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Foreword

The cosmos has remained a favorite laboratory to test the laws of fundamental

physics - tests of the laws of gravity being the most well-known example. However,

over the last century we have progressed from merely charting the gross motion of

astrophysical objects, to observing more subtle phenomena associated with them.

Many of these phenomena depend crucially on the laws of particle physics. As a

result, astrophysics and particle physics are now connected more intimately than

ever, with a promise to yield valuable insights into the laws of Nature. Neutrinos,

being ubiquitous and weakly interacting, explore regions that are out of bounds to

other particles, and are an ideal candidate to probe this deep connection.

Our knowledge of neutrinos has seen a revolution of sorts in the last few decades,

thanks to a number of experiments on atmospheric, solar and terrestrial neutrinos.

These experiments lead us to believe that there are three flavors of massive neutrinos

νe, νµ and ντ which are related to the mass eigenstates by the leptonic mixing

matrix. As a result, they can transform into each other through neutrino oscillations.

Precision measurement of neutrino masses and mixing parameters is an active area

of research and much progress is expected in the years to come.

The detection of astrophysical neutrinos, i.e. neutrinos from supernovae, active

galactic nuclei etc., is expected to lead to deep insights into astrophysical processes

and particle physics. Similarly, neutrinos from the all-pervading cosmological relic

neutrino background, which owing to their extremely low energies are practically

impossible to observe directly and only indirectly probed through measurements

of the cosmic microwave background radiation, will reveal facets of the large scale

structure and evolution of the Universe.
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viii Foreword

Among astrophysical sources of neutrinos, supernovae stand out, literally by virtue

of their brilliance. During a supernova core-collapse, the star emits almost all of its

gravitational binding energy into neutrinos, over a duration of a few seconds. The

luminosity in neutrinos, for the duration of the burst, outshines the optical emission

from all other stars in the galaxy. These neutrinos, that arrive a few hours before the

explosion is seen optically, could serve as an early warning signal for astronomers. It

is expected that the high statistics neutrino signal from a future galactic supernova

will allow detailed studies of the emitted neutrinos. Such a study could reveal the

pattern of neutrino masses, necessary to reconstruct the neutrino mass matrix and its

possible underlying symmetries. The supernova neutrino signal may also allow us to

probe the leptonic mixing angle θ13 that determines the strength of the CP violation

effects in neutrino oscillations. These are some of the frontier goals of the neutrino

physics community, and are believed to be an important step towards identifying

the nature of physics beyond the Standard Model. Moreover, one may observe time-

dependent signatures of turbulence and shock-wave propagation in the stellar matter

and thus monitor the explosion mechanism in real-time. These measurements are

likely to shed light on a problem that has eluded astrophysicists for a very long

time, i.e. how do supernovae explode? Supernova cores are also a probable site for

the synthesis of heavier nuclei, and neutrino observations could be useful to test

such a possibility. An interplay between supernova neutrinos and cosmology can be

investigated in the context of the diffuse neutrino background coming from all past

core-collapse supernovae in the Universe. This diffuse supernova neutrino signal is

sensitive to the supernova rate, closely related to the cosmic star formation rate

which is an essential probe of the evolution of galaxies and the Universe.

Supernova neutrinos have thus been a topic of interest for physicists and astrophysi-

cists alike. A satisfactory understanding of neutrino flavor conversion in supernovae

will be necessary to correctly predict and interpret many of these observations.

Previous studies on this subject took into account neutrino oscillations and their

resonant flavor conversions in the stellar mantle. It was assumed that neutrino-

neutrino interactions are too feeble to be important. However, recent studies indicate

that this assumption is not generally true. The neutrino density itself is very large
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near the supernova core, leading to extremely drastic effects. It is unavoidable

to include neutrino-neutrino interactions which give the neutrinos an additional

“effective mass” through elastic forward scattering off other neutrinos. The effective

mass is flavor-dependent, since it depends on the flavor of the other background

neutrinos. This gives rise to nonlinear neutrino oscillations, by coupling the flavor

histories of all neutrinos and antineutrinos. The nonlinear oscillations manifest

themselves in various ways, depending on the initial conditions, and have a rich

phenomenology. The study of neutrinos from these astrophysical sources therefore

demands careful consideration of these nonlinear effects.

In this thesis, we put forward a framework to study nonlinear flavor oscillations of

neutrinos. This concerns astrophysical neutrinos in general, but we concentrate

mainly on neutrinos from a galactic core-collapse supernova where these effects

are the most complicated and interesting. A large body of recent work has been

devoted to understanding the rich and complex behavior of the nonlinear neutrino

oscillations, near the supernova core. It is evident that these effects significantly

modify the spectra of emerging neutrinos. Building on the insights gained from these

recent studies, we develop a complete three-flavor framework, including the effects

of non-sphericity of the source, and predict the flavor evolution. This treatment is

largely independent of supernova phenomenology and applies equally well to dense

ensembles of neutrinos elsewhere, e.g. neutrinos in the early Universe or neutron

star mergers. We discuss phenomenological implications of nonlinear oscillations for

supernova neutrinos and show that these effects occurring deep inside the supernova

leave unmistakable signatures in the emerging neutrino spectra. We claim that it

could allow a determination of the pattern of neutrino masses even at vanishingly

small θ13, thought to be a very challenging task otherwise. We show that the

nonlinear effects depend on the progenitor in the early stages of the explosion, and

speculate that this could identify the progenitor based on the observed neutrino

signal. The expected diffuse supernova neutrino flux is also shown to be modified

due to these effects. We are thus led to conclude that these results will contribute

towards a better understanding of neutrino masses and mixing, as well as supernova

astrophysics and cosmology.
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Chapter 1

Introduction

In this chapter, we outline our present understanding of neutrinos, stellar collapse

leading to a supernova (SN), and the nature of associated neutrino emission. We

then present a short review of SN neutrino phenomenology.

1.1 Neutrinos in a nutshell

There are three known neutrinos νe, νµ and ντ , produced in association with the

corresponding charged leptons e, µ and τ respectively [1]. These are called “flavor

eigenstates”, because they are the eigenstates of the weak interactions. These aren’t

the same as the “mass eigenstates”, which are by definition the vacuum-propagation

eigenstates.

The mass eigenstates ν1, ν2 and ν3 are related to the flavor eigenstates as




νe

νµ

ντ


 = U




ν1

ν2

ν3


 , (1.1)

where U is known as the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, or

simply the leptonic mixing matrix [2, 3]. This matrix is parameterized, following

1
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the Particle Data Group, as [1]

U = R23Γ13R13Γ
†
13R12 , (1.2)

where Rij is a Euler rotation matrix in the plane i–j with an angle θij and Γ13 =

Diag(1, 1, eiδ) encodes the CP violating phase. The antineutrinos are similarly called

ν̄e, ν̄µ and ν̄τ and related to their mass eigenstates by U ∗. It is clear that neutrinos

produced as flavor eigenstates will propagate as a linear combination of the mass

eigenstates which will acquire non-trivial relative phases if the energy eigenvalues

are different. This naturally leads to a non-zero probability of the neutrino being

detected in another flavor at a later time. Let’s illustrate this idea using two neutrino

flavors. We start with a νe at time t = 0, which is written in terms of the mass

eigenstates and the mixing angle θ as

|ν(0)〉 = νe = cos θ|ν1〉 + sin θ|ν2〉 . (1.3)

If the energy difference of the two mass eigenstates is ∆E, then the state (up to a

global phase) at time t is given by

|ν(t)〉 = cos θ|ν1〉 + e−i∆Et sin θ|ν2〉 . (1.4)

Now, the probability of this state to be observed as a νe is |〈νe|ν(t)〉|2, which is

called the survival probability Pee of the initial state νe. For relativistic neutrinos

travelling in vacuum with momentum p we have

∆E =
√

|p|2 + m2
2 −

√
|p|2 + m2

1 ≈
∆m2

2E
, (1.5)

where ∆m2 = m2
2 − m2

1 is called the mass-squared difference. One therefore finds

Pee = 1 − sin2 2θ sin2

(
∆m2t

4E

)
(1.6)

This sinusoidal dependence of the flavor composition on time (sometimes rewritten

using the pathlength L = ct) is called “Neutrino Flavor Oscillations” [4].
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Neutrinos interact through the usual weak interactions which allow them to scatter

off e, p and n in the background matter. For neutrino oscillations, we mainly

consider elastic forward scattering which appear through interference with just one

power of the coupling GF [5]. Almost all these contributions are flavor-blind, except

the charged scattering processes which mainly affect νe, but not νµ or ντ , because of

the absence of µ or τ leptons in matter. The effective potential energy for νe due to

matter is thus
√

2GF ne(r), where ne(r) is the local electron density of the medium.

For the ν̄e the potential has a relative minus sign. This extra contribution changes

the Hamiltonian, thus changing both the effective θ and ∆m2. The matter density

can satisfy the condition

∆m2/(2E) = ±
√

2GF ne(r) (1.7)

and the energy eigenvalues can become effectively degenerate for either neutrinos

or antineutrinos, depending on the sign of ∆m2. This makes the effective mixing

angle approximately π/4 causing large amplitude flavor conversions. This is called

a Mikheyev-Smirnov-Wolfenstein (MSW) resonance [5, 6]. This resonance is said

to adiabatic if ne(r) does not vary too fast along the neutrino trajectory at the

resonance, i.e

γ =
∆m2

2E

sin2 2θ

cos 2θ

(
1

ne(r)

dne(r)

dr

)−1

res

� 1 . (1.8)

If γ < 1 at the resonance then the resonance is said to be nonadiabatic. The Landau-

Zener level-crossing probability at the resonance, which measures the chance of one

instantaneous mass eigenstate converting to another due to the non-adiabaticity, is

given by [7, 8]

Pres = e−πγ/2 . (1.9)

A similar potential
√

2GFnν,ν̄(r) is also generated due to neutrinos and antineutrinos

in the background, as was first pointed out by Pantaleone [9, 10]. While it is

negligible in most circumstances, it plays a crucial role for SN neutrinos, and its

effects are the main subject of this thesis. We shall therefore discuss this issue in

detail later.
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The above understanding of neutrino oscillations and experiments using atmospheric,

solar and man-made reactor and accelerator neutrinos, allow us to measure the

relevant mass and mixing parameters (See e.g. the update as of 2008 in [11]).

The data is now described satisfactorily in the three-neutrino oscillation framework

defined by two mass squared differences ∆m2
� and ∆m2

atm, three mixing angles θ12,

θ23 and θ13, and the CP -violating phase δ. The parameters θ23 and |∆m2
atm| are

determined by atmospheric neutrino experiments and long baseline experiments to

be

sin2 θ23 = 0.50+0.07
−0.06 , (1.10)

|∆m2
atm| = 2.40+0.12

−0.11 × 10−3eV2 , (1.11)

the errors being specified at 1σ. The parameters ∆m2
� and θ12 are determined by

solar and reactor experiments to be

sin2 θ12 = 0.304+0.022
−0.016 , (1.12)

∆m2
� = 7.65+0.23

−0.20 × 10−5eV2 . (1.13)

Current data on neutrino oscillations do not determine the sign of ∆m2
atm. One

refers to ∆m2
atm > 0 as normal mass hierarchy and ∆m2

atm < 0 as inverted mass

hierarchy. For θ13 we know from reactor experiments

sin2 θ13 = 0.01+0.016
−0.011 . (1.14)

The phase δ is completely unknown. The smallness of θ13 and ∆m2
�/|∆m2

atm| tell

us that ∆m2
� ≈ ∆m2

12 and ∆m2
atm ≈ ∆m2

13 ≈ ∆m2
23. The absolute neutrino mass is

not known, but the sum of neutrino masses is expected to be less than about 1 eV

from cosmology [12].
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1.2 Neutrinos from core-collapse supernovae1

A star with a mass more than (8− 10) M�, where M� denotes the mass of the Sun,

becomes a red or a blue super giant in the final states of its life. Such stars usually

have an onion like structure, with each successive inner shell producing successively

heavier elements via nuclear reactions. The core is mainly made of iron 2, because

iron is stable and does not undergo fusion. When the mass of the iron core reaches

the Chandrasekhar limit (≈ 1.4 M�), the electron degeneracy pressure is insufficient

to counter-balance the inward gravitational force. When nuclear fuel for fusion runs

out, then the core starts collapsing in the absence of radiation pressure. As the core

collapses to a radius of about 10 km, the density reaches a few times the nuclear

density and the core stiffens. The gravitational binding energy is released mainly as

neutrinos and antineutrinos of all flavors, which are copiously produced inside the

core of the SN. Most of these neutrinos cannot easily escape because the density is

very high. They remain trapped due to total internal reflection, inside what can be

crudely thought of as a neutrinosphere. The outer material, which is not in acoustic

communication with the bouncing core, keeps falling in and the energy density at the

boundary of the core and mantle keeps increasing until eventually the stellar matter

bounces off the core creating a shock-wave which goes through the star and blasts off

the outer envelope. This scenario where the shock-wave is the source of the explosion

is known as the “prompt explosion scenario” [15, 16]. However, simulations suggest

that the shock-wave loses a lot of its kinetic energy by dissociating the nuclei in the

stellar matter, as it propagates outward. As a result, the shock-wave stops after

about 100ms and doesn’t robustly cause a successful explosion.

It is therefore conjectured that more energy must be deposited in the shock-wave

while it moves outwards, for the explosion to be successful. This can happen if

neutrinos diffuse from the neutrinosphere and interact with the dense matter behind

the shockwave, and deposit some of their energy. If enough energy is transferred

to the shock-wave then the dying shock-wave can be revived and it can cause a

1We follow closely the discussion in [13].
2Some supernovae have a degenerate Oxygen-Neon-Magnesium core. They typically have a

mass of (8 − 10) M�. [14]
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successful explosion by blowing off the envelope of the star. This scenario is known

as the “delayed explosion scenario” [17, 18]. The fact that almost 99% of the energy

of a SN goes out in neutrinos, makes this scenario quite plausible from energetic

grounds.

The explosion is thus essentially a complex hydrodynamic phenomenon that must

be described by elaborate numerical modelling. Although we have come a long way

since the celebrated review by Bethe [19], the exact mechanism of the explosion is

still not pinned down. The older simulations when repeated with refined physics in-

puts have failed to produce robust explosions. Even the state-of-the-art simulations

do not always end in successful explosions, indicating that our understanding of SN

explosions may still be incomplete. Ongoing attempts to improve the simulations

to produce robust explosions indicate that magnetohydrodyamics or large-scale

convection leading to efficient energy transport may be a key ingredient [20]. With

ever-increasing computational power, detailed three-dimensional simulations may

soon become possible and be able to shed some light on this issue.

For the purpose of neutrino phenomenology, what is relevant is the electron density

profile of the SN, which is proportional to the matter density itself. The static

profile (ignoring effects of shockwave propagation) is often taken to have a power-law

dependence on the radius, i.e. ne(r) ∝ 1/r3. This agrees well with most simulations,

e.g. Fig. 1.1 (t = 0.1 sec) taken from [21]. In the presence of the shock-wave it

becomes quite complicated, as shown in Fig. 1.1 (at later times). Realistically, even

these are to be thought of as gross over-simplifications. The SN density profile is

not likely to be spherically symmetric, or even smooth. In fact it is expected from

simulations that the region behind the shock-wave could have large fluctuations in

density, due to turbulence.

Neutrinos are emitted from a SN in roughly four distinct phases as shown in Fig.

1.2. In the collapse phase (labelled as (1) in Fig. 1.2) when the star is collapsing and

the bounce has not taken place, the flux and the average energies are comparatively

low [22]. It steeply rises when the shock-wave travels through the neutrinosphere,

breaking apart the nuclei. This suddenly releases a flavor-specific burst of νe for
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Figure 1.1: SN matter density profiles: In the static limit and including the motion
of the shock-wave. The figure has been taken from [21].

about a few milliseconds. This is known as the neutronization burst phase (labelled

as (2) in Fig. 1.2). In the accretion phase that follows (labelled as (3) in Fig. 1.2),

the mantle cools off by emitting neutrinos for about 1 second, while material is

still infalling and accreting. Then the shock-wave travels outwards and the proto-

neutron star at the centre cools by radiating away neutrinos for about 10 seconds.

This final phase is called the Kelvin-Helmholtz cooling phase (labelled as (4) in Fig.

1.2).

Let us now focus on the neutrinos that are expected from a SN. As the simplest

approximation one can assume that the entire binding energy Eb of the star is

converted to neutrinos. For a star that explodes and leaves aside a neutron star

with radius R and mass M , the released binding energy is Eb ≈ 3GNM2/5R which

is in the ball-park of 1053 ergs for a typical SN. If one assumes equipartition of

Chapter1/SNprof.eps
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Figure 1.2: Neutrino emission in different stages of SN explosion. The figure has
been taken from [13].

energies among νe, νµ, ντ and their antiparticles, the total energy is split six-ways.

We know that the neutrinos are emitted from the surface of the neutrinosphere

whose radius is about 10 km (roughly the same as the surface of the neutron star).

If we apply the virial theorem to estimate the average kinetic energy Ekin of the

particles escaping from the surface of the neutron star, we have Ekin = GNM/2R

which is about 10 MeV. Thus the number flux of neutrinos is about 1057. These

neutrinos are emitted over a duration of order 10 seconds, a timescale that is set by

diffusion-time of the neutrinos trapped in the core.

There is a typical flavor dependence of the neutrino spectra. The νe and ν̄e are

produced mainly by electron capture on nuclei. Since there are more neutrons than

protons, the ν̄e interact less than the νe, and thus have slightly higher energies.

The νµ and ντ and the corresponding antiparticles, do not have charged current

interactions and thus decouple even before the ν̄e, and therefore have a larger average

energy. It is thus expected that there will be a hierarchy of energies

〈Eνe
〉 < 〈Eν̄e

〉 < 〈Eνµ
〉 = 〈Eντ

〉 = 〈Eν̄µ
〉 = 〈Eν̄τ

〉 . (1.15)

Chapter1/SNlightcurves.eps
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There is no compelling reason to expect that the binding energy gets exactly equipar-

tioned, however if approximate equipartitioning does indeed take place, the above

hierarchy predicts that the number fluxes have the opposite hierarchy

Φνe
> Φν̄e

> Φνµ
= Φντ

= Φν̄µ
= Φν̄τ

. (1.16)

This is as far as one can argue on general grounds. For more quantitative predictions

about neutrino fluxes from a SN one has to appeal to the detailed simulations.

The simulations of the Livermore group [23] are again in agreement with these

expectations. On the other hand, refined simulations by the Garching group [24]

also obtained similar results. Although they did not obtain robust explosions, their

simulations employed very detailed neutrino transport and additional interactions

that were previously ignored. The neutrino fluxes predicted by the Livermore

simulation are shown in Fig. 1.3.

Note that the luminosities are time-dependent, but the average energies do not

depend strongly on time. The luminosity is very high in the early stages and

decreases slowly with time. Moreover, the relative number fluxes are seen to change.

Initially, there more ν̄e than νµ or ντ or the corresponding antiparticles, but this can

change at late-times [24]. We will often ignore the time-dependence of the primary

spectra in the present analysis for simplicity. In principle, one should include effects

of a time dependent spectra and density profile for a more complete treatment.

We could use data from the supernova SN1987A [25, 26], that occurred in the Large

Magellanic Cloud about 50 kpc away, to compare with the above estimates for the

explosion time-scale and the neutrino spectra. While it put stringent bounds on a

variety of things, it did not constrain the simulations strongly owing to low statistics

(19 events at two detectors). With present detectors like Super-Kamiokande, a

galactic SN could result in up to 10000 events in the first ten seconds of the explosion,

which will allow us to learn a lot more about SN neutrino fluxes.
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Figure 1.3: Luminosity and average energy of neutrinos as a function of post-bounce
time. The figure has been taken from [23].

1.3 Phenomenology of supernova neutrinos

Neutrinos emitted from a core collapse SN carry information about the primary

fluxes, neutrino masses and mixing, and SN dynamics. This information gets

embedded into the observed neutrino spectra, and needs to be carefully extracted.

In galaxies such as ours, supernovae occur with an estimated rate of about 1 to 3

per century [27]. It is thus expected that a future galactic SN will eventually be

observed at existing or planned experiments. This will allow detailed studies of the

emitted neutrinos [28]. Detecting neutrinos accumulated in the Universe from all

the SN explosions in the past and present epoch form a cosmic background, known

as the diffuse supernova neutrino background (DSNB) or supernova relic neutrinos

[29, 30], is also a possibility. The expected fluxes [31] are tantalizingly close to

detection thresholds at present-day detectors [32].

