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1
Synopsis

1.1 Introduction

The concept of self-organized criticality (SOC) was introduced by Bak Tang
and Wiesenfeld in 1987 [BTW87], to explain the abundant fractal struc-
tures in nature, e.g. mountain ranges, river networks, power law tails in
the distribution of earthquake intensities etc. The SOC refers to the non-
equilibrium steady state of slowly driven systems, which show irregular
burst like relaxations with a wide distribution of event sizes. The power
law correlations of different physical quantities, extending over a wide
range of length and time scales is a signature of criticality. Usually, reach-
ing a critical state requires fine tuning of some control parameters e.g.
temperature and magnetic field for the Ising model with a given interac-
tion strength. However in SOC the systems reach a critical state under
their own dynamics, irrespective of the initial states and without any ob-
vious fine tuning of parameters.

In the last two decades a large amount of study is focused on under-
standing the mechanism of SOC. The questions regarding the universality
classes of the critical states has still not been completely settled. Many
theoretical models have been studied to address these issues. Most of
these are cellular automata models with discrete or continuous variables,
evolving under deterministic or stochastic evolution rules (see [Dha06] for
a review). Among them the Abelian Sandpile Model (ASM) is studied
the most, mainly because of its analytical tractability using the Abelian
property[Dha90].

The standard ASM first proposed in [BTW87] is defined on a lattice
with height variables zi at each site i, which is equal to the number of
sand grains at that site. There is a threshold value zc for each site, and
any site with height zi ≥ zc is said to be unstable. The system in a stable
configuration is driven by adding a single grain at a randomly chosen
site. If this addition makes the system unstable, it relaxes by the following
toppling rule: All the unstable sites at one time step transfers one grain
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each to all its nearest neighbors. Grains can move out of the lattice by
toppling at the boundary. When the system reaches a stable configuration
it is again driven by adding a grain and the process is repeated. The model
reaches a steady state, in which the probability distribution of the size of
events has power law tail.

The ASM defined on an infinite lattice when driven by adding grains
only at a single site and relaxed, produces beautiful and complex patterns
in height variables (see figure 1.1). They are one of the examples where
complexity arises from simple rules. In section 1.2 we analyze some of
these patterns and develop a detailed and exact mathematical characteri-
zation of them.

There are different variants of the ASM that have been proposed. We
study two well known models among them.

First is the Zhang model. This is similar to the ASM, but with contin-
uous non-negative variables, usually referred as energy. At any time step
all the unstable sites relax by equally distributing all its energy amongst
its nearest neighbors, with their energy reducing to zero. Energy can also
move out of the system by toppling at the boundary. The driving is done
by adding energy to a randomly chosen site and the amount of the energy
is chosen at random from a distribution.

The second is a stochastic variant of the ASM. The first stochastic sand-
pile model was proposed by Manna and it is known as Manna model[Man91].
The model is non-Abelian, but one can construct stochastic relaxation rules
with Abelian character. We consider one such stochastic Abelian sandpile
model introduced in [Dha99c]. The model is similar to the ASM with non-
negative integer height variables zi and a threshold value zc defined at each
site. The driving is also done by adding one sand grain at a randomly cho-
sen site in a stable configuration. The difference is in the relaxation rules:
On toppling zc number of grains are transfered, each grain moving inde-
pendent of others to the nearest neighbors with equal probability and the
height at the toppling site reduces by zc. For the one dimensional model
defined on a linear chain, with zc = 2, there are three possible events in
a toppling at site i: Both the neighbors (i− 1) and (i + 1) gets one grain
each. Probability of this event is 1/2. Other two possibilities are that both
the grains move either to the left or to the right neighbor, each event with
probability 1/4.
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Figure 1.1: The stable configurations for the Abelian sandpile model, ob-
tained by adding 104 and 5× 104 grains, respectively at one site on a square
lattice. Initial configuration is with all heights 2. Color code: blue =0,
green = 1, red = 2, yellow = 3. Both patterns are on the same scale. (De-
tails can be seen in the electronic version using zoom in).

1.2 The spatial patterns in theoretical sandpile mod-

els

While real sand, poured at one point on a flat substrate, produces a rather
simple conical pyramid shape, nontrivial patterns are generated this way
in the ASM on an infinite lattice. One such pattern on a square lattice with
threshold height zc = 4, produced by adding grains at the origin in an
initial uniform distribution of heights z = 2, is shown in the figure 1.1.

The reason for interest in these patterns is two fold.
Firstly, these are analytically tractable examples of complex patterns

that are obtained from simple deterministic evolution rules. Here com-
plexity means that we have structures with variations, and a complete de-
scription of which is long. Thus, a living organism is complex because it
has many different working parts, each formed by variations in the work-
ing out of the same, but relatively much simpler genetic coding.

Secondly, these patterns have the very interesting property of propor-
tionate growth. This is a well-known feature of biological growth in an-
imals, where different parts of the growing animal grow at roughly the
same rate, keeping their shape almost the same. Our interest in studying
the sandpile patterns comes from these being the simplest model of pro-
portionate growth with non-trivial patterns. Compare the two patterns in
figure 1.1 produced on the same background but with different values of

21



CHAPTER 1. SYNOPSIS

Figure 1.2: F-lattice
with checker board
distribution of grains.
Unfilled circles denote
height z = 1 and filled
ones z = 0. The gray
area denotes a unit
cell of the periodic
distribution.

Figure 1.3: The sta-
ble configuration for
the Abelian sandpile
model, obtained by
adding 5× 104 grains at
one site, on the F-lattice
of figure 1.2 with initial
checkerboard config-
uration. Color code:
red = 0, yellow = 1.
The apparent orange
regions in the picture
represent the patches
with checkerboard con-
figuration. (Details can
be seen in the electronic
version using zoom in.)
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N. The pattern grows in size and finer features become discernible at the
center, but the overall shape of the pattern remains same. Most of the other
growth models studied in physics literature, such as the Eden model, the
diffusion limited aggregation, or the surface deposition, do not show this
property [Her86a, WS83, LE95]. In these models, the growth is confined
to some active outer region. The inner structures, once formed are frozen
in and do not evolve further in time.

The standard square lattice produces complicated patterns and it has
not been possible to characterize them so far. We consider a pattern which
is simpler but still complex. The pattern is produced on the F-lattice which
is a variant of the square lattice with directed edges. The lattice with
checker board distribution of heights is shown in figure 1.2. Each site has
equal number of incoming and outgoing arrows. The threshold height
is 2 and any unstable site relaxes by giving away one particle each in
the direction of the outgoing arrows. The pattern produced by centrally
seeding grains on the checkerboard background is shown in the figure 1.3.

1.2.1 The characterization of the pattern

We take some qualitative features of the observed pattern as input and
show how one can get a complete and quantitative characterization of the
pattern in the asymptotic limit of N → ∞.

In models with proportionate growth, it is natural to describe the
asymptotic pattern in terms of the rescaled coordinate r = R/Λ (N) where
Λ (N) is the diameter of the pattern, suitably defined, and R is the posi-
tion vector of a site on the lattice. The function Λ (N) increases in steps
with N and goes to infinity as N → ∞. In the asymptotic limit the pat-
tern can be characterized by a function ρ (r) which gives the local density
of sand grains in a small rectangle of size δξδη about the point r, with
1/Λ � δξ, δη � 1 where ξ and η are the x and y components of the
rescaled position vector r. We define ∆ρ (r) as the change in density ρ (r)
from its background value.

The pattern is composed of large regions where the heights are pe-
riodic and we call these regions as patches. Inside each patch ∆ρ (r) is
constant and takes only two values, either 0 or 1/2.

Let TN (R) be the number of topplings at site R when N number of
grains have been added and then relaxed. Define a rescaled toppling func-
tion

φ (r) = lim
N→∞

TN (bΛrc)
Λ (N)2 , (1.1)

where the floor function bxc is the largest integer less than or equal to x.
From the conservation of sand grains in the toppling process, it follows
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that φ satisfies the Poisson equation

∇2φ (r) = ∆ρ (r)− N
Λ2 δ (r) . (1.2)

The complete specification of φ (r) determines the density function
∆ρ (r) and hence the asymptotic pattern. The condition that determines
φ (r) is the requirement that inside each patch of constant density, it is a
quadratic function of ξ and η. Considering that there are only two types
of patches and that φ (r) satisfies (1.2) we write

φ (r) =
1
8
(1 + m) ξ2 +

1
4

nξη +
1
8
(1−m) η2 + dξ + eη + f , (1.3)

for the patches with ∆ρ = 1/2 and

φ (r) =
1
8

mξ2 +
1
4

nξη − 1
8

mη2 + dξ + eη + f , (1.4)

for the patches with ∆ρ = 0. Each patch is characterized by the values of
the parameters m,n,d,e and f . The continuity of φ (r) and its derivatives
along the boundary between two adjacent patches imposes linear relations
among the corresponding parameters. Using these relations we show that
m and n take only integer values. Each patch with its parameters d, e
and f can be labeled by the pair (m, n). The pair can be taken as the
Cartesian coordinates of the adjacency graph of the patches, which for
this pattern is a square lattice on a two sheeted Riemann surface. We show
that the function D (m, n) = d (m, n)+ ie (m, n), with i =

√
−1, satisfies the

discrete Laplace’s equation on the adjacency graph. Using the asymptotic
dependence of φ (r) close to the site of addition, we show that for large
|m|+ |n|,

D (m, n) ' ± 1
2π

√
m + in. (1.5)

Solution of the discrete Laplace’s equation on this adjacency graph with
the above boundary condition is difficult to determine. We numerically
calculate the solution on finite adjacency graphs and extrapolate our re-
sults to the asymptotic limit. We also show that the pattern has an exact
eight-fold rotational symmetry.

1.2.2 The effect of multiple sources or sinks

We also studied the patterns where the grains are added at more than one
site or those formed in presence of sink sites. One such pattern on the
F-lattice with the checker board background in presence of a line of sink
sites is shown in the figure 1.4. There are still only two types of patches
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Figure 1.4: The pattern produced by adding N = 14× 106 grains at the
site (0, 1) in the checkerboard background on the F-lattice with the sink
sites placed along the X-axis. Color code: yellow=1, and red=0. (Details
can be seen in the electronic version using zoom in.)

and like the single source case, the spatial distances can be expressed in
terms of the solution of the discrete Laplace’s equation on the adjacency
graph. However, the structure of the adjacency graph changes. For the
pattern in figure 1.4, the adjacency graph is still a square lattice but on a
Riemann surface of three sheets. We have explicitly worked out the spatial
distances by numerically solving the Laplace’s equation on this graph. We
have also studied the case with two sites of addition and quantitatively
characterized the pattern.

The most interesting effect of the sink sites is that it changes how dif-
ferent spatial lengths in the pattern scale with the number of added grains
N. For example, in the absence of sink sites, the diameter Λ (N) of the
pattern in figure 1.3 grows as

√
N, for large N, whereas in presence of

a line of sink sites next to the site of addition, it changes to N1/3. More
precisely, we show that in this case

C1Λ3 + C2Λ2 ' N, (1.6)

where C1 and C2 are numerical constants. For C1 = 0.1853 and C2 = 0.528
this relation describes the N dependence of Λ (N) for N in the range of
100 to 105, with unexpectedly high accuracy where both sides of the above
equation differs by at most 1.
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Figure 1.5: Directed
triangular lattice.
Unfilled circles
represent z = 1
and filled ones
z = 2. The gray
area denotes a unit
cell of the periodic
distribution.

We have also studied the case in which the source site is at the corner
of a wedge angle ω, where the wedge boundaries are absorbing. We show
that the relation similar to (1.6) is

C1Λ2+α + C2Λ2 ' N, (1.7)

where α = ω/ (π + 2ω). This analysis is extended to other lattices with
different initial height distribution, and also to higher dimensions.

1.2.3 The compact and non-compact growth

The growth rate of the patterns closely depends on the background height
distribution. When the heights at all sites on the background are low
enough, one gets patterns with Λ (N) growing as N1/d in d-dimensions.
We refer to this growth as the compact growth. However if sites with
maximum stable height in the background form an infinite cluster we get
avalanches that do not stop, and the pattern is not-well defined. We de-
scribe our unexpected finding of an interesting class of backgrounds, that
show an intermediate behavior. For any N, the avalanches are finite, but
the diameter of the pattern increases as Nα, for large N, with 1/2 < α ≤ 1.
We call this as non-compact growth. The exact value of α depends on the
background. These patterns still show proportionate growth.

We characterize one such pattern in the asymptotic limit for which α =

1. This pattern is produced on a triangular lattice with directed edges with
the background shown in the figure 1.5. The threshold height is 3 and the
toppling rules are similar to the model on the F-lattice. The corresponding
pattern is shown in figure 1.6. We show that for this pattern the rescaled
toppling function φ is piece-wise linear in ξ and η. The adjacency graph
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Figure 1.6: The pat-
tern produced by
adding N = 520
grains at a single site
on the directed tri-
angular lattice. Only
the patch boundaries
are shown by col-
ored lines. (Details
can be seen in the
electronic version
using zoom in.)

is also simpler, it is a hexagonal lattice and like the previous examples,
the spatial distances in the pattern are expressed in terms of the solution
of the Laplace’s equation on this graph. We determine the solution in a
closed integral form.

1.3 Emergence of quasi-units in the Zhang model

The Zhang model in one dimension has the remarkable property that in
spite of the randomness in the amount of energy added during driving,
the steady state energy per site has a very sharply peaked distribution in
which the width of the peak is much less than the spread in the input
amount. One such distribution is shown in figure 1.7. The threshold en-
ergy Ec = 1.5 and the driving energy is chosen from a uniform distribution
in the range [0.76 : 1.24]. The distribution has a spike at E = 0 and a peak
at E = 1.0 with a standard deviation σ = 0.0135. In general the width of
the peak decreases with the increase of the system size.

This behavior was noticed in numerical simulations in both one and
two dimensions, and it is called as “emergence of quasi-units”. It is argued
that for large systems, the behavior would be the same as in the discrete
model [Zha89]. Fey et. al. [BMQR08] have shown that for some choices of
the distribution of input energy, in one dimension, the variance of energy
does go to zero as length of the chain L goes to infinity. However they did
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Figure 1.7: The
probability distribu-
tion of energy per
site in the Zhang
model defined on
a linear chain of
length L = 100.

not show how fast the variance decreases with L.
We study the emergent behavior in the one-dimensional model by

looking at how the added energy is redistributed among different sites
in the relaxation process. Let the amount of energy for driving at time
t be chosen randomly from a uniform interval [1− ε, 1 + ε]. The time is
counted in terms of the relaxation steps and at one time step all the unsta-
ble sites relax together. We write the amount of driving energy at time t
as

∆t = 1 + εut, (1.8)

where ut is uniformly distributed in the interval [−1, 1]. We decompose
the energy variable at a site x in a relaxation time step t as

E (x, t) = Nint[E (x, t)] + εη (x, t) (1.9)

where Nint refers to the nearest integer value. The integer part evolves as
the integer heights in the ASM. The function η (x, t) is independent of ε

and is a linear function of ut. The precise function depends on the evo-
lution history Ht which is determined by the initial configuration and the
sequence of addition sites dt up to time t. We assume that at starting time
t = 0, the variable η (x, t = 0) are zero for all x, and the initial configu-
ration is a recurrent configuration of the ASM. We define G (x, t|dt′ , t′, Ht)
by

η (x, t| {ut} , Ht) =
t

∑
t′=1

G
(
x, t|dt′ , t′, Ht

)
ut′ . (1.10)

We show that this is equal to the probability Prob (x, t|dt′ , t′, Ht) of a marked
grain in the corresponding ASM, added at the site dt′ at time t′ following
the history Ht, to be found at site x at time t

G
(
x, t|at′ , t′, Ht

)
= Prob

(
x, t|at′ , t′, Ht

)
. (1.11)
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Then we show that the variance of energy in the steady state at a site x
can be written as

Var [E (x)] = L/(L + 1)2 + ε2Σ2 (x) , (1.12)

where

Σ2 (x) = lim
t→∞

Var [η (x, t)] =
1
3

∞

∑
τ=0

1
L

lim
t′→∞

∑
x′

G2(x, t′ + τ|x′, t′, Ht). (1.13)

The overbar denotes averaging over the evolution histories Ht.
The function G has been studied in [DP04], but for G2 the calcula-

tion is much more difficult. However analyzing the behavior in different
limits we introduce a phenomenological expression for it and show that
in the large L limit the variance of energy at a site x has a scaling form
L−1g (x/L). We determine an approximate form of the scaling function

g (ξ) = A ln

(
1 +

1
B
√

ξ (1− ξ)

)
, (1.14)

where A and B are numerical constants. This expression agrees very well
with the results of our numerical simulation.

1.4 Stochastic models of SOC

The sandpile models with stochastic toppling rules are important subclass
of SOC models. These models are able to describe the avalanche behav-
ior seen experimentally in the piles of granular media much better than
the deterministic models [FCMS+96]. Also in the numerical studies, one
gets better scaling collapse, and consequently, more reliable estimates for
the values of the critical exponents, than for the models with deterministic
toppling rules [CVZ99]. There is good numerical evidence that these mod-
els constitute a universality class different from their deterministic counter
parts [BHB96a, MBS98a, LU97a, Lüb00, MS00].

Unfortunately, at present, the theoretical understanding of the models
with stochastic toppling rules is much less than the deterministic models,
even the characterization of the steady state is not known for the one-
dimensional Manna model.

We consider the Manna model with Abelian toppling rule on a linear
chain of length L, described in section 1.1. Any stable state of the model
is expressed as a linear combination of the stable height configurations
with the coefficients being the probability of finding the system in that
configuration. We define an addition operator ai corresponding to the
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addition of grains at the site i, which acting on a stable state takes it to
another stable state achieved following the stochastic relaxation rule.

The Abelian property of the operators is shown in [Dha99c]. However,
unlike the deterministic ASM, the inverse operator

{
a−1

i

}
need not exist.

This makes the determination of the matrix form of the operators difficult
for this model. In a straightforward exact numerical calculation of the
steady state one needs to invert a matrix of size 4L × 4L. We use the
operator algebra of the addition operators to obtain an efficient method
which requires inverting a matrix only of size 2L × 2L.

Using the conservation of sand grains during toppling we show that

a2
i =

1
4
(ai−1 + ai+1)

2 . (1.15)

In general the operators ai need not be diagonalizable. However, using the
Abelian property we construct a common set of generalized eigenvectors
for all the operators such that in this basis the matrices simultaneously
reduce to the Jordan block form. Corresponding to each block there is
at least one common eigenvector. Then from eq. (1.15), the eigenvalues
satisfy

a2
i =

1
4
(ai−1 + ai+1)

2 , (1.16)

with the boundary condition a0 = aL+1 = 1. We reduce this set of coupled
quadratic equations to a set of linear equations by taking square root

ηiai =
1
2
(ai−1 + ai+1) , (1.17)

where ηi = ±1. There are 2L different choices for the set of L different
η’s and for each such choice, we get a set of eigenvalues {ai}. In general
there will be degenerate sets of eigenvalues. We show that degeneracies
are possible only for L = 3 (mod 4) and the set can at most be doubly
degenerate. This implies that the largest dimension of a Jordan block is
2. We determine the matrix elements inside each block in terms of the
solution of a set of coupled linear equations.

We define a transformation matrix between this generalized eigenvec-
tor basis and the height configuration basis.

| {zi}〉 = ∑
j

M{zi},j|ψj〉, (1.18)

where | {zi}〉 is the basis vector corresponding to the height configuration
{zi} and |ψj〉 is the j th generalized eigenvector. Any height configuration
can be generated by an appropriate sequence addition operators acting on
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the all empty configuration. As the action of the addition operators on the
generalized eigenvectors are known, this determines the elements of the
transformation matrix M.

Given M we can get the eigenvectors of the addition operators in the
configuration basis, in particular, the steady state vector, by the inverse
transformation

|ψj〉 = M−1| {zi}〉. (1.19)

We numerically calculate the inverse matrix M−1 and determine the ex-
act steady state for systems of small sizes. This result is then extrapolated
to determine the asymptotic density profile in the steady state. Our results
suggest that the steady state density averaged over all sites approaches the
asymptotic density as

1
ρL

=
1

ρ∞
+

B
(L + δ, )ν (1.20)

with ρ∞ = 0.953 which is close to the Monte Carlo estimate 0.949. We also
find that the ratio of probabilities of the most probable to the least probable
configuration varies as exp (0.94L log L). We show that the steady state is
not a product measure state.

The method described is easily generalized to other stochastic Abelian
sandpile models and we discuss some examples of them.

31





2
List of publications

(1) Tridib Sadhu and Deepak Dhar, Emergence of quasiunits in the one-
dimensional zhang model, Phys. Rev. E. 77 (2008). no. 3, 031122.

(2) Tridib Sadhu and Deepak Dhar, Steady state of stochastic sandpile mod-
els, Journal of Statistical Physics 134 (2009), 427.

(3) Deepak Dhar, Tridib Sadhu, and Samarth Chandra, Pattern formation
in growing sandpiles, Europhysics Letters 85 (2009), no. 4, 48002.

(4) Tridib Sadhu and Deepak Dhar, Pattern formation in growing sandpiles
with multiple sources and sinks, Journal of Statistical Physics 138 (2010),
815.

(5) Tridib Sadhu and Deepak Dhar, Pattern formation in fast growing sand-
piles, In preparation.

33





3
Introduction

3.1 Self-organized criticality (SOC)

One of the most striking aspects of physics is the simplicity of its laws.
Maxwell’s equations, Schrodinger’s equation, and Hamiltonian mechan-
ics are simple and expressible in few lines. However every place we look,
outside the textbook examples, we see a world of amazing complexity:
huge mountain ranges, scale free coastlines, the delicate ridges on the sur-
face of sand dunes, the interdependencies of financial markets, the diverse
ecologies formed by living organisms are few examples. Each situation
is highly organized and distinctive, but extremely complex. So why, if
the basic laws are simple, is the world so complicated? The idea of Self
Organized Criticality was born aiming to give an explanation for this ubiq-
uitous complexity [J.98]. In this chapter the basic concepts related to SOC,
that will be important for this thesis, are introduced.

The examples, cited above, share a common feature: a power-law
tail of the correlations. Consider the two point correlation of a quantity
∆h (x) = h (x) − h̄, where h (x) is the height at a place x in a mountain
range, and h̄ is its average value. The function 〈∆h(x + r)∆h(x)〉 increases
as rδ, with the exponent δ varying very little for different mountain ranges.
Similar distribution with extended tails is observed in many other natural
phenomena: Gutenberg-Richter law in earth quake [GR56], Levy distribu-
tion in stock market price variations [Bak96a], Hacks law in River networks
[DR99, BCF+01] etc. Such power-law distributions entail scale invariance
— there are no macroscopic spatial scales other than the system size, in
terms of which one can describe the system, making it complex.

Such features are familiar to physicist in equilibrium systems under-
going phase transition. In standard critical phenomena there are control
parameters such as temperatures, magnetic field, which requires to be fine
tuned by an external agent, to reach the critical point. This is unlikely to
happen in naturally occurring processes such as formation of mountain
ranges, earth quakes or even stock markets. These are non-equilibrium
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systems brought to their present states, by their intrinsic dynamics — and
not by a delicate selection of temperature, pressure or similar control pa-
rameters. 1.

In the summer of 1987, Bak, Tang and Wiesenfeld(BTW) published
a paper [BTW87] proposing an explanation to such ubiquitous scale in-
variance. They argued that the dynamic which gives rise to the robust
power-law correlations seen in the non-equilibrium steady states in nature
must not involve any fine tuning of parameters. It must be such that the
systems under their natural evolution are driven to a state at the bound-
ary between the stable and unstable states. Such a state then shows long
range spatio-temporal fluctuations similar to those in equilibrium critical
phenomena. The complex features appear spontaneously due to a coop-
erative behavior between the components of the system. They called this
self-organized criticality as the system self-organizes to its critical steady
state.

SOC nicely compliments the idea of chaos. In the latter, dynamical
systems with a few degrees of freedom, say as little as three, can display
extremely complicated behavior. However, a statistical description of this
randomness is predictable in the sense that, the signals have a white noise
spectrum, and not a power law tail. A Chaotic system has little memory
of the past, and it is easy to give a statistical description of such behavior.
In short, chaos does not explain complexity. On the other hand, in SOC,
generally, we start with systems of many degrees of freedom, and find
a few general features which are also statistically predictable, but has a
power-law spectra leading to complex behavior. In certain dynamical sys-
tems, e.g., logistic maps, there are points (the Feigenbaum point [Fei78])
in the parameter space, which separates states with a predictable periodic
behavior and chaos. At this transition point there is complex behavior,
with power-law correlations. SOC gives description of how systems, un-
der their own dynamics, without external monitoring, reaches this very
special point (“edge of chaos”), explaining the robust complex behavior in
natural systems.

In the book “How nature works?”, Per Bak gives various kinds of natu-
ral examples of SOC, of which the canonical one is the sandpile. On slowly
adding grains of sand to an empty table, a pile will grow until its slope
becomes critical and avalanches start spilling over the sides. If the slope
is too small, each grain just stays at the place where it lands or creates a
small avalanche. One can understand the motion of each grain in terms
the local properties, like place, the neighborhood around it etc. As the

1Per Bak, in his book [Bak96b], puts this in an interesting comment—“The nature is
operated by a ’blind watchmaker’ who is unable to make continuous fine adjustments”
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process continues, the slope of the pile become steeper and steeper. If the
slope becomes too large, a large catastrophic avalanche is likely, and the
slope will reduce. Eventually, the slope reaches a critical value where there
are avalanches of all sizes. At this point, the system is far out of balance,
and its behavior can no longer be understood in terms of the behavior of
localized events. The system is invariably driven towards its critical state.

3.2 Theoretical models

In order to have a mathematical formulation of SOC, BTW studied a so-
called cellular automata known as the sandpile model [BTW87], which
is discrete in space, time and in its dynamical variables. The model is
defined on a two dimensional square lattice where each site i has a state
variable zi referred as height, which takes only positive integer values.
This integer can be thought of as representing the amount of sand at that
location or in another sense it represents the slope of the sandpile at that
point. Neither of these analogies is fully accurate, the model has aspects
of both. One should consider it as a mathematical model of SOC, rather
than an accurate model of physical sand.

