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Cluster mass estimation is 
important for cosmology

Clusters: A “Dark” Past

First evidence for dark matter:
Zwicky (1933) observations of Coma cluster 
galaxies
(also light from dark matter? – Thursday)

Measurement of Ωm ~ 0.3:
e.g. White et al. 1993 and many others

Jeltema et al. 2001
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Cluster Number Density

Borgani & Guzzo 2001
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L = 0.7

SCDM
WM = 1

normalized 
to present 

density 

normalized to
present density
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scatter must be a valid non-degenerate covariance matrix that
prevents combinations of extreme correlation coefficients.

4.1.5. Constraints on X-Ray Scaling Relation Parameters

Without any informative priors on the X-ray scaling relation
parameters, we can use the SPTcl data set to constrain the YX–
mass relation. The recovered amplitude

A 6.35 0.69 26YX = o ( )
is very close to the WL-informed prior (Applegate et al. 2014; von
der Linden et al. 2014; Hoekstra et al. 2015; Mantz et al. 2015)

that was used in our previous cosmology analysis (AYX=
6.38±0.61; dH16). We constrain the redshift evolution of the
YX–mass relation to

C 0.31 . 27Y 0.21
0.14

X = - -
+ ( )

The self-similar expectation CYX=−0.4 is well within 1σ. Our
measurement of the YX scatter

0.18 0.09 28Yln Xs = o ( )
is higher than but consistent at the 1σlevel with the prior
0.12±0.08 adopted in previous SPT analyses. It closely

Figure 4. Distribution of clusters as a function of redshift (left panels) and detection significance ξ (right panels). The top panels show the SPT-SZ data and the
recovered model predictions for νΛCDM. The bottom panels show the residuals of the data with respect to the model prediction. The different lines and shadings
correspond to the mean recovered model and the 1σand 2σallowed ranges. The dotted lines show the Poisson error on the mean model prediction. There are no clear
outliers, and we conclude that the model provides an adequate fit to the data.

Figure 5. Constraints on mW and 8s from this analysis and from a previous
analysis that used the same cluster sample (dH16). The consistency (0.2σ)
indicates that our internal mass calibration using WL data agrees with the
external X-ray mass calibration priors adopted in dH16.

Figure 6. νΛCDM constraints on mW and 8s . The SPTcl data set comprises
SPT-SZ+WL+YX, Planck is TT+lowTEB, and KiDS+GAMA and DES Y1
are cosmic shear+galaxy clustering+galaxy–galaxy lensing. The WtG (X-ray-
selected clusters) result also contains their fgas measurement.
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Traditional approaches for cluster mass estimation
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factor of 2. Here, we evaluate SDM performance in the context of
our catalog to serve as a baseline with which to compare our ML
model.

Replicating our treatment of CNN models, we train SDMs
on two types of cluster descriptions, the member {vlos}
distribution and the joint member {Rproj, vlos} distribution.
We will appropriately refer to these as SDM1D and SDM2D,
respectively. Each individual input to the SDM is a list of
univariate or bivariate galaxy properties (velocities and/or
radial positions). The length of each input list is variable and
equal to the cluster richness. In this application of SDMs, we
assume this list of galaxies is representative of some underlying
probability distribution which varies with cluster mass.

Our implementation of SDM mirrors that of Ntampaka et al.
(2016). The kernel function employed in our SDM model is a
Kullback–Leibler divergence, estimated using the k-nearest-
neighbor method (Wang et al. 2009) with k=3. We use
three-fold cross-validation to find optimal values for SDM
parameters C and σ, the loss function parameter and Gaussian
kernel parameter, respectively. We evaluate the SDM models
with ten-fold cross-validation, and the training and test sets
described in Section 2.3.

Analysis of each SDM model was run on two Intel Haswell
(E5-2695 v3) CPU nodes with 14 cores each and 128 GB of
total RAM. Using the mock catalog described in Section 2, the
full 10-fold transductive training and evaluation procedure
executed in ∼6 hr for each SDM model.

