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Neutrino-neutrino interactions in dense neutrino streams, like those emitted by a core-collapse
supernova, lead to self-induced neutrino flavor conversions. While this is a nonlinear phenomenon,
we point out in the first part of the report that the onset of these conversions can be examined
through a standard stability analysis of the linearized equations of motion. This technique allows
for a systematic study of the onset conditions for collective flavor transformations, including the
dependence on the neutrino density, energy spectrum, angular distribution, and matter density. In
the second part, we look at the analytic solutions of the full non-linear equations for highly simplified
spectra, and study how these solutions can explain various features seen in simulations such as large
bipolar oscillations, and spectral splits.

I. INTRODUCTION

The study of supernova neutrinos has been an ex-
tremely active area of research, especially in the last
three decades. Neutrino flavor oscillations in a supernova
(SN) are strongly suppressed by matter effects [1] until
the neutrinos pass through the usual MSW region [2–5]
far out in the envelope of the collapsing star. However,
neutrino-neutrino interactions [6, 7], through a flavor off-
diagonal refractive index, can trigger self-induced flavor
conversions [8–11]. This collective effect tends to occur
between the neutrino sphere and the MSW region and
can lead to strongly modified neutrino spectra, showing
features such as spectral swaps and splits [12–17]; for
a review see Ref. [18]. The overall scenario, supported
by heuristic arguments and numerical examples, is that
deep inside the SN core, the system performs “synchro-
nized oscillations” with an extremely small amplitude,
i.e. every neutrino remains essentially stuck in its ini-
tial flavor eigenstate. As the neutrinos stream outwards,
there is a sharp onset radius where “bimodal” oscilla-
tions begin: Some ranges of modes start pendulum-like
oscillations [11, 19–21], exchanging their flavor content
with each other without affecting the flavor content of
the overall system.

This scenario engenders a crucial simplification for the
treatment of neutrino transport in SN simulations. At
high densities, where neutrinos collide frequently, it is
enough to solve the transport equations for each flavor
separately, ignoring oscillations entirely. On the other
hand, flavor conversions at larger distances can be treated
ignoring neutrino collisions and absorption, i.e. as a pure
propagation problem. So collisions and flavor oscillations
are phenomena that are assumed to be taking place in
different regions of the star and can be treated indepen-
dently. When the radial distance where bimodal oscilla-
tions begin is far away from the SN core, this assumption
is valid and the flavor conversions do not affect the SN
dynamics. Recent studies dedicated to the SN accretion
phase, under simplifying assumptions, once more confirm
this picture [22, 23].

However, what is missing is a systematic approach to
decide, without solving the equations of motion, if self-

induced flavor conversions occur for given neutrino spec-
tra (flavor-dependent energy and angular distribution),
overall neutrino density, and matter density. Formal sta-
bility criteria exist only in the “single-angle approxima-
tion” where it is assumed that all neutrinos feel the same
neutrino-neutrino refractive effect. In this case the ana-
lytic pendulum solution has been found and its existence
and parameters can be calculated from the neutrino spec-
trum and density alone [17].

On the other hand, the current-current nature of the
low-energy weak-interaction Hamiltonian implies that
neutrinos in the background of an anisotropic neutrino
flux experience a refractive effect that strongly depends
on direction. For some energy spectra, these “multi-angle
effects” have little impact, whereas in other cases they
completely change the solution. In addition, the pres-
ence of ordinary matter causes a multi-angle suppression
of the bimodal instability [28].

Although our problem is nonlinear and therefore would
seem intractable, noting that an instability must occur
in order for the onset to take place leads to a surprising
simplification. In the dense SN matter well inside of the
MSW region, the matter effect is so large that neutrino
propagation eigenstates are essentially identical with fla-
vor eigenstates. This means that in the weak-interaction
basis, the flavor matrices of occupation numbers are al-
most perfectly diagonal. This allows us to linearize the
equations of motion (EoMs) in terms of the small off-
diagonal elements, as long as we are at a distance large
compared to the size of the SN core. An instability is
equivalent to some of these small elements starting to
grow exponentially.

In Sec. II, we try to undertsand heuristically the origins
of the neutrino-neutrino interaction term and write the
effective Hamiltonian under which the neutrinos evolve.
We also briefly survey the current results in the field. In
Sec. III we derive the linearized equations of motion at a
large distance from the neutrino source in the two-flavor
case, with an azimuthally symmetric neutrino emission.
In Sec. IV, we present the stability analysis in the single-
angle approximation, and illustrate it in Sec. V with the
examples of box spectra where the results may be un-
derstood analytically. Sec. VI and VII demonstrate how
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the single-angle results are modified by the inclusion of
multi-angle effects and matter effects. The latter one
also analyzes a realistic SN spectrum using the insights
obtained from the box spectra. In Sec. VIII, we point out
a novel consequence of multi-angle effects for small lep-
ton asymmetry and small matter effects. In Sec. IX, we
solve the full non-linear equations of motion for the sim-
ple asymmetric two-box spectrum under the single-angle
assumption in a fixed background. Sec. X looks at how
these solutions should be modified so as to describe the
non-linear oscillations when the background changes adi-
abatically. In Sec. XI we conclude with a brief summary
of our findings and an outlook on future directions.

II. NEUTRINO-NEUTRINO INTERACTION

TERM

When the neutrino passes through a background with
Ns number of scatterers, the forward scattering ampli-
tudes add up coherently and the effective cross-section
is proportional to N2

s . For other processes, the effective
cross-section is proportional to Ns. Therefore, in suffi-
ciently dense backgrounds, we can concentrate only on
the forward scattering events. For the sake of simplic-
ity, we will work throughout with two active neutrino
flavors, e and x, instead of three. While there are new
and subtle effects of introducing the third flavor, most
of the arguments and results derived in this project can
be extended to the more realistic case of three neutrinos
without major modifications.
We consider the case of a large number of neutrinos

passing through a small region of space. For better un-
derstanding, let us tag one of the neutrinos as a test
neutrino and the rest as background neutrinos. As the
test neutrino moves through the background, there are
two possible tree level Feynman diagrams which can lead
to coherent forward scattering.
If the test neutrino scatters off a background neutrino

of the same flavor, then there is no flavor conversion,
as seen in Figs. 1(b) and 1(c). Even if the the test
neutrino and background flavors are different, t−channel
is diagonal in the flavor basis and does not lead to fla-
vor conversion, as can be seen in 1(a). However, the
u−channel diagram, shown in 1(d), is not diagonal in the
flavor basis and leads to the collective flavor oscillations.
As a concrete example, we consider a νe scattering off a
background of νx. Then the original electron neutrino
exchanges momentum with one of the neutrinos in the
background: νe goes into the background whereas one
of the neutrinos from the background picks up the mo-
mentum of the νe. One such process can be represented
as

|e〉+ |x, x, ...x〉 → |x〉+ |e, x, ...x〉 (1)

Therefore,we have to include the amplitudes of all such
exchange with the other components of the background.
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FIG. 1: Tree-level Feynman diagrams contributing to forward
scattering. The first three diagrams are all diagonal in the fla-
vor basis. The last diagram is the one leading to off-diagonal
terms in the Hamiltonian.