A set of local dynamical rules defines the evolution of the model: At
each time step a site is picked randomly, and its height zi is increased by
unity. In this thesis, this step will be referred as the driving. If the height
now is greater than or equal to a threshold value zc = 4, the site is said
to be unstable. It relaxes by toppling whereby four sand grains leave the
site, and each of the four neighboring sites gets one grain. If there are
any unstable sites remaining, they too are toppled, all in parallel. In case
of toppling at a site at the boundary of the lattice, grains falling outside
the lattice are removed from the system. This process continues until all
sites are stable. This completes one time step. Then, another site is picked
randomly, its height is increased by 1, and so on.

The following example illustrates the dynamics. Let the lattice size be
3× 3 and suppose at some time step the following configuration is reached
where all sites are stable.

2 3 2
3 3 0
1 2 3

We now add a grain of sand at randomly selected site: let us say the central
site is chosen. Then the configuration becomes the following

2 3 2
3 4 0
1 2 3

37



CHAPTER 3. INTRODUCTION

The central site is not stable, and therefore it will topple and the configu-
ration becomes

2 4 2
4 0 1
1 3 3

.

This configuration has two unstable sites, so both will topple in parallel.
Since these are at the boundary, two grains will be lost, on toppling. The
new result is

4 0 3
0 2 1
2 3 3

,

and further toppling leads to

0 1 3
1 2 1
2 3 3

This is a configuration with all sites stable. One speaks in this case of
an avalanche of size s = 4, since there are four topplings. Another mea-
sure is the number of steps required for relaxation, which in this case is
t = 3. For large lattices, in the steady state, the distribution of avalanche
sizes and durations display a long power-law tail, with an eventual cutoff
determined by the finite size of the system.

Since the original sandpile model by BTW a large number of variations
of the model have been studied (see [Dha06, J.98] for reviews). These
are mostly extended systems with many components, which under steady
drive reaches a steady state where there are irregular burst like relaxations
and long ranged spatio temporal correlations. It is to be noted that in
these models the complexity is not contained in the evolution rules itself,
but rather emerges as a result of the repeated local interactions among
different variables in the extended system.

In the rest of this chapter, I will introduce three of the most studied
models of sandpile and the techniques used to analyze them.

3.2.1 Deterministic abelian Sandpile Model (DASM)

This is the most studied model due to it analytical tractability. In a series of
papers, Deepak Dhar and his collaborators have shown that this model has
some remarkable mathematical properties. In particular, the critical state
of the system has been well characterized in terms of an abelian group. In
the following I will generally follow the discussion in [Dha06].

The model is a generalized BTW model on any general graph with N
sites labeled by integers 1, 2, 3 · · ·N. To make things precise, I will start
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with some definitions. A configuration C for the sandpile model is spec-
ified by a set of integer heights {zi} defined on the N sites of the graph.
We denote a threshold value of the height at a site i as zc

i . The system
is driven like the BTW model by adding one sand grain at a randomly
chosen site which increases the height at that site by 1. The toppling rules
are specifies by a N × N toppling matrix ∆ such that on toppling at site i,
heights at all sites are updated according to the rule:

zj → zj − ∆i,j for every j. (3.1)

For example in the BTW model on a square lattice

∆i,j =


4 for i = j
−1 for i, j nearest neighbors

0 otherwise
(3.2)

Evidently the matrix ∆ has to satisfy some conditions to ensure that the
model is well behaved. These are

1. ∆i,i > 0, for all i. (Height decreases at the toppled site)

2. ∆i,j ≤ 0, for all j 6= i. (Heights at other sites are increased or un-
changed)

3. ∑j ∆i,j ≥ 0 for all i. (Sand is not generated in toppling)

4. Each site is connected through toppling events to at least one site
where sand can be lost, such as the boundary.

Without loss of generality we choose zc
i = ∆i,i (This only amounts to defin-

ing the reference level for the height variables).
With this convention, if all zi are initially non-negative they will remain

so, and we restrict ourself to configurations C belonging to that space,
denoted by Ω. Let S be the space of stable configurations denoted by Cs

where the height variables at each site are below threshold. The property
4 above ensures that stability will always be achieved in a finite time.

We formalize the addition of sand to a stable configuration by defin-
ing an “addition operator” ai so that aiCs is the new stable configuration
obtained by taking zi → zi + 1 and then relaxing.

The mathematical treatment of ASM relies on one simple property it
possesses: The order in which the operations of particle addition and site
toppling are performed does not matter. Thus the operators ai commute
i.e.

aiajCs = ajaiCs for every i, j and Cs. (3.3)
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The proof uses the linearity of the toppling processes [Dha06]. In the
relaxation processes represented by the two sides of the above equation,
the order of topplings can be changed, but the final configurations are
equal. An example of this abelian nature is the process of long addition of
multi-digit numbers. In this example the toppling process is like carrying.

Note that, there are some “garden of Eden” configurations that once
exited can not be reached again. For example, in the BTW model on square
lattice, system can never reach a state with two adjacent zi = 0. This is
because in trying to topple a site to zero, the neighbor gains a grain, and
vice versa. This leads to the definition of the recurrent state spaceR which
consists of any stable configuration that can be achieved by adding sand
to some other recurrent configuration. This set is not empty since one
can always reach a minimally stable configuration defined by having all
zi = zc − 1.

Dhar proved [Dha90] another remarkable property that the addition
operators ai have unique inverses when restricted to the recurrent space;
that is, there exists a unique operator a−1

i such that ai

(
a−1

i Cs

)
= Cs for all

Cs in R. This can be easily seen from the fact that there are finite number
of configurations in R, so for some positive period p, ap

i Cs = Cs with Cs a
recurrent configuration. Using the abelian property it can be shown that
the period p is same for all Cs ∈ R. Then ap−1

i is the inverse for ai.
These properties of ai have some interesting consequences [Dha90].

One is that in the steady state all the recurrent configurations are equally
probable. Also, the number of recurrent states is simply the determinant of
the toppling matrix ∆. For large square lattices of N sites this determinant
can be found easily by Fourier transform. In particular, whereas there are
4N stable states, there are only (3.2102 · · · )N recurrent states. Thus starting
from an arbitrary state and slowly adding sand, the system self-organizes
to an exponentially small subset of states, which are the attractor of this
dynamics.

There are many more interesting properties of the DASM, e.g., using
a burning algorithm [MD92], it is possible to test whether an arbitrary
configuration is recurrent. Using this algorithm it can also be shown that
the model is related to statistics of spanning-trees on the lattice, as well
as with the q → 0 limit of the Potts model [MD92, Dha06]. As several
results are known about spanning tree these equivalence help in relating
properties of DASM to known properties of spanning trees.

In spite of these interesting mathematical properties, the exponents
characterizing the power-law tail in the distribution of avalanches are still
difficult to determine analytically on most lattices, and computer simula-
tions are still needed. In fact, on a square lattice, the numerical values esti-
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mated by different people have shown a wide range of values. It has been
argued that the simple finite size scaling does not work for the avalanche
distribution and instead it has a multi-fractal character [KNWZ89]. In
some simpler quasi-one dimensional lattices it has been shown that simple
linear combination of two scaling forms provides an adequate description
[AD95].

For higher dimensional lattices it has been shown by Priezzhev that
the upper critical dimension for the models is 4 [Pri00]. For lattices of
dimension above 4, the avalanche exponents take mean field values and
can be deduced from the exact solution of the model on a Bethe lattice
[DM90].

3.2.2 Zhang model

The Zhang model, introduced by Zhang in 1989, differs from the DASM
in two aspects: first, the height variables zi are continuous and takes non-
negative real values. A site is unstable if its height is above threshold,
and it topples by equally dividing its entire content among its nearest
neighbors, and itself becoming empty. Second, the external perturbation
is not by adding height 1, but by a quantum chosen randomly from an
interval [a, b), where 0 ≤ a < b are positive real numbers.

Here, is an example of the Zhang model in one dimension. Let the
threshold height is zc

i = 1.5, same for all i, and an initial configuration is

0.8 1.4 0

Now a time step begins by an addition to a random site, of a random
amount chosen from the interval [0, 1.5). Let the amount is 1.0 and the site
is the central site. After addition the result is

0.8 2.4 0

Because the middle site is unstable, an avalanche starts:

2.0 0 1.2 → 0 1.0 1.2

In case of two or more unstable sites, all are toppled in parallel.
Since the addition amount is random, a stable site could in princi-

ple have any height between zero and the threshold and the stationary
distribution could be very different from that of the DASM, where only
discrete values are encountered. Nevertheless, when one simulates the
model on large lattices in one and two dimensions, the stationary heights
tend to concentrate around nonrandom discrete values. This is known as
the “emergence of quasi-units” [Zha89]. It appears that altering the local
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toppling rules of the DASM, does not have that much effect on the global
behavior after all, if the lattice size is large.

This behavior led to the conjecture that in the thermodynamic limit the
critical behavior is identical to that of DASM. However, due to the changed
toppling rules, the dynamics is no longer abelian, and determining the
steady state is quite difficult, even in one-dimension. In fact, Blanchard et.
al. have shown that the probability distribution of heights in the steady
state, even for the two site problem, has a multi-fractal character [BCK97].

This status was unchanged for over a decade until Fey et. al. showed
that on a one-dimensional lattice, for some specific choice of the amount
of addition, the toppling becomes abelian. Using this they showed that,
indeed, the model is on the same universality class of the DASM. However,
the analysis in two dimension is still an open problem.

3.2.3 Manna model

Another important class of the sandpile models are with stochastic top-
pling rules. The first model of its kind was studied by Manna in 1991, and
is known as the Manna model [Man91].

The evolution rules of this sandpile in d-dimensions are very similar to
the ones defined for the DASM. In fact, the driving rule and the dissipation
rules at the “boundary” remain the same. But in a toppling, an unstable
site redistributes all the sand grains between sites randomly chosen amongst
its 2d nearest neighbors.

zi → 0

zj → zj + 1 for zi sites chosen randomly amongst n.n. of i.

The randomness in the evolution rule is a relevant change in the dy-
namics, which makes it non-abelian. It is possible to get back the abelian-
ness by a simple modification in the toppling rule, which I will discuss
in detail in the later chapters. However, the addition operators defined
appropriately do not form a group anymore and this makes the analysis
less tractable even for a linear chain.

The steady state is very different from its deterministic counter part
e.g. on a simple linear chain the different recurrent states are not equally
probable, unlike the deterministic model. Also the avalanche distribution
can be satisfactorily described by simple finite size scaling. Another evi-
dence of the differences between these models is in the way the avalanches
spread over the lattice [MBS98b]. The distribution of number of toppling
per site in a typical avalanche for both DASM and Manna model on a
square lattice are shown in Fig. 3.2.3. For the DASM, one can see a shell
structure in which all sites that toppled T times form a connected cluster
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Figure 3.1: Number of toppling per site for a typical avalanche in (a)
DASM and (b) Manna model. The darker shades denote more topplings.
(Courtesy [MBS98b])

with no holes, and these sites are contained in the cluster of sites that top-
pled T − 1 times, and so on. On the other hand, the toppling distribution
exhibits a random avalanche structure with many peaks and holes.

For many years, the universality of the manna model was a controver-
sial question. At present there are convincing numerical evidences that in
dimension up to 3, they have a different critical behavior, from its deter-
ministic counterpart, with a different set of critical exponents. However
in dimensions d ≥ 4, both DASM and Manna model take the same mean-
field values of critical exponents.

3.3 Universality in the sandpile models.

Since the work by BTW, a large number of different models have been
studied e.g. sandpile models with many variations of the BTW toppling
matrix [KNWZ89] or sand grain distribution rules [MZ96], stochastic top-
plings [Man91], with activity inhibition [MG97], continuous height models
[Zha89], loop erased random walk [DD97], Takayasu aggregation model
[Tak89], train model [dSV92, PB96], non-abelian sandpile directed sandpile
model [LLT91, PZL+05, Ali95a, GH02], forest-fire model [DS92], Olami-
Feder-Christensen model [OFC92] etc (and many more could have been
defined). Most of these models could only be studied numerically, and for
a while it seemed that each new variation studied belong to a new univer-
sality class each with its own set of critical exponents. It is a fair question
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Figure 3.2: A
schematic flow
diagram of renor-
malization group
flows between dif-
ferent fixed points
of sandpile models.

to ask, what is the generic behavior?
Although this question is not yet resolved completely, by now, there

has been a fair amount of understanding of this problem. The universality
classes with renormalization group flow in these models can be summa-
rized in the Fig. 3.2.

There are sufficient numerical evidence that sandpile models with de-
terministic toppling rules (DASM) and stochastic toppling rules (Manna
model) constitute different universality classes. There are also several
other model which show critical exponents different from these two [Sne95,
BS93, GZ96]. They are related to the directed percolation (DP) [Kin85],
which describes the active-absorbing state phase transition in a wide class
of reaction-diffusion systems. The activity in avalanches in sandpile can
grow, diffuse or die, and any stable configuration is an absorbing state.
Thus one would expect that in general the sandpile should belong to the
universality class of active-absorbing state transition with many absorbing
states [RMAS00]. However, these models do not involve any conserved
fields. In Manna and DASM-type models, it is this presence of conser-
vation laws of sand that makes the critical behavior different from DP
[VDMnZ98].

Recently, the effect of non-conservation has been explicitly studied
[MD02, MD07] by introducing stickiness in the toppling rules (i.e. there is
small probability that the incoming particles to a site get stuck there, and
do not cause any toppling until the next avalanche hits the site, thus in
effect there is no conservation of grains within an avalanche). It has been
argued that as long as the sand grains have non-zero stickiness, the dis-
tribution of avalanche sizes follows directed percolation exponents. The
DASM, and the stochastic Manna-type models are unstable to this pertur-
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Figure 3.3: A schematic
of a rice-pile. The
elongated shapes of
the rice grains reduces
the inertial effect in an
avalanche. (Courtesy K.
Christensen.)

bation, and the renormalization group flows are directed away from them
to the directed percolation fixed point, as schematically shown in the fig-
ure. This picture is exactly verified in directed sandpiles. However, the
argument is less convincing for undirected models, and the issues is not
settled [BRC+06].

3.4 Experimental models of SOC

Soon after the sandpile model was introduced, several experimental groups
measured the size distribution of avalanches in granular materials. Unfor-
tunately, real sandpile do not seem to behave as the the theoretical models.
Experiments show large periodic avalanches separated by quiescent states
with only limited activity. While for small piles one could try to fit the
avalanche distribution with power-law over a limited range, the behav-
ior would eventually cross over, on increasing the system size, to a state
which is not scale-invariant [JLN89, JNB96]. It is later realized that inertia
of rolling grains is the reason for non-criticality. A large avalanche prop-
agating over a surface with slope θc scours the surface, and takes away
materials from it. The final angle, after the avalanche has stopped, is bel-
low θc. So if we want to see power-law avalanches, we have to minimize
the effect of inertia of the grains. This is achieved in an experiment in Oslo
by using rice grains. Because of the elongated shape of the rice grains (Fig.
3.3) frictional forces are stronger and these poured at very small rate gave
rise to a convincing power-law avalanche distribution [FCMS+96].

A similar power law distribution of avalanche sizes are obtained in
motion of domain walls in ferro-magnets [DBM95, ZCDS98] and flux lines
in type II superconductors [FWNL95, ORN98]. A more recent experi-
mental realization of SOC is obtained in suspensions of sedimenting non-
brownian particles by slow periodic shear [CGMP09].

It is worth mentioning that SOC has been invoked in several other sit-
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uations in geophysics (atmospheric precipitation [PN06], river pattern due
to erosion [TI92], landslides [MT99]), biology (neural-network [LHG07]),
economics (stock-market crashes [SS99]) and many more. I have delib-
erately chosen the above experimental examples for which experimental
observations are accurate and reproducible.

3.5 Remarks

Originally, SOC was proposed with the aim of providing an explanation
of the ubiquitous complexity in nature [BTW87]. The abundance of fractal
structures in nature, temporal as well as spatial, was considered to be an
effect of a generic tendency — pertinent to most many-body systems — to
develop by themselves in to a critical scale-invariant state.

However, certainly not all systems that organize themselves into one
specific state will, when gently driven, exhibit scale invariance in that self-
organized state. The experiments of real sandpiles referred earlier are a
prime example. Neither is all observed power law behavior are an effect
of dynamical self-organization into a critical state. The work by Sethna
and co-workers on Barkhausen noise [SDK+93] is an interesting example
of this, what Didier Sornette has called “Power laws by sweeping of an
instability” [Sor94].

Since the introduction of the idea, a large amount of discussion went
into understanding the minimum conditions for a model to be self-organized
critical. Though a broad picture has emerged in last two decades, it is still
not complete and controversial. In the rest of this section, I will discuss
two of the most discussed properties, using both examples and counter
examples.

• Slow driving limit. There is a strong belief in the community that
an essential ingredient of SOC is slow driving (driving and dynam-
ics operating at two infinitely separated timescales, i.e. avalanches
are instantaneous relative to the time scale of driving). This idea got
widely accepted after an argument given by Dickman et. al..[RMAS00]
They argued that the dynamics in the sandpile model implicitly in-
volve tuning of the density of grains to a value where a phase transi-
tion takes place between an active state, where topplings take place,
and a quiescent “absorbing” state. When the system is quiescent,
addition of new particles increases the density. When the system
is active, particles are lost to the sinks via toppling, decreasing the
density. The slow driving ensures that these two density chang-
ing mechanisms balance one another out, driving the system to the
threshold of instability.
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However in the Takayasu model of aggregation [Tak89] the driving
is fast. A simple example, it can be defined on a linear chain on
which particles are continuously injected, diffuse and coalesce. One
can write the explicite rules as follows:

– At each time step, each particle in the system moves by a single
step, to the left or to the right, taken with equal probability,
independent of the choice at other sites.

– A single particle is added at every site at each time step.

– If there are more than one particle at one site, they coalesce and
become a single particle whose mass is the sum of the masses
of the coalescing parts. In all subsequent events, the composite
particles acts as a single particle.

The probability distribution of total mass at a randomly chosen site,
has power law tail, with an upper cutoff that increases with time.
This is a signature of criticality. The analogue of avalanches in this
model is the event of coming together of large masses. In fact, it can
be shown [Dha06] that the model is equivalent to a directed version
of sandpile. In this example, it is clear that the driving is fast, and
the rate is comparable to the local movements of the particles.

• Conservation. Conservation of grains is also considered as a key
property for the criticality to emerge in sandpile models. A simple
intuitive argument goes as follows: the sand grains introduced in the
pile can dissipate only by reaching the diffusive “boundary” of the
lattice. Owing to this and because of the vanishing rate of sand addi-
tion, arbitrarily large avalanches (of all possible sizes) must exist for
an arbitrarily large system size, yielding a power-law size distribu-
tion. In contrast, in the presence of non-vanishing bulk dissipation,
grains disappear at some finite rate, and avalanches stop after some
characteristic size determined by the dissipation rate. This clearly
says that bulk dissipation is a relevant perturbation in the sandpile
dynamics and breaks the criticality [BMn08].

There are also some other models of SOC like Forest fire [DS92],
OFC model [OFC92] where it was shown, mostly numerically, that
non-conservation in the dynamics leads to non-critical steady state.

However, extrapolating these results and considering conservation
as a neccesarry criteria for SOC, in general, is not correct. A model
which is clearly non-conservative and still, when slowly driven dis-
plays power-law in the avalanche size distribution is discussed in
[Sad10]. Another two non-conservative models of SOC are a sandpile
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model with threshold dissipation[Ali95b], and Bak-Sneppen model
of evolution [BS93].

Finally, one could ask: Has SOC, taught us anything about the world
that we did not know prior to it? Jensen addresses this question very
nicely in his book. The most important lesson is that, in a great variety of
systems, particularly for slowly-driven-interaction- dominated-threshold
systems, it is misleading to neglect fluctuations. In these systems, some-
times, the fluctuations are so large that the fate of a major part of the
system can be determined by a single burst of activity. Dinosaurs may
have become extinct simply as a result of an intrinsic fluctuation in a sys-
tem consisting of a highly interconnected and interacting web of species;
there may be no need for an explanation in terms of external bombard-
ment by meteorites. Fluctuations are so large that the "atypical" events decides
the future of the system. This new insight is sufficiently important to justify
and inspire more theoretical, and experimental research in SOC.

3.6 Overview of the later chapters

The work in this thesis ranges from characterizing the spatial patterns
in sandpile model, to quasi-units in the stationary distribution of Zhang’s
model, and determining exact steady state of Manna model. The first three
chapters in the following are about sandpile as a growth model, where
we show how well-structured non-trivial patterns emerge at large length
scales, due to local interactions in cellular lengths where the patterns are
not obvious. In chapter 7 we discuss another emergent behavior in the
Zhang model. Chapter 8 contains an operator algebraic analysis of the
stochastic sandpile models. Here is a brief summary of these chapters.

Chapter 4: While a considerable amount of research went into char-
acterizing the universality classes of sandpile models and under-
standing the mechanism of SOC, very limited work is done about
spatial patterns in sandpile models. Such patterns were noted around
the time when sandpile was first introduced [LKG90]. Yet, very little
is known about them.

This chapter is devoted to the study of a class of such spatial pat-
terns produced by adding sand at a single site on an infinite lattice
with initial periodic distribution of grains and then relaxing using
the DASM toppling rules. We present a complete quantitative char-
acterization of one such patterns. We show that the spatial distances
in the asymptotic (in the limit when large number of grains are
added) patterns produced by adding a large number of grains, can

48



3.6. OVERVIEW OF THE LATER CHAPTERS

be expressed in terms solution of discrete Laplace’s equation (dis-
crete holomorphic functions [Duf56, Mer01, Lov04]) on a grid on
two-sheeted Riemann surface.

We also discuss the importance of these patterns as a paradigmatic
model of growth where different parts of the structure grow in pro-
portion to each other, keeping their shape the same. We call these
kind of growth as proportionate growth. We discuss the importance of
such growth in real world examples.

Chapter 5: In this chapter we describe how the pattern changes in
presence of absorbing sites, reaching which the grains get lost and
no longer participate in the avalanches. We show that, again, the
asymptotic pattern can be characterized in terms of discrete holomor-
phic functions, but on a different lattice. Similar effects of multiple
sites of addition on the pattern are also calculated.

The most interesting effect of the sink sites is the change in the rate
of growth of the pattern. In absence of sink sites the diameter of the
pattern, suitably defined, increases as

√
N where N is the number of

sand grains added in the lattice. When the pattern grows with the
sink sites inside, the growth rate of the diameter changes, in general,
to Nα, where the exponent α depends on the sink geometries. For
example, α = 1/3, when the sink sites are along an infinite line
adjacent to the site where grains are dropped. When the site of
addition is inside a wedge of angle π/2 with the sink sites along
the wedge boundary, this value of the exponent is 1/4. We use an
scaling argument and determine α, for some simple sink-geometries.

Chapter 6: The growth rate also depends on the arrangement of
heights in the background, and this dependence is quite intriguing.
When the initial heights are low enough at all sites, one gets patterns
with α = 1/d, in d-dimension. If sites with maximum stable height
(zc − 1) in the starting configuration form an infinite cluster, we get
avalanches that do not stop, and the model is not well-defined. In
this chapter, we study backgrounds in two dimensions. We describe
our unexpected finding of an interesting class of backgrounds, that
show an intermediate behavior: For any N, the avalanches are finite,
but the diameter of the pattern increases as Nα, for large N, with
1/2 < α ≤ 1, the exact value of α depending on the background.
It still shows proportionate growth. We characterize the asymptotic
pattern exactly for one illustrative example.

Chapter 7: As mentioned, the Zhang model on one and two dimen-
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sional lattices displays a remarkable property: emergence of quasi-
units, where the continuous heights, in spite of the randomness in
the driving, are peaked around a few discrete non-random values.
Fey et. al have shown that on a linear chain the width of the distri-
bution vanishes in the infinite volume limit. However they did not
show how it approaches zero.

In this chapter, we show that, the sequence of toppling of the contin-
uous height variables, when suitably discretized, have an one-to-one
relation with that of integer heights in the corresponding DASM. We
use this relation to show that the width of the distribution of heights
decreases in inverse power of the length of the chain. We also deter-
mine how the variance of height at a site, changes with position of
the site along the length of the system.

Chapter 8: This chapter contains an algebraic approach of determin-
ing the steady state of a class of sandpile models with stochastic
toppling rules. The original Manna model, as discussed in section
1.2.3, does not have the abelian property of its deterministic counter-
part. However, a simple modification of the toppling rules makes the
model abelian [Dha99c]. A similar construction is possible for other
stochastic toppling rules. However, analysis of these models are still
difficult as the corresponding addition operators (see section 3.2.1),
in general, does not have an inverse, and are not diagonalizable.

We show that, in principle, the operators can be reduced to a Jordan
block form, using the algebra satisfied by these. These are then used
to determine the steady state of the models. We illustrate this pro-
cedure by explicitly determining the numerically exact steady for a
stochastic model on a linear chain. Using the desktop computers at
our disposal, we have been able to perform the calculation for sys-
tems of size ≤ 12 and also studied the density profile in the steady
state.
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4
Pattern formation on growing

sandpiles

Based on the paper [DSC09] by Deepak Dhar, Tridib Sadhu and Samarth
Chandra.

Abstract Adding grains at a single site on a flat substrate in the abelian sandpile
models produces beautiful complex patterns. We study in detail the pat-
tern produced by adding grains on a two-dimensional square lattice with
directed edges (each site has two arrows directed inward and two out-
ward), starting with a periodic background with half the sites occupied.
The model shows proportionate growth and the size of the pattern formed
by adding N grains scales as

√
N. We give exact characterization of the

asymptotic pattern, in terms of the position and shape of different features
in the pattern.

4.1 Introduction

As discussed in details in chapter 3, the sandpile models were introduced
in physics in the context of self-organized criticality, where the main in-
terest has been the power-law tail in the distribution of avalanche sizes
[BTW87]. In this chapter our interest is different. We study the pattern
produced by adding large number of sand grains at a single site in a two
dimensional DASM starting from a periodic background, and allowing
the system to relax using the sandpile toppling rule (See chapter 1). For
example, consider the ASM on an infinite square lattice with initial heights
zi = 2, for all sites, and add large N number of grains at the origin. The
distribution of heights zi in the relaxed configuration, produces a very
beautiful, but complex pattern (Fig. 4.1) 1. In this chapter, we give a de-

1A natural sandpile, formed by pouring sand grains at a constant rate on a flat table
with boundaries, gives rise to singular structures like ridges, in the stationary state. This
has been attracted much attention recently [HK99, FV06]
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tailed quantitative characterization of similar patterns produced on two
directed lattices, starting from a simple periodic background.

