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Lyman-α forest

• Majority of the baryonic
content of the Universe lies in
the Intergalactic Medium
(IGM).
• Tracer of large scale cosmic

density fields.
• Probes the astrophysical

processes associated with
galaxies and the
circumgalactic medium
(CGM) at small scales.
• Baryonic pressure broadening

retains memory of the
thermal history of Universe.

• Matter distribution in the IGM manifests itself in the form of HI Lyman-α forest absorption in the spectra of
distant quasars.
• Lyman-α forest probes matter in a quasi-linear regime (experiences the gravitational potential but not a

virialized system).
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Ionization state of the IGM: Fluctuating Gunn-Peterson optical depth

• Fobs = Fcont e−τHI

• τHI =
∫
dl nHI σHI ∼ 105 XHI

• Non-trivial mapping from dark matter
overdensity to nHI. Interpretation of
observed data requires simulations to
implement the baryonic physics.
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• Under the assumption of thermal and ionization equilibrium, and ignoring the effects of thermal broadening, the
Gunn-Peterson optical depth is given as:

τHI,GP = 0.172∆2−0.7γ
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• Larger Overdensities typically correspond to larger τHI. Correlations in transmitted flux can be used as a probe
of underlying overdensity field (Non-trivial mapping from density to Flux).
• Alternative approach is to construct a count-based correlation statistics using distinct absorber treatment of

Lyman-α forest.
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Clustering study based on cloud picture

Flux-based statistics:

• ξ(∆r) =< δF(r)δF(r + ∆r) >
where δF = F− < F >

• ζ(∆r12,∆r13, θ) =< δ1Fδ
2
Fδ

3
F >
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Cloud-based statistics:

• ξ =< Data pairs
Random pairs − 1 >

• ζ =< Data triplets
Random triplets − 1 >

• Advantages:
• Allows column density (or

conversely ∆) dependent
clustering study.

• Direct probe of non-gaussianity in
clustering.
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Automated Voigt profile fitting routine: VIPER (Gaikwad+2017)© Soumak Maitra 4



Lyman-α forest: Cosmological Utility

Linear Theory Power spectrum (McDonald+2005) Warm Dark Matter model (Irsic+2017)

Primordial Power spectrum (Viel+2004) Neutrino Mass (Yeche+2017)
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Lyman-α forest: Astrophysical Utility

IGM Thermal Evolution (Gaikwad+2020)

UV Background (Khaire+2019) Pressure broadening scale: Sensitive to thermal history (Rorai+2017)
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Clustering in Lyman-α forest

Redshift space (Irsic+2017) Transverse (Coppolani+2006)

• Peeples+2010a,b demonstrate that redshift space correlations are
dominated by thermal broadening (b =

√
2kT/m) effects while

transverse correlations are dominated by pressure broadening.

• Thermal broadening washes away clustering informations at small
scales.
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Clustering in Lyman-α forest
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Higher order clustering statistics in Lyman-α forest

Higher order clustering statistics largely unexplored in the case of Lyman-α forest.

Three-point statistics of clustering in Lyman-α forest would be useful for:

• Non-gaussianity in matter distribution at small scales and at high redshifts. Also calculate higher order bias.
• Act as an independent tool complementing the two-point statistics in constraining the cosmological

parameters (Fry 1994, Verde+2002) and the physical state of the IGM.
• Remove degeneracies between different cosmological parameters.
• Determine the amplitude, slope and curvature of the slope of the matter power spectrum with better precision

(Mandelbaum+2003).
• Probing primordial non-gaussianity (Hazra & Sarkar 2012)
• Probe the influence of large scale fluctuations on small scale power spectrum using squeezed limit bispectrum

(Zaldarriaga+2001).
• Probing the statistical anisotropy of clustering in the cosmic web, using projected quasar triplet sightlines.
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Higher order clustering statistics in Lyman-α forest

Redshift space correlation.
Partial Redshift space +
transverse correlation. Transverse correlation.
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First detection of non-gaussianity in low-z Lyman-α forest (Maitra+2020b)

• 82 quasar sightlines from HST-COS
• Redshift based clustering study (colinear triplet

configurations probed along quasar sightlines;
r1 = r2 = r‖, r3 = 2r‖).
• Lyman-α forest probed in z < 0.48.