Chapter1/SNnuspec.eps
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A detailed interpretation of a neutrino signal from a galactic/extra-galactic SN

will depend quite sensitively on our understanding of neutrino flavor conversions.

Neutrinos, produced in the region of the neutrinosphere, freestream outwards and

pass through the core, mantle and envelope of the star. The drastically different

environments in these regions, consisting of varying densities of ordinary matter and

neutrinos, affect flavor conversions among neutrinos. The nature of neutrino flavor

conversions depends on an interplay of these densities and the natural frequency of

a neutrino ∆m2/(2E). Close to the neutrinosphere, neutrinos interact with matter

and other neutrinos which introduces a matter potential that is
√

2GFne(r) and

a neutrino potential
√

2GF (nν(r) + nν̄(r)) respectively. Enhanced conversion can

happen in two ways - either due to matter effects, or due to the neutrino potential.

The traditional picture of flavor conversions in a SN is based on the assumption

that the effect of neutrino potential is negligible. In this picture, neutrinos that are

produced approximately as mass eigenstates at very high ambient matter density

in the core propagate outwards from the neutrinosphere. As the matter density

becomes smaller, at some r one encounters the MSW resonances. When the density

corresponds to ∆m2
atm, it is called an H resonance that happens at matter densities

of about (1000 − 10000) g/cc. When the density corresponds to ∆m2
�, it is called

an L resonance that happens at matter densities of about (30 − 300) g/cc. The H

resonance takes place for neutrinos in the normal hierarchy (∆m2
atm > 0), and for

antineutrinos in the inverted hierarchy (∆m2
atm < 0). The L resonance always takes

place for neutrinos, since we know ∆m2
� > 0. The conversion efficiency also depends

on the gradient of ne(r) at the MSW resonance, which if large can cause further non-

adiabatic flavor conversion. In the static limit of the matter density profile, the H

resonance is adiabatic for a large 1 − 3 mixing angle (sin2 θ13 > 10−3) and non-

adiabatic for small mixing angle (sin2 θ13 < 10−5). When the shock-wave passes

through the resonance region, it makes the resonances non-adiabatic temporarily.

Multiple shock fronts can give rise to interference effects, and turbulence generated

during the explosion may also effectively depolarize the neutrino ensemble giving an

“equal” mixture of all flavors.
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The outcoming incoherent mixture of vacuum mass eigenstates from the star travels

through the interstellar space and is observed at a detector to be a combination

of primary fluxes of the three neutrino flavors. This scenario of resonant neutrino

conversions in a SN [33] has been studied extensively to probe neutrino mixings

and SN dynamics. The work has focussed on the determination of mass hierarchy

and signatures of a non-zero θ13 [34, 35], matter effects on the neutrino fluxes when

they pass through the Earth [36, 37, 38], shock wave effects on observable neutrino

spectra and their model independent signatures [21, 39, 40, 41, 42, 43]. Recently,

possible interference effects for multiple resonances [44], the role of turbulence in

washing out shock wave effects [45, 46, 47], and time variation of the signal [48]

have also been explored. Interesting attempts have been also made to investigate if

SN and neutrino parameters could be extracted out of potential experimental data

[49], and to consider non-standard neutrino interactions [50] or additional neutrino

flavors [51].

However, neutrino and antineutrino densities are about 1030−35 per cm3 near the

neutrinosphere, which makes the neutrino potential extremely significant. The thing

to be noted is that the contribution
√

2GF (nν(r) + nν̄(r)) is not flavor diagonal in

general; nν, nν̄ are matrices in flavor space and depend on the flavor composition

of the entire neutrino ensemble. Such a dense gas of neutrinos and antineutrinos is

coupled to itself, making its evolution nonlinear [9, 10]. A formalism to study flavor

evolution of such dense relativistic neutrino gases was developed in [52, 53, 54],

where a set of quantum kinetic equations for their evolution were written down.

These equations have been studied in detail, though mostly in the two-flavor ap-

proximation, and the nature of flavor evolution has been identified [55, 56, 57, 58].

It was eventually understood that a dense gas of neutrinos displays collective flavor

conversion, i.e. neutrinos of all energies oscillate together, through synchronized

oscillations [59] and/or bipolar oscillations [60, 61]. Another remarkable effect of

these interactions is a partial or complete swapping of the energy spectra of two

neutrino flavors, called step-wise spectral swapping or simply spectral splits, as the

neutrinos transit from a region where nonlinear effects dominate to a region where

neutrino density is low [62, 63].



Introduction 13

The nonlinear effects in the context of supernovae were considered in [64, 65, 66, 67,

68]. Recent two-flavor simulations showed that the nonlinear effects affect neutrino

flavor conversions substantially [69, 70]. Different nonlinear flavor transformations

seem to play a part in different regions of the star [71]. Many features of the results

of these simulations can be understood from the “single-angle” approximation, i.e.

ignoring the dependence of the initial launching angle of neutrinos on the evolutions

of neutrino trajectories. Angular dependence of flavor evolution can give rise to

additional angle dependent features observed in two-flavor simulations [72, 73], or

to decoherence effects [57, 74]. For a realistic asymmetry between neutrino and

antineutrino fluxes, such angle dependent effects are likely to be small [75, 76].

Three-flavor effects have been studied in [77, 78, 79, 80, 81]. The dependence

on geometry of the neutrinosphere was studied in [82]. It was also shown that

nonstandard neutrino interactions can trigger these nonlinear effects for a vanishing

mixing angle [83]. A number of studies have concerned themselves with signatures

of these nonlinear effects. It is understood that nonlinear oscillations distinguish the

normal and inverted mass hierarchies even at extremely small θ13 [84, 85]. Nonlinear

effects have peculiar manifestations in the neutronization-burst phase of O-Ne-Mg

supernovae [79, 80, 86, 87] leading to very specific signatures. Finally, the impact

of these nonlinear effects on the DSNB has also been studied [88].

The impact of this nonlinear evolution has also been studied in the context of cos-

mological neutrino flavor equilibration in the early Universe where the synchronized

oscillations play a significant part [89, 90, 91, 92, 93, 94, 95, 96].

Our present work addresses some aspects of this problem that were not considered

in previous literature. We investigate effects of the geometry of the emitting source,

since it is not apparent that in the absence of spherical symmetry the results would

still stay valid. We find however that under an assumption of coherence, favor evolu-

tion can be treated as one-dimensional, similar to sources with spherical symmetry.

A major part of our work however, concerns itself with three-flavor effects, i.e.

understanding nonlinear flavor conversions in the full three-flavor framework. Two-

flavor results are fairly well understood, with the exception of possibly two issues,
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viz. decoherence (or lack of it) for asymmetric systems [75], and the existence

of the antineutrino spectral split [97]. We show that the two-flavor treatment is

valid in most circumstances. However, “decoupling” of the third state is not as

obvious as in ordinary neutrino oscillations, and there can be unexpected three-

flavor effects. With this formal understanding, we look at flavor conversions in a

SN, and attempt to design smoking-gun signatures of these novel effects. One of the

striking signatures is related to the presence/absence of Earth matter effects that

could allow us to determine the mass hierarchy, even at extremely small θ13, where

long baseline oscillation experiments may be ineffective. We also find a SN progenitor

dependence of the neutrino signal, which may be interesting for astrophysics. Finally

we show that these nonlinear effects can drastically change the expected flux of

DSNB neutrinos. We believe that these results will be useful for neutrino physics

and SN astrophysics.



Chapter 2

Formalism for Dense Neutrinos

The purpose of this chapter is to present a treatment for the flavor evolution of

free-streaming neutrinos emitted from a given source. We show that even for non-

spherical sources, the flavor evolution is similar to a spherical source. We then

specialize to a spherical source emitting neutrinos isotropically from its surface. the

results in this chapter are based on the papers: B. Dasgupta, A. Dighe, A. Mirizzi

and G. G. Raffelt, “Collective neutrino oscillations in non-spherical geometry,”

Physical Review D 78 (2008) 033014, [arXiv:0805.3300 [hep-ph]] and B. Dasgupta

and A. Dighe, “Collective three-flavor oscillations of supernova neutrinos,” Physical

Review D 77, 113002 (2008), [arXiv:0712.3798 [hep-ph]].

2.1 General framework

Our framework for SN neutrinos is constructed in a modified flavor basis (νe, νx, νy)

defined such that

(νe νx νy)
T = R†

23(θ23)(νe νµ ντ )
T , (2.1)

where R†
23 is the rotation matrix with an argument θ23 that explicitly removes the

dependence on the mixing angle θ23
1. We denote a neutrino of momentum p at

1This basis has also been denoted in the literature as (νe, νµ′ , ντ ′) [34]. This is motivated by the
observation that we observe νe and ν̄e at our detectors, whose survival probability is independent
of θ23 if the initial fluxes are identical in the µ and τ flavors.

15
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time t at position r by ν(p, r, t). The density matrix for nν(p, r, t) neutrinos with

momenta between p and p+dp at any position between r and r+dr may be written

as

ρνανβ
(p, r, t) ≡ 1

nν(p, r, t)

∑
|ν(p, r, t)〉〈ν(p, r, t)|αβ, (2.2)

where α, β = e, x, y are the flavor indices, and the summation is over all nν(p, r, t)

neutrinos. Note that the density matrix is normalized to have unit trace, but the

neutrino density itself is nν(p, r, t), which typically falls off as 1/r2 from the source.

The number density of neutrinos with flavor α is obtained through

nνα
(p, r, t) = nν(p, r, t)ρνανα

(p, r, t) . (2.3)

If a†
να

and aνα
are the creation and annihilation operators of a neutrino in the flavor

eigenstate να we have ρνανβ
(p) ∝ 〈a†

νβ
aνα

〉 so that the diagonal entries ρνανα
(p, r, t)

are the usual occupation numbers (expectation values of number operators), whereas

the off-diagonal elements encode the phase relations that allow one to follow flavor

oscillations. Such a description assumes that higher-order correlations beyond field

bilinears play no role, probably a good approximation for neutrinos produced from

essentially thermal sources such as the early-universe plasma or a SN core.

Antineutrinos are described in an analogous way by ρ̄νανβ
(p, r, t) = 〈ā†

να
āνβ

〉. Note

that we always use overbars to characterize antiparticle quantities. The order

of flavor indices was deliberately interchanged on the r.h.s. so that the matrices

ρ(p, r, t) and ρ̄(p, r, t) have identical equations of motion [53].

The effective Hamiltonian in the modified flavor basis for neutrinos ν(p, r, t) of

energy E ≈ p = |p| in vacuum is

Hvac(p) = UM2U †/2p , (2.4)
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where the masses and the mixing matrix are parameterized as

M ≡ Diag(m1, m2, m3) , (2.5)

U ≡ R†
23(θ23)R23(θ23)R13(θ13)R12(θ12) , (2.6)

with Rij being the rotation matrices in the i-j plane. In this work, we take the

value of the CP -violating phase in neutrino sector to be zero. Now Hvac(p) may be

explicitly written as

Hvac(p) =
∆m2

13

2p




s2
13 0 c13s13

0 0 0

c13s13 0 c2
13




+
∆m2

12

2p




c2
13s

2
12 c12c13s12 −c13s

2
12s13

c12c13s12 c2
12 −c12s12s13

−c13s
2
12s13 −c12s12s13 s2

12s
2
13


 , (2.7)

where ∆m2
ij = m2

j − m2
i and other symbols have their usual meanings. In matter,

neutrinos feel the MSW potential due to charged leptons 2

V (r, t) =
√

2GF ne−(r, t) Diag(1, 0, 0) (2.8)

that adds to the Hamiltonian, where ne−(r) is the net electron number density at r.

The effective Hamiltonian also includes the effects of neutrino-neutrino interactions,

which to the leading order in GF depend only on forward scattering and contribute

[52, 53, 54]

Hνν(p, r, t) =
√

2GF

∫
dqκpq

(
nν(q, r, t)ρ(q, r, t) − n̄ν(q, r, t)ρ̄(q, r, t)

)
, (2.9)

where dq is short-hand for d3q/(2π3). The interaction strength is dependent on

the angular separation of the momenta of the interacting particles, and is given by

2We assume that the density of e+, µ± and τ± is negligible, and that νµ and ντ feel
approximately identical potentials, which have been taken to be zero by convention. An analysis
of nonlinear effects including a µ − τ potential has recently been carried out [77].
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κpq ≡ 1 − cos θpq, where θpq is the angle between p and q. Writing the velocity

v(p, r, t) = dr/dt, we express cos θpq as v(p, r, t) · v(q, r, t).

The equation of motion for the density matrix is

d

dt
ρ(p, r, t) = −i

[
H(p, r, t), ρ(p, r, t)

]
+

∂

∂t
ρ(p, r, t) . (2.10)

In the steady state (no explicit time dependence in the Hamiltonian and initial

conditions) we can drop the time dependence in the problem. The total derivative

with time can be expanded then simply as partial derivatives w.r.t p and r. Ignoring

external forces (terms depending on dp/dt) we have the equations of motion for

ρ(p, r) and ρ̄(p, r) as [98]

v(p, r) · ∂rρ(p, r) = −i

[
+ Hvac(p) + V (r) + Hνν(p, r), ρ(p, r)

]
, (2.11)

v(p, r) · ∂rρ̄(p, r) = −i

[
− Hvac(p) + V (r) + Hνν(p, r), ρ̄(p, r)

]
. (2.12)

The effect of ordinary matter can be “rotated away” by working in the interaction

picture [70, 72]. We employ an operator O(r) under which a matrix A transforms

to

Aint(r) = O(r)AO−1(r) , (2.13)

where

O(r) = exp

(
i

∫
r

0

dr′V (r′)

)
. (2.14)

This choice simplifies the equations of motion by removing the matter term, giving

us

v(p, r) · ∂rρ
int(p, r) = −i

[
+ H int

vac(p, r) + H int
νν (p, r), ρint(p, r)

]
, (2.15)

v(p, r) · ∂rρ̄
int(p, r) = −i

[
− H int

vac(p, r) + H int
νν (p, r), ρ̄int(p, r)

]
. (2.16)

The transformation by O(r) leaves diagonal entries of ρ(p, r), ρ̄(p, r), Hvac(p) and

Hνν(p, r) unchanged, but the off-diagonal entries become r-dependent. For example,

if V (r) varies adiabatically and only in the radial direction, the vacuum Hamiltonian
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changes according to Eq. (2.13) as

H int
vac(p, r) = Hvac(p)+ir

[
V (r), Hvac(p)

]
+

(ir)2

2!

[
V (r),

[
V (r), Hvac(p)

]]
+... . (2.17)

We know that V (r) is a diagonal matrix, so only the off-diagonal elements of

H0(p) are affected by the transformation. The final observables we are going to be

interested in, the number fluxes of neutrino flavors, involve only diagonal elements

of the density matrix [see Eq. (2.3)], so the interaction basis is well suited for our

purposes.

2.2 Effects of source geometry

The nonlinear equations of motion Eq. (2.11) simplify considerably if self-maintained

coherence occurs in a dense neutrino gas and all modes can be assumed to evolve

in the same way. For this section we restrict ourselves to a source radiating only

neutrinos and with no matter background, although an analogous argument may be

easily constructed in the general case.

Our demand of self-maintained coherence is defined by

ρ(p, r) = P (r) f(p, r) . (2.18)

Here, f(p, r) = Tr(ρ(p, r)) is a scalar occupation number density, summed over all

flavors, while for N flavors P (r) is a N × N matrix normalized as Tr(P (r)) = 1,

which contains the flavor information. We define

〈v(r)〉 ≡
∫

dpv(p, r) f(p, r)∫
dp f(p, r)

(2.19)

as the momentum average of v(p, r) at location r with respect to the distribution

function f(p, r). The angle-brackets will mean suitable momentum averages as

above. Now, we find the equations of motion for P (r) by averaging Eq. (2.11) over
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all momenta to get

v(r)

|v(r)| · ∂rP (r) = −i
[
Hcoh(r), P (r)

]
, (2.20)

where

Hcoh(r) =
UM2U †

2

∫
dp p−1 f(p, r)∣∣∫ dpv(p) f(p, r)

∣∣ =
UM2U †

2

〈p−1〉
|〈v(r)〉| . (2.21)

Eq. (2.20) is the equation of motion in the coherent approximation, with H coh(r) as

the synchronized matrix of oscillation frequencies. The nonlinear terms vanish since

the relevant commutator vanishes on integrating over all momenta. Eq. (2.20) is a

partial differential equation for the matrix Pr. It can be reduced to a set of ordinary

differential equations

dr

ds
=

v(r)

|v(r)| , (2.22)

dP (r)

ds
= −i

[
Hcoh(r), P (r)

]
, (2.23)

where s is a parameter along the “characteristic line,” or “streamline,” defined by

Eq. (2.22). Since 〈v(r)〉 is unique at each location, the streamlines do not intersect

each other. Along each streamline, the differential equation Eq. (2.23), for the

matrix P (r) is a set of linear coupled ordinary differential equations which can be

solved easily and uniquely, given the boundary conditions. This is true for arbitrary

source geometries, and one only needs to calculate 〈v(r)〉 relevant to the problem.

Now, calculating 〈v(r)〉 is a purely geometrical problem. One merely needs to find

the average velocity vector at each point in space, for a given convex source. For a

spherical source of radius r0, we find

〈v(r)〉 =
1

2

[
1 +

√
1 − r0

r

2

]
r̂ . (2.24)

which tends to r̂ for r � r0. This tells us that for spherically symmetric problems

the evolution is radial, i.e. the streamlines are radial and the dependence on 〈v(r)〉
can be safely ignored at large r. For non-spherical sources one chooses a coordinate

system such that 〈v(r)〉 is always along one of the axes.
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2.3 Spherically symmetric and isotropic source

The interaction term Hνν in Eq. (2.9) depends on θpq, i.e. the angle between

the momenta of interacting neutrinos. Thus while performing the angular integrals

therein, the dependence of the neutrino flux on all angular variables must be taken

into account. This makes the problem quite complicated, and an approximate

treatment is needed in order to gain useful insights. Two levels of approximation

have been considered in literature, viz. multi-angle and single-angle. In the multi-

angle approximation, azimuthal symmetry about the axis defined by the source and

observer is usually assumed, but not complete spherical symmetry. This essentially

captures the effects of correlations between trajectories with different initial launch-

ing angles. The effects of such correlations can have interesting consequences which

have been explored in detail [72, 73, 75, 76]. In the single-angle approximation, it is

assumed that the flavor evolution does not significantly depend on any of the angular

coordinates (i.e. the evolution is spherically symmetric), and thus we can integrate

over all angular degrees of freedom trivially. One must then choose a representative

value for cos θp, which we take to be 1/2.

We assume half-isotropic emission from a source of radius r0, as defined in [75], and

write

nν(p, r) = nν(p, r) = nν(p, r0) r2
0/r

2 , (2.25)

ρ(p, r) = ρ(p, r) . (2.26)

In the steady state, the fluxes of neutrinos and antineutrinos can be written as

Φν =

∫
dp 2πp2 4πr2

0 nν(p, r0) , (2.27)

Φν̄ =

∫
dp 2πp2 4πr2

0 n̄ν(p, r0) , (2.28)

the total flux being Φ = Φν + Φν̄ .

A further “unification” in the notation for neutrinos and antineutrinos is possible

by noting that their equations of motion, i.e. Eqs. (2.11) and (2.12), differ only in
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the sign of Hvac(p). This suggests a change of variables from p to

ω = |∆m2
13|/(2p) . (2.29)

Using the same convention as [62], we define for neutrinos

nν(ω, r) ≡ nν( p(ω), r) , ρ(ω, r) ≡ ρ( p(ω), r) , (2.30)

and for antineutrinos

nν(−ω, r) ≡ n̄ν( p(ω), r) , ρ(−ω, r) ≡ ρ̄( p(ω), r) . (2.31)

The negative values of ω thus correspond to antineutrinos. Then we need to solve

only for ρ(ω, r), albeit at the cost of extending the domain of ω to both positive and

negative values.

