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Synopsis

In this thesis, we study two different problems. In the first problem, we study a

variant of the Minority Game, which is an application of methods of statistical

physics to a model problem in economics. The Minority Game (MG) was

introduced by Challet and Zhang [1]. It is based on the the El-Farol Bar

problem [2] and is a prototypical model of socio-economic systems such as

markets consisting of interacting agents where there is competition between

agents for the limited available resources. The model consists of agents who

have to repeatedly choose between two alternatives, and at each step those who

belong to the minority group are considered as winners. The game has been

studied as model of learning, adaptation and co-evolution in scarce resource

conditions especially in the context of financial markets [3, 4, 5]. We study

performance of stochastic strategies in a variant of the Minority Game. We

analyze the problem first using the commonly used solution concept of Nash

equilibrium. We show that Nash equilibrium concept is very unsatisfactory

for this model giving rise to trapping states. In our first attempt to solve

this problem, we made an ad-hoc assumption to avoid the trapping states [6].

Later, we realized that to avoid such arbitrary ad-hoc strategies, we need to

introduce a new solution concept to be called Co-action equilibrium which

iv
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takes care of the problem of trapping state in a natural way. This is discussed

next. Using this new solution concept, we characterize the steady state of

the system for a finite number of agents. We study how the parameters of

the optimal strategy depend on the future time horizon of agents. We find

that for large enough future time horizon,the optimal strategy switches from

fully random choice to the one in which winners do not change their choice.

This general win-stay lose-shift strategy is often used in many other real life

situations [7].

In the second problem, we study a model of continuum percolation [8].

A host of problems in nature ranging from gelation to disease spreading in a

community involve spatially random structures. Percolation is the simplest

model describing such systems, which exhibit a geometrical phase transition.

We study continuum percolation problem of overlapping discs with a distribu-

tion of radii having a power-law tail. We show that the power-law tail of the

distribution affect the critical behavior of the system for low enough powers of

the distribution. For high enough powers, the critical behavior of the model

is the same as that for the usual percolation problem. We propose an ap-

proximate RG scheme to analyze the problem and determine the percolation

threshold and correlation length exponent from Monte-Carlo simulations.
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Stochastic strategies in a Minority Game

Standard Minority Game

In the standard MG setting, there are N agents, with N odd, and each of

them has to choose between two alternatives (say two restaurants A and B)

independently on each day. The agents in the restaurant with fewer people

get a payoff 1, and others 0. No communication is allowed between the agents.

The agents make their decision based on the information of the record of the

winning group (A or B) in the last Hb days. The information is thus a binary

string of length Hb and since each agent is affected only by the total behavior

of all other agents, the interaction is of mean-field type. A strategy is defined

as a rule which for each possible history will give a prediction for the possible

minority group on the next day. Each agent has a small number S of strategies

available with him/her which is drawn randomly in the beginning of the game

from the set of all possible strategies which is 22Hb in number. On any day,

an agent decides which restaurant to go to, using the strategy with her which

performed best in the recent past. If agents are choosing randomly between

A and B, the average number of winners per day is ≈ N/2 −K
√
N where is

K is some constant. The fact that make this model interesting is that for a

range of values of Hb, effective co-operation emerges between the agents, in

the sense that the number K is reduced substantially compared to the random

choice case. One would say that resource utilization is better in this case since

the number of winners per day is better than the case in which agents select

randomly between A and B. Thus, though the agents are selfish in their nature,

they seemingly self organize into a state of high social efficiency.
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The mean-field nature of the MG where each person interacts with every-

body else through the common information, makes it a system whose behavior

could be understood using the techniques of statistical physics [3]. It was found

that α = 2Hb/N is the relevant parameter in the model and the effective co-

operation between the agents become maximum at a critical value of α say

αc. Great effort has been put into the understanding of this emergent behav-

ior and exact results are available for the ergodic phase α > αc in the limit

N,Hb →∞ with α finite. The behavior of the model in the non-ergodic phase

α < αc is relatively less understood analytically (See [9] for a list of results

and references). A more detailed description of these results and references

will be given in the thesis.

In this thesis, the focus is on the performance of stochastic strategies in a

Minority Game. We consider a variation of the Minority Game where agents

use probabilistic strategies. Unlike the standard MG, where each agent is

endowed with a small subset of the whole strategy space, in our model, the

entire strategy set is made available to all the agents including probabilistic

ones. Also the agents are assumed to be fully rational. We study how the

self organization to a socially efficient state by the agents is affected in such a

model.

Definition of the model

In this work, we will consider stochastic strategies in a variant of the MG.

The agents in our model are assumed to be selfish and rational. The model

consists of an odd number of agents N = 2M + 1 where M is a positive

integer. They have to select one of the two alternatives A or B at each step
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simultaneously and independently. An agent will receive a payoff 1 if she is in

the minority. i.e., if she is in a restaurant with attendance ≤ M . Otherwise

she receives a payoff 0. The agents can not communicate with each other in

any direct way in deciding their choice and make their choice based on the

information that how many agents were there in each of the two restaurants in

the past Hb days. More precisely, if we denote the number of agents who were

in restaurant A on the t -th day by, M −∆(t), then the time series {∆(t′)},

for t′ = t, t− 1, .....t− (Hb − 1) is known to all agents at the end of day t. In

the standard MG, the information is not the value of ∆(t), but only the sign

of it. Any agent X wants to optimize her weighted expected future payoff,

ExpPayoff(X) =
∞∑

τ=0

[(1− λ)λτ ]〈WX(τ + 1)〉, (1)

where 〈WX(τ)〉 is the expected payoff of the agent X on the τ -th day ahead,

and λ is a parameter 0 ≤ λ < 1, same for all agents. In the problem, we

allow agents to have probabilities strategies. So for a given history {∆(t′)},

a strategy will specify the probability p with which she should switch her

choice. We will restrict ourselves to the simplest case Hb = 1 so that the

agent’s strategy depend only on the attendance on the last day.

If Hb = 0, then we have the situation in which agents do not have any

information to base their decision. Their optimum strategy then is to select A

or B randomly. In such a case, the expectation value of the number of agents

who will show up at either restaurant is N/2. We can measure the inefficiency
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of the system by the parameter η usually defined by,

η = lim
N→∞

4

N
〈(r −N/2)2〉, (2)

where variable r denote the attendance in restaurant A (or B). 〈 〉 denotes

averaging over long time and over different initial conditions. The normaliza-

tion has been chosen, so that the inefficiency parameter η of the system with

agents choosing randomly between A and B is 1.

An efficient probabilistic strategy for MG

Consider the simplest case, when agents are optimizing only next days payoff,

so that λ = 0 in Eq. 1. With Hb = 1, the information available to the

agents is the attendance in the restaurants on the past day. A general strategy

applicable in such a situation is the win-stay lose-shift strategy, where if an

agent wins on a given day, she sticks to her choice on the following day and

if she loses, she will switch her choice with some probability. We first analyze

this strategy within the frame work of the Nash solution concept and show

that this will give a highly efficient system, where inefficiency can be made of

order (1/N1−ε), for any ε > 0.

The strategy is defined as follows. On the first day t = 0, each agent choose

one of the restaurants randomly. On all subsequent days, an agent who has

found herself on the last day on the minority side will stick to her choice on

the next day, but an agent who was in the majority will switch her choice with

probability p independent of other agents. The value of p depend only on ∆(t)

and is approximately ∆/M for ∆ > 0. The precise dependence of p on ∆(t)
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is obtained from the Nash condition on expected payoffs. We can easily show

that within a time of order log logN , the magnitude of ∆ will become of O(1),

and then remain of order 1. So the system quickly reaches a highly efficient

state and will remain there.

This seems to indicate that the Nash solution concept leads to a socially

efficient state in which number of agents in the minority is near maximum

possible on each day. However, this solution concept has the problem that it

will lead to an absorbing state which we call as trapping state, in which the

same set of agents win on each day. To understand this, consider the case

∆ = 0. In this case there are exactly M agents in A and M + 1 agents in B.

It is easy to see that, in this case all agents staying put is a Nash solution.

There is no optimum non-zero value of p in this case. Under the Nash solution

concept, the optimum strategy for each agent in B is to stay put, which will

lead to 0 payoff for all of them in all subsequent days. With selfish, rational

agents such a solution make little sense. An ad-hoc solution to the problem

is that, whenever such a trapping state is reached, all agents irrespective of

whether they were in minority or not on day t, switch their choice on next day

with a probability M ε−1, where ε is a real number 0 ≤ ε ≤ 1. We shall refer

to this step as a major resetting event. The value of ε is not determined by

our model, but is assumed to have a preset value.

For a given value of ε, the value of |∆| just after resetting is of order M ε/2.

Then it takes time of order log logM to reach the value ∆ = 0. It is easy to

see that the inefficiency parameter would vary as M ε−1/ log logM . Then, for

more efficiency, the agents should keep ε small.
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Figure 1: A typical evolution of a system of 2001 agents for two different
choices of the parameter ε = 0.5 and 0.7. The large deviations correspond to
major resetting events (see text).

Simulation results

We study the time evolution of a set of N agents using this strategy using

Monte Carlo simulations, with N = 2001. If the restaurant with greater

attendance has M + 1 + ∆ agents on a given day, with ∆ > 0, the next day

each of them switches her choice with probability p(∆), and the agents in the

minority restaurant stick to their choice. If there are exactly M + 1 agents in

the majority restaurant, all agents switch their restaurant with a probability

1/(2M1−ε).

The result of a typical evolution is shown in Fig. 1, for two choices of ε:

0.5 and 0.7. We see that the majority restaurant changes quite frequently.

The large peaks in |∆| correspond to re-settings of the system, and clearly,
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their magnitude decreases if ε is decreased. There is very little memory of the

location of majority restaurant in the system. To be specific, let S(t) is +1 if

the minority restaurant is A on the t-th day, and −1 if it is B. Then the auto-

correlation function 〈S(t)S(t+τ)〉 decays exponentially with τ , approximately

as exp(−Kτ). The value of K depends on ε, but is about 2, and the correlation

is negligible for τ > 3.

Fig. 2a gives a plot of the inefficiency parameter η as a function of ε.

We define Ai(t) equal to +1 if the i-th agent was in the restaurant A at time t,

and −1 otherwise. We define the auto-correlation function of the A-variables

in the steady state as

C(τ) =
1

N

∑

i

〈Ai(t)Ai(t+ τ)〉. (3)

In Fig. 2b, we show the variation of C(τ) with τ . We see that this function

has a large amount of persistence. This is related to the fact that only a small

fraction of agents actually switch their choice at any time step. Clearly, the

persistence time is larger for smaller ε.

Strategy switching and Co-action equilibrium

We saw in the previous section that the Nash solution concept when applied

to the problem leads to trapping state. Trapping state arises due to the Nash

solution concept of optimizing over strategies of one agent, assuming that all

other agent would continue to do as expected; or the Nash condition doesn’t

take into account the fact that all agents with the same information will reach

the same conclusion about their optimum strategy and hence will choose the
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same switch probability. In the alternate Co-action equilibrium, agent realizes

that whatever switch probability she chooses, others in the same state as her

will choose the same probability. Hence she should optimize her switch prob-

ability taking this into account. The situation is thus similar to a two-person

game where the two ‘persons’are the majority and the minority groupings who

select the optimal values of their strategy parameters. But these grouping are

temporary and change with time.

We will allow the discount parameter λ in Eq. 1 to have non-zero values.

An agent is said to be in state Ci when she in a restaurant with total number

of agents i. Let pi be the switch probability chosen by an agent when she is

state Ci. For a given N , a strategy P is defined by the set of N numbers P ≡

{p1, p2, ....pN}. If |Prob(t)〉 is an N -dimensional vector, whose j-th element is

Probj(t), the probability that a marked agent X finds herself in state Ci on

the t-th day, then |Prob(t)〉 undergoes Markovian evolution described by

|Prob(t+ 1)〉 = T|Prob(t)〉, (4)

where T is the N ×N Markov transition matrix. Explicit matrix elements are

easy to write down. Then total expected payoff of X, given that she is in state

Cj at time t = 0 is

Wj = (1− λ)

〈
L

∣∣∣∣
T

1− λT

∣∣∣∣ j
〉
, (5)

where |j〉 is the vector with only the j-th element 1, and rest zero; and 〈L| is

the left-vector 〈1, 1, 1, 1, ..0, 0, 0..|, with first M = (N − 1)/2 elements 1 and

rest zero.

Let us denote the equilibrium strategy with N agents by {p∗1, p∗2, . . . p∗N}.
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One simple choice is that pi = 1/2 for all i. We will denote this strategy

by Prand. In this case it is easy to see that average expected payoff Wj is

independent of j and is given by

Wj = Wrand = 1/2−
(
N − 1

M

)
2−N , for all j. (6)

For a strategy P, it is more convenient to use the inefficiency parameter η

defined as follows instead of that in Eq. 2,

η (P) = (Wmax −Wavg (P)) / (Wmax −Wrand) , (7)

where Wmax = M/N is the maximum possible payoff per agent, Wavg (P)

is the average payoff per agent in the steady state for a given λ. By the

symmetry of the problem, p∗N = 1/2 for all λ. Now consider the strategy

{p∗i } = {p∗1, 1/2, 1/2, 1/2...}. If an agent X is in state C1, and next day all

other agents will switch with probability 1/2, it does not matter if X switches

or not: payoffs W1 and WN−1 are independent of p∗1. Hence p∗1 can be chosen

to be of any value. It can be shown that the strategy P′rand, in which p∗1 = 0,

and p∗N−1 < 1/2, chosen to maximize WN−1, is better for all agents and stable,

and hence is always preferred over Prand.

As a simple application, consider first the case N = 3. Since p∗1 = 0,

p∗3 = 1/2, the only free parameter is p∗2. This is determined by maximizing

W2(λ) with respect to p2, and this gives the optimal strategy for any λ. It is

found that p∗2 monotonically decreases with λ from its value 1/2 at λ = 0 as

shown in Fig. 3a. The payoff of agents in various states with this optimum

strategy is shown in Fig. 3b. The average payoff per agent per day Wavg in
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the steady state for N = 3 is a monotonically increasing function of λ, and

leads to the best possible solution Wmax = 1/3 as λ→ 1.

We can similarly determine the optimal strategies for N = 5. The optimal

strategy is characterized by the five parameters (p∗1, p
∗
2, p
∗
3, p
∗
4, p
∗
5). As discussed

before, the strategy P′rand = (0, 1/2, 1/2, p∗4(λ), 1/2) gives higher payoff than

Prand for all agents, for all λ. The optimum values p∗2 and p∗3 can be determined

from the behavior of the payoff functions W2 and W3 in the p2−p3 plane. It is

found that for λ ≤ λc1 = .195± .001, p2 = p3 = 1/2 is the optimum choice and

for λ > λc1 the optimum values are p2 = 0 and p3 = p∗3(λ) ≤ 1/2. There is also

a continuous transition at λc2 = .737± .001. The optimum switch probabilities

and the corresponding payoffs and inefficiency are shown in fig 4.

One can analyze the problem with higher N as well. For eg. with N = 7,

we find that there are four transitions with thresholds λci, where i = 1 to 4.

For λ < λc1, the optimal strategy has the form (0, 1/2, 1/2, 1/2, 1/2, p∗6, 1/2).

For λc1 ≤ λ ≤ λc2, we get p∗3 = 0, and p∗4 < 1/2. For still higher values

λc2 < λ ≤ λc3, agents in state C2 and C5 also find it better to switch to

win-stay lose-shift strategy, and we get p∗2 = 0, p∗5 < 1/2. Thus the general

structure of the optimum strategy is that as λ is increased, it changes from

random switching to a complete win-stay lose-shift strategy in steps.
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Figure 5: a) Synthetic sponge [12]. b) A 2D model below percolation threshold
and c) above it. Spanning cluster is shown in red.

Continuum Percolation problem of overlapping

discs with a distribution of radii having a power-

law tail

In general, two classes of percolation models are studied in the literature

namely lattice and continuum percolation. Disordered systems with discrete

geometric structure are modeled by percolation on lattice and those, where

underlying space is a continuum by continuum percolation. In problems like

effective modeling of disordered systems, the continuum models of percolation

are more realistic than their lattice counterparts because often the basic geo-

metric structure of the system is not discrete as in a lattice percolation model

(See Fig. 5). In two dimensions, model continuum percolation systems studied

in the literature involve discs, squares etc of same or varying size distributed

randomly on a plane [13, 14, 15]. The problem of disc percolation where discs
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have bounded size has been studied a lot, mainly by simulation [14, 16, 17]. If

n is the number density of the discs in the system, there is a critical number

density n∗ such that for n < n∗, system is non-percolating and for n > n∗

the system is percolating where there exists a spanning cluster in the system

(See Fig. 5). For the single sized disc percolation, the threshold is known to a

very high degree of accuracy, n∗ ' .359081 [16]. Also simulation studies have

shown that the disc percolation in 2D with discs of bounded size falls in the

same universality class as that of lattice percolation in 2D [18].

An interesting sub-class of these problems is where the basic percolating

units have an unbounded size distribution. This is similar to systems like

Lennard-Jones fluid or Ising model with long-range interactions where inter-

action potential decays as a power-law. It is known that such long-range

interaction can affect the critical behavior of the system for slow enough decay

of the interaction [19]. Continuum percolation with percolating units having

an unbounded size distribution are comparatively less studied though a few

formal results are available which establishes the existence of a non-zero per-

colation threshold [20]. Here, we consider a continuum percolation problem

where the basic percolating units are overlapping discs which has a power-law

distribution for the radii.

The model is defined as follows. Let n be the number density of discs.

The probability that any small area element dA has the center of a disc in

it is ndA, independent of all other area elements. For each disc, we assign a

radius, independently of other discs, from a probability distribution Prob(R).

We consider the case when Prob(R) has a power-law tail; the probability of

radius being greater than R varies as R−a for large R. For simplicity, consider
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the case when radii take only discrete values R0Λj where j = 0, 1, 2, ..., with

probabilities (1−p)pj where p = Λ−a. Here R0 is the size of smallest disc, and

Λ is a constant > 1. The fraction of the entire plane which is covered by at

least one disc, called the covered area fraction fcovered, is given by

fcovered = 1− exp (−A) , (8)

where A is the areal density - mean area of the discs per unit area of the plane

- which is finite only for a > 2. For a ≤ 2, in the thermodynamic limit, all

points of the plane are eventually covered, and fcovered = 1.

We define two point function Prob(1  2) as the probability that points

1 and 2 in the plane at a distance r12 from each other are connected by over-

lapping discs. Let Prob(1)(1 2) denote the probability that there is at least

one disc that covers both points 1 and 2. Then, clearly,

Prob(1 2) ≥ Prob(1)(1 2). (9)

We can show that Prob(1)(1  2) decays as r2−a
12 . A comparison with the

Ising model with long-range interaction or fluids with long -range potential

[19, 21] where similar scenario occurs gives the result that a deviation from

the standard critical behavior is expected when a < 3 − ηsr and the critical

exponents will take their short-range values for a > 3 − ηsr where ηsr is the

anomalous dimension exponent for the usual percolation problem. Also mean-

field behavior is expected when a ≤ 2. However for this range of a, the entire

plane is covered for all non-zero number densities and hence there is no phase

transition.
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We propose an approximate RG scheme to analyze the behavior of contin-

uum percolation models near the percolation threshold, when the percolating

units have a distribution of sizes. We assume that we can replace discs of one

size having a number density n with discs of another size and number density

n′, provided the correlation length remains the same. From this we get the

results that the correlation-length exponent for our problem is the same as

that for single sized disc problem and the critical number density is given by,

n∗ = nc
(
1− Λ(2−a−1/ν)

)
/
(
1− Λ−a

)
, (10)

where nc is the critical number density for percolation with single sized discs

of unit radius.

Simulation results

We determine the exponent ν and the percolation threshold n∗ by simulating

the continuum percolation system in 2D, with discs having a power law distri-

bution for their radii. We assume a continuous distribution for the radii where,

given a disc, the probability that it has a radius between R and R+dR is equal

to aR−(a+1) where a > 2. We use cyclic boundary conditions and consider the

system as percolating whenever it has a path through the discs from the left

to the right boundary. We drop discs one at a time on to a region of a plane

of size L × L, each time checking whether the system has formed a spanning

cluster or not. From this we determine the distribution of the number density

of discs to be dropped to achieve spanning Π(n, L). The number of realiza-

tions sampled for a particular value of L varies from a maximum of 2.75× 107
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for a = 2.05 and L = 90 to a minimum of 4000 for a = 9.0 and L = 1020. The

total computation time spent is approximately 10000 CPU hours. From the

scaling form for the spanning probability,

Π ′(n, L) = φ((n∗ − n)L1/ν), (11)

we can determine the percolation threshold n∗ and the correlation length ex-

ponent ν [22]. Values of 1/ν obtained for various values of a are shown in Fig.

6a. We can see that the estimates for 1/ν are very much in line with the stan-

dard percolation value for a > 3−ηsr while it varies with a for a < 3−ηsr. Fig.

6b shows the variation of the percolation threshold n∗ with a. As expected,

with increasing a, the percolation threshold increases and tends to the single

sized disc value as a→∞.
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the standard 2D percolation value 1/ν = 3/4. b) Variation of percolation
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Introduction

Statistical physics deals with properties of systems of interacting particles. In

such systems, exact solution of dynamical evolution equations is often diffi-

cult and perhaps not much of use, but average properties can be determined

quite accurately. One very a priori unexpected property of a system of many

particles is the existence of sharp phase transitions which is a collective effect.

More is different: such properties emerge only when we consider a collection of

entities. In this thesis, we study two examples of such transitions: one in non-

equilibrium and one in equilibrium system. In the first problem, we study a

variant of the Minority Game, which is an application of methods of statistical

physics to a model problem in economics. Here, interacting ‘particles’ are the

players of the game and we are interested in their collective behavior resulting

from simple individual goals. In the second problem, we study a model of con-

tinuum percolation which undergoes a continuous phase transition. We study

a model where the percolating units are overlapping discs with a distribution

of radii having a power-law tail. In this chapter, we will give an introduction

and necessary background to the two problems and will summarize our main

results. An outline of each of the chapters may be found in Sec. 0.3.

1



2 0. INTRODUCTION

0.1 The Minority Game

There has been a lot of interest in applying techniques of statistical physics

to socio-economic problems in the past two decades. Naturally, a physicists’

approach to problems in economics is somewhat different from that of a con-

ventional economist and often this has lead to discussions about the need for

an interdisciplinary approach to the problems [1]. While the usefulness and

insights the conventional approach provided is unquestionable, the new ap-

proaches only add to our understanding of the problems. An example is the

understanding of the scaling behaviour of the fat-tailed distribution observed

in many kinds of financial data [2]. In particular features like fluctuations

about the steady state and universality can be treated and understood better

using tools from statistical physics [3, 4, 5].

While these new approaches have drawn their share of criticisms, it is fair

to say that these have led to better modelling and analysis of the collective

behaviour of interacting agents, as in a market. The Minority Game (MG)

introduced by Challet and Zhang [6] is the prototypical model in this subject

which drew inspiration from the El Farol Bar problem introduced by Brian

Arthur in 1994 [7]. The model consists of agents who have to repeatedly

choose between two alternatives say A and B and at each step, those who

belong to the minority group are considered as winners. We can find examples

of many complex systems which have such a minority rule in play. A few are

vehicular traffic on multilane highways where drivers would like to be on the

less congested road, markets where the general wisdom is that it is better to

be a buyer when most agents are selling and vice versa, ecologies of animals

looking for food where each one would like to occupy a region with plentiful
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food which is less frequented by other animals and so on.

In MG, at any stage of the game, each agent is concerned with following

question. What is her optimum choice on the next step ? or in other words

which of the two alternatives is going to be the minority side on the next step

?. The agents have to make their choices simultaneously and independently.

Hence, the answer to this question in general depends on her expectation of

what other agents are going to do collectively.

In MG each agent is affected only by the collective behaviour of all other

agents and is like a mean-field situation in statistical physics. It is easy to

see that in such a situation any common expectation held by the agents will

negate themselves. If most of the agents expect that a particular option is

going to be the minority choice on the next day, then all of them will take that

option invalidating their belief. We will make these ideas concrete and define

the game more precisely as we go along.

MG is thus an interesting model, where each agent has to see what other

agents are doing collectively and adapt accordingly. This in turn, leads to other

agents modifying their expectations and thus the expectations of agents co-

evolve. These features make MG an interesting model of learning, adaptation

and co-evolution. These features also make MG a problem of interdisciplinary

research which has been studied by researchers from diverse areas ranging from

physicists and sociologists to economists [8, 9, 10, 11].

In a standard MG setting [6], there are N = 2M + 1 agents where M

is a positive integer, who has to choose between the options A and B (say

two restaurants) at each step independently. At each step, each agent in

the minority group get a payoff 1 and others get payoff 0. There is public
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information available to the agents which is the choice by the minority in

the past Hb days. This information is thus a binary string of A and B of

length Hb. Given this information, agents have certain rules called strategies

to recommend what should be their future action. A strategy is defined as

a rule which will predict the minority group on the next step for all possible

inputs. Note that for a given agent, this prediction may turn out to be right

or wrong depending upon the net outcome of strategies used by all agents at

a step. For e.g., if all agents use the same strategy, all of them will turn out

to be wrong, since all of them will turn up in the same restaurant making it

a majority. So a strategy is just a rule which will recommend a future course

of action (whether to go to A or B) for each possible input information. The

whole strategy set is thus finite, having 22Hb strategies in total. An example

for a strategy with Hb = 3 is shown in table 1. One can think of a strategy

as a look up table which contains a unique prediction for each possible input

information. For e.g.. the strategy in table 1 predicts that when the minority

group is A on three consecutive days (corresponds to first row), restaurant A

will have the minority group on the following day.

History Prediction

A A A A
A A B A
A B A B
A B B A
B A A B
B A B B
B B A B
B B B A

Table 1: An example of a strategy when Hb = 3.
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Figure 7: Schematic representation of the attendance in restaurant A for two
different values of memory length Hb when total number of agents is N = 201.
Fluctuation in the attendance is reduced below that of the random choice case
as Hb is increased from 4 to 6.

In the model as defined in [6], each agent is given a small number of strate-

gies, say S, randomly picked out of the whole set at the beginning and at

any given step, an agent will use the one with the best performance in the

recent past. Performance of strategies is measured by an agent by keeping a

virtual score for each of the strategies with her. So, even though each agent

will be using only one of the several strategies with her, she keeps a tab on

the performance of all the strategies with her.

With these evolution rules, simulation studies of the model [12] have shown

that the attendance in each restaurant fluctuates around N/2 while the fluc-

tuation in the attendance vary with the history length Hb for a given N (see

Fig. 7). The observation that the average attendance in each restaurant is
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N/2 is easy to understand. This is because, the two restaurants are equiva-

lent in every respect and hence none of them can contain the minority group

consistently. If each agent is making a random choice between A and B, then

the fluctuation in the attendance in the minority restaurant is ≈ N/2−K
√
N

where K = 1. It was found that for a range of Hb values, value of K is

substantially reduced below 1 implying that agents self organize into a state

which is better for all agents. Thus agents effectively cooperate even though

individual agents are selfish and care only about their individual payoff. In

such a case, we would say that resource utilization is better or social efficiency

is higher since the number of winners per day is better than the case in which

agents select randomly between A and B.

One should distinguish between the idea of a high social efficiency and high

personal gain. Agents striving for their personal gain may or may not attain

a high social efficiency. A state of high social efficiency is better for each of

the individuals only when there is enough ‘social mobility’ so that all agents

are on an average benefited equally. Understanding this emergent behaviour

of a high social efficiency with the strategy set defined above is the subject of

much of the study in the MG (See Sec. 1.1 for a review of earlier work).