5. Results

The results presented in this section analyze the performance
of our CNN models when evaluated on a catalog of mock
cluster observations (Section 2). Model performance is
quantified in terms of predictive scatter, bias, lognormality,
robustness, and application time. We describe these metrics in
the context of observational studies and discuss their implica-
tions in precision cosmology. Using these metrics, we perform
comparative analyses with respect to the dynamical mass
estimators described in Section 4. The complete list of
investigated models presented in this section is summarized in
Table 2. We find that the CNN models produce more accurate
and robust mass estimates than all other investigated methods,
with considerably shorter implementation times than SDM.

5.1. Predictive Performance

Figure 7 shows the multifold predicted-versus-true mass
distribution of the CNN1D and CNN2D models when perform-
ing inference on the test data set (Section 2.3). For each model,
we describe the distribution of mass predictions via the
logarithmic residual ò, defined as

( )
⎡
⎣⎢

⎤
⎦⎥=�

M

M
log 810

pred

true

for a cluster of mass Mtrue whose predicted mass is Mpred. This
metric is commonly employed in other observational studies
(e.g., Armitage et al. 2019a, 2019b; Calderon & Berlind 2019)
and conveniently scales linearly with our model output y
(Equation (4)). The mass definition used in this analysis is
Mtrue=M200c. We further characterize model predictions by
calculating cumulative statistics of the ò distribution, namely
the median (�̃ ), 16th–84th percentile range (Δò), and the
standard deviation scatter (σò). The values of these statistics for
CNN1D and CNN2D are tabulated in Table 2. Note that these
cumulative statistics are constructed from the test catalog and
marginalized over true mass and are thereby weighted by the
shape of the test catalog cluster mass function (Figure 2).

Figure 6. M–σ relationship for (a) pure and (b) contaminated mock observation cluster catalogs derived from MDPL2 data. Each distribution is plotted at its median
(solid line), 16th–84th percentile range (dark region), and 3rd–97th percentile range (light region). The log-linear regression lines are shown along with their ±1σ
lognormal scatter. The dotted black line at M200c=1014.5 h−1 Me signifies the lower-bound mass cut used to perform the log-linear regression. Selection effects in the
contaminated catalog introduce significant scatter and bias at low masses.

Table 1
Best-fit Parameters for Log-linear Regression of M–σ in the Pure and

Contaminated Catalogs

Catalog ( )s -km sv,15
1 α Scatter (dex)

Pure 1078 0.345 0.056
Contaminated 971 0.254 0.059

Note. Parameters are defined in the formalization of the M–σ given in
Equation (5). The lognormal scatter is defined as the standard deviation of
prediction residuals for clusters above the mass cut, M200c�1014.5 h−1 Me.
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3450 Z. Yan et al.

Figure 3. Upper panel: Architecture of the single-channel CNN used in this analysis. Our network utilizes three convolutional and pooling layers for feature
extraction and four fully connected layers for parameter estimation. Lower panel: Architecture of the multichannel CNN. The four channels take images: Star,
Fxs, Fxb, and Ypar, respectively, and perform feature extraction independently. The feature extraction layers have the same structure as the single-channel
portion outlined in the upper panel.

Figure 4. The learning curves for each of our five CNNs as a function of
training epoch. The y-axis is the loss function on the validation set defined in
equation (11).

loss drops quickly at first and then converges after ∼600 epochs. The
final CNN weights are taken to be those that gave the minimum
validation loss during training.

3 R ESULTS

Our cluster mass predictions are shown in Fig. 5. For each cluster
in the test set, we show the CNN-predicted mass versus the true
M200 measured in the simulation. In this rendition, all five data sets
produce similar results. Fig. 6 shows the fractional mass bias for
each tracer as a function of the true mass. From Fig. 6, we see a
clear tendency that the CNN generally over-predicts the mass by
∼20 per cent in the lowest mass bin, while it under-predicts the
mass by ∼10 per cent in the highest mass bin. The is due to the fact
that for these extreme masses, there are not enough samples, so the
CNNs tend to predict towards the mean mass of the whole sample.
To mitigate this ‘towards-the-mean’ bias, one needs to extend the
mass range of training set than the test set, or alternatively, only trust
the results of test clusters with masses close to the mean.
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Machine learning (ML) is a potential alternative

