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Synopsis

Introduction

The lessons from string theory, in particular the AdS/CFT correspondence suggest that
interesting connections exist between the study of gravity and the study of strongly coupled
field theories. Motivated by the large number of interesting phases seen in nature, new
brane solutions have been discovered in gravity. The earliest works mostly focused on
horizons with translational and rotational symmetry, but more recently examples of black
brane horizons dual to field theories with further reduced space-time symmetries have been
discussed, [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15].

Extremal branes are particularly interesting, since they correspond to ground states of
the dual field theory in the presence of a chemical potential or doping. Their near-horizon
geometries often exhibit a type of attractor behavior, and as a result, are quite universal. Of
particular interest for this thesis are the brane solutions in classical gravity which correspond
to phases of matter which are homogeneous but not isotropic. It was shown (see [4, 5]) that
in 4 + 1 dimensions, such brane solutions can be classified using the Bianchi classification
developed earlier for studying homogeneous cosmologies. These near-horizon solutions were
given the name “Bianchi attractors”.

Bianchi attractors have a non-trivial geometry along the field theory directions. It is
therefore worth asking whether these attractors can arise in situations where the dual field
theory lives in flat space, as opposed to the more exotic scenario where the UV field theory
itself must be placed in a non-trivial geometry of the appropriate Bianchi Type. This
question maps to constructing interpolating extremal black brane solutions that asymptote
to Anti-De Sitter space (AdS) and asking whether the non-normalizable deformations for the
metric can be asymptotically turned off near the AdS boundary which lies at the ultraviolet

end.

Here, in the first half of the thesis, we take a partial step towards finding such interpolating
solutions for some of the Bianchi classes. We start with a particular smoothly varying
metric which interpolates between the near-horizon region and Lifshitz spacetime. The
metric is chosen so that the non-normalizable deformations of the metric near the Lifshitz

boundary are turned off. While we do not obtain these metrics as solutions of Einstein
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gravity coupled to a specific simple matter field theory, we demonstrate that if they were
to arise as solutions, the required matter would satisfy the weak energy condition. In this
way, we establish that there is no fundamental barrier, at least at the level of reasonable
energy conditions, to having such an interpolating solution. This establishes the first main

result of this thesis.

In the next part of the thesis, we turn to a study of transport properties of such anisotropic
blackbranes, with a view towards strongly coupled field theories in the presence of an
anisotropic driving force. The calculation of the transport properties of strongly coupled
quantum theories is a challenging problem of interest to theorists working on a wide range of
systems including ultra-cold Fermi gases at unitarity [16, 17], heavy ion collisions [16, 18],
and neutron stars [19]. At strong coupling, perturbative expansions fail to give reliable
results. Surprisingly, using AdS/CFT a large subsector of strongly interacting quantum
field theories in d dimensions in some limits can be related to weakly coupled theories of
gravity (called their dual) in (d + 1) dimensions. This correspondence [20] allows us to
compute transport properties of such theories, even at strong coupling using the underlying
gravity description.

The shear viscosity tensor for many interesting systems is often anisotropic. The possibility
that we shall explore in detail in this thesis, is that an externally applied field can pick
a particular direction and give rise to anisotropies in the shear viscosity. This possibility
has been explored extensively for the case of weakly coupled theories in the presence of a
background magnetic field (See Ref. [21] for a general discussion, Ref. [22] in the context
of heavy ion collisions and Ref. [23] for applications to neutron stars). On the other hand,
the behavior of strongly coupled theories in the presence of an external field is less well
explored. With this in mind, anisotropic gravitational backgrounds have been recently
studied using the AdS/CFT correspondence, see [24, 25, 26, 27, 28, 29, 30, 31] and the
behavior of the viscosity in some of these anisotropic phases has also been analyzed, see
[32, 33] and [6, 34, 35, 36, 37, 38].

The results of Ref. [36] and Ref. [39] indicate that one may obtain parametric violations
of the KSS bound (n/s > 1/47) in such anisotropic scenarios. This feature arises in a
wide variety of examples considered and seems to be quite general. In particular, it was
found that as long as one can ensure that the rotational invariance is broken by a spatially
constant driving force, by increasing the value of the strength of the driving force, compared
to the temperature, the ratio for appropriate components of the shear viscosity to entropy
density can be made arbitrarily small; in particular violating the KSS bound. In particular,
we find a general formula for the shear viscosity over the entropy density in terms of the
ratio of metric components evaluated at the horizon, which in anisotropic scenarios need
not be the same and thus can lead to a parametric violation of the bound proposed by
Kovtun, Son and Starinets. ( 7/s > 4 ). Using techniques of Kaluza Klein reduction, we

give a proof of this general formula for all situations where the force breaking isotropy is



spatially constant and there is some residual Lorentz symmetry left in the boundary theory

after breaking isotropy. This establishes the second important result of this thesis.

If the phenomenon of small shear viscosity components in presence of anisotropy also carries
over to the unitary Fermi gases, it may be possible to measure these small viscosities in
experiments with trapped ultra-cold Fermi gases. For this purpose, it is helpful to consider
traps which share the essential features of the systems in Ref. [36, 39]. The goal of this part
of the thesis is to give a concrete proposal for the trap geometry and parameters where this
effect is likely to be seen.

We now present the main results described above in more details .

Interpolation of Bianchi attractors to Lifshitz and AdS space-

times

( With Shamit Kachru, Nilay Kundu, Arpan Saha and Sandip Trivedi )
As we mentioned in the introduction, the interpolating metrics we considered in general

have the form

ds® = —gu(r)dt* + gy (r)dr? + Z gij (7, z')dxtda? (1)
ij=1,2,3

In the Bianchi attractor region which occurs in the deep IR, for r — —o0, the metric takes
the form,
dsQB = 2B 4 ar? + Z eZﬁir(wi)Q, (2)
i=1,2,3
where w’ are one-forms invariant under the Bianchi symmetries generated by the Killing

fields &;, i = 1,2,3 The commutation relations of the Killing vectors

[6i,&5) = Clié (3)
give rise to the corresponding Bianchi algebra.

In the far UV on the other hand, which occurs for r — oo, the metric becomes of Lifshitz
form,
ds? = —e2Br @ 4 dr? 4 2P Z da?. (4)
i=1,2,3
Here for simplicity, we only consider the case where all the spatial directions have the same
scaling exponent, B, more generally this exponent can be different for the different spatial

directions. Also, to avoid unnecessary complications we take the exponent in the time
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direction B; in the Lifshitz region to satisfy the condition
/ét = /8t7 (5)

where (3; is the value for the exponent in the Bianchi attractor region, eq.(2). The metric

eq.(4) then becomes

ds% = 2B L ar? + GQBT Z (dmi)Q. (6)
i=1,2,3

The metric which interpolates between these two regions is taken to have the form

1 — tanh 1 + tanh
g <¥> ds?, + (y) ds?. 1)

where ds% and ds? are defined in eq.(2) and eq.(4) respectively. o is a positive constant
which characterizes how rapid or gradual the interpolation is. One can show that as long as
o is sufficiently big the metric becomes of the Bianchi attractor form as » — —oo. Also, for
sufficiently large o the metric becomes of Lifshitz type as r — co. More correctly, for this
latter statement to be true the limit » — oo must be taken keeping the spatial coordinates
xt i =1,2,3 fixed.

Classes of such smooth metrics which interpolate from such Bianchi attractor geometries
(homogenous anisotropic blackbranes) of Types II, III, VI and IX in the IR to Lifshitz or
AdSy x S geometries in the UV were thus constructed. It was shown that the matter
sector stress-energy required to support these geometries (via the Einstein equations) does
satisfy the weak and therefore also the null energy conditions. Since Lifshitz or AdSy x S3
geometries can in turn be connected to AdSs spacetime, it is thus established that there is
no barrier, at least at the level of the energy conditions, for solutions to arise connecting
these Bianchi attractor geometries to AdS5 spacetime. The asymptotic AdS5 spacetime has
no non-normalizable metric deformation turned on, which suggests that furthermore, the
Bianchi attractor geometries can be the IR geometries dual to field theories living in flat
space, with the breaking of symmetries being either spontaneous or due to sources for other

fields.

Using Raychaudhuri’s equation for a family of radially outgoing null geodesics emanating
from a 3-dimensional submanifold spanned by the 2’ coordinates for any fixed r,¢, a C-

function was also found monotonically decreasing from the UV to the IR, given by

o~ (i) ®

where A denotes the area element of the Bianchi hypersurface spanned by the z! coordi-
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nates for any constant r, ¢, provided the matter sourcing the geometry obeys null energy

conditions. For a Bianchi attractor with exponents 3, 5;, C' (Eq. 2) becomes
C e(ﬁt_B)r 3
_ , 9
x|\ 735 (9)

=33 6 (10)

where

The flows we consider include interpolations between two AdS spacetimes which at interme-
diate values of r can break not only Lorentz invariance but also spatial rotational invariance
and translational invariance. As long as the UV and IR geometries are AdS, our results
imply that the IR central charge must be smaller than the UV one. Our results therefore lead
to a generalization of the holographic C-theorem for flows between conformally invariant
theories which can also break boost, rotational and translational symmetries. This is in
contrast to much of the discussion in the literature so far, which has considered only Lorentz

invariant flows ([40]).

Bianchi attractors in Gauged Supergravity

( With Karthik Inbasekar )

In the next part of the thesis we explore the embedding of Bianchi attractorsin N’ =2,D =5
Gauged supergravity. A stable Bianchi III attractor solution was found in N' = 2,d =
5 gauged supergravity coupled to a single vector multiplet and a gauging of the U(1)r
symmetry. The gravity multiplet consists of two gravitinos wf“ 1 =1,2, and a graviphoton.
The vector multiplet consists of a vector A, a real scalar ¢ and the gaugini \;. The vector

in the vector multiplet and the graviphoton are collectively represented by A{“ 1=0,1.

The scalars in the theory parametrize a very special manifold described by the cubic surface
N =Crhth/hb =1, nl =hnl(s). (11)

The difference in the gauged theory is the presence of a scalar potential. The process of
gauging converts some of the global symmetries of the Lagrangian into local symmetries.
One of the global symmetries enjoyed by the fermions in a N' = 2 theory is the SU(2)g
symmetry. We considered the gauging of the abelian U(1)p C SU(2)g. The R symmetry
is gauged by replacing the usual Lorentz covariant derivative acting on the fermions with

U(1)r gauge covariant derivative as follows
VA = VA + gr AU MWR)SIN; Vot = Vit + grA(U(1)R)6 45 -
gr is the U(1)r gauge coupling constant. The U(1)r gauge field is a linear combination of
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the gauge fields in the theory
A, (U)R) = VIA], (12)

where the parameters V; € R are free.!

The U(1)r covariantization breaks the supersymmetry and therefore compensating terms
are added to the Lagrangian for supersymmetric closure . These terms result in the form

of a potential for the scalar fields,

H*Vi | . (13)

Generalised attractors are defined as solutions to equations of motion that reduce to alge-
braic equations when all the fields and Riemann tensor components are constants in tangent
space

¢ =const, AL =const, ¢, = const, (14)

where a = 0,1,...,4, are tangent space indices. The c,’, referred to as anholonomy

coefficients are structure constants that appear in the Lie bracket of the vielbeins
lea,ep] = cpiec, eq =€eho, . (15)

A new class of Bianchi type III attractor solution in this U(1)r gauged supergravity were

constructed. The Bianchi type III solution found is as follows

o dr?
ds? = —72Bgi2 4 ar- + (w3)2 + (w1)2 + 7@252@2)2 ’

72
V—142432
As = Tﬁt, b = 4V293 VoW,
(&
1 7
fo=Bi =1+ 1280VVE, B> o (16)
where the one forms w’
wr=edy, Wwr=dz, w=di, (17)

are invariant under the Bianchi type III homogeneous symmetry. The Hessian of the effective
potential evaluated on this solution has a positive eigenvalue suggesting that it is a stable
attractor. We next investigated the stability of the Bianchi type III solution in gauged
supergravity by studying the linearized fluctuations of the gauge field, scalar field, metric
about their attractor values and it was found that all the fluctuations are well behaved
as one approaches the horizon. We studied the Killing spinor equations of N' = 2,U(1)r
gauged supergravity with the background Bianchi type III solution. However, we found

that the naive radial spinor which gives supersymmetric Bianchi I spaces such as AdS and

"When the gauging of R symmetry is accompanied by gauging of a non-abelian symmetry group K of
the scalar manifold, the V; are constrained by f1,V; = 0, where f1, are structure constants of K.

Xiv



Lifshitz fails for the Type III case. This suggests that the stable Type III solution we have

constructed may be a non-supersymmetric attractor ([41] )

The shear viscosity in anisotropic phases

( With Sachin Jain and Sandip Trivedi )

In the second half of the thesis, we continue studying anisotropic blackbrane solutions in a
wide variety of examples where the breaking of isotropy is due to an externally applied
force which is translationally invariant. We first review a simple system discussed in
Ref. [36] consisting of a linearly varying massless dilaton minimally coupled to gravity

via the Lagrangian

_ 1 5 1y o
5_167TG/M\/§ [R4+12A — £0,60"6] (18)

where G is Newton’s constant in 5 dimensions and A is a cosmological constant. The
boundary theory in the absence of anisotropy is a 3+ 1 dimensional conformal field theory.

The dilaton field in the background solution here has the profile

6= pz. (19)

Clearly this choice of the background singles out the z direction, breaking isotropy. In the

presence of the dilaton the conservation equations for the stress tensor get modified to be,
0,T" =(0)0"¢ , (20)

where O is the operator dual to the field ¢. The right hand side arises because the varying
dilaton results in a driving force on the system. We see that a linear profile results in a
constant value for 9¥¢ and thus a constant driving force. At zero temperature the near

horizon solution was found to be AdSy x R,

4 du? 4 2
ds* = ——u2dt* + 4—u2 + = u?(dz® + dy?) + P a2, (21)

At small temperature, T < p, the geometry is that of a Schwarzschild black brane in
AdSy x R

4 9 T2 1 o 4 9,9 o P o
3 u?
We see in eq.(21) that the metric component g,, becomes constant due to the extra stress
energy provided by the linearly varying dilaton. The AdS4 x R solution is in fact an exact

solution to the equations of motion.
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The behavior of shear viscosity components 7,, = 1,. = 1 ( which are spin 1 w.r.t this
surviving Lorentz symmetry) was studied in the example of Ref. [36] for two cases — one
in the low anisotropy regime and the other in the high anisotropy regime. The results are

as follows:

1. Low anisotropy regime (p/T < 1):

1 2log2 (6 — 72 + 54(log 2)2)p* 6
"_L:__p3g2+( gi))p rol(2)|. (22)
s 4n  1673T 230475 T

We see that a small anisotropy at order (p/T')? already reduces this component of the
viscosity and makes it smaller than the KSS bound. In the limit of zero anisotropy,
we recover the KSS bound

w1 (23)

s 47

We also note that the driving force in the conservation equation for the stress tensor

(Eq. 20) is proportional to V¢ ~ p (Eq. 19) and the analogue of the mean free path
(V¢)?
T2

is T. Thus the corrections go like

2. High anisotropy regime (p/T > 1):

n.  8nT?

s 3p2

(24)

We see that in this limit the ratio can be made arbitrarily small, with - — 0, as

T — 0 keeping p fixed.

In contrast the 7y, component (which couples to a spin 2 metric perturbation) was found

to be unchanged from its value in the isotropic case,

1

Neyry = E (25)

and thus continues to meet the KSS bound.

In the work [39] we study many other examples where anisotropic phases arise and show
that in all of them components of the viscosity can become parametrically small, in units
of the entropy density, when the anisotropy becomes sufficiently large compared to the
temperature. Depending on the example, the factor of T2 in eq.(24) can be replaced by
some other positive power of T'. A common feature of all our examples is that the breaking of
anisotropy is due to an externally applied force which is translationally invariant. Another
common feature in our examples is that some residual Lorentz symmetry survives, at zero
temperature, after incorporating the breaking of rotational invariance. Fluid mechanics then

corresponds to the dynamics of the goldstone modes associated with the boost symmetries

xvi



of this Lorentz group which are broken at finite temperature.

In the work [39] we give a proof, based on a Kaluza Klein decomposition of modes, which
shows quite generally that in all situations sharing these features, appropriate components of
the viscosity tensor become parametrically small. For a case with a residual AdSy, factor
in the metric, the basic idea behind the general analysis will be to consider a dimensionally
reduced description, starting from the original D + 1 dimensional theory and going down
to the AdSg4y1 space-time. The off diagonal components of the metric, whose perturbations
carry spin 1 and which are related to the viscosity components of interest, will give rise
to gauge fields in the dimensionally reduced theory. By studying the conductivity of these
gauge fields, which can be related easily to the spin 1 viscosity components we derive
the following general result - Let z be a spatial direction in the boundary theory along
which there is anisotropy and x be a spatial direction along which the boost symmetry is
left unbroken, then we show that the viscosity component 7., which couples to the h,.,

component of the metric perturbation, satisfies the relation,

Moz _ 1 Gaw
S 41 gzz u:uh’

(26)

where guz|u=u,, 9zz|u=u, refer to the components of the background metric at the horizon.
Eq.(26) is one of the main results of this part of the thesis. It also agrees with the behaviour
seen in all the explicit examples we consider. This result was first derived for an anisotropic
axion-dilaton-gravity system in [32].

In the isotropic case the ratio ng: . is unity and we see that the KSS result is obtained.
However, in anisotropic cases this ratio can become very different from unity and in fact

much smaller, leading to the parametric violation of the KSS bound n/s > 1/4.

The shear viscosity in an anisotropic unitary fermi gas

( With Rishi Sharma and Sandip Trivedi )
Remarkably for ultra-cold fermions at unitarity, the 7/s has been measured for a wide
range of temperatures and the minimum value is very close to the KSS bound. Similarly,

the values measured in heavy ion collisions seem to be close to 1/(4).

If our intuition from the study of anisotropic blackbranes in gravity also carries over to
the unitary Fermi gases (the gravity duals of such systems is not yet known), it may be
possible to measure these small viscosities in experiments with trapped ultra-cold Fermi
gases. For this purpose, one needs to consider traps which share the essential features of
the systems in [39]. The goal of this part of the thesis is to give a concrete proposal for the

trap geometry and parameters where this effect is likely to be seen.
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Motivated by the above results in the gravity side, we may hope to find parametrically

suppressed viscosities in systems where the following basic requirements are met.

e The system is strongly interacting and in the absence of anisotropy have a viscosity
close to the KSS bound.

e The equations of hydrodynamics for the system admits modes sensitive to the spin 1

viscosity components as described above and in Ref. [36, 39].

e Sufficient anisotropy needs to be introduced in the system ( say in the z direction
with rotational symmetry preserved along the x — y plane), such that these spin 1
components of the viscosity, when measured in units of the entropy density, show an

experimentally measurable decreasing tendency below the KSS bound.

e The force responsible for breaking of isotropy is approximately spatially constant.

e The velocity gradients are small enough (compared to say the inverse mean free
path) ensuring that hydrodynamics is the appropriate effective theory to describe
the system.

We now explain how one can meet the above conditions in a system of trapped fermions in
the unitary limit. The anisotropic force is obtained by placing the system in an anisotropic
trap. The trapping potential is harmonic and characterized by three angular frequencies,
Wy, Wy, w,. We consider an anisotropic situation where w, > w;,w,, so that the trapping
potential is much stronger in the z direction. For simplicity, we also take w, = w, so that
the system preserves rotational invariance in the x — y plane. For some of the discussion
below we can neglect the effects of the trapping potential in the x, y directions characterized

by wz,wy.

On studying the equations of superfluid hydrodynamics, we identify two modes which
are sensitive to the spin 1 components of the viscosity tensor. Each of these modes is
characterized by the superfluid and the normal components, which we denote by v, and v,
respectively.

The first mode, which we call Mode a has vy = 0 and v,, = v given by
v =% ayz &+ a.x 2) (27)

xviii



with the following relations:

2
Mode a: w=0, a, = —w—gax (28)
wZ

The other mode of interest, denoted by Mode b, has vy = v,, = v given by Eq. 27 with

Mode b: w= w2+ w?, a,=a, = A\ (29)

We see that in the high anisotropy limit w, > w,, o, — 0 for Mode a, and hence we recover
a flow profile similar to that considered in [36]; To the best of our knowledge, Mode a has
not been studied in ultra-cold gas experiments. Mode b is the scissors mode which has

been studied extensively (for example see Refs. [42, 43, 44]).

We next desire that the amplitude of the velocity modes be small enough that it can be
described by hydrodynamics. This gives an upper limit on the amplitude of the modes

given by ay .
The energy dissipated due to viscosity is given by

. 1 2 2
Einetic = = 5 / d*r 1545 (r) <aivj + Ojvi — g%’akvk) - / d*r((r) (9v;)° (30)

where 7;5;; = n;; is the relevant component of the shear viscosity and ( is the bulk viscosity.
We note that for our chosen velocity profiles, the bulk viscosity contribution vanishes. Also

in the traps we will consider, the temperature T is constant throughout the trap. Hence we

also ignored contributions from thermal conductivity.

Thus,
. 1 w?
Buanesc = = [ drnes(e) a2(1 - 25) (31)
wZ

is the energy dissipation rate for Mlode a, where we have simply written 7,.,. as 7.

The energy dissipated per unit cycle for the oscillatory time dependent Mode b is

Ekinetic = - /dgr sz(l‘) ai- (32)

The evaluation of the energy loss from Eq. 31 and Eq. 32 requires the viscosity n as a

function of the position r in the trap.

To get a first estimate of the region of the trap which gives a dominant contribution to the
integral in Eq. 30, we use the local density approximation (LDA) and estimate the resulting
viscosity. More specifically, we assume in this approximation that thermodynamic variables

like the number density n, the entropy density s depend only on the local value of T" and
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. The viscosity is also then taken to be given by these local values of T, u, neglecting any
effects of anisotropy which could make the different components of the tensor take different

values.

The effect of anisotropy on the viscosity tensor are estimated using Boltzmann transport in

a weakly coupled anisotropic theory as

4

VOED) S ¢ oy Mo iyl + OV, (V) |

a=0

1 2
Mijkt = 15 [(0ik 01 +0301— §5z‘j5kl)+ (

N (Vo (r))(
[1(r)]

(33)

where A is a microscopic length scale of the system, c¢(;) are dimensional constants of order 1
which depend on the microscopic details of the system, and M; are 5 orthonormal projection

operators that arise in a system with one special direction (for eg. see Ref. [45]).

Our calculations show that the corrections to n for a weakly interacting, normal (unpaired)

Fermi gas at low temperatures (7' < u) are given by

(Vo)
k2 u?

mo = 1O~ S kpPEE 1+ 0(r76)")] = n(O)L — Sk PiEps + O((rV9)")]

2
m = WO = 5k 250+ 0(r99) )] = (0L = (ke s + (7))
2
= )1 = 55 (e 525 + O((rV0))] = n(O)1L = 55 (ke *rEpn -+ O(( ) )]
n3 =0, 1m4=0.
(34
where we have introduced the notation?
(vo) 50

KLDA =
(1 kr)
Let us pause here to appreciate the similarity between the weak coupling Boltzmann analysis

result Eq. 34 and the results from gravity valid at strong coupling, Eq. 22.

While we cannot reliably compute the coefficients at strong coupling in the field theory, the
key point of our calculations here is that they might be experimentally measured and could
lie below the KSS bound as we gradually increase k;pa. We thus note that kypa provides

a good characterization of the amount of anisotropy we introduce in our system.

To get the first estimates however, we apply the LDA approximation. We start first by

considering a homogeneous situation characterized by temperature 7, and obtain the

In the following discussion, we use the usual definitions

2
kr = (37°n)Y?, Ep = 5—;7 Tr = Er/kp, vk = % . (35)
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Figure 1: (Color online) Local shear viscosity at T = 2?;“ at u = 10uK, w, = 27 x 10*
rads/s. The red curves denote the error bands.

behavior of the thermodynamical parameters and the viscosity as a function of these

parameters.

In the unitary Fermi gas, the chemical potential u and the temperature 71" are the only energy
scales in the problem. Therefore, we can express various thermodynamic quantities as a
function of the dimensionless quantity y = 7'/ multiplied by an appropriate dimensionless

function of only one of the two variables. Following [46] we write,

n(p, T) =ng(1)F(y),

s T) =2 (1)G'(v)

(37)

where n is the number density, s is the entropy density, and F(y) = G(y) — 2 y G'(y)/5,
ny(p) = #(Qm,u)% is the number density of a free Fermi gas. Therefore one can compute

the desired thermodynamic quantities if the function G(y) is known.

At low temperatures (% < 0.6) we use the % data from Fig.3b of Ref. [47] to obtain G(y).
Having understood the thermodynamics in the absence of the trap, we now turn to incorpo-
rating the trap potential in the discussion. We first use the LDA approximation to calculate
how thermodynamic quantities like s,n etc vary along the trap. In the presence of the trap
w varies in the equilibrium configuration. The effects of the trap, in this approximation, are
then incorporated by using the local values for p and 7' in the behavior obtained above for
the homogeneous case. To evaluate n at a given p and T' we simply multiply % of Ref. [48]
with the number density that can be found using Eq. 37 (see Fig. 1).

It turns out that on starting at the center of the trap at a sufficiently low temperature,
the viscosity spatial profile has a peak, zg, close to the point where the superfluid-normal
transition occurs. In turn, this leads to the viscosity and damping effects for the fluid modes

of interest receiving their contribution from a region close to the peak and with a width,
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0z that can be made narrow, dz/zy < 1, thus approximately meeting our requirement of

constant driving force to break isotropy.

Furthermore, we find that the resulting energy and damping rate of this energy, from
which the viscosity can be extracted, lie within the range of values which are measured by
experiments currently being done on cold atom systems, in particular on Lig unitary fermi
gas systems, Ref. [44]. For example, for trap parametrs p = 10uK, w, ~ 27 x 77000 rads/s,
and T' = % (T, = 0.4u) we find that the anisotropy, as measured by the parameter kzpa
, Eq. 36, is of order unity and therefore significant. At these extreme values of anisotropy
our theoretical calculation, strictly speaking, do not apply, but a reasonable extrapolation
suggests that the total kinetic energy and damping time for the scissor mode (Mode b)
should be of order E ~ 10! joules, 7 ~ 1072 seconds which are within the experimental
range of values currently being probed. For smaller values of anisotropy, the theoretical
estimates are more reliable and suggest that the different viscosity tensor components should
have a fractional difference given in terms of kK p4 by Eq. 33. This tendency of the viscosity
to decrease should already be measurable at more moderate values of the anisotropy.

It is worth mentioning in this context that kppa scales as w,/p while the damping time
scale for the scissors mode scales as —u’f—g One can thus keep the damping time scale in
the experimentally accessible range of a%out a millisecond while increasing w, (keeping w,
same) and to make krpa ~ O(1), thereby passing from a regime of low anisotropy to a
regime of high anisotropy.

We hope our experimental colleagues in the cold atoms community will find our proposal
interesting and we request them to carry out a careful investigation of anisotropic viscosities

in trapped fermions in the unitary regime of the BEC-BCS crossover.

Lepton flavor violation in supersymmetry at the LHC

( With Monoranjan Guchait and Abhishek Iyer )

In a parallel exploration, we considered models of supersymmetry which can incorporate
sizeable mixing between different generations of sfermions and performed a detailed collider
analysis to devise a signal to probe the lepton flavour violating parameter in such models
relevant for the LHC.([49])

Future Directions

e Although we were successful regarding the interpolation of Bianchi Types II, III, VI
and IX in Sec. , the interpolating metric of Bianchi Type V failed to satisfy the

null energy conditions. Our failure in this case may be due to the restricted class of

xxil



functions we used to construct the interpolating metrics or perhaps it may suggest
a more fundamental constraint. Another interesting question is how the anisotropic
and homogeneous phases in these field theories, described by the Bianchi attractor
regions, can arise in practice? It will be interesting to examine the possibility of a
spontaneous breaking of rotational invariance or by turning on sources other than the

metric in the field theory.

e An immediate extension of the work on shear viscosity in strongly coupled fluid in
presence of anisotropy is to extend our analysis to cases where the breaking of isotropy
is spontaneous or when the driving force is not spatially constant. It is also natural
to consider string theory embeddings of the anisotropic systems we have studied and
examining if they are stable. In principle all transport coefficients which determine
the fluid mechanics can be obtained by carrying out a more systematic derivative
expansion on the gravity side as discussed in the fluid gravity correspondence described
in [50], [51],[52], [53]. It will be great to perform a similar analysis along those
lines. Another direction is to consider transport properties in phases corresponding to
Bianchi spaces which describe homogeneous but anisotropic phases in general. Some
progress in this regard has been made [54] for Bianchi VII. It will be interesting to
extend the analysis to all Bianchi types. It will also be interesting to see if these results
are relevant for neutron stars with very high magnetic fields (known as magnetars)
for breaking rotational invariance 3. The resulting equilibrium phase could then be
highly anisotropic and our results hint that suitable components of the viscosity might

become small.

e An important point worth noting is that while the cold-atom system proposed here
shares many features with those discussed in Ref. [36, 39], it also has some differences.
First, in equilibrium the stress energy tensor is not invariant under translations even
for a linear potential. Second, in addition to energy-momentum, the cold-atom system
features another conserved quantity: the particle number. Consequently the system
is locally characterized by two thermodynamic variables T and p rather than just
T. It will be interesting to further study the behavior of viscosity in gravitational
systems which correspond to anisotropy driven strongly coupled systems with a finite
chemical potential.(see [38, 55]). As a first step, we have analyzed a weakly coupled
system with a linearly varying potential and we find that the anisotropic viscosity

does become parametrically small in this case.

3 A magnetic field of order 10'® Tesla or so is needed in order to contribute an energy density comparable
to the QCD scale ~ 200 Mev.
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Conclusions

To conclude, this thesis has described some computations in gravity to answer some in-

teresting questions related to a class of strongly coupled field theories, often with reduced

symmetries. Let us summarize some of the main results of this thesis :

e We investigate the interpolation of the Bianchi attractor geometries ( which are dual

xXxiv

to anisotropic phases in the field theory with generalized translational invariance)
in the IR (infrared) to Lifshitz and AdS spacetimes in the UV (ultraviolet). While
we do not obtain the interpolating metrics as solutions to Einstein’s equations, we
demonstrate that the matter required to support such geometries obey the weak and
null energy conditions. These interpolating metrics do not have any non-normalizable
metric deformations turned on near the boundary. This ensures that the dual field
theory can indeed reside in flat space as opposed to some background of non-trivial

geometry.

We find a stable Bianchi III attractor solution in N’ = 2, D = 5 gauged supergravity.
We analyze the relevant Killing spinor equations and find that a radial ansatz for
the spinor breaks supersymmetry. This suggests that the above solution may be a

non-supersymmetric attractor.

In the second half of the thesis we find a general formula for the shear viscosity in units
of the entropy density given by the ratio of appropriate metric components evaluated
at the horizon. In a situation with anisotropy, these metric components need not be
the same. This can lead to a parametric violation of the bound proposed by Kovtun,
Son and Starinets. ( 7/s > ;= ). Using techniques of Kaluza Klein reduction, we give
a proof of this general formula for all situations where the force breaking isotropy is
spatially constant and there is some residual Lorentz symmetry left in the boundary

theory after breaking isotropy.

We also propose a set-up involving trapped, ultracold fermions in the unitary regime
of the BEC-BCS crossover, where the above suppression of some components of the
anisotropic shear viscosity tensor may be observed experimentally. We present the
relevant hydrodynamic modes and the trap parameters where this effect is likely to be
seen. To the best of our knowledge, the proposal presented here is the first proposal

to probe anisotropic shear viscosity in trapped fermions at low temperatures.
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Chapter 1

Introduction

A Roadmap of the Thesis:

The lessons from string theory, in particular the AdS/CFT correspondence suggest that
fascinating connections exist between the study of gravity and the study of strongly coupled
field theories. Motivated by the large number of interesting phases seen in nature, new
brane solutions have been discovered in gravity. The earliest works mostly focused on
horizons with translational and rotational symmetry, but more recently examples of black
brane horizons dual to field theories with further reduced space-time symmetries have been
discussed. Extremal branes are particularly interesting, since they correspond to ground
states of the dual field theory in the presence of a chemical potential or doping. Their near-
horizon geometries often exhibit a type of attractor behavior, and as a result, are quite
universal. Of particular interest for this thesis are the brane solutions in classical gravity
which correspond to phases of matter which are homogeneous but not isotropic. It was
shown (see [1, 2]) that in 4 4+ 1 dimensions, such brane solutions can be classified using
the Bianchi classification developed earlier for studying homogeneous cosmologies. These
near-horizon solutions were given the name “Bianchi attractors”. Bianchi attractors have a
non-trivial geometry along the field theory directions. It is therefore worth asking whether
these attractors can arise in situations where the dual field theory lives in flat space, as
opposed to the more exotic scenario where the ultraviolet (UV) field theory itself must be
placed in a non-trivial geometry of the appropriate Bianchi Type. This question maps to
constructing interpolating extremal black brane solutions that asymptote to Anti-De Sitter
space (AdS) and asking whether the non-normalizable deformations for the metric can be
asymptotically turned off near the AdS boundary which lies at the ultraviolet end.

In the first part of the doctoral work in Chapter 2, we tried to interpolate these attractor
geometries with generalized translational symmetry to asymptotic anti de sitter space in
Einstein gravity. While we did not obtain the interpolating metrics as solutions to Einstein’s
equations, we showed that were they to arise as solutions, the required matter will satisfy

the weak and null energy conditions. We also tried to realize some of these near horizon
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attractor geometries as solutions to gauged supergravity theories and examined the stability
and supersymmetry of one of the solutions (Bianchi Type III) in Chapter 3.

In the next part of the doctoral work in Chapter 4, we turn to a study of transport properties
of such anisotropic blackbranes, with a view towards strongly coupled field theories in the
presence of an anisotropic driving force. Using techniques from AdS/CFT, our calculations
indicate that one may obtain parametric violations of the KSS bound (/s > 1/4m) proposed
by Kovtun, Son and Starinets, in such strongly coupled systems in presence of anisotropy.
This feature seems to be quite general and holds true for situations where the driving force
responsible for breaking rotational symmetry is spatially constant. In particular, we find
a general formula for the shear viscosity over the entropy density in terms of the ratio of
metric components evaluated at the horizon leading to a parametric violation of the bound
proposed by KSS.

If the phenomenon of small shear viscosity components in presence of anisotropy also carries
over to the unitary Fermi gases, it may be possible to measure these small viscosities in
experiments with trapped ultra-cold Fermi gases. We thus propose a set-up in Chapter
5 involving trapped, ultracold fermions in the unitary regime of the BEC-BCS crossover,
where the above suppression of some components of the anisotropic shear viscosity tensor
may be observed experimentally. We present the relevant hydrodynamic modes and the trap
parameters where this effect is likely to be seen. To the best of our knowledge, this is the
first proposal to probe anisotropic shear viscosity in trapped fermions at low temperatures.
In a parallel exploration in this doctoral work, which is independent of the earlier chapters,
we considered models of supersymmetry which can incorporate sizeable mixing between
different generations of sfermions and performed a detailed collider analysis to devise a
signal to probe the lepton flavour violating parameter in such models relevant for the LHC.
This is discussed in Chapter 6 and can be read independent of the earlier chapters.

In the following section, we present a non-technical introduction to the basics of AdS/CFT
since this is the primary tool we will be using in our computations. Wherever possible, we

refer the reader to more elaborate and detailed reviews on the subject.

1.1 Basics of AdS/CFT

Suppose we are interested in a strongly interacting quantum field theory at a finite tem-
perature and finite charge density. Our aim is to investigate the transport properties of
such a system. Needless to say, this presents a tough problem in quantum field theory.
However, string theory teaches us that there exist classes of quantum field theories which
have a dual description in terms of gravitational theories in higher dimensions. This duality
is the celebrated AdS/CFT correspondence or, sometimes called holography (see [3] and the
references therein). Holography can be used to learn a lot about strongly coupled interacting
field theories.
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Let us list a few review materials in this context : [4, 5, 6, 7] for applications of holography

to condensed matter physics and [8] for holography applied to QCD.

Holography is basically an equivalence between two very different looking theories:

e Strongly interacting quantum field theories in d spacetime dimensions

e Theories of gravity in (d + 1) spacetime dimensions

The quantum field theory resides in the boundary of the spacetime in which gravity lives.
The boundary theory is strongly interacting matter involving quantum fields with spin
zero, half or one. The boundary quantum field theory does not include gravity. Stretching
away from the boundary is the larger space called the bulk. This is the space where the
gravity theory lives. In practice this usually is Einstein gravity with a negative cosmological
constant and a collection of other fields coupled to gravity. Holography tells us that gravity
in the bulk and QFT on the boundary are equivalent. Anything that happens in the bulk

is equivalently captured in the boundary theory and vice versa.

Usually in a quantum field theory, we are interested to compute the generating function

Zgrr|do] = /DA exp <i[5QFT + /¢0 O[AH> (1.1)

where A represents all fundamental fields of the theory, Sgpr is the action which is a
functional of the fields. O[A] is a gauge invariant operator built from the fields. ¢o(z) is
under our control in a QFT and we usually compute the correlators by taking derivatives
with respect to ¢p and ultimately setting it to zero. The key point is that in holographic
calculations we make ¢g(z) dynamical in the bulk and demand ¢g(z,u) — ¢o(z) as one
approaches the boundary ( The extra radial co-ordinate in the bulk is “u”). The holographic

equivalence can be stated in terms of partition functions as

ZQFT[QbO] ~ ZQuantum gravity [gbo(x, u) — ¢0($)] (1'2)

In the limit of large degrees of freedom in the field theory,

Zqrr|do] ~ 'St |¢0(x,u)ﬁ¢o(m) (3)

where Sy is the classical gravity bulk action. Corresponding to the nature of the spin and
charge of the operators in the boundary theory, we introduce the bulk fields of similar type,
with the dimension of the field theory operators corresponding to the mass of the bulk fields.
For example, a scalar operator corresponds to a scalar field in the bulk ¢(z,u) — O(z),

for a vector we introduce gauge field A, (x,u) — J,(x), the metric gap(z,u) — T ()

3
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corresponds to the stress tensor of the boundary theory.

Typically we are interested in extracting the response due to these sources. In our classical
bulk gravity picture, this just boils down to solving classical Einstein Gravity differential
equations in the bulk with appropriate boundary conditions. For example, a very quick way
to extract the response < O(x) > due to ¢y goes as follows (using the equivalence of the

bulk and boundary partition functions) :

1 8ZQFT N 8(logZQFT) N 6Sb325hell

<O@)>= Zgorr|do] O¢o oo oo

(1.4)
The object on the right is highly reminiscent of Hamilton Jacobi formalism in classical
mechanics. One can show that in a QFT this response to the source is just the radial
canonical momentum in the bulk evaluated at the boundary and this can be easily found

by solving the differential equations for the source field in the bulk.

With this working knowledge of holography, we proceed into the core of the thesis according
to the roadmap supplied at the beginning of this introduction.
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Interpolating from Bianchi
Attractors to Lifshitz and AdS

spacetimes

2.1 Introduction

In the last few years, we have witnessed a beautiful connection develop between gravity and
condensed matter physics, or more specifically the study of strongly coupled field theories
at finite density. For nice reviews on the subject, we refer to [5, 6, 7, 9]. On the gravity side,
motivated by the new and beautiful phases found in nature, new brane solutions have been
discovered. These branes have new kinds of hair, or have horizons with reduced symmetry.
For example, [10, 11, 12, 13]has discussions on how black hole no-hair theorems can be
violated in AdS space in the context of holographic superconductivity; [14, 15, 16] discusses
how emergent horizons with properties reflecting dynamical scaling in the dual field theory
(“Lifshitz solutions”) can arise; and [17, 18, 19, 20, 21, 22, 23] has discussions of horizons

1 The earliest work mostly

exhibiting both dynamical scaling and hyperscaling violation.
focused on horizons with translational and rotational symmetry, but more recently examples
of black brane horizons dual to field theories with further reduced space-time symmetries

have been discussed in e.g. [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

Extremal branes are particularly interesting, since they correspond to ground states of the
dual field theory in the presence of a chemical potential or doping. Their near-horizon
geometries often exhibit a type of attractor behavior, and as a result, are quite universal
and independent of many details. There has been considerable work regarding the attractor
mechanism, starting with the pioneering work in [48], ( [49] has a nice review). For a review

of work on non-supersymmetric attractor mechanism, relevant for our studies, please have

'"Embeddings of such solutions in string theory have also been discussed in many papers, such as [22,
23, 24, 25, 26, 27, 28, 29, 30].
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a look at[50, 51, 52, 53, 54, 55].

Of particular interest to us in this chapter are the brane solutions studied in [34, 35], which
correspond to phases of matter which are homogeneous but not isotropic. It was shown that
in 4 + 1 dimensions, such brane solutions can be classified using the Bianchi classification
developed earlier for studying homogeneous cosmologies. In [34, 35], it was found that for
extremal black branes of this kind, the near-horizon geometry itself often arises as an exact
solution for a system consisting of Einstein gravity coupled to (simple) suitable matter in
the presence of a negative cosmological constant. These near-horizon solutions were given

the name “Bianchi attractors”.

The attractor nature mentioned above makes the Bianchi attractor geometries more uni-
versal, and therefore in many ways more interesting, than the complete extremal black
brane solutions from which they arise in the IR. However, some examples of more complete
solutions, interpolating between asymptotically AdS space and Bianchi attractors of various
Types, are well worth constructing and could lead to a better understanding of the attractor

mechanism.

For example, Bianchi attractors have a non-trivial geometry along the field theory directions.
It is therefore interesting to ask whether these attractors can arise in situations where the
dual field theory lives in flat space, as opposed to the more exotic possibility that the UV
field theory itself must be placed in a non-trivial geometry of the appropriate Bianchi Type.
This question maps to constructing interpolating extremal black brane solutions and asking
whether the non-normalizable deformations for the metric can be asymptotically turned off

near the AdS boundary which lies at the ultraviolet end.

For one case, Bianchi Type VII, an explicit interpolating solution of this type was indeed
found in [34]. More precisely, it was seen that, in the presence of suitable matter, a solution
exists which interpolates between the Bianchi attractor region and AdS, x R3. The latter
in turn is well known to arise as the near-horizon region of an extremal Reissner—Nordstrom
black brane which is asymptotically AdS5. In this way, it was shown that Bianchi Type
VII can arise as the near-horizon limit of an asymptotically AdS brane. In this solution, no
non-normalizable mode for the metric is turned on near the AdSs boundary, and therefore
the field theory lives in flat 3 + 1 dimensional spacetime. Sources are turned on for some
of the field theory operators (but none dual to non-normalizable metric modes), and these
operators are responsible for the breaking of UV symmetries that leads to Bianchi Type
VII.

For the other Bianchi classes, finding such interpolating extremal brane solutions has proved
difficult so far. The main complication is a calculational one. It is easy to write down
a continuous and sufficiently smooth metric which interpolates between the near-horizon
region and asymptotic AdS space, with no non-normalizable metric deformations turned on,
for any of the other Bianchi classes. But it is not easy to find such a metric as an explicit

solution to the Einstein equations for gravity coupled to some simple matter field theory.

