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0.1 SYNOPSIS

0.1.1 Introduction

This synopsis is based on the following three papers, [1], [2] and [3].

In general it is difficult to study the non-equilibrium strongly coupled dynamics . The

AdS/CFT correspondence provides an important laboratory to explore such processes for

at least a class of quamtum field theories. It relates string theories in AdSd+1 background

to gauge theories in d dimensions. In particular examples the gauge theory at large N

(where N is the rank of the gauge group) limit corresponds to the classical string theory.

This theory further reduces to classical supergravity in the strong coupling limit. While

classical supergravity is a well-studied system it is itself dynamically rather complicated.

However for a class of questions we are able to exploit an additional simplification; su-

pergravity admits a consistent truncation to much simpler dynamical system consisting

of Einstein equations with negative cosmological constant. In this sector the metric is the

only dynamical field. The existence of such truncation predicts that the corresponding

large N strongly coupled gauge theory always has some sector of solutions where the

stress-tensor (the field theory operator dual to the bulk metric under AdS/CFT corre-

spondence) is the only dynamical operator.

Therefore just studying the Einstein equations with negative cosmological constant

one might gather a lot of information about some strongly coupled field theory dynamics.

First in section 0.1.2 we use the gravitational dynamics to study field theory processes

which are far from equilibrium. The field theory is perturbed by turning on some marginal

operator for a very small duration. As a consequence of strong interaction the system then

rapidly evolves to local thermal equilibrium. The dynamics of this equilibration is dual

to the process of black hole formation via gravitational collapse. Gravitational collapse is

fascinating in its own right but it gains additional interest in asymptotically AdS spaces

because of its link to the field theory.
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Once local equilibrium has been achieved (ie, a black hole has been formed) the system

(if un-forced) slowly relaxes towards global equilibrium. This relaxation process happens

on length and time scales that are both large compared to the inverse local temperature

and so admits an effective description in terms of fluid dynamics. Therefore on the the dual

gravitational picture, once the black hole is formed, Einstein’s equations should reduce

to the nonlinear equations of fluid dynamics in an appropriate regime of parameters. In

section 0.1.3 we provide a systematic framework to construct this universal gravity dual

to the nonlinear fluid dynamics, order by order in a boundary derivative expansion.

Then we proceed to study the causal structure of these gravity solutions. These solu-

tions are regular everywhere away from a space-like surface, and moreover this singularity

is shielded from the boundary of AdS space by an event horizon. Within derivative expan-

sion the position of this event horizon can be determined. The area form on it translates

into an expression for the entropy current in the boundary field theory. The positivity of

its divergence follows from the classic area increase theorems in general relativity.

At the end of this section we quote the results that we found after implementing this

framework.

Our work builds on earlier derivations of linearized fluid dynamics from linearized

gravity by Policastro, Son and Starinets [4] and on earlier examples of the duality between

nonlinear fluid dynamics and gravity [5–13] . There is a large literature in deriving

linearized hydrodynamics from AdS/CFT, see [14] for a review and comprehensive set of

references.

0.1.2 Weak Field Black Hole Formation

This section is based on [1].

An AdS collapse process that could result in black hole formation may be set up,

following Yaffe and Chesler [15], as follows . Consider an asymptotically locally AdS

spacetime, and let R denote a finite patch of the conformal boundary of this spacetime.
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We choose our spacetime to be exactly AdS outside the causal future of R. On R we turn

on the non normalizable part of a massless bulk scalar field. This boundary condition

sets up an ingoing shell of the corresponding field that collapses in AdS space. Under

appropriate conditions the subsequent dynamics can result in black hole formation.

Translationally invariant asymptotically AdSd+1 collapse

First we analyze spacetimes that asymptote to Poincare patch AdSd+1 space and We

choose our non normalizable data to be independent of boundary spatial coordinates

and nonzero only in the time interval v ∈ (0, δt). These boundary conditions create a

translationally invariant wave of small amplitude ε near the boundary of AdS, which then

propagates into the bulk of AdS space.

It turns out that in this case it will always results in black brane formation at small

amplitude which, outside the event horizon, can be reliably described by a perturbation

expansion. At leading order in perturbation theory the metric takes the following form.

ds2 = 2drdv −
(
r2 − M(v)

rd−2

)
dv2 + r2dx2

i . (0.1.1)

This form of the metric is exact for all r when v < 0, and is a good approximation to

the metric for r � ε
2
d−1

δt
when v > 0. The function M(v) in (0.1.1) can be determined in

terms of the non normalizable data at the boundary and turns out to be of order ε2

(δt)d
1.

M(v) reduces to constant M for v > δt . The spacetime (0.1.1) describes the process of

formation of a black brane of temperature T ∼ ε
2
d

δt
over the time scale of order δt. Using

the fact that the time scale of formation of the brane is much smaller than its inverse

temperature, one can explicitly compute the event horizon of the spacetime (0.1.1) in a

power series in δtT ∼ ε
2
d and can show that all of the spacetime outside the event horizon

1More precisely, let φ0(v) = ε χ( vδt ) where φ0(v) is the non-normalizable part of the bulk scalar field

and χ is a function that is defined on (0, 1). Then the energy of the resultant black brane is ε2

(δt)d
×A[χ]

where A[χ] is a functional of χ(x).
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(which is causally disconnected from the region inside) lies within the domain of validity

of our perturbative procedure.

Spherically symmetric collapse in flat space

Next we consider a spherically symmetric shell, propagating inwards, focused onto the

origin of an asymptotically flat space. Such a shell may qualitatively be characterized

by its thickness and its Schwarzschild radius rH associated with its mass. This collapse

process may reliably be described in an amplitude expansion when y ≡ rH
δt

is very small.

The starting point for this expansion is the propagation of a free scalar shell. This

free motion receives weak scattering corrections at small y, which may be computed

perturbatively.

We demonstrate that this flat space collapse process may also be reliably described

in an amplitude expansion at large y. The starting point for this expansion is a Vaidya

metric similar to (0.1.1), whose event horizon we are able to reliably compute in a power

series expansion in inverse powers of y. Outside this event horizon the dilaton is every-

where small and the Vaidya metric receives only weak scattering corrections that may

systematically be computed in a power series in 1
y

at large y. As in the previous subsec-

tion the breakdown of perturbation theory occurs entirely within the event horizon, and

so does not impinge on our control of the solution outside the event horizon.

Spherically symmetric collapse in asymptotically global AdS

The process of spherically symmetric collapse in an asymptotically global AdS space

constitutes a one parameter interpolation between the collapse processes described in

subsections 0.1.2 and 0.1.2.

Here the collapse process is initiated by radially symmetric non normalizable boundary

conditions that are turned on, uniformly over the boundary sphere of radius R and over

a time interval δt. The amplitude ε of this source together with the dimensionless ratio
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x ≡ δt
R

, constitute the two qualitatively important parameters of the subsequent evolution.

When x � ε
2
d it reduces to the Poincare patch collapse process described in subsection

0.1.2, and results in the formation of a black hole that is large compared to the AdS radius

(and so locally well approximates a black brane). When x� ε
2
d the most interesting part

of the collapse process takes place in a bubble of approximately flat space. In this case

the solution closely resembles a wave propagating in AdS space at large r, glued onto a

flat space collapse process described in subsection 0.1.2.

Following through the details of the gluing process, it turns out that the inverse of the

effective flat space y parameter (see subsection 0.1.2) is given by x
2d−2
d−2

ε
2
d−2

. The parameter

y is of order unity when x ∼ ε
1
d−1 . So we conclude that the end point of the global AdS

collapse process is a black hole for x� ε
1
d−1 but a scattering dilaton wave for x� ε

1
d−1 .

Interpretation in dual field theory

We can interpret these results in dual field theoretic terms.

The gravity solution of subsection 0.1.2 describes a CFT inR(3,1). The CFT is initially

in its vacuum state and over the time period (0, δt) it is perturbed by a translationally in-

variant time dependent source, of amplitude ε. The source couples to a marginal operator

and pumps energy into the system which subsequently equilibrates.

Since the spacetime in (0.1.1) is identical to the spacetime outside a static uniform

black brane (dual to field theory in thermal equilibrium) for v > δt, the response of the

field theory to any boundary perturbation, localized at times v > δt, will be identical to

that of a thermally equilibrated system. Also the expectation values of all local boundary

operators (which are determined by the bulk solution in the neighborhood of the bound-

ary) reduces instantaneously to their thermal values. So for this purposes the system

seems to thermalize as soon as the external source is switched off. It is only the nonlocal

gauge-invariant operators like Wilson loops (which will probe the space-time (0.1.1) away

from the boundary depending on their non-locality) can distinguish the the system from

vii



being thermalized instantaneously.

Any CFT (with a two derivative gravity dual) when studied on sphere undergoes a

first order finite temperature phase transition . The low temperature phase is a gas of

‘glueballs’ (dual to gravitons) while the high temperature phase is a strongly interacting,

dissipative, ‘plasma’ (dual to the black hole).

x

Amplitude (epsilon)

Large Black Hole

Small Black

Hole

Thermal 

Gas

Figure 1: The ‘Phase Diagram’ for our dynamical stirring in global AdS. The final

outcome is a large black hole for x � ε
2
d (below the dashed curve), a small black hole

for x� ε
1
d−1 (between the solid and dashed curve) and a thermal gas for x� ε

1
d−1 . The

solid curve represents non analytic behavior (a phase transition) while the dashed curve

is a crossover.

The gravitational solution of subsection 0.1.2 describes such a CFT on Sd−1, initially

in its vacuum state. We then excite the CFT over a time δt by turning on a spherically

symmetric source function that couples to a marginal operator.

Our solutions predict that the system settles in its free particle phase when x� ε
1
d−1

but in the plasma phase when x � ε
1
d−1 . As in subsection 0.1.2 the equilibration in

the high temperature phase is almost instantaneous. The transition between these two

end points appears to be singular (this is the Choptuik singularity [16] in gravity) in the
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large N limit. This singularity is presumably smoothed out by fluctuations at finite N , a

phenomenon that should be dual to the smoothing out of a naked gravitational singularity

by quantum gravity fluctuations.

0.1.3 Fluid dynamics - Gravity correspondence

This section is based on [2] and [3].

Here we describe an unforced system which is already locally equilibrated and is evolv-

ing towards global equilibrium. From here onwards we will set d = 4 i.e. we will consider

only asymptotically AdS5 spaces.

Consider any two derivative theory of five dimensional gravity interacting with other

fields, that has AdS5 as a solution. The solution space of such systems has a universal

sub-sector; the solutions of pure gravity with a negative cosmological constant. We will

focus on this universal sub-sector in a particular long wavelength limit. Specifically, we

study all solutions that tubewise approximate black branes in AdS5. We will work in

AdS spacetimes where the radial coordinate r ∈ (0,∞) and will refer to the remaining

coordinates xµ = (v, xi) ∈ R1,3 as field theory or boundary coordinates. The tubes

referred to in the text cover a small patch in field theory directions, but include all

values of r well separated from the black brane singularity at r = 0; typically r ≥ rh

where rh is the scale set by the putative horizon. The temperature and boost velocity of

each tube vary as a function of boundary coordinates xµ on a length scale that is large

compared to the inverse temperature of the brane. We investigate all such solutions order

by order in a perturbative expansion; the perturbation parameter is the length scale of

boundary variation divided by the thermal length scale. Within the domain of validity of

our perturbative procedure we establish the existence of a one to one map between these

gravitational solutions and the solutions of the equations of a distinguished system of

boundary conformal fluid dynamics. Implementing our perturbative procedure to second

order, we explicitly construct the fluid dynamical stress tensor of this distinguished fluid
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to second order in the derivative expansion. As an important physical input into our

procedure, we follow [6,17,18] to demand that all the solutions we study are regular away

from the r = 0 curvature singularity of black branes, and in particular at the the location

of the horizon of the black brane tubes out of which our solution is constructed.

Causal structure

It is possible to foliate these gravity solutions into a collection of tubes, each of which is

centered about a radial ingoing null geodesic emanating from the AdS boundary. This

is sketched in figure 2 where we indicate the tubes on a local portion of the spacetime

Penrose diagram.2 The congruence of null geodesics (around which each of our tubes is

centered) yields a natural map from the boundary of AdS space to the horizon of our

solutions. When the width of these tubes in the boundary directions is small relative

to the scale of variation of the dual hydrodynamic configurations, the restriction of the

solution to any one tube is well-approximated by the metric of a uniform brane with the

local value of temperature and velocity. This feature of the solutions – the fact that they

are tube-wise indistinguishable from uniform black brane solutions – is dual to the fact

that the Navier-Stokes equations describe the dynamics of locally equilibrated lumps of

fluid.

Local entropy from gravity

In this subsection we restrict attention to fluid dynamical configurations that approach

uniform homogeneous flow at some fixed velocity u
(0)
µ and temperature T (0) at spatial

infinity. It seems intuitively clear from the dissipative nature of the Navier-Stokes equa-

tions that the late time behavior of all fluid flows with these boundary conditions will

eventually become uµ(x) = u
(0)
µ and T (x) = T (0); The gravitational dual of this globally

2 For a realistic collapse scenario, described by these nonuniform solutions, only the right asymptotic

region and the future horizon and singularity are present.
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Figure 2: The causal structure of the spacetimes dual to fluid mechanics illustrating the

tube structure. The dashed line denotes the future event horizon, while the shaded tube

indicates the region of spacetime over which the solution is well approximated by a tube

of the uniform black brane.

equilibrated fluid flow is just the uniform blackbrane metric with temperature T (x) = T (0)

and boosted to the velocity uµ(x) = u
(0)
µ . The equation for the event horizon of a uni-

form black brane is well known. The event horizon of the metric dual to the full non

equilibrium fluid flow is the unique null hypersurface that joins with this late time event

horizon in the asymptotic future. Within the derivative expansion it turns out that the

radial location of the event horizon is determined locally by values and derivatives of

fluid dynamical velocity and temperature at the corresponding boundary point. This is

achieved using the boundary to horizon map generated by the congruence of ingoing null

geodesics described above (see figure 2).

It is possible to define a natural area 3-form on any event horizon whose integral over

any co-dimension one spatial slice of the horizon is simply the area of that submanifold.

The positivity of the exterior derivative 3of the area 3-form is a formal restatement of the

3The positivity of the top form on horizon submanifold is defined as follows. Choose coordinates

(λ, α1, α2, α3) on horizon such that αi s are constant along the null geodesics (which are the generators
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area increase theorem of general relativity that is local on the horizon. This statement

can be linked to the positivity of the entropy production in the boundary theory by using

a ‘natural’ map from the boundary to the horizon provided by the congruence of the null

geodesics described above. The pullback of the area 3-form under this map now lives at

the boundary, and also has a ‘positive’ exterior derivative. Consequently, the ‘entropy

current’, defined as the boundary Hodge dual to the pull-back of the area 3-form on the

boundary (with appropriate factors of Newton’s constant), has non-negative divergence,

and so satisfies a crucial physical requirement for an entropy current of fluid dynamics.

Results

In this subsection we present our explicit construction of the bulk metric, boundary stress

tensor and the entropy current upto second order in derivatives computed following the

procedure described above.

The metric upto second order is given by

ds2 =− 2uµ(xµ)dxµdr + r2f(b(xµ)r)uµuνdx
µdxν + Pµνdxµdxν

+

(
2 b r2F (br)σµν +

2

3
r θ uµuν − r(aµuν + aνuµ)

)
dxµdxν

+3 b2H uµdx
µdr

+

(
r2b2H Pµν +

1

r2b2
K uµuν +

1

r2b2
(Jµuν + Jνuµ) + r2b2αµν

)
dxµdxν

(0.1.2)

In this equation the first line is simply the ansatz (which is the metric of a blackbrane

written in a covariant way in Eddington-Finkelstein coordinate). uµ(xµ) is the velocity of

the dual fluid and the b(xµ) is inversely related to the temperature [T (xµ)] of the fluid.

b(xµ) =
π

T (xµ)

These are two functional parameters of the whole solution. Pµν is the projection operator

that projects in the direction perpendicular to uµ. The function f(s) and Pµν are defined

of the horizon) and λ is a future directed parameter along these geodesics. Then a 4-form defined on

horizon will be called positive if it is a positive multiple of the 4-form dλ ∧ dα1 ∧ dα2 ∧ dα3
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in the following way

Pµν =uµuν + ηµν , f(s) = 1− 1

s4
(0.1.3)

The second line records corrections to this metric at first order in derivative, while the

third and the fourth lines record the second order corrections to this ansatz.

In the rest of this section we will systematically define all the previously undefined

functions that appear in (0.1.2). We will start by defining all scalar functions of the radial

coordinate r that appear in (0.1.2), and then turn to the definition of the index valued

forms that these functions multiply.

The only undefined function of r in the second line of (0.1.2) is F (r) which is given

by

F (r) =
1

4

[
ln

(
(1 + r)2(1 + r2)

r4

)
− 2 arctan(r) + π

]
(0.1.4)

The undefined functions on the third fourth and fifth line of the same equation are defined

as

H = h(1)(br) S+ h(2)(br) S

K = k(1)(br) S+ k(2)(br) S+ k(3)(br) S

Jµ = j(1)(br) B∞µ + j(2)(br) Bfin
µ

αµν = a1(br)Tµν + a5(br) (T5)µν

+ a6(br) (T6)µν + a7(br) (T7)µν

(0.1.5)

where

h(1)(r) = − 1

12r2

h(2)(r) = − 1

6r2
+

∫ ∞
r

dx

x5

∫ ∞
x

dy y4

(
1

2
Wh(y)− 2

3y3

) (0.1.6)
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k(1)(r) = − r
2

12
−
∫ ∞
r

(
12x3h(1)(x) + (3x4 − 1)

dh(1)(x)

dx
+

1 + 2x4

6x3
+
x

6

)
k(2)(r) =

7r2

6
−
∫ ∞
r

(
12x3h(2)(x) + (3x4 − 1)

dh(2)(x)

dx
+

1

2
Wk(x)− 7x

3

)
k(3)(r) = r2/2

(0.1.7)

j(1)(r) =
r2

36
−
∫ ∞
r

dx x3

∫ ∞
x

dy

(
p(y)

18y3(y + 1)(y2 + 1)
− 1

9y3

)
j(2)(r) = −

∫ ∞
r

dx x3

∫ ∞
x

dy

(
1

18y3(y + 1)(y2 + 1)

) (0.1.8)

a1(r) = −
∫ ∞
r

dx

x(x4 − 1)

∫ x

1

dy 2y

([
3p(y) + 11

p(y) + 5

]
− 3yF (y)

)
a5(r) = −

∫ ∞
r

dx

x(x4 − 1)

∫ x

1

dy y

(
1 +

1

y4

)
a6(r) = −

∫ ∞
r

dx

x(x4 − 1)

∫ x

1

dy 2y

(
4

y2

[
y2p(y) + 3y2 − y − 1

p(y) + 5

]
− 6yF (y)

)
a7(r) =

1

4

∫ ∞
r

dx

x(x4 − 1)

∫ x

1

dy 2y

(
2

[
p(y) + 1

p(y) + 5

]
− 6yF (y)

)
(0.1.9)

Wh(r) =
4

3

(r2 + r + 1)2 − 2(3r2 + 2r + 1)F (r)

r(r + 1)2(r2 + 1)2

Wk(r) =
2

3

4(r2 + r + 1)(3r4 − 1)F (r)− (2r5 + 2r4 + 2r3 − r − 1)

r(r + 1)(r2 + 1)

p(r) = 2r3 + 2r2 + 2r − 3

(0.1.10)

We now turn to defining all the terms that carry boundary index structure in (0.1.2).

These terms are all expressed in terms of fixed numbers of boundary derivatives of the

velocity.

Terms with a single boundary derivative

θ = ∂αu
α, aµ = (u.∂)uµ, lµ = εαβγµuα∂βuγ

σµν =
1

2
PµαPνβ (∂αuβ + ∂βuα)− 1

3
Pµνθ

(0.1.11)
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The quantity lµ defined here does not appear in the first order correction to the ansatz

metric, but does appear, multiplied by other first order terms in the second order metric.

We now describe all terms with two boundary derivatives. We sub-classify these terms as

scalar like, vector like or tensor like, depending on their transformation properties under

the SO(3) rotation group that is left unbroken by the velocity uµ

Scalar terms with two derivatives

S =

(
−4

3
s+ 2 S− 2

9
S

)
S = lµa

µ, S = lµl
µ, S = σµν σ

µν

(0.1.12)

where

S = aµa
µ, S = θ2, s =

1

b
Pαβ∂α∂β b (0.1.13)

Vector terms with two derivatives

B∞ = 4 (10 v+ v+ 3V− 3V− 6V)

Bfin = 9 (20 v− 5V− 6V)
(0.1.14)

where

(v)ν =
9

5

[
1

2
Pαν Pβγ (∂βuγ + ∂γuβ)− 1

3
PαβPγν ∂γ∂α uβ

]
− PαβPγν ∂α∂β uγ

(v)ν = PαβPγν ∂α∂β uγ
(0.1.15)

Vν = θaν , Vν = εαβγνu
α aβ lγ, Vν = aα σαν

Tensor terms with two derivatives

Tµν = (T1)µν +
1

3
(T4)µν + (T3)µν

(T5)µν = lµlν −
1

3
Pµν S

(T6)µν = σµα σ
α
ν −

1

3
Pµν S

(T7)µν =
(
εαβγµ σνγ + εαβγν σµγ

)
uα lβ

(0.1.16)
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where

(T1)µν = aµaν −
1

3
Pµν S

(T3)µν =
1

2
PαµPβν (u.∂) (∂αuβ + ∂βuα)− 1

3
PµνPαβ(u.∂)(∂αuβ)

(T4)µν = σµνθ

(0.1.17)

The stress tensor may be determined for the field theory configurations dual to this

solution using the following formula

16πG5T
µ
ν = lim

r→∞

[
2r4(Kαβh

αβδµν −Kµ
ν )
]
− 6δµν (0.1.18)

The extrinsic curvature of the regulated boundary is defined via the normal lie-derivative

of the induced metric - Kµν ≡ 1
2
Lnhµν . All the indices in the above formulas are raised

using the induced metric on the regulated boundary. We find

16πG5T
µν = (π T )4 (gµν + 4uµuν)− 2 (π T )3 σµν

+ (πT )2

[(
ln 2

2

)
(T7)µν + 2 (T6)µν + (2− ln 2)Tµν

] (0.1.19)

Further, the spacetime configuration presented in (0.1.2) is a solution to the Einstein

equation with negative cosmological constant if and only if the velocity and temperature

fields obey the constraint

∂µT
µν = 0 (0.1.20)

The position of the event horizon for the space-time described above is given by the

following expression. It is correct upto second order in derivatives.

rH =
1

b
+
b

4

(
s

(2)
b +

1

3
σµν σ

µν

)
+ · · · (0.1.21)

Where

s
(2)
b = −2

3
s+ S− 1

9
S− 1

12
S+ S

(
1

6
+ C +

π

6
+

5π2

48
+

2

3
ln 2

)
and C = Catalan number

(0.1.22)
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The expression of local entropy current is given by

4G
(5)
N b3 JµS = uµ

(
1− b4

4
F 2 σαβ σ

αβ +
b2

4
σαβ σ

αβ +
3 b2

4
s

(2)
b + s(2)

a

)
+ b2 P µν

[
−1

2

(
∂ασαν − 3σνα u

β ∂βu
α
)

+ j(2)
ν

]
.

(0.1.23)

Where

s(2)
a =

b2

16

(
2S−S

(
2 + 12 C + π + π2 − 9 (ln 2)2 − 3π ln 2 + 4 ln 2

))
j(2)
µ =

1

16
B∞ − 1

144
Bfin

(0.1.24)

One can explicitly check that upto third order in derivative the divergence of this

entropy current is always positive.

0.1.4 Discussion

This synopsis is about the non-equilibrium dynamics of field theory via AdS/CFT corre-

spondence.

We first studied the approach to equilibrium by rapid forcing and it turns out that for

many purposes the system locally equilibrates almost instantaneously and sets the initial

conditions for the subsequent slowly varying fluid dynamical evolution.

One can make direct contact with the construction in section 0.1.3 by introducing a

forcing that is pulse-like in time but has a slow (compared to the inverse temperature

of the black brane that is set up in our solutions) variation in space. Here we expect

the resultant thermalization process to be described by a dual metric which can be ap-

proximated tubewise by the solutions described in section 0.1.2. The metric will then

be corrected in a power series expansion in two variables; The amplitude of the forcing

function (as described in section 0.1.2) and a spatial derivative expansion weighted by

inverse temperature. The last expansion should reduce exactly to the fluid dynamical

expansion described in section 0.1.3.

Roughly speaking, the construction in section 0.1.3 may be regarded as the ‘Chiral

Lagrangian’ for brane horizons. The isometry group of AdS5 is SO(4, 2). The Poincare
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algebra plus dilatations form a distinguished subalgebra of this group; one that acts

mildly on the boundary. The rotations SO(3) and translations R3,1 that belong to this

subalgebra annihilate the static black brane solution in AdS5. However the remaining

symmetry generators – dilatations and boosts – act nontrivially on this brane, generating

a 4 parameter set of brane solutions. These four parameters are simply the temperature

and the velocity of the brane. Our construction effectively promotes these parameters

to collective coordinate fields and determines the effective dynamics of these collective

coordinate fields, order by order in the derivative expansion, but making no assumption

about amplitudes.

Next we studied the causal structure of the spacetime constructed in section 0.1.3.

We computed the position of the event horizon and derived an expression for the entropy

current of the boundary field theory.

While field theoretic conserved currents are most naturally evaluated at the boundary

of AdS, this entropy current most naturally lives on the horizon. This is probably related

to the fact that while field theoretic conserved currents are microscopically defined, the

notion of a local entropy is an emergent long distance concept, and so naturally lives in

the deep IR region of geometry, which, by the UV/IR map, is precisely the event horizon.

In the limits studied in this synopsis, the shape of the event horizon is a local reflection

of fluid variables,. which is reminiscent of the membrane paradigm of black hole physics.
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Chapter 1

Introduction

1.1 The AdS/CFT correspondence

Field theories are most usually studied in a series expansion in the coupling constant.

But this perturbation theory is not applicable if the coupling constant is large and in a

generic case it is difficult to analyze field theory dynamics which are strongly coupled.

However field theories with non-abelian gauge symmetries become simplify in the limit of

large number of colors (denoted by N) (see [19] and references therein). This is because

in a gauge theory the effective coupling constant between two external physical particles

is always multiplied by explicit factors of N coming from the number of color degrees of

freedom that can run in the internal loop. Therefore in the limit of large N , one can

use another alternative expansion where N is the expansion parameter and the theory is

expanded around N =∞.

The large N perturbation theory can be organized as follows. Within propagators

each of the gauge group indices propagates along a directed line. The lines corresponding

to fundamental and antifundamental indices are distinguished by their directions. In this

convention all the fields that transform in adjoint or bifundamental representation are

represented by double lines whereas fields transforming in the fundamental or antifunda-
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mental representation of the gauge group run along single lines.

It turns out that at a given order in 1
N

such diagrams look like some two dimensional

oriented surfaces with some holes and handles. The presence of fundamental or antifun-

damental matter fields provides single lines which make the boundaries of these surfaces.

In the absence of any fundamental fields these surfaces are closed. The genus of these

surfaces is related to the order of the expansion in 1
N

such that the higher order diagrams

have higher genus.

One does a similar sort of genus expansion in the case of the perturbative string theory,

which is an expansion in the string coupling constant gs around the value gs = 0. Here

also as the order of expansion increases one has to compute the world-sheet areas of two

dimensional surfaces with higher and higher genus. In closed string theories one has closed

surfaces and in open string theories one has surfaces with boundaries.

This analogy with the string theory indicates that string theory might be a dual de-

scription for gauge theory. It also suggests that the parameter 1
N

in gauge theory is

roughly equal to the string coupling constant gs and the relation is more visible when N

is large or gs is small so that the dual string description is weakly coupled and can be

described in perturbation [20], [21].

The AdS/CFT correspondence is a conjecture [22] for what this dual string theory

should be in the case of a particular large N gauge theory. According to this conjecture

Type IIB string theory in AdS5× S5 is dual to the 4 dimensional N = 4 supersymmetric

Yang -Mills theory living on the boundary of AdS spaces. It is a strong-weak duality in

the sense that when the string theory propagates on a highly curved space the dual field

theory is weakly coupled. In the strongest form of the conjecture the duality holds at all

values of coupling at the both sides.

2



This conjecture is motivated from the open and close string duality within the string

theory itself [21].

The low energy dynamics (the dynamics which includes only the massless fields ) of

10 dimensional type IIB string theory is given by 10 dimensional supergravity action

which contains dilaton, graviton, R-R field strength and their fermionic superpartners.

The supergravity approximation is valid provided the characteristic length scale of the

solution is much much greater than the string scale so that all the massive modes of the

string theory (whose masses are of the order of the string scale or higher) can be safely

ignored. An additional approximation reduces the quantum supergravity to classical,

where quantum loop corrections are also ignored. This is valid if the value of the dilaton

( which sets the effective value for the string coupling) in the classical solution is small

everywhere.

There exists classical p+ 1 dimensional black-brane solutions for this SUGRA action

which are charged under the R-R p + 1-form gauge fields [23, 24]. Such solutions have

spherical symmetry in the rest of the 9 − p directions with a source of R-R field sitting

at the origin. For a generic p these solutions contain a spacetime singularity shielded

by some inner and outer horizons. These solutions can be parametrized by their outer

horizon radius (denoted by r+), the value of the quantized R-R charge (proportional to N)

and the value of the dilaton which characterizes the effective string coupling ( the effective

value of gs). Whenever the solution becomes singular the supergravity approximation fails

and one has to consider the full string theory to get any consistent answer. Hence for a

generic p, the classical supergravity solution can be trusted only in a limited region of the

space-time ( outside the horizon), which is away from the singularity.

However it turns out that for p = 3 and in the extremal limit (in the limit where the

inner and the outer horizon of the solution meet at say, r = r+) the classical supergravity

solution becomes non-singular everywhere in the spacetime. For these solutions space-

time curvature never diverges and r+ can be used to characterize the effective length scale
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of the solution everywhere. One can choose r+ arbitrarily large compared to length scale

set by the string tension. On the other hand for these solutions the dilaton becomes

constant, which again can be chosen arbitrarily small.

Hence in this case the classical supergravity can be trusted uniformly everywhere in

space-time. It also has been shown that the mass and the charge of this extremal D3

brane solution saturate the supersymmetric bound .

Therefore from the closed string point of view this D3-brane is a massive and charged

solitonic object which curves the space-time around it. The mass of this solution turns

out to be proportional to 1
gs

and so they are non-perturbative in string coupling constant.

One can build up the full string theory in an perturbative expansion around this solitonic

solution. Here the higher derivative corrections to the SUGRA action as well as vari-

ous massive modes of the string theory will contribute, which can be treated quantum

mechanically.

On the other hand in perturbative string theory one also has D-brane like objects.

These are the hypersurfaces where an open string can end. By the world-sheet duality

these hypersurfaces can also act like a source for the closed strings and therefore they

can carry R-R charges. It has been shown that a stack of N Dp-brane carries exactly the

same amount of R-R charge and preserves the same amount of super symmetry as that of

the extremal p-brane SUGRA solution, described above [25]. So it is believed that these

two are the same object having two different descriptions at the two opposite range of the

parameters [26]. The D-brane description is effectively computable when

gsN ≤ 1

so that perturbative string theory is valid, whereas SUGRA is applicable when

gsN ≥ 1

(This bound arises from the fact that the characteristic length of the SUGRA solution

has to be much greater than the string scale.)
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The AdS/CFT conjecture arises from a further low energy limit taken on both sides.

In the SUGRA description there can be two types of low energy excitations as observed

from asymptotic infinity. There are excitations localized far from the brane and have low

energies. But there are excitations which are localized near the brane surface. Because of

the large redshift factor (caused by the large gravitational potential of the brane) these

excitations will also have low energies from the perspective of the observer sitting at the

asymptotic infinity though they might have large proper energy. It turns out that these

two types of excitation decouple in the strict low energy limit compared to the string

scale (or equivalently the strict limit of α′ → 0). The intuitive reason is the following.

The low energy excitations away from the horizons have very large wavelengths compared

to the typical size of the brane. Therefore in the strict limit, the perturbation to these

huge waves due to the fluctuations on the brane ( ie. the near horizon excitations) goes

to zero. On the other hand as α′ → 0 the near horizon excitations find it more and more

difficult to climb up the gravitational potential and to escape to the asymptotic infinity.

This intuition has been verified by calculating the low energy absorption cross section of

the brane geometry [27,28].

The near horizon geometry of the D3-brane solution is that of AdS5 × S5. Therefore

one can say that the system of low energy excitations around a D3-brane geometry gets

decoupled into two subsystems. One subsystem ( excitations localized in the near horizon

region) consists of full string theory in AdS5 × S5 geometry and the other subsystem is

that of a low energy closed string excitations in the flat 10 dimensional space which is

described by the flat 10 dimensional supergravity.

A similar decoupling happens in the dual picture of D-branes where the perturbative

string theory can be applied. First, one has to consider the effective action for the mass-

less excitations by integrating out the massive modes of the string theory. Schematically

this effective action will be a sum of three parts. One is the action describing the effective

dynamics of the open string or the brane. It is described by the appropriate U(N) su-
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persymmetric Yang-Mills theory and some higher derivative corrections to it. The second

part of the action gives the low energy closed string dynamics in the flat 10 dimensional

space. This is in general described by the 10 dimensional flat space supergravity and its

higher derivative corrections. Then the last part should describe the interaction between

these two types of excitations. It turns out that here also if one takes the strict α′ → 0

limit the interaction action goes to zero so that the dynamics on the brane decouples from

that of the bulk. All the higher derivative corrections to both of these decoupled systems

vanish in this limit. So in the end one has two decoupled subsystems one describing a 3+1

dimensional N = 4 supersymmetric SU(N) Yang-Mills theory and the other describing a

flat 10 dimensional supergravity.

Since in both the pictures one of the two decoupled subsystems is flat 10 dimensional

supergravity, it is natural to identify the other system. This leads to the conjecture that

3+1 dimensional N = 4 supersymmetric U(N) Yang-Mills theory is dual to the the string

theory in AdS5 × S5 [22].

1.1.1 Mapping between the parameters of string theory and

gauge theory

Perturbative string theory in AdS5×S5 has two dimensionless parameters, string coupling

constant gs and the radius of curvature of S5 (denoted as R) in the units of string scale α′.

Conventionally R is set to one and α′ is treated as the parameter. In this unit α′ ∼ 1√
gsN

,

where N equals to the number of the quanta of R-R field strength flux passing through

S5.

On the other hand N = 4 supersymmetric Yang-Mills theory has two dimension-

less parameters, the rank of the gauge group N and the coupling constant g. Here the

perturbative expansion is controlled by λ = g2N

Under the duality the parameters are mapped in a simple way [21]. The number of

the quanta of field strength in string theory side is mapped to the rank of the gauge group
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in the field theory. The gauge coupling g2 is mapped to the string coupling gs. Hence α′

(in units where R = 1) maps to 1√
λ
.

The low energy classical supergravity limit is valid when both α′ and gs corrections

are ignored beyond leading order. In the field theory side this corresponds to λ → ∞

and g2 → 0 limit. This is a limit where N necessarily goes to infinity. Thus the weakly

coupled classical SUGRA in AdS5 × S5 is the dual description for the strongly coupled 4

dimensional N = 4 supersymmetric Yang-Mills theory .

The the dual gravity description being weakly coupled and classical is computable

and one can use it to study the strongly coupled dynamics of N = 4 supersymmetric

Yang-Mills theory where usual field theory perturbation technique does not work.

1.1.2 Expectation values of CFT operators using duality

It has been argued [29] that each field propagating in AdS space is in one to one cor-

respondence with some operator in the conformal field theory. There is a prescription

for how to compute the expectation values for the field theory operators using this dual

theory [29,30].

For example, all the massless bulk fields are dual to some field theory operators of di-

mension 4, like bulk metric corresponds to stress tensor operator or bulk dilaton field

to lagrangian operator. The partition function of the field theory in the presence of an

external source coupled to one such dimension 4 operator is given by the following.

〈e
∫
d4xψ0(x)O(x)〉CFT = Zstring

[
lim
r→∞

ψ(r, x) = ψ0(x)
]

(1.1.1)

where the left hand side is the generating functional for the correlation functions of the

dimension 4 field theory operator O(x). Here x is the field theory coordinate and therefore

the boundary coordinate for the AdS space. ψ(r, x) is the propagating massless field in

AdS which corresponds to the operator O(x). Here r is the fifth coordinate in AdS space

other than the four boundary coordinates denoted collectively by x. The boundary of
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the AdS space is at r →∞. The right hand side of the equation (1.1.1) is the full string

theory partition function with a fixed boundary condition for the ψ(r, x) at infinity which

is given by ψ0(x). Therefore both sides of the equation will be a functional of ψ0(x).

According to this prescription the boundary value of the field in AdS space acts as an

external source for the corresponding operator in the field theory side. For the massive

bulk fields ψ0(x) generalizes to the leading coefficient arising in the expansion of the

corresponding classical bulk solution around r =∞.

In general it is not possible to compute the full non perturbative string partition func-

tion. However in the limit of α′ → 0 and gs → 0 (ie. in the limit of infinite N and infinite

λ in gauge theory side) the string theory reduces to weakly-coupled classical supergravity

in AdS space. The evaluation of the string partition function amounts to the evaluation

of the supergravity action on classical solutions with appropriate boundary conditions for

the relevant fields. In the large N and strong coupling limit the field theory correlation

functions can be computed from the functional derivative of the classical supergravity

action with respect to these boundary conditions [31].

For the case of massless bulk fields the expectation value of the dual operator is

determined by the following prescription.

lim
N,λ→∞

〈O(x)〉 = lim
N,λ→∞

δ

δψ0(x)

(
Zstring

[
lim
r→∞

ψ(r, x) = ψ0(x)
])

ψ0(x)=0

∝ δ

δψ0(x)

(
ISUGRA

[
lim
r→∞

ψ(r, x) = ψ0(x)
])

ψ0(x)=0

= lim
r→∞

Πψ(r,x)

(1.1.2)

where ISUGRA = Supergravity action and

Πψ(r,x) = conjugate momentum corresponding to the r evolution of the field ψ(r, x)

Using this prescription one can compute the field theory partition functions and some

multipoint correlation functions of the field theory operators at large N and strong cou-
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pling limit. Some of these quantities are protected due to some symmetries of the theory

(eg. the spectrum of chiral operators are non-renormalizable because of supersymmetry)

and therefore should match the perturbative field theory computation at small λ. The

agreement of those quantities that can reliably be computed on both sides is a non-trivial

check for this conjecture. On the other hand one can also use this duality to predict about

the strongly coupled dynamics of the field theory.

