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Synopsis

Neutrino oscillation is now a well established phenomenon in Nature. There

are interesting issues in physics and astrophysics that are addressed using the

framework of neutrino oscillations. Some outstanding problems like the atmo-

spheric and solar neutrino deficit have now been understood elegantly in terms

of flavour conversions of massive neutrinos. While the paradigm of massive neu-

trinos is part of the standard picture now, precision measurement of mass and

mixing parameters is not yet complete. In particular, we still only have an upper-

bound of 13◦ on the mixing angle θ13. A careful and precise measurement of all

such parameters is imperative, if we want to discriminate between various possi-

ble extensions to the Standard Model. This is the general and driving motivation

for studying the physics of neutrinos.

In this thesis we focus our attention to effects of ambient matter on neutrinos

propagating through it. This is an important aspect and needs careful consid-

eration, because naive expectations ignoring matter-effects can be way off-mark,

typically when a critical density of matter (called a resonance) is encountered. We

discuss different techniques used to calculate the matter-effect induced enhance-

ment in the survival probability P (νe → νe) of neutrinos travelling through matter

of generically varying density in a two and three neutrino framework. There exist

exact analytical expressions for P (νe → νe) only for a few simple cases and use-

ful approximations for situations with monotonically varying density. However,

in literature there are no solutions for a medium with a general non-monotonic

density profile. We present a new method to calculate P (νe → νe) approximately

for the cases where the density of the medium may vary non-monotonically. We

show that our solution is in excellent agreement with an exact numerical solution,

in the region of its validity. It is seen that there exists in general, a novel effect

that is present in such a situation. The physical basis of the effect is that, neu-

trinos of different energies acquire a different quantum-phase as they propagate



between successive resonances encountered in the non-monotonic profile. This

phase enters the survival probability and therefore manifests itself as an energy

dependent oscillatory modulation of the flux of neutrinos. These wiggles in the

energy spectrum are shown to be intimately connected to the form of the density

profile of the medium. This effect was ignored in previous works which calculated

the survival probability, based on the assumption that the neutrino wave-packets

decohere completely on their journey between successive resonances.

In addition we discuss the consequences of the above analyses for neutrinos

coming from supernovae. We show that there is a signature generated in the

observed neutrino spectrum, when the neutrinos pass through the non-monotonic

density profile of an exploding supernova, due to the effect mentioned earlier. We

take a typical density profile from a current simulation and numerically calculate

the survival probability of neutrinos as it propagates through it. We take typical

models of neutrino fluxes and show that the signature is robust and independent

of the model chosen for fluxes. We investigate the possibility of experimental

observation of the above mentioned signature. We find that if the value of θ13

is such that the resonances that are encountered are semi-adiabatic, these phase

effects may be significant. This typically happens for θ13 of about a few degrees.

Some constraints on mass and mixing parameters can be put from the observation

of these effects. Specifically one may be able to put a lower-bound on the value

of θ13 and determine the mass-hierarchy. We also show that it is possible to

extract information about the supernova shock-wave profile behind the reverse-

shock from the neutrino spectrum if the observation is possible. However, we

find that using present and planned detectors, such an observations is unlikely,

unless the supernova explosion occurs about a kilo-parsec away. This undermines

to some extent the experimental significance of the novel phase effects that we

point out.
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Chapter 1

Introduction

Our present understanding of the microscopic laws of nature is governed by the

Standard Model (SM) of particle physics. It is a gauge theory based on the group

SU(3)C × SU(2)L ×U(1)Y . Matter is classified into three generations, with each

generation comprising of an up-type quark (u, c, t), a down-type quark (d, s,

b), a charged lepton (e, µ, τ), and a neutral lepton called neutrino (νe, νµ, ντ ).

These particles interact with each other via the strong, weak and electromagnetic

forces which are mediated by the respective gauge bosons. The eight gluons (G)

of SU(3)C mediate the strong force. Of the four bosons of SU(2)L × U(1)Y , two

(W+, W−) mediate the weak charged current interactions . One linear combina-

tion of the remaining two (Z) mediates the weak neutral current interactions, and

the other is the photon (γ) that mediates electromagnetism. There is additionally

a scalar boson in the theory, known as the Higgs, which has not been observed

yet.

Matter in SM is best described by bispinor fermion solutions to the Dirac

equation. They contain both the particle and antiparticle degrees of freedom,

each of which can be resolved into their left and right-chiral components. These

left and right-handed components of the fermion and the Higgs scalar interact

at a vertex through a Yukawa coupling. When the Higgs scalar gets a vacuum

expectation value via spontaneous symmetry breaking it introduces a mass term

for the fermion. As it stands, SM does not have mass terms for neutrinos due

to the absence of right-handed neutrinos. This model is immensely successful
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and explains most of the experimental data accurately. A few experimental re-

sults in neutrino physics are difficult to explain in the above framework. The

classic examples being the atmospheric and solar neutrino problems [1, 2]. They

essentially point out the fact that the flux of neutrinos detected from a known

source turns out to be different from what is expected on the basis of SM and

existing models of the source fluxes. There are two kinds of solutions to these

problems, astrophysical and physical. The astrophysical solutions are based on

the approach that our understanding of the source fluxes is not satisfactory and

therefore propose to modify either the model of the source and/or the medium,

through which neutrinos travel, to account for the disagreement. This requires

addressing each physical situation independently, which is clearly not a minimal

approach. The physical solutions act at a more fundamental level, and explain

the discrepancy by making changes to the properties of neutrinos and/or their

interactions, which modify our expectation for the fluxes. This approach allows

all the neutrino problems to be addressed together. There were various sugges-

tions that belonged to the latter category, but the paradigm of neutrinos with

tiny masses, explains all the available data and seems to be the most favoured

solution. There exist models that extend the SM to include massive neutrinos

[3].

In the quark sector we are familiar with the notion that the up-type quark

mass matrix and the down-type quark mass matrix are not simultaneously di-

agonalised. This causes the different generations of quarks to mix via what is

known as the Cabbibo-Kobayashi-Masakawa (CKM) matrix [4, 5]. For massive

neutrinos, this possibility is realised in the lepton sector too. There is a mis-

alignment of the charged lepton mass matrix and the neutrino mass matrix. The

charged lepton weak interaction eigenstates are by convention taken as the same

as the mass eigenstates and the neutrino weak interaction eigenstates are then

related to their mass eigenstates by a unitary transformation parametrised by

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [6, 7]. This allows for

neutrinos of one flavour to convert into another and gives rise to lepton flavour

oscillation [6] exactly like strangeness oscillations. When one considers propaga-

tion of neutrinos through matter, the rate of flavor conversion depends crucially

on the electron density (and its gradient) in the ambient matter [8]. This is
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referred to as matter effects and we will investigate this aspect in some detail.

In particular we will see that the rate of conversion of one flavour to another

can suddenly become very large at a certain value of the density of the medium

[9, 10]. A sharp change in the density also enhances neutrino conversion [11]. All

these effects need to be taken into account when calculating the expected flux of

neutrinos from a given source. This is what goes into the resolution of the solar

and atmospheric neutrino problems.

These phenomena depend quantitatively on the neutrino masses and the mix-

ing matrix. So it is important that we make a precise measurement of the relevant

parameters. That will not only provide us a detailed explanation to the said neu-

trino deficit problems, but also serve as a useful guide to what kind of extensions

one should expect beyond SM. This follows from the fact that the wide variety of

models naturally prefer different values for the mass and mixing parameters, and

if we can experimentally measure some of the discriminatory parameters, models

naturally predicting the observed parameter values will be favoured over others.

The object of this thesis is to explore the paradigm of neutrino oscillations with

particular emphasis to matter effects. The reason matter effects are being em-

phasised is that some mixing parameters are probed efficiently in the presence

of such effects, e.g. the case of neutrinos coming from supernovae, or neutrinos

travelling through the earth matter. Conversely, if the neutrino parameters are

well measured, then these effects can be used to probe the density variation of

the media.

These problems are extremely exciting and a subject of active research. We

will confine ourselves to provide only as much detail as is required to be able

to introduce and analyse the new results that we present in this thesis, i.e. the

idea of phase effects. A lot of the material presented in this thesis draws from

standard textbooks, reviews and papers. Some of the introductory material is

“inspired” from the lectures by Dighe [12]. We mention below some references

that are relevant to various aspects of this thesis. A detailed description of how we

were led to a consistent and unified picture of neutrino oscillations, issues about

nature of neutrino masses, neutrino mass models and related phenomenology can

be found in the following textbooks [13, 14]. Pedagogical treatments of neutrino

oscillations can be found in the following review [15]. Matter effects are discussed
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1.1 Neutrinos in physics

in great detail in this review [17]. SN neutrinos are discussed in these reviews

[18, 19]. The treatment of effects of the shock-wave(s) on neutrinos is presented

in these papers [16, 20, 21, 22]. Phase effects are discussed in our paper [23].

1.1 Neutrinos in physics

We begin by tracing out the history of neutrinos to understand the role that they

have played in our understanding of particle physics, to provide a motivation to

study neutrinos and to acquire the required background for the later chapters.

1.1.1 The Pauli hypothesis

Beta decays were thought to be two-body decays because only the electron and

the daughter nucleus were observed. A two-body decay should result in a fixed

electron energy. However, the electron energy was seen to be continuous. Ei-

ther the conservation of energy and momentum was in peril, or something was

missing. Pauli proposed in 1932 that the decay was a three-body decay and a

chargeless and massless particle, termed “neutrino” was being emitted and not

being observed. The introduction of neutrinos not only took care of the energy-

momentum conservation, it also explained the shape of the electron spectrum

observed. These experiments put an upper bound on the neutrino mass, e.g. the

tritium decay experiment at Mainz gives an upper bound on the mass of the

neutrino with mostly electron component to be 2.3 eV [24]. Bounds on other

flavours from similar experiments are large, but successful nucleosynthesis after

the Big Bang requires the sum of all neutrino masses to be less than about 0.68

eV, thereby constraining them to have really small masses compared to any other

massive particle [25].

