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CHAPTER 1 1

Introduction

1.1 Is there a metallic phase in two dimensions?

The interplay of disorder and interaction in low dimensional systems has given rise

to many interesting phenomena such as metal-insulator transition (MIT), quantum

Hall effect, superconducting-insulator transition, superfluid-Bose glass transition and

magnetic to non-magnetic transitions.

Analysis within the scaling theory predicted absence of any metallic state in 2D

and 1D while it predicted a MIT in a 3D system of non-interacting disordered electron

gas[1, 2]. Based on this theory in 2D, in the weak disorder limit, the resistivity in-

creases logarithmically with lowering temperature while in the strong disorder regime

it increases exponentially.

Including a weak electron-electron interaction within the perturbation theory found

that the localization effects get even stronger[3]. In the opposite limit of strong cou-

pling and no disorder, the 2D electronic system forms a Wigner crystal and any disorder

pins the electrons so the conductivity tends to zero[4]. Attempts to use renormaliza-

tion group methods were inconclusive due to runaway flows to the strong coupling

limit[5]. Experiments done in this period on thin metallic films were consistent with

the predictions of weak localization theory.

In 1990’s, experiments on the 2D electron gas in high mobility quantum wells in Si-

MOSFET’s and GaAs/AlGaAs for the first time questioned the results obtained by the

scaling theory[6, 7, 8, 9]. In these experiments, at low carrier density the conductance

shows insulating behavior (ρdc increases by lowering temperature) and at high carrier

density it is metallic (ρdc decreases upon lowering T ). All curves for different densities

n can be scaled to two curves (one for metal and one for insulator) when ρdc plotted

against appropriately scaled temperature. This is an indication of a quantum phase
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transition with density as tuning parameter.

It is evident that the failure of scaling theory in predicting a 2D MIT seen in the

experiments is related to ignoring the interaction among electrons. Since this transition

is happening in the regime where both interaction and disorder are comparable, per-

turbation theories which are based on weak interaction or weak disorder limits cannot

address it.

The question that we are trying to answer is: What is the combined effect of

electron-electron interaction and disorder on a system of 2D electrons? We address

this question within the context of the disordered Hubbard model which is the sim-

plest model that includes both interaction and disorder effects. Furthermore we study

the magnetic transitions which accompany the MIT. We have chosen two models of

disorder. (1) In the first model we have modeled disorder as a random potential at

all the sites of a square lattice taken from a uniform distribution; the width of the

distribution is then a measure of the strength of disorder. (2) In the second model the

strength of site disorder is fixed at V or −V , but only a fraction of sites are disor-

dered and their locations are chosen randomly. The Hubbard model at half filling is

a Mott-Insulator and in the large disorder limit the system is an Anderson-Insulator.

How does the system evolve from a Mott-Insulator to an Anderson-Insulator? This is

the question we focus on in this thesis.

1.2 Anderson localization

In the traditional view of disorder, electrons scatter from impurities and this leads to a

finite width of the momentum eigenstates, though the wave functions remain extended.

Anderson[10] pointed out that while the above is true for weak disorder, sufficiently

strong disorder localizes the wave functions such that they decay exponentially in space

with a localization length ξ, about a point r0 where the potential is relatively deep given

by

|ψ(r)| ∝ exp(−|r − r0|/ξ). (1.1)

In one dimension all states get localized in the presence of even a small amount of

disorder. In higher dimensions, for the first time, Banyai[11] and Mott[12] pointed out

that the disorder may not be strong enough to localize all the states. For a mixture of

localized wave functions, if their eigenvalues are close they are far apart in space, and if
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Fig 1.1: The states in the hatched region are localized and the states at the un-hatched
region are extended. The mobility edge, Ec, separates the localized and extended states.

they are nearby in space their energies mismatch, hence their overlap is exponentially

small.

In a disordered system, localized states sit in the tails of the spectrum and for

moderate regime of disorder the states at the middle of the band can be extended.

If the Fermi energy lies deep in the localized side of the band (the hatched region in

Fig. 1.1), the system is an Anderson insulator, and if it is in middle of the band, the

system is a metal with finite conductivity at T = 0. Increasing the disorder strength

localizes more states and for a fixed chemical potential it can lead to a metal insulator

transition (MIT). Another route leading to MIT is to tune the Fermi energy at fixed

disorder strength. MIT occurs at a critical energy EF = Ec — known as mobility

edge. Ec separates the metallic extended states from the localized insulating states

(see Fig. 1.1).

In 1972, Mott[13] pointed out that conductivity for a metal should have a discon-

tinuous transition, which implies a minimal conductivity σmin for a metal at the critical

point (see Fig. 1.2), identified as the point where the mean free path l in the metal

becomes on the order of the lattice spacing a or the inverse of the Fermi wave vector

(k−1
F ) which are the smallest length scales in the system. From the Boltzmann equation

for conductivity

σ =
e2nτ

m
=

(
e2

~

)(
nl

kF

)

≥
(
e2

~

)(
n

k2
F

)

≡ σ3D
min (1.2)

where l = vF τ and τ is the scattering time between collisions. In 3D with N electrons

on a lattice we have

N = 2 × 4πk3
F/3

(2π/L)3
(1.3)
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Fig 1.2: The conductivity as a function of scaled electron density (ns/nc) The solid
line is continuous transition of conductivity observed experimentally for uncompensated
samples of Si:P and Ge:Sb, which can be fitted to Eq. 1.7 with ν = 0.5. The dashed
line shows conductivity for compensated samples with exponent parameter to be ν = 1
(From Ref. [15]). The dotted line is discontinuous transition in conductivity.

or

n =
k3

F

3π2
. (1.4)

therefore the minimum conductivity is

σ3D
min =

(
e2

3π2~2

)(
1

a

)

(1.5)

Early experiments seem to support the existence of σ3D
min (for a review see Ref. [14]). The

consequence of Mott’s argument in 2D is even more drastic; it predicts the minimum

conductivity to be independent of any microscopic length scale and universal for all

materials, given by

σ2D
min =

e2

2π~
(1.6)

Mott’s expectation was questioned by the experiments on doped semiconductors (for

a review see [15]) in 3D which showed a continuous metal insulator transition.

Within the framework of the scaling theory in 3D the conductivity has a continuous

transition, is given by (see also Ref. [16])

σdc = σ3D
min(1 − ns/nc)

ν (1.7)

where ns is the electron density and nc is the critical electron density. For doped uncom-

pensated semiconductors such as Si:P[15] the exponent ν is ≈ 0.5; upon compensating1

1Compensating refers to the cases where the number of dopants are more than the number of
carriers, in other words, some of the carriers are trapped by defects, impurities or another type of
dopants.
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these materials[15] ν was found to be one (see Fig. 1.2) which agrees with prediction of

the scaling theory. It is believed that this difference from unity for the exponent ν in

the uncompensated Si:P arises from electron-electron interactions; however the precise

value of ν is a matter of debate among experimentalists and theorists.

In the next section we review some of the theoretical works mainly focused on 2D

MIT with an emphasis on including electron-electron interaction beyond the Anderson

model.

1.3 Previous studies

There have been over 500 papers over the last ten years on the 2D MIT. Here we review

the most relevant ones to the subject and to our work. For reviews on the subject, see

Refs. [2, 9, 17, 18, 19].

Efros-Shklovskii conductivity: In 1975, Efros and Shoklovskii[20] argued that the

Coulomb interaction between localized states reduces the density of states at the Fermi

surface. Based on their argument if there is a localized state at position ri with energy

Ei just below the Fermi energy, there cannot be another localized state at position rj

with energy Ej above the Fermi energy such that (Ej − Ei) < e2/|ri − rj|, otherwise

the electron at state i can hop to the state j, leaving behind a hole at ri. This is

because, the energy reduction from Coulomb interaction between a hole at ri and an

extra electron at rj is larger in magnitude than the energy increase Ej −Ei. This effect

is at the root of reduction of density of states close to the Fermi energy, leading to

dc-conductivity σ ∝ exp[−(T0/T )1/2], where T0 = e2/εξ, ξ is the localization length

and ε is the dielectric constant. This results were obtained for three dimensions but

the same argument in 2D leads to the similar conclusions; However as Mott[21, 22] and

Pollak and Knotek[23] pointed out, this argument is based on single particle density

of states and cannot be applied to a many body interacting system. For a detailed

discussion of the subject see reference [24]. At the end, these arguments could only

address the insulating phase. Below we summarize some of the analytical attempts for

describing the metallic phase.

Renormalization group (RG) method : In 1984 Finkelstein [5], for the first time,

within a perturbative RG method, suggested existence of a metallic state in 2D. In this

theory, before reaching zero temperature, the interaction parameter scales to infinity,
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outside the range of validity of perturbation. However it predicts a metallic state at all

densities at very low temperature. Further it point out that application of magnetic

field suppresses metallicity, leading to an insulating state. Due to the runaway flows

of the RG, that were hard to interpret, it did not receive general acceptance.

Most recently, Punnoose and Finkelstein [25] re-summed over the most divergent

terms. In their theory they gave N flavors to electrons, corresponding to degenerate

regions in the conduction band of semiconductors, known as valleys, they assumed the

intervally scattering to be absent, including those from disorder. The theory remains

under control in all temperatures only if N → ∞, in Si-MOSFET, the electron band

in [001] plane has two valleys (nv = 2), leading to N = 4, the extra factor of two

is due to the two possible spin states of an electron. They argued for the existence

of a metallic and an insulating phase separated by a quantum critical point. As the

transition point is approached, various thermodynamic quantities are expected to show

critical singularities. However, such perturbative approaches are valid only in the weak

e-e coupling regime and cannot be applied to the regime where disorder and interaction

are comparable.

Renormalizing of compressibility and scaling analysis: In the RG approach, the

compressibility remains unrenormalized. This holds at high carrier density where the

screening length is much less than mean free path (s� l) — in the general view when

compressibility is reduced, the screening get weaker[26] or vice versa, in other words

compressibility is proportional to the inverse of screening length κ ∼ 1/s. In 1998

Si and Varma[27] within an scaling analysis approached the transition point from the

metallic side. They argued that at low carrier density, where s� l, the compressibility

vanishes, leading to strong suppression of conductivity, therefore a 2D MIT is expected

with s as the tuning parameter. However this theory assumes existence of a metallic

phase at high carrier densities (based on RG results) and therefore fails to address the

features of the metallic state.

In 1997, Dobrosavljevic et al.[28], made the assumpsion of enhancement of con-

ductivity by interaction, as noted in the previous RG studies, and assumed that the

beta function in leading order of 1/g (at large g) has a positive coefficient (g is the

conductance and β(g) = d ln(g)/d ln(L)). Applying scaling arguments used in the

non-interacting electrons along with the above assumption give a metallic state in a

2D system. They pointed out that quantum critical behavior of the 2D MIT leads to

the symmetries, observed experimentally, in conductivity and resistivity. They argued
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that a 2D disordered metal most likely to be non-Fermi liquid. In partial conformation

of this, Chakravarty et al.[29] showed that at the sufficiently strong interaction limit,

the non-Fermi liquid in the presence of disorder in 2D is a perfect conductor. At the

carrier density ns < nc the system forms a Wigner crystal and at the critical density nc

the Wigner glass melts to a non-Fermi liquid with short range magnetic correlations.

Percolation of screened charged impurity centers: Recently a number of papers[30,

31, 32] has argued that 2D MIT at zero temperature is not a quantum phase transition

but it is a classical/or semi-classical phase transition. They argue that this can be

realized in the semiconductor structures where the impurity is quenched disorder of

random charged impurity centers. At high carrier density screening is strong, with

decreasing the carrier density the distribution of disorder sites does not change. At

low carrier density the screening is non-linear, leading to formation of hills and puddles

of electron liquid density associated with the distribution of disorder. At the critical

carrier density nc there is a percolating cluster of strong screened centers. Below nc

the screened islands are isolated leading to an insulating phase.

The analyses mentioned above were in 2D, in 3D, within the scaling theory MIT

has been already expected, and it has been discussed extensively in the literature, for

a review see Ref. [18]. In the framework of HF approximation, in 1995, Tusch et al.[33]

showed that the localization effects has non-monotonic behavior with disorder and at

intermediate regime of disorder and interaction, the disorder enhances metallic behavior

— this has a resemblance to what we have obtained in our HF approximation in 2D.

1.4 Numerical approaches

1.4.1 Quantum Monte Carlo

This method allows us to work with the full many-body wavefunction at the cost of

statistical uncertainity, which can be reduced by increasing number of measurements.

One finds the expectation value of operators by stochiastically sampling a probability

distribution. For reveiws in the method see references [34, 35, 36]. Although Quantum

Monte Carlo (QMC) is exact, it suffers from fermionic sign problem and it is not

applicable to very low temperature, it is also limited to very small system sizes.

Numerical simulation using QMC [37, 38] in a 2D disordered Hubbard model have

suggested a MIT by analyzing the dc-conductivity. They predicted possibility of a
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metallic phase at an intermediate regime of disorder and interaction. They pointed

out if the particle hole (p − h) symmetry is broken, increasing disorder enhances the

conductivity. On the other hand if the p−h symmetry is preserved, increasing disorder

suppresses conductivity. Site disorder in the latter case is like random Zeeman magnetic

field at all the sites. They showed that application of a uniform magnetic field, restores

localization further. This is consistent with the experimental observations. Contrary

to these findings, there have been also a number of papers (see [39, 40, 41]), within

QMC approach, which did not report metallicity in the 2D disordered Hubbard model.

Therefore, theoretically, existance of a metallic state in 2D is still an open question.

1.4.2 Dynamical mean field theory

Byczuk et al.[42], in a very recent work using dynamical mean field theory (DMFT)

proposed a phase diagram for a correlated disordered system. In this method, the

disordered Hubbard model is mapped[19] to an ensemble of effective single impurity

Anderson Hamiltonian with a random site potential Vi uniformly distributed in the all

the sites. By analyzing the averaged local density of states they concluded presence

of a metallic phase sandwiched between Mott and Anderson insulators. The metallic

state is characterized with a finite averaged local DOS. In this approach, or similar

DMFT approaches, the disorder is not treated exactly and the geometry of the lattice

is coming to the picture through a non-interacting DOS for calculating local Green’s

functions, in this work non-interacting DOS was chosen to be a semi elliptic function

of energy. In a separate work, Tanaskovic et al.[43] showed strong enhancement of

screening in the strong coupling regime despite reduction of compressibility. In d = ∞,

MIT in disordered Hubbard model has been already discussed within this approach

(see [44, 45]).

It would be interesting to know if the metallic phase survives by solving the DMFT

equations simultaneously in all the sites in a 2D lattice. This way, the disorder is treated

exactly, however the number of self-consistent DMFT equations increases substantially.

1.4.3 Inhomogeneous Hartree-Fock approximation

Hartree-Fock (HF) approximation maps the disordered Hubbard model to an effective

Hamiltonian with quadratic terms in annihilation and creation operators. The vari-

ational local fields and densities of the effective Hamiltonian have to be determined



CHAPTER 1. Introduction 9

self-consistently (for details see appendix A). In this thesis, mainly within this ap-

proach, we have studied the effects arising from interplay of disorder and interaction in

a 2D electron gas. While this method treats the disorder exactly it ignores the effects

of quantum fluctuations and its finite temperature results are not reliable.

1.5 Summary of the results

Here are our main results for the disordered Hubbard model within inhomogeneous HF

approximation:

• At low disorder limit, the system is a Mott insulator and it has antiferromagnetic

long range order. With increasing disorder the Mott gap closes around V ≈
U/2 — U is the interaction and the random disorder in all sites Vi is chosen

from a uniform distribution of random numbers between −V and V , therefore V

measures the strength of disorder.

• At an intermediate regime of disorder, the system becomes a metal with extended

states at the Fermi energy. Scaling analysis to the larger system sizes confirms

that metallic behavior is not a finite size effect.

• In the metallic phase there is a percolating cluster of bonds with high kinetic

energy.

• At large disorder limit, the excitations are gapless but the states at the Fermi

energy are localized. The system is made of clusters of AF sites with no long

order, with increasing disorder the size of cluster shrinks further. At limit of

small interaction the system is a paramagnetic Anderson insulator.

• AF long range order vanishes at the percolation threshold of weakly disordered

sites.

• At the limit of large interaction limit U/t, we found a new type of magnetic

state arising from a binary disorder potential (U/2 and −U/2) at two neighboring

sites. This state, which we call it resonant pair exchange (RPE), is a mixture of a

singlet state of two singly occupied sites and another state with zero and double

electron occupancies (|0, 2〉). Such pairs have lower magnetic moment than a

purely singlet state, however their energy difference with the triplet excited state

is of the order of hopping parameter t which is higher than J = 4t2/U .
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In the next chapter we briefly present the scaling theory and its consequences

in low dimensions. The third chapter is some of the key experiments which for the

first time questioned the scaling theory predictions. Our results in the framework

of the HF approximation come in the fourth chapter, in this chapter we present the

detailed results which conclude existence of a metallic state in an intermediate regime

of interaction and disorder. In the fifth chapter we study the disordered Hubbard

model within a perturbation approach and propose a new of type of magnetic state

with reduced antiferromagnetic (AF) moment and enhanced AF coupling.
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Scaling theory of localization

2.1 Introduction

In this chapter we review briefly the scaling theory and its consequences for a disordered

electronic system. In 1979, Abrahams et al.[1] within a perturbative approach showed

that for a weakly disordered system the β function — defined as d ln g/d lnL where g is

the conductance and L is the length scale — deviates from its Ohmic value (d− 2) by

−a/g, where a is a positive constant. For two dimensions, analysis of the β function has

important consequences, it predicts the absence of a metallic state. However it should

be noted that this theory ignores the effects of electron-electron interaction which plays

an important role in real experimental systems showing metal-insulator transitions. In

the next section we review the scaling theory analysis and its predictions in different

dimensions.

2.2 Localization within scaling theory

In 1970’s Thouless showed that for a system of non-interacting disordered electron gas

the localization problem can be formulated as a scaling analysis of one parameter, the

conductance[46, 47].

The basis of the scaling theory is to relate the conductance of a system size L to

perturbation in the boundry conditions. States with a localization length smaller than

the length scale of the system, are essentially insensitive to the boundary conditions,

whereas extended states or localized states with a localization length larger than L

should be affected to changes in the boundry conditions. For a system of length scale

L, much larger than the mean free path, it takes time T to travel L/2 with diffusion
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constant D. Based on uncertainty principle between time and energy

∆E =
~

T
=

~D

L2
(2.1)

∆E is the sensitivity to the boundary conditions. From Einstein relation for conductivity[48]

σ =
e2

2
D
dn

dE
(2.2)

where dn/dE = dN/LddE is the density of states. From Eq. 2.1 we have

∆E =
2~

2

e2
Ld−2σ

dE

dN
(2.3)

For simplicity we choose a square lattice of size L× L. In the tight bonding model,

H = −t
∑

〈ij〉
c†icj +

∑

i

Vini (2.4)

where t is the hopping amplitude from a site to the nearest neighboring sites. c†i and

ci are the creation and anihilation operators at site i. Vi is a site dependent potential

randomly distributed between −V and V in all the sites. If we increase the length

scale from L to L2 then in the new lattice there are L2 squares each with length L.