Convolutional layers within a CNN are often followed by
a pooling layer. Pooling layers perform a downsampling
operation intended to reduce the dimensionality of the

convoluted feature maps. The downsampling operation func-
tions in a similar manner to the convolutional filters, in that
they execute on local receptive fields across the input. A

Figure 4. CNN architecture for each model. The architectures for each case are identical except for the input array and the first convolutional layers. The output of
each model y (Equation (4)) varies linearly with the predicted logarithmic cluster mass and is restricted to the range yä[0, 1]. Each layer is subject to a ReLU
activation function, and the weight vectors are constrained to a maximum L2 norm of 3.
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1D
3D

or Cluster 
mass

• Utilize full dataset instead of  
just the first order moment ( )σvelocity

• Ntampaka et al. 2015 (SDM)
• Ho et al. 2020, 2021 (CNN, Bayesian NN)
• Ramanah et al. 2020 (Neural flows)

factor of 2. Here, we evaluate SDM performance in the context of
our catalog to serve as a baseline with which to compare our ML
model.

Replicating our treatment of CNN models, we train SDMs
on two types of cluster descriptions, the member {vlos}
distribution and the joint member {Rproj, vlos} distribution.
We will appropriately refer to these as SDM1D and SDM2D,
respectively. Each individual input to the SDM is a list of
univariate or bivariate galaxy properties (velocities and/or
radial positions). The length of each input list is variable and
equal to the cluster richness. In this application of SDMs, we
assume this list of galaxies is representative of some underlying
probability distribution which varies with cluster mass.

Our implementation of SDM mirrors that of Ntampaka et al.
(2016). The kernel function employed in our SDM model is a
Kullback–Leibler divergence, estimated using the k-nearest-
neighbor method (Wang et al. 2009) with k=3. We use
three-fold cross-validation to find optimal values for SDM
parameters C and σ, the loss function parameter and Gaussian
kernel parameter, respectively. We evaluate the SDM models
with ten-fold cross-validation, and the training and test sets
described in Section 2.3.

Analysis of each SDM model was run on two Intel Haswell
(E5-2695 v3) CPU nodes with 14 cores each and 128 GB of
total RAM. Using the mock catalog described in Section 2, the
full 10-fold transductive training and evaluation procedure
executed in ∼6 hr for each SDM model.

5. Results

The results presented in this section analyze the performance
of our CNN models when evaluated on a catalog of mock
cluster observations (Section 2). Model performance is
quantified in terms of predictive scatter, bias, lognormality,
robustness, and application time. We describe these metrics in
the context of observational studies and discuss their implica-
tions in precision cosmology. Using these metrics, we perform
comparative analyses with respect to the dynamical mass
estimators described in Section 4. The complete list of
investigated models presented in this section is summarized in
Table 2. We find that the CNN models produce more accurate
and robust mass estimates than all other investigated methods,
with considerably shorter implementation times than SDM.

5.1. Predictive Performance

Figure 7 shows the multifold predicted-versus-true mass
distribution of the CNN1D and CNN2D models when perform-
ing inference on the test data set (Section 2.3). For each model,
we describe the distribution of mass predictions via the
logarithmic residual ò, defined as
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for a cluster of mass Mtrue whose predicted mass is Mpred. This
metric is commonly employed in other observational studies
(e.g., Armitage et al. 2019a, 2019b; Calderon & Berlind 2019)
and conveniently scales linearly with our model output y
(Equation (4)). The mass definition used in this analysis is
Mtrue=M200c. We further characterize model predictions by
calculating cumulative statistics of the ò distribution, namely
the median (�̃ ), 16th–84th percentile range (Δò), and the
standard deviation scatter (σò). The values of these statistics for
CNN1D and CNN2D are tabulated in Table 2. Note that these
cumulative statistics are constructed from the test catalog and
marginalized over true mass and are thereby weighted by the
shape of the test catalog cluster mass function (Figure 2).