Because of the presence of these new interactions,
terms have to be added to the total Hamiltonian. These
new interactions are neutral current ones mediated by
the Z boson. The typical energies of the neutrinos emit-
ted near the core of supernovae is of the order 10MeV .
Therefore, we are in the regime where we can safely use
the four-Fermi interactions for our calculations rather
than the full-blown electroweak calculation. According
to the four-Fermi theory, the neutrino-neutrino neutral
current interaction Hamiltonian is given by

Hij
NC =

GF√
2
(ν̄iLγ

µνiL) (ν̄jLγµνjL) (2)

where the indices i, j stand for neutrino species and L
denotes the left-handed chirality. Before calculating the
potential arising out of this term in the Hamiltonian, let
us first set down some useful notation. In the flavor basis,
the wavefunction of a neutrino is given by

ψν =

(

νe
νx

)

(3)

where we have assumed that the wavefunction is correctly
normalized. From the above wavefunction, the density
matrix operator of all neutrinos at any given point with
momentum k can be written as

̺E,v = nν(E)

(

|νe|2 νeν
∗
x

ν∗e νx |νx|2
)

(4)
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where nν(E) is the local density of neutrinos summed
over all species. The velocity vector v with |v| = 1 de-
scribes the direction of motion
Since we are looking only at forward scattering ampli-

tudes, where momenta of the interacting neutrinos are
either conserved or exchanged, we can write the new po-
tential term in the Hamiltonian for neutrinos as

Hνν =
GF√
2
× (5)

(∫

dEdv [ν̄e,E′,v′γµ(1− γ5)νe,E′,v′ ] [ν̄i,E,vγµ(1− γ5)νi,E,v]
∫

dEdv [ν̄e,E′
v
′γµ(1− γ5)νe,E,v] [ν̄x,E,vγµ(1− γ5)νx,E′,v′ ]

∫

dEdv [ν̄x,E′,v′γµ(1− γ5)νx,E,v] [ν̄e,E,vγµ(1− γ5)νe,E′,v′ ]
∫

dEdv [ν̄x,E′,v′γµ(1− γ5)νx,E′,v′ ] [ν̄i,E,vγµ(1− γ5)νi,E,v]

)

The momentum integral in (5) is over all background
neutrinos and the index i runs over e, µ. We see that the
diagonal terms are those where the momentum of the
incoming particle remains unchanged, whereas the off-
diagonal terms are the ones where the incoming neutrino
exchanges momentum with the background neutrino.

Upon explicitly evaluating the matrix elements, and
throwing away terms proportional to the identity matrix,
the neutrino interaction Hamiltonian reads [7]

Hνν =
1

2

(

B Bex

B∗
ex −B

)

(6)

where

B =
√
2GF

∫

dE dv(1 − v.v′) [(̺E,v)ee − (̺E,v)xx](7)

Bex = 2
√
2GF

∫

dE dv(1 − v.v′) [(̺E,v)ex] (8)

A. Effective Hamiltonian

We write the EoMs in terms of 2×2 matrices of occupa-
tion numbers [7, 30]. As described in the last section, we
denote these matrices by ̺E,v, where the velocity vector
v with |v| = 1 describes the direction of motion and the
energy E is taken to be positive for neutrinos and neg-
ative for antineutrinos. Also, while the diagonal entries
are equal to the occupation numbers for neutrinos, they
are the negative occupation numbers for antineutrinos.
Our choice of signs, however, allows us to include neu-
trinos and antineutrinos on the same footing and we will
never have to distinguish between them: The antineu-
trino spectrum is simply a continuation of the neutrino
spectrum to negative energies. In the language of fla-
vor polarization vectors, our convention agrees with the
neutrino flavor isospin construction [12].

The EoMs for the time evolution in a homogeneous
medium are

i∂t̺E,v = [HE,v, ̺E,v] . (9)

We use sans-serif letters for matrices in flavor space. The
Hamiltonian matrix is

HE,v =
M2

2E
+
√
2GFNℓ (10)

+
√
2GF

∫ +∞

−∞

dE′

∫

dv′ E
′2

(2π)3
̺E′,v′(1− v · v′)

whereM2 is the neutrino mass-squared matrix and Nℓ the
matrix of net charged lepton densities which in the fla-
vor basis is Nℓ = diag(ne−nē, nx−nx̄). In an isotropic
medium, the v · v′ term drops out and the neutrino-
neutrino term has the same structure as the matter term:
The phase-space integral over ̺E,v amounts to the dif-
ference between neutrino and antineutrino densities.

B. Summary of recent collective neutrino

oscillations results

To understand the work done in this report in its
proper context, we provide a brief survey into the rel-
evant results that can be found in the literature. These
results have been obtained under different approxima-
tions and in various regimes of the parameter space of
matter effect and neutrino densities. Often, they seem
to contradict each other, and have led to confusion over
how to interpret the findings. These seemingly desul-
tory results motivate the need for a consistent formalism
which would allow us to explain all of them within its
framework.
First, we look at studies which were done under the

single-angle approxiamtion, and the results obtained
therein:

• For a spectrum to perform collective oscillations in
inverted hierarchy, it should have a positive spec-
tral. For normal hierarchy, the spectrum should
have a negative crossing to perform collective oscil-
lations [17]. If a spectrum has more than one such
crossing, there exists an instability corresponding
to each.

• Deep inside the SN, where neutrino density is very
high, neutrinos perform synchronized oscillations
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with a very small amplitude: flavor oscillations
are basically suppressed in this region [10]. How-
ever, numerical studies with a Fermi-Dirac spec-
trum showed no such synchronization regime [27].

