, we consider the addition of NP vector-axial vector (VA), scalar-
pseudoscalar (SP), and tensor (T) operators that contribute to b → sµ+µ−, and com-
pute their effects on the above decays. Our aim here is not to obtain precise predic-
tions, but rather to obtain an understanding of how the NP affects the observables,
and to establish which Lorentz structure(s) can provide large deviations from the SM
predictions. Some of these effects have already been examined by some of us: for
example, new VA and SP operators in B̄0

s → µ+µ− [137], new VA and SP operators
in B̄0

s → µ+µ−γ [159], the correlation between B̄0
s → µ+µ− and B̄0

d → K̄µ+µ− with
SP operators [185, 186], large forward-backward asymmetry in B̄0

d → K̄µ+µ− from T
operators [165], and the contribution of all Lorentz structures to B̄0

d → K̄∗µ+µ−, with
a possible explanation of the AFB anomaly [178]. Here we perform a combined study
of all of these decay modes with all the Lorentz structures, consolidating and updating
some of the earlier conclusions, and adding many new results and insights. Such a
combined analysis, performed here for the first time, is crucial for obtaining a consis-
tent picture of the bounds on NP and the possible effect of NP on the observables of
interest. While observables like the differential branching ratio (DBR) and AFB(q

2) by
themselves are sensitive to NP, we also examine the correlations between them in the
context of NP Lorentz structures.

A full angular distribution of B̄0
d → K̄∗µ+µ− allows us access to many independent

observables, and hence to multiple avenues for probing NP. We present here the full
angular distribution, including all the NP Lorentz structures, for this decay mode.
This leads to the identification of observables that could be significantly influenced by
specific Lorentz structures of NP. In addition to the DBR and AFB, we also examine
the longitudinal polarization fraction fL and the angular asymmetry A

(2)
T , introduced

recently in Ref. [173]. We further analyze the longitudinal-transverse asymmetry ALT ,
which, as we will argue, has very small hadronic uncertainties.

1While this paper was written much earlier, the recent LHCb measurement has brought it down
close to the SM prediction [130].
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Hadronic uncertainties often are the main source of error in the calculation of SM
predictions of a quantity, and make the positive identification of NP rather difficult. In
this chapter, for B̄0

d → K̄µ+µ− we use the form factors from light-cone sum rules. For
B̄0
d → K̄∗µ+µ−, we use the form factors obtained in the QCD factorization framework

at low q2 [169], and those using the light-cone sum rules at high q2 [161]. The latest
next-to-leading order (NLO QCD) corrections [187] have not been included. These
corrections would affect the central values of the SM predictions to a small extent,
while also decreasing the renormalization-scale uncertainty. However, since our primary
interest is looking for observables for which the NP effects are large, a LO analysis is
sufficient at this stage. In our figures, we display bands for the SM predictions that
include the form-factor uncertainties as claimed by the respective authors.

In addition to the form-factor uncertainties, the SM prediction bands also include
the uncertainties due to quark masses, Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements and meson decay constants. In our figures, these bands are overlaid with
some examples of the allowed values of these observables when NP contributions are
included. This allows the scaling of these uncertainties to be easily visualized. It
turns out that in many cases, the results with the NP can be significantly different
from those without the NP, even taking into account inflated values for the hadronic
uncertainties. We identify and emphasize such observables. We also show that the
hadronic uncertainties in several of these observables are under control, especially when
the invariant mass of the muon pair is small and one can use the limit of large-energy
effective theory (LEET). This makes such observables excellent probes of new physics.
Also, since all the observables are shown as functions of q2, we have the information not
just about the magnitudes of the observables, but also about their shape as a function
of q2, where some of the uncertainties are expected to cancel out.

In this chapter, we restrict ourselves to real values for all the NP couplings, and
study only the CP-conserving observables2. In section 4.2, we examine the various SM
and NP b → sµ+µ− operators, and give the current constraints on the NP couplings.
The effects of the NP operators on the observables of the decays are discussed in the
following sections: B̄0

s → µ+µ− (Sec. 4.3), B̄0
d → Xsµ

+µ− (Sec. 4.4), B̄0
s → µ+µ−γ

(Sec. 4.5), B̄0
d → K̄µ+µ− (Sec. 4.6), and B̄0

d → K̄∗µ+µ− (Sec. 4.7). Our notation in
these sections clearly distinguishes the contributions from VA, SP and T operators and
their interference terms, which offers many insights into their impact on modifying the
observables. We give the details of the calculations involved in sections 4.4–4.7 in the
appendices I-IV, respectively, for the sake of completeness and in order to have a clear
consistent notation for this combined analysis. In Sec. 4.8, we summarize our findings
and discuss their implications. In particular, we point out the measurements which will
allow one to distinguish among the different classes of NP operators, and thus clearly
identify which type of new physics is present.

2The CP-violating observables [188], with complex values of the couplings, are treated in the
following chapter.
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4.2 b → sµ+µ− Operators

4.2.1 Standard Model and New Physics: effective Hamiltoni-

ans

Within the SM, the effective Hamiltonian for the quark-level transition b→ sµ+µ− is

HSM
eff = −4GF√

2
V ∗
tsVtb

{ 6∑

i=1

Ci(µ)Oi(µ) + C7
e

16π2
[s̄σµν(msPL +mbPR)b]F

µν

+C9
αem
4π

(s̄γµPLb) µ̄γµµ+ C10
αem
4π

(s̄γµPLb) µ̄γµγ5µ
}
, (4.1)

where PL,R = (1∓γ5)/2. The operatorsOi (i = 1, ..6) correspond to the Pi in Ref. [147],
and mb = mb(µ) is the running b-quark mass in the MS scheme. We use the SM Wilson
coefficients as given in Ref. [177]. In the magnetic dipole operator with the coefficient
C7, we neglect the term proportional to ms.

The operators Oi, i = 1-6, can contribute indirectly to b→ sµ+µ− and their effects
can be included in an effective Wilson coefficient as [177]

Ceff
9 = C9(mb) + h(z, m̂c)

(
4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(z, m̂b)

(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)
(4.2)

− 1

2
h(z, 0)

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
+

4

3
C3 +

64

9
C5 +

64

27
C6 .

Here z ≡ q2/m2
b , and m̂q ≡ mq/mb for all quarks q. The function h(z, m̂) represents

the one-loop correction to the four-quark operators O1-O6 and is given by [143, 177]

h(z, m̂) = −8

9
ln
mb

µb
− 8

9
ln m̂+

8

27
+

4

9
x (4.3)

−2

9
(2 + x)|1− x|1/2

{ (
ln
∣∣∣
√
1−x+1√
1−x−1

∣∣∣− iπ
)
, for x ≤ 1 ,

2 arctan 1√
x−1

, for x > 1 ,

where x ≡ 4m̂2/z. In the numerical analysis, the renormalization scale µb is varied
between mb/2 and 2mb. Note that in the high-q2 region one can perform an operator
product expansion (OPE) in 1/Q with Q = (mb

√
q2) [189,190]. Numerically the results

of Refs. [189,190] differ little from those in Eq. (4.2) and so we use the above expression
for the entire range of q2. An analysis of b → sµ+µ− where the OPE in the high-q2

region is used can be found in Refs. [180, 182].
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We now add new physics to the effective Hamiltonian for b → sµ+µ−, so that it
becomes

Heff(b→ sµ+µ−) = HSM
eff +HV A

eff +HSP
eff +HT

eff , (4.4)

where HSM
eff is given by Eq. (4.1), while

HV A
eff = −4GF√

2

αem
4π

V ∗
tsVtb

{
RV (s̄γµPLb) µ̄γµµ+RA (s̄γµPLb) µ̄γµγ5µ

+ R′
V (s̄γµPRb) µ̄γµµ+R′

A (s̄γµPRb) µ̄γµγ5µ
}
, (4.5)

HSP
eff = −4GF√

2

αem
4π

V ∗
tsVtb

{
RS (s̄PRb) µ̄µ+RP (s̄PRb) µ̄γ5µ

+ R′
S (s̄PLb) µ̄µ+R′

P (s̄PLb) µ̄γ5µ
}
, (4.6)

HT
eff = −4GF√

2

αem
4π

V ∗
tsVtb

{
CT (s̄σµνb)µ̄σ

µνµ+ iCTE(s̄σµνb)µ̄σαβµ ǫ
µναβ

}
(4.7)

are the new contributions. Here, RV , RA, R
′
V , R

′
A, RS, RP , R

′
S, R

′
P , CT and CTE are the

NP effective couplings. We do not consider NP in the form of the O7 = s̄σαβPRb Fαβ
operator or its chirally-flipped counterpart O′

7 = s̄σαβPLb Fαβ . This is because there
has been no hint of NP in the radiative decays B̄ → Xsγ, K̄

(∗)γ [161], which imposes
strong constraints on |Ceff

7 |. This by itself does not rule out the possibility of a flipped-
sign Ceff

7 scenario. However this solution can be ruled out at 3σ from the decay rate
of B̄ → Xsℓ

+ℓ− if there are no NP effects in C9 and C10 [191]. Thus, NP effects
exclusively in C7 cannot provide large deviations from the SM. The impact of O′

7 on
the forward-backward asymmetry in B̄0

d → K̄∗µ+µ−, together with other observables,
was studied in Ref. [176].

Note that the operators with coefficients RV and RA have the same Lorentz struc-
ture as those in the SM involving C9 and C10, respectively [see Eq. (4.1)], so that
any measurement will be sensitive only to the combinations (C9 +RV ) or (C10 +RA).
For simplicity, in our numerical analysis of the observables of various decays, these
couplings are taken to be real. As a consequence, the results in this chapter would
be the same if the corresponding CP-conjugate decays were considered. However, for
completeness, the expressions allow for a complex-coupling analysis.

When calculating the transition amplitudes, for the leptonic part we use the nota-
tion

Lµ ≡ 〈µ+(p+)µ
−(p−)|µ̄γµµ|0〉 , Lµ5 ≡ 〈µ+(p+)µ

−(p−)|µ̄γµγ5µ|0〉 ,
L ≡ 〈µ+(p+)µ

−(p−)|µ̄µ|0〉 , L5 ≡ 〈µ+(p+)µ
−(p−)|µ̄γ5µ|0〉 ,

Lµν ≡ 〈µ+(p+)µ
−(p−)|µ̄σµνµ|0〉 .

(4.8)
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Figure 4.1: The constraints on the couplings RV , RA (left panel) and R′
V , R

′
A (right

panel) when only primed or unprimed couplings are present.

4.2.2 Constraints on NP couplings

The constraints on the NP couplings in b→ sµ+µ− come mainly from the upper bound
on the branching ratio B(B̄0

s → µ+µ−) and the measurements of the total branching
ratios B(B̄0

d → Xsµ
+µ−) and B(B̄0

d → K̄µ+µ−) [192–196]:

B(B̄0
s → µ+µ−) < 4.7× 10−8 (90% C.L.) , (4.9)

B(B̄0
d → Xsµ

+µ−) =

{
(1.60± 0.50)× 10−6 (low q2)
(0.44± 0.12)× 10−6 (high q2)

, (4.10)

B(B̄0
d → K̄µ+µ−) =

(
4.5+1.2

−1.0

)
× 10−7 , (4.11)

where the low-q2 and high-q2 regions correspond to 1 GeV2 ≤ q2 ≤ 6 GeV2 and
q2 ≥ 14.4 GeV2, respectively, where q2 is the invariant mass squared of the two muons.
The constraints from the first two quantities above have been derived in Ref. [178].
Here we also include the additional constraints from B(B̄0

d → K̄µ+µ−). The three
decays above provide complementary information about the NP operators. For the SM
predictions here, we use the latest NNLO calculations. Note that the measurements for
B(B̄0

d → K̄∗µ+µ−) are also available [127,197]. However, the form-factor uncertainties
in B̄0

d → K̄∗µ+µ− are rather large, and as a result the constraints due to this decay
mode are subsumed in those from the other three modes.

The constraints on the new VA couplings come mainly from B(B̄0
d → Xsµ

+µ−) and
B(B̄0

d → K̄µ+µ−). Their precise values depend on which NP operators are assumed to
be present. For example, if only RV,A or only R′

V,A couplings are present, the constraints
on these couplings take the form shown in Fig. 4.1. For RV,A, the allowed parameter
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space is the region between two ellipses:

1.0 ∼<
|RV + 3.6|2

(4.7)2
+

|RA − 4.0|2
(4.8)2

,
|RV + 2.8|2

(6.5)2
+

|RA − 4.1|2
(6.6)2 ∼< 1 , (4.12)

while for R′
V,A, the allowed region is the intersection of an annulus and a circle:

22.2 ∼< |R′
V + 3.6|2 + |R′

A − 4.0|2 ∼< 56.6 , |R′
V |2 + |R′

A|2 ∼< 17 . (4.13)

If both RV,A and R′
V,A are present, the constraints on them get individually weakened

to
|RV + 2.8|2

(6.5)2
+

|RA − 4.1|2
(6.6)2 ∼< 1 , (4.14)

and
|R′

V |2 + |R′
A|2 ∼< 40 , (4.15)

respectively3.
For the SP operators, the present upper bound on B(B̄0

s → µ+µ−) provides the
limit

|RS −R′
S|2 + |RP − R′

P |2 ∼< 0.444 , (4.16)

where we have used fBs
= (238.8± 9.5)MeV [198] and |V ∗

tsVtb| = 0.0407± 0.0010 [193].
This constitutes a severe constraint on the NP couplings if only RS,P or R′

S,P are
present. However, if both types of operators are present, these bounds can be evaded
due to cancellations between the RS,P and R′

S,P . In that case, B(B̄0
d → Xsµ

+µ−) and
B(B̄0

d → K̄µ+µ−) can still bound these couplings. The stronger bound is obtained
from the measurement of the latter quantity, which yields

|RS|2 + |RP |2 ∼< 9 , RS ≈ R′
S , RP ≈ R′

P . (4.17)

Finally, the constraints on the NP tensor operators come entirely from B(B̄0
d →

Xsµ
+µ−). When only the T operators are present,

|CT |2 + 4|CTE|2 ∼< 1.0 . (4.18)

Although the bounds presented in this section for VA, SP and T couplings are
obtained by taking one kind of Lorentz structure at a time, in our numerical analysis for
scenarious where we consider combinations of two or more kinds of Lorentz structres, we

3Note: the constraints on RV,A obtained here are milder than those obtained in Ref. [159] using
B(B̄0

d → (K̄ , K̄∗)µ+ µ−). This is because Ref. [159] had neglected the interference terms between the
SM and new physics VA operators. Their inclusion relaxes the stringent constraints therein.

4(Written in July 2012) Note that, the latest LHCb data has strengthened this limit to |RS −
R′

S |2+ |RP −R′

P |2 ∼< 0.04. This will make the allowed contributions from the scalar and pseudoscalar
operators extremely small.

77



use the allowed parameter space obtained by considering the corresponding combined
Lorentz structures.

We now analyze the b → sµ+µ− modes in detail and present our results. As
explained in the Introduction, the figures have the SM prediction bands overlaid with
the predictions for specific allowed values of NP couplings. The SM band is generated
by varying the form factors within their ranges as predicted by the respective authors,
while the CKM matrix elements, quark masses and meson decay constants are varied
within their 1.6σ allowed values.

4.3 B̄0
s → µ+µ−

In this section we examine the NP contributions to B̄0
s → µ+µ−. Within the SM,

B̄0
s → µ+µ− is chirally suppressed. The SM prediction for the branching ratio is

B(B̄0
s → µ+µ−) = (3.35 ± 0.32) × 10−9 [138]. The Tevatron gives an upper bound

on its branching ratio (BR) of 4.7 × 10−8 at 90% C.L. [192, 239, 240]. This decay can
be observed at the Tevatron only if NP enhances its BR above 10−8. LHCb is the
only experiment which will probe B(B̄0

s → µ+µ−) down to its SM value. It has the
potential for a 3σ observation (5σ discovery) of B̄0

s → µ+µ− with ∼ 2 fb−1 (∼ 6 fb−1)
of data [199]. LHCb therefore has the potential to observe either an enhancement or a
suppression of B(B̄0

s → µ+µ−). It can observe B̄0
s → µ+µ− as long as its BR is above

1.0× 10−9.

4.3.1 Branching ratio

The transition amplitude for B̄0
s → µ+µ− is given by

iM(B̄0
s → µ+µ−) = (−i)1

2

[
− 4GF√

2

αem
4π

(V ∗
tsVtb)

]
×

{
〈
0 |s̄γµγ5b| B̄0

s (p)
〉
(−Ceff

10 −RA +R′
A)L

5µ

+
〈
0 |s̄γ5b| B̄0

s (p)
〉 [

(RS − R′
S)L+ (RP − R′

P )L
5
]
}
, (4.19)

where L5µ, L and L5 are defined in Eq. (4.8). Using the matrix elements [131]

〈
0 |s̄γµγ5b| B̄0

s (p)
〉
= i pµ fBs

,
〈
0 |s̄γ5b| B̄0

s (p)
〉
= −i fBs

m2
Bs

mb +ms

, (4.20)
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the calculation of the BR gives

B(B̄0
s → µ+ µ−) =

G2
Fα

2
emm

5
Bs
f 2
Bs
τBs

64π3
|VtbV ∗

ts|2
√
1−

4m2
µ

m2
Bs

×
{(

1−
4m2

µ

m2
Bs

)∣∣∣∣∣
RS − R′

S

mb +ms

∣∣∣∣∣

2

+

∣∣∣∣∣
RP − R′

P

mb +ms
+

2mµ

m2
Bs

(C10 +RA − R′
A)

∣∣∣∣∣

2}
. (4.21)

Clearly, NP in the form of tensor operators does not contribute to B̄0
s → µ+µ−. From

Eq. (4.21) and the constraints on NP couplings obtained in Sec. 4.2.2, one can study
the effect of new VA and SP couplings.

Since the NP contribution from VA operators is suppressed by a factor of ∼ mµ/mb

compared to that from the SP operators, the effect of SP operators dominates. Both VA
and SP operators can suppress B(B̄0

s → µ+µ−) significantly below the SM prediction.
However while VA operators can only marginally enhance B(B̄0

s → µ+µ−) above 10−8,
making the decay accessible at the Tevatron in an optimistic scenario, the SP operators
can enhance the branching ratio even up to the present experimental bound. Indeed,
the strongest limit on the SP couplings comes from this decay. This strong limit
prevents the SP operators from expressing themselves in many other observables, as
we shall see later in this chapter.

4.3.2 Muon polarization asymmetry

The longitudinal polarization asymmetry of muons in B̄0
s → µ+µ− is defined as

ALP =
NR −NL

NR +NL
, (4.22)

where NR (NL) is the number of µ−’s emerging with positive (negative) helicity. ALP
is a clean observable that is not suppressed by mµ/mBs

only if the NP contribution is
in the form of SP operators, such as in an extended Higgs sector.

ALP for the most general NP is [186]

ALP =

2

√
1− 4m2

µ

m2
Bs

Re

[(
RS−R′

S

mb+ms

)(
RP−R′

P

mb+ms
+ 2mµ

m2
Bs

(C10 +RA − R′
A)
)]

(
1− 4m2

µ

m2
Bs

)∣∣∣∣∣
RS−R′

S

mb+ms

∣∣∣∣∣

2

+

∣∣∣∣∣
RP−R′

P

mb+ms
+ 2mµ

m2
Bs

(C10 +RA −R′
A)

∣∣∣∣∣

2 . (4.23)

From the above equation, we see that ALP can be nonzero if and only if RS −R′
S 6= 0,

i.e. there must be a contribution from NP SP operators. (Within the SM, SP couplings
are negligibly small, so that ALP ≃ 0.)
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The present upper bound on B(B̄0
s → µ+µ−) puts no constraint on ALP , and it

can be as large as 100% [186]. ALP can be maximal even if B(B̄0
s → µ+µ−) is close

to its SM prediction. Therefore, in principle ALP can serve as an important tool to
probe NP of the SP form. However, in order to measure its polarization, the muon
must decay within the detector. This is not possible due to the long muon lifetime (cτ
for the muon is 659 m). Hence in practice, this quantity is not measurable at current
detectors.

4.4 B̄0
d → Xsµ

+µ−

The BR of B̄0
d → Xsµ

+µ− in the low-q2 and high-q2 regions has been measured to
be [195, 196]

B(B̄ → Xsℓ
+ℓ−)low q2 =






(
1.49± 0.50+0.41

−0.32

)
× 10−6 , (Belle) ,

(1.8± 0.7± 0.5)× 10−6 , (BaBar) ,
(1.60± 0.50)× 10−6 , (Average) .

(4.24)

B(B̄ → Xsℓ
+ℓ−)high q2 =






(
0.42± 0.12+0.06

−0.07

)
× 10−6 , (Belle) ,(

0.50± 0.25+0.08
−0.07

)
× 10−6 , (BaBar) ,

(0.44± 0.12)× 10−6 , (Average) .
(4.25)

The SM predictions for B(B̄ → Xs µ
+ µ−) in the low-q2 and high-q2 regions are (1.59±

0.11)× 10−6 and (0.24± 0.07)× 10−6, respectively [149].
Apart from the measurement of the total BR of B̄0

d → Xsµ
+µ−, which has already

been used to restrict the VA and T operators in Sec. 4.2.2, the differential branching
ratio (DBR) as a function of q2 also contains valuable information that can help us
detect NP. In particular, the SM predicts a positive zero crossing for AFB in B̄0

d →
Xsµ

+µ− in the low-q2 region, i.e. for q2 less than (greater than) the crossing point, the
value of AFB is negative (positive). This zero crossing is sufficiently away from the
charm resonances so that its value can be determined perturbatively to an accuracy of
∼ 5%. The NNLO prediction [149] for the zero of AFB(q

2) is (taking mb = 4.8 GeV)

(q2)0 = (3.5± 0.12)GeV2 . (4.26)

This quantity has not yet been measured. However, estimates show that a precision
of about 5% could be obtained at a Super-B factory [200]. A deviation from the zero
crossing point predicted above will be a clear signal of NP.
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4.4.1 Differential branching ratio and forward-backward asym-
metry

After including all the NP interactions, and neglecting terms suppressed by mµ/mb

and ms/mb, the total differential branching ratio dB/dz is given by

(
dB

dz

)

Total

=

(
dB

dz

)

SM

+B0

[
BSM-V A +BV A +BSP +BT

]
, (4.27)

where the quantities B depend on the SM and NP couplings and kinematic variables.
The complete expressions for these quantities are given in Appendix I. The subscripts
denote the Lorentz structure(s) contributing to that term.

The forward-backward asymmetry in B̄0
d → Xsµ

+µ− is

AFB(q
2) =

∫ 1

0
d cos θµ

d2B
dq2d cos θµ

−
∫ 0

−1
d cos θµ

d2B
dq2d cos θµ∫ 1

0
d cos θµ

d2B
dq2d cos θµ

+
∫ 0

−1
d cos θµ

d2B
dq2d cos θµ

, (4.28)

where θµ is the angle between the µ+ and the B̄0 in the dimuon center-of-mass frame.
We can write AFB in the form

AFB(q
2) =

N(z)

dB/dz
, (4.29)

where the numerator is given by

N(z) = B0

[
NSM +NSM-V A +NV A +NSP -T

]
. (4.30)

The terms suppressed by mµ/mb and ms/mb have been neglected as before. Again for
the detailed expressions, we refer the reader to Appendix I.

Fig. 4.2 shows AFB(q
2) and the DBR for B̄0

d → Xsµ
+µ− in the presence of NP in the

form of RV,A couplings, which are the ones that can most influence these observables.
Enhancement or suppression of the DBR by a factor of 2 is possible. The NP couplings
can enhance AFB up to 30% at low q2, make it have either sign, and even make the
zero crossing disappear altogether. At high q2, however, AFB can only be suppressed.
The R′

V,A couplings can only affect these observables mildly: a 50% enhancement in
DBR is possible (no suppression), but AFB can only be marginally enhanced and a
positive zero crossing in the q2 = 2-4 GeV2 region is maintained. The mild effect
of R′

V,A couplings as compared to the RV,A couplings is a generic feature for almost
all observables. This may be attributed to the bounds on the magnitudes of these
couplings: from Sec. 4.2.2, while |RV,A| < 10, the values of |R′

V,A| < 5.
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Figure 4.2: The left (right) panels of the figure show AFB and DBR for B̄0
d → Xsµ

+µ−

in the low-q2 (high-q2) region, in the scenario where only (RV , RA) terms are present.
The band corresponds to the SM prediction and its uncertainties; the lines show predic-
tions for some representative values of NP parameters (RV , RA). For example, the blue
curves in the low-q2 and high-q2 regions correspond to (−6.85, 8.64) and (−9.34, 8.85),
respectively.

Eq. (4.30) shows that if SP or T couplings are individually present, their contribu-
tion to AFB is either absent or suppressed by mµ/mb. In such a case, though they can
enhance the DBR (marginally for SP, by up to a factor of 2 for T), AFB is suppressed
in general (marginally for SP, significantly for T). However if both SP and T operators
are present, their interference term is not suppressed and some enhancement of AFB is
possible. This still is not significant, since the magnitude of the SP couplings is highly
constrained from B̄0

s → µ+µ− measurements. A positive zero crossing in the low-q2

region is always maintained. This may be seen in Fig. 4.3.

4.4.2 Polarization fractions fL and fT

In Ref. [150] it was pointed out that, besides the dilepton invariant mass spectrum
and the forward-backward asymmetry, a third observable can be obtained from B̄0

d →
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Figure 4.3: The left (right) panels of the figure show AFB and DBR for B̄0
d → Xsµ

+µ−

in the low-q2 (high-q2) region, in the scenario where both SP and T terms are present.
The band corresponds to the SM prediction and its uncertainties; the lines show pre-
dictions for some representative values of NP parameters (RS, RP , R

′
S, R

′
P , CT , CTE).

For example, the magenta curves in the low-q2 and high-q2 regions correspond to
(−1.23,−1.79,−0.86,−1.85, 0.27,−0.36) and (−1.23,−0.23,−1.35, 0.08, 1.37, 0.01), re-
spectively.

Xsµ
+µ−, namely the double differential decay width:

d2B

dz d cos θµ
=

3

8

[
(1 + cos2 θµ)HT (z) + 2 cos θµHA(z) + 2(1− cos2 θµ)HL(z)

]
. (4.31)

The functions Hi(z) do not depend on cos θµ. The sum HL(z) + HT (z) gives the
differential branching ratio dB/dz, while the forward-backward asymmetry is given by
3HA/4(HL+HT ). Splitting dB/dz into longitudinal and transverse parts separates the
contributions with different q2 dependences, providing a third independent observable.
This does not require measuring any additional kinematical variable – q2 and cos θµ
are sufficient. Including all the NP interactions, and neglecting terms suppressed by
mµ/mb and ms/mb, HL(z) and HT (z) are given by

HL(z) = HSM
L (z) +HSM−V A

L (z) +HV A
L (z) +HSP

L (z) +HT
L (z) , (4.32)

HT (z) = HSM
T (z) +HSM−V A

T (z) +HV A
T (z) +HSP

T (z) +HT
T (z) , (4.33)
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Figure 4.4: The left (right) panels of the figure show fL for B̄0
d → Xsµ

+µ− in the low-
q2 (high-q2) region, in the scenario where only (RV , RA) terms are present. The band
corresponds to the SM prediction and its uncertainties; the lines show predictions for
some representative values of NP parameters (RV , RA). For example, the blue curves in
the low-q2 and high-q2 regions correspond to (−8.14, 5.75) and (1.87, 4.85), respectively.

where the H functions are given in Appendix I. The superscripts indicate the Lorentz
structures contributing to the term. The polarization fractions fL and fT can be defined
as

fL =
HL(z)

HL(z) +HT (z)
, fT =

HT (z)

HL(z) +HT (z)
. (4.34)

In the SM, fL can be as large as 0.9 at low q2, and it decreases to about 0.3 at high q2.
Fig. 4.4 shows that when only RV,A couplings are present, in the low-q2 region fL

can be suppressed substantially, or even enhanced up to 1. A similar effect – small
enhancement or a factor of two suppression – is possible at high q2. The suppression
at low-q2 is typically correlated with an enhancement at high-q2. The effect of R′

V,A

couplings is similar, but much milder, as expected. SP and T operators, individually
or together, can only have an marginal effect on fL.

