
Anisotropic Black Branes, Shear Viscosity and

possible experimental implications

A thesis submitted to

Tata Institute of Fundamental Research, Mumbai, India

for the degree of

Doctor of Philosophy in Physics

By

Rickmoy Samanta

Department of Theoretical Physics

Tata Institute of Fundamental Research

Mumbai - 400 005, India

July 2017





Declaration

This thesis is a presentation of my original research work. Wherever contribu-

tions of others are involved, every effort is made to indicate this clearly, with

due reference to the literature, and acknowledgement of collaborative research

and discussions.

The work was done under the guidance of Professor Sandip P Trivedi, at the

Tata Institute of Fundamental Research, Mumbai.

(Rickmoy Samanta)

In my capacity as the supervisor of the candidate’s thesis, I certify that the

above statements are true to the best of my knowledge.

(Sandip P Trivedi)





Acknowledgments

First and foremost, I wish to express my deep gratitude and respect for my advisor, Prof.

Sandip Trivedi. I have always tried my best to learn from his deep love for science, his great

passion for physics and his wonderful insights in physics problems. All these years of my life

in TIFR, he has been a constant source of support and encouragement. I consider myself

very fortunate to see him in action in-front of the blackboard and making difficult concepts

appear simple and beautiful. It was so much fun to discuss physics with him. He guided me

with tremendous care and was always there for me whenever I got stuck in any problem.

Even outside academics, he was a wonderful guide and a huge source of motivation and

support.

I also take this opportunity to thank Prof. Rishi Sharma for his untiring efforts to help

me in my projects. Along with my guide, he has always been there for me, guiding me

through calculations and helping me out whenever I am stuck. He was also a huge source

of inspiration for me.

My deep respect and gratitude to Prof. Monoranjan Guchait, for introducing me to the

world of collider physics. Even though I was from a different department, he provided me

a wonderful opportunity to learn about the exciting physics involving the LHC and sharing

his experience about the experiments in progress in CERN, Geneva.

Right from the day I joined TIFR, it has been such a pleasure to learn physics from Prof.

Shiraz Minwalla. I am so fortunate to have graduate courses in Classical mechanics, General

Relativity and String theory from Shiraz. His enormous amount of energy and enthusiasm,

his deep passion for physics always motivated me to work hard and enjoy science. Listening

to him all these years, be it in the classroom, or near the sea, or during West Canteen lunch

sessions, it has been a dream come true for me.

I also thank the Subject Board of Physics for providing me the opportunity to learn physics

from some wonderful teachers, especially Shiraz Minwalla, Gautam Mandal, Amol Dighe,

Sreerup Raychaudhuri, Sunil Mukhi, H.M Antia, Avinash Dhar and Kedar Damle. I also

wish to thank Shankarnarayanan, Jaikumar Radhakrishnan and Pranab Sen for some nice

courses in mathematics and computer science. Needless to say, my thesis owes a lot to all

the professors I interacted with in TIFR, their wonderful teaching and untiring efforts.

I am also heavily indebted to Mrs Ether Maji, who was my maths teacher during my

school days . Lots of thanks to my school friends from Nava Nalanda, Tamoghna Biswas

and Shubhayu Chatterjee, for their constant support and inspiration and motivating me to



choose basic science research as a career.

I am grateful to Prof. Shamit Kachru, Prof. Prasanta Tripathy and my seniors Nilay

Kundu, Karthik Inbasekar, Sachin Jain and Abhishek Iyer for wonderful collaboration and

insights. I consider myself very fortunate to come across Arpan Saha, a talented project

student from IIT Mumbai with whom I had endless discussions on differential geometry and

physics in general. He also turned out to be a very valuable friend for the rest of my life.

This thesis also owes a lot to my dear friend Joe Philip Ninan, who is always by my side

right from the coursework days in TIFR till today.

It was great to find some amazing friends in DTP TIFR, who were always there not only

for physics discussions, but also made my life interesting in many ways- Debjyoti, Mangesh,

Nilakash, Ishan, Amit, Harshant, Prathyush, Geet, Shubhajit, Ritam, Ronak, Pranjal,

Yogesh, Ashish, Vishal, Lavneet, Anurag, Disha, Sarbojaya, Sarath, Sounak, Ahana, Tousik

and others in the DTP students room. I am also indebted to my friends outside DTP,

specially Atreyee, Nairit, Soureek, Sanmay, Neha, Randhir, Krishnendu, Nihit, Vineeth,

Sagnik, Devika, Shalini, Arideep, Sayani, Charanya, Shuddhodan, Sreedhar, Lovy, Divyum

and many others. I am also very thankful to come across some wonderful students of

IIT Mumbai, specially Sarthak, Suryateja, Gowri, Soorya, Karthik, Srinath, Meera, Bodhi,

Shruti, Sankeerth and Prateek.

My deep gratitude to Kapil for computer support and Mr. Raju, Mr. Pawar, Mr. Girish

and others in DTP office for their constant support regarding official matters during my

PhD. A big thank you to the staff at the Journal Section Library, West, East Canteens and

Jagdish. Thanks to Ruchi Gandhi for the weekend visits to some wonderful locations in

Mumbai.

Finally, I wish to thank my parents, my uncles and aunts, my brothers and sisters for their

unconditional love and support. I have no words to express how deeply indebted I am to

my dear mother, her endless sacrifices and constant fight against all odds, so that I receive

good education and one day serve my country. It is in her endless sacrifice and love that I

discover again and again the greatness of my nation. This thesis is thus dedicated to my

mother, with love, respect and admiration.

vi



Collaborators

This thesis is based on work done in collaboration with several people.

• The work presented in chapter 2 was done in collaboration with Shamit Kachru,

Nilay Kundu, Arpan Saha and Sandip P. Trivedi and is based on the publication that

appeared in print as JHEP 1403 (2014) 074.

• The work presented in chapter 3 was done in collaboration with Karthik Inbasekar

and is based on the publication that appeared in print as JHEP 1408 (2014) 055.

• The work presented in chapter 4 was done in collaboration with Sachin Jain and

Sandip P. Trivedi and is based on the publication that appeared in print as JHEP

1510 (2015) 028.

• The work presented in chapter 5 was done in collaboration with Sandip P. Trivedi

and Rishi Sharma and is published in Phys. Rev. A 96, 053601 (2017).

• The work presented in chapter 6 was done in collaboration with Monoranjan Guchait

and Abhishek Iyer and is based on the publication that appeared in print as Phys.Rev.D,

vol.93, p.015018 (2016).

• Thanks to D. D. Ofengeim and in particular D. G. Yakovlev for sharing their notes on

the calculation of the various components of viscosities in the presence of the magnetic

field.



To

My mother India, with love and admiration



Synopsis

Introduction

The lessons from string theory, in particular the AdS/CFT correspondence suggest that

interesting connections exist between the study of gravity and the study of strongly coupled

field theories. Motivated by the large number of interesting phases seen in nature, new

brane solutions have been discovered in gravity. The earliest works mostly focused on

horizons with translational and rotational symmetry, but more recently examples of black

brane horizons dual to field theories with further reduced space-time symmetries have been

discussed, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Extremal branes are particularly interesting, since they correspond to ground states of

the dual field theory in the presence of a chemical potential or doping. Their near-horizon

geometries often exhibit a type of attractor behavior, and as a result, are quite universal. Of

particular interest for this thesis are the brane solutions in classical gravity which correspond

to phases of matter which are homogeneous but not isotropic. It was shown (see [4, 5]) that

in 4 + 1 dimensions, such brane solutions can be classified using the Bianchi classification

developed earlier for studying homogeneous cosmologies. These near-horizon solutions were

given the name “Bianchi attractors”.

Bianchi attractors have a non-trivial geometry along the field theory directions. It is

therefore worth asking whether these attractors can arise in situations where the dual field

theory lives in flat space, as opposed to the more exotic scenario where the UV field theory

itself must be placed in a non-trivial geometry of the appropriate Bianchi Type. This

question maps to constructing interpolating extremal black brane solutions that asymptote

to Anti-De Sitter space (AdS) and asking whether the non-normalizable deformations for the

metric can be asymptotically turned off near the AdS boundary which lies at the ultraviolet

end.

Here, in the first half of the thesis, we take a partial step towards finding such interpolating

solutions for some of the Bianchi classes. We start with a particular smoothly varying

metric which interpolates between the near-horizon region and Lifshitz spacetime. The

metric is chosen so that the non-normalizable deformations of the metric near the Lifshitz

boundary are turned off. While we do not obtain these metrics as solutions of Einstein
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gravity coupled to a specific simple matter field theory, we demonstrate that if they were

to arise as solutions, the required matter would satisfy the weak energy condition. In this

way, we establish that there is no fundamental barrier, at least at the level of reasonable

energy conditions, to having such an interpolating solution. This establishes the first main

result of this thesis.

In the next part of the thesis, we turn to a study of transport properties of such anisotropic

blackbranes, with a view towards strongly coupled field theories in the presence of an

anisotropic driving force. The calculation of the transport properties of strongly coupled

quantum theories is a challenging problem of interest to theorists working on a wide range of

systems including ultra-cold Fermi gases at unitarity [16, 17], heavy ion collisions [16, 18],

and neutron stars [19]. At strong coupling, perturbative expansions fail to give reliable

results. Surprisingly, using AdS/CFT a large subsector of strongly interacting quantum

field theories in d dimensions in some limits can be related to weakly coupled theories of

gravity (called their dual) in (d + 1) dimensions. This correspondence [20] allows us to

compute transport properties of such theories, even at strong coupling using the underlying

gravity description.

The shear viscosity tensor for many interesting systems is often anisotropic. The possibility

that we shall explore in detail in this thesis, is that an externally applied field can pick

a particular direction and give rise to anisotropies in the shear viscosity. This possibility

has been explored extensively for the case of weakly coupled theories in the presence of a

background magnetic field (See Ref. [21] for a general discussion, Ref. [22] in the context

of heavy ion collisions and Ref. [23] for applications to neutron stars). On the other hand,

the behavior of strongly coupled theories in the presence of an external field is less well

explored. With this in mind, anisotropic gravitational backgrounds have been recently

studied using the AdS/CFT correspondence, see [24, 25, 26, 27, 28, 29, 30, 31] and the

behavior of the viscosity in some of these anisotropic phases has also been analyzed, see

[32, 33] and [6, 34, 35, 36, 37, 38].

The results of Ref. [36] and Ref. [39] indicate that one may obtain parametric violations

of the KSS bound (η/s ≥ 1/4π) in such anisotropic scenarios. This feature arises in a

wide variety of examples considered and seems to be quite general. In particular, it was

found that as long as one can ensure that the rotational invariance is broken by a spatially

constant driving force, by increasing the value of the strength of the driving force, compared

to the temperature, the ratio for appropriate components of the shear viscosity to entropy

density can be made arbitrarily small; in particular violating the KSS bound. In particular,

we find a general formula for the shear viscosity over the entropy density in terms of the

ratio of metric components evaluated at the horizon, which in anisotropic scenarios need

not be the same and thus can lead to a parametric violation of the bound proposed by

Kovtun, Son and Starinets. ( η/s ≥ 1
4π ). Using techniques of Kaluza Klein reduction, we

give a proof of this general formula for all situations where the force breaking isotropy is

x



spatially constant and there is some residual Lorentz symmetry left in the boundary theory

after breaking isotropy. This establishes the second important result of this thesis.

If the phenomenon of small shear viscosity components in presence of anisotropy also carries

over to the unitary Fermi gases, it may be possible to measure these small viscosities in

experiments with trapped ultra-cold Fermi gases. For this purpose, it is helpful to consider

traps which share the essential features of the systems in Ref. [36, 39]. The goal of this part

of the thesis is to give a concrete proposal for the trap geometry and parameters where this

effect is likely to be seen.

We now present the main results described above in more details .

Interpolation of Bianchi attractors to Lifshitz and AdS space-

times

( With Shamit Kachru, Nilay Kundu, Arpan Saha and Sandip Trivedi )

As we mentioned in the introduction, the interpolating metrics we considered in general

have the form

ds2 = −gtt(r)dt2 + grr(r)dr
2 +

∑

i,j=1,2,3

gij(r, x
i)dxidxj . (1)

In the Bianchi attractor region which occurs in the deep IR, for r → −∞, the metric takes

the form,

ds2B = −e2βtrdt2 + dr2 +
∑

i=1,2,3

e2βir(ωi)2, (2)

where ωi are one-forms invariant under the Bianchi symmetries generated by the Killing

fields ξi, i = 1, 2, 3 The commutation relations of the Killing vectors

[ξi, ξj] = Ckijξk (3)

give rise to the corresponding Bianchi algebra.

In the far UV on the other hand, which occurs for r → ∞, the metric becomes of Lifshitz

form,

ds2L = −e2β̃trdt2 + dr2 + e2β̃r
∑

i=1,2,3

dx2i . (4)

Here for simplicity, we only consider the case where all the spatial directions have the same

scaling exponent, β̃, more generally this exponent can be different for the different spatial

directions. Also, to avoid unnecessary complications we take the exponent in the time
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direction β̃t in the Lifshitz region to satisfy the condition

β̃t = βt, (5)

where βt is the value for the exponent in the Bianchi attractor region, eq.(2). The metric

eq.(4) then becomes

ds2L = −e2βtrdt2 + dr2 + e2β̃r
∑

i=1,2,3

(dxi)2. (6)

The metric which interpolates between these two regions is taken to have the form

ds2 =

(

1− tanhσr

2

)

ds2B +

(

1 + tanhσr

2

)

ds2L, (7)

where ds2B and ds2L are defined in eq.(2) and eq.(4) respectively. σ is a positive constant

which characterizes how rapid or gradual the interpolation is. One can show that as long as

σ is sufficiently big the metric becomes of the Bianchi attractor form as r → −∞. Also, for

sufficiently large σ the metric becomes of Lifshitz type as r → ∞. More correctly, for this

latter statement to be true the limit r → ∞ must be taken keeping the spatial coordinates

xi, i = 1, 2, 3 fixed.

Classes of such smooth metrics which interpolate from such Bianchi attractor geometries

(homogenous anisotropic blackbranes) of Types II, III, VI and IX in the IR to Lifshitz or

AdS2 × S3 geometries in the UV were thus constructed. It was shown that the matter

sector stress-energy required to support these geometries (via the Einstein equations) does

satisfy the weak and therefore also the null energy conditions. Since Lifshitz or AdS2 × S3

geometries can in turn be connected to AdS5 spacetime, it is thus established that there is

no barrier, at least at the level of the energy conditions, for solutions to arise connecting

these Bianchi attractor geometries to AdS5 spacetime. The asymptotic AdS5 spacetime has

no non-normalizable metric deformation turned on, which suggests that furthermore, the

Bianchi attractor geometries can be the IR geometries dual to field theories living in flat

space, with the breaking of symmetries being either spontaneous or due to sources for other

fields.

Using Raychaudhuri’s equation for a family of radially outgoing null geodesics emanating

from a 3-dimensional submanifold spanned by the xi coordinates for any fixed r, t, a C-

function was also found monotonically decreasing from the UV to the IR, given by

C =

( √
gtt

(∂r lnA)A1/3

)3

. (8)

where A denotes the area element of the Bianchi hypersurface spanned by the xi coordi-

xii



nates for any constant r, t, provided the matter sourcing the geometry obeys null energy

conditions. For a Bianchi attractor with exponents βt, βi, C (Eq. 2) becomes

C ∝
(

e(βt−β̄)r

3β̄

)3

, (9)

where

β̄ =
1

3

∑

i

βi. (10)

The flows we consider include interpolations between two AdS spacetimes which at interme-

diate values of r can break not only Lorentz invariance but also spatial rotational invariance

and translational invariance. As long as the UV and IR geometries are AdS, our results

imply that the IR central charge must be smaller than the UV one. Our results therefore lead

to a generalization of the holographic C-theorem for flows between conformally invariant

theories which can also break boost, rotational and translational symmetries. This is in

contrast to much of the discussion in the literature so far, which has considered only Lorentz

invariant flows ([40]).

Bianchi attractors in Gauged Supergravity

( With Karthik Inbasekar )

In the next part of the thesis we explore the embedding of Bianchi attractors inN = 2,D = 5

Gauged supergravity. A stable Bianchi III attractor solution was found in N = 2, d =

5 gauged supergravity coupled to a single vector multiplet and a gauging of the U(1)R

symmetry. The gravity multiplet consists of two gravitinos ψiµ, i = 1, 2, and a graviphoton.

The vector multiplet consists of a vector Aµ, a real scalar φ and the gaugini λi. The vector

in the vector multiplet and the graviphoton are collectively represented by AIµ, I = 0, 1.

The scalars in the theory parametrize a very special manifold described by the cubic surface

N ≡ CIJKh
IhJhk = 1 , hI ≡ hI(φ) . (11)

The difference in the gauged theory is the presence of a scalar potential. The process of

gauging converts some of the global symmetries of the Lagrangian into local symmetries.

One of the global symmetries enjoyed by the fermions in a N = 2 theory is the SU(2)R

symmetry. We considered the gauging of the abelian U(1)R ⊂ SU(2)R. The R symmetry

is gauged by replacing the usual Lorentz covariant derivative acting on the fermions with

U(1)R gauge covariant derivative as follows

∇µλ
i → ∇µλ

i + gRAµ(U(1)R)δ
ijλj ,∇µψ

i
ν → ∇µψ

i
ν + gRAµ(U(1)R)δ

ijψνj .

gR is the U(1)R gauge coupling constant. The U(1)R gauge field is a linear combination of

xiii
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the gauge fields in the theory

Aµ(U(1)R) = VIA
I
µ , (12)

where the parameters VI ∈ R are free.1

The U(1)R covariantization breaks the supersymmetry and therefore compensating terms

are added to the Lagrangian for supersymmetric closure . These terms result in the form

of a potential for the scalar fields,

V(φ) = −2g2RV1

[

2
√
2V0
φ

+ φ2V1

]

. (13)

Generalised attractors are defined as solutions to equations of motion that reduce to alge-

braic equations when all the fields and Riemann tensor components are constants in tangent

space

φ = const , AIa = const , c c
ab = const , (14)

where a = 0, 1, . . . , 4, are tangent space indices. The c c
ab , referred to as anholonomy

coefficients are structure constants that appear in the Lie bracket of the vielbeins

[ea, eb] = c c
ab ec , ea ≡ eµa∂µ . (15)

A new class of Bianchi type III attractor solution in this U(1)R gauged supergravity were

constructed. The Bianchi type III solution found is as follows

ds2 = −r̂2βtdt̂2 + dr̂2

r̂2
+ (ω3)2 + (ω1)2 + r̂2β2(ω2)2 ,

A3 =

√

−1 + 2β2t
φ2c

, φc = 4
√
2g2RV0V1,

β2 = βt, βt =
1

2

√

1 + 128g6RV
2
0 V

4
1 , β2t >

7

8
. (16)

where the one forms ωi

ω1 = e−x̂dŷ , ω2 = dẑ , ω3 = dx̂ , (17)

are invariant under the Bianchi type III homogeneous symmetry. The Hessian of the effective

potential evaluated on this solution has a positive eigenvalue suggesting that it is a stable

attractor. We next investigated the stability of the Bianchi type III solution in gauged

supergravity by studying the linearized fluctuations of the gauge field, scalar field, metric

about their attractor values and it was found that all the fluctuations are well behaved

as one approaches the horizon. We studied the Killing spinor equations of N = 2, U(1)R

gauged supergravity with the background Bianchi type III solution. However, we found

that the naive radial spinor which gives supersymmetric Bianchi I spaces such as AdS and

1When the gauging of R symmetry is accompanied by gauging of a non-abelian symmetry group K of
the scalar manifold, the VI are constrained by fIJKVI = 0, where fIJK are structure constants of K.

xiv



Lifshitz fails for the Type III case. This suggests that the stable Type III solution we have

constructed may be a non-supersymmetric attractor ([41] )

The shear viscosity in anisotropic phases

( With Sachin Jain and Sandip Trivedi )

In the second half of the thesis, we continue studying anisotropic blackbrane solutions in a

wide variety of examples where the breaking of isotropy is due to an externally applied

force which is translationally invariant. We first review a simple system discussed in

Ref. [36] consisting of a linearly varying massless dilaton minimally coupled to gravity

via the Lagrangian

S =
1

16πG

∫

d5x
√
g [R+ 12Λ− 1

2
∂µφ∂

µφ] , (18)

where G is Newton’s constant in 5 dimensions and Λ is a cosmological constant. The

boundary theory in the absence of anisotropy is a 3+ 1 dimensional conformal field theory.

The dilaton field in the background solution here has the profile

φ = ρz . (19)

Clearly this choice of the background singles out the z direction, breaking isotropy. In the

presence of the dilaton the conservation equations for the stress tensor get modified to be,

∂µT
µν = 〈O〉∂νφ , (20)

where O is the operator dual to the field φ. The right hand side arises because the varying

dilaton results in a driving force on the system. We see that a linear profile results in a

constant value for ∂νφ and thus a constant driving force. At zero temperature the near

horizon solution was found to be AdS4 ×R,

ds2 = −4

3
u2dt2 +

du2

4
3u

2
+

4

3
u2(dx2 + dy2) +

ρ2

8
dz2. (21)

At small temperature, T ≪ ρ, the geometry is that of a Schwarzschild black brane in

AdS4 ×R

− 4

3
u2(1− π2T 2

u2
)dt2 +

1
4
3u

2(1− T 2π2

u2
)
du2 +

4

3
u2(dx2 + dy2) +

ρ2

8
dz2.

We see in eq.(21) that the metric component gzz becomes constant due to the extra stress

energy provided by the linearly varying dilaton. The AdS4 ×R solution is in fact an exact

solution to the equations of motion.
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The behavior of shear viscosity components ηxz = ηyz ≡ η⊥ ( which are spin 1 w.r.t this

surviving Lorentz symmetry) was studied in the example of Ref. [36] for two cases — one

in the low anisotropy regime and the other in the high anisotropy regime. The results are

as follows:

1. Low anisotropy regime (ρ/T ≪ 1):

η⊥
s

=
1

4π
− ρ2 log 2

16π3T 2
+

(6− π2 + 54(log 2)2)ρ4

2304π5T 4
+O

[(

ρ

T

)6]

. (22)

We see that a small anisotropy at order (ρ/T )2 already reduces this component of the

viscosity and makes it smaller than the KSS bound. In the limit of zero anisotropy,

we recover the KSS bound
η⊥
s

→ 1

4π
. (23)

We also note that the driving force in the conservation equation for the stress tensor

(Eq. 20) is proportional to ∇φ ∼ ρ (Eq. 19) and the analogue of the mean free path

is T. Thus the corrections go like (∇φ)2
T 2 .

2. High anisotropy regime (ρ/T ≫ 1):

η⊥
s

=
8πT 2

3ρ2
. (24)

We see that in this limit the ratio can be made arbitrarily small, with η⊥
s → 0, as

T → 0 keeping ρ fixed.

In contrast the ηxyxy component (which couples to a spin 2 metric perturbation) was found

to be unchanged from its value in the isotropic case,

ηxyxy =
1

4π
(25)

and thus continues to meet the KSS bound.

In the work [39] we study many other examples where anisotropic phases arise and show

that in all of them components of the viscosity can become parametrically small, in units

of the entropy density, when the anisotropy becomes sufficiently large compared to the

temperature. Depending on the example, the factor of T 2 in eq.(24) can be replaced by

some other positive power of T . A common feature of all our examples is that the breaking of

anisotropy is due to an externally applied force which is translationally invariant. Another

common feature in our examples is that some residual Lorentz symmetry survives, at zero

temperature, after incorporating the breaking of rotational invariance. Fluid mechanics then

corresponds to the dynamics of the goldstone modes associated with the boost symmetries

xvi



of this Lorentz group which are broken at finite temperature.

In the work [39] we give a proof, based on a Kaluza Klein decomposition of modes, which

shows quite generally that in all situations sharing these features, appropriate components of

the viscosity tensor become parametrically small. For a case with a residual AdSd+1 factor

in the metric, the basic idea behind the general analysis will be to consider a dimensionally

reduced description, starting from the original D + 1 dimensional theory and going down

to the AdSd+1 space-time. The off diagonal components of the metric, whose perturbations

carry spin 1 and which are related to the viscosity components of interest, will give rise

to gauge fields in the dimensionally reduced theory. By studying the conductivity of these

gauge fields, which can be related easily to the spin 1 viscosity components we derive

the following general result - Let z be a spatial direction in the boundary theory along

which there is anisotropy and x be a spatial direction along which the boost symmetry is

left unbroken, then we show that the viscosity component ηxz, which couples to the hxz

component of the metric perturbation, satisfies the relation,

ηxz
s

=
1

4π

gxx
gzz

∣

∣

∣

u=uh
, (26)

where gxx|u=uh , gzz |u=uh refer to the components of the background metric at the horizon.

Eq.(26) is one of the main results of this part of the thesis. It also agrees with the behaviour

seen in all the explicit examples we consider. This result was first derived for an anisotropic

axion-dilaton-gravity system in [32].

In the isotropic case the ratio gxx
gzz

∣

∣

∣

u=uh
is unity and we see that the KSS result is obtained.

However, in anisotropic cases this ratio can become very different from unity and in fact

much smaller, leading to the parametric violation of the KSS bound η/s ≥ 1/4π.

The shear viscosity in an anisotropic unitary fermi gas

( With Rishi Sharma and Sandip Trivedi )

Remarkably for ultra-cold fermions at unitarity, the η/s has been measured for a wide

range of temperatures and the minimum value is very close to the KSS bound. Similarly,

the values measured in heavy ion collisions seem to be close to 1/(4π).

If our intuition from the study of anisotropic blackbranes in gravity also carries over to

the unitary Fermi gases (the gravity duals of such systems is not yet known), it may be

possible to measure these small viscosities in experiments with trapped ultra-cold Fermi

gases. For this purpose, one needs to consider traps which share the essential features of

the systems in [39]. The goal of this part of the thesis is to give a concrete proposal for the

trap geometry and parameters where this effect is likely to be seen.
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Motivated by the above results in the gravity side, we may hope to find parametrically

suppressed viscosities in systems where the following basic requirements are met.

• The system is strongly interacting and in the absence of anisotropy have a viscosity

close to the KSS bound.

• The equations of hydrodynamics for the system admits modes sensitive to the spin 1

viscosity components as described above and in Ref. [36, 39].

• Sufficient anisotropy needs to be introduced in the system ( say in the z direction

with rotational symmetry preserved along the x − y plane), such that these spin 1

components of the viscosity, when measured in units of the entropy density, show an

experimentally measurable decreasing tendency below the KSS bound.

• The force responsible for breaking of isotropy is approximately spatially constant.

• The velocity gradients are small enough (compared to say the inverse mean free

path) ensuring that hydrodynamics is the appropriate effective theory to describe

the system.

We now explain how one can meet the above conditions in a system of trapped fermions in

the unitary limit. The anisotropic force is obtained by placing the system in an anisotropic

trap. The trapping potential is harmonic and characterized by three angular frequencies,

ωx, ωy, ωz. We consider an anisotropic situation where ωz ≫ ωx, ωy, so that the trapping

potential is much stronger in the z direction. For simplicity, we also take ωx = ωy so that

the system preserves rotational invariance in the x − y plane. For some of the discussion

below we can neglect the effects of the trapping potential in the x, y directions characterized

by ωx, ωy.

On studying the equations of superfluid hydrodynamics, we identify two modes which

are sensitive to the spin 1 components of the viscosity tensor. Each of these modes is

characterized by the superfluid and the normal components, which we denote by vs and vn

respectively.

The first mode, which we call Mode a has vs = 0 and vn = v given by

v = eiωt(αxz x̂+ αzx ẑ) (27)
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with the following relations:

Mode a : ω = 0, αz = −ω
2
x

ω2
z

αx (28)

The other mode of interest, denoted by Mode b, has vs = vn = v given by Eq. 27 with

Mode b : ω =
√

ω2
x + ω2

z , αz = αx = λ. (29)

We see that in the high anisotropy limit ωz ≫ ωx, αz → 0 forMode a, and hence we recover

a flow profile similar to that considered in [36]; To the best of our knowledge, Mode a has

not been studied in ultra-cold gas experiments. Mode b is the scissors mode which has

been studied extensively (for example see Refs. [42, 43, 44]).

We next desire that the amplitude of the velocity modes be small enough that it can be

described by hydrodynamics. This gives an upper limit on the amplitude of the modes

given by αx .

The energy dissipated due to viscosity is given by

Ėkinetic =− 1

2

∫

d3r ηijij(r)

(

∂ivj + ∂jvi −
2

3
δij∂kvk

)2

−
∫

d3r ζ(r)
(

∂ivi
)2 (30)

where ηijij ≡ ηij is the relevant component of the shear viscosity and ζ is the bulk viscosity.

We note that for our chosen velocity profiles, the bulk viscosity contribution vanishes. Also

in the traps we will consider, the temperature T is constant throughout the trap. Hence we

also ignored contributions from thermal conductivity.

Thus,

Ėkinetic = −1

2

∫

d3r ηxz(r) α
2
x(1−

ω2
x

ω2
z

) (31)

is the energy dissipation rate for Mode a, where we have simply written ηxzxz as ηxz.

The energy dissipated per unit cycle for the oscillatory time dependent Mode b is

Ėkinetic = −
∫

d3r ηxz(r) α
2
x. (32)

The evaluation of the energy loss from Eq. 31 and Eq. 32 requires the viscosity η as a

function of the position r in the trap.

To get a first estimate of the region of the trap which gives a dominant contribution to the

integral in Eq. 30, we use the local density approximation (LDA) and estimate the resulting

viscosity. More specifically, we assume in this approximation that thermodynamic variables

like the number density n, the entropy density s depend only on the local value of T and
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µ. The viscosity is also then taken to be given by these local values of T, µ, neglecting any

effects of anisotropy which could make the different components of the tensor take different

values.

The effect of anisotropy on the viscosity tensor are estimated using Boltzmann transport in

a weakly coupled anisotropic theory as

ηijkl = η
1

2
[(δikδjl+δilδjk−

2

3
δijδkl)+

(λ2(∇φ(r))(∇φ(r))
[µ(r)]2

)

4
∑

α=0

c(α)Mα ijkl]+O(∇2φ, (∇φ)4) ,

(33)

where λ is a microscopic length scale of the system, c(i) are dimensional constants of order 1

which depend on the microscopic details of the system, andMi are 5 orthonormal projection

operators that arise in a system with one special direction (for eg. see Ref. [45]).

Our calculations show that the corrections to η for a weakly interacting, normal (unpaired)

Fermi gas at low temperatures (T < µ) are given by

η0 = η(0)[1 − 31

84
(λkF )

2 (∇φ)2
k2Fµ

2
+O((τ∇φ)4)] = η(0)[1 − 31

84
(λkF )

2κ2LDA +O((τ∇φ)4)]

η1 = η(0)[1 − 13

28
(λkF )

2 (∇φ)2
k2Fµ

2
+O((τ∇φ)4)] = η(0)[1 − 13

28
(λkF )

2κ2LDA +O((τ∇φ)4)]

η2 = η(0)[1 − 11

28
(λkF )

2 (∇φ)2
k2Fµ

2
+O((τ∇φ)4)] = η(0)[1 − 11

28
(λkF )

2κ2LDA +O((τ∇φ)4)]

η3 = 0, η4 = 0 .

(34)

where we have introduced the notation2

κLDA =
(∇φ)
(µ kF )

(36)

Let us pause here to appreciate the similarity between the weak coupling Boltzmann analysis

result Eq. 34 and the results from gravity valid at strong coupling, Eq. 22.

While we cannot reliably compute the coefficients at strong coupling in the field theory, the

key point of our calculations here is that they might be experimentally measured and could

lie below the KSS bound as we gradually increase κLDA. We thus note that κLDA provides

a good characterization of the amount of anisotropy we introduce in our system.

To get the first estimates however, we apply the LDA approximation. We start first by

considering a homogeneous situation characterized by temperature T, µ and obtain the

2In the following discussion, we use the usual definitions

kF = (3π2n)1/3, EF =
k2
F

2m
, TF = EF /kB , vF =

kF
m

. (35)
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Figure 1: (Color online) Local shear viscosity at T = 2Tc
3 at µ = 10µK, ωz = 2π × 104

rads/s. The red curves denote the error bands.

behavior of the thermodynamical parameters and the viscosity as a function of these

parameters.

In the unitary Fermi gas, the chemical potential µ and the temperature T are the only energy

scales in the problem. Therefore, we can express various thermodynamic quantities as a

function of the dimensionless quantity y = T/µ multiplied by an appropriate dimensionless

function of only one of the two variables. Following [46] we write,

n(µ, T ) =nf (µ)F(y),

s(µ, T ) =
2

5
nf (µ)G′(y) ,

(37)

where n is the number density, s is the entropy density, and F(y) = G(y) − 2 y G′(y)/5,

nf (µ) =
1

3π2 (2mµ)
3
2 is the number density of a free Fermi gas. Therefore one can compute

the desired thermodynamic quantities if the function G(y) is known.

At low temperatures ( TTF . 0.6) we use the S
N data from Fig.3b of Ref. [47] to obtain G(y).

Having understood the thermodynamics in the absence of the trap, we now turn to incorpo-

rating the trap potential in the discussion. We first use the LDA approximation to calculate

how thermodynamic quantities like s, n etc vary along the trap. In the presence of the trap

µ varies in the equilibrium configuration. The effects of the trap, in this approximation, are

then incorporated by using the local values for µ and T in the behavior obtained above for

the homogeneous case. To evaluate η at a given µ and T we simply multiply η
n of Ref. [48]

with the number density that can be found using Eq. 37 (see Fig. 1).

It turns out that on starting at the center of the trap at a sufficiently low temperature,

the viscosity spatial profile has a peak, z0, close to the point where the superfluid-normal

transition occurs. In turn, this leads to the viscosity and damping effects for the fluid modes

of interest receiving their contribution from a region close to the peak and with a width,

xxi
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δz that can be made narrow, δz/z0 < 1, thus approximately meeting our requirement of

constant driving force to break isotropy.

Furthermore, we find that the resulting energy and damping rate of this energy, from

which the viscosity can be extracted, lie within the range of values which are measured by

experiments currently being done on cold atom systems, in particular on Li6 unitary fermi

gas systems, Ref. [44]. For example, for trap parametrs µ = 10µK, ωz ∼ 2π× 77000 rads/s,

and T = Tc
2 (Tc = 0.4µ) we find that the anisotropy, as measured by the parameter κLDA

, Eq. 36, is of order unity and therefore significant. At these extreme values of anisotropy

our theoretical calculation, strictly speaking, do not apply, but a reasonable extrapolation

suggests that the total kinetic energy and damping time for the scissor mode (Mode b)

should be of order E ∼ 10−18 joules, τ ∼ 10−2 seconds which are within the experimental

range of values currently being probed. For smaller values of anisotropy, the theoretical

estimates are more reliable and suggest that the different viscosity tensor components should

have a fractional difference given in terms of κLDA by Eq. 33. This tendency of the viscosity

to decrease should already be measurable at more moderate values of the anisotropy.

It is worth mentioning in this context that κLDA scales as ωz/µ while the damping time

scale for the scissors mode scales as µ
ω2
x
. One can thus keep the damping time scale in

the experimentally accessible range of about a millisecond while increasing ωz (keeping ωx

same) and to make κLDA ∼ O(1), thereby passing from a regime of low anisotropy to a

regime of high anisotropy.

We hope our experimental colleagues in the cold atoms community will find our proposal

interesting and we request them to carry out a careful investigation of anisotropic viscosities

in trapped fermions in the unitary regime of the BEC-BCS crossover.

Lepton flavor violation in supersymmetry at the LHC

( With Monoranjan Guchait and Abhishek Iyer )

In a parallel exploration, we considered models of supersymmetry which can incorporate

sizeable mixing between different generations of sfermions and performed a detailed collider

analysis to devise a signal to probe the lepton flavour violating parameter in such models

relevant for the LHC.([49])

Future Directions

• Although we were successful regarding the interpolation of Bianchi Types II, III, VI

and IX in Sec. , the interpolating metric of Bianchi Type V failed to satisfy the

null energy conditions. Our failure in this case may be due to the restricted class of

xxii



functions we used to construct the interpolating metrics or perhaps it may suggest

a more fundamental constraint. Another interesting question is how the anisotropic

and homogeneous phases in these field theories, described by the Bianchi attractor

regions, can arise in practice? It will be interesting to examine the possibility of a

spontaneous breaking of rotational invariance or by turning on sources other than the

metric in the field theory.

• An immediate extension of the work on shear viscosity in strongly coupled fluid in

presence of anisotropy is to extend our analysis to cases where the breaking of isotropy

is spontaneous or when the driving force is not spatially constant. It is also natural

to consider string theory embeddings of the anisotropic systems we have studied and

examining if they are stable. In principle all transport coefficients which determine

the fluid mechanics can be obtained by carrying out a more systematic derivative

expansion on the gravity side as discussed in the fluid gravity correspondence described

in [50], [51],[52], [53]. It will be great to perform a similar analysis along those

lines. Another direction is to consider transport properties in phases corresponding to

Bianchi spaces which describe homogeneous but anisotropic phases in general. Some

progress in this regard has been made [54] for Bianchi VII. It will be interesting to

extend the analysis to all Bianchi types. It will also be interesting to see if these results

are relevant for neutron stars with very high magnetic fields (known as magnetars)

for breaking rotational invariance 3. The resulting equilibrium phase could then be

highly anisotropic and our results hint that suitable components of the viscosity might

become small.

• An important point worth noting is that while the cold-atom system proposed here

shares many features with those discussed in Ref. [36, 39], it also has some differences.

First, in equilibrium the stress energy tensor is not invariant under translations even

for a linear potential. Second, in addition to energy-momentum, the cold-atom system

features another conserved quantity: the particle number. Consequently the system

is locally characterized by two thermodynamic variables T and µ rather than just

T . It will be interesting to further study the behavior of viscosity in gravitational

systems which correspond to anisotropy driven strongly coupled systems with a finite

chemical potential.(see [38, 55]). As a first step, we have analyzed a weakly coupled

system with a linearly varying potential and we find that the anisotropic viscosity

does become parametrically small in this case.

3A magnetic field of order 1016 Tesla or so is needed in order to contribute an energy density comparable
to the QCD scale ∼ 200 Mev.
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Conclusions

To conclude, this thesis has described some computations in gravity to answer some in-

teresting questions related to a class of strongly coupled field theories, often with reduced

symmetries. Let us summarize some of the main results of this thesis :

• We investigate the interpolation of the Bianchi attractor geometries ( which are dual

to anisotropic phases in the field theory with generalized translational invariance)

in the IR (infrared) to Lifshitz and AdS spacetimes in the UV (ultraviolet). While

we do not obtain the interpolating metrics as solutions to Einstein’s equations, we

demonstrate that the matter required to support such geometries obey the weak and

null energy conditions. These interpolating metrics do not have any non-normalizable

metric deformations turned on near the boundary. This ensures that the dual field

theory can indeed reside in flat space as opposed to some background of non-trivial

geometry.

• We find a stable Bianchi III attractor solution in N = 2,D = 5 gauged supergravity.

We analyze the relevant Killing spinor equations and find that a radial ansatz for

the spinor breaks supersymmetry. This suggests that the above solution may be a

non-supersymmetric attractor.

• In the second half of the thesis we find a general formula for the shear viscosity in units

of the entropy density given by the ratio of appropriate metric components evaluated

at the horizon. In a situation with anisotropy, these metric components need not be

the same. This can lead to a parametric violation of the bound proposed by Kovtun,

Son and Starinets. ( η/s ≥ 1
4π ). Using techniques of Kaluza Klein reduction, we give

a proof of this general formula for all situations where the force breaking isotropy is

spatially constant and there is some residual Lorentz symmetry left in the boundary

theory after breaking isotropy.

• We also propose a set-up involving trapped, ultracold fermions in the unitary regime

of the BEC-BCS crossover, where the above suppression of some components of the

anisotropic shear viscosity tensor may be observed experimentally. We present the

relevant hydrodynamic modes and the trap parameters where this effect is likely to be

seen. To the best of our knowledge, the proposal presented here is the first proposal

to probe anisotropic shear viscosity in trapped fermions at low temperatures.
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Chapter 1

Introduction

A Roadmap of the Thesis:

The lessons from string theory, in particular the AdS/CFT correspondence suggest that

fascinating connections exist between the study of gravity and the study of strongly coupled

field theories. Motivated by the large number of interesting phases seen in nature, new

brane solutions have been discovered in gravity. The earliest works mostly focused on

horizons with translational and rotational symmetry, but more recently examples of black

brane horizons dual to field theories with further reduced space-time symmetries have been

discussed. Extremal branes are particularly interesting, since they correspond to ground

states of the dual field theory in the presence of a chemical potential or doping. Their near-

horizon geometries often exhibit a type of attractor behavior, and as a result, are quite

universal. Of particular interest for this thesis are the brane solutions in classical gravity

which correspond to phases of matter which are homogeneous but not isotropic. It was

shown (see [1, 2]) that in 4 + 1 dimensions, such brane solutions can be classified using

the Bianchi classification developed earlier for studying homogeneous cosmologies. These

near-horizon solutions were given the name “Bianchi attractors”. Bianchi attractors have a

non-trivial geometry along the field theory directions. It is therefore worth asking whether

these attractors can arise in situations where the dual field theory lives in flat space, as

opposed to the more exotic scenario where the ultraviolet (UV) field theory itself must be

placed in a non-trivial geometry of the appropriate Bianchi Type. This question maps to

constructing interpolating extremal black brane solutions that asymptote to Anti-De Sitter

space (AdS) and asking whether the non-normalizable deformations for the metric can be

asymptotically turned off near the AdS boundary which lies at the ultraviolet end.

In the first part of the doctoral work in Chapter 2, we tried to interpolate these attractor

geometries with generalized translational symmetry to asymptotic anti de sitter space in

Einstein gravity. While we did not obtain the interpolating metrics as solutions to Einstein’s

equations, we showed that were they to arise as solutions, the required matter will satisfy

the weak and null energy conditions. We also tried to realize some of these near horizon
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attractor geometries as solutions to gauged supergravity theories and examined the stability

and supersymmetry of one of the solutions (Bianchi Type III) in Chapter 3.

In the next part of the doctoral work in Chapter 4, we turn to a study of transport properties

of such anisotropic blackbranes, with a view towards strongly coupled field theories in the

presence of an anisotropic driving force. Using techniques from AdS/CFT , our calculations

indicate that one may obtain parametric violations of the KSS bound (η/s ≥ 1/4π) proposed

by Kovtun, Son and Starinets, in such strongly coupled systems in presence of anisotropy.

This feature seems to be quite general and holds true for situations where the driving force

responsible for breaking rotational symmetry is spatially constant. In particular, we find

a general formula for the shear viscosity over the entropy density in terms of the ratio of

metric components evaluated at the horizon leading to a parametric violation of the bound

proposed by KSS.

If the phenomenon of small shear viscosity components in presence of anisotropy also carries

over to the unitary Fermi gases, it may be possible to measure these small viscosities in

experiments with trapped ultra-cold Fermi gases. We thus propose a set-up in Chapter

5 involving trapped, ultracold fermions in the unitary regime of the BEC-BCS crossover,

where the above suppression of some components of the anisotropic shear viscosity tensor

may be observed experimentally. We present the relevant hydrodynamic modes and the trap

parameters where this effect is likely to be seen. To the best of our knowledge, this is the

first proposal to probe anisotropic shear viscosity in trapped fermions at low temperatures.

In a parallel exploration in this doctoral work, which is independent of the earlier chapters,

we considered models of supersymmetry which can incorporate sizeable mixing between

different generations of sfermions and performed a detailed collider analysis to devise a

signal to probe the lepton flavour violating parameter in such models relevant for the LHC.

This is discussed in Chapter 6 and can be read independent of the earlier chapters.

In the following section, we present a non-technical introduction to the basics of AdS/CFT

since this is the primary tool we will be using in our computations. Wherever possible, we

refer the reader to more elaborate and detailed reviews on the subject.

1.1 Basics of AdS/CFT

Suppose we are interested in a strongly interacting quantum field theory at a finite tem-

perature and finite charge density. Our aim is to investigate the transport properties of

such a system. Needless to say, this presents a tough problem in quantum field theory.

However, string theory teaches us that there exist classes of quantum field theories which

have a dual description in terms of gravitational theories in higher dimensions. This duality

is the celebrated AdS/CFT correspondence or, sometimes called holography (see [3] and the

references therein). Holography can be used to learn a lot about strongly coupled interacting

field theories.
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Let us list a few review materials in this context : [4, 5, 6, 7] for applications of holography

to condensed matter physics and [8] for holography applied to QCD.

Holography is basically an equivalence between two very different looking theories:

• Strongly interacting quantum field theories in d spacetime dimensions

• Theories of gravity in (d + 1) spacetime dimensions

The quantum field theory resides in the boundary of the spacetime in which gravity lives.

The boundary theory is strongly interacting matter involving quantum fields with spin

zero, half or one. The boundary quantum field theory does not include gravity. Stretching

away from the boundary is the larger space called the bulk. This is the space where the

gravity theory lives. In practice this usually is Einstein gravity with a negative cosmological

constant and a collection of other fields coupled to gravity. Holography tells us that gravity

in the bulk and QFT on the boundary are equivalent. Anything that happens in the bulk

is equivalently captured in the boundary theory and vice versa.

Usually in a quantum field theory, we are interested to compute the generating function

ZQFT [φ0] =

∫

DA exp

(

i[SQFT +

∫

φ0 O[A]]

)

(1.1)

where A represents all fundamental fields of the theory, SQFT is the action which is a

functional of the fields. O[A] is a gauge invariant operator built from the fields. φ0(x) is

under our control in a QFT and we usually compute the correlators by taking derivatives

with respect to φ0 and ultimately setting it to zero. The key point is that in holographic

calculations we make φ0(x) dynamical in the bulk and demand φ0(x, u) → φ0(x) as one

approaches the boundary ( The extra radial co-ordinate in the bulk is “u”). The holographic

equivalence can be stated in terms of partition functions as

ZQFT [φ0] ∼ ZQuantum gravity [φ0(x, u) → φ0(x)] (1.2)

In the limit of large degrees of freedom in the field theory,

ZQFT [φ0] ∼ eiSbulk
∣

∣

φ0(x,u)→φ0(x)
(1.3)

where Sbulk is the classical gravity bulk action. Corresponding to the nature of the spin and

charge of the operators in the boundary theory, we introduce the bulk fields of similar type,

with the dimension of the field theory operators corresponding to the mass of the bulk fields.

For example, a scalar operator corresponds to a scalar field in the bulk φ(x, u) → O(x),

for a vector we introduce gauge field Aµ(x, u) → Jµ(x), the metric gAB(x, u) → Tµν(x)
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corresponds to the stress tensor of the boundary theory.

Typically we are interested in extracting the response due to these sources. In our classical

bulk gravity picture, this just boils down to solving classical Einstein Gravity differential

equations in the bulk with appropriate boundary conditions. For example, a very quick way

to extract the response < O(x) > due to φ0 goes as follows (using the equivalence of the

bulk and boundary partition functions) :

< O(x) >=
1

ZQFT [φ0]

∂ZQFT
∂φ0

∼ ∂ (logZQFT )

∂φ0
∼ ∂S OnShell

bulk

∂φ0
(1.4)

The object on the right is highly reminiscent of Hamilton Jacobi formalism in classical

mechanics. One can show that in a QFT this response to the source is just the radial

canonical momentum in the bulk evaluated at the boundary and this can be easily found

by solving the differential equations for the source field in the bulk.

With this working knowledge of holography, we proceed into the core of the thesis according

to the roadmap supplied at the beginning of this introduction.
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Chapter 2

Interpolating from Bianchi

Attractors to Lifshitz and AdS

spacetimes

2.1 Introduction

In the last few years, we have witnessed a beautiful connection develop between gravity and

condensed matter physics, or more specifically the study of strongly coupled field theories

at finite density. For nice reviews on the subject, we refer to [5, 6, 7, 9]. On the gravity side,

motivated by the new and beautiful phases found in nature, new brane solutions have been

discovered. These branes have new kinds of hair, or have horizons with reduced symmetry.

For example, [10, 11, 12, 13]has discussions on how black hole no-hair theorems can be

violated in AdS space in the context of holographic superconductivity; [14, 15, 16] discusses

how emergent horizons with properties reflecting dynamical scaling in the dual field theory

(“Lifshitz solutions”) can arise; and [17, 18, 19, 20, 21, 22, 23] has discussions of horizons

exhibiting both dynamical scaling and hyperscaling violation.1 The earliest work mostly

focused on horizons with translational and rotational symmetry, but more recently examples

of black brane horizons dual to field theories with further reduced space-time symmetries

have been discussed in e.g. [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

Extremal branes are particularly interesting, since they correspond to ground states of the

dual field theory in the presence of a chemical potential or doping. Their near-horizon

geometries often exhibit a type of attractor behavior, and as a result, are quite universal

and independent of many details. There has been considerable work regarding the attractor

mechanism, starting with the pioneering work in [48], ( [49] has a nice review). For a review

of work on non-supersymmetric attractor mechanism, relevant for our studies, please have

1Embeddings of such solutions in string theory have also been discussed in many papers, such as [22,
23, 24, 25, 26, 27, 28, 29, 30].
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a look at[50, 51, 52, 53, 54, 55].

Of particular interest to us in this chapter are the brane solutions studied in [34, 35], which

correspond to phases of matter which are homogeneous but not isotropic. It was shown that

in 4 + 1 dimensions, such brane solutions can be classified using the Bianchi classification

developed earlier for studying homogeneous cosmologies. In [34, 35], it was found that for

extremal black branes of this kind, the near-horizon geometry itself often arises as an exact

solution for a system consisting of Einstein gravity coupled to (simple) suitable matter in

the presence of a negative cosmological constant. These near-horizon solutions were given

the name “Bianchi attractors”.

The attractor nature mentioned above makes the Bianchi attractor geometries more uni-

versal, and therefore in many ways more interesting, than the complete extremal black

brane solutions from which they arise in the IR. However, some examples of more complete

solutions, interpolating between asymptotically AdS space and Bianchi attractors of various

Types, are well worth constructing and could lead to a better understanding of the attractor

mechanism.

For example, Bianchi attractors have a non-trivial geometry along the field theory directions.

It is therefore interesting to ask whether these attractors can arise in situations where the

dual field theory lives in flat space, as opposed to the more exotic possibility that the UV

field theory itself must be placed in a non-trivial geometry of the appropriate Bianchi Type.

This question maps to constructing interpolating extremal black brane solutions and asking

whether the non-normalizable deformations for the metric can be asymptotically turned off

near the AdS boundary which lies at the ultraviolet end.

For one case, Bianchi Type VII, an explicit interpolating solution of this type was indeed

found in [34]. More precisely, it was seen that, in the presence of suitable matter, a solution

exists which interpolates between the Bianchi attractor region and AdS2 × R3. The latter

in turn is well known to arise as the near-horizon region of an extremal Reissner–Nordstrom

black brane which is asymptotically AdS5. In this way, it was shown that Bianchi Type

VII can arise as the near-horizon limit of an asymptotically AdS brane. In this solution, no

non-normalizable mode for the metric is turned on near the AdS5 boundary, and therefore

the field theory lives in flat 3 + 1 dimensional spacetime. Sources are turned on for some

of the field theory operators (but none dual to non-normalizable metric modes), and these

operators are responsible for the breaking of UV symmetries that leads to Bianchi Type

VII.