1.2 Consistent truncation to pure gravity

To evaluate the supergravity action at classical level one has to extremize the action

which gives a set of coupled differential equations involving all the supergravity fields.

This problem is still quite hard to solve. However, the equations of classical supergravity

admit a consistent truncation to a much simpler dynamical system, consisting only of

Einstein equations with negative cosmological constant. In this case the metric is the only

non-zero bulk field where all other supergravity fields have been set to zero consistently.

This is possible because supergravity is a two derivative theory of gravity containing

no fields of spin two or higher other than the graviton itself. Therefore the only fields

that can couple linearly with gravity are spin zero fields. The most general two-derivative

action involving only linear coupling with gravity has to be of the following form

S =

∫
√
g [(A+Bχ1 +R(C +Dχ2)]

where χ1 and χ2 are two scalars, R is the Ricci Scalar and A,B,C and D are some

constants. Now one can perform a Weyl transformation of the metric to get rid of χ2.

This transforms the action to ‘Einstein Frame’. The fact that the pure AdS is a solution

now tells that B is zero and hence the action is consistently truncated only to Einstein

gravity with negative cosmological constant.

The equations can be viewed as r evolution of the induced metric on the constant r

slices of the space-time. The induced metric in the r → ∞ limit is the boundary metric
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for the field theory which can act as a source for the stress tensor operator.

Therefore the existence of such a truncation in Supergravity first of all predicts the

similar existence of a sector in the dual large N field theory, where the stress-tensor is

the only operator with non-zero dynamical expectation value. Secondly just by studying

the classical gravity one can extract a lot of information about the strongly coupled

dynamics of the stress tensor in the dual large N gauge theory. For example, the conjugate

momentum to the induced metric in any gravity theory is given by the extrinsic curvature,

which, in the end after appropriate renormalization and removal of divergences, will give

the expectation value for the stress tensor in the field theory.

In this thesis we shall primarily study the system of Einstein equations with negative

cosmological constant and look for solutions which are locally asymptotically AdS. We

shall particularly be interested in the approach towards equilibrium in this truncated

sector through the evolution of the stress tensor. In general we shall see that there

are two stages in this equilibration process, one, in which the system, driven far from

equilibrium by some external source, rapidly approaches to some near equilibrium phase

and then a slow hydrodynamic evolution towards the final global equilibrium.

1.2.1 Different equilibrium solutions in gravity

Even with a fixed boundary condition it is possible that there exist more than one solution

to a set of differential equations. In this case it implies the existence of more than one

saddle points for the partition function. The solution which evaluates to the global minima

for the supergravity action is the one that dominates the path integral. There exist phase

transitions where one saddle point wins over the other at some particular values of the

parameters of the solution.

There are some well-known asymptotically AdS solutions .

• Pure AdS solution.
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The metric for this solution is given by

ds2 =
dr2

r2
+ r2

(
−dt2 + d~x2

)
(1.2.3)

or

ds2 =
dr2

r2 + 1
− (r2 + 1)dt2 + r2dΩ2

3 (1.2.4)

Both of these metrics satisfy the Einstein equations with negative cosmological

constant (where units are chosen such that the radius of the AdS space is 1). The

first metric in equation (1.2.3) has a coordinate singularity at r = 0 and its boundary

has the topology of R(3,1). The second metric in (1.2.4) is regular everywhere and its

boundary has the topology of S3×R. The metric in equation (1.2.3) does not cover

the full AdS space as it has a horizon. It actually covers a patch (called Poincare

patch) of the space (global AdS space) described by the metric in equation (1.2.4).

One can weakly perturb the supergravity equations around both of these metric.

But only in the case of the second metric one gets a regular solution which is like a

gas of weakly coupled graviton in AdS space.

• Black-brane solution:

The metric for this solution is given by

ds2 =
dr2

1− r4+
r4

− r2

(
1−

r4
+

r4

)
dt2 + r2d~x2 (1.2.5)

This solution has a real curvature singularity at r = 0. The singularity is shielded

from the boundary by a translationally invariant horizon. The horizon is at r = r+.

The whole solution has translational invariance. In the limit of r →∞ it approaches

the metric of equation (1.2.3) and therefore the boundary of this solution also has

the topology of R(3,1).

In the Euclidean continuation (t → iτ) this space-time has a conical singularity at

r = r+ and one has to compactify the τ coordinate with a specific radius in order
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to have a non-singular metric. The periodicity of the time circle is given by the

surface-gravity of the black-brane solution and is related to the temperature of the

black-brane thermodynamics.

• Black hole solution:

Here the metric is given by

ds2 =
dr2

r2 + 1− m
r2

−
(
r2 + 1− m

r2

)
dt2 + r2dΩ2

3 (1.2.6)

This metric also has a curvature singularity at r = 0. The singularity is shielded by

a horizon at r = r+ where r+ is the largest root of the function

f(r) = r2 + 1− m

r2

In the limit of r → ∞ this metric approaches the metric in equation (1.2.4). This

is a spherically symmetric solution where both the horizon and the boundary have

the topology of S3 ×R.

In the Euclidean continuation here also one has to compactify the imaginary time

circle in order to remove the conical singularity at r = r+ and this gives the tem-

perature for the black hole thermodynamics.

The pure AdS solution is dual to the vacuum of the field theory. In case of Poincare

patch solution (ie. equation (1.2.3)) the dual field theory lives on R(3,1) and for the global

AdS metric (equation (1.2.4)) it lives on S3 ×R.

The black-branes and black holes in gravity correspond to the deconfined thermal

phase of the gauge theory [32]. The temperature of the field theory is determined from

the temperature of the black solution considered. In the same way, the area of the horizon

gives the entropy of the gravity solution as well as the leading order entropy of the dual

field theory.
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When studied on S3×R, it is possible to have a phase transition between the confined

and the deconfined phase of the gauge theory in the limit of infinite N .

At low temperatures the system should be in a confining phase where the Hilbert space

of the theory consists of colour singlet particles. The vacuum energy of the theory is of

order N2 as there are N2 gluons running in each vacuum diagram. The mass and the

multiplicities of the colour singlet excitations in this phase are of order 1 and therefore

their contribution to the free energy vanishes in the limit of infinite N . In this phase the

free energy of the system is equal to the vacuum free energy and is inversely proportional

to the temperature (coming from the integration over the Euclideanized time circle of

length 1
T

whereas the integrand, being equal to the vacuum energy, is independent of T )

at leading order in large N .

At high temperature the system is in another phase which consists of deconfined plasma

of quarks and gluons with a free energy which is also of order N2 as there are N2 species in

the theory. But in this phase the temperature dependence of the free energy is determined

by conformal invariance and goes as T 4.

Because of the conformal symmetry of the theory the transition temperature between

these two phases should be proportional to the inverse radius of the S3 as this is the only

length scale available.

One can take an infinite volume limit on the system by taking the radius of S3 to

infinity. In this limit it is not possible to have a phase transition for a conformal field

theory. The theory will always be in the high temperature phase as the temperature scale

set by the inverse radius goes to zero.

A phase transition in the infinite N limit of the gauge theory should map to a phase

transition between two classical solutions of gravity in presence of negative cosmological

constant. One can see such phase transition in asymptotically global AdS solution where

the pure AdS solution ( as described in (1.2.4)) and the black hole solution (as described in

(1.2.6)) compete [33]. The free energies of these two solutions are computed by evaluating
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the action on them. It turns out that that their difference can have either sign depending

on the horizon radius or the temperature of the black hole solution (1.2.6). At high

temperature it is the black hole solution which has lower value for the free energy. At the

transition temperature, which is determined by the inverse radius of the boundary S3,

both the solution evaluates to the same value of the action. Then at low temperature the

pure AdS solution wins.

By taking infinite radius limit on the boundary S3 of the asymptotically global AdS

solutions one reaches the solutions in Poincare patch as described in (1.2.3) and in (1.2.5).

In this limit there is no phase transition between the two solutions and it is always the

black-brane solution (1.2.5) that contributes to the evaluation of the action or free energy.

The gas of gravitons in pure global AdS corresponds to the weakly interacting gas of

colorless particles in the confined phase. The black hole or black brane solution is dual

to the deconfined plasma as mentioned above [32]. Therefore the phase transition in the

gravity solution matches exactly with the phase transition picture in the gauge theory.

1.2.2 Gravitational collapse and thermalization

There exists an extensive literature on the formation of black hole due to gravitational

collapse both in asymptotically flat and AdS spaces. In AdS space it becomes particularly

interesting because of its connection to the field theory. Since a black hole (or black brane)

solution is dual to a field theory in thermal equilibrium, the gravitational collapse should

be dual to the process of thermalization.

The collapse process can be initiated by adding a small perturbation to the pure

AdS solution. One can choose the perturbation to be a departure from asymptotic AdS

condition to an Asymptotically locally AdS metric for a finite duration. This means that

in the limit of r →∞ the induced metric on constant r slices is no longer flat (or that of

S3×R in case of global AdS) but some time dependent metric which reduces to the usual

one after the perturbation is switched of. It has been shown below in chapter 2 that such
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a perturbation might result in black brane or black hole formation at some temperature

depending on the nature and the strength of the perturbation. In fact if the perturbation

is added to the pure AdS solution in Poincare patch it can be shown that it will always

collapse to form a black brane. However in the case of global AdS there are two phases

available for the perturbation to equilibrate in. One is the solution with a gas of gravitons

and the other is the black hole. The strength and the duration of the perturbation will

determine the final phase of the equilibrium solution.

It turns out that in certain weak field limit we have some analytic control over the

collapse process, thus initiated.

The choice of such perturbation can directly be interpreted within field theory. Here

the boundary field theory is also not on the usual flat space (or S3 ×R) and the fluctua-

tion of the boundary metric acts as a time-dependent external source. Since the boundary

metric couples to the stress tensor operator, this source pumps energy into the field theory

system through the dynamics of the stress tensor. Thermalization takes place once the

perturbation is switched off.

If the field theory is being studied on a flat space, the disturbance, thus created, eventu-

ally equilibrates to form a soup of deconfined plasma at a particular temperature whose

magnitude will depend on the strength and the nature of the perturbation.

While studied on S3×R the system can settle either in a confined phase or in a deconfined

phase once the perturbation is switched off. Using the gravity analysis one can predict

the nature of this transition and also the final equilibrium temperature.

This is the first stage of the equilibration process as mentioned in the beginning of

this section. It turns out that the formation of the black-brane is almost instantaneous.

However if there are slow (compared to the average temperature of the black-brane just

formed) spatial inhomogeneities in the external source function, they do not smooth out

within this rapid initial stage. Then it forms a black-brane, whose temperature and other

parameters has slow spatial variations determined by the profile of the external source. At
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each point locally the solution is exactly that of a black-brane but globally it is not, since

the parameters are space-time dependent though in a slow fashion. One expects similar

behavior in the dual field theory solution ie. a near equilibrium state with a slowly varying

temperature or velocity. This is exactly the situation for the onset of fluid dynamics.

1.2.3 Gravity in the regime of hydrodynamics

It is expected that any strongly interacting field theory system at high enough densities

admits an effective description in terms of fluid dynamics. As mentioned in the previous

subsection, fluid dynamics describes the approach from local equilibrium towards global

equilibrium. Naively the system enters the hydrodynamic regime once, it has already

equilibrated over a distance scale of the mean free path but over a distance scale, which

is much larger than the mean free path the parameters of the system vary. Therefore

fluid dynamics is valid only above a certain length scale set by the mean free path. It

is a description where modes with higher energy compared to this scale are integrated

out and therefore one has to deal with fewer degrees of freedom than that of the original

theory.

An uncharged relativistic conformal fluid in equilibrium is described by following two

parameters

• Constant unit normalized four velocity uµ

• Constant temperature T

In the near equilibrium hydrodynamic situation both uµ and T become slowly varying

function of the space time (compared to the local value of the temperature). The evolution

of these fields are determined from the equations given by the conservation of stress

tensor. There are four functions that are to be determined, three arising form the three

independent components of the unit normalized vector field uµ(x) and one from the scalar

field temperature, T (x). In 3+1 dimensions conservation of stress tensor is also equivalent
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to exactly four differential equations. Thus, given a set of initial or boundary conditions

for the four functions, the system is completely determined.

The constitutive relation of fluid dynamics expresses stress tensor as a function of these

four-velocity and temperature. It is generally a relation which depends on the microscopic

details of the theory and in usual situations where such microscopic description is not

available or not computable, this relation is determined phenomenologically in order to

match the experimental results.

Because fluid dynamics applies in a long wavelength limit, one can expand this constitutive

relation in terms of the derivatives of velocity and temperature. Successive terms have

more derivatives and therefore more suppressed. The symmetries of the theory largely

determines this expansion. For example in case of a conformal theory like the theory of

N = 4 SYM at each order in derivatives all terms are determined upto some numerical

constants. The determination of these constants requires a field theory calculation for

the strongly coupled system which can be performed using the duality. Weakly coupled

classical gravity calculation can provide these numbers.

There is a large literature for such computations [4–13], see [14] for a review and

comprehensive set of references.

As described before in the previous subsection a black-brane solution is dual to a fluid

in equilibrium. The velocity of the fluid uµ is dual to the unique Killing vector of the

black-brane solution which goes null on the Killing horizon and the temperature of the

fluid is given by the black-brane temperature .

At the first derivative order only one new term can occur in the stress tensor of a fluid with

conformal symmetry. The coefficient of this new term is related to the shear viscosity of

the fluid. The shear viscosity measures the rate at which first order transverse fluctuations

(small space-time dependent fluctuations in the direction perpendicular to the global

motion of the fluid ) dissipate into equilibrium. Such coefficients can be related to the

two point correlators of the stress tensor . Such two-point functions of stress tensor
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are computable in the dual picture of gravity using the usual AdS/CFT prescription.

In the gravity side one has to compute the on-shell bulk action when the asymptotic

AdS condition is perturbed by some fluctuation in the boundary metric in the transverse

direction (metric components in the directions transverse to r and time) . Since the

fluctuation appears in the action quadratically, for two point correlator it turns out that

it is enough to solve the bulk equations only at linear order . However as one goes higher

and higher order in derivative expansion, the number of possible terms in the stress tensor,

allowed by the symmetries of the theory, increases. For example at two derivative order for

a conformal uncharged fluid there are a total of five new terms. The transport coefficients

for these terms occurring at higher order in derivative expansion, are in principle, related

to some higher point correlators of the stress-tensor. But it becomes increasingly difficult

to determine these relations and then compute the correlators using the gravity dual,

where one needs to solve the bulk equation upto some non-linear orders.

However one might expect a more direct relation between gravity and hydrodynamic

states of the dual field theory.

The Stress-tensor operator has a unique expression when evaluated on each hydrodynamic

state of the field theory. General space-time translational invariance of the field theory

implies the conservation of this stress-tensor. According to the AdS/CFT prescription,

in gravity side this specifies the boundary value of the momentum corresponding to the

r evolution of the induced metric. Similarly the metric of the space-time on which the

field theory lives determines the boundary value of the induced metric itself. It has been

shown in [34] how, given any boundary metric and conserved stress tensor at r →∞ one

can integrate the Einstein equations inside the bulk and get the metric as an expansion

around r =∞ . It has also been proved that these two sets of boundary data (metric and

stress tensor) is sufficient to have a unique solution. Intuitively the Einstein equations

are second order differential equations in r for the induced metric on constant r slices

and therefore once the value of this induced metric and its corresponding momentum is
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defined on any r slice one can expect a unique solution. Thus, if Einstein equations are

viewed as a Hamiltonian system of r evolution, it is a completely determined system once

one has completely specified the dual field theory hydrodynamic state by providing the

expression for stress tensor and the boundary metric. This, on the other hand, implies

the existence of a unique gravity solution corresponding to each hydrodynamic state of

the field theory.

According to this argument any boundary data will give a unique gravity solution as

long as the boundary data satisfies the conservation equation. If we fix the boundary

metric to be flat, the boundary data will contain nine functions of the space-time given as

nine independent components of the four-dimensional traceless symmetric stress-tensor

(it is traceless because the theory is conformally invariant). But it is known that the

fluid dynamical data is always expressible in terms of four functions and their derivatives

whose evolution is completely determined by the four components of conservation equa-

tion. Therefore within gravity itself there should be some principle which will cut down

the admissible boundary data from nine to four functions, constrained by the conservation

law. This principle is provided by the condition of regularity.

As explained in the previous subsection the gravity solution has entered the near equi-

librium hydrodynamic regime due to the perturbation created at the boundary and for

a generic perturbation one does not expect a singularity to develop within those region

of the space time which is causally connected to the asymptotic infinity (ie. the bound-

ary of the AdS space). It turns out that the boundary data (ie. the stress tensor) that

can produce a regular bulk solution can be expressed in terms of four functions like a

hydrodynamic stress tensor. This makes a one-to-one correspondence between each four

dimensional uncharged hydrodynamic state of the field theory to a regular asymptotically

AdS metric in five dimension.

This condition of regularity imposes some sort of mixed boundary condition on the

solutions to the Einstein equations. For some part of the bulk metric, the boundary con-
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dition is determined only at r =∞ in the usual way ie. by specifying the induced metric

and the relevant part of the stress tensor. In these sectors the solution is automatically

regular, whereas for the rest of the metric the two sets of required boundary conditions

are provided by specifying the induced metric at r = ∞ and the condition of regularity

at the other causal end of the bulk space-time that is the horizon. As mentioned before,

once these two conditions are satisfied at both ends in this sector the stress tensor is com-

pletely determined in terms of the data provided in the other sectors and thus removing

the unphysical non-hydrodynamic modes from the solution.

It turns out that one can formulate an algorithm to solve the gravity system of Einstein

equations with negative cosmological constant which can be implemented order by order

in a derivative expansion.The zeroth order solution is same as the black-brane solution

but with a slowly varying velocity and temperature. At each order the metric receives

new corrections to take care of the higher order space-time derivatives of uµ(x) and T (x),

the parameters of the zeroth order solution. At each order one can evaluate the stress

tensor at infinity. This provides a way to compute all the transport coefficients for the

fluid which is dual to the particular gravity system being solved. In our case it is the fluid

of N = 4 supersymmmetric Yang-Mill’s theory.

1.2.4 Entropy current for the near equilibrium solution

The entropy of the black-brane solution is proportional to the horizon area which is also

equal to the entropy density of the dual Yang-Mill’s theory on R(3,1). For a solution in

equilibrium the entropy density (denoted by s) is constant on both sides and one can

define an entropy current, given by entropy density times velocity, which is divergenceless

if the zeroth order stress tensor is conserved.

For a near equilibrium system one can also try to define an entropy current which need not

be divergenceless. But the divergence of this current should always be positive according

to the second law of thermodynamics. The value of this divergence will give a measure
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for the entropy production as the system approaches towards equilibrium.

As explained in the previous subsection, a near equilibrium hydrodynamic system behaves

as if in equilibrium over length scale of mean free path. Therefore over this length scale

the entropy current also should reduce to its local equilibrium value and in a fluid system

one could expect that the expression for the entropy current is also expressible in deriva-

tive expansion at each point in space-time. Further, for a conformally invariant fluid like

the one that we are considering here, this expression should have a fixed transformation

property under conformal transformation ie. it should transform covariantly at all orders

in derivative expansion. But even after imposing all these constraints together the ex-

pression for entropy current for a conformally invariant fluid is not uniquely determined.

The gravity solution provides a very natural construction of an entropy current for the

dual fluid living on the boundary. In a non-static solution for Einstein equations it is the

horizon area that is always increasing as proved in the area-increase theorem in gravity.

Therefore this can be pulled back to the boundary and can be identified with a choice of

entropy current for the dual fluid. It is a two step process. The first step involves finding

the location of the horizon for the non-static solution and determining the ever-increasing

area form on a spacelike slice of the horizon. The second step involves the pull-back of

this area form to the boundary. Both of these two steps can be performed order by order

in derivative expansion provided the fluid at infinite future approaches global equilibrium.

This last assumption is true for a generic situation because of the dissipative nature of

the equations governing the fluid motion. Because of this assumption it is possible to

determine the horizon (the unique null hypersurface that asymptotes to the horizon of a

static black-brane solution at infinite future) in a local fashion, which otherwise requires

the explicit global solution at all future time.

In this thesis chapter 2 describes the collapse situation which is mentioned in subsec-

tion 1.2.2. In chapter 3 we have described the detail algorithm of how to construct the

fluid -gravity duality in a near equilibrium situation. This has been briefly described in
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subsection 1.2.3. The topic of the last subsection 1.2.4 is described in detail in chapter 4.
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Chapter 2

Weak Field Black Hole Formation

This chapter is based on [1].

In this chapter we use the gravitational dynamics to study field theory processes which

are far from equilibrium. The field theory is perturbed by turning on some marginal

operator for a very small duration. As a consequence of strong interaction the system

then rapidly evolves to local thermal equilibrium. The dynamics of this equilibration

is dual to the process of black hole formation via gravitational collapse. Gravitational

collapse is fascinating in its own right but it gains additional interest in asymptotically

AdS spaces because of its link to the field theory.

An AdS collapse process that could result in black hole formation may be set up,

following Yaffe and Chesler [15], as follows . Consider an asymptotically locally AdS

spacetime, and let R denote a finite patch of the conformal boundary of this spacetime.

We choose our spacetime to be exactly AdS outside the causal future of R. On R we turn

on the non normalizable part of a massless bulk scalar field. This boundary condition

sets up an ingoing shell of the corresponding field that collapses in AdS space. Under

appropriate conditions the subsequent dynamics can result in black hole formation.
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2.1 Translationally invariant collapse in AdS

In this section we study asymptotically planar (Poincare patch) AdSd+1 solutions to nega-

tive cosmological constant Einstein gravity interacting with a minimally coupled massless

scalar field (note that this system obeys the null energy condition). We focus on solutions

in which the boundary value of the scalar field takes a given functional form φ0(v) in the

interval (0, δt) but vanishes otherwise. The amplitude of φ0(v) (which we schematically

refer to as ε below) will be taken to be small in most of this section. The boundary dual

to our setup is a d dimensional conformal field theory on Rd−1,1, perturbed by a spatially

homogeneous and isotropic source function, φ0(v), multiplying a marginal scalar operator.

Note that our boundary conditions preserve an Rd−1×SO(d−1) symmetry (the Rd−1

factor is boundary spatial translations while the SO(d−1) is boundary spatial rotations).

In this section we study solutions on which Rd−1 o SO(d− 1) lifts to an isometry of the

full bulk spacetime. In other words the spacetimes studied in this section preserve the

maximal symmetry allowed by our boundary conditions. As a consequence all bulk fields

in our problem are functions of only two variables; a radial coordinate r and an Eddington

Finkelstein ingoing time coordinate v. The chief results of this section are as follows:

• The boundary conditions described above result in black brane formation for an

arbitrary (small amplitude) source functions φ0(v).

• Outside the event horizon of our spacetime, we find an explicit analytic form for

the metric as a function of φ0(v). Our metric is accurate at leading order in the ε

expansion, and takes the Vaidya form (0.1.1) with a mass function that we determine

explicitly as a function of time.

• In particular, we find that the energy density of the resultant black brane is given,

to leading order, by

C2 =
2d−1

(d− 1)

(
(d−1

2
)!

(d− 1)!

)2 ∫ ∞
−∞

((
∂
d+1
2

t φ0(t)
)2
)

(2.1.1)
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in odd d and by

C2 = − d2

(d− 1)2d
1(
d
2
!
)2

∫
dt1dt2∂

d+2
2

t1 φ0(t1) ln(t1 − t2)θ(t1 − t2)∂
d+2
2

t2 φ0(t2) (2.1.2)

in even d. Note that, in each case, C2 ∼ ε2

(δt)d
.

• We find an explicit expression for the event horizon of the resultant solutions, at

leading order, and thereby demonstrate that singularities formed in the process of

black brane formation are always shielded by a regular event horizon at small ε.

• Perturbation theory in the amplitude ε yields systematic corrections to this leading

order metric. We unravel the structure of this perturbation expansion in detail and

compute the first corrections to the leading order result.

While every two derivative theory of gravity that admits an AdS solutions admits a

consistent truncation to Einstein gravity with a negative cosmological constant, the same

statement is clearly not true of gravity coupled to a minimally coupled massless scalar field.

It is consequently of considerable interest to note that results closely analogous to those

described above also apply to the study of Einstein gravity with a negative cosmological

constant. In § 2.4 we analyze the process of black brane formation by gravitational wave

collapse in the theory of pure gravity (similar to the set up of [15]), and find results that

are qualitatively very similar to those reported in this section. The solutions of § 2.4

yield the dual description of a class of thermalization processes in every 3 dimensional

conformal field theory that admits a dual description as a two derivative theory of gravity.

In fact, the close similarity of the results of § 2.4 with those of this section, lead us to

believe that the results reported in this section are qualitatively robust. In particular

we think it is very likely that results of this section will qualitatively apply to the most

general small amplitude translationally invariant collapse process in the systems we study.
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2.1.1 The set up

Consider a minimally coupled massless scalar (the ‘dilaton’) interacting with negative

cosmological constant Einstein gravity in d+ 1 spacetime dimensions

S =

∫
dd+1x

√
g

(
R− d(d− 1)

2
− 1

2
(∂φ)2

)
(2.1.3)

The equations of motion that follow from the Lagrangian (2.1.3) are

Eµν ≡ Gµν −
1

2
∂µφ∂νφ+ gµν

(
−d(d− 1)

2
+

1

4
(∂φ)2

)
= 0

∇2φ = 0

(2.1.4)

where the indices µ, ν range over all d+ 1 spacetime coordinates. As mentioned above, in

this section we are interested in locally asymptotically AdSd+1 solutions to these equations

that preserve an Rd−1 × SO(d− 1) symmetry group. This symmetry requirement forces

the boundary metric to be Weyl flat (i.e. Weyl equivalent to flat Rd−1,1); however it allows

the boundary value of the scalar field to be an arbitrary function of boundary time v. We

choose this function as

φ0(v) = 0 (v < 0)

φ0(v) < ε (0 < v < δt)

φ0(v) = 0 (v > δt)

(2.1.5)

(we also require that φ0(v) and its first few derivatives are everywhere continuous.1).

Everywhere in this chapter we adopt the ‘Eddington Finkelstein’ gauge grr = gri = 0

and grv = 1. In this gauge, and subject to our symmetry requirement, our spacetime

takes the form

ds2 = 2drdv − g(r, v)dv2 + f 2(r, v)dx2
i

φ = φ(r, v).
(2.1.6)

1We expect that all our main physical conclusions will continue to apply if we replace our φ0 - which

is chosen to strictly vanish outside (0, δt) - by any function that decays sufficiently rapidly outside this

range.
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The mathematical problem we address in this subsection is to solve the equations of

motion (2.1.4) for the functions φ, f and g, subject to the pure AdS initial conditions

g(r, v) = r2 (v < 0)

f(r, v) = r (v < 0)

φ(r, v) = 0 (v < 0)

(2.1.7)

and the large r boundary conditions

lim
r→∞

g(r, v)

r2
= 1

lim
r→∞

f(r, v)

r
= 1

lim
r→∞

φ(r, v) = φ0(v)

(2.1.8)

The Eddington Finkelstein gauge we adopt in this chapter does not completely fix gauge

redundancy (see [15] for a related observation). The coordinate redefinition r = r̃ + h(v)

respects both our gauge choice as well as our boundary conditions. In order to completely

define the mathematical problem of this section, we must fix this ambiguity. We have

assumed above that f(r, v) = r + O(1) at large r. It follows that under the unfixed

diffeomorphism, f(r, v) → f(r, v) + h(v) + O(1/r). Consequently we can fix this gauge

redundancy by demanding that f(r, v) ≈ r +O(1/r) at large r. We make this choice in

what follows. As we will see below, it then follows from the equations of motion that

g(r) = r2 +O(1). Consequently, the boundary conditions (2.1.8) on the fields g, f and φ,

may be restated in more detail as

g(r, v) = r2

(
1 +O(

1

r2
)

)
f(r, v) = r

(
1 +O(

1

r2
)

)
φ(r, v) = φ0(v) +O(

1

r
)

(2.1.9)

Equations (2.1.4), (2.1.6), (2.1.7) and (2.1.9) together constitute a completely well de-

fined dynamical system. Given a particular forcing function φ0(v), these equations and

boundary conditions uniquely determine the functions φ(r, v), g(r, v) and f(r, v).
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2.1.2 Structure of the equations of motion

The nonzero equations of motion (2.1.4) consist of four nontrivial Einstein equations Err,

Erv, Evv and
∑

iEii (where the index i runs over the d − 1 spatial directions) together

with the dilaton equation of motion. For the considerations that follow below, we will

find it convenient to study the following linear combinations of equations

E1
c = gvµEµr

E2
c = gvµEµv

Eec = grµEµr

Ed =
d−1∑
i=1

Eii

Eφ = ∇2φ

(2.1.10)

Note that the equations E1
c and E2

c are constraint equations from the point of view of v

evolution.

It is possible to show that Ed and d(rEec)
dr

both automatically vanish whenever E1
c =

E2
c = Eφ = 0. This implies that this last set of three independent equations - supple-

mented by the condition that rEec = 0 at any one value of r - completely exhaust the

dynamical content of (2.1.4). As a consequence, in the rest of this chapter we will only

bother to solve the two constraint equations and the dilaton equation, but take care to

simultaneously ensure that rEec = 0 at some value of r. It will often prove useful to

impose the last equation at arbitrarily large r. This choice makes the physical content of

rEec = 0 manifest; this is simply the equation of energy conservation in our system. 2

2It turns out that both Ed and the dilaton equation of motion are automatically satisfied whenever

Eec together with the two Einstein constraint equations are satisfied. Consequently Eec plus the two

Einstein constraint equations form another set of independent equations. This choice of equations has

the advantage that it does not require the addition of any additional condition analogous to energy

conservation. However it turns out to be an inconvenient choice for implementing the ε expansion of this

chapter, and we do not adopt it in this chapter.
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Explicit form of the constraints and the dilaton equation

With our choice of gauge and notation the dilaton equation takes the minimally coupled

form

∂r
(
fd−1g∂rφ

)
+ ∂v

(
fd−1∂rφ

)
+ ∂r

(
fd−1∂vφ

)
= 0 (2.1.11)

Appropriate linear combinations of the two constraint equations take the form

(∂rφ)2 = −2(d− 1)∂2
rf

f

∂r
(
fd−2g∂rf + 2fd−2∂vf

)
= fd−1d

(2.1.12)

Note that the equations (2.1.12) (together with boundary conditions and the energy

conservation equation) permit the unique determination of f(r, v0) and g(r, v0) in terms

of φ(r, v0) and φ̇(r, v0) (where v0 is any particular time). It follows that f and g are

not independent fields. A solution to the differential equation set (2.1.11) and (2.1.12) is

completely specified by the value of φ on a constant v slice (note that the equations are

all first order in time derivatives, so φ̇ on the slice is not part of the data of the problem)

together with the boundary condition φ0(v).

2.1.3 Explicit form of the energy conservation equation

In this section we give an explicit form for the equation Eec = 0 at large r. We specialize

here to d = 3 but see § 2.5.1 for arbitrary d. Using the Graham Fefferman expansion to

solve the equations of motion in a power series in 1
r

we find

f(r, v) = r

(
1− φ̇0

2

8r2
+

1

r4

(
1

384
(φ̇0)4 − 1

8
L(v)φ̇0

)
+O(

1

r5
)

)

g(r, v) = r2

(
1− 3(φ̇0)2

4r2
− M(v)

r3
+O(

1

r4
)

)

φ(r, v) = φ0(v) +
φ̇0

r
+
L(v)

r3
+O(

1

r4
)

(2.1.13)
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where the functions M(v) and L(v) are undetermined functions of time that are, however,

constrained by the energy conservation equation Eec, which takes the explicit form

Ṁ = φ̇0

(
3

8
(φ̇0)3 − 3L

2
− 1

2

...
φ 0.

)
(2.1.14)

In all the equations in this subsection and in the rest of the chapter, the symbol Ṗ denotes

the derivative of P with respect to our time coordinate v. Solving for M(v) we have

M(v) =
1

2

∫ v

0

dt

((
φ̈0

)2

+
3

4

(
φ̇0

)4

− 3φ̇0L(t)

)
(2.1.15)

3

2.1.4 The metric and event horizon at leading order

Later in this section we will solve the equations of motion (2.1.11), (2.1.12) and (2.1.14)

in an expansion in powers of ε, the amplitude of the forcing function φ0(v). In this

subsection we simply state our result for the spacetime metric at leading order in ε. We

3We note parenthetically that (2.1.14) may be rewritten as

Ṫ 0
0 =

1

2
φ̇0L (2.1.16)

where the value L of the operator dual to the scalar field φ and the stress tensor Tαβ are given by

L ≡ lim
r→∞

r3
(
∂nφ+ ∂2φ

)
Tµν = lim

r→∞
r3
(
Kµ
ν − (K − 2)δµν − Gµν +

∂µφ∂νφ

2
− (∂φ)2δµν

4

)
.

(2.1.17)

Where

Kµ
ν = Extrinsic curvature of the constant r surfaces, K = Kµ

µ

Gµν = Einstein tensor evaluated on the induced metric of the constant r surfaces
(2.1.18)

yielding

T 0
0 = −2T xx = −2T yy = M(v)

L =
3

4
φ̇30 − 3L(v)− ∂3vφ0

(2.1.19)
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then proceed to compute the event horizon of our spacetime to leading order in ε. We

present the computation of the event horizon of our spacetime before actually justifying

the computation of the spacetime itself for the following reason. In the subsections below

we will aim to construct the spacetime that describes black hole formation only outside the

event horizon. For this reason we will find it useful below to have a prior understanding

of the location of the event horizon in the spacetimes that emerge out of perturbation

theory.

We will show below that to leading order in ε, our spacetime metric takes the Vaidya

form (0.1.1). The mass function M(v) that enters this Vaidya metric is also determined

very simply. As we will show below, it turns out that L(v) ∼ O(ε3) on our perturbative

solution. It follows immediately from (2.1.15) that the mass function M(v) that enters

the Vaidya metric, is given to leading order by

M(v) = C2(v) +O(ε4)

C2(v) = −1

2

∫ v

−∞
dtφ̇0(t)

...
φ 0(t)

(2.1.20)

(Here C2 is the approximation to the mass density, valid to second order in the amplitude

expansion, see below).

Note that, for v > δt, C2(v) reduces to a constant M = C2 given by

C2 =
1

2

∫ ∞
−∞

dt
(
φ̈0(t)

)2

∼ ε2

(δt)3
(2.1.21)

In the rest this subsection we proceed to compute the event horizon of the leading

order spacetime (0.1.1) in an expansion in ε
2
3 expansion. Let the event horizon manifold

of our spacetime be given by the surface S ≡ r − rH(v) = 0. As the event horizon is a

null manifold, it follows that ∂µS∂νSg
µν = 0, and we find

drH(v)

dv
=
r2
H(v)

2

(
1− M(v)

r3
H(v)

)
(2.1.22)

As M(v) reduces to the constant M = C2 for v > δt, it follows that the event horizon

must reduce to the surface rH = M
1
3 at late times. It is then easy to solve (2.1.22) for
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v < 0 and v > δt; we find

rH(v) = M
1
3 , v ≥ δt

rH(v) = M
1
3x(

v

δt
), 0 < v < δt

1

rH(v)
= −v +

1

M
1
3x(0)

, v ≤ 0

(2.1.23)

where x(y) obeys the differential equation

dx

dy
= α

x2

2

(
1− M(yδt)

Mx3

)
α = M

1
3 δt ∼ ε

2
3

(2.1.24)

and must be solved subject to the final state conditions x = 1 for y = 1. (2.1.24) is easily

solved in a perturbation series in α. We set

x(y) = 1 +
∑
n

αnxn(y) (2.1.25)

and solve recursively for xn(t). To second order we find4

x1(y) = −
∫ 1

y

dz

(
1− M(zδt)

M

2

)

x2(y) = −
∫ 1

y

dz x1(z)

(
1 +

M(zδt)

2M

) (2.1.26)

In terms of which

rH(v) = M
1
d

(
1 + α x1(

v

δt
) + α2x2(

v

δt
) +O(α3)

)
(0 < v < δt) (2.1.27)

Note in particular that, to leading order, rH(v) is simply given by the constant M
1
3

for all v > 0.

4In this section we only construct the event horizon for the Vaidya metric. The actual metrics of

interest to this chapter receive corrections away from the Vaidya form, in powers of Mδt. Consequently,

the event horizons for the actual metrics determined in this chapter will agree with those of this subsection

only at leading order in Mδt. The determination of the event horizon of the Vaidya metric at higher

orders in Mδt, is an academic exercise that we solve in this subsection largely because it illustrates the

procedure one could adopt on the full metric.
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2.1.5 Formal structure of the expansion in amplitudes

In this subsection we will solve the equations (2.1.11), (2.1.12) and (2.1.14) in a pertur-

bative expansion in the amplitude of the source function φ0(v). In order to achieve this

we formally replace φo(v) with εφ0(v) and solve all equations in a power series expansion

in ε. At the end of this procedure we can set the formal parameter ε to unity. In other

words ε is a formal parameter that keeps track of the homogeneity of φ0. Our perturbative

expansion is really justified by the fact that the amplitude of φ0 is small.

In order to proceed with our perturbative procedure, we set

f(r, v) =
∞∑
n=0

εnfn(r, v)

g(r, v) =
∞∑
n=0

εngn(r, v)

φ(r, v) =
∞∑
n=0

εnφn(r, v)

(2.1.28)

with

f0(r, v) = r, g0(r, v) = r2, φ0(r, v) = 0. (2.1.29)

We then plug these expansions into the equations of motion, expand these equations in a

power series in ε, and proceed to solve these equations recursively, order by order in ε.

The formal structure of this procedure is familiar. The coefficient of εn in the equations

of motion take the schematic form

H i
jχ

j
n(r, v)) = sin (2.1.30)

Here χiN stands for the three dimensional ‘vector’ of nth order unknowns, i.e. χ1
n = fn,

χ2
n = gn and χ3

n = φn. The differential operator H i
j is universal (in the sense that it is the

same at all n) and has a simple interpretation; it is simply the operator that describes

linearized fluctuations about AdS space. The source functions sin are linear combinations

of products of χim (m < n) ; the sum over m over fields that appear in any particular

term adds up to n.
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The equations (2.1.30) are to be solved subject to the large r boundary conditions

lim
r→∞

φ1(r, v) = φ0(r)

φn(r, v) ≤ O(1/r), n ≥ 2

fn(r, v) ≤ O(1/r), n ≥ 1

gn(r, v) ≤ O(r), n ≥ 1

(2.1.31)

together with the initial conditions

φn(r, v) = gn(r, v) = fn(r, v) = 0 for v < 0 (n ≥ 1) (2.1.32)

These boundary and initial conditions uniquely determine φn, gn and fn in terms of the

source functions.

