# Self-interacting neutrinos in the light of cosmological and IceCube observations

**Priyank Parashari** 

THEPH Division, Physical Research Laboratory, Ahmedabad

Work in Collaboration with : Arindam Mazumdar, Subhendra Mohanty

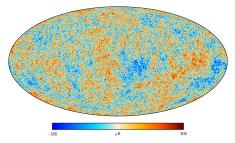
January 29, 2021







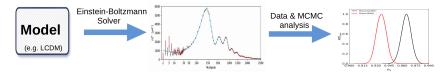



# **3** IceCube and self-interacting neutrinos



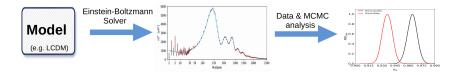


 $\Box$  CMB  $\Rightarrow$  "Cosmic Microwave Background"


Snapshot of photons in our universe leftover after it's decoupling.



## $\Lambda CDM model$


- CDM, baryons, dark energy, radiation
- Six standard parameters  $(\omega_b, \omega_c, A_s, n_s, \tau_{reio}, \theta)$
- **T** Two derived parameters ( $H_0$  and  $\sigma_8$ )

#### □ Angular power spectrum



# **ACDM and Planck CMB**





# **ACDM model**

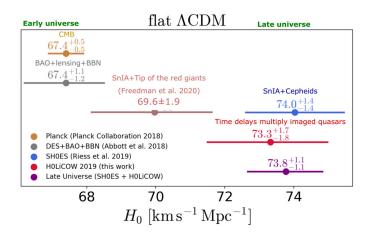
- □ CDM, baryons, dark energy, radiation
- Six standard parameters  $(\omega_b, \omega_c, A_s, n_s, \tau_{reio}, \theta)$
- **T** Two derived parameters ( $H_0$  and  $\sigma_8$ )

Most of the parameters determined at (sub-) percent level.

| Parameter       | ΛCDM                             |
|-----------------|----------------------------------|
| $\omega_b$      | $2.212 \pm 0.022 \times 10^{-2}$ |
| $\omega_c$      | $0.1202 \pm 0.0021$              |
| $A_s$           | $2.091 \pm 0.034 \times 10^{-9}$ |
| ns              | $0.9643 \pm 0.0057$              |
| $	au_{ m reio}$ | $0.0522 \pm 0.0079$              |
| <b>100</b> θ    | $1.04185 \pm 0.00045$            |
| $H_0$           | $67.08 \pm 0.92$                 |
| $\sigma_8$      | $0.8101 \pm 0.0092$              |

#### ACDM is a good fit to the Planck data.

<sup>1</sup>Planck Collaboration arXiv:1807.06209

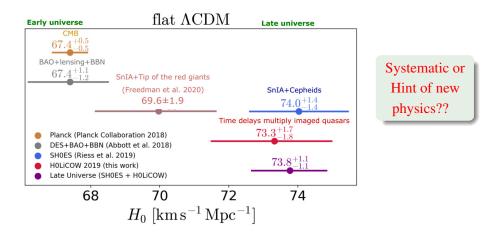



- Overall ACDM is remarkably consistent with CMB, large scale structure and supernova data. However, there are few discrepancies within ACDM framework.
- □ Within ACDM cosmology, the derived value of  $\sigma_8$  from Planck CMB observation is in tension with the value of  $\sigma_8$  obtained from low redshift observations (cluster count, week lensing, etc.) at 2- $\sigma$  level.
- ☐ Another discrepancy within ACDM framework is the mismatch between the *H*<sub>0</sub> value inferred from Planck CMB observation and those obtained from direct local measurements.

# $H_0$ Tension?

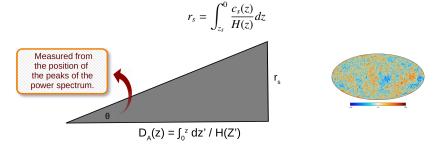


□ The value of the Hubble constant  $(H_0)$  inferred from Planck CMB data is lower than the value obtained by the direct local measurements by around  $4\sigma$ .