For the other Bianchi classes, finding such interpolating extremal brane solutions has proved

difficult so far. The main complication is a calculational one. It is easy to write down

a continuous and sufficiently smooth metric which interpolates between the near-horizon

region and asymptotic AdS space, with no non-normalizable metric deformations turned on,

for any of the other Bianchi classes. But it is not easy to find such a metric as an explicit

solution to the Einstein equations for gravity coupled to some simple matter field theory.
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The symmetries of Type VII are a subgroup of the three translations and the rotations

in R3; this allows the equations for the full interpolating solution in the Type VII case

to be reduced to algebraic ones, and solved. On the other hand, the symmetries in the

other Bianchi Types cannot be embedded in those of R3, and thus the equations cannot be

reduced to merely algebraic ones.

Here, we take a partial step towards finding such interpolating solutions for some of the

other Bianchi classes. We start with a particular smoothly varying metric which interpolates

between the near-horizon region and Lifshitz spacetime. The metric is chosen so that the

non-normalizable deformations of the metric near the Lifshitz boundary are turned off.

While we do not obtain these metrics as solutions of Einstein gravity coupled to a specific

simple matter field theory, we demonstrate that were they to arise as solutions, the required

matter would satisfy the weak energy condition. In this way, we establish that there is no

fundamental barrier, at least at the level of reasonable energy conditions, to having such

an interpolating solution.

In turn, it is well known that Lifshitz spacetimes, now thought of as the IR end, can be

connected to AdS space in the UV. Solutions of this type to Einstein’s equations coupled

with reasonable matter satisfying the energy conditions have been obtained, see, e.g., [56],

[57], [16], [27], [29], [30], [58], [59], [60]. In these solutions often no non-normalisable metric

deformations are turned on in the AdS region, although a source for other operators can

be present. Taking these solutions together with the interpolating metrics we study, one

can then conclude that interpolating geometries exist which connect some of the Bianchi

classes to asymptotic AdS space. These interpolations do not violate the energy conditions,

and they do not have any non-normalisable deformations for the metric turned on in the

asymptotic AdS region. This establishes one of the main results of this chapter.

Hopefully, our result will provide motivation for finding solutions of Einstein’s equations

sourced by suitable specific matter field theories, which interpolate between the Bianchi

classes and Lifshitz or AdS spaces, in the near future. The weak energy condition implies

the null energy condition. Thus, our results also imply that no violations of the null energy

condition are necessary for the required interpolations. While violations of the null-energy

condition are known to be possible, they usually require either quantum effects or exotic

objects like orientifold planes in string theory. Our result suggests that these are not

required, and that standard matter fields should suffice as sources in constructing these

interpolating solutions. Once constructed, these solutions will allow us to ask whether,

from the field theory perspective, the symmetries of various Bianchi classes can emerge in

the IR, either spontaneously or in response to some suitable source not involving the metric.

Near the end of the chapter, in §6, we also explore the existence of C-functions in flows

between Bianchi attractors. We find that if the matter sourcing the geometry satisfies the

null energy condition, a function does exist, for a large class of flows, which is monotonically

decreasing from the UV to the IR. But unless the attractors meet a special condition, this

7
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function does not attain a finite, non-vanishing constant value at the end points. We also

show that the area element of the three-dimensional submanifold generated by the Bianchi

isometries in the attractor spacetimes monotonically decreases from the UV to the IR.

The plan of the chapter is as follows. In §2, we discuss the weak and null energy conditions.

§3 outlines the general procedure we follow in constructing the interpolating metrics and

illustrates this for the particular case of Bianchi Type II. Bianchi Type VI and the closely

related classes of Type III and V are discussed in §4, and Type IX, for which the interpolation

is to AdS2 × S3, is discussed in §5. In §6, we explore the existence of a C-function. We

end with some conclusions in §7. The appendix contains a more complete discussion of the

energy conditions.

2.2 Energy Conditions

We will work in 4 + 1 dimensional spacetime and adopt the mostly positive convention for

the metric, so that the flat metric is ηµν = diag(−1, 1, 1, 1, 1).

Let us consider a coordinate system xµ, µ = 0, 1, . . . , d, with the metric being gµν . We

denote the stress energy tensor, as in the standard notation, by Tµν , and let nµ be a null

vector, with nµnνg
µν = 0. Then the null energy condition (NEC) is satisfied iff

Tµνn
µnν ≥ 0 (2.1)

for any future directed null vector, see [61], [62]. Here we will only consider spacetimes

which are time reversal invariant, i.e., with a t → −t symmetry. For such spacetimes the

requirement of nµ being future directed can be dropped.

For the purposes of our analysis it is convenient to state this condition as follows. T µν can be

regarded as a linear operator acting on tangent vectors. Let the orthonormal eigenvectors

of this operator be denoted by {u0, u1, u2, u3, u4}, with eigenvalues, {λ0, λ1, λ2, λ3, λ4}
respectively. Note that orthonormality implies 〈ua, ub〉 ≡ uaµubνg

µν = ηab, so that u0

is time-like and the other eigenvectors, uc, c = 1, . . . , 4, are space-like.

Then, as discussed in Appendix A.2, the NEC requires that

− λ0 + λc ≥ 0 (2.2)

for c = 1, 2, 3, 4.

In contrast, the weak energy condition (WEC) requires that

Tµνu
µuν ≥ 0, (2.3)

for any future directed time-like vector uµ [61], [62]. As in the discussion of the NEC above,

for the time reversal invariant backgrounds we consider here, the requirement that uµ is
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future directed need not be imposed. In terms of the eigenvalues {λ0, λc} of T µν , this leads

to two conditions:

λ0 ≤ 0 (2.4)

λc − λ0 ≥ 0, for c = 1, 2, 3, 4. (2.5)

From eq.(2.5) and eq.(2.2) we see that the weak energy condition implies the null energy

condition. Thus, the weak energy condition is stronger.

We make two final comments before we end this section. In this chapter, we will follow the

conventions of [34], where the action takes the form (see equation (3.4) of [34])

S =

∫

d5x
√−g {R+ Λ+ · · · }. (2.6)

The ellipsis on the RHS denotes the contribution to the action from matter fields. In

these conventions, AdS5 spacetime is a solution to the Einstein equations, in the absence

of matter, for Λ > 0. It follows then that the cosmological constant required for AdS space

violates eq.(2.4) and thus the weak energy condition, but it satisfies eq.(2.2) as an equality,

thereby meeting the null energy condition.

Secondly, we have assumed above that the linear operator T µν is diagonalizable and that its

eigenvalues are real. These properties do not have to be true, since T µν , unlike, Tµν , need

not be symmetric, and moreover since the inner product is Lorentzian (see [63]). However,

for the interpolations we consider, it will turn out that T µν is indeed diagonalizable with

real eigenvalues and therefore we will not have to consider this more general possibility.

2.3 Outline Of Procedure

In this section, we will outline the basic ideas that we follow to find metrics with the required

properties that interpolate between the near-horizon attractor region and an asymptotic

Lifshitz spacetime. We will illustrate this procedure in the context of one concrete example,

which we will take to be Bianchi Type II. Holography in this particular Bianchi attractor

was recently studied in depth in [46].

The metrics we consider in general have the form

ds2 = −gtt(r)dt2 + grr(r)dr
2 +

∑

i,j=1,2,3

gij(r, x
i)dxidxj . (2.7)

In the Bianchi attractor region which occurs in the deep IR, for r → −∞, the metric takes

the form,

ds2B = −e2βtrdt2 + dr2 +
∑

i=1,2,3

e2βir(ωi)2, (2.8)

9
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where ωi are one-forms invariant under the Bianchi symmetries generated by the Killing

fields ξi, i = 1, 2, 3 (More generally, off-diagonal terms are also allowed in eq.(2.8) but we

will not consider this possibility here.) The commutation relations of the Killing vectors 2

[ξi, ξj ] = Ckijξk (2.9)

give rise to the corresponding Bianchi algebra.

In the far UV on the other hand, which occurs for r → ∞, the metric becomes of Lifshitz

form,

ds2L = −e2β̃trdt2 + dr2 + e2β̃r
∑

i=1,2,3

dx2i . (2.10)

Here for simplicity, we only consider the case where all the spatial directions have the same

scaling exponent, β̃, more generally this exponent can be different for the different spatial

directions. Also, to avoid unnecessary complications we take the exponent in the time

direction β̃t in the Lifshitz region to satisfy the condition

β̃t = βt, (2.11)

where βt is the value for the exponent in the Bianchi attractor region, eq.(2.8). The metric

eq.(2.10) then becomes

ds2L = −e2βtrdt2 + dr2 + e2β̃r
∑

i=1,2,3

(dxi)2. (2.12)

The metric which interpolates between these two regions is taken to have the form

ds2 =

(

1− tanhσr

2

)

ds2B +

(

1 + tanhσr

2

)

ds2L, (2.13)

where ds2B and ds2L are defined in eq.(2.8) and eq.(2.10) respectively. σ is a positive constant

which characterizes how rapid or gradual the interpolation is. One can show, and this will

become clearer in the specific examples we consider below, that as long as σ is sufficiently

big the metric becomes of the Bianchi attractor form as r → −∞. Also, for sufficiently large

σ the metric becomes of Lifshitz type as r → ∞. More correctly, for this latter statement

to be true the limit r → ∞ must be taken keeping the spatial coordinates xi, i = 1, 2, 3

fixed. We will also comment on this order of limits in more detail below.

We should emphasize that we do not obtain the interpolating metric in eq.(2.13) as a

solution to Einstein’s equations coupled to suitable matter. Instead, what we will do is to

construct from the metric, via the Einstein equations, a stress energy tensor for matter and

then examine whether this stress energy satisfies the energy conditions.

2The Bianchi classification is described in [64], [65], including the symmetry generators and invariant
one-forms; also see A.1 of Appendix.
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Let us mention that one can try to obtain a full interpolating solution using simple gauge

field matter content. For example, the metric which interpolates between these two regions

may be taken to have the form

ds2 = f(r)ds2B + g(r)ds2L, (2.14)

where ds2B and ds2L are defined in eq.(2.8) and eq.(2.10) respectively.

The gauge field may be taken to be of the form

A =
√

At e
βtrh(r) +

√

Ãt e
β̃trk(r)dt. (2.15)

Here f(r),g(r),h(r) and k(r) are appropriate interpolating functions such that the geometry

interpolates from Lifshitz in the UV to respective Bianchi attractor in the IR. However, the

resulting differential equations are too complicated to solve. However, such a technique is

worthy of further exploration.

Below, we will analyze cases where the interpolation is from attractor geometries of Bianchi

Type II, III, V, or VI to Lifshitz geometry. In addition, using a different strategy, we will

also consider the interpolation from Type IX to AdS2 × S3.

2.3.1 More Details for the Type II Case

Let us now give more details for how the analysis proceeds in the Type II case.

It will be convenient in the analysis to take the Bianchi attractor geometry and the Lifshitz

geometry which arise in the IR and UV ends of the interpolation as solutions of Einstein’s

equations coupled to reasonable matter. This ensures that the energy conditions will be

satisfied at least asymptotically. In fact the Bianchi attractor geometry and the Lifshitz

geometry can both arise as solutions in a system of gravity coupled to a massive Abelian

gauge field in the presence of a cosmological constant, with an action of the form,

S =

∫

d5x
√−g

(

R+ Λ− 1

4
F 2 − 1

4
m2A2

)

. (2.16)

The Type II solutions which arise from this action were discussed in [34] and we will mostly

follow the same conventions here. The invariant one-forms for Type II are given by

ω1 = dy − x dz, ω2 = dz, ω3 = dx. (2.17)

The solutions of Type II obtained from eq.(2.16) were described in eq.(4.2), (4.3) and (4.10),

(4.11) in [34]. The metric and gauge field in these solutions take the form

ds2B = R2[dr2 − e2βtrdt2 + e2(β2+β3)r(ω1)2 + e2β2r(ω2)2 + e2β3r(ω3)2] (2.18)

11
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and

A =
√

At e
βtrdt. (2.19)

These solutions are characterized by five parameters, R, βt, β2, β3, At. The equations of

motion give rise to five independent equations which determine these parameters in terms

of m2,Λ. For our purposes it will be convenient to work in units where R = 1 and to use the

equations of motion to express βt, β1, β2, At and m
2 in terms of Λ. The resulting relations

are,

βt = v, (2.20)

β2 = β3 = −(3− Λ+ u)v

36− 8Λ
, (2.21)

m2 =
8

11
(6− Λ + u), (2.22)

At =
−11v2 + 3u

18− 4Λ
, (2.23)

where

u =
√

−63 + 10Λ + Λ2,

v =

[−81 + 19Λ + 3u

22

] 1
2

.

Demanding that At,m
2, βt, β2, β3 be positive and u be real, we get Λ > 9

2 . The Lifshitz

metric which we are interested in near the boundary also arises as a solution from the action

in eq.(2.16). The metric and gauge field in this solution take the form

ds2L = dr2 − e2βtrdt2 + e2β̃rdx2 + e2β̃rdy2 + e2β̃rdz2 (2.24)

and

A =
√

At e
βtrdt. (2.25)

The solution is characterized by three parameters, βt, β̃, At which are determined in terms

of m2 and Λ. For our purposes it is more convenient to express β̃, At and m
2 in terms of βt

and Λ. These relations, which arise due to the equations of motion, are

β̃ =
1

9

(

−βt +
√

−8β2t + 9Λ

)

, (2.26)

m2 =
2

3
βt

(

−βt +
√

−8β2t + 9Λ

)

, (2.27)

At =
2

9

(

10− 1

βt

√

−8β2t + 9Λ

)

. (2.28)

In order to ensure that β̃, At,m
2 are all nonnegative, we must have βt > 0, β2t ≤ Λ ≤ 12β2t .

We will consider Lifshitz metric where these conditions hold.

12
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The Type II and Lifshitz solutions we consider correspond to the same value of the cosmo-

logical constant. It will also be convenient to take the exponent βt along the time direction

in the Type II and Lifshitz cases to be the same as discussed in eq.(2.11). This will mean

that the mass parameter m2 for the Type II and Lifshitz cases will be different in general.

A negative cosmological constant (in our conventions Λ > 0 ) violates the weak energy

condition, thus in studying the violations of this condition it is useful to separate the

contributions of the cosmological constant from the matter in the stress energy. Since

the two asymptotic geometries we consider arise as solutions with the same value of the

cosmological constant we can consistently take the cosmological constant to have this same

value throughout the interpolation. Using the Einstein equations we can then define a

matter stress tensor, minus the cosmological constant, and then study its behavior with

respect to the weak energy condition. The null energy condition, in contrast to the weak

energy condition, does not receive contributions from the cosmological constant, and so

for studying its possible violations such a separation between matter and the cosmological

constant components is not necessary.

We now turn to the full interpolating metric. As discussed in the previous subsection this

takes the form

ds2 = dr2 − e2βtrdt2

+

[(

1− tanhσr

2

)

e2β3r +

(

1 + tanhσr

2

)

e2β̃r
]

dx2

+

[(

1− tanhσr

2

)

e2(β2+β3)r +

(

1 + tanhσr

2

)

e2β̃r
]

dy2

+

[(

1− tanhσr

2

)

(x2e2(β2+β3)r + e2β2r) +

(

1 + tanhσr

2

)

e2β̃r
]

dz2

− x

(

1− tanhσr

2

)

e2(β2+β3)r(dy ⊗ dz + dz ⊗ dy).

(2.29)

We note that in the limit of r becoming very large, the above may be approximated by

ds2 = dr2 − e2βtrdt2 +
[

e2(β3−σ)r + e2β̃r
]

dx2

+
[

e2(β2+β3−σ)r + e2β̃r
]

dy2

+
[

x2e2(β2+β3−σ)r + e2(β2−σ)r + e2β̃r
]

dz2

− xe2(β2+β3−σ)r(dy ⊗ dz + dz ⊗ dy).

(2.30)

To ensure that this metric approaches the Lifshitz geometry as r → ∞, with exponentially

small corrections, the terms arising from the Lifshitz metric, eq(2.24), must dominate in

every component of the metric. It is easy to see that this condition is met when

σ > β2 + β3. (2.31)

13
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Similarly, one finds that the conditions requiring the metric to become of the Bianchi II

type, eq.(2.18), in the IR are also met when σ satisfies the condition in eq.(2.31).

Actually, the r → +∞ limit is a bit subtle. As one can see from the coefficient of the dz2

and the (dy⊗ dz+ dz⊗ dy) terms in eq.(2.30), eq.(2.31) ensures that the metric becomes of

Lifshitz type when r → ∞, as long as x is constant, or at least for |x| growing sufficiently

slowly in this limit. This is in fact the limit we will consider in our discussion.

Taking the limit in this way is well motivated physically. It is quite reasonable to place the

dual field theory whose properties we are interested in studying in a box of finite size. In

fact this is always the case in any experimental situation. In such a finite box the range of

the spatial coordinates is finite ensuring that the r → ∞ limit is of the required type. As

long as the box is sufficiently big, compared to the other scales, e.g. the temperature, the

properties of the system, e.g. its thermodynamics, do not depend in a sensitive way on the

size of the box.

While the requirement for getting the correct asymptotic behavior imposes a lower bound

on σ, eq.(2.31), meeting the energy conditions give rise to an upper bound on σ, as we will

see below. It will turn out that there is a finite region for the allowed values of σ between

these two bounds, for the Type II case, and by choosing σ to lie in this region an acceptable

interpolation meeting the energy conditions can be obtained.

Energy Conditions for the Type II Interpolation

With the interpolating metric in hand, we can now test the various energy conditions. We

do so numerically.

From the metric, eq.(2.29), we define a stress tensor, assuming that the Einstein equations

are valid. This gives

Tµν ≡ Rµν −
1

2
gµνR. (2.32)

(We set κ = 8πGN = 1.) This stress energy tensor in turn is separated into a matter and

a cosmological constant contribution. With our conventions, eq.(2.6), we get

Tµν =
Λ

2
gµν + T (matter)

µν . (2.33)

Combining these two equations gives

T (matter)
µν = Rµν −

1

2
gµνR− Λ

2
gµν . (2.34)

To analyze whether the energy conditions are valid, we first note that owing to the form we

have chosen for the interpolating metric, eq.(2.29), T
(matter)µ
ν is block diagonal. Therefore,

14
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its eigenvalues take the simple form

λ0 = −Λ

2
+ T tt , (2.35)

λ1 =
1

2

[

−Λ+ T rr + T xx +
[

(T rr − T xx )
2 + 4T xr T

r
x

] 1
2

]

, (2.36)

λ2 =
1

2

[

−Λ+ T rr + T xx −
[

(T rr − T xx )
2 + 4T xr T

r
x

]
1
2

]

, (2.37)

λ3 =
1

2

[

−Λ+ T yy + T zz +
[

(

T yy − T zz
)2

+ 4T zy T
y
z

]
1
2

]

, (2.38)

λ4 =
1

2

[

−Λ+ T yy + T zz −
[

(

T yy − T zz
)2

+ 4T zy T
y
z

]
1
2

]

. (2.39)

Since we obviously have λ1 ≥ λ2 and λ3 ≥ λ4, the criteria discussed in §2 above reduces to

just checking whether the following conditions hold:

λ0 ≤ 0, λ2 − λ0 ≥ 0, λ4 − λ0 ≥ 0. (2.40)

For the numerics, we set

Λ = 12. (2.41)

(In R = 1 units).

From eq.(2.21) we can now determine β2, β3 and thus the lower bound on σ, eq.(2.11), which

turns out to be σlower = 0.5065. As we increase σ we find in the numerical analysis that

violations of the null energy condition start setting in around σ = 1.05026. The weak energy

condition is not violated before this. Thus, there is a finite interval 0.5065 < σ < 1.05,

within which both the correct asymptotic behavior for the metric is obtained and the null

and weak energy conditions are met.

To illustrate this, we consider the case where σ = 1 in more detail. It turns out that λ2 < λ4,

where the eigenvalues are defined in eq.(2.35), eq.(2.36), eq.(2.37), eq.(2.38), eq.(2.39).

The plots of λ0 and min(λc − λ0) = λ2 − λ0, are given in fig. 2.1, 2.2. From fig. 2.1 we see

that λ0 is always negative. In fig. 2.2 we see that min(λc − λ0) > 0 but there is a region

around r ∼ 3 where it becomes very small. We have investigated this region further in much

more detail numerically and find that even after going out to arbitrarily large values of x,

min(λc − λ0) continues to be positive in the worrisome range 2 < r < 8. For a fixed value

of r, in this range, as we go out to larger x the value of min(λc − λ0) decreases reaching

a minimum value for |x| → ∞. For example, the resulting plot for r = 3, as a function

of x, is given in fig. 2.3 where we see that the minimum value obtained for min(λc − λ0)

is positive. For other values of r in this range a qualitatively similar plot is obtained as x

is varied with the minimum value of min(λc − λ0) again being positive. As an additional

check, we have analytically computed the value of min(λc−λ0) in the limit where |x| → ∞.

In the worrisome region 2 < r < 8 we find that this value is positive. We show this in fig.

15



Chapter 2

Figure 2.1: Type II 3D plot of λ0 (time-like eigenvalue) versus r and x for σ = 1, Λ = 12.

2.4 where the limiting value of min(λc − λ0), as |x| → ∞, is plotted as a function of r. We

see that as r increases, this limiting value at first decreases, reaching a minimum at around

r = 5, and then increases again. The minimum value is clearly positive showing that the

null energy condition is indeed met everywhere in the interpolating metric.

Let us end this section with one comment. Because of the upper bound on σ, which arises

in order to meet the energy conditions, the metric cannot approach that of Lifshitz space

arbitrarily rapidly. The reader might worry that the values of σ allowed by this bound are

too small to be physically acceptable. To explain this, consider as an example the more

familiar case of asymptotically AdS5 spacetime. Since a domain wall in AdS5 ought to carry

positive energy density and pressure, one might expect that the rate at which the metric

of such a solution approaches AdS5 is governed by the normalizable metric deformations of

AdS5, and should not be slower. A similar type of argument should also apply to Lifshitz

spaces. However, this expectation need not be valid if other fields are also turned on, since

these fields can source the metric, and this can lead to a fall-off slower than that expected

from the normalizable mode of the metric itself.

2.4 Types VI, V and III

We now turn to constructing metrics which interpolate from Bianchi Types VI, III and V

to Lifshitz. Since our discussion will closely parallel that for Type II above, we will skip

some details. We will find that an analysis along the lines above will successfully lead to a

class of interpolating metrics for Type VI and Type III, meeting the weak and null energy

conditions. However, for reasons which will become clearer below, we do not succeed in

finding such an interpolating metric for Type V.
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Figure 2.2: Type II 3D plot of min(λc − λ0) versus r and x for σ = 1, Λ = 12.

Figure 2.3: Type II plot of min(λc − λ0) versus x at r = 3 for σ = 1, Λ = 12.
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Figure 2.4: Type II list plot of min(λc − λ0) versus r as x→ ±∞ for for σ = 1, Λ = 12.

The algebra for a general Type VI spacetime is characterized by one parameter ‘h’. Killing

vectors and invariant one-forms for Type VI are given in Appendix A of [34] (see also [65]),

ξ1 = ∂y, ξ2 = ∂z, ξ3 = ∂x + y∂y + hz∂z (2.42)

and

ω1 = e−xdy, ω2 = e−hxdz, ω3 = dx . (2.43)

These depend on the parameter h.

The Type V algebra is a special case of Type VI, and is obtained by setting h = 1. The

Killing vectors and invariant one-forms can then be obtained from eq.(2.42) and eq.(2.43)

by setting h = 1. Similarly the Type III algebra is also a special case obtained by setting

h = 0, with the Killing vectors and one-forms given by setting h = 0 in the equations above.

To keep the discussion simple, we restrict ourselves to only considering the case h = −1 for

Type VI, besides also considering the Type V and Type III cases.

The invariant one-forms for Type VI with h = −1 are

ω1 = e−xdy, ω2 = exdz, ω3 = dx. (2.44)

Bianchi Type VI attractor solutions, for the case h = −1, were obtained in Section 4.2 of

[34] for a system of gravity coupled with a massive gauge field, with an action eq.(2.16).

The solution has a metric,

ds2B = R2[dr2 − e2βtrdt2 + e2β1r(ω1)2 + e2β2r(ω2)2 + e2β3r(ω3)2] (2.45)

18
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and a gauge field, eq.(2.19), with the invariant one-forms being given in eq.(2.44). As in

the discussion for Type II we will work in R = 1 units below. The exponents βt, β1, β2, β3

in the solution are then given in terms of Λ by

βt = v, (2.46)

β1 = β2 =
(−4 + Λ− u)v

24− 4Λ
, (2.47)

β3 = 0, (2.48)

while the mass and At are

m2 =
2

3
(8− Λ+ u), (2.49)

At =
−3v2 + u

6− Λ
, (2.50)

where

u =
√

−80 + 8Λ + Λ2, (2.51)

v =

[−28 + 5Λ + u

6

] 1
2

. (2.52)

Demanding that At,m
2, βt, β1, β2 be positive and u be real, we get Λ > 6. The Lifshitz

spacetime in the UV is also obtained as a solution of the same system, eq.(2.16). The metric

is given by eq.(2.24) and the gauge field by eq.(2.25). The exponent βt, β̃ and At are given

in eq.(2.26), (2.27) and (2.28) in terms of m2,Λ. We will take the value of Λ to be the same

in the IR Type VI and the UV Lifshitz theories. For simplicity we will also take condition

eq.(2.11) to hold so that the exponents along the time direction are the same, accordingly

we have denoted both of them as βt above.

The strategy we now follow is similar to the Type II case. The interpolating metric is given

by eq.(2.13), which when written out in full becomes

ds2 = dr2 − e2βtrdt2

+

[(

1− tanhσr

2

)

+

(

1 + tanhσr

2

)

e2β̃r
]

dx2

+

[(

1− tanhσr

2

)

e2β1r−2x +

(

1 + tanhσr

2

)

e2β̃r
]

dy2

+

[(

1− tanhσr

2

)

e2β2r+2x +

(

1 + tanhσr

2

)

e2β̃r
]

dz2.

(2.53)

As in the Type II case, we again require that the interpolating metric correctly asymptotes

to Type VI in the IR and Lifshitz in the UV. This now imposes the lower bound

σ > β1 − β̃ = β2 − β̃. (2.54)
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We remind the reader again that the r → +∞ limit is taken while keeping x fixed to obtain

this bound.

We take Λ (in R = 1 units) to have the value given in eq.(2.41). The lower bound for σ then

becomes, σ > 0.0579912. The matter stress tensor is then calculated as given in eq.(2.34)

and we examine its properties with respect to the energy conditions numerically.

The numerical analysis shows that as σ is increased violations of the null energy condition

start setting in around σ = 1.15993. The weak energy condition is not violated for smaller

values of σ. Thus, as in the the Type II case, there is a non-vanishing interval for σ

within which the metric has the correct asymptotic behavior and the weak and null energy

conditions are both met.

To illustrate this, consider the case when σ = 1, which lies within this interval. The

minimum of the eigenvalues of the spatial eigenvectors turns out to be λ2, where the

eigenvalues are defined in eq.(2.35)–eq.(2.39). The plots of λ0 and min(λc − λ0) = λ2 − λ0,

are given in fig. 2.5, 2.6, as a function of the r, x coordinates. We see that the qualitative

behavior is similar to that in Type II. λ0 is always negative. And λ2 − λ0 is positive but

there is a worrisome region around r = 5 where this difference of eigenvalues becomes small.

We have analyzed this region more carefully further. One finds that for any fixed r ∈ [4, 9]

the minimum value for λ2 − λ0 is attained as |x| → ∞ and moreover this minimum value

is positive. An analytic expression for this minimum value was also obtained and agrees

with the numerical results. This is shown in fig. 2.7 where this minimum value is plotted

as a function of r and shown to be positive. These results establish that the interpolating

metric eq.(2.53) satisfies both the weak and the null energy conditions when σ takes values

within a suitable range.

2.4.1 Type III

Since the analysis follows that of the Type VI case closely we will be more brief for this

case.

The invariant one-forms for Type III, see Appendix A of [34], are given by

ω1 = e−xdy, ω2 = dz, ω3 = dx. (2.55)

Solutions of Type III for the system described by the action eq.(2.16) exist and have been

discussed in section 4.2.2 of [34]. These take the form eq.(2.45), eq.(2.19) for the metric

and gauge field. The exponents βt, β1, β2, the gauge field At and m
2 (in R = 1 units) are
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Figure 2.5: Type VI 3D plot of λ0 (time-like eigenvalue) versus r and x for σ = 1, Λ = 12.

Figure 2.6: Type VI 3D plot of min(λc − λ0) versus r and x for σ = 1, Λ = 12.

21

bianchiint/6weak.eps
bianchiint/6null.eps


Chapter 2

Figure 2.7: Type VI list plot of min(λc − λ0) versus r as x→ ±∞ for σ = 1, Λ = 12.

given by

βt = v, (2.56)

β1 = β3 = 0, (2.57)

β2 =
(−2 + Λ− u)v

6− 2Λ
, (2.58)

m2 =
1

2
(4− Λ+ u), (2.59)

At =
−4v2 + 2u

3− Λ
, (2.60)

where

u =
√

−8 + Λ2, (2.61)

v =

√
−8 + 3Λ + u

2
. (2.62)

Demanding that At,m
2, βt, β2 be positive and u to be real, we get Λ > 3. To obtain the

desired interpolation from a Bianchi Type III solution to Lifshitz, we follow the strategy

adopted in case of Type II, VI, above, and consider the following interpolating metric:

ds2 = dr2 − e2βtrdt2

+

[(

1− tanhσr

2

)

+

(

1 + tanhσr

2

)

e2β̃r
]

dx2

+

[(

1− tanhσr

2

)

e−2x +

(

1 + tanhσr

2

)

e2β̃r
]

dy2

+

[(

1− tanhσr

2

)

e2β2r +

(

1 + tanhσr

2

)

e2β̃r
]

dz2.

(2.63)
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Figure 2.8: Type III 3D plot of λ0 (time-like eigenvalue) versus r and x for σ = 0.3, Λ = 12.

Requiring this interpolating metric to correctly asymptote to Type VI in the IR and Lifshitz

in the UV imposes the following lower bound: σ > β2 − β̃. We choose Λ = 12 in R = 1

units. The lower bound for σ then becomes, σ > 0.0456046.

Furthermore, we numerically find that violations of the null energy condition start setting

in around σ = 0.40108. The weak energy condition is not violated for smaller values of

σ. Thus, we find once again that there is a range of values for σ for which the metric

asymptotes to the required forms and for which the weak and null energy conditions are

preserved.

To illustrate this, we choose σ = 0.3 which lies in the allowed region. The plots of λ0 and

min(λc−λ0) = λ2−λ0, where λ0 and λ2 are as defined in eq.(2.35) and eq.(2.37), are given

in fig. 2.8 and fig. 2.9. We see that λ0 is always negative. And λ2 − λ0 is positive but this

difference becomes small near r ∼ 10 − 15 as x → −∞. We examined this region in more

detail and find that for any fixed r in this region λ2 − λ0 attains its minimum value as x is

varied for x → −∞ and this minimum value is indeed positive. An analytic expression for

this minimum value was obtained, and agrees with the numerical analysis. In fig 2.10 we

plot this minimum value, attained when x → −∞, for λ2 − λ0 against r. We see that the

minimum value is positive. These results establish that the interpolating metric eq.(2.63)

in the Type III case also meets the weak and null energy conditions for a suitable range of

σ values.
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Figure 2.9: Type III 3D plot of min(λc − λ0) versus r and x for σ = 0.3, Λ = 12.

Figure 2.10: Type III list plot of min(λc − λ0) versus r as x→ −∞ for σ = 0.3, Λ = 12.
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2.4.2 Type V

The invariant one-forms in the Type V case are

ω1 = e−xdy, ω2 = e−xdz, ω3 = dx. (2.64)

Solutions of Type V for the system, eq.(2.16) take the form eq.(2.8), eq.(2.19). The

parameters, βt, β1, β2, m
2, At, are given by

βt =
√
−4 + Λ, (2.65)

β1 = β2 = β3 = 0, (2.66)

m2 = 0, (2.67)

At =
2(6− Λ)

4− Λ
. (2.68)

Demanding that At, βt be positive and real respectively, we get Λ > 6. Starting from this

metric in the IR one would like to consider a metric of the form eq.(2.13) which interpolates

to Lifshitz space in the UV. However, it turns out that in this case interpolations of the the

type eq.(2.63) violate the null energy condition for all values of σ.

The failure of the interpolating metric to work in this case can in fact be understood

analytically. It is tied to the fact that the Type V solution has one important difference

with the other kinds of solutions, Type II, VI, III, studied above. Here, it turns out that

the smallest eigenvalue of T
(matter)µ
ν corresponding to a space-like eigenvector, min(λc), c =

1, 2, 3, 4, is exactly equal to the eigenvalue corresponding to the time-like eigenvector, λ0,

and thus the null energy condition eq.(2.2) is met as an equality. This case is therefore

much more delicate.

In fact, a perturbative analysis reveals that once the Type V metric is deformed by consid-

ering the full interpolating metric given in eq.(2.63), the splitting which results as r → −∞
goes in the wrong direction, making min(λc) − λ0 < 0 for any value of σ, leading to a

violation of the null energy condition.

2.5 From Type IX To AdS2 × S3

The symmetry algebra for Bianchi Type IX is SO(3) and its natural action is on a compact

space corresponding to a squashed S3. Therefore, for Type IX it is natural to explore

interpolations going from a Type IX attractor geometry to AdS2×S3 instead of AdS2×R3

or Lifshitz.

The strategy we use for finding such an interpolation is different from what was used in

the cases above. It is motivated by the fact that the SO(3) symmetry for Type IX is a

subgroup of the symmetries of S3, SO(3) × SO(3). The interpolating metric we consider
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will therefore be obtained by introducing a deformation parameter which allows the spatial

components of the metric to go from that of a squashed S3 in the IR to the round S3 in

the UV. This is somewhat akin to what was done in [34] to find an interpolation between

Type VII and Type I.

The invariant one-forms for Bianchi Type IX are

ω1 = − sin(z) dx+ sin(x) cos(z) dy,

ω2 = cos(z) dx + sin(x) sin(z) dy,

ω3 = cos(x) dy + dz.

One finds that a Type IX attractor solution arises in a system of Einstein gravity with the

cosmological constant Λ, coupled to two gauge fields, A1, A2 with action

S =

∫

d5x
√−g

(

R+Λ− 1

4
F 2
1 − 1

4
F 2
2 − 1

4
m2A2

2

)

. (2.69)

Note that A1 is massless while A2 has (mass)2 = m2.

In this solution the metric is given by

ds2 = R2[dr2 − e2βtrdt2 + (ω1)2 + (ω2)2 + λ (ω3)2] (2.70)

and the two gauge fields are

A1 =
√

At e
βtrdt, A2 =

√

As ω
3 =

√

As (cos(x)dy + dz). (2.71)

Note that λ in eq.(2.70) is the deformation parameter we had mentioned above.

In R = 1 units, the equations of motion which follow from eq.(2.69) give rise to the following

relations,

m2 = −2λ, At =
2(−λ+ 2Λ + 4)

−λ+ 2Λ + 3
, (2.72)

As = 1− λ, βt =

[−λ+ 2Λ + 3

2

]
1
2

. (2.73)

These relations can be thought of as determining As, At, βt, λ in terms of Λ and m2.

Note that the conditions As, At ≥ 0, Λ > 0 imply, from eq.(2.72) and eq.(2.73), the relation

λ ≤ 1. (2.74)

It is easy to see that for λ = 1, this solution becomes3 AdS2 × S3, and for any other value

of λ between 0 and 1, it is Type IX.

3We note that (ω1)2 + (ω2)2 + (ω3)2 may be obtained as the pullback of the standard Euclidean metric
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Let us make one comment before proceeding. Eq.(2.72) and Eq.(2.73) give four relations

and at first it might seem that they determine the four parameters At, As, λ, βt and therefore

determine the solution completely. However, since we have set the radius R = 1, this is

not the case and the solution in fact contains one undetermined parameter. This becomes

clear if we consider the λ = 1 case, where As = 0 and the massive gauge field vanishes.

The resulting solution is AdS2 × S3 which is the near-horizon extremal RN solution. This

solution has one free parameter, which we can take to be At, the value of the massless gauge

field which determines the electric field of this gauge field. Or we can take it to be R. In

the interpolation below, we will take the free parameter to be R, and set R = 1, keeping its

value fixed as the radial coordinate r varies.

It turns out that for the solution given above in eq.(2.70), eq.(2.71), eq.(2.72), eq.(2.73),

for any given λ, the null energy condition is satisfied but as an equality, with the smallest

eigenvalue of a space-like eigenvector of T
(matter)µ
ν , min(λc), being equal to the eigenvalue

for the time-like eigenvector, λ0. This is analogous to what we saw above in the Type V

case. However, here because the symmetries involved are different, we can choose another

kind of interpolation, as mentioned in the beginning of this section.

We do this by taking λ to be a function of r of the form

λ(r) = C + (1− C)

(

1 + tanh(σr)

2

)

(2.75)

where C, and σ are constants, with 0 < C < 1, to meet eq.(2.74). We find that the

degeneracy between min(λc), λ0 is now lifted. Unlike the Type V case though, this lifting

occurs so that min(λc) − λ0 > 0, if σ is sufficiently small, thus preserving the null energy

condition, eq.(2.2). If σ becomes bigger than a critical value, violations of the NEC set in.

For example, for the choice of Λ = 12, and C = 0.5 we find that the energy conditions are

met for a range of σ up to σcrit = 1.82. For 0 < σ ≤ 1.82 and C = 0.5 both eq.(2.4), eq.(2.5)

are met, so that the interpolating metric above satisfies the WEC and hence also the NEC.

For C = 0.5, σ = 0.5, the results are summarized in fig. 2.11 and 2.12. Fig. 2.11 shows that

λ0 satisfies the condition λ0 < 0. And fig. 2.12 shows that min(λc − λ0) > 0. As r → ±∞
the interpolation approaches a solution of the type considered in eq.(2.70), eq.(2.71), and

the value of min(λc − λ0) → 0. However, we have verified that at both ends, r → ±∞,

min(λc − λ0) approaches zero from above so that the NEC continues to hold. Together,

these results imply that T
(matter)µ
ν satisfies the weak energy condition, and therefore also

the null energy condition.

on R4 (with coordinates W,X, Y, Z) under the following S3 embedding:

W = cos
(x

2

)

cos
(y + z

2

)

, X = cos
(x

2

)

sin
(y + z

2

)

,

Y = sin
(x

2

)

cos
(y − z

2

)

, Z = sin
(x

2

)

sin
(y − z

2

)

.
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Figure 2.11: Type IX 3D plot of λ0 (time-like eigenvalue) versus r and x for C = 0.5, σ =
0.5, Λ = 12.

Figure 2.12: Type IX 3D plot of min(λc−λ0) versus r and x for C = 0.5, σ = 0.5, Λ = 12.
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2.6 C-function

In this section, we investigate a large class of geometries of the form

ds2 = −gtt(r)dt2 + dr2 + gij(x
i, r)dxidxj (2.76)

which interpolate between two Bianchi attractor spacetimes. The Bianchi attractors arise

at the UV and IR ends, r → ±∞ respectively, where the geometry takes the scale invariant

form, eq.(2.8), with the exponents βt, βi being constant and positive. The UV and IR ends

are defined by the redshift factor, gtt, which decreases from the UV to the IR.

We find that as long as the matter sourcing the geometry satisfies the null energy condition,

the area element of the submanifold spanned by the xi coordinates (at constant t, r)

monotonically decreases with r, obtaining its minimum value in the IR. For a Bianchi

attractor, eq.(2.8), the area element is proportional to e
∑
i βir and diverges in the UV,

r → ∞, while vanishing in the IR, r → −∞. The only exception is when the exponents

βi all vanish, as happens for example in AdS2 × R3 space, in which case the area element

becomes a non-zero constant. We also find an additional function, which we will refer to

as the C-function below, which is monotonically decreasing from the UV to the IR. For an

AdS attractor, this function attains a constant value and is the central charge. For other

Bianchi attractors meeting a specific condition, given in eq.(2.93) below, this function also

flows to a constant in the near-horizon region. More generally, when this specific condition

is not met, the function either vanishes or diverges as r → ±∞. All of these results are

most easily derived by applying Raychaudhuri’s equation to an appropriately chosen set of

null geodesics in the geometry, eq.(2.76).

Let us note that the flows we study include interpolations between two AdS spacetimes

which at intermediate values of r can break not only Lorentz invariance but also spatial

rotational invariance and translational invariance. As long as the UV and IR geometries are

AdS, our results imply that the IR central charge must be smaller than the UV one. Our

results therefore lead to a generalization of the holographic C-theorem for flows between

conformally invariant theories which can also break boost, rotational and translational

symmetries. This is in contrast to much of the discussion in the literature so far, which has

considered only Lorentz invariant flows.

Besides the area element and the C-function mentioned above, and of course monotonic

functions of these, for example, powers of the area element or the C-function, we do not

find any other function which in general would necessarily be monotonic as a consequence

of the null energy condition. As was mentioned above, both the area element and the

C-function do not in general attain finite non-vanishing values in the asymptotic Bianchi

attractor regions. This suggests that for Bianchi attractors in general, no analogue of a

finite, non-vanishing, central charge can be defined which is monotonic under RG flow. This

conclusion should apply for example to general Lifshitz spacetimes (see also a discussion of
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these cases in [66]). When the Bianchi attractor meets the specific condition of eq.(2.93),

the C-function does become a finite constant and the analogue of the central charge can

be defined. Understanding this constant in the field theory dual to the Bianchi attractor

would be a worthwhile thing to do.

2.6.1 The Analysis

We now turn to describing the analysis in more detail. Our notation will follow that of

[67], Section 9.2. The analysis is also connected to the discussion of a C-function in [68].

A nice discussion of the C-function in AdS space can be found in Section 4.3.2 of [69]. For

discussions of renormalization group flows in the context of the AdS/CFT correspondence,

see [70, 71, 72, 73, 74]. The earliest proofs of holographic C-theorems appear in [75], [76],

and our strategy is a generalization of the one employed there.

We start with a spacetime described by the metric, eq.(2.76), and consider a 3-dimensional

submanifold spanned by the xi coordinates for any fixed r, t. Next, we consider a family

of null geodesics which emanate from all points of this submanifold. If na is the tangent

vector of the null geodesic, with a taking the values a = t, r, i = 1, 2, 3, then the geodesics

we consider have ni = 0 so that they correspond to motion only in the radial direction.

Both the radially in-going and out-going families of this type form a congruence. To arrive

at our results, it is enough to consider any one of them and we consider the radial out-

going geodesics below. The time-like component of the vectors in this congruence, nt, is a

constant which we can set to unity,

nt = 1. (2.77)

Then for the radially outgoing geodesics

nr =
dr

dλ
=

1√
gtt
, (2.78)

where λ is the affine parameter along the geodesic.

Now we take the tensor field

Bab = ∇bna (2.79)

and consider its components for a, b = i, j = 1, 2, 3. In the notation of [67], this gives us the

components of B̂ab. It is easy to see that

Bij = −Γcijnc =
1

2

∂rgij
gtt

(2.80)

and thus Bij is symmetric so that the twist of the congruence vanishes. The expansion of

the congruence, denoted by θ, is then

θ =
1

2
∂rgij

gij√
gtt

= ∂r(lnA)
1√
gtt
, (2.81)
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where we have introduced the notation

A ≡
√

det(gij) (2.82)

to denote the area element of the hypersurface spanned by the xi coordinates for any

constant r, t.

From eq.(2.81) and eq.(2.78) we get that

dθ

dλ
=

1√
gtt
∂r

(

∂r lnA√
gtt

)

. (2.83)

Raychaudhuri’s equation then gives

dθ

dλ
= −1

3
θ2 − σ̂abσ̂

ab −Rcdn
cnd (2.84)

since the twist ω̂ab = 0. Note that the coefficient of the first term on the RHS is 1
3 and not

1
2 since we are in 4 + 1 dimensions and not 3 + 1 dimensions.

If the matter sourcing the geometry satisfies the null energy condition, the Ricci curvature

satisfies the relation Rcdn
cnd ≥ 0, leading to the conclusion from eq.(2.84) that dθ

dλ < 0.

From eq.(2.83), this in turn leads to

∂r

(

∂r lnA√
gtt

)

< 0. (2.85)

In the UV, r → ∞,
∂r lnA√

gtt
=
∑

i

βie
−βtr > 0 (2.86)

where βi, βt are the exponents corresponding to the UV attractor. It then follows from

eq.(2.85) that for all values of r, ∂r lnA√
gtt

> 0, and thus

∂r lnA > 0. (2.87)

This leads to our first result: the area element A, defined in eq.(2.82), decreases monotoni-

cally from the UV, r → ∞, to the IR, r → −∞.

Raychaudhuri’s equation, eq.(2.84) also leads to the conclusion that

dθ

dλ
+

1

3
θ2 ≤ 0, (2.88)

if the matter satisfies the null energy condition. From eq.(2.81), eq.(2.83) this leads to

∂r

(

(∂r lnA)A
1/3

√
gtt

)

< 0. (2.89)
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A monotonically decreasing function from the UV to the IR is therefore given by

C =

( √
gtt

(∂r lnA)A1/3

)3

. (2.90)

For a Bianchi attractor with exponents βt, βi, C becomes

C ∝
(

e(βt−β̄)r

3β̄

)3

, (2.91)

where we have defined

β̄ =
1

3

∑

i

βi. (2.92)

The overall power of 3 in the definition of C, eq.(2.90), is chosen so that in AdS space,

where βi = βt and C is a constant, it agrees with the usual definition of the central charge

up to an overall coefficient. More generally, C also becomes a constant for any Bianchi

attractor meeting the condition

βt = β̄ =
1

3

∑

i

βi (2.93)

and now takes a value

C ∝ 1

(
∑

i βi)
3 . (2.94)

However, for the general case of a Bianchi attractor which does not meet the condition in

eq.(2.93), C does not attain a constant value. In such situations, for C to be monotonically

decreasing towards the IR or constant, we need (βt − β̄) ≥ 0. Thus, we find that if the

attractor arises in the IR, then our C vanishes. On the other hand, if the attractor arises

in the UV, it diverges.

2.7 Comments and discussions

In this chapter, we constructed a class of smooth metrics which interpolate from various

Bianchi attractor geometries in the IR to Lifshitz spaces or AdS2 × S3 in the UV. We did

not show that these interpolating metrics arise as solutions to Einstein gravity coupled with

suitable matter field theories. However, for Bianchi Types II, VI (with parameter h = −1),

III and IX, we did show that were these geometries to arise as solutions to Einstein’s

equations, the required matter would not violate the weak or null energy conditions. It

is well known that the Lifshitz spaces (which are in fact attractors of Bianchi Type I) or

AdS2 × S3 geometry in turn can be connected to AdS5 in the ultraviolet, with no non-

normalizable deformation for the metric being turned on in the asymptotic AdS5 region.

Thus, our results establish that there is no barrier, at least at the level of energy conditions,

to having a smooth interpolating metric arise as a solution of the Einstein equations sourced

by reasonable matter, which connects the various Bianchi classes mentioned above with
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asymptotic AdS5 space. We should mention here that for Type VII geometries, which were

not investigated in this chapter, solutions with reasonable matter which interpolate from

the attractor region to AdS2 ×R3 or AdS5 are already known to exist [34].

The absence of any non-normalizable metric deformations in the asymptotic AdS5 region

in our interpolations suggests that the Bianchi attractor geometries can arise as the dual

description in the IR of field theories which live in flat space. The anisotropic and homo-

geneous phases in these field theories, described by the Bianchi attractor regions, could

arise either due to a spontaneous breaking of rotational invariance or due to its breaking by

sources other than the metric in the field theory. We expect both possibilities to be borne

out. For spin density waves, which correspond to Type VII, indeed this is already known

to be true [33, 34].

Finding such interpolating metrics as solutions to Einstein’s equations is not easy, as was

mentioned in the introduction, since it requires solving coupled partial differential equations

in at least two variables. We hope that the results presented here will provide some further

motivation to try and address this challenging problem. Perhaps it might be best to first

look for supersymmetric domain walls interpolating between different Bianchi types, since

for such solutions, working with first-order equations often suffices.

We also note that our smooth interpolating metric which interpolates from Bianchi Type

V to Lifshitz failed to satisfy the null energy conditions. Our failure in this case may be

due to the restricted class of functions we used to construct the interpolating metrics or it

might suggest a more fundamental constraint. We leave a more detailed exploration of this

issue for the future.

Towards the end of the chapter, we explored whether a C-function exists for flows between

two Bianchi attractor geometries. As long as the matter sourcing the geometry meets the

null energy condition, we found that a function can be defined which is monotonically

decreasing from the UV to the IR. In AdS space, this function becomes the usual central

charge. More generally though, unless the Bianchi attractor meets a specific condition

relating the exponents βi, βt which characterize it, the function we have identified does not

attain a finite, non-vanishing constant value in the attractor geometry. The absence of a

general monotonic function which is non-vanishing and finite in the attractor spacetime

suggests that no analogue of a central charge, which is monotonic under RG flow, can be

defined in general for field theories dual to the Bianchi attractors. For flows between AdS

spacetimes, on the other hand, our analysis implies that the central charge decreases even

under RG flows which break boost, rotational and translational invariance.
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Bianchi III attractor in Gauged

Supergravity

3.1 Introduction

In the last chapter, we saw how the Bianchi type metrics can be shown to numerically

interpolate to Lifshitz or AdS2 × S3 from which they can be connected to AdS5 [77].

In particular, we have been able to show that the matter sourcing these interpolating

geometries obeys reasonable energy conditions. This provides some evidence towards the

expectation that they are attractor geometries.

The attractor mechanism has been thoroughly studied for extremal black holes in su-

pergravity theories [78, 79].1 Originally studied for supersymmetric black holes, it was

understood later that the attractor mechanism is a consequence of extremality rather than

supersymmetry [82], and has been shown to work for extremal non-supersymmetric black

holes [83, 84]. Recently much progress has been made towards the generalization of attractor

mechanism for gauged supergravity theories [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]. The

simplest Bianchi type I geometries such as Lifshitz geometries have already been embedded

in gauged supergravity [96, 97].

A prescription fairly general enough to capture the essential features of homogeneous

geometries as generalised attractor solutions of gauged supergravity was given in [89]. The

generalised attractors are defined as solutions to equation of motion when all the fields and

curvature tensors are constants in tangent space. These solutions are characterised by con-

stant anholonomy coefficients and are regular by construction. Following this prescription

some of the Bianchi type geometries were embedded in five dimensional gauged supergravity

[95].

The generalised attractor solutions existed at critical points rather than an absolute min-

1See [80, 81] for recent reviews on the subject.
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imum of the attractor potential. The stability of such solutions for small perturbations

of the scalar fields about the attractor value were studied [94]. By stability, we mean an

investigation on the response of a system subject to linearized perturbations of the fields

about their fixed point values. If the perturbations are regular as opposed to being divergent

when one approaches the fixed point, then it is a stable attractor. There is also the notion

of stability as described by the B.F. bound [98, 99]. However, we do not discuss this here.