With a setting such as that of MG, the possibilities to modify it to adapt

to different situations are immense. Several variants of the model have been

introduced later which share the same basic features of the game mentioned

above. An example from an earlier period is the Thermal MG [13] which is a

continuous and stochastic extension of the standard MG in which agents select

the strategy to use at any step probabilistically from the strategy set allocated

to them at the beginning. Here, the probability distribution is assumed to
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be like a Gibbs distribution, ∝ exp(U/T ), where U is the virtual score of a

strategy and T is a temperature like parameter. When T = ∞, the agents

selects completely randomly from their allocated strategy set and when T = 0,

they behave as in the standard MG where they use the strategy with the

best score. The continuum time limit of this model is described by stochastic

dynamical equations [13, 14] (See also [15, 16] ). The relation to the continuum

time limit of the standard MG was made clear in a later work [17].

Another example is the evolutionary MG [18, 19] where strategies of a

fraction of worst performing agents are replaced periodically with strategies

selected randomly from the common pool. As in the standard MG, the central

theme in these variants is that a higher social efficiency is achieved compared

to the random choice case for some parameter range of the model. A more

recent extension of the model is the market-directed resource allocation game

(MDRAG) [20, 21], where agent’s strategies have inbuilt heterogeneities so

that each agent has a bias towards one of the two restaurants. Minority games

with finite score memory [22], Multi-resource MG models [23] and the spherical

MG [24] are a few other ones. Of these, the pherical MG model in which each

agent uses a linear combination of strategies available with her has the virtue

that it can be exactly solved for all parameter ranges of the model. in which

each agent uses a linear combination of strategies available with her which has

the virtue that it can be exactly solved for all parameter ranges of the model

are a few other ones. It is impossible to give a detailed account of all different

modifications of MG that has been considered since its inception here. A good

place to look up is the recent review [25]. A detailed but not exhaustive list

of references may be found in the Minority Game website [26].
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One of the motivations to introduce the standard MG was to model the

behavior of agents with bounded rationality who resort to inductive reasoning.

Agents follow rather simple rules to decide when to switch strategies, based

on the performance score of the strategies. Initial allocation of the strategy

set to each agent is made randomly. So agents are assumed to have some fixed

‘response modes’ . Thus one may imagine that these agents are unthinking

machines, following some pre-programmed instructions. At any stage of the

game, the agents use the strategy which worked well in the recent past, from

the set of response modes available. In this respect, MG can be considered as

a model of learning with fixed strategy set (response modes) to each agent.

For a discussion of this and the interpretation of the behaviour of the agents

in standard MG see the review by Kets [27] and references therein.

As a game, MG belong to the general class of congestion games [28] where

a player’s benefit, who selects one of the several options from a common pool,

depends upon the number of players selecting the same option. A congestion

game thus models scarcity of a resource which is available to all the players.

For a recent review of MG in the context of statistical mechanics of competitive

resource allocation see [25].

A game, very similar in spirit to MG, is the much studied market entry

game introduced by Selten and Guth [29] where each player has to decide

whether to enter a market or stay out. The market is assumed to have a

fixed capacity and the payoff of those who enter is a decreasing function of the

number of entrants. The payoff of agents who do not enter is assumed to be

constant. So unlike MG, here there is no symmetry between the two options.

Though, using a deterministic strategy set as described in the standard
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MG results in a relatively higher payoff per agent and thus result in a higher

social efficiency compared to the random choice case, it was found that sim-

ple probabilistic strategies could perform better in this regard [30]. This is

intuitively clear, since in games of imperfect information where agents have to

make their choice simultaneously, any pattern in choices made by some agents

may be utilized by others to their advantage. So randomizing is considered as

a better option. For example it was found in the standard MG setting that,

if an agent is randomly selecting between her available strategies rather than

using the one with the best performance score, she could do better than others

[31].

Also, the basic premise of MG or the El Farol Bar problem was that,

agents had to behave inductively rather than deductively because of the fact

that there is no single optimum strategy applicable to all agents. However

it is easy to see that this is true only when agents make their choice in a

deterministic way. We will consider these issues in detail in Chapter 1.

In our work, we explore in detail stochastic strategies in a variation of the

Minority game in which the entire strategy set is made available to all the

agents. We address the question that what is the optimum strategy of an

agent if she were to play the minority game rationally. We will show that

contrary to the popular belief, rational deductive agents can perform much

better than the inductive agents in the standard MG, and this variation is

analytically tractable. We will end this section with a summary of our main

results.
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0.1.1 Summary of main results

• We show the the most commonly used solution concept of Nash equilib-

rium is very unsatisfactory for the model leading to trapping state.

• We propose a new solution concept to be called as co-action equilibrium

which take care of the problem of trapping state in a natural way.

• We work out the optimum strategy of agents for small N , and find

common properties which are expected to hold for larger N .

• The optimum strategy is more efficient than possible under the standard

MG.

• The solution shows multiple transitions as a function of the future time

horizon of agents even with finite N .

0.2 A continuum percolation problem

Several problems in nature like gelation, disease spreading etc. involve spa-

tially random structures. Percolation is the simplest model describing the ge-

ometry of such structures and has contributed greatly in understanding prob-

lems in a diverse set of topics in physics, material science, complex networks,

epidemiology etc. Apart from modelling such disordered systems, percola-

tion models are important in statistical physics in understanding the general

nature of critical phenomena associated with a continuous phase transition

[32, 33, 34].

Disordered systems may have either a discrete geometric structure or a

continuous one. The former is modelled by percolation on lattice and the
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latter by continuum percolation models. In the former, each site or bond of a

lattice is occupied with some probability say p. A maximal group of connected

sites or bonds is called a cluster. Then, above a critical value of p say pc, a

giant cluster spans the system. In contrast, in a continuum percolation model,

percolating units which are basic geometric shapes like discs, sticks, spheres

etc. are thrown in randomly into a space with a specified number density say

n. Then above a critical value of n say n∗, a giant cluster spans the system

(see Fig. 8).

The lattice models have been studied extensively over the past 50 years

or so. The percolation threshold is known exactly for a few models like bond

percolation on a square lattice [35]. Below the percolation threshold, it was

shown that the probability that a given site/bond is contained in a cluster

of size r decays exponentially in r [36, 35]. For the critical behavior, scaling

theory predicts the existence of critical exponents and relations among them

[37]. Values of these exponents which are believed to be exact, but not rigor-

ously established are available in two dimensions (2D) [38] with backing from

numerical simulation data [32, 34].

Compared to its lattice counter part, continuum models of percolation are

less explored though the latter is a more realistic model of the geometry of

disordered systems. In two dimensions, model continuum percolation systems

studied in the literature involve discs, squares etc. of same or varying size, dis-

tributed randomly on a plane [40, 41, 42, 43]. The problem of disc percolation

(See Fig. 8) where discs have bounded size has been studied a lot, mainly by

simulation [41, 44, 45]. For the single sized disc percolation, the threshold is

known to a very high degree of accuracy, n∗ ' .359081 [44]. Also simulation
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Figure 8: a) Synthetic sponge [39]. b) A 2D model below percolation threshold
and c) above it. Spanning cluster is shown in red.

studies have shown that the disc percolation in 2D with discs of bounded size

falls in the same universality class as lattice percolation in 2D [46].

An interesting sub-class of these problems is where the basic percolating

units have an unbounded size distribution. Continuum percolation with per-

colating units having an unbounded size distribution are comparatively less

studied, though a few formal results are available which show that a non-zero

percolation threshold exists if and only if the expectation value of the D − th

moment of the size distribution is finite where D is the dimension [47].

In our work, we consider a continuum percolation problem where the basic

percolating units are overlapping discs which has a power-law distribution of

the radii. Thus given a disc, the probability of its radius being greater than

R varies as R−a for large R. We address questions like whether the power-law
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tail of the distribution affect the critical behaviour of the system and how

does the percolation threshold depend on the power of the power-law tail.

From an application point of view, a power-law polydispersity for an extended

range of object sizes is quite common in nature especially for fractal systems

[48]. Disordered systems like carbonate rocks often contain pores of widely

varied sizes covering many decades in length scales ranging from few microns

to several milli meters [49, 50], whose geometry may be well modelled by a

power-law distribution of pore sizes.

0.2.1 Summary of main results

• Power-law tail of the distribution strongly affects the nature of the phase

transition for low enough values of a.

There are two-regimes:

a < 3− ηsr: Critical exponents depend on a.

a > 3− ηsr: Critical exponents take standard percolation values.

where ηsr is the anomalous dimension exponent for the standard perco-

lation problem.

• The entire low density non-percolating phase has power-law correlations

for any value of a in contrast to the exponential decay for the standard

percolation.

• We propose an approximate RG scheme which is good for relatively large

values of a. We obtain an expression for the percolation threshold which

is asymptotically exact.

• We determine the percolation threshold as a function of a using Monte-
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Carlo simulations.

0.3 Outline

In Chapter 1, after a review of some earlier work in MG, we define our model

precisely and analyze the system using the most commonly used solution con-

cept of Nash equilibrium. We show that this solution concept is very unsatis-

factory for this model leading to an absorbing state of the system where the

same set of agents are the winners on all subsequent days. We call this as

the trapping state. An ad hoc assumption is made to avoid this, which will

reset the system after reaching the trapping state. We work out the Nash

equilibrium solution for states of the system other than the trapping state

and characterize the steady state behavior of the system. We then present

simulation results for the problem as a function of the resetting parameter.

In Chapter 2, we propose a solution concept to be called as co-action

equilibrium which take care of the problem of trapping state in a natural

way. We analyze the system using this solution concept and characterize the

optimum strategies of the agents. We work out the solution exactly for small

number of agents N = 3, 5, 7 indicating the general structure of the solution

for larger N . We show that the parameters of the optimal strategy depend on

the future time horizon of the agents and show sudden transitions as the future

time horizon is increased. The resulting optimal strategy perform better than

the deterministic strategy set in the standard MG.

In Chapter 3, we consider the continuum percolation problem of overlap-

ping discs with a distribution of radii having a power-law tail. First we show



0.3. OUTLINE 15

that in the low-density non percolating phase, the two-point correlation func-

tion shows a power-law decay with distance, even at arbitrarily low number

densities of the discs, unlike the exponential decay in the usual percolation

problem. As in the problem of fluids with long-range interaction, we argue

that in our problem, the critical exponents take their short range values for

a > 3− ηsr, whereas they depend on a for a < 3− ηsr, where ηsr is the anoma-

lous dimension exponent for the usual percolation problem. We propose an

approximate renormalization scheme to determine the correlation length expo-

nent ν and the percolation threshold. We carry out Monte-Carlo simulations

and determine the exponent ν as a function of a. The determined values of ν

shows that it is independent of the parameter a for a > 3− ηsr and is equal to

that for the lattice percolation problem, whereas ν varies with a for a < 3−ηsr.

We also determine the percolation threshold as a function of the parameter a.





Chapter 1

Stochastic strategies in a

Minority Game

As we mentioned earlier in the introduction, randomizing is found to be a

better option for the players in many games where they have to make their

choices at the same time. In this chapter, we consider stochastic strategies in

a variant of the MG where agents are assumed to be selfish and rational. So

each agent wants to optimize only her payoff and will make use of the available

information to do so.

The chapter is organized as follows. In Sec. 1.1, we review some of the

earlier work in MG. In Sec. 1.2, we give the motivation for our study and

emphasize the difference between our version and the standard MG. In Sec.

1.3 we define our model precisely. In Sec. 1.4 and 1.5, we analyze the game

within the frame work of the solution concept of Nash equilibrium and show

that this leads to very unsatisfactory trapping states for the problem. Then in

Sec. 1.6, we describe our first attempt to solve the problem of trapping states

15



16 1. STOCHASTIC STRATEGIES IN A MINORITY GAME

by making an ad-hoc assumption. This may be found in [51]. Later in chapter

2 we propose a new solution concept called co-action equilibrium, which will

take care of the problem of trapping state in a natural way. In Sec. 1.7, we

characterize the steady state behavior of the system by simulation studies.

Sec. 1.8 contains the summary.

1.1 Earlier work in MG

Much of the literature on MG is devoted to understanding the higher social

efficiency achieved by the agents for some parameter range of the model. Much

of the earlier insights into the behavior of MG came by simulation studies [6,

52, 53]. It was made clear from simulation studies that the relevant parameter

in the model is the ratio 2Hb/N between the number of possible histories and

the number of agents [53, 54]. Later an explanation was given based on the

fact that even though the number of possible strategies is very large, many of

them are not very different [52]. There are strategies which predict the same

outcome for most of the possible inputs. The nature of the game dictates

that if a significant number of agents use similar strategies, the fluctuation in

the attendance will be higher. A precise quantification of similarity between

two strategies can be given in terms of the Hamming distance which gives

a quantitative measure of the difference between two strings in terms of the

number of positions at which the corresponding bits are different in the two

strings. Based on this, it was shown that the number of independent strategies

whose normalized Hamming distance from each other is equal to 1/2 is 2Hb

rather than 22Hb [52]. If the number of agents N is much smaller than 2Hb ,
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we expect that the behavior of agents will be more or less similar to the case

when they are choosing randomly between the restaurants. If N � 2Hb , we

expect a large number of agents to choose the same option at each step since

they are using more or less similar strategies. This is called as herding effect

and leads to oscillations in the attendance of a restaurant. So there will be

large fluctuations in the attendance of a restaurant when N � 2Hb .

The identification of this key parameter is crucial to a better understanding

of the behavior of MG. Thus if σ2 denotes the variance in the attendance

difference between the two restaurants, a plot of σ2/N against α will look

like as shown in Fig. 1.1. When agents select randomly between the two

restaurants, it is easy to see that σ2/N = 1. We can see from Fig. 1.1 that

for a whole range of α, the fluctuation is less than its value for random choice

behavior and attains a minimum at some value say αc. One can say that

this observed minima in the fluctuation which signifies apparent cooperation

is the most significant factor which aroused much of the interest in MG. It

should be noted that for large N , with fixed memory length Hb, the behavior

of the system is much worse than when the agents make random choices. Thus

for the emergence of this apparent coordination, agents require large memory

length of the order of logN .

An analytical understanding of the behavior of MG was made possible later

through a series of works (see [55] and references therein). An important step

was the realization that replacing the history of length Hb by a random binary

string does not affect the qualitative behavior of the model [56]. This means

that we can feed the agents a randomly chosen Hb bit information and obtain

the same qualitative behavior of the system as in standard MG. So what is
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Figure 1.1: Schematic representation of the variation of the normalized global
efficiency σ2/N with the parameter α = 2m/N for S = 2 and S = 3 . The curve
with lower minimum corresponds to S = 2 and the other curve corresponds
to S = 3. The dashed horizontal line shows the value of σ2/N when agents
choose randomly between the two restaurants.

important in the model is that all agents react to the same information rather

than to the information generated by their own evolution.

Along with some other simplifications which do not affect the qualitative

behavior of the system, this lead to an exact dynamical solution of the model

for α > αc using concepts and formalism developed originally for the spin-glass

problem [57, 58, 55]. These modifications include introducing a temperature

like parameter which introduces a probability distribution over the strategies

of an agent so that agents select probabilistically from the set of strategies

assigned to them [13]. This is actually the Thermal MG we mentioned in the

introduction. Another modification is to make the payoffs of agents linear

in the minority attendance to avoid some mathematical difficulties associated

with the discrete payoff structure [59]. These involve the limits N,Hb → ∞
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with α = 2Hb/N fixed. With S = 2, it was shown that αc ≈ 0.3374 [57]. For a

discussion of the properties of the two phases α > αc and α < αc and relevant

references, see [55, 26].

Another approach which is exact for the entire parameter regime was de-

veloped based on the generating functional method [60]. The method is exact

and can give analytical predictions for the phase α > αc. The phase α < αc is

relatively less understood analytically [61]. With S = 2 strategies per agent,

it was shown that αc ≈ 0.3374 and an expression for the volatility σ2 valid in

the α > αc phase can be obtained [62, 63]. Later the method was extended

to S > 2 strategies per agent in [64, 65]. A detailed account of the generating

functional formalism as applied to MG may be found in [11]. Though rigorous,

the method is mathematically very heavy and estimation of quantities is often

difficult. As in the replica analysis, the theory relies on the limits N,Hb →∞.

1.1.1 Experiments related to MG

There are interesting questions one can ask related to the actual play of a

Minority Game by humans (and by other species as in [66] where fish is made

to play MG!). For e.g. one can ask how does the volatility vary over time

and whether the system perform better than the random choice case. Another

important question is how does the available information affect the behavior

of the agents. A tougher question is how agents actually decide which option

to pick ?.

A handful of studies exist which explores these questions [10, 67, 68, 69, 70,

71, 72]. We can say that a better than random choice efficiency is definitely

found to emerge in these studies, even when the number of agents is small,
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showing that there is an emergent co-operation between the agents. However,

how an individual agent decides her choice is obviously a tough question to

answer. Studies with respect to MG exist which try to address this question

[67, 73, 72]. In these, though not all individual behaviors observed could not be

accounted for by a single decision rule, the findings provide some support for

modeling the behavior of agents using a low-rationality reinforcement learning

model [67]. A recent study concludes that agents do use mixed strategies in

MG [72]. Devetag et. al [67] gives a nice literature review on earlier experi-

ments on various congestion games. Chmura and Guth [73] also gives a brief

summary of various learning rules and useful references to earlier literature.

Interested readers are requested to look into these papers for more details.

1.2 Our work

Our considerations differ from the standard MG described above in one key

aspect. We do not restrict the agents to have only specified deterministic

strategies as in the standard MG. Thus the entire strategy set is available to

all the agents including probabilistic ones. Allowing agents to have access to

the full strategy set may appear to be against the spirit of standard MG which

was introduced as a model of collective behavior of heterogeneous agents who

make their decisions by inductive reasoning. However, the reason for intro-

ducing such a heterogeneity in the first place was based on the argument that

agents have an incentive to act as differently as possible [7]. In Brian Arthur’s

words, “Expectations will be forced to differ” and “there is no deductively ra-

tional solution - no ‘correct’ expectational model. From the agents’ viewpoint,
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the problem is ill-defined and they are propelled into a world of induction ”.

However it is easy to see that these are true only when agents use deter-

ministic strategies and not when agents use probabilistic strategies. Also one

could argue that even the agents using the same probabilistic strategies are

inherently heterogeneous in the sense that different agents in practice will be

making different choices at each step. A comparative study of performance of

rational deductive agents and agents who resort to inductive reasoning as in

the standard MG described above is thus of interest.

Stochastic strategies have been considered in the context of MG before.

For e.g. Reents, Metzler and Kinzel proposed a simple probabilistic strategy

in [30], which will result in a highly efficient system. Also there are different

strategies introduced in the context of MG which will give a highly efficient

system [74, 75, 76]. The point of view taken here is different from these in the

following respect. The idea is not to come up with a strategy from ‘outside

the system’ (a centralized strategy) which will give a high social efficiency,

but to give the freedom of choice to the agents playing the game who want

to optimize only their personal gain, and study how does this affect the social

efficiency. The agents are assumed to be symmetric so that they do not have

any inherent preferences for one option over the other.

As we will see, the absence of heterogeneity or quenched disorder in the

form of strategies assigned to agents in the beginning of the game make our

variation much more tractable than the standard MG and use of stochastic

instead of deterministic strategies make the system much more efficient. We

will find that the optimal strategies of agents can be determined by a mean-

field theory like self consistency requirement and for N -agents case, we get
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coupled algebraic equations in N variables. The simplicity of our analysis

thus makes it an interesting and instructive prototypical toy model for the

minority situations. The model also shows interesting features like non analytic

dependence of the non equilibrium steady state on a control parameter even

for finite number of agents. The general probabilistic ‘win-stay lose-shift’

strategy, which is the strategy found to be optimal in our analysis is often found

in real-life situations [77]. This has a simple interpretation in terms of the

behavior of agents. It says that agents retain their successful previous action

while they modify their behavior when their action resulted in a loss. Thus,

the variation studied here is as close an idealization of the real-life minority

situations as the standard MG. For a discussion of experiments related to MG,

see Sec. 1.1.1

1.3 Definition of the model

The model consists of an odd number of agents N = 2M + 1 where M is a

positive integer. Each agent has to select one of the two alternatives A or B

(say two restaurants) at each step simultaneously and independently. An agent

will receive a payoff 1 if she is in the minority. i.e., if she is in a restaurant

with attendance ≤ M . Otherwise she receives a payoff 0. Agents can not

communicate with each other in any way in deciding their choice, and make

their choice based only on the information that how many agents were there

in each of the two restaurants in the past Hb days and their own payoff in the

past Hb days. More precisely, if we denote the number of agents who were in

restaurant A on the t -th day by, M −∆(t), then the time series {∆(t′)}, for
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t′ = t, t− 1, .....t− (Hb − 1) is known to all agents at the end of day t. In the

standard MG [6], the information is not the value of ∆(t), but only the sign of

it. We note that in the El Farol bar problem [7] from which MG was motivated

has the same information as in our variation. In our model, any agent X has a

future time horizon, and wants to optimize not only her next day’s payoff but

also payoffs she might receive far into the future. More precisely, she wants to

optimize her weighted expected future payoff,

ExpPayoff(X) =
∞∑

τ=0

[(1− λ)λτ ]〈WX(τ + 1)〉, (1.1)

where 〈WX(τ)〉 is the expected payoff of the agent X on the τ -th day ahead,

and λ is a parameter 0 ≤ λ < 1, same for all agents. The parameter λ is

called as the discount parameter in the literature [78]. λ = 0 thus models

the situation where agents are only optimizing next day’s payoff and λ = 1

corresponds to the case where agents give equal weightage to payoffs of all

future days. In other words, agents have a future time horizon of the order of

1/(1− λ) days and lower values of λ means agents are impatient to receive a

payoff.

In our variation of the problem, we allow agents to have probabilistic strate-

gies. So for a given history {∆(t′)}, a strategy will specify the probability

p({∆}) with which she should switch her current choice. We will restrict our-

selves to the simplest case Hb = 1 so that the agent’s strategy depend only on

the attendance on the last day.

If Hb = 0, then we have the situation in which agents do not have any

information to base their decision. Their optimum strategy then is to select A
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or B randomly. In such a case, the expectation value of the number of agents

who will show up at either restaurant is N/2. We can measure the global

inefficiency of the system by the parameter η defined by,

η =
4

N
〈(r −N/2)2〉, (1.2)

where variable r denote the attendance in restaurant A (or B). 〈 〉 denotes

averaging over long time and over different initial conditions. The normaliza-

tion has been chosen, so that the inefficiency parameter η of the system with

agents choosing randomly between A and B is 1.

1.4 The problem of trapping state

Given the definition of the game, we would like to answer the following ques-

tion. What is the optimum strategy of an agent at a given stage of the game?.

The answer to this question in game theory is provided by a solution concept

which is a formal rule for predicting how a game will be played. The pre-

diction is called the solution to the game and describes which strategies will

be employed by the agents under given conditions. We will first analyze the

system within the frame work of the most commonly used solution concept of

Nash equilibrium [78, 79]. Informally it states that, it is a state at which no

individual agent has an incentive to change her strategy unilaterally. For a

discussion of other alternatives to Nash equilibrium see [80]. Most of these al-

ternatives are for equilibrium refinements which refers to the exclusion of some

of the several possible Nash equilibrium for a game. An example is the sub

game perfect Nash equilibrium [79] which is used to eliminate the possibility
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of ‘non-credible threats’. Another example is Mertens-stable equilibrium [81],

which takes the stability of the solution also into account.

A state of the system in which agent i uses a strategy Si is a Nash equilib-

rium, if for all i, Si is the best response of i, assuming that all agents j 6= i use

the strategy Sj. In other words, in Nash equilibrium, each player is assumed

to know the equilibrium strategies of other players and no player benefit by

changing only her own strategy unilaterally.

In our problem, consider, for simplicity the case λ = 0, where agents

optimize only next day’s payoff. Then, the state of the system with M agents

in one restaurant and M + 1 agents in the other, with all agents staying put

(pi = 0 for all agents i) is a Nash equilibrium, as no agent can gain by switching,

if other agents stay put. However, then, the next day the state remains the

same. Thus we get a frozen steady state, that is very unsatisfactory for the

majority of agents since they are on the losing side for all future days, even

though it maximizes the number of happy people per day.

In fact, in the Nash equilibrium concept, an agent in the majority restau-

rant, with all agents in the minority restaurant staying put, is advised that her

best strategy is to stay put. If other agents in the majority restaurant switch

with a non zero probability, this is the ‘optimal’ solution because she has hope

of receiving some payoff if at least one agent switches to the other restaurant.

This does not take into account the fact that if all agents follow this advice,

their expected future gain is zero, which is clearly unsatisfactory: No other

advice could do worse!. From an outsider’s perspective, agents in the majority

restaurant could have clearly done better by jumping, since they then have a

hope of receiving payoff in the future. The problem with the analysis lies in
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the Nash assumption of optimizing over strategies of one agent, assuming that

other agents would do as before. So within the Nash solution concept, there is

no escape from such a trapping state.

It is easy to come up with ad-hoc strategies which if ordered by a central

authority, and followed by all agents, will avoid the trapping state. In our

first work [51], this is precisely what we did, where all agents are assumed to

switch their choice after reaching the trapping state (see Sec. 1.6). Another

approach as done in [75] is to introduce one (or more) agents who selects

randomly between the two restaurants. An optimum and fair performance

will be achieved when the number of such agents is two. As mentioned in Sec.

1.2, we would like to see why rational agents get into the trapping state in

which majority of the agents are unhappy forever.

Now what about other states where the attendance in the minority is less

than M . In the next section we analyze these states using the Nash solution

concept. We will show that with M −∆ agents in A and M + ∆ + 1 agents

in B for ∆ > 0, agents in the minority staying put and agents in majority

switching restaurant with a probability ≈ ∆/M is a Nash solution.

1.5 Non-trapping states

As described in Sec. 1.3, consider the state of the system on the t-th day where

there are M − ∆ agents in A and M + ∆ + 1 agents in B. We may assume

that ∆ > 0 without loss of any generality (∆ = 0 correspond to the trapping

state). Again for simplicity we will only consider the case λ = 0 so that agents

are only optimizing next days payoff. Extending to higher values of λ will not
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change the qualitative nature of the solution. We will first describe a simple

Hb = 1 probabilistic strategy for ∆ > 0, and then show that it is a Nash

solution to the problem and gives a highly efficient system. (Note that as we

mentioned earlier, agents are symmetric and they do not have preferences for

one restaurant over the other. There are several Nash equilibriums possible

for the case with asymmetric agents [74, 9]

The strategy is defined as follows: At t = 0, each agent chooses one of

the two restaurants with probability 1/2. At any subsequent time t+ 1, each

agent follows the following simple strategy : If at time t, she found herself in

the minority, she chooses the same restaurant as at time t. If she found herself

in the majority, and the total number of people visiting the same restaurant

as her was M + ∆(t) + 1, with ∆(t) > 0, she changes her choice with a small

probability p independent of other agents. The value of p depends only on

∆(t). It is approximately equal to ∆/M . The precise dependence of p on ∆

is discussed below.

For large M , the number of agents changing their choice at each step is

distributed according to the Poisson distribution, with mean approximately

equal to ∆, and width varying as
√

∆(t). Thus we have the approximate

recursion ∆(t + 1) ≈
√

∆(t), for ∆(t) � 1. This shows that within a time

of order log logN , the magnitude of ∆ will become of O(1), and then remain

of order 1. So the system quickly reaches a highly efficient state where the

number of people in the minority is near optimum.