<sup>1</sup>H0LiCOW arxiv:1907.04869

# $H_0$ Tension?




□ The value of the Hubble constant  $(H_0)$  inferred from Planck CMB data is lower than the value obtained by the direct local measurements by around  $4\sigma$ .



<sup>1</sup>H0LiCOW arxiv:1907.04869

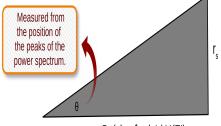
Calculate the sound horizon at recombination : assumes model for sound speed and expansion of the universe before recombination



□ Infer angular diameter distance to last scattering surface  $\Leftrightarrow$  depends on  $H_0$ 

□ Expansion rate after recombination

$$H(z)^{2} = H_{0}^{2} [\Omega_{m} * (1+z)^{3} + \Omega_{r} * (1+z)^{4} + \Omega_{\Lambda}]$$


This is model dependent  $\Rightarrow$  New physics can change  $H_0$  significantly.



□ Peak position in the angular power spectrum is fixed from the observations  $\Rightarrow \theta_s$  is fixed.

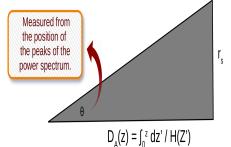
Late Universe solution:
(e.g modified DE equation of state, dynamical dark energy (Planck 2015, 2018), Interacting dark matter dark energy (Di Valentino+2019), decaying DM (Poulin+2018, Pettis+2019), Modified gravity (Raveri+ 2019)etc.)

 Highly constrained by BAO, Supernovae and other observations.








# Early Universe solution:

□ Change the sound horizon

$$r_s = \int_{z_s}^0 \frac{c_s(z)}{H(z)} dz$$

 Change the expansion history H(z) of the Universe at early times.
 (e.g. Early dark energy (Polin+ 2018, Agarwal+2019), dark radiation, etc. )

- Change the Sound speed  $c_s(z)$ (e.g. DM-baryon interaction (Boddy+2018))
- Change the time of decoupling.
   (e.g. changing recombination
   (Hart&chluba 2019, Ivanov+ 2020))
- Problem with many other observations



Change the inference of  $\theta_s$  from CMB. (e.g. Neutrino interaction (Kreisch et.al. 2019), Dark neutrino interaction (Ghosh et.al. 2019))

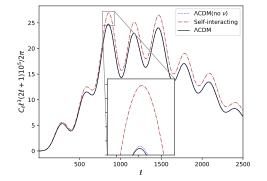


- □ Neutrinos free stream through the photon-baryon plasma at early times.
- □ Free-streaming neutrinos ⇒ Phase shift in the CMB power spectra towards larger scales and slight suppression in the amplitude.



- □ Neutrinos free stream through the photon-baryon plasma at early times.
- □ Free-streaming neutrinos ⇒ Phase shift in the CMB power spectra towards larger scales and slight suppression in the amplitude.
- Neutrino self-interactions can be mediated by scalars and gauge bosons which are motivated from different particle physics models.

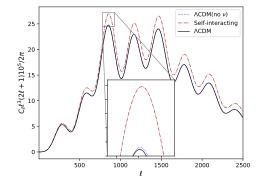
$$\mathcal{L} = g_{\phi} \sum_{\alpha,\beta} g_{\alpha\beta} \phi \bar{\nu}_{\alpha} \nu_{\beta} , \quad \mathcal{L} = g_X \sum_{\alpha,\beta} \bar{\nu}_{\alpha} g_{\alpha\beta} \gamma^{\mu} P_L \nu_{\beta} X_{\mu} ,$$

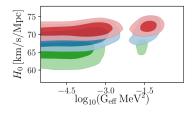

 $\square$  Neutrino self interaction delays the time at which neutrinos begin to free-stream.

∜

Modes entering the horizon while neutrinos are still tightly-coupled will not receive the associated phase shift and amplitude reduction.

