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Synopsis

A wide variety of physical processes, ranging from turbulent fluids to sandpiles

and moving traffic, falls under the class of “driven diffusive systems” where an

external drive is applied to constantly maintain the system in a nonequilibrium

steady state. In certain driven diffusive systems, it is natural to identify two

coupled sub-systems (or fields) which interact with and may influence each other.

Consider fluorescent dye carried by a turbulent jet or dust particles moving in

air. In such situations the density field of the dye (dust) is coupled to the velocity

field of the fluid jet (air). However, these advected substances are ‘passive’, i.e.

they have a negligible effect on the fluid flow. In other words, the coupling is one

way. In other type of situations, the coupling works both ways. For example,

introduction of tracer particles to probe a medium sometimes results in a coupled

system where dynamical evolution of both the ‘probe particles’ and the medium

get strongly affected by each other. In this thesis, we have investigated both these

kinds of coupling by studying simple models which we describe below.

A broad field of research, which deals with the first kind of coupling, is the

field of “passive scalar” where the dynamics of a nonequilibrium driving field

strongly affects that of the other (passive) scalar field with no back-effect from

the latter. In many situations, the passive scalar field spreads out in space to

reach a homogeneous state. However, in certain cases, (e.g. when the driving

field describes the velocity of a compressible fluid) the advected passive scalar

field may show a clustering tendency [1, 2]; we have considered one such example

here. The specific system we study consists of hard-core particles sliding under

gravity on a one dimensional fluctuating interface; the instantaneous force on the

particles is then proportional to the local slope of the surface [3]. Earlier studies
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SYNOPSIS

of static properties of this system show that starting from a randomly disordered

state, the sliding particles evolve towards a state with long-ranged order [3].

However, this is an unusual kind of ordered state where strong fluctuations are

always present giving rise to a broad distribution of order parameter even in the

thermodynamic limit.

We have carried out a dynamical characterisation of this new kind of ordered

state. To our knowledge, the dynamics of passive scalars in general, has not been

explored systematically, and our study adds to the relatively sparse work on this

important question [4]. We have obtained results for auto-correlation and space-

time correlation functions in steady state and aging correlations in the approach

to steady state. We find that both types of correlation functions follow a scaling

description. In steady state, these scaling forms show a strong dependence on

the system size L, as reminiscent of ordinary phase-ordered systems [5]. However,

in contrast to a linear decay normally expected for phase-ordered systems [5] in

the limit of small argument, the scaling function of steady state auto-correlation

decays with a cusp. It is therefore interesting to understand the nature of phase-

ordering present in the steady state. As mentioned above, strong fluctuations are

present in the steady state and do not decrease even in thermodynamic limit [3].

The question then arises in what sense is the system in an ordered state, if

strong fluctuations drive it between macroscopically different configurations on a

relatively rapid time-scale? We have addressed this by studying the variation of

the length of the largest particle cluster present in the system and show that the

corresponding probability distribution provides an unequivocal signal of ordering.

The second type of coupling is more frequently encountered. For instance,

quite often the driven system is not really ‘passive’ but produces a back-effect

on the driving system. For example, useful information about a complex system

is often obtained by introducing probe particles into it. Although it is generally

assumed that for low enough concentration of the probe particles the medium is

not strongly affected by their presence, in certain cases this assumption can break

down. The probe particles can indeed produce a strong effect on the medium even

when present in a vanishingly low concentration. At the same time, the medium

may also induce correlations between the probe particles. We have demonstrated

this for a class of models of probe particles in one dimension which evolve through

ii



Figure 1: Hard-core particles(shown by solid circle) sliding towards the local val-

leys. The hollow circles represent the empty sites or holes.

moves that violate detailed balance. In our model, these nonequilibrium probes

are found to produce a drastic effect on a medium which is initially in equilibrium:

even when a single such probe is present, the system develops a macroscopic

density gradient and evolve towards a nonequilibrium current-carrying steady

state. However, if the medium is initially in a nonequilibrium state, the effect is

less drastic. The density perturbation created by a single probe does not extend

through macroscopic distances, but depending on the kinematics of the probe

and the medium, may either decay as a power law, or as an exponential [6]. This

gives rise to an interesting phase diagram (fig 3). For a finite density of probes,

we have monitored time-dependent correlations involving the displacement of the

tagged probe particles. We have found that the above phase diagram for a single

probe has important consequences on the dynamical properties of the macroscopic

number of probe particles.

The two problems discussed above are described in more detail below.

Dynamics of Passive Scalars

The specific passive scalar model we have considered consists of a set of hard-core

particles sliding downwards (under gravity) on an independently fluctuating one

dimensional surface (see fig 1). The driving field in this case is the fluctuating

slope of the surface and the passive scalar field is the density field of the sliding

particles. The passive scalar field undergoes diffusion and also gets advected

(carried along) by the driving field. We have considered two kinds of surface

evolutions—dynamical rules in one kind respect symmetry under reflection about

the reference axis (Edwards-Wilkinson or EW surface [7]) while the other kind

iii
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SYNOPSIS

violates this symmetry (Kardar-Parisi-Zhang or KPZ surface [8]). Using the

mapping between the KPZ interface and the vorticity-free Burgers fluid [8], the

particles sliding on the KPZ interface can be equivalently described as passive

scalars advected by a noisy Burgers flow.

To monitor dynamical correlations of the density fluctuation of the particles,

we performed Monte Carlo simulation on a discrete lattice model. The hard-

core particles are represented by the variables {σi}, each of which can take a

value +1 or −1 according as the i-th site is occupied or empty. We measured

auto-correlation and space-time correlation functions in steady state and aging

correlations in the approach to steady state. We have also done analytical calcu-

lations on a coarse-grained surface model explained below.

Due to gravity the particles tend to slide down into local valleys of the surface.

Therefore, it is plausible that the dynamics of hills and valleys of the interface

may provide insight into the dynamics of the particles. To this end, we define

a coarse-grained depth model (CD model) as follows [3]. Consider the variable

si(t) defined as si(t) = sgn[hi(t) − 〈h(t)〉], where hi(t) is the height of the in-

terface at the i-th site at time t and 〈h(t)〉 is the average height 1
L

∑L
i=1 hi(t).

The variable si(t) can take the values +1, −1 or 0, depending on whether the

position of the i-th site is above, below or at the average level. In other words,

si(t) gives a coarse-grained description of the surface by labeling ‘highlands’ and

‘lowlands’. For an EW interface, the dynamics is tractable and we obtain an an-

alytic expression for time-dependent correlations of si(t), using the arc-sine law

for Gaussian variables [9]. These results might be expected to be close to those

of the sliding particles density, in the extreme adiabatic limit, when the surface

evolves infinitely more slowly than the particles. As a matter of fact, we find

that they also describe qualitatively the particle behavior even when the surface

movement and the particle movement occurs at comparable time-scale. In this

strongly nonequilibrium case, before the particles can fill in the lowest valleys,

the interface evolves, often causing the valleys to turn over. For a system of size

L, the lifetime of a typical deep valleys is ∼ Lz which is therefore the time-scale

over which the macroscopic state of the system changes, in contrast to an expo-

nential time-scale for regular phase ordering. This implies that the system always

iv



undergoes strong fluctuations, despite the clustering tendency among the parti-

cles. This gives rise to an unusual kind of fluctuation dominated phase-ordering

(FDPO) and below we summarise our results for the dynamics of this new or-

dered state. We have performed Monte Carlo simulation for measuring various

functions of the density field σi(t) and the CD variable si(t). We have been able

to analytically calculate the correlation functions of si(t) for an EW surface.

Auto-correlation in Steady State

We have measured the steady state auto-correlation A(t, L) involving the density

variable 〈σi(0)σi(t)〉 of the particles and the CD variables 〈si(0)si(t)〉 for the

surface. Here, the averaging is done over different initial configurations drawn

from the steady state ensemble. We find that A(t, L) is a scaling function of t/Lz,

where z is the surface dynamic exponent. In this limit of small scaling argument,

the scaling function decays with a cusp [see fig 2 ]: m2
[

1 − b
(

t
Lz

)β
]

. For a

customary phase-ordering system, the steady state auto-correlation is expected

to decay linearly. The presence of a cusp (β < 1) is one manifestation of the

unusual kind of phase-ordering. The constant m is a measure of the long-range

order present in the system. Table 1 summarises the values of m and β for

different cases. These values correspond to the case when the system is half-

filled. Our measurement for other values of filling fractions show that the cusp

exponent β remains same while the value of the intercept changes.

For small time t . 1 which falls outside the scaling regime, the auto-correlation

function shows a linear drop with a slope ∼ Lδ [ see table 1]. Using the mapping

between a typical configuration of one-dimensional EW or KPZ interface and the

trajectory of a one-dimensional random walker with L steps, it can be argued

that for CD model δ = 1/2.

Auto-correlation in Aging Regime

In the aging regime, i.e. during the approach towards steady state, the system

does not have time translational invariance. The aging auto-correlation A(t1, t2),

defined as 〈σi(t1)σi(t1 + t2)〉 for the particles and as 〈si(t1)si(t1 + t2)〉 for the CD

variables, does not depend only on the time difference t2 but also on t1 [5]. In

v
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Figure 2: Numerical results for scaled auto-correlation function for the particles

sliding on an EW surface are shown by discrete points. The continuous line

shows exact calculation in CD model for EW surface. In both cases we used

L = 512, 1024, 2048. The cusp exponent is shown in the inset.

fact A(t1, t2) is found to be a scaling function of t1/t2. In the limit when t1 � t2,

the scaling function decays with a cusp, as in steady state, only the system size L

is replaced by t
1/z
1 , meaning that locally the system has reached steady state over

a length scale of t
1/z
1 . In the opposite limit t2 � t1, we find A(t1, t2) ∼ (t1/t2)γ,

as expected for a phase-ordering systems.

Space-time Correlation in Steady State

The space-time correlation G(r, t, L) defined in steady state as 〈σi(0)σi+r(t)〉
for the particles and 〈si(0)si+r(t)〉 for the CD variables, does not show any L-

independent scaling between r and t. Rather, it is a function of the scaled vari-

ables ξ = r/L and τ = t/Lz. With ξ held fixed, the scaling function shows

an interesting non-monotonic behavior with τ . For τ = 0, this scaling function

vi
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Surface Model Particle Model

EW KPZ EW KPZ

m2 1.0 1.0 0.82 ± 0.03 0.75 ± 0.04

β 0.25 0.31 ± 0.02 0.22 ± 0.02 0.18 ± 0.01

δ 0.5 0.5 0.26 ± 0.005 0.15 ± 0.005

γ 0.75 0.84 ± 0.02 0.69 ± 0.02 0.82 ± 0.04

Table 1: The values of relevant exponents and intercepts for dynamical charac-

terization of surface model and particle model

corresponds to spatial (equal-time) correlation and for τ � ξz, it decays like the

auto-correlation function, as expected.

Largest Cluster in Steady State

In steady state, large clusters are present in the system and the cluster size distri-

bution follows a power law. Because of strong fluctuations these clusters undergo

large changes in their lengths, associated with the fact that the macroscopic state

of the system keeps changing over a time-scale ∼ Lz. The question arises: if the

lifetime of a macrostate is so much smaller than an exponential, in what sense,

can we call such a state a “ordered phase”? We have addressed this question by

studying the largest cluster lmax(t) present in the system at time t. We show that

in steady state lmax(t) fluctuates strongly, thereby changing the macrostate of the

system, but it continues to remain substantially above its disordered state value

(∼ log L). In other words, the system manages to retain its ordered character

despite strong steady state fluctuations.

Dynamics of Nonequilibrium Probes in Driven

Diffusive Systems

In this problem, we aim to understand how the dynamical evolution of a medium

gets affected by the presence of some special kind of probe particles in the low

dilution limit, and the influence of the medium on the probe dynamics itself.
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We have considered medium which can be described by simple one dimensional

lattice models of nonequilibrium (driven) systems and their equilibrium counter-

parts. We have mainly considered two different kinds of nonequilibrium probe

particles—shock tracking probes (STPs) and directed probe particles (DPPs).

The exchange rules are:

Medium : + − 1−→ − +

−+
q−→ + −

(1)

Probe : 0− 1−→ −0

+0
w−→ 0+

where ‘+’ denotes a particle, ‘−’ denotes a hole and ‘0’ denotes a probe. STPs

exchange with the particles and holes of the medium in opposite directions but

with equal rates, i.e. w = 1. For a DPP on the other hand, these two rates

are different—we consider w < 1. Both these types of probes tend to settle

in the regions of strong density variations or ‘shocks’. However, depending on

the system under study, the density profile around a probe can be qualitatively

different. In the low concentration limit of the probes, different behaviors are

found—ranging from diverging correlation lengths and power law decays to effects

which are felt over macroscopic distances throughout the system. We relate these

differences to an interesting interplay between the equilibrium and nonequilibrium

characteristics of the medium and the probe particles. We summarise our results

for these different systems below.

Probes in an Initially Equilibrium Medium

STPs and DPPs are found to produce a strong effect on a medium that is initially

in an equilibrium state. We have considered a medium described by symmetric

exclusion process (SEP), which correspond to q = 1 in Eq 5.1. Throughout the

top thick line shown in fig 3, our numerical simulation shows that introduction

of even a single probe gives rise to a macroscopic density gradient across the

system and a (small) current. This can be explained as follows. Presence of

even a single nonequilibrium probe in an equilibrium diffusive medium would

viii
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Figure 3: Phase diagram for nonequilibrium probes in a nonequilibrium medium.

The x-axis refers to properties of the probe and the y-axis refers to properties of

the medium.

imply that the resulting steady state should have nonequilibrium characteristics,

i.e. there should be a current in the system. Now, the only way a diffusive

system can support a current is by maintaining a concentration gradient. When

several such probes are introduced, we find that the medium induces a strong

attraction among the probes and they phase separate. We have found that these

conclusions remain valid for other class of symmetric medium, described by the

Kawasaki model [10] or the symmetric version of k-hop model [11].

Probes in an Initially Nonequilibrium Medium

Interesting effects are observed for a medium that is initially maintained in a

nonequilibrium steady state by some external drive. We are primarily interested

in the case when the medium can be described by an asymmetric simple exclusion

processes (ASEP), which corresponds to q < 1. When DPPs are introduced in

such a medium, depending on the exchange rates q for the medium and w for the

probes, qualitatively different effects are found and this gives rise to an interesting

phase diagram [fig 3]. Earlier studies [6, 12] of this model in presence of a single

ix
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Figure 4: Scaling collapse for mean square displacement C(t) of tagged STPs for

q = 0 for probe density ρ0 = 0.08, 0.1, 0.12, 0.15 (moving upwards) and system

size L = 131072. Inset shows the unscaled data.

probe show that in the unshaded part of the phase diagram, the effect produced

by a single probe is short-ranged—the density profile around the probe decays

exponentially over a finite length scale; in the shaded region of the phase-diagram,

the density profile around the single probe relaxes as a power law. These two

regions of the phase diagram are separated by a critical line along which the

density profile around a single probe shows the same power law decay as found

in the shaded region. We have calculated the the slope of this critical line using

mean field theory. In [13] a macroscopic number of probes has been considered

for w = 1, q = 0 and a correlation length is found which diverges strongly in the

limit of low probe concentration.

We have studied the dynamical properties of a macroscopic number of probes

for general values of q and w. Our numerical simulations show that in the shaded

region of the phase-diagram, the mean squared displacement C(t) of the tagged

probes undergoes a crossover from a superdiffusive regime at early times to a

diffusive regime at late times. The crossover time-scale τ diverges in the limit of

low probe concentration and enters into a scaling description of several dynamical

properties of the probes. In fig 4 the scaling collapse of C(t) is shown for w = 1

and q = 0. No such diverging time-scale is found for the unshaded region of

x
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the phase diagram where the effect is short-ranged. We have also investigated

other types of driven diffusive systems described by the k-hop model [11] and

the partially asymmetric variation of Katz-Lebowitz-Spohn model [14]. We find

that in all these cases, dynamics of STPs always associates a diverging time-scale

which allows for scaling description of dynamical correlation functions. DPPs on

the other hand, may give rise to short ranged or long-ranged effect depending on

the properties of the medium and probe itself. However, mapping out the full

phase-diagram for these systems needs further detailed study.
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Chapter 1

Introduction

Driven Diffusive Systems

The term “driven diffusive systems” describes a wide variety of physical sys-

tems ranging from turbulent fluids to sand-piles and moving traffic. These are

systems out of equilibrium under the influence of an external drive. In these

multiparticle systems, individual particles have a diffusive motion apart from an

overall systematic drift. Because the the system is constantly driven from outside,

it never attains equilibrium, but in the long time limit, goes towards a nonequi-

librium steady state. In this nonequilibrium steady state, the detailed balance

does not hold, (i.e. the probability that the system goes from one particular con-

figuration C to another configuration C ′ is not same as the probability of going

from C ′ to C). Such non-equilibrium systems are beyond the scope of Boltzmann-

Gibbs framework. As a result, much of the intuition developed from equilibrium

statistical physics does not work for these non-equilibrium driven systems. For

example, the arguments based on the competition between energy and entropy

often fail dramatically [1].

One important question for these driven systems is the form of the steady state

measure P (C) [2]. Further, the study of correlation functions of the dynamical

variables and also their average values shed light on the steady state properties

of such a system. Finally, in order to explore the relaxation of the system, static

1



1. INTRODUCTION

and dynamic characterisations are also carried out during its approach towards

the steady state.

In the absence of any general framework for the statistical description of these

nonequilibrium driven systems, one usually investigates specific model systems,

and these studies sometimes yield an understanding about general behavior of

systems in the same universality class. For example, flowing grains on a sand-

pile [3], river networks [4], biological evolution of interacting species—all these

systems have been modelled and are known to exhibit self-organised criticality

which is characterised by power law distribution of the size of avalanches (number

of correlated events).

Another class of models involve growth of materials on the top of substrates.

The fluctuations of the surface height follow a scaling description [5].

〈[h(x, t) − h(x′, t′)]2〉 ≈ |x − x′|2χ Y

( |t − t′|
|x − x′|z

)

(1.1)

where h(x, t) is the height of the surface at point x at time t and Y is a scaling

function. The roughness exponent χ and the dynamic exponent z characterise

the universality class for similar growth processes [5]. In section 2.1.1 of chapter

2 we discuss in more detail about this class of models.

In order to understand many generic properties of driven diffusive systems,

simple particle hopping models on a lattice prove to be extremely useful. The

simplest such model is ‘asymmetric simple exclusion process’ (ASEP) which de-

scribes hard-core particles on a lattice (a lattice gas) with a preferential direction

of motion. This model has been intensively studied and provides useful insight

into several aspects of driven diffusive systems. Fortunately, in one dimension,

ASEP allows for many exact calculations. Recently, Prähofer and Spohn have

even calculated the complete scaling function for dynamical correlation function

for density [7]. Several variants of the ASEP have been successfully used to

model systems like vehicular traffic flow [8] and movement of motor-proteins

along micro-tubules inside a cell [9].

Although no phase transition is possible for an equilibrium system in one

dimension, driven diffusive systems often show phase transition in one dimension

and interesting phase diagrams are obtained. For instance, in an ASEP in an

2
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Figure 1.1: Phase diagram for 1-d ASEP in an open chain with injection rate

α and extraction rate β. The macroscopic density and the bulk current J char-

acterise different phases. The solid line represents a first order phase transition

while the dashed lines correspond to continuous transitions.

open chain, by changing the boundary rates of injection (α) and extraction (β),

one can induce transitions between steady state phases with different macroscopic

densities and currents [6]. These different phases are summarised in the phase

diagram shown in fig 1.

Even in absence of any boundary effect, driven diffusive systems may show

interesting bulk phase separation in one dimension. In [10] a closed chain with

three kinds of particles (also known as ABC model) was considered where an

asymmetric exchange takes place between two unlike particles. In this one di-

mensional system with local dynamics, a phase separation of the three species

takes place, although for an equilibrium system in one dimension with short

ranged interaction, no phase separation is possible. In [28] Lahiri et al. studied a

system of two coupled lattice gases used to model sedimenting colloidal crystals.

They found that by changing the coupling parameter, it is possible to have a

strong phase separation in the steady state. Another completely different kind

3
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1. INTRODUCTION

of phase ordering had been observed by Das et al. [24, 25]. They considered

a set of hard-core particles sliding locally downwards (under gravity) on a one

dimensional fluctuating surface and found that in steady state the particles show

an unconventional phase ordering where strong fluctuations are always present.

This is called fluctuation dominated phase ordering (FDPO) [25]. In chapter 2

and 3 of this thesis we will have a detailed discussion on various properties of

FDPO.

Coupled Driven Diffusive Systems

In this thesis, we are interested in the situation when two such driven diffusive

systems are coupled together. Several examples of such coupled systems are found

in nature. It is an interesting question to ask how the properties of the individ-

ual systems are affected by the coupling present. Consider the example of ant

trails [11]. Ants move preferentially along the direction of increasing pheromone

density and while doing so they drop pheromones for other ants to follow. The

density fields of the pheromone and the ants therefore constitute a two-way cou-

pled system and this coupling results in interesting patterns in the ant traffic [11].

Sedimentation of colloidal crystals in viscous fluids [28], motion of a polymer in a

random medium or a vortex line in a superconductor with randomly distributed

impurities [29] are other examples of coupled driven systems.

Quite often this bidirectional coupling gives rise to many complications. Con-

sider the example of sedimentation—the settling of heavier particles in a lighter

fluid. Due to viscous damping, when a given particle is slowed down by the fluid,

its momentum does not disappear but produces disturbances in the fluid which

affect the motion of other particles [12, 13]. This makes the full description of

sedimentation a challenging problem [14].

Passive Scalars vs Probe Particles

In certain situations, for example, when (i) the coupling itself is weak or (ii) the

sizes of the two coupled systems are not comparable, the bidirectional coupling

can be expected to be effectively unidirectional. We will mainly be interested

in the second scenario. Consider a fluorescent dye carried by a turbulent jet or

4



1.1 Passive Scalar Advection

smoke particles dispersed in air [15]. Here, the density field of the dye (smoke)

gets advected by the velocity field of the jet (air). But if the amount of advected

substance (smoke or dye) present is much smaller than the total bulk of the fluid,

then the back-effect produced on the fluid is negligible. Under such circumstances,

it is safe to treat the density field of the advected substance to be the driven or

‘passive’ field and the velocity field of the fluid to be the driving field. Such

systems belongs to the class of ‘passive scalar advection’.