6
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The symmetries of Type VII are a subgroup of the three translations and the rotations
in R?; this allows the equations for the full interpolating solution in the Type VII case
to be reduced to algebraic ones, and solved. On the other hand, the symmetries in the
other Bianchi Types cannot be embedded in those of R?, and thus the equations cannot be

reduced to merely algebraic ones.

Here, we take a partial step towards finding such interpolating solutions for some of the
other Bianchi classes. We start with a particular smoothly varying metric which interpolates
between the near-horizon region and Lifshitz spacetime. The metric is chosen so that the
non-normalizable deformations of the metric near the Lifshitz boundary are turned off.
While we do not obtain these metrics as solutions of Einstein gravity coupled to a specific
simple matter field theory, we demonstrate that were they to arise as solutions, the required
matter would satisfy the weak energy condition. In this way, we establish that there is no
fundamental barrier, at least at the level of reasonable energy conditions, to having such

an interpolating solution.

In turn, it is well known that Lifshitz spacetimes, now thought of as the IR end, can be
connected to AdS space in the UV. Solutions of this type to Einstein’s equations coupled
with reasonable matter satisfying the energy conditions have been obtained, see, e.g., [56],
[57], [16], [27], [29], [30], [58], [59], [60]. In these solutions often no non-normalisable metric
deformations are turned on in the AdS region, although a source for other operators can
be present. Taking these solutions together with the interpolating metrics we study, one
can then conclude that interpolating geometries exist which connect some of the Bianchi
classes to asymptotic AdS space. These interpolations do not violate the energy conditions,
and they do not have any non-normalisable deformations for the metric turned on in the

asymptotic AdS region. This establishes one of the main results of this chapter.

Hopefully, our result will provide motivation for finding solutions of Einstein’s equations
sourced by suitable specific matter field theories, which interpolate between the Bianchi
classes and Lifshitz or AdS spaces, in the near future. The weak energy condition implies
the null energy condition. Thus, our results also imply that no violations of the null energy
condition are necessary for the required interpolations. While violations of the null-energy
condition are known to be possible, they usually require either quantum effects or exotic
objects like orientifold planes in string theory. Our result suggests that these are not
required, and that standard matter fields should suffice as sources in constructing these
interpolating solutions. Omnce constructed, these solutions will allow us to ask whether,
from the field theory perspective, the symmetries of various Bianchi classes can emerge in

the IR, either spontaneously or in response to some suitable source not involving the metric.

Near the end of the chapter, in §6, we also explore the existence of C-functions in flows
between Bianchi attractors. We find that if the matter sourcing the geometry satisfies the
null energy condition, a function does exist, for a large class of flows, which is monotonically

decreasing from the UV to the IR. But unless the attractors meet a special condition, this

7
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function does not attain a finite, non-vanishing constant value at the end points. We also
show that the area element of the three-dimensional submanifold generated by the Bianchi

isometries in the attractor spacetimes monotonically decreases from the UV to the IR.

The plan of the chapter is as follows. In §2, we discuss the weak and null energy conditions.
63 outlines the general procedure we follow in constructing the interpolating metrics and
illustrates this for the particular case of Bianchi Type II. Bianchi Type VI and the closely
related classes of Type 11l and V are discussed in §4, and Type IX, for which the interpolation
is to AdSy x S3, is discussed in §5. In §6, we explore the existence of a C-function. We
end with some conclusions in §7. The appendix contains a more complete discussion of the

energy conditions.

2.2 Energy Conditions

We will work in 4 4+ 1 dimensional spacetime and adopt the mostly positive convention for

the metric, so that the flat metric is n,, = diag(—1,1,1,1,1).

Let us consider a coordinate system z*, p = 0,1,...,d, with the metric being g,,,. We
denote the stress energy tensor, as in the standard notation, by 7},,, and let n, be a null

vector, with n,n,g"” = 0. Then the null energy condition (NEC) is satisfied iff
Tyntn” >0 (2.1)

for any future directed null vector, see [61], [62]. Here we will only consider spacetimes
which are time reversal invariant, i.e., with a ¢ — —t symmetry. For such spacetimes the

requirement of n* being future directed can be dropped.

For the purposes of our analysis it is convenient to state this condition as follows. T}’ can be
regarded as a linear operator acting on tangent vectors. Let the orthonormal eigenvectors
of this operator be denoted by {ug,u;,us,us, us}, with eigenvalues, {Ag, A1, A2, Az, Aq}
respectively. Note that orthonormality implies (uq,up) = UapUpyg"” = Nap, s0 that ug

is time-like and the other eigenvectors, u., c =1,...,4, are space-like.

Then, as discussed in Appendix A.2, the NEC requires that
— X+ A >0 (2.2)

for c =1,2,3,4.

In contrast, the weak energy condition (WEC) requires that
T,uuuuuy >0, (23)

for any future directed time-like vector u# [61], [62]. As in the discussion of the NEC above,

for the time reversal invariant backgrounds we consider here, the requirement that u* is

8
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future directed need not be imposed. In terms of the eigenvalues {\g, A\.} of T}, this leads

to two conditions:

Ao <0 (2.4)
Ae—No >0, forc=1,2,3,4. (2.5)

From eq.(2.5) and eq.(2.2) we see that the weak energy condition implies the null energy

condition. Thus, the weak energy condition is stronger.

We make two final comments before we end this section. In this chapter, we will follow the

conventions of [34], where the action takes the form (see equation (3.4) of [34])

S:/d5x\/—_g{R+A+---}. (2.6)

The ellipsis on the RHS denotes the contribution to the action from matter fields. In
these conventions, AdS5 spacetime is a solution to the Einstein equations, in the absence
of matter, for A > 0. It follows then that the cosmological constant required for AdS space
violates eq.(2.4) and thus the weak energy condition, but it satisfies eq.(2.2) as an equality,

thereby meeting the null energy condition.

Secondly, we have assumed above that the linear operator T is diagonalizable and that its
eigenvalues are real. These properties do not have to be true, since T}, unlike, T},,, need
not be symmetric, and moreover since the inner product is Lorentzian (see [63]). However,
for the interpolations we consider, it will turn out that T}’ is indeed diagonalizable with

real eigenvalues and therefore we will not have to consider this more general possibility.

2.3 Outline Of Procedure

In this section, we will outline the basic ideas that we follow to find metrics with the required
properties that interpolate between the near-horizon attractor region and an asymptotic
Lifshitz spacetime. We will illustrate this procedure in the context of one concrete example,
which we will take to be Bianchi Type II. Holography in this particular Bianchi attractor
was recently studied in depth in [46].

The metrics we consider in general have the form

ds® = —gu(r)dt® + ger (r)dr® + > gij(r,a’)da'da’. (2.7)
1,7=1,2,3

In the Bianchi attractor region which occurs in the deep IR, for r — —oo, the metric takes
the form,
dsQB = —2Pr e 4+ dr? + Z em”(wi)Q, (2.8)
i=1,2,3
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where w’ are one-forms invariant under the Bianchi symmetries generated by the Killing
fields &;, i = 1,2,3 (More generally, off-diagonal terms are also allowed in eq.(2.8) but we

will not consider this possibility here.) The commutation relations of the Killing vectors 2

[6,&] = CL& (2.9)
give rise to the corresponding Bianchi algebra.

In the far UV on the other hand, which occurs for r — oo, the metric becomes of Lifshitz
form,
ds? = — e 4 @r? 4 2P Z da?. (2.10)
i=1,2,3
Here for simplicity, we only consider the case where all the spatial directions have the same
scaling exponent, (3, more generally this exponent can be different for the different spatial
directions. Also, to avoid unnecessary complications we take the exponent in the time

direction B in the Lifshitz region to satisfy the condition

Be = B, (2.11)

where f3; is the value for the exponent in the Bianchi attractor region, eq.(2.8). The metric

eq.(2.10) then becomes

ds? = —e®Prqt? + dr? + e2Pr Z (dz")?. (2.12)
i=1,2,3

The metric which interpolates between these two regions is taken to have the form

1 — tanh 1 + tanh
= (R sy (SRR ast, (2.13)

where ds% and ds? are defined in eq.(2.8) and eq.(2.10) respectively. o is a positive constant
which characterizes how rapid or gradual the interpolation is. One can show, and this will
become clearer in the specific examples we consider below, that as long as o is sufficiently
big the metric becomes of the Bianchi attractor form as » — —oo. Also, for sufficiently large
o the metric becomes of Lifshitz type as r — oo. More correctly, for this latter statement
to be true the limit » — oo must be taken keeping the spatial coordinates z%,i = 1,2,3

fixed. We will also comment on this order of limits in more detail below.

We should emphasize that we do not obtain the interpolating metric in eq.(2.13) as a
solution to Einstein’s equations coupled to suitable matter. Instead, what we will do is to
construct from the metric, via the Einstein equations, a stress energy tensor for matter and

then examine whether this stress energy satisfies the energy conditions.

2The Bianchi classification is described in [64], [65], including the symmetry generators and invariant
one-forms; also see A.1 of Appendix.

10
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Let us mention that one can try to obtain a full interpolating solution using simple gauge
field matter content. For example, the metric which interpolates between these two regions

may be taken to have the form
ds® = f(r)ds% + g(r)ds?, (2.14)

where ds% and ds? are defined in eq.(2.8) and eq.(2.10) respectively.

The gauge field may be taken to be of the form

A=A PTh(r) + \/ATt Pk (r)dt. (2.15)

Here f(r),g(r),h(r) and k(r) are appropriate interpolating functions such that the geometry
interpolates from Lifshitz in the UV to respective Bianchi attractor in the IR. However, the
resulting differential equations are too complicated to solve. However, such a technique is

worthy of further exploration.

Below, we will analyze cases where the interpolation is from attractor geometries of Bianchi
Type 11, II1, V, or VI to Lifshitz geometry. In addition, using a different strategy, we will
also consider the interpolation from Type IX to AdSy x S3.

2.3.1 More Details for the Type 11 Case

Let us now give more details for how the analysis proceeds in the Type II case.

It will be convenient in the analysis to take the Bianchi attractor geometry and the Lifshitz
geometry which arise in the IR and UV ends of the interpolation as solutions of Einstein’s
equations coupled to reasonable matter. This ensures that the energy conditions will be
satisfied at least asymptotically. In fact the Bianchi attractor geometry and the Lifshitz
geometry can both arise as solutions in a system of gravity coupled to a massive Abelian

gauge field in the presence of a cosmological constant, with an action of the form,
5. Lo 1 59

The Type II solutions which arise from this action were discussed in [34] and we will mostly
follow the same conventions here. The invariant one-forms for Type II are given by

wh=dy —zdz, w?=dz, w=du. (2.17)

The solutions of Type II obtained from eq.(2.16) were described in eq.(4.2), (4.3) and (4.10),
(4.11) in [34]. The metric and gauge field in these solutions take the form

dsQB - R? [dr2 e 62(62+53)T(w1)2 + 6262”@12)2 + 6263r(w3)2] (2.18)

11
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and

A=A Pt (2.19)

These solutions are characterized by five parameters, R, S;, B2, 83, A;. The equations of
motion give rise to five independent equations which determine these parameters in terms
of m?, A. For our purposes it will be convenient to work in units where R = 1 and to use the

equations of motion to express f, 81, B2, A¢ and m? in terms of A. The resulting relations

are,
B =, (2.20)
B—A+u)v
A _ : 2.21
B2 = B3 36_8SA (2.21)
m? = %(6 — A +u), (2.22)
—11v% + 3u
A= —o (2.23)
where

u=1/—63+ 10A + A2,

—81+ 19A + 3u] 2
v = .
22

Demanding that Ay, m2, B, B2, B3 be positive and u be real, we get A > %. The Lifshitz
metric which we are interested in near the boundary also arises as a solution from the action

in eq.(2.16). The metric and gauge field in this solution take the form

ds% _ er _ eQﬁtrdtQ + eQBrde + eQBrdyQ + eQBrdZQ (2.24)
and
A=A P dt. (2.25)

The solution is characterized by three parameters, [, 3, A; which are determined in terms
of m? and A. For our purposes it is more convenient to express 3, A; and m? in terms of 3

and A. These relations, which arise due to the equations of motion, are

55 (-p+ s ran)), (2.26)
m? = gﬂt (—@ +1/ =887 + 9A> , (2.27)
Ay = g (10 - %\/—8@2 - 9A> . (2.28)

In order to ensure that 3, 4, m? are all nonnegative, we must have 8; > 0, 82 < A < 1252

We will consider Lifshitz metric where these conditions hold.

12
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The Type II and Lifshitz solutions we consider correspond to the same value of the cosmo-
logical constant. It will also be convenient to take the exponent 3; along the time direction
in the Type II and Lifshitz cases to be the same as discussed in eq.(2.11). This will mean

that the mass parameter m? for the Type II and Lifshitz cases will be different in general.

A negative cosmological constant (in our conventions A > 0 ) violates the weak energy
condition, thus in studying the violations of this condition it is useful to separate the
contributions of the cosmological constant from the matter in the stress energy. Since
the two asymptotic geometries we consider arise as solutions with the same value of the
cosmological constant we can consistently take the cosmological constant to have this same
value throughout the interpolation. Using the Einstein equations we can then define a
matter stress tensor, minus the cosmological constant, and then study its behavior with
respect to the weak energy condition. The null energy condition, in contrast to the weak
energy condition, does not receive contributions from the cosmological constant, and so
for studying its possible violations such a separation between matter and the cosmological

constant components is not necessary.

We now turn to the full interpolating metric. As discussed in the previous subsection this

takes the form

ds® = dr® — 27" dt?

N 1-— tanh o 28 <1 + tz;nh ar> eQBT] J?

()
. <1 - tanh m“> 2(Ba-+B3)r <1+L2nhmﬂ> eQBT] dy? (2.29)
()

N 1-— tanh or 2,2(B2+B3)r 6252”) n <1 + tanh 07') 62571 52

2

We note that in the limit of » becoming very large, the above may be approximated by

d82 _ er _ eQBtrdtZ + [62(63—0)7’ + 6257"} de
4 [ez(ﬁgww)r 4 62;%] dy?

) (2.30)
+ [xzez(ﬁzws—o)r 1 2P0 | emr} d22
— 22 AB= (dy @ dz + dz @ dy).

To ensure that this metric approaches the Lifshitz geometry as r — oo, with exponentially
small corrections, the terms arising from the Lifshitz metric, eq(2.24), must dominate in

every component of the metric. It is easy to see that this condition is met when

o> By + fs. (2.31)

13



Chapter 2

Similarly, one finds that the conditions requiring the metric to become of the Bianchi II

type, eq.(2.18), in the IR are also met when o satisfies the condition in eq.(2.31).

Actually, the » — +oo limit is a bit subtle. As one can see from the coefficient of the dz?
and the (dy ® dz + dz ® dy) terms in eq.(2.30), eq.(2.31) ensures that the metric becomes of
Lifshitz type when r — oo, as long as x is constant, or at least for |z| growing sufficiently

slowly in this limit. This is in fact the limit we will consider in our discussion.

Taking the limit in this way is well motivated physically. It is quite reasonable to place the
dual field theory whose properties we are interested in studying in a box of finite size. In
fact this is always the case in any experimental situation. In such a finite box the range of
the spatial coordinates is finite ensuring that the r — oo limit is of the required type. As
long as the box is sufficiently big, compared to the other scales, e.g. the temperature, the
properties of the system, e.g. its thermodynamics, do not depend in a sensitive way on the

size of the box.

While the requirement for getting the correct asymptotic behavior imposes a lower bound
on o, eq.(2.31), meeting the energy conditions give rise to an upper bound on o, as we will
see below. It will turn out that there is a finite region for the allowed values of ¢ between
these two bounds, for the Type II case, and by choosing ¢ to lie in this region an acceptable

interpolation meeting the energy conditions can be obtained.

Energy Conditions for the Type II Interpolation

With the interpolating metric in hand, we can now test the various energy conditions. We

do so numerically.

From the metric, eq.(2.29), we define a stress tensor, assuming that the Einstein equations
are valid. This gives

1
T,uu = R;w - 59;”/3- (232)

(We set k = 8rGy = 1.) This stress energy tensor in turn is separated into a matter and

a cosmological constant contribution. With our conventions, eq.(2.6), we get

A
Ty = 5 9 + T (matter) (2.33)

Combining these two equations gives

1 A
T!Srl?atter) _ ij _ 59;”/3 _ ngj_ (234)

To analyze whether the energy conditions are valid, we first note that owing to the form we

T(matter)u

have chosen for the interpolating metric, eq.(2.29), is block diagonal. Therefore,

14
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its eigenvalues take the simple form

Ao = —% + T}, (2.35)
A= % :—A +T7+ T2 + (T = T3 + 4TE T 5] (2.36)
Ag = % AT T - :(T;" —Tm)? 4 4TmT” (2.37)
Ag = % A TY +T7 + :(Tyy T?)? 4+ 4TZTY é] (2.38)
A= % :—A PTy e - [(1y - 1) azyy) ] . (2.39)

Since we obviously have A1 > A9 and A3 > A4, the criteria discussed in §2 above reduces to

just checking whether the following conditions hold:

Ao < 0,h2 — Ag >0, A — Ao > 0. (2.40)

For the numerics, we set
A =12 (2.41)

(In R =1 units).

From eq.(2.21) we can now determine (35, f3 and thus the lower bound on o, eq.(2.11), which
turns out to be ojower = 0.5065. As we increase o we find in the numerical analysis that
violations of the null energy condition start setting in around o = 1.05026. The weak energy
condition is not violated before this. Thus, there is a finite interval 0.5065 < o < 1.05,
within which both the correct asymptotic behavior for the metric is obtained and the null

and weak energy conditions are met.

To illustrate this, we consider the case where 0 = 1 in more detail. It turns out that Ay < A4,
where the eigenvalues are defined in eq.(2.35), eq.(2.36), eq.(2.37), eq.(2.38), eq.(2.39).

The plots of A\g and min(A. — \g) = A2 — Ao, are given in fig. 2.1, 2.2. From fig. 2.1 we see
that Ao is always negative. In fig. 2.2 we see that min(\. — \g) > 0 but there is a region
around r ~ 3 where it becomes very small. We have investigated this region further in much
more detail numerically and find that even after going out to arbitrarily large values of x,
min(\, — Ag) continues to be positive in the worrisome range 2 < r < 8. For a fixed value
of r, in this range, as we go out to larger x the value of min(\. — \g) decreases reaching
a minimum value for |x| — oo. For example, the resulting plot for r = 3, as a function
of x, is given in fig. 2.3 where we see that the minimum value obtained for min(A. — Ag)
is positive. For other values of 7 in this range a qualitatively similar plot is obtained as x
is varied with the minimum value of min(A. — A\g) again being positive. As an additional
check, we have analytically computed the value of min(A. — Ag) in the limit where |z| — occ.

In the worrisome region 2 < r < 8 we find that this value is positive. We show this in fig.
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Figure 2.1: Type II 3D plot of Ay (time-like eigenvalue) versus r and x for o =1, A = 12.

2.4 where the limiting value of min(A. — Ag), as |z| — oo, is plotted as a function of r. We
see that as r increases, this limiting value at first decreases, reaching a minimum at around
r = 5, and then increases again. The minimum value is clearly positive showing that the

null energy condition is indeed met everywhere in the interpolating metric.

Let us end this section with one comment. Because of the upper bound on o, which arises
in order to meet the energy conditions, the metric cannot approach that of Lifshitz space
arbitrarily rapidly. The reader might worry that the values of ¢ allowed by this bound are
too small to be physically acceptable. To explain this, consider as an example the more
familiar case of asymptotically AdSs spacetime. Since a domain wall in AdS5 ought to carry
positive energy density and pressure, one might expect that the rate at which the metric
of such a solution approaches AdSj5 is governed by the normalizable metric deformations of
AdSs5, and should not be slower. A similar type of argument should also apply to Lifshitz
spaces. However, this expectation need not be valid if other fields are also turned on, since
these fields can source the metric, and this can lead to a fall-off slower than that expected

from the normalizable mode of the metric itself.

2.4 Types VI, V and II1

We now turn to constructing metrics which interpolate from Bianchi Types VI, III and V
to Lifshitz. Since our discussion will closely parallel that for Type II above, we will skip
some details. We will find that an analysis along the lines above will successfully lead to a
class of interpolating metrics for Type VI and Type III, meeting the weak and null energy
conditions. However, for reasons which will become clearer below, we do not succeed in

finding such an interpolating metric for Type V.
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2
minf e =Ly

Figure 2.2: Type II 3D plot of min(A. — A\g) versus r and z for o =1, A = 12.

min (A. — Ag)

T [ S S S S
- 200 —-100 100 200

X

Figure 2.3: Type II plot of min(A. — A\g) versus z at r =3 for 0 =1, A = 12.
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Figure 2.4: Type II list plot of min(A. — A\g) versus r as © — 400 for for o =1, A = 12.

The algebra for a general Type VI spacetime is characterized by one parameter ‘h’. Killing

vectors and invariant one-forms for Type VI are given in Appendix A of [34] (see also [65]),
& = 8y, & = 0., &3 = Or + yay + hz0, (2.42)

and
w=e"dy, w?P=e""dz, Wi=dz. (2.43)

These depend on the parameter h.

The Type V algebra is a special case of Type VI, and is obtained by setting h = 1. The
Killing vectors and invariant one-forms can then be obtained from eq.(2.42) and eq.(2.43)
by setting h = 1. Similarly the Type III algebra is also a special case obtained by setting

h = 0, with the Killing vectors and one-forms given by setting h = 0 in the equations above.

To keep the discussion simple, we restrict ourselves to only considering the case h = —1 for

Type VI, besides also considering the Type V and Type III cases.

The invariant one-forms for Type VI with h = —1 are
wh=e"tdy, w?=¢%dz, w*=dz. (2.44)
Bianchi Type VI attractor solutions, for the case h = —1, were obtained in Section 4.2 of

[34] for a system of gravity coupled with a massive gauge field, with an action eq.(2.16).

The solution has a metric,
dsh = R*[dr® — 07 at? + 27 (w')? 4 277 (w?)? + 257 ()7 (2.45)
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and a gauge field, eq.(2.19), with the invariant one-forms being given in eq.(2.44). As in
the discussion for Type II we will work in R = 1 units below. The exponents 3;, 51, B2, 83

in the solution are then given in terms of A by

Bt = v, (2.46)
o, (HA+A—u
hr=b="—3 " (2.47)
B3 =0, (2.48)
while the mass and A; are
9 2
m* = 3(8 —A+u), (2.49)
—3v’ 4 u
Ay = 2.
t 6—A ) ( 50)

where

u = /=80 + 8A + A2, (2.51)

[—28+5A+ur
V= .

; (2.52)

Demanding that A, m?, B, B1, B2 be positive and u be real, we get A > 6. The Lifshitz
spacetime in the UV is also obtained as a solution of the same system, eq.(2.16). The metric
is given by eq.(2.24) and the gauge field by eq.(2.25). The exponent §;, 3 and A; are given
in eq.(2.26), (2.27) and (2.28) in terms of m?, A. We will take the value of A to be the same
in the IR Type VI and the UV Lifshitz theories. For simplicity we will also take condition
eq.(2.11) to hold so that the exponents along the time direction are the same, accordingly

we have denoted both of them as ; above.

The strategy we now follow is similar to the Type II case. The interpolating metric is given

by eq.(2.13), which when written out in full becomes

ds® = dr? — 2P qe?

n [/1—tanhor n 1+ tanhor 26| g2

i 2 2

(/1 tanh 1 + tanh ; (2.53)
n < z;n 07"> 6251r2m+< + z;n 07"> ezﬁr] iy
N —<1 - tz;nhar) (2ori2e (1 + tz;nhar) €2Br:| 52

As in the Type II case, we again require that the interpolating metric correctly asymptotes
to Type VI in the IR and Lifshitz in the UV. This now imposes the lower bound

o> p1—B=p—p. (2.54)
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We remind the reader again that the r — 400 limit is taken while keeping « fixed to obtain
this bound.

We take A (in R = 1 units) to have the value given in eq.(2.41). The lower bound for ¢ then
becomes, o > 0.0579912. The matter stress tensor is then calculated as given in eq.(2.34)

and we examine its properties with respect to the energy conditions numerically.

The numerical analysis shows that as ¢ is increased violations of the null energy condition
start setting in around o = 1.15993. The weak energy condition is not violated for smaller
values of o. Thus, as in the the Type II case, there is a non-vanishing interval for o
within which the metric has the correct asymptotic behavior and the weak and null energy

conditions are both met.

To illustrate this, consider the case when ¢ = 1, which lies within this interval. The
minimum of the eigenvalues of the spatial eigenvectors turns out to be Ao, where the
eigenvalues are defined in eq.(2.35)—eq.(2.39). The plots of A\g and min(\. — Ag) = A2 — Ag,
are given in fig. 2.5, 2.6, as a function of the r,z coordinates. We see that the qualitative
behavior is similar to that in Type II. A\g is always negative. And Ay — A\ is positive but
there is a worrisome region around r = 5 where this difference of eigenvalues becomes small.
We have analyzed this region more carefully further. One finds that for any fixed r € [4,9]
the minimum value for Ay — \g is attained as |z| — oo and moreover this minimum value
is positive. An analytic expression for this minimum value was also obtained and agrees
with the numerical results. This is shown in fig. 2.7 where this minimum value is plotted
as a function of r and shown to be positive. These results establish that the interpolating
metric eq.(2.53) satisfies both the weak and the null energy conditions when o takes values

within a suitable range.

2.4.1 Type III

Since the analysis follows that of the Type VI case closely we will be more brief for this

case.
The invariant one-forms for Type III, see Appendix A of [34], are given by

wl=e%dy, wr=dz, w=dx. (2.55)

Solutions of Type III for the system described by the action eq.(2.16) exist and have been
discussed in section 4.2.2 of [34]. These take the form eq.(2.45), eq.(2.19) for the metric
and gauge field. The exponents B;, B1, 2, the gauge field 4; and m? (in R = 1 units) are
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Figure 2.5: Type VI 3D plot of Ay (time-like eigenvalue) versus r and = for 0 =1, A = 12.

mini . =lp)

Figure 2.6: Type VI 3D plot of min(A. — Ag) versus r and x for 0 =1, A = 12.
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Figure 2.7: Type VI list plot of min(A. — A\g) versus r as x — +oo for o =1, A = 12.

given by
Bt =, (2.56)
p1 = B3 =0, (2.57)
(=24+A—u
gy = A (2:59)
1
m? = g4 = A+u), (2.59)
—4v? + 2u
Ay = 2.
where

u=+/—8+ A2 (2.61)

vV—8+3A+u
—

v =

(2.62)

Demanding that A, m?, B, B2 be positive and u to be real, we get A > 3. To obtain the
desired interpolation from a Bianchi Type III solution to Lifshitz, we follow the strategy

adopted in case of Type II, VI, above, and consider the following interpolating metric:

ds? = dr? — 2P qe?

n [ /1 —tanhor N 1+ tanhor 261 | g2
_ 2 2

n [ /1 —tanhor o2 1+ tanhor o2 a0 (2.63)
_ 2 2

N '<1 — ta2nh ar) o2 (1 + ta2nh ar) BQBT:| 52
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Figure 2.8: Type III 3D plot of A\ (time-like eigenvalue) versus r and z for o = 0.3, A = 12.

Requiring this interpolating metric to correctly asymptote to Type VI in the IR and Lifshitz
in the UV imposes the following lower bound: o > (85 — B. We choose A =12 in R =1
units. The lower bound for o then becomes, o > 0.0456046.

Furthermore, we numerically find that violations of the null energy condition start setting
in around ¢ = 0.40108. The weak energy condition is not violated for smaller values of
o. Thus, we find once again that there is a range of values for o for which the metric
asymptotes to the required forms and for which the weak and null energy conditions are

preserved.

To illustrate this, we choose ¢ = 0.3 which lies in the allowed region. The plots of A\g and
min(A. — Ag) = A2 — Ao, where \g and \g are as defined in eq.(2.35) and eq.(2.37), are given
in fig. 2.8 and fig. 2.9. We see that Ag is always negative. And Ay — \g is positive but this
difference becomes small near r ~ 10 — 15 as ¢ — —oo. We examined this region in more
detail and find that for any fixed r in this region Ao — )¢ attains its minimum value as x is
varied for x — —oo and this minimum value is indeed positive. An analytic expression for
this minimum value was obtained, and agrees with the numerical analysis. In fig 2.10 we
plot this minimum value, attained when x — —oo, for Ay — Ao against r. We see that the
minimum value is positive. These results establish that the interpolating metric eq.(2.63)
in the Type III case also meets the weak and null energy conditions for a suitable range of

o values.
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Figure 2.9: Type III 3D plot of min(\, — Ag) versus r and x for 0 = 0.3, A = 12.
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Figure 2.10: Type III list plot of min(\, — Ag) versus r as z — —oo for 0 = 0.3, A = 12.
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2.4.2 TypeV
The invariant one-forms in the Type V case are

w'=e"dy, w?=e"dz, w=dux. (2.64)

Solutions of Type V for the system, eq.(2.16) take the form eq.(2.8), eq.(2.19). The

parameters, B¢, f1, B2, m?, A, are given by

By = V=4 A, (2.65)

pr=p02=03=0, (2.66)
m? =0, (2.67)
2(6—A)

Demanding that A;, 5; be positive and real respectively, we get A > 6. Starting from this
metric in the IR one would like to consider a metric of the form eq.(2.13) which interpolates
to Lifshitz space in the UV. However, it turns out that in this case interpolations of the the

type eq.(2.63) violate the null energy condition for all values of o.

The failure of the interpolating metric to work in this case can in fact be understood
analytically. It is tied to the fact that the Type V solution has one important difference
with the other kinds of solutions, Type II, VI, III, studied above. Here, it turns out that

T,Smatter)“ corresponding to a space-like eigenvector, min(\.),c =

the smallest eigenvalue of
1,2,3,4, is exactly equal to the eigenvalue corresponding to the time-like eigenvector, Ag,
and thus the null energy condition eq.(2.2) is met as an equality. This case is therefore

much more delicate.

In fact, a perturbative analysis reveals that once the Type V metric is deformed by consid-
ering the full interpolating metric given in eq.(2.63), the splitting which results as r — —oo
goes in the wrong direction, making min(A.) — Ag < 0 for any value of o, leading to a

violation of the null energy condition.

2.5 From Type IX To AdS, x S3

The symmetry algebra for Bianchi Type IX is SO(3) and its natural action is on a compact
space corresponding to a squashed S3. Therefore, for Type IX it is natural to explore
interpolations going from a Type IX attractor geometry to AdSs x S? instead of AdSy x R?
or Lifshitz.

The strategy we use for finding such an interpolation is different from what was used in
the cases above. It is motivated by the fact that the SO(3) symmetry for Type IX is a
subgroup of the symmetries of S, SO(3) x SO(3). The interpolating metric we consider
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will therefore be obtained by introducing a deformation parameter which allows the spatial
components of the metric to go from that of a squashed S in the IR to the round S? in
the UV. This is somewhat akin to what was done in [34] to find an interpolation between
Type VII and Type 1.

The invariant one-forms for Bianchi Type IX are

wh = —sin(z) dz + sin(z) cos(z) dy,
w? = cos(z) dzx + sin(x) sin(z) dy,

w3 = cos(z) dy + dz.

One finds that a Type IX attractor solution arises in a system of Einstein gravity with the

cosmological constant A, coupled to two gauge fields, Ay, Ay with action

S = /de\/—g (R +A - %Ff - iFg - %m%ﬁ) : (2.69)

Note that A is massless while A has (mass)? = m?2.

In this solution the metric is given by
ds* = R?[dr® — 2Pmdt® + (wh)? + (w2 + X (W) (2.70)
and the two gauge fields are
Al = A PTdt, Ay = JAgw® = /A, (cos(x)dy + dz). (2.71)

Note that A in eq.(2.70) is the deformation parameter we had mentioned above.

In R = 1 units, the equations of motion which follow from eq.(2.69) give rise to the following

relations,
2(—A+ 2A + 4)
2

=-2 A = 2.72
" A =T s (2.72)

1

—A+2A+3]2
Ag=1-)X, B = [%} . (2.73)

These relations can be thought of as determining Ay, A, B, A in terms of A and m?.

Note that the conditions Ag, A; > 0, A > 0 imply, from eq.(2.72) and eq.(2.73), the relation
A< 1. (2.74)

It is easy to see that for A = 1, this solution becomes?® AdSy x S3, and for any other value
of A between 0 and 1, it is Type IX.

3We note that (w')? 4+ (w?)? + (w?)? may be obtained as the pullback of the standard Euclidean metric
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Let us make one comment before proceeding. Eq.(2.72) and Eq.(2.73) give four relations
and at first it might seem that they determine the four parameters A;, As, A\, 5; and therefore
determine the solution completely. However, since we have set the radius R = 1, this is
not the case and the solution in fact contains one undetermined parameter. This becomes
clear if we consider the A = 1 case, where A; = 0 and the massive gauge field vanishes.
The resulting solution is AdSy x S which is the near-horizon extremal RN solution. This
solution has one free parameter, which we can take to be A;, the value of the massless gauge
field which determines the electric field of this gauge field. Or we can take it to be R. In
the interpolation below, we will take the free parameter to be R, and set R = 1, keeping its

value fixed as the radial coordinate r varies.

It turns out that for the solution given above in eq.(2.70), eq.(2.71), eq.(2.72), eq.(2.73),
for any given A, the null energy condition is satisfied but as an equality, with the smallest

eigenvalue of a space-like eigenvector of {matter)u

, min(\.), being equal to the eigenvalue
for the time-like eigenvector, Ag. This is analogous to what we saw above in the Type V
case. However, here because the symmetries involved are different, we can choose another

kind of interpolation, as mentioned in the beginning of this section.

We do this by taking A to be a function of r of the form

(2.75)

AMr)=C+(1-0) <1+V“7nh(‘””)>

2

where C, and o are constants, with 0 < C' < 1, to meet eq.(2.74). We find that the
degeneracy between min(\.), Ag is now lifted. Unlike the Type V case though, this lifting
occurs so that min(\.) — \g > 0, if o is sufficiently small, thus preserving the null energy

condition, eq.(2.2). If o becomes bigger than a critical value, violations of the NEC set in.

For example, for the choice of A = 12, and C = 0.5 we find that the energy conditions are
met for a range of o up to o¢iy = 1.82. For 0 < o0 < 1.82 and C' = 0.5 both eq.(2.4), eq.(2.5)
are met, so that the interpolating metric above satisfies the WEC and hence also the NEC.

For C'= 0.5, 0 = 0.5, the results are summarized in fig. 2.11 and 2.12. Fig. 2.11 shows that
Ao satisfies the condition Ao < 0. And fig. 2.12 shows that min(A. — \g) > 0. As r — +o0
the interpolation approaches a solution of the type considered in eq.(2.70), eq.(2.71), and
the value of min(\. — \g) — 0. However, we have verified that at both ends, r — +o0,
min(\, — Ag) approaches zero from above so that the NEC continues to hold. Together,
these results imply that T, V(mm”“ satisfies the weak energy condition, and therefore also

the null energy condition.

on R* (with coordinates W, X,Y, Z) under the following S® embedding:

_ z y+z) . (g) (y+z)
W—cos<2>cos( 5 , X = cos 5 ) sin 5 ,

stin(g)cos(y;'z), Z:sin(g)sin(y2z).
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Figure 2.11: Type IX 3D plot of A\ (time-like eigenvalue) versus r and x for C = 0.5, 0 =
0.5, A =12.

0.3

min{ Ly —ip 1”' K

Figure 2.12: Type IX 3D plot of min(\. — Ag) versus r and = for C = 0.5, 0 = 0.5, A = 12.
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2.6 C-function

In this section, we investigate a large class of geometries of the form
ds? = —gu(r)dt* + dr? + gi(z", r)da’da? (2.76)

which interpolate between two Bianchi attractor spacetimes. The Bianchi attractors arise
at the UV and IR ends, r — 400 respectively, where the geometry takes the scale invariant
form, eq.(2.8), with the exponents /3, §; being constant and positive. The UV and IR ends
are defined by the redshift factor, g, which decreases from the UV to the IR.

We find that as long as the matter sourcing the geometry satisfies the null energy condition,
the area element of the submanifold spanned by the z coordinates (at constant t,r)
monotonically decreases with r, obtaining its minimum value in the IR. For a Bianchi
attractor, eq.(2.8), the area element is proportional to e2i B and diverges in the UV,
r — 00, while vanishing in the IR, r — —oo. The only exception is when the exponents
f3; all vanish, as happens for example in AdSy x R3 space, in which case the area element
becomes a non-zero constant. We also find an additional function, which we will refer to
as the C-function below, which is monotonically decreasing from the UV to the IR. For an
AdS attractor, this function attains a constant value and is the central charge. For other
Bianchi attractors meeting a specific condition, given in eq.(2.93) below, this function also
flows to a constant in the near-horizon region. More generally, when this specific condition
is not met, the function either vanishes or diverges as r — 4o00. All of these results are
most easily derived by applying Raychaudhuri’s equation to an appropriately chosen set of
null geodesics in the geometry, eq.(2.76).

Let us note that the flows we study include interpolations between two AdS spacetimes
which at intermediate values of r can break not only Lorentz invariance but also spatial
rotational invariance and translational invariance. As long as the UV and IR geometries are
AdS, our results imply that the IR central charge must be smaller than the UV one. Our
results therefore lead to a generalization of the holographic C-theorem for flows between
conformally invariant theories which can also break boost, rotational and translational
symmetries. This is in contrast to much of the discussion in the literature so far, which has

considered only Lorentz invariant flows.

Besides the area element and the C-function mentioned above, and of course monotonic
functions of these, for example, powers of the area element or the C-function, we do not
find any other function which in general would necessarily be monotonic as a consequence
of the null energy condition. As was mentioned above, both the area element and the
C-function do not in general attain finite non-vanishing values in the asymptotic Bianchi
attractor regions. This suggests that for Bianchi attractors in general, no analogue of a
finite, non-vanishing, central charge can be defined which is monotonic under RG flow. This

conclusion should apply for example to general Lifshitz spacetimes (see also a discussion of
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these cases in [66]). When the Bianchi attractor meets the specific condition of eq.(2.93),
the C-function does become a finite constant and the analogue of the central charge can
be defined. Understanding this constant in the field theory dual to the Bianchi attractor
would be a worthwhile thing to do.

2.6.1 The Analysis

We now turn to describing the analysis in more detail. Our notation will follow that of
[67], Section 9.2. The analysis is also connected to the discussion of a C-function in [68].
A nice discussion of the C-function in AdS space can be found in Section 4.3.2 of [69]. For
discussions of renormalization group flows in the context of the AdS/CFT correspondence,
see [70, 71, 72, 73, 74]. The earliest proofs of holographic C-theorems appear in [75], [76],

and our strategy is a generalization of the one employed there.

We start with a spacetime described by the metric, eq.(2.76), and consider a 3-dimensional
submanifold spanned by the z¢ coordinates for any fixed 7, t. Next, we consider a family
of null geodesics which emanate from all points of this submanifold. If n® is the tangent
vector of the null geodesic, with a taking the values a = t,r,i = 1, 2,3, then the geodesics
we consider have n’ = 0 so that they correspond to motion only in the radial direction.
Both the radially in-going and out-going families of this type form a congruence. To arrive
at our results, it is enough to consider any one of them and we consider the radial out-
going geodesics below. The time-like component of the vectors in this congruence, ng, is a
constant which we can set to unity,

Then for the radially outgoing geodesics

dr 1
L A 2.78
D> i (2.78)

where A is the affine parameter along the geodesic.

Now we take the tensor field
Bab = Vbna (2.79)

and consider its components for a,b =i,j = 1,2,3. In the notation of [67], this gives us the

components of By Tt is easy to see that

10,9
Bij = —Ffjnc = 5 Gir

(2.80)

and thus B;; is symmetric so that the twist of the congruence vanishes. The expansion of

the congruence, denoted by 0, is then

1 g¥ 1
0=-0,g;;—— =0,(InA)—, 2.81
59 = (In A) o (2.81)
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where we have introduced the notation
A = /det(gi5) (2.82)

to denote the area element of the hypersurface spanned by the z? coordinates for any

constant r,t.

From eq.(2.81) and eq.(2.78) we get that

do 1 OrInA
— = Oy . 2.83
dA gt < \ 9tt ) ( )

Raychaudhuri’s equation then gives

do 1
e —302 — 6ap0™ — Regnn (2.84)
since the twist @y, = 0. Note that the coefficient of the first term on the RHS is % and not

% since we are in 4 + 1 dimensions and not 3 + 1 dimensions.

If the matter sourcing the geometry satisfies the null energy condition, the Ricci curvature
satisfies the relation R.qn°n? > 0, leading to the conclusion from eq.(2.84) that % < 0.

From eq.(2.83), this in turn leads to

d, <a, lnA> <. (2.85)
N

In the UV, r — o0,

d,In A -
;tt =Y Bie >0 (2.86)

where ;, 5; are the exponents corresponding to the UV attractor. It then follows from

eq.(2.85) that for all values of r, % > 0, and thus

Oy InA > 0. (2.87)

This leads to our first result: the area element A, defined in eq.(2.82), decreases monotoni-
cally from the UV, r — oo, to the IR, r — —o0.
Raychaudhuri’s equation, eq.(2.84) also leads to the conclusion that

o 1
ot 302 <0, (2.88)

if the matter satisfies the null energy condition. From eq.(2.81), eq.(2.83) this leads to

1/3
o, (%) <0. (2.89)
tt
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A monotonically decreasing function from the UV to the IR is therefore given by

_ Vit ’
C= <W> . (2.90)

For a Bianchi attractor with exponents 3, 3;, C' becomes

cBe-Byr\®

B = ;zﬁ (2.92)

where we have defined

The overall power of 3 in the definition of C, eq.(2.90), is chosen so that in AdS space,
where 8; = B; and C' is a constant, it agrees with the usual definition of the central charge
up to an overall coefficient. More generally, C also becomes a constant for any Bianchi

attractor meeting the condition

- 1
f=p=535 (2.93)

and now takes a value )
C x — (2.94)

(8%
However, for the general case of a Bianchi attractor which does not meet the condition in
eq.(2.93), C does not attain a constant value. In such situations, for C' to be monotonically
decreasing towards the IR or constant, we need (3; — 3) > 0. Thus, we find that if the
attractor arises in the IR, then our C vanishes. On the other hand, if the attractor arises
in the UV, it diverges.

2.7 Comments and discussions

In this chapter, we constructed a class of smooth metrics which interpolate from various
Bianchi attractor geometries in the IR to Lifshitz spaces or AdSs x S? in the UV. We did
not show that these interpolating metrics arise as solutions to Einstein gravity coupled with
suitable matter field theories. However, for Bianchi Types II, VI (with parameter h = —1),
IIT and IX, we did show that were these geometries to arise as solutions to Einstein’s
equations, the required matter would not violate the weak or null energy conditions. It
is well known that the Lifshitz spaces (which are in fact attractors of Bianchi Type I) or
AdSy x 83 geometry in turn can be connected to AdSs in the ultraviolet, with no non-
normalizable deformation for the metric being turned on in the asymptotic AdSs region.
Thus, our results establish that there is no barrier, at least at the level of energy conditions,
to having a smooth interpolating metric arise as a solution of the Einstein equations sourced

by reasonable matter, which connects the various Bianchi classes mentioned above with
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asymptotic AdS5 space. We should mention here that for Type VII geometries, which were
not investigated in this chapter, solutions with reasonable matter which interpolate from

the attractor region to AdSy x R3 or AdS; are already known to exist [34].