These patterns are examples of complex patterns obtained from sim-
ple deterministic evolution rules, and are also analytically tractable. Here
complexity means that we have structures with variations, and a complete
description of which is long. Thus, a living organism is complex because it
has many different working parts, each formed by variations in the work-
ing out of the same, but relatively much simpler genetic coding. There
are some earlier known theoretical examples of complex patterns obtained
from local deterministic evolution rules. Most studied among them are the
Conway’s game of life [SS78], which is a cellular automata model with lo-
cal update rules, and Turing patterns [Pea93], which are reaction-diffusion
models. In general, a detailed and exact mathematical characterization of
such patterns has not been possible so far. In this aspect the sandpile pat-
terns are important as they are analytically tractable. Understanding these
should also help in studying the more general problem. The most impor-
tant aspect of these patterns is that, these are the simplest examples that
show nontrivial spatial features with proportionate growth (see Fig. 4.2),
where these features grows in proportion, keeping the overall shape same.
Examples of proportionate growth are abundant in the animal kingdom,
where a young animal, typically, grows in size with time, with different
parts of the body growing roughly at the same rate. Obviously, this kind
of growth requires some coordination and communication between dif-
ferent parts. While there are many models of growing objects studied in
physics literature so far, e.g. the Eden model, Diffusion-Limited Aggre-
gation (DLA), invasion-percolation etc. [Her86b], none has this property.
All of these are mainly models of aggregation, where growth occurs by
accretion on the surface of the object, and inner parts do not evolve sig-
nificantly (Fig. 4.3). It is worth mentioning, that modelling proportionate
growth with simple structures is easy, e. g., growth of a water droplet
as one injects more water into it. However, generating a complex pattern
with large number of structures inside, all growing at same rate, maintain-
ing their relative shape, is highly nontrivial. This is what happens in the
patterns produced in the sandpile models.

Also, there is an astonishing qualitative similarity between the forma-
tion of these patterns and the way a fertilized egg develops into a well
structured multicellular organism. The development starts with a single
cell which divides into more cells, and then they divide in turn. At some
stage of the development, few cells generate newer types of cells and form
organs. This process continues and after a long time it forms a large com-
plex, but highly coordinated cellular assembly. The same genetic code in
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4.1. INTRODUCTION

Figure 4.1: A stable configuration for the abelian sandpile model, obtained
by adding 5× 104 sand grains at one site, on a square lattice, and relax-
ing. Initial configuration with all heights 2. Color code: blue=0, green=1,
red=2, yellow=3. (Details can be seen in the electronic version using zoom
in.)
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Figure 4.2: The proportionate growth of the pattern for DASM, obtained
by adding N grains at one site on a square lattice. Initial configuration is
with all heights 2. The two patterns correspond to N = 104 and 5× 104,
respectively. Color code same as in the Fig. 4.1. Both patterns are on the
same scale. (Details can be seen in the electric version using zoom in).

Figure 4.3: Growth in a DLA
occurs by accretion of particles,
doing random walk, and at-
taching to the cluster connected
to the origin, when it comes
close to it.
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Figure 4.4: The directed square lattices studied in this chapter: (a) the
F-lattice, (b) the Manhattan lattice.

each cell is responsible for the cell differentiation and structure formation.
In the abelian sandpile when the sand grains are added at the same site,
the grains redistribute themselves and a pattern emerges around the ad-
dition site, which grows as more and more sands are added. The same
redistribution rule is used for all sites, and yet the pattern has large visi-
bly distinguishable structures inside, which, one can think of as different
organs in an animal. This simple mathematical model of growing sandpile
captures these qualitative features, even though the actual mechanism of
growth is much more complicated in the biological world.

The spatial patterns in sandpile models were first discussed by Liu et
al. [LKG90]. The asymptotic shape of the boundaries of the sandpile pat-
terns produced by adding grains at a single site in different periodic back-
grounds was discussed in [Dha99a]. Borgne et al. [BR02] obtained bounds
on the rate of growth of these boundaries and later these bounds were
improved by Fey et al. [FdBR08] and Levine et al. [LP08]. The first detailed
analysis of different periodic structures found in the patterns were carried
out by Ostojic in [Ost03]. Other spatial configurations in the abelian sand-
pile models, like the identity [BR02, Cre91, CPS08] or the stable state pro-
duced from special unstable states, also show complex internal self-similar
structures [LKG90], which share common features with the patterns stud-
ied here. In particular, the identity configuration on the F-lattice has re-
cently been shown to have spatial structure similar to what we study here
[CPS08]. There are other models, which are related to the abelian sandpile
model, e.g. the Internal Diffusion-Limited Aggregation (IDLA), Eulerian
walkers (also called the rotor-router model), and the infinitely-divisible
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sandpile, which also show similar structure. For the IDLA, Gravner and
Quastel showed that the asymptotic shape of the growth pattern is related
to the classical Stefan problem in hydrodynamics, and determined the ex-
act radius of the pattern with a single point source [GQ00]. Levine and
Peres have studied patterns with multiple sources in these models recently,
and proved the existence of a limit shape[LP07].

4.2 De�nition of the model

The pattern on a standard square lattice is rather complicated (Fig.4.1),
and it has not been possible to characterize it so far. In this chapter, we
consider two variations of the square lattice, assigning orientations to its
edges, such that each site has two inward and two outward arrows, as
shown in Fig.4.4a and Fig.4.4b. They are known as F-lattice and Manhattan
lattice, respectively.

We define a position vector on the lattice, R ≡ (x, y). The DASM
is defined on the lattice by a height variable z (R), at each site R. In a
stable configuration all sites have height z (R) < 2. The system is driven
by adding grains at a single site and if this addition makes the system
unstable it relaxes by the toppling rule: each unstable site transfers one
grain each in the direction of its outward arrows. We start with an initial
checkerboard configuration in which z (R) = 1 for sites with (x + y) =

even, and 0 otherwise. Clearly, the average density of sand grains for the
initial configuration is 1/2 per site. For numerical purpose we use a lattice
large enough so that none of the avalanches reaches the boundary. The
result of adding N = 5× 104 grains at the origin is shown in Fig. 4.5 and
Fig. 4.6, for the two lattices.

The asymptotic pattern in large N limit, for the two lattices are indis-
tinguishable from each other, at large scales, except that the thin lines of
1’s forming two triangles outside the octagon are rotated by 45◦ (Fig.4.6).
Since the lattices are different, this is quite intriguing. Specially there is no
obvious lattice symmetry, and it is easily checked that patterns produced
for small N are quite different (Fig.4.7).

This pattern is somewhat simpler than in Fig.4.1, which makes its
study easier. We shall discuss here only the F-lattice, but the discussion is
equally applicable to the Manhattan lattice. Taking some qualitative fea-
tures of the observed pattern (e.g. only two types of patches are present,
and they are all 3- or 4- sided polygons) as input, we show how one can
get a complete and quantitative characterization of the pattern. We also
show that the asymptotic pattern has an unexpected exact 8-fold rotational
symmetry, and determine the exact coordinates of all the boundaries in it.
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Figure 4.5: The stable configuration for the DASM, obtained by adding
5× 104 particles at one site, on the F-lattice of Fig.4.4a with initial checker-
board configuration. Color code: red=0, yellow=1. The apparent orange
regions in the picture represent the patches with checkerboard configura-
tion. (Details can be seen in the electronic version using zoom in.)
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CHAPTER 4. PATTERN FORMATION ON GROWING SANDPILES

Figure 4.6: A stable con-
figuration for the DASM
on the Manhattan lattice
of Fig.4.4b, obtained by
adding 25 × 103 particles
at one site, with ini-
tial checkerboard configu-
ration. Color code: red=0,
yellow=1. (Details can be
seen in the electronic ver-
sion using zoom in.)

We will also discuss some other cases, where exactly the same asymptotic
pattern is obtained.

4.3 Characterizing asymptotic pattern: A general

theory

We first describe a general method of formally characterizing a large num-
ber of sandpile patterns, not just the three patterns shown till now. We
start by defining 2Λ (N) as the diameter of the pattern when N grains
have been added. The exact definition of Λ is flexible, and the characteri-
zation does not depend on the choice. For the patterns in Fig. 4.1, 4.5, and
4.6 we choose 2Λ as the width of the smallest rectangle that encloses all
sites that have toppled at least once.

As mentioned before, the patterns exhibit proportionate growth, i.e.,
all structures in the pattern grows at the same rate to the diameter. While
there is as yet no rigorous proof of this important property, we assume
this in the following discussion. Then, it is natural to describe the patterns
in the reduced coordinates defined by ξ = x/Λ and η = y/Λ. A position
vector in these reduced coordinates is defined by r = R/Λ ≡ (ξ, η). Then
in the limit Λ → ∞, the patterns can be characterized by a function ρ(r)
which gives the local density of sand grains in a small rectangle of size
δξδη about the point r, with 1/Λ � δξ, δη � 1. We define ∆ρ (r) as the
change in density ρ (r) from its initial background value.

A large number of sandpile patterns, including the one in Fig. 4.1, 4.5,
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Figure 4.7: Very different stable configurations for the abelian sandpile
model on (a) the F-lattice, and (b) the Manhattan lattice, obtained by
adding only 20 particles at one site, with initial checkerboard configu-
ration. Color code: red= 0, yellow= 1.

and 4.6, are made of a union of distinct regions, called “Patches”, inside
which the heights are periodic in space. Then, inside each patch ∆ρ (r) is
constant. For example, in the pattern in Fig. 4.5, there are only two types
of patches, and the change in density takes only two possible values, 1/2
in a high-density patch (color yellow in Fig. 4.5) and 0 in a low-density
patch (color orange). There are few defect-lines, which move with N,
and can also be seen in Fig.4.1 and Fig.4.5. But these can be ignored in
discussing the asymptotic pattern.

Let TΛ (R) be the number of topplings at site the R when the diameter
reaches the value 2Λ for the first time. Define

φ (r) = lim
Λ→∞

1
2Λ2 TΛ

(
R′
)

, (4.1)

where R′ ≡ (bΛξc, bΛηc), with bxc being the floor function which gives
the largest integer ≤ x. From the conservation of sand-grains in the top-
pling process, it is easy to see that

∑
R′∈n.n.

TΛ
(
R′
)
− αTΛ (R) = ∆z (R)− NδR,0, (4.2)

where the sum is over the sites nearest neighbors of R, and α is the number
of them. Then in the rescales coordinate, φ satisfies the Poisson equation

∇2φ (r) = ∆ρ (r)− N
Λ2 δ (r) . (4.3)
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In an electrostatic analogy, we can think of ∆ρ(r) as an areal charge density,
and φ(r) as the corresponding electrostatic potential. A complete specifica-
tion of φ (r) determines the density function ∆ρ (r) which in turn characterizes
the asymptotic pattern.

The key observation that allows us to determine the asymptotic pattern
is the following proposition.

Proposition 4.3.1 Inside each patch of periodic heights, φ(r) is a quadratic func-
tion of ξ and η.

A proof can be done in the following way. Within a patch, the function
φ(r) is Taylor expandable around any point rO ≡ (ξo, ηO) inside the patch.

φ (r) = f + d∆ξ + e∆η + a (∆ξ)2 + 2h∆ξ∆η + b (∆η)2 +O
(
∆ξ3, ∆η3) . . . ,

(4.4)
where ∆ξ = ξ − ξo and ∆η = η − ηo. Consider any term of order ≥ 3
in the expansion, for example the term ∼ (∆ξ)3. This can only arise due
to a term ∼ (∆x)3/Λ in T(x, y). Then, considering the fact that T (R) is
an integer function of the coordinates, it is easy to see that it will change
discontinuously at intervals of ∆x ∼ O(Λ1/3). This leads to change in the
periodicity of heights at such intervals inside each patch which themselves
are of size ∼ Λ. This would then result in an infinitely many defect-lines
in the asymptotic pattern. However there are no such features in Fig.4.1 or
Fig.4.5. Therefore inside each periodic patch of constant ∆ρ(r), φ(r) can at
most be quadratic in ξ and η.

The argument finally boils down to proving the two features of the
pattern, i.e., there is proportionate growth, and that the pattern can be
decomposed in terms of periodic patches.

In each periodic patch the toppling function T(x, y) is a sum of two
terms: a part, that is a simple quadratic function of x and y, and another is
a periodic part. The periodic part averages to zero, and does not contribute
to the coarse-grained function φ(r) 2. The quadratic part, when rescaled,
can be written as

φ (r) = f + dξ + eη + aξ2 + 2hξη + bη2, (4.5)

where a, h, b, d, e, f are constants inside a patch, and a + b = ∆ρ/2, corre-
sponding to the patch. Then each patch is characterized by the values of
these parameters.

Now we will show that the continuity of φ and its first derivatives
along the boundary between adjacent patches imposes linear relations

2In some patterns, with other backgrounds (not discussed here) there are regions that
occupy finite fraction area of the full pattern, which show aperiodic height patterns. These
cases are harder to analyse.
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Figure 4.8: n different
periodic patches of den-
sity ρ1,...,ρn meeting at
point z0.

among the corresponding parameters. Consider two neighboring periodic
patches P and P′ with mean densities ρ and ρ′ respectively. Let the rescaled
quadratic toppling function be Q(r) and Q′(r) in these patches. Then the
boundary between the patches is given by the equation Q(r) = Q′(r). As
the derivatives of φ are also continuous across the boundary, the boundary
between two periodic patches must be a straight line, and

Q′(r) = Q(r) +
1
2
(ρ′ − ρ)l2

⊥, (4.6)

where l⊥ is the perpendicular distance of (r) from the boundary. We
can start with a periodic patch P, and go to another patch P′ by more
than one path. Since the final quadratic function at P′ should be the same
whichever path we take, this imposes consistency conditions which restrict
the allowed values of slopes of the boundaries. Consider a point z0 where
n periodic patches meet, with n > 2 (Fig.4.8). If the jth boundary at this
point makes an angle θj with the x-axis, and the density of the patch in
the wedge θj ≤ θ ≤ θj+1 is ρj+1 (Fig.4.8), then the condition that the net
change in the quadratic form is zero if we go around z0 once, reduces to
the following condition:

n

∑
j=1

(ρj+1 − ρj)e2iθj = 0, (4.7)

with ρn+1 = ρ1. For n = 3, with ρ1 6= ρ2 6= ρ3, this equation has only
trivial solutions with θj equal to 0 or π for all j. Hence, only n ≥ 4 are
allowed.

These linear equations amongst the parameters corresponding to neigh-
boring patches, can be solved and this will determine the complete poten-
tial function φ, giving a quantitative characterization of the pattern.
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Figure 4.9: The pat-
tern in Fig.4.5 is ob-
tainable by putting to-
gether square tiles of
different sizes. Each of
the tiles is divided into
two halves of different
density.

4.4 Determination of the potential function

We now apply this method, in the last section, to the F-lattice pattern in
Fig. 4.5, and determine the exact potential function φ (r). We note that
in this pattern, there are no aperiodic patches, only two types of periodic
patches, where ρ(r) only takes values 1 or 1/2. Also, the slopes of the
boundaries between patches only take values 0, ±1 or ∞. The patches are
typically dart shaped quadrilaterals, and some triangles. These simplifi-
cations, not present in Fig.4.1, make possible a full characterization of the
pattern in Fig.4.5.

We start by determining the exact asymptotic size of the pattern. We
note from Fig.4.5 that the boundary of the pattern is an octagon (we shall
prove later that this is a regular octagon). In fact, there are four lines of 1’s
outside the octagon. But these have zero areal density in the limit N →
∞, and do not contribute to ρ(r). We will ignore these in the following
discussion.

Let B be the minimum boundary square containing all (r) that have a
non-zero charge density ∆ρ(r). We observe that B can be considered as
a union of disjoint smaller squares, each of which is divided by diagonal
into two parts where ∆ρ(r) takes values 1/2 and 0 (Fig.4.9). This is seen to
be true for the outer layer patches. Towards the center, the squares are not
so well resolved. Assuming that this construction remains true all the way
to the center, in the limit of large N, the mean density of negative charge
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Figure 4.10: The patterns produced on the F-lattice, by adding N = 12801
and N + 1 particles. The shaded region on the second pattern represents
the toppled sites. Notice that the avalanches are stopped by some of the
defect lines in the first picture.

in the bounding square = 1/4. Given that the total amount of negative
charge is −1, the area of the bounding square should be 4. Hence, the
boundaries of the minimum bounding square are

|ξ| = 1, |η| = 1. (4.8)

This means, with our choice of the diameter as the width of the box B, we
have

Λ (N) =
√

N + lower order terms. (4.9)

In Fig. 4.11, we have shown, the correction term appears to grow as N1/4.
Most of the time the avalanches does not reach the boundary. They

are often stopped by the defect-lines inside the patches, which breaks the
periodicity of the heights. For example, there are lines of alternating 1’s
and 0’s inside the dense (all 1) patches. When an avalanche enters the
patch, the defect line shifts its position, partially increasing the size of the
patch. An example of such event is shown in the Fig.4.10. Because of this,
the diameter increases in steps with the increase of N (see Fig.4.12).

Let Nb be the minimum number of particles that have to be added so
that at least one site at y = b topples. We find that for b = 10, 50, 100, and
300,
√

Nb = 10.770, 49.436, 98.894 and 297.798. This is consistent with Eq.
(4.9).
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Figure 4.11:
Difference of the
diameter to

√
N is

less than 3 for N, at
least, up to 105.

Figure 4.12: Λ for
the F-lattice pattern
(Fig. 4.5) as a func-
tion of N, in the
range 5000 ≤ N ≤
10000.
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Then, the Poisson equation, in Eq. (4.3), for this pattern becomes,

∇2φ (r) = ∆ρ (r)− δ (r) , (4.10)

i.e., there is unit amount of point charge at the origin.
We now determine the parameters in the quadratic form of the po-

tential function. In order to do that in a consistent way, we first look at
the topological structure of the pattern. We note that the patches become
smaller, and there are more of them in number, as we move towards the
center. One can use a coordinate transformation r′ = 1/r2, θ′ = θ to
avoid this overcrowding (Fig.4.13). We can now draw the adjacency graph
(Fig.4.15a) of the pattern, where each vertex denotes a patch, and a bond
between the vertices is drawn if the vertices share a common boundary.
It is convenient to think of the triangular patches in the pattern as de-
generate quadrilaterals, with one side of length zero. Then we see that
the adjacency graph is planar with each vertex of degree four, except a
single vertex of coordination number eight corresponding to the exterior
of the pattern. The graph has the structure of a square lattice wedge of
wedge angle 4π. The square lattice structure of the adjacency graph is
seen more clearly, if rather than 1/r2 transformation, the transformation
used is z′ = 1/z2 ( this has been used earlier in [Ost03]), where z = ξ + iη,
and view it in the complex z′-plane (see Fig.4.14). Thus, one can equiva-
lently represent the graph as a square grid on a Riemann surface of two
sheets (fig.4.15b).

We now use the qualitative information obtained from the adjacency
matrix of the observed pattern, to obtain quantitative prediction of the
exact coordinates of all the patches. Consider an arbitrary patch P, having
an excess density 1/2. The potential function in this patch is a quadratic
function of (ξ, η) and we parametrize it as

φP(r) =
1
8
(mP + 1)ξ2 +

1
4

nP ξη +
1
8
(1−mP)η

2

+dP ξ + eP η + fP . (4.11)

The potential function in another patch P having zero excess density is
parametrized as

φP(r) =
1
8

mP(ξ
2 − η2) +

1
4

nP ξη + dP ξ + eP η + fP . (4.12)

Now consider two neighboring patches P and P′ with excess densities 1/2
and 0 respectively. Then using the matching conditions (see Eq. (4.6)),
it is easy to show that if the boundary between them is a horizontal line
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Figure 4.13: 1/r2 transformation of the pattern in Fig. 4.5. Blue lines
are drawn between the patches if they are neighbor of each other, with
triangular patches considered as degenerate quadrilaterals.
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Figure 4.14: 1/z2 transformation of the section of the pattern in Fig. 4.5, on
the half-plane corresponding to positive values of η. The regions along the
positive and negative ξ-axis are glued together in the transformed picture.
The blue lines are drawn in a way similar those in the previous picture,
and they form a square grid.
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Figure 4.15: Two representations of the adjacency graph of the pattern.
Here the vertices are the patches, and the edges connect the adjacent
patches. (a) Representation as a planar graph, (b) as a graph of wedge
of angle 4π formed by glueing together the eight quadrant graphs at the
origin.

η = ηP , we must have

mP ′ = mP + 1, nP ′ = nP , dP ′ = dP ,

eP ′ = eP + ηP /2, fP ′ = fP − ηP
2/4. (4.13)

There are similar conditions for other boundaries. These result a cou-
pled set of linear equations for the coefficients {mP , nP , dP , eP , fP}. The
equations for mP and nP do not involve other variables. In the outermost
patch, clearly φ(r) = 0, and for this patch both m and n are zero. It fol-
lows that mP and nP are integers, equal to the Cartesian coordinates of the
vertex corresponding to the patch P in the discretized Riemann surface in
Fig.4.15b. In the following, we denote a patch by integers (m, n), and write
the corresponding coefficients dP , eP , and fP as dm,n, em,n and fm,n. With
this convention, the matching conditions in Eq.(4.13) can be rewritten as

dm+1,n = dm,n, em+1,n − em,n = ηm,n/2, (m + n) odd. (4.14)

Using similar matching conditions for the boundary of patch (m, n) with
slope ±1, we get the conditions

dm,n+1 − dm,n = em,n − em,n+1, (m + n) odd,

dm,n−1 − dm,n = em,n−1 − em,n, (m + n) odd. (4.15)

We can eliminate the variables dm,n and em,n with (m + n) even using Eq.
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(4.14) and Eq.(4.15). Then the equations become

em+2,n − em,n = ηm,n/2, (4.16)

dm−2,n − dm,n = ξm,n/2, (4.17)

dm−1,n−1 − dm,n = em+1,n−1 − em,n, (4.18)

dm−1,n+1 − dm,n = −[em+1,n+1 − em,n]. (4.19)

It is convenient to introduce the complex variables z = ξ + iη, M =

m + in and D = d + ie. In these variables we can write the potential
function, in Eq. (4.11) and (4.12), as

φ(z) =
1
8

zz̄ +
1
8

Re[z2M̄ + D̄z] + f , (4.20)

where overbar denotes complex conjugation.
On the (m, n) lattice, with (m + n) odd, the natural basis vectors are

(1, 1) and (1,−1). Let us call these α and β. We define the finite difference
operators ∆±α and ∆±β by

∆±α f (z) = f (z± α)− f (z),

∆±β f (z) = f (z± β)− f (z). (4.21)

Then the equations (4.16-4.19) can be written as

∆−αd = ∆βe,

∆−βd = −∆αe. (4.22)

These equations are the discrete analog of the familiar Cauchy-Riemann
conditions connecting the partial derivatives of real and imaginary parts
of an analytic function where the role of the analytic function is played by
D = d + ie.

From Eq.(4.16) and Eq.(4.19), it is easy to deduce that D satisfies the
discrete Laplace’s equation

[∆α∆−α + ∆β∆−β]D = 0. (4.23)

If m and n are large, the corresponding patch is near the origin (|ξ|+
|η| is small), and where the leading behavior of φ(r) is given by φ̃(r) ∼
− 1

4π log(ξ2 + η2) (see Eq. 4.10). Consider a point z0, such that at z0

∂2φ̃/∂ξ2 ≈ m/4; ∂2φ̃/∂ξ∂η ≈ n/4. (4.24)

Then, z0 would be expected to lie in the patch labeled by (m, n). This gives
z0 ≈ ±(πM̄/2)−1/2. Then, setting ∂φ̃/∂z equal to D̄/2 gives us

Dm,n ' ±
1√
2π

√
m + in. (4.25)
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The equation (4.23), subjected to the behavior at large |m|+ |n| given by
Eq.(4.25) on the 4π-wedge graph (for each value of (m, n), Dm,n has two
values) has a unique solution. Clearly the solution has eight fold rotational
symmetry about the origin in the (m, n) space. This implies that

D−n,m = i1/2Dm,n; for all (m, n). (4.26)

Given Dm,n, its real and imaginary parts determine dm,n and em,n, and
using Eq.(4.16, 4.17) we determine the exact positions of all the patch cor-
ners. The exact eight-fold rotational symmetry of the adjacency graph of
the pattern, and the fact that D satisfies Eq.(4.26) on the adjacency graph
together imply the eight-fold rotational symmetry of all the distances in
the pattern.

Note that for the usual square lattice, the solution of Eq.(4.23) is the
well known 2-dimensional lattice Greens function, that is explicitly calcu-
lable for any finite (m, n), and is a simple polynomial of 1/π with rational
coefficiants [Spi01]. However, for our case of the two sheeted Riemann
surface, we have not been able to find a closed-form formula for Dm,n.
But the solution can be determined numerically to very good precision by
solving it on a finite grid −L ≤ m, n ≤ L with the condition in Eq.(4.25)
imposed exactly at the boundary. We determined dm,n and em,n numeri-
cally for L = 100, 200, 400, and extrapolated our results for L → ∞. We
find d1,0 = 0.5000 and d2,1 = 0.6464, in perfect agreement with the exact
theoretical values 1/2 and 1− 1/2

√
2, respectively, determined using the

Fig. 4.9.
An interesting question to ask is, what is the size distribution of the

patches? This can be easily determined from the 1/z2 transformation of
the pattern, as shown in Fig.4.14. In this representation, the patches are
positioned around the sites of the square grid, and all the patches have
similar sizes. The Jacobian J(ξ, η) of the coordinate transformation is an
estimate of the area on the ξ-η plane, corresponding to a unit area around
(m, n) site of the grid on the ξ ′-η′ plane. For large m and n, it can be shown
that

J(ξ, η) ∼ |ξ + iη|3 ∼ 1
|m + in|3/2 . (4.27)

On the other hand, from the same picture, the number of patches of area
larger than or equal to the area of the patch (m, n) is equal to the num-
ber of sites inside the circle of radius |m + in|, on the square grid. This
number increases linearly with |m + in|. Then, the number of patches of
area greater than or equal to A is ∼ A−2/3, which in turn implies that the
number of patches of area lying between A and A + dA would vary as
A−5/3dA.
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Figure 4.16: The stable configuration for the abelian sandpile model on F-
lattice, obtained by adding 5× 104 particles at one site, initial configuration
with average height 5/8. Color code: red=0, yellow=1. (Details can be seen
in the electronic version using zoom in.)
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Figure 4.17: The stable configuration for the abelian sandpile model on
F-lattice, obtained by adding 105 particles at one site, initial configuration
with all heights 0. Color code: red=0, yellow=1. (Details can be seen in
the electronic version using zoom in.)
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4.5 Other patterns

Our calculations above can be easily extended to the patterns on any other
background, on any other two dimensional lattices, so long as there are
only patches with two values of ∆ρ. The matching conditions along the
patch boundaries, ensure that the boundaries are straight lines. Although,
we do not have a complete understanding of what determines the slope of
the patch boundaries and the number of them for a patch, it seems, that as
long as there are only two types of patches, the patches are always quadri-
laterals, and the slopes of boundaries are integer multiples of π/4. Then
our analysis shows that the asymptotic pattern is same as the one for the
F-latiice. For example, as mentioned already, this is true for the Manhattan
lattice (Fig.4.6), for initial density 1/2. Same happens for the the F-lattice
itself, with a different periodic background of initial density 5/8 (zi,j = 1
if i + j even, or (i, j) congruent to (0, 1) or (2, 3) mod 4). The pattern for
this case is shown in (Fig.4.16). In this case, only the density of patches
are different from the one on the checkerboard background, but the patch
boundaries for the asymptotic pattern, in the rescaled coordinate, are at
the identical positions.