We denote the hopping amplitude for a square to the nearest neighboring squares by t′

and this is proportional to the sensitivity of the boundary conditions ∆E. The energy

mismatch between two close by energy levels of two neighboring squares is V ′ and is

proportional to the inverse density of states dE/dN . In other words, if we pick one

energy level, say the closest to E = 0, from each square then all these energy levels have

random distribution between −V ′ and V ′. At the end we have the original problem

with the rescaled parameters t′ and V ′; for this system

t′

V ′ =
∆E

dE/dN
=

2~

e2
Ld−2σ =

2~

e2
g (2.5)

One can repeat this procedure and find rescaled parameters t′′ and V ′′. For a localized

state, with rescaling the length scale the hopping amplitude get weaker and weaker and

tends to zero, leading to divergence in resistivity. Therefore the localization problem

of non-interacting electrons can be solved in the framework of scaling analysis of the

resistivity.

2.3 Scaling theory of β function

In this section we start with the asymptotic behavior of the conductance g in two limits

of weak and strong scattering (for details see Ref. [1]). Then we analyze the leading
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order correction of the β function in the weak disorder regime. Finally we discuss the

conductance behavior in different dimensions with emphasis on two dimensions.

In the limit of weak scattering in an electronic system, the wave functions are

extended and the mean free path l is large in comparison to the inverse Fermi wave

vector k−1
F . The conductivity σ to leading order in (kF l)

−1 is σ = ne2τ/m = ne2l/~kF ,

where n is the electron density, τ = l/vF is the relaxation time and m is the effective

electron mass. σ is an intensive quantity provided L� l, L is the length scale. Based

on Ohm’s law for a d-dimensional system, the conductance is

g(L) = σLd−2. (2.6)

In the limit of strong scattering the wave-functions at the Fermi energy are localized

with the localization length ξloc, since in the real space these states are far apart

– despite their close energies – the hopping amplitude from one state to another is

exponentially small, in this regime for length scales L� ξloc, the conductance is:

g(L) ∝ exp(−L/ξloc) (2.7)

For a particular choice of disorder, as the length scale increases from l, g(L)

smoothly changes, starting from g0 (conductance at the length scale of the mean free

path) and it finally reaches one of the limiting cases of Eq. 2.6 or Eq. 2.7. The final

state depends on the microscopic disorder, g0 and dimensionality. In 1D where the

localization length ξloc is of the order of l, all the states are localized and the system

does not obey Ohm’s law on any length scales.

β(g) ≡ d ln g/d lnL is a function of conductance g. Next we discuss the scaling

behavior of β(g) for various dimensions. From Eqs. 2.6 and 2.7

β(g) = d− 2 g � g0

= ln(g/g0) g � g0 (2.8)

In the localized regime β(g) is negative corresponding to decrease in conductance as L

increases. In the limit of weak scattering ((kF l)
−1 � 1) the next higher order contri-

bution to σ is summation of all maximally crossed diagrams[49]. With this correction

σ is

σ3D = σ0 −
e2

~π3

(
1

l
− 1

L

)
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Fig 2.1: β function versus conductance g. From Ref. [1]

σ2D = σ0 −
e2

~π2
ln

(
l

L

)

σ1D = σ0 −
e2

~π
(L− l) (2.9)

this gives a β function of the form:

β(g) = d− 2 − a

g
(2.10)

for an electron gas a = g0 = π−2. Therefore for a disordered system β(g) is always less

than its Ohmic value.

Three dimensions: At very large g, β is one and at small g, β is negative, it

passes zero at g3 (see Fig. 2.1). If the state of the microscopic disorder is such that the

conductance g0 at length scale l is greater than g3, one starts somewhere in the positive

side of the β curve, and with increasing length scale, β increases further i.e. the system

approaches the Ohmic regime. Finally at macroscopic length scales, β reaches one. If

g0 is less than g3, β is negative and with increasing L, β tends to the logarithmic form

in the localized regime.

Two dimensions: In 2D β ≤ 0, therefore at large length scales the system tends

to localized behavior. Consider very weak disorder, with conductance g0 on the length

scale l. Upon increasing the length scale L, g decreases and consequently one moves
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downward in the scaling curve until it reaches β ≈ ln(g/g0). Thus in 2D states are local-

ized in the thermodynamic limit. One can estimate the localization length from the per-

turbative value of β. Conductance at the length scale L is g(L) = g0− (e2/~π2) ln(l/L)

where g0 is given by (e2/2π~)(kF l). Conductance at the length scale of localization

length is zero, therefore g0 = (e2/~π2) ln(ξ2D
loc /l) and ξ2D

loc ≈ l exp(πkF l/2). Since the

localization length depends on l exponentially, it can be difficult to observe localiza-

tion in 2D. In the presence of an arbitrary small disorder a 2D electronic system has

non-Ohmic behavior on the entire range of the length scales. The β function shown in

Fig. 2.1 is obtained in the absence of spin-orbit coupling. In the presence spin-orbit

coupling the β function can be positive, leading to a metallic phase in 2D[50].

One dimension: In 1D, β always remains negative and it decreases further with

increasing the length scale. All states are localized due to repeated backscattering, the

localization length is of the order of backscattering mean free path.
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Experimental Findings

3.1 Introduction

In this chapter we present experiments on two dimensional electron systems which for

the first time questioned the conventional scaling theory.

In 1980, experiments on thin metallic films and MOSFET’s showed the expected

logarithmic increase in the resistivity with lowering temperature [51, 52] and at low

electron densities, an exponential increase of the resistivity versus inverse temperature

was observed [52].

Recent development on high quality 2D MOSFET’s and GaAs/AlGaAs heterostructure[53,

6, 7, 8] made it possible for electrons (or holes) to move exactly in 2D by confinement

and low temperature. In these samples with low disorder and low carrier densities MIT

were observed with electron density (or holes) as tuning parameter. At electron den-

sity ns (or ps for holes) above some critical density nc (or pc) the system has metallic

behavior and below this critical density the system is an insulator. In the next section

we present some of the key experimental findings which confirmed MIT in 2D and at

the end of the section we study the effects of electric and magnetic fields in MIT.

3.2 Experimental results

The first experiments that reported MIT in 2D were performed on ultrahigh mobility

(7.1× 104cm2/V s) and very low disordered Si MOSFET’s [6, 7] at zero magnetic field.

The electron densities were below 1011cm−2. The electron-electron interaction can be

estimated by

Ee−e ∼
e2

εr0
=
e2

ε

√
πns (3.1)
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where ε is the dielectric constant, and r0 is the distance between two electrons. We

have used the relation N/L2 = ns = 1/πr2
0 for N electrons in an area L2. The Fermi

energy, which measures the kinetic energy of electrons, is given by

EF =
~

2k2
F

2m∗ =
~

2π

2m∗ns (3.2)

m∗ is the effective mass of electron in Si MOSFET. We have used the relation N =

4 × (πk2
F )/(2π/L)2 (the extra factor of two is due to the degeneracy in [100] surface

of MOSFET’s). The ratio of these two energies is a dimensionless parameter rs and

quantifies the strength of interaction relative to the Fermi energy

rs ≡
Ee−e

EF
=

(
2e2m∗

~2ε
√
π

)
1√
ns

(3.3)

At the low electron densities (around 1011cm−2) the repulsive electron-electron interac-

tion is around Ee−e ≈ 9meV (by taking the electric constant to be around 9), while the

Fermi energy is1 EF ≈ 0.6meV , hence the dimensionless parameter rs is 15. In the very

dilute regime of the electron density and low disorder, 2D electrons are expected to

form Wigner crystal. For a 2D disordered system numerical works[54] have suggested

the critical rs beyond which a crystal is formed is 37 ± 5. Therefore it is natural to

assume at rs ≈ 10 2D electrons form strongly correlated liquid.

Summary of the experimental findings are given in the following figures. Fig. 3.1

is the temperature dependence of the resistivity for Si MOSFET at low disorder and

low electron densities 7.12× 1010 − 13.7× 1010cm−2 with corresponding rs between 18

to 13. In this figure there are two sets of curves, for the upper curves with ns < nc

the resistivity increases with lowering the temperature (dρ/dT < 0) at temperatures

T > T ∗ ≈ 2K, while for the lower curves ns > nc the resistivity decreases. Therefore

nc = 9.02 × 1010cm−2 is the critical density which separates the metallic from the

insulating phase; the corresponding rs is around 15.7.

Fig. 3.2.a shows the resistivity versus scaled temperature T/T0 for Si MOSFET

corresponding to Fig. 3.1. All data for different electron densities collapse to two

scaling curves, corresponding to the metallic and the insulating phases. The data set

in the insulating regime of the Fig. 3.1 for the range of (T/T0)
−1/2 ≥ 2 can be fitted

well with the function ρ = ρ0 exp[(T0/T )1/2] while in the metallic side for temperatures

1Rydberg constant is ~
2/2mea

2

0 = 13.61eV and the Bohr radius is a0 = 0.52 × 10−8cm, in MOS-
FET’s the effective electron mass is m∗ ' 0.21me therefore ~

2π/2m∗ = 0.6 × 10−14eV cm2. For the
electron-electron energy we have used this relation: e2 = (e2/~c)~c ≈ 1.44× 10−7eV cm.
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Fig 3.1: The temperature dependence of the resistivity for Si MOSFET for different
electron densities ranging from 7.12 × 1010cm−2 to 13.7 × 1010cm−2 at zero magnetic
field. (From Ref. [7]).
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[T0/T ]1/2 ≥ 6 it decreases monotonically as [T0/T ]1/2 with lowering temperature. As it

is shown in Fig. 3.2.b, T0 depends on electron density ns.

Fig. 3.3 is the resistivity of 2D electron gas formed in a different system: p-

GaAs/AlGaAs[8]. In this figure the hole densities range from 8.9 × 109cm−2 to 6.4 ×
1010cm−2, corresponding to rs from 24 to 9. At low hole densities ps < pc (upper

curves) the sample is insulator while for ps ≥ pc (lower curves) it is metal. The dashed

lines correspond to the intermediate regime with metallic like behavior. Range of car-

rier densities in this figure is much higher than Fig. 3.1, all these curves can be scaled

to ρ = ρ0 + ρ1 exp(−T0/T ) [8].

Effect of magnetic field: Application of a magnetic field suppresses the metallic

behavior. Extensive studies in Si MOSFET’s [55] have reported a rise of resistivity by

four orders of magnitude in the presence of a magnetic field parallel to the 2D plane;

experiments on 2D hole gas p-GaAs/AlGaAs [56] reached similar conclusions. Fig. 3.4

shows the effect of magnetic field on the resistivity for Si MOSFET at a fixed electron

density. The zero field curve is the typical behavior in the metallic regime, however

in the presence of a parallel magnetic field the 2D electron gas becomes an insulator

(curves for the fields above 0.9 Tesla). At temperatures above T > T ∗ ≈ 2K the effect

of magnetic field is negligible. This is the temperature above which the sample has

insulating behavior (dρ/dT < 0) even in the absence of the magnetic field.

Nonlinear regime: All the results mentioned so far were obtained in the linear

regime where the electric field tends to zero, in situations that electric field exceeds the

thermal energy kT , the V-I curves become nonlinear [57]. In the vicinity of a critical

point the dominant nonlinearities are coming from critical fluctuations, an scaling

argument [57] in this regime shows that if the resistivity scales with the temperature it

should also scale with the electric field. Fig. 3.5.a shows the resistivity versus electric

field at various electron densities for Si MOSFET. Plotting resistivity versus the scaled

electric field (δnE
1/a) in Fig. 3.5.b shows that all data can be collapsed to two distinct

curves corresponding to insulating and metallic regimes.

3.2.1 Enhancement of Effective mass

Shashkin et al.[59] in a recent experiment on 2D MOSFETs showed that for T > 0.2−
0.5 conductivity linearly decreases with increasing temperature, this can be realized

within a Fermi liquid approach[60] where it predicts, in the intermediate of regime of
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Fig 3.2: (a) Resistivity vs scaled temperature T/T0 for different electron densities
corresponding to Fig. 3.1. (b) Scaling parameter T0 vs electron density ns. In both
panels the open symbols correspond to the insulating side of the transition and the
filled symbols to the metallic side. (From Ref.[7]).
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Fig 3.3: Resistivity per square vs temperature in 2D hole gas of p-GaAs/AlGaAs at
zero magnetic field. Different curves exhibits various hole densities. There are three
distinct regimes, the upper and lower solid curves correspond to the insulating and
the metallic phases respectively, and the dashed lines are metallic like regime at high
densities. The inset is the schematic picture of the p-type 2D hole gas used in the
experiment (From Ref. [8]).
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Fig 3.4: Resistivity vs temperature in heterostructure Si MOSFET at various magnetic
fields parallel to the 2D plane. The electron density is 8.83×1010cm−2 (From Ref. [8]).
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Fig 3.5: (a) Resistivity vs temperature in heterostructure Si MOSFET at zero magnetic
field vs electric field for electron densities ranging form 7.81 × 1010cm−2 to 10.78 ×
1010cm−2 at T = 0.22K. (b) This panel shows resistivity vs scaled electric field. In the
x̂ axis the parameter δn is |nc − ns|/ns (From Ref. [58]).
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Fig 3.6: Normalized conductivity versus temperature for different electron densities
(in units of 1011cm−2) above the critical density. The dashed lines are the linear fits.
(From Ref. [59]).

temperature (T > ~/kBτ , τ is the elastic relaxation time), conductivity has a linear

dependence on T :

σ(T )

σ0
= 1 − AkBT, (3.4)

where A is determined by the Fermi liquid parameters and is

A = −(1 + 8F a
0 )gm

π~2ns

, (3.5)

in this relation m is the effective mass and F a
0 is a Fermi liquid constant related to the

normalized g factor:

g

g0
=

1

(1 + F a
0 )
, (3.6)

Fig. 3.6 shows the temperature dependency of normalized conductivity (σ(T )/σ0) for

various ns in the metallic phase, in this sample the critical density is nc = 8×1010cm−2.

As seen in this picture for a wide range of temperature, conductivity is linear in T , the

dashed lines show the extrapolations of the linear fits.

For the region ns > nc the experimental data indicated a linear dependence of

1/A on ns, while product of g and m remains almost constant, therefore F a
0 is ns
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Fig 3.7: Normalized effective mass (filled squares) and g factor (filled circles) as a
function of electron density ns. mb is the band mass and is equal to 0.19me where
me is the free electron mass. The inset shows the Fermi liquid parameter dependency
on ns, the solid line in the theoretical value (obtained in Ref. [60]) and circles are
experimental data points evaluted from Eq. 3.6 (From Ref. [59]).
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independent (≈ −0.2); However as ns → nc a sharp increase of m was observed while g

remains constant (see Fig. 3.7). This indicates that growing effective mass is reponsible

for the anomalous behavior of the 2D electron system near metal insulator transition.

Traditionally it was belived that the effective mass remains constant m ≈ mb (mb is

mass band), and therefore the elastic relaxation time τ was obtained from mobility

and it was decreasing with decreasing ns in the critical regime. But, now, by taking

into account the anomalous behaviour of m, the elastic relaxation time increases with

lowering ns (for more details see Fig.4 of reference [59]). Hence, the drop in mobility

at low ns is originated from the enhancement of m rather than decrease of τ , although

τ tends to zero in the insulating phase.

Separate measurements in dilute, high mobility GaAs, 2D electron systems reached

to similar conclusions, for details see reference [61].

3.3 Conclusion

The experiments which carried out on 2D samples of electron gas with high mobility

and low carrier densities lead us to the following conclusions:

(i) In the clean and dilute 2D samples of Si MOSTFET and p-GaAs/AlGaAs, the

metallic state (dρ/dT > 0) have been obtained at carrier densities ns (or ps for holes)

above some critical value nc (or pc). For ns < nc (or ps < pc) these systems show in-

sulating behavior (dρ/dT < 0). The metallic behavior persist to exist upto the lowest

accessible temperature, which is in contrast with the theory of Anderson localization

for noninteracting electrons.

(ii) The application of a magnetic field at any angle with respect to the 2D plane

suppresses the metallic behavior and restores the localization behavior.

(iii) All data for resistivity vs temperature/or electric field at different carrier densi-

ties collapse to two distinct curves for the metallic and insulating phases indicating a

quantum phase transitions[62] driven by magnetic field or carrier density. There is no

consensus among community about the nature of either of these effects.

(iv) The anomalous behavior obsevered near metal insulator transition of low density

2D MOSFETs, originates from the effective mass enhancement, this effect also lead to

a sharp increase in elastic scattering time as ns → nc.
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Disordered Hubbard Model

4.1 Introduction

In the scaling theory mentioned earlier the effects of electron-electron interaction were

ignored. In this chapter we study the interplay of disorder and interaction in 2D

systems within the context of the disordered Hubbard model which is the simplest

model that includes both disorder and interaction. However this model is difficult to

solve exactly, even in the absence of disorder. We use an inhomogeneous Hartree-Fock

(HF) approximation in which we treat the disorder exactly while using a mean field

approximation for the interaction (see appendix A).

Amongst our most striking results is a novel metallic phase which is sandwiched

between a Mott insulator for small disorder and an Anderson insulator at large disor-

der. In the next section we present the model and subsequent sections contain results

obtained within the HF approximation. We conclude with a phase diagram based on

our numerical results.

4.2 Model

We study the repulsive Hubbard model with site disorder. The Hamiltonian is:

H = −
∑

ij,σ

tij(c
†
iσcjσ + h.c.) + U

∑

i

ni↑ni↓ +
∑

i,σ

(Vi − µ)niσ (4.1)

The first term is the kinetic energy of electrons for hopping from site i to site j on a

2D square lattice. We assume for the nearest neighbors tij = t and for the rest tij = 0.

c†iσ (ciσ) is the creation (annihilation) operator at site i with spin σ. niσ = c†iσciσ is

the occupation number and µ is the chemical potential that fixes the total density

of electrons. In this work, we fix the density at half filling 〈n〉 = 1 for which µ is
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close to U/2. The second term is the repulsive interaction energy when two electrons

of opposite spin are on the same site i. The last term is the site energy, Vi, chosen

randomly from a uniform distribution between −V and V .

We use an inhomogeneous Hartree-Fock approximation to change the interaction

term which is quartic in ciσ to quadratic terms in ciσ. The eigenstates of the effective

Hamiltonian can be found by diagonalizing a 2N×2N matrix (for details see appendix

A). The effective Hamiltonian is

Heff = −t
∑

〈ij〉,σ
(c†iσcjσ + c†jσciσ) +

∑

i

(

Vi +
U

2
〈ni〉 − µ

)

ni −
∑

i

hi · Si (4.2)

in which

hi = 2U〈Si〉

Si =
1

2
c†iσ~τσσ′ciσ′ (4.3)

hi and 〈ni〉 represent local fields and density and are variational parameters which have

to be determined self-consistently, and ~τ is the Pauli spin matrices. We tune µ such

that the half filling condition is satisfied. We have studied system sizes upto 50×50 at

zero and finite temperatures. For an N site system starting with an initial guess for the

variational parameters, we have to solve the problem self-consistently for 3N variables.

An efficient algorithm requires special mixing schemes e.g. the Broyden method (see

the appendix B) to achieve self-consistency in a reasonable amount of computer time.

4.3 Results in three different limits

4.3.1 Non-Interacting electrons

In the non-interacting case and without disorder (V = 0 and U = 0) the system is a

metal. The energy spectrum for nearest neighbor hopping is

εk = −2t(cos kx + cos ky) (4.4)

The density of states (DOS) has a logarithmic divergence at half filling and is given by

Eq. C.18:

g(ε) =
θ(ε− 4t)

4π2t
K(
√

1 − (ε/4t)2) (4.5)
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Fig 4.1: Pauli Susceptibility χ(~q = 0, ω = 0) = χ0 as a function of chemical potential µ
scaled by the band width at T = 0 for free electrons on a 2D square lattice (1500×1500).

where K is the elliptic integral of the first kind. For this system the spin susceptibility

at wave vector q and frequency ω is (see appendix D)

χzz(q, iω) =
1

2

∑

k

f(εk+q) − f(εk)

εk − εk+q − iω
, (4.6)

where f(εk) is the Fermi function at energy εk. At q = 0, ω = 0 and T = 0

χ0 ≡ χzz(0, 0) = −1

2

∑

k

∂f(εk)

∂εk
=

1

2

∑

k

δ(εk − εF )

=
1

2

∫

g(ε)dεδ(ε− εF ) =
1

2
g(εF ) (4.7)

is the Pauli susceptibility. In Eq. 4.7 g(εF ) is the DOS at the Fermi energy.