It was found in [94], that the stress energy tensor in gauged supergravity depends on

linearized scalar fluctuations due to the interaction terms. Therefore, for back-reaction to

be small as one approaches the attractor geometry, the scalar fluctuations are required to

be regular near the horizon. For the solutions constructed in [94, 95], the scalar fluctuations

about the critical values were regular near the horizon only when the Bianchi geometries

factorized as AdS2×M , where M is a homogeneous space of dimension three. The factorized

geometries have the unphysical property that the entropy does not vanish as the temperature

goes to zero.

In this chapter, we seek to construct interesting class of Bianchi type solutions which do

not factorize and are stable under linearized scalar fluctuations. Our strategy is to rely on

the conventional wisdom of the physics of stable attractor points for extremal black holes.

Namely, there are two sufficient conditions for the attractor mechanism [84]. First, there

must exist a critical point of the effective potential. Second, the Hessian of the effective

potential evaluated at the solution must have positive eigenvalues. These two conditions

are always met by supersymmetric solutions. For non-supersymmetric extremal black hole

solutions the above two conditions are sufficient to guarantee a stable attractor.

Keeping the above strategy in mind, we construct a new magnetic Bianchi type III solution

in Einstein-Maxwell theory with massless gauge fields. We show that it can be embedded in

U(1)R gauged supergravity via the generalised attractor procedure. We find that there are

a large class of type III solutions that exist at a critical point corresponding to a minimum

of the attractor potential. We do a linearized fluctuation analysis of the scalar field about

its attractor value. For the scalar fluctuations sufficient conditions for a stable attractor

discussed in the above paragraph guarantees the existence of a solution which dies out at

the horizon. We then determine the gauge field and metric fluctuations that are sourced by

scalar fluctuations. We find that the simplicity of the solution causes the source term in the

gauge field fluctuations to vanish. Hence there are no gauge field fluctuations sourced by

the scalar fluctuations in this case. As a result the metric fluctuations are sourced purely

by scalar fluctuations. We solve the equations for the metric fluctuations with the source

terms and show that they vanish as one approaches the horizon. Thus, the type III example

we have constructed is a stable attractor.

The results of the stability analysis are as follows. The Bianchi type III metric

ds2 = −r̂2βtdt̂2 + dr̂2

r̂2
+ dx̂2 + e−2x̂dŷ2 + r̂2βtdẑ2 (3.1)
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which has the scaling symmetries

t̂→ t̂

αβt
, r̂ → αr̂ , x̂→ x̂ , ŷ → ŷ , ẑ → ẑ

αβt
, (3.2)

is a generalised attractor solution in gauged supergravity. The solution exists at a critical

point φc such that
∂Vattr
∂φ

∣

∣

∣

∣

φc

= 0 ,
∂2Vattr
∂φ2

∣

∣

∣

∣

φc

> 0 , (3.3)

where Vattr is the attractor potential. The above conditions are expressed in terms of some

free parameters in gauged supergravity that are not fixed by any symmetries and are met

for a wide range of values. Thus a class of solutions exists at a minimum of the attractor

potential and the Hessian has a positive eigenvalue. The scalar field fluctuations δφ about

the attractor values are of the form

δφ ∼ r̂∆ , ∆ > 0 . (3.4)

The scalar fluctuations are regular near the horizon r̂ → 0. All the metric fluctuations γµν

are of the form

γµν ∼ gµν r̂
∆ (3.5)

and are regular near the horizon. Thus, we have a class of Bianchi III solutions which are

stable with respect to linearized fluctuations of scalar, gauge field and metric fluctuations

about the attractor value. The solution is an example of a stable Bianchi attractor in

gauged supergravity.

Given that the solution is a stable Bianchi attractor, we also investigate its supersymmetry

properties. The study of supersymmetry of Bianchi attractors is very interesting since it

can lead to solutions such as domain walls interpolating between Bianchi attractors and

AdS. Besides, supersymmetry equations are first order differential equations and are often

easier to solve. Earlier studies on supersymmetry of Bianchi type metrics have focused on

the Bianchi I class. The simplest of which is AdS space. In this case, there are two types of

Killing spinors, one which is purely radial and the other which depends on all coordinates

[100, 101]. The radial spinor generates the Poincaré supersymmetries while the other spinor

generates the conformal supersymmetries. The earliest works were on supersymmetric black

string solutions whose near horizon geometries take the form AdS3 × H
2 [102, 103]. The

Supersymmetry of the Bianchi I metrics such as Lifshitz, have also been studied in four

dimensional gauged supergravity [96, 97]. In five dimensional U(1)3 gauged supergravity

Bianchi I types such as AdS2×R
3, AdS3×R

2 have been found to be supersymmetric [104].

In the above cases the geometries preserve 1/4 of the supersymmetry and the Killing spinor

equations were solved for a spinor which depended only on the radial direction.

In this spirit, we study the Killing spinor equations of N = 2, U(1)R gauged supergravity in

the background of the Bianchi type III metric. We choose the radial ansatz for the Killing
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spinor, since it preserves the time translation symmetries and homogeneous symmetries of

the type III metric. However, we find that the radial ansatz breaks all the supersymmetries.

This suggests that the stable type III solution that we have constructed may be a non-

supersymmetric attractor.

The chapter is organised as follows. In §3.2 we construct a magnetic Bianchi type III

solution in Einstein-Maxwell theory with massless gauge fields. Following that, we provide

some background in U(1)R gauged supergravity and generalised attractors in §3.3.1 and

§3.3.2. In the next subsection §3.3.3 we embed the Bianchi type III solution in the U(1)R

gauged supergravity. We discuss the linearized fluctuation analysis of the gauge field, scalar

field and metric in §3.4. We analyze the Killing spinor equation in gauged supergravity

with the background Bianchi type III metric in §3.5. We conclude and summarize our

results in §3.6. We summarize some of the notations and conventions in §B.1. We provide

some details regarding the linearized Einstein equations in §B.2 and list the coefficients that

appear in the metric fluctuations in §B.3.

3.2 Bianchi III solution in Einstein-Maxwell theory

We begin with a quick review of some elements of the Bianchi III symmetry. The Bianchi

classification of real Lie algebras in three dimensions is well known in the literature [105,

106]. There are nine types of such algebras. In three dimensional Euclidean space, Killing

vectors that generate homogeneous symmetries close to form Lie algebras that are isomor-

phic to the Bianchi classification.

The Bianchi III algebra is generated by the Killing vectors Xi

X1 = ∂ŷ , X2 = ∂ẑ , X3 = ∂x̂ + ŷ∂ŷ , (3.6)

[X1,X3] = X1 . (3.7)

The only non trivial Killing vector is the translation in the x̂ direction that is accompanied

by a unit weight scaling in the ŷ direction. To write a metric which is manifestly invariant

under this symmetry, one identifies the vector fields ẽi that commute with the Killing vectors

[ẽi,Xj ] = 0 . (3.8)

The invariant vector fields for the type III case are

ẽ1 = ex̂∂ŷ , ẽ2 = ∂ẑ , ẽ3 = ∂x̂ , (3.9)

[ẽ1, ẽ3] = −ẽ1 , [ẽ1, ẽ2] = 0 , [ẽ2, ẽ3] = 0 . (3.10)

Note that ẽ1 and ẽ3 form a sub-algebra. This sub-algebra is generated by the Killing vectors

of the hyperbolic space H2 in two dimensions. The two dimensional analogue of the Bianchi
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classification consists of two distinct algebras. One is a trivial algebra with commuting

generators corresponding to R
2 and the other is the algebra that corresponds to H

2 [106].

The duals of the ẽi are one forms ωi

ω1 = e−x̂dŷ , ω2 = dẑ , ω3 = dx̂ , (3.11)

that are invariant under the type III homogeneous symmetry. The invariant one forms

satisfy the relation

dω1 = ω1 ∧ ω3 . (3.12)

The metric written in terms of the invariant one forms

ds23 = (ω1)2 + (ω2)2 + (ω3)2 (3.13)

is manifestly invariant under the homogeneous type III symmetries.

We are interested in five dimensional black brane horizons with homogeneous symmetries in

the spatial directions. These geometries are obtained from gravity coupled to simple matter

in the presence of a cosmological constant and are known as the Bianchi attractors [2, 107].

For the purposes of this article, we construct a simple type III solution in Einstein-Maxwell

theory sourced by a single massless gauge field and a cosmological constant. We take the

type III metric to be of the form

ds2 = −r̂2βtdt̂2 + dr̂2

r̂2
+ (ω3)2 + (ω1)2 + r̂2β2(ω2)2 , (3.14)

where βt, β2 are positive exponents. For the case βt = β2, the metric becomes AdS3×EAdS2.
To see this we substitute for the invariant one forms from (3.11) and make the coordinate

transformation x̂ = ln ρ̂ to get,

ds2 =
(

−r̂2βtdt̂2 + dr̂2

r̂2
+ r̂2βtdẑ2

)

+

(

dŷ2 + dρ̂2

ρ̂2

)

. (3.15)

When one performs a Kaluza-Klein reduction of the above solution one gets the AdS2 ×
EAdS2 solution in four dimensions with hyper scale violation [2].

We now construct the Type III solution (3.14) in Einstein-Maxwell theory. The action is of

the form

S =

∫

d5x
√−g(R− 1

4
FµνFµν + Λ) , (3.16)

where Λ > 0 corresponds to Anti de-Sitter space in our conventions. We are interested in a

magnetic solution and we choose the gauge field to have components along the ω1 direction

A = A3ω
1, (3.17)
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where A3 is a constant.2 The gauge field equations are automatically satisfied with this

ansatz and the independent trace reversed Einstein equations are

A2
3 − 6βt(β2 + βt) + 2Λ = 0 ,

A2
3 − 6(β22 + β2t ) + 2Λ = 0 ,

−A2
3 − 3 + Λ = 0 ,

A2
3 − 6β2(β2 + βt) + 2Λ = 0 . (3.18)

The t̂t̂ and ẑẑ equations imply

β2 = βt (3.19)

and the rest of the equations give the solution

Λ = 1 + 4β2t , A3 =
√

−2 + 4β2t . (3.20)

Thus we have a magnetic type III solution sourced by a massless gauge field and parametrized

by βt, which satisfies the condition

β2t >
1

2
, (3.21)

such that A3 is real. In the following section, we construct a similar solution in U(1)R

gauged supergravity.

3.3 Gauged supergravity and generalised attractors

3.3.1 Gauged supergravity

In this section, we review essential material in N = 2, d = 5 gauged supergravity relevant

for our purpose. The general supergravity coupled to vector, tensor, hyper multiplets with

a gauging of the symmetries of the scalar manifold and R symmetry is discussed in [108].

We work with the N = 2, d = 5 gauged supergravity coupled to a single vector multiplet

and a gauging of the U(1)R symmetry [109, 110, 111, 112].

The gravity multiplet consists of two gravitinos ψiµ, i = 1, 2, and a graviphoton. The vector

multiplet consists of a vector Aµ, a real scalar φ and the gaugini λi. The vector in the

vector multiplet and the graviphoton are collectively represented by AIµ, I = 0, 1.

The scalars in the theory parametrize a very special manifold described by the cubic surface

(see for eg [113])

N ≡ CIJKh
IhJhk = 1 , hI ≡ hI(φ) . (3.22)

The constants CIJK are real and symmetric. The condition (3.22) is solved by going to a

2The notation A3 is just chosen for convenience.
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basis [109, 110], with hI =
√

2
3ξ
I |N=1 such that,

N(ξ) =
√
2ξ0(ξ1)2 = 1 , (3.23)

where,

ξ0 =
1√
2φ2

, ξ1 = φ . (3.24)

From the definition of the basis, we find that the hI are related to the scalars φ in the

Lagrangian through

h0 =
1√
3φ2

, h1 =

√

2

3
φ . (3.25)

It is clear from the scalar parametrization that the only non-zero coefficients for CIJK are

C011 =
√
3/2 and its permutations.

The ambient metric used to raise and lower the index I is defined through

aIJ = −1

2

∂

∂hI
∂

∂hJ
lnN |N=1 , (3.26)

and takes the form

aIJ =

[

φ4 0

0 1
φ2

]

. (3.27)

The metric on the scalar manifold is obtained from the ambient metric (3.26) through

gxy = hIxh
J
yaIJ , hIx = −

√
3

2

∂hI

∂φx
. (3.28)

Since we only have a single scalar field, using the equations (3.25) and (3.26) we obtain

g(φ) =
3

φ2
. (3.29)

The field content and the various definitions above are identical to the ungauged theory.

The difference in the gauged theory is the presence of a scalar potential. The process of

gauging converts some of the global symmetries of the Lagrangian into local symmetries.

One of the global symmetries enjoyed by the fermions in a N = 2 theory is the SU(2)R

symmetry. For the case of interest, we consider the gauging of the abelian U(1)R ⊂ SU(2)R.

The R symmetry is gauged by replacing the usual Lorentz covariant derivative acting on

the fermions with U(1)R gauge covariant derivative as follows

∇µλ
i → ∇µλ

i + gRAµ(U(1)R)δ
ijλj ,

∇µψ
i
ν → ∇µψ

i
ν + gRAµ(U(1)R)δ

ijψνj . (3.30)

We refer the reader to §B.1 for conventions on raising and lowering of the SU(2) indices.

The δij in the covariant derivatives are the usual Kronecker delta symbols and gR is the
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U(1)R gauge coupling constant. The U(1)R gauge field is a linear combination of the gauge

fields in the theory

Aµ(U(1)R) = VIA
I
µ , (3.31)

where the parameters VI ∈ R are free.3

The U(1)R covariantization breaks the supersymmetry and therefore compensating terms

are added to the Lagrangian for supersymmetric closure [112]. These terms result in the

form of a potential for the scalar fields,

V(φ) = −2g2RV1

[

2
√
2V0
φ

+ φ2V1

]

. (3.32)

The potential has a critical point at

φ∗ =

(√
2
V0
V1

)1/3

. (3.33)

The vacuum solution at this critical point is a supersymmetric Anti de-Sitter space with a

cosmological constant V(φ∗) = −6g2RV
2
1 φ

2
∗.

The bosonic part of the Lagrangian is

ê−1L =− 1

2
R− 1

4
aIJF

I
µνF

Jµν − 1

2
g(φ)∂µφ∂

µφ

− V(φ) + ê−1

6
√
6
CIJKǫ

µνρστF IµνF
J
ρσA

K
τ , (3.34)

where ê =
√

−detgµν and CIJK are the constant symmetric coefficients that appeared in

the definition of the scalar manifold (3.22).

We also list the various field equations for reference. The gauge field equations are

∂µ(êaIJF
Jµν) = − 1

2
√
6
ǫνλρστF JλρF

K
στ . (3.35)

The scalar field equations are

1

ê
∂µ(êg(φ)∂

µφ)− 1

2

∂g(φ)

∂φ
∂µφ∂

µφ− ∂

∂φ

[

1

4
aIJF

I
µνF

Jµν + V(φ)
]

= 0 (3.36)

and the Einstein equations are

Rµν −
1

2
Rgµν = Tµν , (3.37)

3When the gauging of R symmetry is accompanied by gauging of a non-abelian symmetry group K of
the scalar manifold, the VI are constrained by fIJKVI = 0, where fIJK are structure constants of K.
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where the stress energy tensor is

Tµν = gµν
[1

4
aIJF

I
µνF

Jµν + V(φ) + 1

2
g(φ)∂µφ∂

µφ
]

−
[

aIJF
I
µλF

J λ
ν + g(φ)∂µφ∂νφ

]

. (3.38)

3.3.2 Generalised attractors

We now outline a brief discussion on a class of solutions to the field equations known as

generalised attractors [89]. For a N = 2, d = 5 gauged supergravity with generic gauging of

scalar manifolds and in the presence of hyper/tensor multiplets, the generalised attractor

equations were shown to be algebraic in [95]. The U(1)R gauged supergravity discussed in

§3.3.1 is a special case of the general gauged theory. The relevant field equations which follow

from (3.34) can be simply obtained by setting the tensors, hyperscalars and the coupling

constant associated with gauging of the scalar manifold to zero in the field equations derived

in [95].

Generalised attractors are defined as solutions to equations of motion that reduce to alge-

braic equations when all the fields and Riemann tensor components are constants in tangent

space

φ = const , AIa = const , c c
ab = const , (3.39)

where a = 0, 1, . . . , 4, are tangent space indices. The c c
ab , referred to as anholonomy

coefficients are structure constants that appear in the Lie bracket of the vielbeins

[ea, eb] = c c
ab ec , ea ≡ eµa∂µ . (3.40)

In the absence of torsion, the spin connections are expressed in terms of the anholonomy

coefficients

ωabc =
1

2
(cabc − cacb − cbca) , (3.41)

which are constants.4 Thus the curvature tensor components expressed in terms of the spin

connections as

R d
abc = −ω e

ac ω
d

be + ω e
bc ω

d
ae − c e

ab ω
d

ec (3.42)

are constants in tangent space. Hence, the generalised attractor solutions characterised by

constant anholonomy coefficients and are regular.

At the attractor points defined by (3.39) the scalar field equation (3.36) reduces to the

condition
∂Vattr(φ,A)

∂φ
= 0 (3.43)

4The antisymmetry properties of the spin connection and anholonomy coefficients are ω bc
a = −ω cb

a and
c c
ab = −c c

ba respectively.
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on an attractor potential

Vattr(φ,A) =
1

4
aIJF

I
µνF

Jµν + V(φ) . (3.44)

Solving (3.43) gives the critical value of the scalar φc in terms of the charges A. The critical

point is a minimum when the Hessian has positive eigenvalues, which is also the condition

for a stable attractor solution [84].

We also list the tangent space generalised attractor equations for the gauge and Einstein

equations for reference. The gauge field equations are

aIJ(ω
a
a cF

Jbc + ω b
a cF

Jac) = 0 , (3.45)

where the the field strength is

F Iab ≡ eµb e
ν
a(∂µe

c
ν − ∂νe

c
µ)A

I
c = ccabA

I
c , (3.46)

and the Chern-Simons term vanishes for the Bianchi attractors [95]. The Einstein equations

are

Rab −
1

2
Rηab = T attrab , (3.47)

where

T attrab = Vattr(φ,A)ηab − aIJF
I
acF

Jc
b . (3.48)

In the following section we solve the algebraic attractor equations and find a Bianchi type

III solution.

3.3.3 Bianchi III solution in U(1)R gauged supergravity

We choose the Bianchi type III ansatz as before in eq.(3.14). The gauge field ansatz is also

same as before,

AIŷ = e−xAI3 , A0
3 ≡ A3 , (3.49)

where we have turned on only the graviphoton I = 0 for simplicity. Similar to the Einstein-

Maxwell case studied in §3.2 earlier, the gauge field equations (3.45) are trivially satisfied

in the U(1)R gauged supergravity as expected.

At the attractor point the scalars are constant. Hence the scalar equations reduce to

extremization of the attractor potential (3.43). The attractor potential has the form

Vattr(φ,A) =
1

2φ

(

A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3)
)

. (3.50)

The second term is the contribution of the potential (3.32). We would like to briefly contrast

the nature of the possible critical points possible from (3.50) as compared to some of the

earlier works [94, 95]. The Bianchi attractors constructed in gauged supergravity were
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attractor solutions such that the critical points of the attractor potential coincided with the

critical points of the scalar potential (3.32). This was a simplification which was possible

because the attractor potential had additional terms due to gauging of the scalar manifold

or with multiple field strengths in the absence of such gauging. For the U(1)R case with just

one gauge field considered here, the attractor potential (3.50) does not allow such critical

points for non-trivial gauge fields. It is also important to note that in [95], the Bianchi III

solution could not be obtained from the Bianchi VIh solution by taking the limit h → 0

since it resulted in a singular gauge field.5

The scalar field equation then reduces to,

∂Vattr(φ,A)
∂φ

=
2

φ2
(

A2
3φ

5 + 4g2RV1(
√
2V0 − V1φ

3)
)

= 0 . (3.51)

In principle, one can solve for φ from the above equation. In practice, it is much easier

to solve the scalar equation simultaneously with the Einstein equation to get nice compact

expressions.

The independent Einstein equations (3.37) are

2(1 + β22)φ+A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3) = 0 ,

2(1 + β2βt)φ+A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3) = 0 ,

2(β22 + β2βt + β2t )φ−A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3) = 0 ,

2(1 + β2t )φ+A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3) = 0 . (3.52)

From the t̂t̂ and the ẑẑ equations we get

β2 = βt . (3.53)

The equations now simplify to

2(1 + β2t )φ+A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3) = 0 ,

6β2t φ−A2
3φ

5 − 4g2RV1(2
√
2V0 + V1φ

3) = 0 . (3.54)

We solve for A3 from the above equations to obtain

A3 =

√

−1 + 2β2t
φ2

, (3.55)

and

(1 + 4β22 )φ− 4g2RV1(2
√
2V0 + V1φ

3) = 0 . (3.56)

This equation can be solved together with the scalar equation (3.51) to determine the critical

5The Bianchi VIh algebra has a free parameter h. The Bianchi V algebra is obtained in the limit h → 1,
while the Bianchi III algebra is obtained in the limit h → 0 [105, 106].
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point

φc = 4
√
2g2RV0V1 , βt =

1

2

√

1 + 128g6RV
2
0 V

4
1 (3.57)

For the gauge field to be real we require

β2t >
1

2
. (3.58)

We note that the same condition was obtained for the Type III solution in Einstein-Maxwell

theory (3.21). It is also clear from (3.57) that the condition is satisfied for arbitrary values

of the gauged supergravity parameters gR, V0, V1.

We now examine the nature of the critical point given by eqs.(3.57) and (3.55). The Hessian

evaluated at the critical point

∂2Vattr(φ,A)
∂φ2

∣

∣

∣

∣

φc

=
−7 + 8β2t

φ2c
(3.59)

is positive provided we choose

β2t >
7

8
. (3.60)

We choose this condition for β2t , since above this bound we also satisfy the general condition

for a stable attractor solution. In terms of the gauged supergravity parameters the condition

on β2t translates to

g6RV
2
0 V

4
1 >

5

256
, (3.61)

which can be satisfied for a wide range of values for the parameters gR, V0, V1, since none of

them are constrained in anyway. Thus, for various values of gR, V0, V1 satisfying (3.61) we

find a class of type III Bianchi metrics as generalised attractor solutions in U(1)R gauged

supergravity.

The attractor potential evaluated at the critical point given by (3.55) and (3.57) takes a

remarkably simple form

Vattr|φc = −(1 + β2t ) , (3.62)

which will be useful later. To summarize, the type III solution is

ds2 = −r̂2βtdt̂2 + dr̂2

r̂2
+ (ω3)2 + (ω1)2 + r̂2β2(ω2)2 ,

A3 =

√

−1 + 2β2t
φ2c

, φc = 4
√
2g2RV0V1,

β2 = βt, βt =
1

2

√

1 + 128g6RV
2
0 V

4
1 , β2t >

7

8
. (3.63)

We have seen that the Hessian of the effective potential evaluated on this solution has

a positive eigenvalue suggesting that it is a stable attractor. In the following section we

provide more evidence by considering linearized fluctuations of the scalar, gauge and metric
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fields about their attractor values and showing that they are well behaved near the horizon.

3.4 Linearized fluctuations about attractor value

In this section, we study the linearized fluctuations of the gauge field, scalar field and metric

about their attractor values. For N = 2, d = 5 gauged supergravity coupled to vector

multiplets with a generic gauging of the scalar manifold and gauging of R symmetry the

linearized equations were derived in [94]. The corresponding equations for the U(1)R case

that follow from (3.34) can be simply obtained by setting the coupling constant associated

with gauging of the scalar manifold to zero.

The linearized fluctuations about the attractor values are of the following form,

φc + ǫδφ(r̂) ,

Aµ + ǫδAµ(r̂) ,

gµν + ǫγµν(r̂) , (3.64)

where ǫ < 1. The attractor values of the scalar field and gauge field are φc, Aµ, respectively.

We take the near horizon metric gµν as the type III Bianchi metric (3.63). We have chosen

all the fluctuations to depend purely on the radial direction r̂, since it is this behavior that

is most interesting from the point of view of an RG flow. Also, this is the first thing to

attempt before going to much complicated cases. The magnetic type III solution (3.63)

offers lot of simplifications. In particular, we will see that the source term in the gauge field

fluctuations vanishes and this simplifies the procedure of solving for the metric fluctuations

later on.

3.4.1 Gauge field fluctuations

The equation satisfied by the linearized gauge field fluctuations is

aIJ |φc∇µF
µνJ
δ = −∂aIJ

∂φ

∣

∣

∣

∣

φc

∇µ(F
µνJδφ) , (3.65)

where

FµνJδ = ∂µδAν − ∂νδAµ , (3.66)

and FµνJ is the field strength corresponding to the attractor solution. We can simplify

(3.65) using the attractor equation for the gauge field (3.35), where the Chern-Simons term

vanishes and the scalars are independent of spacetime coordinates at the attractor point.

Thus we have

aIJ |φc∇µF
µνJ
δ = −∂aIJ

∂φ

∣

∣

∣

∣

φc

FµνJ∂µδφ . (3.67)
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For the gauge field ansatz (3.49), the non-trivial field strength component is only along

the F x̂ŷ direction. Since the scalar field fluctuation in (3.64) depends only on the radial

direction, the right hand side of (3.67) vanishes. Hence, there are no gauge field fluctuations

that are sourced by the scalar fluctuations in this case. Thus the linearized fluctuations of

the gauge field about the attractor value satisfy the attractor equation

aIJ |φc∇µF
µνJ
δ = 0 . (3.68)

From the point of view of the attractor mechanism in supergravity [78, 79], it is the behavior

of the scalar fields that is most relevant for our case. Hence, we do not consider any

independent gauge field fluctuations here. Thus, we can drop the gauge field fluctuations

for the rest of the analysis in the following sections.

In a general situation as opposed to the simple example considered here, the source term

in (3.67) need not vanish. In such a case, however one may still be able to solve the

problem in certain situations where the scalar fluctuation equations decouple from gauge

field fluctuations at linearized level [94]. So solving the linearized equation for scalar

fluctuations determines the source term in the gauge field fluctuation, which can then

in principle be solved. However, the situation becomes more complicated for the metric

fluctuations since both the gauge field and scalar fluctuations will enter through the stress

tensor.

Another notable simplification is that currently we are working with the U(1)R gauged

supergravity. When the gauging of the symmetries of scalar manifold is also considered

there are additional terms in (3.65) and solving for the gauge field fluctuations is much

harder in the presence of additional scalar source terms.6

3.4.2 Scalar fluctuations

We will now solve the linearized equations for the scalar fluctuations about the attractor

value φc. The linearized equation for the scalar field obtained from (3.34) takes a remarkably

simple form,

g(φc)∇µ∇µδφ− ∂2Vattr
∂φ2

∣

∣

∣

∣

φc

δφ = 0, (3.69)

where g(φ) and the attractor potential are defined in (3.29) and (3.50) respectively. Using

(3.59), we define

λ =
1

g(φc)

∂2Vattr
∂φ2

∣

∣

∣

∣

φc

=
−7 + 8β2t

3
(3.70)

6See for example, eq 3.5 of [94].
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which is positive for the solution of interest, since β2t >
7
8 . Using the expression for the

metric (3.3.3), equation (3.69) can be simplified as

[

r̂2∂2r̂ + (1 + 2βt)r̂∂r̂ − λ
]

δφ = 0 . (3.71)

The general solution for this equation is of the form

δφ = C1r̂
√
λ+β2

t−βt + C2r̂
−
√
λ+β2

t−βt . (3.72)

The type III metric (3.14) is written in a coordinate system such that the horizon is located

at r̂ = 0. We require the scalar fluctuations (3.64) to vanish as r̂∆ for ∆ > 0 such that

the scalar field approaches its attractor value as r̂ → 0. Therefore, we choose C2 = 0. The

other constant C1 cannot be fixed at this stage as the equation (3.69) is valid only near the

horizon. However, we can choose C1 = Cs ∈ R since the scalar fields in five dimensional

gauged supergravity are real. In addition, for non-trivial fluctuations Cs 6= 0. Thus the

scalar fluctuations which are well behaved near the horizon are of the form

δφ = Csr̂
∆ , ∆ =

√

λ+ β2t − βt . (3.73)

Note that, the condition obtained from (3.59) indeed ensures that the scalar fluctuations

are well behaved as r̂ → 0 near the horizon.

To fix the constants in the solution completely, one has to solve the scalar equation in the

background of a solution which interpolates from Bianchi III to AdS with appropriate

boundary conditions. Such interpolating metrics obeying reasonable energy conditions

that interpolate to Lifshitz or AdS2 × S3 which can then be connected to AdS have been

constructed numerically in [77]. However, they are not yet known to arise as solutions to

Einstein gravity coupled to some simple matter theory.

3.4.3 Metric fluctuations

In this section, we solve the linearized metric fluctuations about the type III metric, that

are sourced by scalar fluctuations (3.73). The linearized fluctuation equations of the metric

have the form [94],

∇α∇αγ̄µν + 2R α β
(µ ν) γ̄βα − 2R β

(µ γ̄ν)β + gµν(Rαβ γ̄
αβ − 2

3
Rγ̄) +Rγ̄µν

+2(Ṫ attrµν (gαβ + ǫγαβ)|ǫ=0 + Ṫ attrµν (φc + ǫδφ)|ǫ=0) = 0, (3.74)

where

γ̄µν = γµν −
1

2
γgµν , γ = gµνγµν , γ̄ = −3

2
γ . (3.75)

The dots indicate derivatives with respect to ǫ. The covariant derivatives, raising and

lowering are with respect to the near horizon metric gµν . The Riemann tensor, Ricci tensor
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and curvature that appear in (3.74) are also with respect to gµν .

The contribution of the linearized metric fluctuations from the stress energy tensor are

Ṫ attrµν (gαβ + ǫγαβ)|ǫ=0 =Vattr|φc(γ̄µν −
2γ̄

3
gµν)

− (γ̄λσ −
γ̄

3
gλσ)(

1

2
T λσattr |φcgµν + aIJ |φcF I λµ F J σ

ν ). (3.76)

where

T attrµν = Vattr|φcgµν − aIJ |φcF IµλF λJ
ν (3.77)

and Vattr|φc is defined by (3.62). The contribution of the linearized scalar fluctuations from

the stress energy tensor are

Ṫ attrµν (φc + ǫδφ)|ǫ=0 =
∂Vattr
∂φ

∣

∣

∣

∣

φc

gµνδφ − ∂aIJ
∂φ

∣

∣

∣

∣

φc

F IµλF
λJ
ν δφ , (3.78)

which can be further simplified using the attractor equation (3.43) to get

Ṫ attrµν (φc + ǫδφ)|ǫ=0 = −∂aIJ
∂φ

∣

∣

∣

∣

φc

F IµλF
λJ
ν δφ . (3.79)

We can now solve for the metric fluctuations by plugging in the scalar fluctuations (3.73).

First, let us simplify the form of (3.74) by making a few observations. We note that the

type III metric in its explicit form

ds2 = −r̂2βtdt̂2 + dr̂2

r̂2
+ dx̂2 + e−2x̂dŷ2 + r̂2βtdẑ2 (3.80)

is diagonal. Therefore, It is reasonable to expect fluctuations only along the diagonal

directions. Hence we can choose the fluctuations γµν to be symmetric. As a result the

antisymmetrized terms in (3.74) vanish, as can be checked explicitly. Thus we have

∇α∇αγ̄µν + gµν(Rαβ γ̄
αβ − 2

3
Rγ̄) +Rγ̄µν+2(Ṫ attrµν (gαβ + ǫγαβ)|ǫ=0

+ Ṫ attrµν (φc + ǫδφ)|ǫ=0) = 0, (3.81)

with the contributions from the stress energy tensor corresponding to metric and scalar

fluctuations as given by (3.76) and (3.79) respectively.
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We choose the fluctuation terms of the metric in gµν + ǫγµν(r̂) to be of the form

γt̂t̂ = Ct̂r̂
2βt γ̃t̂t̂(r̂) ,

γr̂r̂ = Cr̂
1

r̂2
γ̃r̂r̂(r̂) ,

γx̂x̂ = Cx̂γ̃x̂x̂(r̂) ,

γŷŷ = Cŷe
−2x̂γ̃ŷŷ(r̂) ,

γẑẑ = Cẑ r̂
2βt γ̃ẑẑ(r̂) , (3.82)

where Ct̂, Cr̂, Cx̂, Cŷ, Cẑ are constants which are to be determined in terms of the gauged

supergravity parameters gR, V0, V1, and the coefficient Cs in the scalar fluctuation (3.73).

Because of the way the perturbations have been chosen in (3.82), one can contract the

Einstein equations with the vielbeins and write the final expressions in terms of the γ̃µν(r̂).

We also observe that the source term from the scalar fluctuation (3.79) appears only in the

x̂x̂ and ŷŷ directions. While the source goes like r̂∆, the Einstein equations will contain

terms like r̂2∂2r̂ γ̃µν , r̂∂r̂ γ̃µν , γ̃µν . Hence one expects the fluctuations γ̃µν to also go like r̂∆.

This can be checked by observing the explicit equations, which are rather messy. We refer

the reader to the appendix §B.2 for more details. Thus all the metric fluctuations should

have the behavior

γ̃t̂t̂ = γ̃r̂r̂ = γ̃x̂x̂ = γ̃ŷŷ = γ̃ẑẑ = r̂∆ . (3.83)

We now substitute (3.83) in eqs. (3.81) and reduce them to an algebraic system,

4(βt
2(3Cr̂ + 3Ct̂ + Cx̂ + Cŷ + 3Cẑ) + 2Ct̂ + Cx̂ + Cŷ)

+ 6βt∆(Cr̂ − Ct̂ +Cx̂ +Cŷ + Cẑ) + ∆2(Cr̂ − Ct̂ +Cx̂ + Cŷ + Cẑ) = 0 ,

Cr̂(−4(5βt
2 + βt+1) + 2(βt − 2)∆ +∆2)− 2(βt − 2)∆(Ct̂ + Cx̂ + Cŷ + Cẑ)

+ 4βt(βt(−Ct̂ + Cx̂ + Cŷ − Cẑ) + Ct̂ + Cx̂ + Cŷ + Cẑ)

+ ∆2(−(Ct̂ + Cx̂ + Cŷ + Cẑ))− 4(Ct̂ + 2(Cx̂ + Cŷ) + Cẑ) = 0 ,

(16 − 32βt
2)Cs − φc((4βt

2 + 2βt∆+∆2)(Cr̂ + Ct̂ + Cŷ + Cẑ)

+ Cx̂(12βt
2 − 2βt∆−∆2 + 12)) = 0 ,

(16 − 32βt
2)Cs − φc

(

4βt
2(Cr̂ + Ct̂ + Cx̂ + 3Cŷ + Cẑ) + 2βt∆(Cr̂ + Ct̂ + Cx̂ − Cŷ + Cẑ)

+ ∆2(Cr̂ + Ct̂ +Cx̂ − Cŷ + Cẑ) + 6(Cr̂ + Ct̂ + Cx̂ + Cŷ + Cẑ)
)

= 0 ,
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−4βt
2(3Cr̂ + 3Ct̂ + Cx̂+Cŷ + 3Cẑ)− 6βt∆(Cr̂ + Ct̂ + Cx̂ + Cŷ − Cẑ)

−∆2(Cr̂ +Ct̂ + Cx̂ + Cŷ − Cẑ)− 4(Cx̂ + Cŷ + 2Cẑ) = 0 , (3.84)

which can be solved to determine the coefficients. Note that the other parameters φc,∆, βt

that enter the equations are all expressible in terms of the gauged supergravity parameters

gR, V0, V1 from eqs (3.57) and (3.73). However, we will express everything in terms of βt for

convenience. Thus the solution for the coefficients are,

Ct̂ =
Cs
φc
F0(βt) ,

Cr̂ =
Cs
φc
F1(βt) ,

Cx̂ =
Cs
φc
F2(βt) ,

Cŷ =
Cs
φc
F3(βt) ,

Cẑ =
Cs
φc
F4(βt) . (3.85)

where Fi(βt), i = 0, . . . 4 are complicated functions of βt which are given in §B.3. Note that

all the coefficients are proportional to the coefficient Cs. This is a consistency check that

the metric fluctuations considered in the analysis are sourced by the scalar fluctuations.

Thus the full metric along with the fluctuations is

ds2 = −
(

1 + Ct̂r̂
∆

)

r̂2βtdt̂2 +

(

1 + Cr̂ r̂
∆

)

dr̂2

r̂2
+

(

1 + Cx̂r̂
∆

)

dx̂2

+

(

1 + Cŷr̂
∆

)

e−2x̂dŷ2 +

(

1 +Cr̂ r̂
∆

)

r̂2βtdẑ2 . (3.86)

From eq (3.70) and eq (3.73), we see that positivity of λ implies ∆ is positive for the solution

(3.63). Hence, all the metric fluctuations are well behaved and the metric approaches the

type III attractor metric as one approaches the horizon r̂ → 0. The reader may worry that

the perturbation in r̂r̂ is well behaved only if ∆ > 2. However there is no need to put any

additional condition, since the behavior at r̂ → 0 is dictated by the 1
r̂2

term owing to ∆

being positive. Thus we have constructed a stable Bianchi III attractor solution in gauged

supergravity. In the following section, we investigate the supersymmetry of this solution.

3.5 Supersymmetry analysis

In this section, we analyze the Killing spinor equations for the U(1)R gauged supergravity

with the Bianchi type III solution (3.63) as the background. The Killing spinor equation

is obtained by setting the supersymmetric variation of the gravitino to zero. For the N =
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2, U(1)R gauged supergravity the gravitino variation is [111],

δψµi = ∇µ(ω)ǫi +
i

4
√
6
hI(γµνρ − 4gµνγρ)F

Iνρǫi + δ′ψµi . (3.87)

Our notations and conventions are summarized in §B.1. The indices I label the number of

vectors and the scalars hI are as defined in §3.3.1. Although we have only one gauge field for

the solution (3.63), we will keep the I indices for the gauge fields to avoid introducing the

explicit form of hI in the equations. The term δ′ψµi is the modification in the supersymmetry

variations as a result of the U(1)R gauging. Explicitly it takes the form,

δ′ψµi = − i√
6
gRh

IVIγµδijǫ
j , (3.88)

where VI are the parameters that appear in the U(1)R gauging. Note that the δij is not

used to raise or lower the SU(2) index.

We now proceed to analyze the Killing spinor equations. The vielbeins and spin connections

of the metric (3.63) are

e0
t̂
= rβt , e1r̂ =

1

r̂
, e2x̂ = 1 , e3ŷ = e−x̂ , e4ẑ = r̂βt ,

ω01
t̂
= βtr̂

βt , ω32
ŷ = −e−x̂ , ω41

ẑ = βtr̂
βt . (3.89)

Substituting the above in (3.87), the Killing spinor equations can be written as

γ0r̂
−βt∂t̂ǫi −

βt
2
γ1ǫi +

i

2
√
6
AI3hIγ23ǫi +

i√
6
gRh

IVIδijǫ
j = 0 ,

γ1r̂∂r̂ǫi −
i

2
√
6
AI3hIγ23ǫi −

i√
6
gRh

IVIδijǫ
j = 0 ,

γ2∂x̂ǫi +
i√
6
AI3hIγ23ǫi −

i√
6
gRh

IVIδijǫ
j = 0 ,

γ3e
x̂∂ŷǫi −

1

2
γ2ǫi +

i√
6
AI3hIγ23ǫi −

i√
6
gRh

IVIδijǫ
j = 0 ,

γ4r̂
−βt∂ẑǫi +

βt
2
γ1ǫi −

i

2
√
6
AI3hIγ23ǫi −

i√
6
gRh

IVIδijǫ
j = 0 . (3.90)

The γa matrices that appear in the above set of equations are in tangent space.

We choose a radial profile for the Killing spinor. This is motivated by the fact that the

radial spinor preserves the time translation and homogeneous symmetries of the type III

metric (3.14). Moreover, it is well known that the radially dependent spinor generates the

Poincaré supersymmetries in AdS [100, 101]. Furthermore, some of the Bianchi type I

solutions such as the Lifshitz and AdS3 ×R
2 solutions in gauged supergravity preserve 1/4

of the supersymmetries for the radial spinor [96, 97, 104].
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We choose the spinor ansatz

ǫi = f(r̂)χi , (3.91)

where χi is a constant symplectic majorana spinor. Substituting (3.91) in the Killing spinor

equation (3.90), we see that t̂, ẑ equations become identical. Adding the t̂ equation and the

radial equation we get

r̂∂r̂f(r̂)−
βt
2
f(r̂) = 0 , (3.92)

which is solved by

f(r̂) = r̂
βt
2 . (3.93)

Using the above in (3.91) and substituting it in the Killing spinor equation (3.90) we get,

βt
2
γ1χi −

i

2
√
6
AI3hIγ23χi −

i√
6
gRh

IVIδijχ
j = 0 ,

i√
6
AI3hIγ23χi −

i√
6
gRh

IVIδijχ
j = 0 ,

1

2
γ2χi −

i√
6
AI3hIγ23χi +

i√
6
gRh

IVIδijχ
j = 0 . (3.94)

From the last two of the above equations, it follows that

γ2χi = 0 . (3.95)

This condition breaks all of the supersymmetry. The origin of the γ2 term is the spin

connection term due to the EAdS2 (3.15) part of the type III metric. Thus, a naive

radial spinor does not preserve supersymmetry in this case. This suggests that the stable

Bianchi III metric we have constructed may be a non-supersymmetric attractor. However,

it is possible that there may be a more general ansatz for the Killing spinor which could

preserve some supersymmetry. We hope to study this in future works.

3.6 Comments and discussions

In this chapter, we constructed a new Bianchi type III solution in Einstein-Maxwell theory

with massless gauge fields. We embedded this solution in a U(1)R gauged supergravity with

one vector multiplet. We found that there exist a class of type III solutions parametrized

by gR, V0, V1 that satisfied the two sufficient requirements for the attractor mechanism,

namely the existence of a critical point of the attractor potential and that the Hessian of

the attractor potential should have a positive eigenvalue.

We investigated the stability of the Bianchi type III solution in gauged supergravity by

studying the linearized fluctuations of the gauge field, scalar field, metric about their

attractor values. The stress energy tensor in gauged supergravity depends on linearized

fluctuations of scalars and gauge fields [94]. In order to avoid backreaction and deviation
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from the attractor geometry, all the fluctuations have to be well behaved as one approaches

the horizon.

For the solution (3.63), we showed that the source term in the gauge field fluctuations

vanishes. Thus there are no gauge field fluctuations sourced by scalar fluctuations. The

metric fluctuation equations are sourced completely by the scalar perturbations. We showed

that for the type III solution satisfying the sufficient conditions for the attractor mechanism,

the scalar fluctuations are well behaved near the horizon. We also solved the metric

fluctuations and showed that all the fluctuations are regular. Since all the linearized

fluctuations are well behaved near the horizon, we infer that the type III Bianchi solution

is a stable attractor solution at the linearized level.

One of the simplifications that aided us in the stability analysis was that there were no

gauge field fluctuations which are sourced by scalar fluctuations. As we commented before

in §3.4.1, this need not happen in general. For more complicated situations we expect that

as long as the solution satisfies the sufficient conditions for the attractor mechanism [84], the

Bianchi type geometries might be stable with respect to linearized fluctuations about the

attractor values. We hope to explore these aspects and look for more interesting solutions

in future.

In the long run, we hope our stability analysis will provide motivation to explore the

possibility of construction of analytic black brane solutions which interpolate between IR

and UV attractor geometries. In particular, it will be very interesting to construct solutions

that are asymptotically AdS. Such interpolating solutions will be helpful to explore the

holographic duals of Bianchi attractors. In the last chapter 2 we saw some progress in this

direction (Ref. [77]). It will be valuable to construct analytic interpolating solutions in a

simple theory of gravity coupled to suitable matter.

In this chapter, we also investigate the supersymmetry of the Bianchi type III solution.

We study the Killing spinor equations of N = 2, U(1)R gauged supergravity with the

background Bianchi type III solution. We chose a radial profile for the Killing spinor since

it preserves the time translations and homogeneous symmetries of the metric. However, we

found that the naive radial spinor which gives supersymmetric Bianchi I spaces such as AdS

and Lifshitz fails for the type III case. This suggests that the stable type III solution we

have constructed may be a non-supersymmetric attractor. However, there could be more

general spinors than the radial one we have considered. We leave a systematic analysis of

this issue for future work.
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Chapter 4

The Shear Viscosity in Anisotropic

Phases

4.1 Introduction

In the last few chapters, we have spent some time on understanding how anisotropic

blackbrane geometries arise in theories of Einstein gravity and also in gauged supergrav-

ity theories. In this chapter, we are now prepared to study the transport properties of

anisotropic strongly coupled fluids. Via holography, this maps to an investigation of the

anisotropic blackbrane geometries in the bulk. Let us first make a few general comments

on the existing results in the literature and set up our main goals for this chapter.

The AdS/CFT correspondence has emerged as an important tool in the analysis of strongly

coupled systems, especially for the study of transport properties of such systems. Neither

analytical nor numerical methods are convenient for calculating these properties on the

field theory side since they require an understanding of the real time response at finite

temperature. In contrast, they can be calculated with relative ease on the gravity side,

often by solving simple linear equations. An important insight which has come out of these

studies pertains to the behaviour of the viscosity. It was found in KSS [114, 115, 116], that

for systems having a gravity description that can be well approximated by classical Einstein

gravity, the ratio of the shear viscosity, η, to the entropy density, s, takes the universal value

η

s
=

1

4π
. (4.1)

This is a small value, compared to weak coupling where the ratio diverges. It was also

initially suggested that this value is a bound, and the ratio can never become smaller.

We now know that this is not true [117, 118, 119, 120], see also [121, 122], but in all

controlled counter-examples the bound is violated at best by a numerical factor, and not in

a parametric manner. Attempts to produce bigger violations lead to physically unacceptable

situations, e.g., to causality violations, for example, see [123, 124]. However, there is some
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discussion of a violation of the bound in metastable states, see [125]. Also, see [126] for a

discussion of violations in a superfluid phase described by higher derivative gravity.

The behaviour of the viscosity discussed above refers to isotropic and homogeneous phases,

which on the gravity side at finite temperature are described by the Schwarzschild black

brane geometry. Gravitational backgrounds which correspond to anisotropic phases in field

theory have also been studied (see [121, 127, 128, 129, 130, 131, 132, 133] and the behaviour

of the viscosity in some of these anisotropic phases has also been analysed, see [134, 135]

and [136, 137, 138, 139, 140, 141]. The viscosity in the anisotropic case is a tensor, which in

the most general case, with no rotational invariance, has 21 independent components (when

the field theory lives in 3+ 1 dimensions). In [134, 135, 139], where some simple cases were

considered, it was found that some components of the viscosity tensor can become much

smaller, parametrically violating the bound in eq.(4.1). For example, in [139], a gravitational

solution was considered where the rotational invariance of the three space dimensions in

which the field theory lives was broken from SO(3) to SO(2), due to a linearly varying

dilaton . In the solution, the dilaton varies along the z direction and rotational invariance

in the remaining x, y, spatial directions was left unbroken. The component of the viscosity,

called η|| in [139], which measures the shear force in the x − y plane, was still found to

satisfy the relation, eq.(4.1). However, other components of the viscosity did not satisfy it.

In particular, it was found that a component called η⊥, which measures the shear force in

the x− z or y − z plane, could become much smaller, going like

η⊥
s

=
8π

3

T 2

ρ2
, (4.2)

where T is the temperature and ρ is the anisotropy parameter. The result, eq.(4.2) is valid

in the extremely anisotropic limit, when T ≪ ρ. A detailed study was also carried out in

[139] of this extreme anisotropic regime and no instabilities were found to be present.

For the case of low anisotropy, spin 1 component of the shear viscosity ηxz = ηyz ≡ η⊥
behave as follows:

Low anisotropy regime (ρ/T ≪ 1):

η⊥
s

=
1

4π
− ρ2 log 2

16π3T 2
+

(6− π2 + 54(log 2)2)ρ4

2304π5T 4
+O

[(

ρ

T

)6]

. (4.3)

We see that a small anisotropy at order (ρ/T )2 already reduces this component of the

viscosity and makes it smaller than the KSS bound. In the limit of zero anisotropy, we

recover the KSS bound
η⊥
s

→ 1

4π
. (4.4)

In this chapter we study many other examples where anisotropic phases arise and show

that in all of them components of the viscosity can become parametrically small, in units
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of the entropy density, when the anisotropy becomes sufficiently large compared to the

temperature. Depending on the example, the factor of T 2 in eq.(4.2) can be replaced by

some other positive power of T .

A common feature of all our examples is that the breaking of anisotropy is due to an

externally applied force which is translationally invariant. For example, the linearly varying

dilaton considered in [139], and also in section (4.2) gives rise to such a spatially constant

forcing function. This follows from the fact that the boundary theory stress tensor is no

longer conserved in the presence of the dilaton and instead satisfies the equation

∂µ < T µν >=< Ô > ∂νφ, (4.5)

where Ô is the operator dual to the dilaton, see eq.(6.9) of [139]. Similarly, we consider

linearly varying axions in section 4.4.3 and 4.4.4, and a constant magnetic field in section

4.4.2.

Another common feature in our examples is that some residual Lorentz symmetry survives,

at zero temperature, after incorporating the breaking of rotational invariance. Fluid me-

chanics then corresponds to the dynamics of the goldstone modes associated with the boost

symmetries of this Lorentz group which are broken at finite temperature.

In the second half of this chapter we give an argument, based on a Kaluza Klein decompo-

sition of modes, which shows quite generally that in all situations sharing these features, in

particular where the forcing function does not break translational invariance, appropriate

components of the viscosity tensor become parametrically small. These components cor-

respond to perturbations of the metric which carry spin 1 with respect to the surviving

Lorentz symmetry. Let z be a spatial direction in the boundary theory along which there

is anisotropy and x be a spatial direction along which the boost symmetry is left unbroken,

then we show that the viscosity component ηxz, which couples to the hxz component of the

metric perturbation, satisfies the relation,

ηxz
s

=
1

4π

gxx
gzz

∣

∣

∣

u=uh
, (4.6)

where gxx|u=uh , gzz |u=uh refer to the components of the background metric at the horizon.

Eq.(4.6) is one of the main results of this chapter. It also agrees with the behaviour seen

in all the explicit examples we consider. This result was first derived for an anisotropic

axion-dilaton-gravity system in [134].

In the isotropic case the ratio gxx
gzz

∣

∣

∣

u=uh
is unity and we see that the KSS result is obtained.

However, in anisotropic cases this ratio can become very different from unity and in fact

much smaller, leading to the parametric violation of the bound, eq.(4.1).

Let us note that the result, eq.(4.6), is true for conformally invariant systems, as well as

systems with a mass gap, when subjected to a constant driving force. Examples of massive

59



Chapter 4

Figure 4.1: Picture showing flow of fluid enclosed between two parallel plates separated
along the z-direction.

systems include, for example, gravitational duals of confining gauge theories, [142] and [143].

For these cases the temperature should be bigger than the confining scale so that the gravity

dual is described by a black brane. Also, for some components of the viscosity to become

significantly smaller than the bound, the anisotropy must be bigger than the temperature.

Physically a component like ηxz measures the resistance to shear. For example, if the

fluid is enclosed between two parallel plates which are separated along the z direction and

moving with a relative velocity vx along the x direction in a non-relativistic fashion, they

will experience a friction force due to the fluid, proportional to ηxz∂zvx. See Fig (4.1) and

the more extensive discussion in section 6 of [139]. Thus the parametrically small values

obtained here correspond to a very small resistance to shear in anisotropic systems.