The absence of any non-normalizable metric deformations in the asymptotic AdSs region
in our interpolations suggests that the Bianchi attractor geometries can arise as the dual
description in the IR of field theories which live in flat space. The anisotropic and homo-
geneous phases in these field theories, described by the Bianchi attractor regions, could
arise either due to a spontaneous breaking of rotational invariance or due to its breaking by
sources other than the metric in the field theory. We expect both possibilities to be borne
out. For spin density waves, which correspond to Type VII, indeed this is already known
to be true [33, 34].

Finding such interpolating metrics as solutions to Einstein’s equations is not easy, as was
mentioned in the introduction, since it requires solving coupled partial differential equations
in at least two variables. We hope that the results presented here will provide some further
motivation to try and address this challenging problem. Perhaps it might be best to first
look for supersymmetric domain walls interpolating between different Bianchi types, since

for such solutions, working with first-order equations often suffices.

We also note that our smooth interpolating metric which interpolates from Bianchi Type
V to Lifshitz failed to satisfy the null energy conditions. Our failure in this case may be
due to the restricted class of functions we used to construct the interpolating metrics or it
might suggest a more fundamental constraint. We leave a more detailed exploration of this

issue for the future.

Towards the end of the chapter, we explored whether a C-function exists for flows between
two Bianchi attractor geometries. As long as the matter sourcing the geometry meets the
null energy condition, we found that a function can be defined which is monotonically
decreasing from the UV to the IR. In AdS space, this function becomes the usual central
charge. More generally though, unless the Bianchi attractor meets a specific condition
relating the exponents 3;, 8y which characterize it, the function we have identified does not
attain a finite, non-vanishing constant value in the attractor geometry. The absence of a
general monotonic function which is non-vanishing and finite in the attractor spacetime
suggests that no analogue of a central charge, which is monotonic under RG flow, can be
defined in general for field theories dual to the Bianchi attractors. For flows between AdS
spacetimes, on the other hand, our analysis implies that the central charge decreases even

under RG flows which break boost, rotational and translational invariance.
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Chapter 3

Bianchi III attractor in Gauged
Supergravity

3.1 Introduction

In the last chapter, we saw how the Bianchi type metrics can be shown to numerically
interpolate to Lifshitz or AdSs x S from which they can be connected to AdSs [77].
In particular, we have been able to show that the matter sourcing these interpolating
geometries obeys reasonable energy conditions. This provides some evidence towards the

expectation that they are attractor geometries.

The attractor mechanism has been thoroughly studied for extremal black holes in su-
pergravity theories [78, 79].! Originally studied for supersymmetric black holes, it was
understood later that the attractor mechanism is a consequence of extremality rather than
supersymmetry [82], and has been shown to work for extremal non-supersymmetric black
holes [83, 84]. Recently much progress has been made towards the generalization of attractor
mechanism for gauged supergravity theories [85, 86, 87, 83, 89, 90, 91, 92, 93, 94, 95]. The
simplest Bianchi type I geometries such as Lifshitz geometries have already been embedded

in gauged supergravity [96, 97].

A prescription fairly general enough to capture the essential features of homogeneous
geometries as generalised attractor solutions of gauged supergravity was given in [89]. The
generalised attractors are defined as solutions to equation of motion when all the fields and
curvature tensors are constants in tangent space. These solutions are characterised by con-
stant anholonomy coefficients and are regular by construction. Following this prescription
some of the Bianchi type geometries were embedded in five dimensional gauged supergravity

[95].

The generalised attractor solutions existed at critical points rather than an absolute min-

!See [80, 81] for recent reviews on the subject.
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imum of the attractor potential. The stability of such solutions for small perturbations
of the scalar fields about the attractor value were studied [94]. By stability, we mean an
investigation on the response of a system subject to linearized perturbations of the fields
about their fixed point values. If the perturbations are regular as opposed to being divergent
when one approaches the fixed point, then it is a stable attractor. There is also the notion
of stability as described by the B.F. bound [98, 99]. However, we do not discuss this here.

It was found in [94], that the stress energy tensor in gauged supergravity depends on
linearized scalar fluctuations due to the interaction terms. Therefore, for back-reaction to
be small as one approaches the attractor geometry, the scalar fluctuations are required to
be regular near the horizon. For the solutions constructed in [94, 95], the scalar fluctuations
about the critical values were regular near the horizon only when the Bianchi geometries
factorized as AdSs x M, where M is a homogeneous space of dimension three. The factorized
geometries have the unphysical property that the entropy does not vanish as the temperature

goes to zero.

In this chapter, we seek to construct interesting class of Bianchi type solutions which do
not factorize and are stable under linearized scalar fluctuations. Our strategy is to rely on
the conventional wisdom of the physics of stable attractor points for extremal black holes.
Namely, there are two sufficient conditions for the attractor mechanism [84]. First, there
must exist a critical point of the effective potential. Second, the Hessian of the effective
potential evaluated at the solution must have positive eigenvalues. These two conditions
are always met by supersymmetric solutions. For non-supersymmetric extremal black hole

solutions the above two conditions are sufficient to guarantee a stable attractor.

Keeping the above strategy in mind, we construct a new magnetic Bianchi type III solution
in Einstein-Maxwell theory with massless gauge fields. We show that it can be embedded in
U(1)r gauged supergravity via the generalised attractor procedure. We find that there are
a large class of type III solutions that exist at a critical point corresponding to a minimum
of the attractor potential. We do a linearized fluctuation analysis of the scalar field about
its attractor value. For the scalar fluctuations sufficient conditions for a stable attractor
discussed in the above paragraph guarantees the existence of a solution which dies out at
the horizon. We then determine the gauge field and metric fluctuations that are sourced by
scalar fluctuations. We find that the simplicity of the solution causes the source term in the
gauge field fluctuations to vanish. Hence there are no gauge field fluctuations sourced by
the scalar fluctuations in this case. As a result the metric fluctuations are sourced purely
by scalar fluctuations. We solve the equations for the metric fluctuations with the source
terms and show that they vanish as one approaches the horizon. Thus, the type III example

we have constructed is a stable attractor.

The results of the stability analysis are as follows. The Bianchi type III metric
2 4284 172 i’ 82 =23 742 | 22B; 722
ds® = —rtdt” + —- +dz” + e dy” + 77 dz (3.1)
T
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which has the scaling symmetries
ot foar, 508, §od, o 3.2
_>a6t’ r—ar, T—T, y—7y, z—)aﬁt, (3.2)

is a generalised attractor solution in gauged supergravity. The solution exists at a critical

point ¢, such that

avattr -0 32Vattr
0 g, 7 09 |y,

where Vg, is the attractor potential. The above conditions are expressed in terms of some

>0, (3.3)

free parameters in gauged supergravity that are not fixed by any symmetries and are met
for a wide range of values. Thus a class of solutions exists at a minimum of the attractor
potential and the Hessian has a positive eigenvalue. The scalar field fluctuations d¢ about

the attractor values are of the form
S~ A>O0. (3.4)

The scalar fluctuations are regular near the horizon # — 0. All the metric fluctuations 7,

are of the form

Ypv gpu'ﬁA (35)

and are regular near the horizon. Thus, we have a class of Bianchi III solutions which are
stable with respect to linearized fluctuations of scalar, gauge field and metric fluctuations
about the attractor value. The solution is an example of a stable Bianchi attractor in

gauged supergravity.

Given that the solution is a stable Bianchi attractor, we also investigate its supersymmetry
properties. The study of supersymmetry of Bianchi attractors is very interesting since it
can lead to solutions such as domain walls interpolating between Bianchi attractors and
AdS. Besides, supersymmetry equations are first order differential equations and are often
easier to solve. Earlier studies on supersymmetry of Bianchi type metrics have focused on
the Bianchi I class. The simplest of which is AdS space. In this case, there are two types of
Killing spinors, one which is purely radial and the other which depends on all coordinates
[100, 101]. The radial spinor generates the Poincaré supersymmetries while the other spinor
generates the conformal supersymmetries. The earliest works were on supersymmetric black
string solutions whose near horizon geometries take the form AdSs x H? [102, 103]. The
Supersymmetry of the Bianchi I metrics such as Lifshitz, have also been studied in four
dimensional gauged supergravity [96, 97]. In five dimensional U(1)? gauged supergravity
Bianchi I types such as AdSy x R?, AdSs x R? have been found to be supersymmetric [104].
In the above cases the geometries preserve 1/4 of the supersymmetry and the Killing spinor

equations were solved for a spinor which depended only on the radial direction.

In this spirit, we study the Killing spinor equations of N' = 2, U(1)r gauged supergravity in
the background of the Bianchi type III metric. We choose the radial ansatz for the Killing
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spinor, since it preserves the time translation symmetries and homogeneous symmetries of
the type III metric. However, we find that the radial ansatz breaks all the supersymmetries.
This suggests that the stable type III solution that we have constructed may be a non-

supersymmetric attractor.

The chapter is organised as follows. In §3.2 we construct a magnetic Bianchi type III
solution in Einstein-Maxwell theory with massless gauge fields. Following that, we provide
some background in U(1)r gauged supergravity and generalised attractors in §3.3.1 and
§3.3.2. In the next subsection §3.3.3 we embed the Bianchi type III solution in the U(1)g
gauged supergravity. We discuss the linearized fluctuation analysis of the gauge field, scalar
field and metric in §3.4. We analyze the Killing spinor equation in gauged supergravity
with the background Bianchi type III metric in §3.5. We conclude and summarize our
results in §3.6. We summarize some of the notations and conventions in §B.1. We provide
some details regarding the linearized Einstein equations in §B.2 and list the coefficients that

appear in the metric fluctuations in §B.3.

3.2 Bianchi III solution in Einstein-Maxwell theory

We begin with a quick review of some elements of the Bianchi III symmetry. The Bianchi
classification of real Lie algebras in three dimensions is well known in the literature [105,
106]. There are nine types of such algebras. In three dimensional Euclidean space, Killing
vectors that generate homogeneous symmetries close to form Lie algebras that are isomor-

phic to the Bianchi classification.

The Bianchi III algebra is generated by the Killing vectors X;
X = 8@ Xy =0; X3=0; + @8@ R (3.6)

(X1, X3] = X . (3.7)

The only non trivial Killing vector is the translation in the Z direction that is accompanied
by a unit weight scaling in the g direction. To write a metric which is manifestly invariant

under this symmetry, one identifies the vector fields é; that commute with the Killing vectors
(€, X;] =0. (3.8)

The invariant vector fields for the type III case are
er=¢"0;, é=0;, é&=20;, (3.9)

[61,63] = —&1 ,[61,62) =0, [62,63] =0 . (3.10)

Note that €; and é3 form a sub-algebra. This sub-algebra is generated by the Killing vectors

of the hyperbolic space H? in two dimensions. The two dimensional analogue of the Bianchi
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classification consists of two distinct algebras. One is a trivial algebra with commuting

generators corresponding to R? and the other is the algebra that corresponds to H? [106].

The duals of the é; are one forms w’
w=edy, WwP=d:, WP=di, (3.11)

that are invariant under the type III homogeneous symmetry. The invariant one forms
satisfy the relation
dwt = w' AP (3.12)

The metric written in terms of the invariant one forms
ds} = (1) + (@) + ()2 (3.13)
is manifestly invariant under the homogeneous type III symmetries.

We are interested in five dimensional black brane horizons with homogeneous symmetries in
the spatial directions. These geometries are obtained from gravity coupled to simple matter
in the presence of a cosmological constant and are known as the Bianchi attractors [2, 107].
For the purposes of this article, we construct a simple type III solution in Einstein-Maxwell
theory sourced by a single massless gauge field and a cosmological constant. We take the
type III metric to be of the form

ds? = —i2Praf? + d—fz + ()% + (wh)? 4 #202(w?)? (3.14)

72 ’

where 3y, B2 are positive exponents. For the case 5; = (32, the metric becomes AdS3x EAdSs.
To see this we substitute for the invariant one forms from (3.11) and make the coordinate

transformation & = In p to get,

A2

~9 ~2 A2
@2:(_ﬂ@ﬁ?+£;+f%%%)+ WA (3.15)
72 p

When one performs a Kaluza-Klein reduction of the above solution one gets the AdSs x

E AdSs solution in four dimensions with hyper scale violation [2].

We now construct the Type III solution (3.14) in Einstein-Maxwell theory. The action is of

the form

1
S:/fmﬁmR—ZWU%+A% (3.16)

where A > 0 corresponds to Anti de-Sitter space in our conventions. We are interested in a

magnetic solution and we choose the gauge field to have components along the w! direction
A= Azwt, (3.17)
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where Az is a constant.? The gauge field equations are automatically satisfied with this

ansatz and the independent trace reversed Einstein equations are

Ag—ﬁﬁt(@-i-ﬂt)—i-QA:O,
A3 —6(B3+ B2 +20 =0,

~A2 -3+A=0,
A3 65a(Ba+ Br) + 24 =0 (3.18)
The tt and 22 equations imply
Ba = P (3.19)

and the rest of the equations give the solution

A=1+482, Az3=/-2+4B}7. (3.20)

Thus we have a magnetic type I1I solution sourced by a massless gauge field and parametrized

by B¢, which satisfies the condition
1
B> (3.21)

such that As is real. In the following section, we construct a similar solution in U(1)g

gauged supergravity.

3.3 Gauged supergravity and generalised attractors

3.3.1 Gauged supergravity

In this section, we review essential material in N = 2,d = 5 gauged supergravity relevant
for our purpose. The general supergravity coupled to vector, tensor, hyper multiplets with
a gauging of the symmetries of the scalar manifold and R symmetry is discussed in [108].
We work with the NV = 2,d = 5 gauged supergravity coupled to a single vector multiplet
and a gauging of the U(1)r symmetry [109, 110, 111, 112].

The gravity multiplet consists of two gravitinos z/)z, i = 1,2, and a graviphoton. The vector
multiplet consists of a vector A,, a real scalar ¢ and the gaugini A\;. The vector in the

vector multiplet and the graviphoton are collectively represented by A{L, 1=0,1.

The scalars in the theory parametrize a very special manifold described by the cubic surface
(see for eg [113])
N =Crh!h/hb =1, nl =nl(s). (3.22)

The constants Cr i are real and symmetric. The condition (3.22) is solved by going to a

2 . . .
The notation As is just chosen for convenience.
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basis [109, 110], with h! = \/ggfm:l such that,

N = V28 (¢ =1, (3.23)
where, .
0 _ 1 _
€= €=0. (3.24)

From the definition of the basis, we find that the h! are related to the scalars ¢ in the

Lagrangian through
1o _ ¢27 \[ b (3.25)

It is clear from the scalar parametrization that the only non-zero coefficients for Cy i are
Co11 = V/3/2 and its permutations.

The ambient metric used to raise and lower the index I is defined through

10 0
= In N 2
arg 23h1 8h‘] n |N 1, (3 6)
and takes the form
¢t 0
ary = [0 1| (3.27)
¢)2

The metric on the scalar manifold is obtained from the ambient metric (3.26) through

_ 1l J I __ \/gahl
g{L'y = hxhya[J , h$ = _76¢$ .

(3.28)
Since we only have a single scalar field, using the equations (3.25) and (3.26) we obtain

9(¢9) = =5 - (3.29)

The field content and the various definitions above are identical to the ungauged theory.
The difference in the gauged theory is the presence of a scalar potential. The process of
gauging converts some of the global symmetries of the Lagrangian into local symmetries.
One of the global symmetries enjoyed by the fermions in a N' = 2 theory is the SU(2)g
symmetry. For the case of interest, we consider the gauging of the abelian U(1)g C SU(2)g.
The R symmetry is gauged by replacing the usual Lorentz covariant derivative acting on

the fermions with U(1)r gauge covariant derivative as follows

VA = VN 4 grAL(U)R)SIN;
Vi, = Vb, + grAL(U (1) R)6 1y - (3.30)

We refer the reader to §B.1 for conventions on raising and lowering of the SU(2) indices.

The ¢;; in the covariant derivatives are the usual Kronecker delta symbols and gg is the
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U(1)r gauge coupling constant. The U(1)r gauge field is a linear combination of the gauge
fields in the theory
A (U(N)g) = VIA], (3.31)

where the parameters V; € R are free.3
The U(1)g covariantization breaks the supersymmetry and therefore compensating terms

are added to the Lagrangian for supersymmetric closure [112]. These terms result in the

form of a potential for the scalar fields,

2v2Vp
¢

V(o) = —29%V1[ + ¢2V1] : (3.32)

The potential has a critical point at

P = (ﬁ%)us : (3.33)

The vacuum solution at this critical point is a supersymmetric Anti de-Sitter space with a

cosmological constant V(¢,) = —69%‘/1%53.

The bosonic part of the Lagrangian is

1 1 1
s—1p I Juv
e L=— §R - ZG’IJFMVF H — 59((?)3;“?3“(?
A1
- V(o) + B—CIJKGWPUTFJ,,F,;{,AK (3.34)

616

where ¢ = |/—detg,, and Cr ki are the constant symmetric coefficients that appeared in
the definition of the scalar manifold (3.22).

We also list the various field equations for reference. The gauge field equations are

1
Op(éars F/M) = ——— ] FX (3.35)

2v/6

The scalar field equations are

1, .. 1 69((;5) 1 I
- Iz tg 2| = pv -
70u(é9()0"9) — 5 96 0up0"$ 8¢ L0 F, PP+ V()| =0 (3.36)
and the Einstein equations are
1
RMV - §Rg;u/ = Tuu ; (337)

3When the gauging of R symmetry is accompanied by gauging of a non-abelian symmetry group K of
the scalar manifold, the V; are constrained by f1,V; = 0, where f1, are structure constants of K.
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where the stress energy tensor is

1 1
T = [0 Fu B +V(8) + 59(6)0,00" 6] — [ars FuaFy * + 9(9)0.90,6] - (3.38)

3.3.2 Generalised attractors

We now outline a brief discussion on a class of solutions to the field equations known as
generalised attractors [89]. For a N' = 2,d = 5 gauged supergravity with generic gauging of
scalar manifolds and in the presence of hyper/tensor multiplets, the generalised attractor
equations were shown to be algebraic in [95]. The U(1)r gauged supergravity discussed in
63.3.1 is a special case of the general gauged theory. The relevant field equations which follow
from (3.34) can be simply obtained by setting the tensors, hyperscalars and the coupling
constant associated with gauging of the scalar manifold to zero in the field equations derived
in [95].

Generalised attractors are defined as solutions to equations of motion that reduce to alge-
braic equations when all the fields and Riemann tensor components are constants in tangent
space

¢ = const , ACIL = const , ¢, = const , (3.39)

where a = 0,1,...,4, are tangent space indices. The c,°, referred to as anholonomy

coefficients are structure constants that appear in the Lie bracket of the vielbeins
[€a, €] = Cop'Cc, €q=e€ho, . (3.40)

In the absence of torsion, the spin connections are expressed in terms of the anholonomy

coefficients )

Wabe = §(Cabc — Cach — Cbca) ) (341)

which are constants. Thus the curvature tensor components expressed in terms of the spin

connections as
d

e

— Cufweld (3.42)

d __ e d e
R = ~Wae Wpe + Whe Wq ec

abc

are constants in tangent space. Hence, the generalised attractor solutions characterised by

constant anholonomy coefficients and are regular.

At the attractor points defined by (3.39) the scalar field equation (3.36) reduces to the

condition

avattr ((by A)

56— " (3.43)

4The antisymmetry properties of the spin connection and anholonomy coefficients are w,** = —w,® and
Carl, = —Cpa Tespectively.
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on an attractor potential

1
Vattr (¢, A) = ZGIJF;{VFJW + V(o) . (3.44)

Solving (3.43) gives the critical value of the scalar ¢, in terms of the charges A. The critical
point is a minimum when the Hessian has positive eigenvalues, which is also the condition

for a stable attractor solution [84].

We also list the tangent space generalised attractor equations for the gauge and Einstein

equations for reference. The gauge field equations are
ary(w F7% +wl F7e) =0, (3.45)
where the the field strength is
Fly = eliet(0e6 — Dyet) AL = 5, AL, (3.46)

and the Chern-Simons term vanishes for the Bianchi attractors [95]. The Einstein equations
are
1 attr
Rab — §R77ab = Tab s (3.47)

where
T = Vaur (¢, Ay — arg FLFE . (3.48)

In the following section we solve the algebraic attractor equations and find a Bianchi type

IIT solution.

3.3.3 Bianchi III solution in U(1)r gauged supergravity

We choose the Bianchi type III ansatz as before in eq.(3.14). The gauge field ansatz is also
same as before,

Al—e=aAl | AY= Ay, (3.49)

where we have turned on only the graviphoton I = 0 for simplicity. Similar to the Einstein-
Maxwell case studied in §3.2 earlier, the gauge field equations (3.45) are trivially satisfied
in the U(1)r gauged supergravity as expected.

At the attractor point the scalars are constant. Hence the scalar equations reduce to

extremization of the attractor potential (3.43). The attractor potential has the form

Vattr (0, 307 — 4gRVi(2V2V, + Vig?)) . (3.50)

A) = 2¢(

The second term is the contribution of the potential (3.32). We would like to briefly contrast
the nature of the possible critical points possible from (3.50) as compared to some of the

earlier works [94, 95]. The Bianchi attractors constructed in gauged supergravity were
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attractor solutions such that the critical points of the attractor potential coincided with the
critical points of the scalar potential (3.32). This was a simplification which was possible
because the attractor potential had additional terms due to gauging of the scalar manifold
or with multiple field strengths in the absence of such gauging. For the U (1) case with just
one gauge field considered here, the attractor potential (3.50) does not allow such critical
points for non-trivial gauge fields. It is also important to note that in [95], the Bianchi III
solution could not be obtained from the Bianchi VI solution by taking the limit h — 0

since it resulted in a singular gauge field.?

The scalar field equation then reduces to,

avattr (Qb, A) _ (
o S

In principle, one can solve for ¢ from the above equation. In practice, it is much easier

A3¢° + 4gRVi(V2Vy — Vig?)) =0 . (3.51)

to solve the scalar equation simultaneously with the Einstein equation to get nice compact

expressions.

The independent Einstein equations (3.37) are

2(1+ B3)¢ + A3d” — 4gEVi(2V2Vy + Vig®) = 0,
2(1+ ﬂ25t)¢ + A3o 49%1/1(2\/51/0 +Vi¢®) =0,
2(1 +@)¢+A 4gRV1(2\/§Vb +Vig®) =0 (3.52)
From the ¢ and the 22 equations we get
Pa = Bt - (3.53)
The equations now simplify to
21+ 7)o + A30° — 4gRVi(2V2V0 + Vi6®) =
6876 — A36° — 4gRV1(2V2V) + Vig®) =0 . (3.54)

We solve for As from the above equations to obtain

I —1(; 26 (3.55)

and

(1+463)¢ — 4gxVi(2V2Vy + Vig*) = 0 (3.56)

This equation can be solved together with the scalar equation (3.51) to determine the critical

5The Bianchi VI, algebra has a free parameter h. The Bianchi V algebra is obtained in the limit h — 1,
while the Bianchi III algebra is obtained in the limit h — 0 [105, 106].
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point

1
b= V2GHVVi L B =5 \/1+ 1285 V2V (3.57)
For the gauge field to be real we require

B > % (3.58)

We note that the same condition was obtained for the Type III solution in Einstein-Maxwell
theory (3.21). It is also clear from (3.57) that the condition is satisfied for arbitrary values
of the gauged supergravity parameters gg, Vp, V1.

We now examine the nature of the critical point given by eqgs.(3.57) and (3.55). The Hessian

evaluated at the critical point

PVarr (9, A)| =T+ 85}

7 LT (3.59)

is positive provided we choose

T
<

We choose this condition for 32, since above this bound we also satisfy the general condition

Bt > (3.60)

for a stable attractor solution. In terms of the gauged supergravity parameters the condition
on 37 translates to

gRVe Vit > (3.61)

256
which can be satisfied for a wide range of values for the parameters gr, Vj, V1, since none of
them are constrained in anyway. Thus, for various values of gg, Vj, V1 satisfying (3.61) we
find a class of type III Bianchi metrics as generalised attractor solutions in U(1)g gauged

supergravity.

The attractor potential evaluated at the critical point given by (3.55) and (3.57) takes a

remarkably simple form
Vattrlg. = —(1+57) (3.62)

which will be useful later. To summarize, the type III solution is

di”

d82 _ _,,ﬁ25td£2 + 72_2 + (w3)2 + (wl)Q + fQﬁg(WQ)Q ’
V—1+2p2
Ay = g de = V2RV,
1 7
=B, =51+ IBGRVIVE, 5> <. (3.63)

We have seen that the Hessian of the effective potential evaluated on this solution has
a positive eigenvalue suggesting that it is a stable attractor. In the following section we

provide more evidence by considering linearized fluctuations of the scalar, gauge and metric
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fields about their attractor values and showing that they are well behaved near the horizon.

3.4 Linearized fluctuations about attractor value

In this section, we study the linearized fluctuations of the gauge field, scalar field and metric
about their attractor values. For N' = 2,d = 5 gauged supergravity coupled to vector
multiplets with a generic gauging of the scalar manifold and gauging of R symmetry the
linearized equations were derived in [94]. The corresponding equations for the U(1)g case
that follow from (3.34) can be simply obtained by setting the coupling constant associated

with gauging of the scalar manifold to zero.

The linearized fluctuations about the attractor values are of the following form,

G + €6¢(f) s
Ay + €A, (T)

Guw + €V (7) (3.64)

where € < 1. The attractor values of the scalar field and gauge field are ¢., A, respectively.
We take the near horizon metric g, as the type III Bianchi metric (3.63). We have chosen
all the fluctuations to depend purely on the radial direction 7, since it is this behavior that
is most interesting from the point of view of an RG flow. Also, this is the first thing to
attempt before going to much complicated cases. The magnetic type III solution (3.63)
offers lot of simplifications. In particular, we will see that the source term in the gauge field
fluctuations vanishes and this simplifies the procedure of solving for the metric fluctuations

later on.

3.4.1 Gauge field fluctuations

The equation satisfied by the linearized gauge field fluctuations is

» Oa 5
arglo.VuFy" = - 3;‘] Vu(F*69) (3.65)
Be
where
FT = grsAY — gvsAr (3.66)

and F*7 is the field strength corresponding to the attractor solution. We can simplify
(3.65) using the attractor equation for the gauge field (3.35), where the Chern-Simons term
vanishes and the scalars are independent of spacetime coordinates at the attractor point.

Thus we have
_Oayy

00 |4,

F},LVJ _

a[J‘d)CVM 5 FMVJ(?M(S(b . (3.67)
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For the gauge field ansatz (3.49), the non-trivial field strength component is only along
the F'?Y direction. Since the scalar field fluctuation in (3.64) depends only on the radial
direction, the right hand side of (3.67) vanishes. Hence, there are no gauge field fluctuations
that are sourced by the scalar fluctuations in this case. Thus the linearized fluctuations of

the gauge field about the attractor value satisfy the attractor equation
a[J\d)CVMFfVJ =0. (3.68)

From the point of view of the attractor mechanism in supergravity [78, 79], it is the behavior
of the scalar fields that is most relevant for our case. Hence, we do not consider any
independent gauge field fluctuations here. Thus, we can drop the gauge field fluctuations

for the rest of the analysis in the following sections.

In a general situation as opposed to the simple example considered here, the source term
in (3.67) need not vanish. In such a case, however one may still be able to solve the
problem in certain situations where the scalar fluctuation equations decouple from gauge
field fluctuations at linearized level [94]. So solving the linearized equation for scalar
fluctuations determines the source term in the gauge field fluctuation, which can then
in principle be solved. However, the situation becomes more complicated for the metric
fluctuations since both the gauge field and scalar fluctuations will enter through the stress

tensor.

Another notable simplification is that currently we are working with the U(1)r gauged
supergravity. When the gauging of the symmetries of scalar manifold is also considered
there are additional terms in (3.65) and solving for the gauge field fluctuations is much

harder in the presence of additional scalar source terms.5

3.4.2 Scalar fluctuations

We will now solve the linearized equations for the scalar fluctuations about the attractor
value ¢.. The linearized equation for the scalar field obtained from (3.34) takes a remarkably
simple form,

O Vattr

g(¢C)VMV“5¢ - 0?2

5 =0, (3.69)
b

where g(¢) and the attractor potential are defined in (3.29) and (3.50) respectively. Using
(3.59), we define

1 62 Vattr

—7 + 8432
T glee) 087 |, t

A _
$e 3

(3.70)

6See for example, eq 3.5 of [94].
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which is positive for the solution of interest, since 52 > %. Using the expression for the

metric (3.3.3), equation (3.69) can be simplified as
(7202 + (14 2B:)70; — A6 =0 . (3.71)
The general solution for this equation is of the form

5 = le\/%i-ﬁ?—ﬁt 4 Coyf™V B =B (3.72)

The type III metric (3.14) is written in a coordinate system such that the horizon is located
at # = 0. We require the scalar fluctuations (3.64) to vanish as 7 for A > 0 such that
the scalar field approaches its attractor value as 7 — 0. Therefore, we choose Cy = 0. The
other constant C cannot be fixed at this stage as the equation (3.69) is valid only near the
horizon. However, we can choose C7 = Cs € R since the scalar fields in five dimensional
gauged supergravity are real. In addition, for non-trivial fluctuations Cs # 0. Thus the

scalar fluctuations which are well behaved near the horizon are of the form
6 =Cui™ | A= \/N+B2—-5 . (3.73)

Note that, the condition obtained from (3.59) indeed ensures that the scalar fluctuations

are well behaved as # — 0 near the horizon.

To fix the constants in the solution completely, one has to solve the scalar equation in the
background of a solution which interpolates from Bianchi III to AdS with appropriate
boundary conditions. Such interpolating metrics obeying reasonable energy conditions
that interpolate to Lifshitz or AdSs x S® which can then be connected to AdS have been
constructed numerically in [77]. However, they are not yet known to arise as solutions to

FEinstein gravity coupled to some simple matter theory.

3.4.3 Metric fluctuations

In this section, we solve the linearized metric fluctuations about the type III metric, that
are sourced by scalar fluctuations (3.73). The linearized fluctuation equations of the metric
have the form [94],

_ o B- _ 0f 2 pen L o
VOV + 2R, Ve = 2R, )5 + g (Rap7™ 3B + R

+2(T;%tr (gaﬁ + €7aﬁ)|e=0 + Tﬁtr(% + €0¢)|e=0) = 0, (3.74)
where
_ 1 uv = 3
Vo = Vow = 3V s V=9 Y A= =57 (3.75)

The dots indicate derivatives with respect to e. The covariant derivatives, raising and

lowering are with respect to the near horizon metric g,,,. The Riemann tensor, Ricci tensor
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and curvature that appear in (3.74) are also with respect to g, .

The contribution of the linearized metric fluctuations from the stress energy tensor are

. 3 2/7
T;%tr (gaﬁ + 5’)’0:5)’5:0 :Vattr’tbc ('Y;w - ?guu)
TN
— (Mo — ggxa)(§T$r|¢cguu +arglg Fp F] ). (3.76)
where
Tgﬁtr = Vattr’(bcguu - aIJ’(ch;{)\Fy)\J (3'77)

and Viyr|g,. is defined by (3.62). The contribution of the linearized scalar fluctuations from

the stress energy tensor are

8Vattr
o

3aU

90

T (. + €66)|eo = FLEM 69 (3.78)

be

g,ulesgb -
(%

which can be further simplified using the attractor equation (3.43) to get

8a[J

pattr _ I AJ
T;ut/t (ch + 66¢)|€:0 - _W F;D\Fu 5¢ . (379)

be

We can now solve for the metric fluctuations by plugging in the scalar fluctuations (3.73).
First, let us simplify the form of (3.74) by making a few observations. We note that the

type III metric in its explicit form
2 £28; 172 dr? 82 | 28 302 | 228 722
ds® = —Ptdt” + —- +d2” + e dy” + 77 dz (3.80)
7

is diagonal. Therefore, It is reasonable to expect fluctuations only along the diagonal
directions. Hence we can choose the fluctuations 7,, to be symmetric. As a result the

antisymmetrized terms in (3.74) vanish, as can be checked explicitly. Thus we have
2 .
VNV Y + G (Raﬁﬁaﬁ N gRﬁ/) + R%ﬁ-?(Tﬁﬁtr (9ap + €Yap)le=0
+ Tﬁlt/tr(gbc + €6¢)|e=0) == 0, (381)

with the contributions from the stress energy tensor corresponding to metric and scalar

fluctuations as given by (3.76) and (3.79) respectively.
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We choose the fluctuation terms of the metric in g,, + €y, (7) to be of the form

Vi = Cif*P 3 () |
1_

Vir = Cfﬁ’w(r) ;

iz = CiY22(7) ,

Yoy = Cye * Fg5(F)

Vaz = Cot*P355(F) (3.82)

where Cy, Cy, Cy,Cy, Cs are constants which are to be determined in terms of the gauged

supergravity parameters gr, Vo, Vi1, and the coefficient Cy in the scalar fluctuation (3.73).

Because of the way the perturbations have been chosen in (3.82), one can contract the
Einstein equations with the vielbeins and write the final expressions in terms of the 7, (7).
We also observe that the source term from the scalar fluctuation (3.79) appears only in the
&% and 7 directions. While the source goes like 72, the Einstein equations will contain
terms like f%?%ﬁw, , 70V > Y- Hence one expects the fluctuations 7, to also go like A,
This can be checked by observing the explicit equations, which are rather messy. We refer
the reader to the appendix §B.2 for more details. Thus all the metric fluctuations should

have the behavior
Vit = Vor = Yoz = Vgg = Yoz = 7 . (3.83)
We now substitute (3.83) in egs. (3.81) and reduce them to an algebraic system,
4(,83(36} +3C; + C3 + Cy +3C;) +2C; + C; + Cy)
+6ﬁtA(Cf‘_Ct‘+Cj;+CZ}+C;3)+A2(Cf- —Cf—i—C;C—FC@—FCé) =0,

Cr(=4(58:% + Bi+1) +2(Br — 2)A + A?) — 2(8; — 2)A(C; + Ci + Cy + Cs)
+46(B(—=C; +C3 +Cy — C3) + C; + C3 + Cy + Cs)
+ AQ(—(Cg + Cj; + Cg + C;g)) — 4(05 + 2(053 + Cg) =+ Cg) =0 R

(16 — 328,2)Cs — ¢((4B8¢* + 2B:A + A?)(Cr + C; + Cy + C2)
+ C3(128;% — 2B,A — A +12)) =0,

(16 — 328:%)C5 — ¢c(48:%(Cr + C; + Ci + 3C; + Cz) + 2B:A(Cr + C; + Cz — Cy + C)
+A2(Cf—|—ci—|—055—Cg+Cg)+6(0f+0f+0@+0g+02)) =0,
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—4ﬁt2(3Cf +3C; + C3+Cy + 3C3) — 658 A(Cy + C; 4+ C; + Cy — C)
— AQ(Cf +C;+C; +Cy — C;) —4(C; + Cy + 20;) =0, (3.84)

which can be solved to determine the coefficients. Note that the other parameters ¢., A, 5;
that enter the equations are all expressible in terms of the gauged supergravity parameters
9r, Vo, Vi from eqs (3.57) and (3.73). However, we will express everything in terms of j3; for

convenience. Thus the solution for the coefficients are,

C

Ci = (b_jFO(/Bt) :
Ci = %Fl(ﬁt) ;
Cs = %FZ(&) ;
Cy = %Fi%(ﬁt) :
C: = S Fu(A) (3.85)

where F;(;),i = 0,...4 are complicated functions of §; which are given in §B.3. Note that
all the coefficients are proportional to the coefficient Cs. This is a consistency check that

the metric fluctuations considered in the analysis are sourced by the scalar fluctuations.

Thus the full metric along with the fluctuations is

52
ds® = — (1 + CﬁA>f25fd£2 + <1 + CffA> d% + (1 + CifA>dj;2
7

+ (1 + cﬁ) e dj® + (1 + Cffﬁ> P20dz? . (3.86)

From eq (3.70) and eq (3.73), we see that positivity of A implies A is positive for the solution
(3.63). Hence, all the metric fluctuations are well behaved and the metric approaches the
type III attractor metric as one approaches the horizon # — 0. The reader may worry that
the perturbation in 77 is well behaved only if A > 2. However there is no need to put any
additional condition, since the behavior at # — 0 is dictated by the %2 term owing to A
being positive. Thus we have constructed a stable Bianchi III attractor solution in gauged

supergravity. In the following section, we investigate the supersymmetry of this solution.

3.5 Supersymmetry analysis

In this section, we analyze the Killing spinor equations for the U(1)g gauged supergravity
with the Bianchi type III solution (3.63) as the background. The Killing spinor equation

is obtained by setting the supersymmetric variation of the gravitino to zero. For the N/ =
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2,U(1)g gauged supergravity the gravitino variation is [111],

Wi = Valwlei + hr(Yuvp — 49#:/%)F1Vp€i + 5,7/);” : (3.87)

4\f

Our notations and conventions are summarized in §B.1. The indices I label the number of
vectors and the scalars h; are as defined in §3.3.1. Although we have only one gauge field for
the solution (3.63), we will keep the I indices for the gauge fields to avoid introducing the
explicit form of i in the equations. The term 6’1),,; is the modification in the supersymmetry

variations as a result of the U(1)g gauging. Explicitly it takes the form,
i .
i = _%thf Vivuije (3.88)

where V7 are the parameters that appear in the U(1)g gauging. Note that the d;; is not

used to raise or lower the SU(2) index.

We now proceed to analyze the Killing spinor equations. The vielbeins and spin connections
of the metric (3.63) are

1 i .
eg——rﬁt,e}"——;,e%——l,eg——em,e—Tﬁt,
01 N 32 —I 41 N
WOl = 8,78 | w g=—€ ", W = BP (3.89)

Substituting the above in (3.87), the Killing spinor equations can be written as

A_ Bt i ;
Yo P e; — 5 e+ A3h172362 + —=grh Vbl =0,

G V6

Y1705€; — 2\/—A3h1723€z \/Eth Vsl =0,
Y2056 + %Aghl'm?,ei — %thIVI%’Ej =0,
29 1 Lalp Ll Viosel =
V3€"Op€i — 526 + N 17236 — %QR Vidije! =0,
A_ ) 7 )
Y4T ﬁtagel' + %’Ylei — 2—\/6A§h[7236i — %thIV[(SZ'jEJ =0. (3.90)

The ~, matrices that appear in the above set of equations are in tangent space.

We choose a radial profile for the Killing spinor. This is motivated by the fact that the
radial spinor preserves the time translation and homogeneous symmetries of the type III
metric (3.14). Moreover, it is well known that the radially dependent spinor generates the
Poincaré supersymmetries in AdS [100, 101]. Furthermore, some of the Bianchi type I
solutions such as the Lifshitz and AdS3 x R? solutions in gauged supergravity preserve 1/4
of the supersymmetries for the radial spinor [96, 97, 104].
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We choose the spinor ansatz

€ = f(P)xi (3.91)

where y; is a constant symplectic majorana spinor. Substituting (3.91) in the Killing spinor
equation (3.90), we see that t, 2 equations become identical. Adding the ¢ equation and the

radial equation we get

70 f (7) — 5} (71)=0, (3.92)
which is solved by
F(7) =77 (3.93)
Using the above in (3.91) and substituting it in the Killing spinor equation (3.90) we get,

8 i i ‘
Et’Yle‘ — 2—\/6A§h1723xz' - %thIVI@‘jXJ =0,

1 1
L A by — —=
1

1
§’Y2Xz‘ - \/5

grh Vi =0,

V6

From the last two of the above equations, it follows that

Alhpysxi + —=grP Vidiix? =0 . (3.94)

Yoxi =0 . (3.95)

This condition breaks all of the supersymmetry. The origin of the 5 term is the spin
connection term due to the EAdSs (3.15) part of the type III metric. Thus, a naive
radial spinor does not preserve supersymmetry in this case. This suggests that the stable
Bianchi IIT metric we have constructed may be a non-supersymmetric attractor. However,
it is possible that there may be a more general ansatz for the Killing spinor which could

preserve some supersymmetry. We hope to study this in future works.

3.6 Comments and discussions

In this chapter, we constructed a new Bianchi type III solution in Einstein-Maxwell theory
with massless gauge fields. We embedded this solution in a U(1)r gauged supergravity with
one vector multiplet. We found that there exist a class of type III solutions parametrized
by gr, Vo, V1 that satisfied the two sufficient requirements for the attractor mechanism,
namely the existence of a critical point of the attractor potential and that the Hessian of

the attractor potential should have a positive eigenvalue.

We investigated the stability of the Bianchi type III solution in gauged supergravity by
studying the linearized fluctuations of the gauge field, scalar field, metric about their
attractor values. The stress energy tensor in gauged supergravity depends on linearized

fluctuations of scalars and gauge fields [94]. In order to avoid backreaction and deviation

54



Bianchi I attractor in Gauged Supergravity

from the attractor geometry, all the fluctuations have to be well behaved as one approaches

the horizon.

For the solution (3.63), we showed that the source term in the gauge field fluctuations
vanishes. Thus there are no gauge field fluctuations sourced by scalar fluctuations. The
metric fluctuation equations are sourced completely by the scalar perturbations. We showed
that for the type I1I solution satisfying the sufficient conditions for the attractor mechanism,
the scalar fluctuations are well behaved near the horizon. We also solved the metric
fluctuations and showed that all the fluctuations are regular. Since all the linearized
fluctuations are well behaved near the horizon, we infer that the type III Bianchi solution

is a stable attractor solution at the linearized level.

One of the simplifications that aided us in the stability analysis was that there were no
gauge field fluctuations which are sourced by scalar fluctuations. As we commented before
in §3.4.1, this need not happen in general. For more complicated situations we expect that
as long as the solution satisfies the sufficient conditions for the attractor mechanism [84], the
Bianchi type geometries might be stable with respect to linearized fluctuations about the
attractor values. We hope to explore these aspects and look for more interesting solutions

in future.

In the long run, we hope our stability analysis will provide motivation to explore the
possibility of construction of analytic black brane solutions which interpolate between IR
and UV attractor geometries. In particular, it will be very interesting to construct solutions
that are asymptotically AdS. Such interpolating solutions will be helpful to explore the
holographic duals of Bianchi attractors. In the last chapter 2 we saw some progress in this
direction (Ref. [77]). It will be valuable to construct analytic interpolating solutions in a

simple theory of gravity coupled to suitable matter.