• In the region where the neutrino density is lower,
there exist pendular oscillations which cause large
flavor conversions amongst various modes, without
changing the overall flavor content [19].

• When the background neutrino deinsity falls off as
the neutrinos stream out of the SN, these pendular
modes become splits in the neutrino spectrum [13].

Next, we look at results from multi-angle studies:

• Collective oscillations are suppressed by multi-
angle effects of neutrinos themselves. Adding nor-
mal matter to the system does not change the onset
of collective oscillations [27].

• At extremely high matter densities collective oscil-
lations are completely suppressed [22].

• For spectra with low lepton-number asymmetry, in-
stabilities exist even for single-crossed spectra in
both hierarchies [25].

III. LINEARIZED EQUATIONS OF MOTION

A. Azimuthally symmetric neutrino emission

We now return to the EoMs, and make certain simpli-
fying assumptions that will help us to investigate the on-
set of collective oscillations analytically. Henceforth we
assume azimuthal symmetry around some preferred di-
rection, usually the radial direction in the SN case. The
azimuthal integration provides

1− v · v′ → 1− v · v′ , (11)

where v and v′ are the components of v and v
′, respec-

tively, along the symmetry direction. Thus v = cosϑ
with ϑ the trajectory angle relative to the symmetry di-
rection.
We introduce an arbitrary sphere with radius R that

we call neutrino sphere where we specify the inner bound-
ary condition for neutrinos that are assumed to stream
only outward. Every angular mode is described by its
emission angle ϑR relative to the radial direction at
that sphere (Fig. 3 of Ref. [18]) in terms of the variable
u = sin2 ϑR which lies in the range 0 ≤ u ≤ 1. The u
variable has the property that the modes are uniformly
distributed on 0 ≤ u ≤ 1 if the emission at the neutrino
sphere is isotropic into space in analogy to black body
emission.
At radius r, the radial velocity of a mode with angular

label u is

vu,r =

√

1− R2

r2
u . (12)

In analogy to Ref. [25] we introduce the matrices

ΦE,u,r =
r2E2

2π
̺E,u,r , (13)

where we have included a factor 4πr2, so that the inte-
grated quantity

Φr =

∫ +∞

−∞

dE

∫ 1

0

duΦE,u,r (14)

represents the flux through a sphere of radius r whose
trace is conserved.
The EoMs for the flux matrices as a function of radial

coordinate are

i∂rΦE,u,r = [HE,u,r,ΦE,u,r] (15)

with the Hamiltonian

HE,u,r =

(

M2

2E
+
√
2GFNℓ

)

1

vu,r

+

√
2GF

4πr2

∫ 1

0

du′
(

1

vu,rvu′,r
− 1

)

Φu′,r ,(16)

where Φu,r =
∫ +∞

−∞ dE ΦE,u,r.

B. At a large distance from source

We are interested in the evolution far away from the
neutrino sphere where the flavor conversions are expected
to begin. Therefore, we use the expansion

v−1
u,r = 1 +

u

2

R2

r2
. (17)

Moreover, we introduce the dimensionless matrices L =
Nℓ/(ne − nē) and FE,u,r = ΦE,u,r/Φν̄e(R). Note that
we normalize the charged-lepton density to the local net
electron density, whereas the neutrino flux matrices are
normalized to the total ν̄e flux at the neutrino sphere.
If we use the flavor basis, with these normalizations we

have Lee = 1 and
∫ 0

−∞ dE
∫ 1

0 du F
ee
E,u,r = −1 for all r

where oscillations have not yet begun.
We also introduce the coefficients with dimension of

inverse energy

λ̃r =
√
2GF [ne(r)− nē(r)] ,

µR =

√
2GFΦν̄e(R)

4πR2
. (18)

In terms of these coefficients, we have

i∂rFE,u,r = [HE,u,r,Fu,r] , (19)

with

HE,u,r =

(

M2

2E
+ λ̃rL

) (

1 +
u

2

R2

r2

)

+ µR
R4

r4

∫ 1

0

du′
u+ u′

2
Fu′,r (20)
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as the Hamiltonian at the lowest-order in (R/r), with

Fu,r =
∫ +∞

−∞
dE FE,u,r. The first line on the right hand

side of Eq. (20) is the “vacuum plus matter” Hamiltonian
H

vac+mat
E,u,r while the second line is the neutrino-neutrino

Hamiltonian Hνν
E,u,r.

We introduce the variable ω = |∆m2|/2E. Note that
since E is taken to be negative for antineutrinos, they
are represented by negative ω values.
Since the trace of the Hamiltonian does not contribute

to the time evolution, we write

M2

2E
= ±ω

2

(

cos 2θ sin 2θ
− sin 2θ − cos 2θ

)

,

λ̃rL =
λ̃r
2

(

1 0
0 −1

)

, (21)

in the flavor basis, after removing a term proportional to
the unit matrix. Here the +(−) sign stands for inverted
(normal) hierarchy. In the following discussion, we shall
consider inverted hierarchy. For obtaining results with
normal hierarchy, we’ll have to multiply the ω term by a
factor of −1.
The flux matrices at the neutrino sphere are

Fω,u,R =

(

φeω,u 0
0 φxω,u

)

, (22)

where the φω,u are differential fluxes in the variables ω
and u.
The normalization of F used here implies that

∫ 0

−∞
dω

∫ 1

0
du φeω,u = −1. Note that φω,u for antineu-

trinos (ω < 0) corresponds to the negative of their occu-
pation numbers.
Finally, in the flavor basis we write

Fω,u,r =
TrFω,u,r

2
+
gω,u

2
Sω,u,r , (23)

where gω,u = φeω,u − φxω,u is the usual difference spec-
trum, except that it is now also differential with regard
to the direction variable u. The initial conditions at the
neutrinosphere for the Hermitian matrix Sω,u,r are

Sω,u,R =

(

1 0
0 −1

)

, (24)

and the EoMs satisfied by it are

i∂rSω,u,r = [HE,u,r, Sω,u,r] (25)

with the neutrino-neutrino part of the Hamiltonian

H
νν
ω,u,r = µr

∫ 1

0

du′ (u+u′)

∫ +∞

−∞

dω′ gω′u′

2
Sω′,u′,r . (26)

Here

µr = µR
R4

2r4
. (27)

The effective neutrino-neutrino interaction energy de-
clines with r−4.

