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A man is not old as long as he is seeking something.

— Jean Rostand

A B S T R A C T

Dark matter accounts for about one quarter of the Universe. The galaxies
and galaxy clusters are thought to be surrounded by halo-like structures
consisting of dark matter. Yet its particle nature continues to remain un-
known. We know about its macroscopic behaviour from various astrophys-
ical and cosmological observations. We know that the dark matter particles
do not interact strongly with the visible particles, such as protons and
electrons. They are nonrelativistic, i. e., cold, and essentially collisionless,
i. e., they do not interact much with each other as well. However, we do
not know whether the dark matter particles are exactly collisionless and if
not, when they became nonrelativistic and collisionless.

Interestingly, a ‘small’ amount of self-interaction between the dark mat-
ter particles help explain a few astronomical observations better. Long
range self-interaction would also have important implications for dark
matter detection experiments due to the Sommerfeld effect which can
enhance/suppress dark matter annihilation rate. If cold dark matter is
formed ‘late’, then that would affect the large scale structure formation etc.

In this thesis, we studied the novel changes expected in the astrophysical
and cosmological observables if dark matter is not perfectly collisionless
and was not cold at early times. We studied the nontrivial effects of long
range self-interaction in multilevel dark matter model. Firstly, we show
that a simple particle exchange symmetry can lead to a angular momen-
tum and spin dependent selection rule in Sommerfeld effect. Thus p-wave
annihilation, which is otherwise velocity-suppressed, could dominate the
dark matter annihilation today. Moreover, the p-wave nature of the an-
nihilation process would predict a large annihilation rate in the Milky
Way-like galaxies, more than either in galaxy clusters or dwarf galaxies.
Secondly, dark matter particles with multiple states can experience inelastic
scattering in addition to the elastic scattering. We computed the scattering
cross sections in a multilevel dark matter model and showed that inelastic
scattering induced decay could lead to a new mechanism for halo cooling,
and additional drag force between two colliding halos. Lastly, to investigate
when dark matter became cold and collisionless, we studied the changes in
the cosmological observables if the cold dark matter is formed late from a
relativistic collisional fluid. We call it ballistic dark matter because of its bal-
listic bulk motion inherited from the acoustic oscillations in the primordial
fluid. This bulk motion causes oscillations in the matter power spectrum
at small scales. The envelope of the oscillations is enhanced relative to
the power spectrum in the standard model of cosmology. We also give
approximate analytic treatment of the density fluctuations in the ballistic
dark matter fluid.
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1
I N T R O D U C T I O N

All known ordinary matter– the stars, galaxies, luminous and non-luminous
gas clouds etc., that we see around us, forms only a subdominant 5% of
the total energy content in our Universe. The rest of it is inferred to be
residing in other forms whose true nature is still unknown to us [4–8]. The
observation that the Universe is undergoing an accelerated expansion today
gives us a hint that it is dominated by a hypothetical Dark Energy (DE),
that could be the cosmological constant Λ, making up about 68% of the
total energy density [9, 10]. The second most dominant part of the Universe
is called Cold Dark Matter (CDM). It is the nonrelativistic matter which
is needed to explain the formation of large structures, such as galaxies
and clusters of galaxies etc [11]. This ΛCDM model, that includes DE and

Figure 1.1: The energy budget of today’s Universe. Image courtesy: ESA Science
& Technology [12].

CDM, is the most compelling theory of the modern cosmology. It has
been overwhelmingly successful in explaining many observations, like
the accelerated expansion of the Universe, the formation of large scale
structure, the anisotropies in the temperature and polarization of the relic
of the primordial radiation, formation of stars and galaxies etc.

In this chapter, we shall give a brief introduction to the history of the
Universe according the ΛCDM model, discuss about evidences and propo-
sitions about DM, concluding with a few unsettled issues with this cosmo-
logical theory.

1.1 our spacetime

The Universe is observed to be homogeneous and isotropic at large scales
(& 100 Mpc). From the observations of various galaxy surveys, we have seen
that locally averaged galaxy density is homogeneous and the same in every
direction on large scales. This fact dictates the symmetries of the spacetime

1



2 introduction

telling us that the spatial part of the metric is isotropic and homogeneous
while it expands with time. The Friedmann-Lemaître-Robertson-Walker
(FLRW) metric has these properties [13–15],

ds2 = dt2 − a(t)2
[

dr2

1− kr2 + r2 (sin2 θdθ2 + dφ2)
]

. (1.1)

Here the scale factor a(t) is a function of time and denotes the expansion
of the Universe with time. It is evident that the spatial part of the metric
within square brackets signifies homogeneity and isotropy at any given
instance of time. The parameter k determines the curvature of a spatial
hypersurface. It can take only three values– k = 0,+1 or −1. The zero
value of k means the Universe is spatially flat (zero curvature), and k = +1
or −1 means the it is closed or open, respectively. Our Universe is observed
to be flat within a good precision [4]. In the rest of this thesis, we shall only
consider the case k = 0.

It is suggestive to redefine the time coordinate to define the useful notion
of the conformal time τ as follows,

dτ =
dt

a(t)
. (1.2)

In terms of the conformal time, the FLRW metric reads1

ds2 = a2(τ)
[
dτ2 − dr2 − r2 (sin2 θdθ2 + dφ2)] . (1.3)

Very often, conformal time τ is used in place of t to follow the evolution of
various quantities.

The Universe is expanding at an accelerated pace which we can infer
from the redshifted light from receding distant galaxies. This expansion is
encoded in the time variation of the scale factor a(t), which is conveniently
chosen to be unity at present time. Using the FLRW metric, the physical
distance between two points is increasing as dphys = a(t)dco where dco

denotes the comoving distance. The distance to far away objects are often
quoted in terms of redshift z. It is defined as

1 + z =
1
a

(1.4)

which means today is redshift z = 0.
The Einstein equation describes the evolution of the metric under the

influence of the stress energy Tµν residing in it (including the part coming
from the metric itself).

Rµν −
1
2

gµνR = 8πGTµν . (1.5)

Here Rµν and R are the Ricci tensor and the scalar, respectively. They
depend on the metric gµν and its derivatives, and measure the curvature of

1 This form of the FLRW metric tells us that it is conformal to the Minkowski spacetime with
a(τ)2 as the conformal factor. See Ref. [16] for more discussion.



1.2 evolution of energy 3

the spacetime. The stress energy tensor is denoted as Tµν. In this chapter,
we shall assume that the stress energy is constant throughout space. The
effects of inhomogeneities will be discussed in a later chapter. A perfect
isotropic fluid can be completely described by its energy ρ and pressure p,
and has a stress-energy tensor

Tµ
ν =




−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




. (1.6)

Almost all components of the Universe behave like perfect fluid except
during a few transient periods where particle annihilation, phase transition
etc. take place. Apart from these transient phases, the total stress energy
tensor can be well approximated by Eq.(1.6). Now, Eqs.(1.1) and (1.6) can
be used to write down the two independent Einstein equations as

(
ȧ
a

)2

=
8πGρ

3
+

Λ
3

,

2
(

ä
a

)
+

(
ȧ
a

)2

= −8πGp + Λ .

(1.7)

Here Λ is the cosmological constant. These are known as the Friedmann
equations and describe the expansion of the Universe. The need for Λ will
be explained in the next section. The first equation in Eq.(1.7) can be recast
in another convenient form by defining the quantities: Hubble parameter
H = ȧ/a, and critical density ρc = 3H2

0 /(8πG),
(

H
H0

)2

=
ρ

ρc
≡ Ω , (1.8)

where H0 = 73.52± 1.62 km s−1 Mpc−1 is the Hubble parameter today [17]2.
The second equation in Eq.(1.7) describe the acceleration of the expansion.

1.2 evolution of energy

Although the stress energy Tµ
ν is homogeneous throughout space, it evolves

with time. The evolution equation for ρ and p follow from the energy-
momentum conservation equation Tµ

ν;µ = 0,

∂ρ

∂t
+ 3

ȧ
a
(ρ + p) = 0 . (1.9)

Different components of the stress energy tensor can be collectively de-
scribed using the equation of state (EoS) w which relates the energy and
pressure,

p = wρ . (1.10)

2 This value was obtained from the MW Cepheid measurement. Hubble parameter inferred
from CMB observation experiments is H0 = 67.36± 0.54 km s−1 Mpc−1 [4] which is 3.6σ

away from the value in Ref. [17]. The reason behind this mismatch between the values of
the Hubble parameter from CMB experiments and low-redshift measurement data is not
yet understood and is a topic of current research.
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Figure 1.2: Evolution of the energy densities ρ with redshift z. The radiation
density behaves as ∼ (1 + z)4 (red), matter behaves as ∼ (1 + z)3

(green) while DE density is constant (purple). The vertical dashed lines
denote the boundaries between radiation, matter, and DE dominated
eras.

The EoS of relativistic particles (radiation), nonrelativistic particles (matter),
and cosmological constant are given by,

w =





1
3

Radiation

0 Matter

−1 Cosmological constant

(1.11)

Eqs.(1.7) and (1.9) form the complete set of equations that describe the
evolution of the homogeneous Universe and its contents.

As the Universe is expanding, the energy densities of all species are
decreasing, but at different rates. For nonrelativistic matter, assuming the
total number of particles is unchanged, their number density goes down as
∼ 1/a3 where m is the mass of each particle. This is because any physical
length in each dimension is expanding as ∼ a. Therefore, the energy density
of matter ρm = mn ∼ 1/a3.

For radiation, the energy of individual particle ‘redshifts’ as ∼ 1/a in
addition to the 1/a3 decrease of their number density. The energy density
of relativistic particles, therefore, decreases as ρr ∼ 1/a4. If the radiation is
in thermal equilibrium, then it has a well-defined temperature T. As the
total energy density ρr ∼ T4, we can see that the temperature T redshifts
as T ∼ 1/a.

The idea of cosmological constant or dark energy was conceived to
explain the accelerated expansion of the Universe [9, 10]. Its energy density
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is constant throughout space and does not evolve with time either. In
Fig. 1.2, we have shown the evolution of different species with redshift.

1.3 thermal history

At very early time, all visible particles were ‘hot’, i. e., relativistic, and in
thermal equilibrium sharing the same temperature T as the photons. As
the Universe expanded, the temperature cooled down, and particles fell
out of chemical and kinetic equilibrium. If Γ is the scattering rate leading
to the thermalization, then this process becomes inefficient when the rate Γ
falls below the expansion rate of the Universe H = ȧ/a, also known as the
Hubble rate. When this happens the scattering is not fast enough to keep
the participating particle baths in equilibrium, and they start to evolve
independently.

At temperature above T > 10 MeV, the protons (p), neutrons (n), elec-
trons (e−), positrons (e+), neutrinos (ν), and photons (γ) were in thermal
equilibrium. The epoch T ' 10 to 0.1 MeV is known as the epoch of Big
Bang Nucleosynthesis (BBN). During this time, the protons and neutrons
had cooled down enough to form bound nuclei, and the first light ele-
ments started forming. The measured abundance of light elements like
Deuterium (D), Helium (3He,4 He), and lithium (7Li) in today’s Universe
gives us useful information about BBN epoch. Also at around T ∼ 1 MeV,
the process e+e− ↔ ν̄ν becomes slower than the Hubble rate, and the
neutrinos decouple from the thermal bath. The time period since the Big
Bang until zeq ' 3400 (T ' 3 eV) is radiation dominated (RD) era, as the
total energy density in the Universe is dominated by the relativistic energy.
The matter and radiation energy density became equal at zeq ' 3400 when
the Universe became matter dominated (MD). The important event is the re-
combination. When the temperature became T . 0.1 eV, the free electrons
and protons formed bound states of neutral hydrogen and other atoms.
As the Universe mostly consisted of neutral atoms after recombination,
the photons started freely propagating without much scattering. Hence,
the epoch just after recombination is known the ’surface of last scattering’
of the cosmic photons. It is this background of cosmic photons that we
see today as the Cosmic Microwave Background (CMB). It has maintained
its primordial Planck spectrum, but the temperature has redshifted to a
temperature T = 2.7255± 0.0006 K [18]. The DE dominated period started
very late, at z ' 0.3. The thermal history of DM is model-dependent, and
will be discussed in the next section.

1.4 dark matter

CDM is an essential component of our Universe with Ωc = 0.267. It is
thought to be a substance that does not interact much with the visible part
of the Universe except via gravity. So far, all evidences of DM are through
its gravitational interaction with the visible part.



6 introduction

1.4.1 Evidences

Diverse lines of experiments and observations at different length scales
imply existence of DM. At Gpc or larger scales, the observation of the CMB
gives us hint about DM. Experiments, such as WMAP [19], Planck [4], have
measured the tiny fluctuations in the temperature and polarizations of the
CMB sky map with great precision. Among other things, these fluctuations
depend on the net amount of CDM in the Universe. The observed angular
power spectra of the anisotropies can be explained very well within the
ΛCDM paradigm. An excellent discussion about the physics of the CMB
can be found in Ref. [20] (Also see the tutorial in Ref. [21]).

Observation of mergers of galaxy clusters also points towards presence
of CDM in those objects. Structures like galaxies and galaxy clusters are
thought to be surrounded by halos of DM. Merger of galaxy clusters, like
1E0657-558 (Bullet cluster) [11], MACSJ0025.4-1222 [22], MS 1054-0321 [23]
etc. have shown a systematic displacement between the positions of X-
ray emitting hot gas distributions and the distribution of the ‘invisible
mass’ in the cluster using gravitational weak lensing. These observations

Figure 1.3: A composite image of the Bullet cluster merger. The blue region shows
the weak lensing reconstruction of the mass distribution from the
lensed images of the galaxies in the background. The pink region
shows the X-ray emitting gas. Image courtesy: NASA/CXC/SAO [24].

can be explained if each cluster has an essentially collisionless DM halo
dominating its total mass. The baryonic gaseous components of the merging
clusters experience drag force while passing through each other. Whereas
the DM components of the clusters do not feel substantial drag. As a result,
the gaseous component lags behind the DM distribution. This gives an
empirical evidence for collisionless CDM.

Gravitational lensing of the light from distant galaxies provide indepen-
dent evidence for DM. The images of galaxies captured by Hubble space
telescope and other telescopes show the lensing effect due to some invisible
substance in the intermediate region between the source and the observer;
the baryonic matter is unable to produce such large effect. Analysis of
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the lensed images show that such effects can be understood to be caused
by gravitational lensing by DM halos [25, 26]. The lensing analysis also
provide independent estimates of the amount of total DM in the Universe
which is consistent with other analyses [25]. See Ref. [27] for a nice review
on this topic.

The mass contained within a certain radius of a galaxy can be estimated
by measuring its rotation curve. In most of the galaxies, it is seen that
the luminous matter cannot explain the rotation curve [28–31]. If visible
stars were the only mass in a galaxy, then one can show from the Kepler’s
law that the stars’ circular velocity would fall as v(r) ∼ r−1/2 with radius.
Whereas in reality, most galaxies show v(r) ∼ constant towards the outer
radius, implying a ‘dark mass’ that surrounds the galaxies and contributes
3–10 times that of the visible matter to the total mass.

1.4.2 Properties

Several properties of DM can be discerned from the above observations:

• It is cold, i. e., nonrelativistic.

If DM were relativistic, then the particles would have traveled longer
distances because of high velocity. Its mean free path would be longer.
As a result, all structures at length scales smaller than its mean free
path, like the galaxies and dwarf galaxies, would not have formed.
The fact that we see such structures around us today tells us that
DM has to be nonrelativistic [32, 33]. Also, relativistic DM would
affect the matter power spectrum, as well as the CMB angular power
spectrum significantly. The earliest evidence of CDM is from the time
of recombination. The possibility that DM may have been relativistic
during pre-recombination era raises an interesting question about the
formation epoch of CDM. We shall discuss more about this in a later
chapter.

• It is dark, i. e., it does not interact much with the visible particles.

Several experimental endeavours are currently going on along three
main avenues– direct detection, indirect detection, and collider search,
to detect any interaction between DM and the Standard Model (SM)
particles. Direct detection experiments are looking for scattering be-
tween DM particle and the atoms inside a detector in laboratory [34–
38]. The indirect detection experiments are trying to detect any an-
nihilation or decay of DM particles into SM particles in various
astrophysical objects like galaxies, dwarf galaxies etc [39–43]. DM
could be produced in high energy particle collisions at colliders, such
as LHC, and would be ‘seen’ as missing energy. Nonobservation of
any such event puts upper limit on DM–SM particle interaction cross
section [44–46].

• It is essentially collisionless.
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The weak lensing maps of DM halos in several galaxy cluster mergers
tell us that DM cannot be strongly self-interacting as it would cause
lag between the colliding halos [11, 22, 23]. Comparison of data with
DM N-body simulations show that DM of mass mχ in galaxy clusters
must have self-interaction cross section σ/mχ . 0.1 cm2/g [47].

1.4.3 Thermal dark matter

A popular candidate for DM is a weakly interacting massive particle
(WIMP) that was in thermal equilibrium with other particles at early times,
and its relic population forms the DM density in the present Universe.
Because it is weakly interacting, it would have the properties of being dark
and collisionless. Annihilation into other lighter particles would change its
number density nχ as

1
a3

d(nχa3)

dt
= −〈σv〉

[
n2

χ − (neq
χ )2] , (1.12)

where 〈σv〉 is the thermally averaged cross section for annihilation, and neq
χ

is the equilibrium number density of χ. On the LHS, the number density is
multiplied by a3 to take care of decrease of nχ just due to the expansion of
the spacetime. As the Universe expands, the density becomes too sparse
for two DM particles come together and annihilate into other particles.
This happens roughly when the annihilation rate nχ〈σv〉 drops below the
Hubble expansion rate H(t). After this, the annihilation process freezes out,
and the comoving number density becomes constant. A straightforward
calculation yields the final energy density, the relic abundance of χ as

Ωχ =
H(mχ)x f T3

0

30m2
χ〈σv〉ρc

, (1.13)

where H(mχ) is the Hubble parameter at T = mχ, x f = mχ/Tf , Tf is
the freeze-out temperature, and T0 is the photon temperature today. For
mχ = 1 GeV to 100 TeV, x f lies within 20− 30. Therefore, WIMP-like DM
is always nonrelativistic when its relic abundance is formed. Clearly, the
energy density in Eq.(1.13) only decreases as ∼ T3

0 . A cross section of about
〈σv〉 ' 2.2× 10−26 cm3/s is needed to thermally produce DM with the
correct relic abundance [48].

1.5 small scale challenges to collisionless dark matter

Structure formation with collisionless CDM happens at all length scales.
The properties of a large cluster-size DM halo would be similar to a
smaller galaxy or dwarf galaxy-size halo. This self-similarity is evident in
all N-body simulations run with collisionless CDM all the way down to
smallest mass scale resolved. Higher resolution simulations revealed that
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the individual halo density profile is can be well fitted by the Navarro-
Frenk-White (NFW) profile [49]

ρ(r) =
ρs

r
rs

(
1 +

r
rs

)2 , (1.14)

where ρs and rs are the scale density and scale radius, respectively. This
profile was found to be virtually universal as it could fit to any DM halo
irrespective of its size.

• Diversity in galaxy density profile

However observations at galactic and smaller scales have revealed
a few issues with this simple universal picture. The NFW profile
a‘cuspy’ central density, ρ ∼ r−α with α ' 1, as in the NFW profile in
Eq.( 1.14). The measurements of rotation curves in several low-mass,
DM-dominated galaxies show that they instead have shallow ‘core’
α = 0− 0.5 at the center [50–55]. This is known as core-vs-cusp issue.
To resolve this discrepancy, hydrodynamic simulations with SPH
codes were performed with complex astrophysical processes, such as
star formation and supernova explosion. It has been shown that these
astrophysical processes can blow away DM from the central region
of the halo leading to shallow cores as observed [56, 57].

A comparison between the MW satellite galaxies and the massive
subhalos of MW-size halo in CDM simulations show that the MW
satellites systematically have less central density than the subhalos
in the simulations [58]. The question here is that if the observed
satellite galaxies do not occupy the most massive subhalos of the
MW and more massive subhalos exist, then why they have failed
to form galaxies. This is known as the too-big-to-fail problem. Similar
observation has also been made in the satellites of the Andromeda
galaxy [59].

These problems can be thought as two different manifestations of
a single diversity problem. Galaxies with the same maximum veloc-
ity Vmax show a wide variety of inner densities. This is shown in
Fig. 1.4 where circular velocities Vcirc at 2 kpc of several galaxies are
plotted with their maximum rotation velocity Vmax in the horizontal
axis. Galaxies with same Vmax are hosted by halos of similar mass.
Large diversity in circular velocity shows a similar variety in density
profile. This observation has not been satisfactorily explained in the
paradigm of collisionless CDM. As was pointed out in Ref. [55], it is
more prominent for dwarf galaxies. They tend to have lower circular
velocities at small radii.