Now consider a particular agent Alice, who went to A on the t-th day, and

found herself in the happy situation of being in the minority. Alice assumes

that all other agents follow the proposed strategy. Then, all other agents who
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went to A will go there again on day (t+ 1). There are M + ∆ + 1 agents who

went to B. Each of these agents will change her choice with probability p. Let

r be the number of agents that actually change their choice at time (t + 1).

Then, r is a random variable, with a distribution given by

Probp(r) =

(
M + ∆ + 1

r

)
pr(1− p)M+∆+1−r. (1.3)

For M � 1, this distribution tends to the Poisson distribution with pa-

rameter Λ = p(M + ∆ + 1), given by

ProbΛ(r) = Λre−Λ/r!. (1.4)

If Alice chooses to go to A on the next day, she will be in the winning

position, if r ≤ ∆. Hence her expected payoff EP (Alice|stay), if she chooses

to stay with her present choice is

EP (Alice|stay) =
∆∑

r=0

Probp(r). (1.5)

On the other hand, if Alice switches her choice, she would win if r ≥ ∆+2.

Hence, we have her expected payoff EP (Alice|switch) if she chooses to switch,

given by

EP (Alice|switch) =
∞∑

r=∆+2

Probp(r). (1.6)

If Alice does not follow the prescribed strategy of staying put, we will call

it as ‘cheating ’. So for Alice to have no incentive to cheat, we must have

EP (Alice|stay) ≥ EP (Alice|switch). (1.7)



1.5. NON-TRAPPING STATES 29

This sets the Nash equilibrium condition for agents in restaurant A. Now

consider the agent Bob, who went to B on day t. He also assumes that all

other people will follow the strategy: those who went to A will stick to their

choice, and those who went to B will switch their choice with probability p.

There are M + ∆ other persons who went to B. If Bob chooses to cheat, and

decide to stay put, without using a random number generator, the number of

agents switching would be a random number r̃, with a distribution given by

Prob′p(r̃) =

(
M + ∆

r̃

)
pr̃(1− p)M+∆−r̃. (1.8)

He would be in the minority, if r̃ ≥ ∆+ 1. Thus, if he chooses to stay, we have

his expected payoff EP (Bob|stay) given by

EP (Bob|stay) =
∞∑

r̃=∆+1

Prob′p(r̃). (1.9)

On the other hand, if Bob decide to switch his choice, he would win if

r̃ ≤ ∆− 1. In that case, his expected payoff EP (Bob|switch) is given by

EP (Bob|switch) =
∆−1∑

r̃=0

Prob′p(r̃). (1.10)

We choose the value of p to make these equal so that any agent unilater-

ally deviating from this strategy do not have any advantage over those who

follow it. In other words, we demand that the proposed strategy is a Nash

equilibrium. Thus the equation determining p, for a given ∆ and N is

EP (Bob|stay) = EP (Bob|switch). (1.11)
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In the limit of M � ∆, Eq. (1.11) simplifies, as the dependence on M

drops out, and we get a simple equation for the dependence of the Poisson

parameter Λ on ∆. Then, Eq. (1.11) becomes

∆−1∑

r=0

Λr

r!
e−Λ =

∞∑

r=∆+1

Λr

r!
e−Λ. (1.12)

This equation may be rewritten, avoiding the infinite summation, as

2
∆−1∑

r=0

Λre−Λ

r!
= 1− Λ∆e−Λ

∆!
. (1.13)

It is easy to see that Eq. (1.13) implies that Eq. (1.7) is also satisfied. So

the strategy described is a Nash solution.

Thus, for any given value of ∆ > 0, the optimum value of Λ is determined

by the solution of Eq. (1.13). This equation is easily solved numerically and

the resulting values of Λ for different ∆ are shown in Table 1.1.

Table 1.1:
∆ Λ ∆ Λ

1 1.14619 8 8.16393
2 2.15592 9 9.16423
3 3.15942 10 10.16448
4 4.16121 20 20.16557
5 5.16229 30 30.16594
6 6.16302 40 40.16612
7 7.16354 50 50.16623
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1.5.1 Asymptotic behavior

Here we will show that for large ∆, (Λ−∆) tends to 1/6. Let us rewrite Eq.

1.12 as
∆−1∑

r=0

fΛ(r) =
∞∑

r=∆+1

fΛ(r), (1.14)

where fΛ(r) = Λr exp(−Λ)/Γ(r+ 1), for r not necessarily integer. We want to

solve for Λ, when ∆ is given to be a large positive integer. We want to show

in the limit of large ∆, Λ−∆ tends to 1/6.

For large Λ, the Poisson distribution tends to a Gaussian centered at Λ,

of variance Λ. If the distribution for large Λ were fully symmetric about the

mean, the solution to the above equation would be Λ = ∆. The fact that

difference between these remains finite is due to the residual asymmetry in the

Poisson distribution, for large Λ.

For large Λ, fΛ(r) is a slowly varying function of its argument. We add

f(∆)/2 to both sides of Eq. (1.12), and approximate the summation by an

integration. Then, Eq. (1.12) can be approximated by

∫ ∆

0

fΛ(r)dr =

∫ +∞

∆

fΛ(r)dr = 1/2, (1.15)

where we have used the trapezoid rule

[f(r) + f(r + 1)] /2 ≈
∫ r+1

r

dr′f(r′),

It can be shown that the discrepancy between Eqs. (1.14) and (1.15) is at

most of order (1/Λ).

Then, for large Λ, deviations of fΛ(r) from the limiting Gaussian form can
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be expanded in inverse half-integer powers of Λ

fΛ(r) =
1√
Λ
φ0(x) +

1

Λ
φ1(x) + . . . . (1.16)

where x is a scaling variable defined by x = (r − Λ)/
√

Λ. Here φ0(x) is the

asymptotic Gaussian part of the distribution, as expected from the central

limit theorem, and φ1(x) describes the first correction term.

The characteristic function for the Poisson distribution Φ̃Λ(k) defined by

Φ̃Λ(k) = 〈eikr〉 =
∞∑

r=0

eikrProbΛ(r) = exp
[
Λeik − Λ

]
,

= exp
[
ikΛ− k2Λ/2− ik3Λ/6 + ..

]
. (1.17)

Keeping the terms up to quadratic in k gives the asymptotic Gaussian form

of the central limit theorem

φ0(x) =
1√
2π

exp(−x2/2).

The first order correction to this asymptotic form of Φ̃Λ(k) is given by

φ̃1(k) =
−ik3

6
exp(−k2/2),

which gives on taking inverse Fourier transform

φ1(x) =
1

6

d3

dx3
φ0(x). (1.18)
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Substituting the functional forms for φ0(x) and φ1(x) in Eq. (1.15), we get

∫ ∆−Λ√
Λ

−∞
dx

[
φ0(x) +

1√
Λ
φ1(x)

]
= 1/2.

Now, φ1(x) is an odd function of x, and is zero for x = 0. As ∆ − Λ is

small, in the coefficient of 1/
√

Λ, we can replace the upper limit of the integral

by zero. Thus we write

∫ (∆−Λ)/
√

Λ

−∞
φ1(x′)dx′ ≈

∫ 0

−∞
φ1(x′)dx′. (1.19)

But using Eq. (1.18), we get

∫ 0

−∞
φ1(x′)dx′ =

1

6

d2

dx2
φ0(x)|x=0 = −φ0(0)/6.

Substituting in Eq. (1.19), we get

∫ (∆−Λ)/
√

Λ

−∞
φ0(x′)dx′ = 1/2− φ0(0)

6
√

Λ
+O(1/Λ),

and comparing terms of order Λ−1/2 we get

Λ−∆ = 1/6 +O(
1√
Λ

). (1.20)
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1.6 An ad-hoc solution to the trapping state

problem

As described in Sec. 1.4, reaching the ∆ = 0 state, the system get struck

there forever. An ad-hoc way to avoid this is to assume that the agents reset

the system after reaching the trapping state by switching with some largish

probability. A simple dictatorial solution in this case is to propose that, all

agents irrespective of whether they were in minority or not, switch with a

probability M ε−1 after reaching the trapping state, where ε is a real number

0 ≤ ε ≤ 1. We shall refer to this step as a major resetting event. The value of

ε is not determined by the model, but is assumed to have a preset value.

For a given value of ε, the value of |∆| just after resetting is of order M ε/2.

Then it lakes time of order log logM to reach the value ∆ = 0. Then the

maximum contribution to the mean efficiency parameter comes from the major

resetting events, and it is easy to see that the mean inefficiency parameter

would vary as M ε−1/ log logM . Then, for more efficiency, we should keep ε

small.

1.7 Simulation results

We study the time evolution of a set of N agents using the strategy described

above using Monte Carlo simulations, with N = 2001. If the restaurant with

greater attendance has M +1+∆ agents on a given day, with ∆ > 0, the next

day each of them switches her choice with probability Λ(∆)/(M + ∆ + 1), and

the agents in the minority restaurant stick to their choice. If there are exactly
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Figure 1.2: A typical evolution of a system of 2001 agents for two different
choices of the parameter ε = 0.5 and 0.7. The large deviations correspond to
major events (see text).

M + 1 agents in the majority restaurant, all agents switch their restaurant

with a probability 1/(2M1−ε).

The result of a typical evolution is shown in Fig. 1.2, for two choices of ε:

0.5 and 0.7. We see that the minority restaurant changes quite frequently. In

fact, the system reaches the steady state fairly quickly, within about 10 steps.

The large peaks in |∆| correspond to resettings of the system, and clearly,

their magnitude decreases if ε is decreased. There is very little memory of

the location of minority restaurant in the system. To be specific, let S(t)

is +1 if the minority restaurant is A in the t-th step, and −1 if it is B.

Then the autocorrelation function 〈S(t)S(t + τ)〉 decays exponentially with

τ , approximately as exp(−Kτ) (See Fig. 1.5). The value of K depends on ε,

but is about 2, and the correlation is negligible for τ > 3.
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Figure 1.3: Probability distribution of ∆ in the steady state for ε = .3, .7
obtained by evolving N = 2001 agents for 106 time steps. The red bars have
been shifted a bit to the right for visual clarity.

Fig. 1.3 shows the probability distribution of ∆ in the steady state for two

different values of ε. Fig. 1.4 gives a plot of the inefficiency parameter η as

a function of ε. In each case, the estimate of η was obtained using a single

evolution of the system for 10000 time steps. The fractional error of estimate

is less than the size of symbols used.

To see the correlation in the position of agents in the restaurants, we define

a variable Ai(t) which is equal to +1 if the i-th agent was in the restaurant

A at time t, and −1 otherwise. We define the auto-correlation function of the

A-variables in the steady state as

C(τ) =
1

N

∑

i

〈Ai(t)Ai(t+ τ)〉. (1.21)
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Figure 1.4: Variation of inefficiency parameter η with ε, obtained by averaging
the evolution of N = 2001 agents for 10000 time steps.

In Fig. 1.6, we have shown the variation of C(τ) with τ . We see that this

function has a large amount of persistence. This is related to the fact that

only a small fraction of agents actually switch their choice at any time step.

Clearly, the persistence is larger for smaller ε. The qualitative picture is thus

that the agents themselves find in the same restaurant for longer period of

time (characterized by ) whereas the minority restaurant itself changes quite

frequently. Thus if we define a persistence time as the time spend by an

agent in the minority, it’s distribution has an exponential decay with typical

persistence time of the order of 2 or 3 days.
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1.8 Summary

In this chapter, we considered the performance of stochastic strategies in MG

where N agents select one of the two available choices at each time step and

want to be in the minority. We analyzed the game within the frame work

of Nash solution concept. We showed that the Nash solution concept is very

unsatisfactory here leading to an absorbing state of the system where having

reached the state in which the minority restaurant contain exactly M agents,

nobody switches their choices. So in this state, the same set of agents benefit

on all days. We then proposed an ad-hoc solution to avoid this by resetting the

system after reaching the trapping state. We worked out the Nash equilibrium

solution for non trapping states. Together with the ad-hoc assumption, we

characterized the steady state of the system. We showed that the strategy leads

to a much more efficient utilization of resources, and the average deviation from

the maximum possible can be made O(N ε), for any ε > 0. The time required

to reach this level increases with N as only log logN .

One may attribute the fast learning rate in this game compared to the

standard MG to the fact that more information is provided to the agents.

Unlike the agents in the standard MG who know only which one is the minority

restaurant, agents in our model are assumed to know the exact value of M and

∆. However, it is not very difficult to imagine situations in which agents have

knowledge about both the comfort level (M) and how better they are doing

compared to the comfort level (∆). Also, as shown in a subsequent paper

to ours by S. Biswas et al. [75], it is not really necessary to have the exact

information for the agents to have a fast learning rate. Even rough guesses

about the values of ∆ or appropriate assumption about the time variation of
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∆(t) (termed as an annealing schedule) by the agents is sufficient [75].



Chapter 2

Co-action equilibrium

In this chapter, we propose a new solution concept to be called as co-action

equilibrium which will take care of the problem of trapping states described

in chapter 1. As we saw in chapter 1, within the solution concept of Nash

equilibrium, an agent in the restaurant with M+1 agents in it, is advised that

her best strategy is to stay put and this lead to the trapping state where the

same set of agents become the winners on all subsequent days. The problem

with this analysis lies in the Nash concept of optimizing over strategies of

one agent, assuming that other agents would do as before. In the alternate

co-action equilibrium concept proposed here, an agent i in a restaurant with

total M agents in it realizes that she can choose her switching probability pi,

but all the other fully rational (M − 1) agents in the same restaurant, with

the same information available, would argue similarly, and choose the same

value of pi. In determining the optimum value of pi, agents will take this into

account. Determining the optimal value of pi that maximizes payoff of an

agent does not need communication between agents.

41
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One can think of co-action equilibrium on any given day as an equilibrium

for a two-person game, where the two persons are the majority and the mi-

nority groups, and they select the optimal values of their strategy parameters.

But these groupings are temporary, and change with time. In our model, the

complete symmetry between the agents, and the assumption of their being

fully rational, ensures that they will reach co-action equilibrium.

The chapter is organized as follows. In Sec. 2.1, we set up the problem in

the language of Markovian evolution. In Sec. 2.2, we discuss the exact solution

of the problem with small number of agents N . We also indicate the general

structure of the solution for arbitrary N . Sec. 2.4 contains the summary.

2.1 Co-action equilibrium

We say that an agent is in state Ci when she is in a restaurant with total

number of people i in it (note that, here index i refers to a group of agents

rather than a single agent). Let pi be the switch probability chosen by an

agent when she is in the state Ci. For a given N , a strategy P is defined by the

set of N numbers P ≡ {p1, p2, ....pN}. Clearly, as all agents in the restaurant

with i agents switch independently with probability pi, the system undergoes

a Markovian evolution, described by a master equation. As each agent can

be in one of the two restaurants, the state space of the Markov chain is 2N

dimensional. However, we use the symmetry under permutation of agents to

reduce the Markov transition matrix to N ×N dimensional. Let |Prob(t)〉 be

an N -dimensional vector, whose j-th element is Probj(t), the probability that

a marked agent X finds herself in the state Cj on the t-th day. On the next
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day, each agent will switch according to the probabilities given by P, and we

get

|Prob(t+ 1)〉 = T|Prob(t)〉, (2.1)

where T is the N ×N Markov transition matrix. Explicit matrix elements are

easy to write down. For example, T11 is the conditional probability that the

marked agent is in state C1 on the next day, given that she is in C1 today.

This is the sum of two terms: one corresponding to everybody staying with the

current choice [the probability of this is (1 − p1)(1 − pN−1)N−1], and another

corresponding to all switching their respective restaurant [the probability is

p1p
N−1
N−1].

The total expected payoff of X, given that she is in the state Cj at time

t = 0 is easily seen to be

Wj = (1− λ)

〈
L

∣∣∣∣
T

1− λT

∣∣∣∣ j
〉
, (2.2)

where |j〉 is a column vector with only the j-th element 1, and rest zero; and

〈L| is the left-vector 〈1, 1, 1, 1, ..0, 0, 0..|, with first M = (N − 1)/2 elements 1

and rest zero. The left vector thus encodes the payoff structure of the game.

As mentioned earlier, one can think of co-action equilibrium on any given

day as a solution concept for a two-person game, where the two persons are

the majority and the minority groups who select the optimal values of their

strategy parameters pi and pN−i.

We now discuss the equilibrium choice {p∗1, p∗2, . . . p∗N}. The co-action equi-

librium condition implies N conditions on the N parameters {p∗i }. There can

be more than one self-consistent solution to the equations, and each solution
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corresponds to a possible steady state.

One simple choice is that p∗i = 1/2 for all i, which is the random choice

strategy, where each agent just picks a restaurant totally randomly each day,

independent of history. We will denote this strategy by Prand. In the corre-

sponding steady state, it is easy to see that Wj is independent of j, and given

by

Wj = Wrand = 1/2−
(
N − 1

M

)
2−N , for all j. (2.3)

For a strategy P, it is more convenient to use the inefficiency parameter η

defined as follows instead of that in Eq. (1.2).

η (P) = (Wmax −Wavg (P)) / (Wmax −Wrand) , (2.4)

where Wmax = M/N is the maximum possible payoff per agent, Wavg (P) is

the average payoff per agent in the steady state for a given λ > 0.

By the symmetry of the problem, it is clear that p∗N = 1/2 for all λ.

Now consider the more general possible equilibria {p∗i } = {p∗1, 1/2, 1/2, 1/2...}.

If X is in the state C1, and next day all other agents would switch with

probability 1/2, it does not matter if X switches or not: payoffs W1 and WN−1

are independent of p∗1. Hence p∗1 can be chosen to be of any value. It is easy

to see that the strategy P′rand, in which p∗1 = 0, and p∗N−1 < 1/2, chosen to

maximize WN−1, is better for all agents and is stable. The stability of this

solution is easy to see, because none of the agents gain by deviating from their

respective strategies. The result that this strategy is better for all agents than

random switching can be shown by an analysis similar to the one discussed in

section 2.2.2. In short, P′rand is always preferred over Prand by all agents.
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2.2 Explicit calculation of the steady state for

small N

2.2.1 N = 3

We consider first the simplest case N = 3. Since p∗1 = 0, p∗3 = 1/2, the only

free parameter is p2. In this case, the transfer matrix is easily seen to be

T =




q2
2 p2q2 1/4

2p2q2 q2 1/2

p2
2 p2

2 1/4




(2.5)

where q2 = 1− p2. The payoff W2 is given by

W2 = (1− λ) [1 0 0]
T

(1− λT)




0

1

0



,

=
4p2q2 − λp2(q2 − p2)

(1− λq2(q2 − p2))(4 + λ(4p2
2 − 1))

. (2.6)

The eigenvalues and eigen vectors of the transfer matrix T are easily deter-

mined. Eigenvalues are,

(
1,

1

4
(1− 4p2

2) , q2 (q2 − p2)

)
. The right eigen vec-

tors corresponding to these eigenvalues are [1, 2, 4p2
2], [1, 2, −3], [1, −1, 0]

and the left eigenvectors are [1, 1, 1], [4p2
2, 4p2

2, −3], [2, −1, 0] respectively.

Normalizing the eigenvector corresponding to eigenvalue 1 gives the average

gain in the steady state Wavg as

Wavg =
1

3 + 4(p∗2)2
. (2.7)
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The value of p2 that maximizes W2 is easily seen to be root of the following

cubic equation in λ.

16− 32p∗2 − (24− 56p∗2 + 32p∗22 )λ+ (9− 28p∗2 + 40p∗22

− 96p∗32 + 144p∗42 − 64p∗52 )λ2 − (1− 4p∗2 + 8p∗22 − 24p∗32

+ 48p∗42 − 32p∗52 )λ3 = 0.

The variation of p∗2 with λ is shown in Fig. 2.1a. p∗2 monotonically decreases

with λ from its value 1/2 at λ = 0, and tends to 0 as λ tends to 1. Therefore,

Wavg is a monotonically increasing function of λ, and leads to the best possible

solution Wavg = 1/3 as λ → 1. The payoff of agents in various states with

this optimum strategy is shown in Fig. 2.1b. Thus as λ→ 1, p∗2 → 0 and the

expected payoffs in each state become equal. So as λ is increased, the system

tends to stay in the state C1 (or C2) for more and more time and only rarely

flipping to the state C3. Note that here Ci is used to denote the state of the

system rather than that of an agent. Both C1 and C2 refers to the same state

of the system where there is 1 agent in one of the restaurants and 2 in the

other. The variation of inefficiency with λ is shown in Fig. 2.1c.

We can obtain an expression for p∗2 as λ → 1 by the following argument.

As we saw, p∗2 → 0 as λ → 1 or the system stay in the state C1 (or C2) for

longer and longer. Then the expected payoff of an agent in state C2 for Hf

days into future can be written as

W2(λ→ 1) ≈ Hf/3− Const.(1/p2)−Hf .(p
2
2). (2.8)
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Here the first term on R.H.S is the payoff if all agents are equally benefited.

However, an agent in state C2 will be flipped to C1 only on an average ∼ 1/p2

days. So an agent who is starting in state C1 will have an advantage of ∼ 1/p2

over Hf days . This is reflected in the second loss term. The third term

indicate the fact that with probability p2
2, both the agents in state C2 jump

resulting in zero payoff for all the agents. Maximizing W2 in Eq. (2.8) with

respect to p2, we get

p∗2(λ→ 1) ∼ H
−1/3
f . (2.9)

Now in terms of the parameter λ, Hf ∼ 1/(1− λ). Therefore as λ→ 1,

p∗2(λ→ 1) ∼ (1− λ)1/3,

and the average gain in the steady state Wavg,

Wavg(λ→ 1) ≈ 1/3[1− 4/3(1− λ)2/3].

So for λ = 1− ε, the average payoff per agent per day in the steady state

is given by

Wavg = 1/3−Kε2/3 +O(ε), (2.10)

where K is a numerical constant.

2.2.2 N = 5

We can similarly determine the optimal strategy for N = 5. This is character-

ized by the five parameters (p∗1, p
∗
2, p
∗
3, p
∗
4, p
∗
5). The simplest strategy is Prand,

which corresponds to p∗i = 1/2, for all i. As explained above, the strategy
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Figure 2.1: N = 3: (a) Variation of p∗2 with λ, (b) The optimum payoffs W ∗
i ,

(i = 1 to 3), as functions of λ and (c) Variation of inefficiency η with λ.
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P′rand = (0, 1/2, 1/2, p∗4(λ), 1/2), gives higher payoff than Prand for all agents,

for all λ.

Now consider agents in the states C2 and C3. What values of p2 and p3

they would select, given their expectation or belief about the selected values

of p1, p4 and p5 ?. We can determine these by an analysis of the variation of

payoffs W2 and W3 as functions of p2 and p3 for fixed values of p1, p4, p5 and

λ, as we discuss below.

Let us denote the best response of agents in state C2, (that maximizes W2),

if the agents in the opposite restaurant jump with probability p3 by ropt2 (p3).

Similarly, ropt3 (p2) denotes the best response of agents in state C3, when those

in the opposite restaurant jump with probability p2.

In Fig. 2.2, we plot the functions ropt2 (p3) (OAP ) and ropt3 (p2) (BP ), in

the (p3, p2) plane, for three representative values of λ. For small p3, ropt2 (p3)

remains zero, and its graph sticks to x-axis initially ( segment OA in figure),

and then increases monotonically with p3. The strategy P′rand is the point

(1/2, 1/2), denoted by P . We also show the lines PC corresponding to W3 =

W ′, and PD, corresponding to W2 = W ′, where W ′ is the expected gain of

agents in state C2 or C3 under P′rand. For all points in the curvilinear triangle

PCD, both W2 and W3 ≥ W ′. Clearly, possible equilibrium points are the

points lying on the lines ropt2 (p3) or ropt3 (p2) that lie within the curvilinear

triangle PCD. However, along the blue curve OAP representing ropt2 (p3),

maximum value for W2 is achieved when p2 = 0. Therefore we can restrict the

discussion of possible equilibrium points to the line segment CD in Fig. 2.2.

For small λ ( shown in Fig. 2.2a for λ = 0.1), The point A is to the left of

C, and the only possible self-consistent equilibrium point is P . This implies
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least as well as at P .
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that the agents would choose p∗2 = p∗3 = 1/2. This situation continues for all

λ < λc1 = 0.195± .001.

For λ > λc1, the point A is to the right of C. This is shown in Fig. 2.2b,

for λ = 0.4. In this case, possible equilibrium points lie on the lie-segment

CA, and out of these, A will be chosen by agents in state C3. At A, both W2

and W3 are greater than W ′, and hence this would be preferred by all. Further

optimization of p4 changes p3 and p4 only slightly.

As we increase λ further, for λ > λc2 [numerically, λc2 = 0.737 ± .001],

the point B comes to the left of A. Out of possible equilibria lying on the

line-segment CA, the point preferred by agents in state C3 is no longer A, but

B. The self-consistent values of p∗2, p∗3, and p∗4 satisfying these conditions and

the corresponding payoffs are shown in Fig. 2.3a and Fig. 2.3b respectively.

In Fig. 2.3c, we have plotted the inefficiency parameter η as a function of

λ. Interestingly, we see that in the range λc1 < λ < λc2, the inefficiency rises

as the agents optimize for farther into future. This may appear paradoxical at

first, as certainly, the agents could have used strategies corresponding to lower

λ. This happens because though the state for larger λ is slightly less efficient

overall, in it the majority benefits more, as the difference between W ∗
2 and W ∗

3

is decreased substantially (Fig. 2.3b).

We note that the optimal strategies, and hence the (non-equilibrium) steady

state of the system shows a non-analytic dependence on λ even for finite N .

This is in contrast to the case of systems in thermal equilibrium, where sharp

phase transitions can occur only in the limit of infinite number of degrees of

freedom. This may be understood by noting that the fully optimizing agents in

our model make it more like an equilibrium system at zero-temperature. How-
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Figure 2.3: N = 5: (a) Variation of p∗2, p∗3 and p∗4 with λ , (b) Optimum payoffs
as functions of λ, (c) Inefficiency η as a function of λ.



2.2. EXPLICIT CALCULATION OF THE STEADY STATE FOR SMALL N 53

ever note that unlike the latter, here the system shows a lot of fluctuations in

the steady state.

2.2.3 N = 7

For higher values of N , the analysis is similar. For the case N = 7, we find

that there are four thresholds λci, with i = 1 to 4. For λ < λc1, the optimal

strategy has the form (0, 1/2, 1/2, 1/2, 1/2, p∗6, 1/2). For λc1 ≤ λ ≤ λc2, we get

p∗3 = 0, and p∗4 < 1/2. For still higher values λc2 < λ ≤ λc3, agents in the

states C2 and C5 also find it better to switch to a win-stay lose-shift strategy,

and we get p∗2 = 0, p∗5 < 1/2. The transitions at λc3 and λc4 are similar to the

second transition for N = 5, in the (p4, p3) and (p5, p2) planes respectively.

Numerically, we find λc1 ≈ .465, λc2 ≈ .515, λc3 ≈ .83 and λc4 ≈ .95. The

general structure of the optimum strategy is thus clear. As λ is increased, it

changes from random switching to a complete win-stay lose-shift strategy in

stages.

We present some graphs for the solution for N = 7. Fig. 2.4a shows

variation of the optimum switch probabilities in various states and Fig. 2.4b

shows the variation of the optimum payoffs. Fig. 2.4c shows the variation of

inefficiency with λ.