4.5 B̄0
s → µ+µ−γ

In this section we examine the NP contributions to the radiative leptonic decay B̄0
s →

µ+µ−γ. This decay has not been detected as yet. The SM prediction for the BR in the
range q2 ≤ 9.5 GeV2 and q2 ≥ 15.9 GeV2 is ≈ 18.9× 10−9 [157]. Although this decay
needs the emission of an additional photon as compared to B̄0

s → µ+µ−, which would
suppress the BR by a factor of αem, the photon emission also frees it from helicity
suppression, making its BR much larger than B̄0

s → µ+µ−.
This decay has contributions from many channels [152–155, 157, 158]: (i) direct

emission of real or virtual photons from valence quarks of the B̄0
s , (ii) real photon
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emitted from an internal line of the b → s loop, (iii) weak annihilation due to the
axial anomaly, and (iv) bremsstrahlung from leptons in the final state. The photon
emission from the b → s loop is suppressed by m2

b/m
2
W [153], and the weak annihi-

lation is further suppressed by ΛQCD/mb [157]. These two contributions can then be
neglected. The bremsstrahlung contribution is suppressed by mµ/mb, and dominates
only at extremely low photon energies due to the infrared divergence. The virtual
photon emission dominates in the low-q2 region around the φ resonance. If we choose
the regions 2 GeV2 ≤ q2 ≤ 6 GeV2 and 14.4 GeV2 ≤ q2 ≤ 25 GeV2 as the low-q2

and high-q2 regions, respectively, then the dominating contribution comes from the
diagrams in which the final-state photon is emitted either from the b or the s quark.
Then the B̄0

s → µ+µ−γ decay is governed by the effective Hamiltonian describing the
b→ sµ+µ− transition, as given in Eq. (4.1), and our formalism is applicable. Here we
consider the the DBR and AFB in B̄0

s → µ+µ−γ.

4.5.1 Differential branching ratio and forward-backward asym-

metry

We begin with the differential branching ratio. The SP operators do not contribute to
the amplitude of B̄0

s → µ+µ−γ and hence do not play any role in the decay.
In terms of the dimensionless parameter xγ = 2Eγ/mBs

, where Eγ is the photon
energy in the B̄0

s rest frame, one can calculate the double differential decay rate to be

d2Γ

dxγd(cos θµ)
=

1

2mBs

2v m2
Bs
xγ

(8π)3
M†M , (4.35)

where v ≡
√

1− 4m2
µ/[m

2
Bs
(1− xγ)]. From Eq. (4.35) we get the DBR to be

dB

dxγ
= τBs

∫ 1

−1

d2Γ

dxγd(cos θµ)
d cos θµ

= τBs

[
1

2mBs

2vm2
Bs

(8π)3

][
1

4

16G2
F

2

α2
em

16π2
|VtbV ∗

ts|2e2
]
Θ . (4.36)

Here the quantity Θ has the form

Θ =
2

3
m4
Bs
x3γ

[
XV A +XT +XV A-T

]
, (4.37)

where the X terms are given in Appendix II. The subscripts of the X terms denote
the Lorentz structure(s) contributing to that term. For the sake of brevity, we have
included the SM contributions in XV A.
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The normalized forward-backward asymmetry of muons in B̄0
s → µ+µ−γ is defined

as

AFB(q
2) =

∫ 1

0

d cos θµ
d2B

dq2d cos θµ
−
∫ 0

−1

d cos θµ
d2B

dq2d cos θµ∫ 1

0

d cos θµ
d2B

dq2d cos θµ
+

∫ 0

−1

d cos θµ
d2B

dq2d cos θµ

, (4.38)

where θµ is the angle between the three-momentum vectors of the B̄0
s and the µ+ in

the dimuon center-of-mass frame. The calculation of AFB gives

AFB(q
2) =

1

Θ

(
2m4

Bs
v x3γ

)[
YV A + YV A-T

]
, (4.39)

with the Y terms are defined in Appendix II.
The details of the calculation are given in Appendix II. For the numerical calcu-

lations, we use the matrix elements given in Ref. [156]. The parameters involved in
the form factor calculations are chosen in such a way that the LEET relations between
form factors are satisfied to a 10% accuracy [156]. In our numerical analysis we take
the errors in these form factors to be ±10%.

Within the SM, AFB(q
2) is predicted to vanish around q2 ≈ 4.3 GeV2 (i.e. xγ ≈

0.85) [156], and the crossing is predicted to be negative. It is therefore interesting
to see the effects of various NP operators and their combinations on AFB. In the
extreme LEET limit, using the form-factor relations given in Ref. [156], one can easily
see that the AFB is independent of the form factors. In Fig. 4.5 we see large bands
in the SM predictions of AFB in the low q2 region. One may tend to interpret these
as large corrections to the LEET limit, however this would be somewhat misleading,
as we take the errors in the form factors, due to corrections from the LEET limit,
to be uncorrelated. In realistic models, LEET corrections to the form factors will be
correlated, leading to a smaller uncertainty band for AFB in the SM.

Fig. 4.5 also shows AFB and DBR in the presence of NP in the form of RV,A

couplings. With the large allowed values of |RV,A| and the absence of any helicity
suppression, we expect VA operators to have a significant impact on the observables.
As can be seen from the figure, the maximum allowed value of DBR can be 2-3 times
larger than the SM prediction. The BR can also be suppressed below the SM prediction
due to destructive interference. In the low-q2 region, the suppression can be large. The
features of the zero-crossing predicted by the SM can be affected: it can be positive or
negative, can take place at any value of q2, and can disappear altogether. As expected,
the impact of R′

V,A couplings is much milder. In particular, the zero-crossing is always
positive and in the low-q2 region.

With new tensor couplings, an enhancement of the DBR by up to a factor of 3
in comparison to the SM prediction is possible. Moreover, in the limit of neglecting
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Figure 4.5: The left (right) panels of the figure show AFB and DBR for B̄0
s → µ+µ−γ

in the low-q2 (high-q2) region, in the scenario where only (RV , RA) terms are present.
Note that here q2 = m2

B(1 − xγ). The band corresponds to the SM prediction and its
uncertainties; the lines show predictions for some representative values of NP param-
eters (RV , RA). For example, the magenta curves in the low-q2 and high-q2 regions
correspond to (2.47, 7.08) and (−7.14,−0.42), respectively.

the muon mass, T operators do not contribute to the Y -terms in Eq. (4.39); their
contribution is only to Θ. As a result, they can only suppress AFB from its SM value.

When all NP operators are allowed, we find that B(B̄0
s → µ+µ−γ) can be enhanced

by a factor of 4, or it can be suppressed significantly. The shape of AFB(q
2) is de-

termined by the new VA couplings, while its magnitude can be suppressed if the T
couplings are significant.

4.6 B̄0
d → K̄µ+µ−

The decay mode B̄0
d → K̄µ+µ− is interesting primarily because the forward-backward

asymmetry of muons is predicted to vanish in the SM. This is due to the fact that the
hadronic matrix element for the B̄0

d → K̄ transition does not have any axial-vector
contribution. AFB can have a nonzero value only if it receives a contribution from
new physics in the form of SP or T operators. Thus, the information from this decay
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is complementary to that from the other decays considered earlier, which were more
sensitive to new physics VA operators.

The total branching ratio of B̄0
d → K̄µ+µ− has been measured to be [194]

B(B̄0
d → K̄µ+µ−) =

(
4.5+1.2

−1.0

)
× 10−7 , (4.40)

which is consistent with the SM prediction [148]

B(B̄0
d → K̄µ+µ−)SM = (3.5± 1.2)× 10−7 . (4.41)

The integrated asymmetry, 〈AFB〉, has been measured by BaBar [201] and Belle [126,
202] to be

〈AFB〉 = (0.15+0.21
−0.23 ± 0.08) (BaBar) , (4.42)

〈AFB〉 = (0.10± 0.14± 0.01) (Belle). (4.43)

These measurements are consistent with zero. However, within 2σ they can be as large
as ∼ 40%. Experiments such as the LHC or a future Super-B factory will increase the
statistics by more than two orders of magnitude. For example, at ATLAS at the LHC,
after analysis cuts the number of B̄0

d → K̄µ+µ− events is expected to be ∼ 4000 with
30 fb−1 of data [203]. Thus, 〈AFB〉 can soon be probed to values as low as 5%. With
higher statistics, one will even be able to measure AFB as a function of the invariant
dimuon mass squared q2. This can provide a stronger handle on this quantity than
just its average value 〈AFB〉.

The effect of NP on 〈AFB〉 and the AFB(q
2) distribution in B̄0

d → K̄µ+µ− was
studied in Refs. [164] and [165] respectively. In the latter, it was shown that simul-
taneous new-physics SP and T operators can lead to a large enhancement of AFB(q

2)
in the high-q2 region. However, NP effects due to other operators were not studied.
Here we present a complete analysis of the effect of NP on the AFB(q

2) distribution
in B̄0

d → K̄µ+µ− by taking into account all possible NP operators and their combina-
tions. In addition, we study the possible zero crossing of AFB(q

2) and the correlations
between the DBR and AFB features.

4.6.1 Differential branching ratio and forward-backward asym-
metry

The differential branching ratio for this mode is given by

dB

dz
= B′

0 φ
1/2 βµ

[
X ′
V A +X ′

SP +X ′
T +X ′

V A-SP +X ′
V A-T

]
, (4.44)

where the normalization factor B′
0, the phase factor φ and the X ′ terms are given in

Appendix III. The subscripts for the X ′ terms denote the Lorentz structure(s) con-
tributing to that term.
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The normalized forward-backward asymmetry for the muons in B̄0
d → K̄µ+µ− is

defined as

AFB(q
2) =

∫ 1

0

d cos θµ
d2B

dq2d cos θµ
−
∫ 0

−1

d cos θµ
d2B

dq2d cos θµ∫ 1

0

d cos θµ
d2B

dq2d cos θµ
+

∫ 0

−1

d cos θµ
d2B

dq2d cos θµ

, (4.45)

where θµ is the angle between the three-momenta of the B̄0
d and the µ+ in the dimuon

center-of-mass frame. The calculation of AFB(q
2) gives

AFB(q
2) =

2B′
0 βµ φ

dB/dz

[
Y ′
V A-SP + Y ′

V A-T + Y ′
SP -T

]
(4.46)

where the Y terms are given in Appendix III.
The largest source of uncertainty in the calculations are the B̄ → K̄ form factors. As

these cannot be calculated from first principles within QCD, one has to rely on models.
In the numerical calculations, we use the form factors as calculated in Ref. [161] in the
framework of QCD light-cone sum rules; the details are given in Appendix III. There
are, however, certain limits in which relations between form factors can be rigorously
obtained. In the large energy (LEET) limit, these relations are valid up to αs, 1/EK
and 1/mb corrections [166, 167].

In the LEET limit, using the form-factor relations in Eq. (III.51), one can verify
that AFB is independent of the form factors. This is quite useful as it implies that
the measurement of AFB can be used to extract the parameters of the new-physics
operators without form-factor uncertainties in this limit.

In the low-energy, large q2, region one can also derive relations between form fac-
tors in the heavy-quark limit [189, 190]. However, these relations do not completely
eliminate the form-factor dependence of the calculated quantities, and hence we do
not consider these relations. An analysis where these relations have been used in the
context of b → sµ+µ− can be found in Refs. [180, 182].

From Eq. (4.46), clearly new VA couplings alone cannot give rise to AFB, which
vanishes in the SM in any case. Note that this is one of the few cases where the VA
couplings fail to influence an asymmetry significantly, in spite of the large allowed values
of the couplings. This is because the argument about the hadronic matrix element
B̄0
d → K̄ not having any axial-vector contribution stays valid even in the presence

of NP. The DBR can, however, be enhanced by up to a factor of 2, or marginally
suppressed.

The contribution of SP operators through the Y ′
V A-SP terms can give rise to AFB,

where the VA contribution comes from the SM operators. The effect is rather small
when only RS,P or only R′

S,P couplings are present, due to the strong constraints on
their values. The peak value of AFB in the low-q2 region stays below the percent level,
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Figure 4.6: The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄µ+µ− in

the low-q2 (high-q2) region, in the scenario where all NP SP couplings are present. The
band corresponds to the SM prediction and its uncertainties; the lines show predictions
for some representative values of NP parameters (RS, RP , R

′
S, R

′
P ) . For example, the

blue curves in the low-q2 and high-q2 regions correspond to (−2.50, 6.18,−2.84,−5.64)
and (−2.41, 1.86,−2.07, 1.42), respectively.

while in the the high-q2 region it can be enhanced up to 2% at the extreme end point
(q2 >∼ 22 GeV2), which is virtually impossible to observe. However if both the primed
and unprimed SP couplings are present simultaneously, the constraints on them are
weakened. In such a situation, the peak value of AFB in the low-q2 (high-q2) can
become ∼ 5% (∼ 3%). This may be seen in Fig. 4.6. It is also observed that AFB
is always positive or always negative, i.e. there is no zero crossing. The DBR also is
significantly affected only if both the primed and unprimed SP couplings are present:
it can be enhanced by up to a factor of 3.

New T couplings are also expected to give rise to AFB through the Y ′
V A-T terms in

Eq. (III.53). It is observed from Fig. 4.7 that AFB(q
2) can be enhanced up to 5-6%

in almost the entire q2 region. Moreover, at q2 ∼> 21 GeV2, the peak value of AFB(q
2)

reaches a larger value ( ∼ 30%). The value of AFB(q
2) is always positive or always

negative, i.e. there is no zero crossing point. The DBR values do not go significantly
outside the SM-allowed range.

When VA and T couplings are present simultaneously, a DBR enhancement of up
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Figure 4.7: The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄µ+µ−

in the low-q2 (high-q2) region, in the scenario where only T terms are present. The
band corresponds to the SM prediction and its uncertainties; the lines show predictions
for some representative values of NP parameters (CT , CTE). For example, the blue
curves in the low-q2 and high-q2 regions correspond to (0.30, 0.37) and (0.49, 0.57),
respectively.

to a factor of 2 is possible, while AFB can be large only at extremely high q2. On the
other hand, when SP and T couplings are present simultaneously, their interference
can have a large impact on AFB. The interference term Y ′

SP -T that contributes to AFB
is not suppressed by mµ/mb, and therefore a large AFB is possible, as can be seen from
Fig. 4.8. This is also the only combination of NP couplings where a zero crossing may
occur. Among the asymmetries considered in this chapter, this is the one where the SP
and T operators can have the largest impact. The DBR can also be enhanced by up
to a factor of 2-3 at large q2 due to the simultaneous presence of primed and unprimed
SP operators.

4.7 B̄0
d → K̄∗µ+µ−

The measurement of the forward-backward asymmetry in B̄0
d → K̄∗µ+µ− by the Belle

collaboration [126, 127], which showed a deviation from the SM prediction, indicates
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Figure 4.8: The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄µ+µ−

in the low-q2 (high-q2) region, in the scenario where both SP and T terms are present.
The band corresponds to the SM prediction and its uncertainties; the lines show pre-
dictions for some representative values of NP parameters (RS, RP , R

′
S, R

′
P , CT , CTE).

For example, the magenta curves in the low-q2 and high-q2 regions correspond to
(−0.09,−2.24, 0.16,−2.14,−0.33,−0.40) and (−0.40, 1.87,−0.59, 1.88,−0.34, 0.66), re-
spectively.

the possibility of the presence of new physics. According to the SM, AFB is ≤ 20%
and negative at low q2, has a zero crossing at q2 ≈ 4 GeV2, and is positive but ≤ 40%
for larger q2 values. The experiment showed the asymmetry to be positive throughout
the range of q2 – consequently no zero crossing – and AFB ≈ 60% at large q2 values.
This has generated a special interest in this decay.

There have already been a number of theoretical studies, both within the SM
[168, 169, 176] and in specific NP scenarios [173, 174, 177, 178], focusing on the branch-
ing fraction and AFB of B̄0

d → K̄∗µ+µ−. For example, Ref. [175] has pointed out that
AFB(q

2) is a sensitive probe of NP that affects the SM Wilson coefficients. Other ob-
servables based on the K∗ spin amplitudes of this decay are at present under active
theoretical and experimental analysis [173,174,176]. Finally, more challenging observ-
ables, such as the polarized lepton forward-backward asymmetry [162, 163, 171, 172],
have also been considered, though the measurement of this quantity is still lacking.

In the coming years, the LHCb experiment will collect around 3000 events of B̄0
d →
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K̄∗µ+µ− per fb−1 in the full range of q2. An integrated luminosity of 2 fb−1 already
would allow the extraction of the SM zero of AFB (if it is there) with a precision of ±0.5
GeV2 [204]. Indeed, a dataset of 100 pb−1 would already improve the world precision
obtained by Babar, Belle and CDF. These measurements would also permit many of
the additional tests for NP mentioned above.

The decay B̄0
d → K̄∗µ+µ−, with K̄∗ decaying to K̄π, has four particles in the

final state. This implies that there are three physical angles that can specify the
relative directions of these four final-state particles. The differential decay rate as
a function of these three angles has much more information than just the forward-
backward asymmetry. Indeed, AFB is just one of the observables that can be derived
from the complete angular analysis of this decay. In this section we also consider other
CP-conserving observables.

4.7.1 Angular analysis

The complete angular distribution in B̄0
d → K̄∗µ+µ− has been calculated in Refs. [205,

206] within the SM. In this section, we calculate the angular distribution in the
presence of NP, which is a new result. The full transition amplitude for B̄(pB) →
K̄∗(pK∗, ǫ∗)µ+(p+µ )µ

−(p−µ ) is

iM(B̄0
d → K̄∗µ+µ−) = (−i)1

2

[
4 GF√

2

αem
4π

(V ∗
tsVtb)

]
×

[MV µL
µ +MAµL

µ5 +MSL+MPL
5 +MTµνL

µν + iMEµνLαβǫ
µναβ ] ,(4.47)

where the L’s are defined in Eq. (4.8). The M ’s are given in Appendix IV.
The complete three-angle distribution for the decay B̄ → K̄∗(→ K̄π)µ+µ− can be

expressed in terms of q2, two polar angles θµ, θK , and the angle between the planes of
the dimuon and Kπ decays, φ. These angles are described in Fig. 4.9. We choose the
momentum and polarization four-vectors of the K∗ meson in the dimuon rest frame as

pK∗ = (EK∗ , 0, 0, |~pK∗|) ,

ε(0) =
1

mK∗

(|~pK∗|, 0, 0, EK∗) , ε(λ = ±1) = ∓ 1√
2
(0, 1,±i, 0) , (4.48)

with

EK∗ =
m2
B −m2

K∗ − q2

2
√
q2

, |~pK∗| =
√
E2
K∗ −m2

K∗ . (4.49)
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Figure 4.9: The description of the angles θµ,K and φ in the angular distribution of
B̄ → K̄∗(→ K̄π)µ+µ− decay.

The three-angle distribution can be obtained using the helicity formalism:

d4Γ

dq2d cos θµd cos θKdφ
= NF ×

{
cos2 θK

(
I01 + I02 cos 2θµ + I03 cos θµ

)
+ sin2 θK

(
IT1 + IT2 cos 2θµ + IT3 cos θµ

+IT4 sin2 θµ cos 2φ+ IT5 sin2 θµ sin 2φ
)
+ sin 2θK

(
ILT1 sin 2θµ cosφ

+ILT2 sin 2θµ sinφ+ ILT3 sin θµ cosφ+ ILT4 sin θµ sinφ
)}

, (4.50)

where the normalization factor NF is

NF =
3α2

emG
2
F |V ∗

tsVtb|2|~pBK∗|βµ
214π6m2

B

Br(K∗ → Kπ) . (4.51)

Here βµ =
√
1− 4m2

µ/q
2, and |~pBK∗| is the magnitude of the K∗ momentum in the

B-meson rest frame:

|~pBK∗| =
1

2mB

√
m4
B +m4

K∗ + q4 − 2[q2m2
B +m2

K∗(m2
B + q2)] . (4.52)

The twelve angular coefficients I depend on the couplings, kinematic variables and
form factors, and are given in Appendix IV. In this chapter we concentrate on the
CP-conserving observables: the DBR, the forward-backward asymmetry AFB, the po-
larization fraction fL, and the asymmetries A

(2)
T and ALT .

The theoretical predictions for the relevant B → K∗ form factors are rather un-
certain in the region (7 GeV2 ≤ q2 ≤ 12 GeV2) due to nearby charmed resonances.
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The predictions are relatively more robust in the lower and higher q2 regions. We
therefore concentrate on calculating the angular distribution in the low-q2 (1 GeV2 ≤
q2 ≤ 6 GeV2) and the high-q2 (q2 ≥ 14.4 GeV2) regions. For numerical calculations,
we follow Ref. [178] for the form factors: in the low-q2 region, we use the form factors
obtained using QCD factorization, while in the high-q2 region, we use the form factors
calculated in the light-cone sum-rule approach.

4.7.2 Differential branching ratio and forward-backward asym-
metry

The forward-backward asymmetry for the muons is defined by

AFB(q
2) =

∫ 1

0
d cos θµ

d2Γ
dq2d cos θµ

−
∫ 0

−1
d cos θµ

d2Γ
dq2d cos θµ∫ 1

0
d cos θµ

d2Γ
dq2d cos θµ

+
∫ 0

−1
d cos θµ

d2Γ
dq2d cos θµ

. (4.53)

It can be obtained by integrating over the two angles θK and φ in Eq. (4.50). We
obtain the double differential decay rate as

d2Γ

dq2d cos θµ
=

8πNF

3

[1
2

(
I01 + I02 cos 2θµ + I03 cos θµ

)
+
(
IT1 + IT2 cos 2θµ

+IT3 cos θµ

)]
. (4.54)

Further integration over the angle θµ gives the differential decay rate. The contri-
bution of the NP operators to the differential branching ratio and forward-backward
asymmetry of B̄0

d → K̄∗µ+µ− was examined in detail in Ref. [178]. We do not reproduce
the analysis here, but only give the results below.

If only RV,A couplings are present, AFB can be enhanced at low q2, while keeping
it positive, so that there is no zero crossing as indicated by the recent data [126–129].
However, an enhancement at high q2, also indicated by the same data, is not possible.
On the other hand, if only R′

V,A couplings are present, AFB can become large and
positive at high q2, but then it has to be large and negative at low q2. These couplings
are therefore unable to explain the positive values of AFB at low q2. Thus, in order
to reproduce the current B̄0

d → K̄∗µ+µ− experimental data, one needs both unprimed
and primed NP VA operators. The NP coupling values that come closest to the data
typically correspond to suppressed DBR at low q2. (See Fig. 4.10.) But it is also
possible to have a large AFB (up to 60%) in the entire q2 region while being consistent
with the SM prediction for the DBR. At present, the errors on the measurements are
quite large. However, if future experiments reproduce the current central values with
greater precision, this will put important constraints on any NP proposed to explain
the data.
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Figure 4.10: The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′
V , R

′
A) terms

are present. The band corresponds to the SM prediction and its uncertainties; the lines
show predictions for some representative values of NP parameters (RV , RA, R

′
V , R

′
A).

For example, the red curves for AFB in the low and high q2 regions correspond to
(−1.55, 1.75, 6.16, 1.73) and (−5.79, 1.10, 0.47,−3.34), respectively. The pink curves
for DBR in the low-q2 and high-q2 regions correspond to (1.96,−4.09, 4.61, 0.13). For
comparison, the experimental data are also displayed in blue cross lines.

New SP couplings by themselves cannot significantly affect either the DBR or the
AFB predictions of the SM. New T couplings in general tend to enhance DBR sig-
nificantly, by up to a factor of 2, while not contributing any additional terms to the
asymmetry. As a result, the magnitude of AFB is suppressed. The zero crossing can
be anywhere in the entire q2 range, or it may disappear altogether. However, whenever
it is present, it is always a SM-like (positive) crossing. When SP and T couplings
are present simultaneously, additional contributions to AFB that are not suppressed
by mµ/mB are possible. As a result, AFB obtained with this combination can be
marginally enhanced as compared to the case with only T operators. It is then possi-
ble to have no zero crossing. However, the magnitude of AFB cannot be large in the
high-q2 region.
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Figure 4.11: The left (right) panel of the figure shows fL for B̄0
d → K̄∗µ+µ− in the

low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′
V , R

′
A) terms are

present. For example, the blue curves in the low-q2 and high-q2 regions correspond
to (1.64,−0.90, 4.27,−0.91) and (1.96,−4.09, 4.61, 0.13), respectively. For comparison,
the experimental data are also displayed in blue cross lines.

4.7.3 Polarization fraction fL

The differential decay rate and K∗ polarization fractions can be found by integrating
over the three angles in Eq. (4.50) to get

dΓ

dq2
=

8πNF

3
(AL + AT ) , (4.55)

where the longitudinal and transverse polarization amplitudes AL and AT are obtained
from Eq. (4.54):

AL =
(
I01 −

1

3
I02

)
, AT = 2

(
IT1 − 1

3
IT2

)
. (4.56)

It can be seen from the expressions for the I’s in Appendix IV [see Eq. (IV.69)] that
SP couplings cannot affect AT . The longitudinal and transverse polarization fractions,
fL and fT , respectively, are defined as

fL =
AL

AL + AT
, fT =

AT
AL + AT

. (4.57)

In the SM, fL can be as large as 0.9 at low q2, and it decreases to about 0.3 at high
q2. As can be seen from Fig. 4.11, new VA couplings can suppress fL substantially: it
can almost vanish in some allowed parameter range.

New SP couplings cannot change the value of fL outside the range allowed by the
SM. This may be attributed to the strong constraints on the values of these couplings.
New T couplings tend to suppress fL, except at q

2 ≈ 1-2 GeV2, where the value of fL
cannot be less than 0.5 as may be seen from Fig. 4.12. Since both VA and T couplings
tend to suppress fL, their combined effect results in a similar behavior.
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Figure 4.12: The left (right) panel of the figure shows fL for B̄0
d → K̄∗µ+µ− in the low-

q2 (high-q2) region, in the scenario where only new T couplings are present. The band
corresponds to the SM prediction and its uncertainties; the lines show predictions
for some representative values of NP parameters (CT , CTE). For example, the red
curves in the low-q2 and high-q2 regions correspond to (0.66,−0.14) and (0.3,−0.46),
respectively.

4.7.4 Angular asymmetries A
(2)
T and ALT

In this subsection we consider the two angular asymmetries A
(2)
T and ALT . The first

quantity was discussed before in Ref. [173], while ALT is introduced here for the first
time.

The CP-conserving transverse asymmetry A
(2)
T can be defined through the double

differential decay rate

d2Γ

dq2dφ
=

1

2π

dΓ

dq2

[
1 + fT

(
A

(2)
T cos 2φ+ A

(im)
T sin 2φ

) ]
. (4.58)

Here A
(im)
T depends on the imaginary part of a certain combination of amplitudes and

can be used to construct CP-violating observables. We will not consider it any further
in this work. The asymmetry A

(2)
T can be obtained by integrating over the two polar

angles θµ and θK in Eq. (4.50). It can be expressed as

A
(2)
T =

4IT4
3AT

. (4.59)

We observe that A
(2)
T cannot be affected by SP couplings.

In the SM,

A
(2)
T ≈

4β2
µ

(
|AV⊥|2 − |AV‖ |2 + |AA⊥|2 − |AA‖ |2

)

3AT
. (4.60)
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The transversity amplitudes A‖,⊥ are defined through Eqs. (IV.65) and (IV.66) given in
Appendix IV. At leading order in ΛQCD/EK∗ , ΛQCD/mb and αs (the LEET limit), one
can use the form-factor relations of Refs. [166, 167] and neglect terms of O(m2

K∗/m2
B)

to obtain
A+
V ≈ 0 , A+

A ≈ 0 . (4.61)

Thus, in the low-q2 region,

Ai‖ ≈
A−
i√
2
, Ai⊥ ≈ −A

−
i√
2

for i = V,A , (4.62)

which corresponds to the LEET limit. A
(2)
T ≈ 0 in the SM and is independent of

form factors up to corrections of order ΛQCD/EK∗, ΛQCD/mb and αs, i.e. the hadronic
uncertainty is small. This can be seen in Figs. 4.13 and 4.14. This indicates that
corrections to the LEET limit are small, and makes A

(2)
T an excellent observable to

look for new-physics effects [173].
We now examine the longitudinal-transverse asymmetry ALT , defined by

ALT =

∫ π/2
−π/2 dφ(

∫ 1

0
d cos θK

d3Γ
dq2dφd cos θK

−
∫ 0

−1
d cos θK

d3Γ
dq2dφd cos θK

)
∫ π/2
−π/2 dφ(

∫ 1

0
d cos θK

d3Γ
dq2dφd cos θK

+
∫ 0

−1
d cos θK

d3Γ
dq2dφd cos θK

)
. (4.63)

One can compare ALT to AFB. In AFB the angle φ is integrated over its entire range,
while in ALT φ is only integrated over the range (−π/2, π/2). This choice of integra-
tion range eliminates all terms which depend on the imaginary part of combinations of
amplitudes in the angular distribution. (These eliminated terms can be used to con-
struct CP-violating observables and will not be discussed here.) In ALT only the CP-
conserving parts of the angular distribution survive. Note that, in the CP-conserving
limit, ALT is the same as the observable S5 defined in Ref. [177], apart from a normal-
ization constant. The quantity ALT can also be expressed in terms of the observables
A

(3)
T and A

(4)
T defined in Ref. [176]. However, ALT is easily extracted from the angular

distribution and has different properties in the LEET limit than A
(3)
T and A

(4)
T .