In some other cases, like the F-lattice, with initially all sites empty,
the pattern is very similar, but there are some aperiodic patches in the
outermost ring (Fig.4.17). Since the behavior of φ(r) in such patches are
not known, the equations for Dm,n do not close in this case.

Finally, how much of this analysis applies to the pattern in Fig. 4.1?
As noted in [Ost03], there are large number, possibly infinitely many peri-
odic patches in the asymptotic pattern. Characterization of such patterns
remains an interesting open problem.
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5
Effect of multiple sources and sinks on

the growing sandpile pattern

Based on the paper [SD10] by Tridib Sadhu and Deepak Dhar.

Abstract In this chapter, we study the effect of sink sites on DASM patterns,
discussed in chapter 4. Sinks change the scaling of the diameter of
the pattern with the number N of sand grains added. For example,
in two dimensions, in the presence of a sink site, the diameter of
the pattern grows as

√
(N/ log N) for large N, whereas it grows as√

N if there are no sink sites. In the presence of a line of sink sites,
this rate reduces to N1/3. We determine the growth rates for various
sink geometries along with the case when there are two lines of sink
sites forming a wedge, and generalizations to higher dimensions.
We characterize the asymptotic pattern in the large N limit for one
such case, the two-dimensional F-lattice with a single source adjacent
to a line of sink sites. The characterization is done in terms of the
positions of different spatial features in the pattern. For this lattice,
we also provide an exact characterization of the pattern with two
sources, when the line joining them is along one of the axes of the
lattice.

5.1 Introduction

In the previous chapter, we studied growing sandpiles in the abelian model
on the F-lattice and the Manhattan lattice. We were able to characterize the
pattern corresponding to the initial configuration in which each alternate
site of the lattice is occupied, forming a checkerboard pattern. The full
characterization of this pattern reveals an interesting underlying math-
ematical structure, which seems to deserve further exploration. This is
what we do in this chapter by adding sink sites or multiple sources.

The presence of sink sites changes the pattern in interesting ways. In
particular, it changes how different spatial lengths in the pattern scale
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with the number of added grains N. For example, in the absence of sink
sites, the diameter of the pattern grows as

√
N for large N, whereas in

the presence of a single sink site, this changes to a
√

N/ log N growth. If
there is a line of sink sites next to the site of addition, the growth rate is
N1/3. We also study the case in which the source site is at the corner of
a wedge-shaped region of wedge angle ω, where the wedge boundaries
are absorbing. We show that for any ω the pattern grows as Nα, with
α = ω/(π + 2ω). This analysis is extended to other lattices with different
initial height distributions, and to higher dimensions.

We also study the exact characterization of the asymptotic pattern in
the infinite N limit for the pattern with a line of sink sites. For a single
point source, as discussed in chapter 4, the determination of the different
distances in the pattern requires a solution of the Laplace equation on a
discrete Riemann surface of two-sheets. Interestingly, for the pattern with
a line sink, we still have to solve the discrete Laplace equation, but the
structure of the Riemann surface changes from two-sheets to three-sheets.

We then study the effect on the pattern of having multiple sites of ad-
dition. For multiple sources, the pattern of small patches near each source
is not substantially different from a single-source pattern, but some rear-
rangements occur in the larger outer patches. Two patches may sometimes
join into one, or, conversely, a patch may break up into two. While the
number of patches undergoing such changes is finite, the sizes and posi-
tions of all the patches are affected by the presence of the other source, and
we show how these changes can be calculated exactly for the asymptotic
pattern.

This chapter is organized as follows. In Section 5.2, we discuss scaling
of the diameter of the patterns with N for different sink geometries. First,
we consider the pattern in the presence of a line of sink sites. Then, this
analysis is extended to other sink geometries: two intersecting line sinks
in two dimensions and two or three intersecting planes of sink sites in
three dimensions. The problem of a single sink site is a bit different from
the others, and is discussed separately in Section 5.3. In Section 5.4, we
numerically verify the growth rates. The remaining sections are devoted
to a detailed characterization of some of these patterns. In Section 5.5, we
characterize the pattern in the presence of a line sink. In Section 5.6, we
discuss the case when there are two sources present. These analytical cal-
culations for the metric properties of the asymptotic pattern are compared
in Section 5.7, with the measured values for the patterns with finite but
large N. Section 5.8, contains a summary and some concluding remarks.
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5.2 Rate of growth of the patterns

For the single source pattern, discussed in chapter 4, the diameter 2Λ (N) '
2
√

N, for large N. We want to study how this dependence gets modified
in the presence of sink sites.

First, consider the pattern formed by adding sand grains at a single
site in the presence of a line of sink sites. In the rest of this chapter we will
use the same notations defined in chapter 4. Any grain reaching a sink
site gets absorbed, and is removed from the system. For simplicity let us
consider the source site at Ro ≡ (xo, 0) and the sink sites along the y-axis.
A picture of the pattern produced by adding 14336000 grains at (1, 0) is
shown in Fig.5.1.

The equation analogous to Eq. (4.3) for this problem is

∇2φ (r) = ∆ρ (r)− N
Λ2 δ (r− ro) , (5.1)

for all r in the right-half plane with ξ > 0, where ro is the position of the
source in reduced coordinates. Also, as there is no toppling at the sink
sites, φ must satisfy the boundary condition

φ (r) = 0 for all r ≡ (0, η) . (5.2)

We can think of φ as the potential due to a point charge N/Λ2 at ro and
an areal charge density −∆ρ (r), in the presence of a grounded conducting
line along the η-axis. This problem can be solved using the well-known
method of images in electrostatics. Let r′ be the image point of r with
respect to the η-axis. Define ∆ρ (r) in the left half plane as

∆ρ
(
r′
)
= −∆ρ (r) . (5.3)

Then the Poisson equation for this new charge configuration is

∇2φ(r) = ∆ρ(r)− N
Λ2 δ (r− ro) +

N
Λ2 δ

(
r− r′o

)
. (5.4)

As the function ∆ρ (r) is odd under reflection, φ automatically vanishes
along the η-axis.

We define Nr as the number of sand grains that remain unabsorbed.
Then

Nr = ∑
x>0

∑
y

∆z (x, y) , (5.5)

where ∆z (x, y) is the change in the height variables between its values
before and after the system relaxes. Clearly, for large Λ, we can write

Nr ' Λ2
∫

H
dτ∆ρ (r) , (5.6)
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CHAPTER 5. EFFECT OF MULTIPLE SOURCES AND SINKS ON
THE GROWING SANDPILE PATTERN

Figure 5.1: Pattern produced by adding grains at a single site adjacent
to a line of sink sites. Color code: red=0 and yellow=1. Apparent orange
regions in the picture represent patches with checkerboard configuration
(Zoom in for details in the electronic version).
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where dτ = dξdη is the infinitesimal area around r ≡ (ξ, η). The integra-
tion is performed over the right half-plane H with ξ > 0. We shall use
the sign ' to denote equality up to leading order in Λ. Since ∆ρ (r) is a
non-negative bounded function, exactly zero outside a finite region, this
integral exists. Let its value be C2, then we have

Nr ' C2Λ2. (5.7)

Let Na denote the number of grains that are absorbed by the sink sites.
Then considering that the grains can reach the sink sites only by toppling
at its neighbors we have

Na '
1
2 ∑

y
TΛ (1, y) . (5.8)

The factor 1/2 comes from the fact that in the F-lattice, only half of the
sites on the column x = 1 would have arrows going out to the sink sites.
Then using our scaling ansatz in equation (4.1), for Λ large,

TΛ (1, y) ' 2Λ
∂φ

∂ξ


ξ=0

. (5.9)

Hence

Na ' Λ2
∫ ∞

−∞
dη

∂φ

∂ξ


ξ=0

. (5.10)

Now from equation (5.4) the potential φ can be written as the sum of two
terms: φdipole due to two point charges N/Λ2 and −N/Λ2 at ro ≡ (ξo, 0)
and its image point r′o ≡ (−ξo, 0) respectively, and the term φrest due to
the areal charge density.

φ (r) = φdipole (r) + φrest (r) , (5.11)

where

∇2φdipole (r) = − N
Λ2 δ (r− ro) +

N
Λ2 δ

(
r− r′o

)
,

∇2φrest (r) = ∆ρ (r) . (5.12)

We first consider the case where Ro is finite and ro = Ro/Λ vanishes in
the large Λ limit. Then φdipole reduces to a dipole potential, and it diverges
near the origin. However, φrest (r) is a continuous and differentiable func-
tion for all r. From the solution of the dipole potential, it is easy to show
that

φdipole (r, θ) = A
cos θ

r
, (5.13)
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for 1 � r � 1/Λ, where we have used polar coordinates (r, θ) with θ

being measured with respect to the ξ-axis. Here A is a numerical constant,
which is a property of the asymptotic pattern. Then

∂φ

∂ξ


ξ=0

=
A
η2 , (5.14)

and the integral in equation (5.10) diverges as A/ηmin, where ηmin is the
cutoff introduced by the lattice. Using ηmin = O (1/Λ) it is easy to show
that

Na ' C1Λ3, (5.15)

where C1 is a constant. Then using equations (5.7) and (5.15) and that Na

and Nr add up to N, we get

C1Λ3 + C2Λ2 ' N. (5.16)

Considering the dominant term in the expression for large Λ, it follows
that Λ increases as N1/3.

For the patterns in the other limit where the source is placed at a dis-
tance O (Λ) such that ro is non-zero for Λ → ∞, φdipole is non-singular
along the sink line. Then, clearly Na ∼ Λ2 and as a result Λ (N) ∼ N1/2.

The above analysis can be easily generalized to a case with the sink
sites along two straight lines intersecting at an angle ω and a point source
inside the wedge. For a square lattice, ω = 0, π/2, π, 3π/2 and 2π are
most easily constructed, and avoid the problems of lines with irrational
slopes, or rational numbers slopes with large denominators. The wedge
with wedge-angle ω = π/2 is obtained by placing the sink sites along
the x and y-axis and the source site at Ro ≡ (1, 1) in the first quadrant.
The pattern with a line sink, discussed in previous section, corresponds to
ω = π.

For the general ω, the corresponding electrostatic problem reduces to
determining the potential function φ inside a wedge formed by two inter-
secting grounded conducting lines. Again the potential has two contribu-
tions: the potential φpoint (r) due to a point charge at the source site and
the potential φrest (r) due to the areal charge density. We first consider the
case where the source site is placed at a finite distance from the wedge cor-
ner such that the distance in reduced coordinates vanishes in the large Λ
limit. In this limit φrest is a non-singular function of r while φpoint diverges
close to the origin. A simple calculation of the electrostatic problem gives

φpoint (r, θ) ≈ A
sin αθ

rα
, (5.17)

where α = π/ω and we have used polar coordinates (r, θ) with the polar
angle θ measured from one of the absorbing lines. Again A is a constant
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independent of N or Λ and is a property of the asymptotic pattern. Then
arguing as before, we get

Na ' C1Λ2+α and Nr ' C2Λ2. (5.18)

So the equation analogous to equation (5.16) is

C1Λ2+α + C2Λ2 ' N. (5.19)

For a wedge angle ω = π, α = 1, and the above equation reduces to
Eq.(5.16).

Similar arguments involving conformal transformation have been used
earlier in the context of equilibrium statistical physics to determine the
wedge-angle dependence of surface critical exponents near a wedge [DS86].

For the problem where the source site is at a distance O (Λ) from the
wedge corner both the functions φrest and φpoint are nonsingular close to
the origin. It is easy to show that Λ (N) grows as N1/2.

These arguments can be easily extended to other lattices with different
initial height distributions, or to higher dimensions. Consider, for exam-
ple, an abelian sandpile model defined on the cubic lattice. The allowed
heights are from 0 to 5, and a site topples if the height exceeds 5, and
sends one particle to each neighbor. The sites are labelled by the Cartesian
coordinates (x, y, z), where x, y and z are integers. We consider the infinite
octant defined by x ≥ 0, y ≥ 0, z ≥ 0. We start with all heights equal to 4,
and add sand grains at the site (1, 1, 1). We assume that the sites on planes
x = 0, y = 0 and z = 0 are all sink sites, and any grain reaching there is
lost. We add N grains and determine the diameter of the resulting stable
pattern.

We again write the potential function in two parts: φpoint due to a point
charge at (1/Λ, 1/Λ, 1/Λ) and φrest due to the bulk charge density in the
presence of three conducting grounded planes. Then, a simple electrostatic
calculation shows that the potential φpoint is the octapolar potential with
it’s form in spherical polar coordinate as

φ (r, θ, Φ) ≈ f (θ, φ)

r4 . (5.20)

This then implies that the equation determining the dependence of Λ on
N is

C1Λ6 + C2Λ3 ' N (5.21)

5.3 A single sink site

Let the site of addition be the origin, with the sink site placed at Ro.
We shall show that when Ro lies in a high-density patch (color yellow
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Figure 5.2: The pattern produced by adding 224000 grains at the origin
with a sink site at (400, 0), inside a patch of density 1 (color yellow). Color
code: red= 0 and yellow= 1. The apparent orange regions correspond to
the checkerboard height distribution. (Zoom in for details in the electronic
version.)

in Fig.5.2), the asymptotic patterns are identical to the one produced in
the absence of the sink site.

The patterns, produced for ro close to 1, with the sink sites placed deep
inside a high-density patch are simple to analyze, even for finite but large
Λ. One such pattern is presented in Fig.5.2.

We see that the effect of the sink site on the pattern is to produce a
depletion pattern centered at this site. The depletion pattern is a smaller
negative copy of the single source pattern, where negative means ∆ρ is
negative of the original pattern. We define the function ∆zsink (R; N) as
the difference between the heights at R in the final stable configuration
produced by adding N grains at the origin, with and without the sink site.

∆zsink (R; N) = ∆zsource+sink (R; N)− ∆zsource (R; N) . (5.22)

From the figure it is seen that, in this case, ∆zsink (R; N) is the negative of
the pattern produced by a smaller source, centered at R0. The number of
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Figure 5.3: The pattern produced by adding 224000 grains at the origin
with a sink site placed at (360, 140), inside a low-density patch. Color
code red= 0 and yellow= 1. The apparent orange regions correspond to
the checkerboard height distribution. (Details can be seen in the electronic
version using zoom in.)

grains required to produce this smaller pattern is exactly the number of
grains Na absorbed at the sink site.

∆zsink (R; N) = −∆zsource (R− Ro; Na) . (5.23)

This is immediately seen from the fact that the toppling function TΛ (R)
satisfies

∆TΛ (R) = ∆zsource+sink (R; N)− NδR,0 + NaδR,Ro , (5.24)

where ∆ is the toppling matrix for the sandple model on the F-lattice (see
chapter 3). Let Tsource(R; N) be the number of topplings at R, when we add
N particles at the origin in the absense of any sink site. Since Eq. (5.24) is
a linear equation, it follows that a solution of this equation is

TΛ (R) = Tsource (R; N)− Tsource (R− Ro; Na) . (5.25)

This is a valid solution for our problem, if the corresponding heights in the
final configuration with the sink are all non-negative. This happens when
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the region with nonzero ∆zsink is confined within a high-density patch of
the single source pattern.

The number Na can be determined from the requirement that the num-
ber of topplings at the sink site is zero. The potential function for the
single source problem diverges as (4π)−1 log r near the source. Consid-
ering the ultraviolate cutoff due to the lattice, Tsource (R, N) at R = 0
can be approximated by (4π)−1 N log N to leading order in N. Then at
R = R0, Tsource (R− Ro; Na) is approximately equal to (4π)−1Na log Na

whereas Tsource (R0; N) ≈ Nφsource(r0), where φsource (r) is the potential
function for the problem without a sink. Then from the equation (5.25)
we have

1
4π

Na log Na ' Nφsource (ro) . (5.26)

For large N, this implies that

Na ' 4πφsource (ro) N/ log N. (5.27)

Then, in the large N limit, for a sink at a fixed reduced coordinate ro, the
relative size of the defect produced by the sink site decreases as 1/

√
log N.

Hence asymptotically, the fractional area of the defect region will decrease
to zero, if the sink position ro is inside a high-density patch.

When the sink site is inside a low-density patch, the subtraction pro-
cedure in equation (5.23) gives negative heights, and no longer gives the
correct solution. However it is observed for the patches in the outer layer,
where the patches are large, that the effect of the sink site is confined
within the neighboring high-density patches (Fig.5.3) and rest of the pat-
tern in the asymptotic limit remains unaffected.

The pattern in which the source and the sink sites are adjacent to each
other, appears to be very similar to the one produced without the sink site.
This is easy to see. The Poisson equation analogous to equation (4.3) for
this problem is

∇2φ(r) = ∆ρ(r)− N
Λ2 δ(r) +

Na

Λ2 δ(r− ro), (5.28)

where Na is the number of grains absorbed in the sink site at ro. In an elec-
trostatic analogy, as discussed earlier, φ can be considered as the potential
due to a distributed charge of density −∆ρ (ro) and two point charges of
strength N/Λ2 and −Na/Λ2, placed at the origin and at ro respectively.
It is easy to see that the dominant contribution to the potential is the
monopole term with net charge (N − Na)/Λ2. The contribution due to
other terms decreases as 1/Λ for large Λ, and the asymptotic pattern is
the same as without a sink, with N − Na particles added.
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The number Na of particles absorbed is determined by the condition
that the number of topplings at (1, 0) (the sink position) is zero. The
potential produced at (1, 0) and (0, 0), by the areal charge density is nearly
the same. The number of topplings at (1, 0), if we add Na particles at the
sink site, is approximately (4π)−1 Na log Na. Now, from the solution of the
discrete Laplacian, the number of topplings produced at (1, 0) due to N
particles added at (0, 0) is approximately (4π)−1 (N log N − CN) with C
being an undetermined constant. Equating these two, we get

Na log Na ' N log N − CN. (5.29)

As the asymptotic pattern is the same as that produced by adding (N − Na)
grains at the origin without a sink, we have N − Na ' Λ2, and

(N −Λ2) log(N −Λ2) ' N log N − CN. (5.30)

Simplification of this equation for large N shows that Λ grows as
√

N/ log N
with N.

For finite N, the leading correction to φ (r) comes from the dipole term
in the potential. This term breaks the reflection symmetry of the pattern
about the origin. A measure of the bilateral asymmetry is the difference
of the boundary distances on two opposite sides of the source. As the rel-
ative contribution of the dipole potential compared to the monopole term
decays as log Λ/Λ, for large Λ, this difference vanishes in the asymptotic
pattern in the reduced coordinates.

5.4 Numerical results

All the above scaling behaviors are verified by the measurement of lengths
in the patterns for finite, but large N. Let Λ∗line (N) be the real positive root
of equation (5.16) for a given integer value of N. As Λline takes only the
integer values on the lattice, an estimate of it would be Nint

[
Λ∗line(N)

]
,

the integer nearest to Λ∗line (N). Interestingly, we found that for a choice of
C1 = 0.1853 and C2 = 0.528, this estimate gives values which differ from
the measured values at most by 1 for all N in the range of 100 to 3× 106.
We rewrite the equation (5.16) as

0.1853Λ3
line + 0.528Λ2

line + N, (5.31)

where we used the symbol + to denote that both sides differ at most by 1.
Clearly more precise estimates of C1 and C2 would be required if we want
this to work for larger N.

Similarly for the other two equations (5.19) and (5.21) we find that they
are in very good agreement with our numerical data. We consider the case
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of wedge angle ω = 2π. This corresponds to the case with the source site
next to an infinite half-line of sink sites. Here α = 1/2 and equation (5.19)
reduces to

C1Λ5/2
ω=2π + C2Λ2

ω=2π ' N. (5.32)

Choosing C1 = 0.863408 and C2 = 0.043311, we find that the function
Nint [Λ∗ω=2π (N)] differs from the measured values by at most 1 for all N
in the range of 100 to 2× 105. Then, as in equation (5.31), we write

0.863408Λ5/2
ω=2π + 0.043311Λ2

ω=2π + N. (5.33)

Similarly, for the three dimensional abelian sandpile model with the source
site inside the first octant and x = 0, y = 0, and z = 0 as the absorbing
planes, the equation determining the dependence of the diameter on N is

0.0159Λ6
3d + 88Λ3

3d + N (5.34)

We have verified this equation for N between 5× 105 to 5× 108.
We obtained these equations by determining the number of absorbed

grains Na and the remaining grains Nr from dimensional counting grounds,
and the final equations are then only a statement of the conservation of the
sand grains. It is quite remarkable that this scaling analysis gives almost
the exact values of the diameter. In addition, these equations have an im-
portant feature that they include a “correction to scaling” term whereas
the usual scaling analysis ignores the sub-leading powers.

We also verify equation (5.27) using patterns with fixed ro and the sink
site inside a high-density patch in the outer layer of the pattern. It is found
that for a change of N from 224000 to 896000, Na log N/N changes by less
than 7%, which is consistent with the scaling relation.

In the other limit, where the sink site is next to the source, the depen-
dence of Λ on N is given in equation (5.30). We measure Λ (N) for the
patterns with the sink site at (1, 0) and the source at the origin. For N in
the range of 100 to 5× 105 we find that the function Nint[Λ∗point (N)] with
C = 2.190 in equation (5.30), gives almost exact values of Λ (N), with their
difference being at most 1. Then we write

(N −Λ2
point) log(N −Λ2

point) + N log N − 2.190N. (5.35)

In the last case, let R1 and R2 be the boundary distances measured
along the positive and the negative x axis. The difference R2−R1 is plotted
in Fig.5.4 where the data is found to fit to the function 1.22 log (R2 + 0.5).
This confirms the result that the relative bilateral asymmetry (R2−R1)/R2

vanishes in the asymptotic pattern as log Λ/Λ.
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Figure 5.4: The
bilateral asym-
metry due to
the presence of
a sink site in
Fig.5.2.

5.5 Characterization of the pattern with a line sink

The pattern with a line sink (Fig.5.1), discussed in Section 5.2, retained two
important properties present in the single source pattern (Fig. 4.5). These
are: The asymptotic pattern is made of the union of two types of patches
of excess density 1/2 and 0 and the separating boundaries of the patches
are straight lines of slope 0, ±1 or ∞. However the adjacency graph is
changed significantly and this changes the sizes of the patches as well. In
this section we show how to explicitly determine the potential function on
this adjacency graph.

The adjacency graph of the patches is shown in Fig.5.6. This represen-
tation of the graph is easier to see by taking the 1/r3 transformation of the
pattern and then joining neighboring patches by straight lines (Fig.5.5).
Each vertex in the graph is connected to four neighbors except for the ver-
tices corresponding to the patches next to the absorbing line. These have
coordination number 3. Also the vertex at the center corresponding to the
exterior of the pattern is connected to seven neighbors.

Let us write the quadratic potential function in a patch P having excess
density 1/2 as

φP(r) =
1
8
(mP + 1)ξ2 +

1
4

nP ξη +
1
8
(1−mP)η

2 + dP ξ + eP η + fP , (5.36)

where the parameters m, n, d, e and f take constant values within a patch.
Similarly for a low-density patch P′

φ
P′ (r) =

1
8

m
P′ (ξ

2 − η2) +
1
4

n
P′ ξη + d

P′ ξ + e
P′ η + f

P′ . (5.37)
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Figure 5.5: 1/r3 transformation of the pattern in Fig.5.1. Two adjoining
patches are connected by drawing a straight line.

Using the continuity of φ (r) and its first derivatives along the common
boundaries between neighboring patches it has been shown in chapter 4,
that for the single source pattern without sink sites m, and n take inte-
ger values. The same argument also applies to this problem and it can
be shown that (m, n) are the coordinates of the patches in the adjacency
graph in Fig.5.6. These coordinates are shown next to some of the vertices.
There are two different patches corresponding to the same set of (m, n)
values. In fact, as in the single source pattern the adjacency graph forms a
square grid on a two sheeted Riemann surface, the same is formed for this
pattern, but on a three sheeted Riemann surface. This can be constructed
by modifying the graph in Fig 5.6 keeping its topology the same. In this
representation the pattern covers half of the surface with (m, n) being the
Cartesian coordinates on the surface.

Define function D (m, n) = d (m, n) + ie (m, n) on this lattice. As dis-
cussed in [DSC09], the continuity of φ(r) and its first derivatives along the
common boundary between neighboring patches imposes linear relations
between d and e of the corresponding patches. Using these matching con-
ditions it can be shown that d and e satisfy the discrete Cauchy-Riemann
conditions [DSC09]

d (m + 1, n + 1)− d (m, n) = e (m, n + 1)− e (m + 1, n) ,

e (m + 1, n + 1)− e (m, n) = d (m + 1, n)− d (m, n + 1) , (5.38)
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Figure 5.6: The adjacency graph of the patches corresponding to the pat-
tern in Fig.5.1.

and then the function D satisfies the discrete Laplace equation

∑
i=±1

∑
j=±1

D(m + i, n + j)− 4D(m, n) = 0, (5.39)

on this adjacency graph.
Let us define M = m + in and z = ξ + iη. As argued before, close

to the origin the potential φ diverges as 1/r (equation (5.13)). Then, the
corresponding complex potential function Φ (z) ∼ 1/z. As M ∼ d2Φ/dz2,
and D ∼ dΦ/dz, it follows that for large |M|,

D ∼ M2/3. (5.40)

Also, the condition that on the absorbing line φ (r) must vanish implies
that for the vertices with even n along the red line in Fig.5.6 e(0, n) van-
ishes. These vertices correspond to the patches with the absorbing line as
the horizontal boundary in Fig.5.1.