Efforts have been made to explain this observation from the baryonic
feedback near the centers of DM halos using hydrodynamic simula-
tions. Initial efforts have found it difficult to reproduce such a diverse
set of density profiles [55]. However, Ref.[56] have used an improved
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Figure 1.4: Circular velocity at 2 kpc radius of galaxies are plotted with their
maximum velocity Vmax, a tracer for the total mass of the DM halo.
The galaxies show a wide diversity even for a single Vmax. This figure
is reproduced from Ref. [60].

version of SPH (Smoothed Particle Hydrodynamics) code to show
that the shape of inner density profile changes over time as the halo
accrete more mass. The final shape depends on the ratio of stellar to
DM mass in the halo, and hence can exhibit a varied inner slope of
density profile.

However, it is not completely clear if these problems can be entirely
resolved by modelling the complex baryonic physics in simulations
more carefully as there are contradictory claims from different groups
of researchers. For example, the authors in Ref. [61] did not obtain
cores in dwarf galaxy simulations, but were able to solve the too-
big-to-fail problem. Also, several dwarfs have been observed to have
steeper inner density slopes, such as NGC5963 (α = 1.28), NGC6689

(α = 0.8), NGC5949 (α = 0.88), NGC4605 (α = 0.88) [62]. Therefore
it is worthwhile to explore other avenues to address these issues. In
fact, one of the first proposed solutions to the core-vs-cusp problem
involves self-interacting DM particles, which forms the topic of the
next chapter.

• Missing satellites of the Milky Way

We see fewer satellite galaxies around the MW than we expect to see
according to CDM simulations [63, 64]. There are only ∼ 50 known
galaxies in the vicinity of the MW, whereas the simulations predict
O(1000) satellite galaxies for a DM halo of MW mass that should
have hosted galaxies in them.
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Warm dark matter, (partially) acoustic dark matter (DM interacting
with a relativistic species, dubbed dark radiation) etc. have been put
forward as answer to the question of missing satellites. In these
models, structure below a certain length scale is washed out due
to free streaming of DM or diffusion of relativistic particles. For
example, in case of warm dark matter the free streaming length scale
is inversely proportional to its mass [65]

λfs = 33
( mχ

1 keV

)−1.11
kpc (1.15)

which corresponds to a mass

Mfs = 2× 107
( mχ

1 keV

)−3.33
M� . (1.16)

This suppression of DM structure below a certain mass scale is known
as the collisionless damping. Collisional damping can also suppress
structure at small scales if the DM particles interacted with dark
radiation at early times. In this scenario, the relativistic particles
diffuse out of the overdense DM regions, erasing out structures at
length scales shorter than its mean free path

λ2
mfp =

∫ tdec

0
dt

1
a2(t)Γ(t)

(1.17)

where Γ is the scattering rate and tdec is the time of decoupling. It is
also known as the Silk damping.

However it has also been shown that if proper completeness factor of
the SDSS galaxy survey and the spatial distribution of the satellites of
the MW are taken into account, then the collisionless CDM prediction
could be consistent with the observations [66].

The interested reader is suggested to refer to the reviews in Refs.[60, 67, 68]
for more detailed discussions about small scale problems.





2
S E L F - I N T E R A C T I N G D A R K S E C T O R

In this chapter, we shall describe a solution to the small scale problems
using beyond collisionless CDM scenario, discuss the general aspects of
such models with an emphasis on its late-time phenomenology.

2.1 motivation

Several ‘beyond-standard’ collisionless CDM models have been proposed
to address the small scale challenges to ΛCDM discussed in the previous
chapter. Self-interacting dark matter (SIDM) model is one of them.

In the ΛCDM paradigm, the DM particles are assumed to be perfectly col-
lisionless. They interact only via gravity. On the other hand, SIDM models
predict that the DM particles have secret interactions among themselves. For
local DM density nχ and self-scattering cross section σ, the mean free path
would be λmfp = 1/(nχσ). As we do not know the mass of the DM particle,
it is customary to express the mean free path as mχ/(ρσ), and quantify the
strength of the self-scattering in terms of σ/mχ. Ref. [69] first suggested
the idea of SIDM. Similar to collisionless CDM, the SIDM particles start
forming clumps under the influence of gravity and start forming halos.
At the initial stage of structure formation, the number density is not large
enough for the nongravitational self-interaction to have any effect. After
forming halos, at the center the density shoots up as more and more DM
particles fall towards the center. When the mean free path becomes smaller
than the typical size of a halo, the particles start undergoing collisions.
As a result, SIDM can transport ‘heat’ or kinetic energy from hotter inner
region to the relatively colder outer part through scattering. Eventually the
particles at the center come to equilibrium and form an isothermal core.

Core-formation in dwarf galaxies have been confirmed by several N-
body simulations. It has been found that a DM self-scattering cross section
σ/mχ ' 0.5− 50 cm2/g can alleviate the core-cusp and the too-big-to-fail
problems [70–73]. On the other hand, the galaxy cluster merger observations
put an upper limit on this cross section σ/mχ . 0.1 cm2/g [47]. Therefore,
to simultaneously solve the small scale problems and satisfy the constraint
from galaxy cluster mergers, a velocity-dependent scattering cross section is
needed, i. e., σ/mχ ' 1 cm2/g at velocity v ∼ 10 km/s in dwarf galaxies to
σ/mχ . 0.1 cm2/g at velocity v ∼ 1000 km/s in galaxy clusters. Recently,
Ref. [74] have found that the diversity in the galactic rotation curves can
be explained in the SIDM framework. A DM self-scattering cross section
σ/mχ = 3 cm2/g has been shown to be able to explain the density profiles
of two dwarf galaxies, namely Draco and Fornax, with very different central
densities [75]. The core-collapse of DM halo due to self-scattering and tidal
interaction with the MW potential plays a key role here. Therefore the

13
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observed diversity in the density profiles of dwarf galaxies could very well
be a result of a complex interaction between several effects, like baryonic
feedback, DM self-scattering, tidal field of MW etc.

Strong constraint from direct detection experiments also motivates us
to consider theories with additional light particles residing in the dark
sector that interacts with the DM. Currently, direct detection experiments
constrain the DM-visible sector interaction to such a small value which
would imply overabundance of thermal DM. If other light particles are
present in the dark sector, then during relic abundance formation, DM
would annihilate into these particles, and could yield the correct relic
abundance, without running into problems with the direct detection bound.
At the same time, such models can also successfully address the small scale
problems [76–78]. From the particle physics perspective as well, it is natural
to expect that the dark sector contains more than just one particle. Very
often the DM is predicted to be the lightest state of a multiplet of some
gauge symmetry. One such example is the minimally supersymmetric SM.
In these models, DM is naturally accompanied by its heavier ‘cousins’, as
well as gauge particles mediating interactions.

Numerous particle physics models have been proposed with interactions
between DM particles [76, 79–96]. Models with light force mediators are
of special interest. For example, if the DM is charged under a gauge
symmetry that is spontaneously broken, then it can become stable because
of charge conservation. The gauge boson mediates the self-interaction. For
global symmetries, a scalar can also mediate the interaction. A few possible
interactions between the DM χ and the mediators Aµ or φ are given below–

L ⊃ gAµχ̄γµχ , Vector

⊃ gAµχ̄γµγ5χ , Pseudovector

⊃ yφχ̄χ , Scalar

⊃ yφχ̄γ5χ , Pseudoscalar

(2.1)

In Chs. 3 and 4, we shall discuss the novel phenomenologies of self-
interacting DM models.

The CMB experiment data tells us that the dark sector is collisionless at
least since the time of recombination. However, we do not have any clue
about the exact time when it became collisionless. The other epoch prior
to recombination which we can probe is the time of BBN, but because the
Universe was radiation dominated at that time we cannot tell anything
about the existence of collisionless DM. Therefore, it is very much possible
that the dark sector was a tightly-coupled collisional fluid until redshift
z ∼ 104. In fact, most of the DM models predict that DM was relativistic
and collisional at early times. This motivates us to investigate the effects
of late-forming cold collisionless dark matter on various cosmological
observables. We shall discuss more about this in Ch. 5.

In the rest of this chapter, we discuss the interesting phenomenology of
such models.
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2.2 nonrelativistic field theory

Today DM particles are nonrelativistic (NR), and their velocity disper-
sion varies over 2–3 orders of magnitude between astrophysical objects
of different size. Galaxy clusters have the largest velocity dispersion
v ∼ O(1000 km/s). MW-like galaxies, v ∼ O(100 km/s) and dwarf galax-
ies, v ∼ O(10 km/s) have smaller velocities. Therefore it is suggestive to
take the NR limit of the DM model to study its late time phenomenology.

This is done using the formalism of Nonrelativistic Effective Field Theory
(NREFT). We shall give an example of this using NR electron-positron in
quantum electrodynamics.

2.2.1 Nonrelativistic quantum electrodynamics

Let us consider the electrons and positrons interacting with each other
through photons. The Lagrangian of this system is given by

L = ψ̄e(i/∂ −me)ψe − gAµψ̄eγµψe −
1
4

FµνFµν (2.2)

where Fµν = ∂µ Aν − ∂ν Aµ. Moreover, let us assume that the electrons and
positrons are NR, such that their kinetic energy is

E ' me +
1
2

mev2 . (2.3)

In this limit, it is advantageous to use the two-component spinor notation
for the Dirac fermion corresponding to electron and positron. Thus we
write

ur(p) =

√
E + me

2E


 ξr

σσσ · p
E + me

ξr


 , vr(p) =

√
E + me

2E




σσσ · p
E + me

ηr

ηr


 .

(2.4)
Here r, s are the spin indices, and |p|/me = v.

In the nonrelativistic limit, typical momentum exchange is much below
the scale of the mass me of the NR electron. The momentum exchange is of
order ∼ mev, mev2 etc., and hence, are long range. Short range processes of
distance scale ∼ 1/me are described by the higher dimensional effective
operators. The Lagrangian consists of the following three parts,

L = Lkin + Lpot + Lann + . . . . (2.5)

Here Lkin is the kinetic energy part and involves its NR form

Lkin = ξ†
(

i∂t +
∇∇∇2

2me

)
ξ + η†

(
i∂t +

∇∇∇2

2me

)
η . (2.6)

It is straightforward to derive this starting from Eq.(2.2) and (2.4) and
neglecting all terms O((|p|/me)3).
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Figure 2.1: A virtual photon exchange between a pair of electron and positron.

The second part Lpot contains the long range interaction potential be-
tween two particles which arises from nonlocal interaction typical to any
NREFT,

Lpot = − ∑
χ=ξ,η

∫
d3r (χiχj)

†Vijkl χkχl (2.7)

where χi stands for the spinors ξ and η, and Vijkl(r) represents the inter-
action potential between the two-body states χiχj and χkχl . The form of
the potential can be derived from a single photon exchange graph. One
such example for a pair of electron and positron is shown in Fig. 2.1. In
momentum space, its amplitude reads

iM = ūr(p)(−igγµ)us(p′)
−igµν

q2 + iε
v̄m(k)(igγν)vn(k′) ,

= −ig2ūrγµus 1
q2 + iε

v̄m(igγµ)vn .
(2.8)

Here q = p′ − p = k− k′. We approximate q2 ' q2 = (p− p′)2 neglecting
the kinetic energies (∼ O(mev2)) of the NR particles. For the spinors, it can
easily be checked that in the NR limit

ūr(p)γ0us(p′) =
[

1− 1
8m2

e
(p2 + p′2) +

p · p′
4m2

e

]
ξr†ξs ,

ūr(p)γius(p′) =
1

2me

[
(p + p′)iξr†ξs + iξr†((p− p′)× σσσ)iξs] ,

v̄r(p)γ0vs(p′) =
[

1− 1
8m2

e
(p2 + p′2) +

p · p′
4m2

e

]
ηr†ηs ,

v̄r(p)γivs(p′) =
1

2me

[
(p + p′)iηr†ηs + iηr†((p− p′)× σσσ)iηs] .

(2.9)

Therefore at the leading order, we can write Eq.(2.8) as

iM =
−ig2

q2 + iε
(ξr†ξs)(ηm†ηn) . (2.10)

This amplitude is to be compared with the Born amplitude of scattering in
a potential V(q) in the NR limit [97],

〈p′|iT|p〉 = −iV(p′ − p) 2πδ(Ep′ − Ep) . (2.11)

The comparison yields

V(q) =
−g2

q2 + iε
, (2.12)
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which after taking a Fourier transform reads

V(r) = − g2

4πr
= −α

r
. (2.13)

Here the fine structure constant α is defined as α = g2/4π. This represents
an attractive Coulomb potential acting between the oppositely charged
electron and positron.

One can repeat a similar exercise for two electrons and two positrons.
In both cases, it is a repulsive Coulomb potential. It means that charged
particles experience long range interaction potential V(r), and it is more
pronounced when the particles are NR. It is a manifestation of the exchange
of infinite number of virtual photons between the particles [98]. Looking
at the kinetic Lkin and the potential Lpot parts of the Lagrangian, it is not
difficult to see that the equation of motion of the NR fields is given by a
Schrödinger equation with the potential V(r),

[
− 1

2µ
∇∇∇2 + V(r)− E

]
Ψ(r) = 0 . (2.14)

Here Ψ(r) is the wavefunction, µ is the reduced mass, and E is the total
energy of the particles in the center-of-mass frame which, for the scattering
state, reads E = µv2

rel/2 with vrel being the relative velocity between the
particles.

In passing, we mention that if the mediator of the interaction were
massive with a mass mφ, then Eq.(2.13) becomes the Yukawa potential

V(r) = −α e−mφr

r
. (2.15)

Unlike Coulomb, this potential is exponentially screened beyond a distance
∼ 1/mφ. For a Yukawa interaction between a scalar and a fermion, potential
is again the same except that it is always attractive.

Eq.(2.14) describes the evolution of the NR particles under the influence
of a potential V(r), but it does not contain any information about the
annihilation of electron and positron. The last term in Eq.(2.5) contains
this information through higher dimensional four-Fermi operators. As
mentioned before, we cannot draw any Feynman graph with photons
in the external leg. They can appear only as internal propagators. Such
operators are included in the Lann term in Eq.(2.5). Cutkosky theorem tells
us that the annihilation of a pair of electron and positron into two photons
can be represented as the imaginary or absorptive part of the Wilson
coefficients of these four-Fermi operators. Suppose, S is the scattering
matrix of a process with a transition matrix T,

S = 1− iT . (2.16)

The unitarity property of S implies

〈a|T†T|a〉 = i〈a|(T − T†)|a〉 , (2.17)
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e+

e−

e+

e−

Figure 2.2: One-loop graphs that contribute to the four-Fermi operator
χ†

e+χe−χ†
e+χe− in NRQED.

for a general state |a〉. Now using the completeness of the states ∑
| f 〉
| f 〉〈 f | = 1

on LHS gives
∑
| f 〉
〈a|T†| f 〉〈 f |T|a〉 = 2i Im (〈a|T|a〉) . (2.18)

This equation tells us that the cross section of the process |a〉 → | f 〉 is
proportional to the imaginary part of the amplitude 〈a|T|a〉.

The general form of Lann is

Lann = ∑
i,j,k,l

cij,kl(
2s+1`J)

m2
e

Oij,kl(
2s+1`J) , (2.19)

where Oij,kl(
2s+1`J) are the four-Fermi operators χ†

i χjχ
†
k χl , and cij,kl(

2s+1`J)

are the respective Wilson coefficients. We have classified the operators
according to their spin s and angular momentum `. The Wilson coefficients
are obtained by matching the corresponding four-point function in full
theory with the operator Oij,kl(

2s+1`J). The leading order contribution to
cij,kl(

2s+1`J) comes from the one-loop graph of the four-point function.
For annihilation of electron and positron, the first two graphs in Fig. 2.2

are relevant1. The two graphs correspond to the t and u-channels, respec-
tively. After a long but straightforward calculation, we find

Im(c(1S0)) = πα2 . (2.20)

This formalism is useful for any NR particles interacting with each other
through a lighter particle. We shall use this extensively in the later chapters
while discussing about the annihilation and scattering of NR DM particles.

2.3 phenomenologies & signatures

2.3.1 Sommerfeld effect

SIDM models with light mediators show large enhancement/suppression
of DM annihilation rate through Sommerfeld effect. Arnold Sommerfeld
first calculated this effect for electron-positron annihilation in 1931 [99].
When two particles experience a long range interaction prior to their anni-
hilation, their wavefunctions are modified. In the absence of any potential,
the incoming particles are described by plane waves with constant ampli-
tude. An attractive potential ‘pulls’ the particles towards each other, and

1 The third graph has a fermion loop in the middle. Hence, it is not relevant for e+e−

annihilation.
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hence, distorts the wavefunctions from plane waves. A repulsive potential
shows the opposite effect. This is known as the Sommerfeld effect. In the NR
regime, Feynman graphs with more number of loops do not acquire higher
powers of coupling making the theory nonperturbative.

In NREFT, typical momentum exchange between the NR particles is of
the order of Bohr momentum, and hence scales as |p| ∼ αmχ. For example
in NRQED, typical photon momentum is ∼ αme, and the kinetic energy
of electrons and positrons is |p|2/me ∼ α2me. While computing a loop
momentum integral in NREFT, we need to keep these α-scalings in mind.

k1

k2

p

k1

k2

k1

k2

p

Figure 2.3: Each successive graph with an additional photon propagator always
scales with the coupling as 1/α. Hence the whole ladder diagram with
infinite number of terms needs to to be evaluated.

Now, let us estimate the α-scaling of the e+e− annihilation graphs shown
in Fig. 2.3. The first graph is the tree level graph. The second graphs has
one extra photon and two fermion propagators. It scales as ∼ α · α−2 ∼ α−1.
In the third graph, the additional factor coming from the loop is

∫
d4 p

i
p2 + iε

· 1
/k1 − /p + me + iε

· 1
/k2 + /p −me + iε

. (2.21)

The photon propagator contributes a factor of α−2, the electron and positron
propagators are offshell by an amount ∼ |p|2/me, thus each of them
gives α−2. The integration measure gives α2 · α3. Putting all together yields
α5 · α−4 · α−2 · α−2 · α2 ∼ α−1. Therefore, as we keep adding more and more
photon lines between the annihilating pair of electron and positron, the α-
scaling remains the same and those graphs contribute at the same order of
α as the one-photon exchange graph. As a result, a perturbative expansion
in powers of α is not possible. One needs to sum over all such graphs
in Fig. 2.3 up to infinite number of rungs. Techniques like Bethe-Salpeter
equation needs to be invoked to compute such diagrams.

Sommerfeld effect was included in DM annihilation calculation as early
as in 2002 [100–105]. Later it was invoked to explain the positron excess in
the cosmic rays seen by a host of experiments, such as PAMELA, Fermi-LAT,
MASS, Wizard/CAPRICE, AMS-01, and HEAT [106–110]. For DM annihi-
lation to account for this excess, the annihilation cross section needs to be
significantly larger than its thermal relic value σv ' 2− 3× 10−26 cm3/s.
Sommerfeld enhancement provides a way to achieve such large cross
section when the DM particles are nonrelativistic at late time, without
changing the relic cross section.
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Sommerfeld effect is quantified as the relative change in the wavefunction
at the point r = 0 of annihilation,

S =
|Ψ(0)|2
|Ψ0(0)|2

. (2.22)

Here, Ψ0(r) is the wavefunction of the free particles in the absence of any
potential. The difference in the length scales between the long range poten-
tial and the actual annihilation allows us to factorize these two processes,
such that the net annihilation cross section σ is given by

σ = Sσ0 , (2.23)

where σ0 is the cross section without any Sommerfeld effect.
We need to solve the Schrödinger equation in Eq.(2.14) in scattering state

to find the Sommerfeld factor. In most of the cases of our interest, the
potential is rotationally symmetric. Therefore, we can expand Ψ(r) in the
partial wave basis as

Ψ(r) = ∑
`

A`P`(cos θ)Rk`(r) . (2.24)

Here P`(cos θ) are the Legendre polynomials, Rk`(r) are the radial wave-
functions, k = µvrel is the momentum, and A` are the coefficients for each
partial wave. The radial wavefunctions are redefined as

Rk` =
u`(r)

r
, (2.25)

and the equation for u`(r) becomes

− 1
2µ

d2u`

dr2 +

(
`(`+ 1)

2µr2 + V(r)− E
)

u` = 0 . (2.26)

The asymptotic Ψ(r) at large r is matched with the following

Ψ(r) r→∞−→ e−ikz + f (θ)eikr , (2.27)

with f (θ) being the scattering amplitude. Therefore, the Sommerfeld factor
S becomes

S =

∣∣∣∣
1
k

Rk0(0)
∣∣∣∣
2

=

∣∣∣∣
1
k

du0(0)
dr

∣∣∣∣
2

. (2.28)

For Coulomb potential (Eq.(2.13)), an analytic form of S0 for ` = 0 is given
as [99, 111]

S0 =
πα/v

1− exp(−πα/v)
. (2.29)

This factor goes to unity, S → 1 in the large velocity limit v ' 1 which
is expected in the relativistic limit. It grows as ∼ 1/v for small velocities.
Higher partial wave Sommerfeld factors for Coulomb potential was derived
in Ref. [98],

S` = S0

`

∏
n=1

(
1 +

1
4n2

α2

v2

)
. (2.30)
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Figure 2.4: (Left) Sommerfeld factors for Yukawa potential, ` = 0 (solid blue), ` = 1
(dot-dashed red), and for Coulomb potential (dashed yellow). Note
the different velocity dependence of the partial waves. The parameters
are: coupling α = 0.01, DM mass mχ = 1 GeV, and mediator mass
mφ = 1 MeV. (Right) Variation of the Sommerfeld factor for ` = 0 the
Yukawa potential with velocities v = 10−3 (dashed blue) and v = 10−4

(solid red). Other parameters are: α− 0.01, mχ = 1 GeV.