Our results which are quite general, open up the exciting possibility that in nature too,

strongly coupled anisotropic systems may have a very small value for components of the

viscosity. It would be very exciting if this behaviour can be probed in experimental

situations, realised perhaps in cold atom systems, or in the context of QCD. We will explore

this in detail later in Chapter 5.

This chapter is structured as follows. In section 4.2 we review the earlier discussion of a

system with one linearly varying dilaton. Some general aspects involved in the calculation

of viscosity are discussed in section 4.3. Several examples of anisotropic systems realised

in gravity are then discussed, including the case with two dilatons in section 4.4.1, a

magnetic field in section 4.4.2, and axions and dilatons, section 4.4.3 and section 4.4.4.

The general argument based on a Kaluza Klein truncation is given in section 4.5. We

end with conclusions in section 4.6. The appendices C.1, C.2 and C.3 contain additional

important details.
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4.2 Brief Review of The System With One Dilaton

Here we briefly summarise some of the key results in [139] which considered a linearly

varying dilaton φ = ρ z in asymptotically AdS5, for a theory with action

Sbulk =
1

2κ2

∫

d5x
√−g

(

R+ 12Λ− 1

2
(∂φ)2

)

. (4.7)

Here 2κ2 = 16πG is the gravitational coupling and G is the Newton’s Constant in 5-

dimensions. At zero temperature the near horizon solution was found to be AdS4 ×R,

ds2 = −4

3
u2dt2 +

du2

4
3u

2
+

4

3
u2(dx2 + dy2) +

ρ2

8
dz2. (4.8)

The radius of AdS4, R
2
4 = 3/4, in units where Λ = 1. We see in eq.(4.8) that the metric

component gzz becomes constant due to the extra stress energy provided by the linearly

varying dilaton. The AdS4 × R solution is in fact an exact solution to the equations of

motion.

At small temperature, T ≪ ρ, the geometry is that of a Schwarzschild black brane in

AdS4×R. The viscosity is related, using linear response, to the retarded two point function

of components of the stress tensor, and the latter, using Ads/CFT, can be calculated from

the behaviour of appropriate metric perturbations in the bulk. The answer for ηxy, which

is denoted as η|| and for ηxz, ηyz, which are equal and denoted as η⊥, is given in eq.(4.9)

and eq.(4.10) below:
η‖
s

=
1

4π
, (4.9)

η⊥
s

=
8πT 2

3ρ2
, (4.10)

with s being the entropy density.

We see that η⊥ in units of the entropy density becomes parametrically small in the limit of

high anisotropy. The fluid mechanics in this high anisotropy limit was also systematically

set up in [139] and it was shown that, as expected, this small viscosity component results

in a very small shear force on two suitably oriented parallel plates which are moving with

a relative velocity and enclose the fluid.

4.3 More Details On The Calculation Of Viscosity

Before proceeding, we provide some more details on the calculation of the viscosity for the

one dilaton system above. These features, as we will see, will be shared by all the examples

we consider subsequently in this chapter. The analysis that follows will also reveal the

central reason for why the viscosity in units of the entropy density can become so small in
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anisotropic systems.

With anisotropy, the viscosity is a tensor, ηijkl, in general with 21 components. Using the

Kubo formula these can be related to the two point function of the stress energy tensor as

follows ,

ηij,kl = − lim
ω→0

1

ω
Im
[

GRij,kl(ω)
]

, (4.11)

where

GRij,kl(ω, 0) =

∫

dt dx eiωt θ(t) 〈[Tij(t,x), Tkl(0, 0)]〉, (4.12)

and Im denotes the imaginary part of the retarded Green’s function.

From the AdS/CFT correspondence the two point function of Tij can be calculated in terms

of the behaviour of metric perturbations, and in this way the viscosity can be obtained.

In the one dilaton system considered in section 4.2 , the solution has an SO(2) rotational

invariance in the x− y plane, as is evident from the metric (4.8). For simplicity we denote

the ηxz,xz component as ηxz, and ηyz,yz as ηyz etc. Due to the SO(2) invariance we get that

ηxz = ηyz ≡ η⊥. These components are related to the behaviour of the hxz, hyz components

of metric perturbations, which carry spin 1 with respect to SO(2) symmetry.

We now proceed to introduce the hxz perturbation in the metric as follows

ds2 = −gtt(u)dt2 + guu(u)du
2+gxx(u)dx

2 + gyydy
2 + gzz(u)dz

2

+ 2e−iωtZ(u)gxx(u)dx dz,
(4.13)

where Z(u) is the required perturbation of interest. We can show that the other modes

decouple from Z(u) and hence we can consistently set them to zero. Here we follow closely

[144].

One finds that the mode Z(u) obeys an equation of the form

∂u
(√−gP (u)guu∂uZ(u)

)

− ω2N(u)gttZ(u) = 0, (4.14)

The functions P (u), N(u) are given in terms of the background metric , with

P (u) = gzzgxx. (4.15)

In effect, eq.(4.14) arises from an action

S = −
∫ √−g 1

16πG
[P (u)

1

2
guu(∂uZ)

2 − 1

2
N(u)gtt(∂tZ)

2] (4.16)

(we are neglecting the dependence on the spatial xi coordinates here). Using AdS/CFT we

can find the response in terms of the canonical momentum

Π(u, ω) = − 1

16πG

√−gP (u)guu∂uZ(u). (4.17)
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The retarded Green’s function is then given by the ratio of the response over the source,

Gret = −Π(u, ω)

Z(u, ω)

∣

∣

∣

∣

∣

u→∞
. (4.18)

leading to the result from eq.(4.11)

η⊥ = lim
ω→0

Π(u, ω)

iωZ(u, ω)

∣

∣

∣

∣

∣

u→∞
. (4.19)

We now show that the RHS of eq.(4.19) can also be evaluated near the horizon, u = uH ,

instead of u → ∞. Since we are interested in the limit ω → 0 we can neglect the second

term in eq.(4.14) leading to

∂uΠ = 0 (4.20)

upto O(ω)2. This gives

Π = C, (4.21)

where C is independent of u . Next, it is easy to see that there is a solution of eq.(4.14)

in the ω → 0 limit in which Z is simply a constant. This solution also meets the correct

boundary condition at u → ∞, since, as can be seen from eq.(4.13), the non-normalisable

mode must go to a constant at u → ∞. Putting all this together we find that to leading

order in the ω → 0 limit both Π and Z are constant and thus the ratio in eq.(4.19) being

independent of u can also be evaluated at the horizon.

As a result we get

η⊥ = lim
ω→0

Π(u, ω)

i ω Z(u, ω)

∣

∣

∣

∣

∣

u→uH

. (4.22)

Demanding regularity at the future horizon , we can approximate the behaviour of Z as

follows

Z ∼ e−iω(t+r∗), (4.23)

where r∗ is the tortoise coordinate,

r∗ =
∫ √

guu
gtt

du. (4.24)

It then follows that

η⊥ =
1

16πG
P (uH)

√ −g
gttguu

∣

∣

∣

∣

∣

u→uH

. (4.25)

The entropy density is

s =
1

4G

√−g√
guugtt

∣

∣

∣

∣

∣

uH

. (4.26)
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Using the value of P(u) from (4.15) and using eq.(4.25) and eq.(4.26) this finally leads to

η⊥
s

=
1

4π

gxx
gzz

∣

∣

∣

∣

∣

uH

. (4.27)

We now see why anisotropic systems will generically be different from isotropic ones. For an

isotropic system rotational invariance makes the ratio gxx
gzz

= 1, leading to the KSS bound,

eq.(4.1). However in the anisotropic case in general this ratio will not be unity and thus the

ratio of η/s can become smaller than 1
4π . In the one dilaton system this is what happens

leading to the result, eq.(4.27). In the rest of this chapter we will find many more examples

of this type, where anisotropy will allow different metric components to shrink at different

rates and attain different values at the horizon, thereby leading to violations of the KSS

bound.

4.4 Additional examples with anisotropy

4.4.1 Anisotropic solution in two dilaton gravity system

To generalise the example in section 4.2, we consider next the case of gravity, with a negative

cosmological constant, two massless scalar fields, φ1 and φ2 , both of which we now call

dilatons, in 5 spacetime dimensions with action,

Sbulk =
1

2κ2

∫

d5x
√−g

(

R+ 12Λ− 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2

)

. (4.28)

Both the dilatons are turned on to be linearly varying, but along different directions:

φ1 = ρ1y, φ2 = ρ2z. (4.29)

The zero temperature near horizon solution is now given by AdS3 × R × R (we have set

Λ=1):

ds2 = −2u2dt2 +
1

2u2
du2 + 2u2dx2 +

ρ21
8
dy2 +

ρ22
8
dz2. (4.30)

We see that there are now two different mass scales, ρ1, ρ2 which characterise the anisotropy.

In appendix C.1 we show that this near horizon geometry interpolates smoothly to asymp-

totically AdS5. The SO(2, 2) symmetry of AdS3 is preserved all along this interpolation.

At small temperature, T ≪ ρ1, ρ2, the near-horizon solution is given by :

ds2 = −2u2(1− π2T 2

u2
)dt2 +

1

2u2(1− T 2π2

u2 )
du2 + 2u2dx2 +

ρ21
8
dy2 +

ρ22
8
dz2. (4.31)
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The horizon lies at

u = uh = πT. (4.32)

The computation of the shear viscosity follows the discussion in [139] quite closely. The

near-horizon AdS3 has SO(1, 1) Lorentz invariance in the t, x directions. The metric

perturbations can be classified in terms of different spins with respect to this SO(1, 1)

symmetry. The viscosity component ηxz, given by,

ηxz = − lim
ω→0

1

ω
Im
[

GRxz,xz(ω)
]

, (4.33)

can be calculated by considering a metric perturbation Z(u) defined so that the full metric

with the perturbation takes the form,

ds2 = −gtt(u)dt2 + guu(u)du
2+gxx(u)dx

2 + gyydy
2 + gzz(u)dz

2

+ 2e−iωtZ(u)gxx(u)dxdz.
(4.34)

This component has spin 1 with respect to the SO(1, 1) symmetry. It turns out that

resulting analysis is quite similar to that in section 4.3 and this perturbation satisfies

an equation of the type given in eq.(4.14), with P (u) given by eq.(4.15). The conjugate

momentum Π is also given by eq.(4.17) with P (u) given by eq.(4.15). As a result ηxz is

given by eq.(4.25).

The entropy density is given by

s =
1

4G

√−g√
guugtt

∣

∣

∣

∣

∣

uH

. (4.35)

This gives,

ηxz
s

=
1

4π

gxx
gzz

∣

∣

∣

∣

∣

uH

. (4.36)

which using eq.(4.31) becomes
ηxz
s

=
4πT 2

ρ22
. (4.37)

Similarly, for ηxy we get

ηxy
s

=
1

4π

gxx
gyy

∣

∣

∣

∣

∣

uH

=
4πT 2

ρ21
. (4.38)

We see from eq.(4.36), eq.(4.38) that the relative ratio of η/s for these components is

determined by the ratio of the metric components as one approaches the horizon.
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4.4.2 Viscosity in the Presence of a Uniform Magnetic Field

Here, for completeness, we briefly review a situation where the anisotropy is generated due

to a magnetic field which has been studied in considerable depth in [140]. We refer to [140]

for details. We start with a system with the action

S =

∫

d5x
√−g(R+ 12Λ− 1

4
F 2), (4.39)

and consider a solution where the magnetic field

Fyz = B, (4.40)

with B being a constant. Such a system was also considered in [145].

The resulting near horizon solution at zero temperature is now again AdS3 × R × R, just

as in the two dilaton system, with rotational invariance also preserved in the yz plane.

The metric is (we have set Λ=1)

ds2 = −3u2dt2 +
1

3u2
du2 + 3u2dx2 +

1

2
√
3
|B|dy2 + 1

2
√
3
|B|dz2. (4.41)

The radius of AdS3, R
2
3 = 1/3, in units where Λ = 1.

At small temperature, T ≪ B the solution is a black brane in AdS3 ×R×R with metric

ds2 = −3u2(1− c

u2
)dt2 +

1

3u2(1− c
u2 )

du2 + 3u2dx2 +
1

2
√
3
|B|dy2 + 1

2
√
3
|B|dz2, (4.42)

where c is given in terms of T as follows

c =
4π2T 2

9
. (4.43)

The horizon lies at

u = uh =
2

3
πT. (4.44)

The viscosity components ηxy = ηxz ≡ η⊥. To calculate η⊥ we consider the hxz component

of metric perturbation, so that the full metric is of the form

ds2 = −gtt(u)dt2 + grr(u)dr
2+gxx(u)dx

2 + gyy(u)dy
2 + gzz(u)dz

2

+ 2e−iωtZ(u)gxx(u)dxdz,
(4.45)

with Z(u) being the perturbation that we need to study. We can easily show that the other

modes decouples from Z(u) and so can be consistently set to zero.

We find that the resulting analysis is again quite similar to that in section 4.3 . This per-

turbation satisfies an equation of the type given in eq.(4.14), with P (u) given by eq.(4.15).
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The conjugate momentum Π is also given by eq.(4.17) with P (u) given by eq.(4.15).

The resulting value for the viscosity is given by

η⊥
s

=
1

4π

gxx
gzz

∣

∣

∣

∣

∣

uH

. (4.46)

Substituting the metric components from (4.42) above we get that

η⊥
s

=
2√
3
π
T 2

|B| . (4.47)

As discussed in [140], this example may be relevant in the study of QCD, perhaps for heavy

ion collisions, and also in the core of neutron stars where strong magnetic fields can arise.

4.4.3 The Dilaton-Axion System

In the examples considered so far, the near horizon geometry was of the form, AdS × Rn,

with the metric components along the Rn directions not contracting as one gets to the

horizon. It is worth considering other situations where the near horizon geometry is of

Lifshitz type instead, with metric components along all the directions contracting as one

approaches the horizon but at different rates.

An easy way to construct such an example involves a system consisting of gravity with an

axion and dilaton with action,

Sbulk =
1

2κ2

∫

d5x
√−g

(

R+ 12Λ− 1

2
(∂φ)2 − 1

2
e2αφ(∂χ)2

)

, (4.48)

containing the parameter α which enters in the dilaton dependence of the axion kinetic

energy term. Earlier work in [134] considered the case with α = 1. The case α = −1 has

SL(2, R) invariance.

It is easy to see that by turning on a linear profile for the axion one obtains an extremal

solution whose near horizon limit is given by ( setting Λ=1)

ds2 = R2

(

−u2dt2 + du2

u2
+ u2dx2 + u2dy2 + ρ2 u

4α2

1+2α2 dz2
)

, (4.49)

χ = c1 ρ z, (4.50)

φ =
2α

1 + 2α2
log(u), (4.51)

c1 =

√

2(3 + 8α2)

(1 + 2α2)
, (4.52)

R2 =
3 + 8α2

4 + 8α2
. (4.53)
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This solution breaks rotational invariance along the z direction due to the linearly varying

axion, and ρ is the mass scale which characterises this breaking of anisotropy. We see that

all components of the metric along the spatial directions now shrink as one approaches the

far IR, but the rate at which the gzz component vanishes is different from the other spatial

components, gxx, gyy. Let us also note that for α = 1 the solution above agrees with [128].

At small temperature T ≪ ρ the resulting solution has a metric given by

ds2 = R2

(

−u2f(u)dt2 + du2

u2f(u)
+ u2dx2 + u2dy2 + ρ2u

4α2

1+2α2 dz2
)

, (4.54)

where R2 is as given in eq(4.53) above and f(u) is given as

1−
(

16πT

p2u

)p

, (4.55)

where p = 3+8α2

1+2α2 . The axion continues to be linear as in the solution eq.(4.50) and the

dilaton is given by eq.(4.51).

The horizon in eq.(4.54) is at

u = uh =
16πT

p2
. (4.56)

Let us now turn to computing the viscosity. The shear viscosity component ηxy satisfies

the KSS bound in eq.(4.9) . Next consider the component ηxz = ηyz . To compute this

component we can consider the hxz component of metric perturbation, so that the full

metric is of the form

ds2 = −gtt(u)dt2 + guu(u)du
2+gxx(u)dx

2 + gyy(u)dy
2 + gzz(u)dz

2

+ 2e−iωtZ(u)gxx(u)dxdz,
(4.57)

where Z(u) is the perturbation that we need to study. The dilaton and axion are unchanged

and are given by eq (4.51) and eq (4.50) respectively. We can easily show that the other

modes decouples from Z(u) and so can be consistently set to zero.

We again find that resulting analysis is similar to that in section 4.3 and the perturbation

satisfies an equation of the type given in eq.(4.14), with P (u) given by eq.(4.15). The

conjugate momentum Π is also given by eq.(4.17) with P (u) given by eq.(4.15). As a result

ηxz is given by eq.(4.25).

Thus, substituting the metric components for the finite temperature solution (4.54) we get

η⊥
s

=
1

4π

gxx
gzz

∼ (
T

ρ
)

2
1+2α2 . (4.58)

The dependence on T in eq.(4.58) follows from the metric eq.(4.54) and the dependence

on ρ is then obtained on dimensional grounds. Let us note that the temperature T which

appears in eq.(4.55) could be related to the temperature as measured in the asymptotic AdS
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coordinates by a rescaling. By the asymptotic AdS coordinates we mean those in which the

metric takes the standard form:

ds2 =

[

− u2dt2 +
du2

u2
+ u2(dx2 + dy2 + dz2)

]

, (4.59)

This is also true for the x, y coordinates in eq.(4.54) and the corresponding coordinates

which appear in eq.(4.59). and also for the z coordinate in eq.(4.54) which is related to the

corresponding coordinate in eq.(4.59) by a ρ dependent rescaling in general. These rescaling

factors have to be determined if the coefficient in eq.(4.58) is to be fixed. To do so, one

needs to find the full interpolating geometry from the near horizon region, described by

eq.(4.54) , to the asymptotic AdS region, eq.(4.59).

We have carried out such a numerical interpolation for α = ±1, for which, eq.(4.58) becomes,

η⊥
s

∼ (
T

ρ
)2/3. (4.60)

We find, within the accuracy of our numerical calculation, that there is no rescaling of the

T, x, y coordinates while the z coordinate is rescaled by a non-trivial ρ dependent factor.

One consequence is that the temperature T which appears in eq.(4.58) is the same as the

temperature measured in the field theory.

4.4.4 The two Axion-one Dilaton System

For good measure, as another example, we consider a system consisting of gravity with two

axions and one dilaton described by the action

Sbulk =
1

2κ2

∫

d5x
√−g

(

R+ 12Λ− 1

2
(∂φ)2 − 1

2
e2αφ(∂χ1)

2 − 1

2
e2αφ(∂χ2)

2

)

. (4.61)

In this case we will see that for a suitable profile for the two axions, the AdS4 symmetry of

the near-horizon geometry is broken further to AdS3, with now two of the spatial directions,

y, z, being characterised by non-trivial Lifshitz exponents.

The linear profiles for the two axons and resulting near horizon solution is given by (setting
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Λ=1)

ds2 = R2

(

−u2dt2 + du2

u2
+ u2dx2 + ρ2 u

8α2

1+4α2 dy2 + ρ2 u
8α2

1+4α2 dz2
)

, (4.62)

χ1 = c ρ y, (4.63)

χ2 = c ρ z, (4.64)

φ =
4 α log(u)

1 + 4α2
, (4.65)

c =
2

1 + 4α2

√

1 + 8α2, (4.66)

R2 =
1 + 8α2

2 + 8α2
. (4.67)

This metric in this solution has AdS3 invariance, and also a scaling symmetry under which

y, z transform with a non-trivial exponent. The linearly varying axions break this scaling

symmetry, and also the rotational invariance along the y and z directions, with ρ being the

mass scale which characterise the breaking.

At small temperature T ≪ ρ the resulting solution has a metric

R2

(

−u2f(u)dt2 + du2

u2f(u)
+ u2dx2 + ρ2 u

8α2

1+4α2 dy2 + ρ2 u
8α2

1+4α2 dz2
)

, (4.68)

where R2 is as given in eq.(4.67) above and f(u) is given as

1−
(

16πT

p2u

)p

, (4.69)

where p = 2(1+8α2)
1+4α2 .

The two axions continue to be linear as in the solution eq.(4.63), eq.(4.64) and the dilaton

is given by eq.(4.65).

The horizon in eq.(4.68) is at

u = uh =
16πT

p2
. (4.70)

The ηxy and ηxz components of the viscosity are the same., we denote them by η⊥. To

calculate these components we consider the hxz component of metric perturbation, so that

the full metric is of the form

ds2 = −gtt(u)dt2 + guu(u)du
2+gxx(u)dx

2 + gyy(u)dy
2 + gzz(u)dz

2

+ 2e−iωtZ(u)gxx(u)dxdz,
(4.71)

where Z(u) is the perturbation that we need to study.

The dilaton and axions are unchanged and are given by eq (4.65) and eq (4.63) , eq (4.64)

respectively. We can easily show that the other modes decouples from Z(u) and so can be
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consistently set to zero.

As in the previous cases , the analysis here is similar to that in section 4.3 and this per-

turbation satisfies an equation of the type given in eq.(4.14), with P (u) given by eq.(4.15).

The conjugate momentum Π is also given by eq.(4.17) with P (u) given by eq.(4.15). As a

result ηxz is given by eq.(4.25).

Thus, substituting the metric components for the finite temperature solution (4.68) we get

η⊥
s

=
1

4π

gxx
gzz

∼
(

T

ρ

) 2
1+4α2

. (4.72)

For the case α = ±1, eq.(4.72) becomes,

η⊥
s

∼
(

T

ρ

)2/5

. (4.73)

Interestingly, both in eq.(4.58) for the one axion case, and in eq.(4.72) above we see that

the maximum value the exponent governing the temperature dependence can take is 2, and

the minimum value, for α = ∞, is 0.

4.5 Kaluza Klein Reduction

The previous sections dealt with a number of examples where anisotropic situations gave

rise to small values for the viscosity to entropy ratio. One common feature of all these

examples was that the breaking of isotropy was due to a spatially constant driving force.

For example, the dilaton considered in section 4.2, gives rise to a force proportional to the

gradient of the dilaton which is a constant since the dilaton varies linearly. One way to see

this is by noting that the stress tensor is no longer conserved and satisfies the equation

∂µ < T µν > = < Ô > ∂νφ, (4.74)

as discussed in eq.(6.9) of [139]. Similarly, we consider linearly varying axions in section

4.4.3 and 4.4.4, and a constant magnetic field in section 4.4.2.

In this section we will present a general argument which should apply to all such situations

where the breaking of isotropy occurs due to matter fields which give rise to a spatially

constant driving force. We will also assume that a residual AdS symmetry is preserved in

the bulk, and a corresponding Lorentz symmetry is left intact in the boundary theory. Fluid

mechanics then corresponds to the dynamics of the goldstone modes associated with the

boost symmetries of this Lorentz group. The components of the viscosity which give rise

to the violation of the KSS bound in the examples considered above correspond to metric

perturbations which have spin 1 with respect to the surviving Lorentz symmetry. Let z
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be a spatial direction in the boundary theory along which there is anisotropy and x be a

spatial direction along which the boost symmetry is left unbroken then we will present a

general argument below showing that the viscosity component ηxz, which couples to the

hxz component of the metric perturbation. satisfies the relation,

ηxz
s

=
1

4π

gxx
gzz

∣

∣

∣

u=uh
. (4.75)

where gxx|u=uh , gzz|u=uh refer to the components of the background metric at the horizon.

Eq.(4.75) is the main result of this section and one of the main results of this chapter.

We note that it also agrees with all the examples considered above. This result was first

obtained for an anisotropic axion-dilaton-gravity system in [134]. An analysis using RG flow

and KK reduction, for this system, was carried out in [138] along the lines of [115, 144].

For a case with a residual AdSd+1 factor in the metric, the basic idea behind the general

analysis will be to consider a dimensionally reduced description, starting from the original

D+1 dimensional theory and going down to the AdSd+1 space-time. Different Kaluza Klein

(KK) modes in the extra dimensions will not mix with each other since the effects breaking

rotational invariance are in effect spatially constant. For example, for cases where there are

linearly varying fields, like axions or dilatons, this will be true since the equations of motion

involve only gradients of these fields which are spatially constant. The non-mixing of the

KK modes will greatly ease in the analysis, since we can use the standard formulae of KK

reduction and moreover truncate the analysis to the zero modes in the extra dimensions.

The off diagonal components of the metric, whose perturbations carry spin 1 and which

are related to the viscosity components of interest, will give rise to gauge fields in the

dimensionally reduced theory. By studying the conductivity of these gauge fields, which

can be related easily to the spin 1 viscosity components we will derive the result in eq.(4.75).

The study of more complicated situations where the breaking of rotational invariance is due

to a driving force that also breaks translational invariance is left for the future.

4.5.1 The Dimensionally Reduced Theory

To start, we will consider the case whereD = 4 and d = 3, so that a residual AdS4 symmetry

survives, and the asymptotic geometry, towards the boundary, is AdS5. In this case we start

with 5 dimensions with a gravitational action :

S =
1

2κ̂2

∫

d5x
√

−ĝ (R̂ + 12Λ). (4.76)

Here 2κ̂2 = 16πĜ is the gravitational coupling with Ĝ being Newton’s Constant in 5-

dimension and we set Λ=1.
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Parametrising the 5 dimensional metric by

(ĝAB) =

(

e−ψ(u)gµν + e2ψ(u)AµAν e2ψ(u)Aµ

e2ψ(u)Aν e2ψ(u)

)

, (4.77)

and taking all components to be independent of the z direction which we take to be the

compactification direction, gives

S =
1

2κ2

∫

d4x
√−g

(

R− 3

2
(∂ψ)2 − e3ψ

4
F 2 + 12e−ψ

)

, (4.78)

where we have dropped total derivatives .

We also note that in our choice of parametrisation ,

ĝzz = e2ψ. (4.79)

The coefficient of the first term in the matrix in eq.(4.77) was taken to be e−ψ so that the

resulting 4 dimensional action is in the Einstein frame. κ which appears above is related to

the 5 dimensional gravitational coupling κ̂ by

L

2κ̂2
=

1

2κ2
, (4.80)

where L is the length of the compactified z direction.

So far we have neglected any matter fields. Consider for concreteness the case of the axion-

dilaton system considered in section 4.4.3 with action eq.(4.48) with α=1. Inserting the

background solution for the axion

χ = a z, (4.81)

and taking the dilaton to be independent of z we get from the kinetic energies of the dilaton

and axion,

S =
1

2κ2

∫

d4x
√−g

(

−a
2e2φA2

2
− 1

2
(∂φ)2 − 1

2
a2e2φ−3ψ

)

. (4.82)

We see that there is an extra term which depends on the gauge field and which gives rise

to a mass for it. This term arises due to the linearly varying axion, eq.(4.81) and is tied to

the breaking of translational invariance due to this linear variation. We see that the terms

in eq.(4.78) and eq.(4.82) involving the gauge field are quadratic in this field and can be

written as

S =
1

2κ2

∫

d4x
√−g

( −1

4g2eff (u)
F 2 − 1

4
m2(u)A2

)

, (4.83)

where

m2(u) = 2a2e2φ(u), (4.84)
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and
1

g2eff(u)
= e3ψ = (ĝzz(u))

3
2 . (4.85)

The solution in the near horizon region for this dilaton-axion system was given in eq.(4.49)

with α=1. It is easy to see from this solution that

1

g2eff
(u) = ρ3u2, (4.86)

and

m2(u) =
44

9
ρ2u

4
3 , (4.87)

and therefore that the gauge coupling and mass vary with the radial coordinate.

Similarly, in other cases where there is also a breaking of translational invariance we will

get both a kinetic energy term and a mass term, and in general both the gauge coupling

and the mass will vary in the radial direction. For the subsequent analysis we will analyse

the perturbations of the gauge fields in the 4 dimensional theory given in eq.(4.83). Such

a system was considered in [146, 147] and our subsequent discussion closely follows this

reference. As we will see later, the conductivity of these gauge fields can be related easily

to the spin 1 viscosity components using which we will derive the result in eq.(4.75). Let

us mention for now that the essential reason for this is that the two-point correlator of

the current operator gives the conductivity of the gauge field, while the two-point stress

tensor in the higher dimensional theory is related to the viscosity. Since the gauge field is

obtained from the spin 1 component of the metric in the higher dimensional theory, these

two correlators are closely related.

The 3+1 dimensions, include time, t, the radial direction u, and additional space directions,

one of which we denote by x. To study the conductivity we consider a perturbation for the

x component of the gauge field,

Ax(~x, t, u) =

∫

dωd3~k

(2π)4
e−iωt+

~k.~xZ(u, ω). (4.88)

This gauge field perturbation decouples from the rest (we have set perturbations of the

axion to vanish even before the KK reduction in the example above, this turns out to be a

consistent thing to do). Z(u, ω) satisfies the equation

d

du
(N(u)

d

du
Z(u, ω))− ω2N(u) guug

ttZ(u, ω) +M(u)Z(u, ω) = 0, (4.89)

with

N(u) =
√−g 1

g2eff
gxxguu, (4.90)
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and

M(u) = −m
2(u)

√−g
2 gxx

. (4.91)

Treating the radial coordinate u as the analogue of time we can read off the “momentum”

conjugate to Z from eq.(4.83) to be

Π(u, ω) =
δS

δZ ′(u,−ω) = − 1

2κ2
N(u)Z ′(u, ω), (4.92)

where Z ′ = d
duZ(u, ω) and N(u) as given in eq(4.90).

The conductivity is given by

σ(u, ω) =
Π(u, ω)

iωZ(u, ω)

∣

∣

u→∞,ω→0
, (4.93)

where Z and Π are the asymptotic values of the perturbation and conjugate momentum

defined in eq.(4.92) in the region u→ ∞.

We assume that the underlying higher dimensional geometry is asymptotically AdS5 space

and that the back reaction due to the matter fields which break the rotational invariance

dies out compared to the cosmological constant in this asymptotic region. This is true in

all the examples studied above where the geometry becomes AdS5 when u→ ∞. It is then

easy to check, as discussed in appendix C.2 that the ratio on the RHS in eq.(4.93) becomes

independent of u when u→ ∞.

We can write σ(u, ω) as the sum of real and imaginary parts as Re (σ(u, ω))+ i Im (σ(u, ω)).

We will be interested in the real part Re (σ) since that is related to the viscosity components

of interest. It is easy to see from our definition, eq.(4.93) that

Re (σ(u, ω)) = Im

(

Π(u, ω)Z(u,−ω)
ωZ(u, ω)Z(u,−ω)

)

∣

∣

u→∞, ω→0
. (4.94)

where Π(u, ω) is defined in eq.(4.92).

To evaluate the RHS in the limit ω → 0, it will be sufficient to consider the leading order

behaviour of the denominator. Since Z(u, ω) is real to leading order when ω → 0 we obtain

Re (σ) =
Im (Π(u, ω)Z(u,−ω))

ω Z2(u)

∣

∣

u→∞, ω→0
. (4.95)

The numerator of RHS of eq.(4.95) is independent of u (appendix C.3) and can therefore

be evaluated at u = uh instead of u→ ∞. After some more simplification this gives

Re (σ) = σH

(

Z(uh)

Z(u→ ∞)

)2
∣

∣

ω→0
, (4.96)
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where σH is the conductivity evaluated at the horizon and its expression is given by,

σH =
1

2κ2g2eff

∣

∣

∣

u=uh
. (4.97)

See appendix C.3 for more details.

To proceed we need to evaluate the ratio Z(uh)
Z(u→∞) . For this purpose we go back to the

underlying higher dimensional theory with which we started in which the gauge field is

actually an off diagonal component of the metric, eq.(4.77). The background about which

we are calculating the behaviour of the perturbation is diagonal in the metric with all

components being only a function of u. Now consider a coordinate transformation x →
x+αz, with all the other coordinates remaining the same. It is easy to see that under this

transformation the metric now acquires an off-diagonal component

δĝxz = αĝxx, (4.98)

with all the other components of the background metric staying the same. Note that in our

notation the hatted metric refers to the 5 dimensional one while the unhatted metric refers

to the 4 dimensional Einstein frame metric, see eq.(4.77).

Since we have merely carried out a coordinate transformation it is clear that δĝxz in eq.(4.98)

must satisfy the equations of motion for small perturbations about the starting background.

Comparing with eq.(4.77) we find that this corresponds to turning on a gauge field

Ax = α
ĝxx
e2ψ

, (4.99)

which must therefore solve the equation (4.89) in the limit ω → 0 with

Z(u) = α
ĝxx
e2ψ

. (4.100)

In this way we can exploit the co-ordinate invariance of the underlying higher dimensional

theory to obtain a solution for Z(u) in the ω → 0 limit. More over it is easy to see that this

solution meets the correct boundary condition at u→ ∞. As was mentioned above, we are

assuming that the higher dimensional metric is asymptotically AdS5 space. The ratio ĝxx
e2ψ

therefore goes to unity and Z(u) goes to a constant which is the correct behaviour needed,

as is also discussed in appendix C.2.

With the solution eq.(4.100) at hand we can now evaluate the ratio Z(uh)
Z(u→∞) . The arbitrary

constant α drops out and we get that

Z(uh)

Z(u→ ∞)
=
ĝxx
e2ψ

∣

∣

∣

u=uh
. (4.101)

Substituting in eq.(4.96) and using eq.(4.97) we get that the conductivity is given in terms
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of g2eff and various metric opponents at the horizon by

σ =
1

2κ2g2eff

(

ĝxx
e2ψ

)2 ∣
∣

∣

u=uh
. (4.102)

From eq.(4.85) and using eq.(4.79) from our parametrisation eq.(4.77) , we finally get that

σ =
1

2κ2
ĝ2xx√
ĝzz

. (4.103)

Note that we have been able to obtain an expression independent of m2 that only depends

on the metric components ĝxx, ĝzz in the 5 dimensional theory. In the subsequent discussion

we somewhat loosely denote Re(σ) by σ itself.

4.5.2 The Viscosity To Entropy Ratio

The next step is to relate the conductivity obtained above to the viscosity. This is in fact

straightforward. Kubo’s formula relates the components of the viscosity to the two point

function of corresponding components of the stress tensor Tij in eq.(4.11). This two point

function is obtained by calculating the response to turning on suitable metric perturbations

in the bulk. We will be assuming, as was mentioned above, that asymptotically the

background metric is AdS5. Thus as u → ∞, ĝµν → u2δµν for all components other than

along the u direction, as discussed in appendix C.2. The off - diagonal metric perturbations

required for the shear viscosity then behave like

δĝµν = u2hµν

as u→ ∞, where hµν is independent of u. The viscosity component ηxz is then given by

ηxz = − 1

ω
Im
(

< Txz( ~k1, ω)Txz( ~k2, ω) >
′
)

∣

∣

~k1, ~k2→0,ω→0
, (4.104)

where the prime subscript on the RHS means that the overall energy momentum conserving

delta function has been removed. From AdS/CFT we have that

< Txz( ~k1)Txz( ~k2) > =
δ2S

δhxz( ~k1)δhxz( ~k2)
. (4.105)

The conductivity in an analogous way is given by

σ = − 1

ω
Im
(

< Jx( ~k1, ω)Jx( ~k2, ω) >
′
)

∣

∣

~k1, ~k2→0,ω→0
, (4.106)
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which in turn can be calculated from the bulk response since

< Jx( ~k1)Jx( ~k2) > =
δ2S

δAx( ~k1) δAx( ~k2)
. (4.107)

On comparing with eq.(4.77) we see that the zero mode of hzx in the z direction is in fact

Ax. This shows that ηxz and σ are essentially the same upto one minor factor of L the

size of the z direction. This factor arises because the prime subscript in eq. (4.104) and

eq.(4.106) are different, in the first case the momentum conservation delta function removed

includes a delta function in the z direction, whereas in the case of the conductivity it does

not include this delta function. Accounting for the difference gives

ηxz =
σ

L
. (4.108)

The entropy density in the 5 dimensional theory is given by

s =
2π

κ̂2
A =

2π

κ̂2

√

ĝxxĝyy ĝzz, (4.109)

(this is also the same as the entropy density in the 4 dimensional theory divided by L).

From eq.(4.108) , eq.(4.102), eq.(4.79), eq.(4.109)and eq.(4.80), we can now write the ratio

ηxz
s

=
σ
L

s
=

1

4π

1
g2eff

(

ĝxx
ĝzz

)2

√

ĝxxĝyy ĝzz

∣

∣

∣

u=uh
. (4.110)

Using eq.(4.85), eq.(4.79) in the above expression and using isotropy along x and y, we

arrive at the following result
ηxz
s

=
1

4π

ĝxx
ĝzz

∣

∣

u=uh
. (4.111)

This general result agrees with the ones we obtained in all the examples we studied in the

previous sections. We see that independent of the details of the matter fields which were

responsible for the breaking of the rotational symmetry we get a general result in eq.(4.110).

This result shows that when the ratio of the metric components ĝxx
ĝzz

at the horizon becomes

smaller than unity the KSS bound will be violated.

4.5.3 Generalisation To Case with Additional Directions

In the preceding discussion of this section we have considered the dimensional reduction

from 5 to 4 dimensions. However, it is easy to generalise these results for the case where we

start withD+1 dimensions and KK reduce to d+1 dimensions. In fact, this generalisation is

needed for the situation discussed earlier with a magnetic field where the residual symmetry

arises due to an AdS3 factor instead of an AdS4 in the geometry. Our analysis closely follows

[148]. The dimensional reduction in this case will give rise to D − d gauge fields .
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Following [148], we parametrize the higher dimensional metric as :

(ĝAB) =

(

gµν +A
(1)γ
µ A

(1)
νγ A

(1)
µβ

A
(1)
να Gαβ

)

, (4.112)

where the D + 1 dimensional vielbein is given by

(

êr̂µ̂

)

=

(

erµ A
(1)β
µ Eaβ

0 Eaα

)

, (4.113)

with Gαβ = EaαδabE
b
β and gµν = erµηrse

s
ν . Here α, β = 1, ..D − d denote the directions over

which the reduction has been carried out and µ, ν = 0, 1, · · · d are the ones left in the lower

dimensional theory. It also follows from the parametrisation that

√

−ĝ = √−g
√
G, (4.114)

where G is the determinant of the internal metric Gαβ . Additional matter fields required

for breaking rotational invariance which also break the translational invariance in the

compactified directions give mass terms for the gauge fields, which will vary in general

in the radial direction. Neglecting these additional matter fields for now we start with the

action

Sĝ =
1

2κ̂2

∫

dD+1x
√

−ĝ
[

R̂+ Λ
]

As shown in [148] the dimensionally reduced action in d+ 1 dimensions becomes

S =
1

2κ2

∫

dd+1x
√−g e−φ

(

R+ Λ+ gµν∂µφ∂νφ+
1

4
gµν∂µGαβ∂νG

αβ

−1

4
gµρgνλGαβF

(1)α
µν F

(1)β
ρλ

)

,

(4.115)

where

φ = −1

2
log det (Gαβ) ⇒ e−φ =

√
G, (4.116)

where G is the determinant of the internal metric Gαβ ,

F (1)α
µν = ∂µA

(1)α
ν − ∂νA

(1)α
µ , (4.117)

and κ which appears above is related to the 5 dimensional gravitational coupling κ̂ by

LD−d

2κ̂2
=

1

2κ2
, (4.118)

where LD−d is the volume of the compactified directions .

For simplicity we assume that the internal metric Gαβ is diagonal and focus on the ĝxz

component of the metric perturbation (where x represents a spatial direction along which the
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boost symmetry is left unbroken and z represents an anisotropy direction in the boundary

field theory). Comparing the last term in the action eq.(4.115) with the kinetic energy term,
√−g

(

−1
4g2eff (u)

F 2
)

, as given in eq.(4.83), we then find the effective gauge coupling, for the

corresponding gauge field A is
1

g2eff
= e−φgzz. (4.119)

As mentioned above, additional matter fields give rise to mass terms for the gauge fields.

We will also take these mass terms to be diagonal for simplicity. The resulting equation for

the x component of the gauge field Ax is then of the form given in eq.(4.89), where we have

expanded Ax as given in eq.(4.88). It can then be argued (see Appendix C.3 for details)

that the conductivity in the lower d+ 1 dimensional theory 1 is given by

Re (σ) =
1

2κ2

(

√

guu
gtt

N(u)

)

u=uh

(

Z(uh)

Z(u→ ∞)

)2

=
1

2κ2

(

√

guu
gtt

√− g
1

g2eff
gxx guu

)

u=uh

(

Z(uh)

Z(u→ ∞)

)2

Thus we find

Re (σ) = σH

(

Z(uh)

Z(u→ ∞)

)2

, (4.120)

where σH is the conductivity evaluated at the horizon and its expression is given by,

σH =
1

2κ2 g2eff

g
d−1
2

xx

gxx

∣

∣

∣

u=uh
, (4.121)

where we have used isotropy along the spatial directions (besides u) in the lower dimensional

theory. Using eq.(4.120), eq.(4.119), eq.(4.116) we get

Re (σ) =
1

2κ2g2eff

g
d−1
2

xx

gxx

∣

∣

∣

u=uh

(

Z(uh)

Z(u→ ∞)

)2

=
1

2κ2
e−φgzz

g
d−1
2

xx

gxx

∣

∣

∣

u=uh

(

Z(uh)

Z(u→ ∞)

)2

=
1

2κ2

√
G g

d−1
2

xx
gzz
gxx

(

Z(uh)

Z(u→ ∞)

)2

.

(4.122)

We can now repeat the analysis done in the previous section to evaluate the ratio Z(uh)
Z(u→∞) , by

using general coordinate invariance in the underlying higher dimensional theory and noting

1 With our choice, eq.(4.112), the dimensional reduction results in an action which is not in Einstein
frame. We could have performed a conformal transformation to bring the lower dimensional action back to
the Einstein frame. Our end result however will be independent of this choice.
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that the gauge field is an off-diagonal component of the metric, eq.(4.112) (for details see

eq.(4.101)).

Thus we get

Re (σ) =
1

2κ2

√
G g

d−1
2

xx
gzz
gxx

Z(uh)
2
∣

∣

∣

u=uh

=
1

2κ2

√
G g

d−1
2

xx
gzz
gxx

g2xx
g2zz

∣

∣

∣

u=uh

=
1

2κ2

√
G g

d−1
2

xx
gxx
gzz

∣

∣

∣

u=uh
. (4.123)

The higher dimensional entropy density is

s =
2π

κ̂2

√
G g

d−1
2

xx . (4.124)

Hence we arrive at the result
σ

s
= LD−d 1

4π

gxx
gzz

∣

∣

∣

u=uh
. (4.125)

Finally, the arguments given in subsection 4.5.2 allows us to connect ηxz computed in the

higher dimension to σ in the following way

ηxz =
σ

LD−d . (4.126)

Thus we find
ηxz
s

=
σ

LD−d

s
=

1

4π

gxx
gzz

∣

∣

∣

u=uh
, (4.127)

which agrees with the examples we have studied in the previous sections.

4.6 Comments and discussions

In this chapter we have considered a variety of anisotropic examples, and have shown that

suitable components of the viscosity can become very small in the highly anisotropic case

and can parametrically violate the bound, eq.(4.1). All our examples have the feature that

the breaking of rotational invariance is due to an externally imposed forcing function which

is translationally invariant. E.g. due to linearly varying scalars which give rise to a constant

forcing function, or due to a spatially constant magnetic field, which was studied earlier in

[140]. Another common feature in all our examples is that some residual Lorentz symmetry

survives at zero temperature. In the second half of the chapter we show in considerable

generality that for all cases with these two features, the components of the viscosity tensor,

which correspond to metric perturbations which carry spin 1 with respect to the unbroken

Lorentz symmetry, satisfy the relation eq.(4.6). In the anisotropic case the ratio of the

metric components on the RHS of eq.(4.6) can become very small as T → 0, resulting in a
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parametrically large violation of the KSS bound. This is indeed true for the examples we

consider, all of which satisfy eq.(4.6) .

Besides allowing for a computation of the viscosity with relative ease, the gravitational

description also provides an intuitive understanding of why such violation of the KSS bound

may arise. In the absence of isotropy the different metric perturbations break up into

components with different values of spin with respect to the remaining Lorentz symmetry.

Spin 2 components, if present, give rise to viscosity coefficients which satisfy the KSS bound.

But spin 1 components can violate it. In fact the spin 1 components are akin to gauge fields,

and the corresponding calculations for these components of the viscosity therefore becomes

similar to those for conductivity. These are well known in several AdS/CFT examples, and

also in nature, to sometimes become very small.

In weakly coupled theories, with well defined quasi particles, we would expect, [149], [150],

that
η

s
∼ lmfp
λdB

, (4.128)

where lmfp, λdB refer to the mean free path and the de Broglie wave length for the quasi

particles. This leads to the intuitive expectation that at strong coupling the ratio η/s ∼
O(1). However, here we see that at strong coupling, where the gravity description is valid,

some components of the viscosity tensor in the anisotropic case violate this relation and can

become parametrically smaller.

The generality of our result suggests the possibility that this behaviour might happen in

nature too. It would be very exciting if this can be probed in experiments, perhaps on cold

atom systems, or in QCD.

Ordinarily, QCD at finite temperature is described by a homogeneous and isotropic phase

for which the calculations discussed here are not relevant. This is true even when we consider

situations which come about due to anisotropic initial conditions, as might arise in heavy ion

collisions. The behaviour of the QCD fluid in these situations is still governed by rotationally

invariant Navier Stokes equations with appropriate viscosity coefficients. However, this

could change if a sufficiently big magnetic field is turned on breaking rotational invariance
2. The resulting equilibrium phase could then be highly anisotropic and our results, and

earlier work, [140], hint that suitable components of the viscosity might become small. It

has been suggested that such an intense magnetic field might perhaps arise in the interior

of some highly magnetised neutron stars 3, see [151], [152] and [153]. It has also been

suggested that strong magnetic fields might actually arise in the highly relativistic heavy

ion collisions (see [154], [155] and [156]), although in this case the transitory nature of these

fields must also then be taken into account.

Turning to cold atom systems, the unitary Fermi gas has also been observed to have a value

2A magnetic field of order 1016 Tesla or so is needed in order to contribute an energy density comparable
to the QCD scale ∼ 200 Mev.

3We thank Gergely Endrödi and Gunnar Bali for a discussion on this issue.
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of η/s close to the KSS bound. As we will explore in Chapter 5, we can introduce the

breaking of rotational invariance in this system. It is thus very interesting to examine the

resulting behaviour of the viscosity tensor. Even at small anisotropy one might hope to see

a trend where some components start getting smaller than the bound. A natural way to

incorporate anisotropy in this case might be to consider the effects of an asymmetric trap
4 which we will describe in Chapter 5 .

It is worth mentioning that the spin 1 viscosity components, which become very small in our

work, govern the diffusion of the momentum components oriented transverse to the direction

in which the initial inhomogeneity is set up. For example, take a case with anisotropy in

the z direction. If the momentum along the x direction, px, is now taken to have an initial

gradient along the z direction, then its diffusion is governed by the viscosity component

ηxz, with diffusion length

D⊥ =
ηxz
sT

, (4.129)

where s is the entropy density. A small value of ηxzs then gives rise to a small value for the

diffusion constant 5D⊥ in units of temperature.

It is perhaps worth mentioning in this context that there have been some recent measure-

ments of spin diffusion in the unitary fermi gas system 6. In three space dimensions, with

rotational invariance intact, the transverse spin diffusion constant is measured to be close to

the bound which arises from standard Boltzmann transport theory based on quasi particles,

see [157]. However, in a quasi-two space dimensions [158], it was found that the transverse

spin diffusion constant is about three orders of magnitude smaller than this bound. It would

be worth exploring if these observations can be related to the results presented here.

We have not analysed the stability of the anisotropic solutions discussed in this chapter

in any detail. For the one dilaton case this question was analysed at considerable length

in [139] and no instabilities were found. This suggests that some examples studied here,

e.g., the two dilation case, also could be stable. We leave a more detailed analysis of this

question for the future. It is worth noticing that if an instability appears, it will be when

the temperature T ∼ ρ, where ρ is the scale of the anisotropy. As a result one expects O(1)

violations of the bound for such systems as well, although not violations where the viscosity

becomes parametrically small. On a more theoretical note, it would be worth obtaining

string theory embeddings of the anisotropic systems we have studied here and examining

if they are stable. Some embeddings for the axion dilaton system were studied in [128]

and for the one dilaton case in [139] and were found to be unstable, since they contained

fields which lay below the BF bound of the near horizon geometry. In another instance, e.g.

4We thank Mohit Randeria for very helpful discussions in this regard and also for his comments about
the spin diffusion experiments.

5The anisotropy force in this case would act in the z direction. This force does not directly enter in
the diffusion equation for px. For significant anisotropy, ρ/T ≫ 1, the force is big, and as a result the fluid
cannot move in the z direction at all. This follows from the bulk geometry, e.g. AdS4 × R in the case
considered in section 4.2, where Lorentz invariance along the z direction is manifestly broken.

6We thank Sean Hartnoll for bringing these experiments to our notice.
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[135], though, a stable supersymmetric system with anisotropy was found where suitable

components of the viscosity become vanishingly small at low temperatures, just as in our

analysis here.

We have discussed situations where the breaking of rotational invariance is explicit, due to an

externally applied source. It would also be interesting to extend this analysis to cases where

the breaking is spontaneous. Another direction is to consider Bianchi spaces which have

been discussed in [1, 2], and which describe homogeneous but anisotropic phases in general.

Some discussion of transport coefficients in such phases using the gravity description can

be found in [159].
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The Shear Viscosity in an

Anisotropic Unitary Fermi Gas

5.1 Introduction

The calculation of the transport properties of strongly coupled quantum theories is an

interesting problem for theorists working on a wide range of systems including ultra-cold

Fermi gases at unitarity [160, 161], heavy ion collisions [160, 162], and neutron stars [163,

164].

At strong coupling, perturbative expansions fail to give reliable answers. Sophisticated

Monte-Carlo techniques which are used to study such theories non-perturbatively by eval-

uating path-integrals in imaginary time, while very successful for calculating equilibrium

properties (in the Fermi gas context see Ref. [165] and Refs therein; for heavy ion collisions

see Ref. [166] and Refs therein) cannot be easily generalized to study transport (in the Fermi

gas context see Ref. [167, 168]; for heavy ion collisions see Ref. [169] and Refs therein).

Within the framework of AdS/CFT however, a class of strongly interacting quantum field

theories in d dimensions in some limits can be related to weakly coupled theories of gravity

in (d+1) dimensions. This correspondence [170] allows us to compute dynamical properties

of these theories, often with relative ease.

While the theories describing ultra-cold Fermi gases and heavy ion collisions do not have

known gravitational duals and controlled calculations are difficult, beautiful experiments

have managed to measure the value of η/s in the two systems. The value of η/s of the

quark gluon plasma created in heavy ion collisions, required for hydrodynamic simulations

to be consistent with the experimentally measured spectrum of low energy particles (see

Ref. [171] for a review), seems to be close to 1/(4π). Remarkably, η/s has been measured

for ultra-cold fermions at unitarity for a wide range of temperatures and the minimum value

(see Refs. [172, 173, 174]) is about six times the KSS bound.
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Interestingly, the shear viscosity tensor for many interesting systems is often anisotropic.