Using Eq. (4.50), the asymmetry ALT can be expressed as

ALT =
ILT3

2(AL + AT )
. (4.64)

We observe from Eq. (IV.70) that ALT depends on the VA couplings, as well as on V-S,
S-TE, and P-T interference terms. In the SM,

ALT =
βµRe[A

L
0,V A(A

V ∗
⊥ − AA∗⊥ )− AR0,V A(A

V ∗
⊥ + AA∗⊥ )]√

2(AL + AT )
. (4.65)
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Now, in the LEET limit, A+
V,A ≈ 0. Hence, in this limit,

ALEETLT ∝ Re[A0
VA

−∗
A + A0

AA
−∗
V ]

AL + AT
. (4.66)

From this it can be shown that the SM predicts ALT = 0 at

q2 ≈ − Ceff
7 mbm

2
B

Ceff
7 mb + Ceff

9 mB

≈ 1.96 GeV2 . (4.67)

Thus, just like AFB, the quantity ALT also has a zero crossing which is independent of
form factors in the LEET limit. Note that the zero crossing of ALT is different from
that of AFB. Figs. 4.13 and 4.14 also demonstrate that the zero crossing of ALT has a
very small hadronic uncertainty. This indicates small corrections to the LEET limit,
making the position of the zero crossing of ALT a robust prediction of the SM. This
quantity would therefore be very useful in searching for new-physics effects.

New VA couplings can affect A
(2)
T significantly: they can enhance its magnitude by

a large amount, change its sign, and change its q2-dependence. The zero-crossing point
may be at a value of q2 different from that predicted by the SM.

Since ALT here is identical to the observable S5 in Refs. [177, 183] in the CP-
conserving limit (apart from a normalization factor), the zero-crossing in both of these
observables is expected to take place at the same q2. Indeed, the results agree at LO,
while the NLO corrections can shift the q2 at the zero-crossing to q2 = 2.24+0.06

−0.08 [177].
Note that the deviation due to new VA couplings can be much larger than the effects
due to NLO corrections.

Except at very low q2, the magnitude of ALT is generally suppressed by new VA
couplings. The primed VA couplings can be constrained by ALT better than the un-
primed VA couplings. In both cases, the value of ALT can be anywhere in the q2 range,
and can be positive or negative. In particular, there may or may not be a zero crossing,
and if there is, its position can be different from that of the SM.

New SP couplings do not affect A
(2)
T , and ALT qualitatively behaves similarly to the

SM. New T couplings in general tend to suppress the magnitudes of both asymmetries
(see Fig. 4.14).

4.8 Discussion and Summary

Flavor-changing neutral current (FCNC) processes are expected to be incisive probes of
new physics. In the SM, they occur only at loop level, and hence are suppressed. This
may allow the new-physics (NP) effects to be identifiable. Of course, since we have no
clue about what form the NP takes, the observations from a variety of processes are
necessary. In this chapter, we have focussed on the processes that involve the effective
transition b → sµ+µ−.

100



0 1 2 3 4 5 6 7
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

q 2 HGev2 L

A
TH

2
L

Only RV , A and RV , A
, present

14 15 16 17 18 19 20
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

q 2 HGev2 L

A
TH

2
L

Only RV , A and RV , A
, present

0 1 2 3 4 5 6 7
-0.2

-0.1

0.0

0.1

0.2

q 2 HGev2 L

A
LT

Only RV , A and RV , A
, present

14 15 16 17 18 19 20
-0.2

-0.1

0.0

0.1

0.2

q 2 HGev2 L

A
LT

Only RV , A and RV , A
, present

Figure 4.13: The left (right) panels of the figure show A
(2)
T and ALT for B̄0

d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′
V , R

′
A) terms

are present. The band corresponds to the SM prediction and its uncertainties; the lines
show predictions for some representative values of NP parameters (RV , RA, R

′
V , R

′
A).

For example, the pink curves for A
(2)
T in the low-q2 and high-q2 regions correspond

to (1.96,−4.09, 4.61, 0.13) and (1.64,−0.90, 4.27,−0.91), respectively. The red curves
for ALT in the low-q2 and high-q2 regions correspond to (−1.55, 1.75, 6.16, 1.73) and
(−5.79, 1.10, 0.47,−3.33), respectively.

The transition b → sµ+µ− is responsible for many decay modes such as B̄0
s → µ+µ−,

B̄0
d → Xsµ

+µ−, B̄0
s → µ+µ−γ, B̄0

d → K̄µ+µ−, B̄0
d → K̄∗µ+µ−. While some of these

processes (e.g. B̄0
s → µ+µ−) have not yet been observed, the upper bounds on their

branching ratios have already yielded strong constraints on NP. Some of these processes
have been observed and the measurements of their branching fractions, as well as
of additional observables such as the forward-backward asymmetries, are available.
Indeed, the recently-observed muon forward-backward asymmetry in B̄0

d → K̄∗µ+µ−

has been found to deviate slightly from the SM predictions. If this is in fact due to
the presence of NP, such NP should contribute to all the other decays involving the
effective transition b→ sµ+µ−. The effects of this NP on these decay modes would be
correlated, and hence a combined analysis of all these decay modes would be invaluable
in discerning the type of NP present.

While specific models of NP may be used and their effect on the relevant observables
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Figure 4.14: The left (right) panels of the figure show A
(2)
T and ALT for B̄0

d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where only new T couplings are present.
The band corresponds to the SM prediction and its uncertainties; the lines show pre-
dictions for some representative values of NP parameters (CT , CTE). For example, the

blue curves for A
(2)
T in the low-q2 and high-q2 regions correspond to (0.3,−0.46) and

(−0.005, 0.014), respectively. The red curves for ALT in the low-q2 and high-q2 regions
correspond to (0.3,−0.46) and (0.66,−0.14), respectively.

studied, we have chosen to explore the NP in a model-independent way, in terms
of the Lorentz structures of the NP operators that contribute to the effective b →
sµ+µ− Hamiltonian. We have performed a general analysis that includes NP vector-
axial vector (VA), scalar-pseudoscalar (SP), and/or tensor (T) operators. We have
computed the effects of such NP operators, individually and in all combinations, on
these decays. We have taken the couplings to be real and have considered the CP-
conserving observables in this chapter; the CP-violating observables are discussed in
the next chapter. The aim is to find NP signals, and using them, to identify the Lorentz
structure of the NP. As the first step towards this goal, we calculate the constraints
on the NP couplings, and, keeping the couplings within these bounds, we look for the
observables where the NP signal can potentially stand out above the SM background.

It is crucial to understand this SM background, which makes it imperative to use
observables whose values are predicted reasonably accurately within the SM. The main
source of the SM uncertainties is the hadronic matrix elements, whose theoretical cal-
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culations often have errors of the order of tens of percent. We have handled this on
many levels. First, we have tried to identify observables that will not be very sensi-
tive to the hadronic uncertainties. For example in B̄0

d → K̄µ+µ−, the SM prediction
for the forward-backward asymmetry is simply zero, independent of any hadronic ele-
ments. Also, while the differential branching ratios may be strongly dependent on the
hadronic matrix elements, the forward-backward asymmetries are less so. Furthermore,
the large-energy effective theory (LEET) limits can be used to control the uncertainties

in the low-q2 region for observables like AFB and A
(2)
T . For example, certain observ-

ables, such as the zero-crossing of AFB in B̄0
d → K̄∗µ+µ−, can be shown to be robust

under form-factor uncertainties in the LEET limit. The longitudinal-transverse asym-
metry ALT in B̄0

d → K̄∗µ+µ− also has a zero crossing in the SM with small hadronic
uncertainties. These measurements can even be used to extract the parameters of the
NP operators, to a very good approximation.

Also, we focus only on the situations where the NP contribution can be so significant
that it will stand out even if the SM errors were magnified. Our figures show bands
for SM predictions that include the form-factor uncertainties as quoted in the form-
factor calculations, and these are overlaid with some examples of the allowed values of
these observables when NP contributions are included. This allows the scaling of these
uncertainties to be easily visualized. We identify and emphasize only those situations
where the results with the NP can be significantly different from those without the NP,
even if the hadronic uncertainties were actually much larger. Note that further inclusion
of the NLO QCD corrections would affect the central values of the SM predictions to
a small extent, while also decreasing the renormalization scale uncertainty. However,
since our primary interest is looking for observables where the NP effects are large, a
LO analysis is sufficient.

Our results are summarized in Table 4.1, for the cases where the NP has only
one type of Lorentz structure: VA, SP or T. We note certain generic features of the
influence of different NP Lorentz structures.

New VA operators are the ones that influence the observables strongly in most cases.
They typically can interfere with the SM terms constructively or destructively, thus
enhancing or suppressing the differential branching ratios by up to factors of 2 or 3.
They also are able to enhance almost all the asymmetries, the notable exception being
AFB in B̄0

d → K̄µ+µ−, where the VA operators cannot contribute. But for most other
observables, this kind of NP can potentially be observed. This can be traced to the
large magnitudes of the NP couplings still allowed by data, which in turn can be traced
to the possibility of interference between the new VA operators with the SM operators
that allows more freedom for the new VA couplings. Typically, the RV,A couplings are
constrained more weakly than the R′

V,A couplings, since the corresponding operators
have the same structure as those of the SM, allowing strong destructive interferences.
Consequently, the operators with RV,A couplings are more likely to show themselves
over and above the SM background. We point out that the exception to this rule is
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Observable SM Only new VA Only new SP Only new T
B̄0

s → µ+µ−

BR (3.35 ± 0.32) ×
10−9

• Marginal E
• Significant S

• Large E
• Maximal S

No effect

B̄0
d → Xsµ

+µ−

DBR • E (×2)
• S (÷2)

• Marginal E • E (×2)

AFB ZC≈ 3.5 GeV2 • E(30%) low q2

• ZC shift /
disappearence

• Marginal S • Marginal S

fL • 0.9 → 0.3
(low→high q2)

• Large S at low
q2

• Marginal S • Marginal E

B̄0
s → µ+µ−γ

DBR • E (×2−×3)
• S (low q2)

No effect • E (×3)

AFB ZC≈ 4.3 GeV2 • ZC shift /
disappearence

No effect • Large S

B̄0
d → K̄µ+µ−

DBR • E (×2)
• Marginal S

• E at high q2 • Small effect

AFB Vanishes • No effect • E at low q2

• No ZC
• E at high q2

• No ZC
B̄0

d → K̄∗µ+µ−

DBR • E (×2)
• S (÷2)

No effect • E (×2)

AFB ZC≈ 3.9 GeV2 • E at low q2

• ZC shift /
disappearence

No effect • Significant S
• ZC shift

fL • 0.9 → 0.3
(low→high q2)

• Large S No effect • Significant S

A
(2)
T • ↑ with q2

• No ZC
• E (×2)
• ZC possible

No effect • Significant S

ALT • ZC at low q2

• more -ve
at large q2

• Significant S
• ZC shift /
disappearence

No effect • Significant S

Table 4.1: The effect of NP couplings on observables. E(×n): enhancement by up to
a factor of n, S(÷n): suppression by up to a factor of n, ZC: zero crossing.
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the AFB in B̄0
d → K̄∗µ+µ− at large q2, where the R′

V,A couplings can cause a larger
enhancement.

The SP operators, on the other hand, are handicapped by the stringent constraints
from the upper bound on B(B̄0

s → µ+µ−). If only RS,P or R′
S,P couplings are present,

the constraints become even more severe. It is for this reason that, even when the SP
contributions are unsuppressed by mµ/mb, they are not often large enough to stand
apart from the SM background.

The couplings of the T operators, viz. CT and CTE, are not as suppressed as those
of the SP operators. Therefore, they typically contribute significantly to the DBRs.
However, the interference terms of these operators with the SM operators often suffer
from the mµ/mb helicity suppression, and hence they tend to suppress the magnitudes
of the asymmetries.

The combination of multiple Lorentz structures in general gives rise to the combi-
nation of features of the individual Lorentz structures involved. In particular, if the
VA operators appear in conjunction with another Lorentz structure, the effects of the
VA operators typically dominate. The T operators can interfere with the SP operators
without themµ/mb helicity suppression, but the strong constraints on the SP operators
hold them back. A remarkable exception is the combination of SP and T operators in
the forward-backward asymmetry in B̄0

d → K̄µ+µ−. This asymmetry, which vanishes
in the SM, can be enhanced to ∼ 5% at low q2 with only SP operators, and can be
enhanced to ∼ 30% with T operators but only at q2 ≈ m2

B. However, the presence
of both SP and T operators allows the asymmetry to be ∼ 40% in the whole high-q2

region. A similar feature, though to a less-spectacular extent, is observed in AFB of
B̄0
d → K̄∗µ+µ− [178].
With the large amount of data expected from the LHC experiments and B-factories

in the coming years, we may be able to detect confirmed NP signals in the above
processes. In that case, a combined analysis of all these decay modes, as carried out
in this chapter, would enable us to identify the Lorentz structure of the NP operators.
This will be important in establishing precisely what type of NP is present.
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Appendix

I Details of the B̄0
d → Xsµ

+µ− analysis

The differential branching ratio for B̄0
d → Xsµ

+µ− in SM can be written as
(
dB

dz

)

SM

= B0
8

3
(1− z)2

√
1− 4t2

z
×

[
(2z + 1)

(
2t2

z
+ 1

)
|Ceff

9 |2 +
(
2(1− 4z)t2

z
+ (2z + 1)

)
|Ceff

10 |2

+ 4

(
2

z
+ 1

)(
2t2

z
+ 1

)
|Ceff

7 |2 + 12

(
2t2

z
+ 1

)
Re(Ceff

7 C
eff∗
9 )

]
, (I.1)

Here t ≡ mµ/m
pole
b and z ≡ q2/(mpole

b )2. The normalization constant B0 is [144]

B0 =
3α2

emB(B̄ → Xceν̄)

32π2 f(m̂c) κ(m̂c)

|VtbV ∗
ts|2

|Vcb|2
, (I.2)

where m̂c ≡ mpole
c /mpole

b . We use m̂c = 0.29 ± 0.02 [148], B(B̄ → Xceν̄) = 0.1061 ±
0.0017 [193] and |VtbV ∗

ts|/|Vcb| = 0.967 ± 0.009 [208]. Here f(m̂c) is the lowest-order
(i.e. parton-model) phase-space factor in B(B̄ → Xceν̄):

f(m̂c) = 1− 8m̂2
c + 8m̂6

c − m̂8
c − 24m̂4

c ln m̂c , (I.3)

and the function κ(m̂c) includes both the O(αs) QCD corrections and the leading-order
(1/m2

b) power correction to B(B̄ → Xceν̄) :

κ(m̂c) = 1− 2αs(mb)

3π
g(m̂c) +

h(m̂c)

2m2
b

. (I.4)

Here the two functions are [144]

g(m̂c) = (π2 − 31

4
)(1− m̂c)

2 +
3

2
,

h(m̂c) = λ1 +
λ2

f(m̂c)

[
−9 + 24m̂2

c − 72m̂4
c + 72m̂6

c − 15m̂8
c − 72m̂4

c ln m̂c

]
. (I.5)

After including all the NP interactions, and neglecting terms suppressed by mµ/mb

and ms/mb, the total differential branching ratio dB/dz can be written in the form
(
dB

dz

)

Total

=

(
dB

dz

)

SM

+B0

[
BSM-V A +BV A +BSP +BT

]
, (I.6)
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where

BSM-V A =
16

3
(1− z)2(1 + 2z)

[
Re(Ceff

9 R∗
V ) + Re(C10R

∗
A)
]

+ 32 (1− z)2 Re(Ceff
7 R∗

V ) , (I.7)

BV A =
8

3
(1− z)2(1 + 2z)

[
|RV |2 + |RA|2 + |R′

V |2 + |R′
A|2
]
, (I.8)

BSP = 4 (1− z)2 z
[
|RS|2 + |RP |2 + |R′

S|2 + |R′
P |2
]
, (I.9)

BT =
128

3
(1− z)2(1 + 2z)

[
|CT |2 + 4|CTE|2

]
. (I.10)

Note that here we have separated the contribution of the SM VA operators (subscript
SM-V A) from that of the NP VA operators (subscript V A), for clarity.

The forward-backward asymmetry in B̄0
d → Xsµ

+µ− is

AFB(q
2) =

∫ 1

0
d cos θµ

d2B
dq2d cos θµ

−
∫ 0

−1
d cos θµ

d2B
dq2d cos θµ∫ 1

0
d cos θµ

d2B
dq2d cos θµ

+
∫ 0

−1
d cos θµ

d2B
dq2d cos θµ

, (I.11)

where θµ is the angle between the µ+ and the B̄0 in the dimuon center-of-mass frame.
We can write AFB in the form

AFB(q
2) =

N(z)

dB/dz
, (I.12)

where the numerator is given by

N(z) = B0

[
NSM +NSM-V A +NV A +NSP -T

]
, (I.13)

with

NSM = −8C10 (1− z)2
[
2Ceff

7 + zRe(Ceff
9 )
]
, (I.14)

NSM-V A = −8 (1− z)2
[
zRe

(
C10R

∗
V + Ceff

9 R∗
A

)
+ 2Ceff

7 Re(R∗
A)
]
, (I.15)

NV A = −8 z (1− z)2
[
Re(RVR

∗
A)− Re(R′

VR
′
A
∗
)
]
, (I.16)

NSP -T = −8 z (1− z)2
[
Re
{
(RS +RP ) (C

∗
T − 2C∗

TE)
}

+ Re
{
(R′

S − R′
P ) (C

∗
T + 2C∗

TE)
}]

. (I.17)

The expressions of Eqs. (I.7)-(I.17) are in agreement with Ref. [146].
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The polarization fractions fL and fT are defined as

fL =
HL(z)

HL(z) +HT (z)
, fT =

HT (z)

HL(z) +HT (z)
, (I.18)

where
HL(z) = HSM

L (z) +HSM−V A
L (z) +HV A

L (z) +HSP
L (z) +HT

L (z) , (I.19)

HT (z) = HSM
T (z) +HSM−VA

T (z) +HV A
T (z) +HSP

T (z) +HT
T (z) . (I.20)

The components of HL and HT functions are

HSM
L (z) =

8B′
0

3
(1− z)2

[ ∣∣Ceff
9 + 2Ceff

7

∣∣2 + |C10|2
]
, (I.21)

HSM
T (z) =

16B′
0

3
z(1 − z)2

[ ∣∣∣∣C
eff
9 +

2

z
Ceff

7

∣∣∣∣
2

+ |C10|2
]
, (I.22)

HSM-V A
L (z) =

16B′
0

3
(1− z)2

[
Re
(
Ceff

9 R∗
V + C10R

∗
A

)
+ 2Re(Ceff

7 R∗
V )
]
, (I.23)

HSM-V A
T (z) =

32B′
0

3
(1− z)2

[
zRe

(
Ceff

9 R∗
V + C10R

∗
A

)
+ 2Re(Ceff

7 R∗
V )
]
,(I.24)

HV A
L (z) =

8B′
0

3
(1− z)2

[
|RV |2 + |RA|2 + |R′

V |2 + |R′
A|2
]
, (I.25)

HV A
T (z) =

16B′
0

3
z(1 − z)2

[
|RV |2 + |RA|2 + |R′

V |2 + |R′
A|2
]
, (I.26)

HSP
L (z) =

4B′
0

3
z(1− z)2

[
|RS|2 + |RP |2 + |R′

S|2 + |R′
P |2
]
, (I.27)

HSP
T (z) =

8B′
0

3
z(1− z)2

[
|RS|2 + |RP |2 + |R′

S|2 + |R′
P |2
]
, (I.28)

HT
L (z) =

64B′
0

3
(2− z)(1− z)2

[
|CT |2 + 4|CTE|2

]
, (I.29)

HT
T (z) =

128B′
0

3
z(1 − z)2

[
|CT |2 + 4|CTE|2

]
. (I.30)
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II Details of the B̄0
s → µ+µ−γ analysis

The transition amplitude for B̄0
s → µ+µ−γ is

iM(B̄0
s → µ+µ−γ) = (−i)1

2

[
− 4GF√

2

αem
4π

(V ∗
tsVtb)

]
×

{
〈γ(k)|s̄γµb|B̄0

s (pB)〉
[
(Ceff

9 +RV +R′
V )L

µ + (C10 +RA +R′
A)L

µ5
]

+
〈
γ(k)|s̄γµγ5b|B̄0

s (pB)
〉 [

−(Ceff
9 +RV − R′

V )L
µ − (C10 +RA −R′

A)L
µ5
]

+
〈
γ(k)|s̄iσµνqνb|B̄0

s (pB)
〉
[−2mb

Ceff
7

q2
Lµ]

+
〈
γ(k)|s̄iσµνγ5qνb|B̄0

s (pB)
〉
[−2mb

Ceff
7

q2
Lµ]

+
〈
γ(k)|s̄σµνb|B̄0

s (pB)
〉
[2CTL

µν + 2iCTEǫ
µναβLαβ ]

}
, (II.31)

where the L’s are defined in Eq. (4.8).
In order to calculate the DBR, one needs the B̄0

s → γ matrix elements and form
factors. The matrix elements are given in Ref. [156]5:

〈
γ(k)|s̄γµb|B̄0

s (pB)
〉
= −e ǫµνρσε∗νqρkσ

fV (q
2)

mBs

,

〈
γ(k)|s̄γµγ5b|B̄0

s (pB)
〉
= ie

[
ε∗µk · q − ε∗ · qkµ

]
fA(q

2)

mBs

,

〈
γ(k)|s̄iσµνqνb|B̄0

s (pB)
〉
= e ǫµνρσε

∗νqρkσfTV (q
2) ,

〈
γ(k)|s̄iσµνγ5qνb|B̄0

s (pB)
〉
= ie

[
ε∗µk · q − ε∗ · qkµ

]
fTA(q

2) ,

〈
γ(k)|s̄σµνb|B̄0

s (pB)
〉

= −ie ǫµνρσ
[{fTV (q2)− fTA(q

2)}
q2

{
(q · k) ε∗ρ qσ + (ε∗ · q) qρ kσ

}

− fTV (q
2) ε∗ρ kσ

]
. (II.32)

Here εµ is the four-vector polarization of the photon and q = pB − k. For the B̄0
s →

µ+µ−γ form factors fi (i = V,A, TA, TV ), we use the parameterization [156]

fi(q
2) = βi

fBs
mBs

∆i + 0.5mBs

(
1− q2/m2

Bs

) , (II.33)

5We use the convention ǫ0123 = +1.
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where the parameters βi and ∆i are given in Table II. These values of parameters
ensure that the large energy effective theory (LEET) relations between form factors
are satisfied to a 10% accuracy [156]. In our numerical analysis we take the errors in
these form factors to be ±10%.

Parameter fV fTV fA fTA

β(GeV−1) 0.28 0.30 0.26 0.33
∆(GeV) 0.04 0.04 0.30 0.30

Table 2: The parameters for B̄0
s → γ form factors, as defined in Eq. (II.33).

In terms of the dimensionless parameter xγ = 2Eγ/mBs
, where Eγ is the photon

energy in the B̄0
s rest frame, one can calculate the double differential decay rate to be

d2Γ

dxγd(cos θµ)
=

1

2mBs

2v m2
Bs
xγ

(8π)3
M†M , (II.34)

where v ≡
√

1− 4m2
µ/[m

2
Bs
(1− xγ)]. From Eq. (II.34) we get the DBR to be

dB

dxγ
= τBs

∫ 1

−1

d2Γ

dxγd(cos θµ)
d cos θµ

= τBs

[
1

2mBs

2vm2
Bs

(8π)3

][
1

4

16G2
F

2

α2
em

16π2
|VtbV ∗

ts|2e2
]
Θ . (II.35)

Here the quantity Θ has the form

Θ =
2

3
m4
Bs
x3γ

[
XV A +XT +XV A-T

]
, (II.36)

where the X terms are

XV A =
(
|A|2 + |B|2

)
m2
Bs

(
3− v2

)
(1− xγ) +

(
|C|2 + |D|2

)
2m2

Bs
v2(1− xγ) ,

XT = 4|E|2(3− v2) + 4|F |2m4
Bs
v2(1− xγ)

2

+16|G|2
(
3− v2

)
+ 16|H|2m4

Bs

(
3− 2v2

)
(1− xγ)

2

+8m2
Bs
v2(1− xγ)Re (E

∗F ) + 32m2
Bs
(3− 2v2)(1− xγ)Re (G

∗H) ,

XV A-T = −24mµRe (A
∗E)− 48mµRe (B

∗G)− 48mµm
2
Bs
(1− xγ)Re (B

∗H) .(II.37)

Note that here, the V A subscript includes the SM operators. The parameters A–H
are combinations of the Wilson coefficients, form factors and NP parameters, and are
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given by

A = (Ceff
9 +RV +R′

V )
fV (q

2)

mBs

+
2mbC

eff
7

q2
fTV (q

2) ,

B = (Ceff
9 +RV −R′

V )
fA(q

2)

mBs

+
2mbC

eff
7

q2
fTA(q

2) ,

C = (Ceff
10 +RA +R′

A)
fV (q

2)

mBs

,

D = (Ceff
10 +RA −R′

A)
fA(q

2)

mBs

,

E = −2CT fTV (q
2) ,

F = 2CT
fTV (q

2)− fTA(q
2)

q2
,

G = −2CTEfTV (q
2) ,

H = 2CTE
fTV (q

2)− fTA(q
2)

q2
. (II.38)

The normalized forward-backward asymmetry of muons in B̄0
s → µ+µ−γ is defined

as

AFB(q
2) =

∫ 1

0

d cos θµ
d2B

dq2d cos θµ
−
∫ 0

−1

d cos θµ
d2B

dq2d cos θµ∫ 1

0

d cos θµ
d2B

dq2d cos θµ
+

∫ 0

−1

d cos θµ
d2B

dq2d cos θµ

, (II.39)

where θµ is the angle between the three-momentum vectors of the B̄0
s and the µ+ in

the dimuon center-of-mass frame. The calculation of AFB gives

AFB(q
2) =

1

Θ

(
2m4

Bs
v x3γ

)[
YV A + YV A-T

]
, (II.40)

with the Y terms given by

YV A =
(
Re (A∗D) + Re (B∗C)

)
m2
Bs
(1− xγ) ,

YV A-T = −4mµ

(
2Re (C∗G) + 2m2

Bs
(1− xγ)Re (C

∗H) + Re (D∗E)

)
. (II.41)
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III Details of the B̄0
d → K̄µ+µ− analysis

The transition matrix element for B̄0
d → K̄µ+µ− is given by

iM (B̄0
d → K̄µ+µ−) = (−i) 1

2

[
− 4 GF√

2

αem
4π

(V ∗
tsVtb)

]
×

{
〈K(p2) |s̄γµb|B(p1)〉 [(Ceff

9 +RV +R′
V )L

µ + (C10 +RA +R′
A)L

µ5]

+ 〈K(p2) |s̄b|B(p1)〉 [(RS +R′
S)L+ (RP +R′

P )L
5]

+ 〈K(p2) |s̄iσµνqνb|B(p1)〉 [−2Ceff
7 (mb/q

2)Lµ]

+ 〈K(p2) |s̄σµνb|B(p1)〉 [2CTL
µν + 2iCTEǫ

µναβLαβ ]

}
, (III.42)

where the L’s are defined in Eq. (4.8).
The B̄0

d → K̄ matrix elements needed to calculate the decay rate and asymmetry
in B̄0

d → K̄µ+µ− are [161]

〈
K̄(p2) |s̄γµb| B̄0

d(p1)
〉

= (2p1 − q)µf+(z) + (
1− k2

z
) qµ[f0(z)− f+(z)] ,

〈
K̄(p2) |s̄iσµνqνb| B̄0

d(p1)
〉

= −
[
(2p1 − q)µq

2 − (m2
B −m2

K)qµ

] fT (z)

mB +mK
,

〈
K̄(p2) |s̄b| B̄0

d(p1)
〉

=
mB(1− k2)

m̂b
f0(z) ,

〈
K̄(p2) |s̄σµνb| B̄0

d(p1)
〉

= i
[
(2p1 − q)µqν − (2p1 − q)νqµ

] fT (z)

mB +mK
, (III.43)

where k ≡ mK/mB, m̂b ≡ mb/mB, qµ = (p1 − p2)µ = (p+ + p−)µ, and z ≡ q2/m2
B. The

form factors f+, 0, T were calculated in the framework of QCD light-cone sum rules in
Ref. [161]. The z dependence of these is parametrized by

f(z) = f(0) exp(c1z + c2z
2 + c3z

3) , (III.44)

where the parameters f(0), c1, c2 and c3 for each form factor are taken from Tables III,
IV and V of Ref. [161]. Using these, the differential branching ratio is given by

dB

dz
= B′

0 φ
1/2 βµ

[
X ′
V A +X ′

SP +X ′
T +X ′

V A-SP +X ′
V A-T

]
, (III.45)

where B′
0 is the normalization factor:

B′
0 =

G2
Fα

2τB
212π5

|VtbV ∗
ts|2m5

B , (III.46)
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the phase factor φ is
φ ≡ 1 + k4 + z2 − 2(k2 + k2z + z) , (III.47)

and the X ′ terms are given by

X ′
V A = φ

(
1− 1

3
β2
µ

)
(|A′|2 + |B′|2) + 4 m̂2

µ |B′|2 (2 + 2k2 − z)

+ 4 m̂2
µ z |C ′|2 + 8 m̂2

µ (1− k2) Re(B′C ′∗) ,

X ′
SP =

z

m2
B

(|E ′|2 + β2
µ |D′|2) ,

X ′
T =

4

3
φ z m2

B

[
3|F ′|2 + 2 β2

µ (2|G′|2 − |F ′|2)
]
,

X ′
V A-SP =

4m̂µ

mB
(1− k2) Re(B′E ′∗) +

4m̂µ

mB
zRe(C ′E ′∗) ,

X ′
V A-T = 8m̂µmBφRe(A

′F ′∗) . (III.48)

Here m̂µ ≡ mµ/mB and βµ ≡
√
1− 4m̂2

µ/z. The parameters A′–G′ are combinations

of the Wilson coefficients, form factors and NP parameters, and are given by

A′ ≡ 2(Ceff
9 +RV +R′

V ) f+(z) + 4Ceff
7 m̂b

fT (z)

1 + k
,

B′ ≡ 2(C10 +RA +R′
A) f+(z) ,

C ′ ≡ 2(C10 +RA +R′
A)

1− k2

z

[
f0(z)− f+(z)

]
,

D′ ≡ 2(RS +R′
S)
mB(1− k2)

m̂b

f0(z) ,

E ′ ≡ 2(RP +R′
P )
mB(1− k2)

m̂b
f0(z) ,

F ′ ≡ 4CT
fT (z)

mB(1 + k)
,

G′ ≡ −4CTE
fT (z)

mB(1 + k)
. (III.49)

The limits on the kinematical variables z and cos θµ are

− 1 ≤ cos θµ ≤ 1 , 4m̂2
µ ≤ z ≤ (1− k)2 . (III.50)

Note that in the large energy (LEET) limit, there are relations between form factors
that are valid up to αs, 1/EK and 1/mb corrections [166, 167]. These are

f+(z) = ζ(mB, EP ),

f0(z) =
(
1− q2

m2
B −m2

P

)
ζ(mB, EP ),

fT (z) =
(
1 +

mP

mB

)
ζ(mB, EP ) . (III.51)
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Thus, all form factors can be expressed in terms of a single universal soft form factor
ζ(mB, EP ) in this limit.