Equation (6.12) with the above constraint and the boundary condition
(Eq.(5.40)) has a unique solution. The normalization of φ is fixed by the
requirement that d(1, 0) = −1, which fixes the diameter of the pattern
to be 2 in reduced units. All the spatial distances in the pattern can be
expressed in terms of this solution D (m, n) using the matching conditions
between two neighboring patches. As an example, consider the boundary
between the patches corresponding to (m, n) and (m + 1, n) with (m + n)
being odd. The matching conditions only allow a horizontal boundary
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between them with the equation η = ηp, where

e (m + 1, n)− e (m, n) = ηp/2. (5.41)

Similarly there is a vertical boundary between the patches (m, n) and
(m− 1, n), with the equation ξ = ξp, where

d (m− 1, n)− d (m, n) = ξp/2. (5.42)

The other boundaries can similarly be determined using the solution for
D (m, n). The characterization of the asymptotic patterns for ω = π/2,
3π/2 and 2π is qualitatively similar and will not be discussed here.

5.6 Patterns with two sources

In this section we discuss patterns produced by adding N grains each at
two sites placed at a distance 2Λro from each other along the x-axis, at
Λro and −Λro with ro ≡ (ξo, 0). Again, the diameter 2Λ is defined as
the height of the smallest rectangle enclosing all sites that have toppled
at least once. The two limits, r0 close to zero and r0 large are trivial: For
ro → 0, the asymptotic pattern is the same as that produced by adding
grains at a single site. On the other hand if ro > 1, each source produces
its own pattern, which do not overlap, and the final pattern is a simple
superposition of the two patterns.

As noted before, the adjacency graph for the single source pattern has a
square lattice structure on a Riemann surface of two-sheets [DSC09]. Then
the graph for two non-intersecting single source patterns is a square lattice
on two disjoint Riemann surfaces, each having two-sheets (Fig.5.9). Only
the vertex at the origin represents the exterior of the pattern, which is the
same for both of the single source patterns. It has sixteen neighbors and is
placed midway between the two Riemann surfaces. For later convenience
let us associate the lower Riemann surface to the pattern around the left
source at −ro and denote it by ΓL. Similarly the upper Riemann surface as
ΓR corresponding to the pattern around the right source ro.

For 0 < ro < 1, the two single source patterns overlap. Using the
abelian property, we first topple as if the second source were absent. The
resulting pattern still has some unstable sites in the region where the pat-
terns overlap. Further relaxing these sites transfers these excess grains
outward, and changes the dimensions and positions of the patches: some
patches become bigger, some may merge, and sometimes a patch may
break into two disjoint patches.

The pattern produced with two sources with r0 = 0.95 is shown in
Fig.5.7. We see that there are still only two types of periodic patches,
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Figure 5.7: The pattern produced by adding N = 640000 grains each at
(−760, 0) and (760, 0) on the F-lattice with the initial checkerboard distri-
bution of grains and relaxing. This corresponds to ro = 0.95. Color code
red=0 and yellow=1. (Details can be seen in the electronic version using
zoom in )

corresponding to ∆ρ(r) values 0 and 1/2, and the slope of the boundaries
between patches takes the values 0, ±1 or ∞.

The relaxation due to overlap changes the adjacency graph from the
case with no overlap. This modified adjacency graph, for ro in the range
0.70 to 1.00, is shown in Fig.5.10. For r0 just below 1, these changes are
few and are listed below.

(i) We note that the patches labelled A and A′ in Fig.5.8 have the same
ξ and η dependence of the potential function φ. Then, for r0 just below 1,
these patterns can join with each other by a thin strip. This only requires
a small movement in the boundaries of nearby patches ( i.e. only a small
change in the d and e values of nearby patches). Thus, in the adjacency
graph, the vertices corresponding to A and A′ are collapsed into a single
vertex A in Fig.5.10.

(ii) Similarly, the vertices corresponding to the patches B and B′ in
Fig.5.8 are collapsed into a single vertex B in Fig.5.10.

(iii) This divides the region outside the pattern in to three parts, O, O′

and O′′. They are also shown in Fig.5.10 as separate vertices.
(iv) The patches marked C and C′ also have the same quadratic form,

and the vertical boundary between them disappears. However, the patches
D and D′ are also joined by a thin strip. This horizontal strip divides the
joined C and C′ into two again (Fig.5.8).

The adjacency of other patches remains unchanged. The adjacency
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Figure 5.8: The pattern constructed by combining two single source pat-
terns and drawing connecting lines between few patches following the
connectivity in the pattern in Fig.5.7.

graph of the pattern is shown in Fig.5.10. Interestingly, this new adjacency
graph remains the same for all 0.70 < r0 < 1, even though for ro < 0.85, the
sizes of different patches are substantially different. Compare the pattern
for r0 = 0.70 in Fig.5.11, with the pattern for r0 = 0.95 in Fig.5.7: The
shape of the central patches in Fig.5.11 is different from that in Fig.5.7.

In Fig.5.10, we have have placed the vertices which are formed by
merging or dividing the patches, midway between the Riemann sheets
corresponding to the two sources. As r0 is decreased below 0.70, more
collisions between the growing patches will occur and the number of ver-
tices in this middle region will increase. For any nonzero r0, the number
of vertices in the middle layer is finite. In the ro → 0 limit, vertices from
both the surfaces ΓL and ΓR come together and form a single Riemann sur-
face corresponding to a single source pattern around r = 0. For r0 small,
but greater than zero, the outer patches are arranged as in the single-
source case, but closer to the sources, one has a crowded pattern near each
source. In the adjacency graph, this corresponds to the vertices near the
patch (0, 0) roughly arranged as on a Riemann surface of two-sheets, while
the ones farther from the patch (0, 0) remain undisturbed on the 4-sheeted
Riemann surface.

We now characterize the pattern with two sources and r0 > 0.70 in
detail by explicitly determining the potential function on this adjacency
graph.
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Figure 5.9: Representation of the adjacency graph of the patches for two
non-overlapping single source patterns as a square grid on two Riemann
surfaces each of two-sheets. The vertices with same (m, n) coordinates on
different sheets are represented by different colors.

Figure 5.10: The adjacency graph for two intersecting single source pat-
terns around two sites of addition placed at a distance 2ro from each other.
The graph has the structure of square grids on four Riemann sheets except
for a finite number of vertices indicated by the alphabates A, B, O, O′, O′′

and D shown placed in the middle layer. This graph remains unchanged
for ro in the range 0.70 to 1.00.
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Figure 5.11: The pattern produced by adding 640000 grains at site
(−600, 0) and (600, 0). Although the pattern is significantly different from
the one in Fig.5.7, their adjacency graph is same.

The Poisson equation analogous to Eq.(4.3) for this problem is

∇2φ(r) = ∆ρ(r)− N
Λ2 δ(r− ro)−

N
Λ2 δ(r + ro). (5.43)

Let us use the same quadratic form of the potential function given in equa-
tion (5.36) and equation (5.37).

Again using the same argument given in [DSC09], it can be shown that
m and n are the coordinates of the patches in both the adjacency graphs
in Figs.5.9 and 5.10. These coordinates are shown next to each vertex.
Also, on this graph, the function D(m, n) = d(m, n) + ie(m, n) satisfies the
discrete Laplace equation

∑
m′

∑
n′

D(m′, n′)− 4D(m, n) = 0, (5.44)

where (m′, n′) denote the neighbors of (m, n) in the odd or even sublattice
[Duf56]. Let us define zo = ξo + iηo where (ξo, ηo) and (−ξo,−ηo) are the
coordinates corresponding to ro and −ro. Considering that close to ro and
−ro the potential φ (r) diverges logarithmically it can be shown (as done
for single source pattern in [DSC09]) that for large |M|,

D(m, n) = z̄o
M
4
± A√

2π

√
M + lower order in M, on ΓL

= −z̄o
M
4
± A√

2π

√
M + lower order in M, on ΓR (5.45)
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N 896k 14336k 57344k 229376k Theoretical
R2/R1 0.769 0.768 0.770 0.770 0.7698
R3/R1 0.675 0.675 0.667 0.668 0.6666
R4/R1 0.609 0.609 0.617 0.616 0.6172

Table 5.1: Comparison of different lengths measured directly from the
pattern in Fig.5.12 for increasing values of N, with their theoretical values.

where A is a constant independent of N or Λ. The solution of the equation
(5.44) with the boundary condition D(0, 0) = 0 and that in equation (5.45)
for large |M| determines the final pattern.

5.7 Numerical analysis

In both the examples in section 6 and 7 the patterns are characterized in
terms of the solution of the standard two dimensional lattice Laplace equa-
tion on the corresponding adjacency graphs. The solution is well-known
when (m, n) ∈ Z2 [Spi01]. In our case where the lattice sites form surfaces
of multiple sheets, we have not been able to find a closed-form expres-
sion for D(m, n). However, the solutions can be determined numerically
to very good precision by solving it on a finite grid −L ≤ m, n ≤ L with
the corresponding boundary conditions imposed exactly at the boundary.

For the pattern with the line sink, the calculation is performed with
D = M2/3 at the boundary and then the solution is normalized to have
d (1, 0) = −1. We determined d and e numerically for L = 100, 200, 300,
400 and 500 and extrapolated our results for L → ∞. Comparison of the
results from this numerical calculation and that obtained by measurements
on the pattern is presented in Table 1. We consider the four different
lengths R1, R2, R3 and R4 as defined in Fig.5.12. By the definition of the
diameter of the pattern R1 = 2Λ. We present the values of R2, R3 and R4

normalized by R1 for different N. The asymptotic values of these lengths
are determined from the values of d and e. Comparison of these results
shows very good agreement between the theoretical and the measured
values.

A similar numerical calculation is done for the pattern with two sources.
In this case the boundary condition is given by equation (5.45). The value
of A is determined from a self consistency condition that the diameter of
the pattern in the reduced coordinate is 2 which imposes 2e(−1, 0) = −1
corresponding to the vertex A in Fig.5.10. We determined d and e numer-
ically for L = 100, 200, 300, 400 and 500 and extrapolated our results for
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Figure 5.12: The spatial lengths R1, R2, R3 and R4 tabulated in Table 1.

N 2.5k 10k 40k 160k 640k Theoretical

R1/
√

N 1.84 1.84 1.84 1.83 1.83 1.82
R2/
√

N 1.06 1.07 1.07 1.06 1.05 1.06
R3/
√

N 0.22 0.21 0.20 0.19 0.18 0.18
R4/
√

N 0.18 0.19 0.19 0.18 0.18 0.18
R5/
√

N 0.20 0.22 0.21 0.21 0.21 0.21

Table 5.2: Comparison of different lengths measured directly from the two
source pattern for ro = 0.800 with their theoretical values.

L → ∞. A comparison of the results from this numerical calculation and
that obtained by measurements on the pattern are presented in Table 2.
We considered five different spatial lengths in the pattern, corresponding
to ro = 0.800. These different lengths are drawn in Fig.5.13 and their val-
ues rescaled by

√
N, for the patterns with increasing N, are given in Table

2. The asymptotic values of these lengths are obtained using the values
of d and e. The rescaled lengths extrapolated to the infinite N limit match
very well with the theoretical results.

5.8 Discussion

While the results discussed in quantifying the patterns with growing sand-
piles are presumably exact (in the sense that D (m, n) can be determined
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Figure 5.13: The spatial lengths R1, R2, R3, R4 and R5 tabulated in Table.2

to arbitrary precision), they have not been established rigorously. In par-
ticular, as noted before, it would be desirable to have a direct proof of the
proportional growth property from the definition of the problem. Also,
we use the observation that the asymptotic pattern consists of only two
types of patches, and the adjacency graph of the pattern is also taken as
observed. It would be nice to see it following from the definition of the
problem. The unexpected accuracy of the scaling arguments giving Eqs.
(34, 36, 37, 38) also deserves to be understood better.

We have shown that the exact characterization of the patterns in the F-
lattice on a checkerboard background reduces to solving a discrete Laplace
equation on the adjacency graph of the pattern. For the single source
pattern this graph is a square grid on a two-sheeted Riemann surface and
in the presence of a line sink it is on a three-sheeted Riemann surface.
This Riemann surface structure occurs for other sink geometries as well
and the number of sheets can be determined from the way φ diverges near
the origin.

If the potential φ(r) diverges as r−a near the origin, then the corre-
sponding complex function Φ(z) ∼ z−a. Then d2

dz2 Φ ∼ z−2−a. In all the
cases studied above, the patch to which point z belongs is characterized
by integers (m, n), where d2

dz2 Φ ∼ m + in. Also d
dz Φ ∼ d + ie. Writing

D = d + ie, and M = m + in, we see that D ∼ M
1+a
2+a . This then gives the

number of Riemann sheets. For example, for the wedge angle ω = 2π, we
have a = 1/2. Then D ∼ M3/5, and the Riemann surface would have 5
sheets.
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Figure 5.14: Pattern produced by adding N = 40000 grains each at
(−180, 0) and (180, 20) on the F-lattice with initial checkerboard distribu-
tion of grains and relaxing. Color code red=0 and yellow=1. (Details can
be seen in the online version using zoom in )

The patterns discussed so far in this chapter have only two types of
patches with densities 1/2 and 1. But it is possible to have patterns with
patches of other densities. For example, for the patterns with two sources,
even a slight deviation of the position of the second source in Fig.5.7 from
the x-axis introduces patches which have areal density different from 1/2
or 1. One such pattern produced by adding 40000 grains each at (−180, 0)
and (180, 20) is shown in Fig.5.14. The regions with stripes of red and
yellow are patches of the new density. In addition, the boundaries of these
patches have slopes other than 0, ±1 and ∞. Most of the analysis presented
here is appilcable to this pattern, except that the matching conditions along
the common boundary between two patches and the adjacency graph are
different.

The cases in which the full pattern can be explicitly determined are
clearly special. For example, one of the conditions used for the exact
characterization of the patterns in this chapter is that inside each patch
the height variables are periodic and hence ∆ρ (r) is constant. It is easy to
check that this condition is not met for most sink geometries. For example,
patterns of the type discussed in Section 4 with any ω other than integer
multiples of π/4 have aperiodic patches. In such cases, the present treat-
ment for characterization of patterns is clearly not applicable. However,
the scaling analysis for the growth of the spatial lengths in the pattern
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with N is still valid.
The function D = d + ie satisfies the discrete Cauchy-Riemann condi-

tion (equation (5.38)). These functions are known as discrete holomorphic
functions in the mathematics literature. Usually they have been studied
for a square grid of points on the plane [Duf56, Spi01]. While more gen-
eral discretizations of the plane have been discussed [Mer01, Lov04], not
much is known about the behavior of such functions for multi-sheeted
Riemann surfaces.

In our analysis we have also used the fact that the patterns have nonzero
average overall excess density ( i.e. C2 in Eq. (5.7) is nonzero). The case
C2 = 0 is quite different, and requires a substantially different treatment.
We discuss such patterns in the next chapter.
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6
Pattern Formation in Fast-Growing

Sandpiles

Based on the paper [SD] by Tridib Sadhu and Deepak Dhar.

Abstract In the last two chapters, we have studied the patterns formed by
adding large N sand-grains at a single site in the abelian sand-
pile models, starting with an initial periodic background pattern
of heights. When the heights of the pile at all sites in the initial
background is low enough, one gets patterns showing proportionate
growth, with the diameter of the pattern formed growing as N1/d

in d-dimensions. If sites with maximum stable height in the start-
ing configuration form an infinite cluster, we get avalanches that do
not stop, and the model is not well-defined. In this chapter, we
study periodic backgrounds in the two dimensions, and describe
our unexpected finding of an interesting class of backgrounds, that
show an intermediate behavior: For any N, the avalanches are finite,
but the diameter of the pattern increases as Nα, for large N, with
1/2 < α ≤ 1, the exact value of α depending on the background.
It still shows proportionate growth. We characterize the asymptotic
pattern exactly for one illustrative example.

6.1 Introduction

In the last two chapters, we studied the patterns produced by adding
grains at a single site in a Deterministic Abelian Sandpile Model (DASM),
and relaxing. A complete relaxation process, stating from the addition of
sand to reaching the final stable configuration is called an avalanche. The
length of an avalanche depends on the initial height configuration, i.e., the
background. For some backgrounds on an infinite lattice, topplings may
continue for ever, and the avalanches reach to infinity. For other back-
grounds, where the avalanches are finite, the toppled sites form patterns
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Figure 6.1: A directed triangular lattice.

in the spatial configuration of sites with different values of the height vari-
ables. We call the backgrounds leading to infinite avalanches as explosive
and those with finite avalanches as robust.

For a sandpile model with stochastic toppling rule, the robustness of a
background is determined only by the density ρo of heights in the back-
ground, and the specific arrangement of heights does not matter. For
stochastic sandpile models there exist a critical density ρc, depending on
the process of toppling, such that, on a background with sub critical den-
sity ρo < ρc, finite avalanches occur with probability 1. The corresponding
asymptotic pattern is a simple circle, with density ρ = ρc, inside, and the
diameter Λ of the circle grows as

√
N. For densities ρo > ρc, probability

of finite avalanches vanishes in the large N limit. At the critical density,
there could be finite avalanches forming patterns whose size grows in a
rate faster than

√
N.

In general, for any sandpile model defined on a lattice of dimension
d, the diameter Λ of the pattern, suitably defined, can grow as Nα. If
α = 1/d, we call this kind of growth as compact, and for other values it is
non-compact.

For a deterministic sandpile a similar critical density can not be de-
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Figure 6.2: Examples of the background of class I and II, respectively. The
filled circles represent height 1 and unfilled ones 2.

fined. One can construct backgrounds with densities very close to zero,
and still there are infinite avalanches. A simple example of such back-
grounds, on any lattice, is the one where the sites with height zc − 1 form
an infinite connected cluster, with zc being the threshold height. Height
at other sites could be zero, and thus the density ρo of the background
could be made very small. On the other hand, it is possible to construct
backgrounds with mean density arbitrarily close to zc − 1, and yet the
avalanches are always finite. Absence of an infinite avalanche is deter-
mined by the detailed arrangement of heights on the background, and not
by the density alone.

There are some earlier work on the growth rate of the sandpile pat-
terns. Some backgrounds of both types, robust and explosive, for a DASM
were studied in [FLP10, BMQR08]. However, in all these examples, stud-
ied so far, the growth of the patterns is compact. For a DASM on a square
lattice, it was shown [BMQR08], that the pattern produced on a back-
ground of constant height z ≤ zc − 2, is always enclosed inside a square
whose width grows as

√
N. Given the absence of any critical density, it is

non-trivial to find a background on which the patterns grow with a rate
faster than

√
N, but finite. In fact, for the sandpile models on a standard

square lattice there are no known examples of patterns with non-compact
growth.

In this chapter, we show that, on a F-lattice, there are infinitely many
backgrounds which produce patterns with non-compact growth. In gen-
eral, on these backgrounds, the growth exponent α is between 1/2 and
1. On a directed triangular lattice (see Fig. 6.1), we found two classes
of backgrounds, each consisting infinitely many possible arrangements of
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Figure 6.3: The pattern formed on the background in figure 6.2(a)by
adding N = 500 particles respectively at the origin. Details can be viewed
in the electronic version using zoom in.
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Figure 6.4: The pattern formed on the background in figure 6.2(b) by
adding N = 500 particles respectively at the origin. Details can be viewed
in the electronic version using zoom in.
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heights, on which the growth exponent α = 1. More importantly, it seems
that, all the backgrounds in the same class, produce the same asymptotic
pattern.

Like other sandpile patterns, discussed in the previous chapters, these
two asymptotic patterns exhibit proportionate growth. They are very dif-
ferent (see Fig. 6.3 and 6.4) from the F-lattice patterns discussed in the
last two chapters. In particular, the density ρ is same inside each patch in
the pattern, and is equal to the density ρo in the background. The added
grains sit along the patch boundaries. We show that because of this, the
potential function φ (see chapter 4), suitably redefined for the pattern, is
piece-wise linear, and this makes the characterization of the pattern sim-
pler.

We analyse the pattern (Fig. 6.3) corresponding to one of the two
classes of backgrounds. We show that the spatial distances in the asymp-
totic pattern, can be described in terms of a solution of Laplace’s equation
on a hexagonal lattice. A similar characterization was done for some of the
F-lattice patterns, in the chapters 4 and 5, where the asymptotic patterns
were characterized in terms of solution of discrete Laplace’s equation on
a square grid on Riemann surfaces of multiple sheets. However, unlike
the square lattice on a plane, a closed form expression of the solution of
Laplace’s equations on these lattices is not known, and we determined
them numerically. On the other hand, the solution of the Greens function
for the Laplace’s equation on the hexagonal lattice on a plane can be ex-
pressed as a double integral over angular variables, and for every site on
the lattice the integral can be computed exactly [AS99]. Thus, the analysis
of the patterns discussed in this chapter is actually simpler.

The pattern, shown in Fig. 6.4, for the second class of backgrounds can
be analyzed in a similar way.

This chapter is organized as follows. In section 6.2, we discuss, in
details, the role of density ρo in deciding the robustness of a background,
for both stochastic and deterministic sandpile models. In section 6.3 we
define a DASM on the directed triangular lattice, and describe the two
types of backgrounds which produces patterns with non-compact growth.
In section 6.4, we characterize one of these patterns in the asymptotic limit.

6.2 Compact and non-compact growth

The simplest growth of patterns occur for the models with stochastic top-
pling rules. In a Stochastic Abelian Sandpile Model (SASM) with a back-
ground of density ρo close to zero, the avalanches are always finite. The
system relaxes to a configuration where the affected sites form a circular
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Figure 6.5: The pattern produced by adding N = 105 grains at a single site
on a SASM defined on an infinite square lattice and relaxing; Initial config-
uration with all sites empty. The threshold height zc = 2, and on toppling
two grains are transfered either to the vertical or horizontal neighbors,
with equal probability. Color code: White=0, and Black=1.
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Figure 6.6: The variation
of density ρ along the ra-
dius of the circular pat-
tern in Fig. 6.5.

region (see Fig. 6.5), in the large N limit, with an average density ρc inside
the circle and ρo outside. The value of ρc is independent of the background
density ρo, and is equal to the unique steady state density ρs of the corre-
sponding self organized critical model with random sites of addition, and
dissipation at the boundary [Dha99b]. The region inside the circle forgets
about the initial height configuration, and is in the self-organized critical
state. This is easy to understand from the following qualitative argument:
If the region inside is in a sub-critical state then the avalanche size distri-
bution has an exponential tail, and most of the avalanches do not reach
the boundary of the pattern. This increases the density inside the affected
region, pushing it towards the critical density. On the other hand if the
density is above ρs, most of the avalanches reach the boundary, throwing
the excess grains outside the effected region and the pattern grows in size.
This decreases the density inside until it reaches value ρs.

The boundary of the affected region is thin with a sharp transition of
density from ρc to ρo (see Fig. 6.6). Then considering that, for large N, all
the added grains are confined inside the circular region of diameter 2Λ,
we get

N = (ρc − ρo)πΛ2 + Lower order in Λ, (6.1)

where 2Λ is the diameter of the circular region. Thus the pattern has a
compact growth.

For densities ρo close to ρc there are toppling events which lead to very
large avalanches. However probability of such avalanches is exponentially
damped, and hence even for large N, with absolute certainty, avalanches
remain finite. As long as ρo is less than ρc the system relaxes, forming a
circular pattern whose diameter grows as

√
N. This argument applies to

the patterns in all dimension, and then their growth is compact.
In the other limit, adding a single grain on a background of super-

critical density gives rise to infinite avalanches, with non-zero probability.

108



6.2. COMPACT AND NON-COMPACT GROWTH

Then for sufficiently large N such backgrounds are explosive.
At ρo = ρc the probability of large avalanches has a power law tail,

and the above argument does not apply. It may be possible to construct
a robust background with critical density of heights. However, no such
example has been found, so far.

In the models with deterministic relaxation rules there is no well de-
fined critical density ρc, separating the robust and explosive backgrounds.
The geometry of height distribution plays the determining role in the ro-
bustness of a background.

In the deterministic models, similar circular pattern is produced for a
background with random assignment of heights z ≤ zc per site, of small
average density ρo. Inside the pattern, density of heights is ρs which is
the steady state density of the corresponding SOC model. However, on a
background of higher densities, this picture is changed considerably. For
example consider the BTW model on a square lattice, where the steady
state density ρs = 17/8 = 2.125. It has been shown that a background
with a random assignment of height 3 with probability ε, on a sea of
constant height 2 is explosive, even for arbitrary small value of ε [FLP10],
although the average density ρo = 2 + ε is much less than ρs.

For a background with periodic heights, it is possible to construct ex-
plosive backgrounds of any density, even with arbitrary small values. As
an example, we consider the BTW model on an infinite square lattice. De-
fine a background made of square unit cells of width m with empty sites
inside the cell, and 3 grains at each site in the boundary. For m > 1, the
average density ρo = 6/m − 9/m2. If any of the occupied site receives
a grain, it starts a chain of toppling events where all the occupied sites
topple, and the avalanche reaches infinity.

On the other hand a constant background of height 3 at all sites is a
minimally stable configuration i.e, addition of a single grain will produce
an infinite avalanche. Still, it is possible to construct a robust background
with density arbitrarily close to 3. For example, consider the background
in the previous example, and exchange the height variables: make the
occupied sites empty, and fill the empty sites with 3 grains. It has been
shown [FLP10], that this background is stable and the pattern produced
has a compact growth.

In all the examples of robust background studied so far, the patterns
have a compact growth. It is non-trivial to find robust backgrounds, where
the diameter of pattern grows faster than compact growth. For the sand-
pile models on a standard square lattice, there is no known example of
patterns with non-compact growth. In the next section, we study some
backgrounds for a DASM on a F-lattice and on a directed triangular lat-
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Figure 6.7: The patterns in terms of Q (r), corresponding to those in Fig.
6.3 and 6.4. Sites with zero Q (r) are colored white, and non-zero are
colored red.

tice, where the patterns have non-compact growth.

6.3 Examples of non-compact pattern

We consider a DASM on a directed graph corresponding to the infinite
two-dimensional triangular lattice, with each site having three incoming
and three outgoing arrows (see Fig.6.1). The threshold height zc = 3, for
each site. If the height at any site is above or equal to zc, it is unstable, and
relaxes by toppling: in each toppling, three sand grains leave the unstable
site, and are transferred one each along the directed bonds going out of
the site.