All sources vanish at first order in perturbation theory (i.e the functions si1 are zero).

Consequently, the functions f1 and g1 vanish but φ1 is forced by its boundary condition

to be nonzero. As we will see below, it is easy to explicitly solve for the function φ1.

This solution, in turn, completely determines the source functions at O(ε2) and so the

equations (2.1.30) unambiguously determine g2, φ2 and f2. This story repeats recursively.

The solution to perturbation theory at order n − 1 determine the source functions at

order n and so permits the determination of the unknown functions at order n. The final

answer, at every order, is uniquely determined in terms of φ0(v).

To end this subsection, we note a simplifying aspect of our perturbation theory. It

follows from the structure of the equations that φn is nonzero only when n is odd while

fm and gm are nonzero only when m is even. We will use this fact extensively below.

2.1.6 Explicit results for naive perturbation theory to fifth order

We have implemented the naive perturbative procedure described above to O(ε5). Before

proceeding to a more structural discussion of the nature of the perturbative expansion,

we pause here to record our explicit results.
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At leading (first and second) order we find

φ1(r, v) = φ0(v) +
φ̇0

r

f2(r, v) = − φ̇
2
0

8r

g2(r, v) = −C2(v)

r
− 3

4
φ̇2

0

(2.1.33)

At the next order

φ3(r, v) =
1

4r3

∫ v

−∞
B(x) dx

f4(r, v) =
φ̇0

384r3

{
φ̇3

0 − 12

∫ v

−∞
B(x) dx

}
g4(r, v) =

C4(v)

r
+

φ̇0

24r2

{
−φ̇3

0 + 3

∫ v

−∞
B(x) dx

}
+

1

48r3

(
3B(v)φ̇0 − 4φ̇3

0φ̈0 + 3φ̈0

∫ ∞
v

B(t)dt

)
(2.1.34)

while φ5 is given by

φ5(r, v) =
1

8r5

∫ v

−∞
B1(x) dx

+
1

6r4

∫ v

−∞
B3(x) dx+

5

24r4

∫ v

−∞
dy

∫ y

−∞
B1(x) dx

+
1

4r3

∫ v

−∞
B2(x) dx+

1

6r3

∫ v

−∞
dy

∫ y

−∞
B3(x) dx

+
5

24r3

∫ v

−∞
dz

∫ z

−∞
dy

∫ y

−∞
B1(x) dx

(2.1.35)

In the equations above

B(v) = φ̇0

[
−C2(v) + φ̇0φ̈0

]
B1(v) =

(
−9

4
C2(v) +

7

8
φ̇0φ̈0

)∫ v

−∞
B(x) dx

+
1

2
C2(v)φ̇3

0 +
3

8
φ̇2

0B(v)− 1

6
φ̇4

0φ̈0

B2(v) = C4(v)φ̇0

B3(v) =
1

24

(
−30φ̇2

0

∫ v

−∞
B(x) dx+ 7φ̇5

0

)
(2.1.36)
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and the energy functions C2(v) and C4(v) (obtained by integrating the energy conservation

equation) are given by

C2(v) =−
∫ v

−∞
dt

1

2
φ̇0

...
φ 0

C4(v) =

∫ v

−∞
dt

3

8
φ̇0

(
−φ̇3

0 +

∫ t

−∞
B(x) dx

) (2.1.37)

For use below, we note in particular that at v = δt the mass of the black brane is

given by C2(δt)− C4(δt) +O(ε6) while the value of the dilaton field is given by

φ(r, δt) =
1

4r3

∫ δt

−∞
B(x) dx

+
1

4r3

∫ δt

−∞
B2(x) dx+

1

6r3

∫ δt

−∞
dy

∫ y

−∞
B3(x) dx

+
5

24r3

∫ δt

−∞
dz

∫ z

−∞
dy

∫ y

−∞
B1(x) dx

+
5

24r4

∫ δt

−∞
dy

∫ y

−∞
B1(x) dx+

1

6r4

∫ δt

−∞
B3(x) dx

+
1

8r5

∫ δt

−∞
B1(x) dx +O(ε7)

(2.1.38)

2.1.7 The analytic structure of the naive perturbative expansion

In this subsection we will explore the analytic structure of the naive perturbation ex-

pansion in the variables v (for v > δt) and r. It is possible to inductively demonstrate

that

• 1. The functions φ2n+1, g2n+2 and f2n+2 have the following analytic structure in the

variable r

φ2n+1(r, v) =
2n−2∑
k=0

φk2n+1(v)

r2n+1−k , (n ≥ 2)

f2n(r, v) = r
2n−6∑
k=0

fk2n(v)

r2n−k , (n ≥ 3)

g2n(r, v) =
C2n(δt)

r
+ r

2n−5∑
k=0

gk2n−3(v)

r2n−k , (n ≥ 3)

(2.1.39)
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Moreover, when v > δt φ1(r, v) = f2(r, v) = f4(r, v) = 0 while g2(r, v) = −C2(δt)
r

and

g4(r, v) = C4(δt)
r

.

• 2. The functions φk2n+1(v), fk2n(v) and gk2n(v) are each functionals of φ0(v) that scale

like λ−2n−1+k, λ−2n+k and λ−2n+k−1 respectively under the scaling v → λv.

• 3. For v > δt the functions φk2n+1(v) are all polynomials in v of a degree that grows

with n. In particular the degree of φk2n+1 at most n− 1 + k; the degree of fk2n is at

most n− 3 + k and the degree of gk2n is at most n− 4 + k.

The reader may easily verify that all these properties hold for the explicit low order

solutions of the previous subsection.

2.1.8 Infrared divergences and their cure

The fact that φ2n+1(v) are polynomials in time whose degree grows with n immediately

implies that the naive perturbation theory of the previous subsection fails at late positive

times. We pause to characterize this failure in more detail. As we have explained above,

the field φ(r, v) schematically takes the form∑
n,k

ε2n+1φk2n+1

r2n+1−k

where φk2n+1 ∼ vn−1+k

(δt)3n
at large times. Let us examine this sum in the vicinity r ∼ ε

2
3

δt
,

a surface that will turn out to be the event horizon of our solution. The term with

labels n, k scales like ε × (ε
2
3
v
δt

)n−1+k. Now ε
2
3

δt
= T is approximately the temperature of

a black brane of event horizon rH . We conclude that the term with labels n, k scales like

(vT )n−1+k. It follows that, at least in the vicinity of the horizon, the naive expansion for

φ is dominated by the smallest values of n and k when δtT � 1. On the other hand, at

times large compared to the inverse temperature, this sum is dominated by the largest

values of k and n. As the sum over n runs to infinity, it follows that naive perturbation

theory breaks down at time scales of order T−1.
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A long time or IR divergence in perturbation theory usually signals the fact that

the perturbation expansion has been carried out about the wrong expansion point; i.e.

the zero order ‘guess’ with which we started perturbation (empty AdS space) does not

everywhere approximate the true solution even at arbitrarily small ε. Recall that naive

perturbation theory is perfectly satisfactory for times of order δv so long as r � ε
δt

.

Consequently this perturbation theory may be used to check if our spacetime metric

deviates significantly from the pure AdS in this range of r and at these early times. The

answer is that it does, even in the limit ε → 0. In order to see precisely how this comes

about, note that the most singular term in g2n is of order r × 1
r2n

for n ≥ 1, the exact

value of g0 = r2 = (r× 1
r0
× r). In other words g0 happens to be less singular, near r = 0,

than one would expect from an extrapolation of the singularity structure of gn at finite

n down to n = 0. As a consequence, even though g0 is of lowest order in ε, at small

enough r it is dominated by the most singular term in g2(r, v). Moreover this crossover in

dominance occurs at r ∼ ε
2
3

δt
� ε

δt
and so occurs well within the domain of applicability of

perturbation theory. In other words, in the variable range r � ε
δt

, g(r, v) is not uniformly

well approximated by g0 = r2 at small ε but instead by

g(r, v) ≈ r2 − C2(v)

r
.

This implies that, in the appropriate parameter range, the true metric of the spacetime is

everywhere well approximated by the Vaidya metric (0.1.1), with M(v) given by (2.1.20)

in the limit ε→ 0.

Of course even this corrected estimate for g(r, v) breaks down at r ∼ ε
δt

. However,

as we have indicated above, this will turn out to be irrelevant for our purposes as our

spacetime develops an event horizon at r ∼ ε
2
3

δt
.

We will now proceed to argue that the metric is well approximated by the Vaidya

form at all times (not just at early times) outside its event horizon, so that the Vaidya

metric (0.1.1) rather than empty AdS space, constitutes the correct starting point for the

perturbative expansion of our solution.
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2.1.9 The metric to leading order at all times

The dilaton field and spacetime metric begin a new stage in their evolution at v = δt. At

later times the solution is a normalizable, asymptotically AdS solution to the equations

of motion. This late time motion is unforced and so is completely determined by two

pieces of initial data; the mass density M(δt) and the dilaton function φ(r, δt). As the

naive perturbation expansion described in subsection 2.1.7 is valid at times of order δt,

it determines both these quantities perturbatively in ε. The explicit results for these

quantities, to first two nontrivial orders in ε, are listed in (2.1.38).

The leading order expression for the mass density is simply given by C2 in (2.1.20).

Now if one could ignore φ(r, δt) (i.e. if this function were zero) this initial condition

would define a unique, simple subsequent solution to Einstein’s equations; the uniform

black brane with mass density C2. While φ(r, δt) is not zero, we will now show it induces

only a small perturbation about the black brane background.

In order to see this it is useful to move to a rescaled variable r̃ = r

C
1
3
2

. In terms of this

rescaled variable, our solution at v = δt is a black brane of unit energy density, perturbed

by φ(r, δt). With this choice of variable the background metric is independent of ε, so

that all ε dependence in our problem lies in the perturbation. It follows that, to leading

order in ε ( recall φ1(r, δt) = 0)

φ(r, δt) =
φ0

3(δt)

r3

(
1 +O(ε

2
3 )
)

=
1

r̃3
× φ0

3(δt)

M

(
1 +O(ε

2
3 )
)
∼ ε

r̃3
(2.1.40)

where, from subsection 2.1.6

φ0
3(δt) =

1

4

∫ δt

−∞
B(x) dx (2.1.41)

The important point here is that the perturbation is proportional to ε and so represents

a small deformation of the dilaton field about the unit energy density black brane initial

condition. Moreover, any regular linearized perturbation about the black brane may be

re expressed as a linear sum of quasinormal modes about the black brane and so decays
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exponentially over a time scale of order the inverse temperature. It follows that the

initialy small dilaton perturbation remains small at all future times and in fact decays

exponentially to zero over a finite time. The fact that perturbations about the Vaidya

metric (0.1.1) are bounded both in amplitude as well as in temporal duration allows us to

conclude that the event horizon of the true spacetime is well approximated by the event

horizon of the Vaidya metric at small ε, as described in subsection 2.1.4.

2.1.10 Resummed versus naive perturbation theory

Let us define a resummed perturbation theory which uses the corrected metric (0.1.1)

(rather than the unperturbed AdS metric) as the starting point of an amplitude expansion.

This amounts to correcting the naive perturbative expansion by working to all orders in

M ∼ ε2, while working perturbatively in all other sources of ε dependence. 5 As we have

argued above, resummed perturbation theory (unlike its naive counterpart) is valid at all

times.

We have seen above that the naive perturbation theory gives reliable results when

vT � 1. This fact has a simple ‘explanation’; we will now argue that the resummed

perturbation theory (which is always reliable at small ε) agrees qualitatively with naive

perturbation theory vT � 1.

At each order, resummed perturbation theory involves solving the equation

∂r

[
r4

(
1− M(v)

r3

)
∂rφ

]
+ 2r∂v∂r(rφ) = source (2.1.42)

The naive perturbation procedure requires us to solve an equation of the same form but

with M set to zero. In the vicinity of the horizon, the two terms in the expression

5This is conceptually similar to the coupling constant expansion in finite temperature weak coupling

QED. There, as in our situation, naive perturbation theory leads to IR divergences, which are cured upon

exactly accounting for the photon mass (which is of order g2YM ). Resummed perturbation theory in that

context corresponds to working with a modified propagator which effectively includes all order effects in

the photon mass, while working perturbatively in all other sources of the fine structure constant α.
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(1− M(v)
r3

) are comparable, so that the resummed and naive perturbative expansions can

agree only when the entire first term on the LHS of (2.1.42) is negligible compared to

the second term on the LHS of the same equation. The ratio of the first term to the

second may be approximated by rv where v is the time scale for the process in question.

Now the term multiplying the mass in (2.1.42) is only important in the neighborhood

of the horizon, where r ∼ M
1
3 ∼ T where T is the temperature of the black brane. It

follows that resummed and naive perturbation expansions will differ substantially from

each other only at time scales of order and larger than the inverse temperature.

Let us restate the point in a less technical manner. The evolution of a field φ, outside

the horizon of a black brane of temperature T , is not very different from the evolution of

the same field in Poincare patch AdS space, over time scales v where vT � 1. However

the two motions differ significantly over time scales of order or greater than the inverse

temperature. In particular, in the background of the black brane, the field φ outside

the horizon decays exponentially with time over a time scale set by the inverse temper-

ature; i.e. the solution involves factors like e−vT . As the temperature is itself of order

ε
2
3 , naive perturbation theory deals with these exponentials by power expanding them.

Truncating to any finite order then gives apparently divergent behavior at large times.

Resummed perturbation theory makes it apparent that these divergences actually resum

into completely convergent, decaying, exponentials.

2.1.11 Resummed perturbation theory at third order

In the previous subsection we have presented explicit results for the behavior of the dilaton

and metric fields, at small ε and for early times vM
1
3 � 1. The resummed perturbation

theory outlined in this section may be used to systematically correct the leading order

spacetime (0.1.1) at all times, in a power series in ε
2
3 . In this section we explicitly evaluate

the leading order correction in terms of a universal (i.e. φ0 independent) function ψ(x, y),

whose explicit form we are able to determine only numerically.
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Let us define the function ψ(x, y) as the unique solution of the differential equation

∂x

(
x4

(
1− 1

x3

)
∂xψ

)
+ 2x∂y∂x (xψ) = 0 (2.1.43)

subject to the boundary condition ψ ∼ O( 1
x3

) at large x and the initial condition ψ(x, 0) =

1
x3

. The leading order solution to the resummed perturbation theory for φ, for v > δt, is

given by

φ =
φ0

3(δt)

M
ψ(

r

M
1
3

, (v − δt)M
1
3 ) (2.1.44)

Unfortunately, the linear differential equation (2.1.43) - appears to be difficult to solve

analytically. In this section we present a numerical solution of (2.1.43). Although we are

forced to resort to numerics to determine ψ(x, y), we emphasize that a single numerical

evaluation suffices to determine the leading order solution at all values of the forcing

function φ0(v). This may be contrasted with an ab initio numerical approach to the full

nonlinear differential equations, which require the re running of the full numerical code

for every initial function φ0. In particular the ab initio numerical method cannot be used

to prove general statements about a wide class of forcing functions φ0.

In Figure 2.1 we present a plot of ψ( 1
u
, y) against the variables u and y. The exterior

of the event horizon lives in the compact interval 1
x

= u ∈ (0, 1), and in our figure y runs

from zero to three.

In order to obtain this plot we rewrote the differential equation (2.1.43) in terms of

the variable u = 1
x

(as explained above) and worked with the field variable χ(u, y) =

(1 − u)ψ( 1
u
, y). Recall that our original field ψ is expected to be regular at the horizon

u = 1 at all times. This expectation imposes the boundary condition χ(.999999, y) = 0.

We further imposed the condition of normalizability χ(0, y) = 0 and the initial condition

χ(u, 0) = (0.999999−u)u3. Of course 0.999999 above is simply a good approximation to 1

that avoids numerical difficulties at unity. The partial differential equation solving routine

of Mathematica-6 was able to solve our equation subject to these boundary and initial

conditions, with a step size of 0.0005 and an accuracy goal of 0.001; we have displayed this

Mathematica output in figure 2.1. In order to give a better feeling for the function ψ(x, y)
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Figure 2.1: Numerical solution for dilaton to the leading order in amplitude at late time
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in figure 2.2 we present a graph of ψ( 1
0.7
, y) (i.e. as a function of time at a fixed radial

location). Notice that this graph decays, roughly exponentially for v > 0.5 and that this

0.5 1.0 1.5 2.0 2.5 3.0

y

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ΨH1.42857, yL

Figure 2.2: A plot of ψ( 1
0.7
, y) as a function of y

exponential decay is dressed with a sinusodial osciallation, as expected for quasinormal

type behavior. A very very rough estimate of this decay constant ωI may be obtained

from equation
ψ( 1

0.7
,1.5)

ψ( 1
0.7
,.5)

= e−ωI which gives ωI ≈ 8.9T (here T is the temperature of our

black brane given by T = 4π
3

). This number is the same ballpark as the decay constant

for the first quasi normal mode of the uniform black brane, ωI = 11.16T , quoted in [35].

2.2 Spherically symmetric asymptotically flat collapse

2.2.1 The Set Up

In this section6 we study spherically symmetric asymptotically flat solutions to Einstein

gravity (with no cosmological constant) interacting with a minimally coupled massless

6We thank B. Kol and O. Aharony for discussions that led us to separately study collapse in flat space.
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scalar field, in 4 bulk dimensions. The Lagrangian for our system is

S =

∫
d4x
√
g

(
R− 1

2
(∂φ)2

)
(2.2.45)

We choose a gauge so that our metric and dilaton take the form

ds2 = 2drdv − g(r, v)dv2 + f 2(r, v)dΩ2
2

φ = φ(r, v).
(2.2.46)

where dΩ2
2 is the line element on a unit two sphere. We will explore solutions to the

equations of motion of this system subject to the pure flat space initial conditions

g(r, v) = 1, (v < 0)

f(r, v) = r, (v < 0)

φ(r, v) = 0, (v < 0)

(2.2.47)

and the large r boundary conditions

g(r, v) = 1 +O(
1

r
)

f(r, v) = r

(
1 +O(

1

r2
)

)
φ(r, v) =

ψ(v)

r
+O(

1

r2
)

(2.2.48)

where ψ(v) takes the form

ψ(v) = 0, (v < 0)

ψ(v) < εfδt, (0 < v < δt)

ψ(v) = 0 (v > δt),

(2.2.49)

In other words our spacetime starts out in its vacuum, but has a massless pulse of limited

duration focused to converge at the origin at v = 0. This pulse could lead to interesting

behavior - like black hole formation, as we explore in this section.

The structure of the equations of motion of our system was described in subsection

2.1.2. As in that subsection, the independent dynamical equations for our system may
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be chosen to be the dilaton equation of motion plus the two constraint equations, sup-

plemented by an energy conservation equation. The explicit form of the dilaton and

constraint equations is given by

∂r
(
f 2g∂rφ

)
+ ∂v

(
f 2∂rφ

)
+ ∂r

(
f 2∂vφ

)
= 0

(∂rφ)2 = −4∂2
rf

f

∂r (fg∂rf + 2f∂vf) = 1

(2.2.50)

As in the previous section, we may choose to evaluate the energy conservation equation

at large r. As we have explained, the large r behavior of the function g is given by

g(r, v) = 1− M(v)

r
+O(

1

r2
) (2.2.51)

The energy conservation equation, evaluated at large r, yields

Ṁ = −ψψ̈
2

(2.2.52)

The equations(2.2.50) together with (2.2.52) constitute the full set of dynamical equations

for our problem.

By integrating (2.2.52) we find an exact expression for M(v)

M(v) =
−ψψ̇ +

∫ v
−∞ ψ̇

2

2
(2.2.53)

Note in particular that M(v) reduces to a constant M for v > δt where

M =

∫ δt
−∞ ψ̇

2

2
∼ ε2fδt (2.2.54)

2.2.2 Regular Amplitude Expansion

Our equations may be solved in the amplitude expansion formally described in (2.1.5),

i.e. in an expansion in powers of the function ψ(v). As we will argue in this chapter,

there are two inequivalent valid amplitude expansions of these equations. In the first, the

46



spacetime is everywhere regular and the dilaton is everywhere small. In the second, the

spacetime is singular at small r but this singularity is shielded from asymptotic infinity by

a regular event horizon. The second amplitude expansion reliably describes the spacetime

only outside the event horizon; this expansion works because the dilaton is uniformly

small outside the event horizon. As we will see two amplitude expansions described above

have non overlapping regimes of validity, and so describe dynamics in different regimes of

parameter space.

In this subsection we briefly comment on the more straightforward fully regular ex-

pansion. At every order in perturbation theory, the requirement or regularity uniquely

determines the solution. Explicitly at first order we have

φ1(r, v) =
ψ(v)− ψ(v − 2r)

r
(2.2.55)

The perturbation expansion that starts with this solution is valid only when φ(r) is

everywhere small. φ(r) reaches its maximum value near the origin, and φ1(0, v) ∼ 2ψ̇(v) ∼

εf . Consequently the regular perturbation expansion, sketched in this section, is valid only

when εf � 1 i.e. when δt
M
� 1.

At next order in the amplitude expansion we find

f2(r, v) =
1

4

(
r

∫ ∞
r

ρ [∂ρφ1(ρ, v)]2 dρ−
∫ ∞
r

ρ2 [∂ρφ1(ρ, v)]2 dρ

)
g2(r, v) = −2∂vf2(r, v)− f2(r, v)− f2(0, v)

r
− ∂rf2(r, v)

(2.2.56)

The integration limits in the expression for f2(r, v) in 2.2.56 are fixed such that at large r

f(r, v) decays like 1
r
. The integration constant in g2(r, v) is fixed by the requirement that

the solution be regular at r = 0.

Regularity implies energy conservation

In this subsection we pause to explain an interesting technical subtlety that arises in

carrying out the regular amplitude expansion. The discussion of this subsection will play
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no role in the analysis of spacetimes that describe black hole formation, so the reader who

happens to be uninterested in the regular expansion could skip to the next section.

Note that in order to obtain (2.2.56) we did not make any use of the energy conserva-

tion equation. We will now verify (first in terms of the answer, and then more abstractly)

that (2.2.56) automatically obeys the energy conservation equation. At large r, these

functions have the following expansion

φ1(r, v) =
ψ(v)

r

f2(r, v) = −ψ(v)2

8r

g2(r, v) = −C2(v)

r
, where

C2(v) = −ψ(v)ψ̇(v)

2
− f2(0, v)

(2.2.57)

If our solution does indeed obey the energy conservation relation, we should find that

C2(v) is equal to M(v) in (2.2.54). We will now proceed to directly verify that this is the

case.

The first term in C2(v) comes from the coefficient of 1
r

in ∂vf2(r, v). For the second

term in the expression for C2(v), f2(0), is given by

f2(0, v) = −1

4

∫ ∞
0

ρ2 [∂ρφ1(ρ, v)]2 dρ

The integrand in this expression may be split into four terms in the following way.

r2 [∂rφ1(r, v)]2 = 2ψ(v)∂r

[
ψ(v − 2r)

r

]
+
ψ(v)2

r2
+ r2

[
∂r

(
ψ(v − 2r)

r

)]2

= 2ψ(v)∂r

[
ψ(v − 2r)

r

]
+
ψ(v)2

r2
+ 4

[
ψ̇(v − 2r)

]2

− ∂r
[
ψ2(v − 2r)

r

]
(2.2.58)
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Now each of the terms can be integrated.∫ r

0

2ψ(v)∂ρ

[
ψ(v − 2ρ)

ρ

]
dρ = −2 lim

r→0

ψ(v)ψ(v − 2r)

r
= −2 lim

r→0

ψ(v)2

r∫ r

0

ψ(v)2

ρ2
dρ = lim

r→0

ψ(v)2

r∫ r

0

4
[
ψ̇(v − 2ρ)

]2

dρ = 2

∫ v

−∞
ψ̇(t)2 dt

−
∫ r

0

∂ρ

[
ψ2(v − 2ρ)

ρ

]
dρ = lim

r→0

ψ(v − 2r)2

r
= lim

r→0

ψ(v)2

r

(2.2.59)

Adding all the terms one finally finds

−f2(0, v) =
1

2

∫ v

−∞
ψ̇(t)

2
dt (2.2.60)

This implies

C2(v) = −ψ(v)ψ̇(v)

2
+

1

2

∫ v

−∞
ψ̇(t)

2
dt = M(v) (2.2.61)

as expected from energy conservation.

Let us summarize In order to obtain our result for g2 above, we were required to fix

the value of an integration constant. The value of this constant may determined in two

equally valid ways

• By imposing the energy conservation equation Eec

• By demanding regularity of the solution at r = 0

In fact these two conditions are secretly the same, as we now argue. As we have explained

in subsection 2.1.2, ∂r(rEec) automatically vanishes whenever the three equations (2.2.50)

are obeyed. Consequently, if rEec vanishes at any one value of r it automatically vanishes

at every r. Now the equation Eec evaluates to a finite value at r = 0 provided our solution

is regular at r = 0. It follows that the regular solution automatically has rEec = 0

everywhere.

Configurations in the amplitude expansion of the previous section (or the singular

amplitude expansion we will describe shortly below), on the other hand, are all singular
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at r = 0. rEec does not automatically vanish on these solutions, and the energy conser-

vation equation Eec is not automatic but must be imposed as an additional constraint on

solutions.

It would be a straightforward - if cumbersome - exercise to explicitly implement the

perturbation theory, described in this subsection, to higher orders in εf . As our main

interest is black hole formation, we do not pause to do that.

2.2.3 Leading order metric and event horizon for black hole for-

mation

In the rest of this section we will describe the formation of black holes in flat space in an

amplitude expansion. In contrast with the previous subsection, our amplitude expansion

will be justified by the small parameter 1
εf

. Our analysis will reveal that our spacetime

takes the Vaidya form to leading order in 1
ε2f

,

ds2 = 2drdv −
(

1− M(v)

r

)
dv2 + r2dΩ2

2 (2.2.62)

where M(v) is given by (2.2.53).

In this subsection we will compute the event horizon of the spacetime (2.2.62) at

large εf . We present the computation of this event horizon even before we have justified

the form (2.2.62), as our aim in subsequent subsections is to have a good perturbative

expansion of the true solution only outside the event horizon; consequently the results

of this subsection will guide the construction of the amplitude expansion in subsequent

subsections.

As in the previous section the event horizon takes the form

rH(v) = M, (v > δt)

rH(v) = Mx(
v

δt
), (0 < v < δt)

rH(v) = Mx(0) + v, (−x(0) < v < 0)

(2.2.63)
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where the function x(t) may easily be evaluated in a power series in δt
M
∼ 1

ε2f
. We find

x(t) = 1 +

(
δt

M

)
x1(t) +

(
δt

M

)2

x2(t) + . . .

x1(t) = −
∫ 1

t

dy

(
1− M(yδt)

M

2

)

x2(t) = −
∫ 1

t

dyx1(y)
M(yδt)

M
.

(2.2.64)

In particular rH = M for all v > 0 at leading order.

2.2.4 Amplitude expansion for black hole formation

Let us now construct an amplitude expansion (i.e. expansion in powers of ψ(v)) of our

solution in the opposite limit to that of the previous subsection, namely M
δt
∼ ε2f � 1.

It is intuitively clear that such a dilaton shell will propagate into its own Schwarzschild

radius and then cannot expand back out to infinity. In other words the second term in

(2.2.55) cannot form a good approximation to the leading order solution for the collapse

of such a shell. Now (2.2.55) deviates from

φ1(r, v) =
ψ(v)

r
; (2.2.65)

only at spacetime points that feel the back scattered expanding wave in (2.2.55). This

observation suggests that (2.2.65) itself is the appropriate starting point for the amplitude

expansion at large εf , and this is indeed the case.

The incident dilaton pulse (2.2.65) will back react on the metric; above we have derived

an exact expression for one term - roughly the Newtonian potential - (see (2.2.54)) of this

back reacted metric. Including this backreaction (all others turn out to be negligible at

large εf ) the spacetime metric takes the form

ds2 = 2dvdr − dv2(1− M(v)

r
) + r2dΩ2

2 (2.2.66)

As we have explained in the previous subsection, this solution has an event horizon located

at rH ∼M ∼ ε2fδt for v > 0 (see below). Consequently, φ1(r, v) outside the event horizon

51



≤ ψ
rH
∼ 1

εf
∼
√

δt
rH

, i.e. is parametrically small at large εf . This fact allows us to construct

a large εf amplitude expansion for the solution outside its event horizon.

The perturbation expansion of our solutions in δt
M

is similar in many ways to the per-

turbation theory described in detail in § 2.1. As in that section, the true (resummed)

expansion (built around the starting metric (2.2.66)) is well approximated at early times

by a naive expansion built around unperturbed flat space. Naive and resummed expan-

sions agree whenever the first term in the first equation of (2.2.50) is negligible compared

to the other terms in that equation, i.e. for v � M ∼ ε2fδt. As εf is large in this sub-

section, naive and resummed perturbation theory are simultaneously valid for times that

are of order δt. However we expect the naive expansion to break down at v � M . We

will now study the naive expansion in more detail and confirm these expectations.

2.2.5 Analytic structure of the naive perturbation expansion

In this subsection we describe the structure of a perturbative expansion built starting

from the flat space metric. We expand the full solution as

φ(r, v) =
∞∑
n=0

Φ2n+1

f(r, v) = r +
∞∑
n=1

F2n(r, v)

g(r, v) = 1 +
∞∑
n=1

G2n(r, v)

(2.2.67)

where, by definition, the functions Φm Fm and Gm are each of homogeneity m in the

source function ψ(v). As explained above we take

Φ1(r, v) =
ψ(v)

r
(2.2.68)

By studying the formal structure of the perturbation expansion, it is not difficult to

inductively establish that
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• 1. The functions Φ2n+1, F2n and G2n have the following analytic structure in the

variable r

Φ2n+1(r, v) =
∞∑
m=0

Φm
2n+1(v)

r2n+m+1

F2n(r, v) = r

∞∑
m=0

Fm
2n(v)

r2n+m

G2n(r, v) = −δn,1
M(v)

r
+ r

∞∑
m=0

Gm
2n(v)

r2n+m

(2.2.69)

• 2. The functions Φm
2n+1(v), Fm

2n(v) and Gm
2n(v) are each functionals of ψ(v) that scale

like λm λm and λm−1 under the the scaling v → λv.

• 3. For v > δt the Φm
2n+1(v) are polynomials in v of degree ≤ n+m− 1; Fm

2n(v) and

Gm
2n are polynomials in v of degree ≤ n+m− 3 and n+m− 4 respectively.

It follows that, say, φ(r, v), is given by a double sum

φ(r, v) =
∑
n

Φ2n+1(r, v) =
∞∑

n,m=0

Φm
2n+1(v)

r2n+m+1
.

Now sums over m and n are controlled by the effective expansion parameters ∼ v
r

(for m)

and ψ2v
δtr2
∼ v

δtε2f
∼ v

M
(for n; recall that in the neighborhood of the horizon rH ∼ δtε2f ).

It follows that the sum over m is well approximated by its first few terms if only

v � M (recall we are interested in the solution only for r > M). The sum over n may

also be truncated to leading order only for v � M . As anticipated above, therefore, our

naive perturbation expansion breaks over time scales v of order and larger than M .

Let us now focus on times v of order δt. Over these time scales naive perturbation

theory is valid for r � εfδt (recall that this domain of validity includes the event horizon

surface rH ∼ ε2fδt). Focusing on the region of interest, r ≥ rH ,
Φm2n+1

r2n+m+1
H

scales like 1
ε2n+2m+1
f

.

It follows that Φm
2n+1, with equal values of n+m are comparable at times of order δt. For
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this reason we find it useful to define the resummed fields

φ2n+1(r, v) =
n−1∑
k=0

Φk
2n+1−2k(r, v)

r2n+1−k

f2n(r, v) = rδn,2F
0
2 + r

n−2∑
k=0

F k
2n−2k(r, v)

r2n−k

g2n(r, v) = rδn,2G
0
2 + r

n−2∑
k=0

Gk
2n−2k(r, v)

r2n−k

(2.2.70)

φ2n−1, unlike Φ2n−1, receives contributions from only a finite number of terms at any fixed

n, and so is effectively computable at low orders. According to our definitions, φm, fm

and gm capture all contributions to our solutions of order 1
εmf

, at time scales of order δt.

We now present explicit computations of the fields φm, fm and gm up to 5th order.

We find

f2(r, v) = −ψ(v)2

8r

g2(r, v) = −M(v)

r

f4(r, v) =
ψ(v)4

384r3
− ψ(v)B(v)

32r3

g4(r, v) = − ψ̇(v)ψ(v)3

48r3
− M(v)ψ(v)2

16r3
+
ψ̇(v)B(v)

16r3

φ3(r, v) =
B(v)

4r3

φ5(r, v) =

∫ v
−∞ (48B(t)− 16ψ(t)3) dt

192r4

+

∫ v
−∞

[
ψ(t)ψ̇(t) {5ψ(t)3 + 21B(t)}+ 3M(t) {ψ(t)3 − 18B(t)}

]
dt

192r5

(2.2.71)

Where

B(v) =

∫ v

−∞
ψ(t)

(
−M(t) + ψ(t)ψ̇(t)

)
dt

2.2.6 Resummed perturbation theory at third order

As in the previous subsection, even at times of order δt (where naive perturbation theory

is valid) naive perturbation theory yields a spacetime metric that is not uniformly well
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approximated by empty flat space over its region of validity r � δtεf . The technical reason

for this fact is very similar to that outlined in the previous section; g0 is a constant, so is

smaller at r ∼ rH than one would have guessed from the naive extrapolation of (2.2.69)

to n = 0. It follows that, in the previous section that, even at arbitrarily small ε, the

resultant solution is well approximated by

g(r, v) ≈ 1− M(v)

r

rather than the flat space result g(r, v) = 1, over the full domain of the amplitude expan-

sion. It follows that the correct (resummed) amplitude expansion should start with the

Vaidya solution (2.2.66) rather than the empty flat space. The IR divergences of the naive

expansion are a consequence of the incorrect choice of starting point for the perturbative

expansion.

At v = δt our metric, to leading order, is the Schwarzschild metric of a black hole

Schwarzschild radius M with a superposed dilaton (and consequently metric) perturba-

tion. We will now demonstrate that these pertubrations are small. As in the previous

section, it is useful to define rescaled radial and time variables x = r
M

and y = v
M

. In

terms of the rescaled variables, the leading order metric takes the form

ds2 = M2

(
2dxdy − dy2

(
1− 1

x

)
+ x2dΩ2

2

)
(2.2.72)

while the φ perturbation is given to leading order by

φ0
3(δt)

r3
=
φ0

3(δt)

M3x3
∼ 1

ε3fx
3

(2.2.73)

(recall from (2.2.71) that

φ0
3(δt) =

1

4

∫ δt

0

ψ(v)
[
−M(v) + ψ(v)ψ̇(v)

]
dv (2.2.74)

and M(v) is given in (2.2.53)).

As a constant rescaling of the metric is an invariance of the equations of motion of the

Einstein dilaton system, the factor of M2 in (2.2.72) is irrelevant for dynamics. As the

55



dilaton perturbation above is parametrically small (O(1/ε3f )) the subsequent evolution of

the dilaton field is linear to leading order in the 1
εf

expansion.

Let χ(x, y) denote the unique solution to

∂x

(
x2

(
1− 1

x

)
∂xχ

)
+ 2x∂y∂x (xχ) = 0 (2.2.75)

subject to the boundary condition χ ∼ O( 1
x3

) at large x and the initial condition χ(x, 0) =

1
x3

. The leading order solution to the resummed perturbation theory for φ, for v > δt, is

given by

φ =
φ0

3(δt)

M3
χ

(
r

M
,
(v − δt)
M

)
(2.2.76)

Unfortunately, the function χ(x, y) appears to be difficult to determine analytically. As

in § 2.1 this solution may presumably be determined numerically with a little effort. We

will not attempt the requisite numerical calculation here. In the rest of this subsection we

will explain in an example how the general analysis of this subsection yields useful precise

information about the subleading solution even in the absence of detailed knowledge of

the function χ(x, y).

Consider a spherically symmetric shell, of the form discussed in this section, imploding

inwards to form a black hole. On general grounds we expect some of the energy of the

incident shell to make up the mass of the black hole, while the remaining energy is reflected

back out in the form of an outgoing wave that reaches I+. Let the fraction of the mass

that is reflected out to I+ be denoted by f . 7. f is one of the most interesting and easily

measured observables that characterize black hole formation.

At leading order in the expansion in 1
εf

our spacetime metric takes the Vaidya form

with no outgoing wave, and so f = 0. This prediction is corrected at first subleading

order, as we now explain. It follows on general grounds that, at late times

χ(x, y) ≈ ζ(y − 2x)

x

7In fancy parlance f = A−B
A where A is the ADM mass of the spacetime and B is the late time Bondi

mass.
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for some function ζ(v). Note that ζ, like the function χ, is universal (i.e. independent of

the initial condition ψ(v)). It follows that at late times (and to leading order)

φ = M
φ0

3(δt)

M3

ζ
(
v−2r
M

)
r

. (2.2.77)

It then follows from (2.2.54) (but now applied to an outgoing rather than an ingoing wave)

that the energy8 carried by this pulse is

(
M
φ0

3(δt)

M3

)2

× 1

2

∫
dt

(
∂tζ(

t

M
)

)2

= M ×
(
φ0

3(δt)

M3

)2

× 1

2

∫ ∞
−∞

dy
(
ζ̇(y)

)2

(2.2.78)

It follows that

f = A

(
φ0

3(δt)

M3

)2

A =
1

2

∫ ∞
−∞

ζ̇2

(2.2.79)

(2.2.79) analytically determines the dependence of f on the shape of the incident wave

packet, ψ(v) (recall that φ0
3(δt) and M are determined in terms of ψ(v) by (2.2.74) and

(2.2.54)). Detailed knowledge of function χ(x, y) is required only to determine the precise

value of universal dimensionless number A.

2.3 Spherically symmetric collapse in global AdS

We now turn to the study of black hole formation induced by an ingoing spherically sym-

metric dilaton pulse in an asymptotically AdSd+1 space in global coordinates. As in § 2.1

our bulk dynamics is described by the Einstein Lagrangian with a negative cosmological

constant and a minimally coupled dilaton. However as in § 2.2 we study solutions that

preserve an SO(d) invariance; this SO(d) may be thought of as the group of rotations of

the boundary Sd−1. As in both sections 2.1 and 2.2 our symmetry requirement determines

8We have chosen our units of energy so that a black hole with horizon radius rH has energy M .
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our metric up to three unknown functions of the two variables; the time coordinate v and

the radial coordinate r. Our solutions are completely determined by the boundary value,

φ0(v) of the dilaton field. As in § 2.1 we assume that φ0(v) is everywhere bounded by ε and

vanishes outside the interval (0, δt). Through out this section we will focus on the regime

δt � R (where R is the radius of the boundary sphere) and ε � 1. The complementary

regime δt� R and arbitrary ε is under independent current investigation [36].