The normalized forward-backward asymmetry for the muons in B̄0
d → K̄µ+µ− is

defined as

AFB(q
2) =

∫ 1

0

d cos θµ
d2B

dq2d cos θµ
−
∫ 0

−1

d cos θµ
d2B

dq2d cos θµ∫ 1

0

d cos θµ
d2B

dq2d cos θµ
+

∫ 0

−1

d cos θµ
d2B

dq2d cos θµ

, (III.52)

where θµ is the angle between the three-momenta of the B̄0
d and the µ+ in the dimuon

center-of-mass frame. The calculation of AFB(q
2) gives

AFB(q
2) =

2B′
0 βµ φ

dB/dz

[
Y ′
V A-SP + Y ′

V A-T + Y ′
SP -T

]
(III.53)

where

Y ′
V A-SP = − m̂µ

mB
Re(A′D′∗)

Y ′
V A-T = −4mµ(1− k2)Re(B′G′∗)− 4zmµRe(C

′G′∗)

Y ′
SP -T = −z

4
Re(D′F ′∗)− 2zRe(E ′G′∗) . (III.54)

Note that only Y ′
SP -T term is unsuppressed by the muon mass.

IV Details of the B̄0
d → K̄∗µ+µ− angular analysis

IV.a Matrix elements

The full transition amplitude for B̄(pB) → K̄∗(pK∗, ǫ∗)µ+(p+µ )µ
−(p−µ ) is

iM (B̄0
d → K̄∗µ+µ−) = (−i) 1

2

[
− 4 GF√

2

αem
4π

(V ∗
tsVtb)

]
×

{
〈K∗(pK∗ , ǫ)|s̄γµb|B(pB)〉 [(Ceff

9 +RV +R′
V )L

µ + (C10 +RA +R′
A)L

µ5]

+ 〈K∗(pK∗ , ǫ)|s̄γµγ5b|B(pB)〉[−(Ceff
9 +RV − R′

V )L
µ − (C10 +RA − R′

A)L
µ5]

+ 〈K∗(pK∗ , ǫ)|s̄iσµνqν(1 + γ5)b|B(pB)〉 [−2Ceff
7 (mb/q

2)Lµ]

+ 〈K∗(pK∗ , ǫ)|s̄b|B(pB)〉 [(RS +R′
S)L+ (RP +R′

P )L
5]

+ 〈K∗(pK∗ , ǫ)|s̄γ5b|B(pB)〉 [(RS −R′
S)L+ (RP − R′

P )L
5]

+ 〈K∗(pK∗ , ǫ)|s̄σµνb|B(pB)〉 [2CTLµν + 2iCTEǫ
µναβLαβ ]

}
, (IV.55)
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where the L’s are defined in Eq. (4.8). Here q = pB − pK∗ = p+µ + p−µ . This can be
written in the form

iM(B̄0
d → K̄∗µ+µ−) = (−i)1

2

[
4 GF√

2

αem
4π

(V ∗
tsVtb)

]
×

[MV µL
µ +MAµL

µ5 +MSL+MPL
5 +MTµνL

µν + iMEµνLαβǫ
µναβ ]

, (IV.56)

with

MV µ = −A′′ǫµναβε
∗νpαK∗qβ + iB′′ε∗µ + iC ′′ε∗.q(pB + pK∗)µ + iD′′ε∗.qqµ,

MAµ = −E ′′ǫµναβε
∗νpαK∗qβ + iF ′′ε∗µ + iG′′ε∗.q(pB + pK∗)µ + iH ′′ε∗.qqµ,

MS = iS ′′ε∗.q,

MP = iP ′′ε∗.q,

MTµν = CT (iT
′′
1 ǫµναβε

∗α(pB + pK∗)β + iT ′′
2 ǫµναβε

∗αqβ − iT ′′
3 ǫµναβε

∗.qpαK∗qβ),

MEµν = CTE(iT
′′
1 ǫµναβε

∗α(pB + pK∗)β + iT ′′
2 ǫµναβε

∗αqβ − iT ′′
3 ǫµναβε

∗.qpαK∗qβ) .

(IV.57)

The quantities A′′, B′′, C ′′, D′′,E ′′, F ′′, G′′, S ′′, P ′′, and T ′′
i (1=1,2,3) are related to

the B̄ → K̄∗ form factors which are given below. The contribution to the transition
amplitudes from the quantity D′′(q2) vanishes and that from H ′′(q2) is suppressed
because of the equation of motion of the muons.

IV.b Form factors

The form factors for the decay amplitude for B̄0
d → K̄∗µ+µ− [Eq. (IV.55)] in terms of

matrix elements of the quark operators are given by [161]

〈K∗(pK∗, ǫ)|s̄γµ(1± γ5)b|B(pB)〉 = ∓ iqµ
2mK∗

q2
ǫ∗ · q

[
A3(q

2)− A0(q
2)

]

± iǫ∗µ(mB +mK∗)A1(q
2)∓ i(pB + pK∗)µ ǫ

∗ · q A2(q
2)

(mB +mK∗)

− ǫµνλσǫ
∗νpλK∗qσ

2V (q2)

(mB +mK∗)
, (IV.58)

where

A3(q
2) =

mB +mK∗

2mK∗

A1(q
2)− mB −mK∗

2mK∗

A2(q
2) . (IV.59)
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〈K∗(pK∗ , ǫ)|s̄σµνb|B(pB)〉 = iǫµνλσ

{
− T1(q

2)ǫ∗λ(pB + pK∗)σ

+
(m2

B −m2
K∗)

q2

(
T1(q

2)− T2(q
2)

)
ǫ∗λqσ

− 2

q2

(
T1(q

2)− T2(q
2)− q2

(m2
B −m2

K∗)
T3(q

2)

)
ǫ∗ · q pλK∗qσ

}
.(IV.60)

〈K∗(pK∗, ǫ)|s̄iσµνqν(1± γ5)b|B(pB)〉 = 2ǫµνλσǫ
∗νpλK∗qσ T1(q

2)

± i

{
ǫ∗µ(m

2
B −m2

K∗)− (pB + pK∗)µ ǫ
∗ · q

}
T2(q

2)

± i ǫ∗ · q
{
qµ −

(pB + pK∗)µq
2

(m2
B −m2

K∗)

}
T3(q

2) . (IV.61)

〈K∗(pK∗, ǫ)|s̄(1± γ5)b|B(pB)〉 = ∓ 2i
mK∗

mb
ǫ∗ · q A0(q

2) . (IV.62)

Here we have neglected the strange-quark mass. The matrix elements are functions of
7 unknown form factors: A0,1,2(q

2), V (q2), T1,2,3(q
2).

The matrix elements MV,A,S,P,T,E appearing in Eq. (IV.57) can be written in terms
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of these 7 form factors, coupling constants and kinematic variables as

A′′ =
[2V (q2)(Ceff

9 +RV +R′
V )

mB +mK∗

+
4mb

q2
Ceff

7 T1(q
2)
]
,

B′′ = −
[
(mB +mK∗)A1(q

2)(Ceff
9 + RV −R′

V ) +
2mb

q2
Ceff

7 T2(q
2)(m2

B −m2
K∗)
]
,

C ′′ =
[ A2(q

2)

mB +mK∗

(Ceff
9 +RV −R′

V ) +
2mb

q2
Ceff

7

(
T2(q

2) +
q2T3(q

2)

(m2
B −m2

K∗)

)]
,

D′′ =
[2mK∗

q2
(Ceff

9 +RV − R′
V )(A3(q

2)−A0(q
2))− 2mb

q2
Ceff

7 T3(q
2)
]
,

E ′′ =
[2V (q2)(C10 +RA +R′

A)

mB +mK∗

]
,

F ′′ = −
[
(mB +mK∗)A1(q

2)(C10 +RA − R′
A)
]
,

G′′ =
[ A2(q

2)

mB +mK∗

(C10 +RA − R′
A)
]
,

H ′′ =
[2mK∗

q2
(C10 +RA −R′

A)(A3(q
2)− A0(q

2))
]
,

S ′′ =
[
− 2(RS − R′

S)
mK∗

mb
A0(q

2)
]
,

P ′′ =
[
− 2(RP −R′

P )
mK∗

mb
A0(q

2)
]
,

T ′′
1 = −2T1(q

2),

T ′′
2 =

[2(m2
B −m2

K∗)

q2
(T1(q

2)− T2(q
2))
]
,

T ′′
3 =

[ 4
q2

(
T1(q

2)− T2(q
2)− q2T3(q

2)

m2
B −m2

K∗

)]
. (IV.63)

Also, we define

T0 =
1

mK∗

(√
q2(EK∗

√
q2 + 2m2

K∗)T ′′
1 + q2(EK∗T ′′

2 − |~pK∗|2
√
q2T ′′

3 )
)
,

T+ = (q2 + 2EK∗

√
q2)T ′′

1 + q2T ′′
2 , T− = 2|~pK∗|

√
q2T ′′

1 . (IV.64)

IV.c Transversity amplitudes

We summarize the various transversity amplitudes that appear in the B̄0
d → K̄∗µ+µ−

angular distribution. The decay amplitude of B̄0
d → K̄∗µ+µ− depends on the K∗

polarization vector ε(λ) with helicity λ (0,±1). Hence, the decay amplitude can be
decomposed into three components. Below we define the helicity amplitudes of various
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operators with different Lorentz structures (V, A, S, P, T, TE) in Eq. (IV.55).

A0
V =

√
q2
(EK∗

mK∗

B′′ +
2|~pK∗|2

√
q2

mK∗

C ′′
)
, A±

V =
√
q2(±|~pK∗|

√
q2A′′ +B′′) ,

A0
A =

√
q2
(EK∗

mK∗

F ′′ +
2|~pK∗|2

√
q2

mK∗

G′′
)
, A±

A =
√
q2(±|~pK∗|

√
q2E ′′ + F ′′) ,

AS =
2|~pK∗|q2
mK∗

S ′′ , AP =
2|~pK∗|q2
mK∗

P ′′ ,

A0
T = T0CT , A±

T = T±CT ,

A0
TE = 2T0CTE , A±

TE = 2T±CTE ,

Avt = −2|~pK∗|
√
q2(C10 +RA −RA′)A0 , (IV.65)

where the amplitude Avt is related to the time-like component of the virtual K∗. In
the transversity basis, the positive and negative helicity amplitudes are replaced by the
transversity amplitudes as

Ai‖ =
1

2
(A+

i + A−
i ) , Ai⊥ =

1

2
(A+

i − A−
i ) , i = V,A,T,TE. (IV.66)

The left and right component of the transversity amplitudes of vector and axial-vector
currents in [177] can be written as

AL,R0,V A = A0
V ∓A0

A , A
L,R
‖,V A = (AV‖ ∓AA‖ ) , A

L,R
⊥,V A = (AV⊥ ∓ AA⊥) . (IV.67)

Note that in the notation of Ref. [177], we have the correspondence AL,R(0,‖,⊥),V A =

(
√
q2/N)AL,R(0,‖,⊥). The amplitudes AS,P,vt remain the same, while AS = −(

√
q2/N)AL,RS .

IV.d Angular coefficients

The expressions for the twelve angular coefficients (I’s) in the B̄0
d → K̄∗µ+µ− angular

distribution are summarized here according to K∗ helicity combinations λ1λ2. The
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longitudinal I0’s (λ1λ2 = 00) are given by

I01 = 2
[1
2
(|AL0,V A|2 + |AR0,V A|2) +

1

2
(β2

µ|AS|2 + |AP |2) + 4β2
µ(|A0

T |2 + |A0
TE|2)

+
4m2

µ

q2

(
Re[AL0,V AA

R∗
0,V A] + 2|Avt|2 + 8|A0

TE|2
)

+
4mµ√
q2

(
2Re[(AL0,V A + AR0,V A)A

0∗
TE ]− Re[AvtA

∗
P ]
)]

,

I02 = β2
µ

[
− (|AL0,V A|2 + |AR0,V A|2) + 8(|A0

T |2 + |A0
TE |2)

]
,

I03 = 2βµ

[
4(−Re[A0

TEA
∗
S] + Re[A0

TA
∗
P ])−

4mµ√
q2

(1
2
Re[(AL0,V A + AR0,V A)A

∗
S]

+4Re[AvtA
0∗
T ]
)]

. (IV.68)

The transverse IT ’s (λ1λ2 = ++,−−,+−,−+) are given by

IT1 =
[2 + β2

µ

2

(
|AV‖ |2 + |AV⊥|2 + |AA‖ |2 + |AA⊥|2

)
− 4(−2 + β2

µ)
(
|AT‖ |2 + |AT⊥|2 + |ATE‖ |2

+|ATE⊥ |2
)
+

4m2
µ

q2

(
|AV‖ |2 + |AV⊥|2 − |AA‖ |2 − |AA⊥|2 − 16(AT‖A

T∗
⊥ −ATE‖ ATE∗

⊥ )
)

+16
mµ√
q2

(
Re[AV⊥(A

T∗
‖ − AT∗⊥ )] + Re[AV‖ (A

TE∗
‖ + ATE∗

⊥ )]
)]

,

IT2 = β2
µ

[1
2

(
|AV‖ |2 + |AV⊥|2 + |AA‖ |2 + |AA⊥|2

)
− 4
(
|AT‖ |2 + |AT⊥|2 + |ATE‖ |2 + |ATE⊥ |2

)]
,

IT3 = −4βµ

[
Re[AV⊥A

A∗
‖ + AV‖ A

A∗
⊥ ] + 4

mµ√
q2
Re[AA‖ (A

T∗
‖ − AT∗⊥ ) + AA⊥(A

TE∗
‖ + ATE∗

⊥ )]
]
,

IT4 = β2
µ

[(
|AV⊥|2 − |AV‖ |2 + |AA⊥|2 − |AA‖ |2

)
+ 16

(
AT‖A

T∗
⊥ + ATE‖ ATE∗

⊥

)]
,

IT5 = 2β2
µIm[AV ∗

‖ AV⊥ + AA∗‖ AA⊥] . (IV.69)
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The mixed ILT ’s (λ1λ2 = 0±,±0) are given by

ILT1 = β2
µ

[ 1√
2
Re[AR0,V A(A

V ∗
‖ + AA∗‖ ) + AL0,V A(A

V ∗
‖ − AA∗‖ )]

−4
√
2
(
A0
T (A

T∗
‖ + AT∗⊥ ) + A0

TE(A
TE∗
‖ + ATE∗

⊥ )
)]

,

ILT2 =
1√
2
β2
µIm[AR0,V A(A

V ∗
⊥ + AA∗⊥ ) + AL0,V A(A

V ∗
⊥ − AA∗⊥ )] ,

ILT3 =
√
2βµ

[
Re[AL0,V A(A

V ∗
⊥ − AA∗⊥ )− AR0,V A(A

V ∗
⊥ + AA∗⊥ )] + 2Re[(ATE‖ + ATE⊥ )A∗

S]

−2Re[(AT‖ + AT⊥)A
∗
P ] + 2

mµ√
q2
Re[AV‖ A

∗
S]
]
,

ILT4 =
√
2βµ

[
Im[AL0,V A(A

V ∗
‖ −AA∗‖ )−AR0,V A(A

V ∗
‖ + AA∗‖ )]

+2Im[(AT‖ −AT⊥)A
∗
S] + 2Im[(ATE‖ −ATE⊥ )A∗

P ]− 2
mµ√
q2
Im[AV⊥A

∗
S]
]
. (IV.70)
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Chapter 5

New Physics in b→ sµ+µ−:
CP-Violating Observables

5.1 Introduction

The B factories have taken us to the luminosity frontier with more than a billion B+/Bd

mesons, and the Tevatron experiments have provided us with invaluable data on Bs

mesons. We have now entered the precision era of B physics. The Standard Model
(SM) has been successful in explaining most of the data to date. However, this is now
the time to look forward to precision tests, with the ATLAS and CMS experiments
already running, the LHCb expected to start recording data soon, and the Super-B
factories on their way. One can now be ambitious and not only look for new-physics
(NP) effects, but also try to identify the kind of NP involved.

Though there is no unambiguous signal of NP so far in all of the B decays we have
observed, some possible hints of NP have recently surfaced in modes involving b → s
transitions. These include measurements of CP-averaged quantities such as the large
transverse polarization in B → φK∗ [210, 211], and the anomalous forward-backward
asymmetry in B → K∗µ+µ− [212–214]. There are also measurements of CP-violating
quantities such as the difference between the mixing-induced CP asymmetries seen in
b → s penguin decays and in Bd → J/ψKS [215–217], the large CP asymmetry in
Bs → J/ψφ [218], and the anomalous CP asymmetry in like-sign dimuon signals [219].

In the previous chapter, we performed a general analysis with all possible Lorentz
structures of NP in the transition b → sµ+µ−. We included NP vector-axial vector
(VA), scalar-pseudoscalar (SP), and tensor (T) b → sµ+µ− operators, and explored
their possible effects on the decays B̄0

s → µ+µ−, B̄0
d → Xsµ

+µ−, B̄0
s → µ+µ−γ,

This chapter is based on JHEP 1111, 122 (2011) by Ashutosh Kumar Alok, Alakabha Datta,
Amol Dighe, Murugeswaran Duraisamy, Diptimoy Ghosh and David London [209]. The analytic
expressions for some of the CP-violating asymmetries existed partly (for a subset of new operators) in
the literature. I have brought all the earlier results together in a consistent notation and completed
them using all the Lorentz Structures. All the numerical analysis for the modes B̄0

s → µ+µ−γ, B̄0
d →

K̄µ+µ−, and B̄0
d → Xsµ

+µ− were performed by me with some initial help from Ashutosh Kumar
Alok.
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B̄0
d → K̄µ+µ−, and B̄0

d → K̄∗µ+µ−. We focused on CP-conserving observables such
as differential branching ratios, forward-backward asymmetries, polarization fractions,
and the asymmetries A

(2)
T , ALT in B̄0

d → K̄∗µ+µ−. Because we only considered CP-
conserving observables, all the NP couplings were taken to be real. We computed the
effects of all NP operators, individually and in all combinations, on these observables.

The CP-violating observables in various b→ sµ+µ− decays in the SM as well as in
some NP models have been studied in Refs. [221–236] In this chapter, we explore the
CP-violating quantities that may be measured in the same decay modes by allowing the
new couplings to be complex. The introduction of complex couplings has two effects.
First, some quantities which were taken to be CP-conserving above now display CP-
violation, i.e. the quantities take different values in the CP-conjugate decays. The
difference between the value of a measurement in a decay and in its CP-conjugate
counterpart is then a CP-violating observable. Second, new observables appear which
vanish in the CP-conserving limit. (These were not considered in Ref. [220] for this
reason.) These essentially correspond to the CP-violating triple-product asymmetries

A
(im)
T and A

(im)
LT in B̄0

d → K̄∗µ+µ−, which may be obtained from the angular distribution
in this decay. Our goal is to identify those quantities for which there may be large effects
due to the presence of NP. In such cases, we try to find salient features of the effects
of NP, which may help us identify the Lorentz structure of the NP involved.

Here we have taken the NP to be present only in the effective b→ sµ+µ− operator.
While this can, in principle, contribute to CP violation in Bd-B̄d and Bs-B̄s mixing,
it is a higher-order effect, and hence negligible compared to the SM contribution. We
therefore neglect mixing-induced (indirect) CP violation in this work, and focus only
on CP violation in the decay. In the SM, such CP violation is expected to be close
to zero in b → s transitions. A naive estimate indicates that this asymmetry will
be ∼ 10−3 [229, 232], but even if next-to-leading order (NLO) QCD corrections and
hadronic uncertainties are included, it is observed that the CP asymmetry will not
exceed 1% [233,234,237]. Thus, if a large CP-violating effect, more than a few percent,
is observed in any of the b → sµ+µ− channels, this will therefore be a clear signature
of NP. In this chapter, we go further and explore the extent to which the Lorentz
structure of NP can be ascertained from the CP-violating measurements.

The chapter is organized as follows. We begin in Sec. 5.2 by describing the effective
Hamiltonian with NP operators and new couplings. Although the formalism is the
same as that used in Ref. [220], the constraints on the NP couplings are now more
relaxed since the couplings are allowed to be complex. We also present an overview of
the types of CP-violating observables which are examined. In Sec. 5.3 we note that
there are essentially no measurable CP-violating quantities in the mode B̄0

s → µ+µ−.
We then consider the decays B̄0

d → Xsµ
+µ− (Sec. 5.4), B̄0

s → µ+µ−γ (Sec. 5.5), and
B̄0
d → K̄µ+µ− (Sec. 5.6). In these sections we examine the same observables as in

Ref. [220], this time looking at the asymmetries between these processes and their
CP-conjugates. In Sec. 5.7, we study the CP asymmetries in B̄0

d → K̄∗µ+µ− for the
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observables considered in Ref. [220], and in addition we explore new observables that
vanish in the CP-conserving limit (triple products). We summarize our findings in
Sec. 5.8 and discuss their implications.

5.2 b → sµ+µ− Operators

In this chapter our formalism is identical to that used in section 4.2. But as we are
interested in CP violating effects here, we take all NP couplings to be complex in our
numerical analysis.

5.2.1 Constraints on NP couplings

The constraints on the NP couplings in b→ sµ+µ− come mainly from the upper bound
on the branching ratio B(B̄0

s → µ+µ−) and the measurements of the total branching
ratios B(B̄0

d → Xsµ
+µ−) and B(B̄0

d → K̄µ+µ−) [239–241]:

B(B̄0
s → µ+µ−) < 4.7× 10−8 (90% C.L.) , (5.1)

B(B̄0
d → Xsµ

+µ−) =

{
(1.60± 0.50)× 10−6 (low q2)
(0.44± 0.12)× 10−6 (high q2)

, (5.2)

B(B̄0
d → K̄µ+µ−) =

(
4.5+1.2

−1.0

)
× 10−7 , (5.3)

where the low-q2 and high-q2 regions correspond to 1 GeV2 ≤ q2 ≤ 6 GeV2 and
q2 ≥ 14.4 GeV2, respectively. Here q2 is the invariant mass squared of the two muons.

We consider all the NP couplings Ri to be complex and parametrize them as

Ri = |Ri| eiφRi , (5.4)

where i = V,A, S, P, T, TE and −π ≤ φRi
≤ π. The bounds on these couplings will

in general depend on which operators are present. While we take the correlations in
these constraints into account in our numerical calculations, for the sake of simplicity
we only give the bounds when the NP operators (VA, SP, T) are present individually.

If the only NP couplings present are RV,A, we obtain

|Re(RV ) + 2.8|2
(6.3)2

+
|Im(RV )|2
(6.0)2 ∼< 1.0 ,

|Re(RA)− 4.1|2
(6.1)2

+
|Im(RA)|2
(6.0)2 ∼< 1.0 . (5.5)

If the only NP couplings present are R′
V,A, the constraints are

|Re(R′
V )|2

(3.5)2
+

|Im(R′
V )|2

(4.0)2 ∼< 1.0 ,
|Re(R′

A)|2
(3.5)2

+
|Im(R′

A)|2
(4.0)2 ∼< 1.0 . (5.6)
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For the SP operators, the present upper bound on B(B̄0
s → µ+µ−) provides the limit

|RS −R′
S|2 + |RP − R′

P |2 ∼< 0.441 . (5.7)

This constitutes a severe constraint on the NP couplings if only RS,P or R′
S,P are

present. However, if both types of operators are present, these bounds can be evaded
due to cancellations between the RS,P and R′

S,P . In that case, B(B̄0
d → Xsµ

+µ−) and
B(B̄0

d → K̄µ+µ−) can still bound these couplings. The stronger bound is obtained
from the measurement of the latter quantity, which yields

|RS|2 + |RP |2 ∼< 9 , RS ≈ R′
S , RP ≈ R′

P . (5.8)

Finally, the constraints on the NP tensor operators come entirely from B(B̄0
d →

Xsµ
+µ−). When only the T operators are present,

|CT |2 + 4|CTE|2 ∼< 1.0 . (5.9)

The constraints are not affected significantly if more than one type (VA, SP or T) of
NP operators is present simultabeously.

5.2.2 CP-violating effects

All CP-violating effects are due to the interference of (at least) two amplitudes with
a relative weak phase. In principle, there can be three types of interference: SM-SM,
SM-NP, NP-NP. In the SM, all contributions to the b→ sµ+µ− modes are proportional
to the Cabibbo-Kobayashi-Maskawa (CKM) factors V ∗

tbVts, V
∗
cbVcs, or V

∗
ubVus. The term

V ∗
cbVcs can be eliminated in terms of the other two using the unitarity of the CKM

matrix. Furthermore, although V ∗
ubVus has a large weak phase, its magnitude is greatly

suppressed relative to that of V ∗
tbVts. Thus, to a good approximation, all nonzero SM

contributions have the same weak phase, and so all CP-violating effects are predicted
to be tiny in the SM.

There are two types of CP violation. The first is direct CP-violating asymmetries.
Suppose that a particular B̄ decay has two contributing amplitudes: iM(B̄ decay) =
A1 + A2. Each amplitude has both a weak and a strong phase. The matrix element
iM for the CP-conjugate decay is the same as iM, except that the weak phases change
signs. CP violation is indicated by a nonzero value of |M|2−|M|2. It is straightforward
to show that this is proportional to sinφw sin δ, where φw and δ are, respectively, the
relative weak and strong phases between A1 and A2. Direct CP-violating asymmetries
therefore require that the interfering amplitudes have both a nonzero relative weak and
strong phase.

1(Written in July 2012) Note that, the latest LHCb data has strengthened this limit to |RS −
R′

S |2+ |RP −R′

P |2 ∼< 0.04. This will make the allowed contributions from the scalar and pseudoscalar
operators extremely small.
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The second type of CP violation is triple-product (TP) asymmetries. Suppose that
the matrix element for the B̄ decay takes the form iM(B̄ decay) = A1+iA2ǫµνρσp

µ

B̄
vν1v

ρ
2v

σ
3 ,

where the vi are spins or momenta of the final-state particles. The difference |M|2 −
|M|2 is proportional to mB̄~v1 · (~v2×~v3) sinφw cos δ. By measuring the TP ~v1 · (~v2×~v3)
in both B̄ and B decays, the TP asymmetry can be obtained. Note that the measure-
ment of a nonzero TP in the B̄ decay alone is not sufficient to establish CP violation,
i.e. it does not necessarily imply a nonzero weak phase. A fake, CP-conserving TP can
be produced if A1 and A2 have a relative strong phase. It is only by measuring the
difference of TPs in B̄ and B decays that the fake TP can be eliminated and a true,
CP-violating signal produced [242].