# Self interacting neutrinos



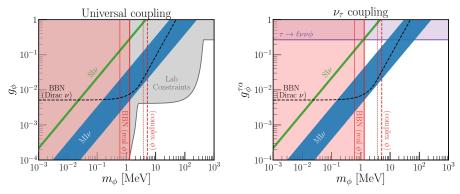




<sup>1</sup>Kreisch et. al. arxiv:1902.00534

# Self interacting neutrinos








- Bimodal posterior (Moderate self-interaction (MI) and strong self-interaction (SI) region)
- Flavour universal self interaction is strongly constrained by BBN and Lab bounds

<sup>1</sup>Kreisch et. al. arxiv:1902.00534

# Self interacting neutrinos





- $\Box$  Flavor-universal  $G_{\text{eff}}$  is excluded by lab and BBN constraints .
- □ Only some part of the cosmological allowed MI region of  $v_{\tau}$  interaction is allowed by lab and BBN constraints.
- $\Box$   $v_e$  and  $v_{\mu}$  self-interactions is also disfavored by the lab and BBN constraints.
- Cosmological bounds assume flavour universal interaction.

<sup>1</sup>Blinov et. al. Phys. Rev. Lett. 123, 191102 (2019)

□ Flavour specific self interaction

$$\mathcal{L} = g_{\phi} \sum_{\alpha,\beta} g_{\alpha\beta} \phi \bar{\nu}_{\alpha} \nu_{\beta} , \quad \mathcal{L} = g_X \sum_{\alpha,\beta} \bar{\nu}_{\alpha} g_{\alpha\beta} \gamma^{\mu} P_L \nu_{\beta} X_{\mu} ,$$

**T** Four cases :  $v_e$ ,  $v_\mu$ ,  $v_\tau$  and the flavour universal self-interactions.

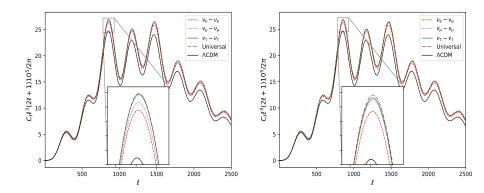
The matrix  $g_{\alpha\beta}$  defines the flavour dependence of the interactions.  $g_{\alpha\beta}$  will be  $\delta_{\alpha\beta}$  for universal interaction and for interaction in a particular flavour it will be a diagonal matrix with only one among  $g_{ee}$ ,  $g_{\mu\mu}$  or  $g_{\tau\tau}$  set to be one.

□ Flavour specific self interaction

$$\mathcal{L} = g_{\phi} \sum_{\alpha,\beta} g_{\alpha\beta} \phi \bar{\nu}_{\alpha} \nu_{\beta} , \quad \mathcal{L} = g_X \sum_{\alpha,\beta} \bar{\nu}_{\alpha} g_{\alpha\beta} \gamma^{\mu} P_L \nu_{\beta} X_{\mu} ,$$

**T** Four cases :  $v_e$ ,  $v_\mu$ ,  $v_\tau$  and the flavour universal self-interactions.

The matrix  $g_{\alpha\beta}$  defines the flavour dependence of the interactions.  $g_{\alpha\beta}$  will be  $\delta_{\alpha\beta}$  for universal interaction and for interaction in a particular flavour it will be a diagonal matrix with only one among  $g_{ee}$ ,  $g_{\mu\mu}$  or  $g_{\tau\tau}$  set to be one.

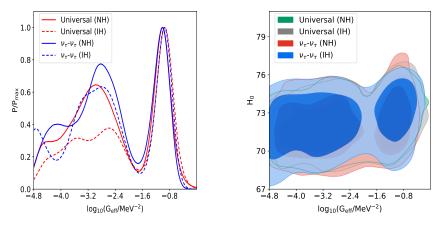

The perturbed Boltzmann equation

$$\frac{\partial \Psi_i}{\partial \tau} + i \frac{q(\vec{k} \cdot \hat{n})}{\epsilon} \Psi_i + \frac{d \ln f_0}{d \ln q} \left[ \dot{\eta} - \frac{\dot{h} + 6\dot{\eta}}{2} \left( \hat{k} \cdot \hat{n} \right)^2 \right] = -\Gamma_{ij} \Psi_j \,,$$

where  $\Gamma_{ij} = U^{\dagger} g_{\alpha\beta} U \tau_{\nu}^{-1}$ . and

$$\tau_{\nu}^{-1} = a n_{\nu} \langle \sigma \nu \rangle = \frac{3}{2} \frac{\zeta(3)}{\pi^2} a G_{\text{eff}}^2 T_{\nu}^5 ,$$