In this chapter, we also investigate the supersymmetry of the Bianchi type III solution.
We study the Killing spinor equations of NV = 2,U(1)r gauged supergravity with the
background Bianchi type III solution. We chose a radial profile for the Killing spinor since
it preserves the time translations and homogeneous symmetries of the metric. However, we
found that the naive radial spinor which gives supersymmetric Bianchi I spaces such as AdS
and Lifshitz fails for the type III case. This suggests that the stable type III solution we
have constructed may be a non-supersymmetric attractor. However, there could be more
general spinors than the radial one we have considered. We leave a systematic analysis of

this issue for future work.
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Chapter 4

The Shear Viscosity in Anisotropic
Phases

4.1 Introduction

In the last few chapters, we have spent some time on understanding how anisotropic
blackbrane geometries arise in theories of Einstein gravity and also in gauged supergrav-
ity theories. In this chapter, we are now prepared to study the transport properties of
anisotropic strongly coupled fluids. Via holography, this maps to an investigation of the
anisotropic blackbrane geometries in the bulk. Let us first make a few general comments
on the existing results in the literature and set up our main goals for this chapter.

The AdS/CFT correspondence has emerged as an important tool in the analysis of strongly
coupled systems, especially for the study of transport properties of such systems. Neither
analytical nor numerical methods are convenient for calculating these properties on the
field theory side since they require an understanding of the real time response at finite
temperature. In contrast, they can be calculated with relative ease on the gravity side,
often by solving simple linear equations. An important insight which has come out of these
studies pertains to the behaviour of the viscosity. It was found in KSS [114, 115, 116], that
for systems having a gravity description that can be well approximated by classical Einstein

gravity, the ratio of the shear viscosity, 7, to the entropy density, s, takes the universal value
L (4.1)

This is a small value, compared to weak coupling where the ratio diverges. It was also
initially suggested that this value is a bound, and the ratio can never become smaller.
We now know that this is not true [117, 118, 119, 120], see also [121, 122], but in all
controlled counter-examples the bound is violated at best by a numerical factor, and not in
a parametric manner. Attempts to produce bigger violations lead to physically unacceptable

situations, e.g., to causality violations, for example, see [123, 124]. However, there is some
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discussion of a violation of the bound in metastable states, see [125]. Also, see [126] for a

discussion of violations in a superfluid phase described by higher derivative gravity.

The behaviour of the viscosity discussed above refers to isotropic and homogeneous phases,
which on the gravity side at finite temperature are described by the Schwarzschild black
brane geometry. Gravitational backgrounds which correspond to anisotropic phases in field
theory have also been studied (see [121, 127, 128, 129, 130, 131, 132, 133] and the behaviour
of the viscosity in some of these anisotropic phases has also been analysed, see [134, 135]
and [136, 137, 138, 139, 140, 141]. The viscosity in the anisotropic case is a tensor, which in
the most general case, with no rotational invariance, has 21 independent components (when
the field theory lives in 3 + 1 dimensions). In [134, 135, 139], where some simple cases were
considered, it was found that some components of the viscosity tensor can become much
smaller, parametrically violating the bound in eq.(4.1). For example, in [139], a gravitational
solution was considered where the rotational invariance of the three space dimensions in
which the field theory lives was broken from SO(3) to SO(2), due to a linearly varying
dilaton . In the solution, the dilaton varies along the z direction and rotational invariance
in the remaining x, y, spatial directions was left unbroken. The component of the viscosity,
called 7 in [139], which measures the shear force in the x — y plane, was still found to
satisfy the relation, eq.(4.1). However, other components of the viscosity did not satisfy it.
In particular, it was found that a component called 7, , which measures the shear force in

the x — z or y — z plane, could become much smaller, going like

n. 8w T?

= —— 4.2
R 3 p27 ( )

where T is the temperature and p is the anisotropy parameter. The result, eq.(4.2) is valid
in the extremely anisotropic limit, when 7" < p. A detailed study was also carried out in

[139] of this extreme anisotropic regime and no instabilities were found to be present.

For the case of low anisotropy, spin 1 component of the shear viscosity 7,. = n,. = 11

behave as follows:

Low anisotropy regime (p/T < 1):

s 4x  16m3T2 23047574

1 p*log2 (6 —7%+54(log2)?)pt 6

n_ p~log2 (6 — 7"+ 54(log2)%)p +O[<p>] (4.3)

T

We see that a small anisotropy at order (p/T)? already reduces this component of the

viscosity and makes it smaller than the KSS bound. In the limit of zero anisotropy, we
recover the KSS bound .

nL

S 4.4

s 47 (44)

In this chapter we study many other examples where anisotropic phases arise and show

that in all of them components of the viscosity can become parametrically small, in units
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of the entropy density, when the anisotropy becomes sufficiently large compared to the
temperature. Depending on the example, the factor of 72 in eq.(4.2) can be replaced by

some other positive power of T'.

A common feature of all our examples is that the breaking of anisotropy is due to an
externally applied force which is translationally invariant. For example, the linearly varying
dilaton considered in [139], and also in section (4.2) gives rise to such a spatially constant
forcing function. This follows from the fact that the boundary theory stress tensor is no

longer conserved in the presence of the dilaton and instead satisfies the equation
Oy < T >=< 0 > ¢, (4.5)

where O is the operator dual to the dilaton, see eq.(6.9) of [139]. Similarly, we consider
linearly varying axions in section 4.4.3 and 4.4.4, and a constant magnetic field in section
4.4.2.

Another common feature in our examples is that some residual Lorentz symmetry survives,
at zero temperature, after incorporating the breaking of rotational invariance. Fluid me-
chanics then corresponds to the dynamics of the goldstone modes associated with the boost

symmetries of this Lorentz group which are broken at finite temperature.

In the second half of this chapter we give an argument, based on a Kaluza Klein decompo-
sition of modes, which shows quite generally that in all situations sharing these features, in
particular where the forcing function does not break translational invariance, appropriate
components of the viscosity tensor become parametrically small. These components cor-
respond to perturbations of the metric which carry spin 1 with respect to the surviving
Lorentz symmetry. Let z be a spatial direction in the boundary theory along which there
is anisotropy and x be a spatial direction along which the boost symmetry is left unbroken,
then we show that the viscosity component 7., which couples to the h;, component of the

metric perturbation, satisfies the relation,

ez _ 1 Gex
s AT Gos lu=uy,’

(4.6)

where gye|u=u),s 92z |u=u, refer to the components of the background metric at the horizon.
Eq.(4.6) is one of the main results of this chapter. It also agrees with the behaviour seen
in all the explicit examples we consider. This result was first derived for an anisotropic
axion-dilaton-gravity system in [134].

In the isotropic case the ratio Z’”T: s is unity and we see that the KSS result is obtained.
However, in anisotropic cases this ratio can become very different from unity and in fact

much smaller, leading to the parametric violation of the bound, eq.(4.1).

Let us note that the result, eq.(4.6), is true for conformally invariant systems, as well as

systems with a mass gap, when subjected to a constant driving force. Examples of massive
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¥4 =+,/2

Figure 4.1: Picture showing flow of fluid enclosed between two parallel plates separated
along the z-direction.

systems include, for example, gravitational duals of confining gauge theories, [142] and [143].
For these cases the temperature should be bigger than the confining scale so that the gravity
dual is described by a black brane. Also, for some components of the viscosity to become

significantly smaller than the bound, the anisotropy must be bigger than the temperature.

Physically a component like 7,, measures the resistance to shear. For example, if the
fluid is enclosed between two parallel plates which are separated along the z direction and
moving with a relative velocity v, along the z direction in a non-relativistic fashion, they
will experience a friction force due to the fluid, proportional to 7,.0,v,. See Fig (4.1) and
the more extensive discussion in section 6 of [139]. Thus the parametrically small values

obtained here correspond to a very small resistance to shear in anisotropic systems.

Our results which are quite general, open up the exciting possibility that in nature too,
strongly coupled anisotropic systems may have a very small value for components of the
viscosity. It would be very exciting if this behaviour can be probed in experimental
situations, realised perhaps in cold atom systems, or in the context of QCD. We will explore
this in detail later in Chapter 5.

This chapter is structured as follows. In section 4.2 we review the earlier discussion of a
system with one linearly varying dilaton. Some general aspects involved in the calculation
of viscosity are discussed in section 4.3. Several examples of anisotropic systems realised
in gravity are then discussed, including the case with two dilatons in section 4.4.1, a
magnetic field in section 4.4.2, and axions and dilatons, section 4.4.3 and section 4.4.4.
The general argument based on a Kaluza Klein truncation is given in section 4.5. We
end with conclusions in section 4.6. The appendices C.1, C.2 and C.3 contain additional

important details.
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4.2 Brief Review of The System With One Dilaton

Here we briefly summarise some of the key results in [139] which considered a linearly

varying dilaton ¢ = p z in asymptotically AdSs, for a theory with action
1 5 1 2
Shulk = By d’rv/—g | R+ 12A — 5(8(}5) . (4.7)

Here 2k? = 167G is the gravitational coupling and G is the Newton’s Constant in 5-

dimensions. At zero temperature the near horizon solution was found to be AdSy x R,

4 du® 4 P>
2 2 112 2072 2 2
+ + . 4.
ds u dt” + 31u2 + = u (dz” + dy”) dz (4.8)

The radius of AdSy, R = 3/4, in units where A = 1. We see in eq.(4.8) that the metric
component g,, becomes constant due to the extra stress energy provided by the linearly
varying dilaton. The AdS4 x R solution is in fact an exact solution to the equations of

motion.

At small temperature, T < p, the geometry is that of a Schwarzschild black brane in
AdSy x R. The viscosity is related, using linear response, to the retarded two point function
of components of the stress tensor, and the latter, using Ads/CFT, can be calculated from
the behaviour of appropriate metric perturbations in the bulk. The answer for 7,,, which
is denoted as 7 and for 7,,,7y., which are equal and denoted as 7., is given in eq.(4.9)
and eq.(4.10) below:

n 1
g T A (49)
n,  8aT?

with s being the entropy density.

We see that 7, in units of the entropy density becomes parametrically small in the limit of
high anisotropy. The fluid mechanics in this high anisotropy limit was also systematically
set up in [139] and it was shown that, as expected, this small viscosity component results
in a very small shear force on two suitably oriented parallel plates which are moving with

a relative velocity and enclose the fluid.

4.3 More Details On The Calculation Of Viscosity

Before proceeding, we provide some more details on the calculation of the viscosity for the
one dilaton system above. These features, as we will see, will be shared by all the examples
we consider subsequently in this chapter. The analysis that follows will also reveal the

central reason for why the viscosity in units of the entropy density can become so small in
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anisotropic systems.

With anisotropy, the viscosity is a tensor, 7%, in general with 21 components. Using the

Kubo formula these can be related to the two point function of the stress energy tensor as

follows ,
.1
Mijkr = = lim —Tm (G (w)], (4.11)
where
G alw0) = [ dt dx e 0(0) (T30, Ta(0,0) (1.12)

and Im denotes the imaginary part of the retarded Green’s function.
From the AdS/CFT correspondence the two point function of T;; can be calculated in terms

of the behaviour of metric perturbations, and in this way the viscosity can be obtained.

In the one dilaton system considered in section 4.2 , the solution has an SO(2) rotational
invariance in the x — y plane, as is evident from the metric (4.8). For simplicity we denote
the 1, 2> component as 7,, and 1, . as 1,. etc. Due to the SO(2) invariance we get that
Nez = NMy> = 11. These components are related to the behaviour of the h,., h,. components

of metric perturbations, which carry spin 1 with respect to SO(2) symmetry.

We now proceed to introduce the h,, perturbation in the metric as follows

ds®> = —gw(u)dt2 + gw(u)duz—i—gm(u)dac2 + gyydy2 + gzz(u)dz2

o (4.13)
+ 2" Z(u)gpy(u)dx dz,

where Z(u) is the required perturbation of interest. We can show that the other modes
decouple from Z(u) and hence we can consistently set them to zero. Here we follow closely
[144].

One finds that the mode Z(u) obeys an equation of the form
O (V=gP(u)g"" 0, Z(u)) — w>N(u)g" Z(u) = 0, (4.14)
The functions P(u), N(u) are given in terms of the background metric , with

P(u) = g°* gua- (4.15)

In effect, eq.(4.14) arises from an action

[P 0™ (0.2) ~ 5N ()" (0.2)) (116)

/\/_167TG

(we are neglecting the dependence on the spatial % coordinates here). Using AdS/CFT we

can find the response in terms of the canonical momentum

I, w) = =7 G\/_P( W) g™ Ay Z (w). (4.17)
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The retarded Green’s function is then given by the ratio of the response over the source,

IT(u,w)
Gt = ——~ 4.18
Z(u.) )
U—00
leading to the result from eq.(4.11)
. (u,w)
= lim ——— 4.19
e iwZ (u,w) (4.19)
U—00

We now show that the RHS of eq.(4.19) can also be evaluated near the horizon, u = uy,
instead of u — oco. Since we are interested in the limit w — 0 we can neglect the second
term in eq.(4.14) leading to

0,11 =0 (4.20)

upto O(w)?. This gives
II=c, (4.21)

where C' is independent of u . Next, it is easy to see that there is a solution of eq.(4.14)
in the w — 0 limit in which Z is simply a constant. This solution also meets the correct
boundary condition at u — oo, since, as can be seen from eq.(4.13), the non-normalisable
mode must go to a constant at u — oo. Putting all this together we find that to leading
order in the w — 0 limit both II and Z are constant and thus the ratio in eq.(4.19) being

independent of u can also be evaluated at the horizon.

As a result we get

11
7, = lim 7(u,w)

w—0 Tw Z(u,w)
U—UF

(4.22)

Demanding regularity at the future horizon , we can approximate the behaviour of Z as
follows
Z ~ et (4.23)

r :/Jgﬂdu. (4.24)
Gtt
— L plag) /=L (4.25)
" 16mG " 9t Guu . ’

U—UH

where r, is the tortoise coordinate,

It then follows that

The entropy density is
1 V=g

§ = ——— 4.26
4G vV GuuJtt ( )

UH
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Using the value of P(u) from (4.15) and using eq.(4.25) and eq.(4.26) this finally leads to

ne_ 1 e

s AT g.:
UH

(4.27)

We now see why anisotropic systems will generically be different from isotropic ones. For an
isotropic system rotational invariance makes the ratio ZIT: = 1, leading to the KSS bound,
eq.(4.1). However in the anisotropic case in general this ratio will not be unity and thus the
ratio of 1/s can become smaller than ﬁ. In the one dilaton system this is what happens
leading to the result, eq.(4.27). In the rest of this chapter we will find many more examples
of this type, where anisotropy will allow different metric components to shrink at different
rates and attain different values at the horizon, thereby leading to violations of the KSS

bound.

4.4 Additional examples with anisotropy

4.4.1 Anisotropic solution in two dilaton gravity system

To generalise the example in section 4.2, we consider next the case of gravity, with a negative
cosmological constant, two massless scalar fields, ¢1 and ¢9 , both of which we now call

dilatons, in 5 spacetime dimensions with action,

Shutk = % d’z/—g (R +12A — %(‘9(751)2 - %(3052)2) : (4.28)

Both the dilatons are turned on to be linearly varying, but along different directions:

b1 =p1y, P2 = p2z. (4.29)

The zero temperature near horizon solution is now given by AdSs3 x R x R (we have set

A=1):
ds® = —2udt* + Ldu2 + 2ulda?® + p—%d 2 4 p—%dz2 (4.30)
- 2u? g TRY '

We see that there are now two different mass scales, p1, po which characterise the anisotropy.
In appendix C.1 we show that this near horizon geometry interpolates smoothly to asymp-

totically AdSs. The SO(2,2) symmetry of AdSs is preserved all along this interpolation.

At small temperature, T' < py1, p2, the near-horizon solution is given by :

2 2 mT? 2 2 2,2 P% 2 P% 2
ds® = —2u"(1 — = )dt® + 22 (1 T27r2)du + 2utdz” + 3 dy” + 3 dz". (4.31)
u - 7

64



The Shear Viscosity in Anisotropic Phases

The horizon lies at
u=up=mnT. (4.32)

The computation of the shear viscosity follows the discussion in [139] quite closely. The
near-horizon AdSs has SO(1,1) Lorentz invariance in the ¢,z directions. The metric
perturbations can be classified in terms of different spins with respect to this SO(1,1)

symmetry. The viscosity component 7,., given by,

Nez = — lim 1 Im [sz7m(w)], (4.33)

w—0 W

can be calculated by considering a metric perturbation Z(u) defined so that the full metric

with the perturbation takes the form,

ds®> = —gw(u)dt2 + gw(u)duZ—i—gm(u)dac2 + gyydy2 + gzz(u)sz

o (4.34)
+ 27" Z(u) gpy (u)dzdz.

This component has spin 1 with respect to the SO(1,1) symmetry. It turns out that
resulting analysis is quite similar to that in section 4.3 and this perturbation satisfies
an equation of the type given in eq.(4.14), with P(u) given by eq.(4.15). The conjugate
momentum II is also given by eq.(4.17) with P(u) given by eq.(4.15). As a result 7, is
given by eq.(4.25).

The entropy density is given by

1 J=a
s=——Y 9 (4.35)
4G AV Juugtt wy
This gives,
Moz _ 1 gzw (4.36)
s AT g, )
un
which using eq.(4.31) becomes
AmT?
fez _ 2 (4.37)
§ P2
Similarly, for 7., we get
1 4mT?
oy _ = Soo) T (4.38)
§ AT gyy P1
un

We see from eq.(4.36), eq.(4.38) that the relative ratio of n/s for these components is

determined by the ratio of the metric components as one approaches the horizon.
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4.4.2 Viscosity in the Presence of a Uniform Magnetic Field

Here, for completeness, we briefly review a situation where the anisotropy is generated due
to a magnetic field which has been studied in considerable depth in [140]. We refer to [140]

for details. We start with a system with the action

S = /dS:m/—g(R + 12A — %FQ), (4.39)

and consider a solution where the magnetic field
F,. = B, (4.40)

with B being a constant. Such a system was also considered in [145].
The resulting near horizon solution at zero temperature is now again AdSs3 X R x R, just

as in the two dilaton system, with rotational invariance also preserved in the yz plane.

The metric is (we have set A=1)

1 1 1
ds® = —3udt? + —du?® + 3u’dz® + ——|B|dy* + ——=|B|dz>. 4.41
" S5 Bl + 5Bl (1.41)

The radius of AdSs, R3 = 1/3, in units where A = 1.

At small temperature, T' < B the solution is a black brane in AdS3 x R x R with metric

1
ds? = —3u2(1 — =)dt? + ——du? + 3uldz® + ——|B Bld 4.42
= B D e 4 Bt Bl 4 Bl (442
where c is given in terms of T as follows
A2 T?
=L (4.43)
9

The horizon lies at 5

u=up = §7TT. (4.44)

The viscosity components 7., = 1, = n,. To calculate 1, we consider the h,. component

of metric perturbation, so that the full metric is of the form

ds® = —gu(u)dt* + g (W) dr*+gee (u)da® + gyy(u)dy® + g..(u)d2?

o (4.45)
+ 27" Z(u) gy (u)dzdz,

with Z(u) being the perturbation that we need to study. We can easily show that the other

modes decouples from Z(u) and so can be consistently set to zero.

We find that the resulting analysis is again quite similar to that in section 4.3 . This per-

turbation satisfies an equation of the type given in eq.(4.14), with P(u) given by eq.(4.15).
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The conjugate momentum II is also given by eq.(4.17) with P(u) given by eq.(4.15).

The resulting value for the viscosity is given by

ne_ L Gaw (4.46)
s AT g.. '
ug
Substituting the metric components from (4.42) above we get that
2 T°
S (4.47)

—_— =T
s V3l
As discussed in [140], this example may be relevant in the study of QCD, perhaps for heavy

ion collisions, and also in the core of neutron stars where strong magnetic fields can arise.

4.4.3 The Dilaton-Axion System

In the examples considered so far, the near horizon geometry was of the form, AdS x R",
with the metric components along the R™ directions not contracting as one gets to the
horizon. It is worth considering other situations where the near horizon geometry is of
Lifshitz type instead, with metric components along all the directions contracting as one

approaches the horizon but at different rates.

An easy way to construct such an example involves a system consisting of gravity with an

axion and dilaton with action,

1 1 1
Stk = 55 d°z\/—g <R + 12A — 5(agza)2 - 562a¢(0x)2) , (4.48)
containing the parameter a which enters in the dilaton dependence of the axion kinetic
energy term. Earlier work in [134] considered the case with @ = 1. The case a = —1 has
SL(2, R) invariance.

It is easy to see that by turning on a linear profile for the axion one obtains an extremal

solution whose near horizon limit is given by ( setting A=1)

ds* = R? <—u2dt2 + du_u; + ulde® + uidy? + p? ulf%i? d22> , (4.49)
X=c1pz (4.50)

6= % log(w), (4.51)

€= (21(172520;2), (4.52)

2= 217:2‘2. (4.53)



Chapter 4

This solution breaks rotational invariance along the z direction due to the linearly varying
axion, and p is the mass scale which characterises this breaking of anisotropy. We see that
all components of the metric along the spatial directions now shrink as one approaches the
far IR, but the rate at which the g,, component vanishes is different from the other spatial

components, gz, gyy- Let us also note that for o = 1 the solution above agrees with [128].

At small temperature T' < p the resulting solution has a metric given by

du?
u? f (u)

402
ds®> = R? (—qu(u)dt2 + + u?dx? + uldy? + pPut+za? dz2> , (4.54)

where R? is as given in eq(4.53) above and f(u) is given as

1- (16”T>p, (4.55)

p*u

3+8a?
1+2a2 °

dilaton is given by eq.(4.51).

where p = The axion continues to be linear as in the solution eq.(4.50) and the

The horizon in eq.(4.54) is at

(4.56)

Let us now turn to computing the viscosity. The shear viscosity component 7,, satisfies
the KSS bound in eq.(4.9) . Next consider the component 7,, = 7,. . To compute this
component we can consider the h,, component of metric perturbation, so that the full

metric is of the form

ds* = _gtt(u)dt2 + guu(u)du2+gmm(u)d$2 + Gyy (u)dy2 + gzz(u)dZQ

o (4.57)
+ 2" Z(u) gy (u)drdz,

where Z(u) is the perturbation that we need to study. The dilaton and axion are unchanged
and are given by eq (4.51) and eq (4.50) respectively. We can easily show that the other

modes decouples from Z(u) and so can be consistently set to zero.

We again find that resulting analysis is similar to that in section 4.3 and the perturbation
satisfies an equation of the type given in eq.(4.14), with P(u) given by eq.(4.15). The
conjugate momentum II is also given by eq.(4.17) with P(u) given by eq.(4.15). As a result
Nz 1S given by eq.(4.25).

Thus, substituting the metric components for the finite temperature solution (4.54) we get

e L e Tyis (4.58)
§ AT g2 p

The dependence on 7' in eq.(4.58) follows from the metric eq.(4.54) and the dependence
on p is then obtained on dimensional grounds. Let us note that the temperature 1" which

appears in eq.(4.55) could be related to the temperature as measured in the asymptotic AdS
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coordinates by a rescaling. By the asymptotic AdS coordinates we mean those in which the

metric takes the standard form:
2 2 1,2 du? 2/ 7.9 2 2
ds® = | —u“dt® + 2 +u (dm +dy* +dz)|, (4.59)

This is also true for the z,y coordinates in eq.(4.54) and the corresponding coordinates
which appear in eq.(4.59). and also for the z coordinate in eq.(4.54) which is related to the
corresponding coordinate in eq.(4.59) by a p dependent rescaling in general. These rescaling
factors have to be determined if the coefficient in eq.(4.58) is to be fixed. To do so, one
needs to find the full interpolating geometry from the near horizon region, described by
eq.(4.54) , to the asymptotic AdS region, eq.(4.59).

We have carried out such a numerical interpolation for & = £1, for which, eq.(4.58) becomes,

nLo, (5)2/3.

s~ G (4.60)

We find, within the accuracy of our numerical calculation, that there is no rescaling of the
T, z,y coordinates while the z coordinate is rescaled by a non-trivial p dependent factor.
One consequence is that the temperature 7' which appears in eq.(4.58) is the same as the

temperature measured in the field theory.

4.4.4 The two Axion-one Dilaton System

For good measure, as another example, we consider a system consisting of gravity with two

axions and one dilaton described by the action

1 1 1 1
Shulk = 2.3 d°z/—g (R +12A — 5(6@5)2 - 562a¢(aX1)2 - §e2a¢(axg)2> . (4.61)

In this case we will see that for a suitable profile for the two axions, the AdS, symmetry of
the near-horizon geometry is broken further to AdSs3, with now two of the spatial directions,

Yy, z, being characterised by non-trivial Lifshitz exponents.

The linear profiles for the two axons and resulting near horizon solution is given by (setting
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A=1)
2 2 I A S ST S L S .
ds® = R* | —udt® + — +u de” + p° uitie? dy” + p° uitie?dz" || (4.62)
u
X1=cpy, (4.63)
X2=¢Cp 2z, (4.64)
4 alog(u)
— 2208l 4.
¢ 1+4a2 "’ (4.65)
=———V1 2 4.
e= V1t 8al, (4.66)
1+ 8a?
2
= . 4.
2 + 8a? (4.67)

This metric in this solution has AdS3 invariance, and also a scaling symmetry under which
y, z transform with a non-trivial exponent. The linearly varying axions break this scaling
symmetry, and also the rotational invariance along the y and z directions, with p being the

mass scale which characterise the breaking.

At small temperature T' < p the resulting solution has a metric

du?

u? f (u)

8a2 8a2
R? <—u2f(u)dt2 + + uldz? + p? ut+ie? dy? + p? i+ dz2> , (4.68)

where R? is as given in eq.(4.67) above and f(u) is given as

1- (16”)]), (4.69)

pu

2(14+8a2)
1+402

where p =

The two axions continue to be linear as in the solution eq.(4.63), eq.(4.64) and the dilaton

is given by eq.(4.65).

The horizon in eq.(4.68) is at

(4.70)

The 71, and 7n,, components of the viscosity are the same., we denote them by 7,. To
calculate these components we consider the h,, component of metric perturbation, so that

the full metric is of the form

ds®> = —gm(u)dt2 + guu(u)duQ—i—gm(u)de + gyy(u)dy2 + gzz(u)dz2

o (4.71)
+ 27" Z(u) ggy(u)dadz,

where Z(u) is the perturbation that we need to study.
The dilaton and axions are unchanged and are given by eq (4.65) and eq (4.63) , eq (4.64)

respectively. We can easily show that the other modes decouples from Z(u) and so can be
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consistently set to zero.

As in the previous cases , the analysis here is similar to that in section 4.3 and this per-
turbation satisfies an equation of the type given in eq.(4.14), with P(u) given by eq.(4.15).
The conjugate momentum II is also given by eq.(4.17) with P(u) given by eq.(4.15). As a
result 7, is given by eq.(4.25).

Thus, substituting the metric components for the finite temperature solution (4.68) we get

77J_ _ 1 g$$ T 1+ia2 (4 72)
s Amg.. \p ' '

For the case a = £1, eq.(4.72) becomes,

2/5
0L (Z) . (4.73)
s \p

Interestingly, both in eq.(4.58) for the one axion case, and in eq.(4.72) above we see that
the maximum value the exponent governing the temperature dependence can take is 2, and

the minimum value, for @ = oo, is 0.

4.5 Kaluza Klein Reduction

The previous sections dealt with a number of examples where anisotropic situations gave
rise to small values for the viscosity to entropy ratio. One common feature of all these
examples was that the breaking of isotropy was due to a spatially constant driving force.
For example, the dilaton considered in section 4.2, gives rise to a force proportional to the
gradient of the dilaton which is a constant since the dilaton varies linearly. One way to see

this is by noting that the stress tensor is no longer conserved and satisfies the equation
D <T > = <0 >, (4.74)

as discussed in eq.(6.9) of [139]. Similarly, we consider linearly varying axions in section

4.4.3 and 4.4.4, and a constant magnetic field in section 4.4.2.

In this section we will present a general argument which should apply to all such situations
where the breaking of isotropy occurs due to matter fields which give rise to a spatially
constant driving force. We will also assume that a residual AdS symmetry is preserved in
the bulk, and a corresponding Lorentz symmetry is left intact in the boundary theory. Fluid
mechanics then corresponds to the dynamics of the goldstone modes associated with the
boost symmetries of this Lorentz group. The components of the viscosity which give rise
to the violation of the KSS bound in the examples considered above correspond to metric

perturbations which have spin 1 with respect to the surviving Lorentz symmetry. Let z
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be a spatial direction in the boundary theory along which there is anisotropy and z be a
spatial direction along which the boost symmetry is left unbroken then we will present a
general argument below showing that the viscosity component 7),,, which couples to the

hs» component of the metric perturbation. satisfies the relation,

Moz _ 1 Gaa . (4.75)

s 4T Gy lu=uy
where grz|u=u, > 922 |u=u, refer to the components of the background metric at the horizon.
Eq.(4.75) is the main result of this section and one of the main results of this chapter.
We note that it also agrees with all the examples considered above. This result was first
obtained for an anisotropic axion-dilaton-gravity system in [134]. An analysis using RG flow

and KK reduction, for this system, was carried out in [138] along the lines of [115, 144].

For a case with a residual AdS;y; factor in the metric, the basic idea behind the general
analysis will be to consider a dimensionally reduced description, starting from the original
D +1 dimensional theory and going down to the AdSgy1 space-time. Different Kaluza Klein
(KK) modes in the extra dimensions will not mix with each other since the effects breaking
rotational invariance are in effect spatially constant. For example, for cases where there are
linearly varying fields, like axions or dilatons, this will be true since the equations of motion
involve only gradients of these fields which are spatially constant. The non-mixing of the
KK modes will greatly ease in the analysis, since we can use the standard formulae of KK
reduction and moreover truncate the analysis to the zero modes in the extra dimensions.
The off diagonal components of the metric, whose perturbations carry spin 1 and which
are related to the viscosity components of interest, will give rise to gauge fields in the
dimensionally reduced theory. By studying the conductivity of these gauge fields, which

can be related easily to the spin 1 viscosity components we will derive the result in eq.(4.75).

The study of more complicated situations where the breaking of rotational invariance is due

to a driving force that also breaks translational invariance is left for the future.

4.5.1 The Dimensionally Reduced Theory

To start, we will consider the case where D = 4 and d = 3, so that a residual AdS; symmetry
survives, and the asymptotic geometry, towards the boundary, is AdS5. In this case we start

with 5 dimensions with a gravitational action :

1 .
S=55 /d%\/—g (R + 12A). (4.76)

Here 232 = 167G is the gravitational coupling with G being Newton’s Constant in 5-

dimension and we set A=1.
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Parametrising the 5 dimensional metric by

N efw(u)guy + 621/](“) AMAV 621/](“) AN
(gAB) = < eQw(u) A, eQw(u) ) (477)

and taking all components to be independent of the z direction which we take to be the

compactification direction, gives

S=55 / d*z/—g <R——(81/1) szQ—i—lQew), (4.78)

where we have dropped total derivatives .

We also note that in our choice of parametrisation ,
Gor = %Y. (4.79)

The coefficient of the first term in the matrix in eq.(4.77) was taken to be e¥ so that the
resulting 4 dimensional action is in the Einstein frame. x which appears above is related to

the 5 dimensional gravitational coupling & by

L 1

—_— = — 4.80
262 2k2’ ( )

where L is the length of the compactified z direction.

So far we have neglected any matter fields. Consider for concreteness the case of the axion-
dilaton system considered in section 4.4.3 with action eq.(4.48) with a=1. Inserting the
background solution for the axion

X =a z, (4.81)

and taking the dilaton to be independent of z we get from the kinetic energies of the dilaton

and axion,

§=3 2/d4x\/_< ﬁ 1(a¢) a262¢ 3¢>. (4.82)

We see that there is an extra term which depends on the gauge field and which gives rise
to a mass for it. This term arises due to the linearly varying axion, eq.(4.81) and is tied to
the breaking of translational invariance due to this linear variation. We see that the terms
in eq.(4.78) and eq.(4.82) involving the gauge field are quadratic in this field and can be

written as

/ e ( 2 imz(“)’éﬁ) , (4.83)

4geff( )
where
m?(u) = 2a2e*™W), (4.84)
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and
1

92 (u)

Njw

=¥ = (922(w))

(4.85)

The solution in the near horizon region for this dilaton-axion system was given in eq.(4.49)

with a=1. It is easy to see from this solution that

1

gT(U) = pPu?, (4.86)
eff

and

44
m?(u) = —pQu%, (4.87)

and therefore that the gauge coupling and mass vary with the radial coordinate.

Similarly, in other cases where there is also a breaking of translational invariance we will
get both a kinetic energy term and a mass term, and in general both the gauge coupling
and the mass will vary in the radial direction. For the subsequent analysis we will analyse
the perturbations of the gauge fields in the 4 dimensional theory given in eq.(4.83). Such
a system was considered in [146, 147] and our subsequent discussion closely follows this
reference. As we will see later, the conductivity of these gauge fields can be related easily
to the spin 1 viscosity components using which we will derive the result in eq.(4.75). Let
us mention for now that the essential reason for this is that the two-point correlator of
the current operator gives the conductivity of the gauge field, while the two-point stress
tensor in the higher dimensional theory is related to the viscosity. Since the gauge field is
obtained from the spin 1 component of the metric in the higher dimensional theory, these

two correlators are closely related.

The 341 dimensions, include time, ¢, the radial direction u, and additional space directions,
one of which we denote by z. To study the conductivity we consider a perturbation for the

x component of the gauge field,

dwd®k iz
A (T tu) = | ——e WHRE Z(y W), 4.88
e = [ 5 (1,) (1.55)
This gauge field perturbation decouples from the rest (we have set perturbations of the
axion to vanish even before the KK reduction in the example above, this turns out to be a

consistent thing to do). Z(u,w) satisfies the equation

%(N(u)%Z(u,w)) — WN(u) guug™ Z(u,w) + M(u)Z(u,w) = 0, (4.89)

with 1
N(u) = vV=g—59"g"", (4.90)

Jeft
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and
m2 u —
M(u) = —% ng. (4.91)

Treating the radial coordinate u as the analogue of time we can read off the “momentum”

conjugate to Z from eq.(4.83) to be

05 = —LN(u)Z’(u,w), (4.92)

I A
() 87" (u, —w) 2K2

where Z' = d%Z(u,w) and N(u) as given in eq(4.90).
The conductivity is given by

IT(u,w)

o(u,w) = m|u—>oo,w—>0’

(4.93)
where Z and II are the asymptotic values of the perturbation and conjugate momentum

defined in eq.(4.92) in the region u — co.

We assume that the underlying higher dimensional geometry is asymptotically AdSs space
and that the back reaction due to the matter fields which break the rotational invariance
dies out compared to the cosmological constant in this asymptotic region. This is true in
all the examples studied above where the geometry becomes AdSs when v — oco. It is then
easy to check, as discussed in appendix C.2 that the ratio on the RHS in eq.(4.93) becomes

independent of v when u — oo.

We can write o(u,w) as the sum of real and imaginary parts as Re (o(u,w))+i Im (o (u,w)).
We will be interested in the real part Re (o) since that is related to the viscosity components

of interest. It is easy to see from our definition, eq.(4.93) that

Re(o(u,w)) = Im < M(u, ) Z(u, ~w) >|u_)007 s0r (4.94)

wZ(u,w)Z(u, —w)

where II(u,w) is defined in eq.(4.92).
To evaluate the RHS in the limit w — 0, it will be sufficient to consider the leading order

behaviour of the denominator. Since Z(u,w) is real to leading order when w — 0 we obtain

Im (T(u, w) Z (u, —w)) |
w ZQ(U) u—00, w—0"

Re (o) = (4.95)

The numerator of RHS of eq.(4.95) is independent of u (appendix C.3) and can therefore

be evaluated at u = wy, instead of u — 0o. After some more simplification this gives

2
Re (o) =op <ZLWL))> |00 (4.96)

(u— o0
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where o is the conductivity evaluated at the horizon and its expression is given by,

1

= —55 . 4.97
2%2923 U=Up, ( )

OH

See appendix C.3 for more details.

Z(un)

Z(u—00)*

underlying higher dimensional theory with which we started in which the gauge field is

To proceed we need to evaluate the ratio For this purpose we go back to the
actually an off diagonal component of the metric, eq.(4.77). The background about which
we are calculating the behaviour of the perturbation is diagonal in the metric with all
components being only a function of u. Now consider a coordinate transformation x —
T + az, with all the other coordinates remaining the same. It is easy to see that under this

transformation the metric now acquires an off-diagonal component
0Gzr = Qzx, (4.98)

with all the other components of the background metric staying the same. Note that in our
notation the hatted metric refers to the 5 dimensional one while the unhatted metric refers

to the 4 dimensional Einstein frame metric, see eq.(4.77).

Since we have merely carried out a coordinate transformation it is clear that 0g,. in eq.(4.98)
must satisfy the equations of motion for small perturbations about the starting background.

Comparing with eq.(4.77) we find that this corresponds to turning on a gauge field

g
Ay = agr, (4.99)

which must therefore solve the equation (4.89) in the limit w — 0 with

Z(u) = a%. (4.100)
In this way we can exploit the co-ordinate invariance of the underlying higher dimensional
theory to obtain a solution for Z(u) in the w — 0 limit. More over it is easy to see that this
solution meets the correct boundary condition at u — oco. As was mentioned above, we are
assuming that the higher dimensional metric is asymptotically AdS5 space. The ratio g;”—f;
therefore goes to unity and Z(u) goes to a constant which is the correct behaviour needed,

as is also discussed in appendix C.2.

Z(up)
Z (u—00)

With the solution eq.(4.100) at hand we can now evaluate the ratio . The arbitrary

constant « drops out and we get that

Z(uh) o gxx

= . 4.101
Z(u— o) e lu=u, ( )

Substituting in eq.(4.96) and using eq.(4.97) we get that the conductivity is given in terms
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of ggﬁ and various metric opponents at the horizon by

NS
oo L (Gax
2r2g% \ e

From eq.(4.85) and using eq.(4.79) from our parametrisation eq.(4.77) , we finally get that

(4.102)

u=up,

1 g2,
o= 4.103
262 /.- ( )

Note that we have been able to obtain an expression independent of m? that only depends
on the metric components g.., §.. in the 5 dimensional theory. In the subsequent discussion

we somewhat loosely denote Re(c) by o itself.

4.5.2 The Viscosity To Entropy Ratio

The next step is to relate the conductivity obtained above to the viscosity. This is in fact
straightforward. Kubo’s formula relates the components of the viscosity to the two point
function of corresponding components of the stress tensor Tj; in eq.(4.11). This two point
function is obtained by calculating the response to turning on suitable metric perturbations
in the bulk. We will be assuming, as was mentioned above, that asymptotically the
background metric is AdSs. Thus as u — 00, G — u25w, for all components other than
along the u direction, as discussed in appendix C.2. The off - diagonal metric perturbations

required for the shear viscosity then behave like
6 = U hu
as u — 0o, where hy,, is independent of u. The viscosity component 7, is then given by

(4.104)

‘151 Ko —0,w—0°

1 ~ -
Nz = ——Im (< sz(kil,w)Tmz(kQ,w) >/>
w

where the prime subscript on the RHS means that the overall energy momentum conserving
delta function has been removed. From AdS/CFT we have that
- - 528

< Tpo (k1) Tyr (ko) > = = . 4.105
(k1) T2 (k2) S (R () (4.105)

The conductivity in an analogous way is given by

1 . .
o= —;Im (< Jp(k1,w)Jy (ko,w) >') (4.106)

{ k1,k2—0,0—0"
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which in turn can be calculated from the bulk response since

. 525
< Jo(k1)Je(ka) > = - — (4.107)
0A; (k1) 0A;(k2)

On comparing with eq.(4.77) we see that the zero mode of h,, in the z direction is in fact
A,. This shows that n,, and ¢ are essentially the same upto one minor factor of L the
size of the z direction. This factor arises because the prime subscript in eq. (4.104) and
eq.(4.106) are different, in the first case the momentum conservation delta function removed
includes a delta function in the z direction, whereas in the case of the conductivity it does

not include this delta function. Accounting for the difference gives

(o2
Moz = 7 (4.108)

The entropy density in the 5 dimensional theory is given by

2T 2

S = ﬁA = ?\/ g:m;gyygzz, (4109)

(this is also the same as the entropy density in the 4 dimensional theory divided by L).
From eq.(4.108) , eq.(4.102), eq.(4.79), eq.(4.109)and eq.(4.80), we can now write the ratio

K 2
A =)
Mez L _ L 9 \92) (4.110)
s s 4m V ?]mmgyygzz U=up

Using eq.(4.85), eq.(4.79) in the above expression and using isotropy along z and y, we

arrive at the following result R
Moz _ L Goa) (4.111)
S 4T g, VTR
This general result agrees with the ones we obtained in all the examples we studied in the
previous sections. We see that independent of the details of the matter fields which were
responsible for the breaking of the rotational symmetry we get a general result in eq.(4.110).
This result shows that when the ratio of the metric components ng: at the horizon becomes
smaller than unity the KSS bound will be violated.

4.5.3 Generalisation To Case with Additional Directions

In the preceding discussion of this section we have considered the dimensional reduction
from 5 to 4 dimensions. However, it is easy to generalise these results for the case where we
start with D+1 dimensions and KK reduce to d+1 dimensions. In fact, this generalisation is
needed for the situation discussed earlier with a magnetic field where the residual symmetry
arises due to an AdSs factor instead of an AdSy in the geometry. Our analysis closely follows

[148]. The dimensional reduction in this case will give rise to D — d gauge fields .
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Following [148], we parametrize the higher dimensional metric as :

(1)y 4(1) (1)

R G + Ay Ay Auﬁ
- : 4112
(QAB) < Al(/g Gaﬁ ( )

where the D + 1 dimensional vielbein is given by

T (1)ﬁ a
7\ _ [ e Ay Eﬁ
<e“) ( ! o , (4.113)

«

with Gog = EgéabEg and g, = e;nyse;,. Here a, 8 =1,..D — d denote the directions over
which the reduction has been carried out and pu,v = 0,1, - d are the ones left in the lower

dimensional theory. It also follows from the parametrisation that

V—i=+v—gVG, (4.114)

where G is the determinant of the internal metric G,g. Additional matter fields required
for breaking rotational invariance which also break the translational invariance in the
compactified directions give mass terms for the gauge fields, which will vary in general
in the radial direction. Neglecting these additional matter fields for now we start with the

action .
9= gz [ "2 VG LR

As shown in [148] the dimensionally reduced action in d + 1 dimensions becomes

1 1
S=— /dd+1x —ge? (R + A+ g"0,90,¢ + —g“”@MGaga,,Go‘ﬁ
2k2 4
) (4.115)
VA a -(1)B
_Zgﬂpg Ga’ﬁF/,S,l/) PA > s
where 1
¢ = —3log det (Gag) = e ¢ = VG, (4.116)
where G is the determinant of the internal metric G,g,
)™ = 9,A0* — 9, A, (4.117)

and k which appears above is related to the 5 dimensional gravitational coupling & by

LP=d 1

LDfd

where is the volume of the compactified directions .

