Anjan Ananda Sen

Center For Theoretical Physics, Jamia Millia Islamia, New Delhi

Do cosmological observations allow a negative Λ ?

TIFR, Mumbai 23rd September 2022

Outline

- Expanding Universe
- **H**₀ from Planck
- **Distance Ladder and Local Measurement of H**₀
- Hubble Tension
- Early Universe Solution
- Late Time Solution
- **Presence of a -ve** Λ
- Conclusion

Expanding Universe: Friedmann Robertson Walker (FRW) Spacetime

Space is Homogeneous and Isotropic:

 $ds^{2} = dt^{2} - a^{2}(t)\left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + sin^{2}\theta d\phi^{2})\right]$ + Gravity is determined by GR $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$

Equation for the scale factor a(t):

$$3(\frac{\dot{a}}{a})^2 = 8\pi G(\rho_m + \Lambda) - \frac{3k}{a^2}$$
 Friedmann equa

Raychaudhuri Equation

tion

$$H_0 = \frac{\dot{a}}{a}|_{z=0} \qquad q_0 = -\frac{(\ddot{a}/a)}{(\dot{a}/a)^2}|_{z=0}$$

 $3\frac{a}{a} = -4\pi G(\rho_t + 3p_t)$

Expanding FRW Universe

Three Numbers:

 $H_0 = Expansion Rate \longrightarrow age, size of the universe$

 q_0 = Acceleration Rate \longrightarrow nature of gravity, origin, fate of the universe

k = Spatial Curvature \longrightarrow Inflation is true \longrightarrow 0

Standard Candles: Type-la Supernova and Cepheids

Basic Principle of Standard candles: Brightness = Luminosity/Distance²

Type-la Supernova

Thermonuclear explosion of a White-Dwarf star reaching the Chandrasekhar Mass limit

Luminosity = $10^9 L_{\odot}$

Cepheid Stars

Massive Pulsating Stars having correlation between their Time-period and luminosity.

Luminosity = $10^5 L_{\odot}$

Integral part of Cosmic Distance Ladder to measure distances

Accelerating Universe and Dark Energy

Two Teams: Supernova Cosmology Project, High-z Supernova Search Team

Distance Modulus:

$$\mu = m - M = H_0(\frac{d_L(z)}{10Mpc}) + 25$$

Luminosity Distance: $d_L = \frac{c(1+z)}{H_0} \int_0^z \frac{dz}{H(z)/H_0}$

Robert P. Kirshner PNAS 1999

$$\Omega_{m0} = 0.3 \qquad \Omega_{\Lambda 0} = 0.7$$
$$q_0 < 0 \longrightarrow$$

Robert P. Kirshner PNAS 1999

Assuming w = -1, Cosmological Constant Accelerating Universe !!

Accelerating Universe and Dark Energy

Add Other Cosmological Observation:

WMAP(Credit: NASA)

SDSS (credit: Eisenstein et al. (2005)

Cause of Acceleration

$$q_0 = \frac{1}{2} [\Omega_{m0} + (1 + 3w)\Omega_{\Lambda 0}]$$

$$q_0 < 0 \to w < -1/2 \quad \text{(with } \Omega_{\Lambda 0} = 0.7\text{)}$$

Possible Source:

- Cosmological Constant or Vacuum Energy: w = -1
 Fine Tuning Problem, cosmic coincidence problem
- 2) Evolving Dark Energy, scalar field slowly rolling over a potential: $w \neq -1$, $\frac{dw}{dt} \neq 0$

Fine Tuning Problem, Fifth Force Problem, no such scalar field from particle physics

3) Modified Gravity Models: Modification of GR at Large Cosmological Scales

Tightly constrained by recent Gravitational Wave measurements by LIGO Severely Constrained by Local Measurements, e.g Solar System Constraints

Universe After Planck-2018

Six Parameter Concordance ACDM model is exceptionally good fit to the Planck data.

	CMB+BAO+SnIA Derived Parameters
$\Omega_b h^2 = 0.02233 \pm 0.00015$	
$\Omega_c h^2 = 0.1198 \pm 0.0012$	
$100\theta_{MC} = 1.04089 \pm 0.00031$	
$ au = 0.0540 \pm 0.0074$	
$\ln(10^{10}A_{\circ}) = 3.043 \pm 0.014$	
$n_s = 0.9652 \pm 0.0042$	

No evidence for dark energy models beyond Cosmological Constant!!

