The observer-dependence of the Hubble parameter: a covariant perspective

Jessica Santiago

In collaboration with Roy Maartens, Chris Clarkson, Basheer Kalbouneh and

Christian Marinoni

Leung Center for Cosmology and Particle Astrophysics National Taiwan University

January, 2024

Why do we care?

A universe with a highly homogeneous and isotropic beginning necessarily keeps that way along its evolution?

This is an *open question* which, together with current tensions challenging the standard model, highlights the importance of **testing the cosmological principle**.

Evidence for anisotropies in the

Hubble parameter

Hints of FLRW Breakdown from Supernovae

Chethan Krishnan,^{1,*} Roya Mohayaee,^{2,†} Eoin Ó Colgáin,^{3,4,‡} M. M. Sheikh-Jabbari,^{5,§} and Lu Yin^{3,4,¶}

PHYSICAL REVIEW D 107, 023507 (2023)

Multipole expansion of the local expansion rate

Basheer Kalbouneh[®], ^{*}Christian Marinoni,[†] and Julien Bel[†] Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

stronomy & Astrophysics manuscript no. Migkas_etal_21 021-03-26 ©ESO 202

Cosmological implications of the anisotropy of ten galaxy cluster scaling relations

K. Migkas¹, F. Pacaud¹, G. Schellenberger², J. Erler^{1,3}, N. T. Nguyen-Dang⁴, T. H. Reiprich¹, M. E. Ramos-Ceja⁵ and L. Lovisari^{2,6}

PAPER

A new way to test the Cosmological Principle: measuring our peculiar velocity and the large-scale anisotropy independently

Tobias Nadolny¹, Ruth Durrer¹, Martin Kunz¹ and Hamsa Padmanabhan¹ Published 4 November 2021 • © 2021 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2021, November 2021

arXiv > astro-ph > arXiv:2212.13569

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 27 Dec 2022]

Potential signature of a quadrupolar Hubble expansion in Pantheon+ supernovae

Jessica A. Cowell, Suhail Dhawan, Hayley J. Macpherson

And many others...

Evidence for a dipole in the

deceleration parameter

A&A 631, L13 (2019) Letter to the Editor

Evidence for anisotropy of cosmic acceleration

Jacques Colin¹, Roya Mohayaee¹, 🔟 Mohamed Rameez² and 🔟 Subir Sarkar³

Physics of the Dark Universe Volume 40, May 2023, 101224

Testing Λ CDM cosmology in a binned universe: Anomalies in the deceleration parameter

Erick Pastén 🝳 🖾 , Víctor H. Cárdenas 🖂

arXiV > astro-ph > arXiv:2212.13569

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 27 Dec 2022]

Potential signature of a quadrupolar Hubble expansion in Pantheon+ supernovae

Jessica A. Cowell, Suhail Dhawan, Hayley J. Macpherson

Do supernovae indicate an accelerating universe?

Roya Mohayaee, Mohamed Rameez & Subir Sarkar 🖂

More analysis required...

The European Physical Journal Special Topics 230, 2067–2076 (2021) Cite this article

Two different theoretical approaches

MOO

N75

FLRW

FLRW

In the FLRW case, we have:

$$1+z=rac{a(t)}{a(t_0)}=z(t)\;.$$

By making use of the photon travelled distance, we obtain a redshift-distance relation given by:

$$z(d) = H_0 d + rac{2+q_0}{2} d^2 + \cdots$$

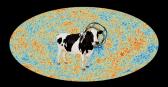
where the Hubble and deceleration parameters are defined as:

$$H(t)=rac{\dot{a}(t)}{a(t)}, \qquad q(t)=-rac{a~\ddot{a}(t)}{\dot{a}^2(t)}=-\left(1+rac{\dot{H}}{H^2}
ight)$$

- Cannot account for possible spatial anisotropies
- Doesn't allow directional dependence
- Cannot handle the influence of local effects into data

Drawbacks

Cosmological principle vs. frames in cosmology



CMB frame

The observers with a 4-velocity $u_{\mbox{\tiny CMB}}$ such that they see no dipole in the CMB;

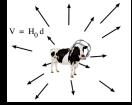
The Hubble observer

Set of observers with 4-velocity u_{\mu} = (–1, 0, 0, 0) in a FLRW metric;

Matter frame

Assuming the dust model for the matter in the Universe, the frame that shares the matter 4-velocity u_m^a satisfies:

$$J^{a}_{\mathrm{m}}=
ho_{\mathrm{m}}\,u^{a}_{\mathrm{m}}$$
 and $T^{ab}_{\mathrm{m}}=
ho_{\mathrm{m}}\,u^{a}_{\mathrm{m}}u^{b}_{\mathrm{m}}$.