We consider two classes of backgrounds on this lattice:

Class I: Heights z(r) = 1 are distributed on the lattice forming a
hexagonal-lattice structure. Rest of the sites are with height z = 2.
One such background with hexagons of edge of length l = 2, is
shown in Fig. 6.2(a).

Class II: In this, the heights with z = 1 form triangular shapes, with
the corner sites are of height z = 2. Also the rest of the sites have
height z = 2. One such background with triangles of edge length
l = 4, is shown in Fig. 6.2(b).
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Figure 6.8: The size Λ
of the patterns on the
backgrounds in Fig. 6.2,
increases linearly with
the number of grains
added N.

The pattern produced by adding large N number of grains at a single
site, on these two backgrounds are shown in Fig. 6.3 and 6.4. In spite
of the differences in the background the patterns look identical except
that in the Fig. 6.4, there are extra boundaries within the pink patches.
This differences can be viewed better in terms of the net excess change in
height Q (r), in a unit cell centered at r, where the unit cell is that of the
background pattern.

Q (r) = ∑
r′∈unit cell

∆z(r + r′), (6.2)

where ∆z (r) is the change in height at site r. For example in the first
background in Fig. 6.2 a unit cell is a hexagon of edge length l = 2,
and for the second background it is a rectangle of edge length 4. By
construction, the function Q (r) is zero inside each patch, and non-zero
along the boundaries between patches. The patterns in terms of these
variables, corresponding to those in Fig. 6.3 and 6.4 are shown in Fig. 6.7,
respectively.

There is numerical evidence that the patterns on these two classes of
backgrounds exhibit proportionate growth, i.e., all the spatial features in-
side the patterns for large N, grow in the same rate with the diameter. We
use the same definition of the diameter 2Λ, defined earlier, as the width of
the smallest rectangle enclosing the patterns. We find that for both of these
types of backgrounds the diameter of the pattern grows linearly with N
(see Fig. 6.8).

We found, similar non-compact growth on the F-lattice, for some spe-
cific backgrounds. Two such periodic backgrounds are shown in Fig. 6.9.
In these background patterns, the sites with height 1, are arranged along
the boundaries of tilted l × (l + 1) rectangles with two possible orienta-
tions, and rest of the sites have zero height, forming a brick-tile pattern.
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Figure 6.9: Two backgrounds studied for F-lattice. Unit cells of the peri-
odic distribution of particles is shown by gray rectangles. The filled circles
represent height 1 and unfilled ones 0.

The growing patterns on these two backgrounds are shown in Fig. 6.10
and 6.11. Like the non-compact patterns on the directed triangular lattice,
these patterns also have patches with density equal to that of the back-
ground. These patches are on the outer side of the pattern. Close to the
center, the density changes from the background. This is clearer in the
pattern in terms of the change in density, and they are shown in Fig. 6.12
and 6.13, respectively. The regions with nonzero ∆ρ decreases with the
increase in size of the rectangles in the background pattern. The plot of Λ
with N, for these two patterns are shown in Fig. 6.14. We see that growth
exponent α is approximately 0.6 for Fig. 6.10 and 0.725 for Fig. 6.11. In
general, the value of the exponent α is in the range 1/2 < α < 1, and
approaches value 1 as the density ρo of the background becomes close to
1.

6.4 Patterns on the directed triangular lattice

The backgrounds of class I for l = 1, and class II for l = 3 are identical,
and shown in Fig. 6.16. The asymptotic pattern is same as the one in Fig.
6.3, and in this section we quantitatively characterize this.

Note that, each site on the triangular lattice can be labeled uniquely by
a pair of integers (p, q), such that its position on a complex plane can be
written as R = p + qω, where ω = exp (i2π/3). Then, the height variables
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Figure 6.10: The pattern produced on the first background in figure 6.9,
by adding N = 2200 grains at a single site, and relaxing. Color code:
White= 0 and Black= 1. Details can be viewed in the electronic version
using zoom in.
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Figure 6.11: The pattern produced on the second background in figure
6.9 by adding N = 600 grains at a single site, and relaxing. Color code:
White= 0 and Black= 0. Details can be viewed in the electronic version
using zoom in.
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Figure 6.12: The pattern in terms the average change in heights, corre-
sponding to Fig. 6.10. Color code: White= 0 and Red=Non-zero. Details
can be viewed in the electronic version using zoom in.
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Figure 6.13: The pattern in terms the average change in heights, corre-
sponding to Fig. 6.11. Color code: White= 0 and Red=Non-zero. Details
can be viewed in the electronic version using zoom in.
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Figure 6.14: The change
in diameter Λ as a func-
tion of N, for the pat-
terns on the backgrounds
in Fig. 6.9

in the background pattern in Fig. 6.16, can be written as

h(p + qω) = 2 if p + q = 0 (mod 3);

= 1 otherwise. (6.3)

The average density of heights in the background ρo = 4/3. The config-
uration of the pile produced on this background, by adding N = 5000
grains at the origin is shown in Fig.6.15.

The sites toppled due to addition of the grains are confined within an
equilateral triangle. The pattern can be thought of as a union of patches,
inside which the heights are periodic. There are only two periodic patches
seen: one is like the background, where the sites of height 2 are sur-
rounded by sites of height 1, and the other with heights 0 surrounded
by height 2. Then the density of heights ρ inside the patches are same for
both the patches. These can be seen clearly in the zoomed-in Fig. 6.17.
In fact, the density is equal to that of the background, ρo = 4/3. The
patches in the outer region of the pattern are big, and they become more
numerous, and smaller as we go inwards. Along the common boundary
of adjacent patches, we see line-like structures, and the added grains sit
along such lines. An example of the patch boundaries intersecting each
other is shown in Fig. 6.17. One can see that the periodicty of heights
changes across the patch boundary. In order to see the patch boundaries
clearly, we generate the pattern in terms of a quantity Q (p, q), defined as

Q (p, q) = ∆z (p, q) + ∆z (p + 1, q) + ∆z (p, q + 1) , (6.4)

where ∆z (p, q) is the change in height at site (p, q). By construction the
function Q (p, q) is zero inside every patch, and non-zero along the patch
boundaries. The pattern Fig. 6.15 in terms of ∆z is shown in Fig. 6.4.

For the triangular lattice, the measure of the size of the patterns is Λ,
defined as the altitude of the bounding equilateral triangle. The Λ for
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Figure 6.15: The pattern produced by adding N = 3750 grains at a single
site on the background in Fig. 6.16, and relaxing.
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Figure 6.16: The back-
ground of class I cor-
responding to l = 1.
The filled circles repre-
sent height z = 1 and un-
filled ones z = 2.

Figure 6.17: An exam-
ple of patch boundaries
in figure 6.15 intersecting
with each other. Color
codes are same as in the
Fig. 6.15.
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Figure 6.18: The pattern, in terms of the average change in heights ∆z,
produced on the background in Fig. 6.16. The patches are labeled by
alphabets to represent them on the adjacency graph in Fig. 4.13.
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Figure 6.19: Growth of Λ
with N, for the pattern in
Fig. 6.15. The fitting func-
tion = 0.62N.

.

Figure 6.20: ∆Λmax(N)

for the first background
has a square root de-
pendence on N with the
fitting function g(x) =

3.25
√

x.

the pattern in Fig. 6.4 grows linearly with N, but it grows in bursts: it
remains constant for a long interval as more and more grains are added,
and suddenly increase by a large amount at certain value of N (See Fig.
6.19). For example, at N = 3346, the Λ is 2024, and it jumps to a value
2102 when N is increased by 1. Let ∆Λmax(Nm) denote the size of the
maximum jump in Λ encountered, as N is varied from 1 to Nm. In Fig.
6.20, we have plotted the variation of ∆Λmax(Nm) with Nm. The graph is
consistent with a power-law growth, with a power around 0.5. Thus the
fractional size of the bursts decreases for large N.

Like in the previous chapter, we characterize the asymptotic pattern in
a rescaled coordinate. As Λ grows linearly, we choose this coordinate as
r = R/N. We also define a rescaled toppling function as

φ (r) =
3

4N
lim

N→∞
TN
(

R̃
)

, (6.5)

where Nr belongs to the Wigner cell of the vertex at R̃. The normalizing
factor 3/4 is chosen for a later convenience. Using the conservation of
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grains in a toppling it is easy to see that

∇2φ (z) = ∆ρ (z)− δ (z) , (6.6)

where ∆ρ is the change in the density of heights, normalized by N, before
and after relaxation. In an electrostatic analogy φ can be considered as the
potential due to a point charge at the origin and an areal charge density
−∆ρ. An extension of the argument given in Lemma 4.3.1, shows that the
potential function φ is linear inside periodic patches in patterns with non-
compact growth. (We recall that, for the patterns with compact growth, the
potential function was piece-wise quadratic.) This simplifies the analysis
of the patterns, significantly. The potential function can be characterized
by only three parameters. We parametrize the function at site r, inside a
patch, as

φ (r) =
1
2
(Dr̄ + D̄r) + f (6.7)

where D is a complex number and f is a real number, constant every
where inside the patch.

The average density of heights within each patch is constant and equal
to the background density. Thus the charge density ∆ρ (r) is zero in-
side the patches. The excess grains due to addition are distributed along
the patch boundaries, leading to nonzero line charge densities separating
neighboring patches. Then the density function ∆ρ (r) is a sum of the line
charges along the patch boundaries.

The adjacency graph of the patches is a planar graph shown in Fig.6.21.
Each lattice vertex corresponds to a patch, and two vertices are connected
by an edge if the corresponding patches in the pattern have a common
boundary. The graph is a modified hexagonal lattice with extra edges
connecting the vertices with same L1 distance from the origin. The vertex
at the origin corresponds to the region outside the pattern, and the patches
near the site of addition are denoted by vertices away from origin. Patches
A and A′ in the Fig.6.4 are adjacent to the outer region O through the
same vertical boundary. Thus they have the same potential function and
we consider them as a single patch. They are represented by a single
vertex denoted by (A, A′) on the adjacency graph. Similarly, other pair of
patches sharing a common boundary with a third patch are considered as
one. Some of them are denoted by capital alphabets in Fig.6.4 and their
corresponding vertices on the adjacency graph in Fig.6.21.

Consider 1 and ω as the basis vectors to represent the vertices of the
adjacency graph in the complex plane. Then the complex coordinate of
a vertex can be written as ζ = λ (m + nω), where m, n are integers, and
λ is the unit lattice distance. For the graph, the vertices with m + n = 2
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Figure 6.21: The adjacency graph of patches in the pattern in Fig.6.4. The
patches are arranged in an inverted order, such that the region outside the
pattern is represented by a site at the center (O), and the patches close to
the site of addition are represented by sites away from the center in the
adjacency graph. Pair of patches labeled by the alphabets and its corre-
sponding primed alphabet are represented by same vertex on the graph
.
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(mod 3) are excluded. Each patch can be uniquely denoted by the pairs of
integers (m, n), and then we write the potential function as

φ (r) =
1
2
(Dm,nr̄ + D̄m,nr) + fm,n. (6.8)

From a simple electrostatic analogy, it is seen that φ is continuous
across the common boundary between neighboring patches, and its nor-
mal derivative is discontinuous by an amount equal to the line charge
density λ along the boundary, i.e,

∇φp −∇φp′ = λn̂, (6.9)

where n̂ is the unit vector perpendicular to the boundary between the
patches p and p′, and directed from patch p′ to p. The φp and φp′ are the
potential functions corresponding to the patches p and p′. This implies

φp′ (r) = φp (r)− λl⊥, (6.10)

with l⊥ being the perpendicular distance of r from the boundary. Using
the matching conditions it is easy to show that

Dp′ − Dp = −λ exp (iθ) and

fp′ − fp = −Re[Ā
(

Dp′ − Dp
)
], (6.11)

where the equation of the boundary is r = |r| exp (iθ) + A and Ā is com-
plex conjugate of A. Noted that, there are patch boundaries with only six
different slopes in the pattern, with angle θ an integer multiple of π/6.

It is easy to check that the matching conditions along the edges of
hexagonal lattice (denoted by blue solid line in Fig.6.21) are sufficient to
determine Dm,n for rest of the vertices. The line charge density λ = 1/

√
3

for patch boundaries corresponding to these edges. Also, the potential
function φ = 0, for the vertex at the origin, and hence, D and f both
vanishes. Then using the matching condition, it is easy to show that,
D1,0 = 1/

√
3, D0,1 = ω/

√
3 and D−1,−1 = (−1−ω) /

√
3. It can be shown

iteratively that for any vertex (m, n), Dm,n = (m + nω) /
√

3. Thus Dm,n

is equal to the complex coordinate of the corresponding vertex on the
adjacency graph with the unit lattice distance λ = 1/

√
3.

The function fm,n satisfies the discrete Laplace’s equation on the un-
derlying hexagonal lattice of the adjacency graph i.e.

∑
m′,n′

fm′,n′ − 3 fm,n = 0, (6.12)

where (m′, n′) denotes the three neighbors of the vertex (m, n) on the
hexagonal lattice. This can be checked from the concurrency condition
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of patch boundaries. For example consider the edges OA, DA and IA on
the adjacency graph. The corresponding patch boundaries in the pattern
intersect at the same point Fig. 6.4. Then it is easy to check using the
matching condition in Eq.6.11 that,

fO + fD + f I = 3 fA. (6.13)

A similar equation holds for the other vertices.
In the region outside the pattern, where none of the sites toppled, the

potential function φ (z) = 0, hence fm,n vanishes. The solution of the
Laplace’s equation with the above boundary condition can be written in
the following integral form

fm,n =
I

4π2

∫ π

−π

∫ π

−π

1− cos (k1(2m− n)/3 + k2n)
1− (cos 2k2 + 2 cos k1 cos k2) /3

dk1dk2 for m + n = 0( mod 3),

(6.14)
where I is a normalizing constant which determines the pattern up to a
scale factor. Explicit calculation is given in the Appendix A. For the sites
with m + n = 1 (mod 3), fm,n are the average of those corresponding to the
neighboring sites.

The constant I can be calculated using the form of the potential func-
tion near the site of addition. As noted, the function φ can be considered
as potential due to the line charge along the patch boundaries and a point
charge of unit amount at the origin. Then, close to the origin the solution
diverges logarithmically as φ̃ (r) = − (2π)−1 log (|r|), and the potential
function is an approximation to this solution by a piece-wise linear func-
tion. Then there are coordinates ro inside each patch (m, n) with |m|+ |n|
large, where the φ and its first derivatives are equal to φ̃ and its first
derivatives, respectively. Then,

2
∂

∂r
φ̃ (r) |ro ' Dm,n and

1
2
{Dm,nr̄o + D̄m,nro}+ fm,n ' − 1

2π
log (|ro|) . (6.15)

The last equation implies

fm,n ' −
1

2π
log (|m + nω|) , (6.16)

for |m| + |n| large. Comparing it with the Eq.6.14 for large |m| + |n| we
find that the numerical constant I = 1. This determines the potential
function completely, and thus characterizes the pattern.
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6.5 summary

An important feature of the patterns on the two classes of background
on the directed triangular lattice, discussed in this chapter, is that, it can
be characterized by a piece-wise linear function. This characterization is
simpler than that of the patterns in F-lattice, discussed in the previous
chapters, where one requires piece-wise quadratic polynomials. This lin-
earity of φ is true for all the patterns with non-compact growth. For the
stochastic sandpile models, the conditions leading to non-compact growth
can be narrowed down to a smaller class of backgrounds. However as
discussed in section 6.2, no such conditions are found for deterministic
models. Because of this, constructing examples of non-compact growth
on this models is non-trivial. No such examples were known earlier. For
the DASM on two lattices, we have shown that there are infinitely many
backgrounds, on which the patterns have non-compact growth. On these
backgrounds, the growth exponents of the patterns is α = 1. It would be
interesting to find examples of pattern, growing faster than this.

Another intriguing properties of the triangular patterns, is the univer-
sality: A large number, in fact infinitely many, backgrounds (correspond-
ing to different values of l) produce identical asymptotic pattern. So far
we do not have a good understanding of this.
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7
A continuous height sandpile model

Based on the paper [SD08] by Tridib Sadhu and Deepak Dhar.

Abstract: In this chapter, we study the Zhang model of sandpile, defined in
the first chapter, on a one dimensional chain of length L, driven by
adding a random amount of height at a randomly chosen site at each
addition step. We show that in spite of this randomness in the input
height, the probability distribution function of height at a site in the
steady state is sharply peaked, and the width of the peak decreases
as L−1/2 for large L.

We also discuss how the height added at one time is distributed
among different sites by topplings with time. We relate this distribu-
tion to the time-dependent probability distribution of the position of
a marked grain in the one dimensional abelian model with discrete
heights. We argue that in the large L limit, the variance of height at
site x has a scaling form L−1g(x/L), where g(ξ) varies as ln(1/ξ) for
small ξ, which agrees well with the results from numerical simula-
tions.

7.1 Introduction

After Dhar first discovered the abelian property of the BTW model [Dha90],
many more models in the general class known as abelian distributed pro-
cessors, were studied, as the abelian property makes their theoretical study
simpler [Dha06]. The original sandpile model of Bak et al. [BTW87], the
Eulerian walkers model [PDDK96], and the abelian variant [Dha99b] of
the model originally proposed by Manna [Man91] are all members of this
class. Models which do not have the abelian property have been studied
mostly by numerical simulations. As discussed in chapter 3, the Zhang
model is one such model, and this is what we study in this chapter.

In the Zhang model, the amount of height added at a randomly chosen
site at each addition step is not fixed, but random. In spite of this, the
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model in one dimension has the remarkable property that the height at
a site in the steady state has a very sharply peaked distribution in which
the width of the peak is much less than the spread in the input amount
per time step, and the width decreases with increasing system size L. This
behavior was noticed by Zhang using numerical simulations in one and
two dimension [Zha89], and he called it the ‘emergence of quasi-units’
in the steady state of the model. He argued that for large systems, the
behavior would be same as in the discrete model. Recently, A. Fey et al.
[FdBR08] have proved that for some choices of the distribution of input
height, in one dimension, the variance of height does go to zero as the
length of the chain L goes to infinity. However, they did not study how
fast the variance decreases with L.

We study this emergence of ‘quasi-units’ in one dimensional Zhang
sandpile by looking at how the added height is redistributed among dif-
ferent sites in the avalanche process. We show that the distribution func-
tion of the fraction of height, added at a site x′, reaching a site x after t
time steps following the addition is exactly equal to the probability dis-
tribution that a marked grain in the one-dimensional height type BTW
model added at site x′, reaches site x in time t. The latter problem was
studied earlier [DP04]. We use this to show that the variance of height
asymptotically vanishes as 1/L. We also discuss the spatial dependence of
the variance along the system length. In the large L limit, the variance at
site x has a scaling form L−1g(x/L). We determine an approximate form
of the scaling function g(ξ), which agrees very well with the results of our
numerical simulations.

There have been other studies of the Zhang model earlier. Blanchard et
al. [BCK97] have studied the steady state of the model where the amount
of addition of height is fixed but the site of addition is chosen randomly,
and found that the distribution of energies even for the two site problem
is very complicated, and has a multi-fractal character. In two dimensions,
the distribution of height seems to sharpen for larger L, but the rate of
decrease of the width is very slow [J9́0]. Most other studies have dealt
with the question as to whether the critical exponents of the avalanche
distribution in this model are the same as in the discrete abelian model
[L9̈7, MBS98b]. A. Fey et al.’s results imply that the asymptotic behavior of
the avalanche distribution in one dimension, for specific cases, is identical
to the discrete case, but the situation in higher dimension remains unclear
[RA00, GDG98].

The plan of the chapter is as follows. In Section 7.2, we define the
model precisely. In Section 7.3, we show that the way the height added
at a site is distributed among different sites by toppling is same as the
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time-dependent probability distribution of the position of a marked grain
in the discrete abelian sandpile model. This correspondence is used in
Section 7.4 to determine the qualitative dependence of the variance of the
height variable at a site on its position x, and on the system size L. We
propose a simple extrapolation form that incorporates this dependence.
We check our theoretical arguments with numerical simulations in Section
7.5. Section 7.6 contains a summary and concluding remarks. A detailed
calculation of the solution of an equation, required in Section 7.4, is given
in the Appendix B.

7.2 De�nition and preliminaries

We consider our model on a linear chain of size L. The sites are labelled
by integers 1 to L and a real continuous height variable is assigned to each
site. Let h(x, t) be the height variable at site x at the end of the time-step
t. We define a threshold height value hc, same for each site, and sites
with h(x, t) ≥ hc are called unstable, while those with h(x, t) < hc are
called stable. Starting from a configuration where all sites are stable, the
dynamics is defined as follows.

(i) The system is driven by adding a random amount of height at the
beginning of every time-step at a randomly chosen site. Let the amount of
height added at time t be ∆t. We will assume that all ∆’s are independent,
identically distributed random variables, each picked randomly from an
uniform interval 1− ε ≤ ∆t ≤ 1+ ε. Let the site of addition chosen at time
t be denoted by at.

(ii) We make a list of all sites whose height exceeds or becomes equal to
the critical value hc. All these sites are relaxed in parallel by topplings. In
a toppling, the height of the site is equally distributed to its two neighbors
and the height at that site is reset to zero. If there is toppling at a boundary
site, half of the height at that site before toppling is lost.

(iii) We iterate Step (ii) until all topplings stop. This completes one
time step.

This is the slow driving limit, and we have assumed that all avalanche
activity stops before the next addition event. In this limit, the model
is characterized by two parameters ε and hc. In the limit ε = 0, and
1 < hc ≤ 2, the model reduces to the discrete case, where the behavior is
well understood [RS92]. For non-zero but small ε, the behavior does not
depend on the precise value of hc. In fact, starting with a recurrent config-
uration of the pile, and adding height at some chosen site, we get exactly
the same sequence of topplings for a range of values of hc [FdBR08]. To
be precise, for any fixed initial configuration, and fixed driving sequence
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(of sites chosen for addition of height), whether a site x topples at time t
or not is independent of hc, so long as we have 1 + ε < hc ≤ 2− 2ε. In the
following, we assume for simplicity that hc = 3/2, and 0 ≤ ε ≤ 1/4.

It was shown in [FdBR08] that in this case, the stationary state has at
most one site with height h(x, t) = 0 and all other sites have height in the
range 1− ε ≤ h(x, t) ≤ 1 + ε. The position of the empty site is equally
distributed among all the lattice points. There are also some recurrent
configurations in which all sites have height h(x, t) ≥ 1− ε. In such cases,
we shall say that the site with zero height is the site L + 1. Then, in the
steady state, there is exactly one site with height equal to 0, and the L + 1
different positions of the site are equally likely.

If hc does not satisfy the inequality 1 + ε < hc ≤ 2− 2ε, this simple
characterization of the steady state is no longer valid. However, our treat-
ment can be easily extended to those cases. Since the qualitative behavior
of the model is the same in all cases, we restrict ourselves to the simplest
case here.

It is easy to see that the toppling rules are in general not abelian. For
example, start with a two site model in configuration (1.6, 2.0) and hc =

1.5. The final configuration would be (1.4, 0), or (0, 1.3), depending on
whether the first or the second site is toppled initially. In our model, using
the parallel update rule, the final configuration would be (1.0, 0.8). A. Fey
et al. [FdBR08] have shown that only in one dimension, for 1 + ε < hc, the
Zhang model has a restricted abelian character, namely, that the final state
does not depend on the order of topplings within an avalanche. However,
topplings in two different avalanches do not commute.

7.3 The propagator, and its relation to the discrete

abelian model

It is useful to look at the Zhang model as a perturbation about the ε = 0
limit. For sufficiently small ε, given the site of addition and initial config-
uration, the toppling sequence is independent of ε. It is also independent
of the amount of height of addition ∆t, and is same as the model with
ε = 0, which is the 1-dimensional abelian sandpile model with integer
heights (hereafter referred to simply as ASM, without further qualifiers).
We decompose the height variables as

h(x, t) = Nint[h(x, t)] + εη(x, t), (7.1)

where Nint refers to the nearest integer value. Then the integer part of the
height evolves as in the ASM. We write

∆t = 1 + εut, for all t. (7.2)
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Here ut is uniformly distributed in the interval [−1,+1]. The linearity
of height transfer in toppling implies that the evolution of the variables
η(x, t) is independent of ε. Thus, η(x, t) is a linear function of ut; the
precise function depends on the sequence of topplings that took place.
These are determined by the sequence of addition sites {at} up to the
time t, and the initial configuration C0. These together will be called the
evolution history of the system up to time t, and denoted by Ht. We
assume that at the starting time t = 0, the variables η(x, t = 0) are zero
for all x, and the initial configuration is a recurrent configuration C0 of the
ASM. Then, from the linearity of the toppling rules, we can write η(x, t)
as a linear function of {ut′} for 1 ≤ t′ ≤ t, and we can write for a given
history Ht,

η(x, t|{ut},Ht) =
t

∑
t′=1

G(x, t|at′ , t′,Ht)ut′ . (7.3)

This defines the matrix elements G(x, t|at′ , t′,Ht). These can be under-
stood in terms of the probability distribution of the position of a marked
grain in the ASM as follows. Consider the motion of a marked grain in the
one dimensional height type BTW model. We start with configuration C0

and add grains at sites according to the sequence {at}. All grains are iden-
tical except the one added at time t′, which is marked. In each toppling,
the marked grain jumps to one of its two neighbors with equal probability.
Consider the probability that the marked grain will be found at site x after
a sequence of relaxation processes at time t. We denote this probability as
Prob(x, t|at′ , t′,Ht). From the toppling rules in both the models, it is easy
to see that

G(x, t|at′ , t′,Ht) = Prob(x, t|at′ , t′,Ht). (7.4)

Averaging over different histories Ht, we get the probability that a marked
grain added at x′ = at′ at time t′ is found at a position x at time t ≥ t′ in the
steady state of the ASM. Denoting the latter probability by ProbASM(x, t|x′, t′),
we get

G(x, t|x′ = at′ , t′,Ht) = ProbASM(x, t|x′, t′), (7.5)

where the over bar denotes averaging over different histories Ht, consis-
tent with the specified constraints. Here, the constraint is that Ht must
satisfy at′ = x′. At other places, the constraints may be different, and will
be specified if not clear from the context.