For example, it has been suggested that the highly anisotropic initial states in heavy ion

collisions (the direction parallel to the collision axes is fundamentally different from the

transverse directions) may give rise to anisotropic transport properties [175]. Furthermore,

many interesting states of matter, eg. spin density waves and spatially modulated phases,

are anisotropic. Another possibility, that we shall explore in detail in this chapter, is that

an externally applied field can pick a particular direction and give rise to anisotropies in

the shear viscosity. This possibility has been explored extensively for the case of weakly

coupled theories in the presence of a background magnetic field. (See Ref. [149] for a classic

treatment, Ref. [176] for applications to heavy ion collisions and Ref. [177] for applications

to neutron stars.) The behavior of strongly coupled theories in the presence of an external

field is less well explored. Our results in the last chapter ( Chapter 4) indicate that one may

expect parametric violations of the KSS bound in such anisotropic scenarios. As we saw,

this feature arises in a wide variety of examples and seems to be quite general. In particular,

for a spatially constant driving force which breaks rotational invariance, we found that by

increasing the strength of the driving force compared to the temperature, the ratio for

appropriate components of the shear viscosity to entropy density can be made arbitrarily

small, violating the KSS bound.

If this phenomenon also carries over to the unitary Fermi gases, it may be possible to

measure these small viscosities in experiments with trapped ultra-cold Fermi gases. For

this purpose, it is helpful to consider traps which share the essential features of the systems

we have considered in gravity listed at the end of Sec. 5.2 of this chapter. The goal of this

chapter is to give a concrete proposal for the trap geometry and parameters where this

effect is likely to be seen.

While typical trap potentials are harmonic, [quadratic (Eq. 5.14) rather than linear in the

distance] by using existing results for the thermodynamics of unitary Fermi gases, we show

that for a range of temperatures the dominant contribution to the damping of collective

modes due to viscosity arises from a narrow region in the trap not near the center, where the

trapping potential can be approximately considered as linear. In analogy with Ref. [139, 178]

it is desirable to have traps that are highly anisotropic, which can be simulated by taking

the trapping frequencies [179] in one of the directions (say ωz) to be much larger than the

frequencies in the other directions.

We describe two hydrodynamic modes whose dissipation is governed by the components of

viscosity which are expected to become small in the anisotropic situation considered here.

One of them is known in the literature as the scissor mode which has been well studied for

bosonic superfluids at T = 0 theoretically [180] and has also been experimentally excited

in both bosonic [181] and fermionic [182] superfluids. The second mode is a new quasi-

stationary solution to the hydrodynamic equations. Especially for the scissor mode, we

show that for experimentally reasonable values of trap parameters, the damping rate of the

mode lies within an experimentally accessible range. It should therefore be possible to study
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this mode, measure the relevant component of the viscosity and its possible suppression.

To gain some additional understanding of how the anisotropic system might behave, we

also make a rough estimate of the viscosity components in the presence of an anisotropic

trapping potential using the Boltzmann equation. We find that as the anisotropy increases,

due to an increase in the trapping frequency ωz in one of the directions, some components

of the viscosity tensor decrease, compared to their value in the isotropic case.

The outline for the chapter is as follows. First, using the knowledge we have gained in the

previous chapters in the gravity picture, we summarize the essential features required in a

system to exhibit the suppression of η/s.

Next, we consider the unitary Fermi gas in an anisotropic harmonic trapping potential

and describe the two hydrodynamic modes which couple to the small components of the

shear viscosity tensor in Sec. 5.3.1. In Sec. 5.3.3 and Sec. 5.3.4 we show that these two

hydrodynamic modes satisfy the equations of superfluid hydrodynamics. Sec. 5.3.5 discusses

the energy dissipation due to shear viscosity in these two modes we have studied. In

Sec. 5.3.6 we examine the constraints on the mode amplitudes by demanding validity of fluid

mechanics and in Sec. 5.3.7 we discuss the damping in the outer regions of the cloud. Next we

review the thermodynamics of the system in Sec.5.3.8. In Sec. 5.3.9 we give parameter values

for traps (the trapping potential, the temperature and the chemical potential at the center

of the trap) which are tuned such that the system possesses the required essential features,

and show that by measuring the damping rate of fluid modes (described in Sec. 5.3.1) one

can measure the shear viscosity. This section contains some of the key results in the chapter.

Sec. 5.4 discusses an analysis in a weakly coupled anisotropic theory using the Boltzmann

equation. We conclude our discussion in Sec. 5.5.

The solution of the Boltzmann equation used to estimate the values of the trap potentials for

which we expect the corrections to the viscosity to be substantial is given in Appendix D.2.

In Appendix D.1 we compare the modes (discussed in Sec. 5.3.1) with the well known

breathing modes.

5.2 Brief recap of the main results from gravity and condi-

tions for suppression of η/s

In Chapter 4 (Ref. [178]), several anisotropic theories in 3 + 1 dimensional space-time (the

boundary with coordinates (t, x, y, z)), which are dual to a gravitational theory living in

4 + 1 dimensional space-time (the bulk with an additional coordinate u) were studied.

Isotropy was broken by considering states where some of the fields have a background value

that depended on some of the spatial coordinates x , y , z, explicitly breaking rotational

symmetry between them.

All the examples studied in Chapter 4 (Ref. [178]) share the common feature that the force
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responsible for breaking isotropy in the boundary theory is translation invariant as we shall

explain via an example below.

Chapter 4 (Ref. [178]) built on the results of Ref. [139], which studied a simple system

consisting of a linearly varying dilaton. The dilaton field φ couples to the graviton in the

bulk via the Lagrangian

S =
1

16πG

∫

d5x
√
g [R+ 12Λ− 1

2
∂µφ∂

µφ] , (5.1)

where G is Newton’s constant in 5 dimensions and Λ is a cosmological constant. The

boundary theory in the absence of anisotropy is a 3+ 1 dimensional conformal field theory.

In this system we can clarify what we mean by saying that the driving force is constant.

The dilaton field in the background solution here has the profile

φ(t, x, y, z) = ρz . (5.2)

Clearly this choice of the background singles out the z direction, breaking isotropy. In the

presence of the dilaton the conservation equations for the stress tensor get modified to be,

∂µT
µν = 〈O〉∂νφ , (5.3)

where O is the operator dual to the field φ. The right hand side arises because the varying

dilaton results in a driving force on the system. We see that a linear profile results in a

constant value for ∂νφ and thus a constant driving force.

Let us also mention that in this example, on the gravity side the linearly varying dilaton

gives rise to a translationally invariant stress tensor and thus a black brane solution which

preserves translational invariance. This corresponds to the fact that in the field theory the

equilibrium stress tensor features only derivatives of φ and is thus space-time invariant.

We shall see that the cold-atom system we consider will not be invariant under translations

in equilibrium. However the equations of hydrodynamics (Eq. 5.20) in the presence of a

driving force associated with a space varying potential look similar to Eq. 5.3, where the

operator O in the cold-atom system corresponds to the density, and the driving force is

proportional to the gradient of the potential φ(r).

The example considered in Ref. [139] also shares the property that an SO(2, 1) residual

Lorentz symmetry survives, at zero temperature, after breaking isotropy. This residual

Lorentz symmetry corresponds to the t, x, y directions in the boundary theory. Fluid

mechanics corresponds to the dynamics of the Goldstone modes associated with the boost

symmetries of this residual Lorentz group, which are broken at finite temperature.

In a general system the viscosity η is a fourth order tensor under rotations relating the

deviation of the stress-energy tensor from its equilibrium value, to the velocity gradient. If
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Figure 5.1: Fluid flow between two parallel plates. For φ = ρz the driving force is in the z
direction and is proportional to ρ. Parametrically small values of the viscosity (Eq. 5.12)
govern the dynamics for flows in the x (or y) direction with a gradient in the z direction
(for Eg. vx = v0z).

the local fluid velocity is v = (vx, vy, vz), we have

δT ij = ηijkl
1

2
(∂kvl + ∂lvk) . (5.4)

Since we are only considering the effects of the shear components,

ηijklδkl = 0 . (5.5)

In the example in Ref. [139], with dilaton profile given by Eq. 5.2, the viscosity components

that become small correspond to the ηxzxz, ηyzyz components of the viscosity tensor. In the

subsequent discussion we shall use an abbreviated notation,

ηxzxz = ηxz, η
yzyz = ηyz . (5.6)

In the gravity description these components correspond to perturbations of the metric which

carry spin 1 with respect to the surviving SO(2, 1) residual Lorentz symmetry.

A fluid flow configuration where the frictional force (and therefore the resulting dissipation)

is governed by a spin 1 viscosity component arises as follows. Consider the fluid enclosed

between ([178, 183]) two parallel plates separated along z axis by a distance L with the top

plate moving with a speed v0/2 along x direction while the lower plate moves with a speed

v0/2 along −x direction, see Fig.5.1.

The resulting steady state solution of the Navier Stokes equation, even for the anisotropic

case, is remarkably simple, with

vy = 0, vz = 0, (5.7)
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the temperature T being a constant, and vx being a linear function of z

vx =
v0
L
z, z ∈ (−L/2, L/2) (5.8)

( we have chosen coordinates so that z = 0 lies at the midpoint between the plates). A

constant force per unit area is exerted by the fluid on both the upper and lower plates,

T xz = ηxz ∂zvx, in this solution (we are compactly writing ηxzxz as ηxz). This frictional

force retards the relative motion of the plates and must be counteracted by an equal and

opposite force acting on both plates externally to sustain the steady state solution. We also

note that for this solution, in the gravity theory under discussion, hydrodynamics is valid

as long as the velocity gradient v0
L is small compared to the temperature T .

Using results from the gauge-gravity duality [170] it was shown in Chapter 4 (Ref. [178])

quite generally that the viscosity component ηxz behaves like

ηxz
s

=
1

4π

gxx
gzz

∣

∣

∣

u=uh
, (5.9)

where gxx|u=uh , gzz|u=uh refer to the components of the background metric evaluated at the

horizon which we denote by uh. ‘s’ refers to the entropy density which in the bulk picture

corresponds to the area of the event horizon.

In the isotropic case the ratio gxx
gzz

∣

∣

∣

u=uh
is unity and we see that the KSS result is obtained.

However, in anisotropic cases this ratio can become very different from unity and in fact

much smaller, leading to the parametric violation of the KSS bound, where the relevant

dimensionless parameter is the ratio of the strength of the anisotropic interaction and an

appropriate microscopic energy scale of the system.

The general result Eq. 5.9, for the behavior of the spin 1 shear viscosity components ηxz =

ηyz ≡ η⊥ was studied in the example of Ref. [139] for two cases — one in the low anisotropy

regime and the other in the high anisotropy regime. In this example, there are two scales

of interest, ρ, which enters in the dilaton profile, Eq. 5.2 and determines the anisotropy,

and the temperature T (while this theory does not have quasi-particles at finite T , one can

roughly think of the mean free path as being of the order of 1/T ). Whether the anisotropy

is large or small is determined by the ratio ρ/T which is dimensionless. Simple results can

be obtained in the limit of low and high anisotropy which correspond to ρ/T ≪ 1 and

ρ/T ≫ 1 respectively.

For the spin 1 component of the shear viscosity ηxz = ηyz ≡ η⊥ the results are as follows:

1. Low anisotropy regime (ρ/T ≪ 1):

η⊥
s

=
1

4π
− ρ2 log 2

16π3T 2
+

(6− π2 + 54(log 2)2)ρ4

2304π5T 4
+O

[(

ρ

T

)6]

. (5.10)

We see that a small anisotropy at order (ρ/T )2 already reduces this component of the
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viscosity and makes it smaller than the KSS bound. In the limit of zero anisotropy,

we recover the KSS bound
η⊥
s

→ 1

4π
. (5.11)

We also note that the driving force in the conservation equation for the stress tensor

(Eq. 5.3) is proportional to ∇φ ∼ ρ (Eq. 5.2) and the analogue of the mean free path

is T. Thus the corrections go like (∇φ)2
T 2 .

2. High anisotropy regime (ρ/T ≫ 1):

η⊥
s

=
8πT 2

3ρ2
. (5.12)

We see that in this limit the ratio can be made arbitrarily small, with η⊥
s → 0, as

T → 0 keeping ρ fixed. 1

In contrast the ηxyxy component (which couples to a spin 2 metric perturbation) was found

to be unchanged from its value in the isotropic case,

ηxyxy
s

=
1

4π
(5.13)

and thus continues to meet the KSS bound.

Motivated by the results in the gravity side, we may hope to find parametrically suppressed

viscosities compared to the KSS bound in systems where the following basic requirements

are met.

1. The system is strongly interacting and in the absence of anisotropy have a viscosity

close to the KSS bound.

2. The equations of hydrodynamics for the system admits modes sensitive to the spin

one viscosity components as described above and in Ref. [139, 178].

3. Sufficient anisotropy needs to be introduced in the system (say in the z direction

with rotational symmetry preserved along the x− y plane), such that these spin one

components of the viscosity, when measured in units of the entropy density, show an

experimentally measurable decreasing tendency from its lowest value observed so far

in ultracold Fermi gases.

4. The force responsible for breaking of isotropy is approximately spatially constant.

5. The velocity gradients are small enough (compared to say the inverse mean free

path) ensuring that hydrodynamics is the appropriate effective theory to describe

the system.

1In this regime η⊥ ∼
T4

ρ
and s ∼ T 2ρ , whereas for the isotropic case (ρ = 0) η⊥ ∼ T 3 and s ∼ T 3.

Thus we see that for T ≪ ρ, η⊥ is smaller than its value in the isotropic case while s is bigger, resulting in
the parametric violation in Eq. 5.12.
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In the next section (Sec. 5.3) we explore a system of trapped ultra-cold Fermi gases, chosen

so as to explore anisotropic fluid dynamics. While some of the details of this system are

different from the systems with dual gravitational theories discussed above, it is possible to

choose a set of parameters such that the system has the five features listed above. It can

therefore be used to explore the behavior of the viscosity in the anisotropic regime.

While gravitational duals for the ultra-cold Fermi gases are not yet known and hence we

can not calculate the anisotropic viscosity coefficients in this strongly coupled system, if

the main feature that ηxz is smaller than the KSS bound holds true for these, one could

potentially measure this phenomenon in experiments.

5.3 Anisotropic viscosity in trapped anisotropic Fermi gases

Trapped ultra-cold Fermi gas with their scattering length tuned to be near the unitarity

limit [179, 184], are strongly interacting systems for which η/s [172, 173, 174], was measured

to be close to the KSS bound 1/(4π). In this section we shall explore the properties of this

system, when it is placed in an anisotropic trap. We identify suitable hydrodynamic modes

which probe the viscosity component expected to be suppressed due to the potential in a

highly anisotropic harmonic trap and find that for reasonable choices of parameters the five

criterion referred to above, (see Sec.5.2), can be met in these modes. This leads us to suggest

that an anisotropic shear viscosity can arise in such systems and appropriate components of

the viscosity may show a reduction from the isotropic values in an experimentally accessible

way.

One method [174] to measure the viscosity is by starting with an initial state where the fluid

is trapped in an anisotropic harmonic trap. On removing the trapping potential, the fluid

experiences elliptic flow and the extent of the flow is related to the initial anisotropy and

the viscosity. The relevant bulk viscosity of the system vanishes [185, 186], which allows

one to cleanly extract the shear viscosity. Note that even though the initial state of the

fluid is anisotropic, the experiment does not probe anisotropic shear viscosities: after the

trap potential is removed, the viscosity tensor at any point is isotropic.

An alternative technique is to measure the damping rate of breathing modes [172, 173]

which is related to the loss of energy due to the viscosity. The experiments we propose in

this chapter use this alternative technique and propose to measure the relevant component

of the shear viscosity by measuring the damping of appropriate hydrodynamic modes.

The unitary Fermi gas system we consider here shares important features with the gravita-

tional system described in Sec. 5.2. The role of a linear potential was emphasized in Sec. 5.2.

While such a linear potential cannot arise in the trapped fermion system we consider, we

shall see below that if we choose the velocity profile and the trap parameters carefully,

the dominant contribution to shear viscosity comes from a region of the trap where the

confining force is approximately constant: satisfying the fourth criterion listed in Sec. 5.2.
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Figure 5.2: (Arbitrary units for coordinates) The flow profile in the x − z plane for the
Elliptic mode, ie. v = z x̂− x ẑ (left panel, corresponding to ωx/ωz = 1 in Eq. 5.16) and
v = z x̂− 0.001 x ẑ (right panel, corresponding to ωx/ωz = 0.03 in Eq. 5.16).

The system we consider consists of an ultra-cold Fermi gas under harmonic confinement

described by the potential

φ(r) =
∑

i

1

2
mω2

i x
2
i (5.14)

where i runs over x, y, z and m denotes the mass of the fermionic species. The trap is

anisotropic if ωi’s are unequal. For example, ωz ≫ ωx, ωy gives rise to a pancake like trap:

thin in the z direction. This can lead to an anisotropic shear viscosity tensor as described

in Sec. 5.4. The potential gradient in the x and y directions is small in most of the trap.

This section is organized as follows. After a general discussion we describe the two modes

of interest (referred to as the Elliptic mode and the Scissor mode) in subsection 5.3.1. The

equations of superfluid hydrodynamics are described next in subsection 5.3.2, following

which, in subsection 5.3.3 and 5.3.4 respectively we show that the Scissor mode and the

Elliptic mode satisfy these equations. The fluid flow profile in the Elliptic mode is similar

to that considered in Chapter 4: a velocity in the x direction with a gradient in the z

direction. The scissor mode is well known in the literature. In subsection 5.3.5 we show

that the dissipation of energy in the two modes of interest is determined by the relevant

components of the viscosity tensor (the spin 1 components described in the previous section).

In Subsection 5.3.6 we find a constraint on the magnitude of the velocity for the two

modes by demanding the validity of fluid mechanics. The thermodynamics of the system

is discussed in subsection 5.3.8. Finally in subsection 5.3.9 we bring this understanding

together and show that for reasonable values of parameters the required criterion listed in

Sec. 5.2 can indeed be met.
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Figure 5.3: (Arbitrary units for coordinates) The flow profile in the x − z plane at time
t = 0 for the Scissor mode, ie. v = z x̂+ x ẑ (Eq. 5.17)

5.3.1 Choice of Velocity Profile

Here we first describe the two modes of interest which arise as solutions to the equations

of ideal superfluid hydrodynamics. Each of these modes is characterized by the superfluid

and the normal components, which we denote by vs and vn respectively.

The first mode, which we call the Elliptic mode has vs = 0 and vn = v given by

v = eiωt(αxz x̂+ αzx ẑ) (5.15)

with the following relations:

Elliptic mode : ω = 0, αz = −ω
2
x

ω2
z

αx (5.16)

The other mode of interest, denoted by the Scissor mode, has vs = vn = v given by Eq. 5.15

with

Scissor mode : ω =
√

ω2
x + ω2

z , αz = αx. (5.17)

From the right panel in Fig. 5.2 we see that in the high anisotropy limit ωz ≫ ωx, αz → 0 for

the Elliptic mode, and hence we recover a flow profile similar to that considered in Chapter

4; namely a time independent (in the limit of small viscosity) velocity (v ∝ zx̂) linearly

increasing with the coordinate in the direction of the gradient of the external potential

(z), pointing (x̂) in the direction perpendicular to the gradient of the external potential

(neglecting ωx, ωy. The gradient is in the ẑ direction). To the best of our knowledge, the

Elliptic mode has not been studied in ultra-cold gas experiments. The scissors mode which
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has been studied extensively (for example see Refs. [180, 181, 182]).

In what follows, we will first show that the Elliptic mode and the Scissor mode satisfy

the equations of superfluid hydrodynamics in the presence of a harmonic trap. There are

viscous corrections to the hydrodynamic equations, but we work in a limit where viscous

corrections are small and therefore the solutions to the ideal hydrodynamics can be used to

calculate the energy loss rate due to viscosity in a perturbative manner.

5.3.2 Equations of superfluid hydrodynamics

Neglecting viscosity, the superfluid equations are given by the conservation laws of entropy,

mass (particle number), momentum and an additional equation for the superfluid velocity.

In the presence of the external potential φ(r) they are listed below :

∂(ρs)

∂t
+∇ · (ρsvn) = 0, (5.18)

∂ρ

∂t
+∇ · g = 0 , (5.19)

∂gi
∂t

+∇jΠij = −n∇φ(r), (5.20)

∂vs
∂t

= −∇(
v2
s

2
+
φ(r)

m
+
µ(r)

m
) . (5.21)

Here ρ is the total mass density (where ρn and ρs are the normal and superfluid mass

density of the system and the total mass density ρ = ρn + ρs). We have not written out

the dependence of the velocity on position and time. µ(r) can be thought of as the local

chemical potential. n (not in the subscript) denotes the total number density (which is

related to the total mass density ρ via the relation ρ = mn), g is the momentum density,

and Πij is the stress tensor, given as follows

g = ρnvn + ρsvs ,

Πij = Pδij + ρnvn,ivn,j + ρsvs,ivs,j .
(5.22)

Let us note that the equation for energy conservation can be derived from the set of

equations above, and is not an additional independent constraint.

Altogether there are 8 equations above and they can be solved for the 8 independent

variables - 6 components of (vs, vn) and T, µ(r). We can then express all thermodynamic

variables as functions of (T, µ(r)) like P (T, µ(r)), s(T, µ(r)) etc. In the trap geometries

we consider, the center of the trap is superfluid and the outer trap is in the normal phase.

The equations for a normal fluid can be obtained by simply substituting ρs = 0 and ignoring

Eq. 5.21.

Let us first look at the equilibrium situation vn = vs = 0 in the absence of external potential

φ. Eqns. 5.18, 5.19, 5.20, 5.21 are satisfied with µ(r) and P spatially constant.
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Before we consider the effects of an external potential let us also note that the pressure

and number density in the absence of the trap, which we denote as Pφ=0, nφ=0 respectively,

satisfy the Gibbs-Duhem relation

∂Pφ=0

∂µ
= nφ=0. (5.23)

In the presence of the external potential φ(r) with vs = vn = 0, only Eq. 5.20 and Eq. 5.21

changes. Eq. 5.21 is satisfied by taking

µ(r) = µ− φ(r), (5.24)

where µ is a global constant that determines the total number of particles in the system.

Eq. 5.20 in the presence of φ(r) becomes

∂iP (r) = −n ∂iφ(r). (5.25)

This is consistent with the replacement µ(r) → µ−φ(r) if we take the pressure P at a point

r in the presence of the trap to be equal to Pφ=0(T, µ − φ(r)) and the number density to

be nφ=0(T, µ − φ(r)). This follows from Eq. (5.23), since ∂iP = −∂Pφ=0

∂µ ∂iφ = −nφ=0 ∂iφ.

This is also known as LDA (Local Density Approximation). Generally LDA corresponds to

the conditions,

f(µ(r), T ) := fφ=0 (µ− φ(r), T ) (5.26)

where f is P , n, ρ or s. In all the subsequent discussions, a subscript 0 indicates that the

conditions for LDA are valid in equilibrium. Note that in equilibrium T is a constant.

5.3.3 Scissor mode solution to linear order

First we look for solutions of the form

vn = vs = v (5.27)

and ∇× v = 0. We restrict ourselves to small velocities and linearize the above equations.

For the scissor mode we see from Eq. 5.15 and Eq. 5.17 that v is given by

v = α eiωt(zx̂+ xẑ) (5.28)

where α = αx = αz is a constant. We will solve the equations to linear order in α.

Let us first explore Eq. 5.21. Out of equilibrium (v 6= 0), µ(r) has an extra correction

associated with v,

µ(r) = µ− φ(r) + ǫ(r, t) . (5.29)
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Eq. 5.21 then gives

ǫ = −αmxz iω eiωt. (5.30)

Once we are out of equilibrium, we will see that the remaining equations are self consistently

solved by letting

fφ 6=0(µ(r), T ) := fφ=0 (µ− φ(r) + ǫ(r, t), T ) (5.31)

where f is P , n, ρ or s.

The mass and momentum conservation equations, with the condition Eq. (5.27), give

∂ρ

∂t
+∇ · (ρv) = 0 , (5.32)

ρ
∂v

∂t
+ ρ(v.∇)v = −∇P − n∇φ (5.33)

where φ(r) is the external potential and ρ is the total mass density (ρn + ρs). Linearizing

these equations to order α 2 using Eq. 5.31 we get,

∂ρ0
∂µ

∂ǫ

∂t
+∇ · (ρ0v) = 0 , (5.34)

ρ0
∂v

∂t
= −∇(

∂P0

∂µ
ǫ)− (

∂n0
∂µ

ǫ)∇φ . (5.35)

Using ∂iρ0 = −∂ρ0
∂µ ∂iφ and using the fact that for the modes we consider in this chapter

∇.v = 0 we get from Eq. 5.34
∂ǫ

∂t
− ∂iφ vi = 0 . (5.36)

Plugging in the harmonic potential and the solution Eq. 5.30, we find that the above

equation is solved by the Scissor mode which satisfies the condition, Eq. 5.17. Now taking

time derivative of the Euler equation Eq. 5.35 and using Eq. 5.34 in the second term on

R.H.S of Eq. 5.35 and ∂P0
∂µ = n0 (total number density at equilibrium),

ρ0
∂2vi
∂t2

= −∂i(n0
∂ǫ

∂t
) + ∂j(n0vj)∂iφ

⇒ ρ0
∂2vi
∂t2

+ n0∂i(
∂ǫ

∂t
) = −∂in0(

∂ǫ

∂t
) + ∂jn0vj∂iφ

⇒ ρ0
∂2vi
∂t2

+ n0∂i(
∂ǫ

∂t
) =

∂n0
∂µ

∂iφ(
∂ǫ

∂t
)− ∂n0

∂µ
∂jφ vj ∂iφ .

(5.37)

We see from Eq. 5.36 that the RHS of the above equation vanishes. For the scissor mode,

it follows from Eq. 5.17 and Eq. 5.30 that the LHS also vanishes, and thus the equation is

met.

2 Note that ǫ in Eq. 5.30 is of order α
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For the time dependent scissor mode, the mass conservation equation is

∂ρ

∂t
+∇ · (ρv) = 0 (5.38)

for vs = vn = v.

Starting with Eq. 5.18 and using Eq. 5.38 we get

∂s

∂t
+ v ·∇s = 0 . (5.39)

Assuming that the entropy is of the form s(µ − φ(r) + ǫ(r, t)) as given in Eq. 5.31 and

linearizing in α we get
∂s0
∂µ

∂ǫ

∂t
− ∂s0
∂µ

∂iφ vi = 0 . (5.40)

This equation is valid when Eq. 5.36 is met. Hence we find that the ansatz Eq. 5.31 with

Eq. 5.30 meets all the equations self consistently.

5.3.4 Elliptic mode solution to linear order

Next we verify that the Elliptic mode, Eq.5.16, solves the superfluid equations to linear

order in the velocity. Note that this mode is a stationary solution (ω = 0). Like in the

previous case we take T to be a constant in this mode. Note that in this solution vn has a

non-zero curl, ∇×vn 6= 0, and therefore in the absence of vortices vs 6= vn. We will denote

vn = v below.

We start with Eq. 5.21. Since vs = 0 in this mode, we see that this equation is met if

µ(r) = µ− φ(r) (5.41)

where µ on the RHS is an r independent constant.

Next, with vs = 0 the mass and momentum conservation equations simplify to

∂ρ

∂t
+∇ · (ρnv) =0 , (5.42)

∂(ρnvi)

∂t
+∇j(ρnvivj) =−∇iP − n∇iφ . (5.43)

The time derivatives in these equations can be dropped. The Euler equation, Eq. 5.43, is

met to order v if P and n take their form in the LDA approximation, Eq. 5.26. We will also

assume that the other thermodynamic values, ρn, s take this LDA form and denote them

with a subscript 0. Using the fact that ∇ · v = 0, the other equation, Eq. 5.42, becomes,

∇ · (ρ0nv) = 0 ⇒ −∂ρ0n
∂µ

∂iφ vi = 0 (5.44)
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where we have used the ansatz Eq. 5.26 for the mass density of the normal component. For

our mode αxz x̂+ αzx ẑ with αz = −ω2
x
ω2
z
αx (see Eq. 5.16) one can easily check that

∂iφ vi = 0, (5.45)

so that this equation is satisfied.

Finally, the entropy conservation equation (after replacing ρ, s by their LDA values) becomes

∇ · (ρ0s0v) = 0. (5.46)

Using the fact that our mode is free of divergence, and ρ0s0 is a function of µ − φ(r), we

see that this equation is also met when Eq. 5.45 is satisfied.

It is interesting to note that the fact that the Elliptic mode and the Scissor mode also solve

the equations of one component fluid mechanics in the normal phase. Since the temperature

is a constant in these modes, and the chemical potential varies as given in Eq. 5.24, up to

possible corrections of order ǫ, Eq. 5.29, as one moves from the center of the trap to its

edges the ratio µ(r)/T becomes smaller and the system will transit from the superfluid to

normal phase. The solutions we have found above, for both modes, will continue to hold in

such situations as well.

5.3.5 Energy dissipation due to viscosity

The energy dissipated due to viscosity is given by

Ėkinetic =− 1

2

∫

d3r ηijij(r)

(

∂ivj + ∂jvi −
2

3
δij∂kvk

)2

−
∫

d3r ζ(r)
(

∂ivi
)2 (5.47)

where ηijij ≡ ηij is the relevant component of the shear viscosity and ζ is the bulk viscosity.

We note that for our chosen velocity profiles, the bulk viscosity contribution vanishes. Also

in the traps we will consider, the temperature T is constant throughout the trap. Hence we

also ignored contributions from thermal conductivity.

Thus,

Ėkinetic = −
∫

d3r ηxz(r) α
2
x(1−

ω2
x

ω2
z
)2 (5.48)

is the energy dissipation rate for the Elliptic mode, where we have simply written ηxzxz as

ηxz.

The energy dissipated per unit cycle for the oscillatory time dependent scissor mode is

Ėkinetic = −2

∫

d3r ηxz(r) α
2
x. (5.49)
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5.3.6 Validity of hydrodynamics

One expects that hydrodynamics is a valid description of the system as long as the viscous

correction to the stress tensor is small compared to its value in an ideal fluid (for eg. see

Ref. [183] or Sec. 10.3.4 in Ref. [187]).

For the Elliptic mode the contribution to the stress energy tensor from viscosity is

ηxz
1

2
(αx + αz) ≈ ηxz

1

2
(αx) (5.50)

where we have assumed ωz ≫ ωx, y and neglected the contribution from αz (see Eq. 5.16).

For the Scissor mode the magnitude of the contribution to the stress energy tensor from

viscosity is

ηxz
1

2
(αx + αz) = ηxz(αx) (5.51)

where we have αz = αx for the Scissor mode.

At any point r, hydrodynamics is expected to be valid if the viscosity contribution is smaller

than the pressure P (r),

αxηxz(r) ≪ P (r) . (5.52)

In the outer edges of the trap the pressure becomes small while η tends to a constant [188,

189, 190] and Eq. 5.52 is necessarily violated regardless of how small αx is chosen. The

contribution of this region to the total energy loss is typically small however. (Note that

the expression Eq. 5.47 can not be used to evaluate the energy loss if Eq. 5.52 is not

satisfied [190].) What we desire is that hydrodynamics should be a good theory in the

region where the energy loss is substantial. When we consider specific numerical values

for the parameters of the trap in Subsection 5.3.9, we will identify a point rmax close to

the edge of the trap, such that the integral Eq. 5.47 receives most of its contribution for

r < rmax.

We can then define αmax
x by the condition that for this amplitude the viscosity contribution

to the stress energy tensor is equal to the pressure at the point rmax

αmax
x =

P (rmax)

ηxz(rmax)
. (5.53)

For αx < αmax
x hydrodynamics is valid in the region of interest. This constraint limits how

large αx and consequently Ėkinetic can be. As long as this dominates over other processes of

energy loss (interaction with the environment) this damping can be measured. In Table. 5.3

in Sec. 5.3.9 we show this numerical limit for the traps described in that Section.
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5.3.7 The outer core

It has been noted that a naive application of hydrodynamics at the outer region of the trap

where the density of the atoms is very low leads to an unphysical result. Since the shear

viscosity in the ultra-dilute regime has the form η ∼ (mkT )3/2, (m is the mass, k is the

Boltzmann’s constant and T is the temperature) the contribution from the tail (or the outer

cloud) is independent of the density, and hence is divergent [[190, 191, 192, 193, 194, 195]].

The unphysical result arises because in the outer part of the trap collisions are rare and

hydrodynamics breaks down. In fact the better approximation in this region is assuming

that atom dynamics in this ultra-dilute region is collisionless and hence does not contribute

significantly to damping.

Here we use a simple procedure to take this physics into account. We only consider traps

where the chemical potential at the center is positive and cutoff the damping contribution

from the outer cloud by integrating the viscosity contribution only from the center of the

trap up to rmax which is defined as the surface where µ−V (rmax) = T . Similar prescriptions

have been followed previously by [173, 174] (see [195] for an overview).

One can also perform a more careful estimate of the contribution from the outer cloud.

To be concrete, let us consider the scissor mode. We follow the procedure described in

Ref. [192] which solves the Boltzmann equation in the dilute regime, rather than assuming

that hydrodynamics is accurate in this region. Their important result is that for the scissor

mode 3 the energy loss rate in the dilute regime can be written as the integral over η divided

by a suppression factor that increases exponentially as a function of the trapping potential.

More precisely,

〈Ėkinetic〉| = −2α2

∫

r>rmax

d3r
η

1 + ω2τ2η (r)
, (5.54)

where in the dilute regime (or the “classical limit”)

τη(r) =
4.17

Nω̄

(

kT

~ω̄

)2

eV (r)/kT , (5.55)

and the viscosity η is given by

η =
15

32
√
π

(mkT )3/2

~2
. (5.56)

The scissor mode frequency is given by,

ω =
√

ω2
x + ω2

z , (5.57)

and the geometric mean ω̄ = (ωxωyωz)
1
3 .

3 Let us also note that the scissor mode is excited in the x− y plane in Ref. [192]. We have taken care
of this fact in our calculations and comparisons.
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T Γ (s−1) Γ (s−1)

4Tc/5 23.03 0.0044
2Tc/3 18.32 0.00009
4Tc/7 14.6 2.14 × 10−6

Tc/2 11.86 4.69 × 10−8

Table 5.1: Comparison of contributions to the damping rates for the scissor mode from the
core [Γ(c) Eq. 5.64], and the outer core [Γ(oc) Eq. 5.63] for the trap parameters we will
explore in our chapter.

The integral Eq. 5.54 is convergent because of the exponential increase in the relaxation time

τη(r) even if we take the upper limit of the integral to ∞ but for the numerical evaluation

we take the upper limit of the x-integration to be xmax + L, for the y-integration to be

ymax + L, and z-integration to be zmax + L with L≫ |rmax|.

At the core of the trap hydrodynamics is a good approximation (unless T ≪ Tc where the

superfluid phonons can move out of equilibrium). This is a crucial point because Boltzmann

transport is not a valid approximation at the core where the density of atoms is high. As

we explained in the last section, as long as αx = αz = α < αmax
x , hydrodynamics is a good

approximation and the local contribution from the viscosity to the stress energy tensor

α η(r) (5.58)

is smaller than the pressure

P (r) (5.59)

for r < rmax. Therefore, using hydrodynamics to evaluate the damping contribution from

the core, we get

〈Ėkinetic〉| = −2α2

∫

r<rmax

d3r η(r) , (5.60)

where the local value of η(r) is calculated using the data for η from [174]. The integration is

performed over x < xmax, y < ymax and z < zmax. This approximates the actual ellipsoidal

region with a rectangular shape, but we see that this will not change the results substantially

since the contribution from the outer cloud is small.

The amplitude decay rate is given by

Γ =
|〈Ėkinetic〉|

2〈E〉 (5.61)
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〈E〉 is the total mechanical energy averaged over a cycle,

〈E〉 = 1

2

∫

d3rmn(r)|v|2(r)

=
1

2
mα2

∫

d3rmn(r)(z2 + x2) ,

(5.62)

where v = αei
√
ω2
x+ω

2
zt(zx̂ + xẑ). In Eq. 5.64, α2 cancels out and we only need n(r) which

is obtained from experiments as explained in detail in Sec.5.3.8.

The damping rate contribution from the outer cloud is given by

Γ =
|〈Ėkinetic〉|

2〈E〉 (5.63)

and the contribution from the core is given by

Γ =
|〈Ėkinetic〉|

2〈E〉 , (5.64)

and the total damping rate Eq. 5.61 is the sum of the two.

In Table. 5.1, for the representative trap parameters which we will be considering later (

ωz = 2π × 104 rads/s, ωx = ωy = 2π × 385 rads/s and µ = 10µK and T/Tc values as

given in the table), we present the comparison of the contribution to damping from the

outer cloud and the core in Table. 5.1. We see that the damping contribution from the

outer cloud is small, especially for the low temperatures, justifying our approach. A direct

comparison using our technique (where we cut off the integral for Ėkinetic at the point of

the trap where hydrodynamics breaks down) can only be made for the lowest temperature

(T/TF = 0.1) of Ref. [182]. Our calculations (using the trap parameters of [182])give a

damping rate of 250 s−1 which agrees with experiments (255 ± 40 s−1, [182]). This is a

non-trivial check of our methodology and gives us confidence in our approach in this regime.

5.3.8 Thermodynamics

The evaluation of the energy loss from Eq. 5.48 and Eq. 5.49 requires the viscosity η as a

function of the position r in the trap. In the highly anisotropic traps we are considering the

viscosity is actually a tensor and the different components of the shear viscosity can acquire

different values, in contrast with the isotropic case. For the modes of interest, Eq. 5.15 we

need to determine the behavior of the component (ηxz).

To get a first estimate of the region of the trap which gives a dominant contribution to

the integral in Eq. 5.47, we use the local density approximation (LDA) and estimate the

resulting viscosity. More specifically, we assume in this approximation that thermodynamic

variables like the number density n, the entropy density s depend only on the local value of T
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Figure 5.4: (Color online) Data of S
N as a function of T/TF (left panel) and µ/EF versus

T/TF (right panel) from Ref. [196]. The central curves (blue online) correspond to the
central values and the band gives an error estimate (Ref. [196]). The band denoted by
the dashed vertical lines corresponds to the phase transition between the normal and the
superfluid phase. The error bands represent the maximum error chosen from a set of
representative error bars given in Ref. [196].

Figure 5.5: (Color online) The thermodynamic function G (top left panel) and its derivative
(top right panel) as a function of T

µ . The lower panel shows F . These dimensionless
functions are defined in Eq. 5.65. The error bands follow from the error bands in Fig. 5.4.
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Figure 5.6: (Color online) The left panel shows η
n versus T/TF from Figs. 2 and 3 of [174].

The right panel shows η
s versus T/TF from Fig. 5 of [174].

and µ. The viscosity is also then taken to be given by these local values of T, µ, neglecting

any effects of anisotropy which could make the different components of the tensor take

different values.

The effect of anisotropy on the viscosity tensor are estimated using Eq. 5.102, in a following

section (Sec. 5.4). While we cannot reliably compute them, the key point of our analysis

here is that they may be experimentally measured and could lie below the KSS bound.

To apply the LDA approximation mentioned above, we start first by considering a ho-

mogeneous system characterized by temperature T, µ and review the behavior of the

thermodynamical parameters and the viscosity as a function of these parameters. This

is covered in this subsection. In the presence of the trap µ varies in the equilibrium

configuration. The effects of the trap, in this approximation, are then incorporated by

using the resulting local value for µ and T in the behavior for the homogeneous case. The

next subsection will then incorporate the effects of the trap.

In certain thermodynamic regimes, the viscosity of a uniform unitary Fermi gas can be

computed in a controlled manner. At temperatures much smaller than the chemical po-

tential, transport is dominated by the Goldstone mode associated with superfluidity and

the viscosity can be computed by solving the Boltzmann transport equations [197]. At

temperatures large compared to the chemical potential, the density of fermions is small and

a kinetic estimate of the viscosity, η = const.× (mT )3/2, is adequate [188, 189, 190]. But we

shall see that the largest contribution to damping arises from the regime where T and µ are

comparable, and a theoretical evaluation of the viscosity is difficult. Monte Carlo [167, 168]

methods, microscopic approaches [198], and T−matrix techniques [199] have been used to

calculate the viscosity in this regime but presently the best estimate for the viscosity in this

intermediate regime comes from experiments.

In Refs. [172, 173], η/s was measured for the first time. Recently, this measurement was

refined in Ref. [174] and the result for the dimensionless ratio η/n was measured for a wide

range of T/µ, which we show in Fig. 5.6. Therefore, to obtain the LDA value of the viscosity,
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we just need n(µ, T ).

In the next few paragraphs we describe how to obtain n(µ, T ) using the scaling properties of

the unitary Fermi gas. With that understanding at hand we will then return to a discussion

of how to obtain the viscosity in the approximation described above. In the unitary Fermi

gas, the chemical potential µ and the temperature T are the only energy scales in the

problem. Therefore, we can express various thermodynamic quantities as a function of the

dimensionless quantity y = T/µ multiplied by an appropriate dimensionful function of only

one of the two variables. Following [172] we write,

n(µ, T ) = nf (µ)F(y),

s(µ, T ) =
2

5
nf (µ)G′(y) ,

(5.65)

where n is the number density, s is the entropy density, and F(y) = G(y) − 2 y G′(y)/5,

nf (µ) =
1

3π2 (2mµ)
3
2 is the number density of a free Fermi gas. Therefore one can compute

the desired thermodynamic quantities if the function G(y) is known. For example, one can

write the pressure as

P (µ, T ) =
2

5
µ nf(µ) G(y). (5.66)

In the following discussion, we use the usual definitions

kF = (3π2n)1/3, EF =
k2F
2m

, TF = EF/kB , vF =
kF
m

. (5.67)

At low temperatures ( TTF . 0.6) we use the S
N data from Fig. 3(b) of Ref. [196] to obtain

G(y). Data from two graphs obtained from Ref. [196] are shown here in the two panels of

Fig. 5.4 for convenience. The left panel shows S/N = s/n as a function of T/TF and the

right panel shows µ/EF as a function of T/TF .

In order to solve Eq. 5.65 we need to get S
N as a function of y. We use Fig. 3(a) of

Ref. [196] to convert the S
N data in terms of y = T

µ rather than T
TF

. We obtain the function

G(y) by numerically solving Eq. 5.65, subject to the boundary condition G(0) = 1/ξ3/2 at

T = 0. We use ξ = 0.376 ± 0.0075. (The value of ξ quoted here is from [196]. Various

theoretical calculations can be found in [165, 200, 201, 202, 203, 204, 205].) Fig. 5.5 shows

the numerically extracted function G , its first derivative and the function F . In Fig. 5.5

and the rest of the figures, the band denoted by the dashed vertical lines corresponds to

the phase transition between the normal and the superfluid phase.

The data in Ref. [196] stops at T/TF ≈ 0.6. For higher temperatures the density is small

and as far as thermodynamics is concerned, we can model the system as a gas of weakly

interacting fermions with a self energy correction in the chemical potential associated with

self interactions in the normal phase. Therefore n and s have the same form as in a Fermi
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gas, (Ref. [206])

nnorm = −g (mT )
3
2

PolyLog
(

3
2 ,−e

µ
T

)

2
√
2π3/2

snorm =

√
T
(

2 µ PolyLog
(

3
2 ,−e

µ
T

)

− 5 T PolyLog
(

5
2 ,−e

µ
T

))

2
√
2π3/2

,

(5.68)

where nnorm, snorm denote the number density and entropy in the normal phase, g =

2 is the energy level degeneracy, and µ with self energy corrections is replaced by µ −
32/3n2/3π4/3(ξn−1)

2m . Fitting to high temperature data gives ξn ≈ 0.45 [196]. This description

works well all the way down to temperatures T/TF & 0.5 or equivalently T
µ & 3.2 as one can

check by comparing the values of S/N as a function of T/TF in this approximation with

the results from [206]. These results match smoothly to the low temperature measurements

in Ref. [196]. Therefore for T
µ > 3.2 we use Eq. 5.68 to compute the thermodynamics.

Now that we have understood how to obtain n(T, µ) we can return to our discussion of the

viscosity. To evaluate η at a given µ and T we simply multiply η
n from Fig. 3 of Ref. [174]

(shown here in the left panel of Fig. 5.6) with the number density that can be found using

Eq. 5.65. One could alternatively multiply η
s from Fig. 5 of Ref. [174] (shown here in the

right panel of Fig. 5.6) with the entropy that can be found using Eq. 5.65. The former

works better because of the smaller error bars.

As we shall see in the next section when we describe the fermions in a trap, the dominant

contribution to the energy loss arises from the region in the trap where T/µ is about 0.54.

This is just above the critical temperature Tc given by the relation

Tc/TF = 0.167 ± 0.013 , (5.69)

or equivalently
Tc
µ

= 0.4± 0.03 . (5.70)

From the right panel of Fig. 5.6 we see that just above Tc
µ ≈ 0.4, η/s ≈ 0.7 ≈ 8( 1

4π ). This

fact will be relevant in the next section.

5.3.9 Results for the trap

Having understood the thermodynamics in the absence of the trap, we now turn to in-

corporating the trap potential in the discussion. We first use the LDA approximation to

calculate how thermodynamic quantities like s, n etc. vary along the trap. It turns out that

on starting at the center of the trap at a sufficiently low temperature, the entropy density

has a peak, z0, close to the point where the superfluid-normal transition occurs. In turn,

this leads to the viscosity and damping effects for the fluid modes of interest receiving their

contribution from a region close to the peak and with a width, δz that can be made narrow,
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Figure 5.7: (Color online) Variation of number density (left panel) and the entropy density
(right panel) with respect to z for T = 2Tc

3 at ωz = 2π×104 rads/s with chemical potential at
the trap center 10µK. The vertical lines denote the band in z where T = (0.4±0.03)(µ−φ(z))
(Eq. 5.70).

δz/z0 < 1. Finally, in this subsection we examine the resulting behavior of the system for

a range of reasonable values of parameters and show that the five conditions listed at the

end of Section 5.2 can be met. It turns out that both the time scales for energy loss, and

the magnitude of the total energy, lie in the range of experimentally accessible values.

Before we start let us note that there are three energy scales, T, µ, ωz in the system (µ

without an argument refers to the chemical potential at the center of the trap, and we are

neglecting ωx, ωy here). These give rise to two dimensionless ratios, T/µ, ωz/µ. Length

scales can be obtained from these energy scales using the mass, via the relation, L = 1√
2mE

.

Thermodynamics in the Trap:

As discussed in Subsection 5.3.2 in the presence of a trap the equations for superfluid

dynamics can be solved at equilibrium by taking the chemical potential to have a local

value which varies along the trap, as given by 4 Eq. 5.24. The temperature T in equilibrium

is a constant.

Once we have the function G as discussed in Sec. 5.3.8, one can then use LDA to express

all quantities of interest as a function of the displacement from the trap center (which we

denote by r). Thus, within LDA, we can write the number density as

n(r) = n (µ(r), T ) . (5.71)

We can also express energy and entropy density in the same fashion as a function of the

distance from the trap center. Some comments on the conditions for the violation of LDA

will be made in the end of the section.

To set the scales we show (see Fig. C.1) the number density and the entropy density as

4From now on µ without the argument r refers to the chemical potential at the center of the trap and
µ(r) = µ− φ(r).
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a function of the distance z from the trap center at x = 0, y = 0, for a typical trap

configuration that we consider. In all the examples we consider, we will take Li6 as the

fermionic species.

In making Fig. C.1, the chemical potential at the center of the trap is chosen to be 10µK

which is typical for experiments performed with fermionic cold atoms [173, 207]. The

potential is taken to be harmonic (Eq. 5.14), with the confinement frequency along z

direction, ωz = 2π × 104 rads/s which is about 10 times that chosen in Ref. [207]. 5 Since

we are taking x = y = 0, ωx and ωy do not matter in drawing Fig. C.1. However, since we

will be exploring anisotropic traps we keep in mind the condition that ωx = ωy ≪ ωz.

The temperature throughout the trap is taken to be T = 2Tc
3 , where Tc is the critical

temperature (Eq. 5.70) associated with the chemical potential (µ) at the center of the trap

defined by

Tc ≡ 0.4 µ . (5.72)

To avoid confusion we note that Tc is the temperature at which the superfluid to normal

phase transition would have occurred at the center of the trap. In the system under

consideration with T = 2Tc
3 , since T at the center of the trap is below the local critical

temperature at the center of the trap, the transition actually occurs away from the center

of the trap, at a location z = zc, where the local chemical potential µ(zc) =
T

(0.4) [where we

have abbreviated µ((0, 0, zc)) as µ(zc)] corresponding to the phase transition to the normal

phase. In Fig. C.1 we have denoted it by dashed (gray online) vertical lines corresponding

to the central value and the error bands.

The error bands to the densities (marked by red curves online) are associated with the

errors in G (Fig. 5.5). They are discontinued from z = 17 × 10−5 cm corresponding to the

point where we switch to Eq. 5.68 to calculate the thermodynamics.

In the other trap geometries we consider below, we will keep the chemical potential at the

center, µ, unchanged as it will set the overall scale of the problem, and only change the

temperature of the trap and the confining frequency ωz, in order to explore traps which

satisfy criteria listed in Sec. 5.2. The strategy we follow is given below.

As explained in the last section, we estimate the η at a given location r corresponding to the

local chemical potential µ(r) and temperature T by simply multiplying the local number

density n we find using Eq. 5.65 with η
n from Fig. 3 of Ref. [174]. (We have reproduced

it here in Fig. 5.6 for convenience.) This estimate assumes that not only thermodynamic

but also the transport quantities are determined by the local chemical potential and the

temperature. This estimate necessarily implies that the viscosity is isotropic. Nonetheless

this will help us identify the values of T/µ for which the energy loss of the hydrodynamic

shear modes is dominated by a region where the potential can be approximated as a linear

potential. Having done that, we will increase ωz to induce anisotropy in the transport

5For conversions to energy units, we use 1 eV−1 = 1.97 × 10−7 m, 1 eV= 1.78 × 10−36 kg, 1 eV−1 =
6.58 × 10−16 s, 1 eV= 1.16 × 104 K. The mass of Li6 in natural units is 5.6× 109 eV.
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Figure 5.8: (Color online) Local shear viscosity with respect to z for T = 4Tc
5 (top left),

T = 2Tc
3 (top right) T = 4Tc

7 (bottom left) and T = Tc
2 (bottom right) at ωz = 2π × 104

rads/s and µ = 10µK. The red curves denote the error estimate which include errors in
the measurement of η/n [174] as well as errors in G due to errors in the measurements of
thermodynamics [196]. The black dashed vertical line is at zc.

coefficients.

Let us consider the four panels in Fig. 5.8. They show the local shear viscosity (in units of

(2mµ)3/2/(3π2) where µ is the central chemical potential) as a function of z for x = 0, y = 0

for four different temperatures at ωz = 2π×104 rads/s. The chemical potential at the center

is taken to be 10µK. The temperatures are T = 4Tc
5 (top left panel), T = 2Tc

3 (top right

panel) and T = 4Tc
7 (bottom left panel) and T = Tc

2 (bottom right panel). Like Fig. C.1,

the vertical line (gray online) corresponds to zc where T = 0.4µ(zc). The error bands of the

curves are associated with the errors in G — which impact n — as well as the errors in the

measured η/n. The x-axes of the plots is the z coordinate scaled by the trap size

ztrap =

√

2µ

mω2
z

. (5.73)
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One can also define a characteristic distance zmax where T/µ(z) = 1 given by

zmax =

√

2(µ − T )

mω2
z

. (5.74)

For µ = 10µK at the center of the trap and ωz = 2π× 104 rads/s, ztrap is about 18.3× 10−5

cm and zmax is about 15.7 × 10−5 cm. Beyond the distance ztrap, we assume the viscosity

to behave like 15
32

√
π
(mT )

3
2 as predicted by the two-body Boltzmann equation [189].