Fig. 4.1 shows the filling dependence of the Pauli susceptibility (Eq. 4.7) for a

2D lattice N = 1500 × 1500 at T = 0. There is a logarithmic divergence in χ0 (at

half filling) which is in agreement with Eq. 4.5. Fig. 4.2 shows T dependent of χ0 at

two different filling factors n = 1 and n = 1/2. Since χ0 ∝ g(εF ) as T → 0 we see a

divergence in χ0 at half filling but it approaches a constant value away from half filling.

For T > t the system becomes non-degenerate1 and χ0 ∝ 1/T .

In Fig. 4.3 we show the wave-vector dependent susceptibility χ(q, ω = 0) for q =

(π, π) as a function of filling. By comparison between Fig. 4.2 and Fig. 4.3 we see

1In general for any q the spin susceptibility has Curie behavior at T � t.
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Fig 4.2: The susceptibility χ0 as a function of temperature T shown for two different
filling factors. At half filling (n = 1) and at low T , χ0 has a divergence which tracks
the divergence of the density of states. At quarter filling (n = 1/2) χ0 shows a bump
at T ' 0.5t because at this temperature the electrons can access the high density of
zero energy states. For T > t, χ0 ∝ 1/T , indicating Curie behavior from independent
local moments.

stronger divergence for χ(π, π) at T = 0 and n = 1 than for χ0 primarily because of

the effect of nesting at half filling. Nesting refers to the existence of parallel sections

on the Fermi surface which are separated by the wave vector qnest (see Fig. 4.4).

Fig. 4.4 shows the Fermi surface for different filling factors. It is evident that at

half filling, there are parallel sections at q = (π, π) which gives rise to nesting.

From Fig. 4.5 it is quite clear that χ(~π) is a constant near T = 0 except at the half

filling and χ(~π) ∝ 1/T for T � t for all filling.

The Pauli susceptibility χ0 (Eq. 4.7) is dependent on the DOS at the Fermi energy

but χ(q) at finite q depends on the Fermi surface geometry, in particular its nesting

property. The nesting effects are more dramatic in 1D at any filling and in 2D at half

filling. It provides a large number of small energy denominators |εk − εk+qnest
| � δ in

Eq. 4.6 which enhances χ(qnest). This divergence can produce a magnetic ground state.

In 2D at half filling nesting happens for q = (π, π) and produces an antiferromagnet

ground state (Fig. 4.3 and Fig. 4.4).

In the classical limit the susceptibility has a different behavior. In that case instead
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Fig 4.3: The wave-vector dependent susceptibility χ(q, ω) at q = (π, π) and ω = 0 as
a function of filling at T = 0. The singularity at µ = 0 is because of nesting at half
filling.

of considering electrons in the lattice, we assign each site an spin label. Magnetization

for this system is 〈S〉 = ∂ lnZ/β∂h, h is the external magnetic field and Z is the

partition function, therefore susceptibility is χ = ∂〈S〉/∂h = (∂2Z lnZ/∂h2)/β. This

limit gives rise to 1/T behavior of the susceptibility known as the Curie susceptibility.

4.3.2 Effect of interaction: Mott insulator

In the weak coupling limit, the ground state is unstable against spin density wave

fluctuations. At half filling, there is ordering of the electronic spin density in the wave

vector Q = (π, π) mode. By assuming the ordering to be in the z direction, analysis

within a mean field approximation shows that (see Ref. [63]) in addition to the AF

order for small coupling U , the system also has a gap in the single particle spectrum

∆ ∝ −t exp(−2π
√

t/U) [63] (see appendix E).

In the strong coupling limit, the system has a Mott gap ∝ U (see Fig. 4.6). At

half filling, a second order perturbation expansion in t/U maps the repulsive Hubbard

model to the spin-1/2 Heisenberg model with a coupling between nearest neighbor spins

given by J = 4t2/U (see appendix F). The ground state for this model has AFLRO (for

a review on spin-1/2 Heisenberg model see Ref. [64]). The AF ground state is highly
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Fig 4.4: The Fermi surface for εq = −2t(cos qx + cos qy) at different filling factors. At
half filling for q = (π, π) there are parallel sections in the Fermi surface which give rise
to an instability towards an antiferromagnetic ground state.
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Fig 4.5: The wave-vector dependent susceptibility χ(~π, 0) as a function of temperature
T shown for two different filling factors. χ(~π, 0) has a divergence at half filling (n = 1)
at low T because of nesting. For T > t, χ(~π, 0) ∝ 1/T .
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Fig 4.6: (a) DOS for an interacting fermionic model in a square lattice N = 24 × 24.
This is obtained by using HF approximation at zero temperature at U = 4t. (b) Spin-
Spin correlation in the z direction at U = 4t, V = 0 and T = 0. At distance l = L/2,
〈Sz

i S
z
i+l〉 approaches |mz

op|2 = 0.24.

unstable against filling. For a single hole, Nagaoka showed that the ground state is

a ferromagnet[65]. For higher number of holes, AFLRO is destroyed and the system

describes a superconducting ground state[66], which is basically the high Tc problem.

At finite temperatures, HF equations overestimate magnetic ordering and underes-

timates disorder effects arising from an insufficient inclusion of spin fluctuations, lead-

ing to a magnetic ground state with long range order. This violates Mermin-Wagner

theorem[67] which predicts no long range in a 2D or 1D Heisenberg model with short

range interaction.

4.3.3 Effect of disorder: Anderson-Insulator

In a non-interacting disordered system there is no gap in the DOS (Fig. 4.7) and with

increasing disorder, the van Hove singularity at ω = 0 is washed out. Although the

excitations are gapless, for any amount of disorder all the states are localized and

spatially far apart so that their contribution to the conductance is zero. Fig. 4.8.a

shows the spatial extent of the wave function at the Fermi energy. As the disorder is

increased, the wave-function gets more and more localized.
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Fig 4.7: DOS for noninteracting disordered fermionic model at different disorder width.

4.4 Results: Interplay of Disorder and interaction

Having discussed the various limits, we now present results in the presence of both

disorder and interaction obtained within a self consistent Hartree Fock approximation.

4.4.1 Magnetization and spectral gap

In the weak disorder limit, the system is a Mott insulator with a gap in the DOS and AF

long range order. Fig. 4.9 shows that the local magnetization m†(i) = (−1)ix+iy2〈Sz(i)〉
has AF order for V = 2t. Defect sites in this panel are those with site disorder close

to U/2. With increasing disorder the defective regions with reduced AF order grow

in size. This also can be seen in Fig. 4.10.a and Fig. 4.10.b where the distribution of

m†(i) shows a growth of paramagnetic (PM) sites with m† ≈ 0 as disorder increases

and correspondingly an increase in sites with the local density away from 〈ni〉 = 1.

Appearance of red sites in the right panels of Fig. 4.9 at V = 3t, 5t — these sites

have staggered magnetization opposite to the rest of the surrounding AF cluster — is

the signature of higher order couplings; crudely speaking, whenever a site with weak

disorder has nearest neighbors (nn) with strong disorder it get coupled to the next
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Fig 4.8: Plot of
∑

σ |ψnσ(i)|2 of the eigenstates at the Fermi surface for the noninteract-
ing and interacting (U = 4t) disordered Hubbard model at T = 0. For non-interacting
model by increasing V the states (at the Fermi surface) get more localized while for
the interacting case for V = 2t and V = 5t these states are localized and for V = 3t
they are extended.
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Fig 4.9: Magnetization for different disorder widths and system size N = 28 × 28.
Left panels show 〈Sz(i)〉 but right panels show the staggered magnetization m†(i) =
(−1)ix+iy2〈Sz(i)〉. For V = 2t there are a few PM sites. The uniform blue color is
indication of AF long range order for V = 2t and V = 3t; for V = 5t the system
looses AF order. The red sites in the right panels are evidence of next nearest neighbor
coupling among spins.
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Fig 4.10: (a) Probability distribution P (m†) for different values of V . With increasing
V , P (m†) gets broader and develops weights near 0 indicating the growth of param-
agnetic regions. (b) Probability distribution P (n) of the site occupancy 〈ni〉 showing
a peak near 〈ni〉 ≈ 1 for V = 1 which gets broader with increasing V and develops
weight for doubly occupied and unoccupied sites.
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nn’s, leading to a mismatch in the AF pattern of that particular cluster. Details of

obtaining the next nn coupling from a perturbation expansion upto fourth order is in

the appendix C.

In Fig. 4.11 we show the correlation between the local disorder potential Vi, the

local AF order m†(i), and the local density 〈ni〉. For a fixed disorder at V = 3t for

a given realization, the sites with AF moment greater than 0.3 are marked as the AF

sites and those with AF moment less than 0.1 are the PM sites. Then we find the

probability distributions of site potential Vi and the local densities 〈ni〉 of the AF, PM

and all the sites. Finally we average over realizations of disorder. It clearly shows that

regions with AF order [defined crudely as those with m†(i) ≥ 0.3] originate from the

weakly disordered (WD) regions of the disorder potential. These regions also have a

local density close to unity. On the other hand, the PM sites (with m†) are correlated

with strongly disordered (SD) regions that also have a bimodal density clustering near

zero and double occupancy.

The spectral gap and AF order are the two defining characteristics of a Mott in-

sulator. There is a gap in the single particle density of states for V < Vc1 = 2t (see

Fig. 4.12) and it closes at U/2; however AF order persist to exist upto disorder strength

V = Vc2 ≈ 3.4 (Fig. 4.13), which is the classical percolation threshold of WD sites,

further details of the percolation picture is given in the next chapter. AF order pa-

rameter is obtained from the spin-spin correlation function. Surprisingly, even though

the energy scale for charge fluctuation is U � J ∼ t2/U , the scale for AF coupling,

the spectral gap vanishes at a lower value of disorder than the AF long range order.

Our results are consistent with the results obtained within DMFT[68] in prediction of

closing gap. However HF overestimates the AF moment. For a comparison between

HF estimate of staggered magnetization and exact results in a non-disordered system

see Ref. [63], the discrepancy increases with increasing U . Surprisingly, in the presence

of disorder, HF approximation gives better estimate of the ground state (for detailed

comparison see Ref. [69]). Fig. 4.14 compares the local density of states (LDOS) for

paramagnetic and AF sites at V = 3t. In both types of sites there is no gap in the

LDOS; however for the paramagnetic sites, one side of the spectrum gets higher weight

than the other side depends on the sign of the disorder at that site.
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Fig 4.11: Correlation between the local disorder potential Vi, the local staggered mag-
netization m†(i) and the local density 〈ni〉 for V = 3t. The distribution P (m†) of
m†(i) is shown in (b). We define those sites with m†(i) ≥ 0.3 to be AF sites (region
shown filled); and sites with m†(i) ≤ 0.1 to be PM (shown hatched). The AF sites
correlate with the weakly disordered (WD) (filled) region in the disorder distribution
in (a) and the density distribution P (n) centered around unity (filled) in (c), whereas
the PM sites correlate with the strongly disordered (SD) (hatched) regions in (a) and
a bimodal P (n) with weight near zero and double occupancy (hatched).
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Fig 4.12: DOS averaged over 10 different realizations of disorder for U = 4t, T = 0 and
N = 28× 28. At V = t there is a gap in DOS, at V = 2t the gap closes and at V = 3t
not only the gap vanishes but also DOS at εF = 0 has a higher value than other V ’s.
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Fig 4.13: (a) Spin-Spin correlation in the z direction. for V < 4t there is a long range
order. U = 4t, T = 0 and N = 24 × 24. (b) AF order parameter vs the disorder
width, the system sieze is N = 28× 28. AF long range order disappears at Vcr = 3.4t.
For V > Vcr the final state of the self-consistency loops highly depends on the initial
inputs for the variational local fields, and it consists of clusters of AF sites with no
long range order. Since all these clusters are not oriented in the same direction the
total staggered magnetization is zero while locally there is AF order. This leads to a
jump in the magnetization at Vcr.
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Fig 4.14: Local density of states (LDOS) for paramagnetic and AF sites, averaged over
15 disorder realizations. The disorder strength is fixed at V = 3t and the interaction
is U = 4t. LDOS of the PM sites with Vi < 0 has more weight in the negative side
of the spectrum (dotted curve) while for the repulsive PM sites (Vi > 0) it is opposite
(dashed curve). For the AF sites the LDOS is symmetric.

4.4.2 Nature of eigenstates and inverse participation ratio

We argue below that for an intermediate regime of disorder the system is an inhomoge-

neous metal. We establish our claim by an extensive study of the inverse participation

ratio (IPR) and its scaling behavior with system size. Fig. 4.8.b shows the eigenstates

at the Fermi energy for the interacting system with U = 4t. For small V = 2t and large

disorder V = 5t, the states at the Fermi surface are localized while at an intermediate

disorder V = 3t these states are extended. This is very different from the behavior for

the non-interacting case.

To quantify the extent of the wave function, we calculate the inverse participation

ratio IPR defined by

IPR(Ψn) =
∑

|ψn(i)|4. (4.8)

In the continuum limit, in general a localized wave function ψ(r) at r = 0 is of the

form

|Ψ(r)|2 = A exp(−αr/ξ), (4.9)
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Fig 4.15: Inverse participation ratio for all the states at three different disorder
strength.

where α is a positive constant, ξ is the localization length. In 2D, the normalization

factor is A = α2/ξ2. Therefore IPR is

IPR =

∫ ∞

0

|Ψ(r)|4rdr = (α/ξ)4

∫ ∞

0

exp(−2αr/ξ)rdr ∝ 1/ξ2. (4.10)

Thus IPR(Ψ) is a measure of the localization of a state Ψ. The more a state is localized

the higher its IPR. For an extended state IPR ∼ O(1/N), where N is the number of

sites.

Fig. 4.15 is IPR for all the single particle eigenstates at U = 4t. For disorder

strength V = 2t and V = 5t the localized states are at the middle and edges of the

spectrum while for V = 3t the states at the Fermi energy (E = 0) are extended.

In Fig. 4.16.a we compare IPR of the states at the Fermi energy for the non-

interacting and interacting cases. For the non-interacting case IPR increases mono-

tonically whereas for the interacting case IPR increases and then, surprisingly, has a

sudden drop around V ≈ 2t, further increasing V restores localization. A careful finite

size scaling of IPR in the phase marked by II shows that IPR tends to zero at infinite

length scales whereas in the insulating phase (as well as the non-interacting case) it

extrapolates to a finite value as L→ ∞ (see Fig. 4.16.b). This is a clear indication of

a metallic phase in a 2D disordered system.
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Fig 4.16: (a) Inverse participation ratio IPR ∝ ξ−2

loc
, where ξ−2

loc
is the localization

length, as a function of disorder strength V for states at the Fermi surface at U = 4t
and T = 0 averaged over 15 realizations of disorder. For non-interacting case IPR is
monotonically increasing with V (Red curve) but in interacting case IPR is increasing
upto V = 2t and then there is sudden drop upto V = 3t. In region I and III the
localized states are at the Fermi surface but in the intermediate regime II IPR is
small which is indication of large localization length (or extended states). (b) Scaling
behavior of the IPR vs 1/L for L × L systems. In the non-interacting case (open
squares) the IPR extrapolates to a finite value for V = 3t, whereas for the interacting
case the IPR extrapolates to zero for V = 3t (filled triangles) and V = 3.4t (filled
circles) indicating a divergence of the localization length in the metallic regime. Further
increase to V = 4t (open hexagons) once again gives a finite localization length.
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Fig 4.17: IPR and gap for an N = 16 × 16 system. V and U are in units of hopping
parameter t. At strong disorder limit and strong coupling limit IPR approaches one
which implies states are localized and the system is an insulator. Only at an intermedi-
ate regime of disorder and interaction the IPR has small value and this is the metallic
region. In the right panel gap closes at V = U/2. The region with non-zero gap is the
Mott insulator.

In Fig. 4.17 at an intermediate regime of disorder and interaction, the metallic

region, IPR and the spectral gap have their lowest values. The gap vanished at Vc1 =

U/2 (Figs. 4.12, 4.17.b). Thereafter the density of states at the Fermi energy increases

with V and has its maximum in the metallic phase.

4.4.3 Screening of the strongly disordered sites

The effective potential at each site defined as

V̂i = Vi + U
〈ni〉
2

− µ (4.11)

is a measure of the screening of the bare random potential by repulsive interaction. An

analytical work by Herbut [70] within HF approximation in the weak disorder regime

has shown that the screened potential is correlated and it enhances dc conductivity.

Even recent investigation using DMFT [43] has reported in the strong disorder regime

screening to be more significant, if the interaction is treated beyond HF level. Fig. 4.18

is a comparison between probability distributions of site potential Vi and effective

potential V̂i for the PM sites (dotted and dashed-dotted curves), defined as sites with

AF moment less than 0.1, as well as all the sites (solid and dashed lines). It indicates

screening of the strongly disordered sites, which are the PM sites; screening of the AF

sites (defined as sites with AF moment more than 0.3) is minute. The bimodal form
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Fig 4.18: The solid and dashed lines are probability distributions of the uniform dis-
order Vi and the effective potential respectively. The hashed and filled regions are the
probability distributions of disorder and effective potential for the PM sites. The data
is averaged over 15 realizations of disorder at system size N = 28× 28 for U = 4t and
V = 3t.

of P (Veff) is due to the bimodal form of the P (ni) seen in Fig. 4.10.b.

4.4.4 Compressibility

In the insulating phase most of the sites are frozen with no charge fluctuations while

in the metallic phase electrons/holes are more mobile, leading to higher charge fluctu-

ations. Compressibility — defined as deviation of the occupation number of a site to a

slight shift in the chemical potential — is a measure of charge stiffness and is given by

κ(i) =
δni

δµ
. (4.12)

In Fig. 4.19 we compare the probability distribution of κ in the metallic and the

insulating phases. In the insulating phase P (κ) has a sharp peak close to zero while

in the metallic phase it is very broad. In the Mott region (V ≤ U/2) compressibility is

zero. Fig. 4.20 shows that probability distribution of the compressibility for AF sites

is close to zero while P (κ) for the PM sites is broader.



CHAPTER 4. Disordered Hubbard Model 46

Fig 4.19: Probability distribution of compressibility (κi) for all the sites in two insu-
lating and metallic phases. For V = 2.4t, in the insulating phase, P (κ) has a sharp
peak close to zero while for V = 3t, in the metallic phase, P (κ) is very broad (note the
difference in x and y scales in these plots).

Fig 4.20: Probability distribution of compressibility at V = 2.4, U = 4 for a lattice of
size N = 28 × 28 (a) P (κi) for AF (blue) and PM (red) sites. (b) P (κi) for all the
sites.
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Fig 4.21: (a) Probability distribution of kinetic energy in all the bonds for three values
of V . (b) Averaged kinetic energy as a function disorder strength. The interaction is
fixed at U = 4t. The data is averaged for 15 realizations of disorder. The system size
is N = 28 × 28.

