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Synopsis

(A) Introduction

Nonequilibrium phenomena abound in nature. In a class of systems, a nonequilibrium sta-

tionary state is maintained by driving a macroscopic current of a conserved quantity through

the system, e.g., an electrical resistor connected to a battery. For a system in thermal equi-

librium at temperature T , the stationary state occurs with the Boltzmann-Gibbs measure:

if H is the system Hamiltonian, the probability distribution over the configuration space is

proportional to e−H/T . Such a measure, however, does not hold for a system out of equi-

librium in which case, the stationary state measure is to be obtained by solving the Master

equation describing the time evolution of the configurations of the system. Such a task

proves to be daunting for a general many-particle interacting system, thereby motivating

study of simple models with nonequilibrium dynamics for which the stationary state can be

obtained relatively simply, e.g., by exploiting symmetries such as translational invariance.

p 6= q

qdt pdt
infinitesimal
dt

During

pu(4)dtDuring dt: qu(4)dt
p 6= q

u(0) = 0

Figure 1: Definition of the ASEP and the ZRP on a one-dimensional ring. The probabilities
for a particle from a site to go to its two nearest neighbor sites in a small time dt are also
shown in the figure for the two processes. In the ASEP, the disallowed particle movements
are marked by crosses. In the ZRP, u(n) denotes the hop rate out of a site with occupancy
n.

In recent years, simple models of interacting particles undergoing biased diffusion on a

lattice have proved useful in studying current-carrying stationary states. In these models,

configurations evolve through a local stochastic dynamics which allows particles to move

v
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preferentially in one lattice direction. Models of this kind exemplify driven diffusive systems

[1]. Some of these systems, without tuning of any external parameters, self organize into

a stationary state in which certain observables develop power law correlations. This is in

contrast to an equilibrium system for which, to observe power law correlations, external

parameters like temperature and pressure are to be fine tuned to be at the critical point of

a second-order phase transition.

In this thesis, we study two paradigmatic models with driven diffusive dynamics, namely,

the asymmetric simple exclusion process (ASEP) [2, 3] and the zero-range process (ZRP)

[4], both in one dimension; see Fig. 1 for a schematic view of the two processes. The ASEP

involves particles exhibiting biased diffusion on a lattice. Hard core interaction between the

particles implies that the lattice sites are either singly-occupied or empty. The ZRP, on the

another hand, allows multiple occupancy of particles at sites. Particles hop from site to site

with a rate which depends on the occupancy at the departure site. For certain classes of

the hop rates, the ZRP shows a phase transition from a low-density disordered phase to a

high-density condensed phase where a macroscopic number of particles condenses on to a

single site. Both the ASEP and the ZRP model many physical systems. For example, the

ASEP dynamics mimics the motion of molecular motors on a one-dimensional microtubule

inside living cells, where the ASEP particles represent the motors and the underlying lattice

the microtubule [3]. Besides, the ASEP serves as a prototypical nonequilibrium system [5].

The ZRP models, e.g., traffic flows, where the ZRP sites are identified with the cars moving

on a single-lane road, while the occupancy of a site maps on to the headway in front of the

corresponding car [4]. The condensation transition referred to earlier then manifests itself

in the form of jamming in the traffic model.

A microscopic configuration in the stationary state, either equilibrium or nonequilib-

rium, is characterized by statistical fluctuations of macroscopic observables about their

time-independent average values; these typical fluctuations are what have been dealt with

in this thesis. In particular, we study the dynamics of fluctuations in nonequilibrium sta-

tionary states with a focus on size effects arising from the finiteness of the underlying

lattice.

Finite-size effects could arise from the interaction of system constituents with the bound-

aries. Such effects can be eliminated by endowing the system with periodic boundary con-

ditions; even then, size effects are observed, e.g., in equilibrium systems close to the critical

point of a second-order phase transition. For an infinite system, such a transition is associ-

ated with an infinite correlation length and various response functions like the susceptibility,

specific heat etc., developing power law singularities. In a finite system, however, these sin-

gularities are rounded off and one finds that the system size enters as a parameter into the

scaling properties of the response functions [6]. Our studies on size effects in nonequilibrium

current-carrying stationary states reveal that the behavior of fluctuations in time is marked

by various time regimes, with the crossover times as well as certain correlation functions

exhibiting finite-size scaling with the system size. We base our findings on extensive Monte
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Carlo simulations, scaling arguments and analytic solutions under suitable approximations.

The principal results of this thesis are the following.

(a) For the one-dimensional ASEP on a periodic lattice of L sites, we study tagged

particle correlations; in particular, we show that the variance of the displacement of a

tagged particle in time monitors the dynamics of stationary state density fluctuations [7].

• Scaling collapse of simulation data and physical arguments reveal that the variance of

the tagged particle displacement, when averaged over initial stationary ensemble and

stochastic evolution, has two time scales, T1 ∼ L and T2 ∼ L3/2, the former being set

by the return time of a kinematic wave of density fluctuations while T2 is given by the

time for this wave to decay. The variance is linear for both the regimes t ≪ T1 and

t≫ T2, with the proportionality constant for the latter regime scaling with the system

size as 1√
L
. In the intermediate regime T1 ≪ t ≪ T2, the variance shows pronounced

oscillations with period ∼ L.

• The variance of the tagged particle displacement, starting from an arbitrary but fixed

initial configuration, drawn from the stationary ensemble, and averaged over stochastic

evolution captures the dissipation of the density fluctuations in time. Here, from

scaling collapse of simulation data and supporting physical arguments, we conclude

that the problem has only one time scale, T ∗ ∼ L3/2 such that the variance behaves

as t2/3 for t≪ T ∗ while the behavior is linear for t≫ T ∗.

(b) For the one-dimensional ZRP on a periodic lattice of L sites, we show that the

dynamics of density fluctuations is effectively measured by the variance of the integrated

particle current which shows striking differences in behavior in the disordered and the

condensed phases [8].

• In the disordered phase, the variance shows damped oscillations in time due to the

kinematic wave of density fluctuations; the behavior of the variance in time is similar

to that of the tagged particle correlations in the ASEP, discussed above, and hence,

is characterized by the two time scales, T1 ∼ L and T2 ∼ L3/2.

• In the condensed phase, however, the kinematic wave cannot pass through the con-

densate; thus, fluctuations do not circulate around. Numerical simulations and strong

scaling arguments show that the fluctuation dynamics is governed by the condensate

relocation from site to site. The variance of the integrated current has four distinct

time regimes, corresponding to two time scales Ts ∼ Lb and Tr ∼ L2, where b > 2

is a parameter defining the hop rate in the ZRP. The time scale Ts measures the

characteristic time for which the condensate stays on one site while Tr sets the scale

over which the condensate relocates from one site to another.

Below, we give a detailed description of the problems studied and the results obtained.
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(B) Results for the asymmetric simple exclusion process (ASEP)

We consider the ASEP on a one-dimensional periodic lattice of L sites. N indistinguishable

hard core particles are distributed over the lattice sites with each site either singly-occupied

or empty. The system evolves according to a stochastic dynamics: during an infinitesimal

time interval dt, a particle attempts to hop to the site to its right with probability pdt, to

the left neighboring site with probability qdt, and continues to occupy the original site with

probability 1− (p+ q)dt; see Fig. 1. The attempted hop is successful only if the sought site

is empty before the hop. For the totally asymmetric simple exclusion process (TASEP), the

motion of the particles is entirely in one direction, i.e., p = 1, q = 0 or, vice versa. Note

that with p = q, each particle moves symmetrically to the left and to the right. The model

then reduces to the symmetric Simple Exclusion Process (SEP), an equilibrium model of

hard core particles diffusing on a lattice.

In the limit t → ∞, a system with the ASEP dynamics settles into a nonequilibrium

stationary state in which all configurations have the same weight [2]. In the stationary state,

the ASEP supports a steady current of particles whose mean value is given by J = (p −
q)ρ(1− ρ)+O( 1

L), where ρ = N
L is the particle density. Correspondingly, the mean velocity

of a particle in the stationary state, given by vP = J
ρ , equals vP = (p − q)(1 − ρ) + O( 1

L).

Besides particle motion, there is also a motion associated with the coarse-grained density

fluctuations in the stationary state of the ASEP. It is well known from a hydrodynamic

treatment of the density fluctuations that on a coarse-grained level, density fluctuations are

transported as a kinematic wave with velocity vK = ∂J
∂ρ [9]. For the ASEP, vK = (p−q)(1−

2ρ)+O( 1
L).Thus, relative to the average drift of the particles, the density fluctuations ‘slide’

with velocity vK − vP . We refer to this relative motion as the sliding density fluctuations

(SDF). Stochasticity and nonlinearity in the dynamics lead to dissipation of the density

profile so that the wave of fluctuations ultimately dies down in time.

The ASEP density profile in the stationary state can be mapped to a growing interface in

the Kardar-Parisi-Zhang (KPZ) universality class [10]. The mapping involves interpreting

the presence of a particle at a site in the ASEP with an up slope at the same site in the

equivalent interface, while a vacancy maps on to a down slope in the interface model [2, 11].

The flipping of a hill of the interface to a valley then corresponds to the motion of a particle

in the ASEP. Through this mapping, the density fluctuations in the ASEP are mapped on

to the height fluctuations of the interface. On a coarse-grained level, the interface evolution

is governed by the KPZ time-evolution equation. From the scaling properties of the KPZ

equation, it then follows that in the ASEP, in the scaling limit of large distances and long

times, density fluctuations at a spatial point grow with time as t1/3, with an autocorrelation

time that scales with the system size as L3/2 [10].

• In order to study the dynamics of stationary state density fluctuations, we monitor the

variance σ2(L, t) of the displacement of a tagged particle around its average in time t,

starting from the stationary ensemble of configurations. Some asymptotic results for
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σ2(L, t) as a function of time were already known in the literature prior to our studies

[12]. We provide a complete characterization of the behavior of σ2(L, t) in time. Our

studies show that the behavior of σ2(L, t) as a function of time is governed by the

motion of density fluctuations around the system as a dissipating kinematic wave and

can be characterized by two time scales T1 ∼ L and T2 ∼ L3/2, as shown in Fig. 2.

Thus, there are three distinct time regimes, namely, (i) t≪ T1, (ii) T1 ≪ t≪ T2, and

(iii) t≫ T2. The associated behavior of σ2(L, t) in each of the regimes is summarized

below.

Time t

σ
2 (

L
,t

)

t
≪

T
1
∼

L

t
≫

T
2

T1 ≪ t ≪ T2 ∼ L3/2

Figure 2: Schematic plot showing the behavior of the tagged particle correlations σ2(L, t)
in the ASEP on a periodic lattice of finite size L.

(i) t ≪ T1. In this regime, the variance σ2(L, t) ∼ D0t, where D0 = (p − q)(1 − ρ).

In the frame of the density fluctuations, the tagged particle with an average velocity

vP−vK traverses in time t a sequence of density fluctuations over a distance (vP −vK)t,

with each fluctuation adding a random noise to its motion. The variance σ2(L, t) is

thus proportional to t for large t, by virtue of the central limit theorem. The coefficient

of proportionality D0 can be derived using the above picture of drift of the tagged

particles relative to the density fluctuations [13].

(ii) T1 ≪ t ≪ T2. Here, the quantity σ2(L, t) oscillates as a function of time. The

amplitude of oscillations is proportional to the system size L while the time period of

oscillations is T = L/u, where u is the average drift velocity of the particles relative to

the kinematic velocity of the density fluctuations: u = vP − vK . The oscillations are

due to the tagged particle returning to its initial environment at an interval of time

equal to T . The lower envelope of the oscillations is determined by the dissipation of

the initial density profile. Since density fluctuations in the ASEP grow with time as

t1/3, it then follows that the lower envelope behaves in time as t2/3.

(iii) t ≫ T2. In this late time regime, the initial density profile has dissipated away

completely [14]. Thus, the fluctuations σ2(L, t) are entirely due to the diffusive motion
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of the center-of-mass: σ2(L, t) ∼ D(L)t with D(L) ∼ 1√
L
. The scaling of D(L) with

the system size L is obtained by matching the behavior of σ2(L, t) across T2.

The behavior of σ2(L, t) in time can be put into the following scaling form.

σ2(L, t) ∼ Lg

(
t

L
,

t

L3/2

)
, (1)

where the scaling function g(u, v) behaves in the following manner. g(u, v) ∼ v for

v ≫ 1, while, g(u, v) ∼ u for u ≪ 1. For u ≫ 1, v ≪ 1, the scaling function behaves

as g(u, v) ∼ v2/3.

• In measuring the fluctuations, if one does not start from the stationary ensemble, but

instead from an arbitrary but fixed configuration drawn from the stationary ensemble,

the corresponding variance s2(L, t) of the tagged particle displacement behaves very

differently from σ2(L, t). Since, in measuring s2(L, t), one uses the same initial con-

dition, the tagged particle moves through the same sequence of density fluctuations

in every measurement. Nevertheless, the dissipation of the density profile is different

for different histories, and s2(L, t) captures this.

The quantity s2(L, t) was first considered by van Beijeren who obtained its behavior

for an infinite system: s2(t) ≡ limL→∞ s2(L, t) ∼ t2/3 [15]. For a finite system, we

find that the time variation of s2(L, t) can be characterized by a single time scale

T ∗ ∼ L3/2 (see Fig. 3(a)). Thus, there are two distinct time regimes in the behavior

of s2(L, t), namely, t ≪ T ∗ and t ≫ T ∗; the associated behavior in each of these

regimes is given below.

Time t

t
≫

T
∗

s2
(L

,t
)

t ≪ T ∗ ∼ L3/2

 0

 

 

 3

 

 

 6

 0   2   4  

L=128
256
512

1024

s2
(L

,t
)/

L

t/L3/2

L

(b)
(a)

Figure 3: (a). Schematic plot showing the behavior of the tagged particle correlations
s2(L, t) when starting from a fixed initial configuration, drawn from the stationary ensemble.
(b) Scaling of s2(L, t) for different system sizes in accordance with Eq. 2. The data are
obtained from Monte Carlo simulations. Here, the particle density ρ = 0.25, the parameter
p = 1, while q = 0. The system sizes are marked in the figure.
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(i) t ≪ T ∗. In this regime, s2(L, t) ∼ t2/3. This follows from the fact that typical

density fluctuations in the ASEP grow with time as t1/3.

(ii) t ≫ T ∗. Here, s2(L, t) ∼ D(L)t with D(L) ∼ 1√
L
. This behavior is due to the

diffusive motion of the center-of-mass of the system.

The behavior of s2(L, t) in time can be put into the following scaling form.

s2(L, t) ∼ Lf

(
t

L3/2

)
, (2)

where the scaling function f(u) behaves in the following manner. f(u) ∼ u2/3 for

u ≪ 1, while, f(u) ∼ u for u ≫ 1. The validity of the scaling form in Eq. 2 is

confirmed by the scaling plot of Fig. 3(b).

• The tagged particle correlations in the ASEP can be translated directly into the height

fluctuations of a nonequilibrium growing interface in the KPZ universality class [10].

This is achieved by interpreting the particle label as horizontal coordinate for the inter-

face, while the particle location maps on to the local height of the interface [16] (Note

that this procedure of mapping is different from that discussed previously, where the

ASEP density profile maps on to the interface profile in the KPZ class). The resultant

time-evolution equation for the interface is the usual KPZ equation, augmented by a

drift term which accounts for the SDF. For the symmetric Simple Exclusion Process,

the corresponding time-evolution equation for the equilibrium interface is given by

the Edwards-Wilkinson (EW) equation [17]. Our studies show that both the EW and

the KPZ fixed points are unstable with respect to the SDF fixed point, a flow towards

which is generated on adding a drift term to the EW and the KPZ time-evolution

equations. This means that the least amount of drift in either the KPZ or the EW

equations would make the large distance long time behavior of fluctuations for these

equations be determined by the SDF fixed point.

• The KPZ equation with the drift term, written in terms of the height variables for the

interface, is nonlinear and hence, cannot be solved exactly. Hence, we consider the

equation in the linear approximation, by setting the nonlinear term to zero. Thus,

we get the EW equation with the drift term, which we solve exactly for σ2(L, t) and

s2(L, t). Our analytical solution captures not only the essential qualitative features

seen in these two quantities for the ASEP, but also the scaling properties of the

tagged particle correlations in the ASEP. Moreover, we show that the EW equation

with the drift term is an exact coarse-grained description of two specific microscopic

models of interacting particles, the asymmetric random average process [18] and the

Katz-Lebowitz-Spohn model [19] at a specific value of the temperature. The former

generalizes the ASEP to a continuum while the later adds an Ising interaction to the

hard core exclusion between particles in the ASEP. Our analytic solution quantita-

tively describes the behavior of the tagged particle correlations for these two models.
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(C) Results for the zero-range process (ZRP)
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Figure 4: (a). Schematic plot of the integrated current fluctuations C(t) across a bond in
the stationary state of the ZRP as a function of time t in the disordered phase (ρ < ρc),
at the critical point (ρ = ρc) and in the condensed phase (ρ > ρc). (b). Schematic plot of
C(t)/t as a function of t in all the phases.

The ZRP involves N particles of unit mass on a one-dimensional periodic lattice of L

sites. Arbitrary occupancy of particles is allowed at any site. In an infinitesimal time dt,

a particle hops out of a randomly selected site i with occupancy ni and goes to the right

neighboring site i + 1 with probability pu(ni)dt, while it goes to the left neighboring site

i− 1 with probability qu(ni)dt, where p+ q = 1; see Fig. 1. For totally asymmetric particle

motion (i.e., p = 1, q = 0 or, vice versa), the ZRP can be mapped to a generalization of

the totally asymmetric simple exclusion process (TASEP) by interpreting the ZRP sites

as particles in the TASEP, while the particles at a ZRP site become holes preceding the

corresponding TASEP particle [4]. The hop rate u(n) for a TASEP particle, now a function

of the headway to the next particle, induces a long-ranged particle hopping.

At long times, a system with the ZRP dynamics reaches a nonequilibrium stationary

state which has a factorized form in that the probability of any configuration is given by a

product of factors, one for each site of the system; the factor is uniquely determined by the

hop rate u(n). We consider the hop rate u(n) = 1 + b/n with b > 2 for which the system

undergoes a nonequilibrium phase transition [4]. As the particle density ρ crosses the critical

value ρc = 1/(b − 2) [20], a low-density disordered phase with mass of O(1) at each site

evolves to a high-density condensed phase where a macroscopic collection of particles of

average mass (ρ− ρc)L condenses onto a randomly selected site, while the remaining sites

have the average mass ρc.

To address the dynamics of density fluctuations in the ZRP, we examine the variance

C(t) of the integrated particle current across any bond in the stationary state. We find
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that C(t) shows strong differences in behavior in the disordered and the condensed phases,

reflecting very different underlying physical processes in the two phases (Fig. 4). The main

results for the dynamics in various phases are summarized below.

• Disordered phase: The behavior of C(t) in this phase is identical to that of the tagged

particle correlation in the ordinary ASEP, discussed in Section (B). There are two time

scales T1 ∼ L, set by the circulation time of a kinematic wave of density fluctuations,

and T2 ∼ L3/2, given by the time taken by this wave to decay. Also, C(t) obeys the

scaling form of Eq. 1.

(i) t≪ T1. Here, C(t) grows linearly in time. This follows from the result that in this

time regime, the integrated current across any bond is Poisson-distributed. We prove

this result [21] by noting that the population at a ZRP site undergoes a time-reversible

birth-death process, and invoking Burke’s theorem from queuing theory [22].

(ii) T1 ≪ t ≪ T2. In this regime, C(t) oscillates as a function of time due to density

fluctuations moving around the system as a dissipating kinematic wave. A measure

of the growth of dissipation in time is given by the lower envelope of the oscillations,

which behaves as t2/3.

(iii) t ≫ T2. Here, the variance grows diffusively: C(t) ∼ D(L)t, where D(L) ∼ 1√
L
,

as for the ordinary ASEP, discussed in Section (B).

• Critical point : At the critical density ρc, the variance behaves differently when 2 <

b ≤ 3 and when b > 3. For 2 < b ≤ 3, the kinematic wave speed can be computed to

be zero [20]. Thus, there is no moving kinematic wave. Hence, the integrated current

is Poisson-distributed, implying that the variance C(t) continues to grow linearly in

time. For b > 3, however, the kinematic wave speed is non-zero and and the variance

C(t) oscillates in time as for ρ < ρc, with return time T1 and decay time T2 of the

kinematic wave.

• Condensed phase: For ρ > ρc, a finite fraction of the total mass (the condensate)

resides on one site for the characteristic survival time Ts ∼ (ρ− ρc)
b+1Lb [23]. It then

relocates to another site over the relocation time scale Tr ∼ (ρ− ρc)
2L2, as discussed

below. The behavior of C(t) in this phase is best depicted by plotting C(t)/t as a

function of time; as shown schematically in Fig. 5(a), the behavior is characterized

by the two time scales Ts and Tr, with four distinct time regimes detailed below.

(i) t≪ Ts. Here, C(t)/t equals 1, with a mild upward deviation for longer times.

(ii) t ∼ Ts. In this regime, C(t)/t rises rapidly in time. The collapse of the rise times

in the scaling plot of Fig. 5(b) confirms the existence of the time scale Ts.

(iii) t>∼ Ts + Tr. Here, C(t)/t falls slowly in time.

(iv) t≫ Ts + Tr. Here, C(t)/t begins to approach a size-dependent constant: C(t) ∼
[L−θ(ρ− ρc)

−(b+1) + 1]t, with θ = b− 1 for b > 3. For b between 2 and 3, we find that
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Figure 5: (Color online) (a) C(t)/t as a function of t in the condensed phase, shown schemat-
ically with various regimes (see text). (b) Scaling of the rise time Ts with t/Lb for b = 3.
The particle density ρ = 4, the parameters p = 1, q = 0. The data points, obtained from
MC simulations, are connected by smooth curves.

θ = (b2 − b− 2)/(b− 1).

Features (ii), (iii) and (iv) result from enhanced fluctuations due to the relocation of

the condensate which proceeds through the following dynamics. The largest mass in

the stationary state fluctuates in time about the average value M0 = (ρ−ρc)L. These

fluctuations may build up in time, and over the time scale Ts, the largest mass is

depleted to ∼M0/2, while a mass ∼M0/2 also builds up at another site. Subsequent

to this, two sites with mass ∼ M0/2 exchange particles between themselves resulting

in relatively rapid (of the order of 1 Monte Carlo time step) alternating relocations

of the largest mass from one site to the other. The difference of masses on these two

sites performs an unbiased random walk in time until fluctuations populate one of

the sites to ∼ M0 at the expense of the other, which happens over the time scale

Tr ∼ (ρ− ρc)
2L2.

The survival probability distribution Ps(τ) of the largest mass, obtained by computing

the distribution of the time interval τ between successive relocations in Monte Carlo

simulations, is shown in Fig. 6(a). Ps(τ) has two parts (i) a power law part ∼ τ−3/2

and (ii) another part, which corresponds to the hump in Fig. 6(a), and has the scaling

form (ρ−ρc)
−(b+2)L−(b+1)f (τ/Ts) (confirmed by the scaling of the hump with different

system sizes as shown in Fig. 6(b)). The power law part holds for times when the

two sites with mass ∼ M0/2 compete to hold the largest mass. The random walk

argument of the preceding paragraph predicts a τ−3/2 decay, since Ps(τ) then stands

for the probability for the random walker to cross the origin for the first time. The

second part in Ps(τ) arises from the relatively long time for which the condensate is

stationary on one site.



xv

10-12

10-6

1

10-1 103 107
10-5

10-2

10

10-2 10-1 1

64
80
96

112
128

τ/Lb

(a) (b)

τ (MCS)

P
s(

τ
)

L
b+

1 P
s(

τ
)

Figure 6: (a). Survival probability distribution Ps(τ) of the largest mass in the condensed
phase of the ZRP. The time interval τ between successive relocations of the largest mass is
measured in Monte Carlo Steps (MCS). The system size L = 128, and the parameter b = 3,
the particle density ρ = 4, the parameters p = 1, q = 0. The dashed line is a guide to the
eye for the part of Ps(τ) behaving as τ−3/2. (b). Scaling of the hump in Ps(τ) with system
size L. The data are obtained from Monte Carlo simulations for the same set of parameter
values as in (a).

(D) Conclusions

In this thesis, we considered the effect of finite size on the dynamics of fluctuations in

nonequilibrium current-carrying stationary states, pursued within the ambit of two paradig-

matic models, the asymmetric simple exclusion process (ASEP) and the zero-range process

(ZRP). We showed how size effects result in interesting dynamical properties like oscilla-

tions in tagged particle correlations, modified dynamical properties across a nonequilibrium

phase transition. We characterized all the relevant time scales in the dynamics of fluctua-

tions for both the ASEP and the ZRP, and understood the resulting dynamical properties

in terms of the underlying physical processes.
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[7] S. Gupta, S. N. Majumdar, C. Godrèche, and M. Barma, Phys. Rev. E 76, 021112

(2007).

[8] S. Gupta, M. Barma, and S. N. Majumdar, Phys. Rev. E Rapid Comm. 76, 060101

(2007).

[9] M. J. Lighthill and G. B. Whitham, Proc. R. Soc. London A 229, 281 (1955).

[10] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

[11] M. Plischke, Z. Racz, and D. Liu, Phys. Rev. B 35, 3485 (1987).

[12] A. De Masi and P. A. Ferrari, J. Stat. Phys. 38, 603 (1985); R. Kutner and H. van

Beijeren, ibid. 39, 317 (1985); B. Derrida, M. R. Evans, and D. Mukamel, J. Phys. A

26, 4911 (1993); B. Derrida and K. Mallick, ibid. 30. 1031 (1997).

[13] M. Barma, J. Phys. A 25, L693 (1992).

[14] D. Dhar, Phase Transitions 9, 51 (1987); L. -H. Gwa and H. Spohn, Phys. Rev. A 46,

844 (1992).

[15] H. van Beijeren, J. Stat. Phys. 63, 47 (1991).

[16] S. N. Majumdar and M. Barma, Phys. Rev. B 44, 5306 (1991).

xvi



BIBLIOGRAPHY xvii

[17] J. M. Hammersley, in Proceedings of the fifth Berkeley Symposium on Mathematical

Statistics and Probability, edited by L. M. Le Cam and J. Neyman (University of Cali-

fornia Press, Berkeley, 1967); S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London,

Ser A 381, 17 (1982).

[18] J. Krug and J. Garcia, J. Stat. Phys. 99, 31 (2000); R. Rajesh and S. N. Majumdar,

ibid. 99, 943 (2000).

[19] S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28, 1655 (1983); J. Stat. Phys.

34, 497 (1984).
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Chapter 1

Introduction

“Begin at the beginning,” the King said, very gravely, “and go on till you come

to the end: then stop.”

Lewis Carroll

In this thesis, we are concerned with how the dynamics of fluctuations in driven diffusive

systems gets affected by the finiteness of the system size. Driven diffusive systems encompass

a large number of examples in which the constituent particles of the system, in addition

to a diffusive motion, have a systematic drift due to an external field. In the limit of long

times, these systems settle into a nonequilibrium stationary state. This chapter begins with

viewing nonequilibrium vis-à-vis equilibrium stationary states. This is followed in Section

1.2 by a discussion on driven diffusive systems, in particular, the two paradigmatic examples

in this class, the asymmetric simple exclusion process (ASEP) and the zero-range process

(ZRP). In the absence of a general framework to analyze nonequilibrium fluctuations, our

studies of size effects are done within the ambit of the ASEP and the ZRP. We also discuss

an exclusion process with extended objects, where our studies reveal that size effects, arising

from the finite extent of the system constituents, affect the spatial correlation functions in

an interesting way. This is followed by a summary, in Section 1.3, of the universality classes

associated with fluctuations in nonequilibrium stationary states. Next, in Section 1.4, we

discuss finite-size effects in equilibrium stationary states. In the concluding section, we

provide a brief summary of our main results on size effects in nonequilibrium stationary

states, besides giving the overall plan of the thesis.

1.1 Nonequilibrium vis-à-vis equilibrium stationary states

In daily life, we come across a wide variety of systems which evolve under the influence of an

external field. Some commonplace examples are conductors in an electric field, fluids under

a pressure gradient, heat conductors subject to a temperature gradient, and many others.

These systems are typically not kept in isolation, but, rather, in constant interaction with

the environment. Instead of modeling the environment and its explicit interaction with the

1
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system, a simplified approach often adopted is to replace the effect of the environment by

some stochasticity in the evolution of the system. The underlying principle behind such an

approach is the assumption that the environment represents the ‘fast’ degrees of freedom

which equilibrate on a much shorter time scale compared to the ones governing the evolution

of the system, which, therefore, only serve to drive noise into the system. The dynamics

of the system being stochastic, it calls for a statistical description, wherein the system, at

every instant during its evolution, is characterized by the probability distribution over the

space of its microscopic configurations [1].

In some of the example systems, cited above, the probability measure over configurations

converges, at long times, to a well-defined distribution, constant in time; then the system

is said to have attained a stationary state. In such a state, due to the external field, a

nonvanishing macroscopic current of a conserved quantity like particle density, etc., flows

through the system, making the stationary state a generic nonequilibrium one. By contrast,

an equilibrium stationary state does not support any macroscopic current through the

system. To exemplify this point, consider a system in contact with two heat baths placed at

the opposite ends of the system. If the temperatures of the two baths are equal, the system

eventually relaxes to an equilibrium stationary state in which the average temperature of

the system equals that of the baths, and there is no net flow of energy from one bath to the

other through the system. On the other hand, a slight difference in the temperature of the

two baths sets up a steady energy flux through the system at long times, and the system is

said to have settled into a nonequilibrium stationary state.

The presence of a macroscopic current in a nonequilibrium stationary state is manifested

by having a net nonzero probability current between some or all microscopic configurations.

In models of nonequilibrium systems, e.g., in those involving aggregation and fragmentation

of masses, relevant to explaining formation of colloidal suspensions and gels [2], there is no

macroscopic mass current, but the dynamics generates a net nonzero probability current

between configurations in the stationary state. For an equilibrium stationary state, there is

no net probability current between any pair of configurations [3]. The latter fact, encoded in

the condition of detailed balance, is often identified with the statement that the dynamics,

governing the evolution of an equilibrium system, necessarily obeys time-reversal invari-

ance, which, however, is broken in a nonequilibrium stationary state [3]. By time-reversal

invariance, what is meant is that the probability of occurrence of a certain sequence of

configurations during the evolution of the system in a given time is exactly equal to the

probability of occurrence of the time-reversed sequence; this statement is proved easily on

invoking the condition of detailed balance [3]. To summarize, a net nonzero probability

current in the configuration space is what distinguishes a nonequilibrium stationary state

from an equilibrium one.

Traditionally, an equilibrium system is defined by the energy function E(C) specified

for every microscopic configuration C. An equilibrium stationary state is well described

by the Gibbs-Boltzmann formalism of statistical mechanics. Thus, the stationary state
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weight of any configuration C is proportional to e−E(C)/T , where T is the temperature at

which the system is in equilibrium. For an equilibrium system, the dynamics of transition

from configuration to configuration is constructed on an ad hoc basis, being guided by the

principle that the dynamics should lead to an equilibrium stationary state at long times,

and hence, must satisfy the condition of detailed balance described above [4].

A nonequilibrium system, on the other hand, is defined by specifying the dynamical rules

following which the system evolves from one configuration to another. A nonequilibrium

stationary state is not described by the Gibbs-Boltzmann measure. In a Master equation

approach, one defines a vector space whose basis vectors are the possible configurations

of the system. Then, one defines P to represent the column vector of the probabilities of

all the configurations of the system. The time evolution of P is governed by the Master

equation, given by
∂P
∂t

= WP , (1.1)

where W is the transition matrix whose elements are given by the rates of transitions

between the configurations of the system [3]. In the stationary state, the probabilities of

occurrence of configurations become time-independent; thus, the stationary state is obtained

as the solution of the above equation with the left hand side set to zero.

An important feature of a large class of nonequilibrium systems is that they involve

an assembly of many constituents which interact with one another, leading to many-body

collective effects, and thus, to a whole range of complex and interesting phenomena. In some

examples like traffic flows, earthquakes, stock markets, etc., interesting collective effects

(e.g., spontaneous formation of jam in traffic flows) emerge out of local interactions of the

entities constituting the system. In examples, such as sandpile models and river networks,

the system self-organizes itself into a critical state with self-similar structures and complex

scaling behavior. For a generic system in this class, in view of the many-body character,

it proves formidable to obtain even the stationary state distribution by solving the Master

equation, Eq. 1.1. This problem is circumvented partially by construction of specific model

systems, for which the stationary state can be obtained rather simply, e.g., by exploiting

various symmetries following from the conservation laws obeyed by the system during its

dynamical evolution. These models should be simple enough to allow an exact and thorough

mathematical analysis, yet exhibit interesting phenomenology to be of physical relevance.

Two such models much studied in recent times are the asymmetric simple exclusion process

and the zero-range process, both belonging to the general class of driven diffusive systems

which we now discuss.

1.2 Driven diffusive systems

The term driven diffusive system applies to a wide variety of systems involving many in-

teracting particles, where each particle has a diffusive motion in addition to an overall

systematic drift [5]. The diffusive motion results from conservation of particles in the bulk,
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tending to equalize local variation in density, while the systematic drift is a result of an

external field acting on the system which tends to drive the particles preferentially in one

direction, thereby setting up a net current through the system. The local particle current

contains a diffusive component, a systematic part due to the external field, and a noise re-

flective of the underlying stochastic dynamics. Thus, in this class of systems, the attribute

‘driven’ refers to bulk drive and not specifically to the drive at the boundaries, which may

independently be set up. For sufficiently small boundary drive, and with no bulk drive,

the system may be considered to have been perturbed slightly away from equilibrium; this

is sensible, since, locally, the net current is very small, and hence, the system is close to

thermodynamic equilibrium. However, such a scheme would not work in the presence of

a bulk drive because, even locally, there is a significant current of particles through the

system.

A major development in the study of driven diffusive systems happened with the work

of Katz, Lebowitz and Spohn [6]; see also [5]. Motivated partly by the physics of fast ionic

conductors [7], and mainly by an interest in nonequilibrium stationary states, they modified

the equilibrium dynamics of the well-known Ising model through introduction of an external

bias. A lattice model of the ionic conductor is related to the Ising model on identifying

the presence of an ion on a lattice site with an up-spin, while a down-spin may be taken to

represent the absence of the ion on the site. For the model that Katz, Lebowitz and Spohn

developed, called the KLS model, they started with the Ising model with nearest-neighbor

ferromagnetic interaction between spins, and which, at a given temperature, evolves under

the exchange of nearest-neighbor pairs of opposite spins. Then they introduced an external

field which causes preferential exchange of one type of spin pairs to the other, i.e., an up

spin would preferentially exchange with a next neighbor down spin in the direction of the

field than in the opposite direction. In the absence of the field, the system eventually

relaxes to an equilibrium stationary state, while the presence of the external field drives it

into a nonequilibrium stationary state. On a two-dimensional lattice, even in the presence

of a field, the system displays the same qualitative features as seen in its absence, i.e., a

second-order phase transition from a high-temperature disordered phase across a critical

temperature to a low-temperature phase-separated phase. However, unlike the equilibrium

case, the spatio-temporal correlations of fluctuations in various quantities display power-law

behaviors at all finite temperatures above the critical temperature. This came as a great

surprise in the backdrop of our acquired wisdom of equilibrium systems where such power-

law behaviors are usually observed when the system is fine-tuned to be precisely at the

critical point. Arguments have been adduced to show that such power laws in the behavior

of fluctuations are generic to nonequilibrium systems under suitable conditions, i.e., in

Ref. [8], the authors, by studying noisy, nonequilibrium Langevin models, concluded that

systems with conserving deterministic dynamics and noise that violates the conservation

law always have spatial and temporal correlations decaying as power laws under generic

conditions. On the other hand, for systems with both conserving deterministic dynamics
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and conserving noise, the requirement to see power-law behavior in correlations is spatial

anisotropy in the system.

In the next two subsections, we discuss respectively two paradigmatic examples of driven

diffusive systems, the asymmetric simple exclusion process and the homogeneous zero-range

process. We also discuss the exclusion process with extended objects.

1.2.1 The asymmetric simple exclusion process

The asymmetric simple exclusion process (ASEP) in one dimension involves biased diffusion

of hard core particles on a lattice [9, 10]. The process evolves by a stochastic Markovian

dynamics. The bias simulates the effect of an external field. The ASEP is the infinite

temperature limit of the KLS model, discussed above. The ASEP serves as a prototypical

example of driven diffusive systems, and is one of the very few examples for which the

stationary state distribution of configurations is known exactly. Over the years, the ASEP

has played a fundamental role in unveiling many surprising features of nonequilibrium sta-

tionary states, e.g., boundary-induced phase transition in one dimension [11]. Many exact

results have been obtained for the ASEP, using two complementary approaches, the Matrix

Product technique and the Bethe Ansatz. In the Matrix Product technique, the stationary

state weight of configurations is obtained as the matrix element of a product of a set of

noncommuting matrices (for a review, see [12, 13]); this technique has proved to be ex-

tremely useful in computation of various stationary state properties of the ASEP like the

equal-time correlation functions, current fluctuations [14] and large deviation functionals

[15]. Recently, such large deviation functionals have been argued to provide a possible way

of extending the notion of free energy to nonequilibrium systems [16]. In the Bethe Ansatz

technique, the Markov matrix encoding the stochastic dynamics of the ASEP is written in

terms of the Pauli matrices; this way, the ASEP becomes equivalent to a non-Hermitian spin

chain of the XXZ type. The Bethe Ansatz is then employed to derive spectral information

about the evolution operator, such as the spectral gap [17, 18, 19, 20, 21].