With this reparametrization the vacuum Hamiltonian Hvac(p) is now written as

Hvac(ω, h), where

h =
∆m2

13

|∆m2
13|

= ±1 (2.32)

encoding normal or inverted mass hierarchy. The Hνν(p, r) term in Eq. (2.9)

simplifies to 3

Hνν(r) = µ(r)

∫ ∞

−∞

dω f(ω) ρ(ω, r) sgn(ω) . (2.33)

in terms of the distribution function

f(ω) =
1

Φ

|∆m2
13|3π2r2

0

ω4
nν(ω, r0) , (2.34)

normalized as
∫∞

−∞
dω f(ω) = 1, and the neutrino potential

µ(r) = µ0 g(r) . (2.35)

3 Note that Hνν(p, r) depended on p only through the direction of p. This dependence no
longer survives in the single-angle approximation.
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Here µ0 is the neutrino potential at the neutrinosphere:

µ0 ≡ µ(r0) =
3
√

2GF Φ

128π4r2
0

, (2.36)

and the “geometric dilution factor” g(r) is given by

g(r) ≡ 4r2
0

3r2

∫ 1

√
1−(r0/r)2

d(cos θq) (1 − cos θq cos θp)

∣∣∣∣
cos θp=1/2

=
4r2

0

3r2

(
1 −

√
1 − r2

0

r2
− r2

0

4r2

)
. (2.37)

The geometric dilution factor equals unity for r = r0, whereas at large r0, it decreases

as 1/r4. The decrease of neutrino densities from a finite source accounts for a factor

of 1/r2, whereas the additional dilution factor of approximately 1/r2 arises from

the integral in Eq. (2.37), due to the decreasing angle subtended by the source and

reduced collinearity, which are encoded in the limits and the integrand respectively

[69]. Note that the exact numerical factors depend on the choice of cos θp.

The total flux Φ remains conserved as long as there is no explicit temporal variation

of the overall luminosity. We work in the steady state approximation and assume the

luminosity to be constant in time. Slow variations in it may be taken into account

by including an additional time dependent factor. Note that f(ω) is independent of

r, which embodies the fact that the normalized neutrino spectrum does not change.

Using Eq. (2.3), we can also write the flavor dependent ω-spectra fνα
(ω, r) as

fνα
(ω, r) = f(ω)ρνανα

(ω, r) . (2.38)

Note that fνe
(ω, r) contains the spectra of both νe and ν̄e, and depends on r only

through ρνeνe
(ω, r). It would be a constant on the trajectory if there were no flavor

evolution of ρνeνe
(ω, r). For later use, we define the energy integrated neutrino fluxes
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for each flavor as

Φνe
(r) = Φ

∫ ∞

0

dω fνe
(ω, r) , (2.39)

Φν = Φνe
(r) + Φνx

(r) + Φνy
(r) , (2.40)

Φν̄e
(r) = Φ

∫ 0

−∞

dω fνe
(ω, r) , (2.41)

Φν̄ = Φν̄e
(r) + Φν̄x

(r) + Φν̄y
(r) . (2.42)

With these approximations, the problem is reduced to an ordinary one dimensional

problem along the radial direction. We can also drop the dependence on 〈v(r)〉
because it is significantly different from 1, only very close to the source. We denote

the derivative with respect to r using a “dot”, and using Eqs. (2.11) and (2.12),

arrive at the single-angle equations of motion

ρ̇(ω, r) = −i

[
+ Hvac(ω, h) + V (r) + Hνν(r), ρ(ω, r)

]
. (2.43)

We have thus used the spherical symmetry of the problem, and the simple energy

dependence, to rephrase the equations of motion in a somewhat simpler form. This

single-angle approximation is probably crude, but it has been shown in numerical

simulations (for two flavors) that this approximation seems to work reasonably well

[76]. It also seems that the multi-angle effects are suppressed when the neutrino

and antineutrino spectra are not identical [75]. We assume the above results to hold

true for three flavors as well, and ignore multi-angle effects in this work. Thus, for

an analytical understanding of various flavor conversion phenomena associated with

this system, we confine our discussion to the steady-state single-angle half-isotropic

approximation that we have outlined above.
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Nonlinear Neutrino Oscillations

In this chapter we rewrite the equations for flavor evolution, which end up resembling

those of a classical spinning top (or more precisely a gyroscope). This allows us

to recover results already known for two-flavors, and to investigate the effect of

three-flavor mixing. We solve the equations of motion and end the chapter with

a classification of the various linear and nonlinear flavor conversion mechanisms.

The results in this chapter are based on the papers: B. Dasgupta and A. Dighe,

“Collective three-flavor oscillations of supernova neutrinos,” Physical Review D 77,

113002 (2008), [arXiv:0712.3798 [hep-ph]] and B. Dasgupta, A. Dighe, A. Mirizzi

and G. G. Raffelt, “Spectral split in prompt supernova neutrino burst: Analytic three-

flavor treatment,” Physical Review D 77 (2008) 113007, [arXiv:0801.1660 [hep-ph]].

3.1 Bloch vector notation

We have a bunch of equations involving 3× 3 matrices. But all components of these

matrices are not independent. These matrices are all hermitian, and it is better

to get rid of the redundant degrees of freedom. It is thus useful to re-express the

density matrices and the Hamiltonian as Bloch vectors. The idea, analogous to the

two-flavor case, is to express the matrices in a basis of hermitian matrices, and to

study the motion of the vectors constructed out of the expansion coefficients (which

are called the Bloch vectors). In our problem, we choose the basis consisting of the

25
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3×3 identity matrix I, and the 8 Gell-Mann matrices Λa given by

Λ1 =




0 1 0

1 0 0

0 0 0


 , Λ2 =




0 −i 0

i 0 0

0 0 0


 , Λ3 =




1 0 0

0 −1 0

0 0 0


 ,

Λ4 =




0 0 1

0 0 0

1 0 0


 , Λ5 =




0 0 −i

0 0 0

i 0 0


 , Λ6 =




0 0 0

0 0 1

0 1 0


 ,

Λ7 =




0 0 0

0 0 −i

0 i 0


 , Λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 , (3.1)

which satisfy the SU(3) Lie algebra

[Λa, Λb] = ifabc Λc , (3.2)

where a, b, c are integers from 1 to 8. Note that the normalization for the matrices

is chosen such that

Tr(ΛaΛb) = 2δab . (3.3)

The structure constants fabc are antisymmetric under exchange of any two indices

and are specified by

f123 = 2 ; f147, f165, f246, f257, f345, f376 = 1 ; f678, f458 =
√

3 . (3.4)

Note that basis of traceless matrices Λa can be expressed as a semi-direct sum of

�
= {Λ1, Λ2, Λ3, Λ8} and � = {Λ4, Λ5, Λ6, Λ7} , (3.5)

i.e. for Ka ∈ �
and Qa ∈ � we have

[Ka, Qb] ∈
�

, [Qa, Qb] ∈
�

and [Qa, Kb] ∈ � . (3.6)
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Figure 3.1: The shape of the Bloch-ball for a vector λiêi. The figure has been taken
from [99].

In fact this is not the only choice of
�

and � that has this property. In addition to

the decomposition

� ex = {Λ1, Λ2, Λ3, Λ8} and � ex = {Λ4, Λ5, Λ6, Λ7} , (3.7)

as above, we could also choose

� ey = {Λ3, Λ4, Λ5, Λ8} and � ey = {Λ1, Λ2, Λ6, Λ7} or (3.8)

� xy = {Λ3, Λ6, Λ7, Λ8} and � xy = {Λ1, Λ2, Λ4, Λ5} , (3.9)

which satisfy the conditions in Eq. (3.6). The meaning of the superscripts (ex, ey, xy)

on
�

and � will become clear later.

Using the basis matrices I and Λa, we now express any 3 × 3 hermitian matrix X

as a vector X in the SU(3) generator space (with unit vectors êi) as

X =
1

3
X0 I +

1

2
X · Λ . (3.10)

We call X the Bloch vector corresponding to the matrix X. The vector X must

lie completely within an eight-dimensional compact volume, called the Bloch ball,

whose various two-dimensional sections are shown in Fig. 3.1. We say that the vector

X is contained in
� ex (

� ey,
� xy) if the matrix X can be expressed solely as a linear

combination of Λa ∈ � ex (
� ey,

� xy).

We reparameterize our equations using Eq. (3.10), and define the Bloch vectors

Chapter3/bloch-ball.eps
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de
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e8
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ee

ey

P

Figure 3.2: The projection of a polarization vector representing a neutrino P on the
e3–e8 plane.

corresponding to the density matrices as

ρ(ω, r) =
1

3
P0(ω, r) I +

1

2
P(ω, r) · Λ . (3.11)

Note that Λ is an eight-vector of 3 × 3 matrices. The scalar P0(ω, r) and the

polarization vector P(ω, r) encode the flavor content of neutrinos of energy p =

|∆m2
13|/(2ω) at a distance r for ω > 0. The negative values of ω encode the same

information for antineutrinos. Since ρ(ω, r) has been normalized to have unit trace

by definition, P0(ω, r) is equal to one. We will therefore not worry about the zeroth

component of the polarization vector henceforth. For a pure state, P(ω, r) lies on

the boundary of the shaded region in Fig. 3.1, and has the magnitude 2/
√

3. For

a mixed state, the magnitude of P(ω, r) is smaller and the vector lies within the

shaded region.

We assume that all neutrinos are produced as flavor eigenstates, i.e. the primary flux

consists of nνα
(p, r0) and n̄να

(p, r0) with energy p. The initial density matrix ρ(p, r0)

is therefore Diag

(
nνe

(p, r0), nνx
(p, r0), nνy

(p, r0)

)
, and similarly for antineutrinos.

The initial polarization vector may be written as

P(ω, r0) =
fνe

(ω, r0) − fνx
(ω, r0)

f(ω)
ê3 +

fνe
(ω) + fνx

(ω) − 2fνy
(ω, r0)√

3 f(ω)
ê8 . (3.12)

Chapter3/triangle.eps
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The polarization vector P(ω, r), when projected onto the e3–e8 plane, must lie within

the triangle in Fig. 3.2, where we show a representative P(ω, r) projected on the

e3–e8 plane. The pure electron flavor is represented by

ee = ê3 +
ê8√
3

. (3.13)

The νe or ν̄e content with energy p at position r is given by

ρνeνe
(p, r) =

nνe
(p, r)

nν(p)
=

fνe
(ω, r)

f(ω)
=

1

3
+

P · ee

2
=

de√
3

. (3.14)

The projection of P on êe is thus related to ρνeνe
(p, r) = fνe

(ω, r)/f(ω) as above.

The same quantity can be easily visualized from the figure as de/
√

3, where de is

the distance of the tip of P from the side of the triangle that is perpendicular to

êe (as shown in the figure). The number of νx and νy are also similarly calculated.

Negative values of ω encode the same information for the antineutrinos. This gives

a simple pictorial way to represent the flavor content of the ensemble by plotting

the tip of the projection of P(ω, r) on the e3–e8 plane. 1

For the mass term in the Hamiltonian, we have

Hvac(ω, h) = hω

(
1

3
B0 I +

1

2
B · Λ

)
, (3.15)

where

h B = εc13 sin 2θ12 ê1 +

(
s2
13 − ε(c2

12 − c2
13s

2
12)

)
ê3

+(1 − εs2
12) sin 2θ13 ê4 − εs13 sin 2θ12 ê6

+

(
(−2 + ε)(3c2

13 − 1) + 3εs2
13(2c

2
12 − 1)

)
/(2

√
3) ê8 . (3.16)

Note that ω for neutrinos is always positive in this convention, and the negative

sign of ∆m2
13 for inverted hierarchy is absorbed into B. We make use of the the

1Note that probability conservation in this representation corresponds to the theorem that the
sum of the lengths of perpendiculars dropped from any point inside an equilateral triangle to the
three sides is a constant.
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smallness of the ratio of the two mass square differences, defined as

ε = ∆m2
12/∆m2

13 (3.17)

to account for effects that arise from the mixing of the third flavor. The sign of ε is

positive for normal mass hierarchy (∆m2
13 > 0), and negative otherwise. This, along

with the overall sign due to h, guarantees that the contributions from ∆m2
12 always

have the same sign. Note that B2, B5, B7 vanish in the absence of CP -violation.

The MSW potential defined in Eq. (2.8) may be represented as

V (r) = λ(r)

(
1

3
L0 I +

1

2
L · Λ

)
, (3.18)

where λ(r) =
√

2GF ne−(r). The vector L parameterizes the effect of background

electrons, and is given by

L = ê3 + ê8/
√

3 . (3.19)

The Hνν(r) term defined in Eq. (2.33) can also be simply written as

Hνν(r) = µ(r)

(
1

3
D0 I +

1

2
D(r) ·Λ

)
, (3.20)

where D(r) is defined as

D(r) =

∫
dω f(ω) P(ω, r) sgn(ω) . (3.21)

In the next section, we shall express the evolution equation, i.e. Eq. (2.43) in terms

of the Bloch vectors P(ω, r),B(ω, h),L and D(r).

3.2 Generalized gyroscope equations

We have expressed our problem in terms of the eight-dimensional Bloch vectors, and

now we shall see that the equations of motion formally resemble the equations of

a gyroscope. To make this apparent, we define × as a generalized “cross product”
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[100] with fabc as the structure constants, instead of the usual εabc that appears in

the two-flavor approximation, e.g.

B × P ≡
8∑

a,b=1

fabcBaPb êc . (3.22)

This makes it possible to write the equations of motion, i.e. Eq. (2.43), compactly

as

Ṗ(ω, r) =

(
ωB + λ(r)L + µ(r)D(r)

)
× P(ω, r) ≡ H(ω, r) × P(ω, r) , (3.23)

where P(ω, r), B, L, D(r) are defined in Eqs. (3.11), (3.16), (3.19) and (3.21)

respectively. The couplings ω, µ(r) and λ(r) are defined in Eqs. (2.29), (2.37) and

(3.18) respectively. Equation (3.23) resembles the equation of a spin in an external

magnetic field, or equivalently, that of a gyroscope. We must remember that this

similarity is purely formal, because unlike in the two-flavor case, we cannot write

an arbitrary Bloch vector as a linear combination of two Bloch vectors and their

cross product. We shall show in Sec. 3.3 that under certain approximations these

generalized gyroscope equations can be given a geometrical interpretation.

The effects of the matter term λ(r)L in Eq. (3.23) can be rotated away by going

to the interaction frame as described in Eq. (2.13), where a matrix A becomes

Aint = OAO−1. In order to determine the Bloch vector corresponding to Aint, we

equate

A0

3
I +

8∑

a=1

AaΛa

2
= OAO−1 . (3.24)

Multiplying both sides by Λa and taking trace, we get

Aint
a = Tr(ΛaOAO−1) , (3.25)

where we have used Tr(ΛaΛb) = 2δab. In particular, the Bloch vector Bint may be
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written using Eqs. (2.14) and (3.25) as

Bint(r) = B1 cos ζ(r) ê1 + B1 sin ζ(r) ê2 + B3 ê3

+B4 cos ζ(r) ê4 + B4 sin ζ(r) ê5 + B6 ê6 + B7 ê7 + B8 ê8 , (3.26)

where ζ(r) =
∫ r

0
V (r′)dr′. In dense matter, Bint

a (r) oscillates rapidly with the

frequency ∼ V (r), mimicking a suppression in the relevant mixing angles as in

the two-flavor case [60].

We also define the “signed” and “unsigned” nth moments (with n ≥ 0) of P(ω, r) as

D(n)(r) =

∫
dω ωn f(ω) P(ω, r) sgn(ω) , (3.27)

S(n)(r) =

∫
dω ωn f(ω) P(ω, r) . (3.28)

Note that D(0) is same as D, and we will therefore refer to S(0) as S. The evolution

of these moments are governed by

Ḋ(n)(r) = B × D(n+1)(r) +

(
λ(r)L + µ(r)D(r)

)
× D(n)(r) , (3.29)

Ṡ(n)(r) = B × S(n+1)(r) +

(
λ(r)L + µ(r)D(r)

)
× S(n)(r) . (3.30)

We see that the higher moments turn up in equations of motion of the lower

moments. If we take the dot product of Eq. (3.29) with D(n)(r), and of Eq. (3.30)

with S(n)(r), we get

∂r|D(n)(r)|2 = D(n)(r) ·B × D(n+1)(r) ,

∂r|S(n)(r)|2 = S(n)(r) · B × S(n+1)(r) . (3.31)

The above dependence of the moments on r implies that there is likely to be a

redistribution of flavor as a function of ω. It will be interesting to investigate if

these moment equations can be used to predict the nature of the redistribution of

flavor spectra.
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3.3 Heavy-Light factorization of dynamics

The three-flavor dynamics in the traditional matter-driven scenario can be factorized

into the so-called “heavy”(H) and “light”(L) MSW resonances that occur at densi-

ties corresponding to ∆m2
atm ≈ ∆m2

13 and ∆m2
� ≈ ∆m2

12 respectively. Appropriate

combination of the effective two-flavor dynamics in these two sectors approximates

the three-flavor result reasonably well. We now proceed to illustrate a similar

simplification for nonlinear effects as well. Let us first introduce the notion of

“heavy” and “light” subspaces of the Bloch-sphere. In the
�

- � decomposition

shown in Eq. (3.8), the vectors contained in
� ey are termed “heavy” (written with

superscript H) whereas those contained in � ey are termed “light” (written with

superscript L). A general vector X may be decomposed as

X = XH + XL . (3.32)

In particular, B in Eq. (3.16) may be expressed as B = BH + BL, with

hBH =

(
s2
13 − ε(c2

12 − c2
13s

2
12)

)
ê3 + (1 − εs2

12) sin 2θ13 ê4

+

(
(−2 + ε)(3c2

13 − 1) + 3εs2
13(2c

2
12 − 1)

)
/(2

√
3) ê8 ,

hBL = εc13 sin 2θ12 ê1 − εs13 sin 2θ12 ê6 . (3.33)

The component BH appears primarily due to ∆m2
13, and the other component BL

vanishes if ε = 0. Note that for two-flavors, or equivalently in the ε = 0 limit, B is

completely contained in
� ey. Now, note the following structure in the equations of

motion of a polarization vector:

ṖH(ω, r) = HH(ω, r)× PH(ω, r) + HL(ω, r) × PL(ω, r) , (3.34)

ṖL(ω, r) = HL(ω, r)× PH(ω, r) + HH(ω, r) × PL(ω, r) . (3.35)

It is clear from the above set of equations that if ε = 0 and one begins with P

contained in
� ey, then P always remains in

� ey, i.e. PL(ω, r) = 0 identically. To
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investigate this case closely, we write Eq. (3.34) for each component of PH as 2

Ṗ3 = H4P5 − H5P4 , (3.36)

Ṗ4 = H5P3 − H3P5 +
√

3(H5P8 − H8P5) , (3.37)

Ṗ5 = H3P4 − H4P3 +
√

3(H8P4 − H4P8) , (3.38)

Ṗ8 =
√

3(H4P5 − H5P4) . (3.39)

Note that Ṗ8 =
√

3 Ṗ3. This suggests that we could rotate our coordinates in the

e3–e8 plane by −2π/3, so that P̃8 in the rotated frame becomes a constant of motion.

While going to the rotated frame, the components X3 and X8 of any Bloch vector

X transform as 
 X̃3

X̃8


 =


 −1/2 −

√
3/2

√
3/2 −1/2




 X3

X8


 . (3.40)

The other components remain unchanged.

This leads to the following simplified equations of motion for the two-flavor case:

˙̃
P3 = −2(H4P5 − H5P4) , (3.41)

˙̃
P4 = −2(H5P̃3 − H̃3P5) , (3.42)

˙̃
P5 = −2(H̃3P4 − H4P̃3) , (3.43)

˙̃
P8 = 0 . (3.44)

This is the two-flavor limit, where the state νx does not participate in the evolution.

This is a consequence of all the polarization vectors initially being contained in
� ey.

The rotated “tilde” frame can therefore be called as the “e − y” frame.

The Eqs. (3.41), (3.42) and (3.43) can be simply written as

Ṗey = Hey × Pey , (3.45)

where the “×” can now be taken to be the usual cross product in a three-dimensional

2In the following sections, the dependence of the Bloch vectors and the parameters on ω and
r is implicit.
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space spanned by {eey
3 , e4, e5}. This clearly exhibits the “gyration” of P about H,

while the component of P along e
ey
8 remains constant. The projection of P changes

only along e
ey
3 , which corresponds to νe ↔ νy flavor conversions. The problem is thus

reduced to the two-flavor limit, for which analytical solutions have been discussed

in literature [59, 60, 61, 62, 63].