C. In a co-rotating frame

We go to a rotating frame where the common mat-
ter term drops out and where the vacuum term oscil-
lates quickly, averaging the off-diagonal term to zero [28].
Moreover, in the large-r limit we ignore a small radius-
dependent shift of ω. Then we find

H
vac+mat
ω,u,r =

ω + uλr
2

(

1 0
0 −1

)

, (28)

where

λr = λ̃r
R2

2r2
=

√
2GF [ne(r) − nē(r)]

R2

2r2
(29)

encodes the effective matter effect.
Next we write the S matrices in components in the

flavor basis

Sω,u,r =

(

sω,u,r Sω,u,r

S∗
ω,u,r −sω,u,r

)

, (30)

where sω,u,r is the r-dependent swap factor. It specifies
how much the flavor content of the given mode has been
swapped relative to the initial condition. We have the
normalization s2ω,u,r + |Sω,u,r|2 = 1. Likewise,

Hω,u,r =

(

hω,u,r Hω,u,r

H∗
ω,u,r −hω,u,r

)

. (31)

Then the EoM for the off-diagonal component is

i∂rSω,u,r = 2 (hω,u,rSω,u,r − sω,u,rHω,u,r) . (32)

The components of the Hamiltonian matrix are explicitly

hω,u,r =
ω + u λr

2

+
µr

2

∫ 1

0

du′ (u+ u′)

∫ +∞

−∞

dω′ gω′u′ sω′,u′,r ,

Hω,u,r =
µr

2

∫ 1

0

du′ (u+ u′)

∫ +∞

−∞

dω′ gω′u′ Sω′,u′,r .

(33)

In the absence of all interactions, the rotation-averaged
EoM is

i∂rSω,u,r = ω Sω,u,r , (34)

implying the free precession solution

Sω,u,r = e−iω(r−R) Sω,u,R . (35)

D. Small-amplitude expansion

Henceforth we drop the explicit subscript r to denote
the r-dependence of all quantities. Moreover, we drop the
limits of integration which are always as above. In the
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small-amplitude case we have sω,u = 1. This simplifies
in particular the diagonal Hamiltonian term which is

hω,u =
ω + u λ

2
+
µ

2

∫

du′ (u+ u′)

∫

dω′ gω′,u′ . (36)

In the neutrino-neutrino term, the integral which involves
∫

du′u′ . . . is a constant that does not depend on ω or u
and therefore amounts to a shift of all frequencies, i.e.
yet another rotating frame. Once more we can drop this
term and are left with

hω,u =
ω + u (λ+ ǫµ)

2
(37)

where

ǫ =

∫

du dω gω,u (38)

quantifies the “asymmetry” or “total lepton number” of
the neutrino spectrum, normalized to the total ν̄e flux.

The EoMs are then explicitly

i∂rSω,u = [ω + u(λ+ ǫµ)]Sω,u

− µ

∫

du′ dω′ (u+ u′) gω′u′ Sω′,u′ . (39)

This is the linearized form of the EoMs and provides the
starting point for the stability analysis.

E. Eigenvalue equation

The stability analysis determines if the small quantities
Sω,u grow exponentially with time (or equivalently, with
r). This is achieved by writing Sω,u as

Sω,u = Qω,u e
−iΩr , (40)

where both Qω,u and Ω are in general complex numbers.
A real solution for Ω would imply precession modes, pos-
sibly with frequncies depending on ω and u. A complex
solution Ω ≡ γ + iκ, with κ > 0, would indicate a expo-
nentially increasing Sω,u, i.e., an instability. If κ < 0, one
would have a exponentially decreasing solution, which
will be undetectable in numerical solutions after a long
time.

In terms of Qω,u, the EoM becomes

(ω + uλ̄− Ω)Qω,u = µ

∫

du′ dω′ (u + u′) gω′u′ Qω′,u′ ,

(41)

where λ̄ ≡ λ+ ǫµ. This may be looked upon as an eigen-
value equation for Qω,u with the eigenvalue Ω.

IV. SINGLE-ANGLE STABILITY ANALYSIS

A. The consistency conditions

The single-angle approximation, which corresponds to
the assumption that the neutrinos are emitted only at
an angle u = u0, makes the EoMs easier to analyze, at
the same time reproducing many crucial features of the
complete multi-angle analysis. We therefore first perform
the stability analysis with this approximation. The next
section will generalize it to the multi-angle scenario.
Since u = u0, the term uλ̄ in the EoM corresponds to

a common precession for all modes. We therefore can go
to a basis rotating with frequency u0λ̄, in which Eq. (39)
becomes

i∂rSω = ω Sω − 2u0µ

∫

dω′ gω′ Sω′ . (42)

Requiring the solution to be of the form Sω = Qω e
−iΩr

gives

(ω − Ω)Qω = 2u0µ

∫

dω′ gω′Qω′ . (43)

This is the simplified form of the eigenvalue equation in
Eq. (41).
For the l.h.s. of the eigenvalue equation to be indepen-

dent of ω like the r.h.s. , we must have

Qω ∝ 1

ω − Ω
, (44)

and therefore

µ−1 = 2u0

∫

dω
gω

ω − Ω
. (45)

For an instability, this equation should have a complex
root Ω = γ + iκ. Then, splitting the equation into real
and imaginary part, one obtains the two equations

(2u0µ)
−1 =

∫

dω gω
ω − γ

(ω − γ)2 + κ2
. (46)

0 =

∫

dω gω
κ

(ω − γ)2 + κ2
, (47)

Eqs. (46) and (47) are the conditions that must be si-
multaneously satisfied by γ and κ. These may be solved
for a real γ and a positive κ2. If a solution exists, it will
correspond to an instability that will grow at the rate
e|κ|t.

B. Normal vs. inverted hierarchy

Recall that all our results have been obtained using in-
verted hierarchy. Going to normal hierarchy corresponds
to changing Eq. (42) to

i∂rS̃ω = −ω S̃ω − 2u0µ

∫

dω′ gω′ S̃ω′ . (48)



7

In terms of the solution Sω of Eq. (42), the solution of
this equation is given by

S̃ω(µ, gω) = S∗
ω(µ,−gω) = S∗

ω(−µ, gω) . (49)

Since S and S∗ should have the same stability behavior,
this implies that the stability conditions for normal hi-
erarchy are the same as those for the inverted hierarchy
with a change in the sign of gω or µ (not both at the
same time).

