Primordial Black Holes and Stochastic Inflation beyond slow roll State of the Universe (SOTU) Seminar © TIER, Mumbri

Swagat Saurav Mishra

Postdoctoral Research Fellow

Centre for Astronomy and Particle Theory (CAPT) School of Physics and Astronomy, University of Nottingham.

With Edmund J. Copeland and Anne M. Green

 20^{th} October 2023

Primordial Black Holes (PBHs)

Candidates for Dark Matter, Hawking Radiation, Baryogenesis, Reheating, seeds of SMBHs etc. Extremely interesting rich phenomenology!

Inflation, Quantum fluctuations and PBHs

$\mathbf{CMB} \ \longrightarrow \ \mathbf{LSS}$

- Adiabatic $\zeta(\vec{x})$
- $\bullet \ {\rm Almost} \ {\bf scale-invariant}$

$$\mathcal{P}_{\zeta} = A_S \left(\frac{k}{k_*}\right)^{n_S}$$

$$A_S \simeq 2 \times 10^{-9} \,, \ n_{\scriptscriptstyle S} \simeq -0.035$$

• Nearly Gaussian

$$P[\zeta] = \mathcal{B} \exp\left[\frac{-\zeta^2}{2\sigma^2} \left(1 + \mathbf{f_{NL}} \zeta + \ldots\right)\right]$$

→ LSS, CMB ⇒ Large-scale tiny quantum fluctuations → PBHs, $GW^{(2)}s$ ⇒ Small-scale larger fluctuations ?

Source of Inflation: A Scalar Field

Density $\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$

Pressure $p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \left(\frac{8\pi G}{3}\right)\rho_{\phi},$$

$$\frac{\ddot{a}}{a} = -\left(\frac{4\pi G}{3}\right)\left(\rho_{\phi} + 3\,p_{\phi}\right)$$

Condition for Inflation

$$\dot{\phi}^2 < V(\phi)$$

Motion of the scalar field is governed by

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

 $\dot{\phi}^2 \ll V(\phi) \Rightarrow$ Nearly Exponential expansion $a \sim e^{Ht}$ at the background level.

Full System during Inflation

System = Gravity
$$(g_{\mu\nu})$$
 + Scalar Field (ϕ)

$$S[g_{\mu\nu},\phi] = \int d^4x \sqrt{-g} \left(\frac{m_p^2}{2} R - \frac{1}{2} \partial_\mu \phi \,\partial_\nu \phi \,g^{\mu\nu} - V(\phi) + \dots \right)$$

During Inflation, the metric takes the form

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t) \left[\left(e^{2\Psi(t,\vec{x})} \,\delta_{ij} + h_{ij}(t,\vec{x}) \right) \,\mathrm{d}x^i \mathrm{d}x^j \right]$$

In particular, two light fields are guaranteed to exist –

O Comoving Curvature Perturbation

$$-\boldsymbol{\zeta}(t,\vec{x}) = \Psi + \frac{1}{\sqrt{2\,\epsilon_H}} \frac{\delta\phi}{m_p}$$

(Later becomes density and temperature fluctuations)

2 Tensor Perturbation (Transverse, traceless $h_{ij}(t, \vec{x})$ – relic Gravitational Waves)

Power-spectra: Linear Perturbation Theory

During slow-roll (**SR**) inflation,
$$\epsilon_H, |\eta_H| \ll 1$$

where
$$\epsilon_H = -\frac{\dot{H}}{H^2}$$
, $\eta_H = \epsilon_H - \frac{1}{2} \frac{\mathrm{dln}\epsilon_H}{\mathrm{d}N}$

Primordial Scalar power-spectrum at least at large scales –

$$\mathcal{P}_{\zeta} = \frac{1}{8\pi^2} \left(\frac{H}{m_p}\right)^2 \frac{1}{\epsilon_H} = A_S \left(\frac{k}{k_*}\right)^{n_S}$$

From CMB observations,

$$A_s = 2.1 \times 10^{-9}$$

Physical wavelength $\lambda_p = \frac{a}{k}$ CMB pivot scale $k_* = 0.05 \text{ Mpc}^{-1}$

Scalar spectral index $n_s \simeq -0.035$ Small red tilt

 \Rightarrow Tiny fluctuations that are nearly scale-invariant

What we know from Observations

CMB probes scales $k \in [0.0005, 0.5]$ Mpc⁻¹ $\Rightarrow \Delta N \simeq 7$

Small-scale power spectrum is not constrained!