How CMB Measures H₀?

Three Steps Process:

1) Calculate the Sound Horizon of Last Scattering surface of CMB:

$$r_s = \int_{z^*}^{\infty} \frac{dz}{H(z)} c_s(z)$$

 $z^{*} = \text{Redshift for recombination epoch}$ $c_{s} = \frac{1}{\sqrt{3(1 + 3\Omega_{b}/\Omega_{r})}}$

Depends on pre-recombination physics only

2) Infer the angular size of the sound horizon from the peak spacing in CMB:

$$\theta = \pi / \Delta l$$

3)Calculate the Angular Diameter Distance for the Sound Horizon and infer H(z):

$$D_A = \frac{r_s}{\theta} = \frac{1}{(1+z^*)} \int_0^{z^*} \frac{dz}{H(z)} \longrightarrow \text{Extrapolate H(z) to z=0 and get H_0}$$

In this step, one needs a late time model and Planck uses ACDM

How Local Measurements Determine H₀

Hubble already told us:

 $cz = H_0 d$ + peculiar velocity

Redshift measurements are dominated by peculiar velocities.

To get rid of peculiar velocity effect, one needs go far away.

Distance measurements are more reliable for nearby astrophysical objects.

One needs to connect the two

Cosmic Distance Ladder

 $H_0 = 73.30 \pm 1.04 Km/s/Mpc$

Riess et al: 2112.04510

Hubble Tension

Note:Planck measurement of H0 is bases on Physics of Early UniverseSH0ES measurement of H0 is bases on Astrophysics of StarsTwo are separated by 13.4 Gyr.

Still two measurements agree within 10% which is remarkable!!

Hubble Tension

Di Valentino et al: arXiv:2103.01183

Tension Related To LSS

Constraints on strength of Clustering of Matter

This tension is quantified using the parameter S_{8:}

 $S_8 = \sigma_8 [(\Omega_{m0}/0.3)]^{1/2}$

For **ACDM**:

 $S_8 = 0.832 \pm 0.013$

Planck-2018+CMB-Lensing

 $S_8 = 0.759^{+0.024}_{-0.021}$

Weak Lensing by KiDS-1000

Asgari et al arXiv:2007.15633

~ 3o Tension!!

Possible Solution

Schoneberg et al arXiv:2107.10291

Possible Solution

Early Time Solution (no change in late time physics) : E(z) remains same

 H_0 increases $-> D_A$ decreases $-> r_s$ decreases -> pre-recombination period H(z) increases

Early Dark Energy Solution

• Poulin et al [1811.04083]

 H_0 increases $-> D_A$ decreases $-> r_s$ decreases -> pre-recombination period H(z) increases

Introducing an Early Dark Energy before recombination which decays quickly later

Model: Dissipated Axion Field

 $V(\phi) = V_0 (1 - \cos\phi)^n$ $\ddot{\phi} + (3H + \Gamma(z))\dot{\phi} + V'(\phi) = 0$ $\rho_{rad} + 4H\rho_{rad} = \Gamma \dot{\phi}^2$

Disadvantages:

Highly Fine-Tuned Not consistent with LSS data

Image Credit: T. Karwal

Possible Solution

Late Time Solution (no change in pre-recombination physics) : r_s remains same --->D_A should not change

 $H(z) = H_0 E(z)$

 $E(z) = \sqrt{\Omega_{m0}(1+z)^3 + f(z)}$ $D_A(z) = \frac{1}{(1+z^*)} \int_0^{z^*} \frac{dz}{H(z)} = \frac{1}{(1+z^*)} \frac{1}{H_0} \int_0^{z^*} \frac{dz}{E(z)} \longrightarrow A(z)$

 H_0 increases $-> D_A$ remains the same -> A(z) increases -> Modification in late-time evolution