4.4.5 Kinetic energy

In the low disorder limit, the probability distribution of the kinetic energy of all the

bonds P (K) is peaked at a specific value determined by V , with increasing disorder

strength P (K) gets broader such that kinetic energy of some of the bonds even in-

creases. In the large disorder limit most of the weight of P (|K|) shift to smaller values

of |K|. Interestingly, the average of kinetic energy does not change monotonically with

disorder (see Fig. 4.21), it initially decreases to its lowest value at V = 2.5t then it

increases with further increasing of disorder.

4.4.6 Frequency-dependent conductivity

The nature of the frequency dependent conductivity Reσ(ω) = ImΛ(ω)/ω gives insight

into the conducting properties of the phases. Λ(ω) is the Fourier transform of Λ(τ) =

〈j(τ)j(0)〉 the disorder averaged current-current correlation function (for details see
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Fig 4.22: Frequency dependence of the conductivity for V = t in region I showing a gap
ω0 in the joint density of states; for V = 3t in region II showing a linear dependence
indicative of metallic behavior; and for V = 5t in region III showing ω3 dependence
indicative of Anderson localization. The inset shows the decrease of the gap ω0 with
increasing disorder V and its vanishing around Vc1 ≈ 2t.
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Fig 4.23: Temperature dependent of the conductivity for the three disorder strengths.
For V = 2t and V = 5t the conductivity is zero at zero temperature while for V = 3t it
has a finite value; however it increases with temperature for all three disorder strengths.
The system size 32 × 32 and the data is averaged over four disorder realizations.
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appendix A). As shown in Fig. 4.22 the low frequency behavior of ImΛ(ω) has a finite

gap in the Mott region I for V = t; shows a linear ω dependence in the metallic region

II for V = 3t which implies that there is a finite dc conductivity σ(ω → 0); and shows

a ω3 dependence in the Anderson insulating regime III for V = 5t, which implies that

there are gapless excitations but nevertheless σ → 0.

Fig 4.23 shows that dc-conductivity for V = 3t has a finite value at zero temper-

ature which is a metallic behavior but it increases with temperature — an insulating

character. For other values of disorder V = 2t and V = 5t dc-conductivity is zero at

zero temperature.

4.4.7 Glassy behavior

After passing the metallic phase with increasing V the system has glassy behavior and

locks into different metastable states with close by energies. In this regime of disorder

we find that the self-consistent procedure is highly dependent on the initial conditions

that we have started with (see Fig. 4.24). Normally in this regime of disorder the

number of self-consistent loops highly increases due to large number of metastable

states with close energies to the groundstate. The glassy behavior is observed in both

metallic and insulating phases. We believe the reason for this glasslike behavior is the

local frustration, resulting from competition of nearest neighbor (n.n) coupling with

higher orders of coupling in disordered sites, for instance the next n.n. coupling is also

AF and in certain situations it may overcome the n.n. coupling. The details of higher

order couplings are in the appendix C.

In a recent experiment, Popovic et al.[71] studied the transport and low frequency

resistance noise measurements in 2D MOSFET’s. They reported a glassy phase shared

in the metallic and the insulating phases, the width of the glassy phase depends on

disorder and becomes small in the low disorder samples. The glassy phase is manifested

by a sudden slowing down of electron dynamics and by an abrupt change to the sort

of statistics characteristic of complicated multistate systems.

Within DMFT approach, a recent work [72] reported existence of a glassy phase in

the metallic and the insulating states in the disordered extended Hubbard model with

spinless fermions, Anderson localization stabilizes the glassy phase while the Mott

localization weakens it. In the context of Mott-Anderson transition also the glassy

behavior has been discussed using scaling analysis (see reference [73]).
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Fig 4.24: Staggered magnetization pattern (−1)ix+iy〈Sz
i 〉 for one realization of disorder

using HF approximation at U = 4t and V = 3.6t. Two different initial inputs for the
variational parameters have given different final states. In panel (a) the initial inputs
for variational local fields are AF while in (b) they are randomly chosen from a uniform
distribution.

4.4.8 Phase diagram

Based on our results we propose an schematic phase diagram for the disordered Hub-

bard model on a square lattice in Fig. 4.25.

• Mott insulator: At V = 0 and U 6= 0 system is a Mott insulator with a gap in

the DOS and AF long range order. The spectral gap closes at V = U/2.

• Insulator A: This phase is characterized with the gapless excitations, AF long

range order and localized eigenstates at the Fermi energy. In this phase param-

agnetic sites start appearing for sites with |Vi| > U/2.

• Insulator B: In this phase, the states at the Fermi energy are localized; excita-

tions are gapless and the system is made of clusters of AF sites with no long

range order. With further increasing of disorder the size of these clusters shrinks

and at the limit of V � U the system becomes an Anderson insulator with no

magnetic order. In the limit of strong disorder and strong coupling the electrons

are essentially pinned at the lattice sites and since t� U and t� V they cannot

hop from site to site and the system is insulator.

• Metallic phase: Our new finding is that in an intermediate coupling regime once

the disorder destroys the gap we have a metallic regime. This phase, characterized
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Fig 4.25: Calculated phase diagram for the disordered Hubbard model at half filling
and zero temperature. The x axis is the interaction U and the y axis is the disorder
width V . There are four phases: (i) 0 ≤ V < U/2, Mott Insulator (brown region):
The system is a Mott insulator with AF long range order (AFLRO) and finite charge
gap in the single particle density of states. (ii) U/2 ≤ V < 5U/6, Insulator A
(pink region): New insulating phase that we predict with AFLRO but gapless charge
excitations. The states at the Fermi energy are localized. (iii) V ≥ 5U/6, Insulator B
(light blue region): This phase is also an insulator, with gapless excitation and localized
states at the Fermi energy and clusters of AF spins. At the limit of small interaction
the system becomes a paramagnetic Anderson insulator. As we get closer to the line
V ≈ 5U/6 the size of clusters increases. (iv) Novel metallic phase (gray region) is
sandwiched between the insulating phases.

by gapless excitations and extended states at the Fermi energy, is sandwiched

among three other insulating phases. In the metallic phase the charge fluctuation

induced by disorder screens out the random potential. For 2V ≤ U/0.59 there is

AF long range order.

4.5 Binary Disorder Model

4.5.1 Model

Another interesting model which gives insights to the 2D MIT is the binary disorder

model. Since often the disorder is from one or two types of atoms (with a fixed Vi)
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this model is more realistic in describing the disorder. A fraction of sites (ndis) have

site potentials ±V , half of these sites have Vi = V and for the other half Vi = −V ,

for the rest of the sites (1-ndis) Vi = 0. In this model the disorder is described by

two parameters V and ndis. Tuning either of them lead to different results. Further it

can help us in understanding which types of bonds contribute most to the conduction.

The electron density is fixed at 〈n〉 = 1, and the temperature is zero. Here we report

results for a fixed value of interaction U = 4t. These results are obtained within the

framework of HF approximation.

4.5.2 Magnetization, density and gap

Figure 4.26 shows the staggered magnetization for three values of ndis = 0.23, 0.43

and 0.72 at fixed values of interaction (U = 4t) and disorder strength (V = 2t).

The left panels indicate disorder profile; red and blue correspond to two values of

the disorder strength Vi = ±V . The right panels are local staggered magnetization

m† = (−1)ix+iy2〈S+
i 〉, and the uniform blue color in the background indicates AF long

range order while white color in these panels (right panels) show the paramagnetic sites.

The AF long range order persist even to ndis = 0.72; however there are clusters with

staggered magnetization opposite to the majority of sites (the red patches in the blue

background in panel (c)). Fig. 4.27 shows the staggered magnetization as a function

of ndis for different disorder strengths. For higher values of V the magnetization falls

faster. In Fig. 4.28, the staggered magnetization for small V is almost independent of

ndis. Fig. 4.29 shows the spectral gap in the DOS as a function of disorder strength V

for three values of ndis. The gap strongly depends on the strength of disorder V rather

than ndis.

Three panels in Fig. 4.30 exhibits the probability distribution of the local staggered

magnetization, local density and effective potential for three values of ndis in the binary

disorder model. For ndis = 0.23, P (Si/ni/Veff) has a sharp peak corresponding to the

non-disordered sites. With increasing ndis, in panel (a) most of the weight of the

distribution shifts to the smaller values of staggered magnetization. In panels (b)

and (c), despite broadening the peaks, with increasing ndis, the distributions of non-

disordered and disordered sites do not overlap. Panel (c) shows a significant amount

of screening for the disordered sites with Vi = ±2t.
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Fig 4.26: Left panels are disorder profile and right panels show staggered magnetization
m† for U = 4t and V = 2t in the binary disorder model. Uniform blue color in the
right panels indicate AF long range order, which survives even at ndis = 0.72. The red
color in the left panels indicates sites with Vi = V , the blue color sites have potential
disorder Vi = −V and uncolored sites correspond to non-disordered sites. The system
size is N = 28 × 28.
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Fig 4.27: Staggered magnetization as a function of number of disordered sites (ndis)
for four different values of V . The data is averaged over three realizations of disorder.
Antiferromagnetic initial inputs were chosen for the variational parameters of the HF
Hamiltonian.



CHAPTER 4. Disordered Hubbard Model 56

Fig 4.28: Staggered magnetization versus disorder strength V for three different values
of ndis, the interaction is U = 4t. Data is averaged over three realizations of disorder.
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Fig 4.29: Gap in the single particle density of states as a function of disorder strength
for different values of ndis. The interaction is U = 4t.
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Fig 4.30: (a), (b) and (c) show the probability distribution of the local AF magne-
tization, local density and local effective potential respectively. The interaction and
disorder strength are fixed at U = 4t and V = 2t.
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(a) ndis = 0.23 (b) ndis = 0.43 (c) ndis = 0.72

0 0.25 0 0.09 0 0.02

Fig 4.31: Eigenstates at the Fermi energy for three different values of ndis and fixed
U = 4t and V = 2t. With increasing ndis these states become extended. The system
size is N = 28 × 28.

4.5.3 Nature of eigenstates

Like the previous section, the presence of extended states at the Fermi surface is the

indication of a metallic phase. Fig. 4.31 shows the extent of an eigenstate |ψn
σ(i)|2

at the Fermi energy for three values of ndis. For ndis = 0.23 and ndis = 0.43 these

states are localized, while for ndis = 0.72 they become extended. This implies a metal

insulator transition with ndis as the tuning parameter. Each panel of Fig. 4.32 shows

IPR of all the single particle eigenstates for one realization of disorder; the disorder

strength is fixed at V = U/2. In (a) and (b) the states at the center of the band are

localized, while in (c) with increasing number of disordered sites these states become

extended.

Figure 4.33 shows IPR as a function ndis for different V ’s. IPR has sharper fall for

larger V ’s. Fig. 4.34 is IPR vs V for three different ndis; at higher values of ndis the

system has metallic behavior for larger range V ; As ndis → 1, IPR has the lowest value

for V = U/2.

4.5.4 Percolation of kinetic bonds

In order to get a better picture of the metallic phase and how is it arising from disorder,

we have looked at the expectation value of kinetic energy of all the bonds. In the
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Fig 4.32: IPR for all states vs energy, the disorder strength is V = U/2 andN = 28×28.
ndis is the fraction of disordered sites with potential Vi = ±V .

Fig 4.33: For larger values of V ’s, IPR falls faster.
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Fig 4.34: IPR as a function V for different values of ndis. With increasing ndis the
metallic phase get expanded to wider range of V .

absence of disorder all bonds have equal kinetic energy. By adding disorder, the kinetic

energy of the bonds surrounding the disordered site get lower (their absolute values

increase), in other words, nearest bonds linked to the disorder get active since disorder

induces hopping. The presence of a percolating cluster of such active bonds gives rise

to the metallic phase. In order to locate the active bonds in the lattice we have plotted

the expectation values of the bonds and their disorder profile in one figure, shown in

Fig.’s 4.35, 4.36 and 4.37. In these figures, the open circles are sites with Vi = 0, the

blue and red circles are sites with disorder potential U/2 and −U/2 respectively. The

gray scale squares measure the expectation values of the corresponding bonds, only

bonds with kinetic energy more than a threshold (say 0.34t) are shown. Generally

kinetic energy is the highest for the bonds with opposite signs of disorder (Vi = V and

Vj = −V , i and j are site indexes of the bond) — we study the magnetic properties of

such bonds in the next chapter — and it is the lowest for the weakly disordered sites

(Vi,j = 0), however if such non-disordered bonds are surrounded with active bonds

their kinetic energy increases which is indication of quantum tunneling.

Figures 4.35, 4.36 and 4.37 are a comparison of number of active bonds at three

different disorder densities (ndis), conductivity enhances with increasing the number

of disorder sites but it gets suppressed at disorder strengths away from U/2. These

information can be summarized in Fig. 4.38, where the probability distribution of the
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  0.00   0.50

Fig 4.35: Open circles are sites with Vi = 0, the blue and red circles are sites with
potential Vi = U/2 and Vi = −U/2 respectively; number of sites with repulsive potential
(blue) is equal to the sites with attractive potential (red), total number of disordered
sites is ndis = 0.21. The gray squares are the expectation value of the corresponding
bond in units of t. Bonds with energy less than 0.34 are not shown, this is in order to
distinguish the active bonds (with higher kinetic energy) easily.
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  0.00   0.49

Fig 4.36: In this figure: ndis = 0.43.
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  0.00   0.51

Fig 4.37: ndis = 0.72.
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Fig 4.38: Probability distribution of the kinetic energy for all the bonds for three values
ndis, corresponding to the previous gray scale figures.

kinetic energy in all the bonds is plotted for three values of ndis. For higher values of

ndis the distribution gets broader.

4.6 The role of inhomogeneous magnetic field

By doing HF approximation we get an effective Hamiltonian which is combined of

kinetic energy, effective potential (V̂i) and an inhomogeneous magnetic field (hi) in all

the sites, practically this is a non-interacting model; within the scaling theory analysis,

mentioned in the second chapter, a 2D non-interacting system is an insulator, then the

question arises how can HF approximation produces a metallic phase. For that there

two possibilities: (i) There is correlation in the effective potential. (ii) Inhomogeneous

magnetic field is correlated with the disorder and it can lead a metallic phase. We

have studied the role of either of cases and we found that, there is no correlation in the

effective potential but the inhomogeneous field plays an important role in the metallic
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Fig 4.39: IPR of the states at the Fermi energy as a function of the fraction of disordered
sites ndis. The curve with triangle symbol is the IPR for the binary disorder model
at U = 4t and V = U/2, averaged over two realizations of disorder, the curve with
square symbols shows IPR for non-interacting electrons with the disorder chosen from
effective potential obtained in the interacting problem.

phase.

We have used the effective potential obtained in Eq. 4.11 as the disorder input

for the non-interacting case. Based on our results in the binary disorder model, the

inhomogeneous field enhances the metallic behavior and in their absence states would

be less extended; however in the model with uniform disorder these local fields do not

enhance the metallic behavior. Fig. 4.39 shows IPR for the eigenstates at the Fermi

energy as a function of ndis, in the metallic regime where IPR is small (for ndis > 0.6)

the case with non-zero hi has smaller IPR. Therefore the metallic phase is arising from

two distinct effects, screening of strong disorder sites and presence of an inhomogeneous

magnetic field.

4.7 Conclusion

Uniform disorder at all the sites:

• The spectral gap vanishes at the disorder strength Vc1 = U/2. The states at the

Fermi surface are localized on the paramagnetic sites.
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• AF long range order persists upto the classical percolation threshold of almost

singly occupied sites which is Vc2 ' 5U/6.

• Once the spectral gap is closed by increasing V , the states at the Fermi surface

get extended and the system shows metallic behavior which is very surprising.

Our finite size scaling of the states at the Fermi energy shows that the localization

length of these states tend to infinity as the system size tends to infinity which

is a strong evidence for metallic states.

• Further increasing V restores localization and the system becomes an Anderson

insulator with gapless excitations.

• At disorder limit V > 5U/6 the system has glassy behavior.

• Strongly disordered sites get screened by interaction. However screening alone is

not sufficient for the appearance of a metallic phase but presence of an inhomo-

geneous effective field (hi) which is correlated with the effective potential (Ṽiσ)

gives rise to a metallic phase — in the absence of inhomogeneous field, the effec-

tive Hamiltonian reduces to the problem of 2D non-interacting electrons where

the disorder is given by the effective potential and this system is an Anderson

insulator based on scaling theory.

Binary disorder model:

• Pairs of nearest neighbor sites with opposite signs of potentials have the most

contribution to the conductivity. The metallic state arises from a percolating

cluster of active bonds, these bonds are siting on pairs with Vi = ±U/2 and

Vj = 0 or Vi = U/2 and Vj = −U/2; the latter have magnetic moment which is

more stable towards thermal fluctuations as we describe it in details in the next

chapter.
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The large U limit

5.1 Introduction

In the repulsive Hubbard model for large interaction strength, one can use perturbation

expansion in t/U , where t is the hopping parameter and U is the interaction. The first

order perturbation moves eigenstates out of the ground state subspace and does not

reconnect back to the ground state making the matrix element zero. A second order

perturbation couples two nearest neighbor sites leading to an effective Hamiltonian

known as t − J model[74]; at half filling this model simplifies to spin-1/2 Heisenberg

model with an antiferromagnetic (AF) coupling given by J = 4t2/U .

Electron/Hole doping: At large U and half filling each site has exactly one electron,

and therefore the system is a Mott insulator. Doping suppresses AF order. Based on

Nagaoka theory[65] at infinite U limit in the presence of even one hole at half filling

(Ne = N − 1, where Ne is the number of electrons and N is the number of sites) the

ground state is a ferromagnet. Addition of electrons/holes (doping) in the quantum

Heisenberg model gives rise to interesting effects such as high Tc superconductors which

is a subject of great interest to the condensed matter community.

Percolation of magnetic sites: Another direction would be to investigate the effects

of quenched disorder in the large U limit at half filling which we are discussing in

this chapter. This is like diluting a quantum antiferromagnet (for a review in diluted

Heisenberg model see Ref. [75]). Experimental realization of this would be to substitute

Copper ions, which are magnetic, with non-magnetic ions such as Zinc or Magnesium

in La2CuO4 the parent compound of High Tc superconductors. This diluted quantum

Heisenberg model has been studied since past ten years, some concluded the destruction

of AFLRO before reaching the percolation threshold of doping. Theoretical studies us-

ing quantum Monte Carlo[76, 77, 78], spin wave theory and T-matrix approximation[79]
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Fig 5.1: Normalized magnetization as a function of dilution for spin-1/2 Quantum
Heisenberg model. Different curves show results obtained within different approaches,
the symbols are the experimental data points (for details see the Ref. [78]).

concluded that the critical value of dilution for disappearance of AFLRO is the same

as percolation threshold. Recent experiments by Vajk et al.[78] verified the theoreti-

cal predictions (see Fig. 5.1). In the context of the Hubbard model, strong disorder

generates two types of sites: non-magnetic unoccupied or doubly occupied sites, and

magnetic sites with a single spin[80]. We find that a percolation-based description then

becomes possible, as electron hopping results in coupling between neighboring magnetic

sites; upon increasing disorder, the number of magnetic sites decreases and eventually

leads to a transition marking the loss of long range AF order. At the end of the chapter

we compare our HF results (presented in the previous chapter) with the percolation

picture and the studies of diluted Heisenberg model using different approaches.