For simplicity we assume that the internal metric G,p is diagonal and focus on the g,

component of the metric perturbation (where x represents a spatial direction along which the
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boost symmetry is left unbroken and z represents an anisotropy direction in the boundary
field theory). Comparing the last term in the action eq.(4.115) with the kinetic energy term,
V=g < 493; 1(u) F 2), as given in eq.(4.83), we then find the effective gauge coupling, for the
corresponding gauge field A is

— = %g,.. (4.119)
Gett

As mentioned above, additional matter fields give rise to mass terms for the gauge fields.

We will also take these mass terms to be diagonal for simplicity. The resulting equation for

the  component of the gauge field A, is then of the form given in eq.(4.89), where we have

expanded A, as given in eq.(4.88). It can then be argued (see Appendix C.3 for details)

that the conductivity in the lower d + 1 dimensional theory ! is given by

2
Re(0) = %( %N@)) <7Z(§(ihlo)>

2
_ 1 Guu 1 T U Z(uh)
2k2 ( git g 9 g9 s Z(u — o0)

Thus we find

(u — o0

2
Z
Re (o) =opn <A> , (4.120)
Z )
where o is the conductivity evaluated at the horizon and its expression is given by,

d—1

_ 1 Gui
26% 25 Gow

oH (4.121)

’
U=up,

where we have used isotropy along the spatial directions (besides u) in the lower dimensional
theory. Using eq.(4.120), eq.(4.119), eq.(4.116) we get

d—1 2
Re (o) = b Gu 7Z(uh)
2/<;2ggﬂ Gaz lu=u, \ Z(u — 00)
d—1 2
1 s g:m? Z(uh)
=55 € %g.. ——
2K Gaz Nu=u, \ Z(u — 00)

2
_ 1 gz [ Z(un)
= 2[{2\/5933:1: (Z( .

- U — 00)
(4.122)
We can now repeat the analysis done in the previous section to evaluate the ratio Z(Zjihgo), y

using general coordinate invariance in the underlying higher dimensional theory and noting

! With our choice, eq.(4.112), the dimensional reduction results in an action which is not in Einstein
frame. We could have performed a conformal transformation to bring the lower dimensional action back to
the Einstein frame. Our end result however will be independent of this choice.
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that the gauge field is an off-diagonal component of the metric, eq.(4.112) (for details see
eq.(4.101)).
Thus we get

1 =g,
Re (o) = @\/a i g— (uh)2

T U=up
1 = 2
= 55VG gt =L
2K 9zx Gz lu=un
1 d—1
= 55VG gui sz — (4.123)
zZz —
The higher dimensional entropy density is
2 -1
s = K—Z\/@ 92 . (4.124)
Hence we arrive at the result )
g _pp-d_ Jx (4.125)

s 41 Gys lu=uy,

Finally, the arguments given in subsection 4.5.2 allows us to connect 7., computed in the

higher dimension to ¢ in the following way

g

Thus we find "
Moz _ 7072 _ 1 Gra (4.127)
s s A g, lu=uy’ '

which agrees with the examples we have studied in the previous sections.

4.6 Comments and discussions

In this chapter we have considered a variety of anisotropic examples, and have shown that
suitable components of the viscosity can become very small in the highly anisotropic case
and can parametrically violate the bound, eq.(4.1). All our examples have the feature that
the breaking of rotational invariance is due to an externally imposed forcing function which
is translationally invariant. E.g. due to linearly varying scalars which give rise to a constant
forcing function, or due to a spatially constant magnetic field, which was studied earlier in
[140]. Another common feature in all our examples is that some residual Lorentz symmetry
survives at zero temperature. In the second half of the chapter we show in considerable
generality that for all cases with these two features, the components of the viscosity tensor,
which correspond to metric perturbations which carry spin 1 with respect to the unbroken
Lorentz symmetry, satisfy the relation eq.(4.6). In the anisotropic case the ratio of the

metric components on the RHS of eq.(4.6) can become very small as T'— 0, resulting in a
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parametrically large violation of the KSS bound. This is indeed true for the examples we

consider, all of which satisfy eq.(4.6) .

Besides allowing for a computation of the viscosity with relative ease, the gravitational
description also provides an intuitive understanding of why such violation of the KSS bound
may arise. In the absence of isotropy the different metric perturbations break up into
components with different values of spin with respect to the remaining Lorentz symmetry.
Spin 2 components, if present, give rise to viscosity coefficients which satisfy the KSS bound.
But spin 1 components can violate it. In fact the spin 1 components are akin to gauge fields,
and the corresponding calculations for these components of the viscosity therefore becomes
similar to those for conductivity. These are well known in several AdS/CFT examples, and

also in nature, to sometimes become very small.

In weakly coupled theories, with well defined quasi particles, we would expect, [149], [150],
that

n lmfp
=~ 4.128
S )\dB ’ ( )

where l,,,7,, A\qp refer to the mean free path and the de Broglie wave length for the quasi
particles. This leads to the intuitive expectation that at strong coupling the ratio n/s ~
O(1). However, here we see that at strong coupling, where the gravity description is valid,
some components of the viscosity tensor in the anisotropic case violate this relation and can

become parametrically smaller.

The generality of our result suggests the possibility that this behaviour might happen in
nature too. It would be very exciting if this can be probed in experiments, perhaps on cold

atom systems, or in QCD.

Ordinarily, QCD at finite temperature is described by a homogeneous and isotropic phase
for which the calculations discussed here are not relevant. This is true even when we consider
situations which come about due to anisotropic initial conditions, as might arise in heavy ion
collisions. The behaviour of the QCD fluid in these situations is still governed by rotationally
invariant Navier Stokes equations with appropriate viscosity coefficients. However, this
could change if a sufficiently big magnetic field is turned on breaking rotational invariance
2. The resulting equilibrium phase could then be highly anisotropic and our results, and
earlier work, [140], hint that suitable components of the viscosity might become small. It
has been suggested that such an intense magnetic field might perhaps arise in the interior
of some highly magnetised neutron stars ®, see [151], [152] and [153]. It has also been
suggested that strong magnetic fields might actually arise in the highly relativistic heavy
ion collisions (see [154], [155] and [156]), although in this case the transitory nature of these

fields must also then be taken into account.

Turning to cold atom systems, the unitary Fermi gas has also been observed to have a value

2 A magnetic field of order 10"® Tesla or so is needed in order to contribute an energy density comparable
to the QCD scale ~ 200 Mev.
3We thank Gergely Endrédi and Gunnar Bali for a discussion on this issue.
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of n/s close to the KSS bound. As we will explore in Chapter 5, we can introduce the
breaking of rotational invariance in this system. It is thus very interesting to examine the
resulting behaviour of the viscosity tensor. Even at small anisotropy one might hope to see
a trend where some components start getting smaller than the bound. A natural way to
incorporate anisotropy in this case might be to consider the effects of an asymmetric trap

4 which we will describe in Chapter 5 .

It is worth mentioning that the spin 1 viscosity components, which become very small in our
work, govern the diffusion of the momentum components oriented transverse to the direction
in which the initial inhomogeneity is set up. For example, take a case with anisotropy in
the z direction. If the momentum along the x direction, p,, is now taken to have an initial
gradient along the z direction, then its diffusion is governed by the viscosity component
Nzz, with diffusion length

Naz
D), =— 4.129
L=t (1129)

where s is the entropy density. A small value of 2= then gives rise to a small value for the

diffusion constant ®D | in units of temperature.

It is perhaps worth mentioning in this context that there have been some recent measure-
ments of spin diffusion in the unitary fermi gas system 5. In three space dimensions, with
rotational invariance intact, the transverse spin diffusion constant is measured to be close to
the bound which arises from standard Boltzmann transport theory based on quasi particles,
see [157]. However, in a quasi-two space dimensions [158], it was found that the transverse
spin diffusion constant is about three orders of magnitude smaller than this bound. It would

be worth exploring if these observations can be related to the results presented here.

We have not analysed the stability of the anisotropic solutions discussed in this chapter
in any detail. For the one dilaton case this question was analysed at considerable length
in [139] and no instabilities were found. This suggests that some examples studied here,
e.g., the two dilation case, also could be stable. We leave a more detailed analysis of this
question for the future. It is worth noticing that if an instability appears, it will be when
the temperature 7' ~ p, where p is the scale of the anisotropy. As a result one expects O(1)
violations of the bound for such systems as well, although not violations where the viscosity
becomes parametrically small. On a more theoretical note, it would be worth obtaining
string theory embeddings of the anisotropic systems we have studied here and examining
if they are stable. Some embeddings for the axion dilaton system were studied in [128§]
and for the one dilaton case in [139] and were found to be unstable, since they contained

fields which lay below the BF bound of the near horizon geometry. In another instance, e.g.

4We thank Mohit Randeria for very helpful discussions in this regard and also for his comments about
the spin diffusion experiments.

5The anisotropy force in this case would act in the z direction. This force does not directly enter in
the diffusion equation for p,. For significant anisotropy, p/7" > 1, the force is big, and as a result the fluid
cannot move in the z direction at all. This follows from the bulk geometry, e.g. AdSs X R in the case
considered in section 4.2, where Lorentz invariance along the z direction is manifestly broken.

SWe thank Sean Hartnoll for bringing these experiments to our notice.
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[135], though, a stable supersymmetric system with anisotropy was found where suitable
components of the viscosity become vanishingly small at low temperatures, just as in our

analysis here.

We have discussed situations where the breaking of rotational invariance is explicit, due to an
externally applied source. It would also be interesting to extend this analysis to cases where
the breaking is spontaneous. Another direction is to consider Bianchi spaces which have
been discussed in [1, 2], and which describe homogeneous but anisotropic phases in general.
Some discussion of transport coefficients in such phases using the gravity description can
be found in [159].
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The Shear Viscosity in an

Anisotropic Unitary Fermi Gas

5.1 Introduction

The calculation of the transport properties of strongly coupled quantum theories is an
interesting problem for theorists working on a wide range of systems including ultra-cold
Fermi gases at unitarity [160, 161], heavy ion collisions [160, 162], and neutron stars [163,
164].

At strong coupling, perturbative expansions fail to give reliable answers. Sophisticated
Monte-Carlo techniques which are used to study such theories non-perturbatively by eval-
uating path-integrals in imaginary time, while very successful for calculating equilibrium
properties (in the Fermi gas context see Ref. [165] and Refs therein; for heavy ion collisions
see Ref. [166] and Refs therein) cannot be easily generalized to study transport (in the Fermi

gas context see Ref. [167, 168]; for heavy ion collisions see Ref. [169] and Refs therein).

Within the framework of AdS/CFT however, a class of strongly interacting quantum field
theories in d dimensions in some limits can be related to weakly coupled theories of gravity
in (d+1) dimensions. This correspondence [170] allows us to compute dynamical properties

of these theories, often with relative ease.

While the theories describing ultra-cold Fermi gases and heavy ion collisions do not have
known gravitational duals and controlled calculations are difficult, beautiful experiments
have managed to measure the value of 7/s in the two systems. The value of /s of the
quark gluon plasma created in heavy ion collisions, required for hydrodynamic simulations
to be consistent with the experimentally measured spectrum of low energy particles (see
Ref. [171] for a review), seems to be close to 1/(4m). Remarkably, 1/s has been measured
for ultra-cold fermions at unitarity for a wide range of temperatures and the minimum value
(see Refs. [172, 173, 174]) is about six times the KSS bound.
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Interestingly, the shear viscosity tensor for many interesting systems is often anisotropic.
For example, it has been suggested that the highly anisotropic initial states in heavy ion
collisions (the direction parallel to the collision axes is fundamentally different from the
transverse directions) may give rise to anisotropic transport properties [175]. Furthermore,
many interesting states of matter, eg. spin density waves and spatially modulated phases,
are anisotropic. Another possibility, that we shall explore in detail in this chapter, is that
an externally applied field can pick a particular direction and give rise to anisotropies in
the shear viscosity. This possibility has been explored extensively for the case of weakly
coupled theories in the presence of a background magnetic field. (See Ref. [149] for a classic
treatment, Ref. [176] for applications to heavy ion collisions and Ref. [177] for applications
to neutron stars.) The behavior of strongly coupled theories in the presence of an external
field is less well explored. Our results in the last chapter ( Chapter 4) indicate that one may
expect parametric violations of the KSS bound in such anisotropic scenarios. As we saw,
this feature arises in a wide variety of examples and seems to be quite general. In particular,
for a spatially constant driving force which breaks rotational invariance, we found that by
increasing the strength of the driving force compared to the temperature, the ratio for
appropriate components of the shear viscosity to entropy density can be made arbitrarily
small, violating the KSS bound.

If this phenomenon also carries over to the unitary Fermi gases, it may be possible to
measure these small viscosities in experiments with trapped ultra-cold Fermi gases. For
this purpose, it is helpful to consider traps which share the essential features of the systems
we have considered in gravity listed at the end of Sec. 5.2 of this chapter. The goal of this
chapter is to give a concrete proposal for the trap geometry and parameters where this

effect is likely to be seen.

While typical trap potentials are harmonic, [quadratic (Eq. 5.14) rather than linear in the
distance] by using existing results for the thermodynamics of unitary Fermi gases, we show
that for a range of temperatures the dominant contribution to the damping of collective
modes due to viscosity arises from a narrow region in the trap not near the center, where the
trapping potential can be approximately considered as linear. In analogy with Ref. [139, 178]
it is desirable to have traps that are highly anisotropic, which can be simulated by taking
the trapping frequencies [179] in one of the directions (say w,) to be much larger than the
frequencies in the other directions.

We describe two hydrodynamic modes whose dissipation is governed by the components of
viscosity which are expected to become small in the anisotropic situation considered here.
One of them is known in the literature as the scissor mode which has been well studied for
bosonic superfluids at 7' = 0 theoretically [180] and has also been experimentally excited
in both bosonic [181] and fermionic [182] superfluids. The second mode is a new quasi-
stationary solution to the hydrodynamic equations. Especially for the scissor mode, we
show that for experimentally reasonable values of trap parameters, the damping rate of the

mode lies within an experimentally accessible range. It should therefore be possible to study
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this mode, measure the relevant component of the viscosity and its possible suppression.

To gain some additional understanding of how the anisotropic system might behave, we
also make a rough estimate of the viscosity components in the presence of an anisotropic
trapping potential using the Boltzmann equation. We find that as the anisotropy increases,
due to an increase in the trapping frequency w, in one of the directions, some components

of the viscosity tensor decrease, compared to their value in the isotropic case.

The outline for the chapter is as follows. First, using the knowledge we have gained in the
previous chapters in the gravity picture, we summarize the essential features required in a

system to exhibit the suppression of 7/s.

Next, we consider the unitary Fermi gas in an anisotropic harmonic trapping potential
and describe the two hydrodynamic modes which couple to the small components of the
shear viscosity tensor in Sec. 5.3.1. In Sec. 5.3.3 and Sec. 5.3.4 we show that these two
hydrodynamic modes satisfy the equations of superfluid hydrodynamics. Sec. 5.3.5 discusses
the energy dissipation due to shear viscosity in these two modes we have studied. In
Sec. 5.3.6 we examine the constraints on the mode amplitudes by demanding validity of fluid
mechanics and in Sec. 5.3.7 we discuss the damping in the outer regions of the cloud. Next we
review the thermodynamics of the system in Sec.5.3.8. In Sec. 5.3.9 we give parameter values
for traps (the trapping potential, the temperature and the chemical potential at the center
of the trap) which are tuned such that the system possesses the required essential features,
and show that by measuring the damping rate of fluid modes (described in Sec. 5.3.1) one
can measure the shear viscosity. This section contains some of the key results in the chapter.
Sec. 5.4 discusses an analysis in a weakly coupled anisotropic theory using the Boltzmann

equation. We conclude our discussion in Sec. 5.5.

The solution of the Boltzmann equation used to estimate the values of the trap potentials for
which we expect the corrections to the viscosity to be substantial is given in Appendix D.2.
In Appendix D.1 we compare the modes (discussed in Sec. 5.3.1) with the well known

breathing modes.

5.2 Brief recap of the main results from gravity and condi-

tions for suppression of 7/s

In Chapter 4 (Ref. [178]), several anisotropic theories in 3 + 1 dimensional space-time (the
boundary with coordinates (t,z,vy,z)), which are dual to a gravitational theory living in
4 + 1 dimensional space-time (the bulk with an additional coordinate u) were studied.
Isotropy was broken by considering states where some of the fields have a background value
that depended on some of the spatial coordinates = ,y ,z, explicitly breaking rotational

symmetry between them.

All the examples studied in Chapter 4 (Ref. [178]) share the common feature that the force
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responsible for breaking isotropy in the boundary theory is translation invariant as we shall

explain via an example below.

Chapter 4 (Ref. [178]) built on the results of Ref. [139], which studied a simple system
consisting of a linearly varying dilaton. The dilaton field ¢ couples to the graviton in the

bulk via the Lagrangian

1
167G

/d%\/g [R+ 12A — %ama%] , (5.1)

where GG is Newton’s constant in 5 dimensions and A is a cosmological constant. The

boundary theory in the absence of anisotropy is a 3 + 1 dimensional conformal field theory.

In this system we can clarify what we mean by saying that the driving force is constant.

The dilaton field in the background solution here has the profile

o(t,z,y,2) = pz . (5.2)

Clearly this choice of the background singles out the z direction, breaking isotropy. In the

presence of the dilaton the conservation equations for the stress tensor get modified to be,
0,T" =(0)0"¢ , (5.3)

where O is the operator dual to the field ¢. The right hand side arises because the varying
dilaton results in a driving force on the system. We see that a linear profile results in a

constant value for 0”¢ and thus a constant driving force.

Let us also mention that in this example, on the gravity side the linearly varying dilaton
gives rise to a translationally invariant stress tensor and thus a black brane solution which
preserves translational invariance. This corresponds to the fact that in the field theory the

equilibrium stress tensor features only derivatives of ¢ and is thus space-time invariant.

We shall see that the cold-atom system we consider will not be invariant under translations
in equilibrium. However the equations of hydrodynamics (Eq. 5.20) in the presence of a
driving force associated with a space varying potential look similar to Eq. 5.3, where the
operator O in the cold-atom system corresponds to the density, and the driving force is

proportional to the gradient of the potential ¢(r).

The example considered in Ref. [139] also shares the property that an SO(2,1) residual
Lorentz symmetry survives, at zero temperature, after breaking isotropy. This residual
Lorentz symmetry corresponds to the ¢, z, y directions in the boundary theory. Fluid
mechanics corresponds to the dynamics of the Goldstone modes associated with the boost

symmetries of this residual Lorentz group, which are broken at finite temperature.

In a general system the viscosity 7 is a fourth order tensor under rotations relating the

deviation of the stress-energy tensor from its equilibrium value, to the velocity gradient. If
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z==1/2

Figure 5.1: Fluid flow between two parallel plates. For ¢ = pz the driving force is in the z
direction and is proportional to p. Parametrically small values of the viscosity (Eq. 5.12)
govern the dynamics for flows in the = (or y) direction with a gradient in the z direction
(for Eg. vy = vp2).

the local fluid velocity is v = (vs, vy, v,), we have
i gkt
oTY = n J E(ﬁkvl + 8lvk) . (5.4)
Since we are only considering the effects of the shear components,

kS, =0 (5.5)

In the example in Ref. [139], with dilaton profile given by Eq. 5.2, the viscosity components

TZTZ

that become small correspond to the 7 ,nY*¥% components of the viscosity tensor. In the

subsequent discussion we shall use an abbreviated notation,

nccz:cz = Nz, nyzyz _ nyZ' (56)
In the gravity description these components correspond to perturbations of the metric which

carry spin 1 with respect to the surviving SO(2,1) residual Lorentz symmetry.

A fluid flow configuration where the frictional force (and therefore the resulting dissipation)
is governed by a spin 1 viscosity component arises as follows. Consider the fluid enclosed
between ([178, 183]) two parallel plates separated along z axis by a distance L with the top
plate moving with a speed vg/2 along z direction while the lower plate moves with a speed

vo/2 along —z direction, see Fig.5.1.

The resulting steady state solution of the Navier Stokes equation, even for the anisotropic
case, is remarkably simple, with
vy =0, v, =0, (5.7)
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the temperature 1" being a constant, and v, being a linear function of z
)
Vo =72 2 € (—L/2,L/2) (5.8)

( we have chosen coordinates so that z = 0 lies at the midpoint between the plates). A
constant force per unit area is exerted by the fluid on both the upper and lower plates,
T%* = 1., 0,0, in this solution (we are compactly writing 7,,.. as 1;.). This frictional
force retards the relative motion of the plates and must be counteracted by an equal and
opposite force acting on both plates externally to sustain the steady state solution. We also
note that for this solution, in the gravity theory under discussion, hydrodynamics is valid

as long as the velocity gradient %2 is small compared to the temperature 7.

Using results from the gauge-gravity duality [170] it was shown in Chapter 4 (Ref. [178])

quite generally that the viscosity component 7, behaves like

Moz _ 1 Gaw
s AT g.n lu=uy,’

(5.9)

where gz |u=uy,; 922 lu=u, refer to the components of the background metric evaluated at the
horizon which we denote by wuy. ‘s’ refers to the entropy density which in the bulk picture

corresponds to the area of the event horizon.

In the isotropic case the ratio ngj: is unity and we see that the KSS result is obtained.

U=Up,
However, in anisotropic cases this ratio can become very different from unity and in fact
much smaller, leading to the parametric violation of the KSS bound, where the relevant
dimensionless parameter is the ratio of the strength of the anisotropic interaction and an

appropriate microscopic energy scale of the system.

The general result Eq. 5.9, for the behavior of the spin 1 shear viscosity components 7,, =
1ny> = 11 was studied in the example of Ref. [139] for two cases — one in the low anisotropy
regime and the other in the high anisotropy regime. In this example, there are two scales
of interest, p, which enters in the dilaton profile, Eq. 5.2 and determines the anisotropy,
and the temperature 7' (while this theory does not have quasi-particles at finite 7', one can
roughly think of the mean free path as being of the order of 1/7"). Whether the anisotropy
is large or small is determined by the ratio p/T" which is dimensionless. Simple results can
be obtained in the limit of low and high anisotropy which correspond to p/T < 1 and
p/T > 1 respectively.

For the spin 1 component of the shear viscosity 7,. = 1,. = 1, the results are as follows:

1. Low anisotropy regime (p/T < 1):

s 4r 167372 23047574

1 21og 2 — 72 + 54(log 2)2) p* 6
n p”log +(6 7 4 54(log 2)7)p +O[<;>] (5.10)

We see that a small anisotropy at order (p/T')? already reduces this component of the
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viscosity and makes it smaller than the KSS bound. In the limit of zero anisotropy,

we recover the KSS bound )
N
—_ = —. 5.11
S 47 ( )
We also note that the driving force in the conservation equation for the stress tensor
(Eq. 5.3) is proportional to V¢ ~ p (Eq. 5.2) and the analogue of the mean free path

is T. Thus the corrections go like (VT#

2. High anisotropy regime (p/T > 1):

nL 8 T2
—_—=—. 5.12
We see that in this limit the ratio can be made arbitrarily small, with ’% — 0, as

T — 0 keeping p fixed. !

In contrast the 7)., component (which couples to a spin 2 metric perturbation) was found

to be unchanged from its value in the isotropic case,

Nxyzy 1
— = 5.13
s 47 ( )

and thus continues to meet the KSS bound.

Motivated by the results in the gravity side, we may hope to find parametrically suppressed
viscosities compared to the KSS bound in systems where the following basic requirements

are met.

1. The system is strongly interacting and in the absence of anisotropy have a viscosity
close to the KSS bound.

2. The equations of hydrodynamics for the system admits modes sensitive to the spin

one viscosity components as described above and in Ref. [139, 178].

3. Sufficient anisotropy needs to be introduced in the system (say in the z direction
with rotational symmetry preserved along the = — y plane), such that these spin one
components of the viscosity, when measured in units of the entropy density, show an
experimentally measurable decreasing tendency from its lowest value observed so far

in ultracold Fermi gases.
4. The force responsible for breaking of isotropy is approximately spatially constant.

5. The velocity gradients are small enough (compared to say the inverse mean free
path) ensuring that hydrodynamics is the appropriate effective theory to describe
the system.

1n this regime n, ~ % and s ~ T?p , whereas for the isotropic case (p = 0) n. ~ T2 and s ~ T°.
Thus we see that for T' < p, 1, is smaller than its value in the isotropic case while s is bigger, resulting in
the parametric violation in Eq. 5.12.
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In the next section (Sec. 5.3) we explore a system of trapped ultra-cold Fermi gases, chosen
so as to explore anisotropic fluid dynamics. While some of the details of this system are
different from the systems with dual gravitational theories discussed above, it is possible to
choose a set of parameters such that the system has the five features listed above. It can

therefore be used to explore the behavior of the viscosity in the anisotropic regime.

While gravitational duals for the ultra-cold Fermi gases are not yet known and hence we
can not calculate the anisotropic viscosity coefficients in this strongly coupled system, if
the main feature that n,, is smaller than the KSS bound holds true for these, one could

potentially measure this phenomenon in experiments.

5.3 Anisotropic viscosity in trapped anisotropic Fermi gases

Trapped ultra-cold Fermi gas with their scattering length tuned to be near the unitarity
limit [179, 184], are strongly interacting systems for which n/s [172, 173, 174], was measured
to be close to the KSS bound 1/(47). In this section we shall explore the properties of this
system, when it is placed in an anisotropic trap. We identify suitable hydrodynamic modes
which probe the viscosity component expected to be suppressed due to the potential in a
highly anisotropic harmonic trap and find that for reasonable choices of parameters the five
criterion referred to above, (see Sec.5.2), can be met in these modes. This leads us to suggest
that an anisotropic shear viscosity can arise in such systems and appropriate components of
the viscosity may show a reduction from the isotropic values in an experimentally accessible

way.

One method [174] to measure the viscosity is by starting with an initial state where the fluid
is trapped in an anisotropic harmonic trap. On removing the trapping potential, the fluid
experiences elliptic flow and the extent of the flow is related to the initial anisotropy and
the viscosity. The relevant bulk viscosity of the system vanishes [185, 186], which allows
one to cleanly extract the shear viscosity. Note that even though the initial state of the
fluid is anisotropic, the experiment does not probe anisotropic shear viscosities: after the

trap potential is removed, the viscosity tensor at any point is isotropic.

An alternative technique is to measure the damping rate of breathing modes [172, 173]
which is related to the loss of energy due to the viscosity. The experiments we propose in
this chapter use this alternative technique and propose to measure the relevant component

of the shear viscosity by measuring the damping of appropriate hydrodynamic modes.

The unitary Fermi gas system we consider here shares important features with the gravita-
tional system described in Sec. 5.2. The role of a linear potential was emphasized in Sec. 5.2.
While such a linear potential cannot arise in the trapped fermion system we consider, we
shall see below that if we choose the velocity profile and the trap parameters carefully,
the dominant contribution to shear viscosity comes from a region of the trap where the

confining force is approximately constant: satisfying the fourth criterion listed in Sec. 5.2.
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Figure 5.2: (Arbitrary units for coordinates) The flow profile in the x — z plane for the
Elliptic mode, ie. v = z & — x 2 (left panel, corresponding to w,/w, = 1 in Eq. 5.16) and
v =2z 2 —0.001 z £ (right panel, corresponding to w,/w, = 0.03 in Eq. 5.16).

The system we consider consists of an ultra-cold Fermi gas under harmonic confinement

described by the potential
L 9 9
o(r) = Z o IW; ] (5.14)
i

where ¢ runs over x,y,z and m denotes the mass of the fermionic species. The trap is
anisotropic if w;’s are unequal. For example, w, > w,, w, gives rise to a pancake like trap:
thin in the z direction. This can lead to an anisotropic shear viscosity tensor as described

in Sec. 5.4. The potential gradient in the x and y directions is small in most of the trap.

This section is organized as follows. After a general discussion we describe the two modes
of interest (referred to as the Elliptic mode and the Scissor mode) in subsection 5.3.1. The
equations of superfluid hydrodynamics are described next in subsection 5.3.2, following
which, in subsection 5.3.3 and 5.3.4 respectively we show that the Scissor mode and the
Elliptic mode satisfy these equations. The fluid flow profile in the Elliptic mode is similar
to that considered in Chapter 4: a velocity in the x direction with a gradient in the z
direction. The scissor mode is well known in the literature. In subsection 5.3.5 we show
that the dissipation of energy in the two modes of interest is determined by the relevant
components of the viscosity tensor (the spin 1 components described in the previous section).
In Subsection 5.3.6 we find a constraint on the magnitude of the velocity for the two
modes by demanding the validity of fluid mechanics. The thermodynamics of the system
is discussed in subsection 5.3.8. Finally in subsection 5.3.9 we bring this understanding

together and show that for reasonable values of parameters the required criterion listed in

Sec. 5.2 can indeed be met.
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Figure 5.3: (Arbitrary units for coordinates) The flow profile in the x — z plane at time
t = 0 for the Scissor mode, ie. v =2z &+ z 2 (Eq. 5.17)

5.3.1 Choice of Velocity Profile

Here we first describe the two modes of interest which arise as solutions to the equations
of ideal superfluid hydrodynamics. Each of these modes is characterized by the superfluid
and the normal components, which we denote by v and v,, respectively.

The first mode, which we call the Elliptic mode has v, = 0 and v,, = v given by

v =gz &4 azx 2) (5.15)
with the following relations:

Elliptic mode : w=0, a, = —-Za, (5.16)

(S
VWN|R N

The other mode of interest, denoted by the Scissor mode, has v, = v,, = v given by Eq. 5.15
with

Scissor mode : w = w2+ w?, a, = . (5.17)

From the right panel in Fig. 5.2 we see that in the high anisotropy limit w, > w,, a, — 0 for
the Elliptic mode, and hence we recover a flow profile similar to that considered in Chapter
4; namely a time independent (in the limit of small viscosity) velocity (v o< zZ) linearly
increasing with the coordinate in the direction of the gradient of the external potential
(z), pointing (%) in the direction perpendicular to the gradient of the external potential
(neglecting wy, w,. The gradient is in the Z direction). To the best of our knowledge, the

Elliptic mode has not been studied in ultra-cold gas experiments. The scissors mode which
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has been studied extensively (for example see Refs. [180, 181, 182]).

In what follows, we will first show that the Elliptic mode and the Scissor mode satisfy
the equations of superfluid hydrodynamics in the presence of a harmonic trap. There are
viscous corrections to the hydrodynamic equations, but we work in a limit where viscous
corrections are small and therefore the solutions to the ideal hydrodynamics can be used to

calculate the energy loss rate due to viscosity in a perturbative manner.

5.3.2 Equations of superfluid hydrodynamics

Neglecting viscosity, the superfluid equations are given by the conservation laws of entropy,
mass (particle number), momentum and an additional equation for the superfluid velocity.

In the presence of the external potential ¢(r) they are listed below :

O(ps) + V- (psvy) =0, (5.18)
ot

ap B

o TV g=0, (5.19)

X 1l = —nVo(r). (5.20)

ove o VE ) plr)

or = V(G ). (5.21)

Here p is the total mass density (where p, and ps are the normal and superfluid mass
density of the system and the total mass density p = p, + ps). We have not written out
the dependence of the velocity on position and time. p(r) can be thought of as the local
chemical potential. n (not in the subscript) denotes the total number density (which is
related to the total mass density p via the relation p = mn), g is the momentum density,

and II;; is the stress tensor, given as follows

= PnVn + PsVs,

IL;j = Pdij + pnVn,iVnj + PsVs,iVs,j -

Let us note that the equation for energy conservation can be derived from the set of

equations above, and is not an additional independent constraint.

Altogether there are 8 equations above and they can be solved for the 8 independent
variables - 6 components of (vs, vp) and T, p(r). We can then express all thermodynamic
variables as functions of (T, u(r)) like P(T, u(r)), s(T, wu(r)) etc. In the trap geometries
we consider, the center of the trap is superfluid and the outer trap is in the normal phase.
The equations for a normal fluid can be obtained by simply substituting ps = 0 and ignoring
Eq. 5.21.

Let us first look at the equilibrium situation vy, = vg = 0 in the absence of external potential
¢. Eqns. 5.18, 5.19, 5.20, 5.21 are satisfied with p(r) and P spatially constant.
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Before we consider the effects of an external potential let us also note that the pressure
and number density in the absence of the trap, which we denote as Py—q, ny—o respectively,
satisfy the Gibbs-Duhem relation

(5.23)

In the presence of the external potential ¢(r) with vy = v,, = 0, only Eq. 5.20 and Eq. 5.21
changes. Eq. 5.21 is satisfied by taking

p(r) = p—¢(r), (5.24)

where 1 is a global constant that determines the total number of particles in the system.

Eq. 5.20 in the presence of ¢(r) becomes
0;P(r) = —n 0;¢(r). (5.25)

This is consistent with the replacement u(r) — u— ¢(r) if we take the pressure P at a point
r in the presence of the trap to be equal to Py—o(T, n — ¢(r)) and the number density to
be ng—o(T, pn — ¢(r)). This follows from Eq. (5.23), since 9;P = _81(;4:0 0ip = —ng—o 0;p.

This is also known as LDA (Local Density Approximation). Generally LDA corresponds to

the conditions,
fu(r), T) = fo—o (10— o(r), T) (5.26)

where f is P, n, p or s. In all the subsequent discussions, a subscript 0 indicates that the

conditions for LDA are valid in equilibrium. Note that in equilibrium 7T is a constant.

5.3.3 Scissor mode solution to linear order

First we look for solutions of the form
Vp = Vg =V (5.27)

and V x v = 0. We restrict ourselves to small velocities and linearize the above equations.

For the scissor mode we see from Eq. 5.15 and Eq. 5.17 that v is given by

v =a e“(zi + x3) (5.28)

where a = o, = «, is a constant. We will solve the equations to linear order in «.

Let us first explore Eq. 5.21. Out of equilibrium (v # 0), p(r) has an extra correction

associated with v,
lr) = 1= o(x) + e(r,1) (5.29)

96



The Shear Viscosity in an Anisotropic Unitary Fermi Gas

Eq. 5.21 then gives

€ = —amzz iw e, (5.30)

Once we are out of equilibrium, we will see that the remaining equations are self consistently

solved by letting
fozo(p(r), T) = fo=o (1 — ¢(r) +e(r,t), T) (5.31)

where f is P, n, p or s.

The mass and momentum conservation equations, with the condition Eq. (5.27), give

dp
e . = .32
8t+v (pv) =0, (5.32)
ov

PE + p(V.V)V =—-VP—-nVo (5.33)

where ¢(r) is the external potential and p is the total mass density (p, + ps). Linearizing

these equations to order a 2 using Eq. 5.31 we get,
6,00 Oe
4V =0, 5.34
oo (pov) (5.34)
ov 6P0 8n0
— = —V(—=—¢) — (=¢)Vo. 5.35
pgy = V(G 00~ (Glove (53)
Using 9;p0 = —%—’:f@@ and using the fact that for the modes we consider in this chapter
V.v =0 we get from Eq. 5.34
de

Plugging in the harmonic potential and the solution Eq. 5.30, we find that the above
equation is solved by the Scissor mode which satisfies the condition, Eq. 5.17. Now taking
time derivative of the Euler equation Eq. 5.35 and using Eq. 5.34 in the second term on
R.H.S of Eq. 5.35 and %—];0 = ng (total number density at equilibrium),

62vi Oe
P = —Oi(noz) + 0;(nov;)did
82VZ' Oe Oe
= po st + nodi(5) = —Oimo( ) + Oymovdig (5.37)
0%v; Oe ong de.  Ong
= POW + no&(a) = 8—,ual¢(a) - 8—,u i vj 95 .

We see from Eq. 5.36 that the RHS of the above equation vanishes. For the scissor mode,
it follows from Eq. 5.17 and Eq. 5.30 that the LHS also vanishes, and thus the equation is

met.

2 Note that € in Eq. 5.30 is of order «
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For the time dependent scissor mode, the mass conservation equation is

ap B
n +V-(pv)=0 (5.38)

for vy = v, = v.
Starting with Eq. 5.18 and using Eq. 5.38 we get

Os
5 TV Vs=0. (5.39)

Assuming that the entropy is of the form s(u — ¢(r) + €(r,t)) as given in Eq. 5.31 and
linearizing in o we get

880 Oe 380

2 _hév, =0. 5.40

o ot op Vi (5.40)
This equation is valid when Eq. 5.36 is met. Hence we find that the ansatz Eq. 5.31 with
Eq. 5.30 meets all the equations self consistently.

5.3.4 Elliptic mode solution to linear order

Next we verify that the Elliptic mode, Eq.5.16, solves the superfluid equations to linear
order in the velocity. Note that this mode is a stationary solution (w = 0). Like in the
previous case we take T to be a constant in this mode. Note that in this solution v, has a
non-zero curl, V x v,, # 0, and therefore in the absence of vortices vy # v,,. We will denote

v, = Vv below.

We start with Eq. 5.21. Since v, = 0 in this mode, we see that this equation is met if

p(r) = p—o(r) (5.41)
where p on the RHS is an r independent constant.

Next, with vy = 0 the mass and momentum conservation equations simplify to

%49 (o) =0, (5.42)

ot

The time derivatives in these equations can be dropped. The Euler equation, Eq. 5.43, is
met to order v if P and n take their form in the LDA approximation, Eq. 5.26. We will also
assume that the other thermodynamic values, p,,s take this LDA form and denote them

with a subscript 0. Using the fact that V - v = 0, the other equation, Eq. 5.42, becomes,

8/)071
O

Vv - (,OQnV) =0= - alqb v; =0 (5.44)
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where we have used the ansatz Eq. 5.26 for the mass density of the normal component. For

our mode ;2 T+ a,x Z with a, = —z—zam (see Eq. 5.16) one can easily check that
3Z¢ V; = O, (5'45)

so that this equation is satisfied.

Finally, the entropy conservation equation (after replacing p, s by their LDA values) becomes

V - (posov) = 0. (5.46)
Using the fact that our mode is free of divergence, and pgsg is a function of u — ¢(r), we
see that this equation is also met when Eq. 5.45 is satisfied.

It is interesting to note that the fact that the Elliptic mode and the Scissor mode also solve
the equations of one component fluid mechanics in the normal phase. Since the temperature
is a constant in these modes, and the chemical potential varies as given in Eq. 5.24, up to
possible corrections of order €, Eq. 5.29, as one moves from the center of the trap to its
edges the ratio p(r)/T becomes smaller and the system will transit from the superfluid to
normal phase. The solutions we have found above, for both modes, will continue to hold in

such situations as well.

5.3.5 Energy dissipation due to viscosity

The energy dissipated due to viscosity is given by

: 1 2 2
Ekinetic = — 5 /dgr nijij(r) <(9in + ({9]‘1)2‘ — gdwakvk> — /dng(I‘) (aivi)Q (5.47)

where 7;5;; = n;; is the relevant component of the shear viscosity and ¢ is the bulk viscosity.
We note that for our chosen velocity profiles, the bulk viscosity contribution vanishes. Also
in the traps we will consider, the temperature T is constant throughout the trap. Hence we

also ignored contributions from thermal conductivity.

Thus,

2
. w
Bianeic = = [ @res(r) a1 - 522 (5.45)
z

is the energy dissipation rate for the Elliptic mode, where we have simply written 7,.,. as

Nez-

The energy dissipated per unit cycle for the oscillatory time dependent scissor mode is
Flinetic = —2/d3r Nz (1) 2. (5.49)
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5.3.6 Validity of hydrodynamics

One expects that hydrodynamics is a valid description of the system as long as the viscous
correction to the stress tensor is small compared to its value in an ideal fluid (for eg. see

Ref. [183] or Sec. 10.3.4 in Ref. [187]).

For the Elliptic mode the contribution to the stress energy tensor from viscosity is

1 1
77:BZ§(O‘:B + az) ~ nng(am) (550)
where we have assumed w, > w, , and neglected the contribution from «, (see Eq. 5.16).

For the Scissor mode the magnitude of the contribution to the stress energy tensor from
viscosity is
1
77962’5(0% + az) = nxz(ax) (5.51)

where we have o, = «a, for the Scissor mode.

At any point r, hydrodynamics is expected to be valid if the viscosity contribution is smaller
than the pressure P(r),
Nz (r) < P(r) . (5.52)

In the outer edges of the trap the pressure becomes small while 7 tends to a constant [188,
189, 190] and Eq. 5.52 is necessarily violated regardless of how small «, is chosen. The
contribution of this region to the total energy loss is typically small however. (Note that
the expression Eq. 5.47 can not be used to evaluate the energy loss if Eq. 5.52 is not
satisfied [190].) What we desire is that hydrodynamics should be a good theory in the
region where the energy loss is substantial. When we consider specific numerical values
for the parameters of the trap in Subsection 5.3.9, we will identify a point rpax close to
the edge of the trap, such that the integral Eq. 5.47 receives most of its contribution for

7 < 'max-

We can then define o™ by the condition that for this amplitude the viscosity contribution
to the stress energy tensor is equal to the pressure at the point rpy .
max P(I’max)

z = 7o () (5.53)

For a,, < a'®* hydrodynamics is valid in the region of interest. This constraint limits how
large o, and consequently Eyinetic can be. As long as this dominates over other processes of
energy loss (interaction with the environment) this damping can be measured. In Table. 5.3

in Sec. 5.3.9 we show this numerical limit for the traps described in that Section.
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5.3.7 The outer core

It has been noted that a naive application of hydrodynamics at the outer region of the trap
where the density of the atoms is very low leads to an unphysical result. Since the shear
viscosity in the ultra-dilute regime has the form 1 ~ (mkT)%?2, (m is the mass, k is the
Boltzmann’s constant and 7' is the temperature) the contribution from the tail (or the outer
cloud) is independent of the density, and hence is divergent [[190, 191, 192, 193, 194, 195]].
The unphysical result arises because in the outer part of the trap collisions are rare and
hydrodynamics breaks down. In fact the better approximation in this region is assuming
that atom dynamics in this ultra-dilute region is collisionless and hence does not contribute

significantly to damping.

Here we use a simple procedure to take this physics into account. We only consider traps
where the chemical potential at the center is positive and cutoff the damping contribution
from the outer cloud by integrating the viscosity contribution only from the center of the
trap up to ryax which is defined as the surface where 1 —V (rpax) = 7. Similar prescriptions

have been followed previously by [173, 174] (see [195] for an overview).

One can also perform a more careful estimate of the contribution from the outer cloud.
To be concrete, let us consider the scissor mode. We follow the procedure described in
Ref. [192] which solves the Boltzmann equation in the dilute regime, rather than assuming
that hydrodynamics is accurate in this region. Their important result is that for the scissor
mode 2 the energy loss rate in the dilute regime can be written as the integral over 7 divided
by a suppression factor that increases exponentially as a function of the trapping potential.

More precisely,

: n
(Bxinetic)| = —2a2/ dPr——a s, (5.54)
metie r>Tmax 1 + sz’g (r)

where in the dilute regime (or the “classical limit”)

417 (ET\? vir
Tn(r):m<%> oV @/RT (5.55)

and the viscosity 7 is given by

15 (mkT)3/?
"""y

(5.56)

The scissor mode frequency is given by,

w=\w?+w?, (5.57)

. _ 1
and the geometric mean w = (Wywyw;)3.