2.2.4 Higher N

We note that using the symmetry under permutation of agents, we can block

diagonalize the transfer matrix T into two blocks of size M and M +1. This is

achieved by a change of basis, from vectors |i〉 and |N − i〉 to the basis vectors
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Figure 2.4: N = 7: (a) Variation of optimum switch probabilities with λ, (b)
Optimum payoffs as functions of λ. Payoff W ∗

7 is bit less than, but indistin-
guishable from W ∗

6 and hence not shown here, (c) Inefficiency η as a function
of λ.
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|si〉 and |ai〉, where

|si〉 = |i〉+ |N − i〉,

|ai〉 = (N − i)|i〉 − i|N − i〉. (2.11)

This comes from the fact that in the steady state

Prob(being in|i〉)/i = Prob(being in|N − i〉)/(N − i),

and this property suggests using the basis |si〉 and |ai〉 as in Eq. (2.11). An

interesting consequence of the symmetry between the two restaurants is the

following: If there is a solution {p∗i } of the self-consistent equations, another

solution with all payoffs unchanged can be obtained by choosing for any j,

a solution {p∗i ′}, given by p∗j
′ = 1 − p∗j , and p∗N−j

′ = 1 − pN−j, and p′i = pi,

for i 6= j or (N − j). How agents choose between these symmetry related 2M

equilibria can only be decided by local conventions. For example if ‘win-stay

lose-shift’ behavior is ‘genetically wired’ or culturally accepted, then we have

a unique optimum strategy set which is the ‘natural’ solution to the problem.

2.3 The Large-N limit

In this section, we discuss the transition from the random strategy Prand, with

all pj = 1/2, to the strategy P1, in which with p∗M = p∗M+1 = 1/2, and pj = 1/2,

for all other j. We will determine the value of λc1(N) where this switch occurs.

The difference between the average payoffs in the strategies Prand and P′rand

is only of order 2−N , and may be ignored for large N .
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In calculating the expected payoffs for strategy P1, it is convenient to group

the states of the system into three groups: |M〉, |M + 1〉, and the rest. These

will de denoted by |e1〉, |e2〉 and e3〉 respectively.

The transition matrix T may be taken as a 3× 3 matrix. We consider the

case when pM+1 is O(M−5/4). Then T21 is O(M−1/4). It is convenient to write

T21 = aM−1/4, and use a as variational parameter, rather than pM+1. We also

write b = (1−λ)M3/4. We consider the case where a and b are finite, and O(1).

The transition probabilities T12 = T21 = aM−1/4, and T31 = T32 = a2M−1/2/2,

to leading order in M . Also T13 = T23 is the probability that, when all agents

are jumping at random, the marked agent will find himself in the state |M〉,

(equivalently in state |M + 1〉). For large N , this is well-approximated by

the Gaussian approximation, and keeping only the leading term, we write

W13 =W23 = cM−1/2, where c = 1/
√
π.

Therefore we can write the transition matrix T, keeping terms only up to

O(M−1/2) as,

T =




1− aM−1/4 − a2M−1/2

2
aM−1/4 cM−1/2

aM−1/4 1− aM−1/4 − a2M−1/2

2
cM−1/2

a2M−1/2

2

a2M−1/2

2
1− 2cM−1/2



.

(2.12)

Using the symmetry between the states |e1〉 and |e2〉, it is straight for-

ward to diagonalize W . Let the eigenvalues be µi, with i = 1, 2, 3, and the

corresponding left and right eigenvectors be 〈Li| and |Ri〉.
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For the steady state eigenvalue µ1 = 1, we have

〈L1| = [1, 1, 1] ; |R1〉 =
1

a2 + 4c




2c

2c

a2



.

The second eigenvalue is µ2 = 1− a2+4c
2
M−1/2, and we have

〈L2| =
1

a2 + 4c

[
a2, a2,−4c

]
; |R2〉 =




1/2

1/2

−1



.

The third eigenvalue is µ3 = 1− 2aM−1/4 − a2M−1/2/2, and we have

〈L3| = [1/2,−1/2, 0] ; |R3〉 =




1

−1

0



.

It is easily verified that 〈Li|Rj〉 = δij.

Now, we calculate the expected values of the payoff. We note that if an

agent is in the state |e3〉, not only her exact state is uncertain, but even her

expected payoff depends on whether she reached this state from |e3〉 in the

previous day, or from |e2〉. This is because the expected payoff in this state

depends on previous history of agent. However, her expected payoff next day

depends only on her current state (whether |e1〉 or |e2〉 or |e3〉).
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The expected payoff vector for the next day is easily seen to be

[
W (0)
e1
,W (0)

e2
,W (0)

e3

]
=
[
1− aM−1/4 − a2M−1/2/2, aM−1/4 + a2M−1/2/2, 1/2− dM−1/2

]
,

(2.13)

where d = 1/(2
√
π). The expected payoff after n days is given by

[
W

(0)
1 ,W

(0)
2 ,W

(0)
3

]
Tn−1.

Then the discounted expected payoff with parameter λ is given by

[We1 ,We2 ,We3 ] =
[
W (0)
e1
,W (0)

e2
,W (0)

e3

] (1− λ)

(1− λT)
. (2.14)

We write

T =
3∑

i=1

|Ri〉µi〈Li|, (2.15)

and hence write

[We1 ,We2 ,We3 ] =
3∑

i=1

Ui〈Li|, (2.16)

where

Ui =
[
W (0)
e1
,W (0)

e2
,W (0)

e3

]
|Ri〉

(1− λ)

(1− λµi)
. (2.17)

Now, explicitly evaluate Ui. We see that U1 is independent of λ, and is the

expected payoff in the steady state. The terms involving M−1/4 cancel, and

we get

U1 =
1

2
− da2

(a2 + 4c)
M−1/2. (2.18)

For U2, we note that
[
W

(0)
e1 ,W

(0)
e2 ,W

(0)
e3

]
|R2〉 is of order M−1/2, and (1−λ)

(1−λµ2)

is of order M−1/4, hence this term does not contribute to order M−1/2.

The third term is U3. Here the matrix element
[
W

(0)
e1 ,W

(0)
e2 ,W

(0)
e3

]
|R3〉 is
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O(1), and (1−λ)
(1−λµ3)

is of O(M−1/2), giving

U3 = (b/2a)M−1/2 +O(M−3/4). (2.19)

Putting these together, we get that We2 is given by

We2 = 1/2 +M−1/2

[
− b

4a
− d+

4dc

a2 + 4c

]
+O(M−3/4). (2.20)

The agents in state |e2〉 will choose the value a = a∗ to maximize this

payoff We2 with respect to a. Hence we have

b =
32a∗3dc

(a∗2 + 4c)2
. (2.21)

For any given b, we can solve this equation for a∗. Then, at this point, the

expected payoff We2 is

We2 = 1/2− dM−1/2

[
1− 4c(4c− a∗2)

(a∗2 + 4c)2

]
. (2.22)

This quantity is greater than the expected payoff in the fully random state,

so long as a∗2 < 4c, i.e.

b < bmax = 2π−3/4. (2.23)

Thus, we see that if λ > 1 − bmaxM
−3/4, there exists a non-trivial solution

a∗(b) satisfying Eq. (2.21), with (a∗)2 < 4c, and then the strategy in which

agents in state CM stay, and CM+1 shift with a small probability is beneficial

to all. Note that the future time horizon of agents only grows as a sub-linear

power of M , while in the large M limit, in standard MG, the time-scales grow
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(at least) linearly with M .

This large M limit is somewhat subtle, as there are three implicit time

scales in the problem: The average time-interval between transitions between

the states |e1〉 and |e2〉 is of O(M1/4) days. Jumps into the state |e3〉 occur

at time-scales of O(M1/2) days. Once in the state |e3〉, the system tends to

stay there for a time of O(M1/2) days, before a fluctuation again brings it to

the state |e1〉 or |e2〉. The third time scale of O(M3/4) is the minimum scale

of future horizon of agents required if the small per day benefit of a more

efficient steady state of O(M−1/2) is to offset the cumulative disadvantage to

the agents in state |e2〉 of O(M1/4).

Note that the above analysis only determines the critical value of λ above

which the strategy P1 becomes preferred over Prand. This would be the actual

critical value of λ if the transition to the win-stay-lose-shift occurs in stages,

as is suggested by the small N examples we worked out explicitly. However,

we cannot rule out the possibility that for N much larger than 7, the shift

does not occur in stages, but in one shot, and such a strategy (similar to the

one described in [51]) may be preferred over Prand at much lower values of λ.

2.4 Summary

In this chapter, we have analyzed a variant of the minority game in which

rational agents use stochastic strategies and have a future time horizon. We

proposed a new solution concept of co-action equilibrium which take care of the

problem of trapping states in a natural way. We determined the optimal choice

of probabilities of different actions exactly in terms of simple self-consistent
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equations. Optimal choice gives higher expected payoff for all agents. The

optimal strategy is characterized by N real parameters which depend on the

future time-horizon of agents, parametrized by a real variable λ, and are non-

analytic functions of λ, even for a finite number of agents. The solution for

N ≤ 7 is worked out explicitly and we indicate the nature of the solution

for general N . For large enough future time horizon, the optimal strategy

switches from random choice to a win-stay lose-shift strategy, with the shift

probability depending on the current state and λ. It shows multiple sharp

transitions as a function of the discount parameter λ, even for finite N . The

optimal strategy is more efficient than possible under the deterministic MG

thus showing that contrary to the popular belief, symmetric rational agents

can perform optimally in minority situations.

Generalizations of the model for larger backward time horizon, or when all

agents are not identical etc. are easy to define, and appear to be interesting

subjects for further study. The technique may be used to study similar games

with different payoff functions, e.g. agents win when their restaurant has

attendance exactly r.



Chapter 3

Disc percolation with a

distribution of radii having a

power-law tail

In this chapter, we consider a continuum percolation model of overlapping

discs in two dimensions (2D) where distribution of the radii of the discs has

a power-law tail. We address questions like whether the power-law tail in the

distribution of radii changes the critical behavior of the system, and how does

the percolation threshold depend on the power of the power-law tail. The

power-law distribution of the radii makes this system similar to the Ising or

fluid system with long-range interactions. For the latter case, it is known that

the long-range nature of the interaction does affect the critical behavior of the

system for slow enough decay of the interaction [82].

The behavior of our model differs from that of the standard continuum

percolation model in two aspects. First, the entire low density regime in our

62
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model shows a power-law decay of the two-point correlation function in con-

trast to the exponential decay in the standard continuum percolation. Thus

the whole low density regime is ‘critical’. However, there is a non-zero perco-

lation threshold below which there is no infinite cluster exist in the system.

Second, the critical exponents are functions of the power a of the power-law

distribution for low enough a. So while the system belong to the same uni-

versality class as the standard continuum percolation for high enough a, the

critical behavior is quite different for low values of a.

The chapter is organized as follows: In Sec. 3.1, we review some earlier

work for the continuum percolation problem of overlapping discs. In Sec. 3.2,

we define our model of disc percolation precisely. In Sec. 3.3, using a rigorous

lower bound on the two-point correlation function, we show it decays only

as a power-law with distance for arbitrarily low coverage densities. In Sec.

3.4,we discuss the critical behavior of the system. In Sec. 3.5, we propose

an approximate renormalization scheme to calculate the correlation length

exponent ν and the percolation threshold in such models. In Sec. 3.6, we

discuss results from simulation studies and Sec. 3.7 contains summary.

3.1 Some earlier results

3.1.1 Percolation with single sized discs

The simplest continuum percolation model one can think of is the one in which

percolating units are overlapping discs of same radius say R [41]. In such a

model let p0 be the probability that a point O in the plane is not covered by

any of the discs. This is same as the probability that there are no centers of
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O R

Figure 3.1: A sub critical percolation system where percolating units are discs
of same size R. The point O of the plane will not be covered by any of the
discs, if a circular area of radius R centered at O do not contain center of any
of the discs.

any discs present within a circular area of radius R (See Fig. 3.1). Then, for

an infinite system,

p0 = exp
(
−nπR2

)
. (3.1)

The quantity A = nπR2 is called the areal density which is the average

total area of the discs whose centers lie within unit area of the plane. p0 also

gives the fraction of the entire plane not covered by any of the discs. Therefore

the fraction of the entire plane which is covered by at least one disc (called as

the covered area fraction to be denoted by fcovered) will be,

fcovered = 1− p0 = 1− exp(−A). (3.2)

The critical areal density A∗ and the critical covered area fraction are



3.1. SOME EARLIER RESULTS 65

defined respectively as n∗πR2 and 1 − exp(−n∗πR2) where n∗ is the critical

density which is the minimum number density of discs for which the system

percolates.

Since areal density A = nπR2 remains invariant under length rescaling,

the critical areal density A∗ for percolation problem with discs of single size is

independent of the size of the discs. So if R1 and R2 are some fixed reals and

R1 6= R2,

n∗(R1)πR2
1 = n∗(R2)πR2

2 = A∗. (3.3)

Even though an analytical determination of A∗ has not yet made possible,

simulation studies yield fairly accurate results; the best up to date being A∗ =

1.128085 [83]. This corresponds to a critical covered area fraction, fcovered =

1− exp(−A∗) = 0.6763475(5).

We define the two-point correlation function Prob(1 2) as the probability

that points P1 and P2 in the plane which are at a distance r12 from each other

are connected by overlapping discs. For a sub critical system, Prob(1  2)

varies with r12 as

Prob(1 2) ∼ exp (−r12/ξ) ,

where ξ is the correlation length [84]. Since probability should remain invariant

under length rescaling, we must have ξ(A) = R g(A) where g(A) determines

how the correlation length varies with areal density A and is independent of R.

Near the critical areal density A∗, it is expected to vary as g(A) ∼ (A∗ − A)−ν

with ν = 4/3 [38].
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3.1.2 Percolation with discs having a distribution of

radii

If we have a distribution ρ(R) for the radii variable R, then Eqs. (3.1) and

(3.2) generalize into

p0 = exp
(
−nπ

〈
R2
〉)
, (3.4)

where 〈R2〉 =
∫
R2ρ(r)dr and

fcovered = 1− exp(−A), (3.5)

where areal density A = nπ 〈R2〉.

Note that if 〈R2〉 diverges, then fcovered = 1 and for every n > 0, entire

plane will be covered in the thermodynamic limit. So one will always consider

the case where 〈R2〉 is finite. The critical areal density A∗ and the critical

covered area fraction fcovered are defined as in the percolation with single sized

disc but with 〈R2〉 in place of R2.

The constancy of A∗ for the percolation with single sized discs suggested

the conjecture [85] that for all random variables R with bounded support, A∗ is

a constant independent of ρ(R). For earlier references to this ‘constant volume

fraction rule’ see [86, 87]. However Phani and Dhar in [88] argued that for a

percolation problem with variable disc size, this conjecture do not hold. Later

these arguments were made rigorous by Meester et al. [89] who showed that

the critical areal density for a percolation problem with a distribution of radii

is greater than or equal to that when the radii takes only single value. So the

threshold indeed depends on size distribution of the basic percolating units.
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3.2 Definition of the model

We consider a continuum percolation model of overlapping discs in two dimen-

sions. The number density of discs is n, and the probability that any small

area element dA has the center of a disc in it is ndA, independent of all other

area elements. For each disc, we assign a radius, independently of other discs,

from a probability distribution Prob(R). We consider the case when Prob(R)

has a power-law tail; the probability of radius being greater than R varies as

R−a for large R. For simplicity, we consider the case when radii take only

discrete values R0Λj where j = 0, 1, 2, ..., with probabilities (1 − p)pj where

p = Λ−a. Here R0 is the size of smallest disc, and Λ is a constant > 1. We

refer to the disc of size R0Λj as the disc of type j.

It is easy to see that the covered area fraction fcovered, is finite only for

a > 2. For a ≤ 2, in the thermodynamic limit all points of the plane are

eventually covered, and fcovered = 1. If a > 2, we have areal density,

A = nπR2
0(1− p)/(1− pΛ2). (3.6)

We define the percolation probability P∞ as the probability that a ran-

domly chosen disc belongs to an infinite cluster of overlapping discs. One

expects that there is a critical number density n∗ such that for n < n∗, P∞

is exactly zero, but P∞ > 0, for n > n∗. We shall call the phase n < n∗ the

non-percolating phase, and the phase n > n∗ as the percolating phase.

It is easy to show that n∗ <∞. We note that for percolation of discs where

all discs have the same size R0, there is a finite critical number density n∗1, such

that for n > n∗1, P∞ > 0. Then, for the polydisperse case, where all discs have
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R R

1
2

r/2r/2

R

Figure 3.2: Points 1 and 2 in the plane at a distance r from each other will
be covered by a single disc of radius R, if the center of such a disc falls in the
area of intersection of two circles with radius R and centers at 1 and 2.

radii R0 or larger, the percolation probability can only increase, and hence

n∗ < n∗1. Also as noted earlier, whenever we have a bounded distribution of

radii of the discs, the critical areal density is greater than that for a system

with single sized discs [89]. Our simulation results show that this remains valid

for unbounded distribution of radii of the discs.

3.3 Non-percolating phase

By rotational invariance of the problem, Prob(1 2) is only a function of the

euclidean distance r12 between the two points. Let Prob(1)(1 2) denote the

probability that there is at least one disc that covers both P1 and P2. Then,

clearly,

Prob(1 2) ≥ Prob(1)(1 2). (3.7)

It is straightforward to estimate Prob(1)(1  2) for our model. Let j be the

minimum number such that radius of disc of type j is greater than or equal to
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r12, i.e. R0Λj ≥ r12. Let S be the region of plane such that the distance of any

point in S from P1 or P2 is less than or equal to R0Λj. This region S is greater

than or equal to the region where each point is within a distance r12 from both

P1 and P2. Using elementary geometry, the area of region S is greater than or

equal to (2π/3 −
√

3/4)r2
12 (See Fig. 3.2). The number density of discs with

radius greater than or equal to R0Λj is nΛ−aj. Therefore, the probability that

there is at least one such disc in the region S is 1 − exp (−n|S|Λ−aj), where

|S| is the area of region S. Thus we get,

Prob(1)(1 2) ≥ 1− exp
[
−nKΛ−ajr2

12

]
, (3.8)

where K = 2π/3−
√

3/4.

Now, as assumed, R0Λj < r12Λ. Hence we have Λ−aj > r−a12 Λ−a/R−a0 .

Putting this in Eq. (3.8), we get

Prob(1)(1 2) ≥ 1− exp
[
−nKΛ−ar−a+2

12

]
, (3.9)

where some constant factors have been absorbed into K. For large r12, it is

easy to see that this varies as r2−a
12 . Hence the two-point correlation function

is bounded from below by a power-law.

We can extend this calculation, and write the two-point correlation function

as an expansion

Prob(1 2) =
∞∑

n=1

Prob(n)(1 2), (3.10)

where Prob(n)(1  2) is the probability that the path of overlapping discs

connecting points P1 and P2 requires at least n discs. The term n = 2 corre-
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sponds to a more complicated integral over two overlapping discs. But it is

easy to see that for large r12, this also decays as r−a+2
12 . Assuming that similar

behavior holds for higher order terms as well, we expect that the two-point

correlation function decays as a power law even for arbitrarily low densities of

discs.

We note that this is consistent with the result that for continuum perco-

lation in d dimensions, the diameter of the connected component containing

the origin say 〈D〉 is divergent even for arbitrarily small number densities

when 〈Rd+1〉 is divergent [47]. Here R denote the radii variable. In our case

〈D〉 =
∫
r12

dProb(r12)

dr12

dr12 ∼
∫
r2−a

12 dr12 (where P1 is the origin) is divergent

when a ≤ 3, consistent with the above.

3.4 Critical behavior

The power-law decay of the two-point correlation function is the result of the

fact that for any distance r, we have discs of radii of the order of r. However for

large values of r, we can imagine that there would also be a contribution from

a large number of overlapping discs of radii much smaller than r connecting

the two points separated by the distance r, which as in the usual percolation

problem decays exponentially with distance. Therefore it is reasonable to

write the two-point correlation function in our problem as a sum of two parts;

the first part say Gsr(r) due to the ‘short range’ connections which has an

exponential decay with distance for large r and the second one say Glr(r) due

to the ‘long range’ connections which has a power law decay with distance.
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Therefore,

G(r) = Gsr(r) +Glr(r), (3.11)

where

Glr(r) ∼ D(A)/ra−2 + higher order terms, (3.12)

where D(A) is assumed to go to a non-zero constant as A → A∗ and its

dependence on A is a slowly varying one.

The power-law distribution of the radii, makes this system similar to a

long range interaction problem in statistical physics in the sense that given

two points in the plane, a direct connection by a single disc overlapping both

the points is possible. In fact similar behavior for the two-point correlation

function exists whenever we have long range interactions in a system, such as

in Ising model with long range potentials or fluid with long range interactions

[90, 91]. In such systems, the two-point correlation function shows a power-

law decay just as in our problem [92]. The effect of such long range potentials

on the critical exponents have been studied earlier [93, 94, 95, 82, 90, 96]

with the general conclusion that the long range part of the interaction can

influence the critical behavior of the system [97]. More precisely, if we have

an attractive pair potential in d dimensions of the form −φ(r) ∼ 1

rd+ sigma

where σ > 0, then critical exponents take their short-range values for all

σ ≥ 2− ηsr where ηsr is the anomalous dimension. For σ < 2− ηsr, two kinds

of behavior exist. For 0 < σ ≤ d/2, the exponents take their mean-field values

and for d/2 < σ < 2 − ηsr, the exponents depend on the value of σ (See [82]

and references therein). So σ = 2− ηsr is the dividing line between the region

dominated by short range interactions and the region dominated by long-range
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interactions.

Though there is a well established connection between the lattice percola-

tion problem and the Ising model [98], there is no similar result connecting the

continuum percolation problem to any simple Hamiltonian system. However,

the following simple argument provide us with a prediction about the values of

the parameter a for which the power-law nature of the distribution is irrelevant

and the system is similar to a continuum percolation system with a bounded

size distribution for the percolating units. Assuming that the strength of the

long range interaction from a given point in the Ising/fluid system (which de-

cays like ∼ 1

r2+σ
in 2D) is like the strength of the connectivity from the center

of a given disc which is given by the distribution of the radii; in our problem,

we expect the dividing line between the region dominated by short-range con-

nectivity and the region dominated by long-range connectivity to be the same

as that for an Ising system with long range potential of the form −φ(r) ∼ 1

ra+1

where a > 2. Then the results for the long-range Ising system discussed in

the last paragraph should carry over with σ = a− 1. So a deviation from the

standard critical behavior is expected when a < 3− ηsr and the critical expo-

nents will take their short-range values for a > 3 − ηsr. For 2D percolation,

ηsr = 5/24 [99]. Also mean-field behavior is expected when a ≤ 2. However

for this range of a, the entire plane is covered for all non-zero number densities

and hence there is no phase transition.

In the next two sections, we investigate for the dependence of exponents

on the power-law tail of the distribution of the radii of the discs. First we

develop an approximate RG method. Then we carry out simulation studies

which show that the correlation length exponent ν takes its short range value
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for a > 3− ηsr, while it depends upon a for a < 3− ηsr.

3.5 An approximate RG scheme

In this section, we propose an approximate RG method to analyze the behav-

ior of continuum percolation models near the percolation threshold, when the

percolating units have a distribution of sizes. We assume that we can replace

discs of one size having a number density n with discs of another size and num-

ber density n′, provided the correlation length remains the same. Application

of a similar idea in disc percolation problem with only two sizes of discs may

be found in [100].

We will illustrate the method by considering a problem in which the radii

of discs take only two possible values, say R1 and R2. Let their areal densities

be A1 and A2 respectively, and assume that both A1 and A2 are below A∗,

the critical threshold for the percolation problem with only single sized discs

present ( A∗ ≈ 1.128085 [44]). Also let ξ1 represent the correlation length

when only discs of size R1 are present in the system and ξ2 represent that

when only discs of size R2 are present. Invariance of the two-point correlation

function under length rescaling requires that the expression for the correlation

length ξ is of the form ξ = Rg(A), where the function g(A) determines how

the correlation length depends on the areal density A and is independent of

the radius R. Let Ã2 is the areal density of the discs of size R2 which will give

the same correlation length as the discs of size R1. i.e.,

ξ1 (A1) = ξ2

(
Ã2

)
, (3.13)
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or

R1g (A1) = R2g
(
Ã2

)
. (3.14)

Given the form of the function g(A), we can invert the above equation to find

Ã2. Formally,

Ã2 = g−1

(
R1

R2

g (A1)

)
. (3.15)

So the problem is reduced to one in which only discs of size R2 are present,

whose net areal density is now given by,

A′2 = Ã2 + A2. (3.16)

System percolates when A′2 = A∗. Now, when areal density A is close to A∗,

we have

g(A) = K (A∗ − A)−ν . (3.17)

where K is some constant independent of A and ν is the correlation-length

exponent in the usual percolation problem. Using this in Eq. (3.15), we get

Ã2 = A∗ − (A∗ − A1) (R2/R1)1/ν . (3.18)

Therefore, for a given value of A1 < A∗, the areal density of discs of radius

R2, so that the system becomes critical is given by,

A2 = A∗ − Ã2,

= (A∗ − A1) (R2/R1)1/ν . (3.19)
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So the total areal density at the percolation threshold is,

A1 + A2 = A1 + (A∗ − A1) (R2/R1)1/ν ,

= A1(1− x) + A∗x.

where x = (R2/R1)1/ν . Without loss of generality we may assume R2 > R1.

Then x > 1 and we can see from the above expression that the percolation

threshold A1 +A2 > A∗, a result well known from both theoretical studies [89]

and simulation studies [44].

Now in our problem assume that areal density of discs of type 0 do not

exceed A∗. Renormalizing discs up to type m in our problem gives the equation

for the effective areal density of the m-th type discs A′m as

A′m = A∗ −
(
A∗ − A′m−1

)
Λ1/ν + ρm, (3.20)

where m ≥ 1, A′0 = ρ0 and ρm = n0πΛ(2−a)m denote the areal density of

discs of radius Λm. Here n0 is the number density of discs of radius R0 (or

of type 0), which for convenience we have set equal to unity. If we denote

A∗−A′m by εm which is the distance from the criticality after m-th step of the

renormalization, then the above expression becomes

εm = εm−1Λ1/ν − ρm. (3.21)

The equation describes the flow near the critical point when we start with

a value of ρ0, the areal density of the first type of discs. Here εm gives the
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Figure 3.3: Variation of εm with m for different values of ρ0 showing sub
critical and supercritical regimes. We have used a = 3 and Λ = 2.

effective distance from criticality of the m-th order discs in the system, in

which now only m-th and higher order discs are present. Now for given values

of the parameters a and Λ, we can evaluate εm in Eq. (3.21) using a computer

program and plot εm versus m.

Depending upon the value of ρ0, we get three different behaviors. For value

of ρ0 below the critical value denoted by ρ∗0, εm will go to A∗ asymptotically

(System is sub critical) and when it is above ρ∗0, εm will go to −∞ asymp-

totically (System is super critical). As ρ0 → ρ∗0, we get the critical behavior

characterized by εm tending to the RG fixed point 0 asymptotically. Typical

result using Eq. (3.21) with Λ = 2 and a = 3 is shown in Fig. 3.3. We can

see that as we tune ρ0, the system approaches criticality, staying closer to the

εm = 0 line longer and longer. Critical behavior here can be characterized by
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the value of m at which the curve deviates from the approach to εm = 0 line.