Possibility of enhancement of small-scale fluctuations!

**Green and Kavanagh, J. Phys. G 48 (2021) 4, 043001

Single-field Inflation beyond the CMB Window

\Rightarrow Scope for non-trivial small-scale dynamics

CMB scales : $P_{\zeta} \sim k^{-0.035}$ (Slightly red – tilted); $\eta_H \simeq -0.018$ Small-scale growth : $P_{\zeta} \sim k^{n_s} (\leq 4)$ (Blue – tilted); $\eta_H \ge 3/2$

**Byrnes et. al JCAP 06(2019) 028

Large Quantum Fluctuations

Is Breakdown of scale-invariance at small-scales

$$\epsilon_H = -\frac{\mathrm{dln}H}{\mathrm{d}N}, \ \eta_H = \epsilon_H - \frac{1}{2} \frac{\mathrm{dln}\epsilon_H}{\mathrm{d}N} \ ; \ \mathrm{N} = \mathrm{ln}(\mathrm{a})$$

Breakdown of Gaussian nature of primordial fluctuations

For $\zeta \gg 1$

$$P[\zeta] \neq \mathcal{B} \exp\left[\frac{-\zeta^2}{2\int_{k_1}^{k_2} \mathrm{dln}k \, \mathcal{P}_{\zeta}(k)} \left(1 + \boldsymbol{f_{\mathrm{NL}}} \, \zeta + \boldsymbol{g_{\mathrm{NL}}} \, \zeta^2 + ...\right)\right]$$

**Celoria et. al JCAP 06 (2021) 051

Breakdown of Scale-invariance via feature

A feature: an inflection point or a local bump/dip at low scales slows down the inflaton

 \Rightarrow Breaking of scale invariance!!

At small scales $\epsilon_H \ll 1$, $\eta_H \gtrsim 3$

Violation of slow-roll

Criteria for PBH from single field Inflation–

- Large scales satisfying with CMB constraints.
- Intermediate scale feature to enhance power for PBH formation.
- Successful Reheating mechanism.

**Motohashi, Hu PRD 96(2017) 6, Cole et. al arXiv:2304.01997

Computing Power spectrum

$$\mathcal{P}_{\zeta}(k) = \frac{k^3}{2\pi^2} |\zeta_k|^2 \bigg|_{k < < aH}$$

Mukhanov-Sasaki variable $v_k = z \times \zeta_k$; $z = am_p \sqrt{2\epsilon_H}$ satisfies the MS equation:

$$\frac{\mathrm{d}^2 v_k}{\mathrm{d}N^2} + (1 - \epsilon_H) \frac{\mathrm{d}v_k}{\mathrm{d}N} + \left[\left(\frac{k}{aH}\right)^2 + M_{\mathrm{eff}}^2(N) \right] v_k = 0$$

where the **effective mass term** is

$$M_{\text{eff}}^2 = -(aH)^2 \left[2 + 2\epsilon_H + 2\epsilon_H^2 - 3\eta_H + \eta_H^2 - 3\epsilon_H \eta_H - \frac{\mathrm{d}\eta_H}{\mathrm{d}N} \right]$$

Background dynamics dependent and complicated!

Typical Inflationary Dynamics

Swagat Saurav Mishra, CAPT, Nottingham P

Statistics of Primordial Fluctuations

Is the Primordial PDF $P[\zeta]$ Gaussian or Non-Gaussian?

Non-Gaussian for $\zeta \gg 1$ in general

PBHs from Rare Peaks: Sensitive to the tail of PDF

Non-Perturbative Methods for full PDF

Approach - I

Classical Non-linear δN formalism

Approach - II

Semi-classical Approximation

Approach - III

Stochastic Inflation

Stochastic Inflation: Effective IR description

Coarse-grained description

$$\phi = \mathbf{\Phi} + \varphi \ , \ \pi_{\phi} = \mathbf{\Pi} + \pi$$

Langevin Equations (Non-linear)

$$\frac{\mathrm{d}\boldsymbol{\Phi}}{\mathrm{d}N} = D_{\boldsymbol{\Phi}} + \boldsymbol{\xi}_{\phi}; \quad \frac{\mathrm{d}\boldsymbol{\Pi}}{\mathrm{d}N} = D_{\boldsymbol{\Pi}} + \boldsymbol{\xi}_{\pi}$$

$$\frac{\mathrm{d}F_{\mathrm{cg}}}{\mathrm{d}N}\,=\,\mathbf{Drift}_{\mathrm{cl}}\,+\,\mathbf{Diffusion}_{\mathrm{Q}}$$