1.1.2 Detecting the neutrinos

The first direct observation of neutrinos was in 1956 by Reines and Cowan [26].

They directed a flux of ν̄e from a beta decay into a water target and detected it

using inverse beta decay. The produced positron annihilates with an electron in

the medium to give two characteristic 0.51 MeV photons. At the same time the
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1.1 Neutrinos in physics

produced neutron is absorbed by CdCl2 in the medium and emits photons a few

µs later. These signals in coincidence were seen in their experiment and Reines

won the Nobel prize in 1995 for the feat of detecting the first neutrinos.

The νµ was detected in 1962 at the Brookhaven National Laboratory through

the decays of pions to muons and its associated neutrino [27]. The direct obser-

vation of the third generation ντ , took place in 2000 at the DONUT experiment

at CERN [28].

One can determine the number of neutrino species with mass less than half

the mass of Z through the invisible decay width of Z. The LEP experiment gives

a very accurate measurement of Nν = 2.994± 0.012 [29]. Cosmological data that

constraint the number of neutrino flavours suggest an upper limit on Nν to be 3

[25]. However, each of these measurements come with several caveats and it is

not discounted that there could exist more neutrino flavours.

1.1.3 Parity and weak interaction

In 1957 Lee and Yang proposed that parity is violated in the weak interactions

[30]. This solved the so called τ − θ puzzle. Experiments by Wu et al [31] and

Telegdi et al [32] among others, soon verified this. Both the above experiments

which violated parity maximally since only left-handed neutrinos participate in

weak interactions. This subsequently led to the V − A model [33, 34] of weak

interactions, which modified the 4-Fermi interaction involving beta decay to be

of the form
GF√

2
[p̄γµ(cV − γ5cA)n][ēγµ(1 − γ5)ν] ,

to incorporate parity violation. In SM, neutrinos interact only via weak interac-

tions: they interact with W boson through the charged current interaction that

gives rise to the term

LCC = [g/(2
√

2)]¯̀γµ(1 − γ5)νW−
µ + h.c. (1.1)

in the SM Lagrangian. The interaction with Z boson is the neutral current

interaction that gives rise to the term

LNC = [g/(2 cos θW )]ν̄γµ(1 − γ5)νZµ (1.2)

5



1.1 Neutrinos in physics

in the SM Lagrangian. The left-chiral projection operator PL ≡ (1−γ5)/2 ensures

that only left-handed neutrinos νL ≡ [(1−γ5)/2]ν and right-handed antineutrinos

ν̄R ≡ ν̄(1+γ5)/2 take part in the interactions which naturally gives rise to parity

violation.

As we saw, neutrinos played a crucial role in the understanding of the weak

interaction and SM. They also helped unravel the nuclear sub-structure by way of

deep inelastic scattering (DIS) experiments. More recently, the first clear signal

of physics beyond SM were revealed by the solar and atmospheric neutrinos. We

discuss the solar and atmospheric neutrino problems to motivate the paradigm

of massive neutrinos and neutrino oscillations as a solution of these problems.

1.1.4 Solar neutrinos

The sun radiates energy that is produced in nuclear fusion reactions that take

place inside its core. The major reaction is 4p →4 He + 2e+ + 2νe, though there

are other reactions that produce heavier elements like Be, B and emit νe. The νe

is the only neutrino species that can be produced in these nuclear reactions and

their energies are about (0.1 − 15) MeV.

Figure 1.1 shows the energy spectra of neutrinos produced in various reactions

inside the sun, according to what is called the standard solar model (SSM). The

electroweak theory predicts the shapes of the spectra, and the absolute magni-

tudes of the fluxes are calculated from SSM to be about 6 × 106 cm−2s−1 [35].

The first indication that something was missing, came from the observation

of solar neutrinos by the chlorine experiment of Davis et al [36]. The data from

the gallium experiments i.e. GALLEX [37] and SAGE [38] also suggested that

the flux of νe from the sun was smaller than expected by almost a factor of two.

The Kamiokande (and later Super-Kamiokande) water Cherenkov experiment

also detected a lower than expected νe flux [39]. The fluxes observed in these

experiments were not the same, and it only added to the mystery. This could

happen because these experiments detected νe in different energy ranges. It

was thus apparent that whatever the mechanism of flux depletion, needed to be

energy dependent. Neutrino decay and/or magnetic moment were considered as

possible solutions to the problem but they do not solve the problem. Neutrino
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1.1 Neutrinos in physics

Figure 1.1: The solar neutrino fluxes predicted in the SSM. Figure taken from

reference [35].

oscillations and matter effects seemed to be the dominant reason for the deficit.

With the data from the SNO [40], this hypothesis has been confirmed, and it also

finds that the SSM prediction for the total flux, a quantity that is not affected

by oscillations, to be completely consistent with what is measured. That also

strengthens our belief in SSM.

1.1.5 Atmospheric neutrinos

The Earth receives cosmic rays, comprising mainly protons, from all over the

universe. The cosmic rays, upon interaction with the nuclei in the atmosphere,

produce pions and kaons. Both pions and kaons decay predominantly into muons

and muon neutrinos:

π+ → µ+νµ, π− → µ−ν̄µ, K+ → µ+νµ, K− → µ−ν̄µ .

The muons then decay into electrons, one neutrino and one antineutrino:

µ− → e−ν̄eνµ, µ+ → e+νeν̄µ .

7
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1.1 Neutrinos in physics
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Figure 1.2: The atmospheric neutrino flux predicted in various models. Figure

taken from reference [41].

As long as the detector does not distinguish between neutrinos and antineutrinos,

this effectively means that the cosmic rays produce muon and electron neutrinos

in the ratio 2:1. The energies of these neutrinos are about (0.1 − 10) GeV. The

fluxes of various neutrinos is predicted using a Monte Carlo simulation of the

atmosphere as a detector with which the cosmic ray protons interact. Various

groups calculate the expected atmospheric neutrino flux and calculated flux has

a small dependence on the angular direction because of the presence of magnetic

fields. Figure 1.2 shows the expected flux averaged over all angles, as calculated

by various groups.

The first hint that something was missing in our understanding of atmospheric

neutrinos came from the observation at the Kamiokande detector [42], that the

muon-electron ratio was much smaller than 2. The model dependence of the

predictions of atmospheric neutrino fluxes can be held “guilty” in this case, but

what could not be dismissed so easily was that the νe flux remained unaffected.

The most puzzling aspect was the zenith angle dependence of the fluxes. One

expects that at higher energies (multi-GeV) we receive a higher flux from the

8
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1.1 Neutrinos in physics

region near horizon (as compared to the zenith) because the mesons have longer

flight-time to decay. The low energy neutrinos (sub-GeV) are unaffected because

they are produced from low energy mesons which have a short lifetime anyway.

One also expects a small dependence on zenith angle due to earth’s magnetic

field. What is seen, is that the νe flux is almost exactly what one expects, but

the low energy νµ flux is depleted, more so for upcoming events. At high energies

though, the νµ flux is depleted only for upcoming events and the downcoming flux

is close to expectation. Remarkably, all these details are explained by neutrino

oscillations.

1.1.6 Reactor and accelerator neutrinos

Nuclear reactors produce a large number of νe from their fission reactions. The

energy of these neutrinos are of the order of 1 MeV. Accelerators produce neutri-

nos of energies about (1 − 10) MeV. While much of the initial excitement about

neutrinos came from the solar and atmospheric neutrinos, reactor and accelera-

tor neutrino beams are a much better calibrated source and have been used very

efficiently to nail down the oscillation scenario. In particular the data from Kam-

Land [43], which detects neutrinos from several nearby reactors, helped confirm

the oscillation scenario. Geo-thermal neutrinos, which provide a background at

low energies, are also typically detected at detectors sensitive to reactor neutrino

energies.

1.1.7 Supernova neutrinos

A supernova (SN) explosion is one of the strongest neutrino sources. The grav-

itational binding energy of the SN, of the order of 1053 ergs, is released almost

completely (∼ 99%) in the form of neutrinos and antineutrinos of all flavours and

energies between (5 − 80) MeV. These neutrinos propagate through the matter

of the exploding star and thus details of the space and time dependent density

profile of the star are encoded in the emitted flux of neutrinos. This may allow

one to study the matter distribution inside the SN [20, 21] by studying the pat-

tern of flavour conversion of the neutrinos that are detected from the explosion.

Bounds on magnetic moments and decay rates are also typically very strong in

9



1.2 Our present understanding

the case of SN neutrinos. The observation of 19 neutrinos from the SN 1987A

[44, 45] itself constrains quite strongly the decay rates, magnetic moments and

other properties. A high statistics signal from a galactic SN promises to provide

a wealth of information. There is also a diffuse supernova neutrino background

(DSNB) due the neutrinos coming to us every moment, from all the past SN

explosions in the Universe which may also be possible to observe [46]. There are

other cosmological sources of neutrinos, in particular relic neutrinos, however we

shall not digress into a discussion of those.

1.2 Our present understanding

Taking into account all the existing data, except results from LSND [47] which

remain to be confirmed/ruled out by Miniboone, we now have a global picture.

It involves a deviation from SM by postulating neutrinos to have mass. We have

three active neutrino flavours νe, νµ, ντ that are the eigenstates of the weak

interaction. They are related to the three neutrino mass eigenstates ν1, ν2, ν3

(with masses m1, m2, m3 respectively) by the PMNS mixing matrix U ≡ UPMNS,

which is parametrised using three angles θ12, θ23, θ13 and a phase δ. The phase

is important for CP violation in the lepton sector. A global analysis of neutrino

data [48] tells us the magnitudes of neutrino mass square differences ∆m2
21 and

∆m2
31, and the angles θ12 and θ23.