For a Constant DE EOS $f(z) \propto (1+z)^{3(1+w)}$

E(z) decreases ->(1+w) < 0 -> Phantom DE

Another Interesting Late-Time Modification

Let's Add An Extra Cosmological Constant in Energy Budget:

$$E(z) = [\Omega_{m0}(1+z)^3 + (1 - \Omega_{m0} - \Omega_{\Lambda 0})(1+z)^{3(1+w)} + \Omega_{\Lambda 0}]^{1/2}$$

This is same as adding a non-zero cosmological constant for the Scalar field potential:

$$V(\phi) = F(\phi) + V_0$$

V₀ can be both positive (dS) or negative (AdS)

Another Interesting Late-Time Modification

Find out what is the possible combinations for ($w-\Omega_{\Lambda}$) that give identical BAO/CMB/SnIa measurements as Λ CDM by Planck but with H₀ = 72 km/s/Mpc.

Black,Red, Green $-> D_A$ from BOSSDR12 (z=0.38,0.51,0.61) Pink $-> D_A$ from CMB Last Scattering Surface (z=1100) Dashed $-> D_L$ From SnIa (z=0.5)

Do Observations give hint for $-\Lambda$?

Consider the relevant cosmological data

(AAS, Adil, Sen, arXiv:2112.10641, To Appear in MNRAS)

CMB by Planck BAO data from LSS Snla data Pantheon SH0ES data for H₀

Which one is preferred: DE with dS or AdS ground state or ACDM?

Evolving Dark Energy: Scalar Field rolling over a potential

→ with dS/AdS minimum

 $\overline{\rho}_{de} = \overline{\rho_{\phi}} + \overline{\Lambda} \quad (\overline{\Lambda} > 0 \text{ or } \Lambda < 0)$

Instead of any particular scalar field potential, we use two most popular parameterisations for the scalar field equation of states for ρ_{ϕ} :

 $W_{\phi} = \text{constant} \longrightarrow \text{wCDMCC}$

 $w_{\phi} = w_0 + (1 - a)w_a \longrightarrow \text{cplCDMCC}$

Do Observations give hint for -/?

For wCDMCC

Parameters	CMB	CMB+BAO	CMB+BAO+ H_0
Ω_m	$(0.215) \ 0.200^{+0.049}_{-0.068}$	$(0.2956)0.304 \pm 0.012$	$(0.2793)0.2791 \pm 0.0065$
H ₀ (km/s/Mpc)	$(81.43)87.2^{+9.6}_{-16}$	$(69.6) \ 68.5^{+1.3}_{-1.5}$	$(71.62)71.66 \pm 0.85$
r _d	$(147.2)\ 147.20\pm0.38$	$(147)147.17 \pm 0.22$	$(147)147.01 \pm 0.22$
σ_8	$(0.936)0.970^{+0.085}_{-0.11}$	$(0.8335) 0.818 \pm 0.015$	$(0.8525)0.853 \pm 0.011$
$ au_{re}$	$(0.05548) 0.0550 \pm 0.0025$	$(0.05494) 0.0549 \pm 0.0026$	$(0.05492)0.0541 \pm 0.0026$
$\Omega_{oldsymbol{\phi}}$	$(6.63) 2.80^{+0.17}_{-2.3}$	$(1.584)1.86^{+0.46}_{-1.3}$	$(1.539)1.58^{+0.16}_{-0.87}$
wo	$(-1.035) - 1.47 \pm 0.51$	$(-1.034) - 1.017^{+0.030}_{-0.015}$	$(-1.061) - 1.072^{+0.037}_{-0.015}$
Ω_Λ	$(-5.845) - 2.00^{+2.5}_{-0.18}$	$(-0.8801) - 1.17^{+1.3}_{-0.46}$	$(-0.8182) - 0.86^{+0.87}_{-0.16}$
Ω_{de}	$(0.7849)0.7999^{+0.068}_{-0.049}$	$(0.7043) \ 0.6959^{+0.012}_{-0.012}$	$(0.7206)0.7208^{+0.0065}_{-0.0065}$

CMB+BAO+H ₀						
Model	χ^2	AIC	ln(z)	ΔΑΙΟ	$\Delta ln(z)$	
ΛCDM	2803.04	2869.04	-1427.829	0	0	
wCDMCC	2782.40	2852.40	-1420.259	-16.64	7.561	

Does SH0ES result give hint for -/?