In addition to the destruction of the AF order, disorder may induce new type of

magnetic coupling, absent in the non-disordered case. We study the effects of such

coupling on different properties of the system. We show that, presence of potential

disorder Vi = U/2 and Vj = −U/2 at two nearest neighbor (nn) sites leads to new

type of magnetic coupling that we call resonant pair exchange (RPE). This interaction

is the outcome of the resonance to order t between two configurations of spins on
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adjacent sites: (a) a spin singlet formed by single spins on adjacent sites and (b) a non-

magnetic doublon formed by a doubly occupied and empty pair. This sort of ‘defect

pair’ occurs with a finite probability in a disordered system, and has several important

characteristics: (i) Similar to two-level systems in glasses, these defects bring about

a characteristic maximum in the specific heat. (ii) The staggered spin susceptibility

is suppressed because of the mixing of the singlet configurations with a non-magnetic

configuration. However, interestingly, the non-Curie behavior persists to temperatures

T ∼ t, which is much higher than the kinetic exchange scale J ∼ t2/U < t. (iii) The

resonant tunneling produces high kinetic energy on the bond connecting the two sites.

This provides a source of noise in RPE defects that should be trackable in conductance

noise experiments[71].

5.2 Magnetic Properties

We show that close to the atomic limit (t/U → 0), the magnetic properties of the

strongly disordered half-filled Hubbard model can be understood in terms of a percolation-

based model with a concentration of magnetic sites which depends on the ratio V/U .

Electron hopping induces two types of magnetic coupling — kinetic exchange between

neighboring magnetic sites, and resonant pair exchange between particular pairs of

neighboring magnetic and nonmagnetic sites. These couplings and their effects are

discussed subsequently.

Consider first the limit t = 0. The competition between repulsive interactions and

disorder produces site-dependent occupancies ni in the ground state (see Fig. 5.2). Sites

with Vi > U/2 are unoccupied; and those with Vi < −U/2 are doubly occupied; neither

of these two types of sites has a free spin. On the other hand, sites with |Vi| < U/2 have

ni = 1 with a free spin residing on each such site. Thus the fraction of singly-occupied

(magnetic) sites is x = U/2V , while the remaining sites are nonmagnetic. The spin

degeneracy of the ground state is 2Nx, where Nx = xN (In Fig. 5.2, Nx is the number

of gray sites.) is the number of singly occupied sites and N is the total number of sites.

The effect of turning on a small value of the hopping amplitude t is to lift the ground

state degeneracy. To second order in t, an AF coupling of magnitude Jij is induced

between the spins on nearest-neighbor singly-occupied sites i and j, by the well-known

mechanism of kinetic exchange. The coupling J0 = 4t2/U in the pure system is modified
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Fig 5.2: A typical ground ground state of the disordered Hubbard model at the atomic
limit (t = 0). The number shown at each site indicates the occupancy of the corre-
sponding site. gray sites are the singly occupied sites.

by the site potentials Vi and Vj (for details see appendix F, equation F.12):

Jij =
2t2

U + Vi − Vj
+

2t2

U − Vi + Vj
=

J0

1 − (δV/U)2
(5.1)

where δV = |Vi − Vj|. The effective leading-order Hamiltonian is H =
∑

〈ij〉 JijSi · Sj

where the summation is only over sites with |Vi/j| < U/2 which are singly occupied

and magnetic. In other words, Jij = 0 if either of the sites is nonmagnetic.

5.3 Resonant Pair Exchange (RPE)

It is evident from the above analysis that there will be some rare regions where the

disorder at a pair of neighboring magnetic sites Vi and Vj is such that the conditions

|Vi − Vj − U | < t� U and |Vi/j| ' U/2 hold. In that case, the denominator in Eq. 5.1

becomes very large, and the perturbative expression is no longer valid. In fact, in this

regime the electron hopping couples these pairs of sites to first order in t, and we show

that it induces a new type of coupling, which we call resonant pair exchange (RPE).

The RPE process differs qualitatively from normal kinetic exchange, and has important

consequences for the thermodynamic and transport properties of the system.

Consider states with only two electrons on a pair of sites characterized by disorder

parameters V1, V2, when the hopping t = 0. Of the total of 6 states (without half filling

condition there are totally 16 possible states for two sites), there are 3 singlet (S = 0)
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Fig 5.3: Eigenstates for two sites. (a) Resonant pair exchange: With V1 = −V2 = U/2;
the difference in energy between the RPE singlet ground state and triplet excited state
is ∆ ∼ t. (b) Kinetic exchange: With V1 = V2 = 0; the energy difference between the
magnetic singlet ground state and the triplet excited state is ∆ = J ∼ t2/U .

states |1, 1〉S, |2, 0〉, |0, 2〉 and 3 triplet (S = 1) states | ↑, ↑〉, | ↓, ↓〉, |1, 1〉t. Since

the Hamiltonian conserves total spin S, we examine each subspace separately. Of the

three singlet states, two states |2, 0〉 and |0, 2〉 involve unequal charges at each of the

two sites, whereas one state |1, 1〉S = 1/
√

2(| ↑, ↓〉 − | ↓, ↑〉) involves one electron on

each site. The Hamiltonian in the singlet subspace with eigenstates |1, 1〉S, |2, 0〉 and

|0, 2〉 is (see appendix H for details)

H =





V1 + V2 − 2µ −
√

2t −
√

2t

−
√

2t 2V1 + U − 2µ 0

−
√

2t 0 2V2 + U − 2µ



 . (5.2)

We are interested in the case when one of the two unequal-charge states is nearly

degenerate with |1, 1〉S. For specificity, let us take V1 = −V2 = U/2. Then 5 of the six

states (the 3 triplet states and 2 singlet states |1, 1〉S and |0, 2〉) are degenerate with

energy −U , while |2, 0〉 has energy U . The primary effect of nonzero but small hopping

is to mix the two degenerate singlets. In the large U limit, the |0, 2〉 (with energy U)

has a large splitting with respect to the ground state. Since we are interested in the

ground state and the low level excitations, we estimate the Hamiltonian in (5.2) by

H =

(
−U −

√
2t

−
√

2t −U

)

(5.3)
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Fig 5.4: χ(π)t and χ(0)t versus T/t for different U/t for two sites at half filling and
with V1 = U/2 and V2 = −U/2. The square symbol is for U = 8t and the circle symbol
for U = 16t. When scaled by t, the curves for different T and U collapse to one curve.
The inset depicts Tχ versus ln(T/t), showing that χ has Curie behavior at large T .

The eigenstates for this effective Hamiltonian are

|ψ+
s 〉 =

1√
2

(

|1, 1〉S + |0, 2〉
)

|ψ−
s 〉 =

1√
2

(

|1, 1〉S − |0, 2〉
)

(5.4)

with eigenvalues −U−
√

2t and −U+
√

2t respectively. The resulting pattern of energy

levels is as shown in Fig. 5.3.a.

It is interesting to contrast the effect of the resonant condition V1 = −V2 = U/2

on the magnetic properties of the dimer with the magnetic properties arising from the

familiar case V1 = V2 = 0. In the latter case, the states |2, 0〉 and |0, 2〉 have a high

energy U , while the hopping lowers the energy of |1, 1〉S with respect to the triplet
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state by an energy of order t2/U (Fig. 5.3.b). This is the familiar mechanism of kinetic

exchange, which produces AF correlations in the dimer ground state; in that case,

correlations persist up to temperatures of order t2/U . With resonant pair exchange,

by contrast, the AF correlations in the ground state are reduced (as the state |0, 2〉 is

mixed in); but these correlations persist to much higher temperature T (of order t) than

in the case of kinetic exchange. This is well brought out by the behavior of the magnetic

susceptibility (both the uniform susceptibility χ(q = 0) and the ordering susceptibility

χ(q = π)) shown in Fig. 5.4. Deviations from Curie (free moment) behavior are evident

at temperatures T below t, signaling the onset of AF correlations due to resonant pair

exchange. The static susceptibility for wave vectors q = 0 and q = π is

χzz(q = 0) = β〈SzSz〉

χzz(q = π) =

∫ β

0

dτ〈eτHSz(π)e−τHSz(π)〉, (5.5)

H is the Hamiltonian, for two site Sz = Sz
1 + Sz

2 and Sz(π) = Sz
1 − Sz

2 . We have

also studied the behavior of a four site cluster with sites labeled 1,2,3,4, with Vi =

(−1)i+1U/2 (see appendix H). We find that the ground state resonates between two

types of singlets — one type involving unequal charges at different sites, and the other

involving one electron per site. The first excited state is also a singlet, and involves

states with one electron per site (as opposed to a triplet for the dimer). Hence thermal

occupation of this state increases AF correlations, leading to an increase of Tχ(π) (see

Fig. 5.5) up till temperatures of the order of the gap. The lowest energy levels are

given at the bottom of Fig. 5.5 for U = 8t.

It should be noted that similar magnetic effects are expected whenever the condi-

tions |U + Vi − Vj| ≤ t and |Vi/j| ' U/2 are satisfied for neighboring pairs of sites 〈ij〉.
The fraction of such pairs in the disordered Hubbard model is of the order of (t/2V )2.

As the contribution to energy lowering from each pair is t, the overall contribution to

the ground state energy is of order t3/V 2, which is of higher order in t than from the

majority of pairs, which are coupled by normal kinetic exchange.

5.4 Specific Heat and Spin Susceptibility:

Since sites coupled by resonant pair exchange are relatively rare and have a very dif-

ferent level structure (see Fig. 5.3) from the majority of pairs, they act as localized
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Fig 5.5: tχ(π) and tχ(0) versus T/t for different U and t for four sites [1-2-3-4] at half
filling with periodic boundary conditions, Vi = (−1)i+1U/2. By scaling the temperature
with t spin susceptibility for different values of U and t collapses to one curve. This
is due to the energy splitting of order t between the ground state and the triplet
excited state. χ(π) has a rise at T/t ∼ 0.5, this is because the first excited state is
singlet magnetic and rise in temperature makes this state accessible and magnetization
increases. At large U the ground state is a mixture of a singlet non-magnetic state
|0, 2, 0, 2〉 and a set of magnetic singlet states (Details are in appendix H). The lower
right inset is the energy spectrum at U = 8t upto the third excited state. The lower
center inset is Tχ versus temperature in logarithmic scale. At high temperature Tχ
approaches a constant.
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centers and give rise to a distinctive signature in the specific heat Cv and χavg, much

as two level centers do in glasses.

For an arbitrary pair, by shifting the energies of the singlet subspace (given in

Eq. 5.2) with Vi + Vj and taking µ = U/2, the new energies are −U , ±|Vi − Vj|
corresponding to states |1, 1〉S, |2, 0〉 and |0, 2〉. We assume that the state with energy

|Vi − Vj| decouple from rest of Hamiltonian, within this approximation the energy

splitting ∆ between the singlet ground state and the triplet states is (for details see

appendix G)

∆ =

√

2t2 +

(
U − δV

2

)2

− U − δV

2
(5.6)

where δV = |V1 − V2|. Here we have assumed the state with energy U + δV decouples

from other two levels. If V1 and V2 are chosen from a uniform distribution between

−V to V and we regard each pair as isolated from the others, then the probability

distribution for the splitting ∆ can be found

P (∆) =
1

2V

[
∆

V

(
4t4

∆4
− 1

)

+
2V − U

V

(
2t2

∆2
+ 1

)]

. (5.7)

The total specific heat from such pairs is then Cv =
∫ ∆max

∆min
d∆P (∆)cv(∆) where ∆min

and ∆max can be obtained by substituting 0 and U for δv in Eq. 5.6, since the integra-

tion is only over singly occupied sites. P (∆) is zero for ∆ < ∆min and it has a sharp

peak at ∆min (see the inset of Fig. 5.6). Noting that the average energy for this two

level system is E(∆) = −∆ exp(∆/T )/[exp(∆/T ) + 3], the corresponding specific heat

cv(∆) = ∂E/∂T can be obtained (see Fig. 5.6).

We see that at T ≥ t most of the contribution to the total specific heat is from

RPE sites, due to their large splitting. In this regime Cv varies as 1/T 2. On lowering

T , Cv has a peak at T = 2t2/λU with λ ' 2.85. Most of the peak weight comes from

pairs with small splitting (∆ ∝ t2/U). In the low-T regime, Cv decays exponentially

as T → 0; this form of the decay found within the pair approximation would change if

the system supports extended (spin wave like) states.

The above arguments hold also for the averaged susceptibility. For the two level

system mentioned above spin susceptibility is χ+−(∆, T ) = 2/T [exp(∆/T ) + 3]. The

susceptibility averaged over pairs has Curie behavior (∝ 1/T ) at high T and a peak at

T ≈ 2t2/U (see Fig. 5.6); below this temperature triplet states make very small contri-

bution to the susceptibility. As T tends to zero χ+−
avg falls as exp(−∆/T ). Therefore the
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Fig 5.6: The averaged susceptibility χ+−
avg and specific heat versus the temperature.

Both quantities show a peak at T ∼ J where J ∼ t2/U is the exchange coupling.
The resonating pair exchange defects contribute at higher temperatures T ∼ t. The
distribution of the energy level splittings is shown in the inset and shows that it is
dominated by small splittings ∼ J .

high temperature (T ≥ t) behavior of the specific heat and susceptibility is determined

by the RPE sites while the low temperature behavior is governed by pairs of sites with

small energy splittings.

5.5 Percolation of Magnetic Sites

Equation 5.1 defines the coupling in the antiferromagnetic Heisenberg model, with

random site dilution. It is well known that a necessary condition to have long-range

order is that there be an infinite number of connected sites with free spin — i.e. that x

exceed the percolation threshold xc for the lattice in question. This defines a classical

percolation picture for the disordered Hubbard model. For the square lattice (the case

of primary interest here), xc ' 0.59[81] (see Fig. 5.7), so that to second order in t,

antiferromagnetic long range order would be lost for U/2V < xc.

It should be noted that the reduction of the disordered Hubbard model to the site-
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A B

P

0.41 0.59 1

PA B

x

1

0
0

Fig 5.7: For a 2D lattice, made of two type of sites A and B randomly distributed, if
NB/(NA +NB) > xc then with probability PB there is a percolating cluster of B sites
(region B), and if NB/(NA + NB) < 1 − xc with probability PA there is percolating
cluster of A sites (region A). NA and NB are the number of sites of type A and B
respectively. The x axis is NB/(NA + NB), xc is the percolation threshold which is
close to 0.59[81].

dilute antiferromagnet is valid on any lattice, in any dimension, and is easily generalized

to arbitrary distributions P (V ) of the disorder variable V . The corresponding threshold

value is given by xc =
∫ U/2

−U/2
P (V )dV .

Also, the assumed symmetry of the disorder-distribution guarantees that the ex-

pected number of sites with ni = 0 is the same as the number with ni = 2. However,

in any particular configuration of disorder, we may expect an imbalance of order
√
NS

in this number, which in turn would imply a corresponding number of holes or extra

particles on the ni = 1 sites. These carriers may have interesting consequences, which

we have not addressed.

We thus arrive at the following description in the limit of strong disorder (V ≥ U/2)

and small hopping (t � U). First, the ratio x = U/2V determines the fraction of

randomly placed singly occupied (magnetic) sites. Second, neighboring magnetic sites

are coupled through AF Heisenberg interactions (Eq. (1)), so that we have a random

site-dilute Heisenberg antiferromagnet. Third, for V > U/2, a small fraction ∼ t2/V 2

of pairs of sites satisfies the condition |Vi − Vj − U | < t and |Vi/j| ' U/2, resulting in

resonant-pair coupling between the sites in such pairs.

For x below the percolation concentration xc, the system consists of isolated clusters

of magnetically coupled sites, and there is no possibility of long range order. For x

exceeding xc, an infinite connected cluster of magnetically coupled sites forms, and AF
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Fig 5.8: Solid line is AF order parameter m† vs 1 − x = 1 − U/2V using HF approx-
imation for a 2D square lattice of the model mentioned in Eq. 4.1 the system size is
28 × 28, U = 4 and T = 0. The dashed and dotted lines are staggered magnetization
vs dilution in the 2D quantum Heisenberg model with spin-1/2 using quantum Monte
Carlo[78, 77] and spin wave theory[79]. The square symbols are experimental data
points using neutron scattering[78]. The percolation threshold is 1 − xc ' 0.41.
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long range order sets in at T = 0. The occurrence of resonant pairs, one site of which is

attached to the infinite cluster, would result in a slight loss of AF order in the ground

state. On the other hand, as the temperature is raised to values much larger than t2/U

but still of the order of t, only the resonant pairs make a non-Curie contribution to

magnetic properties.

5.6 Comparison with HF results

From previous chapter recall that upon adding site disorder in the repulsive Hubbard

model, we found the Mott gap in the density of states (DOS) closed at V = U/2,

while AFLRO persist upto the percolation threshold of magnetic sites, 2Vcr ' U/0.59

(Fig. 5.8). Within the classical picture that we described earlier (at the atomic limit),

sites with |Vi| > U/2 are non-magnetic and sites with |Vi| ≤ U/2 are magnetic, within

HF approximation, the paramagnetic sites start appearing only when |Vi| > U/2.

Further we found that for disorder strength V > Vcr the system breaks into clusters

of AF sites with no long range order, and displays a glassy behavior; the final state

of self-consistent iterations depends on the initial inputs of the variational parameters

of the trial HF Hamiltonian. With increasing disorder the size of AF clusters shrinks

further, and at the limit of very large disorder the system is a paramagnetic Anderson

insulator. This results are consistent with the percolation picture for appearing of

paramagnetic sites and the critical threshold for AFLRO.

Figure 5.8 shows a good consistency of the staggered magnetization obtained within

the HF approximation with results of other theoretical and experimental studies of the

diluted Heisenberg model. The HF approximation captures rather subtle effects as

well. In particular the next nn coupling, coming from a fourth order expansion in t can

compete with the nn coupling to produce occasional mismatches in the alignments of

particular spins/clusters — and these are reproduced by HF treatment (for details of

higher order coupling see appendix F). Further for a honeycomb lattice at half filling

the AFLRO vanishes at a disorder strength, predicted by the percolation picture.

5.7 Higher order coupling

Figure 5.9 is a comparison between probability distribution of the nn coupling J and

the next nn coupling J ′ (given by equations F.14, F.15 and F.16) in the disordered
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Fig 5.9: Probability distribution of nearest neighbor coupling and the next nearest
neighbor coupling at half filling for 2D square lattice.

Hubbard model. For V < Vcr, P (J) has a sharp peak at J = 4t2/U , while P (J ′) is

small with a peak at J ′ close to zero. With increasing disorder strength, probability

distribution of the nn coupling drops whereas probability distribution of the next nn

coupling does not change much. There are fraction of sites for which the inequality

J ′ ≥ J holds, this implies competition of J and J ′ for such sites, leading to frustration

or occasional spin mismatch in a cluster of AF sites.

5.8 Discussion and future direction

Recently a number of papers have studied ionic Hubbard model (each site has an

extra local potential V and its sign changes alternatively) in a 1D system at half

filling[82, 83, 84]. They found that, by increasing U , at a fixed V , there would be a phase

transition from band insulator (BI) to a broken-symmetry bond ordered (BO) insulator.

References [83, 84] reported another phase transition from BO to Mott insulator (MI),

with no long range order, as U increases further. Contrary to this, reference [82],

using QMC approach, did not find MI phase at any finite V , however, it predicted

at the transition point between BI and BO the system is a metal, characterized with

no charge gap and divergent localization length. In the BO phase a chain of length

L forms L/2 bonds similar to RPE bonds in our notation. Another study [85], using
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DMFT approach, in a Bethe lattice with z = ∞, has reported a metallic phase (not a

point) sandwiched between BI and MI.