There is presently only an upper limit on θ13. The sign of ∆m2
31, which tells

us whether the mass ordering (also referred as hierarchy) is normal or inverted,

is not known. We don’t know the absolute scale of neutrino mass either, which

will tell us whether the masses are quasi-degenerate or hierarchical. There is no

measurement of δ yet, and measurement of CP violation in lepton sector will

be a big challenge. Also unknown is whether the mass term for neutrinos is of

Dirac or Majorana nature. In case the neutrinos are Majorana fermions, there

will be two more phases that can appear in the mixing matrix, whose physical

significance is not well understood. There are numerous experiments dedicated

to address one or more of these unresolved issues [49]. All these questions are of

importance in understanding the kind of physics we should expect beyond SM,

and thus a detailed study to measure these quantities is essential. When there

10



1.3 Plan and scope of the thesis

are matter effects involved, there is an interplay of many of these parameters.

Understanding matter effects is thus crucial for determination of many of these

quantities.

1.3 Plan and scope of the thesis

We have advertised that neutrinos have played an important role in understanding

the SM. We also claim that neutrino oscillation solves the solar and atmospheric

neutrino problems. This is our first departure from the SM and confirms the

importance of neutrinos as a valuable probe of weak physics beyond SM. We

now need to justify the claim by showing how the neutrino deficit problems are

solved. So, in chapter 2, we will treat neutrino oscillations in detail and show

how the atmospheric neutrino problem gets explained. We will then focus our

attention to the effect that ambient matter has on neutrinos propagating through

it. We will see that it is essential to include matter effects to explain the solar

neutrino problem. Then we will investigate the cases where there are sudden

density fluctuations. We will see that there are novel phenomena that can take

place in such situations. The experimental data relevant to such a case is limited

and therefore it is an interesting playground for predictions. We introduce a

mechanism that could enhance neutrino oscillations (which we call phase effect)

and complete our formal analysis of neutrino oscillation. We conclude the chapter

by discussing what can be inferred from an observation of the said phase effects.

In chapter 3, we will use the above formalism in the context of SN neutrinos

to understand the effect of sudden density changes in the medium. We will see

that observation of SN neutrinos can in principle tell us a lot about the neutrino

masses and mixing, as well as about the SN explosion dynamics. We will also

investigate the practical possibility to detect the phase effects at present and

planned detectors. Finally, we will state our conclusions and provide an outlook

towards future directions of the work outlined in this thesis.

11



Chapter 2

Neutrino flavour conversions in

matter

We will begin this chapter by reviewing some methods to calculate the extent

of flavour conversion due to neutrino oscillations in vacuum and in matter. We

shall focus our attention to neutrino conversions in matter, in particular, when

the density of the medium changes quite abruptly in a small region giving rise to

enhanced conversion. There exist different methods to approximately calculate

the conversion probabilities and we will outline some of those. We then present

our suggested method for calculating the conversion probabilities, which works

reasonably well even if the density is not strictly decreasing or increasing along

the trajectory of the neutrino. It also has an added advantage of reproducing the

neutrino wavefuctions at the end of the trajectory, and not just the conversion

probabilities. We conclude the chapter by discussing a new kind of enhancement

in neutrino conversion.

2.1 Neutrinos in vacuum

2.1.1 Vacuum oscillations

The Dirac equation governs the time evolution of neutrinos. For ultra-relativistic

neutrinos, chirality conservation holds good [17] and it is convenient to remove

the spin structure from the equations of motion. We therefore operate by the

12



2.1 Neutrinos in vacuum

Dirac operator once more to arrive at the Klein Gordon equation,
(

d2

dx2
+ m2

)

|ν〉 =
d2

dt2
|ν〉 . (2.1)

Here, the state |ν〉 is an n dimensional vector and m2 is a n×n matrix for n

flavours. We consider neutrinos with the same momentum [50], and the d2/dx2

term is proportional to unity (independent of flavour) and can be dropped because

we are only interested in the relative phases between the eigenstates. Moreover,

once the direction of propagation of the neutrino is specified, the above second

order equation reduces to a first order equation that is the Schrödinger equation

with an effective Hamiltonian. The effective Hamiltonian for a neutrino mass

eigenstate with mass mi is

Hi =
√

p2 + m2
i ≈ p +

m2
i

2p
≈ p +

m2
i

2E
, (2.2)

when only terms linear in (mi/E) are kept. Again ignoring the terms that are

independent of flavour, we shall take the effective neutrino Hamiltonian to be

Hi =
m2

i

2E
. (2.3)

Let us work in a two neutrino framework for clarity, and take να and νβ as

the two neutrino flavour eigenstates. They will not be the same as the mass

eigenstates [6] in general now that the neutrinos are taken to be massive. Let the

mass eigenstates be νi and νj with masses mi and mj respectively. The flavour

eigenstates are a linear combination of mass eigenstates:

να = cos θ νi + sin θ νj

νβ = − sin θ νi + cos θ νj . (2.4)

Writing the above equation in matrix notation we have,

νa = Uaiνi , (2.5)

where a runs over (α, β) and sum over i is implied. For two-neutrino mixing, the

mixing matrix U can be parametrised in terms of a single angle θ:

U =

(

cos θ sin θ
− sin θ cos θ

)

. (2.6)
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2.1 Neutrinos in vacuum

If neutrinos are produced as a flavour eigenstate να their time evolution will be

given by

να(t) = cos θ νi(t) + sin θ νj(t)

= cos θ e−
im2

i t

2E νi(0) + sin θ e−
im2

j t

2E νj(0) . (2.7)

The probability that we observe the same flavour eigenstate να at time t (called

survival probability) is then

Pαα ≡ P (να → να) = |να
∗να(t)|2 = 1 − sin2 2θ sin2

(

∆m2
jiL

4E

)

. (2.8)

Here ∆m2
ji ≡ m2

j −m2
i , and we have replaced t by L, the distance travelled, since

neutrinos travel with the speed of light. We will continue to replace t by x from

now on. This probability is oscillatory in distance, and hence the nomenclature

neutrino oscillation in vacuum. The observability of these oscillations depends

on an interplay of three quantities ∆m2
ji, L and E. Given a ∆m2

ji and a certain

E, the distance scale over which one can observe the fluxes to oscillate are Losc ∼
E/∆m2

ji. As the neutrino travels over distances much larger than Losc, they

oscillate many times over and we may not observe oscillations if the neutrinos

decohere. At distances much shorter than Losc the oscillations are anyway not

observed because the neutrinos have not oscillated enough by then.

2.1.2 Looking at atmospheric neutrinos

We will now use the above formalism to explain the atmospheric neutrino prob-

lem. Let us analyse the atmospheric neutrino data shown in figure 2.1 from

Super-Kamiokande (SK), which is a water Cherenkov detector.

The experimental data is in black, the expected flux without (after) accounting

for oscillations is in red (green). We see that the data for electron-like neutrino

events matches with the expected number of events. The muon-like sub-GeV

events are always less than expected, the depletion being greater for negative

cos Θ, i.e. upcoming events. The muon-like multi-GeV events match with the

expected rate for cos Θ > 0, i.e. downgoing events (which travel ∼ 10km),

14



2.1 Neutrinos in vacuum
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Figure 2.1: The zenith angle dependence of atmospheric neutrinos at SK. Figure

taken from reference [42].

whereas a significant depletion is observed for the upcoming neutrinos (which

travel ∼ 10000km).

All these features can be explained with the ansatz that the νµ oscillate away

to ντ and that the νe remain almost unaffected while they travel from the point

they are produced in the atmosphere, to the point they interact in the detector.

Let us recall that the low energy neutrinos (sub-GeV) have smaller oscillation

length that the high energy neutrinos (multi-GeV). The sub-GeV νµ can thus

oscillate sufficiently even in the atmospheric column. This explains that for sub-

GeV νµ events the depletion is not very strongly dependent on the zenith angle.

This is not true for multi-GeV νµ which don’t oscillate unless they travel a longer

distance, explaining the markedly higher depletion for upcoming events. One can

fit all the data to with two parameters ∆m2
atm and θatm which to parametrise

P (νµ → νµ) using the equation (2.8). A full three neutrino analysis relates the

effective ∆m2
atm to ∆m2

21 and ∆m2
31. To a good approximation we find ∆m2

atm ≡

15
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2.2 Neutrinos in uniform matter density

∆m2
31 and θatm ≡ θ23 [12]. Neutrino decay also could explain this experiment,

but a characteristic dependence of the survival probability on L/E confirms [51]

the oscillation hypothesis. The K2K experiment sends a νµ beam 250 km away to

their detector and confirms the oscillation hypothesis independent of flux models

[52]. There are more experiments lined up to confirm this solution and improve

the precision of measurements. The best fit values for the mixing parameters are

[42]

∆m2
atm = (1.5 − 3.4) × 10−3eV2 , sin2 2θatm = 0.92 − 1.0 (90%c.l.) (2.9)

2.2 Neutrinos in uniform matter density

In almost all physical situations, neutrinos travel through matter and interact

weakly with it. When neutrinos travel through a medium, the amplitude for

elastic forward scattering interactions with the electrons and nuclei therein adds

up constructively with the amplitude of free propagation. This makes it necessary

to including a potential energy term in the effective Hamiltonian. A potential

due to charged current interactions is present only for electron neutrinos whereas

the potential due to neutral current interaction is present for all flavours [8].

This is simply because the medium has very few muons or tauons, as opposed to

electrons. The charge current and the neutral current potentials respectively are

VCC =
√

2GFNe (2.10)

VNC = −GF Nn/
√

2 (2.11)

where Ne is the number density of electrons and Nn is the density of neutrons

in the medium. These expressions can be arrived at either using an analogy with

optics as was done originally [8] or derived from a field theoretic treatment of the

neutrino propagator as done in the references [53, 54, 55, 56]. The potential due

to neutral current interaction VNC is a matrix proportional to unity in the flavour

basis and can be dropped. The charge current potential VCC , which exists only for

electron neutrinos, is not proportional to unity and must be kept. Thus the effect

of the medium is to make the mass matrix non-diagonal even if it was almost
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2.2 Neutrinos in uniform matter density

diagonal in vacuum. This is very different from ordinary vacuum oscillations

because it arises due to an interaction and not merely by mixing of states.