To understand how the correlation length diverges as we approach criticality,

we assume that we can replace the sub critical system with a system where

only discs of type m′ is present and has a fixed areal density below A∗, where

m′ is the value of m at which εm shows a substantial increase - say εm becomes

A∗/2. For continuum percolation problem with single sized discs, the correla-

tion length ξ = Rg(A), where g(A) is a function with no explicit dependence

on radius R. Therefore, correlation length in our problem,

ξ ∝ Λm′ . (3.22)

We can write the recurrence relation Eq.(3.21) in terms of the areal density

ρn as

εm = A∗Λ
m
ν −

m∑

n=0

ρnΛ[m−nν ]. (3.23)

But ρn = ρ0Λn(2−a). Therefore,

εm = A∗Λ[mν ] − ρ0Λ[mν ] [1− Λm(2−a−1/ν)
]

[1− Λ(2−a−1/ν)]
. (3.24)

For large values of m, the last term in the above equation involving Λm(2−a−1/ν)

can be neglected. Then,

εm = Λ[mν ]
[
A∗ − ρ0

1− Λ(2−a−1/ν)

]
. (3.25)

Therefore,

Λ[mν ] =
εm[

A∗ − ρ0

1− Λ(2−a−1/ν)

] . (3.26)
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For a given value of ρ0 ≤ A∗, the order m′ at which εm is increased substan-

tially, say to a value A∗/2 is given by

m′ = [logΛ (A∗/2)− logΛ (ρ∗0 − ρ0)

+ logΛ

(
1− Λ(2−a−1/ν)

)
]ν

(3.27)

So for ρ0 close to ρ∗0 and large values of a,

m′ ∼ logΛ (ρ∗0 − ρ0)−ν . (3.28)

so that

ξ ∝ (ρ∗0 − ρ0)−ν . (3.29)

Thus we find that the correlation length exponent ν is independent of the

parameters a and Λ of the distribution. From Eq. (3.26), we can also obtain

the percolation threshold ρ∗0 as a function of the parameters a and Λ. In

Eq. (3.26) left hand side is positive definite. So for values of ρ0 for which

ρ0

1−Λ(2−a−1/ν) < A∗, we will have εm > 0 for large values of m. Similarly for

values of ρ0 for which ρ0

1−Λ(2−a−1/ν) > A∗, we will have εm < 0 for large values

of m. Hence the critical areal density ρ∗0 must be given by

ρ∗0 = A∗
[
1− Λ(2−a−1/ν)

]
. (3.30)

Or in terms of the total number density, the percolation threshold n∗ is given

by,

n∗ = nc
(
1− Λ(2−a−1/ν)

)
/
(
1− Λ−a

)
, (3.31)
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where nc = A∗/π, the critical number density for percolation with single sized

discs of unit radius. Note that this approximate result does not give the correct

limit, n∗ → 0 as a → 2. The RG scheme depends on the approximation that

the effect of size R1 of areal density A1 is the same as that of discs of radius R2

of density A2, as in Eq. (3.13). This is apparently good only for a > 3−ηsr.Fig.

3.4 shows the variation of the critical threshold with a for two different values

of Λ using Eq. (3.31) along with simulation results (See section 3.6 for details

of simulation studies). We see that a reasonable agreement is obtained between

the two. As one would expect, for large values of a, n∗ tends to nc.

From Eq. (3.31), we can obtain the asymptotic behavior of the critical

number density n∗ as Λ→ 1. This is useful since it corresponds to the thresh-

old for a continuous distribution of radii with a power-law tail and we no more

have to consider the additional discretization parameter Λ. It is easy to see

that in the limit Λ→ 1, Eq. (3.31) becomes

n∗Λ→1 = nc

(
1− 5

4a

)
, (3.32)

where we have used the value ν = 4/3. Therefore we expect that for large

values of a, a log-log plot of (nc − n∗Λ→1) against a will be a straight line

with slope −1 and y-intercept ln(5nc/4) ≈ −0.35 for large values of a. A

comparison with the thresholds obtained from simulation studies show that

Eq. (3.32) indeed predicts the asymptotic behavior correctly (see Fig. 3.8).
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Figure 3.4: Variation of n∗ with a for two different values of Λ. Dashed curves
correspond to values given by Eq. (3.31) and continuous ones correspond to
those from simulation studies. The horizontal line corresponds to the threshold
for the single sized discs case.

3.6 Simulation results

We determine the exponent ν and the percolation threshold n∗ by simulating

the continuum percolation system in 2D, with discs having a power law distri-

bution for their radii. We consider two cases for the distribution of the radii

variable. To explicitly compare the prediction of the approximate RG scheme

for the percolation threshold given in Sec. 3.5, we use a discrete distribution

for the radii variable, with discretization factor Λ as in section 3.2. The results

for the thresholds thus obtained is shown in Fig. 3.4. To determine the corre-

lation length exponent ν, we consider the radii distribution in the limiting case

Λ→ 1, so that we do not have to consider the additional parameter Λ. In this
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case, given a disc, the probability that it has a radius between R and R+dR is

equal to aR−(a+1) where a > 2. We also obtain the percolation threshold with

this continuous distribution for the radii and compare it with the predicted

asymptotic behavior in Eq. (3.32). The minimum radius is assumed to be

unity.

For a ≤ 2 the entire plane is covered for arbitrarily low densities of the discs.

We use cyclic boundary conditions and consider the system as percolating

whenever it has a path through the discs from the left to the right boundary.

We drop discs one at a time on to a region of a plane of size L × L, each

time checking whether the system has formed a spanning cluster or not. Thus

number density is increased in steps of 1/L2. So after dropping the n − th

disc, the number density is n/L2. Now associated with each number density

we have a counter say fn which is initialized to 0 in the beginning. If the

system is found to span after dropping the n′-th disc, then all counters for

n ≥ n′ is incremented by one. After a spanning cluster is formed, we stop. By

this way we can determine the spanning probability Π(n, L) = fn/N where

N is the number of realizations sampled. The number of realizations sampled

varies from a maximum of 2.75× 107 for a = 2.05 and L = 90 to a minimum

of 4000 for a = 10.0 and L = 1020 [For obtaining the results for the threshold

in Fig. 3.4, the number of realizations sampled is 20000 for all values of a

and Λ]. This method of dropping basic percolating units one by one until the

spanning cluster is formed has been used before [101] in the context of stick

percolation which was based on the algorithm developed in [102], and allows us

to study relatively large system sizes with large number of realizations within

reasonable time.
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The probability that there is at least a single disc which span the system

of size L at number density n is 1−
(
exp−n2a

)
/La−2. It is easy to see that to

leading order in n, this ‘long range ’part of the spanning probability Π(n, L)lr

is
n2a

La−2
. So one can write a scaling form for the spanning probability,

Π(n, L) = Π(n, L)lr + (1−Π(n, L)lr)φ((n∗ − n)L1/ν). (3.33)

Therefore we can define the ‘short range ’part of the spanning probability

Π ′(n, L) = (Π(n, L)−Π(n, L)lr)/(1−Π(n, L)lr) where the leading long range

part is subtracted out. Therefore, we have

Π ′(n, L) = φ((n∗ − n)L1/ν), (3.34)

and the scaling relations, (See for e.g.. [32])

∆(L) ∝ L−1/ν , (3.35)

n∗eff (L)− n∗ ∝ ∆, (3.36)

where n∗eff (L) is a suitable defined effective percolation threshold for the sys-

tem of size L, and ∆ is the width of the percolation transition obtained from

the spanning probability curves Π ′(n, L). Note that Eqs. (3.35) and (3.36) are

applicable with any consistent definition of the effective percolation thresh-

old and width ∆ [32]. A good way to obtain n∗eff and ∆ is to fit the sig-

moidal shaped curves of the spanning probability Π ′(n, L) with the function

1/2[1 + erf [(n− n∗eff (L))/∆(L)]] (see [45]), which defines the effective perco-

lation threshold n∗eff as the number density at which the spanning probability
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is 1/2. We determined n∗eff and ∆ for each value of a and L and determined

1/ν and n∗ for different values of a using Eqs. (3.35) and (3.36) respectively.

Typical examples are shown in Fig. 3.5 and Fig. 3.6.

At first, we determined the percolation threshold and the exponent for a

system of single sized discs of unit radius. We obtained n∗ = 0.3589(±0.0001)

(or areal density ≈ 1.12752) and 1/ν = 0.758(±0.018) in very good agreement

with the known value for the threshold [44] and the conjectured value of 1/ν =

3/4 for the exponent. Values of 1/ν obtained for various values of a are shown

in fig.3.7. We scan the low a regime more closely for any variation from the

standard answer. We can see that the estimates for 1/ν are very much in line

with the standard percolation value for a > 3 − ηsr while it varies with a for

a < 3−ηsr. Fig. 3.8 shows the variation of the percolation threshold n∗ with a.

As expected, with increasing a, the percolation threshold increases and tends

to the single sized disc value as a → ∞, and as a → 2, the threshold tends

to zero. The data also shows that n∗ converges to the threshold for the single

sized disc value as 1/a as predicted by Eq. (3.32). Values of the threshold for

some values of a are given in Table 3.1.

Finally as a check, we plot the spanning probability Π ′(n, L) (see Eq.

(3.34)) against (n−n∗)L1/ν to be sure that a good scaling collapse is obtained.

We show two such plots for a = 2.50 and a = 4 in fig. 3.9 and Fig. 3.10. We

can see that a very good collapse is obtained. Similar good collapse is obtained

for other values of a as well.
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3.7 Summary

In this chapter, we discussed the effect of a power-law distribution of the radii

on the critical behavior of a disc percolation system. If the distribution of radii

is bounded, then one would expect the critical exponents to be unchanged.

However, if the distribution of radii has a power-law tail, we show that this

strongly influence the nature of the phase transition. The whole of the low-

density non-percolating phase has power-law decay of correlations. And this

occurs for any value of the power a, howsoever large. The critical exponents

depend on the value of a for a < 3 − ηsr and take their short-range values

for a > 3 − ηsr. We also proposed an approximate RG scheme to analyze

such systems. Using this, we computed the correlation-length exponent and
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a n∗ η∗ = n∗πa/(a− 2) φ∗ = 1− exp−η
∗

2.05 0.0380(6) 4.90(7) 0.993(1)
2.25 0.0693(1) 1.959(3) 0.8591(5)
2.50 0.09745(11) 1.5307(17) 0.7836(4)
3.50 0.16679(8) 1.2226(6) 0.70555(17)
4.00 0.18916(3) 1.1885(2) 0.69543(6)
5.00 0.22149(8) 1.1597(4) 0.68643(13)
6.00 0.24340(5) 1.1470(2) 0.68241(8)
7.00 0.2593(2) 1.1406(7) 0.6804(2)
8.00 0.27140(7) 1.1368(3) 0.67917(9)
9.00 0.28098(9) 1.1349(4) 0.67856(12)

Table 3.1: Percolation threshold n∗ for a few values of a along with corre-
sponding critical areal density η∗ and the critical covered area fraction φ∗.

the percolation threshold. The approximate RG scheme found to be good

for relatively large values of a. We determined percolation threshold and the

correlation-length exponent from Monte-Carlo simulation studies.

We can easily extend the discussion to higher dimensions, or other shapes

of objects. It is easy to see that the power law correlations will exist in

corresponding problems in higher dimensions as well.
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a b s t r a c t

We study a variation of theminority game. There areN agents. Each has to choose between
one of two alternatives every day, and there is a reward to each member of the smaller
group. The agents cannot communicate with each other, but try to guess the choice others
will make, based only on the past history of the number of people choosing the two
alternatives. We describe a simple probabilistic strategy using which the agents, acting
independently, and trying tomaximize their individual expected payoff, still achieve a very
efficient overall utilization of resources, and the average deviation of the number of happy
agents per day from the maximum possible can be made O(Nϵ), for any ϵ > 0. We also
show that a single agent does not expect to gain by not following the strategy.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Minority Game (MG) is a particular version of the El Farol Bar problem. The latter was introduced by Brian Arthur
as a prototypical model for the complex emergent behavior in a system of many interacting agents having only incomplete
information, and bounded rationality [1]. This problem is about N agents, who have to repeatedly make choices between
two alternatives, and at each step, the winners are those who selected the alternative chosen by fewer agents. MG has been
studied a lot as amathematicalmodel of learning, adaptation, and co-evolution of agents [2,3]. An overview and bibliography
may be found in Ref. [4–6]. Similar models have been discussed earlier under the name of congestion games [7], andmarket
entry games [8]. The interesting feature of the minority game is that the agents seem to be able to coordinate their actions,
without any direct communication with each other, and the system can self-organize to a state in which the fluctuations in
the steady state aremuch less thanwhat would be expected if each agentmade a random choice. This is called the efficiency
of the markets.

In a system of N interacting agents, with N odd, the degree of efficiency of the system may be measured by how close is
the average number of happy agents in the steady state to the maximum possible value (N − 1)/2. Simulations of MG have
shown that typically the difference is of order N1/2. The coefficient of the N1/2 depends on details of the model, like how
far back in the past the agents look to decide their action, but it can be much less than the value for agents making random
choices. The minimum value of the coefficient attained in several variants of the MG is about 1/6 [5].

In our formulation of the problem, all agents are equally smart, and hence the average expected payoff per day achievable
by any agent is the same as for any other. Then, maximizing average payoff for one agent is the same as maximizing the
average number of happy agents per day. Hence the strategy that optimizes the expected individual payoff of one particular
agent also maximizes the overall utilization of resources.

∗ Corresponding author.
E-mail addresses: ddhar@theory.tifr.res.in (D. Dhar), sasi@theory.tifr.res.in (V. Sasidevan), bikask.chakrabarti@saha.ac.in (B.K. Chakrabarti).
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A variation of the minority game, focusing on the efficient utilization of resources was studied by Chakrabarti et al. as
the Kolkata Paise Restaurant problem [9–11]. In this variation, there are N restaurants, and N agents, and there is rank
order amongst the restaurants. Each restaurant can take only one agent per day, and agents prefer to go to a higher ranked
restaurant. In spite of this complication, it was found that an egalitarian probabilistic strategy exists in which the agents
visit restaurants in a cyclic order. Also, the agents can reach this cyclic state in a short time.

In this paper, we describe a probabilistic strategy, inspired by the strategy suggested in Ref. [11], for the minority games,
that is very simple, but ismore efficient than those previously studied in the literature. In this strategy, the average deviation
of the number of people in the minority from the maximum (N − 1)/2 can be reduced to be of order Nϵ , for any ϵ > 0, and
the time required to reach this level increases with N only as log logN . In addition, we show that a game where all agents
follow this strategy is stable against individual cheaters.

Our strategy is an application of the general win–stay–lose–shift strategy [12], an adaptation of which to MG was
discussed earlier by Reents et al. [13]. In the latter, the deviation from best possible can be made of order 1, but the time
required grows as N1/2. We are able to get a much faster approach to optimum by using a shift probability that depends
on the current distance from optimum. Other probabilistic strategies for minority games have also been discussed in the
literature [14–16], and it has been noted that in minority games, random choices by agents give better results on average
than the deterministic strategies [17]. While the strategy discussed here seemsmore or less obvious, we could not find such
a discussion in the published literature, and it seems worthwhile to study it quantitatively.

We will show that if all the agents follow the proposed common strategy, the social inefficiency of the system is
considerably reduced. The emergence of effective cooperation amongst selfish agents in our problem may seem rather
paradoxical at first. After all, themain point of MG is that agents gain by differentiating, and not following the same strategy.
Wenote that the differentiation in our case is achieved by the randomnumber generators used by the agents. Themain result
of this paper is that this is more efficient than using different deterministic strategies.

The plan of the paper is as follows: in Section 2, we define the rules of the game precisely and argue that the strategy
defined leads to a very efficient use of resources. In Section 3, we show that individual agents have no incentive to cheat,
if every body else follows the same strategy. Section 4 contains the results of our simulations of the model, and Section 5
contains some concluding remarks.

2. Definition of the model

The model we consider is a variation of the El Farol Bar problem. We consider a small city with exactly two restaurants.
There are N people in the city, called agents, each of whom goes for dinner every evening to one of the two restaurants.
The prices and quality of food are quite similar in both, and the only thing that governs the choice of agents about which
restaurant they go to on a particular day is that the quality of service is worse if the restaurant is crowded. We assume that
N is odd, and write N = 2M + 1. The restaurant is said to be crowded on a particular day if the number of people turning
up to eat there that day exceeds M . An agent is happy if he goes to a restaurant that is uncrowded, and will be said to have
a payoff of 1. If he turns up at a crowded restaurant, his payoff is 0. Once the choice of which restaurant to go to is made, an
agent cannot change it for that day.

The agents cannot communicate with each other in any way directly in deciding which restaurant to go to. However,
each of them has available to him/her the entire earlier history of howmany people chose to go to the first restaurant (call it
A), on any earlier day. Let us denote the number of agents turning up at A on the t-th day byM − ∆(t). Then the number of
agents turning up at Restaurant B isM + ∆(t) + 1. At the end of day t , the value of ∆(t) is made public, and is known to all
the agents. Using the information {∆(t ′)}, for t ′ = 1, 2, . . . , t , the agents try to guess the choice that other customers who
share the same public knowledge will make, and decide which restaurant to go to on the day (t + 1), and try to optimize
their payoff.

In the standardMG, the public information is not the value of∆(t), but onlywhether it is negative or not [2,3]. In contrast,
in our model, the agents have better quality of information, and this difference is important. Also, in MG each agent has a
finite set of strategies available to him/her, which uses only the history {∆(t)} form previous days, wherem is a fixed non-
negative integer. Each strategy is deterministic: for a given history, it tells which restaurant agent should go to. While the
agent has more than one strategy available to him/her, he chooses the strategy that has the best ‘performance score’ in the
recent past. As noted in Ref. [17], this particular method of selecting the ‘best’ strategy does not seem to be very good. In
fact, an agent choosing a strategy with the worst score may do better than others choosing the ones with the best score!.
Here the only probabilistic component is in the initial allocation of a subset of strategies to each agent out of the set of all
possible strategies. For a given history, the future choices of all agents for all subsequent days are fully determined.

In the problemwe study here, we allow agents to have probabilistic strategies. For a given history {∆(t)}, a strategy will
specify a probability pwith which he should go to restaurant A. Another important difference from theMGs is that we allow
the strategy to depend explicitly on the payoffs received in the m previous days. In MG, the strategy does not explicitly
involve previous payoffs. The payoff only affect the outcome indirectly, through the performance scores that determine
which strategy is used by the agent.

To completely specify the model, in addition to the payoff function, we also need to specify the agents’ priorities, and
time-horizons. The usual assumption in game theory is that agents are fully selfish, and only try to maximize their personal
payoffs. This is, somewhat incorrectly, termed rational behavior. In this model, we assume that the agents are selfish, but
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try to maximize their expected payoff over the next D days. The usually studied cases are D = 1 and D very large, tending
to infinity. However, in situations where outcomes of games are correlated in time, optimizing strategies for different D can
be quite different.

For simplicity, we will assume that all agents have the same value of D. For most of our discussion, we restrict ourselves
to the simple case D = 1. But we will show that the purely D = 1 optimization leads to an impasse. As already noted in the
introduction, the assumed symmetry between agents immediately leads to the conclusion that the best performing strategy
for any particular individual in the limit ofD large, alsomaximizes the average resource utilization for the society as awhole.

The simplest case corresponds to m = 0 and D = 1. In this case, an agent has no information. His probabilistic strategy
is to make a random choice of which restaurant to go to, with equal probability. In this case, the probability that r people
show up at Restaurant A is clearly

Prob(r) =


N
r


2−N . (1)

The expectation value of r is N/2, and for large N , the distribution is nearly gaussian, with a width proportional to
√
N .

We can measure the inefficiency of the system by a parameter η defined as

η = lim
N→∞

4
N

⟨(r − N/2)2⟩ (2)

where ⟨⟩ denotes averaging over a long time evolution, and over different initial conditions.
The normalization has been chosen, so that the inefficiency parameter η of the system with agents using his /her choice

randomly is 1.
We now describe a simple m = 1 probabilistic strategy, that gives a highly efficient system, where the inefficiency

parameter can be made of order (1/N1−ϵ), for any ϵ > 0.
The strategy is defined as follows: at t = 0, each agent chooses one of the two restaurants with probability 1/2 each,

independently of others. At any subsequent time t + 1, each agent follows the same simple strategy: if at time t , he found
himself in the minority, he chooses the same restaurant as at time t . If he found himself in the majority, and the number of
people visiting the same restaurant as himwasM +∆(t)+1, with ∆(t) ≥ 0, he changes his choice with a small probability
p, and sticks to the earlier choice with probability 1 − p, independent of other agents. The value of p depends only on ∆(t).
It is approximately equal to ∆/M for ∆ > 0. The precise dependence of p on ∆ is discussed later in the paper.

For large M , the number of people changing their choice is distributed according to the Poisson distribution, with mean
approximately equal to ∆, and width varying as

√
∆(t). Thus we have the approximate recursion ∆(t + 1) ≈

√
∆(t), for

∆(t) ≫ 1. This shows that within a time of order log logN , the magnitude of ∆ will become of O(1), and then remain of
order 1.

3. Stability against individual cheaters

While the strategy given in the previous section leads to a very efficient utilization of resources, selfish agents may not
do what is expected of them for the social good, and act differently, if it gives them profit. In this section, we show that if all
the other people are following the common strategy outlined above, there is a specially selected value of p, for each ∆ > 0,
such that if other agents follow the strategy with this value of p, a single individual gains no advantage by cheating.

If rational agents with D = 1 strategies know that they cannot improve their immediate individual expected gain by
cheating, they might then change their optimization criterion, and try to maximize their individual long-term payoff. This
they can do, if they follow the same common strategy. This cooperative strategy is beneficial for everybody in the long run, and
deviating from it has no advantage. This is the reason for the emergent cooperation between agents in our model.

Let us consider any particular day t . Let the number of people who showed up in Restaurant A be M − ∆(t). We may
assume ∆(t) ≥ 0, without loss of generality.

We consider first the case ∆ > 0. We consider a particular agent Alice, who went to A on the t-th day, and found herself
in the happy situation of being in theminority. Alice assumes that all other agents follow the strategy. Then, all other agents
who went to A will go to it again on day (t +1). There areM +∆+1 agents that went to B. Each of these agents will change
his/her choice with probability p. Let r be the number of agents that actually change their choice at time (t + 1). Then, r is
a random variable, with a distribution given by

Probp(r) =


M + ∆ + 1

r


pr(1 − p)M+∆+1−r . (3)

ForM ≫ 1, this distribution tends to the Poisson distribution with parameter λ = p(M + ∆ + 1), given by

Probλ(r) = λre−λ/r!. (4)
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If Alice chooses to go to A the next day, she will be in the winning position, if r ≤ ∆. Hence her expected payoff EP
(Alice|stay), if she chooses to stay with her present choice is

EP(Alice|stay) =

∆−
r=0

Probp(r). (5)

If, on the other hand, Alice would switch her choice, she would win if r ≥ ∆ + 2. Clearly, her expected payoff EP
(Alice|switch) if she chooses to switch is given by

EP(Alice|switch) =

∞−
r=∆+2

Probp(r). (6)

For Alice to have no incentive to cheat, we must have

EP(Alice|stay) ≥ EP(Alice|switch). (7)
Now consider the agent Bob, whowent to B on day t . He also assumes that all other people will follow the strategy: those

who went to A will stick to their choice, and those who went to B switch their choice with probability p. There are M + ∆

other persons who went to B. If Bob chooses to cheat, and decide to stay put, without using a random number generator,
the number of agents switching would be a random number r̃ , with a distribution given by

Prob′

p(r̃) =


M + ∆

r̃


pr̃(1 − p)M+∆−r̃ . (8)

He would be in the minority, if r̃ ≥ ∆ + 1. Thus, if he chooses to stay, we have his expected payoff EP(Bob|stay) given by

EP(Bob|stay) =

∞−
r̃=∆+1

Prob′

p(r̃). (9)

On the other hand, if Bob decides to switch his choice, he would win if r̃ ≤ ∆ − 1. In that case, his expected payoff
EP(Bob|switch) is given by

EP(Bob|switch) =

∆−1−
r̃=0

Prob′

p(r̃). (10)

We choose the value of p to make these equal. Thus the equation determining p, for a given ∆ and N is

EP(Bob|stay) = EP(Bob|switch). (11)
If the above condition is satisfied, Bob can choose to stay, or switch, and his expected payoff is the same. More generally,

he can choose to switch with a probability α, and his payoff is independent of α. In that case, what is the optimum value of
α for Bob? One has to bring in a different optimization rule to decide this, and it seems reasonable that Bob would choose a
value that optimizes his long-time average payoff, (which is the same for any other agent), and hence choose the value p.

In the limit ofM ≫ ∆, Eq. (11) simplifies, as the dependence onM drops out, and we get a simple equation determining
the dependence of the Poisson parameter λ on ∆. Then, Eq. (11) becomes

∆−1−
r=0

λr

r!
e−λ

=

∞−
r=∆+1

λr

r!
e−λ. (12)

This equation may be rewritten, avoiding the infinite summation, as

2
∆−1−
r=0

λre−λ

r!
= 1 −

λ∆e−λ

∆!
. (13)

It is easy to see that Eq. (13) implies that the inequality (7) is also satisfied. For the sake of simplicity, wewill only consider
this limit of largeM in the following. The extension to finiteM presents no special difficulties.

Thus, for any given value of ∆ > 0, the optimum value of λ is determined by the solution of Eq. (13). This equation is
easily solved. The resulting values of λ for different ∆ are shown in Table 1. For large ∆, we show in Appendix that (λ − ∆)
tends to 1/6.

We note that the values of λ do not have to be broadcast to the agents by any central authority. Each individual rational
agents will be able to deduce them as optimal, without any need to communicate with others. Fig. 1 shows the variation of
the expected payoff for the next day of Alice and Bobwith∆. As expected we can see that for large values of∆, the expected
payoff of an agent in either restaurant tends to the value 1/2. Alice’s payoff is a bit bigger than 1/2, but this advantage is
short-lived. Also, Bob cannot utilize this predictability of the system, as an attempt to switch by him changes the outcome
with finite probability.

Now, we consider the case ∆ = 0. In this case, Restaurant A has exactly M , and B has M + 1 people. In this case, it is
easy to see that the solution of Eq. (11) is λ = 0, and this also satisfies Eq. (7). Qualitatively, this may be explained as being
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Fig. 1. Variation of expected payoff for the next day of an agent in Restaurant A (PAlice) and Restaurant B (PBob) with ∆.

Table 1
The optimal values of the shift probability parameter λ, when the number of
persons in the minority restaurant isM − ∆.

∆ λ ∆ λ

1 1.14619 8 8.16393
2 2.15592 9 9.16423
3 3.15942 10 10.16448
4 4.16121 20 20.16557
5 5.16229 30 30.16594
6 6.16302 40 40.16612
7 7.16354 50 50.16623

due to the fact if there is a nonzero λ, and agents from B switch to A, Bob has an incentive to cheat, because if he goes to A,
he would be sure to be in the majority. If he cheats, and stays back, but at least one other agent leaves from B to A (which
occurs with nonzero probability for any non-zero λ), he has some chance to be on the winning side. Since all agents in B
would reason this way, we get λ = 0.

Clearly, λ = 0 is actually a very stupid strategy from Bob’s point of view, as then nobody switches, and the state at day
(t + 1) is the same as on day t , and the same situation is met again. While this is a solution which minimizes wastage of
resources, and is socially as efficient as possible, this is clearly a very unfair state of affairs, where a subset of people are
privileged, and have payoff 1 every day, and another set has no chance of any payoff. In fact, if Bob is a short-sighted agent,
with only a myopic D = 1 optimization goal, he can do no better individually on the next day. If Alice knows that Bob has
only a myopic D = 1 strategy, she would prefer not to switch, which then makes Bob reason that he should not switch, and
so on.

The only way out of this impasse is for Bob to realize that he should switch with some probability, even if it does not
lead to any better payoff that day, and not stay back hoping that other B’s will switch. That increases his expected payoff
tomorrow, even if it does not increase it today. The existence of these ‘‘trapping states’’ at ∆ = 0 is a problem caused by
Bob’s restricting himself to immediate-payoff D = 1 optimization.