We shall denote the variance of a random variable ξ by Var[ξ]. For
the specific case with ε = 0, using the definition in Eq. (7.1), it is easy
to show that Var[h(x, t)] = L/(L + 1)2. For non-zero ε, in addition to the
previous term, there will be a term proportional to ε2, as the term linear
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in ε vanishes. Hence, we can write

Var[h(x, t)] = L/(L + 1)2 + ε2Var[η(x, t)]. (7.6)

Different ut are independent random variables, also independent of Ht

and have zero mean. Let Var[ut] = σ2. For the case when ut has a uniform
distribution between −1 and +1, we have σ2 = 1/3. Then, from Eq. (7.3),
we get

Var[η(x, t)] = σ2
t

∑
t′=1

G2(x, t|at′ , t′,Ht). (7.7)

As t → ∞, the system tends to a steady state, and the average in the right
hand side of Eq. (7.7) becomes a function of t− t′. Also, for a given t′, all
values of at′ are equally likely. We define

F(x, τ) ≡ 1
L

lim
t′→∞

∑
x′

G2(x, t′ + τ|x′, t′,Ht). (7.8)

Then, for large L, in the steady state (t large), the variance of height at site
x is 1/L + ε2Σ2(x), where

Σ2(x) = lim
t→∞

Var[η(x, t)] = σ2
∞

∑
τ=0

F(x, τ). (7.9)

We define Σ2 to be the average of Σ2(x) over x as

Σ2 =
1
L ∑

x
Σ2(x). (7.10)

Evaluation of G(x, t|x′, t′,Ht) for a given history Ht and averaging over
Ht is quite tedious for t > 1 or 2. For G, the problem has been studied
in the context of residence times of grains in sand piles, and some exact
results are known in specific cases [DP04]. For G2, the calculations are
much more difficult. However, some simplifications occur in large L limit.
We discuss these in the next section.

7.4 Calculation of Σ2(x) in large-L limit

In order to find the quantity F(x, τ) in Eq. (8), we have to average G2(x, t|x′, t′,Ht)

over all possible histories Ht, which is quite difficult to evaluate exactly.
However, we can determine the leading behavior of F(x, τ) in this limit.

We use the fact that the path of a marked grain in the ASM is a random
walk [DP04]. Consider a particle that starts away from the boundaries at
x′ = ξL, with L large, and 0 < ξ < 1. If it undergoes r(Ht) topplings
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between the time t′ and t = t′ + τ under some particular history Ht, then
its probability distribution is approximately a Gaussian, centered at x′

with width
√

r. Then, we have

G(x, t|x′, t′,Ht) '
1√

2πr(Ht)
exp

(
− (x− x′)2

2r(Ht)

)
. (7.11)

Using this approximation for G, summing over x′, we get

∑
x′

G2(x, t|x′, t′,Ht) '
1

2
√

πr(Ht)
. (7.12)

Thus, we have to calculate the average of 1/
√

r(Ht) over different histo-
ries. Here r(Ht) was defined as the number of topplings undergone by
the marked grain. Different possible trajectories of a marked grain, for a
given history, do not have the same number of topplings. However, if the
typical displacement of the grain is much smaller than its distance from
the end, differences between these are small, and can be neglected. There
are typically O(L) topplings per grain per avalanche in the model, and a
grain moves a typical distance of O(

√
L) in one avalanche. Then, we can

approximate r(Ht) by N(x′), the number of topplings at x′.
Let the number of topplings at x′ at time steps τ = 0, 1, 2, . . . be de-

noted by N0, N1, N2, . . .. Then, N(x′) = N0 + N1 + N2 + · · · . It can be
shown that the number of topplings in different avalanches in the one
dimensional ASM are nearly uncorrelated (In fact the correlation func-
tion between Ni and Nj varies as (1/L)|i−j|.). By the central limit theo-
rem for sum of weakly correlated random variables, the mean value of N
grows linearly with τ, but the standard deviation increases only as

√
τ.

Then, for τ � 0, the distribution is sharply peaked about the mean, and
〈1/
√

N〉 ' 1/
√
〈N〉.

Clearly, for τ � 0, 〈N〉 = τn̄(x′), where n̄(x′) is the mean number of
topplings per avalanche at x′ in the ASM, given by

n̄(x = ξL) = Lξ(1− ξ)/2. (7.13)

The upper limit on τ for the validity of the above argument comes from the
requirement that the width of the Gaussian be much less than the distance
from the boundary, (without any loss of generality, we can assume that
ξ < 1/2, so that it is the left boundary ), else we cannot neglect events
where the marked grain leaves the pile. This gives

√
τn̄(x) � ξL, or

equivalently, τ � ξL. Thus we get,

F(x, τ) ' C1

L
[τLξ(1− ξ)]−1/2, for 0� τ � ξL, (7.14)
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where C1 is some constant.
Also, we know that for τ � L, the probability that the grain stays in

the pile decays exponentially as exp(−τ/L) [DP04]. Thus, G, and also
G2 will decay exponentially with τ, for τ � L. Thus, we have, for some
constants C2 and a,

F(x, τ) ' C2

L2 exp(−aτ/L), for τ � L. (7.15)

It only remains to determine the behavior of F(x, τ), for ξL � τ � L.
In this case, in the ASM, there is a significant probability that the marked
grain leaves the pile from the end. This results in a faster decay of G, and
hence of F with time. We argue below that the behavior of the function
F(x, τ) is given by

F(x, τ) ∼ C3

Lτ
, for ξL� τ � L, (7.16)

where C3 is some constant. This can be seen as follows: Let us consider
the special case when the particle starts at a site close to the boundary.
Then n̄(x) is approximately a linear function of x for small x. Its spatial
variation cannot be neglected, and Eq. (7.12) is no longer valid. We will
now argue that in this case

G(x, t′ + τ|x′, t′,Ht) ' x′τ−2 exp(−x/τ), (7.17)

for 0 � τ � L. The time evolution of ProbASM(x, t|x′, t′) in Eq. (7.5)
is well described as a diffusion with diffusion coefficient proportional to
n̄(x) which is the mean number of topplings per avalanche at x in the
ASM [DP04]. For understanding the long-time survival probability in this
problem, we can equivalently consider the problem in a continuous-time
version: consider a random walk on a half line where sites are labelled by
positive integers, and the jump rate out of a site x is proportional to x. A
particle starts at site x = x0 at time t = 0. If Pj(t) is the probability that the
particle is at j at time t, then the equations for the time-evolution of Pj(t)
are, for all j > 0,

d
dt

Pj(t) = (j + 1)Pj+1(t) + (j− 1)Pj−1(t)− 2jPj(t). (7.18)

The long time solution starting with Pj(0) = δj,x0 is

Pj(t) ' x0t−2 exp(−j/t) (7.19)

for t � x0 and large j. The probability that the particle survives till time
t decreases as 1/t for large t. We have discussed the calculation in the
Appendix B.
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Using Eq. (7.5), we see that G(j, t′ + τ|x0, t′) scales as x0/τ2. It seems
reasonable to assume that G2 will scale as G2

. Then, each term in the
summation for F(x, τ) in Eq. (7.8) scales as x2

0/τ4, and there are τ such
terms, as the sum over x0 has an upper cutoff proportional to τ, and so
F(x, τ) varies as 1/τ for L� τ � x0. This concludes the argument.

We can put these three limiting behaviors into a single functional form
that interpolates between these, as

F(x, τ) ' 1
L

K exp(−aτ/L)
τ + B

√
τLξ(1− ξ)

, (7.20)

where K, a and B are some constants. In Section V, we will see that results
from numerical simulation are consistent with this phenomenological ex-
pression.

Using this interpolation form in Eq. (7.9), and converting the sum over
τ to an integration over a variable u = τ/L, we can write

Σ2(x = ξL) ' σ2

L

∫ ∞

0
du

K exp(−au)
u + B

√
uξ(1− ξ)

. (7.21)

This integral can be simplified by a change of variable au = z2, giving

Σ2(x = ξL) ' Kσ2

L
I
(

B′
√

ξ(1− ξ)

)
, (7.22)

where K, B′ are constants, and I(y) is a function defined by

I(y) = 2
∫ ∞

0
dz

exp(−z2)

z + y
. (7.23)

It is easy to verify that I(y) diverges as ln(1/y) for small y. In particular,
we note that the exponential term in the integral expression for I(y) has
a significant contribution only for z near 1. We may approximate this
by dropping the exponential factor, and changing the upper limit of the
integral to 1. The resulting integral is easily done, giving

Σ2(x = ξL) ' K′σ2

L
ln

(
1 +

1
B′
√

ξ(1− ξ)

)
, (7.24)

where K′ is some constant. Averaging Σ2(x) over x, we get a behavior Σ2 '
1/L. Of course, the answer is not exact, and one could have constructed
other interpolation forms that have the same asymptotic behavior. We will
see in the next Section that results from numerical simulations for Σ2(x)
can be fitted very well to the phenomenological expression in Eq. (7.24).
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Figure 7.1: Scaling col-
lapse of the probabil-
ity distribution PL(h) of
height per site in the
steady state for different
systems of size 200, 500
and 1000. The distri-
bution is well described
by a Gaussian of width
0.136.

7.5 Numerical results

We have tested our non-rigorous theoretical arguments against results ob-
tained from numerical simulations. In Fig. 7.1, we have plotted the proba-
bility distribution PL(h) of height at a site, averaged over all sites. We used
L = 200, 500 and 1000, and averaged over 108 different configurations in
the steady state. We plot the scaled distribution function PL(h)/

√
L ver-

sus the scaled height (h − h̄)
√

L, where h̄ is the average height per site.
Using law of mass balance it is easy to show that the average height per
site is exactly equal to the average value of the addition of height, hence
h̄ = 1.0 in our case. A good collapse is seen, which verifies the fact that
the width of the peak varies as L−1/2.

The dependence of the variance of h(x, t) on x is plotted in Fig. 7.2 for
systems of length 200, 300 and 400. The data was obtained by averaging
over 108 avalanches. We plot (L+λ)Σ2(x)/σ2 versus xe f f /Le f f , where xe f f
differs from x by an amount δ to take into account the corrections due to
end effects. Then, for consistency, L is replaced by Le f f = L + 2δ. For the
specific choice of λ = 5± 1 and δ = 1.0± 0.2, we get a good collapse of
the curves for different L. We also show a fit to the proposed interpolation
form in Eq. (7.24), with K′ = 1.00± 0.01 and B′ = 1.5± 0.2. We see that
the fit is very good.

In order to check the logarithmic dependence of Σ2(x) on x for small x,
we re-plot the data in Fig. 7.3 using logarithmic scale for x. We get a good
collapse of the data for different L, supporting our proposed dependence
in Eq. (7.24).
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Figure 7.2: Scaling col-
lapse of Σ2(x)/σ2 at site
x for systems of differ-
ent length L.

Figure 7.3: The same
plot in Fig. 7.2 re-
solved more at the left
boundary of the model
and taking x axis in log
scale.
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7.6 Concluding remarks

To summarize, we have studied the emergence of quasi-units in the one-
dimensional Zhang sandpile model. The variance of height variables in
the steady state is governed by the balance between two competing pro-
cesses. The randomness in the drive i.e., the height of addition, tends to
increase the variance in time. On the other hand, the topplings of height
variables tend to equalize the excess height by distributing it to the nearby
sites. There are on an average O(L2) topplings per avalanche. Hence,
in one dimension there are, on an average, O(L) topplings per site per
avalanche. For large system size, the second process dominates over the
first and the variance becomes low. We have shown that the variance van-
ishes as 1/L with increasing system size and the probability distribution
of height concentrates around a non-random value which depends on the
height of addition. We have also proposed a functional form for the spatial
dependence of variance of height which incorporates the correct limiting
behaviors, and matches very well with the numerical data.

An interesting question is whether one can extend these arguments
to the two-dimensional Zhang model. There is some numerical evidence
for the sharpening of height peaks as the system size is increased [L9̈7].
In the simplest scenario [L9̈7], there are z− 1 peaks located at multiples
of the quasi-unit h0 = hc(z + 1)/z2, where z is the lattice coordination
number. This would imply that the asymptotic behavior of the two di-
mensional Zhang model is same as the height type BTW model in two
dimension. However, this simple scenario can not be fully correct. During
an avalanche, there is a finite probability that a site receives height from
two neighbors in the previous time-step. If the height at the site before was
(z− 1)h0, it will tranfer an height approximately equal to h′0 = (z+ 1)h0/z
to its neighbors. As such events occur with nonzero probability, in the one
site height distribution function, there would have to be peaks around h′0,
h0 + h′0, · · · also. These peaks then give rise to other peaks. With many
peaks, the definition of the width of a peak becomes somewhat ambigu-
ous. As the number of topplings per site varies only as ln L, the width is
expected to decrease much more slowly with L than in one dimension.
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8
Stochastic sandpile models

Based on the paper [SD09] by Tridib Sadhu and Deepak Dhar.

Abstract: In this chapter, we study the steady state of the abelian sandpile
models with stochastic toppling rules. The particle addition opera-
tors commute with each other, but in general these operators need
not be diagonalizable. We use their abelian algebra to determine
their eigenvalues, and the Jordan block structure. These are then
used to determine the probability of different configurations in the
steady state. We illustrate this procedure by explicitly determining
the numerically exact steady state for a one dimensional example,
for systems of size ≤ 12, and also study the change in density of
particles along the lattice, in the steady state.

8.1 Introduction

Sandpile models with stochastic toppling rules are important subclass of
sandpile models [Dha06]. The first such model was studied by Manna
[Man91], and these are usually known as Manna models in the literature.
They are able to describe the avalanche behavior seen experimentally in
the piles of granular media much better than the deterministic models
[FCMS+96]. Also, in numerical studies, one gets better scaling collapse,
and consequently, more reliable estimates for the values of the critical ex-
ponents, than for models with deterministic toppling rules [CVZ99].

Unfortunately, the theoretical understanding of models with stochastic
toppling rules is much less than that of their deterministic counterparts,
e.g. the Bak-Tang -Wiesenfeld (BTW) model [BTW87]. For example, there
is no analogue of the burning test to distinguish the transient and the re-
current states of a general Manna model. For the deterministic case, it is
known that all the recurrent configurations occur with equal probability in
the steady state. A similar characterization of the steady state is not known
in the Manna case. The steady state has been explicitly determined only
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for the fully directed stochastic models [PPH03, AR08, KMT01, PB00]. In
some cases, one can formally characterize the recurrent states of the model,
e.g. the 1-dimensional Oslo rice pile model, but a straightforward direct
depth-first calculation of the exact probabilities of different configurations
in the steady state takes O(exp(L3)) steps where L is the system length
[Dha04]. While the exact values of the critical exponents have been conjec-
tured for (1 + 1) dimensional directed Manna model [KMT01, PB00], the
prototypical undirected Manna model in one dimension has resisted an
exact solution so far [DAAMn+01, SDV04, VD05]. In higher dimensions,
most of the studies are only numerical.

The conditions under which different scaling behaviors are seen in
stochastic models is a long debated issue. Initial studies suggested that
the stochastic sandpile model and the BTW model exhibit similar scaling
behavior [GDG98, VZP95, VDMnZ98]. However later large scale simula-
tions showed that the stochastic sandpile models constitute a universality
class different from their deterministic counterparts: the critical exponents,
scaling functions and geometrical features are different for the two classes
of models [BHB96b, LU97b, MBS98b, L0̈0, DMS00, DC03]. Further evi-
dence came from the qualitative differences in their avalanche distribution
which has a multi-fractal nature for BTW model, whereas it follows simple
finite size scaling [DAAMn+01, DMS00, DC03] for the Manna model. Also
the directed version of the above models exhibit different scaling behav-
ior than their undirected counterparts [PSV00]. Numerical results suggest
that both the abelian and non-abelian Manna model constitute a univer-
sality class [BMM01] different from Directed-Percolation (DP) [BMn08].
However, the corresponding fixed points are unstable with respect to in-
troduction of perturbation (“stickiness”) and with stickiness the critical be-
havior flows to the DP universality class [MD02, BRC+06, MD07]. While
there is a controversy about the generic DP behavior of undirected stochas-
tic sandpile models; for the directed case, the numerical evidence for
asymptotic DP behavior is quite convincing.

While the original Manna model did not have the abelian property of
the BTW model, one can construct stochastic toppling rules with abelian
property [Dha99b]. In this paper, we discuss this abelian version of the
stochastic Manna model. We shall use the terms Deterministic abelian
Sandpile Models (DASM) (see Ch. 3) and Stochastic abelian Sandpile
Models (SASM), if we need to distinguish between these two classes of
models. In DASM the relaxation rules satisfy pair wise balance [SRB96],
which makes the model analytically tractable and the recurrent configura-
tions become equally probable in the steady state. However the stochastic
models do not have this property, and the steady state can not be deter-
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mined easily.
We use the algebra of the addition operators to determine the steady

state of the model. This algebraic approach provides a computationally
efficient method to determine the Markov evolution matrix of the model.
The addition operators of SASM are not necessarily diagonalizable even
if we restrict ourselves to the space of recurrent configurations. Using the
abelian algebra we determine a generalized eigenvector basis in which the
operators reduce to Jordan block form. We also define a transformation
matrix between this basis and the configuration basis, and express the
steady state in the latter. This procedure is illustrated by explicitly working
out the case of a one dimensional Manna model. In this special case, we
can show that each Jordan block is at most of dimension 2. We determine
the numerically exact steady state of the model for systems of size up to 12
and determine the asymptotic density profile by extrapolating the results.

This chapter is organized as follows: In section 8.2, we define the model
precisely. In section 8.3 we recapitulate the algebra of addition operators
for DASM, and use it to determine the steady state. For the stochastic
models same definition for the addition operators does not work and need
to be redefined. We do this in section 8.4, and discuss their algebra. Cal-
culation of the eigenvalues and the Jordan block structure of the addition
operators are given in section 8.5. The transformation matrix between the
generalized eigenvector basis and the configuration basis is determined in
section 8.6, and is used to determine the steady state vector in the con-
figuration basis in section 8.7. The exact numerical determination of the
steady state is discussed in section 8.8 with some concluding remarks in
section 8.9.

8.2 The Model

We define a generalized Manna model on a graph of N sites with a non-
negative integer height variable zi defined at each site i. Let the threshold
height at i be zc

i , and the site is unstable if zi ≥ zc
i . If the system is stable, a

sand grain is added at a randomly chosen site which increases the height
by 1. For each site i, there is a set of αmax

i lists Eα,i with α = 1, 2, · · · , αmax
i . If

a site is unstable, it relaxes by the following toppling rule: we decrease its
height by zc

i . Then, with probability pα,i, we select the list Eα,i, independent
of any previous selections, and then add one grain to each site in that list.
If a site occurs more than once in the list, we add that many grains to that
site.

Toppling at a site can make other sites unstable and they topple in
their turn, until all the lattice sites are stable. Using an argument given in
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[Dha99b], it can be easily shown that the above toppling rule is abelian.
Then, it follows from the abelian property that the probabilities of different
final stable configurations are independent of the order in which different
unstable sites are toppled.

We illustrate these rules with some examples below.

• Model A (The one dimensional Manna model): The graph is L sites
on a line and zc

i = 2, for all sites. On toppling each grain is transfered
to its neighbors with equal probability. Hence we have αmax

i = 3,
for all i, with E1,i = {i − 1, i − 1}, E2,i = {i − 1, i + 1}, and E3,i =

{i + 1, i + 1} and p1,i = p3,i = 1/4 and p2,i = 1/2. Also grains can
move out of the system if toppling occurs at a boundary site.

• Model B (The one dimensional dissipative Manna model): Same
as model A except that on toppling a grain can move out of the
system with probability ε. Then αmax

i = 6 and the lists of neighbors
E1 = {i − 1, i − 1}, E2 = {i − 1, i + 1}, E3 = {i + 1, i + 1}, E4 =

{i − 1}, E5 = {i + 1} and E6 = Φ, where Φ is an empty set. The
corresponding probabilities are p1,i = p3,i = (1− ε)2/4, p2,i = (1−
ε)2/2, p4,i = p5,i = ε(1− ε) and p6,i = ε2.

In this case, one can use periodic boundary conditions, as there is
dissipation at all sites. the steady state is critical only in the limit
ε → 0. For the models A and B, it is easy to see that all stable con-
figurations occur in the steady state with non-zero probability. We
can also define stochastic models where the recurrent configurations
form only an exponentially small fraction of all stable configurations.
An example of this type is

• Model C: The graph is a square lattice with N sites and zc
i = 2.

Under toppling, with equal probability two particles are transfered
to either horizontal or vertical neighbors. Hence αmax

i = 2 with E1,i =

{i + ex, i− ex} and E2,i = {i + ey, i− ey} with p1,i = p2,i = 1/2.

In the following we will mostly confine ourselves to Model A. Exten-
sions to other cases present no special difficulties.

8.3 Determination of the steady state for a DASM

Before we carry out the analysis of the SASM, we recapitulate how the
steady state for the DASM, defined in section 3.2.1, can be determined
using the operator algebra of addition operators [Dha06]. Let us denote
the space of stable states (see section 3.2.1) in the DASM as Γ spanned by
Ω = ∏N

i=1 zc
i basis vectors labeled by C. We define P(C, t) as the probability
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of finding the system in the basis C at time t. The time is in driving steps,
i.e., it increases by one when a grain is added and the system is fully
relaxed. To each set {P(C, t)}, we associate a vector |P(t)〉 belonging to
the vector space Γ, and write

|P(t)〉 = ∑
C

P(C, t)|C〉. (8.1)

This defines a state of the system at time t. Recall that, in section 3.2.1, we
have defined the particle addition operators ai, for all i, which correspond
to adding a sand grain at site i when the system is in state configuration
C, and relaxing it until a stable configuration is reached. Thus, these are
linear operators which act on the vector space Γ and maps a configuration
C, in it, to another configuration aiC, which is reached by the avalanche.

The time-evolution of the system is Markovian [Kam07] and the evo-
lution operator W is defined by the master equation

|P (t + 1)〉 = W|P (t)〉, (8.2)

We can write the time-evolution operator in terms of the addition opera-
tors as

W =
1
L ∑

i
ai, (8.3)

where L is the number of sites on the lattice. To solve the time evolution,
in general, we have to diagonalize the evolution operator W. Now, we
have shown in section 3.2.1, that the addition operators commute with
each other. Then all the addition operators {ai} and hence, also W have a
common set of eigenvectors. Let |ψ〉 be one such simultaneous eigenvector
of the operators {ai}, with eigenvalues

{
eiψi
}

, respectively. Then

ai|ψ〉 = eiψi |ψ〉. (8.4)

Recall the definition of the toppling matrix ∆i,j, introduced in section
3.2.1, for the DASM. Then, from the toppling rule, one can easily show,
that

a∆i,i
i = ∏

j 6=i
a
−∆i,j
j . (8.5)

Also, recall, we have shown in section 3.2.1, that within the recurrent state
space, each addition operator has an inverse. Then, the above relation can
be written as

∏
j

a
∆i,j
j = 1, for all i. (8.6)
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Applying the LHS to the eigenvector |ψ〉 gives exp
(

i ∑j ∆i,jψj

)
= 1, for

every i, so that ∑j ∆i,jψj = 2πmi, where mi’s are arbitrary integers. Then
inverting,

ψj = 2π ∑
i

[
∆−1

]
j,i

mi, (8.7)

where ∆−1 is the inverse of ∆.
The particular eigenstate |0〉, corresponding to ψj = 0 for all j, is in-

variant under the action of all the a’s, i.e., ai|0〉 = |0〉. Thus this must be
the stationary state of the system.

8.4 Algebra of the addition operators for SASM

We use the same notations, as in the last section, but this time for a SASM.
So, Γ is the space of stable states and C ≡ {zi} is a stable height configu-
ration constituting a complete set of basis vectors.

For stochastic toppling rules, the resulting state from the action of ai
on a basis vector C, is not necessarily another basis vector, but a linear
combination of them. So, the addition operators have to be redefined. If
the resulting configuration is C′ with probability Pi(C′|C), we define

ai|C〉 = ∑
C′

Pi(C′|C)|C′〉, (8.8)

for all C. Note that the action of any of these operators on a given config-
uration gives a unique probability state vector.

Eq. (8.8) is a formal definition of the operators {ai}. One can think of
these as Ω×Ω matrices, but, unlike the DASM, it is quite non-trivial to
actually determine the matrix elements Pi(C′|C) explicitly from the top-
pling rules. This is because of the non-zero probability of an arbitrary
large number of toppling before a steady state is reached.

For an example, consider the avalanches in model A for system of size
L = 3. Consider the 23 stable configurations as the basis vectors and
denote them by their height values |z1, z2, z3〉. The action of a2 on |0, 1, 0〉
will generate a unstable state |0, 2, 0〉. Using the toppling rules we can
write the following set of equations for three unstable states

|0, 2, 0〉 =
1
4
|2, 0, 0〉+ 1

2
|1, 0, 1〉+ 1

4
|0, 0, 2〉,

|2, 0, 0〉 =
1
4
|0, 2, 0〉+ 1

2
|0, 1, 0〉+ 1

4
|0, 0, 0〉,

|0, 0, 2〉 =
1
4
|0, 2, 0〉+ 1

2
|0, 1, 0〉+ 1

4
|0, 0, 0〉. (8.9)
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We see that there is a nonzero probability that the avalanche can continue
for more than s toppling, for any finite s. e.g. in the sequence |0, 2, 0〉 →
|2, 0, 0〉 → |0, 2, 0〉 · · · . Thus straight forward application of the relaxation
rules does not result in a finite procedure to determine the unstable vector
|0, 2, 0〉 in terms of the stable configurations. Instead, we have to write Eq.
(8.9) as a matrix equation

M

|0, 2, 0〉
|2, 0, 0〉
|0, 0, 2〉

 =

|1, 0, 1〉
|0, 1, 0〉
|0, 0, 0〉

 , (8.10)

and then invert it. More generally, the determination of P(C′|C) involves
working in a larger space of unstable configurations.

For example in model A, there are 2L stable configurations, where each
site has 0 or 1 particle. Total number of particles is at most L. On adding
one particle, the number of particles can become L + 1, where initially,
only one site will have height 2. However, it is easy to verify that by
toppling one can generate configurations where the number of particles at
a site is much greater than 2. In fact, all the L + 1 particles could be at the
same site. Then the total number of stable and unstable configurations Ω′

is the number of ways one can distribute L + 1 or less particles on L sites.
It is easily seen that Ω′ varies as 4L, and one needs to invert a matrix of
size Ω′ ×Ω′.