Let us first turn to direct CP violation, which requires both a relative weak and
strong phase between two interfering amplitudes. Now, strong phases are generated
through the rescattering of the operators in the effective Hamiltonian. The NP strong
phases involve only the (constrained) NP operators, and are therefore small [243].
Thus, direct CP asymmetries can never arise from NP-NP interference.

On the other hand, the SM strong phase is not so small. It is generated because the
Wilson coefficient Ceff

9 , which gets a contribution from a cc̄ quark loop, has an imaginary
piece. (Ceff

9 also gets a contribution from a uū quark loop. But this is proportional to
V ∗
ubVus, and hence negligible.) The quantity Ceff

9 can be written as [234]

Ceff
9 = C9(mb) + h(z, m̂c)

(
4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(z, m̂b)

(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)
(5.10)

− 1

2
h(z, 0)

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
+

4

3
C3 +

64

9
C5 +

64

27
C6 .

Here z ≡ q2/m2
b , and m̂q ≡ mq/mb for all quarks q. The function h(z, m̂) represents

the one-loop correction to the four-quark operators O1-O6 and is given by [232,234,244]

h(z, m̂) = −8

9
ln
mb

µb
− 8

9
ln m̂+

8

27
+

4

9
x (5.11)

−2

9
(2 + x)|1− x|1/2

{ (
ln
∣∣∣
√
1−x+1√
1−x−1

∣∣∣− iπ
)
, for x ≤ 1 ,

2 arctan 1√
x−1

, for x > 1 ,

where x ≡ 4m̂2/z. Thus, a nontrivial strong phase is generated when z ≥ 4m̂2. This
leads to the complex nature of Ceff

9 in the SM. For example, typical values of Ceff
9

in the low- and high-q2 regions are Ceff
9 (mb) = 4.75 + 0.09i (z = 0.1) , Ceff

9 (mb) =
4.76 + 0.88i (z = 0.7). Ceff

9 therefore has a nontrivial imaginary component, which
implies that direct CP asymmetries can arise due to SM-NP interference. Since the
SM operator (Ceff

9 ) is of VA type, the NP operator must also be VA in order to generate
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a significant direct CP asymmetry. Other NP operators can also interfere with the SM,
but the effect is suppressed by mµ/mb, and hence very small. Note that, although this
argument has used the total decay rate for illustration, we could have used (almost)
any observable which is related to the square of the matrix element. This includes the
differential branching ratio, forward-backward asymmetry, polarization asymmetries,
etc.

The TP asymmetries, on the other hand, do not need a difference in strong phases
between two amplitudes. Indeed, they are proportional to cos δ, though they do require
a weak-phase difference. This means that a TP asymmetry can be produced by either
SM-NP or NP-NP interference. Given that all SM operators are of VA type, the NP
must also be VA if SM-NP interference is the reason for the TP. On the other hand, if
NP-NP interference is involved, this can arise due to new SP and T operators (other
NP-NP interference are possible, but the effects are suppressed by mµ/mb).

In this chapter, we explore both sources of CP asymmetries, direct CP violation and
TPs. While we have checked the effects of SP and T NP operators on all the observables,
we find them to be insignificant in most places (as expected from the arguments above),
and we will mention them only during the discussion of TP asymmetries, where, in
principle, they may play a significant role.

5.3 B̄0
s → µ+µ−

We begin by considering the direct CP asymmetry in B̄0
s → µ+µ−. Helicity conserva-

tion in the decay of Bs or B̄s implies that the only final states can be µ+
Lµ

−
L or µ+

Rµ
−
R,

which are CP conjugates. The only CP-violating observables that can be constructed
are then

ARLCP (t) ≡ B(B̄0
s (t) → µ+

Rµ
−
R)−B(B0

s (t) → µ+
Lµ

−
L)

B(B̄0
s (t) → µ+

Rµ
−
R) +B(B0

s (t) → µ+
Lµ

−
L)

,

ALRCP (t) ≡ B(B̄0
s (t) → µ+

Lµ
−
L)−B(B0

s (t) → µ+
Rµ

−
R)

B(B̄0
s (t) → µ+

Lµ
−
L) +B(B0

s (t) → µ+
Rµ

−
R)

. (5.12)

The CP asymmetry in the longitudinal polarization fraction ALP may be written in
terms of these two CP asymmetries. The measurement of either of these CP asym-
metries requires the measurement of muon polarization, which will be an impossible
task for the upcoming experiments [220]. And even if this were doable, the lack of any
sources for different strong phases in the two CP-conjugate final states implies that
the direct CP asymmetry would vanish even with NP. We therefore do not study CP
violation in B̄0

s → µ+µ−.
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5.4 B̄0
d → Xsµ

+µ−

A model-independent analysis of the CP asymmetry in the differential branching ratio
(DBR) of B̄0

d → Xsµ
+µ− was previously carried out in Ref. [223]. There, the CP

asymmetry in the DBR was predicted for some specific values of the NP couplings.
However, no experimental constraints on the parameters were used. In this chapter
we study the CP asymmetry in the DBR, taking into account the constraints from the
present measurements of other related observables. Moreover, in addition to the CP
asymmetry in the DBR, we also study the CP asymmetry in the forward-backward
asymmetry.

The CP asymmetry in DBR of B̄0
d → Xsµ

+µ− is defined as

ACP(q
2) =

(dB/dz)− (dB/dz)

(dB/dz) + (dB/dz)
, (5.13)

where z ≡ q2/m2
b , and dB/dz and dB/dz are the DBRs of B̄0

d → Xsµ
+µ− and its

CP-conjugate B0
d → Xsµ

+µ−, respectively. The expression for (dB/dz) has been given
in Ref. [220].

The CP asymmetry in the forward-backward asymmetry AFB is defined as

∆AFB(q
2) ≡ AFB(q

2)− AFB(q
2) , (5.14)

where the definition of AFB is given in Ref. [220], and AFB is the analogous quantity
for the CP-conjugate decay. Note that while the relevant angle θ in B̄0

d → Xsµ
+µ− is

defined relative to the direction of µ+, for the CP-conjugate decay one should define
θ in relation to the direction of µ−, and similarly for AFB in other b → sµ+µ− decay
modes below.

Fig. 5.1 shows ACP(q
2) and ∆AFB(q

2) for B̄0
d → Xsµ

+µ− in the presence of new
VA couplings. We make the following observations:

• When only RV,A couplings are present, ACP(q
2) can be enhanced up to 6% at low

q2. On the other hand, its value at high q2 can be as high as 12%. ACP(q
2) can

have either sign at both low and high q2. At high q2, the magnitude of ACP(q
2)

is almost independent of q2.

• When only R′
V,A couplings are present, ACP(q

2) cannot be enhanced above the
SM value. This is because R′

V,A couplings do not contribute to the numerator of
ACP(q

2) in Eq. (5.13). They can only affect the DBR, which may be enhanced
by up to 50%, thus decreasing ACP(q

2).

• In the presence of RV,A couplings, ∆AFB can be enhanced up to 3% at low q2.
At high q2, the enhancement can be up to 12%. The impact of R′

V,A couplings is
negligible (< 1%).
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Figure 5.1: The left (right) panels of the figure show ACP(q
2) and ∆AFB for B̄0

d →
Xsµ

+µ− in the low-q2 (high-q2) region, in the scenario where only (RV , RA) couplings
are present. The green line corresponds to the SM prediction. The other lines show
predictions for some representative values of the NP parameters (RV , RA). For exam-
ple, the blue curve in the low-q2 and high-q2 regions for the ACP plot corresponds to
(5.68ei2.13, 2.64e−i0.04) and (4.29ei1.68, 4.15e−i0.26), respectively, whereas the blue curve
in the low-q2 and high-q2 regions for the ∆AFB plot corresponds to (1.80ei2.91, 5.45ei0.90)
and (1.69e−i3.08, 6.83e−i0.91), respectively.

5.5 B̄0
s → µ+µ−γ

Although B̄0
s → µ+µ−γ requires the emission of an additional photon as compared

to B̄0
s → µ+µ−, which suppresses the branching ratio (BR) by a factor of αem, the

photon emission also frees it from helicity suppression, making its BR much larger than
B̄0
s → µ+µ−. The SM prediction for the BR in the range q2 ≤ 9.5 GeV2 and q2 ≥ 15.9

GeV2 is ≈ 18.9 × 10−9 [245]. As argued in Ref. [220], if we choose 2 GeV2 ≤ q2 ≤ 6
GeV2 and 14.4 GeV2 ≤ q2 ≤ 25 GeV2 as the low-q2 and high-q2 regions, respectively,
then the dominating contribution comes from the diagrams in which the final-state
photon is emitted either from the b or the s quark, and the B̄0

s → µ+µ−γ decay is
governed by the same b→ sµ+µ− effective Hamiltonian as the other decays considered
in this chapter.
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Figure 5.2: The left (right) panels of the figure show ACP(q
2) and ∆AFB for B̄0

s →
µ+µ−γ in the low-q2 (high-q2) region, in the scenario where only (RV , RA) couplings
are present. For example, the blue curve in the low-q2 and high-q2 regions for the ACP

plot corresponds to (2.95e−i0.38, 4.56e−i0.04), whereas the blue curve in the low-q2 and
high-q2 regions for the ∆AFB plot corresponds to (1.60e−i0.08, 4.14e−i0.12).

The CP asymmetry in B̄0
s → µ+µ−γ is given in Eq. (5.13), where dB/dxγ and

dB/dxγ are the DBRs of B̄0
s → µ+µ−γ and its CP-conjugateB0

s → µ+µ−γ, respectively.
The expression for (dB/dxγ) has been given in Ref. [220]. The CP asymmetry in AFB
is given in Eq. (5.14), where the definition of AFB is given in Ref. [220], and AFB is
the analogous quantity for the CP-conjugate decay.

The CP asymmetry in the DBR of Bs → µµγ was studied in Refs. [226,227], albeit
only for the new-physics cases where C7 = −CSM

7 , C9 = −CSM
9 and C10 = −CSM

10 , and
naturally only for VA operators. Here, we include a complete discussion of the possible
enhancement of the asymmetry for all allowed values of C9 and C10, and in the presence
of SP and T operators. In addition, we study the CP-violating asymmetry in AFB,
which also turns out to give possibly significant NP signals.

Fig. 5.2 shows ACP(q
2) and ∆AFB(q

2) for B̄0
s → µ+µ−γ in the presence of new VA

couplings. We make the following observations:

• When only RV,A couplings are present, at low q2 the magnitude of ACP(q
2) can be

enhanced up to 30% at certain q2 values. At high q2, the magnitude of ACP(q
2)
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is almost independent of q2, and can be enhanced to about 13%. The asymmetry
can have either sign at both low and high q2.

• When only R′
V,A couplings are present, ACP(q

2) cannot be enhanced in magnitude
to more than 1.5% at low q2, or more than 3% at high q2. The detection of NP
of this kind is therefore expected to be very difficult in this channel. When both
primed and unprimed VA couplings are present, the results are the same as those
obtained with only RV,A couplings.

• The behaviour of ∆AFB(q
2) is similar to that of ACP (q

2). This quantity can be
enhanced up to 40% for some values in the low-q2 region. It can be as high as
18% throughout the high-q2 region. The impact of R′

V,A couplings is negligible
(< 1%).

The new VA operators can therefore enhance the asymmetries ACP(q
2) and ∆AFB(q

2)
in B̄0

s → µ+µ−γ to ∼ 10% throughout the q2 region. For a branching ratio of
O(2 × 10−8), a measurement of a CP asymmetry of 10% at the 3σ level would re-
quire ∼ 1010 B mesons. It should therefore be possible to measure a CP asymmetry at
the level of a few per cent at future colliders such as the Super-B factories [246–248].

5.6 B̄0
d → K̄µ+µ−

The CP asymmetry in B̄0
d → K̄µ+µ− is defined in a manner similar to that in Eq. (5.13),

where dB/dz and dB/dz are the DBRs of B̄0
d → K̄µ+µ− and its CP-conjugate B0

d →
Kµ+µ−, respectively. The expression for (dB/dz) has been given in Ref. [220]. A
model-independent analysis of the CP asymmetry in the DBR, with specific chosen
values of VA operators, was carried out in Ref. [228]. However, the constraints on the
NP operators, coming from the measured branching ratio of B̄0

d → Xsµ
+µ−, were not

taken into account. Here, in addition to taking these constraints into account, we also
consider new SP and T operators, and extend the analysis to study the CP asymmetry
in AFB.

The CP asymmetry in AFB is given in Eq. (5.14), where the definition of AFB
is as given in Ref. [220], while AFB is the analogous quantity for the CP-conjugate
decay. Now, the decay mode B̄0

d → K̄µ+µ− is unique because the forward-backward
asymmetry of muons is predicted to vanish exactly in the SM. This is due to the fact
that the B̄0

d → K̄ hadronic matrix element does not have any axial-vector contribution.
AFB can therefore have a nonzero value only if it receives a contribution from new
physics. However, even in the presence of NP, the expressions in Ref. [220] indicate
that the only term contributing to ∆AFB(q

2) is that with VA+SP NP operators, and
this is suppressed by the factor mµ/mb. As a result, one does not expect a significant
enhancement in ∆AFB from any Lorentz structure of NP.
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Figure 5.3: The left (right) panel of the figure shows ACP(q
2) for B̄0

d → K̄µ+µ− in
the low-q2 (high-q2) region, in the scenario where only (RV , RA) terms are present.
The green line corresponds to the SM prediction. The other lines show predictions
for some representative values of the NP parameters (RV , RA). For example, the
blue curve in the low-q2 and high-q2 regions corresponds to (5.97ei2.23, 3.08e−i0.05) and
(6.47ei2.30, 3.11ei0.48), respectively.

Fig. 5.3 shows ACP(q
2) for B̄0

d → K̄µ+µ− in the presence of new VA couplings. We
make the following observations:

• When only RV,A couplings are present, ACP(q
2) can be enhanced up to 7% at low

q2. On the other hand, its value at high q2 can be as high as 12%. ACP(q
2) can

have either sign at both low and high q2, and its magnitude is almost independent
of q2 in these regions.

• When only R′
V,A couplings are present, ACP(q

2) can be enhanced up to 4% at low
q2. On the other hand, its value at high q2 can be as high as 12%. ACP(q

2) can
have either sign at both low and high q2, and its magnitude is almost independent
of q2 in these regions.

• When both primed and unprimed VA couplings are present, the results are the
same as those obtained with only RV,A couplings.

For a B̄0
d → K̄µ+µ− branching ratio of O(0.5 × 10−6), a measurement of a CP

asymmetry of 1% at the 3σ level would require ∼ 1011 B mesons. It should therefore
be possible to measure a CP asymmetry at the level of a few per cent at future colliders
such as the Super-B factories [246–248].

5.7 B̄0
d → K̄∗µ+µ−

The complete three-angle distribution for the decay B̄0 → K̄∗0(→ K−π+)µ+µ− in the
presence of NP can be expressed in terms of q2, two polar angles θµ and θK , and the
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azimuthal angle φ between the planes of the dimuon and Kπ decays:

d4ΓB̄

dq2d cos θµd cos θKdφ
= NF ×

{
cos2 θK

(
I01 + I02 cos 2θµ + I03 cos θµ

)
+ sin2 θK

(
IT1 + IT2 cos 2θµ + IT3 cos θµ

+IT4 sin2 θµ cos 2φ+ IT5 sin2 θµ sin 2φ
)
+ sin 2θK

(
ILT1 sin 2θµ cosφ

+ILT2 sin 2θµ sinφ+ ILT3 sin θµ cosφ+ ILT4 sin θµ sinφ
)}

. (5.15)

The expressions for the normalization NF and the I’s are given in Ref. [220]. The I’s
are functions of the couplings, kinematic variables and form factors. The definitions
of the angles in B̄0

d → K̄∗µ+µ− involve the directions of the µ+ and K
∗
. For the

CP-conjugate decay B0 → K∗0(→ K+π−)µ+µ−, one defines these angles relative to
the directions of the µ− and K∗. The Ī’s can be obtained from the I’s by replacing
θµ → θµ − π and φ→ −φ, and changing the signs of the weak phases.

The CP asymmetries in the branching ratio and forward-backward asymmetry were
analyzed in Ref. [232] with the measurement of B → Xsγ and the limit on the B̄0

d →
K̄∗µ+µ− branching ratio available then. An analysis of CP asymmetries in B̄0

d →
K̄∗µ+µ− in the low-q2 region was also performed earlier in Ref. [234]. We extend this
analysis by including T operators, and present our results for all asymmetries, in both
the low-q2 and high-q2 regions.

A detailed discussion of the CP-conserving observables in this decay distribution
can be found in Ref. [220]. In this section we consider the direct CP asymmetries
in the differential branching ratio (DBR), the forward-backward asymmetry AFB, the

longitudinal polarization fraction fL, and the angular asymmetries A
(2)
T and ALT . We

also examine the triple-product CP asymmetries A
(im)
T and A

(im)
LT , which were not con-

sidered in Ref. [220] since they identically vanish in the CP-conserving limit (no strong
or weak phases), regardless of the presence of NP.

5.7.1 Direct CP asymmetries in the DBR and AFB

The direct CP asymmetry in the differential branching ratio is defined as

ACP (q
2) =

(dΓB̄/dq2)− (dΓB/dq2)

(dΓB̄/dq2) + (dΓB/dq2)
, (5.16)

where

dΓB̄

dq2
=

8πNF

3
(AB̄L + AB̄T ) . (5.17)
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Here the longitudinal and transverse polarization amplitudes AB̄L and AB̄T are obtained
from Eq. (5.15):

AB̄L =
(
I01 −

1

3
I02

)
, AB̄T = 2

(
IT1 − 1

3
IT2

)
. (5.18)

The expressions for ABL and ABT of the CP-conjugate mode can be obtained by replacing
the I’s with Ī’s.

The forward-backward asymmetry in B̄0
d → K̄∗µ+µ− has recently been measured,

and shows features that may indicate a deviation from the SM. This measured quantity
is actually the CP-averaged forward-backward asymmetry AFB. However, the differ-
ence between the measurement of this quantity in B̄0

d → K̄∗µ+µ− and its CP-conjugate
mode may also reveal the presence of NP. This CP asymmetry is quantified as

∆AFB(q
2) = AB̄FB(q

2) + ABFB(q
2) , (5.19)

where

A
B̄(B)
FB (q2) =

∫ 1

0
d cos θµ

d2ΓB̄(B)

dq2d cos θµ
−
∫ 0

−1
d cos θµ

d2ΓB̄(B)

dq2d cos θµ∫ 1

0
d cos θµ

d2ΓB̄(B)

dq2d cos θµ
+
∫ 0

−1
d cos θµ

d2ΓB̄(B)

dq2d cos θµ

. (5.20)

It can be obtained by integrating over the two angles θK and φ in Eq. (5.15).
Fig. 5.4 shows ACP (q

2) and ∆AFB(q
2) for B̄0

d → K̄∗µ+µ− in the presence of new
VA couplings. We make the following observations:

• If only RV,A couplings are present, ACP (q
2) can be enhanced up to 5% at low

q2, and up to 14 % at high q2. ∆AFB(q
2) can be enhanced up to 3% at low q2,

and up to 11 % at high q2. Both ACP (q
2), and ∆AFB(q

2) can have either sign at
both low and high q2.

• If only R′
V,A couplings are present, ACP (q

2) can be enhanced up to 3% at low q2,
and up to 7% at high q2. ∆AFB(q

2) can be enhanced up to 1% at low q2, and
up to 4 % at high q2. Both ACP (q

2), and ∆AFB(q
2) can have either sign at both

low and high q2.

• When both primed and unprimed VA couplings are present, ACP (q
2) can be

enhanced up to 9% at low q2, and up to 14 % at high q2. ∆AFB(q
2) can be

enhanced up to 6% at low q2, and up to 19 % at high q2. Both ACP (q
2), and

∆AFB(q
2) can have either sign at both low and high q2 (see Fig. 5.4).

These observations are consistent with the rough expectations in Ref. [232] about
the effect of VA operators.
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Figure 5.4: The left (right) panels of the figure show ACP (q
2) and ∆AFB(q

2) for
B̄0
d → K̄∗µ+µ− in the low-q2 (high-q2) region, in the scenario where (RV , RA, R

′
V , R

′
A)

terms are all present. The green line corresponds to the SM prediction. The other
lines show predictions for some representative values of the NP parameters. For
example, the blue curve for ACP (q

2) in the low-q2 and high-q2 regions corresponds to
(2.77ei1.83, 2.08ei0.5, 3.8ei0.08, 1.23e−i2.74) and (5.88ei2.29, 1.66ei0.82, 3.49ei0.36, 1.02ei0.98),
respectively. The blue curve for ∆AFB(q

2) in the low-q2 and high-
q2 regions corresponds to (1.56e−i2.59, 1.80e−i0.35, 4.23ei0.67, 1.29ei1.43) and
(3.21ei2.61, 1.38ei2.26, 5.55ei0.69, 3.03ei1.92), respectively.

5.7.2 Direct CP asymmetry in the polarization fraction fL

The CP asymmetry in the longitudinal polarization fraction fL is defined as

∆fL = f B̄L − fBL , (5.21)

where

f
B̄(B)
L =

A
B̄(B)
L

A
B̄(B)
L + A

B̄(B)
T

. (5.22)
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Fig. 5.5 shows ∆fL(q
2) for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings.
We make the following observations:

• If only RV,A couplings are present, ∆fL(q
2) can be enhanced up to 2% at very

low q2. On the other hand, ∆fL(q
2) is almost the same as the SM at high q2. It

can have either sign at both low and high q2.

• If only R′
V,A couplings are present, ∆fL(q

2) can be enhanced up to 2% at both
low and high q2. It can have either sign at both low and high q2.

• When both primed and unprimed VA couplings are present, ∆fL(q
2) can be

enhanced up to 9% at low q2, and up to 6% at high q2. It can have either sign
at both low and high q2 (see Fig. 5.5).
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Figure 5.5: The left (right) panel of the figure shows ∆fL(q
2) for B̄0

d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where (RV , RA, R
′
V , R

′
A) terms are all

present. For example, the blue curve in the low-q2 and high-q2 regions corresponds to
(2.78ei2.98, 2.19e−i0.77, 6.91e−i0.29, 3.34e−i0.56).

5.7.3 Direct CP asymmetries in the angular asymmetries A
(2)
T

and ALT

The transverse asymmetry A
(2)B̄(B)
T is defined [249] through the double differential

decay rate as

d2ΓB̄(B)

dq2dφ
=

1

2π

dΓB̄(B)

dq2

[
1 + f

B̄(B)
T

(
A

(2)B̄(B)
T cos 2φ+ A

(im)B̄(B)
T sin 2φ

) ]
. (5.23)
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It can be obtained by integrating Eq. (5.15) over the two polar angles θµ and θK . Here

A
(im)B̄(B)
T is a triple product, and is discussed separately below. In terms of the coupling

constants and matrix elements defined in Ref. [220], A
(2)B̄(B)
T can be expressed as

A
(2)B̄
T =

4IT4
3AB̄T

, A
(2)B
T =

4ĪT4
3ABT

. (5.24)

While A
(2)B̄
T ( A

(2)B
T ) is finite even in the CP-conserving limit (and was discussed in

Ref. [220]), a CP asymmetry may be defined through the difference

∆A
(2)
T ≡ A

(2)B̄
T − A

(2)B
T . (5.25)

Fig. 5.6 shows ∆A
(2)
T for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings. We
make the following observations:

• If only RV,A couplings are present, ∆A
(2)
T cannot be enhanced more than 1% at

both low and high q2. It can have either sign at both low and high q2.

• If only R′
V,A couplings are present, ∆A

(2)
T can be enhanced up to 4% at low q2,

and up to 6% high q2. It can have either sign at both low and high q2.

• When both primed and unprimed VA couplings are present, ∆A
(2)
T can be en-

hanced up to 11% at low q2, and up to 12% at high q2. It can have either sign
at both low and high q2 (see Fig. 5.6).

The longitudinal-transverse asymmetry A
B̄(B)
LT is defined through

d2Γ
B̄(B)
LT

dq2dφ
=

dΓB̄(B)

dq2

(
A

(re)B̄(B)
LT cosφ+ A

(im)B̄(B)
LT sinφ

)
, (5.26)

where

d2Γ
B̄(B)
LT

dq2dφ
=

∫ 1

0

d cos θK
d3ΓB̄(B)

dq2d cos θKdφ
−
∫ 0

−1

d cos θK
d3ΓB̄(B)

dq2d cos θKdφ
. (5.27)

Here A
(im)B̄(B)
LT is a triple product, and is discussed separately below. In terms of the

coupling constants and matrix elements defined in Ref. [220], A
(re)B̄(B)
LT can be expressed

as

A
(re)B̄
LT =

ILT3

4(AB̄L + AB̄T )
, A

(re)B
LT = − ĪLT3

4(ABL + ABT )
. (5.28)
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Figure 5.6: The left (right) panel of the figure shows ∆A
(2)
T (q2) for B̄0

d → K̄∗µ+µ− in the
low-q2 (high-q2) region, in the scenario where (RV , RA, R

′
V , R

′
A) terms are all present.

The green line corresponds to the SM prediction. The other lines show predictions
for some representative values of the NP parameters. For example, the blue curve in
the low-q2 and high-q2 regions corresponds to (0.11ei2.18, 2.66e−i1.31, 4.3ei0.03, 0.23e−i2.27)
and (2.32ei2.51, 4.89ei1.27, 3.12ei0.42, 0.14e−i1.55), respectively.

Note that A
(re)B
LT = −A(re)B̄

LT in the CP-conserving limit. Thus, a CP asymmetry may
be defined through the sum

∆ALT (q
2) ≡ A

(re)B̄
LT (q2) + A

(re)B
LT (q2) . (5.29)

We now assume the presence of new VA couplings. However, we find that these
couplings cannot enhance ∆ALT (q

2) to more than 3% at both low and high q2.
Note that ∆ALT (q

2) is related to the observable AD5 in Ref. [233]: ∆ALT (q
2) ≈

AD5 /4. Our limit of 3% on the maximum value of ∆ALT (q
2) is then consistent with

the limit of 0.07 on the average value 〈AD5 〉 over the low-q2 region, as calculated in
Ref. [233].

5.7.4 CP-violating triple-product asymmetries

In this subsection, we consider the triple products (TPs) in the decays B̄0 → K̄∗0(→
K−π+)µ+µ− and B0 → K∗0(→ K+π−)µ+µ−. For the decaying B̄ meson, the TP is
proportional to (n̂K × n̂µ) · n̂z in its rest frame, where the unit vectors are given in
terms of the momenta of the final-state particles as

n̂K =
p̂K− × p̂π+

|p̂K− × p̂π+| , n̂z =
p̂K− + p̂π+

|p̂K− + p̂π+ | , n̂µ =
p̂µ− × p̂µ+

|p̂µ− × p̂µ+ |
. (5.30)

In terms of the azimuthal angle φ, one gets

cosφ = n̂K · n̂µ , sin φ = (n̂K × n̂µ) · n̂z , (5.31)
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and hence the quantities that are coefficients of sinφ (or of sin 2φ = 2 sinφ cosφ) are
the TPs.

As noted above, while the angular distribution for the B̄ decay involves φ, for B it
involves −φ. Thus, the CP-violating triple-product asymmetry is proportional to the
sum of B̄ and B TPs.

The first TP is A
(im)B̄(B)
T , introduced above in Eq. (5.23). In terms of the coupling

constants and matrix elements defined in Ref. [220], A
(im)B̄(B)
T can be written as

A
(im)B̄
T =

4IT5
3AB̄T

, A
(im)B
T = − 4ĪT5

3ABT
. (5.32)

We observe that A
(im)
T depends only on the VA couplings. The CP-violating triple-

product asymmetry is

A
(im)
T =

1

2
(A

(im)B̄
T + A

(im)B
T ) . (5.33)

Fig. 5.7 shows A
(im)
T (q2) for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings.
We make the following observations:

• If only RV,A couplings are present, A
(im)
T (q2) can be enhanced up to 5% at low q2

and can have either sign. On the other hand, A
(im)
T (q2) is almost same as the SM

prediction (≃ 0) at high q2.

• If only R′
V,A couplings are present, A

(im)
T (q2) can be enhanced up to 49% at low

q2, and up to 46% at high q2. It can have either sign at both low and high q2.

• When both primed and unprimed VA couplings are present, the results for
A

(im)
T (q2) are almost the same as those obtained with only R′

V,A couplings (see
Fig. 5.7).