If a chain of RPE bonds can give rise to a metallic state then it is plausible to assume

a percolating cluster of such bonds can also give a metal in a 2D system. Further, even

in the absence of classical bond percolation, the quantum tunnelling in 2D can enhance

conductivity by connecting disjointed clusters, leading to metallic state. This gives a

motivation to study the disordered binary model where ±V ’s are randomly distributed

on all the sites. The next step could be: (i) To write an effective Hamiltonian (simpler

to handle), where it has terms corresponding to RPE bonds (with opposite signs of

disorder on both sites) and other types of bonds, where disorder in two sites have the

same sign. (ii) Another direction would be to check for the presence of a percolating

cluster of RPE bonds in the disordered model and its role in conductivity. (iii) The

RPE picture may also give an insight to the kind of wavefuntion in a variational QMC

approach. The magnetic properties of this model are uncertain.

5.9 Conclusion

We found that disorder induced defects involving pairs of binary potentials leads to a

new type of magnetic state in which the staggered magnetization is reduced though the

coupling is enhanced. The disordered Hubbard model at large U can be mapped to a

disordered diluted AF spin-1/2 quantum Heisenberg model. Based on the percolation

picture developed, only sites with |Vi| < U/2 can contribute to AF order. Existence of

a percolating infinite cluster of such magnetic sites is necessary for AFLRO. We find a

remarkable consistency between the percolation picture and HF approximation results

even in an intermediate range of interaction U .
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Details of Hartree-Fock
approximation

In this appendix we give the details of the HF approximation and the numerical method

that we have used.

A.1 HF approximation

The repulsive Hubbard model with site disorder model is

H = −
∑

i6=j,σ

tijc
†
iσcjσ +

∑

i

(Vi − µ)c†iσciσ +
∑

i

Uni↑ni↓ (A.1)

Within a mean-field approximation for ni↑ni↓ we have:

ni↑ni↓ = c†i↑ci↑c
†
i↓ci↓

= 〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↓〉〈ni↑〉
− c†i↑ci↓〈c

†
i↓ci↑〉 − c†i↓ci↑〈c

†
i↑ci↓〉 + 〈c†i↑ci↓〉〈c

†
i↓ci↑〉. (A.2)

Therefore the effective Hamiltonian is

Heff = −t
∑

〈ij〉,σ
c†iσcjσ +

∑

i

Ṽiσc
†
iσciσ +

∑

i

(h−i c
†
i↑ci↓ + h+

i c
†
i↓ci↑) (A.3)

where Ṽiσ = Vi − µ+ U〈n†
iσ̄〉

There are 3N + 1 variational parameters. 〈niσ〉, hi = h+
i = h−i at the N sites and

the chemical potential µ which have to be found self-consistently. h±
i is the expectation

value of S±
i and is given by

h+
i = −U〈c†i↑ci↓〉

h−i = −U〈c†i↓ci↑〉.
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The chemical potential µ has to be tuned such that the half filled condition 1/N
∑

i,σ〈niσ〉 =

1 is satisfied.

Heff is written as

Heff = C†

















Ṽ1↑ −t 0 . . . h−1 0 0 . . .

−t Ṽ2↑ −t . . . 0 h−2 0 . . .

0 −t Ṽ3↑ . . . 0 0 h−3 . . .
...

...
...

. . .
...

...
...

. . .

h+
1 0 0 . . . Ṽ1↓ −t 0 . . .

0 h+
2 0 . . . −t Ṽ2↓ −t . . .

0 0 h+
3 . . . 0 −t Ṽ3↓ . . .

...
...

...
. . .

...
...

...
. . .

















2N×2N

C (A.4)

= C†ÂC (A.5)

where N = Lx × Ly is the number of lattice sites and

C =




















c1↑
c2↑
c3↑
...
cN↑
c1↓
c2↓
c3↓
...
cN↓




















(A.6)

by doing a transformation on ciσ:

Heff = εnc̃
†
nc̃n (A.7)

and

ciσ =
∑

n

ψn
iσ c̃n,

∑

i,σ

|ψi,σ|2 = 1. (A.8)

Since eigenvectors of Â are real ψn
iσ

∗ = ψn
iσ.

A.2 Self consistency procedure

The input parameters of the matrix Â are 〈niσ〉, hi and µ. For small disorder the

ground state has AF long range order therefore it is efficient to start with a AF initial
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input which allows one to reache the self-consistent solution faster. However we have

found that the final self-consistent solution is independent of the startup initial inputs

(e.g. random) in this regime. Similarly for the paramagnetic regime we start with a

random initial input for the local fields. In the strongly disordered regime we found

that different initial inputs result in different final states, and from them we choose

the one with the lowest energy as the ground state. At half filling µ is U/2, but in the

presence of disorder this value must be modified by a self-consistent loop in order to

satisfy the half filling condition precisely.

A.3 Computational details

At the end of each iteration we compare the input fields with the output fields. If the

difference is smaller than 10−4 then the self-consistency loop is exited. otherwise we

use the Broyden mixing scheme (see appendix B) to generate the next set of input

fields.

Typical lattice sizes that we have used are 28 × 28, 32 × 32, 40 × 40 and 50 × 50.

For a lattice of size 28× 28, the amount of CPU time (in a pentium 4 machine) which

takes for running one iteration in the self-consistent loop is one minute and in the

Mott regime for fixed values of Vd, U and temperature in order to get final answer with

accuracy 10−4 250 iteration is needed. In the strongly disordered regime this number

can be of the order of couple of thousands. Number of iteraction increases with the

system size. For larger sizes (above L = 32 ) we did the computation in the dec-alpha

machines.

A.4 Observables

Here are the expectation values of some of the operators of our interest.

• Local magnetic fields:

〈Sz
i 〉 =

1

2
〈ni↑ − ni↓〉 =

1

2

∑

n

(
|ψn

i↑|2 − |ψn
i↓|2
)
f(εn)

hi = −U〈S+
i 〉 = −U〈c†i↑ci↓〉 = −U

∑

n

ψ∗n
i↑ ψ

n
i↓f(εn) (A.9)

where f(ε) is the Fermi function.
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• Spin-spin correlation function:

〈S+
i S

−
j 〉 = 〈c†i↑ci↓c

†
j↓cj↑〉 =

∑

n,m,k,l

ψn
i↑ψ

m
i↓ψ

k
j↓ψ

l
j↑〈c̃†nc̃mc̃†kc̃l〉

=
∑

n,m,n6=m

(

ψn
i↑ψ

n
i↓ψ

m
j↓ψ

m
j↑〈c̃†nc̃nc̃†mc̃m〉 + ψn

i↑ψ
m
i↓ψ

m
j↓ψ

n
j↑〈c̃†nc̃mc̃†mc̃n〉

)

+
∑

n

ψn
i↑ψ

n
i↓ψ

n
j↓ψ

n
j↑〈c̃†nc̃nc̃†nc̃n〉

=
∑

n,m,n6=m

(

ψn
i↑ψ

n
i↓ψ

m
j↓ψ

m
j↑f(εn)f(εm) + ψn

i↑ψ
m
i↓ψ

m
j↓ψ

n
j↑f(εn)(1 − f(εm))

)

+
∑

n

ψn
i↑ψ

n
i↓ψ

n
j↓ψ

n
j↑f(εn) (A.10)

• Current-current correlation function:

Λxx(q, iωM) =

∫ β

0

dτeiωM τ 〈jx(q, τ)jx(−q, 0)〉 (A.11)

ejx is the x component of the paramagnetic current density and ωM = 2Mπ/β is

the Matsubara frequency for j(q) which is a bosonic operator (M is an integer).

jx(i) = it
∑

σ

(

c†i+x̂σciσ − c†iσci+x̂σ

)

jx(q) =
it

N1/2

∑

iσ

e−iq·i
(

c†i+x̂σciσ − c†iσci+x̂σ

)

(A.12)

therefore

〈jx(q, τ)jx(−q, 0)〉 = − t2

N

∑

i,j,σ,σ′

ei(j−i)·q
〈(

c†i+x̂σ(τ)ciσ(τ) − c†iσ(τ)ci+x̂σ(τ)
)

×
(

c†j+x̂σ′cjσ′ − c†jσ′cj+x̂σ′

)〉

. (A.13)

As an example we find one of these terms:

〈c†iσ(τ)ci+x̂σ(τ)c†jσ′cj+x̂σ′〉 =
∑

n,m,k,l

ψn
iσψ

m
i+x̂σψ

k
jσ′ψl

j+x̂σ′〈c̃†n(τ)c̃m(τ)c̃†kc̃l〉

=
∑

n

ψn
iσψ

n
i+x̂σψ

n
jσ′ψn

j+x̂σ′〈c̃†n(τ)c̃n(τ)c̃†nc̃n〉

+
∑

n,m,n6=m

ψn
iσψ

m
i+x̂σψ

m
jσ′ψn

j+x̂σ′〈c̃†n(τ)c̃m(τ)c̃†mc̃n〉

+
∑

n,m,n6=m

ψn
iσψ

n
i+x̂σψ

m
jσ′ψm

j+x̂σ′〈c̃†n(τ)c̃n(τ)c̃†mc̃m〉

=
∑

n

ψn
iσψ

n
i+x̂σψ

n
jσ′ψn

j+x̂σ′f(εn)
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+
∑

n,m,n6=m

ψn
iσψ

m
i+x̂σψ

m
jσ′ψn

j+x̂σ′e(εn−εm)τf(εn)(1 − f(εm))

+
∑

n,m,n6=m

ψn
iσψ

n
i+x̂σψ

m
jσ′ψm

j+x̂σ′f(εn)f(εm) (A.14)

From equation A.11 and eiωM β = 1:

ImΛxx(q = 0, iωM) = Im

[

−t2
N

∑

n,m,n6=m

Ψn,mf(εn)(1 − f(εm))

(
eβ(εn−εm) − 1

iωM + εn − εm

)]

= Im

[

−t2
N

∑

n,m,n6=m

Ψn,m

(
f(εm) − f(εn)

iωM + εn − εm

)]

(A.15)

in which

Ψn,m =
∑

i,j,σ,σ′

(
ψn

iσψ
m
i+x̂σψ

m
jσ′ψn

j+x̂σ′ + ψn
i+x̂σψ

m
iσψ

m
j+x̂σ′ψn

jσ′

− ψn
i+x̂σψ

m
iσψ

m
jσ′ψn

j+x̂σ′ − ψn
iσψ

m
i+x̂σ ψ

m
j+x̂σ′ψn

jσ′

)
(A.16)

by replacing iωM = ω + iη in which η → 0 and

1

ω + εn − εm + iη
= P

1

ω + εn − εm
− iπδ(ω + εn − εm). (A.17)

Therefore

ImΛxx(q = 0, ω) =
t2

N

∑

n,m,n6=m

Ψn,m (f(εm) − f(εn)) δ(ω + εn − εm)(A.18)

σ(ω) =
ImΛ(q = 0, ω)

ω
(A.19)

• Spin susceptibility:

χ(q, τ)+− = 〈S+
q (τ)S−

−q(0)〉 =
1

N

∑

i,j

eiq·(i−j)〈S+
i (τ)S−

j (0)〉

=
1

N

∑

i,j

eiq·(i−j)〈c†i↑(τ)ci↓(τ)c
†
j↓cj↑〉

=
1

N

∑

i,j

eiq·(i−j)ψn
i↑ψ

m
i↓ψ

k
j↓ψ

l
j↑〈c̃†n(τ)c̃m(τ)c̃†kc̃l〉

=
1

N

∑

i,j,n,m,k,l

eiq·(i−j)ψn
i↑ψ

m
i↓ψ

k
j↓ψ

l
j↑e

τ(εn−εm)〈c̃†nc̃mc̃†kc̃l〉

=
1

N

∑

i,j,n6=m

eiq·(i−j)ψn
i↑ψ

n
i↓ψ

m
j↓ψ

m
j↑f(εn)f(εm)
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+
1

N

∑

i,j,n6=m

eiq·(i−j)ψn
i↑ψ

m
i↓ψ

m
j↓ψ

n
j↑e

τ(εn−εm)f(εn) [1 − f(εm)]

+
1

N

∑

i,j,n

eiq·(i−j)ψn
i↑ψ

n
i↓ψ

n
j↓ψ

n
j↑f(εn) (A.20)

for q = (π, π) and ω = 0

χ(~π, ω = 0) =

∫ β

0

χ(~π, τ)dτ

=
∑

i,j

(−1)|i−j|

{

β〈c†i↑ci↓〉〈c
†
j↓cj↓〉

N

+
β

N

∑

n

ψn
i↑ψ

n
i↓ψ

n
j↓ψ

n
j↑ [1 − f(εn)] f(εn)

+
1

N

∑

n6=m

ψn
i↑ψ

m
i↓ψ

m
j↓ψ

n
j↑
f(εn) − f(εm)

εm − εn

}

(A.21)
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Mixing methods

B.1 Newton method

We want to find values of x for which F(x) = 0, in this notation x is a vector of all

3N variational input parameters, including hi and 〈ni〉 in all the sites, and F is the

difference between variational parameters in the last two iterations, in other words

F = x|output − x|input; we want to find the values of x for which this difference become

zero or smaller than a threshold (e.g. 10−4). We can write F as[86]

Fi(x + δx) = Fi(x) +
∑

j

∂Fi

∂xj
δxj + . . .

F(x + δx) = F(x) + J · δx (B.1)

Jij =
∂Fi

∂xj
(B.2)

since F(x + δx) = 0 therefore

δx = −J−1 · F (B.3)

in this method J is fixed for all the iterations.

B.2 Broyden mixing scheme

In this method J is changing in each iteration. Equation (B.2) can be written as

J(n+1) =
δF(n)

δx(n)

J(n+1)δx(n) = δF(n)

= δF(n) + J(n+1)δx(n) − J(n+1)δx(n)

= J(n)δx(n) +
(δF(n) − J(n)δx(n))(δx(n)†δx(n))

(δx(n)†δx(n))
(B.4)
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The upper index n is the iteration number.

J(n+1) = J(n) +
(δF(n) − J(n)δx(n))δx(n)†

(δx(n)†δx(n))

= J(n) + uv† (B.5)

v† = δx(n)†, u =
δF(n) − J(n)δx(n)

δx(n)†δx(n)
(B.6)

J(n+1)−1
=
(

J(n) + uv†
)−1

(B.7)

Now we have to use this expansion for the matrices A = J(n) and B = uv†,

(A + B)−1 =
(((

A(I + A−1B)
)))−1

=
(((

I + A−1B
)))−1

A−1

=
(((

I − A−1B + A−1BA−1B − (A−1B)3+ . . .
)))

A−1

= A−1 − A−1BA−1 + A−1BA−1BA−1

− A−1BA−1BA−1BA−1 + . . . (B.8)

A−1BA−1BA−1 = J(n)−1
u v†J(n)−1

u
︸ ︷︷ ︸

λ

v†J(n)−1
(B.9)

in this relation λ is a scalar and has been defined as

λ = v†J(n)−1
u

= δx†J(n)−1
(((
δF(n) − J(n)δx(n)

δx(n)†δx(n)

)))

=
δx(n)†J(n)−1

δF(n)

δx(n)†δx(n)
− 1 (B.10)

therefore

1

1 + λ
=

δx(n)†δx(n)

δx(n)†J(n)−1
δF(n)

(B.11)

from (B.8) and (B.9)

J(n+1)−1
= J(n)−1 − J(n)−1

uv†J(n)−1
(1 − λ+ λ2 − . . . )

= J(n)−1 − J(n)−1
uv†J(n)−1 1

1 + λ

= J(n)−1 −

(

J(n)−1
δF(n) − δx(n)

)

δx(n)†δx(n)
δx(n)†J(n)−1 1

1 + λ
(B.12)
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by using (B.11) in the above equation

J(n+1)−1
= J(n)−1

+

(

δx(n) − J(n)−1
δF(n)

)

δx(n)†J(n)−1

δx(n)†J(n)−1
δF(n)

(B.13)

having found J−1, from (B.3) δx can be found for the next iteration. In our prob-

lem there are 3N variational parameters (hi and ni) therefore x is a vector in 3N

dimensional space, and F = xout − xin in which xin = x(n).
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Density of States in 2D

We derive the exact expression for the density of states in 2D for electrons described

by the tight binding Hamiltonian εk = −2t(cos kx +cos ky). The Green’s function is[87]

G(z) =
∑

k

|k〉〈k|
z − εk

(C.1)

in which

|k〉 =
1√
N

∑

i

eik·xi |i〉

〈i|k〉 = eik·xi (C.2)

therefore

Gii(z) =
∑

k

1

z − εk
=

∫

1BZ

dk

z − εk
(C.3)

where the integration in (C.3) is over the first Brillioun zone. Now

lim
ε→0

1

z − εk
= P

(
1

E − εk

)

− iπδ(E − εk) (C.4)

where

z = lim
ε→0

E + iε

and
∫

1BZ

δ(E − εk)dk =

∫

1BZ

dεg(ε)δ(E − εk) = g(E) (C.5)

hence

Gii(z) =

∫

P

(
1

E − εk

)

− iπg(E) (C.6)
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and the density of states can be written in terms of the imaginary part of the Green’s

function as

g(E) = − 1

π
lim
ε→0

ImGii(z) (C.7)

Now we perform the integration in (C.3)

Gii(z) =
1

(2π)2

∫ π

−π

dkx

∫ π

−π

dky
1

z + 2t(cos kx + cos ky)
(C.8)

we know that

cos kx + cos ky = 2 cos

(
kx + ky

2

)

cos

(
kx − ky

2

)

(C.9)

by defining new variables α = (kx +ky)/2 and β = (kx−ky)/2 and Eq. C.8 we have[89]

Gii(z) =
2

(2π)2

∫ π

−π

dα

∫ π

0

dβ
1

z + 4t(cosα cos β)
(C.10)

also we know that (from Eq. 2.553 in Ref. [90])

∫
dx

a + b cos x
=

2π√
a2 − b2

tan−1

(√
a2 − b2 tan(x/2)

a+ b

)

a2 > b2 (C.11)

∫
dx

a+ b cos x
=

1√
b2 − a2

ln

[√
b2 − a2 tan(x/2) + (a+ b)√
b2 − a2 tan(x/2) − (a+ b)

]

a2 < b2 (C.12)

so that for a2 > b2 (see :

Gii(z) =
2π

(2π)2

∫ π

−π

dα
1√

z2 − 16t2 cos2 α

=
1

πz

∫ π

0

dα
√

1 − (4t/z)2 cos2 α

=
2

πz
K(4t/z) (C.13)

where K is the elliptic integral of the first kind. For a2 < b2:
∫ π

0

dx

a+ b cos x
=

1√
b2 − a2

[ln(1) − ln(−1)] =
−iπ√
b2 − a2

(C.14)

therefore

Gii(z) =
−i
π

∫ π

0

dα
√

(4t cosα)2 − z2

=
−i

π4t
√

1 − (z/4t)2
K

(

1
√

1 − (z/4t)2

)

(C.15)
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We use the relation[90]:

1

q
K

(
1

q

)

= K(q) + iK(
√

1 − q2) (C.16)

in which q is a complex number, therefore when |z| < 4t:

Gii(E) = − i

4tπ
K(
√

1 − (E/4t)2) +
1

4tπ
K(E/4t) (C.17)

by using Eq. C.7 the density of states can be written as:

g(E) =
θ(E − 4t)

4π2t
K(
√

1 − (E/4t)2) (C.18)



APPENDIX D 95

Spin Susceptibility

In this appendix we derive an expression for the spin susceptibility as a spin-spin corre-

lation function. Consider a system described by a Hamiltonian H0 (with ground state

|φ0〉) which is perturbed by a time-dependent magnetic field h(x, t). The perturbation

is H ′(t) =
∫
ddxS(x, t)·h(x, t). Our aim is to calculate the expectation 〈ψS(t)|Ô|ψS(t)〉

of an operator Ô (e.g. spin operator) in the modified states |ψS(t)〉 = e−iHt|φ0〉 in which

H = H0 + H ′(t). The subscript S denotes the Schrodinger picture (symbol S should

not be confused with spin operator). It is useful to use the interaction picture (I)

where the evolution of operators is governed by the unperturbed Hamiltonian H0.