On the application side, the ASEP models diverse physical situations: transport of

macromolecules through thin vessels [22], traffic flow [23], surface growth [24, 25], and

molecular motors [26].

1.2.2 The zero-range process

The homogeneous zero-range process (ZRP) involves biased hopping of particles between

nearest neighbor sites of a periodic lattice with a rate which is a function solely of the

occupancy at the departure site. Here, the hop rate function is the same for all sites.

The process was introduced by Spitzer as an example of interacting Markov processes [9].

The stationary state measure of the process is known exactly in any dimension, for any

choice of the hop rates, and even in the presence of quenched disorder, thereby offering an

opportunity for analyzing many stationary state properties of the ZRP. For certain classes
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of the hop rates, the ZRP, as a function of the particle density, undergoes a continuous

phase transition from a low-density disordered phase with uniform average density to a

condensed phase at high density, where a finite fraction of particles accumulates on a single

site. In view of the condensation phenomena, the ZRP or modifications thereof has been

applied to model many physical situations, e.g., wealth condensation in macroeconomics

[27], jamming in traffic [28, 29], gelation in networks [30, 31], and many others. Besides,

it has recently been invoked to provide a criterion for phase separation in one-dimensional

driven diffusive systems [32].

1.2.3 The exclusion process with extended objects

The exclusion process with extended objects is a generalization of the ASEP to the case

where particles in the ASEP are replaced by objects of finite extent, moving along a lattice

in accordance with a stochastic hopping dynamics. The original concept was due to Mac-

Donald et al. [33, 34], who were trying to model protein synthesis inside living cells. The

synthesis proceeds with the ribosomes moving from codon to codon along the messenger

RNA (m-RNA), reading off genetic information, and thereby, generating the protein step-

wise. In the exclusion process with extended objects, the moving ribosomes are modelled

by the extended objects, while the lattice sites represent the codons. The finite extent of

the objects is to account for the blocking of several codons by a single ribosome. Steric

hindrance, excluding overlap of ribosomes, necessitates the exclusion constraint, whereby a

single lattice site can be occupied by at most one extended object at a time. Ribosomes,

attaching to the m-RNA to initiate the protein synthesis, and detaching at the point of ter-

mination are modelled with open boundaries, whereby the extended objects enter and exit

the lattice at the boundaries. Macdonald et al. treated the model at the mean-field level

in deriving the stationary state density profile [33, 34]. More recently, several authors have

studied the process, analyzing the time-dependent conditional probabilities of finding the

extended objects on specific sites at a given time, starting with a given initial distribution

of them on lattice sites [35], the dynamical exponent [36], the phase diagram of the open

system [37, 38, 39, 40], the hydrodynamic limit governing the evolution of density [41], and

the effects of defect locations [42]. In this thesis work, we will consider the exclusion pro-

cess with extended objects on a one-dimensional lattice with periodic boundary conditions.

We will show, using a mapping to an equivalent ASEP [43], that many stationary state

properties of the model like the two-point correlation functions can be computed in closed

form; these functions show characteristic oscillations arising from the finite extent of the

extended objects.



1.3. FLUCTUATIONS IN NONEQUILIBRIUM STATIONARY STATES: UNIVERSALITY CLASSES 7

1.3 Fluctuations in nonequilibrium stationary states: Uni-

versality classes

Fluctuations in an equilibrium stationary state play an important role in determining the

bulk properties of the system, particularly close to the critical point of a second-order phase

transition. Such a point is associated with a diverging correlation length, which determines

the typical scale over which fluctuations in the order parameter characterizing the transition

are correlated [44]. The fact that fluctuations get correlated over infinite distances (for a

system in the thermodynamic limit) has consequences on several thermodynamic response

functions like the specific heat, the susceptibility, etc., showing a power-law divergence near

the critical point. Quite remarkably, the exponents characterizing such divergences are the

same for transitions in a large number of apparently disparate systems, e.g., the order-

disorder critical point in uniaxial magnets, the liquid-gas critical point in a mixture of the

two, transition in alloys from a phase, rich in one species to one rich in the other, etc.

This universality of critical exponents has been clarified by the renormalization group (RG)

theory which predicts that the thermodynamic properties near a critical point depend on

a small number of factors like the dimensionality of the system and the symmetries in its

Hamiltonian, and are insensitive to the underlying microscopic properties of the system [45].

The key idea behind the RG theory is the observation of a diverging correlation length near

a critical point. Subsequently, the RG techniques were applied to understand universality in

nonequilibrium situations, which revealed a much more complicated structure of universality

classes than is present in equilibrium [46].

Two complementary approaches have been adopted in understanding universality in

nonequilibrium stationary states, one based on the analysis of stochastic partial differential

equations (generalized Langevin equations) governing the time development of appropri-

ate coarse-grained variables, while the other employs numerical studies of lattice models

whose microscopic rules of evolution are constructed to mimic the real systems. In the

case of driven diffusive systems, the appropriate variable is the coarse-grained particle

density ρ(r, t), whose evolution is governed by the continuity equation: ∂tρ + ∇. ~J = 0.

The particle current ~J , coarse-grained over mesoscopic scales, contains a diffusive part,

~Jdiff , a systematic part, ~Jsys and a noisy part η(r, t), where the noise is usually cho-

sen to be of zero-mean, η(r, t) = 0, and of short-ranged correlation in space and time:

η(r, t)η(r′, t′) = Aδd(r − r′)δ(t − t′) in d spatial dimensions. Here, the overline denotes

averaging with respect to the stationary distribution of configurations. In one spatial di-

mension, the time development of the density fluctuations, δρ(x, t) = ρ(x, t)− ρ, about the

mean density ρ = ρ(x, t) is then governed by the following equation.

∂(δρ)

∂t
= − ∂

∂x

[
−Γ

∂(δρ)

∂x
+ J0 + vKδρ+

λ

2
(δρ)2 + . . .+ η(x, t)

]
, (1.2)

where we assumed phenomenological forms for the diffusive and the systematic parts of
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the current: Jdiff = −Γ∂(δρ)
∂x , and Jsys = J0 + vKδρ + λ

2 (δρ)2 + . . .. Here, vK is the

kinematic wave velocity of density fluctuations. In writing the systematic part, one usually

stops at the second-order term in δρ, since the higher-order terms are less relevant in the

sense of the renormalization group, in determining the large-distance, long-time behavior

of fluctuations. The irrelevance of higher-order terms can be seen most simply by mapping

the density fluctuations δρ to the height fluctuations of a growing interface; see Eq. 1.3

below. Equation 1.2 then describes the time evolution of a growing interface, see Eq. 1.4

below. As we discuss below, the interface exhibits scaling properties in the sense that on

scaling the space, the height variable scales by a certain power of the scaling parameter,

while the time variable scales by a different power of the scaling parameter. On counting

the power of the scaling parameter for each term in the time-evolution equation, Eq. 1.4,

it directly follows that the higher-order terms in the systematic part of the current are less

relevant.

The drift term, vKδρ, can be eliminated from Eq. 1.2 by the help of a Galilean trans-

formation, x → x′ = x − vKt, which involves going to a co-moving frame of velocity vK .

The resulting equation is known as the noisy Burgers equation [47, 48]. Its deterministic

version (without the noise term η) was employed earlier in studying shocks in fluids [49].

The density fluctuations δρ can be related to the height fluctuations of a growing inter-

face through identifying the local height gradient with the density fluctuation as

∂h

∂x
= −δρ, (1.3)

where h(x, t) is the height of the interface at spatial location x at time t [50]. In that case,

Eq. 1.2 describes the evolution of the interface in time.

∂h

∂t
= J0 + Γ

∂2h

∂x2
− vK

∂h

∂x
+
λ

2

(
∂h

∂x

)2

+ η(x, t). (1.4)

The constant, J0, on the right can be eliminated by doing a boost transformation, h→ h′ =

h + J0t. After doing the Galilean transformation, x → x′ = x − vKt, the above equation

describes the time evolution of an interface in the Kardar-Parisi-Zhang (KPZ) universality

class [51].

∂h

∂t
= Γ

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ η(x, t). (1.5)

Here, the first term on the right acts like a surface tension, tending to reduce the curvature

of the interface, while the second term, accounting for the lateral growth of the interface,

plays the most dominant role in determining the morphology and the large-scale dynamics

of the interface [52].

In the limit of large distances and long times, the correlation function characterizing the
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height fluctuations of the interface assumes a scaling form. Thus, one has

S(x, t) =

〈[
h(x, t) − h(0, 0) − 〈h(x, t) − h(0, 0)〉

]2〉
∼ t2βY

( x

t1/z

)
, (1.6)

in the asymptotic limit x, t→ ∞, with x/t1/z = constant. In Eq. 1.6, the overline denotes

averaging with respect to the stationary distribution of configurations, while the angular

brackets represent averaging over stochastic evolution of configurations. Here, β is the

growth exponent, while z is the dynamical exponent. These exponents as well as the

scaling function Y are the same for all systems belonging to the same universality class.

The scaling function Y (s) has the property that Y (s) → constant as s → 0, implying that

the height autocorrelation S(0, t) behaves as S(0, t) ∼ t2β. Further, as s→ ∞, the function

Y (s) → s2α. Here, α is the critical exponent related to z and β through z = α/β [52].

It determines the roughness of the interface through S(x, 0) ∼ x2α. We conclude from

the above discussion that on scaling the spatial variable x by the scaling parameter b as

x→ x′ = bx, the time variable scales as t→ t′ = bzt, while the height of the interface scales

as h→ h′ = bαh.

In the case that the nonlinear term λ is zero and all the higher order nonlinearities are

absent, Eq. 1.2 represents an equilibrium lattice gas of hard core particles. In the language

of the interface, Eq. 1.5 with λ = 0 describes the fluctuations of an equilibrium interface

about its mean position and is known as the Edwards-Wilkinson (EW) equation [53]. This

being a linear equation, its complete solution is possible and one obtains β = 1/4, z = 2

[53, 52].

The nonlinear term breaks the time reversal symmetry present in the equilibrium sys-

tem, and consequently, changes the dynamical behavior of fluctuations. Scaling analysis

with respect to the linear equation shows that the nonlinear term is relevant in spatial

dimensions less than two. In one dimension, one has, for the KPZ class, β = 1/3, z = 3/2,

calculated using mode coupling schemes [48], Bethe Ansatz [17, 18] and renormalization

group techniques [47, 51]. The determination of the exponents could be possible because

of a certain identity (α + z = 2) that followed from the Galilean invariance of the Burgers

equation [54, 52].

A goal of the present work is to show that the drift term, vKδρ, which, in the interface

language, reads −vK
∂h
∂x , provides a relevant perturbation for both the EW and the KPZ

fixed points, making them unstable, and generating a flow from them towards a third

fixed point, which we refer to as the fixed point due to the sliding density fluctuations

(SDF). In other words, presence of a least amount of drift in either the EW equation or the

KPZ equation would make the large-distance long-time behavior of fluctuations for these

equations be governed by the SDF fixed point. However, such an effect is observed in the

limit of an infinite system. For a finite system, in addition, there are other interesting

effects seen in the behavior of fluctuations, the elucidation of which is the main goal of this

research work. Before summarizing our main results on finite-size effects in nonequilibrium
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stationary states, it may be worthwhile to first take stock of our knowledge of finite-size

effects in equilibrium stationary states.

1.4 Finite-size effects in equilibrium stationary states

Finite-size effects in equilibrium systems often arise from the interaction of system con-

stituents with the boundaries. Such effects can be eliminated by defining the system with

periodic boundary conditions; even then, finite-size effects are seen most prominently close

to the critical point of a second-order phase transition. This is because only in the ther-

modynamic limit does the correlation length for fluctuations in the order parameter char-

acterizing the transition diverge. For a system of finite extent, the correlation length in a

particular spatial direction has an upper bound, set by the characteristic linear dimension

of the system in that direction. Size effects are mirrored in the behavior of response func-

tions like the specific heat, susceptibility, etc., which, instead of diverging at the critical

point, have peaks with a finite height, which grows with the size of the system, i.e., the

sharp limiting transition of the thermodynamic system is rounded off by size effects [44].

Moreover, the occurrence of the peak is at a point which is only close to the true or limiting

critical value of the parameter for which the transition is observed, i.e., temperature in the

case of magnetic systems. Such size effects, instead of proving a nuisance, turn out to be

rather precious in the investigation of critical phenomena, thanks to the finite size scaling

Ansatz [44]. This Ansatz is based on the assumption that close to the critical point, finite

size behavior of thermodynamic quantities is exclusively governed by the ratio L/ξ∞, where

L is the linear dimension of the system, while ξ∞ is the correlation length of the infinite

system. When this ratio is large, the system has basically reached its thermodynamic limit,

while, when it is small, it is in the scaling regime. Specifically, let us discuss the situation

for a magnetic system close to the critical temperature Tc. Consider any intensive quantity,

O, (energy density, magnetization density, magnetic susceptibility, etc.) which behaves in

the thermodynamic limit as

〈O〉∞(t) ∝ |t|−xO , as t→ 0. (1.7)

Here, t is the reduced temperature: t ≡ T−Tc
Tc

. The subscript ∞ on the left emphasizes the

large volume limit. For a finite size of characteristic length L, the scaling Ansatz states

that Eq. 1.7 is modified to

〈O〉L = LxO/νgO(L/ξ∞), (1.8)

where the scaling function gO is an analytic function of its argument, close to zero. More-

over, it is the same for all systems belonging to the same universality class, although it is

dependent on the boundary conditions imposed on the system. In Eq. 1.8, ν is the critical

exponent characterizing the divergence of the correlation length close to the critical point:

ξ∞ ∝ |t|−ν . The scaling function has the limiting behavior that g(u) ∼ u−xO/ν as u→ ∞ so
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that when L≫ ξ∞, and the system has reached its thermodynamic limit, one recovers the

behavior for an infinite system, Eq. 1.7. To summarize, for a finite system, the system size

enters as a parameter into the scaling properties of thermodynamic quantities. Let us end

this section by noting that finite-size rounding is also observed for a first-order transition

[55].

1.5 Finite-size effects in nonequilibrium stationary states:

Our results, plan of the thesis

In this thesis work, we have studied size effects on the dynamics of fluctuations in the

nonequilibrium stationary states of driven diffusive systems. We have performed the study

within the ambit of two paradigmatic models, the asymmetric simple exclusion process

(ASEP) and the zero-range process (ZRP). Thus, this thesis has two broad divisions, one

devoted to the ASEP (Chapters 2 - 5), while the other is devoted to the ZRP (Chapters

6 - 7). We considered the ASEP and the ZRP on a one-dimensional periodic lattice with

a finite number of sites. The specific issue that we address for each of the two models

is what are the size-dependent time scales that govern the behavior of fluctuations in the

stationary state. Although some studies have been pursued in the past to characterize the

behavior of fluctuations in time, they typically dealt with a thermodynamic system, and

hence, failed to capture the entire domain over which fluctuations exhibit interesting and

varied behavior in time. Our analysis of stationary state fluctuations in the ASEP [56] and

the ZRP [57], provides, to our knowledge, the first systematic and exhaustive study of size

effects on the dynamics of fluctuations in nonequilibrium stationary states. For both the

processes, we determined all the time scales in the behavior of fluctuations and provided

a simple physical basis for the underlying processes. Our studies are based on extensive

Monte Carlo simulations, scaling analysis, physical arguments, and analytic solutions under

suitable approximations.

We begin in Chapter 2 with an introduction to the one-dimensional ASEP on a periodic

lattice. We discuss its stationary state weight of configurations [10], the equal-time density-

density correlation function, and point out that in the stationary state, the coarse-grained

density fluctuations move relative to the drift of the particles with the characteristic kine-

matic velocity [58], a phenomenon we refer to as sliding density fluctuations (SDF). Next,

we discuss the behavior of unequal-time density-density correlation function in the limit of

large distances and long times. In the following section, we show that density fluctuations

in the ASEP can be mapped to those of a nonequilibrium interface in the KPZ univer-

sality class [50] (also, [10]) , much along the same lines as in Section 1.3. The resultant

time-evolution equation for the interface is the KPZ equation, augmented by a drift term

accounting for the SDF. If the bias on particle motion in the ASEP is turned off, the parti-

cles move symmetrically, and the ASEP reduces to the symmetric simple exclusion process

(SEP) [10]. For the SEP, the corresponding interface is an equilibrium one, governed by
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the EW time-evolution equation. The chapter ends with a brief discussion on the scaling

properties of the EW and the KPZ equations, and the proposition, which we prove in later

chapters, that the EW and the KPZ fixed points become unstable in the presence of the

SDF, which provides a relevant perturbation for both these fixed points and govern the

interface fluctuations in the large-distance long-time limit.

In Chapter 3, we give a precise definition of the quantity of interest to us in study-

ing finite-size effects in the ASEP, namely, the tagged particle correlations. In this, we

measure the variance in the displacement of a tagged particle in the ASEP about its av-

erage displacement where the average could be over (i) both initial stationary ensemble

and stochastic evolution, or, (ii) only stochastic evolution [59]. The resulting variances for

the two cases have been studied previously in certain limits, and especially, in an infinite

system, which we briefly review here [60, 61, 59]. Next, we propose a schematic repre-

sentation for the tagged particle displacement in an infinite system on the basis of scaling

arguments. We show that the representation correctly predicts the earlier studied behav-

ior for the variances. Moreover, we adduce cogent physical arguments in support of the

proposed representation and the observed behavior of the variances. The main result of

this chapter is a complete characterization of the variances for a finite system, where we

point out all the size-dependent time scales and the associated behavior. The variance,

averaged over both initial stationary ensemble and stochastic evolution, captures motion of

density fluctuations as a dissipating kinematic wave, and consequently, shows pronounced

oscillations in time with a size-dependent time period. Its behavior in time is characterized

by two size-dependent time scales, set by the circulation time and the decay time of the

kinematic wave of density fluctuations, respectively. On the other hand, the variance, which

involves averaging over stochastic evolution only, captures the dissipation of the kinematic

wave, and has a single size-dependent time scale, given by the decay time of such a wave.

The occurrence of the time scales are supported by scaling analysis of data obtained from

extensive Monte Carlo simulations. Moreover, we give arguments in the form of a simple

physical picture for the dynamics underlying each of the time scales. There is also a section

in this chapter devoted to the motion of the center-of-mass of the system, which, as we show

in the same chapter, dictates the long-time behavior of the tagged particle correlations.

Next, we move on to relate the tagged particle correlations to the height fluctuations of

a nonequilibrium interface in the KPZ class in Chapter 4. This is achieved through a novel

mapping, explained in this chapter, which uses the tagging process of particles in a direct

and essential way in the translation [62]. The time-evolution equation of the interface, which

we derive in Appendix B, is found to be the KPZ equation with a drift term proportional

to the SDF, but the essential difference from the mapping discussed in Chapter 2 is that

now the function measuring the height fluctuations of the interface, when interpreted in the

language of the ASEP, is just the variance of the tagged particle displacement, introduced in

Chapter 3. In an attempt to develop an analytic understanding of the occurrence of the size-

dependent time scales in the tagged particle correlations, we solve for them exactly in the
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case when the KPZ equation with the drift term reduces to the EW equation with the drift

term, i.e., when the nonlinear term in the KPZ equation is zero. We call the corresponding

interface the linear interface. The exact solution for the variance of the tagged particle

displacement, obtained for the EW equation with the drift term, correctly predicts the size

dependence of the time scales for the corresponding quantities in the ASEP, as we show in

this chapter.

Chapter 5 is devoted to showing that the EW equation with the drift term, describing a

linear interface, not just provides a linear approximation to the KPZ equation, but actually

arises in the coarse-grained description of two specific models of interacting particles in the

class of driven diffusive systems. These are the KLS model, mentioned above, considered at

a particular value of the temperature, and the asymmetric random average process (ARAP)

[63]. The ARAP is a generalization of the ASEP to a continuum, i.e., in the ARAP, particles,

instead of hopping on a lattice, move on a continuous line. With Chapter 5, we end our

discussion of the results for the ASEP.

In Chapter 6, we come to the second model system studied in this thesis, namely,

the zero-range process (ZRP). In this chapter, we provide a self-contained review of the

homogeneous ZRP on a one-dimensional periodic lattice [9] (see [64] for a recent review).

This process can be mapped to a generalization of the totally asymmetric simple exclusion

process; we summarize this mapping in this chapter. Next, we obtain the stationary state

measure of the process, and discuss in detail the condensation transition (see Section 1.2.2

above), deriving conditions on the hop rate that induces such a transition. For one class of

hop rate that induces condensation, we summarize the already known results on the single

site occupancy distribution within the canonical ensemble in the disordered phase, at the

critical point, and also, in the condensed phase, pointing out the typical occupancy that

characterizes each phase. It is interesting to look at finite-size effects on the behavior of

current for the ZRP; we study this numerically within the canonical ensemble. The chapter

ends with a section on the kinematic wave that transports density fluctuations. We outline

the basic steps in deriving the kinematic velocity at a particular density. It turns that in a

certain parameter regime, the kinematic velocity at the critical point precisely evaluates to

zero; we discuss this issue in this last section.

In Chapter 7, we report our results on size effects on the dynamics of fluctuations in the

ZRP, for a particular choice of the hop rate that induces a condensation transition from a

low-density disordered phase to a high-density condensed phase. We start by defining the

quantity of interest, namely, the variance of the integrated current across a bond in the

ZRP. As we report in this chapter, the variance shows striking differences in behavior as the

system goes over from the disordered to the condensed phase. In the disordered phase, and

also at the critical point, the variance behaves similarly to the tagged particle correlations

in the ASEP, summarized in Chapter 3. Thus, the variance exhibits damped oscillations

in time due to the kinematic wave of density fluctuations, and has two size-dependent time

scales, set by the circulation time and the decay time of the kinematic wave, respectively. On
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the contrary, in the condensed phase, numerical simulations and strong scaling arguments

lend strong evidences in support of the fact that the fluctuation dynamics is governed by the

condensate relocation from site to site; here, the variance has four distinct size-dependent

time regimes, the two relevant time scales being the survival time and the relocation time

of the condensate. This chapter contains a detailed explanation of the behavior of the

variance in various phases, including the size-dependent time scales relevant to each of the

phases, and an elaboration of the underlying physical processes. We also discuss in detail

the dynamics through which the condensate relocates from one site to another. This is done

by studying the survival probability distribution of the largest mass in the system. The

distribution is seen to have two parts, one representing the relatively long time for which

the condensate stays on one site, while the other, a power-law part, valid for small time

intervals, accounts for the shorter time scale over which reorganization of mass in the bulk

leads to a relocation of the condensate. At the end of this chapter, we introduce a simple

relocation model to compute the long-time behavior of the variance in the condensed phase.

With this chapter, we end our discussion on the ZRP.

In Chapter 8, we consider the exclusion process with extended objects, i.e., k-mers that

occupy k adjacent sites on a lattice, with k > 1. These k-mers undergo stochastic hopping in

the presence of an external drive. Specifically, a k-mer advances either forward or backward

by one lattice site with unequal probabilities, if, correspondingly, there is a vacant site

in front or behind the k-mer. In this chapter, we consider the model in one dimension

with periodic boundary conditions. We show that many stationary state properties of the

k-mer system, e.g., the correlation functions for site occupancies can be derived rather

simply by mapping every configuration in the k-mer problem to an equivalent and unique

configuration in an ASEP on a smaller lattice [43]. We show that these correlation functions

show distinctive size effects like characteristic oscillations, etc., arising from the finite size

of the extended objects, and have scaling forms in the proper continuum limit of the model.

Chapter 9 contains a summary of our main results; we also discuss possible generaliza-

tions of our results and some open issues.
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Chapter 2

The Asymmetric Simple Exclusion

Process (ASEP)

“Would you tell me, please, which way I ought to go from here?” “That depends

a good deal on where you want to get to,” said the Cat. “I don’t much care

where—” said Alice. “Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll

The asymmetric simple exclusion process (ASEP) serves as a prototype model for studying

nonequilibrium phenomena in the context of lattice gases [1]. On a one-dimensional lattice,

the process involves hard core particles occupying lattice sites, and attempting to jump

preferentially to nearest neighbor sites; the jumps are stochastic, and are completed only

if the target site is unoccupied. In the lattice with open boundaries, particles get injected

into the system at the left boundary site, move through the bulk, and finally, are drained

at the right boundary site. Figure 2.1 shows a schematic view of the process with open

boundaries.

p 6= q

q p
α β

Figure 2.1: The asymmetric simple exclusion process in one dimension with open bound-
aries. Here, α is the injection rate at the left boundary, while β is the rate at which particles
are drained at the right boundary. An allowed transition is also shown in the figure; tran-
sitions which are disallowed due to the hard core constraint are marked by crosses.

The ASEP provides a simple example of a system of interacting particles belonging

to the general class of driven diffusive systems which at long times settle into a current-

19
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carrying nonequilibrium stationary state [2]. The process was initially studied as a purely

mathematical model to analyze interaction of Markov processes [3, 1]. The connection

becomes evident on recognizing the ASEP as a collection of particles, each executing a

biased random walk (a Markov process), and interacting through hard core exclusion.

In recent years, the ASEP has been applied to study diverse physical situations: hopping

conductivity in solid electrolytes [4], transport of macromolecules through thin vessels [5],

reptation of polymer in a gel [6], as a discrete version of the noisy Burgers equation to study

microscopic structure of shocks in fluids [7], traffic flow [8], surface growth [9, 10], sequence

alignment [11] and molecular motors [12]. On the theoretical side, the model provides

the minimal setting to study systems out of equilibrium, and therefore, enjoys an iconic

status much like that of the Ising model in equilibrium statistical mechanics. The ASEP, or

modifications thereof, has served to exemplify many features of current-carrying stationary

states which are forbidden by the general principles of equilibrium statistical mechanics, e.g.,

occurrence of boundary-induced phase transitions and spontaneous symmetry breaking in

one dimension with short-ranged interactions [13, 14, 15]. For example, in the model with

open boundaries, the competition of the boundary dynamics of injection and drainage with

the transport in the bulk limits the current through the system. This leads to a rich phase

diagram with first and second-order phase transitions upon varying the two boundary rates

[13, 16, 17, 18, 19, 20]. The phase diagram is shown in Fig. 2.2.

    phase

    phase

Low density

       phase

High density

Maximal current

0

Here, p = 1.

α

1−q
2

β

1−q
2

1

1

Figure 2.2: The phase diagram of the ASEP with open boundaries for the parameter values
p = 1 and for arbitrary q (cf. Fig. 2.1). The red lines represent the second-order transition
lines, while the blue line represents first order coexistence. In the high density phase, the
bulk current is determined by the drainage rate β, while, in the low density phase, the
injection rate α determines the bulk current. In the maximal current phase, the maximum
possible bulk current flows through the system, independent of the boundary rates.

In this thesis, we are concerned with the ASEP on a one-dimensional periodic lattice.

This chapter begins with a precise definition of the model in Section 2.1, followed in Section

2.2 by a discussion of its rather simple stationary state measure which allows all possible



2.1. THE ASEP ON A RING 21

configurations with equal weights. Next, in Section 2.3, we discuss the equal-time density-

density correlation in the ASEP, both on a lattice and also in the continuum limit. In Section

2.4, we discuss different stationary state motions in the system attributed to individual par-

ticles and density fluctuations. In Section 2.5, we discuss the unequal-time density-density

correlation in the ASEP. In the following section, we discuss a coarse-grained description

of the ASEP density profile in the stationary state and derive its time-evolution equation.

In Section 2.7, we discuss a mapping of the ASEP density profile to a growing interface

in the Kardar-Parisi-Zhang (KPZ) universality class. Section 2.8 contains a discussion of

the scaling properties of a general interface equation, a special case of which is the KPZ

equation. We conclude this chapter with a discussion on the different universality classes

in the behavior of height fluctuations of an interface.

2.1 The ASEP on a ring

p 6= q

q p

Figure 2.3: The asymmetric simple exclusion process on a one-dimensional ring. An allowed
transition is shown in the figure; transitions that disobey the hard core constraint are
disallowed and are marked by crosses.

We consider the ASEP on a periodic lattice of L sites. N indistinguishable hard core

particles are distributed over the lattice sites with each site either singly-occupied or empty.

The lattice spacing a is finite and may be taken to equal the linear extent of each particle.

The total length of the lattice is La. In the following, we always measure distances in units

of a, unless stated otherwise. The particle density ρ = N
L is held constant when the limit

L→ ∞, N → ∞ is taken. The system evolves according to a stochastic dynamics: a site is

chosen at random; if the site is occupied, the particle there attempts to hop to the site to

its right with probability p, to the left neighboring site with probability q, and continues

to occupy the original site with probability 1 − (p + q) (see Fig. 2.3). The attempted hop

is successful only if the sought site is empty before the hop. Each of L attempted hops

defines an elementary time step of the dynamics, which, together, constitute one time step.

Clearly, the total number of particles is conserved under the dynamics. For the totally

asymmetric simple exclusion process (TASEP), the motion of the particles is entirely in one
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direction, i.e., p = 1 and q = 0 or, vice-versa. Note that with p = q, each particle moves

symmetrically to the left and to the right. The model then reduces to the symmetric simple

exclusion process (SEP), an equilibrium model of hard core particles diffusing on a lattice.

2.2 The stationary state measure

From the definition of the model, it is evident that the ASEP dynamics is ergodic, i.e.,

every configuration with the same number of particles can be reached from every other by

following the dynamical rules of evolution. In the limit of long times, the system settles

into a nonequilibrium stationary state. Ergodicity ensures uniqueness of the stationary

state. On a lattice of L sites with N particles, the total number of possible configurations

is given by the number of ways in which N out of L sites may be chosen to be occupied

and thus, equals
(

L
N

)
= L!

N !(L−N)! . For this system, the stationary state is one in which all

configurations C have the same weight p(C) = N !(L−N)!
L! [1]. We prove this result below by

invoking the condition of pairwise balance on the probability fluxes between configurations

in the stationary state.

We begin by recapitulating the concept of a stationary state for a stochastic Markovian

system defined by the transition rates W (C → C′), which give the probability per unit time

to go from any configuration C to any configuration C′. In the ASEP, the W ’s are identified

with the rates p and q, e.g., if the transition C → C′ involves hopping of a particle from a

site to its right neighbor, W (C → C′) = p. Now, the probability P(C, t) for the system to

be in configuration C at time t evolves following the Master equation [21], namely,

∂P(C, t)

∂t
=
∑

C′

W (C′ → C)P(C′, t) −
∑

C′

W (C → C′)P(C, t). (2.1)

The stationary state of the dynamics is given by the set of time independent probabilities

{p(C)} that satisfies the above equation. Thus, the stationary state is one in which the

total incoming flux into any configuration C [the first sum in Eq. 2.1] equals the total

flux out of C [the second sum in Eq. 2.1]. A sufficient condition for the existence of the

stationary state is provided by the condition of pairwise balance, which states that for every

configuration C′ contributing to the outflux of probability from any arbitrary configuration

C is associated a configuration C′′ whose influx contribution to C precisely cancels that

outflux [22]. In symbols, the pairwise balance condition is represented as

W (C → C′)p(C) = W (C′′ → C)p(C′′). (2.2)

That Eq. 2.2 is a sufficient condition that ensures stationarity can be checked by its direct

substitution into Eq. 2.1 when the right hand side evaluates to zero as it should in the

stationary state. Note that the pairwise balance condition generalizes the condition of

detailed balance for equilibrium stationary states to nonequilibrium ones. The condition of
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detailed balance ensures no net probability flux between any pair of configurations in the

stationary state [21]. In Fig. 2.4, we show schematically the two conditions.
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C

C′′

C1

C2

C2

C3

C4

C1

C′

(b) Detailed balance(a) Pairwise balance

Figure 2.4: Condition of (a) pairwise balance and (b) detailed balance. Filled circles rep-
resent configurations of the system in the configuration space and the arrows denote the
allowed transitions between configurations. In (a), fluxes into and out of a given configura-
tion (C) are balanced for pairs of transitions, C′′ → C and C → C′. In (b), mutual forward
and backward fluxes between two configurations balance. The detailed balance condition
holds for equilibrium stationary states and the condition of pairwise balance generalizes it
to nonequilibrium stationary states.

C′

C

C′′

p

p

Figure 2.5: Pairwise balance between configurations in the stationary state of the ASEP on
a ring. Here, filled circles denote particles while open ones stand for vacancies.

For the ASEP, we make the Ansatz that the stationary state allows every possible

configuration to occur with the same weight, and show that this Ansatz satisfies the pairwise

balance condition, Eq. 2.2. To see this, first note that any configuration C is composed of

alternating segments of particles and holes. In one elementary time step, C may evolve to

any other configuration C′ in two ways,

(i) by moving the rightmost particle in one of the particle segments in C one step to
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the right with rate p (so that W (C → C′) = p), or,

(ii) by moving the leftmost particle in one of the particle segments in C one step to the

left with rate q (so that W (C → C′) = q).

In case (i), the configuration C′′ is easily constructed by moving the leftmost particle in

the same particle segment in C one step to the left so that in the next elementary time step,

the same particle hops into its position in C with rate p and the pairwise balance condition

is satisfied. This case is illustrated for a particular particle segment in C in Fig. 2.5.

In case (ii), the configuration C′′ is constructed by moving the rightmost particle in the

same particle segment in C one step to the right so that in the next elementary time step,

the same particle hops into its position in C with rate q and the pairwise balance condition

is satisfied.

Thus, the Ansatz that all configurations occur with equal probabilities does indeed

satisfy the condition of pairwise balance and hence, represents a stationary state of the

ASEP dynamics. That such a measure is indeed the stationary state of the ASEP dynamics

follows from the uniqueness of the stationary state.

2.3 The equal-time density-density correlation

Let ni = 0, 1 with i = 1, 2, . . . , L denote the occupancy of the i-th site. In the thermo-

dynamic limit N → ∞, L → ∞, N
L = ρ = finite, the average density ni = ρ. Here, as

in the rest of this chapter, the overbar is used to denote an average over the stationary

ensemble of configurations, i.e., with respect to the stationary measure p(C) = N !(L−N)!
L! .

The equal-time (unsubtracted) density-density correlation function C(r) is defined as

C(r = |i− j|) ≡ ninj for i 6= j. (2.3)

Since, in the stationary state, all configurations have the same weight, the function C(r) is

simply given by the ratio of the number of ways in which N−2 particles may be distributed

over L − 2 sites to the total number of configurations, and hence, equals
(L−2

N−2)
(L

N)
= N(N−1)

L(L−1) ;

in the thermodynamic limit, the right hand side equals ρ2 with corrections of O
(

1
L

)
. Thus,

in the thermodynamic limit, we get

C(r) ≈ ρ2, (2.4)

i.e., to leading order in the system size, the two-point density-density correlation function

factorizes into the product of probabilities that each of the two sites is occupied, indepen-

dently of the other. In view of all configurations being equally likely in the stationary state,

this factorization property remains true for all higher-order correlations. It thus follows

that in the thermodynamic limit, to leading order in L, a site in the ASEP is occupied with

probability ρ and left vacant with probability 1− ρ, independently of any other site. Thus,

the stationary state has a product measure form.
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It is interesting to consider the equal-time density-density correlation in the limit in

which the ASEP lattice is replaced by a continuum. This limit is achieved by letting the

lattice spacing, a, to go to zero in such a way that the total length of the lattice, namely, La,

remains finite. In this limit, each ASEP particle reduces to a point particle of infinitesimal

size (a → 0), distributed over a continuous line of finite length La; the particle density is

given by ρ0 = N/La = ρ/a. In order to keep ρ0 finite while taking the limit a → 0, it is

thus required that we also take the ASEP particle density ρ to go to zero. In the continuum

limit, we no longer measure distances in units of a; instead, we consider their actual values.

We ask: What is the probability for the gap between two successive point particles to lie

within the interval (R,R+dR) ? This probability is given by C(R)dR, where the probability

density C(R) is the density-density correlation function in the continuum. To compute the

function C(R), we break up the continuous line of length R into a lattice of m sites and

lattice spacing equal to a, such that ma = R. We first take a to be finite, compute the joint

probability that each of the m sites is empty so that the next particle is at least R distance

away, and finally, take the limit a → 0,m → ∞, keeping the product R = ma finite. For

finite a, the joint probability for each of the m sites to be empty is (1 − ρ)m. Thus, C(R)

is given by

C(R) ∝ lim
a→0,m→∞,R=ma=Finite

(1 − ρ)m.

= lim
a→0,m→∞,R=ma=Finite

(1 − ρ0a)
R/a. (2.5)

Using the known result, lima→0(1 − ax)1/a = e−x, we get

C(R) ∝ exp(−ρ0R). (2.6)

On normalizing C(R) such that
∫∞
0 dRC(R) = 1, we finally get

C(R) = ρ0 exp(−ρ0R). (2.7)

Thus, in the continuum limit of the ASEP, the equal-time density-density correlation decays

as an exponential.

2.4 Motion of particles and density fluctuations in the sta-

tionary state

In the stationary state, the ASEP supports a steady current of particles, which, between

sites i and i+ 1, is given by

Ji,i+1 = pni(1 − ni+1) − qni+1(1 − ni). (2.8)
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Here, the first term on the right corresponds to a particle hop from site i to right neighbor

site i + 1, while the second term represents a hop in the reverse direction from i + 1 to

i. The mean current J = Ji,i+1 is the same across every pair of neighboring sites in the

stationary state. For a system of L sites, the mean current J is given by

J = (p− q)ρ(1 − ρ) +O

(
1

L

)
, (2.9)

in view of the product measure for the stationary state. Correspondingly, the mean velocity

of a particle in the stationary state, given by vP = J
ρ , equals

vP = (p− q)(1 − ρ) +O

(
1

L

)
. (2.10)
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Figure 2.6: Time evolution for a stationary TASEP configuration on a ring. Here, the system
size L = 200, the density ρ = 0.4. Black spots denote particles, while white ones stand for
vacancies. Following a black spot in time, we get the trajectory of a particle; the thick black
line stands for the mean trajectory. The inverse of the slope of the thick black line is the
velocity of a particle vP ≈ (p− q)(1− ρ) = 0.6. On a coarse-grained level, one can see black
and white stripes inclined at a certain angle to the time axis; these represent trajectories
of density fluctuations, the thin red line being the mean trajectory with the inverse of its
slope equaling the velocity of the density fluctuations vK ≈ (p− q)(1 − 2ρ) = 0.2.

