Interpreting the high-redshift 21-cm signal observations

Sambit Giri

Outline

- Basics of 21-cm signal
- Constraints from current 21-cm observations
- Forecast for upcoming observations
 - Halo model based framework

Timeline of the Universe

Credit: NAOJ

Observing the intergalactic medium

$$\delta T_b \propto x_{\rm HI} (1 + \delta_b) \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}} \right)$$

Observing the intergalactic medium

Spin temperature

$$\delta T_b \propto \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right)$$

Power spectrum

Observed by LOFAR, MWA, HERA, SKA, etc.

$$\delta T_b \propto x_{\rm HI} (1 + \delta_b) \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}} \right)$$
$$\Delta_{21}^2(k) = \frac{k^3}{2\pi^2} \left\langle \delta T_b(k)^* \delta T_b(k) \right\rangle$$

Current 21-cm signal observations

Inference from 21-cm observations

Constraints from upper limits

We need models which boosts large scale fluctuations in 21-cm signal

$$\delta T_{\rm b} \propto x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right)$$

To zeroth order, these fluctuations are scales of \sim 50 Mpc. To achieve such fluctuations, we need extreme source models.

Simulated models at z=9.1

(Ghara,SG+2020)

Inference from 21-cm observations

IGM parameters

$\overline{x_{\mathrm{HII}}}$	Average ionization fraction
$\overline{T_{\mathrm{K}}}$ (K)	Average gas temperature
<i>f</i> heat	Fraction of heated region
$\overline{\delta T_{\rm b}}$ (mK)	Global 21-cm signal
$R_{\text{peak}}^{\text{heat}}$ (h^{-1} Mpc)	Peak of the heated bubble PDF
$\Delta R_{\rm FWHM}^{\rm heat}$ ($h^{-1}{ m Mpc}$)	Width of the heated bubble PDF

Excluded IGM parameters

(Ghara,SG+2020)

IGM Parameters of non-uniform $T_{\rm S}$ scenario	95% credible interval of the excluded models
$\overline{x_{\mathrm{HII}}}$	[0, 0.08], [0.45, 0.62]
$\overline{T_{\mathrm{K}}}$ (K)	[7.41, 158.48], [2.10, 3.55]
<i>f</i> heat	[0, 0.34]
$\overline{\delta T_{\rm b}}$ (mK)	[-234.15, -65.53]
$R_{\rm peak}^{ m heat}$ ($h^{-1}{ m Mpc}$)	[3.50, 69.82]
$\Delta R_{\rm FWHM}^{\rm heat}$ ($h^{-1}{ m Mpc}$)	[0, 113.76]

MWA 21-cm signal observations

$$\delta T_b \propto x_{\rm HI} (1 + \delta_b) \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}} \right)$$
$$\Delta_{21}^2(k) = \frac{k^3}{2\pi^2} \left\langle \delta T_b(k)^* \delta T_b(k) \right\rangle$$

Simulated models

(Ghara, SG+2021)

z = 6.5

z = 7.8

Excluded IGM parameters

Excluded IGM parameters

Excess radio background

$$\delta T_{\rm b} \propto x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\rm rad}}{T_{\rm S}}\right)$$

Excess radio background

$$\delta T_{\rm b} \propto x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\rm rad}}{T_{\rm S}}\right)$$

Model parameter

$$T_{\rm rad} = T_{\rm CMB} (1+z) \left[1 + A_{\rm r} \left(\frac{\nu_{\rm obs}}{78 \text{ MHz}} \right)^{\beta} \right]$$

Fialkov & Barkana 2019 Mondal...SG+2020

$$eta=-2.6$$
 Value that agrees with LWA1 observations (Dowell & Taylor 2018

Excluded IGM states with excess radio background

Forecast study: SKA-Low

Credit: SKA Organisation

Mock observation at cosmic dawn

1000 hour observations

Instrumental effects are calculated using Tools21cm (SG+2020)

(SG & Schneider 2022)