However, under certain circumstances, it is possible to have bidirectional cou-

pling, even when condition (ii) is satisfied. For example, introduction of tracer

particles to probe a medium sometimes results in a coupled system where dynam-

ical evolution of both the probe particles and the medium get strongly affected

by each other.

In this thesis, we have investigated two kinds of coupling. We have considered

simple models in one dimension describing passive scalar advection and probe

particles in a medium. In the remaining part of this chapter, we include a general

discussion on these two topics and summarise the relevant earlier results.

1.1 Passive Scalar Advection

Spreading and Clustering

As mentioned above, the problem of passive scalar advection is described by two

fields: one driving field and one driven or passive field. In many earlier studies,

the driving field was taken to be the velocity field of a fluid and the driven field

is the density field of the advected substance. In the examples of fluorescent

dye carried by a turbulent jet or smoke particles dispersed in air, the advected

substance spreads out in space under the influence of the driving field. In certain

other types of situations, the driving field may induce a clustering tendency and

the advected particles may clump together—as seen in air bubbles in water or

dust particles in air [16, 17]. Earlier studies reveal that such an effect may be

observed if the passive scalar flow has low inertia or high viscosity or if the driving

fluid is highly compressible.
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Earlier Studies on Passive Scalar Clustering

Deutsch [18] and later Wilkinson and Mehlig [19] investigated the clustering prop-

erties of the passive scalar as the inertia and viscosity of the passive scalar flow

is changed. The effect of the driving fluid was modelled by a random force with

rapidly decaying correlations. In [18] Deutsch showed that if the mass of the pas-

sive particle is below some critical value, the probability that two particles will

be found at an infinitesimal distance away from each other in the long time limit

is 1, implying that the neighboring particles aggregate. The value of the critical

mass depends on the viscosity and also on the form of the two-point force-force

correlation function. The above probability, which serves as the order parameter

in this case, changes discontinuously across the critical point.

Wilkinson and Mehlig investigated the above clustering transition as the vis-

cosity is changed [19]. As viscosity exceeds a certain threshold, which depends

on the mass and the form of the force-force correlator, the particles aggregate.

The associated phase transition is characterised by the fraction of initial condi-

tions for which the separation between a pair of infinitesimally close trajectories

approaches zero in the long time limit. This order parameter jumps from 0 to 1

as the viscosity exceeds its critical value. In the aggregated phase, the two-point

density-density correlation function shows a divergence near the origin, indicating

a strong clustering between the particles.

In [18] and [19] damped motion of inertial particles in a random force field

was considered and it was found that path coalescence mechanism gives rise to

a clustering transition in low inertia and high viscosity regime. However, when

the correlation time of the force field approaches zero, path coalescence can exist

if and only if the force field describes a predominantly potential flow. A more

general case was considered in [20] where the driving field has both a potential

component as well as a solenoidal component. It was found that in two dimension,

the particles cluster onto a network of caustic lines. Thus even when no path

coalescence occurs, there is a significant density inhomogeneity.

Falkovich et al. showed in [21] that in presence of turbulent vortices inside the

cloud cores, the advected inertial droplets are driven outwards due to centrifugal

force. This gives rise to a jet of droplets and concentration inhomogeneity, both
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1.1 Passive Scalar Advection

of which increase the mean collision rate between the droplets. As a result, large

aggregates form due to coalescence of droplets of different sizes.

Clustering of passive scalars may also be observed in case the driving field

is compressible. Gawȩdzki and Vergassola studied the effect of compressibil-

ity on passive scalars in [17]. In their model, the fluid velocity was chosen to

have a Gaussian distribution with correlation properties that incorporate the

compressibility of the fluid. They found that when the compressibility is low,

the trajectories of the fluid particles separate explosively (i.e. two infinitesi-

mally close trajectories reach an O(1) separation in finite time). However, when

the compressibility increases beyond a threshold, the trajectories collapse implo-

sively and the advected passive particles clump together. The two point density-

density correlation function for passive particle density shows a divergence for

small separation—an indication of strong clustering.

Passive Sliders on Fluctuating Surface

In our model of passive scalar advection, the driving field represents the fluctuat-

ing height field of a one dimensional surface. The time evolution of the surface is

described by Edwards-Wilkinson (EW) or Kardar-Parisi-Zhang (KPZ) equation.

The passive scalar field in our case is the density field of a set of hard-core particles

sliding downwards (under gravity) along the local slope of the surface. Nagar et

al. studied the same model in absence of the hard-core constraint [22]. Note that

in their model, when the underlying surface is of KPZ type, the problem maps

onto non-interacting passive scalars advected by perfectly compressible Burgers

fluid. Nagar et al. found that driven by the surface fluctuations, the passive

particles go towards a strongly clustered state. The spatial correlation function

of particle density is a scaling function of r/L, where r is the spatial separation

and L is the system size. The scaling function shows a divergence near the origin,

as found in [17].

When the hard-core constraint is imposed, instead of a strongly clustered

state, the passive particles now show a new kind of ordered state where strong fluc-

tuations are always present. This is called fluctuation dominated phase-ordering

(FDPO) [25]. Das et al. investigated static properties of this model in [24, 25].
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They found that spatial correlation function of particle density in steady state

is a scaling function of r/L, as expected for phase-ordered systems. The scaling

function, however, decays with a cusp, as opposed to a linear decay for ordinary

phase-ordered systems. In chapter 2 we will discuss their main results in detail.

This model is in fact a special case of Lahiri-Ramaswamy (LR) model [28]

which describes a colloidal crystal that is steadily sedimenting through a viscous

fluid. The magnitude of the local settling velocity of a region of the crystal de-

pends on its concentration and the direction of the local settling velocity depends

on its ‘tilt’, i.e. the orientation, relative to the applied force (gravity) of the

principal axis of the local particle distribution. In [28], such a system was mod-

elled by a driven lattice gas describing the coupled dynamics of the concentration

and the tilt field. With the variation of the coupling parameters, an interesting

phase-diagram results. FDPO has been found along one particular line of this

phase diagram where one coupling parameter vanishes and the system becomes

semi-autonomous.

Dynamics of Passive Scalars

In this thesis, we study dynamical properties of the hard-core passive sliders on

a fluctuating surface. To our knowledge, the dynamics of passive scalars has not

been explored systematically and our study adds to the relatively sparse work

on this important question [26, 22]. We have measured dynamical correlation

functions of the density fluctuations of the passive sliders—auto-correlation and

space-time correlation in steady state and aging correlation during approach to-

wards steady state. The steady-state correlation functions show a scaling with

the system size which indicates that the system has a long-ranged order in steady

state. However, as in [24, 25], the scaling functions show cusp singularities and are

significantly different from those in ordinary phase-ordered systems [27], which

implies an unusual kind of ordering.
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1.2 Probe Particles in a Driven Diffusive Medium

Earlier Studies on Two-Way Coupled Systems

Although the field of passive scalar advection is quite interesting and often de-

scribes physical systems, a more realistic situation however, corresponds to the

case when the coupling works both ways. There have been earlier studies on such

coupled driven diffusive systems, dynamical evolutions of both of which affect

each other. Ertaş and Kardar in [29] have considered fluctuations of a stretched

string, e.g. a vortex line or a polymer moving with a uniform velocity through

a random medium. They model the longitudinal and transverse motion of the

string by a pair of coupled nonlinear equations. In [30] Barabasi has considered

a generalised version of these equation allowing for additional coupling terms.

Both these studies focus on the variation of the critical exponents as the coupling

parameters are changed. In a relatively recent study, the coupled system of ant-

trails and pheromone density has been considered where this two-way coupling

gives rise to interesting patterns in the ant traffic [11]. LR model, mentioned in

the last section, is another example of bidirectional coupling.

Probe Particles

In all the above examples, the coupling between the two systems is rather strong

and this substantially changes the properties of both the systems, as expected.

However, in certain cases, even when the two systems are expected to be semi-

autonomously coupled and the properties of the driving system are supposed to

remain unchanged, it is found that the coupling is in fact bidirectional and both

the systems are substantially affected by each other. For example, introduction

of tracer particles to probe the properties of a system may sometimes give rise to

such two-way coupling.

In many situations, useful information about a complex system is obtained

by injecting probe particles and monitoring their motion, after they have come

to a steady state with the system. Dynamics of probe particles may yield in-

formation about visco-elastic properties of a cell-interior [31], sol-gel transition

in a polymer solution [32] or correlations present in bacterial motion [33]. In all
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these examples, it is generally assumed that if the concentration of the probe

particles is sufficiently low, then the system properties are not affected too much

by their presence, i.e. the coupling between the probe particles and the surround-

ing medium is unidirectional. In this thesis, we consider one example where this

assumption breaks down.

Nonequilibrium Probes

We show that the probe particles can indeed produce a strong effect on the

medium even when present in a vanishingly low concentration. At the same time,

the medium may also induce correlations between the probe particles [34, 35].

We have demonstrated this for a class of nonequilibrium probe particles in one

dimension which evolve through moves that do not satisfy detailed balance. The

medium is taken to be described by simple lattice gas models of equilibrium and

non-equilibrium systems in one dimension and the effect produced by the probes

is qualitatively different in the two cases. The nonequilibrium probes are found

to strongly affect a medium which is initially in equilibrium—even a single probe

gives rise to a macroscopic effect. However, for a medium which is initially in a

current-carrying nonequilibrium state, the effect produced by a single probe is less

drastic. Depending on the kinematics of the probe and the medium, this effect

may be short-ranged or long-ranged [36] and this gives rise to an interesting phase

diagram. We have investigated dynamical properties of the composite system for

finite density of probes. We have found that the above phase diagram for a single

probe has important consequences on the dynamical properties of a macroscopic

number of probe particles.

In chapter 2 we describe our results on static and dynamic correlation func-

tions of the passive sliders on a fluctuating surface and discuss how the scaling

forms of these correlation functions indicate the presence of FDPO. In chapter

3 we study this FDPO state in detail and discuss how such a state can be char-

acterised as an ordered state despite the presence of strong fluctuations. A brief

discussion of our results on passive scalars has been included in chapter 4.

In chapter 5 we introduce the general model we examine to study the dynam-

ics of nonequilibrium probe particles in driven diffusive medium. In chapter 6

10
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we consider the probe particles in an initially equilibrium medium and describe

how the probes produce a macroscopic effect on the medium. Statics and dy-

namics of the probes in nonequilibrium medium are considered in chapter 7 and

full phase diagram (obtained under the variation of the properties of the probe

and the medium) is discussed. Chapter 8 deals with probes in an interacting

driven diffusive medium and we show that even in presence of the interaction,

the scaling properties of the system remain the same as in the non-interacting

case, in contradiction with some recent results. We conclude our discussion on

probes in driven diffusive systems in chapter 9.

In chapter 10 of this thesis, we study a simple model which shows hysteresis.

We consider an asymmetric simple exclusion in one dimension under the influence

of a bias which is a periodic function of time. The time-dependence of the bias

gives rise to interesting crossover effects in the dynamical correlation functions of

the system. By mapping the particle-hole configuration on an interface between

the up-down spin phases of a two dimensional Ising model, we show that for a

bias that varies sinusoidally with time, the system shows hysteresis and for this

simple model it is possible to obtain the hysteresis curve analytically.

At the end of this thesis, we include few appendices where we provide deriva-

tion of some earlier results, which we have used in our thesis. In appendix A

we discuss the mapping between exclusion process and fluctuating surfaces. In

appendix B we show the calculation of sign-sign correlation function of a Gaus-

sian variable. Appendix C contains an outline of calculation of static correlation

function of nonequilibrium probe particles (second class particles in this case) in

an ASEP. In appendix D we describe the derivation of the steady state measure

of KLS model in one dimension. Finally, appendix E contains a description of

an algorithm for generating steady state ensemble for second class particles in an

ASEP.
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Chapter 2

Dynamics of Passive Scalars

In this chapter, we discuss our results on the dynamics of passive scalars. The

specific system we have considered consists of hard-core particles sliding under

gravity along the local slope of a one dimensional fluctuating interface. The

driving field in our case is the fluctuating height field of the surface and the

passive field is the density of the sliding particles.

We have done Monte Carlo simulations on a lattice model which involves both

the height field and the density field and also analytical calculations on a related

simpler model which involves only the height field. In the next section, we describe

both these models in detail. In section 2.2, we summarise the earlier studies

on static properties of this system. Then we discuss our results on dynamics.

We have studied dynamical properties of this system both in steady state and

during the approach towards steady state. We are mainly interested in the scaling

properties of the dynamical correlation functions of particle density. Study of the

steady state dynamics involves the measurement of the auto-correlation function

and space-time correlation function in steady state which we discuss in section

2.3. In steady state, the particles show an unconventional phase-ordering which

is governed by strong fluctuations. Like any phase-ordered state therefore, the

scaling forms of the steady state correlation functions of the density variable

show a strong dependence on the system size L [see Eq. 2.7 and 2.11] —even

though fluctuations of the underlying height field show L-independent power law

scaling [5]. In section 2.4 we discuss auto-correlation function in aging regime.
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2.1 Description of the Model

We study a system of hard-core passive sliders on a one dimensional fluctuating

surface. In the following subsection, we give a general description of this system

where we discuss the time-evolution equation for the height field of the surface and

the density field of the passive particles. In section 2.1.2, we describe the lattice

model on which we perform numerical simulations to monitor several dynamical

correlation functions involving the density fluctuations of the sliding particles.

We have also calculated these correlation functions analytically on a relatively

simple coarse-grained surface model which we describe in section 2.1.3.

2.1.1 Surface Fluctuation and Particle Movement

The dynamical evolution of the systems consists of two parts—fluctuation of the

underlying surface and movement of the sliding particles.

Surface Fluctuations: A surface with no overhangs is completely specified

by the height h(x, t) at point x at time t. The evolution of the height field is

taken to be described by the Kardar-Parisi-Zhang (KPZ) equation [37].

∂h

∂t
= ν1

∂2h

∂x2
+ λ

(

∂h

∂x

)2

+ η1(x, t) (2.1)

The first term represents the smoothening effect of surface tension ν1, and

η1(x, t) is a white noise with zero average and 〈η1(x, t)η1(x′, t′)〉 = Γδ(x−x′)δ(t−
t′). Notice that if λ = 0, the equation has an h → −h symmetry and describes

the Edwards-Wilkinson (EW) model [38].

However, if λ 6= 0, h → −h symmetry is not preserved, reflecting the fact that

the interface moves in a preferred direction. Positive values of λ imply that the

surface is moving downward and λ < 0 yields a surface which moves upward [see

appendix A]. This non-linear term captures the growth along the local normal

to the interface. Let v be the growth velocity along the local normal and δh

be the change in the local height in time δt. Then according to the fig 2.1,

δh = [(vδt)2 +
(

vδt∂h
∂x

)2
]1/2. Expanding for

∣

∣

∂h
∂x

∣

∣ � 1 one obtains the quadratic

non-linearity with λ = v/2.
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δh
tvδ 

x

h(x)

Figure 2.1: The origin of non-linear term in the KPZ equation: the growth occurs

along the local normal.

Figure 2.2: Hard-core passive sliders on a fluctuating surface

The height-height correlation function has a scaling form for large separations

in space and time [39] :

〈[h(x, t) − h(x′, t′)]2〉 ≈ |x − x′|2χ Y

( |t − t′|
|x − x′|z

)

(2.2)

Here f is a scaling function and χ and z are the roughness and dynamic exponents,

respectively, with values which depend on the surface dynamics. For an EW

interface χ = 1/2, z = 2 while for a KPZ interface χ = 1/2, z = 3/2.

Particle Movement: The hard-core particles slide downwards along the lo-

cal slope
(

∂h
∂x

)

of the interface, as shown in fig 2.1.1.
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2. DYNAMICS OF PASSIVE SCALARS

In the over-damped limit, their velocity is proportional to the local gradient

of height. The equation governing the evolution of particle density can be de-

rived from the continuity equation ∂ρ(x,t)
∂t

= −∂J(x,t)
∂x

. The local current J(x, t)

has a systematic part ρ(1 − ρ)(− ∂h
∂x

) (which represents the current flowing down

the slope, from an occupied site to a neighboring empty site), a diffusive part

−ν2
∂ρ
∂x

(driven by local density inhomogeneity) and a stochastic part η2(x, t) rep-

resented by a Gaussian white noise. The time-evolution equation for the density

fluctuation ρ̃ = ρ − ρ0 is then

∂ρ̃

∂t
= ν2

∂2ρ̃
∂x2 + 2ρ0(1 − ρ0)

∂2h
∂x2 − (1 − 2ρ0 − 2ρ̃)

(

∂ρ̃
∂x

) [

1 − 2
(

∂h
∂x

)]

+

2(1 − 2ρ0)ρ̃
∂2h
∂x2 − 2ρ̃2 ∂2h

∂x2 + ∂η2(x,t)
∂x

(2.3)

We will not analyze this equation directly; rather we will study the particle

dynamics by performing numerical simulations on a lattice model, whose long

distance and long time properties are expected to be described by Eqs.(2.2) and

(2.3). We introduce the lattice model below.

2.1.2 Lattice Model

The 1-d interface of length L, consists of discrete surface elements; the slope of

the surface elements between the i-th and (i+1)-th site is τi+ 1

2

, which can take the

value +1 or −1. Accordingly the height at site i is given by hi =
∑i

j=1 τj− 1

2

. The

dynamics follows that of the single-step model [40, 41] which involves stochastic

corner flips with exchange of adjacent τ ’s; the transition /\ to \/ occurs with

a rate p1 while \/ to /\ with rate q1. As in [40, 41], we take p1 = q1 = 1 to

represent an EW surface and p1 = 1, q1 = 0 for a KPZ surface. The overall slope

T = 1
L

∑L
i=1 τi+ 1

2

is conserved and in our case we will consider T = 0, meaning

that the interface is untilted.

The hard-core particles are represented by variables {σi} each of which takes

a value +1 or −1 according as the i-th site contains a particle or a hole. The

deviation from half-filling S = 1
L

∑L
i=1 σi is conserved. A particle and hole on

adjacent sites (i, i + 1) exchange with rates that depend on the intervening local

slope τi+ 1

2

; thus the moves •\◦ → ◦\• and ◦/• → •/◦ occurs at rate p2 while

the inverse moves occur at rate q2. In the case when the particles are sliding
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Figure 2.3: Hard-core particles(shown by solid circle) sliding towards the local

valleys. The hollow circles represent the empty sites or holes.

downwards along gravity, we have q2 < p2. We have considered p2 = 1 and

q2 = 0. In fig 2.3, a typical configuration is shown.

Because of the hard-core exclusion between the particles, in a half-filled system

with the above update rules, one has particle-hole symmetry, i.e. any correlation

function involving the density variable remains invariant, when the particle den-

sity is replaced by the hole density. This implies that the correlation measured

in an advection process (with λ > 0, when the surface is moving downward along

the same direction as the particles) is exactly same as that in an anti-advection

process (λ < 0, i.e. the surface moves upwards, opposite to the particle move-

ment). This is an important difference from the case of non-interacting particles,

where the correlations in advection and anti-advection show qualitatively different

behavior.

2.1.3 Coarse-grained Depth (CD) Model

From the above dynamical rules, it follows that the movement of particles depends

on the fluctuations of the underlying interface. Due to gravity the particles

tend to slide down into local valleys. However, in the non-equilibrium system

under consideration, before the particles can fill in the lowest valley, the interface

evolves, often causing the valley to turn over. 1

Nevertheless, it is useful to consider the adiabatic limit where the interface

moves infinitely more slowly than the particles, in which case the particles have

1Note that if a large number of particles are trapped into a valley which is large but not

the deepest, then the time-scale over which the particles will come out of this valley to go to

the deepest valley is ∼ exp(L2), while the deepest one will evolve over a time-scale ∼ Lz.
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2. DYNAMICS OF PASSIVE SCALARS

ample time to explore the landscape and eventually settle in the deepest valleys.

It seems plausible that the dynamics of hills and valleys of the interface may

provide insight into the dynamics of the particles. This motivates the definition

of a coarse-grained depth model (CD model) as follows [24, 25]. Consider the

variable si(t) defined as si(t) = sgn[hi(t) − 〈h(t)〉], where 〈h(t)〉 is the average

height at time t: 〈h(t)〉 = 1
L

∑L
i=1 hi(t). The variable si(t) can take values +1,−1

or 0, depending on whether the position of the i-th site is above, below or at

the average level. In other words, si(t) gives a coarse-grained description of the

surface by labeling ‘highlands’ and ‘lowlands’.

For an EW interface, the dynamics is tractable and we obtain an analytic

expression for time-dependent correlations of si(t). These results might be ex-

pected to be close to those of σi(t) in the extreme adiabatic limit. As a matter of

fact, we find that they also describe qualitatively the particle model even in the

strongly non-equilibrium case.

2.2 Static Properties

In [24, 25] Das et al. have studied the static properties of this model. They have

found that the particles tend to cluster in the valleys of the surface. In steady

state, this clustering tendency gives rise to a phase-ordered state. But this is an

unconventional phase-ordered state which supports strong fluctuation. Below we

summarise their main results.

• Cluster Size Distribution: In the steady state of the sliding particles

(SP) model, the particle and hole cluster size distributions decay as a power

law, as opposed to an exponential distribution for a disordered state. The

probability to find a particle (hole) cluster of length l, for large l, is

P (l) ∼ l−θ (2.4)

with a system size dependent cut-off. The exponent θ depends on the details

of the dynamical rules.

In case the underlying surface is of EW type, the size distribution of particle

clusters and hole clusters are identical and θ = 1.69 ± 0.02. For a KPZ

18
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Figure 2.4: Cluster size distribution for particles and holes on a KPZ surface.

The system size L = 4096.

interface, P (l) for particle and hole clusters are different as shown in fig

2.4. A KPZ surface has an overall motion in one direction, and hence the

upward motion of the holes and the downward motion of the particles are

no longer symmetrical. A hole cluster size distribution in this case still

shows a power law with exponent θ = 1.87 ± 0.03. For particle clusters,

however, the distribution deviates from a power law for large l. Note that

the exponent θ being less than 2, the average cluster size diverges with the

system size.