V. SINGLE-ANGLE STABILITY ANALYSIS:

EXAMPLES

In order to understand the behavior of the stability
criteria, we shall first consider the toy example of a spec-
trum consisting of boxes of unit height, i.e. gw only takes
the values 0,±1. This makes the integral in Eq. (43) an-
alytically calculable and as we shall see, Ω becomes the
root of a polynomial whose degree depends on the num-
ber of boxes. As will be seen, the simplified box spectra
already bring out some important features of the stabil-
ity of the realistic SN spectra; viz. cutoff, saturation and
multiple swaps.

A. Two-box spectrum

We start with a two-box spectrum, defined as

gω =

{

−1 −a < ω < 0
1 0 < ω < b

. (50)

as shown in Fig. 2.
The consistency condition in Eq. (43) yields

Ω2

(Ω + a)(Ω− b)
= η , (51)

where η ≡ exp−1/µ. Note that 0 < η < 1, while the
limits µ→ ∞ and µ→ 0 correspond to η = 1 and η = 0,
respectively.
The solutions are given by

Ω =
−(b− a)η ±

√

(b − a)2η2 − 4abη(1− η)

2(1− η)
. (52)

The solutions have a non-vanishing imaginary part if the
argument of the square-root is negative, i.e. for

0 < η < ηsynch ≡ 4ab

(b + a)2
. (53)

Here ηsynch is the “synchronization strength,” i.e. for a
larger interaction strength the system is stuck in a stable
position. If 0 < η < ηsynch, we find

γ = − (b− a)η

2(1− η)
,

κ = ±
√

4abη(1− η)− (b− a)2η2

2(1− η)
. (54)

These solutions are shown in Fig. 2.
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FIG. 2: A two-box spectrum, with a = 1 and b = 1.6, and
its stability behavior in the single-angle approximation at dif-
ferent u0 values. Brown (dashed) line: u0 = 1, Black (dash-
dotted) line: u0 = 1/2, purple (dotted) line: u0 = 1/4. Also
shown is the multi-angle result (to be described in Sec. VII),
with the red (solid) line.

B. Three-box spectrum

The three-box spectrum shows some additional fea-
tures as compared to the two-box one. The three-box
spectrum is defined as

gω =







−1 −a < ω < 0
1 0 < ω < b
−1 b < ω < c

, (55)

and is shown in Fig. 3
The consistency condition in Eq. (43) yields

Ω2(Ω− c)

(Ω + a)(Ω− b)2
= η , (56)
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FIG. 3: A three-box spectrum, with a = 1, b = 0.5, c = 0.6,
and its saturation behavior in the single-angle approximation
at different u0 values. Brown (dashed) line: u0 = 1, Black
(dash-dotted) line: u0 = 1/2, purple (dotted) line: u0 =
1/4. Also shown is the multi-angle result (to be described in
Sec. VII), with the red (solid) line.

This can have three real roots, or a single real root and
a pair of complex conjugate roots. The latter case corre-
sponds to instability.
In order to study the stability at large µ, we look at

the limit η = 1. In this limit, the cubic equation becomes
a quadratic one:

(a− 2b+ c)Ω2 + (b2 − 2ab)Ω + ab2 = 0 . (57)

When the total lepton number is not zero, that is 2b −
a− c 6= 0, the solutions to this quadratic equation are

Ω =
2ab− b2 ±

√

b(4ab+ b2 − 4ac)

2(a− 2b+ c)
. (58)

• If (4ab+ b2− 4ac) > 0 then the roots are both real,
implying that the system is stable at extremely
large µ values. We then get the same threshold
behavior as was observed in the two-box case, sim-
ilar to the one shown in Fig. 2.

• On the other hand, if (4ab+ b2 − 4ac) < 0, we can
write Ω = γ ± iκ, with

γ =
2ab− b2

2(a− 2b+ c)
, κ =

√

b(4ac− b2 − 4ab)

2(a− 2b+ c)
. (59)

Thus γ and κ stay finite even at arbitrarily large µ,
and indeed, go to a constant, µ-independent value.
The system is thus unstable even at large µ val-
ues. This saturation behavior, shown in Fig. 3, was
absent in the two-box scenario. This would allow
flavor conversions to start deep inside the core.

C. Four-box spectrum

The study of four-box spectra is relevant for some im-
portant reasons. First, the typical SN neutrino fluxes,
where the luminosities of νe, ν̄e and νx are comparable
and their average energies follow a hierarchy 〈Eνe〉 <
〈Eν̄e〉 < 〈Eνx〉, the gω spectrum has three zero-crossings,
which feature is reproduced by a four-box spectrum as
can be seen in Fig. 4. Moreover, the consistency equa-
tion leads to a quartic equation in Ω, which may have
none, one or even two complex roots, leading to interest-
ing features in the stability analysis.
The spectrum is defined as

gω =











−1 −a < ω < −b
1 −b < ω < 0
−1 0 < ω < c
1 c < ω < d

. (60)

The self consistency condition in the linear approxima-
tion then gives

(Ω + b)2(Ω− c)2

(Ω + a)Ω2(Ω− d)
= η . (61)

This can be rewritten as

(1− η)Ω4 + (2b− 2c− aη + dη)Ω3

+(b2 − 4bc+ c2 + adη)Ω2

+(2bc2 − 2b2c)Ω + b2c2 = 0 . (62)

We are interested in the limit η = 1. In this limit, the
quartic equation reduces to a cubic equation with real
coefficients. Hence we are guaranteed at least one real
root. This implies that at large µ, we can have a maxi-
mum of one instability, corresponding to a possible pair
of complex conjugate roots to this cubic equation. The
existence of such a pair is determined by the value of the
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FIG. 4: A four-box spectrum, with a = 1.5, b = 1.0, c =
0.6, d = 1.6, and its stability behavior in the single-angle
approximation at different u0 values. Brown (dashed) line:
u0 = 1, Black (dash-dotted) line: u0 = 1/2, purple (dotted)
line: u0 = 1/4. Also shown is the multi-angle result (to be de-
scribed in Sec. VII), with the red (solid) line. The instability
with higher γ is characterized by (γ1, κ1), while the other one
is characterized by (γ2, κ2). Since ∆ < 0 at these parameters,
one of the solutions shows the saturation behavior while the
other shows cutoff behavior.