Parameters	$\Lambda \mathrm{CDM}$	wCDMCC	cplCDMCC
Ω_m	$(0.303)0.304^{+0.0039}_{-0.0042}$	$(0.287)0.288^{+0.0063}_{-0.0071}$	$(0.292)0.289^{+0.0055}_{-0.0061}$
$H_0(km/s/Mpc)$	$(68.32)68.2^{+0.31}_{-0.32}$	$(70.34)70.32^{+0.82}_{-0.77}$	$(69.89)70.25^{+0.67}_{-0.69}$
r_d	$(147.2)147.3^{+0.2}_{-0.22}$	$(147.3)147.1^{+0.21}_{-0.22}$	$(147.2)147.1^{+0.2}_{-0.21}$
σ_8	$(0.804) 0.805^{+0.0026}_{-0.0026}$	$(0.833)0.834^{+0.0096}_{-0.0097}$	$(0.835) 0.835 \substack{+0.0086 \\ -0.0088}$
${ au}_{re}$	$(0.0548) 0.0556^{+0.0025}_{-0.0026}$	$(0.0554) 0.0547^{+0.0028}_{-0.0025}$	$(0.0542)0.0547^{+0.0026}_{-0.0027}$
Ω_{ϕ}	_	$(3.191) \ 2.504^{+0.28}_{-1.9}$	$(1.206) \ 1.492^{+0.025}_{-0.84}$
Ω_{Λ}	—	$(-2.479) - 1.792^{+1.90}_{-0.29}$	$(-0.498) - 0.781^{+0.85}_{-0.03}$
w_0	-	$(-1.02) - 1.04^{+0.035}_{-0.013}$	$(-1.02) - 1.03^{+0.051}_{-0.039}$
w_a	-	-	$(-0.12) - 0.10^{+0.20}_{-0.14}$

CMB+BAO+SN+H₀

Model	χ^2	AIC	ln(z)	ΔAIC	$\Delta ln(z)$
ЛСDМ	3835.73	3901.73	-1944.75	0	0
wCDMCC	3823.58	3893.58	-1940.96	-8.15	+3.79
cplCDMCC	3824.29	3896.29	-1942.82	-5.44	+1.93

Does SH0ES result give hint for -/?

CMB+BAO+SN+H₀

Does SH0ES result give hint for -/?

$$\frac{d\rho_{de}}{dz} < 0$$

Energy Conservation eqn:

$$\frac{d\rho_{de}}{dz} = \frac{3(1+w_{de})\rho_{de}}{(1+z)}$$

 $\rho_{de} < 0 \rightarrow (1 + w_{de}) > 0$

$$\rho_{de} > 0 \rightarrow (1 + w_{de}) < 0$$

Phantom Crossing !!

What Happens When We Take A Scalar Field?

One Possible Scalar field model from Axion:

 $V(\phi) = V_0[1 + pCos(\frac{\phi}{f})] \quad \text{Cicoli et al (2019)}$

- $p > 1 \longrightarrow AdS minimum$
- $p < 1 \longrightarrow dS minimum$

But the EOS is always non-phantom: w > -1

Ruchika, Adil, Dutta, Mukherjee, AAS, ArXiv:2005.08813

CMB by Planck (Compressed Likelihood involving Shift Parameter and Acoustic Scale) BAO data from LSS Snla data Pantheon Cosmic Chronometer data for H(z) SH0ES data for H₀ Growth Data ($f\sigma_8$) H0LiCOW data for Strong Lensing

	Model	χ^2
	P <1	80.10
ata - H₀ -CMB	P >1	80.34
	ACDM	88.93

No. Of Parameters for $\Lambda CDM = 5$ No of Parameters for P < 1, P > 1 = 8

	Model	χ^2
	P <1	84.69
All Data - CMB	P >1	84.63
	ЛСDМ	98.49

	Model	χ^2
	P <1	86.33
All Data	P >1	86.32
	ЛСDМ	104.87

What Happens When We Take A Scalar Field?