Effect of self-interaction  $\propto \sum_{i,j} \Gamma_{ij}$ .

| Hierarchy | Universal Int.   | $v_{\tau}$ Int.          | $\nu_{\mu}$ Int.         | $v_e$ Int.               |
|-----------|------------------|--------------------------|--------------------------|--------------------------|
| NH        | $3\tau_{v}^{-1}$ | $2.965  	au_{ u}^{-1}$   | $2.643  \tau_{\nu}^{-1}$ | $2.308  	au_{ u}^{-1}$   |
| IH        | $3	au_{v}^{-1}$  | $2.88116  	au_{ u}^{-1}$ | $2.809  	au_{ u}^{-1}$   | $2.309  \tau_{\nu}^{-1}$ |

# Parameters in flavour specific self interaction

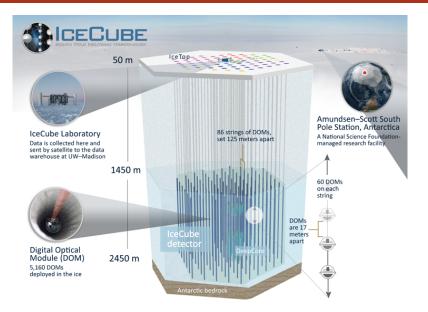




- Similar to the Universal case, G<sub>eff</sub> has a bimodal posterior. We call the two modes strong interaction (MI) and moderate interaction (MI) region.
- □ In case of  $v_{\tau}$ - $v_{\tau}$  interaction,  $H_0 = 73.3 \pm 1.8$  and  $H_0 = 73.3^{+2.0}_{-1.4}$  for NH and IH respectively.

□ Parameters for the Moderate self Interaction.

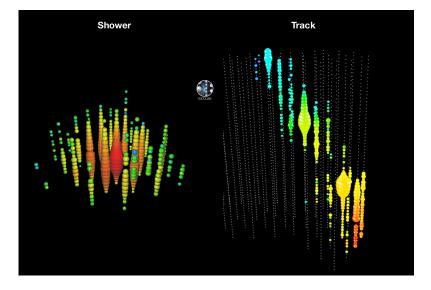
| Parameters                       | Universal Int.               | Universal Int.               | $\nu_{\tau}$ - $\nu_{\tau}$ Int. | $\nu_{\tau}$ - $\nu_{\tau}$ Int. |
|----------------------------------|------------------------------|------------------------------|----------------------------------|----------------------------------|
|                                  | (NH)                         | (IH)                         | (NH)                             | (IH)                             |
| <b>100</b> <i>θ</i> <sub>s</sub> | $1.0412^{+0.0009}_{-0.0011}$ | $1.0411^{+0.0010}_{-0.0012}$ | $1.0413^{+0.0010}_{-0.0011}$     | $1.0411 \pm 0.0010$              |
| $n_s$                            | $0.986 \pm 0.014$            | $0.988^{+0.015}_{-0.013}$    | $0.984^{+0.016}_{-0.013}$        | $0.986^{+0.015}_{-0.013}$        |
| $m_0$                            | $0.057^{+0.022}_{-0.050}$    | $0.058^{+0.025}_{-0.055}$    | $0.052^{+0.017}_{-0.049}$        | $0.051^{+0.018}_{-0.042}$        |
| $\log_{10} G_{ m eff}$           | $-3.25^{+0.94}_{-0.65}$      | $-3.23\pm0.75$               | $-3.20^{+1.3}_{-1.5}$            | $-3.33^{+1.1}_{-0.75}$           |
| $N_{ m eff}$                     | $3.75_{-0.38}^{+0.31}$       | $3.77^{+0.29}_{-0.32}$       | $3.69^{+0.28}_{-0.33}$           | $3.74^{+0.33}_{-0.37}$           |
| $H_0$                            | $72.0^{+1.7}_{-1.9}$         | $71.8 \pm 1.7$               | $71.6 \pm 1.8$                   | $71.9 \pm 1.9$                   |


□ Parameters for the strong self Interaction.