In the small velocity limit, the Sommerfeld factor for `-th partial wave
grows as ∼ 1/v2`+1.

For Yukawa potential, a closed form analytic solution for S` is not feasible.
However, Yukawa potential can be replaced with the Hulthén potential

VH(r) =
αm∗e−m∗r

1− e−m∗r
, (2.31)

with m∗ = π2mφ/6, for which analytic solution is possible [98]. In the left
panel of Fig. 2.4, we show the velocity dependence of the Sommerfeld
factors for both Coulomb and Yukawa potentials. Various partial waves
have different behaviour in the small velocity limit. The main difference
between the two potentials is that the factor for Coulomb potential keeps
increasing as the velocity gets smaller and smaller without any bound.
This is result of the infinite range of the Coulomb potential. On the other
hand, the Yukawa potential has a finite range ' 1/mφ. When the de Broglie
wavelength of the particle gets larger than the range of the potential, i. e.,
when k� mφ, the particles stop ‘seeing’ the potential, and the Sommerfeld
factor saturates to a constant value as can be seen in Fig. 2.4.

In the right panel of Fig. 2.4, we show the variation of the ` = 0 Sommer-
feld factor with the mediator mass mφ. The important feature in this figure
is the appearance of the resonances at certain values of mφ. The resonances
are the result of the formation of virtual (zero energy) bound states between
the DM particles. The attractive Yukawa potential has a finite number of
negative energy bound states. Even though the annihilating DM particles
are in the positive energy state (E > 0 at infinite distance), the bound
state energy levels below E = 0 can enhance the wavefunction near the
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annihilation point. This gives rise to the large enhancements seen in the
right panel of Fig. 2.4. The resonance positions are given by [98]

αmχ

κmφ
= n2, n = 1, 2, 3, . . . , (2.32)

where κ = π2/6. See the Chapter XVII in Ref. [97] for more discussion on
resonances in zero energy scattering.

2.3.2 Self-scattering

DM self-scattering is inevitable in the models where self-interaction be-
tween DM particles (Eq.(2.1)) is present that causes the Sommerfeld en-
hancement. Ref. [86] first computed this cross section in a DM model. Later
on, DM scattering with light mediator has been extensively used to achieve
a unique velocity-dependent cross section that can yield a large enough
cross section to solve the core-vs-cusp problem as well as satisfy the upper
limit from the Bullet cluster observation.

The scattering cross section can be calculated again by solving the
Schrödinger equation Eq.(2.26). However in this case, we need to solve this
equation for many partial waves ` to find the phase shift δ` defined as [97]

f (θ) =
1

2ik

∞

∑
`=0

(2`+ 1)P`(cos θ)e2iδ` , (2.33)

where f (θ) is the scattering amplitude defined in Eq.(2.27). The total cross
section σtot is defined as

σtot =
∫
| f (θ)|2dΩ =

∫ dσ

dΩ
dΩ . (2.34)

Substituting Eq.(2.33) in Eq.(2.34) and using the orthogonality of P`(cos θ)

yields

σtot =
4π

k2

∞

∑
`=0

(2`+ 1) sin2 δ` . (2.35)

Even though the sum continues ad infinitum, for all practical purpose it
can be truncated at a finite max such that

`max '
k

mφ
. (2.36)

The phase shifts from higher partial waves are negligible because the
‘impact parameter’ ∼ `/k for the partial wave ` becomes larger than
the range of the potential ∼ 1/mφ. We follow the numerical procedure
illustrated in Ref. [112] to compute the cross section.

If the mediator is light, then the differential cross section dσ/dΩ has
a divergence in the forward direction, θ ' 0. It means large scattering
probability but with small momentum transfer. To mitigate this, alternative
definitions, like transfer and viscosity cross sections are used. Transfer
cross section is defined as

σT =
∫ dσ

dΩ
(1− cos θ)dΩ . (2.37)
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The weight factor (1− cos θ) removes all contribution from the forward
divergence. Viscosity cross section is defined as

σV =
∫ dσ

dΩ
sin2 θdΩ . (2.38)

These alternative definitions are specially important for N-body simulations
of SIDM particles. Large forward scattering is inconsequential for such
simulations as the final state is the same as the initial state if the DM
particles are identical.

In Fig. 2.5, we show the variation of σ/mχ with the mediator mass
and DM velocity. To understand the dependence of the cross section on
different parameters, let us take the Born limit αM/mφ � 1. In this limit,
the potential essentially becomes a short range contact interaction, and the
cross section can be computed analytically [81],

σBorn
T =

2πβ2

m2
ρ

[
ln
(
1 + R2)− R2

1 + R2

]
. (2.39)

Here, β = 2αmφ/(mχv2
rel), and R = mχvrel/mφ. For large velocity, the

approximate value is σBorn
T ' 8πα2

m2
χv4

rel
(ln R2− 1). In this limit, the de Broglie

wavelength of the scattering particles becomes much smaller compared
to the range of the potential where it is Coulomb-like, and the cross
section goes as ∼ 1/v4 as in Rutherford scattering. In the low velocity
limit (R � 1), only the s-wave scattering is important, and the cross
section saturates to a constant value. The limiting form of the transfer cross
section is σBorn

T ' 4πα2m2
χ/m4

φ. These features are evident in Fig. 2.5. Thus
it shows that light mediator DM models are capable of achieving large
self-scattering cross section in the dwarf galaxies and smaller value in the
galaxy clusters, as was mentioned in Sec. 2.1. Away from the Born region,
for smaller values of mφ, zero energy resonances from virtual bound state
formation (see Eq.(2.32)) results in large cross section for certain values of
mφ. Therefore, scattering resonances appear at the same places as in the
case of annihilation.

In addition to the resonances, we note the appearance of anti-resonances
between the resonances. They are the result of the Ramsauer-Townsend
effect when the low energy s-wave phase shift δ0 becomes integer multiples
of π [113].

2.3.3 Extra relativistic degrees of freedom

SIDM models generically predict light particles in addition to the DM
particle. They contribute to the total radiation energy density in the early
Universe when it was radiation dominated. The extra relativistic degrees
of freedom is parameterized as the effective number of thermal neutrinos Neff,

Neff =
∑ ρνi

ρFD
ν

+
ρDR

ρFD
ν

(2.40)

≡ NSM
eff + ∆Neff . (2.41)
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Figure 2.5: (Left) Three types of self-scattering cross section σtot/mχ, σT/mχ, and
σV/mχ as a function of the mediator mass mφ. (Right) The transfer
cross section σT/mχ as a function of DM velocity for two mediator
mass, mφ = 10, 30 MeV, and DM mass mχ = 1 GeV.

Here ρνi is the energy density of ith neutrino, ρFD
ν is the energy density of a

single neutrino species assuming a thermal Fermi-Dirac distribution and
no energy gain during the electron-positron annihilation epoch, and ρDR

is the energy density of dark radiation in the form of light particles. With
this definition the total radiation density can be written as

ρ =

(
1 +

7
8

(
4
11

)4/3

Neff

)
ργ . (2.42)

In SM with only three active neutrino species, the theoretical prediction
is Neff = 3.046. The extra 0.046 comes from the partial decoupling of the
neutrinos from the thermal bath around T ' 1 MeV when the electron-
positron annihilation took place. Often the part not coming from SM
neutrinos is quoted separately as

∆Neff = Neff − 3.046 . (2.43)

There are observational constraints on ∆Neff at epochs in the early Uni-
verse. The extra radiation density leads to a faster expansion of the
Universe during RD affecting the production of light elements during
BBN. The measurement of primordial elements in today’s Universe gives
Neff = 3.28 ± 0.28 [114]. The other probe of ∆Neff is the CMB observa-
tion. Extra radiation energy density during recombination damps the
anisotropy power spectra of the CMB. The Planck experiment has mea-
sured Neff = 2.99+0.34

−0.33 (TT,TE,EE+lowE+lensing+BAO) [4]. If the mediator
particle were relativistic during BBN, i. e., if its mass is mφ . 1 MeV, then it
would contribute towards ∆Neff, and the BBN bound would be applicable
to the model. If mφ < 0.3 eV, then the CMB bound would also apply.
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2.4 summary & conclusions

In this chapter, we reviewed the motivation for self-interacting dark matter
models and discussed the late-time nonrelativistic phenomenologies of
such models, such as Sommerfeld effect, self-scattering. The abundance of
different kinds of particles in the standard model gives the most natural
motivation to consider multiparticle dark sector. Several theoretically mo-
tivated DM models also predict multiple states in the hidden sector. The
proposed solutions to the small scale issues in structure formation predict
light dark sector particles that mediate the long range interactions. Such
interactions could potentially change the DM annihilation or scattering rate
by several orders of magnitude, through late-time nonperturbative effects,
relative to the perturbative rates. The light particles would also form excess
radiation in the early Universe causing a faster Hubble expansion.





3
S E L E C T I O N R U L E I N S O M M E R F E L D E F F E C T

In this chapter, we shall discuss the selection rule in Sommerfeld effect in
multilevel DM model, and its implications for DM annihilation signal as
well as for indirect detection experiments. This chapter is based on our
work in Paper I [1].

3.1 a dark sector model

Now we describe the DM model that we shall use to demonstrate the
selection rule in Sommerfeld effect. We consider an approximate global
U(1)-symmetric theory consisting of a Dirac fermion χ and a complex
scalar Φ with charges +1 and -2, respectively, as given by Eq.(3.1). They are
coupled to each other through a Majorana-type interaction [76].

L ⊃ ∂µΦ†∂µΦ + µ2
Φ|Φ|2 − λΦ|Φ|4 + iχ/∂χ−Mχχ

−
(

f√
2

ΦχTCχ + h.c.
)
+ L /U(1) .

(3.1)

The U(1)-breaking term here can be of the form, e.g., b2 (Φ2 + Φ†2) which
we assume to be small. The scalar potential induces nonzero vacuum expec-
tation value vΦ and splits Φ into a massive mode ρ and a pseudo-Goldstone
mode η: Φ → vΦ + ρ + iη, breaking the U(1)-symmetry spontaneously.
Note that the explicit symmetry breaking term violates the prospective shift
symmetry of the Goldstone mode and allows us to expand Φ in cartesian
form. Due to the Majorana-type coupling with the scalar, χ also splits
into two Majorana particles χ1 and χ2 with masses mχ and mχ + ∆ where
mχ ≡ M− f vΦ and ∆ ≡ 2 f vΦ. A residual Z2-symmetry gives χ1 stability
and renders it as a DM candidate. The final Yukawa couplings between the
fermions and the scalars are

− f
2

ρ(χ1χ1 − χ2χ2)−
f
2

η(χ2χ1 + χ1χ2) . (3.2)

With these interactions, {χ1, χ2} form a two-level SIDM model. While the
ρ couples the similar DM states, the exchange of η leads to off-diagonal
coupling. Additionally, the η-interaction allows χ2 to decay to the lighter
state through χ2 → χ1η. The symmetry broken scalar potential reads

V(ρ, η) = 1
2 m2

ρρ2 + 1
2 m2

ηη2

+λΦvΦ
(
ρ3 + ρη2)+ λΦ

(
ρ4 + η4) .

(3.3)

The mass of η will arise from the U(1)-breaking term and the thermal
corrections to its propagator. At low energy, we are left with five free
parameters– {mχ, mρ, mη , α, ∆}.

27
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Figure 3.1: Feynman graphs for DM annihilation (top) and coannihilation (below).

3.1.1 Thermal history of the dark sector

After the initial production of the dark sector particles, they decouple from
the SM particles at some temperature T∗. We assume this to occur at a scale
much higher relative to the other energy scales in the theory, i. e., T∗ �
M, µΦ. After decoupling, the SM and the dark sectors evolve independently
with separate temperatures, defined as T and Td, respectively. We define the
ratio of these temperatures as ξd ≡ Td/T. After the spontaneous symmetry
breaking at Td ' vΦ, the dark sector has two Majorana fermions χ1, χ2 and
two scalars ρ, η. The comoving entropy of this sector changes only during
the decays of χ2 and ρ. In general ξd can be written as

ξd(T) =
(

gd(T∗)gSM(T)
gd(Td)gSM(T∗)

)1/3

. (3.4)

Here g(T) is the relativistic degrees of freedom in the respective sector at
temperature T. From Fig. 3.2, it is clear that the ratio ξd is never too far away
from unity. After ρ goes out of chemical equilibrium, it decays into η. We
shall also assume some portal between the scalars and the charged leptons–
e+e−, µ+µ−, τ+τ− in the SM. This can be realized in a similar way as in
the leptophilic models [105, 115]. We shall see later that this preferential
decay of ρ, η into the leptons could account for the excess positrons seen
in the cosmic ray by several experiments. Dark sector temperature Td rises
after the DM decouples from the thermal bath. Later during the QCD
phase transition at T ∼ Λc, a large amount of entropy is dumped into the
SM thermal bath and heats it up.

We shall always assume that M < vΦ, so that the symmetry break-
ing takes place before DM relic abundance formation. The ensuing phe-
nomenology was discussed in Ref.[76, 77]. During relic annihilation, the
interactions in Eq.(3.2) provide both annihilation and coannihilation,

χ1χ1, χ2χ2 → ρρ, ηη annihilation ,

χ1χ2 → ρη coannihilation .
(3.5)
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Figure 3.2: Variation of the relativistic degrees of freedom in both SM gSM (red)
and dark sector gd (black). Also shown is the ratio of the dark sector
temperature to the SM temperature ξd (blue).

Even though in this case the DM is lighter than the symmetry breaking
scale vΦ, the scalar particle can be much lighter than χ1,2 if the hierarchy
vΦ > M > µΦ is satisfied.

Because χ1 and χ2 are Majorana particles, their annihilation into two
scalars does not have any s-wave (` = 0) component, and hence is p-wave
(` = 1) suppressed. This is because they are identical fermions, their two-
body states must have even (` + s), such that the total wavefunction is
antisymmetric under particle exchange. However, the CP quantum number
of the fermions is (−1)`+1, and that for the final state scalars is simply
(−1)` f where ` f is the angular momentum of the final state. Therefore,
the conservation of the CP-symmetry restricts |`− ` f | to be odd, which
prohibits the ` = 0, s = 0 state for annihilation. Coannihilation is not
subject to such restriction as χ1 and χ2 are distinguishable.

Even after the DM is not in chemical equilibrium with the other particles
in the dark sector, it exchanges kinetic energy with them as kinetic decou-
pling happens later than the chemical decoupling. In this case, the elastic
scattering between χ1 and η helps keep the DM in kinetic equilibrium
with η. It was shown in Ref.[78] that a small mass split between the two
DM states enhances this scattering cross section through a resonance, and
thus delaying the DM kinetic decoupling to ameliorate the missing satellite
problem [116].

3.2 sommerfeld enhancement in annihilation

Before annihilation, DM particles interact with each other through the
Yukawa interactions in Eq.(3.2). These interactions lead to long range
pontentials between the DM particles.
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The possible two-body states in the present case are

|χ1χ1〉

|χ2χ2〉



 Annihilation

|χ1χ2〉

|χ2χ1〉



 Coannihilation (3.6)

The Feynman graphs for annihilation and coannihilation are shown in
Fig. 3.1. The η-interaction leads to mixing between the two states in each
of annihilation and coannihilation space. But the two subspaces remain
separate as neither ρ nor η interaction can couple one to the other. As
mentioned before, the annihilation subspace does not have any s-wave
process, but coannihilation has both s and p-wave component. Although
the two states for coannihilation consist of the same particles, we write
them separately because it is easier to understand the transition from one
to the other due to the η-exchange. We shall follow the discussion about
NREFT given in Ch. 2 to first compute the perturbative cross sections for
these three processes, and then calculate the Sommerfeld factors by solving
the matrix Schrödinger equations numerically.

3.2.1 Annihilation matrices

DM annihilation process typically takes place over a length scale 1/mχ.
Therefore typical momentum exchange in such a process is ∼ O(mχ). In
NREFT, as hard modes of momentum exchange are integrated out, the
annihilation process cannot be described using tree level graphs. However,
like in any EFT, all information regarding these ‘high energy’ processes is
contained the series of higher dimensional operators,

Leff = ∑
i,j,k,l

cij,kl(mχ) χiχjχkχl + . . . . (3.7)

Here cij,kl(mχ) are the Wilson coefficients computed at the scale mχ, and
χiχjχkχl are four-Fermi operators– χ1χ1χ1χ1, χ1χ2χ1χ1, χ2χ2χ1χ1, and
so on. The cij,kl coefficients can be calculated by matching a four-point
amplitudes in the full theory with the corresponding four-Fermi operator
in the effective Lagrangian.

To classify the effective operators according to the spin and angular
momentum of the two-body states, we write the Dirac spinors of χi using
the Pauli two-component spinors ξi, ηi as

ui(p) =

√
Ei + mi

2Ei




ξi

σσσ · p
Ei + mi

ξi


 ,

vi(−p) =

√
Ei + mi

2Ei



−σσσ · p
Ei + mi

ηi

ηi


 ,

(3.8)
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with Ei =
√

p2 + m2
i ' mi + miv2/2 in the nonrelativistic limit.

Interaction between a Dirac fermion ψ of mass m and a scalar or a vector
can lead to the following bi-spinor contractions v̄(−p)Γu(p). We expand
them in powers of |p|/mχ and keep terms only upto O(|p|2/m2

χ),

v̄(−p)u(p) = − 1
m

η†p · σσσξ ,

v̄(−p)γ0u(p) = 0 ,

v̄(−p)γ0γ5u(p) =
(

1− p2

2m2

)
η†ξ ,

v̄(−p)γiu(p) = η†σσσξ − pi

2m2 η†p · σσσξ ,

v̄(−p)γ0γiu(p) = −
(

1− p2

m2

)
η†σσσiξ − pi

2m2 η†p · σσσξ ,

v̄(−p)γiγ5u(p) =
i
m

η†(p× σσσ)iξ ,

v̄(−p)γ5u(p) = −η†ξ .

(3.9)

Here we have suppressed the spinor index on ζi and ηi for clarity.
The two bi-spinors f (p)η†ξ and g(p)η†σσσξ are the scalar (spin s = 0)

and vector (spin s = 1) combinations, respectively. All expressions are
approximated to the order O((|p|/m)3). In the four-Fermi operators, two
bi-spinors are combined together. The orbital angular momentum of such
combinations is dictated by the rotational symmetry property of individual
operator. A few relevant examples are listed in Table 3.1 where we used
the notations: v = p/m, (ξ ′†η′)(η†ξ) = 1⊗ 1, (ξ ′†σσσiη′) · (η†σσσiξ) = σσσi ⊗ σσσi,
(ξ ′†v′ · σσση′)(η†v · σσσξ) = v′ · σσσ⊗ v · σσσ, and (ξ ′†v · σσση′)(η†v′ · σσσξ) = v · σσσ⊗
v′ · σσσ.

The effective operators are classified according to their spin and angular
momentum

Leff = ∑
i,j,k,l

∑
`,s

cij,kl(
2s+1`J)Oij,kl(

2s+1`J) , (3.10)

where Oij,kl(
2s+1`J) are the effective operators consisting of the spinors

ξi, ηi corresponding to spin s and angular momentum ` of the associated
two-body states [117].

To find the annihilation matrices in Eq.(3.12) for a particular process
|a〉 → XAXB where |a〉 = {|χ1χ1〉, |χ2χ2〉} for annihilation, and
{|χ1χ2〉, |χ2χ1〉} for coannihilation, we performed the following steps in
Mathematica.

