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1 Synopsis

1.1 Introduction

Relativistic Hydrodynamics arises as the universal long wavelength effective description of
Lorentz invariant quantum field theories in translationally invariant phases. Its a minimalis-
tic description based on symmetries where the entire dynamics of the system is governed by
local conservation laws following from these symmetries. Specifically, the homogeneity gives
rise to stress tensor conservation and other global symmetry, if present, leads to corresponding
conservation law. To make it into a closed dynamical system hydrodynamics is supplemented
with so called ‘constitutive relations’ which express the conserved currents in terms of local
fluid variables namely velocity, temperature and chemical potential fields. These local vari-
ables are assumed to be varying only over length scales large compared to the 'mean free
path’ whose scale is set by the local temperature of the fluid. That is, for the validity of
fluid dynamical description the derivatives of the fluid variables have to be small. This lead
to the simplification that the constitutive relation can be specified order by order in a long
wavelength(derivatives) expansion of the fluid variables.

As in any other effective theory, hydrodynamics is characterized by parameters(e.g. the
transport coefficients in constitutive relations) which parametrized our ignorance. Although
these parameters are in principal determined from the underlying microscopic field theory by
an averaging out procedure, in practice it is extremly difficult to implement for any interesting
enough system. A natural question to ask in such a case is: Are there any constraints on the
possible values of these coefficients ? or are they completely arbitrary and any possible value
of these would result from some underlying field theory.

In the context of hydrodynamics this question becomes even more pressing for the fol-
lowing reason. Hydrodynamics in its current formulation is only at the level of equations
of motion and does not have an action formulation. So it is quite possible that some the
properties which are built into action formulation are missing here and hydrodynamics have
to be supplimented with them as external constraints.

The answer to what are the most general constitutive relations which could be realized
in nature is greatly constrained, over and above symmetry considerations, by the macro-
scopic laws of thermodynamics. Landau-Lifshitz [1], and several subsequent authors, have
emphasized consistency with a local form of the second law of thermodynamics as a source
of constraints on the equation of hydrodynamics. As is well known, this requirement im-
poses inequalities on several parameters (like viscosities and conductivities) that appear in
the equations of hydrodynamics. It is perhaps less well appreciated that the requirement of
local entropy increase also yields equalities relating otherwise distinct fluid dynamical param-
eters, and so reduces the number of free parameters that appear in the equations of fluid
dynamics (see e.g. [1, 2], for more recent work inspired by the AdS/CFT correspondence see
e.g. [3-11]).

The second law of thermodynamics is a macroscopic law and its microscopic origin is
not well understood. This makes the constraints obtained using it somewhat mysterious. In



this synopsis we report on some progress we have made, in hydrodynamical context, towards
demystifying a subset of these constraints using very general physical requirements on the
equations of hydrodynamics. We explore the structural constraints imposed on the equa-
tions of relativistic hydrodynamics by two related physical requirements. First that these
dynamical equations admit a stationary solution on an arbitrarily weakly curved stationary
background spacetime. Second that the conserved currents (e.g. the stress tensor) on the

corresponding solution follow from an equilibrium partition function'

. In various examples
that we have studied so far we demonstrate that the equalities obtained from the comparison
with equilibrium (described in the previous paragraph) agree precisely with the equalities
between coefficients obtained from the local second law of thermodynamics. These results
lead us to conjecture that the constraints obtained from these two naively distinct physical
requirements infact always coincide.

In this synopsis we nowhere utilize the AdS/CFT correspondence. However our work is
motivated by the potential utility of our results in an investigation of the constraints imposed
by the second law of thermodynamics on higher derivative corrections to Einstein’s equations
[12], via the Fluid - Gravity map of AdS/CFT ([13], see [14, 15] for reviews).

The rest of this synopsis is organized as follows. In section 1.2 we discuss the equilib-
rium partition function on weakly curved manifolds. In section 1.3 we briefly review stan-
dard formulation of hydrodynamics and then describe our general procedure to constrain
non-dissipative transport coefficients using equilibrium partition function. In section 1.4 we
elaborate the method using the example of parity violating charged fluids in 3+1d at first
order in derivative expansion. In section 1.5 we present a brief give summary of results for
many other cases that we have worked out using the set of ideas described in sections 1.2 and
1.4.

1.2 Equilibrium partition function and constraints on hydrodynamics

Consider a relativistically invariant quantum field theory with a global U(1) symmetry on a
manifold with a timelike killing vector and a background gauge field turned on. By a suitable
choice of coordinates, the metric and the gauge field on any such manifold can be put in the
form

ds? = —2@ (dt + ai(sl_:’)dsci)2 + gij(%)dx'da?

) 1.1
A = Ay(2)dx® + A;(¥)da’ 1)

where ¢ = 1...p. 0 is the killing vector on this manifold, while the coordinates Z parametrize
spatial slices. Here o, a;, i, Ao and A; are smooth functions of coordinates &.

Let H denote the Hamiltonian that generates translations of the time coordinate ¢ and
@ be the charge that generates the global U(1) transformations. Let us address the following

! Although the existence of a generating function for equilibrium conserved currents do not follow from the
existence of equilibrium solution, as there is a non trivial integrability condition here. We find that in all cases
we study the two infact give the same results



question. What can we say, on general symmetry grounds, about the dependence of the the

partition function of the system
H—ppQ

Z="Tre T (1.2)

on o, gij, a;, Ao and A;? Here we focus on the long wavelength limit, i.e. on manifolds whose
curvature length scales and the scale of gauge field variations are much larger than the ‘mean
free path’ of the thermal fluid. In this limit the question formulated above may addressed
using the techniques of effective field theory. In the long wavelength limit the background
manifold may be thought of as a union of approximately flat patches, in each of which the
system is in a local flat space thermal equilibrium at the locally red shifted temperature

T(x)=e"Tp+... (1.3)

(where Tp is the equilibrium temperature of the system and the ... represent derivative
corrections). Consequently the partition function of the system is given by

1
InZ = / PGy g P @), @) + . (1.4)
where P(T, p) is the thermodynamical function that computes the pressure as a function of
temperature in flat space. Substituting (1.3) into (1.4) we find

InZ = /dpx\/@;P(Toe_U,Aoe_o) ... (1.5)
0

The ... in (1.5) denote corrections to In Z in an expansion in derivatives of the background
metric. At any given order in the derivative expansion these correction are determined, by the
requirement of the left over diffecomorphism invariance and gauge invariance(upto anomalies)
in terms of a finite number of unspecified functions of o and Ag. For the case of parity violating
charged fluids in 341 dimensions, which we will describe in some detail in this synopsis, the
requirements of three dimensional diffeomorphism invariance, Kaluza Klein gauge invariance,
and U(1) gauge invariance upto an anomaly? force the partition function to take the form?

InZ = WO + W’le) + Wc}nom

WO = /@%P (Toe_”,e_”Ao)

2 1.6
Wl = Co /AdA+ s /ada+ ToCh /Ada (1.6)
2 2 2
C A A2
1 _ v 0 0
W snom = 5 </ —3TOAdA—|— 6T0Ada>

*Here we only consider the effect of U(1)® anomalies ignoring the effects of, for instance, mixed gauge-
gravitational anomalies. A systematic study of the effect of these anomalies in fluid dynamics would require
analysis at second order in derivative expansion.

30ur convention is

%/XdY = /d%\/g*ge”’“xiajyk , %/dY = /d2m@6ij3¢}/} .



where A;

Ag = Ap + po

1.7
Ai = .AZ — Aoai ( )

(1.6) is written in terms of A; because A;, unlike A;, is Kaluza Klein gauge invariant*.

WY in (1.6) is zero derivative contribution to the partition function, and is the patchwise
approximation to equilibrium, in the spirit of (1.5). Wz%w is the most general diffeomorphism
and gauge invariant one derivative correction to W°. Note that W1 is the sum of a Chern
Simons term for the connection A, a Chern Simons term for the connection ¢ and a mixed
Chern Simons term in A and a. As usual, the Chern Simons terms are gauge invariant only
upto boundary terms, and thus local gauge invariance forces the coefficients Cy, C7 and Cy
of these Chern Simons terms to be constants.

(1.6) is the most general form of the partition function of our system that satisfies the
requirements of 3 dimensional diffeomorphism invariance and gauge invariance. If we, in
addition, impose the requirement of CPT invariance of the underlying four dimensional field
theory then it turns out that Cy = C1 = 0. In other words, the requirement of CPT invariance
allows only the mixed Chern Simons term, setting the ‘pure’ Chern Simons terms to zero.

Wl . is the part of the effective action that is not gauge invariant under U(1) gauge
transformations. ° Its gauge variation under A, — A, + 0,6(Z) is given by
1 ¢ 3
OW grvom = d°zy/—gs x (F ANF) ¢(x) (1.8)
24T,

This is exactly the variation of the effective action predicted by the anomalous conservation
equation

~ C
VHJ“:—g*(]—"/\}') (1.9)
where J is the gauge invariant U(1) charge current, and * denotes the Hodge dual.
1.3 Constraints using stationary equilibrium

1.3.1 Relativistic Hydrodynamics

In this subsection we present a lightening review of the structure of the equations of charged
relativistic hydrodynamics. The equations of hydrodynamics are simply the equations of
conservation of the stress tensor and the charge current

VT = F,J", V,J" = _g * (FAF), (1.10)

“The background data can be taken as gauge field A = (Ao, A;) with constant chemical potential uo and
temperature Ty. Equivalently we can think of the system to have background gauge field B = (Ao + po, A;)
with no chemical potential. These two are equivalent physical statements as po can be absorbed in the constant
part of Ap.

5Tt is striking that the effect of the anomaly can be captured by a local term in the 3 dimensional effec-
tive action. Note that W' cannot be written as the dimensional reduction of a local contribution to the 4
dimensional action, in agreement with general expectations.



where F is the field strength of the gauge field A. These equations constitute a closed
dynamical system when supplemented with constitutive relations that express 7, and J,
as a function of the fluid temperature, chemical potential and velocity. These constitutive
relations are presented in an expansion in derivatives and take the form

T" = (e + P)u*u” + Pg"™ + n,  JH = qut + J% (1.11)

diss?

The pressure P, proper energy density € and proper charge density g are those functions of
T and p predicted by flat space equilibrium thermodynamics. m,, refers to the sum of all
corrections to the stress tensor that are of first or higher order in the derivative expansion (the
derivatives in question could act either on the T', u, u*, or the background metric and gauge
field g, and A,). Similarly J. 52. s refers to corrections to the perfect fluid charge current that
depend on atleast one spacetime derivative. Field redefinitions of the T' u and u* may be

m

used to impose p+2 constraints on 7, and J), __, referred to as frame choice. In this synopsis

we will work in the so called Landau Frame which is defined by the conditions
u!m,,, =0, u“JgiSS =0 (1.12)

Terms in m,, and Jc!;is , are both graded according to the number of spacetime derivatives
they contain, i.e.

uv v uv uv
T =T + (o) + T(3) +... (1.13)
Jcll‘iss - Jgiss,(l) + 7}, (2) + ‘]51‘557(3) +..

diss,

where the subscript counts the number of derivatives.

Symmetry considerations immediately constrain the possible expansions for 7, and J, 51. ss
as follows. At any given point in spacetime, the fluid velocity u* is a particular timelike vector.
The value of the velocity breaks the local SO(p, 1) Lorentz symmetry of the theory down to
the rotational subgroup SO(p). In the Landau frame (1.10) 7, may be decomposed into an
SO(p) tensor and SO(p) scalar. Ji._  is an SO(p) vector.

In order to parameterize freedom in the equations of hydrodynamics, it is useful to define
some terminology. Let 7, vy and s’y respectively denote the number of onshell inequivalent
tensor, vector and scalar expressions made up of a total of n derivatives acting on T', u*, pu,
g and A, It follows immediately that the most general symmetry allowed expression for
wéﬁbj) is given in terms of % + s unknown functions of the two variables T and p. In a similar

manner the most general expression for the J , permitted by symmetries, is given in

terms of v} unknown functions of the same twodlxszsa(g;bles.

It turns out that the (t? + s? + v?) nt" order transport coefficients are not all indepen-
dent. The requirement that the hydrodynamical equations be consistent with the existence
of an entropy current that is of positive divergence in every conceivable fluid flow imposes
several relationships between these coefficients cutting down the number of parameters in

these equations(see e.g. [1, 3, 5, 10]). We now turn to a description of a simpler physical



principal that appears predict the same relations between these coefficients. These relations
may all be constructively determined by comparison of the equations of hydrodynamics with
a partition function.

1.3.2 Constraints from stationary equilibrium

As we have explained in the previous subsection, it follows from symmetry considerations
that the equations of charged hydrodynamics, at n” order in the derivative expansion, are
parameterized by t% + v} + s} unknown functions of two variables(o and Ag) appearing in
the constitutive relation at nth order. We will now argue that these functions are not all
independent, but instead are determined in terms of a smaller number of functions.

It is easy to verify that the equations of perfect fluid hydrodynamics (hydrodynamics
at lowest order in the derivative expansion) admit a stationary ‘equilibrium’ solution in the
backgrounds (1.1) given by

Uy (@) =e77(1,0,...,0),  T)(&) =Toe™,  po)(&) =e 7 Ag (1.14)

As explained above, this is also the equilibrium solution one expects of the fluid on intuitive
ground. At higher order in the derivative expansion this solution is corrected; the corrected
solution can itself be expanded in derivatives

_ ok % %
ut = o) —|—u(1) —|—u(2) + ...
M= o) + M) T ) -

where u’(‘n), T(yy and pi,) are expressions of n'™ order in derivatives acting on o, Ao, a;, 4;
and g;;. What can we say about the form of the corrections u’(‘n), Ty and pg,y? Adopting
the notation defined in the last paragraph of the previous subsection, symmetries determine
the expression for u’(‘n) in terms of v as yet unknown functions of o and Ay, while 7" and p
are each determined in terms of s as yet unknown equations of Ay and o.

The stress tensor and charge current in equilibrium are given by plugging (1.15) into
(1.13). The result is an expression for 7#* and Ji . written entirely in terms of o, Ao, a;,
A;, gi; and their derivatives.

This expressions for the stress tensor and charge current so obtained depend only on a
subset of the transport coefficients that appear in the expansion of 7#* and J (’ji 45+ TOr instance,

the expansion of the nt" order tensor part of 7 has t% terms in general. When evaluated

on (1.14), however, this expression reduces to a sum over ¢ < t% terms. The coefficients of
these terms define t7 subspace of the t}‘ dimensional set of n" order transport coefficients.
We refer to this subspace as the subspace of non dissipative transport coefficients.

We demand that the expressions for the equilibrium stress tensor and charge current,
obtained as described in the previous paragraph, agree with the corresponding expressions

obtained from the equilibrium partition function by varying with respect to the metric and



gauge field respectively. This requirement yields a set of 7 + 20" + 3s" equations® that
completely determine both the n** order corrections to the equilibrium solutions T}, p, and
upy (v + 25" coefficients in all) as well as the ¢ + v” + s” non dissipative hydrodynamical
transport coefficients. Note that the number of variables precisely equals the number of
equations. Dissipative hydrodynamical transport coefficients are completely unconstrained
by this procedure.

We emphasize that the shifted equilibrium velocities, temperatures and chemical poten-
tials obtained from the procedure just described automatically obey the equations of hy-
drodynamics. By construction, the shifted fluid variables, together with the constitutive
relations determined above yield the stress tensor that follows from the functional variation
of an equilibrium partition function, and the stress tensor obtained from the variation of any
diffeomorphically invariant functional is automatically conserved. Very similar remarks apply
to the charge current.

The procedure described above may also be used to derive constraints on the form of the
fluid entropy current. The entropy current must obey two constraints. First its divergence
must vanish on all the equilibrium configurations derived above. Second, the integral over
the entropy density (obtained from the entropy current) must equal the thermodynamical
entropy that follows from the partition function. These requirements impose constraints on
the form of the (non dissipative) part of the most general symmetry allowed hydrodynamical
entropy current.

In the case of parity violating fluid dynamics in 3+1 dimensions at first order in derivative
expansion, which we will discuss in some detail below, the results for transport coefficients
computed from (1.6) match perfectly with those of Son and Surowka [3] (generalized in
[16],[4]) once we impose the additional requirement of CPT invariance. Before imposing the
requirement of CPT invariance, we have an additional one parameter freedom that is not
captured by the the generalized Son-Surowka analysis. The reason for this is that Son and
Surowka (and subsequent authors) assumed that the entropy current was necessarily gauge
invariant. This does not seem to be physically necessary. It seems to us that an entropy
current whose divergence is gauge invariant - and whose integral over a compact manifold in
equilibrium is gauge invariant - is perfectly acceptable. As we explain below, it is easy to
find a one parameter generalization of the Son-Surowka solution that meets these conditions,
and that gives rise to the additional term Cp in the partition function (1.6). However it
turns out that the requirement of CPT invariance sets Cp (along with C1) to zero in (1.6),
so this possible ambiguity is never realized in the hydrodynamical description of a quantum
field theory. Later we will present the results for anomalous charged fluids in arbitrary even
dimensions and see that this turns out to be true there as well.

In the next section we present our study of the particularly interesting case of parity vio-

5The counting goes as follows. The stress tensor decomposes into one SO(p), tensor, one vector and two
scalars. The charge current decomposes into a vector and a scalar. Equating the hydrodynamical equilibrium
stress tensor and charge current to the expressions obtained by varying the equilibrium yields 3sy + 2v. + t¢
equations.



lating charged fluids in 3+1d at first order in derivative expansions to illustrate this powerful
method.

1.4 3+41d parity violating charged fluids at first order

Throughout rest of synopsis we will be working with the background metric and gauge field
configuration (1.1). Before proceeding we first define some useful notation. Let uf. be the
unit normalized vector in the Killing direction. In components

uh =¢e77(1,0,...,0) (1.16)
Let Pxc*” denote the projector orthogonal to u‘;(

Pt = g" + uluy (1.17)

o= (5 o)

Let us also define the shear tensor, vorticity and expansion and acceleration of this Killing

Explicitly in matrix form

‘velocity’ field by

Ok = V.ug = Expansion, o} = (ux.V)ul, = Acceleration

O.I;(V — prapvB (v“(uK)ﬁ + Va(uk)a — Glg ) = Shear tensor

Z 3 o (1.18)
Va(uk)s — Vp(ur)a

2

wh = prepvh < ) = Vorticity

A straightforward computation yields

Ok =0, (ax)y = (Px)uV'o
ok =0 (1.19)

(o

(@) = G (Pc)ui(Prc)o 9

1.4.1 Equilibrium from hydrodynamics

In this subsection we evaluate the most general hydrodynamical stress tensor and charge
current, at first order in derivatives, and evaluate it in as yet undetermined equilibrium
configuration.

In table 1 we list the onshell equivalent first order fluid data. From this table this follows
that the most general symmetry allowed correction the constitutive relations at first order in
derivatives is given by

™ = —(OPu — nouw

1.20
Jhiss = 0 (Ey — TPLOav) + a1 E* + ayPP0,T + Euw + EpBY (1.20)

diss



Type Data Evaluated at equilibrium
T =Toe 7, p=e %Ay, u'=ul
Scalars V.u 0
Vectors E,=F,u", e ?0;Ag
PHXOT, Toe 0o
(EF — TPHYO,v) 0
Pseudo-Vectors ep,\agu’\vauﬁ %eijkfjk
B, = Jeppapu P B; = 3gi;™ (Fy + Ao fut)
Tensors Puapyg(w — % gaﬁ ) 0

Table 1. One derivative fluid data

Scalars None
Vectors 0'Ay , 0o
Pseudo-Vectors eijké)jAk , eijkajak

Tensors None

Table 2. One derivative background data

where the shear viscosity 7, bulk viscosity (, conductivity ¢ and the remaining possible
transport coefficients aq, as, &, and g are arbitrary functions of o and Ay.

Solutions in equilibrium are determined entirely by the background fields o, Ag, a;, 4; and
g“. In Table(2,1) we have listed all coordinate and gauge invariant one derivative scalars,
vectors and tensors constructed out of this background data. As Table (2,1) lists no one
derivative scalars, it follows immediately that the equilibrium temperature field T'(x) = e T
and chemical potential field u(x) = e~? Ay receive no corrections at first order in the derivative
expansion. The velocity field in equilibrium can, however, be corrected. The most general
correction to first order is proportional to the vectors and pseudo vectors listed in Table (2,1)
and is given by

e by

Sut = 1 Eijkfjk + bgB}'( + bgaiO' + b4aiA0 (1.21)

where

fik = Ojar — Oraj,  Fjp = 0jAx — OpAj,  Aj = Aj — ajAo,

1 1 (1.22)
By = §€Z]k(ij + Aofj), € =—.

The fluid stress tensor evaluated on this equilibrium configuration has two source of first
derivative corrections. The first set of corrections arises from the corrections (1.20) evaluated
on the zero order equilibrium fluid configuration (1.14). 7 The second source of correc-
tions arises from inserting the velocity correction (1.21) into the zero order (perfect fluid)

"When u* o (1,0...,0) the Landau frame condition sets moo = mo; = J(‘)h“ = 0. Consequently Too, To:
and Jy receive no one derivative corrections of this sort.

,10,



constitutive relations. The net change in the constitutive relations is the sum of above two
contributions and is given by

§Too = 0.Jo = 06T =0,
i o 1 1 o\ ijk 1 ijk —o 9 i
5T0 = —e (6 + P) [§(b2A0 - 51)16 )6 fjk + 5()26 ij — b3Tpe 70%c + bsO AO]
= 1 1 - 1 .
6J" = [5 ((53 +qb2)Ag — 5(&1 + qbl)eg) ek fir + 5(53 + gb2) R Fyy,

— (gbs + ag)Toe_Uaia + (gbs + al)aiAo} .

(1.23)

1.4.2 Equilibrium from the Partition Function

In this subsection we compute the first order corrections to the equilibrium stress tensor and
charge current from the equilibrium partition function. From the fact that Table (2) lists
no gauge invariant scalars, one might be tempted to conclude that the equilibrium partition
function can have no gauge invariant one derivative corrections. But as we have already
explained earlier the three(constant) parameter set of Chern Simons terms listed in the third
line of (1.6) yield perfectly local and gauge invariant contributions to the partition function,
even though they cannot be written as integrals of local gauge invariant expressions. In
addition to these gauge invariant pieces we need a term in the action that results in its
anomalous gauge transformation property. This requirement is precisely met by the term in
the last line of (1.6). With the action (1.6) in hand it is straightforward to compute the stress
tensor and charge current in equilibrium using

T __ Toe* oW Tz'_T0<5W_A5W>

O e 00 T g b4 V64

g My . . W 20Ty W . T, oW

TZ.]:_ nggjm y J :—77’ 1277. 1.24
Na g T g 04 —Y(p+1) 04i (124

where, for instance, the derivative w.r.t Ag is taken at constant o, a;, A;, g%, Ty and po.
Using these we find

Too =0, TY =0,

. g 1
Té — ¢ O lk |:(_20A(2) + 2Ch Ao + CQ)VjAk + (2C) — %Ag — Cng)Vjak]

Jo = —e% ¢k [gAivjAk + ngAiVjak}

A g C C C
J' = ek [2 <3A0 + CO> Vi Ay + <6A3 - 02> Viak + 5 AV Ao |,
(1.25)

The current obtained above is gauge non invariant. The more familiar gauge invariant ’co-
variant’ current is related to this 'consistent’ current by [17]

JH = Jr — %eWMV}ya (1.26)

— 11 —



Using (1.26) it follows that

Jo =0,
(1.27)

g 1
J= e o€k [(CAO +2Cy)V; Ak + (50./4% + CQ)VjCLk],

1.4.3 Constraints on Hydrodynamics

In this subsection we compare the equilibrium stress tensor and charge current obtained in two
different ways in 1.4.1 and 1.4.2 to obtain constraints Equating the coefficients of independent
terms in the two expressions for 7§ (1.23),(1.25) determines the one derivative corrections of
the velocity field in equilibrium. We find.

T3 2
by = Z13C 4+ W20y — w0y + 4C
1= p(3r Ot il — Gy 4Ch),
T2 1
by = —2C +20Cy —
2 €+P(2V C + 2vC)y Cg),
by = by = 0. (1.28)
whereyz%:%?.

Equating coefficients of independent terms in J? in equations 1.23 and 1.27 and using
(1.28) gives

& = CVPT?(1 — ?)(:L‘JP)VT) + T2 [(4Co - 2C5) - ‘iTP (4v2C — 4vCy +4Cy)),
q qT
&g = CvI'(1— muT) +T(2C) — -~ 5 (2vCo — C2)),
a1 — g = 0 (1.29)

Let us summarize. We have found that the hydrodynamical charge current and stress
tensor are given by

™ = —COPu — nouw
Jt =0 (Eu — TPﬁ‘@au) + Eowh + EgBH

diss

(1.30)

In (1.30) the viscosities ¢ and 1 together with the conductivity o are all dissipative param-
eters. These parameters multiply expressions that vanish in equilibrium and are completely
unconstrained by the analysis of this subsection. On the other hand (, and (p - together
with «; and ag in (1.20) - are non dissipative parameters. They multiply expressions that
do not vanish in equilibrium. The analysis of this section has demonstrated that ay and as
vanish and that (, and (p are given by (1.30). The expressions (1.30) agree exactly with the
results of Son and Surowka - based on the requirement of positivity of the entropy current -
upon setting Cy = C; = Cy = 0. Upon setting Cy = 0 they agree with the generalized results
of [16] (see also [4],[8]).
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1.4.4 The Entropy Current

The entropy of our fluid system can easily be computed from the equilibrium partition function
as

S Tolog Z)

:TT{)(

(1.31)
= /d?’x\/gigewk [C(]Al'VjAk + 301T02aNjak + QCQTOAiV]’ak].

Although we can cannot determined the full entropy current(.J g ) from equilibrium par-
tition function, but the requirement that total entropy

S = /d3$\/g4<]g (1.32)

should match with the (1.31), can be used to constrain the equilibrium entropy current. As
mentioned in the introduction and as is apparent by looking at the (1.31) that we have to
allow for gauge non invariant terms in the entropy current, but keeping associated physical
quantities, namely the divergence of entropy current and total entropy, gauge invariant. The
most general physically allowed form for the entropy current, at one derivative order, may

then be read off from Table 2
Jy = sut —vJh  + DyOu* 4+ D, (E* — TPH*0,v) + DpE* 4+ Dga*
+ Dyw" + DpB* 4+ he" 7 A, 0\ Ay (1.33)

where h is a constant

From this the first order correction to the total entropy in equilibrium is easily computed to

be
/ 3z \/_794Jg | correction

. d,
= / d3x\/gze® [Tg <301 + h? + 5 Vd3> a;0;ay, (1.34)

+ To(2Cy + 2hv — dB)aiajAk + hAiajAk:|

where
uw Ag Dp Cv? D, Ccv3
=c=22 == (=L _ P R 2 1.
v T TO ) dB T < 9 02 ) d T2 3 CQV + Cl ( 35)
Comparing this expression with (1.31) we find
h=Cy, dg=2Cyw, d,=2C> (1.36)

This result agrees precisely with that of Son and Surowka as generalized in [5].

To end this section let us finally look at the the CPT properties of our partition function
(1.6). From table 3 terms appearing with Cy and C; and thus imposing the requirement of
CPT invariance on the partition function sets these coefficients to zero.
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Field | C | P | T | CPT
o + 1+ |+ +
a; + - - +

Gij + |+ |+ +
A -+ + -

Table 3. Action of CPT

1.5 A summary of results

In previous sections we have discussed the generalities of our equilibrium partition function
technique and illustrated it some detail with the case of first order parity violating fluids in
3+1d. Using these set of ideas we have worked many other cases. In these section we briefly
summarize these results one by one.

1.5.1 3+1d uncharged fluids at 2nd order

For uncharged fluids, the first correction to the equilibrium partition function appears at 2nd
order in derivative expansion. Without assuming anything about the parity properties, the
most general 2nd order correction to the equilibrium partition function for 34+1d uncharged
fluids is given by

1 - - - -
W=logZ =~ / dx /g3 [Pl(Toe_")R + TEPo(Toe ™) fi; f9 + P3(Toe 7)(00)?

. dP;
where Pj(Tpe ?) = P,(0) and P} = d(a)
o

(1.37)

(i=1,2,3)

where Py, P», P3 are three arbitrary function of ¢ and from now on we will remove the explicit
dependence. In partition function, the fourth scalar V2o and the pseudo-scalar eijkﬁia 7% do
not appear as they are total derivatives.

The most general constitutive relations for this case are parametrized by

I, = —nou — (PO

+T [T (U-V)Uwy) + Hlfé(“w + K2 K () + Ao Oopy

+ A1 03 00y + A2 00, Wayy + A3 Wi Wayy + A aWa”J (1.38)

+TP,, [Cl(u-v)@ + QR+ GRoo + 610 + &0% + &0 + 54112]

4
+T [ > 6itll) + 65 Puanl®
i=1
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where
ut = The normalized four velocity of the fluid
PH = g" + uPu” = Projector perpendicular to u*

© = V.u = Expansion, a, = (u.V)u, = Acceleration

Vaug + Vau (C]
wy _ pupa prB ap o ¥ —
o prep (2 3 gaﬁ> Shear tensor (1.39)
v -V
W — propvB <au52ﬂuo‘) = Vorticity
KM = RFoy vy, RMY = R%™ g, (R“de = Riemann tensor)
o’ = oot w? = W

and

_ paps [(Aap+ Asa [AupP™
Ay =PoP) < — [

2 3

The expansion (1.38) is given in terms of 15 parity even and 5 parity odd arbitrary
transport coefficients, each of which is, as yet, an arbitrary function of temperature). Seven
of these fifteen parity even terms and two of the five parity odd terms vanish in equilibrium.
Using the techniques used in previous sections we can determine the equilibrium solution as
well as the non dissipative transport coeflicients in terms of the coefficient functions Py, P», P3
of the equilibrium partition function. Eliminating Py, P>, P3, we find relation among the non
dissipative transport coefficients

] ga5> For any tensor A,

d/ﬁ}l
71
Ko = K1 + aT
C_lsﬁfm
279 ds 3

[ dr1 | K1 drky  2kK9 s (dI’
43—<8d5+3> * <d 3> 7 (ds)M

) (%) (5 2e) 5@ @) o
1
4

|

B A s [(dT T d\y dkg 3sdl’ 1
“4=-% T <d> </\4+2dT> T(dT Tds 2
Ts (dT d?kz
2 \ds d1?
This is in perfect agreement with the relations obtained in [10] using the second law of
thermodynamics.
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1.5.2 Anomalous charged fluids in arbitrary dimensions

The story described in 1.4 can be generalized to anomalous charged fluid dynamics in arbitrary
even dimensions. Although the parity even contributions to the partition functions could
appear at all orders in derivative expansion, the parity odd part receive first non trivial
contribution at n — 1 order in derivatives. The anomalous part of the equilibrium partition
function, constrained by 2n — 1 dimensional diffeomorphisms invariance, kaluza-klein gauge
invariance and the U(1) gauge invariance upto anomaly, is given by

Wanom = ]{O/dznl'f\/ an—l{ Z am—l(A()?TO) [EA(da)mil(dA)nim]
| (1.41)

+ an(Th) [ea(da)”l]}.

where, €% is the (2n — 1) dimensional tensor density defined via

1192...04— —o 0i1i2...04—
hiz-td—1 — =0 Vit ig—

The indices (4, j) run over (2n — 1) values. We have used the following notation for the sake
of brevity

[eA(da)™ " (dA)™ ]
= eijlkl-~~jmflkmflplql--~pn7m(InfmAiaj1ak1 o 8jm—1akm718pl Aql ;)

O At (1.42)
[e(da)™ (dA)* ™)’ '

— ijik1edm—1Km— Pr—mGn—m 9. ,
=€ S ! tprasp 4 8jla’kl tee 8Jm—1akm—18p1AQ1 te apn—mAqn—m
The coefficient function «,,’s are all determined by gauge invariance upto the anomaly equa-
tion to be
n
om = —Canom (m +1

oy = C, Tyt (1.43)

)Agﬁwéng”“, m=0,...,n—1

Here, C,, are arbitrary constants. The requirement of CPT invariance forces all Co = 0.
Using the analysis similar to the that used in section 1.4 we obtain the anomalous part
of the constitutive relation to be

oT! =0
n s s L (1.44)
6J5dd = Z émsﬂl’ Y101 Ym—10m—1 04161~~~an7mﬁn7muy(8fyu6)m_ (8a¢45)n_m N
m=1
where the coefficients &,,’s are determined to be
n+1
gm = [mETp — (m + 1):| Canom (m + 1)Hm
m ” I (1.45)
A= —k -1 k—lé« - Tk+l m—k—1
N R F A
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This then is the prediction of this transport coefficient via partition function methods. This
exactly matches with the expression from [8](see section (2) of [18] for conversion of results

of [8] to our conventions).

1.5.3 Parity violating charged fluids in 2+1d at first order

For this case, here, we will only discuss the parity odd part of the partition function and the
constraints obtained from it on the the constitutive relations. The parity even sector works
as in 3+1d.

The most general partition function in this case is

1

W= / (a(a, Ag)dA + ToB(o, Ao)da), (1.46)

where o and 8 are two arbitrary functions.
The most general first order constitutive relations are given by

T = eutu” 4+ (P — (Vu® — xgB — xof2) P — not" — nat” (1.47a)
JH = put + oVH 4+ GVH + XgE* + xrT" . (1.47b)

The various quantities appearing in the constitutive relations (1.47) are defined as

1
Q = —™Pu,V,u,, B = =" u,F,, (1.48a)
Bl = Fhvy,, Vh = EH TP“”VV%, (1.48b)
P = utu” + gMv, oM = phopvB (Vaug + Vgua — gagv)\u)‘> , (1.48c¢)
and
EM = Py, E,, VH = ey, V, (1.48d)
1 ~
ot = 5 (e”o‘"’uaap” + e”a”uaap“) , TH =e"Pu,V,T. (1.48e)

Out the 6 parity odd transport coefficients, namely {Xp, Xw, 7,0, XE, X7} appearing in
the constitutive relations (1.47), only 4 {XB, Xw, XE, X7} survive in equilibrium. These are
determined in terms of the partition function coefficients v and S to be

- oP - O0a oP Jda

XB—(%<_T0€ 9% > B <T08Ao>’

_OP( (.08  da or( a8 a
Xe = 5e <T“ <T“a A"aa> > * ap< Toe™ (TOaAO A08A0> >
. O p Y op Oa

X = <TO{9AO> e+ P( Toe <T° a4, o é)AO) )

- o0  p B, Oa
TXT_<_T06 aa) e—i—P(TOe (Toa Aoaa>>

(1.49)
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Eliminating the o and § we find the following relation between the four nondissipative trans-

port coefficients.
p OP _ oP
XB— —5 XQ =

c+P T 9T e
which matches precisely with the relation obtained in [19].

T %r. (1.50)

1.5.4 Superfluids in 3+1d

In field theories where a global U(1) symmetries is spontaneously broken, e.g. by condensa-
tion of charged scalar field, the long wavelength hydrodynamical description has, over and
above the usual hydrodynamical modes, a massless goldstone mode corresponding to the
spontaneously broken symmetry. The presence of this massless mode renders the equilibrium
partition function nonlocal and its is hard then to make sense of the derivative expansions in
such a case. To deal with this problem we shall follow the following strategy. Rather then
working with the non local partition function we will work with the euclidean effective action
for the goldstone mode. This effective action, unlike the partition function, is local and can
usefully be studies in a derivative expansion.

We limit ourselves here to the case where the underlying field theories in an appropriate
large N limit in which the effective action for the goldstone boson comes with suitable positive
power of N, so that effective dynamics of the the goldstone mode becomes classical in the
large N limit. ® In this classical approximation the partition function of our system is just
the Goldstone effective action evaluated on shell.

The most general goldstone effective action for the superfluids upto first order in deriva-
tive expansions is given by

S = S(O) + Sézl))en + Sélligi + Sanon’w
where S = /d?’m\/ﬁlAP(T,,&, X)s

st = [ @wva | Rcort + 2o - pvi (L6 (151)
5 _/ B (a1 é7%¢.0, ik o), 51
o = | V9d’z (gl €7%(0; A + Togoe Q@Jak> + 5 ada

Sanom = < < @AdA + AAda)

fo

21 3
where

i - N — - N - )
T =Tpe 7, = Ape™?, u*=1(1,0,0,0)e7 %, == —

0 2 0 ( ) T To’
&i=—-0i0+ A, (=& —aido=—-0i0p+A;, (=& = Ao, (1.52)

2

2 e _ &
X =& =&y, ¢*T2-

8Qutside such a large N limit the quantum corrections to the classical answers, which are suppressed by
appropriate powers of N(e.g. by ﬁ in adjoint theories, like A" = 4 SYM, in t'Hooft limit) may have interesting
structure, see e.g. [20-23] for related work, but we would restrict here to the strict large N limit.
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The parity even coefficients f; = fi(T, ,¢?) for i=1,2,3 while the coefficients g; = gi(T, v,1).
The function P(T7 v, x) is the thermodynamical pressure and

N ai
f(T7VaC)_ 28<—2

A few comments are in order.

e Under gauge transformations we have
A — A + 0ie, ¢ — o+ .