The collapse process studied in this section depends crucially on two independent

dynamical parameters; x = δt
R

together with ε of previous subsections. We study the

evolution of our systems in a limit in which x and ε are both small. The problem of

asymptotically AdS spherically symmetric collapse is dynamically richer than the collapse

scenarios studied in sections 2.1 and 2.2, and indeed reduces to those two special cases in

appropriate limits.

2.3.1 Set up and equations

The equations of motion for our system are given by (2.1.4). The form of our metric and

dilaton is a slight modification of (2.1.6)

ds2 = 2drdv − g(r, v)dv2 + f 2(r, v)dΩ2
d−1

φ = φ(r, v).
(2.3.80)

where dΩ2
d−1 represents the metric of a unit d − 1 sphere. Our fields are subject to the

pure global AdS initial conditions

g(r, v) = r2 +
1

R2
, (v < 0)

f(r, v) = rR, (v < 0)

φ(r, v) = 0, (v < 0)

(2.3.81)
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and the large r boundary conditions

g(r, v) = r2

(
1 +O(

1

r2
)

)
f(r, v) = r

(
R +O(

1

r2
)

)
φ(r, v) = φ0(v) +O(

1

r
)

(2.3.82)

Equations (2.1.4), (2.3.80), (2.3.81) and (2.3.82) together constitute a completely well

defined dynamical system. Given a particular forcing function φ0(v), these equations and

boundary conditions uniquely determine the functions φ(r, v), g(r, v) and f(r, v).

The structure of the equations of motion of our system was described in subsection

2.1.2. In particular, we may choose the dilaton equation of motion, together with the two

constraint equations, as our independent equations of motion; this set is supplemented

by the energy conservation relation. With our choice of gauge and notation, the dilaton

equation of motion and constraint equations take the explicit form

∂r
(
fd−1g∂rφ

)
+ ∂v

(
fd−1∂rφ

)
+ ∂r

(
fd−1g∂vφ

)
= 0

(∂rφ)2 +
2(d− 1)∂2

rf

f
= 0

∂r
(
fd−2g∂rf + 2fd−2∂vf

)
− d fd−1 − (d− 2)fd−3 = 0

(2.3.83)

As in section 2, the initial data needed to specify a solution to these equations is given

by the value of φ(r) on a given time slice, supplemented by the initial value of the mass,

and boundary conditions at infinity. In order to obtain an explicit form for the energy

conservation equation we specialize to d = 3 and explicitly ‘solve’ our system at large r a

la Graham and Fefferman. We find

f(r, v) = Rr

(
1− φ̇2

0

8r2
+O(

1

r4
)

)

g(r, v) = r2

(
1

R2
+

1− 3φ̇20
4

r2
− M(v)

r3
+O(

1

r4
)

)

φ(r, v) = φ0(v) +
φ̇0

r
+
L(v)

r3
+O(

1

r4
)

(2.3.84)
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The energy conservation equation constrains the (otherwise arbitrary) functions M(v)

and L(v) to obey

Ṁ = − φ̇0

8

(
12L(v) + 4

φ̇0

R2
− 3

(
φ̇0

)3

+ 4
...
φ 0(v)

)
(2.3.85)

9

2.3.2 Regular small amplitude expansion

As in § 2.2 there are two legitimate amplitude expansions of spacetime we wish to deter-

mine. In this subsection we discuss the expansion analogous to the expansion of subsection

2.2.2. That is we expand all our fields as in (2.1.28) (where the functions fn, gn and φn are

all defined to be of homogeneity n in the boundary field φ0) and demand that all functions

are everywhere regular. The requirement of regularity, together with our boundary and

initial conditions, uniquely specifies all functions in (2.1.28). Explicitly, to second order

9Note that the stress tensor and Lagrangian L of our system are given by

T vv = M(v)

T θθ = Tφφ = −M(v)

2

L = −3L(v)− φ̇0
R2

+
3

4

(
φ̇0

)3
−

...
φ0(v)

(2.3.86)

It follows that (2.3.85) may be rewritten as Ṁ = φ̇0L
2 .
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we find

φ1(r, v) =
∞∑
m=0

(−1)m
[
φ0(v −mπR) +

φ̇0(v −mπR)

r
+ φ0(v −Rmπ − 2R tan−1(rR))

− φ̇0(v −mπR− 2R tan−1(rR))

r

]
f2(r, v) =

R

4

(
r

∫ ∞
r

ρK(ρ, v) dρ−
∫ ∞
r

ρ2K(ρ, v) dρ

)
g2(r, v) = − 1

4r

[
2r

R2

∫ ∞
r

ρK(ρ, v) dρ+ 2r2

∫ ∞
r

ρ2K(ρ, v) dρ

+

∫ r

0

ρ2(
1

R2
+ ρ2)K(ρ, v) dρ

]
− 2

R
∂vf2(r, v)

where

K(ρ, v) = (∂rφ1(r, v))2

(2.3.87)

The perturbation expansion in this section is valid only if φ(r, v) is everywhere small

on the solution. φ1(r, v) reaches its maximum value in the neighborhood of the origin

where it is given approximately by φ0 + φ̈0 ∼ ε + ε
x2

. Consequently the validity of the

amplitude expansion sketched in this section requires both that ε� 1 and that x2 � ε.

We have chosen integration constants to ensure that the solution in (2.3.87) is regular

at r = 0. In particular

g2(0, v) =
1

2

(∫ ∞
0

ρ2∂vK(ρ, v) dρ− 1

R2

∫ ∞
0

ρK(ρ, v) dρ

)
.

As in subsection 2.2.2, this choice automatically implies the energy conservation equation.

In particular, expanding g2(r, v) at large r we find

−M(v) = −1

4

(∫ ∞
0

ρ2(
1

R2
+ ρ2)K(ρ, v) dρ− φ̇0(v)2 − 2φ̇0(v)φ̈0(v)

)
(2.3.88)

(this equation is valid only for v < πR; it turns out that M(v) is constant for v > δt) in

agreement with the energy conservation equation.
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Finally, let us focus on the coordinate range rR, v
R
� 1 and also require that x is small

so that the time scale in φ0 is also smaller than the AdS radius. In this parameter and

coordinate range (2.3.87) should reduce to a solution of the flat space propagation equation

(2.2.55); this is easily verified to be the case. In the given variable and parameter regime,

all terms with (2.3.87) with m 6= 0 vanish; tan−1(Rr) ≈ rR and the first and the third

terms in (2.3.87) are negligible compared to the second and fourth as x is small. Putting

all this together, (2.3.87) reduces to (2.2.55) under the identification ψ(v) = R2φ̇0(v),

once we also identify the coordinate r of § 2.2 with R2r in this section. Notice that this

replacement implies that εf = ε
x2

(where εf was the perturbative expansion of § 2.2). This

identification of parameters is consistent with the fact that the expansion of this section

breaks down when ε
x2

becomes large, while the expansion of subsection 2.2.2 breaks down

at large εf .

2.3.3 Spacetime and event horizon for black hole formation

In the rest of this section we will describe the process of black hole formation via collapse in

an amplitude expansion. As in earlier sections, the spacetime that describes this collapse

process will turn out to be given, to leading order, by the Vaidya form

ds2 = 2drdv −
(

1

R2
+ r2 − M(v)

r

)
dv2 +R2r2dΩ2

2

φ(r, v) = φ0(v) +
φ̇0

r

(2.3.89)

where M(v) is approximated by C2(v), the order ε2 piece of (2.3.85)

C2(v) = −1

2

∫ v

−∞
dtφ̇0(t)

(
...
φ 0(t) +

φ̇0(t)

R2

)
(2.3.90)

In this subsection we will compute the event horizon of the spacetime (2.3.89) in

a perturbation expansion in a small parameter, whose nature we describe below. The

horizon is determined by the differential equation

2
drH
dv

=
1

R2
+ r2

H −
M(v)

rH
(2.3.91)
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where M(v) reduces to a constant M for t > δt. At late times the event horizon surface

must reduce to the largest real solution of the equation

1

R2
+ (r0

H)2 − M

r0
H

= 0.

It then follows from (2.3.91) that

rH(v) = r0
H , (v > δt)

rH(v) = r0
Hx(

v

δt
), (0 < v < δt)

tan−1 (rH(v)) = tan−1
(
r0
Hx(0)

)
+ v (v < 0), tan−1(rH(v)) > 0

(2.3.92)

As in previous subsections, the function x(t) is easily generated in a perturbation

expansion

x(t) = 1 +

(
Mδt

(r0
H)2

)
x1(t) +

(
Mδt

(r0
H)2

)2

x2(t) + . . . (2.3.93)

The small parameter for this expansion is Mδt
(r0H)2

. This parameter varies from approximately

ε
2
3 when x � ε

2
3 to x4

ε2
when x � ε

2
3 and is always small provided x �

√
ε and ε � 1.

These conditions will always be met in our amplitude constructions below. Note that

the event horizon of our solution is created (at r = 0) at the time v = − tan−1(r0
H)+

subleading.

Explicitly working out the perturbation series we find

x1(t) = −
∫ 1

t

dt
1− M(yδt)

M

2

x2(t) = −
∫ 1

t

dy

(
2(r0

H)3

M
+
M(yδt)

M

) (2.3.94)

2.3.4 Amplitude expansion for black hole formation

The amplitude expansion of the previous subsection breaks down for x2 � ε. As in § 2.2,

we have a new amplitude expansion in this regime. As in § 2.2, the starting point for

this expansion is the Vaidya metric and dilaton field (2.3.89). As in sections 2.1 and

2.2, the perturbation expansion based on (2.3.89) is technically difficult to implement
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at late times. However as in earlier sections, at early times - i.e. times of order δt - the

perturbative expansion is well approximated by the naive expansion based on the solution

(2.3.89) with M(v) set equal to zero. Following the terminology of previous sections we

refer to this simplified expansion as the naive expansion. In the rest of this subsection we

will elaborate on the analytic structure of the naive perturbative expansion.

In order to build the naive expansion, we expand the fields f(r, v), g(r, v) and φ(r, v)

in the form (2.1.28). It is not too difficult to inductively demonstrate that

• 1. The functions φ2n+1, g2n and f2n have the following analytic structure in the

variable r

φ2n+1(r, v) =
∞∑
m=0

1

R2m

2n+m−2∑
k=0

φk,m2n+1(v)

r2n+1−k+m
(n ≥ 1)

f2n(r, v) = rR
∞∑
m=0

1

R2m

2n−4∑
k=0

fk,m2n (v)

r2n−k+m
(n ≥ 2)

g2n(r, v) = −C2n(v)

r
+ r

∞∑
m=0

1

R2m

2n−3∑
k=0

gk,m2n (v)

r2n−k+m
(n ≥ 2)

(2.3.95)

• 2. The functions φk,m2n+1(v), fk,m2n (v) and gk,m2n (v) are functionals of φ0(v) that scale

like λ−2n−1+m+k, λ−2n+m+k and λ−2n+m+k−1 respectively under the scaling v → λv.

• 3. For v > δt we have some additional simplifications in structure. At these times

f4(r, v) = 0 and g4(r, v) = −C4(v)
r

. Further, the sums over k in the second and

third of the equations above run from 0 to 2n− 6 +m and 2n− 5 +m respectively.

Finally, functions φk,m2n+1(v) are all polynomials in v of a degree that grows with n.

In particular the degree of φk,m2n+1 is at most n− 1 + k +m; the degree of fk,m2n is at

most n− 3 + k +m and the degree of gk,m2n is at most n− 4 + k +m.

As we have explained above,

φ(r, v) =
∞∑
n=1

∞∑
m=0

1

R2m

2n−2+m∑
k=0

φk,m2n+1(v)

r2n+1−k+m
.

64



We will now discuss the relative orders of magnitude of different terms in this summation.

Abstractly, at times that are larger than or of order δt, the effective weighting factor for the

sum over n,m, k respectively are approximately given by ε2v
r2(δt)3

, v
R2r

and vr respectively.

We will try to understand the implications of these estimates in more detail.

Let us first suppose that x � ε
2
3 . In this case the black hole that is formed has a

horizon radius of order ε
2
3

δt
� 1

R
( this estimate is corrected in a power series in x2

ε
4
3

).

Consequently, the resultant black hole is large compared to the AdS radius. At m = 0,

this regime, the summation over k and n simply reproduce the solution of § 2.1. As in § 2.1

these summations are dominated by the smallest values of k and n for vrH ∼ vT � 1, in

the neighborhood of the horizon. As in § 2.1 the sum over k is dominated by the largest

value of k at large enough r. The new element here is the sum over m; this summation

is dominated by small m when vT � ε
4
3

x2
. When x � ε

2
3 , this condition automatically

follows whenever vT � 1. Consequently, naive perturbation theory is always good for

times small compared to the inverse black hole temperature, in this regime.

We emphasize that naive perturbation theory is always good at times of order δt.

Over such time scales (and for r ∼ rH) we note that the sum over n and k are weighted

by ε
2
3 (this is as in § 2.1) while the sum over m is weighted by ε

2
3 ( x

ε
2
3

)2. Note that the

weighting factor for the sum over m is smaller than the weighting factor for the sum over,

for instance n, provided x� ε
2
3 . It follows that our naive perturbation theory represents

a weak departure from the black brane formation solution of § 2.1 when x� ε
2
3 .

Now let us turn to the the parameter regime x � ε
2
3 . In this regime rHR ∼ ε2

x3
,

so that black holes that are formed in the collapse process are always small in units of

the AdS radius. At times that are larger or of order δt, the sum over m and n are

dominated by their smallest values provided v
R
� ε2

x3
. Making the replacement ε = x2εf ,

this condition reduces to v � ε2fδt which was exactly the condition for applicability of

naive perturbation theory in flat space in section 2.2. The new element here is the sum

over k. k is zero in § 2.2, and the sum over k here is dominated by k = 0 near r = rH
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for v
R
� x3

ε2
, a condition that is automatically implied by v

R
� ε2

x3
. Note, however, that,

as in the previous paragraph, the sum over k is always dominated by the largest value of

k at sufficiently large r. This reflects the fact that AdS space is never well approximated

by a flat bubble at large r. Finally, specializing to v of order δt and r ∼ rH , the sum

over n and m are each weighted by x4

ε2
∼ 1

ε2f
while the sum over k is weighted by ε ε

x2
. In

particular naive perturbation theory is good at times of order δt provided x�
√
ε.

Let us summarize in broad qualitative terms. Naive perturbation theory is a good

expansion to the true solution when vT � 1 for v
R
� ε2

x3
. In particular, this condition is

always obeyed for times of order δt when x�
√
ε.

2.3.5 Explicit results for naive perturbation theory

As we have explained above, the functions φ, f and g may be expanded in an expansion

in ε as

φ(r, v) = εφ1(r, v) + ε3φ3(r, v) +O(ε)5

f(r, v) = rR
(
1 + ε2f2(r, v) + ε4f4(r, v) +O(ε)6

)
g(r, v) = r2 +

1

R2
+ ε2g2(r, v) + ε4g4(r, v) +O(ε)6

(2.3.96)

Moreover the functions φ2n+1, fn and gn may themselves each be expanded as a sum over

two integer series (see (2.3.95)). The sum over k runs over a finite number of values in

(2.3.95) and we will deal with this summation exactly below. However the sum over m

runs over all integers, and is computatble only after truncation to some finite order. This

truncation is justified as the sum over m is effectively weighted by a small parameter

as explained in the section above. In this section we present exact expressions for the

functions φ1, g2 and f2, and expressions for φ3, f4 and g4 to the first two orders in the

expansion over the integer m (this summation is formally weighted by 1
R

);
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The solutions are given as

φ1(r, v) = φ0(v) +
φ̇0(v)

r

f2(r, v) = − φ̇2
0

8r2

g2(r, v) = −3φ̇2
0

4
− C2(v)

r

φ3(r, v) =
K(v)

r3

+
1

R2

[∫ v
−∞

(
3K(t)− φ̇0(t)3

)
dt

12r4
+

∫ v
−∞ dt1

∫ t1
−∞ dt2

(
3K(t2)− φ̇0(t2)3

)
12r3

]
+O

(
1

R

)4

f4(r, v) =

(
φ̇4

0

384r4
− A3(v)

32r4

)
+

1

R2

(
A1(v)

96r4
+
A2(v)

120r5

)
+O

(
1

R

)4

g4(r, v) = −C4(v)

r
+

3A3(v)− φ̇4
0

24r2
+

1

48r3

(
3Ȧ3(v)− 4φ̇3

0φ̈0

)
− 1

R2

[
A1(v)

24r2
+
Ȧ1(v)

48r3
+

15A3(v) + 4A2(v)− φ̇4
0

240r4

]
+O

(
1

R

)4

(2.3.97)

Where

K(v) =

∫ v

−∞
dt φ̇0

(
−C2(t) + φ̇0φ̈0

)
A1(v) = φ̇0(v)

∫ v

−∞
dt1

∫ t1

−∞
dt2

(
−3K(t2) + φ̇3

0(t2)
)

A2(v) = φ̇0(v)

∫ v

−∞
dt
(
−3K(t) + φ̇3

0(t)
)

A3(v) = φ̇0K(v)

(2.3.98)

C2(v) = −1

2

∫ v

−∞
dt φ̇0(t)

(
φ̇0(t)

R2
+

...
φ 0(t)

)

C4(v) = −3

8

∫ v

−∞
dt φ̇0(t)

(
K(t)− φ̇0(t)3

)
− 1

8R2

∫ v

−∞
dt1 φ̇0(t1)

∫ t1

−∞
dt2

∫ t2

−∞
dt3

(
3K(t3)− φ̇0(t3)3

)
+O

(
1

R

)4

(2.3.99)
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2.3.6 The solution at late times

As in previous sections, our solution is normalizable (unforced) for v > δt. Naive per-

turbation theory reliably establishes the initial conditions for this unforced evolution at

v = δt. To leading order, this evolution is given by global AdS black hole metric with

M = C2(δt) (see (2.3.90)), perturbed by φ(δt) = K(δt)
r3

see (2.3.97). As in the previous

two subsections, the qualitatively important point is that this represents a small pertur-

bation about the black hole background. Moreover, it follows on general grounds that

perturbations in a black hole background in AdS space never grow unboundedly (in fact

they decay) with time. Consequently, we may reliably conclude that our spacetime takes

the Vaidya form (2.3.89) at all times to leading order in the amplitude expansion.

In order to determine an explicit expression for the subsequent dilaton evolution, one

needs to solve for the linear, minimally coupled, evolution of a 1
r3

initial condition in the

background of global AdS with a Schwarzschild black hole of arbitrary mass. As in the

previous two sections, the linear differential equation one needs to solve appears to be

analytically intractable, but could easily be solved numerically. We will not, however,

attempt this evaluation in this chapter.
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2.4 Translationally invariant graviton collapse

In sections 2.1 and 2.3 above we have studied the collapse triggered by a minimally

coupled scalar wave in an asymptotically AdS background. Our study was, in large part,

motivated by potential applications to CFT dynamics via the AdS/CFT correspondence.

From this point of view the starting point of our analyses in e.g. § 2.1 has a drawback as

not every bulk system that arises in the study of the AdS/CFT correspondence, admits

a consistent truncation to the theory of gravity coupled to a minimally coupled massless

scalar field.

On the other hand, every two derivative theory of gravity that admits AdS space as a

solution admits a consistent truncation to Einstein gravity with a negative cosmological

constant. Consequently, any results that may be derived using the graviton instead of

dilaton waves, applies universally to all examples of the AdS/CFT correspondence with

two derivative gravity duals. In this section we study a situation very analogous to the

set up of § 2.1, with, however, a transverse graviton playing the place of the dilaton field

of § 2.1. All the calculations of this section apply universally to any CFT that admits a

two derivative gravitational dual.

While the equations that describe the propagation of gravity waves are more compli-

cated in detail than those that describe the propagation of a massless minimally coupled

scalar field, it turns out that the final results of the calculations presented in this subsec-

tion are extremely similar to those of § 2.1. We take this to suggest that all the qualitative

results of sections 2.1 and 2.3 would continue to qualitatively apply to the most general ap-

proximately translationally invariant gravitational perturbations of Poincare Patch AdS

space or approximately spherically symmetric gravitational perturbation of global AdS

space. If this guess is correct, it suggests that the qualitative lessons have a wide degree

of applicability.

In this section we restrict our attention to the simplest dimension d = 3. It should we

possible, with some additional effort, to extend our results at least to all odd d, and also
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to work out the corresponding results for even d. We leave this extension to future work.

The set up of this section is very closely analogous to that employed by Yaffe and

Chesler in [15]. The main differences are as follows. Yaffe and Chesler worked in d =

4; they numerically studied the effect of a specific large amplitude non normalizable

deformation on the gravitational bulk. We work in d = 3, and analytically study the the

effect of the arbitrary small amplitude deformation on the gravitational bulk.

2.4.1 The set up and summary of results

In this section we study solutions to pure Einstein gravity with a negative cosmological

constant. We study solutions that preserve an R2 × Z2 × Z2 symmetry. Here R2 denotes

the symmetry of translations in spatial field theory directions, while the two Z2s respec-

tively denote the spatial parity flip and the discrete exchange symmetry between the two

Cartesian spatial boundary coordinates x and y.

As in § 2.1, our symmetry requirements determine our metric up to three unknown

functions of v and r. With the same choice of gauge as in § 2.1, our metric takes the form

ds2 = −2 dv dr + g(r, v) dv2 + f 2(r, v)(dx2 + dy2) + 2r2h(r, v)dx dy (2.4.100)

The boundary conditions on all fields are given by (2.1.9) under the replacement φ(r, v)→

h(r, v) and φ0(v)→ h0(v). Here h0(v) gives the boundary conditions on the off diagonal

mode, gxy, of the boundary metric. h0(v) is taken to be of order ε. Physically, our

boundary conditions set up a graviton wave, with polarization parallel to the spatial

directions of the brane.

As in § 2.1, in order to solve Einstein’s equations with the symmetries above, it turns

out to be sufficient to solve the three equations E2
C , E

1
C and Exy (see (2.1.10)) (plus the

energy conservation condition rEec at one r).

As in § 2.1 it is possible to solve these equations order by order in ε. We present our

solution later in this section. To end this subsection, we list the principal qualitative
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results of this section. We are able to show that

• The boundary conditions described above result in black brane formation for an

arbitrary (small amplitude) source function h0(v).

• Outside the event horizon of our spacetime, we find an explicit analytic form for

the metric as a function of h0(v). Our metric is accurate at leading order in the ε

expansion, and takes the Vaidya form (0.1.1) with a mass function

M(v) = −1

2

∫ v

−∞
dtḣ0

...
h 0 (2.4.101)

• In particular, we find that the energy density of resultant black brane is given by

M ≈ −E2 =
1

2

∫ ∞
−∞

dtḧ2
0 (2.4.102)

Note that E2 ∼ ε2

(δt)3
.

• As this leading order metric is of the same form as that in the previous subsection,

the analysis of the event horizons presented above continues to apply. In particular

it follows that singularities formed in the process of black brane formation are always

shielded by a regular event horizon at small ε.

• Going beyond leading order, perturbation theory in the amplitude ε yields system-

atic corrections to this metric at higher orders in ε. We unravel the structure of this

perturbation expansion in detail and work out this perturbation theory explicitly

to fifth order at small times.

2.4.2 The energy conservation equation

As we have explained above, the equations of motion for our system include the energy

conservation relation, in addition to the one dynamical and two constraint equations. The

form of the dynamical and constraint equations is easily determined using Mathematica-6;
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these equations turn out to be rather lengthy and we do not present them here. In this

section we content ourselves with presenting an explicit form for the energy conservation

equation. As in § 2.1, it is possible to solve for the functions f
r
, g
r2

and h in a power series

in 1
r
. This solution is simply the Graham Fefferman expansion. To order 1

r3
(relative to

the leading result) we find

f(r, v) = r

1 +

[ḣ0]
2

8(1−h20)

r2
+

1
2
h0σ(v)

r3
+ · · ·



g(r, v) = r2

1 +

1

4(−1+h20)
2

[
(1 + 3h2

0)
[
ḣ0

]2

− 4h0 (−1 + h2
0) ∂2

vh0

]
r2

− M(v)

r3
+ · · ·


h(r, v) =

h0 +
ḣ0

r
+

h0ḣ20
4(−1+h20)

r2
+
σ(v)

r3
+ · · ·


(2.4.103)

where the parameters M and σ are constrained by the energy conservation equation

Ṁ = − ḣ0

2 (−1 + h2
0)

4

[
+ 3M(v)h0

(
−1 + h2

0

)3 − 3
(
−1 + h2

0

)3
σ

− 4
(
−1 + h2

0

)
h0ḣ0∂

2
vh0 +

(
−1 + h2

0

)2
∂3
vh0 +

(
1 + 3h2

0

) [
ḣ0

]3
] (2.4.104)

10

10The stress tensor is given by

Ttt = M

Txx = Tyy = −M
2

Txy = − 1

2 (−1 + h20)
3

[
− 3

(
−1 + h20

)3
σ(v)− 4

(
−1 + h20

)
h0ḣ0∂

2
vh0

+
(
−1 + h20

)2
h30 +

(
1 + 3h20

) [
ḣ0

]3 ]
(2.4.105)

Using these relations, it may be verified that (2.4.104) is simply a statement of the conservation of the

stress tensor.
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In the perturbative solution we list below, we will find that σ ∼ O(ε3). It follows that,

to order O(ε2), the function M(v) is given by (2.4.101).

2.4.3 Structure of the amplitude expansion

As in subsection 2.1 we set up a naive amplitude expansion by formally replacing h0 with

εh0 and then solving our equations in a power series in ε. We expand

f(r, v) =
∞∑
n=0

εnfn(r, v)

g(r, v) =
∞∑
n=0

εngn(r, v)

h(r, v) =
∞∑
n=0

εnhn(r, v)

(2.4.106)

with

f0(r, v) = r, g0(r, v) = r2, h0(r, v) = 0. (2.4.107)

The formal structure of this expansion is identical to that described in § 2.1.5; in particular

fn and gn are nonzero only for even n while hn is nonzero only for odd n. At first order

we find

h1(r, v) = h0(r, v) +
ḣ0(r, v)

r
(2.4.108)

which then leads to simple expressions (see below) for f2 and g2. In particular h1 and f2

vanish for v ≥ δt while g2 = M/r for v ≥ δt.

Turning to higher orders in the perturbative expansion, it is possible to inductively

demonstrate that for n ≥ 1

• 1. The functions hn, gn and fn have the following analytic structure in the variable
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r

h2n+1(r, v) =
2n+1∑
k=2

φkn(v)

rk

f2n+2(r, v) = r
2n+2∑
k=2

fkn(v)

rk

g2n+2(r, v) = r
n∑
k=1

gkn(v)

rk

(2.4.109)

• 2. The functions hk2n+1(v), fk2n+2(v) and gk2n+2(v) are each functionals of h0(v) that

scale like λ−k under the scaling v → λv.

• 3. For v > δt these functions are all polynomials in v of a degree that grows with

n. For example, the degree of hk2n+1 is of at most 3n− k.

As in the § 2.1, this structure ensures that naive perturbation theory is good for times

v �M
1
3 , but fails for later times. As in section (2.1), the correct perturbative expansion

uses the Vaidya metric (0.1.1) as the zero order solution.

2.4.4 Explicit results up to 5th order

At leading order we have

h1(r, v) = h0(v) +
ḣ0

r

f2(r, v) =

[
ḣ0

]2

8r

g2(r, v) =
E2(v)

r
+

1

4

[
ḣ0

]2

+ ḣ0∂
2
vh0

(2.4.110)
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At next order

h3(r, v) =
1

4r3

{∫ v

−∞
E2(x)∂xh0 dx− r h0

[
ḣ0

]2
}

f4(r, v) =
h2

0(v)
[
ḣ0

]2

8r
+
D(v)h0(v)

8r2
− ḣ0

128r3

(
−12D(v) +

[
ḣ0

]3
)

g4(r, v) =
E4(v)

r
+

5

4
h0(v)2

[
ḣ0

]2

+ h0(v)3∂2
vh0

+
ḣ0

8r2

[
D(v) + 4E2(v)h0(v)

]
+

1

16r3

(
E2(v)

[
ḣ0

]2

+D(v)∂2
vh0

)
h4(r, v) = 0

where D(v) =

∫ v

−∞
E2(x)∂xh0 dx

(2.4.111)

Finally at the next order

h5(r, v) =
D1(v)

2r2

+
1

24r3

[
6

∫ v

−∞
D2(x) dx+ 5

{∫ v

−∞
dz

∫ z

−∞
dy

∫ y

−∞
D4(x) dx

}
+ 4

{∫ v

−∞
dy

∫ y

−∞
D3(x) dx

}]
+

1

r4

[
5

24

{∫ v

−∞
dy

∫ y

−∞
D4(x) dx

}
+

1

6

{∫ v

−∞
D3(x) dx

}]
+

1

8r5

[∫ v

−∞
D4(x) dx

]
(2.4.112)

where

D1(x) = −h0(x)3 [∂xh0]2

D2(x) = E4(x)∂xh0 +
1

4
D(x)h0(x)∂xh0 + E2(x)h0(x)2∂xh0

D3(x) =
1

8

[
5D(x) [∂xh0]2 + 15E2(x)h0(x) [∂xh0]2 + 15D(x)h0(x)∂2

xh0

]
D4(x) =

1

8

[
18D(x)E2(x) + 5E2(x) [∂xh0]3 + 7D(x)h0(x)∂2

xh0

]
(2.4.113)
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and (this follows from energy conservation)

Ė2 =
1

2
ḣ0∂

3
vh0

Ė4 =
3

8
D(v)ḣ0 +

ḣ0

2

[
3E2(v)h0(v) +

[
ḣ0

]3

+ 4h0(v)ḣ0∂
2
vh0 + 2h2

0∂
3
vh0

] (2.4.114)

It follows in particular that the the ‘initial’ condition for normalizable evolution at

v = δt is given, to leading order, by

h(r, δt) =
1

8r3

∫ v

−∞

(∫ x

−∞
dy
(
∂yh0∂

3
yh0

)
∂xh0(x)dx

)
(2.4.115)

This initial condition is of order ε3

(δt)3r3
i.e. of order ε

r̃3
where r̃ = r

E2
. This demonstrates

that, for v > δt, our solution is a small perturbation about the black brane of energy

density E2.

2.4.5 Late Times Resummed perturbation theory

To leading order, the initial condition for the normalizable evolution of resummed per-

turbation theory for the field h(r, v) is given by

h(δt) =
1

4r3

(∫ δt

−∞
E2(x)∂xh0 dx

)
≡ h0

3(δt)

r3

Now, at the linearized level the equation of motion for the function h is simply the

minimally coupled scalar equation. It follows that the subsequent evolution of the field h

is simply given by

h =
h0

3(δt)

M
ψ(

r

M
1
3

, (v − δt)M
1
3 ) (2.4.116)

where the universal function ψ was defined in § 2.1. As in § 2.1, this perturbation is small

initially, and at all subsequent times, justifying the resummed perturbation procedure.
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2.5 Generalization to Arbitrary Dimension

2.5.1 Translationally Invariant Scalar Collapse in Arbitrary Di-

mension

In this subsection we will investigate how the results of section 2.1, which were worked

out for the special case d = 3, generalize to d ≥ 3. The mathematical problem we

will investigate in this section was already set up in general d in subsection 2.1.1. It

turns out that the dynamical details of collapse processes in odd and even dynamics are

substantially different, so we will deal with those two cases separately.

Odd d

The general structure of the solutions that describe collapse in odd d ≥ 5 is similar in

many ways to the solution reported in § 2.1. The energy conservation equations may be

studied via a large r Graham Fefferman expansion closely analogous to that described in

§ 2.1. The functions φ f and g may be expanded at large r as

φ(r, v) =
∞∑
n=0

Anφ(v)

rn

f(r, v) = r

(
∞∑
n=0

Anf (v)

rn

)

g(r, v) = r2

(
∞∑
n=0

Ang (v)

rn

) (2.5.117)

For n ≤ d− 1 the equations of motion locally determine Anφ(v), Anf (v) and Ang (v) in terms

of φ0(v). Each of these functions is a local expression (of nth order in v derivatives) of

φ0(v). However local analysis does not determine Adg(v) ≡ M(v) and Adφ(v) ≡ L(v) in

terms of φ0(v). M(v) and L(v) are however constrained to obey an energy conservation

equation that takes the form

Ṁ = kφ̇L(v) + local (2.5.118)
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where k is a constant and ‘local’ represents the a set of terms built out of products of

derivatives of φ0(v) that we will return to below. As in d = 3, L(v) = O(ε3), so the

first term in (2.5.118) does not contribute at lowest order of the amplitude expansion of

interest to this chapter. The local terms in this equation (2.5.118) are easily worked out

at lowest order, O(ε2), in the amplitude expansion, and we find M(v) = C2(v) + O(ε4)

with

C2(v) = − 2d−2

(d− 2)

(
(d−1

2
)!

(d− 1)!

)2 ∫ v

−∞
dt

[(
∂
d+3
2

t φ0

)(
∂
d−1
2

t φ0

)
− d− 3

d− 1

(
∂
d+1
2

t φ0

)2
]

(2.5.119)

C2 =
2d−1

(d− 1)

(
(d−1

2
)!

(d− 1)!

)2 ∫ ∞
−∞

dt
(
∂
d+1
2

t φ0(t)
)2

∼ ε2

(δt)d
, (2.5.120)

the generalization of (2.1.20) and (2.1.21) to arbitrary odd d. (2.5.120) gives the leading

order expression for the mass of the black brane that is eventually formed at the end of

the thermalization process.

Let us now turn to the naive amplitude expansion in arbitrary odd d. The first term

in this expansion, φ1 is easily determined and we find

φ1(r, v) =

d−1
2∑

k=0

2k

k!

(
d−1

2

)
!

(d− 1)!

(d− 1− k)!

(d−1−2k
2

)!

∂kvφ0

rk
(2.5.121)

Equations (2.1.12) then immediately determine f2 and g2. Turning to higher orders, it is

possible to demonstrate that

• 1. The functions φ2n+1, g2n and f2n have the following analytic structure in the
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variable r

φ2n+1(r, v) =

(2n+1)(d−1)
2

−p(n)∑
k=0

φk2n+1(v)

r
(2n+1)(d−1)

2
−k

f2n(r, v) = r

n(d−1)−f(n)∑
k=0

fk2n(v)

rn(d−1)−k


g2n(r, v) = −C2n(v)

rd−2
+ r

n(d−1)−g(n)∑
k=0

gk2n(v)

rn(d−1)−k


(2.5.122)

where

p(n) = d, (2n+ 1 ≥ d), p(n) = 2n+ 1 (2n+ 1 ≤ d),

f(n) = d, (2n ≥ d), f(n) = 2n (2n ≤ d),

g(n) = d− 1, (2n ≥ d− 1), g(n) = 2n− 1 (2n ≤ d).

• 2. The functions φk2n+1(v), fk2n(v) and gk2n(v) are each functionals of φ0(v) that scale

like λ−k under the scaling v → λv.

• 3. For v > δt f2 = f4 = 0, g2 = − C2

rd−2 and g4 = −C4

rd−2 . Further, effectively, p(n) = d,

f(n) = 2d and g(n) = 2d − 1 for v > δt (all additional terms present in (2.5.122)

vanish at these late times). Moreover the functions φk2n+1(v), fk2n(v) and gk2n(v) are

all polynomials in v whose degrees are bounded from above by n+ k− 1, n+ k− 3

and n+ k − 4 respectively.

As in d = 3, the polynomial growth in v of the coefficients of the naive perturbative

expansion invalidates this expansion for large enough v. More specifically, the sums

over k and n in the expressions above are weighted by rv and ε2v
rd−1 respectively. In the

neighborhood of the horizon, r ∼ rH ∼ T ∼ ε
2
d

δt
each of these sums is effectively weighted

by the factor vT . Consequently, naive perturbation theory fails at times large compared

to the inverse temperature of the brane. At times of order δt and for r ∼ rH the sum over

k and n are each weighted effectively by ε
2
d . More generally, naive perturbation theory is
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good at times of order δt provided rδt � ε
2
d−1 , a condition that is satisfied at the event

horizon.

As in d = 3 the IR divergence of the naive perturbation expansion has a simple

explanation. Even within the validity of the naive perturbation expansion, the spacetime

is not well approximated by empty AdS space, but rather by the Vaidya metric (0.1.1).

The naive expansion, which may be carried out with comparative ease up to v = δt, may

be used to supply initial conditions for the subsequent unforced normalizable evolution

for resummed perturbation theory. For v ≥ δt, the spacetime metric is given, to leading

order, by the Vaidya form (0.1.1), with C2(v) given by the constant C2 listed in (2.5.120)

Consequently, the spacetime metric for v ≥ δt is the black brane metric with temper-

ature of order ε
2
d

δt
, perturbed by a propagating φ field and consequent spacetime ripples.

The initial conditions at v = δt, that determine these perturbations at later times, are

given to leading order in ε (read off from the most small r singular term in φ3) as

φ(r, v) =
A

r
3(d−1)

2

where

A =
(d− 1)2

2(d− 2)

∫ ∞
−∞

dt

[
(d− 2)

(
2
d−1
2

(
d−1

2

)
!

(d− 1)!

)
C2(t)

(
∂
d−1
2

t φ0

)
−

(
2
d−1
2

(
d−1

2

)
!

(d− 1)!

)3 (
∂
d−1
2

t φ0

)2 (
∂
d+1
2

t φ0

)]
(2.5.123)

In terms of the normalized variable x = r

M
1
d

and y = vM
1
d this initial condition takes

the form

φ(x) ∼ ε
3
d

x
3(d−1)

2

(2.5.124)

It follows that the solution at v ≥ δt is (in the appropriate x, y coordinates) an order

ε
3
d perturbation about the uniform black brane. The coefficient of this perturbation is

bounded for all y, and decays exponentially for large y over a time scale of order unity

in that variable. The explicit form of the solution for φ, for v > δt, may be obtained in
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terms of a universal function, ψd(x, y) as in § 2.1. The equation that we need to solve is

∂x

(
xd+1

(
1− 1

xd

)
∂xψd

)
+ 2x

d−1
2 ∂x∂y

(
x
d−1
2 ψd

)
= 0 (2.5.125)
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Figure 2.3: Numerical solution for the dilaton at late time in d = 5

As in § 2.1, this universal function appears to be difficult to obtain analytically, but is

easily evaluated numerically. As an example in Figure 2.3 we present a numerical plot of

this function in d = 5. As in § 2.1 we find it convenient to display the numerical output

for the function ψ5( 1
x
, y) over the full exterior of the event horizon, u ∈ (0, 1).