Figure 6. M–σ relationship for (a) pure and (b) contaminated mock observation cluster catalogs derived from MDPL2 data. Each distribution is plotted at its median
(solid line), 16th–84th percentile range (dark region), and 3rd–97th percentile range (light region). The log-linear regression lines are shown along with their ±1σ
lognormal scatter. The dotted black line at M200c=1014.5 h−1 Me signifies the lower-bound mass cut used to perform the log-linear regression. Selection effects in the
contaminated catalog introduce significant scatter and bias at low masses.

Table 1
Best-fit Parameters for Log-linear Regression of M–σ in the Pure and

Contaminated Catalogs

Catalog ( )s -km sv,15
1 α Scatter (dex)

Pure 1078 0.345 0.056
Contaminated 971 0.254 0.059

Note. Parameters are defined in the formalization of the M–σ given in
Equation (5). The lognormal scatter is defined as the standard deviation of
prediction residuals for clusters above the mass cut, M200c�1014.5 h−1 Me.
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Comparison of ML approaches
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cgas ≡
Mgas(r < R200c/2)
Mgas(r < R200c)

Results for IllustrisTNG
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cgas ≡
Mgas(r < R200c/2)
Mgas(r < R200c)

Results for IllustrisTNG

1. Central regions of clusters are noisier 
(conc. can be used to down-weight central regions) 

2. Conversion of gas to stars reduces Y

Reasons for dependence:

M(1)
pred ∝ Y3/5

M(2)
pred ∝ Y3/5 (1 − A cgas)

Kravtsov et al. 06, 
Arnaud et al. 10
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cgas ≡
Mgas(r < R200c/2)
Mgas(r < R200c)

Results for IllustrisTNG
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Excising inner cluster regions
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Radial dependence of scatter
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But IllustrisTNG has only one configuration 
of baryonic feedback and initial conditions?

Do the results hold in a more general setting?



16

But IllustrisTNG has only one configuration 
of baryonic feedback and initial conditions?

Do the results hold in a more general setting?

CAMELS simulations
Villaescusa-Navarro et al. 21
https://camels.readthedocs.io/
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Reducing deviation from self-similarity (pow. law)

Due to ejection of gas from clusters from AGN/SN feedback

Y ∝ M5/3

(virial theorem)
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Using the Y-M measurements to constrain baryonic feedback

13

given that the PTE found in our fiducial analysis is not very
low, we do not pursue these possibilities further and leave
them to a future study.

In Fig. 5 we show the constraints on the pressure profile
parameters of the break model. The full constraints for this
model at both Planck and DES-Y1 cosmologies on all the
parameters (other than shear calibration and photo-z shift pa-
rameters, as they are prior dominated) are shown in Fig. 13
in Appendix B. We find the constraints from analyzing the
Planck-only and ACT correlations to be consistent. The cor-
relations with the Planck-only map have a higher total signal
to noise owing to the larger area. Note, though, from Fig. 1
that the smaller beam size of ACT equates to higher sensitiv-
ity to low mass and high-redshift halos.

Our results exhibit a strong degeneracy between P0 and
�, making the marginalized posterior on P0 very weak and
the marginalized posterior on � somewhat sensitive to our P0
prior. The redshift evolution parameter, ↵z, and the power-law
index below the break mass, ↵break

m , are weakly constrained
when using both the ACT and Planck maps. The dashed line
in Fig. 5 indicates the parameter values corresponding to the
[38] model.

2. Inferred redshift and mass dependence of the pressure profiles
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Battaglia 12

OWLS AGN

OWLS REF
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Figure 6. Inferred 68% credible interval (blue shaded region) on the
Ỹ500 � M500 relation at z = 0.25 using the break model. We compare
predictions from various hydrodynamical simulations (curves). We
find our inferences to be consistent with all the hydrodynamical sim-
ulations at high mass, but we find a departure for lower mass halos
where AGN feedback has its greater impact.

We can translate the model posterior from our fits to the
shear-y correlation into constraints on the relation between
the integrated halo y signal and halo mass. In Fig. 6 we show
the Ỹ500 � M500 relationship inferred from the break model
fits, where Ỹ500 is given by:

Ỹ500(M, z) =
D2

A(z)
(500Mpc)2E2/3(z)

�T

mec2

Z R500c

0
dr4⇡r2 Pe(r|M, z)

D2
A(z)

,

(37)

Figure 7. Inferred 68% credible interval (blue shaded region) on the
bias weighted pressure of the universe (hbPei) from our pressure pro-
file constraints, assuming the break model. We compare this infer-
ence to previous studies where constraints are obtained from cross-
correlations between galaxy/halo catalogs with Compton-y maps.