ÔI = eiH0tÔe−iH0 (D.1)

|ψI(t)〉 = eiH0t|ψS(t)〉 = eiH0te−iHt|ψS(0)〉
= U(t)|ψS(0)〉 (D.2)

where U is defined as

U = eiH0te−iHt (D.3)

We show that the average of any operator in two pictures are equal.

〈ψI(t)|ÔI(t)|ψI(t)〉 = 〈ψS(0)|eiHte−iH0eiH0tÔe−iH0teiH0te−iHt|ψS(0)〉
= 〈ψS(0)|eiHtÔe−iHt|ψS(0)〉
= 〈ψS(t)|Ô|ψS(t)〉 (D.4)

From Eq. D.3 we have

∂U(t)

∂t
= ieiHt (H0 −H) e−iHt

= −ieiH0tH ′e−iHt (D.5)
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By integrating this equation we have

U(t) = 1 − i

∫ t

0

dt1H
′(t1)U(t1)

= 1 − i

∫ t

0

dt1H
′(t1) + (−i)2

∫ t

0

dt1

∫ t1

0

dt2H
′(t1)H

′(t2) . . .H
′(tn)

= T exp

[

−i
∫ t

0

dt1H
′(t1)

]

(D.6)

The factor T is a time ordering operator with earliest t to the right.

S-matrix (not to be confused with spin operator) is a propagator in the interaction

picture such that it changes |ψI(t
′)〉 into the |ψI(t)〉 [91].

|ψI(t)〉 = U(t)|ψS(0)〉 = S(t, t′)|ψI(t
′)〉

S(t, t′) = U(t)U †(t′) (D.7)

and

S(t, t′) = T

[

exp

(

−i
∫ t

t′
dt1H

′(t1)

)]

(D.8)

We assume that the system is in the ground state of H0 and at t = −∞, H ′ is

adiabatically turned on.

|ψI(t)〉 = S(t,−∞)|φ0〉 (D.9)

where we have used Eq. D.7 and the fact that at t = −∞: |ψI(−∞)〉 = |φ0〉.

The magnetization M(x, t) in the presence of the perturbation is

M(x, t) = 〈ψI(t)|S(x, t)|ψI(t)〉
= 〈φ0|S†(t,−∞)S(x, t)S(t,−∞)|φ0〉 (D.10)

By expansion of S(−∞, t) in powers of H ′ we have

S(t,−∞)|φ0〉 =

[

1 − i

∫ t

−∞
dt′H ′(t′)

]

|φ0〉 +O(H ′)2|φ0〉 (D.11)

Therefore

Mα(x, t) = 〈φ0|{Sα(x, t) − i

∫ t

−∞
dt′ [Sα(x, t), H ′(t′)]}|φ0〉 (D.12)

Since 〈φ0|Sα(x, t)|φ0〉 = 0 and H ′(t′) = −
∫
ddxS(x, t′) · h(x, t′) therefore
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Mα(x, t) = −i
∫ t

−∞
dt′〈φ0|[Sα(x, t), H ′(t′)]|φ0〉

= i

∫ t

−∞
dt′
∫

ddx′〈φ0|[Sα(x, t),
∑

α′

Sα′(x′, t′)hα′(x′, t′)]|φ0〉

=
∑

α′

i

∫ t

−∞
dt′
∫

ddx′〈φ0|[Sα(x, t), Sα′(x′, t′)]|φ0〉hα′(x′, t′) (D.13)

from the definition of susceptibility within linear response [93]

δMα(x, t) =

∫ t

−∞
dt′
∫

ddx′χαα′(x,x′; t, t′)δhα′(x′, t′) (D.14)

then we have

χαα′(x,x′; t, t′) = iθ(t− t′)〈[Sα(x, t), Sα′(x′, t′)]〉 (D.15)

θ(t− t′) is an step function and the average is taken with respect to the ground state of

H0. Since H0 is independent of time therefore χ depends only on the difference t− t′.

Upon Fourier transforming,

χαα′(x,x′;ω) =

∫ ∞

−∞
d(t− t′)eiω(t−t′)χαα′(x,x′; t, t′)

= i

∫ 0

−∞
dteiωt〈[Sα(x, t), Sα′(x′, 0)]〉 (D.16)

Susceptibility has been defined in Matsubara formalism as

χαα′(x,x′; iωn) =

∫ β

0

dτeiωnτ 〈TτSα(x, τ)Sα′(x′, 0)〉 (D.17)

In which τ is imaginary time τ = it and β = 1/T . We can repeat all this calculation

in the q space and like real space the result is

χαα′(q,q′; iωn) =

∫ β

0

dτeiωnτ 〈TτSα(q, τ)Sα′(q′, 0)〉 (D.18)

For a translationally invariant system

χαα′(q, iω) =

∫ β

0

dτeiωτ 〈Sα(q, τ)Sα′(−q, 0)〉 (D.19)

For the case that S(x, τ) is given in terms of creation and annihilation operators

then

Sz(q, 0) =
1

2

∑

k,σ

σc†kσck+qσ
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Sx(q, 0) =
1

2

∑

k

(

c†k↑ck+q↓ + c†k↓ck+q↑

)

Sy(q, 0) =
i

2

∑

k

(

c†k↑ck+q↓ − c†k↓ck+q↑

)

(D.20)

From (D.19)

χzz(q, 0) =
1

4

∑

k,k,σ,σ′

σσ′
∫ β

0

dτ〈Tτc
†
kσ(τ)ck+qσ(τ)c

†
k′σ′(0)ck′−qσ′(0)〉 (D.21)

This a general formula for susceptibility. For the special case of a system of non-

interacting electron (or quasi-particles) with the Hamiltonian H =
∑

k,σ εkc
†
kσckσ the

susceptibility is

χzz(q, 0) =
1

4

∑

k,k,σ,σ′

σσ′
∫ β

0

dτe(εk+q−εk)τ 〈c†kσck+qσc
†
k′σ′ck′−qσ′〉

=
1

4

∑

k,σ

σ2 e
(εk+q−εk)β − 1

εk − εk+q
f(εk)(1 − f(εk+q))

=
2

∑

k

eβεk − eβεk+q

(1 + eβεk) (1 + eβεk+q)

1

εk − εk+q

χzz(q, 0) =
∑

k

1

2

f(εk+q) − f(εk)

εk − εk+q
(D.22)
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Hartree-Fock approximation for a
non-disordered system

In this appendix we use Hartree-Fock approximation to obtain staggered magnetization

of the repulsive Hubbard model (we follow Ref.[63]). Within this approximation the

interaction term which is quartic in annihilation and creation operators (ciσ and c†iσ)

changes to quadratic terms in ciσ and c†iσ. Therefore

ni↑ni↓ = c†i↑ci↑c
†
i↓ci↓

= 〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↓〉〈ni↑〉
− c†i↑ci↓〈c†i↓ci↑〉 − c†i↓ci↑〈c†i↑ci↓〉 + 〈c†i↑ci↓〉〈c†i↓ci↑〉. (E.1)

By using the relation

[ni↑〈ni↓〉 + ni↓〈ni↑〉] =
1

2
[(ni↑ + ni↓)(〈ni↑〉 + 〈ni↓〉) − (ni↑ − ni↓)(〈ni↑〉 − 〈ni↑〉)]

=
1

2
[(ni〈ni〉 − 4Sz

i 〈Sz
i 〉] , (E.2)

where

Sα
i =

1

2
c†is1

σα
s1s2

cis2
(E.3)

and σα
s1s2

are Pauli matrices, s1 and s2 are spin indices, the effective Hamiltonian can

be written as

Heff = −
∑

〈ij〉,σ
tijc

†
iσcjσ +

∑

i,σ

(
U〈ni〉

2
− µ

)

c†iσciσ − 2U
∑

i

〈Si〉 · Si. (E.4)

At half filling (〈ni〉 = 1) the chemical potential is µ = U/2. With a Fourier transfor-

mation of ciσ and c†iσ in Eq. E.4 the effective Hamiltonian is

Heff =
∑

q,σ

εqnqσ − 2NU
∑

q

〈S(−q)〉 · S(q) (E.5)
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−π
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−π

y

Q

k

kx

Q=(π,π)

1st BZ

Fig E.1: First Brillion zone for the non-interacting electrons in a tight binding model
on a square lattice. The hatched region is filled at half filling.

where N is the number of sites and

Sα(q) =
1

2N

∑

k+q

c†ks1
σα

s1,s2
cks2

(E.6)

At half filling and for a small interaction the ground state has non-zero expectation

value of S(q) for wave vector Q = (π, π). The ground state is invariant under the

rotation of the order parameter S(Q), for generality we assume the order is in the z

direction. Therefore

〈Ω|Sz
Q|Ω〉 = m† (E.7)

m† is the staggered moment and is a variational parameter and |Ω〉 is true ground state

of the system. The effective Hamiltonian is

Heff =
∑

εkc
†
kσckσ − Um†

∑

k

(((

c†k+Q↑ck↑ − c†k+Q↓ck↓

)))

(E.8)

The above summation on the wave vector k which is in the first Brillion zone can be

written as two separate summations, one for k< inside the hatched region in Fig. E.1

and the other k> for outside this region which can be written as k> = k< + Q. For

simplicity we denote all k< with k. Therefore Eq. E.8 changes to

Heff =
∑

k,σ

εk

(

c†kσckσ − c†k+Qσck+Qσ

)

− Um†
∑

k

′(
c†k+Q↑ck↑ + c†k↑ck+Q↑ − c†k+Q↓ck↓ − c†k↓ck+Q↓

)

(E.9)
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where the prime in the sum denotes only k vectors inside the hatched region of the

Fig. E.1. We have used the relation εk = −εk+Q. Now we use another transformation

to γ basis chosen so as to diagonalize Heff

{
γc

k↑ = ukck↑ + vkck+Q↑
γv

k↑ = vkck↑ − ukck+Q↑

{
γc

k↓ = ukck↓ − vkck+Q↓
γv

k↓ = vkck↓ + ukck+Q↓
(E.10)

The inverse transformation is
{
ck↑ = ukγ

c
k↑ − vkγ

v
k↑

ck+Q↑ = vkγ
c
k↑ + ukγ

v
k↑

{
ck↓ = ukγ

c
k↓ + vkγ

v
k↓

ck+Q↓ = −vkγ
c
k↓ + ukγ

v
k↓

(E.11)

We now find the first summation in Eq. E.9

nk↑ − nk+Q↑ =
(((

u2
kγ

c†
k↑γ

c
k↑ + v2

kγ
v†
k↑γ

v
k↑ − ukvk(γ

c†
k↑γ

v
k↑ + γv†

k↑γ
c
k↑)
)))

−
(((

v2
kγ

c†
k↑γ

c
k↑ + u2

kγ
v†
k↑γ

v
k↑ + ukvk(γ

c†
k↑γ

v
k↑ + γv†

k↑γ
c
k↑)
)))

(E.12)

nk↓ − nk+Q↓ =
(((

u2
kγ

c†
k↓γ

c
k↓ + v2

kγ
v†
k↓γ

v
k↓ + ukvk(γ

c†
k↓γ

v
k↓ + γv†

k↓γ
c
k↓)
)))

−
(((

v2
kγ

c†
k↓γ

c
k↓ + u2

kγ
v†
k↓γ

v
k↓ − ukvk(γ

c†
k↓γ

v
k↓ + γv†

k↓γ
c
k↓)
)))

(E.13)

therefore

nk↑ − nk+Q↑ = (u2
k − v2

k)(γ
c†
k↑γ

c
k↑ − γv†

k↑γ
v
k↑) − 2ukvk(γ

c†
k↑γ

v
k↑ + γv†

k↑γ
c
k↑)

nk↓ − nk+Q↓ = (u2
k − v2

k)(γ
c†
k↓γ

c
k↓ − γv†

k↓γ
v
k↓) + 2ukvk(γ

c†
k↓γ

v
k↓ + γv†

k↓γ
c
k↓) (E.14)

We now find the second summation in (E.9).

c†k+Q↑ck↑ + c†k↑ck+Q↑ = 2ukvk(γ
c†
k↑γ

c
k↑ − γv†

k↑γ
v
k↑) + (u2

k − v2
k)(γ

c†
k↑γ

v
k↑ + γv†

k↑γ
c
k↑)

c†k+Q↓ck↓ + c†k↓ck+Q↓ = −2ukvk(γ
c†
k↓γ

c
k↓ − γv†

k↓γ
v
k↓) + (u2

k − v2
k)(γ

c†
k↓γ

v
k↓ + γv†

k↓γ
c
k↓) (E.15)

The effective Hamiltonian in the γ basis is

Heff =
∑

k,σ

′{(
εk(u

2
k − v2

k) − 2USukvk

)

(γc†
kσγ

c
kσ − γv†

kσγ
v
kσ)

+σ
(

US(u2
k − v2

k) − 2εkukvk

)

(γc†
kσγ

v
kσ + γv†

kσγ
c
kσ)
}

(E.16)

By putting the coefficient of the off-diagonal term zero and ∆ = −US we get

∆(u2
k − v2

k) + 2εkukvk = 0 (E.17)
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and since u2
k + v2

k = 1, we have

uk =

[
1

2

(

1 +
εk
Ek

)]1/2

vk =

[
1

2

(

1 − εk
Ek

)]1/2

(E.18)

where Ek = (ε2k + ∆2)1/2. For the diagonal terms in (E.16) we have

εk(u
2
k − v2

k) − 2USukvk = εk

(
εk
Ek

)

+ ∆

(

1 − εk
Ek

)1/2

= Ek (E.19)

Finally the effective Hamiltonian is

Heff =
∑

k,σ

′
Ek(γ

c†
kσγ

c
kσ − γv†

kσγ
v
kσ) (E.20)

The spin density wave ground state |Ω〉 for a half filled band is defined by

γv†
kσ|Ω〉 = γv

kσ|Ω〉 = 0 (E.21)

The variational parameter is

〈Ω|Sz
Q|Ω〉 = S = − 1

2N
2
∑

k

′
ukvk

=
1

4N

∑

k

′ ∆

Ek
= −∆

U
(E.22)

1

4N

∑′ 1

(ε2k + ∆2)1/2
=

1

U

We change the above summation to integration on ε and for that we use the density of

states of a 2D non-interacting system that we obtained in appendix C (see Eq. C.18).

The DOS has a log singularity at ε = 0; we approximate the elliptic integral with

sinh−1 function, therefore the self consistent solution is

1

U
≈

∫ t/∆

0

1

4π2t

sinh−1(ε′)√
ε′2 + 1

dε′ =
1

4π2t

∫ t/∆

0

sinh−1(ε′)d(sinh−1(ε′))

=
1

4π2t

(

sinh−1(t/∆)
)2

(E.23)

where ε′ = ε/∆.

t

∆
= sinh

(

2π

√

t

U

)

∆ =
2t

e2π
√

t/U − e−2π
√

t/U
(E.24)
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at the large U limit

∆ ∼ te−2π
√

t/U (E.25)
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Finding Higher Order Coupling

In the limit of large interaction U in Eq. 4.1 we treat the kinetic energy t/U as a per-

turbation on the Hamiltonian H0. In the ground state of the unperturbed Hamiltonian

each site can accommodate 0, 1 or 2 electrons. The perturbation t/U can couple two

singly occupied sites that are separated by a number of zero and doubly occupied sites

(for instance in Fig. F.1 singly occupied sites A and B are separated at least by five

sites with zero and doubly occupancies). In this appendix our aim is to give a general

relation for this coupling in terms of parameters of the Hamiltonian on a square lattice

(see also Ref. [92] for higher order coupling in 1D).

The unperturbed ground state has four fold degeneracy for different spin config-

urations at sites A and B. These states are given below (we have used the notation

|Sz
A, S

z
B〉)

|1〉 = | ↑, ↓〉, |2〉 = | ↓, ↑〉
|3〉 = | ↑, ↑〉, |4〉 = | ↓, ↓〉 (F.1)

Generally in Hamiltonian H = H0+λH ′, the perturbation breaks the degeneracy of

the unperturbed ground state. In this case the perturbation can only mix the states |1〉
and |2〉, therefore we do not consider states |3〉 and |4〉 in the perturbation expansion.

If the distance between sites A and B is n (in Fig. F.1: n = 5) a perturbation expansion

of the order of 2n+ 2 is needed in order to couple states |1〉 and |2〉 in Eq. F.1.

E
(0)
D and E are the ground state energies for H0 and H and |l0〉 and |l〉 are the

corresponding eigenstates. |l〉 approaches |l0〉 as λ tends to zero. P0 is the projec-

tion operator to the subspace of degenerate states |l0〉 and P1 is the complementary

projection. Therefore

(((E − E
(0)
D − λH ′)))P0|l〉 + (((E −H0 − λH ′)))P1|l〉 = 0
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0

0

0

22

2
1A 

B 

0

2 0

0 2 2

0

Fig F.1: Two singly occupied sites A and B are separated by at least five zero and
doubly occupied sites. There would be an AF coupling between these two sites.

by applying P0 and P1 from the left to the above equation

(((E − E
(0)
D − λP0H

′)))P0|l〉 − λP0H
′P1|l〉 = 0 (F.2)

−λP1H
′P0|l〉 + (((E −H0 − λP1H

′)))P1|l〉 = 0 (F.3)

using these two equations we get
(

E − E
(0)
D − λP0H

′P0 − λP0H
′P1

λ

(((E −H0 − λP1H ′P1)))
P1H

′
)

P0|l〉 = 0 (F.4)

Expansion of the denominator in the third term gives
(

E − E
(0)
D − λP0H

′P0 − λP0H
′P1

λ

(((E −H0)))

∞∑

m=0

[
λP1H

′P1

E −H0

]m

P1H
′

)

P0|l〉 = 0 (F.5)

All the odd powers of H ′ give rise to states out of the degenerate subspace, therefore

they can be canceled. Lower orders of m (with m < 2n) also cannot couple sites A and

B. The lowest order contribution from the summation in Eq. F.5 would be m = 2n,

therefore


E − E
(0)
D − λ2n+2P0H

′P1
1

(((E
(0)
D −H0)))

[

P1H
′P1

E
(0)
D −H0

]2n

P1H
′



P0|l〉 = 0 (F.6)

in order to find the energy shift of the ground state ∆(2n+2) = E − E
(0)
D we have to

solve the secular equation

det
(((

∆(2n+2) − Ĵ(2n+2)
)))

= 0 (F.7)

in which

Ĵ(2n+2) = λ2n+2P0H
′P1

1

(((E
(0)
D −H0)))

[

P1H
′P1

E
(0)
D −H0

]2n

P1H
′P0 (F.8)
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(c) (d)
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Fig F.2: Possible spin configurations for the next nearest neighbor coupling for n = 1.

by defining J
(2n+2)
lk as 〈l|Ĵ(2n+2)|k〉 and from the symmetry of the problem

J
(2n+2)
11 = J

(2n+2)
22 = −J (2n+2)

12 = −J (2n+2)
21 = −J (2n+2) (F.9)

The indices 1 and 2 are referred to the states defined in Eq. F.1. The negative sign for

J
(2n+2)
12 and J

(2n+2)
21 is coming from the fact that when H ′ acting on |1〉 even number of

times gives −|2〉.