1. Write down the amplitude for Γab = |a〉 → XAXB → |b〉 using
two-component spinors.

2. Expand it in powers of |p|/mχ and other small numbers, like mρ/mχ,
∆/mχ.

3. Collect the the terms that correspond to an operator f (2s+1`J).

Once the Wilson coefficients are known, the annihilation cross sections
into the light scalars can be found by using the Cutkosky theorem which
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operator
2s+1` J

1⊗ 1 f (1S0)

σσσi ⊗ σσσi f (3S1)

v21⊗ 1 h(1S0)

v′ · v 1⊗ 1 g(1P1)

v′ · v σσσi ⊗ σσσi 1
2 (g(3P2) + g(3P1))

v′ · σσσ⊗ v · σσσ 1
3 (g(3P0)− g(3P2))

v · σσσ⊗ v′ · σσσ 1
2 (g(3P2)− g(3P1))

Table 3.1: Symmetries of the four-Fermi operators.

states that the annihilation cross section of a process χiχj → XAXB is
proportional to the imaginary part of the Wilson coefficient of the operator
χiχj → XAXB → χiχj [118]. If (σv)χiχj→XAXB ≡ Γ

(
χiχj → XAXB

)
is the

annihilation rate then

(σv)χiχj→XAXB = 2 Im
[
cij,ij(

2s+1`J)
]

. (3.11)

In addition to |p|/mχ, we also expand the operators in powers of other
dimensionless parameters, such as mρ/mχ, mη/mχ, and ∆/mχ. We com-
puted the Wilson coefficients for both annihilation and coannihilation using
FeynCalc package in Mathematica1 and classified them according to their
spin and angular momentum [119].

To the leading order in the dimensionless parameters mentioned above,
we get the following annihilation matrices.

Γann
`=1, s=1 =

2πα2v2

m2
χ

(
+1 +1

+1 +1

)
,

Γcoann
`=0, s=1 =

πα2

16m2
χ

(
+1 −1

−1 +1

)
,

Γcoann
`=1, s=1 =

πα2m2
ρv2

16m4
χ∆2

(
+1 +1

+1 +1

)
.

(3.12)

The ` = 0 coannihilation matrix has opposite signs for the off-diagonal
entries relative to the diagonal elements. However, all elements of the ` = 1
matrices have the same sign. This fact is related to the particle exchange
symmetry, and will be discussed in more detail when we describe our
results. It is unique to this model, and relates to its ability to explain the
AMS-02 positron excess and avoid the dwarf galaxy constraint.

1 Notebooks are available at https://github.com/anirbandas89/NREFT_Matching

https://github.com/anirbandas89/NREFT_Matching
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3.2.2 Sommerfeld factors

We shall first review the formalism of the computation of the Sommerfeld
effect in DM models with multiple states with diagonal and off-diagonal
long range interactions between them, following Ref. [120].

Let us assume, a general N-level system with a spherically symmetric
N × N matrix potential. The lightest states has a mass mχ, and the higher
state masses are mi = mχ + ∆i. We shall always assume the mass gaps to
be much smaller than the lightest state mass, i. e., ∆i � mχ. The complete
Schrödinger equation reads

[(
−∇∇∇

2

2µ
− E

)
δij + V(r)ij

]
Ψ(r)jk = 0 . (3.13)

Here, we have approximated the reduced mass of all states to be µij ' µ =

mχ/2. Therefore, the energy E is given by

E =
1
2

µv2
rel = mχv2 . (3.14)

The mass gap between different states means that the threshold for coan-
nihilation occurs at velocity vthr

a ≡
√
(ma − 2mχ)/mχ =

√
∆a/mχ for the

two-body state |χiχj〉 with total mass ma. Therefore, we define the momen-
tum

k2
a = mχ(E− ∆a) . (3.15)

If ka is real then the channel a is kinematically open. An imaginary ka

means the channel is closed.
The asymptotic solution of the wavefunction should look like

Ψ(r)ij
r→∞
= δije−ikiz + fij(θ)

eikir

r
. (3.16)

The first term describes an incoming plane wave along the z-direction,
and the second term describes an outgoing spherical wave with scattering
amplitude fij(θ), assuming azimuthal symmetry. The solution of Eq.(3.13)
has to be matched with this expression at large r.

The full wavefunction is expanded in the partial wave basis as

Ψ(r)ij = ∑
`

ψ`(r)ij = ∑
`

u`(r)ik

r
AkjP`(cos θ) . (3.17)

The reduced radial wavefunction u(r)ij obeys the equation
[(
− d2

dr2 +
`(`+ 1)

r2 −mχE
)

δij + mχV(r)ij

]
u`(r)jk = 0 . (3.18)

This equation has 2N number of linearly independent solutions, out of
which N are regular at the origin, the rest being irregular. The asymptotic
form of the regular solutions is given by

u`(r)ij
r→∞
= Nij sin

(
kir−

`π

2
+ sij

)
, (3.19)
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where Nij are constant coefficients, sij are scattering phase shifts. We com-
pare this asymptotic form with Ψ(r) in Eq.(3.17) to find

Aij = i`(2`+ 1)

[
M−1]

ij

ki
. (3.20)

Here, we used Mij = Nije−isij . In last two equations, no summation is
implied over any repeated index. For Sommerfeld factor, we need the
wavefunction and its radial derivative of the wavefunction at the origin.
The series expansion of the reduced wavefunction u`(r) around r = 0 reads

u`(r)ij =
1

(`+ 1)!
u(`+1)
` (0)ij r`+1 + . . . , (3.21)

where u(`+1)
` (0)ij is the (`+ 1)-th derivative of u`(r)ij at the origin. Using

this in the full solution yields

ψ`(r)ij
r→0
=

i`(2`+ 1)
(`+ 1)!

u(`+1)
` (0)ik

[
M−1]

kj

k j
r`P`(cos θ) . (3.22)

The ratio of this near-origin solution to the free particle exact solution gives

[Q`]ij =
(2`+ 1)!!
(`+ 1)!

[
u(`+1)
` (0)

]∗
ik

[
M−1]∗

kj

k`+1
j

. (3.23)

To use this, one needs to know the matrix M containing the phase shifts
sij. It is avoided by using the fact that the Wronskian W` of the linearly
independent solutions of the Schrödinger equation is r-independent. We
compute the Wronskian both at r → 0 and r → ∞ limits and compare them
to obtain the M matrix in terms of the amplitude of the wavefunctions at
infinity.The Wronskian is defined as

W`(r)ij ≡ v†
`(r)iku′`(r)kj − v†

`
′(r)iku`(r)kj , (3.24)

where v`(r)ij are the irregular solutions and prime denotes derivative w.r.t.
r. They have the asymptotic behaviour

v(r)ij
r→0
= δijr−`, v(r)ij

r→∞
= T†

ije
−ikir. (3.25)

Substituting the asymptotic forms of the solutions we find

W`(r)ij
r→0
=

2`+ 1
(`+ 1)!

d`+1u`(r)
dr`+1

∣∣∣∣
r=0

,

W`(r)ij
r→∞
= i` ∑a kaTia Maj .

(3.26)

Now equating these two quantities yields the phase shift matrix M in terms
of the large-r amplitude T. Using this in Eq.(3.23) yields,

[Q`]ij = (2`− 1)!! i−`
T†

ij

k`i
. (3.27)
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Using this expression for the wavefunction at the origin in the definition of
Sommerfeld factor gives

[S`]i =

(
(2`− 1)!!

k`i

)2 [
T†]

ia Γab(
2s+1`J)Tbi

Γii(2s+1`J)
. (3.28)

Here, no summation is implied over the index i.
The T matrix is computed by solving the Schrödinger equation numeri-

cally. A short algorithm is provided below.

1. Eq.(3.18) is solved in between r = r0 and r f . The point r0 is chosen
such that the centrifugal term dominates over the potential and
Eq.(3.21) is valid. The initial conditions are as follows

u`(r0)ij =
r`+1

0
2`+ 1

δij, u′`(r0)ij =
(`+ 1)r`0

2`+ 1
δij . (3.29)

With this choice of the boundary conditions, the Wronskian turns out
to be exactly identity from Eq.(3.24).

2. At a large r = r f , the Wronskian is written as below, using Eq.(3.25)
and (3.24).

W`(r f )ij = Tia
[
u′`(r f )aj − ikiu`(r f )aj

]
eikir f = δij . (3.30)

3. The T matrix obtained by inverting the B matrix,

T = B−1, Bij ≡
[
u′`(r f )ij − ikiu`(r f )ij

]
eikir f . (3.31)

4. The stability of the result is ensured by increasing r f until S` is
independent of r f .

This procedure works well when all the two-body states are kinematically
open, i.e. all kis are real. When this is not the case, the wavefunctions of the
closed states are exponentially growing/decaying which, through mixing
with other states, makes the whole system numerically unstable. Thus the
matrix inversion in Eq.(3.31) with those solutions becomes difficult. To
mitigate this problem, we followed the modified variable phase method
as outlined in Refs.[121, 122]. The key improvement in this technique is
to separate out the free particle solution (i. e., the Bessel functions) from
the full solution, and then find out the modification to free solution. We
implemented the numerical routines in Mathematica.

In the present scenario, the potential V(r) that arises from the exchange
of the scalars ρ and η is given by

V(r) =

(
V11 V12

V21 V22

)
, (3.32)



36 selection rule in sommerfeld effect

S = 1

~1/υ3

p-wave

s-wave

υdSph υMW υcluster υrelic

Sp
co-ann

Sp
ann

Ss
co-ann

10-5 10-4 0.001 0.010 0.100 1

10-5

0.01

10

104

107

1010

υ

S

υdSph υMW υcluster

~υ2

~1/υ

συp
ann

συs
co-ann

10-5 10-4 10-3 10-2

10-31

10-29

10-27

10-25

υ

σ
υ
[c
m
3
/s
]

Figure 3.3: (Left) Sommerfeld factors for annihilation (p-wave) and coannihilation
(s and p-wave) as a function of DM velocity v. (Right) Annihilation
rate for p-wave. Off-diagonal mediator mass is fixed to be mη = 0.7mρ.
Other parameters are α = 0.036, mρ/mχ = 0.0016, ∆/mχ = 0.001.

with V11 = −α e−mρr/r, V12 = V21 = −α e−mηr/r, and V22 = −α e−mρr/r +
2∆ for annihilation and V22 = −α e−mρr/r for coannihilation. The extra term
2∆ in V22 for annihilation comes from the mass gap between the two two-
body states |χ1χ1〉 and |χ2χ2〉. No such mass gap exist for coannihilation.

We solved the Schrödinger equation using two methods– a) directly
using NDSolve in Mathematica, and b) using the variable phase method. The
direct method works well as long as the kinetic energy of the incoming
particles is above the threshold for the |χ2χ2〉 state, i. e.,

E ≥ 2∆ . (3.33)

When the incoming particles are below threshold, the wavefunctions for
|χ2χ2〉 final state are not scattering state anymore. In this case, the direct
method fails as it simultaneously tries to solve for scattering and bound
state solutions within a single system. We have verified the results from the
variable phase method with direct method solutions for above threshold
parameters. We found excellent match between the results.

3.3 selection rule

To reduce the number of parameters, we fix mη = 0.7mρ for all the results
shown in this thesis. In the left panel of Fig. 3.3, we show the Sommerfeld
factors as a function of DM velocity v. Both p-wave annihilation and
coannihilation show large enhancement in the small velocity limit. The
enhancement factor has a 1/v3-dependence in the intermediate velocity
regime. However, the s-wave Sommerfeld factor is less than one. In the
right panel, we show the annihilation rate Sσ0v for the same set parameters.
The v2-dependence of the perturbative cross section convoluted with the
Sommerfeld factor yields a nonmonotonic behaviour of σv with velocity –
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Figure 3.4: (Left) Sommerfeld factors for annihilation (p-wave) and coannihilation
(s and p-wave) as a function of the diagonal mediator mass mρ. Off-
diagonal mediator mass is fixed to be mη = 0.7mρ. Other parameters
are α = 0.036, mρ/mχ = 0.0016, ∆/mχ = 0.001. (Right) The p-wave
annihilation rates for different astrophysical objects. Indirect detection
search constraints from the respective sources are also shown. We chose
mρ = 30 GeV, mη = 0.9mρ, and ∆ = 10 GeV for this figure. This figure
is reproduced from Paper I [1].

rising as ∼ v2 at small velocity, followed by a ∼ 1/v fall at larger v. As a
result, the annihilation rate is maximum at some intermediate velocity.

Fig. 3.4 shows the mρ-dependence of the factors. In addition to a large
overall enhancement for p-wave, a resonance feature is also present for
certain values of mρ.

In all cases, the s-wave process is suppressed. We shall explain the origin
of this selective enhancement in the rest of this section.

3.3.1 Particle exchange symmetry

We shall use the particle exchange symmetry following Paper I [1]. Suppose,
A and B are two fermions. They can form two two-body states, namely
|AB〉 and |BA〉 of total angular momentum ` and spin s. However, these
two states consist of the same set of particles and are related to each other
through an exchange of them,

|AB〉 = (−1)`+s|BA〉 . (3.34)

This factor has three components: (−1)` from relative angular momentum,
(−1)s+1 from their spins, and (−1) due to Wick exchange of two fermions.

We can directly apply this to the coannihilation channel in the present
model implying that two states |χ1χ2〉 and |χ2χ1〉 in the matrix Schrödinger
equation are related to each other,

|χ1χ2〉 = (−1)`+s|χ2χ1〉 . (3.35)
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Figure 3.5: The 1D effective potential for coannihilation for mρ = 1 GeV, mη =
0.7 GeV, and α = 0.1.

It further implies that we can combine the two equations into a single
equation with an effective potential which is a linear combination of the
diagonal and off-diagonal potentials,

Veff = V11 + (−1)`+sV12 . (3.36)

Therefore Veff has the following forms for the two cases,

` = 0, s = 1 : Veff = −
α e−mρr

r
+

α e−mηr

r
,

` = 1, s = 1 : Veff = −
α e−mρr

r
− α e−mηr

r
.

(3.37)

We note that in the ` = 0 case, the difference between the two potentials
is acting as the effective 1D potential. When r � 1/mρ, mη , Veff saturates
to the value (mρ −mη). For larger r, it gradually decreases to zero never
becoming negative. The nature of the net potential thus becomes repulsive
(See Fig. 3.5). However for ` = 1, the diagonal and off-diagonal potentials
are added with the same sign, and hence yield an even stronger attractive
potential. This explains the behaviour of the different Sommerfeld factors
in Figs. 3.3 and 3.4. The effective repulsive nature of Veff leads to the
suppression in Scoann

s .

Velocity dependence & resonances

The 1/v3-dependence of Sp in Fig. 3.3 can be understood by taking the limit
mρ/mχ � 1 and α/v � 1. In this Coulomb limit, an analytic expression
for S` for general angular momentum ` is given by [98]

S` = S0

`

∏
m=1

(
1 +

α2/v2

m2

)
, (3.38)
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where S0 is the s-wave factor in the Coulomb approximation

S0 =
πα/v

1− e−πα/v . (3.39)

Clearly, for small velocity S` ∼ 1/v2`+1. For finite mρ, the Sommerfeld
factor does not grow indefinitely for smaller velocity. Instead, it saturates
to a constant value when the de Broglie wavelength of the DM particles
gets much longer than the range of the potential, i. e., approximately when
the condition µ1v/mρ � 1 is met.

Resonances from virtual bound states arise and cause large Sommerfeld
enhancement as can be seen in Fig. 3.4. This occurs whenever the range of
the potential matches a multiple n of the Bohr radius 1/2αmχ of the DM
particles, i. e., [98]

αmχ

κmρ
= n2, n = 1, 2, 3, . . . . (3.40)

Here κ ' π2/6. Note that this resonance condition is only approximately
true in the present model as we have two mediators with slightly different
masses. Also the presence of the mass gap ∆ shifts the resonance positions
by a small amount [120].

The right panel of Fig. 3.4 illustrates the source-specific mχ-dependence
of the p-wave annihilation rates. In the mass range mχ & 3 TeV, the galactic
annihilation rate is larger than the rates in dwarf galaxies or galaxy clusters.
Moreover, in this region of the parameter space the predicted annihilation
rate is even greater than the thermal relic cross section (shown in dotted
black line). The H.E.S.S. experiment already rules out much of the param-
eter space if 100% branching ratio of the annihilation products into SM
particles is assumed.

3.4 galactic positron excess

An important consequence of the peculiar velocity scaling of the p-wave
Sommerfeld factor is that it predicts different annihilation rate of DM in
astrophysical objects of different size. In the net p-wave annihilation rate,
the perturbative cross section provides an additional velocity scaling ∼ v2.
Therefore, the enhanced annihilation rate Sp σv first increases as ∼ v2 for
small velocity, reaches a maximum, and then falls as ∼ 1/v, as shown
in Fig. 3.3. The position of the maximum annihilation depends on the
ratio mρ/mχ. Hence this model naturally predicts large DM annihilation
signal in the galaxies with 〈σv〉 ∼ a few ×10−24 cm3/s which is needed
to explain the positron excess seen by the AMS-02 experiment [123], but
small signal from the dwarf galaxies. In the left panel of Fig. 3.6, we show
the variation of the DM annihilation rate with mρ/mχ and α in the MW.
The points within the overlaid white band yield a relic annihilation cross
section within 2− 3× 10−26 cm3/s. Clearly a few resonant points within
the white band, marked with yellow asterisks, can provide large enough
annihilation cross section to explain the AMS-02 positron excess without
running into problem with thermal relic or dwarf galaxy constraints.
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Figure 3.6: (Left) A contour plot showing the variation of the p-wave annihilation
rate with mρ/mχ and α. The white band shows the region of the
parameter space with relic annihilation cross section within 2− 3×
10−26 cm3/s. The parameter points marked with asterisks can yield
large annihilation cross section 〈σv〉 ∼ a few ×10−24 cm3/s and satisfy
the relic constraint. (Right) A representative plot of the positron flux in
our model with the parameters shown in Tab. 3.2.

We computed the expected positron flux spectrum in our galaxy using
PPPC4DMID [124]. We assume that the annihilation products ρ, η couple
to the charged leptons through some leptophilic portal. We show a rep-
resentative plot of the spectrum along with the data in the right panel
of Fig. 3.6. An astrophysical background of positron flux was assumed
following Ref. [123],

Fe+(E) = C2
d

(
E2

Ê2

)(
Ê
E1

)γd

(3.41)

where Ê = E + φe+ is the positron energy in the interstellar space. The dark
sector and the astrophysical background parameters used in the figure are
listed in Table 3.2. Note that we are not using the values quoted in Ref. [123]

Parameter Value

mχ 780 GeV

σv 4.63× 10−24 cm3/s

B.R.(e+e−) 38%

B.R.(µ+µ−) 62%

Halo profile Einasto

Cd 6.42× 10−2 (GeV m2 s sr)−1

φe+ 0.869 GeV

E1 7 GeV

γd −3.6

Table 3.2: The dark sector and background model parameters used in Fig. 3.6.



3.5 summary & conclusions 41

since this is an independent model.
This section of the work is not published yet, and will be a part of a

future publication.

3.5 summary & conclusions

In this chapter, we discussed about a selection mechanism in the Som-
merfeld enhancement that leads to large and possibly observable p-wave
DM annihilation rates in the present Universe, without enhancing s-wave
rates at the same time. The key signature of this mechanism is the velocity-
dependence and source-dependence of 〈σv〉, with the possibility of it ex-
ceeding 〈σv〉relic. These features are distinctive of large p-wave annihilation
of degenerate multi-level DM.

We described a DM model implementing the selection mechanism and
showed that large parts of its parameter space are already probed by exist-
ing experiments, thanks to the Sommerfeld-enhanced annihilation rate. We
also demonstrated that using the large p-wave Sommerfeld enhancement,
it is possible to explain the galactic positron excess seen in the cosmic ray
experiments without exceeding the bounds from dwarf galaxy observations.
The exact constraints are model-dependent, but in general multi-source
indirect DM detection, cosmological searches for dark radiation, and small-
scale DM structure are the main ways to test this mechanism. Collider
searches can pin down the dark-to-visible sector connection.

This mechanism opens up a new area for model-building and phe-
nomenology, allowing enhanced DM annihilations in specific sources where
DM has velocities in an optimal range. As further work, one may also con-
sider the several variations on this theme: more than two DM particles
in the dark sector, gauge particle mediator, even-s incoming states, mul-
tiple mediators, etc. Some of these possibilities may also turn out to be
theoretically interesting and find phenomenological application.





4
I N E L A S T I C D A R K M AT T E R S C AT T E R I N G

In this chapter, we shall discuss the nontrivial self-scattering phenomenolo-
gies, such as additional energy dissipation from DM halo, arising from the
multilevel nature of the DM. The discussion in this chapter is based on
Paper II [2].