We make a small modification of the basic strategy outlined above to take care of the problem when ∆ = 0. We note
that in this case, though Bob does not expect to gain anything on the next day by switching, he would still like to do that
to upset the status quo, and improve his chance of winning the day after. Of course, as Alice realizes that some people
from B are likely to switch, she would like to switch as well. Consider the case when all people who went to A switch with
probability λ′/M , and all who went to B switch with probability λ′′/(M + 1), with both λ′ and λ′′ non-zero. Let r ′ and r ′′ be
the random variables denoting the number of people switching sides from A to B, and from B to A respectively. Then, r ′ and
r ′′ are Poisson-distributed independent random variables with mean λ′ and λ′′ respectively. Repeating the analysis above,
we see that the condition that Alice has no incentive to cheat gives

Prob(r ′ < r ′′
− 2) = Prob(r ′

≥ r ′′). (14)
Similarly, for the absence of an incentive to cheat for Bob, we should have

Prob(r ′ < r ′′
− 1) = Prob(r ′

≥ r ′′
+ 1). (15)

It is easy to see that Eqs. (14) and (15) are mutually inconsistent, as the LHS of the former is strictly less than the LHS of
the latter, and for the RHS it is the opposite. Thus, we cannot find nonzero finite values λ′ and λ′′, which will give a stable
strategy against individuals cheating.
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Fig. 2. A typical evolution of a system of 2001 agents for two different choices of the parameter ϵ = 0.5 and 0.7. The large deviations correspond to major
events (see text).

While there is no stable strategy solution to our equations for Poisson-distributed random variables r ′ and r ′′, with finite
means λ′ and λ′′, there is a stable solution where each agent switches with probability 1/2. It is easy to see that this is also
stable against cheating by individual agents.

A slight generalization of this strategy is that in the case ∆ = 0, all agents irrespective of whether they were in the
minority or not on day t , switch the next day with a probabilityMϵ−1, where ϵ is a real number 0 ≤ ϵ ≤ 1. This corresponds
to both λ′ and λ′′ very large, of orderMϵ . We shall refer to this step as a major resetting event.

For a given value of ϵ, the value of |∆| just after resetting is of order Mϵ/2. Then it lakes a time of order log logM to
reach the value ∆ = 0. Then the maximum contribution to the mean efficiency parameter comes from the major resetting
events, and it is easy to see that the mean inefficiency parameter would vary as Mϵ−1/ log logM . Then, for more efficiency,
we should keep ϵ small.

4. Monte Carlo simulations

Wehave studied the time evolution of a set ofN agents using this strategy usingMonte Carlo simulations,withN = 2001.
If the restaurant with greater attendance has M + 1 + ∆ agents on a given day, with ∆ > 0, the next day each of them
switches his/her choice with probability λ(∆)/(M + ∆ + 1), and the agents in the minority restaurant stick to their choice.
If there are exactlyM + 1 agents in the majority restaurant, all agents switch their restaurant with a probability 1/(2M1−ϵ).

The result of a typical evolution is shown in Fig. 2, for two choices of ϵ: 0.5 and 0.7. We see that the majority restaurant
changes quite frequently. In fact, the system reaches the steady state fairly quickly, within about 10 steps. The large peaks
in |∆| correspond to resettings of the system, and clearly their magnitude decreases if ϵ is decreased. There is very little
memory of the location of the majority restaurant in the system. To be specific, let S(t) is +1 if the minority restaurant is A
in the t-th step, and−1 if it is B. Then the autocorrelation function ⟨S(t)S(t+τ)⟩ decays exponentiallywith τ , approximately
as exp(−Kτ). The value of K depends on ϵ, but is about 2, and the correlation is negligible for τ > 3.

Fig. 3 shows the probability distribution of ∆ in the steady state for two different values of ϵ. Fig. 4 gives a plot of the
inefficiency parameter η as a function of ϵ. In each case, the estimate of ηwas obtained using a single evolution of the system
for 10000 time steps. The fractional error of estimate is less than the size of the symbols used.

We define Ai(t) equal to +1 if the i-th agent was in Restaurant A at time t , and −1 otherwise. We define the auto-
correlation function of the A-variables in the steady state as

C(τ ) =
1
N

−
i

⟨Ai(t)Ai(t + τ)⟩. (16)

In Fig. 5, we have shown the variation of C(τ ) with τ . We see that this function has a large amount of persistence. This is
related to the fact that only a small fraction of agents actually switch their choice at any time step. Clearly, the persistence
time is larger for smaller ϵ.

5. Discussion

In our analysis of the strategy discussed, we assumed that whenever the system reaches the state ∆ = 0 and it is not
possible to find a nearby state with only a few agents switching, the system undergoes a major resetting. However, consider
a situation where because of shared common history, the agents agree to a convention that if such a state is reached, it
continues for T more days without change, as it is socially efficient, and on the (T + 1)-th day, the major resetting occurs.
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Fig. 3. Probability distribution of ∆ in the steady state for ϵ = .3, .7 obtained by evolving N = 2001 agents for 106 time steps. The red bars have been
shifted a bit to the right for visual clarity.

Fig. 4. Variation of inefficiency parameter η with ϵ, obtained by averaging the evolution of N = 2001 agents for 10000 time steps.

Fig. 5. C(τ ) as a function of τ for ϵ = .3, .5 and .7. Each data point is obtained by averaging over 10000 simulation steps. Total number of agents is
N = 2001.
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The rationale for such a choice would be that all agents recognize that this state has overall maximum social benefit, and in
the long run, any agent would spend an equal amount of time in the privileged class. Clearly, for realistic modeling, T should
not be too large. It has to be significantly less than the expected lifetime of an agent.

The number of consecutive days when∆ is nonzero is of order log logN , and then for T consecutive days∆ remains zero.
Then, the inefficiency parameter η in such a strategy is given by

η ≃
K1Nϵ−1

T + K2 log logN
(17)

where K1 and K2 are some constants.
This conclusion is not very surprising. A society that has a larger value of T has more overall social benefit than one with

a shorter value. However, agents have to look for something other than payoff on the next day to realize this, and one needs
to go beyond immediate payoff optimization D = 1. A detailed analysis of optimum strategies for larger D seems difficult at
present, but seems like an interesting open question.

Generalization of the strategy discussed here to the Kolkata Paise Restaurant problem is straightforward. The strategy is
as follows: if an agent was fed at a restaurant of rank k at time step t , he goes to a restaurant of rank k − 1 at time t + 1. If
he found no food at time step t , He picks at random one restaurant, out of the restaurants that had no customers at step t .
If the picked restaurant has rank k′, he goes to the restaurant with rank k′

− 1. Then, the average time required to reach a
cyclic state is of order logN . And in the cyclic state, each agent gets to sample all the restaurants. The strategy can be made
robust against cheaters, if we make the additional rule that if more than one customer shows up at the restaurant of rank k,
preference is given to the customer who was served at the rank (k + 1) restaurant the previous day.

An interesting question is the effect of heterogeneity in agents, as far as the value of ϵ is concerned. There may be
impatient agents who do not want to wait, and switch with probability 1/2 as soon as the value ∆ = 0 is reached. If the
number of such agents is Na, with a < 1, it is easy to see that the final efficiency parameter cannot be less than Na−1. In
order to get a substantial decrease in inefficiency, the number of such agents should be small.

The optimum value of T , or of the parameter ϵ is not decidable within the framework of our model, without bringing
in new parameters like the relative weight of desirables like fairness or social equality, social efficiency or immediate
gratification in determining the optimum choice. Also there have to be some general shared values amongst the agents
to make this possible. Clearly, a discussion of these issues is beyond the scope of our work.
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Appendix

In this Appendix, we discuss the solution of Eq. (12)
∆−1−
r=0

fλ(r) =

∞−
r=∆+1

fλ(r) (A.1)

where fλ(r) = λr exp(−λ)/Γ (r + 1), for r not necessarily integer. We want to solve for λ, when ∆ is given to be a large
positive integer. We want to show in the limit of large ∆, λ − ∆ tends to 1/6.

For large λ, the Poisson distribution tends to a gaussian centered at λ, of variance λ. If the distribution for large λ were
fully symmetric about the mean, the solution to the above equation would be λ = ∆. The fact that the difference between
these remains finite is due to the residual asymmetry in the Poisson distribution, for large λ.

For large λ, fλ(r) is a slowly varying function of its argument. We add f (∆)/2 to both sides of Eq. (12), and approximate
the summation by an integration. Then, Eq. (12) can be approximated by∫ ∆

0
fλ(r)dr =

∫
+∞

∆

fλ(r)dr = 1/2. (A.2)

We have used the trapezoid rule

[f (r) + f (r + 1)]/2 ≈

∫ r+1

r
dr ′f (r ′). (A.3)

It can be shown that the discrepancy between Eqs. (12) and (A.2) is at most of order (1/λ).
Then, for large λ, deviations of fλ(r) from the limiting gaussian form can be expanded in inverse half-integer powers of λ

fλ(r) =
1

√
λ

φ0(x) +
1
λ

φ1(x) + · · · (A.4)

where x is a scaling variable defined by x = (r − λ)/
√

λ. Here φ0(x) is the asymptotic gaussian part of the distribution, as
expected from the central limit theorem, and φ1(x) describes the first correction term.
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The characteristic function for the Poisson distribution Φ̃λ(k) is defined by

Φ̃λ(k) = ⟨eikr⟩ =

∞−
r=0

eikrProbλ(r) = exp[λeik − λ]

= exp[ikλ − k2λ/2 − ik3λ/6 + · · ·]. (A.5)

Keeping the terms up to quadratic in k gives the asymptotic gaussian form of the central limit theorem

φ0(x) =
1

√
2π

exp(−x2/2). (A.6)

The first order correction to this asymptotic form of Φ̃λ(k) is given by

φ̃1(k) =
−ik3

6
exp(−k2/2) (A.7)

which gives on taking inverse Fourier transforms

φ1(x) =
1
6

d3

dx3
φ0(x). (A.8)

Substituting the functional forms for φ0(x) and φ1(x) in Eq. (A.2), we get∫ ∆−λ√
λ

−∞

dx
[
φ0(x) +

1
√

λ
φ1(x)

]
= 1/2. (A.9)

Now, φ1(x) is an odd function of x, and is zero for x = 0. As ∆ − λ is small, in the coefficient of 1/
√

λ, we can replace the
upper limit of the integral by zero. Thus we write∫ (∆−λ)/

√
λ

−∞

φ1(x′)dx′
≈

∫ 0

−∞

φ1(x′)dx′. (A.10)

But using Eq. (A.8), we get∫ 0

−∞

φ1(x′)dx′
=

1
6

d2

dx2
φ0(x)|x=0 = −φ0(0)/6. (A.11)

Substituting in Eq. (A.10), we get∫ (∆−λ)/
√

λ

−∞

φ0(x′)dx′
= 1/2 −

φ0(0)

6
√

λ
+ O(1/λ) (A.12)

and comparing terms of order λ−1/2 we get

λ − ∆ = 1/6 + O


1

√
λ


. (A.13)
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Strategy switches and co-action equilibria in a minority game

V. Sasidevan1, ∗ and Deepak Dhar1, †

1Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
(Dated: February 11, 2014)

We propose an analytically tractable variation of the minority game in which rational agents use
probabilistic strategies. In our model, N agents choose between two alternatives repeatedly, and
those who are in the minority get a pay-off 1, others zero. The agents optimize the expectation value
of their discounted future pay-off, the discount parameter being λ. We propose an alternative to the
standard Nash equilibrium, called co-action equilibrium, which gives higher expected pay-off for all
agents. The optimal choice of probabilities of different actions are determined exactly in terms of
simple self-consistent equations. The optimal strategy is characterized by N real parameters, which
are non-analytic functions of λ, even for a finite number of agents. The solution for N ≤ 7 is worked
out explicitly indicating the structure of the solution for larger N . For large enough future time
horizon, the optimal strategy switches from random choice to a win-stay lose-shift strategy, with
the shift probability depending on the current state and λ.

PACS numbers:

I. INTRODUCTION

There has been a lot of interest in applying techniques of statistical physics to economics in the past two decades,
in particular for a better understanding of the behaviour of fluctuations in systems with many interacting agents, as
in a market. A prototypical model is the El Farol bar problem [1] in which agents optimize their personal pay-offs by
guessing what other agents would be doing. A particular realization of this is the Minority Game (MG) introduced
in 1997 by Challet and Zhang [2]. It has been described by Arthur as a classic ‘model problem that is simple to
describe but offers a wealth of lessons’ [3]. In this model, an odd number of agents repeatedly make choices between
two alternatives, and at each step the agents who belong to the minority group are considered as winners. In MG, the
agents cannot communicate with each other, and base their decision on the common-information which is the history
of the winning choices in the last few days.
Each agent has a small number of strategies available with her, and at any time uses her best-performing strategy

to decide her immediate future action. The agents are adaptive, and if they find that the strategy they are using is
not working well, they will change it. This in turn affects the performance of other agents, who may then change their
strategies and so on. Thus, this provides a very simple and instructive model of learning, adaptation, self-organization
and co-evolution in a group of interacting agents.
Simulation studies of this model showed that the agents self-organize into a rather efficient state where there are

more winners per day than would be expected if agents made the choice by a random throw of a coin, for a range
of the parameters of the model. This sparked a flurry of interest in the model, and soon after the original paper of
Challet and Zhang, a large number of papers appeared, discussing several aspects of the model, or variations. Several
good reviews are available in the literature [4, 5], and there are excellent monographs that describe the known results
[6, 7]. It is one of the few non-trivial models of interacting agents that is also theoretically tractable.
However, one would like to understand how well a particular strategy for learning and adaptation works, and

compare it with alternate strategies. This strategy to select strategies may be called a meta-strategy. Clearly, the
meta-strategy that gives better pay-off to its user will be considered better. In this respect, the meta-strategy used in
MG does not work so well. While in some range of parameters, the agents are found to self-organize into a globally
efficient state, in other regions of the parameter space (for large number of agents), its overall efficiency is worse than
if the agents simply chose the restaurants at random. This is related to the fact that in MG, agents use deterministic
strategies, and each agent has only a limited number of deterministic strategies available to her. Also, the rule to
select the strategy to use, in terms of performance scores of strategies, is known to be not very effective. In fact,
simulation studies have shown [8] that, for some range of parameters, if a small fraction of agents always select the
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strategy with the worst performance score, their average performance, is better than of other agents who are using
the usual MG rule of choosing the strategy with the best performance score !.
It seems worthwhile, if only to set a point of reference, to determine how well agents in a Minority-like game

could do, if they use some other meta-strategy. In this paper, we will study a model where the agents use mixed
strategies. In our formulation, each agent, on each day, selects a probability p, and then generates a new random
number uniformly between 0 and 1, and switches her choice from the previous day if it is ≤ p. The choice of p
depends on the history of the game, and her own history of pay-offs in the last m days, and constitutes the strategy
of the agent [The deterministic strategies are special cases when p is 0 or 1]. We discuss how the optimal value of this
parameter depends on the history of the game.
For this purpose, we propose a new solution concept, as an alternative to the usual notion of Nash equilibrium

[9]. We show that the Nash equilibrium states are not very satisfactory for our model, giving rise to ‘trapping states’
(discussed below), and our proposed alternative, to be called co-action equilibrium, avoids this problem. To distinguish
it from the original Minority game, we will refer to the new game as the Co-action Minority game (CAMG), and refer
to the original MG as Challet-Zhang Minority Game (CZMG).
In CZMG, on any day, each agent selects one strategy from a small set of deterministic strategies given to her at

the beginning of the game. We make the basket of strategies given to the agents much bigger, and make all strategies,
within a specified infinite class, available to all agents. The use of stochastic, instead of the deterministic, strategies
makes the CAMG more efficient than CZMG. Also, the absence of quenched disorder - in the form of assigning
strategies to agents in the beginning of the game - in our model makes it much more tractable. One can determine
the behaviour of many quantities of interest in more detail, using only elementary algebra. The theoretical analysis
of CZMG requires more sophisticated mathematical techniques such as functional integrals, and taking special limits
of large number of agents, large backward time horizon, and large times (explained later in the paper).
We find that the optimal strategies of agents can be determined by a mean-field theory like self-consistency require-

ment. For the N -agents case, we get coupled algebraic equations in N variables [10]. The simplicity of our analysis
makes this model an interesting and instructive, analytically tractable model of interacting agents. Interestingly, this
also provides us with a non-trivial example of a non-equilibrium steady state which shows a non-analytic dependence
on a control parameter even for finite number of agents.
The plan of the paper is as follows: In Sec. II, we recapitulate the main features of the CZMG, and what is known

about its behaviour. In Sec. III, we introduce the CAMG game. In Sec. IV, we show that the model has Nash
equilibrium states that are trapping states, where all agents stay with the same choice next day, and the system gets
into a frozen state. In Sec. V, we introduce the solution concept of co-action equilibrium to avoid these trapping
states. Sec. VI develops the general theoretical framework of Markov chains to calculate the expected pay-off functions
of agents in CAMG, which is used to determine the optimal strategies by agents. In Sec VII, we work out explicitly,
the optimal strategies when the number of agents N = 3, 5 and 7, and discuss what one may expect for larger N . In
Sec. VIII, we discuss the case of large N , and study the first transition from random state to one where some of the
agents choose not to jump. Sec. IX contains a summary of our results, and some concluding remarks.

II. THE CHALLET-ZHANG MINORITY GAME

In CZMG [2], each of the N agents, with N odd, has to choose between two alternatives, say two restaurants
A and B, on each day and those in the restaurant with fewer people get a pay-off 1, and others 0. The agents
cannot communicate with each other, and make their choice based only on the information of which was the minority
restaurant for each of the last m days. A strategy gives which one of the two choices (A or B) is preferred, for each
of the 2m possible histories of the game. The total number of possible strategies is 22

m

. Each agent has a small fixed
number k of strategies randomly picked out of all possible strategies at the beginning of the game. For each of the
strategies assigned to an agent, she keeps a performance score which tells how often in the past the strategy correctly
predicted the winning choice. On each day, she decides which restaurant to go to, using the strategy that performed
best in the recent past.
We write N = 2M + 1. Clearly, on any day, the number of people that are happy ( i.e. having a positive pay-off)

is ≤ M . The amount by which the average number of happy people per day differs from the maximum possible value
M is a measure of the social inefficiency of the system. For a system of agents in a steady state S, we will characterize
the inefficiency of the system in terms of a parameter η, called the inefficiency parameter, defined as,

ηS =
Wmax − 〈W 〉S
Wmax −Wrand

, (1)

where Wmax = M/N is the maximum possible pay-off per agent, 〈W 〉S is the average pay-off per agent in the steady
state S, and Wrand is the average pay-off per agent when agents select randomly between A and B.
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FIG. 1: Schematic representation of the variation of the normalized fluctuation in the attendance difference between the two
restaurants σ2/N with the parameter α = 2m/N for two different values of k - the number of strategies with each agent. The
curve with lower minimum corresponds to k = 2 and the other curve corresponds to k = 3. The dashed horizontal line shows
the value of σ2/N when agents choose randomly between the two restaurants.

The general qualitative behaviour of MG is quite well understood from simulations. Fig. 1 shows the schematic
behaviour of the system as seen in simulations. The theoretical analysis is rather complicated, and involves several
limits: large N and m, with 2m/N = α held fixed. Also, one has to rescale time with N , and the exact theoretical
results are possible for fixed τ = t/N . The asymptotic behaviour in the steady state can be determined exactly only
in these limits, and only for α greater than a critical value αc, using concepts and formalism developed originally for
the spin-glass problem. For a more detailed discussion, see [6, 7].

III. THE CO-ACTION MINORITY GAME

We would like to construct a game which preserves the basic simplicity of the Challet-Zhang minority game, but
changes it in several important ways, to make it more tractable. We will keep the allowed actions, and pay-off function
the same, but consider different strategies used by agents. We discuss these changes one by one.

A. Stochastic versus deterministic strategies

It is well-known that in repeated games where agents have to make their choices simultaneously, probabilistic
strategies are much more effective than deterministic ones. In fact, Arthur, in the forward of [6], recalls that when he
introduced the El-Farol Bar problem at a conference, the session chair Paul Krugman had objected that the problem
has a simple efficient strategy, where each agent uses a mixed strategy, and decides between the two options by tossing
a coin. Of course, in some minority-like games, like managing hedge funds, the agents do not have the option of using
probabilistic strategies. In the CAMG, we allow the agents to use mixed strategies. We will show that this results in
a different emergent behaviour of the system.
In the CZMG, the agents are assigned a small number of strategies at random, and different agents have different

basket of strategies. In CAMG, we allow each agent to choose his shift probability to be any value p, with the only
constraint being 0 ≤ p ≤ 1. Since the choice of p constitutes the strategy of an agent, each agent is allowed to choose
from an infinite set of strategies. Also, the same set of strategies is available to all the agents. Thus we do not have
any quenched disorder in the model, and this simplifies the analytical treatment of the model considerably.
Mixed strategies in the context of minority game have been discussed before. An example is the thermal minority

game [12]. A somewhat similar model to ours, involving a minority game, with probabilistic strategies was studied
earlier by Reents et al [13]. However, there is an important difference between these earlier studies, and ours. In the
earlier studies, the probabilities of different actions was thought to be due to a kind of noise in the system, not under
the control of the agents. The probability of ‘non-optimal’ choice is externally prescribed in the beginning. In our
model, the agent is free to choose the value of p, and chooses it to maximize her pay-off. Also, the agent’s choice can
vary from day to day.
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B. Rational versus adaptive agents

Another important difference from the CZMG is that we will treat our agents as intelligent and rational who also
expect other agents to act rationally. The agents are selfish, and choose their actions only to maximize their personal
expected gain. This is an important difference from CZMG, where one of the motivations for introducing the game
was to model the behaviour of agents with only bounded rationality who resort to inductive reasoning. In CZMG,
the agents follow rather simple rules to decide when to switch their strategies, based on the performance scores of
strategies. One may imagine that these agents are unthinking machines, following some pre-programmed instructions.
We will also assume that all agents are equally intelligent. Thus, there is no built-in heterogeneity in the behaviour

of agents. When the agents follow deterministic strategies as in CZMG, they are forced to differentiate amongst
themselves in the strategies they use, as many agents following the same strategy is clearly not good. When agents
use mixed strategies, the strategies need not be different, as the differentiation is naturally provided by the random
number generators used by the agents. In fact, this differentiation is rather efficient. We will see that even without
any assumed heterogeneity of agents, the system shows non-trivial emergent behaviour, and reaches a more efficient
state quicker.
We need not discuss here the question whether full rationality or bounded rationality can describe the behaviour

of real-life agents. Clearly, there would be situations where one or the other is a better model. We only note that
the general probabilistic ‘win-stay lose-shift’ strategy has been seen to be used in many real-world learning situations
[14], and this is also the strategy that is found to be optimal by rational agents in CAMG.

C. Agents’ optimization aim

The next issue is deciding the pay-off function that is optimized by the rational agents. Clearly, maximizing the
probability of winning next day is a possible goal. But agents in repeated games need not be concerned only about
their immediate payoffs.
We note that if all agents had the same optimization goal of minimizing the system inefficiency, there is no com-

petition between them, and we get a trivial game. There is a simple strategy which will give the best possible result
of long-term average of the inefficiency parameter being zero. In this strategy, each day, agents choose some shift
probability strictly between 0 and 1, until one finds M people in one restaurant, and M + 1 in the other. Once this
state is reached, each agent goes to the same restaurant on all subsequent days. In this simple strategy, the long-time
average gain per agent per day is M/(2M + 1), as each agent is equally likely to end up being in the winning set.
Clearly, this optimization goal makes the game trivial. A more reasonable goal for selfish agents would be to try to

optimize their personal long-term average pay-off. Selfish agents in the majority restaurant would not be interested
in pursuing the strategy outlined above. But the game with selfish agents who aim to maximize personal long-term
average pay-off is also easily solved. If we allow agents in the state with (M,M + 1) decomposition to shift with
a small probability ǫ, then in the long-time steady state, the system jumps between different decompositions of the
type (M,M +1). When ǫ is small, in the steady state, the state (M,M +1) still occurs with a large weight, and this
weight will tend to 1 as ǫ tends to zero. However, for any non-zero value of ǫ, for times T ≫ 1/ǫ, the fraction of time
spent in the minority by each agent will be nearly the same. Thus, for any specified history, this strategy still gives
expected future long-term pay-off that tends to the highest possible, as ǫ tends to zero.
The problem with the the above game is that, for small ǫ, an agent in the unhappy situation in the (M,M + 1)

breakup may have to wait very long before her pay-off changes. This suggests that a reasonable model of the agent
behaviour would be that he/she does not want to wait for too long for the next winning day. We therefore consider
agents who have a finite future time-horizon. Clearly, we can think of agents who try to maximize their net pay-off
over the next H days.
It is more convenient to introduce a real parameter λ, lying between 0 and 1, and assume that any agent X only

wants to optimize her weighted expected future pay-off,

ExpPayoff(X) =

∞∑

τ=0

[(1− λ)λτ ]〈WX(τ + 1)〉, (2)

where 〈WX(τ)〉 is the expected pay-off of the agent X on the τ -th day ahead, and λ is a parameter 0 ≤ λ < 1. It is
called as the discount parameter in the literature and is easier to deal with than the discrete parameter H . The factor
(1 − λ) has been introduced in the definition of ExpPayoff(X) so that the maximum possible value of the expected
payoff is 1.
The advantage of using the real parameter λ, instead of the discrete parameter H , is that we can study changes

in the steady state of the system as we change the parameter λ continuously. We will find that there are strategy
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switches in the optimal strategies of agents as λ is varied, which leads to discontinuous changes in several properties
of the steady state. These are of interest, as they are analogous to dynamical phase transitions in steady states in
non-equilibrium statistical mechanics.
Consistent with our assumption of homogeneity of agents, we assume that all agents use the same value of λ.

D. Common information

We assume that all agents know the total number of playersN , and they also know that all players use the stochastic
strategy of selecting a jump probability based on previous days outcome, and use the same value of discount parameter
λ. In the CZMG, on each day, which restaurant was the minority is announced publicly, and this information is
available to all the agents. In CAMG, we assume that the common information is more detailed: each agent knows
the time-series {n(t)} of how many people went to A on different days in the past. We note that in the El Farol bar
problem that led to MG, has the same information as in our variation. On any day, the attendance in restaurant A
can take (N + 1) possible values. Then history of m previous days can take (N + 1)m values, and each strategy is
specified by (N + 1)m real numbers.
We restrict our discussion here to the simplest case, where m = 1 for all agents. Then, an agent’s strategy is solely

determined by the number of people who were in the restaurant she went to the previous day. Since this number
cannot be zero, the number of possible histories here is N , not (N + 1).