3 Let us also note that the scissor mode is excited in the z — y plane in Ref. [192]. We have taken care
of this fact in our calculations and comparisons.
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T |T (s r(s7h
4T./5 | 23.03 0.0044
27./3 | 18.32 0.00009
AT,/7| 146 | 214 x 1076
T./2 | 11.86 | 4.69 x 1078

Table 5.1: Comparison of contributions to the damping rates for the scissor mode from the
core [I'(c) Eq. 5.64], and the outer core [I'(oc) Eq. 5.63] for the trap parameters we will
explore in our chapter.

The integral Eq. 5.54 is convergent because of the exponential increase in the relaxation time
7,(r) even if we take the upper limit of the integral to oo but for the numerical evaluation
we take the upper limit of the z-integration to be xpn.x + L, for the y-integration to be

Ymax + L, and z-integration to be zpax + L with L > |rpax].

At the core of the trap hydrodynamics is a good approximation (unless 7' < T, where the
superfluid phonons can move out of equilibrium). This is a crucial point because Boltzmann
transport is not a valid approximation at the core where the density of atoms is high. As
we explained in the last section, as long as a; = a, = a < a®*, hydrodynamics is a good

approximation and the local contribution from the viscosity to the stress energy tensor

a 7(r) (5.58)
is smaller than the pressure

P(r) (5.59)

for r < rpax. Therefore, using hydrodynamics to evaluate the damping contribution from

the core, we get

<Ekinetic>’ = —2@2/ dr n(r) , (5.60)

r<rmax
where the local value of n(r) is calculated using the data for 7 from [174]. The integration is
performed over © < Tmax, ¥ < Ymax and z < zmax. This approximates the actual ellipsoidal
region with a rectangular shape, but we see that this will not change the results substantially

since the contribution from the outer cloud is small.

The amplitude decay rate is given by

| <Ekinetic> |

I= 2(E)

(5.61)
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(E) is the total mechanical energy averaged over a cycle,

(B) =5 [ drmn(e) o)
(5.62)

1
= §ma2 /d3rmn(r)(z2 + 2?)

where v = ae!V¥ite (23 + 12). In Eq. 5.64, o cancels out and we only need n(r) which

is obtained from experiments as explained in detail in Sec.5.3.8.

The damping rate contribution from the outer cloud is given by

’ <Ekinetic> ‘
r=—>"7"- 5.63
o) (5.63)
and the contribution from the core is given by
| <Ekinetic> |
= ———+"- 5.64
S (564)

and the total damping rate Eq. 5.61 is the sum of the two.

In Table. 5.1, for the representative trap parameters which we will be considering later (
w, = 27 x 10% rads/s, w, = w, = 27 x 385 rads/s and p = 10uK and T/T, values as
given in the table), we present the comparison of the contribution to damping from the
outer cloud and the core in Table. 5.1. We see that the damping contribution from the
outer cloud is small, especially for the low temperatures, justifying our approach. A direct
comparison using our technique (where we cut off the integral for Flinetic at the point of
the trap where hydrodynamics breaks down) can only be made for the lowest temperature
(T'/Tr = 0.1) of Ref. [182]. Our calculations (using the trap parameters of [182])give a
damping rate of 250 s~! which agrees with experiments (255 + 40 s~!, [182]). This is a

non-trivial check of our methodology and gives us confidence in our approach in this regime.

5.3.8 Thermodynamics

The evaluation of the energy loss from Eq. 5.48 and Eq. 5.49 requires the viscosity 7 as a
function of the position r in the trap. In the highly anisotropic traps we are considering the
viscosity is actually a tensor and the different components of the shear viscosity can acquire
different values, in contrast with the isotropic case. For the modes of interest, Eq. 5.15 we

need to determine the behavior of the component (7).

To get a first estimate of the region of the trap which gives a dominant contribution to
the integral in Eq. 5.47, we use the local density approximation (LDA) and estimate the
resulting viscosity. More specifically, we assume in this approximation that thermodynamic

variables like the number density n, the entropy density s depend only on the local value of T’
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Figure 5.4: (Color online) Data of % as a function of /T (left panel) and p/Ep versus
T/Tp (right panel) from Ref. [196]. The central curves (blue online) correspond to the
central values and the band gives an error estimate (Ref. [196]). The band denoted by
the dashed vertical lines corresponds to the phase transition between the normal and the

superfluid phase.
representative error bars given in Ref. [196].
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Figure 5.5: (Color online) The thermodynamic function G (top left panel) and its derivative

(top right panel) as a function of %

The lower panel shows F. These dimensionless

functions are defined in Eq. 5.65. The error bands follow from the error bands in Fig. 5.4.
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Figure 5.6: (Color online) The left panel shows I versus T'/Tr from Figs. 2 and 3 of [174].

The right panel shows * versus T/Tr from Fig. 5 of [174].

and p. The viscosity is also then taken to be given by these local values of T, 4, neglecting
any effects of anisotropy which could make the different components of the tensor take

different values.

The effect of anisotropy on the viscosity tensor are estimated using Eq. 5.102, in a following
section (Sec. 5.4). While we cannot reliably compute them, the key point of our analysis

here is that they may be experimentally measured and could lie below the KSS bound.

To apply the LDA approximation mentioned above, we start first by considering a ho-
mogeneous system characterized by temperature T, u and review the behavior of the
thermodynamical parameters and the viscosity as a function of these parameters. This
is covered in this subsection. In the presence of the trap p varies in the equilibrium
configuration. The effects of the trap, in this approximation, are then incorporated by
using the resulting local value for 4 and 7" in the behavior for the homogeneous case. The

next subsection will then incorporate the effects of the trap.

In certain thermodynamic regimes, the viscosity of a uniform unitary Fermi gas can be
computed in a controlled manner. At temperatures much smaller than the chemical po-
tential, transport is dominated by the Goldstone mode associated with superfluidity and
the viscosity can be computed by solving the Boltzmann transport equations [197]. At
temperatures large compared to the chemical potential, the density of fermions is small and
a kinetic estimate of the viscosity, n = const. x (mT)%/2, is adequate [188, 189, 190]. But we
shall see that the largest contribution to damping arises from the regime where T and p are
comparable, and a theoretical evaluation of the viscosity is difficult. Monte Carlo [167, 168]
methods, microscopic approaches [198], and T'—matrix techniques [199] have been used to
calculate the viscosity in this regime but presently the best estimate for the viscosity in this

intermediate regime comes from experiments.

In Refs. [172, 173], /s was measured for the first time. Recently, this measurement was
refined in Ref. [174] and the result for the dimensionless ratio 7/n was measured for a wide

range of T'/ 1, which we show in Fig. 5.6. Therefore, to obtain the LDA value of the viscosity,
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we just need n(u,T).

In the next few paragraphs we describe how to obtain n(u,T") using the scaling properties of
the unitary Fermi gas. With that understanding at hand we will then return to a discussion
of how to obtain the viscosity in the approximation described above. In the unitary Fermi
gas, the chemical potential p and the temperature T are the only energy scales in the
problem. Therefore, we can express various thermodynamic quantities as a function of the
dimensionless quantity y = 7'/p multiplied by an appropriate dimensionful function of only

one of the two variables. Following [172] we write,

n(p, T) = ng(pu)F(y),

s T) = Zng(W)G'(0)

(5.65)

where n is the number density, s is the entropy density, and F(y) = G(y) — 2 y G'(y)/5,
ng(p) = ﬁ@mu)% is the number density of a free Fermi gas. Therefore one can compute
the desired thermodynamic quantities if the function G(y) is known. For example, one can

write the pressure as

Pl T) =2p ng(1) G). (5.66)

In the following discussion, we use the usual definitions

k? k
kF = (37T2n)1/3, EF = ﬁ, TF = EF/kB, Vp = EF . (5.67)

At low temperatures (% < 0.6) we use the & data from Fig. 3(b) of Ref. [196] to obtain
G(y). Data from two graphs obtained from Ref. [196] are shown here in the two panels of
Fig. 5.4 for convenience. The left panel shows S/N = s/n as a function of T//Tr and the
right panel shows p/Er as a function of T'/Tp.

In order to solve Eq. 5.65 we need to get % as a function of y. We use Fig. 3(a) of
Ref. [196] to convert the % data in terms of y = % rather than II—F We obtain the function
G(y) by numerically solving Eq. 5.65, subject to the boundary condition G(0) = 1/£%/2 at
T = 0. We use £ = 0.376 £+ 0.0075. (The value of { quoted here is from [196]. Various
theoretical calculations can be found in [165, 200, 201, 202, 203, 204, 205].) Fig. 5.5 shows
the numerically extracted function G , its first derivative and the function F. In Fig. 5.5
and the rest of the figures, the band denoted by the dashed vertical lines corresponds to

the phase transition between the normal and the superfluid phase.

The data in Ref. [196] stops at T'/TF = 0.6. For higher temperatures the density is small
and as far as thermodynamics is concerned, we can model the system as a gas of weakly
interacting fermions with a self energy correction in the chemical potential associated with

self interactions in the normal phase. Therefore n and s have the same form as in a Fermi
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gas, (Ref. [206])

PolyLog <%, —e%)

Njw

Nnorm = —9g (mT)

2v/2m/? (5.68)
VT <2 u PolyLog (%, —e%) — 5T PolyLog <%, —e%>>
Snorm - 2\/57[_3/2 )

where Tnorm, Snorm denote the number density and entropy in the normal phase, g =

2 is the energy level degeneracy, and p with self energy corrections is replaced by p —
32/3n2/37r4/3(§n71)
2m
works well all the way down to temperatures T'/TF 2 0.5 or equivalently % 2 3.2 as one can

. Fitting to high temperature data gives &, ~ 0.45 [196]. This description

check by comparing the values of S/N as a function of T/TF in this approximation with
the results from [206]. These results match smoothly to the low temperature measurements

in Ref. [196]. Therefore for % > 3.2 we use Eq. 5.68 to compute the thermodynamics.

Now that we have understood how to obtain n(T, 1) we can return to our discussion of the
viscosity. To evaluate 1 at a given p and 7" we simply multiply 7 from Fig. 3 of Ref. [174]
(shown here in the left panel of Fig. 5.6) with the number density that can be found using
Eq. 5.65. One could alternatively multiply Z from Fig. 5 of Ref. [174] (shown here in the
right panel of Fig. 5.6) with the entropy that can be found using Eq. 5.65. The former

works better because of the smaller error bars.

As we shall see in the next section when we describe the fermions in a trap, the dominant
contribution to the energy loss arises from the region in the trap where 7'/ is about 0.54.

This is just above the critical temperature 7T, given by the relation
T./Tr = 0.167 +0.013 , (5.69)

or equivalently

T,
—< =0.4+0.03. (5.70)
o

From the right panel of Fig. 5.6 we see that just above % ~04,n/s~0.7~ 8(%). This

fact will be relevant in the next section.

5.3.9 Results for the trap

Having understood the thermodynamics in the absence of the trap, we now turn to in-
corporating the trap potential in the discussion. We first use the LDA approximation to
calculate how thermodynamic quantities like s, n etc. vary along the trap. It turns out that
on starting at the center of the trap at a sufficiently low temperature, the entropy density
has a peak, zg, close to the point where the superfluid-normal transition occurs. In turn,
this leads to the viscosity and damping effects for the fluid modes of interest receiving their

contribution from a region close to the peak and with a width, z that can be made narrow,
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Figure 5.7: (Color online) Variation of number density (left panel) and the entropy density
(right panel) with respect to z for T' = 2L

3¢ at w, = 2w x 10* rads/s with chemical potential at
the trap center 10uK. The vertical lines denote the band in z where T' = (0.4+0.03) (n—¢(2))
(Eq. 5.70).

dz/zp < 1. Finally, in this subsection we examine the resulting behavior of the system for
a range of reasonable values of parameters and show that the five conditions listed at the
end of Section 5.2 can be met. It turns out that both the time scales for energy loss, and

the magnitude of the total energy, lie in the range of experimentally accessible values.

Before we start let us note that there are three energy scales, T, u,w, in the system (u
without an argument refers to the chemical potential at the center of the trap, and we are

neglecting w,,w, here). These give rise to two dimensionless ratios, T'/p,w,/p. Length

1
2mE "’

scales can be obtained from these energy scales using the mass, via the relation, L =
Thermodynamics in the Trap:

As discussed in Subsection 5.3.2 in the presence of a trap the equations for superfluid
dynamics can be solved at equilibrium by taking the chemical potential to have a local
value which varies along the trap, as given by 4 Eq. 5.24. The temperature T in equilibrium

is a constant.

Once we have the function G as discussed in Sec. 5.3.8, one can then use LDA to express
all quantities of interest as a function of the displacement from the trap center (which we

denote by r). Thus, within LDA, we can write the number density as

n(r) =n(u(r), T). (5.71)

We can also express energy and entropy density in the same fashion as a function of the
distance from the trap center. Some comments on the conditions for the violation of LDA

will be made in the end of the section.

To set the scales we show (see Fig. C.1) the number density and the entropy density as

4From now on p without the argument r refers to the chemical potential at the center of the trap and

H(r) = p— 6(x).
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a function of the distance z from the trap center at x = 0,y = 0, for a typical trap
configuration that we consider. In all the examples we consider, we will take Lig as the

fermionic species.

In making Fig. C.1, the chemical potential at the center of the trap is chosen to be 10uK
which is typical for experiments performed with fermionic cold atoms [173, 207]. The
potential is taken to be harmonic (Eq. 5.14), with the confinement frequency along z
direction, w, = 2 x 10* rads/s which is about 10 times that chosen in Ref. [207]. 5 Since
we are taking z =y = 0, w, and w, do not matter in drawing Fig. C.1. However, since we
will be exploring anisotropic traps we keep in mind the condition that w, = w, < w..

2T,
3

temperature (Eq. 5.70) associated with the chemical potential (x) at the center of the trap
defined by

The temperature throughout the trap is taken to be T' = where T, is the critical

T, =04 p. (5.72)

To avoid confusion we note that T, is the temperature at which the superfluid to normal

phase transition would have occurred at the center of the trap. In the system under

2T,
3

temperature at the center of the trap, the transition actually occurs away from the center

consideration with T = , since T" at the center of the trap is below the local critical
of the trap, at a location z = z., where the local chemical potential u(z.) = ﬁ [where we
have abbreviated (0,0, z.)) as u(z.)] corresponding to the phase transition to the normal
phase. In Fig. C.1 we have denoted it by dashed (gray online) vertical lines corresponding

to the central value and the error bands.

The error bands to the densities (marked by red curves online) are associated with the
errors in G (Fig. 5.5). They are discontinued from z = 17 x 1075 cm corresponding to the

point where we switch to Eq. 5.68 to calculate the thermodynamics.

In the other trap geometries we consider below, we will keep the chemical potential at the
center, p, unchanged as it will set the overall scale of the problem, and only change the
temperature of the trap and the confining frequency w,, in order to explore traps which

satisfy criteria listed in Sec. 5.2. The strategy we follow is given below.

As explained in the last section, we estimate the 1 at a given location r corresponding to the
local chemical potential p(r) and temperature 7' by simply multiplying the local number
density n we find using Eq. 5.65 with  from Fig. 3 of Ref. [174]. (We have reproduced
it here in Fig. 5.6 for convenience.) This estimate assumes that not only thermodynamic
but also the transport quantities are determined by the local chemical potential and the
temperature. This estimate necessarily implies that the viscosity is isotropic. Nonetheless
this will help us identify the values of T/ for which the energy loss of the hydrodynamic
shear modes is dominated by a region where the potential can be approximated as a linear

potential. Having done that, we will increase w, to induce anisotropy in the transport

5For conversions to energy units, we use 1 eV~! = 1.97 x 107" m, 1 eV= 1.78 x 10720 kg, 1 eV} =
6.58 x 10710 5, 1 eV=1.16 x 10* K. The mass of Lig in natural units is 5.6 x 10° eV.
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Figure 5.8: (Color online) Local shear viscosity with respect to z for T' = % (top left),

T = % (top right) T = 4—:7Fc (bottom left) and 7' = L& (bottom right) at w, = 27 x 10*
rads/s and p = 10uK. The red curves denote the error estimate which include errors in
the measurement of 7n/n [174] as well as errors in G due to errors in the measurements of
thermodynamics [196]. The black dashed vertical line is at z.

coefficients.

Let us consider the four panels in Fig. 5.8. They show the local shear viscosity (in units of
(2mp)3/? /(37%) where yu is the central chemical potential) as a function of z for z = 0,y = 0
for four different temperatures at w, = 27 x 10* rads/s. The chemical potential at the center
is taken to be 10uK. The temperatures are T' = 4% (top left panel), T = % (top right
panel) and 7' = 2L= (bottom left panel) and 7" = L (bottom right panel). Like Fig. C.1,
the vertical line (gray online) corresponds to z, where T' = 0.44(z.). The error bands of the
curves are associated with the errors in G — which impact n — as well as the errors in the

measured 7/n. The z-axes of the plots is the z coordinate scaled by the trap size

21
Ztrap = W . (573)
z
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One can also define a characteristic distance zpmax where T'/pu(z) = 1 given by

2(p—T)
Zmax — Tg}% . (574)
For ;= 10K at the center of the trap and w, = 27 x 10* rads/s, zyap is about 18.3 x 107°
cm and zpax is about 15.7 x 107° ¢cm. Beyond the distance Ztrap, We assume the viscosity

to behave like 32135 (mT)% as predicted by the two-body Boltzmann equation [189].

Note that within LDA the plots in Fig. 5.8 are independent of w, if we keep T'/T, fixed.

This is because scaling w, by a factor f can be undone by scaling z by a factor 1/f. Since

Ztrap 18 scaled by the same factor, z/zu,p at any point on the curve remains unchanged.

To understand the behavior of viscosity along the trap, first consider the central values in
Fig. 5.8 (blue curve online). For all temperatures given above (notice that they are all below
T. meaning that the centre of the trap is superfluid), we find the presence of a peak in the
middle region of the trap length. Qualitatively we understand this from the fact that the
local entropy (see Eq. 5.65) is the product of ns(u(r)) which decreases along the length of
the trap, while the function G’ increases along the length of the trap, hence it is natural to
expect a peak for the entropy density somewhere along the length of the trap. It is clearly
seen in the right panel of Fig. C.1. Since the local shear viscosity over entropy density is
relatively slowly varying in this region (the peak location is just above the critical region),
it is not surprising that the local shear viscosity shows a similar behavior. Henceforth, we
will denote the position of this peak by z5. We also denote the full width at half maximum
of the peak by dz.

The existence of the peak allows us to construct a system where the dominant contribution
comes from a region where the potential approximately varies linearly, modeling the theories
(Sec. 5.2) where the force that breaks rotational invariance is spatially constant. Here, the
trap potential is harmonic, but the dominant contribution to the integral in Eq. 5.48 and
Eq. 5.49 comes from an interval §z near zy. If we expand the confinement potential as a

Taylor series around zy as

B(z0) + 6 (20)(02) + 50 (0) (0 + .. (575)

The linearity approximation will hold as long as the confinement potential satisfies

1

‘Z((j)) 6z<<1:>lzi—§<<1. (5.76)

Since we are using a harmonic trap, there are no higher order terms. Our criterion for
constant driving force is therefore straightforward. We desire that the dimensionless ratio

= ‘i—z be less than 1.
0

There are other motivations to choose the dominant contribution to shear viscosity to arise
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from such a localized region. We are interested in extracting the value of 1/s, for suitable
components of the viscosity tensor, for particular values of T, p (in particular, close to
the critical temperature T, where 7/s is known to be close to the KSS bound). Due to
the varying trap potential, 1(z) and therefore the entropy density at equilibrium also vary
along the trap. The change resulting in the viscosity due to anisotropy should be bigger
than the effect due to the variation of the trap potential on s, thereby giving rise to the

condition,

on > @6—2 (5.77)
n -~ 0z s
As we saw in Sec. 5.2 after Eq. 5.10 the corrections to the viscosity due to anisotropy go
like square of the force that generates the anisotropy. For the system at hand this leads to

the expectation

o (Vo)

n o (u(2)*kr(2)%)
This estimate agrees with the analysis based on the Boltzmann equation as discussed later
in Sec.5.4 (see Eq. 5.102). The RHS in Eq. 5.77 goes like %% ~ dz/zy = I, and this gives

rise to the condition

(5.78)

Kipa > 1 (5.79)
where we have introduced the notation
(Vo)
KIDA = ————————. (5.80)
(1(20) kr(20))
It is easy to see that kppa roughly scales as
KLDA ~ -2 (5.81)
7
so that Eq. 5.79 leads to the condition
2
wz
—= > 1 (5.82)
112

For fixed T, 1 one can show that [ does not change as w, changes. Thus the left hand side
is independent of the ratio % for fixed T'/u, and the inequality can be met for sufficiently

large ¥=.
8¢

Let us also mention that the gravity results apply to situations with only linearly varying
potential (Eq. 5.2) leading to only |V¢|? corrections due to the anisotropy. In general we
would expect that there are additional corrections proportional to V2¢. There is little
guidance on what these corrections do, for the kind of strongly coupled system we are
dealing with here. Thus, to the extent we are trying to stay close to situations where
gravitational systems give at least some guidance, it is desirable to choose the dominant

contribution to shear viscosity to arise from a narrow localized region.
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T trap F)HLK W cm ztzr—(;p l % |20 %LZ|’ZO g|z0 RLDA 105K 27r><1‘6}‘frad/s
AT./5 18.3 x 107° 0.63 | 098 | 0.54 | 0.89]0.85 0.05
2T./3 18.3 x 107° 0.71 1 0.62 | 0.54 | 0.89 | 0.85 0.08
AT, /7 18.3 x 107° 0.76 | 0.46 | 0.54 | 0.89 | 0.85 0.11
T./2 18.3 x 107° 0.8 037 ] 055 | 091 |0.85 0.13

Table 5.2: Trap characteristics for various T7'/T,. The scaling behavior of various quantities
with w, are also shown. The entries were calculated for p = 10uK, 7, = 0.4p. [ = ‘i—s
(Eq. 5.76) tests how well the potential can be approximated as a linear potential in the

regime of interest. kpa (Eq. 5.96) tests how well LDA is expected to work at z.

T | ag™(10~"%V) | Ewn(i/s)(a) | E@) (@) | 70(s)(@) | Brinli/s)(b) | EG) (b) | 1o(s)(b)
4T, /5 2.83 237x 10710 | 3x107%° | 0.0002 | 4.7 x 10716 10717 0.04
2T./3 2.35 1.25 x 10716 | 2x 10720 | 0.0003 | 2.5x 10716 | 6.8 x10718 | 0.05
AT, |7 2.02 712x 10717 | 1.4 x 10720 | 0.0004 | 1.4 x 10716 | 4.8 x1071® 0.07
T./2 1.77 4.33 x 10717 | 1.1 x 10720 | 0.0005 | 8.65 x 10717 | 3.6 x107'® |  0.08

Table 5.3: Additional trap characteristics for various T/T, at w, = 27 X 10* rads/s, w, =
wy = 21 x 385 rads/s and p = 10uK. The energy is given in joules abbreviated as ‘j’ and
energy loss rate in joules per second, (j /s). For a fixed T/, the energy of the Elliptic mode
scales as ~ — wl

7o ( given in seconds in the table and defined in Eq.5.87) of the Elhptlc mode scales as
~ :d% and that of the Scissor mode scales as ~ :d% For the Elliptic mode to account for the
fact that only the normal component of the Velzocity is non- Zero near the trap centre, we
assume that the normal component density in this region is T times the total density in
this region. For the Scissor mode we have the full number density.

Viscosity and Other Properties For Varying Trap PammeteTS' Table 5.2

We now turn to examining the behavior of 7, /s, and [ = 2% as trap parameters are varied.
In Table 5.2 we keep w, u fixed to take the values w, = 27 X 104 rads/s, p = 10uK and vary
T. As mentioned at the beginning of Subsection 5.3.9 there are two dimensionless ratios
that characterize the energy scales in this system. The different rows corresponding to
different values of T in units of T, show how various quantities vary with 7'/u. The scaling
of these quantities with w,/u is given in the first line on top of the Table. 5.2. Thus k1,pa
scales like w, /. 20, zuap and 0z scale like 1/w, for fixed T, p1, as was discussed above after
Eq. 5.74. Thus their ratios, o~ = g—g

the Table. 5.2 tests the hnearlty of the potential, which is a good approximation near the
peak if | = 0z/2zp < 1.

etc. are independent of w,/u. The third column of

The ratio [ is governed by the temperature of the trap divided by the chemical potential
or equivalently T, at the center. As we decrease T'/T,, zy increases and dz decreases. This
consideration would suggest that to obtain g—g as small as possible we should consider as
small a temperature as possible. But this conclusion is not correct as is clear from the upper

error band in Fig. 5.8 (red online).

The errors bands on 7 are fairly narrow in the region near z;. However, the errors grow
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near z — 0, in particular for smaller 7'/T, (Fig. 5.8). The reason is the large errors
in the measured n/n in the superfluid regime (see the region 7/Tr < 0.16 in Fig. 5.6).
Indeed, we expect that for T' < T, the viscosity is dominated by superfluid phonons whose
contribution diverges as T — 0 as 7 &~ (9.3 x 1076) &> (T%/v3T") where v is the speed
of superfluid phonons [197]. Numerically, n/n ~ 2.5 x 107° ;—% Therefore, to avoid a
large contribution from the center of the trap rather than from near zy, we do not consider
temperatures below T,./2. Within this constrained temperature regime between 7./2 and
T. we find that the linearity condition dz/z¢ < 1 is satisfied, although it is not possible to
generate traps where dz/z is parametrically small. In the narrow range of temperatures,
it turns out that the location of zy is such that 7'/u(z¢) ~ 0.54, just off to the right of the

phase transition at T'/pu(z.) ~ 0.4.

Note that, as explained in the discussion above, a few paragraphs after Eq. 5.72, the value
for the viscosity 1/s which appears in the Table 5.2 is an approximate one, obtained by
taking the value in the isotropic situation corresponding to the local value for u, T at the
location zp. By a similar argument as before, this value is independent of the ratio w,/u
for a fixed T'/T,. We note that the values of 1/s in the Table 5.2 are about 10 times the
KSS bound. One would expect that various components of the viscosity tensor deviate from
this rough value by a fraction of order HZ%D A- The parameter xppa which was introduced

in Eq. 5.80 above, when computed at the location of the peak zy, has the more exact form

. _ mwzzo _ \/?WEZO 5 83
T Brtn(0) b utzo) [P A (o) o5

as one can easily check by using Eq. 5.65.
Energy Damping For Varying Values of Trap Parameters: Table 5.3

We now turn to considering the effects of varying the trap parameters on various quantities
like the total energy FEiyinetic, the damping rate of this energy Ekinetic, etc. In Table 5.3 we
again keep p1, w, fixed to take values w, = 27 x 10* rads/s, u = 10uK and consider the effects
of varying T'. In addition, we also need to consider the effects of the harmonic trap in the
x,y directions. We keep w,,w, to be fixed to take values w, = w, = 2m x 385 rads/s. The
different rows then give how various quantities vary as T'/u changes. We note that for the

range of temperatures considered the total number of atoms in the trap is approximately,
~ 106.

The energy which appears in this Table is the total mechanical energy E given by
E = 2Finetic (5.84)
where
Erinetic = (% /d3r mn(r)v2> , (5.85)
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where v is the velocity of either mode and the average is taken over one cycle for the scissor
mode (the elliptic mode is non-oscillatory). For the Elliptic mode and the Scissor mode

with amplitude o}'**, the kinetic energy is given as follows:

1 wi
For Elliptic, Ejgpetic(a) = / d3r 5 Mnormal (ayax)z[w—sz + 2]

) : (5.86)
For Scissor, Fiipetic(b) = /dgr mn (@M )2[22 4 7).

Fhinetic is the rate of energy loss due to viscosity induced dissipation, Eq. 5.47. The energy
loss, Fiinetic in these modes is given by Eqns. 5.48, 5.49.

Note that for the Scissor mode the expression corresponds to the kinetic energy averaged
over an oscillation cycle. Also, for the Elliptic mode, vs = 0, Eq. 5.16, and only the normal
component contributes to the kinetic energy. The density in the normal phase is estimated
in the region close to the centre, where both the superfluid and normal components are
present, as being Tlc times the total density in this region and we have denoted it by n,0rmai
in Eq. 5.86. For the Scissor mode we have the full number density denoted by n in the

above formulas.

The validity of hydrodynamics imposes a condition on how big a,, can become, the resulting

max

mar was estimated in Eq. 5.53. The quantities Ejinetics Fhinetic which

maximum value, «

appear in Table 5.3 are obtained from Eq. 5.47, Eq. 5.86 by setting o, = «

max
T .

A convenient quantity with which to compare o' is the ratio of the speed of sound at the

centre ¢, = :?_#L to a measure of the trap size zrap. For comparison, let us note that for
w, = 2 x 10* rads/s we obtain - = % =3.63 x 107 eV.
rap

The (amplitude) damping time 79, which appears in Table 5.3, is defined as

To = QE/Ekinetic (587)

As mentioned above, the table considers the effects of varying the temperature while keeping
[y W, Wy, wy fixed. For fixed T'/p one can also consider what happens as the angular
frequencies are varied. In the highly anisotropic situations w, > w,,w,, one finds that

the total energy Fiyinetic for the Elliptic mode approximately scales like

3
Ekinetic(a) ~ ,Ufﬁﬁ <ﬁ> (588)

Wy Wy \ Wz

and the damping time 7y for the Elliptic mode approximately scales like
To(a) ~ — . (5.89)

Similarly for the Scissor mode we get
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3
pop
E inetic b) ~ p—— | — ) 5.90
anic) ~ 22 (1) (5.90)
0(b) ~ % (5.91)

z
These scalings are obtained by noting that o** ~ p for fixed T'/u, and also that the trap
potential is unchanged under a rescaling w, — A\ w,,z — z/X and similarly for x,y. We
have also assumed that w, > w,,w,. Some of these scalings are summarized in the caption
below Table 5.3. For example, the scalings of the scissor mode, can be derived as follows:

E ~ [dxdydzmnv?| ~ LyL,L.[mna®L%] ~ w3516,wz’ where we have assumed that at the

center of the trap p > 0 and L; = /2u/(mw?).) In a similar manner, one can derive the

. 5
approximate scalings for energy dissipation rates: FE ~ Ewyﬂ—wz for both the modes (assuming
3

7 scales the same way as n ie. ~ (mpu)2.

The approximate value of T, i1, w, we consider here are of the same order as those considered
in [173] where the viscosity of a unitary Fermi gas was measured, using a radial breathing
mode. The Scissor mode has been considered in the literature before. The damping rate
has been measured for cold atoms system in this mode in superfluid bosonic (see Ref. [181]
and Refs. therein) and in fermionic systems [182]. In particular [182] carries out these
measurements in the unitary Fermi gas. The values for trap parameters we consider are
similar to those considered for example in [173] and not very different from those considered
in [182]. The maximum angular amplitude of the the scissor mode is determined by the
velocity amplitude «, (Egs. 5.17, 5.15) which is bounded above by a®* in Table 5.3. One
can show that the angular amplitude (in radians) of the oscillation executed by the deformed

cloud in the scissor mode is given by

2ag

6 = tan~! <62:967_1> , (5.92)

ew +1

where w = /w2 + w?. Taking a, to be the maximum value o ~ 1071% ¢V and w to
be 27 x 10* rads/s = 4.16 x 107! eV, we find 0. ~ tan~![1] = 45°. For a frequency 10
times larger, Opax ~ tan=1[0.4] = 24°. Tt is satisfying that these amplitudes are larger than
those measured in [182] for the scissor mode and hence the condition for hydrodynamics
(Eq. 5.53) does not force the amplitudes to be so small as to preclude observation using
existing techniques. For p = 10K, w; = wy = 27 x 385 rads/s and w, = 27 x 10* rads/s, 7o
ranges from roughly 0.04 sec to 0.08 sec. The damping of the scissor mode has been observed
for slightly different parameters values, pu ~ 1K, w, = 27 x 830 Hz, w, = 27 x 415 Hz and

wy = 27 x 22 Hz in Ref. [182] where the damping time scales measured are of the order of

milliseconds.

Summary:
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Now we come to the punch line of this section. The effects of anisotropy can cause a
fractional change in components of the viscosity tensor, potentially lowering some of them.
This effect is expected to go like, dn/n ~ K% ., as mentioned in Eq. 5.78. We see from
Table 5.2 that, for fixed w,/u, krpa increases as T' decreases (i.e. T'/u decreases), with the
maximum value, within the range of allowed temperatures, being of order syppn ~ 10%.
This would lead, one expects, to a fractional change in components of the viscosity of order
on/n ~ (few) x 1%, which is quite small. However note that increasing w, will increase
KLDA With a linear dependence kypa ~ w,/p as noted in Eq. 5.81 and also in the first row
.
We can carry out this change while keeping w,,w, fixed thereby increasing the anisotropy.

of Table 5.2. In turn this should lead to a quadratic fractional change in dn/n ~ (

Note that this change of w, will decrease the total energy of this mode Eyinetic(b) ~ 1/w.,
Eq.5.90, but it does not change 7y significantly, since 73 depends to a good approximation
on w, and not w, as seen from Eq. 5.91. Also note that changing w, while keeping 7'/
fixed will not change [ and thus the localized nature of the region from which the damping

arise. In fact it will make it easier to meet the condition Eq. 5.82.

Also it is worth commenting that it is easy to see from Eq. 5.81, Eq. 5.90 and Eq. 5.91 that if
one want to keep 79 and Ejinetic for the scissor mode both fixed and increase K;,pa — A KLDA

one could do this (while keeping w, = w,) by scaling
1 1 4 1 1
Wy = A6 Wy, Wy = A6 Wy, Wy — A3 Wy, p— A3 p, T — A3 T (5.93)

This keeps %, 70 and Fiinetic fixed, increases the overall magnitude of p, increases w, and

also wy, wy.

The discussion of the previous two paragraphs suggests that one can quite plausibly keep
the damping time scale and the total energy in the experimentally accessible range, while
gradually increasing w, making k1pa ~ O(1) and the effects of anisotropy significant. While
some of the theoretical approximations made will break down in this limit it is possible that
the effects of anisotropy would get more pronounced, and potentially even dramatic, driving
the spin one components of the viscosity to be much smaller than their values in the isotropic

case, and potentially even violating the KSS bound.

We have not discussed the Elliptic mode in as much detail. One reason is that unlike the
scissor mode, this mode has not been experimentally realized in cold atom systems yet.
Also we see from Table 5.3 that the damping time 7y in this case is about two orders
of magnitude smaller, and this too might be an issue of some experimental concern. It

may of course turn out that this mode is experimentally accessible. It will then be certainly

50ne possible way to set up the elliptic mode is to start with a more circular trap and exciting a
rotational mode by using rotating lasers using a set up similar to Ref. [208]. If the rotational frequency
is small enough, vortices will not be excited and only the normal fluid will rotate like a rigid body. On
adiabatically deforming the trap one would then get the elliptic mode because during adiabatic deformations,
hydrodynamics is satisfied at each time and we expect that the normal fluid will go smoothly from circular
rotation to the elliptic mode.
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interesting to explore its properties, especially since this mode in a very direct way measures

the resistance to shear in the resulting fluid flow.

Finally we note that all the five conditions which were listed at the end of Sec. 5.2 for
observing the suppression of viscosity can be met in the system being analyzed here.
Conditions 1 and 2 are met by the two modes discussed above in the unitary Fermi gas. We
have ensured that [ < 1 (Table 5.2) so that the contribution arises from a localized region
where the potential is approximately linear, meeting condition 4. As argued above, for
the scissors mode the anisotropy can be made large enough while staying within the fluid

. . . ma
mechanics approximation (o, < ol

) thereby meeting conditions 3 and 5. The resulting
values for the total energy and the damping time we find lie within the experimentally

accessible range.

To summarize, we have seen in this section that for experimentally reasonable values of
parameters one can increase the anisotropy of the trapping potential and probe the viscosity
tensor by measuring the energy loss and related damping time in the scissor mode. As
the anisotropy is increased, its effects could well become quite significant driving some
components of the viscosity (spin 1 in our notation) to become very small, and potentially

making them even smaller than the KSS bound.

5.3.10 Discussion on kipa

In this subsection, we present a detailed discussion on xkypa given in the last column of
Table. 5.2. The results discussed so far assume LDA is valid. LDA rests on the assumption
that the trap potential varies slowly on the scale of the local Fermi wavelength k:;l(r) =
(371271(1'))% ie. at any local point r along the length of the trap, the following condition
holds true -

< pu(r)

Since we desire w,,w, < w;, the gradient is strongest in the z direction and hence taking
du(z) _ 2

x, y = 0 and moving along the harmonic trap in the 2 direction, = —mw3z, we note
that LDA violations will be significant if

mels—— 1(z) 5.94

Famne 20

For any trap geometry at the outer edges of the trap when the density becomes small
enough, LDA will be violated (u(z) < 0 for z > 2yap). These regions typically do not

contribute significantly to the trap energy loss. But focusing on the region near zg, LDA is
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a good approximation if

V5w

)13 (20)] 2

KLDA = <1, (5.95)

Approximating f(u(zo))]l/?’ ~ % [Since F(0) = 1/£%/2, and the deviations from F(0) are

small for T'/p < 1], we find

V5wizo
KLpa = Y22\ /E <1, (5.96)

[11(20)] 2
Since zj scales as 1/w, for fixed p and T'; LDA will be violated at zg if w, is large enough.
From Table 5.2 one can see that for p = 10uK and T'= T, /2, kipa > 1 for w, > 27 x 77000
rads/s. Alternatively, taking w, = 27 x 10* rads/s and T' = T, /2, krpa can become larger

than 1 if p < 1.3 pK.

For T" — 0 the corrections to LDA have been previously studied in Refs. [209, 210]. One

can write

ey (Vo) + 4 — () V20(x)
64 m{yi— o0))?

n(r) = nLpa(1 +0(V3p(r))) , (5.97)
where ¢, is related to the response of the density to a periodic fluctuation in the potential.
The low energy constant ¢, has not been calculated using ab-initio techniques so far. In all

model calculations ¢, ~ 1, including in a sophisticated analysis using SLDA (Ref. [210]).

For finite T for an isothermal system, the deviations from LDA are not related to the density
response but for T' < (u — ¢(r)) we can write corrections to LDA in analogy with Eq. 5.97
cr (Vo(r)) e V()

6_4m(,u — ¢(r))? B 1_6m(M — ()2 + O((VV)B)) ) (5.98)

n(r) = nLDA(l —

where ¢, 2 are functions of (7'/p) and tend to 1 as T’/ — 0. In particular, for the interesting
region the term proportional to ¢; is dominant (the exception is near the center of the trap).

Therefore, the corrections to LDA near zg can be written as

C1 2
n(z) = nipa (1 — 6_45K%DA +-) (5.99)
where we have used the low temperature expression
mi(e) = SKA(r) (5100)

to write the correction in terms of Krpa.

In the absence of further information about ¢; at finite T it is difficult to make precise

statements about the relevance of LDA corrections for the traps with large values of w,
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that we show in the next Section are needed to make the shear viscosity tensor locally
anisotropic. Therefore, we simply use kpa = 1 as a marker for significant LDA violation.
However, it is important to keep in mind that if cl(@) ~ ¢1(0.54) ~ 1 (since @ ~ 0.54
for the cases we consider), then the pre-factor of 1/(32¢) implies that the corrections to

LDA can be small even for krpa ~ 1.

5.4 Local anisotropy

Hydrodynamics is an effective theory: The conserved currents are written as a series of
terms ordered by the number of derivatives acting on the local fluid velocity. The lowest
order terms are simply given by the Galilean (for non-relativistic systems) or Lorentz (for
relativistic systems) transforms of the local thermodynamic properties like the density and
the pressure, from the local rest frame of the fluid to the laboratory frame. The first
order terms are given by the local gradients of the velocity (0;u; + 0ju;)/2 multiplied by
proportionality constants given by the transport coefficients — for example viscosities — of
the system. We will not consider higher derivative terms in this chapter, instead restricting
ourselves to situations (see Eq. 5.52) where the first order correction is smaller than the

lowest order terms.

In the presence of external fields, the law of conservation of energy features a source term
proportional to the driving force, Vo(r). If Vo(r) is “small” (which we shall define
in a moment), its effect on the thermodynamics and transport can be neglected, and
hydrodynamics describes a locally isotropic fluid (with isotropic thermodynamic functions
and isotropic transport coefficients) ” moving in a space dependent potential. The key
realization therefore is that to observe an anisotropy in thermal or transport properties it
is not sufficient for w,,w, < w,. Corrections to isotropy will start becoming significant as

we increase w,, if w, starts becoming comparable to some microscopic scale of the system.

The criterion for the thermodynamic quantities to exhibit the effect of V¢(r) is clear from
the previous section. If the potential varies on length scales comparable to the inter-particle
separation — the Thomas-Fermi approximation, or LDA breaks down — the pressure of the
fluid in the direction of the gradient will be different from the pressure in the perpendicular
directions. In this case, clearly the transport coefficients will also be anisotropic. To explore
an analogous system to the one described in Sec. 5.2, this argument prompts us to consider
w, large enough that LDA is broken (see Table 5.2). For such systems, the estimates for
the density Fig. C.1 and viscosities Fig. 5.8 using LDA will be only rough guiding values,
but if the analogy with the system in Sec. 5.2 holds true, the viscosity values relevant for
the modes described in Sec. 5.3.1 will be lower than the LDA values, and could be lower

than 1/(4) in suitable quantum units.

"This assumes that microscopically the fluid is isotropic. For example it is not a crystal [183] or a fluid
phase with an anisotropic order parameter.
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To estimate the order of the correction to the shear viscosity due to potential gradients we
note that the first order correction to transport due to Vo(r) simply appear as the source
term, and hence assuming that the next order corrections will be analytic in V¢(r), we

expect

4

2V¢(r))) > oy Maijr]+O(V?¢, (Vo))

a=0

2
Nijkl = 77%[(5ik5jl+5z‘z5jk—§5ij5kz)+ (A (ngg()r))(]
(5.101)
where A is a microscopic length scale of the system, c¢(,) are dimensional constants of order 1
which depend on the microscopic details of the system, and M; are 5 orthonormal projection
operators that arise in a system with one special direction (for eg. see Ref. [211]). We have

given these projection operators in Appendix. D.2 (Eq. D.23).

A is a length scale that determines transport behavior. In a system admitting a quasi-
particle description we expect A to be of the order of the mean free path. (We show this
explicitly in Appendix. D.2.) The other length scale in the system is the inter-particle

separation 1/kp. In terms of kp we can write the corrections as

1 2 Vo(r))(Vo(r
Nijkl ~ 775[(5¢k5jl + 0105 — §5z‘j5kl) + ()\kF)Q(( (Z(Q ) 2( ))) Z (o) Maijri]
Plu(r)] =
1 ; ) (5.102)
=5 (G + Gudjn — S0i50m) + (M) (KEpa) D (o) Maijni]
a=0

For weakly interacting quasi-particles, the Akr > 1. But for a strongly interacting system
in the absence of more information about Akr and c(,) it is not possible to make a more
concrete statement about the corrections to viscosity. We can only state that the corrections

are important if kppa ~ 1 as we did in Eq. 5.78.