4.1 two-level dark matter model

We consider a simple version of the two-level DM model inspired from
the previous chapter. Suppose, χ1 and χ2 are the two DM states with
masses mχ and mχ + ∆, respectively. We again assume ∆� mχ. The DM
states have diagonal and off-diagonal Yukawa interactions mediated by
two scalars ρ1 and ρ2 of equal mass mρ,

Lint ⊃ f ρ1 (χ̄1χ1 − χ̄2χ2) + f ρ2 (χ̄1χ2 + χ̄2χ1) . (4.1)

Through scattering, two DM particles in the ground state can either stay
in the ground state (elastic) or upscatter to the excited state (inelastic). For
upscattering to occur, the incoming particles need to have enough kinetic
energy to overcome the mass gap 2∆ between the two two-body states,
|χ1χ1〉 and |χ2χ2〉. However, even if there is not enough kinetic energy,
the excited state can be produced as virtual particles during the collision.
Moreover, the scattering cross-section between nonrelativistic DM particles
is enhanced due to exchange of the light particles. We show the schematic

χ1

χ1

χ1

χ1

χ1

χ1

χ1

χ1

ρ2

ρ2

χ2

χ2

Figure 4.1: Feynman graphs for elastic self-scattering of DM in the ground state
(left) and for upscattering induced decay (right). The vertical lines
represent multiple exchanges of scalar particles in the nonrelativistic
limit of the incoming DM particles.

Feynman graphs for the possible elastic and inelastic scatterings in Fig. 4.1
where the vertical lines represent exchange of many ρ1,2 particles in the
nonrelativistic regime. In the case of inelastic scattering, the final particles
decay to the ground state by emitting two light particles. DM particles lose
energy in this process as the final χ1 particles are less energetic than the
initial ones. This energy loss mechanism can potentially lead to interesting
phenomenology which will be discussed later.
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We computed scattering cross-sections by calculating the transition am-
plitude between an allowed initial state |i〉 and final state | f 〉. The possible
two-body states are |χ1χ1〉, |χ2χ2〉 and |χ1χ2〉. However, as one can see
from Eq.(4.1), the states |χ1χ1〉 and |χ2χ2〉 are decoupled from |χ1χ2〉.
Therefore, we shall always assume that the DM particles are initially in
the ground state. Hence it suffices to work in a space spanned by |χ1χ1〉
and |χ2χ2〉 only. This restriction could be removed, but it makes the cal-
culation more difficult, and does not yield any qualitatively new features.
We neglect the scattering between χ1 and χ2, because χ2 decays soon after
freeze-out and its population is rapidly depleted. For the same reason, the
scattering between two χ2 particles will also not be considered. Therefore,
we have two channels, i.e., the elastic cross section σel for |χ1χ1〉 → |χ1χ1〉,
and inelastic cross section σin for |χ1χ1〉 → |χ2χ2〉.

The overlap between two 2-body states is defined as uab ≡ 〈χaχa|χbχb〉
with a, b = 1, 2 and satisfies the Schrödinger equation,

[
1
r2

d
dr

(
r2 d

dr

)
+ k2 − `(`+ 1)

r2 − 2µV(r)
]

u`(r) = 0 , (4.2)

where ` is the orbital angular momentum, and k is a diagonal matrix with
the momentum of the incoming 2-body state,

k = kaδab, and . (4.3)

The incoming momentum ka is different for the two 2-body states due to
the presence of the mass gap 2∆ = 2(M2 −M1) between the states |χ1χ1〉
and |χ2χ2〉. Depending on the energy

E1 = k2
1/2µ1 = µ1v2/2 (4.4)

two cases are possible:

• Below threshold: µ1v2/2 < 2∆

The scattering particles do not have enough kinetic energy to produce
the |χ2χ2〉 state onshell. In this case, only elastic scattering in the
ground state is allowed.

• Above threshold: µ1v2/2 > 2∆

The kinetic energy of the scattering particles is larger than the mass
gap between the two two-body states. Therefore, in addition to the
elastic scattering, inelastic upscattering from the ground to the excited
state is also possible.

The exchange of the light scalars leads to the attractive potential matrix
V(r),

V =

(
V1 V1

V1 V1

)
, V1(r) = −

α e−mρr

r
, (4.5)

where α ≡ f 2/4π . This attractive Yukawa potential matrix, with equal
entries results due to the identical interaction strength between either pair
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Figure 4.2: (Left) Two eigenvalues Ṽ1,2(r) of the potential matrix V(r) are shown
in blue solid and red dashed lines. The mixing angle θ(r) is shown as
the green dotted line. (Right) The real (blue solid) and the imaginary
(red dashed) parts of the off-diagonal element of the scattering function
S`(r). Figure taken form Paper II [2].

of two-body states. Variations of the DM model, such as multiple scalar
mediators, vector mediator from broken dark sector gauge symmetry etc.
would give rise to different potential matrices. However, the qualitative
nature of our results does not depend on these variations as long as the
off-diagonal interaction is nonzero.

4.2 scattering cross section

We computed the self-scattering cross sections by calculating the phase
shifts for each partial wave `. The definitions of total, transfer, and viscosity
cross sections are given in Sec. 2.3.2. In a multilevel DM model, the cross
section σab is a matrix whose diagonal elements are the elastic cross sections
in the respective state and off-diagonal elements are the inelastic cross
sections of going from |b〉 to |a〉. We numerically computed the scattering
cross sections following the method outlined in Ref. [125].

4.2.1 Below threshold

When the kinetic energy of the incoming particles is below threshold,
upscattering is classically forbidden. However, the excited state can still be
produced during scattering as virtual intermediate state. One could rotate
the matrices by an angle θ(r) to go to the diagonal basis of the potential
matrix V(r) with eigenvalues,

Ṽ1,2 = −V1 − ∆±
√

V2
1 + ∆2 . (4.6)

As the potentials are functions of r, the rotation angle θ(r) is also a function
of r, and is given by

tan 2θ(r) = −V1(r)/∆ . (4.7)
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In the left panel of Fig. 4.2, we show the rotation angle as a function of r.
We see that the states mix maximally with θ(r) = π/4 as r → 0, but the
mixing decreases when V1(r) . 2∆, finally vanishing in the large r limit.
The eigenvalues of V(r) never cross each other representing the fact that
the system is always adiabatic. Fig. 4.2 shows only the ` = 0 case, but these
features are present for other partial waves as well. Because the system is
adiabatic, the ground state elastic cross section can be computed by solving
the rotated equations with only the potential Ṽ1(r).

4.2.2 Above threshold

As mentioned before, in above threshold scenario, upscattering is classically
allowed. We shall first compute the cross sections using the variable phase
method following Ref. [126] to gain some insight. To this end, we write the
solution to Eq.(4.2) in an integral form,

u`(r) =
(µ

k

)1/2
J`(kr)

−2µ

k

∫ r

0
dt (J`(kr)N`(kt)−J`(kt)N`(kr))V(t)u`(t) ,

(4.8)

where J`(x), N`(x) are the Riccati-Bessel functions defined as

[J`(kr)]ab = +kar j`(kar)δab, above threshold,

= +kar ι`(kar)δab, below threshold,

[N`(kr)]ab = −kar n`(kar)δab, above threshold,

= −kar κ`(kar)δab, below threshold.

(4.9)

To isolate the change in the wavefunction owing to the presence of the
potential V(r), another function F`(r) is defined as

F`(r) =
1
2

[
1 + 2

∫ r

0
dtH(2)

` (t)V(t)u`(t)
]

. (4.10)

On substitution of this in Eq.(4.8), one gets

u`(r) = −i
[
H(1)

` (r)F`(r)−H(2)
` (r)F ∗` (r)

]
. (4.11)

Here H(1),(2)
` ≡ (µ/k)1/2(N` ± iJ`) are the free particle plane wave solu-

tions, and the unknown functions F` and F ∗` are the distortions to the plane
wave solution caused by the potential. The scattering matrix function S`(r)
is defined in terms of F`(r) as

S`(r) ≡ F`(r)F ∗` (r)−1 . (4.12)

This definitions of S` is such that the large r asymptotic values of the
diagonal and off-diagonal elements of it are proportional to the elastic and
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Figure 4.3: (Left) The velocity dependence of the elastic self-scattering cross-section
for different values of mρ as indicated in the figure. (Right) The elastic
transfer and viscosity cross-sections for a particular choice of the
parameter values: M = 200 GeV, α = 0.01, v = 10 km/s. The grey
dashed line shows the analytical estimate of the Born cross-section for
the 2-level model, obtained using the one-level equivalent proposed in
Paper I [1]. Figure taken from Paper II [2].

inelastic scattering cross sections, respectively. Now using Eq.(4.12) and the
definition of F`(r), the differential equation for S`(r) can be obtained,

dS`

dr
= i
(

S` · H(1)
` −H

(2)
`

)
·V ·

(
H(1)

` · S` −H(2)
`

)
. (4.13)

This equation is to be solved with the boundary condition S`(0) = 1.
In the right panel of Fig. 4.2, we show the r-dependence of the real and

imaginary parts of the off-diagonal component of the scattering matrix
function S`(r)12 representing the inelastic cross section. We note that the
|S`(r)12| increases from zero as one goes towards larger r starting from
r = 0. However, S`(r)12 saturates to a constant value as soon as the mixing
angle vanishes beyond r ∼ 1/mρ. Therefore, the adiabatic mixing between
the two states induced by the off-diagonal interaction is the source of the
inelastic upscattering from the ground to the excited state.

We also numerically solved Eq.(4.2) directly using Mathematica to com-
pute the cross sections. In a general N-level system, the inner products of
all possible 2-body states can be arranged in an N × N-matrix Ψ`(r) [125].
The columns of Ψ`(r) denote the linearly independent regular solutions of
the Schrödinger equation

[
1
r2

d
dr

(
r2 d

dr

)
+ k2 − `(`+ 1)

r2 − 2µV(r)
]

Ψ`(r) = 0 , (4.14)

where k and µ are two diagonal matrices with channel momenta and
reduced masses. These set of equations are supplemented by the boundary
conditions at r = r0 as follows,

[Ψ`(r0)]ab = r0 δab, [Ψ′`(r0)]ab = (`+ 1) δab . (4.15)
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The initial point r0 is chosen to be small enough so that the centrifugal
term dominates over the other two terms in the differential equation. The
overall normalization is irrelevant as we are interested only in the final
cross-section. Numerically, we start solving the equations at r = r0 and
proceed towards larger r. We choose a sufficiently large r = r f where
the potential becomes negligible compared to the kinetic energy term. At
r = r f , we match our solutions with the asymptotic solutions given below,

lim
r→large

Ψ`(r) = J`(kr)−N`(kr)K` . (4.16)

Here K` is the reaction matrix and

[J`(kr)]ab = +kar j`(kar)δab, above threshold,

= +kar ι`(kar)δab, below threshold,

[N`(kr)]ab = −kar n`(kar)δab, above threshold,

= −kar κ`(kar)δab, below threshold.

(4.17)

Here j`(x) and n`(x) denote spherical Bessel functions of first and second
kinds, and ι`(x) and κ`(x) are the modified spherical Bessel functions of
first and second kinds, respectively. These two types of functions serve as
the asymptotic forms of the wavefunction as indicated above. In the below
threshold case the boundary conditions need to be changed for the excited
state. In Ref. [127, 128], the author has shown that in the below threshold
case, only the open-open part (the part which consists of only the open
channels) of the K` matrix contributes to the final scattering matrix though
one has to solve the full system of Schrödinger equation. In this case the
asymptotic wavefunctions are either exponentially growing or decaying
which may cause trouble in the numerical computation (see the second
line in Eq.(4.9)). It is solved by normalizing the closed channel wavefunc-
tions and their derivatives by J` and N` respectively such that the new
asymptotic wavefunctions become J`(kr) → 1, J ′` (kr) → J ′` (kr)/J`(kr)
and similarly for N`(kr).

We solve for K` from Eq.(4.16) by taking logarithmic derivative of the
equation,

K` = [B`(kr f )N`(kr f )−N ′`(kr f )]
−1

×[B`(kr f )J`(kr f )−J ′` (kr f )] ,
(4.18)

where B`(r) = Ψ′`(r)[Ψ`(r)]−1. Everywhere prime denotes derivative w.r.t.
r. Once the K` matrix is obtained, the S-matrix can computed through

S` ≡ 1− T` = (1 + iK`)
−1(1− iK`) . (4.19)

This S` is computed for all partial waves starting from ` = 0 to `max. As
stated in the text, the value of `max depends on the initial momentum of
the particles and the range of the potential. A useful lower bound on its
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value can be given as `max ≥ k/mρ for the case discussed in this paper. The
final total cross-section is given by

[σtot]ab =
∫

dΩ
dσab

dΩ

=
1

2k2
b

∫
dΩ

∣∣∣∣∣∑
`

1
2
(2`+ 1)(T̃`)abP`(cos θ)

∣∣∣∣∣

2

=
π

2k2
b
∑
`

(2`+ 1)|(T̃`)ab|2 .

(4.20)

where (T̃`)ab = (T`)ab + (−1)`(T`)a′b . Here the prime on a denotes an
exchange of particles in the final 2-body DM state. Note that the last term
in Eq.(4.20) is present only when the final state particles are identical. In
case of distinguishable particles, this term will be absent and so will be the
extra factor of 1/2. The other two quantities of interest are the transfer and
viscosity cross-sections. The definition of the transfer cross-section σT is
given in Eq.(2.37). Expanding the differential cross section in the partial
wave basis gives

[σT]ab =
∫

dΩ
dσab

dΩ
(1− cos θ)

=
π

2k2
b
∑
`

(`+ 1)|(T̃`+1)ab − (T̃`)ab|2 .
(4.21)

Similarly the viscosity cross-section in Eq.(2.38) is given by

[σV]ab =
∫

dΩ
dσab

dΩ
sin2 θ

=
π

2k2
b
∑
`

(`+ 1)(`+ 2)
(2`+ 3)

|(T̃`+2)ab − (T̃`)ab|2 .
(4.22)

The left panel in Fig. 4.3 shows the variation of the elastic cross section
with mediator mass mρ. In the Born limit, i. e., when αM/mρ � 1, the
interaction becomes point-like and the cross section can be computed
perturbatively. The transfer Born cross section given in Eq.(2.39) is restated
here for the reader’s convenience,

σBorn
T =

2πβ2

m2
ρ

[
ln
(
1 + R2)− R2

1 + R2

]
. (4.23)

Here, β = 4αmρ/(mχv2
rel), and R = mχvrel/mρ. Note that although ours is a

two-level scattering system, an analytic expression of the Born cross-section
is obtained by the substitution α → 2α, or equivalently β → 2β. This
follows from the approximately particle exchange symmetry as discussed
in Sec. 3.3 in the previous chapter. In the limit of small ∆, the states |χ1χ1〉
and |χ2χ2〉 are approximately identical and related to each other through
the relation |χ2χ2〉 ' (−1)`+s|χ1χ1〉 with s being the total spin of the
two-body state [1]. The Born cross section is shown in the gray dashed
line. When αM/mρ & 1, virtual bound state formation takes place during
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Figure 4.4: The ratio of the inelatic to elastic scattering cross sections with purely
off-diagonal interactions. Figure taken from Paper II [2].

scattering. This is known as the resonant region. The resonance points can
again be obtained from Eq.(2.32) with the replacement α→ 2α.

We show the elastic cross section σel as a function of velocity for various
values of mρ in the right panel of Fig. 4.3. For large velocity, σel goes
as σel ∼ 1/v4 as expected in Rutherford scattering, but it saturates to
a constant value depending on mρ in the small velocity limit. As mρ is
increased from 0.05 to 1 GeV, the cross section undergoes a resonance due
to virtual bound state formation.

In most of the parameter space, we found that the inelastic cross section
is comparable to the elastic cross section. This is a direct result of the
fact that the potential matrix has equal diagonal and off-diagonal entries.
The large off-diagonal interaction leads to maximal mixing between the
states resulting in large inelastic scattering as discussed previously. When
the diagonal potentials are weaker than the off-diagonal potentials, these
two cross-sections can differ by several orders of magnitude. An example
of such a scenario is a two-component Majorana DM model, where the
DM particles are charged under a broken U(1) gauge symmetry [83, 129].
The conserved currents are χ̄1γµχ2 and χ̄2γµχ1. Hence elastic scattering
χ1,2χ1,2 → χ1,2χ1,2 is not possible at tree level, even though inelastic scat-
tering χ1,2χ1,2 → χ2,1χ2,1 can take place through an exchange of a gauge
particle. The lowest order elastic process involves at least one loop implying
that, in the Born limit, elastic scattering is loop-suppressed. However, in the
resonant and classical regime, nonperturbative effects will be important,
and both elastic and inelastic cross-sections will be comparable (see Fig. 4.4).
However, depending on the parameter choice, one may dominate over the
other.

4.3 signatures of inelastic scattering

The energy loss by the DM particles through inelastic scattering induced
decay will provide a heat dissipation mechanism for DM halos. An estimate
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of the timescale for the upscattering rate in a typical galaxy cluster sized
DM halo, assuming prompt decay of the excited state, is

tup ' 1012 yrs
104 M�/kpc3

ρ

1 cm2/g
σin/mχ

103 km/s
v

. (4.24)

We choose DM velocity to be O(1000) km/s so that the upscattering is
kinematically allowed. Clearly tup is a few orders of magnitude larger than
the age of the Universe. Moreover, upscattering can take place only inside
collapsed DM structures or halos which are around for a much shorter time
(only since nonlinear structures started forming). Therefore the dissipation
mechanism cannot possibly cause a too large effect. We now discuss two
possible effects due to inelastic scattering.

4.3.1 Halo cooling

If the χ1 − ρ scattering cross-section is small, then these light mediator
particles will not be trapped inside and escape the halo. They will carry
away energy from the halo in the form of radiation which therefore cools
the halo at a certain rate. Large upscattering requires the colliding DM
particles to be energetic enough so that sufficient phase space is available
for the excited state. For example, DM of mass 10 GeV with mass gap
∆ = 1 MeV has a velocity threshold of about 1000 km/s. Thus, its effect will
be important in astrophysical objects with large DM velocity dispersions,
e. g., in large galaxies and galaxy clusters.

A thorough analysis of the effect of such energy dissipation on the
structure and dynamics of DM halo does not exist in the literature. We
shall try to gain a qualitative understanding from the response of DM
halos for similar cooling processes from the baryonic matter– gas, dust,
stars etc. After falling towards the center, the baryons interact with each
other and condense into lower energy states. In the process, they dissipate
away a large amount of energy in the form of radiation which escapes the
halo. The less energetic baryons then condense and undergo further infall
towards the center. The baryon density eventually comes to dominate the
energy density near the center, and affects the DM profile. The analytical
estimations of this effect have been worked out using adiabatic contraction
approximation [130]. In this approximation, the DM particle orbits are
assumed to be circular or nearly circular and the total mass enclosed by
the orbit is assumed to be changing very slowly compared to the orbital
time period of the DM particle. In this adiabatic regime, the invariance
of
∮

pdq implies M(r)r = constant, where M(r) is the total mass enclosed
inside the orbit of radius r. Using this invariance, an analytic estimate
has been obtained that matches fairly well with computer simulation
results [130, 131]. The main effect is the steepening of the DM profile near
the center forming a denser core. As more baryons fall towards the center,
the gravitational potential well becomes deeper and more DM particles are
attracted inward, thus increasing the slope of the central density profile.
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The dark sector ‘heat’ dissipation or cooling mechanism through an
upscattering and a subsequent decay of the excited state is mostly inde-
pendent of baryonic cooling process. Hence the effect of halo cooling will
presumably be more prominent in this scenario and one would predict
more diversity in DM halo structure.

The rate of this new dissipation mechanism will mainly be dictated
by the upscattering rate as the the decay is very fast relative to other
timescales, and hence can be assumed to be prompt. Here we shall give
a rough estimate of the of energy loss rate. In the limit of nonrelativistic
DM and ∆� mχ, the net kinetic energy lost per particle is approximately
∼ ∆. The upscattered χ2 particles will decay and produce lighter particles
with some amount of kinetic energy from the phase space available. One
can estimate the leading order contribution to this energy gain to be
O(∆2/m2

χ) and O(v2
2∆/mχ), where v2 is velocity of the upscattered χ2

particles prior to decay. Therefore for all relevant parameter values, the
gain in the kinetic energy from the decay is small compared to the energy
loss from the upscattering. The requirement for the upscattering and the
decay to happen constrains the parameter space as

mχv2/2 > ∆ > mρ . (4.25)

For simplicity, we shall assume that all light scalars generated from the
decays leave the halo.