Besides particle motion, there is also a motion associated with the coarse-grained density

fluctuations in the stationary state of the ASEP. The density fluctuations are transported

as a kinematic wave with velocity vK = ∂J
∂ρ (see Appendix A). Thus, relative to the average

drift of the particles, the density fluctuations ‘slide’ with velocity vK − vP . We refer to this

relative motion as the sliding density fluctuations (SDF). Stochasticity and nonlinearity

in the dynamics lead to dissipation of the density profile so that the wave of fluctuations

ultimately dies down in time. Utilizing the expression for the mean current J given in Eq.
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2.9, the kinematic wave velocity1 is given by

vK = (p− q)(1 − 2ρ) +O

(
1

L

)
. (2.11)

Figure 2.6 shows the time evolution of a stationary ASEP configuration. One clearly sees

that the space-time trajectory of a particle is distinctly different from that for a coarse-

grained density fluctuation.

2.5 The unequal-time density-density correlation

The unequal-time density-density correlation function C(r, t) is defined as

C(r = |i− j|, t) ≡ 〈ni(0)nj(t)〉 − ρ2, (2.12)

where ni(0) is the occupancy of the i-th site at time 0, while nj(t) is the occupancy of the j-

th site at time t. Here, ρ is the ASEP particle density, the overbar represents averaging over

the initial stationary distribution of the ASEP configurations, while the angular brackets

denote averaging over the stochastic evolution of the configurations in time. One can rewrite

Eq. 2.12 as

C(r = |i− j|, t) = 〈[ni(0) − ρ] [nj(t) − ρ]〉. (2.13)

Thus, the function C(r, t) correlates the fluctuation in the density at the i-th site, given

by [ni(0) − ρ], with the fluctuation in the density at the j-th site, given by [nj(t) − ρ]. As

discussed in Section 2.4, the density fluctuations are transported through the system with

the kinematic velocity vK .

In the long-time scaling regime, the function C(r, t) is of the form [23]

C(r, t) ∝ t−2/3f(u), u =
1

2
(Jt2)−1/3(r − vKt), (2.14)

where f(u) represents the scaling function. In Eq. 2.14, J is the mean current in the

stationary state, given by Eq. 2.9, while vK is the kinematic wave velocity, given by Eq.

2.11. We can rewrite Eq. 2.14 in the scaling form as

C(r, t) ∼ t−2/3f

(
r − vKt

t2/3

)
. (2.15)

In the limit of large u, the function f(u) is known to behave asymptotically as f(u) ∼
exp(−µ|u|3) with the constant µ ≈ −0.295 [23]. Thus, at long times, the function C(r, t)

decays as an exponential in time.

An exception to the exponential decay of C(r, t) is when the co-moving condition r =

1This velocity also appears as the imaginary part of the low-lying eigenvalues of the Markov matrix
governing the time evolution of the ASEP in the totally asymmetric case q = 0; see D. Kim, Phys. Rev. E
52, 3512 (1995); O. Golinelli and K. Mallick, J. Phys. A 38, 1419 (2005).
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(b) The same density profile after time t.

(a) A typical coarse-grained density profile
of the ASEP at the initial instant t = 0.
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Figure 2.7: The figure shows a typical coarse-grained density profile of the ASEP at time
t = 0, and the same one, shifted in space due the kinematic wave of density fluctuations.
The dotted blue line in (b) represents the slight distortion in the density profile in time due
to stochasticity of the ASEP dynamics. When the co-moving condition r = vKt is satisfied,
the function C(r, t), defined in Eq. 2.12, monitors the time development of the fluctuations
at the same point on the density profile, during its motion as a kinematic wave.

vKt is satisfied. In this case, the function C(r, t) measures the correlations in the density

fluctuation at a spatial point at a given time with the same fluctuation, transported by the

kinematic wave so as to occur at the spatial point r = vKt at time t. In other words, the

function C(r, t) monitors the time development of the fluctuations at the same point on the

density profile, during its motion as a kinematic wave; this is shown schematically in Fig.

2.7. When the co-moving condition is satisfied, the function C(r, t) decays as a power law

as C(r, t) ∝ t−2/3.

A special case of the co-moving condition is when one looks at the density autocorrela-

tion, given by C(0, t). Here, the co-moving condition implies that vK = 0, which, in turn,
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implies from Eq. 2.11 that the ASEP particle density is ρ = 1/2. At this density, the

autocorrelation C(0, t) behaves as a power-law in time as t−2/3. At all other densities, the

autocorrelation decays as an exponential in time.

All the above behaviors of the function C(r, t) can be explained from the scaling proper-

ties of the interface-equivalent of the ASEP. As we explain below in Section 2.7, the ASEP

density profile may be mapped to an interface, which is defined on a one-dimensional sub-

strate, and which is growing in time. The scaling properties of the interface imply that

on rescaling the spatial variable for the substrate, the height variable of the interface also

scales by a certain power of the scaling parameter, while the time variable scales by a dif-

ferent power of the scaling parameter. We will explain in Section 2.8 how these scaling

considerations may be invoked to explain the behavior of the function C(r, t), discussed

above.

2.6 Coarse-grained description of the ASEP

ρ
(x

,t
)

x

1

2. Rescale by N ′.1.

ρ

Box with l sites such that 1 ≪ l ≪ L.

ρ(µ, t) = 1
l

∑l
i=1 ni.

µ = 1, 2, . . . , N ′ = L/l.

ρ(µ + 1, t)ρ(µ, t)

(0, ρ)

Figure 2.8: Steps involved in obtaining the coarse-grained description of the ASEP

We consider the ASEP on a one-dimensional ring in the thermodynamic limit with finite

particle density ρ. An ASEP configuration in the stationary state represents fluctuations

in site occupancies ni about the mean occupancy ρ. The occupancies change in time due to

the ASEP dynamics, and it is interesting to ask about how does the density profile, defined

by the set {nj, j = 1, 2, . . . , L}, considered on a coarse-grained level, evolve in time. Below,

we give a simple derivation of the time evolution for the coarse-grained density profile; for

a more rigorous derivation, see [24].

In obtaining the resultant time-evolution equation, the various steps involved are sum-

marized below, with the first two steps shown schematically in Fig. 2.8.

1. The first step is to consider the lattice to be broken up into ‘mesoscopic’ regions

of l sites with 1 ≪ l ≪ L (see Fig. 2.8). Thus, each mesoscopic region contains many

sites, enough in number that one can be oblivious of the variation in the particle density

over the lattice sites within the region, and replace it by a flat profile given by the ‘mean’



30 2. THE ASYMMETRIC SIMPLE EXCLUSION PROCESS (ASEP)

density ρ(µ, t) (where the mean is over the sites in the mesoscopic region). Here, the

index µ (= 1, 2, . . . , L/l) may arbitrarily be taken to represent the central site in each

mesoscopic region, and runs over the total number of mesoscopic regions in the system,

given by N ′ = L/l. Variation in ρ(µ, t) over space occurs as one passes from one mesoscopic

region to the next, i.e., as one passes from µ to µ + 1 for 1 ≤ µ < L/l − 1. Since ρ(µ, t)

represents an average occupancy over many sites, several particle motions are required out

of these sites to cause an appreciable change in ρ(µ, t) in time. Thus, time t here is a

‘macroscopic’ variable in the sense that it is much longer than the elementary time scale

over which a single particle jumps in the ASEP. Because the ASEP dynamics conserves

particle number locally, the time variation of ρ(µ, t) (for µ = 1, 2, . . . ,N ′ = L/l) follows the

equation of continuity, and hence, reads

∂ρ(µ, t)

∂t
= [Jµ−1,µ(t) − Jµ,µ+1(t)] , (2.16)

where Jµ−1,µ(t) represents the particle current at time instant t between the mesoscopic

regions with their central sites at µ−1 and µ, respectively. Since we have periodic boundary

conditions on the ASEP lattice, it follows that JN ′,N ′+1 = JN ′,1 and J0,1 = JN ′,1. The term

within the square brackets on the right represents the net particle influx into the site µ in

unit time. Next, one assumes that the various contributions to the current Jµ−1,µ(t) just

add up to give

Jµ−1,µ(t) = Γ [ρ(µ− 1, t) − ρ(µ, t)] + (p− q)ρ(µ− 1, t)(1 − ρ(µ− 1, t)) + η(µ− 1, t). (2.17)

Here, the first term on the right represents the diffusive contribution to the current resulting

from the difference in the particle densities at the two locations (µ − 1) and µ, with Γ

representing the diffusion constant. The second term represents the current flowing into

the region µ due to the ASEP dynamics of particles within the mesoscopic region µ − 1.

To understand why the second term has the form indicated, recall that the mean ASEP

current within a region with a flat density profile ρ equals (p− q)ρ(1− ρ). Now, within the

coarse-grained description, the density profile within a mesoscopic region has been taken to

be essentially flat, justifying the form of the second term on the right of Eq. 2.17. That

the density profile within a mesoscopic region in not flat adds a noise to the current, and is

represented by the third term on the right of Eq. 2.17; η(µ−1, t) is a random variable taking

values depending on the particular ASEP configuration under consideration. Its average

over the stationary ensemble of the ASEP configurations is zero: η(µ, t) = 0. Also, the noise

η(µ, t) is taken to be uncorrelated in space and time: η(µ, t)η(ν, t′) = 2Aδµ,νδ(t− t′), where

the constant A represents the strength of the noise. This is based on the assumption that

(i) between points µ and ν, the microscopic density profile ni changes sufficiently random

number of times, and (ii) between times t and t′, the microscopic profile at a point undergoes

large number of random changes in time.
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Combining Eq. 2.16 and Eq. 2.17, we finally have

∂ρ(µ, t)

∂t
= Γ [ρ(µ− 1, t) − ρ(µ, t)] − Γ [ρ(µ, t) − ρ(µ+ 1, t)]

+ (p − q) [ρ(µ− 1, t)(1 − ρ(µ− 1, t)) − ρ(µ, t)(1 − ρ(µ, t))]

+ η(µ− 1, t) − η(µ, t). (2.18)

2. Now that one has a system of sites {µ = 1, 2, . . . ,N ′ = L/l} with associated densities

given by the set {ρ(µ, t)}, one defines a new set of variables {xµ}, with xµ = µ/N ′, and

then take the limit N ′ → ∞ so that the set {ρ(xµ, t)} maps onto a density profile ρ(x, t)

defined over the continuous spatial variable x ∈ [0, 1] (see Fig. 2.8). In this limit, Eq. 2.18

turns into the following equation.

∂ρ(x, t)

∂t
= Γ

∂2ρ(x, t)

∂x2
− (p − q)(1 − 2ρ(x, t))

∂ρ(x, t)

∂x
− ∂η(x, t)

∂x
. (2.19)

3. Since we are interested in finding the time evolution of the density fluctuations,

δρ(x, t) ≡ ρ(x, t) − ρ, about the global mean ρ, we expand both sides of Eq. 2.19 about ρ;

we finally get

∂δρ(x, t)

∂t
= Γ

∂2δρ(x, t)

∂x2
− (p− q)(1 − 2ρ)

∂δρ(x, t)

∂x
+ (p− q)

∂(δρ)2

∂x
− ∂η(x, t)

∂x
. (2.20)

Note from Eq. 2.11 that in the thermodynamic limit, the kinematic wave velocity is given

by vK = (p − q)(1 − 2ρ). Also, in this limit, from the expression of the current, Eq. 2.9,

it follows that ∂2J
∂ρ2 = (p− q). We have, finally, for the time evolution of the coarse-grained

density profile,

∂δρ(x, t)

∂t
= Γ

∂2δρ(x, t)

∂x2
− vK

∂δρ(x, t)

∂x
+
λ

2

∂(δρ)2

∂x
− ∂η(x, t)

∂x
, (2.21)

where the noise η(x, t) satisfies: η(x, t) = 0, η(x, t)η(x′, t′) = 2Aδ(x − x′)δ(t − t′). Also,

vK = ∂J
∂ρ = (p − q)(1 − 2ρ), while λ = 2∂2J

∂ρ2 = 2(p − q). The drift term, −vK
∂δρ(x,t)

∂x , in

Eq. 2.21 can be removed by a Galilean transformation, x → x′ = x − vKt, which leaves

us with what is known (for λ = 1) as the stochastic Burgers equation [25]. This equation

was employed to study, e.g., randomly stirred fluids [26] and fluctuations in the exclusion

process [27].

Note that Eq. 2.21 does not represent the ‘actual’ coarse-grained description of the

ASEP, in the sense that various unproven assumptions have gone into deriving it, e.g., the

validity of the additivity of various contributions to the current as done in Eq. 2.17. Yet, the

expectation is that the scaling properties of the correlation functions for the actual coarse-

grained ASEP density profile and that for Eq. 2.21 are governed by the same renormalization

group fixed point, and hence, are described by the same critical exponents and scaling

functions. Such an expectation stems from the observation that Eq. 2.21 contains all the
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conservation laws, and hence, all the resulting symmetries inherent in the ASEP dynamics,

e.g., mass conservation.

2.7 Mapping of the ASEP density profile to an interface

Equation 2.21, describing the time evolution of the coarse-grained ASEP density profile,

also describes the time evolution of a growing interface in the Kardar-Parisi-Zhang (KPZ)

universality class [28]. To see this connection, one introduces the height function h(x, t)

through the time-integrated particle current,

h(x, t) =

∫ t

0
dsj(x, s), (2.22)

where j(x, t)dxdt gives the net number of particles flowing out of the length between x and

x+dx of the system, between times t and t+dt, and is defined such that ∂j(x,t)
∂x dx is nothing

but the continuum limit of the coarse-grained current differences, Jµ,µ+1(t)− Jµ−1,µ(t) (see

Eq. 2.16). Now, since ∂ρ(x,t)
∂t = − ∂j

∂x (Eq. 2.16), and also, ρ(x, t) = ρ+ δρ(x, t), we get

∂h(x, t)

∂x
= −[δρ(x, t) − δρ(x, 0)]. (2.23)

If we now supplement the last equation with the initial condition, δρ(x, 0) = 0, we get

∂h(x, t)

∂x
= −δρ(x, t). (2.24)

Equation 2.24 defines the mapping of the coarse-grained ASEP density profile to an inter-

face, both defined on the continuum. Note that the left hand side, ∂h(x,t)
∂x , gives the local

slope of the interface. On the discrete level of a lattice, since the local slope, hi+1(t)−hi(t)

can take only two values, ±1, the above mapping on the discrete level has to be modified

to read

hi+1(t) − hi(t) = −Sign[δni(t)] = −Sign[ni(t) − ρ]. (2.25)

Since the site occupancy variable ni(t) can be either 0 or 1, while the particle density

ρ ∈ [0, 1], the above relation maps the presence of a particle in the ASEP with a downward

slope of the interface, while the absence of a particle represents an upward slope of the

interface, as shown in Fig. 2.9 [1, 29].

Some comments are in order regarding the mapping, Eq. 2.24. Since we are dealing

with a periodic system, δρ(x, t), and hence, the local slope, ∂h(x,t)
∂x , must match at the

boundaries. Moreover, since the ASEP dynamics conserves total number of particles, we

have
∫ 1
0 dxδρ(x, t) = 0, which is true for all times. It follows from Eq. 2.24 that the height

of the interface must also match at the boundaries.

Substituting Eq. 2.24 into Eq. 2.21, integrating both sides with respect to x, one gets
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Figure 2.9: Mapping the ASEP density profile to an equivalent interface.

the equation of motion of the interface as

∂h(x, t)

∂t
= Γ

∂2h

∂x2
− vK

∂h

∂x
+
λ

2

(
∂h

∂x

)2

+ η(x, t), (2.26)

where vK = (p− q)(1 − 2ρ), λ = 2(p− q). In obtaining the above equation, the constant of

integration (call it C) has been set equal to zero, since, even if it were nonzero, it can be easily

eliminated from the above equation by redefining the height variable as h → h′ = h + Ct.

The sign of the noise term has been changed from negative in Eq. 2.21 to positive in Eq.

2.26, since the noise is represented by a random variable which is as probable to be positive

as to be negative (so that η(x, t) = 0), and hence, the sign of the noise term really does

not matter. Recall from the last section that 〈η(x, t)η(x′, t′)〉 = 2Aδ(x − x′)δ(t − t′). The

drift term, −vK
∂h
∂x , in Eq. 2.26 can be eliminated by a Galilean transformation, as already

explained in the last section. As a result of all these transformations, Eq. 2.26 now describes

the time-evolution of a KPZ interface in one spatial dimension [28], which is thus given by

∂h(x, t)

∂t
= Γ

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ η(x, t). (2.27)

It can be shown that the probability distribution of interface configurations in the sta-

tionary state for the KPZ interface is given by [30]

P [{h(x, t)}] ∝ exp

[
− Γ

2A

∫
dx (∂xh)

2

]
. (2.28)

Equation 2.28 implies that the local slopes, ∂xh, follow a Gaussian distribution, i.e., they

are random and uncorrelated. Summing up local random slopes gives us the KPZ interface

which is nothing but a Brownian motion.

The KPZ equation, Eq. 2.27, does not have the h → −h symmetry; this is reflective of
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the fact that this equation describes an interface which is growing in time. The net velocity

vinterface of the KPZ interface is given by
∫ 1
0 dx

∂h(x,t)
∂t , where the overbar denotes averaging

with respect to the stationary interface distribution, Eq. 2.28. It follows from Eq. 2.27 that

vinterface is given by

vinterface =
λ

2

∫ 1

0
dx

(
∂h

∂x

)2

= (p− q)

∫ 1

0
dx

(
∂h

∂x

)2

, (2.29)

since (i) η(x, t) = 0, and (ii)
∫ 1
0 dx

∂2h
∂x2 is zero due to the boundary condition on the interface.

For the symmetric exclusion process (SEP), one has p = q so that vinterface = 0. Thus,

the corresponding interface does not move bodily; it, rather, fluctuates about a stationary

profile and hence, represents a system in equilibrium. The time evolution of the interface

is governed by the Edwards-Wilkinson (EW) equation in one spatial dimension [31], which

is obtained by setting p = q in Eq. 2.26, implying vK = 0, λ = 0, so that

∂h(x, t)

∂t
= Γ

∂2h

∂x2
+ η(x, t). (2.30)

For the EW equation also, the probability distribution of interface configurations in the

stationary state is given by Eq. 2.28 [30]. Note however the fact that the same probability

distribution describes the stationary interface for the EW and the KPZ equations is true

only in one spatial dimension; although a generalization of Eq. 2.28 remains to be true for

the EW in all higher dimensions, it does not hold for the KPZ equation in two and higher

spatial dimensions.

Equation 2.26 and Eq. 2.30 are special cases of the general form, given by

∂h(x, t)

∂t
= Γ

∂2h

∂x2
+

∞∑

m=0

λm

(
∂h

∂x

)m

+ η(x, t), (2.31)

where, e.g., λ1 = −vK , λ2 = λ/2, etc. The different coefficients λm in Eq. 2.31 determine

the scaling properties of the height fluctuations, as discussed below. λ0 can be eliminated

by redefining the height variable h → h′ = h + λ0t. The first-order gradient term, λ1
∂h
∂x ,

can be eliminated from Eq. 2.31 by Galilean shift x→ x′ = x+ λ1t.

2.8 Scaling properties of the interface equation

The stationary state height fluctuations are measured by

S(x, t) =

〈[
h(x+ x′, t) − h(x′, 0) − 〈h(x+ x′, t) − h(x′, 0)〉

]2〉
, (2.32)

where, as discussed earlier in this chapter, the overbar represents averaging over the initial

stationary distribution of the interface configurations (for example, Eq. 2.28 for the KPZ

and EW in one dimension), while the angular brackets denote averaging over the stochastic
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evolution of the interface in time.

If λ1 in Eq. 2.31 is nonzero, the autocorrelation function S(0, t) of the interface grows

as S(0, t) ∼ t for large t [32, 33, 34]. This can be explained in terms of sliding density

fluctuations (SDF) with respect to the particle motion, as will be discussed in Chapter 3

and Chapter 4. If λ0 = λ1 = 0 in Eq. 2.31, the function S(x, t) assumes the scaling form

S(x, t) ∼ t2βY
( x

t1/z

)
, (2.33)

in the asymptotic limit x, t→ ∞, with x/t1/z = constant. Here, β is the growth exponent,

while z is the dynamical exponent. These exponents as well as the scaling function Y are

the same for all systems belonging to the same universality class. The scaling function Y (s)

has the property that Y (s) → constant as s→ 0, implying that the height autocorrelation

S(0, t) behaves as S(0, t) ∼ t2β. Further, as s → ∞, the function Y (s) → s2α. Here, α is

the critical exponent related to z and β through z = α/β [30]. It determines the roughness

of the interface through S(x, 0) ∼ x2α.

For a finite system, the height autocorrelation has the scaling form

S(0, t) ∼ t2βf

(
t

Lz

)
, (2.34)

where the scaling function f(s) has the property that f(s) → constant for s ≪ 1, while

f(s) → 0 for s≫ 1. Thus, typical height fluctuations at a point on the interface grow with

time as tβ with an autocorrelation time ∼ Lz. Similarly, the correlation function S(x, 0)

has the following form for a finite system.

S(x, 0) ∼ x2αg
(x
L

)
, (2.35)

where the scaling function g(s) → constant for s≪ 1, while g(s) → 0 for s≫ 1.

We conclude from the above discussions that on scaling the spatial variable x by the

scaling parameter b as x → x′ = bx, the time variable scales as t → t′ = bzt, while the

height of the interface scales as h→ h′ = bαh.

Now, we derive the scaling properties of the unequal-time density-density correlation

function C(x, t) of the ASEP (defined in Eq. 2.12) from the scaling properties of the

interface-equivalent of the ASEP, described above. Since the density fluctuations in the

ASEP are related to the local slopes of the interface through Eq. 2.24, we first look at how

the local slopes of the interface at two spatial points are correlated in time. Thus, we study

the function Cinterface(x, t), defined as

Cinterface(x, t) ≡
〈
∂h(x′, 0)
∂x

∂h(x+ x′, t)
∂x

〉
, (2.36)

where the overbar represents averaging over the initial stationary distribution of the inter-

face configurations (for example, Eq. 2.28 for the KPZ and EW in one dimension), while
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SDF

KPZEW

(λm = 0 ∀ m)

∼ t

(λ1 = 0)
∼ t1/2 ∼ t2/3

λ1

λ2

λ1

Figure 2.10: Schematic representation of relative stabilities of various fixed points, showing
the associated behavior of the autocorrelation function S(0, t), defined in the text. The
figure is adapted from Ref. [32].

the angular brackets denote averaging over the stochastic evolution of the interface in time.

Under the scaling transformations, x → x′ = bx, t → t′ = bzt, and h → h′ = bαh for

arbitrary scaling parameter b, Eq. 2.36 scales as

Cinterface(x, t) = b2αC(bx, bzt). (2.37)

Since the scaling parameter b is arbitrary, we choose it such that bzt = 1. As a result, we

get, from Eq. 2.37,

Cinterface(x, t) ∼ t−2α/zf
( x

t1/z

)
. (2.38)

The scaling function f(u) has the property that f(u) → constant for u ≪ 1, while, for

u≫ 1, the function f(u) → 0. These properties emerge from the following requirements.

(1) For the scaling behavior of the equal-time correlation of the local slopes of the

interface at two points far apart, one needs to consider C(x, t) in the limit t→ 0. The cor-

responding function C(x, 0) must evaluate to zero in the limit of large x. This follows from

the fact that the probability distribution of the interface configurations in the stationary

state is Gaussian, so that the local slopes of the interface at equal times are uncorrelated

over long distances, see Eq. 2.28. In the limit t → 0, with x fixed at a large value, so that

u = x/t1/z ≫ 1, the scaling function f(u) has to go to zero to ensure the above mentioned

behavior of the function C(x, 0).

(2) To find the scaling behavior of the autocorrelation of the local slope of the interface

at a given point in space, one needs to consider the function C(x, t) in the limit x→ 0, with

t fixed and large. The fact that the scaling function f(u) with u = x/t1/z goes to a constant

for u≪ 1 ensures that the autocorrelation of the local slope dies down algebraically in time.

This is in accordance with the Gaussian distribution for the interface configurations, which

precludes any correlation between local slopes at long times.
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The scaling properties of the unequal-time density-density correlation of the ASEP, given

by C(x, t), will be the same as that of the function Cinterface(x − vKt, t). This is because

the time-evolution equation of the interface-equivalent of the ASEP, given by Eq. 2.26, is

brought to the KPZ form, Eq. 2.27, through the Galilean transformation x→ x′ = x−vKt.

We get

C(x, t) ∼ t−2α/zf

(
x− vKt

t1/z

)
. (2.39)

Since, as we discuss in the next section, z = 3/2 and α = 1/2 for the KPZ class, we recover

the scaling form of C(x, t) given in Eq. 2.15. Moreover, when the co-moving condition

x = vKt is satisfied, using the properties of the scaling function f(u) discussed above, one

concludes that C(x, t) ∼ t−2/3 for large t, in accordance with the discussions in Section 2.5.

2.9 Universality classes: The KPZ, the EW and the SDF

From a perturbative renormalization group (RG) analysis of Eq. 2.31, it is known that

there are two distinct fixed points in the parameter space. These two fixed points define

two universality classes. The first class is the one in which all λm = 0. In this case, Eq. 2.31

reduces to the EW equation, Eq. 2.30. The resulting linear growth problem was also studied

by Hammersley in a different context, namely, in addressing the question of whether the

Euclidean space in certain dimension can suffer random distortion (an example of distortion

of a two-dimensional Euclidean space could be crumpling of paper) [35]. The values of the

critical exponents for the EW class are [31]

β = 1/4, z = 2 (EW in 1 dimension). (2.40)

The EW fixed point also controls the behavior in systems where only odd-order terms

λm with m ≥ 3 are present. The lowest-order nonlinearity is provided by the cubic term.

Under a scaling transformation x → x′ = bx, t → t′ = bzt, h → h′ = bαh , we see that the

cubic nonlinear term is marginal around the EW fixed point. Calculations based on mode

coupling theory [36] and renormalization group [37, 38] show that it is actually marginally

irrelevant, leading to multiplicative logarithmic corrections to the power law in the height

autocorrelation: S(0, t) ∼ t1/2(ln t)1/4, a behavior that has been verified by numerical

simulation study [37, 38, 39].

Even-order coefficients lead to a breaking of h → −h symmetry of Eq. 2.31, causing a

change in the universality class. The second-order perturbation λ2 is a relevant perturbation

for the EW fixed point that drives the system away from the EW to a new KPZ fixed point.

The KPZ fixed point is characterized by the exponent values [28]

β = 1/3, z = 3/2 (KPZ in 1 dimension). (2.41)

If λ1 6= 0, under the scaling transformation x → x′ = bx, t → t′ = bzt, h → h′ = bαh,
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both the EW and KPZ fixed points are unstable, and a flow towards a third fixed point

(SDF) is generated (Fig. 2.10), as we will show in the next two chapters. Specifically, in

the next chapter, we discuss in detail our results on size effects on fluctuations in the ASEP,

as captured by the tagged particle correlations measuring the variance of the displacement

of a tagged ASEP particle about its average displacement.
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Chapter 3

Tagged particle correlations in the

ASEP

“When you are describing a shape, sound or tint;

Don’t state the matter plainly,

But put it in a hint;

And learn to look at all things,

With a sort of mental squint.”

Lewis Carroll

In this chapter, we come to our main research topic, namely, studying how does the

dynamics of stationary state density fluctuations in the asymmetric simple exclusion process

(ASEP) get affected by the finite size of the lattice underlying the process. We address this

issue by examining how the tagged particle correlations in the ASEP behave as a function

of time. Specifically, we study the variance of the displacement of a tagged particle around

its average displacement, where the averaging is over (i) the initial stationary ensemble of

ASEP configurations, and (ii) subsequent stochastic evolution of the configurations in time.

As we will show in this chapter, the variance captures the motion of density fluctuations

around the system as a kinematic wave and consequently, shows pronounced oscillations

in time with a well-defined size-dependent time period. The behavior of the variance in

time can be characterized by two size-dependent time scales, set by the circulation time

and the decay time of the kinematic wave, respectively. While monitoring the variance

of the tagged particle displacement, if one does not average over the initial stationary

ensemble, and instead, chooses to start from an arbitrary but fixed configuration, drawn

from the stationary ensemble, the corresponding variance, which involves averaging over

only stochastic evolution, does not oscillate in time; as we show and discuss in this chapter,

this quantity effectively captures the growth of the dissipation of the kinematic wave in

time.

The layout of this chapter is as follows. We start in Section 3.1 by defining the quantity

of interest to us, namely, the tagged particle correlations involving the variance of the tagged
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particle displacement. As discussed in the preceding paragraph, the variance may involve

averaging over both the initial stationary ensemble and stochastic evolution, or, just the

latter. Some results on tagged particle correlations in certain limits were already known in

the literature prior to our work; we review this body of work in Section 3.2. Our purpose is

to obtain the complete behavior of the tagged particle correlations for a finite system. There

are two broad sections in this chapter, one (Section 3.3) dealing with the ASEP on an infinite

lattice, while the other, Section 3.4, deals with the finite lattice. In Section 3.3.1, on the

basis of the discussions on the motion of particle and coarse-grained density fluctuations

in Chapter 2, supplemented by the scaling properties of the Kardar-Parisi-Zhang (KPZ)

equation describing the time evolution of the density fluctuations, we propose a schematic

representation for the tagged particle displacement in an infinite system. We show how the

representation correctly predicts the limiting behavior of the tagged particle correlations,

summarized in Section 3.2. Next, in Section 3.3.2, we provide cogent physical arguments in

support of the observed behavior of the tagged particle correlations in an infinite system.

In Section 3.4.1, we provide a summary of our results charactering the complete behavior

of the tagged particle correlations in a finite system, pointing out all the size-dependent

time scales. This is followed in Section 3.4.2 by physical arguments in favor of the observed

time scales in the tagged particle correlations. In the last section, Section 3.5, we discuss

the motion of the center-of-mass in the ASEP.

3.1 Tagged particle correlations: Definitions

T
im

e 

0

Space
y(n, 0) y(n, t)

t

Figure 3.1: Defining the tagged particle displacement y(n, t). The red and the blue lines
represent the space-time trajectories of ASEP particles.

We consider N particles executing the ASEP dynamics on a one-dimensional periodic

lattice of L sites. At the initial instant t = 0, we start with a configuration of particles on
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the lattice; we choose this configuration randomly from the stationary ensemble of ASEP

configurations. Since the stationary state allows all configurations with N particles to occur

with equal probability, every configuration generated that has N particles distributed on L

sites is a stationary configuration (see Chapter 2, Section 2.2). Next, we ‘tag’ the particles

and label them by the integer n = 1, 2, . . . ,N . Because of the hard core constraint, the

particles do not overtake each other; thus, the ordering of particles, done at the initial

instant, is preserved as the configuration evolves in time, following the ASEP dynamics.

Let y(n, t) denote the location of the n-th tagged particle at time instant t, as shown in

Fig. 3.1. Then, y(n, t) − y(n, 0) measures the displacement of the n-th tagged particle in

time t, where our convention is that when the particle has made one complete trip round

the ring, the displacement would just be added up, instead of being considered modulo L.

In order to find the average displacement of the n-th particle in time t, one has to average

over (i) the initial stationary configuration, and (ii) the subsequent stochastic evolution of

the configuration in time t. In other words, one randomly draws an initial configuration

from the stationary ensemble, lets the configuration evolve in time for a total time t and

measures the displacement of the n-th tagged particle at the end of the time t. This

process is repeated by randomly choosing the initial configuration over and over again from

the stationary ensemble, letting the configuration evolve in time, and finally, making the

measurement of the displacement. But, as we discuss below, one may choose to average

over only stochastic evolution by starting over and over again from an arbitrary but fixed

initial configuration, drawn from the stationary ensemble.

3.1.1 Average over histories and initial conditions: σ2(L, t)

Here we start with the stationary ensemble of the ASEP configurations at t = 0 and monitor

the motion of a tagged particle. Let ∆n(t) denote the deviation in the displacement of the n-

th tagged particle from its average value in time t, the averaging being with respect to both

the initial stationary ensemble at t = 0 and stochasticity in the evolution of configurations.

In symbols,

∆n(t) ≡ y(n, t) − y(n, 0) − 〈[y(n, t) − y(n, 0)]〉
[Ensemble of Initial Conditions] . (3.1)

The angular brackets denote averaging over the stochasticity in the evolution of configura-

tions, while the overbar is used to denote averaging with respect to the initial stationary

ensemble at t = 0. In the function ∆n(t), the quantity 〈y(n, t) − y(n, 0)〉 gives the average

displacement of the n-th tagged particle in time t in the stationary state, and hence is equal

to vP t, where vP = (p − q)(1 − ρ) + O( 1
L) (Eq. 2.10). The variance of the displacement,

measuring the stationary state fluctuations in ∆n(t), is given by

σ2(L, t) ≡ 〈∆2
n(t)〉. (3.2)
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Since the system is translationally invariant, the above quantity is the same for all particles,

and hence we may perform an additional averaging of σ2(L, t) over the particles, without

changing the answer.

In this thesis work, we study how the finiteness of the system size L affects the behavior

of σ2(L, t) in time, in Section 3.4.1.

3.1.2 Average over histories only: s2(L, t)

Beginning with an arbitrary but fixed configuration, chosen from the stationary ensemble

and following its evolution in time, it is interesting to monitor the fluctuations in the

displacement of a tagged particle, and study how finite size effects come into play here.

These fluctuations were first studied by van Beijeren for an infinite system in [1]. In this

case, one averages only over the stochasticity in the evolution of the configuration. We

define dn(t) to be the deviation in the displacement of the n-th tagged particle from its

mean value in time t, starting from an arbitrary but fixed configuration, drawn from the

stationary ensemble at t = 0. Explicitly,

dn(t) ≡ y(n, t) − y(n, 0) − 〈[y(n, t) − y(n, 0)]〉
[Fixed Initial Condition] . (3.3)

The corresponding variance is given by

s2(L, t) ≡ 〈d2
n(t)〉. (3.4)

The system being translationally invariant, the above quantity is also averaged over the

particles. Moreover, as will see in this chapter, the behavior of s2(L, t) does not depend on

the initial configuration and so, s2(L, t) may be additionally averaged over different initial

configurations.

We note that the behavior of both σ2(L, t) and s2(L, t) can be extracted from two dif-

ferent limiting values of a single function that measures the fluctuation in the displacement

of a tagged particle in the stationary state. At time t = 0, we start with an arbitrary but

fixed configuration C0, drawn from the stationary ensemble of configurations. After C0

has evolved in time for an interval t0, we start measuring the variance CL(t0, t0 + t) of the

displacement of a tagged particle around its average:

CL(t0, t0 + t) ≡ 〈[y(n, t0 + t) − y(n, t0) − 〈[y(n, t0 + t) − y(n, t0)]〉]2〉, (3.5)

where the angular brackets denote averaging with respect to stochastic evolution.

(1) On taking the limit t0 → 0, when the averaging is only with respect to stochastic

evolution, we get the function s2(L, t).

(2) On the other hand, since the system is ergodic, in the limit t0 → ∞, the initial

configuration C0 evolves into an ensemble of stationary configurations. Thus, the function



46 3. TAGGED PARTICLE CORRELATIONS IN THE ASEP

limt0→∞CL(t0, t0 + t) measures fluctuations in the stationary state where the averaging is

with respect to both the initial stationary ensemble and stochastic evolution. Hence, this

quantity is identical to σ2(L, t).

3.2 Review of earlier work

3.2.1 σ2(L, t)

In studying the quantity σ2(L, t), two different limits have been considered earlier.

(a) On taking the limit L → ∞ first, followed by the limit t → ∞, the fluctuations are

diffusive, growing linearly in time: σ2(t) ≡ limL→∞ σ2(L, t) ∼ D0t. Here, D0 is a known

function of the particle density and the external bias and is given by D0 = (p − q)(1 − ρ)

[2].

(b) In the opposite limit with t→ ∞ before L→ ∞, σ2(L, t) again behaves diffusively,

i.e., σ2(L, t) ∼ D(L)t, but now the diffusion constant D(L) depends on the system size L

and scales as D(L) ∼ 1√
L

for large L [3].

3.2.2 s2(L, t)

In studying the quantity s2(L, t), only one limit has been considered earlier, namely, the

limit L→ ∞ first, followed by t→ ∞; in this limit, one has s2(t) ≡ limL→∞ s2(L, t) ∼ t2/3,

independent of the initial configuration [1].

Time t

σ2(t)

s2(t)

Figure 3.2: Behavior of the tagged particle correlations σ2(t) and s2(t) for an infinite system.