Figure 8. Inferred 68% credible interval (blue shaded region) on the
auto-power spectra of Compton-y when adopting the break model.
We compare this inference with measurements from the Planck,
ACT and SPT Collaborations, finding a good agreement across all
scales. Our measurement is also consistent with expectations from
the model of Battaglia et al. [38] (green curve).

where E(z) is the dimensionless Hubble parameter. In or-
der to obtain the blue-shaded band in Fig. 6, we estimate the
Ỹ500 � M500 relationship for 2000 samples from the posterior
of the break model and estimate the 68% credible interval
from the resulting curves.

We compare the inferred Ỹ500�M500 relationship from data
to the predictions from various hydro-dynamical simulations
incorporating di↵erent feedback mechanisms. The OWLS
REF and OWLS AGN curves correspond to the cosmo-
OverWhelmingly Large Simulation (cosmo-OWLS) simula-
tions [71, 72]. OWLS REF includes the prescriptions for ra-
diative cooling and supernovae feedback while OWLS AGN

Pandey et al. 21 
(ACT x DES)

Y ∝ M5/3
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Using the Y-M measurements to constrain baryonic feedback

13

given that the PTE found in our fiducial analysis is not very
low, we do not pursue these possibilities further and leave
them to a future study.

In Fig. 5 we show the constraints on the pressure profile
parameters of the break model. The full constraints for this
model at both Planck and DES-Y1 cosmologies on all the
parameters (other than shear calibration and photo-z shift pa-
rameters, as they are prior dominated) are shown in Fig. 13
in Appendix B. We find the constraints from analyzing the
Planck-only and ACT correlations to be consistent. The cor-
relations with the Planck-only map have a higher total signal
to noise owing to the larger area. Note, though, from Fig. 1
that the smaller beam size of ACT equates to higher sensitiv-
ity to low mass and high-redshift halos.

Our results exhibit a strong degeneracy between P0 and
�, making the marginalized posterior on P0 very weak and
the marginalized posterior on � somewhat sensitive to our P0
prior. The redshift evolution parameter, ↵z, and the power-law
index below the break mass, ↵break

m , are weakly constrained
when using both the ACT and Planck maps. The dashed line
in Fig. 5 indicates the parameter values corresponding to the
[38] model.

2. Inferred redshift and mass dependence of the pressure profiles
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Figure 6. Inferred 68% credible interval (blue shaded region) on the
Ỹ500 � M500 relation at z = 0.25 using the break model. We compare
predictions from various hydrodynamical simulations (curves). We
find our inferences to be consistent with all the hydrodynamical sim-
ulations at high mass, but we find a departure for lower mass halos
where AGN feedback has its greater impact.

We can translate the model posterior from our fits to the
shear-y correlation into constraints on the relation between
the integrated halo y signal and halo mass. In Fig. 6 we show
the Ỹ500 � M500 relationship inferred from the break model
fits, where Ỹ500 is given by:

Ỹ500(M, z) =
D2

A(z)
(500Mpc)2E2/3(z)

�T

mec2

Z R500c

0
dr4⇡r2 Pe(r|M, z)

D2
A(z)

,

(37)

Figure 7. Inferred 68% credible interval (blue shaded region) on the
bias weighted pressure of the universe (hbPei) from our pressure pro-
file constraints, assuming the break model. We compare this infer-
ence to previous studies where constraints are obtained from cross-
correlations between galaxy/halo catalogs with Compton-y maps.

Figure 8. Inferred 68% credible interval (blue shaded region) on the
auto-power spectra of Compton-y when adopting the break model.
We compare this inference with measurements from the Planck,
ACT and SPT Collaborations, finding a good agreement across all
scales. Our measurement is also consistent with expectations from
the model of Battaglia et al. [38] (green curve).

where E(z) is the dimensionless Hubble parameter. In or-
der to obtain the blue-shaded band in Fig. 6, we estimate the
Ỹ500 � M500 relationship for 2000 samples from the posterior
of the break model and estimate the 68% credible interval
from the resulting curves.