Gauge invariance thus forces that the effective action can only depend on the &; which
is gauge invariant. (; is useful since it is not only U(1) gauge invariant but also Kaluza
Klein gauge invariant.

e The coefficient f3 multiplies the zeroth order equation of motion for the the field ¢ and
is thus shifted by field redefinition of ¢ and its effect on physical quantities would be
rather trivial.

e While the fields o, ;4 and y are even under the action of time reversal, the fields &; and
(; are odd under this operation. Thus the simultaneous requirement of parity and time
=0.

reversal invariance simply sets S.,.,,

The most general constitutive relations at first order in this case and the relations ob-
tained between the non dissipative transport coefficients from our method are rather cum-
bersome to state here, so for sake of brevity we shall just give the counting of the transport
coefficients and relations this case. Working in the frame invariant formalism of [4] we find

e In the parity even sector there are 22 non dissipative transport coefficients which are
determined in term of 2 free field redefinition invariant functions f; and f» in the

partition function.

e In the parity odd sector there are 18 non dissipative transport coefficients are determined
in terms of two free functions g; and go appearing in the partition function.

These explicit results obtained, [24], agree precisely with those obtained using the local en-
tropy increase principle [4] and slightly generalized in [24].

1.6 Conclusion

In this synopsis we reported on the progress we have made in better understanding the
constraints on the non dissipative transport coefficients from a very physical point of view of
demanding that there must exist time independent solutions when a fluid is put on a time
independent background and that the equilibrium conserved currents should come from an
equilibrium partition function. We showed that the constraints thus obtained match precisely
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with those obtained by the use of a local form of second law of thermodynamics in number of
nontrivial examples. The extensive matching of the relations, in cases like superfluids, where
the number of relation are numerous and rather intricate, makes provides extensive support
for our conjecture that such a relation is true to all orders in long wavelength expansion. It
would be certainly be interesting to find a proof or a counterexample against this conjecture.

Although in this synopsis we have nowhere used the AdS/CFT correspondence, it is
one of the main motivation behind the work presented in this synopsis. The local entropy
increase of the boundary fluid dynamics maps, under the fluid-gravity map, to Hawking’s
black hole area(/entropy) increase theorem in two derivative Einstein-Hilbert gravity. Al-
though a generalization of the Bekenstein-Hawking entropy by Wald has been long proposed,
a corresponding Wald entropy increase theorem has not yet been proven. The second law of
thermodynamics for fluids dual to higher derivative gravity theories would map to a Wald
entropy increase theorem. This leads to a exciting possibility of either proving the Wald
entropy increase theorem for higher derivative theories of gravity or constraining the possible
higher derivative corrections to Einstein-Hilbert gravity by the requirement of an entropy
increase principle.

Recently, using the ideas of the equilibrium partition function other authors have also
made progress in understanding the effects of anomalies in other global symmetries like weyl
symmetry, diffeomorphisms and other non-abelian global symmetries(see e.g. [25-28]). An
interesting related queston is, whether anomalies also affect the dissipative transport coeffi-
cients.

We have proposed a very simple and powerful technique to analyse the equality type
constraints in hydrodynamics. It is natural to wonder if there is a simillar simpler under-
standing of the inequalities for the dissipative transport coefficients e.g. by the consideration
of stability of equilibrium solution. If true, this would be some progress towards a better
understanding of second law of thermodynamics at least in the hydrodynamical context.
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3 Constraints on Fluid Dynamics From Equilibrium Partition Function

3.1 Introduction and Summary

In this chapter we explore, in great detail, the structural constraints imposed on the equations
of relativistic hydrodynamics by two related physical requirements. First that these equations
admit a stationary solution on an arbitrarily weakly curved stationary background spacetime.
Second that the conserved currents (e.g. the stress tensor) on the corresponding solution
follow from an equilibrium partition function.

Landau-Lifshitz [1], and several subsequent authors, have emphasized another source of
constraints on the equations of hydrodynamics, namely that the equations are consistent
with a local form of the second law of thermodynamics. As is well known, this requirement
imposes inequalities on several parameters (like viscosities and conductivities) that appear
in the equations of hydrodynamics. It is perhaps less well appreciated that the requirement
of local entropy increase also yields equalities relating otherwise distinct fluid dynamical
parameters, and so reduces the number of free parameters that appear in the equations of
fluid dynamics (see e.g. [1, 2], for more recent work inspired by the AdS/CFT correspondence
see e.g. [3—11]). In three specific examples we demonstrate below that the equalities obtained
from the comparison with equilibrium (described in the previous paragraph) agree exactly
with the equalities between coefficients obtained from the local second law of thermodynamics.
These results lead us to conjecture that the constraints obtained from these two a naively
distinct physical requirements infact always coincide.

In the rest of this section we summarize our procedure and results in detail. In subsection
3.1.1 below we describe the structure of equilibrium partition functions for field theories on
stationary spacetimes in an expansion in derivatives of the background spacetime metric
(and gauge fields). In subsection 3.1.2 we then describe the constraints on the equations of
relativistic hydrodynamics imposed by the structure of the partition functions described in
subsection 3.1.1. In three examples we compare these constraints to those obtained from the
requirement of entropy increase and find perfect agreement in each case.

3.1.1 Equilibrium partition functions on weakly curved manifolds

Consider a relativistically invariant quantum field theory on a manifold with a timelike killing
vector. By a suitable choice of coordinates, any such manifold may be put in the form

d82 _ _GQU(f) (dt + al(f)dxz)Q +gw(f)dl‘ld$’] (31)

where ¢ = 1...p. 0 is the killing vector on this manifold, while the coordinates Z parametrize
spatial slices. Here o, a;, g;; are smooth functions of coordinates &.

Let H denote the Hamiltonian that generates translations of the time coordinate ¢t. In
this subsection we address the following question. What can we say, on general symmetry
grounds, about the dependence of the the partition function of the system

H

Z =Tre To, (3.2)
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on o, gi; and a;? We will focus on the long wavelength limit, i.e. on manifolds whose
curvature length scales are much larger than the ‘mean free path’ of the thermal fluid ?. In
this limit the question formulated above may addressed using the techniques of effective field
theory. In the long wavelength limit the background manifold may be thought of as a union
of approximately flat patches, in each of which the system is in a local flat space thermal
equilibrium at the locally red shifted temperature

T(x)=¢e"To+... (3.3)

(where Ty is the equilibrium temperature of the system and the ... represent derivative
corrections, see below). Consequently the partition function of the system is given by

nZ = / dpx\/g;T(l@P(T@)) b (3.4)

where P(T) is the thermodynamical function that computes the pressure as a function of
temperature in flat space. Substituting (3.3) into (3.4) we find

InZ = /dpx\/g;;P(Toe—") to (3.5)
0

The ... in (3.5) denote corrections to In Z in an expansion in derivatives of the background
metric. At any given order in the derivative expansion these correction are determined, by the
requirement of diffeomorphism invariance, in terms of a finite number of unspecified functions
of . For example, to second order in the derivative expansion, p dimensional diffeomorphism
invariance and U(1) gauge invariance of the Kaluza Klein field a constrain the action to take

the form

1 e’ Y
logZ =W = —3 (/dpx\/gp:,bP(Toe )
(3.6)

+/dp33 9p(P1(0) R+ T§ Pa(0)(Dia; —3jaz‘)2+P3(U)(VU)2)>

where P (o), Py(0) and Ps(0) are arbitrary functions. It is possible to demonstrate on general
grounds that the temperature dependence of these functions is given by

PZ(O') = ]%‘(Toeio) (3.7)

so that

1 g
logZ =W = —= /dp$,/gp€P(Toe_a)
2 T,

+ /dpx@(pl(Toe_o)R + TgPQ(TOe_”)(&aj — 8]‘0,1')2 + Pg(Tge_g)(VO')2)>

(3.8)

9Equilibrium Partition functions special curved manifolds or with particular background gauge fields have
been studied before in [19, 29, 30]
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The discussion above is easily generalized to the study of a relativistic fluid which pos-
sesses a conserved current J, corresponding to a global U(1) charge. We work on the manifold
(3.1) in the presence of a time independent background U(1) gauge connection

A = Ag(Z)da® 4 A;(F)dx’ (3.9)

and study the partition function
H—ppQ

Z=Tre ™o (3.10)

Later in the section we present a detailed study of the special case of charged fluid dynamics
in p = 3 and p = 2 spatial dimensions, at first order in the derivative expansion, without
imposing the requirement of parity invariance. Let us first consider the case p = 3. The
requirements of three dimensional diffeomorphism invariance, Kaluza Klein gauge invariance,
and U(1) gauge invariance upto an anomaly'? (see below) force the partition function to take

the form!!
InZz = WO + Wz%w + Walnom
wo = /\/g?;P (Tge_",e_JAo)
0
T? T 3.11
Wilnvzcb/AdA+ Ocl/ada—i- OCQ/Ada (3:11)
2 2 2
C A A3
1 0 0
= — —AdA+ —A
W pnom 5 </ 370 dA + 6T, da>
where A;
Ag = Ag +
0 0T Ho (3.12)
Ai == .AZ — Aoai

(3.11) is written in terms of A; because A;, unlike A;, is Kaluza Klein gauge invariant!'?.
WY in (3.11) is zero derivative contribution to the partition function, and is the patchwise

approximation to equilibrium, in the spirit of (3.5). Wilm is the most general diffeomorphism

°Tn this thesis we only consider the effect of U(1)® anomalies ignoring the effects of . for instance, mixed
gravity-gauge anomalies. A systematic study of the effect of these anomalies in fluid dynamics would require
us to extend our analysis of charged fluid dynamics to 2nd order, a task we leave for the future (see however
section 3.6). It is possible that C above will turn out to be determined in terms of such an anomaly coefficient.
We thank R. Loganayagam for pointing this out to us.

" Our convention is

%/XdY = /d%\/g?e”’“xiajyk ; %/dY = /d%\/gze"jamj .

2The background data can be taken as gauge field A = (Ao, .A;) with constant chemical potential uo and
temperature Tp. Equivalently we can think of the system to have background gauge field B = (Ao + po,.A;)
with no chemical potential. These two are equivalent physical statements as po can be absorbed in the constant
part of Ap.
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and gauge invariant one derivative correction to W°. Note that W' is the sum of a Chern
Simons term for the connection A, a Chern Simons term for the connection a and a mixed
Chern Simons term in A and a. As usual, gauge invariance forces the coefficients Cy, C7 and
(5 of these Chern Simons terms to be constants.

(3.11) is the most general form of the partition function of our system that satisfies
the requirements of 3 dimensional diffeomorphism invariance and gauge invariance. If we,
in addition, impose the requirement of CPT invariance of the underlying four dimensional
field theory then it turns out that Cp = C; = 0 (see subsection 3.3.6). In other words, the
requirement of CPT invariance allows only the mixed Chern Simons term, setting the ‘pure’
Chern Simons terms to zero.

Wl

anom 18 the part of the effective action that is not gauge invariant under U(1) gauge

transformations. '3 Its gauge variation under A, — A, + 0,¢(%) is given by

SWh

_ 3 —
anom = 57 d’z/—gs x (FAF) ¢(x) (3.13)

As we explain in much more detail below, this is exactly the variation of the effective action

predicted by the anomalous conservation equation

V,JH = —% x (FAF) (3.14)
where J is the gauge invariant U(1) charge current, and * denotes the Hodge dual.
Let us now turn to parity violating charged fluid dynamics in p = 2 spatial dimensions.
In this case there is no anomaly in the system and the parity odd sector is qualitatively much
different from its p = 3 spatial dimension counterpart. For this system we primarily focus on
the parity odd sector upto the first order in derivative expansion and the manifestly gauge
invariant partition function in this case takes the form

nZ=wW"+Ww, (3.15)

where

WO = / @;—OP (Toe™, e~ Ag)

1

(3.16)
w=1 / (a(o, Ao) dA + T B(o, Ao) da).

2

Where Ay and A; are defined in (3.12) and « and [ are arbitrary functions.

It is straightforward, if tedious, to generalize the form of the partition function presented
in special examples above to higher orders in the derivative expansion. To any given order
in the derivative expansion, the dependence of In Z, on g;;, a;, o, Ag and A; is fixed by the

131t is striking that the effect of the anomaly can be captured by a local term in the 3 dimensional effec-
tive action. Note that W' cannot be written as the dimensional reduction of a local contribution to the 4
dimensional action, in agreement with general expectations.
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requirements of p dimensional diffeomorphism invariance and gauge invariance in terms of a
finite number of unspecified functions of two variables, o and Ay.

We will now define some terminology that will prove useful in the sequel. Let s denote
the number of independent gauge invariant scalar expressions that one can construct out of
o, a; (and Ag and A; in the case that the fluid is charged) at n'* order in the derivative
expansion. In a similar manner, v? and #? will denote the number of n'® order independent
gauge invariant vectors and (traceless symmetric two index) tensors formed out of the same
quantities. Finally let st denote the total number of n'" order scalar expressions that happen
to be total derivatives (including the contribution of a coefficient function) and so integrate
to zero M It is clear that at n'" order in the derivative expansion, the equilibrium action In Z
depends on s — st? unknown functions of two variables.

3.1.2 Constraints on Fluid Dynamics from stationary equilibrium

Relativistic Hydrodynamics In this subsubsection we present a lightening review of the

structure of the equations of charged relativistic hydrodynamics. The equations of hydrody-
namics are simply the equations of conservation of the stress tensor and the charge current

~ ~ C
v 1Y =F,,J" V,J'= ~3 x (FAF), (3.17)
where F is the field strength of the gauge field A in (3.9). These equations constitute a
closed dynamical system when supplemented with constitutive relations that express T}, and
J,, as a function of the fluid temperature, chemical potential and velocity. These constitutive
relations are presented in an expansion in derivatives and take the form

T = (e + P)u*u” + Pg" + «",  JH = qut + J";

diss’

(3.18)

The pressure P, proper energy density € and proper charge density g are those functions of
T and p predicted by flat space equilibrium thermodynamics. m,, refers to the sum of all
corrections to the stress tensor that are of first or higher order in the derivative expansion (the
derivatives in question could act either on the T', i, u*, or the background metric and gauge
field g, and A,,). Similarly J%. _refers to corrections to the perfect fluid charge current that
depend on atleast one spacetime derivative. Field redefinitions of the T' u and u” may be
used to impose p + 2 constraints on m,, and J(’;i <53 throughout this section we will work in
the so called Landau Frame in which

u T, =0, u“Jffiss =0 (3.19)

Terms in m,, and JZ.S , are both graded according to the number of spacetime derivatives
they contain, i.e.

T = Tl Ty T ey

(2) ®3)
Jcllliss = Jgiss,(l) + JZSS,(Q) + Jc?iss,(?)) +o

(3.20)

Y“For example, the two derivative scalar V,h(c)V*0 is a total derivative for arbitrary h(o).
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where the subscript counts the number of derivatives.

Symmetry considerations immediately constrain the possible expansions for 7, and .J; 5@' ss
as follows. At any given point in spacetime, the fluid velocity u* is a particular timelike vector.
The value of the velocity breaks the local SO(p, 1) Lorentz symmetry of the theory down to
the rotational subgroup SO(p). In the Landau frame (3.17) 7, may be decomposed into an
SO(p) tensor and SO(p) scalar. J%

diss

is an SO(p) vector.

In order to parameterize freedom in the equations of hydrodynamics, it is useful to define
some terminology. Let 1%, vy and s’ respectively denote the number of onshell inequivalent
tensor, vector and scalar expressions that can be formed out expressions made up of a total
of n derivatives acting on T, u*, p1, g, and A,,. It follows immediately that the most general
symmetry allowed expression for 772‘:) is given in terms of th+s unknown functions of the two
variables T" and p. In a similar manner the most general expression for the J Zss
by symmetries, is given in terms of v;} unknown functions of the same two variables.

(n)’ permitted

It turns out that the (t?+s’}+v?) nt" order transport coefficients are not all independent.
The requirement that the hydrodynamical equations are consistent with the existence of
an entropy current that is of positive divergence in every conceivable fluid flow imposes
several relationships between these coefficients cutting down the number of parameters in
these equations; we refer the reader to [1, 3, 5, 10], for example, for a fuller discussion.
We now turn to a description of a simpler physical principal that appears predict the same
relations between these coefficients. These relations may all be constructively determined by
comparison of the equations of hydrodynamics with a partition function.

Constraints from stationary equilibrium As we have explained in the previous sub-

subsection, it follows from symmetry considerations that the equations of charged hydrody-
namics, at n'* order in the derivative expansion, are parameterized by t}l + v? + s;% unknown
functions of two variables (or t"t + s functions of one variable for uncharged hydrodynamics).
We will now argue that these functions are not all independent, but instead are determined
in terms of a smaller number of functions.

It is easy to verify that the equations of perfect fluid hydrodynamics (hydrodynamics
at lowest order in the derivative expansion) admit a stationary ‘equilibrium’ solution in the
backgrounds (3.1) and (3.9) given by

Wl (@) = e7(1,0,...,0),  Tyo)(@) =Toe ™", po)(#) = e Ao (3.21)

As explained above, this is also the equilibrium solution one expects of the fluid on intuitive
ground. At higher order in the derivative expansion this solution is corrected; the corrected
solution may be expanded in derivatives
T I I
ut = ) —i—u(l) +u(2) + ...
T'=To+Tay+Tg)+--- (3.22)
H= o) T ) T )
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where u’(‘n), T(yy and i, are expressions of n'™ order in derivatives acting on o, Ao, a;, 4;

and g;;. What can we say about the form of the corrections u’(‘n), Ty and pg,y? Adopting
the notation defined in the last paragraph of the previous subsection, symmetries determine
the expression for u’(‘n) in terms of v as yet unknown functions of o and Ay, while 7" and p
are each determined in terms of s! as yet unknown equations of Ay and o.

The stress tensor and charge current in equilibrium are given by plugging (3.22) into
(3.20). The result is an expression for 7#* and Ji; . written entirely in terms of o, Ao, a;,
A;, gi; and their derivatives.

This expressions for the stress tensor and charge current so obtained depend only on a
L

subset of the transport coefficients that appear in the expansion of 7 and Jj,, .
n

the expansion of the nt" order tensor part of 7 has t ¥ terms in general. When evaluated

For instance,
on (3.21), however, this expression reduces to a sum over ¢} < t% terms. The coefficients of
these terms define ¢! subspace of the t}‘ dimensional set of n order transport coefficients.
We refer to this subspace as the subspace of non dissipative transport coefficients.

In this thesis we demand that the expressions for the equilibrium stress tensor and charge
current, obtained as described in the previous paragraph, agree with the corresponding ex-
pressions obtained by differentiating the equilibrium partition function of subsection 3.1.1
with respect to the background gauge field and metric. This requirement yields a set of
" + 207 4 35" equations'® that completely determine both the n'" order corrections to the
equilibrium solutions T, p,, and ulh (v + 2s” coefficients in all) as well as the 7 + v + s
non dissipative hydrodynamical transport coefficients. Note that the number of variables
precisely equals the number of equations. Dissipative hydrodynamical transport coefficients
are completely unconstrained by this procedure.

We emphasize that the shifted equilibrium velocities, temperatures and chemical poten-
tials obtained from the procedure just described automatically obey the equations of hy-
drodynamics. By construction, the shifted fluid variables, together with the constitutive
relations determined above yield the stress tensor that follows from the functional variation
of an equilibrium partition function, and the stress tensor obtained from the variation of any
diffeomorphically invariant functional is automatically conserved. Very similar remarks apply
to the charge current.

Let us summarize. In general 7# and J. 51‘ 55 are expanded in terms of th+s% and v} trans-
port coefficients, each of which is a function of temperature and chemical potential. However
' —t¢ + st — s¢ of these coefficients in 7/ and v} — v of these coefficients in Jh . evaluate
to zero on the ‘equilibrium’ configuration (3.21). The remaining ¢ + v’ + s¢ non dissipative
transport coefficients multiply expressions that do not vanish on (3.21). Comparison with
the equilibrium partition function algebraically determines all non dissipative transport coef-
ficients in terms of the s — st? functions (and derivatives thereof) that appear as coefficients

5The counting goes as follows. The stress tensor decomposes into one SO(p), tensor, one vector and two
scalars. The charge current decomposes into a vector and a scalar. Equating the hydrodynamical equilibrium
stress tensor and charge current to the expressions obtained by varying the equilibrium yields 3sy + 2vg + t¢
equations.

— 929 —



in the derivative expansion of the partition function. In other words the t7 + v} + s non
dissipative transport coeflicients are not all independent; there exist t 4+ v + st? relations
between these coefficients.

The procedure described above may also be used to derive constraints on the form of the
fluid entropy current. The entropy current must obey two constraints. First its divergence
must vanish on all the equilibrium configurations derived above. Second, the integral over the
entropy density (obtained from the entropy current) must equal the thermodynamical entropy
that follows from the partition function (3.10). These requirements impose constraints on the
form of the (non dissipative) part of the most general symmetry allowed hydrodynamical
entropy current.

We have implemented the procedure described above in detail in three separate examples
which we describe in more detail immediately below. In each case we have obtained detailed
expressions for all non dissipative hydrodynamical coefficients in terms of the parameters that
appear in the action. In each case, the relations obtained between non dissipative transport
coefficients, after eliminating the action parameters, agree exactly with the relations obtained
between the same quantities by previous investigations based on the study study of the second
law of thermodynamics.

In the case of parity violating first order fluid dynamics in 341 dimensions, the results for
transport coefficients computed from (3.11) match perfectly with those of Son and Surowka
[3] (generalized in [16],[4]) once we impose the additional requirement of CPT invariance. ¢

In the case of parity preserving fluid dynamics in 3+1 dimensions, the results obtained
from the partition function (3.6) agree perfectly with those of Bhattacharyya [10]. Finally, in
the case of parity non preserving charged fluid dynamics in 2+1 dimensions, the results from
section 3.4 agree perfectly with those of [19].

In ending this introduction let us note the following. As we have described at the be-
ginning of the introduction, the physical principles that yield constraints on the transport
relations of fluid dynamics are twofold. First, that these equations are consistent with the
existence of a stationary solution in every background of the form (3.1), (3.9). Second, that
the stress tensor and charge current evaluated on this equilibrium configuration obeys the
integrability constraints that follow if these expressions can be obtained by differentiating a
partition function. In the presentation described above we have mixed these two conditions
together (as the partition function is the starting point of our discussion). However it is also
possible to separate these two conditions. For each of the three examples discussed above, in

16Before imposing the requirement of CPT invariance, we have an additional one parameter freedom that is
not captured by the the generalized Son-Surowka analysis. The reason for this is that Son and Surowka (and
subsequent authors) assumed that the entropy current was necessarily gauge invariant. This does not seem
to us to be physically necessary. It seems to us that an entropy current whose divergence is gauge invariant -
and whose integral over a compact manifold in equilibrium is gauge invariant - is perfectly acceptable. As we
explain below, it is easy to find a one parameter generalization of the Son-Surowka solution that meets these
conditions, and that gives rise to the additional term Cj in the partition function (3.11). However it turns out
that the requirement of CPT invariance sets Cy (along with C1) to zero in (3.11), so this possible ambiguity
is never realized in the hydrodynamical description of a quantum field theory.
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Appendix 3.8.1, 3.8.2 and 3.8.3 we present a detailed study of the constraints on the equa-
tions of fluid dynamics obtained merely from the existence of stationary solutions in arbitrary
backgrounds of the form (3.1), (3.9). In each case we find that all of the relations between
transport coefficients, derived in this thesis, are implied already by this weaker condition. In
these three examples, once equilibrium exists, the requirement that it follows from a partition
function turns out to be automatic. We do not expect this always to be the case. In more
complicated cases we expect the existence of a partition function to imply further constraints
than those implied merely by the existence of equilibrium. However we leave the study of
such effects to future work.

3.2 Preparatory Material

In this subsection we present background material that we will need in the main part of
this section. In subsubsection 3.2.1 we present some Kaluza Klein reduction formulae for
metrics of the form (3.1). In subsubsection 3.2.2 we describe the transformation properties
of various quantities of interest under Kaluza Klein gauge transformations. In subsubsection
3.2.3 we discuss how the stress tensor and charge current of our system is related to the
partition function. We also discuss the thermodynamical energy, entropy and entropy of our
system, and compare these quantities to those obtained from integrals over local currents. In
subsubsection 3.2.6 we discuss the relation between consistent currents (those obtained from
the variation of an action) and gauge invariant currents in systems with a U(1) anomaly.
In subsubsection3.2.7 we describe how the equations of perfect fluid hydrodynamics may be
‘derived’ starting from a zero derivative equilibrium partition function.

3.2.1 Kaluza Klein Reduction Formulae

As explained in the introduction, in this thesis we study theories on metric and gauge fields
in the Kaluza Klein form

ds? = —2@ (dt + ai(:f)dxi)2 + gij(%)dx'da?

| 3.23
At = (A(2), A(7)) 22

The inverse of this metric is given by

w (—e727 +a?) —ad’
g = 4 gii

where the first row and column refer to time and g% is the inverse of gij- Christoffel symbols,
T, of the p+ 1 dimensional metric are given in terms of those of the p dimensional Christoffel
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symbols I' by

IY = —*(a.0)0
~60 — e2agim O
_ 20 f. m
IY% = 00 — €*(a.0)oa; + ef%a

. 1
fo = (L i+ o)
620
rd = _anF?j + > [ajamaiam + aiamﬁjam}
1 a 20 —20 a 20 8 20
— ia. (e*aa;) + —5 i(e*%aj) + 0;(e*“a;)

20

e
I‘fj = Ffj - Tgkm [ajﬁiam + az@jam]

1
+ §gkm8m(e2aaiaj) (3.24)

Curvature symbols of the p+1 dimensional metric (e.g. the Ricci scalar R) are given in terms
of p dimensional curvature data (e.g. the p dimensional Ricci Scalar R) by!”

~ 1
R =R+ 1620f2 —2(Vo)? - 2V3%0
L g o o 1 o
RY = RV = VioVo —V'Vio + e f " 7,
L o - 1 o
KY = ]“?“OZOJ(UO)2 =V'oVie +V'VIo + Z€2szmf]m>
(3.26)

where fij = 81'(1]' — 6jai
Let us define u/ to be the unit normalized vector in the Killing direction. In components

uh =¢e77(1,0,...,0) (3.27)
Let Px* denote the projector orthogonal to uf

Pt = g" + uheu (3.28)

(P = (8 ;;-)

1"The definitions we adopt in this thesis are

R

Explicitly in matrix form

7 =9,1%, — 8,07, +1%,T%, —T,I7,, (3.25)

prp

o
Ry, =R, .

We always use the mostly positive signature.
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Let us also define the shear tensor, vorticity and expansion and acceleration of this Killing
‘velocity’ field by

Ok = V.ug = Expansion, o} = (ux.V)ul, = Acceleration

ol = prepvh (va(uK)ﬁ —; Valur)a _ G)?)Kg%> = Shear tensor (3.29)
wh? = proprp (VQ(UK)g ; VB(UK)a> = Vorticity
A straightforward computation yields
Ok =0, (ag),= (Px)uV'e
ok =0 (3.30)

(WK ) = %(Pm)m(ﬂc)ujf“

3.2.2 Kaluza Klein gauge transformations
The form of the metric and gauge fields in (3.23) is preserved by p dimensional spatial diffeo-
morphisms together with redefinitions of time of the form

t'=t+¢(@), 2 == (3.31)

Under coordinate changes of the form (3.31) the Kaluza Klein gauge field a; transforms like
a connection:
a; = a; — 0;¢.

Let us now examine the transformation of p + 1 dimensional tensors under the coordinate
transformations (3.31). It is not difficult to verify that upper spatial indices and lower temporal
indices are gauge invariant. So, for instance, if A,, is any p+ 1 dimensional two tensor, the p
dimensional scalar Agg, the p dimensional vector Af) and the p dimensional tensor A% are all
Kaluza Klein gauge invariant. On the other hand lower spatial indices and upper temporal
indices transform under the Kaluza Klein gauge transformation (3.31) according to

V! =Vi—0ioVo, (VN0 =V0 49,0V (3.32)
Note that the p dimensional oneforms
9,V =V, — a;Vp
are gauge invariant. In the sequel we will make heave use of the p dimensional oneforms
A = Ai —aiAo (3.33)

This oneform is Kaluza Klein gauge invariant and transform as connections under U (1) gauge
transformations. This is the reason that the partition function (3.11) was written in terms of
A; rather than A;.
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3.2.3 Stress Tensor and U(1) current

The p+ 1 dimensional tensors that will be of most interest to us in this section are the stress
tensor, the charge current and the entropy current. The stress tensor and charge current are
defined in terms of variation of the action with respect to the higher dimensional metric and
gauge field according to the formulas

1
4SS = /da:p"'l\/—gpﬂ <—2TW59“” + J“(S.A“) (3.34)

As we have described in the introduction, in this thesis we will be interested in the parti-
tion function In Z of our system on the background (3.23). This partition function may be
thought of as the Euclidean action of our system on the metric (3.1) with coordinate time ¢
compactified on a circle of length T% The change of In Z under time independent variations
of the metric and gauge field is thus given by

1
SInZ = [ daP™\/—gp11 <2TW59W + J“(SAM)

(3.35)
1 1 ,
= To/da:pw/—gpﬂ <—2TW5Q“ + J“5AM>
It follows that
InZ
T, = _op 20
dgtv
510 Z (3.36)
Jt =T,

The formulae (3.36) are not written in the most useful form for the purposes of this section.
As we have described in the introduction, we find it useful to regard our partition function
as a functional of

InZ = W(e°, Ay, a;, Ai, g7, To, j1o). (3.37)

By application of the chain rule to the formulas (3.35) we find

7 = Lo W TiT0<5VV_A6VV>
Y Ve 00 ey G 0A)
20 )
i __ 2T gitgm W Jo——_¢ T, oW Iy oW (3.38)

g ) B e I = T 4
V 9+ og'm V= 9p+1) 040 V" 90+1) 04
where, for instance, the derivative w.r.t Ag is taken at constant o, a;, A;, g, Ty and pq.

3.2.4 Dependence of the partition function on 7y and ug

From the viewpoint of a Euclidean path integral, the parameter Ty in the partition function
(3.10) is the coordinate length of the time circle. Moreover, every quantum field of charge ¢ is
twisted by the phase q‘}—g as it winds the temporal circle in Euclidean space. As usual, such a
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twist is gauge equivalent to a shift in the ’ temporal gauge field A9 — Ag+ o = Ap '® holding
A; fixed. It follows that In Z is a function of Ag, A; and pg only in the combination Ay and
A; . The dependence of In Z on T may be deduced in a similar fashion. The Euclidean time
coordinate t' = tTj has unit periodicity. When rewritten in terms of ¢, the metric and gauge
field retain the form (3.23) with

’ e’ AO
e? = ?0, ai = a;Tp, A6 = ?0
It follows from all these considerations that
g T A g
W(€U7 A07 ag, Ai7 gw) TOv MO) - W(%u ?07 T00i7 Ai7 gZ])‘ (339)
o 1o

We will never use the function W below; all our explicit formulae will be written in terms of
the function W. Nonetheless (3.39) will allow us to relate thermodynamical derivatives w.r.t.
Ty and pg to functional derivatives of the partition function w.r.t. background fields.

3.2.5 Conserved charges and entropy

In this subsubsection we will compute the U(1) charge and energy of our system from in-
tegrals over the appropriate charge currents, and compare the expressions so obtained with
thermodynamical formulas.

The U(1) charge of our system in equilibrium is given by

Q= / dPx\/—gpi1J° (3.40)

where the integral is taken over the p dimensional spatial manifold. Let us now define the
(conserved) energy of our system. Whenever the divergence of the stress tensor vanishes, the
current —UAT;\L is conserved provided v* is a killing vector field. We cannot directly apply
this result to the killing vector field v* = (1,...,0), as the stress tensor in this section is not
divergence free in general (see (3.17)). However it is easily verified that the shifted current

Jh =~ — A J* (3.41)

is conserved in equilibrium. As a consequence we define

E = /dpx\/—ngrlJ% = [ d’z\/—gp+1 (—T(()) - AOJO) (3.42)

Q@ and F defined in (3.40) and (3.42) may be shown to be Kaluza Klein gauge invariant. For
instance, the Kaluza Klein gauge variation of the RHS of (3.40) is given by

/dpfﬁx/ —gpr1J'0;0
_ / N ey W (3.43)
— — [ dPx\/=gpr1 OV, I* =0

1811 this formula Ay is refers to the gauge field in Lorentzian space. Note that uo is gauge equivalent to an

imaginary shift of Ay in Euclidean space.
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(where we have used the fact that the gauge parameter ¢ is independent of ¢, integrated by
parts, and used the fact that J# is a conserved current). The gauge invariance of E follows
from an almost identical argument.

We will now demonstrate that the expressions (3.40) and (3.42) agree exactly with the
thermodynamical definitions of the charge and energy that follow from the partition function.
In great generality, the charge of any thermodynamical system may be obtained from its
partition function (3.10) via the thermodynamical formula

ow

Q:TOTMO

where the partial derivative is taken at constant Tp, Ag, Ai, g, a;, 0. In the current context

oW w w
o _ P .
SFpe TO/ @ <6Ao<x> i Mi(x))

— [ s/ =0
where we have used (3.39), JO = —e727Jy — a;J° (this follows from the fact that Jy =

900J° + goiJ?) and explicit expressions for Jy and J* listed in (3.38). Let us note that, in the
presence of anomaly 3.17 current J# is neither gauge invariant nor conserved!®.

(3.44)

The thermodynamical energy

oW
722
09Ty

(where the partial derivative is taken at constant pg, Ao, As, g, a;, o). may be processed, in

+ 1@

the current context, as

LOW

T07—|—MOQ:

Ty

_n [ W, W W oW WY
o oo Vs, oAy 0T ga o T Hotisy

= / \/TM [(B_QUTOQ + aiTg) — AOJO] (3.45)
— [ Vg 18 - A

=F

90One can construct a conserved current which is given by

Jr=J" + %EWWAVFW.
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where we have used (3.39), the fact that —T(S) = e 2Tyo + a7, 5 and the explicit expressions
for Top and T in (3.38)). In summary

ow
B = TogaT + po@
av{? (3.46)
Q= TOT
Ho

Even in the presence of anomaly one can show that the current J¥, in 3.41 remains conserved,
where J# is defined as in 3.36. Thus, the thermodynamic formula 3.45 holds for anomalous
system as well.

We conclude that the conserved charge and energy in our system are given, in terms of
the partition function, by the usual thermodynamical formulae. It follows that the entropy
of our system should also be given by the standard statistical formula

o(ToW)

= —— 4
S =55 (3.47)

Later in this thesis we obtain constraints on the entropy current of our system by equating

(3.47) with [ dPa\/—gps1J2.
3.2.6 Consistent and Covariant Anomalies

20 In this subsubsection we discuss the relationship between the consistent charge current (the
current obtained by differentiating the partition function w.r.t. the background gauge field)
and the gauge invariant charge current in arbitrary 3 + 1 dimensional U(1) gauge theories
with a U(1)? anomaly. Readers who are familiar with the issue of consistent and covariant
anomalies in quantum field theories can skip this section. The equations which will be used
later are (3.53),(3.48),(3.59).

In this thesis we will have occasion to study field theories in 4 spacetime dimensions
whose U(1) current obeys the anomalous conservation

C
V,Jt = o1 * (FAF) (3.48)
J# in (3.48) is the so called ‘consistent’ current defined by J* = (?TWH' As all gauge fields in
this thesis are always time independent

x (FAF) = —8e 7%, Ag0; Ap (3.49)

(here €123 = %) so that the anomaly equation may be rewritten as

c —o _ijk

VMJu = ge Ej 811408]./4]@ (3.50)

20 We would like to thank S. Trivedi and S. Wadia for discussions and on this topic and S. Wadia for referring
us to [17].
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21 Tt follows that the variation of the action under a gauge transformation is given by
Ke g
5= [ Vagy 5,4 0,6 = 7 [ dov=gios (FAF) = -5 [ doymocioA0;A. (351

We now follow the discussion of Bardeen and Zumino [17] to determine the gauge transfor-
mation property of J#. The principle that determines this transformation law is simply that
the result of first performing an arbitrary variation of the gauge field A, — 6.4, and then a
gauge transformation generated by d¢ must be the same as that obtained upon reversing the
order of these operations. The variation of the action under the first order of operations, to
quadratic order in variations, is given by

/ V=g (5A,)

(where 0.J# denotes the variation of the consistent current J# under the gauge transformation
d¢). The reverse order gives

/ 52 ) f N5, / 52 ) F NF) s, = % / Vg1 Aae P850 F. 5
Ay
Comparing the two expressions it follows that under a gauge transformation
§J% = (geawamag (3.52)
It follows that the shifted current
JH = Jr — %eﬂ”WAyﬁy(; (3.53)

is gauge invariant. J* is the current that is most familiar to most field theorists; for instance
it is the current whose divergence is computed by the usual triangle diagram in standard text
books. It follows from (3.53) that the divergence of J* is given by

- C
VIt = 3> (FAF) (3.54)
Using (3.49), the anomaly equations may be rewritten as

C i
B =03k Y. And.
VM{ 3 e 6 0; A0 Ay, (3.55)
V,JH = Ce¢9%9; Agd; Ay,

Let us summarize. J* is the gauge invariant current that we will use in the fluid dynamical
analysis in this section. It obeys the anomalous conservation equation (3.54). On the other

2n order to forestall all possible confusion we list our conventions. Fp, = 0y Ay, — Ay, *(FAF) =
e”mﬁ]:m,fag where €123 =

by 6A,, = 0,¢.