Let us consider the mixing of νe with another flavour eigenstate να, and write

the effective Hamiltonian in the (νe να) basis as

Hf = U

(

m2
1/(2E) 0

0 m2
2/(2E)

)

U † +

(

VNC 0
0 VNC

)

+

(

VCC 0
0 0

)

.(2.12)

Since we can drop an overall global phase the above Hamiltonian is equivalent to

Hf =
1

4E

(

−∆m2 cos 2θ + 2A ∆m2 sin 2θ
∆m2 sin 2θ ∆m2 cos 2θ

)

(2.13)

as far as the mixing angle and the difference between the eigenvalues is concerned.

Here ∆m2 ≡ m2
2 −m2

1 and A ≡ 2E VCC . In matter, the eigenvalues of the matrix

in equation (2.13) are

m2
1m/2m

2E
=

1

2E

(

A

2
∓ 1

2

√

(∆m2 cos 2θ − A)2 + (∆m2 sin 2θ)2

)

. (2.14)

Thus, the effective ∆m2 in matter becomes

∆m2
m ≡ m2

2m − m2
1m =

√

(∆m2 cos 2θ − A)2 + (∆m2 sin 2θ)2 . (2.15)

The effective Hamiltonian Hf can be diagonalised by a rotation matrix U as given

in equation (2.6), with the mixing angle θm in matter

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ − A
. (2.16)

The thing to note is that even if the mixing angle θ in vacuum were small,

the matter effects can give rise to large effective mixing angle θm. This is called

the Mikheyev-Smirnov-Wolfenstein (MSW) resonance [9, 10], and occurs when

A = ∆m2 cos 2θ . (2.17)

In a medium of constant electron density, the effective values of ∆m2 and

the mixing angle change, but the remaining dynamics stays the same as in the

vacuum case. As an example, the flavour conversion probability is

Peµ = sin2 2θm sin2

(

∆m2
mL

2E

)

. (2.18)
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2.3 Neutrinos in monotonically changing material density

Let us remark at this stage, that the solution to the atmospheric neutrino problem

cannot be νµ oscillating away to a sterile neutrino νs, which has no SM interac-

tions, because then we would have seen the matter effects on νµ relative to νs.

The matter effects for νµ and ντ are same, keeping our earlier vacuum analysis

valid.

2.3 Neutrinos in monotonically changing mate-

rial density

Neutrinos travel through varying matter densities in many physical situations

(e.g. through the earth or supernovae) where the extent of flavour conversion

depends not only on the matter density but also the gradient of the density. To

analyse neutrino conversions in such a situation is in general complicated. For

some special forms of the density variations we can exactly solve the propagation

equations, see reference [57] and the references therein. Specifically, the case

of exponentially decreasing density is exactly solvable, and approximates the

density variation inside the sun quite well. In most other cases, one has to

settle for an approximate solution. If a small parameter exists in the problem,

then the expressions for the amplitude of neutrinos conversion can be arranged

in a perturbative expansion in that parameter. We illustrate this idea using a

perturbation theory in the mixing angle, which is taken to be small. In the most

general case, one has to compute the neutrino wavefunctions through arbitrary

density variations by numerically solving the differential equation that governs

their propagation.

2.3.1 LSZ approximation

For most realistic density profiles we cannot solve the problem exactly. We will

see in this section that if the density changes very gradually, then we can think

of the mass eigenstates as propagating independent of each other. This allows

a calculation of the conversion probability of one mass eigenstate to another,

assuming the density variation to be almost linear around the MSW resonance.
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2.3 Neutrinos in monotonically changing material density

Let U(θm) be the unitary matrix that diagonalises the effective Hamiltonian

locally in matter. Note that θm is a function of position. Then we have

(

ν1m

ν2m

)

= U †(θm)

(

νe

νµ

)

. (2.19)

The Schrödinger’s equation then gives the evolution of the neutrino states as

i
d

dx

(

ν1m

ν2m

)

= i
dU †(θm)

dx

(

νe

νµ

)

+ iU †(θm)
d

dx

(

νe

νµ

)

=

(

m2
1m/(2E) −idθm/dx

idθm/dx m2
2m/(2E)

)(

ν1m

ν2m

)

. (2.20)

For the case of a very slowly changing density, the off-diagonal elements in equa-

tion (2.20) are always much smaller than |m2
2m − m2

1m|/(2E), so that the mass

eigenstates in matter, ν1m and ν2m, propagate almost independently of each other,

without mixing. This limit corresponds to

∆m2

(∆m2
m)2

sin 2θ
dA

dx
� ∆m2

m

2E
(2.21)

when we substitute for θm in matter. The condition for “adiabaticity”, i.e. for

the mass eigenstates in matter not to mix, the reduces to

γ ≡ ∆m2

2E

sin2 2θ

cos 2θ

(

1

A

dA

dx

)−1

res

� 1 . (2.22)

If the above inequality is violated only in a small region of space, one can

still consider the mass eigenstates to travel independently of each other in the

remaining region. The inequality is broken maximally near the MSW resonance,

where the mass eigenvalues are closest to being degenerate. Some fraction of each

mass eigenstate gets converted to the other at the point where the adiabaticity

condition is violated. This fraction is the conversion probability. Note that

this statement is made using the language of probabilities and not amplitudes.

The probability of “jump” of one mass eigenstate in matter to another can be

computed by using the Landau Stückelberg Zener (LSZ) approximation [58, 59].

The jump probability is approximately

Pjump = Exp(−πγ/2) (2.23)
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2.3 Neutrinos in monotonically changing material density

where γ is calculated at the MSW resonance. The assumption that goes into this

result, is that the density varies linearly around the MSW resonance, and then

the exact result for the case of linear variation of density is used. This result can

be derived using contour integrals as in the reference [57]. There is an improved

treatment [60] where it is argued that γ be calculated at the point of maximal

violation of adiabaticity (PMVA) defined as the postion where the ratio of the

diagonal term to off diagonal term of the matrix in equation (2.20) is minimum.

The following equation defines xPMV A:

d

dx

∆m2
m

(dθm/dx)
= 0 . (2.24)

The jump probability thus depends on ∆m2, mixing angle, the density profile

encountered by the neutrinos, as well as the neutrino energy. This is again a

phenomenon that is quite different from neutrino oscillations in either vacuum or

matter of constant density. Here, the conversion happens because the mass eigen-

states are not the same all over space and there is a finite tunneling probability

for a mass eigenstate to transform to another at the point where the barrier is

smallest, i.e close to the resonance or the PMVA. This probability of conversion

of one mass eigenstate to another is identically zero if adiabaticity is not violated.

We must also note the following: Adiabatic neutrino flavour conversion depends

sinusoidally on the distance between source and detector. Non-adiabatic neutrino

conversion on the other hand, due to a steep density gradient, is not dependent

on the distance between source and detector.

2.3.2 Looking at solar neutrinos

Let us now address the solar neutrino problem, with the aid of the formalism

developed in the last section. The experiments suggested that the detected flux

of νe events was about a factor of two less than what was expected. The depletion

seemed to be energy dependent only at the low energies, i.e. energies comparable

to the thresholds of chlorine and gallium detectors. We need to explain the deficit

and the energy independence of the depletion.

The answer to the problem is the so-called LMA-MSW scenario [61]. It corre-

sponds to (for E > 5 MeV) a completely adiabatic transition (Pjump = 0) at the
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Figure 2.2: Observed survival probability of solar νe as a function of energy.

Figure taken from the reference [39].

resonance the neutrinos undergo inside the sun. Thus, νe, which are produced

as ν2m inside the sun (because at high densities where A � ∆m2
�/(2E), so that

θm ≈ π/2 and νe ≈ ν2m), travel through the matter inside the sun and emerge

from the sun as ν2. These ν2, being mass eigenstates in vacuum, reach the earth

as ν2, where they are detected as νe with a probability sin2 θ� and as νµ/τ with a

probabilty cos2 θ�.

The data from SK [39], as shown in figure 2.2, shows no energy dependence for

E > 5 MeV. This strongly suggests that the oscillations are getting averaged out.

We remember that the SuperKamiokande detects νe and νµ/τ via elastic scattering

(ES) on electrons, but with a factor of 6 lower cross-section for the latter. This

means that the experiment is sensitive to the quantity sin2θ�+(1/6)cos2θ� which

is approximately 0.46. That gives a simple estimate of θ� ≈ 35◦. At lower

energies (E < 5) MeV there is no MSW resonance and the conversion rate is

slightly different.

The clinching evidence in favour of the oscillation hypothesis came from the

SNO (Sudbury Neutrino Observatory) experiment that used heavy water as the

detector,and detected neutrinos through three reactions [40]. Elastic scattering

(ν + e− → ν + e−), as we saw, can be said to be sensitive to the combination of

fluxes Φe + (1/6)Φµ+τ , which is constrained to be in the green band in figure 2.3.

21

Chapter1/Chapter1Figs/flxratio.eps
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Figure 2.3: The results from SNO on various linear combinations of νe and νµ/τ

fluxes. Figure taken from the reference [40].

Charged current (CC) (νe + d → p + p + e−), which can take place only with νe,

and hence sensitive to Φe, which is constrained to the red band. Neutral current

(NC) (ν +d → n+p+ν), which is blind to the flavour of the neutrino species and

hence effectively measures Φe + Φµ + Φτ , constrained in the blue band. It also

agrees with the measurement of Φe + (1/6)Φµ+τ by Super-Kamiokande shown as

the black band.

As can be clearly seen, the SSM prediction is bang on the NC flux that is blind

to oscillations. This confirms our belief on SSM as it predicts a correct total flux.

What is also borne out, is that the depleted νe are oscillating to νµ/τ . It also

rules out a dominant role of sterile neutrinos in the solar neutrino oscillations.