Inference from 21-cm observations

Halo model

Halo model: power spectrum

 $P_{XY}(k,z) = P_{XY}^{1 h}(k,z) + P_{XY}^{2 h}(k,z),$

Ingredients for the halo model

Linear power spectrum

Halo mass function

Mass accretion

Halo bias

Stellar to halo mass relation

Flux profiles

$$\begin{split} P_{XY}^{1\,\mathrm{h}}(k,z) &= \frac{\beta_X \beta_Y}{(\bar{\rho} f_{\mathrm{coll}})^2} \int dM \frac{dn}{dM} \tilde{f}_*^2 M^2 |u_X| |u_Y|, \\ P_{XY}^{2\,\mathrm{h}}(k,z) &= \frac{\beta_X}{(\bar{\rho} f_{\mathrm{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M |u_X| b_X \\ &\qquad \times \frac{\beta_Y}{(\bar{\rho} f_{\mathrm{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M |u_Y| b_Y \times P_{\mathrm{lin}}, \\ P_{XY}(k,z) &= P_{XY}^{1\,\mathrm{h}}(k,z) + P_{XY}^{2\,\mathrm{h}}(k,z), \end{split}$$

Linear power spectra

z = 0

Halo mass function

$$rac{\mathrm{d}n}{\mathrm{d}\mathrm{ln}M} = -rac{ar
ho}{M}
u f(
u) rac{\mathrm{d}\mathrm{ln}\sigma}{\mathrm{d}\mathrm{ln}M} \; ,$$

$$M = \frac{4\pi}{3}\bar{\rho}(cR)^3$$

$$\begin{split} f(\nu) &= A \sqrt{\frac{2q\nu}{\pi}} (1+\nu^{-p}) e^{-q\nu/2} \\ \sigma^2(R,z) &= \int \frac{\mathrm{d}k^3}{(2\pi)^3} P_{\mathrm{lin}}(k) \mathcal{W}(k|R) \\ \mathcal{W}(k|R) &= \frac{1}{1+(kR)^\beta} \;. \end{split}$$

Mass accretion rate

Halo bias

$$b(M) = 1 + rac{q
u-1}{\delta_c(z)} + rac{2p}{\delta_c(z)[1+(q
u)^p]}.$$

Cooray & Sheth (2002)

Stellar to halo mass relation

$$f_*(M) = \frac{2(\Omega_b / \Omega_m) f_{*,0}}{(M/M_p)^{\gamma_1} + (M/M_p)^{\gamma_2}} \times S(M)$$

$$S(M) = [1 + (M_t/M)^{\gamma_3}]^{\gamma_4},$$

(SG & Schneider 2022)

Flux profiles

Validity of the approach

Schneider, SG, Mirocha (2021)

Constraining mixed dark matter models

Contains a mixtures of two components

- Cold DM
- Non-cold: WDM/FDM

$$f_{n\rm DM} = \frac{\Omega_{n\rm DM}}{\Omega_{n\rm DM} + \Omega_{n\rm DM}}$$

f_{nDM} < 20% (Boyarsky+2009)

Snapshots of Cold-Warm dark matter

CDM

WCDM

WDM

 $h^{-1}{
m Mpc}$

Parimbelli, Scelfo,SG+2021

Constraining dark matter models

Evolution of power spectra

Mock observation at cosmic dawn

(SG & Schneider 2022)

Inference from 21-cm observations

Corner showing the posterior distribution

Constraints on cold + warm DM

DPL

 $f \sim 1 : m_{\text{WDM}} \gtrsim 15 \text{ keV} (\text{FLOOR}, \text{DPL}),$ $\gtrsim 4 \text{ keV} (\text{TRUNCATED})$ $CDM + hot relic : f \leq 1\%$ (FLOOR, DPL, TRUNCATED)

Constraints on cold + fuzzy DM

DPL FLOOR

 $f \sim 1 : m_{\rm FDM} \gtrsim 2 \times 10^{-20} \text{ eV} (\text{FLOOR}, \text{DPL}),$ $\gtrsim 2 \times 10^{-21} \text{ eV} (\text{TRUNCATED})$ $CDM + hot relic : f \leq 1\%$ (FLOOR, DPL, TRUNCATED)

- With the current upper limits, we are able to exclude extreme states of the IGM
- Models with excess radio background can achieve very high amplitude and therefore they will be easier to constrain with these upper limits
- Halo-model based approach gives a fast and flexible way of exploring many cosmological and astrophysical models
- We can put constraints on non-cold dark matter models using SKA observations of the cosmic dawn