	Model	χ^2	No. Of parameters	AIC	ΔAIC	Ln Z	ΔLn Z
	P <1	86.33	8	102.33	-12.56	-64.95	2.6
All Data	P >1	86.32	8	102.32	-12.55	-64.81	2.7
	ACDM	104.87	5	114.87	— —	-67.54	— —

For Both P <1 and P >1

 $H_0 = 71.3 \pm 0.0039$ km/s/Mpc

 $\sigma_8 = 0.75 \pm 0.022$

 $\Omega_{m0} = 0.298 \pm 0.007$

Consequence of $-\Lambda$?

End of Expansion

Andrei, Ijjas and Steinhardt

arXiv: 2201:07704

If dark energy is a form of quintessence driven by a scalar field ϕ evolving down a monotonically decreasing potential V (ϕ) that passes sufficiently below zero, the universe is destined to undergo a series of smooth transitions: the currently observed accelerated expansion will cease; soon thereafter, expansion will come to end altogether; and the universe will pass into a phase of slow contraction. In this paper, we consider how short the remaining period of expansion can be given current observational constraints on dark energy. We also discuss how this scenario fits naturally with cyclic cosmologies and recent conjectures about quantum gravity.

Conclusion

1) The Λ CDM seems to be in Serious Trouble: Now the tension between Local measurement and CMB measurement has reached 5 σ .

- 2) Beyond ACDM model is certainly needed if Hubble tension is indeed valid.
- 3) Whether the new physics is at Early Universe (Pre-Recombination) or at Late Universe?
- 4) Both are exciting but still not fully understood
- 5) Need to reconcile with the other data like LSS
- 6) May be a **Combination of Two** is the best possible solution, but still no work in that direction
- Till now, ΛCDM is the best possible scenario. For scalar fields, potentials with zero minimum (no extra Λ) is considered.
- 8) But allowing a dS/AdS minima can change the situation drastically.
- 9) With the inclusion of Local Measurement for $H_{0,}$ it seems fields with AdS minima may be a viable option for DE.
- 10) If the existence of negative Λ is confirmed, that will be truly exciting from both theoretical and observational point of view.

Phenomenological Phantom Crossing DE model:

Valentino, Mukherjee, AAS arXiv:2005.12587

$\rho_{de}(z) = \rho_0 [1 + \alpha (a - a_m)^2 + \beta (a - a_m)^3]$

$\mathbf{a} = \mathbf{a}_m$ there is an extrema

Drawback: S₈ not consistent with LSS

Parameters	CMB+Lensing	CMB+R19	CMB+BAO	CMB+Pantheon	CMB+All
a _m	< 0.276	> 0.830	0.859 ± 0.064	$0.917^{+0.054}_{-0.029}$	$0.851^{+0.048}_{-0.031}$
α	< 17.7	< 8.62	7.3 ± 3.9	< 5.10	< 3.32
β	< 16.7	16.0 ± 7.5	16.1 ± 7.8	$10.6^{+4.4}_{-7.9}$	$7.7^{+2.2}_{-4.7}$
$\Omega_c h^2$	0.1194 ± 0.0014	0.1196 ± 0.0014	0.1201 ± 0.0013	0.1198 ± 0.0014	0.1198 ± 0.0011
$\Omega_b h^2$	0.02243 ± 0.00014	0.02243 ± 0.00016	0.02238 ± 0.00014	0.02240 ± 0.00015	0.02240 ± 0.00014
$100\theta_{MC}$	1.04097 ± 0.00031	1.04096 ± 0.00032	1.04092 ± 0.00030	1.04095 ± 0.00032	1.04093 ± 0.00030
τ	0.0521 ± 0.0076	0.0532 ± 0.0080	$0.0539^{+0.0070}_{-0.0080}$	0.0529 ± 0.0076	0.0521 ± 0.0075
n_s	0.9667 ± 0.0042	0.9665 ± 0.0045	0.9652 ± 0.0043	0.9659 ± 0.0045	0.9655 ± 0.0038
$\ln(10^{10}A_s)$	3.038 ± 0.015	3.041 ± 0.016	3.044 ± 0.016	3.041 ± 0.016	3.039 ± 0.015
$H_0[\rm km/s/Mpc]$	> 92.8	74.2 ± 1.4	$71.0^{+2.9}_{-3.8}$	71.7 ^{+2.2}	70.25 ± 0.78
σ_8	$1.012^{+0.051}_{-0.009}$	0.881 ± 0.018	$0.848_{-0.034}^{+0.027}$	$0.860^{+0.026}_{-0.033}$	0.838 ± 0.011
S_8	$0.752^{+0.009}_{-0.025}$	0.818 ± 0.016	0.826 ± 0.019	0.828 ± 0.016	0.823 ± 0.011
r _{drag}	$147.19\substack{+0.28\\-0.26}$	147.14 ± 0.30	147.06 ± 0.29	147.10 ± 0.30	147.10 ± 0.25