IV. THE PROBLEM OF TRAPPING STATES

This model was first defined in [11]. In that paper, we tried to determine the optimal choice of the shift probabilities
using the standard ideas of Nash equilibrium. However, we realized that in this problem, there are special states such
that none of the agents in that state would prefer to shift to a different restaurant the next day, following a Nash-like
analysis. This frozen steady state may be called the trapping state.
The existence of such a trapping state is paradoxical, as rational agents in the majority restaurant have no reason

to pursue a strategy that makes them stay in a losing position for ever. The resolution of this paradox requires a new
solution concept, that we discuss now.
The most commonly used notion in deciding optimal strategies in N -person games is that of Nash equilibrium: A

state of the system in which agent i uses a strategy Si is a Nash equilibrium, if for all i, Si is the best response of
i, assuming that all agents j 6= i use the strategy Sj . There may be more than one Nash equilibria in a given game,
and they need not be very efficient. For CAMG also, the Nash equilibrium is not very satisfactory: it gives rise to a
trapping state.
Consider, for simplicity, the case λ = 0, where agents optimize only next day’s pay-off. Now, during the evolution

of the game, at some time or the other, the system will reach a state with M agents in one restaurant (assume A),
and M + 1 agents in the other restaurant B. What is the best strategy of these agents who want to maximize their
expected pay-off for the next day?
We imagine that each agent hires a consultant to advise them. To an agent in A (we will call her Alice), the advise

would be to stay put, if the probability that no person switches from the restaurant B is greater than 1/2. If the
agents in the restaurant B switch with probability pM+1, the probability that no one switches is (1− pM+1)

M+1. In
this case, the expected pay-off of Alice would be (1 − pM+1)

M+1. So long as this pM+1 is small enough that this
pay-off is > 1/2, Alice’s best strategy would be to choose pM = 0.
If an agent in the restaurant B (let us call him Bob) expects that agents in A would not switch, what is his best

response? The consultant argues that if Bob switches, he would be in the majority, and his pay-off would be zero.
Hence his best strategy is to set his switching probability pM+1 to zero. Then, there is some possibility that he will
be in the winning set the next day, if some other agent from B shifts. In fact, with agents in A staying put (pM = 0),
the probability that he wins is proportional to his stay-put probability, and is maximized for pM+1 = 0.
This value pM+1 = pM = 0, is then a self-consistent choice corresponding to the the fact that the choice pM = 0 is

an individual agent’s best response to opposite restaurant’s people choosing pM+1 = 0, and vice versa. It is a Nash
equilibrium.
This advice is given to all agents in restaurant B, and then no one shifts, and the situation next day is the same as

before. Thus, the system gets trapped into a state where all agents stick to their previous day’s choice. In this state,
the total number of happy people is the best possible, and the state has the best possible global efficiency. However,
this situation is very unsatisfactory for the majority of agents (they are on the losing side for all future days). Setting
pM+1 equal to zero by agents in B, is clearly not an optimal choice.
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Let us denote the state of an agent who is in a restaurant with total of i people in it as Ci. In the Nash equilibrium
concept, an agent in the state CM+1, who believes that agents in the opposite restaurant would be setting their
switch probability pM = 0, is advised that his best response is to set pM+1 = 0. If other agents are using pM+1 = 0,
one cannot do better by moving. If other agents in the restaurant switch with probability pM+1 6= 0, this is the
‘optimal’ solution. This does not take into account the fact that if all agents follow this advice, their expected future
gain is zero, which is clearly unsatisfactory: No other advice could do worse!
In our previous paper [11], we realized this problem, but could see no way out within the Nash solution concept.

We adopted an ad hoc solution, where the agents in state CM+1 were required by external fiat to shift with a non-zero
probability ǫ. The alternate solution concept of co-action equilibrium provides a natural and rational solution to this
problem. This is explained in the next section. Note that the presence of even a small number of agents who always
choose randomly would keep the system away from the trapping state [15].

V. AN ALTERNATE SOLUTION CONCEPT: CO-ACTION EQUILIBRIUM

The problem with the consultant’s reasoning lies in the Nash-analysis assumption of optimizing over strategies of
one agent, assuming that other agents would do as before. Let the marked agent be denoted by X . All agents in the
same retaurant, who are not X denoted by X ′. Then, the agent X determines his jump probability pX to optimize
his expected payoff ExpPayoff(X) = (1 − p(X))(1 −∏

X′(1 − p(X ′)). In this case, by varying with respect to p(X),
keeping all p(X ′) constant, the payoff is clearly maximized at p(X) = 0.
In the alternate co-action equilibrium concept proposed here, an agent in state Ci realizes that she can choose

her switching probability pi, but all the other fully rational (i − 1) agents in the same restaurant, with the same
information available, would argue similarly, and choose the same value of pi. Determining the optimal value of pi
that maximizes the pay-off of agents in state Ci does not need communication between the agents.
If pM = 0, then the expected pay-off WM+1 of an agent in restaurant B is clearly given by the probability that he

does not shift, but at least one of the other agents in his restaurant does. This is easily seen to be qM+1(1 − qMM+1),

where qM+1 = 1 − pM+1. This is zero for qM+1 = 0 or 1, and becomes maximum when qM+1 = (M + 1)−1/M . In
particular, qM+1 equal to 1 is no longer the optimal response.
One may argue that this solution concept is not so different from the usual Nash equilibrium, if one thinks of this

as a two-person game each day, where the two persons are the majority and the minority groups, and they select the
optimal values of their strategy parameters pi and pN−i. The important point is that these groupings are temporary,
and change with time. For non-zero λ, one cannot think of this game as a series of two-person games.
In our model, the complete symmetry between the agents, and the assumption of their being fully rational, ensures

that they will reach the co-action equilibrium.
Note that an agent in B may wants to ‘cheat’ by deciding not to shift, assuming that other agents would shift with

a nonzero probability. But this is equivalent to setting his strategy parameter p = 0. Our assumption of rationality
then implies that all other agents, in the same situation, would argue in the same way, and do the same.

VI. DETERMINING THE OPTIMAL MIXED STRATEGY

For a given N , a person’s full strategy P is defined by the set of N numbers P ≡ {p1, p2, ....pN}. In CAMG, all
rational agents would end up selecting the same optimal values of strategy parameters {p∗1, p∗2, . . .}. It would have
been very inefficient for all agents to use the same strategy, if they were using deterministic rules. This is not so in
CAMG. We now discuss the equilibrium choice {p∗1, p∗2, . . . p∗N}. The co-action equilibrium condition that p∗i is chosen
to maximize the expected pay-off of agent in state Ci, implies N conditions on the N parameters {p∗i }. There can be
more than one self-consistent solution to the equations, and each solution corresponds to a possible steady state.
Clearly, as all agents in the restaurant with i agents switch independently with probability pi, the system undergoes

a Markovian evolution, described by a master equation. As each agent can be in one of the two states, the state space
of the Markov chain is 2N dimensional. However, we use the symmetry under permutation of agents to reduce the
Markov transition matrix to N × N dimensional. Let |Prob(t)〉 be an N -dimensional vector, whose j-th element is
Probj(t), the probability that a marked agent X finds herself in the state Cj on the t-th day. On the next day, each
agent will switch according to the probabilities given by P, and we get

|Prob(t+ 1)〉 = T|Prob(t)〉, (3)

where T is the N ×N Markov transition matrix.
Explicit matrix elements are easy to write down. For example, T11 is the conditional probability that the marked

agent will be in state C1 on the next day, given that she is in C1 today. This is the sum of two terms: one
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corresponding to everybody staying with the current choice [the probability of this is (1 − p1)(1 − pN−1)
N−1], and

another corresponding to all agents switching their choice [ the probability is p1p
N−1
N−1].

The total expected pay-off of X , given that she is in the state Cj at time t = 0 is easily seen to be

Wj = (1− λ)

〈
L

∣∣∣∣
T

1− λT

∣∣∣∣ j
〉
, (4)

where |j〉 is the column vector with only the j-th element 1, and rest zero; and 〈L| is the left-vector 〈1, 1, 1, 1, ..0, 0, 0..|,
with first M = (N − 1)/2 elements 1 and rest zero.
In fact, we can use the permutation symmetry between the agents to block-diagonalize the matrix T into a two

blocks of size (M +1) and M . This is achieved by a change of basis, from vectors |i〉 and |N − i〉 to the basis vectors
|si〉 and |ai〉, where

|si〉 = |i〉+ |N − i〉,
|ai〉 = (N − i)|i〉 − i|N − i〉. (5)

This choice is suggested by the fact that in the steady state

Prob(Ci)/i = Prob(CN−i)/(N − i). (6)

It is easily verified that using the basis vectors |si〉 and |ai〉, the matrix T is block-diagonalized.
One simple choice is that p∗i = 1/2 for all i, which is the random choice strategy, where each agent just picks

a restaurant totally randomly each day, independent of history. We will denote this strategy by Prand. In the
corresponding steady state, it is easy to see that Wj is independent of j, and is given by

Wj = Wrand = 1/2−
(
N − 1

M

)
2−N , for all j. (7)

By the symmetry of the problem, it is clear that p∗N = 1/2 for all λ. Now consider the strategy {p∗i } =
{p∗1, 1/2, 1/2, 1/2...}. If X is in the state C1, and next day all other agents would switch with probability 1/2, it
does not matter if X switches or not: payoffs W1 and WN−1 are independent of p∗1. Hence p∗1 can be chosen to be of
any value. It is easy to see that the strategy P′

rand in which p∗1 = 0 and p∗N−1 < 1/2, chosen to maximize WN−1, is
better for all agents and is stable, and hence is always preferred over Prand.

VII. EXACT SOLUTION FOR SMALL N

A. N = 3

We consider first the simplest case N = 3. Since p∗1 = 0, p∗3 = 1/2, the only free parameter is p∗2. The value of p∗2
is decided by the agents in state C2, and they do it by maximizing W2.
In this case, the transfer matrix is easily seen to be

T =




q22 p2q2 1/4
2p2q2 q2 1/2
p22 p22 1/4


 , (8)

where q2 = 1− p2. The pay-off W2 is given by

W2 = (1− λ) [1 0 0]
T

(1− λT)



0
1
0


 ,

=
4p2q2 − λp2(q2 − p2)

(1− λq2(q2 − p2))(4 + λ(4p22 − 1))
. (9)

The eigenvalues of the transfer matrix T are easily seen to be

(
1,

1

4

(
1− 4p22

)
, q2 (q2 − p2)

)
. The eigen vectors are

easily written down. The average gain in the steady state Wavg is seen to be

Wavg =
1

3 + 4p22
. (10)
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FIG. 2: N = 3: (a) Variation of p∗2 with λ, (b) The optimum payoffs W ∗
i , (i = 1 to 3), as functions of λ and (c) Inefficiency η

as a function of λ. .
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FIG. 3: Region in the p2-p3 plane showing the best responses ropt2 (p3) (blue) and ropt3 (p2) (red) for agents in state |2〉 and
|3〉 respectively, for (a) λ = .1, (b) λ = .4 and (c) λ = .8. The line PC and PD show the curves w3 = W ′ and W2 = W ′

respectively. In the curvilinear triangle PCD, all agents do at least as well as at P .

From Eq. 9, the value of p2 that maximizes W2 is easily seen to be root of the following cubic equation in λ.

16− 32p∗2 − (24− 56p∗2 + 32p∗22 )λ + (9− 28p∗2 + 40p∗22
− 96p∗32 + 144p∗42 − 64p∗52 )λ2 − (1− 4p∗2 + 8p∗22 − 24p∗32
+ 48p∗42 − 32p∗52 )λ3 = 0.

The variation of p∗2 with λ is shown in Fig 2a. p∗2 monotonically decreases with λ from its value 1/2 at λ = 0, and
tends to 0 as λ tends to 1. The pay-off of agents in various states with this optimum strategy is shown in Fig. 2b and
the variation of the inefficiency parameter η with λ is shown in Fig. 2c.
It is easily seen that Wavg is a monotonically increasing function of λ, and tends to the maximum possible value

Wmax = 1/3 as λ → 1. The variation of the inefficiency parameter η with λ is shown in Fig. 2c. In particular, it is
easily seen that η varies as (1 − λ)2/3, as λ tends to 1.

B. N = 5

We can similarly determine the optimal strategy for N = 5. This is characterized by the five parameters
(p∗1, p

∗
2, p

∗
3, p

∗
4, p

∗
5). The simplest strategy is Prand, which corresponds to p∗i = 1/2, for all i. As explained above,

the strategy P′
rand = (0, 1/2, 1/2, p∗4(λ), 1/2), gives higher pay-off than Prand for all agents, for all λ.

Now consider agents in the states C2 and C3. What values of p2 and p3 they would select, given their expecta-
tion/belief about the selected values of p1, p4 and p5 ?. We can determine these by analyzing the variation of payoffs
W2 and W3 as functions of p2 and p3 for fixed values of p1, p4, p5 and λ as discussed below.
Let us denote the best response of agents in state C2 (that maximizes W2), if the agents in the opposite restaurant

jump with probability p3 by ropt2 (p3). Similarly, ropt3 (p2) denotes the best response of agents in state C3, when those
in the opposite restaurant jump with probability p2.
In Fig. 3, we plot the functions ropt2 (p3) (OAP ) and ropt3 (p2) (BP ), in the (p3, p2) plane, for three representative

values of λ. For small p3, r
opt
2 (p3) remains zero, and its graph sticks to x-axis initially, ( segment OA in figure), and

then increases monotonically with p3. The strategy P′
rand is the point (1/2, 1/2), denoted by P . We also show the

lines PC corresponding to W3 = W ′, and PD, corresponding to W2 = W ′, where W ′ is the expected gain of agents in
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FIG. 4: N = 5: (a) Variation of p∗2, p
∗
3 and p∗4 with λ , (b) Optimum payoffs as functions of λ, (c) Inefficiency η as a function

of λ.

state C2 or C3 under P′
rand. For all points in the curvilinear triangle PCD, both W2 and W3 ≥ W ′. Clearly, possible

equilibrium points are the points lying on the lines ropt2 (p3), or r
opt
3 (p2) that lie within the curvilinear triangle PCD.

However, along the blue curve OAP representing ropt2 (p3), maximum value for W2 is achieved when p2 = 0. Therefore
we can restrict the discussion of possible equilibrium points to the line segment CD in Fig. 3.
For small λ ( shown in Fig. 3a for λ = 0.1), The point A is to the left of C, and the only possible self-consistent

equilibrium point is P . For example, if agents in the state C3 (Bob) assumes that agents in the minority restaurant
(Alice) is going to set p∗2 = 0, Bob can get better pay-off than P′

rand, by choosing his probability parameter p∗3 in the
range CD in Fig 3a. But a rational Alice would not choose p∗2 = 0, if she expects p∗3 to be in the range CD. Similar
argument rules out all points in the colored curvilinear triangle PCD as unstable. This implies that the agents would
choose p∗2 = p∗3 = 1/2. This situation continues for all λ < λc1 = 0.195± 0.001.
For λ > λc1, the point A is to the right of C. This is shown in Fig. 3b, for λ = 0.4. In this case, possible equilibrium

points lie on the line-segment CA, and out of these, A will be chosen by agents in state C3. At A, both W2 and W3

are greater than W ′, and hence this would be preferred by all. Further optimization of p4 changes p3 and p4 only
slightly.
As we increase λ further, for λ > λc2 [numerically, λc2 = 0.737± 0.001], the point B comes to the left of A. Out of

possible equilibria lying on the line-segment CA, the point preferred by agents in state C3 is no longer A, but B. The
self-consistent values of p∗2, p

∗
3, and p∗4 satisfying these conditions and the corresponding payoffs are shown in Fig. 4a

and Fig. 4b respectively.
In Fig. 4c, we have plotted the inefficiency parameter η as a function of λ. For λ < λc1, there are possible values

of p∗2 and p∗3, that would increase the expected pay-off for everybody. However, Alice and Bob can not be sure
that the other party would not take advantage of them, and hence stick to the default sub-optimal-for-both choice
p∗2 = p∗3 = 1/2.
Also, in the range λc1 < λ < λc2, the inefficiency rises as the agents optimize for farther into the future. This may

appear paradoxical at first, as certainly, the agents could have used strategies corresponding to lower λ. This happens
because though the game for larger λ is slightly less efficient overall, in it the majority benefits more, as the difference
between the optimum payoffs W ∗

2 and W ∗
3 is decreased substantially (Fig. 4b).

We note that the optimal strategies, and hence the (non-equilibrium) steady state of the system shows a non-
analytic dependence on λ, even for finite N . This is in contrast to the case of systems in thermal equilibrium, where
mathematically sharp phase transitions can occur only in the limit of infinite number of degrees of freedom N . This
may be understood by noting that the fully optimizing agents in CAMG make it more like an equilibrium system at
zero-temperature. However note that unlike the latter, here the system shows a lot of fluctuations in the steady state.

C. Higher N

For higher values of N , the analysis is similar. For the case N = 7, we find that there are four thresholds λci,
with i = 1 to 4. For λ < λc1, the optimal strategy has the form (0, 1/2, 1/2, 1/2, 1/2, p∗6, 1/2). For λc1 ≤ λ ≤ λc2,
we get p∗3 = 0, and p∗4 < 1/2. For still higher values λc2 < λ ≤ λc3, agents in the states C2 and C5 also find it
better to switch to a win-stay lose-shift strategy, and we get p∗2 = 0, p∗5 < 1/2. The transitions at λc3 and λc4

are similar to the second transition for N = 5, in the (p4, p3) and (p5, p2) planes respectively. Numerically, we find
λc1 ≈ 0.47, λc2 ≈ 0.52, λc3 ≈ 0.83 and λc4 ≈ 0.95. We present some graphs for the solution for N = 7. Fig. 5a
shows variation of the optimum switch probabilities in various states and Fig. 5b shows the variation of the optimum
payoffs. Fig. 5c shows the variation of inefficiency with λ. The general structure of the optimum strategy is thus
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FIG. 5: N = 7: (a) Variation of optimum switch probabilities with λ , (b) Optimum payoffs as functions of λ, (c) Inefficiency
η as a function of λ.

clear. As λ is increased, it changes from random switching to a complete win-stay lose-shift strategy in stages.
An interesting consequence of the symmetry between the two restaurants is the following: If there is a solution {p∗i }

of the self-consistent equations, another solution with all payoffs unchanged can be obtained by choosing for any j, a
solution {p∗i ′}, given by p∗j

′ = 1 − p∗j , and p∗N−j
′ = 1 − pN−j , and p′i = pi, for all i 6= j and i 6= N − j. How agents

choose between these symmetry related 2M equilibria can only be decided by local conventions. For example, if all
agents follow the ‘Win-stay lose-shift’ convention, this would select a unique equilibrium point.

VIII. THE LARGE-N LIMIT

In this section, we discuss the transition from the random strategy Prand, with all pj = 1/2, to the strategy P1, in
which with p∗M = p∗M+1 = 1/2, and pj = 1/2, for all other j. We will determine the value of λc1(N) where this switch
occurs.
The difference between the average payoffs in the strategies Prand and P′

rand is only of order 2−N , and may be
ignored for large N .
In calculating the expected payoffs for strategy P1, it is convenient to group the states of the system into three

groups: |M〉, |M + 1〉, and the rest. These will de denoted by |e1〉, |e2〉 and e3〉 respectively.
The transition matrix T may be taken as a 3× 3 matrix. We consider the case when pM+1 is O(M−5/4). Then T21

is O(M−1/4). It is convenient to write T21 = aM−1/4, and use a as variational parameter, rather than pM+1. We
also write b = (1 − λ)M3/4. We consider the case where a and b are finite, and O(1). The transition probabilities
T12 = T21 = aM−1/4, and T31 = T32 = a2M−1/2/2, to leading order in M . Also T13 = T23 is the probability that,
when all agents are jumping at random, the marked agent will find himself in the state |M〉, (equivalently in state
|M +1〉). For large N , this is well-approximated by the Gaussian approximation, and keeping only the leading term,
we write W13 = W23 = cM−1/2, where c = 1/

√
π.

Therefore we can write the transition matrix T, keeping terms only up to O(M−1/2) as,

T =




1− aM−1/4 − a2M−1/2

2
aM−1/4 cM−1/2

aM−1/4 1− aM−1/4 − a2M−1/2

2
cM−1/2

a2M−1/2

2

a2M−1/2

2
1− 2cM−1/2



. (11)

Using the symmetry between the states |e1〉 and |e2〉, it is straight forward to diagonalize W . Let the eigenvalues
be µi, with i = 1, 2, 3, and the corresponding left and right eigenvectors be 〈Li| and |Ri〉.
For the steady state eigenvalue µ1 = 1, we have

〈L1| = [1, 1, 1] ; |R1〉 =
1

a2 + 4c



2c
2c
a2


 .
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The second eigenvalue is µ2 = 1− a2+4c
2 M−1/2, and we have

〈L2| =
1

a2 + 4c

[
a2, a2,−4c

]
; |R2〉 =



1/2
1/2
−1


 .

The third eigenvalue is µ3 = 1− 2aM−1/4 − a2M−1/2/2, and we have

〈L3| = [1/2,−1/2, 0] ; |R3〉 =




1
−1
0


 .

It is easily verified that 〈Li|Rj〉 = δij .
Now, we calculate the expected values of the payoff. We note that if an agent is in the state |e3〉, not only her exact

state is uncertain, but even her expected payoff depends on whether she reached this state from |e3〉 in the previous
day, or from |e2〉. This is because the expected payoff in this state depends on previous history of agent. However,
her expected payoff next day depends only on her current state (whether |e1〉 or |e2〉 or |e3〉).
The expected payoff vector for the next day is easily seen to be

[
W (0)

e1 ,W (0)
e2 ,W (0)

e3

]
=

[
1− aM−1/4 − a2M−1/2/2, aM−1/4 + a2M−1/2/2, 1/2− dM−1/2

]
, (12)

where d = 1/(2
√
π). The expected payoff after n days is given by

[
W

(0)
1 ,W

(0)
2 ,W

(0)
3

]
Tn−1. Then the discounted

expected payoff with parameter λ is given by

[We1 ,We2 ,We3 ] =
[
W (0)

e1 ,W (0)
e2 ,W (0)

e3

] (1− λ)

(1 − λT)
. (13)

We write

T =

3∑

i=1

|Ri〉µi〈Li|, (14)

and hence write

[We1 ,We2 ,We3 ] =

3∑

i=1

Ui〈Li|, (15)

where

Ui =
[
W (0)

e1 ,W (0)
e2 ,W (0)

e3

]
|Ri〉

(1− λ)

(1− λµi)
. (16)

Now, explicitly evaluate Ui. We see that U1 is independent of λ, and is the expected payoff in the steady state.
The terms involving M−1/4 cancel, and we get

U1 =
1

2
− da2

(a2 + 4c)
M−1/2. (17)

For U2, we note that
[
W

(0)
e1 ,W

(0)
e2 ,W

(0)
e3

]
|R2〉 is of order M−1/2, and (1−λ)

(1−λµ2)
is of order M−1/4, hence this term

does not contribute to order M−1/2.

The third term is U3. Here the matrix element
[
W

(0)
e1 ,W

(0)
e2 ,W

(0)
e3

]
|R3〉 is O(1), and (1−λ)

(1−λµ3)
is of O(M−1/2), giving

U3 = (b/2a)M−1/2 +O(M−3/4). (18)

Putting these together, we get that We2 is given by

We2 = 1/2 +M−1/2

[
− b

4a
− d+

4dc

a2 + 4c

]
+O(M−3/4). (19)
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The agents in state |e2〉 will choose the value a = a∗ to maximize this payoff We2 with respect to a. Hence we have

b =
32a∗3dc

(a∗2 + 4c)2
. (20)

For any given b, we can solve this equation for a∗. Then, at this point, the expeced payoff We2 is

We2 = 1/2− dM−1/2

[
1− 4c(4c− a∗2)

(a∗2 + 4c)2

]
. (21)

This quantity is greater than the expected payoff in the fully random state, so long as a∗2 < 4c, i.e.

b < bmax = 2π−3/4. (22)

Thus, we see that if λ > 1− bmaxM
−3/4, there exists a nontrivial solution a∗(b) satisfying Eq. (20), with (a∗)2 < 4c,

and then the strategy in which agents in state CM stay, and CM+1 shift with a small probability is beneficial to all.
Note that the future time horizon of agents only grows as a sub-linear power of M , while in the large M limit, in
CZMG, the time-scales grow (at least) linearly with M .
This large M limit is somewhat subtle, as there are three implicit time scales in the problem: The average time-

interval between transitions between the states |e1〉 and |e2〉 is of O(M1/4) days. Jumps into the state |e3〉 occur
at time-scales of O(M1/2) days. Once in the state |e3〉, the system tends to stay there for a time of O(M1/2) days,
before a fluctuation again brings it to the state |e1〉 or |e2〉. The third time scale of O(M3/4) is the minimum scale of
future horizon of agents required if the small per day benefit of a more efficient steady state of O(M−1/2) is to offset
the cumulative disadvantage to the agents in state |e2〉 of O(M1/4).
Note that the above analysis only determines the critical value of λ above which the strategy P1 becomes preferred

over Prand. This would be the actual critical value of λ if the transition to the win-stay-lose-shift occurs in stages,
as is suggested by the small N examples we worked out explicitly. However, we cannot rule out the possibility that
for N much larger than 7, the shift does not occur in stages, but in one shot, and such a strategy (similar to the one
described in [11]) may be preferred over Prand at much lower values of λ.

IX. SUMMARY AND CONCLUDING REMARKS

In this paper, we have analyzed a stochastic variant of the minority game, where the N agents are equal (no
quenched randomness in strategies given to agents). This permits an exact solution in terms of N self-consistently
determined parameters. The solution shows multiple sharp transitions as a function of the discount parameter λ,
even for finite N . The main reason for the improved efficiency is that random number generators used by agents are
much more effective in providing controlled differentiation between them than scoring methods for strategies. Also,
the agents actually optimize the value of jump probability, and not use some preassigned noise parameter. In general,
the performance using the CAMG is found to be better than in CZMG. Also, there is some numerical evidence, and
a qualitative argument that the relaxation time to reach the steady state increases rather slowly, roughly as logN ,
compared to time of order N days in CZMG [11].
Our treatment of the model here differs from that in [11]: in that paper, the game was discussed only for λ = 0

(corresponds to agents optimizing only next day’s payoff), and in terms of Nash equilibrium. Within the Nash solution
concept, it was not clear how to avoid the problem of trapping states, and we had made an ad hoc assumption that
whenever the system reaches a trapping state, a major resetting event occurs where all agents switch restaurant with
some largish probability. In the co-action equilibrium concept proposed here, the decision to switch to p = 1/2 or not
is made rationally by the agents themselves depending upon their future time horizon.
Generalizations of the model where agents look back further than last day are easy to define, but even in the case

N = 3, this already becomes quite complicated, involving a simultaneous optimization over 9 parameters. Introducing
inhomogeneity in the agents, say agents with different time horizons, is much more difficult. In such a game, even if
agents knew what fraction use what discount parameter, knowing only the record of attendances, would have to guess
the fraction in their restaurant, and this makes the problem much harder to analyse. The technique can be used to
study other games with different pay-off functions, e.g. agents win only when their restaurant has attendance exactly
equal to some specified number r, and these appear to be interesting subjects for further study.
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We study the continuum percolation problem of overlapping disks with a distribution of radii having a
power-law tail; the probability that a given disk has a radius between R and R + dR is proportional to R−(a+1),
where a > 2. We show that in the low-density nonpercolating phase, the two-point function shows a power-law
decay with distance, even at arbitrarily low densities of the disks, unlike the exponential decay in the usual
percolation problem. As in the problem of fluids with long-range interaction, we argue that in our problem, the
critical exponents take their short-range values for a > 3 − ηsr whereas they depend on a for a < 3 − ηsr where
ηsr is the anomalous dimension for the usual percolation problem. The mean-field regime obtained in the fluid
problem corresponds to the fully covered regime, a � 2, in the percolation problem. We propose an approximate
renormalization scheme to determine the correlation length exponent ν and the percolation threshold. We carry
out Monte Carlo simulations and determine the exponent ν as a function of a. The determined values of ν show
that it is independent of the parameter a for a > 3 − ηsr and is equal to that for the lattice percolation problem,
whereas ν varies with a for 2 < a < 3 − ηsr . We also determine the percolation threshold of the system as a
function of the parameter a.