discriminant

∆ = b2c2[−27b2c2(a− 2b+ 2c− d)2

+ 32b(b− c)3c(−a+ 2b− 2c+ d)

− 36b(b− c)c(−a+ 2b− 2c+ d)(b2 − 4bc+ c2 + ad)

+ 4(b− c)2(b2 − 4bc+ c2 + ad)2

− 4(b2 − 4bc+ c2 + ad)3] . (63)

If ∆ > 0, all the roots are real and the system is stable.
On the other hand, for ∆ < 0, we get an instability even
for an extremely large µ value. Knowing the value of
a, b, c, d, then, the stability or instability of the spectrum
may be predicted.
A typical scenario is shown in Fig. 4. At low µ values,

there are two instabilities, one of which shows a cutoff
behavior, i.e. it vanishes for µ greater than a certain
threshold value. The other instability, with γ ≈ 0, sur-
vives for arbitrarily large values of µ, with κ showing a
saturation behavior as in the 3-box case.

VI. MULTI-ANGLE STABILITY ANALYSIS

A. The consistency conditions

We now analyze how the single-angle picture of the
instabilities is modified by the multi-angle effects. The
linearization introduced in the paper allows our formal-
ism to carry through to the multi-angle case.
The r.h.s. of the eigenvalue equation (41) is of the form

A+BuwhereA and B are expressions that do not depend
on either ω or u. So we are led to the ansatz

Qω,u =
a+ b u

ω + uλ̄− Ω
, (64)

where a and b are complex numbers. Inserting this ansatz
provides

a+ bu = µ

∫

du′ dω′ gω′,u′

(u + u′)(a+ b u′)

ω′ + u′λ̄− Ω
. (65)

To understand better the structure of this equation, we
define the integrals

In =

∫

du dω gω,u
un

ω + uλ̄− Ω
. (66)

Then our eigenvalue equation becomes

a+ bu = µ
[

(aI1 + bI2) + (aI0 + bI1)u
]

. (67)

If this is supposed to be true for every u we need to match
the coefficients of the linear u polynomial on both sides
separately. We can then write this in matrix form

µ−1

(

a
b

)

=

(

I1 I2
I0 I1

)(

a
b

)

. (68)
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This has the form of an eigenvalue equation for a 2 × 2
matrix. This equation has nontrivial solutions if

det

[(

I1 I2
I0 I1

)

− µ−1

]

= 0 (69)

or explicitly

(

I1 − µ−1
)2

= I0I2 . (70)

This is the multi-angle counterpart of our single-angle
eigenvalue equation of Eq. (45).

B. Normal vs. inverted mass hierarchy

In the single-angle approximation, we saw that as far
as the stability analysis is concerned, analysis of normal
hierarchy is the same as that of the inverted one, except
for a change of the sign of µ. This is true also in the multi-
angle scenario, except that one also needs to change the
sign of λ. Indeed, normal hierarchy changes Eq. (39) to

i∂rS̃ω,u = [−ω + u(λ+ ǫµ)] S̃ω,u

− µ

∫

du′ dω′ (u+ u′) gω′u′ S̃ω′,u′ . (71)

The solution of this equation can be given in terms of the
solution Sω,u of Eq. (39) as

S̃ω,u(µ, λ, gω,u) = S∗
ω,u(µ,−λ,−gω,u)

= S∗
ω,u(−µ,−λ, gω,u) . (72)

Since S and S∗ should have the same stability behavior,
this implies that the stability conditions for normal hi-
erarchy are the same as those for the inverted hierarchy
with a change in the sign of gω or µ (not both at the
same time), and an additional change in the sign of λ.

VII. MULTI-ANGLE STABILITY ANALYSIS:

EXAMPLES

We now analyze the stability conditions with the multi-
angle effects and compare them with our earlier results
with single-angle approximation. We take the emission
to be uniform over 0 ≤ u ≤ 1. The integrals In can
then be analytically calculated for the box spectra. The
expressions, however, are not very illuminating, and we
do not give them here. It turns out that the multi-angle
effects modify the single-angle results in significant ways,

A. Two-box spectrum

The results of the multi-angle stability analysis of the
two-box spectrum in the top panel of Fig. 2, in the ab-
sence of matter (λ = 0), are shown in the lower two
panels. As far as the onset behavior is concerned, the
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FIG. 5: The values of γ and κ for the two-box spectrum in
Fig. 2, as a function of µ. Black (dash-dotted) line: single-
angle approximation for u0 = 1/2, red (solid) line: multi-
angle effects with λ = 0, brown (dashed) line: multi-angle
effects with λ = 5, purple (dotted) line: multi-angle effects
with λ = 30,

multi-angle effects may be interpreted as some (compli-
cated) average of the single-angle effects with different u0
values. In particular, the value of κ at any value of µ lies
within the range of κ for different u0 values in the single-
angle approximation. The comparison with a specific u0
value (u0 = 1/2) is shown in Fig. 5. As compared to this
fixed value of u0, the addition of multi-angle effects is
observed to suppress the instability in some range of µ,
while enhancing it at other values of µ.
The addition of finite matter effects shifts the range of

µ where the instability occurs, to larger values of µ.

B. Three-box spectrum

The results of the multi-angle stability analysis of the
three-box spectrum in the top panel of Fig. 3, in the
absence of matter (λ = 0), are shown in the lower two
panels. At low values of µ, the multi-angle affects may be
interpreted as some (complicated) average of the single-
angle effects with different u0 values. At higher val-
ues of µ, though, the multi-angle effects are observed
to suppress the instability as compared to the single-
angle approximation. Most importantly, while the single-
angle approximation showed a saturation behavior for all
u0 values, the multi-angle effects give rise to a thresh-
old behavior. The comparison with a specific u0 value
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FIG. 6: The values of γ and κ for the three-box spectrum in
Fig. 3, as a function of µ. Black (dash-dotted) line: single-
angle approximation for u0 = 1/2, red (solid) line: multi-
angle effects with λ = 0, brown (dashed) line: multi-angle
effects with λ = 5.