Gaussian White noise statistics

$$\langle \boldsymbol{\xi}_i(N) \, \boldsymbol{\xi}_j(N') \rangle = \Sigma_{ij}(N) \, \delta_D(N-N')$$

 $\boldsymbol{\Sigma}_{ij}(N) = (1 - \epsilon_H) \frac{k^3}{2\pi^2} \phi_{i_k}(N) \phi_{j_k}^*(N)$

Noise Matrix elements

Coarse-graining scale $k = \sigma a H$, $\sigma \ll 1$

H **A. A. Starobinsky (1986)

PDF from first-passage time analysis

$$\frac{\mathrm{d}\boldsymbol{\Phi}}{\mathrm{d}N} = D_{\boldsymbol{\Phi}} + \boldsymbol{\xi}_{\phi}; \qquad \frac{\mathrm{d}\boldsymbol{\Pi}}{\mathrm{d}N} = D_{\boldsymbol{\Pi}} + \boldsymbol{\xi}_{\pi}$$

First-passage no. of e-folds \mathcal{N} and PDF $P(\mathcal{N})$

Subject to boundary conditions

- **1** Reflecting boundary at $\Phi = \phi_{en}$: $\frac{\partial}{\partial \Phi} P(\mathcal{N}) \Big|_{\Phi = \phi_{en}} = 0$
- **2** Absorbing boundary at $\Phi = \phi_{ex}$: $P(\mathcal{N})\Big|_{\Phi=\phi_{ex}} = \delta_D(\mathcal{N})$

- Numerical Simulations
- Fokker-Planck Equation (for analytical treatment)

Langevin \longrightarrow Fokker-Planck Equation

PDF of first-passage number of e-foldings \mathcal{N} : Adjoint FPE

$$\frac{\partial P}{\partial \mathcal{N}} = \left[D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} + \frac{1}{2} \Sigma_{\phi\phi} \frac{\partial^2}{\partial \Phi^2} + \Sigma_{\phi\pi} \frac{\partial^2}{\partial \Phi \partial \Pi} + \frac{1}{2} \Sigma_{\pi\pi} \frac{\partial^2}{\partial \Pi^2} \right] P(\mathcal{N})$$

 $P(\mathcal{N}) \equiv P_{\Phi,\Pi}(\mathcal{N})$

Stochastic $\delta \mathcal{N}$ Formalism

Statistics of $\mathcal{N} \to$ Statistics of $\zeta_{cg} : P[\mathcal{N}] \longrightarrow P[\zeta_{cg}]$

$$\boxed{\zeta_{\rm cg} \equiv \zeta(\mathbf{\Phi}) = \mathcal{N} - \langle \mathcal{N}(\mathbf{\Phi}) \rangle}; \quad \langle \mathcal{N}(\mathbf{\Phi}) \rangle = \int_0^\infty \mathcal{N} P(\mathcal{N}) \, \mathrm{d}\mathcal{N}$$

$$\beta \sim \int_{\zeta_c}^{\infty} P(\zeta_{\rm cg}) \,\mathrm{d}\zeta_{\rm cg}$$

**Pattison et. al JCAP 04 (2021) 080

Quasi de Sitter approximation

Mode functions $\{\phi_k, \pi_k\} \longrightarrow dS$

$$\Sigma_{\phi\phi} \simeq \left(\frac{H}{2\pi}\right)^2, \quad \Sigma_{\phi\pi}, \ \Sigma_{\pi\pi} \ll \Sigma_{\phi\phi}$$

The Langevin equations become

$$\frac{\mathrm{d} \mathbf{\Phi}}{\mathrm{d} N} = D_{\mathbf{\Phi}} + \frac{H}{2\pi} \, \boldsymbol{\xi} \, ; \quad \frac{\mathrm{d} \mathbf{\Pi}}{\mathrm{d} N} = D_{\mathbf{\Pi}}$$

with single Gaussian white noise $\boldsymbol{\xi}$ satisfying

$$\langle \boldsymbol{\xi}(N) \rangle = 0$$
, and $\langle \boldsymbol{\xi}(N) \boldsymbol{\xi}(N') \rangle = \delta_D \left(N - N' \right)$

Adj. Fokker-Planck Equation becomes

$$\frac{\partial P(\mathcal{N})}{\partial \mathcal{N}} = \left[\frac{H^2}{8\pi^2}\frac{\partial^2}{\partial \Phi^2} + D_{\Phi}\frac{\partial}{\partial \Phi} + D_{\Pi}\frac{\partial}{\partial \Pi}\right]P(\mathcal{N})$$