ﬁ The variation of the gauge field A, under a gauge transformation is given
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hand the non gauge invariant current J* is simply related to the action W (it is the functional
derivative of W w.r.t. A,). These two currents are related by (3.53).

To end this subsection we will now derive the stress tensor conservation equation (3.17)
in the presence of a potential anomalous background gauge field. We start by noting that the
variation of W under an arbitrary variation of g"” and A, is given by

1
SW = / N <—26g‘“’TW 4 J”éAM> (3.56)

Let us now choose the variations of the metric and gauge fields to be of the form generated
by an infinitesimal coordinate transformation, i.e.

ogh" = VHe" + VVe', 0A, = — (Vue" Ay + "V, Ay)

General coordinate invariance (which we assume to be non anomalous) demands that 0W =
0 in this special case. Plugging these variations into (3.56), setting the LHS to zero and
integrating by parts yields

/d4x —gac” <V“TW - JH(V, A, -V, A) + VMJ“.AZ,) (3.57)
Using (3.48) together with the identity

Ageuyaﬁfuu}—aﬁ = _4‘5””@6“411}—065'70# (3.58)

we conclude that c
V. TH = F,.(JF — gemﬁAJaﬁ) = FouJ" (3.59)

Thus the two equation of motion of charged fluids are given by (3.48),(3.59).

3.2.7 Perfect fluid hydrodynamics from the zero derivative partition function

It is well known (and obvious on physical grounds) that the equations of perfect fluid dynamics
are completely determined by the equation of state of the fluid (i.e, for instance, the pressure
as a function of temperature and velocity).

In this subsubsection we will ‘rederive’ the fact that the equations of hydrodynamics,
at zero derivative order, are determined in terms of a single function of two variables, by
comparison with the equilibrium partition function on a general background of the form
(3.1). The the results we obtain in this subsection are obvious on physical grounds. However
this subsubsection illustrates the basic idea behind the work out in subsequent subsections.

At zero order in the derivative expansion, the most general symmetry allowed constitutive
relations of fluid dynamics take the form

TH = (e + P)ul'u” +Pg"”, JH = qut, (3.60)

At this stage €, P and ¢ are arbitrary functions of any two thermodynamical fluid variables.
€, P and ¢ (which will, of course, eventually turn out to be the fluid energy density, pressure
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and charge density) are as yet independent and arbitrary functions of the temperature and
velocity.

We will now show that €, P and ¢ cannot be independent functions, but are all determined
in terms of a single ‘master’ function of two variables. In order to do that we note that the
most general p dimensional gauge and diffeomorphism invariant partition function for our
system on (3.1) must take the form

W=InZ= / d*c\/g5 =P (Tve 7, e~ Ao) (3.61)
0

7 and

for some function of two variables P (it is convenient to regard P as a function of e~
e~ 7Ap rather than simply o and Ay as we will see below). The stress tensor and charge
current that follows from the partition function (3.61) are easily evaluated using (3.38). The

results are most simply written once we introduce some notation. Let
a=¢ Ty, b=e A

Let P, denote the partial derivative of P w.r.t its first argument, and P, the partial derivative
of P w.r.t. its second argument. Below, unless otherwise specified, the functions P, P, and
P, will always evaluated at (a,b), and we will notationally omit the dependence of these
functions on their arguments. In terms of this notation

T = Pg¥, Ty =e* (P—aP,—bB), J'=e P (3.62)
e =0, J =0, (3.63)

Comparing the expression for J% in (3.60) with the same quantity in (3.62) we conclude that
ut =e79(1,0,...,0)
Comparing the other quantities it follows that
P=P, e=—-P+aP,+bP, q=D5 (3.64)

In the special case of flat space the variables a and b reduce to the temperature and chemical
potential. It is clear on physical grounds that P, € and g are functions only of local values
of thermodynamical variables. Consistency requires us to identify the local value of the
temperature with ¢ and the local chemical potential with b. The function P that appears
in the partition is simply the pressure as a function of T" and u. Standard thermodynamical
identities then allow us to identify ¢ with the energy density of the fluid and ¢ with the the
charge density of the fluid.

Let us summarize the net upshot of this analysis. Symmetries determine the form of
the perfect fluid constitutive relations upto three undetermined functions e, P and g, of the
temperature and chemical potential. On the other hand the equilibrium partition function
is given by a single unknown function, P, of two variables. Comparison of the partition
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function with the fluid hydrodynamics allow us to determine P, € and ¢ in terms of P; as a
bonus we also find expressions for the temperature and chemical potential in equilibrium on
an arbitrary background of the form (3.1), (3.9).

As the results of this subsection are obvious, and very well known. However a similar pro-
cedure leads non obvious constraints for higher derivative corrections of the fluid constitutive

relations, as we now explain.

3.3 3 + 1 dimensional Charged fluid dynamics at first order in the derivative

expansion

In this subsection we will derive the constraints imposed on the equations of charged fluid
dynamics, at first order in the derivative expansion, by comparison with the most general
equilibrium partition function.

The final results of this subsection agree with the slight generalization of Son and Surowka
[3] presented in [16],[4] as we now explain.

Recall that [3] argued that the hydrodynamic charge currents in field theories with a U(1)3
anomaly must contain a term proportional to the vorticity and another term proportional
to the background magnetic field. [3] used the principle of entropy increase to find a set of
differential equations that constrain these coefficients, and determined one solution to these
differential equations. It was later demonstrated that the most general solution to these
differential equations is a two parameter generalization of the Son Surowka result [16],[4].
The further requirement of CPT invariance disallows one of these two additional coefficients.

As we describe in detail below, our method for determining the hydrodynamical expansion
starts with the action (3.131), and then proceeds to determine the coefficients terms in the
charge current proportional to vorticity and the magnetic field in a purely algebraic manner.
Nowhere in this procedure do we solve a differential equation, so our procedure generates no
integration constants. However the starting point of our procedure, the partition function
(3.131) itself, depends on the three constants Cp, C; and Cp. As we demonstrate below,
Cy and Co map to the integration constants obtained from the differential equations of [3].
The third constant Cy is new, and does not arise from the analysis of [3]. As we explain
below, this coefficient corresponds to the freedom of adding a U(1) gauge non invariant term
to the entropy current, subject to the physical requirement that the contribution to entropy
production from this term is gauge invariant. It turns out, however, that the requirement
of CPT invariance forces Cy to vanish. As a consequence this new term cannot arise in the
hydrodynamical expansion of any system that obeys the CPT theorem.

3.3.1 Equilibrium from Hydrodynamics

In Table (4) we have listed all scalar, vector and tensor expressions that one can form out of
fluid fields and background metric and gauge fields (not necessarily in equilibrium) at first
order in the derivative expansion. It follows from the listing of this table that the most general
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Type Data Evaluated at equilibrium
T =Toe 7, p=e %Ay, u'=ul
Scalars V.u 0
Vectors E,=F,u", e ?0;Ag
PHXOT, Toe 0o
(EF — TPHYO,v) 0
Pseudo-Vectors ep,\agu’\vauﬁ %eijkfjk
B, = Jeppapu P B; = 3gi;™ (Fy + Ao fut)
Tensors Puapyg(w — % go‘ﬁ ) 0

Table 4. One derivative fluid data

Scalars None
Vectors 0'Ag , O'c
Pseudo-Vectors eijk(?jAk , eijkajak

Tensors None

Table 5. One derivative background data

symmetry allowed one derivative expansion of the constitutive relations is given by

T = —CQ’PMV — N0
Jhise = 0 (By — TPL0av) + ar BF + agPH*0,T 4 Euw' 4 Ep B

diss

(3.65)

where the shear viscosity 7, bulk viscosity (, conductivity ¢ and the remaining possible
transport coefficients by, bo, bs and by are arbitrary functions of ¢ and Ay.

We are interested in the stationary equilibrium solutions of these equations. In general,
every fluid variable can receive derivative corrections in terms of derivatives of the back
ground data. The equilibrium temperature, chemical potential and velocity of our system to
first order is given by,

T = T(o) + 0T =Tpe 7 + 6T, p= H(0) + o =e"7Ayg+ ou,
ut = “?0) + ou* = ¢e7(1,0,0,0) + du”,

du? is determined in terms of du’ (which we would specify in a moment) as follows. Since

both u* and u*

(0) is normalized to (—1), we have

U(O)Héu“ =0 = oul=—qgou’. (3.66)

Thus, the nontrivial part of velocity correction du* is encoded in du’.

Solutions in equilibrium are determined entirely by the background fields o, Ag, a;, 4; and
g"”. In Table(5,4) we have listed all coordinate and gauge invariant one derivative scalars,
vectors and tensors constructed out of this background data. As Table (5,4) lists no one
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derivative scalars, it follows immediately that the equilibrium temperature field T'(x) = e T
and chemical potential field u(x) = e~? Ay receive no corrections at first order in the derivative
expansion. The velocity field in equilibrium can, however, be corrected. The most general
correction to first order is proportional to the vectors and pseudo vectors listed in Table (5,4)
and is given by

e b

Sut = ==Lk £ 4 by Bl + bsdio + by0' Ag (3.67)

where

fjk = 8jak — 8kaj
Fjy = 0j A — O Aj
Aj = .Aj - CLjAO

o
By = gel]k(ij + Ao fir)

(3.68)

V93

The fluid stress tensor evaluated on this equilibrium configuration evaluates to (3.62) corrected

1
(123 _

by an expression of first order in the derivative expansion. The one derivative corrections have
two sources.

The first set of corrections arises from the corrections (3.65) evaluated on the zero order
equilibrium fluid configuration (3.21). 22 Using Table(5), we then conclude that the change
in the stress tensors and charge current due to the modified constitutive relations is given by

6T = 6T = 6Jy = 0T =0
i —o i —0oai 1 1 o\ ijk 1 ijk (3'69)
0J"' = a1e7?0"Ag — aTpe  ?0'o + 5(53140 — §€w€ )6 fjk + 5536 ij

The second source of corrections arises from inserting the velocity correction (3.67) into
the zero order (perfect fluid) constitutive relations. At the order at which we work these veloc-
ity corrections do not modify Tho, Jo or T%. A short calculation shows that the modification
of the stress tensor and charge corrections due to these corrections takes the form

8Too = 0Jy = 6T =0

; 1 1 . 1 . ) )
(STS = —60(6 + P) [§(b2A0 — iblea)e”kfjk + ibQGZ]ijk — b3Tpe ?0'0 + 5481140]

. r1 1 - 1 (3.70)
oJ' = |:§ (qb2A0 — §qb160> e’ fjk + iqbge” ij
— gbsToe 9o + qb4(9iA0]
22When u* o (1,0...,0) the Landau frame condition employed in this section sets mog = mo; = (‘)iiss =0.

Consequently Too, To; and Jo receive no one derivative corrections of this sort.
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The net change in 7T¢ and J? is given by summing (3.70) and (3.69) and is given by

; 1 1 . 1 .. . .
8T, = —e? (e + P) [5(52/10 - 551€U)€”kfjk + §b2€ZJijk — bgToe 70"0 + by0" Ag
~ 1 1 . 1 -
07" = [5 (66 + aba) Ao = (& + abi)e” )7 fi + 5 (6 + aba) Ty (3.71)

— (gbs + a2)Tpe 790 + (qby + al)aiAo} .

3.3.2 Equilibrium from the Partition Function

We now turn to the study of the first correction to the perfect fluid equilibrium partition
function (3.61) at first order in the derivative expansion. From the fact that Table (5,4) lists
no gauge invariant scalars, one might be tempted to conclude that the equilibrium partition
function can have no gauge invariant one derivative corrections. We have already explained in
the introduction that this is not the case; the three (constant) parameter set of Chern Simons
terms listed in the third line of (3.11) yield perfectly local and gauge invariant contributions
to the partition function, even though they cannot be written as integrals of local gauge
invariant expressions. In addition to these gauge invariant pieces we need a term in the
action that results in its anomalous gauge transformation property (3.51). This requirement
is precisely met by the term in the last line of (3.11). 23

With the action (3.11) in hand it is straightforward to use (3.38) to obtain the stress
tensor and current corresponding to this equilibrium solution. We find

Too =0, TV =0,

. y 1
T = ok [(—2CA§ +2C0Ag + Co)V;Ap + (2C) — %Ag — CyA0)V;a]

| C C
JO = _eaezgk‘ |:3AZ'VJ'A]€ + 3A0Aivjak}

, g C C C
Jt = e_Ue’LJk |:2 (3A0 + CO) VjAk + <6A3 + CQ) Vjak + gAijAo N

(3.73)
Using (3.53) it follows that
Jo =0,
N 3 1 (3.74)
J'= e 7I*[(C Ay + 2C0)V; Ay + (§0Ag + C2)Vak],
%1n order to see this we first note that the last line of (3.11) may be rewritten as
% / d*x\/g3 Ao€* A;0; Ax
The variation of this term under a gauge transformation is given by
— %/dsx@eijkﬁiAoAiajAk (3.72)

in perfect agreement with (3.51).
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3.3.3 Constraints on Hydrodynamics

Equating the coefficients of independent terms in the two expressions for T¢ (3.71),(3.73)
determines the one derivative corrections of the velocity field in equilibrium. We find.

T 2 4 )
by = €+P(§V C + 4v CO*4VCQ+4C1),
T 1,
b2: €+P(§V C"—QVOO_CQ),
b3 = by = 0. (3.75)
Wherey:%:%’.

Equating coefficients of independent terms in J? in equations 3.71 and 3.74 and using
(3.75) gives

2q qT
= CV?T?*(1 — ———uT) + T?[(4vCy — 2Cy) — —— (4%Cy — 4 4
& Cv ( 3(6+P)V ) + [( v(Cy CQ) 6+P( v=Coy vCy + Cl)],
q qT
a1 = (g = 0 (376)

Let us summarize. We have found that the hydrodynamical charge current and stress
tensor are given by

™ = —COPu — nouw
Jt =0 (Eu - Tpﬁaal/) + &wt + EgBH

diss

(3.77)

In (3.77) the viscosities ¢ and 71 together with the conductivity o are all dissipative param-
eters. These parameters multiply expressions that vanish in equilibrium and are completely
unconstrained by the analysis of this subsection. On the other hand (, and (p - together
with o and ae in (3.65) - are non dissipative parameters. They multiply expressions that do
not vanish in equilibrium. The analysis of this subsection has demonstrated that a; and a9
vanish and that {,, and (p are given by (3.77). The expressions (3.77) agree exactly with the
results of Son and Surowka - based on the requirement of positivity of the entropy current -
upon setting Cy = C1 = C5 = 0. Upon setting Cy = 0 they agree with the generalized results
of [16] (see also [4],[8]). We will return to the role of the additional parameter Cy later in this
section.

3.3.4 The Entropy Current

The entropy of our system is given by

_ 2
0Ty

= /dg.%\/gigeijk [C()AZ‘VjAk + 3ClT02aZ'VjCLk + QCQT[)AZ‘Vjak] .

S To log Z)

(3.78)
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In this subsubsection we determine the constraints on the entropy current Jg of our
system from the requirement that (3.78) agree with the local integral

S = /d3xw/—g4Jg (3.79)

Notice that the first term in (3.78) (the term proportional to Cj) cannot be written as
the integral of a U(1) gauge invariant entropy density. It follows immediately that (3.79)
and (3.78) cannot agree unless Jg has a non gauge invariant term proportional to Cy. Is
it permissible for the entropy current of a system to be non gauge invariant (and therefore
ambiguous)? Entropy in equilibrium is physical and should be well defined. Moreover, if we
start a system in equilibrium, kick the system (by turning on time dependent background
metric and gauge fields) and let it settle back into equilibrium, then the difference between
the entropy of the initial and final state, is also unambiguous. It follows that the entropy
production (i.e. divergence of the entropy current) as well as (3.79) are necessarily gauge
invariant. However these requirements leaves room for the entropy current itself to be gauge
dependent.

Over the next few paragraphs we find it useful to dualize the entropy current to a 3
form. The addition of an exact form to the entropy three form contributes neither to entropy
production nor to the total integrated value of the entropy in equilibrium. For this reason we
regard any two entropy 3-forms that differ by an exact three form as equivalent. With this
understanding, the unique non gauge invariant entropy 3 form whose exterior derivative (the
Hodge dual of entropy production) is gauge invariant is given by

ANdA

The requirement that the exterior derivative of this 3 form to be gauge invariant forces its
coefficient to be constant.?*

The most general physically allowed form for the entropy current, at one derivative order,
may then be read off from Table 5

Ji = su' —vJh. 4+ DgOu' + D, (E! — TPH*0,v) + DpE" + Dga*
+ Dyw" + DpB* + het"* A, 0\ A, (3.81)

where h is a constant

24Naively, another candidate for a non gauge invariant contribution to the entropy three form is given by
ANd(h(T,n)U) (3.80)

where U = u,dz" and h is an arbitrary function of temperature and chemical potential. But this term can be
rewritten as follows.

ANd(R(T, 1) U) = d (h(T,p) UAA) — h(T,p) UAdA

It follows that this addition is actually equivalent to a gauge invariant addition to the entropy 3 form.

— 46 —



How is the entropy current (3.81) constrained by the requirement that its integral agrees
with (3.78)7 The one derivative entropy, as computed from the formula | d%@Jg has two
sources. First, the perfect fluid entropy current su® has a first derivative piece that comes
from the one derivative correction of the equilibrium fluid velocity (see above). Second,
from the one derivative correction to the entropy current (evaluated on the leading order
equilibrium fluid configuration). The terms with coefficients Dy and D, vanish on the leading
order equilibrium fluid configuration. Therefore these two coefficients can not be determined
by comparing with the total entropy as derived from action. All the other correction terms
computed from this procedure are parity odd, except those multiplying D, and Dg. It is
possible to verify that the integrals of the terms multiplying D, and Dg are nonvanishing
and linearly independent. As all first derivative entropy corrections in (3.78) are parity odd,
it follows immediately that
D,=Dg=0.

Therefore the zero component of the entropy current at first derivative order is given by the
following expression.

Jg|correction = sou’ + (_VéB + DB) BY + (_Vfw + Dw) w? + hEOV)\UAVa)\.AJ (382)

Using
=T
B’ = —eijkaiaj (Ag + Tovay)

14

o

wO = %eijkaiﬁjak (3.83)

GOV)\U.Aya)\.AU = e ¢k [Alc‘)]Ak + 2TOVai8jAk + T02V2ai8jak + 0; (Tol/ajAk)]
o

ou’ = —q;0u’ = by [Zeijkaiajak} — by [eijkaiﬁj (Ag + Tovay)

and the expressions for £p, &,, b1 and by as computed in the previous subsection (see (3.75)
and (3.76)), we find

/d3l‘\/ _94J2‘cm’7“ection
. dy,
= /de\/gT))Gz]k |:T02 <3Cl + h]/2 + 7 — I/dB> a,-(‘)jak (384)
+ TO(2CQ + 2hv — dB)aié?jAk + hAzajAk:|

where

Dp Cv? D, Ccv3
dp = — — (-CQ), dw:ﬁ— (3—202V+201>
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Comparing this expression with (3.78) we find
h=Cy, dg=2Cy, d,=2C> (3.85)
This result agrees precisely with that of Son and Surowka as generalized in [5]

3.3.5 Entropy current with non-negative divergence

In the previous subsubsection we have determined the entropy current by comparing with the
total entropy derived from the equilibrium partition function and we have allowed for terms
which are not gauge invariant provided their divergence is gauge-invariant.

Now we shall try to constrain the most general entropy current (as given in (3.81)) by
demanding that its divergence is always non-negative for every possible fluid flow, consistent
with the equations of motion. The analysis will be a small modification of [3] because of the
new gauge non-invariant term with constant coefficient Cy added. The steps are as follows.

e First we have to compute the divergence of the current given in (3.81). The new term
in the entropy current contributes to the divergence in the following way.

vV, [Coe“”aﬁAyvaAg] = %ewaﬁFﬂyFaﬁ = —20,E,, B"
The full divergence of the entropy current is given by
V,ujg = UUMVUMV + 462 + UTQ;LQM - gE(Q#EM) - ‘fa(Quau)
+0O(u.V)Dg + (a.V)D, + (Q.V)D. + (E.V)DE
+ Dy(u.V)® 4+ Dy(V.a) + D.(V.Q) + Dg(V.E)

(0D Dg| . oD, D,
_—_b _ b T o w n
*or T](Ba“H ar 27 | @) s
[ 3.86
0Dp oD,
+ o CTv — 2C’OT] (B 0uv) + [ 5 2DB] (W)
[ 2qT L
+ _—fw o pPet 2DBT] (w, Q")
| es -~ Dy v 1w + 2007 (B,
By pth ol'| (Bu
where
Ey,
Qu= 0w =7
and
Jhiss = —0TQ! + Ep B! + Eua + Euw! +EpBY, and ' = —not” — (O P

e Asexplained in [4], the divergence computed in (3.86) can be non-negative if Dy, Dg, D., {g
and £, are set to zero in the parity even sector.
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Field | C | P | T | CPT
o + 1+ |+ +
a; + | = | = +

Gij + |+ |+ +
A -+ + -

Table 6. Action of CPT

e Since there is no B? or w? term present in (3.86), for positivity, in the parity odd sector
we need all the terms that are linear in B, and w, to vanish. This condition imposes
the following 6 constraints.

9D _Dp_, 9Dy 2Dy _

oTr T 7 oTr T

D D.,
0 B 0Ty —20,T =0, ? —2Dp =0

ov ov

2T (3.87)

- D+ 2DET =0

& = +2Dp
ey po Ty 20T =0

B exp® 0r =

e We can determine &, £, Dp and D, by solving these equations. The solution is
identical to the solution determined from the partition function (as given in (3.76) and
(3.85)).

3.3.6 CPT Invariance

In this subsubsection we explore the constraints imposed on the partition function (3.11) by
the requirement of 4 dimensional CPT invariance. In Table 3.3.6 we list the action of CPT
on various fields appearing in the partition function. Using this table one can easily see that
the terms with coefficient C'y and Cjy change sign under CPT transformation while the terms
with coefficient Co and C' remains invariant. Thus the requirement of CPT invariance of the
partition function forces C; = 0 and Cy = 0. Further it also tell us that the function P
appearing in the perfect fluid partition function, W°, must be an even function of Ay (i.e.
that equilibrium does not distinguish between positive and negative charges).

3.4 Parity odd first order charged fluid dynamics in 241 dimensions

In this subsection we will derive the constraints imposed on the equations of 2+1 dimensional
charged fluid dynamics, at first order in the derivative expansion, by comparison with the
most general equilibrium partition function. The parity even constraints are identical to the
ones found in 3+1 dimensions (which has been extensively discussed in §3.3). Therefore in this
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subsection we shall primarily focus on the parity odd constraints which are qualitatively much
different from their 341 dimensional counterpart. These constraints have been obtained using
a local form of the second law of thermodynamics in [19], which we shall reproduce starting
from the most general equilibrium partition function.

3.4.1 Equilibrium from Hydrodynamics

Partially borrowing some notations from equation (1.2) in [19], the the most general symmetry
allowed one derivative expansion of the constitutive relations is given by 2°

TH = eul'u” + (P — (Vqu® — XB — X)) P* — notv — 6+ | (3.88a)
JH = put + oVH 4+ 6VF + XgE* + xrT" . (3.88D)

The various quantities appearing in the constitutive relations (3.88) are defined as

Q= —e"Pu,V,yu,, B = —%e’“’puﬂFl,p, (3.89a)

Bl = Fhvy,, Vi — BF TP’“’VZ,%, (3.89D)

PH = ytu” + g", ohv = propvh (Vaug + Vaug — gagVAu)‘> , (3.89¢)
and

EVf = e"Pu,E,, VH = Py, V, (3.89d)

ot = é (e’w‘puaap” + e”o‘puaap“) , TH = e"Pu,V,T. (3.89¢)

The thermodynamic quantities P, € and p are the values of the pressure, energy density and
charge density respectively in equilibrium. The transport coefficients x5, Xo, Xg and xr are
arbitrary functions of o and Ag. The only non-zero quantities in equilibrium are B, w, E*
and T". The rest of the first order quantities appearing on the RHS of (3.88) vanish on
our equilibrium configuration. In Table 7 we list all the parity odd diffeomorphism invariant
background field data. In Table 8 we list the first order quantities occurring in the constitutive
relations that are non-zero in equilibrium and express them in terms of the background metric
and gauge fields®.

We are interested in the stationary equilibrium solutions of the fluid equations arising
from constitutive relations (3.88). Solutions in equilibrium are determined entirely by the
background fields o, Ag, a;, A; and ¢”. Just like in 3+1 dimensions the zeroth order solution
of the fluid fields are given by

uy ={e7,0,0}; Ty =Toe 75 p) =e Ao (3.90)

25Note that in this constitutive relation the parity even constraint, namely the Einstein relation, have already

been taken into account.
26 . 12 1
In the following, we shall use € = N
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Pseudo-scalars | €70;A; , €70;a;
Pseudo-vectors | €Y9;Aq , €90

Pseudo-tensors None

Table 7. One derivative parity odd diffeomorphism and gauge invariant background data. Here €%

: : 12 _ 1
is defined so that ¢~ = Tor
Type Data | Evaluated at equilibrium
Pseudo-Scalars B €l 0;A; + Ape¥ d;a;
Q -e7€" 9;a;

Pseudo-Vectors | EF | By =0, Ei = e ¢ 0; Ao
T | Ty=0,T = fe_aeijaja

Pseudo-Tensors | none

Table 8. One derivative fluid data which are non-zero in equilibrium.

The unit normalized vector in the killing direction is,
uh = ¢77(1,0,0)

In Table(7,8) we have listed all coordinate and gauge invariant one derivative parity odd
scalars, vectors and tensors constructed out of this background data. Since there are 2 pseudo-
scalars and 2 pseudo-vectors we can have the following most general parity odd corrections
to the fluid fields at first order

T:T(O)+TB Bi + 10 Qk, (3.91)
K= oy + mp Bx +mq Qk,

where &g, &7, TB, Tq, mp and mq are taken to be arbitrary functions of o and Ay to be
determined by matching with the equilibrium partitions function in §3.4.3. Ef,T%, Bk, wk
are the vectors and scalars, defined in equations3.89a and 3.89¢c, velocity u replaced by ug.

Just like in 341 dimensions the fluid stress tensor evaluated on this equilibrium configu-
ration evaluates to (3.62) corrected by an expression of first order in the derivative expansion.
The one derivative corrections again have two sources.

The first set of corrections arises from the corrections (3.88) evaluated on the zero or-
der equilibrium fluid configuration (3.90). 27 The second source of corrections arises from
inserting the fluid field corrections in (3.91) into the zero order (perfect fluid) constitutive
relations. The net change in the stress tensor and the charge current at first order is obtained

2"When v  (1,0...,0) the Landau frame condition employed in this section sets moo = mo; = J&*° = 0.
Consequently Too, To; and Jo receive no one derivative corrections of this sort.
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by summing these two contributions and is given by

oP 8P oP 8P
w2 _ < i
oTHY = <8T7’B —+ — a ) BgP (0) (GTTQ + — 8M XQ> QKP(O)
Oe Oe v
+ a—TTB + mB Brul O)U(O) + aTTQ + aumg QKu(O)u(O)
(et P>£E< Tl B) + (e + P)er(ulty T + uly Th). (3:92)
Ip p dp
u_ (9P op “r
oJH = <8TTB + mB> BKu (aTTQ + 8um9> QKu(O)

+ (XE + plE)El + (X1 + pér)Th

For future reference it will be convenient to to write down some of the components of the stress
tensor and current in (3.92) purely in terms of the background fields using the expressions
listed in the third column of Table 8.

. oP oP . y oP oP . y
0T = <TB + S—mp — XB) Brg” + <TQ + S—mg — XQ> Qrg”

oT ou oT ou
Oe Oe > . Oe Oe .
_ p20 s 9. A. ... e i 159,
0Ty = e (<8TTB + 8umB> (e 0;Aj + Age a,a]) e’ (8TTQ + 8um9> € &a]) ,
(5T8 = (—(6 + P)fEei]ajAo + (6 + P)fTGijajO')
- Ip dp ij ij o[ Op Ip ij
oJp=c¢€ (— <8TTB + a,umB> (e T0;A; + Aoe Jaiaj) +e <8T7'Q + %mg €’0;a; |,

3.4.2 Equilibrium from the Partition Function

We now turn to the study of the first correction to the perfect fluid equilibrium partition
function (3.61) at first order in the derivative expansion. From the fact that Table (7,8) lists
two gauge invariant Hence the most general parity odd equilibrium partition function is given
by
1
W= [ (alo A+ Tos(o, Ag)da). (3.94)
where a and § are two arbitrary functions in terms of which all the 4 transport coefficients
and the 6 first order corrections to the velocity, temperature and chemical potential are to be
determined.
With the action (3.94) in hand it is straightforward to use (3.38) to obtain the stress
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tensor and current corresponding to this equilibrium solution. We find

T =0,

Too = —Tpe? (gje 0;A; +Togﬁ€ 0; “J)

e (i B o (o ) 0%) o
= —The® (wa A+ T();je”@iaj> ;

O
—0o 1) )
J'=Tpe <8660'+6A68A0>

3.4.3 Constraints on Hydrodynamics

In this subsubsection we shall equate the coefficients of independent terms in (3.92) (or (3.93))
with those in (3.95), to determine the first order transport coefficients and fluid corrections
in terms of the two arbitrary functions in the action (3.94).

The fact that T% as evaluated from the action (3.94) vanishes immediately implies from
(3.93)

v aj _|_ aj
XB = oT B alu/ mpg, (3 96)
. or L 9P OP '
XQ = 6TTQ EW mgq,
Comparing Tpo from (3.93) and (3.95) we have
ﬁ7- + &m = -1 e*”a—
or' % o P Y 4o (3.97)
Oe N Oe g £ 4 Oa ’
a7 e 3Mm9 =pe 6 055 )
Comparing Tg from (3.93) and (3.95) we have
Toe 0B Oa
= — T A
= (e + P) < %940 06A0>
N (3.98)
& = Toe™® T 9B, O«
"= e+pP) "Moo %95 )
Comparing Jy from (3.93) and (3.95) we have
Op ap oo
or “p T 22
ar Bt 9, = g4, 599
@7’ + @m —The 7 | Tt o8 A da ‘
or ¢ T ou T 0 94, %04, )"
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Finally, comparing J¢ from (3.93) and (3.95) we have

(3.100)
Xt + pér = 3
ag

In order to compare the constraints obtained in this section with that in [19] we find the
following thermodynamical identities useful

oP  (OP0Op OP dp Op Oe  0Op Oe
5 =~ (oo~ auor) | (Gur o)
orP OP 0e  OP Oe Op Oe  Op Oe
o= orant geor)/ (oo~ o)

Now solving for 75,7, mp and mgq from (3.97) and (3.99), plugging the answer in to

(3.101)

(3.96) and using the thermodynamical identities (3.101), we have

- oP . 0 oP 19e
XB = e (‘Toe o ) p <T08A0>

(3.102)
- oP _ ap da opP _ B da
= T (e (122 — 4,22 P e (T 22— 4y 2
Xo = 5 ( 0 ( 990 Oaa>> * ap< oe ( 94 08A0>>’
Finally plugging in the values of £g and &p from (3.98) into (3.100) we have
. Oa P ap Oa
e = ()~ (- (P~ wai))
094 P 0A 0A
0o/ 0 0 (3.103)

- o0  p 9% o, Ou
TXT‘( Toe aa> e+P<TOe (Toa AO%))

Thus through (3.102) and (3.103) we are able to express the 4 transport coefficients
in terms two arbitrary functions in the action. The two dimensional manifold of allowed
transport coefficients is identical to that in equation (1.8) in [19]®. In particular it easy to
eliminate a and f from (3.102) and (3.103) so as to obtain the following relation between the

transport coefficients

5 - OP _ oP B
XB — EL Xo =5 Xp + 50 T xr. (3.104)

Note that this relation is identical to equation (4.29) in [19].
3.4.4 The Entropy Current

In this system In Z is simply given by the action

nZ = % / (a0, Ag)dA + ToB(o, Ag)da) (3.105)

2Note that the additional function fq(T) may be reabsorbed into a redefinition of Mq(u, T) in equation
(1.8) in [19].
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The entropy that follows from this partition function is

S = 0 (TO IDZ)
T (3.106)
1 da, da B % B 85 '

We will now utilize (3.106) to constrain the hydrodynamical entropy current of the system.
The entropy current must take the ‘canonical’ form su* — vJ 51‘ s corrected by first derivative
terms. As in the rest of this section we keep track only of parity odd terms. It follows from
Table 8 that the most general one derivative entropy current is given by 2°

Ji = sut — % (XEE“ " XTT“> n (nEE# n nTT“> + (npB + naQ) u, (3.108)

ng,nt,np and ng are functions of temperature and the chemical potential. On substituting
the equilibrium values of temperature and chemical potential they turn into functions of o
and Ag. We find it convenient to define the quantities

ng =ng — %)ZE + s€E,
0 (3.109)
ny =np — T)ZT + sér.
in terms of which the first order part of the entropy current is given by
Os ds 0s 0s
w92 95 vs 7
5‘](5) = <(8TTB + 8umB + nB> B+ <8TTQ + ﬁ,umﬂ + ng) Q> U
+ ﬁEEM + TNLTT“

(3.110)

As we have explained above, the entropy current is necessarily divergence free in equilib-
rium. This condition yields one condition
ong onr
— = —-Tp——. 3.111
do Y94, (8:111)

(3.111) is solved by the ansatz

on ~ on

o4, T="3, (3.112)

ng =Ty 9

where n is a arbitrary function of o and Ay. Plugging in this solution, we now have a 3
parameter set of entropy currents parameterized by np, n, and n. The entropy (3.106) is an
integral over the two parity odd scalars of the system. Equating (3.106) with [ d?’x\/—gng,

2*The map between the corrections to the entropy current in this section to that in [19], considering first
order terms which are non-zero in the equilibrium, is given by

- 17 N - 1% - -
nT:ul—i—%; nE:I/2+1/4+?3; np = D4; no = Us. (3.107)
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and equating the coefficients of these two scalars, yields two equations for np, n, and n. We
now explain how this works in more detail
Using the fact
EY = —e77¢9a;0;A0; T = e 7€¥a;0;0, (3.113)

and the expressions of B and (2 in terms of the background field (from Table 8), the entropy
can be evaluated from the entropy current in a manifestly Kaluza-Klein gauge invariant way

S:/ﬁmﬁgﬂ)

1 0s Os
= 2/ ( (8T B + a,U«mB —i-TLB) (dA + Apda) (3.114)
(g;m + meQ + ng) e’da — dea).

Comparing (3.114) with (3.106) and using the thermodynamic identities

ds 1 Os 1

Le_ L__F A1

de T 9p T’ (3:115)
we get the following simple expressions

ng =«

(3.116)
ng = Toe 7 (Apa — 28 — n)

In other words, we have managed to evaluate np, and one linear combination of ng and n in
terms of the functions, @ and 3, that appear in the partition function of our system. Note
that we have not been able to completely determine the non dissipative part of the entropy
current using our method (the method based on positivity of the entropy current achieves this
determination). However, it straightforward to verify that the constraints (equations 3.11,
3.17, 3.18, and 3.20) in [19] on the corrections to the entropy current from the second law of
thermodynamics, are consistent with the relations (3.116) and (3.112).

3.4.5 Comparison with Jensen et.al.

In this subsubsection we shall give a precise connection between partition function coefficients
a, [ in equation (3.94) and Mg, M that appears in [19]. Comparing equations (3.102),(3.103)
with equation 1.8 of [19], we get the following differential equations

oM _ o O
on oAy’
oM oM Ja
or Ray M= .
oMo (0B da (38.117)
ou - Y94, Y04, )"
O0Mg OMg _ ap da
T —_— —2Mqa =Te | Tg— — A
o TH i + fo a="Te (08 080'>
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Field | C | P | T | CPT
o + 1+ |+ +
ax + | = - +
az + |+ | - —
A -+ + -
Al - - - -
Ag -+ | - +

Table 9. Action of CPT

By solving first two equations in 3.117, we get

o =

3.118

Toe*" te ( )

where ¢ is some constant. Infact the entropy current presented in this section matches that
of [19] only if we set ¢ = 0 (see equation (3.22) of [19]). Solving last two equations in 3.117,

we get
20

A
20 0
2MQ+T2/fQT06 “e dO'-l-TO(

e

T

where ¢; is some other constant.

B=- >+c1, (3.119)

Also comparing (3.102) and (3.103) with equations (3.17) and (3.18) in [19] one can
express the entropy current corrections in terms of o and § in the following way

ov oo
2V¥4 —o
Tor =1 5y
ovy Oo
of) ~ oAy
o g (08 o (3.120)
T <6T + l/1> T()e_ g <T08 — AO ag)
ovs . ap oa
I = —The " (T, A
oy " ( Ly OaAO)

Note that with this identification, the equation (3.20) in [19] automatically follows.