(u0 = 1/2) is shown in Fig. 6. As compared to this fixed
value of u0, the addition of multi-angle effects is observed
to suppress the instability in some range of µ at some λ
values (not shown in the figure), while enhancing it at
other values of µ. At large µ values, the multi-angle
effects always seem to suppress the instability. The addi-
tion of matter again shifts the instability region to higher
values of µ.

C. A realistic SN spectrum

We now apply our stability analysis to a realis-
tic SN spectrum, where the (νe, ν̄e, νx) spectra are
taken to have the Fermi-Dirac form, with the temper-
atures (2.1, 3.5, 4, 4) MeV and the chemical potentials
(3.9, 2.3, 2.1). These correspond to the average energies
(9.4, 13.0, 15.8) MeV. The ratio of number fluxes is taken
to be 1.3 : 1.0 : 1.5, where the total ν̄e flux is normal-
ized to unity as per our normalization convention intro-
duced in Sec. II A. This spectrum corresponds to the
one recently studied in [27] for their multi-angle analysis
including matter effects. We use ∆m2 = (50meV)2 in
order to convert the energy scale to ω, which we show
in the units of km−1. The spectrum is shown in the top
panel of Fig. 7.
The following observations may be made from the fig-
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FIG. 7: The values of γ and κ as a function of µ, for the
realistic SN spectrum in the top panel. Note that for ω <
−0.8, the value of gω is small and negative. The instability
with higher γ is characterized by (γ1, κ1), while the other one
is characterized by (γ2, κ2). Black (dash-dotted) line: single-
angle approximation for u0 = 1/2, red (solid) line: multi-
angle effects with λ = 0, brown (dashed) line: multi-angle
effects with λ = 5. Note that the scales for κ1 and κ2 are
different.

ure:
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• In the single-angle approximation, there are indeed
two instabilities, centered approximately at the two
positive zero-crossing points in the spectrum at
very small values of µ. As µ increases, the cen-
ters of these instabilities (γ1 and γ2) move away
from each other. The instability with the smaller
γ shows a threshold-like behavior; it cannot show
a perfectly threshold behavior since the spectrum
does not identically vanish at large |ω|. However
the value of the corresponding κ goes to zero at
large µ, so the effect of this instability will be very
weak, almost imperceptible, at large µ. The other
instability displays the saturation behavior: even at
large µ, it has a nonzero κ value. This implies that,
if the single-angle approximation is valid, there will
be a strong instability however large the starting
value of µ is. There is no synchronization phase.

• When multi-angle effects are added without ordi-
nary matter (λ = 0), the effect is similar to the
averaging of single-angle results, similar to that ob-
served earlier in the two-box spectra. The instabil-
ity is suppressed at large µ, through a threshold-like
behavior. The other instability, which showed the
saturation behavior with the single-angle approxi-
mation, now also shows the threshold-like behavior,
i.e. the value of κ goes to zero at extremely large
µ values. This however happens much more slowly
as compared to the first instability, as can be seen
in Fig. 7.

• The addition of matter effects shift the λ = 0 be-
havior to larger µ values, as was seen in the box-
spectra examples we had studied earlier.

VIII. A NOVEL MULTI-ANGLE EFFECT

A surprising multi-angle result is obtained when λ̄ = 0,
and the angular distribution is universal, i.e. gω,u =
gωfu, with

∫

dufu = 1. Let us introduce the notation

G =

∫

dω
gω

ω − Ω
. (73)

Then in the multi-angle case, we have

In = G

∫ 1

0

du un = G〈un〉 . (74)

The eigenvalue equation is then

µ−1 = I1 ±
√

I0I2 =
[

〈u〉 ± 〈u2〉1/2
]

G . (75)

The stability analysis then corresponds to determining
the solutions Ω = γ ± iκ for the equation

µ−1 = K±G , (76)

where K± ≡ 〈u〉 ± 〈u2〉1/2.

In the single-angle approximation, 〈u〉 = u0, 〈u2〉 = u20,
so that K+ = 2u0 and K− = 0. The latter equation has
no solution, since it would require µ−1 = 0 identically.
One may then write

µ−1
single = 2u0G . (77)

This may be solved to obtain the values of γ and κ in the
single-angle approximation.
We can now write the two values of µ−1 in multi-angle

analysis that correspond to the same values of γ and κ:

µ−1
+ = K+G , µ−1

− = K−G , (78)

Thus, there are two values of µ in multi-angle analysis
that correspond to the same (γ, κ) in the single-angle
analysis. The multi-angle stability behavior at these two
µ values can then be understood by looking at the single-
angle stability behavior at µsingle.

IX. SOLVING THE FULL NON-LINEAR EOMS

FOR SINGLE CROSSED SPECTRUM

We now move away from the linearized onset regime,
and look at the full non-linear EoM for the different
modes. The non-linearity of the equations means that
they are difficult to solve analytically, so we look for so-
lutions in the simplest possible case. In this section, we
consider a single-crossed spectrum, and also work with
the single-angle assumption.
Following Eq(30), we define

Sω,r =

(

sω,r Sω,r

S∗
ω,r −sω,r

)

. (79)

for the single-angle case. Since S is a Hermitian 2 ×
2 matrix, we can use Bloch vector decomposition and
represent it by a vector. We choose a reference frame such
that the z-component of the vector is given by z = sω,r.
We are still free to define our x and y-axes. One possible
choice is to define x = ℜ(S) and y = ℑ(S). In this frame,
the EoM’s are given by

ẋ = −(ω − γ)y + µz

∫

ygωdω (80)

ẏ = (ω − γ)x− µz

∫

xgωdω (81)

ż = −µx
∫

ygωdω (82)

It turns out that the solutions are easier to find if we
move to a frame rotating about the z-axis with a fre-
quency such that

∫

xgωdω = 0. In this frame

ẋ = −(ω − γ)y + µz

∫

ygωdω (83)

ẏ = (ω − γ)x (84)

ż = −µx
∫

ygωdω , (85)
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where

γ = −µ
∫

zgωdω +

∫

ωygωdω
∫

ygωdω
. (86)

We try solutions of the form

x = −hω sinφ (87)

z = fω cosφ+ uω (88)

Substituting them back into Eqs.(83) and (85), we get
the solutions to be

x = − sinφfω (89)

y = µY
ω − γ

κ2
fω (90)

z =

(

− cosφ+
(ω − γ)2

κ2

)

fω , (91)

where Y =
∫

ygω dω, κ
2 = µ

∫

fω(ω − γ)gωdω, and fω is
the normalization factor which turns out to be

fω =
κ2

√

(ω − γ)4 − 2(ω − γ)2κ2 cosφ0 + κ4
. (92)

We also derive the following conservation laws

∫

dω
gω

√

(ω − γ)4 − 2(ω − γ)2κ2 cosφ0 + κ4
= 0 (93)

∫

dω
(ω − γ)gω

√

(ω − γ)4 − 2(ω − γ)2κ2 cosφ0 + κ4
=

1

µ
(94)

∫

dω
(ω − γ)2gω

√

(ω − γ)4 − 2(ω − γ)2κ2 cosφ0 + κ4
= L , (95)

where L is the lepton number. Note that Eqs. (93) and
(94) are the same as Eqs. (46) and (47) when φ0 = π,
whereas Eq. (95) says that lepton number is conserved
in these oscillations.