11 In figure 2.4 we present a graph of ψ5( 1
0.7
, y) (i.e. as a function of time at a fixed radial

location) Notice that this graph decays, roughly exponentially for v > 0.5 and that this

exponential decay is dressed with a sinusodial osciallation, as expected for quasinormal

11In order to obtain this plot, as in 2.1, we worked with the redefined field χ5(u, y) = (1− u)ψ5( 1
u , y)

and imposed Dirichlet boundary conditions on this field at u = 0 and u = 0.999999. We also imposed
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Figure 2.4: A plot of ψ5( 1
0.7
, y) as a function of y

type behavior. A very very rough estimate of this decay constant is provided by the

equation ωI using the equation
ψ5( 1

0.7
,1)

ψ5( 1
0.7
,.5)

= e−0.5ωI which gives ωI ≈ 8.2T (here T is the

temperature of our black brane given by T = 4π
5

). This number is the same ballpark as

the decay constants for the first quasi normal mode of the uniform black brane reported

in [35] (unfortunately those authors have not reported the precise numerical value for

d = 5) .

Even d

In our analyses above we have so far focused attention on odd d (recall that d is the

spacetime dimension of the dual field theory). In this subsection we will study how our

results generalize to even d. While all the broad qualitative conclusions of the odd d

analysis plausibly continue to apply, several intermediate details are quite different.The

analysis of all equations is more difficult in even than in odd dimensions. In this appendix

we aim only to initiate a serious analysis of these equations, and to carry this analysis far

the initial conditions χ5 = (0.999999 − u)u6. The Figure 2.3 was outputted by Mathematica-6’s partial

differential equation solver, with a step size of 0.0005 and an accuracy goal of 0.001.
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enough to have a plausible guess for the behavior of our system. We leave a systematic

analysis of these equations to future work.

The qualitative differences between even and odd d show themselves already in the

Graham Fefferman expansion. We illustrate this by working out this expansion in d = 4.

In this dimension the expansion of f, g, φ at large r take the form

f(r, v) = r − (φ̇0)2

12r
− φ̈0φ̇0

36r2
+
−3(φ̇0)4 + 2

...
φ 0φ̇0 − (∂2

vφ0)2

288r3

+
−19φ̈0(φ̇0)3 − 1440L(v)φ̇0 − 18∂4

vφ0∂vφ0 + 45φ̈0

...
φ 0

21600r4

−
log(r)φ̇0

(
∂4
vφ0 − 2(φ̇0)2∂2

vφ0

)
240r4

+ . . .

g(r, v) = r2 − 5

12
(φ̇0)2 − M(v)

r2
+

log(r)
(
−(φ̇0)4 + 2

...
φ 0φ̇0 − (∂2

vφ0)2
)

24r2
+ . . .

φ(r, v) = φ0 +
φ̇0

r
+
∂2
vφ0

4r2
+

5
36

(φ̇0)3 − 1
12

...
φ 0

r3
+
L

r4
+ . . .

+
log(r)

(
∂4
vφ0 − 2(φ̇0)2∂2

vφ0

)
16r4

(2.5.126)

The energy conservation equation is

Ṁ =
1

144

(
40φ̈0(φ̇0)3 − 192L(v)φ̇0 − 17∂4

vφ0φ̇0 + 6φ̈0

...
φ 0

)
(2.5.127)

and at quadratic order in ε we have

M(v) = C2(v) +O(ε4)

C2(v) =
1

144

∫ v

−∞
dt
(
−192L(t)φ̇0 − 17

....
φ 0φ̇0 + 6∂2

t φ0

...
φ 0

) (2.5.128)

Unlike in even dimensions, it turns out that in odd dimensions L(v) is nonzero at

order ε. This is fortunate, as all the local terms in (2.5.128) are total derivatives, and

so vanish when v is taken to be larger than δt. The full contribution to the mass of the

black brane that is eventually formed from our collapse process arises from the term in

(2.5.128) that is proportional to L(v). As a consequence, the mass of the eventual black
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brane is not determined simply by Graham Fefferman analysis, but requires the details

of the full dynamical process. These details may be worked out at lowest order in the ε

expansion, (see below) and we will find

L(v) =

(
−7 + 12 log 2

192

)
∂4
vφ0 +

1

16

∫ v

−∞
dt log(v − t) ∂5

t φ0(t) +O(ε3) (2.5.129)

Plugging into (2.5.128) we find that C2(v) reduces to the constant C2 for v > δt, and we

have

C2 = − 1

12

∫ ∞
−∞

dt1dt2
(
∂3
t1
φ0(t1) log(t1 − t2)Θ(t1 − t2)∂3

t2
φ0(t2)

)
(2.5.130)

Let us now turn to the amplitude expansion of our solutions. We will work this

expansion out only at leading order; already the leading order solution turns out to have

qualitative differences (and to be much harder to determine and manipulate) than the

corresponding solution in odd d.

Recall that φ1 (2.5.121) is extremely simple when d was odd. To start with, the

solution is local in time, i.e. φ1(r, v0) is completely determined by the value, and a finite

number of derivatives, of φ0(v0). Relatedly φ(r, v) has a very simple analytic expression

in r; it is a polynomial in 1
r

of degree d−1
2

. In even d, on the other hand the dependence

of φ1(r, v) on φ0(v) is not local in time. Relatedly, the expansion of φ1(r, v) in a power

series in 1
r

has terms of every order in 1
r
. Explicitly we find

φ1(r, v) =

∫ ∞
0

∂d+1
v φ0(v − t)

(
h(rt)

rd

)
dt

h(x) =

∫ x

0

dy
(y(y + 2))

d−1
2

(d− 1)!

= (−1)
d
2

(
d
d
2

)
θ

2d
+

1

2d−1

d
2
−1∑
k=0

(−1)k

d− 2k

(
d

k

)
sinh ((d− 2k)θ)

where cosh θ = 1 + x

(2.5.131)
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Note that the function h(x) admits the following large x expansion

h(x) =
xd

(d− 1)!
+

d−1∑
k=1

xd−k

(d− k)k!(d− 1)!

(
k∏

m=1

(d− 2m− 1)

)

+
(−1)

d
2

+1(d)!

(d− 1)!2d((d
2
)!)2

 d
2
−1∑
p=0

1

(d− 2p)(d− 2p− 1)

+
(−1)

d
2 (d)

2d
(
d
2
!
)2 ln(2x) +O(

lnx

x
)

(2.5.132)

The fact that h(x) grows (rather than decays) with x may cause the reader to worry

that φ(r, v) blows up at large v. That this is not the case may be seen by noting that

vk∂d+1
v φ0 may be rewritten as a sum of total derivatives when k ≤ d+ 1 and so integrates

to zero when v > δt (in general it integrates to a simple local expression even for v < δt).

Explicitly, plugging (2.5.132) into (2.5.131) and integrating by parts we find that φ1(r, v)

has the following large rt behavior

φ1(r, v) =
d∑
i=0

Ai(v)

ri
+
B(v) ln(r)

rd
+O(

ln r

rd+1
)

= φ0(v)

+
d−1∑
k=1

∂kvφ0(v)

rk

[
(d− k − 1)!

k!(d− 1)!

(
k∏

m=1

(d− 2m− 1)

)]

+
∂dvφ0(v)

rd

 (−1)
d
2

+1(d)!

(d− 1)!2d((d
2
)!)2

 d
2
−1∑
p=0

1

(d− 2p)(d− 2p− 1)


+

∫ ∞
0

dt
∂d+1
v φ0(v − t)

rd
ln(2rt)

[
(−1)

d
2 (d)

2d
(
d
2
!
)2

]

+O(
ln(r)

r

d+1

)

(2.5.133)

(where the functions Ai(v) and B(v) are defined by this equation). On the other hand at

small x we have

h(x) =
(2x)

d+1
2

(d+ 1)(d− 1)!
(1 +O(x)) (2.5.134)
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from which it follows that

φ1(r, v) =
1

r
d−1
2

1

(d+ 1)(d− 1)!

∫ v

−∞
dt(2(v − t))

d+1
2 ∂d+1

t φ0(t) +O(
1

r
d−3
2

), (2.5.135)

an expression that is valid at small rv. Note, in particular, that for δt � v, (2.5.135)

reduces to

φ1(r, v) =
2
d+1
2

∫ δt
0
φ0(t)dt

r
d−1
2 v

d+1
2

1

(d+ 1)(d− 1)!
+O(

1

r
d−3
2

) +O(
1

t
d+3
2

) (2.5.136)

In particular this formula determines the behavior of the field φ1 in the neighborhood of

the event horizon rH ∼ T for times that are large compared to δt but small compared to

T−1.

The functions f2 and g2 are easily expressed in terms of the function φ0. We find

f2(r, v) = − 1

2(d− 1)

[
r

∫ ∞
r

(∂ρφ1)2dρ−
∫ ∞
r

ρ2(∂ρφ1)2dρ

]
g2(r, v) = −

(
2∂vf2(r, v) + (d− 2)rf2(r, v) + r2∂rf2(r, v)

)
+
d(d− 1)

rd−2

∫ r

0

ρd−2f2(ρ, v)dρ− D2(v)

rd−2

(2.5.137)

The function D2(v) is determined by the requirement that the coefficient of 1
rd−2 , in

the large r expansion of g2(r, v) is −C2(v) (see (2.5.128)); in particular, for v > δt,

D2(v) = C2(v). At small r and for v > δt

f2(r, v) = − K2(v)

2(d− 1)(d− 2)(d− 3)rd−2
+O(

1

rd−3
)

g2(r, v) = − C2

rd−2
+

∂vK
2(v)

(d− 1)(d− 2)(d− 3)rd−2
+O(

1

rd−3
)

K(v) =
1

(d+ 1)(d− 1)!

∫ v

−∞
dt(2(v − t))

d+1
2 ∂d+1

t φ0(t)

≈
2
d+1
2

∫ δt
0
φ0(t)dt

v
d+1
2

1

(d+ 1)(d− 1)!
(v � δt)

(2.5.138)

We would like to draw attention to several aspects of these results. First note that

φ1(r, v) is small provided (rδt)
d−1
2 � ε. Consequently, we expect a perturbative analysis
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to correctly capture the dynamics of our situation over this range of coordinates; note that

this is exactly the same estimate as for odd d. Next note that the maximal singularity,

at small r, in the functions f2 and g2, are both of order 1
rd−2 ; this is the same as the

maximal singularity in the analogous functions in odd d (see the previous subsection).

As the function g0(r, v) = r2, it follows, as in the previous function, that our spacetime

metric is not uniformly well approximated by the empty AdS space over the full range of

validity of perturbation theory. Over this entire range, however, it is well approximated

by a Vaidya type metric, where the mass function for this metric is given at leading order

by the coefficient of − 1
rd−2 in g2(r, v) above.

Unlike the situation in odd dimensions, the leading order mass function M(v), in the

effective Vaidya metric, is not given simply by C2(v). In particular, when v � δt we have

from (2.5.138) that

C2 −M(v)

C2

∼
(
δt

v

)d+2

.

In other words, the leading order metric for the thermalization process, in even d, is not

given precisely by the metric of the uniform black brane for v > δt. However it decays, in a

power law fashion, to the black brane metric at times larger than δt. As a consequence at

times δt� v � T−1 the leading order metric that captures the thermalization process is

arbitrarily well approximated by the metric of a uniform black brane. It follows that, while

the spacetime described in this subsection does not capture the dual of instantaneous field

theory thermalization (as was the case in odd d), it yields the dual of a thermalization

process that occurs over the time scale of the forcing function rather than the much longer

linear response time scale of the inverse temperature.

We will not, in this chapter, continue the perturbative expansion to higher orders in ε.

We suspect, however, that the computation of φ3 when carried through will yield a term

proportional to ε3

r
3(d−1)

2

that is constant in time. This term will dominate the decaying tail

of φ1(r, v) at a time intermediate between δt and T−1 and will set the initial condition for

the late time decay of the φ field (over time scale T−1) as was the case in odd dimensions.
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It would be very interesting to verify or correct this guess.

2.5.2 Spherically Symmetric flat space collapse in arbitrary di-

mension

Odd d

The discussion of § 2.2 also extends to the study of spherically symmetric collapse in a

space that is asymptotically flat Rd,1 for arbitrary odd d. In this section we will very

briefly explain how this works, focussing on the limit y = rH
δt
� 1.

To lowest order in the amplitude expansion we find

φ1(r, v) =

d−3
2∑
m

2
d−3
2
−m (−1)m

m!

(
d−3

2
+m

)
!(

d−3
2
−m

)
!

∂
d−3
2
−m

v ψ(v)

r
d−1
2

+m
(2.5.139)

Here ψ(v) is a function of time that we take, as usual, to vanish outside v ∈ (0, δt), and

be of order εf (δt)
d−1
2 , where εf is a dimensionless number such that εf � 1. As in § 2.2

the parameter that will justify the amplitude expansion will be 1
εf

.

(2.5.139) together with constraint equations immediately yields an expression for the

functions f2 and g2. In particular, the leading large r approximation to g2 is given by

g2(r, v) = −M(v)

rd−2

M(v) = −2(d−4)

d− 1

∫ v

−∞
dt

[(
∂

(d−3)
2

t ψ(t)

)(
∂

(d+1)
2

t ψ(t)

)
− d− 3

d− 2

(
∂

(d−1)
2

t ψ(t)

)2 ]
(2.5.140)

Note that φ1 � 1 whenever r
d−1
2 � (δt)

d−1
2 εf so we expect the amplitude expansion to

reliably describe dynamics over this range of parameters. As in § 2.2, however, g2 cannot

be ignored in comparison to g0 = 1 throughout this parameter regime. As in § 2.2, this

implies that our spacetime is well approximated by a Vaidya type metric rather than

empty flat space even at arbitrarily small 1
εf

. The mass function of this Vaidya metric is

given by M(v) in (2.5.140).
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As in § 2.2 one may ignore this complication at early times v � rH over which the

solution is well approximated by a naive perturbation expansion that uses empty flat

space as its starting point. It is possible to demonstrate that this naive expansion has the

following analytic structure in the variables r and v

• 1. The functions Φ2n+1, F2n and G2n have the following analytic structure in the

variable r

Φ2n+1(r, v) =
∞∑
m=0

Φm
2n+1(v)

r(2n+1) d−1
2

+m

F2n(r, v) = r
∞∑
m=0

Fm
2n(v)

rn(d−1)+m

G2n(r, v) = −δn,1
M(v)

rd−2
+ r

∞∑
m=0

Gm
2n(v)

rn(d−1)+m

(2.5.141)

• 2. The functions Φm
2n+1(v), Fm

2n(v) and Gm
2n(v) are each functionals of ψ(v) that scale

like λm−(2n+1) d−3
2 λm−n(d−3) and λm−n(d−3)−1 under the the scaling v → λv. M(v)

scales like λ2−d under the same scaling.

• 3. For v > δt the Φm
2n+1(v) is polynomials in v of degree ≤ n + m − 1; Fm

2n(v) and

Gm
2n are polynomials in v of degree ≤ n+m− 3 and n+m− 4 respectively.

It follows that, say, φ(r, v), is given by a double sum

φ(r, v) =
∑
n

Φ2n+1(r, v) =
∞∑

n,m=0

Φm
2n+1(v)

r(2n+1) d−1
2

+m
.

Now sums over m and n are controlled by the effective expansion parameters ∼ v
r

(for

m) and ψ2v
(δt)d−2rd−1 ∼ v

δtε
2
d−2
f

∼ v
rH

(for n; recall that in the neighborhood of the horizon

rd−2
H ∼ (δt)d−2ε2f ).

As in § 2.2, it follows that the naive perturbation expansion breaks down for times

v � rH . However this expansion is valid everwhere outside the event horizon at times of

order δt, and so may be used to set the initial conditions for a resummed perturbation
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expansion that uses the Vaidya metric as its starting point. For v > δt the mass function

of the Vaidya metric reduces to a constant. At long times our solution is given by a small

perturbation around a black hole of mass M . This perturbation is best analyzed in the

coordinates x = r

M
1
d−2

and y = v

M
1
d−2

. In these coordinates the leading order tail of φ, at

long times, is given by motion about a black hole of unit Schwarzschild radius perturbed

by the φ field with initial condition

φ(x, 0) =
φ0

3(δt)

M
3(d−1)
2(d−2)x

3(d−1)
2

∼ 1

ε
3
d−2

f

The smallness of this perturbation justifies linearized treatment of the subsequent dynam-

ics.

Even d

We will not, in this chapter, attempt an analysis of the spherically symmetric collapse to

form a black hole asymptotically Rd,1 for even d. Here we simply note that the leading

order large εf solution for φ1(v) may formally be expressed as

φ1(r, v) =

∫
dω

q(ω)eiω(v−r)
H

(1)
d−2
2

(rω)

r
d−2
2

 (2.5.142)

for any function q(ω) where Hn(x) is the nth Hankel function of the first kind, i.e.

H(1)
n (x) ≈

√
2

πx

(
ei(x−

π
4
−nπ

2
) +O(

1

x
)

)
Using this expansion, it is easily verified that φ1(r, v) reduces, at large r, to an incoming

wave that takes the form ψ(v)

r
d−1
2

. The evolution of this wave to small r is implicitly given by

(2.5.142). It should be possible to mimic the analysis of subsubsection 2.5.1 to explicitly

express φ1(r, v) as a spacetime dependent Kernel function convoluted against ψ(v). In

analogy with subsection 2.5.1 it should also be possible to expand g2(r, v) about small

r. It is tempting to guess that such an analysis would reveal that the leading singularity

in g2(r, v) scales like 1
rd−2 , so that the metric is well approximated by a spacetime of the

Vaidya form. We leave the verification of these guesses to future work.
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2.5.3 Spherically symmetric asymptotically AdS collapse in ar-

bitrary dimension

It should be straightforward to generalize the analysis of § 2.3 to arbitrary odd d, and

perhaps also to arbitrary even d. We do not explicitly carry out this generalization in this

chapter. However it is a simple matter to infer the various scales that will appear in this

generalization using the intuition and results of subsections 2.5.1 and 2.5.2, and the fact

that the results of global spherically symmetric AdS collapse must reduce to Poincare

patch collapse in one limit and flat space collapse in another. We have reported these

scales in the introductionto § 2.3.
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Chapter 3

Fluid dynamics - Gravity

correspondence

This chapter is based on [2].

In this chapter we describe an unforced system which is already locally equilibrated and

is evolving towards global equilibrium. As described in the introduction this relaxation

process happens on length and time scales that are both large compared to the inverse local

temperature and so admits an effective description in terms of fluid dynamics. Therefore

on the the dual gravitational picture, once the black hole is formed, Einstein’s equations

should reduce to the nonlinear equations of fluid dynamics in an appropriate regime of

parameters.

In this chapter we provide a systematic framework to construct this universal gravity

dual to the nonlinear fluid dynamics, order by order in a boundary derivative expansion.

From here onwards we will set d = 4 i.e. we will consider only asymptotically AdS5

spaces.
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3.1 Fluid dynamics from gravity

We begin with a description of the procedure we use to construct a map from solutions

of fluid dynamics to solutions of gravity. We then summarize the results obtained by

implementing this procedure to second order in the derivative expansion.

Consider a theory of pure gravity with a negative cosmological constant. With a

particular choice of units (RAdS = 1) Einstein’s equations are given by1

EMN = RMN −
1

2
gMNR− 6 gMN = 0

=⇒ RMN + 4 gMN = 0, R = −20.

(3.1.1)

Of course the equations (3.1.1) admit AdS5 solutions. Another class of solutions to

these equations is given by the ‘boosted black branes’ 2

ds2 = −2uµ dx
µdr − r2 f(b r)uµ uν dx

µdxν + r2 Pµν dx
µdxν , (3.1.2)

with

f(r) = 1− 1

r4

uv =
1√

1− β2

ui =
βi√

1− β2
,

(3.1.3)

where the temperature T = 1
π b

and velocities βi are all constants with β2 = βj β
j, and

P µν = uµuν + ηµν (3.1.4)

is the projector onto spatial directions. The metrics (3.1.2) describe the uniform black

brane written in ingoing Eddington-Finkelstein coordinates, at temperature T , moving at

1We use upper case Latin indices {M,N, · · · } to denote bulk directions, while lower case Greek indices

{µ, ν, · · · } refer to field theory or boundary directions. Finally, we use lower case Latin indices {i, j, · · · }

to denote the spatial directions in the boundary.
2The indices in the boundary are raised and lowered with the Minkowski metric ie. uµ = ηµν u

ν .
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velocity βi.3

Now consider the metric (3.1.2) with the constant parameter b and the velocities βi

replaced by slowly varying functions b(xµ), βi(x
µ) of the boundary coordinates.

ds2 = −2uµ(xα) dxµ dr − r2 f (b(xα) r) uµ(xα)uν(x
α) dxµ dxν + r2 Pµν(x

α) dxµ dxν .

(3.1.6)

Generically, such a metric (we will denote it by g(0)(b(xµ), βi(x
µ)) is not a solution to

Einstein’s equations. Nevertheless it has two attractive features. Firstly, away from

r = 0, this deformed metric is everywhere non-singular. This pleasant feature is tied

to our use of Eddington-Finkelstein4 coordinates. 5 Secondly, if all derivatives of the

parameters b(xµ) and βi(x
µ) are small, g(0) is tubewise6 well approximated by a boosted

black brane. Consequently, for slowly varying functions b(xµ), βi(x
µ), it might seem

intuitively plausible that (3.1.6) is a good approximation to a true solution of Einstein’s

equations with a regular event horizon. The main result of our chapter is that this

intuition is correct, provided the functions b(xµ) and βi(x
µ) obey a set of equations of

motion, which turn out simply to be the equations of boundary fluid dynamics.

Einstein’s equations, when evaluated on the metric g(0), yield terms of first and second

order in field theory (ie. (xi, v) ≡ xµ) derivatives of the temperature and velocity fields.7

3 As we have explained above, the 4 parameter set of metrics (3.1.2) may all be obtained from

ds2 = 2 dv dr − r2 f(r) dv2 + r2 dx2 , (3.1.5)

with f = 1 − 1
r4 via a coordinate transform. The coordinate transformations in question are generated

by a subalgebra of the isometry group of AdS5.
4It is perhaps better to call these generalized Gaussian null coordinates as they are constructed with

the aim of having the putative horizon located at the hypersurface r(xµ) = rh.
5A similar ansatz for a black branes in (for instance) Fefferman-Graham coordinates ie. Schwarzschild

like coordinates respecting Poincare symmetry, is singular at r b = 1.
6As explained above, any given tube consists of all values of r well separated from r = 0, but only a

small region of the boundary coordinates xµ.
7As g(0) is an exact solution to Einstein’s equations when these fields are constants, terms with no

derivatives are absent from this expansion.
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By performing a scaling of coordinates to set b to unity (in a local patch), it is possible to

show that field theory derivatives of either ln b(xµ) or βi(x
µ) always appear together with

a factor of b. As a result, the contribution of n derivative terms to the Einstein’s equations

is suppressed (relative to terms with no derivatives) by a factor of (b/L)n ∼ 1/(T L)n.

Here L is the length scale of variations of the temperature and velocity fields in the

neighbourhood of a particular point, and T is the temperature at that point. Therefore,

provided LT � 1, it is sensible to solve Einstein’s equations perturbatively in the number

of field theory derivatives.8

In 3.2 we formulate the perturbation theory described in the previous paragraph, and

explicitly implement this expansion to second order in 1/(LT ). As we have mentioned

above it turns out to be possible to find a gravity solution dual to a boundary velocity

and temperature profile only when these fields obey the equation of motion

∂µT
µν = 0 (3.1.7)

where the rescaled9 stress tensor T µν (to second order in derivatives) is given by

T µν =(π T )4 (ηµν + 4uµuν)− 2 (π T )3 σµν

+ (πT )2

(
(ln 2) T µν2a + 2T µν2b + (2− ln 2)

[
1

3
T µν2c + T µν2d + T µν2e

]) (3.1.8)

8Note that the variation in the radial direction, r, is never slow. Although we work order by order in

the field theory derivatives, we will always solve all differential equations in the r direction exactly.
9Throughout this chapter Tµν = 16πG5 t

µν where G5 is the five dimensional Newton and tµν is the

conventionally defined stress tensor, ie. the charge conjugate to translations of the coordinate v.
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where

σµν = P µαP νβ ∂(αuβ) −
1

3
P µν ∂αu

α

T µν2a = εαβγ(µ σν)
γ uα `β

T µν2b = σµασνα −
1

3
P µν σαβσαβ

T µν2c = ∂αu
α σµν

T µν2d = DuµDuν − 1

3
P µν DuαDuα

T µν2e = P µα P νβ D
(
∂(αuβ)

)
− 1

3
P µν Pαβ D (∂αuβ)

`µ = εαβγµ u
α∂βuγ.

(3.1.9)

Our conventions are ε0123 = −ε0123 = 1 and D ≡ uα∂α and the brackets () around the

indices to denote symmetrization, ie. a(αbβ) = (aαbβ + aβbα)/2.

These constraints are simply the equations of fluid dynamics expanded to second order

in the derivative expansion. The first few terms in the expansion (3.1.8) are familiar.

The derivative free terms describe a perfect fluid with pressure (ie. negative free energy

density) π4 T 4, and so (via thermodynamics) entropy density s = 4π4 T 3. The viscosity η

of this fluid may be read off from the coefficient of σµν and is given by π3 T 3. Notice that

η/s = 1/(4π), in agreement with the famous result of Policastro, Son and Starinets [4].

Our computation of the two derivative terms in (3.1.8) is new; the coefficients of

these terms are presumably related to the various ‘relaxation times’ discussed in the

literature (see for instance [37]). As promised earlier, the fact that we are dealing with

a particular conformal fluid, one that is dual to gravitational dynamics in asymptotically

AdS spacetimes, leads to the coefficients being determined as fixed numbers.

In 3.5.1 we have checked that the minimal covariantization of the stress tensor (3.1.8)

transforms as T µν → e−6φ T µν under the Weyl transformation ηµν → e2φ ηµν , T → e−φ T ,

uα → e−φ uα, for an arbitrary function φ(xµ). Note that we have computed the fluid

dynamical stress tensor only in flat space. The generalization of our expression above to

an arbitrary curved space could well include contributions proportional to the spacetime
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curvature tensor. The fact that (3.1.8) is Weyl invariant by itself is a bit of a (pleasant)

surprise. It implies that that the sum of all curvature dependent contributions to the

stress tensor must be independently Weyl invariant.

3.2 The perturbative expansion

As we have described in 3.1, our goal is to set up a perturbative procedure to solve

Einstein’s equations in asymptotically AdS spacetimes order by order in a boundary

derivative expansion. In this section we will explain the structure of this perturbative

expansion, and outline our implementation of this expansion to second order, leaving the

details of computation to future sections.

3.2.1 The basic set up

In order to mathematically implement our perturbation theory, it is useful to regard b

and βi described in 3.1 as functions of the rescaled field theory coordinates ε xµ where ε is

a formal parameter that will eventually be set to unity. Notice that every derivative of βi

or b produces a power of ε, consequently powers of ε count the number of derivatives. We

now describe a procedure to solve Einstein’s equations in a power series in ε. Consider

the metric10

g = g(0)(βi, b) + ε g(1)(βi, b) + ε2 g(2)(βi, b) +O
(
ε3
)
, (3.2.10)

where g(0) is the metric (3.1.6) and g(1), g(2) etc are correction metrics that are yet to

be determined. As we will explain below, perturbative solutions to the gravitational

equations exist only when the velocity and temperature fields obey certain equations of

motion. These equations are corrected order by order in the ε expansion; this forces us to

correct the velocity and temperature fields themselves, order by order in this expansion.

10For convenience of notation we are dropping the spacetime indices in g(n). We also suppress the

dependence of b and βi on xµ.
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Consequently we set

βi = β
(0)
i + ε β

(1)
i +O

(
ε2
)
, b = b(0) + ε b(1) +O

(
ε2
)
, (3.2.11)

where β
(m)
i and b(n) are all functions of ε xµ.

In order to proceed with the calculation, it will be useful to fix a gauge. We work with

the ‘background field’ gauge

grr = 0 , grµ ∝ uµ , Tr
(
(g(0))−1g(n)

)
= 0 ∀ n > 0. (3.2.12)

Notice that the gauge condition at the point xµ is given only once we know uµ(v, xi). In

other words, the choice above amounts to choosing different gauges for different solutions,

and is conceptually similar to the background field gauge routinely used in effective action

computations for non abelian gauge theories.

3.2.2 General structure of perturbation theory

Let us imagine that we have solved the perturbation theory to the (n− 1)th order, ie. we

have determined g(m) for m ≤ n− 1, and have determined the functions β
(m)
i and b(m) for

m ≤ n− 2. Plugging the expansion (3.2.10) into Einstein’s equations, and extracting the

coefficient of εn, we obtain an equation of the form

H
[
g(0)(β

(0)
i , b(0))

]
g(n)(xµ) = sn. (3.2.13)

Here H is a linear differential operator of second order in the variable r alone. As g(n)

is already of order εn, and since every boundary derivative appears with an additional

power of ε, H is an ultralocal operator in the field theory directions. It is important to

note that H is a differential operator only in the variable r and does not depend on the

variables xµ. Moreover, the precise form of this operator at the point xµ depends only

on the values of β
(0)
i and b(0) at xµ but not on the derivatives of these functions at that

point. Furthermore, the operator H is independent of n; we have the same homogeneous

operator at every order in perturbation theory.
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The source term sn however is different at different orders in perturbation theory. It

is a local expression of nth order in boundary derivatives of β
(0)
i and b(0), as well as of

(n− k)th order in β
(k)
i , b(k) for all k ≤ n− 1. Note that β

(n)
i and b(n) do not enter the nth

order equations as constant (derivative free) shifts of velocities and temperatures solve

the Einstein’s equations.

The expressions (3.2.13) form a set of 5×6/2 = 15 equations. It turns out that four of

these equations do not involve the unknown function g(n) at all; they simply constrain the

velocity functions b and βi. There is one redundancy among the remaining 11 equations

which leaves 10 independent ‘dynamical’ equations. These may be used to solve for the

10 unknown functions in our gauge fixed metric correction g(n), as we describe in more

detail below.

Constraint equations

By abuse of nomenclature, we will refer to those of the Einstein’s equations that are of

first order in r derivatives as constraint equations. Constraint equations are obtained

by dotting the tensor EMN with the vector dual to the one-form dr. Four of the five

constraint equations (ie. those whose free index is a µ index) have an especially simple

boundary interpretation; they are simply the equations of boundary energy momentum

conservation. In the context of our perturbative analysis, these equations simply reduce

to

∂µT
µν

(n−1) = 0 (3.2.14)

where T µν
(n−1) is the boundary stress tensor dual the solution expanded up to O (εn−1).

Recall that each of g(0), g(1)... are local functions of b, βi. It follows that the stress tensor

T µν
(n−1) is also a local function (with at most n − 1 derivatives) of these temperature and

velocity fields. Of course the stress tensor T µν
(n−1) also respects 4 dimensional conformal

invariance. Consequently it is a ‘fluid dynamical’ stress tensor with n− 1 derivatives, the

term simply being used for the most general stress tensor (with n−1 derivatives), written
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as a function of uµ and T , that respects all boundary symmetries.

Consequently, in order to solve the constraint equations at nth order one must solve

the equations of fluid dynamics to (n − 1)th order. As we have already been handed a

solution to fluid dynamics at order n− 2, all we need to do is to correct this solution to

one higher order. Though the question of how one goes about improving this solution is

not the topic of our chapter (we wish only to establish a map between the solutions of

fluid mechanics and gravity, not to investigate how to find the set of all such solutions)

a few words in this connection may be in order. The only quantity in (3.2.14) that is

not already known from the results of perturbation theory at lower orders are β
(n−1)
i and

b(n−1). The four equations (3.2.14) are linear differential equations in these unknowns that

presumably always have a solution. There is a non-uniqueness in these solutions given

by the zero modes obtained by linearizing the equations of stress energy conservation at

zeroth order. These zero modes may always be absorbed into a redefinition of β
(0)
i , b(0),

and so do not correspond to a physical non-uniqueness (ie. this ambiguity goes away once

you specify more clearly what your zeroth order solution really is).

Our discussion so far may be summarized as follows: the first step in solving Einstein’s

equations at nth order is to solve the constraint equations – this amounts to solving the

equations of fluid dynamics at (n− 1)th order (3.2.14). As we explain below, while it is of

course difficult in general to solve these differential equations throughout R3,1, it is easy

to solve them locally in a derivative expansion about any point; this is in fact sufficient

to implement our ultralocal perturbative procedure.

Dynamical equations

The remaining constraint Err and the ‘dynamical’ Einstein’s equations Eµν may be used

to solve for the unknown function g(n). Roughly speaking, it turns out to be possible to

make a judicious choice of variables such that the operator H is converted into a decoupled

system of first order differential operators. It is then simple to solve the equation (3.2.13)
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for an arbitrary source sn by direct integration. This procedure actually yields a whole

linear space of solutions. The undetermined constants of integration in this procedure

are arbitrary functions of xµ and multiply zero modes of the operator (3.2.13). As we

will see below, for an arbitrary non-singular and appropriately normalizable source sn (of

the sort that one expects to be generated in perturbation theory11), it is always possible

to choose these constants to ensure that g(n) is appropriately normalizable at r = ∞

and non-singular at all nonzero r. These requirements do not yet completely specify the

solution for g(n), as H possesses a set of zero modes that satisfy both these requirements.

A basis for the linear space of zero modes, denoted gb and gi, is obtained by differentiating

the 4 parameter class of solutions (3.1.2) with respect to the parameters b and βi. In other

words these zero modes correspond exactly to infinitesimal shifts of β
(0)
i and b(0) and so

may be absorbed into a redefinition of these quantities. They reflect only an ambiguity

of convention, and may be fixed by a ‘renormalization’ prescription, as we will do below.

Summary of the perturbation analysis

In summary, it is always possible to find a physically unique solution for the metric g(n),

which, in turn, yields the form of the nth order fluid dynamical stress tensor (using the

usual AdS/CFT dictionary). This process, being iterative, can be used to recover the

fluid dynamics stress tensor to any desired order in the derivative expansion.

In 3.2.3 and 3.2.4 we will provide a few more details of our perturbative procedure,

in the context of implementing this procedure to first and second order in the derivative

expansion.

11Provided the solution at order n − 1 is non-singular at all nonzero r, it is guaranteed to produce a

non-singular source at all nonzero r. Consequently, the non-singularlity of sn follows inductively. We

think is possible to make a similar inductive argument for the large r behaviour of the source, but have

not yet formulated this argument precisely enough to call it a proof.
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3.2.3 Outline of the first order computation

We now present the strategy to implement the general procedure discussed above to first

order in the derivative expansion.

Solving the constraint equations

The Einstein constraint equations at first order require that the zero order velocity and

temperature fields obey the equations of perfect fluid dynamics

∂µT
µν
(0) = 0 , (3.2.15)

where up to an overall constant

T µν(0) =
1

(b(0))4

(
ηµν + 4uµ(0) u

ν
(0)

)
. (3.2.16)

While it is difficult to find the general solution to these equations at all xµ, in order

to carry out our ultralocal perturbative procedure at a given point yµ, we only need to

solve these constraints to first order in a Taylor expansion of the fields b and βi about

the point yµ. This is, of course, easily achieved. The four equations (3.2.15) may be used

to solve for the 4 derivatives of the temperature field at yµ in terms of first derivatives of

the velocity fields at the same point. This determines the Taylor expansion of b to first

order about yµ in terms of the expansion, to first order, of the field βi about the same

point. We will only require the first order terms in the Taylor expansion of velocity and

temperature fields in order to compute g(1)(yµ).

Solving the dynamical equations

As described in the previous section, we expand Einstein’s equations to first order and

find the equations (3.2.13). Using the ‘solution’ of 3.2.3, all source terms may be regarded

as functions of first derivatives of velocity fields only. The equations (3.2.13) are then

easily integrated subject to boundary conditions and we find (3.2.13) is given by

g(1) = g
(1)
P + fb(xi, v) gb + fi(xj, v) gi, (3.2.17)
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where g
(1)
P is a particular solution to (3.2.13), and fb and fi are a basis for the zero modes

of H that were described in the 3.2.2. Plugging in this solution, the full metric g(0) + g(1),

when expanded to order first order in ε, is (3.2.10)

g = g(0) + ε
(
g

(1)
P + (fb + b(1))gb + (fi + β(1))gi

)
, (3.2.18)

where the four functions of xµ, fb + b(1), fi + β
(1)
i are all completely unconstrained by the

equations at order ε.

The ‘Landau’ Frame

Our solution (3.2.17) for the first order metric has a four function non-uniqueness in it.

As fb and fi may be absorbed into b(1) and β
(1)
i this non-uniqueness simply represents an

ambiguity of convention, and may be fixed by a ‘renormalization’ choice. We describe our

choice below.

Given g(1), it is straightforward to use the AdS/CFT correspondence to recover the

stress tensor. To first order in ε the boundary stress tensor dual to the metric (3.2.18)

evaluates to

T µν =
1

b4
(ηµν + 4uµuν)− 2

b3
T µν(1) , (3.2.19)

where

b = b(0) + ε(b(1) + fb)

βi = ε(β
(1)
i + fi)

(3.2.20)

where T µν(1) , defined by (3.2.19), is an expression linear in xµ derivatives of the velocity

fields and temperature fields. Notice that our definition of T µν(1) , via (3.2.19), depends

explicitly on the value of the coefficients fi, fb of the homogeneous modes of the differen-

tial equation (3.2.13). These coefficients depend on the specific choice of the particular

solution g
(1)
P , which is of course ambiguous up to addition of homogenous solutions. Any

given solution (3.2.17) may be broken up in many different ways into particular and ho-

mogeneous solutions, resulting in an ambiguity of shifts of the coefficients of fb, fi and
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thereby an ambiguity in T µν(1) . It is always possible to use the freedom provided by this am-

biguity to set u(0)µ T
µν
(1) = 0. This choice completely fixes the particular solution g

(1)
P . We

adopt this convention for the particular solution and then simply simply set g(1) = g
(1)
P ie.

choose fb = fi = 0. T µν(1) is now unambiguously defined and may be evaluated by explicit

computation; it turns out that

T µν
(1) = σµν .

The discussion of the previous paragraph has a natural generalization to perturbation

theory at any order. As the operator H is the same at every order in perturbation theory,

the ambiguity for the solution of g(n) in perturbation theory is always of the form described

in (3.2.18). We will always fix the ambiguity in this solution by choosing uµ T
µν
(k) = 0. The

convention dependence of this procedure has a well known counterpart in fluid dynamics;

it is simply the ambiguity of the stress tensor under field redefinitions of the temperature

and uµ. Indeed this field redefinition ambiguity is standardly fixed by precisely the ‘gauge’

choice uµT
µν
(1) = 0. This is the so called ‘Landau frame’ widely used in studies of fluid

dynamics.12

We present the details of the first order computation in 3.3 below.