3.4.6 Constraints from CPT invariance

Imposing CPT invariance of the partition function 3.94 constrains the form of the otherwise
arbitrary functions «, (. (and hence all transport coefficients determined in terms of « and
B). Note that we define parity in 241 dimensions as 1 — —x1 and x93 — x2. In Table 9 we
list the action of CPT on various fields appearing in the partition function 3.94. Based on
the Table 9 we see, in 3.94 “dA” changes sign where as “da” does not, which implies « is odd
under CPT and g is even under CPT.
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3.5 341 dimensional uncharged fluid dynamics at second order in the derivative
expansion

In this subsection we will derive the constraints imposed on the equations of uncharged fluid
dynamics, at second order in the derivative expansion, by comparison with the most general
equilibrium partition function. We do not assume that our system enjoys invariance under
parity transformations.

Before getting into the details let us summarize our results. Symmetry considerations
determine the expansion of the hydrodynamical stress tensor upto 15 parity even and 5 parity
odd transport coefficients. It turns out the 7 of the parity even and 2 of the odd terms vanish
in equilibrium. In other words, on symmetry grounds our system has 7 parity odd and 2
parity even dissipative coefficients. In addition we have 8 parity even and 3 parity odd non
dissipative coefficients. The most general fluid dynamical partition function, on the other
hand, is given in terms of three functions of ¢. It turns out that this partition function
is automatically even under parity transformations. As a consequence, implementing the
procedure spelt out in the introduction, we are able to show that the three nondissipative
parity odd coeflicients all vanish. In addition the 8 nondissipative parity even coeflicients are
all determined in term of three functions. In other words we are able to derive 5 relations
between these 8 parity even coefficients.

The problem of constraining fluid dynamics at second order in the derivative expansion,
using the principle of entropy increase, was studied by one of the coauthors of this work in
[10]. In that work the fluid was assumed to enjoy invariance under parity transformations. It
was demonstrated that the principle of entropy increase indeed implies 5 relations between
the 8 non dissipative transport coefficients. It turns out that the five relations determined in
this section agree exactly with those of [10].

Even from a practical point of view the method used in this subsection appears to have
some advantages over the more traditional entropy method utilized in [10]. To start with the
algebra required for the analysis in this subsection is considerably less formidable than that
employed in [10]. As a consequence we are able, rather effortlessly, to generalize our results to
allow for the possibility of parity violation. Such a generalization would involve considerable
extra effort using the method of [10], and has not yet been done.

3.5.1 Equilibrium from Hydrodynamics

In Tables 1, 2, 3, 7 of [10], all scalar, vector and tensor expressions that one can form out
of fluid fields and background metric (not necessarily in equilibrium) at second order in the
derivative expansion are listed. It follows from the listing of these tables that the most general
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symmetry allowed two derivative expansion of the constitutive relations is given by
I, = —nou — (PO

+T |:T (U.V)0'</W> + Iﬂﬁﬂ(w/) + HQK(MV> + Ao @UW,

T A1 00 Oa) + A2 00 Way + Az Wi Wary + M awu)]

(3.121)
+TP,, [Cl (u.V)O 4 R + (3Rog + £10% + €902 + &30% + 5402}
4 .
+ T |: Z (5Ztl(jg + 55Pw,aal“
i=1
where
ut = The normalised four velocity of the fluid
PH = g" + u'u” = Projector perpendicular to u”
© = V.u = Expansion, a, = (u.V)u, = Acceleration
Vaug + Vau (C]
wry _ ppoprf alpg BlUa v _
ot = ptep (2 3 gaﬁ> Shear tensor (3.122)
\Y4 -V
W — preprB <M) = Vorticity
KM = RFoy vy, RMY = R%% g, (f%ab‘:d = Riemann tensor)
o’ = oot w? = wWpw
and

_ paps (Aos+ Asa  [Ap P
AW,):P“Pf( 5 —[ 5

The parity odd terms in the last bracket in (3.121) are defined in Table 10.
The expansion (3.121) is given in terms of 15 undetermined parity even and five unde-

] ga5> For any tensor A,

termined parity odd transport coefficients, each of which is, as yet, an arbitrary function of
temperature).

We are interested in the stationary equilibrium solutions of these equations. Solutions in
equilibrium are determined entirely by the background fields o, a; and ¢g*. In Table(5,4) we
have seen that the © and o, evaluates to zero in equilibrium. This sets seven of the fifteen
parity even terms in equation 3.121 to zero. Two of the five parity odd terms two terms (t,(ff)
in table 10) evaluate to zero in equilibrium. The remaining 8 parity even and 3 parity odd

coeflicients are non dissipative; the non dissipative part of 11, is given by

I,
T

= /ﬂf:ﬂ(“y) + H2K<w,> + /\3w<#°‘wau> + )\4a<ua,,>

+ P (R + GRoo(u”)? + &3w? + €40?)
+ 61t} + Oatyy, + 05 Pyl (3.123)
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Type Data Evaluated on equilibrium
Pseudo-Scalars Ma, %eaeijkaiafjk
Pseudo-Vectors (V.au)ly, 0

ouwl”, 0
u. Vi, %620 (eijkﬁiafjk , fijejklfkl)
Pseudo-Tensors tf}y) = lcpty>, %e"@<iaej)klfkl
tfy) = eApaﬂu,\apaa<Mg,,>5, 0
t/(,LgI/) = GApaﬁuAvpga<ng>B7 0
t,(fy) = ubpobfﬁﬁwcdquq 3d1€7 00 f + 3dae7V ey M

Table 10. Two derivative parity violating fluid data(Here d; 2 are function of o determined by
evaluating tfw on equilibrium, but we will not need there explicit expression.)

In order to proceed further, we list all coordinate invariant two derivative scalars, vectors
and tensors constructed out of background data are listed in table (11). The temperature
and velocity in equilibrium receives correction at second order. The most general symmetry
allowed form of corrected temperature and velocity is

2
uf = bouly + (Z vmV(im)> + oV,

m=1
4 ~
T =Tpe ™ + (Z thm> + S
m=1

where, V;,,(V') and S;(S)are Vectors(pseudo) and scalars(pseudo) respectively that are listed
in table 11. Also by can be fixed following equation 3.66 as,

2
bp=1-—¢€%. (Z Um Vim) + 6?)
m=1

As in previous sections, the stress tensor in equilibrium received corrections at second

(3.124)

order in the derivative expansion. The two derivative corrections have two sources. The first
set of corrections arises from the corrections (3.121) evaluated on the zero order equilibrium
fluid configuration. Using

- - 1
Roo(u°)? = R ubu” = 162‘7]”2 +(Vo)? + Vo

W= =S fY, o =g, (3.125)
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Scalars

Sl = R, 52 = V2U, 53 = (VO‘)Q, 54 = f2€2a

Pseudo-Scalars

S = Eijkaidfjk

Vectors

‘/1 - eo—viafij) ‘/2 = eo—vifij7

Pseudo-Vectors

Vi = fijfrae’™

Tensors

Rij, f; kfk:j> ViV,o,VioV,o

Pseudo-Tensors

duoenu S, Vet

Table 11. Two derivative background data

Reij~

K ij>

a .
W iWaj>

A @>

1
= Rij — VZ'O'V]‘O' — ViVjO' + §fl kfjkBQJ

— ;(R — (VU)2 — V% + ;f2€20> 9ij

1
= VoVjo +V;Vjo + Efi kfjk‘EZJ
1 1
— | (Vo)> + V%0 + — f2* ) gij
3 4
20 a 1 2
=e <f@- fia—3f 9z‘j>

1
= V,oVjo — g(va)Qgij (3.126)

we find that these corrections are given by

2

. R Vo )2
Hz‘]q = a (Rij - 291‘]‘) + ag <V¢Vj0 - VQggij> + as (ViO'VjO' — 7( U) gij>

2

+ a4 (fz‘kfkj + J; gij>€2a

+ gij (blR + by V20 + b3(Vo)? + by erQU) (3.127)

1 1 1
+ §T(61 + 54d1)e‘78<iaej>klfkl + 5ng§46”ekl<ivj>fkl + §T55eggijemlk8maflk where,

A —Gmgm, 2= k) st 2 G+

bfs = —é(/iz — 2K2) — %)\3 + %M + i((z +(3) + &3

%4 = i(llm — 5ka) — 202 + (3 + ia, Z=m

23 = Ko — K1, % = Ko — K1 + A4, % = —%(2/@1 + K2) + Ag. (3.128)

Here, the indicies are contracted with the lower dimensional metric g;; and its inverse. The

coefficients are determined by
explicit expressions.

evaluating the t,(}f) in equilibrium, but we will not need the

The second source of corrections arises from inserting the velocity correction (3.67) into

the zero order (perfect fluid) constitutive relations. We find that the modification of the stress
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tensor due to these corrections is given by
TH — Ppgid (Z tnSom + ES*)
P o~
Too = T§ 1" (Z £ S -+ tS) (3.129)
Ti=—(c+ P)e’ (Z v Vi + 17X7i>
The net change in T and J* is given by summing(3.127) and (3.129) and is given by
T% = Prg" (Z ti S + ES) +11Y
P o~
Too = T§ 1" (Z £ S -+ tS) (3.130)
Ti= —(c+ P)e° (Z v Vi + m?i)
where ng was listed in (3.127).

3.5.2 Equilibrium from the Partition Function

We now turn to the study of the first correction to the perfect fluid equilibrium partition
function (3.61) at second order in the derivative expansion. We observe that the Table (11)
lists four scalars and one pseudo-scalar. The most generic partition function for this system
at two derivative order is,

1 - - - -
W=logZ =— / 3z /g3 [Pl (Toe )R + T3 Pa(Toe ) fij £ + P3(Toe ) (do)?
dP;(o)

(3.131)

where Py(Tpe ) = Py(0) and P/ =

=1,2
1 do_ (Z Y 73)

where Py, P, P3 are three arbitrary function of ¢ and from now on we will remove the
explicit dependence. In partition function, the fourth scalar V2o and the pseudo-scalar
eijkaia f7% do not appear as they are total derivatives.

With the action (3.131) in hand it is straightforward to use analog of (3.38) for uncharged
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case®? to obtain the equilibrium stress tensor. We find

L 1 ) 1 . ) .
TV = TPi(R? = 5Rg”) + 25T Py (f™* fin — 1 f297) +T(Ps— P)(V'oVio

1 | 1 .
- 5(V0’)2 g7) = TP{(V'Vio - ¢"V?0) + §TP1”(VO')29U
T3
Too = o L (P{R+ T3Py f* — Pi(Vo)* — 2P3V?0))
T} = 2T5T(PoVjo f1' + PV, f77), (3.133)

where / denotes derivative with respect to o.

3.5.3 Constraints on Hydrodynamics

Comparing non trivial components of the stress tensor Tg, Too in equations 3.130,3.133 and
equating coefficients of independent sources one obtains the velocity and temperature correc-
tions in terms of the coefficients P appearing in 3.131. We find

272 272
U1 = ?PQ, U2*—P7P27 v=0,
. T T . - (3.134)
t = P/, tgz——Pg, tg=———P; ty=—P) t=0.
2Ppp Prr 2Ppp 3 2Ppp ?

Now comparing T;; in equations 3.130,3.133, and using expressions for temperature cor-
rections, one can express the transport coefficients in terms of the three coefficients P ap-
pearing in 3.131. We find

=TP,, ay=-TP] ay= —2T°P,, a3=T(P;— P}),

Pr Pr T
by =—--—P, by=——P;, by=—-7-—P}
1 EETOR L 2 = Pro 3, 04 2P 2 (3.135)
1 P
by = =TP/ +-—"—P) 6 =64=205=0.

2 2Prr

One can eliminate the coefficients P’'s from above set of relations which gives five relations
among transport coefficients,
Pr

1
a1 +ag — TOra; =0, by + §(a1 —T0ra;) =0

TP TP
il by + (a2 — T@TaQ) —a3=0, 4 T
PT T

b4 — (3&4 — T&Ta4) = 0,

TP TP
2 T bs + ( T + 1) (a2 — T@Tag) — T8T(a2 — T@Tag) — (CL3 — T8Ta3) =0.

Pr Pr

(3.136)

39 The stress tensor can be evaluated as
Toe*® oW ; T, W
Too = ——F——=—F—, To=—F———= )
V=9w+1) 90 V" 9w+1) 0ai
7 = 2 it im OW (3.132)

v/ —9p+1) dgtm
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Note that parity odd contributions, both to the equilibrium value of the temperature
and velocity, as well as to the constitutive relations, are forced to vanish. The simple reason
for this is that the most general two derivative correction to the partition function 3.131 is
parity even. Note also that the eight parity even non dissipative transport coeflicients are
all determined in terms of the three functions that parameterize the two derivative partition
function. This leaves us five relations among the transport coefficients; these relations may
be obtained by substituting the definitions of the a and b coefficients in (3.127) into (3.136);
we find

dr
Hg—fﬂ—i—TdiTl,
O AL L
279 ds 3

3 /s\ (dT dra 3kK2 s\ (dT (3.137)
=-|= T—+2 — e
&= (7) (ds> ( ar * ’”) T+ (7) <ds>/\4
1 d)\g )\3 S dT
Bl Pt AT RN % (R N il
4[Sds+3 <T><ds>)\3}
_ A s [(dT T dX\4 dko 3sdl’ 1
“4=-% T <d> <)‘4+2dT> T <dT> <2Td 2>
Ts (AT (P
2 \ds dr?
This is in perfect agreement with the relations obtained in [10] using the second law of
thermodynamics.

3.5.4 The Entropy Current

The entropy of our system is given by

S Tplog Z)

— GT})(
(3.138)

The partition function of our system is given by
1 . . L
log Z =~ / P /g5 [P(Toe " R+ T Ps(Toe") fi 19 + Py(Toe 7)(00)°]  (3.139)

(we are careful to explicitly keep track of the temperature dependence in the partition func-
tion, see the equation (3.131) for a definition of the functions P). The total entropy as
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evaluated from this partition function is

S Tolog 2)

:TTO(

1 “ (3.140)
T2 / V9 [(P{ = PR+ T§(P; — 3P2) fi; [ + (P; — P3)(80)]

To second order in the derivative expansion, the most general symmetry allowed entropy
current is given by [10]

JE =su! + jg
where
JE =V, [A1 (VYT — w’VHT)] + V,, (A Twh)
~ 1 ~ ~ ~
+ A <R“” _ 29“”R> uy + [As(uV)0 + AR+ Ag(Rgpu)| ¥ (3.141)
+ (B1w? + By©? + B3o®)ut + By [(Vs)Qu“ + QS@V“S]
+ [@w& - Pab(vbuﬂ)(va&)} + BgOa" + Brayoh”

The terms above with A; and As as coefficients are total derivative and do contribute to
the total entropy. It follows that A; and As are unconstrained by comparison with equilibrium
(even though these terms do not pointwise vanish in equilibrium). Terms with coefficients
Ay, By, Bs, Bg and By vanish on the equilibrium solution. Consequently these coefficients
are also unconstrained by the considerations of this section. The entropy current coefficients
that can be are constrained by comparison with (3.140) are A3, As, Ag, Bi, B4 and Bs

As above, there are two sources for the second order correction to the entropy of our
system. The su* part in Jg contributes to the total entropy at second order in derivative
expansion because of the second order corrections du* to the equilibrium velocity u* and 6T
to the equilibrium temperature.More precisely, if the equilibrium temperature and velocity of
our system to second order is given by

T =T + 0T =Toe ° + 6T and ut = u“o

Tk du =e7(1,0,0,0) + du*

then clearly

ds

suolgnd order =€ 7 <dT> 8T + sou®

Using (3.134) and (3.124) we find

ds
VT =
(i7)?

[Pl R+ P} T3 f* — P} (90)* — 2P3 V0|

N = DN =

[P{ R+ P, T3+ P} (90)? — 2V, (P3Vio)] (3.142)

sou' = —2e" TG [Py Vo f' + P, V; f'] = —2T3e "V, (P2 f7)
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Therefore using 3.66, the second order correction to Jg, from the perfect fluid piece su®,

evaluates to

—0

5u°|and order = - [Pl R+ (P)—2P,) T3 f* + P} (00)?] + e 7V, [2I5 P f/'a; — P3V0o]
(3.143)
The second source of two derivative corrections to the entropy current come from the
explicit two derivative corrections to the entropy current (3.141) evaluated on the perfect
fluid equilibrium configurations. Using
12 = fii fv

PRI u¥ = o 4wt + P"”g

_ 20
R=R-2(0)* -2V + %ﬂ

@

_ 20

Raguu® = (90)2 + V20 + % & (3.144)

~. 620 i i

Ry = = [Vif" +3(Vjo) 7]

Rg = — <6720R00 + azf%)

Te2¢7
2

CJWOiaiT = — ((%a)fjiaj

we find that the zero component of jgf evaluates on equilibrium to

. r . R . . B .
Jo =e 77| A3 <R8 — 1;) + AsR + Ag(Rooe %) + Biw? + By(9s)* + ¢ <£ilT5> woz((‘)iT)]

[ A 2As + 245 — 3A3 — 2B ds \ 2
=7 <A5—3>R—|—< AR L 1>62”f2—|—T2 <3) Bi(80)?

2 8 dT
Ayeo o (Bas-Td) e
+ <A6 — 2A5) [VQU + (30)2] - 5 aivjf” - 9 aifﬂaja]
() o (P22

T (dB A dA i
oo+ 3 (5 = = o

2
d
1
2

(3.145)
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Summing (3.143) and (3.145) and ignoring total derivatives, we find our final result for
the two derivative correction to the total entropy.

Total Entropy

As P! 2A5 + 2A¢ — A3 — 2By + T2 (4P, — 8Py)e™ 27
[ (- e [t b

ds\? d P} , T (dBs As dAs i

(3.146)

+

While the first three terms in (3.146) are Kaluza Klein gauge invariant, the last term is
not. Let us pause, for a moment to explain this. In subsubsection 3.2.5 we have demonstrated
that the integral [\/—gsJ9 is Kaluza Klein gauge invariant provided that 9,J% = 0. Now
it must certainly be true that the correct entropy current is divergence free in equilibrium.
However the most general entropy current (3.141) is not divergence free in equilibrium. The
non gauge invariant term ion (3.146) results from such terms. The coefficients of these terms
must immediately be set to zero (even without comparison with a particular form of the
entropy). The coefficients of the remaining three terms in (3.146) must be equated with the
coefficients of the corresponding terms in (3.140). In net we have four equations which allow
us to solve for four of the entropy current coefficients, B;, As, Bj; and By in terms of the
other two (A5 and Ag) and P; (the coefficients that appear in the partition function ie.the P;

).

dBs As; dA
5 _ A3 dds

dT T dT

A3 =P + As
P 3.147
By = —?1 +2T3e 2 Py + A5 + Ag ( )
ds\? Py d

3.5.5 Entropy current with non-negative divergence

Above we have discussed the constraints on the entropy current from comparison with the
total entropy of our system. In this subsubsection we will discuss the relationship between
these constraints and those obtained by imposing the requirement of positivity of the entropy
current.

In the study of the positivity of the divergence of the entropy current, it turns out that
some coefficients in the entropy current are determined in terms of transport coefficients,
while others are left free (more precisely these coefficients are constrained by inequalities
involving transport coefficients). The determined coefficients turn out to be precisely those
that multiply terms that are nonvanishing in equilibrium, namely Az, As, Ag, B1, B4 and
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Bs. The six equations that determine these six parameters are

As =0
Ag =0
dBs _ A dA
dr T dT

(3.148)

Az = K1
1 dl€1
By =-|-As+T—
1= [ 3+ qT —i—/ﬂ}
ds \ 2 1 dr1 d?k,
T-—=) By=—— |M+2T— +T*—
(dT) ! 2[“ ar * dTQ]
The results (3.148) satisfy the constraints (3.147). In order to verify this one plugs in explicit
results
P1 2 —92 s dTl —92 3
f3=——5 + g(P{ —T2e ™2 Py) + <Tds> <2T026 27p) + P — 2P1’>

2 Ps sdl'\ (P}
= (p'—P -2 ) (=2=-P
a=g(r-n-3) (7)) (5 -7)

P <sdT> P
G=-"2- -

w

6 Tds) 2

QPI,—PI s dT ’
==l L (=) (»B-P
=g ()
A3 =3P —8T3e %Py — Pj
M =P3+ P — P/
/igzpl—P{

Iilzpl

(3.149)

for the transport coefficients in terms of action parameters into (3.148) and checks that the

results are consistent with (3.147)

Our results (3.147) are compatible with but weaker than (3.148). (3.148) is equivalent to
(3.147) together with A5 = Ag = 0. As As and Ag multiply terms that are nonvanishing in

equilibrium, we find it surprising that ’ our equilibrium study has not been powerful enough

to demonstrate that As and As must actually vanish. It is possible that we have overlooked

a simple principle that forces these coefficients to vanish without invoking the principle of

entropy increase.
3.5.6 The conformal limit

31Let us consider Weyl transformation of the full four dimensional metric

guy — guy€2¢(x)

31This subsubsection has been worked out in collaboration with R. Loganayagam.
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In this subsection first we would like to write an partition function which is invariant under
this transformation. In order to have conformal invariance this partition function will have
fewer coefficients than the partition function given in (3.131). Then we shall analyze how it
will constrain the stress tensor for a conformal fluid.

Under this transformation several three dimensional quantities transform as follows.

G=0+¢, ai=a;, Jy=-c"g;
(V3)? = 7 [(Vo)* +2(Vo).(Ve) + (Vo)’]
R=e"2[R—4V?¢ - 2(V¢)?] (3.150)
figf7 = e fij 7
Vs =€*\/g3
Using (3.150) we can see that under this transformation the partition function (as given

in(3.131)) will be invariant (assuming that the total derivative terms will integrate to zero)
only if the coefficients P;’s satisfy the following constraints.

€2
T()e_g

PI(U) = €1T0€_U, P2(o‘) and P3(O') = 2P1(O') (3151)
where e; and ey are two dimensionless constants.
Substituting (3.151) in (3.149) we find

Ro = 2!61 = 261T0€_U (3152)
A3 = 4T0€70(€1 — 262)

These relations precisely match with our expectation for the independent transport coef-
ficients of a conformally covariant stress tensor. Since for a conformally covariant stress tensor
only two terms (w,qw?,y with coefficient A3 and [RW/) + K <W>] with coefficient 1) can be
non zero in equilibrium and a conformally invariant action also has only two free parameters,
it follows that the existence of a partition function does not constrain the stress tensor of a
conformal fluid.

3.6 Counting for second order charged fluids in 3+1 dimensions

In this subsection we will use the methods developed in previous subsections to answer the
following question: how many transport coefficients are needed to specify the fluid dynamics
of a relativistic charged fluid that may not preserve parity, at second order in the derivative
expansion? We do not attempt to derive the detailed form of the equations so obtained; our
presentation is merely at the level of counting. If the conjecture at the heart of this work
is correct, then an analysis of entropy positivity would yield the same number of transport
coefficients; however that analysis is much more difficult to perform (even at the level of
counting), and we do not attempt it here.
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Type | fluid+background data | In equilibrium
scalars 16 9
vectors 17 6
tensors 18 9

Table 12. parity even data for charged fluids at second order

3.6.1 Parity Invariant case

Let us first consider the parity invariant case. Table 3.6.1 list the number of all the the parity
preserving fluid plus background onshell independent data at second order. From this table
this we see that the total number of symmetry allowed transport coefficients in stress-energy

tensor and charge current in landau frame is
tensors(16) + scalars(18) + vectors(17) = 51. (3.153)

Now let us consider the equilibrium of this system. The third column of table 3.6.1 also list
the number of scalars, vectors and tensors that can be constructed out of o, Ag, a;, A; and g% .
The coefficient of these terms that are survive in equilibrium we refer to as ‘non dissipative’
coefficients while the remaining we refer to as ‘dissipative’ coefficients. In this case we have
a total of 24 non dissipative coeflficients. Now there are 9 scalars than can be constructed in
equilibrium. We list them below

R;:, ViO'VZ‘U, fijfij, FijFij, Fijfij, ViO'VZ‘Ao, VioniAo, ViViO', ViViAo (3.154)

The last two scalars are total derivatives and hence do not appear in the partition function.
This tell us that the 24 non dissipative coefficients are determined in term of 7 independent
coefficients that appear in the partition function which means that there will be 17 relation
among the 24 non dissipative coefficients.

In summary the methods developed in this section predict that parity invariant charged
fluid dynamics is characterized by 7 non dissipative transport coeflicients, together with 28
dissipative coefficients (7 scalars, 12 vectors and 9 tensors). Each of these 35 transport
coefficients is an unspecified function of T" and pu.

3.6.2 Parity Violating case

Let us now consider the parity non invariant charged fluids at second order. Table 3.6.2 lists
all the parity odd data at second order. From this table we see that number of transport
coefficients in the parity odd sector is

pseudo tensors(12) + pseudo scalars(6) + pseudo vectors(9) = 27. (3.155)

The third column of table 3.6.2 that out of the 28 parity odd transport coefficients 12 are
non dissipative. Now we have 4 new scalars(pseudo) can be added to the partition function.
These are listed below

e oot , €0 Aofin, €7F00Fy. , €750 A0Fy (3.156)
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Type fluid+background | In equilibrium
pseudo scalars 6 4
pseudo vectors 9 2
pseudo tensors 12 6

Table 13. parity odd data for charged fluid at second order

As such all of these 3.156 are total derivatives by themselves but they can not be written as
total derivatives in the partition function since the coefficients that they will appear with are
arbitrary functions of ¢ and Ag. Thus we see that the 12 parity odd non dissipative coefficients
are determined in terms of 4 parity odd coefficients in the partition function which means
that their would be 8 relation in parity odd sector.

In summary we predict that, at second order, we have 4 parity odd nondissipative trans-
port coefficients, together with 2 pseudo scalar, 7 pseudo vector and 6 pseudo tensor dissipa-
tive coeflicients, and total of 20 new coeflicients.

3.7 Discussion

The main result of our section is that two apparently different physical requirements, namely
the requirement of existence of equilibrium in appropriate circumstances and the requirement
of the existence of a point wise positive divergence entropy current, give the same constraints
32 on the equations of hydrodynamics in three specific contexts. Two questions immediately
suggest themselves. Do the results of our paper extend to arbitrary order in the derivative
expansion, as we have conjectured in this section? If so, why is this the case? Definitive
answers to these questions would be very interesting. A proof that the existence of equilibrium
plus certain inequalities imply the existence of a positive divergence entropy current could
demystify arguments based on the existence of an entropy current, and lead towards a fuller
understanding of the second law of thermodynamics.

In the main text of this section we have derived constraints on the constitutive relations
of hydrodynamics starting from the assumption of the existence of a partition function. In
the appendices to this section we have, however, demonstrated that all the constraints derived
in this paper may also be derived from the weaker assumption that fluid admit stationary
equilibrium configurations in stationary backgrounds. The integrability conditions from the
demand that the currents and stress tensors in equilibrium follow from an action turned out
to be automatic in the three examples studied in this paper. Is this always the case (we find
this unlikely). In appropriate situations, do the Onsager relations follow from the demand
that equilibrium is generated from a partition function?

In another direction, the analysis of this section has led to the consideration of partition
functions dual to equilibrium hydrodynamics as a function of background metrics and gauge
fields. Given a partition function as a function of sources, it is standard in quantum field

32 We ignore the inequalities that follow from the principle of entropy increase in this statement.
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theory to Legendre transform this object in order to obtain an offshell 1PI effective action for
the theory. It may be possible implement this procedure on our partition function to obtain
an offshell action for fluid dynamics (albeit one applies only to equilibrium configurations)
(see [31] for related work). If so, what is the interpretation of this action in the context of
the fluid gravity map of the AdS/CFT correspondence?

It would be very interesting to generalize the work presented in this paper away from
equilibrium. Time dependent partition functions are not in general local functionals of their
sources. These partition functions are, however usually generated by coupling local field the-
ory dynamics to sources. Can time dependent correlators (perhaps in a Schwinger - Keldysh
set up) be generated by minimally coupling a local ‘action’ for hydrodynamics to the back-
ground metric or gauge field? How does this tie in with the fluid gravity map of the AdS/CFT
correspondence?

Apart from the traditional requirement of positivity of the entropy current, and the
requirement of the existence of equilibrium, emphasized in this paper, one may also attempt to
constrain the equations of fluid dynamics by demanding that correlation functions computed
from these equations obey all the symmetry properties that follow from the existence of
an underlying action (see e.g. [19]). Any system that posseses a well defined partition
function, as studied in this paper, automatically obeys all these symmetry properties for
time independent correlators. Do the constraints on hydrodynamics that follow from the
existence of an equilibrium partition function automatically also guarantee that the symmetry
requirements on time dependent correlators are also met?

Finally, it would be very interesting to investigate the interplay of the principal constraint
described in this paper (namely the existence of equilibrium for an arbitrary static metric)
with the AdS/CFT correspondence. Is this constraint merely from the structure of AdS/CFT,
for an arbitrary bulk Lagrangian, or does it impose constraints on possible o’ corrections to
the equations of Einstein gravity? Within gravity can one prove directly that the existence
of equilibrium implies the existence of a Wald entropy increase theorem (and so the existence
[32] of a positive divergence entropy current)(see [33] for related discussion)?

3.8 Appendices to chapter 2
3.8.1 First order charged fluid dynamics from equilibrium in 3+1 dimensions

In this appendix we shall rederive the results obtained in section 3.3 making fewer assumptions
than in that section. In this Appendix we make no reference to the equilibrium partition
function, and nowhere assume its existence. The only demand that we make on our system
is that it admit an equilibrium solution in an arbitrary background of the form (3.1), (3.9).
We also assume that the zeroth order equilibrium configuration is given by equation 3.21.
As discussed in section 3.3 for the parity violating first order charged fluid, one can
not construct any scalar or pseudo scalar at equilibrium and hence temperature or chemical
potential does not get corrected to this order. To the first order, the velocity corrections can
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be written as

e by

Sul = 1 eijkfjk + bgB;'( + b30'c + byd' Ag (3.157)

The dissipative part of the stress tensor and the current are written in equation 3.65.
Since, 0, % — %, 0, o, evaluate to zero on equilibrium, we are left with

T =0

(3.158)
Jc/;iss = a1 E* + asP*0,T + £ ,wH + Eg B

We shall now impose that the equations 3.158,3.157 obeys the conservation laws

VT = Fy

~ (3.159)
V,J* =CE.B

where

1
EHt = F*u,, Bt = 56“””"111,]-},0
(3.160)
wh = 56’“"’Uul,vpug.

For computational simplicity, we shall take thermodynamic variables temperature T and
v = 4 as the independent ones. Some useful formulas that are used in computation are

E P
V=", VuP=qE,+ UV,

T
oP e+ P OP

or| ory _ - 3.161
arl, ~ 1T " avlr ¢ (3-161)

2 1
Vit = 2w VT, VB = =2, B! — =B, V"T.

Now using formulas in equation 3.161, it is straight forward to evaluate the scalar equations
namely

w, V, T = u, F* ),

- (3.162)
V,J"=CE.B.
On setting coefficients of independent data in 3.162, one obtains
TOr(§w +qb1) = 2(&w + qb1), TOr(§p + qb2) = (§p + qb2)
Oy (€w +qb1) = 2T(Ep + qb2), 0u(§p + qb2) = CT
2
Oul(c+ P)ba) = T(€p + aba), Orlle + PYba) = (e + P)by (3.163)

0, [(c + P)br] = T(Ew + aby) + 2T(c + P)ba,  dr[(e + P)bi] = %(e + P)by

a1:a2:b3:b420.
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The vector equation P,V ,TH = PycF A J\ gives only one new constraint, which is given
by
(Ew + qbl)

2by = X>—— 2, .164
2 e+ P (3.164)

On solving 3.163, one obtains solution for ¥'s and ¢’s but with four arbitrary constants.
Now using 3.164 one can eliminate one of the constants in terms of other one. Finally we

obtain
T3 2 4 2
by = e—i—P(gV C+2v 20+4I/Z2+21),
T 1
by = €+P(§V2C’+Vzo + 29) (3.165)
and
a1 = CV*T*(1 - LI/T) + T2 [(2vz0 + 222) — ar (20220 + dvzg + 21)],
3(e+ P) e+ P
q qT
=CvI(l — ——vT)+T (20 — . 1
as = CvT ( 2(6+P)V )+ T (20 €+P(VZ0 + 22)) (3.166)

Now identifying zy = 2Cy, zo = Cy and z; = 4C; we see that equations 3.165, 3.166 are
exactly same as equations 3.75, 3.76.

3.8.2 First order parity odd charged fluid dynamics from equilibrium in 241
dimension

In this appendix we shall derive the constraints on parity odd charged fluid dynamics in 241
dimension at first order using just the assumption that there exists a equilibrium solution.
As discussed in §3.4, in this case there are 4 transport coefficients and there are 6 corrections
to the fluid fields. In §3.4, we were able to express all these 10 functions in terms of 2
arbitrary functions in the action (3.94). This implies that among these 10 functions only 2
are independent which in turn implies there should exist 8 relations among these 10 functions.
In this appendix we shall present these 8 relations which follows just by demanding that there
exists a equilibrium solution.

We consider the corrections to the fluid fields as in (3.91) and write down the first order
corrections to the stress tensor and the charge current. The equation of motion of fluid
dynamics are given by

VT = F2

(3.167)
VIt =0

Note in particular that the charge current is conserved even in the presence of a background
gauge field due to the absence of any anomaly in 2+1 dimension.
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Now the scalar equations V,J# = 0 and u,(,o) (VMT’“’ - .7-"”’\],\) = 0 yields the following
constraints respectively

(9 (9 0
(XE + pEE) — (XT + pé1) + p5— (XE + p€E) = 0,
tor "on On (3.168)

T2 (4 P)eg) -

T T (e P)r) + - (e-+ P)e) + T+ ptr) = 0.

The vector fluid equations P,SB) (VMT w _ FrAJ A) = 0, yields the rest of the 6 constraints

__op_ op
XB = aTTB 3# mpg,
XQ = 5570 i Qs
0 15)
(e+ P) = 2Lrg+ Lmg,
oT ou
o o (3.169)
P)T —
(e+P)T ér = a7t 5, o™
- dp dp
XE + psE = o7 7B + anmB,
5 Oe Oe
T (Xt + pér) = o7 7B + a*MmB-

Note that the first two constraints in (3.169) are identical to the constraints (3.96) obtained
from comparison with most general equilibrium action in §3.4.3. It is straightforward to show

that the rest of the constraints in (3.168) and (3.169) are solved by the (3.97), (3.98), (3.99)
and (3.100).

3.8.3 Second order uncharged fluid dynamics from equilibrium in 3+1 dimen-
sions

In this appendix we will do a similar computation as done in last two appendices for 3+1
dimensional uncharged fluids at second order. The non-trivial second order (stress tensor
conservation equation orthogonal to fluid velocity) equation is,

Vi(Toe”) (Z v, VI +uv> fij + P —V, I =0 (3.170)
T

n=1

Since, temperature correction is a scalar, we can assume the most generalized temperature
correction to be of the following form,

4
Tpe” = tmSm +19 (3.171)
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Four dimensional divergence can be expressed as,

1 - 1
VIl = fgﬁ“ (\ﬁgwwﬂau) — §6u(9aﬂ)ﬂa6
= Viﬂik + ViO'HZ'k
= (ap — TOras)V™olla, + aa V™I, (3.172)

where, we have expressed the two derivative correction to equilibrium stress tensor II of 3.127

in a compact form as, (II;; = a,IA

i A =1,11). Using following simple derivative formulae

. R . A
V(R — 5 gik) =0, V' (ViVi — giV?)o = V' Ry,

2
V{(VioVio — gin(Vo)?) = V2o V,o0,
) ) 2 ) ) . ) 2
V(S fik + fzgik)e2a) = (Vi) +2Via(f,” fir + fzgik))a (3.173)

we solve for complete equilibrium solution. In the equation 3.170, we get following three
different kinds of terms in parity even sector

V'(Tensor);, Vi(Scalar), Vjio(Scalar), (3.174)
and following four kinds of terms in the parity odd sector,

6mklfklfjif£m EimnfmnVQO-y emm'VQfmn

"N (V0 i), €V 0V 10 ft (3.175)
Setting the coefficients of V. (Scalar) to zero, we get the temperature correction as 33,
bl bg b4 b3 + %(CLQ — TaTCLQ)
h=—, loa=—, ty=——, t3=— . 3.176
1 PT s U2 PT s U4 PT y U3 PT ( )

Setting the coeflicients of the other terms to zero and using 3.176, we get, the velocity cor-

rections as
3a4 - TaTCL4 a4

O S

and the relations among the transport coefficients as given in 3.136. Similarly, setting the

(3.177)

coefficients of the independent terms in the parity odd sector to zero, we get all parity odd
coefficients zero, that is
t=0=101=04=205=0.

33we have used VioV;Vio = %Vk(VU)Q.
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4 Anomalous charged fluids in 141d from equilibrium partition function

4.1 Introduction

In this section we study the anomalous charged fluid dynamics in 141 dimensions using the
equilibrium partition function method discused in detail in the previous section. This system
has earlier been studied in [34] using the second law of thermodynamics as well as from an
action point of view. In this section we write down the equilibrium partition function for this
system at zero derivative order which reproduces the anomalous charge conservation and on
comparison with the most general constitutive relations in fluid dynamics, gives the results
obtained in [34].

4.2 1+1d parity violating charged fluid dynamics

Consider the parity violating charged fluids in 1+1 dimensions with background metric and
gauge field

ds® = —eQU(dt + aldx)Q + g1dz?