In a halo, the average rate of energy loss from a shell of radius r and
width dr, is given by

4πr2dr Γup(r)nχ(r) 2∆ = 4πr2dr
2∆
mχ

σin

mχ
vρ(r)2 . (4.26)

The radial dependence of DM velocity could be estimated from simple
Newtonian dynamics. It peaks around the scale radius of the halo with an
NFW density profile defined in Eq.(1.14). The individual DM velocities at a
given position is assumed to follow a Maxwell-Boltzmann (MB) distribution
characterized by a virial velocity dispersion v̄(r). In a fully virialized halo,
the high energetic DM particles mostly reside at the outer edge of the halo.
The halo cooling rate will be given by a convolution over the DM velocity
distribution

dE
dt

= 4πr2dr
2∆
mχ

ρ(r)2
∫ ∞

0

σin

mχ
v̄(r) f (v)dv , (4.27)

where we take f (v) to be approximated by a Maxwell distribution fMB(v) =
4πv2 exp

[
−v2/v̄(r)2] /(

√
πv̄(r))3. Here we note that the velocity distribu-

tion f (v) also depends on radial distance r through v̄(r).
An approximate radial dependence of the cooling rate dE/dt for a halo

of the size of that of the Virgo cluster is shown in Fig. 4.5. The profile was
taken to be an NFW profile with a scale radius rs = 560 kpc and density
ρs = 3.2× 105 M�/kpc3. For simplicity the inelastic cross-section is taken
to be velocity-independent constant σin/mχ = 1 cm2/g. The cooling rate
shows a strong radial dependence and is largest near the virial radius.
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Figure 4.5: The radial dependence of the cooling rate dE/dt (see Eq.(4.27)) of a
Virgo cluster-size halo with a scale radius rs = 560 kpc and density
ρs = 3.2× 105 M�/kpc3. The chosen DM parameters are mχ = 10 GeV,
∆ = 10−4 GeV, and σin/mχ = 1 cm2/g. Figure taken from Paper II [2].

This feature arises from the competition of the two factors, namely the
density ρ(r) and velocity dispersion v̄(r) in Eq.(4.27). The density increases
towards the center, but average velocity increases towards larger radius.
Hence the cooling rate is maximum near rs.

This cooling rate can be compared with the energy inflow from the
gravo-thermal collapse of the DM particles and due to the heat diffusion
through elastic self-scattering. The gravitational collapse brings faster (hot-
ter) particles from the outer region of the halo to the cooler inner part. And
the scattering between the particles help diffuse the kinetic energy from the
hotter particles to the relatively colder ones. The process of gravo-thermal
collapse can be modelled following the Refs. [132, 133]. The negative spe-
cific heat of a halo after virialization leads to this collapse. If we treat the
DM particles as a fluid, the inward heat-flow at some radius r is given by

L
4πr2 = −3

2
abvσ

(
aσ2 +

b
C

4πG
ρv2

)−1 ∂v2

∂r
. (4.28)

Here the two terms within parenthesis on the RHS correspond to two
different mean free path regimes. The first term describes the hard sphere
scattering with the dimensionless coefficient a =

√
16/π. The second term

describes the short mean free path regime which is proportional to the
gravitational constant and the numbers b = 25

√
π/32 and C ≈ 0.75.

Typical values of this heat inflow rate are 2-3 orders of magnitude larger
than the cooling rate discussed above. However, in models with large
inelastic cross section than the elastic one, this halo cooling can be efficient
enough to distort the halo.

Upscattering and decay do not start abruptly, but are rather continuous
processes which will be present during the virialization process of the halo.
At the initial epoch of structure formation the DM particles are highly
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nonrelativistic and there will be no dissipation. After DM falls towards the
centers of the potential wells, acquires more energy and inelastic collisions
become possible, leading to cooling. From Eq.(4.24) it is clear that the
inelastic scattering is a rather slow process and the halo will virialize at
a faster rate than the dissipation. As a result, subsequent changes in the
halo shapes is expected to be continuous and not episodic. A more detailed
study of the effect of this new cooling mechanism requires an N-body
simulation with this extra energy loss implemented in the dark sector [134].
Recently two groups have done N-body simulations with inelastic dark
sector, and have found inelastic scattering to be more efficient in modifying
halo shapes than the elastic scattering [135, 136].

A similar halo cooling mechanism was considered in Ref. [85] in the
context of an atomic DM model. There neutral atomic dark hydrogen
makes the DM abundance in the present Universe. The hyperfine splitting
in the ground state of the dark atom leads to inelasticity in the system
and the excited state decays to the ground state emitting massless dark
photons. The masslessness of the dark photon implies that this cooling
mechanism is more important for smaller halos because of their lower
gravitational binding energy. On the contrary, in our case the particle ρ

is massive. Hence the cooling mechanism shuts off for small mass halos
where the DM particles do not have enough energy to upscatter, and the
dissipation arises mainly in large galaxies or clusters. Note that the details
of the particle physics model do not affect the radial dependence shown in
Fig. 4.5, and all such details are encapsulated into the velocity dependence
of the cross-section that determines this feature.

4.3.2 Additional drag force

Upper limit on DM self-scattering can also be obtained from particle
evaporation during collision of clusters and the movement of smaller
dwarf-sized halos through larger halos [137, 138]. SIDM particles experience
collisions in mergers clusters, whereas the stellar components of the objects
will move freely without any appreciable friction. If the momentum transfer
in a DM scattering is such that the final velocity is larger than the escape
velocity of the parent halo then the particles would leave the halo and
would lead to DM evaporation from the halo. The existing observations
from colliding clusters put strong constraint on this process yielding an
upper bound on the DM self-scattering. An estimate of the scattering rate
can be obtained following the analysis in Ref. [137], in the limit of long-
range interaction (as the hierarchy mχv2/2 > ∆ > mρ is easy to satisfy with
smaller value of mρ even at cluster size scale). In Ref. [137], the cumulative
evaporation rate was shown to be more important than the immediate
evaporation when DM has long range self-interaction. The cumulative
evaporation rate is

Rcml =
ηα2ρχ

m3
χv3

0

[
1− 2 ln

(
θmin

2

)]
. (4.29)
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Here v0 is the relative velocity between the two colliding clusters, and
ρØ is the DM density in the bigger halo. The parameter θmin encodes the
screening of the long range interaction potential and regulates the forward
scattering divergence which is typical in such cases. As a result of the DM
evaporation, the halos experience a drag force given by

Fdrag

mχ
= v0Rcml

=
ηα2ρχ

m3
χv2

0

[
1− 2 ln

(
θmin

2

)]
=

σ̃ρχ

4mχv2
0

,
(4.30)

where η is an O(1) numerical factor depending on the particle nature of
the mediator. In the last equality, σ̃ is defined as

σ̃

mχ
≡ 4ηα2

m3
χ

[
1− 2 ln

(
θmin

2

)]
. (4.31)

The existing bound on σ̃ from the abundance of dwarfs in our MW halo is
very strong, σ̃/mχ . 10−11 cm2/g [137].

For two-level DM, two distinct cases may arise. Firstly the usual evapo-
ration of DM particles is still possible in this model, and has contributions
from both elastic and inelastic scattering. If the velocities of the scattered
particles are larger than the escape velocities then they can escape the halo
and would cause dynamical friction between the halos. Secondly, inelastic
scattering and subsequent decay provides an additional way for energy
dissipation and gives an additional contribution to the dynamical friction
or the drag force. For simplicity, if we assume that all DM particles are mov-
ing at the same velocity v0, then nχσinv0 is the upscattering rate per unit
time. After each upscattering and decay event, two light particles escape
the halo taking away an amount of energy which is roughly 〈Edecay〉 ' 2∆.
Therefore, the halo loses energy at a rate

dE
dt

= 〈Edecay〉nχσinv0 . (4.32)

The resulting drag force per unit DM mass (or deceleration) due to this
energy loss is given by

Fdecay
drag

mχ
=

1
mχv0

dE
dt

=
〈Edecay〉

mχ

ρχσin

mχ
. (4.33)

The net drag force acting between the halos is given by

Fdrag

mχ
= v0Rcml +

〈Edecay〉
mχ

ρχσin

mχ

=
(σ̃el + σ̃in)ρχ

4mχv2
0

+
2∆
mχ

ρχσin

mχ
.

(4.34)

The first term on the r.h.s above represents the cumulative evaporation
rate, due to elastic and inelastic processes that are approximately equal
across a large portion of the parameter space. We neglect the tiny velocity
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gain of χ1 from the decay as we have seen it to be of even smaller order
of magnitude in the previous subsection. The second term corresponds to
the new dissipation mechanism from upscattering and decay. The quantity
〈Edecay〉 denotes the energy loss rate averaged over the phase space of
the final particles which, in the last equality, has been approximated to
〈Edecay〉 ' 2∆. For simplicity here we have assumed that all DM particles
in the incident halo have velocity v0. Of course a more careful analysis
would require averaging over a Maxwellian distribution characterized by a
velocity dispersion v0.

The relative size of the new term in Eq.(4.34) compared to the old term
is given by ∼ 4v2

0∆/mχ ' 10−8 for mχ = 10 GeV, ∆ = 1 MeV and v0 =

1000 km/s, and assuming σin ' σ̃in. The parametric smallness of the new
drag force term may be traced back to the smallness of the mediator mass.
A light particle-mediated interaction has a negative power dependence on
DM velocity, and is enhanced at small velocities, whereas the new term is
essentially velocity independent. This velocity dependence may be useful
to extract the impact of the second term, relative to the larger first term.

There may be other signatures of this energy loss process. For example,
just as the baryonic energy loss processes like Compton scattering and
bremsstrahlung are responsible for the collapse of the ordinary matter into
disk-like structures forming the galaxies, for two-level DM, upscattering
and subsequent decay processes help DM lose energy and can lead to
the formation of a rotating dark disk in DM halo [139–144]. As another
signature, the authors in Ref. [145], observed a discrepancy between the
predicted positions of the splashback radii (see [146–148]) of cluster-size
halos in simulation and the observational data [149, 150]. This mismatch
could in principle be addressed by this energy dissipation mechanism
through DM inelastic scattering.

4.4 summary & conclusions

In this chapter, we studied the self-scattering of a two-level DM model.
The off-diagonal interaction leads to inelastic scattering of a pair of DM
particles from the ground state to the excited state, in addition to the
ordinary elastic scattering.

If the incoming energy of the particles is below threshold, the excited
state is not produced as physical states. Nevertheless, those states are
produced offshell in the intermediate steps of the scattering and can affect
even the elastic scattering cross-section. It was shown that the equations in
this case, can be rotated to a new basis where the potential matrix becomes
diagonal, and because of adiabaticity can be solved as a single state system
with an appropriate potential.

When the incoming particles are above threshold, inelastic scattering
may also take place. We showed that in a large part of the parameter space,
the inelastic cross-section is comparable to its elastic counterpart. This large
inelasticity is a result of the maximal adiabatic mixing between the two
states. We have also identified the Born and resonant regions in the relevant
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parameter space, and an estimate for the resonance condition has been
given using a mapping of the two-level system to an equivalent one-level
equation.

The off-diagonal interaction between the DM states allows the heavier
state to decay to the ground state emitting a mediator. The upscattering
and subsequent decay thus provides a mechanism for energy dissipation in
DM halos. Assuming the decay to be prompt, the rate of the upscattering
induced decay is given by the inelastic scattering rate which we computed
to be 1-2 orders of magnitudes larger than the age of the Universe. There-
fore, the DM halos can not condense into smaller halos via this mechanism.
Rather, the inelastic process takes place only in larger objects and is effec-
tive only after the DM density becomes large enough at the centers of those
objects. We compared this cooling rate with the heating due to ordinary
elastic scattering and found that in some regions of the parameter space,
the cooling rate could be a large fraction of the heating rate. We expect that
this will leave an observable imprint on DM halo formation and evolution
which can be only be probed by an N-body simulation incorporating this
dissipative feature.

The same dissipation gives rise to an additional drag force between two
colliding halos or for a small halos drifting through a larger one. When
two halos collide with each other, the self-interacting DM particles scatter
with each other and lose energy by emitting the light scalars. This energy
loss can be interpreted as a new drag force acting between the halos. We
calculated an analytical expression for this new drag force and found that
it is small relative to the other contribution from ordinary scattering, but
has a distinctive velocity independence unlike the usual drag force.





5
L AT E F O R M I N G B A L L I S T I C D A R K M AT T E R

Almost all particle physics models of DM predict that DM was not cold
at very early time. In many of these models, it is thought that when the
temperature of the Universe was high, the DM particles were relativistic
and interacted with other particles. As the Universe expanded, the DM
particles cooled down, and eventually became nonrelativistic and stopped
interacting with other particles. In typical WIMP-like scenarios, this hap-
pens when the temperature falls below the DM mass T ∼ mχ/3. Therefore
for DM mass in the MeV to TeV range, it becomes cold at very early time
or high redshift z ∼ 109 − 1012. However, several other models predict
that the formation of cold DM could have been relatively late, for example,
after z = 109 [93, 94, 151–160]. A question then naturally arises, how late
could CDM have formed in our Universe? To answer this question in a model-
independent way, we assume an effective macroscopic setup of late-forming
ballistic dark matter (BDM), and study on the cosmological observations.
Here the term ballistic refers to the fact that the DM inherits large peculiar
velocities from the acoustic oscillations in the relativistic collisional phase.

In this chapter, we shall first review cosmological linear perturbation
theory which will be required for our study, and then describe and explain
the novel effects due to late-formation of CDM. This chapter is based on
Paper III [3].

5.1 cosmological perturbation theory

The Universe is homogeneous and isotropic at large scales, but at the same
time it abounds with structures like galaxies. This tell us that the Universe
is, in fact, inhomogeneous and anisotropic at small enough length scales.
However, the fluctuations of the metric from the smooth FLRW background,
or perturbations in the energy density were very small at early time, e. g.,
during recombination. The observation of the CMB radiation in the sky
have confirmed that the fluctuations in the temperature, and hence, in
density of the CMB photons are of the order of 10−5. The smallness of the
fluctuations lets us use linear perturbation theory for the study of CMB
physics and large scale structure formation. Here we shall give a brief
outline of this theory following Ma & Bertschinger [161].

To begin with, we consider the perturbed, flat (i. e., k = 0 in Eq.(1.1))
FLRW metric (see Eq.(1.3)) in the conformal Newtonian gauge as follows1,

ds2 = a2(τ)
[
−(1 + 2ψ)dτ2 + (1 + 2φ)dxidxi

]
. (5.1)

1 Throughout this chapter, we follow the ‘mostly positive’ sign convention gµν =
(−1,+1,+1,+1) for the Minkowski metric. For the metric perturbations, we follow the
sign convention in Ref. [15]
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The quantities ψ(r, τ) and φ(r, τ) include only the scalar modes of the
metric perturbations. The vector and tensor perturbations are not included
in this gauge. It is suggestive to take spatial Fourier transform of the
fluctuations to take the advantage of the linearity of the theory.

A(r, t) =
∫ d3k

(2π)3 e−ik·r Ã(k, t) . (5.2)

Each spatial derivative that appears in the evolution equations of various
quantities yields a factor of the wavenumber ki for a particular Fourier
mode: ∂i → ki. We will drop the tilde from the Fourier transformed
quantities henceforth to simplify notation.

It is straightforward to derive the Einstein equation from Eq.(5.1). The
zeroth order part of it gives the Friedmann equations (Eq.(1.7)) describing
the evolution of the homogeneous FLRW Universe. The next leading order
terms gives the following equations of motion of ψ and φ,

k2φ + 3
ȧ
a

(
φ̇− ȧ

a
ψ

)
= 4πGa2ρ̄δ ,

k2
(

φ̇− ȧ
a

ψ

)
= −4πGa2(ρ̄ + p̄)θ ,

φ̈ +
ȧ
a
(2φ̇− ψ̇)−

(
2

ä
a
− ȧ2

a2

)
+

k2

3
(φ + ψ) = −4π

3
Ga2δTi

i ,

k2(φ + ψ) = −12πGa2(ρ̄ + p̄)σ .

(5.3)

Here we have defined the following quantities

δ = −δT0
0 /ρ̄, (ρ̄ + p̄)θ ≡ ikiδT0

i , (ρ̄ + p̄)σ ≡ −(k̂i k̂j − 1
3

δij)Σi
j , (5.4)

where θ is known as the velocity perturbation, σ is the anisotropic stress,
and Σi

j ≡ Ti
j − δi

jT
k
k is the traceless part of Ti

j .
These set of equations are to be closed with the equations of motion

for the perturbations in density δ, velocity θ, and anisotropic stress σ. As
a perfect fluid can be completely described by density and pressure, the
anisotropic stress vanishes, and δ and θ are the only perturbation variables.
Their equations of motion can be found easily by using the stress-energy
conservation Tµν

;ν = 0. This results in

δ̇ = −(1 + w)(θ + 3φ̇)− 3
ȧ
a
(
c2

s − w
)

δ ,

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

1 + w
θ +

c2
s

1 + w
k2δ + k2ψ .

(5.5)

Here w is the EoS, cs is the adiabatic sound speed in the fluid.
They can be obtained from the perturbations in a general phase space

distribution f (xi, qj, τ) of the species defined through
∫

d3xd3q f (xi, qj, τ) (1− 3φ) = N , (5.6)
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where qj (= apj) is the comoving 3-momentum, N is the total number of
particles of mass m. The extra (1− 3φ) factor is due to the fact that qi is
the comoving momentum, and not the canonically conjugate variable of xi.
The perturbation to f (xi, qj, τ) is defined as

f (xi, qj, τ) = f0(q)
[
1 + Ψ(xi, qj, τ)

]
. (5.7)

Here qj = qnj, nj being the unit vector in the direction of qj, and f0(q) is
the Bose or Fermi distribution depending on the particle statistics. With
this definition, the perturbed stress-energy tensor reads

T0
0 = −a−4

∫
d3q
√

q2 + a2m2 f0(q)(1 + Ψ) ,

T0
i = a−4

∫
d3q qni f0(q)Ψ ,

Ti
j = a−4

∫
d3q

q2ninj√
q2 + a2m2

f0(q)(1 + Ψ) .

(5.8)

For massless species, like photons, massless neutrinos, it is advantageous
to define a momentum-integrated function F(k, n̂, τ) as

F(k, n̂, τ) ≡

∫
dqq2 q f0(q)Ψ
∫

dqq2 q f0(q)
≡

∞

∑
`=0

(−i)`(2`+ 1)F`(k, τ)P`(k̂ · n̂) . (5.9)

In terms of F`(k, τ), the perturbations read

δ =
1

4π

∫
dΩF(k, n̂, τ) = F0 ,

θ =
3i

16π

∫
dΩ(k · n̂)F(k, n̂, τ) =

3
4

kF1 ,

σ = − 3
16π

∫
dΩ
[
(k · n̂)2 − 1

3

]
F(k, n̂, τ) =

1
2

F2 ,

(5.10)

for EoS w = 1/3 2. This series of different moments of F(k, n̂, τ) is some-
times called as the Boltzmann hierarchy. All species except the massive
neutrinos can be described using the momentum-integrated perturbations
δ, θ, σ and higher F`s.

The Boltzmann equation for a species with distribution function f (xi, q, nj, τ)

is
∂ f
∂τ

+
dxi

dτ

∂ f
∂xi +

dq
dτ

∂ f
∂q

+
dnj

dτ

∂ f
∂nj =

(
∂ f
∂τ

)

C
. (5.12)

2 For generic EoS w, θ and σ equations change into

θ =
i

4π(1 + w)

∫
dΩ(k · n̂)F(k, n̂, τ) =

1
(1 + w)

kF1 ,

σ = − 1
4π(1 + w)

∫
dΩ
[
(k · n̂)2 − 1

3

]
F(k, n̂, τ) =

2
3(1 + w)

F2 ,
(5.11)

respectively.
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The R.H.S. is the collision term that depends on the interactions with other
particles. Finally, the perturbation evolution equations can be obtained
by substituting Eq.(5.7) into Eq.(5.12), performing the integral over q, and
using the definition of F(k, n̂, τ) from Eq.(5.9).

Because CDM is nonrelativistic during all epochs of interest, they can
be described as pressureless perfect fluid with w = 0, F`≥2 = 0, and their
using only density and velocity perturbations. For CDM,

δ̇c = −θc − 3φ̇, θ̇c = −
ȧ
a

θc + k2ψ . (5.13)

These equations are identical to Eq.(5.5) with w = 0 which are obtained
from the stress-energy conservation.

Massless neutrinos do not form a perfect fluid. They have anisotropic
stress σν and all higher mode perturbations,

δ̇ν = −4
3

θν − 4φ̇ ,

θ̇ν = k2
(

1
4

δν − σν

)
+ k2ψ ,

Ḟν` =
k

2`+ 1

[
`Fν(`−1) − (`+ 1)Fν(`+1)

]
, ` ≥ 2 .

(5.14)

Photons and baryons were strongly coupled via Thomson scattering until
recombination. Their distribution functions are affected by the Thomson
scattering through the collision term in Eq.(5.12). Additionally, photons
have two polarizations which are affected differently by the anisotropic
Thomson scattering. The Boltzmann equations are

δ̇γ = −4
3

θγ − 4φ̇ ,

θ̇γ = k2
(

1
4

δγ − σγ

)
+ k2ψ + aneσT(θb − θγ) ,

Ḟγ2 = 2σ̇γ =
8
15

θγ −
3
5

kFγ3 −
9
5

aneσTσγ +
1
10

aneσT(Gγ0 + Gγ2) ,

Ḟγ` =
k

2`+ 1

[
`Fγ(`−1) − (`+ 1)Fγ(`+1)

]
− aneσT Fγ` , ` ≥ 3 ,

Ġγ` =
k

2`+ 1

[
`Gγ(`−1) − (`+ 1)Gγ(`+1)

]

−aneσT

[
−Gγ` +

1
2
(Fγ2 + Gγ0 + Gγ2)

(
δ`0 +

δ`2

5

)]
.