• Density-Density Correlation Function: The two point density-density

correlation function in steady state for a system of size L is defined as

C(r, L) =
1

L

L
∑

i=1

〈σi(t)σi+r(t)〉 (2.5)

In the limit of r → ∞, L → ∞ with r/L fixed, C(r, L) is found to be
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2. DYNAMICS OF PASSIVE SCALARS

a scaling function of r/L. Such a scaling form is found for phase-ordered

systems where because of the presence of macroscopic domains, the typical

length scale is ∼ L. The scaling function has a finite intercept m2, and for

small argument it decays with a cusp:

C(r, L) = f
( r

L

)

(2.6)

= m2
[

1 − a
( r

L

)α]

,
( r

L
� 1

)

(2.7)

The intercept m2 is a measure of the long-ranged order (LRO) present in

the system. This is because 〈σi(t)σi+r(t)〉 for an infinite system, factorises

for sufficiently large but finite r and approaches a non-zero constant in

presence of true LRO. Now for a very large system of size L, in terms of

the scaled variable r/L, this short-ranged decay of C(r, L) corresponds to

r/L → 0. In other words, the non-zero constant m2 can be read off from

the intercept of C(r, L) vs r/L plot. We show the C(r.L) data for particles

on a KPZ surface in fig 2.5 and summarise the values for m2 and α in table

2.1.

For an ordinary phase-ordered system, the scaling function for two point

correlation decays linearly. The structute factor S(k, L), defined as the

Fourier transform of C(r, L), decays quadratically S(k, L) ∼ (kL)−2. This

is known as Porod law [42, 27]. But in Eq. 2.7 the scaling function decays

with a cusp (α < 1) and as a result S(k, L) ∼ (kL)−(1+α). This indicates

that the steady state shows an unusual phase-separation.

• Broad Distribution of Order Parameter: A suitable order parameter

for this system is the first Fourier component of the density profile. Consider

Q(k) =

∣

∣

∣

∣

∣

1

L

L
∑

j=1

eikjnj

∣

∣

∣

∣

∣

(2.8)

with k = 2πm/L, m being a positive integer and nj = (1+σj)/2. The order

parameter is defined as Q(2π/L). The distribution of this order parameter

remains broad even as L → ∞ which implies that strong fluctuations do

not die out even in the thermodynamic limit. From the time-series of this
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Figure 2.5: Scaled C(r.L) for SP model on a KPZ surface for L =

1024, 2048, 4096. The cusp exponent α has been estimated in the inset from the

scaled plot for the structure factor S.

order parameter in steady state, it is seen to fluctuate strongly and often

becomes zero, as shown in fig 2.6. However, this does not mean that the

system becomes disordered. Time-series of higher order Fourier components

of the density profile shows that a dip in the first Fourier component (i.e.

the order parameter) is always accompanied by a simultaneous rise in the

value of the second or third Fourier component [see fig 2.6]. This implies

that whenever a single large cluster breaks up (making the first Fourier

component small), two or three macroscopic clusters appear in its place

(causing the second or third Fourier component to go up). Thus the system

manages to retain its ordering even in the presence of strong fluctuations.

This is known as fluctuation dominated phase-ordering (FDPO) [24].
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Figure 2.6: Variations of the first (solid thick line), second (solid thin line) and

third (broken line) Fourier component with time. The system size is L = 128.

[Figure taken from Das et al., Phys. Rev. E 64, 046126 (2001).]

2.3 Steady State Dynamics

In this thesis we study the dynamics associated with FDPO. To investigate the

dynamical properties of the steady state, we monitor auto-correlation function

and space-time correlation function which we describe below in the following two

subsections.
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2.3 Steady State Dynamics

2.3.1 Auto-correlation Function in Steady State

We have studied the auto-correlation A(t, L) in sliding particle (SP) model and

CD model

A(t, L) =
1

L

L
∑

i=1

〈σi(0)σi(t)〉 (SP)

=
1

L

L
∑

i=1

〈si(0)si(t)〉 (CD) (2.9)

We have mainly considered a half-filled system (S = 0) with periodic boundary

conditions. We will see below that in the steady state of a system of size L,

the auto-correlation A(t, L) is a scaling function of t
Lz , where z is the surface

dynamic exponent defined earlier. Since the particles try to settle in the valleys,

the time-scale of the decay of the density auto-correlation is expected to be of

the order of the lifetime of large valleys. In a system of size L the breadth of

the large valleys are ∼ L and the corresponding lifetime is ∼ Lz. This scaling

function shows a cusp in the small argument limit, as seen previously in the static

correlation scaling function [Eq. (2.7)]:

A(t, L) = h

(

t

Lz

)

(2.10)

= m2

[

1 − b

(

t

Lz

)β′
]

,
t

Lz
→ 0 (2.11)

m is a measure of the LRO as explained in section 2.2. Note that at a large enough

but finite (L-independent) time, the auto-correlation function reaches the same

value m2 as the static correlation C(r, L), like any phase-ordered system.

As shown in Eq. 2.2, the fluctuations of the height field of the underlying

surface show a power law behavior and an L-independent scaling form (in fact

the L-dependence enters only as a finite size correction which is negligible as L

becomes large). On the contrary, the density fluctuations of the passive sliders,

although driven by this fluctuating height field, show a completely different scal-

ing form, with a strong L-dependence [see Eq. 2.11] as in phase-ordered systems

where typical time-scale is ∼ Lz. In other words, the particles go into an ordered

state, driven by a field that shows critical behavior (power law correlation).
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However, the most striking feature of Eq. 2.11 is the cusp exponent β ′. For an

ordinary phase-ordered system, the scaling function h in Eq. 2.10 always decays

linearly for t � Lz. This is nothing but the dynamical analog of Porod law

and can be understood as follows: the auto-correlation function at a site would

show a drop only if a domain wall has crossed that site in time t and for t � Lz

probability that this occurs is proportional to t/Lz. On the contrary, we find that

it decays with a cusp with exponent β ′ < 1 which points to the existence of an

unusual ordered state.

However, for small time, t . 1, which falls outside the scaling regime, the

auto-correlation function shows a linear drop with an L-dependent slope:

A(t, L) ≈ 1 − b′
t

Lδ
, (t . 1) (2.12)

If m2 = 1, as shown below for the CD model, matching Eqs.(2.11) and (2.12) for

t ' 1 yields

δ = zβ ′ (2.13)

If m2 6= 1, as happens for the SP model, a relation between the exponents cannot

be obtained. Instead, the matching condition determines a time scale t∗ for the

crossover from the linear decay in Eq.(2.12) to the cuspy decay in Eq.(2.11). In

the large L limit, we find to the leading order,

t∗ =
1 − m2

b′
Lδ (2.14)

We have summarized the values of the intercept and the exponents in table

2.1, for the CD model and the SP model on EW and KPZ surfaces.

Small time decay of A(t, L)

Let us illustrate these properties, by discussing the auto-correlation in the CD

model, defined as ACD(t, L) = 〈si(0)si(t)〉. First consider short times t . 1.

At t = 0 let the initial configuration of the surface be {hi(0)}. As time passes,

there are stochastic corner flips, as described in section 3. However, only those

flips occurring close to the average level can cause a change in the CD variable

si(t), as any local fluctuation far above or below the average level, would not
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2.3 Steady State Dynamics

CD Model SP Model

EW KPZ EW KPZ

m2 1.0 1.0 0.82 ± 0.03 0.75 ± 0.04

α 0.5 0.5 0.4 ± 0.05 0.21 ± 0.04

β ′ 0.25 0.31 ± 0.02 0.22 ± 0.02 0.18 ± 0.01

δ 0.5 0.5 0.26 ± 0.005 0.15 ± 0.005

γ 0.75 0.84 ± 0.02 0.69 ± 0.02 0.82 ± 0.04

Table 2.1: The values of relevant exponents and intercepts for dynamical charac-

terization of CD model and SP model with S= 0.

<h(t)>

Figure 2.7: Sites contributing to the small time linear decay of the auto-correlation

function shown by arrow.

change the sign of si(t) = (hi(t) − 〈h(t)〉). More precisely, only those sites in

{hi(0)} which have at least one neighbor situated exactly on the average level,

putatively contribute to the drop in auto-correlation function. In fig 2.7 we show

two such sites. Now, for a self-affine surface of length L and roughness exponent

χ, the number of such points scales as L1−χ and the density of such points goes

as L−χ [40]. For small t, the probability that any one of these points will actually

take part in a local fluctuation is proportional to t. This immediately implies

ACD(t . 1, L) ≈ 1 − b1
′ t
Lχ . Comparison with Eq.(2.12) shows that for the

CD model, we have δ = χ = 1
2
. Note that although EW and KPZ surfaces have

different dynamics, the above argument holds for both of them as their stationary

measure is the same in 1-d.
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Figure 2.8: Illustrating the linear drop of A(t, L) for short times t . 1 in the SP

model for system size L = 128, 256, 512.

For the particle model, although the initial drop is found to be linear as

described in Eq.(2.12), the exponent δ takes the value 0.26 ± 0.005 for particles

on an EW surface and 0.15± 0.005 for particles on a KPZ surface. The data are

shown in fig 2.8.

Analytical Calculation in the Scaling Regime

For t ≥ 1, we have analytically calculated ACD(t, L) for an EW interface. This

exploits the fact that hi(t) in this case is a Gaussian variable, implying si corre-

lations satisfy the following relation [see appendix B]

〈si(t)si(0)〉 =
2

π
sin−1

(

〈Hi(t)Hi(0)〉
√

〈Hi
2(t)〉〈Hi

2(0)〉

)

(2.15)

where Hi(t) = hi(t) − 〈h(t)〉, which is also a Gaussian variable. If h̃k(t) is the

Fourier transform of hi(t), the numerator in the argument of arcsine can be

written as
∑

k 6=0〈h̃k(t)h̃−k(0)〉 =
∑

k 6=0 Γ exp (−ckt) /ck, using the discrete version

of the EW equation. Here, ck = 4ν1 sin2 k
2
. Moreover, 〈Hi

2(t)〉 = 〈Hi
2(0)〉 =
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Γ
∑

k 6=0
1
ck

. Thus we have

〈si(t)si(0)〉 =
2

π
sin−1

[

∑

k 6=0
exp(−ckt)

ck
∑

k 6=0
1
ck

]

(2.16)

We have numerically evaluated this discrete sum and plotted it in Fig.(2.9a)

against the scaling argument t/L2 for different L values. The cusp exponent can

be read off from the plot in the inset.

In the continuum limit, Eq.(2.16) becomes

〈s(x, t)s(x, 0)〉 =
2

π
sin−1







∫ π
2π
L

dk
exp(−k2t)

k2

∫ π
2π
L

dk
k2






(2.17)

Here, the lower limit of the integration is the first Fourier mode which takes the

value 2π/L for periodic boundary condition. The integral in the numerator takes

the form LΓ
π

[

L
2π

exp
(

−4π2t
L2

)

+
√

πt erf
(

2π
√

t
L

)

−
√

πt
]

. In the limit t/L2 � 1,

this becomes, to the leading order, LΓ
π

[

L
2π

−
√

πt
]

. Noting that the denominator

is LΓ
π

. L
2π

and expanding for small values of
√

t
L

, we get

〈s(x, t)s(x, 0)〉 ≈ 1 − 4

π
1

4

(

t

L2

)1/4
(

t/L2 � 1
)

(2.18)

Comparing with Eq.(2.11) gives m2 = 1, β ′ = 1
4
, z = 2.

Numerical Results

For the KPZ surface, the time evolution equation for the height field is not Gaus-

sian and hence such an analytical treatment is not possible. We study ACD(t)

using Monte Carlo simulation. No initial equilibration is required as the steady

state measure for a KPZ surface with periodic boundary conditions gives equal

weight to every configuration. The initial configuration was thus chosen ran-

domly. We followed the update rules discussed in section 2 and averaged over

sites as well as over 105 histories. The results are shown in Fig.(2.3b). A good

scaling collapse is obtained for different L, on rescaling the time to t/Lz with

z = 3
2
. The cusp exponent β ′ was extracted by plotting m2 − ACD(t) against

t/Lz (shown in the inset), using m2 = 1 and this gives β ′ to be 0.31 ± 0.02. Our
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best estimate corresponds to the largest system size L = 2048. The error-bar is

based on the values of β ′ obtained for smaller system size (L = 512, 1024); the

statistical error is much smaller.

For the sliding particle (SP) model, the steady state measure is not known an-

alytically. In our simulation, we started from a randomly disordered configuration

and allowed a long time ∼ 10Lz for the system to reach a steady state. We then

measured 1
L

∑L
i=1 σi(0)σi(t) for approximately Lz time-steps. We waited several

thousand time-steps before taking the next set of measurement, and averaged

over 104 such histories .

For particles sliding on an EW interface, we obtained a good scaling collapse

of ASP (t, L) for different L after rescaling time to t/L2 [Fig.(2.9a)]. The cusp

exponent was extracted by fitting m2 − ASP (t, L) to a power law. We have esti-

mated m2 by using the same technique as discussed in [25]. The best estimate

of m2 corresponds to the value for which the structure factor (the Fourier trans-

form of the static correlation function C(r, L)) has the largest power law stretch.

We found that m2 shows a systematic dependence on L and the cusp exponent

β ′ is in fact quite sensitive to the value of m2. We have used m2 ' 0.82, our

estimate from the largest system size we could access (L = 4096). This yields

β ′ ' 0.22. On the other hand, using m2
∞ ' 0.85, which we get by extrapolating

the dependence of m2 on L for an infinite system, we find β ′ ' 0.20.

For the SP model on a KPZ surface, we find m2 ' 0.75. Figure (2.3b) shows

the scaling collapse for different L after rescaling the time by L3/2. The inset

shows that m2 − ASP (t, L) follows a power law and the exponent is found to be

β ′ ' 0.18. The value of β ′ obtained using m2
∞ is ' 0.17.

Apart from the half-filled case, we have also studied the auto-correlation func-

tion for filling fractions 1/4 and 1/8 (corresponding to S = −1/2 and S = −3/4,

respectively). We found that the same scaling form [Eq.(2.11)] holds. However,

the value of the intercept changes while the cusp exponent remains the same.
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ρ m2

EW KPZ

1/4 0.60 0.59

1/8 0.32 0.34

Table 2.2: The values of the intercept for filling fractions other than 1/2.

2.3.2 Space-time Correlation Function in Steady State

In this section, we discuss the behavior of space-time correlation G(r, t, L) in

steady state defined as follows:

G(r, t, L) = 〈σi(0)σi+r(t)〉 (SP)

= 〈si(0)si+r(t)〉 (CD) (2.19)

G(r, t, L) does not show any L−independent scaling between r and t. Rather, it

is a function of the scaled variables ξ = r/L and τ = t/Lz

G(r, t, L) = g(ξ, τ). (2.20)

Compare this scaling form with Eq. 2.2 which show the L−independent scaling

between r and t of the the height fluctuations of the underlying surface.

Note that G(r, t = 0, L) ≡ C(r, L) and G(r = 0, t, L) ≡ A(t, L). Therefore

g(ξ, 0) reduces to the pair correlation function f(ξ) [see Eq.(2.6)] and for τ � ξz,

g(ξ, τ) merges with the auto-correlation scaling function h(τ) [see Eq.(2.10)].

With ξ held fixed, g shows an interesting non-monotonic behavior with τ . As τ

increases, g(ξ, τ) is observed to rise and attain a peak [see fig 2.10a and 2.10b ].

From our knowledge of the scaling functions f(ξ) and h(τ), we have been able to

verify that f(ξ) < h(τ = ξz). This implies that g(ξ, τ) must show an initial rise.

For the CD model on an EW interface,

GCD(r, t, L) =
2

π
sin−1

[

∑

k>0
exp(−ckt)2 cos(kr)

ck
∑

k>0
1
ck

]

. (2.21)

We have evaluated this sum numerically and plotted it against τ , for a fixed value

of ξ in the inset of fig 2.10a, which shows the non-monotonic nature of g(ξ, τ). In
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the continuum limit, the argument of arcsine takes the form

2 cos(2πξ) − 2π2ξ + 2πξSi(2πξ) − 2πν1N(ξ, τ) (2.22)

where the sine integral function is defined as Si(x) =
∫ x

0
sin(t)/tdt and N(ξ, τ) is

given by
∫ τ

0

dy

√

π

ν1y
exp

(

− ξ2

4ν1y

)[

erf

(

2π
√

ν1y − iξ

2
√

ν1y

)

− 1

]

(2.23)

. Eq.s 2.22 and 2.23 show explicitly that GCD(r, t, L) is a function of ξ and τ

only.

To measure GSP (r, t, L) for particles on an EW surface we performed Monte

Carlo simulations as before. After equilibrating the system, we measure
1
L

∑L
i=1 σi(0)σi+r(t) for about Lz/10 time steps, then after a gap of a few hundred

time steps, we take another set of data. We finally average over 105 such histories.

The results are shown in Fig.(2.10a) where we have also included the scaling

function h(τ) to compare the long time behavior. The corresponding results for

KPZ surface are shown in Fig.(2.4b).

2.4 Aging Dynamics during approach towards

Steady State

So far we have discussed the steady state properties of the sliding particles. Since

the particles phase separate in the steady state, the scaling functions of various

steady state correlations show a strong dependence on the system size L. In this

section, we consider L → ∞ limit and study the properties of the system while

it approaches the steady state.

To investigate the dynamical properties of the system during approach towards

steady state, we have monitored the aging auto-correlation function, defined as

A(t1, t2) = 〈σi(t1)σi(t1 + t2)〉 (SP)

= 〈si(t1)si(t1 + t2)〉 (CD) (2.24)

We have investigated primarily the half-filled case, but have checked that no

qualitative change takes place for other values of the filling fraction. Since the
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2.4 Aging Dynamics during approach towards Steady State

system has not yet reached steady state, one does not have time translational

invariance and hence A(t1, t2) depends on both t1 and t2. For 1 � t1, t2 � Lz,

A(t1, t2) is a function of t1
t2

, as expected for phase ordering systems [27]. In the

limit when t2 � t1, this scaling function has a power law decay (see table 2.1)

A(t1, t2) ∼
(

t1
t2

)γ

for t2 � t1, (2.25)

while in the opposite limit, t1 � t2, the scaling function has the form

A(t1, t2) ∼ m2

[

1 − b1

(

t2
t1

)β′
]

for
t2
t1

→ 0 (2.26)

This is similar to the form of the steady-state auto-correlation in Eq.(2.11) with

L replaced by t
1/z
1 , meaning that locally the system has reached steady state over

a length scale of t
1/z
1 .

We first present our results on the CD model. As in the case of steady-state

auto-correlation, we have been able to calculate ACD(t1, t2) for an EW surface

analytically. Following similar steps to the last section, we obtain

ACD(t1, t2) =
2

π
sin−1







∑

k 6=0
exp(−ckt2)−exp[−ck(2t1+t2)]

ck
{

∑

k′ 6=0
1−exp(−2ck′ t1)

ck′

}1/2 {
∑

k′′ 6=0
1−exp[−2ck′′ (t1+t2)]

ck′′

}1/2







(2.27)

Taking the continuum limit and using t1, t2 � L2, we obtain

ACD(t1, t2) =
2

π
sin−1

[ √
2t1 + t2 −

√
t2

(2t1)
1/4 (2t1 + 2t2)1/4

]

(2.28)

In the limit t2 � t1, right hand side becomes
√

2
π

(

t1
t2

)3/4

. Comparing with

Eq.(2.25), we get γ = 3
4
. In the opposite limit, when t1 � t2, the right hand

side becomes, after simplification,

ACD(t1, t2) ≈ 1 − 2
5

4

π

(

t2
t1

)1/4

(2.29)

Comparing with Eq.(2.26), we find β ′ = 1/4, as expected.

Figure (2.11a) shows the numerical evaluation of the discrete sum in Eq.(2.27).

The power law characterizing the decay has been shown in the inset.
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2. DYNAMICS OF PASSIVE SCALARS

In our Monte Carlo simulations, we have a spatial average as well as an average

over 104 histories. For the CD model of a KPZ surface, we started with a flat

interface as an initial condition and evolved it in time to measure ACD(t1, t2). The

results are shown in fig 2.5b. The best estimate of the cusp exponent corresponds

to t1 = 32000 and the error bar is based on its values for t1 = 2000, 8000. This

finally gives β ′ = 0.31 ± 0.01, which is close to the steady state value. The inset

shows the power law decay and the exponent γ takes the value 0.84± 0.03. Here,

the best estimate is for t1 = 500 and the error-bar is for t1 = 2000, 8000.

For the SP model on an EW interface, we start with randomly distributed

particles on a random surface profile. The aging auto-correlation ASP (t1, t2)

shows a scaling collapse when plotted against t2/t1 [see fig 2.11a]. The value of

the cusp exponent β ′ is 0.20 ± 0.02, which characterises the behavior for t2 � t1

is close to the steady state value. The inset shows the plot in the regime t2 � t1.

The power law exponent in this case is γ = 0.69 ± 0.02.

The SP model on a KPZ surface is also started with a random initial condition.

The data are shown in fig 2.5b. The exponents are β ′ = 0.17 ± 0.01 and γ =

0.82 ± 0.04.
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Figure 2.9: Scaled auto-correlation function in steady state for SP and CD models

for (a) EW and (b) KPZ interfaces. In both cases, we used L=512,1024,2048.

The cusp exponents were estimated using the plots shown in the inset.

33

Chapter2/ewst2.eps
Chapter2/kpst.eps


2. DYNAMICS OF PASSIVE SCALARS

 0.45

 0.65

 0  0.004  0.008

G
   

(r
,t,

L)
S

P

t/L2

A(t,L)

(a) EW

 0

 0.15

 0.3

 0  0.04  0.08
G

   
(r

,t,
L)

C
D

t/L2

A(t,L)

 0.3

 0.4

 0.5

 0.6

 0.05  0.15

G
   

(r
,t,

L)
S

P

t/L3/2

A(t,L)

(b) KPZ

 0

 0.15

 0.3

 0  0.2  0.4  0.6

G
   

(r
,t,

L)
C

D

t/L3/2

A(t,L)

Figure 2.10: The time dependence of G(r, t, L) is shown for particles on an (a)EW

and (b) KPZ surface for r
L

= 0.016. The values of L are 256, 512, 1024 for (a) and

512, 1024, 2048 for (b). The scaled auto-correlation is also shown, for comparison.

The insets show the same quantity calculated for the corresponding CD model with
r
L

= 0.125 for both cases.
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subtraction from m2. The CD model data in (a) has been multiplied by 1.5 to

distinguish it from the SP model data points. The inset shows the power law

behavior in the regime t1 � t2. We used L = 2048 in (a) and L = 8192 in

(b). The Inset shows the data with t1 = 500, 2000, 8000 in both (a) and (b). For

extraction of β ′, we used t1 = 2000, 8000, 32000.
35

Chapter2/ewag.eps
Chapter2/kpag.eps


2. DYNAMICS OF PASSIVE SCALARS

36



Chapter 3

More about FDPO

In the previous chapter we have discussed static and dynamical correlation func-

tions of the passive particles on a fluctuating surface. We have seen that the fluc-

tuating height field of the underlying surface gives rise to a clustering tendency

among the particles and in the long time limit the particles phase separate. How-

ever, the nature of ordering present in the steady state is different from ordinary

phase-ordered systems. In this new kind of phase-ordered system, strong fluctu-

ations are present even in the thermodynamic limit. As a result, the correlation

functions of the density fluctuation of the particles show some unusual features

in the scaling limit which are not found in conventional phase-ordered systems.