3.3 Infinite system

As discussed in the preceding section, for an infinite system one has σ2(t) ≡ limL→∞ σ2(L, t) ∼
D0t, while one has s2(t) ≡ limL→∞ s2(L, t) ∼ t2/3. The behavior of the quantities σ2(t) and

s2(t) are shown schematically in Fig. 3.2.
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3.3.1 Representation of the tagged particle displacement in an infinite

system

On the basis of the discussion in Chapter 2, Section 2.4, we conclude that in the stationary

state, the displacement of the n-th tagged particle, y(n, t)− y(n, 0), has contributions from

three distinct physical sources, namely, systematic drift, sliding density fluctuations, and

their dissipation. Correspondingly we write

y(n, t) − y(n, 0) ≈ vP t+ tαGn(t) + tβχn(t), (3.6)

where α = αKPZ = 1/2 is the roughness exponent while β = βKPZ = 1/3 is the growth

exponent of the interface equivalent to the ASEP. The representation, Eq. 3.6, is based

on the following arguments. First, the coarse-grained density fluctuations for the ASEP

are described by the KPZ interface whose fluctuation profile moves with the velocity vK −
vP , relative to the particle (Section 2.7). As a result, in time t, the particle senses the

fluctuations over a spatial stretch of length (vK − vP )t. From the scaling analysis of the

interface summarized in Section 2.8, the typical fluctuation over this distance scales as

[(vK − vP )t]α ∼ tα (Eq. 2.35). This fact is encoded in the second term in Eq. 3.6 where

Gn(t) is a random variable which depends only on the initial configuration, drawn from

the stationary ensemble, but is independent of the stochastic noise in the evolution of

configurations. The fluctuations arising from the dissipation typically grow with time as

tβ (Eq. 2.34) and are represented by the last term in Eq. 3.6. Here χn(t) is a random

variable that depends only on the noisy history in the evolution of configurations, but is

independent of the initial configuration.

We show below how the form, Eq. 3.6, accounts for the observed behavior of correlation

functions for an infinite system, summarized in Section 3.2.

• On averaging with respect to both the initial stationary ensemble and stochastic

evolution, we get

〈y(n, t) − y(n, 0)〉 ≈ vP t+ tαGn + tβ〈χn〉, (3.7)

where, as previously, the angular brackets denote averaging with respect to the stochas-

tic evolution, while the overbar is used to denote averaging with respect to the initial

stationary ensemble.

It follows that for the variable defined in Eq. 3.1,

∆n(t) ≈ tα(Gn −Gn) + tβ(χn − 〈χn〉). (3.8)

With α = 1/2 and β = 1/3 for the ASEP (which is in the KPZ universality class),

the first term on the right hand side dominates for large t. We recover the result for

σ2(L, t) = 〈∆2
n(t)〉 for an infinite system [2] (described in Section 3.2.1(a)), given by

σ2(t) = lim
L→∞

σ2(L, t)
t→∞∼ t(Gn −Gn)2 ∼ t. (3.9)
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• For fixed initial condition, averaging over noise history, we get

〈y(n, t) − y(n, 0)〉 ≈ vP t+ tαGn + tβ〈χn〉. (3.10)

Thus, for the displacement variable defined in Eq. 3.3, we have

dn(t) ≈ tβ[χn − 〈χn〉]. (3.11)

The fluctuations in dn(t) are measured by s2(L, t) according to the definition, Eq. 3.4.

Thus, one has

s2(t) = lim
L→∞

s2(L, t)
t→∞∼ t2β〈(χn − 〈χn〉)2〉 ∼ t2β. (3.12)

With β = 1/3, we get the result s2(t) ∼ t2/3 [1] for the growth of the variance of

the displacement of a tagged particle in an infinite system, starting from an arbitrary

fixed initial configuration drawn from the stationary ensemble, as discussed in Section

3.2.2.

3.3.2 Tagged particle correlations: Physical arguments

σ2(t)

As the averaging in Eq. 3.2 is with respect to both the initial stationary ensemble and

stochastic noise in the evolution of configurations, the average drift in time t is vP t, and

fluctuations in the tagged particle displacement are defined with respect to this. In the rest

frame of the density fluctuations, the tagged particle has an average velocity u = vP − vK .

In time t, it traverses a sequence of density fluctuations over a distance (vP − vK)t, with

each fluctuation adding a stochastic noise to the motion of the tagged particle. The noise

is uncorrelated since the stationary state configurations have a product measure. The

variance σ2(t) is thus proportional to t for large t, by virtue of the central limit theorem.

The coefficient of proportionality D0 is known to be vP = (p− q)(1−ρ) [2]. This expression

for D0 can be easily derived using the above picture of drift of the tagged particles relative

to the density fluctuations [4].

s2(t)

For s2(t), the fluctuations are measured by starting from a single fixed configuration, drawn

from the ensemble of stationary states. Thus, in every measurement, the particle passes

through the same sequence of density fluctuations. However, dissipation of the density

profile is different from history to history.

Define the deviation in the displacement of a tagged particle from vP t by

Dn(t) = y(n, t) − y(n, 0) − vP t. (3.13)
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The dissipation in the density profile being different for different histories shows up in

Dn(t), as depicted by the gray trajectories in Fig. 3.3. Notice that the mean over histories,

〈Dn(t)〉, is nonvanishing, as depicted by the black curve in Fig. 3.3. Also, the mean,

〈Dn(t)〉, depends on the initial configuration, drawn from the stationary ensemble.

-70

 0

 90

 0  2500  5000

t

D
n(

t)

Dn(t)
<Dn(t)>

Figure 3.3: The gray curves show the distance covered, Dn(t), in time t about the mean
vP t by the n-th tagged particle for 10 Monte Carlo runs for a single fixed initial configura-
tion, drawn from the stationary ensemble of the TASEP. The black curve shows the mean
displacement, 〈Dn(t)〉, obtained by averaging over 500 histories. Here, L = 10, 000, the
particle density ρ = 0.25.

Since the variance s2(t) of the fluctuation in Eq. 3.4 is measured with respect to

vP t + 〈Dn(t)〉, it is able to sense the dissipation of the density profile in time, without

the effects of sliding density fluctuations (represented by the term tαGn(t) in Eq. 3.6, see

Eq. 3.14 below). Moreover, although 〈Dn(t)〉 depends on the initial configuration, since

s2(t) measures fluctuations about vP t+ 〈Dn(t)〉, it does not depend on the initial configu-

ration. From Eq. 3.6, with α = 1/2 and β = 1/3, we get Dn(t) = t1/2Gn(t) + t1/3χn(t); on

averaging over stochastic evolution, we get

〈Dn(t)〉 = t1/2Gn(t) + t1/3〈χn(t)〉. (3.14)

The first term in Eq. 3.14 dominates, and thus at large t, 〈Dn(t)〉 is primarily determined

by the pattern of spatial density fluctuations in the initial configuration. Ignoring the

dissipative component (the second term in Eq. 3.14), we expect 〈Dn(t)〉 to be given by

D∗
n(t) ≈ (p− q)

∫ t
0 dt

′{(1− ρ(x))− (1− ρ)} (see Fig. 3.4). Making a change of variable from

t to x, and noting that the Jacobian of transformation from t to x is 1/(vP − vK), we get

D∗
n(t) ≈ (p − q)

vP − vK

∫ y(n,0)+(vP −vK)t

y(n,0)
dx{(1 − ρ(x)) − (1 − ρ)}. (3.15)

The upper limit of the integral incorporates the relative distance moved by the particle,
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(vP − vK)t, neglecting fluctuations of O(t1/2) coming from the second term in Eq. 3.6.
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y(n, 0) y(n, t) ≈ y(n, 0) + (vP − vK)t
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Figure 3.4: Integrating the spatial density fluctuations in the initial configuration to obtain
D∗

n(t), defined in the text.
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Figure 3.5: Comparison between 〈Dn(t)〉 and D∗
n(t) for a fixed initial stationary configu-

ration of the TASEP. 〈Dn(t)〉 was obtained from simulations, and involves averaging over
1000 histories. D∗

n(t) was obtained by integrating the initial density profile according to
Eq. 3.15 (see text). Here, L = 10, 000, while the density ρ = 0.25.

In Fig. 3.5, we have compared 〈Dn(t)〉 with D∗
n(t) for a randomly chosen initial configu-

ration. 〈Dn(t)〉 was obtained from simulations, while D∗
n(t) was obtained by integrating the

initial density profile, following Eq. 3.15. We see that there is good agreement between the

signals for 〈Dn(t)〉 and D∗
n(t). Fluctuations over a distance δx dissipate in a time t ∼ (δx)z

with z = 3/2. Thus, with increasing t, spatial fluctuations in the initial profile are smeared

out over larger distances, a fact which is borne out by Fig. 3.5. We have also measured

the overlap function for the signs of the two signals, 〈Dn(t)〉 and D∗
n(t), for 10 different

randomly chosen initial configurations at stationarity, and found a mean value 0.8, which

indicates a fairly good degree of correlation between the two signals.
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3.4 Finite system

3.4.1 Summary of our results

σ2(L, t)

Time t

σ
2 (

L
,t

)

t
≪

T
1
∼

L

t
≫

T
2

T1 ≪ t ≪ T2 ∼ L3/2

Figure 3.6: Behavior of the variance σ2(L, t) as a function of time for finite L; the relevant
time scales are also marked.

The behavior of σ2(L, t) as a function of time can be characterized by two time scales

T1 ∼ L and T2 ∼ L3/2, as shown in Fig. 3.6.

(a) In the initial linear regime (t ≪ T1), the variance σ2(L, t) ∼ D0t, where D0 =

(p − q)(1 − ρ) [5].

(b) In the oscillatory regime (T1 ≪ t≪ T2), the quantity σ2(L, t) oscillates as a function

of t. The amplitude of oscillations is proportional to the system size L, while the time period

of oscillations is T = L/u, where u = vP −vK . Here, vP is the mean velocity of the particles,

while vK is that of the coarse-grained stationary state density fluctuations.

(c) In the late time regime (t ≫ T2), the quantity σ2(L, t) ∼ D(L)t with D(L) ∼ 1√
L
.

The behavior of σ2(L, t) in time can be put into the following scaling form.

σ2(L, t) ∼ Lg

(
t

L
,

t

L3/2

)
, (3.16)

where the scaling function g(u, v) behaves in the following manner. g(u, v) ∼ v for v ≫ 1,

while, g(u, v) ∼ u for u ≪ 1. For u ≫ 1, v ≪ 1, the scaling function behaves as g(u, v) ∼
v2/3.

Note that when the limit L → ∞ is taken first, followed by the limit t → ∞, the

correlation σ2(L, t) is in the initial linear regime and behaves linearly in time with the

coefficient D0 = (p − q)(1 − ρ). On the other hand, when the limit t → ∞ is taken first,

followed by the limit L→ ∞, the correlation σ2(L, t) is in the late time regime and behaves

linearly in time with the coefficient D(L) ∼ 1√
L
. These predictions are consistent with

results known earlier, summarized in Section 3.2.



52 3. TAGGED PARTICLE CORRELATIONS IN THE ASEP

s2(L, t)

The time variation of s2(L, t) is independent of the initial configuration and can be charac-

terized by a single time scale T ∗ ∼ L3/2, as shown in Fig. 3.7.

Time t

t
≫

T
∗

s2
(L

,t
)

t ≪ T ∗ ∼ L3/2

 0
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t/L3/2

L
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Figure 3.7: (a) Behavior of the variance s2(L, t) as a function of time for finite L; the
relevant time scales are also marked. (b) Scaling of s2(L, t) for different system sizes in
accordance with Eq. 3.17. The data are obtained from Monte Carlo simulations of the
TASEP. Here, the particle density ρ = 0.25. The system sizes are marked in the figure.

(a) t ≪ T ∗: In this regime, s2(L, t) ∼ t2/3.

(b) t≫ T ∗. Here, s2(L, t) ∼ D(L)t with D(L) ∼ 1√
L
.

The behavior of s2(L, t) in time can be put into the following scaling form.

s2(L, t) ∼ Lf

(
t

L3/2

)
, (3.17)

where the scaling function f(u) behaves in the following manner. f(u) ∼ u2/3 for u ≪ 1,

while, f(u) ∼ u for u≫ 1. The validity of the scaling form in Eq. 3.17 is confirmed by the

scaling plot of Fig. 3.7(b).

Note that when the limit L → ∞ is taken first, followed by the limit t → ∞, the

correlation s2(L, t) is in the regime t ≪ T ∗. The corresponding predicted behavior of t2/3

growth in time is consistent with the result known earlier, summarized in Section 3.2.

The long-time behavior of both the functions σ2(L, t) and s2(L, t) is diffusive, with

the same diffusion constant D(L) which scales with the system size as D(L) ∼ 1√
L
. This

behavior is attributed to the motion of the center-of-mass.

The variation of σ2(L, t) and s2(L, t) with time for two different system sizes are shown

in Fig. 3.8.

3.4.2 Tagged particle correlations: Physical arguments

We now turn to explaining the behavior of σ2(L, t) and s2(L, t) on a finite lattice.
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Figure 3.8: Monte Carlo simulation results for the time dependence of the variance of the
displacement for the TASEP on a finite lattice for σ2(L, t) and s2(L, t). In both cases, the
averaging is over 105 MC runs. Here, the density ρ = 0.25. The two system sizes are 512
and 1024.

σ2(L, t)

In the rest frame of the density fluctuations, a tagged particle has velocity u = vP − vK

and would take time T = L/u to return to its initial environment of density fluctuations.

Thus the variance of the tagged particle displacement should increase from 0 at t = 0,

reach a maximum at around T/2, and come down to almost zero at t = T . The difference

from zero at t = T is due to dissipation in the density profile arising from stochasticity

in the dynamics. This scenario recurs at integral T ’s; the time period of oscillations is

T = L/u = L/[(p − q)ρ]

The oscillations do not continue forever because of the cumulative effect of dissipa-

tion. An estimate for the time taken to completely dissipate an initial pattern of density

fluctuations is T2 ∼ Lz, where the dynamical exponent z is known to have the value 3/2

[6]. For times t ≫ T2, when the initial density profile has completely dissipated away, the

fluctuations are entirely due to the motion of the center-of-mass: σ2(L, t) ∼ D(L)t with

D(L) ∼ 1√
L
. Now, we explain why, when t ≫ T2, the fluctuations are entirely due to the
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diffusive motion of the center-of-mass. First, note that at time t, the number of indepen-

dent density fluctuations in the system is ∼ L/δx, where δx is the typical length over which

density fluctuations (equivalently, height fluctuations, because of the mapping in Chapter

2, Section 2.7) are correlated in a given configuration. From the scaling properties of the

time-evolution equation of the interface, it follows that δx increases with time as δx ∼ t1/z

with z = 3/2 (see Section 2.8). Now, when t ≫ T2 ∼ L3/2, the interface starts moving as

a whole, i.e., this is the regime in which the center-of-mass starts to move, and exhibit an

unbiased diffusive motion in time.

The lower envelope Λ2(L, t) of the oscillations in σ2(L, t) is determined by the dissipation

of the stationary state density profile, and can be studied by the method of sliding tags

[4, 7, 8, 9, 10, 11, 12, 13]. In order to monitor the dissipation of the moving density profile,

we need to correlate, at different times, the location of two different particles. Since in the

frame of the density fluctuations, particles move with velocity u = vP − vK , we need to

examine the function

Λ2(L, t) =

〈[
y(n′, t) − y(n, 0) − 〈[y(n′, t) − y(n, 0)]〉

]2〉
, (3.18)

where

n′ = n− ρut. (3.19)

The tag shift ρut accounts for the relative motion of the particles and the density profile,

and ensures that the time evolution of the same density patch is being recorded at every

instant. Equation 3.19, representing sliding of the tag, is tantamount to a Galilean shift that

gets rid of the drift term, u∂h
∂x , in Eq. 2.26. In Fig. 3.9, we show how the method of sliding

tags discussed above gives the lower envelope Λ2(L, t) of the oscillatory quantity σ2(L, t).

This envelope grows with time as t2/3 until times T2 ∼ L3/2, beyond which Λ2(L, t) ∼ D(L)t

with D(L) ∼ 1√
L
. Thus, beyond T2 ∼ L3/2, there is no distinction between the temporal

behavior of σ2(L, t) and Λ2(L, t). The scaling of D(L) with the system size L is obtained

by matching the behavior of Λ2(L, t) across T2.

s2(L, t)

Since we always use the same initial condition in this case, the particle moves through the

same sequence of density fluctuations in every measurement. Nevertheless, the dissipation

of the density profile is different for different histories, and s2(L, t) captures this. Moreover,

since s2(L, t) measures dissipation about the mean density profile (which depends on the

initial configuration), it follows that s2(L, t) is independent of the initial configuration.

Typical fluctuation grows with time as t1/3, following Eq. 3.6, with β = 1/3. This leads

to s2(L, t) ∼ t2/3. This behavior continues until t ≫ T ∗ ∼ L3/2 when the fluctuations are

due to the diffusive motion of the center-of-mass, as explained in Section 3.4.2. This gives

s2(L, t) ∼ D(L)t with D(L) ∼ 1√
L
. One obtains the scaling of D(L) with the system size L
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Figure 3.9: Monte Carlo simulation results for various tagged particle correlations. The
topmost curve refers to the variance σ2(L, t) of the displacement when the averaging is
over both the initial stationary ensemble and stochastic evolution. The middle curve is the
sliding tag correlation function Λ2(L, t) defined in the text; it coincides with σ2(L, t) at
the local minima of the latter. The lowermost curve shows the variance s2(L, t) when the
averaging is only over stochastic evolution. Here, ρ = 0.25. The system size is 1024. The
averaging is over 105 Monte Carlo runs.

by a simple match in the behavior of s2(L, t) across T ∗ ∼ L3/2.

From the discussions in Sections 3.4.2 and 3.4.2, it follows that both the quantities

Λ2(L, t) and s2(L, t) have similar behavior in time. Thus, both behave as t2/3 until time

T ∗ ∼ L3/2. Beyond T ∗, both the quantities behave linearly in time with the constant of

proportionality scaling with the system size L as 1√
L
. However, the numerical value of the

corresponding constant of proportionality in each of the two time regimes, t ≪ T ∗ and

t ≫ T ∗, is larger in Λ2(L, t) than in s2(L, t). The constant of proportionality for both the

quantities in the two time regimes may be computed for a a linear interface model, which

we introduce in Chapter 4. This model is in the EW universality class, and hence, the

following quantities behave differently. (i) The time scale T ∗ scales with the system size as

T ∗ ∼ L2, and not as L3/2, as for the ASEP. (ii) For t ≪ T ∗, both the quantities Λ2(L, t)

and s2(L, t) behave in time as
√
t, and not as t2/3, as for the ASEP. (iii) For t≫ T ∗, both

the quantities Λ2(L, t) and s2(L, t) behave linearly in time, as for the ASEP. However, the

corresponding constant of proportionality for both Λ2(L, t) and s2(L, t) scales as the inverse

of the system size, and not as the inverse square root of the system size, as for the ASEP.

The exact solution of the linear interface model will be detailed in Chapter 4. For the time

being, we just note that the solution of the linear interface model also supports the fact

that the numerical value of the corresponding constant of proportionality in each of the two

time regimes, t≪ T ∗ and t≫ T ∗, is larger in Λ2(L, t) than in s2(L, t), as shown below.



56 3. TAGGED PARTICLE CORRELATIONS IN THE ASEP

• For t≪ T ∗ (∼ L2),

Λ2(L, t) ≈ 2A√
πΓ

√
t, (3.20)

s2(L, t) ≈ A

√
2

πΓ

√
t. (3.21)

• For t≫ T ∗,

Λ2(L, t) ≈ 2A

L
t+

AL

π2Γ

(
π2

6

)
, (3.22)

s2(L, t) ≈ 2A

L
t+

AL

2π2Γ

(
π2

6

)
. (3.23)

In the above equations, A and Γ are constants; their expressions are given in the paragraph

following Eq. 4.2 in Chapter 4.

3.5 Center-of-mass motion

In this section, we examine the motion of the center-of-mass for the ASEP, defined as

YCM (t) =
1

N

N∑

n=1

y(n, t). (3.24)

Define, for fixed initial configuration, drawn from the stationary ensemble,

dCM (t) = YCM (t) − YCM (0) − 〈YCM (t) − YCM (0)〉, (3.25)

where, as usual, angular brackets denote averaging over noise in the evolution of configura-

tions. On the basis of the representation in Eq. 3.6, we have

y(n, t) − y(n, 0) − 〈y(n, t) − y(n, 0)〉 = tβ[χn(t) − 〈χn(t)〉]. (3.26)

This gives

dCM (t) =
tβ

N

N∑

n=1

[χn(t) − 〈χn(t)〉]. (3.27)

Hence,

〈d2
CM (t)〉 =

t2β

N2

∑

n,m

[〈χn(t)χm(t)〉 − 〈χn(t)〉〈χm(t)〉]. (3.28)

The bracketed quantity on the right hand side, in the stationary state, becomes a function,

f(n−m, t), of the difference. Putting this in Eq. 3.28, we get

〈d2
CM (t)〉 =

t2β

N

∑

n−m

f(n−m, t). (3.29)
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The random variables χn(t) are correlated only up to ξ(t) ∼ t1/z ; this follows from the

scaling properties of the interface equation (equivalently, the coarse-grained density profile),

summarized in Chapter 2, Section 2.8. We write

∑

n−m

f(n−m, t) = ρ

∫ ξ(t)

0
dx f(x, t) ∼ ρt1/z

∫ 1

0
dy g(y). (3.30)

In arriving at the second step in the above equation, we have made a transformation of the

tag variable (n−m) to the spatial variable x. Plugging Eq. 3.30 in Eq. 3.29, we get

〈d2
CM (t)〉 ∼ t2β+1/z

L
. (3.31)

The above result is derived on the basis of the representation for the tagged particle dis-

placement, Eq. 3.6, based on a scaling argument. Eq. 3.31 is expected to hold for an

interface with nonequilibrium dynamics with critical exponents β and z for times t ≪ Lz.

For large times t ≫ Lz, the fluctuations are expected to grow diffusively, as indicated by

the linear behavior of the variances σ2(L, t) and s2(L, t). Thus, for t ≫ Lz, we expect

〈d2
CM (t)〉 ∼ D(L)t. Matching the behavior of 〈d2

CM (t)〉 at the crossover time t∗ ∼ Lz, we

get D(L) ∼ L(2β−1)z .

With z = zKPZ = 3/2 and β = βKPZ = 1/3 for the ASEP, we have

〈d2
CM (t)〉 ∼

{
t4/3

L if t≪ L3/2,
t√
L

if t≫ L3/2.
(3.32)

The result 〈d2
CM (t)〉 ∼ t4/3

L for t ≪ L3/2 for the ASEP has already been observed by van

Beijeren et al. in [14].

For the EW class with β = βEW = 1/4, z = zEW = 2, we get D(L) ∼ 1
L . Thus, we

expect, on the basis of our representation for the tagged particle displacement Eq. 3.6,

〈d2
CM (t)〉 ∼ t

L
, (3.33)

true for all times.

In order to gain an analytic understanding of the tagged particle correlations in the

ASEP, in the next chapter, we relate the tagged particle correlations to the height fluctu-

ations of a nonequilibrium interface in the Kardar-Parisi-Zhang (KPZ) universality class

[15]. This is achieved by interpreting the particle label as horizontal coordinate for the

interface, while the particle location maps onto the local height of the interface [7]; the

mapping is discussed in detail in the next chapter. For the case when the nonlinear term in

the KPZ equation is zero, we solve the equation exactly for the tagged particle correlations.

We outline the exact solution in the next chapter, and also discuss how the exact solution

correctly predicts the size dependence of the time scales T1, T2 and T ∗, observed for the

tagged particle correlations in the ASEP.
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Chapter 4

Linear interface model: Analytical

results

“The time has come,” the Walrus said,

“To talk of many things:

Of shoes—and ships—and sealing-wax—

Of cabbages—and kings—

And why the sea is boiling hot—

And whether pigs have wings.”

Lewis Carroll

The tagged particle correlations in the ASEP, discussed in the last chapter, can be translated

directly into the height fluctuations of a nonequilibrium growing interface in the Kardar-

Parisi-Zhang (KPZ) universality class. This is achieved through a mapping of the ASEP,

configuration by configuration, to a nonequilibrium interface; specifically, one interprets

the particle tag in the ASEP as horizontal coordinate for the interface, while the particle

location maps onto the local height of the interface [1]. This procedure of mapping employs

the tagging process of the particles in a direct and essential way in the translation, and

is different from that discussed in Chapter 2, Section 2.7, where the ASEP density profile

was mapped onto an interface profile in the KPZ class by interpreting presence of an ASEP

particle as a downward slope of the interface, while a vacancy was mapped onto an upward

slope of the interface. The mapping discussed in this chapter results in a time-evolution

equation for the interface, which is the usual KPZ equation, augmented by a drift term

which accounts for the sliding density fluctuations, i.e., the phenomena of coarse-grained

density fluctuations sliding past the tagged particles (Chapter 2, Section 2.4). The KPZ

equation is nonlinear and hence, cannot be solved exactly. By dropping the nonlinear

term in the KPZ equation, we obtain a linear interface in the Edwards-Wilkinson (EW)

universality class. The resultant time-evolution equation is the EW equation with a drift

term, which we solve exactly for the height fluctuations (equivalently, the tagged particle

correlations for the microscopic models which map onto the EW equation with the drift

59
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term, see Chapter 5). As we discuss in this chapter, this exact solution helps us to predict

the occurrence of the size-dependent time scales in the tagged particle correlations in the

ASEP.

This chapter is organized as follows. In Section 4.1, we discuss the mapping of the

ASEP configuration to that of an interface. This is followed by Section 4.2, where we

obtain the exact solution for the tagged particle correlations, σ2(L, t) and s2(L, t), for the

linear interface in the EW class, and also discuss the corresponding expected behavior for

the ASEP.

4.1 Interface mapping

{

1 2 3 8

1

2

3

12

Slope= 1

ρ

Particle Tag

Site= 1

Equivalent InterfaceASEP

No. of particles N = 8.

h(n, t) = y(n, t) − n
ρ

n

h(n, t)n = 1

{y(n, t)} = {1, 2, 3, 4, 7, 9, 10, 12}

y(n, t)

No. of sites L = 12.

Figure 4.1: Mapping of the ASEP configuration to an interface.

We consider the ASEP comprising N particles on a one-dimensional periodic lattice of

L sites. Let the particles be labeled 1, 2, ..,N sequentially at the initial instant. Since the

particle motion is in one dimension, and there is no overtaking, the ordering of particles

will be preserved for all subsequent times. The corresponding interface is obtained by

identifying the tag label n with the horizontal coordinate n for the interface, while the

set {y(n, t)}, denoting the particle locations at time t, maps onto the set of local interface

heights {h(n, t)} as follows [1].

h(n, t) = y(n, t) − n

ρ
. (4.1)

Fig. 4.1 shows an example of the mapping. Since the inequality y(n + 1, t) ≥ y(n, t) + 1
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holds, it follows that the interface heights satisfy h(n + 1, t) ≥ h(n, t) + 1 − 1
ρ . Periodic

boundary condition implies y(n±N) = y(n)±L, and correspondingly, h(n±N, t) = h(n, t).

The dynamics of the interface involves the following moves in one elementary time

step: the move h(n, t) → h(n, t + 1) = h(n, t) + 1 occurs with probability p while the

move h(n, t) → h(n, t + 1) = h(n, t) − 1 takes place with probability q. The interface

height remains the same with probability 1− (p+ q). The attempt to increase, respectively

decrease, succeeds only if y(n+ 1, t) − y(n, t) > 1, respectively y(n, t) − y(n− 1, t) > 1.

ASEP Lattice Interface Model

Particle Label n Spatial coordinate n

Displacement y(n, t) Height h(n, t) + n
ρ

Mean Velocity vP Mean growth rate ∂〈h〉
∂t

Table 4.1: Mapping ASEP to the interface.

Following the above prescription, the ASEP with N particles and L sites maps onto a

lattice model of the interface of length N . In order to get the continuum equation for the

interface, we (i) coarse-grain the particle labels so that the discrete tag label n becomes the

continuous tag variable x, and (ii) divide x by the particle density ρ to make x into a spatial

variable running between 0 and L. The equation of motion of the interface, to lowest order

of nonlinearity, is given by

∂h(x, t)

∂t
= vP + Γ

∂2h

∂x2
+ u

∂h

∂x
+
λ

2

(
∂h

∂x

)2

+ η(x, t), (4.2)

where vP = (p − q)(1 − ρ),Γ = 1
2 , u = ρ(p − q), λ = −2ρ(p − q). Here, η(x, t) represents a

Gaussian noise with 〈η(x, t)〉 = 0, 〈η(x, t)η(x′ , t′)〉 = 2Aδ(x−x′)δ(t−t′), where A = 1
2

(
1−ρ

ρ

)
.

The boundary condition h(n±N, t) = h(n, t) on the height variable for the discrete interface

now reads h(x± L, t) = h(x, t) in the continuum. The derivation of Eq. 4.2 is relegated to

the Appendix B. The constant term vP and the drift term u∂h
∂x in Eq. 4.2 can be eliminated

by a boost (h → h′ = h + vP t) and a Galilean shift (x → x′ = x − ut), respectively. In

that case, Eq. 4.2 describes the time evolution of a KPZ interface [2]. Note that Eq.

4.2 is not an exact description of the time evolution for the ASEP density profile. It is

rather a coarse-grained description of the ASEP. In the same spirit as in the coarse-grained

description of the ASEP in Chapter 2, Section 2.7, one expects that the scaling properties

of the correlation functions for both the ASEP and its interface-equivalent are governed by

the same KPZ fixed point, and hence, are described by the same critical exponents and

scaling functions.

For the symmetric exclusion process (SEP), the corresponding interface is an equilibrium

one that does not move bodily. Rather, it fluctuates about a stationary profile, and its time

evolution is governed by the Edwards-Wilkinson (EW) equation [3], obtained by setting
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p = q, implying vP = 0, u = 0, λ = 0, so that

∂h(x, t)

∂t
= Γ

∂2h

∂x2
+ η(x, t). (4.3)

4.2 Linear interface: Exact solution

The existence of size-dependent time scales in σ2(L, t) and s2(L, t) for the ASEP, discussed

in Chapter 3, can be explained qualitatively by exactly solving the continuum equation,

Eq. 4.2, for the case λ = 0. This is possible as, in this limit, Eq. 4.2 is linear, and

hence, solvable. We refer to the corresponding interface as a linear interface. The relevant

time-evolution equation is

∂h(x, t)

∂t
= vP + Γ

∂2h

∂x2
+ u

∂h

∂x
+ η(x, t). (4.4)

In this section, we outline the exact computation of the two quantities σ2(L, t) and s2(L, t)

for the linear interface. Note that, through the mapping outlined in Table 4.1, the function

σ2(L, t) measures the autocorrelation of the interface (compare with the definition of the

autocorrelation function in Chapter 2, Section 2.8). We will see that the drift term, u∂h
∂x

in Eq. 4.4, that makes it different from the usual EW equation, plays a crucial role in

determining the temporal behavior of these functions.

Our aim is to compute σ2(L, t) and s2(L, t) for the linear interface. For this, we look

at the function CL(t0, t0 + t), defined in Eq. 3.5, which, utilizing the mapping outlined in

Table 4.1 with n replaced by the continuous variable x, reads

CL(t0, t0 + t) = 〈[h(x, t0 + t) − h(x, t0) − 〈[h(x, t0 + t) − h(x, t0)]〉]2〉. (4.5)

As discussed in Chapter 3, Section 3.1, σ2(L, t) can be obtained from the limiting behavior

of the function CL(t0, t0 + t) in the limit t0 → ∞. On the other hand, one recovers s2(L, t)

from the limiting behavior of the function CL(t0, t0 + t) in the limit t0 → 0.

To compute CL(t0, t0 + t), we need to solve Eq. 4.4 for h(x, t). Before doing so, we

note that the constant term on the right of Eq. 4.4 can be gotten rid of by going to a

co-moving frame moving with velocity vP . This is equivalent to making the transformation

h → h + vP t. The resultant equation is the usual time-evolution equation for the EW

interface, Eq. 4.3, with an additional drift term, u∂h
∂x , and can be solved by going to Fourier

space. To this end, utilizing the boundary condition h(x ± L, t) = h(x, t) on the height

variable, we write h(x, t) in terms of its Fourier modes h̃(m, t). We have

h(x, t) =
∞∑

m=−∞
h̃(m, t)e

i2πm
L

(x+ut). (4.6)
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Thus, h̃(m, t) = 1
L

∫ L
0 dx h(x, t)e−

i2πm
L

(x+ut). Equation 4.4 now reads

∂h̃(m, t)

∂t
= −Γ

4π2m2

L2
h̃(m, t) + η̃(m, t), (4.7)

where η̃(m, t) = 1
L

∫ L
0 dx η(x, t)e−

i2πm
L

(x+ut). Utilizing 〈η(x, t)η(x′, t′)〉 = 2Aδ(x−x′)δ(t−t′),
we have, for the Fourier modes,

〈η̃(m, t)η̃(m′, t′)〉 =
2A

L
∆m,−m′δ(t− t′), (4.8)

where ∆m,n is the Kronecker delta.

Equation 4.7 can be solved for h̃(m, t) to get

h̃(m, t) = h̃(m, 0)e−Γ 4π2m2

L2 t + e−Γ 4π2m2

L2 t
∫ t

0
dt′ η̃(m, t′)eΓ

4π2m2

L2 t′ . (4.9)

The condition 〈η(x, t)〉 = 0 gives, for its Fourier modes, 〈η̃(m, t)〉 = 0 ∀ m. Using this in

Eq. 4.9, we get 〈h̃(m, t)〉 = 〈h̃(m, 0)〉e−Γ 4π2m2

L2 t.

From Eq. 4.9, with the help of Eq. 4.8, we get

〈h̃(m, t)h̃(m′, t′)〉 = 〈h̃(m, 0)h̃(m′, 0)〉e−Γ 4π2

L2 (m2t+m′2t′)

+
AL

4π2Γ

∆m,−m′

m2

[
e−Γ 4π2m2

L2 |t−t′| − e−Γ 4π2m2

L2 (t+t′)

]
. (4.10)

4.2.1 σ2(L, t)

The quantity σ2(L, t) measures the variance of the displacement of the tagged particle,

while averaging over both the initial stationary ensemble of ASEP configurations and their

stochastic evolutions in time, see Chapter 3, Eq. 3.2. As discussed following Eq. 3.5, this

quantity may be obtained from the quantity CL(t0, t0 + t), in the limit in which t0 → ∞.

Hence, we will compute

σ2(L, t) = lim
t0→∞

CL(t0, t0 + t)

= lim
t0→∞

〈[h(x, t0 + t) − h(x, t0) − 〈[h(x, t0 + t) − h(x, t0)]〉]2〉.

(4.11)

In the limit t0 → ∞, the quantity 〈h(x, t0 + t) − h(x, t0)〉 goes to zero. Thus, the function

σ2(L, t) reduces to σ2(L, t) = limt0→∞〈[h(x, t0 + t) − h(x, t0)]
2〉.
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t
≫

T
2

σ
2
(L

,t
)

T1 ≪ t ≪ T2

t ≪ T1

Time t

Time t

s2
(L

,t
)

T1 ∼ L.

T2 ∼ Lz.

z = zEW = 2.

z = zEW = 2.

T ∗ ∼ Lz.

β = βEW = 1/4

∼ t2β t
≫

T
∗ .

t ≪ T ∗.

Figure 4.2: Exact solution within the linear interface model for σ2(L, t) (Eq. 4.14) and
s2(L, t) (Eq. 4.32).

Utilizing Eq. 4.10, we get

〈h(x, t)h(x, t′)〉 = 〈h̃2(0, 0)〉 +
2A

L
min(t, t′)

+
AL

4π2Γ

∞∑

m=−∞,m6=0

1

m2

[
e−Γ 4π2m2

L2 |t−t′| − e−Γ 4π2m2

L2 (t+t′)

]

× e
i2πmu

L
(t−t′).

(4.12)

In the last equation, the contribution from the initial condition, 〈h̃(m, 0)h̃(m′, 0)〉
×e−Γ 4π2m2

L2 (m2t+m′2t′) for m,m′ 6= 0 has been dropped, since, eventually when we set t = t0

and t′ = t0 + t and let t0 → ∞, this exponential term goes to 0. By combining the m and
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−m terms in the summation in Eq. 4.12, we get

〈h(x, t)h(x, t′)〉 = 〈h̃2(0, 0)〉 +
2A

L
min(t, t′)

+
AL

2π2Γ

∞∑

m=1

1

m2

[
e−Γ 4π2m2

L2 |t−t′| − e−Γ 4π2m2

L2 (t+t′)

]

× cos

(
2πmu

L
(t− t′)

)
.

(4.13)

Utilizing this expression in CL(t0 + t, t0), and then taking the limit t0 → ∞, we finally get

σ2(L, t) =
2A

L
t+

AL

π2Γ

∞∑

m=1

1

m2

[
1 − e−Γ 4π2m2

L2 t cos

(
2πmu

L
t

)]
. (4.14)

This is an exact formula for σ2(L, t) within the linear interface model. Next, we consider

the various limits.

• t ≪ L/u. Let 2πut
L m = k. With ∆m = 1, we get ∆k = 2πut

L . Now, ut ≪ L implies

that ∆k is small, and hence, one can replace the sum over m in Eq. 4.14 by an integral

over k to get

σ2(L, t) ≈ 2Aut

πΓ

∫ ∞

0

dk

k2

[
1 − e−

Γk2

u2t cos(k)

]
, (4.15)

where, in obtaining the last equation, we have dropped the first term on the right of

Eq. 4.14 in comparison with the second term. The integral on the right can be done

exactly, see Appendix C. Using its value, we get

σ2(L, t) =
Au

Γ

[
2

√
Γ√
πu

√
te−

u2t
4Γ + t erf

(
u

2
√

Γ

√
t

)]
. (4.16)

Now we consider two cases:

(a) t≪ 4Γ
u2 : In this limit, the error function is approximately zero, and we get

σ2(L, t) ≈ 2A√
πΓ

√
t. (4.17)

(b) 4Γ
u2 ≪ t≪ L

u . Here,

σ2(L, t) ≈ Au

Γ
t. (4.18)

• t ∼ L
u : Let t = nL

u with n ∈ I. Also, let 2πm
√

Γ√
uL

= k. Substituting in Eq. 4.14 after

replacing, for large L, the sum over m by an integral over k, we get

σ2(L, t =
nL

u
) ≈ 2At

L
+

2A

π

√
L

uΓ

∫ ∞

0

dk

k2
(1 − e−k2n). (4.19)
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The integral on the right can be done exactly, and its value is
√
nπ. This gives

σ2(L, t =
nL

u
) ≈ 2A

L
t+

2A√
πΓ

√
t. (4.20)

For large L, keeping t fixed, when the first term on the right hand side goes to zero,

we have

σ2(L, t =
nL

u
) ≈ 2A√

πΓ

√
t. (4.21)

Since the function Λ2(L, t), defined in Chapter 3, Eq. 3.19, coincides with σ2(L, t) at

the local minima of the latter, observed at times, t = nL
u with n ∈ I (see Fig. 3.9),

we conclude that

Λ2(L, t =
nL

u
) ≈ 2A√

πΓ

√
t. (4.22)

• t ≫ L2: In this limit, the exponential term in the sum on the right hand side of Eq.