ACDM	CMB+Lensing	CMB+R19	CMB+BAO	CMB+Pantheon	CMB+All
$\chi^2_{bf,tot}$	2782.040	2791.838	2779.712	3807.500	3840.406
$\chi^2_{bf,CMB}$	2778.122	2768.113	2770.060	2767.697	2779.508
$\chi^2_{bf, \text{lensing}}$	8.981	_	_	_	9.510
$\chi^2_{bf,R19}$	_	18.117	_	—	16.414
$\chi^2_{bf,BAO}$	_	_	6.514	_	5.271
$\chi^2_{bf,Pantheon}$	_	_	_	1035.268	1034.768
Phantom Crossing	CMB+Lensing	CMB+R19	CMB+BAO	CMB+Pantheon	CMB+All
$\chi^2_{bf,tot}$	2776.610	2765.556	2775.204	3805.278	3828.424
$\chi^2_{bf,CMB}$	2770.124	2762.965	2763.945	2765.943	2775.585
$\chi^2_{bf, \text{lensing}}$	8.145	_	_	_	8.702
$\chi^2_{bf,R19}$	_	0.307	_	_	8.275
$\chi^2_{bf,BAO}$	_	_	5.321	_	5.702
$\chi^2_{bf, Pantheon}$	_	_	_	1036.603	1035.971

Updated Result with inclusion of SPT-3G (300 < l < 3000) data SPTPol measurement of $c_l^{\phi\phi}$ (100 < l < 2000)

	Phantom-crossing Dark Energy (PDE)						
Parameter	Base + LSS	$\mathrm{Base} + \mathrm{LSS} + \mathrm{S}_8$	$\mathrm{Base} + \mathrm{LSS} + \mathrm{S}_8 + \mathrm{H}_0$				
a_m	$0.774_{-0.020}^{+0.037}$	$0.774_{-0.020}^{+0.038}$	$0.773^{+0.044}_{-0.025}$				
α	$8.2^{+2.6}_{-3.7}$	$8.0^{+2.5}_{-3.6}$	$6.5^{+1.6}_{-2.8}$				
β	$14.2_{-8.7}^{+6.7}$	$14.1_{-8.4}^{+6.8}$	$10.2^{+4.5}_{-6.9}$				
$100\omega_b$	2.246 ± 0.019	2.245 ± 0.018	2.246 ± 0.018				
$10\omega_{cdm}$	1.165 ± 0.015	1.166 ± 0.011	1.163 ± 0.010				
H_0	$75.70^{+2.05}_{-2.32}$	$75.60^{+1.93}_{-2.12}$	73.92 ± 1.09				
au	0.057 ± 0.005	0.057 ± 0.005	0.057 ± 0.005				
$\ln(10^{10}A_s)$	3.038 ± 0.012	3.038 ± 0.011	3.037 ± 0.011				
n_s	0.974 ± 0.006	0.974 ± 0.005	0.975 ± 0.005				
$r_{ m drag}$	$147. \pm 0.38$	147.91 ± 0.31	147.97 ± 0.30				
Ω_m	0.244 ± 0.015	0.245 ± 0.013	0.255 ± 0.007				
σ_8	0.854 ± 0.022	0.855 ± 0.021	0.839 ± 0.013				
S_8	0.770 ± 0.017	0.771 ± 0.010	0.774 ± 0.010				

Both H₀ and S₈ Problems Solved in a Single Model Having Phantom Crossing. Phantom Crossing Detected at 5σ (nonzero a_m parameter).

Chudaykin, Gorbunova and Nedelko : arXiv:2203.03666

The DE is surely have an AdS component

ound Horizon at Drag Epoch

Tension w

Bernal, Verde, Riess, JCAP 2016, Evslin, AAS, Ruchika, PRD 2017