In the two-flavor limit, it is observed that there are three qualitatively different

kinds of motion of the polarization vector in the flavor space. The most familiar

case is oscillations in vacuum/matter, where the neutrino-antineutrino density is

small (µ � ω) and each P(ω) precesses about B with frequency ω. The other

extreme is when the neutrino-antineutrino density is very large (µ � ω). In such

a situation, all P(ω) remain tightly bound together and precess with the average ω

of the ensemble, giving rise to synchronized oscillations. The intermediate regime

(µ >∼ ω) is when the P(ω) remain bound together to a large extent, but have a

tendency to relax to the state that has the lowest energy. The system is analogous to

a pendulum/gyroscope that tries to relax to its vertically downward state, whatever

state one might start in. This motion is called bipolar oscillation.

The motion changes qualitatively and quantitatively with the inclusion of the third

flavor. There are two kinds of contribution due to the inclusion of the third flavor.

First, we have some extra contributions to BH that depend on ε, which changes the

effective values of ω and θ13. These do not change the motion qualitatively. The

second type of contribution is more interesting. It is due to the excursions of the

polarization vectors into the � subspace under the influence of BL. In particular,

the length of PH is not preserved anymore. To see this clearly, we take the dot

product of PH with Eq. (3.34) and that of PL with Eq. (3.35) to get

|ṖH |2/2 = −|ṖL|2/2 = PH · HL × PL . (3.46)

We can clearly see that |PH|, which was a conserved quantity in the two-flavor case,

no longer remains so. The non-conservation is proportional to |HL| and |PL|, both

of which go to zero in the two-flavor limit. The addition of the third flavor makes

the motion of the projection of P in the e3–e8 plane fairly complicated in general,
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Figure 3.3: Useful coordinate choices on e3–e8 plane.

and we shall study it in some interesting regimes in Sec. 3.5.

3.4 Three-flavor dynamics

In this section we extend the method presented in the last section, to include the

leading corrections due to the mixing of the third flavor. Let us illustrate our

prescription in the vacuum limit, where the matter effects as well as the nonlinear

effects are neglected. The prescription will later be easily generalized to finite matter

densities and significant neutrino-neutrino interactions.

From Eq. (3.16), the Bloch vector B may be decomposed as

ωB = hωB(1) + hεωB(2) + hεωs13B
(3) (3.47)

with

B(1) = s2
13 ê3 − 2(3c2

13 − 1)/(2
√

3) ê8 + (1 − εs2
12) sin 2θ13 ê4 , (3.48)

B(2) = −(c2
12 − c2

13s
2
12) ê3 + (3c2

13 − 1)/(2
√

3) ê8 + c13 sin 2θ12 ê1 , (3.49)

B(3) = 3s13(2c
2
12 − 1)/(2

√
3) ê8 − sin 2θ12 ê6 . (3.50)

Note that B(1) lies completely in
� ey, B(2) in

� ex, and B(3) in
� xy.

Chapter3/coords.eps
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In Fig. 3.3, we show three coordinate frames e − x, e − y and x − y in the e3–e8

plane. These frames are defined such that, if P is the projection of P in the e3–e8

plane, the components B(1),B(2),B(3) in Eq. (3.50) separately cause P to move

along e
ey
3 , eex

3 , exy
3 respectively. In order to reduce the motions due to B(1),B(2),B(3)

separately to two flavor problems as in Sec. 3.3, we write

Bey = RB(1) , Bex = B(2) , Bxy = R2
B(3) , (3.51)

where R is the rotation matrix in Eq. (3.40) that rotates the X3 and X8 components

of a Bloch vector in the e3–e8 plane by −2π/3. The vectors Bey,Bex,Bxy are then

simply B(1),B(2),B(3) in the frames e − y, e − x, x − y respectively.

We can then write Eq. (3.47) as

ωB = ωeyR−1
Bey + ωexBex + ωxyR−2

Bxy , (3.52)

with the “frequencies” defined as

ωey = hω ωex = hεω ωxy = hεωs13 sin 2θ12 , (3.53)

and the “magnetic fields” as

Bey = cos 2θ13 ê3 + (1 − εs2
12) sin 2θ13 ê

ey
⊥ − (1 − 3s2

13)/(
√

3) ê8 (3.54)

Bex = −(c2
12 − c2

13s
2
12) ê3 + c13 sin 2θ12 êex

⊥ + (3c2
13 − 1)/(2

√
3) ê8 , (3.55)

Bxy = −ê
xy
⊥ −

√
3s13 cos 2θ12/(4 sin 2θ12) ê8 . (3.56)

The vectors e4, e1, e6 are the directions transverse to the e3–e8 plane that are relevant

in the three frames, and can be written as e
ey
⊥ , eex

⊥ , e
xy
⊥ respectively. The Bαβ are

normalized such that |Bαβ
3 |2 + |Bαβ

⊥ |2 = 1 + O(ε, s2
13). The separate motion due to

each Bαβ is then a precession about Bαβ
3 ê3 + Bαβ

⊥ ê⊥ with a frequency ωαβ, where

the half-angle of the cone is given by tan θαβ = |Bαβ
⊥ /Bαβ

3 |.

The net motion of the polarization vector may be interpreted as the combination

of two-flavor precessions about e
ey
⊥ , eex

⊥ and e
xy
⊥ respectively. It can immediately be
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seen from Eq. (3.53) that

|ωey| � |ωex| � |ωxy| , (3.57)

i.e. the precession frequencies are hierarchical. Therefore, the motion due to slower

frequencies may be neglected over short time scales. More precisely, if we coarse-

grain the equation of motion Eq. (3.23) in r over scales corresponding to ωey, the

effects of ωex and ωxy are negligible. The slowest variation in the solution is due

to ωxy, which modulates the faster motion due to ωex, which in turn modulates the

motion at still shorter scales due to ωey.

Let us denote the evolution of P(r) under the action of Bey, Bex, Bxy by the

operators Sey(r), Sex(r), Sxy(r) respectively. As long as the condition in Eq. (3.57)

is valid, we can write

P(r) = Sey(r) Sex(r) Sxy(r) P(0) , (3.58)

where the evolution operators are of the form

Sey(r) = R−1


 η(ωey, θey, µ, r) 0

0 1


R , (3.59)

Sex(r) =



 η(ωex, θex, µ, r) 0

0 1



 , (3.60)

Sxy(r) = R−2


 η(ωxy, θxy, µ, r) 0

0 1


R2 . (3.61)

Here η(ωαβ, θαβ, µ, r) are the evolution functions that can be calculated in a two-

flavor approximation using the results in previous literature. In general, the fre-

quencies of these evolution functions are determined by ωαβs and the amplitudes are

determined by the effective mixing angle θαβs. Each evolution operator Sαβ takes the

state P to the respective α−β frame in which Pαβ
8 stays constant and Pαβ

3 undergoes

precession, and brings P back to the e3–e8 frame after precession. Note that the

matrices Sαβ are not unitary. The order in which they are operated should be such

that the slower oscillations act like an amplitude modulation for the faster ones.
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It is easy to calculate ρνeνe
using Eq. (3.14) as

ρνeνe
(r) =

1

3
+

P(r) · ee

2
=

1

3
+

1√
3

(
−
√

3

2
Pey

3 (r) +
1

2
Pey

8 (r)

)
, (3.62)

where P(r) is given by Eq. (3.58), and Pey
3 , Pey

8 are components along e
ey
3 and e

ey
8

respectively. If neglect effects of the slowest frequency ωxy, the expressions for Pey
3 (r)

and Pey
8 (r) may be written as

Pey
3 (r) = η(ωey, θey, µ, r)

(
−1

2
η(ωex, θex, µ, r)P3(0) −

√
3

2
P8(0)

)
, (3.63)

Pey
8 (r) =

(
+

√
3

2
η(ωex, θex, µ, r)P3(0) − 1

2
P8(0)

)
. (3.64)

In the presence of ordinary matter and when the nonlinear effects may be neglected,

the same prescription stays valid, simply with the replacements

ê1 → cos ζ(r) ê1 + sin ζ(r) ê2 , ê4 → cos ζ(r) ê4 + sin ζ(r) ê5 (3.65)

with ζ(r) =
∫ r

0
V (r′)dr′. It may be seen from Eq. (3.26) that these replacements

take B to Bint, so that the effect of MSW is taken into account by going to the

interaction frame. As observed in Sec. 3.2, fast oscillations with a frequency ∼ V (r)

will average out the sinusoidal terms, thus decreasing the contribution from the

transverse components of B(int)αβ .

The above solution works even when the nonlinear effects dominate. The nonlinear

potential Hνν(r) in Eq. (2.43) is independent of energy, therefore neutrinos of all

energies precess with a common frequency in all the two-flavor subspaces. The

motion is therefore similar to the vacuum case discussed above, with the replacement

ω → 〈ω〉 as given in Sec. 3.5.2. We have thus completed our program of expressing

three-flavor effects purely in terms of two-flavor effects. The r-dependent functions

η(r) are known analytically for oscillations in vacuum and for synchronized oscilla-

tions, where we can explicitly check our ansatz. In the case of bipolar oscillations,

the situation is more complicated since these are not sinusoidal oscillations, rather
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P remains almost static for a period of time and swings through the lowest energy

state in a rapid burst. As a result, the fast- or slow-ness of bipolar oscillations

as compared to the other precessions is time dependent. We therefore can obtain

a qualitative understanding of bipolar oscillations in the three neutrino framework,

but only a heuristic form of the analytic solution. We provide some explicit solutions

for η(r) in the next section.

3.5 Flavor conversion mechanisms

For two flavors, one can obtain exact/approximate analytical solutions to the equa-

tions of motion for the limiting values of matter density (λ(r)) and neutrino density

(µ(r)). We showed in Sec. 3.4 that the three-flavor case can be thought to be a

superposition of two two-flavor evolutions. In this section we illustrate that explicitly

using some simple examples.

For the numerical evaluations in this section, we fix |∆m2
atm| = 2.5 × 10−3 eV2 and

θ12 = 0.6. We also choose a box-spectrum for the the neutrino flux i.e. f(ω) is

a constant for ω corresponding to the energy range E = (1–51) MeV, and zero

elsewhere. We use the publicly available Sundials CVODE package [101] to solve

the equations.

3.5.1 Vacuum and MSW oscillations

We start with looking at neutrino oscillations in vacuum/matter, with no nonlinear

effects. Although this situation has been analyzed in literature in great detail,

we illustrate it here in order to familiarize the reader with the analysis in terms

of Pey
3 , Pey

8 and the “e3–e8” triangle. This triangle, shown in Fig. 3.4, helps in

understanding the three-neutrino features of flavor conversions. The projection of

P on the e3–e8 plane represents the flavor content, the allowed region being an

equilateral triangle. The three vertices of the triangle represent the three states νe,

νx and νy (anticlockwise, from top right). States that lie on the edges connecting

them are admixtures of only those two flavors. The interior of the triangle represents
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Figure 3.4: Neutrino oscillations for E = 20.0 MeV and 29.6 MeV (thin and thick
lines respectively). To emphasize the nature the oscillations, we choose ε = 1/5.1
and θ13 = 0.2. Oscillations in vacuum and matter are shown by dotted (blue)
and undotted (red) lines respectively. For matter, we choose normal hierarchy and
λ = 0.3 km−1.

states that are admixtures of all three flavors. Quantitatively, for any point on the

triangle, the fraction of the neutrinos in flavor α is proportional to its distance from

the edge opposite to the να vertex, as shown in Eq. (3.14).

In Fig. 3.4, we show the quantities Pey
3 , Pey

8 and ρνeνe
as functions of the radial

coordinate r. For illustration, we start with a pure νe flavor, which corresponds to

(Pey
3 , Pey

8 ) = (−1, 1/
√

3). The following observations may be made from the figure.

• The oscillation frequencies depend on the neutrino energy. However in the

triangle diagram, the locus of P for all energies is identical for oscillations in

vacuum (therefore, the thin and thick lines overlap). Different energies travel

along this orbit at different, but constant speeds proportional to 1/E. In

matter, the mixing angle begins to depend on the energy and thus the orbits

are different for different energies.

• The flavor evolution has two main frequency components, The fast oscillations

with frequency ω = ∆m2
atm/(2p) and the slower ones with frequency εω =

∆m2
�/(2p).

Chapter3/vac.eps
Chapter3/vac-tplot.eps
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• If ω and εω were commensurate, the orbits in the triangle would be closed

curves. However, that is a fine-tuned situation. In general, if ε is not rational,

the orbits do not close, but drift parallel to themselves periodically. Indeed,

the orbits are analogous to the well-known Lissajous figures.

• Pey
8 only has slow modes corresponding to the frequency εω. These slow

oscillations modulate the amplitude of the upper envelope of |Pey
3 | because

the maximum value that |Pey
3 | can take is reduced when Pey

8 deviates from its

maximum value of 1/
√

3. The above can be clearly seen from the triangle

diagram.

• Pey
3 oscillations involve both frequencies, ω and εω. The maximum deviation

of Pey
3 from unity is governed by the amplitude of modulation of its upper

envelop (which depends on sin2 2θ13) and the amplitude of faster oscillations

superimposed on it (which depends on sin2 2θ12).

• In the two-flavor limit we ignore the mixing with νx, and as a result Pey
8 remains

constant. In the triangle, this corresponds to the motion being confined to a

line parallel to the e
ey
3 axis. Indeed, the effect of the third flavor is to extend

the motion of P to the entire triangle, as opposed to only along a line. The

deviation of P from this line quantifies the extent of three-flavor effects.

• The amplitude of oscillations can be read off from the triangle as the ex-

tent of the orbit along the νe–νy edge (2 sin2 2θ13) and along the νe–νx edge

(2 sin2 2θ12).

• In the presence of matter, mixing angles are suppressed or enhanced depending

on the energy and matter density. For λ ∼ εω, the MSW resonance occurs, and

the effective mixing angle becomes almost maximal, as it happens for the low

energy mode shown in the figure. At λ � εω, the state νx decouples because

of the suppression of the mixing angle in matter, making this an effectively

two-flavor νe ↔ νy problem. The oscillations in Pey
8 have vanishing amplitude

and the motion in the triangle is restricted to the νe–νy edge.
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• At even larger matter densities, λ � ω, the amplitude of νe ↔ νy oscillations,

which is the amplitude of Pey
3 oscillations, starts decreasing and the motion in

the triangle becomes more and more confined to be near the νe vertex as in

the case of the high energy mode shown in the figure.

All the above features may be understood analytically through Eqs. (3.62)-(3.64)

and the two-flavor evolution functions

η(ωey, θey, µ → 0, r) = 1 − 2 sin2 2θ13 sin2

(
hωr

2

)
, (3.66)

η(ωex, θex, µ → 0, r) = 1 − 2 sin2 2θ12 sin2

(
hεωr

2

)
. (3.67)

The above expressions are approximate, since we ignore the slowest frequency modes

(depending on ωxy) and assume complete factorization. We find however, that these

expressions agree with the numerical solution reasonably well .

In the case of finite but constant matter density, we use the angles θαβ and frequen-

cies ωαβ in matter, both of which are energy dependent. Note that the amplitudes

in this case are proportional to 2 sin2 2θαβ in matter and can be maximal (spanning

a full edge of the triangle) when there is an MSW resonance.

When the matter density encountered by the neutrino varies such that neutrinos

pass through an MSW resonance, they undergo flavor transitions with adiabaticities

depending on their energy, the relevant mixing angle and the matter profile. In the

limit of a small mixing angle, a completely adiabatic H resonance is represented by

a reflection of the neutrino state about e
ey
8 in the e3–e8 triangle. A non-adiabatic H

resonance corresponds to a state that tries to move towards this reflected point, but

does not completely succeed. Passage through the L resonance similarly corresponds

to a reflection about eex
8 .
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Figure 3.5: Synchronized oscillations for neutrinos of E = 20.0 MeV and 29.6 MeV,
which overlap completely. We choose ε = 1/5 to emphasize the nature of oscillations,
θ13 = 0.2 and µ = 100 km−1. Oscillations in vacuum and matter are shown by dotted
(blue) and undotted (red) lines respectively. For matter, we choose normal hierarchy
and λ = 0.5 km−1. Note that the orbits on the triangle are the same for different
energies.

3.5.2 Synchronized oscillations

At extremely large neutrino densities, it is expected that neutrinos of all energies

oscillate synchronously 3 with a common frequency 〈ωαβ〉 about Bαβ, given in the

two-flavor case by [94, 95]

〈ωαβ〉 =
ωαβ

ω

D · D(1)

|D|2 , (3.68)

where D’s are the moments defined in Eq. (3.28). The frequency 〈ωαβ〉 crucially

depends on the neutrino energy spectrum. The box-spectrum that we have chosen

corresponds to 〈ωey〉 ≈ 0.49 km−1. In Fig. 3.5 we show Pey
3 , Pey

8 and ρνeνe
as functions

of the radial coordinate r for synchronized neutrino oscillations.

The following observations may be made from the figure:

• The observations in Sec. 3.5.1 remain true, except that neutrinos of all energies

oscillate with a common frequency in vacuum in the two flavor limits of each

3It has been shown in [102] that the synchronization is not perfect for “non-trivial” initial
spectra, and one can get self-induced parametric resonance.

Chapter3/sync.eps
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of the α−β subspaces. The response of all neutrinos to the neutrino-neutrino

potential is thus identical.

• Even in the presence of matter, the synchronized oscillation amplitude is

independent of energy, unlike what happens for non-nonlinear oscillations.

• The amplitude of the slower oscillations is almost maximal because, in the

chosen example, λ ∼ ε〈ω〉.

• The orbits drift periodically, even if ω and εω are commensurate, because 〈ω〉
and 〈εω〉 are not commensurate in general. This is due to corrections to Eq.

(3.68) arising out of incomplete synchronization.

The above observations are explained analytically along the same lines as the vac-

uum/MSW case. The two-flavor evolution functions are given by

η(ωey, θey, µ � ωey, r) = 1 − 2 sin2〈2θ13〉 sin2

(
h〈ω〉r

2

)
, (3.69)

η(ωex, θex, µ � ωex, r) = 1 − 2 sin2〈2θ12〉 sin2

(
hε〈ω〉r

2

)
. (3.70)

In the plots we see that fast oscillations have wavelength 2π/ω ≈ 12 km. This

matches the value of 〈ωey〉 calculated from Eq. (3.68).

In the presence of a finite matter density, the MSW potential λ also takes an effective

average value given by [94, 95]

〈λ〉 = λ
D · S
|D|2 . (3.71)

Naturally, the mixing angle is also the same for all energies, since

sin2〈2θαβ〉 =
sin2 2θαβ

(〈λ〉/〈ωαβ〉 − cos 2θαβ)2 + sin2 2θαβ
. (3.72)

Thus not only the frequency, but also the amplitude of oscillations is universal

in the synchronized limit. The MSW resonance is collective, occurring with the

same adiabaticity for all neutrinos/antineutrinos at the same λ when the relevant
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condition is met, as was shown in the two-flavor case [94, 95, 96]. The factorization

shown in Sec. 3.3 allows the result to be extended to the three-flavor situation.

3.5.3 Bipolar Oscillations

When the hierarchy is inverted and there are comparable numbers of neutrinos and

antineutrinos in the system, i.e. µ|D| ∼ ω|B|, the influence of the ω and µ terms

in the equations of motion depends crucially on the relative orientation of D,B and

the magnitude of D itself. This subtle interplay gives rise to bipolar oscillations.

Many of the notions about bipolar oscillations in the two-flavor formalism [60, 61]

remain valid with three flavors, since they do not depend on the number of flavors,

or equivalently, on the dimensionality of the Bloch vectors. The system is best

understood in terms of the “pendulum vector” Q defined in the interaction picture

as [60, 61]

Q ≡ S − ω

µ
B , (3.73)

in terms of which the equations of motion are

Q̇ = µD × Q − ω

µ
Ḃ , (3.74)

Ḋ = ωB× Q . (3.75)

The absence of λ(r) is deceptive. The B contains λ, and in principle that could be

important, but it turns out that the dependence on in is only logarithmic.

The antisymmetry of the generalized cross product in Eq. (3.22) implies that even

in the case of three flavors, |Q|2 and D · B are conserved for large µ.