FLRW models obey the Cosmological Principle exactly: exactly isotropic and homogeneous in the unique frame defined by \bar{u}^a which is normal to the 3d surfaces of homogeneity and isotropy.

In FLRW models: $\bar{u}^{a}_{\mathrm{cmb}} = \bar{u}^{a}_{\mathrm{m}} = \bar{u}^{a}$.

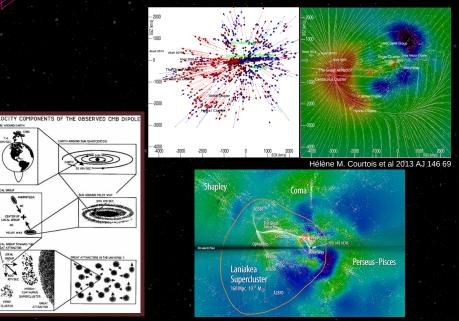
Perturbed FLRW models 'statistically' obey the Cosmological Principle: statistically homogeneous and isotropic. The matter and CMB 4-velocities must agree up to small perturbations, i.e.

In perturbed FLRW models: $u^a_{cmb} = \bar{u}^a + \delta u^a_{cmb}$, $u^a_m = \bar{u}^a + \delta u^a_m$.

General cases: Do not obey the cosmological principle and

$$u_{\mathrm{cmb}}^{a} \neq u_{\mathrm{m}}^{a}.$$

A disclosure note on the matter frame



Our aim is to investigate the Hubble parameter in a **general spacetime**. Therefore we **do not** assume the Cosmological Principle.

Our formalism focuses on the **measurement of Hubble parameter** by using supernovae, galaxies, and other forms of matter.

Therefore,

the Hubble parameter in this work is deffined in terms of the matter fluid flow.

Congruence of observers

We need to deffine a congruence of matter observers with four-velocity u_m^a .

This allows us to realize a 3+1 split, where the metric on each surface is given by:

 $h_{ab}=g_{ab}+u_au_b\;,$

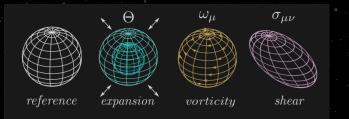
where h_{ab} is also known as the projection operator.

Congruence of observers

How the matter congruence varies along all 4 space-time directions can be used to infer the dynamical properties of the universe:

$$abla^b u^a_{\mathrm{m}} = rac{1}{3} \Theta_{\mathrm{m}} h^{ab}_{\mathrm{m}} + \sigma^{ab}_{\mathrm{m}} \equiv \Theta^{ab}_{\mathrm{m}} ,$$

where Θ_m and σ_m^{ab} are the *expansion* and *shear*, respectively, while Θ_m^{ab} represents the **expansion tensor**. Note we are assuming a vorticity free geodesic fluid.



$$k^a = E(u^a_{
m m} - n^a)$$

 $k^a
abla_a k_b = 0$

$$egin{array}{lll} \mathcal{K}^{a}=-u_{\mathrm{m}}^{a}+n^{a}\ \mathcal{K}^{a}
abla_{a}\mathcal{K}_{b}=-\mathcal{K}_{b}\ \mathbb{H} \end{array}$$