4.14 drops out for all m to give

σ2(L, t) ≈ 2A

L
t+

AL

π2Γ

∞∑

m=1

1

m2

=
2A

L
t+

AL

π2Γ

(
π2

6

)
. (4.23)

In the limit of large t, the first term on the right hand side dominates so that

σ2(L, t) ≈ 2A

L
t. (4.24)

As discussed following Eq. 3.19 in Chapter 3, beyond the time T2, there is no distinc-

tion between the temporal behavior of σ2(L, t) and Λ2(L, t). Thus, we conclude that

for t≫ T2,

Λ2(L, t) ≈ 2A

L
t+

AL

π2Γ

(
π2

6

)
, (4.25)

so that in the limit of large times, one gets

Λ2(L, t) ≈ 2A

L
t. (4.26)

Note that the large time behavior of σ2(L, t) is determined by the zero mode (m = 0)

in the Fourier expansion of h(x, t).

With the values of the exponents β and z for EW given in Chapter 2, Eq. 2.40, we

summarize the behavior of σ2(L, t) for the linear interface in Table 4.2.

The scaling of the diffusion constant D(L) as the inverse of the system size in the

regime t ≫ T2 ∼ Lz with z = zEW = 2 can be obtained by matching the behavior of

the σ2(L, t) across the time T2.
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t≪ T1 ∼ L:

(a) t≪ 4Γ
u2 . σ2(L, t) ≈ 2A√

πΓ

√
t.

(b) 4Γ
u2 ≪ t≪ T1. σ2(L, t) ≈ Au

Γ t.

T1 ≪ t≪ T2 ∼ Lz. σ2(L, t) ≈ 2A√
πΓ
t2β.

z = zEW = 2. β = βEW = 1/4.

t = nL
u with n ∈ I.

t≫ T2. σ2(L, t) ≈ 2A
L t.

The diffusion constant D(L) = 2A
L .

Table 4.2: Behavior of σ2(L, t) in different time regimes for the linear interface.

Let σ2(L, t) ∼ D(L)t with D(L) ∼ Lγ for t≫ T2.

On the lower side of T2, we have σ2(L, t) ∼ t2β.

Then, to match the t and L dependence at T2, we must have

(T2)
2β ∼ D(L)T2. (4.27)

This gives 2β = γ/z + 1 whence, with z = 2 and β = 1/4 for the linear interface

model, γ = −1.

On the basis of the above results for the linear interface model, we expect the time-

dependence of σ2(L, t) for the KPZ class as in Table 4.3. Here, z = zKPZ = 3/2 and

β = βKPZ = 1/3 so that γ = −1/2. This value for γ leads to the inverse square root

scaling of the diffusion constant D(L) with system size L.

t≪ T1 ∼ L:

(a) t≪ 4Γ
u2 . σ2(L, t) ∼

√
t.

(b) 4Γ
u2 ≪ t≪ T1. σ2(L, t) ∼ t.

T1 ≪ t≪ T2 ∼ Lz. σ2(L, t) ∼ t2β .
z = zKPZ = 3/2. β = βKPZ = 1/3.

t = nL
u with n ∈ I.

t≫ T2. σ2(L, t) ∼ 1√
L
t.

The diffusion constant D(L) ∼ 1/
√
L.

Table 4.3: Behavior of σ2(L, t) in different time regimes for the KPZ interface.

Note from Table 4.2 and Table 4.3 that for both the EW and the KPZ classes, in the limit

of an infinite system, σ2(L, t) behaves asymptotically as linear in t (i.e., in the limit L→ ∞
first, followed by the limit t → ∞, which refers to the asymptotic behavior in time for an

infinite system). In terms of the interface variables, this means that the autocorrelation

function of the interface, S(0, t), goes linearly in t for an infinite system: S(0, t) ∼ t. We

get this behavior precisely because of the sliding density fluctuations (SDF) that contribute
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a drift term proportional to its velocity (= −u = vK − vP ) to the time-evolution equation

of the interface (Eq. 4.2 and Eq. 4.4). This behavior of the autocorrelation function is in

accordance with the renormalization group flow diagram in Chapter 2 (see Fig 2.10).

4.2.2 s2(L, t)

The quantity s2(L, t) measures the variance of the displacement of the tagged particle,

starting from an arbitrary but fixed configuration, randomly drawn from the stationary

ensemble of ASEP configurations, and averaging over the stochastic evolution of the fixed

configuration in time, see Chapter 3, Eq. 3.4. As discussed following Eq. 3.5, this quantity

may be obtained from the quantity CL(t0, t0 + t), in the limit in which t0 → 0. Hence, we

will compute

s2(L, t) = lim
t0→0

CL(t0, t0 + t)

= 〈[h(x, t) − h(x, 0) − 〈[h(x, t) − h(x, 0)]〉]2〉.
(4.28)

Now, from Eq. 4.9, we have

h(x, t) − h(x, 0) =
∞∑

m=−∞
[h̃(m, 0)e−Γ 4π2m2

L2 t

+ e−Γ 4π2m2

L2 t
∫ t

0
dt′η̃(m, t′)eΓ

4π2m2

L2 t′ ]e
i2πm

L
(x+ut)

−
∞∑

m=−∞
h̃(m, 0)e

i2πm
L

x.

(4.29)

Noting that every time we start from the same initial condition so that 〈h̃(m, 0)〉 = h̃(m, 0),

we have

h(x, t) − h(x, 0) − 〈[h(x, t) − h(x, 0)]〉 =

∞∑

m=−∞
e−Γ 4π2m2

L2 e
i2πm

L
(x+ut)

×
∫ t

0
dt′η̃(m, t′)eΓ

4π2m2

L2 t′ .

(4.30)

Utilizing Eq. 4.30 and Eq. 4.8 in Eq. 4.28, we get, after a few steps,

s2(L, t) =
AL

4π2Γ

∞∑

m=−∞

1

m2
(1 − e−Γ 8π2m2

L2 t). (4.31)
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Separating out the m = 0 mode and exploiting the m → −m symmetry of the remaining

terms, we get the final expression for s2(L, t) as

s2(L, t) =
2A

L
t+

AL

2π2Γ

∞∑

m=1

1

m2
(1 − e−Γ 8π2m2

L2 t). (4.32)

Next, we will consider the various limits.

• t ≪ L2: Let k = 2
√

2Γπm
L

√
t. Since ∆m = 1, we have ∆k = 2

√
2Γπ
L

√
t is small for

t≪ L2. This allows the sum over m in Eq. 4.32 to be replaced by an integral over k

to give

s2(L, t) =
2A

L
t+

A

π

√
2

Γ

√
t

∫ ∞

2
√

2Γπ
√

t
L

dk

k2
(1 − e−k2

). (4.33)

Since t ≪ L2, the lower limit of the integral on the right can be taken to be 0. Then

the integral can be done exactly, and its value is
√
π. For large L, keeping t fixed, the

first term on the right of Eq. 4.33 goes to zero, and we get

s2(L, t) ≈ A

√
2

πΓ

√
t. (4.34)

• t ≫ L2: In this limit, the exponential term in the sum on the right hand side of Eq.

4.32 gets damped out for all m so that we finally have

s2(L, t) ≈ 2A

L
t+

AL

2π2Γ

∞∑

m=1

1

m2

=
2A

L
t+

AL

2π2Γ

(
π2

6

)
. (4.35)

For large t, the first term on the right hand side dominates so that

s2(L, t) ≈ 2A

L
t. (4.36)

Here, as for the function σ2(L, t), we see that the large time behavior of s2(L, t) is

determined by the zero mode (m = 0) in the Fourier expansion of h(x, t).

Knowing the values of the exponents β and z for EW, given in Chapter 2, Eq. 2.40, we

summarize the behavior of s2(L, t) for the linear interface in Table 4.4.

The fact that D(L) scales as the inverse of the system size in the regime t ≫ T ∗ ∼ Lz

with z = zEW = 2, can be obtained by matching the behavior of s2(L, t) across the time

T ∗.

Thus, let s2(L, t) ∼ D(L)t with D(L) ∼ Lγ for t≫ T ∗.

For t≪ T ∗, we have s2(L, t) ∼ t2β.
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t≪ T ∗ ∼ Lz. s2(L, t) ≈ Ct2β.
z = zEW = 2. β = βEW = 1/4.

C = A
√

2
πΓ .

t≫ T ∗. s2(L, t) ≈ 2A
L t.

z = zEW = 2. The diffusion constant D(L) = 2A
L .

Table 4.4: Behavior of s2(L, t) in different time regimes for the linear interface.

Then, to match the t and L dependence at T ∗, we must have

(T ∗)2β ∼ D(L)T ∗. (4.37)

This gives 2β = γ/z+1. With β = 1/4 and z = 2 for the linear interface model, γ = −1.

The above results lead us to expect the time-dependence of s2(L, t) for the KPZ class

as in Table 4.5. Here, β = βKPZ = 1/3 and z = zKPZ = 3/2 so that 2β = γ/z + 1 gives

γ = −1/2. This explains the inverse square root scaling of the diffusion constant D(L) with

system size L.

t≪ T ∗ ∼ Lz. s2(L, t) ∼ t2β .
z = zKPZ = 3/2. β = βKPZ = 1/3.

t≫ T ∗. s2(L, t) ∼ 1√
L
t.

The diffusion constant D(L) ∼ 1/
√
L.

Table 4.5: Behavior of s2(L, t) in different time regimes for the KPZ interface.

Note that from Table 4.5, it follows that for an infinite system when the time-scale T ∗

diverges, one recovers the result observed by van Beijeren that limL→∞ s2(L, t) = s2(t) ∼
t2/3 [4].

4.2.3 Center-of-mass motion

One can compute the fluctuations in the motion of the center-of-mass for the linear interface.

Using the definitions in Chapter 3, Section 3.5 for the center-of-mass and the mapping of

the ASEP to the interface in Table 4.1, for an interface of length L, we get

dCM (t) =
1

L

∫ L

0
dx [h(x, t) − h(x, 0) − 〈[h(x, t) − h(x, 0)]〉]. (4.38)

We have h̃(m, t) = 1
L

∫ L
0 dx h(x, t)e−i 2πm

L
(x+ut). It follows that h̃(0, t) = 1

L

∫ L
0 dx h(x, t).

Substituting in Eq. 4.38, we get

dCM (t) = h̃(0, t) − h̃(0, 0) − 〈[h̃(0, t) − h̃(0, 0)]〉. (4.39)
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Using Eq. 4.9, we finally get

dCM (t) =

∫ t

0
dt′η̃(0, t′) (4.40)

so that

〈d2
CM (t)〉 =

∫ t

0

∫ t

0
dt′dt′′〈η̃(0, t′)η̃(0, t′′)〉

=
2At

L
, (4.41)

where we have used Eq. 4.8 in arriving at the last equation. This exact result matches with

the one obtained on the basis of scaling arguments in Chapter 3, Eq. 3.33.

To conclude this chapter, we reiterate that the exact solution for the linear interface qual-

itatively explains the occurrence of characteristic oscillations and different L−dependent

regimes in the variance of the displacement on a finite lattice, as observed, for instance, in

the the Monte Carlo simulations for the ASEP. We also note that in the large time limit

(t ≫ Lz with z = 3/2 for the ASEP and z = 2 for the linear interface), both σ2(L, t) and

s2(L, t) grow linearly in time with the same constant of proportionality or the diffusion

constant D(L). For the linear interface, D(L) ∼ 1
L , while D(L) ∼ 1√

L
for the ASEP. This

difference arises from the different values of the exponents β and z for the linear interface

and the ASEP. As a result, the exponent γ, characterizing the scaling of D(L) with L

(namely, D(L) ∼ Lγ), and related to β and z by the relation 2β = γ/z + 1 (see the discus-

sions following Eq. 4.27 and Eq. 4.37), takes on different values for the linear interface and

the ASEP.

In the next chapter, we will show the correspondence of the linear interface model to

different models of interacting particle systems.
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Chapter 5

Correspondence of the linear

interface model to different

interacting particle systems

“Then you should say what you mean,” the March Hare went on. “I do,” Alice

hastily replied; “atleast—atleast I mean what I say—that’s the same thing, you

know.”

Lewis Carroll

In the previous chapter, we related the tagged particle correlations in the ASEP to the height

fluctuations of an interface in the Kardar-Parisi-Zhang (KPZ) universality class. The time-

evolution equation for the interface is the usual KPZ equation, augmented by a drift term.

Next, we considered the time-evolution equation in the absence of the nonlinear term to

get the Edwards-Wilkinson (EW) equation with a drift term. This equation describes the

evolution of a linear interface, and is reproduced below.

∂h(x, t)

∂t
= vP + Γ

∂2h

∂x2
+ u

∂h

∂x
+ η(x, t). (5.1)

In this chapter, we wish to show that the evolution equation, Eq. 5.1, in addition to being

a linear approximation to the KPZ equation with a drift term, also arises in a number

of microscopic interacting particle systems. Examples are the Katz-Lebowitz-Spohn (KLS)

model at a specified value of the temperature, and the Asymmetric Random Average Process

(ARAP). These correspondences are discussed below in Sections 5.1 and 5.2, respectively.

5.1 Correspondence to the KLS model

The aim of this subsection is to explain how the variance of the displacement, computed

in the linearized continuum theory in Chapter 4 and defined in terms of the macroscopic

73
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parameters (Γ, A, velocity u), compares to the same quantity evaluated by numerical sim-

ulations in the (discrete) KLS model, which uses one single microscopic parameter, namely,

the temperature, for a special value of the latter. All the results of this subsection were

derived by C. Godrèche.

5.1.1 The model

The one-dimensional KLS model generalizes the ASEP, in that interactions between parti-

cles are added on top of the exclusion constraint [1]. The ASEP is the infinite temperature

limit of the KLS model.

The precise definition of the KLS model is as follows. Consider a chain of Ising spins

sn (n = 1, . . . , N), evolving under the Kawasaki dynamics with the heat-bath rule, and

submitted to a drift. The energy of the chain reads

E = −J̃
∑

n

snsn+1. (5.2)

In the heat-bath dynamics, for a pair of opposite spins (sn + sn+1 = 0), the move

(sn → −sn, sn+1 → −sn+1) is realized with probability

W (∆E) =
P

eβ∆E + 1
, (5.3)

where ∆E = 2J̃(sn−1sn + sn+1sn+2) = 0,±4J̃ is the energy difference between the configu-

rations after and before the move, and the numerator P is taken equal to p if the + spin is

exchanged to the right (i.e., +− → −+), and to q if it is exchanged to the left (−+ → +−).

Associating a particle to a + spin, and a hole to a − spin, this particle hops to the right

with probability p, and to the left with probability q.

The moves corresponding to the three possible values of the difference ∆E are listed in

Table 5.1, with the corresponding acceptance probabilities. Evaporation corresponds to the

detachment of a + spin from a positive domain, or, equivalently, to the detachment of a

particle from a cluster of particles. Condensation, conversely, corresponds to the attachment

of an isolated + spin to a positive domain, or, equivalently, to that of a particle to a cluster

of particles, and the two diffusion mechanisms, to the motion of an isolated − spin in a

positive domain (or, hole in a cluster of particles) or to that of an isolated + spin in a

negative domain (or, particle amongst empty sites).

The heat-bath rule, Eq. 5.3, has the non-trivial property that the steady state is indepen-

dent of the asymmetry [1, 2]. It obeys detailed balance with respect to the energy, Eq. 5.2,

at temperature T = 1/(kBβ) (kB : Boltzmann constant), i.e., W (∆E) = W (−∆E)e−β∆E .

The KLS model can also be viewed as a migration process (or, urn model). Generally

speaking, a migration process can be seen as a generalization of the zero-range process

(ZRP) [3, 4] (also, Chapter 6), where the particles hop on a lattice, but where the hopping

rate depends both on the departure and arrival sites [4, 5]. Particles (or + spins) are
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Type ∆E Acceptance Prob. Moves

Condensation −4J̃ Pe4βJ̃/(e4βJ̃ + 1) − + −+ → −− ++
+ − +− → + + −−

Diffusion 0 P/2 + + −+ ↔ + − ++
−− +− ↔ − + −−

Evaporation +4J̃ P/(e4βJ̃ + 1) + + −− → + − +−
−− ++ → − + −+

Table 5.1: Types of moves in the partially asymmetric Kawasaki dynamics, and correspond-
ing acceptance probabilities with the heat-bath rule. The probability P is equal to p when
the + spin exchanges to the right, to q when it exchanges to the left.

identified with the sites of a lattice, and the holes (or − spins) with particles located on

these sites. At infinite temperature, this maps the ASEP onto the usual ZRP. At finite

temperature, the rate at which a particle hops to the neighboring site is still given by Eq.

5.3 with ∆E = −4δJ̃ where δ is the variation of the number of empty sites before and after

moving the particle. This mapping is effectively used in numerical simulations.

5.1.2 The variance of the displacement

The displacement of a tagged particle in the KLS model obeys the same laws as for the

ASEP, i.e., all phenomena presented in Chapter 3 for the ASEP exist likewise for the KLS

model. More precisely, the temporal behavior of the variance of the displacement of the

tagged particle is the same as for the ASEP, up to prefactors which depend continuously on

the temperature. The question is now to make a link between the microscopic model and

its continuum limit description, i.e., to compare the prediction of Chapter 4, Section 4.2 for

the temporal evolution of the variance, in the linear theory, to numerical simulations of the

model.

For that purpose, we will (i) express the parameters of the continuum theory (Γ, A,

and u) in terms of the temperature, which is the only parameter of the KLS model, (ii)

explain the relevance of the linear theory for a special value of the temperature, for which

the coefficient of the nonlinear term in the KPZ equation vanishes. This identification is

possible in the present case because the stationary state of the KLS model is known. The

method is given in [6]. It needs to be slightly generalized here, as now explained. For the

sake of simplicity, we will restrict the computations to the case of zero magnetization M ,

or, equivalently, of density ρ = 1/2 (since M = 2ρ− 1).

First, the following relationship between the diffusion constant Γ and the strength of

the noise A is always valid, independently of the asymmetry [6],

A = Γχ, (5.4)

where χ is the susceptibility, explicitly known for the Ising chain, χ = e2βJ̃ . In order to find
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an expression of Γ and of the velocity of the tagged particle, we write the equation for the

temporal evolution of the magnetization 〈sn〉. This reads

d〈sn〉
dt

= Jsp
n − Jsp

n+1, (5.5)

where the spin current Jsp
n through the link (n− 1, n) has the following expression.

Jsp
n =

p− q

4

(
1 − 〈sn−1sn〉 +

e4βJ̃ − 1

2(e4βJ̃ + 1)
〈(sn − sn−1)(sn−2 − sn+1)〉

)

+
1

4

(
〈sn−1〉 − 〈sn〉 +

e4βJ̃ − 1

2(e4βJ̃ + 1)
(〈sn+1〉 − 〈sn−2〉 + 〈sn−2sn−1sn〉

− 〈sn−1snsn+1〉)
)
. (5.6)

The first line in Eq. 5.6 is the drift term. It is only present when the dynamics is asymmetric.

It does not contribute to the computation of the diffusion constant Γ. Putting aside the drift

term, the right-hand side of Eq. 5.6 appears as a second-order difference, consistently with

the diffusive nature of the second term. (Note also that the first term is even in the spin

variable, while the second one is odd.) In other words, the expression of Γ is the same both

in the symmetric (EW) or asymmetric (KPZ) cases. It reads (see [6] for the computation)

Γ =
1

(e2βJ̃ + 1)(e4βJ̃ + 1)
. (5.7)

Note that this expression differs by a factor 2 with that given in [6]. This is due to the

difference in the definitions of the scale of time chosen in the present work (see Table 5.1),

and in [6]. Utilizing Eq. 5.4 and the fact that the susceptibility χ = e2βJ̃ , we get

A =
1

(e−2βJ̃ + 1)(e4βJ̃ + 1)
. (5.8)

It remains to evaluate the velocity u, as well as the coefficient of nonlinearity λ, appearing

in the KPZ equation, Eq. 4.2. We use Eqns. B.11 and B.12 in Appendix B for this

purpose. Now, without loss of generality, we consider completely asymmetric particle (i.e.,

+ spin) motion with p = 1 and q = 0. For zero magnetization (or, equivalently, at density

ρ = 1/2), since u is given by u =
[
vP − ∂J

∂ρ

] ∣∣∣
ρ=1/2

=
[
vP − 2 ∂J

∂M

] ∣∣∣
M=0

, while λ is given

by λ = 2 ∂2J
∂M2

∣∣∣
M=0

, we need to evaluate the current of particles J as a function of the

magnetization M . Note that J = Jsp/2. We use Eq. 5.6, with 〈sn〉 = M , 〈snsn+1〉 = 〈s1s2〉,
by translation invariance, etc. Hence, the current reads

J =
1

8

(
1 +

e4βJ̃ − 1

e4βJ̃ + 1
〈s1s3〉 −

2e4βJ̃

e4βJ̃ + 1
〈s1s2〉

)
. (5.9)

The correlators have been evaluated earlier by the transfer matrix method which gives J as
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[6]

J =
2M2 + e4βJ̃ (1 −M2) − (1 +M2)(M2 + e4βJ̃ (1 −M2))1/2

2(e8βJ̃ − 1)(1 −M2)
. (5.10)

Utilizing the last equation, we finally get

u = vP = 2J |M=0 =
e2βJ̃

(e2βJ̃ + 1)(e4βJ̃ + 1)
, (5.11)

while

λ =
1 − 3e2βJ̃

e2βJ̃ (e2βJ̃ + 1)(e4βJ̃ + 1)
. (5.12)

Hence, for e−2βJ̃ = 3 (antiferromagnetic chain), λ vanishes. For such a value of the ‘tem-

perature’ (actually, of βJ̃), though the dynamics is asymmetric, the continuum theory is

linear. This yields

Γ =
27

40
, u =

9

40
, A =

9

40
. (5.13)

Note that the unit of time is such that at infinite temperature

Γ =
1

4
, u =

1

4
, A =

1

4
. (5.14)

These quantities differ by a factor 2 from their expression for the SEP (see Appendix B).

As above, the origin of this difference lies in the definitions of the scale of time for these

two models (see Table 5.1).

The result of the comparison of the quantity σ2(L, t) as obtained from simulation of

the KLS model on a ring of size L for the temperature T satisfying e−2βJ̃ = 3, and that

from the exact solution of the linear interface as given in Chapter 4, Eq. 4.14 (with the

corresponding values of the constants Γ, A and u given in Eq. 5.13) is shown in Fig. 5.1 for

three different system sizes (L = 64, 128, 256). The simulation of the KLS model, performed

by C. Godrèche, was done in the equivalent migration process described above, with equal

number of particles and sites, which corresponds to half filling (ρ = 1/2) in the original

particle system (i.e., the KLS model). The variance of the displacement of a given tagged

particle in the KLS model translates into the variance of the number of particles which

passed through a given bond in the migration process.

5.2 Correspondence to the ARAP

The Asymmetric Random Average Process involves hard core particles hopping on a con-

tinuous line as opposed to a lattice for the ASEP [7]. We consider a system of particles of

average density ρ. We denote by xi(t) the location of the i-th particle on the continuous line

with periodic boundary conditions. The dynamics is stochastic and involves the following

moves during an infinitesimal time dt: a randomly chosen particle jumps with probability

pdt to the right, with probability qdt to the left, and with probability 1 − (p + q)dt, it
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Figure 5.1: Comparison of the variance σ2(L, t) of the displacement of the tagged particle
in the KLS model obtained from simulations (dashed lines) and exact solution (full lines) of

the corresponding continuum linear theory for the temperature T satisfying e−2J̃/kBT = 3.
Results are shown for three different system sizes (L = 64, 128, 256). Simulation of the KLS
model, performed by C. Godrèche, was done with the equivalent migration process.

continues to occupy its original location. The amount by which the particle moves either to

the right or to the left is a random fraction of the gap to the next particle to the right or to

the left. Thus, for the i-th particle, the jump to the right is by the amount r+i (xi+1 − xi),

while to the left is by the amount by r−i (xi − xi−1). Here, the random variables r±i are

independently drawn from the interval [0, 1], each being distributed according to the same

pdf f(r), which is arbitrary. The time-evolution equation of the positions xi’s is represented

by the exact Langevin equation

xi(t+ dt) = xi(t) + γi(t), (5.15)

where the random variables γi(t) are given by

γi(t) =





r+i [xi+1(t) − xi(t)] with prob. pdt,

r−i [xi−1(t) − xi(t)] with prob. qdt,

0 with prob. 1 − (p+ q)dt.

(5.16)

The average velocity of a tagged particle vP is given by

vP =
d〈xi(t)〉
dt

= 〈γi(t)〉. (5.17)

Using the expression for γi in Eq. 5.16, we can compute its average. This gives the average

velocity of an ARAP particle as vP = (p−q)µ1

ρ , where µ1 =
∫ 1
0 dr rf(r). Thus the average
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particle current J = ρvP is independent of ρ. The derivation of the corresponding interface

equation can be done along the lines outlined in Appendix B. Noting that all derivatives of

J with respect to ρ are zero, Eq. B.11 implies u = vP , while λ = 0 from Eq. B.12. Thus,

we recover the equation for the linear interface, Eq. 4.4. Based on our exact solution for the

linear interface, we expect the tagged-particle correlation in the ARAP in an infinite system

as measured by σ2(t) ≡ limL→∞ σ2(L, t) to vary as t (cf. Chapter 4, Table 4.2). This has

been confirmed by an exact solution of the tagged-particle correlation for the ARAP on an

infinite system [8].
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Chapter 6

The Zero-Range Process (ZRP)

Alice laughed. “There is no use trying,” she said: “one can’t believe impossible

things.” “I dare say you haven’t had much practice,” said the Queen. “When

I was your age, I always did it for half-an-hour a day. Why, sometimes I’ve

believed as many as six impossible things before breakfast.”

Lewis Carroll

Our earlier discussions on tagged particle correlations in the ASEP showed a strong in-

terplay of the nonequilibrium dynamics with finite-size effects in determining the behavior

of stationary state fluctuations. The interplay led to the occurrence of many interesting

dynamical phenomena, e.g., motion of density fluctuations around a periodic system as a

dissipating kinematic wave. It is interesting to ask about how does the dynamics of station-

ary state fluctuations get affected as a system, driven out of equilibrium, passes through a

phase transition. Such transitions are often observed in certain interacting particle systems

as one tunes an external parameter such as the particle density; the system may go over

from a low-density disordered phase to an ordered phase at high density. In the absence of

a general framework, it is evidently of interest to develop a detailed understanding of the

effects of phase transitions on the behavior of fluctuations using simple models of interacting

particles. In this thesis, we have pursued such a study within the ambit of a paradigmatic

model, the zero-range process (ZRP).

The ZRP involves biased hopping of particles between nearest neighbor sites of a periodic

lattice with a rate that depends solely on the occupancy at the departure site. Here, the

microscopic configurations evolve by a random sequential dynamics, i.e., in a small time

interval dt → 0, to leading order in dt, at most one particle hopping over the entire lattice

takes place. At long times, the system reaches a nonequilibrium current-carrying stationary

state. The ZRP is one of the very few models of interacting particles whose stationary state

measure can be found exactly in any dimension, for any choice of the hop rates, and even in

the presence of quenched disorder; in all these cases, the stationary state measure is given by

a simple factorized form, thereby offering an opportunity to analyze many stationary state

properties of the ZRP exactly. For certain classes of the hop rates, as the particle density

81
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crosses a critical value, the ZRP undergoes a continuous phase transition from a disordered

phase with uniform average density to a condensed phase where a finite fraction of particles

accumulates on a single site. Although first introduced in the mathematical literature

by Spitzer in 1970 [1], in view of the condensation phenomena, the ZRP or modifications

thereof has since appeared in many unexpected contexts, e.g., to model wealth condensation

in macroeconomics [2], jamming in traffic [3, 4], coalescence in granular systems [5, 6],

gelation in networks [7, 8]. Besides, it has recently been invoked to provide a criterion for

phase separation in one-dimensional driven diffusive systems by mapping them to the ZRP

[9], though the correctness of this mapping is not clear for all models with driven diffusive

dynamics [10]. Finally, a generalization of the ZRP that retains the property of a factorized

stationary state has been identified [11, 12]. The generalization comprises (i) making the

site occupancy a continuous variable, in this case, called the mass (ii) allowing arbitrary

amounts of mass to move from one site to another, and (iii) allowing for parallel dynamics;

these considerations have led to the construction of a general mass transfer model which

encompasses a wide range of specific models studied earlier as disparate cases.

The layout of the chapter is as follows. Section 6.1 gives the definition of the model of

our study, namely, the homogeneous ZRP on a one-dimensional periodic lattice. The ZRP

can be mapped to a generalization of the totally asymmetric simple exclusion process; the

mapping is discussed in Section 6.2. In Section 6.3, we obtain the stationary state measure

of the ZRP over the configuration space. This is followed in Section 6.4 by a discussion

of the condensation transition, where we obtain the conditions on the hop rate to observe

condensation. In this thesis, we consider the ZRP with a particular choice of the hop rate

that leads to a condensation transition. In Section 6.5, for our choice of the hop rate, we

obtain the critical density, the single-site occupancy distribution in the various phases, the

behavior of the mean particle current in the stationary state as a function of the particle

density, both within a grand canonical and a canonical ensemble, and finally, the kinematic

wave velocity.

6.1 The model

The ZRP involves N indistinguishable particles of unit mass on a one-dimensional periodic

lattice of L sites with arbitrary occupancy of particles allowed at any site [1, 13, 14]. The

dynamics in discrete time involves moving a particle from a randomly chosen site i with

occupancy ni to its right neighbor site i+ 1 with a specified rate u(ni), a function solely of

the occupancy ni at the departure site i, see Fig. 6.1. The hop rate out of a site with zero

occupancy is defined to be zero: u(0) = 0. The specific dependence of the hopping rate on

the departure site occupancy models the interaction between the particles at the departure

site. For example, if u(ni) = ni, the dynamics of each particle at site i is independent of

the others, while u(ni) = constant implies an attractive on-site interaction, since particle

hop-out rates are lower than those for noninteracting particles. In general, the hop rate
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Figure 6.1: Definition of the homogeneous ZRP on a one-dimensional periodic lattice. A
possible dynamical move is also shown in the figure.

function u(n) may even be site dependent. In our work, we consider the homogeneous ZRP

where the rates are site independent and depend only on the departure site occupancy in a

way as to induce condensation transition as a function of the particle density (see Section

6.4 below).

6.2 Mapping to a generalized exclusion process

The homogeneous ZRP in the preceding section can be mapped to a particle hopping

model which is a generalization of the totally asymmetric simple exclusion process (TASEP)

[13, 14]. Figure 6.2 illustrates the mapping which is achieved by thinking of the ZRP

particles as empty sites in the particle model, while the ZRP sites are interpreted as moving

particles in the particle model. For example, in Fig. 6.2, site 1 in the ZRP becomes particle

1 in the particle model, while the particle occupying site 1 in the ZRP becomes the vacant

site behind the particle 1 in the particle model. Next, site 2 in the ZRP becomes particle

2 in the particle model, while the fact that site 2 in the ZRP is vacant leaves no vacancies

between particles 1 and 2 in the particle model, and so on. Following this procedure, a ZRP

with N particles and L sites is mapped to the particle model with L hard core particles

moving on a lattice of L+N sites. The hop rates in the ZRP, which depend on the number

of particles at the departure site, become hop rates in the particle model which depend on

the distance to the next particle in front, thereby inducing a long-ranged particle hopping.

Note that the ordinary TASEP, defined in Chapter 2, corresponds to the ZRP with hop

rate u(n) = 1.



84 6. THE ZERO-RANGE PROCESS (ZRP)

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 3 4 5 6 7 82

u(3)

u(3)

1 2 3 4 5

ZRP site index n

TASEP particle tag n
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������

���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������

���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������

hopping
Particle 

model

ZRP

{
{

Figure 6.2: Mapping between the ZRP and the particle hopping model, which is a general-
ization of the TASEP.

6.3 The stationary state measure

From the definition of the model, it is clear that the ZRP dynamics conserves the total

number of particles in the system. At long times, the system reaches a nonequilibrium

stationary state. An important attribute of the ZRP is that for any choice of the hop rates,

the stationary state measure over the configuration space can be found exactly. Thus, the

stationary state probability P ({ni}) of finding the system in configuration {n1, n2, . . . , nL}
has a factorized form, being given by a product of factors, one for each site of the system

[1, 13, 14]. Specifically, for the homogeneous ZRP that we study, P ({ni}) is given by

P ({ni}) =
1

ZL,N

L∏

i=1

f(ni)δ

(
L∑

i=1

ni −N

)
, (6.1)

where the delta function reminds us that we are working with a fixed number of particles,

namely, N (i.e., within a canonical ensemble). From Eq. 6.1, it follows that in the ZRP in the

stationary state, the only correlation between sites is arising out of the overall conservation

of particles. In Eq. 6.1, ZL,N is the normalization or the canonical partition function that

ensures that the probabilities for all configurations containing N particles add up to one,

hence

ZL,N =
∞∑

{ni=0}

L∏

i=1

f(ni)δ

(
L∑

i=1

ni −N

)
. (6.2)

The factors f(ni) in Eq. 6.1 are determined by the hop rates, and are given by

f(n) =





(
n∏

m=1
u(m)

)−1

if n > 0,

1 if n = 0.

(6.3)
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The probability p(n) that any given site, say, site 1, contains n particles is obtained from

P ({ni}) by fixing n1 at n, and summing P ({ni}) over allowed occupancies of the remaining

sites, i = 2, . . . , L, subject to the constraint that the remaining number of particles is N−n.

This gives

p(n) =
∑

n2,n3,...,nL

P (n, n2, n3, . . . , nL)δ

(
L∑

i=2

ni − (N − n)

)
=
ZL−1,N−n

ZL,N
. (6.4)

6.3.1 Stationary state measure within the grand canonical ensemble in

the thermodynamic limit

In the grand canonical ensemble (GCE), the total particle number N , instead of being fixed,

as in Eq. 6.1, is allowed to fluctuate, so that the delta function constraint in Eq. 6.1 is

removed and one obtains the stationary weight of configurations in the grand canonical

ensemble from the canonical weight as

WGCE({ni}) ∝
∞∑

N=0

vN
L∏

i=1

f(ni)δ

(
L∑

i=1

ni −N

)
=

L∏

i=1

vnif(ni), (6.5)

where the fugacity v fixes the overall particle number N . From Eq. 6.5, it follows that in

the grand canonical ensemble, there is no correlation between sites in the stationary state.

In order to normalize WGCE({ni}) over all possible configurations, we define the grand

canonical partition function as

ZL(v) =

∞∑

{ni=0}

L∏

i=1

vnif(ni) = [F (v)]L, (6.6)

where

F (v) =
∞∑

n=0

vnf(n). (6.7)

Note that the grand canonical partition function ZL(v) is related to the canonical partition

function ZL,N through

ZL(v) =

∞∑

N=0

vNZL,N . (6.8)

Now, the stationary state probability of configurations within the grand canonical ensemble

is given by

PGCE({ni}) =
1

ZL(v)

L∏

i=1

vnif(ni) =

L∏

i=1

vnif(ni)

F (v)
. (6.9)

The distribution of the number of particles at a given site within the grand canonical

ensemble becomes

p(n) =
vnf(n)

F (v)
. (6.10)
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The fugacity v fixes the overall particle number N through the condition

N =
L∑

i=1

〈ni〉 = L
vF ′(v)
F (v)

, (6.11)

where the angular brackets denote averaging with respect to the grand canonical stationary

state measure, Eq. 6.9.

Next, we take the thermodynamic limit, N → ∞, L → ∞, keeping the particle density

ρ = N
L fixed and finite. Now, Eq. 6.11 reduces to the following relation between the fugacity

v and the density ρ.

ρ =
vF ′(v)
F (v)

. (6.12)

To summarize, in the thermodynamic limit, within a grand canonical ensemble, the proba-

bility for a randomly chosen site to have n particles reads

p(n) =
vnf(n)

F (v)
;F (v) =

∞∑

n=0

vnf(n), (6.13)

where the fugacity v is related to the density ρ through Eq. 6.12.