3.2.4 Outline of the second order computation

Assuming that we have implemented the first order calculation described in 3.2.3, it is

then possible to find a solution to Einstein’s equations at the next order. In this case care

should be taken in implementing the constraints as we discuss below.

12Conventionally, one writes in fluid mechanics the stress tensor as the perfect fluid part and a dissipa-

tive part ie. Tµν = Tµνperfect + Tµνdissipative. The Landau gauge condition we choose at every order simply

amounts to uµ T
µν
dissipative = 0.
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The constraints at second order

The general discussion of 3.2.2 allows us to obtain the second order solution to Einstein’s

equations once we have solved the first order system as outlined in 3.2.3. However, we

need to confront an important issue before proceeding, owing to the way we have set up

the perturbation expansion. Of course perturbation theory at second order is well defined

only once the first order equations have been solved. While in principle we should solve

these equations everywhere in R3,1, in the previous subsection we did not quite achieve

that; we were content to solve the constraint equation (3.2.15) only to first order in the

Taylor expansion about our special point yµ. While that was good enough to obtain g(1),

in order to carry out the second order calculation we first need to do better; we must

ensure that the first order constraint is obeyed to second order in the Taylor expansion

of the fields b(0) and β
(0)
i about yµ. That is, we require

∂λ∂µT
µν
(0) (yα) = 0. (3.2.21)

Essentially, we require that T µν(0) satisfy the conservation equation (3.2.15) to order ε2

before we attempt to find the second order stress tensor. In general, we would have need

(3.2.15) to be satisfied globally before proceeding; however, the ultralocality manifest in

our set-up implies that it suffices that the conservation holds only to the order we are

working. If we were interested in say the nth order stress tensor T µν(n) we would need to

ensure that the stress tensor up to order n−1 satisfies the conservation equation to order

O (εn−1).

The equations (3.2.21) may be thought of as a set of 16 linear constraints on the

coefficients of the (40+78) two derivative terms involving b(0) and β
(0)
i . We use these

equations to solve for 16 coefficients, and treat the remaining coefficients as independent.

This process is the conceptual analogue of our zeroth order ‘solution’ of fluid dynamics

at the point yµ (described in the previous subsection), obtained by solving for the first

derivatives of temperature in terms of the first derivatives of velocities. Indeed it is an

extension of that procedure to the next order in derivatives. See 3.4 for the details of
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the implementation of this procedure. In summary, before we even start trying to solve

for g(2), we need to plug a solution of (3.2.21) into g(0) + g(1) expanded in a Taylor series

expansion about yµ. Otherwise we would be expanding the second order equations about

a background that does not solve the first order fluid dynamics.

Nature of source terms

As we have explained above, the Einstein’s equations, to second order, take the schematic

form described in (3.2.13)

H
[
g(0)(β

(0)
i , b(0))

]
g(2) = sa + sb (3.2.22)

We have broken up the source term above into two pieces, sa and sb, for conceptual

convenience. sa is a local functional of β
(0)
i and b(0) of up to second order in field theory

derivatives. Terms contributing to sa have their origin both in two field theory derivatives

acting on the metric g(0) and exactly one field theory derivative acting on g(1) (recall that

g(1) itself is a local function of β
(0)
i and b(0) of first order in derivatives). The source term

sb is new: it arises from first order derivatives of the velocity and temperature corrections

β
(1)
i and b(1). This has no analogue in the first order computation.

As we have explained above, β
(0)
i , b(0) are absolutely any functions that obey the equa-

tions (3.2.15). In particular, if it turns of that the functions β
(0)
i + ε β

(1)
i and b(0) + ε b(1)

obey that equation (to first order in ε) then β
(1)
i and b(1) may each simply be set to zero by

an appropriate redefinition of β
(0)
i and b

(0)
i . This results in a ‘gauge’ ambiguity of the func-

tions β
(1)
i , b(1). In our ultralocal perturbative procedure, we choose to fix this ambiguity

by setting β
(1)
i to zero (at our distinguished point yµ) while leaving b(1) arbitrary.13

13 The functions b
(1)
i , β

(1)
i have sixteen independent first derivatives, all but four of which may be fixed

by the gauge freedom. We choose use this freedom to set all velocity derivatives to zero.
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Solution of the constraint equations

With the source terms in place, the procedure to solve for g(2) proceeds in direct imitation

of the first order calculation. The constraint equations reduce to the expansion to order

ε of the equation of conservation of the stress tensor

T µν =
1

b4
(4uµuν + ηµν)− 2 ε

1

b3
σµν (3.2.23)

with βi = β(0), b = b(0) + ε b(1). These four equations may be used to solve for the four

derivatives ∂µb
(1) at xµ. Consequently the constraint equations plus our choice of gauge,

uniquely determined the first order correction of the temperature field b(1) and velocity

field β
(1)
i as a function of the zeroth order solution.

Note that the gauge β
(1)
i (yµ) = 0 may be consistently chosen at any one point yµ,

but not at all xµ. Nonetheless the results for g(2) that we obtain using this gauge will,

when appropriately covariantized be simultaneously applicable to every spacetime point

xµ. The reason for this is that all source terms depend on b(1) and β
(1)
i only through the

expansion to order ε of ∂µT
µν = 0 with T µν given by (3.2.23). Note that this source term

is ‘gauge invariant’ (recall that ‘gauge’ transformations are simply shifts of b(1) and β
(1)
i

by zero modes of this equation). It follows that g(2) determined via this procedure does

not depend on our choice of gauge, which was made purely for convenience.

Solving for g(2) and the second order stress tensor

Now plugging this solution for b(1) into the source terms it is straightforward to integrate

(3.2.22) to obtain g(2). We fix the ambiguity in the choice of homogeneous mode in this

solution as before, by requiring T µν(2) u(0)ν = 0. This condition yields a unique solution for

g(2) as well as for the second order correction to the fluid dynamical stress tensor T µν(2) ,

giving rise to the result (3.1.9). We present the details of the second order computation

in 3.4.

In the rest of this chapter we will present our implementation of our perturbative

procedure described above, to first and second order in the derivative expansion.
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3.3 The metric and stress tensor at first order

In this section we will determine the solution, to first order in the derivative expansion.

As we have described in 3.2, the equations that determine g(1) at xµ are ultralocal; con-

sequently we are able to solve the problem point by point. It is always possible to choose

coordinates to set uµ = (1, 0, 0, 0) and b(0) = 1 at any given point xµ. Making that

choice, the metric (3.1.6) expanded to first order in derivatives in the neighbourhood of

xµ (chosen to be the origin of R3,1 for notational simplicity) is given by

ds2
(0) = 2 dv dr − r2 f(r) dv2 + r2 dxi dx

i

− 2xµ ∂µβ
(0)
i dxi dr − 2xµ∂µβ

(0)
i r2 (1− f(r)) dxi dv − 4

xµ ∂µb
(0)

r2
dv2 .

(3.3.24)

In order to implement the perturbation programme described in the previous section, we

need to find the first order metric g(1) which, when added to (3.3.24), gives a solution to

Einstein’s equations to first order in derivatives.

The metric (3.3.24) together with g(1) has a background piece (the first line in (3.3.24))

which is simply the metric of a uniform black brane. In addition it has small first deriva-

tive corrections, some of which are known (the second line of (3.3.24)), and the remainder

of which (g(1)) we have to determine. Now note that the background black brane metric

preserves a spatial SO(3) rotational symmetry. This symmetry allows us to solve sepa-

rately for the SO(3) scalars, the SO(3) vector and SO(3) symmetric traceless two tensor

(5) components of g(1) and lies at the heart of the separability of the matrix valued linear

operator H into a set of ordinary linear operators.

In the following we will discuss each of these sectors separately and determine g(1).

Subsequently, in 3.3.4 we present the full solution to order ε and proceed to calculate

the stress tensor in 3.3.5.
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3.3.1 Scalars of SO(3)

The scalar components of g(1) are parameterized by the functions h1(r) and k1(r) according

to14

g
(1)
ii (r) = 3 r2 h1(r)

g(1)
vv (r) =

k1(r)

r2

g(1)
vr (r) = −3

2
h1(r).

(3.3.25)

Here g
(1)
ii and g

(1)
vr are related to each other by our gauge choice Tr((g(0))−1g(1)) = 0.

The scalar Einstein’s equations (ie. those equations that transform as a scalar of

SO(3)) may be divided up into constraints and dynamical equations. The constraint

equations are obtained by contracting Einstein’s equations (the first line of (3.1.1)) with

the vector dual to the one form dr. The first scalar constraint is

r2 f(r)Evr + Evv = 0 , (3.3.26)

which evaluates to

∂vb
(0) =

∂iβ
(0)
i

3
. (3.3.27)

Below, we will interpret (3.3.27) as the expansion of the fluid dynamical stress energy

conservation, expanded to first order. The second constraint equation,

r2 f(r)Err + Evr = 0 , (3.3.28)

leads to

12 r3 h1(r) + (3r4 − 1)h′1(r)− k′1(r) = −6 r2 ∂iβ
(0)
i

3
. (3.3.29)

To this set of constraints we need add only one dynamical scalar equation,15 the

simplest of which turns out to be

5h′1(r) + r h′′1(r) = 0 . (3.3.30)

14In the spatial R3 ⊂ R3,1 we will often for ease of notation, avoid the use of covariant and contravariant

indices and adopt a summation convention for repeated indices ie. g
(1)
ii =

∑3
i=1 g

(1)
ii .

15We have explicitly checked that the equations listed here imply that the second dynamical equation

is automatically satisfied.
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The LHS of (3.3.30) and (3.3.29) are the restriction of the operator H of (3.2.13) to the

scalar sector. The RHS of the same equations are the scalar parts of the source terms s1.

Notice that H is a first order operator in the variables h′1(r) and k1(r). Consequently the

equation (3.3.30) may be integrated for an arbitrary source term. The resulting solution

is regular at all nonzero r provided that the source shares this property, and the growth

h1(r) at infinity is slower than a constant – the behaviour of a non normalizable operator

deformation – provided the source in (3.3.30) grows slower than 1/r at large r. Once

h1(r) has been obtained k1(r) may be determined from (3.3.29) by integration, for an

arbitrary source term. Once again, the solution will be regular and grows no faster than

r3 at large r, provided the source in that equation is regular and normalizable. The two

source terms of this subsection satisfy these regularity and growth requirements, and it

seems clear that this result will extend to arbitrary order in perturbation theory (see the

next section).

The general solution to the system (3.3.29) and (3.3.30), obtained by the integration

described above, is

h1(r) = s+
t

r4
, k1(r) =

2 r3 ∂iβ
(0)
i

3
+ 3 r4 s− t

r4
+ u , (3.3.31)

where s, t and u are arbitrary constants (in the variable r). In the solution above, the

parameter s multiplies a non normalizable mode (which represents a deformation of the

field theory metric) and so is forced to zero by our boundary conditions. A linear com-

bination of the pieces multiplied by t and u is generated by the action of the coordinate

transformation r′ = r (1 + a/r4) and so is pure gauge, and may be set to zero without

loss of generality. The remaining coefficient u corresponds to an infinitesimal temperature

variation, and is forced to be zero by our renormalization condition on the stress tensor

uµ(0) Tµν = 0 (see the subsection on the stress tensor below). In summary, each of s, t, u

may be set to zero and the scalar part of the metric g(1), denoted g
(1)
S , is(

g
(1)
S

)
αβ
dxαdxβ =

2

3
r ∂iβ

(0)
i dv2. (3.3.32)
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Two comments about this solution are in order. First note that k1(r) is manifestly

regular at the unperturbed ‘horizon’ r = 1, as we require. Second, it grows at large r like

r3. This is intermediate between the r0 growth of finite energy fluctuations and the r4

growth of a field theory metric deformation. As g(0) + g(1) obeys the Einstein’s equations

to leading order in derivatives, the usual Fefferman-Graham expansion assures us that the

sum of first order fluctuations in g(0) + g(1) must (in the appropriate coordinate system)

die off like 1/r4 compared to terms that appear in the zeroth order metric (this would

correspond to k1(r) constant at infinity). Consequently the unusually slow fall off at

infinity of our metric g(1) must be compensated for by an equal but opposite effect from

a first order fluctuation piece in the second line of (3.3.24). This indeed turns out to be

the case. While an explicit computation of the boundary stress tensor dual to (3.3.24)

yields a result that diverges like r3, this divergence is precisely cancelled when we add g(1)

above to the metric, and the correct value of the stress dual to g(0) + g(1) is in fact zero

in the scalar sector, in agreement with our renormalization condition u(0)µ T
µν = 0.

3.3.2 Vectors of SO(3)

In the vector channel the relevant Einstein’s equations are the constraint r2 f(r)Eri+Evi =

0 and a dynamical equation which can be chosen to be any linear combination of the

Einstein’s equations Eri = 0 and Evi = 0. The constraint evaluates to

∂ib
(0) = ∂vβ

(0)
i , (3.3.33)

which we will later interpret as a consequence of the conservation of boundary momentum.

In order to explore the content of the dynamical equation (we choose Eri = 0), it is

convenient to parameterize the vector part of the fluctuation metric by the functions j
(1)
i ,

as (
g

(1)
V

)
αβ
dxαdxβ = 2 r2 (1− f(r)) j

(1)
i (r) dv dxi. (3.3.34)
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The dynamical equation for ji(r) turns out to be

d

dr

(
1

r3

d

dr
j

(1)
i (r)

)
= − 3

r2
∂vβ

(0)
i . (3.3.35)

The LHS of (3.3.35) is the restriction of the operator H of (3.2.13) to the vector sector,

and the RHS of this equation is the projection of s1 to the vector sector. H is of first

order in the variable j(1)′(r) and so may be integrated for an arbitrary source term. The

resulting solution is regular and normalizable provided the source is regular and decays

at infinity faster than 1/r. This condition is obeyed in (3.3.35); it seems rather clear

that it will continue to be obeyed at arbitrary order in perturbation theory (see the next

section).

Returning to (3.3.35), the general solution of this equation is

j
(1)
i (r) = ∂vβ

(0)
i r3 + ai r

4 + ci (3.3.36)

for arbitrary constants ai, ci. The coefficient ai multiplies a non-normalizable metric

deformation, and so is forced to zero by our choice of boundary conditions. The other

integration constant ci multiplies an infinitesimal shift in the velocity of the brane. It

turns out (see below) that a nonzero value for ci leads to a nonzero value for T0i which

violates our ‘renormalization’ condition, consequently ci must be set to zero. In summary,

(
g

(1)
V

)
αβ
dxαdxβ = 2 r ∂vβ

(0)
i dv dxi. (3.3.37)

As in the scalar sector above, this solution grows by a factor of r3 faster at the

boundary than the shear zero mode. This slow fall off leads to a divergent contribution to

the stress tensor which precisely cancels an equal and opposite divergence from terms in

the expansion of g(0) to first order in derivatives. As we will see below, the full contribution

of g(0)+g(1) to the vector part of the boundary stress tensor is just zero, again in agreement

with our renormalization conditions.
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3.3.3 The symmetric tensors of SO(3)

We now turn to g
(1)
T , the part of g(1) that transforms in the 5, the symmetric traceless

two tensor representation, of SO(3). Let us parameterize our metric fluctuation by(
g

(1)
T

)
αβ
dxα dxβ = r2 α

(1)
ij (r) dxi dxj, (3.3.38)

where αij is traceless and symmetric. The Einstein’s equation Eij = 0 yield

d

dr

(
r5 f(r)

d

dr
α

(1)
ij

)
= −6 r2 σ

(0)
ij , (3.3.39)

where we have defined a symmetric traceless matrix

σ
(0)
ij = ∂(iβ

(0)
j) −

1

3
δij ∂mβ

(0)
m . (3.3.40)

The LHS of (3.3.39) is the restriction of the operator H of (3.2.13) to the tensor sector,

and the RHS of this equation is the tensor part of the source term s1. Note that H is

a first order operator in the variable α
(1)′

ij (r) and so may be integrated for an arbitrary

source term. The solution to this equation with arbitrary source term s(r) is given by

(dropping the tensor indices):

α(1) = −
∫ ∞
r

dx

f(x)x5

∫ x

1

s(y) dy . (3.3.41)

Note that the lower limit of the inner integral in (3.3.41) has been chosen to be unity.

Provided that s(x) is regular at x = 1 (this is true of (3.3.39) and will be true at every order

in perturbation theory),
∫ x

1
s(x) has a zero at x = 1. It follows that the outer integrand in

(3.3.41) is regular at nonzero x (and in particular at x = 1) despite the explicit zero in the

factor f(x) in the denominator. The solution for α(1) is also normalizable provided the

source is regular and grows at infinity slower than r3. This condition is obeyed in (3.3.39)

and is expected to continue to be obeyed at arbitrary order in perturbation theory (see

the next section).

Applying (3.3.41) to the source term in (3.3.39) we find that the solution for α
(1)
ij is

given by

(g
(1)
T )αβ dx

αdxβ = 2 r2 F (r)σ
(0)
ij dx

idxj. (3.3.42)
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with

F (r) =

∫ ∞
r

dx
x2 + x+ 1

x(x+ 1) (x2 + 1)
=

1

4

[
ln

(
(1 + r)2(1 + r2)

r4

)
− 2 arctan(r) + π

]
(3.3.43)

At large r it evaluates to

(g
(1)
T )αβ dx

αdxβ = 2

(
r − 1

4 r2

)
σ

(0)
ij dx

idxj. (3.3.44)

As in the previous subsections, the first term in (3.3.44) yields a contribution to the stress

tensor that diverges like r3, but precisely cancels the corresponding divergence from first

derivative terms in the expansion of g(0). However the second term in this expansion

yields an important finite contribution to the stress tensor, as we will see below.

Summary of the first order calculation: In summary, our final answer for g(0) +g(1),

expanded to first order in boundary derivatives about yµ = 0, is given explicitly as

ds2 = 2 dv dr − r2f(r) dv2 + r2 dxi dx
i

− 2xµ ∂µβ
(0)
i dr dxi − 2xµ ∂µ β

(0)
i r2(1− f(r)) dv dxi − 4

xµ∂µb
(0)

r2
dv2

+ 2 r2 F (r)σ
(0)
ij dx

i dxj +
2

3
r ∂iβ

(0)
i dv2 + 2 r ∂vβ

(0)
i dv dxi.

(3.3.45)

This metric solves Einstein’s equations to first order in the neighbourhood of xµ = 0

provided the functions b(0) and β
(0)
i satisfy

∂vb
(0) =

∂iβ
(0)
i

3

∂ib
(0) = ∂vβ

(0)
i .

(3.3.46)

3.3.4 Global solution to first order in derivatives

In the previous subsection we have computed the metric g(1) about xµ assuming that

b(0) = 1 and β
(0)
i = 0 at the origin. Since it is possible to choose coordinates to set an

arbitrary velocity to zero and an arbitrary b(0) to unity at any given point (and since
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our perturbation procedure is ultralocal), the results of the previous subsection contain

enough information to write down the metric g(1) about any point. A simple way to

do this is to construct a covariant metric16, as a function of uµ and b, which reduces to

(3.3.45) when b(0) = 1 and β
(0)
i = 0. It is easy to check that

ds2 = −2uµ dx
µdr − r2 f(b r)uµuν dx

µdxν + r2 Pµν dx
µdxν

+ 2 r2 b F (b r)σµν dx
µdxν +

2

3
r uµuν ∂λu

λ dxµdxν − r uλ∂λ (uνuµ) dxµdxν ,
(3.3.47)

does the job, up to terms of second or higher order in derivatives. Here we have written

the metric in terms of σµν defined in (3.1.9) and the function F (r) introduced in (3.3.43).

Furthermore, it is easy to check that the metric above is the unique choice respecting the

symmetries (again up to terms of second or higher order in derivatives). It follows that

(3.3.47) is the metric g(0) + g(1). It is also easily verified that the covariant version of

(3.3.46) is (3.2.15). We will interpret this as an equation of stress energy conservation in

the next subsection.

3.3.5 Stress tensor to first order

Given the solution to the first order equations, we can utilize the AdS/CFT dictionary

to construct the boundary stress tensor using the prescription of [38]. For the metric

(3.3.47) it is not difficult to compute the stress tensor; all we need to do is compute the

extrinsic curvature tensor Kµν to the surface at fixed r. By convention, we choose the

unit normal to this surface to be outward pointing, i.e. pointing towards the boundary,

in the definition of Kµν . Using then the definition

T µν = −2 lim
r→∞

r4 (Kµ
ν − δµν ) , (3.3.48)

16By abuse of notation, we will refer to expressions transformation covariantly in the boundary metric

(chosen here to be ηµν) as covariant. In particular, we are not interested in full bulk covariance as we

will continue to restrict attention to a specific coordinatization of the fifth direction.
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on our solution (3.3.47), we find the result is given simply as

T µν =
1

b4
(4uµuν + ηµν)− 2

b3
σµν . (3.3.49)

where σµν was defined in (3.1.9) and all field theory indices are raised and lowered with

the boundary metric ηµν . As explained in the introduction, this stress tensor implies

that the ratio of viscosity to entropy density of our fluid is 1/(4π). Note that as men-

tioned previously, the expression (3.3.49) is only correct up to first derivative terms in the

temperature (T = 1/b) and velocities.

3.4 The metric and stress tensor at second order

In order to obtain the metric and stress tensor at second order in the derivative expansion,

we follow the method outlined in 3.2 and implemented in detail in 3.3 to leading order.

Concretely, we choose coordinates such that β
(0)
i = 0 and b(0) = 1 at the point xµ = 0.

The metric g(0) + g(1) given in (3.3.47) may be expanded to second order in derivatives.

This involves Taylor expanding g(0) to second order and g(1) to first order, the second

order analogue of (3.3.24). As we have explained in 3.2.4, at this stage we also make the

substitution b(0) → b(0) + b(1), and treat b(1) as an order ε term, and so retain only those

expressions that are of first derivative order in b(1) (and contain no other derivatives). This

process is straightforward and we will not record the (rather lengthy) resultant expression

here. To this expression we add the as yet undetermined metric fluctuation

g
(2)
αβ dx

αdxβ = −3h2(r) dv dr + r2 h2(r) dxi dx
i +

k2(r)

r2
dv2 + 2

j
(2)
i (r)

r2
dv dxi + r2α

(2)
ij dx

i dxj.

(3.4.50)

We plug this metric into Einstein’s equations and obtain a set of linear second order

differential equations that determine h2, k2, j
(2)
i , α

(2)
ij . As in the previous section, SO(3)

symmetry ensures that the equations for the scalars h2, k2, the vectors j
(2)
i , and the tensor

α
(2)
ij do not mix. Moreover, as we have explained in 3.2, the equations that determine
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these unknown functions are identical to their first order counterparts in the homogeneous

terms, but differ from those equations in the sources. As a result, the only new calculation

we have to perform in order to obtain the metric at second order is the computation of

the source terms. Once these terms are available, the corresponding equations may easily

be integrated, as in the previous section.

Recall that the input metric into Einstein’s equations includes terms that arise out

of the Taylor expansion of g(0) + g(1) that have explicit factors of the coordinates xµ.

Nonetheless, a very simple argument assures us that the source terms in the equations

that determine g(2) must all be independent of xµ. The argument runs as follows: We

have explicitly constructed g(1) in the previous section so that EMN

(
g(0) + g(1)

)
= OMN

where OMN is a local expression constructed out of second order or higher xµ derivatives

of velocity and temperature fields. It follows that xµ dependence of sources, which may be

obtained by Taylor expanding OMN about xµ = 0, occurs only at the three derivative level

or higher. It follows that source terms at the two derivative level have no xµ dependence.

Clearly, this argument has a direct analogue at arbitrary order in perturbation theory.

A crucial input into the argument of the last paragraph was the fact that g(0) + g(1)

satisfies Einstein’s equations in a neighbourhood of xµ = 0 (and not just at that point).

As we have seen in the previous section, the fact that the energy conservation equation

is obeyed at xµ = 0 allows us to express all first derivatives of temperature in terms of

first derivatives of velocities (see (3.3.33) and (3.3.27)). In addition, β
(0)
i and b(0) must be

chosen so that (3.2.21) is satisfied. The sixteen equations (3.2.21) can be grouped into

sets that transform under SO(3) as two scalars, three vectors and one tensor (ie. 5). We

will now explain how these constraints may be used to solve for 16 of the independent

expressions of second order in derivatives of velocity and temperature fields.

In order to do this, let us first list all two derivative ‘source’ terms that can be built

out of second derivatives of b(0) or β
(0)
i , or out of squares of first derivatives of β

(0)
i . These

expressions may be separated according to their transformation properties under SO(3)
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as scalars, vectors and tensors and higher order terms. The higher order pieces will not

be of interest to us. An exhaustive list of these expressions that transform in the 1, 3 or

5 is given in Table 1.17 We define the vector `i as the curl of the velocity ie.

`i = εijk ∂
jβk , (3.4.51)

and the symmetric traceless tensor σij has been previously defined in (3.3.40).

As a simple check on the completeness of expressions in Table 1, notice that the

number of degrees of freedom in those of the tabulated expressions that are formed from

a product of two single derivatives is 5 (in the scalar sector), 5 × 3 (in the vector sector),

and 7 × 5 in the tensor sector, leading to a total of 55 real parameters. Together with

degrees of freedom from the two 7s and one 9 that can also be formed from the product

of two derivatives (but will play no role in our analysis) this gives 78 degrees of freedom.

This is in agreement with the expected 1
2
× 12 × 13 =78 ways of getting a symmetric

object from twelve parameters (the first derivatives of the velocity fields). On the other

hand, the genuinely two derivative terms in Table 1 have 3 × 1 + 5 × 3 + 3 × 5 = 33

degrees of freedom which together with a two derivative term that transforms in the 7

(which however plays no role in our analysis) is the expected number 40 = 10× 4 of two

derivative terms arising from temperature and velocity fields.

Assuming that we have already employed the first order conservation equation (3.2.15)

to eliminate the first derivatives of b, we have to deal with the constraint equation (3.2.21)

at the second order. Using the list of second order quantities given in Table 1, it is possible

to show that (3.2.21) take the form of the following linear relations between these two

17Note that the tensors are symmetric in their indices. The symmetrization as usual is indicated by

parentheses.

118



derivative terms:

s =
1

3
s−S+

1

9
S+

1

6
S− 1

3
S

s = s−S+
1

2
S−S

vi =
10

9
vi +

1

9
vi +

1

3
Vi −

1

3
Vi −

2

3
Vi

vi =
10

9
vi +

1

9
vi −

2

3
Vi +

1

6
Vi −

5

3
Vi

vi = −1

3
Vi + Vi

tij = tij + Tij +
1

3
Tij +

1

4
Tij + Tij .

(3.4.52)

Given these relations we now proceed to analyze the potential source terms arising from

the metric (3.3.47) at O (ε2). The analysis, as before, can be done sector by sector – the

computations for the scalar, vector and tensor sectors are given in 3.4.1, 3.4.2 and 3.4.3,

respectively.

3.4.1 Solution in the scalar sector

Given the general second order fluctuation (3.4.50), we parameterize scalar components

of g(2) in terms of the functions h2(r) and k2(r) according to

g
(2)
ii (r) = 3 r2 h2(r)

g(2)
vv (r) =

k2(r)

r2

g(2)
vr (r) = −3

2
h2(r) .

(3.4.53)

As we have explained in the 3.3.1, the constraint Einstein’s equations in this sector are

given by the r and v component of the one-form formed by contracting the Einstein

tensor with the vector dual to the one-form dr. The v component of this constraint, i.e.

the second order expansion of (3.3.26), evaluates to

1

b(0)
∂vb

(1) =
1

b(1)
S . (3.4.54)
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This equation enables us to solve for the first v derivative of b(1) in terms of two derivative

terms made up of β
(0)
i , but imposes no further constraints on b(0), β

(0)
i . (3.4.54) has a simple

physical interpretation; it is simply the time component of the conservation equation for

the stress tensor (3.3.49), expanded to second order in derivatives. Consequently (3.4.54)

is the Navier Stokes equation!

The r component of the constraint, i.e. (3.3.28), gives us one relation between the

functions h2(r) and k2(r) and their derivatives. As in 3.3.1, to this constraint we must

add one dynamical equation. We obtain the following equations

5h′2(r) + r h′′2(r) = Sh(r)

k′2(r) = Sk(r)

= 12 r3 h2(r) + (3 r4 − 1)h′2(r) + Ŝk(r) ,

(3.4.55)

where

Sh(r) ≡
1

3 r3
S+

1

2
Wh(r)S

Ŝk(r) ≡ −
4 r

3
s+ 2 rS− 2 r

9
S+

1 + 2 r4

6 r3
S+

1

2
Wk(r)S .

(3.4.56)

The functions Wh(r) and Wk(r) are given by

Wh(r) =
4

3

(r2 + r + 1)
2 − 2 (3 r2 + 2r + 1) F (r)

r (r + 1)2 (r2 + 1)2 ,

Wk(r) =
2

3

4 (r2 + r + 1) (3 r4 − 1) F (r)− (2r5 + 2r4 + 2r3 − r − 1)

r (r + 1) (r2 + 1)
.

As advertised, it is clear that the differential operator acting on the functions h2(r) and

k2(r) is identical to the one encountered in the first order computation in 3.3.1. The

equation (3.4.55) can be explicitly integrated; to do so it is useful to record the leading

large r behaviour of the source term Sh(r):

Sh(r)→
1

r3
S∞h ≡

1

r3

(
1

3
S+

2

3
S

)
. (3.4.57)

The first equation in (3.4.55) can be integrated given this asymptotic value to obtain the

leading behaviour of the function h2(r). One finds

h2(r) = − 1

4 r2
S∞h +

∫ ∞
r

dx

x5

∫ ∞
x

dy y4

(
Sh(y)− 1

y3
S∞h

)
. (3.4.58)
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The integral expression above can be shown to be of O (r−5) and hence the asymptotic

behaviour of h2(r) is controlled by sh. Given h2(r), one can integrate up the second

equation of (3.4.55) for k2(r). The leading large r behaviour of the source term Sk(r) is

given by

Sk(r)→ r S∞k ≡ r

(
−4

3
s+ 2S− 2

9
S− 1

6
S+

7

3
S

)
, (3.4.59)

and hence we have

k2(r) =
r2

2
S∞k −

∫ ∞
r

dx (Sk(x)− xS∞k ) . (3.4.60)

In this case the integral makes a subleading contribution starting at O (r−1). As in 3.3.1,

we have chosen the coefficients of homogeneous solutions to this differential equation so as

to ensure normalizability and vanishing scalar contribution to the stress tensor (according

to our renormalization conditions).

3.4.2 Solution in the vector sector

The analysis of the vector fluctuations at second order mimics the computation described

in 3.3.2. The vector fluctuation in g(2) is chosen as described in (3.4.50) to be

g
(2)
vi =

j
(2)
i

r2
. (3.4.61)

Once again, the analysis is easily done by looking at the constraint equations which are

obtained by contracting the tensor EMN with the vector dual to dr. The ith constraint

equation evaluates to

18 ∂ib
(1) = 5 vi + 5 vi + 15Vi −

15

4
Vi −

33

2
Vi . (3.4.62)

This equation allows us to solve for the spatial derivatives of b(1) in terms of derivatives

of β
(0)
i and b(0). (3.4.62) is simply the expansion to second order in derivatives of the

conservation of momentum of the stress tensor (3.3.49).
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To complete the solution in the vector channel, we need to solve for j(2)(r), which can

be shown to satisfy a dynamical equation

d

dr

(
1

r3

d

dr
j

(2)
i (r)

)
= Bi(r). (3.4.63)

Note that the LHS of this expression has the vector part of the operator H acting on

j(2). Here Bi(r) is the source term which is built out of the second derivative terms

transforming in the 3 of SO(3) given in Table 1.

B(r) =
p(r) B∞ + Bfin

18 r3 (r + 1) (r2 + 1)
(3.4.64)

with

B∞ = 4 (10 v+ v+ 3V− 3V− 6V)

Bfin = 9 (20 v− 5V− 6V) ,
(3.4.65)

and we have introduced the polynomial:

p(r) = 2 r3 + 2r2 + 2 r − 3 . (3.4.66)

Clearly p(r) determines the large r behaviour of the vector perturbation; asymptotically

B(r)→ 1
9 r3

B∞. Hence, integrating (3.4.63) we find that j(2)(r) is given as

j
(2)
i (r) = − r

2

36
B∞i +

∫ ∞
r

dx x3

∫ ∞
x

dy

(
Bi(y)− 1

9 y3
B∞i

)
, (3.4.67)

where once again we have chosen the coefficients of homogeneous modes in order to main-

tain normalizability and our renormalization condition. As with the first order computa-

tion described in 3.3.2, the solution (3.4.67) makes no contribution to the stress tensor of

the field theory.

3.4.3 Solution in the tensor sector

Finally, we turn to the tensor modes at second order where we shall recover the explicit

form of the second order contributions to the stress tensor. Our task is now to determine
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the functions α
(2)
ij (r) in (3.4.50). As in 3.3.3, in the symmetric traceless sector of SO(3)

one has only the dynamical equation given by

1

2 r

d

dr

[
r5

(
1− 1

r4

)
d

dr
α

(2)
ij (r)

]
= Aij(r) (3.4.68)

where

Aij(r) = a1(r)

(
Tij +

1

3
Tij + tij

)
+ a5(r)Tij + a6(r)Tij −

1

4
a7(r)Tij

with the coefficient functions

a1(r) =
3 p(r) + 11

p(r) + 5
− 3 r F (r)

a5(r) =
1

2

(
1 +

1

r4

)
a6(r) =

4

r2

r2 p(r) + 3 r2 − r − 1

p(r) + 5
− 6 r F (r)

a7(r) = 2
p(r) + 1

p(r) + 5
− 6 r F (r) .

(3.4.69)

The functions F (r) and p(r) are defined in (3.3.43) and (3.4.66), respectively.

The desired solution to (3.4.68) can be found by intergrating the right hand side of

the equation twice and choosing the solution to the homogenous solution such that we

retain regularity18 at r = 1 and appropriate normalizability at infinity. The solution with

these properties is

α
(2)
ij (r) = −

∫ ∞
r

dx

x (x4 − 1)

∫ x

1

dy 2 yAij(y)

The quantity of prime interest to us is the leading large r behaviour of α
(2)
ij . This

can be inferred from the expressions for the coefficient functions given in (3.4.69) and

evaluates to

α
(2)
ij (r) =

1

r2

(
−1

2
Tij + Tij −

1

4
Tij

)
+

1

2r4

[(
1− ln 2

2

) (
1

3
Tij + Tij + tij

)
+

ln 2

4
Tij + Tij

] (3.4.70)

18We have imposed the requirement that all metric functions are well behaved in its neighbourhood of

r = 1, a regular point in the spacetime manifold. Note that r = 1 will not represent the horizon of our

perturbed solution, but may well lie very near this horizon manifold.
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The leading term here will give a divergent contribution to the stress tensor, which is

necessary to cancel the divergence arising from the expansion of g(0) + g(1) to second

order. The subleading piece in (3.4.70) is the term that will provide us with the second

order stress tensor. Before proceeding to evaluate the stress tensor we present the full

solution to second order, appropriately covariantized.

3.4.4 Global solution to second order in derivatives

Consider the following metric

ds2 = −2uµ dx
µdr−r2 f(b r)uµuν dx

µdxν+r2 Pµν dx
µdxν+3 b2 h2(b r)uµ dx

µdr+Gµν dxµdxν ,

(3.4.71)

where we have defined a symmetric tensor Gµν by combing the contributions in the field

theory directions from the first and second order metrics g(0) + g(1)

Gµν = r2
(
2 b F (b r)σµν + b2 α(2)

µν (b r)
)

+
1

r2

(
2

3
r3 ∂λu

λ uµ uν +
k2(b r)

b2
uµ uν

)
+ r2 b2 h2(b r)Pµν +

1

r2

(
−2 r3Duα +

1

b2
j(2)
α (b r)

)
Pα
ν uµ .

(3.4.72)

The covariant expression for α
(2)
µν is given by (3.4.68) with the replacements

Tij → (T2d)µν , Tij → (T2c)µν , Tij → `µ `ν −
1

3
Pµν `

α`α

Tij → (T2b)µν , Tij → 2 (T2a)µν , tij → (T2e)µν .

(3.4.73)

Further, j
(2)
µ given by (3.4.67) with Bi(r)→ Bν(r), where Bi(r) is given by (3.4.64) and

we make the following replacements

vi →
9

5

[
Pα
ν P

βγ ∂γ ∂(βuα) −
1

3
Pαβ P γ

ν ∂γ∂αuβ

]
− P µ

ν P
αβ ∂α∂βuµ

vi → P µ
ν P

αβ∂α∂βuµ

Vi → ∂αu
αDuν , Vi → εαβγν u

αDuβ `γ , Vi → σαν Duα .

(3.4.74)

Finally, h2(r) and k2(r) are given by (3.4.58) and (3.4.60) respectively, and in the functions

Sh(r), Sk(r), S
∞
h and S∞k defined in (3.4.57) and (3.4.59) we are required to make the
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replacements

s → 1

b(0)
Pαβ ∂α∂βb

(0) S → DuαDuα , S → `µDuµ

S → (∂µu
µ)2 , S → `µ `

µ , S → σµν σ
µν .

(3.4.75)

It may be checked that this metric is the unique (up to terms that differ at third or

higher order in derivatives) covariant expression that reduces to two derivative solution

determined in the previous subsections, in the neighbourhood of any point yµ after making

the coordinate change that sets b(0) = 1 and β
(0)
i = 0 at that point. It follows that (3.4.71)

is the desired metric g(0) + g(1) + g(2).

3.4.5 Stress tensor to second order

The stress tensor dual to the solution to second order described in 3.4.4 can be obtained

by using the standard formula (3.3.48). To determine the extrinsic curvature at large r,

it suffices to know the asymptotic form of the metric since we are interested in terms that

have a finite limit as we take r →∞. Consequently, in order to compute the stress tensor

it is sufficient to replace the various functions of r that have appeared in the computation

in 3.4.1, 3.4.2 and 3.4.3 by their large r asymptotics. The stress tensor may the be

computed in a straightforward fashion, yielding

(T2)vv = (T2)vi = 0 ,

(T2)ij = − ln 2

4
Tij − Tij +

(
−1 +

ln 2

2

) (
tij + Tij +

1

3
Tij

)
.

(3.4.76)

The vanishing of (T2)vµ is actually guaranteed by our renormalization condition. It is

easy to check that the covariant form of the expression (3.4.76) is indeed the stress tensor

quoted in (3.1.8). This result is the main prediction of our fluctuation analysis to second

order in the derivative expansion.
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3.5 Second order fluid dynamics

In the previous section we have derived the precise form of the fluid dynamical stress

tensor dual to gravity on AdS5 including all terms with no more than two derivatives.