N (4.1)
A= Apdt + Aidx
The equations of motion are the following anomalous conservation laws

VT = F
Vit = S Fo

here .J, J are covariant and consistent currents respectively ([35], see also [36]).

The most general partition function consistent with Kaluza-Klein gauge invariance®?,
diffeomorphism along the spatial direction and U(1) gauge invariance upto anomaly is
W= Wi’rw + Wanom
Wim) = ClT()/Ald.CC - CQTo/aldCC (4'4)
C
Wanom = _T/AOAldx
0
where C, C7 and (5 are constants independent of ¢ and Ag and
Ag= A+ 1o, A; = A; — Aga;. (4.5)
Equation 4.4 is written in terms of A; which unlike A;, are Kaluza-Klein gauge invariant.
34
Vi =Vi—0ipVo, (V')°=V’+0igV". (4.3)
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Field | C | P | T | CPT
o + 1+ |+ +
ax + | = - +
guin |+ |+ |+ +
A -+ + -
Al - - - -

Table 14. Action of CPT

Under U(1) gauge transformation Ag — Ay, A1 — A1 + 01¢, we obtain®
5W’£nv =0

4.6
Woanom = TQ /¢ O Apdx = —g/dzxﬁgg ¢ € F. (4.6)
0

Table (14) lists the action of 2 dimensional C, P and T on various fields. Requiring CPT
invariance sets Cp to zero since the term with coefficient Cy is odd under CPT.

Now let us look at the most general constitutive relations allowed by symmetry in the
parity violating case at zero derivative order. At this order, there are no gauge invariant
parity odd scalar or tensor. But one can construct a gauge invariant vector 36

i = eu,. (4.8)

The most general allowed constitutive relations allowed by symmetry in Landau frame
thus take the form

T = (e + p)uru” + pg"”

- (4.9)
JH = qut + §ut.

4.2.1 Equilibrium from Partition Function

In this subsubsection we will use the equilibrium partition function (4.4) to obtain the stress
tensor and charge current at zero derivative order. Setting C to zero in (4.4) we have

W = —Tg /AoAld.T - CQTo/ald:E (410)
0

35Since we are interested in time independent background fields, we consider only time independent gauge
transformations.
36In components the parity odd vector is

g = 0, it = ePug = ¢ (4.7)

1 01 1

o
=€ € = .
V911

where €
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Type Data Evaluated at equilibrium
T =Toe 7, p=-e %A, u' =ul

Scalars None None

Vectors ut She?
Pseudo-Vectors | €, u” €1

Tensors None None

Table 15. Zero derivative fluid data

Scalars None

Vectors none , none
Pseudo-Vectors | €l f(a, Ag)

Tensors None

Table 16. Zero derivative background data

Using the partition function (4.10) it is straightforward to compute the stress tensor and

charge current3” in equilibrium to be

Too=0, T =0, Ty =e 7 (-T3Cy + CA}),

4.12
Jo=Ce A, J' = —Cele 7 A,. ( )

The covariant current (.J*) can be obtained from the consistent current (.J*) by an appropriate

shift as follows
Jh =gl JE T = Ce A, (4.13)

In components the covariant current is then
Jo=0, J'=—-20e7€ A. (4.14)

4.2.2 Equilibrium from Hydrodynamics

We are interested in the stationary equilibrium solutions to conservation equations corre-
sponding to the constitutive relations (4.9). The equilibrium solution in the parity even
sector in background (4.1) at zero derivative order is

ut = u?o) =€ 7(1,0), T=Tee 7, u= Ape °. (4.15)
37
Toe*® W . To ( SW §W>
Too = ——=28 27 oS0 A ,
v V9w 007 T =g \dai U 8A;
pi— 2o g SW T W Ty oW (411)

—g(pr1) 0A:

VvV "9p+1) dg'm’ V=91 040’

where, for instance, the derivative w.r.t Ao is taken at constant o, a;, A;, g*, To and po. See [36] for details.
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Since there are no gauge invariant parity odd scalars in table 16, temperature and chemical
potential do not receive any correction. However, the fluid velocity in equilibrium receives

correction as
ut = ué‘o) + betu V). (4.16)

From (4.9), (4.15) and (4.16) we get the parity odd correction to the equilibrium stress
tensor and charge current, which receive contribution from correction to the constitutive
relations as well as from correction to the equilibrium fluid velocity, to be

§Too = 6Jo = 6TV =0,
6Ty = —€° (e + P)be, (4.17)
0T = (gb+&))e".

4.2.3 Constraints on Hydrodynamics

Comparing the non trivial components of the equilibrium stress tensor and charge current of
(4.12) and (4.17) we find that the coefficient of velocity correction (4.16) is

T2 2
b=— —Cy +Cv 4.18
€E+p ( 2 ) ( )
and the coefficient in correction to charge current (4.9) is
2 2
ap qT
i =C —2u) —C . 4.19
& <€ Ip M) i D ( )
where v = & = %)-

The expressions (4.19) agree exactly with the results of [34] based on the requirement of
positivity of the entropy current and effective action.

4.2.4 The Entropy Current

The equilibrium entropy can be obtained from the partition function using

0
S = a—TO(TO log Z)

= —202T0/m61a1d$ .

In this subsection we determine the constraints on the hydrodynamical entropy current

(4.20)

J& from the requirement that (4.20) agree with the local integral

S:/deTgQJg : (4.21)

The most general form of the entropy current allowed by symmetry 3%, at zero derivative
order is

Tl = sub + £+ het A, | (4.22)

38Let us note that the entropy current need not be gauge invariant, see [36] for more details.
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where h is a constant.
The parity odd correction to the entropy current in equilibrium, which receives contribu-
tions both from correction to the hydrodynamical entropy current and equilibrium velocity,

is given by
Jg|correction = 35u0 + gsﬂo + h‘fOlAl- (423)
Now using
_ Ao 0_ _ 1_ .1 ~0_ 1
V= , ou’ = —a10u = —beay, U =—cay
To
the correction to the hydrodynamical entropy in equilibrium is given by
/d.%'v _QQJS‘correction = /d.%' ea ((_Sb - 58)61a1 + h€1 (Al + Aoal)) . (424)
Comparing this expression with (4.20) and using (4.19) we find
sp° P
§&=0C +CyT(1+—— ), h=0. (4.25)
€+p €+p

This result is in precise agreement with those of [34].
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5 Constraints on anomalous fluids in arbitrary even dimensions

5.1 Introduction

Anomalies are a fascinating set of phenomena exhibited by field theories and string theories.
For the sake of clarity let us begin by distinguishing between three quite different phenomena
bearing that name.

The first phenomenon is when a symmetry of a classical action fails to be a symmetry at
the quantum level. One very common example of an anomaly of this kind is the breakdown
of classical scale invariance of a system when we consider the full quantum theory. This
breakdown results in renormalization group flow, i.e., a scale-dependence of physical quantities
even in a classically scale-invariant theory. Often this classical symmetry cannot be restored
without seriously modifying the content of the theory. Anomalies of this kind are often serve
as a cautionary tale to remind us that the symmetries of a classical action like scale invariance
will often not survive quantisation.

The second set of phenomena are what are termed as gauge anomalies. A system is said
to exhibit a gauge anomaly if a particular classical gauge redundancy of the system is no more
a redundancy at a quantum level. Since such redundancies are often crucial in eliminating
unphysical states in a theory, a gauge anomaly often signifies a serious mathematical incon-
sistency in the theory. Hence this second kind of anomalies serve as a consistency criteria
whereby we discard any theory exhibiting gauge anomaly as most probably inconsistent.

The third set of phenomena which we would be mainly interested in this work is when a
genuine symmetry of a quantum theory is no more a symmetry when the theory is placed in
a non-trivial background where we turn on sources for various operators in the theory. This
lack of symmetry is reflected in the fact that the path integral with these sources turned on is
no more invariant under the original symmetry transformations. If the sources are non-trivial
gauge/gravitational backgrounds (corresponding to the charge/energy-momentum operators
in the theory) the path integral is no more gauge-invariant. In fact as is well known the gauge
transformation of the path-integral is highly constrained and the possible transformations are
classified by the Wess-Zumino descent relations”.

Note that unlike the previous two phenomena here we make no reference to any specific
classical description or the process of quantisation and hence this kind of anomalies are
well-defined even in theories with multiple classical descriptions (or theories with no known
classical description). Unlike the first kind of anomalies the symmetry is simply recovered at
the quantum level by turning off the sources. Unlike the gauge anomalies the third kind of
anomalies do not lead to any inconsistency. In what follows when we speak of anomaly we
will always have in mind this last kind of anomalies unless specified otherwise.

Anomalies have been studied in detail in the least few decades and their mathematical
structure and phenomenological consequence for zero temperature/chemical potential situ-
ations are reasonably well-understood. However the anomaly related phenomena in finite

39The Wess-Zumino descent relations are dealt with in detail in various textbooks[37-39] and lecture notes
[40, 41].
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temperature setups let alone in non-equilibrium states are still relatively poorly understood
despite their obvious relevance to fields ranging from solid state physics to cosmology. It is
becoming increasingly evident that there are universal transport processes which are linked
to anomalies present in a system and that study of anomalies provide a non-perturbative way
of classifying these transport processes say in solid-state physics[? |.

While the presence of transport processes linked to anomalies had been noticed before
in a diversity of systems ranging from free fermions* to holographic fluids*! a main advance
was made in [3]. In that work it was shown using very general entropy arguments that the
U(1)% anomaly coefficient in an arbitrary 3 + 1d relativistic field theory is linked to a specific
transport process in the corresponding hydrodynamics. This argument has since then been
generalised to finite temperature corrections [8, 16] and U(1)""! anomalies in d = 2n space
time dimensions [8, 46]. In particular the author of [8] identified a rich structure to the
anomaly-induced transport processes by writing down an underlying Gibbs-current which
captured these processes in a succinct way. Later in a microscopic context in ideal Weyl
gases, the authors of [30] identified this structure as emerging from an adiabatic flow of chiral
states convected in a specific way in a given fluid flow.

While these entropy arguments are reasonably straightforward they appear somewhat
non-intuitive from a microscopic field theory viewpoint. It is especially important to have
a more microscopic understanding of these transport processes if one wants to extend the
study of anomalies far away from equilibrium where one cannot resort to such thermodynamic
arguments. So it is crucial to first rephrase these arguments in a more field theory friendly
terms so that one may have a better insight on how to move far away from equilibrium.

Precisely such a field-theory friendly reformulation in 3+ 1d and 1+ 1d was found recently
in the references [47] and [48] respectively. Our main aim in this section is to generalise their
results to arbitrary even space time dimensions. So let us begin by repeating the basic physical
idea behind this reformulation in the next few paragraphs.

Given a particular field theory exhibiting certain anomalies, one begins by placing that
field theory in a time-independent gauge/gravitational background at finite temperature/chemical
potential. We take the gauge/gravitational background to be spatially slowly varying com-
pared to all other scales in the theory. Using this one can imagine integrating out all the
heavy modes?? in the theory to generate an effective Euler-Heisenberg type effective action
for the gauge/gravitational background fields at finite temperature/chemical potential.

In the next step one expands this effective action in a spatial derivative expansion and

40Tt would be an impossible task to list all the references in the last few decades which have discovered (and
rediscovered) such effects in free/weakly coupled theories in various disguises using a diversity of methods .
See for example [42] for what is probably the earliest study in 3 4+ 1d. See [30] for a recent generalisation to
arbitrary dimensions.

41See for example [43-45] for some of the initial holographic results.

42Time-independence at finite temperature and chemical potential essentially means we are doing a Euclidean
field theory. Unlike the Lorentzian field theory (which often has light-hydrodynamic modes) the Euclidean field
theory has very few light modes except probably the Goldstone modes arising out of spontaneous symmetry
breaking. We thank Shiraz Minwalla for emphasising this point.
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then imposes the constraint that its gauge transformation be that fixed by the anomaly. This
constrains the terms that can appear in the derivative expansion of the Euler-Heisenberg
type effective action. As is clear from the discussion above, this effective action and the
corresponding partition function have a clear microscopic interpretation in terms of a field-
theory path integral and hence is an appropriate object in terms of which one might try to
reformulate the anomalous transport coefficients.

The third step is to link various terms that appear in the partition function to the
transport coefficients in the hydrodynamic equations. The crucial idea in this link is the
realisation that the path integral we described above is essentially dominated by a time-
independent hydrodynamic state (or more precisely a hydrostatic state ). This means in
particular that the expectation value of energy /momentum/charge/entropy calculated via the
partition function should match with the distribution of these quantities in the corresponding
hydrostatic state.

These distributions in turn depend on a subset of transport coefficients in the hydrody-
namic constitutive relations which determine the hydrostatic state. In this way various terms
that appear in the equilibrium partition function are linked to/constrain the transport coeffi-
cients crucial to hydrostatics. Focusing on just the terms in the path-integral which leads to
the failure of gauge invariance we can then identify the universal transport coefficients which
are linked to the anomalies. This gives a re derivation of various entropy argument results in
a path-integral language thus opening the possibility that an argument in a similar spirit with
Schwinger-Keldysh path integral will give us insight into non-equilibrium anomaly-induced
phenomena.

Our main aim in this section is twofold - first is to carry through in arbitrary dimensions
this program of equilibrium partition function thus generalising the results of [47, 48] and re
deriving in a path-integral friendly language the results of [8, 46].

Our second aim is to clarify the relation between the Gibbs current studied in [8, 30] and
the partition function of [47, 48]. Relating them requires some care on carefully distinguishing
the consistent from covariant charge , the final result however is intuitive : the negative
logarithm of the equilibrium partition function (times temperature) is simply obtained by
integrating the equilibrium Gibbs free energy density (viz. the zeroeth component of the
Gibbs free current) over a spatial hyper surface. This provides a direct and an intuitive link
between the local description in terms of a Gibbs current vs. the global description in terms
of the partition function.

This section is organised as follows. We will begin by mainly reviewing known results
in subection §5.2. First we review the formalism/results of [8] in subsubsection§§5.2.1 where
entropy arguments were used to constrain the anomaly-induced transport processes a Gibbs-
current was written down which captured those processes in a succinct way. This is followed by
subsubsection§§5.2.4 where we briefly review the relevant details of the equilibrium partition
function formalism for fluids as developed in [47]. A recap of the relevant results in (3+1)
and (141) dimensions[47, 48] and a comparison with results in this section are relegated to
appendix 5.9.1.
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Subsection §5.3 is devoted to the derivation of transport coefficients for 2n dimensional
anomalous fluid using the partition function method. The next section§5.4 contains construc-
tion of entropy current for the fluid and the constraints on it coming from partition function.
This mirrors similar discussions in [47, 48]. We then compare these results to the results of
[8] presented before in subsubsection§§5.2.1 and find a perfect agreement.

Prodded by this agreement, we proceed in next subsection§5.5 to a deeper analysis of the
relation between the two formalisms. We prove an intuitive relation whereby the partition
function could be directly derived from the Gibbs current of [8] by a simple integration (after
one carefully shifts from the covariant to the consistent charge).

This is followed by subsection §5.6 where we generalise all our results for multiple U (1)
charges. We perform a C'PT invariance analysis of the fluid in subsection §5.7 and this
imposes constraints on the fluid partition function.

Various technical details have been pushed to the appendices for the convenience of the
reader. After the appendix 5.9.1 on comparison with previous partition function results in
(3+1) and (141) dimensions, we have placed an appendix 5.9.4 detailing various specifics
about the hydrostatic configuration considered in [47]. We then have an appendix 5.9.5
where we present the variational formulae to obtain currents from the partition function in
the language of differential forms. This is followed by an appendix 5.9.6 on notations and
conventions (especially the conventions of wedge product etc.).

5.2 Preliminaries

In this subsection we begin by reviewing and generalising various results from [8] where con-
straints on anomaly-induced transport in arbitrary dimensions were derived using adiabaticity
(i.e., the statement that there is no entropy production associated with these transport pro-
cesses). Many of the zero temperature results here were also independently derived by the
authors of [46].

We will then review the construction of equilibrium partition function (free energy) for
fluid in the rest of the subsection. The technique has been well explained in [47] and familiar
readers can skip this part.

5.2.1 Adiabaticity and Anomaly induced transport

Hydrodynamics is a low energy (or long wavelength) description of a quantum field theory
around its thermodynamic equilibrium. Since the fluctuations are of low energy, we can
express physical data in terms of derivative expansions of fluid variables (fluid velocity u(x),
temperature T'(x) and chemical potential u(x)) around their equilibrium value.

The dynamics of the fluid is described by some conservation equations. For example, the
conservation equations of the fluid stress-tensor or the fluid charge current. These are known
as constitutive equations. The stress tensor and charged current of fluid can be expressed in
terms of fluid variables and their derivatives. At any derivative order, a generic form of the
stress tensor and charged current can be written demanding symmetry and thermodynamics
of the underlying field theory. These generic expressions are known as constitutive relations.
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As it turns out, validity of 2nd law of thermodynamics further constraints the form of these
constitutive relations.

The author of [8] assumed the following form for the constitutive relations describing
energy, charge and entropy transport in a fluid

T = eufu” + pPlU’ + qgnomuy + uqunom + T

diss
JH = qut 4+ Tl + Tl (5.1)
Jg = su + Jg,anom + Jg,diss
where u# is the velocity of the fluid under consideration which obeys utu, = —1 when

contracted using the space time metric g,,. Further, P* = g" + utu” , pressure of the
fluid is p and {¢,q,s} are the energy,charge and the entropy densities respectively. We
have denoted by {ghnom, Janom, Jg, wnom ) the anomalous heat/charge/entropy currents and
by {Tjiasr Jhisss T5.diss ) the dissipative currents.

diss’ “ diss’
5.2.2 Equation for adiabaticity

A convenient way to describe adiabatic transport process is via a covariant anomalous Gibbs
current (Qcm’ )“ .

anom

The adjective covariant refers to the fact that the Gibbs free energy and the corre-
sponding partition function are computed by turning on chemical potential for the covariant
charge. This is to be contrasted with the consistent partition function and the corresponding
consistent anomalous Gibbs current (GG ousistent)”,

Since this distinction is crucial let us elaborate this in the next few paragraphs - it is
a fundamental result due to Noether that the continuous symmetries of a theory are closely
linked to the conserved currents in that theory. Hence when the path integral fails to have a
symmetry in the presence of background sources, there are two main consequences - first of
all it directly leads to a modification of the corresponding charge conservation and a failure
of Noether theorem. The second consequence is that various correlators obtained by varying
the path integral are not gauge-covariant and a more general modifications of Ward identities
occur.

A simple example is the expectation value of the current obtained by varying the path

integral with respect to a gauge field (often termed the consistent current ) as,

" 05
Consistent — 8./4”
The consistent current is not covariant under gauge transformation.

As has been explained in great detail in [17] thus there exists another current in anomalous
theories: the covariant current. The covariant current Jg o, 18 a current shifted with respect
to the consistent current by an amount J£'. The shift is such that its gauge transformation
is anomalous and it exactly cancels the gauge non invariant part of the consistent current.
Thus, the covariant current is covariant under the gauge transformation, as suggested by its
name.
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The covariant Gibbs current describes the transport of Gibbs free energy when a chemical
potential is turned on for the covariant charge. We will take a Hodge-dual of this covariant
Gibbs current to get a d — 1 form in d-space time dimensions. Let us denote this Hodge-dual
by g’gggm The anomalous parts of charge/entropy/energy currents can be derived from this

Gibbs current via thermodynamics

J_C’ov o _aGanom

anom ~— au
7Cov _ _ ag_anom (5.2)
S,anom oT

Cfc%ogm = g_anom + TjS,anom + Mjanom

Then according to [8] the condition for adiabaticity is

dqSey, + a N GEo, — € NIGS, = TdI§% o + pd I, — pAC (5.3)

anom S,anom anom

where a,& are the acceleration 1-form and the rest-frame electric field 1-form respectively
defined via
a=(uVu, dt, &=u"F,dz"

Further the rest frame magnetic field /vorticity 2-forms are defined by subtracting out the elec-
tric part from the gauge field strength and the acceleration part from the exterior derivative
of velocity, viz.,

B=F—-uNnE, 2w=dut+uia

The symbol A9°? is the d-form which is the Hodge dual of the rate at which the covariant
charge is created due to anomaly,i.e.,

deov _ QlCO’U

JE ig the entire covariant charge current including both the anomalous and the non-

where
anomalous pieces. For simplicity we have restricted our attention to a single U(1) global
symmetry which becomes anomalous on a non-trivial background.

In terms of the Gibbs current , we can write the adiabiticity condition (5.3) as,

— _ _ ag_COU ag—cov
WGarom &8 N Garigm + pA" = (dT + aT) A =72 + (dpu+ap = E) N =g (54)
5.2.3 Construction of the polynomial 3¢,

The main insight of [8] is that in d-space time dimensions the solutions of this equation are
most conveniently phrased in terms of a single homogeneous polynomial of degree n + 1 in
temperature 7" and chemical potential p.

Following the notation employed in [30] we will denote this polynomial as §%,,,,, [T, 1.
As was realised in [30], this polynomial is often closely related to the anomaly polynomial of
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the system® . More precisely, for a variety of systems we have a remarkable relation between
w

@ omlT, 1] and the anomaly polynomial Pypom, [F, R]
gnom[T7 M] = Panom [-F = U, P1 (ER) — _T2,pk>1(9%) — 0} (5.5)

Let us be more specific : on a (2n — 1) + 1 dimensional space time consider a theory with

n
% iom L5 1] = Canomp™ ™ + Y C T ™ (5.6)

m=0

w

Assuming that the theory obeys the replacement rule (5.5) such a §%,,,,,[T, 1] can be obtained

from an anomaly polynomial**

Panom - CanomfnJrl + Z Cm [_pl (%)] nl2+1 Fnim + Tt (5'7)

m=0

where we have presented the terms which do not involve the higher Pontryagin forms. Re-
stricting our attention only to the U(1)""! anomaly (and ignoring the mixed/pure gravita-
tional anomalies ) we can write

dJConsistent = Ccmom]:n

o (5.8)
dJCov = (TL + 1)Canomfﬂ

and their difference is given by
jCov = jConsistent + 77‘(:'0,77,0777,-’Zt AFE (5'9)

The solution of (5.4) corresponding to the homogeneous polynomial (5.6) is given by

n
_ N _ n+1
gg;zoc;)m - COT.A AN .Fn 1 + mg_l |:Canom (m + 1> Nerl

- . (5.10)
n- — m—1pn—m
+ ,;_0 Ck <m B k> TEHL M=k (2w)™ 1B Au

43We remind the reader that the anomalies of a theory living in d = 2n spacetime dimensions is succinctly
captured by a 2n + 2 form living in two dimensions higher. This 2n + 2 form called the anomaly polynomial
(since it is a polynomial in external/background field strengths F and fR) is related to the variation of the
effective action W via the descent relations

Panom = dFCS 5 61—‘05 = d(SW

We will refer the reader to various textbooks[37-39] and lecture notes [40, 41] for a more detailed exposition.

44Gince all relativistic theories only have integer powers of Pontryagin forms the constants C), should vanish
whenever m is even. As we shall see later that another way to arrive at the same conclusion is to impose CPT
invariance.
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Here A is the U(1) gauge-potential 1-form in some gauge with F = dA being its field-strength
2-form. Further, B, w are the rest frame magnetic field/vorticity 2-forms and T, i are the local
temperature and chemical potential respectively. They obey

(dB)ANu=—2w)ANEANu, d2w)Au=(2w)ANaAu (5.11)

Using these equations it is a straightforward exercise to check that (5.10) furnishes a solution
o (5.4).

We will make a few remarks before we proceed to derive charge/entropy/energy currents
from this Gibbs current. Note that if one insists that the Gibbs current be gauge-invariant
then we are forced to put Cp = 0 - in the solution presented in [8] this condition was implicitly
assumed and the Cp term was absent. The authors of [47] later relaxed this assumption
insisting gauge-invariance only for the covariant charge/energy currents. Since we would be
interested in comparison with the results derived in [47] it is useful to retain the Cp term.

Now we use thermodynamics to obtain the charge current as

JCOU

anom

n
n+1
_Z[m"_l anom< )Nm
—_ m+1 (5.12)

- —k
+ Z m — k Ck( ~ k) Tk+1,um_k_l] (2w)m—1Bn—m Au
k=0

and the entropy current is given by

J,ngzr)wm = _COA NF
n m
—k 5.13
- (k+1)Cy (n >Tk,um_k(2w)m_18”_m Au (5.13)
m—k
m=1 k=0
The energy current is given by
Tanom
n
1
= — Z m |:Canom (n * 1>:um+1
m=1 m+ (514)
- n—=k
C Tk+1 m—k ) m—1pn—m
+ Z % <m B k:> © (2w)™ B Au
k=1
These currents satisfy an interesting Reciprocity type relationship noticed in [8]

5B 3(2w)
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While this is a solution in a generic frame one can specialise to the Landau frame (where
the velocity is defined via the energy current) by a frame transformation

u
u,u, — u,u _ Qanom
e+p’
q'gnom
J#nom’_)Jgnom_qe_Fpa (5.16)
i’ m qgnom
JSanomHJSanom_ €+p7
qgnom =0
to get
n
J(gloo%Landau _ Z Sm(2w)m718n7m Au
m (5.17)
jg’zz,ol;sndau _ Z gﬁs) (Qw)m—llgn—m Au+C A/\ Fn—l
m=1
where
n+1
é—m = |: f ( + 1):| Canom( + 1) Nm
“ n—k
Z I: _ k):| Ck( k) Tk-i—lﬂm—k—l
k=0 me
[ sT n+1\,. 5.18
gni) = |: €+p:| Canom( + 1>T I/Lm—H ( )
- k
S [ Y G
k=0
(=-
Often in the literature the entropy current is quoted in the form
n
TG omandat — — L JEanban et 137 Xon (2) "B A ¢ ANF (5.19)
m=1
where
¢=-Co
—els) L M
Xm =&y’ + =€
meeme e (5.20)

n+1 -1 m+1 k m—k
= —Lanom T
¢ (m + 1> Z Ck — k: a
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where we have used the thermodynamic relation s+ qu = € + p. By looking at (5.10) we
recognise these to be the coefficients occurring in the anomalous Gibbs current :

Gom = =T > Xm(2w)" 1B Au+¢ ANF! (5.21)

anom
m=1

In fact this is to be expected from basic thermodynamic considerations : the above equation
is a direct consequence of the relation G = —T'(S+ £Q — %) and the fact that energy current
receives no anomalous contributions in the Landau frame.

This ends our review of the main results of [8] adopted to our purposes. Our aim in
the rest of the section would be to derive all these results purely from a partition function
analysis.

5.2.4 Equilibrium Partition Function

In this subsubsection we review (and extension) an alternative approach to constrain the
constitutive relations, namely by demanding the existence of an equilibrium partition function
(or free energy) for the fluid as described in [47, 48] 4.

Let us keep the fluid in a special background such that the background metric has a time
like killing vector and the background gauge field is time independent. Any such metric can
be put into the following Kaluza-Klein form

ds? = —e* (dt + a;dz")* + gijda'da?,

. ) (5.22)
A = Aodt + A;dz’

here i,j € (1,2...2n — 1) are the spatial indices. We will often use the notation v = e~ for
brevity. This background has a time-like killing vector d; and let u’kf = (e77,0,0,...) be the
unit normalized vector in the killing direction so that

uld, =0 and w, = —v"'(dt+ a)

In the corresponding Euclidean field theory description of equilibrium, the imaginary time
direction would be compactified into a thermal circle with the size of circle being the inverse
temperature of the underlying field theory. In the 2n-1 dimensional compactified geometry,
the original 2n background field breaks as follow

e metric(g,,) : scalar(o), KK gauge field(a;), lower dimensional metric(g;;).

~

e gauge field(A,,) : scalar(Ap), gauge field(A;)

Under this KK type reduction the 2n dimensional diffeomorphisms breaks up into 2n-1
dimensional diffeomorphisms and KK gauge transformations. The components of 2n di-
mensional tensors which are KK-gauge invariant in 2n-1 dimensions are those with lower

“5For similar discussions, see for example [49, 50].
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time(killing direction) and upper space indices. Given a 1-form J we will split it in terms of

KK-invariant components as
J = Jo(dt + a;dz*) + gijJ'da?
Other KK non-invariant components of J are given by

JO = — [y Jo + a;J']

. (5.23)
Ji = gijJ? + aiJo

To take care of KK gauge invariance we will identify the lower dimensional U(1) gauge
field (denoted by non script letters) as follows

A0:A0+H05 AZ:AZ
= A; = A; — Apa; and (5.24)
Fij = &AJ - 8JAZ = ]:ij — AOfij - (61A0 aj - 8jA0 (Ii).

where f;; = 0ja; — 0ja; and pg is a convenient constant shift in 4y which we will define

shortly. We can hence write
A= Aydt + A= Ag(dt + a;dz®) + Agdz’ — podt

We are now working in a general gauge - often it is useful to work in a specific class of gauges
: one class of gauges we will work on is obtained from this generic gauge by performing a
gauge transformation to remove the podt piece. We will call these class of gauges as the ‘zero
o’ gauges. In these gauges the new gauge field is given in terms of the old gauge field via

A= = A+ podt

We will quote all our consistent currents in this gauge. The field strength 2-form can then be

written as

F=dA=dA+ Ayda+ dAg A (dt + a)

We will now focus our attention on the consistent equilibrium partition function which
is the Euclidean path-integral computed on space adjoined with a thermal circle of length
1/Ty. We will further turn on a chemical potential 4 - since there are various different notions
of charge in anomalous theories placed in gauge backgrounds we need to carefully define which
of these notions we use to define the partition function?®. While in the previous subsection we
used the chemical potential for a covariant charge and the corresponding covariant Gibbs
free-energy following [8] , in this subsection we will follow [47] in using a chemical potential
for the consistent charge to define the partition function. This distinction has to be kept in
mind while making a comparison between the two formalisms as we will elaborate later in
section§b.5.

46 See, for example, section§3 of [? | for a discussion of some of the subtleties.
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The consistent partition function Zoonsistent that we write down will be the most general
one consistent with 2n-1 dimensional diffeomorphisms, KK gauge invariance and the U(1)
gauge invariance up to anomaly. It is a scalar S constructed out of various background
quantities and their derivatives. The most generic form of the partition function is

W =1n ZConsistent = /dinl'\/ an—IS(07 A07 aq, Ai7 gzg) (525)

Given this partition function, we compute various components of the stress tensor and charged
current from it. The KK gauge invariant components of the stress tensor 7}, and charge
current J, can then be obtained from the partition function as follows [47],

Too = _Mdﬂ Consistent _ 62O-T‘O 57W
V=92 00’ V=020 040’
; To ow oW , Ty oW
) = —Aoer )y Jonsistent = ———= 1" 5.26
TO \/% ( 5(172 AO (5A1>7 JConszstent \/% 5A17 ( )
i 2o W

99 -
V=92n ag'm
here {o,a;, gij, Ao, A;} are chosen independent sources, so the partial derivative w.r.t any
of them in the above equations means that others are kept constant. We will sometimes
use the above equation written in terms of differential forms - we will refer the reader to
appendix 5.9.5 for the differential-form version of the above equations.

Next we parameterize the most generic equilibrium solution and constitutive relations for
the fluid as,

u(@) = uo(z) +ui(z), T(r)=To(z)+Ti(z), ple)=po(z)+m@),

Ty = (e + Plupty + pgpw + Ty J* = qu + gl (5.27)

where, wq, 11, p1, T, jgi s are various derivatives of the background quantities. Note that we
will work in Landau frame throughout.

These corrections are found by comparing the fluid stress tensor 7, and current J,
in Eqn.(5.27) with T}, and J, in Eqn.(5.26) as obtained from the partition function. This
exercise then constrains various non-dissipative coefficients that appear in the constitutive
relations in Eqn.(5.27).

This then ends our short review of the formalism developed in [47]. In the next section we
will apply this formalism to a theory with U(1)"*! anomaly in d = 2n space time dimensions.

5.3 Anomalous partition function in arbitrary dimensions

Let us consider then a fluid in a 2n dimensional space time. The fluid is charged under a
single U(1) abelian gauge field A,. We will generalise to multiple abelian gauge fields later
in section §5.6 and leave the non-abelian case for future study. We will continue to use the
notation in the subsection §§5.2.1.
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The consistent /covariant anomaly are then given by Eqn.(5.8) which can be written in

components as

M _ U1V e i U, 1 N
VMJConsistent _ Canom€ " naltl ‘AVl ce aHnAVn
C

— SO a1t o Fum
" y 5 . . (5.28)
VIU‘JCOU = (n + 1)Co‘mom<€#1 1ochin naul-Aul cee aNnAVn
C 1% 1%
=(n+ 1)7“;;”“5”1 et F e Fnn-
and Eqn.(5.9) becomes
Jg’ov = Jgonsistent + J(lf:) (5'29)
where
Jé) = nCanoms)‘o"“Vl"'“”‘1”"‘1.,Zlaamflyl .. 8#7171.,2[1,”71
Canom AUV o fn—1Vn—1 J (5.30)
" on—1 c 'AO‘]:/“”I ce flinfanfr
The energy-momentum equation becomes
V. TV = FuJt,, (5.31)

where J£ s the covariant current. This has been explicitly shown in [47] 7.

5.3.1 Constraining the partition function

We want to write the equilibrium free energy functional for the fluid. For this purpose, let us
keep the in the following 2n-dimensional time independent background,

ds? = —e*(dt + a;da")? + gijda'da?, A= (Ao, Ay). (5.32)

Now, we write the (2n — 1) dimensional equilibrium free energy that reproduces the same
anomaly as given in (5.76). The most generic form for the anomalous part of the partition

function is ,

Wonom = ;b/d2n1$ /92n_1{ Z am—1(Ao, To) [EA(da)mfl(dA)n,m]
m=1 (533)

+ ay (To) [ea(da)”_l] }

where, ¢7% is the (2n — 1) dimensional tensor density defined via

1192...04— —o 0i1i2...04—
hiz-td—1 — =0 V2. g—

47One required identity is,
A ~H1V1--HnVn _ A H1VIH2V2...finVn
AQE ‘Fll‘ll’l e ]:Hnyn =2n Aﬂla -Fcu/l ]:H2V2 e ‘Fﬂn’/n

for arbitrary 2n—dimensions
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The indices (4, j) run over (2n — 1) values. We have used the following notation for the sake
of brevity
[eA(da)™ ! (dA)"™™]
= eijlkl“.jmilkmilpl(n“.pnimqnimAiajla’kl tee 8jm—1akm—18pl AQ1 e 8pn—m dn—m
[e(da)™ " (dA)"—]'

— ki Jm—1km-1P1G1.-.Pn—mGn-m 5. .
=c m—1tm nomin=m@ ag, ... 0}, 10k, OpAg ... 0

Pn—m

(5.34)

A

dn—m

The invariance under diffeomorphism implies that «,, is a constant in space .For m < n
however «,, can have Ay dependence, as the gauge symmetry is anomalous, but they are
independent of o, due to difiomorphism invariance.

The consistent current computed from this partition function is,

Conszstent aam ) . -
ol e"{ Z (n —m + Dam—1 [e(da)™}(dA)""]' (5.35)
m=1
S foJel |
_ mzl(n — m) az;l [EAdAO(da)m_l(dA)n—m—l]z }

Next, we compute the covariant currents, following (5.29). The correction piece for the
0-component of the current is,

(J(c)) —nCanome’ ZAm< _11) [EA(da)mil(dA)nim] (536)
m=1

where, we have used the following identification for 2n dimensional gauge field A, and (2n—1)
dimensional gauge fields A;, a; and scalar Ao,
Ai = A; + aiAo

5.37
Ao = Ap. ( )

where we are working in a‘zero g’ gauge.
Thus, the O-component of the covariant current is,

n
(Janom)gov — Tkl Zl [agz(:l + n(n B 1>Am lcanom] [EA(da)mfl(dA)n*m} )

" (5.38)
Every term in the above sum is gauge non-invariant. So the covariance of the covariant current
demands that we chose the arbitrary functions «,, appearing in the partition function (5.33)

such that the current vanishes. Thus, we get,

00t —1 n— 1
AQT = .
o+ n( B 1) Canom = 0. (5.39)
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The solution for the above equation is,

oy = C, Tyt (5.40)

Here, C,, are constants that can appear in the partition function.

Thus, at this point, a total of n 4+ 1 coefficients can appear in the partition function. A
further study of CPT invariance of the partition function will reduce this number. We will
present that analysis later in details and here we just state the result. CPT forces all Coj, = 0.
For even n, the number of constants are & where as for odd n, the number is (234).