X. ADIABATICALLY CHANGING

BACKGROUND DENSITY

As the neutrinos emitted from the neutrinosphere
stream out towards the surface of the supernova, the sur-
rounding neutrino density begins to decrease with time.
This means that the value of µ is now a monotonously
decreasing function of time. It can be shown that the
actual profile goes as µ(t) ∝ t−4, but since we will work
under the assumption that the change of µ is adiabatic,
the explicit form of the time variation of µ turns out to
be immaterial. In the last section, we have defined a
parameter κ which is the frequency of collective oscilla-
tions. We can now define adiabaticity as the condition
when κ ≫ µ̇

µ , which says that the internal time scale of

the system is much faster than the time scale over which
the external change, in this case the change in the value
of µ, takes place. Under these conditions, we look for
solutions such that they are perturbative corrections to
the static solutions.
Let us assume that due to the change of µ with time,

the solutions to the EOM’s take the following form:

x = − sinφfω +Ahω (96)

y = µY
ω − γ

κ2
fω +Bhω (97)

z =

(

− cosφ+
(ω − γ)2

κ2

)

fω + Chω (98)

where A, B, and C are independent of ω. The ω depen-
dence of the new terms are all included in hω. Again sub-
stituting these forms back into the EoMs, and working at
all times to first order in hω and time derivatives, we find

that hω = ḟω, A = − 3
5
µY
κ2 , B = 0 and C = − 2

5
cos(φ/2)

κ .
This means that there indeed exist solutions for adiabat-
ically changing µ which are perturbations to the static
µ solutions. The modified solutions for changing µ can
now be written as

x = − sinφfω − 3

5

µY

κ2
ḟω (99)

y = µY
ω − γ

κ2
fω (100)

z =

(

− cosφ+
(ω − γ)2

κ2

)

fω − 2

5

cos (φ/2)

κ
ḟω .(101)

We can also write down the equations of motion for φ
and Y

φ̇ = µY (102)

Ẏ = −κ
2

µ
sinφ+ Y

(

− µ̇
µ
− 6

5

κ̇

κ
− 11

5

γ̇

µZ

)

(103)

The constraint equations, Eqs. (93-95), still hold at every
point in time, with changing values of γ and κ (but with
the same φ0), as the value of µ goes from its initial value
to 0 adiabatically.

XI. CONCLUSIONS

In this report, we have looked at two aspects of col-
lective neutrino oscillations: how to describe the onset
of these oscillations, and what the non-linear oscillations
look like in simple cases. We briefly reviewed how in-
teractions between neutrinos becomes important at high
densities in supernovae. These interactions play a cru-
cial role in collective oscillations which are not present
otherwise. We have seen how these interactions lead to
off-diagonal terms in the Hamiltonian written in the in-
teraction basis. The presence of these terms couples the
oscillations of all neutrinos and antineutrinos, and is the
source of collective oscillations. Under the assumption
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of azimuthal symmetry of neutrino radiation, we wrote
down the effective Hamiltonian for the system. Using
this, we were able to write down the linearized eigenvalue
equation, which allowed us to describe an exponentially
growing mode that would eventually develop into an in-
stability.
We looked at the eigenvalue equation under the single-

angle approximation and wrote down the consistency
conditions which must be satisfied by the eigenvalues.
Though all our analysis is done in the inverted hierarchy,
we provided a prescription of how to look for instabilities
in the system if we were working in the normal hierar-
chy. We then looked at toy examples where we could
solve the constraint equations analytically and saw that
various scenarios are possible. In the two-box spectra, we
saw cutoff behavior of the roots, where the spectrum is
stable beyond a certain value of µ. In the three-box case,
we found that in certain spectra, it is also possible for the
instability to persist even for arbitrarily large values of µ.
From the four-box case we saw that two instabilities can
start developing at the same time. In general, we saw
that the number of instabilities is equal to the number of
instable crossings in each hierarchy.
We then extended the linearization scheme to the full

multi-angle case, and derived the consistency conditions
for the same. Again, we provided a prescription of how
to shift to the normal hierarchy from inverted hierar-
chy. We then looked again at the box spectra to see
how the single-angle results were modified by the multi-
angle analysis. We saw that while cutoff behavior of the

roots persisted in multi-angle analysis, in some cases, sat-
uration behavior also became cutoff behavior. We then
looked at a realistic SN spectrum, which was studied in
[27]. We found that the linearized analysis gave results
consistent with the numerical results reported in the pa-
per. The multi-angle analysis showed that the instabili-
ties are suppressed as compared to the single-angle case.

The linearized multi-angle analysis gave a surprising
result whereby it predicted that the two-box spectrum
with a positive crossing and low lepton number can show
collective oscillations in both normal and inverted hier-
archy. However, this fact had been observed numerically
in [25].

Whereas the linearized equations give us a handle to
understand the onset of collective oscillations, it alone is
not sufficient to understand the entire dynamical evolu-
tion of the oscillations. Therefore, we solved the full non-
linear equation in the simplest case: a single crossed spec-
trum under the single-angle approximation. We found
that the solutions can be written analytically and have
the same form as the solutions of a pendulum. We then
looked at the case when the background density of neu-
trinos changes adiabatically. We found that, in this case,
there exist solutions which are perturbations about the
steady state solutions. In theory, one could solve these
equations and look at the evolution of the collective os-
cillations as the neutrinos stream out of the supernova.
However, it turns out that this is not an easy task, and
one must resort to numerical simulations.
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