In this chapter, we make a more detailed study of these unusual FDPO states.

As we have discussed in section 2.2, the order parameter for this system is the

first Fourier component of the density profile. In fig 2.6 we show the time-series

of this order parameter in steady state; it fluctuates strongly and often becomes

zero. But this does not mean that the system becomes disordered. As seen from

fig 2.6 a dip in the first Fourier component is almost always accompanied by a

simultaneous rise in the second and third Fourier component. This implies that

whenever a single large cluster breaks up (causing the first Fourier component to

decrease), two or three macroscopic clusters appear (causing the second or third

Fourier component to go up).

From the above picture it follows that the first Fourier component alone is

not sufficient to characterise the steady state as an ordered state—one should

rather specify a large number of Fourier modes. It is however useful to find a
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3. MORE ABOUT FDPO

single quantity that would correctly describe the nature of ordering present in

the system. In the next section we show that the steady state distribution of the

largest cluster present in the system serves as an unequivocal signal of ordering.

Another important characteristic of fluctuation is the presence of intermit-

tency which implies that the density fluctuations occur in sudden bursts. The

mathematical measure for this intermittent behavior is usually provided by corre-

lation functions; the exponents describing the higher order correlation functions

of density fluctuation do not grow linearly with the order; this is also known as

multiscaling.

To understand the origin of intermittency, various models have been pro-

posed [49, 50]. In the Kraichnan model of passive scalar advection, a simpler

approach was taken where the velocity of the driving fluid was modelled by a

random incompressible field which is Gaussian and delta correlated in time. The

two point correlator of the velocity was chosen such as to satisfy the condition

of incompressibility. Instead of dealing with the complicated Navier-Stokes equa-

tion for the velocity field, assuming a simple Gaussian distribution with no time-

correlation is a major simplification. But this model still predicts the anomalous

scaling of higher order correlation function and thus shows intermittency. Hence

it follows that the complex nature of passive scalar flow that gives rise to multi-

scaling, actually originates from the mixing process, rather than the complexity

of the turbulent velocity field of a realistic fluid.

To investigate the existence of multiscaling in our model, we monitor the den-

sity fluctuation in a segment of length r. In section 3.2 we numerically obtain

the distribution function for the number of particles in a given segment on an

EW surface and explain the distribution curve with the help of CD model. In

section 3.3 we measure the same distribution on a KPZ surface and find qual-

itatively different results. We have been able to rationalise some properties of

this distribution function with the help of size distributions of particle clusters

and hole clusters. Finally, in section 3.4 we explicitly verify the correspondence

between CD model and SP model by measuring the correlation between valleys

of the surface and clusters of particles.
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3.1 Largest Cluster in Steady State

3.1 Largest Cluster in Steady State

One of the key characteristics of FDPO is the presence of strong fluctuations,

even in the thermodynamic limit. In the steady state, large clusters are present

in the system and the cluster size distribution follows a power law. As a result

of fluctuations, these clusters undergo large changes in their lengths (as follows

from fig 2.6), associated with the fact that the macroscopic state of the system

keeps changing. For a system of size L, the typical lifetime of a macrostate scales

as Lz. The question arises: if the lifetime of a state is so much smaller than

exponential, in what sense can we call such a state a ‘phase’?

We have addressed this question in the following way. Let lmax(t) be the

length of the largest cluster present in the system at time t. In a disordered

state, when the cluster size distribution falls off exponentially, the largest cluster

in the system scales as log L. But starting from a random initial configuration,

as the system approaches steady state, lmax(t), although a fluctuating quantity,

shows an increasing trend. Finally, in steady state, lmax(t) is still fluctuating,

thereby changing the macroscopic state of the system. But lmax(t), despite having

a broad distribution in steady state, continues to remain substantially above its

disordered state value log L. In other words, the system manages to retain its

ordered character despite steady state fluctuations. The system continues to move

from one macroscopic state to other over a time-scale of Lz. But each of these

states are ordered in the sense that they all correspond to large values of lmax(t)

which scales with the system size.

We have studied the distribution of lmax in steady state as well as in disordered

state. After the system has reached steady state, we measure the largest cluster

present in that configuration. We let the configuration evolve in time and after

waiting for few hundred time steps, we again measure lmax(t). We obtain the

distribution P (lmax, L) after normalizing over 106 such data points. As shown in

the following figures, P (lmax, L) for different values of L undergo a scaling collapse

when lmax is rescaled by the mean of the distribution 〈l〉. We have found that

〈l〉 ∼ Lφ, where the exponent φ depends on the dynamical rules. For particles

on an EW surface φ ' 0.86, whereas for KPZ advection, φ ' 0.60 while for KPZ

anti-advection φ ' 0.91. We show the data for KPZ advection in fig.(3.1).
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Figure 3.1: The distribution of the length of the largest cluster P (lmax, L) for

particles advected by KPZ surface is shown for L = 256, 512, 1024, with the scaling

collapse in the inset.The curves to the left show the same distribution in disordered

state, after rescaling the y-axis by 0.2.

For comparison, we show also the disordered state distribution obtained by

averaging over 108 data points. The mean of this distribution scales as log L as

mentioned earlier.

Our studies show that as system size increases, the overlap between these two

distributions falls off. This means that as L grows, it is increasingly unlikely for

the steady state lmax to come down as low as its value in a disordered state. The

time-scale for such unlikely event would in fact be expected to grow exponentially

with L. This is consistent with our data for P (lmax) for small values of lmax (the

flat portion in fig 3.1).
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3.2 Density Fluctuation on EW Surface
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Figure 3.2: Scaled distribution function for the number of particles in a segment

of length r. The system size L = 512 and 2048. We have averaged over the

system size L and over 106 configurations drawn from the steady state ensemble.

3.2 Density Fluctuation on EW Surface

We measured the steady state fluctuation of the number of particles in a certain

given region on an EW surface. Let Nr(t) be the number of particles present in

a given segment of length r at time t. As the system evolves in steady state, we

measure the distribution function P (Nr, L) for different values of r and L. We

find that P (Nr, L) is a scaling function of Nr/r and r/L. In fig 3.2, we show the

scaled plot of P (Nr, L) for different values of r/L.

Note that the form of the distribution changes strongly as r/L is changed. For

r/L = 1/2 the distribution attains a peak at Nr/r = 1/2 and falls symmetrically

on two sides. This behavior can be explained in the following way. Since the

total number of particles in the system is conserved, Nr cannot fluctuate much if

r ∼ L. Hence as r/L becomes large, the distribution P (Nr, L) attains a peak at

Nr/r = ρ, where ρ is the filling fraction which is 1/2 in our case. The width of
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3. MORE ABOUT FDPO

the distribution keeps going down as the ratio r/L increases.

However, for smaller values of r/L, the distribution function behaves in a

completely different way. P (Nr, L) in this case is a minimum at Nr/r = 1/2 and

shoots up at the two boundaries Nr/r = 0, 1.

It is possible to explain this behavior using CD model, which is a coarse-

grained surface model, introduced in section 2.1 of the last chapter. However, for

the present case, it would be more convenient to use a slightly different version of

the CD model, also known as CD2 model [24, 25]. In the CD2 model, we define

the CD variable as

si(t) = sgn[hi(t) − h1(t)]. (3.1)

In other words, we define the reference level through the first site and assign a

value si = +1 to all the sites with a positive height and si = −1 to all those

with a negative height. Compare this with the earlier version of the CD model,

defined in section 2.1, where s(i(t) = sgn[hi(t)−〈h(t)〉]. Note that the position of

the average height level fluctuates in time, whereas in CD2 model, the reference

level always passes through the first site. Clearly in this revised CD2 model,

translational invariance does not hold. However, we have verified that in the limit

of large separation and large time the correlation functions of the si variables of

this new CD2 model show similar behavior as in the previous CD model and can

be described by the same set of exponents as in table 2.1.

According to our interpretation of the CD model [see section 2.1] the particles

tend to be present in the ’lowlands’. Hence the study of the static and dynam-

ical properties of the lowlands can be expected to provide some insight into the

behavior the the particles. With this in mind, let us now define the following

quantity in CD2 model: Sr =
∑r

i=1 si. Since in one dimension, any interface

configuration can be mapped onto a random walk trajectory (where the height hi

represents the displacement of the walker at the i-th time-step), Sr denotes the

excess time the random walker spends on one particular side of the origin. But

the distribution P (Sr) is exactly known and has the form

P (Sr) =
1

r

1

π
√

Sr(1 − Sr)
, 0 � Sr � r. (3.2)
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Figure 3.3: Scaled distribution P (Nr, L) fitted to the form A/
√

x(1 − x) with

A ' 0.27 for L = 4096.

Formula 3.2 is known as discrete arc sine law for sojourn times [43]. In fig 3.2 we

fit this functional form to the scaled P (Nr, L) for small r/L.

As r/L increases, because of the conservation of the total number of parti-

cles, large fluctuations of Nr become less probable and the distribution starts

developing a peak at Nr/r = 1/2 as shown in fig 3.2 for r/L = 1/4 and 1/2.

From the distribution function P (Nr, L), we have computed higher order mo-

ments of Nr and found that there is no multiscaling, i.e. 〈(Nr − r/2)p〉 ∼ rp.

3.3 Density Fluctuation on KPZ Surface

The distribution function P (Nr, L) for KPZ surface, is found to be a scaling

function of Nr/r and r/L, as in the last section. Moreover, for large r/L, due

to the conservation of total number of particles the large density fluctuations are

suppressed and the distribution function has a peak at Nr/r = 1/2, as before.
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Figure 3.4: Scaled distribution function for Nr on a KPZ surface. We have used

L = 2048 and 4096 and averaged over 105 configurations in steady state.

We present the data in fig 3.4

However, for small values of r/L the behaviour is completely different. In

fig 3.5 we have shown the unscaled distribution for the number of particles in a

small segment of length r. We find that the distribution of particle numbers is

maximum at Nr = 0 and as Nr increases, the distribution function drops sharply

and again slowly increases. We have been able to rationalise this behavior in the

following way.

Consider the size distribution of particle clusters (p(l)) and hole clusters (h(l))

on a KPZ surface. As seen from fig 2.4:

h(l) > p(l) for very small l

h(l) < p(l) for moderate l (3.3)

h(l) � p(l) for large l
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Figure 3.5: Number fluctuation of particles in a segment of length r = 32, 24, 16

and L = 512.

Let us now consider the following scenario: the particle clusters are formed in

the valleys of the surface but these clusters are not very big as they are interrupted

by very small hole clusters (of size 1 or 2). So even if the particles are mostly

found in the valleys, they do not form very big clusters because of the small

number of holes present. On the other hand, the hole clusters can be quite big.

These big hole clusters are naturally found in the hills of the surface. Although

it is possible to find one or two particles in the hills, they are too few to cause

a serious reduction in the hole cluster length. In fig 3.6 we have schematically

shown one such configuration.

Clearly, the scenario described in the last paragraph, is consistent with the

behavior of p(l) and h(l) in fig 2.4. Let us now examine whether this picture fits

in with our results for P (Nr, L) in fig 3.5. For a fixed r and L, small values of Nr

implies that the segment under consideration lies in a hill. Since the hills contain

large hole clusters if r is not too big, most of the time the segment is empty
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Figure 3.6: Particle clusters are interrupted by the presence of holes in the valleys.

which explains the large value of P (Nr = 0). Small non-zero values of Nr mean

that the segment still lies in the hill but passes through small and rare particle

clusters. The sharp drop in P (Nr) reflects the rare occurrence of these particle

clusters in the hills. However, as Nr increases, we get contribution from the

valleys which contain particle clusters of moderate lengths. These moderately

large particle clusters in the valleys are more probable than the small particle

clusters in the hills and hence P (Nr) shows a rise after the initial sharp fall. But

it never becomes as large as P (Nr = 0) because even if the segment lies in a

valley, it does not contain a large number of particles very often because of the

presence of several small hole clusters in the valleys.

Hence we have been able to arrive at a picture of what a typical configuration

looks like, and this picture successfully explains our results for cluster size distri-

bution and density fluctuations. However, calculation of higher order moments

of Nr shows that no multiscaling exists in this system.

3.4 Correspondence between Particle Densities

and Valleys

In the previous chapter and the present chapter, we have seen that CD model often

explains many features of the SP model. Since the particles tend to be present in

the valleys, by studying the fluctuation of the valleys one can understand many

things about the density fluctuation of the particles. In this section, we explicitly

examine how often the particle clusters are indeed found in the valleys.
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Figure 3.7: Plot of M(l) vs l for particle clusters and hole clusters on KPZ surface

and particle clusters on EW surface. We have used L = 512.

Consider a particle cluster of length l which extends from the i-th site to

(i + l − 1)-th site. Now, define the quantity

M(l) =
1

L
〈
(

i+l−1
∑

j=i

sj(t)

)

〉 (3.4)

where sj(t) is the CD variable defined as sj(t) = sgn[hj(t)−〈h(t)〉], as in section

2.1 of the last chapter. Note that if the particle cluster is in a valley then the

values of CD variable at those sites would be negative and hence the average

quantity M(l) would also be negative. In fig 3.7 we show our results for M(l)

vs l for particle clusters on EW surface and particle and hole clusters on KPZ

surface. We find that for particle clusters of length l, M(l) becomes more and

more negative as l increases, implying larger clusters are formed in deeper valleys.

Similarly, for the hole clusters M(l) increases on the positive side as the large hole

clusters are always found in the hills.
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Chapter 4

Discussion: Passive Scalars

In chapters 2 and 3, we have discussed the static and dynamical properties of

interacting passive scalars driven by a fluctuating Edwards-Wilkinson or Kardar-

Parisi-Zhang surface (or, equivalently, a Burgers fluid). Our studies show that

the steady state of the system is an unconventional ordered state which supports

strong fluctuations.

In this short chapter we compare our results on static and dynamical proper-

ties of passive scalars with some relevant earlier work.

Mitra and Pandit had studied the dynamics of passive scalars in [26] where

they considered the dynamical properties of a system of non-interacting passive

particles, advected by an incompressible fluid, whose velocity field is drawn from

the Kraichnan ensemble, and therefore has power law correlations in space, but is

delta-correlated in time. In an Eulerian (space-fixed) framework, they find that

the space-time correlation function G(r, t, L) satisfies a diffusion equation in r and

t, with an L-dependent diffusion constant. In the quasi-Lagrangian framework

(with the origin moving on a Lagrangian trajectory), they obtain r ∼ t1/z with

z < 2 and no dependence on L.

By contrast, we have studied passive particles with hard-core interactions,

advected (in the Burgers case) by a compressible flow which has power law cor-

relations in time. Particles are driven together in our case, rather than spreading

out. G(r, t, L) is a function of the scaling combinations r/L and t/Lz, as in a

phase-ordered system. However, there appears to be no indication of non-trivial

r − t scaling.
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Figure 4.1: The Lagrangian correlation function C(r, t, L) is plotted against scaled

time t/Lz for fixed values of r/L. We have used L = 1024, 2048.

Throughout, we have used Eulerian framework. However, our studies in a

Lagrangian framework, where distances are measured from an origin that moves

with one of the passive particles, shows that a similar L-dependent scaling form

remains valid. In fig 4.1 we present our results on Lagrangian auto-correlation

function defined as C(r, t, L) = 〈θ(r, 0)θ(r, t)〉 where θ(r, t) is the density field

at a distance r away from a tagged particle. We find that C(r, t, L) is a scaling

function of ξ ≡ r/L and τ ≡ t/Lz. In fig 4.1 we show the scaling collapse as a

function of τ for different fixed values of ξ.

This difference of behavior between our results and those in [26] reflects the

difference between passive scalars with strong clustering or phase-ordering ten-

dencies, and those which spread out in space. In turn, this clustering tendency is

presumably a reflection of the strongly compressible nature of the Burgers fluid.

Even when the driving field is compressible, the degree of clustering of the

passive particles depends on the nature of the interaction between them. In the
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presence of the hard-core interactions, the system reaches a phase-ordered state,

albeit one with strong fluctuations. As a consequence, in the limit of small scaling

argument, the spatial and temporal correlation functions show a cuspy approach

to a finite intercept. However, in the absence of any interaction, the passive

particles go into a much more strongly clustered state, where the correlation

functions show a power law divergence at the origin [22, 23].

Finally, the study of the largest cluster allows us to arrive at a simple picture

of a fluctuation-dominated phase-ordered state. Strong fluctuations often make

the order parameter (the first Fourier component of the density profile) zero.

But the system does not lose its ordered character. Rather, fluctuations carry

the system from one ordered configuration to another macroscopically distinct

one, over a time-scale ∼ Lz. However, the probability for the system to leave this

attractor of ordered state vanishes exponentially with the system size.
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Chapter 5

Non-equilibrium Probes in

Driven Diffusive Systems

In the last few chapters of this thesis, we have discussed advection of passive

particles which do not affect the medium. On the other hand, if probe particles

are introduced in a medium, then these probe particles may influence the medium

properties. However, one would expect that probe particles would produce local

effects and therefore for sufficiently low concentration of the probe particles, the

effect would not be strong. We find that this assumption may not always hold

true and depending on the nature of the probe and the medium, the effect of a

probe particle may be short ranged or long ranged or even macroscopic, in the

low dilution limit.

In the remaining part of this thesis, we discuss how the dynamical evolution of

a medium gets affected by the presence of probe particles and the influence of the

medium on the probe dynamics itself. We have considered a medium which can

be described by simple one-dimensional lattice models of nonequilibrium (driven)

systems and their equilibrium counterparts. We are primarily interested in the

simplest such models where no interaction is present among the medium particle,

other than hard-core exclusion. Two different kinds of nonequilibrium probe par-

ticles is considered—shock tracking probes (STPs) and directed probe particles
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(DPPs). The exchange rules are:

Medium : + − 1−→ − +

−+
q−→ + −

(5.1)

Probe : 0− 1−→ −0

+0
w−→ 0+

where ‘+’ denotes a particle, ‘−’ denotes a hole and ‘0’ denotes a probe. We will

consider equal densities of particles and holes in the medium, i.e. ρ0 = 1 − 2ρ

where ρ and ρ0 denote the densities of the particles and the probes, respectively.

STPs exchange with the particles and holes of the medium in opposite di-

rections but with equal rates, i.e. w = 1. For a DPP on the other hand, these

two rates are different—we consider w < 1. Note that these dynamical moves

for the probes do not satisfy detailed balance. Hence these probes are intrinsi-

cally nonequilibrium. Moreover, as seen from the exchange rules, both STPs and

DPPs tend to have an excess of holes to their left and particles to their right.

For example, consider this configuration: + −−− 0 + + + +−. Here, the probe

is locally stable and moves only when the medium around the probe rearranges

itself, e.g. in this case, the probe can move only when a particle(hole) approaches

the probe from left(right).

In other words, around a probe, a strong density variation or ‘shock’ is devel-

oped. However, depending on the exchange rules of the medium and the probe

(which is controlled by the parameters q and w, respectively), the density profile

around a probe can be qualitatively different. For example, when q = 1, the

medium is described by a symmetric exclusion process, in absence of any probes.

In this initially equilibrium medium, when even a single nonequilibrium probe is

added, the shock around the probe extends through macroscopic distance for all

values of w.

Consider another limiting case, q = 0, w = 1. In this case, the medium is

described by a totally asymmetric exclusion process and a single probe gives rise

to a shock that decays as a power law [34]. For q = 0 and w = 0, however, as seen

from Eq. 5.1, a single probe behaves as a tagged medium particle and no shock
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Figure 5.1: Phase diagram for a single nonequilibrium probe in an ASEP. The

x-axis refers to the properties of the probe while the y-axis refers to that of the

medium. The top thick line corresponds to the symmetric medium (SEP) where

a single probe produces macroscopic effect. The shaded region corresponds to the

power law decay of the density profile around a single probe and in the unshaded

part the shock across a single probe is short ranged.

is produced. For intermediate values of q and w an interesting phase diagram is

obtained [see fig 5.1].

In chapter 6, 7 and 8 we summarise our results for different lattice models of

equilibrium and nonequilibrium medium and describe how the interplay between

equilibrium and nonequilibrium characteristics of the medium and the probe par-

ticles gives rise to interesting effects.
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Chapter 6

Nonequilibrium Probes in an

Equilibrium Medium

In this chapter, we discuss the situation when nonequilibrium probes are intro-

duced in a medium that is initially in equilibrium. We primarily consider the

case when the medium is described by a symmetric exclusion process (SEP). The

dynamical moves are shown below:

Medium : + − 1−→ − +

−+
1−→ + −

(6.1)

Probe : 0− 1−→ −0

+0
w−→ 0+

These moves are same as in Eq. 5.1 of last chapter, with q = 1. When the

backward exchange rate of the probe w becomes unity, the model reduces to a

special case of the model proposed by Arndt et al. (popularly known as AHR

model) [45], with the asymmetry parameter set equal to its critical value 1. In

section 6.5 we include a discussion on the AHR model.

In the next section, we discuss how the static properties of the medium get

strongly affected by the presence of a single probe. In section 6.3 and 6.4 describe

our results on the dynamical properties of the medium and the probe, respectively.

In section 6.5 we consider the case when a macroscopic number of such probes are
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present and in section 6.6 we generalise our conclusions for a few other examples

of equilibrium media.

6.1 Properties of Symmetric Exclusion Process

In the absence of any probe, the medium is described by a one dimensional

symmetric exclusion process (SEP), which is one of the most important lattice

gas models for equilibrium systems. In this section, we include a brief discussion

on SEP.

SEP being an equilibrium lattice gas model, its steady state obeys detailed

balance. It can be shown that the steady state of the system is described by a

product measure with uniform density ρ. As a result, the two point and all the

higher order static correlation functions of the local density variable factorise in

steady state.

Although the steady state density profile is uniform throughout the system,

in a typical configuration, density fluctuations are present. It is interesting to

study how these density fluctuations dissipate in time. For this purpose one can

monitor the mean squared displacement of a tagged particle defined as follows.