In the two-flavor case, the motion can be understood in terms of a spherical pen-

dulum [60, 61], with the total energy given by ωB · Q + µ|D|2/2. Starting with

νe and ν̄e, for normal hierarchy, the pendulum is stable and executes only small

oscillations, because Q points in the direction of B already. For inverted hierarchy,

however, Q behaves like an inverted pendulum, which tries to relax to its stable

position. The polarization vectors then remain almost static, but periodically dip to
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Figure 3.6: Bipolar oscillations at small λ for neutrinos (dotted, blue) and 20%
fewer antineutrinos (undotted, pink) of different energies, which almost overlap. We
choose inverted hierarchy, |ε| = 1/30, θ13 = 0.01, µ = 10 km−1 and λ = 0.001 km−1.
Note that the plots are the same for different energies, because of strong collective
behavior.

the configuration with the lowest potential energy B·Q. Thus for inverted hierarchy,

one can have a large flavor swap during the dip. The duration between successive

dips is given by τ bip ≈
√

ωµ|Q| with logarithmic corrections depending on θ and

λ. Since µ > ω, individual P remain bound to each other, and therefore behave

identically to Q.

Addition of a third flavor may change the behavior significantly, as we show in

Figs. 3.6 and 3.7 for two extreme values of λ. We consider the case of inverted

hierarchy, and a box-spectrum of energies E = (1–51) MeV with the number of

antineutrinos as (1 − α) times the number of neutrinos, with α = 0.2. Given that

the hierarchy in the solar sector is normal, we expect bipolar effect only in the e− y

subspace, combined with usual neutrino oscillations in the e − x subspace. The

following observations may be made from the figures:

• The evolution of both Pey
3 and Pey

8 consists of a series of bipolar “kinks” as in

the two-flavor case [60, 61], modulated by an envelope with the frequency 〈ωex〉.
The evolutions for neutrinos and antineutrinos closely follow one another,

which is expected from the conservation of B · D.

Chapter3/bip-001.eps
Chapter3/bip001-tplot.eps
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Figure 3.7: Bipolar oscillations at large λ for neutrinos (dotted, blue) and
antineutrinos (undotted, pink) of different energies, which almost overlap. We
choose inverted hierarchy, |ε| = 1/30, θ13 = 0.01, µ = 10 km−1 and λ = 0.3 km−1.
Note that the plots are the same for different energies, because of strong collective
behavior.

• Significant three-flavor effects are present for small λ, since the whole triangle

is seen to be filled with oscillations, forming a “petal structure” (Fig. 3.6). It

may be interpreted as a combination of slow νe ↔ νx oscillations and bipolar

oscillations that tend to take the state towards νy in periodic bursts.

• The extent of motion towards νy depends mainly on the asymmetry α, whereas

that towards νx depends on sin2 2θ12.

• For large λ (Fig. 3.7), the oscillations in the e − x sector are suppressed since

the effective mixing angle θ12 in matter becomes small. The amplitude of the

bipolar motion is however not affected substantially.

Bipolar oscillations (even in the two-flavor limit) do not have a sinusoidal form,

hence they are not associated with a fixed frequency. They may be looked upon

as a combination of a low frequency (during the time that the νy component is

stationary, which we shall call the A phase) and a high frequency (the sudden dip

towards νy, which we shall call the B phase). Therefore, our prescription in Sec. 3.4

has to be applied with care. Note that the order of evolution matrices in Eq. (3.61)

is supposed to be in the decreasing order of frequencies. Even if we neglect the

Chapter3/bip-3.eps
Chapter3/bip3-tplot.eps
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slow evolution due to Bxy, strictly speaking during the A phase, one should use the

order SexSey and during the B phase, the order should be SeySex. However, we find

numerically that the evolution SexSey closely matches the three-flavor solution over

the complete evolution. This therefore may be taken to be the heuristic solution for

the bipolar oscillations in the three-flavor case.

We have not considered normal hierarchy, in which we expect that starting with νe

we’ll have a stable system that will not undergo bipolar oscillations, whereas starting

with νx or νy, we’ll have independent bipolar oscillations towards νe.

3.5.4 Spectral splitting

As a system of neutrinos and antineutrinos transits from the nonlinear regime (µ �
ω) to vacuum (µ ∼ 0), the polarization vectors P keep trying to align with H in the

adiabatic approximation. Due to the conservation of B · D, as shown in Sec. 3.5.3,

this alignment is not possible for all P. The way the system aligns maximally

while still obeying the constraint, is to align only a part of the spectrum, while

anti-aligning some parts. This causes sharp changes in the final spectrum, that are

called spectral splits.

In general, we do not know how to predict the final spectrum accurately. We shall

therefore confine ourselves to the situations where there is only one spectral split,

thus one can predict the final spectra just on the basis of conservation laws. The

dynamics of spectral splitting are not clear, except when adiabaticity predicts a

single split [62, 63].

It is simpler to understand this phenomenon in the instantaneous mass basis. i.e.

the interaction picture in mass basis. In the chosen basis, B = BH +εBL, where BH

is along e8 and BL is along e3. The equation of motion for the global polarization

vector is

Ḋ = (BH + εBL) × M , (3.76)

where the “magnetic moment” of the system is M =
∫

dω f(ω)ω P(ω). In the mass
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basis this is

Ḋ = −
(

2√
3

e8 + ε e3

)
× M . (3.77)

The vector on the r.h.s. is orthogonal to both e3 and e8. The reason is that fa38 = 0

for a = 1, . . . , 8 and for all permutations of the indices. As a consequence, the vector

Ḋ has no e3 or e8 component so that Ḋ3 = 0 and Ḋ8 = 0. In a general basis this

implies

∂r(D · BH) = 0 and ∂r(D · BL) = 0 . (3.78)

This is the equivalent of “flavor-lepton number conservation” ∂r(D · B) = 0 in the

two-flavor context [60, 61, 62, 63]. In other words, in the three-flavor context we

have two flavor-lepton numbers that are separately conserved.

We now explain the factorization of the two spectral splits [79, 80]. The first split

to develop is driven by the atmospheric mass difference and thus can be called the

H split. As in [62, 63] we go to a rotating frame, at first rotating around the BH

direction with the frequency ωH
c . The single-mode Hamiltonians in this co-rotating

frame are

H ≈
(
ω − ωH

c

)
BH + µP , (3.79)

neglecting for now the much smaller term εωBL. This is justified because, when

µ >∼ ω (and thus µ � εω), the ensemble of neutrinos is in a regime where we expect

spectral splitting along e8 and synchronized oscillations along e3.Flavor conversion

is thus driven primarily by BH , while BL gives sub-leading corrections due to

the synchronized oscillations. Similarly, when µ ∼ εω, flavor conversion proceeds

efficiently via a spectral split along e3 and is driven by BL, while BH drives vacuum

oscillations along e8.

Now, as µ adiabatically goes to zero, the co-rotation frequency ωH
c approaches the

final split frequency ωH
s and the modes with ω > ωH

s will orient themselves along

BH, those with ω < ωH
s in the −BH direction. The value of ωH

s is fixed by the

conservation of P8. Since the evolution associated with BH has saturated, we can
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next go into a frame rotating around BL where

H ≈
(
ω − ωL

c

)
BL + µP (3.80)

and repeat the analogous argument.

A crucial requirement for the splits to develop is the preparation of the system for

the split by the generation of components of P that are transverse to B. Bipolar

oscillations do this easily for inverted hierarchy, independent of matter effects. For

the normal hierarchy, this may be achieved by MSW conversions, should they occur

before the nonlinear effects end. These two kinds of splits are called “Bipolar-

prepared” and “MSW-prepared” spectral splits respectively. We illustrate each of

these in the following.

Bipolar-prepared spectral splits

For illustrating bipolar oscillation initiated splits, we choose two situations, with

large and small λ (Fig. 3.8 and 3.9 respectively) and the hierarchy is taken to be

inverted. We take box-like initial spectra f(ω) for νe and ν̄e energies and the flux

asymmetry α = 0.33. We observe the following from the figures:

• For large λ, there is only a single split for neutrinos, which can be seen in Pey
3 .

The split is not visible in the triangle since the neutrinos are confined to the

νe–νy edge. However, the low energy neutrinos move towards νe and the high

energy ones towards νy.

• for small λ, the split is not only in Pey
3 but also in Pey

8 . There also are

oscillations with large amplitudes. Some neutrino states drift towards and

ultimately reach νy, while the others keep oscillating between νe and νx.

The above observations can be understood as follows. For large λ, the solar mixing

angle is suppressed and hence the problem reduces essentially to a two-flavor one in

the e − y subspace. Thus, the split is only in Pey
3 . The split happens in neutrinos

since there are more neutrinos than antineutrinos at any given energy. For small λ,
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Figure 3.8: Spectral splits at large λ for neutrinos (dotted) and 33% fewer
antineutrinos (undotted) with energies E = (1–51) MeV. In the ρνeνe

plot, the energy
of neutrinos (antineutrinos) increases (decreases) top downwards. The energies (in
MeV) of the modes, shown in the figure, are 1.0 (Red), 1.5 (Blue), 3.5 (Green),
12.5 (Pink) and 32.0 (Grey). We take inverted hierarchy, |ε| = 1/30, θ13 = 0.01,
µ = 105 (50/r(km))4 km−1 and λ = 10 km−1. In the e3–e8 triangle, the evolution is
always along the νe–νy edge.
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Figure 3.9: Spectral splits at small λ for neutrinos (dotted) and 33% fewer
antineutrinos (undotted) with energies E = (1–51) MeV. The conventions for lines
is the same as that in Fig. 3.8. We take inverted hierarchy, ε = 1/30, θ13 = 0.01
µ = 105 (50/r(km))4 km−1 and λ = 0.1 km−1. In the e3–e8 triangle, we show only
some of the representative energies that have different behaviors.

Chapter3/split1.eps
Chapter3/split1tplot.eps
Chapter3/split2.eps
Chapter3/split2tplot.eps


Nonlinear Neutrino Oscillations 53

in addition to the above split, there are large νe ↔ νx oscillations, which give rise

to a split that is observable also in Pey
8 , which was absent for large λ. In either case,

the position of the split can be determined from the conservation of B ·D after the

split.

MSW-prepared spectral splits

Spectral splits can also be prepared by MSW effects. We consider a situation where

the system passes the two MSW level crossings before the neutrino-neutrino inter-

actions become small. The subsequent evolution to the point where the neutrino-

neutrino interaction becomes negligible will then produce spectral splits. We can

follow the two-flavor treatment almost step by step because the present three-flavor

system is simplified by the mass-gap hierarchy ε ≈ 1/30 � 1. While the two

conserved flavor-lepton numbers present in the three flavor case lead to two spectral

splits, these will occur in sequence and their dynamics factorizes in practice.

To illustrate the dynamics of the split we consider an explicit example with only

neutrinos, so that D =
∫∞

0
dωf(ω)P(ω), and an initial “box spectrum” for f(ω), of

the form

ρee(ω) =





(2ω0)

−1

0
for

0 ≤ ω ≤ 2ω0

otherwise
. (3.81)

At high densities ρee(ω) coincides with ρ̃33(ω) in normal hierarchy and with ρ̃22(ω) in

inverted hierarchy. After the MSW crossings the spectrum is still of box-like because

the assumed strong neutrino-neutrino interaction ensures the same semi-adiabatic

for all energies. However, P now has transverse components generated due to MSW

crossing. Note that after the MSW transitions we neglect ordinary matter so that

the propagation eigenstates are identical with the mass eigenstates and ρ̃ = ρ.

The situation can be visualized in terms of the e3–e8 triangle diagram shown in

Fig. 3.10 (left panel). Each point in the interior and on the boundary of the triangle

represents the projection of the polarization vector P in the e3–e8 plane. For

normal hierarchy, neutrinos from the νe burst start in the state νe ≈ ν̃3, where

by “tilde”, we represent the instantaneous mass eigenstates. The H crossing shifts
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Figure 3.10: Projection of the polarization vectors P(ω) on the e3-e8 plane for our
box-example. The vertices of the triangle represent instantaneous mass eigenstates.
The MSW transitions, prepare the system and place it at the point A in the interior
of the triangle (See the text for details.).

the neutrino state from the ν̃3 vertex towards the ν̃2 state, but only partially, due

to the semiadiabatic nature of the transition. After that crossing, all neutrinos find

themselves at the point A′ inside the triangle. The L crossing further transports

the state along a line parallel to the ν̃2–ν̃1 edge towards ν̃1, again only partly due to

the semiadiabaticity. Before the split, all the neutrinos are thus at a point A in the

interior of the triangle.

The H split takes the ω > ωH
s modes towards the ν̃3 state (P3 = 0, P8 = −2/

√
3)

and the modes ω < ωH
s towards some combination of ν̃1 and ν̃2, while conserving the

total P3 and P8. Since ε � 1, the H and L splits are well separated and the high-ω

modes reach the ν̃3 vertex, i.e. the H split saturates, before the L split begins. The

low-ω modes propagating towards the P8 = 1/
√

3 line encounter the L split that

tends to take the ω > ωL
s modes towards ν̃2 (P3 = −1, P8 = 1/

√
3) and the ω < ωL

s

modes towards ν̃1 (P3 = 1, P8 = 1/
√

3). In the adiabatic limit, i.e. given sufficient

time to propagate from µ → ∞ to µ → 0, the H and L splits result in all neutrinos

reaching one of the three vertices of the e3–e8 triangle.

Using the conservation law for P3 and P8 of one can evaluate the split frequencies

ωH
s and ωL

s . For ω < ωH
s we have P8 → 1/

√
3, while for ω > ωH

s they reach −2/
√

3.

Chapter3/3sptria.eps
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In the limit of perfect adiabaticity, the conservation of P8 implies

2ω0P8(0) =
1√
3

ωs
H − 2√

3
(2ω0 − ωs

H) , (3.82)

where P0
8 is the common value of P8 before the split begins. For this example,

P0
8 = −0.50, leading to ωH

s = 0.76 ω0.

When the H split saturates, all modes with ω > ωH
s have P8 = −2/

√
3, and hence

P3 = 0 due to the conservation of the norm of P. These modes have reached the

bottom vertex of the e3–e8 triangle and hence cannot split further due to the L

split. On the other hand, for modes with ω < ωH
s a second split in P3(ω) happens.

These modes approach P3 = +1 for ω < ωL
s and P3 = −1 for ω > ωH

s . Applying

the conservation law for P3 gives us

2ω0P3(0) = ωs
L −

(
ωH

s − ωL
s

)
. (3.83)

For this example P0
3 = −0.14 so that ωL

s = 0.24 ω0.

For inverted hierarchy, the initial state here is ν̃2. The nonadiabatic L crossing

takes the neutrino states partly towards ν̃1. After the L crossing and before the

split, the neutrino state for all modes is along the ν̃1–ν̃2 edge, at A as shown in

Fig. 3.10 (right panel), where P8 = 1/
√

3. Since all neutrinos already are in one

of the extreme values of P8, the H split is inoperational. This corresponds to ρ33

remaining in its MSW-prepared initial value of 0. The L split takes ρ11 → +1 for

ω < ωL
s and ρ11 → 0 for ω > ωL

s , and vice versa for ρ22. In the inverted hierarchy

we have an effective two-flavor case in the ν̃1-ν̃2 subsector. This is a consequence

of the MSW-prepared initial condition. Initially P0
8 = 1/

√
3. Applying now the

conservation of P8 we obtain ωH
s = 2ω0, i.e., the split occurs at the edge of the

box and thus is not visible. The conservation law for P3 and using in our case

P0
3 = −0.38, one obtains ωL

s = 0.62 ω0.

We show in Fig. 3.11 the mass-basis spectra of P3 and P8. Thin lines are the

MSW-prepared initial spectra. Thick lines show the numerical final spectra. Dotted

lines show the adiabatic limiting behavior based on the lepton-number conservation
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Figure 3.11: The 3 and 8 components of P(ω). Thin line: initial box spectrum.
Thick line: numerically evaluated final spectrum. Dotted line: analytical prediction
for final spectrum.

laws. Once more the agreement is striking. We have of course assumed complete

factorization of H and L splits, this requires the H split to saturate before the L

split begins to occur. Imperfect adiabaticity merely leads to a smoothening of the

splits which otherwise are sharp spectral steps.

3.5.5 Summarized results

We started with a general framework to calculate flavor evolution of nonlinearly

coupled neutrinos and antineutrinos. We showed how to reduce any source geometry

to a quasi-spherical source. We then worked out the three-flavor effects analytically,

and showed that there is a sense in which the full problem breaks apart into the

H and L sectors. We then generalized the known two-flavor results to explicitly

demonstrate the various flavor conversion mechanisms, viz. vacuum oscillations,

MSW oscillations, synchronized oscillations, bipolar oscillations and spectral splits,

in the three-flavor case and confirmed numerically that our framework gives consis-

tent results. We shall apply this framework to SN neutrinos in the next chapter.
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Chapter 4

Flavor Conversions of Supernova

Neutrinos

In this chapter, we study the effect of nonlinear oscillations and their interplay

with subsequent MSW transitions inside an iron-core SN. We apply the formalism

developed in Chapter 3 and identify the regions of the star where different flavor

conversion mechanisms are at work. This allows us to predict the features in

the observable neutrino and antineutrino spectra. We present results for inverted

hierarchy, because nonlinear effects are not expected to play a significant part for

normal hierarchy 1. These results are based on the paper: B. Dasgupta and A. Dighe,

“Collective three-flavor oscillations of supernova neutrinos,” Physical Review D 77,

113002 (2008), [arXiv:0712.3798 [hep-ph]].

4.1 Reference SN model

We define a reference SN model for our numerical study. Our input comprises of the

neutrino parameters ( the mass-square differences ∆m2
atm and ∆m2

� and the mixing

angles θ13 and θ12), the source geometry (parameterized by neutrinosphere radius

r0), primary neutrino fluxes Fνα
(parameterized by the number flux Φνα

, the average

energy 〈Eνα
〉, and the pinching ξνα

), initial flavor state (encoded into P0(ω)), MSW

1However, during the neutronization burst phase of an O-Ne-Mg SN, this need not be true.
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potential (denoted as λ(r)) and the neutrino potential (denoted as µ(r)). With these

inputs, we can analytically predict P(ω) at the end of nonlinear evolution. Then

we take the MSW crossings into account and write down the neutrino fluxes F obs
να

arriving at Earth.

4.1.1 Neutrino masses and mixings

We take |∆m2
atm| = 2.5× 10−3 eV2, |ε| = |∆m2

�/∆m2
atm| = 1/30, θ12 = 0.6, and two

representative values of θ13, viz. θ13 = 0.001(small) and 0.1(large).

4.1.2 SN geometry and fluxes

The SN model is defined by the following choice for the emission geometry, initial

flavor dependent spectra and fluxes, the neutrino potential and the matter density

profile. We would like to emphasize that these choices are canonical and more

importantly, the specific value of the luminosity or the spatial dependence of the

neutrino potential does not affect results significantly. Any large initial value of µ

(such that it exceeds ω) and its slow decrease with r gives almost identical results.

In other words, the results are not fine-tuned. However, the results would depend

on the flavor spectra and the matter density profile, as these determine the initial

conditions, the neutrino potential and the effective mixing parameters.

Emission geometry

Neutrinos with different energies and flavors start freestreaming at different r, but

flavor evolution does not start until much later. Thus the radius of the neutri-

nosphere r0 is used only to set the initial conditions. We therefore use the “bulb-

model” of neutrino emission from the SN as discussed in [72] with a nominal

neutrinosphere at r0 = 10 km. We assume steady-state half-isotropic emission

from the neutrinosphere. This completely defines the kinematics of all neutrinos

and antineutrinos emitted from the SN.
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Initial fluxes and spectra

We now define the flavor composition of the SN neutrinos. The flavor-dependent

primary neutrino spectra at r0 are parameterized as [24]

Fνα
(E) = Φννα

N(ξνα
)

〈Eνα
〉

(
E

〈Eνα
〉

)ξνα

exp

[
−(ξα + 1)

E

〈Eνα
〉

]
, (4.1)

where N(ξ) = (1 + ξ)1+ξ/Γ(1 + ξ). This spectrum is normalized such that

∫ ∞

0

dEνα
Fνα

(Eνα
) = Φνα

(4.2)

and has the average energy 〈Eνα
〉.

The above parameterization has the advantage that the spectra can be analytically

integrated, including the effects of spectral pinching through ξα.

The number flux Φνα
is given by Φνα

= Lνα
/〈Eνα

〉, where Lνα
is the luminosity in

the flavor να.