Note that within LDA the plots in Fig. 5.8 are independent of ωz if we keep T/Tc fixed.

This is because scaling ωz by a factor f can be undone by scaling z by a factor 1/f . Since

ztrap is scaled by the same factor, z/ztrap at any point on the curve remains unchanged.

To understand the behavior of viscosity along the trap, first consider the central values in

Fig. 5.8 (blue curve online). For all temperatures given above (notice that they are all below

Tc meaning that the centre of the trap is superfluid), we find the presence of a peak in the

middle region of the trap length. Qualitatively we understand this from the fact that the

local entropy (see Eq. 5.65) is the product of nf (µ(r)) which decreases along the length of

the trap, while the function G′ increases along the length of the trap, hence it is natural to

expect a peak for the entropy density somewhere along the length of the trap. It is clearly

seen in the right panel of Fig. C.1. Since the local shear viscosity over entropy density is

relatively slowly varying in this region (the peak location is just above the critical region),

it is not surprising that the local shear viscosity shows a similar behavior. Henceforth, we

will denote the position of this peak by z0. We also denote the full width at half maximum

of the peak by δz.

The existence of the peak allows us to construct a system where the dominant contribution

comes from a region where the potential approximately varies linearly, modeling the theories

(Sec. 5.2) where the force that breaks rotational invariance is spatially constant. Here, the

trap potential is harmonic, but the dominant contribution to the integral in Eq. 5.48 and

Eq. 5.49 comes from an interval δz near z0. If we expand the confinement potential as a

Taylor series around z0 as

φ(z0) + φ
′

(z0)(δz) +
1

2
φ

′′

(z0)(δz)
2 + ...... (5.75)

The linearity approximation will hold as long as the confinement potential satisfies

φ
′′

(z)

φ′(z)
δz ≪ 1 ⇒ l ≡ δz

z0
≪ 1 . (5.76)

Since we are using a harmonic trap, there are no higher order terms. Our criterion for

constant driving force is therefore straightforward. We desire that the dimensionless ratio

l ≡ δz
z0

be less than 1.

There are other motivations to choose the dominant contribution to shear viscosity to arise
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from such a localized region. We are interested in extracting the value of η/s, for suitable

components of the viscosity tensor, for particular values of T, µ (in particular, close to

the critical temperature Tc where η/s is known to be close to the KSS bound). Due to

the varying trap potential, µ(z) and therefore the entropy density at equilibrium also vary

along the trap. The change resulting in the viscosity due to anisotropy should be bigger

than the effect due to the variation of the trap potential on s, thereby giving rise to the

condition,
δη

η
>
∂s

∂z

δz

s
. (5.77)

As we saw in Sec. 5.2 after Eq. 5.10 the corrections to the viscosity due to anisotropy go

like square of the force that generates the anisotropy. For the system at hand this leads to

the expectation
δη

η
∼ (∇φ)2

(µ(z)2kF (z)2)
. (5.78)

This estimate agrees with the analysis based on the Boltzmann equation as discussed later

in Sec.5.4 (see Eq. 5.102). The RHS in Eq. 5.77 goes like ∂s
∂z

δz
s ∼ δz/z0 = l, and this gives

rise to the condition

κ2LDA > l (5.79)

where we have introduced the notation

κLDA =
(∇φ)

(µ(z0) kF (z0))
. (5.80)

It is easy to see that κLDA roughly scales as

κLDA ∼ ωz
µ

(5.81)

so that Eq. 5.79 leads to the condition

ω2
z

µ2
> l. (5.82)

For fixed T, µ one can show that l does not change as ωz changes. Thus the left hand side

is independent of the ratio ωz
µ for fixed T/µ, and the inequality can be met for sufficiently

large ωz
µ .

Let us also mention that the gravity results apply to situations with only linearly varying

potential (Eq. 5.2) leading to only |∇φ|2 corrections due to the anisotropy. In general we

would expect that there are additional corrections proportional to ∇2φ. There is little

guidance on what these corrections do, for the kind of strongly coupled system we are

dealing with here. Thus, to the extent we are trying to stay close to situations where

gravitational systems give at least some guidance, it is desirable to choose the dominant

contribution to shear viscosity to arise from a narrow localized region.
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T ztrap
√

µ
10µK

2π×104

ω cm z0
ztrap

l T
µ(z) |z0

η
n |z0

η
s |z0 κLDA

10µK
µ

ωz
2π×104rad/s

4Tc/5 18.3 × 10−5 0.63 0.98 0.54 0.89 0.85 0.05
2Tc/3 18.3 × 10−5 0.71 0.62 0.54 0.89 0.85 0.08
4Tc/7 18.3 × 10−5 0.76 0.46 0.54 0.89 0.85 0.11
Tc/2 18.3 × 10−5 0.8 0.37 0.55 0.91 0.85 0.13

Table 5.2: Trap characteristics for various T/Tc. The scaling behavior of various quantities
with ωz are also shown. The entries were calculated for µ = 10µK, Tc = 0.4µ. l = δz

z0
(Eq. 5.76) tests how well the potential can be approximated as a linear potential in the
regime of interest. κLDA (Eq. 5.96) tests how well LDA is expected to work at z0.

T αmax
x (10−10eV) Ėkin(j/s)(a) E(j) (a) τ0(s)(a) Ėkin(j/s)(b) E(j) (b) τ0(s)(b)

4Tc/5 2.83 2.37× 10−16 3× 10−20 0.0002 4.7 × 10−16 10−17 0.04
2Tc/3 2.35 1.25× 10−16 2× 10−20 0.0003 2.5 × 10−16 6.8 ×10−18 0.05
4Tc/7 2.02 7.12× 10−17 1.4 × 10−20 0.0004 1.4 × 10−16 4.8 ×10−18 0.07
Tc/2 1.77 4.33× 10−17 1.1 × 10−20 0.0005 8.65 × 10−17 3.6 ×10−18 0.08

Table 5.3: Additional trap characteristics for various T/Tc at ωz = 2π × 104 rads/s, ωx =
ωy = 2π × 385 rads/s and µ = 10µK. The energy is given in joules abbreviated as ‘j’ and
energy loss rate in joules per second, (j/s). For a fixed T/µ, the energy of the Elliptic mode
scales as ∼ 1

ωxωyω3
z
and that of the Scissor mode scales as ∼ 1

ω3
xωyωz

. The characteristic time

τ0 ( given in seconds ‘s’ in the table and defined in Eq.5.87) of the Elliptic mode scales as
∼ µ

ω2
z
and that of the Scissor mode scales as ∼ µ

ω2
x
. For the Elliptic mode to account for the

fact that only the normal component of the velocity is non-zero near the trap centre, we
assume that the normal component density in this region is T

Tc
times the total density in

this region. For the Scissor mode we have the full number density.

Viscosity and Other Properties For Varying Trap Parameters: Table 5.2

We now turn to examining the behavior of η, η/s, and l = δz
z0

as trap parameters are varied.

In Table 5.2 we keep ω, µ fixed to take the values ωz = 2π× 104 rads/s, µ = 10µK and vary

T . As mentioned at the beginning of Subsection 5.3.9 there are two dimensionless ratios

that characterize the energy scales in this system. The different rows corresponding to

different values of T in units of Tc show how various quantities vary with T/µ. The scaling

of these quantities with ωz/µ is given in the first line on top of the Table. 5.2. Thus κLDA

scales like ωz/µ. z0, ztrap and δz scale like 1/ωz for fixed T, µ, as was discussed above after

Eq. 5.74. Thus their ratios, zo
ztrap

, l = δz
z0

etc. are independent of ωz/µ. The third column of

the Table. 5.2 tests the linearity of the potential, which is a good approximation near the

peak if l = δz/z0 ≪ 1.

The ratio l is governed by the temperature of the trap divided by the chemical potential

or equivalently Tc at the center. As we decrease T/Tc, z0 increases and δz decreases. This

consideration would suggest that to obtain δz
z0

as small as possible we should consider as

small a temperature as possible. But this conclusion is not correct as is clear from the upper

error band in Fig. 5.8 (red online).

The errors bands on η are fairly narrow in the region near z0. However, the errors grow
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near z → 0, in particular for smaller T/Tc (Fig. 5.8). The reason is the large errors

in the measured η/n in the superfluid regime (see the region T/TF . 0.16 in Fig. 5.6).

Indeed, we expect that for T ≪ TF , the viscosity is dominated by superfluid phonons whose

contribution diverges as T → 0 as η ≈ (9.3 × 10−6) ξ5 (T 8
F /v

3T 5) where v is the speed

of superfluid phonons [197]. Numerically, η/n ≈ 2.5 × 10−5 T 5
F
T 5 . Therefore, to avoid a

large contribution from the center of the trap rather than from near z0, we do not consider

temperatures below Tc/2. Within this constrained temperature regime between Tc/2 and

Tc we find that the linearity condition δz/z0 < 1 is satisfied, although it is not possible to

generate traps where δz/z0 is parametrically small. In the narrow range of temperatures,

it turns out that the location of z0 is such that T/µ(z0) ≈ 0.54, just off to the right of the

phase transition at T/µ(zc) ≈ 0.4.

Note that, as explained in the discussion above, a few paragraphs after Eq. 5.72, the value

for the viscosity η/s which appears in the Table 5.2 is an approximate one, obtained by

taking the value in the isotropic situation corresponding to the local value for µ, T at the

location z0. By a similar argument as before, this value is independent of the ratio ωz/µ

for a fixed T/Tc. We note that the values of η/s in the Table 5.2 are about 10 times the

KSS bound. One would expect that various components of the viscosity tensor deviate from

this rough value by a fraction of order κ2LDA. The parameter κLDA which was introduced

in Eq. 5.80 above, when computed at the location of the peak z0, has the more exact form

κLDA =
mω2

zz0

(3π2n(z0))
1
3µ(z0)

=

√

m
2 ω

2
zz0

[F( T
µ(z0)

)]1/3[µ(z0)]
3
2

(5.83)

as one can easily check by using Eq. 5.65.

Energy Damping For Varying Values of Trap Parameters: Table 5.3

We now turn to considering the effects of varying the trap parameters on various quantities

like the total energy Ekinetic, the damping rate of this energy Ėkinetic, etc. In Table 5.3 we

again keep µ, ωz fixed to take values ωz = 2π×104 rads/s, µ = 10µK and consider the effects

of varying T . In addition, we also need to consider the effects of the harmonic trap in the

x, y directions. We keep ωx, ωy to be fixed to take values ωx = ωy = 2π × 385 rads/s. The

different rows then give how various quantities vary as T/µ changes. We note that for the

range of temperatures considered the total number of atoms in the trap is approximately,

∼ 106.

The energy which appears in this Table is the total mechanical energy E given by

E = 2Ekinetic (5.84)

where

Ekinetic = 〈1
2

∫

d3rmn(r)v2〉 , (5.85)
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where v is the velocity of either mode and the average is taken over one cycle for the scissor

mode (the elliptic mode is non-oscillatory). For the Elliptic mode and the Scissor mode

with amplitude αmax
x , the kinetic energy is given as follows:

For Elliptic, Ekinetic(a) =

∫

d3r
1

2
m nnormal (α

max
x )2[

ω4
x

ω4
z

x2 + z2]

For Scissor, Ekinetic(b) =

∫

d3r
1

4
m n (αmaxx )2[x2 + z2] .

(5.86)

Ėkinetic is the rate of energy loss due to viscosity induced dissipation, Eq. 5.47. The energy

loss, Ėkinetic in these modes is given by Eqns. 5.48, 5.49.

Note that for the Scissor mode the expression corresponds to the kinetic energy averaged

over an oscillation cycle. Also, for the Elliptic mode, vs = 0, Eq. 5.16, and only the normal

component contributes to the kinetic energy. The density in the normal phase is estimated

in the region close to the centre, where both the superfluid and normal components are

present, as being T
Tc

times the total density in this region and we have denoted it by nnormal

in Eq. 5.86. For the Scissor mode we have the full number density denoted by n in the

above formulas.

The validity of hydrodynamics imposes a condition on how big αx can become, the resulting

maximum value, αmaxx was estimated in Eq. 5.53. The quantities Ekinetic, Ėkinetic which

appear in Table 5.3 are obtained from Eq. 5.47, Eq. 5.86 by setting αx = αmaxx .

A convenient quantity with which to compare αmax
x is the ratio of the speed of sound at the

centre cs =
√

2µ
3m to a measure of the trap size ztrap. For comparison, let us note that for

ωz = 2π × 104 rads/s we obtain cs
ztrap

= ωz√
3
= 3.63 × 10−11 eV.

The (amplitude) damping time τ0, which appears in Table 5.3, is defined as

τ0 = 2E/Ėkinetic (5.87)

As mentioned above, the table considers the effects of varying the temperature while keeping

µ, ωz, ωx, ωy fixed. For fixed T/µ one can also consider what happens as the angular

frequencies are varied. In the highly anisotropic situations ωz ≫ ωx, ωy, one finds that

the total energy Ekinetic for the Elliptic mode approximately scales like

Ekinetic(a) ∼ µ
µ

ωx

µ

ωy

(

µ

ωz

)3

(5.88)

and the damping time τ0 for the Elliptic mode approximately scales like

τ0(a) ∼
µ

ω2
z

. (5.89)

Similarly for the Scissor mode we get
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Ekinetic(b) ∼ µ
µ

ωy

µ

ωz

(

µ

ωx

)3

, (5.90)

τ0(b) ∼
µ

ω2
x

. (5.91)

These scalings are obtained by noting that αmax
x ∼ µ for fixed T/µ, and also that the trap

potential is unchanged under a rescaling ωz → λ ωz, z → z/λ and similarly for x, y. We

have also assumed that ωz ≫ ωx, ωy. Some of these scalings are summarized in the caption

below Table 5.3. For example, the scalings of the scissor mode, can be derived as follows:

E ∼
∫

dxdydz[mnv2] ∼ LxLyLz[mnα
2L2

x] ∼ µ6

ω3
xωyωz

, where we have assumed that at the

center of the trap µ > 0 and Li =
√

2µ/(mω2
i ).) In a similar manner, one can derive the

approximate scalings for energy dissipation rates: Ė ∼ µ5

ωxωyωz
for both the modes (assuming

η scales the same way as n ie. ∼ (mµ)
3
2 .

The approximate value of T, µ, ωz we consider here are of the same order as those considered

in [173] where the viscosity of a unitary Fermi gas was measured, using a radial breathing

mode. The Scissor mode has been considered in the literature before. The damping rate

has been measured for cold atoms system in this mode in superfluid bosonic (see Ref. [181]

and Refs. therein) and in fermionic systems [182]. In particular [182] carries out these

measurements in the unitary Fermi gas. The values for trap parameters we consider are

similar to those considered for example in [173] and not very different from those considered

in [182]. The maximum angular amplitude of the the scissor mode is determined by the

velocity amplitude αx (Eqs. 5.17, 5.15) which is bounded above by αmax
x in Table 5.3. One

can show that the angular amplitude (in radians) of the oscillation executed by the deformed

cloud in the scissor mode is given by

θ = tan−1

(

e
2αx
ω − 1

e
2αx
ω + 1

)

, (5.92)

where ω =
√

ω2
x + ω2

z . Taking αx to be the maximum value αmax
x ∼ 10−10 eV and ω to

be 2π × 104 rads/s ≡ 4.16 × 10−11 eV, we find θmax ∼ tan−1[1] ≡ 45◦. For a frequency 10

times larger, θmax ∼ tan−1[0.4] ≡ 24◦. It is satisfying that these amplitudes are larger than

those measured in [182] for the scissor mode and hence the condition for hydrodynamics

(Eq. 5.53) does not force the amplitudes to be so small as to preclude observation using

existing techniques. For µ = 10µK, ωx = ωy = 2π×385 rads/s and ωz = 2π×104 rads/s, τ0

ranges from roughly 0.04 sec to 0.08 sec. The damping of the scissor mode has been observed

for slightly different parameters values, µ ≈ 1µK, ωx = 2π× 830 Hz, ωy = 2π× 415 Hz and

ωz = 2π × 22 Hz in Ref. [182] where the damping time scales measured are of the order of

milliseconds.

Summary:
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Now we come to the punch line of this section. The effects of anisotropy can cause a

fractional change in components of the viscosity tensor, potentially lowering some of them.

This effect is expected to go like, δη/η ∼ κ2LDA, as mentioned in Eq. 5.78. We see from

Table 5.2 that, for fixed ωz/µ, κLDA increases as T decreases (i.e. T/µ decreases), with the

maximum value, within the range of allowed temperatures, being of order κLDA ∼ 10%.

This would lead, one expects, to a fractional change in components of the viscosity of order

δη/η ∼ (few) × 1%, which is quite small. However note that increasing ωz will increase

κLDA with a linear dependence κLDA ∼ ωz/µ as noted in Eq. 5.81 and also in the first row

of Table 5.2. In turn this should lead to a quadratic fractional change in δη/η ∼ (ωzµ )2 .

We can carry out this change while keeping ωx, ωy fixed thereby increasing the anisotropy.

Note that this change of ωz will decrease the total energy of this mode Ekinetic(b) ∼ 1/ωz,

Eq.5.90, but it does not change τ0 significantly, since τ0 depends to a good approximation

on ωx and not ωz as seen from Eq. 5.91. Also note that changing ωz while keeping T/µ

fixed will not change l and thus the localized nature of the region from which the damping

arise. In fact it will make it easier to meet the condition Eq. 5.82.

Also it is worth commenting that it is easy to see from Eq. 5.81, Eq. 5.90 and Eq. 5.91 that if

one want to keep τ0 and Ekinetic for the scissor mode both fixed and increase κLDA → λ κLDA

one could do this (while keeping ωx = ωy) by scaling

ωx → λ
1
6 ωx, ωy → λ

1
6 ωy, ωz → λ

4
3 ωz, µ→ λ

1
3 µ, T → λ

1
3 T. (5.93)

This keeps T
µ , τ0 and Ekinetic fixed, increases the overall magnitude of µ, increases ωz and

also ωx, ωy.

The discussion of the previous two paragraphs suggests that one can quite plausibly keep

the damping time scale and the total energy in the experimentally accessible range, while

gradually increasing ωz making κLDA ∼ O(1) and the effects of anisotropy significant. While

some of the theoretical approximations made will break down in this limit it is possible that

the effects of anisotropy would get more pronounced, and potentially even dramatic, driving

the spin one components of the viscosity to be much smaller than their values in the isotropic

case, and potentially even violating the KSS bound.

We have not discussed the Elliptic mode in as much detail. One reason is that unlike the

scissor mode, this mode has not been experimentally realized in cold atom systems yet.6

Also we see from Table 5.3 that the damping time τ0 in this case is about two orders

of magnitude smaller, and this too might be an issue of some experimental concern. It

may of course turn out that this mode is experimentally accessible. It will then be certainly

6One possible way to set up the elliptic mode is to start with a more circular trap and exciting a
rotational mode by using rotating lasers using a set up similar to Ref. [208]. If the rotational frequency
is small enough, vortices will not be excited and only the normal fluid will rotate like a rigid body. On
adiabatically deforming the trap one would then get the elliptic mode because during adiabatic deformations,
hydrodynamics is satisfied at each time and we expect that the normal fluid will go smoothly from circular
rotation to the elliptic mode.
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interesting to explore its properties, especially since this mode in a very direct way measures

the resistance to shear in the resulting fluid flow.

Finally we note that all the five conditions which were listed at the end of Sec. 5.2 for

observing the suppression of viscosity can be met in the system being analyzed here.

Conditions 1 and 2 are met by the two modes discussed above in the unitary Fermi gas. We

have ensured that l < 1 (Table 5.2) so that the contribution arises from a localized region

where the potential is approximately linear, meeting condition 4. As argued above, for

the scissors mode the anisotropy can be made large enough while staying within the fluid

mechanics approximation (αx < αmaxx ) thereby meeting conditions 3 and 5. The resulting

values for the total energy and the damping time we find lie within the experimentally

accessible range.

To summarize, we have seen in this section that for experimentally reasonable values of

parameters one can increase the anisotropy of the trapping potential and probe the viscosity

tensor by measuring the energy loss and related damping time in the scissor mode. As

the anisotropy is increased, its effects could well become quite significant driving some

components of the viscosity (spin 1 in our notation) to become very small, and potentially

making them even smaller than the KSS bound.

5.3.10 Discussion on κLDA

In this subsection, we present a detailed discussion on κLDA given in the last column of

Table. 5.2. The results discussed so far assume LDA is valid. LDA rests on the assumption

that the trap potential varies slowly on the scale of the local Fermi wavelength k−1
F (r) =

(

3π2n(r)
)

1
3 ie. at any local point r along the length of the trap, the following condition

holds true -

∣

∣

∣

∣

∇r(µ(r))
1

kF (r)

∣

∣

∣

∣

r

≪ µ(r)

Since we desire ωx, ωy ≪ ωz, the gradient is strongest in the z direction and hence taking

x, y = 0 and moving along the harmonic trap in the z direction, d(µ(z))dz = −mω2
zz, we note

that LDA violations will be significant if

mω2
zz

1

(3π2n(z))
1
3

∼ µ(z) . (5.94)

For any trap geometry at the outer edges of the trap when the density becomes small

enough, LDA will be violated (µ(z) < 0 for z > ztrap). These regions typically do not

contribute significantly to the trap energy loss. But focusing on the region near z0, LDA is
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a good approximation if

κLDA =

√

m
2 ω

2
zz0

[F( T
µ(z0)

)]1/3[µ(z0)]
3
2

≪ 1 , (5.95)

Approximating F( T
µ(z0)

)]1/3 ≈ 1√
ξ
[Since F(0) = 1/ξ3/2, and the deviations from F(0) are

small for T/µ . 1], we find

κLDA =

√

m
2 ω

2
zz0

[µ(z0)]
3
2

√

ξ ≪ 1 , (5.96)

Since z0 scales as 1/ωz for fixed µ and T , LDA will be violated at z0 if ωz is large enough.

From Table 5.2 one can see that for µ = 10µK and T = Tc/2, κLDA > 1 for ωz > 2π×77000

rads/s. Alternatively, taking ωz = 2π × 104 rads/s and T = Tc/2, κLDA can become larger

than 1 if µ < 1.3 µK.

For T → 0 the corrections to LDA have been previously studied in Refs. [209, 210]. One

can write

n(r) = nLDA

(

1− cχ
64

(∇φ(r))2 + 4(µ − φ(r))∇2φ(r)

m(µ− φ(r))3
+O(∇3φ(r))

)

, (5.97)

where cχ is related to the response of the density to a periodic fluctuation in the potential.

The low energy constant cχ has not been calculated using ab-initio techniques so far. In all

model calculations cχ ∼ 1, including in a sophisticated analysis using SLDA (Ref. [210]).

For finite T for an isothermal system, the deviations from LDA are not related to the density

response but for T . (µ− φ(r)) we can write corrections to LDA in analogy with Eq. 5.97

n(r) = nLDA

(

1− c1
64

(∇φ(r))2
m(µ− φ(r))3

− c2
16

∇2φ(r)

m(µ− φ(r))2
+O((∇V )3)

)

, (5.98)

where c1, 2 are functions of (T/µ) and tend to 1 as T/µ→ 0. In particular, for the interesting

region the term proportional to c1 is dominant (the exception is near the center of the trap).

Therefore, the corrections to LDA near z0 can be written as

n(z) = nLDA

(

1− c1
64

2

ξ
κ2LDA + ··

)

, (5.99)

where we have used the low temperature expression

mµ(r) =
ξ

2
k2F (r) , (5.100)

to write the correction in terms of κLDA.

In the absence of further information about c1 at finite T it is difficult to make precise

statements about the relevance of LDA corrections for the traps with large values of ωz
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that we show in the next Section are needed to make the shear viscosity tensor locally

anisotropic. Therefore, we simply use κLDA & 1 as a marker for significant LDA violation.

However, it is important to keep in mind that if c1(
T

µ(z0)
) ∼ c1(0.54) ∼ 1 (since T

µ(z0)
∼ 0.54

for the cases we consider), then the pre-factor of 1/(32ξ) implies that the corrections to

LDA can be small even for κLDA ≈ 1.

5.4 Local anisotropy

Hydrodynamics is an effective theory: The conserved currents are written as a series of

terms ordered by the number of derivatives acting on the local fluid velocity. The lowest

order terms are simply given by the Galilean (for non-relativistic systems) or Lorentz (for

relativistic systems) transforms of the local thermodynamic properties like the density and

the pressure, from the local rest frame of the fluid to the laboratory frame. The first

order terms are given by the local gradients of the velocity (∂iuj + ∂jui)/2 multiplied by

proportionality constants given by the transport coefficients — for example viscosities — of

the system. We will not consider higher derivative terms in this chapter, instead restricting

ourselves to situations (see Eq. 5.52) where the first order correction is smaller than the

lowest order terms.

In the presence of external fields, the law of conservation of energy features a source term

proportional to the driving force, ∇φ(r). If ∇φ(r) is “small” (which we shall define

in a moment), its effect on the thermodynamics and transport can be neglected, and

hydrodynamics describes a locally isotropic fluid (with isotropic thermodynamic functions

and isotropic transport coefficients) 7 moving in a space dependent potential. The key

realization therefore is that to observe an anisotropy in thermal or transport properties it

is not sufficient for ωx, ωy ≪ ωz. Corrections to isotropy will start becoming significant as

we increase ωz, if ωz starts becoming comparable to some microscopic scale of the system.

The criterion for the thermodynamic quantities to exhibit the effect of ∇φ(r) is clear from
the previous section. If the potential varies on length scales comparable to the inter-particle

separation — the Thomas-Fermi approximation, or LDA breaks down — the pressure of the

fluid in the direction of the gradient will be different from the pressure in the perpendicular

directions. In this case, clearly the transport coefficients will also be anisotropic. To explore

an analogous system to the one described in Sec. 5.2, this argument prompts us to consider

ωz large enough that LDA is broken (see Table 5.2). For such systems, the estimates for

the density Fig. C.1 and viscosities Fig. 5.8 using LDA will be only rough guiding values,

but if the analogy with the system in Sec. 5.2 holds true, the viscosity values relevant for

the modes described in Sec. 5.3.1 will be lower than the LDA values, and could be lower

than 1/(4π) in suitable quantum units.

7This assumes that microscopically the fluid is isotropic. For example it is not a crystal [183] or a fluid
phase with an anisotropic order parameter.
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To estimate the order of the correction to the shear viscosity due to potential gradients we

note that the first order correction to transport due to ∇φ(r) simply appear as the source

term, and hence assuming that the next order corrections will be analytic in ∇φ(r), we
expect

ηijkl = η
1

2
[(δikδjl+δilδjk−

2

3
δijδkl)+

(λ2(∇φ(r))(∇φ(r))
[µ(r)]2

)

4
∑

α=0

c(α)Mα ijkl]+O(∇2φ, (∇φ)4) ,

(5.101)

where λ is a microscopic length scale of the system, c(α) are dimensional constants of order 1

which depend on the microscopic details of the system, andMi are 5 orthonormal projection

operators that arise in a system with one special direction (for eg. see Ref. [211]). We have

given these projection operators in Appendix. D.2 (Eq. D.23).

λ is a length scale that determines transport behavior. In a system admitting a quasi-

particle description we expect λ to be of the order of the mean free path. (We show this

explicitly in Appendix. D.2.) The other length scale in the system is the inter-particle

separation 1/kF . In terms of kF we can write the corrections as

ηijkl ≈ η
1

2
[(δikδjl + δilδjk −

2

3
δijδkl) + (λkF )

2
((∇φ(r))(∇φ(r))

k2F [µ(r)]
2

)

4
∑

α=0

c(α)Mα ijkl]

= η
1

2
[(δikδjl + δilδjk −

2

3
δijδkl) + (λkF )

2
(

κ2LDA

)

4
∑

α=0

c(α)Mα ijkl] ,

(5.102)

For weakly interacting quasi-particles, the λkF ≫ 1. But for a strongly interacting system

in the absence of more information about λkF and c(α) it is not possible to make a more

concrete statement about the corrections to viscosity. We can only state that the corrections

are important if κLDA ∼ 1 as we did in Eq. 5.78.

As discussed in Sec. 5.2, for the theories considered in Sec. 5.2, there is no quasi-particle

description. The only relevant length scale is 1/T and the field φ changes by order 1 on a

length scale 1/ρ. Using AdS/CFT it has been shown [178] that the corrections to isotropy

go as Eq. 5.10.

For the unitary Fermi gas there is no known gravitational dual [212] and we will need to

resort to a rough calculation to estimate c(α) and λkF . We solve the Boltzmann transport

equation in the relaxation time approximation. We hope this will give semi-quantitative

results. We leave the challenging calculation of the viscosity for temperatures in the strongly

coupled regime just above the critical temperature in the presence of a background potential

for future work.

As we show in Appendix. D.2, the corrections to η for a weakly interacting, normal (un-
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paired) Fermi gas at low temperatures (T < µ) are given by (Eq. D.30)

η0 = η(0)[1 − 31

84
(λkF )

2 (∇φ)2
k2Fµ

2
+O((τ∇φ)4)] = η(0)[1 − 31

84
(λkF )

2κ2LDA +O((τ∇φ)4)]

η1 = η(0)[1 − 13

28
(λkF )

2 (∇φ)2
k2Fµ

2
+O((τ∇φ)4)] = η(0)[1 − 13

28
(λkF )

2κ2LDA +O((τ∇φ)4)]

η2 = η(0)[1 − 11

28
(λkF )

2 (∇φ)2
k2Fµ

2
+O((τ∇φ)4)] = η(0)[1 − 11

28
(λkF )

2κ2LDA +O((τ∇φ)4)]

η3 = 0, η4 = 0 ,

(5.103)

where τ is the effective relaxation time.

For the Elliptic mode 1
2(∂iuj + ∂jui) = 1

2αx(1 − ω2
x
ω2
z
) = Vxz which probes the viscosity

contribution to the stress energy tensor

σ2αβ = 2 η2 (Vαγbβbγ + bαVβγbγ − 2bαbβbγbδVγδ) , (5.104)

where b is a unit vector along the gradient of the potential. For the Scissor mode, 1
2 (∂iuj +

∂jui) = αx = Vxz which also probes η2. (η2 is the coefficient that corresponds to the

projection operator M2 in Eq. D.23.)

In both cases (see Appendix. D.2) , η is reduced from its value in the absence of the potential,

η(0), for τ2

k2F
(∇φ)2 . 1. To estimate the value of τ near z = z0, we note that for z ∼ z0,

T (z0) ∼ 0.54 µ(z0). At this T , η(0)/n|z0 ∼ 1.

Using the relaxation time approximation and thermodynamic expressions for a weakly

interacting Fermi gas to estimate λ near z0, we obtain (Eq. D.31)

η(0)(z0) =
(2mµ(z0))

5
2 τ(z0)

15π2m

=
2

5
n(z0)µ(z0)τ(z0) .

(5.105)

Therefore near z0, τ(z0) ∼ 5
2µ(z0)

η(0)
n |z0 , or,

λ(z0) = vF (z0)τ(z0)

∼ kF (z0)

m

5

2µ(z0)

η(0)

n
|z0

=
5

4kF (z0)

η(0)

n
|z0 .

(5.106)

(We have just kept the pre-factors of the order of 1 to serve as mnemonics of the derivation

of λ. They have no quantitative significance.)
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Therefore, (since η(0)
n |z0 ∼ 1 from η

n data)

λ(z0)kF (z0) =
5

4

η(0)

n
|z0 ∼ 1 . (5.107)

The fact that kF (z0)λ(z0) ∼ 1 means that the Boltzmann transport calculation shown in

Appendix. D.2 is not quantitatively trustworthy near z0. But we hope that two the main

qualitative consequences of Eq. 5.103 survive a more controlled calculation.

1. First, the coefficient of κ2LDA in Eq. 5.103 is of the order of 1.

2. Second, the sign of the correction term is negative

If true, this would imply that the shear viscosity component ηxzxz measured using the

Elliptic mode or the Scissor mode will reduced by order 1 from its value in isotropic traps,

if ωz & 2π × 77000 rads/s (Table. 5.2).

One might be concerned that for ωz ∼ 2π × 77000 rads/s, our conclusions in the previous

section about δz/z0 will be violated because of the violation of LDA. In the absence of

more concrete information on these coefficients we can not assure this will not happen.

We simply note that if the coefficient c1 in Eq. 5.99 is of the order of 1 (which it is at

T ≪ µ, but may be larger for T ∼ 0.54 µ(z0)) then there is a regime where the corrections

to the thermodynamics due to LDA is small, but the reduction in transport coefficients is

substantial.

5.5 Comments and discussions

In this chapter, we presented a concrete realization of a system of ultra-cold Fermi gases

at unitarity, in an anisotropic trap, which may show significant reduction in the viscosity

compared to its value in isotropic traps. Given that the value of the isotropic viscosity

has been measured to be few times the KSS bound in this system, it presents a candidate

setup to observe a shear viscosity smaller than the KSS bound when it is subjected to an

anisotropic driving force.8

The anisotropic force is obtained by placing the system in an anisotropic trap. The trapping

potential is harmonic, Eq. 5.14, and characterized by three angular frequencies, ωx, ωy, ωz.

8 The equations of fluid mechanics of an isotropic phase are rotationally invariant. The solutions of
these equations however can be anisotropic due to anisotropic initial conditions or boundary conditions etc.
For example, in heavy ion collision experiments, the anisotropic viscosity arises due to anisotropic initial
conditions resulting in anisotropic fluid flows. In contrast, the system we studied here has no rotational
invariance in equilibrium, and the resulting equations of fluid mechanics themselves break rotational
invariance regardless of initial or boundary conditions. In our work, thus the anisotropic viscosity arising
in the ultracold gases is not a geometric effect but a field theoretic effect since this is happening in the
dense part of the trap (where hydrodynamics is valid and the equations of fluid mechanics themselves break
rotational symmetry in equilibrium, see Eq.5.20 with φ(r) given by Eq.5.14.)
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We consider an anisotropic situation where ωz ≫ ωx, ωy, so that the trapping potential is

much stronger in the z direction. For simplicity, we also take ωx = ωy so that the system

preserves rotational invariance in the x− y plane. For some of the discussion below we can

neglect the effects of the trapping potential in the x, y directions characterized by ωx, ωy.

We work in conventions where kB = ~ = 1. There are three energy scales T, µ, ωz and two

dimensionless ratios T/µ and ωz/µ which then characterize the system. The Li6 atoms have

a mass m, using this parameter, any of the energy scales can be converted to a length scale,

L = 1√
2mE

.

Based on the behavior seen quite generically in gravity systems we identify five criterion

(Sec. 5.2) which when met could plausibly lead to a decrease in the value of some components

of the viscosity tensor (the spin one components). These are summarized towards the end

of Sec. 5.2 . On studying the superfluid equations we identify two modes which are sensitive

to these components of the viscosity tensor. One of these is the scissor mode which has

already been studied experimentally in some detail. By taking reasonable values for the

parameters- T , µ, ωz, ωx, ωy, which are in the experimentally accessible range, Ref. [173], we

find that all the five criteria can be met. Furthermore, we find that the resulting energy and

damping rate of this energy, from which the viscosity can be extracted, lie within the range

of values which are measured by experiments currently being done on cold atom systems,

in particular on Li6 unitary Fermi gas systems, Ref. [182]. For example, for µ = 10µK,

ωz ∼ 2π × 77000 rads/s, and T = Tc
2 (Tc = 0.4µ) we find that the anisotropy, as measured

by the parameter κLDA , Eq. 5.80, is of order unity and therefore significant. At these

extreme values of anisotropy our theoretical calculation, strictly speaking, do not apply,

but a reasonable extrapolation suggests that the maximum total energy is of the order of

10−17 joules which corresponds to the angular amplitude of the scissor mode of about 24◦

which is within the experimental range of [182]. The damping time τ0 is of the order of

10−2 seconds, which is roughly ten times longer than the observed amplitude damping time

that has been accurately measured in the experiments on ultracold Fermi gases [182].

While the system is certainly close to being two-dimensional when κLDA ∼ 1 and ztrap ∼
5.4 k−1

F (this corresponds to µ/ωz ∼ 2.7) is on the small side, the effect of small viscosity can

already set in when κLDA is somewhat smaller than unity. We illustrate this with concrete

quantitative examples below.

For concreteness, let us consider traps where we fix T/Tc = 1/2 (Tc = 0.4µ, where µ is

the chemical potential at the center of the trap) and change ωz. Further, for concreteness,

we set the overall scale by µ = 10µK. Considering first a representative trap geometry

where the shear viscosity tensor is locally isotropic to a large accuracy, we take ωz = 0.048µ

(corresponding to ωz = 2π × 104Hz which is typical), for which κ = 0.13. The fractional

reduction in the shear viscosity for this value of ωz, taking c2 to be its Boltzmann transport

value 11/28 is

∆η

η
≈ −11

28
(κ)2 = −0.7% , (5.108)
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which is a small reduction in the shear viscosity and may not be even measurable above

measurement errors. At the other extreme we considered, ωz = µ
2.7 (corresponding to

ωz = 2π × 77.16 kHz), for which κ = 1 and the fractional reduction is

∆η

η
≈ −11

28
(κ)2 = −39% , (5.109)

which is very large. However, in this extreme limit (ωz =
µ
2.7) only the lowest 2− 3 Landau

levels are occupied and the dynamics may be approximately two dimensional. Now consider

an intermediate value, say ωz = 0.9T = 0.18µ for which κLDA = 0.48 < 1. This gives a

correction

∆η

η
≈ −9% (5.110)

which — while not large — is still substantial. More generally, the criterion for confinement

in the z direction is

ωz & max(∆, T ) , (5.111)

since both T and pairing allow for excitations between the harmonic oscillator levels. At

these extreme values, where the inequality above is met, our approximations do break down,

as we have mentioned in the conclusions (shell effects become important as ωz & T , which

is another way of saying that confinement in the z direction becomes strong). For ωz =
µ
2.7 ,

ωz = 1.85 T and indeed confinement in the z direction is too strong. But, as illustrated

by the cases above, by taking ωz a factor of 2 or 3 smaller ( say ωz = 0.9 T that was

chosen above for illustration) than the extreme limit, one can measure the tendency of the

spin one component of the viscosity to decrease from its lowest value observed in ultra-cold

Fermi gases. In an optimistic scenario where c2 is larger in magnitude than the approximate

value of 11/28 in the Boltzmann transport approximation, the reduction will be even more

substantial. Let us also point out that comparing with Ref.[213] the typical values of ωz/EF

in the chapter is about 80 and the value of ωz/T is 120. In that case, the trap is truly 2

dimensional as opposed to when ωz/T ∼ 0.9.

Thus, for smaller values of anisotropy, the theoretical estimates are more reliable and suggest

that the different viscosity tensor components should have a fractional difference given in

terms of κLDA by Eq. 5.103. This tendency of the viscosity to decrease should already be

measurable at more moderate values of the anisotropy.

Our proposal is the first proposal to measure parametrically suppressed anisotropic viscosity

components in ultra-cold Fermi gases. Our proposal is different from the discussion of

anisotropic hydrodynamics in Ref. [190] since we are demanding that hydrodynamics be a

good description (in the sense of Eq. 5.52) in the regime which dominantly contributes to

the dissipation of the fluid dynamics modes.
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Future theoretical work can improve upon our proposal in several ways. First, our estimate

of the corrections to the shear viscosity components due to the potential (Eq. 5.103) was

based on a relaxation time treatment of the Boltzmann equation. For strongly interacting

fermions, this is not a good approximation and a more rigorous calculation of the anisotropy

corrections is desirable. This will require calculating transport properties in a strongly

coupled theory without a gravitational dual, in the presence of a background potential: a

formidable challenge. Second, we have focused on the region that dominantly contributes

to the dissipation. In particular we have neglected the contributions from the tail of the

cloud. While this is presumably small, it would be nice to establish this by solving the

Boltzmann transport equations in this dilute regime.

It is also worth noting that while the cold-atom system proposed here shares many features

with those discussed in Chapter 4 (Ref. [178]), it also has some differences. First, in

equilibrium the stress energy tensor is not invariant under translations even for a linear

potential. Rather the density decreases with increasing z, but the driving force is pro-

portional to the gradient of the potential φ(r) (see Eq. 5.3) as in Chapter 4 (Ref. [178]).

Second, in addition to energy-momentum, the cold-atom system features another conserved

quantity: the particle number. Consequently the system is locally characterized by two

thermodynamic variables T and µ rather than just T . It would also be interesting to further

study the behavior of viscosity in gravitational systems which correspond to anisotropy

driven strongly coupled systems with a finite chemical potential. The examples in Chapter

4 (Ref. [178]) did not have a finite chemical potential, for some discussion of anisotropic

gravity systems with a chemical potential see Ref. [214, 215]. As a first step, we have

analyzed a weakly coupled system with a linear varying potential in Appendix B and find

that the viscosity does become anisotropic in this case.

However, the central point of this chapter is that there is already enough motivation,

based on the behavior quite generically seen in gravitational systems, to suggest that

some components of the viscosity tensor in anisotropic strongly coupled systems might

well become small, making η/s for these components potentially even smaller than the KSS

bound, 1/4π. Such a decrease in the viscosity might well happen in cold atom systems, for

example the unitary fermi gas, which are experimentally well studied. As argued above, the

range of values involved for temperature, chemical potential and angular frequencies are well

within the experimental regime for such a system, and the scissor mode which is sensitive to

the relevant components of the viscosity has already been realised experimentally in them.

Further, the resulting values for the energy and the damping time from which the viscosity

can be extracted lie in the experimentally accessible range which has already been achieved.

We thus hope our experimental colleagues in the cold atoms community will find our results

interesting and relevant.

126



Chapter 6

Probing Lepton Flavor Violation in

Supersymmetry at the LHC

6.1 Introduction

In this chapter, we turn to a somewhat different exploration and thus can be read indepen-

dent of the preceding chapters.

The experiments dedicated towards the investigation of flavour physics are considered to

be one of best indirect ways to establish the existence of new physics (NP). They play

an important role in constraining the viability of various new physics scenarios, thereby

complementing the direct collider searches. The effects which give rise to large flavour

changing neutral currents (FCNC), can also be potentially probed at the colliders. For

instance, the possibility of observing a flavour violating Higgs decay at the Large Hadron

Collider (LHC) was discussed in [216, 217, 218]. Further, an observation of a 2.5 σ excess in

the H → τµ channel by CMS [219] in the LHC experiment has generated a lot of interest in

this sector and has led to a plethora of analysis [220, 221, 222, 223, 224, 225, 226, 227, 228,

229, 230, 231, 232, 233]. The leptonic sector in the Standard Model (SM) is also interesting

owing to the absence of FCNC. This can be attributed to the massless nature of neutrinos in

the SM. The observation of neutrino oscillations, which consequently led to a confirmation

of the massive nature of left handed neutrinos, resulting in a non-zero decay rate for rare

processes like µ→ eγ. The predicted branching ratio (BR) in the SM, however is negligibly

small (∼ 10−40) due to the tiny neutrino mass and is beyond the sensitivity of the current

flavour experiments. There exist several extensions of the SM which contribute to rare

processes such as µ → eγ via loops, enhancing the BR substantially to ∼ 10−13 − 10−15

and expected to be within the reach of the indirect flavour probes. Needless to say, an

observation of such processes is a definitive signal of the presence of physics beyond the

SM. Therefore, looking for a signal of lepton flavour violation (LFV) directly or indirectly

is a challenging avenue to find NP. Following this argument, we explore the possibility of
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observing lepton flavour violation at the LHC.

There are several models in literature which discuss the possibility of flavour violation in

the leptonic sector. In the current analysis we focus on the supersymmetric extensions of

the SM which can possess soft masses having significant flavour mixing in the mass basis

of fermions. This can lead to new contributions to the BR of rare processes. For instance,

soft masses with flavour mixing can arise in see-saw extensions of SUSY [234, 235, 236]

and also inspired by SUSY GUT [237, 238, 239, 240, 241]. Alternatively, introduction of

flavour symmetries [242, 243], models with messenger matter mixing in gauge mediated

supersymmetry breaking (GMSB)[244, 245, 246, 247, 248], models with R-symmetric su-

persymmetry [249, 250], supersymmetric theories in the presence of extra-spatial dimensions

[251, 252, 253] etc. also lead to flavourful soft masses. Scenarios in which mass splitting

lead to flavour violation have been considered in [246, 254, 255]. Such extensions in general

lead to flavoured soft masses and depending on the parameters can lead to observable rates

for the flavour violating decays in the squark and leptonic sector.

Flavour mixing in the sfermion mass matrices can be probed at the collider by the flavour

violating decay of a sparticle of flavour (say i) into a fermion of flavour j where j 6= i.

Flavour violating decays of sleptons were studied in the context of e+e− linear collider

[256, 257, 258, 259, 260, 261, 262]. In Ref. [263] the authors studied the possibility of

observing CP violation from slepton oscillations at the LHC and NLC. At the LHC, the

sleptons can be produced either through Drell-Yan (DY) process or by cascade decays from

heavier sparticles. Subsequent flavour violating decays of sleptons produced by DY were

studied in [264, 265] while those produced by cascade decays were studied in [266, 267,

268, 269, 270, 271, 272]. Probing LFV through the measurement of splitting in the mass

eigenstates of sleptons was considered in [273, 274, 275]. In this chapter we report on our

study of flavour violation in the leptonic sector by producing sleptons in cascade decays

through pair production of neutralino-chargino at the future LHC experiments.

Starting with MSSM, we write the most general structure for the slepton mass matrix.

The constraints on the model from the non-observation of flavour violating processes can

be expressed by working in the mass-insertion approximation (MIA) [235, 276] in terms of

bounds on the flavour violating parameter δij, i 6= j as defined in Eq.6.2 [277]. A non-zero

δij also opens up the possibility of flavour violating decay as far as collider implications of

flavoured slepton masses are concerned.

Our goal is to probe the flavour violating decay in the case of first two generations in

the slepton sector in SUSY. In this context strong bounds exist on the flavour violating

parameter, coming primarily from the non-observation of µ→ eγ [278]. There exist regions

of parameter space where these bounds can be relaxed owing to cancellations between

different diagrams contributing to this process, thereby giving access to probe LFV at the

colliders.

In this letter we explore this possibility to look for LFV decays considering neutralino-
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chargino pair production in proton-proton collisions, which eventually leads to three lepton

and missing energy final state. The tri-lepton final state is characterized by the presence

of two leptons with opposite flavour and opposite sign combination (OFOS). The presence

of LFV in the tri-lepton final state is ensured by demanding a combination of same flavour

same sign (SFSS) lepton pair along with the OFOS combination. While an imposition

of this SFSS criteria along with OFOS has a tendency to decrease the signal, it aids in

suppressing the backgrounds due to SM and SUSY significantly.

The chapter is organized as follows: In Section 6.2 we discuss the model set-up introducing

the various parameters relevant for the analysis in the framework of a simplified model.

Relevant regions of parameter space consistent with the flavour constraints and conducive

to be probed at the colliders are identified in this section. In Section 6.3 we explain our

choice of OFOS and SFSS combination to extract the signal with a detailed description of

the simulation. The results of the simulation for the background and the representative

points for the signal events are presented. In Section 6.4 we show regions of the parameter

space which can be probed at the LHC Run 2 experiment in the near future. We conclude

in Section 6.5.

6.2 Model Parametrization

In this section we introduce the basic model set-up and related parameters necessary to

describe LFV. In order to reduce the dependence on many parameters, we consider a

simplified SUSY model (SMS) approach with only left handed sleptons, wino and a bino

while decoupling the rest of the spectrum. The µ term is assumed to be ∼ 1 TeV to

make the neutralino/chargino dominantly composed of gauginos with a very small higgsino

component. In this case, the mass of χ0
2, the second lightest neutralino and χ±

1 , the lightest

chargino, are roughly the same as ∼ M2, the mass of the SU(2) gauginos. The lightest

neutralino χ0
1, which is assumed to be the lightest supersymmetric particle (LSP) has mass

∼M1, same as the mass of the U(1) gaugino.

For the slepton sector we focus on the flavour violation in the left handed sector making

the right handed sleptons very heavy and set the left-right chiral mixing in the slepton

mass matrix to be negligible. For simplicity, we assume only two generations. With these

assumptions, the left handed slepton mass matrix in the basis lF ≡ (ẽF , µ̃F ) is given as,

m̃2 =

[

m2
L11

m2
L12

m2
L12

m2
L22

]

, (6.1)

where F denotes the flavour basis (SUPER CKM) for the sleptons. In this basis the flavour
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violating parameter δ12 is parametrised as [235, 276],

δ12 =
m2
L12

√

m2
L11
m2
L22

. (6.2)

Naturally, this flavour violating parameter δ12 is coupled to the rates corresponding to

flavour violating rare decays in the first and second generation lepton sector. Hence an

upper bound on this parameter exists due to non-observations of these rare decays like

µ→ eγ [278], µ− e conversion [279] and µ→ eee [280].

In order to obtain the mass eigenvalues of the sleptons, the matrix in Eq.6.1 can be rotated

into a diagonal form by an angle θ given by,

sin 2θ =
2m2

L12

m2
L2

−m2
L1

, (6.3)

where m2
Li

are the eigenvalues. It can be related to the flavour violating parameter δ12 as,

δ12 =
sin 2θ(m2

L2
−m2

L1
)

2m2
L

(6.4)

where mL =
mL1

+mL2
2 . The structure of the mass matrix, Eq.6.1 allows for the possibility

of flavour oscillations similar to neutrino flavour oscillations. The probability P (ẽF → µ)

of a flavour eigenstate ẽF decaying into a muon is given by [258],

P (ẽF → µ) = sin2 2θ
(∆m2)2

4m̄2Γ2 + (∆m2)2
BR(µ̃→ µ),

∼ sin2 2θ BR(µ̃→ µ) for Γ ≪ ∆m2, (6.5)

with ∆m2 = m2
L2
−m2

L1
. The above expression can be re-expressed in terms of the parameter

δ12 from Eq.6.4. Thus the branching ratio for the flavour violating decay, χ0
2 → e ẽ→ e µ χ0

1

can be computed as,

BR(χ0
2 → e µ χ0

1) = BLFV BR(χ0
2 → ẽ e) BR(ẽ→ eχ0

1) + e↔ µ (6.6)

Here the suppression factor due to flavour violation is given by,

BLFV = sin2 2θ =

(

mL δ12
∆m12

)2

, (6.7)

where ∆m12 = mL2 −mL1 .