The KamLand experiment confirmed the LMA solution and measured the values

of ∆m2
� and θ� to a much better accuracy [43]. A three neutrino analysis relates

the ∆m2
� and θ� to ∆m2

21 and θ12 respectively, in the limit θ13 = 0 and ∆m2
� �

∆m2
atm. The best fit values for the mixing parameters are [62]

∆m2
� = (7.2 − 9.5) × 10−5eV2 , sin2 θ� = 0.21 − 0.37 (3σ) . (2.25)
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2.3 Neutrinos in monotonically changing material density

2.3.3 Perturbative expansion in a mixing angle

We saw that one can calculate neutrino survival probabilities in the LSZ approx-

imation. However that method only gives survival and conversion probabilities

and not the amplitudes of the neutrino wavefunctions after it crosses the vari-

able density medium. It is sometimes desirable to know the wavefunctions, as we

shall find in the next section. In this section we will review one particular way

to calculate the wavefunctions. The following method is based on a perturbative

solution to the equations of motion.

Lets look at the propagation of flavour eigenstates. In this basis the density

variation enters in a simpler way and its easier to solve. Let νβ be the relevant

linear combination of νµ and ντ . We have,

i
d

dx

(

νe

νβ

)

=
1

4E

(

A(x) − ∆m2 cos 2θ ∆m2 sin 2θ
∆m2 sin 2θ −A(x) + ∆m2 cos 2θ

)(

νe

νβ

)

(2.26)

where A(x) ≡ 2EV (x) ≡ 2
√

2GF YeρE/MN . We see that the potential depends

on electron fraction Ye, density of matter ρ, neutrino energy E and the average

nucleon mass of the medium MN . These two coupled first order equations give

rise to the second order equation

− d2

dx2
νe − (φ2 + iφ′)νe = η2νe (2.27)

where

φ(x) =
1

4E
[A(x) − ∆m2 cos 2θ] , η =

∆m2

4E
sin 2θ (2.28)

and prime (′) denotes derivative with respect to x. In order to find the survival

probability of νe, we solve for the νe wavefunction with the initial conditions

νe(0) = 1, νβ(0) = 0. These conditions are equivalent to

νe(0) = 1 , i
dνe

dx

∣

∣

∣

∣

0

= φ(0) . (2.29)

The reference [63] illustrates some simple perturbative methods to solve the above

equations. We remark that the perturbation in ~ will not capture non-adiabatic
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2.3 Neutrinos in monotonically changing material density

effects at first order in perturbation theory. The “logarithmic perturbation” ap-

proximation solves the differential equation (2.27) for small mixing angles by

choosing

g ≡ 1 − cos 2θ (2.30)

as the small expansion parameter. Denoting

νe = eS(x) , with S ′(x) = c0(x) + gc1(x) + O(g2) (2.31)

so that

νe(x) = exp

(
∫ x

0

dx1c0(x1) + g

∫ x

0

dx1c1(x1) + O(g2)

)

, (2.32)

the solution becomes

νe(x) = exp

(

− iQ(x)

2
− g

i∆m2x

4E

− g
(∆m2)2

2 (2E)2

∫ x

0

dx1e
iQ(x1)

∫ x1

0

dx2e
−iQ(x2)

)

+ O(g2) .(2.33)

Here we have defined the “accumulated phase”

Q(x) ≡ 1

2E

∫ x

0

dx1

[

A(x1) − ∆m2
]

. (2.34)

The survival probability Pee(x) ≡ P (νe → νe) at x = X then becomes

Pee(X) = exp

(

−g
(∆m2)2

2 (2E)2

∣

∣

∣

∣

∫ X

0

dx1e
iQ(x1)

∣

∣

∣

∣

2
)

+ O(g2) . (2.35)

The integral in the above expression can be evaluated using the stationary phase

approximation. The integral oscillates rapidly unless Q′(x) ≈ 0. So the entire

contribution to the integral can be taken to be from the saddle point xs, which

is the point where Q′(xs) = 0, i.e.

A(xs) = ∆m2 . (2.36)

Note that this is also the resonance point in the small angle limit.

For a monotonic density profile, there is only one saddle point xs and the

survival probability is

Pee ≈ exp

(

−g
π(∆m2)2

2E|A′(xs)|

)

, (2.37)

which agrees with the LSZ jump probability [58, 59] in the limit of small mixing

angle, and hence small g, even when Pee ∼ 1.
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2.4 Neutrinos through non monotonic density variation

2.4 Neutrinos through non monotonic density

variation

The method illustrated in the previous section works for non-monotonic density

profiles also, once we make a small extension. However, the effects that are

observed are far from trivial. The most important difference between a monotonic

density profile and a non-monotonic density profile is that, for a monotonic profile

there is only one saddle point whereas for a non monotonic density there can be

several of them. In that case one gets contributions from all the saddle points

of the integrand in equation (2.35). If the saddle points are far apart and the

integrals about each of them die out very fast, then the contributions from each of

them should be added independently of each other but taking care of the relative

phases between them.

2.4.1 Perturbative expansion in a mixing angle

For a non-monotonic density profile, neutrinos can experience more than one res-

onance at the same density but at different positions. In that case Q′(x) = 0 at

more than one point. If the resonances are sufficiently far apart, the contribu-

tions from each of them may be added independently of each other. Their total

contribution to the integral in equation (2.35) is

∫ X

0

dxeiQ(x) ≈
∑

i

eiαieiQ(xi)

(

4πE

|A′(xi)|

)1/2

(2.38)

where i runs over all the saddle points. Note that α = π/4 if A′(xs) < 0 and

α = 3π/4 if A′(xs) > 0. The probability calculated using equation (2.35) now

has terms which depend on the differences between the integrated phases

Φij ≡ Q(xj) − Q(xi) + αj − αi =

∫ xj

xi

1

2E

[

A(x) − ∆m2
]

dx . (2.39)

In general,

Pee(X) = exp

[

−g

(

∑

i

a2
i + 2

∑

i<j

aiaj cos Φij

)]

+ O(g2) (2.40)
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Figure 2.4: Toy density profile of equation (2.43).

where

ai ≡
(

π(∆m2)2

2E|A′(xi)|

)1/2

. (2.41)

For example, when there are only two saddle points the survival probability

is given by

Pee = exp(−ga2
1) exp(−ga2

2) exp(−2ga1a2 cos Φ12) . (2.42)

The first two factors in equation (2.42) are the individual LSZ jump probabilities

for the two level crossings. The last factor gives rise to oscillations in Pee as a

function of energy. The oscillation pattern has its maxima at Φ12 = (2n + 1)π

and minima at Φ12 = 2nπ where n is an integer.

We illustrate the validity and limitations of the small angle approximation

with a toy density profile, shown in figure 2.4.

ρ(x) =

{

a + b1x
2 (x < 0)

a + b2x
2 (x > 0)

, (2.43)

The parameter values are chosen to be, a = 500 g/cc, b1 = 105 g/cc /(108 cm)2

and b2 = 2.5 × 105 g/cc /(108 cm)2 . We also show the positions of resonance
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Figure 2.5: Survival probability Pee as a function of energy for θ = 0.02 rad

≈ 1.1◦.

densities for various energies, which are given by

ρE(g/cc) ≈ ±∆m2(eV 2) cos 2θ/(2 × 7.6 × 10−8YeE(MeV )). (2.44)

The horizontal lines on the graph are the resonance densities for various energies

(5, 10, 52 MeV) taking θ = 0.02 rad ≈ 1.1◦, Ye = 0.5 and ∆m2 = 0.002 eV 2.

Notice how the saddle points come closer for larger energies till E = ER(max) = 52

MeV, after which there is no resonance.

Figure 2.5 shows the survival probability Pee as a function of energy, both

the exact numerical result and the result of our analytic approximation for small

angles. Neutrinos are produced at x → −∞ and we calculate Pee at x → ∞ using

our toy density profile. It can be seen that at such small angles (θ = 0.02 rad

≈ 1.1◦), the approximation works extremely well. The green (light) curve is the

numerically evaluated exact result. The blue (dark) curve is our solution with

small angle approximation including the phase effects. The red (dotted) curve

is the approximate solution if the phase effects are neglected or decoherence is

assumed between successive resonances. Notice that our approximate solution
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Figure 2.6: Survival probability Pee as a function of energy for θ = 0.1 rad ≈ 5.7◦.

The convention for the lines is the same as that used in figure 2.5.

is valid only upto E = ER(max). Note that the amplitude of the oscillations

is comparable to the deviation of the average survival probability from unity.

That is, the oscillation effect is not a small effect. Indeed, the oscillation term

is of the same order as the averaged effect, as can be seen from equation (2.42).

Figure 2.5 also shows the average value of Pee that one would have obtained if

one naively combined the jump probabilities at the two resonances. Our analysis

gives additional oscillations in the survival probability as a function of neutrino

energy about this average value. This novel effect is what we call as the “phase

effect,” and is clearly significant as can be seen from the figure. An important

feature of the oscillations is that the “wavelengths,” i.e. the distances between

the consecutive maxima or minima, are larger at larger E.

The resonances start overlapping at E ≈ ER(max) (as defined in figure 2.4),

which is where our approximation starts breaking down, as can be seen in fig-

ure 2.5. For E > ER(max), the neutrinos no longer encounter a strict resonance,

and our approximation gives Pee = 0 identically. However, the resonances have

finite widths which may affect the conversion probabilities of neutrinos with
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2.4 Neutrinos through non monotonic density variation

E ≈ ER(max). The sharp jump observed in figure 2.5 at E ≈ 52 MeV is therefore

not a real effect, but a limitation of our technique.