As discussed in Sec. 5.2, for the theories considered in Sec. 5.2, there is no quasi-particle
description. The only relevant length scale is 1/7" and the field ¢ changes by order 1 on a
length scale 1/p. Using AdS/CFT it has been shown [178] that the corrections to isotropy
go as Eq. 5.10.

For the unitary Fermi gas there is no known gravitational dual [212] and we will need to
resort to a rough calculation to estimate c(,) and Akp. We solve the Boltzmann transport
equation in the relaxation time approximation. We hope this will give semi-quantitative
results. We leave the challenging calculation of the viscosity for temperatures in the strongly
coupled regime just above the critical temperature in the presence of a background potential

for future work.

As we show in Appendix. D.2, the corrections to n for a weakly interacting, normal (un-
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paired) Fermi gas at low temperatures (7" < p) are given by (Eq. D.30)

2 (Vo)?
k2 2

mo = 1O~ S kpPE 1+ 0(r76)")] = n(O)1L — S (k) PiEpy + O((rV9)")]

2
m = WO = k250 + 09 9) )] = (0L = 5 (Oke s + (7))
2
= O)1 = 55 (Ve 52 + O((rV6))) = n(O)1L = 55 (ke PsEpn + O((r ) )
n3=0,1m4=0,

(5.103)

where 7 is the effective relaxation time.
For the Elliptic mode §(d;u; + 0ju;) = Fa,(1 — =

w

N

) = V., which probes the viscosity

N

contribution to the stress energy tensor
02,5 = 2 mo (Vcwbgby + ba Vg by — Qbabgbybgvﬂﬂs) , (5.104)

where b is a unit vector along the gradient of the potential. For the Scissor mode, %(aiuj +
Oju;) = ay = V,, which also probes ny. (72 is the coefficient that corresponds to the
projection operator My in Eq. D.23.)

In both cases (see Appendix. D.2) , n is reduced from its value in the absence of the potential,

n(0), for %(V@S)Q < 1. To estimate the value of 7 near z = 29, we note that for z ~ zp,

T(z0) ~ 0.54 u(zp). At this T, n(0)/n|,, ~ 1.

Using the relaxation time approximation and thermodynamic expressions for a weakly

interacting Fermi gas to estimate A near z, we obtain (Eq. D.31)

5
n(0)(z0) = Z#z0))27(20)
) 1572m (5.105)
= gn(zo),u(zo)T(zO) .
Therefore near zg, 7(29) ~ 2u(5zo) @’zm or,

o) n (5.106)

(We have just kept the pre-factors of the order of 1 to serve as mnemonics of the derivation

of A\. They have no quantitative significance.)
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Therefore, (since @] 2 ~ 1 from 7 data)

A(z0)kr(20) = Z%O)‘zo ~1. (5.107)

The fact that kp(20)A(z0) ~ 1 means that the Boltzmann transport calculation shown in
Appendix. D.2 is not quantitatively trustworthy near zy. But we hope that two the main

qualitative consequences of Eq. 5.103 survive a more controlled calculation.

1. First, the coefficient of K%DA in Eq. 5.103 is of the order of 1.

2. Second, the sign of the correction term is negative

If true, this would imply that the shear viscosity component 7,.,, measured using the
Elliptic mode or the Scissor mode will reduced by order 1 from its value in isotropic traps,
if w, 2 2w x 77000 rads/s (Table. 5.2).

One might be concerned that for w, ~ 27 x 77000 rads/s, our conclusions in the previous
section about dz/zy will be violated because of the violation of LDA. In the absence of
more concrete information on these coefficients we can not assure this will not happen.
We simply note that if the coefficient ¢; in Eq. 5.99 is of the order of 1 (which it is at
T < u, but may be larger for T~ 0.54 pu(zp)) then there is a regime where the corrections
to the thermodynamics due to LDA is small, but the reduction in transport coefficients is

substantial.

5.5 Comments and discussions

In this chapter, we presented a concrete realization of a system of ultra-cold Fermi gases
at unitarity, in an anisotropic trap, which may show significant reduction in the viscosity
compared to its value in isotropic traps. Given that the value of the isotropic viscosity
has been measured to be few times the KSS bound in this system, it presents a candidate
setup to observe a shear viscosity smaller than the KSS bound when it is subjected to an

anisotropic driving force.®

The anisotropic force is obtained by placing the system in an anisotropic trap. The trapping

potential is harmonic, Eq. 5.14, and characterized by three angular frequencies, w,,w,,w..

8 The equations of fluid mechanics of an isotropic phase are rotationally invariant. The solutions of
these equations however can be anisotropic due to anisotropic initial conditions or boundary conditions etc.
For example, in heavy ion collision experiments, the anisotropic viscosity arises due to anisotropic initial
conditions resulting in anisotropic fluid flows. In contrast, the system we studied here has no rotational
invariance in equilibrium, and the resulting equations of fluid mechanics themselves break rotational
invariance regardless of initial or boundary conditions. In our work, thus the anisotropic viscosity arising
in the ultracold gases is not a geometric effect but a field theoretic effect since this is happening in the
dense part of the trap (where hydrodynamics is valid and the equations of fluid mechanics themselves break
rotational symmetry in equilibrium, see Eq.5.20 with ¢(r) given by Eq.5.14.)
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We consider an anisotropic situation where w, > w;,w,, so that the trapping potential is
much stronger in the z direction. For simplicity, we also take w, = w, so that the system
preserves rotational invariance in the x — y plane. For some of the discussion below we can

neglect the effects of the trapping potential in the x,y directions characterized by w,,w,.

We work in conventions where kg = A = 1. There are three energy scales T', i, w, and two
dimensionless ratios T'/p and w, /p which then characterize the system. The Lig atoms have
a mass m, using this parameter, any of the energy scales can be converted to a length scale,

o 1
L= rrs

Based on the behavior seen quite generically in gravity systems we identify five criterion

(Sec. 5.2) which when met could plausibly lead to a decrease in the value of some components
of the viscosity tensor (the spin one components). These are summarized towards the end
of Sec. 5.2 . On studying the superfluid equations we identify two modes which are sensitive
to these components of the viscosity tensor. One of these is the scissor mode which has
already been studied experimentally in some detail. By taking reasonable values for the
parameters- T, (i, Wy, Wy, wy, which are in the experimentally accessible range, Ref. [173], we
find that all the five criteria can be met. Furthermore, we find that the resulting energy and
damping rate of this energy, from which the viscosity can be extracted, lie within the range
of values which are measured by experiments currently being done on cold atom systems,
in particular on Lig unitary Fermi gas systems, Ref. [182]. For example, for p = 10uK,
w, ~ 21 x 77000 rads/s, and T = % (T, = 0.4p) we find that the anisotropy, as measured
by the parameter krpa , Eq. 5.80, is of order unity and therefore significant. At these
extreme values of anisotropy our theoretical calculation, strictly speaking, do not apply,
but a reasonable extrapolation suggests that the maximum total energy is of the order of
10~ joules which corresponds to the angular amplitude of the scissor mode of about 24°
which is within the experimental range of [182]. The damping time 7y is of the order of
1072 seconds, which is roughly ten times longer than the observed amplitude damping time
that has been accurately measured in the experiments on ultracold Fermi gases [182].
While the system is certainly close to being two-dimensional when kppa ~ 1 and 2gpqp ~
5.4 k}l (this corresponds to p/w, ~ 2.7) is on the small side, the effect of small viscosity can
already set in when x7pa is somewhat smaller than unity. We illustrate this with concrete
quantitative examples below.
For concreteness, let us consider traps where we fix T/T, = 1/2 (T, = 0.4u, where p is
the chemical potential at the center of the trap) and change w,. Further, for concreteness,
we set the overall scale by u = 10uK. Considering first a representative trap geometry
where the shear viscosity tensor is locally isotropic to a large accuracy, we take w, = 0.048u
(corresponding to w, = 27 x 10*Hz which is typical), for which x = 0.13. The fractional
reduction in the shear viscosity for this value of w,, taking co to be its Boltzmann transport
value 11/28 is

An 11

R _%(ﬁ)2 =—0.7%, (5.108)
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which is a small reduction in the shear viscosity and may not be even measurable above
measurement errors. At the other extreme we considered, w, = g% (corresponding to

w, = 27 x 77.16 kHz), for which x = 1 and the fractional reduction is

Ap 11

e —%(mﬁ = —39% , (5.109)

which is very large. However, in this extreme limit (w. = %) only the lowest 2 — 3 Landau
levels are occupied and the dynamics may be approximately two dimensional. Now consider
an intermediate value, say w, = 0.97 = 0.18y for which kK ps = 0.48 < 1. This gives a
correction

A
777 ~ —9% (5.110)

which — while not large — is still substantial. More generally, the criterion for confinement

in the 2z direction is
w, 2 max(A,T) , (5.111)

since both T" and pairing allow for excitations between the harmonic oscillator levels. At
these extreme values, where the inequality above is met, our approximations do break down,
as we have mentioned in the conclusions (shell effects become important as w, 2 T', which
is another way of saying that confinement in the z direction becomes strong). For w, = 7=,
w, = 1.85 T and indeed confinement in the z direction is too strong. But, as illustrated
by the cases above, by taking w, a factor of 2 or 3 smaller ( say w, = 0.9 T that was
chosen above for illustration) than the extreme limit, one can measure the tendency of the
spin one component of the viscosity to decrease from its lowest value observed in ultra-cold
Fermi gases. In an optimistic scenario where c5 is larger in magnitude than the approximate
value of 11/28 in the Boltzmann transport approximation, the reduction will be even more
substantial. Let us also point out that comparing with Ref.[213] the typical values of w,/Ep
in the chapter is about 80 and the value of w,/T is 120. In that case, the trap is truly 2
dimensional as opposed to when w, /T ~ 0.9.

Thus, for smaller values of anisotropy, the theoretical estimates are more reliable and suggest
that the different viscosity tensor components should have a fractional difference given in
terms of kK pa by Eq. 5.103. This tendency of the viscosity to decrease should already be

measurable at more moderate values of the anisotropy.

Our proposal is the first proposal to measure parametrically suppressed anisotropic viscosity
components in ultra-cold Fermi gases. Our proposal is different from the discussion of
anisotropic hydrodynamics in Ref. [190] since we are demanding that hydrodynamics be a
good description (in the sense of Eq. 5.52) in the regime which dominantly contributes to

the dissipation of the fluid dynamics modes.
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Future theoretical work can improve upon our proposal in several ways. First, our estimate
of the corrections to the shear viscosity components due to the potential (Eq. 5.103) was
based on a relaxation time treatment of the Boltzmann equation. For strongly interacting
fermions, this is not a good approximation and a more rigorous calculation of the anisotropy
corrections is desirable. This will require calculating transport properties in a strongly
coupled theory without a gravitational dual, in the presence of a background potential: a
formidable challenge. Second, we have focused on the region that dominantly contributes
to the dissipation. In particular we have neglected the contributions from the tail of the
cloud. While this is presumably small, it would be nice to establish this by solving the

Boltzmann transport equations in this dilute regime.

It is also worth noting that while the cold-atom system proposed here shares many features
with those discussed in Chapter 4 (Ref. [178]), it also has some differences. First, in
equilibrium the stress energy tensor is not invariant under translations even for a linear
potential. Rather the density decreases with increasing z, but the driving force is pro-
portional to the gradient of the potential ¢(r) (see Eq. 5.3) as in Chapter 4 (Ref. [178]).
Second, in addition to energy-momentum, the cold-atom system features another conserved
quantity: the particle number. Consequently the system is locally characterized by two
thermodynamic variables T" and p rather than just T'. It would also be interesting to further
study the behavior of viscosity in gravitational systems which correspond to anisotropy
driven strongly coupled systems with a finite chemical potential. The examples in Chapter
4 (Ref. [178]) did not have a finite chemical potential, for some discussion of anisotropic
gravity systems with a chemical potential see Ref. [214, 215]. As a first step, we have
analyzed a weakly coupled system with a linear varying potential in Appendix B and find

that the viscosity does become anisotropic in this case.

However, the central point of this chapter is that there is already enough motivation,
based on the behavior quite generically seen in gravitational systems, to suggest that
some components of the viscosity tensor in anisotropic strongly coupled systems might
well become small, making 7/s for these components potentially even smaller than the KSS
bound, 1/47. Such a decrease in the viscosity might well happen in cold atom systems, for
example the unitary fermi gas, which are experimentally well studied. As argued above, the
range of values involved for temperature, chemical potential and angular frequencies are well
within the experimental regime for such a system, and the scissor mode which is sensitive to
the relevant components of the viscosity has already been realised experimentally in them.
Further, the resulting values for the energy and the damping time from which the viscosity

can be extracted lie in the experimentally accessible range which has already been achieved.

We thus hope our experimental colleagues in the cold atoms community will find our results

interesting and relevant.
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Chapter 6

Probing Lepton Flavor Violation in

Supersymmetry at the LHC

6.1 Introduction

In this chapter, we turn to a somewhat different exploration and thus can be read indepen-
dent of the preceding chapters.

The experiments dedicated towards the investigation of flavour physics are considered to
be one of best indirect ways to establish the existence of new physics (NP). They play
an important role in constraining the viability of various new physics scenarios, thereby
complementing the direct collider searches. The effects which give rise to large flavour
changing neutral currents (FCNC), can also be potentially probed at the colliders. For
instance, the possibility of observing a flavour violating Higgs decay at the Large Hadron
Collider (LHC) was discussed in [216, 217, 218]. Further, an observation of a 2.5 ¢ excess in
the H — 7p channel by CMS [219] in the LHC experiment has generated a lot of interest in
this sector and has led to a plethora of analysis [220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233]. The leptonic sector in the Standard Model (SM) is also interesting
owing to the absence of FCNC. This can be attributed to the massless nature of neutrinos in
the SM. The observation of neutrino oscillations, which consequently led to a confirmation
of the massive nature of left handed neutrinos, resulting in a non-zero decay rate for rare
processes like  — ey. The predicted branching ratio (BR) in the SM, however is negligibly
small (~ 107%9) due to the tiny neutrino mass and is beyond the sensitivity of the current
flavour experiments. There exist several extensions of the SM which contribute to rare
processes such as i — ey via loops, enhancing the BR substantially to ~ 1071 — 10715
and expected to be within the reach of the indirect flavour probes. Needless to say, an
observation of such processes is a definitive signal of the presence of physics beyond the
SM. Therefore, looking for a signal of lepton flavour violation (LFV) directly or indirectly

is a challenging avenue to find NP. Following this argument, we explore the possibility of
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observing lepton flavour violation at the LHC.

There are several models in literature which discuss the possibility of flavour violation in
the leptonic sector. In the current analysis we focus on the supersymmetric extensions of
the SM which can possess soft masses having significant flavour mixing in the mass basis
of fermions. This can lead to new contributions to the BR of rare processes. For instance,
soft masses with flavour mixing can arise in see-saw extensions of SUSY [234, 235, 236]
and also inspired by SUSY GUT [237, 238, 239, 240, 241]. Alternatively, introduction of
flavour symmetries [242, 243], models with messenger matter mixing in gauge mediated
supersymmetry breaking (GMSB)[244, 245, 246, 247, 248], models with R-symmetric su-
persymmetry [249, 250], supersymmetric theories in the presence of extra-spatial dimensions
[251, 252, 253] etc. also lead to flavourful soft masses. Scenarios in which mass splitting
lead to flavour violation have been considered in [246, 254, 255]. Such extensions in general
lead to flavoured soft masses and depending on the parameters can lead to observable rates

for the flavour violating decays in the squark and leptonic sector.

Flavour mixing in the sfermion mass matrices can be probed at the collider by the flavour
violating decay of a sparticle of flavour (say i) into a fermion of flavour j where j # i.
Flavour violating decays of sleptons were studied in the context of eTe™ linear collider
[256, 257, 258, 259, 260, 261, 262]. In Ref. [263] the authors studied the possibility of
observing CP violation from slepton oscillations at the LHC and NLC. At the LHC, the
sleptons can be produced either through Drell-Yan (DY) process or by cascade decays from
heavier sparticles. Subsequent flavour violating decays of sleptons produced by DY were
studied in [264, 265] while those produced by cascade decays were studied in [266, 267,
268, 269, 270, 271, 272]. Probing LFV through the measurement of splitting in the mass
eigenstates of sleptons was considered in [273, 274, 275]. In this chapter we report on our
study of flavour violation in the leptonic sector by producing sleptons in cascade decays

through pair production of neutralino-chargino at the future LHC experiments.

Starting with MSSM, we write the most general structure for the slepton mass matrix.
The constraints on the model from the non-observation of flavour violating processes can
be expressed by working in the mass-insertion approximation (MIA) [235, 276] in terms of
bounds on the flavour violating parameter d;; i # j as defined in Eq.6.2 [277]. A non-zero
0;; also opens up the possibility of flavour violating decay as far as collider implications of

flavoured slepton masses are concerned.

Our goal is to probe the flavour violating decay in the case of first two generations in
the slepton sector in SUSY. In this context strong bounds exist on the flavour violating
parameter, coming primarily from the non-observation of y — ey [278]. There exist regions
of parameter space where these bounds can be relaxed owing to cancellations between
different diagrams contributing to this process, thereby giving access to probe LFV at the

colliders.

In this letter we explore this possibility to look for LFV decays considering neutralino-
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chargino pair production in proton-proton collisions, which eventually leads to three lepton
and missing energy final state. The tri-lepton final state is characterized by the presence
of two leptons with opposite flavour and opposite sign combination (OFOS). The presence
of LFV in the tri-lepton final state is ensured by demanding a combination of same flavour
same sign (SFSS) lepton pair along with the OFOS combination. While an imposition
of this SFSS criteria along with OFOS has a tendency to decrease the signal, it aids in
suppressing the backgrounds due to SM and SUSY significantly.

The chapter is organized as follows: In Section 6.2 we discuss the model set-up introducing
the various parameters relevant for the analysis in the framework of a simplified model.
Relevant regions of parameter space consistent with the flavour constraints and conducive
to be probed at the colliders are identified in this section. In Section 6.3 we explain our
choice of OFOS and SFSS combination to extract the signal with a detailed description of
the simulation. The results of the simulation for the background and the representative
points for the signal events are presented. In Section 6.4 we show regions of the parameter
space which can be probed at the LHC Run 2 experiment in the near future. We conclude

in Section 6.5.

6.2 Model Parametrization

In this section we introduce the basic model set-up and related parameters necessary to
describe LFV. In order to reduce the dependence on many parameters, we consider a
simplified SUSY model (SMS) approach with only left handed sleptons, wino and a bino
while decoupling the rest of the spectrum. The p term is assumed to be ~ 1 TeV to
make the neutralino/chargino dominantly composed of gauginos with a very small higgsino
component. In this case, the mass of xJ, the second lightest neutralino and Xf, the lightest
chargino, are roughly the same as ~ M, the mass of the SU(2) gauginos. The lightest
neutralino xY, which is assumed to be the lightest supersymmetric particle (LSP) has mass

~ M, same as the mass of the U(1) gaugino.

For the slepton sector we focus on the flavour violation in the left handed sector making
the right handed sleptons very heavy and set the left-right chiral mixing in the slepton
mass matrix to be negligible. For simplicity, we assume only two generations. With these

assumptions, the left handed slepton mass matrix in the basis Ip = (ép, i) is given as,

m? =

2 2
MLy MLy

2 2
" mL”] , (6.1)

where F' denotes the flavour basis (SUPER CKM) for the sleptons. In this basis the flavour
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violating parameter 019 is parametrised as [235, 276],

2
MLy

2 2
M M gy

S1o = (6.2)

Naturally, this flavour violating parameter d15 is coupled to the rates corresponding to
flavour violating rare decays in the first and second generation lepton sector. Hence an
upper bound on this parameter exists due to non-observations of these rare decays like

w— ey [278], p — e conversion [279] and u — eee [280].

In order to obtain the mass eigenvalues of the sleptons, the matrix in Eq.6.1 can be rotated

into a diagonal form by an angle 6 given by,

. 2m7,
sin20 = ———=12 (6.3)

where m%l are the eigenvalues. It can be related to the flavour violating parameter 19 as,

sin20(m7_ —m7 )

12 = (6.4)

2
2m7

mrp,+mrg,
where mp = —15—2

. The structure of the mass matrix, Eq.6.1 allows for the possibility
of flavour oscillations similar to neutrino flavour oscillations. The probability P(ér — )

of a flavour eigenstate ér decaying into a muon is given by [258],
(Am?)?
4m?2T? 4+ (Am?)?
~ sin?20 BR(ji — p) for T < Am?, (6.5)

P(ép —p) = sin?20 BR(fp — p),

with Am? = m%Q —m%l. The above expression can be re-expressed in terms of the parameter
812 from Eq.6.4. Thus the branching ratio for the flavour violating decay, x3 — e & — e u x!

can be computed as,
BR(xS = e XY) = BLpy BR(xS — é¢) BR(E = exy)+e e pu (6.6)

Here the suppression factor due to flavour violation is given by,

5 2
Brpy = sin®26 = (%) , (6.7)

where Amyo = myp, —mp,.

As mentioned before, bounds on 12 and hence Brpy can be obtained by taking into

account the experimental upper limit on the BR(u — e7y) < 5.7 x 10713 [278]. The higher
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dimensional operator contributing to this process is parametrized as [281],
_ s of3
Lpy = e? € 0up (ALPL + ARPR) w FP (6.8)

where the model dependence is captured by the Wilson coefficients A7, g. The branching
ratio for this process is then given by [281],

4873

BR(u — ey) = @

(IALI* + |AR[?) . (6.9)
In our considered model, A = 0, as the right handed sleptons are assumed to be very
heavy. Ay on the other hand receives three contributions due to chargino, neutralino and

bino mediated diagrams and is given as [281],

12 [ay M? ay M M;
b (02 ()24 (0) om

where f, . are loop factors defined in [281] with a non-trivial mass dependence of related

sparticles and ay, ay are the U(1)y and SU(2) gauge couplings.

The analysis can be simplified again by choosing the following parametrization for the mass

M of the (LSP) Y,
My = =2, (6.11)

which is the relation at the electroweak scale due to unification of gaugino masses at the

GUT scale. For the sleptons we choose,
My > myp, > M. (6.12)

This relation assumes that the intermediate sleptons in xJ decay are produced on-shell by
requiring that they are lighter than the mass of xJ ~ My. Under these assumptions, we try
to find the available range of parameters allowed by existing i — ey constraints as will be
discussed later. Fig.6.1 shows the region in the My — mp, plane for which the conditions in
Eq.6.11 and 6.12 are satisfied (green region). It depicts the region of parameter space which

is of interest as far as collider implications are concerned as discussed in this chapter.

The blue region shows the parameter space for which BR(u — ey) < 5.7 x 10713 is satisfied
for 912 = 0.01 in the left plot and for d15 = 0.02 in the right plot. As expected, due to the
smaller value of d15, the blue region in the left plot has a larger overlap with the green region
as compared to the plot in the right, thereby admitting smaller slepton masses. The orange
region in both the plots shows the parameter space for which BR(u — ey) < 5.7 x 10713
is satisfied for 619 = 0.1. We find that there is virtually no overlap with the region which is

of interest to us from the view of collider searches.

It would be interesting to estimate the suppression factor By ry corresponding to the allowed

region in the Ms—mj, plane for the values of 415 in Fig.6.1. As seen in Eq.6.7, the parameter
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Figure 6.1: Region satisfying Eq.6.11 and 6.12 (green), while the orange regions satisfy
the 4 — ey constraint for §1o = 0.1. The blue regions are allowed by the upper bound on
BR(u — e) for 612 = 0.01 (left) and d12 = 0.02 (right). Units of mass are in GeV.

Brry, which determines the rate for LE'V, is sensitive to the mass-splitting Am = mp,—mp,
and my. Bppy increases with d1o which can only be accommodated with a larger my.
Thus smaller values of d12 are not conducive to generate a large Brpy. Bppy is also
inversely proportional to the mass splitting Am. However, it cannot increase indefinitely as
Brry <1, leading to a lower bound on Am. Fig.6.2 demonstrates the contours of constant
Brry in the Am —my, plane. We find that for ;90 = 0.02, slepton in excess of 250 GeV are
required to get Brpy > 0.1, while being consistent with the flavour constraints (overlap of

blue and green region) in Fig. 6.1.

6.3 Signal and Background simulations

As mentioned in the introduction, we probe the signal of LFV in slepton decay producing it
via cascade decays of sparticles which are produced in proton-proton collisions at the LHC.

Here we focus on Xfxg production which eventually leads to a tri-lepton final state as,

XS = LT — IS, i #

pp — (6.13)

+ + 0
X1 — vy,

where 7, j denote flavour indices (e, ). The flavour violating vertex causes the decay of a
slepton (l;), coming from 9 decay, in Eq.6.13, into a lepton of flavour l; with ¢ # j. It
is clear from the above process that the signature of LE'V is the presence of 3 leptons of

which 2 leptons are with opposite flavour and opposite sign (OFOS) in addition to missing
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Figure 6.2: Contours of Brpy for d19=0.01 (left) and d12 = 0.02 (right). The horizontal
blue line is excluded by BR(u — e) for 412 = 0.01 (left) and d12 = 0.02 (right). The units
of mass are in GeV.

energy (F) due to the presence of two LSP and neutrino. The leptons with OFOS originate
from x9 decay while the third lepton comes from the Xli decay. Thus, following this decay
scenario, it is possible to have 8 combinations of tri-leptons, each having at least one OFOS

lepton pair as,

efetu seTeT s pTet T spter
eferpt e ety sptetyT spme (6.14)
On the other hand, the pair production of Xlixg will also give rise to tri-lepton final state

with a flavour conserving decay of X3 i.e. x5 — (T1~x{. Note that this flavour conserving

decay scenario also results in 8 combinations of tri-lepton final state given as

+ +

etptp e ptp spumete jutete”

prptuT semete setetem spuppt (6.15)

out of which four combinations of OFOS exist as seen in the first line of Eq.6.15. It is clearly
a potential background corresponding to the signal channel in Eq.6.14 and expected to have
the same rate as signal. However, a closer look at these two final states in Eq.6.14 and 6.15
reveals a characteristic feature. For example, in the case of signal, out of the 8 combinations
of tri-leptons with OFOS combinations, notice that four combinations shown in the first
line in Eq.6.14, also possess a pair of leptons with same flavour and same sign (SFSS) which

are absent in the background final states, shown in Eq.6.15. The rest of the states with
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OFOS combination in Eq.6.14 are identical to the final states given in Eq.6.15. We exploit
this characteristic feature to extract the LFV signal events out of all three lepton events
including all backgrounds. Thus our signal is composed of three leptons having combinations
of both OFOS and SFSS together, which is an unambiguous and robust signature of LF'V
in SUSY. Note that while choosing a clean signature of LF'V decay in SUSY, we pay a price
by a factor of half as is clear from Eq.6.14. However, this specific choice of combinations in
tri-leptons is very powerful in eliminating much of the dominant SM backgrounds arising

from WZ and tt following leptonic decays of W/Z and top quarks.

We now discuss our simulation strategy to estimate the signal rates while suppressing the SM
and SUSY backgrounds. We performed simulations for both signal and background using
PYTHIAS8 [282] at 14 TeV centre of mass energy and applying the following selections:

e Jet selection: The jets are reconstructed using FastJet [283] and based on anti kp
algorithm [284] setting the jet size parameter R = 0.5. The jets passing the cuts on
transverse momentum p% > 30 GeV, pseudo-rapidity |n/| < 3.0, are accepted.

e Lepton selection: Our signal event is composed of three leptons and are selected ac-
cording to the following requirement on their transverse momenta and the pseudo-rapidity:
pZTI’Q’?’ > 20,20,10 GeV; [nf23| < 2.5, where the leptons are pr ordered with png being the
hardest one. In addition, the leptons are also required to be isolated i.e. free from nearby
hadronic activities. It is ensured by requiring the total accompanying transverse energy,
which is the scalar sum of transverse momenta of jets within a cone of size AR(l, j) < 0.3
around the lepton, is less than 10% of the transverse momentum of the corresponding lepton.
e Missing transverse momentum: We compute the missing transverse momentum by
carrying out a vector sum over the momenta of all visible particles and then reverse its sign.
Since pr is hard in signal events, so we apply a cut pr > 100 GeV.

e Z mass veto: We require that in three lepton events, the invariant mass of two leptons
with opposite sign and same flavour should not lie in the mass window m; = Mz £20 GeV.
It helps to get rid of significant amount of W Z background.

e b like jet selection: The b jets are identified through jet-quark matching i.e. those jets
which lie with in AR(b,j) < 0.3 are assumed to be b like jets.

e OFOS: Our signal event is characterised by the requirement that it has at least one lepton
pair with opposite flavour and opposite sign.

e SFSS: We require the presence of SF'SS combination along with OFOS combination in
three lepton final state, which is the characteristic of our signal. As stated before, this
criteria is very effective in isolating the background due to the same SUSY process but for

their subsequent flavour conserving decays, in particular for xy decay.

We perform our analysis by choosing various representative points in the SUSY parameter
space. The spectrum is generated using SUSPECT [285] and the decays of the sparticles are
computed using SUSYHIT [286]. Table 6.1 presents the six representative points (A-F) for
which we discuss the details of our simulation. From A to F, the spectrum is characterized

by increasing masses of gauginos, with the slepton mass my, lying midway between the two,
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my, = (Ml +M2) /2

Spectrum Characteristics | A B C D E F
X3/xT 210 314 417 518 619 718
Y 95.8 144 193 241 290 339
mr, 156 229 303 377 452 526
BR(x3 — ére) 0.13 0.15 0.16 0.16 0.16 0.16
BR(XS — jirp) 0.13 0.15 0.16 0.16 0.16 0.16

Table 6.1: Representative choices of SUSY parameter space. All masses are in GeV.

In Table 6.2 and 6.3 we present the effects of selection of cuts in simulation for both the signal
and backgrounds respectively. In addition to the SM backgrounds which are mainly due to
tt and W Z, we also simulate the background taking into account the contributions due to
flavour conserving decay of x9 for each of the representative points in Table 6.1. There are
other sub-dominant backgrounds like tbW, ZZ if one lepton is missed or WW, if jets fake
as leptons. However these backgrounds are expected to be very small and not considered
here. We present results for signals corresponding to those representative parameter space
as shown in Table 6.2 . In this table, the first column shows the sequence of cuts applied
in the simulation, while the second column onwards event yields for the signal are shown.
Table 6.3 presents the same for the backgrounds due to SUSY in the second column and
the SM in the third column. Notice that lepton isolation requirement and a cut on pr has
considerable impact in reducing tf and W Z background. As noted earlier, we find the SFSS
criteria to be very effective in isolating the SUSY background due to flavour conserving
decay of x3 for all the representative points in Table 6.1 . Finally, it is possible to have
large number of tri-lepton events in background processes, but imposition of specific choices
like OFOS and SFSS along with large missing energy cut help in isolating it to a great extent
as shown in Table 6.3 . In spite of this suppression of background events, the signal yields
are far below than the total background contribution owing to it’s huge production cross
sections as shown in Table 6.3. Therefore, in order to improve signal sensitivity further, we
impose additional requirements by looking into the other characteristics of signal events.
For example, signal events are free from any kind of hadronic activities at the parton level
i.e. no hard jets are expected in the signal final state, whereas in background process, in
particular events from ¢t are accompanied with large number of jets. We exploit this fact

to increase signal sensitivity by adding following criteria.

Case a: Jet veto

In this case we reject events if it contain any hard jets. In Table 6.3 we see that while the
jet veto criteria reduces the tt and WZ background significantly, but it also substantially
damage the signal by a factor of 2 or 3 as shown in Table 6.2 . In signal process, jets
arise mainly from the hadronic radiation in initial and final states and it is true for all
the representative signal points. The reason can be attributed to enhancement of hadronic

activities at higher energies. Nevertheless the jet veto seems to be useful to improve signal
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Signal (x9x7")

My = 200 300 400 500 600 700
No. of events generated 10000 10000 10000 10000 10000 10000
pgﬂl’z > 20,p§§ > 10, |n| < 2.5 1371 1752 2014 2218 2225 2342
Lepton isolation cut 1330 1669 1883 2055 2036 2112
pr > 100 474 959 1326 1600 1683 1860
OFOS 470 952 1319 1581 1659 1828
7 mass veto 423 849 1218 1485 1574 1752
SFSS 223 462 640 783 804 892
Case a: jet veto 91 205 288 337 346 380
Case b: b-like jet veto 221 458 635 77 798 884
Case c: nj <1 and b-like veto 161 375 479 604 617 687

Table 6.2: Event summary for signal after all selections. All energy units are in GeV.

SUSY (X9x7)
A B C D E F tt WZ

My = 200 300 400 500 600 700 - -
Cross section (fb) at 14 TeV | 1.65 x 10> 370.5 118.8 45.6 205  9.57 [ 9.3 x 10° 4.47 x 10*
No. of events generated 10000 10000 10000 10000 10000 10000 107 3 x 100
p?’z > 20,p§5’ > 10, |n| < 2.5 1299 1779 2015 2195 2245 2361 164895 23960
Lepton isolation cut 1251 1672 1874 2044 2051 2131 70233 22366
pr > 100 454 967 1311 1624 1722 1872 19241 1669
OFOS 209 482 656 820 855 918 14012 858
Z mass veto 126 346 547 728 768 853 12395 122
SESS 4 6 11 14 15 25 4598 22
Case a: jet veto <1 1 1 5 4 4 29 <1
Case b: b-like jet veto 4 5 10 14 13 23 131 13
Case c: nj <1 and b-like veto 1 3 7 9 9 19 48 5

Table 6.3: Event summary for SUSY and SM background. All energy units are in GeV.
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to background ratio. However we consider two more alternatives with a goal to increase

signal sensitivity further:

Case b: b-like jet veto
Here we eliminate events if there be at least one b like jet. As can be seen Table 6.3, b jet
veto is more efficient than the jet veto condition, as the ¢t background is suppressed by a

few orders of magnitude without costing the signal too much.

Case c: Apply b-like jet veto and number of jets n; <1
Here we apply the b-like jet veto condition along with the presence of maximum one jet. As
seen in Table 6.3 , it is very helpful in reducing the ¢t background significantly but it does

not affect the signal as much as the simple jet veto condition (n; = 0) does alone.

Note that we have identified b-like jets by a naive jet-quark matching which is an overes-
timation from the realistic b-jet tagging[287] which is out of scope of the present analysis.
However, for the sake of illustration, we present these results with b-jet veto, (case (b) and
(c)), to demonstrate that this criteria might be very useful in suppressing backgrounds,
which requires more detector based simulation. In view of this, we focus only on the results

obtained by using jet veto, case(a) for further discussion.

We also present the dilepton (ep) invariant mass distributions for the spectrum A (left)
and F (right) in Fig.6.3 normalizing it to unity. It is subject to all primary selection cuts
on leptons and jets, including the OFOS and SFSS combination. The m,, distribution
is expected to have a sharp edge on higher side, which can be derived analytically from

kinematical consideration. The position of this edge of m,,, is given as [268, 288],

2
2 m?,
max\2 2 my, X1
m =m 1— 1— . 6.16
( " ) Xg( 7”20> ( m%) ( )

X2

The appearance of an edge in the m,,, distribution is a clear indication of LFV vertex in the
XY decay. However, this me, distribution is affected by a combinatorial problem. For each
tri-lepton event, two OFOS pairs can be constructed: a) both leptons coming from x9 decay
and b) “imposter” pair with one lepton from x9 and the other from Xli. In Fig.6.3 the red
(dotted) curve represents the dilepton invariant mass distribution of the leptons tracked to
the 3 vertex while blue (solid) curve corresponds to dilepton without any prior information
about their origin. It (red dotted line) exhibits a very distinct edge as the identity of the
lepton pair originating for x3 is known a-priori. The (solid) blue line is more realistic as
it includes both the correct OFOS and SFSS pair as well as the contamination due to the
“impostor” pair which is responsible for a tail beyond the edge. As a result it exhibits a
more diffused behaviour near the position of the edge. However, we can roughly estimate
the position of the edge using the blue (solid) line as ~ 120 GeV for the left panel and ~ 375
GeV for the right panel. We find that these values are in fairly good agreement with the
corresponding numbers used in our simulation. It may be noted here that such distributions

with a sharp edge are the characteristic feature of these type of decays which can also be
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Figure 6.3: OFOS dilepton invariant mass distribution for spectrum A (left) and spectrum
F (right). The events are selected at the SFSS level.

Signal (S) Background (B)

Properties A B C D E F tt

Cross section (fb) at 14 TeV | 1.65 x 10> 370.5 118.8 456 20.5 9.57 | 9.3 x 10°
Normalized cross sections
Case a: jet veto 15.01 7.59 341 151 0.67 0.37 2.69
Case b: b-like veto 36.4 16.9 7.54 354 1.63 0.85 12.1
Case c: nj < 1 and b-like veto 26.5 13.9 5.7 275 1.26 0.66 4.4
%(@100) b1

Case a: jet veto 91.43 45.93 20.78 9.32 431 2.24 - -
Case b: b-like veto 100.99  47.87 21.34 10.04 4.64 2.43 . .
Case c: nj < 1 and b-like veto 122.4 64.4 26.4 12.8 5.92 3.12 - -

Table 6.4: Normalized cross-section (fb) and S/ VB for signal and background subject to
three selection conditions

exploited to suppress backgrounds [268] in order to increase signal to background ratio.

6.4 Results and Discussions

Table 6.4 gives the normalized signal and background cross-sections due to all selection
cuts. These are obtained by multiplying the production cross section given in the first
row by acceptance efficiencies. The production cross section are estimated by multiplying
the leading order (LO) cross section obtained from PYTHIA8 with the corresponding k
factors '. Corresponding to these signal and background cross sections, we also present
the signal significance by computing S/ VB for integrated luminosity 100 fb~! as shown in
the bottom of Table 6.4. Although case(b) corresponding to b-like jet veto results in the
largest cross section for all signal parameter space, signal significance does not improve due
to comparatively less suppression of SM backgrounds. With the increase of gaugino masses
acceptance efficiencies goes up as final state particles become comparatively harder, but
S/ VB is depleted due to drop in ngf pair production cross-section. While estimating
signal rates and significance, we assume a maximal flavour violation i.e. Bppy = 1.
Obviously, a further suppression is expected by a factor Bpry which depletes the BR of
X9, (see Eq.6.6). For a given 612, Brpy is a function of the slepton mass as well as the
mass splitting Am as shown in Fig. 6.2. For instance S/v/B may suffer by an order of
magnitude for Brpy = 0.1. While the lower end of the spectrum can lead to a larger

S/ VB, the corresponding Brpy decreases as we move further towards the IR part of the

'The appropriate k factors for tf and WZ processes is 1.6 [289] and 1.7 [290] respectively while for the
signal it is 1.5 [291].
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Figure 6.4: Variation of S/v/B (using jet veto, case (a) for different regions with two choices
of 412 = 0.01 (left) and d12 = 0.02(right). The regions light blue are allowed by BR(u — e7)
constraint. Here we assume Brpy = 1. Masses are in GeV.

slepton spectrum. This can be attributed to stronger bounds on 12 for lower slepton masses.
Though the lower mass is not yet ruled out, it is more economical to consider relatively
heavier slepton masses as the bounds from current and future experiments will be relatively

weaker.

In Fig.6.4, we illustrate this mass sensitivity by presenting S/ VB obtained using jet veto
condition case (a). Notice that for a given Xli and ) masses, signal is not very sensitive to
slepton mass as long as it is produced on-shell from x9 decay and ng — my, is sufficiently
high. The regions in the My — my, plane correspond to different values of S/+/B computed
for £ =100 fb~! and by assuming By ry = 1. The sleptons and gaugino masses follow the
parametrisation in Eq.6.11 and 6.12. It is superimposed on the region satisfying BR(u —
ey) < 5.7 x 10713 for 615 = 0.01 (left) and 612 = 0.02 (right). As seen from Table 6.4 and
Fig. 6.4, the signal significance is better for lower masses due to larger ngic pair production
cross section. However, it suffers by smaller values of By ry corresponding to those slepton

masses as shown in Eq.6.7 and Fig.6.2.

Fig.6.5 shows the sensitivity reach of By ry in the Ms —mj, plane using the parametrisation
in Eq.6.11 and 6.12. The numbers in boxes for different coloured regions give the minimum
values of Brry which can be probed, while requiring a 50 discovery corresponding to
those values of Ms and mjy and are presented for two different options of luminosities:
L =100 fb=! (left) and £ = 1000 fb~! (right). As the constraints from indirect flavour
measurements get tighter, larger By py can be attained with heavier slepton masses, while
respecting bounds from the rare decays as shown in Fig. 6.1 and 6.2. For example, for
lower masses x5 ~ Xli ~ 250 GeV and mp ~ 200 GeV, the LFV parameter Brpy ~ 0.05
or more can be probed at 5o level of signal sensitivity for £ = 100 fb~! . As expected,

the minimum By py required for a 5o sensitivity goes up, thereby reducing the sensitivity
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Figure 6.5: Minimum value (in small box) of Brpy for a S/v/B = 5 discovery for £ =
100 fb~! (left) and £ = 1000 fb~! (right). The S/+/B is computed using jet veto condition.
The filled triangles correspond to the representative points A-F from left to right. The plot
is truncated at the point where Brpy > 1 is required to get a 5 o sensitivity of signal for
that particular luminosity. Masses are in GeV.

of Brry measurement with the increase of gaugino and slepton masses and this can be
attributed to the drop in cross-sections. The left plot in Fig.6.5 is terminated at the point
corresponding to a requirement of Brpy—1 for a 5o discovery. As a result, the representative
points E and F corresponding to heavier slepton masses are beyond the sensitivity of LHC
at £ = 100 fb~! as they require Brry > 1 to achieve a 50 discovery. However, flavour
violating decays with heavier slepton masses as high as 650 GeV can be probed with an
integrated luminosity of £ = 1000 fb~! as shown in the right plot of Fig 6.5.

6.5 Comments and discussions

The observation of flavour violating rare decays would be one of the best indicators of
the existence of physics beyond the SM. Measurements of such decays play an important
role in constraining several new physics models and hence has received a lot of attention
recently. We attempt to explore the flavour violation in the lepton sector in the context
of well motivated models of flavourful supersymmetry. We follow an approach based on a
simplified model with only the left handed sleptons along with the neutralinos which are
gaugino dominated. We consider pair production of ngic and their subsequent leptonic
decays which includes the LFV decays of x3. The final state is composed of three leptons
and accompanied by large missing energy. In addition to the presence of a lepton pair with
OFOS, we observed that certain tri-lepton combinations are also characterized by a lepton
pair with SF'SS -which is a unique and robust signature of LE'V in SUSY.
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The discovery potential of observing this LF'V signal is primarily dependent on the masses of
sleptons and gauginos. These masses are however constrained by non-observation of FCNC
decays such as u — ey and they get stronger as the flavour violating parameter d;5 becomes
larger. We have identified the allowed range of slepton and gaugino masses relevant for
our study. In addition variation of LFV parameter By py with masses of slepton and mass

difference between lepton mass eigenstates (Am) are also presented.