Let Yk(t) be the position of the k-th tagged particle at time t. Then its mean

squared displacement C+(t) is defined as

C+(t) = 〈(Yk(t) − Yk(0) − 〈Yk(t) − Yk(0)〉)2〉. (6.2)

Note that for a SEP, since there is no current in the steady state, the average

〈Yk(t) − Yk(0)〉 = 0. In one dimension, C+(t) can be exactly calculated and has

the asymptotic form [44]

C+(t) ≈
√

(2/π)(1 − ρ)/ρt1/2. (6.3)

Notice the sub-diffusive growth of C+(t)—although an individual particle behaves

like an unbiased random walker, because of the hard-core constraint, the trajec-

tory of the k-th particle is bounded from two sides by the trajectories of the

(k − 1)-th and (k + 1)-th particles. This is known as ‘caging effect’ and leads to

the sub-diffusive growth of C+(t). This is a special property found only in one

dimension. C+(t) for SEP in higher dimensions does grow diffusively.
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6.2 Static Properties of the Medium

6.2 Static Properties of the Medium

As described above, in the absence of any probe, the system obeys detailed bal-

ance and its steady state is given by a uniform product measure. With the

introduction of a single probe, the condition of detailed balance is violated, since

the dynamical rules for the probe do not satisfy detailed balance. As a result,

when a single probe is present, there is a small (∼ 1/L) current in the system.

Density Profile measured from the single Probe: In this nonequilib-

rium steady state, there is a system-wide density gradient around the probe.

This can be explained as follows. First note that a probe exchanges with par-

ticles (holes) to its left (right) with rate w (1). As of now, set w = 1. Then a

periodic system with a single probe can be alternatively viewed as an open chain

SEP where particles (holes) are injected from the left (right) and taken out from

the right (left) end with rate unity. The particle density at the left end should

then be 1 and at the right end it should be 0. The current in this boundary driven

diffusive system would be proportional to the density gradient. The continuity

equation then becomes
∂ρ

∂t
= D

∂2ρ

∂x2
(6.4)

In steady state, the left hand side vanishes and solving with the boundary con-

dition for ρ, gives

ρ(r, L) = 1 − r

L
(6.5)

Note that since we have interpreted a periodic system with a single probe as an

open chain SEP, the latter has a special property that as soon as a particle (hole)

leaves the chain from right (left) end, it immediately reappears at the left (right)

end. This implies a correlation between the injection and extraction at the two

boundaries.

Figure 6.1 shows the density ρ(r) ≡ 〈n(r)〉 at a distance r away from a single

STP, where n(r) is the occupancy at r. We find that

ρ(r, L) = A(1 − r/L), A ' 1. (6.6)
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Figure 6.1: Density profile as a function of the scaled distance away from the

probe in the SEP with w = 1 for L = 513, 1025, 2049. The data are averaged over

50000 histories. The inset shows g(r, ∆r for r = 1024 (L = 2049, averaged over

104 histories) and illustrates that the pair correlation is close to zero.

Above form of the density profile remains valid as long as the backward ex-

change rate w for the probe in non-zero. However, when w = 0, the form of

ρ(r, L) changes. Note that for w = 0, the probe can move only in the forward

direction by exchanging with the holes in the medium, but it cannot exchange

with the particles of the medium. We find that in such a case, ρ(r, L) falls expo-

nentially with length scale proportional to L: ρ(r, L) = A0[1 − exp(−r/L)] with

A0 ' 1 [see fig 6.2].

Two point Correlation Function in the Medium: To study the fluctua-

tions present in the medium around the average density profile, we have monitored

two point density-density correlation function defined as

g(r, ∆r) = 〈n(r)n(r + ∆r)〉 − ρ(r)ρ(r + ∆r) (6.7)

for a fixed value of the distance r measured from the probe. Our data presented
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Figure 6.2: Density profile as a function of the scaled distance away from the

probe with w = 0. Logarithmic scale has been used in the y direction. We have

used L = 513, 1025 and averaged over 50000 histories.

in the inset of fig 6.1 shows that g(r, ∆r) is close to zero for all values of ∆r,

which points to the existence of product measure.We have verified that this holds

for all values of w.

Note that in order to establish the presence of inhomogeneous product mea-

sure, one should in principle measure all higher order correlation functions and

verify that each of them factorises. We have measured only two-point correlation

function and from this study it cannot be said conclusively whether the steady

state of the system supports inhomogeneous product measure or not. However,

from our interpretation involving an open chain SEP, and from the known result

that an open chain SEP shows inhomogeneous product measure [47], it seems

plausible that inhomogeneous product measure might actually exist even in this

system.
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6.3 Dynamical Correlation Function in the Medium

In the last section, we have seen that presence of a single probe takes the system

from an equilibrium state to a nonequilibrium current-carrying state. However,

at a macroscopic distance away from the probe, the system still behaves as in

local equilibrium—local properties of the medium still resembles those of the SEP.

We demonstrate this by measuring the mean squared displacement C+(r, t) of a

tagged particle which is initially at a distance r away from the probe.

In absence of any probe when the system is executing a SEP, mean squared

displacement of a tagged particle can be exactly calculated and the asymptotic

behavior is shown in Eq. 6.6. When a probe is present, C+(r, t) for large r

becomes same as in Eq. 6.6 with ρ replaced by the local density ρ(r, L). In fig

6.3 we present data for C+(r, t) for different values of local densities.

Note that this agreement is expected to hold as long as the tagged particle

remains in the region with local density ρ(r, L). As shown in fig 6.1, density of

the medium changes over a length scale ∼ L and typical velocity of a tagged

particle is ∼ 1/L (since there is a current ∼ 1/L in the system). This implies

that the tagged particle will remain in the region with local density ρ(r, L) for a

time-scale ∼ L2. In other words, the region of validity in fig 6.3 extends upto a

time-scale ∼  L2.

6.4 Mean Squared Displacement of the Tagged

Probe

The mean squared displacement of the single probe grows diffusively with a dif-

fusion constant D ∼ 1/L. This can be explained as follows. For equal densities

of particles and holes in the medium and for w = 1, the probe has an equal

probability of moving to the left or right. In order to move to the right (left), the

probe must have a hole (particle) to its right (left) [see Eq. 6.1] and according to

Eq. 6.6, this probability is ∼ 1/L in each Monte Carlo step. The mean squared

displacement of the probe therefore scales as 1/Lt for large t. We present our

data in fig 6.3 for w = 1.
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Figure 6.3: Scaled mean squared displacement of tagged particles at distances

r = 580, 985, 1390, away from the probe, corresponding to ρ(r, L) = 0.72, 0.52, 0.32

(L = 2049 and w = 1, averaged over 104 histories). The curves are seen to merge

when the coefficient (2/π)1/2(1−ρ(r, L))/ρ(r, L) is divided out. Also shown is the

mean squared displacement of a single probe scaled up by a factor of 100.

For 0 < w < 1, the probe has a non-zero velocity. But since the density

profile around the probe remains same as in Eq. 6.6, the probability to move

to the left is ∼ 1/L as before, but the probability for moving to the right now

becomes ∼ w/L. As a result, the diffusion coefficient shows same 1/L scaling

with the system size.

6.5 Macroscopic Number of Probes

So far we have considered only a single nonequilibrium probe introduced in a sys-

tem executing SEP. We have found that a single probe gives rise to a macroscopic

effect in the system. When a macroscopic number of these probes are introduced,
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we find that the medium induces a very strong clustering tendency among them.

In fact for w 6= 0 these probes form essentially a single cluster and are phase sep-

arated. The other phase is comprised of the medium, which continues to remain

in local equilibrium with a similar density gradient as in the single probe case.

We understand this phenomenon using the following picture. First consider a

single probe in the medium which produces a macroscopic density gradient. Now,

if another probe is added to the system, it will feel the presence of the density

gradient, regardless of its initial separation from the first probe, since the density

gradient extends over macroscopic distances. If w 6= 0, the second probe will now

move along the direction of increasing density (by exchanging with particles and

holes of the medium in the opposite directions) until it reaches the neighboring

site of the first probe. This explains the strong attraction between a pair of

probes. By extending similar reasoning for a macroscopic number of probes, one

can explain why the probes form essentially a single cluster.

Note that for w = 0, clustering among the probes is not possible, since the

number of particles between any two probes is a constant of motion and can

not change. However, even in this case the two point density-density correlation

function between the probes is a scaling function of r/L with r being the spatial

separation and L the system size.

It will be useful to compare our results for many probes with the known

results for another model, which is commonly known as the AHR model [45].

This is a two component model defined on a one dimensional periodic lattice.

The dynamical moves are as follows:

+ − r−→ − + (6.8)

−+
1−→ + − (6.9)

+0
1−→ 0 + (6.10)

0− 1−→ −0 (6.11)

As mentioned at the beginning of this chapter, our present model of SEP with

STPs (w = 1) reduces to AHR model when the asymmetry parameter r is set

equal to unity.
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Arndt et al. had claimed that this model shows spontaneous breaking of

translational invariance and phase separation as r is varied. For r < 1 the system

is in the ‘pure phase’, where a typical configuration contains three blocks, one

each of particles, holes and probes. In the thermodynamic limit, the current

vanishes exponentially with the system size.

When r is slightly greater than 1, the system is found in a ‘mixed phase’, where

the two pure blocks of particles and holes that was found for r < 1, merge and

the rest of the system consists of the probes and occasional presence of particles

and holes, distributed in an uniform way.

For still larger values of r, phase containing the probes grows in size and

finally when r exceeds a critical value rc, this phase takes over the entire lattice

and the system goes to a ‘disordered phase’. In [45] it was therefore claimed that

this model shows two phase transitions: one at r = 1 and the other at r = rc.

However, subsequent studies of Rajewsky et al. show that the second phase

transition at r = rc is not real—at this point the correlation length becomes very

very large (∼ 1070) but remains finite.

The only critical point, therefore, is at r = 1. Our studies show that while the

pure block of the probes can still be found at r = 1, the pure blocks of particles

and holes that are present for r < 1, disappear. The system at r = 1 consists of

two phases, one is comprised of the probes and a linear density gradient of the

particles is present across the other phase.

6.6 Probes in Other Equilibrium Media

So far we have considered a medium which is described by a SEP, in the absence

of any probe. In this section, we briefly describe our results for a few other

examples of an equilibrium medium.

Symmetric k-hop Model: We have defined a symmetric variation of k-hop

model, first introduced in [48]. In this model, extended range for particle hopping

is allowed. The dynamical rules are as follows. If a randomly chosen site contains

a particle (hole), then it exchanges with the nearest hole (particle) or probe that

lies within a distance k from the chosen site; the range k is chosen on either side

of the chosen site with probability 1/2. If the chosen site contains a probe, then
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Figure 6.4: Scaled density profile for symmetric k-hop model for k = 2 and k = 3.

Inset shows the same plot for Kawasaki model with = epsilon = 0.2. We have

used L = 513, 1025 and w = 1.

with equal probability it exchanges with its left or right neighbor if the left or

right neighbor is a particle or hole, respectively. For example, the configuration

−− 0 + + +− goes to −− 0−+ + + when the + next to the 0 is chosen to move

to the right. Note that k = 1 corresponds to SEP with STPs present in it.

When no probes are present, the dynamics of the system satisfies detailed

balance and its steady state is given by a uniform product measure. We find that

a single probe gives rise to macroscopic shock as seen is section 6.2. However, as

k value increases, the particles and holes in the medium can hop over a larger

and larger range and it becomes increasingly difficult for the probe to sustain a

density gradient. As a result, the amplitude of the shock around the probe, i.e.

the prefactor in Eq. 6.6, falls off as k increases. We present our data for k = 2

and k = 3 in fig 6.4

Kawasaki Model: In this case, the particles and holes in the medium evolve
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according to Kawasaki dynamics, i.e. there is an Ising interaction V = −ε[(n(i)−
1
2
)((n(j) − 1

2
)] between the neighboring particles 〈ij〉 in the medium and each of

the first two moves in Eq. 6.1 takes place with rate (1 − ∆V ) where ∆V is the

change in Ising energy. The exchange rules for the probes remain same as in Eq.

6.1.

We find that even in this case, the medium is strongly affected by the probe.

A single probe gives rise to macroscopic density gradient [see fig 6.4] and a small

current in the medium and the composite system goes to a nonequilibrium steady

state.
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Chapter 7

Probes in a Nonequilibrium

Medium

In the previous chapter, we have discussed the effect of nonequilibrium probes in

an initially equilibrium medium. We have seen that their effect is quite strong and

even a single nonequilibrium probe produces a macroscopic effect on the medium.

However, the effect is less drastic for a medium which is initially in a current-

carrying nonequilibrium state. The effect of a single probe is not macroscopic in

this case but it decreases as a function of the distance away from the probe. In this

chapter, we will consider the case when the probes are introduced in a medium

described by asymmetric simple exclusion process (ASEP). The dynamical rules

discussed in chapter 5 were

Medium : + − 1−→ − +

−+
q−→ + −

(7.1)

Probe : 0− 1−→ −0

+0
w−→ 0+

with 0 ≤ q < 1 and 0 ≤ w ≤ 1. Depending on the values of q and w the density

perturbation created by a single probe may show a long-ranged decay (power

law) or a short-ranged decay (exponential) as a function of the distance away

from the probe. A phase transition takes place between this power law phase and
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exponential phase which gives rise to an interesting phase diagram in the q − w

plane.

In the next section, we summarise a few known results on ASEP and in section

7.2 we discuss properties of macroscopic number of shock-tracking probes or STPs

(w = 1) in a medium described by totally asymmetric exclusion process or TASEP

(q = 0). In section 7.3 discuss the single-probe phase diagram for general values

of q and w and the consequence of this phase diagram on the static and dynamic

properties of a macroscopic number of probes.

7.1 Properties of ASEP

In one dimension, the dynamical rules for an ASEP can be described by the

first pair of exchanges shown in Eq. 7.1 with 0 ≤ q < 1. In steady state, in

the thermodynamic limit, the system is known to have uniform product measure

(uncorrelated occupancy of the sites) with density ρ [51]. There is a current

through the system in steady state and is given by J = (1 − q)ρ(1 − ρ). The

average speed of any particular tagged particle is therefore J/ρ = (1 − q)(1− ρ).

The variance C+(t) of the displacement of a tagged particle, as defined in Eq.

6.2, is known to grow linearly in time for an infinite system with a diffusivity

D = (1 − ρ)(1 − q) [52]. In a finite system C+(t) is non-monotonic due to the

existence of a kinematic wave which carries the density fluctuations through the

system with speed dJ/dρ = (1 − q)(1 − 2ρ) [53, 54]. Since the average speed

of the tagged particle is (1 − q)(1 − ρ), it moves from one density patch to the

other with relative speed ∆v = (1−q)ρ; the variance of its displacement increases

linearly, since each patch contributes a random excess to the relative velocity of

the tagged particle.

Now for a finite periodic system, the tagged particle returns to its initial

environment (density patch) after a time L/∆v. The variance of the tagged

particle displacement at this time, measures the dissipation of this density patch.

C+(t) is then expected to show a dip each time the tagged particle comes back

to its initial environment which occurs at times L/∆v or integral multiple of that

[see fig 7.1].
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Figure 7.1: C+(t) and σ2(t) for tagged particles in an ASEP. We have used

L = 1024 and ρ = 0.375 and averaged over 10000 iterations.

The quantity C+(t) does not directly capture the dissipation of the density

pattern, except when it becomes minimum. In order to study the dissipation of

the density fluctuations at all times, one has to apply a Galilean shift to keep

up with one particular density patch. The effect of this Galilean shift is to keep

track of which particle is present at that density patch at time t; it is given by

k′ = k − ∆vt. This leads to the following definition of the sliding tag correlation

function [55, 56]:

σ2(t) = 〈(Yk′(t) − Yk(0) − 〈Yk′(t) − Yk(0)〉)2〉 (7.2)

Note that the above correlation function involves different tags at different times,

thus monitoring the evolution of the same density patch at all times. This corre-

lation function therefore measures the dissipation of the density fluctuations and

forms the lower envelope of C+(t), as shown in fig 7.1. In the long time limit,

σ2(t) ∼ t2/3.
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There is an alternative way to track the dissipation of density fluctuations in

the system. In this method, introduced by van Beijeren [62], one monitors the

quantity

B(t) =
(

Yk(t) − Yk(0) − (Yk(t) − Yk(0))
)2

(7.3)

where the overhead bar denotes averaging over different evolution histories, start-

ing from a fixed initial configuration drawn from the steady state ensemble [62].

Note that in this averaging process, the initial pattern of density fluctuations

around a particular tagged probe is identical for all evolution histories. The

mean (Yk(t) − Yk(0)) shows fluctuations superposed on a linear growth law as

shown in fig 7.2. These fluctuations are determined by the density pattern in

the initial configuration [63]. B(t) therefore gives the spread of this pattern with

time and for large time B(t) ∼ t2/3.

7.2 Properties of Shock Tracking Probes in a

TASEP

In this section, we discuss the dynamical properties of the tagged STPs (w = 1)

in a medium described by TASEP (q = 0). Since a probe exchanges with the

particles and holes of the medium in opposite directions and with equal rate,

it tends to migrate to places where there is an excess of holes to its left and

particles to its right, i.e. a shock. For example, consider the configuration:

+ + − − − − 0 + + + +−. Here, the probe is stable in its position—until any

local fluctuation in the medium brings the particle (hole) at the left (right) end

close to the probe, the latter cannot move.

Note that in this case, a particle (hole) exchanges with a hole (particle) and

a probe in exactly the same way. The STPs in this case reduce to second class

particles [57, 34], i.e. they behave as holes for the particles and as particles for

the holes. If ρ and ρ0 are densities of particles and probes, respectively, then a

particle behaves as if in a TASEP with an effective hole density (1 − ρ), while a

hole finds itself in a TASEP with an effective particle density (ρ + ρ0).
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Figure 7.2: The gray curves show the distance covered, Dk(t) = Yk(t) − Yk(0) −
(1 − q)(1 − ρ)t, in time t about the mean (1 − q)(1 − ρ)t by the k-th tagged

particle for 10 Monte Carlo runs for a single fixed initial configuration, drawn

from the steady state ensemble. The black curve shows the mean displacement,

〈Dk(t)〉 obtained by averaging over 500 dynamical evolutions for the same initial

configuration. Here, L = 104 and ρ = 0.25. [Figure taken from S. Gupta et al.,

cond-mat/070346.]

Static Properties of Second Class Particles

Derrida et al. have found the exact steady measure of this system using the

matrix method [34]. The steady state factorises about any second class particle,

which implies factorisation in the one-component system about the shock posi-

tion. When there is a single second class particle present in the system, the shock

around it decays as a power law with an exponent 1/2. In presence of two (or

a finite number of) second class particles the medium induces an attraction be-

tween them and they form a weakly bound state and the distance r between two

successive second class particles follows a power law distribution P (r) ∼ r−3/2.
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When the number of second class particles becomes macroscopic, the density pro-

file at a distance r away from the probe has the form [see appendix C for details]

ρ(r) =
1√
r

exp(−r/ξ) (7.4)

where the correlation length ξ diverges in the low concentration limit of the second

class particles:

ξ ≈ 4ρ(1 − ρ)/ρ2
0, as ρ0 → 0. (7.5)

We are interested in the dynamical properties of the STPs when a macroscopic

number of these probes are present in the system. We find that the dynamics

of these STPs is governed by a crossover time-scale that diverges as the STP

concentration goes to zero. We show that various dynamical correlation functions

of the STPs allow for a scaling description that involves this crossover time-scale.

In the remaining part of this section, we present our results for the different

dynamical quantities we have monitored.

Variance of the Displacement of the Tagged Probes

For tagged probe particles, the variance of STP displacement C0(t) shows a

crossover from an initial passive scalar advection regime to a long time diffusive

regime. The associated crossover occurs on a time-scale that diverges strongly as

the probe density approaches zero.

Ferrari and Fontes in [58] have calculated the asymptotic (t → ∞) behavior

of C0(t) for STPs using a graphical construction of the two coupled ASEPs with

densities ρ and (ρ + ρ0). Their calculation shows that C0(t) ≈ Dt with diffusion

constant

D =
ρ(1 − ρ) + (ρ + ρ0)(1 − ρ − ρ0)

ρ0

. (7.6)

However, the above diffusive behavior of C0(t) can be seen only for asymp-

totically large time. For small time, one actually finds a super-diffusive behavior.

Note that in the limit of low concentration of the probe particles, one would ex-

pect that for small times, each STP would behave as an individual non-interacting

particle, subject only to the fluctuations of the medium. The variance of the dis-

placement of a single probe has been shown analytically to grow as t4/3 using the

matrix product method [59].
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This result can be alternatively understood from passive scalar advection. A

single STP moving in a TASEP can be alternatively viewed as a passive particle

sliding down along the local slope of a surface which evolves through Kardar-

Parisi-Zhang dynamics. The particle would tend to stay in the local valleys of

the surface. Note that an STP is not really passive—when it is present in a

valley, it tends to block the local fluctuations of the valley, unlike the passive

slider advection case discussed in chapter 2 and 3. However, this does not affect

the scaling properties of the surface when a single STP is present in the system.

The variance of STP displacement in such a case would be expected to grow as

t2/z . Recalling that z = 3/2 for a KPZ surface [23], we recover the t4/3 behavior

discussed above.

Hence in the case of a small but finite concentration of STPs, C0(t) shows

single particle (super-diffusive) behavior at small times and diffusive behavior for

asymptotically large times. One would therefore expect a crossover between these

two regimes that would occur at a time-scale τ which is a function of ρ0. The

natural expectation is τ ∼ ξz where ξ is the correlation length, defined in Eq.

7.4. Substituting the value of the dynamical exponent z = 3/2 and from Eq. 7.5

one obtains

τ ∼ ρ−3
0 (7.7)

in the limit of small ρ0.

This leads us to propose the following scaling form for C0(t)

C0(t) ∼ t4/3F

(

t

τ

)

. (7.8)

This form is valid in the scaling limit of large t and large crossover time-scale τ

(i.e. ρ0 → 0). Here F (y) is a scaling function which approaches a constant as

y → 0. For y � 1, we must have F (y) ∼ y−1/3, in order to reproduce C(t) ≈ Dt.

We verify the scaling form by Monte Carlo simulation. In fig 7.3, we plot

C0(t)/t
4/3 versus t/τ for various values of ρ0 and obtain good scaling collapse,

except for very small values of t which fall outside the scaling regime.

One important issue in this numerical simulation is the equilibration. To

verify the scaling form in Eq. 7.8, one has to consider large values of L to

avoid the oscillations in C0(t) due to the presence of the kinematic waves in the
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Figure 7.3: Scaling collapse for mean squared displacement of tagged STPs with

densities 0.08, 0.1, 0.12, 0.15 (moving upwards). We have used L = 131072 and

averaged over 100 histories.

system (see below). Fortunately, it is possible to save the equilibration time by

directly generating steady state initial configurations, following the prescription

by Angel [60], which uses a combinatorial description of TASEP with second class

particles [see appendix E].