The small angle approximation starts failing for larger angles and lower en-

ergies. Figure 2.6 shows that the amplitude at low energies is not calculated

correctly for θ = 0.1 rad = 5.7◦. This is not surprising, if we notice that the

expression for Pee one gets from equation (2.42) assuming decoherence, matches

with P1P2 + (1 − P1)(1 − P2) only for small theta. However, note that the po-

sitions of maxima and minima of Pee are still predicted to a good accuracy. We

shall provide an argument (due to Dighe) in the next subsection that these can be

computed accurately for the whole allowed range of θ13, given the non-monotonic

density profile between the two resonances.

2.4.2 Understanding the phase effects

Let us consider a toy density profile with only one minima (or maxima). A

neutrino with energy Ek encounters two resonances R1 and R2 at x = x1 and

x = x2 respectively, so that

ρEk
≡ ρ(x1) = ρ(x2) . (2.45)

let us assume Ye to be a constant throughout the region of interest. Let us also

assume that the propagation of neutrino mass eigenstates is adiabatic everywhere

except in the resonance regions (x1−, x1+) and (x2−, x2+) around the resonance

points x1 and x2 respectively. In the limit of small angles, the widths of the

resonances are small:

∆ρ ≈ ρ tan 2θ . (2.46)

Therefore, x1− ≈ x1 ≈ x1+ and x2− ≈ x2 ≈ x2+. We shall work in this ap-

proximation, and shall use the notation xi± only for the sake of clarity wherever

needed.

At x � x1, the density ρ(x) � ρEk
, so that the heavier mass eigenstate νH

is approximately equal to the flavour eigenstate νe. Let us start with νe as the

initial state:

νe(x � x1) ≈ νH . (2.47)
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The mass eigenstate νH propagates adiabatically till it reaches the resonance

region x ≈ x1:

νe(x1−) ≈ νH . (2.48)

While passing through the resonance, unless the resonance is completely adia-

batic, the state becomes a linear combination of νH and νL, the lighter mass

eigenstate. Note that the phases of νH and νL can be defined to make their

relative phase vanish at x = x1+.

νe(x1+) = cos χ1νH + sin χ1νL , (2.49)

where P1 ≡ sin2 χ1 is the “jump probability” at R1 if it were an isolated resonance.

The two mass eigenstates νH and νL propagate to the other resonance R2,

gaining a relative phase in the process (the overall phase of the state is irrelevant):

νe(x2−) = cos χ1νH + sin χ1 exp

(

i

∫ x2

x1

∆m̃2

2E
dx

)

νL , (2.50)

where ∆m̃2 is the mass squared difference between νH and νL in matter:

∆m̃2(x, E) =
√

[∆m2 cos 2θ − 2EV (x)]2 + (∆m2 sin 2θ)2 . (2.51)

The effect of the resonance R2 may be parametrised in general as

(

νH(x2+)
νL(x2+)

)

=

(

cos χ2 sin χ2e
iϕ

− sin χ2e
−iϕ cos χ2

)(

νH(x2−)
νL(x2−)

)

. (2.52)

where P2 ≡ sin2 χ2 is the “jump probability” at R2 if it were an isolated resonance.

From equation (2.33), one can deduce that in the limit x2− ≈ x2+, we have

ϕ ≈ Q(x2+ − x2−) ≈ 0. The state νe(x2+) can then be written as

νe(x2+) =

[

cos χ2 cos χ1 + sin χ2 sin χ1 exp

(

i

∫ x2

x1

∆m̃2

2E
dx

)]

νH

+

[

cos χ2 sin χ1 exp

(

i

∫ x2

x1

∆m̃2

2E
dx

)

− sin χ2 cos χ1

]

νL . (2.53)

For x > x2+, the mass eigenstates travel independently and over sufficiently

large distances, decohere from one another. At x � x2, since ρ(x) � ρEk
, the
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2.4 Neutrinos through non monotonic density variation

heavier mass eigenstate νH again coincides with νe and we get the νe survival

probability as

Pee =

∣

∣

∣

∣

cos χ2 cos χ1 + sin χ2 sin χ1 exp

(

i

∫ x2

x1

∆m̃2

2E
dx

)
∣

∣

∣

∣

2

(2.54)

= cos2(χ1 − χ2) − sin 2χ1 sin 2χ2 sin2

(
∫ x2

x1

∆m̃2

4E
dx

)

. (2.55)

If the phase information were lost, either due to decoherence or due to finite

energy resolution of the detectors [64] the survival probability would have been

Pee(nophase)
= P1P2 + (1 − P1)(1 − P2) (2.56)

= cos2 χ1 cos2 χ2 + sin2 χ1 sin2 χ2 , (2.57)

which matches with equation (2.55) when the sin2(
∫

..) term is averaged out to

1/2. This result is also recovered to first order in g from the equation (2.42).

The sin2(
∫

..) term in equation (2.55) gives rise to the oscillations in Pee(E). If

two consecutive maxima of Pee are at energies Ek and Ek+1 such that Ek > Ek+1,

then the condition

∫ x2(Ek+1)

x1(Ek+1)

∆m̃2(x, Ek+1)

2Ek+1

dx −
∫ x2(Ek)

x1(Ek)

∆m̃2(x, Ek)

2Ek

dx = 2π (2.58)

is satisfied. The quantity (Ek − Ek+1) is the “wavelength” of the oscillations, as

observed in the energy spectrum.

Note that ∆m̃2(x, E) is equal to |A(x)−∆m2| in the small angle limit. More-

over, this quantity is rather insensitive to θ in the allowed range of θ13. Therefore,

it is not a surprise that the predictions of the positions of maxima and minima

in the small angle approximation are accurate and robust in the whole range

θ < 13◦. However the perturbation theory in g fails at large mixing angles.

Since θ is small, the left hand side of (2.58) is approximately equal to the area

of the region in the density profile plot enclosed by the densities ρEk
and ρEk+1

:

A ≈ 2π
MN√
2GFYe

. (2.59)

This simple fact allows us in principle, to partially reconstruct the density profile

through the following procedure: Figure 2.7(a) shows a schematic plot of the
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Figure 2.7: Reconstructing the density profile from the oscillations in the observed

flux shown in (a). The area of each rectangle in (b) is equal to A.

observed flux as a function of energy. Let Ek be the energies corresponding to

the local maxima in the observed spectrum, with increasing k corresponding to

decreasing energies. If we assume that ρEk
≈ ρEk+1

, the distance between R1and

R2 in the region ρEk
< ρ < ρEk+1

is then given by

rk ≈ A/(ρEk+1
− ρEk

) . (2.60)

This procedure may be repeated to estimate the separation of resonances for all

the maxima that can be identified. If one of the branches of the density profile is

steep enough to be approximated well by a density discontinuity, this procedure

can be used to reconstruct the density profile of the other branch. We consider

this special case because,it is relevant to supernova density profiles. Figure 2.7(b)

indicates this procedure graphically. The resolution of r(ρ) may be increased by

using the local minima in addition to the maxima, taking into account that the

phase between a minimum and the next maximum is half the phase between two

consecutive maxima or minima.

Non-monotonic density profiles are encountered by neutrinos escaping from a

core collapse supernova during the shock-wave propagation. If the phase effects

are observable at neutrino detectors, the above procedure may help us reconstruct

the shock-wave partially. This procedure for reconstructing the density profile is
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2.4 Neutrinos through non monotonic density variation

somewhat crude, and the information obtained is only on the density profile along

the line of sight. We also need to assume that neutrinos coming from different

parts of the neutrinosphere encounter nearly the same density profiles. However,

it is the only way we know as of now that can tell us about the density profile deep

inside the astrophysical objects like supernovae, directly from the data. Moreover,

note that this procedure is not affected by the uncertainties in the primary fluxes,

since the positions of the maxima and minima are independent of the primary

fluxes. Since neutrinos are the only particles that can, even in principle, carry

information from so deep inside the exploding star, it is important to explore the

feasibility of the detection of these phase effects. That will be the subject of the

next chapter.
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Chapter 3

Phase effects in neutrino

conversions in a supernova

Density variation inside an exploding supernova (SN) is not monotonic and is

expected to be very drastic. In such a situation non-adiabatic effects become

important. We will, in this chapter, study the non-adiabatic effects of matter on

neutrinos coming from a SN. Those neutrinos would encode useful information

about neutrino masses and mixing, as well as about the internal structure of the

SN. So a probable high-statistics signal from such an explosion will need to be

decoded to obtain useful information about neutrinos and stellar structure. In

the first section, we mention a few preliminaries about SN and neutrino fluxes

expected from a SN. Subsequently, we use some knowledge of the primary fluxes

and SN density profiles to calculate the neutrino signal observable at a detector

on earth. The role of matter effects is discussed using the methods discussed in

the previous chapter. We present our results on the role of phase effects in the

context of SN neutrinos and discuss some of the aspects that we have ignored in

our analysis before we end this chapter.

3.1 Supernova neutrinos

Let us start by recalling some facts about SN explosions and the neutrino fluxes

expected from them. These aspects are not completely understood and most of
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3.1 Supernova neutrinos

what we know comes from numerical hydrodynamic simulations of the exploding

star. The discussion that follows is based on the text by Raffelt [65].

3.1.1 Explosion mechanism

A large star with more that 10 times the mass of the sun (M�) becomes a red or

a blue super giant in the final states of its life. Such stars usually have an onion

like structure, with each successive inner shell producing successively heavier

elements via nuclear reactions. The core is mainly made of iron, because iron is

stable and does not undergo fusion. When the mass of the iron core reaches the

Chandrasekhar limit (≈ 1.4 M�), the electron degeneracy pressure is insufficient

to counter-balance the inward gravitational force. When nuclear fuel for fusion

runs out, then the core starts collapsing in the absence of radiation pressure. As

the core collapses to a radius of about 10 Km, the density reaches a few times the

nuclear density and the core stiffens. The gravitational binding energy is mainly

converted to neutrinos and antineutrinos of all flavours, which are copiously pair-

produced inside the core of the SN. Most of these neutrinos cannot easily escape

because the density is very high. They remain trapped due to total internal

reflection, inside what can be crudely thought of, as a neutrinosphere. For 10

MeV neutrinos a density of about 1012 gm/cc and above is sufficient for trapping.