DOI: 10.1103/PhysRevE.88.022140 PACS number(s): 64.60.ah, 02.50.Ey, 05.10.Ln, 05.70.Fh

I. INTRODUCTION

In problems like effective modeling of random media, the
continuum models of percolation are more realistic than their
lattice counterparts. So, much effort has been put into the
study of such systems in the recent past. In two dimensions, the
model systems studied involve disks, squares, etc., of the same
size or of different sizes [1–6] and in three dimensions spheres,
cubes etc., distributed randomly in space [7–11]. An interesting
subclass of problems is where the basic percolating units have
an unbounded size distribution. These are comparatively less
studied, though a few formal results are available [12]. The
problem of disk percolation where disks have bounded sizes
has been studied a lot, mainly by simulation [2,13,14]. For
the single sized disk percolation, the threshold is known to
a very high degree of accuracy [13]. Also simulation studies
have shown that the disk percolation in two dimensions with
disks of bounded size falls in the same universality class as
that of lattice percolation in two dimensions [15]. For a review
of continuum percolation see [16].

In this paper we consider a continuum percolation model
of overlapping disks in two dimensions where distribution
of the radii of the disks has a power-law tail. We address
questions like whether the power-law tail in the distribution
of radii changes the critical behavior of the system, and how
does the percolation threshold depend on the power of the
power-law tail. From an application point of view, a power-
law polydispersity for an extended range of object sizes is
quite common in nature, especially for fractal systems [17].
Disordered systems like carbonate rocks often contain pores
of widely varied sizes covering many decades in length scales
[18,19], whose geometry may be well modeled by a power-law
distribution of pore sizes. The power-law distribution of the
radii makes our system similar to the Ising or fluid system
with long-range interactions. For the latter case, it is known

*sasi@theory.tifr.res.in

that the long-range nature of the interaction does affect the
critical behavior of the system for slow enough decay of the
interaction [20]. For similar results in the context of long-range
epidemic processes, see [21].

The behavior of our model differs from that of the standard
continuum percolation model in two aspects. First, the entire
low density regime in our model shows a power-law decay
of the two-point function in contrast to the exponential decay
in the standard continuum percolation. Thus the whole low
density regime is “critical.” However, there is a nonzero
percolation threshold below which there is no infinite cluster
exist in the system. Second, the critical exponents are functions
of the power a of the power-law distribution for low enough
a. So while the system belongs to the same universality class
as the standard continuum percolation for high enough a, the
critical behavior is quite different for low values of a.

The plan of this paper is as follows: In Sec. II, we define the
model of disk percolation precisely. In Sec. III, using a rigorous
lower bound on the two-point correlation function, we show
that it decays only as a power law with distance for arbitrarily
low coverage densities. We discuss the two-point function and
critical exponents. In Sec. IV, we propose an approximate
renormalization scheme to calculate the correlation length
exponent ν and the percolation threshold in such models.
In Sec. V, we discuss results from simulation, and Sec. VI
contains some concluding remarks.

II. DEFINITION OF THE MODEL

We consider a continuum percolation model of overlapping
disks in two dimensions. The number density of disks is n,
and the probability that any small area element dA has the
center of a disk in it is ndA, independent of all other area
elements. For each disk, we assign a radius, independently
of other disks, from a probability distribution Prob(R). We
consider the case when Prob(R) has a power-law tail; the
probability of the radius being greater than R varies as R−a

for large R. For simplicity, we consider the case when the

022140-11539-3755/2013/88(2)/022140(7) ©2013 American Physical Society
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radii take only discrete values R0�
j where j = 0,1,2, . . .,

with probabilities (1 − p)pj where p = �−a . Here R0 is the
size of smallest disk, and � is a constant > 1. We refer to the
disk of size R0�

j as the disk of type j .
The fraction of the entire plane which is covered by at least

one disk, called the covered area fraction fcovered, is given by

fcovered = 1 − exp(−A), (1)

where A is the areal density—mean area of the disks per unit
area of the plane—of the disks, which is finite only for a > 2.
For a � 2, in the thermodynamic limit all points of the plane
are eventually covered, and fcovered = 1. If a > 2, we have
areal density,

A = nπR2
0(1 − p)/(1 − p�2). (2)

We define the percolation probability P∞ as the probability
that a randomly chosen disk belongs to an infinite cluster
of overlapping disks. One expects that there is a critical
number density n∗ such that for n < n∗, P∞ is exactly zero,
but P∞ > 0, for n > n∗. We shall call the phase n < n∗ the
nonpercolating phase, and the phase n > n∗ the percolating
phase.

It is easy to show that n∗ < ∞. We note that for percolation
of disks where all disks have the same size R0, there is a finite
critical number density n∗

1, such that for n > n∗
1, P∞ > 0.

Then, for the polydisperse case, where all disks have radii R0

or larger, the percolation probability can only increase, and
hence n∗ < n∗

1. Also it has been proved that whenever we
have a bounded distribution of radii of the disks, the critical
areal density is greater than that for a system with single sized
disks [22]. Our simulation results show that this remains valid
for unbounded distribution of radii of the disks.

III. NONPERCOLATING PHASE

We define two point function Prob(1 � 2) as the probability
that points P1 and P2 in the plane are connected by overlapping
disks. Then, by rotational invariance of the problem, Prob(1 �
2) is only a function of the Euclidean distance r12 between the
two points. Let Prob(1)(1 � 2) denote the probability that there
is at least one disk that covers both P1 and P2. Then, clearly,

Prob(1 � 2) � Prob(1)(1 � 2). (3)

It is straightforward to estimate Prob(1)(1 � 2) for our
model. Let j be the minimum number such that the radius of
disk of type j is greater than or equal to r12, i.e., R0�

j � r12.
Let S be the region of plane such that the distance of any point
in S from P1 or P2 is less than or equal to R0�

j . This region
S is greater than or equal to the region where each point is
within a distance r12 from both P1 and P2. Using elementary
geometry, the area of region S is greater than or equal to
(2π/3 − √

3/4)r2
12 (see Fig. 1). The number density of disks

with radius greater than or equal to R0�
j is n�−aj . Therefore,

the probability that there is at least one such disk in the region
S is 1 − exp(−n|S|�−aj ), where |S| is the area of region S.
Thus we get

Prob(1)(1 � 2) � 1 − exp
[ − nK�−aj r2

12

]
, (4)

where K = 2π/3 − √
3/4.

R R

R

2r/2r/21

FIG. 1. Points 1 and 2 in the plane at a distance r from each other
will be covered by a single disk of radius R, if the center of such a
disk falls in the area of intersection of two circles with radius R and
centers at 1 and 2.

Now, clearly, R0�
j < r12�. Hence we have �−aj >

r−a
12 �−a/R−a

0 . Putting this in Eq. (4), we get

Prob(1)(1 � 2) � 1 − exp
[ − nK�−ar−a+2

12

]
, (5)

where some constant factors have been absorbed into K . For
large r12, it is easy to see that this varies as r2−a

12 . Hence the
two-point correlation function is bounded from below by a
power law.

We can extend this calculation, and write the two-point
correlation function as an expansion,

Prob(1 � 2) =
∞∑

n=1

Prob(n)(1 � 2), (6)

where Prob(n)(1 � 2) is the probability that the path of
overlapping disks connecting points P1 and P2 requires n disks.
The term n = 2 corresponds to a more complicated integral
over two overlapping disks. But it is easy to see that for large
r12, this also decays as r−a+2

12 . Assuming that similar behavior
holds for higher order terms as well, we expect that for all
nonzero densities n, the two-point correlation function decays
as a power law even for arbitrarily low densities of disks.

We note that this is consistent with the result that for
continuum percolation in d dimensions, the diameter of
the connected component containing the origin, say 〈D〉, is
divergent even for arbitrarily small number densities when
〈Rd+1〉 is divergent [12]. Here R denote the radii variable. In
our case 〈D〉 = ∫

r12
dProb(r12)

dr12
dr12 ∼ ∫

r2−a
12 dr12 (where P1 is

the origin) is divergent when a � 3, consistent with the above.
The power-law decay of the two-point function is the result

of the fact that for any distance r , we have disks of radii of
the order of r . However for large values of r , we can imagine
that there would also be a contribution from a large number
of overlapping disks of radii much smaller than r connecting
the two points separated by the distance r , which as in the
usual percolation problem decays exponentially with distance.
Therefore it is reasonable to write the two-point function in our

022140-2
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problem as a sum of two parts; the first part, say Gsr (r), due to
the “ short-range” connections which has an exponential decay
with distance for large r , and the second one, say Glr (r), due
to the “long-range” connections which has a power-law decay
with distance. Therefore

G(r) = Gsr (r) + Glr (r), (7)

where

Glr (r) ∼ D(A)/ra−2 + higher order terms, (8)

where D(A) is assumed to go to a nonzero constant as A goes
to its critical value and its dependence on A is a slowly varying
one.

The power-law distribution of the radii makes this system
similar to a long-range interaction problem in statistical
physics in the sense that given two points in the plane, a direct
connection by a single disk overlapping both points is possible.
In fact similar behavior for the two-point function exists
whenever we have long-range interactions in a system, such
as in an Ising model with long-range potentials or fluid with
long-range interactions [23,24]. In such systems, the two-point
function shows a power-law decay just as in our problem
[25]. The effect of such long-range potentials on the critical
exponents has been studied earlier [20,23,26–29] with the
general conclusion that the long-range part of the interaction
does influence the critical behavior of the system [30]. More
precisely, if we have an attractive pair potential in d dimensions
of the form −φ(r) ∼ 1

rd+σ where σ > 0, then critical exponents
take their short-range values for all σ � 2 − ηsr where ηsr is
the anomalous dimension (for the short-range problem in two
dimensions, at criticality, the two-point function decays with
distance as 1/rηsr ). For σ < 2 − ηsr , two kinds of behavior
exist. For 0 < σ � d/2, the exponents take their mean-field
values and for d/2 < σ < 2 − ηsr , the exponents depend on
the value of σ (see [20] and references therein). So σ = 2 − ηsr

is the dividing line between the region dominated by short-
range interactions and the region dominated by long-range
interactions.

Though there is a well established connection between the
lattice percolation problem and the Ising model [31], there is no
similar result connecting the continuum percolation problem
to any simple Hamiltonian system. However, the following
simple argument provides us with a prediction about the
values of the parameter a for which the power-law nature
of the distribution is irrelevant and the system is similar to a
continuum percolation system with a bounded size distribution
for the percolating units. Assuming that the strength of the
long-range interaction from a given point in the Ising or fluid
system (which decays like ∼1/r2+σ in two dimensions) is
like the strength of the connectivity from the center of a
given disk which is given by the distribution of the radii;
in our problem, we expect the dividing line between the
region dominated by short-range connectivity and the region
dominated by long-range connectivity to be the same as that for
an Ising system with long-range potential of the form −φ(r) ∼
1/ra+1 where a > 2. Then the results for the long-range Ising
system discussed in the last paragraph should carry over with
σ = a − 1. So for our problem, a deviation from the standard
critical behavior is expected when a < 3 − ηsr and the critical
exponents will take their short-range values for a > 3 − ηsr .

For two-dimensional (2D) percolation, ηsr = 5/24 [32]. Also
mean-field behavior is expected when a � 2. However for this
range of a, the entire plane is covered for all nonzero number
densities and hence there is no phase transition.

In the next two sections, we investigate the dependence of
exponents on the power-law tail of the distribution of the radii
of the disks. First we develop an approximate renormalization-
group (RG) method. Then we carry out simulation studies
which show that the correlation length exponent ν takes its
short-range value for a > 3 − ηsr , while it depends upon a for
a < 3 − ηsr .

IV. CRITICAL BEHAVIOR NEAR
THE PERCOLATION THRESHOLD

In this section, we propose an approximate RG method to
analyze the behavior of continuum percolation models near
the percolation threshold, when the percolating units have a
distribution of sizes. We assume that we can replace disks of
one size having a number density n with disks of another size
and number density n′, provided the correlation length remains
the same. Application of a similar idea in the disk percolation
problem with only two sizes of disks may be found in [5].

We will illustrate the method by considering a problem in
which the radii of disks take only two possible values, say R1

and R2. Let their areal densities be A1 and A2 respectively,
and assume that both A1 and A2 are below A∗, the critical
threshold for the percolation problem with only single sized
disks present(A∗ ≈ 1.128 085 [13]). Also let ξ1 represent the
correlation length when only disks of size R1 are present
in the system and ξ2 represent that when only disks of size
R2 are present. Invariance of the two-point function under
length rescaling requires that the expression for the correlation
length ξ is of the form ξ = Rg(A), where the function g(A)
determines how the correlation length depends on the areal
density A and is independent of the radius R. Let Ã2 be the
areal density of the disks of size R2 which will give the same
correlation length as the disks of size R1, i.e,

ξ1(A1) = ξ2(Ã2) (9)

or

R1g(A1) = R2g(Ã2). (10)

Given the form of the function g(A), we can invert the above
equation to find Ã2. Formally,

Ã2 = g−1

(
R1

R2
g(A1)

)
. (11)

So the problem is reduced to one in which only disks of size
R2 are present, whose net areal density is now given by

A′
2 = Ã2 + A2. (12)

The system percolates when A′
2 = A∗. Now, when areal

density A is close to A∗, we have

g(A) = C(A∗ − A)−ν, (13)

where C is some constant independent of A and ν is the
correlation-length exponent in the usual percolation problem.
Using this in Eq. (11), we get

Ã2 = A∗ − (A∗ − A1)(R2/R1)1/ν . (14)
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Therefore, for a given value of A1 < A∗, the areal density of
disks of radius R2, so that the system becomes critical, is given
by

A2 = A∗ − Ã2 = (A∗ − A1)(R2/R1)1/ν . (15)

So the total areal density at the percolation threshold is

A1 + A2 = A1 + (A∗ − A1)(R2/R1)1/ν = A1(1 − x) + A∗x,

where x = (R2/R1)1/ν . Without loss of generality we may
assume R2 > R1. Then x > 1 and we can see from the above
expression that the percolation threshold A1 + A2 > A∗, a
result well known from both theoretical studies [22] and
simulation studies [13].

Now in our problem assume that areal density of disks of
type 0 do not exceed A∗. Renormalizing disks up to type m in
our problem gives the equation for the effective areal density
of the mth type disks A′

m as

A′
m = A∗ − (A∗ − A′

m−1)�1/ν + ρm, (16)

where m � 1, A′
0 = ρ0 and ρm = n0π�(2−a)m denote the areal

density of disks of radius �m. Here n0 is the number density
of disks of radius R0 (or of type 0), which for convenience we
have set equal to unity. If we denote A∗ − A′

m by εm which
is the distance from the criticality after the mth step of the
renormalization, then the above expression becomes

εm = εm−1�
1/ν − ρm. (17)

The equation describes the flow near the critical point
when we start with a value of ρ0, the areal density of the
first type of disks. Here εm gives the effective distance from
criticality of the mth order disks in the system, in which
now only mth and higher order disks are present. Now for
given values of the parameters a and �, we can evaluate εm

in Eq. (17) using a computer program and plot εm versus
m. Depending upon the value of ρ0, we get three different
behaviors. For values of ρ0 below the critical value denoted by
ρ∗

0 , εm will go to A∗ asymptotically (the system is subcritical)
and when it is above ρ∗

0 , εm will go to −∞ asymptotically
(the system is supercritical). As ρ0 → ρ∗

0 , we get the critical
behavior characterized by εm tending to the RG fixed point
0 asymptotically. A typical result using Eq. (17) with � = 2
and a = 3 is shown in Fig. 2. We can see that as we tune
ρ0, the system approaches criticality, staying closer to the
εm = 0 line longer and longer. Critical behavior here can be
characterized by the value of m at which the curve deviates
from the approach to the εm = 0 line. To understand how
the correlation length diverges as we approach criticality, we
assume that we can replace the subcritical system with a system
where only disks of type m′ are present and has a fixed areal
density below A∗, where m′ is the value of m at which εm

shows a substantial increase—say εm becomes A∗/2. For the
continuum percolation problem with single sized disks, the
correlation length ξ = Rg(A), where g(A) is a function with
no explicit dependence on radius R. Therefore, the correlation
length in our problem is

ξ ∝ �m′
. (18)

-1
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ε m

m

ρ0 = 0.7926000000
ρ0 = 0.7927020000
ρ0 = 0.7927033100
ρ0 = 0.7927033227
ρ0 = 0.7927033230

FIG. 2. (Color online) Variation of εm with m for different values
of ρ0 showing subcritical and supercritical regimes. We have used
a = 3 and � = 2.

We can write the recurrence relation Eq. (17) in terms of
the areal density ρn as

εm = A∗�
m
ν −

m∑
n=0

ρn�
[(m−n)/ν]. (19)

But ρn = ρ0�
n(2−a). Therefore,

εm = A∗�[m/ν] − ρ0�
[m/ν][1 − �m(2−a−1/ν)]

[1 − �(2−a−1/ν)]
. (20)

For large values of m, the last term in the above equation
involving �m(2−a−1/ν) can be neglected. Then,

εm = �[m/ν]

[
A∗ − ρ0

1 − �(2−a−1/ν)

]
. (21)

Therefore,

�[m/ν] = εm

[A∗ − ρ0

1−�(2−a−1/ν) ]
. (22)

For a given value of ρ0 � A∗, the order m′ at which εm is
increased substantially, say to a value A∗/2, is given by

m′ = [log�(A∗/2) − log�(ρ∗
0 − ρ0)

+ log�(1 − �(2−a−1/ν))]ν. (23)

So for ρ0 close to ρ∗
0 and large values of a,

m′ ∼ log�(ρ∗
0 − ρ0)−ν, (24)

so that

ξ ∝ (ρ∗
0 − ρ0)−ν . (25)

Thus we find that the correlation length exponent ν is
independent of the parameters a and � of the distribution.
From Eq. (22), we can also obtain the percolation threshold
ρ∗

0 as a function of the parameters a and �. In Eq. (22) the
left hand side is positive definite. So for values of ρ0 for which

ρ0

1−�(2−a−1/ν) < A∗, we will have εm > 0 for large values of m.
Similarly for values of ρ0 for which ρ0

1−�(2−a−1/ν) > A∗, we will
have εm < 0 for large values of m. Hence the critical areal
density ρ∗

0 must be given by

ρ∗
0 = A∗[1 − �(2−a−1/ν)]. (26)
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FIG. 3. (Color online) Variation of n∗ with a for two different
values of �. Dashed curves correspond to values given by Eq. (27)
and continuous ones correspond to those from simulation studies.
The horizontal line corresponds to the threshold for the single sized
disks case.

Or in terms of the total number density, the percolation
threshold n∗ is given by

n∗ = nc(1 − �(2−a−1/ν))/(1 − �−a), (27)

where nc = A∗/π , the critical number density for percolation
with single sized disks of unit radius. Note that this approxi-
mate result does not give the correct limit, n∗ → 0 as a → 2.
The RG scheme depends on the approximation that the effect
of size R1 of areal density A1 is the same as that of disks
of radius R2 of density A2, as in Eq. (9). This is apparently
good only for a > 3 − ηsr . Figure 3 shows the variation of the
critical threshold with a for two different values of � using
Eq. (27) along with simulation results (see Sec. V for details
of simulation studies). We see that a reasonable agreement is
obtained between the two for higher values of a. Also, as one
would expect, for large values of a, n∗ tends to nc.

From Eq. (27), we can obtain the asymptotic behavior of
the critical number density n∗ as � → 1. This is useful since
it corresponds to the threshold for a continuous distribution of
radii with a power-law tail and we no more have to consider
the additional discretization parameter �. It is easy to see that
in the limit � → 1, Eq. (27) becomes

n∗
�→1 = nc

(
1 − 5

4a

)
, (28)

where we have used the value ν = 4/3. Thus we expect that
a log-log plot of (nc − n∗

�→1) against a will be a straight
line with slope −1 and y-intercept ln(5nc/4) ≈ −0.35 for
large values of a. A comparison with the thresholds obtained
from simulation studies show that Eq. (28) indeed predicts the
asymptotic behavior correctly (see Fig. 7).

V. SIMULATION RESULTS

We determine the exponent ν and the percolation threshold
n∗ by simulating the continuum percolation system in two
dimensions, with disks having a power-law distribution for
their radii. We consider two cases for the distribution of

the radii variable. To explicitly compare the prediction of
the approximate RG scheme for the percolation threshold
given in Sec. IV, we use a discrete distribution for the radii
variable, with discretization factor � as in Sec. II. The results
for the thresholds thus obtained are shown in Fig. 3. To
determine the correlation length exponent ν, we consider the
radii distribution in the limiting case � → 1, so that we do
not have to consider the additional parameter �. In this case,
given a disk, the probability that it has a radius between R and
R + dR is equal to aR−(a+1) where a > 2. We also obtain the
percolation threshold with this continuous distribution for the
radii and compare it with the predicted asymptotic behavior in
Eq. (28). The minimum radius is assumed to be unity.

For a � 2 the entire plane is covered for arbitrarily low
densities of the disks. We use cyclic boundary conditions and
consider the system as percolating whenever it has a path
through the disks from the left to the right boundary. We drop
disks one at a time onto a region of a plane of size L × L,
each time checking whether or not the system has formed a
spanning cluster. Thus number density is increased in steps of
1/L2. So after dropping the nth disk, the number density is
n/L2. Now associated with each number density we have a
counter, say fn, which is initialized to 0 in the beginning. If
the system is found to span after dropping the n′th disk, then
all counters for n � n′ are incremented by 1. After a spanning
cluster is formed, we stop. In this way we can determine the
spanning probability Π (n,L) = fn/N where N is the number
of realizations sampled. The number of realizations sampled
varies from a maximum of 2.75 × 107 for a = 2.05 and L =
90 to a minimum of 4000 for a = 10.0 and L = 1020 (for
obtaining the results for the threshold in Fig. 3, the number
of realizations sampled is 20 000 for all values of a and �).
This method of dropping basic percolating units one by one
until the spanning cluster is formed has been used before [33]
in the context of stick percolation which was based on the
algorithm developed in [34], and allows us to study relatively
large system sizes with a large number of realizations within
a reasonable time.

The probability that there is at least a single disk
which spans the system of size L at number density n is
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Δ
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FIG. 4. (Color online) Plot of effective percolation threshold n∗
eff

against � for a = 2.25 and a = 3.25. The best straight line fit is
obtained with the last four data points.
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FIG. 5. (Color online) Log-log plot of � vs L for a = 2.25 and
a = 4.0 along with lines of slope −0.47 and −0.75.

1 − exp(−n2a/La−2). It is easy to see that to leading order in n,
this “long-range” part of the spanning probability Π (n,L)lr
is n2a/La−2. So one can write a scaling form for the spanning
probability,

Π (n,L) = Π (n,L)lr + [1 − Π (n,L)lr ]φ[(n∗ − n)L1/ν].

(29)

Therefore we can define the “short-range” part of the
spanning probability Π ′(n,L) = [Π (n,L) − Π (n,L)lr ]/[1 −
Π (n,L)lr ], where the leading long-range part is subtracted
out. Therefore, we have

Π ′(n,L) = φ[(n∗ − n)L1/ν] (30)

and the scaling relations (see for, e.g., [35])

�(L) ∝ L−1/ν, (31)

n∗
eff(L) − n∗ ∝ �, (32)

where n∗
eff(L) is a suitable defined effective percolation

threshold for the system of size L, and � is the width of the
percolation transition obtained from the spanning probability
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FIG. 6. (Color online) Variation of 1/ν with a. The horizontal
line corresponds to the standard 2D percolation value 1/ν = 3/4.
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FIG. 7. (Color online) Variation of percolation threshold n∗ with
a. The horizontal line corresponds to the threshold for the single
sized disks case. Inset: Asymptotic approach of n∗ to the single sized
disks value nc = 0.3591 along with a straight line of slope −1 and
y-intercept −0.35 [see Eq. (28)].

curves Π ′(n,L). Note that Eqs. (31) and (32) are applicable
with any consistent definition of the effective percolation
threshold and width � [35]. A good way to obtain n∗

eff and � is
to fit the sigmoidal shaped curves of the spanning probability
Π ′(n,L) with the function 1/2[1 + erf([n − n∗

eff(L)]/�(L))]
(see [14]), which defines the effective percolation threshold
n∗

eff as the number density at which the spanning probability is
1/2. We determined n∗

eff and � for each value of a and L and
determined 1/ν and n∗ for different values of a using Eqs. (31)
and (32) respectively. Typical examples are shown in Figs. 4
and 5.

At first, we determined the percolation threshold and the
exponent for a system of single sized disks of unit radius. We
obtained n∗ = 0.3589(±0.0001) (or areal density ≈ 1.127 52)
and 1/ν = 0.758(±0.018) in very good agreement with the
known value for the threshold [13] and the conjectured value of
1/ν = 3/4 for the exponent. Values of 1/ν obtained for various
values of a are shown in Fig. 6. We scan the low a regime
more closely for any variation from the standard answer. We
can see that the estimates for 1/ν are very much in line with
the standard percolation value for a > 3 − ηsr while it varies

TABLE I. Percolation threshold n∗ for a few values of a along
with corresponding critical areal density η∗ and the critical covered
area fraction φ∗.

a n∗ η∗ = n∗πa/(a − 2) φ∗ = 1 − exp−η∗

2.05 0.0380(6) 4.90(7) 0.993(1)
2.25 0.0693(1) 1.959(3) 0.8591(5)
2.50 0.09745(11) 1.5307(17) 0.7836(4)
3.50 0.16679(8) 1.2226(6) 0.70555(17)
4.00 0.18916(3) 1.1885(2) 0.69543(6)
5.00 0.22149(8) 1.1597(4) 0.68643(13)
6.00 0.24340(5) 1.1470(2) 0.68241(8)
7.00 0.2593(2) 1.1406(7) 0.6804(2)
8.00 0.27140(7) 1.1368(3) 0.67917(9)
9.00 0.28098(9) 1.1349(4) 0.67856(12)
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with a for a < 3 − ηsr . Figure 7 shows the variation of the
percolation threshold n∗ with a. As expected, with increasing
a, the percolation threshold increases and tends to the single
sized disk value as a → ∞, and as a → 2, the threshold
tends to zero. The data also show that n∗ converges to the
threshold for the single sized disk value as 1/a as predicted by
Eq. (28). Values of the threshold for some values of a are given
in Table I.

Finally as a check, we plot the spanning probability Π ′(n,L)
[see Eq. (30)] against (n − n∗)L1/ν to be sure that a good
scaling collapse is obtained. We show two such plots for a =
2.50 and a = 4 in Fig. 8. We can see that a very good collapse
is obtained. Similar good collapse is obtained for other values
of a as well.

VI. CONCLUDING REMARKS

In this paper, we discuss the effect of a power-law
distribution of the radii on the critical behavior of a disk
percolation system. If the distribution of radii is bounded,
then one would expect the critical exponents to be unchanged
and to be the same as that for standard percolation. However,
if the distribution of radii has a power-law tail, we show that
this strongly influences the nature of the phase transition. The
whole of the low-density nonpercolating phase has power-law
decay of correlations in contrast to the exponential decay
for the standard percolation and this occurs for any value of
the power a, howsoever large. The critical exponents depend
on the value of a for a < 3 − ηsr and take their short-range
values for a > 3 − ηsr . We also propose an approximate RG
scheme to analyze such systems. Using this, we compute
the correlation-length exponent and the percolation threshold.
The approximate RG scheme is good only for a > 3 − ηsr .
Monte Carlo simulation results for the percolation thresholds
and the correlation-length exponent are presented.

We can easily extend the discussion to higher dimensions,
or other shapes of objects. It is easy to see that the power-law
correlations will exist in corresponding problems in higher
dimensions as well.
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