We assume the above parameters to be

Lνα
= 1.5 × 1051ergs/sec , ξα = 3

〈Eνe
〉 = 10 MeV , 〈Eν̄e

〉 = 15 MeV , 〈Eνx,y, ν̄x,y
〉 = 20 MeV . (4.3)

This choice reflects the hierarchy of number fluxes found in typical supernova models

[23, 24]

Φνe
> Φν̄e

> Φνx
= Φν̄x

= Φνy
= Φν̄y

. (4.4)

This scenario has been extensively studied analytically as well as numerically, and

gives straightforward predictions for neutrino flavor conversions. Although it is not

obvious that this hierarchy is maintained at late times, in the following we will

assume it as our benchmark. We must remark that qualitatively different primary

neutrino spectra and/or yet undiscovered flavor effects may yield different predic-

tions for flavor conversion and the analysis will have to be repeated appropriately.
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4.1.3 Neutrino potential and matter density profile
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Figure 4.1: The profiles of λ(r) and µ(r) for the SN model chosen in this section,
along with the bands for the MSW resonances H and L. Also indicated are the
terminal values of r where synchronized /bipolar oscillations for the e− y and e− x
flavors take place.

Neutrino potential

The neutrino potential for r > r0 for the choice of parameters in Eq. (4.3) is given

by

µ(r) = 0.45 × 105 g(r) km−1 , (4.5)

where g(r) is given in Eq. (2.37).

Matter potential

We choose the shock-wave simulation inspired density profile that corresponds to 2

λ(r) = 1.84 × 106/r2.4 km−1 . (4.6)

The profiles of λ(r) and µ(r) are shown in Fig. 4.1.

2This is the same as the one used in [41] at t=4 sec.
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4.2 Flavor conversions inside a supernova

Let’s recall that E ∼ p = |∆m2
atm|/(2ω), we can rewrite the above information in

terms of ω, if desired. Combining Eq. (3.12) with the definitions of moments in

(3.28), allows us to calculate the values of D(r0), S(r0) and D(1)(r0) for the above

spectrum as

D(r0) =
(〈Eν̄e

〉 − 〈Eνe
〉) 〈Eνx

〉
〈Eνe

〉〈Eνx
〉 + 〈Eν̄e

〉 (4〈Eνe
〉 + 〈Eνx

〉) ee =
1

11
ee , (4.7)

S(r0) =
(〈Eνe

〉 + 〈Eν̄e
〉) 〈Eνx

〉 − 2〈Eνe
〉〈Eν̄e

〉
(〈Eνe

〉 + 〈Eν̄e
〉) 〈Eνx

〉 + 4〈Eνe
〉〈Eν̄e

〉 ee =
2

11
ee , (4.8)

D(1)(r0) =
2∆m2

13

3

1/〈Eνe
〉2 + 1/〈Eν̄e

〉2 − 2/〈Eνx
〉2

1/〈Eνe
〉 + 1/〈Eν̄e

〉 + 4/〈Eνx
〉 ee = 0.215 ee km−1 .(4.9)

Using the above expressions, 〈ω〉 ≡ D · D(1)/|D|2 is calculated to be

〈ω〉 = 2.37 km−1 , (4.10)

which allows us to write 〈ωey〉 = 〈ω〉 and 〈ωex〉 = ε〈ω〉 in terms of 〈ω〉, as per Eq.

(3.68). This sets the “scale” for the problem. When µ � 〈ω〉, we have synchronized

oscillations, when µ >∼ 〈ω〉 we have bipolar oscillations, as µ becomes less than 〈ω〉
spectral splits develop. Then as λ = ω, we have the MSW resonances. All of these

happen for both the H (νe–νy) and the L (νe–νx) sector. Knowing µ(r) and λ(r) we

can predict the radii r at which various flavor conversions take place.

We expect synchronized oscillations in the region where µ > 4〈ωey〉 Sey
3 / (Dey

3 )2 ≈
208 km−1 [76], which corresponds to rey

syn ≈ 30 km in our example. In the further

region till µ ≈ 〈ωey〉 / Dey
3 ≈ 26 km−1 [76], which corresponds to rey

bip ≈ 49 km,

νe ↔ νy bipolar oscillations are expected. Beyond this region the spectral split in

the e − y sector should develop, and subsequently MSW resonances should take

place, which would be either completely adiabatic (large θ13) or completely non-

adiabatic (small θ13) for the values of θ13 we consider.Similarly we calculate for the

e−x flavors, the relevant values of rex
syn ∼ 68 km and rex

bip ∼ 114 km for approximate

boundaries of synchronized and bipolar oscillations in the e−x sector. However, no

bipolar oscillations take place in the e−x sector since the corresponding hierarchy is
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Figure 4.2: The flavor evolution of representative energy modes of νe(dotted) and ν̄e

(undotted) for the density profile in Fig. 4.1, with θ13 = 0.001. In the ρνeνe
plot, the

energy of neutrinos as well as antineutrinos increases top downwards. The energies
(in MeV) of the modes, shown in the figure, are 2.5 (Red), 3.6 (Blue), 9.4 (Green),
13.3 (Pink) and 50.0 (Grey). In the triangle plot, the bold line passing through νe

is where all the neutrino and antineutrino states initially lie.

normal. In Fig. 4.1, we show the positions corresponding to rey
syn, rey

bip, r
ex
syn and rex

bip.

4.2.1 Small θ13

Fig. 4.2 shows the flavor evolutions in terms of Pey
3 , Pey

8 and the e3–e8 triangle for

neutrinos as well as antineutrinos, for θ13 = 0.001. This small value of θ13 ensures

that the MSW resonance H in antineutrinos is nonadiabatic, so that the effects of

this resonance are not felt. One can then cleanly identify the nonlinear effects. We

make the following observations and interpretations based on the figure:

• All the neutrinos and antineutrinos initially lie on a line passing through νe

in the e3–e8 triangle. This is because the initial conditions are taken to be

symmetric in νx and νy.

• The flavor evolution starts only at r = 40 km, which is slightly beyond rey
syn.

Before this point, the oscillations are synchronized, with a vanishing ampli-

tude since λ � 〈ωey〉.
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• Between r = 40 and 60 km, νe ↔ νy bipolar oscillations are observed as rapid

dips in Pey
3 , and consequently in ρνeνe

. These oscillations vanish when r >∼ rey
bip.

• Around r ≈ 60 km, a spectral split develops in neutrinos along Pey
3 . The

spectral split tends to keep the low energy neutrinos at their original position,

while taking the high energy neutrinos as well as almost all antineutrinos

towards Pex
3 = 0. 3

• Between r ≈ 100− 1000 km, antineutrinos of different energies undergo the H

resonance. However the resonance is highly nonadiabatic and does not cause

any flavor conversion.

• At r = 1000 km and beyond, the effects of the MSW resonance L come into

play, resulting in νe ↔ νx conversion. Since the high energy neutrinos are

already close to Pex
3 = 0, there is effectively no flavor conversion. However

the low energy neutrinos tend to convert to νx, which is seen as a movement

parallel to the νe–νx edge in the e3–e8 triangle.

• Since all the flavor conversions can be understood as a net effect of two-

flavor phenomena taking place in well-separated regions in the star, the flavor

transitions in the e3–e8 triangle are always parallel to the νe–νx edge or νe–νy

edge.

Thus, for a small θ13, the nonlinear effects can be clearly identified, whereas the

effects due to the H resonance are absent. We calculate the flavor evolution till

r = 5000 km. The nonlinear effects have almost vanished by this time. Further

MSW resonances due to the shock wave [21, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44],

as well as possible effects of stochastic density fluctuations or turbulence [45, 46, 47]

will govern flavor conversions here onwards. Our calculations thus provide initial

conditions for neutrino spectra at this point.

In Fig. 4.3, we show the neutrino and antineutrino spectra at r = 5000 km. We

see that νe with E >∼ 7 MeV convert almost completely to νy due to the spectral

3 There seems to be a spectral split in antineutrinos as well, at very low energies. This is
similar to the observation in [76], and may be the effect of multiple-crossing of the spectra.
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Figure 4.3: Neutrino and antineutrino spectra at r = 5000 km for θ13 = 0.001. The
e, x and y flavors are shown in red(solid), green(dashes) and blue(dots). The thin
lines/dashes/dots are for initial spectra and thick ones for the final spectra. The νe

and νy spectra get swapped for E >∼ 7 MeV, whereas the lower energy νe spectrum
partially mixes with νx. In the antineutrino sector, the ν̄e and ν̄y spectra are almost
completely swapped, while the ν̄x spectrum remains unaffected.

split, whereas lower energy νe convert partially to νx at the L resonance. In the

antineutrino sector, the ν̄e and ν̄y spectra are almost all completely swapped due to

the spectral split, while the ν̄x spectrum remains unaffected.

4.2.2 Large θ13

At large θ13 values, the H resonance at r ≈ 100–1000 km is adiabatic, and causes

significant flavor conversions in antineutrinos. In Fig. 4.4, we show the flavor

evolution for θ13 = 0.1. While the signatures of synchronized and bipolar oscillations

as well as the spectral split remain identical to the θ13 = 0.001 case, the H resonance

can be seen to change the antineutrino picture substantially. The conversions in the

neutrino sector, on the other hand, are identical to the small θ13 case. The following

observations can be made from the figure.

• The spectral split gives rise to a complete ν̄e–ν̄y conversion, which takes

antineutrinos to Pex
3 = 0.

• The H resonance again swaps the ν̄e–ν̄y spectra, thus undoing the earlier effect
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Figure 4.4: The flavor evolution of same representative energy modes of νe(dotted)
and ν̄e (undotted) for the density profile in Fig. 4.1, with θ13 = 0.1. The convention
for the lines is the same as in Fig. 4.2.

of the spectral split. This takes the antineutrinos back to their starting position

in the triangle.

• Antineutrinos are now not on the Pex
3 = 0 line as in the small θ13 case. As

a result, the large value of θ12 causes substantial ν̄e–ν̄x conversion as the

neutrinos emerge from the L resonance region.

The neutrino and antineutrino spectra at r = 5000 km are shown in Fig. 4.5. We

see that the neutrino spectra have the same characteristics as for small θ13. In the

antineutrino sector, complete ν̄e–ν̄y spectral split and the reconversion at the H

resonance cancel each other, whereas the large value of θ12 partially mixes the ν̄e–ν̄x

spectra.

The value of θ13 thus affects the ν̄e spectra substantially. At larger θ13 values, where

the H resonance is more adiabatic, the ν̄e spectrum is softer. The ν̄x spectrum is

also affected at large θ13, as opposed to the small θ13 case.
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Figure 4.5: Neutrino and antineutrino spectra at r = 5000 km for θ13 = 0.1. The
e, x and y flavors are shown in red(solid), green(dashes) and blue(dots). The thin
lines/dashes/dots are for initial spectra and thick ones for the final spectra. The νe

and νy spectra get swapped for E >∼ 7 MeV, whereas the lower energy νe spectrum
partially mixes with νx. In the antineutrino sector, the ν̄e and ν̄x spectra are partially
mixed, while the ν̄y spectrum remains unaffected.

4.2.3 Summarized results

It is thus clear that the neutrino fluxes that reach Earth from a SN, are very different

from the primary fluxes, even if MSW effects are unimportant. The nonlinear effects

can themselves cause large flavor conversions. In particular for inverted hierarchy,

we learn that the νe and νy spectra are exchanged above a certain split-energy Ec due

to nonlinear effects. For antineutrinos the swap occurs over the complete spectrum.

In the normal hierarchy, nonlinear effects do not have a significant effect. The MSW

conversions cause further flavor conversions, and while the conversion probabilities

have not changed from the traditional expectation, the primary fluxes entering the

resonances are now vastly different. This leads to different flavor composition of

the fluxes of neutrinos and antineutrinos arriving on Earth, than was traditionally

expected.

These fluxes can be calculated using our understanding of nonlinear effects and

the level-crossing diagrams. At the detectors on Earth one is typically sensitive to

the νe and/or ν̄e flux, and so we summarize the expectations for these fluxes in

Tables 4.1 and 4.2. The expressions in the table describe all the features of νe and
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ν̄e spectra in Figs. 4.3 and 4.5.We have taken the L resonance to be adiabatic. In

the case of multiple H resonances, as may occur during the shock wave propagation

or turbulence, PH may be taken to be the effective jump probability (it may have

a nontrivial dependence on energy and time). Note that Earth matter effects are

present only when F obs
νe/ν̄e

is a nontrivial combination of Fνe/ν̄e
and Fνx,νy/ν̄x,ν̄y

.

Normal hierarchy

F obs
νe

= s2
12

(
PHFνe

+ (1 − PH)Fνy

)
+ c2

12Fνx

F obs
ν̄e

= c2
12Fν̄e

+ s2
12Fν̄x

Table 4.1: Neutrino and antineutrino fluxes in normal hierarchy arriving on Earth
from a SN.

Inverted hierarchy

F obs
νe

=

{
s2
12Fνe

+ c2
12Fνx

(E < Ec)
s2
12Fνy

+ c2
12Fνx

(E > Ec)

F obs
ν̄e

= s2
12Fν̄x

+ c2
12

(
(1 − PH)Fν̄e

+ PHFν̄y

)

Table 4.2: Neutrino and antineutrino fluxes in inverted hierarchy arriving on Earth
from a SN.

These are the observable fluxes in terms of the primary fluxes for the scenario that

we have considered. If the initial fluxes have the same ordering as in Eq. (1.16) but

with slightly changed parameters, the outcome would be similar. However, if the

initial fluxes have a different ordering, or if the nonlinear evolution is nonadiabatic

the situation is likely to be different.





Chapter 5

Signatures of Nonlinear Supernova

Neutrino Oscillations

The nonlinear flavor oscillations of SN neutrinos leave distinctive imprints on the

neutrino spectra observable on Earth. In this chapter we discuss some possible

outcomes for neutrino physics and astrophysics based on the papers: B. Dasgupta,

A. Dighe and A. Mirizzi, “Identifying neutrino mass hierarchy at extremely small θ13

through Earth matter effects in a supernova signal,” Physical Review Letters 101

(2008) 171801, [arXiv:0802.1481 [hep-ph]] and B. Dasgupta, A. Dighe, A. Mirizzi

and G. G. Raffelt, “Spectral split in prompt supernova neutrino burst: Analytic three-

flavor treatment,” Physical Review D 77 (2008) 113007, [arXiv:0801.1660 [hep-ph]]

respectively.

5.1 Determination of mass hierarchy using Earth

matter effects

We have seen in the previous chapter that nonlinear effects have different outcomes

for normal and inverted hierarchy. As a consequence, neutrino fluxes which are

further processed by MSW matter effects are significantly different for the two

hierarchies, even at extremely small θ13 values. This sensitivity presents a novel
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possibility to determine the mass hierarchy at small θ13. We propose a new method

for determining the neutrino mass hierarchy, which works for extremely small values

of θ13 using this possibility.

As before, we assume the hierarchy of number fluxes [23, 24]

Φνe
> Φν̄e

> Φνx
= Φν̄x

= Φνy
= Φν̄y

. (5.1)

Although it is not obvious that this hierarchy is maintained at late times, in the

following we will assume it as our benchmark. We remark again that qualitatively

different primary neutrino spectra and/or yet undiscovered flavor effects may yield

different predictions for flavor conversion and the analysis will have to be repeated

appropriately.

We concentrate on the ν̄e spectra observable through inverse beta decay reactions

ν̄e + p → n + e+ at water Cherenkov detectors. In inverted hierarchy, MSW matter

effects in SN envelope are characterized in terms of the level-crossing probability

PH [34, 103] of antineutrinos, which is in general a function of the neutrino energy

and θ13. In the following, we consider two extreme limits, PH ' 0 when sin2 θ13 &

10−3 (“large”), and PH ' 1 when sin2 θ13 . 10−5 (“small”).

While propagating through the Earth, the ν̄e and ν̄x spectra partially mix. The

neutrino fluxes F obs
ν at the Earth surface for normal hierarchy, as well as for inverted

hierarchy with large θ13, are given in terms of the the primary fluxes Fν by

F obs
ν̄e

= cos2 θ12Fν̄e
+ sin2 θ12Fν̄x

,

F obs
ν̄x

= sin2 θ12Fν̄e
+ cos2 θ12Fν̄x

. (5.2)

For inverted hierarchy with small θ13, we have

F obs
ν̄e

= cos2 θ12Fν̄y
+ sin2 θ12F

0
x̄ ≈ F 0

x̄ ,

F obs
ν̄x

= sin2 θ12Fν̄y
+ cos2 θ12Fν̄x

≈ Fν̄x
. (5.3)
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Earth effect can be taken into account by just mapping cos2 θ12 → P (ν̄1 → ν̄e) and

sin2 θ12 → 1−P (ν̄1 → ν̄e), where P (ν̄1 → ν̄e) is the probability that a state entering

the Earth as mass eigenstate ν̄1 is detected as ν̄e at the detector.

From Eqs. (5.2) and (5.3), one expects to observe Earth matter effect in normal

hierarchy independently of θ13, while in inverted hierarchy it is expected only at

large θ13. For small θ13 and inverted hierarchy, the ν̄e spectrum arriving at the Earth

is identical to the ν̄x spectrum arriving at the Earth, so any oscillation effect among

them is unobservable. This implies that if next generation neutrino experiments

bound θ13 to be small, from the (non)observation of Earth matter effect we could

identify the neutrino mass hierarchy.

A strategy to observe Earth matter signatures in neutrino oscillations is to compare

the signal at two detectors. The difference between the ν̄e flux F A
ν̄e

at a shadowed

detector and the ν̄e flux F B
ν̄e

at a detector that is not shadowed by the Earth can be

written as

∆F = F A
ν̄e
− F B

ν̄e
= freg(Fν̄e

− Fν̄x
) , (5.4)

for normal hierarchy as well as for inverted hierarchy with large θ13. Here freg =

P (ν̄1 → ν̄e)−cos2 θ12 is the Earth regeneration factor. In inverted hierarchy for small

θ13, we get ∆F = 0. If the ν̄ trajectories cross only the Earth mantle, characterized

by an approximately constant density, freg is simply given by [104]

freg = − sin 2θ̃12 sin(2θ̃12 − 2θ12) sin2

(
∆m̃2

�L

4E

)
, (5.5)

where θ̃12 is the effective value of the antineutrino mixing angle θ12 in matter, ∆m̃2
�

is the solar mass squared difference in matter, and L is the path length in Earth.

In Earth matter, we have sin 2θ̃12 > 0 and sin(2θ̃12 − 2θ12) < 0, which tells us that

freg ≥ 0.

The flavor dependent primary neutrino spectra Fνα
(E) in terms of 〈E〉να

is the

average energy for the different neutrino species, and ξνα
is the spectral pinching
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Figure 5.1: Plot of the ratio R defined in Eq. 5.7, as a function of the observable
positron energy for normal hierarchy (left panel) and inverted hierarchy (right
panel), with sin2 θ13 . 10−5. For sin2 θ13 & 10−3, the ratio R will be identical
to the left panel for either hierarchy.

parameter. The neutrino flux at the neutrinosphere can then be estimated to be

Fνα
=

Lνα

〈Eνα
〉fνα

(E) , (5.6)

where Lνα
is the luminosity in the να

flavor and fνα
(E) is the distribution function

in Eq.(4.1). All SN models robustly predict 〈Eν̄e
〉 < 〈Eν̄x

〉 ≈ 〈Eν̄y
〉, as well as

ξαν̄e
≈ ξαν̄x

≈ ξαν̄y
. This implies that the sign of (F 0

ν̄e
−F 0

ν̄x
) is positive at low energies

(before the crossing of the ν̄e and ν̄x spectra) and negative at higher energies.

The net result is that when we compare the antineutrino fluxes between a shadowed

and an unshadowed detector, we will have ∆F > 0 at low energies and ∆F < 0 at

high energies in the case of normal mass hierarchy, or in inverted mass hierarchy

with large θ13. In inverted hierarchy with small θ13, one expects a ∆F compatible

with zero.

To illustrate the above, we consider a galactic supernova explosion at a distance

of 10 kpc, with luminosities Lν̄x
= Lν̄y

= 0.8Lν̄e
and total emitted energy Eb =

3 × 1053 erg. We also choose 〈Eν̄e
〉 = 15 MeV, 〈Ex̄〉 = 〈Eȳ〉 = 18 MeV, and

να = 3, inspired by the results of the Garching simulations [24, 105]. We analyze

the detection of the above signal using two large water Cherenkov detectors A and B

of fiducial mass 0.4 megaton each, as proposed for upcoming experiments [106, 107,

108]. We compare the number of events in detector A, where neutrinos arrive after

Chapter5/Rplot.eps
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traversing L = 8000 km in Earth mantle with an approximately constant density

ρ = 4.5 g/cm3, with another detector B for which the supernova is not shadowed

by the Earth (L = 0). The reference values for features of the detectors, e.g.,

energy resolution and interaction cross sections, are the same as in [42]. We choose

∆m2
� = 8 × 10−5 eV2 and sin2 θ12 = 0.29 as the oscillation parameters relevant for

the Earth matter effect.