6.3.2 Proof of stationarity

The proof of the stationary state measure, Eqns. 6.1, 6.3, proceeds along the following lines

[13, 14]. First, we write down the stationarity condition on the probability of any config-

uration. This condition balances the probability current due to hops into a configuration

with the probability current due to hops out of the same configuration, and hence, reads

0 =
L∑

i=1

[u(ni−1 + 1)P (. . . , ni−1 + 1, ni − 1, . . .) − u(ni)P ({ni})]θ(ni), (6.14)

where the Heaviside step function θ(n) on the right emphasizes that site i must be occupied

so as to have hops out of and into the configuration {ni}. Next, we substitute Eq. 6.1 into

Eq. 6.14 and equate the quantity within the square brackets to zero for each i so that we

finally have, after cancelling the common factors,

u(ni−1 + 1)f(ni−1 + 1)f(ni − 1) = u(ni)f(ni−1)f(ni). (6.15)

The above equation can be put into the form

u(ni−1 + 1)
f(ni−1 + 1)

f(ni−1)
= u(ni)

f(ni)

f(ni − 1)
= constant, (6.16)
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for all values of i. Without any loss of generality, the constant can be set equal to one, so

that we have

f(ni) =
f(ni − 1)

u(ni)
, (6.17)

which, when iterated, yields Eq. 6.3 on putting f(0) = 1, without any loss of generality.

Thus, the stationary state measure of the homogeneous ZRP is given by the set of equations,

Eqns. 6.1 - 6.3.

6.4 The condensation transition

As discussed in the introduction, for certain classes of the hop rates, the ZRP shows a

condensation transition from a disordered phase at low density to a condensed phase at

high density. In this section, we obtain the condition on the hop rate u(n) that induces

such a transition [13, 14]. To do this, we work within the grand canonical ensemble. First,

note that the fugacity v has a maximum value, vmax, given by the radius of convergence of

the infinite series F (v) in v in Eq. 6.7. From the ratio test for convergence [15], it follows

that, for the series F (v) to converge, the ratio of the (n+1)-term to the n-th term for large

n must be smaller than 1 so that

vmax = u(∞). (6.18)

Next, we examine the relation between the density ρ and the fugacity v, namely,

ρ =
vF ′(v)
F (v)

. (6.19)

By taking the derivative with respect to v, one can show that the right hand side is an

increasing function of v so that the density increases with the fugacity. If it so happens

that the right hand side diverges as v approaches its maximum possible value, vmax, then

it is always possible to satisfy Eq. 6.19 for any density such that v ≤ vmax, and there

is no condensation. On the other hand, if the right hand side approaches a constant as

v → vmax, there is a critical density ρc beyond which Eq. 6.19 can no longer be satisfied;

the excess particles ∼ (ρ − ρc)L condenses onto a randomly chosen site, thereby breaking

the translational symmetry of the system. The fugacity v increases with the density ρ and

attains its maximum value vmax at the critical value ρc; for densities ρ > ρc, the fugacity

remains constant at vmax. The two cases of no condensation and condensation are shown

schematically in Fig. 6.3. The critical density ρc is given by

ρc = lim
v→vmax=u(∞)

vF ′(v)
F (v)

. (6.20)

In this case, for ρ larger than ρc, Eq. 6.19 is replaced by

ρ =
〈n1〉
L

+
L− 1

L
ρc, (6.21)
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Figure 6.3: Schematic plot of the density ρ as a function of the fugacity v, for case (a) when
there is no condensation, and for case (b), when there is a condensation transition.

where site 1 has been arbitrarily chosen to hold the condensate.

In view of the above discussion, the condition for the condensation transition is given

by

lim
v→vmax=u(∞)

vF ′(v)
F (v)

<∞, (6.22)

i.e., the infinite series vF ′(v) =
∑∞

n=1 nv
nf(n) must converge as v → vmax = u(∞). For this

infinite series to converge, the ratio of the (n+1)-term to the n-term, namely, (1+ 1
n) u(∞)

u(n+1)

must fall slower than (1− 1
n) for large n, i.e., (1 + 1

n) u(∞)
u(n+1) < (1− 1

n) for large n [15]. This

implies that u(n) for large n must exceed u(∞)(1 + 2
n). Thus, condensation occurs when

the hop rate u(n) satisfies either of the two conditions.

• Condition A: For large n,

u(n) ∼ u(∞)(1 +
b

n
) with b > 2. (6.23)

• Condition B: For large n,

u(n) ∼ u(∞)(1 +
b

nσ
) with arbitrary b > 0 and σ < 1. (6.24)
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6.5 The case u(n) = 1 + b
n with b > 2

In this thesis, we consider the hop rate u(n) = 1 + b
n ∀ n > 0 and b > 2, for which the

single-site weights are given by

f(n) =

(
n∏

m=1

u(m)

)−1

=

(
n∏

m=1

(1 +
b

m
)

)−1

=
n!

(b+ 1)n
, (6.25)

where

(a)n = a(a+ 1) . . . (a+ n− 1) (6.26)

is the Pochhammer symbol.

The behavior of f(n) for large n can be found by taking the logarithm of f(n):

ln f(n) = −
n∑

m=1

ln(1 +
b

m
) (6.27)

≈ −B −
n∑

n∗

b

m
. (6.28)

Here, n∗ is such that b
n∗ ≫ 1, so that ln(1 + b

n∗ ) ≈ b
n∗ . In Eq. 6.28, B stands for the

sum,
∑n∗

m=1 ln(1 + b
m). The sum on the right hand side of Eq. 6.28 may be replaced by an

integral, which, when evaluated, finally yields

f(n) ≈ An−b for large n, (6.29)

where A is a constant.

6.5.1 The critical density ρc and the phase diagram

For our choice of the hop rate, one can calculate the critical density exactly, following Eq.

6.20 [16, 17]. In our case, vmax = 1. Using Eq. 6.25, we have

F (v) =

∞∑

n=0

vn n!

(b+ 1)n
=

∞∑

n=0

vn (1)n(1)n
(b+ 1)nn!

. (6.30)

Thus

F ′(v) =
∞∑

n=0

vn (n+ 1)(n + 1)!

(b+ 1)n+1
=

1

b+ 1

∞∑

n=0

vn (2)n(2)n
(b+ 2)nn!

. (6.31)

Next, one uses the following identity involving the hypergeometric function [18].

∞∑

n=0

(a)n(b)n
(c)nn!

=
Γ(c)Γ(c − a− b)

Γ(c− a)Γ(c− b)
for c > a+ b. (6.32)
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Figure 6.4: ZRP phase diagram for the hop rate u(n) = 1 + b
n , with n > 0 and with b > 2.

The critical line ρc = 1
b−2 is also marked in the figure.

This gives

F (vmax) = b/(b− 1) (6.33)

and

F ′(vmax) = b/((b − 1)(b− 2)). (6.34)

Finally, on using Eq. 6.20, we get

ρc =
1

b− 2
. (6.35)

Thus, for u(n) = (1 + 2
n), the ZRP goes over from a disordered phase across the critical

density ρc = 1
b−2 to a condensed phase, as shown in Fig. 6.4.

6.5.2 Single site occupancy distribution within the canonical ensemble

Once the hop rates u(n) or, equivalently, the single-site factors f(n) are given, one can

compute, using Eq. 6.4, the single-site occupancy distribution p(n) within the canonical

ensemble in the disordered phase (ρ < ρc), at the critical point (ρ = ρc), and in the

condensed phase (ρ > ρc). To do this, one has to know the canonical partition function,

which is obtained by first fixing the density ρ to be in one of the phases, then computing

the corresponding grand canonical partition function ZL(v) and finally, inverting Eq. 6.8

to extract the associated canonical partition function. The most challenging part is the

inversion of Eq. 6.8, which can be performed exactly only for a few f(n)’s., e.g., when

f(n) = 2√
π

1
n5/2 e

−1/n; in this case, p(n) in different phases can be computed exactly and are

shown in Fig. 6.5 [19, 20]. To compute p(n) for a general f(n), one relies on an asymptotic

analysis, as detailed in [19, 20]. In our case, with f(n) for large n given in Eq. 6.29, the

forms of the single-site canonical distribution p(n) in different phases, computed using the
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Figure 6.5: The single-site distribution p(n) as a function of occupancy n for the exactly
solvable case, f(n) = 2√

π
1

n5/2 e
−1/n, plotted using Mathematica for L = 100 and ρ = 1 (dis-

ordered phase), ρ = ρc = 2 (critical point), and ρ = 6 (condensed phase). The condensate
shows up as an additional bump near the tail of p(n) in the condensed phase. The figure is
adapted from Ref. [19], with the permission of one of the authors.

asymptotic analysis, are summarized below [19, 20].

Disordered phase (ρ < ρc)

Here,

p(n) ∼ f(n)e−n/n∗
for 1 ≪ n≪ N, (6.36)

where the characteristic occupancy n∗ diverges as ρ approaches ρc from below as (ρ− ρc)
−1

for b > 3 and as (ρ− ρc)
−1/(b−2) for 2 < b < 3.

To summarize, the single-site distribution p(n) in the disordered phase is exponential in

n for large n.

Critical point (ρ = ρc)

Here, one has

p(n) ∝ f(n)Vb(n/L
1/(b−1)) for 2 < b < 3, (6.37)

p(n) ∝ f(n)e−n2/2∆2L for b > 3, (6.38)
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where the asymptotic forms of the scaling function Vb(z) are given by

Vb(z) ≃ A|z|−b as z → −∞,

= c0 at z = 0,

≃ c1z
(3−b)/2(b−2)e−c2z(b−1)/(b−2)

as z → ∞. (6.39)

Here, c0 = β−1/(b−1)/[(b − 1)Γ((b − 2)/(b − 1))], c1 = [2π(b − 2)(β(b − 1))1/(b−2)]−1/2, c2 =

(b− 2)/(b − 1)(β(b − 1))1/(b−2), where β = AΓ(1 − b).

Thus, at the critical point, p(n) decays as a power law n−b for large n, which is cut-off

by a finite-size scaling function; the cut-off occupancy scales as

ncut−off ∼ L1/(b−1) for 2 < b < 3, (6.40)

∼ L1/2 for b > 3. (6.41)

Condensed phase (ρ > ρc)

Here, one has

p(n) ≃ f(n) for 1 ≪ n≪ O(L), (6.42)

p(n) ≃ f(n)
1

(1 − x)b

for n = x(ρ− ρc)L where 0 < x < 1, (6.43)

p(n) ∼ pcond(n) for n ∼ (ρ− ρc)L. (6.44)

Here, pcond is the part of p(n) that represents the condensate; it is centered on (ρ − ρc)L

and its integral equals 1/L, implying that there is a single condensate site. pcond takes two

different forms, depending on whether 2 < b < 3 or b > 3. In the former case,

pcond(n) ≃ L−b/(b−1)Vb

[
n− (ρ− ρc)L

L1/(b−1)

]
, (6.45)

where the asymptotic forms of Vb(z) are given in Eq. 6.39. Thus, the shape of the condensate

bump is non-Gaussian for 2 < b < 3, and this is referred to as an anomalous condensate.

For b > 3, one has

pcond(n) ≃ 1√
2π∆2L

e−(n−(ρ−ρc)L)2/2∆2L for |n− (ρ− ρc)L| ≪ O(L2/3), (6.46)

i.e., here, pcond(n) is Gaussian on the scale |n − (ρ − ρc)L| ≪ O(L2/3), but, far to the left

of the peak, p(n) decays as a power law:

pcond(n) ≃ f(n) (1 − n/(ρ− ρc)L)−b for (ρ− ρc)L− n ∼ O(L). (6.47)
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To summarize, in the condensed phase, for b > 3, the condensate near the peak is Gaussian

distributed with width ∼ L1/2, while for b between 2 and 3, the fluctuations in the number

of particles in the condensate are anomalously large (∼ L1/(b−1)).

6.5.3 Particle current

In the stationary state, the mean particle current is the same across every pair of neighboring

bonds.

Grand canonical ensemble

In the thermodynamic limit, within a grand canonical ensemble, the mean current J is

obtained by noting that in order to have a particle hop across a bond, the site to the left

has to be occupied in the first place (with probability p(n) for n > 0), followed by a hop

with rate u(n) when the left site has n particles. Hence, J is given by

J =

∞∑

n=1

p(n)u(n) = v, (6.48)

using Eq. 6.13. Thus, the current increases with the density ρ, attains its maximum value

vmax = u(∞) = 1 at the critical density ρc, and remains constant at this maximum value

for ρ > ρc.

Canonical ensemble

Within the canonical ensemble, the mean particle current JL,N is given by

JL,N =

∞∑

n1=1

f(n1)u(n1)

∞∑

{nj=0,j 6=1}

L∏

j=2

f(nj)δ

(
L∑

k=1

nk −N

)
/ZL,N (6.49)

=
ZL,N−1

ZL,N
, (6.50)

where we have chosen to evaluate the mean current across the bond next to site 1. In

arriving at the last step, we have used the definition of the canonical partition function

ZL,N in Eq. 6.2. JL,N can be obtained from Eq. 6.50 by first computing the canonical

partition function ZL,N numerically for given values of L and N , starting from Eq. 6.4 [21];

one has

p(n) =
f(n)ZL−1,N−n

ZL,N
. (6.51)

Now, p(n) being normalized,
N∑

n=0

p(n) = 1, (6.52)
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Figure 6.6: Mean current JL,N within the canonical ensemble. Here b = 6, L =
16, 32, 64, 128, 256, 512 from top downwards. The vertical line is at ρc = 1/(6 − 2) = 0.25.
The dotted line shows the behavior of the current J within the grand canonical ensemble
in the thermodynamic limit.

which gives

ZL,N =

N∑

n=0

ZL−1,N−nf(n). (6.53)

Equation 6.53 can be solved recursively with the initial conditions

Zl,0 = 1 for l = 0, 1, 2, ...., L,

Z0,n = 0 for n = 1, 2, ....,N. (6.54)

Note that Zl,1 = lf(1) for l = 1, 2, ...., L. The single-site weights f(n) are given by Eq. 6.25.

The mean current JL,N , as computed using the above procedure, is shown in Fig. 6.6.

From the figure, it is clear that with increasing system size, the current JL,N at a fixed

density approaches the behavior predicted in the thermodynamic limit.

6.5.4 Kinematic wave velocity

The kinematic wave velocity is given by (See Appendix A)

vK =
∂J

∂ρ
=

[
∂J

∂v

]
/

[
∂ρ

∂v

]
. (6.55)

In the thermodynamic limit, within a grand canonical ensemble, we have, from Eq. 6.48,

∂J

∂v
= 1, (6.56)
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so that
1

vK
=
∂ρ

∂v
=
ρ(1 − ρ)

v
+
vF ′′(v)
F (v)

, (6.57)

using Eq. 6.12. Now, we have, from Eq. 6.31,

vF ′′(v) =
∞∑

n=0

nvn (n+ 1)(n + 1)!

(b+ 1)n+1
=

1

b+ 1

∞∑

n=0

nvn (2)n(2)n
(b+ 2)nn!

, (6.58)

so that
1

vK
=
ρ(1 − ρ)

v
+

1

b+ 1

∞∑

n=0

nvn (2)n(2)n
(b+ 2)nn!

/
∞∑

n=0

vn (1)n(1)n
(b+ 1)nn!

. (6.59)

on using Eq. 6.30.
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Figure 6.7: Fugacity v and the kinematic wave velocity vK as a function of the particle
density ρ (≤ ρc), computed numerically, using Eq. 6.12 and Eq. 6.59. Here, the hop rate is
u(n) = 1 + 4

n so that the critical density ρc = 0.5.

For a given density ρ, one can find the kinematic wave velocity vK from Eq. 6.59 by first
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finding the fugacity v corresponding to the density ρ from Eq. 6.12, then substituting this

value of v in Eq. 6.59, and evaluating the right hand side. Figure 6.7 shows an illustration

of this procedure, showing the fugacity v and the kinematic wave velocity vK as a function

of the density ρ (≤ ρc), computed numerically using Eq. 6.12 and Eq. 6.59; the value of b

here is 4. In the condensed phase, the kinematic wave velocity remains pinned to its value

at the critical point.

It is interesting to ask about the kinematic wave velocity at the critical density ρc =

1/(b− 2) as a function of b; here, v → vmax = 1, so that we have

vmaxF
′′(vmax) =

1

b+ 1

∞∑

n=0

n
(2)n(2)n

(b+ 2)nn!
. (6.60)

For the above series, the ratio of the (n + 1)-th to n-th term, for large n, behaves as

∼ (1 − (b − 2)/n). Using the ratio test for convergence [15], one concludes that the series

diverges for 2 < b < 3 and converges for b > 3; for the latter case, the series may be summed

using Mathematica with the result vmaxF
′′(vmax) = 4b

(b−3)(b−2)(b−1) .

Now, from Eq. 6.33, we have

F (vmax) =
b

b− 1
, (6.61)

so that, using Eq. 6.59, we finally have [16]

[vK ]ρc =

{
0 for 2 < b < 3,
(b−3)(b−2)2

(b−1)2
for b > 3.

(6.62)

(6.63)

In the next chapter, we will report our results on size effects on the dynamics of fluctu-

ations in the ZRP as the system passes through the condensation transition. We make the

following choice for the hop rate: u(n) = 1 + b
n for all n > 0, with b > 2. The particular

quantity that we monitor is the variance of the integrated particle current across a bond in

the stationary state. We show that the variance exhibits striking differences in behavior as

the system goes over from the disordered to the condensed phase. In the disordered phase,

and also at the critical point, the variance behaves similarly to the tagged particle correla-

tions in the ASEP, summarized in Chapter 3. Thus, the variance shows damped oscillations

in time due to the kinematic wave of density fluctuations, and has two size-dependent time

scales, set by the circulation time and the decay time of the kinematic wave, respectively.

On the contrary, in the condensed phase, numerical simulations and strong scaling argu-

ments show that the fluctuation dynamics is governed by the condensate relocation from

site to site.
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Chapter 7

Current fluctuations in the ZRP

“I can’t explain myself, I’m afraid, Sir,” said Alice, “because, I’m not myself,

you see.”

Lewis Carroll

In this chapter, we study size effects on the dynamics of fluctuations in the zero-range process

(ZRP) [1] as the system passes through the condensation transition, discussed in Chapter

6. We report our results for the choice of the hop rate u(n) = 1 + b
n for all n > 0, with

b > 2. The particular quantity that we monitor is the variance of the integrated particle

current across a bond in the stationary state. As we explain below, the variance shows

striking differences in behavior as the system goes over from the disordered to the condensed

phase (see Fig. 7.1). In the disordered phase, and also at the critical point, the variance

behaves similarly to the tagged particle correlations in the ASEP, summarized in Chapter 3.

Thus, the variance shows damped oscillations in time due to the kinematic wave of density

fluctuations, and has two size-dependent time scales, set by the circulation time and the

decay time of the kinematic wave, respectively. On the contrary, in the condensed phase,

numerical simulations and strong scaling arguments show that the fluctuation dynamics is

governed by the condensate relocation from site to site, and the variance has four distinct

size-dependent time regimes, the two relevant time scales being the survival time and the

relocation time of the condensate, respectively.

The chapter is organized in the following way. We start in Section 7.1 with the defini-

tion of the variance measuring the integrated current fluctuations, besides giving the exact

details of the ZRP studied in this thesis. Next, in Section 7.2, we discuss a coarse-grained

description of the ZRP, valid in the disordered phase and at the critical point; through a

mapping, the coarse-grained density profile in the ZRP is related to the height of a nonequi-

librium interface in the Kardar-Parisi-Zhang (KPZ) universality class [2]. Next, we come

to stating and explaining the behavior of the current fluctuations in the disordered phase

(Section 7.3.1), at the critical point (Section 7.3.2), and finally, in the condensed phase

(Section 7.3.3). In each of the phases, we point out all the relevant size-dependent time

scales in the behavior of the variance, and also provide simple explanations for the underly-
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Figure 7.1: Integrated current fluctuations in the disordered phase (ρ < ρc), at the critical
point (ρ = ρc), and in the condensed phase (ρ > ρc).

ing dynamical processes. In the condensed phase, an essential ingredient in explaining the

behavior of the variance is the dynamics through which the condensate relocates from site

to site. We discuss this in detail in Section 7.3.3; based on this discussion, we introduce a

simple model in Section 7.3.3 in order to compute the long-time behavior of the variance in

the condensed phase.

7.1 Integrated current fluctuations: Definitions

We consider the homogeneous ZRP with N indistinguishable particles of unit mass on a

one-dimensional periodic lattice of L sites [1]; see also Chapter 6. The rate with which

a particle out of a randomly chosen site hops to its right neighbor site is taken to be

u(n) = 1+ b
n with b > 2, where n ≥ 0 is the occupancy at the departure site. In the limit of

long times, the system settles into a current-carrying nonequilibrium stationary state, where

the probability of occurrence of configurations has a factorized form (Section 6.3). For our

choice of the hop rate, the system, in the stationary state, undergoes a nonequilibrium

phase transition, as discussed in Section 6.4. As ρ crosses the critical value ρc = 1/(b − 2)

[3] (Section 6.5), a low-density disordered phase with occupancy of O(1) at each site evolves

to a high-density condensed phase where a macroscopic collection of particles of average

mass (ρ− ρc)L condenses onto a randomly selected site, while the remaining sites have the

average occupancy ρc.

Recent work on the ZRP has dealt with the relaxation of an initial homogeneous density

distribution toward the condensed phase [3]. By contrast, here we are interested in the

dynamics of density fluctuations in the stationary state in both the disordered and the

condensed phases.

In the stationary state, the mean current of particles between every pair of neighboring

sites is the same. In the thermodynamic limit, within a grand canonical ensemble, the mean
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current is J = v, as discussed in Section 6.5.3; moreover, the mean current J increases with

the density ρ, attaining its maximum value vmax = u(∞) = 1 at ρc, and remaining pinned

to this value in the condensed phase. To address the dynamics of density fluctuations, we

examine the fluctuations in the integrated particle current across any bond in the stationary

state.

The large deviation function of the integrated current has been studied for the ZRP

with open boundaries in [4]. Let the function H(i, t) count the total number of particles

crossing the bond (i, i+ 1) in time t. Thus, we have

H(i, t) =
t∑

t′=0

J(i, t′), (7.1)

where J(i, t′) is the instantaneous current across the bond (i, i + 1) at time t′. For our

studies, we monitor the variance C(i, t) of the integrated current H(i, t). Thus, we have

C(i, t) ≡
〈[
H(i, t) − 〈H(i, t)〉

]2〉
, (7.2)

where, as for the ASEP, the overbar stands for the averaging with respect to the initial

stationary ensemble of configurations, while the angular brackets denote averaging with

respect to stochastic evolution of configurations. Through the mapping to a particle hopping

model which is a generalization of the TASEP, discussed in Section 6.2, it follows that C(i, t)

is a measure of the tagged particle correlations in the equivalent particle model, being given

by the variance of the i-th tagged particle around its average displacement in time t; hence,

C(i, t) is identical to the quantity σ2(L, t), defined in Chapter 3, the only difference being

that the particle model now involves a long-ranged particle hopping (see Section 6.2).

7.2 Coarse-grained description of the density profile for ρ ≤
ρc

Before we come to a presentation of our results for the integrated current fluctuations, we

show below that in the disordered phase and at the critical point, the coarse-grained density

profile of the ZRP maps onto a nonequilibrium growing interface in the KPZ universality

class [2], governed by the usual KPZ equation with an additional drift term. The derivation

follows the same lines of reasoning as for the ASEP in Chapter 2, Section 2.6 and Section

2.7. The time-evolution equation for the coarse-grained density profile, defined as a function

of the spatial variable x ∈ [0, 1], is (see Eq. 2.21)

∂δρ(x, t)

∂t
= Γ

∂2δρ(x, t)

∂x2
− vK

∂δρ(x, t)

∂x
+
λ

2

∂(δρ)2

∂x
− ∂η(x, t)

∂x
, (7.3)



102 7. CURRENT FLUCTUATIONS IN THE ZRP

where the noise η(x, t) satisfies: η(x, t) = 0, η(x, t)η(x′, t′) = 2Aδ(x − x′)δ(t − t′). Also,

vK = ∂J
∂ρ , while λ = 2∂2J

∂ρ2 . Here, both the kinematic wave velocity vK and the coefficient

λ can be computed for the ZRP, knowing the expression for the particle current J (see

Section 6.5 for the computations of J and vK). To construct the equivalent interface, one

introduces the height function h(x, t) through the time-integrated particle current, as for

the ASEP (Section 2.7). We have

h(x, t) =

∫ t

0
dsJ(x, s), (7.4)

where J(x, t)dxdt gives the net number of particles flowing out of the length between x and

x+ dx of the system, between times t and t+ dt. Thus, on the level of a lattice, comparing

Eq. 7.4 with the definition of the integrated current H(i, t) in Eq. 7.1, we find the height of

the interface at site i at time t is precisely given by the integrated particle current H(i, t)

across the bond (i, i + 1) in time t. On the basis of the mapping in Eq. 7.4, we find that

the time evolution of the interface is governed by (Section 2.7)

∂h(x, t)

∂t
= Γ

∂2h

∂x2
− vK

∂h

∂x
+
λ

2

(
∂h

∂x

)2

+ η(x, t). (7.5)

After applying Galilean transformation, x → x′ = x − vKt, to get rid of the drift term

,−vK
∂h
∂x , Eq. 7.5 reduces to the usual KPZ equation [2]. Note that the above coarse-

grained description of the ASEP is applicable only to the disordered phase and the critical

point and not to the condensed phase. This is because the starting point in the derivation of

the coarse-grained description is the continuity equation which embodies the conservation

of particles in the system. In the condensed phase, the continuity equation holds only far

away from the condensate, but not in the spatial region including the condensate site. To

understand this, let us examine the continuity equation in some detail. In terms of the

fluctuations δρ(x, t) about the mean density ρ (so that δρ(x, t) = ρ(x, t)−ρ), the continuity

equation reads
∂δρ(x, t)

∂t
= −∂J(x, t)

∂x
, (7.6)

according to which the increase in density/unit time over a small spatial region of extent

δx is due to the net current flowing into the region. In the condensed phase, let us consider

a small spatial region of length δx including the condensate site. The difference in the

current of particles flowing into this region would definitely tend to increase the density

over this region. However, since the condensate mass fluctuates on a much larger scale

(as L1/2 for b > 3, and as L1/(b−1) for 2 < b < 3 [5]; also, Chapter 6, Section 6.5.2),

the fluctuations induced by the net current (which is of O(1)) would not manifest itself in

appreciable increase in the density over this region in time. This is to say that fluctuations

are subsumed at the condensate, and cannot pass through, leading to non-validity of the

equation of continuity in a small spatial region including the condensate site. As a result,
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a coarse-grained description, akin to that in the disordered phase, is not possible in the

condensed phase.

7.3 Behavior in different phases

In order to study the dynamics of fluctuations in the various phases, we monitor C(t) =∑L
i=1 C(i, t)/L in Monte Carlo simulations of the ZRP for our choice of the hop rate. We

find that it shows strong differences in behavior in the disordered and the condensed phases,

reflecting very different underlying physical processes in the two phases. The relevant time

scales in the behavior of fluctuations in the two phases and the physical effects underlying

them are summarized below. In Fig. 7.1, we show schematically the behavior of the variance

of the integrated current as a function of time in different phases. In all the phases, at

short times, the integrated current is Poisson distributed, implying that the variance grows

linearly in time, a behavior which holds for all times in an infinite system. In a finite

system, in the disordered phase and at criticality, the variance shows oscillations at times

proportional to the system size L. This results from kinematic waves transporting density

fluctuations around the system with a well-defined velocity. At longer times (∼ L3/2), the

wave decays, and then the variance increases linearly with time with a small slope that

decreases with increasing system size. In the condensed phase, however, the kinematic

wave cannot pass through the condensate; thus, fluctuations do not circulate around. The

initial linear behavior continues until, after a characteristic time which grows as a power

of the system size, the condensate relocates itself. This results in the variance showing a

linear rise in time with a much larger slope than at early times. Subsequently, after the

condensate has relocated to another site, the slope of the linear rise slowly approaches a

size-dependent constant.

We explain each of our above findings below.

7.3.1 Disordered phase

In this phase, the variance C(t) of the integrated current behaves similarly to the tagged

particle correlation in the ASEP, discussed in Chapter 3. Thus, there are two size-dependent

time scales T1 ∼ L, set by the circulation time of a kinematic wave of density fluctuations,

and T2 ∼ L3/2, given by the time taken by this wave to decay (Fig. 7.2). We elaborate

below on the behavior of C(t) in various time regimes.

• Initial linear regime (t≪ T1):

Here, C(t) grows linearly in time: C(t) = vt. This follows from the result that,

in this time regime, H(i, t) is Poisson distributed with intensity v over all bonds

(i, i + 1). Specifically, the probability Pout(n, t) ≡ Prob(H(i, t) = n) that n particles

have crossed any bond (i, i+ 1) in time t is given by Pout(n, t) = e−vt(vt)n

n! . The proof

is relegated to Appendix D. Briefly, the proof goes along the following lines. The
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Figure 7.2: Behavior of the variance C(t) of the integrated current in the disordered phase
of the ZRP.

population at a ZRP site undergoes a time-reversible birth-death process where a

birth (particle input) occurs with rate v, while a population of n particles undergoes

a death with rate u(n). For a reversible birth-death process with Poisson inputs,

Burke’s theorem implies an identical Poisson distribution of outputs [6]. Since in the

ZRP, the output from one site forms the input to the next site, it then follows that

the distribution Pout(n, t) is Poissonian [7].

• Oscillatory regime (T1 ≪ t≪ T2):

In this regime, C(t) oscillates as a function of time. In a driven system with ho-

mogeneous density ρ and a density-dependent current J(ρ), density fluctuations are

transported as a kinematic wave with velocity vK = ∂J/∂ρ [8]; the physical arguments

are briefly summarized in Appendix A. For the ZRP, this wave is dissipated over a

time scale ∼ Lz, where z = zKPZ = 3/2 is the dynamic exponent, characteristic of the

KPZ universality class to which the ZRP belongs; this follows from the mapping of

the coarse-grained density profile of the ZRP to the KPZ interface (Section 7.2) and

from the scaling properties of the KPZ equation (Chapter 2, Section 2.8). Since z > 1,

fluctuations circulate many times around a periodic system before getting dissipated,

and revisit every site after a time L/vK , which makes the variance oscillate in time

with this period. The kinematic wave velocity vK can be evaluated in the disordered

phase in accordance with the discussion in Chapter 6, Section 6.5.4. As in the ASEP,

a measure of the growth of dissipation in time is given by the lower envelope of the

oscillations, which behaves as t2β where β = βKPZ = 1/3 (see the discussions on the

scaling properties of the KPZ equation in Section 2.8).

• Late-time regime (t≫ T2):
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The time scale T2 marks the dissipation time of an initial density profile. For times

t ≫ T2, the variance grows diffusively: C(t) ∼ D(L)t. Matching this behavior at

T2 with that of the lower envelope of C(t) in (ii) above gives D(L) ∼ L−1/2, as for

the ASEP [9]. The late-time linear behavior is attributed to the diffusive motion of

the center-of-mass of the system, as for the ASEP (see discussions for the ASEP in

Chapter 3, Section 3.4.2).

7.3.2 Critical point

At the critical density ρc = 1
b−2 , the variance behaves differently for values of b ≤ 3 and

b > 3.

b ≤ 3

For b ≤ 3, there is no moving kinematic wave [3]; see the discussion in Section 6.5.4. Hence,

the integrated current is Poisson distributed with intensity vmax = 1, implying that the

variance continues to grow linearly with slope 1. The fact that vmax = 1 follows from noting

that vmax = u(∞), so that, with u(n) = 1 + b
n , we get vmax = 1 (Chapter 6, Eq. 6.18).

b > 3

For b > 3, however, the kinematic wave velocity is nonzero and the Poisson distribution

for the integrated current is expected to hold for times smaller than the return time of the

kinematic wave. At criticality, the largest mass in the system, scaling as ∼ L1/2 for b > 3

and as L1/(b−1) for 2 < b < 3 (see Section 6.5.2), proves insufficient to block the circulation

of the kinematic wave around the system. As for ρ < ρc, the function C(t) oscillates in
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Figure 7.4: Monte Carlo simulation of the ZRP in the condensed phase in the stationary
state, showing the motion of the most populated site (the condensate) over the system in
time. Here, time is measured in Monte Carlo Step (MCS). The system size b = 3, L = 64,
ρ (> ρc = 1/(b − 2) = 1) = 4. One can see that the condensate stays on one site for a
certain length of time before disappearing and then reappearing on another site.

time, with return time T1 and decay time T2 of the kinematic wave. To find the exponent

β at criticality, we monitor the variance B(t) of the integrated current by starting from an

arbitrary but fixed initial configuration, drawn from the stationary ensemble [10]. Thus,

one has

B(t) ≡ 〈[H(i, t) − 〈H(i, t)〉]2〉, (7.7)

where an average over i is implicit. The function B(t) is similar to the function s2(L, t) for

the ASEP, defined in Chapter 2. As discussed for the ASEP in Chapter 3, this function

captures the dissipation of the density profile of the initial configuration, and is expected

to grow asymptotically with time as t2β for t ≪ L3/2 (Section 3.4.1). We find that β at

criticality has the KPZ value of 1/3, independent of b (Fig. 7.3).

7.3.3 Condensed phase

For ρ > ρc, a finite fraction of the total mass (the condensate) resides on one site. On

performing Monte Carlo simulation of the ZRP in the condensed phase, one finds that, for

a finite system, the condensate executes an ergodic motion over the system: it stays on one

site for a certain interval of time before disappearing and then reappearing on another site

(see Fig. 7.4). The typical value of the time intervals for which the condensate remains

on one site defines the survival time Ts of the condensate, while the typical value of the

time intervals between disappearance of the condensate on one site and its reappearance on

another site defines the relocation time scale Tr. The characteristic survival time Ts scales

as Ts ∼ (ρ − ρc)
b+1Lb, as shown in [11]; we briefly summarize the arguments in Appendix
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are marked in the figure. The data points, obtained from Monte Carlo simulations, are
connected by smooth curves.

E. On the other hand, one has Tr ∼ (ρ− ρc)
2L2, as discussed below.

One may recall the occurrence of similar time scales in more familiar models like the

ferromagnetic Ising model. At equilibrium in the low temperature phase, there are two

possible equilibrium states with the same energy, one of which has positive magnetization,

while the other has negative magnetization; the two states are connected to one another

by spin symmetry (which is tantamount to reversing all the spins simultaneously). For an

infinite system, the symmetry gets spontaneously broken and the preferred state has either

positive or negative magnetization. For a large but finite system, however, the magnetiza-

tion keeps flipping between the two equilibrium states in time, consequently restoring the

ergodicity in the dynamics. The typical time for which the magnetization remains of a

particular sign is equivalent to the survival time Ts in the ZRP, the difference being that

while in the ZRP, it scales as a power of the system size (Lb, with b > 2), for the Ising

model, it is exponential in Ld−1, where d is the spatial dimension in which the Ising model

is being considered. The relocation time Tr in the Ising model is the typical interval of time

between which the magnetization ceases to become of one sign and then, becomes of the

opposite sign; in this case, Tr scales as L2, as in the ZRP.

The behavior of C(t) in the condensed phase is best depicted by plotting C(t)/t as a

function of time, as shown schematically in Fig. 7.5(a), where the various regimes are also

marked.

The behaviors of C(t) in different time regimes are summarized below.

• t≪ Ts: Here, C(t)/t equals 1, with a mild upward deviation for longer times.

• t ∼ Ts: In this regime, C(t)/t rises rapidly in time.

• t>∼Ts + Tr: Here, C(t)/t falls slowly in time.
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• t≫ Ts + Tr: Here, C(t)/t begins to approach a size-dependent constant, as predicted

by a simple model described later in this chapter.

The last three of the features, listed above, result from enhanced fluctuations due to

the condensate relocation. To understand this, we need to first discuss the dynamics of

condensate relocation.

The relocation dynamics

The condensate relocation occurs through exchange of particles between two sites. On

monitoring the time evolution of the largest and the second largest mass in simulation, the

following picture emerges. Let M(t) denote the largest mass in the stationary state at time

t. M(t) has the average value M0 ≡ 〈M(t)〉 = (ρ−ρc)L, with fluctuations ∆M0 which scale

as L1/2 for b > 3, and as L1/(b−1) for 2 < b < 3 [5] (see Section 6.5.2). These fluctuations

may build up in time, and over the time scale Ts, the largest mass fluctuates to ∼ M0/2,

while a mass ∼M0/2 also builds up at another site. Subsequent to this, two sites with mass

∼M0/2 exchange particles between themselves resulting in relatively rapid (of the order of

1 Monte Carlo step in simulations) alternating relocations of the largest mass from one site

to the other. The difference of masses on these two sites performs an unbiased random walk

in time until fluctuations populate one of the sites to ∼ M0 at the expense of the other,

which happens over the time scale Tr ∼ (ρ−ρc)
2L2 (this follows from the scaling properties

of an unbiased random walk).

Figure 7.6(a) shows the Monte Carlo results for the survival probability distribution

Ps(τ) of the largest mass, obtained by computing the distribution of the time interval τ
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between successive relocations. Ps(τ) has two parts,

(i) a power law part ∼ τ−3/2, and

(ii) another part, which corresponds to the bump in Fig. 7.6(a), and has the scaling

form (ρ− ρc)
−(b+2)L−(b+1)f (τ/Ts), as shown in Fig. 7.6(b). The prefactor comes from the

normalization of Ps(τ) to unity with the cutoff for the τ−3/2 part taken to scale as Tr; this

is explained below.

First, we assume that Ps(τ) can be written approximately as a sum of the two parts,

(i) and (ii), as

Ps(τ) ≈ τ−3/2 +Nf (τ/Ts) , (7.8)

where N is such that
∫ Ts

1 dτPs(τ) = 1. In writing Eq. 7.8, we have neglected the correlation

between the two parts in Ps(τ) (which is justified in view of the different physical processes

resulting in the two parts, see the paragraph following Eq. 7.12). Now, since N normalizes

Ps(τ), we have

∫ Ts

1
dτPs(τ) ≈

∫ Tr

1
dτ τ−3/2 +N

∫ Ts

Tr

dτf (τ/Ts) = 1, (7.9)

where we have assumed that the lower limit for the integral involving the scaling part is Tr,

which is the cutoff for the power law part. Next, the last equation can be rewritten as

∫ Tr

1
dτ τ−3/2 +NTs

∫ 1

Tr/Ts

d (τ/Ts) f (τ/Ts) = 1. (7.10)

Noting that in the scaling limit, Tr/Ts → 0, we have

∫ Tr

1
dτ τ−3/2 +NTsC = 1, (7.11)

where C is a constant standing for
∫ 1
0 dyf(y). On evaluating the integral in Eq. 7.11, we

get the desired scaling form for N .