5.3.2 Currents from the partition function

With these functions the i—component of the covariant current is,

(Janom)oon = €77 D [AU 832;1 +(n—m+ 1)Oém1:| [e(da)™ 1 (dA)"™]"

m=1
n

—e Y [ — (1 4+ 1)Canom (Z) TyAm (5.41)

m=1

+(n—m+ 1)T5”C~‘m1} [E(da)m—l(dA)n—m]i ’

As expected, this current is U(1) gauge invariant. The different components of stress-tensor
computed from the partition function are,

T55 "™ =0, Tihom =0

anom

—0

(may, — (n—m+ 1)Agay,—1) [6(da)m_1(dA)"—m]i

NE

(T8) anom = ©

3
1§

(5.42)

M-

=e [mé’ngnH —(n+1- m)CN'm,lTénAo

3
Il

n+1 m m— n—m7?
+<m N 1>CanomA0 H] [e(da)™ 1 (dA)"™]

5.3.3 Comparison with Hydrodynamics

Next, we find the equilibrium solution for the fluid variables. As usual, we keep the fluid in
the time independent background (5.32). The equilibrium solutions for perfect charged fluid
(with out any dissipation) are,

uwo,=e70, T =Toe 7, p=Ape °. (5.43)
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The most generic constituitive relations for the fluid can be written as,

T = (€ + p)upty + Pguv + N0y + (OPpy
‘]g’ = qut' + Jlyen, + J(/jdd,

ov

Jb o = o(EF — TPHO0v) + an E¥ + e TPH*0,v + higher derivative terms

n
Jétdd = Z Emet” Y101 Ym—10m—1 Oélﬁl---anfmﬁnfmuy(aryué)m—l(8aAﬁ)n—m +o (5.44)

m=1

Here, Jben is parity even part of the charge current and Jé‘dd is parity odd charge current.
gtveBY0- g a 2n dimensional tensor density whose (n —m) indices are contracted with O0aAg
and (m — 1) indices are contracted with 0yus.

We notice that the higher derivative part of the current gets contribution from both
parity even and odd vectors. Parity even vectors can be at any derivative order but parity
odd vectors always appear at (n — 1) derivative order. Thus, for a generic value of n (other
than n = 2) , the parity even and odd parts corrections to the current will always appear at
different derivative orders. From now on, we will only concentrate on the parity odd sector.
It is also straight forward to check that Jgdd = 0.

Next, we look for the equilibrium solution for this fluid. Since, there exist no gauge
invariant parity odd scalar, the temperature and chemical potential do not get any correction.
Also, in 2n dimensional theory, the parity odd vectors that we can write are always (n — 1)
derivative terms. No other parity odd vector at any lower derivative order exists. Since the
fluid velocity is always normalized to unity, we have,

0T =0, 6p=0, Ouy=—adu’. (5.45)

where, the most generic correction to the fluid velocity is,

dul = Y Un(o, Ao) [e(da)™ 1 (dA)"™]". (5.46)

m=1

Here, Uy, (0, Ag) are arbitrary coefficients and factors of e is introduced for later conve-
nience. Similarly, we can parameterize the i—component of the parity-odd current as,

Tia =Y Jm(0, Ao) [e(da)™ 1 (dA)"™]". (5.47)
m=1
The coefficients J,,, (o, Ap) are related to the transport coefficients &, via

Jn =3 (7’;__’;) & (—e?) Tt Ag . (5.48)
k=1
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With all these data, we can finally compute the corrections to the stress tensor and
charged currents and they take the following form,

6Too =0, 6TY =0, 6Jy=0
n

0Ty = =€ (e + )™ > " Up(o, Ao)(da)™ ' (dA)*™
m=1

6Jb,, = €k Z(Jm(a, Ag) + qUp (0, Ag))(da)™ L (dA)"™ (5.49)
m=1
Comparing the expressions for various components of stress tensor and covariant current of
the fluid obtained from equilibrium partition function (5.42), (5.41) and fluid constitutive
relations (5.49), we get,

6—20

Uy, = — m— (n—m+1)Aga,—
€+p[ma (n—m VAo —1]

—20

= [mémT(;n“ —(n+1—m)Cpg AT

7e+p
n-+1
anom AT 5.50
#(27))Cammag| (5.50)

Similarly, we can evaluate J,,(c, Ag) as follows,

—0o m( T +1 ~ m
Im =€ [—(m + 1)Canom Ap (m n 1) +(n—m+1)Cy1Tj
L [mé’ T — (041 — m)Coq AgT" (5.51)
e+p m-dg m—141040 .
n+1 m
+ (m n 1)Can0mAO +1}

We want to now use this to obtain the transport coefficients &, in the last relation of (5.44).
For this we have to invert the relations (5.48) for &,,. We finally get

n+1
m — |:m€q_£lp - (m + 1>:| Canom (m+ 1> Mm

% qp 15 (MK k+1, m—k—1
—(m—k)| (~1 T
+§P%w =) ()

This then is the prediction of this transport coefficient via partition function methods. This

(5.52)

exactly matches with the expression from [8] in (5.18) provided we make the following iden-
tification among the constants Cp, = (—1)™1C,.

5.4 Comments on Most Generic Entropy Current

Another physical requirement which has long been used as a source of constraints on fluid
dynamical transport coefficients is the local form of second law of thermodynamics. As we
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reviewed in the subsection§§5.2.1 this principle had been used in [8] to obtain anomaly in-
duced transports coefficients in arbitrary even dimensions.

In this section we will determine the entropy current in equilibrium by comparing the
total entropy with that obtained from the equilibrium partition function. In the examples
studied in [47, 48] it was seen that in general the comparison with equilibrium entropy (
obtained from partition function) did not fix all the non dissipative coefficients in fluid dy-
namical entropy current. However it did determine the anomalous contribution exactly. Here
we will see that this holds true in general even dimensions.

Let us begin by computing the entropy from the equilibrium partition function. We begin
with the anomalous part of the partition function

Wanom — /d2n 11‘\/9271 1{ Zam 1 EA(da’)m l(dA)n m]
m=1 (5.53)

+ a, [ea(da)™™] }

where the functions o, are given in (5.40).
The anomalous part of the total entropy is easily computed to be

0
anom — T anom
5 oy (10Wanom)

= /d2"_11:\/gg,171{ Z m T Cryy [eA(da)m_l(dA)"_m]
+ (n+1)Cy, Ty [ea(da)" "] } (5.54)

:/d% Ly V92n—1 1{ 1) 15" Con [ea(da)m_l(dA)”_m]

+Cy [eA(dA)™ 1 }

Now we will determine the most general form of entropy current in equilibrium by com-
parison with (5.54). In [47] it was argued that the entropy current by itself is not a physical
object, but entropy production and total entropy are. This gave a window for gauge non in-
variant contribution to entropy current but the contribution was removed by CPT invariance.
Here also we will allow for such gauge non invariant terms in the entropy current. The most
general form of entropy current, allowing for gauge non invariant pieces, is then

JE = sut — T Jha+ Z Xem&"uy, (u) ™1 (.A) (5.55)

+ e A (8A)
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where X, is a function of T' and p whereas ( is a constant . The correction to the local
entropy density (i.e., the time component of the entropy current) can be written after an
integration by parts as
§J% =% | CA(dA)™ ! + ka a (da)*' (dA)"~
k=1

+ total derivatives (5.56)

ij...
where
fon = —sUpn + Jm + gAm< ) +) ( ) (—e? )k A=k (5.57)
k=1

The correction to the entropy is then,

5S = / Ao\ /gon Jo
(5.58)
_/dQn_lxvg2n—1

¢ [eA(dA) ] Z n [ea (da)™ 1 (dA)™ ’f]]

Comparing the two expressions of total equilibrium entropy (5.54) and (5.58) we find the
following expressions of the various coefficients in the entropy current (5.56),

(=Cy and fr=(k+1)TF Cy for 0<k<n (5.59)
This in turn implies that

% n—k o m—
Toz<mk>Xk(—€ )b A
k=1 (5.60)

= Co Tt m(”>cammAgn+1 — CoTp A (”)
m m

which can be inverted to give

. n+1 _1 m+1 - n—k k, m—k
Xm = Canom(m+1> Z m—k‘ T 1%

¢=0Co

which matches with the prediction from [8] in equation (5.20) again with the identification

(5.61)

Crn(—=1)""1 = C,,. We see that in the entropy current we have a total of n + 1 constants as
in the equilibrium partition function.

This completes our partition function analysis and our re derivation of the results of
[8] via partition function techniques. We see that the transport coefficients match exactly
with the results obtained via entropy current (provided the analysis of [8] is extended by
allowing gauge-non-invariant pieces in the entropy current). This detailed match of transport
coefficients warrants the question whether the form of the equilibrium partition function itself
can be directly derived from the expressions of [8] quoted in 5.2.1. We turn to this question
in the next section.
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5.5 Gibbs current and Partition function

We begin by repeating the expression for the Gibbs current in (5.10) which was central to
the results of [8].

n
_ . _ n+1
Goor, = CoTANF" 1+ {cm (m N 1) pm
m=1

m . (5.62)
n— k+1, m—k m—1pn—m
+kz:00k<m—k:>T p ](2w) B Au

The subscript ‘anom’ denotes that we are considering only a part of the entropy current
relevant to anomalies. The superscript ‘Cov’ refers to the fact that this is the Gibbs free
energy computed by turning on a chemical potential for the covariant charge.

Let us ask how this expression would be modified if the Gibbs free energy was computed by
turning on a chemical potential for the consistent charge instead. The change from covariant
charge to consistent charge/current is simply given by a shift as given by the equation(5.9).
This shift does not depend on the state of the theory but is purely a functional of the
background gauge fields. Thinking of Gibbs free energy as minus temperature times the
logarithm of the Eucidean path integral, a conversion from covariant charge to a consistent
charge induces a shift

g_Cov — g_Consistent —nun ConomA A ]:'nfl

anom anom

which gives

gConsistent
anom

n

n+1 m+1 % n—k k+1, m—k m—1pn—m
anom T 2 .
2 C <m . 1>u + ;0 Ck <m 7k w (2w)™ B Au (5.63)

+ [COT + ncanom,u] A A ]:n—l

This now a Gibbs current whose p derivative gives the consistent current rather than a
covariant current. It is easy to check that this solves an adiabaticity equation very similar to
the one quoted in equation(5.4)

dGConsistent +aA gConsistent + nCanom (A + luu) NEN Bn_l

anom anom
8g_$gniistent ¢ 8g$£nii8tent (564)
— (dT + oaT) A Banom 1 (g _ ey 5 Panom
(dT' + aT) o T(dutau—¢) 0

The question we wanted to address is how this Gibbs current is related to the partition
function in equation (5.33).
The answer turns out to be quite intuitive - we would like to argue in this section that

1= .
_ anom _ Consistent
Wanom =1In ZConsistent - / Tganom (565)
space
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This equation instructs us to pull back the 2n — 1 form in equation (5.63) (divided by local
temperature) and integrate it on an arbitrary spatial hyperslice to obtain the anomalous
contribution to negative logarithm of the equilibrium path integral. Note that pulling back
the Hodge dual of Gibbs current on a spatial hyperslice is essentially equivalent to integrating
its zero component (i.e., the Gibbs density) on the slice. Seen this way the above relation is
the familiar statement relating Gibbs free energy to the grand-canonical partition function.

5.5.1 Reproducing the Gauge variation

Before giving an explicit proof of the relation(5.65) we will check in this subsection that the
relation(5.65) essentially gives the correct gauge variation to the path-integral at equilibrium.
This will provide us with a clearer insight on how the program of [47] to write a local expression
in the partition function to reproduce the anomaly works.

The gauge variation of (5.65) under 6.4 = do) is

Consistent — T Fanom

5Wan0m =§ln Z&om _ / lég_consistent
space

__ / » [Co + ncanom%] SANF! (5.66)
e '

=- / o ) [Co + ncnm%] A F" 1 4 nCanom / . SAd (%) A Frl

We will now ignore the surface contribution and use the fact that chemical equilibrium

demands that
ra(t) -

where £ = u”F,, dz” is the rest frame electric-field. This is essentially a statement (familiar
from say semiconductor physics) that in equilibrium the diffusion current due to concentration
gradients should cancel the drift ohmic current due to the electric field. Putting this in along
with the electric-magnetic decomposition F = B+ u A &, we get

oA

5Wanom =0Jln Z(%ggstent = Canom/ Tng A Bn_l (567)
space

which is the correct anomalous variation required of the equilibrium path-integral ! In d =
2n = 4 dimensions for example we get the correct E.B variation along with the 1/T" factor
coming from the integration over euclidean time-circle. The factor of n comes from converting

to electric and magnetic fields
F'=nuANEANB"!

Thus the shift piece along with the chemical equilibrium conspires to reproduce the correct
gauge variation. The reader might wonder why this trick cannot be made to work by just
keeping the shift term alone in the Gibbs current - the answer is of course that other terms
are required if one insists on adiabaticity in the sense that we want to solve (5.64).
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5.5.2 Integration by parts

In this subsubsection we will prove (5.65) explicitly. We will begin by evaluating the consistent
Gibbs current in the equilibrium configuration. We will as before work in the ‘zero ug’ gauge.
Using the relations in the appendix 5.9.4 we get the consistent Gibbs current as

anom

o l gConsistent
T

n

1

m— m — n m
-7 [Cm(—l) I+t — Op(—1)° 1<m>TgAO

m=1

. <m:L— 1> cammAg"“} (da)™ Y (dA)"™™ A (dt + a) (5.68)

1

- [nCanom Ao + CoTo] A A (dA 4 Agda)™ ™
0

~(n-1)

To

[Canom Ao + CoTo] A A dAg A (dt 4+ a) A (dA + Agda)™ 2

After somewhat long set of manipulations one arrives at the following form for the con-

sistent Gibbs current

o l g_Consistent

T 7 anom
n—1
A -1
—d {TO 3 {om(nm—ng”“ — Cy(—1)°1 (” >T0A6”
m=1
_|_m( Z_ 1>CanomA81+1:| (da)m—l(dA)n—l—m A (dt + a)} (5.69)
m

+ Co (1)1 (da)™ 1 A (dt + a)

Here we have taken out a surface contribution which we will suppress from now on since it
does not contribute to the partition function. This final form is easily checked term by term.

Suppressing the surface contribution we can write

1

~Consistent
Tgcmom
A - m—2pm n m m—1 n—m
=dl. ]+ > [cm_l(—n " — (m)cmon] (da)™ 1 (dA)
0 m=1 (5.70)
+ C (1) M (da)™ L A (dt + a)
—d[.]+ ;(1) AS o (day™t(dAym 4 & t A an(da)’!
m=1
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where we have defined

n

- 1
m = Cm(_l)m 1TOm-i_ - (m+ 1

>Can0mA6"+1 for m <n (5.71)

oy = Cp(—=1)" Tyt

To get the contribution to the equilibrium partition function, we integrate the above
equation over the spatial slice (putting dt = 0). We will neglect surface contributions to get

(ln Z)Sﬁ:;wtent
- m 2mm n m el i
- /p 5" Z [ 1o <m> Canoon} (da)™ " (dA)
5.72
+ Cn(—l)nfngla A (da)nfl ( )
space

A a
= A Qypy— damldA”m / — A ap(da)” !
lpace T Z 1 ) ( ) space Ty ( )

with s given by (5.71). We are essentially done - we have got the form in (5.33) and
comparing the equations (5.71) and (5.40) we find a perfect agreement with the usual rela-
tion Cpp(—1)""1 = Cy,. Now by varying this partition function we can obtain currents as
before (the variation can be directly done in form language using the equations we provide in
appendix 5.9.5). With this we have completed a whole circle showing that the two formalisms
for anomalous transport developed in [8] and [47] are completely equivalent.

Before we conclude, let us rewrite the partition function in terms of the polynomial

anom [T ILL] as

(ln Z)aCT(;:;lzstent
_ / A A anom[ Thda, dA] anom[ Toda, O} . anom [0 dA + Aoda]
space Toda dA dA + Apda (573)
Tod
+ Sanom[ oaa, O] A Toa

space (Toda) 2

We will consider an example. Using adiabaticity arguments, the authors of [30] derived the
following expression for a theory of free Weyl fermions in d = 2n spacetime dimensions

T
w l 2 :
( :nom)gre;n v 27T Xd 2n |:Sll§ TTQQWq/J:| “ (574)
Tn

8[)60268

where x,_,, is the chirality and the subscript 771 denotes that one needs to Taylor-expand

n+1

in 7 and retain the coefficient of 777", Substituting this into the above expression gives the

anomalous part of the partition function of free Weyl fermions.
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5.6 Fluids charged under multiple U(1) fields

In this subsection, we will generalize our results to cases where we have multiple abelian U(1)
gauge fields in arbitrary 2n—dimensions.
We can take

n
Z,Jnom[T7 Iu’] = C(?Tllo‘;")’bAnJrl/’I’Al cee Iu’AnJrl + Z C;?Ll'“Anime-i_l'uAlmAnfm' (575)

m=0

In this case, the anomaly equation takes the following form,

Vujg’o‘i"“ - nT_{;lleT%?YQLMA"HEMUIMVQ'“MH% (Furv) ay - - (Frnva) a,, - (5.76)
Where, in 2n dimensions Cypnom has n+1 indices denoted by (A1, A+ A,+1) and it is symmetric
in all its indices. It is straightforward to carry on the above computation for the case of
multiple U(1) charges and most of the computations remains the same. Now, for the multiple
U(1) case, in partition function 5.33 the functions a,, and the constants C,, (and the constants
Cy, appearing in §% ) have n — m number of indices which are contracted with n —1 —m
number of dA and one A. The constant ¢ appearing in the entropy current has n indices.
The constant C,, (and o) has no index. All these constants are symmetric in their
indices. Considering the above index structure into account, we can understand that the
functions U,, appearing in velocity correction and x,, appearing in entropy corrections has
n — m indices and the function J,, appearing in the charge current has n — m + 1 indices.
Now, we can write the generic form of these functions as follows:

6720

€E+p
— (n4+1—=m)Cp 2P (Ag) , T (5.77)

n+1
4 <m N 1) Cfﬁé.r.nAnmeL..ijLl (A0)31 - (A0)3m+1:|

n— —
UAlAg...A m
m

~NA1 A Ap_ m+1
[mCm e

where (Ag)p, comes from the Bith gauge field.
Similarly, we can write the coefficients appearing in A’th charge current (J A) as,

_ 1

+(n —m+ l)éﬁéll"'A”_ngn]
qu—QO' _
L [mc,ﬁlf‘?mf‘n—ng’”l (5.78)
€E+p

— (n+1—m)CAAzAnmBrg gy, T

m—1

n+1
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Name Symbol | CPT

Temperature T +
Chemical Potential 7 -
Velocity 1-form u +
Gauge field 1-form A -
Exterior derivative d -
Field strength 2-form | F = dA +
Magnetic field 2-form B +
w

Vorticity 2-form

Table 17. Action of CPT on various forms

We can also express the transport coefficients for fluids charged under multiple U(1)
charges, generalising equation (5.52) as,

(gA)AlAg...An_m

s BA1...An_mB1..Bm [T 1
= 1 5 C 1- n—mb1 m .
|: + ( + ) B:| anom (m + l)luBl KBy,
q KB A
[ K154 (5.79)
1 ABA1L.Ap—mB1..Bm_x1 [T — K
X (_1)k 1Ck 1 1 k-1 <m B k) TkJrl,u,Bl e HBy

A
q —1~A41. Ap_ +1
_1 m C 1 n 'me
" [meer] - "

Similarly the coeflicieints y,, appearing entropy current become

Xml - _Canlom Br-Bmi1 <m + 1>T 1MB1 <o MBpy
m (5.80)
k ~A1...Ap—mBi...By_
Z (m k>Tkal ! “up, ... m1B, .
k=0

This finishes the analysis of anomalous fluid charged under multiple abelian U(1) gauge
fields.

5.7 CPT Analysis

In this subsection we analyze the constraints of 2n dimensional CPT invariance on the analysis
of our previous sections.

Let us first examine the CPT transformation of the Gibbs current proposed in [8]. Using
the Table§17 we see that the Gibbs current in Eqn.(5.10) is CPT-even provided the coefficients
{Canom, Cor+1} are CPT-even and the coefficients Cyy, are CPT-odd. Since in a CPT-invariant
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fields | C | P | T | CPT
o + |+ |+ +
a; + | -] - +
Gij + |+ |+ +
A -+ + -
Ai - - - -

Table 18. Action of CPT on various field

theory all CPT-odd coefficients should vanish, we conclude that C,, = 0 for even m. This
conclusion can be phrased as

CPT : Cup(-1)"'=0C, (5.81)

Note that this is the same conclusion as reached by assuming the relation to the anomaly
polynomial.

Next we analyze the constraints of 2n dimensional CPT invariance on the partition func-
tion (5.33). Our starting point is a partition function of the fluid and we expect it to be
invariant under 2ndimensional CPT transformation of the fields. Table§18 lists the effect of
2n dimensional C, P and T transformation on various field appearing in the partition function
(5.33). Since a; is even while A; and J; are odd under CPT, the term with coefficient C,,
picks up a factor of (—1)(™+1), Thus CPT invariance tells us that C,,, must be

e even function of Ay for odd m.
e odd function of Ag for even m.

Now the coefficients C}, are fixed upto constants Ch, by the requirement that the partition
function reproduces the correct anomaly. Note that the Ap(odd under CPT) dependence
of the coefficients C, thus determined are consistent with the requirement CPT invariance.
Further, CPT invariance forces C,, = 0 for even m. The last term in the partition function
(5.33) is odd under parity and thus its coefficient is set to zero by CPT for even n whereas
for odd n it is left unconstrained.

Thus finally we see that CPT invariance allows for a total of

e I constant (Cyn with m odd) for even n.

o 2 constants (Cy with m even and Cp,) for odd n.

In particular the coefficient Cyy always vanishes and thus, for a CPT invariant theory, we
never get the gauge-non invariant contribution to th elocal entropy current.

5.8 Discussion

In this section we have shown that the results of [8, 46] based on entropy arguments can be re
derived within a more field-theory friendly partition function technique [47-50]. This has led
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us to a deeper understanding linking the local description of anomalous transport in terms of
a Gibbs current [8, 30] to the global description in terms of partition functions.

An especially satisfying result is that the polynomial structure of anomalous transport
coefficients discovered in [8] is reproduced at the level of partition functions. There it was
shown that the whole set of anomalous transport coefficients are essentially governed by a
single homogeneous polynomial § [T, u] of temperature and chemical potentials. The
authors of [30] noticed that in a free theory of chiral fermions this polynomial structure is
directly linked to the corresponding anomaly polynomial of chiral fermions via a replacement
rule

© om T 1] = Panom [F = p,p1(R) = —T2, p=1(R) = 0] (5.82)

anom

This result could be generalised for an arbitrary free theory with chiral fermions and chiral p-
form fields using sphere partition function techniques which link this polynomial to a specific
thermal observable [51, 52].

We have derived in this section a particular contribution to the equilibrium partition
function that is linked to the underlying anomalies of the theory. A direct test of this result
would be to do a direct holographic computation of the same quantity in AdS/CFT to obtain
these contributions. Since the CFT anomalies are linked to the Chern-Simons terms in the
bulk the holographic test would be a computation of a generalised Wald entropy for a black
hole solution of a gravity theory with Chern-Simons terms. The usual Wald entropy gets
modified in the presence of such Chern-Simons terms[53, 54] which are usually a part of
higher derivative corrections to gravity. We hope that reproducing the results of this paper
would give us a test of generalised Wald formalism for such higher derivative corrections.

We have directly linked the description in terms of a Gibbs current[8, 30] satisfying a
kind of adiabticity equation to the global description in terms of partition functions. Further
we have noticed in (5.21) that at least in the case of anomalous transport this Gibbs current
is closely linked to what has been called ‘the non-canonical part of the entropy current ’
in various entropy arguments[10]. It would be interesting to see whether this construction
can be generalised beyond the anomalous transport coefficients to other partition function
computations which appear in [47, 49]. This would give us a more local interpretation of
the various terms appearing in the partition function linking them to a specific Gibbs free
energy transport process. Hence with such a result one could directly identify the coefficients
appearing in the partition function as the transport coefficients of the Gibbs current.

Another interesting observation of [8] apart from the polynomial structure is that the
anomalous transport satisfies an interesting reciprocity type relation (5.15)- the susceptibility
describing the change in the anomalous charge current with a small change in vorticity is
equal to the susceptibility describing the change in the anomalous energy current with a
small change in magnetic field. While we see that the results of this section are consistent
with this observation made in [8], we have not succeeded in deriving this relation directly from
the partition function. It would be interesting to derive such a relation from the partition
function hence clarifying how such a relation arises in a microscopic description.
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Finally as we have emphasised in the introductions one would hope that the results of this
section serve as a starting point for generalising the analysis of anomalies to non-equilibrium
phenomena. Can one write down a Schwinger-Keldysh functional which transforms appropri-
ately - does this provide new constraints on the dissipative transport coefficients 7 We leave
such questions to future work.
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5.9 Appendices to chapter 4
5.9.1 Results of (3 + 1)— dimensional and (1 + 1)— dimensional fluid

In this appendix we want to specialise our results to 1 + 1 and 3 4+ 1 dimensional anoma-
lous fluids.By considering local entropy production of the system, the results for (3 + 1)—
dimensional anomalous fluid were obtained in [3], [4, 16] and for (1 + 1)—dimensional fluid
were obtained in [11]. The same results have also been obtained in [47] and [48] for (34 1)—
dimensional and (1+ 1)—dimensional anomalous fluid respectively, by writing the equilibrium
partition function, the technique that we have followed in this section. Our goal in this section
is to check that the arbitrary dimension results reduce correctly to these special cases.

5.9.2 (34 1)— dimensional anomalous fluids

Let us consider fluid living in (3 + 1)—dimension and is charged under a U(1) current. Take

5 ol Tyt = CE4 12+ CEAT P + CFA T+ CF4T (5.83)

anom
the constants {C3=*, C4=*} if non-zero violate CPT since their subscript indices are even.

By the replacement rule of [30] this corresponds to a theory with the anomaly polynomial

Panom = Clt F3 —C=* p (M)A F (5.84)

anom

where p, (R) is the first-pontryagin 4-form of curvature.
We have
dJconsistent = ComomF -
dJco = 3CinomF*
and their difference is given by
Jcos = JConsistent + 2Com AN F

In components we have

1
,u __ pd=4 ~ _pvpo
V#JConsistent =C € ]:MV‘FPU?

anom 4
JE = Cd:4 1 WV po 5.85
v.“ Cov — 3 anong fuufpm ( . )
Jr = gH ) + 2cd:4 1 ,u,ypo‘A F
Cov Consistent anom o€ v po

The anomaly-induced transport coefficients (in Landau frame) in this case are given by
Jhorm = f‘li:‘le“”p”uyapAU + 53245“”p”u1,6pug

d=4 d=4 qp d=4 qp d=4p2 —1 | qM
=3C — =2 20T | —— —1 ci=*T —_
1 anom:u|:6+p :|+ 0 |:€+p :|+ 1 M |:6—|—p:|

d=d _ nd=d 2o W d—d qp (5.86)
-C o AP 3l =iy, 220 9
2 M [ etp } 0 N[ e+ p ]

anom

— qu d=4m3 —1 qu
+ =42y 225 1| + 4T L
1 1% c+p 2 % ctp
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and

Jg,anom _ _%Jgﬁunom + Xt11:45,ul/PUuyapAa + X¢21248/11/P0uyapu0_ + Cd:48#VPUAV8pA0
ggﬁj"m = —Txcll:‘le“”p”u,,@pflg — Txg:4€“”pau,,8pug — TCd:45“”p”AV8pAg
=t = ot (5.87)
X = 3CHo T + 20 - O

—x§ = Gl T 4+ O + OF T4 O T

The anomalous part of the consistent partition function is given by

2 e
A d=4 d=4 d=4m2 d=4 2

= ?0 A { |:CO (_1)TO - 2CanomA0] (dA) + [Cl TO - CanomAO:| (da)}

space

+ C=H(—1)T2a A (da)

space

Cd=4 N (5.88)

= *%gm /dgl‘\/gT))Eij [2A0A18]Ak + AgAzajak}

- cg= / d*x\/g3€7* A0 A + CT='T / d*x/gse 7" Aidjay
—Cg4T02/d3:L‘\/gE6ijkaiajak

The results for the equilibrium partition function and the transport coefficients of the
fluid have been obtained in [47] in great detail. We will now compare the results above
against the results there. We begin by first fixing the relation between the notation here and
the notation employed in [47]. Comparing our partition function in (5.88) against Eqn(1.11)
of [47] we get a perfect match with the following relabeling of constants*®

Cotnom = % , Gt =—Co, CF'=Cy, O =-C (5.89)
The first of these relations also follows independently from comparing our eqn(5.85) against
the corresponding equations in [47] for covariant/consistent anomaly and the Bardeen current.
We then proceed to compare the transport coefficients in Eqn(3.12) and Eqn.(3.21) of [47]
against our results in (5.86) and (5.87).

We get a match provided one uses (in addition to (5.89) ) the following relations arising
from comparing definitions here against [47]

¢p=¢t, =2, Dp=xT*', Do=2x3", h=¢" (5.90)

“8We warn the reader that the wedge notation in [47] differs from the one we use by numerical factors. So
the comparisons are to be made after converting to explicit components to avoid confusion.
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5.9.3 (14 1)— dimensional anomalous fluids

Let us consider fluid living in (1 + 1)—dimension and is charged under a U(1) current. Take
anom [T+ 1] = Congmt® + CG—* T+ G121 (5.91)

the constant ngz if non-zero violates CPT since its subscript index is even.
By the replacement rule of [30] this corresponds to a theory with the anomaly polynomial

Panom = CE=2 F2 _ 04=2 p (M) (5.92)

anom

where p, (R) is the first-pontryagin 4-form of curvature.
We have
dJcoonsistent = Cd:z F

anom

dJcey = 2C%=2 F

anom
and their difference is given by
Jcow = Jconsistent + Cona A
Cov Consistent anom

In components we have

1
d=2 v
v#‘]gonsistent = Canom 55“ ‘Fltl/)
1
d=2 v 5.93
VMJg’ov = 2Canom§eu ]:um ( )
d=2 1
Jg’ov = Jg’onsistent + CanomENV'AV

The anomaly-induced transport coefficients (in Landau frame) in this case are given by

Tegnom = ef=ter,
d=2 d=2 qp d=2 qp d=2p2, —1 | 9H (5.94)
=C — =2 ci— T |— -1 ci=T —_
1 anom:u|:6_|_p :|+ 0 |:€+p :|+ 1 K |:€+p:|
and
Jg:anom _ _%Jgﬁ)nom + X?:quyuy + Cd:2€'uy./2t,,
Giy ™" = =Tx{2e"u, = T¢*=2 A, (5.95)
_CdZQ _ 061:2
X = Clnon T 0 + CF 2+ O
The anomalous part of the consistent partition function is given by
(n 2 e
A
- S [T - 24| + | e
/space T 0 ( ) anom space ! (596)
Cd:2

— _% / dz /g1 AgA; — CF2 / dr/gie' A; + CF2T, / dz\/gie‘a;
0
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Now we are all set to compare our results with the results of [48]. The comparison
proceeds here the same way as the comparison in 3 4+ 1d before. By comparing Eqn(2.4) of

[48] against our (5.96) we get*?

C(i?o?m =C ) Cg:2 = _Cl s Oij:2 = _02 s (597)

and we get a match of transport coefficients using the definitions
= K = = =
=677, &+35=x1"", De=24"", h=("" (5.98)

5.9.4 Hydrostatics and Anomalous transport

In this appendix we will follow [47, 48] in describing a hydrostatic configuration,i.e., a time-
independent hydrodynamic configuration in a gauge/gravitational background. We will then
proceed to evaluate the anomalous currents derived in previous appendix in this background.
This is followed by a computation of consistent partition function by integrating the consistent
Gibbs current over a spatial slice. For convenience we will phrase our entire discussion in the
language of forms (as in the previous appendix) and refer the reader to the appendix5.9.6 for
our form conventions.

Let us consider the special case where we consider a stationary (time-independent) space-
time with a metric given by

Gspacetime = _’772(dt + CL)2 + Gspace

where in the notation of [47]we can write v = e~?. Following the discussion there, consider a
time-independent fluid configuration with local temperature and chemical potential T', 4 and
placed in a time-independent gauge-field background

A = Apdt + A
We first compute

& = Fudatu” = yFiodx! = vdAg
a=u'Vyu,de” = — Ly = ydy?

dT + T = ~d (v 'T) (5.99)
dp+ap— & =~d (v_l,u - Ao)
If we insist that
dT' 4+ aT' =0 (5.100)

dp+ap—E=0

“9Note that authors of [48] set the CPT-violating coefficient C§=2 = —C4 = 0 in most of their analysis. This
fact has to be accounted for during the comparison.
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then it follows that the quantities
To=7"'T and po=~""p— A
are constant across space. We can invert this to write
T'=~Ty and p=(Ao+ o) =~v40
where we have defined Ay = A + po.Following [47]we will split the gauge field as
A= Aydt + A= Ao(dt + a) + A — podt

where A = A — Ay a. We are now working in a general gauge - often it is useful to work in a
specific gauge : one gauge we will work on is obtained from this generic gauge by performing
a gauge transformation to remove the podt piece. We will call this gauge as the ‘zero pg’
gauge. In this gauge the new gauge field is given in terms of the old gauge field via

Auozo =A + podt

We will quote all our consistent currents in this gauge.
We are now ready to calculate various hydrostatic quantities

E =~vdAy = vdAy

a=—y"ldy=vdy"
B=F—-uN&=d[Ao(dt+a) + A — podt] + (dt + a) N dAy

1

=dA + Ayda
2w=du+uha=—y"'da (5.101)
20T = —Thda
2wp = —Apda
A+ pu= A — podt
B+ 2wy =dA

Now let us compute the various anomalous currents in terms of the hydrostatic fields.
Using (5.101) we get the Gibbs current as

~Cov
- ganom
n

v [Cm(—nml:rg"b“ — Co(—1)1 <;> Th Ay

m=1

1
m (:ﬁ 1) canomAg+1] (da)™ 1 (dA)"™™ A (dt + a)

— 'YCOTOAMO:O A ]'dn_l

(5.102)

In the following we will always write the minus signs in the form C,(—1)™"! so that once
we impose CPT all the minus signs could be dropped.
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We can now calculate the charge/entropy/energy currents

T, =3 [~(n+1=m)Cpa(-1)"°T"

mj(n +1) (:) CanomAOm] (da)™ ' A (dA)™ A (dt + a)

n

jggZom = Z [(m + 1)Cm(_1)m_1T6n

m=1

—Cp(—1)01 (;) Ag"b] (da)™ L (dA)"™ A (dt + a)

— C()AMO:() A FrL

and

=7 ) [mCu(=1)" TP — (n 41— m)Cpor (—1)™ 2T Ag

1
+ <:11 1) CanomA{)”“} (da)™ " (dAY™™ A (dt + a)

We can go to the Landau frame as before

q. gnom

€E+p

ut =yt —

qgnom
iz b
Janom % Janom € + p

qgnom
> JE —

JE S
S,anom e+p

S,anom

— 0

m
Qanom

In the Landau frame we can write the corrections to various quatities as

Si= =y Un(da)™ " A (dA)™™ A (dt + a)

m=1
0TS om = =7 Y (Sm 48 Un) (da)™ " A (dA)"™™ A (dt + a)
m=1
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where

2

U = _61]) [MCon(~ )™ T — (0 41— m)Cpr (—1)™ 2T Ag
n+1
+ < >CanomAgl+1:|
m+1
(5.108)
n
I+ U = (14 1= 1) Copea (1)1 = 0+ 1) () Cono 45
n
Sm+ s Unp =7 [—(m + 1)Con (=)™ T3 + Co(—1)071 <m> A’On}
which matches with expressions from the partition function.
The corresponding consistent currents can be obtained via the relations
g_g;;);)m — g_g;);@’rzistent —un CanomA A fn—l
j(?rLO:m _ jaC;Looﬁistent +n Canom-/[l A ]:nfl
7Cov _ 7Consistent (5109)
S,anom — Y S,anom
—_Cov __ =Consistent
qanom - qanom
In particular we have
o %gﬁ:ﬂiistent
_i - _1\ym—1lpm+1 _1\0—-1 n AT
=T Cn(—1) 15 Co(—1) ToAp
0 m
m=1
n _ _
- (m N 1>can0mAgL+1] (da)™ 1 (dA)"™™ A (dt + a) (5.110)
1
- [1Canom Ao + CoTo] A A (dA 4 Agda)™ ™
0
-1
— (”T ) [Canom Ao + CoTo] A A dAg A (dt + a) A (dA + Agda)™ >
0
5.9.5 Variational formulae in forms
The energy current is defined via the relation
da* = -T,, utdz”
A " o (5.111)
= —Too(dt + a) — vg:;Tda’
Hence its Hodge dual is (See 5.9.6 for the definition of Hodge dual)
g = 7Tood¥4—1 +YTg(dt + a) A (dX4-2); (5.112)
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We take the following relations® from Eqn(2.16) of [47]

1)
ToodVy—1 = — (Igln Z
YL00AVd—1 57(011)

| 5 5 (5.113)
Tédvd_l =dz' A TOJ (dZd_Q)j = |:5al — AOM:| (TO In Z)
where the independent variables are {7, a, g%/, Ag, A, Tp, j10}. Converting into forms
_ 5 0 0 5
q= |7 — +7(dt—|—a) N — —'on(dt—i—a) N — (Toan)
0y oa 0A
5 5 5 (5.114)
— (422 - _ — | (ToIn Z
[’y 5 +y(dt + a) A 5a u(dt+a)A5A] (Toln 2)
Similarly for the charge current
9 1)
=y JodVg-1 = SA- (ToIn Z)
’ o 5 (5.115)
JZWd_l =dx' AN J? (dzd_g)j = 57141 (TO In Z)
which implies
J= —’}/2J0dvd_1 — Ji(dt + a) VAN (dzd_g)i
) ) (5.116)
Putting TyIn Z = —y~'G we can write
- oG 1| 0 0| 5
=——=— — — (dt —
J on y [5140 ( +a)/\6A]g
G 16 5 574 (5.117)

G=G+TJs+uJ
5.9.6 Convention for Forms

The inner product between two 1-forms J = Jo(dt + a) + g;;J'dz? and J' = Ji(dt + a) +
gij(J')idx? is given in terms of the KK-invariant components as

(LT = =2 ToJy + giz T (J') (5.118)
In general, the exterior derivative of a p-form

Ap = = Ay g datt NN datr

1
p!
50we remind the reader that y=e 7 and d¥4-1 = A4tz /= det gd
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is given by
1
dA) i1 = —O0A,  da Adzf AL A date
p+ p' Q1. Pp

1 .
m [amAuz...upH + Cychc} dzHt A . A dxtrtt

(5.119)

The Levi-Civita tensor e#1#d is defined as the completely antisymmetric tensor with

1 1
£012...(d—1)

CV=det gi yL/det ggq

We will also often define the spatial Levi-Civita tensor €1%2-+%-1 guch that

1
12..(d-1)

a Vvdet ga—1
which is related to its spacetime counterpart via

61112...111,1 — 771601112...”,1

Let us define the spatial volume (d — 1)-form as
dvd_l = 7_1€i1...id71d$i1 ® “e e ® d:,Uid71
1 A A
167;1.,,1'd71dx“ A ...\ dxhd1

-
(d—1)! (5.120)
=d¥ 1z 471 /det g41

=d% 'z /= det g4

where €, ;, , is the spatial Levi-Civita symbol. The form dV,;_; transforms like a vector

with a lower time-index and hence is KK-invariant.
Define the spatial area (d — 2)-form as

(dEd_g)j = fy_lejilmidf?dazil R ...R dzii-2

1 4 |

(5.121)

This transforms like a vector with a lower time-index and a lower spatial index but is anti-
symmetric in these two indices and is hence KK-invariant. The area (d — 2)-form satisfies

da’ A (d2q-2); = d¥g_1 6
The Hodge-dual of a 1-form J = Jo(dt + a) + g;;Jda’ is defined as

J = -7 Jod¥q_1 — J'(dt + a) A (dX4_2), (5.122)
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This is defined such that
JNT = (J', Iy(dt+a) NdVg_1 = (J, Jydt N dvg—q (5.123)

In particular

dJ = (V,J") dt A dVg_y (5.124)

One often useful formula is this
J=AN(dA)"!
is equivalent to (5.125)
= [=A (aA)”—l]“
Let us take another example which will recur throughout this section - say we are given
that the Hodge-dual of a 1-form J = Jo(dt + a) + g;jJ'dz? is
—J = AN (da)™ HdA)"™™ 4+ Ag(dt + a) A (da)™ H(dA) ™

where a = a;dz’ and A = A;dx? are two arbitrary 1-forms with only spatial components.
Then we can invert the Hodge-dual using the following statement

J=—ANA (da)™ HdA)"™™ — Ag(dt + a) A (da)™H(dA)"™
is equivalent to

Jo=~71 [eA(da)m_l(dA)”_m]

JH =~y Ag [e(da)™ " (d )]

(5.126)
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6 Constraints on superfluids from equilibrium partition function

6.1 Introduction

In this section we discuss the application of the equilibrium partition function method to
case of superfluids. The equations of charged hydrodynamics are modified when the charge
symmetry of the system is spontaneously broken by the condensation of a charged operator
in thermal equilibrium. The effective description of such systems has new hydrodynamical
degrees of freedom whose origin lies in the Goldstone mode of the charge condensate. The
resultant hydrodynamical equations are referred to as the equations of superfluid hydrody-
namics, and are the subject of the current section.