The second TP is A
(im)B̄(B)
LT , introduced above in Eq. (5.26). In terms of the coupling

constants and matrix elements defined in Ref. [220], A
(im)B̄(B)
LT can be written as

A
(im)B̄
LT =

ILT4

4(AB̄L + AB̄T )
, A

(im)B
LT =

ĪLT4

4(ABL + ABT )
. (5.34)

We observe that ALT depends on the VA couplings, as well as on V-S and SP-T
interference terms. The CP-violating triple-product asymmetry is

A
(im)
LT =

1

2
(A

(im)B̄
LT − A

(im)B
LT ) . (5.35)

Fig. 5.8 shows A
(im)
LT (q2) for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings.
We make the following observations:
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Figure 5.7: The left (right) panel of the figure shows A
(im)
T (q2) for B̄0

d → K̄∗µ+µ− in the
low-q2 (high-q2) region, in the scenario where (RV , RA, R

′
V , R

′
A) terms are all present.

The green line corresponds to the SM prediction. The other lines show predictions for
some representative values of the NP parameters. For example, the blue curve in the
low-q2 and high-q2 regions corresponds to (1.33e−i2.96, 0.78ei2.47, 0.83e−i0.27, 3.15ei1.75)
and (2.15e−i2.77, 0.7e−i2.43, 8.20e−i0.16, 4.8e−i1.62), respectively.

• If only RV,A couplings are present, A
(im)
LT (q2) can be enhanced up to 6% at very

low q2, and is almost same as the SM prediction (≈ 0) at high q2. It can have
either sign at both low and high q2.

• If only R′
V,A couplings are present, A

(im)
LT (q2) can be enhanced up to 8% at low

q2 and is almost same as the SM prediction (≈ 0) at high q2. It can have either
sign at both low and high q2.

• When both primed and unprimed VA couplings are present, A
(im)
LT (q2) can be

enhanced up to 10% at low q2 and up to 0.5% at high q2. It can have either sign
at both low and high q2 (see Fig. 5.8).

Note that A
(im)
LT (q2) is related to the observable AD7 in Ref. [233]: A

(im)
LT (q2) ≈ AD7 /8.

Our limit of 10% on the maximum value of A
(im)
LT (q2) is then consistent with the limit

of 0.76 on the average value 〈AD7 〉 over the low-q2 region, as calculated in Ref. [233].
However, in addition we present the full q2-dependence of this quantity.

In principle, A
(im)B̄(B)
LT can be generated due to NP SP-T interference. However, we

find that the effect is tiny: A
(im)
LT (q2) can be enhanced up to 0.4% at low q2 and can

have either sign; A
(im)
LT (q2) is same as the SM (≃ 0) at high q2.
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Figure 5.8: The figure shows A
(im)
LT (q2) for B̄0

d → K̄∗µ+µ− in the low-q2 region, in
the scenario where (RV , RA, R

′
V , R

′
A) terms are all present. The green line corre-

sponds to the SM prediction. The other lines show predictions for some represen-
tative values of the NP parameters. For example, the blue curve corresponds to
(1.68ei1.92, 2.27ei0.53, 4.22ei0.28, 0.14e−i1.91).

5.8 Discussion and summary

Even after the successful start of the LHC that will search for new physics (NP) at
the TeV scale and beyond, B decays still remain one of the best avenues of detecting
indirect NP signals. The copious amount of data on B decays, expected from future
experiments like the LHC and super-B factories, will allow us to explore in detail
many decay modes that are currently considered to be rare. The combined analysis of
many such decay modes will allow us to look for NP in a model-independent manner.
We consider all possible Lorentz structures of new physics (NP) in the b → sµ+µ−

transition, and analyze their effects on the CP-violating observables in (i) B̄0
s → µ+µ−,

(ii) B̄0
d → Xsµ

+µ−, (iii) B̄0
s → µ+µ−γ, (iv) B̄0

d → K̄µ+µ−, (v) B̄0
d → K̄∗µ+µ−, and

their CP-conjugate modes. These are the same modes we explored in the previous
chapter, where we considered only CP-conserving quantities. We find that for B̄0

s →
µ+µ−, the only CP-violating quantities that can be constructed even in principle require
the measurement of muon polarization, a task not possible in foreseeable detectors.
Therefore, we do not dwell on this mode further. For the rest of the modes, we focus
on asymmetries in the branching ratios and forward-backward asymmetries. In B̄0

d →
K̄∗µ+µ−, we also explore the direct CP asymmetries in the longitudinal polarization
fraction fL and the angular asymmetries A

(2)
T and ALT , as well as the triple-product

CP asymmetries A
(im)
T and A

(im)
LT . We find that, in almost all cases, the CP-violating

observables are sensitive only to new physics which involves VA operators. The VA
new physics may therefore be unambiguously identified by a combined analysis of
future measurements of these CP-violating observables. Our results are summarized in
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Observable SM Only new VA Only new SP Only new T

B̄0
d → Xsµ

+µ−

ACP • 10−3 → 10−4

(low→high q2)
• (6 → 12)%
(low→high q2)

• Marginal S • Marginal S/E

∆AFB 10−4 → 10−5

(low→high q2)
• (3 → 12)%
(low→high q2)

• < 1% No effect

B̄0
s → µ+µ−γ

ACP • 10−3 → 10−4

(low→high q2)
• (30 → 13)%
(low→high q2)

No effect • < 1%

∆AFB 10−4 → 10−5

(low→high q2)
• (40 → 18)%
(low→high q2)

No effect • < 1%

B̄0
d → K̄µ+µ−

ACP • 10−3 → 10−4

(low→high q2)
• (7 → 12)%
(low→high q2)

• Marginal S • Marginal S/E

∆AFB Zero No effect • < 1% No effect

B̄0
d → K̄∗µ+µ−

ACP • 10−3 → 10−4

(low→high q2)
• (9 → 14)%
(low→high q2)

No effect • < 1%

∆AFB • 10−4 → 10−6

(low→high q2)
• (6 → 19)%
(low→high q2)

No effect • < 1%

∆fL • 10−4 → 10−7

(low→high q2)
• (9 → 16)%
(low→high q2)

No effect • < 1%

∆A
(2)
T Zero • ∼ 12% No effect No effect

∆ALT Zero • < 3% No effect No effect

A
(im)
T Zero • ∼ 50% No effect No effect

A
(im)
LT Zero • ∼ 10% No effect No effect

Table 5.1: The effect of NP couplings on observables. E: enhancement, S: suppression.
The numbers given are optimistic estimates.

Table 5.1. We determine the constraints on the coupling constants in the effective NP
operators by using the currently available data. On the basis of these limits and general
arguments, we expect that the CP-violating quantities in most of the modes can only
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be sensitive to the vector-axial vector (VA) couplings, while the scalar-pseudoscalar
(SP) and the tensor (T) NP operators can only contribute, if at all, to certain TP
asymmetries. Our later detailed exploration of the allowed parameter space for all the
NP couplings vindicates this argument. The effects of SP and T NP operators are
therefore discussed only briefly in this chapter.

Bibliography:

[209] A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh and D. London,
“New Physics in b→ sµ+µ−: CP-Violating Observables,” JHEP 1111, 122 (2011)
[arXiv:1103.5344 [hep-ph]].

[210] B. Aubert et al. [BABAR Collaboration], “Rates, polarizations, and asymmetries
in charmless vector-vector B meson decays,” Phys. Rev. Lett. 91, 171802 (2003)
[arXiv:hep-ex/0307026].

[211] K. F. Chen et al. [Belle Collaboration], “Measurement of branching fractions and
polarization in B → φK(∗) decays,” Phys. Rev. Lett. 91, 201801 (2003) [arXiv:hep-
ex/0307014].

[212] J. T. Wei et al. [BELLE Collaboration], “Measurement of the Differential Branch-
ing Fraction and Forward-Backword Asymmetry for B B → K∗ l+ l−,” Phys. Rev.
Lett. 103, 171801 (2009) [arXiv/0904.0770 [hep-ex]].

[213] B. Aubert et al. [BABAR Collaboration], “Angular Distributions in the Decays
B → K∗ℓ+ℓ−,” Phys. Rev. D 79, 031102 (2009) [arXiv/0804.4412 [hep-ex]].

[214] A. K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima and
A. Szynkman, “New-physics contributions to the forward-backward asymmetry in
B → K∗µ+µ−,” JHEP 1002, 053 (2010) [arXiv:0912.1382 [hep-ph]].

[215] H. Y. Cheng, C. K. Chua and A. Soni, “CP-violating asymmetries in B0 decays
to K+K−K0(S)(L) and K0(S)K0(S)K0(S)(L),” Phys. Rev. D 72, 094003 (2005)
[hep-ph/0506268].

[216] G. Buchalla, G. Hiller, Y. Nir and G. Raz, “The pattern of CP asymmetries in
b→ s transitions,” JHEP 0509, 074 (2005) [hep-ph/0503151].

[217] E. Lunghi and A. Soni, “Hints for the scale of new CP-violating physics from
B-CP anomalies,” JHEP 0908, 051 (2009) [arXiv/0903.5059 [hep-ph]].

149



[218] T. Aaltonen et al. (CDF Collaboration), V. M. Abazov et al. (DO Collaboration),

“Combination of DO and CDF Results on ∆Γs and the CP-Violating Phase β
J/ψφ
s ,”

CDF Note No. CDF/PHYS/BOTTOM/CDFR/9787, 2009; D0 Note No. 5928-
CONF, 2009.

[219] V. M. Abazov et al. [The D0 Collaboration], “Evidence for an anomalous like-sign
dimuon charge asymmetry,” arXiv:1005.2757 [hep-ex].

[220] A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London and
S. U. Sankar, “New Physics in b → sµ+µ−: CP-Conserving Observables”,
arXiv:1008.2367 [hep-ph].

[221] D. S. Du and M. Z. Yang, “CP violation for B → Xs ℓ
+ℓ− including long distance

effects,” Phys. Rev. D 54, 882 (1996) [arXiv:hep-ph/9510267].

[222] T. M. Aliev, D. A. Demir, E. Iltan and N. K. Pak, “The CP Asymmetry in
b→ sl+l− Decay,” Phys. Rev. D 54, 851 (1996) [arXiv:hep-ph/9511352].

[223] S. Fukae, “CP asymmetry of B → Xsl
+l− in low invariant mass region,” Phys.

Rev. D 64, 054010 (2001) [arXiv:hep-ph/0102041].

[224] A. K. Alok, A. Dighe and S. Ray, “CP asymmetry in the decays B →
(Xs, Xd)µ

+µ− with four generations,” Phys. Rev. D 79, 034017 (2009)
[arXiv:0811.1186 [hep-ph]].

[225] A. Soni, A. K. Alok, A. Giri, R. Mohanta and S. Nandi, “SM with four genera-
tions: Selected implications for rare B and K decays,” Phys. Rev. D 82, 033009
(2010) [arXiv:1002.0595 [hep-ph]].

[226] I. Balakireva, D. Melikhov, N. Nikitin and D. Tlisov, “Forward-backward and
CP-violating asymmetries in rare Bd,s → (V, γ)l+l− decays,” Phys. Rev. D 81,
054024 (2010) [arXiv:0911.0605 [hep-ph]].

[227] I. Balakireva, N. Nikitin and D. Tlisov, “Asymmetries in Rare Radiative Leptonic
and Semileptonic Decays of B-Mesons,” Yad. Fiz. 73, 1762 (2010) [Phys. Atom.
Nucl. 73, 1713 (2010)].

[228] T. M. Aliev, S. R. Choudhury, A. S. Cornell and N. Gaur, “CP violation in the
B → Kl+l− decay,” Eur. Phys. J. C 49, 657 (2007) [arXiv:hep-ph/0506188].

[229] F. Kruger, L. M. Sehgal, N. Sinha and R. Sinha, “Angular distribution and CP
asymmetries in the decays B̄ → K−π+e−e+ and B̄ → π−π+e−e+,” Phys. Rev. D
61, 114028 (2000) [Erratum-ibid. D 63, 019901 (2001)] [arXiv:hep-ph/9907386].

150



[230] T. M. Aliev, D. A. Demir and M. Savci, “Probing the sources of CP violation via
B → K∗ℓ+ℓ− decay,” Phys. Rev. D 62, 074016 (2000) [arXiv:hep-ph/9912525].

[231] G. Buchalla, G. Hiller and G. Isidori, “Phenomenology of nonstandard Z cou-
plings in exclusive semileptonic b → s transitions,” Phys. Rev. D 63, 014015
(2000) [arXiv:hep-ph/0006136].

[232] F. Kruger and E. Lunghi, “Looking for novel CP violating effects in B̄ → K∗ℓ+

lepton-”, Phys. Rev. D 63, 014013 (2001) [hep-ph/0008210];

[233] C. Bobeth, G. Hiller and G. Piranishvili, “CP Asymmetries in bar B → K̄∗(→
K̄π)ℓ̄ℓ and Untagged B̄s, Bs → φ(→ K+K−)ℓ̄ℓ Decays at NLO,” JHEP 0807,
106 (2008) [arXiv:0805.2525 [hep-ph]].

[234] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick,
“Symmetries and Asymmetries of B → K∗µ+µ− Decays in the Standard Model
and Beyond,” JHEP 0901, 019 (2009) [arXiv:0811.1214 [hep-ph]].

[235] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, “New physics reach of
CP violating observables in the decay B → K∗l+l−,” PoS E PS-HEP2009, 184
(2009) [arXiv:0912.1349 [hep-ph]].

[236] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, “New physics reach
of the decay mode B̄ → K̄∗0ℓ+ℓ−,” JHEP 1010, 056 (2010) [arXiv:1005.0571
[hep-ph]].

[237] C. Bobeth, G. Hiller, D. van Dyk, JHEP 1107, 067 (2011). [arXiv:1105.0376
[hep-ph]].

[238] C. Bobeth, M. Misiak and J. Urban, “Photonic penguins at two loops and
mt-dependence of BR(B → Xsl

+l−),” Nucl. Phys. B 574, 291 (2000) [hep-
ph/9910220].

[239] C. Amsler et al. [Particle Data Group], “Review of particle physics,” Phys. Lett.
B 667, 1 (2008).

[240] E. Barberio et al. [Heavy Flavor Averaging Group], “Averages of b−hadron and
c−hadron Properties at the End of 2007,” arXiv:0808.1297 [hep-ex], and online
update at http://www.slac.stanford.edu/xorg/hfag

[241] T. Huber, T. Hurth and E. Lunghi, “Logarithmically Enhanced Corrections to
the Decay Rate and Forward Backward Asymmetry in B̄ → Xsℓ

+ℓ−,” Nucl. Phys.
B 802, 40 (2008) [arXiv:0712.3009 [hep-ph]].

151



[242] See, for example, A. Datta and D. London, “Triple-product correlations in B →
V1V2 decays and new physics,” Int. J. Mod. Phys. A 19, 2505 (2004) [arXiv:hep-
ph/0303159].

[243] A. Datta and D. London, “Measuring new-physics parameters in B penguin de-
cays,” Phys. Lett. B 595, 453 (2004) [arXiv:hep-ph/0404130].

[244] A. J. Buras and M. Munz, “Effective Hamiltonian for B → Xsl
+l− beyond leading

logarithms in the NDR and HV schemes”, Phys. Rev. D 52, 186 (1995) [arXiv:hep-
ph/9501281].

[245] D. Melikhov and N. Nikitin, “Rare radiative leptonic decays Bd,s → l+l−γ,”
Phys. Rev. D 70, 114028 (2004) [arXiv:hep-ph/0410146].

[246] T. E. Browder, T. Gershon, D. Pirjol, A. Soni and J. Zupan, “New Physics at a
Super Flavor Factory”, arXiv:0802.3201 [hep-ph].

[247] M. Bona et al., “SuperB: A High-Luminosity Asymmetric e+e− Super Flavor
Factory. Conceptual Design Report”, arXiv:0709.0451 [hep-ex].

[248] B. O’Leary et al. [SuperB Collaboration], “SuperB Progress Reports – Physics,”
arXiv:1008.1541 [hep-ex].

[249] F. Kruger and J. Matias, “Probing new physics via the transverse amplitudes
of B0 → K∗

0 (→ K−π+)l+l− at large recoil,” Phys. Rev. D 71, 094009 (2005)
[arXiv:hep-ph/0502060].

152



Chapter 6

The B+→τ+ντ anomaly and constraints
on Supersymmetric Models

6.1 Introduction

Now that the CERN Large Hadron Collider (LHC) has commenced its long-awaited
run and the first physics results have been analyzed and made public [251,252], there is
an atmosphere of palpable suspense in the high energy physics community as to what
physics results will come out as more and more data are collected and studied, and
most importantly, as to whether these results will indicate new physics (NP) beyond
the Standard Model (SM). The experimental programme is more or less clear: more
statistics will be accumulated, and the results will be compared with the predictions
of the SM. Deviations from the latter would imply some sort of NP, and one can refer
to existing theoretical studies to indicate what kind of NP is indicated by the observed
deviation. It is true that theorists have not succeeded in providing an unequivocal
prediction in this regard. This is because there exist several rival possibilities for NP,
each with good arguments both for and against it. However, for several technical and
aesthetic reasons, of which tractable ultraviolet behavior and the natural appearance
of chiral fermions are perhaps the most important, supersymmetry (SUSY) has always
been the pick of these NP models. At the dawn of the LHC era, it still remains the
first option for any study of NP predictions.

Elegant as SUSY may be as an abstract idea, it is well known that it presents a
very different face when it comes to constructing realistic models at low energies. Any
phenomenologically viable SUSY model must necessarily include a large number of
soft SUSY-breaking parameters. A count of the number of free phenomenological pa-
rameters in the so-called minimal supersymmetric standard model (MSSM) [253–256]
runs to over 100, including masses, coupling constants, and mixing angles for the large
number of supersymmetric partners, or sparticles, in the model. This proliferation of

This chapter is based on Phys.Rev.D83:094026, 2011 by Biplob Bhattacherjee, Amol Dighe, Dip-
timoy Ghosh and Sreerup Raychaudhuri [250]. All the numerical results in this chapter have been
obtained by me with some initial help from Biplob Bhattacherjee, using the software packages Su-
perIso, micrOMEGAs, SuSpect and SUSY-HIT.
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parameters may be directly traced to the fact that the MSSM does not include a spe-
cific mechanism for the breaking of SUSY, and hence, the numerous SUSY-breaking
parameters are essentially put in by hand. Although such a model can exist, at least in
principle, a theory with a hundred odd free parameters is a phenomenologist’s night-
mare, since it leads to very few clear predictions at the empirical level. At the LHC,
for example, this leads to a wide landscape of possible signals which would leave an
experimentalist with hard data to compare with a bewildering variety of options [257].
It is also difficult to believe that the breaking of SUSY is a sheer accident brought
on by a proliferation of arbitrary nonzero parameters. One would rather argue that
there is a definite mechanism for SUSY breaking [258], and when we know it, we will
also know the parameters in question. Once again, however, theorists have failed to
come up with an unambiguous mechanism for SUSY breaking – there exist quite a few
different suggestions [259], beginning with minimal supergravity (mSUGRA) models,
through gauge-mediated SUSY breaking (GMSB), anomaly mediated SUSY breaking
(AMSB) and so on, each with a very different pattern for the parameters in question.
Each of these models has different predictions for LHC signals, and hence, in effect, the
chaotic situation within the subset of SUSY models becomes a cameo of the general
NP scenario.

The oldest, and perhaps the most restrictive, of these SUSY models where a spe-
cific mechanism for SUSY breaking is considered, is the so-called “constrained“ MSSM
(cMSSM), which is based on an underlying mSUGRA [260–266] scenario1. In this
scenario, supergravity is broken spontaneously in a so-called ”hidden” sector consist-
ing of fields which do not have strong or electroweak couplings to the MSSM fields.
However, gravity, which necessarily couples to all fields so long as they carry energy
and momentum, acts as a mediator between the hidden sector and the MSSM sector,
giving rise to the soft SUSY-breaking parameters. It is this circumstance that leads to
a dramatic reduction in the number of parameters, since gravity is blind to all flavor
and color quantum numbers, though it can sense the spin of a particle. As a result,
the mSUGRA model has just five free parameters, viz. (i) a universal scalar mass
m0, (ii) a universal fermion mass m1/2, (iii) a universal trilinear (scalar) coupling A0,
(iv) the ratio of vacuum expectation values of the two Higgs doublets, parametrized
as tanβ, and (v) the Higgsino mixing parameter µ. This universality of the masses
and couplings is valid at the scale where the SUSY-breaking parameters are generated,
which is usually identified with the scale of grand unification (GUT scale)2, i.e., above
1016 GeV. While running down to low energies using the renormalization group (RG)

1This mechanism, by invoking supergravity, gives up the good ultraviolet behavior, unless, indeed,
the supergravity model is equivalent to, or embedded in, a string theory. Aficionados of the cMSSM
would, of course, argue that gravity must eventually be included anyway.

2There exists a symbiotic relation between SUSY and grand unified theory (GUT) ideas, since
SUSY solves the hierarchy problem in GUT , and a GUT is natural at the scale where SUSY breaking
is generated.
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equations, however, the various soft SUSY-breaking parameters evolve differently, and
lead to a specific mass spectrum at the electroweak scale. In particular, one of the
Higgs-mass-squared parameters is driven to a negative value, ensuring that the elec-
troweak symmetry is spontaneously broken. The requirement that the electroweak
symmetry be broken at precisely the right scale leads to a further constraint, which
effectively fixes the magnitude of µ in terms of the other parameters, though its sign
is still indeterminate. This version of the mSUGRA model, which depends on four
parameters and a sign, viz. {m0, m1/2, A0, tanβ, sgn µ}, is called the cMSSM. Being
more constrained, this model is also more predictive and hence is more readily testable.
There exists, therefore, a vast amount of literature on this model, which has been stud-
ied with regard to (a) collider signals [267–274], (b) low-energy processes, such as decays
of K,D, and B mesons [275–282], and (c)dark-matter constraints arising from the fact
that the relic density of the lightest SUSY particle (LSP) can be identified with the
dark-matter content of the Universe [283–290]. In this chapter, therefore, we shall
focus on this model, though a simple extension will also figure into our analysis.

It is now common knowledge that null results from direct searches have pushed up
the masses of sparticles into the regime of 100 GeV or above. However SUSY mod-
els can still make substantial contributions to low-energy processes, particularly those
which are mediated by weak interactions. Among these, flavor-changing neutral cur-
rent (FCNC) processes, with the famed Glashow-Iliopoulos-Maiani (GIM) cancellation,
constitute a favored ground to look for SUSY effects (or any NP effects, for that mat-
ter). However, barring a few little hiccups, the SM rules supreme in the area of flavor
physics, leaving very little room for NP theories, including SUSY and the cMSSM. Year
by year, as the measurements of the FCNC processes grow better and better, the lower
bounds on masses of new particles (including sparticles) have been creeping further
and further up in order to squeeze the NP contributions into the ever-narrowing band
of experimental errors in these measurements.

In this chapter, we consider one such recent low-energy experimental result, viz.,
the measurement of the branching ratio B+ → τ+ντ . It directly constrains all models
with minimal flavor violation (MFV), viz., models where all flavor-changing transitions
are entirely governed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix with no new
phases beyond the CKM phase δ. We find constraints on general NP with MFV that
involves a charged Higgs boson. As the cMSSM (and almost any viable SUSY model)
belongs to this category, we apply these constraints to the cMSSM and find a rather
dramatic impact on the parameter space of the model. It turns out when we combine
the results of the measurement in question with other low-energy measurements, such
as the anomalous magnetic moment of the muon, and radiative and leptonic B decays,
most of the cMSSM parameter space is disfavored at the 95% confidence level (C.L.).
What survives all the constraints is a small patch in the four-dimensional parameter
space (m0, m1/2, A0, tanβ) of the model, for a positive sign of µ. This is very different
from the kind of constraints derived from earlier, less restrictive measurements of B+ →
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τ+ντ , where wide areas of the cMSSM parameter space were allowed.
As mentioned above, one of the attractive features of SUSY is that it provides a

dark-matter candidate, viz., the lightest supersymmetric particle (LSP). This carries
a conserved quantum number (R parity) which forbids its decay3. One can, therefore,
study the evolution of the Universe in a SUSY model, and check whether the relic
density of LSP’s matches with the observed density of dark-matter as indicated by the
cosmic microwave background radiation (CMBR) data [294]. Obviously, this matching
will happen for only a small part of the parameter space of the model. It is encouraging
that the dark-matter-allowed region in the cMSSM overlaps the small patch allowed by
low-energy measurements quite substantially. We can say, therefore, that there exists
a rather specific set of parameters which is simultaneously consistent with the low-
energy data as well as with the hypothesis that LSP’s form the dark- matter content
of the Universe. With this specific set of parameters, we generate the mass spectrum
of sparticles, and find reasonably unequivocal indications as to the kind of signals
expected at the LHC. No detailed analysis is necessary at this stage, for the relevant
signals have already been considered in comprehensive studies by the ATLAS and CMS
Collaborations [295, 296]. Comparing their results with our parameter choice, we find
that the 7 TeV run of the LHC may provide a weak indication of SUSY [297–301],
which could be verified comprehensively even in the very early stages of the 14 TeV
run. Going further, we may even say that if SUSY is indeed the correct NP option,
then the LHC may eventually turn out to be the hoped-for SUSY factory, claimed in
the literature [302].

This chapter is organized as follows. In Sec.II we discuss the recent bounds on
B+ → τ+ντ and how they affect MFV models. This is followed by Sec.III, where we
discuss other low-energy measurements which constrain the cMSSM parameter space.
The combined constraints are displayed and discussed in Sec.IV, where we also discuss
the possible LHC signals which could arise therefrom. Sec.V discusses the so-called
nonuniversal Higgs-mass (NUHM) model, a variant of the cMSSM, and some of its
consequences. A critical summary of our results forms the substance of the concluding
Sec.VI.

6.2 The decay B+ → τ+ντ

On purely theoretical grounds, the leptonic decay B+ → τ+ντ is a clean decay mode,
since the final state consists only of leptons and hence the usually troublesome strong
rescattering phases are absent. Indeed, in the SM, the branching ratio of B+ → τ+ντ

3Once again, this is not written in stone, for R-parity violation can happen and has been extensively
studied [291–293].
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is given by the tree-level formula

BR(B+ → τ+ντ )SM =
G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)2

f 2
B |Vub|2 τB , (6.1)

where GF is the Fermi constant, τB is the B+ lifetime, fB = 192.8 ± 9.9 MeV [303] is
the B+ decay constant, and mB, mτ are the masses of B+, τ+, respectively. Here

|Vub| = (3.52± 0.11)× 10−3 (6.2)

is the relevant CKM matrix element, obtained through the combined fit [304, 305] to
all the data excluding the B+ → τ+ντ measurements. The SM prediction, including
higher-order corrections, is

BR(B+ → τ+ντ )SM = (0.81± 0.15)× 10−4 . (6.3)

As recently as 2008, the experimental average value of this parameter [306] was

BR(B+ → τ+ντ )2008 = (1.41± 0.43)× 10−4 , (6.4)

which was just about consistent with Eq. (6.3) at 1 standard deviation. At that time, it
was shown [307] that corresponding constraints on the parameter space of the cMSSM
(such as we discuss in this work) are rather minor.

Very recently (2010), however, new measurements of the branching ratio BR(B+ →
τ+ντ ) from B factories have changed the experimental value quite significantly. The
most recent experimental measurements are [308–311]

Babar (semileptonic tag) : BR(B+ → τ+ντ ) = (1.70± 0.82)× 10−4 ,

(hadronic tag) : BR(B+ → τ+ντ ) = (1.80± 0.61)× 10−4 ,

Belle (semileptonic tag) : BR(B+ → τ+ντ ) = (1.54± 0.48)× 10−4 ,

(hadronic tag) : BR(B+ → τ+ντ ) = (1.79± 0.71)× 10−4 . (6.5)

These results are quite consistent with each other. Combining these measurements,
one gets the world average [312]

BR(B+ → τ+ντ )exp = (1.68± 0.31)× 10−4 . (6.6)

Clearly, this measurement deviates significantly from the SM prediction given in Eq. (6.3).
Defining Rexp

τντ to be [313, 314]

Rexp
τντ ≡ BR(B+ → τ+ντ )exp

BR(B+ → τ+ντ )SM
, (6.7)

and using Eqs. (6.3) and (6.6), we get

Rexp
τντ = 2.07± 0.54 , (6.8)
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which indicates a ∼ 2σ deviation. Deviations at this level frequently arise from statis-
tical fluctuations in small data samples, or from the use of ill-determined theoretical
quantities, and often disappear when more data are analyzed, or when more rigorous
calculations are performed. In this case, however, the mismatch may not disappear so
easily. For neither are the current measurements of BR(B+ → τ+ντ ) based on a small
statistics sample (see Refs. [308–311]), nor should one expect the SM prediction to
change much, since the formula in Eq. (6.1) involves quantities that are already known
pretty accurately. It appears, therefore, that it is sensible to at least explore the ability
of NP beyond the SM to resolve the observed discrepancy.