In Eq. F.8 each 1/(E
(0)
D −H0) gives a negative factor and there are odd number of

such factors, hence J (2n+2) becomes a positive number, therefore for Eq. F.7 we have

∆(2n+2)
s = −2J (2n+2),

∆
(2n+2)
t = 0,

|1, 1〉s =
1√
2
(|1〉 − |2〉),

|1, 1〉t =
1√
2
(|1〉 + |2〉) (F.10)

for the case of two nearest neighbor sites n = 0 and (F.8) changes to

det

(

∆(2) − λ2P0H
′P1

1

(E
(0)
D −H0)

P1H
′P0

)

= 0

J
(2)
11 = 〈1|λ2P0H

′P1
1

(E
(0)
D −H0)

P1H
′P0|1〉

= λ2
∑

k/∈D

1

E
(0)
D − E

(0)
k

|||〈1|H ′|k(0)〉|||2 (F.11)
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for two nearest neighbor i and j we have

∆(2)
s = −2J (2)

= −2

(
t2

Vi − Vj + U
+

t2

Vj − Vi + U

)

(F.12)

since for sites i and j with the separation of n sites there are three triplet state with

zero energy and one singlet state with energy −2J (2n+2) we can write an effective

Hamiltonian for these two sites in terms of spin operators as

H ij
eff = 2J (2n+2)Si · Sj + const (F.13)

Now we find coupling between a site and its next nearest neighbor. There are six

different spin configurations for this system which are shown in Fig. F.2 and for each

configuration only specific moves which can couple these two spins are allowed.

Ja = −J (2n+2)
11

Ja =

{
t4

(V2 − V1)
2(U − V3 + V1)

+
t4

(V2 − V3)
2(U − V1 + V3)

+
t4

U − 2V2 + V1 + V3

[
1

V2 − V1
+

1

V2 − V3

]2
}

(F.14)

Jb =

{
t4

(V1 − V2)
2(U + V3 − V1)

+
t4

(V3 − V2)
2(U + V1 − V3)

+
t4

U + 2V2 − V1 − V3

[
1

V1 − V2
+

1

V3 − V2

]2
}

(F.15)

for the other cases (c), (d), (e) and (f) we get

Jc = Ja + Jb(2 → 4) +
2t4

(V2 − V1)(U + V1 − V3)(V3 − V4)

+
2t4

(V1 − V4)(U + V3 − V1)(V2 − V3)

Jd = Jb + Jb(2 → 4) +
2t4

(V1 − V2)(U + V3 − V1)(V1 − V4)

+
2t4

(V3 − V4)(U + V1 − V3)(V3 − V2)

Jf = Ja + Ja(2 → 4) +
2t4

(V2 − V1)(U + V1 − V3)(V4 − V1)

+
2t4

(V4 − V3)(U + V3 − V1)(V2 − V3)

Je = Jc(2 � 4). (F.16)
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Specific Heat Calculation

In this appendix we give a general relation for the specific heat of disordered Hubbard

model (Eq. 4.1). First we break up the lattice to sum of pairs, for a pair of sites we find

the ground state and the next excited state. For simplicity we assume the state with

the highest energy in the singlet subscape decouples from other two states (this state

is |2, 0〉 or |0, 2〉). Knowing probability distribution of V1 and V2 of a pair, one can find

the probability distribution of the splitting between the singlet ground state and the

triplet excited state. Therefore we can think of the original model as sum of two level

systems with energies −∆ and zero, probability distribution of ∆ is P (∆). The total

specific heat or spin susceptibility is sum of contributions of all two level system with

splitting ∆ weighted by P (∆).

G.1 Probability distribution of splittings

For a pair of sites there are six states: three triplet states:

| ↑, ↑〉, | ↓, ↓〉, |1, 1〉t =
1√
2

(| ↑, ↓〉 + | ↓, ↑〉)

and three singlet states:

|2, 0〉, |0, 2〉, |1, 1〉s =
1√
2

(| ↑, ↓〉 − | ↓, ↑〉) , (G.1)

the kinetic term does not couple these two subspaces; however there would be energy

splitting for the singlet states. The Hamiltonian in the subspace of singlet states is

(see Eq. 4.1):

H =





V1 + V2 − 2µ −
√

2t −
√

2t

−
√

2t 2V1 + U − 2µ 0

−
√

2t 0 2V2 + U − 2µ



 (G.2)
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for the simplicity we define new variables γ = V1 +V2 and v = |V1 −V2|. The energy of

triplet states is γ. Since we are interested in the energy splitting, we shift all energies

by γ − 2µ. Therefore Eq. G.2 becomes

H =





0 −
√

2t −
√

2t

−
√

2t U − v 0

−
√

2t 0 U + v



 . (G.3)

In the limit of v = |V1 − V2| = 0 the eigenvalues are

ε1 =
1

2

(

U −
√

16t2 + U2
)

,

ε2 = U,

ε3 =
1

2

(

U +
√

16t2 + U2
)

. (G.4)

For large U limit and v � t one of the states |0, 2〉 or |2, 0〉 (with energy U + v)

can be decoupled from the rest of H in Eq. G.3. Therefore the effective Hamiltonian

in the low energy sector is

H =

(
0 −

√
2t

−
√

2t U − v

)

(G.5)

with eigenvalues

ε1 =
U − v

2
−

√

2t2 +

(
U − v

2

)2

, ε2 =
U − v

2
+

√

2t2 +

(
U − v

2

)2

. (G.6)

The energy splitting between the ground state and the triplet states ∆ is given by

∆ = 0 − ε1 =

√

2t2 +

(
U − v

2

)2

− U − v

2
. (G.7)

Comparing this splitting at the limit v = 0 with Eq. G.4 which is exact, the approxi-

mation G.7 for the splitting is not so good at small v.

The corresponding eigenvectors of G.6 are (with assumption V1 < V2)

|ψ1〉 =
1

√

1 + ∆′2

(

|1, 1〉s − ∆′|2, 0〉
)

|ψ2〉 =
1

√

1 + ∆′2

(

∆′|1, 1〉s + |2, 0〉
)

(G.8)

where ∆′ = ∆/
√

2t.
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2V

0 2V−2V
γ

v

Fig G.1: (a) The hatched area of integration on V1 and V2 which is transformed to the
hatched area in (b) with v and γ as new variables.

Within this approximation the probability distribution of the splitting ∆ is

P (∆) =

∫ V

−V

dV1

∫ V

−V

dV2P (V1)P (V2)δ(∆ − ∆(V1, V 2)) (G.9)

V1 and V2 are chosen from a uniform distribution: P (V1) = P (V2) = 1/2V ; hence

P (∆) =
1

2V 2

∫ V

−V

dV1

∫ V

V1

dV2δ(∆ − ∆(V1, V 2))

=
1

2V 2

∫ 2V

0

dv

∫ 2V −v

0

dγδ(∆ − ∆(v, γ)) (G.10)

The hatched area in Fig. G.1.a shows the region of integration in V1 and V2 which

is transformed to the hatched area in Fig. G.1.b with variables v = |V1 − V2| and

γ = V1 + V2 in Eq. G.10.

In order to carry out the integration in Eq. G.10 we need to use the relation given

below for the delta function:

δ(f(x)) =
δ(x− x0)

|f ′(x)|x0

, f(x0) = 0 (G.11)

therefore

f(v) = ∆ +
U − v

2
−

√
(
U − v

2

)2

+ 2t2

f ′(v) =
1

2

(

1 − (U − v)/2
√

((U − v)/2)2 + 2t2

)

. (G.12)
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Now we find the roots of f(v)

f(v0) = 0

∆ +
U − v0

2
=

√
(
U − v0

2

)2

+ 2t2 (G.13)

therefore

U − v0 =
2t2

∆
− ∆ (G.14)

and the delta function transform to

δ(f(v)) = δ(v − v0)

(
2t2

∆2
+ 1

)

. (G.15)

From Eq. G.10 and Eq. G.14 we have

P (∆) =
2V − v0

2V 2

(
2t2

∆2
+ 1

)

=
∆

2V 2

(
2t2

∆2
+ 1

)(
2t2

∆2
− 1 +

2V − U

∆

)

(G.16)

P (∆) =
1

2V

[
∆

V

(
4t4

∆4
− 1

)

+
2V − U

V

(
2t2

∆2
+ 1

)]

(G.17)

P (∆) has a sharp peak at ∆min (see the inset in Fig. 5.6), and is non-zero only for

∆min < ∆ < ∆max, where ∆min and ∆max are obtained by substituting 0, and U in

Eq. G.7.

G.2 Specific Heat for two level systems

Now we find the specific heat for a two level system. For two sites the ground state

has energy −∆ and the excited state with three fold degeneracy has zero energy, hence

the average energy is

E =
−∆eβ∆

eβ∆ + 3
(G.18)

and the specific heat is

cv =
∂E

∂T
= −β2∂E

∂β

cv = β2∆2 3eβ∆

(eβ∆ + 3)2
(G.19)
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the total specific heat would be

Cv =

∫ ∆max

∆min

d∆P (∆)cv(∆)

=
3

2V 2

[

4t4β2

∫
dx

x

ex

(ex + 3)2
− 1

β2

∫

x3 ex

(ex + 3)2

]

+
3(2V − U)

2V 2

[

2t2β

∫
ex

(ex + 3)2
dx+

1

β

∫
x2ex

(ex + 3)2

]

(G.20)

in the above integral the minimum splitting is ∆min =
√

U2/4 + 2t2 − U/2 (from

Eq. G.4) and from Eq. G.7 for the maximum splitting (v0 = 2V )

∆max =
2V − U

2
+

√
(

2V − U

2

)2

+ 2t2. (G.21)

By putting parameters U and V we find total specific heat numerically. Fig. G.2 is the

specific heat versus temperature for U = 8, t = 1 and V = 5 in three different range of

temperatures. The red curve is the total specific heat. The other curves are different

terms in the Eq. G.20 which are given below:

F1(T ) =
6t4

V 2

[

β2

∫ xmax

xmin

dx

x

ex

(ex + 3)2

]

F2(T ) =
3

2V 2

[
1

β2

∫ xmax

xmin

x3 ex

(ex + 3)2
dx

]

F3(T ) =
3(2V − U)t2

V 2

[

β

∫ xmax

xmin

ex

(ex + 3)2
dx

]

F4(T ) =
3(2V − U)

2V 2

[
1

β

∫ xmax

xmin

x2ex

(ex + 3)2
dx

]

Cv(T ) = F1(T ) − F2(T ) + F3(T ) + F4(T ) (G.22)

in these integrations xmin = β∆min and xmax = β∆max. As we see in figure G.2

contributions from F2(T ) and F4(T ) are equal and they cancel each other in the relation

G.22, therefore the main contribution to the specific heat are from F1(T ) and F3(T ).

Further analysis of specific heat is in the fourth chapter.

Upon a high temperature expansion in Eq. G.22:

ex ≈ 1 + x
ex

(ex + 3)2
≈ 1

16

(

1 +
x

2

)

(G.23)

all terms Fi(T ) become proportional to β2. Therefore specific heat at large tempera-

tures decays as 1/T 2.
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Fig G.2: Specific heat (the red curve) for three different temperature regimes. Four
other curves are different contributions to the specific heat in Eq. G.20. These functions
are given in Eq. G.22.
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G.3 Spin susceptibility for two level systems

Spin susceptibility for two level systems can be obtained similar to what we have done

for the specific heat. In general spin susceptibility for the wave vectors q and q′ is

written as:

χαα′

(q,q′; iωn) =

∫ β

0

dτeiωnτ 〈TτS
α(q, τ)Sα′

(q′, 0)〉 (G.24)

in the above relation Sα(q, τ) = e−τHSα(q)eτH . For iωn = 0 and q = 0 spin suscepti-

bility is

χαα′

=

∫ β

0

dτ〈TτS
α(q = 0, τ)Sα′

(q′ = 0, 0)〉 (G.25)

Since the uniform magnetization Sα operator commutes with the Hamiltonian there-

fore Sα(τ) = Sα and

1

β
χ+−

tot = 〈S+S−〉

Tχ+−
tot =

∑

〈ij〉
〈S+

i S
−
j 〉 (G.26)

for two sites the uniform spin susceptibility is

Tχ+− = 〈S+
1 S

−
1 + S+

1 S
−
2 + S+

2 S
−
1 + S+

2 S
−
2 〉 (G.27)

knowing the eigenstates G.8, we find these expectation values

s〈1, 1|S+
1 S

−
1 + S+

2 S
−
2 |1, 1〉s = 1

s〈1, 1|S+
1 S

−
2 + S+

2 S
−
1 |1, 1〉s = −1

t〈1, 1|S+
1 S

−
1 + S+

2 S
−
2 |1, 1〉t = 1

t〈1, 1|S+
1 S

−
2 + S+

2 S
−
1 |1, 1〉t = 1

〈↑, ↑ |S+
1 S

−
1 + S+

2 S
−
2 | ↑, ↑〉 = 2

〈↑, ↑ |S+
1 S

−
2 + S+

2 S
−
1 | ↑, ↑〉 = 0

〈↓, ↓ |S+
1 S

−
1 + S+

2 S
−
2 | ↓, ↓〉 = 0

〈↓, ↓ |S+
1 S

−
2 + S+

2 S
−
1 | ↓, ↓〉 = 0 (G.28)

Therefore the spin susceptibility of two sites with two levels −∆ and zero is

Tχ+− =
2

eβ∆ + 3
, (G.29)
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and for the total spin susceptibility

Tχ+−
tot =

[
2t4

V 2

]

β2

∫
dx

x3

2

ex + 3

+

[ −1

2V 2

]
1

β2

∫

xdx
2

ex + 3

+

[
t2(2V − U)

V 2

]

β

∫
dx

x2

2

ex + 3

+

[
2V − U

2V 2

]
1

β

∫

dx
2

ex + 3
. (G.30)

The limits of the integrals are β∆min and β∆max. High temperature expansion of χ

gives

Tχ+− =
2

ex + 3
≈ 2

4 + x
=

1

2

(

1 +
x

4

)−1

=
1

2

(

1 − x

4

)

. (G.31)

Within this approximation Tχtot converges to a constant at small β.
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Exact solution of 2 and 4 sites
problem

H.1 Two sites solution

In the context of disordered Hubbard model given in Eq.4.1 for two sites at half filling

there are six states:

• Three singlet states

1. two non-magnetic |2, 0〉 and |0, 2〉,

2. one magnetic (S = 0, Sz = 0) |1, 1〉s = 1√
2
(| ↑, ↓〉 − | ↓, ↑〉) .

• Three triplet states

1. S = 1, Sz = ±1: | ↑, ↑〉, | ↓, ↓〉,

2. S = 1, Sz = 0: |1, 1〉t = 1√
2
(| ↑, ↓〉 + | ↓, ↑〉) .

For |V1,2| ≤ U/2 and at the limit t = 0 the ground state has 4 fold degeneracy

(|1, 1〉s, |1, 1〉t, | ↑, ↑〉, | ↓, ↓〉). Perturbation expansion of the kinetic term breaks the

degeneracy, and the ground state will be combination of the singlet magnetic state and

singlet non-magnetic states. At U � t the main contribution to the ground state is

from the magnetic one.

In the limit V1 ' −U/2 and V2 ' U/2 we use different perturbation expansion.

The Hamiltonian H in the basis |1, 1〉s, |2, 0〉 and |0, 2〉 is

H =





V1 + V2 − 2µ −
√

2t −
√

2t

−
√

2t 2V1 + U − 2µ 0

−
√

2t 0 2V2 + U − 2µ
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=





−U −
√

2t −
√

2t

−
√

2t −U 0

−
√

2t 0 U



 . (H.1)

At the limit U � t the state |0, 2〉 will decouple from the rest of Hamiltonian and the

effective Hamiltonian is

H =

(
−U −

√
2t

−
√

2t −U

)

(H.2)

with eigenvalues ε±s = ∓
√

2t − U , corresponding eigenstates are |ψ±
s 〉 = 1/

√
2(|2, 0〉 ±

|1, 1〉s) (see Fig. 5.3). The rest of the spectrum is Et = −U and EU = U . Indices

s and t correspond to singlet and triplet. The energy difference between the singlet

ground state and the triplet excited state is
√

2t. For the case |V1,2| < U/2 this energy

difference is J12, given in Eq. 5.1.

H.2 Four sites solution

For four sites [1-2-3-4] with periodic boundary conditions there are 70 states,

• Singlet states: sector with S = 0

6 non-magnetic states (e.g. |2, 0, 2, 0〉),

12 partially magnetic (e.g. |2, 1, 1, 0〉s),

3 singlet states such as 1√
2

(

| ↑, ↓, ↑, ↓〉+ | ↓, ↑, ↓, ↑〉
)

,

• Triplet states, sector with Sz = 0:

12 states with S = 1 (e.g. |2, 1, 1, 0〉t),

3 states with S = 2 such as 1√
2

(

| ↑, ↓, ↑, ↓〉 − | ↓, ↑, ↓, ↑〉
)

,

• Triplet states, sector with Sz = 1:

12 states with S = 1 (e.g. |2, ↑, ↑, 0〉),

4 states with S = 2 (e.g. | ↓, ↑, ↑, ↑〉),

• Triplet states, sector with Sz = −1:

12 states with S = 1 (e.g. |2, ↓, ↓, 0〉),

4 states with S = 2 (e.g. | ↑, ↓, ↓, ↓〉),
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• Triplet states, sectors with Sz = ±2:

two states: | ↑, ↑, ↑, ↑〉 with Sz = 2 and | ↓, ↓, ↓, ↓〉 with Sz = 2.

When V1,2,3,4 = 0 and t < U the ground state is singlet and the energy difference from

the first triplet excited state upto second order perturbation in t is of the order t2/U .

For Vi = (−1)i+1U/2 the ground state |ψs
0〉 is from the singlet sector and it is resonating

between a set of magnetic and one non-magnetic states. At large U limit it is

|ψs
0〉 ≈ 1√

2

(
1

2

[

|0, 2, 1, 1〉s + |1, 2, 0, 1〉s + |0, 1, 1, 2〉s + |1, 1, 0, 2〉s
])

+
1√
2

(
2√
5
|0, 2, 0, 2〉

+
1√
10

[

| ↑, ↑, ↓, ↓〉+ | ↓, ↓, ↑, ↑〉 − | ↓, ↑, ↑, ↓〉 − | ↑, ↓, ↓, ↑〉
])

. (H.3)

The first excited state is also from the singlet sector and is given by

|ψs
1〉 ≈ 1√

2

(
1

2

[

|0, 2, 1, 1〉s − |1, 2, 0, 1〉s − |0, 1, 1, 2〉s + |1, 1, 0, 2〉s
])

+
1√
2

(

− 2√
6

[

| ↑, ↓, ↑, ↓〉+ | ↓, ↑, ↓, ↑〉
]

+
1√
6

[

| ↑, ↑, ↓, ↓〉+ | ↓, ↓, ↑, ↑〉+ | ↓, ↑, ↑, ↓〉+ | ↑, ↓, ↓, ↑〉
])

. (H.4)

The next excited state is from the triplet subspaces and it has three fold degenerate

and triplet. One of these states is

|ψt
2〉 ≈ 1√

2

(
1

2

[

|0, 2, 1, 1〉t − |1, 2, 0, 1〉t + |0, 1, 1, 2〉t − |1, 1, 0, 2〉t
])

+
1√
2

[

| ↑, ↓, ↑, ↓〉 − | ↓, ↑, ↓, ↑〉
]

(H.5)

The energy difference between the ground state and the first triplet excited state

is of order of t. The first few energy spectrum are given in the inset of Fig.(5.5).
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