More particularly in this section we study ‘s’ wave superfluid hydrodynamics, i.e. the
hydrodynamics of a system whose charge condensate is a complex scalar operator. We study
the constraints on the equations of first order ‘s’ wave superfluid hydrodynamics imposed by
the requirement that these equations admit equilibrium under appropriate situations, and that
the charge currents in equilibrium agree with those from an appropriate partition function.
We do not assume that the superfluids we study necessarily preserve either parity or time
reversal invariance.

As we explain in section 6.2 below, the general analysis presented in this section closely
follows that of [47] (for the case of ordinary, i.e. not ‘super’ fluids) with one important
difference. The Euclidean partition function for a superfluid in an arbitrary background ! is
determined by an effective field theory that includes a massless mode: the Goldstone boson
of the theory. This effective field theory is local, and may usefully be studied in the derivative
expansion. However the partition function that follows after integrating out the Goldstone
boson is neither local nor simple. As we explain below, the study of the local effective action of
the Goldstone boson (rather than the partition function itself) allows us to usefully constrain
the constitutive relations of superfluid hydrodynamics. In this section we present a careful
derivation of the relations between otherwise independent transport functions that follow
from such a study.

Constraints on the constitutive relations of first order superfluid hydrodynamics have
previously been obtained using the local form of the second law in [2, 4, 7, 55] for the case of
time reversal invariant superfluids. In this section we generalize the derivation of [4] to include
the study of superfluids that do not preserve time reversal invariance. We then compare the
results obtained from the two different methods; i.e. the constraints that follow from the
requirement of existence of equilibrium and those that follow from the local second law. As
in the case of ordinary (i.e. non super) fluids we find perfect agreement between the equality
type constraints obtained from these two apparently distinct methods. Our results supply
further evidence for the conjecture that the equality type constraints from these two methods
agree in a wide range of hydrodynamical contexts and to all orders in the derivative expansion.

51See [31, 49] for a discussion of this partition function at the perfect fluid level.
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A proof of this conjecture would go some way towards proving the local form of the second
law, and would permit the demystification of this law in a hydrodynamical context.

While the work reported in this section is purely hydrodynamical and nowhere uses
AdS/CFT, much of the motivation for this work lies within the fluid gravity map of AdS/CFT.
The status of the second law of thermodynamics for theories of gravity that include higher
derivative corrections to the Einstein Lagrangian remains unclear. In particular it has never
been proved that the Hawking area increase theorem generalizes to a Wald entropy increase
theorem for arbitrary higher derivative corrections to Einstein’s gravity. If the interplay
between the existence of equilibrium in appropriate circumstances and entropy increase can
be proved on general grounds in a hydrodynamical context, then it seems likely that the
lessons learnt can be taken over to the study of entropy increase in higher derivative gravity
(at least for asymptotically AdS space) via the fluid gravity map. This could lead to a proof
of a Wald entropy increase theorem under appropriate conditions on the higher derivative
corrections of the gravitational system.

6.2 Equilibrium effective action for the Goldstone mode
6.2.1 The question addressed

In this subsubsection we study an s wave superfluid propagating on the stationary background
metric
ds® = Gy datde” = —eD (dt + a;(F)da’)? + g;j (£)da'da? (6.1)

and background gauge field
A = Ao(%)dx® + Ay (F)da’ (6.2)

Below we will often work in terms of the modified gauge fields

A,L' == Al - Aoai

(6.3)
Ag = Ao + po

All background fields above are assumed to vary slowly; we work in an expansion in derivatives
of these fields. We address the following question: what is the most general allowed form of

the partition function
H—ppQ

Z =Tre T (6.4)

as a function of the background fields o, a;, g;j, Ao and A; in a systematic derivative expan-
sion?
6.2.2 The partition function for charged (non super) fluids

The analogous question was studied for the case of an ordinary (non super) charged fluid in
[47]. It was demonstrated that to first order in the derivative expansion the most general
allowed form of the partition function for an ordinary charged fluid on the background (6.1),
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(6.2) is given by

W=7 =W+ Wi, + Wanor
WO = [ VG5 P (T e o)
Winy = Co /AdA + G /ada + CQ/Ada (6.5)
2 9 9
Wanom = % ( éoAdA + ‘?Ada)

where P(T, u) is the thermodynamical pressure of the system as a function of its temperature
and chemical potential and Cy, C; Cy and C' are all constants. The constant C' specifies the
covariant U(1)? anomaly via the equation

9, J" — —% C(FAP) (6.6)

The constants Cy, C7 and Cy do not (yet) have similar interpretations. It was demonstrated
that Cy = C1 = 0 in any system that respects CPT invariance.

Notice that the result (6.5) for the partition function of an ordinary (non super) fluid
is a local function of the background sources g;;, a;, 0, Ag and A;. Locality is a direct
consequence of the fact that the path integral that computes the partition function (6.4)
has a unique hydrodynamical saddle point (as opposed to a moduli space of saddle points).
As a consequence the partition function is generically °? computed by a path integral over
an action with no massless fields. It follows that the result is local on length scales large
compared to the inverse mass gap in the action (this mass gap is sometimes referred to as a

static screening length of the 4 d thermal system)®?.

6.2.3 Euclidean action for the Goldstone mode for superfluids

Unlike an ordinary charged fluid, the equilibrium configuration of a superfluid in the back-
ground (6.1) is not unique. As superfluids break the global U(1) symmetry, every background
admits at least a one parameter set of equilibrium configurations that differ by a constant
shift in the phase of the expectation value of the condensed scalar. It follows that the path
integral that computes (6.4) has a zero mode (the phase of the scalar condensate). Conse-
quently, the partition function (6.4), is not a local function of the background source fields.
Instead this partition function is generated by a local three dimensional field theory of the
dynamical phase field ¢.

The dynamics of the Goldstone boson in general, governed by a 3d massless quantum
field theory. In this subsubsection, however, we focus on field theories in an appropriate large

52Non hydrodynamical massless modes occur when the system is tuned to a second order phase transition.
We assume in what follows that our system has not been tuned to such a phase transition. We leave the study
of this interesting special case [56] to future work.

53We thank K. Jensen for discussions on this topic
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N limit (such as theories with matrix degrees of freedom in the t’ Hooft limit). In such a
limit the effective action for the Goldstone boson is multiplied by a suitable positive power
of N (the factor is N? in the t'Hooft limit mentioned above). As a consequence Goldstone
dynamics is effectively classical in the large N limit. Quantum corrections to this classical
answer, which are suppressed by appropriate powers of N (this power is ﬁ in the t’Hooft
limit), may have very interesting structure, see e.g. [20-23] for related work. We leave their
study to future work. 54

In principle, the partition function (6.4) for the superfluid may be obtained from the
corresponding local effective action by integrating out the Goldstone boson (i.e. solving its
equation of motion and plugging the solution back into the action). > In practice the imple-
mentation of this procedure requires the solution of a nonlinear partial differential equation.
Moreover, even if one could solve this equation the resultant partition function would be
highly nonlocal. A direct analysis of the partition function itself seems neither easy nor par-
ticularly useful. In order to obtain constraints on the equations of superfluid hydrodynamics
below we will work directly with the local effective action for the Goldstone mode rather than
the final result for the partition function.

The requirements of gauge invariance significantly constrain the form of Goldstone effec-
tive action. Let ¢ denote the phase of the scalar condensate. Under a gauge transformation
A; = A; + 0;a, ¢ transforms as ¢ + «. It follows that the effective action can only depend
on the combination

& = —0i0+ A

Note that ¢, like A, is a field of zero order in the derivative expansion 56

The local field theory for the Goldstone boson must also enjoy invariance under Kaluza
Klein gauge transformations (a; — a; — 0;7y, see subsection 2.2 of [47] for details). For this
reason we work with the Kaluza Klein invariant fields

G =& —a;Ao=—0;p+ A (6.7)
We also define
§o = Ao
and define
X =& = £ = e — g4 (6.8)

54We thank K. Jensen for discussions on this topic.

551f the Euclidean 3 dimensional manifold we work on is compact and we demand single valuedness of the
field ¢ then it is plausible that the solution to the ¢ equation of motion is (at least generically) unique, see
below.

56This means that the phase field ¢ is of —1 order in derivatives; this observation does not invalidate the
derivative expansion as gauge invariant physical quantities are functions only of £* and not independently of

®.
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6.2.4 The Goldstone action for perfect superfluid hydrodynamics

As we have explained above, the euclidean partition function for our system is generated by
an effective action S for the Goldstone field ¢. This Goldstone action may be expanded in a

power series in derivatives.

S=5+5+5>... (6.9)

At lowest (zero) order in the derivative expansion symmetries constrain the Goldstone boson

effective action to take the form®”

1.
So = /d?’w\/ETP(T, i, X)-
T =Toe™” (6.10)
ﬂ = A()e_J
a* = (1,0,0,0)e™°

where P is an arbitrary function whose thermodynamical significance we will soon discover,
and x was defined in (6.8). The fields T, ji and @* are the values of the hydrodynamical
temperature, chemical potential and velocity fields in equilibrium at zeroth order in the
derivative expansion (see [47]).

In the classical (or large N) limit adopted throughout this section, the partition function
Z of our system is obtained by evaluating the Goldstone action on shell. Let the solution to
the equation of motion be denoted by

Then the partition function is given by
InZ = S(¢ () (6.11)

At lowest order in the derivative expansion, the action (6.10) depends only on first deriva-
tives of the massless field ¢. Varying this action w.r.t. ¢

e OP ..
8Sy = / d%\/gfoa@%ajw

= —/d%laj(@fgj)w (6.12)

To
yields
0;(V=Gf¢h) = V(") = v, (;:C) = 0. (6.13)
where .
f=2g

5"The action (6.10) was already presented in [49]. The presentation of this subsection differs from [49] only
in the emphasis that ¢ be regarded as a dynamical field in (6.10), rather than a background like T'. For related
discussions on effective action for superfluid, see for example [317 |.
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Note this equation of motion is of second order in derivatives of the field ¢. °® Plugging the
solution to (6.13) back into the (6.12) in principle yields an explicit though complicated and
nonlocal expression for the partition function of the system as a function of source fields.
The stress tensor and charge current that follow from the action (6.10) may be computed
in a straightforward manner using the formulas listed in eqs.(2.16) of [47]; they are given by

L T3S0 o [, 0P 0P OX)
fo= s, T [ o oy aag| T 1 %S
: Toe= 7 6Sy oP 8)( ;
Jz — _ — _ 7
VI 0A;  dx 0A; /e
g Toe”0S o[, OP 0Toe™® 0OPOu 0Py
00— V9 oo N 0Tpe=® Oo ou 0o Ox do (6.14)
= =¥ [P =T —qu — f&e ] = e+ f&F
i To 550 550 - oP oP - oP 8)( - i
o= N [5% °5AJ = o0 Mga T Mgy ga; — A0t
o =2Ty 1650 vl 1 OP dy g o
ij ik j — _94ik gl | _ Yo YA p,id i¢]
T 60\@9 9 54 29"y 59k P + a 09" Pg7 + f&'¢

The gauge and diffeomorphism invariance of the action (6.10) ensure the stress tensor and
charge current described above are automatically conserved onshell (i.e. upon imposing the
equation of motion (6.13)).
The complicated looking expressions for the conserved currents (6.14) may actually be
summarized in a remarkably simple form as
T = (e + P)utu” + Pgh” + fere”

JH = qut — fe, (6.15)
where @ was defined in (6.10) and all terms on the RHS of (6.15) are evaluated on the zero
order equilibrium solutions T'(z) = T and u(x) = fi, defined in (6.10) and the functions e, s
and ¢ are defined in terms of the pressure p by the equations

e+ P =sT+qu
1
dP = sdT + qdp + ifdx (6.16)
(6.15) and (6.33) are precisely the Landau-Tisza constitutive relations of superfluid hydrody-

namics.

6.3 The Goldstone Action at first order in derivatives

One derivative corrections to the Goldstone action (6.10) may be divided into parity even
and parity odd terms. We consider these in turn.

58The formal similarity of (6.13) to the equation V2¢ = 0 (where the Laplacian is taken in an appropriately
rescaled metric) suggests that (6.13) has a unique solution on a compact manifold (up to constant shift in ¢)
provided that ¢ is required to be single valued and smooth on this manifold. However we do not have a proof
of this statement.
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6.3.1 Parity even one derivative corrections

The most general parity preserving one derivative correction to (6.10) is given by
S =Sy + S{r"

A , 6.17
vaen —_ /dSy\/g [?(C@)T + ?(C&)l) - f3vz <1fc‘gz):| ( )

where T was defined in (6.10),

Ay
Il

=
5[&

and
fi=f(T,0,¢*) (i=1...3)
are arbitrary functions while f was defined in the previous subsection

. oP
f(TayaC2) = _287@

Two remarks are in order

e 1. In (6.17) the unspecified function f3 multiplies the zero order equation of motion of
the phase field ¢. As a consequence, under the field redefinition

¢ = ¢+ 0p(T,0,()

. (6.18)
= fu = fu - au (5¢)

we find
Sl = 58] — [ P2y, (;,g) 56 (6.19)

In other words we are free to use the variable & instead of ¢; however the first derivative
correction with this choice of variable, Sf”en, differs from S{"“" by

Sgven — geven /d3m\/§vj (;:C]) d¢ (6.20)
In other words the field redefinition (6.18) induces the shifts
fi=h=0, fo=f2=0, fs—f3=25¢ (6.21)

(where fi, fo and f3 are the functions that appear in the expansion of S’f“”, see (6.17)
) For this reason, the dependence of all physical quantities - like the fluid constitutive
relations - on f3 is rather trivial, and easy to deduce on general grounds, as we will see
below.
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e 2. While the fields o, pu and x are even under the action of time reversal, the fields &;
and (; are odd under this operation. It follows that each of the three terms in (6.18)
is odd under the action of time reversal. In other words the simultaneous requirement
of parity and time reversal invariance simply sets W1 = 0. It follows that time reversal
invariant superfluids have no non dissipative transport coefficients at first order.

The corrections from (6.10) to the charge current and stress tensor (6.14) in equilibrium
are given by

T620 |:5va671:| B TGQU <6W16U€TL) __i (é‘Wleven)
9 | 640 Jeceea \/g 540 ) g\ v
| (B) o+ o (2) o+ o (£) ran- Lo (2]

6Ji_ff<5seven) _T(éwleven)
V9 =ces VI 04

8Jo = —

>

— eq\1 8fl eq 9 7 8f2 eq 9 af e 9 :|
2(C ) |:8((eq)2(4 . )T (C ) (C ) (CEq)2 (C : )f3
+ g" (flajT + f20;0 + fajf3)
(6.22)
T€20' |:5va€":| T620 (5W1€ven> T2620' <5W16U6TL)
0Th = — =— = ~
N{ o C=cea N o N 6T
_ 72 20 0 (1> e 2~ 0 (2) e N
=T"e o 7 (¢1.0)T + 77 \ 7 (¢.0)p
O (L (cea F (peq <f>
+ o (£) o - Lo (4
(6.23)
) T (5560671 T 5weven )
5T6 = % ( 5a; |C cea = 7 < S ) |A2-:C<mstant =—ApdJ"
(6.24)
. T §Seven T . SWeven
OTH — — il jm[ :| - = il ]m< )
\/gg 9 5qii emgea \/Z]g 9 Sgi
= — [(CY 07 + (C0P 8] + g [1(C1O)T + fo(C9.000 + F(C.0) fo]
eq\i(eq\Jj afl e T af? e ~ 8f e
+2(¢7)" (¢ [a(<6q>2(c 1.0)T + 8((6‘1)2@ 1.0)0 + a(m)?(c q.a)fg] (6.25)

In equations (6.22) and (6.23) all the scalar functions f1, fa, f3 and f have been treated as
functions 7', and ((°9)? respectively. In obtaining (6.22) we have used the zeroth order
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equation of motion for ¢.
f .
vi (L) =0
to simplify the expressions presented above .

6.3.2 Parity violating terms

The most general parity odd contributions to the action are given by’
Sodd _ Slodd 4 Sanom
y y C
Sfdd = /\/§d3x <g16”k<‘iaj‘Ak + ngge”kgajak> + ?1 /ada
C A A2
Sanom = ( ?OAdA + 60Ada>

60 where

(1 is a constant and

(6.26)

(We emphasize that we have slightly changed notation compared to the previous subsec-

tion. The independent variables for all functions in this subsection are T, v and 1. The

corresponding variables in the previous subsection were 7', & and (2.)

Note that (6.26) is automatically even under time reversal. The corrections induced by

(6.26) to the stress tensor and consistent charge current ([17], see section 2.3 equation 2.16

590ur convention is %fXdY = fdgacq/ggeijk’Xi@ij,
50The action for parity odd (non super) fluids (6.5) also contains the terms

W:%/AdAJr%/Ada.

But using the fact that {; = A; + 9;¢ and

/\/geij’“aiqsajAk =0,

we can absorb Cj in g; and C3 in gs.
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of [47]) in equilibrium are given by

T’LJ = _7(Ceq) (Ceq) (91,1/1eq51 +T0g2,weqs2)
Too = —Tpe” ((—TgLT + 29eq 91 1peq ) S1 + To(~Tgo,s + 2¢eq92,¢)52>
C C
Jo = —€° (91,51 + Toga,,So) — €€k [ 3 A VAL, + 3A0Aivjak]
i (¢ |2 (¢e9)! Vi S i L i
Ji=T (291 T2, T%eq) +T092(52TA2% - T%eq) +TVigy 7 — fovzgl,u — V5919,

+ C (8191004 + T05292,0.,)

+6*P(m) s = v+ (G48) m (s = v + S A, )

3 77[)611 TQweq
i _ [ (Tog2 — 2A0g1) eqvi iy L0Aoge eq\i _ 17 . .
Ty = T<%(SI(C ) = Vs) — T2¢eq (52(¢1)" = Vi) + To(T'V] (gz,f - Vglj)
Lo N i . 240
- sz (920 = 2910) = Vi (9200 — V91009)) — —22C (S101 g + ToSzgz,weq)>
1 , 1 , C 1 1 ;
- fCAZ T ()1 = V) + (201 = —Af)e ™7 (5 (C*)'S2 — Vi)l
T%/’eq T2¢eq 6 2¢eq 2"/’661
(6.27)
where
C;Qc;qgij
Yeq = iz (6.28)
Sy = €9 ¢10,¢09, S = €77¢10;ay,
Vi = €100, Vi = MR Ag, Vi = €M F (CT)
Vi = eI (¢, Vi = €75 O0beq
Ve = e Fj, Vi = €75 fy.
(6.29)

The symbols for VGi and V7i have been introduced for notational convenience only; these
vectors are determined in terms of the other quantities above by

Vi = T2¢eq((<6q) - Vi)
7 2 eq\t 7
V= g (€5 V) (6.30)

As we have emphasized, the formulas above determine the consistent current. The covariant
current is obtained from the consistent current by an additional shift (see section 2.4 of [47] for
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areview). We find that the one derivative contribution to the covariant current in equilibrium
is given by

Jo = —¢€ (91,551 + Tog2,552)

T2%eg  T2beq T2%eg  T?eq

9 A
+ %(Ceq)’(slgweq + T0S292,p.,)

) R eq\t Vz eq\t Vz o 1 ) )
J'=T (291(51 () =) + Tog2(S2 Vi )+ TVig, 4 — fonlgl,f/ - Vﬁgl,weq>

—0 1 eq\t 7 C 1 eq\t 7
# O (€S -V ¢ (548) (s v
(6.31)

6.4 Constraints on parity even corrections to constitutive relations at first order

In this subsection we will determine parity even first order corrections to the superfluid
constitutive relations both from the method of entropy increase as well as from the partition
function of the previous section, and demonstrate their equality.

Let us first consider the almost trivial case of parity even superfluids that also preserve
time reversal invariance. As we have explained in the previous section, in this case W7 = 0. It
follows immediately from this result that all non dissipative superfluid transport coefficients
must vanish. Exactly this conclusion was reached in [4] from the requirement of point wise
positivity of the divergence of the entropy current in an arbitrary fluid flow.

The study of time reversal non invariant superfluids is more involved. In this case the
constraints from the local second law have not previously been analyzed. In this section we
first present this analysis. We then study the constraints obtained from the analysis of the
partition function. As mentioned above, we will find that these two methods yield identical
constraints.

6.4.1 Constraints from the local second law

In this subsubsection (but nowhere else in this section) we consider the non equilibrium
flow of a superfluid on a (generically) non stationary spacetime. We continue to denote the
background metric of our spacetime by G,,. The background gauge field is denoted by A,,.
The variables of superfluid hydrodynamics are the temperature field T'(x*), velocity field
u#(2*) and the gradient of the phase field §, = —0d,¢ + A,. We often work in terms of the
fluid dynamical field

(Cf)u = fu + puy,

Note that, in equilibrium and at lowest order in the derivative expansion ((¢)o = 0 and

((f)i =& — Aoa; = G-
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We specify some additional notation that we will use extensively below.

- K I
P — i g, pr— prv S0 (gf Voyn B pug,,
(€r) T
q u.0s

R= PRy K=V, (f¢") = s(u.0) <g> , ©= (V)= - (6.32)

a, = (u.V)uy,
H =T, Hy=v, Hy=(()*

In words, P*” projects onto the three dimensional subspace orthogonal to the normal fluid,
while P projects onto the two dimensional subspace orthogonal to both the normal and su-
perfluid velocities. a, and © are the normal fluid acceleration and expansion respectively. V#
is the ‘Einstein combination’ of the electric field and derivative of the chemical potential that
vanishes in equilibrium. H;, Hy and H3 are new names for the three scalar hydrodynamical
fields; note that Hs is v = % rather than the chemical potential itself. Finally K is the term
that is set to zero by the first order equation of motion of the Goldstone phase, while R is a
combination of zero order thermodynamical fields that often appears in the formulas below.

In order to analyze the constraints that follow from the local form of the second law, we
follow the procedure described in section 3 of [4]. Briefly, we first write down the most general
onshell independent first order entropy current allowed by symmetry. We then compute the
divergence of this current (this is mere algebra) and then use the equations of hydrodynamics,
together with the corrected constitutive relations

T = (e+p)ulu” + pG" + fErE” + T
Jt = qut — fe' + 5", (6.33)

(here 7 and j* refer to as yet unspecified one and higher derivative corrections to the
constitutive relations) to re express this divergence as the sum of a linear form in onshell
independent two derivative data and a quadratic form in onshell independent one derivative
data. Point wise positivity of the divergence requires the linear form to vanish (this imposes
several constraints on the entropy current). Once these conditions are imposed, the divergence
of the entropy current is purely a quadratic form in one derivative data. We require this
quadratic form to be positive definite. This requirement further constrains the entropy current
as well as the first order contributions to 7##¥ and j* in a manner we now schematically
describe.

As we will see below, the quadratic form so obtained has the property that it vanishes
when projected onto a subset of one derivative terms. In other words, all independent one
derivative terms can be divided into y type ‘entropically dissipative’ terms and x type en-
tropically nondissipative terms, and the quadratic form takes the schematic form

Aijy'y’ + Bimy'a™
Note that the structure of this quadratic form is preserved under x redefinitions

T — Ty + Cmiyi
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but not under analogous redefinitions of y*. In other words there exists a well defined subspace
of dissipative data but no definite subspace of nondissipative data.

Positivity of the quadratic form described above requires that A;; is a positive matrix,
and By, = 0 for all i« and m. The last set of constraints yield relations between otherwise
apparently independent transport coefficients. ¢!

In order to actually implement this process we need first to choose a basis for onshell
independent data. As explained in [4] (see e.g. Table 3), at first order in the derivative
expansion there exist 7 (4 dissipative and 3 non dissipative) onshell independent scalars
, 7 (2 dissipative and 5 nondissipative) onshell independent vectors and 2 (1 dissipative
and one nondissipative) independent tensors constructed out of thermodynamical fields and
background fields. For the purposes of this section, we will find it useful to choose our onshell
independent basis as follows.

Basis of independent scalars:

V.(Cr)
(Cp)?”

The four of these scalars are dissipative (they vanish in equilibrium) while the remaining

(u'aHa)> ((Cf)-aHa)7 a:{1’273}

three are nondissipative (they are non vanishing in equilibrium, and do not cause entropy
production).
Basis of independent vectors:

p#avw pu&((f)ﬁaga Po’j((f)ufyav ]Sa,u(Cf)VFVa, puaaaHav a = {17273}

The first two vectors are dissipative (they vanish in equilibrium) and the remaining five vectors
are nondissipative.
Basis of independent tensors

5 _ po 53 VQUQ + Vgu — 15>‘¢(V>\u¢)na/3
224 wtv 2 )

o) _ paps | Valsr)s + Va(Cra = 15“(%(@)@%6]
i nov 2

The first is dissipative (it vanishes in equilibrium) while the second is nondissipative.
In this subsubsection we wish to constrain the equations of superfluid hydrodynamics
presented in a ‘fluid frame’ (see [5] for an explanation of what this means). Throughout this

61 Assuming that the matrix A is positive definite, entropy is always produced whenever any of the y* are
nonzero. It follows that all y* must always vanish in equilibrium. This observation motivates the following
definition, utilized in [47]. Expressions that vanish in (arbitrary stationary) equilibrium are referred to as
dissipative data. It follows from that entropically dissipative data is necessarily dissipative. However the
converse is not necessarily true; it is possible for data to vanish in arbitrary stationary equilibrium but yet be
entropically nondissipative. We will see an example of this phenomenon later in this section.
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section we will further restrict our attention to fluid frames with pg;ss = 0 (again see [5] for
definitions). This choice still permits the freedom of field redefinitions of the temperature
and normal velocity fields (as well as field redefinitions of the superfluid phase, as we will
exploit later in this section). Even though we work specifically frames in which pg;5s = 0 our
final results may easily be lifted to an arbitrary pgss 7 0 frame using the frame invariant
formalism of [4].

The most general form of the entropy current, consistent with the absence of linear two
derivative terms in its divergence was determined in [4] (see equation 3.19 ) and takes the

form
B Tu u
J - Jcan + Jnew
uv
Uy, T
N
S = SU vj T

Tow =" a0 Ha) Q" + Vo (c QM) (6.34)

where Q" = f(u"((r)" —u”(¢p)")

The divergence of Jt, was worked out in [4, 5] (see for example, equation 3.9 [4], and
recall we work with pig;ss = 0).

Uy . .
Vit = =1V, (52) 4+ Vi + (") (.00) (6.35)
The RHS of (6.35) is given schematically by
(one derivative correction to constitutive relation) x (entropicallydissiaptive data),

62 We will now rewrite the RHS of (6.35) as a quadratic form in the basis of independent
dissipative one derivative data chosen above. In order to achieve this we need to rewrite all
the y type terms in (6.35) in terms of the independent basis of dissipative scalars, vectors and
tensors listed above. To achieve this we use the equations of motion

2
T o) = rrviieyy - S2K

COCror™  © i VAG)  pE (w0)(G)?

(Cr)? 3 (¢p)? e+P 2(¢y)?

52Note that the one derivative expressions that appear here are always entropically dissipative, as contri-

(6.36)

butions to changes in the proportional to these one derivative expressions yield quadratic terms in entropy
production.
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Vot = - () )+ G ) + 6)g)
up(Cr)pm” V.(¢5) K L
s [RT<(Cf)2> €+P}_2T(7ﬂ pW)@
Ly g 3w ((C)ulCpvo™™ ©
_ = (wﬂ Py, — ~mu P* > < ngf)Q 3)
9 ((Cf)awaTZ/:;NB(Cf)ﬂ> + (j* 4+ Ruqm™) PMVVV . %%uﬁ“

V(fc)f)> [( (Cr)) + R(wu(Cp)om™) + (1 — pR) (WWP“" - ;WWP’WH

L) (e on)

€
(Cf)aﬂ—owpl//ia—'uﬁ(Cf),B . apy P v 1. v
-2 ( () + (j* + Ruqm®) P, V" — TO'MVW'U’

(o) (sricr
(
(

3 ~
: P, o8 -
— Z Gu(u.0)H, + &y <V(<f)> — 2% <“U(<f)ﬁ> + 0P, VY — %&Wﬁ‘“’

a=1 () T((r)?
(6.37)
where
9 — Uy Hy v 3 v
o= [(25) oo O] [- (= b (- S )]
10 g PV LHY .
(s 81; ) (W 3 ) - (uuuT277> da1 + (Ju)dg2
a3
3 wp (6.38)
{ )+ R (C)om™) + (1 = pB) <7TMVPW - 27T’WPALV>]
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The last line of (6.37) is the final result of this manipulation. It expresses the divergence of
the entropy current as a linear sum over the four dissipative onshell scalars and two dissipative
onshell vectors and one dissipative tensor listed earlier in this subsection. These expressions
appear multiplied by frame invariant linear combinations of 7#* and j*.

The frame invariant quantities 6, and U, will be used extensively below. For later use
we will find it useful to regard these quantities as linear functions of 7#¥ and j*, i.e.

So = Ga(m, "), Vo = Va(r", j") (6.39)
The divergence of the ‘new’ part of the entropy current, Jhe, (see (6.34)) is given by
A\ [

new

_ Z f (S - ot ) ((¢1)-OHa) (w-0Hs) + > (9, Ha) V, Q"

(6.40)

= Z !/ (g; oo ) ((¢p)-0Ha)(u.0Hp) + Y _(8uHa) P (VaQ™)

- ; (wDH,) (0,9,0") + (¢ 0m) (LA )]

where Q" was defined in (6.34).

Using equations of motion we can express (u, V,Q""), (%) and P}(V,Q%) in

terms of the onshell independent basis scalars of this subsection ( spanned by (u.0H,), (((f)-
and vectors (spanned by PHV,, P#a(gf)gaﬁ, PHe9,H,).

9,0 = stu) (L) + (1= L) e (K220) vy

<<<f)(“§)fv;‘9“”) —stwd) (1) 4 sr |0 ) (Y’éfi’?) 2y “T?(Cif)ﬂ (6.41)

PH(Va@) = =PI fea [T(1 = pR)V” + 2((f)a0™]

From equations (6.37), (6.38), (6.40) and (6.41) we conclude that, no matter what form
the fluid constitutive relations take, the divergence of the entropy current cannot contain
any expressions of the form (((f).0H,)? or (P*0,H,0,H;). In other words the scalars
(¢;).0H, and the vectors (P"*d,H,) are nondissipative. It follows that the positivity of
(VuJ§) requires that the divergence contain no term linear in (((y).0H,) or (P* 9, H,) (see
e.g. [4] for repeated use of similar arguments.) To ensure this 7/ and j* have to satisfy the
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following conditions.

° Oy, deq a
&= = S(nam{1 (5 - o)~ T+ L0
b=1 @ b !

vafoa () (25) a (9]}

+ dissipative terms
feb
¢

S ) f o
= - ;((Cf)'aHb){ [8Ha(f0b) - T&Hb(TC“)} + )2

N _1 Os n sV 0 (g)
@ s O0H, e+P) 0H, \s

: V(&) _
+;Mab(u.aﬂb) + Mgy ( (Cf)2> (a={1,2,3})

3 .
G4 =(5.(¢r)) + R(up(Cr)um) + (1 — pR) <7T’“’PW - 27r”“”PM,,> + dissipative terms

3
=~ S ((¢p)-0H) T(1 ~ pR)ey + > May(u.0Hy) + Muy <V<<f2>>
b b=1 (¢r)

V1, = (j” + Ruam®) ]5#,, =T —-puR)f Z cb(Pﬁ&,Hb) + dissipative terms
b

~ ~ i *
=T(1—uR)f Zb: co(Py0vHy) + N1y (P“”VV) o (W)

Vo, :(Cf)awa’jpw = —T(Cf)Qf Z cb(ﬁﬁ&,Hb) + dissipative terms
b

~ 5 ; °
= ST 2 PO ) + o (P = (l%)

Ty — phopvB [wag — %75 (159¢7r9¢)} = dissipative term = —n "

(6.42)

(6.43)

where M is a 4 X 4 matrix of dissipative transport coefficients in the scalar sector and N is

a 2 X 2 matrix of dissipative transport coefficients in the vector sector.

Equations (6.42),(6.43) are the main result of this subsection. It expresses the equality
type constraints that follow from the local second law. Once (6.42),(6.43) are satisfied the
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final expressions for the divergence of the entropy current takes the following form.

0 f 2\ 9 (¢
= = ;};Ca us E£Hb> +s (1 - f;jf;) 8(1%7) + f (T5b72 + V(5b71) (u@Ha)(uc‘)Hb)

L

= F(V.(¢p)) Z ca(u.0Hq)

: : V() Vi)
+ a;I Map(u.0H,)(u.0Hyp) + ; (Myq + Mas) (u.0H,) ( L ) + Myy < ) >

+ PW [Nn (VEVY) 4+ (N12 + N21)(V“(Cf)aaa”) + N22((§f)a(<f)ﬁa_auo_ﬂy):|

+ T&W&W

(6.44)

The positivity of this quadratic form imposes additional inequality type constraints on trans-
port coefficients that we will not further explore here.

6.4.2 Constraints from the partition function

In this subsubsection we now reproduce the conditions (6.42),(6.43) using considerations
independent of those of the previous subsection. The procedure we adopt is very similar to
that described in [47], and we describe it only briefly, highlighting only those elements of the
analysis that are unique to the superfluid.

The starting point of our analysis is the expressions (6.22) and (6.23) which represent the
first order for the corrections to the stress tensor and charge current that follow by varying
the local action for the Goldstone mode w.r.t. the metric and background gauge field. Once
we substitute in the solution for the field £#(x), according to its equations of motion, (6.22)
and (6.23) yield first order corrections 07}, and dJ* to the values of the stress tensor and
charge current in thermal equilibrium.

From the hydrodynamical point of view, 07}, and dJ# are the first order contributions
in (6.33) once we substitute

T(x) =T(@)+ Ta(x), plz) = p@) + (), o(z)=d"+uf () (6.45)

into those expressions. Here T} (z), pu1(x) and uf(x) a are the first derivative corrections to
the equilibrium configurations of temperature, chemical potential and velocity.