A nontrivial check of the scaling form comes from examining the dependence

of τ on ρ0. Matching the early and late time form for C0(t) at τ ∼ ρ−3
0 then yields

D ∼ ρ−1
0 , in agreement with Eq. 7.6. Yet another check comes from considering

the implication for a system with a finite size L. Finite size scaling would suggest

that once L is smaller than ρ−2
0 , the behavior D ∼ ξ1/2 found above should give

way to D ∼ L1/2. This is in conformity with the calculation of [61] where the

diffusion of a single second class particle in a finite system has been solved using

Bethe ansatz.

In a finite periodic system of size L, the quantity C0(t) shows an oscillatory
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Figure 7.4: Mean squared displacement C0(t) of tagged probes shows oscillation

with a period L/(1 − 2ρ). Sliding tag correlation σ2(t) with the Galilean shift of

tags k′ = k− (1−2ρ)t gives rise to another oscillatory pattern with period halved.

We have used L = 2048 and ρ = 0.375.

behavior due to the presence of the two kinematic waves present in the system.

The two waves carrying the density fluctuations of the particles and holes in the

medium move through the system with speeds ±(1 − 2ρ), corresponding to the

two TASEPs with densities ρ and (1− ρ). The density fluctuations of the probes

get affected by both these waves and at the end of one complete cycle when a

tagged probe comes back to its initial density patch, C0(t) shows a dip which

occur at times that are integral multiples of L/(1 − 2ρ) [shown in fig 7.4].

Because of the presence of two kinematic waves with different velocities, it is

not possible to keep up with both of them simultaneously by applying Galilean

shift, as described in Eq. 7.2. In fig 7.4 we show that when the Galilean shift is

applied so as to keep up with one of the waves, the oscillation in C0(t) do not go

away but the period is halved, due to the effect of the other wave. To track the
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dissipation of the density fluctuations of the probes, we thus use the method of

van Beijeren [62] and we describe our results below.

Dissipation of Density Fluctuations

We monitor the correlation function B0(t) defined in Eq. 7.3. We find that B0(t)

increases as t2/3 for large t, and would expect a scaling function to connect this

regime to the small time regime B0(t) ∼ t4/3, characteristic of single particle

behavior. In the limit of large t and small ρ0, we expect

B0(t) ∼ t4/3G

(

t

τ

)

. (7.9)

The scaling function G(y) should approach a constant as y → 0 while for y � 1,

one expects G(y) ∼ y−2/3 [shown as a reference line in fig 7.5]. Our simulation

results [fig 7.5] are consistent with this scaling form.

Fluctuation of the Separation between a pair of STPs

In this section, we study how the distance between a pair of STPs (e.g. the k-th

and (k + 1)-th) fluctuates in time. Consider the following quantity

∆(t) ≡ 〈(R(t) − R(0))2〉 (7.10)

where R(t) is the separation between the pair at time t. Note that for small

time and small ρ0, the STPs do not interact with each other. Hence for any

particular pair, the fluctuations of the position of the two STPs (which result in

the fluctuation of the separation between them) are uncorrelated. The quantity

∆(t) therefore grows diffusively in time. However, since ρ0 is finite, for large time,

∆(t) is expected to saturate at a value that depends on ρ0. The crossover time-

scale between the initial diffusive growth and the late-time saturation should be

the same τ as found in Eq. 7.8 and 7.9. This leads to the scaling form:

∆(t) ∼ t H

(

t

τ

)

(7.11)

where the scaling function H(y) approaches a constant as y → 0 and for y � 1

one must have H(y) ∼ 1/y. We verify this scaling form using Monte Carlo

simulation and our results are presented in fig 7.6.
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Figure 7.5: Scaling collapse for B0(t) with probe densities 0.08, 0.1, 0.12, 0.15

(moving upwards). We have used L = 16384 and averaged over 25 initial config-

urations and 40 evolution histories for each. The dashed line shows a power law

decay with exponent 2/3.

7.3 Directed Probe Particles in an ASEP

In this section, we consider general values of w and q. For q < 1 the medium is

described by an ordinary ASEP. For w < 1 the probe particles have a non-zero

drift velocity towards the right and we call them directed probe particles (DPP).

Single Probe

In [64, 59, 65] this model was considered in presence of a single DPP. The exact

steady state measure was obtained using matrix method. In [64] q = 0 and w < 1

was studied and the density fluctuation of the medium at a distance r away from

the DPP was found to decay as

r−1/2exp(−r/ξ) (7.12)
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Figure 7.6: Scaling collapse for the fluctuation of the distance between two suc-

cessive probe particles with ρ0 = 0.08, 0.1, 0.12, 0.15 (moving downwards). Inset

shows the unscaled plot of the same quantity. We have used L = 16384 and

averaged over 1000 histories.

where ξ diverges as

ξ ≈ 4w(1 − w)/(ρ − w)2, as w → ρ. (7.13)

For w ≥ ρ, the shock around a probe decays as a power law with exponent 1/2.

w = ρ marks the critical point between the exponential and the power law phase

where ξ shows a divergence. In [65] q < 1 was considered and the power law

decay was retrieved for w/(1 − q) ≥ ρ, while for w/(1 − q) < ρ the decay was

exponential. This gives rise to the phase-diagram shown in fig 7.7 for a single

DPP.

The above phase diagram was derived using the matrix product method. Be-

low we provide a simple explanation of the phase diagram. In the exponential

phase, shown in fig 7.7, far away from the probe the density is equal to ρ. The
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Figure 7.7: Phase diagram for a single nonequilibrium probe in an ASEP. The x-

axis refers to properties of the probe while the y-axis refers to that of the medium.

Depending on w and q, the density perturbation created by the probe decays expo-

nentially or as a power law. As w and q are varied, a phase transition is observed.

The top thick line corresponds to the symmetric medium (SEP) where a single

probe produces macroscopic effect.

bulk current is therefore (1−q)ρ(1−ρ). Let V be the velocity of the probe. Then

the current in the bulk measured from the moving frame of the probe would be

(1− q)ρ(1− ρ)− ρV . Again, the current seen by the probe at the bond to its left

is wρ. Since the current in every bond should be the same in steady state, we get

V = (1 − q)(1 − ρ) − w (7.14)

In the power law phase, on the other hand, the probe essentially behaves as a

second class particle [64, 59], which is carried along by local shocks. The velocity
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of the probe in the power law phase would then be given by the kinematic wave

speed V = (1 − q)(1 − 2ρ). Along the critical line, the probe velocity in the two

phases must match. This gives

(1 − qc)(1 − ρ) − wc = (1 − qc)(1 − 2ρ)

qc = 1 − wc

ρ
(7.15)

which is the equation of the critical line.

In [59] the mean squared displacement for a single probe was calculated for

q = 0. It was found that in the exponential phase C0(t) grows diffusively with

time, while in the power law phase C0(t) ∼ t4/3.

Finite Density of Probes

The above phase diagram for a single probe has important consequences for the

dynamical properties of macroscopic number of probes. We find that for finite

ρ0 and q, in the power law phase, as well as on the critical line, the dynamical

properties of the probes are governed by a crossover time-scale that diverges

as ρ0 becomes small. This diverging time-scale is again related to a diverging

correlation length present in the system. Note that the power law decay of shock

around a single probe points to the existence of a diverging correlation length

in the system. On the other hand, in the exponential phase, the density profile

around a single probe decays over a finite length scale, i.e. as ρ0 becomes small,

the correlation length remains finite in this case. Accordingly, no diverging time-

scale exists in this phase.

Our numerical simulations show that in the power law phase and also on the

critical line, the mean squared displacement of the tagged DPPs follows a scaling

description as shown in Eq. 7.8. However, to obtain the best collapse we have

to rescale the time-axis by τ which diverges for small ρ0 with an exponent that

depends on q and w. Our data in fig 7.8 indicates that for a fixed q as w is

decreased, the exponent also decreases. We do not have any simple explanation

for this phenomenon.

No scaling description has been found in the exponential phase, since there is

no diverging time-scale.
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Figure 7.8: Scaling collapse for C0(t) for q = 0, w = 0.5 and q = 0, w = 0.7

(inset) is shown for ρ0 = 0.1, 0.12, 0.15. We have used L = 16384 and averaged

over 2000 histories.
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Chapter 8

Probes in the 1-d

Katz-Lebowitz-Spohn Model

In the previous chapter, we have considered nonequilibrium probes in a non-

equilibrium medium, in which no interaction is present except hard-core exclusion

between the particles. We have seen that depending on the kinematics of the

probe and the medium, the system may have a finite or a diverging correlation

length and this gives rise to an interesting phase diagram. In this chapter, we

consider a nonequilibrium medium with interaction. The dynamical moves are

shown below:

+ − 1 − ∆V−→ − +

+0
1−→ 0 + (8.1)

0− 1−→ −0

Here ∆V is the change in the nearest neighbour Ising interaction potential

V = − ε

4

∑

i

sisi+1 (8.2)

where si = 0,±1, according to the occupation of the site i and −1 ≤ ε ≤ 1. For

ε = 0 the model reduces to second class particles in a TASEP, as in chapter 7. In

this chapter we will only consider ε > 0.

In the absence of any probe, the system reduces to the one dimensional ver-

sion of Katz-Lebowitz-Spohn (KLS) model [66] which is a simple lattice gas model
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of driven diffusive systems, with nearest neighbor Ising interaction between the

particles. The steady state of the KLS model is known to have an Ising mea-

sure [66, 67] [for a proof see appendix D]. In presence of probes the system

shows an interesting phase transition as the coupling parameter ε is varied. Kafri

et al. [69] have attempted to characterise this phase transition by mapping the

model onto a zero-range process. In the next section, we give a detailed account

of this mapping and the static properties of the system. In section 8.2 we discuss

the dynamical properties.

8.1 Static Properties of Katz-Lebowitz-Spohn

Model with Probes

In [69] Kafri et al. reported that the KLS model with macroscopic number of

probes shows a phase separation transition for ε > 0.8 as the density ρ is increased

above a critical value ρc. In the phase separated state, a macroscopic domain,

composed of particles and holes of the medium, coexists with another phase which

consists of small domains of particles and holes, separated by the probes. They

explained this phase transition by attempting to approximately map the system

onto a zero-range process.

To describe the mapping, we first define a domain as an uninterrupted se-

quence of particles and holes, bounded by probes from both ends. The current

Jn out of a domain of length n can then be determined by studying a KLS model

in an open chain with boundary rates of injection and extraction equal to the rate

at which the particles and holes of the domain would exchange with the probes

at the domain boundaries. According to Eq. 8.1 this rate is unity. The current

Jn can be calculated exactly for an open KLS chain and for large n it has the

form

Jn = J∞

(

1 +
b(ε)

n

)

(8.3)

where the coefficient b has the following dependence on ε

b(ε) =
3

2

(2 + ε)v + 2ε

2(v + ε)
, v =

√

1 + ε

1 − ε
+ 1. (8.4)
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The study of Kafri et al. indicates that b plays an important role in characterising

the phase separation transition in the model.

The present system is mapped onto a zero-range process (ZRP) as follows:

the i-th probe is defined as the i-th site of ZRP and the length of the domain

to the left of the i-th probe is taken to be the occupancy n(i) of the i-th site of

ZRP. We illustrate this in fig 8.1.

++ 0 + 0 0 + 0

Figure 8.1: A typical configuration of the KLS model with probes and its corre-

sponding configuration in ZRP.

The hopping rate out of the i-th site in ZRP is taken to be the domain cur-

rent Jn(i) given in Eq. 8.3. For such a ZRP, therefore condensation transition is

expected to take place for b > 2 and ρ > ρc, when the occupancy at a single site

becomes macroscopically large, while the remaining sites have an average occu-

pancy ρc [70]. The number of particles present on a site follows the distribution

function

P (n) ∼ 1

nb
exp(−n/ξ) (8.5)

where the correlation length ξ diverges at the critical density [70].

The above results for the ZRP imply that in the present model of KLS chain

with probes, for large enough ρ and for ε > 0.8 [as follows from Eq. 8.4], there

should be a macroscopic domain present in the system which is composed of par-

ticles and holes (no probes). The rest of the system should consist of small probe

clusters, interrupted by the domains (of particles and hole) with size distribution

given by Eq. 8.5. The ZRP correlation length ξ, introduced in Eq. 8.5, is related

to the particle density by

2ρ

(1 − 2ρ)
=

∑

P (n)n
∑

P (n)
. (8.6)

87

Chapter8/zrp.eps


8. PROBES IN THE 1-D KATZ-LEBOWITZ-SPOHN MODEL

Note that (1− 2ρ) is the number of sites in the ZRP and LHS therefore gives the

particle density in ZRP in terms of the density in KLS chain (equal densities of

particles and holes have been considered here; in [71] the case of unequal particle

and hole densities was considered.). The critical density ρc is obtained from the

above expression with ξ → ∞.

In our numerical simulations, however, it is found that even when ε < 0.8

a macroscopic domain may exist for large ρ. Similar observations are reported

in [69]. In [69, 72] it has been argued that this is not a true phase separation.

The correlation length in this case is not really macroscopic but has a finite (and

large) value.

According to the above correspondence with the ZRP, it is expected that close

to the critical point, the domain size distribution for n � ξ should follow a power

law with exponent b(ε). However, our numerical simulations for various values of

ε and ρ [see fig 8.2] show that the power law exponent seems to be much closer

to 3/2 (which is the value of b at ε = 0), independent of the value of ε.

This result shows a contradiction. If the correspondence with ZRP has to be

believed, then the power law exponent b should be given by Eq. 8.4. On the

contrary, we find b = 3/2 for all ε. This leads us to examine the assumptions that

go into this KLS-ZRP mapping.

Independence of Domains: A crucial property of the ZRP is that the oc-

cupancies at the sites are uncorrelated. In our present model of KLS chain with

probes, this would imply that the domains between the probes should be indepen-

dently distributed. We have verified this assumption by measuring the conditional

probability P (n|n′) that the size of a particular domain is of length n given that

its neighboring domain is of length n′. We find that P (n|n′) does not depend on

n′ and is same as P (n) which shows that the neighboring domains are distributed

independently. Our data is presented in fig 8.3.

Finite Size Correction of Domain Current: Apart of independence of

the domains, another requirement for the ZRP mapping to hold is that the cur-

rent out of a domain of size n is same as the current in an isolated open KLS chain

and is given by Eq. 8.3. Evans et al. have shown in [71] that this holds true.

They have numerically measured actual current out of a domain and compared
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Figure 8.2: Domain size distribution for different values of ε and ρ. From the

ZRP correspondence, the expected values of the power law exponents are 1.87 for

ε = 0.6 and 2 for ε = 0.8, 0.9 which are shown by dashed lines. On the contrary,

the power law exponent is observed to be 1.5 (also depicted by dashed line) for the

range of ε considered.

this with the exact calculation for an open chain KLS model. Good agreement

was found for large n.

To take into account the finite size corrections for moderate n values, we

simulate a ZRP where the hopping rate out of a site is read off directly from the

actual Jn vs n data, obtained from numerical simulation. The mass distribution

for this ZRP is found to have the same form as in Eq. 8.5 with the exponent b

given by Eq. 8.4, as expected. Hence the finite size correction to Jn is not the

reason for the discrepancy shown in fig 8.2.

Non-Markovian Movement of the Probes: There is however, one as-

pect of the KLS model with probes that is not captured in the corresponding

ZRP. Since a probe exchanges with the particles and holes of the medium in
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Figure 8.3: The conditional distribution of domain size P (n|n′) as a function of

n for n′ = 4, 8. For comparison P (n) is also shown. P (n|n′) is seen to match

with P (n) which shows the domains are independently distributed. We have used

L = 2048, ε = 0.6 and ρ = 0.375.

opposite directions, as shown in Eq. 8.1, once a probe moves in one particular

direction, it cannot immediately move in the opposite direction at the next time-

step. For example, a probe moves to the left by exchanging with a particle in the

medium. Right after this exchange the probe has the particle as its right neigh-

bor. Clearly, the probe cannot take a step to the right as long as that particle

stays there. In other words, the probes have a finite memory which makes their

movement non-Markovian. In terms of the ZRP this would mean that once a site

has emitted a particle to its right neighbor, it has to wait for some time till it

can receive a particle from its right neighbor. This waiting time should depend

on the form of the density profile in a domain. Note that in this non-Markovian

ZRP, apart from J∞ and b(ε), there are other parameters that are associated with

the exact form of the waiting time. As a result, the phase-diagram becomes com-
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plicated and to specify the criterion of a phase transition a much more detailed

analysis is required which might shed some light on the observed discrepancy

about domain size distribution.

8.2 Dynamics of Probes in a Katz-Lebowitz-Spohn

Model

Two Probes

Levine et al. have considered a KLS chain with two STPs in [35]. They have

argued that the time-evolution of the separation between the probe pair is gov-

erned by a Master equation. Their analysis indicates that the medium induces an

attraction among the probe particles and they form a bound state. The steady

state distribution of the distance between two probes takes the form P (r) ∼ r−b

where b is a function of ε given by Eq. 8.4. For ε = 0 one retrieves P (r) ∼ r−3/2

as found in [34].

Rakos et al. have shown in [73] that the random force between the probe

pair is sensitive to the noise correlations present in the medium. When the probe

particles are embedded in a KLS ring, such that the random force that drives

the probe particles is fully generated by the current fluctuations of the driven

medium, the probes inherit the dynamical exponent of the medium, which is 3/2.

On the other hand, if the random force has a part that is temporally uncorrelated,

the resulting motion can be described by a dynamical exponent z = 2.

To study the dynamics of the system, Rakos et al. monitored the average

distance between the two probes starting from the initial configuration in which

the two probes were side by side. The approach to the steady state was modelled

by the scaling ansatz

P (r, t) ∼ r−bf(r/t1/z) (8.7)

where P (r, t) is the probability that starting as nearest neighbors, the two probes

are at a distance r apart at time t. In the range 1 < b < 2 this implies that the

average distance between the two probes grows as

〈r(t)〉 ∼ t(2−b)/z . (8.8)

91



8. PROBES IN THE 1-D KATZ-LEBOWITZ-SPOHN MODEL

In [35, 73] time evolution of the average distance between the two probes

was monitored numerically. Starting from a randomly disordered configuration,

with the restriction that the two probes are placed on nearest neighbor sites, the

system was evolved for a time tequil in an attempt to let it reach an equilibrium

state. The time evolution followed the exchange rules shown in Eq. 8.1 with the

important modification that the two probes were constrained to remain nearest

neighbors i.e. they hop together as if they occupy only a single site. At the end

of this equilibration, the medium is assumed to be locally in steady state, in the

vicinity of the probes, up to a distance of the order t
2/3
equil. At this point, defined as

t = 0, the restriction for the relative position of the probes was released and the

distance between them monitored. Even with such partially equilibrated initial

condition, the distance between the probes is assumed to follow the scaling form

in Eq. 8.7 for t � tequil when the two probes move within an equilibrated region.

In this time regime, it is numerically verified that 〈r(t)〉 follows Eq. 8.8 [35, 73].

Note that the scaling form in Eq. 8.7 is expected to be valid in steady state.

Therefore, to verify this scaling form, a different and more natural choice of

initial condition would be to bring the system first in steady state (without any

restriction on the movement of the probes). Then wait till the probes come to

a nearest neighbor position with respect to each other and define t = 0 at this

point. Then one would expect Eq.s 8.7 and 8.8 to remain valid for all t. But our

data shows that 〈r(t)〉 follows Eq. 8.8 only for an initial time-regime, after which

the growth exponent changes to 0.33 which is close to the value of the growth

exponent at ε = 0. We present our data in fig 8.4.

We have also measured 〈r(t)〉 following the procedure of Rakos et al. [35, 73].

We have investigated the effect of different values of tequil and find the same

behavior as described in the last paragraph. Moreover, fig 8.4 shows that the

curves for this partially equilibrated initial condition, coincide with that of the

steady state initial condition (as explained in the last paragraph), for large time.

This is in direct contradiction with [73] since the equilibration technique with

two probes hopping together is claimed to give rise to an equilibrated medium

within t
2/3
equil distance of the probes which would mean that for small time partially

equilibrated data and steady state data should match and differ only at large t.
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Figure 8.4: Average distance 〈r(t)〉 between the probe pair as a function of time.

〈r(t)〉 shows two different power law growths as time changes. The reference

lines show that the growth exponent is (2 − b)/z at short times and changes to

1/3 at large times. The curves for partially equilibrated initial conditions (using

the method of Rakos et al.) with different values of tequil coincide for small t.

We have also measured 〈r(t)〉 starting from steady state initial condition. The

partially equilibrated data and steady state data coincide for large t. We have

used ε = 0.4 and L = 1000.

We rationalise this in the following way. For a single probe, the density

perturbation in the medium asymptotically decays as ρ(r) ∼ r−1/2 where r is

the distance measured from the probe. Above form of the density profile should

remain valid for two (or any finite number of) probes. Far away from the probes,

therefore the medium behaves as if there is a single probe present in the system.

Close to the probe-pair however, the medium would behave differently. In other

words, when two probes are hopping together like a single probe then the density

profile of the medium close to the probes, is different from the steady state density

profile close to a pair of probes that are nearest neighbors, in contrast to what
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has been remarked in [73]. For small time, the probes in [35, 73] would therefore

explore a medium which is not in steady state and hence 〈r(t)〉 would behave

differently than steady state 〈r(t)〉.
However, the most intriguing fact is that even in steady state, 〈r(t)〉 does not

follow Eq. 8.8 all the way but shows a crossover at large time to the behavior

t2/3, which is the behavior obtained for ε = 0. At this stage, we do not have

complete understanding of this phenomenon. One possible explanation could be

given from the Ising measure of a KLS model (without probes) which induces a

finite ε-dependent correlation length in the medium. As long as the displacement

of the probes is less than a separation whose scale is set by this correlation length,

the effect of ε variation can be felt. But for large time, when the probes cover

a distance larger than the Ising correlation length, then they behave as if in a

medium with no correlation or ε = 0. But to arrive at a conclusion in this regard,

more detailed studies for various ε values are required. Note that since we study

finite systems in numerical simulations, even for two probes, 〈r(t)〉 cannot grow

without bound and for very large time, it does saturate. In order to verify whether

ε = 0 behavior is recovered at large times, one has to consider fairly large systems,

especially for larger values of ε.