Following Ref. [313], we characterize the NP models that could potentially explain
this anomaly by a quantity RNP

τντ , defined as

RNP
τντ ≡ BR(B+ → τ+ντ ) SM+NP

BR(B+ → τ+ντ )SM
, (6.9)

where the subscript SM+NP represents the net branching ratio in the NP scenario,
including the SM contribution. The 95% C.L. allowed range for RNP

τντ then works out
to

0.99 < RNP
τντ < 3.14 , (6.10)

which essentially means that NP models with positive contributions are favored by the
data and those with negative contributions are quite strongly disfavored.

There exist, of course, a wide variety of models of NP which could provide extra
contributions to the branching ratio of B+ → τ+ντ . However, we focus only on the
MFV models. For a large class of MFV models that involve a charged Higgs boson
H+ – such as two-Higgs doublet models, of which the cMSSM is an example – the
branching ratio of B+ → τ+ντ is given by [315]

BR(B+ → τ+ντ )NP =
G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)2

f 2
B |Ṽub|2 τB

(
1− tan2 β

m2
B

M2
+

)2

(6.11)

at the tree level, where M+ is the mass of the charged Higgs boson. Here NP stands
specifically for the MFV model, but we retain the notation “NP“ in the interests of
simplicity4.

In the above formula |Ṽub| is the value of |Vub| obtained in the context of the NP
model, which in general will be different from |Vub| obtained from the data in the
context of the SM. In order to get rid of this uncertainty in the CKM parameter, we
restrict ourselves to the determination of |Vub| through only those measurements that
are independent of NP. Such a fit is called the fit to the universal unitarity triangle
(UUTfit) [316], and it uses only

4 Note that our analysis for the MFV models in this section closely follows that of [304], with
minor differences. Our constraints in the M+–tanβ parameter space naturally are almost identical.
However, we present the detailed analysis here for the sake of completeness and clarification of our
procedure.
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• the measurements of |Vub/Vcb| from semileptonic B decays,

• the ratio of mass differences in the Bs and Bd systems: |∆Ms/∆Md|, and

• the measurement of sin 2β from the time-dependent CP asymmetry in Bd →
J/ψK(∗).

The UUTfit value of |Vub| comes out as [304]

|Vub|UUTfit = (3.50± 0.12)× 10−3 , (6.12)

which is actually very close to the global fit in Eq. (6.2). Using this value, the SM
prediction for the branching ratio of B+ → τ+ντ changes slightly from Eq. (6.3) and
becomes

BR(B+ → τ+ντ )SM = (0.80± 0.15)× 10−4 . (6.13)

Note that while the UUTfit [304] is obtained using the lattice prediction fB = 200±20
MeV [317] of the LQCD Collaboration, we use the more recent, averaged value from
lattice simulations, fB = 192.8 ± 9.9 MeV [303], which has a much smaller error5, for
the calculation of BR(B+ → τ+ντ )SM. The 95% C.L. allowed range for RNP

τντ assumes
the value

0.99 < RNP
τντ < 3.19 , (6.14)

which forms the basis of all subsequent analyses in this chapter. Once |Vub| is chosen in

this ”model-independent” way, we can take |Ṽub| = |Vub|UUTfit, and hence the theoretical
MFV prediction for RNP

τν at the tree level becomes

RNP
τντ |tree =

(
1− tan2 β

m2
B

M2
+

)2

. (6.15)

If higher-order corrections are included then this ratio gets modified [318] to a form

RNP
τντ =

(
1− tan2 β

1 + ǫ̃0 tanβ

m2
B

M2
+

)2

, (6.16)

where ǫ̃0 encodes all the higher-order corrections, which, of course, will have some
dependence on the free parameters of the MFV model. We take the range of ǫ̃0 to be
−0.01 ≤ ǫ̃0 ≤ 0.01, as obtained in [319] by a scan over reasonable values of the MFV
model parameters. When a specific model, such as the cMSSM, is considered, ǫ̃0 can
be calculated explicitly.

The impact of the experimental data on MFV models with a charged Higgs boson,
as discussed above, can be clearly discerned from Fig. 6.1(a), where we plot the value of

5 Ideally, of course, the UUTfit needs to be performed again with the updated fB value. We have
assumed that the updated fit will not significantly affect the |Vub| value.
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Figure 6.1: (a) The dependence of RNP
τντ on the mass M+ of the charged Higgs boson in

MFV models for two values tan β = 10 and 50, and (b) the 95% C.L. constraints on the
M+–tan β plane. The vertically hatched regions in (a) correspond to higher order corrections
varying between ǫ̃0 = −0.01 and +0.01, while the 1σ (2σ) experimental measurements of
RNP
τντ are shown by horizontal broken (solid) lines. The dark band in (b) corresponds to the

LEP bound. The large, vertically hatched region in (b) is disallowed by the recent (2010)
RNP
τντ constraint, while the horizontally hatched region is disallowed by the 2008 data.

RNP
τντ as a function of the charged Higgs boson mass M+. As Eq. (6.14) indicates, such

a model should tend to make RNP
τντ greater than unity, and there is very little room for

RNP
τντ < 1. However, the negative sign on the right side of Eq. (6.16) indicates that unless

the NP contribution is very large, the models in question have a tendency to diminish
RNP
τντ rather than augment its value. As a result, a model with a heavy charged Higgs

boson cannot be considered as an explanation for the deviation of BR(B+ → τ+ντ )
from its SM value. Instead, if we do have such a model, we would expect rather strong
constraints on its parameters, since the NP contribution must be squeezed into the
small tolerance below unity, as given in Eq. (6.14). Such a situation would naturally
arise for large M+, when the NP contribution becomes negligible, and RNP

τντ → 1 for all
tanβ – though it always stays less than unity. This corresponds to the rising part of
the curves, towards the right end of Fig. 6.1(a). A glance at the figure will, however,
leave no doubt that this limiting case is barely allowed at 2σ for low tanβ ( = 10), but
disallowed for high tanβ (= 50). We surmise, therefore, that for high values of M+,
the B+ → τ+ντ measurement favors low values of tan β.

For low values of M+, on the other hand, Eq. (6.16) tells us that it is possible for
the NP contribution to be so large that it completely dominates the SM contribution,
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and in this limit, it is possible to have RNP
τντ ∼> 1. The explicit condition is

tan2 β

1 + ǫ̃0 tanβ
∼>

2M2
+

m2
B

. (6.17)

However this can happen only for a very restricted set of (M+, tanβ) values, some of
which are already constrained experimentally. For example, for tan β = 10, one can
have RNP

τντ well inside the 2σ range only if M+ is ∼< 50 GeV, but such low M+ values
are ruled out by the LEP direct searches, which give M+ > 79.3 GeV [320]. On the
other hand, if tanβ = 50, the same LEP data permit 140 GeV< M+ < 220 GeV
which can render RNP

τν well inside the 2σ range, as shown in Fig. 6.1(a). Thus, one
may complement our earlier assertion by the statement that in the opposite limit, i.e.
for low values of M+, the B

+ → τ+ντ measurement favors high values of tan β. This
is also the limit in which the NP models contribute positively in accounting for the
deviation of the experimental data from the SM predictions.

The two limits are made explicit in Fig. 6.1(b), which shows the 95% C.L. constraints
on theM+–tan β plane. The dark band represents the LEP constraintM+ > 79.3 GeV
and the vertically-hatched region is disallowed by the B+ → τ+ντ measurement. This
leaves only two small unshaded regions for lowM+ and highM+, in accordance with the
above discussion. Our result may be contrasted with the constraints obtained from the
2008 data, which are shown by horizontal hatching, and constrain only a small region
with M+ < 400 GeV and somewhat high tan β. One may say, therefore, that the
recent measurement of the branching ratio for B+ → τ+ντ has considerably improved
the constraints on MFV models with charged Higgs bosons. As the cMSSM belongs to
this category, we should expect correspondingly severe constraints on the corresponding
parameter space when we compare its predictions with this new experimental result.

6.3 Other constraints

When we consider an all-encompassing model like the cMSSM, with far-flung implica-
tions in almost all areas of electroweak physics, the constraints arising from B+ → τ+ντ
cannot be considered in isolation, but must be combined with other bounds – some of
which are equally restrictive, at least at the 2σ level. These constraints can be classified
as follows.

1. Theoretical constraints.– arising from requirements of internal consistency of the
model. In particular, if the Higgs-mass parameter which should be driven neg-
ative by RG running remains positive, we cannot explain electroweak symmetry
breaking (EWSB) in this model. There is also a substantial region where the
model predicts that the charged stau τ̃1 is the LSP, and is therefore precluded by
the absence of a large relic density of charged particles.
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2. Collider bounds.– arising from the nondiscovery in direct searches [320] at the
CERN LEP and Fermilab Tevatron of predicted particles, most notably the light
Higgs boson h0 and the lighter chargino χ̃+

1 . While the chargino couplings are
large enough for the experimental bounds to practically saturate the kinematic
reach of these machines, the light Higgs boson mass in SUSY models is generally
sensitive to higher-order corrections, where there is a theoretical uncertainty of
around 3–4 GeV at the next-to-next-to-leading order (NNLO) and higher [321].
To take care of this, we consider a softer lower bound of 111 GeV, rather than
the kinematic bound of 114.4 GeV usually applied to the SM Higgs boson.

3. Indirect bounds.–arising from measurements of low-energy processes where new
particles and interactions in NP models can also contribute. In the context of the
cMSSM, the most important of these are the measurements of (a) the anomalous
magnetic moment of the muon, (b) the rate of the radiative decay Bd → Xsγ,
and (c) the BR for the leptonic decay Bs → µ+µ−. Here we have assumed that
the NP is of the MFV kind, and that it survives the measurements other than
those explicitly mentioned above. In particular, the large Bs–Bs mixing phase,
or the ACP (B → Kπ) measurements, cannot be explained by any MFV models,
and we assume that these anomalies will disappear with more data or with better
theoretical calculations.

Of the above, the theoretical and direct search constraints may be considered firm
constraints, as they are unlikely to be changed by inclusion of further types of NP along
with the cMSSM or whatever model is being studied. On the other hand, constraints
from indirect measurements are not so robust, as they can easily change if some new
effect is postulated. Before we proceed to apply these constraints to the cMSSM
parameter space, therefore, a brief discussion of the actual measurements used in our
analysis is called for. This forms the remaining part of this section.

• The anomalous magnetic moment of the muon, aµ = (g−2)/2: This is one of the
most compelling indicators of NP and it is well known as a major constraint for
NP theories such as supersymmetry or extra dimensions. The latest measured
value [322] for aµ is

aexpµ = (11659208.0± 6.3)× 10−10 . (6.18)

In the recent past, the SM prediction [316] for aµ has undergone numerous vicis-
situdes with respect to the experimental data, occasionally being consistent with
it and occasionally deviating at the level of 2σ-3σ. Much of the difficulty in mak-
ing this prediction accurate lies in the fact that the experimental measurement
is sensitive to two-loop corrections where some nonperturbative QCD effects due
to the low mass scale are involved. The latter have to be obtained by fitting
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experimental data, whose errors then feed into the theoretical uncertainty. The
most recent SM prediction is [323]

aSMµ = (11659178.5± 6.1)× 10−10. (6.19)

The discrepancy between the SM and experiment is, therefore,

∆aexpµ = aexpµ − aSMµ = (29.5± 8.8)× 10−10 . (6.20)

This is at the somewhat high level of ∼ 3.4σ, but is not normally considered a
“smoking gun“ signal for NP for reasons stated above. Nevertheless, in order to
check if this discrepancy can be explained with the cMSSM, we use a procedure
[324] that does not calculate the two-loop SUSY corrections, but includes them
in the theoretical errors, to obtain a 95% C.L. range

11.5× 10−10 < ∆aNP
µ < 47.5× 10−10 , (6.21)

where ∆aNP
µ is the extra contribution due to NP. In our analysis, the NP in

question will be the cMSSM, or a variant, but we choose, as in the previous
section, to retain the label ”NP“.

Obviously, in the cMSSM, the value of ∆aNP
µ will depend on all the free parame-

ters of the model. However, it is known that the sign of the cMSSM contribution
is directly sensitive to the sign of the µ parameter [325, 326]: for µ < 0, the
cMSSM contribution is negative, while for µ > 0, a positive contribution is pre-
dicted by some regions of the cMSSM parameter space. Since the 95% C.L. range
of ∆aNP

µ indicated in Eq. (6.21) is entirely positive, it indicates that the sign µ < 0
is disallowed by the measurement of the muon anomalous magnetic moment, and
even with µ > 0, there are strong constraints on the remaining parameters of the
cMSSM.

• The radiative decay Bd → Xsγ: In the SM, the BR of the radiative decay Bd →
Xsγ has been calculated [327–330] to NNLO in QCD to be

BR(Bd → Xsγ)SM = (3.15± 0.23)× 10−4 . (6.22)

The current experimental average for the BR by the Heavy Flavor Averaging
Group (HFAG) [331] is

BR(Bd → Xsγ)exp = (3.55± 0.26)× 10−4 , (6.23)

which is consistent with the SM prediction within 1 standard deviation, leav-
ing very little room for NP contributions. As a result, this measurement has a
tremendous impact on MFV models involving a charged Higgs boson H+, es-
sentially pushing up the mass M+ to very large values. Of all such models, the
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constraints on SUSY models can be more relaxed because of large cancellations
between the charged Higgs boson contributions and the chargino contributions
which are the hallmark of SUSY models. Nevertheless, there do exist bounds on
the cMSSM arising from the residual contribution, especially for light M+, and
these have to be taken into consideration.

In our analysis, after including the theoretical uncertainties in the cMSSM fol-
lowing the method outlined in [314], we set the 95% C.L. range for the branching
ratio to be

2.05× 10−4 ≤ BR(Bd → Xsγ) ≤ 5.05× 10−4 . (6.24)

It turns out that the Bd → Xsγ constraint is also extremely sensitive to the sign
of µ. For µ < 0, it eliminates a large part of the parameter space [332], while for
µ > 0 the constraint is comparatively weaker. Neither of these constraints is as
strong as those arising from the muon (g−2)/2; however, they are complementary
to it.

• The leptonic decay Bs → µ+µ−: Within the SM, the fully leptonic decay Bs →
µ+µ− is chirally suppressed; the SM prediction is

BR(Bs → µ+µ−)SM = (3.19± 0.35)× 10−9 . (6.25)

The uncertainty in the BR comes principally from the decay constant fBs
=

238.8 ± 9.5 MeV [303] and from the CKM element |Vts| = 0.041 ± 0.001 [320].
The current experimental upper bound by the CDF Collaboration is [333]

BR(Bs → µ+µ−)CDF < 4.3× 10−8 (95% C.L.) . (6.26)

After including the theoretical uncertainties, we get the 95% C.L. upper limit

BR(Bs → µ+µ−) < 4.8× 10−8. (6.27)

Inclusion of charged Higgs bosons, whose left- and right-chiral couplings depend
on cotβ and tanβ, respectively, has a direct impact on the BR for Bs → µ+µ−,
which gets enhanced considerably above the SM prediction, and easily saturates
the upper bound, especially for low values ofM+ and large tan β. Indeed, for large
tan β, the cMSSM contribution is known [334] to scale as tan6 β/(M2

+ −M2
W )2.

Thus, this process also constrains MFV models with a charged Higgs boson. It
turns out that for the cMSSM, these constraints are not more severe than the
combination of all other constraints; however, we shall demonstrate later that
they do have an impact if the assumptions of the cMSSM are relaxed.
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In this section, we have listed the major constraints, apart from the new data on
B+ → τ+ντ , on the parameter space of SUSY models, of which the cMSSM will be
showcased in the following section. It may be noted in passing that this list is not fixed
for all time, as there are several other low-energy processes and direct search bounds
which also constrain the SUSY parameter space. Current data on these rule out patches
of the parameter space which are subsumed in the disallowed regions arising from the
constraints which we have listed above. However, it is entirely possible that a future
measurement – including some LHC searches – could rule out wider patches of the
SUSY parameter space, and then the relevant processes would have to be taken into
consideration. With this caveat, we now turn to the explicit constraints on the cMSSM
parameter space, and the impact of the B+ → τ+ντ measurement on this analysis.

6.4 Constraining the cMSSM

As mentioned in the Introduction, the parameter space of the cMSSM has four un-
knowns, viz. m0, m1/2, A0, tan β, that can take real values. The sign of the µ parame-
ter is also undetermined, but as indicated in the previous section, the muon (g − 2)/2
constraint disfavors µ < 0. We therefore restrict ourselves to µ > 0 and, hence, consider
a simply connected parameter space of four dimensions.

The theoretical ranges of the parameters m0, m1/2, and A0 are, in principle, com-
pletely undetermined, but the region of interest is clearly that which would lead to spar-
ticle masses kinematically accessible to current accelerators such as the LHC. Keeping
this in mind, we scan the ranges

0 ≤ m0 ≤ 2 TeV , 0 ≤ m1/2 ≤ 1 TeV , −2 TeV ≤ A0 ≤ 2 TeV .
(6.28)

The range of the remaining parameter tan β is determined mainly by its impact on the
scalar Higgs sector of the cMSSM, where, indeed, it arises. For very low values of tanβ
(∼ 1), one tends to predict the lightest Higgs boson h0 to have a small mass, which is
already ruled out by the LEP constraints. On the other hand, if tan β > mt/mb, the
couplings of the charged Higgs boson to a tb̄ pair begin to enter the nonperturbative
regime. We have chosen, therefore, the reasonable range

4 ≤ tan β ≤ 50 . (6.29)

Using these parameters, we perform a numerical scan over the cMSSM parame-
ter space, using (a) SuSpect [335] to generate the mass spectrum (this also takes
care of the theoretical and direct search constraints), (b) SuperIso [336, 337] to cal-
culate the variables listed as indirect constraints in the previous section, and, finally,
(c) micrOMEGAs [338, 339] to calculate the dark-matter relic density. All of these
are state-of-the-art software in the public domain, guaranteed to include higher-order
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corrections as available at the moment, which have been tested in multifarious appli-
cations, as the literature testifies.
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Figure 6.2: The 95% C.L. constraints on the m0–m1/2 plane, for A0 = 0 and tan β = 10 (left
panel) and tan β = 20 (right panel). Horizontal (vertical) hatching indicates regions ruled
out by the measurement of the muon (g − 2)/2 [BR(B+ → τ+ντ )] and the cross-hatched
region represents their overlap. The constraint from B → Xsγ is subsumed in that from the
lower bound on the Higgs mass from direct searches, and hence is invisible in these plots. We
take µ > 0 in this and all subsequent plots.

In Fig. 6.2, we present the constraints on the cMSSM parameter space in the m0–
m1/2 plane, where the tension between various measurements appears quite clearly.
For this figure, we have set A0 = 0, which is an assumption commonly made for
simplicity. We take µ > 0 as required by the muon (g − 2)/2 constraint. The panel
on the left (right) corresponds to tan β = 10 (20). The dark areas are ruled out by
the theoretical and direct search constraints explained in the previous section, with the
approximate areas highlighted in white lettering6. Focusing on the left panel, it is clear
that the muon (g−2)/2 constraint (indicated by horizontal hatching) is very stringent,
ruling out almost all the region considered, and allowing only a small patch with low
values of m0 and m1/2. This patch, however, is disallowed by the new measurement
of B+ → τ+ντ , as can be seen from the vertical hatching. The overlap between the
disallowed regions is indicated by cross-hatching. It is quite clear, therefore, that for
tanβ = 10, there is no region in the parameter space shown that is at once consistent
(to 95% C.L.) with both the anomalous muon magnetic moment and the B+ → τ+ντ

6Following common practice, we do not delineate separate patches in the firmly disallowed (dark)
region in detail, as that would not be germane to the present discussion.
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branching ratio. We have checked that even if we take tanβ down to values as small as
tanβ = 4, the two measurements, taken together with the firm constraints, do not allow
for a simultaneously allowed parameter space. At higher value of tan β, the situation
is even worse. This is apparent from the right panel, where our results are plotted for
tanβ = 20. Here it is true that a larger region is permitted by the muon (g − 2)/2
measurement, but the region disallowed by the B+ → τ+ντ branching ratio is also
much larger and covers the entire region allowed by (g − 2)/2. The region disallowed
by B+ → τ+ντ grows for larger value of tanβ, as may be guessed from Fig. 6.1(b), and
for values of tanβ ∼ 50, it would cover the whole of the parameter space shown in the
panels of Fig. 6.2. Thus, for A0 = 0, one may say that these two measurements alone
are enough to ensure that the full mSUGRA parameter space is strongly disfavored.

It may be noted in passing that among the other constraints from the low-energy
data, the patch disallowed by Bd → Xsγ is subsumed in that from the Higgs-mass
bound, and, likewise, the patch inconsistent with Bs → µ+µ− is overlaid by the dark
region corresponding to the firm constraints. We have not, therefore, shown these
disallowed regions in Fig. 6.2.

The above result, disappointing as it may appear, is by no means the end of the
road for the cMSSM, for it has been obtained only on the slice of parameter space for
which A0 = 0. The situation changes when we permit A0 to vary. This affects the
running of the charged Higgs boson mass, and we find that for large negative values
of A0, for a given tanβ, the Higgs-mass M+ is driven to larger values than what one
would obtain by setting A0 = 0. In the context of Fig. 6.1(b), this effect then pushes the
model horizontally in the M+–tan β plane, eventually penetrating into the ”allowed”
region. The B+ → τ+ντ constraint, therefore, can be quite considerably weakened by
choosing large negative values of A0. We do not expect such a significant change in the
muon (g−2)/2 constraint, but some relaxation is not unreasonable to expect when A0

is varied over a wide range. Large negative values of A0 also tend to increase the mass
of the lightest Higgs boson h0, thereby relaxing somewhat the LEP bounds arising
from Higgs boson mass considerations [340]. Accordingly, we repeat our analysis of the
constraints on the m0–m1/2 plane, keeping A0 floating between −2 TeV and +2 TeV.
In our analysis, a point in the m0–m1/2 plane, for a given tan β, is taken to be allowed
at 95% C.L. by a given constraint if we can find any value of A0, lying in the range
−2 TeV ≤ A0 ≤ 2 TeV, for which the given constraint is satisfied. Our results are
exhibited in Fig. 6.3, which follows the notations and conventions of Fig. 6.2 closely.
In addition to the constraints shown therein, the one from Bd → Xsγ now makes its
appearance as a small region hatched with slanting lines, indicating that this constraint
is now stronger than the weakened Higgs-mass bound from collider machines. However,
it is not strong enough to rule out any portion which is not already disallowed by the
other constraints.

Even a cursory examination of the dark and hatched regions in Fig. 6.3 will indicate
that, while the qualitative features of the regions disfavored by the muon (g−2)/2 and
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Figure 6.3: The same as in Fig. 6.2, except that the trilinear coupling A0 is kept floating over

the range (−2,+2) TeV, and regions are considered disallowed only if they remain disallowed

for all values of A0 in the given range. This weakens the constraints enough for a small

allowed region to appear in the left panel (tan β = 10). The yellow/light gray region is

simultaneously consistent with all constraints at 95% C.L.

the B+ → τ+ντ measurements stay the same, somewhat larger areas in the plane are
“allowed“ by each constraint individually. This, by itself, is not surprising, but it has
the exciting consequence that now the left panel (tanβ = 10) exhibits a small patch,
roughly triangular in shape, which satisfies each of the constraints individually for some
value of A0, and moreover, there is a subset of this region where all the constraints are
satisfied simultaneously for the same value of A0. This subregion, which represents the
actual parameter space consistent with all the measurements individually at 95% C.L.,
is denoted by yellow/light gray shading. It is on this ”allowed” region that we focus
our interest in the subsequent discussion.

If we glance at the right panel of Fig. 6.3, where tanβ = 20, we see that there
is no allowed region at all, the disallowed regions showing substantial overlap and
covering the whole of the plot area. Once again, we surmise that high values of tanβ
are disfavored, whatever value of A0 is chosen, and that the allowed region in the
cMSSM parameter space must lie in the neighborhood of tanβ = 10. We have already
mentioned that consistency with the B+ → τ+ντ constraint requires large negative
values of the A0 parameter, which can drive M+ to higher values even for the low tanβ
(≈ 10). In order to see this, we plot, in the left panel of Fig. 6.4, the same constraints in
the plane of A0 and m1/2, keeping m0 fixed at the value m0 = 150 GeV, for tanβ = 10.
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This particular value of m0 has been chosen since in the left panel of Fig. 6.3, it lies
more-or-less near the center of the allowed triangle (yellow/light gray shading) and is
roughly the value for which the maximum range of m1/2 appears to be allowed. The
dimensions of this allowed triangle also encourage us, in Fig. 6.4, to “zoom in” on the
range m1/2 = 300–500 GeV, outside which we get disallowed regions. However, A0 is
varied between −1.5 TeV and +1.5 TeV, to adequately cover the whole range allowed
by the firm constraints, as is apparent from the left panel of Fig. 6.4.

disallowed by B τντ DM alloweddisallowed by (g − 2) of muon

1/2m      [GeV]

0
A

   
[G

eV
]

m   = 150 GeV0

m   = 150 GeV0

1/2m      = 400 GeV

βtan    = 10

vacuum stability

Higgs mass

−1500

−1000

−500

 0

 500

 1000

 1500

 300  350  400  450

vacuum stability + collider
stau LSP

βtan    
 5  10  15  20

vacuum stability + collider

stau LSP

Higgs mass

vacuum stability

Figure 6.4: Further constraints on the cMSSM parameter space. The left panel shows con-

straints on the m1/2–A0 plane, for m0 = 150 GeV and tan β = 10. The right panel shows,

similarly, constraints on the tan β–A0 plane for m0 = 150 GeV and m1/2 = 400 GeV. Nota-

tions and conventions are the same as in Figs. 6.2 and 6.3. The dotted (red) line represents

the dark-matter-compatible region, and the black dot superposed on it is a benchmark point

chosen for LHC studies.

It is immediately apparent from the left panel of Fig. 6.4 that about half of the
region with positive values of A0 is ruled out by the firm constraints, and the remaining
half by the B+ → τ+ντ measurement. The latter has a severe impact on the A0 < 0
region as well, essentially forcing us to consider large negative values of A0 for small
values of m1/2. Including the muon (g−2)/2 constraint, which disfavors large values of
m1/2, then clinches the issue, permitting only another small wedge-shaped (yellow/light
gray) region allowed by all the constraints. The maximum range of m1/2 permitted
by all the constraints is around 325–425 GeV, which matches tolerably well with the
vertical limits of the allowed triangle in Fig. 6.3, as should be the case. The value A0,
on the other hand, is quite strictly restricted to the approximate range −625 GeV to
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−1.4 TeV.
Of course, the above results are only for a fixed value tanβ = 10. Though we

have already seen that jumping to a much larger value tan β = 20 does not lead to
any allowed region, it is interesting to ‘zoom in’ to the tan β–A0 plane and see the
impact of all these constraints there. This is shown in the right panel of Fig. 6.4,
where we set m0 = 150 GeV as before, and m1/2 = 400 GeV, which lies close to its
value on the left panel for which the allowed range of A0 is maximum. Once again, the
combined constraints predict a small allowed region, with a maximum range of tanβ
lying roughly between 8 and 12. If we now refer to Fig. 6.1(b), this means that the
charged Higgs boson is predicted to have a mass M+ > 600 GeV.

Combining all these results, therefore, we obtain a roughly polyhedral allowed region
in the four-dimensional parameter space, which is enclosed in a rather small hypercube
with sides approximately at

100 GeV ∼< m0 ∼< 225 GeV ,

375 GeV ∼< m1/2 ∼< 425 GeV ,

−1.4 TeV ∼< A0 ∼< −625 GeV ,

8 ∼< tanβ ∼< 12 . (6.30)

The volume of the actual allowed region is considerably smaller than that of the hyper-
cube, given that the two-dimensional projections shown in the previous two figures are
roughly triangular in shape. Compared to the large regions considered in traditional
work on the cMSSM, this constitutes a rather specific region of parameter space, and
encourages us to make specific predictions based on this model. One can easily argue
that the qualitative features of the mass spectrum and couplings will not undergo dra-
matic changes from one end to the other of so small a box as this one, unless, indeed,
it encloses some point(s) of instability. This is unlikely, for none of the many studies
of the cMSSM parameter space have ever shown such a possibility.