We compare the inferred Ỹ500�M500 relationship from data
to the predictions from various hydro-dynamical simulations
incorporating di↵erent feedback mechanisms. The OWLS
REF and OWLS AGN curves correspond to the cosmo-
OverWhelmingly Large Simulation (cosmo-OWLS) simula-
tions [71, 72]. OWLS REF includes the prescriptions for ra-
diative cooling and supernovae feedback while OWLS AGN

Y ∝ M5/3

Chisari et al. 19
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Y-M for CAMELS sims
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2

Figure 1. Comparison between the range of CAMELS simula-
tions with the forecast covariance matrix for the PIXIE exper-
iment (the PIXIE ellipses are centered at the fiducial model
assumed in Ref. [8]: hyifid = 1.77 ⇥ 10�6, hTeifid = 1.24 keV;
they correspond to 68 and 95% CL). We have also indicated
the values measured from the large boxes, as discussed in
Sec. II B. All simulation data have been rescaled to the fidu-
cial CAMELS cosmology but each data point corresponds to
a different subgrid model.

tions.2 For comparison, we also show a covariance ma-
trix for a near-future monopole distortion measurement
(c.f. Sec. III). The forecast measurement errors are tiny
compared to the current theoretical uncertainty, which
means that a near-future measurement would provide a
substantial gain in information on astrophysics. This ba-
sic observation forms the underpinning of the calculations
performed in the following: forecast constraints on simu-
lation subgrid models from a measurement of the y dis-
tortion monopoles, using simulations from the CAMELS
suite.

Conventionally, the y-distortion is separated into a non-
relativistic and a relativistic [9–13] component, each hav-
ing a distinct spectral signature that makes it possible to

2 There is additional scatter due to cosmic variance in the small
CAMELS boxes, which is actually dominant for the IllustrisTNG
points but not for SIMBA.

disentangle them observationally.3 The non-relativistic
contribution is determined by a line-of-sight integral over
electron pressure,4

hyi ⌘ hy(n̂)in̂ =

Z
dn̂

4⇡

�T

me

Z
Pe(n̂, l) dl , (1)

where �T denotes the Thomson cross section, me is elec-
tron mass, n̂ is the line of sight, and l is physical length
along the line of sight. To leading order, the relativistic
component is proportional to the y-weighted mean elec-
tron temperature [26]

hTei ⌘ hTe(n̂)in̂ = hyi�1

Z
dn̂

4⇡

�T

me

Z
[TePe](n̂, l) dl . (2)

This effective temperature is typically higher than the
mass-weighted (or ⌧ -weighted) temperature [15, 16], and
can be directly obtained from a moment expansion of the
SZ signal (see Appendix A for additional discussion).

In this work we focus on the dominant and theoreti-
cally well-established contributions to the distortion sig-
nals. In particular, we will neglect the ' 10 % contri-
bution of reionization to hyi, which we discuss in Ap-
pendix C, as well as signals due to the Milky Way and
Local Group (which are estimated to be another one and
two orders of magnitude below the reionization signal, re-
spectively). We also neglect other, more exotic sources of
y-distortions, for example from primordial magnetic field
heating [e.g., 17–19] or decaying particles [e.g., 20–25].
Conversely, if one is interested in using the y-distortions
to constrain or detect such processes beyond standard
⇤CDM, astrophysical feedback must be very well under-
stood.

Besides an additional contribution due to reionization,
there are further relativistic corrections involving higher
moments of the electron temperature, as well as the ki-
netic Sunyaev-Zel’dovich effect sourced by coherent mo-
tion; we will neglect these complications and simply treat
hyi and hTei as observables, as in Ref. [26].