As mentioned before, bounds on δ12 and hence BLFV can be obtained by taking into

account the experimental upper limit on the BR(µ → eγ) < 5.7× 10−13 [278]. The higher
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dimensional operator contributing to this process is parametrized as [281],

LFV = e
ml

2
ē σαβ (ALPL +ARPR) µ F

αβ, (6.8)

where the model dependence is captured by the Wilson coefficients AL,R. The branching

ratio for this process is then given by [281],

BR(µ→ eγ) =
48π3

G2
F

(

|AL|2 + |AR|2
)

. (6.9)

In our considered model, AR ≡ 0, as the right handed sleptons are assumed to be very

heavy. AL on the other hand receives three contributions due to chargino, neutralino and

bino mediated diagrams and is given as [281],

AL =
δ12
m2
L

(

αY
4π

fn

(

M2
1

m2
L

)

+
αY
4π

fn

(

M2
1

m2
L

)

+
α2

4π
fc

(

M2
2

m2
L

))

(6.10)

where fn,c are loop factors defined in [281] with a non-trivial mass dependence of related

sparticles and αY , α2 are the U(1)Y and SU(2) gauge couplings.

The analysis can be simplified again by choosing the following parametrization for the mass

M1 of the (LSP) χ0
1,

M1 =
M2

2
, (6.11)

which is the relation at the electroweak scale due to unification of gaugino masses at the

GUT scale. For the sleptons we choose,

M2 > mL > M1. (6.12)

This relation assumes that the intermediate sleptons in χ0
2 decay are produced on-shell by

requiring that they are lighter than the mass of χ0
2 ≃M2. Under these assumptions, we try

to find the available range of parameters allowed by existing µ → eγ constraints as will be

discussed later. Fig.6.1 shows the region in the M2 −mL plane for which the conditions in

Eq.6.11 and 6.12 are satisfied (green region). It depicts the region of parameter space which

is of interest as far as collider implications are concerned as discussed in this chapter.

The blue region shows the parameter space for which BR(µ→ eγ) < 5.7×10−13 is satisfied

for δ12 = 0.01 in the left plot and for δ12 = 0.02 in the right plot. As expected, due to the

smaller value of δ12, the blue region in the left plot has a larger overlap with the green region

as compared to the plot in the right, thereby admitting smaller slepton masses. The orange

region in both the plots shows the parameter space for which BR(µ → eγ) < 5.7 × 10−13

is satisfied for δ12 = 0.1. We find that there is virtually no overlap with the region which is

of interest to us from the view of collider searches.

It would be interesting to estimate the suppression factor BLFV corresponding to the allowed

region in theM2−mL plane for the values of δ12 in Fig.6.1. As seen in Eq.6.7, the parameter
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Figure 6.1: Region satisfying Eq.6.11 and 6.12 (green), while the orange regions satisfy
the µ → eγ constraint for δ12 = 0.1. The blue regions are allowed by the upper bound on
BR(µ → eγ) for δ12 = 0.01 (left) and δ12 = 0.02 (right). Units of mass are in GeV.

BLFV , which determines the rate for LFV, is sensitive to the mass-splitting ∆m = mL2−mL1

and mL. BLFV increases with δ12 which can only be accommodated with a larger mL.

Thus smaller values of δ12 are not conducive to generate a large BLFV . BLFV is also

inversely proportional to the mass splitting ∆m. However, it cannot increase indefinitely as

BLFV ≤ 1, leading to a lower bound on ∆m. Fig.6.2 demonstrates the contours of constant

BLFV in the ∆m−mL plane. We find that for δ12 = 0.02, slepton in excess of 250 GeV are

required to get BLFV ≥ 0.1, while being consistent with the flavour constraints (overlap of

blue and green region) in Fig. 6.1.

6.3 Signal and Background simulations

As mentioned in the introduction, we probe the signal of LFV in slepton decay producing it

via cascade decays of sparticles which are produced in proton-proton collisions at the LHC.

Here we focus on χ±
1 χ

0
2 production which eventually leads to a tri-lepton final state as,

pp→







χ0
2 → l±i l̃

∓
i → l±i l

∓
j χ

0
1, i 6= j,

χ±
1 → l±i νχ

0
1,

(6.13)

where i, j denote flavour indices (e, µ). The flavour violating vertex causes the decay of a

slepton (l̃i), coming from χ0
2 decay, in Eq.6.13, into a lepton of flavour lj with i 6= j. It

is clear from the above process that the signature of LFV is the presence of 3 leptons of

which 2 leptons are with opposite flavour and opposite sign (OFOS) in addition to missing
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Figure 6.2: Contours of BLFV for δ12=0.01 (left) and δ12 = 0.02 (right). The horizontal
blue line is excluded by BR(µ→ eγ) for δ12 = 0.01 (left) and δ12 = 0.02 (right). The units
of mass are in GeV.

energy (E) due to the presence of two LSP and neutrino. The leptons with OFOS originate

from χ0
2 decay while the third lepton comes from the χ±

1 decay. Thus, following this decay

scenario, it is possible to have 8 combinations of tri-leptons, each having at least one OFOS

lepton pair as,

e+e+µ− ; e−e−µ+ ;µ−e+µ− ;µ+e−µ+

e+e−µ+ ; e−e+µ− ;µ+e+µ− ;µ−e−µ+. (6.14)

On the other hand, the pair production of χ±
1 χ

0
2 will also give rise to tri-lepton final state

with a flavour conserving decay of χ0
2 i.e. χ0

2 → l+l−χ0
1. Note that this flavour conserving

decay scenario also results in 8 combinations of tri-lepton final state given as

e+µ+µ− ; e−µ+µ− ;µ−e+e− ;µ+e+e−

µ+µ+µ− ; e−e+e− ; e+e+e− ;µ−µ−µ+ (6.15)

out of which four combinations of OFOS exist as seen in the first line of Eq.6.15. It is clearly

a potential background corresponding to the signal channel in Eq.6.14 and expected to have

the same rate as signal. However, a closer look at these two final states in Eq.6.14 and 6.15

reveals a characteristic feature. For example, in the case of signal, out of the 8 combinations

of tri-leptons with OFOS combinations, notice that four combinations shown in the first

line in Eq.6.14, also possess a pair of leptons with same flavour and same sign (SFSS) which

are absent in the background final states, shown in Eq.6.15. The rest of the states with

133

lfv/deltammL1.eps
lfv/deltammL2.eps


Chapter 6

OFOS combination in Eq.6.14 are identical to the final states given in Eq.6.15. We exploit

this characteristic feature to extract the LFV signal events out of all three lepton events

including all backgrounds. Thus our signal is composed of three leptons having combinations

of both OFOS and SFSS together, which is an unambiguous and robust signature of LFV

in SUSY. Note that while choosing a clean signature of LFV decay in SUSY, we pay a price

by a factor of half as is clear from Eq.6.14. However, this specific choice of combinations in

tri-leptons is very powerful in eliminating much of the dominant SM backgrounds arising

from WZ and tt̄ following leptonic decays of W/Z and top quarks.

We now discuss our simulation strategy to estimate the signal rates while suppressing the SM

and SUSY backgrounds. We performed simulations for both signal and background using

PYTHIA8 [282] at 14 TeV centre of mass energy and applying the following selections:

• Jet selection: The jets are reconstructed using FastJet [283] and based on anti kT

algorithm [284] setting the jet size parameter R = 0.5. The jets passing the cuts on

transverse momentum pjT ≥ 30 GeV, pseudo-rapidity |ηj | ≤ 3.0, are accepted.

• Lepton selection: Our signal event is composed of three leptons and are selected ac-

cording to the following requirement on their transverse momenta and the pseudo-rapidity:

p
ℓ1,2,3
T ≥ 20, 20, 10 GeV; |ηℓ1,2,3 | ≤ 2.5, where the leptons are pT ordered with pℓ1T being the

hardest one. In addition, the leptons are also required to be isolated i.e. free from nearby

hadronic activities. It is ensured by requiring the total accompanying transverse energy,

which is the scalar sum of transverse momenta of jets within a cone of size ∆R(l, j) ≤ 0.3

around the lepton, is less than 10% of the transverse momentum of the corresponding lepton.

• Missing transverse momentum: We compute the missing transverse momentum by

carrying out a vector sum over the momenta of all visible particles and then reverse its sign.

Since pT is hard in signal events, so we apply a cut pT ≥ 100 GeV.

• Z mass veto: We require that in three lepton events, the invariant mass of two leptons

with opposite sign and same flavour should not lie in the mass window mll =MZ±20 GeV.

It helps to get rid of significant amount of WZ background.

• b like jet selection: The b jets are identified through jet-quark matching i.e. those jets

which lie with in ∆R(b, j) < 0.3 are assumed to be b like jets.

•OFOS: Our signal event is characterised by the requirement that it has at least one lepton

pair with opposite flavour and opposite sign.

• SFSS: We require the presence of SFSS combination along with OFOS combination in

three lepton final state, which is the characteristic of our signal. As stated before, this

criteria is very effective in isolating the background due to the same SUSY process but for

their subsequent flavour conserving decays, in particular for χ0
2 decay.

We perform our analysis by choosing various representative points in the SUSY parameter

space. The spectrum is generated using SUSPECT [285] and the decays of the sparticles are

computed using SUSYHIT [286]. Table 6.1 presents the six representative points (A-F) for

which we discuss the details of our simulation. From A to F, the spectrum is characterized

by increasing masses of gauginos, with the slepton mass mL lying midway between the two,
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mL = (M1 +M2) /2.

Spectrum Characteristics A B C D E F

χ0
2/χ

±
1 210 314 417 518 619 718

χ0
1 95.8 144 193 241 290 339

mL 156 229 303 377 452 526
BR(χ0

2 → ẽLe) 0.13 0.15 0.16 0.16 0.16 0.16
BR(χ0

2 → µ̃Lµ) 0.13 0.15 0.16 0.16 0.16 0.16

Table 6.1: Representative choices of SUSY parameter space. All masses are in GeV.

In Table 6.2 and 6.3 we present the effects of selection of cuts in simulation for both the signal

and backgrounds respectively. In addition to the SM backgrounds which are mainly due to

tt̄ and WZ, we also simulate the background taking into account the contributions due to

flavour conserving decay of χ0
2 for each of the representative points in Table 6.1. There are

other sub-dominant backgrounds like tbW , ZZ if one lepton is missed or WW , if jets fake

as leptons. However these backgrounds are expected to be very small and not considered

here. We present results for signals corresponding to those representative parameter space

as shown in Table 6.2 . In this table, the first column shows the sequence of cuts applied

in the simulation, while the second column onwards event yields for the signal are shown.

Table 6.3 presents the same for the backgrounds due to SUSY in the second column and

the SM in the third column. Notice that lepton isolation requirement and a cut on pT has

considerable impact in reducing tt̄ andWZ background. As noted earlier, we find the SFSS

criteria to be very effective in isolating the SUSY background due to flavour conserving

decay of χ0
2 for all the representative points in Table 6.1 . Finally, it is possible to have

large number of tri-lepton events in background processes, but imposition of specific choices

like OFOS and SFSS along with large missing energy cut help in isolating it to a great extent

as shown in Table 6.3 . In spite of this suppression of background events, the signal yields

are far below than the total background contribution owing to it’s huge production cross

sections as shown in Table 6.3. Therefore, in order to improve signal sensitivity further, we

impose additional requirements by looking into the other characteristics of signal events.

For example, signal events are free from any kind of hadronic activities at the parton level

i.e. no hard jets are expected in the signal final state, whereas in background process, in

particular events from tt̄ are accompanied with large number of jets. We exploit this fact

to increase signal sensitivity by adding following criteria.

Case a: Jet veto

In this case we reject events if it contain any hard jets. In Table 6.3 we see that while the

jet veto criteria reduces the tt̄ and WZ background significantly, but it also substantially

damage the signal by a factor of 2 or 3 as shown in Table 6.2 . In signal process, jets

arise mainly from the hadronic radiation in initial and final states and it is true for all

the representative signal points. The reason can be attributed to enhancement of hadronic

activities at higher energies. Nevertheless the jet veto seems to be useful to improve signal
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Signal(χ0
2χ

±
1 )

M2 =⇒ 200 300 400 500 600 700

No. of events generated 10000 10000 10000 10000 10000 10000

p
ℓ1,2
T > 20, pℓ3T > 10, |η| < 2.5 1371 1752 2014 2218 2225 2342

Lepton isolation cut 1330 1669 1883 2055 2036 2112
pT > 100 474 959 1326 1600 1683 1860
OFOS 470 952 1319 1581 1659 1828
Z mass veto 423 849 1218 1485 1574 1752
SFSS 223 462 640 783 804 892

Case a: jet veto 91 205 288 337 346 380
Case b: b-like jet veto 221 458 635 777 798 884
Case c: nj ≤ 1 and b-like veto 161 375 479 604 617 687

Table 6.2: Event summary for signal after all selections. All energy units are in GeV.

SUSY(χ0
2χ

±
1 ) SM

A B C D E F tt̄ WZ

M2 =⇒ 200 300 400 500 600 700 - -

Cross section (fb) at 14 TeV 1.65× 103 370.5 118.8 45.6 20.5 9.57 9.3× 105 4.47 × 104

No. of events generated 10000 10000 10000 10000 10000 10000 107 3× 106

p
ℓ1,2
T > 20, pℓ3T > 10, |η| < 2.5 1299 1779 2015 2195 2245 2361 164895 23960

Lepton isolation cut 1251 1672 1874 2044 2051 2131 70233 22366
pT > 100 454 967 1311 1624 1722 1872 19241 1669
OFOS 209 482 656 820 855 918 14012 858
Z mass veto 126 346 547 728 768 853 12395 122
SFSS 4 6 11 14 15 25 4598 22

Case a: jet veto ≤ 1 1 1 5 4 4 29 ≤ 1
Case b: b-like jet veto 4 5 10 14 13 23 131 13
Case c: nj ≤ 1 and b-like veto 1 3 7 9 9 19 48 5

Table 6.3: Event summary for SUSY and SM background. All energy units are in GeV.
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to background ratio. However we consider two more alternatives with a goal to increase

signal sensitivity further:

Case b: b-like jet veto

Here we eliminate events if there be at least one b like jet. As can be seen Table 6.3, b jet

veto is more efficient than the jet veto condition, as the tt̄ background is suppressed by a

few orders of magnitude without costing the signal too much.

Case c: Apply b-like jet veto and number of jets nj ≤ 1

Here we apply the b-like jet veto condition along with the presence of maximum one jet. As

seen in Table 6.3 , it is very helpful in reducing the tt̄ background significantly but it does

not affect the signal as much as the simple jet veto condition (nj = 0) does alone.

Note that we have identified b-like jets by a naive jet-quark matching which is an overes-

timation from the realistic b-jet tagging[287] which is out of scope of the present analysis.

However, for the sake of illustration, we present these results with b-jet veto, (case (b) and

(c)), to demonstrate that this criteria might be very useful in suppressing backgrounds,

which requires more detector based simulation. In view of this, we focus only on the results

obtained by using jet veto, case(a) for further discussion.

We also present the dilepton (eµ) invariant mass distributions for the spectrum A (left)

and F (right) in Fig.6.3 normalizing it to unity. It is subject to all primary selection cuts

on leptons and jets, including the OFOS and SFSS combination. The meµ distribution

is expected to have a sharp edge on higher side, which can be derived analytically from

kinematical consideration. The position of this edge of meµ is given as [268, 288],

(mmax
eµ )2 = m2

χ0
2

(

1− m2
L

m2
χ0
2

)(

1−
m2
χ0
1

m2
L

)

. (6.16)

The appearance of an edge in the meµ distribution is a clear indication of LFV vertex in the

χ0
2 decay. However, this meµ distribution is affected by a combinatorial problem. For each

tri-lepton event, two OFOS pairs can be constructed: a) both leptons coming from χ0
2 decay

and b) “imposter” pair with one lepton from χ0
2 and the other from χ±

1 . In Fig.6.3 the red

(dotted) curve represents the dilepton invariant mass distribution of the leptons tracked to

the χ0
2 vertex while blue (solid) curve corresponds to dilepton without any prior information

about their origin. It (red dotted line) exhibits a very distinct edge as the identity of the

lepton pair originating for χ0
2 is known a-priori. The (solid) blue line is more realistic as

it includes both the correct OFOS and SFSS pair as well as the contamination due to the

“impostor” pair which is responsible for a tail beyond the edge. As a result it exhibits a

more diffused behaviour near the position of the edge. However, we can roughly estimate

the position of the edge using the blue (solid) line as ∼ 120 GeV for the left panel and ∼ 375

GeV for the right panel. We find that these values are in fairly good agreement with the

corresponding numbers used in our simulation. It may be noted here that such distributions

with a sharp edge are the characteristic feature of these type of decays which can also be
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Figure 6.3: OFOS dilepton invariant mass distribution for spectrum A (left) and spectrum
F (right). The events are selected at the SFSS level.

Signal (S) Background (B)
Properties A B C D E F tt̄ WZ

Cross section (fb) at 14 TeV 1.65× 103 370.5 118.8 45.6 20.5 9.57 9.3× 105 4.47 × 104

Normalized cross sections

Case a: jet veto 15.01 7.59 3.41 1.51 0.67 0.37 2.69 ≤ 1
Case b: b-like veto 36.4 16.9 7.54 3.54 1.63 0.85 12.1 0.19
Case c: nj ≤ 1 and b-like veto 26.5 13.9 5.7 2.75 1.26 0.66 4.4 0.07

S√
B
(@100) fb−1

Case a: jet veto 91.43 45.93 20.78 9.32 4.31 2.24 - -
Case b: b-like veto 100.99 47.87 21.34 10.04 4.64 2.43 - -
Case c: nj ≤ 1 and b-like veto 122.4 64.4 26.4 12.8 5.92 3.12 - -

Table 6.4: Normalized cross-section (fb) and S/
√
B for signal and background subject to

three selection conditions

exploited to suppress backgrounds [268] in order to increase signal to background ratio.

6.4 Results and Discussions

Table 6.4 gives the normalized signal and background cross-sections due to all selection

cuts. These are obtained by multiplying the production cross section given in the first

row by acceptance efficiencies. The production cross section are estimated by multiplying

the leading order (LO) cross section obtained from PYTHIA8 with the corresponding k

factors 1. Corresponding to these signal and background cross sections, we also present

the signal significance by computing S/
√
B for integrated luminosity 100 fb−1 as shown in

the bottom of Table 6.4. Although case(b) corresponding to b-like jet veto results in the

largest cross section for all signal parameter space, signal significance does not improve due

to comparatively less suppression of SM backgrounds. With the increase of gaugino masses

acceptance efficiencies goes up as final state particles become comparatively harder, but

S/
√
B is depleted due to drop in χ0

2χ
±
1 pair production cross-section. While estimating

signal rates and significance, we assume a maximal flavour violation i.e. BLFV = 1.

Obviously, a further suppression is expected by a factor BLFV which depletes the BR of

χ0
2, (see Eq.6.6). For a given δ12, BLFV is a function of the slepton mass as well as the

mass splitting ∆m as shown in Fig. 6.2. For instance S/
√
B may suffer by an order of

magnitude for BLFV = 0.1. While the lower end of the spectrum can lead to a larger

S/
√
B, the corresponding BLFV decreases as we move further towards the IR part of the

1The appropriate k factors for tt̄ and WZ processes is 1.6 [289] and 1.7 [290] respectively while for the
signal it is 1.5 [291].
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Figure 6.4: Variation of S/
√
B (using jet veto, case (a) for different regions with two choices

of δ12 = 0.01 (left) and δ12 = 0.02(right). The regions light blue are allowed by BR(µ → eγ)
constraint. Here we assume BLFV = 1. Masses are in GeV.

slepton spectrum. This can be attributed to stronger bounds on δ12 for lower slepton masses.

Though the lower mass is not yet ruled out, it is more economical to consider relatively

heavier slepton masses as the bounds from current and future experiments will be relatively

weaker.

In Fig.6.4, we illustrate this mass sensitivity by presenting S/
√
B obtained using jet veto

condition case (a). Notice that for a given χ±
1 and χ0

2 masses, signal is not very sensitive to

slepton mass as long as it is produced on-shell from χ0
2 decay and Mχ0

2
−mL is sufficiently

high. The regions in the M2 −mL plane correspond to different values of S/
√
B computed

for L = 100 fb−1 and by assuming BLFV = 1. The sleptons and gaugino masses follow the

parametrisation in Eq.6.11 and 6.12. It is superimposed on the region satisfying BR(µ →
eγ) < 5.7 × 10−13 for δ12 = 0.01 (left) and δ12 = 0.02 (right). As seen from Table 6.4 and

Fig. 6.4, the signal significance is better for lower masses due to larger χ0
2χ

±
1 pair production

cross section. However, it suffers by smaller values of BLFV corresponding to those slepton

masses as shown in Eq.6.7 and Fig.6.2.

Fig.6.5 shows the sensitivity reach of BLFV in theM2−mL plane using the parametrisation

in Eq.6.11 and 6.12. The numbers in boxes for different coloured regions give the minimum

values of BLFV which can be probed, while requiring a 5σ discovery corresponding to

those values of M2 and mL and are presented for two different options of luminosities:

L = 100 fb−1 (left) and L = 1000 fb−1 (right). As the constraints from indirect flavour

measurements get tighter, larger BLFV can be attained with heavier slepton masses, while

respecting bounds from the rare decays as shown in Fig. 6.1 and 6.2. For example, for

lower masses χ0
2 ∼ χ±

1 ∼ 250 GeV and mL ∼ 200 GeV, the LFV parameter BLFV ∼ 0.05

or more can be probed at 5σ level of signal sensitivity for L = 100 fb−1 . As expected,

the minimum BLFV required for a 5σ sensitivity goes up, thereby reducing the sensitivity
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Figure 6.5: Minimum value (in small box) of BLFV for a S/
√
B = 5 discovery for L =

100 fb−1 (left) and L = 1000 fb−1 (right). The S/
√
B is computed using jet veto condition.

The filled triangles correspond to the representative points A-F from left to right. The plot
is truncated at the point where BLFV > 1 is required to get a 5 σ sensitivity of signal for
that particular luminosity. Masses are in GeV.

of BLFV measurement with the increase of gaugino and slepton masses and this can be

attributed to the drop in cross-sections. The left plot in Fig.6.5 is terminated at the point

corresponding to a requirement of BLFV=1 for a 5σ discovery. As a result, the representative

points E and F corresponding to heavier slepton masses are beyond the sensitivity of LHC

at L = 100 fb−1 as they require BLFV > 1 to achieve a 5σ discovery. However, flavour

violating decays with heavier slepton masses as high as 650 GeV can be probed with an

integrated luminosity of L = 1000 fb−1 as shown in the right plot of Fig 6.5.

6.5 Comments and discussions

The observation of flavour violating rare decays would be one of the best indicators of

the existence of physics beyond the SM. Measurements of such decays play an important

role in constraining several new physics models and hence has received a lot of attention

recently. We attempt to explore the flavour violation in the lepton sector in the context

of well motivated models of flavourful supersymmetry. We follow an approach based on a

simplified model with only the left handed sleptons along with the neutralinos which are

gaugino dominated. We consider pair production of χ0
2χ

±
1 and their subsequent leptonic

decays which includes the LFV decays of χ0
2. The final state is composed of three leptons

and accompanied by large missing energy. In addition to the presence of a lepton pair with

OFOS, we observed that certain tri-lepton combinations are also characterized by a lepton

pair with SFSS -which is a unique and robust signature of LFV in SUSY.
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The discovery potential of observing this LFV signal is primarily dependent on the masses of

sleptons and gauginos. These masses are however constrained by non-observation of FCNC

decays such as µ → eγ and they get stronger as the flavour violating parameter δ12 becomes

larger. We have identified the allowed range of slepton and gaugino masses relevant for

our study. In addition variation of LFV parameter BLFV with masses of slepton and mass

difference between lepton mass eigenstates (∆m) are also presented.

Estimating the various background contributions, we predict the signal sensitivity for a few

representative choices of SUSY parameters. The combination of three leptons with OFOS

and SFSS is found to be very useful to achieve a reasonable sensitivity. It is found that for

gaugino masses ∼ 250 GeV and slepton masses ∼200 GeV, the LFV parameter BLFV as low

as 0.05 can be probed with 100 fb−1 integrated luminosity. For heavier masses ∼ 600− 700

GeV, because of reduced χ0
2χ

±
1 pair production cross section, the measurement of LFV

parameter BLFV requires higher luminosity ∼1000 fb−1. Our study clearly establishes the

prospects of finding LFV signal in this SUSY channel at the LHC Run 2 experiment with

high luminosity options.
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Conclusions

The primary goal of this thesis was to use AdS-CFT tools to understand the shear viscosity

of a class of strongly coupled field theories, in the presence of anisotropy. For this purpose,

we had to construct and study several anisotropic blackbrane geometries. We found that

in all our examples we studied, there was a parametric suppression of some components

of shear viscosity in the presence of a constant driving force that broke the rotational

symmetry. Motivated by the generality of the result, we also proposed an experiment

involving trapped fermions at low temperatures where such an anisotropic shear viscosity

tensor may arise. We found that there exist a suitable region of parameter space where the

parametric suppression of suitable components of the anisotropic shear viscosity tensor may

be measured. In this concluding chapter of the thesis we try to emphasize what we have

learned so far. We also discuss some points which we need to investigate further in future.

• In Chapter 2 we performed the interpolation of the Bianchi attractor geometries (

which are dual to anisotropic phases in the field theory with generalized translational

invariance) in the IR (infrared) to Lifshitz and AdS spacetimes in the UV (ultraviolet).

We wish to emphasize that we did not obtain these interpolating metrics as solutions

to Einstein gravity coupled to suitable matter. Rather, what we achieved to show is

that the matter required to support such geometries obey the weak and null energy

conditions. These interpolating metrics do not have any non-normalizable metric

deformations turned on near the boundary. This ensures that the dual field theory

can indeed reside in flat space as opposed to some background of non-trivial geometry.

The lesson we learn from these interpolations is that the symmetries of various Bianchi

classes can emerge in the IR, either spontaneously or in response to some suitable

source not involving the metric. We believe that these results will be of interest to the

condensed matter community, given the fact that many interesting phases of matter

are currently showing up in this arena of physics.
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• In Chapter 3 we try to realize the near horizon geometries with Bianchi symmetries

as solutions in gauged supergravity theories. We find a Bianchi III attractor solution

in N = 2,D = 5 gauged supergravity which is stable in the RG sense. We analyze

the relevant Killing spinor equations and find that a radial ansatz for the spinor

breaks all supersymmetry. This suggests that the above solution we found may be a

non-supersymmetric attractor.

• In the second half of the thesis, in Chapter 4 we find a general formula for the shear

viscosity in units of the entropy density given by the ratio of appropriate metric

components evaluated at the horizon. In a situation with anisotropy, these metric

components need not be the same. This can lead to a parametric violation of the

bound proposed by Kovtun, Son and Starinets. ( η/s ≥ 1
4π ) which we abbreviate

as KSS. Using techniques of Kaluza Klein reduction, we give a proof of this general

formula for all situations where the force breaking isotropy is spatially constant and

there is some residual Lorentz symmetry left in the boundary theory after breaking

isotropy.

The general formula can be presented as follows: let z be the field theory direction

along which a spatially constant driving force is turned on breaking rotational sym-

metry and x be a direction along which the boost symmetry is left unbroken, then

the viscosity component ηxz is given by

ηxz
s

=
1

4π

gxx
gzz

∣

∣

∣

u=uh
, (7.1)

where gxx|u=uh , gzz|u=uh refer to the components of the background metric evaluated

at the horizon. This result is true for all the anisotropic situations studied in Chapter

4 (Ref. [178]). This result was first derived in an anisotropic axion-dilaton system

considered in [134].

In the isotropic situation, the metric components gxx and gzz are the same and

we recover the result 1
4π of KSS. However in anisotropic situations, these metric

components can behave very differently and thus leads to the parametric violations

of the KSS bound.

Let us note that the proof of this general formula that was carried out in Chapter 4

relies on the assumption that the force responsible for breaking of rotational symmetry

is spatially constant. The proof essentially maps the spin one shear viscosity com-

ponents to conductivity in a lower dimensional theory using dimensional reduction.

Since the fields breaking isotropy were linearly varying (the gradients of those fields

were constants), different Kaluza Klein (KK) modes in the extra dimensions do not

mix with each other. This can be easily seen from the fact that the equations of

motion involve only gradients of these fields which are spatially constant.
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• Motivated by these interesting results found in Chapter 4, we try to propose an

experiment in Chapter 5 to measure such spin one components of shear viscosity

in the unitary fermi gases. This set-up involves trapped, ultracold fermions in the

unitary regime of the BEC-BCS crossover. Anisotropy is achieved by implementing

a stronger confinement of the gas in one of the directions compared to the other

directions. Based on the lessons learnt on the gravity side, we lay down a set of

conditions such that the suppression of spin one component of shear viscosity may

be measured experimentally in such systems. We present the relevant hydrodynamic

modes which solve the equations of superfluid hydrodynamics and the trap parameters

where this effect is likely to be seen. To the best of our knowledge, the proposal

presented here is the first proposal to probe anisotropic shear viscosity in trapped

fermions at low temperatures.

Our proposal involves a unitary Fermi gas in an anisotropic harmonic trap. We find

that for the temperature at the center of the trap between 0.2 to 0.4 times the central

chemical potential µ, the damping of oscillatory modes is dominated by a region where

the background harmonic potential can be approximated as linear. AdS/CFT then

suggests a reduction in the spin 1 component of the shear viscosity. For µ = 10µK,

T = Tc
2 (Tc ≈ 0.4µ), and ωz ∼ 2π × 77000 rad/s, we find κ ∼ 1. A Boltzmann

analysis in this regime also predicts an order unity reduction in spin 1 shear viscosity

components.

Two hydrodynamic modes, an elliptic mode and the well known scissor mode, are

sensitive to this reduction in viscosity. The angular amplitudes and the decay times are

comparable to those measured in [182]. In the extreme situation for where κ ∼ 1, our

theoretical estimate for the correction to the viscosity (Eq. 5.101) breaks down. (For

example higher order terms in Eq. 5.101 become important. Additionally, for κ ∼ 1,

µ/ωz ∼ 2.7 and shell effects, although somewhat weak in the unitary Fermi gases [210],

may also become important.) But by gradually increasing ωz from ωz ∼ 2π×104rad/s

to ωz ∼ 2π × 77000 rad/s one could measure the tendency of ηxz to decrease. For

example, one can consider ωz = 0.9T = 0.18µ for which κLDA = 0.48 < 1. This gives

a correction

∆η

η
≈ −9% (7.2)

which — while not large — is still substantial.

The damping rate for the scissor mode has been measured in the BEC-BCS crossover

region for weakly anisotropic traps in [182]. It will be interesting to see how the

damping rate changes as ωz is increased. On the other extreme, damping of the

breathing and the radial quadrupole mode (both insensitive to ηxz) was measured in

the 2D Fermi gas [213]. It will be interesting to study the scissor mode in these traps

for smaller ωz. We hope our experimental colleagues in the cold atoms community
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will find our proposal interesting and explore anisotropic viscosities in trapped unitary

fermions.

• The final chapter of the thesis is a parallel investigation that is independent of the

developments of the earlier chapters and hence can be read independently. Here we

considered models of supersymmetry which can incorporate sizeable mixing between

different generations of sfermions and performed a detailed collider analysis to devise

a signal to probe the lepton flavour violating parameter in such models relevant for

the LHC.

We now list a few open and interesting questions that we have left for the future.

• Although we were successful regarding the interpolation of Bianchi Types II, III, VI

and IX in Chapter 2, the interpolating metric of Bianchi Type V failed to satisfy the

null energy conditions. Our failure in this case may be due to the restricted class of

functions we used to construct the interpolating metrics or perhaps it may suggest

a more fundamental constraint. Another interesting question is how the anisotropic

and homogeneous phases in these field theories, described by the Bianchi attractor

regions, can arise in practice? It will be interesting to examine the possibility of a

spontaneous breaking of rotational invariance or by turning on sources other than the

metric in the field theory.

• An immediate extension of the work on shear viscosity in strongly coupled fluid in

presence of anisotropy is to extend our analysis to cases where the breaking of isotropy

is spontaneous or when the driving force is not spatially constant. It is also natural

to consider string theory embeddings of the anisotropic systems we have studied and

examining if they are stable. In principle all transport coefficients which determine

the fluid mechanics can be obtained by carrying out a more systematic derivative

expansion on the gravity side as discussed in the fluid gravity correspondence described

in [292], [293],[294], [295]. It will be great to perform a similar analysis along those

lines. Another direction is to consider transport properties in phases corresponding to

Bianchi spaces which describe homogeneous but anisotropic phases in general. Some

progress in this regard has been made [159] for Bianchi VII. It will be interesting to

extend the analysis to all Bianchi types. It will also be interesting to see if these results

are relevant for neutron stars with very high magnetic fields (known as magnetars)

for breaking rotational invariance 1. The resulting equilibrium phase could then be

highly anisotropic and our results hint that suitable components of the viscosity might

become small.

• An important point worth noting is that while the cold-atom system proposed in

this thesis shares many features with those discussed in Chapter 4 (Ref. [139, 178]),

1A magnetic field of order 1016 Tesla or so is needed in order to contribute an energy density comparable
to the QCD scale ∼ 200 Mev.
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it also has some differences. First, in equilibrium the stress energy tensor is not

invariant under translations even for a linear potential. Second, in addition to energy-

momentum, the cold-atom system features another conserved quantity: the particle

number. Consequently the system is locally characterized by two thermodynamic

variables T and µ rather than just T . It will be interesting to further study the

behavior of viscosity in gravitational systems which correspond to anisotropy driven

strongly coupled systems with a finite chemical potential. As a first step, we have

analyzed a weakly coupled system with a linearly varying potential and also a system

in gravity ie. the RN blackbrane (see [215]). In both situations we find that the

anisotropic viscosity does become parametrically small.
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Appendices for Chapter 2:

Interpolating from Bianchi Attractors to

Lifshitz and AdS spacetimes

A.1 Three Dimensional Homogeneous spaces

We now discuss the three dimensional homogeneous spaces and their classification. Such

spaces have three linearly independent Killing vector fields, ξi, i = 1, 2, 3. The infinitesimal

transformations generated by these Killing vectors can carry any point in this space to

another neighbouring point. The real algebra of these Killing vectors is given by

[ξi, ξj ] = Ckijξk. (A.1)

There are 9 different such algebras and this is known as the Bianchi classification ( [296],

[297] ).

In each case there are three linearly independent invariant vector fields, Xi, which commute

with the three Killing vectors

[ξi,Xj ] = 0.

The Xi’s satisfy the algebra

[Xi,Xj ] = −CkijXk.

There are also three one-forms, ωi, which are dual to the above invariant vectors Xi. The

Lie derivatives of these one-forms along the ξi vanish, thus they are invariant along the ξ

directions as well. The ωi’s satisfy the relations

dωi = 1
2C

i
jkω

j ∧ ωk.

Below we give a list which contains the structure constants for the 9 Bianchi algebras, in a

particular basis of generators. We refer to [297] for more details.
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• Type I: Cijk = 0

ξi = Xi = ∂i, ω
i = dxi, dωi = 0 (A.2)

• Type II: C1
23 = −C1

32 = 1 and rest Cij,k = 0

ξ1 = ∂2 X1 = ∂2 ω1 = dx2 − x1dx3 dω1 = ω2 ∧ ω3

ξ2 = ∂3 X2 = x1∂2 + ∂3 ω2 = dx3 dω2 = 0

ξ3 = ∂1 + x3∂2 X3 = ∂1 ω3 = dx1 dω3 = 0

• Type III: C1
13 = −C1

31 = 1 and rest Cij,k = 0

ξ1 = ∂2 X1 = ex
1
∂2 ω1 = e−x

1
dx2 dω1 = ω1 ∧ ω3

ξ2 = ∂3 X2 = ∂3 ω2 = dx3 dω2 = 0

ξ3 = ∂1 + x2∂2 X3 = ∂1 ω3 = dx1 dω3 = 0

• Type V: C1
13 = −C1

31 = 1, C2
23 = −C2

32 = 1 and rest Cij,k = 0

ξ1 = ∂2 X1 = ex
1
∂2 ω1 = e−x

1
dx2 dω1 = ω1 ∧ ω3

ξ2 = ∂3 X2 = ex
1
∂3 ω2 = e−x

1
dx3 dω2 = ω2 ∧ ω3

ξ3 = ∂1 + x2∂2 + x3∂3 X3 = ∂1 ω3 = dx1 dω3 = 0

• Type VI: C1
13 = −C1

31 = 1, C2
23 = −C2

32 = h with (h 6= 0, 1) and rest Cij,k = 0

ξ1 = ∂2 X1 = ex
1
∂2 ω1 = e−x

1
dx2 dω1 = ω1 ∧ ω3

ξ2 = ∂3 X2 = ehx
1
∂3 ω2 = e−hx

1
dx3 dω2 = hω2 ∧ ω3

ξ3 = ∂1 + x2∂2 + hx3∂3 X3 = ∂1 ω3 = dx1 dω3 = 0

• Type VII0: C
1
23 = −C1

32 = −1, C2
13 = −C2

31 = 1 and

rest Cij,k = 0.

ξ1 = ∂2 X1 = cos(x1)∂2 + sin(x1)∂3

ξ2 = ∂3 X2 = − sin(x1)∂2 + cos(x1)∂3

ξ3 = ∂1 − x3∂2 + x2∂3 X3 = ∂1

And also,

ω1 = cos(x1)dx2 + sin(x1)dx3 dω1 = −ω2 ∧ ω3

ω2 = − sin(x1)dx2 + cos(x1)dx3 dω2 = ω1 ∧ ω3

ω3 = dx1 dω3 = 0

• Type IX: C1
23 = −C1

32 = 1, C2
31 = −C2

13 = 1, C3
12 = −C3

21 = 1 and rest are zero.

ξ1 = ∂2

ξ2 = cos(x2)∂1 − cot(x1) sin(x2)∂2 +
sin(x2)
sin(x1)

∂3

ξ3 = − sin(x2)∂1 − cot(x1) cos(x2)∂2 +
cos(x2)
sin(x1)

∂3

With

X1 = − sin(x3)∂1 +
cos(x3)
sin(x1)

∂2 − cot(x1) cos(x3)∂3

X2 = cos(x3)∂1 +
sin(x3)
sin(x1)∂2 − cot(x1) sin(x3)∂3

X3 = ∂3
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And also,

ω1 = − sin(x3)dx1 + sin(x1) cos(x3)dx2; dω1 = ω2 ∧ ω3

ω2 = cos(x3)dx1 + sin(x1) sin(x3)dx2; dω2 = ω3 ∧ ω1

ω3 = cos(x1)dx2 + dx3; dω3 = ω1 ∧ ω2

For Types IV and VIII we give the structure constants only. For more explicit data on

these Types, see [297]

• Type IV: C1
13 = −C1

31 = 1, C1
23 = −C1

32 = 1, C2
23 = −C2

32 = 1 and rest Cij,k = 0

• Type VIIh (0 < h2 < 4): C2
13 = −C2

31 = 1, C1
23 = −C1

32 = −1, C2
23 = −C2

32 = h and

rest Cij,k = 0

• Type VIII: C1
23 = −C1

32 = −1, C2
31 = −C2

13 = 1, C3
12 = −C3

21 = 1 and rest Cij,k = 0

A.2 The Weak and Null Energy Conditions

We shall now review the weak and null energy conditions in detail. The weak energy

condition (WEC) stipulates that the local energy density as observed by a time-like observer

is nonnegative. In other words, if uµ are the components of a time-like vector, we must

have Tµνu
µuν ≥ 0 everywhere, with Tµν being the components of the stress tensor. Note

that if we raise one of the indices of Tµν to get T µν , we could interpret the stress tensor as

a linear transformation T that acts on the components of a vector u via (Tu)µ = T µν uν .

The WEC now simply becomes 〈u, Tu〉 ≥ 0, where the angle brackets denote the inner

product with respect to the metric. Since T is a linear transformation from a vector space

to itself, it makes sense to talk of the eigenvalues and eigenvectors of T . In particular,

if u is a time-like eigenvector which is normalized so that 〈u, u〉 = −1 and which belongs

to some eigenvalue λ (not to be confused with the λ parameter we had introduced in the

interpolating metric), then we have

〈u, Tu〉 = λ〈u, u〉 = −λ. (A.3)

Thus, a necessary condition for the WEC to hold is that the eigenvalues corresponding to

all time-like eigenvectors of T be non-positive.

Note that this isn’t a sufficient condition for the WEC to hold. To go further, let us first

note that T is self-adjoint:

〈u, Tv〉 = Tµνu
µvν = 〈Tu, v〉.
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However, it does not follow from this property that T is diagonalizable and that its eigen-

values are necessarily real, since the inner product is indefinite in a Lorentzian metric. For

the metrics we are interested, we fortunately do not have to deal with this complication

because, it turns out that in all the cases we analyze, T does turn out to be diagonalizable

with real eigenvalues. Accordingly, we restrict our discussion to this case below.

It then follows that there exists a vierbein {u0, u1, u2, u3, u4} consisting of the eigenvectors

of T , which is orthonormal in the sense that 〈ua, ub〉 = ηab. If we let Tua = λaua, then our

claim is that the WEC is equivalent to the following statement: λ0 ≤ 0 and |λ0| + λc ≥ 0

for c = 1, 2, 3, 4.

To prove necessity, we note that we have already shown that λ0 ≤ 0. Now, for an arbitrary

time-like vector of the form v = Au0 + Buc, where c can be 1, 2, 3 or 4, we have 〈v, v〉 =
−A2 +B2 < 0. By the WEC we have

〈v, Tv〉 = |λ0|A2 + λcB
2 ≥ 0.

If we let ǫ = A2 −B2, the above can rewritten as

(|λ0|+ λc)B
2 + ǫ|λ0| ≥ 0.

Since v is arbitrary, ǫ can be an arbitrarily small positive real number. It follows that

|λ0|+ λc ≥ 0 for c = 1, 2, 3, 4.

To prove sufficiency, we note that a generic time-like vector v may be given by

v = Au0 +Bu1 + Cu2 +Du3 + Eu4.

where the coefficients are subject to the following

A2 > B2 + C2 +D2 + E2.

The conditions λ0 ≤ 0 and |λ0|+ λc ≥ 0 for c = 1, 2, 3, 4 hence guarantee that

〈v, Tv〉 = |λ0|A2 + λ1B
2 + λ2C

2 + λ3D
2 + λ4E

2

≥ |λ0|(B2 + C2 +D2 + E2) + λ1B
2 + λ2C

2 + λ3D
2 + λ4E

2

= (|λ0|+ λ1)B
2 + (|λ0|+ λ2)C

2 + (|λ0|+ λ3)D
2 + (|λ0|+ λ4)E

2

≥ 0.

In fact, we can go further and easily show this implies the null energy condition (which

states that 〈n, Tn〉 ≥ 0 for all null vectors n everywhere) by following the same outline as

the proof above. We note that a generic null vector n may be given by

n = Au0 +Bu1 +Cu2 +Du3 + Eu4,
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where the coefficients are subject to the following

A2 = B2 + C2 +D2 + E2.

The conditions λ0 ≤ 0 and |λ0|+ λc ≥ 0 for c = 1, 2, 3, 4 hence guarantee that

〈n, Tn〉 = |λ0|A2 + λ1B
2 + λ2C

2 + λ3D
2 ++λ4E

2

= λ0|(B2 + C2 +D2 + E2) + λ1B
2 + λ2C

2 + λ3D
2 + λ4E

2

= (|λ0|+ λ1)B
2 + (|λ0|+ λ2)C

2 + (|λ0|+ λ3)D
2 + (|λ0|+ λ4)E

2

≥ 0,

which is the null energy condition (NEC). Thus, in terms of the eigenvalues, the NEC

is equivalent to the following statement: −λ0 + λc ≥ 0 for c = 1, 2, 3, 4 where λ0 is the

eigenvalue corresponding to the time-like eigenvector and λc corresponds to any of the

space-like eigenvectors.

To summarize the above observations:

1. For the WEC, it suffices to have (i) λ0 ≤ 0 and (ii) |λ0|+ λc ≥ 0 for c = 1, 2, 3, 4.

2. For the NEC, it suffices to have −λ0 + λc ≥ 0 for c = 1, 2, 3, 4, where λ0 is the

eigenvalue corresponding to the time-like eigenvector and λc corresponds to any of

the space-like eigenvectors.
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Appendices for Chapter 3:

Bianchi III attractor in Gauged

Supergravity

B.1 Notations and conventions

In this section, we summarize our notations and conventions on tangent space and spinors.

We use greek indices for spacetime and roman for tangent space. Our conventions for the

flat tangent space metric is ηab = (−,+,+,+,+). The tangent space indices are denoted

by a, b = 0, 1, 2, 3, 4.

The tangent space matrices satisfy the usual Clifford algebra

{ γa, γb} = 2ηab .Antisymmetrization is done with the following convention,

γa1a2...an = γ[a1a2...an] =
1
n!

∑

σ∈Pn Sign(σ)γaσ(1)γaσ(2) . . . γaσ(n) .In d = 5 only I, γa, γab form

an independent set, other matrices are related by the general identity for d = 2k + 3,

γµ1µ2...µs = −i−k+s(s−1)

(d−s)! ǫµ1µ2...µsγµs+1...µd .We also recollect that the spinors in five dimensions

satisfy the symplectic majorana condition

i ≡ (ǫ∗i )
tγ0 = (ǫi)tC ,where C is the charge conjugation matrix which obeys Ct = C−1 =

−C.

Unlike the case in four dimensions, the SU(2) indices are not raised and lowered by complex

conjugation. Instead they are raised and lowered by the SU(2) covariant tensor with the

conventions ε12 = ε12 = 1. Note that the SU(2) indices are always raised or lowered in the

NW-SE direction

ǫi = εijǫj , ǫi = ǫjεji .

The covariant derivative acting on ǫi is with respect to the Lorentz covariant spin connection

ωabµ defined as
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∇µ(ω)ǫi = ∂µǫi +
1
4ω

ab
µ γab

B.2 Linearized Einstein equations

In this section, we provide the explicit form of the linearized equations that follow from

(3.81). We substitute the expressions for the attractor potential (3.62), the scalar fluc-

tuations (3.73), the terms from the stress energy tensor (3.76), (3.79) and the metric

fluctuations (3.82) into the linearized Einstein equation (3.81). We then contract it with

the vielbeins eµa to obtain the following equations. The t̂t̂ equation is

r̂2γ̃′′r̂r̂ − r̂2γ̃′′
t̂t̂
+ r̂2γ̃′′x̂x̂ + r̂2γ̃′′ŷŷ + r̂2γ̃′′ẑẑ + 12βt

2γ̃r̂r̂ + 4(3βt
2 + 2)γ̃t̂t̂ + 4βt

2γ̃x̂x̂ + 4βt
2γ̃ŷŷ

(B.1)

+ 12βt
2γ̃ẑẑ + 6βtr̂γ̃

′
r̂r̂ − 6βtr̂γ̃

′
t̂t̂
+ 6βtr̂γ̃

′
x̂x̂ + 6βtr̂γ̃

′
ŷŷ + 6βtr̂γ̃

′
ẑẑ

(B.2)

+ r̂γ̃′r̂r̂ − r̂γ̃′
t̂t̂
+ r̂γ̃′x̂x̂ + 4(γ̃x̂x̂ + γ̃ŷŷ) + r̂γ̃′ŷŷ + r̂γ̃′ẑẑ = 0 . (B.3)

The r̂r̂ equation is

r̂2γ̃′′r̂r̂ − r̂2γ̃′′
t̂t̂
− r̂2γ̃′′x̂x̂ − r̂2γ̃′′ŷŷ − r̂2γ̃′′ẑẑ − 4(5βt

2 + βt + 1)γ̃r̂r̂ + 4βt
2γ̃x̂x̂ + 4βt

2γ̃ŷŷ

(B.4)

− 4βt
2γ̃ẑẑ + 2βtr̂γ̃

′
r̂r̂ − 2βtr̂γ̃

′
t̂t̂
− 4(βt − 1)βtγ̃t̂t̂ − 2βtr̂γ̃

′
x̂x̂ + 4βtγ̃x̂x̂

(B.5)

− 2βtr̂γ̃
′
ŷŷ + 4βtγ̃ŷŷ − 2βtr̂γ̃

′
ẑẑ + 4βtγ̃ẑẑ − 3r̂γ̃′r̂r̂ + 3r̂γ̃′

t̂t̂

(B.6)

− 4(γ̃t̂t̂ + 2(γ̃x̂x̂ + γ̃ŷŷ) + γ̃ẑẑ) + 3r̂γ̃′x̂x̂ + 3r̂γ̃′ŷŷ + 3r̂γ̃′ẑẑ = 0 . (B.7)

The x̂x̂ equation is

−(2βt
2 − 1)(8Csr̂

∆ + φcγ̃ŷŷ)

φc
− 2βt

2(γ̃r̂r̂ + γ̃t̂t̂ + 3γ̃x̂x̂ + γ̃ẑẑ)−
1

2
r̂
(

(2βt + 1)γ̃′r̂r̂

(B.8)

+ 2βt(γ̃
′
t̂t̂
− γ̃′x̂x̂ + γ̃′ŷŷ + γ̃′ẑẑ) + r̂(γ̃′′r̂r̂ + γ̃′′

t̂t̂
− γ̃′′x̂x̂ + γ̃′′ŷŷ + γ̃′′ẑẑ)

(B.9)

+ γ̃′
t̂t̂
− γ̃′x̂x̂ + γ̃′ŷŷ + γ̃′ẑẑ

)

− 6γ̃x̂x̂ − γ̃ŷŷ = 0 . (B.10)
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The ŷŷ equation is

−16(2βt
2 − 1)Csr̂

∆

φc
+ 2(−2βt

2(γ̃r̂r̂ + γ̃t̂t̂ + 3γ̃ŷŷ + γ̃ẑẑ)− γ̃x̂x̂ − 3γ̃ŷŷ) + 2(1− 2βt
2)γ̃x̂x̂

(B.11)

− r̂
(

(2βt + 1)γ̃′r̂r̂ + 2βt(γ̃
′
t̂t̂
+ γ̃′x̂x̂ − γ̃′ŷŷ + γ̃′ẑẑ) + r̂(γ̃′′r̂r̂ + γ̃′′

t̂t̂
+ γ̃′′x̂x̂

(B.12)

− γ̃′′ŷŷ + γ̃′′ẑẑ) + γ̃′
t̂t̂
+ γ̃′x̂x̂ − γ̃′ŷŷ + γ̃′ẑẑ

)

− 6γ̃r̂r̂ − 6γ̃t̂t̂ − 6γ̃x̂x̂ − 6γ̃ẑẑ = 0 .

(B.13)

The ẑẑ equation is

r̂2(−γ̃′′r̂r̂)− r̂2γ̃′′
t̂t̂
− r̂2γ̃′′x̂x̂ − r̂2γ̃′′ŷŷ + r̂2γ̃′′ẑẑ − 12βt

2γ̃r̂r̂ − 12βt
2γ̃t̂t̂ − 4βt

2γ̃x̂x̂ − 4βt
2γ̃ŷŷ

(B.14)

− 12βt
2γ̃ẑẑ − 6βtr̂γ̃

′
r̂r̂ − 6βtr̂γ̃

′
t̂t̂
− 6βtr̂γ̃

′
x̂x̂ − 6βtr̂γ̃

′
ŷŷ + 6βtr̂γ̃

′
ẑẑ − r̂γ̃′r̂r̂

(B.15)

− r̂γ̃′
t̂t̂
− r̂γ̃′x̂x̂ − 4(γ̃x̂x̂ + γ̃ŷŷ + 2γ̃ẑẑ)− r̂γ̃′ŷŷ + r̂γ̃′ẑẑ = 0 . (B.16)

In the above equations, the prime indicates derivative with respect to r̂. We see that all

the double derivatives are multiplied by r̂2, while the single derivatives are multiplied by r̂.