N ∼ (ρ− ρc)
−(b+2)L−(b+1). (7.12)

The power law part in Ps(τ) holds for times when the two sites with mass ∼ M0/2

compete to hold the largest mass. The random walk argument, discussed above, predicts a

τ−3/2 decay, since Ps(τ) then stands for the probability for the random walker to cross the

origin for the first time [12]. The second part in Ps(τ) arises from the relatively long time

for which the condensate is stationary on one site.

We now explain the behavior of C(t)/t in the different regimes seen in Fig. 7.5(a).

The condensate is stationary on one site for a long time τ1, which is a random interval

distributed as p(τ1) ∼ (ρ− ρc)
−(b+2)L−(b+1)f (τ1/Ts), with the characteristic survival time

Ts. In regime (i), when t ≪ Ts, the condensate is stationary and acts as a reservoir for

fluctuations, preventing their transport around the system as a kinematic wave. As a result,
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Burke’s theorem is valid over this time scale and the integrated current is Poisson distributed

with intensity vmax = 1, implying C(t)/t = 1 (Appendix D). When t ∼ Ts, the condensate

starts to move from one site to another by transferring its mass across the intervening bonds.

As a result, these bonds pick up enhanced fluctuations [∝ (∆M0)
2] in the integrated current

over the relocation time interval τ2, which is a random variable with the characteristic time

Tr. These enhanced fluctuations lead to the rise in C(t)/t as a function of t in regime (ii).

The collapse of the rise times seen in the scaling plot of Fig. 7.5(b) confirms this picture.

The fact that the time scale Ts indeed scales as Lb is further consolidated by Fig. 7.7,

where the rise times in C(t)/t as a function of t can be seen to be showing better scaling

collapse with Ts ∼ Lb compared to any other scaling of Ts with L, e.g., Ts ∼ Lb−1 or

Ts ∼ Lb+1. In regime (iii), after t ∼ Ts + Tr, the condensate has completed relocating, so

current fluctuations revert to Burke-like behavior, resulting in the fall of C(t)/t in time.

The slow fall in regime (iii) arises from the wide distribution of the time τ2, and further

relocations. To predict the behavior in regime (iv), where t≫ Ts +Tr, we construct below a

simple relocation model that describes the effect of condensate relocation on the long-time

behavior of current fluctuations.

}

τ1τ2

Integrated current=M̃k

1

j
(i

,t
)

t

J
(i

,t
)

Figure 7.8: Schematic plot of the instantaneous current J(i, t) across the bond (i, i + 1) at
time t as a function of time. The random variable τ1 is the time for which the condensate
is stationary on a site, while the random variable τ2 stands for the relocation time of the
condensate. M̃k is the integrated current over time τ2, arising from the kth relocation of
the condensate across the bond (i, i + 1).

The relocation model

Figure 7.8 shows schematically the instantaneous current J(i, t) across the bond (i, i+1) as

a function of time. When the condensate is stationary on one site, the mean current equals

vmax = 1 (see Chapter 6, Section 6.5.3). In a given history, let

K = Number of condensate relocations in a fixed time t. (7.13)
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Here, K is a random variable with mean given approximately by

〈K〉 ≈ t

(DTs +BTr)
, (7.14)

where B and D are constants, independent of the density and the system size. At the k-th

relocation of the condensate (k = 1, 2, . . . ,K), let

M̃k = Amount of mass transferred across the bond (i, i+ 1) over the interval τ2. (7.15)

The random variable M̃k in Eq. 7.15 has an average M0 and variance ∆M0. As discussed

in Section 7.3.3, one has M0 ≡ 〈M(t)〉 = (ρ − ρc)L, while the fluctuations ∆M0 scale as

L1/2 for b > 3, and as L1/(b−1) for 2 < b < 3.

The integrated current H(i, t) is given approximately as

H(i, t) ≈
K∑

k=1

M̃k +

t−KBTr∑

0

J(i, t′), (7.16)

where we neglect the correlations between the events contributing to the current for times

during which the condensate is stationary on one site and during which it is relocating from

one site to another.

For b > 3, on computing the variance of the integrated current, given by C(i, t) ≡〈[
H(i, t) − 〈H(i, t)〉

]2〉
, we get

C(i, t) ≈ GL〈K〉 + (t− 〈K〉BTr), (7.17)

where G is a constant. In arriving at the above equation, we have used the fact that during

times the condensate is stationary on one site, the integrated current is Poisson distributed

with intensity vmax = 1, so that the fluctuations in the integrated current during such times

equal vmax = 1 (see Section 7.3.3).

Since the expression for the variance of the integrated current in Eq. 7.17 is the same

for all bonds (i, i + 1), on averaging over i, one gets

C(t) ≈ GL〈K〉 + (t− 〈K〉BTr). (7.18)

On substituting for 〈K〉 from Eq. 7.14 in Eq. 7.18, and neglecting the time scale Tr ∼
(ρ− ρc)

2L2 in comparison to Ts ∼ (ρ− ρc)
b+1Lb, we obtain the asymptotic behavior

C(t) ∼ [L−θ(ρ− ρc)
−(b+1) + 1]t. (7.19)
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In Eq. 7.19, the exponent θ is given by

θ =

{
b− 1 for b > 3,

(b2 − b− 2)/(b − 1) for 2 < b < 3.
(7.20)

Thus, the relocation model predicts that, for all values of b, at long times t ≫ Ts + Tr

[regime (iv) in Fig. 7.5(a)], C(t)/t approaches a size-dependent constant which scales down

with the system size. This long-time regime (iv) could not be accessed in simulations for

the system sizes shown in Fig. 7.5(b), but we confirmed its existence for smaller systems.

In summary, we addressed the dynamics of stationary state fluctuations in a zero-range

process which undergoes a nonequilibrium phase transition from a disordered to a condensed

phase. Different dynamical properties emerge in the two phases. In the disordered phase,

fluctuations move around the system as a kinematic wave. Such a wave, though present

far away from the condensate, cannot circulate around in the condensed phase because the

condensate subsumes fluctuations. The dynamics is governed by the condensate relocation

through a slower process of transfer of particles from site to site, contributing enhanced

fluctuations to the particle current across the intervening bonds.
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Chapter 8

The Exclusion Process with

Extended Objects

“Contrariwise, if it was so, it might be; and if it were so, it would be; but as it

isn’t, it ain’t. That’s logic.”

Lewis Carroll

The exclusion process with extended objects generalizes the asymmetric simple exclusion

process (ASEP) to the case where particles in the ASEP are replaced by objects of finite

extent, moving along a lattice in accordance with a stochastic hopping dynamics. While in

the ASEP, the moving object, namely, a particle, covers a single lattice site, with extended

objects, the coverage is more than one site, i.e., for a k-mer, k adjacent sites are covered.

With k = 1, we recover the usual ASEP involving particles. The dynamical rules are the

same for both the ASEP and the exclusion process with extended objects, namely, if the

moving entity finds a vacant site in front, it advances by one lattice site, while, if there is a

vacancy behind the moving entity, it steps backward by one lattice site with a probability

different from the one with which it advances forward.

The concept of the exclusion process with extended objects is accredited to MacDonald

et al. [1, 2], who, in their attempts to understand protein synthesis inside living cells,

introduced this model as a simple setting in which the process of synthesis may be addressed.

The synthesis proceeds with the following steps. The ribosomes move from codon to codon

along the messenger RNA (m-RNA), read off genetic information, and thereby, generate

the protein stepwise. In the exclusion process with extended objects, the moving ribosomes

are modelled by the extended objects, while the lattice sites represent the codons. The

finite extent of the objects takes care of the blocking of several codons by a single ribosome.

Steric hindrance, excluding overlap of ribosomes, is incorporated in the model through the

exclusion constraint, which implies that a single lattice site can be occupied by at most

one extended object at a time. Ribosomes, attaching to the m-RNA to initiate the protein

synthesis, and detaching at the point of termination are modelled with open boundaries,

115
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whereby the extended objects enter and exit the lattice at the boundaries, much like the

ASEP with open boundaries, discussed in Chapter 2.

The exclusion process with extended objects has been much studied in the past. Mac-

donald et al. treated the model at the mean-field level in deriving the stationary state

density profile [1, 2]. More recently, several authors have studied the process, analyzing the

time-dependent conditional probabilities of finding the k-mers at specific sites at a given

time, starting with a given initial distribution of k-mers on lattice sites [3], the dynamical

exponent [4], the phase diagram of the open system [5, 6, 7, 8], the hydrodynamic limit

governing the evolution of density [9], and the effects of defect locations [10].

Because of the similarity in the dynamics of the ASEP to that in the exclusion process

with extended objects, every configuration involving the extended objects can be mapped

to an equivalent and unique configuration in the ASEP, defined on a smaller lattice, as we

discuss below [11]. As a result, the stationary state of the exclusion process with extended

objects on a one-dimensional ring is the one in which all allowed configurations with the same

number of k-mers occur with the same weight. However, there are significant differences in

the stationary state properties between the two that warrants a detailed study of the system

with extended objects in its own rights. For example, there is no site-site correlation in the

ASEP in the thermodynamic limit. Thus, a site can be occupied or empty, independently

of any other site; this follows from the fact that all configurations in the stationary state

are equally likely (see Chapter 2). This property is however no longer valid in the exclusion

process with extended objects, where, if a site is occupied by one end, say, the right end

of a k-mer, the next k − 1 sites to the left are occupied for sure, since the k-mers are non-

reconstituting or hard objects; this is true despite the fact that all allowed configurations

are equally likely.

In this chapter, we will basically explore the equivalence of the exclusion process with

extended objects to the ASEP in deriving a number of stationary state properties, both

statics and dynamics. We will consider a one-dimensional lattice with periodic boundary

conditions. We will show that the two-point density-density correlation function exhibits

distinct oscillations due to the finite-size of the moving entities.

The layout of the chapter is as follows. We start in Section 8.1 with a precise definition

of the exclusion process with extended objects on a one-dimensional ring. In Section 8.2,

we discuss the mapping of the model to the ASEP, and its immediate consequence for the

stationary state weight of k-mer configurations, and a number of stationary state properties

like the average k-mer current and the kinematic wave velocity of density fluctuations. In

Section 8.3, we discuss an important effect that shows up in the process of mapping between

sites in the k-mer system and in the ASEP. This effect corresponds to wheeling motion

around a periodic system of an ASEP site that corresponds to a fixed site in the k-mer

problem.

Next, we come to discussing correlation functions in the stationary state of the k-mer

problem. In Section 8.4, we compute the equal-time density-density correlation function
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in a closed form. We point out and explain how, in the approach to a proper continuum

limit of the k-mer problem, this correlation function assumes a scaling form. We provide

numerical evidence in support of the scaling form. In Section 8.5, we consider the unequal-

time density-density correlation function, and discuss the scaling form that it assumes in

the limit of large distances and long times. We conclude the chapter in Section 8.6.

8.1 The model with periodic boundary conditions

(a) A configuration of N = 4 trimers (k = 3) on a lattice of
L = 26 sites.

(b) Equivalent ASEP configuration of N = 4 particles on a
lattice of L − N(k − 1) = 26 − 4(3 − 1) = 18 sites.

p

i + 1 i − 3i

p q

q

Figure 8.1: Definition of the exclusion process with extended objects (k-mers) on a ring. In
(a), we show a typical k-mer configuration with k = 3, while (b) shows the corresponding
equivalent ASEP configuration, in which each k-mer in (a) has been replaced by a particle
in the ASEP, such that each particle represents the ‘engine’ or the right end of the corre-
sponding k-mer, coloured blue. The disallowed transitions of the k-mers, equivalently, the
particles are marked by crosses.

We consider N k-mers on a one-dimensional periodic lattice of L sites. The lattice sites

are labelled by the index i = 1, 2, . . . , L. Each k-mer occupies k adjacent sites on the lattice,

and is a rigid object. The system evolves according to a stochastic Markovian dynamics: at

each time step, a site i is chosen at random. If the site i contains the right end (called the

‘engine’) of a k-mer, then, with probability p, the k-mer advances forward by one lattice

site, provided the site i+1 in front is unoccupied. On the other hand, with probability q, it
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moves backward by one lattice site, provided the site i− k behind the k-mer is unoccupied.

The k-mer continues to occupy its original position with probability 1 − (p + q). Figure

8.1(a) shows a schematic view of the process. Note that for k = 1, the dynamics becomes

exactly identical to that of the ASEP, discussed in Chapter 2, Section 2.1. The system

of k-mers with the above mentioned dynamics, in the limit of long times, settles into a

nonequilibrium stationary state with a steady current of k-mers through the system.

Earlier studies of the model dealt with dimers (k = 2) that do not retain their identities

and are allowed to reconstitute [11, 12]. Specifically, on a lattice of L sites, one considers

single particles or monomers (denoted by 1) and paired particles or dimers (denoted by

11) to be distributed with at most one particle per site (i.e., the site occupancy can be

either 0 or 1). A configuration is thus denoted by an L-bit binary string. The dynamics of

the model follows closely that described in the preceding paragraph for the k-mers. Thus,

a dimer moves by one lattice site either forward or backward without violating the hard

core constraint on site occupancies. The pairing of the dimers is impermanent, thereby

allowing for reconstitution, e.g., 11010 → 01110 → 01011, in which the middle particle is

paired with the particle to the left in the first transition, and with the particle to the right

in the second transition. Both asymmetric (p 6= q) [11] as well as symmetric (p = q) [12]

motion of the dimers were considered, and in both the cases, the phase space was shown

to break up into an infinite number of dynamically disjoint sectors. A non-local construct,

called the irreducible string (IS), was shown to uniquely label the different sectors. The IS

corresponding to a given configuration is constructed from the corresponding L-bit binary

string by deleting recursively any pair of adjacent 1’s until no further deletion is possible.

The model exhibits dynamical diversity with quantities like the density autocorrelation

function showing strong sector-dependent behaviors, ranging from power laws to stretched

exponentials. This diversity is explained in terms of the difference in the IS from sector to

sector. Interestingly, the sector whose IS is given by the null string corresponds to hard

non-reconstituting dimers. This is because, for a configuration involving non-reconstituting

dimers only, the deletion algorithm for the construction of the corresponding IS will result

in an IS which is a null string of 0’s. As a result, the sector whose IS is given by the null

string corresponds to the k-mer system considered in this chapter for the special case of

dimers (i.e., k = 2) [11].

8.2 The stationary state measure

In order to obtain the stationary state measure of the k-mer configurations, we note that

every k-mer configuration is uniquely mapped to an ASEP configuration on a smaller lattice

[11]. The ASEP configuration is obtained from the k-mer configuration by replacing each

of the k-mers by a particle which may be taken to represent the engine of the corresponding

k-mer, as shown in Fig. 8.1(b). This procedure generates a one-to-one mapping between a

configuration of N k-mers on a lattice of L sites and an ASEP configuration of N particles
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on a lattice of L′ = L − N(k − 1) sites. The k-mer density is given by ρk−mer = Nk/L,

while the corresponding ASEP particle density ρ is given by ρ = N/L′ = N/(L−N(k−1)).

Thus, the two densities are related to one another through

ρk−mer =
ρk

1 + ρ(k − 1)
. (8.1)

Also, we have
L′

L
=

1

1 + ρ(k − 1)
. (8.2)

Now, the stationary state of the ASEP on a periodic lattice allows all configurations with

the same number of particles to be equally likely (Chapter 2, Section 2.2). Because of

the one-to-one correspondence of the configurations in the ASEP to the k-mer system, it

follows that on a periodic lattice, in the stationary state, all configurations with the same

number of k-mers are also equally likely. The probability of occurrence of an allowed k-mer

configuration is given by the reciprocal of the total number of allowed k-mer configurations,

equivalently, the total number of allowed ASEP configurations; this number is computed

by counting the number of ways in which N particles may be placed over a lattice of

L′ = L−N(k − 1) sites, and is, thus, given by
(L−N(k−1)

N

)
= (L−N(k−1))!

N !(L−Nk)! . In the following,

we consider the k-mer system in the thermodynamic limit, N → ∞, L → ∞, with finite

k-mer density ρk−mer. This implies thermodynamic limit for the equivalent ASEP system

as well: the number of particles, namely, N is infinite, while the number of lattice sites,

L′ = L−N(k − 1) = L(1 − ρk−mer(k − 1)/k), is also infinite. The density of particles ρ in

the ASEP is, however, finite.

In the ASEP, the probability that a randomly chosen site is occupied by a particle is

given by the ASEP particle density ρ. This probability is properly normalized in the sense

that in the ASEP lattice of L′ sites, there are L′ sites to choose, and each is occupied with

probability ρ, so that ρL′ = N , the total number of particles, as desired. In the k-mer

system, the probability that a randomly chosen site is occupied by an engine is the same

as the probability that the corresponding site in the ASEP is occupied by a particle, and

hence equals ρ. However, this probability is not properly normalized in the sense that for

our k-mer system of L sites, ρL should equal the total number of engines in the system,

namely, N , which it does not; for proper normalization, one has to have this probability to

be given by ρL′/L. The normalized probabilities are different in the k-mer system and the

ASEP because of the number of lattice sites being different in the two cases. To compute the

probability of any event in the k-mer system, one needs to first compute the corresponding

probability in the ASEP, and then, for normalization, multiply it by L′/L. Using Eq. 8.2,

we conclude that

Prob(a site is occupied by the engine of a k−mer) =
ρ

1 + ρ(k − 1)
. (8.3)

Next, we compute the current due to the motion of the k-mers. Across a bond (i, i + 1),
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a k-mer current will be registered in the following two cases. (i) The i-th site is occupied

by the engine of a k-mer, while the (i + 1)-th site is empty, so that, in one time step, the

k-mer advances forward by one lattice site with probability p; corresponding to this k-mer

motion, in the equivalent ASEP configuration, a particle, occupying site i, will have hopped

into the empty site i + 1 with probability p. (ii) The (i + k)-th site is occupied by the

engine of a k-mer, while the i-th site is empty, so that, in one time step, the k-mer advances

backward by one lattice site with probability q; corresponding to this k-mer motion, in the

equivalent ASEP configuration, a particle, occupying site i + 1, will have hopped into the

empty site i with probability q. Thus, in the stationary state, the average k-mer current

will be the same as the average particle current in the equivalent ASEP system, excepting

for the normalization factor, L′/L, coming from the difference in the number of sites in the

two cases. In the thermodynamic limit, the ASEP particle current at density ρ has the

average value J , given by J = (p − q)ρ(1 − ρ) (see Chapter 2, Section 2.4). We conclude

that the average k-mer current will equal JL′/L, and will, thus, be given by

Jk−mer =
(p− q)ρ(1 − ρ)

1 + ρ(k − 1)
, (8.4)

where we have used Eq. 8.2.

The kinematic wave velocity vk−mer
K in the k-mer problem, given by ∂J

∂ρ (see Appendix

A), reads

vk−mer
K = (p − q)

[
1 − 2ρ

1 + ρ(k − 1)
− ρ(1 − ρ)(k − 1)

(1 + ρ(k − 1))2

]
. (8.5)

8.3 The wheeling effect

The wheeling effect is an important effect that shows up in the process of mapping between

sites in the k-mer system and in the ASEP [11]. As a consequence of this effect, a fixed site

in the k-mer problem corresponds to a site in the ASEP, which wheels or moves around the

ring with a finite velocity. This is because, as shown in Fig. 8.2, following a k-mer motion,

one finds that the images of the central sites of the k-mer advances by one unit, while the

images of the two boundary sites remain unchanged. This wheeling of ASEP-images of the

central sites of the k-mer by one lattice unit in unit time occurs when one of the following

situations arises.

(i) There is a vacancy in front of the engine of the k-mer so that with probability p, the

k-mer advances forward by one lattice site in unit time, and the images move forward by

one lattice site; the weight for this event to take place is given by pρ(1 − ρ), and thus, the

corresponding probability will be pρ(1−ρ)
1+ρ(k−1) .

(ii) There is a vacancy behind the k-mer so that with probability q, the k-mer moves

backward by one lattice site in unit time, and the images move backward by one lattice site;

the weight for this event to take place is given by qρ(1 − ρ), and thus, the corresponding
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Figure 8.2: The wheeling effect, showing how, corresponding to a k-mer motion, the image
of a fixed site in the k-mer problem corresponds to a site in the ASEP, which wheels or
moves around the ring. Here, k = 4, the engine of each of the k-mers is colored blue. We
have listed the images of only those sites which have been affected by the motion of the
k-mer occupying sites 1, 2, 3, 4 in (a).

probability will be qρ(1−ρ)
1+ρ(k−1) .

Thus, the average wheeling velocity W is given by

W =
(p − q)ρ(1 − ρ)

1 + ρ(k − 1)
. (8.6)
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8.4 The equal-time density-density correlation

Let ni denote the occupation variable of site i, taking values 0 or 1 according as the site

is empty or occupied by a k-mer, respectively. We have ni = ρk−mer, where the overbar

denotes averaging with respect to the stationary ensemble of k-mer configurations. We are

interested in computing the (unsubtracted) equal-time density-density correlation function,

given by

C(r) = nini+r. (8.7)

The above correlation function can be evaluated in terms of the engine-engine correlation

E(r), defined as the joint probability of finding an engine at site i and another one at site

i + r. The function C(r) can be expressed in terms of E(r) in the following way. Keeping

site i occupied by the engine of the k-mer, in order to have a non-zero contribution to C(r),

the (i + r)-th site has to be occupied by either the engine or any of the successive k − 1

parts of a k-mer with probabilities E(r), E(r + 1), E(r + 2), . . . , E(r + (k − 1)), respectively.

In this way, one considers all possible ways in which site i remains occupied by a k-mer,

and for each such way, one lists down all the different ways in which i+ r may be occupied

by a k-mer. One finally gets

C(r) = kE(r) +

k−1∑

m=1

m[E(r + (k −m)) + E(r − (k −m))]. (8.8)

The engine-engine correlation function E(r) can be computed in the following way [11].

E(r) is obtained from all configurations in which there is an engine at each of the sites i

and i + r, with the gap between the two k-mers containing r − k sites. The weights of

all such configurations are obtained by mapping each one of them to an equivalent ASEP

configuration, allowing for the weights to have an ASEP particle at both the sites i and

i+ r, and also for m k-mers and r− k− km vacancies in between, and then considering all

possible ways in which m k-mers may be distributed over r− k− km+m sites. Lastly, one

sums over m from 0 to the maximum number of k-mers that may be put into the gap of

r − k sites between the two engines at sites i and i+ r; this maximum number is given by

the integer part of (r − k)/k. Finally, in order to normalize the resultant weight, one has

to multiply it by L′/L = 1/(1 + ρ(k − 1)), as discussed above; one gets

E(r) =
ρ2

1 + ρ(k − 1)

Integer[(r−k)/k]∑

m=0

(
r − k − km+m

m

)
ρm(1 − ρ)r−k−km. (8.9)

In getting the above result, we have used the fact that in the ASEP, in the thermodynamic

limit, the joint probability of several sites being occupied at the same time is given by the

product of the probability ρ that each site is occupied, independently of the others (see

Chapter 2, Section 2.3).
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For k = 2, the sum in Eq. 8.9 can be evaluated exactly with the result [11]

E(r) =
ρ2

(1 + ρ)2
[1 − (−ρ)r−1]. (8.10)

For general k > 3, the sum in Eq. 8.9 could not be evaluated analytically. Instead, we

performed a numerical evaluation of the sum; the result for a particular k is shown in Fig.

8.3.
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Figure 8.3: Engine-engine correlation function E(r), evaluated numerically, using Eq. 8.9.
Here, k = 300, the ASEP density ρ = 0.02.
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Figure 8.4: Scaling plot of k2E(r) as a function of r/k. For different k’s, and at ASEP
densities ρ such that ρk = constant = 6, the function E(r) is evaluated numerically, using
Eq. 8.9. For large k, the function E(r) assumes the scaling form in Eq. 8.11.

One observes that for large k, and at ASEP densities ρ such that ρk = fixed, the function

E(r) assumes a scaling form, as confirmed by the scaling plot of Fig. 8.4. One concludes
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that

E(r) ∼ 1

k2
f
( r
k

)
, (8.11)

where f(u) is the scaling function.

In order to explain the scaling behavior in Eq. 8.11, we consider the k-mer system in the

‘continuum’ limit, explained below, which is obtained by letting k → ∞. First, note that

a k-mer configuration with a desired density ρk−mer can be generated by first generating

the equivalent ASEP configuration with density ρ, given from Eq. 8.1, and then, dilating

each particle in the ASEP so as to occupy k adjacent sites. If a is the lattice spacing in the

ASEP, each k-mer has a length l = ka. To achieve the continuum limit of the k-mer system,

we first generate the continuum limit of the ASEP system by letting the lattice spacing a

in the ASEP to go to 0, and simultaneously, the ASEP particle density ρ to go to 0. This

gives, corresponding to the ASEP system of particles on a lattice, a system of particles of

infinitesimal size, a → 0, with finite density ρ0 = ρ/a on a continuous line. Next, we let k

go to infinity, keeping l = ka finite. In this limit, the equivalent k-mer system now has rods

of finite length l distributed over a continuous line. Thus, the continuum limit of the k-mer

system involves taking the following limits: (i) ASEP lattice spacing a → 0, (ii) ASEP

particle density ρ→ 0, keeping ρ0 = ρ/a finite, and (iii) k → ∞, keeping l = ka finite. One

thus has ρk = ρ0l = a finite constant. In this continuum limit, the right hand side of Eq.

8.9 evaluates to

ρ2
0a

2

1 + ρ0l

Integer[(R−l)/l]∑

m=0

[R− (m+ 1)l]m

m!
e−ρ0[R−(m+1)l]ρm

0 . (8.12)

where R = ra is finite in the limit r → ∞, a→ 0. We can rewrite the above equation as

(
a2

l2

)
ρ2
0l

2

1 + ρ0l

Integer[R/l−1]∑

m=0

[R/l − (m+ 1)]m

m!
e−(ρ0l)[R/l−(m+1)](ρ0l)

m. (8.13)

Noting that in the continuum limit, ρ0l = constant, and that a/l = 1/k, we conclude that

the above equation has the scaling form ∼ 1
k2 f

(
R
l

)
. Since R/l = r/k, we get the following

scaling form for the engine-engine correlation function,

E(r) ∼ 1

k2
f
( r
k

)
, (8.14)

which is consistent with the form proposed in Eq. 8.11.

8.5 The unequal-time density-density correlation

The unequal time density-density correlation function in the k-mer problem is defined as

C(r = |i− j|, t) ≡ 〈ni(0)nj(t)〉 − ρ2
k−mer, (8.15)
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where ni(0) is the occupancy of site i at time 0, nj(t) is the occupancy of site j at time t, the

overbar denotes averaging over the initial stationary ensemble of k-mer configurations (i.e.,

the ensemble in which all configurations with the same number of k-mers are equally likely),

while the angular brackets denote averaging with respect to their subsequent stochastic

evolutions in time. The scaling form of C(r, t) has been investigated earlier for the case of

dimers in Ref. [11]. To obtain the scaling form of the function C(r, t) for general k, we will

explore the mapping of the k-mer problem to the ASEP problem.

As discussed in Chapter 2, Section 2.5, in the ASEP, the unequal-time density-density

correlation function CX(r = |i − j|, t) ≡ 〈ni(0)nj(t)〉 − ρ2, in the limit of long times and

large distances, assumes the scaling form [13]

CX(r, t) ∝ t−2/3f(u); u =
1

2
(JX t

2)−1/3(r − vKt). (8.16)

In the above equation, JX is the average value of the ASEP particle current, where ρ is the

ASEP particle density. Also, vK is the kinematic velocity of density fluctuations, discussed

in Chapter 2, and also in Appendix A. In the limit of large u, the function f(u) is known

to behave exponentially as f(u) ∼ exp(−µ|u|3) with the constant µ ≈ −0.295 [13]. Thus,

at long times, the function CX(r, t) decays as an exponential in time.

The function C(r, t) will be as in the ASEP once the wheeling of sites, discussed in

Section 8.3 above, is taken care of [11]. Thus, in the limit of long times and at large

distances, the unequal-time density-density correlation function C(r, t) will have the scaling

form

C(r, t) ∝ t−2/3f(r + (W − vK)t). (8.17)

The autocorrelation function C(r = 0, t) ≡ C(t) will behave as t−2/3e−κt at long times,

where κ is a constant proportional to the difference of the wheeling velocity and the kine-

matic wave velocity, W − vK . On the other hand, if the k-mer density ρk−mer (equivalently,

the ASEP density ρ) is such that W − vK vanishes, then the autocorrelation, at late times,

is expected to fall in time as a power law: C(t) ∼ t−2/3. The corresponding ASEP density

is called the compensating density ρc. In the thermodynamic limit, since W = (p−q)ρ(1−ρ)
1+ρ(k−1)

and vK = (p − q)(1 − 2ρ) (see Chapter 2, Eq. 2.11), for W − vK to vanish, the density ρc

satisfies the following equation.

ρ2
c(k − 1) + 2ρc − 1 = 0. (8.18)

Solving for ρc, one gets ρc = −1±
√

k
k−1 . Since ρc has to be a positive quantity, one gets

ρc =

√
k − 1

k − 1

=
1√
k + 1

. (8.19)

The above result for the compensating density matches with that derived earlier for dimers
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with k = 2 [11]. Note that at ρc, the kinematic wave velocity vk−mer
K in the k-mer problem

also becomes zero.

8.6 Concluding remarks

In this chapter, we considered the exclusion process with extended objects. The process

involves k-mers that occupy k adjacent sites on a lattice, with k > 1. These k-mers undergo

a driven motion along the lattice in accordance with a stochastic hopping dynamics. We

considered the model in one dimension with periodic boundary conditions. We showed that

many stationary state properties of the k-mer system, e.g., the correlation functions for

site occupancies can be derived rather simply by mapping every configuration in the k-mer

problem to an equivalent and unique configuration in an ASEP on a smaller lattice [11].

We showed that these correlation functions show distinctive size effects like characteristic

oscillations, etc., arising from the finite size of the extended objects, and have scaling forms

in the proper continuum limit of the model.
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[9] G. Schönherr and G. M. Schütz, J. Phys. A 37, 8215 (2004).

[10] J. J. Dong, B. Schmittmann, and R. K. P. Zia, Phys. Rev. E 76, 051113 (2007).

[11] M. Barma, M. D. Grynberg, and R. B. Stinchcombe, J. Phys.: Condens. Matter 19,

065112 (2007).

[12] G. I. Menon, M. Barma, and D. Dhar, J. Stat. Phys. 86, 1237 (1997).

[13] M. Prähofer and H. Spohn in In and Out of Equilibrium (Progress in Probabil-

ity Vol. 51, edited by V. Sidoravicius (Boston, MA: Birkhauser), pp 185-204: also,

eprint:arXiv:cond-mat/010200.

127



Chapter 9

Summary and discussion

“Be what you would seem to be—or, if you’d like it put more simply—never

imagine yourself not to be otherwise than what it might appear to others that

what you were or might have been was not otherwise than what you had been

would have appeared to them to be otherwise.”

Lewis Carroll

In this thesis, we addressed the issue of how the dynamics of fluctuations in the stationary

state of driven diffusive systems gets affected by the finiteness of the system size. Finite-size

effects in equilibrium systems, particularly those that occur close to the critical point of a

second order phase transition, have been studied extensively in the past. These effects lead

to slowing down of the dynamics of the system close to the critical point, a phenomenon

referred to as critical slowing down. Size effects show up in quantities, for example, the

equal-time two-point correlation function for the fluctuations in the order parameter char-

acterizing the phase transition. This correlation function exhibits power-law behavior with

a size-dependent cut-off. Finite-size effects, by virtue of the scaling hypothesis, have been

proved to be extremely useful in extracting, from finite-size simulations, the universal crit-

ical exponents characterizing the power-law behavior of thermodynamic quantities close to

a critical point [1]. Size effects are also observed in a first-order transition, for which a

comprehensive scaling theory has been developed in the past [2].

However, the theoretical development for study of nonequilibrium stationary states is

much in its infancy. This could be attributed partly to the lack of a general framework

akin to that of Gibbs-Boltzmann for equilibrium systems. Although, in principle, the very

general Master equation approach exists to find the stationary distribution for stochas-

tic Markovian systems driven out of equilibrium, in practice, solving the equation often

proves to be formidable in view of the many-body character of most nonequilibrium sys-

tems. In this respect, driven diffusive systems [3], and in particular, the two paradigmatic

examples studied in this thesis, namely, the asymmetric simple exclusion process (ASEP)

and the zero-range process (ZRP) serve as base camps for starting an expedition into the

uncharted areas of nonequilibrium stationary states. These are systems of interacting par-
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ticles in which each particle has a diffusive motion in addition to an overall drift due to the

application of an external field; in the limit of long times, these systems relax to a current-

carrying nonequilibrium stationary state [3]. Although, in recent past, several authors have

considered the problem of studying fluctuations for the ASEP and the ZRP, a complete

and coherent picture of size effects on the dynamics has been lacking. This thesis has made

some efforts in this regard in providing an exhaustive study of size effects on nonequilibrium

stationary states within the ambit of the ASEP and the ZRP in one dimension.

The ASEP involves stochastic biased hopping of hard core particles between nearest

neighbor sites of a lattice [4, 5]. In this thesis, we have revisited the problem of tagged

particle correlation in the ASEP on a one-dimensional lattice with periodic boundary con-

ditions, with particular emphasis on finite-size effects. The particular quantity that we

monitored is the stationary state variance of the displacement of a tagged particle about

the average, where the average is with respect to the initial stationary ensemble of ASEP

configurations and subsequent stochastic evolution of the configurations in time. Scaling

analysis, supported by cogent physical arguments, suggests that the behavior of the variance

in time captures the motion of stationary state density fluctuations around the system as

a dissipating kinematic wave [6], and can be characterized by two distinct size-dependent

time scales, T1 ∼ L, and T2 ∼ L3/2 for a periodic lattice of L sites. Here, the time scale

T1 marks the circulation time of the kinematic wave, while T2 sets the scale over which the

wave dissipates in time. The behavior of the variance is linear for both the time regimes

t ≪ T1 and t ≫ T2; for times t ≪ T1, the variance grows linearly with a size-independent

slope [7], while that for t ≫ T2 has a specific size-dependence, scaling as the inverse square

root of the system size [8]; this late-time behavior is attributed to the diffusive motion of the

center-of-mass of the system. For intermediate times, T1 ≪ t≪ T2, the variance shows pro-

nounced oscillations with a well-defined size-dependent time period, given by L/(vP − vK).

We understood the oscillations as arising from the sliding density fluctuations (SDF), relat-

ing to the phenomenon of density fluctuations moving with the kinematic speed vK relative

to the particles which drift with a different speed vP .

Following van Beijeren [9], we also studied the variance of the displacement of the tagged

particle by averaging with respect to only stochastic evolution of a fixed initial configuration,

drawn from the ensemble of stationary states. We saw that the variance effectively captures

the dissipation of the kinematic wave in time, and its behavior in time is characterized by

only one time scale T ∗ ∼ L3/2. The variance grows linearly in time for times t ≫ T ∗ with

a constant scaling as the inverse square root of the system size, while for times t ≪ T ∗, it

grows as t2/3 [9]. The late-time behavior was understood in terms of the diffusive motion

of the center-of-mass.

The tagged particle correlations in the ASEP was related to the height fluctuations of a

nonequilibrium interface in the Kardar-Parisi-Zhang (KPZ) universality class [10]. This is

achieved by interpreting the particle label as horizontal coordinate for the interface, while

the particle location maps onto the local height of the interface [11]. The corresponding
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time-evolution equation for the interface is the usual KPZ equation, with an additional drift

term that accounts for the SDF. This equation is nonlinear and cannot be solved exactly.

By dropping the nonlinear term, we obtained a linear interface whose time evolution is

governed by the Edwards-Wilkinson (EW) evolution equation [12], augmented by the drift

term due to the SDF; we solved the resultant equation exactly for the height fluctuations,

equivalently, the tagged particle correlations. This exact solution was helpful in under-

standing the occurrence of size-dependent time-scales T1, T2 and T ∗ in the tagged particle

correlations in the ASEP. The linear interface also provides an effective coarse-grained de-

scription of two other interacting particle systems, namely, the asymmetric random average

process (ARAP) [13] and the Katz-Lebowitz-Spohn (KLS) model at a particular value of

the temperature [14]. The ARAP is the generalization of the ASEP to a continuum, where,

hard-core particles, instead of hopping on a lattice, move along a continuous line. The

KLS model, on the other hand, adds Ising interaction to the hard core exclusion between

particles in the ASEP.

A general observation made in our study is that both the EW and the KPZ fixed points

are unstable with respect to the SDF fixed point, a flow towards which is generated on

adding a drift term to the EW and the KPZ time-evolution equations. This means that the

least amount of drift in either the EW or the KPZ equation would make the large distance

long time behavior of fluctuations for these equations be determined by the SDF fixed point.

In this thesis, we also considered the homogeneous zero-range process (ZRP) on a one-

dimensional periodic lattice of L sites. The ZRP involves biased hopping of unit-mass

particles between nearest neighbor sites of the lattice with a rate that depends solely on the

occupancy at the departure site [4, 15]. Here, the hop rate function is the same for all sites.