(5.15)
Here σT is the Thomson cross section, ne is the electron number density,
Fγ` and Gγ` are the momentum-averaged perturbations with the sum and
difference of two perpendicular polarizations, respectively.

The baryons are nonrelativistic during the epochs of our interest. There-
fore, their perturbations equations are similar to that of CDM except the
acoustic term c2

s k2δb (cs is the sound speed in the photon-baryon fluid and
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Figure 5.1: The evolution of the metric perturbation φ for three different modes
k = 0.01, 0.1, 1 Mpc−1.

is a function of the baryon temperature Tb), and the interaction term with
photon velocity perturbation θγ. The equations are

δ̇b = −θb − 3φ̇ ,

θ̇b = −
ȧ
a

θb + c2
s k2δb +

4ρ̄γ

3ρ̄b
aneσT(θγ − θb) + k2ψ .

(5.16)

The perturbation equations for the metric and all species are to be solved
numerically starting with some initial condition. The initial point in time is
taken to be when a particular mode is still outside horizon, i. e., kτ � 1.
The initial conditions for the metric perturbations are set by the curvature
perturbation created by some mechanism (e. g., inflation [162–164]) at super-
horizon scale. The initial conditions for the density perturbations can be
obtained by solving their equations in the small kτ limit. We shall not
discuss the derivations of the initial conditions here. See Ref. [161] for
details. The equations can be solved using any of the publicly available
numerical codes, like CAMB3 [165], CLASS4 [166] etc.

In Fig. 5.1, we show the evolution of the metric perturbation φ with τ.
The respective modes enter the horizon at τh ≡ 1/k. Before horizon entry,
φ remains constant for all modes. The subsequent behaviour depends
on k whether it is larger or smaller than keq (' 0.011 Mpc−1), the mode
which was entering the horizon during matter-radiation equality at τeq '
110 Mpc. For smaller modes (k > keq) which entered the horizon before τeq,
the decay is fast and is followed by oscillations. The fast decay happens
because the density perturbations do not grow appreciably during the
radiation domination (RD) epoch. The oscillations are induced by the
acoustic oscillations in the photon bath which dominates the total energy

3 https://github.com/cmbant/CAMB
4 https://github.com/lesgourg/class_public

https://github.com/cmbant/CAMB
https://github.com/lesgourg/class_public
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Figure 5.2: Density perturbation evolution for photon (dot-dashed blue), baryon
(dashed red), and CDM (solid black) for the mode k = 1 Mpc−1. The
horizon-entry and the matter-radiation equality epochs are marked
with dashed gray vertical lines.

density. The larger modes (k < keq) also decrease after horizon-entry but
by a smaller amount, and do not experience any oscillation as the Universe
has already become matter-dominated. The other metric perturbation ψ

differ from φ by a small amount due to the anisotropic stress coming from
the free streaming neutrinos (see Eq.(5.3)).

All density perturbations remain constant before horizon-entry in the
newtonian gauge. This can be seen in Fig. 5.2. The initial values are different
for matter and radiation species. During RD, the growth of δc is slow
logarithmic. When the Universe becomes matter-dominated, the growth is
faster as δc ∼ τ2.

As the mode enters the horizon, photon and baryon perturbations start
oscillating in unison because of their tight coupling. This is known as the
baryon acoustic oscillation (BAO). After recombination when photons start
diffusing, the amplitude of the oscillation is damped. Finally, the baryons
‘slip’ past the photons and begin to fall towards the gravitational potential
‘wells’ formed by CDM, and δb starts following CDM perturbation.

The most useful tool to study the theory of structure formation and test
it against the observations is the two-point function of the inhomogeneity or
the perturbations, called as the matter power spectrum P(k). It is defined as

〈δ(k)δ(k′)〉 = (2π)3P(k)δ3(k− k′) , (5.17)

where δ(k) is the total matter density perturbation

δ =
∑i ρ̄iδi

∑i ρ̄i
(5.18)

summed over all matter species (radiation does not cluster), and 〈· · · 〉 de-
notes statistical average. The magnitude of P(k) represents the clumpiness
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of the Universe at the length scale ∼ 1/k. Large P(k) indicates a lot of
collapsed structures at that scale, and small P(k) means less abundance of
structure. This P(k) has dimensions of (Length)3. Often a dimensionless
form of the power spectrum definition is used,

∆2(k) =
k3P(k)

2π2 . (5.19)

The power spectrum P(k) has two components – the primordial fluctuations
sourced by some mechanism, like inflation, and the evolving perturbations
during the history of the Universe. To isolate the evolution part, we define
transfer function T(k) as

T(k, τ) =
δ(k, τ)

∆p(k)
(5.20)

where ∆p(k) is the primordial density fluctuation. In terms of the transfer
function, the matter power spectrum is given by

P(k) =
2π2Pp

k3 T(k)2 . (5.21)

Here Pp(k) is the power spectrum of the primordial fluctuations defined as

Pp(k) = As

(
k
k0

)ns−1

(5.22)

in terms of the amplitude As, the scalar index ns, and the pivot scale k0.
The matter power spectrum for ΛCDM cosmology is shown in the left

panel of Fig. 5.3. The shape of P(k) can be understood by looking at the
individual mode evolutions shown in the right panel of Fig. 5.3. The modes
k < keq enter the horizon after matter-radiation equality and grow as ∼ τ2.
However, the smaller k is, the larger τh becomes. So the mode has less time
to grow until today. Therefore the power should increase with k in the
regime k < keq. This is evident in the figure. Modes which cross the horizon
before matter-radiation equality (k > keq) undergo a period of logarithmic
growth during τh < τ < τeq. This is slower than the ∼ τ2 growth during
matter domination (MD). As we go to larger k, this period of suppressed
growth widens, and as a result the final power today decreases. The modes
which enter horizon around the time of matter-radiation equality, i. e.,
k ' keq, do not experience the log growth period. Hence, the power
spectrum has a turnover between the increasing behaviour at small k and
decreasing behaviour at large k, which is around keq. In passing we note
that, the discussion about structure formation presented here considered
only the linear perturbation theory. However, today length scales smaller
than ∼ 10 Mpc have grown nonlinear and one needs to correct for the
nonlinearities at those scales before comparing the theoretical prediction
with the observed galaxy power spectrum.

Another very useful cosmological observable is the two-point correlation
functions of the CMB photon density. Photons, unlike the matter species, do



66 late forming ballistic dark matter

10−4 10−2 100

k [Mpc−1]

102

103

104

105

P
(k

)
[M

p
c3 ]

10−2 100 102 104

τ [Mpc]

100

101

102

103

104

δc

τ e
q

k = 0.001 Mpc−1

k = 0.015 Mpc−1

k = 1 Mpc−1

Figure 5.3: The ΛCDM matter power spectrum.

not cluster under gravity. After recombination, when they decoupled from
the baryons they continued to free stream until today. As a result, photon
perturbations are still small today (δγ ∼ 10−5) and can easily be described
by linear physics. The most convenient way study photon inhomogeneities
is to look at the anisotropies in the ‘sky’ of CMB photons. The temperature
of the CMB photons is written as

T(n̂, τ0) = T(τ0) [1 + ∆(n̂, τ0)] (5.23)

where T(τ0) = 2.73 K is the CMB background temperature today, ∆ is a
small perturbation. As the density ρ̄γ ∼ T4, we note that ∆ = δγ/4. We
expand ∆ in terms of the spherical harmonics

∆(n̂) =
∞

∑
`=1

`

∑
m=−`

a`mY`m(n̂) . (5.24)

The anisotropy information of ∆(n̂) is then contained in the expansion
coefficients a`m. Similar to the matter power spectrum, in this case also the
angular power spectrum is theoretically defined as the average of the a`m
coefficients,

〈a`ma∗`′m′〉 = C`δ``′δmm′ . (5.25)

The statistics of a`ms were set by the initial fluctuations. If they follow
Gaussian statistics with zero mean, then computing C`s contain all the
information. Otherwise, higher-point correlation functions would also be
needed. From an observed CMB map, the C`s can be computed using the
angular two-point correlation function C(θ) as

C(θ) ≡ 〈∆(n̂)∆(n̂′)〉 = 1
4π

∞

∑
`=1

(2`+ 1)C`P`(n̂ · n̂′) (5.26)

where the unit vectors n̂ and n̂′ are separated by an angle θ. We show the
theoretical CMB angular power spectrum in Fig. 5.4.
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5.2 ballistic dark matter

To study the cosmology of late-forming DM, we shall follow an effective,
model-independent approach. We consider that the dark sector consists of a
self-interacting relativistic species at early times which we call as the dark
radiation (DR). It transitions to non-interacting nonrelativistic particles, i.e.,
the dark matter (DM) phase, at a redshift z∗ with the corresponding scale
factor denoted by a∗. We further assume that the anisotropic stress and all
higher order moment perturbations in the Boltzmann hierarchy vanish, i. e.,
F`≥2 = 0, leaving only the density and velocity perturbations. This allows
the DR phase to be described by its equation of state. This assumption
can be relaxed if we work with the full stress-energy tensor [167]. In the
cosmological context, such an evolution can be encoded in a time-varying
EoS for the BDM fluid,

wB(z) =





1
3

z� z∗ (before transition)

0 z� z∗ (after transition) .
(5.27)

The subscript B denotes quantities associated to the BDM fluid.
The exact transition of the EoS between these two limits would depend

on the details of the particle physics model of BDM. We expect that the
cosmological observables, like the matter power spectrum, would be sensi-
tive to the time or redshift of phase transition and how long the transition
period lasts. Based on that, we adopt the following simple model for the
EoS,

wB =
1
6

[
1− tanh

(
a− a∗

∆

)]
, (5.28)
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where ∆ represents the extent in scale factor over which the transition
takes place. We note that as long as ∆� a∗ and a∗ � 1, we have |∆/a∗| ≈
|∆z/z∗|, where ∆z is the redshift-duration of phase transition.

In general, BDM may form only a fraction fBDM of the total dark matter
energy density. We parametrize this possibility as define

fBDM =
ΩBDM

ΩBDM + ΩCDM
, (5.29)

as the present-day ratio of BDM to total dark matter, with the remaining
fraction being ordinary CDM-like at all epochs.

The evolution equations for the linear perturbations of the BDM fluid in
the conformal Newtonian gauge are given by

δ̇B = −(1 + wB)(θB + 3φ̇)− 3
ȧ
a
(
c2

s − wB
)

δB , (5.30)

θ̇B = − ȧ
a
(1− 3wB)θB −

ẇB

1 + wB
θB +

c2
s

1 + wB
k2δB + k2ψ . (5.31)

Here cs is the speed of sound in the BDM fluid during the DR phase. The
second term on the RHS of the first equation vanishes because we assume
that the EoS does not depend on the energy density, and hence the speed of
sound c2

s ≡ δP/δρ = w. We combine Eqs. (5.30) and (5.31) to get a second
order equation for δB.

δ̈B +
ȧ
a
(1− 3wB) δ̇B + k2wBδB = F ,

F ≡ −3
ȧ
a
(1− 3wB) (1 + wB) φ̇− 3ẇBφ̇− 3 (1 + wB) φ̈− (1 + wB) k2ψ .

(5.32)
This is an equation of a damped forced oscillator for δB, with a forcing
term F arising from the metric perturbations sourced by BDM as well as
the other components of the Universe. Once the phase transition starts,
the equation of state wB < 1/3 and the damping term (∝ δ̇B) becomes
non-zero, damping the acoustic oscillations until the transition to DM
phase is complete and the BDM fluid becomes non-interacting.

We implemented the BDM species, defined by Eqs. (5.28 - 5.31), in the
codes CAMB [165] and CLASS [166]. We added a new species in CAMB for
BDM. In CLASS, we used the _fld species as BDM5. We computed the
transfer functions and the power spectra for this model using both codes
and obtained essentially identical results. While using the synchronous
gauge, we always keep a trace amount of ordinary CDM component to
ensure that the gauge is well-defined. We assumed that the stress-energy
tensor components vary continuously across the phase transition to connect
the DR phase perturbations with the DM phase perturbations. We also
assumed that no additional perturbations are created due to the phase
transition itself.

5 The modified CLASS code is available at https://github.com/anirbandas89/BDM_CLASS.

https://github.com/anirbandas89/BDM_CLASS
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Paper III [3].

5.3 cosmological signatures

5.3.1 Extra relativistic degrees of freedom

Before the phase transition, BDM acts like dark radiation and would
contribute to the expansion of the Universe in the radiation dominated era
modifying the expansion rate of the Universe. This effect is quantified by
effective relativistic degrees of freedom ∆Neff defined in Eq.(2.40) and is
repeated here.

Neff =
∑ ρνi

ρFD
ν

+
ρDR

ρFD
ν

(5.33)

≡ NSM
eff + ∆Neff . (5.34)

Here, ρDR is the energy density of BDM before phase transition. The
theoretical prediction in standard ΛCDM cosmology with only standard
model neutrinos contributing to Neff is NSM

eff = 3.046; the extra 0.046 taking
into account the energy gained by neutrinos during the electron-positron
annihilation [168–172]. We have defined ∆Neff as the contribution by new
physics.

The quantity ∆Neff is constrained by both CMB and big bang nucle-
osynthesis (BBN) observation data. The CMB experiments, such as Planck,
WMAP etc. are sensitive to the amount of radiation density present during
recombination at z ∼ 1100. The DR in our BDM model never thermalized
with the visible sector. Also the time of phase transition must be much
earlier than the recombination era and the era of matter-radiation equality
to satisfy the current cosmological constraints on the dark matter power
spectrum. Therefore, the CMB anisotropy constraints on Neff do not apply
to our model because by the time of recombination BDM has the same
background evolution as the CDM. Here we are implicitly assuming that



70 late forming ballistic dark matter

10−2 10−1 100 101

Comoving wavenumber k [h/Mpc]

10−1

100

101

102

103

104

105

P
ow

er
sp

ec
tr

u
m
P

(k
)

[(
M

p
c/
h

)3 ]

∼ 1/k

z∗ = 4× 104

∆z/z∗ = 1

∆z/z∗ = 0.1

∆z/z∗ = 0.01

ΛCDM

10−2 10−1 100 101

Comoving wavenumber k [h/Mpc]

10−1

100

101

102

103

104

105

P
ow

er
sp

ec
tr

u
m
P

(k
)

[(
M

p
c/
h

)3 ] ∆z/z∗ = 0.01

z∗ = 105

z∗ = 4× 104

z∗ = 104

ΛCDM

Figure 5.6: (Left) The matter power spectrum in a ΛBDM cosmology with phase
transition at z∗ = 4× 104, but with different transition widths ∆z/z∗ =
1 (purple), 0.1 (yellow), and 0.01 (green). (Right) The same matter
power spectrum with different phase transition redshifts z∗ = 105

(purple), 4× 104 (green), and 104 (yellow), but now for a fixed width
∆z/z∗ = 0.01. For comparison, the ΛCDM power spectrum is shown
as a dashed black curve in both panels. Note the enhancement of power
at the acoustic peaks at small scales relative to the ΛCDM case. Figures
taken from Paper III [3].

all of the energy density in the BDM converts to dark matter. If this is not
the case, and some energy remains as radiation, the constraint from CMB
may also be important. However, if the phase transition happens after the
BBN then DR in BDM model will certainly contribute to the Neff at the time
of BBN and can be constrained from the measurement of the primordial
helium and deuterium abundance [114, 173]. The strongest BBN constraints
at present are given by Neff = 3.28± 0.28 [114] or ∆Neff . 0.5.

In the left panel of Fig. 5.5, we show the change in ∆Neff at the time of
BBN as a function of z∗. For fBDM = 1, one finds z∗ & 2× 104. Note the
' 1/z∗ scaling of the limit. This was expected because the energy density
due to BDM is fixed by requiring that it reproduce the present-day dark
matter energy density. The excess radiation in the BBN epoch thus simply
scales with the relative factor (1 + zBBN)/(1 + z∗). In the right panel of
Fig. 5.5, the variation of ∆Neff in the plane of z∗ − fBDM is shown. The BBN
constraint rules out the gray-striped region.

5.4 matter power spectrum

The main signature of BDM is through its impact on the matter density
perturbations. Unlike in ΛCDM cosmology, here the BDM can support
‘sound’ waves until the phase transition occurs at z∗, leading to acoustic
oscillations for k modes inside the horizon at z∗. We will also see that the
nature of these acoustic oscillations in BDM is somewhat different from
the acoustic damping seen in models where CDM is allowed to interact
with a radiation like species.
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In Fig. 5.6, we show the dark matter power spectrum P(k) in a ΛBDM
cosmology for different values of the additional parameters of the theory,
namely, the width of the phase transition ∆z/z∗ and transition epoch z∗.
In the left panel, the green, yellow and purple curves represent the matter
power spectra for transition widths ∆z/z∗ = 0.01, 0.1, and 1, respectively.
An important observation here is the relative suppression of the spectrum
for slower phase transitions. This feature can be attributed to the second
term (∝ δ̇B) on the LHS of Eq.(5.32). This term acts as a friction term in the
oscillator equation and damps the fluctuations during the span of the phase
transition. The effect of the phase transition epochs, z∗ = 104, 4× 104, and
105, on the matter power spectrum is shown in the right panel of Fig. 5.6.
The value of z∗ decides the scale or wavenumber k∗ that was entering the
horizon at the time of phase transition. All modes with k < k∗ entered
the horizon after z∗, and are unaffected leaving the power spectrum is
indistinguishable from the ΛCDM case. The modes with k > k∗ entered the
horizon before the phase transition and experienced acoustic oscillations
leading to the new features in the power spectrum. Of course, as one would
expect, if the phase transition occurs at very early times the scale of acoustic
oscillations moves to larger k, converging to the ΛCDM model in the limit
z∗ → ∞.

5.4.1 Analytical understanding of the acoustic peaks

To understand the effect of the phase transition on the evolution of the
perturbations in a simple way, we first assume an instantaneous transition at
conformal time τ∗, corresponding to the redshift z∗. Also, in this section, we
shall assume z∗ > zeq, i.e., the phase transition happens inside the radiation-
dominated era. With this instantaneous phase transition approximation,
the evolution equation for δB, Eq. (5.32), in each phase can be written as:

δ̈B +
k2

3
δB = −4φ̈− 4

3
k2ψ , DR phase , (5.35)

δ̈B +
ȧ
a

δ̇B = −3φ̈− 3
ȧ
a

φ̇− k2ψ , DM phase . (5.36)

In this section, we shall be interested only in those modes which entered
the horizon much before τ∗. We know that the metric perturbations decay
to zero after a mode k enters the horizon during the radiation-domination
era. Therefore, if we ignore the potential-dependent source terms on the
RHS of Eqs. (5.35) and (5.36), the BDM perturbation equation Eq. (5.35) has
an oscillatory solution

δB(x < x∗) = A cos x , (5.37)

where we have defined the dimensionless quantity x ≡ kτ/
√

3 for con-
venience. We kept only the cosine solution, as required by the adiabatic
initial conditions at τ = 0. This solution represents perturbation modes
with acoustic oscillations of frequency k/

√
3. After the phase transition the
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Figure 5.7: (Left) Analytical solution of the BDM linear perturbation equations
for the mode k = 2h/Mpc. Five curves are shown with different τ∗s
corresponding to x∗ = 3.5π, 3.85π, 4π, 4.15π and 4.5π, respectively.
The colour of the curves represent the absolute value of the velocity
perturbation |θB|. A zoomed-in version of the gray region is shown
in the inset. The dashed, gray line shows the evolution of the same
mode in CDM perturbation. (Right) Numerical solution for evolution
of two modes of BDM perturbation δB corresponding to a maximum
(x∗ ≈ 13π/2) and a minimum (x∗ ≈ 12π/2) in the matter power
spectrum. Corresponding CDM mode evolutions in ΛCDM cosmology
are also shown as dashed curves. The other parameter values are
z∗ = 4× 104, ∆z/z∗ = 10−2 and fBDM = 1. Figures taken from Paper
III [3].

evolution of BDM is described by Eq. (5.36), yielding logarithmic growth
during radiation domination,

δB(x > x∗) = B ln x + C . (5.38)

To fix the constants of integration, B and C, we should know the T00 and
T0i components of the BDM stress-energy tensor at the end of the phase
transition or at the beginning of the DM phase. Because we are trying to
study the cosmology in a model-independent way, we consider the simplest
possible choice, i.e., both these components of Tµν are continuous during
the phase transition. This assumption yields

(δB)DR = (δB)DM ,

(δ̇B)DR = (δ̇B)DM − φ̇ .
(5.39)

Since the potential φ decays after the mode enters the horizon, we finally
have continuous δB and δ̇B across the phase transition happening x = x∗.
Their values at x∗ act as the initial conditions for the perturbations in the
ensuing DM phase. Therefore, the solutions of Eq.(5.37) and (5.38) need to
be matched at x = x∗ by equating δB and δ̇B. The final DM phase solution
is then given by

δB(x > x∗) = A cos x∗ − Ax∗ sin x∗ ln
(

x
x∗

)
. (5.40)
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The constant A is set by the initial conditions or initial curvature per-
turbation. Although the evolution is always logarithmic during radiation
dominated era, depending on the value of x∗ = kτ∗/

√
3, two extreme cases

are possible in the DM phase:

δB(x) = (−1)n A , if x∗ = nπ , (5.41)

δB(x) = (−1)n+1Ax∗ ln
(

x
x∗

)
, if x∗ =

(
n +

1
2

)
π . (5.42)

Here n is any integer. For the modes with k such that x∗ = nπ, the density
fluctuation does not grow at all after the phase transition. Eventually
these modes at even multiples of π/2 (or zeros of the sine) at the phase
transition will carry less power and correspond to the minima in the
power spectrum. On the contrary, if x∗ = (n + 1/2)π, these modes at odd
multiples of π/2 at the phase transition (extrema of the sine function) will
have logarithmic growth with maximum slope. This large initial slope or
prefactor is responsible for fast initial growth which may, for sharp phase
transitions, overtake the ΛCDM perturbation giving acoustic peaks that
overshoot the ΛCDM power for the same k modes.