Now, the x̂x̂ and ŷŷ equations contain the source term which goes like r̂∆. It is then clear

that the metric fluctuations γ̃µν all go like r̂∆.

B.3 Coefficients of the linearized fluctuations

The various functions that appear in the coefficients (3.85) are

F0(βt) = −64(βt
2 + 4)(2βt

2 − 1)
N1
t̂
(βt) +N2

t̂
(βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (B.17)

F1(βt) = 64(βt
2 + 4)(2βt

2 − 1)
N1
r̂ (βt) +N2

r̂ (βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (B.18)

F2(βt) = 8(2βt
2 − 1)

N1
x̂(βt) +N2

x̂(βt) +N3
x̂(βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (B.19)

F3(βt) = 8(2βt
2 − 1)

N1
ŷ (βt) +N2

ŷ (βt) +N3
ŷ (βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (B.20)

F4(βt) = −64(βt
2 + 4)(2βt

2 − 1)
N1
ẑ (βt) +N1

ẑ (βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (B.21)
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where,

N1
t̂
(βt) = 272βt

4 + 80(f(βt)− 1)βt
2 + 4(f(βt)− 84)βt ,

(B.22)

N2
t̂
(βt) = −4f(βt) + 16(7f(βt) + 33)βt

3 + 107 ,

(B.23)

N1
r̂ (βt) = 304βt

4 + 8(14f(βt)− 53)βt
2 + 4(5f(βt) + 84)βt ,

(B.24)

N2
r̂ (βt) = 28f(βt) + 16(5f(βt)− 33)βt

3 − 179 ,

(B.25)

N1
x̂(βt) = 4928βt

6 + 4(1000f(βt) + 4821)βt
2 − 4(53f(βt)− 924)βt ,

(B.26)

N2
x̂(βt) = 644f(βt)− 64(5f(βt)− 33)βt

5 + 16(68f(βt) + 1419)βt
4 ,

(B.27)

N3
x̂(βt) = −16(166f(βt) + 447)βt

3 + 671 ,

(B.28)

N1
ŷ (βt) = 4928βt

6 + 4(1216f(βt) + 6009)βt
2 − 4(107f(βt) + 3612)βt ,

(B.29)

N2
ŷ (βt) = −4f(βt)− 64(5f(βt)− 33)βt

5 + 16(68f(βt) + 1689)βt
4 ,

(B.30)

N3
ŷ (βt) = (21360 − 64f(βt))βt

3 + 7745 ,

(B.31)

N1
ẑ (βt) = (272βt

4 + 80(f(βt)− 1)βt
2 + 4(f(βt)− 84)βt ,

(B.32)

N2
ẑ (βt) = −4f(βt) + 16(7f(βt) + 33)βt

3 + 107) ,

(B.33)

D1(βt) = −33024βt
8 − 8(3910f(βt) + 13839)βt

2 + 4(367f(βt)− 1428)βt ,

(B.34)

D2(βt) = −3276f(βt) + 256(25f(βt) + 99)βt
7 − 128(58f(βt) + 1525)βt

6 ,

(B.35)

D3(βt) = 192(147f(βt) + 400)βt
5 − 32(1178f(βt) + 8565)βt

4 ,

(B.36)

D4(βt) = 48(309f(βt)− 1045)βt
3 − 10445 ,

(B.37)

f(βt) =
√

−21 + 33β2t . (B.38)
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Appendices for Chapter 4:

The Shear Viscosity in Anisotropic

Phases

C.1 Numerical interpolation from the near horizon AdS3 ×
R× R to asymptotic AdS5,

Our action consists of gravity, a massless dilaton φ and a cosmological constant Λ, in 5

space time dimensions,

Sbulk = 1
2κ2

∫

d5x
√−g

(

R+ 12Λ − 1
2(∂φ)

2
)

.Here 2κ2 = 16πG is the gravitational coupling

(G is the Newton’s Constant in 5 dimensions) and we set Λ=1.

It is easy to show that this system admits an AdS5 solution with metric given by

ds2 =

[

− u2dt2 + du2

u2
+ u2(dx2 + dy2 + dz2)

]

,and the dilaton is kept constant.

We now show that starting with the near horizon geometry given by eq.(4.30), one can add a

suitable perturbation which grows in the UV such that the solution matches asymptotically

to AdS5 metric as provided in eq.(C.1).

This perturbation is given as follows-

gtt(u) = 2u2 (1 + δA(u)) ,

guu(u) =
1

2u2 (1 + δA(u))

gxx(u) = 2u2 (1 + δA(u)) ,

gyy(u) =
ρ21
8

(1 + δC(u))

gzz(u) =
ρ22
8

(1 + δD(u))

(C.1)
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Figure C.1: Log-log plot showing the numerical interpolation of near horizon AdS3×R×R
to asymptotic AdS5 , with ρ1 = 1 , ρ2 = 1.

with

δA(u) = a1 u
ν , δC(u) = c2 u

ν , δD(u) = c3 u
ν (C.2)

a1 =
1

5
(−5 + 2

√
5)(c2 + c3), ν =

√
5− 1. (C.3)

The numerical analysis is carried out using NDSolve in mathematica. For the case ρ1 = 1 ,

ρ2 = 1 the suitably chosen values for c2 and c3 are as follows

c2 = 85, c3 = 85.

By adjusting the coefficients c2, c3 to the above values one can ensure that the asymptotic

behaviour of the metric eq.(C.1) agrees with eq.(C.1) at large u, say u=100000 ;

The plots in Fig (C.1) show the metric components as a function of u. These plots were

obtained by numerical interpolation for the case ρ1 = 1 , ρ2 = 1 and c2 = 85, c3 = 85 .

C.2 Ratio of normalizable over non-normalizable mode near

boundary

Here we check that asymptotically the canonical momentum Π goes to a constant indepen-

dent of u . To see this , we consider the action

Sbulk =
1

2κ̂2

∫

d5x
√−ĝ

(

R̂+ 12Λ
)

.we get the following solution for AdS5 (setting Λ=1).

ds2 =
(

−u2dt2 + du2

u2
+ u2dx2 + u2dy2 + u2dz2

)

.The metric perturbations go like u2(1+C1
u4
)

where C1 is constant.

Hence, using eq.(4.92) and eq.(4.90) we find that

Π(u) = − 1
2κ2N(u)Z ′ = − 1

2κ2
√−g 1

g2eff
gxxguu∂u(

C1
u4 ) = − 1

2κ2
√−g e3ψgxxguu∂u(C1

u4 ).Plugging

in the higher dimensional metric components from (C.2)we get Π(u) = 2
κ2
C1 which is inde-

pendent of u. Thus asymptotically, the ratio of the normalizable to the non - normalizable

mode behaves like 2
κ2
C1.
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C.3 Conductivity formula in terms of horizon quantities

In this appendix , we show the derivation of (4.96) following [147]. The electrical conduc-

tivity is defined in (4.93) as

σ(u, ω) =
Π(u, ω)

iωZ(u,w)

∣

∣

u→∞,ω→0
. (C.4)

The real part can be written as

Re (σ) = Re

(

Π(u, ω)

iωZ(u, ω)

)

∣

∣

u→∞,ω→0
= Re

(

Π(u, ω)Z(u,−ω)
iωZ(u, ω)Z(u,−ω)

)

∣

∣

u→∞,ω→0

= Im

(

Π(u, ω)Z(u,−ω)
ωZ2(u)

)

∣

∣

u→∞,ω→0
=

Im

(

Π(u, ω)Z(u,−ω)
)

ωZ2(u)

∣

∣

u→∞,ω→0
.

(C.5)

Here we used the fact that Z(u, ω) ∼ Z(u) is real to leading order when ω → 0.

We now proceed to show that1

d

du
Im [Π(u, ω)Z(u,−ω)] = 0, (C.6)

This can be seen as follows

d

du
Im
(

N(u)
d

du
Z(u, ω)Z(u,−ω)

)

= Im
[ d

du

(

N(u)
d

du
Z(u, ω)

)

Z(u,−ω)

+N(u)
d

du
Z(u, ω)

d

du
Z(u,−ω)

]

. (C.7)

Using (4.89), r.h.s of above equation reduces to

Im
[

−M(u)Z(u, ω)Z(u,−ω) +N(u)
d

du
Z(u, ω)

d

du
Z(u,−ω)

]

, (C.8)

which is equal to zero since the quantity in the bracket is real. Thus Im [Π(u, ω)Z(u − ω)]

can be evaluated at the horizon i.e. at u = uh.

Demanding regularity at the future horizon , we can approximate the behaviour of Z(u, ω)

as follows

Z ∼ e−iω(t+r∗),where r∗ is the tortoise coordinate,

r∗ =
∫

√

guu
gtt

du.

1 Π(u,ω) = δS
δZ′(u,−ω)

= −
1

2κ2
N(u) d

du
Z(u, ω) , hence Im [Π(u, ω)Z(u,−ω)] behaves like a current .
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Using eq.(4.92) and

lim
u→uh

d

du
Z(u, ω) = −iω lim

u→uh

√

guu
gtt

Z(u) +O(ω2). (C.9)

we get (in the limit ω → 0)

Re (σ) =
1

2κ2

(

√

guu
gtt

N(u)

)

u=uh

(

Z(uh)

Z(u→ ∞)

)2

=
1

2κ2

(

√

guu
gtt

√−g 1

g2eff
gxxguu

)

u=uh

(

Z(uh)

Z(u→ ∞)

)2

= σH

(

Z(uh)

Z(u→ ∞)

)2

, (C.10)

where σH is the conductivity evaluated at the horizon and its expression is given by,

σH =
1

2κ2g2eff

∣

∣

∣

u=uh
. (C.11)

where we used isotropy along the spatial directions in the lower dimensional theory.
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Appendices for Chapter 6:

The Shear Viscosity in an Anisotropic

Unitary Fermi Gas

D.1 Ideal hydrodynamic modes

In this section we contrast the modes discussed in Sec. 5.3.1 with the breathing modes

discussed in Ref. [172] in normal fluids.

We start with the linearized continuity and Euler equations for a fluid with a polytropic

equation of state, which can be used to derive the following equation valid for ideal fluid

dynamics for the normal component [172],

m
∂2v

∂t2
= −γ (∇ · v) (∇φ(r))−∇ (v · ∇φ(r)) . (D.1)

As shown in Ref. [172] breathing modes can be obtained by considering a scaling ansatz

vi = aixi exp(iωt) (no sum over i). Substituting in Eq. D.1 one obtains an eigenequation

(

2ω2
j − ω2

)

aj + γω2
j

∑

k

ak = 0. (D.2)

This is a simple linear equation of the form Ma = 0. Non-trivial solutions correspond to

det(M) = 0.

In the case of a trapping potential with axial symmetry, ω1 = ω2 = ω0, ω3 = λω0, we get
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ω2 = 2ω2
0 and [184, 200, 298]

ω2 =ω2
0

{

γ + 1 +
γ + 2

2
λ2 (D.3)

±
√

(γ + 2)2

4
λ4 + (γ2 − 3γ − 2)λ2 + (γ + 1)2

}

.

In the unitarity limit (γ = 2/3) and for a very asymmetric trap, λ→ 0, the eigen-frequencies

are ω2 = 2ω2
0 and ω2 = (10/3)ω2

0 . The mode ω2 = (10/3)ω2
0 is a radial breathing mode with

a = (a, a, 0) and the mode ω2 = 2ω2
0 corresponds to a radial quadrupole a = (a,−a, 0).

Here we consider a different class of modes, with the scaling form Eq. D.4 (since x and z are

exchanged, they are “twisted”). The eigen-equations are now given by Eq. D.5. It has two

solutions, ω = 0 and ω =
√

ω2
x + ω2

y. Hydrodynamic modes can be obtained by considering

an ansatz of the form

v = eiωt(αx z x̂+ αz x ẑ) . (D.4)

Substituting Eq. D.4 in Eq. D.1 gives the simultaneous equations

ω2αz = αx ω
2
x + αz ω

2
z

ω2αx = αx ω
2
x + αz ω

2
z .

(D.5)

One mode of interest for us is the ω = 0 mode since it has a velocity profile similar to that

we studied in Chapter 4. This is what we call the Elliptic mode. If ωx = ωz, the mode

looks like a rigid body rotation and can not exhibit viscous damping. For ωx 6= ωz however

we get a non-zero energy dissipation due to viscosity given by Eq. 5.47. The second mode

of interest for us is what we call the Scissor mode which is well known in literature.

D.2 Anisotropic viscosities in the relaxation time approxi-

mation

In this section, we compute the anisotropic shear viscosities associated with the motion of a

weakly interacting Fermi gas in the presence of an external potential in the relaxation time

approximation [177]. For this section we explicitly keep ~ and c in the expressions to ease

comparisons with existing literature.

The Boltzmann equation in the relaxation time approximation is

∂f(x, p)

∂xα
Vα +

∂f(x, p)

∂pα
(−∇αφ) = −δf

τ
(D.6)

where f is the distribution function, and τ is the effective relaxation time.
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In equilibrium, the distribution function of occupied states for a weakly interacting gas is

given by the Fermi-Dirac distribution function f0(x, p) = 1/{exp[(ǫ(p)−p·V (x)−µ)/T (x)]+
1}, where ǫ, p represent electron energy and momentum respectively. If a slowly varying

local fluid velocity Vα (α = 1, 2, 3) is set up in the system, the electron distribution

function is modified. To the lowest order in the derivatives of Vα, we can write

f(p) = f0(ǫ) + δf(p), (D.7)

where the non-equilibrium correction δf(p) is of the form where

δf(p) = −
(

∂f0
∂µ

)

vαpβCαβγδ(ǫ)Vγδ (D.8)

where Cαβγδ is a 4-rank tensor, µ represents the electron chemical potential, vα = dǫ/dpα

denotes the electron velocity, and Vαβ is proportional to the derivative of the macroscopic

fluid velocity defined as follows

Vαβ =
1

2

(

∂Vα
∂xβ

+
∂Vβ
∂xα

)

, (D.9)

Similarly, in the presence of a slowly varying external potential φ, Eq. D.7 holds with

δf(p) = −
(

∂f0
∂µ

)

vαDαγ(ǫ)∂γφ . (D.10)

Here we consider both ∂αφ and Vαβ non-zero, and hence δf is the sum of Eq. D.8 and

Eq. D.10. After canceling out the terms proportional to D (which are related to conduc-

tivity) the linearized Boltzmann equation within the relaxation time approximation of the

collision integral takes the form

(

∂f0
∂µ

)(

vαpβ
∂Vα
∂xβ

− 1

3
vαpα∇ · V

)

= −δf
τ

+ (∇φ) · ∂δf
∂p

, (D.11)

in analogy with Eq. 2 of [177] for the magnetic field case,

(

∂f0
∂µ

)(

vαpβ
∂Vα
∂xβ

− 1

3
vαpα∇ · V

)

= −δf
τ

+
e

c
(v ×B) · ∂δf

∂p
. (D.12)

For ease of calculation, let us decompose the ∇φ term on the R.H.S of Boltzmann equation

as

∇φ = p̂(p̂.∇φ) + (∇φ− p̂(p̂.∇φ)) = p̂(p̂.∇φ) + p̂× (∇φ× p̂) (D.13)

In what follows, it is useful to define a basis ξ
′

for the 8 dimensional non-commutative

algebra for the 4-rank tensor Cγδµν built out of the Kroenecker delta, Levi-civita and the

components of the unit vector along the direction ∇φ× p̂ denoted by b̂.
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The basis ξ′1 − ξ′8 is defined as

ξ′1αβγδ = δαγδβδ + δαδδβγ

ξ′2αβγδ = δαβδγδ

ξ′3αβγδ = b̂αb̂δδβγ + b̂αb̂γδβδ + δαγ b̂β b̂δ + δαδ b̂β b̂γ

ξ′4αβγδ = δαβ b̂γ b̂δ

ξ′5αβγδ = b̂β b̂δδγδ

ξ′6αβγδ = b̂αb̂β b̂γ b̂δ

ξ′7αβγδ = δαγ b̂βδ + b̂αγδβδ + δαδ b̂βγ + b̂αδδβγ

ξ′8αβγδ = b̂αb̂βγ b̂δ + b̂αb̂βδ b̂γ + b̂αγ b̂β b̂δ + b̂αδ b̂β b̂γ

(D.14)

Let us now simplify the L.H.S of Eq. D.11

(

∂f0
∂µ

)(

vαpβ
∂Vα
∂xβ

− 1

3
vαpα∇ · V

)

=

(

∂f0
∂µ

)

vαpβVµν
1

2

(

ξ
′

1αβµν
− 2

3
ξ
′

2αβµν

) (D.15)

Similarly the R.H.S of Eq. D.11 can be simplified as follows-

R.H.S = −δf
τ

+ (∇φ)α
∂δf

∂(m)pα
= −δf

τ
+ (p̂(p̂.∇φ) + p̂× (∇φ× p̂))α

∂δf

∂(m)pα

= −δf
(

1

τ
−
(

p̂.∇φ
p

))

− (p̂× (∇φ× p̂))α vaCaαγδVγδ

(

∂f0
∂µ

) (D.16)

Taking τ to the L.H.S we get

τL.H.S = −δf
(

1− τ

(

p̂.∇φ
p

))

− τ (p̂× (∇φ× p̂))α vaCaαγδVγδ

(

∂f0
∂µ

)

= vαpβVrs

(

∂f0
∂µ

)(

Cαβrs

(

1− τ
p̂.∇φ
p

)

− τb

p
ǫθβγ b̂γCαθrs

) (D.17)

where b denotes the magnitude of the vector ∇φ× p̂.

Let a =
(

1− τ p̂.∇φp

)

and x = τb
p . If we denote the angle between ∇φ and p̂ as θ, then

a = 1− ∇φτ
p cos θ and x = τ∇φ

p sin θ.

Hence we get

τL.H.S = vαpβVrs

(

∂f0
∂µ

)

(

aCαβrs − xǫθβγ b̂γCαθrs

)

(D.18)
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Symmetrizing in α and β, we get

τL.H.S = vαpβVrs

(

∂f0
∂µ

)

(

a
Cαβrs + Cβαrs

2
− x

ǫθβγ b̂γCαθrs + ǫθαγ b̂γCβθrs
2

)

= vαpβVrs
1

2
Cγδrs

(

∂f0
∂µ

)

(aδαγδβδ + aδβγδαδ + x(bβδδγα + bαδδγβ))

(D.19)

Subtracting the trace in αβ, we get

τL.H.S = vαpβVrs
1

2
Cγδrs

(

∂f0
∂µ

)(

aδαγδβδ + aδβγδαδ −
2

3
aδγδδαβ + x(bβδδγα + bαδδγβ + bαγδβδ + bβγδαδ

= vαpβVrs
1

2
Cγδrs

(

∂f0
∂µ

)(

aξ′1 −
2

3
aξ′2 + xξ′7

)

αβγδ

Now combining L.H.S and R.H.S we finally get

τ

(

∂f0
∂µ

)

vαpβVµν
1

2

(

ξ
′

1αβµν
− 2

3
ξ
′

2αβµν

)

= vαpβVrs
1

2
Cγδrs

(

∂f0
∂µ

)(

aξ′1 −
2

3
aξ′2 + xξ′7

)

αβγδ

⇒ τ

(

ξ
′

1αβµν
− 2

3
ξ
′

2αβµν

)

=

(

aξ′1 −
2

3
aξ′2 + xξ′7

)

αβγδ

Cγδµν

Writing Cγδµν =
(

∑8
i=1 ciξ

′

i γδµν

)

we can now solve for the coefficients

c1 =
aτ

2(a2 + 4x2)
, c2 = − τ(a2 − 2x2)

3a(a2 + 4x2)
, c3 =

3aτx2

2(a2 + x2)(a2 + 4x2)
, c4 = c5 = − 2τx2

a(a2 + 4x2)
,

c6 =
6τx4

a(a2 + x2)(a2 + 4x2)
, c7 = − τx

2(a2 + 4x2)
, c8 = − 3τx3

2(a2 + x2)(a2 + 4x2)
(D.20)

The viscosity tensor is given as

ηαβab = − 2

(2π~)3

∫

d3(m)p

(

∂f0
∂µ

)

vαpβvγpδ

(

8
∑

i=1

ciξ
′

i γδab

)

. (D.21)

It is convenient to decompose the tensor ηαβab in to 5 irreducible components corresponding

to 5 tensors Mi αβab (i = 0, · · 4) in a system with a special direction Ê = ∇φ/|∇φ| and
reflection symmetry.

ηαβγδ =
4
∑

i=0

ηiMi αβγδ . (D.22)
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The tensors Mi are

M0 = 3ξ6 − ξ4 − ξ5 +
ξ2
3

M1 = ξ1 − ξ2 − ξ3 + ξ4 + ξ5 + ξ6

M2 = ξ3 − 4ξ6

M3 = −1

2
(ξ7 − ξ8)

M4 = −ξ8

(D.23)

where the basis ξ1 − ξ8 is defined as

ξ1αβγδ = δαγδβδ + δαδδβγ

ξ2αβγδ = δαβδγδ

ξ3αβγδ = ÊαÊδδβγ + ÊαÊγδβδ + δαγÊβÊδ + δαδÊβÊγ

ξ4αβγδ = δαβÊγÊδ

ξ5αβγδ = ÊβÊδδγδ

ξ6αβγδ = ÊαÊβÊγÊδ

ξ7αβγδ = δαγÊβδ + Êαγδβδ + δαδÊβγ + Êαδδβγ

ξ8αβγδ = ÊαÊβγÊδ + ÊαÊβδÊγ + ÊαγÊβÊδ + ÊαδÊβÊγ ,

(D.24)

where Ê is the unit vector along the gradient of the potential.

The components ηi can be extracted by projecting onto Mi and performing the three

dimensional momentum integral in Eq. D.21. For arbitrarily large |τ∇φ|
kF

the momentum

integrals can not be performed analytically in general. However, we are interested in
|τ∇φ|
kF

. 1, where the corrections to isotropy just start to become important. Then one

can expand in |τ∇φ| and perform the angular integrals to obtain,

η0 = η(0)[1 − 31

21
τ2(∇φ)2 I2

I1
+O((τ∇φ)4)]

η1 = η(0)[1 − 13

7
τ2(∇φ)2 I2

I1
+O((τ∇φ)4)]

η2 = η(0)[1 − 11

7
τ2(∇φ)2 I2

I1
+O((τ∇φ)4)]

η3 = 0, η4 = 0 ,

(D.25)

where

η(0) =

∫

p6dp
τ

15π2m2~3

(

∂f0
∂µ

)

(D.26)

is the shear viscosity in the absence of ∇φ, and I1 and I2 are.

I1 =

∫

p6dp

(

∂f0
∂µ

)

, I2 =

∫

p4dp

(

∂f0
∂µ

)

(D.27)
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In particular, in the degenerate limit (T ≪ µ)

(

∂f0
∂µ

)

≈ δ(
p2

2m
− µ) , (D.28)

and I1
I2

≈ 1
k2F

where kF = (3π2n)1/3 as before.

We can write Eq. D.25 in the form Eq. 5.101 by relating the relaxation time τ to the mean

free path λ
τ

kF
=

τ

kF

EF
EF

=
λ

2EF
(D.29)

where we have used EF /kF = vF/2, and τvF = λ is the mean free path.

This gives,

η0 = η(0)[1 − 31

84

λ2(∇φ)2
µ2

+O((τ∇φ)4)]

η1 = η(0)[1 − 13

28

λ2(∇φ)2
µ2

+O((τ∇φ)4)]

η2 = η(0)[1 − 11

28

λ2(∇φ)2
µ2

+O((τ∇φ)4)]

η3 = 0, η4 = 0 ,

(D.30)

where

η(0) =
(2mµ)

5
2 τ

15π2~3m
, (D.31)

in the degenerate limit.

Eq. D.30 gives an explicit result of the calculation in the relaxation time approximation

which shows that the correction to the viscosity has the form Eq. 5.101. Hearteningly, the

sign of c(i) is negative, meaning that the viscosity is reduced due to the external potential, a

feature found is strongly coupled theories where a quasi-particle description is not possible

and hence the Boltzmann transport equation can not be used to calculate the viscosity.

Interestingly, in the degenerate limit it is possible to do the momentum integrals analytically

for general ∇φ. Using
(

∂f0
∂µ

)

= δ( p
2

2m − µ), we get (here x = ∇φτ√
2mµ

)

η0 =
(2mµ)

5
2 τ

96m~3π2x5
√
3 x2 + 1

[

− 8
√

3(x2 + 1
(

5x4 + 18x2 + 9
)

tanh−1(x)

− 24 x
√

3x2 + 1
(

5x2 + 3
)

− 6
(

8x4 + 11x2 + 3
)

log





x
(

7x− 4
√
3x2 + 1

)

+ 1

x
(

4
√
3x2 + 1 + 7x

)

+ 1





]

(D.32)
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η1 =
(2mµ)

5
2 τ

96m~3π2x5
√
3 x2 + 1

[

− 4x
(

x2 + 3
)

√

3x2 + 1

+ 4
√

3x2 + 1
(

x4 − 6x2 − 3
)

tanh−1(x)− (3 + 4x4 + 9x2)

log





x
(

7x− 4
√
3x2 + 1

)

+ 1

x
(

4
√
3x2 + 1 + 7x

)

+ 1





]

(D.33)

η2 =
(2mµ)

5
2 τ

48m~3π2x5
√
3 x2 + 1

[

8x
√

3x2 + 1
(

4x2 + 3
)

+ 4
√

3x2 + 1
(

x4 + 6x2 + 3
)

tanh−1

(

2x

x2 + 1

)

+ (6 + 13x4 + 21x2)

log





x
(

7x− 4
√
3x2 + 1

)

+ 1

x
(

4
√
3x2 + 1 + 7x

)

+ 1





]

η3 = 0

η4 = 0

(D.34)

Expanding in small x we obtain,

η0 =
(2mµ)

5
2 τ

15π2~3m

(

1− 31τ2∇φ2
42mµ

+O[(
τ∇φ√
2mµ

)4]

)

, η1 =
(2mµ)

5
2 τ

15π2~3m

(

1− 13τ2∇φ2
14mµ

+O[(
τ∇φ√
2mµ

)4]

)

,

η2 =
(2mµ)

5
2 τ

15π2~3m

(

1− 11τ2∇φ2
14mµ

+O[(
τ∇φ√
2mµ

)4]

)

,

η3 = 0, η4 = 0.
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invariance and viscosity of a two-dimensional fermi gas.”, Phys. Rev. Lett., 108, (Feb,

2012), 070404. 125, 145

[214] X.-H. Ge, Y. Ling, C. Niu, and S.-J. Sin, “Thermoelectric conductivities, shear

viscosity, and stability in an anisotropic linear axion model.”, Phys. Rev. D, 92,

(Nov, 2015), 106005. 126

[215] S. Chakraborty and R. Samanta, “Viscosity for anisotropic reissner-nordström black

branes.”, Phys. Rev. D, 95, (May, 2017), 106012. 126, 147

[216] J. L. Diaz-Cruz and J. Toscano, “Lepton flavor violating decays of Higgs bosons

beyond the standard model.”, Phys.Rev., D62, (2000), 116005, [hep-ph/9910233].

127

[217] G. Blankenburg, J. Ellis, and G. Isidori, “Flavour-Changing Decays of a 125 GeV

Higgs-like Particle.”, Phys.Lett., B712, (2012), 386–390, [arXiv:1202.5704]. 127

[218] R. Harnik, J. Kopp, and J. Zupan, “Flavor Violating Higgs Decays.”, JHEP, 1303,

(2013), 026, [arXiv:1209.1397]. 127

[219] C. Collaboration, “Search for Lepton Flavour Violating Decays of the Higgs Boson.”.

127

[220] A. Pilaftsis, “Lepton flavor nonconservation in H0 decays.”, Phys.Lett., B285, (1992),

68–74. 127

[221] A. Brignole and A. Rossi, “Lepton flavor violating decays of supersymmetric Higgs

bosons.”, Phys.Lett., B566, (2003), 217–225, [hep-ph/0304081]. 127

[222] E. Arganda, A. M. Curiel, M. J. Herrero, and D. Temes, “Lepton flavor violating

Higgs boson decays from massive seesaw neutrinos.”, Phys.Rev., D71, (2005), 035011,

[hep-ph/0407302]. 127

[223] A. Azatov, M. Toharia, and L. Zhu, “Higgs Mediated FCNC’s in Warped Extra

Dimensions.”, Phys.Rev., D80, (2009), 035016, [arXiv:0906.1990]. 127

[224] A. Arhrib, Y. Cheng, and O. C. Kong, “Higgs to mu+tau Decay in Supersymmetry

without R-parity.”, Europhys.Lett., 101, (2013), 31003, [arXiv:1208.4669]. 127

186

http://xxx.lanl.gov/abs/1211.3779
http://xxx.lanl.gov/abs/1211.3779
http://xxx.lanl.gov/abs/1111.1082
http://xxx.lanl.gov/abs/hep-ph/9910233
http://xxx.lanl.gov/abs/1202.5704
http://xxx.lanl.gov/abs/1209.1397
http://xxx.lanl.gov/abs/hep-ph/0304081
http://xxx.lanl.gov/abs/hep-ph/0407302
http://xxx.lanl.gov/abs/0906.1990
http://xxx.lanl.gov/abs/1208.4669


[225] A. Falkowski, D. M. Straub, and A. Vicente, “Vector-like leptons: Higgs decays and

collider phenomenology.”, JHEP, 1405, (2014), 092, [arXiv:1312.5329]. 127

[226] M. Arana-Catania, E. Arganda, and M. Herrero, “Non-decoupling SUSY in LFV

Higgs decays: a window to new physics at the LHC.”, JHEP, 1309, (2013), 160,

[arXiv:1304.3371]. 127

[227] M. Arroyo, J. L. Diaz-Cruz, E. Diaz, and J. A. Orduz-Ducuara, “Flavor Vio-

lating Higgs signals in the Texturized Two-Higgs Doublet Model (2HDM-Tx).”,

arXiv:1306.2343, [arXiv:1306.2343]. 127

[228] E. Arganda, M. Herrero, X. Marcano, and C. Weiland, “Imprints of massive inverse

seesaw model neutrinos in lepton flavor violating Higgs boson decays.”, Phys.Rev.,

D91, (2015), no. 1, 015001, [arXiv:1405.4300]. 127

[229] D. Aristizabal Sierra and A. Vicente, “Explaining the CMS Higgs flavor violating

decay excess.”, Phys.Rev., D90, (2014), no. 11, 115004, [arXiv:1409.7690]. 127

[230] J. Heeck, M. Holthausen, W. Rodejohann, and Y. Shimizu, “Higgs → µτ in Abelian

and Non-Abelian Flavor Symmetry Models.”, arXiv:1412.3671, [arXiv:1412.3671].

127

[231] C.-J. Lee and J. Tandean, “Lepton-Flavored Scalar Dark Matter with Minimal Flavor

Violation.”, JHEP, 1504, (2015), 174, [arXiv:1410.6803]. 127

[232] A. Crivellin, G. DAmbrosio, and J. Heeck, “Explaining h → µ±τ∓, B → K∗µ+µ−

and B → Kµ+µ−/B → Ke+e− in a two-Higgs-doublet model with gauged Lµ−Lτ .”,
Phys.Rev.Lett., 114, (2015), 151801, [arXiv:1501.0099]. 127

[233] L. de Lima, C. S. Machado, R. D. Matheus, and L. A. F. do Prado, “Higgs Flavor Vi-

olation as a Signal to Discriminate Models.”, arXiv:1501.0692, [arXiv:1501.0692].

127

[234] F. Borzumati and A. Masiero, “Large Muon and electron Number Violations in

Supergravity Theories.”, Phys.Rev.Lett., 57, (1986), 961. 128

[235] L. J. Hall, V. A. Kostelecky, and S. Raby, “New Flavor Violations in Supergravity

Models.”, Nucl.Phys., B267, (1986), 415. 128, 130

[236] A. Masiero, S. K. Vempati, and O. Vives, “Massive neutrinos and flavor violation.”,

New J.Phys., 6, (2004), 202, [hep-ph/0407325]. 128

[237] A. Masiero, S. K. Vempati, and O. Vives, “Seesaw and lepton flavor violation in SUSY

SO(10).”, Nucl.Phys., B649, (2003), 189–204, [hep-ph/0209303]. 128

[238] A. Masiero, S. Vempati, and O. Vives, “Flavour physics and grand unification.”,

arXiv:0711.2903, [arXiv:0711.2903]. 128

187

http://xxx.lanl.gov/abs/1312.5329
http://xxx.lanl.gov/abs/1304.3371
http://xxx.lanl.gov/abs/1306.2343
http://xxx.lanl.gov/abs/1306.2343
http://xxx.lanl.gov/abs/1405.4300
http://xxx.lanl.gov/abs/1409.7690
http://xxx.lanl.gov/abs/1412.3671
http://xxx.lanl.gov/abs/1412.3671
http://xxx.lanl.gov/abs/1410.6803
http://xxx.lanl.gov/abs/1501.0099
http://xxx.lanl.gov/abs/1501.0692
http://xxx.lanl.gov/abs/1501.0692
http://xxx.lanl.gov/abs/hep-ph/0407325
http://xxx.lanl.gov/abs/hep-ph/0209303
http://xxx.lanl.gov/abs/0711.2903
http://xxx.lanl.gov/abs/0711.2903


[239] L. Calibbi, A. Faccia, A. Masiero, and S. Vempati, “Lepton flavour violation from

SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a super flavour

factory.”, Phys.Rev., D74, (2006), 116002, [hep-ph/0605139]. 128

[240] M. Hirsch, F. Joaquim, and A. Vicente, “Constrained SUSY seesaws with a 125 GeV

Higgs.”, JHEP, 1211, (2012), 105, [arXiv:1207.6635]. 128

[241] L. Calibbi, D. Chowdhury, A. Masiero, K. Patel, and S. Vempati, “Status of

supersymmetric type-I seesaw in SO(10) inspired models.”, JHEP, 1211, (2012), 040,

[arXiv:1207.7227]. 128

[242] J. L. Feng, C. G. Lester, Y. Nir, and Y. Shadmi, “The Standard Model and

Supersymmetric Flavor Puzzles at the Large Hadron Collider.”, Phys.Rev., D77,

(2008), 076002, [arXiv:0712.0674]. 128

[243] J. L. Feng, S. T. French, I. Galon, C. G. Lester, Y. Nir, et al., “Measuring Slepton

Masses and Mixings at the LHC.”, JHEP, 1001, (2010), 047, [arXiv:0910.1618].

128

[244] B. Fuks, B. Herrmann, and M. Klasen, “Flavour Violation in Gauge-Mediated

Supersymmetry Breaking Models: Experimental Constraints and Phenomenology at

the LHC.”, Nucl.Phys., B810, (2009), 266–299, [arXiv:0808.1104]. 128

[245] Y. Shadmi and P. Z. Szabo, “Flavored Gauge-Mediation.”, JHEP, 1206, (2012), 124,

[arXiv:1103.0292]. 128

[246] M. Abdullah, I. Galon, Y. Shadmi, and Y. Shirman, “Flavored Gauge Mediation,

A Heavy Higgs, and Supersymmetric Alignment.”, JHEP, 1306, (2013), 057,

[arXiv:1209.4904]. 128

[247] L. Calibbi, P. Paradisi, and R. Ziegler, “Gauge Mediation beyond Minimal Flavor

Violation.”, JHEP, 1306, (2013), 052, [arXiv:1304.1453]. 128

[248] L. Calibbi, P. Paradisi, and R. Ziegler, “Lepton Flavor Violation in Flavored Gauge

Mediation.”, Eur.Phys.J., C74, (2014), no. 12, 3211, [arXiv:1408.0754]. 128

[249] G. D. Kribs, E. Poppitz, and N. Weiner, “Flavor in supersymmetry with an extended

R-symmetry.”, Phys.Rev., D78, (2008), 055010, [arXiv:0712.2039]. 128

[250] G. D. Kribs, A. Martin, and T. S. Roy, “Squark Flavor Violation at the LHC.”, JHEP,

0906, (2009), 042, [arXiv:0901.4105]. 128

[251] Y. Nomura, M. Papucci, and D. Stolarski, “Flavorful supersymmetry.”, Phys.Rev.,

D77, (2008), 075006, [arXiv:0712.2074]. 128

[252] Y. Nomura and D. Stolarski, “Naturally Flavorful Supersymmetry at the LHC.”,

Phys.Rev., D78, (2008), 095011, [arXiv:0808.1380]. 128

188

http://xxx.lanl.gov/abs/hep-ph/0605139
http://xxx.lanl.gov/abs/1207.6635
http://xxx.lanl.gov/abs/1207.7227
http://xxx.lanl.gov/abs/0712.0674
http://xxx.lanl.gov/abs/0910.1618
http://xxx.lanl.gov/abs/0808.1104
http://xxx.lanl.gov/abs/1103.0292
http://xxx.lanl.gov/abs/1209.4904
http://xxx.lanl.gov/abs/1304.1453
http://xxx.lanl.gov/abs/1408.0754
http://xxx.lanl.gov/abs/0712.2039
http://xxx.lanl.gov/abs/0901.4105
http://xxx.lanl.gov/abs/0712.2074
http://xxx.lanl.gov/abs/0808.1380


[253] Y. Nomura, M. Papucci, and D. Stolarski, “Flavorful Supersymmetry from Higher

Dimensions.”, JHEP, 0807, (2008), 055, [arXiv:0802.2582]. 128

[254] I. Galon, G. Perez, and Y. Shadmi, “Non-Degenerate Squarks from Flavored Gauge

Mediation.”, JHEP, 1309, (2013), 117, [arXiv:1306.6631]. 128

[255] L. Calibbi, A. Mariotti, C. Petersson, and D. Redigolo, “Selectron NLSP in Gauge

Mediation.”, JHEP, 1409, (2014), 133, [arXiv:1405.4859]. 128

[256] N. Krasnikov, “Flavor lepton number violation at LEP-2.”, Mod.Phys.Lett., A9,

(1994), 791–794. 128

[257] N. Krasnikov, “Search for flavor lepton number violation in slepton decays at LEP-2

and NLC.”, Phys.Lett., B388, (1996), 783–787, [hep-ph/9511464]. 128

[258] N. Arkani-Hamed, H.-C. Cheng, J. L. Feng, and L. J. Hall, “Probing lepton flavor vio-

lation at future colliders.”, Phys.Rev.Lett., 77, (1996), 1937–1940, [hep-ph/9603431].

128, 130

[259] J. Hisano, M. M. Nojiri, Y. Shimizu, and M. Tanaka, “Lepton flavor violation in the

left-handed slepton production at future lepton colliders.”, Phys.Rev., D60, (1999),

055008, [hep-ph/9808410]. 128

[260] M. Guchait, J. Kalinowski, and P. Roy, “Supersymmetric lepton flavor violation

in a linear collider: The Role of charginos.”, Eur.Phys.J., C21, (2001), 163–169,

[hep-ph/0103161]. 128

[261] E. Carquin, J. Ellis, M. Gomez, and S. Lolab, “Searches for Lepton Flavour Violation

at a Linear Collider.”, JHEP, 1111, (2011), 050, [arXiv:1106.4903]. 128

[262] A. Abada, A. Figueiredo, J. Romao, and A. Teixeira, “Lepton flavour violation:

physics potential of a Linear Collider.”, JHEP, 1208, (2012), 138, [arXiv:1206.2306].

128

[263] N. Arkani-Hamed, J. L. Feng, L. J. Hall, and H.-C. Cheng, “CP violation from

slepton oscillations at the LHC and NLC.”, Nucl.Phys., B505, (1997), 3–39,

[hep-ph/9704205]. 128

[264] S. Bityukov and N. Krasnikov, “The Search for sleptons and flavor lepton number vio-

lation at LHC (CMS).”, Phys.Atom.Nucl., 62, (1999), 1213–1225, [hep-ph/9712358].

128

[265] N. Krasnikov, “Search for flavor lepton number violation in slepton decays at LHC.”,

JETP Lett., 65, (1997), 148–153, [hep-ph/9611282]. 128

[266] K. Agashe and M. Graesser, “Signals of supersymmetric lepton flavor violation at the

CERN LHC.”, Phys.Rev., D61, (2000), 075008, [hep-ph/9904422]. 128

189

http://xxx.lanl.gov/abs/0802.2582
http://xxx.lanl.gov/abs/1306.6631
http://xxx.lanl.gov/abs/1405.4859
http://xxx.lanl.gov/abs/hep-ph/9511464
http://xxx.lanl.gov/abs/hep-ph/9603431
http://xxx.lanl.gov/abs/hep-ph/9808410
http://xxx.lanl.gov/abs/hep-ph/0103161
http://xxx.lanl.gov/abs/1106.4903
http://xxx.lanl.gov/abs/1206.2306
http://xxx.lanl.gov/abs/hep-ph/9704205
http://xxx.lanl.gov/abs/hep-ph/9712358
http://xxx.lanl.gov/abs/hep-ph/9611282
http://xxx.lanl.gov/abs/hep-ph/9904422


[267] I. Hinchliffe and F. Paige, “Lepton flavor violation at the CERN LHC.”, Phys.Rev.,

D63, (2001), 115006, [hep-ph/0010086]. 128

[268] J. Hisano, R. Kitano, and M. M. Nojiri, “Slepton oscillation at large hadron collider.”,

Phys.Rev., D65, (2002), 116002, [hep-ph/0202129]. 128, 137, 138

[269] R. Kitano, “A Clean Slepton Mixing Signal at the LHC.”, JHEP, 0803, (2008), 023,

[arXiv:0801.3486]. 128

[270] S. Kaneko, J. Sato, T. Shimomura, O. Vives, and M. Yamanaka, “Measuring Lepton

Flavour Violation at LHC with Long-Lived Slepton in the Coannihilation Region.”,

Phys.Rev., D87, (2013), no. 3, 039904, [arXiv:0811.0703]. 128

[271] Y. Andreev, S. Bityukov, N. Krasnikov, and A. Toropin, “Using the e+- mu-+ +

E**miss(T) signature in the search for supersymmetry and lepton flavour violation

in neutralino decays.”, Phys.Atom.Nucl., 70, (2007), 1717–1724, [hep-ph/0608176].

128

[272] F. Deppisch, “Lepton Flavor Violation at the LHC.”, arXiv:0710.2525,

[arXiv:0710.2525]. 128

[273] B. Allanach, J. Conlon, and C. Lester, “Measuring Smuon-Selectron Mass Splitting at

the CERN LHC and Patterns of Supersymmetry Breaking.”, Phys.Rev., D77, (2008),

076006, [arXiv:0801.3666]. 128

[274] A. J. Buras, L. Calibbi, and P. Paradisi, “Slepton mass-splittings as a signal of LFV

at the LHC.”, JHEP, 1006, (2010), 042, [arXiv:0912.1309]. 128

[275] I. Galon and Y. Shadmi, “Kinematic Edges with Flavor Splitting and Mixing.”,

Phys.Rev., D85, (2012), 015010, [arXiv:1108.2220]. 128

[276] F. Gabbiani and A. Masiero, “FCNC in Generalized Supersymmetric Theories.”,

Nucl.Phys., B322, (1989), 235. 128, 130

[277] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini, “A Complete analysis of

FCNC and CP constraints in general SUSY extensions of the standard model.”,

Nucl.Phys., B477, (1996), 321–352, [hep-ph/9604387]. 128

[278] J. Adam et al., “New constraint on the existence of the µ+ → e+γ decay.”,

Phys.Rev.Lett., 110, (2013), 201801, [arXiv:1303.0754]. 128, 130

[279] P. Wintz et al., “Test of LFC in mu —¿ e conversion on titanium.”. 130

[280] M. De Gerone, “mu to e gamma and mu to eee Status and perspectives.”,

arXiv:1108.2670, [arXiv:1108.2670]. 130

190

http://xxx.lanl.gov/abs/hep-ph/0010086
http://xxx.lanl.gov/abs/hep-ph/0202129
http://xxx.lanl.gov/abs/0801.3486
http://xxx.lanl.gov/abs/0811.0703
http://xxx.lanl.gov/abs/hep-ph/0608176
http://xxx.lanl.gov/abs/0710.2525
http://xxx.lanl.gov/abs/0710.2525
http://xxx.lanl.gov/abs/0801.3666
http://xxx.lanl.gov/abs/0912.1309
http://xxx.lanl.gov/abs/1108.2220
http://xxx.lanl.gov/abs/hep-ph/9604387
http://xxx.lanl.gov/abs/1303.0754
http://xxx.lanl.gov/abs/1108.2670
http://xxx.lanl.gov/abs/1108.2670


[281] L. Calibbi, I. Galon, A. Masiero, P. Paradisi, and Y. Shadmi, “Charged Slepton Flavor

post the 8 TeV LHC: A Simplified Model Analysis of Low-Energy Constraints and

LHC SUSY Searches.”, arXiv:1502.0775, [arXiv:1502.0775]. 131

[282] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1.”,

Comput.Phys.Commun., 178, (2008), 852–867, [arXiv:0710.3820]. 134

[283] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual.”, Eur.Phys.J., C72,

(2012), 1896, [arXiv:1111.6097]. 134

[284] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm.”,

JHEP, 0804, (2008), 063, [arXiv:0802.1189]. 134

[285] A. Djouadi, J.-L. Kneur, and G. Moultaka, “SuSpect: A Fortran code for the

supersymmetric and Higgs particle spectrum in the MSSM.”, Comput.Phys.Commun.,

176, (2007), 426–455, [hep-ph/0211331]. 134

[286] A. Djouadi, M. Muhlleitner, and M. Spira, “Decays of supersymmetric particles: The

Program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface).”, Acta Phys.Polon., B38,

(2007), 635–644, [hep-ph/0609292]. 134

[287] S. Chatrchyan et al., “Identification of b-quark jets with the CMS experiment.”,

JINST, 8, (2013), P04013, [arXiv:1211.4462]. 137

[288] B. Gjelsten, D. Miller, and P. Osland, “Measurement of SUSY masses via cascade

decays for SPS 1a.”, JHEP, 0412, (2004), 003, [hep-ph/0410303]. 137

[289] N. Kidonakis, “Top Quark Theoretical Cross Sections and pT and Rapidity Distribu-

tions.”, arXiv:1109.3231, [arXiv:1109.3231]. 138

[290] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the

LHC.”, JHEP, 1107, (2011), 018, [arXiv:1105.0020]. 138

[291] W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira, et al., “The Production of

charginos / neutralinos and sleptons at hadron colliders.”, Phys.Rev.Lett., 83, (1999),

3780–3783, [hep-ph/9906298]. 138

[292] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, “Nonlinear Fluid

Dynamics from Gravity.”, JHEP, 0802, (2008), 045, [arXiv:0712.2456]. 146

[293] S. Bhattacharyya, V. E. Hubeny, R. Loganayagam, G. Mandal, S. Minwalla,

et al., “Local Fluid Dynamical Entropy from Gravity.”, JHEP, 0806, (2008), 055,

[arXiv:0803.2526]. 146

[294] J. Bhattacharya, S. Bhattacharyya, S. Minwalla, and A. Yarom, “A Theory of first or-

der dissipative superfluid dynamics.”, JHEP, 1405, (2014), 147, [arXiv:1105.3733].

146

191

http://xxx.lanl.gov/abs/1502.0775
http://xxx.lanl.gov/abs/1502.0775
http://xxx.lanl.gov/abs/0710.3820
http://xxx.lanl.gov/abs/1111.6097
http://xxx.lanl.gov/abs/0802.1189
http://xxx.lanl.gov/abs/hep-ph/0211331
http://xxx.lanl.gov/abs/hep-ph/0609292
http://xxx.lanl.gov/abs/1211.4462
http://xxx.lanl.gov/abs/hep-ph/0410303
http://xxx.lanl.gov/abs/1109.3231
http://xxx.lanl.gov/abs/1109.3231
http://xxx.lanl.gov/abs/1105.0020
http://xxx.lanl.gov/abs/hep-ph/9906298
http://xxx.lanl.gov/abs/0712.2456
http://xxx.lanl.gov/abs/0803.2526
http://xxx.lanl.gov/abs/1105.3733


[295] V. E. Hubeny, S. Minwalla, and M. Rangamani, “The fluid/gravity correspondence.”,

arXiv:1107.5780, [arXiv:1107.5780]. 146

[296] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields. Butterworth-

Heinemann, 4 edition, January (1980). 149

[297] M. P. Ryan and L. C. Shepley. Homogeneous relativistic cosmologies. Princeton, N.J.

: Princeton University Press, (1975). 149, 151

[298] H. Heiselberg, “Collective Modes of Trapped Gases at the BEC-BCS Crossover.”,

Phys. Rev. Lett., 93, (2004), 040402. 164

192

http://xxx.lanl.gov/abs/1107.5780
http://xxx.lanl.gov/abs/1107.5780

	Synopsis
	List of Publications
	1 Introduction
	1.1 Basics of AdS/CFT

	2 Interpolating from Bianchi Attractors to Lifshitz and AdS spacetimes
	2.1 Introduction
	2.2 Energy Conditions 
	2.3 Outline Of Procedure
	2.4 Types VI, V and III 
	2.5 From Type IX To AdS2S3
	2.6 C-function
	2.7 Comments and discussions

	3 Bianchi III attractor in Gauged Supergravity
	3.1 Introduction
	3.2 Bianchi III solution in Einstein-Maxwell theory
	3.3 Gauged supergravity and generalised attractors
	3.4 Linearized fluctuations about attractor value
	3.5 Supersymmetry analysis
	3.6 Comments and discussions

	4 The Shear Viscosity in Anisotropic Phases
	4.1 Introduction
	4.2 Brief Review of The System With One Dilaton
	4.3 More Details On The Calculation Of Viscosity
	4.4 Additional examples with anisotropy
	4.5 Kaluza Klein Reduction 
	4.6 Comments and discussions

	5 The Shear Viscosity in an Anisotropic Unitary Fermi Gas
	5.1 Introduction
	5.2 Brief recap of the main results from gravity and conditions for suppression of /s
	5.3 Anisotropic viscosity in trapped anisotropic Fermi gases
	5.4 Local anisotropy
	5.5 Comments and discussions

	6 Probing Lepton Flavor Violation in Supersymmetry at the LHC
	6.1 Introduction
	6.2  Model Parametrization
	6.3 Signal and Background simulations
	6.4 Results and Discussions
	6.5 Comments and discussions

	7 Conclusions
	A Appendices for Chapter 2:  Interpolating from Bianchi Attractors to Lifshitz and AdS spacetimes
	A.1 Three Dimensional Homogeneous spaces
	A.2 The Weak and Null Energy Conditions

	B Appendices for Chapter 3:  Bianchi III attractor in Gauged Supergravity
	B.1 Notations and conventions
	B.2 Linearized Einstein equations
	B.3 Coefficients of the linearized fluctuations

	C Appendices for Chapter 4:  The Shear Viscosity in Anisotropic Phases
	C.1 Numerical interpolation from the near horizon AdS3 R R to asymptotic AdS5, 
	C.2 Ratio of normalizable over non-normalizable mode near boundary
	C.3 Conductivity formula in terms of horizon quantities

	D Appendices for Chapter 6:  The Shear Viscosity in an Anisotropic Unitary Fermi Gas
	D.1 Ideal hydrodynamic modes
	D.2 Anisotropic viscosities in the relaxation time approximation

	Bibliography