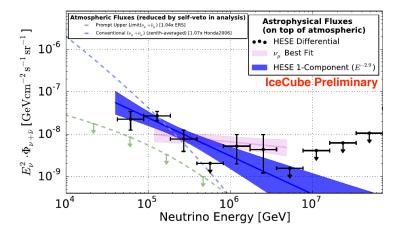
| $100\theta_s$          | $1.0456 \pm 0.0012$       | $1.0454^{+0.0012}_{-0.0014}$ | $1.0453 \pm 0.0011$       | $1.0451 \pm 0.0010$     |
|------------------------|---------------------------|------------------------------|---------------------------|-------------------------|
| n <sub>s</sub>         | $0.959 \pm 0.014$         | $0.959 \pm 0.013$            | $0.962^{+0.015}_{-0.011}$ | $0.964 \pm 0.012$       |
| $m_0$                  | $0.081^{+0.038}_{-0.069}$ | $0.082^{+0.045}_{-0.054}$    | $0.084^{+0.044}_{-0.060}$ | $0.092 \pm 0.062$       |
| $\log_{10} G_{ m eff}$ | $-1.01^{+0.21}_{-0.18}$   | $-0.95^{+0.22}_{-0.18}$      | $-1.05^{+0.26}_{-0.17}$   | $-0.97^{+0.19}_{-0.12}$ |
| $N_{\rm eff}$          | $3.93 \pm 0.35$           | $3.97 \pm 0.36$              | $4.07^{+0.39}_{-0.35}$    | $4.09^{+0.42}_{-0.21}$  |
| $H_0$                  | $72.8 \pm 1.9$            | $72.9 \pm 1.7$               | $73.3 \pm 1.8$            | $73.3^{+2.0}_{-1.4}$    |

# IceCube and self-interacting neutrinos

# IceCube Neutrino Observatory







<sup>1</sup>From:https://icecube.wisc.edu/science/icecube/detector

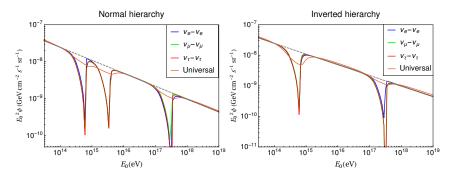
# IceCube Neutrino Observatory









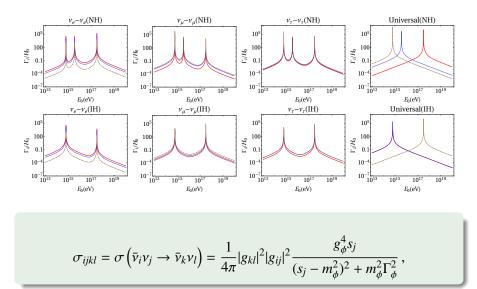

The best fit for single power law flux is

$$E_0^2 \phi = (2.46 \pm 0.8) \times 10^{-8} \left(\frac{E_0}{100 \text{ TeV}}\right)^{-0.92} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

<sup>1</sup>Icecube 2017

# **Absorption of Neutrinos**

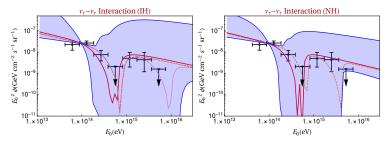
- □ The astrophysical neutrinos can interact with cosmic neutrinos and produce an on shell mediator  $\nu\nu \rightarrow \phi$ , when the neutrino energy  $E_{\nu} = m_{\phi}^2/(2m_{\nu})$ .
- The resonant absorption of astrophysical neutrinos will show up as dips in the IceCube flux.