PDF for flat Quantum Well: Pure diffusion

$$V(\mathbf{\Phi}) = V_0 \,, \quad H^2 \simeq \frac{V_0}{3m_p^2}$$

Leading to

PDF
$$P(\mathcal{N}) = \sum_{n=0}^{\infty} A_n(\Phi) e^{-\Lambda_n \mathcal{N}}$$
with $\Lambda_n = (2n+1)^2 \frac{\pi^2}{4} \frac{1}{\mu^2}$

$$A_n = (2n+1) \frac{\pi}{\mu^2} \sin\left[(2n+1)\frac{\pi}{2} \left(\frac{\Phi}{\Delta \Phi}\right)\right]$$
Control Parameter : $\mu = 2\sqrt{2}\pi \frac{\Delta \phi_{well}}{H}$

**Pattison et. al JCAP 10(2017) 046; Ezquiaga et. al. JCAP 03(2020) 029

Additional Complications

• General form of the feature

$$V(\phi) = V_0 \pm \frac{1}{2} m^2 \phi^2 \pm \frac{\mu}{2} \phi^3 + \frac{\lambda}{4} \phi^4 \pm \dots$$

• When inflaton **drift** is included

$$\frac{\partial}{\partial \mathcal{N}} P(\mathcal{N}) = \left[\frac{\mathbf{\Sigma}_{\phi\phi}}{2} \frac{\partial^2}{\partial \Phi^2} + \left(D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} \right) \right] P(\mathcal{N})$$

• Beyond the de Sitter mode functions for noise

$$\frac{\partial P}{\partial \mathcal{N}} = \left[D_{\mathbf{\Phi}} \frac{\partial}{\partial \mathbf{\Phi}} + D_{\mathbf{\Pi}} \frac{\partial}{\partial \mathbf{\Pi}} + \frac{\mathbf{\Sigma}_{\phi\phi}}{2} \frac{\partial^2}{\partial \mathbf{\Phi}^2} + \mathbf{\Sigma}_{\phi\pi} \frac{\partial^2}{\partial \mathbf{\Phi} \partial \mathbf{\Pi}} + \frac{\mathbf{\Sigma}_{\pi\pi}}{2} \frac{\partial^2}{\partial \mathbf{\Pi}^2} \right] P(\mathcal{N})$$

SSM, Edmund J. Copeland and Anne M. Green,

"Primordial black holes and stochastic inflation beyond slow roll: I - Noise Matrix Elements"

[arXiv:2303:17375]

Computing Noise Matrix Elements

$$\Sigma_{ij}(N) = (1 - \epsilon_H) \frac{k^3}{2\pi^2} \phi_{i_k}^*(N) \phi_{j_k}(N) \bigg|_{k = \sigma aH}; \qquad \phi_{i_k} \equiv \{\phi_k, \pi_k\}$$
$$\phi_k(N) = \frac{v_k(N)}{a}, \quad \pi_k(N) = \frac{\mathrm{d}\phi_k}{\mathrm{d}N}$$

Mukhanov-Sasaki variable v_k in spatially-flat gauge

$$\frac{\mathrm{d}^2 v_k}{\mathrm{d}N^2} + (1 - \epsilon_H) \frac{\mathrm{d}v_k}{\mathrm{d}N} + \left[\left(\frac{k}{aH}\right)^2 + M_{\mathrm{eff}}^2 \right] v_k = 0$$

where the **effective mass term** is

$$M_{\text{eff}}^2 (aH)^{-2} = 2 + 2\epsilon_H + 2\epsilon_H^2 - 3\eta_H + \eta_H^2 - 3\epsilon_H \eta_H - \frac{\mathrm{d}\eta_H}{\mathrm{d}N}$$

Background dynamics dependent and complicated

Numerical Noise Matrix Elements

Potential with a tiny Gaussian bump/dip feature

$$V(\phi) = V_0 \frac{\phi^2}{\phi^2 + M^2} \left[1 \pm A \, \exp\left(-\frac{1}{2} \left(\frac{\phi - \phi_0}{\Delta \phi}\right)^2\right) \right]$$

 Σ_{ij} evolves and swaps hierarchy!