This gives us an estimate of the size of the neutrinosphere. The outer material,

which is not in acoustic communication with the bouncing core, keeps falling in

and the energy density at the boundary of the core and mantle keeps increasing

until eventually the stellar matter bounces off the core creating a shock-wave

which goes through the star and blasts off the outer envelope. This scenario

where the shock-wave is the source of the explosion is known as the prompt

explosion scenario. However, simulations suggest that the shock-wave loses a

lot of its kinetic energy by dissociating the nuclei in the stellar matter, as it

propagates outward. As a result, the shock-wave stops after about 100ms and

cannot cause a successful explosion.

It is therefore conjectured that more energy must be deposited in the shock-

wave while it moves outwards, for the explosion to be successful. This can be

happen if neutrinos escape the neutrinosphere and deposit their energy behind
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3.1 Supernova neutrinos

the shockwave. If enough energy is transferred to the shock-wave then the dying

shock-wave can be revived and it can cause a successful explosion by blowing off

the envelope of the star. This scenario is known as the delayed explosion scenario.

The fact that almost all (∼ 99%) of the energy of a SN goes out in neutrinos,

makes this scenario quite plausible from energetic grounds. However, the exact

mechanism of the explosion is not clear and the simulations do not always end in

successful explosions, telling us that not everything is settled in our understanding

of SN explosions. In fact simulations suggest that there are two shock-waves that

are formed and that too can be understood in terms of explosion dynamics similar

to but more detailed than the above treatment. Please refer to this review [66]

for a detailed exposition of the explosion mechanism and this paper [16] for a

more updated view of the subject.

3.1.2 Primary fluxes

Let us now focus on the primary fluxes of neutrinos that are expected from a SN.

As the simplest approximation one can assume that the entire binding energy Eb

of the star is converted to neutrinos. For a star with radius R and mass M the

binding energy is,

Eb ≈
3GNM2

5R
= 1.60 × 1053

(

M

M�

)2(
10km

R

)

. (3.1)

If one also assumes equipartition of energies among the different flavours, the

total energy into each flavour is about (1/6)Eb. We know that the neutrinos are

emitted from the surface of the neutrinosphere whose radius is about 10km. If

we apply the virial theorem to estimate the average kinetic energy Ekin of the

particles we have,

Ekin =
GNMmN

2R
. (3.2)

This tells us that the neutrinos from a SN have energies of about 10MeV. The

duration of neutrino emission is a multiple of the neutrino diffusion time-scale

over the neutron star radius. This allows an estimate that neutrinos are emitted

over a duration of order 1 second.

Neutrinos are emitted from a SN in roughly four distinct phases. In the

phase when the star is collapsing, the flux is comparatively low but steeply rises
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3.1 Supernova neutrinos

when the revived shock-wave travels through the neutrinosphere, breaking apart

the nuclei. This suddenly releases a flavour-specific burst of νe for about a few

milliseconds. This is known as the neutronisation burst phase. In the next phase,

the mantle cools off by emitting neutrinos for about 0.5 − 1 second. Finally the

protoneutron star at the core cools by radiating away neutrinos for about 5− 10

seconds. This final phase is called the Kelvin-Helmholtz cooling phase. We will

investigate the non-adiabatic matter effects that may be important in this final

phase of neutrino emission.

There is a certain flavour dependence of the fluxes. In the central regions of

the star neutrinos of all flavours are produced via pair production. The neutrinos

interact with each other and the material and remain trapped. The νe and ν̄e are

produced mainly by electron capture on nuclei. Since there are more neutrons

than protons one gets more νe than ν̄e. Equipartition theorem then tells us that

the ν̄e have slightly higher energies. Among the neutrinos, the νµ and ντ decouple

before the νe and therefore have a larger average energy.

The above general expectations are borne out by most elaborate simulations.

However the detailed predictions are not identical. The exact energy spectrum,

and luminosities of the neutrinos are not predicted unambiguously and merely

relies on existing models.

While the spectra are time-dependent, the average energies do not depend

strongly on time. The luminosity is very high in the early stages and decreases

slowly with time. We will ignore the time-dependence of the primary spectra in

the present analysis for simplicity. One should include effects of a time dependent

spectra and density profile for a more complete treatment.

The primary fluxes of ν̄e and ν̄x, denoted by F 0
ν̄e

and F 0
ν̄x

respectively, are

parametrised by

F 0
νi

=
Φ0

E0

(1 + α)1+α

Γ(1 + α)

(

E

E0

)α

exp

[

−(α + 1)
E

E0

]

. (3.3)

For illustration, we choose two models of neutrino flux, the Garching model [67]

that uses the parameters

αν̄e
= αν̄x

= 3 , E0(ν̄e) = 15MeV , E0(ν̄x) = 18MeV , Φ0(ν̄e)/Φ0(ν̄x) = 0.8 ,
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3.2 Phase effects in neutrino conversions in a supernova

and the Livermore model [68] that uses

αν̄e
= αν̄x

= 3 , E0(ν̄e) = 15MeV , E0(ν̄x) = 24MeV , Φ0(ν̄e)/Φ0(ν̄x) = 1.6 .

The only experimental data that we can use to compare with the above pre-

dictions, comes from the supernova SN1987A that occurred in the Large Mag-

ellanic Cloud about 50 Kpc away. It resulted in 19 events at two detectors and

does not constrain the simulations strongly. With planned detectors like Hyper-

Kamiokande [69], a galactic SN could result in up to 100000 events in the first

ten seconds of the explosion, which will allow us to learn a lot more about SN

neutrino fluxes.

3.2 Phase effects in neutrino conversions in a

supernova

Our approach is to take a given SN density profile [16] and primary spectra at a

fixed time and numerically solve for the evolution of the neutrino wavefunctions

through it. That allows us to calculate the conversion probabilities to be seen

on earth. Then we convolve the conversion and survival probabilities with the

primary fluxes and include effects like energy resolution of the detector, allowing

us to calculate the expected signal with phase effects. We will end the chapter by

enumerating what we could learn from such a signal and how we could extract

information from it.

3.2.1 Observables for matter effects

To begin with, there are some simplifications to this reasonably complicated

problem. The first simplification is that though we have to formally consider

a three-neutrino mixing problem, it factorises into two simpler two-neutrino mix-

ing problems. There are two independent ∆m2 values and that tells us that there

will be two different densities at which the MSW resonance can occur. There

is a significant hierarchy in the ∆m2 values and that assures us that the two

resonances never happen together. This so called separation of H and L reso-

nances [17] means that the three neutrino mass eigenstates travel independently
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3.2 Phase effects in neutrino conversions in a supernova

and if ever there is a jump probability between any two neutrinos, the third mass

eigenstate is not involved. This immense simplification allows our two neutrino

solutions to hold. The second simplification is that the L resonance that takes

place in neutrinos is always adiabatic [19], whereas the jump probability PH be-

tween the two mass eigenstates at the H resonance is equal to Pee as computed in

the previous chapter. The survival probability of νe after passing through both

the H and L resonances is

p = PH sin2 θ� (NH), p = sin2 θ� (IH) (3.4)

where NH and IH stand for normal and inverted mass hierarchy respectively.

Here θ� is the solar mixing angle. Similarly, the survival probability of ν̄e after

passing through both the H and L resonances is

p̄ = PH cos2 θ� (IH), p̄ = cos2 θ� (NH) . (3.5)

Clearly, since the phase effects appear through PH , they will be visible only in νe

for normal hierarchy and only in ν̄e for inverted hierarchy. There are important

earth matter effects that have to be considered [70, 71] if these neutrinos pass

through the earth but we will restrict our analysis to down-going events only.

In present and planned water Cherenkov [69] and scintillation [72] detectors,

the main neutrino detection channel is the inverse beta decay reaction ν̄ep →
ne+ that allows the reconstruction of ν̄e energies. Therefore we consider only

the ν̄e spectrum in our analysis. However an analogous analysis can be easily

performed in the neutrino channel for a detector able to measure the νe spectrum,

for example using liquid argon [73].

3.2.2 Results for a typical SN density profile

In order to illustrate the phase effects on p or p̄, we consider a typical snapshot of

the density profile of a SN during a shock-wave [16], as shown in figure 3.1. The

resonance densities for E = 5 and 80 MeV are also shown taking ∆m2 = 0.002 eV 2

and θ = 0.02 rad ≈ 1.1◦. The forward shock F and the reverse shock R are sharp

density discontinuities, the density change of a factor of two or more taking place

over a distance of much less than a km. The density variation in the “contact
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Figure 3.1: Snapshot of a shock-wave density profile at t = 5 sec.

discontinuity” C, which is the transition region between the shock-accelerated

and neutrino-heated SN ejecta, takes place more slowly, over a distance of more

than 100 km [16]. The mass accretion region A behind the forward shock-wave,

and the low density bubble B have gradually changing densities. The region T is

the tail of the shock-wave.

The neutrinos, while passing through these regions, may undergo multiple

level crossings. The extent of flavour conversion in each region will depend on the

value of θ13 and the steepness of the density profile in that region. It is found that

for θ ∼ 0.01 rad or higher, the density variations in the mass accretion region A,

the low density bubble B and the contact discontinuity C are too gradual for any

non-adiabaticity. We therefore concentrate on the forward shock F, the reverse

shock R and the tail T.