 $m_{\phi} = 10^{6.9} \text{eV}, g_{\phi} = 10^{-1.5}, \gamma = 2.35 \text{ and } m_0 = 10^{-4} \text{eV}$ 



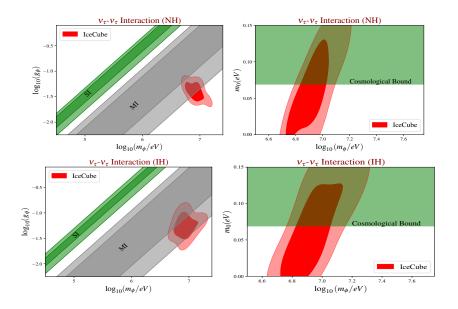
# **Absorption of Neutrinos**





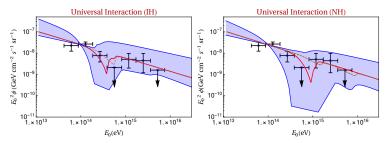

where  $s \approx 2E_i m_i$  and  $g_{ij} = g_{\alpha\beta} U^*_{\alpha i} U_{\beta j}$   $\Gamma_i = \sum_j \tilde{n}_j \sigma_{ij}$ 




□ Four parameters  $(m_{\phi}, g_{\phi}, m_0 \text{ and } \gamma)$  have been varied to do the MCMC analysis with IceCube data.



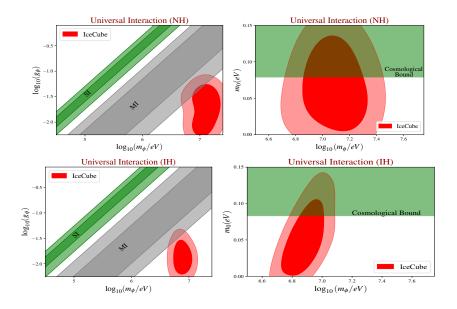
| Parameters                       | NH                        | IH                        |
|----------------------------------|---------------------------|---------------------------|
| $m_0(eV)$                        | $0.062^{+0.042}_{-0.046}$ | $0.062^{+0.038}_{-0.058}$ |
| $\log_{10} m_{\phi}/\mathrm{eV}$ | $6.92 \pm 0.11$           | $6.936^{+0.089}_{-0.14}$  |
| $\log_{10} g_{\phi}$             | $-1.40 \pm 0.13$          | $-1.25 \pm 0.17$          |
| γ                                | $2.50\pm0.17$             | $2.46^{+0.18}_{-0.16}$    |


• Both one dip and two dip solution are possible.








□ Four parameters  $(m_{\phi}, g_{\phi}, m_0 \text{ and } \gamma)$  have been varied to do the MCMC analysis with IceCube data.



| Parameters                       | NH                        | IH                        |
|----------------------------------|---------------------------|---------------------------|
| $m_0(eV)$                        | $0.067^{+0.038}_{-0.046}$ | $0.052^{+0.034}_{-0.040}$ |
| $\log_{10} m_{\phi}/\mathrm{eV}$ | $7.09 \pm 0.15$           | $6.883 \pm 0.091$         |
| $\log_{10} g_{\phi}$             | $-1.75\pm0.31$            | $-1.87\pm0.20$            |
| γ                                | $2.66^{+0.21}_{-0.18}$    | $2.63 \pm 0.17$           |

Only single dip solution possible.





# Self-interacting sterile neutrinos

# eV sterile neutrinos in cosmology

- Short baseline neutrino experiments, like LSND and MiniBooNE experiments, pointed towards the existence of eV mass scale sterile neutrinos. (PhysRevD.64.112007, PhysRevLett.12.221801)
- There is a long-standing problem of accommodating eV mass sterile neutrinos in the cosmological context.
- □ Non zero mixing between active and sterile neutrinos  $\Rightarrow$  Thermal equilibrium ( $T_s = T_v$ )

 $\bigcup_{\text{Contribute to } N_{\text{eff}}}$ 

### **Current bound**

 $N_{\rm eff} = 2.96^{+0.34}_{-0.33}$  (CMB + lensing + BAO)

 $N_{\text{eff}} = 2.93 \pm 0.23 \text{ (CMB + lensing + BAO + BBN)}$ 



# eV sterile neutrinos in cosmology

- Short baseline neutrino experiments, like LSND and MiniBooNE experiments, pointed towards the existence of eV mass scale sterile neutrinos. (PhysRevD.64.112007, PhysRevLett.12.221801)
- There is a long-standing problem of accommodating eV mass sterile neutrinos in the cosmological context.
- □ Non zero mixing between active and sterile neutrinos  $\Rightarrow$  Thermal equilibrium ( $T_s = T_v$ )