Locally, the tSZ effect is well-established observation-
ally as a CMB temperature change correlating with the
locations of clusters. However, the global distortion to
the CMB spectrum has not yet been detected. Only
an upper limit on the non-relativistic y distortion ex-
ists from the COBE FIRAS experiment, which yielded
|hyi| < 15 ⇥ 10�6 (95 % cl) [27], which is about one order
of magnitude above the expected ⇤CDM signal [26]. We

3 All these signals can be accurately modeled using SZpack [14].
4 We set the speed of light and Boltzmann’s constant to one.

Similarly, CMB spectral distortions
can also constrain baryonic feedback 

(% level constraints)

L. Thiele, DW, et al., 2022
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ML for emulation of hydro simulations for future surveysThe spectral nature of the 21cm 
line allows us to fill in this volume

~𝒪 (10-100 Gpc3)

• Hydro sims are expensive:
~10 million CPU hours 

for (0.001 Gpc3)

• Volume of upcoming surveys 
like DESI:

• Needed to study non-linear scales 
where baryonic effects dominate
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ML for emulation of hydro simulations for future surveys
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DW et al. 2021
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ML for emulation of hydro simulations for future surveys

ZA (theoretical) N-body

N-body N-body + Neutrinos

N-body Galaxies

Sims/Data Cosmo. parameters

Neut. hydrogen  
HI (expensive)DM (cheap)

Low res. N-body High res. N-body
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ML for emulation of hydro simulations for future surveys

ZA (theoretical) N-body

N-body N-body + Neutrinos

N-body Galaxies

Sims/Data Cosmo. parameters

Neut. hydrogen  
HI (expensive)DM (cheap)

Low res. N-body High res. N-body

Challenges:

1. Robustness to feedback prescriptions
2. Robustness to sim resolution
3. Robustness to observational systematics

DW et al. 2021
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ML to model assembly/secondary bias

HI (neutral hydrogen) DM (dark matter)

HI mass of halo (Halo mass only)= f

(No. of galaxies in halo)
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ML to model assembly/secondary bias

HI (neutral hydrogen) DM (dark matter)

HI mass of halo = f

(No. of galaxies in halo)

(Halo mass,  secondary props. ?)
{local env., 
 conc.,  
shear,….}
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No. of galaxies 
in a halo

(Halo mass,  environmental shear and overdensity )= f

A. Delgado, DW, et al. 21
Nsat(Mh) = NHOD

sat (Mh) × (q′ + A)

Ncen(Mh) = NHOD
cen (Mh) ×

[1 + B(δ′ env − δ′ env)(1 − NHOD
cen )]

Neutral hydrogen 
content of halo (Halo mass, environmental shear and overdensity)= f

DW et al. 20 MHI

MHOD
= 0.81 + 1.44 α′ 0.5 m10

−0.57 (α′ 2
0.5 m2

10 + α′ 0.5 δ′ 5)

ML to model assembly/secondary bias



Why does HI content have env. dependence?
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UV + X-ray
background

Denser env.
→ more mergers

Denser env.: Ionized medium 
(ram pressure stripping)

AGN

MHI

MHOD
= 0.95 + ↵

0
0.5 �

0
0.5 (↵

0
0.5 + �

0
0.5) (17)

MHI

MHOD
= 1.1 + 0.82↵0

0.5 (mh � 0.56) (18)

MHI

MHOD
= 0.8 + 1.4↵0

0.5m10 � 0.6 (↵02
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Summary

★  Symbolic regression can be used to 
augment astrophysical scaling relations 
and increase their precision °0.6
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- Using gas conc. reduces scatter in SZ mass 
estimates by 20-30% for large clusters 

- Including stellar to gas mass ratio reduces 
deviation from self-similarity by factor >2

➡Suggestions for other scaling relations?
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Application to other scaling relations?