Reduced ζ or Q=ζ/(ξ1 × ξ2 + ξ2 × ξ3 + ξ3 × ξ1)
[Hierarchical Ansatz]

Clustering in SDSS galaxies: McBride+2010
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First detection of non-gaussianity in low-z Lyman-α forest (Maitra+2020b)

• HI column density(NHI)⇐⇒ Baryonic overdensity (∆).
• Strong dependence of ξ and ζ on NHI thresholds.
• Effect on Q very weak.
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First detection of non-gaussianity in low-z Lyman-α forest (Maitra+2020b)

• Weak dependence on line-width parameter b =
√

2kT/m upto a b threshold of 30km/s. Sharp decrease in
correlation amplitude at b > 40km/s (Broad Lyman-α Absorbers or BLAs).
• Frequency of occurrence of atleast 1 BLAS in triplet systems (∼88%) is a factor∼ 3 higher than that found

among the full sample (∼32%).
• BLAs possibly trace the warm-hot intergalactic medium (WHIM) in the temperature range between 105 and 106

K (Richter+2006). Arises from collisionally ionized regions in filaments.
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First detection of non-gaussianity in low-z Lyman-α forest (Maitra+2020b)

Association with metal systems and galaxies:

• Only 40% of the total observed Lyman-α triplets have associated metals with them.
• Majority of the triplets have multiple nearby galaxies.
• 84% of the triplets have at least one nearby galaxy within a velocity separation of 500km/s. The impact

parameters of these galaxies range from 62-3854 pkpc (median of 405 pkpc)
• The median impact parameter seems to decrease for higher NHI thresholds.
• BLAs occuring more frequently with triplets and association with nearby galaxies suggest Lyman-α triplets

originating from filamentary structures.

Trends in simulations:

• Simulations suggest line of sight peculiar velocities tend to enhance the observed ξ and ζ by∼60%, whereas
the Q values are suppressed by∼70%.
• Feedback processes have little effect on the observed clustering.
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Detection of non-gaussianity in high-z Lyman-α forest (In prep.)
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Figure: High-z correlations of NHI > 1013.5cm−2 in KODIAQ data.

Work in progress ...
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)

• ∆, v,T obtained from GADGET-3 hydrodynamical
simulation.
• Shoot triplet sightlines through simulation box.
• Investigate ζ and its dependencies on:

• Scale.
• Angle.
• NHI or conversely ∆.
• Thermal history.

• We consider only isosceles configurations for ζ
(∆r12⊥ = ∆r13⊥ = r).
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)

Effect of thermal history:
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)

Effect of thermal history:
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• Correlations for a fixed NHI threshold depends on ∆
field + local thermal effects.

• Local thermal effects are imprinted on the ∆ to NHI
mapping.

• Using a constant ∆ threshold should statistically
show the effects of pressure broadening.
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)

Effect of thermal history:
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)

Validity of Hierarchical Ansatz:
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)
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Three-point correlation suppressed at scales below 3h−1cMpc [Q2 -ve]. Source?

We used the SDSS catalog to get an estimate of the number of quasar triplets present and achievable significance of
three-point correlation detection with these sample of quasars.

• For θ ≤ 20◦ , ζ can be observed the scales of 4 and 5h−1cMpc with 4.8σ and 4.5σ respectively. For that, we
need to observe 70 quasar triplets (210 spectra) having r = 4h−1cMpc and 86 quasar triplets (i.e 258 spectra)
having r = 5h−1cMpc.
• For θ = 90◦ , the most significant detection can be achieved for 2 and 3h−1cMpc (4.4σ and 4.7σ respectively).

We need to observe 42 quasar triplets having r = 2h−1cMpc and 96 quasar triplets having r = 3h−1cMpc.
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Transverse three-point correlation in Simulations at z ∼ 2 (Maitra+2020a)
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Observational prospects with QSO triplet sightlines (Maitra+2019)
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Future plan

• Extend study to non-standard ΛCDM models.
• We would like identify filamentary structures associated with galaxies (near observed Lyman-α triplets) and try

to explore the association of such structures with observed Lyman-α triplets.
• Investigate partial redshift space + transverse three-point correlation using projected quasar pairs

(Findlay+2018).
• We identified a unique configuration of 7 quasars (with r < 20.5 and z > 2.2) in SDSS catalog that opens the

opportunity to probe correlated IGM structures at z ∼ 2. Use these 7 quasar sightlines to study the directional
dependence of density/radiation field around the foreground QSOs through the analysis of the transverse
proximity effect.
• Theoretical understanding of metal distribution in IGM (project led by Sukanya Mallik, IUCAA).
• Inversion problem: Mapping the observed transmitted flux to underlying overdensity and velocity fields.
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