The stationary state measure of the process is known exactly to have a factorized form,

being given by a product of factors, one for each site of the system. For certain classes of

the hop rates, the ZRP, as a function of the particle density, undergoes a continuous phase

transition on increasing the particle density ρ beyond a critical value ρc; the system goes

over from a low-density disordered phase with uniform average density to a condensed phase

at high density, where a finite fraction of particles of average mass (ρ−ρc)L accumulates on

a single site. In this thesis, we studied how different are the effects of size on the dynamics

of fluctuations as the system passes through the condensation transition. We reported our

results for a particular choice of the rate, namely, u(n) = 1 + b
n with b > 2, where n is the

occupancy at the departure site. The particular quantity that we monitored is the variance

of the integrated particle current across a bond in the stationary state. We found that the

variance shows striking differences in behavior as the system goes over from the disordered

to the condensed phase.

A general result that applies to all the phases is that at short times, when the fluctuations

did not have time to circulate around, the integrated current is Poisson distributed, implying

that the variance grows linearly in time, a behavior which holds for all times in an infinite

system.



131

In a finite system, in the disordered phase, and also at the critical point, the variance

behaves similarly to the tagged particle correlations in the ASEP, described above. Thus, the

variance shows damped oscillations in time due to the kinematic wave of density fluctuations,

and has two size-dependent time scales, T1 ∼ L and T2 ∼ L3/2, set by the circulation time

and the decay time of the kinematic wave, respectively.

In the condensed phase, numerical simulations and strong scaling arguments show that

the fluctuation dynamics is governed by the condensate relocation from one site to another,

which occurs through a slower process of transfer of particles across the intervening bonds

resulting in these bonds picking up enhanced fluctuations in the integrated current. In order

to characterize the relocation dynamics, we studied the survival probability distribution in

Monte Carlo simulations, obtained by computing the distribution of the time interval τ

between successive relocations, and found that the distribution has two parts, (i) a power law

part ∼ τ−3/2 and (ii) another part, which has the scaling form (ρ−ρc)
−(b+2)L−(b+1)f (τ/Ts);

the scaling part arises from the long time Ts (growing as a power of the system size as

(ρ− ρc)
b+1Lb [16]) for which the condensate is stationary on one site, while the power law

part holds for relatively small time Tr (∼ (ρ − ρc)
2L2) for which two sites, containing, on

the average, approximately half of the condensate mass, compete to hold the largest mass.

Our results for the condensed phase showed that in this phase, the kinematic wave cannot

pass through the condensate; thus, fluctuations do not circulate around. The behavior of

the variance of the integrated current has four distinct size-dependent regimes, the two

relevant size-dependent time scales being the survival time Ts and the relocation time Tr

of the condensate. In this phase, the initial linear behavior of the variance continues until,

after the survival time, the condensate relocates itself. This results in the variance showing

a linear rise in time with a much larger slope than at early times. Subsequently, after the

condensate has relocated to another site, the slope of the linear rise slowly approaches a

size-dependent constant; we computed this constant and in particular, its scaling with the

system size on the basis of a simple relocation model. We found that the constant scales

with the system size as [L−θ(ρ−ρc)
−(b+1) +1], with θ = b−1 for b > 3. For b between 2 and

3, one gets θ = (b2 − b− 2)/(b− 1). Thus, the relocation model predicts that, for all values

of b, at long times t≫ Ts +Tr, the variance grows linearly with time with a size-dependent

constant which scales down with the system size.

Another problem studied in this thesis involved the exclusion process with extended

objects that generalizes the ASEP to the case where the particles in the ASEP are replaced

by objects of finite extent that cover several lattice sites, i.e., k-mers covering k adjacent

lattice sites, with k > 1. The motivation to study this model was mainly biological, since

this model provides a setting to address the process of synthesis of proteins through the

motion of ribosomes on messenger RNA [17, 18]. For the exclusion process with extended

objects on a one-dimensional ring, we derived a number of stationary state properties by

mapping each k-mer configuration to an equivalent and unique ASEP configuration on a

smaller lattice [19]. The equal-time engine-engine correlation function (where engine refers
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to the right end of the k-mer; one may equivalently choose to correlate the left ends of

k-mers as well) was found to have a particular scaling form, which was shown to be a

consequence of a proper continuum limit of the model. The unequal-time density-density

correlation was shown to be related to that in the usual ASEP, if only one takes care of

the wheeling effect, according to which, a fixed site in the k-mer problem corresponds to a

moving site in the ASEP which wheels around the ring with a finite velocity [19].

9.1 Generalization and future direction

If the particle motion in either the ASEP or the ZRP is made symmetric, we get an equilib-

rium model of particles diffusing on a lattice. The coarse-grained density profile will map

onto an equilibrium interface in the EW class (for the symmetric ZRP, this will be true only

in the disordered phase and at the critical point). For the symmetric exclusion process, the

average displacement of a tagged particle will be zero. Moreover, the variance of the tagged

particle displacement will have a single time scale T ∼ Lz, where z = zEW = 2 such that

for t ≪ T , the variance grows with time as a power law, behaving as t2β;β = βEW = 1/4,

while, for t≫ T , the variance would behave linearly with time, with the diffusion constant

scaling with the system size as 1/L (see Chapter 4). Unlike the asymmetric case, the vari-

ance behaves in the same manner, irrespective of averaging over both the initial stationary

ensemble and stochastic evolution, or, just the latter. Similar results would hold for the

variance of the integrated current for the symmetric ZRP in the disordered phase, and at

the critical point.

We studied the homogeneous ZRP for a very specific choice of the hop rate, namely,

u(n) = 1 + b
n with b > 2. In this case, the survival time Ts of the condensate grows as

a power in the system size as Lb [16]. However, one can also study the process for other

choices of the hop rate that induces condensation, namely, u(n) = 1 + b
nσ for σ < 1 (see

Chapter 6, Section 6.4). In this case, also, similar results as we reported in this thesis are

expected to hold, the only difference being that now the survival time Ts will be a stretched

exponential in the system size [16]. Thus, our results on the ZRP hold for a wide class of hop

rates; for those that do not induce condensation, the variance of the integrated current will

have two time scales, T1 ∼ L and T2 ∼ L3/2, while, for those that allow for a condensation

transition, the behavior of the variance will remain essentially unaltered in the disordered

phase and at the critical point. In the condensed phase, however, the variance behaves very

differently from the disordered phase, exhibiting four size-dependent time regimes, with two

time scales Tr ∼ L2 and Ts, which goes either as a power or as a stretched exponential in

the system size, depending on the form of the hop rate.

On the basis of our findings for the ASEP and the ZRP, a common picture emerges. For

any one-dimensional system with driven diffusive dynamics, in a phase characterized by a

homogeneous density ρ and a density-dependent current J(ρ), density fluctuations would be

transported around the system as a dissipating kinematic wave with velocity vK = ∂J
∂ρ . For
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the ASEP and the ZRP (in the absence of the condensation transition), we found that the

dynamic universality class is the KPZ class. Studies on disordered versions of these models

have shown that so long as the kinematic wave speed is nonzero, disorder has little effect in

changing the dynamic universality class from the pure model, a fact which has been borne

out by extensive numerical simulations [20, 21]. The reasoning which has been put forward

behind such an observation is that if the kinematic wave speed is nonzero, each density

fluctuation encounters a particular patch of disorder only once in an infinite system, since

the probability of returning is exponentially small. As a result, it was conjectured that the

time-dependent correlation function, averaged over both the initial stationary ensemble and

stochastic evolution, that monitors the dynamics of fluctuations in the system, behaves as

in the pure system. Thus, this correlation function grows linearly with time at small and

very long times, while, for intermediate times, it would oscillate with a period ∼ L, where

L is the size of the system. Knowing the kinematic speed, the correlation function has to

be appropriately modified to keep track of the temporal growth of dissipation at a point on

the density profile; such a correlation function (the sliding tag correlation function, in the

case of the ASEP) does not oscillate in time; instead, for times t ≪ Lz; z = zKPZ = 3/2, it

grows with time as t2β, where β = βKPZ = 1/3. However, when the kinematic wave speed

is zero, the above argument of the negligible effects of disorder fails and the disorder is

expected to change the dynamic universality class. Most studies have looked at the sliding

tag correlation function to get an estimate of the growth exponent β, and hence, an idea of

the dynamic universality class. However, when the kinematic wave speed is zero, sliding of

tag yields no new results, different from the usual correlation function, making an estimate

of β impossible this way. A way out could be to monitor the correlation function by starting

from an arbitrary but fixed initial configuration, drawn from the stationary ensemble, and

averaging over stochastic evolution. This quantity was introduced by van Beijeren [9], and

on the basis of our findings, we find that this quantity directly measures the dissipation in

time without doing any sliding of tag; thus, this quantity might prove useful in elucidating

the effects of quenched disorder in changing the dynamic universality class of a model from

the pure case. The quantity due to van Beijeren proves useful in tracking the dissipation

of the density profile in cases where there are two or more kinematic waves moving at

different velocities; in such cases, sliding of tag, equivalent to a Galilean transformation

for the corresponding time-evolution equation, can not get rid of the effects of kinematic

waves, all at the same time [22], thereby making determination of β a difficult task. Such an

exercise was recently performed in Ref. [23]. Another remarkable fact about the correlation

function due to van Beijeren is that its definition does not involve the velocity of the

kinematic wave, as does the sliding tag correlation function; thus, in cases, where one does

not know the kinematic wave speed a priori, dissipation of the density profile in time may

still be effectively captured by the correlation function due to van Beijeren.

We briefly mention a possible extension of our study, namely, to those systems with

open boundaries, to see how size effects interplay with nonequilibrium dynamics in gov-
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erning the behavior of fluctuations in the stationary state. Systems with open boundaries

resemble physical situations more closely, for example, the ASEP with open boundaries

models motion of molecular motors on one-dimensional microtubules inside living cells. A

recent study of the totally asymmetric simple exclusion process in one dimension with open

boundaries considers the total number of particles present in the system at any time in the

stationary state. Its time average, which is the same as its ensemble average, is easily calcu-

lated from the known stationary distribution of the ASEP with open boundaries. However,

as a fluctuating quantity, the power spectrum of the total number of particles at any time

was shown to contain time-correlation information, exhibiting finite-size effects in the form

of oscillations, deep within the high and the low density phases [24].

To conclude, the results reported in this thesis provide an exhaustive study of size

effects on the dynamics of fluctuations in two prototypical driven diffusive systems in one

dimension with periodic boundary conditions. Our findings lend strong evidence to an

intricate interplay of size effects with nonequilibrium dynamics in determining the behavior

of fluctuations in driven diffusive systems. A particular highlight of our studies is that we

have been able to identify all the relevant time scales in the behavior of fluctuations, and

also provide simple explanations of the physical processes underlying these time scales. It

remains to be investigated how the behavior of fluctuations, predicted in this thesis, gets

modified in driven diffusive systems in higher dimensions.
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Appendix A

A Primer on Kinematic Waves

The notion of kinematic waves goes back to the work of Lighthill and Whitham, who showed

how their occurrence follows from the continuity equation. We briefly recapitulate their

arguments [1, 2] here, as applied to a stochastic driven diffusive system in one dimension,

of the type considered in this thesis.

For definiteness, let us consider a closed driven diffusive system in its nonequilibrium

stationary state, characterized by a homogeneous density ρ. Here, the overbar represents an

average over the stationary state probability distribution of configurations for the system

at hand. A particular configuration will have fluctuations δρ(x, t) in the local density about

the average ρ; since these fluctuations are of statistical origin, we expect that δρ(x, t) ≪ ρ.

Note that here, we are considering the system on a coarse-grained scale. Since the system

is closed, particle number is conserved so that density fluctuations δρ(x, t) at an arbitrary

location x evolves in time following the equation of continuity, i.e.,

∂(δρ(x, t))

∂t
= −∂J(x, t)

∂x
, (A.1)

where J(x, t) is the particle current at location x at time t. We have, by definition,

δρ(x, t) = ρ(x, t) − ρ, (A.2)

where ρ(x, t) is the local density of particles. Since the stationary state mean density ρ is

constant in space and time, using Eq. A.2 in Eq. A.1 gives

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
. (A.3)

One cannot get two unknowns, namely, ρ(x, t) and J(x, t), by solving only one equation,

Eq. A.3, unless further assumptions are made relating the two quantities to one another;

Lighthill and Whitham made the assumption that

J(x, t) = J(ρ(x, t)). (A.4)
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In other words, the current J(x, t) derives its space and time dependence only through its

dependence on the local density ρ(x, t). Alternatively, with v(x, t) representing the local

density of particles constituting the system, since J(x, t) = ρ(x, t)v(x, t), according to the

assumption in Eq. A.4, it follows that v(x, t) is a function solely of the local density ρ(x, t).

Under the assumption in Eq. A.4, Eq. A.3 reads

∂ρ(x, t)

∂t
= −

[
v(ρ(x, t)) + ρ(x, t)

dv

dρ

]
∂ρ(x, t)

∂x
= −vK(ρ)

∂ρ(x, t)

∂x
, (A.5)

where vK(ρ) = dJ
dρ , and, in anticipation of its interpretation below as the “kinematic”

wave velocity, we have added the subscript “K”. Equation A.5 is nonlinear because of the

dependence of v(ρ(x, t)) on the local density ρ(x, t). Since ρ(x, t) = ρ+ δρ(x, t), we get, on

expanding vK(ρ(x, t)) about vK(ρ),

vK(ρ(x, t)) = vK(ρ) +

[
dvK

dρ

]

ρ

δρ(x, t) + higher order terms in δρ(x, t). (A.6)

It is reasonable to drop higher order terms in δρ in the above equation, since, as noted

earlier, δρ ≪ ρ. To a first approximation, we take

vK(ρ(x, t)) ≈ vK(ρ). (A.7)

In this approximation, Eq. A.5 reduces to the following linear equation.

∂ρ(x, t)

∂t
= −vK(ρ)

∂ρ(x, t)

∂x
. (A.8)

Equation A.8 has the general solution of the form

ρ(x, t) = f (x− vK(ρ)t) , (A.9)

where f is an arbitrary function of its argument; the solution of any particular problem

would be found by matching the value of the function f to the corresponding given initial

condition. Such a solution may be interpreted as an initial density profile getting translated

in time by a distance vK(ρ)t in an interval of time t without any change in its shape. The

solution, thus, represents a signal being transferred from one spatial point to another with

a recognizable velocity of propagation, given by vK(ρ); it is in this sense that the solution,

represented by Eq. A.9 represents a wave, which Lighthill and Whitham chose to refer to

as “kinematic” wave. vK(ρ) is the kinematic wave velocity. The attribute “kinematic” is to

emphasize the purely kinematic origin of these waves, arising, as they do, out of equation

of continuity. This is in contrast to more commonly encountered acoustic and elastic waves

which are consequences of Newton’s second law of motion, together with some assumptions

relating the stress produced in the propagating medium to the resulting strain. In the

context of interacting particle systems, vK(ρ) is identical to the collective velocity discussed
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in [3].

Kinematic waves are known to arise in a variety of circumstances involving flow, e.g., in

flood movement in long rivers [1], traffic [4, 5], flow of granular particles through vertical

tubes and hoppers [6], motion of transverse fluctuations in interfaces [7, 8], field-induced

transport in random media as in drop-push dynamics [9].

It is to be noted that in the above description, the kinematic wave velocity vK(ρ(x, t)) is

constant only in the first approximation in the Taylor series expansion in Eq. A.6. Including

higher order terms in Eq. A.6 makes the kinematic wave velocity an explicit function of the

local density ρ(x, t). As a result, different points on the initial density profile will move with

different velocities vK(ρ(x, t)), so that the initial density profile would not move as a whole

with a constant velocity v(ρ) without any change in shape; rather, the fact that different

points on the profile move with different velocities would lead to a distortion of the initial

density profile in time. This is referred to as the dissipation of the kinematic wave in time.

Improvement over the Lighthill-Whitham theory: As discussed above, the crucial as-

sumption in deriving the Lighthill-Whitham theory of kinematic waves is the fact that the

current J(x, t) is a function solely of the local density ρ(x, t) (see Eq. A.4). To improve, we

now assume that in addition, the current also depends on the gradient of the density. In

other words, Eq. A.4 is to replaced by

J(x, t) = J(ρ(x, t)) −D
∂ρ

∂x
, (A.10)

where D is a positive constant. The second term accounts for the fact that the current flows

in space in the direction of decreasing density. This assumption is reasonable in the case

of traffic flow (to which Lighthill and Whitham first applied their theory), since, it follows

from Eq. A.10 that, for fixed ρ(x, t) (and, hence, fixed J(ρ(x, t))), a positive (negative)

density gradient leads to a lower (higher) flux of traffic as one expects the drivers to reduce

(increase) the speed of their vehicles depending on whether they are approaching a more

(less) congested region. Using Eq. A.10 in Eq. A.3 leads to

∂ρ(x, t)

∂t
+ vK(ρ(x, t))

∂ρ(x, t)

∂x
= D

∂2ρ(x, t)

∂x2
. (A.11)

Now we see that the fact that the velocity vK(ρ(x, t) depends on the density ρ(x, t) and

that there is diffusion (represented by the right hand side of the above equation) lead to

two competing effects: while the term vK(ρ(x, t))∂ρ(x,t)
∂x tends to distort the wave, the term

D ∂2ρ(x,t)
∂x2 smoothens out the density profile. Similarly, corrections to Lighthill-Whitham

theory may be constructed by including higher order derivatives of density in Eq. A.10.
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Appendix B

Derivation of the equation of the

interface corresponding to the

tagged particle displacement

Here, we derive the interface equation, Eq. 4.2, following [1].

The local interparticle distance in the ASEP is given by

1

ρ(x, t)
=
∂y

∂x
, (B.1)

where y(x, t) is the position of the x-th particle at time t. Now,

y(x, t) =
x

ρ
+ h(x, t), (B.2)

where ρ is the mean density of particles and h(x, t) is the displacement of the x-th particle

from the position it would have had, had the particles been uniformly placed. Then, we

have ρ(x, t)−1 = ρ−1 + ∂h
∂x , implying

ρ(x, t) =
ρ

1 + ρ∂h
∂x

. (B.3)

Expanding in a power series in ∂h
∂x ,

ρ(x, t) = ρ− ρ2 ∂h

∂x
+ ρ3

(
∂h

∂x

)2

+ . . . (B.4)

The above equation can be rewritten as

ρ(x, t) = ρ+ ψ(x, t) where ψ(x, t) = −ρ2∂h

∂x
+ ρ3

(
∂h

∂x

)2

+ . . . (B.5)

141



142
B. DERIVATION OF THE EQUATION OF THE INTERFACE CORRESPONDING TO THE TAGGED

PARTICLE DISPLACEMENT

In the absence of any drift velocity, the equation of motion of h(x, t) is diffusive.

∂h

∂t
= Γ′∂

2h

∂x2
+ η(x, t). (B.6)

The noise term η(x, t) is Gaussian: 〈η(x, t)〉 = 0, 〈η(x, t)η(x′ , t′)〉 = 2Aδ(x − x′)δ(t − t′).

In the presence of a drift velocity v(x, t), an additional term v(x, t) appears on the right

hand side of the above equation. The drift velocity depends on x and t only through the

local density ρ(x, t) which is the only possibility in the coarse-grained lattice gas. Thus

v(x, t) = v(ρ(x, t)). We now substitute ρ(x, t) = ρ+ψ(x, t) and expand in a power series in

ψ(x, t).

v(x, t) = v(ρ) +

[
∂v

∂ρ

]

ρ

ψ(x, t) +
1

2

[
∂2v

∂ρ2

]

ρ

ψ2(x, t) + . . . (B.7)

Thus, we get

∂h

∂t
= v(ρ) + Γ′∂

2h

∂x2
− ρ2

[
∂v

∂ρ

]

ρ

∂h

∂x
+

1

2

[
∂2v

∂ρ2

]

ρ

ρ4

(
∂h

∂x

)2

+

[
∂v

∂ρ

]

ρ

ρ3

(
∂h

∂x

)2

+ . . . + η(x, t) (B.8)

= v(ρ) + Γ′∂
2h

∂x2
+ u′

∂h

∂x
+
λ′

2

(
∂h

∂x

)2

+ . . .+ η(x, t).

(B.9)

Here, v(ρ) is the mean drift velocity of the particle and hence, equals vP in our notation.

Also, u′ = ρ
[
v(ρ) − ∂J

∂ρ

]
ρ

where J(ρ) = ρv(ρ) is the mean current. In terms of the kinematic

wave velocity vK , we have u′ = ρ(vP − vK). The nonlinearity coefficient λ′ = ρ3
[

∂2J
∂ρ2

]
ρ
.

Note that x in the above equation stands for the tag variable in the continuum. Now,

dividing x by the particle density ρ to make it into a spatial variable, we finally get from

Eq. B.9, to lowest order of nonlinearity,

∂h

∂t
= vP + Γ

∂2h

∂x2
+ u

∂h

∂x
+
λ

2

(
∂h

∂x

)2

+ η(x, t), (B.10)

where

u = vP − vK , (B.11)

while

λ = ρ

[
∂2J

∂ρ2

]

ρ

. (B.12)

Using J(ρ) = (p− q)ρ(1 − ρ) and vP = (p − q)(1 − ρ) for the ASEP, we get

u = ρ(p− q), (B.13)

λ = −2ρ(p− q). (B.14)
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Utilizing the above expressions for u and λ in Eq. B.10, we get the time evolution equation

for the interface equivalent to the ASEP, Eq. 4.2.

Expressions for the coefficients Γ and A in terms of microscopic parameters can be found

by setting p = q = 1/2, in which case the ASEP reduces to the SEP. The coefficient Γ can

then be calculated explicitly [2, 3], with the result

Γ =
1

2
. (B.15)

Further, Eq. B.10 reduces to the EW equation, Eq. 4.3, and σ2(t) can be found from

Chapter 4, Section 4.2 by considering the limit u → 0. The result is σ2(t) ≈ 2A√
πΓ

√
t.

Comparing with the exact result σ2(t) ≈
√

2
π

(
1−ρ

ρ

)√
t for the SEP [4], one gets A√

Γ
=

1√
2

(
1−ρ

ρ

)
. Using Eq. B.15, we finally get

A =
1

2

(
1 − ρ

ρ

)
. (B.16)
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Appendix C

Evaluation of the integral∫∞
k=0

dk
k2 [1 − e−ck2

cos(k)]

Let

I(c) =

∫ ∞

k=0

dk

k2
[1 − e−ck2

cos(k)]. (C.1)

Thus,
dI

dc
=

∫ ∞

k=0
dk e−ck2

cos(k) =
1

2

√
π

c
e−1/4c. (C.2)

Also, I(0) = π
2 . Hence,

I(c) =
π

2
+

1

2

∫ c

0
dx

√
π

x
e−1/4x. (C.3)

Doing the integral on the rhs by parts, we finally get

I(c) =
π

2
+

√
πc e−1/4c −

√
π

2

∫ ∞

1/4c
dy e−yy−1/2. (C.4)

Using the usual definition of the complementary error function, erfc(z) = 2√
π

∫∞
z dte−t2

= 1− erf(z), (where erf(z) is the usual error function), we can rewrite the above expression

as

I(c) =
π

2
+

√
πc e−1/4c − π

2
erfc

(
1

2
√
c

)
(C.5)

=
√
πc e−1/4c +

π

2
erf

(
1

2
√
c

)
.
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Appendix D

Proof of the Poisson distribution

for the integrated current in the

ZRP

We prove below that for the Zero-Range Process (ZRP) in the grand canonical ensemble

in the thermodynamic limit, the stationary state integrated particle current H(i, t) across

any bond (i, i + 1) in time t follows a Poisson distribution: Pout(n, t) ≡ Prob(H(i, t) = n)

= e−vt(vt)n

n! . Here, v is the mean current in the stationary state. The result applies to all

forms of the hop rate function u(n).

The proof of the above result relies on an adaptation of the Burke’s theorem in queueing

theory [1, 2] to the ZRP. The theorem states that for a reversible birth-death process with

Poisson input, the output is also a Poisson process with the same intensity as the input.

Proof: The proof goes along the following lines.

(i) Focussing on the ZRP dynamics at a single site, we show, utilizing the stationary

state weights of the ZRP, that the population of the site undergoes a time-reversible birth-

death process. Here, the birth, corresponding to the input of a particle, is a Poisson process

with intensity equal to the mean current J = v. On invoking time reversibility of the

dynamics, we conclude that the output of particles from the site also follows an identical

Poisson distribution.

(ii) Noting that the output from one site forms the input to the next site then implies

the result.

Without loss of generality, we consider below fully asymmetric particle motion to the

right. Also, we take time to be discrete, though the proof can easily be generalized to

continuous time.

(i) We begin by recalling from Chapter 6, Section 6.3.1 that in the thermodynamic

limit, within a grand canonical ensemble, the probability of a site to have n particles in the
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u(2) u(3) u(n + 1)u(1)

vvvv

n n + 1 ............0 1 2 3 ....................

Figure D.1: Birth-death dynamics at a ZRP site. The birth rate is v, while the death from
state n to n− 1 occurs with rate u(n).

stationary state is given by

p(n) =
vnf(n)

F (v)
;

f(n) =

{
(
∏n

m=1 u(m))−1 if n > 0

1 if n = 0.
(D.1)

Here v is the fugacity, F (v) = 1+
∑∞

n=1 v
nf(n) is the single site grand canonical partition

function. One can check from Eq. D.1 that the stationary state weights p(n) satisfy the

identity

vp(n) = u(n+ 1)p(n + 1). (D.2)

Since the stationary state is unique, the distribution of the integrated current across any

bond is also unique. The mean current of particles is the same across any bond and is given

by J =
∑∞

n=1 u(n)p(n) = v.

Next, we note that the population at a site can be interpreted to be undergoing a birth-

death process in the stationary state. Here a birth corresponds to the input of a particle

into the site with rate
∑∞

n=1 u(n)p(n) = v, utilizing Eq. D.1. This is because for a particle

to hop into the site, the site to the left has to be occupied in the first place with probability

p(n) (with n ≥ 1), followed by the hopping out of a particle with rate u(n). In unit time,

the probability that there is a hop into the site is v. The population undergoes a death of

its individual when, at the instant the site has n ≥ 1 particles, a particle hops out with

rate u(n). The state space for the population takes on integer values n = 0, 1, 2, . . .. The

birth-death dynamics is represented schematically in Fig. D.1.

Let us assume that the input of particles into the site follows a Poisson distribution with

intensity v. In other words, the probability that n particles hop into the site in time t is

given by

Pin(n, t) ≡ Prob(n particles hop into the site in time t) = e−vt (vt)
n

n!
. (D.3)

The intensity of the Poisson distribution is chosen to be v to be consistent with the fact

that in unit time, the probability that there is a hop into the site equals v, as discussed
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earlier.

A realization of the birth-death dynamics at a site for a fixed time T is given by the set

of occupancies {n(t); 0 ≤ t ≤ T}, where n(t) is the occupancy of the site at time instant

t. Demonstrating that the dynamics is reversible in the stationary state is tantamount to

showing that for every given realization of the dynamics is associated the time-reversed

realization of the same dynamics occurring with equal probability. Time-reversibility is

demonstrated here for a given realization but can easily be checked to be true for any

arbitrary realization of the dynamics.

Consider the realization (a) in Fig. D.2, observed for a total time T = 9 for illustration.

In Fig. D.2(b), we show the corresponding time-reversed realization of the dynamics.

(b)

(a)

1 2 3 4 5 6 7 8 9

Time t

0123456789

Time t

n
(t

)
n
(t

)

3

5
4

1

2

0

u(3) v
v

u(4)
v

v

v

u(3)
u(4)

v
u(4)

u(5)

0

3

5
4

1

2

0

Figure D.2: (a) shows a typical realization of the ZRP dynamics at a site for a total time
T = 9. The downward arrows correspond to the input of particles into the site with
probability v, while the upward arrows represent hopping out of particles. (b) shows the
corresponding time-reversed realization which, as shown in the text, occurs with the same
probability as the realization (a).

The probability to observe the realization (a) is given by

PForward = p(3)u(3)[1 − v − u(2)]vv[1 − v − u(4)]u(4)vv[1 − v − u(5)], (D.4)

while the probability to observe the time-reversed realization (b) equals

PReverse = p(5)[1 − v − u(5)]u(5)u(4)v[1 − v − u(4)]u(4)u(3)[1 − v − u(2)]v. (D.5)
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Here we have used the fact that the input distribution of particles into the site is Poissonian

so that particle-hop into the site occurs as uncorrelated events at different time instants

with a constant probability v.

Using Eq. D.2, it is easily shown that

PForward = PReverse. (D.6)

We have thus demonstrated that the birth-death dynamics at a ZRP site is time reversible

in the stationary state.

We are interested in the statistics of the number of occurrences of upward arrows in a

fixed time in (a), since this number equals the integrated particle current out of the site in

the same time. Define

Pout(n, t) ≡ Prob(n particles hop out of any site i in time t, i.e., H(i, t) = n). (D.7)

Now, for every upward arrow in (a), there is a corresponding downward arrow in the time-

reversed realization (b). The latter follows the Poisson distribution Pin(n, t) in Eq. D.3.

Since both the realizations (a) and (b) occur with equal probability, we conclude that the

integrated particle current out of the site follows the distribution Pin(n, t). Thus, with the

assumption that the input distribution of particles into a site is Poissonian, given by Eq.

D.3, the integrated current out the site follows the same distribution: Pout(n, t) = Pin(n, t).

Since the output distribution is unique, we conclude that

Pout(n, t) = e−vt (vt)
n

n!
. (D.8)

(ii) Now, we consider the full assembly of sites in the ZRP. Since the output from a site

forms the input to the next site, it follows that the integrated current across any site follows

a Poisson distribution with intensity v.

Validity of the result in the canonical ensemble: The proof given above for the Poisson

distribution of the integrated current is strictly valid in the grand canonical ensemble in

the thermodynamic limit, where there is no correlation between sites in the ZRP in the

stationary state, and the mean current equals the fugacity v (see Chapter 6, Section 6.3.1

and Section 6.5.3). In the canonical ensemble, because of correlation between sites (see

Section 6.3), the proof for the Poissonian character of the integrated current is not valid

unless one considers the ZRP in the thermodynamic limit, when the two ensembles become

equivalent, at least in the disordered phase. At the critical point, although the equivalence of

ensembles in the thermodynamic limit breaks down, Eq. D.1 for the single-site distribution

is still valid, with the fugacity v replaced by its maximum possible value vmax (see Chapter

6, Eq. 6.38). In the condensed phase, the integrated current is Poisson distributed for times

smaller than the survival time of the condensate (see Chapter 7, Section 7.3.3).
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Appendix E

Survival time of the condensate in

the ZRP

In this appendix, we briefly summarize the arguments in [1] leading to the result that in

the ZRP, with the hop rate u(n) = 1 + b/n (with b > 2), the characteristic survival time

scale Ts of the condensate scales with the system size L in the following way: Ts ∼ Lb.
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Figure E.1: The single-site probability distribution p(n), plotted on a logarithmic scale, as
a function of n/L in the stationary state of the ZRP within the canonical ensemble. We
have taken b = 5 so that the critical density ρc = 1/(b − 2) = 1/3, the particle density
ρ = N/L = 1; the various system sizes L considered are marked in the figure. Here, p(n)’s
are obtained by first evaluating the canonical partition function ZL,N numerically for given
values of b, N , and L, and then, making use of the formula in Eq. E.1. The two dotted
lines represent the asymptotic locations of the maximum at ∆/L = (ρ− ρc) = 2/3, and the
minimum at ∆/2L = (ρ− ρc)/2 = 1/3, respectively (for definitions, see text).

We start with the following result that in the ZRP within the canonical ensemble, the

probability for a single site to hold n particles in the stationary state reads (see Chapter 6,
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Eq. 6.4)

p(n) =
ZL−1,N−n

ZL,N
, (E.1)

where ZL,N is the canonical partition function for a system of N particles executing the

ZRP dynamics on a lattice of L sites with periodic boundary conditions. For given values of

L and N , the partition function ZL,N may be evaluated recursively, as detailed in Chapter

6, Section 6.5.3. This allows one to compute the single-site probability distribution p(n);

the result is shown in Fig. E.1 for the choice of the hop rate u(n) = 1 + b/n, with b = 5 (so

that the critical density ρc = 1/(b− 2) = 1/3), the particle density ρ = 1. The system sizes

considered are marked in the figure.

To understand the essential features in the plot of Fig. E.1, we recall the discussion

in Chapter 6, Section 6.5.2, from which we know that, with f(n) ≈ An−b (A being a

constant) for large n, and ∆ = (ρ − ρc)L denoting the mean number of excess particles in

the condensed phase, the distribution p(n) is given by the following set of equations [2, 3].

p(n) ≃ f(n) for 1 ≪ n≪ O(L), (E.2)

p(n) ≃ f(n)
1

(1 − x)b

for n = x(ρ− ρc)L where 0 < x < 1, (E.3)

p(n) ∼ pcond(n) for n ∼ (ρ− ρc)L. (E.4)

Here, pcond(n) takes two different forms, depending on whether 2 < b < 3 or b > 3. In the

former case,

pcond(n) ≃ L−b/(b−1)Vb

[
n− (ρ− ρc)L

L1/(b−1)

]
, (E.5)

where the asymptotic forms of the scaling function Vb(z) are given by

Vb(z) ≃ A|z|−b as z → −∞,

= c0 at z = 0,

≃ c1z
(3−b)/2(b−2)e−c2z(b−1)/(b−2)

as z → ∞. (E.6)

Here, c0 = β−1/(b−1)/[(b − 1)Γ((b − 2)/(b − 1))], c1 = [2π(b − 2)(β(b − 1))1/(b−2)]−1/2, c2 =

(b− 2)/(b − 1)(β(b − 1))1/(b−2), where β = AΓ(1 − b).

For b > 3, the distribution pcond(n) reads

pcond(n) ≃ 1√
2π∆2L

e−(n−(ρ−ρc)L)2/2∆2L for |n− (ρ− ρc)L| ≪ O(L2/3), (E.7)

i.e., here, pcond(n) is Gaussian on the scale |n − (ρ − ρc)L| ≪ O(L2/3), but, far to the left

of the peak, p(n) decays as a power law:

pcond(n) ≃ f(n) (1 − n/(ρ− ρc)L)−b for (ρ− ρc)L− n ∼ O(L). (E.8)
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From Eq. E.2, it is clear that for n≪ L, the single-site distribution p(n) is a power law

that accounts for the critical background; this part in p(n) does not change with the system

size. The condensate appears as a hump in the probability distribution around n = ∆,

the mean number of excess particles forming the condensate; this part is represented by

Eq. E.4. In between the critical background and the condensate hump develops a broad

and shallow dip in the probability distribution, as represented by Eq. E.3. On substituting

the explicit form of the factor f(n) in Eq. E.3, we have, for the single-site probability

distribution in the dip region,

pdip(n) ≈ A

nb

∆b

(∆ − n)b
for n≫ 1,∆ − n≫ 1. (E.9)

From the above equation, one concludes that the dip region is dominated by configurations

where the excess particles are shared by two sites. This is because, with the single-site

factor f(n) ≈ An−b for large n, the probability that the excess particles ∆ are shared

by two sites, one of which has n particles while the other one has the remaining ∆ − n

particles, will be proportional to n−b(∆ − n)−b. The minimum in the distribution pdip(n)

occurs at n ≈ ∆/2, while the maximum occurs at n ≈ ∆. Note that the point at which the

maximum in pdip(n) occurs is approximately the point about which the condensate hump,

represented by pcond(n) in Eq. E.4 is centered. The plot of p(n) against n/L in Fig. E.1

shows the asymptotic locations of the minimum and the maximum at ∆/2L = (ρ − ρc)/2

and ∆/L = (ρ− ρc), respectively.

Now, let us define a potential landscape V (n) through

V (n) ≡ − ln p(n), (E.10)

where the zero level of the potential is given by V (0) = − ln p(1) = 0. According to the

definition in Eq. E.10, with respect to the zero level of the potential V (n), the minimum

at n/L ≈ (ρ− ρc)/2 in the distribution pdip(n) is at a higher potential than the maximum

occurring at n/L ≈ (ρ− ρc).

The survival time Ts of the condensate is the typical interval of time for which the

condensate stays on one site, before dissolving to the background. As discussed in Chapter

7, Section 7.3.3, after the dissolution of the condensate to the background, reorganization

in the background over the relocation time scale Tr ∼ L2 leads to the condensate reforming

at another site. During the relocation time Tr, typical configurations are those in which the

condensate mass is shared between two sites, and is thus represented by the distribution

pdip(n). Thus, for a given system of L sites, an order of estimate of the time scale Ts is

given by the time that the system takes to go from the maximum point in the distribution

p(n) occurring at n/L ≈ (ρ − ρc) (corresponding to the occurrence of the condensate) to

the minimum point with n/L ≈ (ρ − ρc)/2 (corresponding to the condensate mass being

shared by two sites). Since, as noted earlier, the latter point is at a higher potential than

the former point, the problem is that of barrier crossing. According to Kramers’ theory [4],
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the time to cross the barrier is exponentially large in the barrier height ∆V , which, in the

present case is given by

∆V = − ln pdip(∆/2) − (− ln pcond(∆)) ∼ lnLb. (E.11)

Here, we have used the form of pcond(∆) from either Eq. E.5 or Eq. E.7, depending on

whether 2 < b < 3 or b > 3, respectively. It thus follows that the survival time Ts, given by

the Kramers’ theory as exp(∆V ), will have the following dependence on the system size L.

Ts ∼ Lb. (E.12)

A more precise treatment, detailed in [1], produces the prefactors in the survival time Ts,

which then reads

Ts ≈
bΓ(b+ 1)

(b− 1)Γ(2b + 2)
(ρ− ρc)

b+1Lb. (E.13)
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