In this section we initiate a study of the physics of this stress tensor. In 3.5.1 below we

will demonstrate that our stress tensor transforms homogeneously under Weyl transfor-

mations. In 3.5.2 we compute the dispersion relation for low frequency sound and shear

waves that follows from our stress tensor.

3.5.1 Weyl transformation of the stress tensor

Thus far we have extracted the stress tensor for a conformal fluid in flat space R3,1.

We would like to ensure that the second order stress tensor we have derived transforms

homogeneously under Weyl rescaling. In order to check this we perform the obvious

minimal covariantization of our stress tensor to generalize it to a fluid stress tensor about

an arbitrary boundary metric gµν .
19 and study its Weyl transformation properties.

Consider the Weyl transformation of the boundary metric

gµν = e2φ g̃µν ⇒ gµν = e−2φg̃µν

& uµ = e−φ ũµ , T = e−φT̃ .
(3.5.77)

It is well known that the first order truncation of the stress tensor (3.1.8) transforms

as T µν = e−6φ T̃ µν under this transformation (see for instance Appendix D of [39]). We

proceed to show that this transformation rule holds for the two derivative stress tensor

as well. This transformation property, together with the tracelessness of the stress ten-

sor, ensures Weyl invariance of the fluid dynamical equations ∇µT
µν , appropriate for a

conformal fluid.

19All metrics in this subsection refer to the metric on the boundary, i.e.., the background spacetime

on which the fluid is propagating.
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It follows from (3.5.77) that P µν = gµν + uµuν = e−2φ P̃ µν . The Christoffel symbols

transform as [39]

Γνλµ = Γ̃νλµ + δνλ ∂µφ+ δνµ ∂λφ− g̃λµ g̃νσ ∂σφ .

The transformation of the covariant derivative of uµ is given by

∇µu
ν = ∂µu

ν + Γνµλ u
λ = e−φ

[
∇̃µ ũ

ν + δνµ ũ
σ ∂σφ− g̃µλ ũλ g̃νσ ∂σφ

]
. (3.5.78)

This equation can be used to derive the transformation of various quantities of interest

in fluid dynamics, such as the acceleration aµ, shear σµν , etc..

θ = ∇µu
µ = e−φ

(
∇̃µũ

µ + 3 ũσ ∂σφ
)

= e−φ
(
θ̃ + 3 D̃φ

)
,

aν = Duν = uµ∇µu
ν = e−2φ

(
ãν + P̃ νσ ∂σφ

)
,

σµν = P λ(µ∇λu
ν) − 1

3
P µν ∇λu

λ = e−3φ σ̃µν ,

`µ = uα ε
αβγµ∇βuγ = e−2φ ˜̀µ

(3.5.79)

where in the last equation we have accounted for the fact that all epsilon symbols in

(3.1.9) should be generalized in curved space to their covariant counterparts. The objects

with correct tensor transformation properties scale as metric determinants ie. εαβγδ ∝
√
g,

and εαβγδ ∝ 1√
g
, from which it is easy to infer their scaling behaviour under conformal

transformations; in particular, εαβγδ = e4φ ε̃αβγδ and εαβγδ = e−4φ ε̃αβγδ.

The Weyl transformation of the two derivative terms that occur in the stress tensor

(3.1.9) is given by

T µν
A = e−4φ T̃ µν

A , for A = {2a, 2b}

T µν
B = e−4φ

(
T̃ µν
B + δ̃T

µν

B

)
, for B = {2c, 2d, 2e}

(3.5.80)
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where the inhomogeneous terms arising in the Weyl transformation are:

δT µν
2c = 3Dφ

(
∇(µuν) + u(µ aν) − 1

3
θ P µν

)
δT µν

2d = 2 a(µ∇ν)φ+ 2u(µ aν)Dφ− 2

3
aα∇αφ

+ 2u(µ∇ν)φDφ+ uµ uν (Dφ)2 − 1

3
P µν (Dφ)2 +∇µφ∇νφ− 1

3
P µν ∇αφ∇αφ

δT µν
2e = −∇(µuν)Dφ− 3u(µaν)Dφ+

1

3
P µν θDφ− 2 a(µ∇ν)φ+

2

3
P µν aα∇αφ

− uµ uν(Dφ)2 +
1

3
P µν (Dφ)2 − 2u(µ∇ν)φDφ−∇µφ∇νφ+

1

3
P µν ∇αφ∇αφ

(3.5.81)

While the conformal transformation involves the inhomogeneous terms presented in

(3.5.81) we need to ensure that the full stress tensor is Weyl covariant. Satisfyingly,

these inhomogeneous terms cancel among themselves in the precise combination that

occurs in (3.1.8); consequently the linear combination of terms that occurs in the stress

tensor transforms covariantly. Note that the cancelation of inhomogeneous terms depends

sensitively on the ratio of coefficients of T2c, T2d and T2e; and so provides a check of our

results. Note however that T2a and T2b are separately Weyl covariant. In summary,

our result for the two derivative stress tensor is a linear combination (with precisely

determined coefficients) of three independently Weyl covariant forms, with scaling weight

−4 (for upper indices).

Using the transformation of the temperature (3.5.77) it follow that the full stress tensor

transforms under Weyl transformation as

T µν = e−6φ T̃ µν . (3.5.82)

3.5.2 Spectrum of small fluctuations

Consider a static bath of homogeneous fluid at temperature T . Given the two derivative

stress tensor derived above (3.1.9), it is trivial to solve for the spectrum of small oscillations

of fluid dynamical modes about this background. As the background is translationally
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invariant, these fluctuations can be taken to have the form

βi(v, x
j) = δβi e

i ω v+i kjx
j

T (v, xj) = 1 + δT ei ω v+i kjx
j

(3.5.83)

Plugging (3.5.83) into the equations of fluid dynamics (3.1.7), and working to first order

in δβi and δT , these equations reduce to a set of four homogeneous linear equations in

the amplitudes δβi and δT . The coefficients of these equations are functions of ω and

ki. These equations have nontrivial solutions if and only if the matrix formed out of

these coefficient functions has zero determinant. Setting the determinant of the matrix

of coefficients to zero one can find the following two dispersion relations:

Sound mode : ω(k) = ± k√
3

+
ik2

6
± (3− ln 4)

24
√

3
k3 +O

(
k4
)
, (3.5.84)

Shear mode : ω(k) =
ik2

4
+

i

32
(2− ln 2) k4 +O

(
k6
)
, (3.5.85)

where we have defined the rescaled energy and momenta

ω =
ω

π T
, k =

k

π T
. (3.5.86)

129



1 of SO(3) 3 of SO(3) 5 of SO(3)

s = 1
b
∂2
vb vi = 1

b
∂i∂vb tij = 1

b
∂i∂jb− 1

3
s δij

s = ∂v∂iβi vi = ∂2
vβi tij = ∂(i`j)

s = 1
b
∂2b vi = ∂v`i tij = ∂vσij

S = ∂vβi ∂vβi vi = 9
5
∂jσji − ∂2βi Tij = ∂vβi ∂vβj − 1

3
S δij

S = `i ∂vβi vi = ∂2βi Tij = `(i ∂vβj) − 1
3
S δij

S = (∂iβi)
2 Vi = 1

3
(∂vβi)(∂jβ

j) Tij = 2 εkl(i ∂vβ
k ∂j)β

l + 2
3
S δij

S = `i `
i Vi = −εijk `j ∂vβk Tij = ∂kβ

k σij

S = σij σ
ij Vi = σij ∂vβ

j Tij = `i `j − 1
3
S δij

Vi = `i ∂jβ
j Tij = σik σ

k
j − 1

3
S δij

Vi = σij `
j Tij = 2 εmn(i l

m σnj)

Table 3.1: An exhaustive list of two derivative terms in made up from the temperature

and velocity fields. In order to present the results economically, we have dropped the

superscript on the velocities βi and the inverse temperature b, leaving it implicit that

these expressions are only valid at second order in the derivative expansion.
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Chapter 4

Event horizon and Entropy current

This chapter is based on [3].

4.1 The Local Event Horizon

As we have explained in the introduction, in this chapter we will study the event horizon of

the metrics dual to fluid dynamics presented in the previous chapter. While the explicit

dual gravity solution for a generic fluid dynamical state is rather involved, we will see

below that the structure of the event horizons of these solutions are insensitive to many

of these details. Consequently, in this section we will describe dual metric only in general

structural form, and carry out all our computations for an arbitrary spacetime of this

form. In § 4.4 we will specialize these calculations to the detailed form of the metric

constructed in previous chapter. We start by presenting a geometric interpretation for

the coordinate system used in the construction of the dual metric of [40] .

4.1.1 Coordinates adapted to a null geodesic congruence

Consider a null geodesic congruence (i.e., a family of null geodesics with exactly one

geodesic passing through each point) in some region of an arbitrary spacetime. Let Σ
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be a hypersurface that intersects each geodesic once. Let xµ be coordinates on Σ. Now

ascribe coordinates (ρ, xµ) to the point at an affine parameter distance ρ from Σ, along

the geodesic through the point on Σ with coordinates xµ. Hence the geodesics in the

congruence are lines of constant xµ. In this chart, this metric takes the form

ds2 = −2uµ(x) dρ dxµ + χ̂µν(ρ, x) dxµ dxν , (4.1.1)

where the geodesic equation implies that uµ is independent of ρ. It is convenient to

generalize slightly to allow for non-affine parametrization of the geodesics: let r be a

parameter related to ρ by dρ/dr = S(r, x). Then, in coordinates (r, x), the metric takes

the form 1

ds2 = GMN dX
M dXN = −2uµ(x)S(r, x) dr dxµ + χµν(r, x) dxµ dxν (4.1.2)

Note that Σ could be spacelike, timelike, or null. We shall take Σ to be timelike.

This metric has determinant −S2χµνuµuν detχ, where χµν is the inverse of χµν . Hence

the metric and its inverse will be smooth if S, uµ and χµν are smooth, with S 6= 0, χµν

invertible, and χµν uµ timelike. These conditions are satisfied on, and outside, the horizons

of the solutions that we shall discuss below.

4.1.2 Spacetime dual to hydrodynamics

The bulk metric of [40] was obtained in a coordinate system of the form (4.1.2) just

described, where the role of Σ is played by the conformal boundary and the null geodesics

are future-directed and ingoing at the boundary. The key assumption used to derive the

solution is that the metric is a slowly varying function of xµ or, more precisely, that the

1We use upper case Latin indices {M,N, · · · } to denote bulk directions, while lower case Greek indices

{µ, ν, · · · } will refer to field theory or boundary directions. Furthermore, we use lower case Latin indices

{a, b, i, j, · · · } to denote the spatial directions in the boundary. Finally, we use (x) to indicate the

dependence on the four coordinates xµ.

132



metric functions have a perturbative expansion (with a small parameter ε):

S(r, x) = 1−
∞∑
k=1

εk s(k)
a , (4.1.3)

χµν(r, x) = −r2 f(b r)uµ uν+r
2 Pµν+

∞∑
k=1

εk
(
s(k)
c r2 Pµν + s

(k)
b uµ uν + j(k)

ν uµ + j(k)
µ uν + t(k)

µν

)
.

(4.1.4)

The function f(y) above has the form f = 1 − 1
y4

; however, the only property of f that

we will use is that f(1) = 0. The remaining functions (s
(k)
a , s

(k)
b . . .) are all local functions

of the inverse temperature b(x) and the velocity uµ(x) and the coordinate r, whose form

was determined in [40] ; we however will not need the specific form of these functions

for the present discussion. As far as the calculations in this section are concerned, the

expressions s
(k)
a , s

(k)
b , s

(k)
c , j

(k)
µ and t

(k)
µν may be thought of as arbitrary functions of r and

xµ. The tensor Pµν = ηµν + uµ uν is a co-moving spatial projector.

In the above formulae, ε is a formal derivative counting parameter. Any expression

that multiplies εk in (4.1.3) and (4.1.4) is of kth order in boundary field theory derivatives.

Note that any boundary derivative of any of the functions above is always accompanied

by an additional explicit power of ε. As in [40], all calculations in this chapter will be

performed order by order in ε which is then set to unity in the final results. This is a good

approximation when field theory derivatives are small in units of the local temperature.

As we have explained in the Introduction, the metrics presented in [40] simplify to

the uniform black brane metric at late times. This metric describes a fluid configuration

with constant uµ and b. As the derivative counting parameter ε vanishes on constant

configurations, all terms in the summation in (4.1.3) and (4.1.4) vanish on the uniform

black brane configuration. The event horizon of this simplified metric is very easy to

determine; it is simply the surface r = 1
b
. Consequently, the event horizon H of the metric

(4.1.2) has a simple mathematical characterization; it is the unique null hypersurface that

reduces exactly, at infinite time to r = 1
b
.
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In § 4.1.3 we will describe a local construction of a null hypersurface in the metric

(4.1.2). Our hypersurface will have the property that it reduces exactly to r = 1/b

when uµ and b are constants, and therefore may be identified with the event horizon for

spacetimes of the form (4.1.2) that settle down to constant uµ and b at late times, as

we expect for metrics dual to fluid dynamics. We will evaluate our result for the metrics

of [40] in § 4.4 where we will use the explicit expressions for the functions appearing in

(4.1.2).

4.1.3 The event horizon in the derivative expansion

When ε is set to zero and b and uµ are constants, the surface r = 1
b

is a null hypersurface in

metrics (4.1.2). We will now determine the corrected equation for this null hypersurface at

small ε, order by order in the ε expansion. As we have explained above, this hypersurface

will be physically interpreted as the event horizon H of the metrics presented in [40].

The procedure can be illustrated with a simpler example. Consider the Vaidya space-

time, describing a spherically symmetric black hole with ingoing null matter:

ds2 = −
(

1− 2m(v)

r

)
dv2 + 2 dv dr + r2 dΩ2 . (4.1.5)

Spherical symmetry implies that the horizon is at r = r(v), with normal n = dr − ṙ dv.

Demanding that this be null gives r(v) = 2m(v) + 2 r(v) ṙ(v), a first order ODE for r(v).

Solving this determines the position of the horizon non-locally in terms of m(v). However,

if we assume that m(v) is slowly varying and approaches a constant for large v, i.e.,

ṁ(v) = O(ε) ,m m̈ = O(ε2), etc., and lim
v→∞

m(v) = m0 (4.1.6)

then we can solve by expanding in derivatives. Consider the ansatz, r = 2m + amṁ +

bm ṁ2 +cm2 m̈+ . . ., for some constants a, b, c, . . .; it is easy to show that the solution for

the horizon is given by a = 8, b = 64, c = 32, etc.. Hence we can obtain a local expression

for the location of the horizon in a derivative expansion.
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Returning to the spacetime of [40], let us suppose that the null hypersurface that we

are after is given by the equation

SH(r, x) = 0 , with SH(r, x) = r − rH(x) . (4.1.7)

As we are working in a derivative expansion we take

rH(x) =
1

b(x)
+
∞∑
k=1

εk r(k)(x) (4.1.8)

Let us denote the normal vector to the event horizon by ξA: by definition,

ξA = GAB ∂BSH(r, x) (4.1.9)

which also has an ε expansion. We will now determine r(k)(x) and ξA(k)(x
µ) order by order

in ε. In order to compute the unknown functions r(k)(x) we require the normal vector ξA

to be null, which amounts to simply solving the equation

GAB ∂ASH ∂BSH = 0 (4.1.10)

order by order in perturbation theory. Note that

dSH = dr − ε ∂µrH dxµ where ε ∂µrH = − ε

b2
∂µb+

∞∑
n=1

εn+1 ∂µr(n) . (4.1.11)

In particular, to order εn, only the functions r(m) for m ≤ n − 1 appear in (4.1.11).

However, the LHS of (4.1.10) includes a contribution of two factors of dr contracted with

the metric. This contribution is equal to Grr evaluated at the horizon. Expanding this

term to order εn we find a contribution

1

κ1 b
r(n)

where κ1 is defined in (4.1.15) below, together with several terms that depend on r(m)

for m ≤ n − 1. It follows that the expansion of (4.1.10) to nth order in ε yields a

simple algebraic expression for r(n), in terms of the functions r(1), r(2), · · · , r(n−1) which

are determined from lower order computations.
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More explicitly, equation (4.1.10) gives Grr−2 ε ∂µrH G
rµ+ε2 ∂µrH ∂νrH G

µν = 0, with

the inverse metric GMN given by:

Grr =
1

−S2 uµ uν χµν
, Grα =

S χαβ uβ
−S2 uµ uν χµν

, Gαβ =
S2 uγ uδ

(
χαβ χγδ − χαγ χβδ

)
−S2 uµ uν χµν

.

(4.1.12)

where the ‘inverse d-metric’ χµν is defined via χµν χ
νρ = δ ρ

µ . Hence the expression for the

location of the event horizon (4.1.10) to arbitrary order in ε is obtained by expanding

0 =
1

−S2 uµ uν χµν
(
1− 2 εS χαβ uβ ∂αrH − ε2 S2

(
χαβ χγδ − χαγ χβδ

)
uγ uδ ∂αrH ∂βrH

)
(4.1.13)

to the requisite order in ε, using the expansion of the individual quantities S and rH

specified above, as well as of χµν .

4.1.4 The event horizon at second order in derivatives

The equation (4.1.10) is automatically obeyed at order ε0. At first order in ε we find that

the location of the event horizon is given by r = r
(1)
H with2

r
(1)
H (x) =

1

b(x)
+ r(1)(x) =

1

b
+ κ1

(
s

(1)
b −

2

b2
uµ ∂µb

)
. (4.1.14)

where we define
1

κm
=

∂m

∂rm
(
r2 f(b r)

)∣∣∣∣
r= 1

b

(4.1.15)

At next order, O(ε2), we find

r
(2)
H (x) =

1

b
+ κ1

(
s

(1)
b + ∂rs

(1)
b r

(1)
H −

2

b2

(
1− s(1)

a

)
uµ ∂µb+ s

(2)
b + 2uµ ∂µr(1)

− 1

b2
P µν

(
b2 j(1)

µ + ∂µb
) (
b2 j(1)

ν + ∂νb
)
− 1

2κ2

r2
(1)

) (4.1.16)

2We have used here the fact that uµ j
(k)
µ = 0 and uµ t

(k)
µν = 0 which follow from the solution of [40].

We also restrict to solutions which are asymptotically AdS5 in this section.
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where we have3

P µν = uµuν + ηµν and ηµν = diag(−1, 1, 1, 1) .

As all functions and derivatives in (4.1.14) and (4.1.16) are evaluated at r = 1/b and the

point xµ and we retain terms to O (ε) and O (ε2) respectively.

It is now simple in principle to plug (4.1.16) into (4.1.2) to obtain an explicit expression

for the metric Hµν of the event horizon.4 We will choose to use the coordinates xµ to

parameterize the event horizon. The normal vector ξA is a vector in the tangent space of

the event horizon (this follows since the hypersurface is null), i.e.,

ξA
∂

∂XA
= nµ

∂

∂xµ
+ nr

∂

∂r
, (4.1.17)

which is easily obtained by using the definition (4.1.9) and the induced metric on the

event horizon; namely

nµ =
(
1 + s(1)

a + (s(1)
a )2 + s(2)

a

)
uµ − 1

r4
(t(1))µν

(
j(1)
ν +

∂νb

b2

)
+

1

r2
P µν

(
j(1)
ν

(
1 + s(1)

a − s(1)
c

)
+
∂νb

b2

(
1− s(1)

c

)
+ j(2)

ν − ∂νr(1)

)
.

(4.1.18)

Before proceeding to analyze the entropy current associated with the local area-form

on this event horizon, let us pause to consider the expression (4.1.16). First of all, we see

that for generic fluids with varying temperature and velocity, the radial coordinate r = rH

of the horizon varies with xµ, which, to the first order in the derivative expansion, is given

simply by the local temperature. The constraints on this variation are inherited from the

3It is important to note that in our expressions involving the boundary derivatives we raise and lower

indices using the boundary metric ηµν ; in particular, uµ ≡ ηµν uν and with this defintion uµ uµ = −1.
4There are thus three metrics in play; the bulk metric defined in (4.1.2), the boundary metric which is

fixed and chosen to be ηµν and finally the metric on the horizon H, Hµν , which we do not explicitly write

down. As a result there are differing and often conflicting notions of covariance; we have chosen to write

various quantities consistently with boundary covariance since at the end of the day we are interested in

the boundary entropy current.
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equations of relativistic fluid dynamics which govern the behaviour of these temperature

and velocity fields, as discussed above. Note that the variation of rH at a given xi and as a

function of time, can of course be non-monotonic. As we will see in the next section, only

the local area needs to increase. This is dual to the fact that while a local fluid element

may warm up or cool down in response to interacting with the neighbouring fluid, the

local entropy production is always positive. An example of the behaviour of rH(x) is

Figure 4.1: The event horizon r = rH(xµ) sketched as a function of the time t and one of

the spatial coordinates x (the other two spatial coordinates are suppressed).

sketched in the spacetime diagram of Fig. 4.1, with time plotted vertically and the radial
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coordinate as well as one of the spatial xi coordinates plotted horizontally.

4.2 The Local Entropy Current

Having determined the location of the event horizon, it is a simple matter to compute

the area of the event horizon to obtain the area of the black brane. However, as we wish

to talk about the spatio-temporal variation of the entropy, we will first describe entropy

production in a local setting. This will allow us to derive an expression for the boundary

entropy current in § 4.4.

4.2.1 Abstract construction of the area (d− 1)-form

In this brief subsection we present the construction of the area d− 1 form on the spatial

section of any event horizon of a d+ 1 dimensional solution of general relativity.

First, recall that the event horizon is a co-dimension one null submanifold of the

d+ 1 dimensional spacetime. As a result its normal vector lies in its tangent space. The

horizon generators coincide with the integral curves of this normal vector field, which are

in fact null geodesics5 that are entirely contained within the event horizon. Let us choose

coordinates (λ, αa), with a = 1, · · · , d− 1, on the event horizon such that αa are constant

along these null geodesics and λ is a future directed parameter (not necessarily affine)

5This follows from the fact that the event horizon is the boundary of the past of future infinity I+

together with the fact that boundaries of causal sets are generated by null geodesics [41]. We pause here

to note a technical point regarding the behaviour of the horizon generators: While by definition these

null geodesics generating the event horizon have no future endpoints [42], they do not necessarily remain

on the event horizon when extended into the past. This is because in general dynamical context, these

geodesics will have non-zero expansion, and by Raychaudhuri’s equation they must therefore caustic in

finite affine parameter when extended into the past. Hence, although the spacetime, and therefore the

event horizon, are smooth, the horizon generators enter the horizon at points of caustic. However, since

the caustic locus forms a set of measure zero on the horizon, in the following discussion we will neglect

this subtlety.
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along the geodesics. As ∂λ is orthogonal to every other tangent vector on the manifold

including itself, it follows that the metric restricted on the event horizon takes the form

ds2 = gab dα
a dαb (4.2.19)

Let g represent the determinant of the (d− 1)× (d− 1) metric gab. We define the entropy

(d − 1)-form as the appropriately normalized area form on the spatial sections of the

horizon6

a =
1

4Gd+1

√
g dα1 ∧ dα2 ∧ . . . ∧ dαd−1 (4.2.20)

The area increase theorems of general relativity7 are tantamount to the monotonicity of

the function g, i.e.,
∂g

∂λ
≥ 0 (4.2.21)

which of course leads to

da =
∂λ
√
g

4Gd+1

dλ ∧ dα1 ∧ dα2 . . . ∧ dαd−1 ≥ 0 . (4.2.22)

We have chosen here an orientation on the horizon H by declaring a d-form to be positive

if it is a positive multiple of the d-form dλ ∧ dα1 ∧ dα2 . . . ∧ dαd−1.

4.2.2 Entropy (d− 1)-form in global coordinates

The entropy (d−1)-form described above was presented in a special set of αa coordinates

which are well adapted to the horizon. We will now evaluate this expression in terms of a

more general set of coordinates. Consider a set of coordinates xµ for the spacetime in the

neighbourhood of the event horizon, chosen so that surfaces of constant x0 = v intersect

the horizon on spacelike slices Σv. The coordinates xµ used in (4.1.2) provide an example

6This definition is consistent with the Noether charge derivation of entropy currents, a la Wald, cf., [43]

for a discussion for dynamical horizons.
7We assume here that the null energy condition is satisfied. This is true of the Lagrangian used in [40]

to construct the gravitation background (4.1.2).
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of such a coordinate chart (as we will see these are valid over a much larger range than

the neighbourhood of the horizon).

As surfaces of constant v are spacelike, the null geodesics that generate the event

horizon each intersect any of these surfaces exactly once. Consequently, we may choose the

coordinate v as a parameter along geodesics. Then we can label the geodesics by αa, the

value of xa at which the geodesic in question intersects the surface v = 0. The coordinate

system {v, αa} is of the form described in § 4.2.1; as a result in these coordinates the

entropy (d − 1)-form is given by (4.2.20). We will now rewrite this expression in terms

of the coordinates xµ at v = 0; for this purpose we need the formulas for the change of

coordinates from xµ to {v, αa}, in a neighbourhood of v = 0. It is easy to verify that

xa = αa +
na

nv
v +

v2

2nv
nµ ∂µ

(
na

nv

)
+O(v3) · · ·

dxa = dαa + v dαk ∂k

(
na

nv

)
+ dv

(
na

nv
+

v

nv
nµ ∂µ

(
na

nv

))
+O(v2)

(4.2.23)

The coordinate transformation (4.2.23) allows us to write an expression for the metric

on the event horizon in terms of the coordinates {v, αa}, in a neighbourhood of v = 0.

Let Hµν dx
µ dxν = GMN dx

M dxN |H denote the metric restricted to the event horizon in

the xµ coordinates.

ds2
H = Hµν(x) dxµ dxν ≡ gab dα

a dαb

= hij

(
v, αi +

ni

nv

) (
dαi + v dαk ∂k

(
ni

nv

))(
dαj + v dαk ∂k

(
nj

nv

))
+O(v2)

(4.2.24)

where hij(v, x) is the restriction of the metric Hµν onto a spatial slice Σv, which is a

constant-v slice. Note that since the horizon is null, all terms with explicit factors of dv

cancel from (4.2.24) in line with the general expectations presented in § 4.2.1. It follows

that the determinant of the induced metric,
√
g of (4.2.20), is given as

√
g =
√
h+

v

nv

(
ni ∂i
√
h+
√
hnv ∂i

ni

nv

)
+O(v2) , (4.2.25)
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where h is the determinant of the metric on Σv, in xµ coordinates (restricted to v = 0).

We are now in a position to evaluate the area (d− 1)-form

a =

√
h

4Gd+1

dα1 ∧ dα2 . . . ∧ dαd−1 , (4.2.26)

at v = 0. Clearly, for this purpose we can simply set to zero all terms in (4.2.23) with

explicit powers of v, which implies that dαa = dxa − na

nv
dv and

a =

√
h

4Gd+1

(
dx1 ∧ dx2 . . . ∧ dxd−1 −

d−1∑
i=1

ni

nv
dλ ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxd−1

)
(4.2.27)

From (4.2.27) we can infer that the area-form can be written in terms a current as

a =
εµ1µ2...µd
(d− 1)!

Jµ1S dxµ2 ∧ ... ∧ dxµd (4.2.28)

where JµS is given by

JµS =

√
h

4G
(d+1)
N

nµ

nv
(4.2.29)

and our choice of orientation leads to εv12···(d−1) = 1. We can further establish that

da =
1

(d− 1)!
εµ1µ2 ... µd ∂αJ

α
S dx

µ1 ∧ ... ∧ dxµd (4.2.30)

so that da is simply the flat space Hodge dual of ∂µJ
µ
S . While the appearance of the flat

space Hodge dual might be puzzling at first sight, given the non-flat metric on H, its

origins will become clear once we recast this discussion in terms of the fluids dynamical

variables.

4.2.3 Properties of the area-form and its dual current

Having derived the expression for the area-form we pause to record some properties which

will play a role in interpreting JµS as an entropy current in hydrodynamics.
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Non-negative divergence: Firstly, we note that the positivity of da (argued for on

general grounds in § 4.2.1) guarantees the positivity of ∂µJ
µ
S ; hence we have ∂µ J

µ
S ≥ 0.

This in fact may be verified algebraically from (4.2.25), as

1

4Gd+1

∂v(
√
g) = ∂µJ

µ
S . (4.2.31)

The positivity of ∂v(
√
g) thus guarantees that of ∂µJ

µ
S as is expected on general grounds.

Lorentz invariance: The final result for our entropy current, (4.2.30), is invariant

under Lorentz transformations of the coordinate xµ (a physical requirement of the entropy

current for relativistic fluids) even though this is not manifest. We now show that this is

indeed the case.

Let us boost to coordinates x̂µ = Λ µ
ν x

ν ; denoting the horizon metric in the new

coordinates by ĥµν and the boosted normal vector by n̂µ we find

hij = A m
i A n

j ĥmn, A m
i = Λ m

i −
Λ v
i n̂

m

n̂v
(4.2.32)

(where we have used n̂µĥµν = 0 ). It is not difficult to verify that

detA =
(Λ−1)

v
µ n

µ

n̂v
=
nv

n̂v

from which it follows that
√
h

nv
=

√
ĥ

n̂v
, thereby proving that our area-form defined on the a

spatial section of the horizon is indeed Lorentz invariant.

4.3 The Horizon to Boundary Map

4.3.1 Classification of ingoing null geodesics near the boundary

Our discussion thus far has been an analysis of the causal structure of the spacetime

described by the metric in (4.1.2) and the construction of an area-form on spatial sections

of the horizon in generic spacetimes. As we are interested in transporting information
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about the entropy from the horizon to the boundary (where the fluid lives), we need to

define a map between the boundary and the horizon. The obvious choice is to map the

point on the boundary with coordinates xµ to the point on the horizon with coordinates

(rH(x), xµ). More geometrically, this corresponds to moving along the geodesics xµ =

constant. However, congruences of null geodesics shot inwards from the boundary of AdS

are far from unique. Hence, we digress briefly to present a characterization of the most

general such congruence. In § 4.3.2 we will then see how the congruence of geodesics with

constant xµ fits into this general classification.

We will find it simplest to use Fefferman-Graham coordinates to illustrate our point.

Recall that any asymptotically AdSd+1 spacetime may be put in the form

ds2 =
du2 +

(
ηµν + ud φµν(w)

)
dwµ dwν

u2
, (4.3.33)

in the neighbourhood of the boundary. The collection of null geodesics that intersect the

boundary point (wµ, u = 0) are given by the equations

dwA

dλ
= u2

(
tA +O

(
ud
))

(4.3.34)

where A runs over the d + 1 variables {u,wµ} and the null tangent vector must obey

tA tA = 0. It is always possible to re-scale the affine parameter to set tu = 1; making

this choice, our geodesics are labelled by a d-vector tµ satisfying ηµν t
µ tν = −1. With

these conventions tµ may be regarded as a d-velocity. In summary, the set of ingoing

null geodesics that emanate from any given boundary point are parameterized by the

d−1 directions in which they can go – this parameterization is conveniently encapsulated

in terms of a unit normalized timelike d-vector tµ which may, of course, be chosen as

an arbitrary function of xµ. Consequently, congruences of ingoing null geodesics are

parameterized by an arbitrary d-velocity field, tµ(x) on the boundary of AdS.
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4.3.2 Our choice of tµ(x)

It is now natural to ask what tµ(x) is for the congruence defined by xµ = const in the

coordinates of [40]. The answer to this question is easy to work out, and turns out to

be satisfyingly simple: for this choice of congruence, tµ(x) = uµ(x) where uµ(x) is the

velocity field of fluid dynamics!8

While metrics dual to fluid dynamics are automatically equipped with a velocity field,

it is in fact also possible to associate a velocity field with a much larger class of asymp-

totically AdS spacetimes. Recall that any such spacetime has a boundary stress tensor

Tµν .
9 For most such spacetimes there is a natural velocity field associated with this stress

tensor; the velocity uµ(x) to which one has to boost in order that T 0i vanish at the point

x. More invariantly, uµ(x) is chosen to be the unique timelike eigenvector of the matrix

T µν(x).10 That is, we choose uµ(x) to satisfy

(ηµν + uµ uν)T
νκ uκ = 0 (4.3.36)

This definition of uµ(x) coincides precisely with the velocity field in [40] (this is the so-

called Landau frame). The null congruence given by tµ(x) = uµ(x) is now well defined

for an arbitrary asymptotically AdS spacetime, and reduces to the congruence described

earlier in this section for the metrics dual to fluid dynamics.

8 In order to see this note that

uµ
dxµ

dλ
= uµ

dwµ

dλ
+
du

dλ

Pνµ
dxµ

dλ
= Pνµ

dwµ

dλ

(4.3.35)

whereas indicated quantities on the LHS of (4.3.35) refer to the coordinate system of [40], the quantities

on the RHS refer to the Fefferman-Graham coordinates (4.3.33). It follows from these formulae that the

geodesic with tA = (1, uµ) maps to the null geodesic dxµ

dλ = 0 in the coordinates used to write (4.1.2).
9In a general coordinate system the stress tensor is proportional to the extrinsic curvature of the

boundary slice minus local counter-term subtractions. In the Fefferman-Graham coordinate system de-

scribed above, the final answer is especially simple; Tµν ∝ φµν(xµ).
10This prescription breaks down when uµ goes null - i.e., if there exist points at which the energy moves

at the speed of light.
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4.3.3 Local nature of the event horizon

As we have seen in § 4.1 above, the event horizon is effectively local for the metrics

dual to fluid dynamics such as (4.1.2). In particular, the position of the event horizon

rH(xµ) depends only on the values and derivatives of the fluid dynamical variables in

a neighbourhood of xµ and not elsewhere in spacetime. Given the generic teleological

behaviour of event horizons (which requires knowledge of the entire future evolution of

the spacetime), this feature of our event horizons is rather unusual. To shed light on

this issue, we supply an intuitive explanation for this phenomenon, postponing the actual

evaluation of the function rH(xµ) to § 4.4.1.

The main idea behind our intuitive explanation may be stated rather simply. As we

have explained above, the metric of [40] is tube-wise well approximated by tubes of the

metric of a uniform black brane at constant velocity and temperature. Now consider a

uniform black brane whose parameters are chosen as uµ = (−1, 0, 0, 0) and b = 1/(π T ) = 1

by a choice of coordinates. In this metric a radial outgoing null geodesic that starts at

r = 1 + δ (with δ � ε) and v = 0 hits the boundary at a time δv =
∫

dr
r2f(r)

≈ −4 ln δ.

Provided this radial outgoing geodesic well approximates the path of a geodesic in the

metric of [40] throughout its trajectory, it follows that the starting point of this geodesic

lies outside the event horizon of the spacetime.

The two conditions for the approximation described above to be valid are:

1. That geodesic in question lies within the tube in which the metric of [40] is well

approximated by a black brane with constant parameters throughout its trajectory.

This is valid when δv ≈ −4 ln δ � 1/ε.

2. That even within this tube, the small corrections to the metric of [40] do not lead to

large deviations in the geodesic. Recall that the radial geodesic in the metric of [40]

is given by the equation

dv

dr
= −Grv +O (ε)

Gvv +O (ε)
=

2 +O (ε)

f(r) +O (ε)
.
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This geodesic well approximates that of the uniform black brane provided the O (ε)

corrections above are negligible, a condition that is met provided f(r) � ε, i.e.,

when |r − 1| = δ � ε.

Restoring units we conclude that a point at r = 1
b
(1 + δ) necessarily lies outside the

event horizon provided δ � ε (this automatically ensures δv ≈ −4 ln δ � 1/ε. when ε is

small).

In a similar fashion it is easy to convince oneself that all geodesics that are emitted from

r = 1
b
(1 − δ) hit the singularity within the regime of validity of the tube approximation

provided δ � ε. Such a point therefore lies inside the event horizon. It follows that the

event horizon in the solutions of [40] is given by the hypersurface r = π T (1 +O (ε)).

4.4 Specializing to Dual Fluid Dynamics

We will now proceed to determine the precise form of the event horizon manifold to second

order in ε using the results obtained in § 4.1. This will be useful to construct the entropy

current in the fluid dynamics utilizing the map derived in § 4.3.

4.4.1 The local event horizon dual to fluid dynamics

The metric dual to fluid flows given in [40] takes the form (4.1.2) with explicitly determined

forms of the functions in that metric . We list the properties and values of these functions
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that we will need below: 11

f(1) = 0, s(1)
a = 0, s(1)

c = 0,

s
(1)
b =

2

3

1

b
∂µu

µ , ∂rs
(1)
b =

2

3
∂µu

µ ,

j(1)
µ = −1

b
uν ∂νuµ , t(1)

µν =
1

b

(
3

2
ln 2 +

π

4

)
σµν ≡ F σµν

s(2)
a =

3

2
s(2)
c =

b2

16

(
2S−S

(
2 + 12 C + π + π2 − 9 (ln 2)2 − 3π ln 2 + 4 ln 2

))
s

(2)
b = −2

3
s+ S− 1

9
S− 1

12
S+ S

(
1

6
+ C +

π

6
+

5π2

48
+

2

3
ln 2

)
j(2)
µ =

1

16
B∞ − 1

144
Bfin

(4.4.37)

where C is the Catalan number. We encounter here various functions (of the boundary

coordinates) which are essentially built out the fluid velocity uµ and its derivatives. These

have been abbreviated to symbols such as s, S, etc., and are defined as

s =
1

b
Pαβ ∂α∂βb S = DuαDuα , S = `µDuµ

S = (∂µu
µ)2 , S = `µ `

µ , S = σµν σ
µν .

(4.4.38)

Likewise B∞ and Bfin are defined as

B∞ = 4 (10 v+ v+ 3V− 3V− 6V)

Bfin = 9 (20 v− 5V− 6V) ,
(4.4.39)

Using the equation for the conservation of stress tensor (∂µT
µν = 0) up to second

order in derivatives one can simplify the expression for rH (4.1.16). Conservation of stress

tensor gives

∂ν

[
1

b4
(ηµν + 4uµuν)

]
= ∂ν

[
2

b3
σµν
]

(4.4.40)

11Since we require only the values of the functions appearing in the metric (4.1.3) and (4.1.4) at r = 1/b

to evaluate (4.1.16), we present here the functions evaluated at this specific point.