**Mishra et. al JCAP 04(2020) 007

Analytical appprox: Sharp transitions

Assume $|\epsilon_H| \ll |\boldsymbol{\eta}_H|$ and $\epsilon_H \ll 1$ (qdS approx.)

$$\Rightarrow \boxed{-M_{\text{eff}}^2 (aH)^{-2} \simeq 2 - 3\eta_H + \eta_H - \frac{1}{aH} \eta_H}$$

And $\eta_H \rightarrow \text{combination of Step functions}$

$$\boldsymbol{\eta}_{\boldsymbol{H}}(\tau) = \eta_1 + (\eta_2 - \eta_1) \,\,\Theta(\tau - \tau_1)$$

For which

$$-M_{\rm eff}^2 (aH)^{-2} \simeq \mathcal{A} \tau \, \delta_D(\tau - \tau_1) + \left(\nu_1^2 - \frac{1}{4}\right) + \left(\nu_2^2 - \nu_1^2\right) \, \Theta(\tau - \tau_1)$$

Where the strength of transition is $|\mathcal{A} = \eta_2 - \eta_1|$ and

Order of Hankel
$$\left| \nu_{1,2}^2 = \left(\frac{3}{2} - \eta_{1,2} \right)^2 \right|$$

Results from Analytical Techniques

$$\eta_{H}(\tau) = \eta_1 + (\eta_2 - \eta_1) \Theta(\tau - \tau_1)$$
, Conformal time $\tau = \frac{-1}{aH}$

$$\eta_1 \simeq -0.02; \qquad \eta_2 \simeq 3.3$$

Swagat Saurav Mishra, CAPT, Nottingham

PBHs and Stochastic Inflation

Primary Conclusions

• During **SR-I** phase,
$$\Sigma_{\phi\phi}^{\text{SR}} \simeq \left(\frac{H}{2\pi}\right)^2$$

$$\boldsymbol{\Sigma}_{\boldsymbol{\phi}\boldsymbol{\phi}}: |\boldsymbol{\Sigma}_{\boldsymbol{\phi}\boldsymbol{\pi}}|: \boldsymbol{\Sigma}_{\boldsymbol{\pi}\boldsymbol{\pi}} \simeq 1: \left| \nu_1 - \frac{3}{2} \right|: \left(\nu_1 - \frac{3}{2} \right)^2$$

2 Immediately after the transition, $\Sigma_{ij} \propto e^{-2\mathcal{A}N}$, and

$$\Sigma_{\phi\phi}: |\Sigma_{\phi\pi}|: \Sigma_{\pi\pi} \simeq 1: \mathcal{A}: \mathcal{A}^2$$

3 During **CR** phase,
$$\Sigma_{\phi\phi}^{\text{CR}} \simeq 2^{2(\nu_2 - \nu_1)} \left[\frac{\Gamma(\nu_2)}{\Gamma(\nu_1)}\right]^2 \sigma^{2(\nu_1 - \nu_2)} \Sigma_{\phi\phi}^{\text{SR}}$$

$$\mathbf{\Sigma}_{\boldsymbol{\phi}\boldsymbol{\phi}}: |\mathbf{\Sigma}_{\boldsymbol{\phi}\pi}|: \mathbf{\Sigma}_{\pi\pi} \simeq 1: \left| \nu_2 - \frac{3}{2} \right|: \left(\nu_2 - \frac{3}{2} \right)^2$$

 \Rightarrow Strongest diffusion during Constant-Roll epoch!

What is the nature of PDF $P[\zeta]$? Work in Progress

$PBHs \longrightarrow Large QFs$ $\Rightarrow Sensitive to the tail$

(Fokker-Planck Equation)

Noise-Matrix Elements

$$\frac{\partial P}{\partial \mathcal{N}} = \left[D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} + \frac{1}{2} \Sigma_{\phi\phi} \frac{\partial^2}{\partial \Phi^2} + \Sigma_{\phi\pi} \frac{\partial^2}{\partial \Phi \partial \Pi} + \frac{1}{2} \Sigma_{\pi\pi} \frac{\partial^2}{\partial \Pi^2} \right] P(\mathcal{N})$$

Caveats

- Mode functions evolved in a fixed (deterministic background). **Figueroa et. al 2021
- 2 Computed in spatially-flat gauge. **Pattison et. al 2019
- Only a single transition was considered analytically (duality).
- **(4)** Both Φ and Π were treated stochastically. **Tomberg 2022
- **5** β_{PBH} in terms of ζ rather than δ . **Tada, Vennin 2020

Questions & Comments are most welcome.

This is my second SOTU talk! Looking forward to visiting TIFR in-person in the near future..