Figure 3.2 shows the value of p̄ as a function of energy for θ = 0.02 rad

≈ 1.1◦. The rapid oscillations correspond to the relative phase ΦRF (≈ ΦTF ) that

is accumulated by the mass eigenstates between resonances regions R and F (T

and F). Such high frequency oscillations are virtually impossible to observe, given

the practical limits on the energy resolutions of neutrino detectors.
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Figure 3.2: Survival probability p̄ of ν̄e for inverted hierarchy with the density

profile in figure 3.1. The “averaged probability” is obtained by taking a running

average over the energy range corresponding to the typical energy resolution of a

scintillation detector.
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We average out these high frequency oscillations by taking a “running aver-

age” over the energy range corresponding to the typical energy resolution of a

scintillation detector. The low frequency oscillations that survive are found to cor-

respond to the relative phase ΦTR accumulated by the mass eigenstates between

resonances in regions T and R. Since these two resonances are closer compared

to the resonance pairs R-F or T-F, the frequency of oscillations is smaller. The

same oscillation pattern is observed if the survival probability is computed by

assuming that the resonance in region F is completely adiabatic, which confirms

that the pattern is indeed due to the level crossings in regions T and R. These

low frequency oscillations may be observable at the neutrino detectors.

The second dip observed at E ≈ 70–80 MeV is a part of the “double dip”

feature pointed out in [16] that appears due to the presence of both the forward

as well as the reverse shock. Note that p̄ goes to cos2 θ� at both very low and

very high energies, where PH goes to unity. The oscillations in the low energy

region (E < 20 MeV) are rapid, the fluctuations observed therein are in part

due to numerical artifacts and details of the density profile and are not a robust

feature.

In order to demonstrate the oscillation effects in the observed ν̄e flux at a

neutrino detector, we plot in figure 3.3(a) the quantity

dNν̄e
/dEν̄e

= σ(Eν̄e
)Fν̄e

= σ(Eν̄e
)[F 0

ν̄x
+ p̄(F 0

ν̄e
− F 0

ν̄x
)] (3.6)

as a function of the neutrino energy Eν̄e
, where we have normalised the spectrum

such that the total number of events is 105. Here we use the differential cross

section as computed in [74] including the leading QED radiative corrections and

final state interactions. It may be observed that the oscillation wavelengths in the

energy range 30–60 MeV are ≈ 2–8 MeV. Moreover, the positions of the extrema

are independent of the primary fluxes.

The observation of the oscillation pattern in ν̄e spectrum would imply the

following:

• It confirms that the mass hierarchy is inverted (if the oscillations were in

νe spectrum, the hierarchy would have been normal.)
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3.2 Phase effects in neutrino conversions in a supernova

• The time interval during which the oscillations appear tells the times at

which the shock-wave was present in the region of densities 500–5000 g/cc.

• The mixing angle θ13 is nonzero. Indeed, sin2 θ13 >∼ 10−5 for the oscillations

to be observable.

• If θ13 has already been measured at reactor experiments, one can obtain

constraints on the slopes of the features within the shock-wave profile. In

particular, even though the forward and the reverse shock may be taken to

be almost density discontinuities, the slope of the tail T needs to be steep

enough to ensure that the resonance there is semi-adiabatic.

• With ∆m2 = ∆m2
atm known and θ13 small, the distance between consec-

utive maxima or minima of the oscillation pattern depends only on the

density profile immediately behind the reverse shock. This could allow us

to reconstruct the profile of the tail region.

However, the spectrum shown in figure 3.3(a) is not directly observable: one

can only observe the energy spectrum of positrons produced by the inverse beta

reaction. Assuming quasielastic scattering, the positron energy is given by [74]

Ee =
(Eν − δ)(1 + ε) + ε cos ϑ

√

(Eν − δ)2 − m2
eκ

κ
, pe =

√

E2
e − m2

e (3.7)

where ϑ is the angle of scattering, Mp the proton mass, ε ≡ Eν̄e
/Mp, and κ ≡

(1 + ε)2 − (ε cos ϑ)2. For E ≈ 40 MeV, we have ε ≈ 1/25, so that the positron

energy is spread over a range of ≈ 4 MeV depending on the scattering angle.

Given that the successive maxima of the oscillation pattern are separated by

only about 2–8 MeV in this energy range, the oscillation pattern is significantly

smeared out.

A further smearing of the oscillation pattern is caused by the finite energy

resolution of the detector. The energy resolution of a water Cherenkov de-

tector is typically ∆ECH(MeV) ≈ 1.6
√

E(10MeV) and washes off the oscilla-

tions completely. For a scintillation detector, the resolution is much better,

∆ESC(MeV) ≈ 0.2
√

E(10MeV).
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3.2 Phase effects in neutrino conversions in a supernova
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Figure 3.3: The upper figure (a) shows the oscillations in the energy spectra

of the ν̄e, if the ν̄e energy were accurately measurable, for the Garching and

Livermore models. The bottom figure (b) shows the observed positron energy

spectra in a scintillation detector. All the spectra are normalised so that the total

number of events is 105. The figure (b) also shows the statistical fluctuations for

105 events with an energy binning of 0.5 MeV.
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3.2 Phase effects in neutrino conversions in a supernova

There is also the additional problem that the density profile itself changes

with time. While in principle that should allow tracking the shape of the tail in

time, the practical problem is that it severely limits statistics.

We show in figure 3.3(b) the spectrum of the observed positron energy E ′
e

after taking (3.7) into account and using the energy resolution of a scintillation

detector. It is observed that one or two extrema at high energies (E ≈ 40–60

MeV) may still survive for the Livermore model where the spectrum extends to

higher energies, but their clean identification would require ∼ 105 events at a

scintillation detector in a single time bin.

Figure 3.3(b) also shows the positron energy spectrum for 105 events, binned

in 0.5 MeV energy intervals, which is approximately the energy resolution of a

scintillation detector near E = 40 MeV.

The total number of events expected even at a future 50 kt scintillation de-

tector is ∼ 104 for a SN at a distance of 10 kpc [72]. Even with 1 sec time bins,

the number of events in each bin will be ∼ 103. This is a number too small for

our purposes. Thus, the identification of the phase effects seems very unlikely,

unless the SN is as close as a kpc.

The density profiles in the shock wave are quite uncertain, and one may expect

that some possible profiles give rise to oscillations with larger amplitudes and

wavelengths, which would be easier to observe. In general, larger amplitudes need

a larger ratio |A′(T )/A′(R)| [see (2.41) and (2.42)], whereas larger wavelengths

need a sharp tail, i.e. a larger |A′(T )|. At the same time, the adiabaticity

parameter at the two resonances has to be 0.1 <∼ γ <∼ 2 for E ≈ 40 MeV. However,

we find that even with such finely tuned density profiles, the improvement in

observability is not significant.
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Chapter 4

Conclusions

Neutrino oscillations have provided us with the first glimpse of physics beyond

the SM. The formalism that we have now, explains satisfactorily the solar and

atmospheric neutrino deficits. It also explains the detailed signatures observed in

numerous other experiments using reactor or accelerator neutrinos. The paradigm

of massive neutrinos is thus now a part of the standard picture. The consolida-

tion of this framework will involve precise measurement of the neutrino masses

and the mixing angles. Numerous experiments with the above goal, are either

already operational, or in a stage of development. We must reiterate at this stage

that understanding of matter effects is crucial for many of these experiments. In

particular, non-adiabatic matter effects may be important when neutrinos expe-

rience a sharp density discontinuity, as is the case for SN shockfronts and the

core-mantle discontinuity in the earth. This was the primary reason for us to

study matter effects on neutrino oscillations.

We have, in this thesis presented a technique to calculate neutrino conver-

sion probabilities for arbitrary matter profiles using a perturbation theory in the

relevant mixing angle, which needs to be small. Our method is specially useful

whenever there is more than one non-adiabatic MSW resonance encountered by

the neutrinos. An analytic understanding of the matter effects can be arrived at

using our results, which is useful for the determination of oscillation parameters

from the observed neutrino spectra.

We discuss the enhancement (or depletion) of neutrino conversion due to the

presence of multiple non-adiabatic MSW resonances. We remark that there are
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important interference effects in such a scenario, which depend on the adiabatic

phase acquired by a neutrino between two resonances. This acquired phase de-

pends on the energy of the neutrino and therefore the neutrino conversion is

enhanced (or depleted) at certain energies. These phase effects are not neglible

and cannot, in general, be ignored. We also show that the oscillatory pattern

in the observed energy spectrum allows a reconstruction of the density profile in

the region where the neutrinos undergo a resonance. We also show that in the

event that the acquired phase changes too rapidly as a function of energy, the

oscillations get averaged out and the result corresponds to ignoring the phase

effects.

We have also applied our technique to a particular case where we expect

important signatures of phase effects, i.e. to SN neutrinos. Neutrinos coming out

of an exploding SN, experience multiple MSW resonances that are not adiabatic.

We find that phase effects are present in the conversion probabilities and that they

affect the observed spectrum. However, the oscillations in the spectrum do not

seem possible to detect with present or planned detectors, given the limitations

to their energy resolution. Nevertheless, we have mentioned the conclusions that

can be drawn from an observation of the phase effects.

There are several limitations to our approach. Our method of calculating the

wavefunctions perturbatively depend on knowing the density profile accurately.

It might be interesting to what effect small fluctuations about the given profile

have on the results. Our calculation also makes a saddle point approximation

at the resonances. Clearly at certain energies it does not hold good anymore.

Application of the our technique to some specific density profiles does bring about

the existence of phase effects in principle. As far as SN neutrinos is concerned,

we dont seem to get observable effect with density profiles that one gets from SN

simulations. With some minor modifications the above profiles seem to produce

larger phase effects, but probably still insufficient to be observed. We have not

studied in depth, the effects of small fluctuations in the density profile. We have

ignored earth matter effects in our treatment and also have not taken into account

the time dependence of the neutrino signal. Some of these simplifications could

be done away with to produce a more robust treatment.

47



It will be interesting to apply some of the ideas developed in this thesis, to

a neutrino beam travelling through the earth and encountering the core-mantle

density discontinuity. Whether the phase effects are sizable in this case and if so

whether they will be observable. It is encouraging to note that the uncertainities

in fluxes and the density profile will be much less in this case. The fact that

the source luminosity will not depend drastically on time, will also allow for

longer exposure time and better statistics. In the event that the phase effects are

observable, it will tell us about the density profile at the core-mantle interface.
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