The very first prediction one would naturally demand from a specific point or region
in the cMSSM parameter space is whether this can adequately explain the dark-matter
content of the Universe as a relic density of LSP’s. The CMBR data indicate a relic
density Ωh2 = 0.1123 ± 0.007 at 95% C.L. [294]. In general, SUSY models with a
low-lying mass spectrum, such as the one in question, tend to predict too large a
density of LSP’s unless these are coannihilated by some reaction with a substantial
crosssection. This leads to a restriction on the cMSSM parameter space, which, given
the accuracy of the CMBR data, confines us, more or less, to a line passing through
the four-dimensional parameter space. The dark-matter requirement is known to favor
large negative values of A0 [341–348], and it is rather gratifying to see that this line
passes right through the allowed region in the parameter space discovered in this work
– which seems to indicate that a SUSY explanation of dark-matter may indeed be the
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correct one. The line consistent with the dark-matter requirement7 is shown by red
dots on both panels in Fig. 6.4 and may be seen to pass clearly through the allowed
region, favoring a narrow range of A0 around −1.25 TeV and tan β in the range 9−11.
This region is rather close to the forbidden stau LSP region, as is apparent in both
panels of Fig. 6.4. In the allowed region, the lighter stau τ̃1 is rendered very light due
to the presence of a large negative mτAτ in the off-diagonal terms in the stau mixing
matrix; however it is marginally heavier than the neutralino χ̃0

1 LSP. This permits stau
coannihilation with neutralinos, and reduces the relic density so that it is within the
observed range.

We note that there does not seem to be any á priori reason for the region al-
lowed by the low-energy constraints to match with the dark matter-compatible region,
since the low-energy constraints come from processes quite different from those that
control the relic density. Nevertheless, the fact that the two regions do show some
overlap encourages us to argue that we are now converging on the correct region in the
hitherto-unknown parameter space. We may, therefore, make bold as to venture some
predictions regarding the collider signals for this range of parameter space, especially
in the context of the LHC.

In order to make a clear prediction about the LHC signals, we choose the following
benchmark point in the cMSSM parameter space:

m0 = 150 GeV , m1/2 = 400 GeV , A0 = −1250 GeV , tan β = 10 , µ > 0 .
(6.31)

Not only does this lie inside the hypercube marked out in Eq. (6.30), but it lies well
within the allowed region, and right on the line corresponding to the dark-matter
requirement. In Fig. 6.4, this benchmark point is indicated by a small black circle in
both panels [on top of the dotted (red) line labeled “dark matter”]. The mass spectrum
and signals expected for this “golden point” will be typical of the entire allowed region,
which is, after all, rather small. At this benchmark point, we get the central values of
the observables to be BR(B → Xsγ) = 2.64×10−4, RNP

τν = 0.993, and aµ = 13.0×10−10.
Clearly, all of these are consistent with the measurements to within 2σ, though RNP

τν

only barely survives the 2σ bound.
Let us first discuss the cMSSM mass spectrum expected with this benchmark point.

We calculate8 the mass spectrum and the branching ratios using the code SUSY-

HIT [349] and taking mt = 173.1 GeV. The lightest Higgs boson h0 is predicted
to have a mass around 119 GeV, which is consistent with current bounds, but lies
precisely in the range where its detection is most problematic because of large QCD
backgrounds at the LHC. In fact, a light Higgs boson of this mass range must be
detected through the rare decay h0 → γγ, which is unlikely in the 7 TeV run, and will

7We do not go so far as to call it a constraint, though this is not unheard of in the literature.
8The masses obtained using different RG evolution algorithms differ by a few GeV, and the errors

from the calculation are difficult to quantify. Here we give the exact values obtained by SUSY-HIT.
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require the accumulation of a fair amount of statistics even in the 14 TeV run. The
heavy Higgs bosons, including the H+, will lie in the range 835–840 GeV, which is
again kinematically inaccessible in the 7 TeV run, but may be detectable at 14 TeV.
We have already shown that for tan β = 10, as taken for this benchmark point, this
high value of M+ is what allows us to evade the B+ → τ+ντ constraint. Turning now
to sparticles, the LSP χ̃0

1 will have a mass of 164 GeV, with the next-to-LSP (NLSP)
being, as expected, the τ̃1 with a mass of 171 GeV. As explained above, the closeness in
these masses permits the coannihilation of stau, so that the relic density is controlled.
In this scenario, this stau and the lightest neutralino are the only sparticles with masses
below that of the top quark, all other particles being heavier. The nearly degenerate
lighter chargino χ̃+

1 and second neutralino χ̃0
2 lie at 315 GeV, while the other sleptons

and the sneutrinos have different masses in the 200–320 GeV range. The gluino mass,
however, is as high as 934 GeV and the squark masses mostly populate the range 800–
900 GeV, except for the b̃1, with mass around 719 GeV, and a light stop t̃1 which lies
as low as 393 GeV.

An immediate consequence of these large squark and gluino masses is that the
sparticle production cross section at the LHC will be on the low side: at 7 TeV it will
be around 0.4 pb at the leading order (LO), while at 14 TeV, it will have the much
healthier value of 5.2 pb at LO. About 60% of these crosssections come from squark
pair production, of which roughly half is due to t̃1t̃

∗
1 production alone. The t̃1 will decay

to a top quark and a neutralino with a BR ∼ 2/3, and hence, a possible signal would
be a top-enriched final state with large missing transverse energy (MET). However,
the enormous tt̄ background to this process must be taken into consideration when
studying this signal. The other traditional signals for SUSY – cascade decays of the
gluino or squarks to charginos and heavy neutralinos, ending up in multileptons, jets,
and MET – in this case provide τ -rich final states because of the low-lying τ̃1. However,
τ ’s coming from the decay τ̃1 → τ + χ̃0

1 will generally be too soft for detection, because
of the small splitting M(τ̃1) −M(χ̃0

1) ≃ 7 GeV. Final states involving other charged
leptons will be suppressed. This indicates that the best option to seek SUSY with this
benchmark point is the final state with four or more jets and substantial MET, which
can arise from cascade decays involving only strongly interacting sparticles and the
invisible LSP.

In Fig. 6.5 we show the allowed parameter space (yellow/light gray) in the m0–m1/2

plane for tan β = 10 and floating A0 (as in Fig. 6.3), and also the ATLAS 5σ discovery
limit [350] at the 7 TeV run with an integrated luminosity of 1 fb−1, using the four-jets
+ MET channel. It may be seen that the entire parameter space allowed by low-energy
constraints at 95% C.L., including our golden point, lies just outside the 5σ discovery
limit of ATLAS. The ATLAS study, in fact, has shown that at neighboring points,
an overall crosssection of about 1 pb is required for a 5σ discovery using the four-jets
+ MET channel. Making a simpleminded scaling with the predicted crosssection of
0.4 pb at our benchmark point, one may expect a signal in this channel at the level
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of about 2σ. The same conclusions can be reached using the CMS 95% exclusion plot
for the 7 TeV run [296]. Thus, soon we may begin to see tantalizing hints of SUSY. 9

If this should occur, then, in the 14 TeV run, it will be easy to see a 5σ signal with
even 1 fb−1 of data – which should collect within the first few months. Interestingly,
some of the direct production modes for charginos, which are electroweak in nature,
lie at the level of 5%–10% of the total crosssection. These may be difficult to detect
in the 7 TeV run, but in the 14 TeV run, they are sure to provide additional signals
for SUSY. With such copious production of sparticles, the LHC could indeed act as a
SUSY factory, as mentioned in the Introduction.

6.5 NUHM : explaining B+ → τ+ντ

In the previous analysis, we have seen that the combination of constraints on the
cMSSM parameter space leads to the prediction of a small value of tan β and hence,
according to Fig. 6.1(b), the charged Higgs boson is necessarily heavy. Comparison
with Fig. 6.1(a) readily shows that in this limit, the model is only just consistent with
the B+ → τ+ντ constraint at 95% C.L. However, if we take the position that the

9(Written in July 2012) Note that, the CMS [351] and ATLAS [352] collaborations have already
ruled out the yellow/light gray region by 95% C.L..
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2σ discrepancy between the SM and the experimental result should be explained by
a positive NP contribution, then the cMSSM fails the test, for it actually tends to
diminish the SM prediction, and barely survives exclusion in a decoupling limit. This
bare survival, by the skin of its teeth, as it were, is the proximate cause of the stringent
constraints on the cMSSM parameter space discussed in the previous section.

As the cMSSM is the SUSY model with the maximum number of simplifying as-
sumptions (and hence the minimum number of free parameters), it is interesting to ask
if the relaxation of one or more of these assumptions could lead to a SUSY model which
actually explains, rather than merely remains consistent with, the B+ → τ+ντ discrep-
ancy. Since the NP effect in B+ → τ+ντ involves the scalar sector of the cMSSM,
an obvious option would be to consider a model where the parameters of the Higgs
sector are given a greater degree of flexibility than in the highly constrained cMSSM.
In this context, an obvious choice of model is the so-called nonuniversal Higgs-mass
(NUHM) model, which is an extension of the cMSSM where the Higgs-mass parameters
mH1 and mH2 are delinked from the universal scalar mass parameter m0 at the GUT
scale and are allowed to vary freely [353]. At the electroweak scale, these two extra
parameters mH1 and mH2 are usually traded for the Higgsino mixing parameter µ and
the pseudoscalar Higgs boson mass mA. This model, therefore, has six parameters, viz.
m0, m1/2, µ,MA, A0 and tan β.

NUHM models have been studied rather extensively, and various constraints on
the six-dimensional parameter space have been found and exhibited in the literature
[281,324,354–357]. What interests us here is the fact thatMA is a free parameter in the
model, and it can be easily exchanged for M+, to which it is related by the well-known
SUSY relation

M2
+ =M2

A +M2
W , (6.32)

at tree level. We can accordingly fix m0, m1/2, A0, etc. at whatever value is required
to satisfy the other constraints in the cMSSM, and then claim an explanation for the
B+ → τ+ντ discrepancy by choosing a low M+ and a high tan β – this freedom being
allowed by the bigger parameter space in the theory. However, large values of tanβ
and small values of M+ lead to large charged Higgs boson-mediated contributions to
the FCNC process Bs → µ+µ−, thus restricting the freedom in choosing parameter
values. Here, as explained earlier, SUSY cancellations between the charged Higgs
boson-mediated and the gaugino-mediated contributions come to the rescue: stringent
bounds can be evaded if the gaugino masses are somewhat low, comparable to that of
the light charged Higgs boson H+. This, in turn, demands that the universal gaugino
mass m1/2 be somewhat small, compared with the other parameters, which are not so
restricted.

While an exhaustive study of the NUHM parameter space vis-á-vis the present
set of constraints would require a separate work in itself, it is interesting to see if the
NUHMmodel can at all provide regions in parameter space which are consistent with all
the constraints, and can simultaneously provide a NP explanation of the B+ → τ+ντ
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discrepancy 10. To illustrate that this is, in fact, possible, we show in Fig. 6.6 the
regions allowed by the different constraints in the mA–µ plane, keeping all the other
parameters fixed at

m0 = 1.2 TeV , m1/2 = 180 GeV , A0 = 1.2 TeV , tanβ = 50 . (6.33)

A glance at the figure will reveal that here, as in the cMSSM, there is a complementarity
between the B+ → τ+ντ constraint and the (g − 2)/2 constraint, the former tending
to rule out larger values of MA and the latter tending to rule out larger values of µ, as
a result of which only a small rectangular patch in the mA–µ plane is allowed by both
constraints taken together. A large portion of this remaining patch is again disallowed
by the Bs → µ+µ− constraint, leaving a roughly sickle-shaped yellow/light gray region.
In this region,MA remains in the approximate range 100–150 GeV; i.e. M+ lies roughly
in the range 125–170 GeV, according to Eq. (6.32). Figure 6.1 then tells us that this is
not only consistent with the experimental data, but it is precisely the range for which

10(Written in July 2012) The constraint coming from the semileptonic decay B → Dτν was not
considered in this analysis because the branching ratio of B → τν was anyway in tension with that
of B → Dτν. Therefore it is no surprise that the yellow/light gray region is not able to explain the
B → Dτν branching ratio which will need larger mA or lower tanβ. It is worth mentioning that
the BaBar Collaboration has recently published their updated results on the branching ratios of both
B → Dτν and B → D∗τν [358]. The low values for the charged Higgs mass which was required for a
solution of the B → τν anomaly has also been ruled out by direct searches at the LHC [359].
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the NP explanation saturates the gap between the SM prediction and the experimental
central value.

As before, to be precise about the LHC signals, we choose a benchmark point,
which has the fixed parameter choices of Eq. (6.33) as well as

MA = 145 GeV , µ = 400 GeV , (6.34)

which is indicated in Fig. 6.6 by a small black dot in the middle of the allowed (yel-
low/light gray) patch. The central values of the observables at this point are BR(B →
Xsγ) = 3.50×10−4, RNP

τν = 1.24,BR(Bs → µ+µ−) = 3.22×10−8, aµ = 12.8×10−10, all
of which are well within the 2σ range of the respective measurements. We note that the
relic density of LSP’s at this point is not enough to saturate the CMBR requirements,
which means that this model is not ruled out by the latter, but is not a solution to
that problem either.

The major features of the mass spectrum at this benchmark point are as follows:
the lightest Higgs boson lies just beyond the LEP disallowed region, at 112 GeV, and,
as in the cMSSM, this is a difficult mass range to search for the lightest Higgs boson.
We would have to wait for enough statistics to accumulate at the 14 TeV run to see
this Higgs boson in the γγ channel. The H0 and A0 lie at 145 GeV and may just
be detectable through their decays to WW ∗ modes, while the charged Higgs boson
H+ lies at 170 GeV, where it will decay to τ+ντ . These may also be detectable fairly
early in the 14 TeV run. The LSP, as before, is the lightest neutralino χ̃1 with a
mass of 71 GeV, which is permitted by the LEP direct search bound as applied to the
NUHM [320]. The χ̃+

1 and χ̃0
2 lie at around 130 GeV, while the other gauginos are

heavier than 400 GeV. The sleptons and squarks in this model are very heavy, lying in
the range 700 GeV to 1.2 TeV, but the gluino g̃ is comparatively light, having a mass
of 511 GeV.

As a consequence of the low-lying gaugino states contrasted with heavy sfermions,
the dominant sparticle production channels in this model turn out to be to chargino
pairs χ̃+

1 χ̃
−
1 (∼ 50%) and chargino-neutralino pairs χ̃±

1 χ̃
0
2 (∼ 25%), with gluino pairs g̃g̃

bringing up the rear (∼ 20%). The total crosssection in this model would be 4.4 pb at
7 TeV and 27.3 pb at 14 TeV, i.e. much larger than the earlier case of the cMSSM. The
gluino production channel can give rise to the same jets + MET signal as before, as
each gluino will undergo three-body decays through virtual squarks. The production
crosssection for g̃g̃ pairs at 7 TeV is around 0.8 pb, which indicates that the jets + MET
signal may actually be observable in the 7 TeV run at the 3σ–4σ level when 1 fb−1 of
data have been collected. At 14 TeV, of course, a few hundred pb−1 of data would be
enough to obtain a 5σ signal in this channel. Turning now to the chargino production
modes, the rate of production of χ̃+

1 χ̃
−
1 indicates a crosssection for a dilepton + MET

signal around 90 fb, which may not be discernible above the background, especially as
the mass splitting M(χ̃+

1 ) −M(χ̃0
1) is rather small. However, the χ̃±

1 χ̃
0
2 channel could

lead to hadronically quiet trilepton + MET signals at the level of 74 fb, which have
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smaller SM backgrounds and hence could probably be seen as more data are collected
in the 7 TeV run, and would be a sure-shot option at the 14 TeV run.

Before concluding this section, we reiterate that NUHM models which explain the
B+ → τ+ντ discrepancy and, at the same time, remain consistent with the data on
Bs → µ+µ−, will generically come with light gauginos, and lead to collider signals
somewhat similar to those discussed above. However, what we have studied is just
one portion of the NUHM parameter space, inasmuch as we fixed m0 and A0 to very
large values. A more comprehensive scan over the NUHM parameter space might reveal
more patches consistent with all the constraints, and some of these may lead to collider
signals which are different from those discussed in the context of our benchmark point.
The detailed exploration of the NUHM parameter space in this context calls for a
separate study.

6.6 Concluding remarks

With the commissioning of the LHC, the search for new physics beyond the Standard
Model has assumed paramount importance in particle physics at the high scale. How-
ever, low-energy observables from flavor physics, like those from the decays of K, D,
or B mesons, can offer indirect constraints on high scale physics. Indeed, with the
high statistics available at the B factories BaBar and Belle, the freedom available for
new physics has been substantially constrained. Most of the low- energy measurements
have been consistent with the SM, and hence allow only a little leeway for NP. On the
other hand, it is seen that the handful of measurements that indicate a ∼ 2σ deviation
from the SM also restrain the NP parameters from taking arbitrary values.

The recent Belle and BaBar measurements of the branching ratio of B+ → τ+ντ
indicate a significant deviation from the standard model prediction. In this chapter,
we have demonstrated that this measurement has a serious impact on models with
minimal flavor violation involving a charged Higgs boson, ruling out a large portion
of the currently allowed parameter space. In the constrained minimal supersymmetric
standard model, this creates a tension between the measurements of B+ → τ+ντ and
the anomalous magnetic moment of the muon, unless tanβ is small, µ > 0, and A0

takes a large negative value. In fact, a very small region of the parameter space of this
model, with small values of m0 and m1/2, survives all the constraints at 95% C.L. It is
remarkable that this specific region is still consistent with the lightest supersymmetric
particle as the dark-matter. Moreover, it predicts observable supersymmetric signals
in the early runs of the LHC, even perhaps at 7 TeV. We have also shown that a
consistent explanation for the deviation of the B+ → τ+ντ branching ratio from the
standard model can be achieved in a nonuniversal Higgs-mass model, which could also
predict early signals of supersymmetry at the LHC.

While we indicate a rather specific region of parameter space and specific signals
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at the LHC, especially for the cMSSM, there are some caveats which need to be taken
into consideration, even apart from theoretical issues in the construction of the cMSSM.
The first is the issue of experimental errors on the low-energy measurements, which we
have taken at the 2σ level. If these are given more latitude (e.g. taken at the 3σ level)
the constraints from low-energy processes would be considerably relaxed. In particular,
the B+ → τ+ντ measurement would still allow wide regions in the cMSSM parameter
space. However, it would still disfavor very large values of tan β ∼ 50. A more serious
point is the asymptotic behavior RNP

τντ → 1 in the large M+ limit, as compared to the
2σ bound RNP

τντ > 0.99. The strong constraint on NP comes because one must squeeze
the contribution of the charged Higgs bosons into the narrow region 0.99 − 1.00. A
small downward revision in the lower bound on RNP

τντ could allow large tanβ values even
for large M+. Such deviations can come from a variety of sources, such as higher-order
corrections, a slightly-changed value of fB or |Vub|, or a revised experimental result.
On the other hand, a small upward revision of the allowed RNP

τντ band could rule out the
entire gamut of MFV models withM+ > 200 GeV. In particular, even the small leeway
allowed for the cMSSM would then be closed. We note, therefore, that the bounds and
predictions presented here are specific to the experimental limits mentioned in this
chapter.

We have not made a very detailed study of the LHC signals, confining ourselves
to generalities, because it is somewhat premature, at this stage, to make very definite
predictions in this regard. Nevertheless, our work has highlighted the fact that if indeed
we are to accept the cMSSM at face value, as most LHC studies do, then we should take
the cMSSM in its entirety, i.e. all constraints from all sectors, including the low-energy
sector. The next year and the years after it will be the most crucial in determining if
our analysis, in fact, is on the right track.
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Chapter 7

Conclusions

Over the past decade, there have been many measurements of various B decays. To
date, there is no discrepancy with the standard model (SM). However, there have been
several results which show possible hints of physics beyond the SM, particularly in
b→ s transitions. In the most recent of these, the muon forward-backward asymmetry
in B̄0

d → K̄∗µ+µ− has been found to deviate slightly from the SM predictions. If this
is indeed due to the presence of new physics (NP), it implies that there is new physics
in b→ sµ+µ− decays.

In this thesis, we consider all possible Lorentz structures of NP in the transition
b → sµ+µ−. We perform a general analysis that includes NP vector-axial vector
(VA), scalar-pseudoscalar (SP), and/or tensor (T) b → sµ+µ− operators. If such new
couplings are present, they will affect a number of decays: B̄0

s → µ+µ−, B̄0
d → Xsµ

+µ−,
B̄0
s → µ+µ−γ, B̄0

d → K̄µ+µ−, B̄0
d → K̄∗µ+µ−. Here we compute the effects of such NP

operators, individually and in all combinations, on these decays.
Given that our aim is to find NP signals, and then, using them, to identify the

Lorentz structure of the NP, it is crucial to use observables whose values are predicted
precisely within the SM. That is, one must ensure that these predictions have small
hadronic uncertainties. We follow this prescription throughout our analysis. For exam-
ple, in B̄0

d → K̄∗µ+µ−, we present the general angular analysis in the presence of NP
operators. We note that there are several observables whose hadronic uncertainties in
the SM are small. These include the well-known zero crossing of AFB and the vanishing
of A

(2)
T for low q2. We also define a new observable ALT in B̄0

d → K̄∗µ+µ− that also
has a zero crossing in the SM with small hadronic uncertainties.

In a similar vein, in B̄0
d → K̄µ+µ−, where the SM prediction for the forward-

backward asymmetry AFB is zero, we find that NP can produce a large nonzero AFB.
We show that, in the low-q2 region, AFB for new-physics operators is independent of
form factors in the large-energy limit. This indicates small hadronic uncertainties in
the AFB predictions and hence AFB measurements in the low-q2 region can be used to
extract the parameters of the NP operators, to a very good approximation, without
form-factor uncertainties.

As far as CP violating observables are concerned we consider

• CP violation in the differential branching ratio (ACP ), and
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• CP violation in the forward-backward asymmetry (∆AFB).

In addition, for B̄0
d → K̄∗µ+µ−, we analyze

• the CP asymmetry in the longitudinal polarization fraction (∆fL),

• the CP asymmetries ∆A
(2)
T and ∆ALT arising in the angular distributions, and

• the triple-product (TP) CP asymmetries ∆A
(im)
T and ∆A

(im)
LT .

We determine the constraints on the coupling constants in the effective NP oper-
ators by using the currently available data. On the basis of these limits and general
arguments, we expect that the CP-violating quantities in most of the modes can only
be sensitive to the vector-axial vector (VA) couplings, while the scalar-pseudoscalar
(SP) and the tensor (T) NP operators can only contribute, if at all, to certain TP
asymmetries. Our later detailed exploration of the allowed parameter space for all the
NP couplings vindicates this argument. The effects of SP and T NP operators are
therefore discussed only briefly.

On the other hand, the VA operators can have a significant impact on the CP-
violating observables. The SM predicts ACP (q

2) ∼< 10−3 for all the modes, while VA NP
operators allow this quantity to be as large as∼ 10% (for B̄0

d → Xsµ
+µ−, B̄0

d → K̄µ+µ−

and B̄0
d → K̄∗µ+µ−) and even up to ∼ 30% for B̄0

s → µ+µ−γ. Even ∆AFB, expected
to be ∼< 10−4 in the SM, can be enhanced up to ∼ 10% (for B̄0

d → Xsµ
+µ−) and up

to ∼ 40% (for B̄0
s → µ+µ−γ). While ∆AFB in B̄0

d → K̄µ+µ− stays zero even with VA
NP, its value in B̄0

d → K̄∗µ+µ− may be enhanced to ∼ 10% from its SM expectation
of ∼< 10−4.

In B̄0
d → K̄∗µ+µ− the SM predicts ∆fL ∼< 10−4, while VA NP operators allow this

quantity to be enhanced up to ∼ 10%. ∆A
(2)
T , ∆ALT , A

(im)
T and A

(im)
LT are all zero in

the SM. VA NP operators can enhance ∆A
(2)
T up to ∼ 12%, A

(im)
T even up to ∼ 50%,

and A
(im)
LT up to ∼ 10%. ∆ALT can not be enhanced more than ∼ 3% even in the

presence of VA NP operators. Note that while in almost all the cases the impact of
the left-handed VA NP couplings RV,A is dominant, for the TP asymmetry ∆A

(im)
T , the

R′
V,A couplings play a dominating role.
TP’s can also be generated by NP-NP interference. However, we do not find large

effects. The interference of new tensor CTE and CT operators can enhance A
(im)
T (q2)

up to 3% at low q2, while SP-T interference can increase A
(im)
LT (q2) up to only 0.2% at

low q2.
It is quite possible that if the NP is of the VA type, its presence would first be indi-

cated through the CP-conserving/CP-averaged quantities. However, the CP-violating
signals considered in this thesis are so robust (orders of magnitude more than the
SM predictions) that these may be the ones that will unambiguously establish the
presence of NP of the VA kind. Moreover, hadronic uncertainties play a very minor
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role in the CP-violating asymmetries considered in this thesis. A combined analysis
of CP-violating and CP-conserving signals may allow even the determination of the
magnitudes and phases of the NP coupling constants, in addition to confirming the NP
Lorentz structure.

In the last part of the thesis we have shown that the combined effect of low-energy
measurements – those consistent with the SM (e.g. the branching ratios of Bd → Xsγ
and Bs → µ+µ−) as well as those showing deviations from the SM (e.g. the anomalous
magnetic moment of the muon, and the branching ratio of the B+ → τ+ντ ) – results
not only in indicating new physics, but also in pinpointing the relevant new physics
parameters. In particular, we have pointed out that the latest measurement of B+ →
τ+ντ branching ratio has a large impact on a large class of NP models, especially those
which include a charged Higgs boson H+. In fact, the decay B+ → τ+ντ , by itself,
can constrain most of the models with minimal flavor violation that involve an H+.
This is because the latest measurement gives a branching ratio ∼ 2σ more than the
SM prediction. If this discrepancy is to be explained by a MFV model, one needs very
light charged Higgs bosons (M+ ∼< 200 GeV) and large tanβ (∼> 20). On the other
hand, a heavy charged Higgs boson (M+ ∼> 300 GeV) and a small tan β can be barely
consistent with the data to within 2σ, but cannot be considered an explanation for the
gap between theory and experiment. This is a general result that can be applied to
any member of the MFV models, and we choose to apply it to the constrained MSSM,
which is motivated by mSUGRA and is one of the most predictive SUSY models.

In cMSSM models, the charged Higgs boson is typically heavy, so that only the
low tan β region survives the B+ → τ+ντ measurement. When combined with the
anomalous magnetic moment of the muon, the fate of even this region is in jeopardy:
indeed, for a vanishing universal trilinear coupling A0, there is no region in the cMSSM
parameter space that is consistent with both these measurements to 95% C.L.. The sit-
uation can only be salvaged with a large and negative A0, and that too for an extremely
small region in the m0–m1/2 plane. The combined low-energy data thus pinpoint us to
a very specific location (the golden point) in the five-dimensional parameter space of
cMSSM: µ > 0, A0 ≈ −1.25 TeV, tan β ≈ 10 , m0 ≈ 150 GeV, m1/2 ≈ 400 GeV. It is
remarkable that for part of this specific region, including the golden point, the mass
and coupling of the LSP are exactly such that it can account for all the dark-matter
in the Universe. This may either be a coincidence, or an indication that we are on the
right track in our quest.

If we indeed are on the right track, and the golden point of the cMSSM is actually
the NP that we have all been looking for, then we may not have to wait too long for
its discovery. Since the values of m0 and m1/2 at this point are rather small, at the
LHC, one expects a weak 2σ signal in the jets + MET channel even in the 7 TeV run
with 1 fb−1 of integrated luminosity, and a 5σ discovery early in the 14 TeV run with
just 1 fb−1 of data.

While the above suggestive coincidence is quite appealing, and the prospects of the
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detection of SUSY during the early parts of the 14 TeV run quite enticing, even at the
golden point the model barely survives the 95% limit bounds and does not offer any
help at all in explaining the B+ → τ+ντ data – the absence of a light H+ makes it
impossible for the cMSSM to do so. We therefore explore a related but less constrained
model, the NUHM, where the charged Higgs boson mass can be considered to be a free
parameter. Here the presence of an extra parameter works wonders for explaining
the low-energy data, covering the entire experimentally allowed region, including the
central value. This model can also lead to rather spectacular trilepton + MET signals
at the LHC, which may become detectable soon.

A word of caution while reading this thesis in in order. This thesis is based on
papers written in 2010 and 2011. The experimental numbers used in this thesis have
been updated by the LHC using larger data samples. Analyses of the various decay
modes presented in this thesis with the new available data may result in improvements
in the constraints on the NP operators. The impact of major updates have been pointed
out in the footnotes.

We will finish by saying that the manifestation of New Physics, if any, in the
dynamics of flavour transitions is likely to be highly non-generic and subtle. Thus
the interpretation of any NP signal would require a large amount of data with high
precision. If the New Physics scale is sufficiently low then it will be observed through
the production of new quanta at the LHC. In that case we have to study the impact
of such New Physics on flavour dynamics. It is not guaranteed that such new quanta
will have any effect on flavour physics but even then this is an important piece of
information. It might also be that no new particle will be discovered and no deviation
from the SM predictions will be identified. Yet it does not invalidate the theoretical
arguments and experimental evidence pointing to the incompleteness of the SM. It
merely means that we have to increase the sensitivity of our probes, either at the
future hadron colliders or a Super-flavour factory with a luminosity of order 1036 cm−2

s−1 or more. Such efforts are indispensable for our understanding of the true nature of
the underlying microscopic dynamics.
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