 $\bigcup_{\text{Contribute to } N_{\text{eff}}}$ 

**Current bound** 

 $N_{\rm eff} = 2.96^{+0.34}_{-0.33}$  (CMB + lensing + BAO)

 $N_{\text{eff}} = 2.93 \pm 0.23 \text{ (CMB + lensing + BAO + BBN)}$ 

□ In simple 3+1 neutrinos scenario with eV sterile neutrinos and non-zero mixing angle  $N_{\text{eff}} \approx 4$ 

Conflict with the existing bounds  $\Rightarrow$  Hints for new physics??



- □ Self-interaction between sterile neutrinos has been proposed to alleviate this tension.<sup>1</sup>

$$\mathcal{L}_{\rm int} = g_X \bar{\nu}_s \gamma_\mu \frac{1}{2} (1 - \gamma_5) \nu_s X^\mu$$

- □ The self-interaction generates a effective potential that suppresses the effective mixing of the sterile and active states in the early universe.
- Mixing angle is large at low temperature, sterile and active neutrino recouple at low temperature.

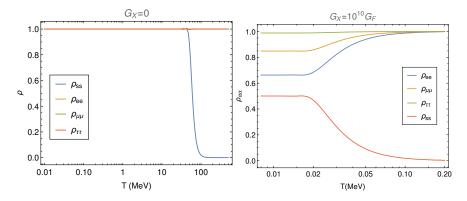
<sup>&</sup>lt;sup>3</sup>Hannestad et al. Phys. Rev. Lett. 112(3):031802 Dasgupta et al. Phys. Rev. Lett. 112(3):031803

- □ Self-interaction between sterile neutrinos has been proposed to alleviate this tension.<sup>1</sup>

$$\mathcal{L}_{\rm int} = g_X \bar{\nu}_s \gamma_\mu \frac{1}{2} (1 - \gamma_5) \nu_s X^\mu$$

- □ The self-interaction generates a effective potential that suppresses the effective mixing of the sterile and active states in the early universe.
- Mixing angle is large at low temperature, sterile and active neutrino recouple at low temperature.
- Quantitatively the effect of self interaction can be studied using QKEs (Phys. Rev. D86 (2012) 053009)

$$i \frac{d\varrho}{dt} = [\Omega, \varrho] + C[\varrho]$$


where  $C[\varrho]$  is the collision term and

$$\Omega = \frac{1}{2p} U^{\dagger} M^2 U - \sqrt{2} \frac{8pG_F}{3} \left[ \left( \frac{\mathcal{E}_l}{M_W^2} + \frac{\mathcal{E}_v}{M_Z^2} \right) \right] - \sqrt{2} G_X \left[ \frac{8p}{3} \frac{\mathcal{E}_s}{M_X^2} \right]$$

<sup>3</sup>Hannestad et al. Phys. Rev. Lett. 112(3):031802 Dasgupta et al. Phys. Rev. Lett. 112(3):031803

# Self interacting sterile neutrinos





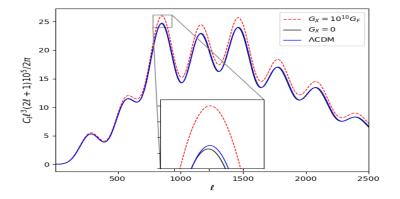
 Self interaction delays the mixing between active and sterile neutrinos till sub MeV temperatures.

**2**  $N_{\rm eff}$  is always within the allowed range.

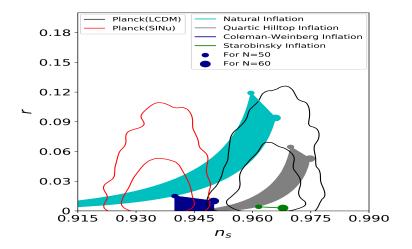
# Self interacting sterile neutrinos

- The self-interaction between the sterile neutrinos induces scattering among them and the scattering rate is given as

$$\Gamma_X = n_{\nu_s} \langle \sigma v \rangle \simeq G_X^2 T_{\nu_s}^5$$


- □ Free-streaming neutrinos suppress the growth of perturbations.
- □ Self interaction delays the free-stream regime .
- □ Sufficiently large  $G_x \Rightarrow$  No free stream regime till neutrino turn non-relativistic.