We define

R ≡ (NA − NB)/NB (5.7)

as the difference between the number of ν̄e events at the shadowed detector and

the unshadowed detector, normalized to the number of events at the unshadowed

detector. In Fig. 5.1, we plot the ratio R as a function of the measured positron

energy Epos for ν̄e in normal hierarchy (left panel) and inverted hierarchy (right

panel) for sin2 θ13 . 10−5. The error bars show the statistical error in R. In the

other extreme case of sin2 θ13 & 10−3, both the normal and inverted hierarchy would

correspond to the left panel.

Let us consider the scenario where θ13 is known to be small. From the figure,

in normal hierarchy the ratio R is positive for Epos . 25 MeV and negative at

higher energy. The low energy spectrum is dominated by statistical error, but for

Epos & 30 MeV the depletion of the signal with respect to the unshadowed detector

is clearly visible, with |R| & 5%. On the other hand, in inverted hierarchy we

find R = 0. The difference in the predictions of two hierarchies is significant and

should be observable. Primary spectra taken from Livermore simulations [23], which

predict a larger difference between ν̄e and ν̄x average energies, would show a more

pronounced Earth effect. We emphasize that our method is based on a model

independent signature which does not rely on fitting or extracting any parameters.

The comparison of the neutrino signal in two detectors is also possible using only a

single megaton class water Cherenkov detector together with the km3 ice Cherenkov

detector IceCube at the South Pole [109]. Even though IceCube cannot reconstruct

the neutrino spectrum at SN energies, the ratio of luminosities at these two detectors

can be determined rather accurately, which will show about 5% time variation if
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Earth effect is indeed present [36]. Moreover, if a large scintillator detector [106] is

built, its superior energy resolution would allow the observation of the modulations

induced by the earth effect in the spectrum, without the need to compare the signal

with another unshadowed detector [37].

The swap of the ν̄ spectra due to nonlinear effects does not depend on the exact

neutrino density profile as long as the propagation is adiabatic [62], whose validity we

have checked for typical SN profiles and θ13 as low as 10−10. Decoherence effects are

highly suppressed due to the νe–ν̄e flux asymmetry [75], and other multi-angle effects

also do not affect the net antineutrino conversions substantially [76]. Moreover, with

an extremely small θ13, the detailed matter density profile near the H resonance

is immaterial, and the effects of density fluctuations or turbulence may safely be

ignored. Therefore, one can make the following statements: (i) Observation of Earth

matter effects cannot be explained in inverted hierarchy (ii) Nonobservation of Earth

matter effects cannot be explained in normal hierarchy (unless the primary fluxes

are almost identical). Our proposed method is thus quite robust, and would be able

to identify the mass hierarchy. It is not only competitive with the long baseline

strategy proposed in [110], but also offers an independent astrophysical resolution

to the hierarchy determination problem.

If θ13 is known to be large, the hierarchy can be determined through a number of

other observables in the SN burst itself: signatures of SN shock-wave propagation

in the ν̄e signal [21, 42, 45], the νe signal during the neutronization burst [111],

or the direct, albeit extremely challenging, observation of the spectral split in νe

spectrum [84] at a large liquid Argon detector [112]. In fact the hierarchy may

even be identified at the long baseline experiments. However in such a scenario, the

Earth matter effects act as an evidence for nonlinear flavor conversions, thus giving

us confidence about our understanding of the processes happening in the core of the

star.
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Figure 5.2: Profile of the matter potential λ and the effective neutrino potential µ
for an O-Ne-Mg core collapse SN [14, 113, 114, 115].

5.2 Progenitor dependence of SN neutronization

burst signal

An interesting new case is motivated by the class of O-Ne-Mg core-collapse su-

pernovae [14, 113, 114, 115]. Supernovae with the lowest progenitor masses of

(8−10) M�, encompassing perhaps 30% of all cases, collapse even before forming an

iron core. In state-of-the-art numerical simulations these supernovae explode even in

a spherically symmetric treatment, largely because their envelope mass is very small.

By the same token, the matter density profile above the core is very steep even at

the time of core bounce. In this case the H and L level crossings occur very close to

the neutrino sphere and may well lie deeply within the region where nonlinear effects

are important. This is illustrated in Fig. 5.2 where we show λ(r) =
√

2GFne(r) of

an O-Ne-Mg core progenitor star [14, 113, 114]. We also show ωH = 〈∆m2
atm/2E〉

and ωL = 〈∆m2
�/2E〉 as horizontal lines, where the average is over the Fermi-Dirac

spectrum of neutrino energies described below. The intersection of λ(r) with these

lines indicates the locations of the H and L level crossings.

In Fig. 5.2 we also show the effective neutrino potential µ =
√

2GF Fνe
〈1− cos θ〉eff ,

Chapter5/onemgprofile.eps
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Figure 5.3: Mass eigenstate fractions Pii as well as the νe survival probabilities far
away from the star, numerically computed using the SN model of Fig. 5.2 and an
initial flux of pure νe.

where θ is the angle between different neutrino trajectories and 〈. . .〉eff stands for

a suitable average. At large distances, µ scales approximately as r−4. nonlinear

neutrino effects driven by ∆m2
atm are important for µ(r) >∼ ωH and driven by ∆m2

�

for µ(r) >∼ ωL.

Duan et al. [86] have shown that in this case the interplay of ordinary MSW

conversions with nonlinear oscillations leads to interesting effects. We start with a

pure νe flux with a Fermi-Dirac spectrum (〈Eνe
〉 = 11 MeV, degeneracy parameter

η = 3), and numerically calculate the mass eigenstate fractions Pii and the νe survival

probabilities Pee far away from the star, as shown in Fig. 5.3. Our results are in

qualitative agreement with Fig. 2 of [86]. However, our Pee is constructed as an

incoherent sum of the mass fractions, thus representing the physical situation far

away from the star, where the oscillatory features seen in Duan et al.’s Pee have

disappeared.

In inverted hierarchy, one observes that the neutrinos emerging from the star are in

the ν2 state at low energies and in the ν1 state at high energies, with the transition

taking place around E ≈ 12 MeV. This results in a step function in energy for Pee.

Chapter5/onemgP.eps
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In the normal hierarchy, the neutrinos emerging from the star are in ν1 state for

E & 17 MeV, in ν2 state for 15 MeV . E . 17 MeV, and in the ν3 state for

E . 15 MeV. The bump seen around 5 MeV is due to an abrupt change in the

matter density profile used for the computation (see [86] for details), and we do not

address it here. The transition at E ≈ 15 MeV is rather sharp, however the one at

E ≈ 17 MeV is not as abrupt. This results in a two-step function for Pee, with the

step at E ≈ 17 MeV somewhat smoothened out.

This is an example of a “MSW prepared spectral split” as shown in Sec. 3.5.4, i.e

first the synchronized MSW resonances take place and generate off-diagonal terms

in the density matrix, and then the splits develop in the usual way. In a three-flavor

treatment, the step-like feature actually consists of two narrowly spaced splits for

the normal hierarchy and a single split for the inverted hierarchy.

Figure 5.4: Initial (thin) and final (thick) spectrum for a Fermi-Dirac distribution
with the typical parameters. The numerical final spectrum is for our toy-model
supernova where the MSW crossings and spectral-split region are far separated.
Dotted curves represent the survival probability Pee for electron neutrinos.

In Fig. 5.3 we show the above-mentioned features of the neutrino spectrum for the

neutronization burst of a O-Ne-Mg supernova. This signal is quite different from

the neutronization burst signal expected from an iron-core supernova, where there

are no such splits in the neutrino spectrum in either hierarchy.

To detect this signal one needs a detector that is sensitive to νe, e.g. liquid Argon

detectors. With detectors at present, we do not have enough events to identify

the spectra, and the only difference would manifest in the form of a depletion of

the number of events even for both normal and inverted hierarchy. This signal is

Chapter5/onemgspec.eps
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degenerate with the signal from an iron core supernova for normal hierarchy and

large θ13, where νe undergo an adiabatic MSW resonance leading to a flux depletion.

his is ground for dangerous confusion.

However, if we have a larger detector that gathers enough events and has enough

energy resolution to be able to see the splits, we speculate that this may be useful

for distinguishing the supernova progenitor using neutrinos and allow for better

characterization of different types of supernovae.
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Impact on the Diffuse Supernova

Neutrino Background

In this chapter, we look at the impact of nonlinear oscillations on the flux of neutrinos

from all past SN. We find that depending on the hierarchy and the mixing scenario

the fluxes can change by up to 50% due to nonlinear effects alone. Although there

are large astrophysical uncertainties, this strong dependence can in principle be

very useful to rule out some scenarios if we measure the diffuse supernova neutrino

background flux. This chapter is based on the paper: S. Chakraborty, S. Choubey,

B. Dasgupta and K. Kar, “Effect of Collective Flavor Oscillations on the Diffuse

Supernova Neutrino Background,” Journal of Cosmology and Astroparticle Physics

09 (2008) 013, [arXiv:0805.3131 [hep-ph]].”

6.1 Diffuse SN neutrino background

Supernovae are relatively rare events in our galaxy. It is estimated that in galaxies

similar to ours they occur at a rate of about 1 to 3 per century [27], which prompts

consideration of the alternative strategy to detect neutrinos from supernovae that

are further away. Neutrinos accumulated in the Universe from all the SN explo-

sions in the past and present epoch form a cosmic background, known as the

diffuse supernova neutrino background (DSNB) or supernova relic neutrinos [29, 30].
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The expected flux of these DSNB neutrinos depends mainly on the SN rate and

the“typical” flavor dependent flux of neutrinos from supernovae.

Estimation of the DSNB flux has been performed in previous literature [116], fo-

cussing on DSNB detection via ν̄e scattering off protons at water Cherenkov detectors

[117] and large liquid scintillator detectors [118]. On the other hand, νe detection

has been considered at a liquid argon detector [119] and at Sudbury Neutrino Ob-

servatory (SNO) [120, 121]. In [122], authors have performed a detailed comparative

study of νe detection in different future large scale observatories – by interaction of

νe on oxygen in water Cherenkov detectors, on carbon in liquid scintillator detectors

and on argon in liquid argon detectors. Experimentally, the best upper limits at 90

% C.L. of 6.8 × 103 νe cm−2s−1 (25 MeV < Eνe
< 50 MeV) and 1.2 ν̄e cm−2s−1

(Eν̄e
> 19.3 MeV) come from the Liquid Scintillation Detector (LSD) [123] and

the Super-Kamiokande (SK) detectors [32] respectively. However, stronger bounds

can be placed on these fluxes, albeit using somewhat indirect arguments [121, 124].

Some of the theoretical estimates of the DSNB fluxes predict event-rates for ν̄e that

are tantalizingly close to detection, e.g., the observational upper limit set by the SK

collaboration [32]. The prospects for discovery thus seem promising if a large water

Cherenkov detector like SK is loaded with 0.02% GdCl3 [125] or if one or more of

the proposed next generation detectors become available.

With the inclusion of nonlinear effects, the observable spectra gets modified. The

expected DSNB flux in the case of inverted hierarchy turns out to be quite different

from those contained in previous works that disregarded nonlinear effects. Thus the

prospects of DSNB detection at antineutrino and/or neutrino detectors are changed.

6.2 Estimation of DSNB flux

The total differential DSNB flux arriving at terrestrial detectors, expressed as the

number of neutrinos of flavor να arriving per unit area per unit time per unit energy,

due to all supernovae in the Universe up to a maximum redshift zmax (assumed to
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be 7 for the numerical analysis), is

F obs
να

(Eνα
) =

1

H0

∫ Zmax

0

RSN (z) Fνα
((1 + z)Eν)

dz√
(Ωm(1 + z)3 + ΩΛ)

. (6.1)

Here Fνα
is the neutrino spectra emitted by a SN, Eνα

is the neutrino energy at

Earth and RSN(z) is the SN rate per comoving volume at redshift z. Note that the

factor (1 + z) in the neutrino spectrum Fνα
((1 + z)Eνα

) incorporates the redshift of

the energy spectrum. The cosmological parameters are assumed to be given by the

standard Λ-CDM cosmology, we have

Ωm = 0.3 ; ΩΛ = 0.7 and H0 = 70 h70 km s−1 Mpc−1 . (6.2)

Therefore, we only need to know the SN rate RSN(z) and the differential flux of

neutrinos Fν(Eν), from a typical core-collapse event to calculate the DSNB flux at

Earth.

The SN rate RSN(z) is related to RSF (z), through the initial mass function ϕ(m),

which describes the differential mass distribution of stars at formation [116, 126].

We assume that all stars that are more massive than 8M� give rise to core-collapse

events and die on a timescale much shorter than the Hubble time, and that the

initial mass function ϕ(m) is independent of redshift. This allows us to relate the

star formation rate RSF (z) to the cosmic SN rate RSN(z) as

RSN(z) = RSF (z)

∫ 125M�

8M�
ϕ(m)dm

∫ 125M�

0.1M�
ϕ(m)mdm

. (6.3)

For our estimates, we use the initial mass function from [127], i.e.

ϕ(m) ∝
{

m−2.15 (m > 0.5M�)

m−1.50 (0.1M� < m < 0.5M�)
. (6.4)

Putting the above expression into Eq. (6.3) we find

RSN(z) = 0.0132 RSF (z)M−1
� . (6.5)
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It should be noted that the factor connecting RSN and RSF is quite insensitive to

the upper limit of the integrations in Eq. (6.3).

Recent careful studies on different indicators of the cosmic star formation rate have

been used to calculate the RSF and its normalization. We use the cosmic star

formation rate per comoving volume, RSF , from the concordance model advocated

in [128, 129], which is given by

RSF (z) ∝
{ (1 + z)3.44 z < 0.97

(1 + z)−0.26 0.97 < z < 4.48

(1 + z)−7.8 4.48 < z

, (6.6)

with the normalization

RSF (0) = 0.0197 M�yr−1Mpc−3 . (6.7)

This model satisfies the experimental upper limit on DSNB set by SK [32], and is

known as the concordance model [126].

We do not know the typical SN neutrino flux accurately, so to estimate the impact of

nonlinear effects, we consider an initial spectra with luminosities Lν̄x
= Lν̄y

= 0.5Lν̄e

and Lνx
= Lνy

= 0.625Lν̄e
and total emitted energy Eb = 3 × 1053 erg. We also

choose 〈E〉νe
= 12, 〈E〉ν̄e

= 15 MeV, 〈E〉ν̄x,νx
= 〈E〉ν̄y,νy

= 18 MeV and α = 3.

6.3 Expected event rate at detectors

An array of existing and planned detectors could observe the DSNB neutrinos. We

consider in particular water Cherenkov detectors (Super-K, Hyper-K) for the an-

tineutrinos. We also consider their enhanced versions with Gadolinium enrichment,

leading to efficient neutron tagging and background rejection. We use the standard

energy-cuts used for the analysis, so as to avoid the solar neutrinos below 10 MeV

and the atmospheric neutrinos above 20 MeV. For detecting the νe DSNB, the best

option seems to a reasonably large Liquid argon detector. We show the expected
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Figure 6.1: Number of expected events as a function of the jump probability PH

between the mass eigenstates ν1 and ν3. Black lines are for normal hierarchy and
blue dashed lines for inverted hierarchy. The yellow dashed dotted lines show the
case for inverted hierarchy without the nonlinear collective effects (WOC). The label
“Gd” denotes availability of Gadolinium tagging in the detector.

event rates in Fig. 6.1.

We find that the event rate can be different from previous estimates (WOC) by up

to 50%, and depends on the value of θ13. It is generically true for any choice of

primary fluxes. This result will have impact on models of stellar evolution if the

DSNB gets detected. In particular, knowing θ13 and hierarchy, we will be able to

put experimental constraints that those models must satisfy. Again, we remind that

this result is only indicative, and the analysis will have to be repeated appropriately

for different initial spectra. This is particularly an issue here because the different

supernovae will not all have the same spectrum in general.
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Conclusions

Neutrinos streaming from powerful astrophysical sources such as SN are so dense

near the source that they must show nonlinear flavor oscillations induced by the

neutrino-neutrino forward scaterring. Numerical simulations reveal a rich variety of

phenomena, some of which have been explained with simple analytic models. In this

thesis we explore various formal and phenomenological aspects of these phenomena.

Numerical simulations thus far have been restricted to homogeneous gases evolving

in time or to sources with exact spherical symmetry. More general geometries

are numerically much more demanding and have not yet been studied in great

detail. Therefore, we have studied what might be expected under the assumption

that the multi-angle instability plays no role and that the neutrino ensemble is

largely characterized by self-maintained coherence. In this case one is led to a

unique formulation of the nonlinear equations of motion that imply that nonlinear

flavor oscillations should be thought of as a one-dimensional phenomenon along the

streamlines of the underlying neutrino flux. Close to the source these streamlines

are usually curved even though, of course, the underlying neutrino trajectories are

straight. (We have neglected the gravitational bending of trajectories.) Therefore,

even if the neutrino stream has no global symmetries, the nonlinear oscillation

problem is relatively simple.

We have used the concept of “self-maintained coherence” that applies when the neu-

trino gas is dense, i.e., when a typical neutrino-neutrino interaction energy µ is large
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compared to a typical vacuum oscillation frequency 〈ω〉 = 〈∆m2/2E〉. The neutrino

ensemble in this case evolves along a streamline as one unit that can be thought if

as being one-dimensional. All neutrino and anti-neutrino polarization vectors point

essentially in the same direction in flavor space, the pendulum direction, allowing

for the simplifications that lead to our nonlinear equations. We have provided a

prescription for defining the effective neutrino-neutrino interaction strength µ that

works for general source geometries.

We have developed a formalism to analyze neutrino flavor conversion effects in the

full three-flavor framework. It employs the Bloch vector representation for 3 ×
3 density matrices, and naturally generalizes the spin-precession analogy to three

flavors. In particular, it is capable of describing three-flavor nonlinear neutrino

conversion effects inside a core collapse supernova, like synchronized oscillations,

bipolar oscillations and spectral split, which have till now been analytically studied

mostly in the two-flavor limit.

We explicitly extend the earlier two-flavor analysis of neutrino flavor conversions

inside the SN, which includes neutrino-neutrino interactions, to three flavors, where

we neglect the CP violation in the neutrino sector. We use the modified flavor basis

(νe, νx, νy), which is rotated from the flavor basis (νe, νµ, ντ ) so as to get rid of the

mixing angle θ23. We also work in the steady state approximation so that there

is no explicit time dependence in the density matrix, assume spherical symmetry

and half-isotropic neutrino source, and employ the single-angle approximation that

has been shown to be valid in the two-flavor case. This leads to the equations of a

gyroscope in eight dimensions, similar to the three dimensional gyroscope equations

in the two-flavor case.

In the three-flavor formalism, the density matrix is represented by an eight-dimensional

Bloch vector P. However, the flavor content is determined only by the two compo-

nents P3 and P8 of P after evolution. Motivated by this observation, we propose

the “e3–e8” triangle diagram to represent the flavor content of any neutrino state

by the projection of P on the e3–e8 plane, which we have termed P. This not only

allows us to visualize the three-flavor transformations in a convenient way, but also
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allows us to quantify the extent of three-flavor effects over and above the two-flavor

results.

A “heavy-light” factorization holds in the three-flavor treatment for certain initial

conditions, so that the three-flavor results may be understood as the two-flavor

results with ∆m2
atm modified with terms that depend on ∆m2

�. Indeed, in certain

situations, the three-flavor neutrino conversions may be factorized into three two-

flavor oscillations with hierarchical frequencies. In such cases, the three-flavor

conversion probabilities may be constructed from two-flavor results by considering

the modulation of higher frequency modes by lower frequency modes.

We have compared our analytic results with the numerical ones for simple cases of an

initial pure νe state, constant matter densities and no nonlinear effects, as well as for

synchronized oscillations, and have found a good agreement even when we ignore the

modulation due to the lowest frequency. The additional effect of the third neutrino

in these cases is limited to the excursions of the orbit of P towards νx. In the absence

of nonlinear effects, though the evolution of all energies is different, the orbit of P can

be seen to be an energy-independent quantity. In the synchronized case, neutrinos of

all energies are seen to oscillate with a common frequency, and even undergo MSW

resonances at the same matter density and with the same adiabaticity.