Macroscopic Number of Probes

The study of dynamical properties of the probe and the medium when the number

of STPs present in the system is macroscopic shows that the dynamics of the STPs

is governed by a diverging time-scale, as in the non-interacting case ε = 0. At

small time, an STP senses the fluctuations solely due the KLS chain. But a KLS

chain is known to have an Ising measure which means that if ε is not too large,

only short-ranged correlations are present in the medium. This implies that the

small time dynamics of the probes in a KLS chain would be similar to those in an

ASEP (where no correlation is present in the medium). In other words, the small

time behavior of the dynamical correlation functions of the probes are expected

to be same as that of the second class particles discussed in the last chapter.

However, the dependence of the crossover time on the probe density would in

general be different and we discuss this below.

94



8.2 Dynamics of Probes in a Katz-Lebowitz-Spohn Model

Let ri be the separation between the i-th and (i + 1)-th probe and Rm be the

distance between the first and the (m + 1)-th probe, i.e. Rm =
∑m

i=1 ri. Let ri

follow the distribution P (ri) ∼ r−λ
i . According to [35] λ = b(ε). The quantity Rm

which is the sum of m such random variables should follow a Lévy distribution

with a norming constant ∼ m1/(λ−1), so long as Rm is less than the correlation

length ξ. In other words, the length Rm of a segment which contains m probes

scales as m1/(λ−1). This scaling relation is valid all the way up to Rm = ξ but

fails as Rm increases beyond that. Let m> be the number of STPs in a segment

of length ξ. Then m> ∼ ξλ−1. Hence in a system of length L, the total number of

probes N0 can be written as N0 = (L/ξ) ξλ−1, which implies that the correlation

length ξ ∼ ρ
−1/(2−λ)
0 and hence τ ∼ ξz0 ∼ ρ

−z0/(2−λ)
0 , where z0 is the dynamical

critical exponent of the system.

We have monitored the dynamical correlation functions C0(t), B(t) and ∆(t),

as defined in Eq. 6.2, 7.3 and 7.10, respectively. Our numerical simulations indi-

cate that these quantities follow the same scaling form as in the non-interacting

case ε = 0. More over they continue to show crossover at a time-scale τ ∼ ρ−3
0 ,

very similar to the ε = 0 case. In fig 8.5 we show the scaling collapse for C0(t)

and B(t). We present our data for ∆(t) in fig 8.6.

In case of two probes one might expect ∆(t) would show the same scaling

behavior as the second moment of the distribution P (r, t) in Eq. 8.7, i.e. ∆(t)

should grow with time as t(3−b)/z . But our numerical simulations show that

irrespective of the value of ε, ∆(t) always grows linearly with time (as in ε = 0).

We have shown our results for ε = 0.5 in fig 8.6 inset.

Note that above scaling analysis and our numerical simulation presented in

fig 8.5 and 8.6 point towards z0/(2− λ) = 3. If λ = b(ε) as reported in [35], then

for larger values of ε this leads to z0 smaller than unity! For example, for ε = 0.5,

z0 turns out to be 0.54 and we have verified that even at this value of ε the above

scaling form remains valid [see fig 8.6].

The other (simpler) alternative is that z0 = z = 3/2 and λ = 3/2 as in ε = 0

case. This scenario would explain the observed ρ0 dependence of crossover time

τ . In case of two probes, the above value of λ is consistent with the large time

growth exponent of the average separation 〈r(t)〉 between the probe pair (shown

in fig 8.4) and also with the linear growth of ∆(t) shown in the inset of fig 8.6.

95



8. PROBES IN THE 1-D KATZ-LEBOWITZ-SPOHN MODEL

 0.1
 0.001  0.1  10

C
0(

t)
/t4/

3

t ρ0
3

 0.01

 0.1

 0.01  100

B
(t

)/
t4/

3

t ρ0
3

Figure 8.5: Scaling collapse for C0(t) for ε = 0.2 and ρ0 = 0.06, 0.08, 0.1, 0.12.

Inset shows scaling collapse for B(t) with ε = 0.2 and ρ0 = 0.08, 0.1, 0.12, 0.15.

We have used L = 16384.

The dynamics of the medium was studied by measuring C+(t), defined in Eq.

6.2. We find that the there are two kinematic waves moving across the system,

with equal and opposite velocities. One of them carries the density fluctuations of

the medium particles and the other that of the holes of the medium, as in the ε = 0

case. As discussed in section 7.1, the dissipation of these density fluctuations can

be studied by monitoring the sliding tag correlation function σ2(t). We find that

if ε is not too large, σ2(t) ∼ t2/3.

Summary

In this chapter we have considered probe particles in a KLS chain. Earlier studies

for finite ρ0 had reported that for large ε, the system shows a phase separation

transition to a state where a macroscopic domain consisting of particles and

holes (no probes) is formed while the rest of the system comprises of small probe
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Figure 8.6: Scaling collapse for ∆(t) for finite ε values. We have used ρ0 =

0.08, 0.1, 0.12, 0.15 and L = 16384. The inset shows the linear growth of ∆(t) for

L = 16384 in presence of two probes.

clusters interrupted by small domains of particles and holes. In [69] a description

of this phase transition was attempted using an approximate mapping onto zero-

range process. However, this mapping fails to explain the observed domain size

distribution P (n) in the system. While ZRP predicts a P (n) as in Eq. 8.5 where

the exponent b is a function of ε given by Eq. 8.4, we find numerically that P (n)

shows the same power law exponent 3/2 irrespective of the values of ε.

In order to examine the cause of this discrepancy, we examined the assump-

tions that are used for the KLS-ZRP mapping. We verified that (i) the domains

are independently distributed and (ii) even taking into account the higher order

finite size corrections in the domain current (where the hopping rates of ZRP

are directly read off from the numerically measured domain currents) does not

affect the value of the power law exponent of P (n). However, the probes in a

KLS medium have a non-Markovian movement which is not captured in the ZRP
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mapping. It would be useful to construct an appropriate non-Markovian ZRP

and examine whether it can explain the observed P (n).

In [35, 73] the dynamics of the system was studied in presence of two probes.

Starting with the initial condition that the two probes are nearest neighbors, the

time-evolution of the separation between them was monitored and it was claimed

that the average separation 〈r(t)〉 grows with time as shown in Eq. 8.8. On the

contrary, we find that although the short time growth of 〈r(t)〉 is as predicted by

Eq. 8.8, at large times 〈r(t)〉 shows a crossover to an asymptotic regime where

it grows with an exponent 1/3, as in ε = 0 case. One plausible explanation

of this phenomenon could be that the correlation length in the KLS medium

being finite (since a KLS chain has an Ising measure), at large times, when the

typical displacement of a probe becomes larger than the correlation length of the

medium, the probes behave as in ε = 0 case.

For a macroscopic number of the probes, the dynamical correlation functions

show a scaling form in terms of a crossover time-scale τ , as in ε = 0. Surprisingly,

τ shows the same divergence as ε = 0, in the limit ρ0 → 0. This in turn implies

that z0/(2− b) = 3. If b is substituted from Eq. 8.4 then for larger ε this leads to

a dynamical exponent z0 < 1. Instead if one replaces b by 3/2, for all ε then z0

turns out to be 3/2, as in ε = 0 case. This also explains the large time crossover

of 〈r(t)〉.
In this chapter, we have discussed STPs in a KLS chain. It is possible to

generalise the model by considering DPPs and a partially asymmetric variation

of KLS model. Our preliminary numerical studies indicate that as in the non-

interacting case one has an ‘exponential’ phase and a ‘power law’ phase, separated

by a critical line. However, mapping out the complete phase diagram needs

further studies.
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Chapter 9

Discussion: Nonequilibrium

Probe Particles

Probe particles are routinely used to characterise complex systems. The stat-

ics and dynamics of a probe particle which comes to a steady state with the

medium, often reflect important properties of the medium. In all these studies it

is generally assumed that dilute presence of the probe particles do not affect the

properties of the medium in a significant way. We have shown in this thesis that

this assumption may not hold true in all situations.

We have considered probes whose dynamical rules violate detailed balance.

These probes exchange with particles and holes of the medium in opposite direc-

tions with possibly different rate. Such probes tend to be present in the region

of strong density variations or shocks present in the system. We consider both

equilibrium and nonequilibrium medium. We are primarily interested in the case

when the medium can be described by symmetric or asymmetric exclusion pro-

cess. The probes can then be alternatively described as particles sliding down

along the local slope of a fluctuating surface (EW or KPZ type). The probes tend

to be present in the valleys of the interface but unlike the situation considered

in chapter 2 and 3, these probes are not passive anymore as they occupy space

in the lattice and block the evolution of the valleys. We find that this deviation

from passivity brings about a large effect on the surrounding medium.

For a medium which is initially in equilibrium, the effect of introducing even

a single nonequilibrium probe is very strong. There is a density gradient in
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the medium across the entire system. This follows from the fact that even in the

presence of a single nonequilibrium probe the resulting system is a nonequilibrium

current-carrying system. To support a current through a medium with diffusive

dynamics one has to have a system-wide density gradient. In presence of several

probes, the medium induces a strong attraction between them and the probes

phase separate.

For an initially nonequilibrium medium however, the effect of a single probe

is not macroscopic. The shock around the probe decreases exponentially or as

a power law, depending on the kinematics of the probe and the medium. This

yields an interesting phase diagram which in turn plays an important role on the

dynamics of macroscopic number of probes. The power law regime corresponds to

a diverging (as the probe density goes to zero) crossover time-scale in the probe

dynamics. It has been possible to give a scaling description of various dynamical

correlation functions in terms of this diverging time-scale.

Presence of nonequilibrium probes in a Katz-Lebowitz-Spohn model (a nonequi-

librium medium with nearest neighbor Ising interaction) is also considered. How-

ever, some of our results are in contradiction with earlier work [69, 35, 73]. In [69]

it was reported that KLS model with macroscopic number of probes shows a phase

separation transition for large values of the coupling constant. As the Ising inter-

action strength ε > 0.8 and the density exceeds a critical value ρc, a macroscopic

domain consisting of particles and holes of the medium is formed which coex-

ists with another phase where small domains of particles and holes are found,

separated by probes.

Kafri et al. have attempted to explain this phase transition by approximately

mapping the system onto a zero-range-process [69]. However, this mapping fails to

explain the observed power law exponent of the size distribution of the domains—

while for a zero-range process the mass distribution decays as a power law with

exponent b(ε), the size distribution of the particle-hole domain close to the critical

point shows a power law decay with exponent 3/2, irrespective of the value of ε.

To find the root of this discrepancy, we have examined the assumptions that

go into the KLS-ZRP mapping. We have numerically verified that the domains in

the KLS model with probes are indeed independently distributed, in agreement

with [71]. Another assumption used in this mapping is that the current in a
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domain of length n is same as the current in an open KLS chain. In [71] this was

shown to be true.

However, this mapping ignores one important aspect of the probe dynamics.

The movement of probe particles in a KLS chain is non-Markovian, whereas

the corresponding ZRP is taken to be an ordinary Markov process. It would

be interesting to consider an appropriate non-Markovian ZRP and a detailed

study might provide some insight into the observed discrepancy about domain

size distribution.

In [35, 73] dynamics of two probes in a KLS chain was considered. It was

claimed that the medium induces an attraction between the probe pair and in

steady state, the probability that they are at a distance r from each other decays

as a power law with an exponent b(ε). Levine et al. have monitored the time

evolution of the average distance 〈r(t)〉 between the probes starting with an initial

condition that the two probes are nearest neighbors and according to [35] the

average distance grows with time as a power law with an exponent (2− b)/z. On

the contrary, we find that although the small time behavior of 〈r(t)〉 is consistent

with the above growth law, this is not true at large times. We find that as time

increases, 〈r(t)〉 shows a crossover to a regime where it grows with an exponent

1/3, as in ε = 0 case. This phenomenon can be explained from the fact that

the KLS medium has a finite correlation length and hence for large enough time

when a probe particle explores a region larger than this correlation length, its

behavior is same as in ε = 0 case (uncorrelated medium).

For a finite density of probes, our scaling analysis shows that the dynamics

of the probes is governed by a crossover time-scale. As the probe concentration

vanishes, this time-scale diverges as ρ
−z0/(2−λ)
0 . Our numerical simulations show

that z0/(2 − λ) = 3. According to [35] λ = b(ε) and this leads to z0 < 1 for large

ε. A dynamical exponent smaller than unity seems implaussible. On the other

hand, if we follow the argument given the end of the previous paragraph and

substitute b = 3/2 for all values of ε, then z0 takes the value 3/2 as in ε = 0 case.

This is in agreement with the large time crossover of 〈r(t)〉. Note that b = 3/2 is

also in conformity with the observed domain size distribution. But at present we

do not have any clear understanding of why the ZRP mapping would yield such

a value of b.
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Chapter 10

ASEP with Time Dependent Bias

In this chapter we study a simple but interesting variation of asymmetric simple

exclusion process (ASEP) in one dimension. As we have seen before, ASEP

describes a set of hard-core random walkers which perform a biased motion on a

lattice. We consider the case when this bias itself is a function of time. We would

be interested only in the case when the bias changes periodically with time. We

find that even in this case of time-dependent bias, the steady state measure can

be obtained analytically and turns out to be the same as in an ordinary ASEP.

However, the dynamical correlation functions of the density variable show some

interesting crossover across the time-period of the bias. For a bias which varies

sinusoidally with time, we find that the system shows hysteresis.

The model is defined on a one dimensional periodic lattice. An occupied site

is denoted by 1 and an empty site by 0. Any particular configuration is therefore

written as a string of 1’s and 0’s. The exchange rules are :

10
p−→ 01 (10.1)

01
q−→ 10

where the bias (p − q) is a periodic function of time. For example, for a square-

wave bias of period T , one has

p − q = +1 if t < T/2 (10.2)

p − q = −1 if t > T/2.
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In the next section, we derive the steady state measure of the model. In

section 10.2 we discuss our results for density auto-correlation and mean squared

displacement of the tagged particles. In section 10.3 we discuss the existence of

hysteresis for a sinusoidal bias.

10.1 Stationary State Distribution

From the above dynamical rules shown in Eq. 10.2, we first construct the time

evolution operator for an ordinary ASEP by mapping the process onto a spin half

problem. Let us denote an occupied site by an up-spin (↑) and an empty site by

a down-spin (↓), then the possible configurations of a nearest neighbor pair are:

| ↑↓〉, | ↓↑〉, | ↑↑〉 and | ↓↓〉. Then according to Eq. 10.2 the time-evolution of

these states can be written as:

| ↑↓〉 dt−→ (1 − pdt)| ↑↓〉 + pdt| ↓↑〉
| ↓↑〉 dt−→ (1 − qdt)| ↓↑〉 + qdt| ↑↓〉
| ↑↑〉 dt−→ | ↑↑〉 (10.3)

| ↓↓〉 dt−→ | ↓↓〉

where dt is the time interval. It is easy to verify that the time-evolution operator

which satisfies Eq. 10.3 is given by

H =
∑

〈ij〉
[(p + q)(~Si.~Sj −

1

4
) + i(p − q)(SkxSly − SkySlx)]. (10.4)

Then the time-evolution equation reads

∂|P 〉
∂t

= H|P 〉 (10.5)

In other words, if the initial state of the system is written as |P(0)〉, where different

components of the vector correspond to probability of different configurations,

then state at time t will be

|P(t)〉 = eHt|P(0)〉. (10.6)
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10.1 Stationary State Distribution

Now, consider a time-dependent bias which varies with time as a square-wave,

as shown in Eq. 10.3. The problem can be mapped onto a spin half problem as

before, with the Hamiltonian

H(t) =
∑

〈ij〉
[θ(p − q)S+

i S−
j + θ(q − p)S−

i S+
j + Sz

i S
z
j −

1

4
] (10.7)

where θ(p − q) is a step function of the bias (p − q). In two half-periods, the H

shown in the last equation becomes H1 and H2 (say) which are the time-evolution

operators for two ordinary ASEP’s biased in opposite directions:

H1 =
∑

〈ij〉
[S+

i S−
j + Sz

i S
z
j − 1

4
]

H2 =
∑

〈ij〉
[S−

i S+
j + Sz

i S
z
j − 1

4
] (10.8)

The state of the system after one complete cycle T would be

|P(T )〉 = exp

(
∫ T

0

H(t)dt

)

|P(0)〉

|P(T )〉 = exp

[

T

2
(H1 + H2)

]

|P(0)〉 (10.9)

Now, H1 and H2 are time-evolution operators for ordinary ASEP each of which

would lead to the same steady state (which is the right eigenvector with 0 eigen-

value) with homogeneous product measure. Therefore their sum (H1+H2) should

also have the same eigenvector and hence the steady state of the system even in

presence of a square-wave bias continues to be a uniform product measure.

This result is simple yet striking. A periodically driven system goes to a steady

state which is identical to the steady state of a system under time-independent

drive. Above derivation can be extended for any t by writing t = mT + δt where

even for the left-over time δt the time-evolution operator is that of an ordinary

ASEP. This result also holds true for any other periodic or even non-periodic

variation of the bias (p− q) provided the time-evolution operator at each instant

can be written in the form of Eq. 10.4.
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10. ASEP WITH TIME DEPENDENT BIAS

10.2 Dynamical Correlation Functions in Steady

State

In the previous section, we have seen that the steady state measure of an ASEP

remains unchanged even when the bias changes periodically. As a result, all the

static properties remain same as in ordinary ASEP. However, the steady state

dynamics shows interesting manifestation of the time-dependence of the bias.

Consider a square-wave bias of period T . Since the first reversal of bias takes

place at time T/2, for t < T/2 the system is just an ordinary ASEP. On the other

hand, for t � T , when many bias-reversals have taken place the system has spent,

on the average, an equal amount of time under leftward and rightward bias. We

find that in this regime, the dynamical properties of the system are same as in an

SEP. We demonstrate this by monitoring the density auto-correlation and mean

squared displacement of a tagged particle in steady state. Below we discuss our

results.

For a square-wave bias, we study the auto-correlation function of local density

A(t) = 〈ni(0)ni(t)〉 − ρ2 (10.10)

where ni(t) is the occupancy of the i-th site at time t which takes the value 1 if

the i-th site is occupied and the value 0 if the i-th site is empty. The angular

brackets denote averaging over steady state ensemble and ρ is the average density

which is taken to be 1/2 . We find that the function A(t) shows two different

behavior for t < T/2 and t � T . For t < T/2, the system being just an ASEP,

A(t) decays as a power law with an exponent 1/z = 2/3 where z is the dynamical

exponent. On the other hand, for t � T , the system shows diffusive behavior

and A(t) ∼ t1/2. We present our data in fig 10.1.

The mean squared displacement of a tagged particle, as defined in Eq. 6.2,

shows similar crossover. For t < T/2, we find C(t) ≈ (1 − ρ)(p − q)t, as in an

ordinary ASEP [52]. For t � T , on the other hand, C(t) ∼ t1/2 as expected for a

SEP [44]. Our data has been presented in fig 10.2. Note that in the intermediate

regime, C(t) shows oscillation. This can be explained in the following way.

A typical configuration contains a pattern of density fluctuations and these

density fluctuations move through the system with the speed of a kinematic wave.
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Figure 10.1: Density auto-correlation in steady state for an ASEP with a bias

which varies as a square-wave with T = 200, 40, 10. The reference lines show

t−2/3 (short-time) and t−1/2 (asymptotic) decay. We have used L = 1024 and

ρ = 1/2.

We have considered ρ = 1/2 for which the speed of kinematic wave is zero. But the

tagged particle has a finite speed and it moves through this density pattern with

an average speed (p− q)(1− ρ). Each density patch contributes a random excess

to its average speed and hence the mean squared displacement grows linearly.

When the bias is reversed at t = T/2, the particle starts moving in the opposite

direction, towards its initial density patch. At the end of one complete cycle, the

particle reaches its initial density patch and its mean squared displacement then

measures the sub-linear dissipation of the density patch which corresponds to a

dip in C(t).
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Figure 10.2: Mean squared displacement of a tagged particle for an ASEP with

square-wave bias of time-period T = 2, 20, 100 and L = 256. The initial linear

growth with slope (p − q)(1 − ρ) and asymptotic t1/2 growth are shown using two

reference lines.

10.3 Hysteresis for Sinusoidal Bias

In this section, we discuss how time-dependent bias in an ASEP gives rise to hys-

teresis in the system. We will consider a bias that varies sinusoidally with time.

At this stage, it would be convenient to map the particle-hole configuration to

an inclined interface separating up and down spin regions in a two dimensional

nearest neighbor Ising model [74]. Note that in the Ising model, if the field h and

inverse temperature β ≡ 1/T are assumed to be much smaller than the nearest

neighbor exchange coupling J , then there are no overhangs in the interface. We

assume that the field h varies sinusoidally with time: h(t) = sin ωt. The inter-

face evolves under Glauber dynamics in which the rate at which a spin flips, is

min[1, exp(−β∆E)] where ∆E is the change in the energy due to the flip. In this

single-flip Glauber dynamics, and T, h � J , only the spins at the corner (drawn
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Figure 10.3: An inclined Ising interface separating the up-spin domain and down-

spin domain of a two dimensional Ising model. The exchange coupling being

infinite, only the spins marked by bold arrows can flip.

by bold lines in fig 10.3) have an appreciable probability of flipping. This leads

to a flip of the corner, which preserves the length of the interface. The periodic

boundary condition is implemented by considering the interface on the surface of

a cylinder [see [74] for more details].

The mapping to the exclusion process follows if we associate a particle with

each vertical bond of the interface and a hole with each horizontal bond. Corner

flip dynamics then corresponds to the particle-hole exchange for the particle sys-

tem. If p and q be the leftward and rightward hopping in the ASEP, then these

rates cane be related to the Ising model parameters on noting that the ratio of

the flip-rate of an up-spin to that of a down-spin is exp(−2βh), i.e.

p

q
= exp[2βh(t)] (10.11)

Let us write p = u exp(2βh) and q = u exp(−2βh) for some constant u. Then the
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10. ASEP WITH TIME DEPENDENT BIAS

current in the particle-hole system is

J = (p − q)ρ(1 − ρ) = 2uρ(1 − ρ)sinh(β sin ωt) (10.12)

Each time the bias is reversed, the direction of the current is changed and

the interface shows a back and forth movement on the surface of the cylinder,

changing the magnetisation. If ∆M(t0 → t) be the change in magnetisation as

time changes from t0 to t, then

∆M(t0 → t) =

∫ t

t0

dt′J(t′)

∆M(t0 → t) = 2uρ(1 − ρ)

∫ t

t0

dt′sinh(β sin ωt′) (10.13)

This expression can be evaluated numerically and the magnetisation can be plot-

ted across the field to obtain the hysteresis loop [fig 10.4]. Note that even when

the field h(t) completes one half cycle and comes back to its initial value 0, the

change in magnetisation remains finite. This gives rise to a hysteresis loop with

a finite area.
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Figure 10.4: Hysteresis loop for an ASEP under a bias that changes sinusoidally

with time.
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Appendix A

Correspondence between

Exclusion Process and Surface

Fluctuation

In this appendix, we discuss how the lattice model for the exclusion process is

related to the continuum equation for the surface fluctuation.