Mv = A(log10P − 1) − B
- Cepheid P-L relation

- Philips relation for supernovae

Mmax(B) = − 21.726 + 2.698 Δm15(B)

- Tully fisher relation
- Black hole-bulge mass relation
- Fundamental plane relation
- ….

relation] is an incomplete description of the observations.We there-
fore introduce an FP-like relation of the form

MBH / !"R#
e ; ð3Þ

which can account for these dependencies. Formally, we deter-
mine the combination of (" ; # ) that simultaneously minimizes
the$2/% of the fit and the significance of the correlations between
the residuals in ! and MBH (or Re and MBH ). This yields sim-
ilar results to the direct fitting method of Bernardi et al. (2003b)
from the spheroid FP, which minimizes the quantity

!2 ¼ logMBH $ " log !$ # log Re $ &ð Þ2: ð4Þ

It is straightforward to extend this minimization by weighting each
point by the measurement errors (where we allow for the errors in
all observed quantities, logMBH, log !, and log Re, and estimate
symmetric errors as themean of quoted two-sided errors). This yields
a best-fit BHFP relation

logMBH ¼ 8:33þ 3:00 &0:30ð Þ log !=200 km s$1
! "

ð5Þ
þ 0:43 &0:19ð Þ log Re=5 kpcð Þ

from the observations. Unsurprisingly, the slopes in the BHFP
relation are close to those formally determined for the residuals
in Figure 2. As expected, the residuals of MBH with respect to
these FP relations, at fixed Re and fixed !, show no systematic
trends and are consistent with small intrinsic scatter. The intro-
duction of a BHFP eliminates the strong systematic correlations
between the residuals, yielding flat errors as a function of ! and Re.

At low redshift !, Re, andMdyn can be determined reliably, but
at high redshift it is typically the stellar mass M' or luminosity
that is used to estimate MBH. Therefore, it is interesting to ex-
amine the BHFP projections in terms of, e.g.,M' and ! orM' and
Re. Repeating our analysis, we find in Figure 2 that the obser-
vations demand an FP relation over a simple M BH(M') relation
at high significance. The exact values of the best-fit coefficients
of this BHFP determined from the observations are given (along
with those of various other BHFP projections) in Table 1.

TheBHFP in terms of ! andRe (i.e.,M BH / !"R#
e ) is of course

tightly related to the BHFP in terms of ! andM' (MBH / !"M#
' )

or M' and Re; the near-IR FP relates stellar mass (assuming that
K-band luminosity is a good proxy for stellar mass), effective
radius, and velocity dispersion as Re / !1:53I $0:79

e (Pahre et al.
1998). Using Ie / M' /R

2
e , we can substitute this in equation (5)

and obtain the expected BHFP in terms of ! and M', namely,
M BH / !1:9M 0:58

' . This is quite close to the result of our direct
fitting,M BH / ! 2:2M 0:54

' . The FP of early-type galaxies, in other
words, allows us to relate our two FPs, namely, M BH / !3R1=2

e
and M BH / !2M 1=2

' . Given the tight early-type FP relation be-
tweenM', !, andRe, these two forms of the BHFP are completely
equivalent (the choice between them is purely a matter of con-
venience). We can, in fact, pick any two of the three FP-related
variables as our independent variables for predicting M BH: using
the early-type FP again to transform theBHFP relation in terms of !
andRe to one in terms ofM' andRe, we expectM BH / M1:6

' R$0:8
e ,

similar to the relation we directly fit (see Table 1). Any two of M',
Re, and ! can thus be used to predictMBH according to the BHFP
relations. The tightness of the early-type FP also means that it is
redundant to search for a four-variable correlation (i.e., one of the
formM BH / !"R#

eM
'
' ), sinceM' is itself a function of ! and Re

Fig. 2.—Left: Observed residual in BH mass as a function of host galaxy effective radius Re (top) or stellar mass M' (bottom), at fixed velocity dispersion !
(equivalently, correlation between the residuals in theMBH-! and Re-! orM'-! relations at each !). The fit to this residual correlation is shown with the black lines (&1 !
range in the best-fit correlation shown as dashed lines; note that they are strongly inconsistent with zero correlation), with the slope shown (dotted line shows the least-
squares bisector). The probability of the null hypothesis of no correlation in the residuals (i.e., no systematic dependence ofMBH on Re orM' at fixed !) for the observed
systems is shown (gray Pnull).Middle: Residual inMBH as a function of ! or Re at fixed stellar massM'. Right: Residual inMBH as a function of ! orM' at fixed effective
radiusRe. The observations imply a secondary FP-type correlation at 3 !with respect to each of these variables. [See the electronic edition of the Journal for a color version
of this figure.]
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