In the case of bipolar oscillations, the addition of the third neutrino changes the

situation significantly. The analytical results are not so easy to obtain, however

the numerical results for an inverted hierarchy show a “petal” pattern in the e3–e8

triangle, which can be explained by the combination of νe ↔ νy bipolar oscillations

and νe ↔ νx sinusoidal oscillations. The value of the MSW potential also plays an

important role in determining the extent of the effect of the third flavor. This needs

to be explored in more detail.

The spectral split occurs in neutrinos in the inverted hierarchy when one starts

with νe, owing to the unstable position of the eight-dimensional gyroscope in this

case. The νe above a certain energy, and almost all ν̄e, completely convert to νy and

ν̄y respectively. There are no additional split effects from the introduction of the

third flavor since the hierarchy in the solar sector is normal. This, however, could
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change if neutrinos are not in a pure νe state as they enter the bipolar region. This

is indeed the case sometimes for the MSW prepared spectral splits, in which one

gets two spectral splits. The dynamics of the two spectral splits can be understood

in terms of the motion of the neutrino state in the e3–e8 triangle diagram, which

can explain many of the features of neutrino evolution qualitatively. The number

of possible splits can be deduced by the location of the neutrino state inside the

triangle after passing through the two MSW resonances. We have also shown how

the positions of the splits can be calculated accurately given the initial neutrino

spectra, and calculated the νe survival probability analytically, that matches the

numerical computations.

We have simulated the neutrino flavor conversions numerically by taking a realistic

density profile for the iron core SN, and have shown the flavor conversions for

inverted hierarchy and two θ13 values in the cooling phase. In such a scenario,

it is easily possible to identify regions where different nonlinear as well as MSW

effects dominate. We are able to predict the regions in which these effects take

place, and our three-flavor formalism can explain the features of flavor conversions

therein. We also point out an interplay between the nonlinear and MSW effects. For

example, the H resonance cancels the effect of the spectral split for antineutrinos,

whereas the spectral split makes the L resonance irrelevant for neutrinos above the

split energy. If the hierarchy were normal, the nonlinear effects would be effectively

absent in the cooling phase. These results give us an overall understanding of flavor

conversion in SN.

Determination of the leptonic mixing angle θ13 and the neutrino mass hierarchy

represent two of the next frontiers of neutrino physics. We have proposed a new

possibility for identifying the neutrino mass hierarchy that works for extremely

small values of θ13, far beyond the sensitivity of current and future terrestrial

neutrino experiments. The sensitivity of supernova neutrino oscillations to the mass

hierarchy, for incredibly small values of θ13, is a consequence of the nonlinear neutrino

oscillations that take place near the supernova core. These effects interchange the

initial ν̄e and ν̄y spectra in the inverted hierarchy, which are then further processed by
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MSW effects in the SN envelope. This spectral swap can be revealed by comparing

the event rate at a shadowed detector with that at an unshadowed detector. If

neutrino oscillation experiments fail to determine the mass hierarchy, then this

proposed method could represent the last hope to resolve this issue, provided that

large water Cherenkov detectors are available at the time of the next galactic SN

explosion. This perspective should be considered when choosing optimal detector

locations for upcoming large neutrino detectors [130].

We study the prompt νe burst in an O-Ne-Mg core collapse SN. Here, the matter

density profile is so steep that the sequence between MSW crossings and nonlin-

ear neutrino oscillations is reversed from what would be expected in a traditional

iron-core SN. The three-flavor evolution of a νe burst dictates that the system

first undergoes two MSW level crossings driven by ∆m2
atm and ∆m2

�, respectively,

and then undergoes spectral splits by the adiabatically decreasing strength of the

neutrino-neutrino interaction. Thus we show that the nonlinear effects depends on

the progenitor at early times, which could be both a boon or a bane, depending on

our detector capabilities.

Observation of the diffuse supernova neutrino background is another cherished goal

of the neutrino astrophysicists. Large number of DSNB events are expected in the

next generation detectors and therefore, it should be possible to observe DSNB ν̄e in

the future. nonlinear effects inside SN significantly change the predicted number of

DSNB events if the hierarchy is inverted. We point out that the prediction for the

DSNB flux should thus be revised by taking into account these effects. Conversely,

if the DSNB is observed, one will have to account for nonlinear effects while placing

bounds on various parameters.

We believe that these results will contribute towards a better understanding of the

neutrino masses and mixing, as well as supernova astrophysics and cosmology.





Bibliography

[1] Amsler, C. et al. Phys. Lett. B667, 1 (2008). 1, 2

[2] Pontecorvo, B. Sov. Phys. JETP 7, 172 (1958). 1

[3] Maki, Z., Nakagawa, M., and Sakata, S. Prog. Theor. Phys. 28, 870 (1962).

1

[4] Bilenky, S. M. and Pontecorvo, B. Phys. Rept. 41, 225 (1978). 2

[5] Wolfenstein, L. Phys. Rev. D17, 2369 (1978). 3

[6] Mikheev, S. P. and Smirnov, A. Y. Sov. J. Nucl. Phys. 42, 913 (1985). 3

[7] Landau, L. D. Phys. Z. Sowjetunion. 2, 46 (1932). 3

[8] Zener, C. Proc. Roy. Soc. Lond. A137, 696 (1932). 3

[9] Pantaleone, J. T. Phys. Rev. D46, 510 (1992). 3, 12

[10] Pantaleone, J. T. Phys. Lett. B287, 128 (1992). 3, 12

[11] Schwetz, T., Tortola, M., and Valle, J. W. F. New J. Phys. 10, 113011 (2008).

4

[12] Hannestad, S., Mirizzi, A., Raffelt, G. G., and Wong, Y. Y. Y. JCAP 0804,

019 (2008). 4

[13] Raffelt, G. G. Stars as Laboratories for Fundamental Physics : The

Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles

(Theoretical Astrophysics). University Of Chicago Press, (1996). 5, 8

91



[14] Kitaura, F. S., Janka, H.-T., and Hillebrandt, W. Astron.Astrophys. 450,

345–350 April (2006). 5, 75

[15] Baade, W. and Zwicky, F. Proceedings of the National Academy of Science

20, 254 (1934). 5

[16] Brown, G. E., Bethe, H. A., and Baym, G. Nucl. Phys. A 375, 481 (1982). 5

[17] Colgate, S. A. and White, R. H. Astrophys. J. 143, 626 (1966). 6

[18] Bethe, H. A. and Wilson, James, R. Astrophys. J. 295, 14 (1985). 6

[19] Bethe, H. A. Rev. Mod. Phys. 62, 801 (1990). 6

[20] Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedo, G., and Mueller, B.

Phys. Rept. 442, 38 (2007). 6

[21] Tomas, R. et al. JCAP 0409, 015 (2004). 6, 7, 12, 63, 74

[22] Odrzywolek, A., Misiaszek, M., and Kutschera, M. Astropart. Phys. 21, 303

(2004). 6

[23] Totani, T., Sato, K., Dalhed, H. E., and Wilson, J. R. Astrophys. J. 496, 216

(1998). 9, 10, 59, 70, 73

[24] Keil, M. T., Raffelt, G. G., and Janka, H.-T. Astrophys. J. 590, 971 (2003).

9, 59, 70, 72

[25] Hirata, K. et al. Phys. Rev. Lett. 58, 1490 (1987). 9

[26] Bionta, R. M. et al. Phys. Rev. Lett. 58, 1494 (1987). 9

[27] Diehl, R. et al. Nature 439, 45 (2006). 10, 79

[28] Dighe, A. J. Phys. Conf. Ser. 136, 022041 (2008). 10

[29] Bisnovatyi-Kogan, G. S. and Seidov, Z. F. Soviet Astronomy 26, 132 April

(1982). 10, 79

92



[30] Krauss, L. M., Glashow, S. L., and Schramm, D. N. Nature 310, 191 (1984).

10, 79

[31] Horiuchi, S., Beacom, J. F., and Dwek, E. arXiv:astro-ph/0812.3157 (2008).

10

[32] Malek, M. et al. Phys. Rev. Lett. 90, 061101 (2003). 10, 80, 82

[33] Fuller, G. M., Mayle, R. W., Wilson, J. R., and Schramm, D. N. Astrophys.

J. 322, 795 November (1987). 12

[34] Dighe, A. S. and Smirnov, A. Y. Phys. Rev. D62, 033007 (2000). 12, 15, 63,

70

[35] Lunardini, C. and Smirnov, A. Y. JCAP 0306, 009 (2003). 12, 63

[36] Dighe, A. S., Keil, M. T., and Raffelt, G. G. JCAP 0306, 005 (2003). 12, 63,

74

[37] Dighe, A. S., Keil, M. T., and Raffelt, G. G. JCAP 0306, 006 (2003). 12, 63,

74

[38] Dighe, A. S., Kachelriess, M., Raffelt, G. G., and Tomas, R. JCAP 0401, 004

(2004). 12, 63

[39] Schirato, R. C. and Fuller, G. M. arXiv:astro-ph/0205390 (2002). 12, 63

[40] Takahashi, K., Sato, K., Dalhed, H. E., and Wilson, J. R. Astropart. Phys.

20, 189 (2003). 12, 63

[41] Fogli, G. L., Lisi, E., Montanino, D., and Mirizzi, A. Phys. Rev. D68, 033005

(2003). 12, 60, 63

[42] Fogli, G. L., Lisi, E., Mirizzi, A., and Montanino, D. JCAP 0504, 002 (2005).

12, 63, 73, 74

[43] Barger, V., Huber, P., and Marfatia, D. Phys. Lett. B617, 167 (2005). 12, 63

[44] Dasgupta, B. and Dighe, A. Phys. Rev. D75, 093002 (2007). 12, 63

93



[45] Fogli, G. L., Lisi, E., Mirizzi, A., and Montanino, D. JCAP 0606, 012 (2006).

12, 63, 74

[46] Choubey, S., Harries, N. P., and Ross, G. G. Phys. Rev. D74, 053010 (2006).

12, 63

[47] Friedland, A. and Gruzinov, A. arXiv:astro-ph/0607244 (2006). 12, 63

[48] Kneller, J. P., McLaughlin, G. C., and Brockman, J. Phys. Rev. D77, 045023

(2008). 12

[49] Minakata, H., Nunokawa, H., Tomas, R., and Valle, J. W. F. JCAP 0812,

006 (2008). 12

[50] Fogli, G. L., Lisi, E., Mirizzi, A., and Montanino, D. Phys. Rev. D66, 013009

(2002). 12

[51] Choubey, S., Harries, N. P., and Ross, G. G. Phys. Rev. D76, 073013 (2007).

12

[52] Thomson, M. J. and McKellar, B. H. J. Phys. Lett. B259, 113 (1991). 12, 17

[53] Sigl, G. and Raffelt, G. Nucl. Phys. B406, 423 (1993). 12, 16, 17

[54] McKellar, B. H. J. and Thomson, M. J. Phys. Rev. D49, 2710 (1994). 12, 17

[55] Samuel, S. Phys. Rev. D48, 1462 (1993). 12

[56] Kostelecky, V. A. and Samuel, S. Phys. Rev. D52, 621 (1995). 12

[57] Pantaleone, J. T. Phys. Rev. D58, 073002 (1998). 12, 13

[58] Samuel, S. Phys. Rev. D53, 5382 (1996). 12

[59] Pastor, S., Raffelt, G. G., and Semikoz, D. V. Phys. Rev. D65, 053011 (2002).

12, 35

[60] Hannestad, S., Raffelt, G. G., Sigl, G., and Wong, Y. Y. Y. Phys. Rev. D74,

105010 (2006). 12, 32, 35, 46, 47, 50

94



[61] Duan, H., Fuller, G. M., Carlson, J., and Qian, Y.-Z. Phys. Rev. D75, 125005

(2007). 12, 35, 46, 47, 50

[62] Raffelt, G. G. and Smirnov, A. Y. Phys. Rev. D76, 081301 (2007). 12, 22,

35, 49, 50, 74

[63] Raffelt, G. G. and Smirnov, A. Y. Phys. Rev. D76, 125008 (2007). 12, 35,

49, 50

[64] Pantaleone, J. T. Phys. Lett. B342, 250 (1995). 13

[65] Qian, Y. Z. and Fuller, G. M. Phys. Rev. D51, 1479 (1995). 13

[66] Sigl, G. Phys. Rev. D51, 4035 (1995). 13

[67] Pastor, S. and Raffelt, G. Phys. Rev. Lett. 89, 191101 (2002). 13

[68] Balantekin, A. B. and Yuksel, H. New J. Phys. 7, 51 (2005). 13

[69] Fuller, G. M. and Qian, Y.-Z. Phys. Rev. D73, 023004 (2006). 13, 23

[70] Duan, H., Fuller, G. M., and Qian, Y.-Z. Phys. Rev. D74, 123004 (2006). 13,

18

[71] Duan, H., Fuller, G. M., and Qian, Y.-Z. Phys. Rev. D76, 085013 (2007). 13

[72] Duan, H., Fuller, G. M., Carlson, J., and Qian, Y.-Z. Phys. Rev. D74, 105014

(2006). 13, 18, 21, 58

[73] Duan, H., Fuller, G. M., Carlson, J., and Qian, Y.-Z. Phys. Rev. Lett. 97,

241101 (2006). 13, 21

[74] Raffelt, G. G. and Sigl, G. Phys. Rev. D75, 083002 (2007). 13

[75] Esteban-Pretel, A., Pastor, S., Tomas, R., Raffelt, G. G., and Sigl, G. Phys.

Rev. D76, 125018 (2007). 13, 14, 21, 24, 74

[76] Fogli, G. L., Lisi, E., Marrone, A., and Mirizzi, A. JCAP 0712, 010 (2007).

13, 21, 24, 61, 63, 74

95



[77] Esteban-Pretel, A., Pastor, S., Tomas, R., Raffelt, G. G., and Sigl, G. Phys.

Rev. D77, 065024 (2008). 13, 17

[78] Dasgupta, B. and Dighe, A. Phys. Rev. D77, 113002 (2008). 13

[79] Duan, H., Fuller, G. M., and Qian, Y.-Z. Phys. Rev. D77, 085016 (2008). 13,

50

[80] Dasgupta, B., Dighe, A., Mirizzi, A., and Raffelt, G. G. Phys. Rev. D77,

113007 (2008). 13, 50

[81] Gava, J. and Volpe, C. Phys. Rev. D78, 083007 (2008). 13

[82] Dasgupta, B., Dighe, A., Mirizzi, A., and Raffelt, G. G. Phys. Rev. D78,

033014 (2008). 13

[83] Blennow, M., Mirizzi, A., and Serpico, P. D. Phys. Rev. D78, 113004 (2008).

13

[84] Duan, H., Fuller, G. M., Carlson, J., and Zhong, Y.-Q. Phys. Rev. Lett. 99,

241802 (2007). 13, 74

[85] Dasgupta, B., Dighe, A., and Mirizzi, A. Phys. Rev. Lett. 101, 171801 (2008).

13

[86] Duan, H., Fuller, G. M., Carlson, J., and Qian, Y.-Z. Phys. Rev. Lett. 100,

021101 (2008). 13, 76, 77

[87] Lunardini, C., Muller, B., and Janka, H. T. Phys. Rev. D78, 023016 (2008).

13

[88] Chakraborty, S., Choubey, S., Dasgupta, B., and Kar, K. JCAP 0809, 013

(2008). 13

[89] Kostelecky, V. A., Pantaleone, J. T., and Samuel, S. Phys. Lett. B315, 46

(1993). 13

[90] Kostelecky, V. A. and Samuel, S. Phys. Lett. B318, 127 (1993). 13

96



[91] Kostelecky, V. A. and Samuel, S. Phys. Rev. D49, 1740 (1994). 13

[92] Kostelecky, V. A. and Samuel, S. Phys. Lett. B385, 159 (1996). 13

[93] Dolgov, A. D. et al. Nucl. Phys. B632, 363 (2002). 13

[94] Wong, Y. Y. Y. Phys. Rev. D66, 025015 (2002). 13, 44, 45, 46

[95] Wong, Y. Y. Y. AIP Conf. Proc. 655, 240 (2003). 13, 44, 45, 46

[96] Abazajian, K. N., Beacom, J. F., and Bell, N. F. Phys. Rev. D66, 013008

(2002). 13, 46

[97] Fogli, G. L., Lisi, E., Marrone, A., Mirizzi, A., and Tamborra, I. Phys. Rev.

D78, 097301 (2008). 14

[98] Cardall, C. Y. Phys. Rev. D78, 085017 (2008). 18

[99] Kimura, G. and Kossakowski, A. Open Systems & Information Dynamics

12(3), 207 (2005). 27

[100] Kim, C. W., Kim, J., and Sze, W. K. Phys. Rev. D37, 1072 (1988). 31

[101] Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R.,

Shumaker, D. E., and Woodward, C. S. ACM Transactions on Mathe-

matical Software 31(3), 363–396 September (2005). Also see the webpage

https://computation.llnl.gov/casc/sundials/main.html. 40

[102] Raffelt, G. G. Phys. Rev. D78, 125015 (2008). 44

[103] Fogli, G. L., Lisi, E., Montanino, D., and Palazzo, A. Phys. Rev. D65, 073008

(2002). 70

[104] Lunardini, C. and Smirnov, A. Y. Nucl. Phys. B616, 307 (2001). 71

[105] Raffelt, G. G., Keil, M. T., Buras, R., Janka, H.-T., and Rampp, M.

arXiv:astro-ph/0303226 (2003). 72

[106] Autiero, D. et al. JCAP 0711, 011 (2007). 72, 74

97



[107] Jung, C. K. AIP Conf. Proc. 533, 29 (2000). 72

[108] Nakamura, K. Int. J. Mod. Phys. A18, 4053 (2003). 72

[109] Halzen, F. Eur. Phys. J. C46, 669 (2006). 73

[110] de Gouvea, A. and Winter, W. Phys. Rev. D73, 033003 (2006). 74

[111] Kachelriess, M. et al. Phys. Rev. D71, 063003 (2005). 74

[112] Gil Botella, I. and Rubbia, A. JCAP 0310, 009 (2003). 74

[113] Nomoto, K. Astrophys. J. 277, 791 February (1984). 75

[114] Nomoto, K. Astrophys. J. 322, 206 November (1987). 75

[115] Janka, H.-T., Müller, B., Kitaura, F. S., and Buras, R. Astron.Astrophys.

485, 199–208 July (2008). 75

[116] Ando, S. and Sato, K. New J. Phys. 6, 170 (2004). 80, 81

[117] Ando, S. Astrophys. J. 607, 20 (2004). 80

[118] Wurm, M. et al. Phys. Rev. D75, 023007 (2007). 80

[119] Cocco, A. G., Ereditato, A., Fiorillo, G., Mangano, G., and Pettorino, V.

JCAP 0412, 002 (2004). 80

[120] Beacom, J. F. and Strigari, L. E. Phys. Rev. C73, 035807 (2006). 80

[121] Lunardini, C. Phys. Rev. D73, 083009 (2006). 80

[122] Volpe, C. and Welzel, J. arXiv:astro-ph/0711.3237 (2007). 80

[123] Aglietta, M. et al. Astropart. Phys. 1, 1 (1992). 80

[124] Lunardini, C. and Peres, O. L. G. JCAP 0808, 033 (2008). 80

[125] Beacom, J. F. and Vagins, M. R. Phys. Rev. Lett. 93, 171101 (2004). 80

[126] Strigari, L. E., Beacom, J. F., Walker, T. P., and Zhang, P. JCAP 0504, 017

(2005). 81, 82

98



[127] Baldry, I. K. and Glazebrook, K. Astrophys. J. 593, 258 (2003). 81

[128] Hopkins, A. M. and Beacom, J. F. Astrophys. J. 651, 142 (2006). 82

[129] Kistler, M. D., Yuksel, H., Beacom, J. F., and Stanek, K. Z. Astrophys. J.

673, L119 (2008). 82

[130] Mirizzi, A., Raffelt, G. G., and Serpico, P. D. JCAP 0605, 012 (2006). 89

99






	Declaration
	Acknowledgements
	Foreword
	1 Introduction
	2 Formalism for Dense Neutrinos
	3 Nonlinear Neutrino Oscillations
	4 Flavor Conversions of Supernova Neutrinos
	5 Signatures of Nonlinear Supernova Neutrino Oscillations
	6 Impact on the Diffuse Supernova Neutrino Background
	7 Conclusions
	Bibliography
	 Thesis Synopsis