148



Projection of (4.4.40) into the co-moving and transverse directions, achieved by contract-

ing it with uµ and Pµν respectively, we find

s
(1)
b −

2

b2
uµ ∂µb =

1

3
σµν σ

µν = O
(
ε2
)

P µν
(
b2 j(1)

µ + ∂µb
)

= −b
2

2
P ν
µ

(
∂ασ

αµ − 3σµα uβ ∂βuα
)

+O
(
ε3
) (4.4.41)

Inserting (4.4.41) into (4.1.14) we see that r(1) of (4.1.14) simply vanishes for the spacetime

dual to fluid dynamics, and so, to first order in ε, r
(1)
H = 1

b
. At next order this formula is

corrected to

r
(2)
H =

1

b(x)
+ r(2)(x) =

1

b
+
b

4

(
s

(2)
b +

1

3
σµν σ

µν

)
(4.4.42)

In order to get this result we have substituted into (4.1.16) the first of (4.4.41), utilized

the fact that r(1) = 0 and the observation (from the second line of (4.4.41)) that

P µν
(
b2j(1)

µ + ∂µb
) (
b2j(1)

ν + ∂νb
)

= O(ε4)

In this special case the components of normal vector in the boundary directions (4.1.18)

(accurate to O (ε2)) are given by

nµ =
(
1 + s(2)

a

)
uµ − b2

2
P µν

(
∂ασαν − 3σνα u

β ∂βu
α
)

+ b2 P µν j(2)
ν . (4.4.43)

4.4.2 Entropy current for fluid dynamics

We will now specialize the discussion of § 4.2.2 to the metric of [40], using the formulae

derived in § 4.4.1. In the special case of the metric of [40] we have

√
g =

1

b3

(
1− b4

4
F 2 σµν σ

µν + 3 b r(2) + s(2)
a

)
=

1

b3

(
1− b4

4
F 2 σµν σ

µν +
b2

4
σµν σ

µν +
3 b2

4
s

(2)
b + s(2)

a

)
,

(4.4.44)

where the various quantities are defined in (4.4.37). We conclude from (4.2.29) that

4G
(5)
N b3 JµS = uµ

(
1− b4

4
F 2 σαβ σ

αβ +
b2

4
σαβ σ

αβ +
3 b2

4
s

(2)
b + s(2)

a

)
+ b2 P µν

[
−1

2

(
∂ασαν − 3σνα u

β ∂βu
α
)

+ j(2)
ν

]
.

(4.4.45)
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This is the expression for the fluid dynamical entropy current which we derive from the

gravitational dual.

4.5 Divergence of the Entropy Current

In previous sections, we have presented a gravitational construction of an entropy current

which, we have argued, is guaranteed to have non-negative divergence at each point. We

have also presented an explicit construction of the entropy current to order ε2 in the

derivative expansion. In this section we directly compute the divergence of our entropy

current and verify its positivity. We will find it useful to first start with an abstract

analysis of the most general Weyl invariant entropy current in fluid dynamics and compute

its divergence, before specializing to the entropy current constructed above.

4.5.1 The most general Weyl covariant entropy current and its

divergence

The entropy current in d-dimensions has to be a Weyl covariant vector of weight d. We

will work in four dimensions (d = 4) in this section, and so will consider currents that

are Weyl covariant vector of weight 4. Using the equations of motion, it may be shown

that there exists a 7 dimensional family of two derivative weight 4 Weyl covariant vectors

that have the correct equilibrium limit for an entropy current. In the notation of [44],

(reviewed in § 4.6), this family may be parameterized as

(4π η)−1 JµS = 4G
(5)
N b3 JµS =

[
1 + b2

(
A1 σαβ σ

αβ + A2 ωαβ ω
αβ + A3R

)]
uµ

+ b2
[
B1Dλσµλ +B2Dλωµλ

]
+ C1 b `

µ + C2 b
2uλDλ`µ + . . .

(4.5.46)

where b = (πT )−1, η = (16π G
(5)
N b3)−1 and the rest of the notation is as in [44] (see also

§ 4.6).
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In § 4.6 we have computed the divergence of this entropy current (using the third order

equations of motion derived and expressed in Weyl covariant language in [44]). Our final

result is

4G
(5)
N b3DµJµS =

b

2

[
σµν + b

(
2A1 + 4A3 −

1

2
+

1

4
ln 2

)
uλDλσµν + 4 b (A2 + A3)ωµαωα

ν

+b (4A3 −
1

2
)(σµα σα

ν) + bC2Dµ`ν
]2

+ (B1 − 2A3) b2DµDλσµλ + (C1 + C2) b2 `µDλσµλ + . . .

(4.5.47)

Note that the leading order contribution to the divergence of the arbitrary entropy

current is proportional to σµν σ
µν . This term is of second order in the derivative expansion,

and is manifestly non-negative. In addition the divergence has several terms at third order

in the derivative expansion.

Within the derivative expansion the second order piece dominates all third order terms

whenever it is nonzero. However it is perfectly possible for σµν to vanish at a point – σµν

are simply 5 of several independent Taylor coefficients in the expansion of the velocity field

at a point (see § 4.7 for details). When that happens the third order terms are the leading

contributions to DµJµS . Since such terms are cubic in derivatives they are odd orientation

reversal (xµ → −xµ), and so can be non-negative for all velocity configurations only if

they vanish identically. We conclude that positivity requires that the RHS of (4.5.47)

vanish upon setting σµν to zero.

As is apparent, all terms on the first two lines of (4.5.47) are explicitly proportional

to σµν . The two independent expressions on the third line of that equation are in general

nonzero even when σµν vanishes. As a result DµJµS ≥ 0 requires that the second line of

(4.5.47) vanish identically; hence, we obtain the following constraints on coefficients of

the second order terms in the entropy current

B1 = 2A3 C1 + C2 = 0 (4.5.48)
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for a non-negative divergence entropy current.

These two conditions single out a 5 dimensional submanifold of non-negative diver-

gence entropy currents in the 7 dimensional space (4.5.46) of candidate Weyl covariant

entropy currents.

Since a local notion of entropy is an emergent thermodynamical construction (rather

than a first principles microscopic construct), it seems reasonable that there exist some

ambiguity in the definition of a local entropy current. We do not know, however, whether

this physical ambiguity is large enough to account for the full 5 parameter non uniqueness

described above, or whether a physical principle singles out a smaller sub family of this

five dimensional space as special. Below we will see that our gravitational current - which

is special in some respects - may be generalized to a two dimensional sub family in the

space of positive divergence currents.

4.5.2 Positivity of divergence of the gravitational entropy cur-

rent

It may be checked (see § 4.6) that our entropy current (4.4.45) may be rewritten in the

form (4.5.46) with the coefficients

A1 =
1

4
+

π

16
+

ln 2

4
; A2 = −1

8
; A3 =

1

8

B1 =
1

4
; B2 =

1

2

C1 = C2 = 0

(4.5.49)

It is apparent that the coefficients listed in (4.5.49) obey the constraints of positivity

(4.5.48). This gives a direct algebraic check of the positivity of the divergence of (4.4.45).

The fact that it is possible to write the current (4.4.45) in the form (4.5.46) also

demonstrates the Weyl covariance of our current (4.4.45).
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4.5.3 A two parameter class of gravitational entropy currents

As we have seen above, there exists a five parameter set of non-negative divergence con-

formally covariant entropy currents that have the correct equilibrium limit. An example

of such a current was first constructed in [44].

Now let us turn to an analysis of possible generalizations of the gravitational entropy

current presented in this chapter. Our construction admits two qualitatively distinct,

reasonable sounding, generalizations that we now discuss.

Recall that we constructed our entropy (d − 1)-form via the pullback of the area-

form on the event horizon. While the area-form is a very natural object, all its physically

important properties (most importantly the positivity of divergence) appear to be retained

if we add to it the exterior derivative of a (d− 2)-form. This corresponds to the addition

of the exterior derivative of a (d − 2)-form to the entropy current JµS . Imposing the

additional requirement of Weyl invariance at the two derivative level this appears to give

us the freedom to add a multiple of 1
b
Dλωλσ to the entropy current in four dimensions.

In addition, we have the freedom to modify our boundary to horizon map in certain

ways; our construction of the entropy current (4.4.45) depends on this map and we have

made the specific choice described in § 4.3. Apart from geometrical naturalness and other

aesthetic features, our choice had two important properties. First, under this map rH(xµ)

(and hence the local entropy current) was a local function of the fluid dynamical variables

at xµ. Second, our map was Weyl covariant; in particular, the entropy current obtained

via this map was automatically Weyl covariant. We will now parameterize all boundary

to horizon maps (at appropriate order in the derivative expansion) that preserve these

two desirable properties.

Any one to one boundary to horizon map may be thought of as a boundary to boundary

diffeomorphism compounded with the map presented in § 4.3. In order to preserve the

locality of the entropy current, this diffeomorphism must be small (i.e., of sub-leading

order in the derivative expansion). At the order of interest, it turns out to be sufficient
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to study diffeomorphisms parameterized by a vector δζ that is of at most first order

in the derivative expansion. In order that our entropy current have acceptable Weyl

transformation properties under this map, δζ must be Weyl invariant. Up to terms that

vanish by the equations of motion, this singles out a two parameter set of acceptable

choices for δζ;

δζµ = 2 δλ1 b u
µ + δλ2 b

2 `µ (4.5.50)

To leading order the difference between the (d− 1)-forms obtained by pulling the area

(d − 1)-form a back under the two different maps is given by the Lie derivative of the

pull-back s of a

δs = Lδζ s = d(δζµ s
µ) + δζµ (ds)µ.

Taking the boundary Hodge dual of this difference we find

δJµS = LδζJµS − J
ν
S ∇νδζ

µ

= Dν [JµS δζ
ν − JνS δζµ] + δζµDνJνS

(4.5.51)

Similarly

δ∂µJ
µ
s = δζµ ∂µ∂νJ

ν
s + ∂µδζ

µ ∂νJ
ν
s = Lδζ ∂µJµs + ∂µδζ

µ ∂νJ
ν
s

= Lδζ DµJµs +DµδζµDνJνs
(4.5.52)

Using the fluid equations of motion it turns that the RHS of (4.5.51) is of order ε3 (and

so zero to the order retained in this chapter) for ζµ ∝ b2 lµ. Consequently, to second

order we find a one parameter generalization of the entropy current – resulting from the

diffeomorphisms (4.5.50) with δλ2 set to zero.

Note that, apart from the diffeomorphism shift, the local rate of entropy production

changes in magnitude (but not in sign) under redefinition (4.5.51) by a factor proportional

to the Jacobian of the coordinate transformation parameterized by δζ. In § 4.6 we have

explicitly computed the shift in the current (4.4.45) under the operation described in

(4.5.51) (with δζ of the form (4.5.50)) and also explicitly verified the invariance of the

positivity of divergence under this map.
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In summary we have constructed a two parameter generalization of our gravitational

entropy current (4.4.45). One of these two parameters arose from the freedom to add an

exact form to the area form on the horizon. The second parameter had its origin in the

freedom to generalize the boundary to horizon map.

4.6 Weyl covariant formalism

In this section, we present the various results related to Weyl covariance in hydrodynamics

that are relevant to this chapter. The conformal nature of the boundary fluid dynamics

strongly constrains the form of the stress tensor and the entropy current [44,45]. An effi-

cient way of exploiting this symmetry is to employ a manifestly Weyl-covariant formalism

for hydrodynamics that was introduced in the reference [44].

In brief, for an arbitrary tensor with weight w, one defines a Weyl-covariant derivative12

Dλ Qµ...
ν... ≡ ∇λ Q

µ...
ν... + w AλQµ...

ν...

+ [gλαAµ − δµλAα − δ
µ
αAλ]Qα...

ν... + . . .

− [gλνAα − δαλAν − δανAλ]Qµ...
α... − . . .

(4.6.53)

where the Weyl-connection Aµ is related to the fluid velocity via the relation

Aµ = uλ∇λuµ −
∇λu

λ

d− 1
uµ (4.6.54)

We shall exploit the manifest Weyl covariance of this formalism to establish certain results

concerning the entropy current that are relevant to the discussion in the main text.

In § 4.6.1, we write down the most general Weyl-covariant entropy current and compute

its divergence. This computation leads us directly to an analysis of the constraints on the

12In contrast to the analysis in the main text, we find it convenient here to work with an arbitrary

background metric, whose associated torsion-free connection is used to define the covariant derivative

∇µ.
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entropy current imposed by the second law of thermodynamics. This analysis generalizes

and completes the analysis in [44] where a particular example of an entropy current which

satisfies the second law was presented. Following that, in § 4.6.2, we rewrite the results

of this chapter in a Weyl-covariant form and show that the expression for the entropy

current derived in this chapter satisfies the constraint derived in § 4.6.1. This is followed

by a discussion in § 4.6.3 on the ambiguities in the definition of the entropy current.

4.6.1 Constraints on the entropy current: Weyl covariance and

the second law

We begin by writing down the most general derivative expansion of the entropy current

in terms Weyl-covariant vectors of weight 4.13 After taking into account the equations

of motion and various other identities, the most general entropy current consistent with

Weyl covariance can be written as:

(4π η)−1 JµS = 4G
(5)
N b3 JµS =

[
1 + b2

(
A1 σαβ σ

αβ + A2 ωαβ ω
αβ + A3R

)]
uµ

+ b2
[
B1Dλσµλ +B2Dλωµλ

]
+ C1 b `

µ + C2 b
2uλDλ`µ + . . .

(4.6.55)

where b = (π T )−1 and we have already assumed the leading order result for the entropy

density s = 4π η = (4G
(5)
N b3)−1 and `µ = εαβνµωαβuν .

14

13We will restrict attention to fluid dynamics in 3 + 1 dimensions.
14We shall follow the notations of [44] in the rest of this appendix. In particular, we recall the following

definitions

Aµ = aµ −
ϑ

3
uµ ; Fµν = ∇µAν −∇νAµ

R = R− 6∇λAλ + 6AλAλ ; Dµuν = σµν + ωµν

Dλσµλ = ∇λσµλ − 3Aλσµλ ; Dλωµλ = ∇λωµλ −Aλωµλ

(4.6.56)

Note that in a flat spacetime, R is zero but R is not. Though we will always be working in flat spacetime,

we will keep the R-terms around to make our expressions manifestly Weyl-covariant.
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Now, we want to derive the constraints imposed by the second law on the A,B and C

coefficients appearing above. To this end, we take the divergence of the entropy current

above to get

4G
(5)
N b3DµJµS =− 3b−1 uµDµb− 2C1 `

µDµb

+ b2Dµ
[(
A1 σαβ σ

αβ + A2 ωαβ ω
αβ + A3R

)
uµ

+
(
B1Dλσµλ +B2Dλωµλ + C2 u

λDλ`µ
)]

+ . . .

(4.6.57)

where we have used the facts that Dµ`µ = 0 and that Dµb gets non-zero contributions

only at second order (4.6.59). Further, uλFµλ gets non-zero contributions only at third

order (the equations of motion force uλFµλ = 0 at second order).

In order to simplify the expression further, we need the equations of motion. Let us

write the stress tensor in the form

T µν = (16π G
(5)
N b4)−1 (ηµν + 4uµuν) + πµν (4.6.58)

where πµν is transverse – uνπµν = 0. This would imply

0 = b4 uµDνT µν = b4Dν(uµT µν)− b4 (Dνuµ)T µν

=⇒ 4

(
3

b
uµDµb−

b

4 η
σµνπ

µν

)
= 0

(4.6.59)

where we have multiplied the equation by 16π G
(5)
N in the second line to express things

compactly. Similarly, we can write 2 `µDµb = −b2 `µDλσµλ which is exact upto third

order in the derivative expansion. Note that these are just the Weyl-covariant forms of

the equations that we have already encountered in (4.4.41).

We further invoke the following identities(which follow from the identities proved in
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the Appendix A of [44]) 15

Dµ(σαβ σ
αβ uµ) = 2 σµν u

λDλσµν

Dµ(ωαβ ω
αβ uµ) = 4σµν ωµ

α ωαν − 2DµDλωµλ

Dµ(Ruµ) = −2σµνRµν +Dµ
[
−2Dλσµλ + 2Dλωµλ + 4uλFµλ

]
−2σµνRµν = 4σµν

[
uλDλσµν + ωµα ωα

ν + σµα σα
ν − Cµανβ uαuβ

]
Dµ(uλDλ`µ) = Dµ(`λDλuµ)−Fµν `µuν

Dµ(`λDλuµ) = σµν Dµ`ν + `µDλσµλ

(4.6.60)

to finally obtain

4G
(5)
N b3DµJµS = b2 σµν

[
− π

µν

4 η b
+ 2A1 u

λDλσµν + 4A2 ω
µα ωα

ν − 2A3Rµν + C2Dµ`ν
]

+(B1 − 2A3) b2DµDλσµλ + (C1 + C2) b2 `µDλσµλ + . . .

= b2σµν

[
− π

µν

4 η b
+ (2A1 + 4A3)uλDλσµν + 4 (A2 + A3)ωµα ωα

ν + 4A3 σ
µα σα

ν + C2Dµ`ν
]

+(B1 − 2A3) b2DµDλσµλ + (C1 + C2) b2 `µDλσµλ + . . . (4.6.61)

Substituting the value of πµν as calculated from the known stress tensor, we find

4G
(5)
N b3DµJµS = b2σµν

[
σµν

2 b
+

(
2A1 + 4A3 −

1

2
+

1

4
ln 2

)
uλDλσµν

+ 4 (A2 + A3)ωµα ωα
ν + (4A3 −

1

2
) (σµα σα

ν) + C2Dµ`ν
]

+(B1 − 2A3) b2DµDλσµλ + (C1 + C2) b2 `µDλσµλ + . . .(4.6.62)

This expression can in turn be rewritten in a more useful form by isolating the terms that

are manifestly non-negative:

4G
(5)
N b3DµJµS =

b

2

[
σµν + b

(
2A1 + 4A3 −

1

2
+

1

4
ln 2

)
uλDλσµν + 4 b (A2 + A3)ωµαωα

ν

+ b (4A3 −
1

2
)(σµα σα

ν) + bC2Dµ`ν
]2

+(B1 − 2A3) b2DµDλσµλ + (C1 + C2) b2 `µDλσµλ + . . . (4.6.63)

15Since we are only interested in the case where boundary is conformally flat, we will consistently

neglect terms proportional to the Weyl curvature in the following.
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The second law requires that the right hand side of the above equation be positive

semi-definite at every point in the boundary. First, we note from (4.6.63) that the first

two lines are positive semi-definite whereas the terms in the third line are not – given a

velocity configuration in which the third line evaluates to a particular value, as argued

in the main text, we can always construct another configuration to get a contribution

with opposite sign. Consider, in particular, points in the boundary where σµν = 0 – at

such points, the contribution of the first two lines become subdominant in the derivative

expansion to the contribution from the third line. The entropy production at these points

can be positive semi-definite only if the combination the coefficients appearing in the third

line vanish identically.

Hence, we conclude that the second law gives us two constraints relating A,B and C,

viz.,

B1 = 2A3 C1 + C2 = 0 (4.6.64)

Any entropy current which satisfies the above relations constitutes a satisfactory proposal

for the entropy current from the viewpoint of the second law.

One simple expression for such an entropy current which satisfies the above require-

ments was proposed in [44]. The Jλs proposed there is given by

(4π η)−1 JλS = uλ − b2

8

[
(ln 2σµνσµν + ωµν ωµν) u

λ + 2uµ (Gµλ + Fµλ) + 6Dνωλν
]

+ . . .

(4.6.65)

Now, using the identity

uµ (Gµλ + Fµλ) = −R
2
uλ −Dνσλν −Dνωλν + 2uµFλµ (4.6.66)

and the equations of motion, we can rewrite the above expression in the form appearing
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in (4.6.55) to get the value of A,B and C coefficients as

A1 = − ln 2

8
; A2 = −1

8
; A3 =

1

8

B1 =
1

4
; B2 = −1

2

C1 = C2 = 0

(4.6.67)

It can easily be checked that these values satisfy the constraints listed in (4.6.64). Further,

for these values, the divergence of the entropy current simplifies considerably and we get

4G
(5)
N b3DµJµS =

b

2
σµν σ

µν (4.6.68)

However, as the analysis in this section shows, this proposal is just one entropy current

among a class of entropy currents that satisfy the second law. This is not surprising, since

(as was noted in [44]) the second law alone cannot determine the entropy current uniquely.

4.6.2 Entropy current and entropy production from gravity

We now calculate the coefficients Ai’s and Bi’s for the actual entropy current calculated

from gravity in (4.4.45) and check whether the they obey the constraints in (4.6.64).

Unlike the proposal in [44] , the entropy current derived in § 4.4 takes into account the

detailed microscopic dynamics(of which hydrodynamics is an effective description) en-

coded in the dual gravitational description.

In order to cast the entropy current in the form given by (4.6.55) , we have to first

rewrite the quantities appearing in this chapter in a Weyl-covariant form. We have the

following relations in the flat spacetime which identify the Weyl-covariant forms appearing

in the second-order metric of [40] –

S = 2ωαβ ω
αβ; S = σαβ σ

αβ;

−4

3
s+ 2S− 2

9
S =

2

3
σαβ σ

αβ − 2

3
ωαβω

αβ +
1

3
R

5

9
vµ +

5

9
vµ +

5

3
Vµ −

5

12
Vµ −

11

6
Vµ = P ν

µ Dλσνλ

15

9
vµ −

1

3
vµ −Vµ −

1

4
Vµ +

1

2
Vµ = P ν

µ Dλωνλ

(4.6.69)
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These can be used to obtain

B∞µ = 18P ν
µ Dλσλν + 18P ν

µ Dλωλν

= 18
(
−σαβ σαβ + ωαβ ω

αβ
)
uµ + 18Dλσµλ + 18Dλωµλ

Bfin
µ = 54P ν

µ Dλσλν + 90P ν
µ Dλωλν

=
(
−54σαβ σ

αβ + 90ωαβ ω
αβ
)
uµ + 54Dλσµλ + 90Dλωµλ

(4.6.70)

Hence, all the second-order scalar and the vector contributions to the metric can be written

in terms of three Weyl-covariant scalars σαβ σ
αβ, ωαβ ω

αβ and R and two Weyl-covariant

vectors Dλσµλ and Dλωµλ.

Using the above expressions, we can rewrite the second order scalar and the vector

contributions to the entropy current appearing in (4.4.37) as

s(2)
a =

3

2
s(2)
c = −b
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4
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1

2
+ ln 2 + 3 C +

π

4
+
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4

)2
)
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4
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s
(2)
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(
1

2
+

2

3
ln 2 + C +

π

6
+

5π2

48

)
σαβ σ

αβ − 1

2
ωαβ ω

αβ +
1

6
R

(4.6.71)

while the vector contribution is given as

j(2)
µ = P ν

µ

[
3

4
Dλσνλ +

1

2
Dλωνλ

]
=

(
−3

4
σαβ σ

αβ +
1

2
ωαβ ω

αβ

)
uµ +

3

4
Dλσµλ +

1

2
Dλωµλ

(4.6.72)

Now, we use (4.4.42), (4.4.43) and (4.4.44) to write rH , n
µ and

√
g in Weyl covariant

form as follows:

rH =
1

b

(
1 +

b2

4

[(
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6
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2

3
ln 2 + C +

π
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5π2
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αβ − 1

2
ωαβ ω
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1

6
R
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(4.6.73)

nµ =

(
1− b2

4
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1
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)2
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4
ωαβ ω
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4
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1
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(4.6.74)
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√
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(4.6.75)

Putting all of these together we can finally obtain the expression for the entropy

current:
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(4.6.76)

from which we can read off the coefficients A, B and C appearing in the general current

(4.6.55)

A1 =
1

4
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π

16
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ln 2

4
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8
; A3 =

1

8

B1 =
1

4
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1

2

C1 = C2 = 0

(4.6.77)

These coefficients manifestly obey the constraints laid down in (4.6.64) and hence, the

entropy current derived from gravity obeys the second law. Further, we get the divergence

of the entropy current as

4G
(5)
N b3 JµS = b2 σµν

[
σµν

2 b
+ 2

(
1

4
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π

16
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3

8
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(4.6.78)

which can alternatively be written in the form

T DµJµS = 2 η

[
σµν +

(π + 4 + 6 ln 2)

16π T
uλDλσµν

]2

+ . . . (4.6.79)

which gives the final expression for the rate of entropy production computed via hologra-

phy.
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4.6.3 Ambiguity in the holographic entropy current

We now examine briefly the change in the coefficients A, B and C parametrizing the

arbitrary entropy current, under the ambiguity shift discussed in § 4.5.3, see Eq. (4.5.51).

In particular, we want to verify explicitly that under such a shift, the entropy production

still remains positive semi-definite.

The first kind of ambiguity in the entropy current arises due to the addition of an

exact form to the entropy current. The only Weyl covariant exact form that can appear

in the entropy current at this order is given by

4G
(5)
N b3 δJµS = δλ0b

2Dνωµν (4.6.80)

which induces a shift in the above coefficients B2 −→ B2 + δλ0.

The second kind shift in the entropy current (due to the arbitrariness in the boundary

to horizon map) is parametrised by a vector δζµ(which is Weyl-invariant) and is given by

δJµS = LδζJµS − J
ν
S ∇νδζ

µ

= Dν [JµS δζ
ν − JνS δζµ] + δζµDνJνS

(4.6.81)

where in the last line we have rewritten the shift in a manifestly Weyl-covariant form.

If we now write down a general derivative expansion for δζµ as

δζµ = 2 δλ1 b u
µ + δλ2 b

2 `µ + . . . (4.6.82)

the shift in the entropy current can be calculated using the above identities as

4G
(5)
N b3 δJµS = δλ1 b

2 σαβ σ
αβ uµ + . . . (4.6.83)

which implies a shift in the above coefficients given by A1 −→ A1 + δλ1 .

Note that both these shifts maintain the constraints listed in (4.6.64) and hence, the

positive semi-definite nature of the entropy production is unaffected by these ambiguities

as advertised.
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4.7 Independent data in fields up to third order

There are 16, 40 and 80 independent components at first, second and third orders in

the Taylor expansion of velocity and temperature.16 These pieces of data are not all

independent; they are constrained by equations of motion. The relevant equations of

motion are the conservation of the stress tensor and its first and second derivatives17 (at

our spacetime point) which are 4, 16 and 40 respectively in number.18 The terms that

appear in the three kinds of equations listed above start at first, second and third order

respectively. Consequently these equations may be used to cut down the independent

data in Taylor series coefficients of the velocity and temperature at first second and third

order to 12, 24 and 40 components respectively. We will now redo this counting keeping

track of the SO(3) transformation properties of all fields.

Let us list degrees of freedom by the vector (a, b, c, d, e) where a represents the number

of SO(3) scalars (1), b the number of SO(3) vectors (3), etc.. Working up to third order we

encounter terms transforming in at most the 9 representation of SO(3). In this notation,

the number of degrees of freedom in Taylor coefficients are (2, 3, 1, 0, 0), (3, 5, 3, 1, 0), and

(4, 7, 5, 3, 1) at first, second and third order respectively. The number of equations of

motion are (1, 1, 0, 0, 0), (2, 3, 1, 0, 0) and (3, 5, 3, 1, 0) respectively (note that the number

of equations of motion at order n + 1 is the same as the number of variables at order

n). It follows from subtraction that the number of unconstrained variables at zeroth,

first, second and third order respectively can be chosen to be (1, 1, 0, 0, 0), (1, 2, 1, 0, 0),

(1, 2, 2, 1, 0) and (1, 2, 2, 1, 1). This choice is convenient in checking the statements about

the non-negativity of the divergence of the entropy current at third order explicitly.

16For each independent function we count the number of independent partial derivatives at a given

order; for the temperature we have ∂µT , ∂µ∂νT , etc..
17The relevant equations are just the moments of the conservation equation which arise as local con-

straints at higher orders.
18As Tµν is not homogeneous in the derivative expansion, these equations of motion mix terms of

different order in this expansion.

164



Bibliography

[1] S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in

Asymptotically AdS Spacetimes, JHEP 09 (2009) 034, [arXiv:0904.0464].

[2] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear Fluid

Dynamics from Gravity, JHEP 02 (2008) 045, [arXiv:0712.2456].

[3] S. Bhattacharyya et. al., Local Fluid Dynamical Entropy from Gravity, JHEP 06

(2008) 055, [arXiv:0803.2526].

[4] G. Policastro, D. T. Son, and A. O. Starinets, The shear viscosity of strongly

coupled n = 4 supersymmetric yang-mills plasma, Phys. Rev. Lett. 87 (2001)

081601, [hep-th/0104066].

[5] R. A. Janik and R. Peschanski, Asymptotic perfect fluid dynamics as a consequence

of ads/cft, Phys. Rev. D73 (2006) 045013, [hep-th/0512162].

[6] R. A. Janik and R. Peschanski, Gauge / gravity duality and thermalization of a

boost- invariant perfect fluid, Phys. Rev. D74 (2006) 046007, [hep-th/0606149].

[7] S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP 09 (2006)

020, [hep-th/0607123].

[8] S. Bhattacharyya, S. Lahiri, R. Loganayagam, and S. Minwalla, Large rotating AdS

black holes from fluid mechanics, 0708.1770.

165

http://xxx.lanl.gov/abs/0904.0464
http://xxx.lanl.gov/abs/0712.2456
http://xxx.lanl.gov/abs/0803.2526
http://xxx.lanl.gov/abs/hep-th/0104066
http://xxx.lanl.gov/abs/hep-th/0512162
http://xxx.lanl.gov/abs/hep-th/0606149
http://xxx.lanl.gov/abs/hep-th/0607123
http://xxx.lanl.gov/abs/0708.1770


[9] G. Policastro, D. T. Son, and A. O. Starinets, From ads/cft correspondence to

hydrodynamics. ii: Sound waves, JHEP 12 (2002) 054, [hep-th/0210220].

[10] G. Policastro, D. T. Son, and A. O. Starinets, From ads/cft correspondence to

hydrodynamics, JHEP 09 (2002) 043, [hep-th/0205052].

[11] P. Kovtun, D. T. Son, and A. O. Starinets, Holography and hydrodynamics:

Diffusion on stretched horizons, JHEP 10 (2003) 064, [hep-th/0309213].

[12] P. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in strongly interacting

quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601,

[hep-th/0405231].

[13] P. K. Kovtun and A. O. Starinets, Quasinormal modes and holography, Phys. Rev.

D72 (2005) 086009, [hep-th/0506184].

[14] D. T. Son and A. O. Starinets, Viscosity, black holes, and quantum field theory,

arXiv:0704.0240.

[15] P. M. Chesler and L. G. Yaffe, Horizon formation and far-from-equilibrium

isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009)

211601, [arXiv:0812.2053].

[16] M. W. Choptuik, Universality and scaling in gravitational collapse of a massless

scalar field, Phys. Rev. Lett. 70 (1993) 9–12.

[17] R. A. Janik, Viscous plasma evolution from gravity using ads/cft, Phys. Rev. Lett.

98 (2007) 022302, [hep-th/0610144].

[18] M. P. Heller and R. A. Janik, Viscous hydrodynamics relaxation time from ads/cft,

Phys. Rev. D76 (2007) 025027, [hep-th/0703243].

[19] S. Coleman, Aspects of symmetry, Cambridge University Press, New York (1985).

166

http://xxx.lanl.gov/abs/hep-th/0210220
http://xxx.lanl.gov/abs/hep-th/0205052
http://xxx.lanl.gov/abs/hep-th/0309213
http://xxx.lanl.gov/abs/hep-th/0405231
http://xxx.lanl.gov/abs/hep-th/0506184
http://xxx.lanl.gov/abs/0704.0240
http://xxx.lanl.gov/abs/0812.2053
http://xxx.lanl.gov/abs/hep-th/0610144
http://xxx.lanl.gov/abs/hep-th/0703243


[20] J. M. Maldacena, Lectures on AdS/CFT, hep-th/0309246.

[21] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large N field

theories, string theory and gravity, Phys. Rept. 323 (2000) 183–386,

[hep-th/9905111].

[22] J. M. Maldacena, The large N limit of superconformal field theories and

supergravity, Adv. Theor. Math. Phys. 2 (1998) 231–252, [hep-th/9711200].

[23] J. Polchinski, String theory, volume 1, Cambridge University Press, New York

(2005).

[24] J. Polchinski, String theory, volume 2, Cambridge University Press, New York

(2005).

[25] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75

(1995) 4724–4727, [hep-th/9510017].

[26] J. Polchinski, Lectures on D-branes, hep-th/9611050.

[27] I. R. Klebanov, World-volume approach to absorption by non-dilatonic branes,

Nucl. Phys. B496 (1997) 231–242, [hep-th/9702076].

[28] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, String theory and classical

absorption by three-branes, Nucl. Phys. B499 (1997) 217–240, [hep-th/9703040].

[29] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)

253–291, [hep-th/9802150].

[30] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from

non-critical string theory, Phys. Lett. B428 (1998) 105–114, [hep-th/9802109].

[31] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19

(2002) 5849–5876, [hep-th/0209067].

167

http://xxx.lanl.gov/abs/hep-th/0309246
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9510017
http://xxx.lanl.gov/abs/hep-th/9611050
http://xxx.lanl.gov/abs/hep-th/9702076
http://xxx.lanl.gov/abs/hep-th/9703040
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/0209067


[32] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge

theories, Adv. Theor. Math. Phys. 2 (1998) 505–532, [hep-th/9803131].

[33] S. W. Hawking and D. Page, Thermodynamics of black holes in Anti-de Sitter

space, Commun. Math. Phys. 87 (1983) 577.

[34] K. Skenderis, Asymptotically anti-de Sitter spacetimes and their stress energy

tensor, Int. J. Mod. Phys. A16 (2001) 740–749, [hep-th/0010138].

[35] G. T. Horowitz and V. E. Hubeny, Quasinormal modes of AdS black holes and the

approach to thermal equilibrium, Phys. Rev. D62 (2000) 024027, [hep-th/9909056].

[36] A. Awad, S. R. Das, A. Ghosh, J. Oh, and S. Trivedi, To appear, .

[37] A. Muronga, Causal theories of dissipative relativistic fluid dynamics for nuclear

collisions, Phys. Rev. C69 (2004) 034903, [nucl-th/0309055].

[38] V. Balasubramanian and P. Kraus, A stress tensor for anti-de sitter gravity,

Commun. Math. Phys. 208 (1999) 413–428, [hep-th/9902121].

[39] R. Wald, General relativity, Chicago, University of Chicago Press, 1984, 504 p.

(1984).

[40] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear Fluid

Dynamics from Gravity, JHEP 02 (2008) 045, [0712.2456].

[41] S. Hawking and G. Ellis, The large structure of space-time, Cambridge Monographs

on Mathematical Physics (1973).

[42] R. Penrose, Structure of space-time, Battelle Recontres (1967) 121–235.

[43] V. Iyer and R. M. Wald, Some properties of Noether charge and a proposal for

dynamical black hole entropy, Phys. Rev. D50 (1994) 846–864, [gr-qc/9403028].

168

http://xxx.lanl.gov/abs/hep-th/9803131
http://xxx.lanl.gov/abs/hep-th/0010138
http://xxx.lanl.gov/abs/hep-th/9909056
http://xxx.lanl.gov/abs/nucl-th/0309055
http://xxx.lanl.gov/abs/hep-th/9902121
http://xxx.lanl.gov/abs/0712.2456
http://xxx.lanl.gov/abs/gr-qc/9403028


[44] R. Loganayagam, Entropy Current in Conformal Hydrodynamics, 0801.3701.

[45] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A. Stephanov,

Relativistic viscous hydrodynamics, conformal invariance, and holography,

0712.2451.

169

http://xxx.lanl.gov/abs/0801.3701
http://xxx.lanl.gov/abs/0712.2451

	SYNOPSIS
	Introduction
	Weak Field Black Hole Formation
	Fluid dynamics - Gravity correspondence
	Discussion

	Introduction
	 The AdS/CFT correspondence
	 Mapping between the parameters of string theory and gauge theory
	Expectation values of CFT operators using duality

	Consistent truncation to pure gravity
	Different equilibrium solutions in gravity
	Gravitational collapse and thermalization
	Gravity in the regime of hydrodynamics
	Entropy current for the near equilibrium solution


	Weak Field Black Hole Formation
	Translationally invariant collapse in AdS
	The set up
	Structure of the equations of motion
	Explicit form of the energy conservation equation
	The metric and event horizon at leading order
	Formal structure of the expansion in amplitudes
	Explicit results for naive perturbation theory to fifth order 
	The analytic structure of the naive perturbative expansion
	Infrared divergences and their cure
	The metric to leading order at all times
	Resummed versus naive perturbation theory
	Resummed perturbation theory at third order

	Spherically symmetric asymptotically flat collapse
	The Set Up
	Regular Amplitude Expansion
	Leading order metric and event horizon for black hole formation 
	Amplitude expansion for black hole formation
	Analytic structure of the naive perturbation expansion
	Resummed perturbation theory at third order

	Spherically symmetric collapse in global AdS
	Set up and equations
	Regular small amplitude expansion
	Spacetime and event horizon for black hole formation
	Amplitude expansion for black hole formation
	Explicit results for naive perturbation theory
	The solution at late times

	Translationally invariant graviton collapse
	The set up and summary of results
	The energy conservation equation
	Structure of the amplitude expansion
	Explicit results up to 5th order
	Late Times Resummed perturbation theory

	Generalization to Arbitrary Dimension
	Translationally Invariant Scalar Collapse in Arbitrary Dimension
	Spherically Symmetric flat space collapse in arbitrary dimension
	Spherically symmetric asymptotically AdS collapse in arbitrary dimension


	Fluid dynamics - Gravity correspondence
	Fluid dynamics from gravity
	The perturbative expansion
	The basic set up
	General structure of perturbation theory
	Outline of the first order computation
	Outline of the second order computation

	The metric and stress tensor at first order
	Scalars of SO(3)
	Vectors of SO(3)
	The symmetric tensors of SO(3)
	Global solution to first order in derivatives
	Stress tensor to first order

	The metric and stress tensor at second order
	Solution in the scalar sector
	Solution in the vector sector
	Solution in the tensor sector
	Global solution to second order in derivatives
	Stress tensor to second order

	Second order fluid dynamics
	Weyl transformation of the stress tensor
	Spectrum of small fluctuations


	Event horizon and Entropy current
	The Local Event Horizon
	Coordinates adapted to a null geodesic congruence
	Spacetime dual to hydrodynamics
	The event horizon in the derivative expansion
	The event horizon at second order in derivatives

	The Local Entropy Current
	Abstract construction of the area (d-1)-form
	Entropy (d-1)-form in global coordinates
	Properties of the area-form and its dual current

	The Horizon to Boundary Map
	Classification of ingoing null geodesics near the boundary
	Our choice of t(x)
	Local nature of the event horizon

	Specializing to Dual Fluid Dynamics
	The local event horizon dual to fluid dynamics
	Entropy current for fluid dynamics

	Divergence of the Entropy Current
	The most general Weyl covariant entropy current and its divergence
	Positivity of divergence of the gravitational entropy current
	A two parameter class of gravitational entropy currents

	Weyl covariant formalism
	Constraints on the entropy current: Weyl covariance and the second law
	Entropy current and entropy production from gravity
	Ambiguity in the holographic entropy current

	Independent data in fields up to third order