In one dimension, ASEP describes a set of hard-core particles on a lattice.

A particle, chosen at random, hops to neighboring site to its right (left) with

probability p (q), if the neighboring site is empty. For periodic boundary con-

dition it can be exactly shown that all possible configurations occur with equal

probability in the steady state ensemble. The current in an ASEP can be cal-

culated as follows. There is a movement (of particle) to the right, only if the

site under consideration is occupied and its right neighbor is empty. This process

has a probability pρ(1 − ρ) where ρ is the density of particles. Similarly, prob-

ability of having a movement towards left is qρ(1 − ρ) and the total current is

J = (p − q)ρ(1 − ρ).

One may map the above particle model to a discrete surface model as follows:

an occupied site represents an up slope and an empty site represents a down slope.

In fig A.1 we show one typical particle configuration and the corresponding surface

configuration. Flipping of a hill (valley) to a valley (hill) thus means movement

of a particle to the right (left).
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AND SURFACE FLUCTUATION

Figure A.1: Mapping between exclusion process and surface configuration in one-

dimension.

A continuum description of ASEP, obtained by coarse graining over regions

which are large enough to contain many sites, involves the local density of particles

ρ(x) and the local current J(x). The continuity equation reads

∂ρ

∂t
+

∂J

∂x
= 0 (A.1)

with

J(x) = ν
∂ρ

∂x
+ j(ρ) + η (A.2)

where ν is the diffusion co-efficient, η is the Gaussian white noise and j(ρ) is the

systematic contribution of the current: j(ρ) = (p − q)ρ(1 − ρ).

Since in the discrete model, the presence of a particle is identified with an up

slope and an empty site is identified with a down slope, we write

ρ(x) =
1

2

(

1 +
∂h

∂x

)

(A.3)

and then the continuity equation can be rewritten as

∂h

∂t
= −1

2
(p − q) + ν

∂2h

∂x2
+

1

2
(p − q)

(

∂h

∂x

)2

− 2η (A.4)

which is the KPZ equation (Eq. 2.1) with an additional constant term −(p−q)/2

and λ = (p − q), η1 = −2η. Note that the sign of the constant term and λ

are opposite. Thus a downward moving surface (corresponding to p > q) has a
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positive λ and an upward moving surface has a negative λ. Although the constant

term can be eliminated by a Galilean shift h → h− 1
2
(p−q)t, its sign is important

in determining the overall direction of motion of the surface.
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Appendix B

Sign-Sign Correlation Function

for a Gaussian Process

In this appendix, we outline the derivation of the correlation function of the sign

of a Gaussian variable.

Consider a Gaussian stationary process X(t) such that the random variables

x(t) and x(t + τ) are jointly normal and their joint distribution is given by

f(X1, X2) =
1

2πσ1σ2

√
1 − r2

exp

[

− 1

2(1 − r2)

(

X2
1

σ2
1

+
X2

2

σ2
2

− 2r
X1X2

σ1σ2

)]

. (B.1)

Here X1 ≡ x(t), X2 ≡ x(t+τ) and r = Rx(τ)/Rx(0), where Rx(τ) = 〈x(t+τ)x(t)〉.
Then the arc-sine law states that

〈sgnX1 sgnX2〉 =
2

π
sin−1

[

Rx(τ)

Rx(0)

]

. (B.2)

We provide a proof of this below. To start with, define a random variable Z =

X1/X2. Let Dz be the region in X1X2 plane such that X1/X2 ≤ z, z being

some particular value of Z. The region bounded by the lines X1 = X2z and

X1 = X2(x + dz) is denoted as ∆Dz and shown as the vertically shaded part of

fig B.1. Co-ordinate of any point lying in this shaded region is (zX2, X2) and the

differential area is |X2|dzdX2. Note that

{Z ≤ z} =

{

X1

X2
≤ z

}

= {(X1, X2) ∈ Dz} . (B.3)
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B. SIGN-SIGN CORRELATION FUNCTION FOR A GAUSSIAN
PROCESS
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Figure B.1:

Now, consider the cumulative distribution of Z

FZ(z) = P{Z ≤ z}
= P{(X1, X2) ∈ Dz}

=

∫

Dz

∫

f(X1, X2)dX1dX2 (B.4)

Thus, to determine FZ(z) it suffices to find out Dz for every z and evaluate the

integral.

The density of Z can also be determined similarly. Let ∆Dz be the region

such that

{z < Z < z + dz} = {(X1, X2) ∈ ∆Dz}

fZ(z)dz =

∫

∆Dz

∫

f(X1, X2)dX1dX2

fZ(z) =

∫ ∞

−∞
|X2|f(zX2, X2)dX2 (B.5)

The right hand side can be written as

2

∫ ∞

0

dX2X2
1

2πσ1σ2

√
1 − r2

exp

[

− 1

2(1 − r2)

(

X2
2z2

σ2
1

− 2r
X2

2z

σ1σ2

+
X2

2

σ2
2

)]
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after carrying out the integration which yields

fZ(z) =
σ1σ2

√
1 − r2

πσ2
2

(

z − rσ1

σ2

)2

+ σ2
1(1 − r2)

. (B.6)

The cumulative distribution then becomes

FZ(z) =

∫ z

−∞
fZ(z)dz

=
1

2
+

1

π
tan−1 σ2z − rσ1

σ1

√
1 − r2

=
1

2
+

1

π
tan−1 z − r

1 − r2
(B.7)

where the last step uses the fact that for a Gaussian stationary process X(t),

σ1 = σ2. Write

α = tan−1 r√
1 − r2

. (B.8)

and Eq. B.7 gives

FZ(0) =
1

2
− α

π
(B.9)

= P [Z ≤ 0].

Finally,

〈sgnX1 sgnX2〉 = 1 − 2P [X1X2 < 0]

= 1 − 2P

[

X1

X2

< 0

]

= 1 − 2P [Z < 0]

= 1 − 2

(

1

2
− απ

)

=
2α

π

=
2

π
sin−1 r

=
2

π
sin−1

[

Rx(τ)

Rx(0)

]

(B.10)

which proves the arc-sine law.
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Appendix C

Static Correlation Function of

Second Class Particles

In this appendix, we outline the calculation by Derrida et al. of static correlation

function of second class particles in a TASEP.

Steady state measure of the system consisting of macroscopic number of sec-

ond class particles in a TASEP was calculated in [34] using the matrix product

method. It was shown that the steady state weight of one particular configuration

is given by trace[X1X2X3....XN ] where Xi is a matrix which is written as D, E

or A according as the i-th site contains a medium particle, a hole, or a second

class particle. The matrices satisfy the following relations

DE = D + E A = DE − ED (C.1)

Using the stationary distribution, the two-point density-density correlation was

obtained and we outline the calculation below.

Consider a finite ring of N sites. We would be mainly interested in the density

profile of the medium particles as seen from the frame of a second class particles.

For convenience, we assume that the N -th site is occupied by a second class

particle. In this appendix, to use the same terminology and notation as in [34], we

call the particles in the medium as “first class particles” and denote their density

by ρ1. The density of the second class particles is denoted as ρ2. Although the

numbers of first and second class particles are conserved, it is more convenient to

carry out the calculation in the grand canonical ensemble. Let x, y and z denote
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C. STATIC CORRELATION FUNCTION OF SECOND CLASS
PARTICLES

the fugacities for the first class particles, second class particles and holes. Define

a matrix G as

G = xD + yA + zE (C.2)

Then the densities of the first class particles, second class particles and holes, as

seen from one particular second class particle are given by

di(N) = x
〈1|Gi−1DGN−i−1|1〉

〈1|GN−1|1〉 (C.3)

ai(N) = y
〈1|Gi−1AGN−i−1|1〉

〈1|GN−1|1〉 (C.4)

ei(N) = z
〈1|Gi−1EGN−i−1|1〉

〈1|GN−1|1〉 (C.5)

where 〈1| = [1, 0, 0, ...]. The matrix G can be shown to obey a recursion relation

〈1|Gn|1〉 =
(y + x)(y + z)

y
〈1|Gn−1|1〉 − xz

y
〈1|Cn−1|1〉 (C.6)

with C = xD + zE. Moreover, since D|1〉 = |1〉

dN−1(N) = x
〈1|GN−2|1〉
〈1|GN−1|1〉 (C.7)

A consequence of the matrix algebra yields

x(DG − GD) = (x + y)(z + y)A − yAG (C.8)

Eq. C.4, C.8 and C.6 imply that for i > 1

di(N) − di+1(N) = xz
〈1|Gi−1|1〉〈1|CN−i−2|1〉

〈1|GN−1|1〉 (C.9)

This equation together with Eq. C.7 determine all the di(N).

Now we consider infinite volume limit of these densities. The large n behavior

of 〈1|Gn|1〉 for y2 > xz is given by

〈1|Gn|1〉 '
(

1 − xz

y2

)[

(y + x)(y + z)

y

]n

. (C.10)
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From this, we may determine x, y.z such that in the large N limit, the density of

first class particles ρ1, the density of the second class particles ρ2 and the density

of holes 1 − ρ1 − ρ2 are recovered.

ρ1 = lim
N→∞

x

N

d

dx
log〈1|GN |1〉 =

x

y + x
(C.11)

ρ2 = lim
N→∞

y

N

d

dy
log〈1|GN |1〉 =

y2 − xz

(y + x)(y + z)
(C.12)

1 − ρ1 − ρ2 = lim
N→∞

z

N

d

dz
log〈1|GN |1〉 =

z

y + z
(C.13)

It is clear from these equations that y2 > xz leads to a consistent determination

of x, y, z, unique upto an overall factor.

Now, define di = limN→∞ di(N) and d−i = limN→∞ dN−i(N) for i > 0. From

Eq. C.7, C.10, C.12 and C.13

d−1 =
xy

(y + x)(y + z)
= ρ1(ρ1 + ρ2) (C.14)

while the Eq. C.9 yields

d−i = ρ1(ρ1+ρ2)+
i−1
∑

n=1

n−1
∑

p=0

1

p + 1

(

n

p

)(

n − 1

p

)

×[ρ1(ρ1+ρ2)]p+1[(1−ρ1)(1−ρ1−ρ2)]n−p

(C.15)

Also, from Eq. C.9 for all i > 0 di = ρ1. Following similar steps, it can be shown

for the hole densities that for i > 0, e−i = 1 − ρ1 − ρ2 and

ei = (1−ρ1)(1−ρ1−ρ2)+

i−1
∑

n=1

n−1
∑

p=0

1

p + 1

(

n

p

)(

n − 1

p

)

×[ρ1(ρ1+ρ2)]
p+1[(1−ρ1)(1−ρ1−ρ2)]n−p

(C.16)

Notice that in the infinite volume limit, the density profile of the holes to the

left of a second class particle and that of the particles to the right of a second class

particle are constant. Also, limi→∞ d−i = ρ1 and this approach is exponential:

d−i−1 − d−i = 1
2
√

πi3/2
[ρ1(ρ1 + ρ2)(1 − ρ1)(1 − ρ1ρ2)]

1/4 (C.17)

×{[ρ1(ρ1 + ρ2)]
1/2 + [(1 − ρ1)(1 − ρ1 − ρ2)]1/2}2i+1 (C.18)

From the above expression, it follows that as ρ2 → 0, the characteristic length of

the exponential decay is asymptotically 4ρ1(1 − ρ1)/ρ2
2.
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Appendix D

Steady State Measure of

Katz-Lebowitz-Spohn Model

In this section we provide a detailed derivation of the stationary measure of KLS

model following the calculation in [68].

The system is defined on a one dimensional periodic lattice each site of which

is occupied by either species A or species B. We are interested in the totally

asymmetric version of KLS model, where the species A moves only to the right

and B moves only to the left. There is a nearest neighbor interaction present in

the system. The dynamical moves are listed in Table D.1.

The aim is to construct the nonequilibrium dynamics by determining the

values of the above rates such that the stationary state measure is given by

Boltzmann-Gibbs distribution with the Hamiltonian

H = −J
∑

n

snsn+1. (D.1)

Move Rate

AABA → ABAA wAA

AABB → ABAB wAB

BABA → BBAA wBA

BABB → BBAB wBB

Table D.1: List of moves in KLS model.
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Let the number of AA pairs (i.e. the number of times two A’s occupy the

nearest neighbor sites) in a particular configuration be denoted by NAA. Similarly,

one can define NBB , NAB and NBA. These numbers obey the sum rules

NA = NAA + NAB = NAA + NBA, NB = NBA + NBB = NAB + NBB (D.2)

where NA and NB are the total number of particles of type A and type B,

respectively. Note that the four pair numbers obey three independent equations,

leaving one single free quantity. It is convenient to take the latter as being the

Hamiltonian in Eq. D.1. The pair numbers NAA, NBB , NAB can be expressed in

terms of H and the particle numbers NA and NB:

NAA = 1
4
(3NA − NB − H/J) (D.3)

NBB = 1
4
(3NB − NA − H/J) (D.4)

NAB = NBA = 1
4
(N + H/J) (D.5)

The quantity NA can be rewritten as

NA =
1

2

∑

n

(1 + sn) =
N

2
(1 + 〈s1〉) (D.6)

N being the system size. Here, and in the following the angular brackets 〈...〉 de-

note spatial averaging for a fixed generic configuration C. Then the pair numbers

and the Hamiltonian read

NAA = N
4

(1 + 2〈s1〉 + 〈s1s2〉), NBB =
N

4
(1 − 2〈s1〉 + 〈s1s2〉) (D.7)

NAB = NBA = N
4

(1 − 〈s1s2〉), H = −NJ〈s1s2〉. (D.8)

Now, the total exit rate Wout(C) from a generic configuration C to any other

configuration C′ can be read off off from table D.1:

Wout(C) = wAANAABA + wABNAABB + wBANBABA + wBBNBABB . (D.9)

A similar expression can be derived for the total entrance rate Win(C) from any

other configuration C′ to C. Now, to express the stationary state weight Pst(C
′)

as

Pst(C
′) = Pst(C) exp(∆H) (D.10)
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where ∆H is the energy difference

∆H = H(C) − H(C′) (D.11)

we must have

Win(C) = wAANABAA + e4JwABNABAB + e−4JwBANBBAA + wBBNBBAB . (D.12)

In the stationary state, we must have

Win(C) − Wout(C) = 0 (D.13)

for every configuration C. In order to determine the number of independent

conditions on the rates, it is convenient to rewrite the Eq.s D.9 and D.12 in terms

of spin correlations, i.e. spatial averages of product of spin variables. This gives

Wout(C)− Wout(C) = N
16

[(e−4J − 1)(1 + 〈s1s2s3s4〉)R1 + 〈s1(s3 − s2)s4〉R2

+
{

〈s1(3s2 − 2s3 + s4)〉 + e−4J〈s1(s2 − 2s3 − s4)〉
}

R1], (D.14)

where R1 and R2 stand for the following linear combination of the rates:

R1 = e4JwAB − wBA

R2 = (1 + e4J)wAB + (1 + e−4J) − 2(wAA + wBB). (D.15)

This condition therefore gives two linear relations

R1 = R2 = 0. (D.16)

Let us choose the time unit by setting

wAA + wBB = 1 (D.17)

This gives

wAA =
1

2
, wAB =

1

1 + e4J

wBA =
e4J

1 + e4J)
, wBB =

1

2
(D.18)

For the above choice of rates, the stationary measure is given by the Boltzmann-

Gibbs measure with the Hamiltonian in Eq. D.1.
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Appendix E

Algorithm for Generating Steady

State Ensemble for ε = 0

In this appendix, we describe in detail the algorithm prescribed by Angel for

generating a steady state configuration for second class particles in a TASEP.

In a one dimensional periodic lattice, the sites can either be empty or occupied

by a first class or second class particle. A first class or second class particle jumps

to the position to its right with rate 1 if that position is empty. In addition,

whenever a first class particle has a second class particle to its right, the two swap

places with rate 1 (thus the second class particle may move in both directions).

The above process can be reinterpreted as follows. Non-empty sites of a graph

are occupied by either a particle or an anti-particle. Each edge is chosen with

rate 1. A particle (anti-particle) can move right (left) across the edge to an empty

spot. In addition, a particle can exchange with an anti-particle to its right. Thus

there are particles moving to the right, anti-particles moving to the left but the

movements occur with rate 1 at each edge, rather than each particle. This is

equivalent to the process described in the previous paragraph, with anti-particles

representing empty spaces and empty spaces representing second class particles.

When writing out states of the process, we will use 1’s for the particles, 0’s for

anti-particles and ∗’s for empty spaces.

Angel has been able to construct the steady state ensemble for such a process,

using a collapsing procedure between two sets.
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Two sets of positions S and T (not necessarily disjoint), defined on Z and ZN

are said to collapse to a state x of the TASEP if x is the result of the following

collapsing procedure: anti-particles are placed at the locations specified by T .

Next, the locations in S are checked (in an arbitrary order). If a location is

empty, a particle is placed there. Otherwise, a particles is placed in the nearest

empty position to the left of the specified location.

For example, consider a lattice of size 10 with 3 particles and 3 anti-particles.

If T is {5, 7, 8} and S is {3, 4, 5}, then the location of anti-particles would be

given by T ; the particles would be at the locations {2, 3, 4} and the empty sites

are at {1, 6, 9, 10}.

The stationary measure for the exclusion process on ZN with a particles and

b anti-particles is the image by collapsing of the uniform measure on pairs of

sub-sets S and T of the cycle of sizes a and b, respectively.

The above statement can be proved using combinatorial results on binary

sequences (i.e. sequences made up of 1’s and 0’s). These sequences are related

to the exclusion process under consideration since a binary sequence describes a

segment with no empty site. Consider two such finite binary sequences A and

B of the same length n. The sequence A is said to dominate B (A < B) if it is

possible to go from A to B by moving 1s to the right. The weight of a binary

sequence A is defined as the number of binary sequences dominated by it:

W (A) = |{B : A < B}|. (E.1)

Thus, for example, W (1010) = 5.

Consider a state x of the exclusion process on a ring. How many pairs of

sets S, T collapse to x? Since a collapsing procedure begins by placing the anti-

particles at T , the unique T is given by the set of positions of anti-particles in x.

There may be a number of different sets S that (together with T ) collapse to the

state x. In order for the collapsing procedure to reach x, it is necessary that S

contains none of the empty positions of x (positions marked with ∗’s). The empty

positions in x can break up the cycle into a number of segments each containing

a sequence of particles (1s) and anti-particles (0’s). Denote the binary sequences

by A1, A2, .., Al.
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During the collapsing procedure, if an element p ∈ S results in a particle being

placed in a position q, then clearly there can be no empty position in the interval

[q, p], since otherwise, the particle would have been placed there instead. Thus

the elements of S in each such binary segment must collapse into the positions

marked by the particles in that segment. Also, for each binary segment Ai, any

sequence having 1’s at the elements of S in that segment is dominated by Ai.

Hence there are W (Ai) possibilities for the intersection of S with that segment.

The total number of possibilities of the set S is therefore
∏

W (Ai), and the

collapsed measure of the of the state x is

P (x) =

∏

W (Ai)
(

N
a

)(

N
b

) (E.2)

For example, the cyclic state ∗10 ∗ ∗10100 ∗ 0101 may be reached from

W (10)W (φ)W (10100)W (0101) = 2 × 1 × 9 × 2 = 36 (E.3)

sets S and so its probability is 36/
(

15
5

)(

15
6

)

.

To show the stationarity of this measure assign a mass m(x) =
∏

W (Ai) to

each x. Let the mass flow according to the transition kernel of this process, so

that when the process goes from x to y with a rate r, mass flows from x to y with

a rate rm(x). It is sufficient to show that the derivative of mass at any state x is

zero.

Let x →e y denote an exchange along the edge e that leads from state x to

state y. The time-evolution of the mass therefore follows

d

dt
m(x) =

∑

y→ex

m(y) −
∑

x→ez

m(x) = m(x)
∑

y→ex

(

m(y)

m(x)
−
∑

x→ez

1

)

. (E.4)

First consider the case when y →e x, and the end-points of e are 0∗ in x and

∗0 in y. In this case, the binary sequences in y are same as those in x, except

for two. If Ai and Bi denote the binary sequences in x and y, respectively, then

Aj = Bj0 and Bj+1 = 0Aj+1, where j-th and (j + 1)-th sequences are affected by

the exchange through e. Since W (0A) = W (A), it follows that

m(y)

m(x)
=

W (Bj)

W (Aj)
(E.5)
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where Bj is Aj with a terminating 0 removed.

Similarly, when the end-points of e are marked by ∗1 in x and 1∗ in y, then

Aj = 1Bj and Bj−1 = Aj−11. Since W (A1) = W (A), we find that Eq. E.5 holds

Bj being same as Aj with an initial 1 removed.

Finally, if the edge e is marked by 01 in x and 10 in y, then splitting around

that edge, we have Aj = X01Y and Bj = X10Y , with all other sequences being

identical. Even in this case, Eq. E.5 holds.

Let us write A → B if it is possible to pass from A to B by either removing an

initial 0, or by removing a terminating 1, or by replacing a 10 by 01 somewhere

in A. Then the RHS of Eq. E.4 becomes

m(x)

(

∑

B→Ai

W (B)

W (Ai)
−
∑

Ai→C

1

)

. (E.6)

So it is sufficient to show that for an arbitrary sequence A

∑

B→A

W (B) =
∑

A→C

W (A). (E.7)

Now, consider a pair of sequences B → A, where A = X01Y and B = X10Y .

Since B < A, any sequence dominated by A is also dominated by B. The

difference W (B)−W (A) corresponds to sequences that B dominates bot A does

not. Such a sequence must have the form X ′10Y ′, where X < X ′ and Y < Y ′

and hence W (B) = W (A) + W (X)W (Y ). Substituting this in Eq. E.7 results in

the following identity which can be proved by the method of induction

W (A) = W (X) � A=X0 + W (Y ) � A=1Y +
∑

X01Y =A

W (X)W (Y ). (E.8)

If A ends (starts) with a 0 (1) the RHS gets a contribution from the first (second)

term. The sum in the RHS has a term in the sum for each representation of A

as X01Y .
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