Upon substituting (6.45) into (6.33) we get first derivative contributions of two sorts.
First we have the corrections to constitutive relations evaluated on the zero order equilibrium
configurations TI* (T, fi, i*, (C°9)*) and j*(T', i, 4", (C¢%)*) . Second we have contributions
from terms proportional to 71, p1 and uf when (6.45) is plugged into the perfect fluid consti-
tutive relations. Contributions of the second sort, however, precisely cancel out in the frame
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invariant linear combinations &, (e =1...4) and U, (a =1...2). In other words

Ga(0Tp,0Jy) = Salmpwy ju)

, (6.46)
ma((ST,uzla 5J,u) = ina('ﬂ,uzn],u)

(7 and j* on the RHS of (6.46) are evaluated on the zero order equilibrium configurations).
In the general formulation of hydrodynamics, however, it is precisely the frame invariants
that appear on the RHS of (6.46) that are expanded in the most general symmetry allowed
constitutive relations (see e.g. [4] )

Go(T" ") = agmS™ (a=1...4), =1...7
(7.5 = aumS™ (a=1...4), (m=1...7) 617
J

DI 1) = YaVE (a=1...2), (m=1...5)

where S™ and V;}, are the independent one derivative scalars and vectors and the coefficients
Qqm and g, are arbitrary functions of the scalars T, p and £HE,.

Qam and g, are the constitutive coefficients we wish to constrain, and this is achieved
as follows. In the LHS of (6.46) we substitute the expressions (6.22) and (6.23)) for 7" and
dJ#. This determines the LHS of (6.46) completely in terms of the functions fi, fo and f3
that appear in the partition function. In the RHS of (6.46) we substitute (6.47), and evaluate
these expressions in equilibrium

T=T, p=p, (="

Under the last substitution those of S™ and V"™ that are dissipative vanish. The non dis-
sipative one derivative scalars and vectors evaluate to geometric expressions. Equating the
coefficients of these expressions we determine «y, and 4, for those values of m that corre-
spond to non dissipative terms. In other words this procedure completely determines all non
dissipative transport coefficients. %3

In the rest of this subsection we implement the procedure described above to explicitly
determine all nondissipative transport coefficients in terms of the three free functions fi, fo
and f3 that enter the local action for the Goldstone field. We demonstrate that our results
agree exactly with (6.42),(6.43), obtained from the local form of the second law, once we
identify the three unknown functions ¢;, co and c3 in the entropy current of the previous
subsection in terms of the functions in the partition function according to

N n 10f3 2 +13f3 1 0fs

“ T Tor T T T Ta © T Tac (6.48)

C1

53There is an important subtlety here. All of the operations described above may only be performed in
equilibrium, i.e. once we have solved for ((°?)" as a function of background fields and substituted this back into
the partition function. We implement our programme without explicitly solving, simply by treating (¢°?)*(x)
as formally independent of the other background fields, except for those local combinations of ({¢?)* that
appear in terms of its equation of motion and derivatives there off. The reason for this that the expressions for
&* as a function of background fields is highly nonlocal. The only situation in which cancellations are possible
between local expressions in ((“?)* and local expressions in the background fields is when we get derivatives
combining with (¢°?)* in the form of the ¢ equations of motion.
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We will also demonstrate that the identification (6.48) may be argued for directly by compar-

ing the thermodynamical entropy in equilibrium with the integral of the equilibrium entropy
current over a spatial slice.

It will be useful in the computation below to note that P and P** are given by

G ¢

~ i G

Pij = gij,  Pij = 9ij — 7«6(1)2

We turn now to the explicit computation, starting with the vectors

B10(0T s, 0J,,) =

Voo (6T}, 8.0,1) =
01:(6 T, 0.7,,) (Mﬂ + RﬂodT”)
= P;; (6J7 — Re™" Agd.J7)
= (1— aR)Py6.J? (6.49)
= Pg*(1 - )(flakT+f28k +f8kf3)
Vo (0T, 0.J,) = P

Py, 6TV = —(* P67
- Bijg’* <f13 P 22

8]41 + / 6kf3>
The last line of (6.49) exactly matches (6.42),(6.43)) upon using the identification of the
parameters (6.48).

We turn next to the scalars; let us start with G4

3 -
S4(6T,87,) = (5C) + R(u,Gor™) + (1 - puRR) (W“”Puu - 2”“”3“/)

— (1= 1) [F1(CL0T) + fo(C0.09) + F(C.015)|

(6.50)
=T(1-pR)Y for(¢L.0H,)
b

In the last step we have used (6.48), and have obtained manifest agreement with (6.42),(6.43)
Next we shall calculate the remaining three scalars &,,

a = {1,2,3}. The algebraic
manipulations here are a little more involved than in previous cases, and we provide some
details.

Su(0Ty,0J,) = KE jp> 81‘1 (z)] {— <_“”§:”TM> +u <7TWPM,, - 2WWPW)]

1 0s T Py Uy, Y ,
+<88Ha>< 2T >_< T2 >5“’1+(]‘“>5“’2

1 3 -
+ <2T<2> <7T'LWPMV - 27T'uVP;U/> 5a,3, (a = {17 2, 3})

(6.51)
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The first line in (6.51) can be evaluated as

(7)o () [ (257 o (o)

- (=5) (q)] [~0(CL0f) — 2£2(¢0.09) - (0T

e+P) 0H,
()] acrom)
b

-~ |(5)an

In the last step we have used (6.48).
The second line of (6.51) may be evaluated as follows

1 s ﬂ“”ﬁw
sO0H, 2T

- (1 Os ) [fl (CL.0T + =2 f2 <<eq 9 + f(Ceq 9)f3

s 0H, T
10
= (safj )Zbe(CeqﬁHb)
R

In the last step we have used (6.48).
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Finally we evaluate the last three terms of (6.51) together.

b | W By — 37 By,
a (%) da,1 + (ju)daz2 + (W : 2T¢? . ) 00,3
€q 5 f2> ) 0 <f> eq f eq <f1>:|
|: (T) C ( (C ) 8T T (C af) C a f 5a,1

by me  (hcons £ (i Lo
0
|

- # [ (2) €0+ g <f2><<“’ 0+ g (L) €10 o

}];1( fZ(Ceq 81/) f(Ceq.afS):| 5 3

—(¢1.0T) +

_ e fs\ 0 (f\., [ 9 (h f o ([
- Seom |- (5a) o (1) + 7om (7)1 o (7) 4

b
o (hH . 0
o (F) €0~ 51

[f oty + 2 cnan) + §<<eq.af3>} bus
_ e 0 f 0 2~ be
= - ;(C 1.0Hy) [GHa (fep) — ?THZ,(TC 0) F—— e a3 ]

(6.54)

In the last step we have used (6.48).

Combining (6.52), (6.53) and (6.54) it is straightforward to verify that the expressions
for 6,, a={1,2,3,4} as derived from partition function in this subsection, match exactly
with (6.42),(6.43). Note that both methods leave dissipative contributions to constitutive
relations completely unconstrained.

6.4.3 Entropy from the partition function

In this subsubsection we will explain how the nondissipative part of the entropy current of the
superfluid may be read off in a rather direct way from the partition function. Our analysis
is largely structural, and applies equally well to normal (non super) fluids. However our
presentation applies only at first order in the derivative expansion.

For any system the entropy St in equilibrium may be evaluated from the logarithm of
partition function W = In Z via the thermodynamical relation

ow
T 6.55
Spr=W +Ty— aTy ( )
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We will now rewrite this expression in terms of the goldstone action that generates the

partition function. Let this action take the form

S = / VaLddx

and also suppose
L9 = L(¢u = ¢)

Now we can think of the partition function as

W= S Ty G7) = [ VB L9 To, Gl

Using the simple rescaling of the time coordinate employed in subsection 2.3.1 of [47] one

may show that

oT .
T =T
09T,
o 5
D = —
gTO (6.56)
a;
T =0
i
G
T: =
29T, 0
It follows that
ow
0Ty
ocea \ (97(y) <6£eq> <a,><y>> ( 5L > (az-(y))
d* + | = +
/ ua ( T(y )) ( dTo > v (y) 9Ty da;(y) To
[T 0 TE + AgdJ?
3 o [£00 , YJ0 B 0
- [ w7+ e ()]
/d?’y\fe [ (Tgoe 7+ aiTg) + TLO (Joe_% + aiJi)} (6.57)
T G 1% Ji Goi .
ocal () 5 ()
/ Y 2\ Go Goo To \ Goo Goo
/d3 AJO
T() TO
Ty T
so that .
aW 3 \/7 eq ﬁuTlJ« ~ 70
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This expression may be expanded to first order in derivatives employing

P
Eeq = ? +£iq

T = (18)yers + 07§ (6.59)
JO =D +6J°
where, from (6.14)
(T(g))perf = —€— f€_2UA(2) - onainq (6 60)
Ther = €4 — f(e7 Ao + a'({Y),
§T¢ is defined in (6.23) and §.J is defined in (6.22).
Using the Gibbs Duham relation
o P+e—qu
N T
we find that
Sp = / d3y\/g5
- / d3y7vTG TLY — —6.J°
0

(all proportional to f cancel out at zero order in the derivative expansion).
Now let us recall that
0T = (g + (T pers
where (7 ) refers to 7} evaluated on the zero order equilibrium solution and (7}'),,,.; refers to
the one derivative correction in 7}’ from the first order correction to the equilibrium solution.
Similarly
6. = (1) + (T, .

It follows that

Lo (T,
St = /d?’ym sa° — 7T perf 5(J0)perf]
N I (6.62)
+/dy7_b Tﬁlq— TN—V(SJ
so that
St = /dSy\/—GsuO
(6.63)

A

. u”57r
Tﬁq T 64°
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where su’ in (6.63) refers to the entropy evaluated on the first order corrected solution. In
going from (6.62) to (6.63) we have used the fact that the frame invariance (see [4] for a
definition and extensive discussion of frame invariance) of the canonical entropy current

. u, ™Y
Jb,, = sut — vt — VT
implies that
1
. o T pery
sut' — 3 + v (J") per s + — 7 = 0.
It follows from (6.63) that
1 .
Sy = / cyv/ -G {JSM + TTﬁiq} (6.64)
0
Comparing with
Jh = Jk, 4+ Tl (6.65)

we conclude that )
T
[ =G, = [ Ew=ap e (6.66)

In other words the integral of JO,  matches with the first order correction to the Goldstone

new

action. (6.66) is the principal formal result of this subsection. It expresses a very simple

relationship between the correction to the canonical entropy current of our system and the
first order correction to the partition function.

To what extent does (6.66) determine Jhew? The most general first order correction to

the entropy current takes the form
Tt = Syl + SeCH 4 VY (6.67)

where S, and S¢ are first order scalars while VI is a first order vector. Notice that, to first
order, X* = S:C* + VI is orthogonal to 4. It follows immediately from this observation that

X0 = —g;X°

Plugging this relation into (6.66) we conclude that the contribution from X*# to the total
entropy is not Kaluza Klein gauge invariant and so must vanish (see [47] for a discussion on
related issues). It follows that S; and V' vanish in equilibrium. Upto dissipative corrections,
therefore, it follows that

JH

new

= S, ut (6.68)

Now comparing with (6.66) it follows that

[#uvas, - e =0
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so that
Sy = L%+ total derivatives (6.69)

Let us now turn to the case at hand. £ was listed in (6.17). It is easily verified that
there exist no total derivative scalars at one derivative order. Consequently we conclude that

_h

Su (C NT + == f2 (C.@)ﬁ — f3V; <*_I{Cl> -+ dissipative

It is not difficult to Verify that this expression, together with (6.68), agree exactly with (6.34)
in equilibrium once we employ the identification of parameters (6.48).

In summary, the positive divergence entropy current - which we determined earlier in
this section - is also uniquely determined by comparison with the partition function for parity
even superfluids at first order in the derivative expansion.

6.4.4 Consistency with field redefinitions

We will now verify that the dependence of the constitutive relations and entropy current of the
superfluid on f3 is consistent with the transformation (6.21) of f3 under the field redefinition
(6.18).
Recall that the stress tensor and currents of our system take the form
" = (e + P)u'u” + PG" + feH¢¥ + 7t
JH = qut — fe + 5" (6.70)

u, T
J'LL = Jéﬁzn + ‘]new = sul' — VT - Vj# + ‘]#ew‘

Substituting the field redefinition (6.18) into this equation and setting

(recall h is a function only of space) we recover a new form of the stress tensor and currents

T = (& 4 Pyutu’ + PGW 4 FEEY 4 7

= qut — fer + g (6.71)
~
JE = Jéfm + J,’jew = sut — u”% —vjt 4+ ijew
with
P P
GV [6(68; )u“u” + %GMV + gé-p,gu (—2£V(4)h)

— f(ergrovi h+§"GWV h)

~ : Jq of o
=g [ 20 - f“] (—26.V D) + fGrav O (6.72)
- 117 5
‘]#ew = J#ew - (_2§v(4)h> <§;) ult — uy(ﬂ-jvﬂ-) - V(ju - ]N)
1 L QoW
. BeV v En 0 b
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All Greek indices in (6.72) and (6.71) run from 1...4 and are raised and lowered with the full
four dimensional metric G*”. x derivatives in (6.72) are taken at fixed 7" and v. In deriving
last equality in (6.72) we have used the first law of thermodynamics.

de =Tds + vdq — gdx

We will now independently verify that our final answers for Jhe, and the constitutive
relations have this symmetry. To start with recall that, from (6.21) and (6.48),

_1on
- TOH,

Cq — Cq

(6.73)

It follows immediately from (6.73) that the expression for Jheyw

Thew = Z ca(0yHa) QM

(see (6.34)) transforms as predicted by the last of (6.72).

We now turn to the verification that our results for transport coefficients, (6.42),(6.43),
transform as predicted by (6.72). The algebra involved in a direct verification is formidable,
so we will content ourselves with an indirect check. We first recall that we have already
verified (see (6.46)) that

Ga(dT,uu; 6J,u) = 6(1(77;”/) ]u)

, (6.74)
Vo010, 0Ju) = Vo, ju)

in fact this equation formed the basis of one of our two methods of determining constitutive
relations. It follows that if we can show that 67, and ¢.J,, obey (6.72), then the same will be
true of (6.42),(6.43). (Recall 67}, was the first order shift in the stress tensor arising from
first order corrections to the Goldstone action; 6.J# was similarly defined.) We will now check
that this is indeed the case. In order to do this we first simplify the (6.72) specializing to the
case of stationary equilibrium

(jo — Jo) = —2¢” [(;Z%(q +uf)| (C“L.0)h
o 0 f eq
—e [ay <T>] (¢°9.9)h (6.75)
o . 9 .
G =) =~V - 2(&%%)85;@6‘1)2
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and

Ae+ p*f)
8(?

g2 | 9 (pOP _
= 2e [8{? (TGT P)
= 2¢27 (—22; + J;) (¢*1.0)h

= —T2%% [a <f>] (¢*%.9)h (6.76)

(w0 — o) = —2€*°

] (¢?1.0)h

(¢9.0)h

or \T

(w6 — 7o) = —Ao(s" — 7°)

(7' — #9) = 2(¢%9.0h) [_Jztgij + (55;) (CEN (¢ | + f [(Ceq)ivjh_i_ (Ceq)jvih]

Where each of the scalar thermodynamic functions are evaluated on the zeroth order equilib-
rium solution

CZ":]“’7 I/:ﬁ7 (Cf)z:gfq
In obtaining (6.75) and (6.76)

f

2
dP:C+P+Mf !

T >dT+T(q+Vf)d1/—

dc?
In those equations all spatial indices are raised and lowered by use of the spatial metric g;;
(all the free indices will run from 1 to 3).

We now turn to the explicit expressions for 67, and 6.J, listed in (6.22). Substituting

fs=fs+h

(see (6.21)) in those expressions we obtain immediate agreement with (6.75) and (6.76). This
completes our verification.

6.5 Constraints on parity violating constitutive relations at first order

In this subsection we use the partition function to derive constraints on parity violating
contributions to constitutive relations by comparison with the local goldstone action (6.26).
As in the previous subsection, we find perfect agreement with the constraints obtained from
the local form of the second law. It turns out in this case that the second law analysis has
already been performed, in full detail, in [4]. We begin this section by reviewing the results
of [4], before turning to a re derivation of those results by comparison with (6.26).
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6.5.1 Review of constraints from the second law

Basis of Frame Invariants As we have seen above, the constitutive relations are an ex-
pansion of frame invariant combinations of 7# and j* in terms of independent one derivative
scalars, vectors and tensors. Before even specifying the constitutive relations, we must first
specify a basis of frame invariant expressions that we will expand in this manner. In the previ-
ous section we choose to work with the frame invariant scalars &, and frame invariant vectors
U,. A different choice for frame invariants was made in [4]; in order to ease comparison with

the results of that paper, we will adapt that choice in this section. In this subsubsection we
describe the basis of frame invariants used in [4].

Let
s1 =" P, (Fs2 = (pome(y (6.77)
S3 = U-T-U S4:U‘7T'Cf
S5 =u-j s6 = Cf-J
S7 = —Hdiss
vllj = UHT‘-N@PVQ Vl2/ = (Cf)ltﬂ-uapya
vg =Pj°
- 1.~ -
t=P,"P, mas— ipﬂypaﬂyraﬁ,
Throughout this section s7 = —p1giss = 0 ( fgiss was defined in [5]). However we will retain s;

in all our formulas, in order to permit easy adaptation of our final results to frames in which
Hdiss 7& 0.

PHY — G Py pHv — purr (Cf()gf()if)y . (6.78)

Following [4] we define the row vectors

S = (Sl So2 S3 S4 S5 Sg S7)

(6.79)
vV = (Vl V2 V3> .
We also define the matrices
Rs Bs _ _As By A B A
2qT; 37~ 2Ty 3T~ 2Ty; 37~ 2Ty
__Rs Bs + A3 By + Ay By + Ay
asT 37 T Ty 37 T Ty 37 T Ty
0 77 0 0 -R 0
A=|-py; 7 7 7 L A= 0 4| (680)
0 0 -1 0 -1 0
— 72y, 0 0 0
0 (p+P)Ks (p+P) K> (p+P) K1
T T T
h
where ¢ oy )
R = V'u = — PM ayV
p+ P T
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and the A;’s B;’s, C;’s and K;’s defined as follows.

2 6
M B Q;f o Ve[ff ] _ q
vep Y= K=" BEp
9 9 9
Bi = —g5-llog(s)),  Ba=— llog(s)], B = — g llog(s)]
__s 974 __s 0y __s 974
Ky = e+ P oYy {s} o K= e+ Pov {s} K= e+ PoT [3}
_ 1 B 0 (ay|, ¥r Os
Ar= =5 —viy(l = k) [8 f (s)] " 35 9y (6.81)
0 (q Yy Os
Az = =iy (1 = pR) [ay (J] 3w
Jd /q vy (0s  3s
Ay = —vis(1 = puR) {8T (s)} 35 (8T - T>
_ B peg M
Vi = T FuVe [T}
OF = %e“”’\"u,,VA((f)a, wh = %EHVAUUVV)\'UJO’; Bt = %GW’\UUVF,\U-

In terms of (6.77)-(6.80), the frame invariant scalar, vector and tensor combinations of
v gH and pgss are given by the row vectors

sA®, v, A"t (6.82)

By scalars, vectors and tensors we mean expressions which transform as spin 0, +1 and +2
representations of the SO(2) symmetry that is left invariant by the two vectors u* and & at
each point in spacetime.

Constitutive Relations We have 4 frame invariant scalars, 2 frame invariant vectors and
one frame invariant tensor. The most general symmetry allowed parity odd first derivative
constitutive relations take the form

T
2 7
viIAY = —Zl}f{ P — <Z]}/% )
3 g iR ki
i=1 i=3 (6.83)
2 4
sidf; =— [ D) 8By
i=1 j=1

with 7, 7, V, V, S and S a basis of onshell independent S O(2) invariant tensors, vectors and
scalars given in table

6.5.2 Constraints on constitutive relations from the local second law

Notice that both pseudo tensors that appear in (6.83) are nondissipative. Further, the five
pseudo vectors V; ¢ = 3...7, are nondissipative. It may therefore come as no surprise to
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vector definition dual parity odd vector
(¢, 05)
evaluated in equilibrium
EH
v E) 0
Vi | pes (g;:aaﬂ) 0
Vi PN, T TV}
Vi | PV, (F) Vs
- 2 o
Vi | prey, <§f2) €k
M Vy M = PR Doy 1 A
Vo |T—a s Vi
PAVE, (7 ; ;
vy _Tf — ey GV + V3)

Table 19. Independent fluid vector data. Here V) for m=1,2,3,4,5 are independent vectors in

equilibrium defined in (6.28)

pseudo scalars | definition | In equilibrium
S w.& —%605’2
S B S1+&Ss
pseudo tensors | definition | In equilibrium
TH 0, 0
T *O’fw won’t need

Table 20. Independent fluid scalar and tensor data. Here S,, for m=1,2 are independent vectors
in equilibrium defined in (6.28). ¢* and o are the shear tensors for normal and superfluid velocity

respectively and %o, = e“ﬂaﬂupfo‘aﬂ” +(pev)

the reader that [4] was able to use the principle of local entropy increase to determine R;p,
(t=3...7Tand m =1...2), together with f;; (i =1...2 and j = 1...4) in terms of two free
functions that appeared in the parameterization of the entropy current. These two functions

were called og and o7 in [4].

The results of [4] were presented in terms of og and o9 and

four additional auxiliary fields which were determined in terms of og and o1 by the relations
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64

o3 = _Tﬁ(alo — VO'S)
04 = 08 + Cv+ 2}~‘L — 88(010 — VO'S)

5 v (6.84)
o5 = _%(010 — vog)

2 . -
o9 = 2v(o10 — vog) — §0V3 —2h? + S9

In terms of all these fields, it was demonstrated in [4] that point wise positivity of the
the divergence of the entropy current determines

=0, Knp2=0 (6.85)
and
/%31 = —RTO‘g — Tang
fy = —RT?04 — T, 0%
fis1 = —RT%05 — TOy0s (6.86)
’%61 = —2RT30'9 + 2T20'10
K71 = —RT2010 +2Tos + CTv + 2hT
E % — 2;;% —203 — 2T K309 —2T04 — 2T%Kooq —2T05 — 2K1T?0y
1wy _C%Ifh _ %isf + RwL;O 6T0'8 — K3T0'10 8,/0'8 — KQTO’lO 81/1f08 — K1T0'10

(6.87)

6.5.3 Constraints on constitutive relations from the Goldstone action

As in the previous subsubsection, we use the Goldstone action to constrain transport coeffi-
cients as follows. All constraints follow from the analogue of (6.46)

Y (6T, 00,) = t* (T, )
VAL (6T, 8,) = VEAY (T i) (6.88)
SiA5 (6T, 6.J,) = 8 A (T, )

The LHS in this equation may be determined in terms of the functions g; and gs in the
Goldstone action using (6.28). The RHS of the same equation is simplified using (6.83) under

64All terms in (6.84) proportional to the constant h were omitted in [4]. The reason for this is that [4]
assumed that the entropy current was gauge invariant. As explained in [47] this does not seem to be physically
necessary as long as the divergence of the entropy current is gauge invariant. This allows the addition of the
new term proportional to h in (6.97), which allows for a slight modification of the results of [4], captured by
the shifts described below. As we will see later, the requirement of CPT invariance forces h to vanish.
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the substitution 7' — T, p— f1, C¢ — ¢%4. Under the last substitution, the parity odd first
derivative vectors and scalars evaluate to geometric expressions. Substituting these relations

into the RHS of (6.88) and equation coefficients of independent vectors and tensors yields an

expression for all non dissipative transport coeflicients in terms of the functions ¢g; and gs.
Using Eq.(6.27) one obtains

vi

S1

S2

S3

S4

S5

S6

S7

= u, P,

/\3 - A2 . A2 .
= T (00591 + 0pg2)Vi + 7 (00591 = Do92)Va = (g (92 = 2019)Vs

o |

+ TOV(C 0)2 V4 +T2(Vaweq91 g 92) Vs
= ()P =0
= F)Va‘]a

. 1 . .
=T (T390 Vi — ?Oaagl Vo — (Ceq) 5 (291 V3 + 92TV + (C°9)? Dy, 01 V3))
= 71'“’”]5,“, =0
_ — 2 (cen2(g Sy + Tpd S.
= ng‘ﬁ'ff—*?(c ) ( Weqd1 O1 + 100y, g2 2)
= u-Tu= (TaTg1 — 290y, 91)S1 + T To(T07.92 — 2% eq0.,92) 52
= wm-(r = (T%(g2 — 291) — 2(¢°)? 08y, 91)S1 — S2ToD(g2T? + 2(C°1) %Dy, 92)

+ 2C1e 78,13 — Cs A2 =7 (AgSs + 351)

= u-j = —(0pg151 + T05u9252)
_ (Ceq)Q (¢
- gf ] - 2T(gl + 8wqu1)5 + TTO (92 +

= —pdiss = 0

eq)2

1
8wqu2)52 + 50140670 (ApS2 +251)

(6.89)
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Now using Eq.(6.83) one can find out the transport coefficients &;; in terms of partition
function coefficients g1, go as follows

=0, Rin=0 for i€ (3to7)
T ((—ﬁqT + e+ P)0sg1 + qTaT92>

el = P+e
T ((—ﬁqT +e+ P)oygr + qT@l;gQ>
L= P+e
T ((—ﬁqT + e+ P)0y., 91 + qT&/,qug>
K51 = — Pre
277 . o
KoL = —p (—92(—21/(]T +e+ P)+2q10(—0qT + e + P))
N Co*T(3p — 20qT + 3¢)  AC1qT®
3(P+e) P+e
K71 = e—i—TP <g2qT +201(—0qT + € + P)) + CVT(Q;;; _T_qg + 2€)
(6.90)
Similarly, the transport coefficients (;; in terms of partition function coefficients g1, g2 as
follows
g, = ARTO(—gs + 910)  2(—g2 + 2917) N Cﬁ2T2(—3P + 20¢T — 3€) Lo 4qT3
Yeq Yeq 3(C9)*(P + ¢) (Ce)*(P +¢)
291 R(—ga+2q10) 0T(2P — iqT + 2¢)
—Bi2=—=—+ -C
Ttheq Yeq 2(¢1)2(P +¢)

—Bo1 = =20 (=00591 + 0pg2) — 4VT? K3(—go + g10) — §CK3T2 3 — 40, K3T?
—Pa2 = 0591 — K3T(—go + 2g1v) — %CKgTﬁQ

—B31 = =21 (=g + Opg2) — 40T Ko(—go + g107) — %C}Qﬁ 3 — 4C, Ko T?
—B32 = Opg1 — KoT'(—go + 2910) — %CKQTQQ

—Bu = =20 (~8y,, g1 + Oy, 92) — AK10T*(—go + g110) — §0K1T2A3 — 40 K, T2,

R 1 .
—Ba2 = Oy, 91 — K1T(—g2 + 2910) — §CK1T1/2~
(6.91)

In equations (6.89), (6.90) and (6.91) the functions g1, g2 and all the other thermodynamics
functions (like €, P, g etc) as arbitrary functions of T, U and teq.
If we make the substitution

- 1 -
gl =08+h, go=—010+ 2005+ §Cﬁ2 + 2h. (6.92)
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and introduce the auxiliary fields o3, 04, 05 and o9 which are written in terms of og and
010 in (6.84) then our results for nondissipative transport coefficients agree precisely®® with
(6.85), (6.86), (6.87).

6.5.4 Entropy

As in the parity even case, we may determine the parity odd contribution to the entropy
current by a simple direct comparison with the the partition function. The relevant equation
here is

Wlodd + Wanom = = /d3y V-G [ﬁ((sjgonsistent - 6Jgovariant) + Jg new]

- / YV =G [96% s + I,] (6.93)

The term in (6.93) proportional to 5Jghift has its origin in the fact that (6.58) is correct
when JY is taken to be the consistent U (1) current. On the other hand the canonical entropy
current of hydrodynamics is defined in terms of the covariant U(1) current. As explained in
[47] these two currents differ by the shift

- C vVpo
Fonige = g€ AvFpor (6.94)
The contribution of this shift to the RHS of (6.93) evaluates to

/dgy\/ _Gﬁ(s‘]ghzft
C g
= 6/d3y\/ze_gﬁe”k./4¢}"jk

- % / ay/goe ™ (401 A + AgAidjar — Aia;0 Ao + Agaid; Ay + Adaidjay.)

C g 1 3
= 3/d3y\/§ﬁe’]k Az‘ajAk + §A0Ai8jak + §A0ai8jAk + A%aiﬁjak>

_ C 3 ~ 15k 9. 1 9. 3 eq
= 3/d y~/gre (AzajAk + §A0Azajak + mﬁlg(a.(( )S1 —a.Vs)

A3
T24eq

(a.(¢?) Sy — a.V4)>

(6.95)

65 We also need to make identification sg = 2C1, as will be clear below.
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Taking this contribution to the LHS of eq.(6.93) we find
/ d3y v _ng new

= WP+ Wonom — / RTAVAREL D

1 C. .
= /dgy\/§<9151 + Tog252 + 20 (C1T - gVA%)(G-(C 1) Sy — a.Vy)

€q

T2y CAg(a.(C“) S — a,V3)>
eq

(6.96)

In rest of the subsubsection we will use (6.96) to constrain the new part of the entropy
current. The most general form of the first order entropy current is given by

J#

S new

= P79, (alTup(U) + (T31>§'u + TO'4]>£'“ + TJ5]>5Cu
+ %e“”p”&,Fpa + T?69w* + ToyoB*
+ VPP 4 aaVi" + ¢ [as(w-¢) + au(B-Q)] + he" A, 0\ A,

where h is a constant  (6.97)

Since the first term proportional to o7 is a total derivative, it is not determined. The term
proportional to a1 and a2 is also undetermined as V" and V5" both are zero at equilibrium.
We now evaluate (6.97) in equilibrium. Using Table 1 and Table 2 and

Vit =0, VOl =_q Vel where I € (1to7)

g

W = Sz (@) = (@V2),
1 A
B’ = —W((a-(@q))bﬁ — (a.V3)) — @((w(fq))& — (a.V1))
Ane® 260
3y = €751+ o)+ T (@)1 = (@) + T () = (V)
+ €7 (a.Va)
GOVAUAZ,(‘),\.AU = e_aeijk [AiajAk + 2T019a¢8jAk + TgﬁQaiﬁjak + 0; (ToﬁajAk)] (6.98)
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where V; and S; are listed in Eq.6.28. Now using the fact that ((¢?); = A; + 0;¢
/ VG 4,00 A,
_ / €Ik [ A,0; Ay, + 2To0a;:0; Ay + T25%a;0;a]
= [ VB [0y + 2Tty ¢+ T&ﬁ%iajak]
= /\/§(51 + @61,1)22%3((@-({6(1))51 —a.V3) + ( —=T55*((a.(¢°9))S2 — a.Vy))

Ceq)
(6.99)
we obtain
/d‘g:c\/IJgnew = /dsx\/ﬁ(eafag(a.vl) + (08 — 04)(a.Va) — Te’ o5(a.Vs)
4 o8(Sh + AoS) + 1St — (a.(C))(— %ageﬂsz + aa(S) + AoS))
+ (Celq)z(—i“e”aw + o5 Ag + 2hTp0) ((a.(C*)) St — (a.V3))
1 e* 2 e
+ Gar (g 209 — Te® o100 + 05 A% + BT252) ((0.(C°7)) S5 — (a.V4))>
(6.100)
It is convenient to introduce the following redefinitions
o3 = ~T0:X, 03 — 04 =X +Y, 05 =0y, X + Z. (6.101)
Now using A
Op X = 03X O T + 0p X OV + 0y, X Oxteq, (6.102)

the first line of the Eq.6.100 can be rewritten as

/d31‘\/§ e“Tag(a.Vl) + (08 — 04)(a. Vo) — Te”ag,(a.‘/},))

:/d%[(ﬂ)wk (C°9);00.X + Y (a.Va) — TeUZ(a.Vg,))

d3x\/§( ToX €9 (¢90),0;a5 + ToX €98 a;0;(CY) + Y (a.Va) — Te"Z(a.V5)>

/ d%\/g( ToX S + ToX —— ((a.(¢°))S1 — (a.V3)) + Y (a.Va) — Te”Z(a.%,)).

(6.103)

(Ceq)
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So we obtain

/ B/ -GJ2,., = / dSm\/§< — Ty X So + 05(S1 + AoSs) + hS)

+ (ToX = Te®o10 + o5 Ao + zizzroy)(gjq)2 ((a.(C9)S1 — (a.V3))
20 ~
+ (C;)Q(z:ﬁ%g T a10d0 + 08 A2 + WT20%) ((a.(C9))Sz — (a.V2))
~ (¢ ( ~ %ageosg au(S1+ AoS)) + Y (a.Va) ~ Te? Z(aVs)).
(6.104)

Now using (6.96) we obtain
Y:ZZO, O¢3=C¥4=0
1 -
X =09 — vog — 50# — 2hp,

03 = —T@T(alg —vog), 04 = 0g — Op(010 — Dog) + CU + 2h, o5 = —0y, (010 — VO3)
C ~
o9 = 20(010 — Dog) + 2(Cp — §ﬁ3) — 2hi?

~ 1 _
g1 = o0g + h, 92:—010+21908+50192+2hﬁ.
(6.105)

66 Tt may be verified that (6.105) is consistent with (6.84). In other words the entropy current
determined by comparison with partition function agrees exactly with the non dissipative part

of the entropy current determined from the requirement of positivity of divergence. 67

6.6 CPT Invariance

In this subsection we explore the constraints imposed on the partition function (6.17) and
(6.26) by the requirement of 4 dimensional CPT invariance. In Table 3 we list the action of
CPT on various fields appearing in the partition function.

e Parity even case: Using this table one easily see that, demanding CPT invariance of
the action (6.17), the functions fi, f2, f3 are even under CPT. Instead had we demanded
only time reversal invariance, then the we would conclude that f; = fo = f3 =0.

e Parity odd case: Now demanding CPT invariance of the action (6.26), we conclude
that g1 is odd function of Ay and hence it can not contain any constant. This in
particular implies h = 0, since g1 = os+ h. So the gauge non invariant piece in entropy
current in (6.97) vanishes once we demand CPT invariance. The function gy appearing
in (6.26) is even function in Ag. It is also easy to see that the requirement of CPT
invariance of the partition function forces C; = 0.

56The expression 2C; was referred to as sg in [4].
5"Note however that the entropy positivity method, in addition, determines two dissipative terms in the
entropy current, and so, in that sense, carries more information about the entropy current.

- 157 —



Field | C | P | T | CPT
o + 1+ |+ +
a; + | = | = +

Gij + |+ |+ +
A -+ + -
G - 1-1-1 -

Table 21. Action of CPT

6.7 Discussion

In this section we have studied the equality type constraints between transport coefficients
for relativistic superfluids at first order in the derivative expansion. Our central result is that
the constraints obtained from a local form of the second law of thermodynamics agree exactly
with those obtained from a study of the equilibrium partition function.

As the constraints obtained from both methods are numerous and rather involved in
structure, the perfect agreement found in this section strengthens our earlier conjecture [47]
that the constraints obtained from the partition function agree with those obtained from
the local version of the second law of thermodynamics under all circumstances. It would be
interesting to find either a proof for or a counterexample against this conjecture.

In the special case that the superfluid is nondissipative, [31] has presented a framework
for describing superfluid dynamics from an action formalism. It would be interesting to
understand the connection of the formalism of [31] to that described in this paper.

As we have explained above, a central object in our analysis was a local Euclidean action
for the superconducting Goldstone field. In the neighborhood of a second order phase transi-
tion familiar Landau-Ginzburg action for the order parameter is the natural analogue of the
Goldstone boson action utilized in this paper. It seems likely that the methods of the current
paper generalize to the study of hydrodynamics in the neighborhood of second order phase
transitions (see [56] for a review). It would be interesting to perform this generalization.

Finally, in this section we have discussed only the equality type constraints on nondissi-
pative transport coefficients that follow from the local second law. We have neither discussed
Onsager type equality constraints on dissipative coeflicients nor the inequalities on dissipative
coefficients. It is possible that these constraints follow the imposition of reasonable conditions
(like stability) to time fluctuations about equilibrium. We leave the study of time dependence
for future work.
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7 Conclusion

In the work reported in this thesis we have developed a more field theoretic approach based
on the existence of a partition function for equilibrium systems in hydrodynamic regime
to constrain the non-dissipative transport coefficients. This approach apart from capturing
independent non-dissipative transport coefficients beautifully captures the effect of anomalies
in global symmetries as certain Chern-Simons terms in the equilibrium partition function. In
a wide variety of examples we have shown that the constraints thus obtained match precisely
with those obtained using a local second law of thermodynamics. This lead us to conjecture
that the equality holds at all derivative orders for all fluid systems.

We hope that the work done in this thesis would lead to further studies of anomalous
transport ranging from non abelian internal symmetries to weyl and diffeomorphism anomalies
and provide a platform for better understanding of inequality relations leading to a fuller
understanding of 2nd law of thermodynamics (at least in hydrodynamical context) and Wald
entropy via fluid-gravity map.
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