Physically these two families of solutions are caused by the different
velocities of the perturbation at τ∗. The modes which were crossing zero
and had maximum velocity at x∗, i.e., |δ̇B(x∗)| = A, will continue moving
ballistically with the same bulk velocity in the collisionless DM phase, until
the initial velocity is redshifted away. This inherited extra bulk velocity kick
w.r.t what we expect from just gravitational infall in standard CDM, results
in a faster logarithmic growth for these modes compared to all other modes.
On the other hand, the modes having maximum displacement and zero
velocity at x∗, i.e., |δ̇B(x∗)| = 0, will not grow initially because the prefactor
of the logarithmic term in Eq. (5.40) vanishes. All other modes which do
not belong to these two extreme cases also have logarithmic growth but
with relatively smaller slope. After τ = τeq in the matter-dominated era, all
modes grow as δB ∼ a ∼ τ2. These different types of mode evolution will
reflect themselves in the shape of the matter power spectrum. In particular
it is the peculiar or bulk velocities of acoustic oscillations, and hence the
sine mode, which get imprinted in the matter power spectrum, similar to
the phase shift experienced by the baryon acoustic oscillations w.r.t. to the
acoustic oscillations imprinted in the CMB [174, 175].

In the left panel of Fig. 5.7, we show the evolution of δB as a function of
τ for the mode k = 2h/Mpc for five different values of τ∗. This is simply
the analytical solution shown in Eq. (5.40). The color-coding represents the
absolute value of δ̇B, hence the absolute value of θB. The transition epochs
are chosen such that x∗ = 3.5π, 3.85π, 4π, 4.15π and 4.5π, respectively.
Until the phase transition the evolution is identical, but depending on x∗
the curves emanate from the phase transition point with different colours
(i.e., velocities) which can be seen in the zoomed-in version of the gray
region in the inset. As was argued in Eq.(5.42), the cases x∗ = 3.5π and 4.5π

correspond to the extrema of the sine function (or the peculiar velocities
at the phase transition) which show fast growth of the perturbations,
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resulting in excess power at the acoustic peaks seen in Fig. 5.6. The case
with x∗ = 4π is the zero of the sine function and has zero velocity but
maximum density perturbation at τ = τ∗ and remains frozen at this value,
lagging behind all other modes at late times. They correspond to the dips in
the oscillatory part of the power spectrum. Other cases of x∗ = 3.85π and
4.15π have intermediate velocities at τ∗. Note how all peculiar velocities
redshift as ∼ 1/a after the phase transition. Eventually, of course, the
peculiar velocities sourced by gravitational potentials will take over.

In the right panel of Fig. 5.7, we see that the numerical results show the
same behavior as above. The two modes, k = 4.305h/Mpc and 4.661h/Mpc,
roughly correspond to x∗ ' 12π/2 and 13π/2, respectively, for a phase
transition at z∗ = 4× 104. These modes lead to a dip and a peak, respec-
tively, in the matter power spectrum. The perturbations remain constant at
their initial values until the time of their respective horizon entry which
happens when kτ ' 1. Afterwards they start oscillating with a frequency
k/
√

3. They continue to oscillate until τ∗, thereafter they start growing
as ∼ ln τ during the radiation-domination era and as ∼ τ2 in the matter-
domination era. The same modes for δc in a ΛCDM cosmology are also
shown in the dashed curves. As discussed in the preceding paragraph, the
modes starting with extra bulk velocity kicks from the pre-phase transition
oscillations overshoot the ΛCDM value and eventually acquire more power.
They give rise to the peaks in Fig. 5.6. Whereas those perturbations which
were at their maximum values at the time of phase transition (hence, zero
velocity) grow at a much slower rate and lead to the dips in Fig. 5.6. Indeed
the mode labeled by x∗ ≈ 13π/2 (solid blue, peak of the sine function),
grows faster and goes above the ΛCDM curve (dashed blue, zero of the
sine function), while the mode labeled by x∗ ≈ 12π/2 (red curve) remains
below it. This gives rise to the oscillatory feature in the matter power
spectrum in Fig. 5.6, with the upper envelop of the oscillations going above
the ΛCDM expectation.

From Eq.(5.42), we note that the absolute value of maximum perturbation
is proportional to the wavenumber k. Hence the transfer function T(k)max ∼
k. As a result, we expect the envelop of the peaks of the P(k) to scale as
∼ 1/k,

P(k)max ≡
2π2Pp

k3 T(k)2
max ∼ 1/k , (5.43)

where Pp is the primordial scalar power spectrum defined as

Pp = As

(
k
k0

)ns−1

, (5.44)

in terms of the amplitude As, the scalar index ns = 0.96, and the pivot scale
k0 [176]. The 1/k upper envelop of P(k) predicted by Eq.(5.43) is evident
in Fig. 5.6 for the case of fast transition, ∆z/z∗ = 0.01, as shown by the
dashed gray line.
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Figure 5.8: The matter power spectra for three different BDM fractions fBDM =
0.2, 0.4 and 0.8. The first three ‘peaks’ numbered by n = 0, 1, 2 (see Eq.
(5.42) for details) are marked with black arrows. Figures taken from
Paper III [3].

5.4.2 Odd-even peak asymmetry

An interesting asymmetry in the heights of the power spectrum peaks
becomes apparent if the fraction of BDM is neither 0 nor 1. Three represen-
tative cases are shown in Fig. 5.8 with fBDM = 0.2, 0.4 and 0.8, respectively.
We have numbered the peaks according of value of n in Eq. (5.42) with
the first peak given by n = 0 corresponding to first zero crossing of cosine
(density) or first extrema of sine (peculiar velocity). First, we concentrate
on the fBDM = 0.4 case and observe that the heights of the odd-numbered
peaks are greater than the even-numbered ones. To understand the reason
behind this asymmetry, we plot in the left panel of Fig. 5.9 the individual
BDM and CDM transfer functions TB (dashed orange) and TC (dashed
light blue), along with the total dark matter transfer function TDM(k) (solid
black), which is defined as

TDM(k) = fBDMTB(k) + (1− fBDM)TC(k) , (5.45)

at a redshift z = 3000. Oscillations with amplitude growing with k are
present in the BDM transfer function, TB(k), as expected. However, we
now see that such oscillations, albeit with smaller amplitude, are also
imprinted in the CDM transfer function TC. This is the result of the CDM
responding to the gravity of BDM or the gravitational potential φ which
has contribution from TB. Further, we observe the relative sign between
the two transfer functions. At the positions of the peaks of TB, the two
transfer functions have the same sign and reinforce each other resulting in
a larger magnitude of TDM. On the other hand, at the troughs of TB they
have opposite signs and can partially cancel each other. These shallower
troughs of the TB, that are below zero, appear as smaller peaks in the matter
power spectrum. This leads to the asymmetry between the consecutive
maxima in the matter power spectrum in Fig. 5.8. Physically, the initial
velocities of BDM at the phase transition for k modes corresponding to
even values of n were such that the (BDM) matter flowed from out of the
initial overdensities, which were the same for CDM and BDM according to
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Figure 5.9: (Left) Individual transfer functions of BDM TB(k) (dashed orange),
CDM TC(k) (dashed light blue), and the total dark matter transfer
function TDM = fBDMTB + (1− fBDM)TC (solid black) at redshift z =
3000 for fBDM = 0.4. (Right) Comparison between dark matter transfer
functions TDM(k) computed for three different fractions of BDM, viz.,
fBDM = 0.2 (red), 0.4 (blue), and 0.8 (green). Other phase transition
parameters are z∗ = 4× 104, ∆z/z∗ = 10−2. Figures taken from Paper
III [3].

the adiabatic initial conditions, and flowed into the initial underdensities
and thus reducing the amplitude of perturbations for those modes. For
the modes corresponding to odd values of n, the BDM matter flowed into
the CDM overdensities and out of the CDM underdensities, increasing the
density contrast.

Both components of the dark matter are needed in sizeable amount for
the odd-even acoustic peak asymmetry to be prominent. This is evident
from the fBDM = 0.2 and 0.8 plots in Fig. 5.8 and the right panel of Fig.
5.9. For fBDM = 0.2, the BDM has a sub-dominant contribution to the
total power spectrum and the out of phase extrema of BDM (even-n) only
result in giving minima in the total power spectrum. Thus only the odd-n
modes result in acoustic peaks in the total matter power spectrum. As we
increase fBDM, the minima in the total transfer function become deeper and
deeper and at some point cross zero (see Fig. 5.9, right panel). Once the
total transfer function has a zero crossing, the zero-crossings become the
deep minima in the matter power spectrum and the minima of the transfer
function appear as additional peaks, doubling the number of acoustic peaks
in the total power spectrum.

The asymmetry, i.e., the relative heights of the consecutive maxima
in the power spectrum is fixed once the initial peculiar velocities have
redshifted away. Subsequently, the BDM and CDM can be treated as a
single collisionless cold fluid, with a modified power spectrum which
grows linearly with redshift identically to the CDM fluid in the standard
ΛCDM cosmology. In particular, subsequent linear growth does not change
the shape of the power spectrum and the asymmetry and acoustic features
persist until today in linear theory.
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5.5 qualitative constraints from the matter and cmb power

spectrum

As we have already discussed, the effective relativistic degrees of freedom
during BBN already gives interesting constraints on the redshift of phase
transition. A more stringent lower bound on z∗ is given by the measurement
of the dark matter power spectrum. From Fig. 5.6 we see that even a value
z∗ = 104 predicts a sharp drop in power at k = 0.1h/Mpc near the second
BAO peak. These scales are well measured at many redshifts by the current
galaxy surveys like SDSS [177] and WiggleZ [6] and therefore z∗ = 104

is clearly ruled out by the current matter power spectrum measurements.
We show the WiggleZ data from the redshift range 0.5 < z < 0.7 and
theoretical ΛBDM power spectrum using the flat ΛCDMbest-fit model
parameters in the Table VII of Ref. [6] in Fig. 5.10 for different z∗. We
have used the same binning as the WiggleZ data for the theoretical power
spectrum and convolved it with the WiggleZ window function. As we can
see, even when restricting to approximately linear modes, k < 0.3h/Mpc,
we can already rule out z∗ smaller than ∼ 5× 104 by eye. We remind that
this is a crude estimate, and to be more accurate one needs to do a more
detailed study with degeneracies with other ΛCDMparameters, such as ns,
taken into account.

We will also expect modifications to the CMB anisotropy power spectrum
at small angular scales as it is sensitive to the total dark matter power
spectrum at the time of recombination. In a flat Universe, the mode k∗
corresponds to an approximate angular scale of `∗ ' k∗τ0 where τ0 =

1.4 × 104 Mpc is the conformal time today. Therefore the observability
of this effect in the CMB angular power spectrum would depend on the
value of k∗. The smallest scale probed by the current Planck experiment
corresponds to `max = 2500 implying a value of k∗ ' 0.2h/Mpc, therefore
a sensitivity to z∗ . 6× 104. The typical changes expected in the CMB
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Figure 5.11: (Left) Effects in the CMB TT power spectrum is shown for z∗ = 104

(red), 2 × 104 (blue), and 4 × 104 (green) with ∆z/z∗ = 0.01 and
fBDM = 1. (Right) The difference between ΛBDM and ΛCDM powers
∆DTT

` ≡ (DTT
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` )ΛCDM. We compare this ∆DTT
` with

the Planck high-` (47 ≤ ` ≤ 2499) binned data, and conclude that
the Planck data puts a rough lower limit on the transition redshift
z∗ & 4× 104. Figures taken from Paper III [3].

TT angular power spectrum are shown in the left panel of Fig. 5.11 for
z∗ = 104 (red), 2 × 104 (blue) and 4 × 104 (green). We use the best-fit
values of ΛCDM parameters from the Planck experiment [176]. In the
right panel of Fig. 5.11, we plot the difference between ΛBDM and ΛCDM
powers ∆DTT

` ≡ (DTT
` )ΛBDM − (DTT

` )ΛCDM together with the Planck high-
` (47 ≤ ` ≤ 2499) binned data error bars. We conclude that values of
transition redshift z∗ . 4 × 104 are not consistent with the CMB data.
The next-generation CMB observation experiments promise to probe even
smaller angular scales and correspondingly smaller k values [178].

The matter power spectrum and the CMB power spectrum at present
would give comparable constraints on the BDM parameters (z∗, ∆z/z∗, fBDM)
with the constraints from the matter power spectrum expected to be
stronger. We leave a more detailed Markov Chain Monte Carlo study
of the ΛBDM parameters using current CMB temperature and polarization
data and matter power spectrum for a future publication.

5.6 summary & conclusions

We studied the cosmological consequences of a class of dark matter models
defined by two main properties:

1. The time when the dark matter becomes nonrelativistic coincides
with it also becoming collisionless and the dark fluid is strongly
interacting before this phase transition.

2. This phase transition happens much later than the decoupling of dark
matter from the visible sector and in particular happens after BBN
and before recombination.
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Before the transition to non-relativistic collisionless dark matter, the radiation-
like particles were tightly coupled together and constituted a perfect fluid.
The pressure in the fluid supports acoustic oscillations and stalls the growth
of density perturbations during the period between a mode’s horizon entry
at τh and the phase transition at τ∗. The consequence of the above two
features is that the non-relativistic phase of the dark matter starts with a
non-zero peculiar velocities which are a sinusoidally oscillating function of
the mode k, and which are out of phase by π/2 w.r.t. the density fluctua-
tions, inherited from the previous tightly coupled relativistic phase. The
initial evolution in the collisionless phase is ballistic until the initial acoustic
peculiar velocities have been redshifted away. Afterwards the perturbations
grow in a similar fashion as in the ΛCDM cosmology. The initial evolution
after the phase transition of a mode is therefore driven almost entirely by
the peculiar velocities at the phase transition. The modes which had the
maximum velocity at τ∗ grow fastest, and the modes for which the density
perturbation was at the maximum amplitude and hence had zero velocity
have the slowest initial growth. The acoustic oscillations before the phase
transition are thus imprinted on the dark matter power spectrum. For fast
phase transitions, the acoustic peaks in the matter power spectrum, driven
by high initial peculiar velocities, can exceed the ΛCDM power. The excess
growth of power relative to the ΛCDM case can be suppressed if the phase
transition happens rather slowly. A gradual variation of the EoS of the dark
sector fluid leads to damping of perturbations.

If BDM does not dominate the matter energy density in the Universe then
an asymmetry arises in the peak heights of the matter power spectrum.
This happens because the transfer functions of CDM and BDM can be
in-phase or out-of-phase at the extrema of the BDM transfer function. The
minima and maxima of the BDM transfer function have opposite signs and
would give rise to similar amplitude acoustic peaks if BDM formed all of
dark matter. The CDM transfer function on the other hand does not change
sign as a function of k. Therefore successive extrema of the BDM would
have alternatively the same and the opposite sign to that of CDM and the
two can add constructively or destructively. The acoustic peaks in the total
matter power spectrum would be therefore alternate between enhancement
and suppression giving rise to an odd-even peak asymmetry.

By varying the three parameters of our BDM model, the redshift of phase
transition, z∗, the duration of phase transition, ∆z/z∗, and the fraction of
dark matter formed by BDM, fBDM, we can get a rich variety of features
and, in particular, tune the matter power spectrum to be enhanced or
suppressed at particular wavenumbers k. We have shown, by comparison
with existing data, that for fast transitions and all of DM formed by BDM,
the phase transitions must happen at z∗ > 5× 104. Our results indicate that
Ballistic Dark Matter has rich cosmological phenomenology and motivate
a more detailed study of the consequences of such a dark matter model
on the large scale structure, in particular in the non-linear regime, in the
future.





6
C O N C L U S I O N S & O U T L O O K

Dark matter forms a large part of today’s Universe, accounting for at
least ∼ 25% of the Universe, yet we do not know about its origin or
its microscopic nature. Theories of particle dark matter have been most
persuasive. It is thought that the dark matter particles are nonrelativistic
and mostly collisionless today. Observational data, both astrophysical and
cosmological, straddling over several orders of magnitude of length scale
can be successfully explained within the paradigm of cold collisionless
dark matter. As a result, this theory has been standardized and forms an
essential part of the standard model of modern cosmology, namely the
ΛCDM cosmology.

However, a few unresolved issues still remain which demand for a better
understanding of the baryonic astrophysics or of the dark sector, or both.
For example, collisionless cold dark matter fails to explain the diversity in
the observed galaxy density profiles. Even though, this apparent diversity
could be a result of complicated astrophysical phenomena, like supernova
explosion, mass accretion, tidal interaction between dark matter halos etc.,
there have been tantalizing evidences that collisional dark matter particle
can also be an answer to this puzzle. Another question that we do not
know the answer of is when the dark matter became cold and collisionless
during the course of the history of the Universe. We tried to investigate
these questions in this thesis, and find novel effects due to beyond standard
model dark sector physics that would be observable in various experiments
and observations.

In Ch. 3, we studied the phenomenology of a two-level dark matter
model to illustrate a new angular momentum and spin-dependent selec-
tion mechanism in the Sommerfeld effect. The particle exchange symmetry
picks out certain partial wave channels that are enhanced by the Sommer-
feld effect, suppressing the other channels at the same time. Multilevel
dark matter models where dark matter annihilation is otherwise p-wave
suppressed can exhibit large annihilation rate because of this effect. This
yields a signature behavior of the annihilation rate with the dark matter
velocity, e.g., dark matter particles annihilate faster in MW-like galaxies
than in dwarf galaxies or galaxy clusters. This could also potentially help
us explain the positron excess seen in several experiments. Future cosmic
ray experiments will decide if the excess is due to enhanced dark matter
annihilation or other astrophysical sources in the MW.

In Ch. 4, we discussed the scattering phenomenology of a two-level dark
matter system. The presence of multiple states bears the possibility of
inelastic scattering, and thereby an energy dissipation mechanism with
possible implications for the dark matter halo morphology and dynamics.
When two dark matter particles upscatter from the ground state to the ex-
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cited state and decay back to the ground state, two light mediator particles
are emitted carrying away a certain amount of energy. A dark matter halo
could lose energy through this process. The same process also leads to a
drag force in addition to the usual elastic scattering induced drag between
two colliding halos. Simple numerical estimates of these processes were
given. Computer simulations with dissipation mechanism implemented in
the dark sector will test such multilevel dark matter theories.

In Ch. 5, we considered the effects of a late dark sector ‘phase transition’,
when a collisional relativistic fluid converts into the cold collisionless dark
matter, on the cosmological observables. In the radiation phase, the fluid
experiences acoustic oscillations followed by logarithmic growth of the
density perturbations owing to the bulk velocity of the fluid during the
matter phase. The acoustic oscillations leave imprint on the matter power
spectrum at scales that entered the horizon before the transition. The
ballistic motion of the dark matter fluid following the transition enhances
the power of the maxima modes compared to the ΛCDM. As a result,
the overall envelope of the oscillations in the power spectrum goes above
the ΛCDM. An odd-even peak height asymmetry arises if the ballistic
dark matter forms only a fraction of the dark matter population which
was explained by an alternate cancellation/enhancement between the
ballistic and ordinary cold dark matter transfer functions. The temperature
and polarization anisotropy power spectra of the CMB radiation are also
modified. This model could be tested by comparing the matter and CMB
power spectrum with the observed ones. Especially, this theory predicts
drastic modification in the matter power spectrum at small scales. This
would have implications for the dark matter halo abundance in today’s
Universe.
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