There are models, generally known as the restricted sandpile mod-
els [DTdO02, Dic06, dSdO09], where the toppling rules ensure that the
heights do not exceed a fixed value. For these, the space of allowed con-
figurations is much smaller. However, the height restriction makes the
model non-abelian.

In this chapter we will use the operator algebra to obtain an efficient
method to determine the probabilities P(C′|C) explicitly which requires
inverting a matrix only of size 2L × 2L. It has been shown [Dha99b] that
the addition operators for different sites commute i.e.

[ai, aj] = 0, for all i, j. (8.11)

The proof uses the fact that any stochastic toppling event can be simu-
lated by a pseudo-random generator. This essentially makes the toppling
deterministic, which has the abelian property.

However, unlike the DASM, the inverse operators {a−1
i } for SASM

need not exist, even if we restrict ourselves to the set of recurrent config-
urations. This is because among the recurrent states, one can have two
different initial probability vectors that yield the same resultant vector.
This makes the determination of the matrix form of the operators difficult
for this model.
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Apart from the abelian property, the operators also satisfy a set of alge-
braic equations, like the Eq. (8.5) in DASM. For simplicity of presentation,
now on we consider zc

i = zc and pα,i = pα for all sites. Then consecutive
addition of zc grains at a site ensures that the site will topple once and
transfers zc grains to its neighbors, irrespective of the initial height. Then
the operators obey the following equation

azc
i = ∑

α

pαaEα,i for 1 ≤ i ≤ N, (8.12)

where we have used the notation aE = ∏
xεE

ax for any list E, and

ai = 1, (8.13)

for sites i outside the lattice. In particular for the examples in section 8.4,
these equations are as follows

a2
i =

1
4
(ai−1 + ai+1)

2 for Model A, (8.14)

a2
i = [

1− ε

2
ai−1 +

1− ε

2
ai+1 + ε1]2 for Model B, and (8.15)

a2
i =

1
2
(ai−ex ai+ex + ai−ey ai+ey) for Model C. (8.16)

8.5 Jordan Block structure of the addition operators

In general the matrices {ai} need not be diagonalizable. However, us-
ing the abelian property, we can construct a common set of generalized
eigenvectors for all the operators {ai} such that in this basis the matrices
simultaneously reduce to Jordan block form. These generalized eigenvec-
tors split the vector space Γ into disjoint subspaces, each corresponding to
distinct set of eigenvalues.

Lemma 8.5.1 There will be at least one common eigenvector in each subspace,
for all the addition operators.

Proof Consider one of the operators, say a1. Let Γ1 be the subspace of
Γ spanned by the (right) generalized eigenvectors of a1 corresponding to
the eigenvalue a1. There is at least one such generalized eigenvector, so
Γ1 is non-null. We pick one of the other addition operators, say a2. From
the fact that a2 commutes with a1, it immediately follows that a2 acting
on any vector in the subspace Γ1 leaves it within the same subspace. Di-
agonalizing a2 within this subspace, we construct a possibly smaller but
still non-null subspace Γ2 which is spanned by simultaneous generalized
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eigenvectors of a1 and a2 with eigenvalues a1 and a2. Repeating this argu-
ment with the other operators, one can construct vectors which are simul-
taneous eigenvectors of all the {ai}.

Let |ψ〉 be such an eigenvector, with

ai|ψ〉 = ai|ψ〉, for 1 ≤ i ≤ N. (8.17)

Then from Eq.(6)the eigenvalues satisfy the following set of equations

azc
i = ∑

α

pαaEα,i for 1 ≤ i ≤ N, (8.18)

where we have used the notation aE = ∏
xεE

ax, for any list E.

Rather than work with this general case, we will consider the special
case in model A for simplicity. No extra complications occur in the more
general case. Then, from Eq.(8.14), the corresponding eigenvalue equation
is

a2
i =

1
4
(ai−1 + ai+1)

2, for 1 ≤ i ≤ L (8.19)

These are L coupled quadratic equations in L complex variables {ai}. We
can reduce them to L linear equations by taking square root

ηiai =
1
2
(ai−1 + ai+1), (8.20)

where ηi = ±1. The Eq. (8.13) sets the values for the eigenvalues of a0 and
aL+1 which are

a0 = aL+1 = 1. (8.21)

There are 2L different choices for the set of L different η’s and for each
such choice, we get a set of eigenvalues {ai}. In general, there will be
degenerate sets of eigenvalues and the degeneracy arises if one of the ai is
zero. Using the triangular inequality in (8.20) we get

2|ai| ≤ |ai−1|+ |ai+1|, (8.22)

i.e. |ai| are convex functions of discrete variables i. Then, given the bound-
ary condition in Eq. (8.21), there could at most be one ai = 0 in the solu-
tion for a given {ηi}, which means that each eigenvalue set can be at most
doubly degenerate.

Finding the number of degeneracies of solutions is interesting but dif-
ficult in general. We show that

Lemma 8.5.2 For L = 3 (mod 4) the number of degenerate sets of eigenvalues
≥ 2(L+1)/2.
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Figure 8.1: The filled circles denote a dependence of the eigenvalues ai on
i for L = 11 with a6 = 0. The unfilled circles show the results obtained by
an inversion of ai, with i ≤ 6, around the central site. The eigenvalues on
the right-half of the lattice are obtained by multiplying (−1)i to the values
of the unfilled circles.

Proof Consider the system of length L = 4m + 3, with m being a non
negative integer. For any given set {ηi}, i = 1 to 2m + 2, it is possible
to construct a solution {bi} of Eq. (8.20) with i ≤ 2m + 2 which satisfies
b0 = 1 and b2m+2 = 0. Clearly, from Eq.(8.20), if we have the solution {ai}
corresponding to a particular set {ηj}, one can construct the solution {a′i}
corresponding to {η′j = −ηj} using a′j = (−1)jaj. Using this symmetry we
extend {bi} (i = 1 to (L + 1)/2) to form a set {ai} for i = 1 to L as follows:

ai = bi for i ≤ 2m + 2, (8.23)

= (−1)ibL+1−i for i > 2m + 2. (8.24)

This is a solution of Eq.(8.20) for the set {η′i} with

η′i = ηi for i ≤ 2m + 2, (8.25)

= −ηL+1−i for i > 2m + 2. (8.26)

and this solution {ai} satisfies the boundary conditions a0 = 1, aL+1 = 1,
and a2m+2 = 0 (Fig.1). There are 22m+2 such solutions possible corre-
sponding to all possible sets of {η′i}, and this gives the lower bound for
the number of degenerate solutions.

A direct numerical calculation for L ≤ 20 shows that if L 6= 3 (mod
4), all 2L sets of eigenvalues are distinct. We present the degeneracies of
the solutions in Table.1. Calculation for simple choices of η shows that the
degeneracies are possible only if L = 3 (mod 4).
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For example, consider ηi = −1 for i = L and for the rest of the sites
it is 1. Then ai is of the form ai = 1− αi, for all i. If we want this to be
zero for i = k, we must have α = 1/k. Then, requiring that the equation
(8.20) be satisfied at i = L, gives 3L = 4k + 1, i.e. L = 3 (mod 4). Similarly
for the set with ηL−1 = −1 and 1 for rest of the sites imposes a condition
on length 3L = 8k + 1, which is also a subset of L = 3 (mod 4). Finding
a general proof that degeneracies occur only if L = 3 (mod 4) remain an
open problem.

For each degenerate subspace there is a generalized eigenvector lin-
early independent of the eigenvector corresponding to the eigenvalue of
the subspace. In general, let us denote them by |{ai}; n〉, where n = 1
for the eigenvector and n = 2 for the generalized eigenvector. For non-
degenerate subspace n can only be 1. The vectors satisfy the following
equations

ai|{aj}; 1〉 = ai|{aj}; 1〉,
ai|{aj}; 2〉 = ai|{aj}; 2〉+ αi|{aj}; 1〉, (8.27)

where α’s are complex numbers. Then using the Eq. (8.20) it can be shown
easily that α’s satisfy the following equation

ηiαi =
1
2
(αi−1 + αi+1). (8.28)

This is similar to the Eq. (8.20), except the boundary conditions which are

α0 = αL+1 = 0. (8.29)

For a given set of {ηi}, these are L simultaneous set of homogeneous linear
equations. If {αi} is a solution, then {λαi} is also a solution. Thus there are
infinitely many possible solutions, each corresponding to different choices
of λ. In order to get a single solution we choose αi = 1 if ai = 0, without
loss of generality. This corresponds to choosing a particular normalization
of the rank 2 eigenvectors. The solution of both the equations (8.20) and
(8.28) can be easily obtained numerically. The generalized eigenvectors
and the Jordan block form of the addition operators for the system of size
L = 3 are given in the appendix.

8.6 Matrix representation in the con�guration basis

Given the well-defined action of the addition operators on the generalized
eigenvectors it is possible to define a transformation matrix M between
the configuration basis and the generalized eigenvector basis.

|{zi}〉 = ∑
j

M{zi},j|ψj〉, (8.30)
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L g N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

3 4 0 4
7 40 0 0 8 24

11 136 0 0 0 8 0 120
15 1304 0 0 0 4 32 48 288 560
19 3024 0 0 0 0 0 8 0 288 0 2432

Table 8.1: Degeneracies arise if one of the ai is zero in a solution of
Eq.(8.20). In the table, g denotes the total number of solutions with one of
the ai = 0 i.e. the total number of degenerate sets of solution. Ni is the
number of solutions with the eigenvalue ai = 0. Values for the other half
of the system can be obtained using symmetry.

where |{zi}〉 is the basis vector of Γ corresponding to the height configu-
ration {zi} and |ψj〉 is the jth generalized eigenvector. Let us express the
configuration |{0}〉, with all sites empty, as a linear combination of all the
generalized eigenvectors.

|{0}〉 = ∑
j

cj|ψj〉, (8.31)

where cjs are constants. Then all the stable configurations can be obtained
by adding grains at properly chosen sites in |{0}〉.

|{zi}〉 = ∏
i

azi
i |{0}〉 = ∑

j
cj ∏

i
azi

i |ψj〉, (8.32)

and hence

M{zi},j = 〈{zi}|∏
i

azi
i |ψj〉. (8.33)

The action of the addition operators on the generalized eigenvectors,
for example Eq.(8.27) for model A, would generate the elements of the
matrix M. Given M, we can get the eigenvectors of ai, in the configuration
basis, in particular, the steady state vector, by the inverse transformation

|ψj〉 = M−1|{zi}〉. (8.34)

The addition operators in the configuration basis are obtained using the
similarity transformation MaJ

i M−1. An explicit form of M for model A of
length L = 3 is given in the appendix.
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Figure 8.2: The ratio
of the probability of
the most probable
configuration Cmax

(all occupied) and
the least probable
configuration Cmin
(all sites empty)
plotted as a func-
tion of the system
length L. The fitting
function f (x) = a−
bL + cL log L, with
a = 1.50, b = 0.80
and c = 0.94.

8.7 Determination of the steady state vector

Just like the DASM in section 8.3, the time-evolution of the system is
Markovian and the evolution operator can be written in terms of the ad-
dition operators as

W =
1
L ∑

i
ai. (8.35)

Then the common eigenvector of all the addition operators corresponding
to eigenvalue 1 is the steady state vector of the system. The steady state
vector can be determined in the stable configuration basis using the matrix
M−1. For model A of length L = 3 the steady state vector is

|S〉 = 13
392
|0, 0, 0〉+ 1

16
|1, 0, 0〉+ 47

392
|0, 1, 0〉+ 3

16
|1, 1, 0〉

+
1
16
|0, 0, 1〉+ 13

98
|1, 0, 1〉+ 3

16
|0, 1, 1〉+ 3

14
|1, 1, 1〉, (8.36)

where the stable configurations are denoted by |z1, z2, z3〉 with zi as the
height of the ith site. The amplitude of each term in the expansion is the
probability of finding the corresponding height configuration in the steady
state.

8.8 Numerical Results

Here we describe the results of numerical calculations for the exact steady
state of model A for different system lengths and discuss its properties.
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Figure 8.3: The amplitudes, normalized with its largest value, correspond-
ing to the basis vectors in the steady state plotted as a function of the
rank of the basis vectors. The vectors are arranged in decreasing orders
of their amplitudes. The plot is given for the configuration basis and the
optimized basis for model A of size L = 12.

As shown in Eq. (8.20) and Eq. (8.28) the eigenvalues {ai} and the off-
diagonal matrix elements {αi} form sets of linear equations for a given
set of {ηi}. We solve them by LU decomposition method. Because of
the tridiagonal structure of the equations, only O(2L) number of steps are
required to get the solution. The maximum number of steps (O(23L)) are
required for the inversion of the transformation matrix M. We have used
the Gauss-Jordan elimination method for the inversion. It is important to
note that, the maximum system length L, possible to treat by this method,
is determined by the limited memory of the computers, and not by the
computation time. Using desktop computers we were able to determine
M exactly for systems of size L ≤ 12.

We note that as L is increased, the second largest eigenvalue of W tends
to 1/2. Thus, the gap between the largest and the next largest eigenvalue
of the relaxation matrix does not tend to zero. This gap measures the
relaxation time of the system in terms of the macro-time unit of interval
between addition of grains. However, the average duration of an avalanche
measured in terms of micro-time unit of duration of a single toppling event
does diverge, as system size increases.

An interesting question is the extent of variation between probabilities
of different configurations in the steady state. In the one-dimensional Oslo
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model, for a system of L sites, the ratio of probabilities of the most proba-
ble to the least probable configuration varies as exp(L3)[Dha04]. However
in model A, we find that the ratio is not quit as large, and it only varies
approximately as exp(0.94L log L) (Fig.8.2) for large L.

This suggests that the exact steady state is not a product measure state.
To check this we define a product basis |ψ′〉 = ∏

i
|ψ′i〉, where |ψ′i〉 could

be any one of the two orthogonal vectors

|1′〉 = cos φi|1〉+ sin φi|0〉,
|0′〉 = sin φi|1〉 − cos φi|0〉, (8.37)

with φi a real number. Then in this basis the steady state can be written as

|S〉 = ∑
ψ′

P(ψ′)|ψ′〉. (8.38)

We choose {φi} so that the ratio between the amplitudes of basis vectors
with next-largest and largest amplitudes becomes as small as possible (this
would become zero, if the state was a product measure state). In Fig.8.3,
we have plotted for system of size L = 12, the relative amplitudes in both
configuration basis and the optimized product basis as a function of the
rank of the basis vectors with the vectors arranged in decreasing orders
of their amplitudes. In the optimized basis the second highest probability
is only 10 times smaller than the highest probability. This shows that the
steady state measure is not a product measure.

The steady state density for different sites are plotted in Fig. 8.4 for
different system sizes. Amongst the different fitting forms that we tried,
the following functional form gives the best fit

1
ρL(x)

=
1

ρ̄∞
+ b[

1
(x + d)ν⊥

+
1

(L + 1− x + d)ν⊥
], (8.39)

where ρ̄∞, b, ν⊥ and d are real numbers. Using this functional form the
steady state particle density averaged over all sites for system of size L
can be written as

1
ρ̄L

=
1

ρ̄∞
+

B
(L + δ)ν⊥

, (8.40)

where B is a real number and ρ̄∞ is the asymptotic value of the average
particle density. The exact value of ρ̄L and the particle density at the
central site ρL(xm) are listed in the Table 2 for different system sizes. The
sequential fitting method is used to find the values of ρ̄∞, B, ν⊥ and δ from
these data. For a given choice of δ, these values are obtained numerically
by solving the Eq. (8.40) for three consecutive lengths L − 1, L and L +
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Figure 8.4: Average steady state density ρL(i) at site i for model A of
different length L.

L ρ̄L ρL(xm)

2 0.583333 0.583333
3 0.634354 0.709184
4 0.669262 0.737000
5 0.695210 0.769704
6 0.715472 0.786491
7 0.731879 0.805897
8 0.745514 0.816009
9 0.757080 0.827217

10 0.767051 0.834600
11 0.775760 0.842665
12 0.783451 0.848054

Table 8.2: The values of particle density in the steady state for the model
A of different length L. Here ρ̄L denotes the steady state particle density
averaged over all sites and ρL(xm) denotes the steady state particle density
at the central site.
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L 1/ρ̄∞ B ν⊥

3 1.061 1.128 0.656
4 1.049 1.132 0.641
5 1.053 1.132 0.646
6 1.049 1.131 0.640
7 1.050 1.131 0.641
8 1.049 1.130 0.639
9 1.049 1.130 0.639

10 1.049 1.130 0.639
11 1.049 1.130 0.639

Table 8.3: The sequential fit of the functional form in Eq. (8.40) to the
data for average particle density for model A of different length L given
in Table 2.

1. Best convergence of the values of ρ̄∞, B and ν⊥ are obtained for δ =

1.1, which are tabulated in Table 3. The asymptotic value of the average
particle density converges to ρ̄∞ = 0.953 which is close to the more precise
estimate 0.94885(7), from Monte Carlo simulations [DAAMn+01].

8.9 Concluding remarks.

For a general SASM with N sites, the calculation of eigenvalues involves
solving N coupled polynomial equations in N variables. This can be done
in time polynomial in Ω, the number of stable configurations of the model.
These are then used to construct the transformation matrix M of size
Ω × Ω. Finally inverting the matrix M gives us the eigenvectors of the
evolution operator, in particular the steady state.

Of course, to determine the steady state of any Markov chain on Ω
states, we need to determine the eigenvectors of the evolution matrix of
size Ω×Ω. The point here is that the specification of the toppling rules
does not directly specify the evolution matrix, and determining the ma-
trix elements of the latter from the toppling rules is computationally very
nontrivial. Using the abelian property, we are able to tackle this problem.

For a generic model with some parameters, e.g. the model B, except
for special symmetries, one does not expect degeneracies in eigenvalues
to occur for a generic value of the parameters. For special values of the
parameters, if there is a non-trivial Jordan block structure of the evolution
operator, it would show up in the time-dependent correlation functions of
the model by the presence of terms of the type t exp(−λjt), in addition to
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the usual sum of terms of the type exp(−λjt).
In particular we have explicitly calculated the steady state for a specific

model (model A in section 2) of length L≤ 12. Extrapolating the results we
determined the asymptotic density profile in the steady state. The power-
law profile of deviations from the mean value near the ends would be
important for determining the avalanche exponents of the model [LD01].
This remains an interesting open problem.
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A
Solution of Laplace’s equation on

hexagonal lattice

We follow the calculation given in [AS99]. Let Fr be the solution of the
Poisson equation

∑
r′

Fr′ −mFr = Ir, (A.1)

defined on a lattice, where the sum is carried over the nearest neighbors
of the vertex r and m is the total number of them. For a hexagonal lattice
m = 3 and for a triangular lattice m = 6. Clearly a hexagonal lattice can be
constructed from a triangular lattice by a ∆− Y transformation as shown
in the Fig.A.1. Let Fhex

r and Ftri
r are the solutions of the Poisson equation

with same Ir defined at the common vertices and Ir = 0 for the additional
vertices in the hexagonal lattice. It is easy to check that Fhex

r = 3Ftri
r for the

common vertices and for the additional ones the solution is the average
of its value at the neighboring sites (see Fig.A). We first detrmine Ftri and
then use the relation to determine Fhex.

Consider a triangular lattice with lattice edges of length 1. Each vertex
on the lattice is denoted by a pair of integers (p, q) where the complex
coordinate of a site is

z = p
√

3
2

+ iq
1
2

, (A.2)

with p + q = even. The Poisson equation on this lattice is

Ftri
p+1,q+1 + Ftri

p+1,q−1 + Ftri
p−1,q+1 + Ftri

p−1,q−1 + Ftri
p,q+2 + Ftri

p,q−2 − 6Ftri
p,q = Ip,q

(A.3)
Define the discrete Fourier transformation

V (k1, k2) = ∑
p

∑
q

exp

[
−i

(√
3

2
k1 p +

1
2

k2q

)]
Fp,q (A.4)

Fp,q =
√

3
∫ 2π√

3

− 2π√
3

dk1

4π

∫ 2π

−2π

dk2

4π
exp

[
i

(√
3

2
k1 p +

1
2

k2q

)]
V (k1, k2) (A.5)
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HEXAGONAL LATTICE

Figure A.1: A hexagonal
lattice can be constructed
from a triangular lattice
by a ∆ − Y transforma-
tion. Blue solid lines form
a triangular lattice and
the red dotted lines form
a hexagonal lattice.

Figure A.2: If Fr is a solution of the Poisson equation on the triangle with
charge −Ir defined at the vertices, then 3Fr is a solution on the Y shaped
graph with the same charges.
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Using the expression in equation A.5 it can be shown that

V (k1, k2) =
Ĩ (k1, k2)

4 cos
(√

3k1/2
)

cos (k2/2) + 2 cos (k2)− 6
, (A.6)

where Ĩ (k1, k2) is the discrete Fourier transformation of Ip,q. We are inter-
ested in a solution with Ip,q = Iδp,0δq,0, where I is normalization constant.
Also considering the condition that the function Ftri

p,q = 0, at the origin, it
can be shown that

Ftri
p,q =

I
√

3
96π2

∫ 2π√
3

− 2π√
3

∫ 2π

−2π

1− cos
(√

3k1 p/2 + k2q/2
)

1−
(

2 cos
(√

3k1/2
)

cos (k2/2) + cos (k2)
) . (A.7)

Using the relation between Fhex
r and Ftri

r and with a simple change of vari-
ables we get the expression in equation 6.14.
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B
Solution of the Eq. (5.18)

Here we discuss the solution of the Eq. (7.18) for the starting values given
by

Pj(t = 0) = αj−1. (B.1)

We start with an ansatz Pj(t) = bt exp(−at j), where both at and bt are
functions only of t. This form satisfies the Eq. (7.18) for all j, t > 0, if at

and bt satisfy

dat

dt
= 2− eat − e−at , (B.2)

dbt

dt
= bt(e−at − eat). (B.3)

To solve the Eq. (B.2), we first make a change of variable z = e−at . In
terms of z, the equation becomes dz/dt = (1− z)2, which can be easily
integrated to give

e−at =
t + A− 1

t + A
, (B.4)

where A is an integration constant. To satisfy the initial condition in Eq.
(B.1), we choose

A = (1− α)−1. (B.5)

Similarly, to solve the equation for bt, we use the form of e−at given in Eq.
(B.4) and get

dbt

dt
= bt

1− 2(t + A)

(t + A)(t + A− 1)
. (B.6)

This can be integrated to give

bt =
B

(t + A)(t + A− 1)
, (B.7)

where B is an integration constant. Then the probability can be written as

Pj(t) = B
(t + A− 1)j−1

(t + A)j+1 , (B.8)
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where to satisfy the initial condition at t = 0, we have used the integration
constant B = (1− α)−2. Then, with these values of A and B, we have the
solution for all j, t > 0, given by

Pj(t) =
[(1− α)t + α]j−1

[(1− α)t + 1]j+1

= φj(α, t), say. (B.9)

Now, as φj(α, t) satisfies the Eq. (7.18),

ψj,n(α, t) =
1

(n− 1)!
∂n−1φj(t)

∂αn−1 (B.10)

will also satisfy the equation for any natural number n. In addition,

ψj,n(α = 0, t = 0) = δj,n. (B.11)

Hence, we see that the solution of the Eq. (7.18), starting with Pj(t) = δj,n
at t = 0 is

Pj(t) = ψj,n(α = 0, t) =
1

(n− 1)!
∂n−1φj(α, t)

∂αn−1 |α=0, (B.12)

for all j, t > 0, where φj(α, t) is given in Eq. (B.9) and n is any natural
number.

From (B.9) and (B.12) it easily follows that for large t and j, the solution
asymptotically is Pj(t) ' nt−2 exp(−j/t).
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C
Jordon Block for L=3 SASM

Here we give some details of the explicit calculation of the steady state,
and the matrix representation of addition operators for model A of length
L = 3.

The eight sets of eigenvalues obtained by solving Eq.(8.20) are (1, 1, 1),
(−1, 1,−1), ( 1

3 ,− 1
3 , 1

3 ), (− 1
3 ,− 1

3 ,− 1
3 ), ( 1

2 , 0,− 1
2 ), and (− 1

2 , 0, 1
2 ) with the

last two sets repeated twice.
For writing the matrix structure of the addition operators, we choose

the order of the eigenvectors same as the order of the eigenvalues men-
tioned above. For the degenerate subspace we order the eigenvector |{ai}; 1〉,
defined in Eq.(8.27), before the generalized eigenvector |{ai}; 2〉. Then in
this basis the matrices corresponding to the addition operators have the
following Jordan block form.

aJ
1 =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1

3 0 0 0 0 0
0 0 0 − 1

3 0 0 0 0
0 0 0 0 1

2
1
2 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 − 1
2 − 1

2
0 0 0 0 0 0 0 − 1

2


, (C.1)

aJ
2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 − 1

3 0 0 0 0 0
0 0 0 − 1

3 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, (C.2)
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aJ
3 =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1

3 0 0 0 0 0
0 0 0 − 1

3 0 0 0 0
0 0 0 0 − 1

2 − 1
2 0 0

0 0 0 0 0 − 1
2 0 0

0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 1
2


, (C.3)

The transformation matrix M, discussed in section 5, between the gen-
eralized eigenvector basis and the configuration basis has the following
form

M =



1 1 1 1 1 1 1 1
1 −1 1/3 −1/3 1 1/2 −1 −1/2
1 1 −1/3 −1/3 1 0 1 0
1 −1 −1/9 1/9 1/2 0 −1/2 0
1 −1 1/3 −1/3 −1 −1/2 1 1/2
1 1 1/9 1/9 −3/4 −1/4 −3/4 −1/4
1 −1 −1/9 1/9 −1/2 0 1/2 0
1 1 −1/27 −1/27 −1/4 0 −1/4 0


,

(C.4)

where the configuration basis vectors are chosen in the following order
(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), and (1, 1, 1).
The matrix is non-singular, and the inverse can be calculated numerically.
Using the similarity transformation MaJ

1M−1 we find matrix representa-
tion of the addition operator a1 in the configuration basis.

a1 =



0 2
7 0 4

49 0 0 0 0
1 0 0 0 0 1

24 0 1
9

0 4
7 0 22

49 0 0 0 0
0 0 1 0 0 1

12 0 19
72

0 0 0 0 0 7
24 0 1

9
0 1

7 0 16
49 1 0 0 0

0 0 0 0 0 7
12 0 37

72
0 0 0 1

7 0 0 1 0


, (C.5)

The other operators can also be determined similarly.
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