Estimating the various background contributions, we predict the signal sensitivity for a few
representative choices of SUSY parameters. The combination of three leptons with OFOS
and SFSS is found to be very useful to achieve a reasonable sensitivity. It is found that for
gaugino masses ~ 250 GeV and slepton masses ~200 GeV, the LFV parameter By as low
as 0.05 can be probed with 100 fb~! integrated luminosity. For heavier masses ~ 600 — 700
GeV, because of reduced ngf pair production cross section, the measurement of LFV
parameter By ry requires higher luminosity ~1000 fb~!. Our study clearly establishes the
prospects of finding LFV signal in this SUSY channel at the LHC Run 2 experiment with

high luminosity options.
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Conclusions

The primary goal of this thesis was to use AdS-CFT tools to understand the shear viscosity
of a class of strongly coupled field theories, in the presence of anisotropy. For this purpose,
we had to construct and study several anisotropic blackbrane geometries. We found that
in all our examples we studied, there was a parametric suppression of some components
of shear viscosity in the presence of a constant driving force that broke the rotational
symmetry. Motivated by the generality of the result, we also proposed an experiment
involving trapped fermions at low temperatures where such an anisotropic shear viscosity
tensor may arise. We found that there exist a suitable region of parameter space where the
parametric suppression of suitable components of the anisotropic shear viscosity tensor may
be measured. In this concluding chapter of the thesis we try to emphasize what we have

learned so far. We also discuss some points which we need to investigate further in future.

e In Chapter 2 we performed the interpolation of the Bianchi attractor geometries (
which are dual to anisotropic phases in the field theory with generalized translational
invariance) in the IR (infrared) to Lifshitz and AdS spacetimes in the UV (ultraviolet).
We wish to emphasize that we did not obtain these interpolating metrics as solutions
to Einstein gravity coupled to suitable matter. Rather, what we achieved to show is
that the matter required to support such geometries obey the weak and null energy
conditions. These interpolating metrics do not have any non-normalizable metric
deformations turned on near the boundary. This ensures that the dual field theory
can indeed reside in flat space as opposed to some background of non-trivial geometry.
The lesson we learn from these interpolations is that the symmetries of various Bianchi
classes can emerge in the IR, either spontaneously or in response to some suitable
source not involving the metric. We believe that these results will be of interest to the
condensed matter community, given the fact that many interesting phases of matter

are currently showing up in this arena of physics.
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e In Chapter 3 we try to realize the near horizon geometries with Bianchi symmetries

as solutions in gauged supergravity theories. We find a Bianchi III attractor solution
in N = 2,D = 5 gauged supergravity which is stable in the RG sense. We analyze
the relevant Killing spinor equations and find that a radial ansatz for the spinor
breaks all supersymmetry. This suggests that the above solution we found may be a

non-supersymmetric attractor.

In the second half of the thesis, in Chapter 4 we find a general formula for the shear
viscosity in units of the entropy density given by the ratio of appropriate metric
components evaluated at the horizon. In a situation with anisotropy, these metric
components need not be the same. This can lead to a parametric violation of the
bound proposed by Kovtun, Son and Starinets. ( n/s > ﬁ ) which we abbreviate
as KSS. Using techniques of Kaluza Klein reduction, we give a proof of this general
formula for all situations where the force breaking isotropy is spatially constant and
there is some residual Lorentz symmetry left in the boundary theory after breaking

isotropy.

The general formula can be presented as follows: let z be the field theory direction
along which a spatially constant driving force is turned on breaking rotational sym-
metry and x be a direction along which the boost symmetry is left unbroken, then

the viscosity component 7, is given by

Moz _ 1 Gaw
S 41 gzz u:uh’

(7.1)

where gyz|u=u,, 9zz|u=u, refer to the components of the background metric evaluated
at the horizon. This result is true for all the anisotropic situations studied in Chapter
4 (Ref. [178]). This result was first derived in an anisotropic axion-dilaton system
considered in [134].

In the isotropic situation, the metric components g¢,, and g,, are the same and
we recover the result ﬁ of KSS. However in anisotropic situations, these metric
components can behave very differently and thus leads to the parametric violations
of the KSS bound.

Let us note that the proof of this general formula that was carried out in Chapter 4
relies on the assumption that the force responsible for breaking of rotational symmetry
is spatially constant. The proof essentially maps the spin one shear viscosity com-
ponents to conductivity in a lower dimensional theory using dimensional reduction.
Since the fields breaking isotropy were linearly varying (the gradients of those fields
were constants), different Kaluza Klein (KK) modes in the extra dimensions do not
mix with each other. This can be easily seen from the fact that the equations of

motion involve only gradients of these fields which are spatially constant.
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e Motivated by these interesting results found in Chapter 4, we try to propose an
experiment in Chapter 5 to measure such spin one components of shear viscosity
in the unitary fermi gases. This set-up involves trapped, ultracold fermions in the
unitary regime of the BEC-BCS crossover. Anisotropy is achieved by implementing
a stronger confinement of the gas in one of the directions compared to the other
directions. Based on the lessons learnt on the gravity side, we lay down a set of
conditions such that the suppression of spin one component of shear viscosity may
be measured experimentally in such systems. We present the relevant hydrodynamic
modes which solve the equations of superfluid hydrodynamics and the trap parameters
where this effect is likely to be seen. To the best of our knowledge, the proposal
presented here is the first proposal to probe anisotropic shear viscosity in trapped

fermions at low temperatures.

Our proposal involves a unitary Fermi gas in an anisotropic harmonic trap. We find
that for the temperature at the center of the trap between 0.2 to 0.4 times the central
chemical potential u, the damping of oscillatory modes is dominated by a region where
the background harmonic potential can be approximated as linear. AdS/CFT then
suggests a reduction in the spin 1 component of the shear viscosity. For p = 10uK,
T = % (Te ~ 0.4p), and w, ~ 27w x 77000 rad/s, we find kK ~ 1. A Boltzmann
analysis in this regime also predicts an order unity reduction in spin 1 shear viscosity
components.
Two hydrodynamic modes, an elliptic mode and the well known scissor mode, are
sensitive to this reduction in viscosity. The angular amplitudes and the decay times are
comparable to those measured in [182]. In the extreme situation for where x ~ 1, our
theoretical estimate for the correction to the viscosity (Eq. 5.101) breaks down. (For
example higher order terms in Eq. 5.101 become important. Additionally, for k ~ 1,
p/w, ~ 2.7 and shell effects, although somewhat weak in the unitary Fermi gases [210],
may also become important.) But by gradually increasing w, from w, ~ 27 x 10*rad /s
to w, ~ 27 x 77000 rad/s one could measure the tendency of 7,, to decrease. For
example, one can consider w, = 0.97 = 0.18 for which kK pa = 0.48 < 1. This gives
a correction

An ~ —9% (7.2)

n

which — while not large — is still substantial.
The damping rate for the scissor mode has been measured in the BEC-BCS crossover
region for weakly anisotropic traps in [182]. It will be interesting to see how the
damping rate changes as w, is increased. On the other extreme, damping of the
breathing and the radial quadrupole mode (both insensitive to 7,,) was measured in
the 2D Fermi gas [213]. It will be interesting to study the scissor mode in these traps

for smaller w,. We hope our experimental colleagues in the cold atoms community
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will find our proposal interesting and explore anisotropic viscosities in trapped unitary

fermions.

e The final chapter of the thesis is a parallel investigation that is independent of the
developments of the earlier chapters and hence can be read independently. Here we
considered models of supersymmetry which can incorporate sizeable mixing between
different generations of sfermions and performed a detailed collider analysis to devise
a signal to probe the lepton flavour violating parameter in such models relevant for
the LHC.

We now list a few open and interesting questions that we have left for the future.

e Although we were successful regarding the interpolation of Bianchi Types II, III, VI
and IX in Chapter 2, the interpolating metric of Bianchi Type V failed to satisfy the
null energy conditions. Our failure in this case may be due to the restricted class of
functions we used to construct the interpolating metrics or perhaps it may suggest
a more fundamental constraint. Another interesting question is how the anisotropic
and homogeneous phases in these field theories, described by the Bianchi attractor
regions, can arise in practice? It will be interesting to examine the possibility of a
spontaneous breaking of rotational invariance or by turning on sources other than the

metric in the field theory.

e An immediate extension of the work on shear viscosity in strongly coupled fluid in
presence of anisotropy is to extend our analysis to cases where the breaking of isotropy
is spontaneous or when the driving force is not spatially constant. It is also natural
to consider string theory embeddings of the anisotropic systems we have studied and
examining if they are stable. In principle all transport coefficients which determine
the fluid mechanics can be obtained by carrying out a more systematic derivative
expansion on the gravity side as discussed in the fluid gravity correspondence described
in [292], [293],]294], [295]. It will be great to perform a similar analysis along those
lines. Another direction is to consider transport properties in phases corresponding to
Bianchi spaces which describe homogeneous but anisotropic phases in general. Some
progress in this regard has been made [159] for Bianchi VII. It will be interesting to
extend the analysis to all Bianchi types. It will also be interesting to see if these results
are relevant for neutron stars with very high magnetic fields (known as magnetars)

L. The resulting equilibrium phase could then be

for breaking rotational invariance
highly anisotropic and our results hint that suitable components of the viscosity might

become small.

e An important point worth noting is that while the cold-atom system proposed in
this thesis shares many features with those discussed in Chapter 4 (Ref. [139, 178]),

LA magnetic field of order 10'° Tesla or so is needed in order to contribute an energy density comparable
to the QCD scale ~ 200 Mev.
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it also has some differences. First, in equilibrium the stress energy tensor is not
invariant under translations even for a linear potential. Second, in addition to energy-
momentum, the cold-atom system features another conserved quantity: the particle
number. Consequently the system is locally characterized by two thermodynamic
variables T and p rather than just 7. It will be interesting to further study the
behavior of viscosity in gravitational systems which correspond to anisotropy driven
strongly coupled systems with a finite chemical potential. As a first step, we have
analyzed a weakly coupled system with a linearly varying potential and also a system
in gravity ie. the RN blackbrane (see [215]). In both situations we find that the

anisotropic viscosity does become parametrically small.
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Appendix A

Appendices for Chapter 2:
Interpolating from Bianchi Attractors to
Lifshitz and AdS spacetimes

A.1 Three Dimensional Homogeneous spaces

We now discuss the three dimensional homogeneous spaces and their classification. Such
spaces have three linearly independent Killing vector fields, &;, i = 1,2, 3. The infinitesimal
transformations generated by these Killing vectors can carry any point in this space to

another neighbouring point. The real algebra of these Killing vectors is given by

&, &) = Chié. (A1)
There are 9 different such algebras and this is known as the Bianchi classification ( [296],
[297] ).

In each case there are three linearly independent invariant vector fields, X;, which commute

with the three Killing vectors

&, X;] = 0.

The X;’s satisfy the algebra

X, Xj] = —CE X

There are also three one-forms, w’, which are dual to the above invariant vectors X;. The

Lie derivatives of these one-forms along the & vanish, thus they are invariant along the &

directions as well. The w'’s satisfy the relations
dw? = %C}kwj AWk,
Below we give a list which contains the structure constants for the 9 Bianchi algebras, in a

particular basis of generators. We refer to [297] for more details.
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e Type I Cj, =0

& =X, =0, W =da', dw' =0 (A.2)

e Type II: C; = —C3, =1 and rest C]Zk =0

& =0 X| =0 wh =dz? — 2lda?  dw' = W? A WP
o =03 Xy = 210y + 05 w? =da? dw? =0
£3 =01 + 230, X3=0 w3 = da! dw?® =0
e Type IIL: C}; = —C3, = 1 and rest C;k =0
& =0 X, = 633182 W =e ' dr?  dw! = w' AW
& =03 X9 =05 w? = da? dw? =0
€3 = 01 + 2205 X3 =0 w? = dx! dw® =0
e Type V: Cl; = —C} =1, 0%, = —C%, =1 and rest lek =
& =0 X = 633182 w=e ' dr?  dw! = w! AW
& =03 X9 = 633183 W= e ded  dw? = w? AW
£3 =01 + 220y + 2305 X3=01 w3 = da! dw?® =0
e Type VL: C{; = —C}, =1, C%, = —C%, = h with (h # 0,1) and rest C;k =0
& =0 X, = egﬁl(?g wh=e"dz?  dw! = wl AW
& =03 Xy = 61”163 W2 = e dpd  dw? = hw? A w?
&3 =01 + 220y + ha30s X3 =0 w3 = dat dw?® =0

e Type VIIy: C}; = —Ci, = -1, C}, = —-C% =1 and

rest C]i',k = 0.
£&1 =0 X1 = cos(x1)dy + sin(z!)0s
&9 =03 Xy = —sin(z1)dy + cos(z1)ds
£3=01 — 230y + 2203 X3 =0
And also,
w! = cos(z!)dx? + sin(z!)dz®  dw! = —w? AW
w? = —sin(al)dz? + cos(z)dx®  dw? = w! AwW?
w3 = dx! dw? =0

e Type IX: Cl; = -Ci, =1,C3 = —-C% =1, C}, = —C3; = 1 and rest are zero.

&1 =0,
& = cos(2?)0; — cot(x!) sin(x?)dy + %83
¢3 = —sin(22)0; — cot(x!) cos(x?)0y + 2?5((5?))63
With
X = —sin(z®)0) + %82 — cot(z!) cos(23)05
Xy = cos(x3)0; + :iﬁg?;@ — cot(x!) sin(z3)0s
X3 =03
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And also,
wl = —sin(23)dz! +sin(z!) cos(z3)dz?;  dw! = w? A w3
w? = cos(z®)dx! + sin(z!) sin(23)dz?;  dw? = w3 Aw?
w3 = cos(x!)dr? + da; dw? = wh A w?

For Types IV and VIII we give the structure constants only. For more explicit data on

these Types, see [297]

e Type IV: 6’113 = —C%l =1, 0213 = —C§2 =1, 0223 = —C§2 =1 and rest C]Zk, =0

e Type VII,, (0<h?<4): C4=-C% =1,Cly=-Cly=-1,C% = -C%, = h and
rest C’; =0

e Type VIIL: C}; = —C}, =1, C} = ~C} =1, Cf, = —~C§, = 1 and rest C; =0

A.2 The Weak and Null Energy Conditions

We shall now review the weak and null energy conditions in detail. The weak energy
condition (WEC) stipulates that the local energy density as observed by a time-like observer
is nonnegative. In other words, if u* are the components of a time-like vector, we must
have T}, ufu” > 0 everywhere, with T}, being the components of the stress tensor. Note
that if we raise one of the indices of T}, to get T, ¥ we could interpret the stress tensor as

a linear transformation 7' that acts on the components of a vector u via (Tw)* = T}'u.

The WEC now simply becomes (u,Tu) > 0, where the angle brackets denote the inner
product with respect to the metric. Since T is a linear transformation from a vector space
to itself, it makes sense to talk of the eigenvalues and eigenvectors of 7. In particular,
if u is a time-like eigenvector which is normalized so that (u,u) = —1 and which belongs
to some eigenvalue A (not to be confused with the A parameter we had introduced in the

interpolating metric), then we have
(u, Tu) = Mu,u) = —A. (A.3)

Thus, a necessary condition for the WEC to hold is that the eigenvalues corresponding to

all time-like eigenvectors of T be non-positive.

Note that this isn’t a sufficient condition for the WEC to hold. To go further, let us first
note that 7' is self-adjoint:

u, Tv) = T utv” = (Tu,v).
"
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However, it does not follow from this property that 7" is diagonalizable and that its eigen-
values are necessarily real, since the inner product is indefinite in a Lorentzian metric. For
the metrics we are interested, we fortunately do not have to deal with this complication
because, it turns out that in all the cases we analyze, T' does turn out to be diagonalizable

with real eigenvalues. Accordingly, we restrict our discussion to this case below.

It then follows that there exists a vierbein {ug, u1,u2,us, us} consisting of the eigenvectors
of T, which is orthonormal in the sense that (uq,up) = nep. If we let Tu, = A\yuq, then our
claim is that the WEC is equivalent to the following statement: Ao < 0 and |Ag| + Ac > 0
for c =1,2,3,4.

To prove necessity, we note that we have already shown that Ay < 0. Now, for an arbitrary
time-like vector of the form v = Aug + Bu,, where ¢ can be 1, 2, 3 or 4, we have (v,v) =
—A? + B? < 0. By the WEC we have

(v, Tv) = |Ao| A% + \.B? > 0.
If we let ¢ = A2 — B2, the above can rewritten as
(|IXo| + Ae) B + €| Ao| > 0.

Since v is arbitrary, € can be an arbitrarily small positive real number. It follows that
Aol + Ae >0 for c=1,2,3,4.

To prove sufficiency, we note that a generic time-like vector v may be given by
v = Aug + Buy + Cug + Dusg + FEug.
where the coefficients are subject to the following
A? > B?+C? + D* + E°.
The conditions A\g < 0 and |Ag| + Ac > 0 for ¢ = 1,2, 3,4 hence guarantee that

(v, Tv) = |\o|A% + X1 B? + \oC? + \3D? + N\, E?
> |Xo|(B? + C? + D? + E?) + \{B? + \yC? + A\3D? + M\, E?
= (|Mo] + A1) B2 + (|ho] + A2)C? + (|Xo] + A3)D? + (| o] + M) E?
> 0.

In fact, we can go further and easily show this implies the null energy condition (which
states that (n,Tn) > 0 for all null vectors n everywhere) by following the same outline as

the proof above. We note that a generic null vector n may be given by

n = Aug + Bui + Cus + Dus + Fuy,
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where the coefficients are subject to the following
A?=DB?+C%+ D? + E2
The conditions A\g < 0 and |Ag| + Ac > 0 for ¢ = 1,2, 3,4 hence guarantee that

(n,Tn) = |Xo|A% + \{B% + \yC? + \3D? + + )\, E?
= Xo|(B? + C? + D? + E?) + M\ B? + \yC? + \3D? + N\, E?
= (|ho] + A1)B? + (|ho| + A2)C? + (|Xo] + A3)D? + (JAo| + \g) E?
>0,

which is the null energy condition (NEC). Thus, in terms of the eigenvalues, the NEC
is equivalent to the following statement: —Ag + A\, > 0 for ¢ = 1,2,3,4 where \g is the
eigenvalue corresponding to the time-like eigenvector and A. corresponds to any of the

space-like eigenvectors.

To summarize the above observations:

1. For the WEC, it suffices to have (i) Ao < 0 and (ii) [Ag| + Ac > 0 for ¢ = 1,2, 3,4.

2. For the NEC, it suffices to have —\g + A. > 0 for ¢ = 1,2,3,4, where \g is the
eigenvalue corresponding to the time-like eigenvector and A. corresponds to any of

the space-like eigenvectors.
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Appendices for Chapter 3:
Biancht 111 attractor in Gauged
Supergravity

B.1 Notations and conventions

In this section, we summarize our notations and conventions on tangent space and spinors.
We use greek indices for spacetime and roman for tangent space. Our conventions for the
flat tangent space metric is 1., = (—,+,+,+,+). The tangent space indices are denoted
by a,b=0,1,2,3,4.

The tangent space matrices satisfy the usual Clifford algebra

{ Yas W} = 2ngp -Antisymmetrization is done with the following convention,

Yaraz...an — V[alag...an] = % dePn Sign(U)VGU(l)Vao(g) v Vao(n) Ind=5 Only [, Yar Vab form
an independent set, other matrices are related by the general identity for d = 2k + 3,

_i—k+s(s—1) . . . .
LRt = Z(dfi;e‘““?“"‘syﬂsﬂ___“d .We also recollect that the spinors in five dimensions

satisfy the symplectic majorana condition

L= (e)14? = (¢")!C ,where C is the charge conjugation matrix which obeys C* = C~! =

-C.

Unlike the case in four dimensions, the SU(2) indices are not raised and lowered by complex
conjugation. Instead they are raised and lowered by the SU(2) covariant tensor with the
conventions £15 = £12 = 1. Note that the SU(2) indices are always raised or lowered in the
NW-SE direction

Ei:z’fijej‘ s ei:ejaji .

The covariant derivative acting on ¢; is with respect to the Lorentz covariant spin connection

wzb defined as
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Viu(w)e = Ouei + %wfjbfyab

B.2 Linearized Einstein equations

In this section, we provide the explicit form of the linearized equations that follow from
(3.81). We substitute the expressions for the attractor potential (3.62), the scalar fluc-
tuations (3.73), the terms from the stress energy tensor (3.76), (3.79) and the metric
fluctuations (3.82) into the linearized Einstein equation (3.81). We then contract it with

the vielbeins e to obtain the following equations. The ¢t equation is

PP — PRA 4 P2 + PR + PR + 1289 + 4(3B:% + 2)V + 48 F0s + 485 Ay

(B.1)
+ 128,32 + 68795 — 6B8:77}; + 687V + 68754 + 687755
(B.2)
Anl An) A~ ~ ~ ~Anl sl
+ Ve — P+ Vs + 4(Vz2 + Vg9) + Mgy + 72 = 0. (B.3)
The 77 equation is

P55 — P23g = P23 — PP — 3 — 458, + By + 1)3er + 48¢°Fas + 48 T4
(B.4)

— 4B, Fz5 + 21773 — 28077 — 4(Be — 1)BeAs — 2817755 + 4BtTas
(B.5)

= 2817755 + 4BiFgg — 2817725 + 4B T2z — 37F5s + 377
(B.6)
— AV + 2(Faz + Ygg) + Fz2) + 3055 + 3055 + 3775 = 0. (B.7)
The 2 equation is
26,2 — 1)(8Cs#™ + bAyg L 5 3 1. 3
267 - 1 ¢S i) _ 26 (3 + Fig + 3Taa + Fz2) — 57“((2515 + 1)
C

(B.8)
+ 28: (3 — Ve + Vg + Viz) + (i + Vi — Aoz + Vg + Vez)
(B.9)
+ i = Ara + Vg + 5z) — 6932 — Vg =0 (B.10)
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The gy equation is

16(26:% — 1)Cy?

+ 2(=28:2(Fsr + Yz + 39 + Az2) — Vas — 37gg) + 2(1 — 28:2)za

Pc
(B.11)
— 7((26¢ + DAs + 28: (Vi + Vha — Vi + Ves) + F(5rs + 5 + 5z
(B.12)
— gy + V22 + A+ Vas — Vig + Az) — 69¢ — 69 — 6732 — 6722 = 0.
(B.13)
The ZZ equation is
P2 (=A5) — P25 — PP — P20y + P25 — 1289 — 128795 — 48732 — 481> Y9y
(B.14)
— 126,325 — 6877 — 68177 — 6817755 — 68,7755 + 681775z — P33y
(B.15)
At Axl ~ ~ ~ A~ sl
= MV = "as — 4(Vaa + Vg + 2722) — Mgy + 7722 =0 (B.16)

In the above equations, the prime indicates derivative with respect to 7. We see that all
the double derivatives are multiplied by #2, while the single derivatives are multiplied by 7.
Now, the 2 and 9 equations contain the source term which goes like #2. It is then clear

that the metric fluctuations 7, all go like =

B.3 Coefficients of the linearized fluctuations

The various functions that appear in the coefficients (3.85) are

N} Be) + N2 (Br)

Fo(Br) = —64(B3° + 4)(26:° — 1)D1(5t) DT DG T D) (B.17)
Fi(By) = 64(8:° +4)(26:° — 1)D1 B +§i5§3 I gj((g:)) AR (B.18)
FalPn) = 8067 =V, (6J:;gliﬁgiﬁi\?iﬂgg<+ﬁ§§+(@4<ﬁt> | (B.20)
Fy() = —64(82 + 4) (262 — 1) N (8) + IV (5 (B.21)

Di(Be) + Da(Be) + D3(Be) + Da(Br)
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where,
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N} (Br) = 2726, + 80(£(B1) — 1)B* + A(f(Br) — 84)8;

NF(Br) = —AF(Be) +16(7F(B) + 33) 8 + 107 ,

N7 (Br) = 3048;" + 8(14f (Br) — 53)B,° + 4(5f (B1) + 84) B, .

N (Br) = 28F(B) +16(5F (B) — 33) 83" — 179 ,

N1(B;) = 492853,5 + 4(1000f(B;) + 4821) 8> — 4(53f(B;) — 924)5;
NZ(By) = 644f (B,) — 64(5f(By) — 33)B,° + 16(68£ (5,) + 1419)8," .
N2(B:) = —16(166f(B;) + 447)5;> + 671 ,

N (Br) = 49283,° + 4(1216 f () + 6009) 3> — 4(107f(By) + 3612)B; ,
Nj(Br) = —Af (Br) — 64(5f (8) — 33) 3" + 16(68 (1) + 1689)3," ,

N (By) = (21360 — 64f(B:))B:* + 7745

N2 (Br) = (2728," + 80(f(B) — DB +4(f(B) — 846y

N2(Br) = =4 (B) + 16(7f(B) + 33)B,° +107) ,

D1(B;) = —3302453,% — 8(3910f(B;) + 13839)53;> + 4(367f(B:) — 14288, ,
Dy (By) = —3276 £ (B;) + 256(25f (B:) + 99)5:7 — 128(58 f(8¢) + 1525) 5,5
D3(B:) = 192(147f(B) + 400)5;° — 32(1178f(B¢) + 8565)3;

Dy(Br) = 48(309f (B:) — 1045)8,* — 10445

f(B) =/ —21 43367 .

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)
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Appendices for Chapter 4:
The Shear Viscosity in Anisotropic

Phases

C.1 Numerical interpolation from the near horizon AdS; X
R x R to asymptotic AdSs,

Our action consists of gravity, a massless dilaton ¢ and a cosmological constant A, in 5
space time dimensions,

Shuik = ﬁ [dPz\/=g (R + 12A — %(8@5)2) Here 2x? = 167G is the gravitational coupling
(G is the Newton’s Constant in 5 dimensions) and we set A=1.

It is easy to show that this system admits an AdS5 solution with metric given by
ds? = | —u?dt? + %2 + u?(dx® + dy? + dz?)|,and the dilaton is kept constant.

We now show that starting with the near horizon geometry given by eq.(4.30), one can add a
suitable perturbation which grows in the UV such that the solution matches asymptotically
to AdSs metric as provided in eq.(C.1).

This perturbation is given as follows-

gt (u) = 2u? (1+0A(u)),

1
gra(u) = 20* (1 + 6A(u)) (C.1)
2
g(w) = & (1460 (w))
_
g::(u) = 22 (14 6D(w)
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Figure C.1: Log-log plot showing the numerical interpolation of near horizon AdS3 x R x R
to asymptotic AdSs , with p1 =1, po = 1.

with

d0A(u) = ay u”, 0C(u) = ca u”, 6D(u) = cg u” (C.2)

a1 = %(—5 +2VB) (a4 es), v =B — 1. (C.3)

The numerical analysis is carried out using NDSolve in mathematica. For the case p; =1,

po = 1 the suitably chosen values for co and cg are as follows
Co = 85, C3 = 85.

By adjusting the coefficients ¢, c3 to the above values one can ensure that the asymptotic

behaviour of the metric eq.(C.1) agrees with eq.(C.1) at large u, say u=100000 ;

The plots in Fig (C.1) show the metric components as a function of u. These plots were

obtained by numerical interpolation for the case py =1, po =1 and ¢co = 85,¢3 =85 .

C.2 Ratio of normalizable over non-normalizable mode near

boundary

Here we check that asymptotically the canonical momentum II goes to a constant indepen-

dent of u . To see this , we consider the action

Shulk = # S d>x\/—§ <I% + 12A> .we get the following solution for AdS5 (setting A=1).

ds? = (—u2dt2 + CZL; + u?dr? 4 udy?® + u2dz2> .The metric perturbations go like u2(1+%)
where (] is constant.
Hence, using eq.(4.92) and eq.(4.90) we find that

N(u) = —gzNW)2' = —552V=g79"9" 0u(Gt) = —5= V=g g™ 9" 0u(TF) Plugging
in the higher dimensional metric components from (C.2)we get II(u) = %Cl which is inde-
pendent of u. Thus asymptotically, the ratio of the normalizable to the non - normalizable

mode behaves like %C’l.
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C.3 Conductivity formula in terms of horizon quantities

In this appendix , we show the derivation of (4.96) following [147]. The electrical conduc-
tivity is defined in (4.93) as

IT(u,w)
o(u,w) = mbaw,wo- (C.4)
The real part can be written as
B IM(u,w) B M(u,w)Z(u, —w)
Re (U) = Re (in(u, w)) ‘u%oo,wﬂo = Re <in(u, w)Z(u’ _w) ‘u%oo,wﬁo
Im | T(w,w)Z (u, —w)
Cm I(u,w)Z(u, —w) | B |
- w72 (u) u—00,w—0 w72 (u) u—00,w—0"
(C.5)
Here we used the fact that Z(u,w) ~ Z(u) is real to leading order when w — 0.
We now proceed to show that!
d
—Im [II(u, w)Z (u, —w)] =0, (C.6)
du
This can be seen as follows
%Im (N(u)%Z(u,w)Z(u, —w)) =Im [% <N(u)diuZ(u,w)> Z(u, —w)
FN@) L Z ()W) (C)
u) 72 (u,w) - Z(u, . .
Using (4.89), r.h.s of above equation reduces to
Im [— M(u)Z(u,w)Z(u, —w) + N(u)iZ(u w)iZ(u —w)} (C.8)
) ) du ) du ) )

which is equal to zero since the quantity in the bracket is real. Thus Im [II(u,w)Z(u — w)]

can be evaluated at the horizon i.e. at u = uy,.

Demanding regularity at the future horizon , we can approximate the behaviour of Z(u,w)

as follows
Z ~ e~ Wt where r, is the tortoise coordinate,

re = [ /2 du.

gtt

I (u,w) = #ﬁ_w) = f#N(u)%Z(u,w) , hence Im [II(u, w)Z(u, —w)] behaves like a current .
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Using eq.(4.92) and

lim iZ(u,w) = —iw lim gﬂZ(u) + O(w?). (C.9)

u—up AU U—Up, gtt

we get (in the limit w — 0)

2
— ox (%) (C.10)

where oy is the conductivity evaluated at the horizon and its expression is given by,

1

o0 = 55
262924

(C.11)

U=Up

where we used isotropy along the spatial directions in the lower dimensional theory.
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Appendices for Chapter 6:
The Shear Viscosity in an Anisotropic

Unitary Fermi Gas

D.1 Ideal hydrodynamic modes

In this section we contrast the modes discussed in Sec. 5.3.1 with the breathing modes

discussed in Ref. [172] in normal fluids.

We start with the linearized continuity and Euler equations for a fluid with a polytropic
equation of state, which can be used to derive the following equation valid for ideal fluid

dynamics for the normal component [172],

2V
mEY = (V) (Vo)) ~ ¥ (v Vo(r)) - (D.1)

As shown in Ref. [172] breathing modes can be obtained by considering a scaling ansatz

v; = a;z;exp(iwt) (no sum over ). Substituting in Eq. D.1 one obtains an eigenequation

(2wj2» — w2) a; + fyw]z Z ar = 0. (D.2)
k

This is a simple linear equation of the form Ma = 0. Non-trivial solutions correspond to

det(M) = 0.
In the case of a trapping potential with axial symmetry, w; = ws = wp, w3z = Awp, we get
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w? = 2w and [184, 200, 298]

2
w? =w? {*y +1+ %)\2 (D.3)

i\/LZ2)2)\4+ (2 =3y =2)N + (v + 1)2}.

In the unitarity limit (v = 2/3) and for a very asymmetric trap, A — 0, the eigen-frequencies
are w? = 2w and w? = (10/3)w. The mode w? = (10/3)w? is a radial breathing mode with

a = (a,a,0) and the mode w? = 2w? corresponds to a radial quadrupole a = (a, —a, 0).

Here we consider a different class of modes, with the scaling form Eq. D.4 (since z and z are
exchanged, they are “twisted”). The eigen-equations are now given by Eq. D.5. It has two
solutions, w = 0 and w = , /w2 + wg. Hydrodynamic modes can be obtained by considering
an ansatz of the form

v=e“ay 24, x B) . (D.4)

Substituting Eq. D.4 in Eq. D.1 gives the simultaneous equations

2

z

) (D.5)
4

One mode of interest for us is the w = 0 mode since it has a velocity profile similar to that
we studied in Chapter 4. This is what we call the Elliptic mode. If w, = w,, the mode
looks like a rigid body rotation and can not exhibit viscous damping. For w, # w, however
we get a non-zero energy dissipation due to viscosity given by Eq. 5.47. The second mode

of interest for us is what we call the Scissor mode which is well known in literature.

D.2 Anisotropic viscosities in the relaxation time approxi-

mation

In this section, we compute the anisotropic shear viscosities associated with the motion of a
weakly interacting Fermi gas in the presence of an external potential in the relaxation time
approximation [177]. For this section we explicitly keep i and ¢ in the expressions to ease

comparisons with existing literature.

The Boltzmann equation in the relaxation time approximation is

of (z,p) df (z,p) _Of

Va

where f is the distribution function, and 7 is the effective relaxation time.
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In equilibrium, the distribution function of occupied states for a weakly interacting gas is
given by the Fermi-Dirac distribution function fo(z,p) = 1/{exp[(e(p)—p-V () —pn)/T(x)]+
1}, where €, p represent electron energy and momentum respectively. If a slowly varying
local fluid velocity V,, (o = 1, 2, 3) is set up in the system, the electron distribution

function is modified. To the lowest order in the derivatives of V,,, we can write

f(p) = fole) +0f(p), (D.7)

where the non-equilibrium correction 6 f(p) is of the form where

5(p) = — (%—fj) 0apsCaprs(WVis (D)

where Cyp4s is a 4-rank tensor, p represents the electron chemical potential, v, = de/dp,
denotes the electron velocity, and Vg is proportional to the derivative of the macroscopic

fluid velocity defined as follows

1 /0Vs OV
= (=47 D.
Vag 2 <8x5 * Bxa> ’ (D-9)

Similarly, in the presence of a slowly varying external potential ¢, Eq. D.7 holds with

35) =~ (52 ) vaDir (1070 (D.10)

Here we consider both 0,¢ and V,z non-zero, and hence 0f is the sum of Eq. D.8 and
Eq. D.10. After canceling out the terms proportional to D (which are related to conduc-
tivity) the linearized Boltzmann equation within the relaxation time approximation of the

collision integral takes the form

dfo Vo 1 _of oS f

in analogy with Eq. 2 of [177] for the magnetic field case,

dfo oV, 1 of e o f
Vo _ 2 V)= 4° B) =L . D.12
<6u> (Uozpﬁ 63:5 3vozpozv V) - + - (v x ) ap ( )

For ease of calculation, let us decompose the V¢ term on the R.H.S of Boltzmann equation

Vo =p(p-Vo) + (Vo —p(p-Vo)) = p(p-Vo) +p x (Vo x p) (D.13)

In what follows, it is useful to define a basis & for the 8 dimensional non-commutative
algebra for the 4-rank tensor C.s,, built out of the Kroenecker delta, Levi-civita and the

components of the unit vector along the direction V¢ x p denoted by b.
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The basis ] — & is defined as

E10prs = o065 + 0asOpy

€905 = 0apdas

gil”aw - 60‘?’5557 + i’ai’vfsﬁé + 6avi’ﬁi’6 + 50«53537
€4 ps = Oapbabs

&, = bsbsds (D.14)
€655 = babpbybs
€15 = OayD3s + bardps + Gasbpy + basdpy
5§aw babs b5 +b bﬁ(sb + bmbﬁbé + bm;bﬁb

@0

Let us now simplify the L.H.S of Eq. D.11

dfo OVQ 1
() oo ons

D1
dfo v 2 (D-15)
8/1' VaPp ;w flaﬁw - §§2agw

Similarly the R.H.S of Eq. D.11 can be simplified as follows-

5f asf  of . 5y, 901
R.H.S = —? + ( (b)oc 5(m)pa = _7 + ( ( v(b) +p X (V(ﬁ X p))aa(m)pa

= —6f (% B (%)) — (P %X (VX D))o VaCanrys Vs (%_f)

3>

Taking 7 to the L.H.S we get

it = =57 (1= (2X2) ) (5 x (70 % ) 0aCamnsbis (22

O

R D.17

—vapsVi [ 20) (s (1= 72Y2) _ T b o
= VaPpVrs 6,u afrs - T _;eeﬁ'y alrs

p

where b denotes the magnitude of the vector V¢ x p.

Let a = <1 — rBVe Zd’) and z = %’. If we denote the angle between V¢ and p as 0, then

a=1-— I‘f’ cosf and x = Zd’sinﬁ.

Hence we get

dfo 5
TLH.S = vapsVys <%> (acaﬁrs _ xeemva&grs) (D.18)
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Symmetrizing in « and 3, we get

CO[ s C ars I; Ca rs [6% I; C rs

TL.H.S = vapgVis <%> <a pra + Cp _ 3880 ab + €0ay07C0 )
ou 2 2

(D.19)

1 0
= Uapﬁ‘/rsic'yérs (3—{?> (@00~ 035 + a0g~y0as + T(bgsdya + basdyg))

Subtracting the trace in af, we get

1 0 2
T7L.H.S = Uapgvrsicfygrs <a—{f> ((15&7555 + adgdas — gaé,ygéag + (03560 + basbyp 4 baydss + bayOas

o 1 8f0 / 2 / /
= UapﬁvrsQC’Y(grs ( EN > (afl 30,52 + 1{7 s

Now combining L.H.S and R.H.S we finally get

dfo 1/ 2 B 1 dfo , 2, ,
T <%> UaPBV;w§ <§1a5w - §§2a[3uu> = Uozpﬁ‘/T’8§C'y5rs (5—M> <a§1 - §a§2 + x&7 i

! 2 / 2
=T (flaﬁ#u - §§2QBW> = (a& - ga% + x§§> Cropuw

afyd

. . / .
Writing C5, = (Z§:1 Ci&; -y 5;“/) we can now solve for the coefficients

at 7(a? — 22?) 3arz? 2722
Cl = 755 7 5y 0= —F—FF5 5, C3 = Cy =Cp — —————————
Y7002 + 422) P 3a(a® + 422) ° 7 2(a® + 22)(a® + 422)" T 7 a(a? + 4z2)’
(g TT 313
CG — s C7 =57, CS e
a(a? + x2)(a? + 422) 2(a? + 4x?) 2(a? + z?)(a® + 422)
(D.20)
The viscosity tensor is given as
p of i
0 /
NaBab = — (27Th)3 /ds(m)p (%) VaPpU~Ps (ZZ; Cifz‘y&zb) . (D'Ql)

It is convenient to decompose the tensor 7,544 in to 5 irreducible components corresponding

to 5 tensors M;agqp (i = 0,--4) in a system with a special direction E = V¢/|V¢| and
reflection symmetry.
4

Napys = ZniMiaﬁ'y5 . (D22)
=0
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The tensors M; are

0—356—54—554-5—32

My =& — 86— & +8+ &+ &

My = &3 — 486 (D.23)
M3 = —%(57 —&3)
My = —&3

where the basis &1 — &g is defined as

§1lapys = Oay0ps + 0aspy

§204y5 = 0apOrs

€305 = BaFspy + EaEy0ss + 6oy EsEs + 6as EgE,
Eaprs = 50:BE7E6
$aprs = EﬁEé‘Swé

€605 = LalpEy By

§Tass = Oa Eﬁa + Eav%é + 5046Eﬁv + Eaé%

(D.24)

where E is the unit vector along the gradient of the potential.

The components 7; can be extracted by projecting onto M; and performing the three

dimensional momentum integral in Eq. D.21. For arbitrarily large ¢| the momentum

integrals can not be performed analytically in general. However, we are interested in
h%lﬂ < 1, where the corrections to isotropy just start to become important. Then one

can expand in |[TV¢| and perform the angular integrals to obtain,

31,

no =nO0)[1 -7 (V¢) O((rve)*)
B 13 , Y
m=nO)[L - —7 (V@ O((rVe))] (D.25)
=) - = 2<v¢> O(r4)")]
n3 = 0’ N4 = 0 )
where . _ o/
n@%:/pdpﬁﬁggﬁ<5;> (D.26)

is the shear viscosity in the absence of V¢, and I; and I, are.

11:1/ Sdp (%ﬁ),h /’%m<%f> (D.27)
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In particular, in the degenerate limit (7" < p)

(%) =l -, D29

1/3 as before.

and % ~ é where kr = (372n)
We can write Eq. D.25 in the form Eq. 5.101 by relating the relaxation time 7 to the mean

free path A
T T Ep A

e N A D.2
kr krp Erp 2Ep (D-29)
where we have used Er/kr = vp/2, and Top = X is the mean free path.
This gives,
31 (V) .
no = n(0)[1 — s 2 +O((7Ve)?)]
13 \*(Vg)? 4
=n0)[l - =————— +0O((7V
m =n0)[1 - 52 2 ((TV¢)?)] (D.30)
11 \*(Vg)? 4
n2 = n(0)[1 — w2 +0((1V9)?)]
N3 = 07 N4 = 0 )
where .
(2mp)Er
p— D. 1
n0) = ST (D31)

in the degenerate limit.

Eq. D.30 gives an explicit result of the calculation in the relaxation time approximation
which shows that the correction to the viscosity has the form Eq. 5.101. Hearteningly, the
sign of c(;) is negative, meaning that the viscosity is reduced due to the external potential, a
feature found is strongly coupled theories where a quasi-particle description is not possible

and hence the Boltzmann transport equation can not be used to calculate the viscosity.

Interestingly, in the degenerate limit it is possible to do the momentum integrals analytically

for general V¢. Using (%—ﬁ)) = 5(% — ), we get (here x = \/v% )

(2mp)sT

0 :96mh3ﬂ'2x5\/3 241

— 8v/3(22 + 1 (52" + 182% + 9) tanh ' (z)

— 24 2/322 + 1 (522 + 3) — 6 (82" + 112% + 3) (D.32)

m (735 A3 ¥ 1) 11
T (4\/33:2 + 1+ 7:6) +1

log
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(2mp)37

= 96mh3m2x5y/3 22 + 1
+4v/322 +1 (2" - 62” - 3) tanh ™" (2) — (3 + 4o + 927) (D.33)

T <7x — 432 + 1) +1
. <4\/3m2 T14 7x) 41

— 4z (2% +3) V322 + 1

log

_ (2mp)iT

T S mIA a3 22 1 1

8xv/3z2 + 1 (42* + 3)

2
+4v/322 + 1 (2" + 62° + 3) tanh ™! ( . i 1> + (6 + 132* + 212?)
X

. (735 43Tt 1) +1 (D.34)
log

T (4\/3:62 +1+ 756) +1
n3 =0
=0

Expanding in small z we obtain,

5 5
(2mp)2T 3172V ¢? V¢ 4 (2mp)2T 1372V ¢?
= 1-—+0 = |1-——+0
= I5e2hem 42mp + Ol 2m,u) ). m 15m2h3m 14mpy +0ll
5
(2mp)2T 1172V ¢? V¢ 4
= 1-——+0
= 52 m 14dmp + Ol 2m,u) )

773:0, ?74:0.
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