 $G_X^2 T_{\nu_s}^5 \approx H(T_\gamma). \quad \Rightarrow G_X \sim 10^{10} G_F$ 


<sup>5</sup>Mirizzi et al. PhysRevD.91.025091 Xiaoyong Chu et al. JCAP10(2105)011



Effect of self interacting sterile neutrinos on the CMB temperature anisotropy power spectrum.









| Parameter       | ЛСDM                             | SIv model                        |
|-----------------|----------------------------------|----------------------------------|
| $\omega_b$      | $2.212 \pm 0.022 \times 10^{-2}$ | $2.177 \pm 0.022 \times 10^{-2}$ |
| $\omega_{cdm}$  | $0.1202 \pm 0.0021$              | $0.1220 \pm 0.0021$              |
| $100\theta_s$   | $1.04185 \pm 0.00045$            | $1.04481 \pm 0.00045$            |
| ns              | $0.9643 \pm 0.0057$              | $0.9361 \pm 0.0055$              |
| $	au_{ m reio}$ | $0.0522 \pm 0.0079$              | $0.0476 \pm 0.0074$              |
| r               | < 0.0460                         | < 0.0383                         |
| $H_0$           | $67.08 \pm 0.92$                 | $66.00 \pm 0.91$                 |
| $A_s$           | $2.091 \pm 0.034 \times 10^{-9}$ | $1.988 \pm 0.030 \times 10^{-9}$ |
| $\sigma_8$      | $0.8101 \pm 0.0092$              | $0.7769 \pm 0.0086$              |

Table: The best fit values with  $1-\sigma$  error for all the parameters obtained from the MCMC analyses for both the models considered are listed here.

# Conclusions



- Flavour specific self interactiopn  $(\nu_{\tau} \nu_{\tau})$  interaction can resolve the  $H_0$  tension. Posterior of  $G_{\text{eff}}$  is bimodal in nature.
- 2 Flavour specific self interaction can also explain the dip in neutrino flux at IceCube.
- 3 The values of self-interaction coupling constant and mediator mass required for explaining the IceCube dips are inconsistent with the strong neutrino self-interactions preferred by the cosmological data.
- **4** The required amount of self-interaction between tau neutrinos  $(v_{\tau})$  in inverted hierarchy for explaining IceCube dips is consistent with the moderate self-interaction region of cosmological bounds at 1- $\sigma$  level.
- So For the case of other interactions and hierarchies, the IceCube preferred amount of self-interaction is consistent with moderate self-interaction region of cosmological bounds at 2-σ level only.
- 6 Self interaction between sterile neutrinos had been proposed to make eV mass sterile neutrinos viable with cosmological observations.
- 7 The value of spectral index  $(n_s)$  shifts to a lower value in SI $\nu$  model, which makes a significant impact on the validity of inflation models.

# Conclusions



- Flavour specific self interactiopn  $(\nu_{\tau} \nu_{\tau})$  interaction can resolve the  $H_0$  tension. Posterior of  $G_{\text{eff}}$  is bimodal in nature.
- 2 Flavour specific self interaction can also explain the dip in neutrino flux at IceCube.
- 3 The values of self-interaction coupling constant and mediator mass required for explaining the IceCube dips are inconsistent with the strong neutrino self-interactions preferred by the cosmological data.
- **4** The required amount of self-interaction between tau neutrinos  $(v_{\tau})$  in inverted hierarchy for explaining IceCube dips is consistent with the moderate self-interaction region of cosmological bounds at 1- $\sigma$  level.
- So For the case of other interactions and hierarchies, the IceCube preferred amount of self-interaction is consistent with moderate self-interaction region of cosmological bounds at 2-σ level only.
- 6 Self interaction between sterile neutrinos had been proposed to make eV mass sterile neutrinos viable with cosmological observations.
- 7 The value of spectral index  $(n_s)$  shifts to a lower value in SI $\nu$  model, which makes a significant impact on the validity of inflation models.

# **Thanks You!!**