NF

$$E=-k_a u_{\rm m}^a, \ n_a u_{\rm m}^a=0$$

$$n_a n^a = 1$$

 $u^a_{
m m} n_a = 0$

u_ma

www.ka

 Σ_t

The Hubble and deceleration parameters for the null case can be obtained via the redshift-distance relation:

$$z(d,n) = \mathbb{H}_{\mathrm{o}}d + rac{1}{2}\mathbb{X}_{\mathrm{o}} \ z^2 + (d) \ ,$$

where the null Hubble parameter is given by

$$\mathbb{H} = \mathcal{K}_{a}\mathcal{K}_{b}\Theta_{\mathrm{m}}^{ab} = \frac{\Theta_{\mathrm{m}}}{3} + \sigma_{\mathrm{m}}^{ab}n_{a}n_{b} ,$$

while

$$\mathbb{X} = K_a K_b K_c \nabla^a \nabla^b u_{\mathrm{m}}^c$$

relates to the standard deceleration parameter as:

FLRW:
$$\mathbb{X}_{o} = \langle \mathbb{X} \rangle_{o} = \left(-\dot{H} + 2H^{2} \right)_{0} = (q_{0} + 3)H_{0}^{2}$$

This motivates a covariant deceleration parameter given by*:

$$\mathbb{Q}_{o} = \frac{\mathbb{X}_{o}}{\mathbb{H}_{o}^{2}} - 3 \quad \Rightarrow \quad \mathbb{Q}_{o} = \left[\left(\frac{\mathrm{d}z}{\mathrm{d}d} \right)^{-2} \frac{\mathrm{d}^{2}z}{\mathrm{d}d^{2}} \right]_{o} - 3.$$

By expanding the relation $\mathbb{X} = K_a K_b K_c \nabla^a \nabla^b u_m^c$ and taking the traces, we obtain: $\mathbb{X} \stackrel{\circ}{=} \langle \mathbb{X} \rangle + \mathbb{X}_a n^a + \mathbb{X}_{ab} n^{\langle a} n^{b \rangle} + \mathbb{X}_{abc} n^{\langle a} n^b n^{c \rangle}$

where the multipoles are:

$$\begin{split} \langle \mathbb{X} \rangle & \stackrel{\circ}{=} -\frac{1}{3} \dot{\Theta}_{\mathrm{m}} + \frac{2}{9} \Theta_{\mathrm{m}}^{2} + 2\sigma_{ab}^{\mathrm{m}} \sigma_{\mathrm{m}}^{ab} \,, \\ \mathbb{X}^{a} \stackrel{\circ}{=} \frac{1}{3} h_{\mathrm{m}}^{ab} \nabla_{b} \Theta_{\mathrm{m}} + \frac{2}{5} h_{\mathrm{m}}^{ab} h_{\mathrm{m}}^{cd} \nabla_{c} \sigma_{db}^{\mathrm{m}} \,, \\ \mathbb{X}^{ab} \stackrel{\circ}{=} -\dot{\sigma}_{\mathrm{m}}^{\langle ab \rangle} + \frac{4}{3} \Theta_{\mathrm{m}} \sigma_{\mathrm{m}}^{ab} + 2\sigma_{\mathrm{m}\,c}^{\langle a} \sigma_{\mathrm{m}}^{b\rangle c} \,, \\ \mathbb{X}^{abc} \stackrel{\circ}{=} \nabla^{\langle a} \sigma_{\mathrm{m}}^{bc} \,. \end{split}$$

Now we have a dipole, quadrupole and octopole terms. Note that in the limit of $\sigma_m \to 0$, we recover the FLRW result.

Advantages:

No need to pre-deffine a metric; Allows for the presence of spatial anisotropies; Allows directional dependence; Can account for the influence of local effects into data; Directly connected to observations.

Drawbacks:

More parameters to fit \rightarrow need for more data.

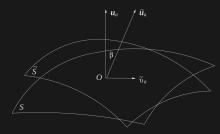
What an observer **boosted with respect to the matter frame** will measure?

What happens under a boost?

Another observer $\tilde{\mathrm{O}},$ passing by an event o, with 4-velocity

$$\tilde{u}^{a} \stackrel{\circ}{=} \gamma \left(u_{\mathrm{m}}^{a} + v^{a}
ight) \stackrel{\circ}{=} u_{\mathrm{m}}^{a} + v^{a} + O(v^{2})$$

where
$$\gamma \doteq \left(1-v^2
ight)^{-1/2}$$
 and $u^a_{
m m} v_a \doteq 0.$



Since K^a is observer-independent, we have:

$$K^a \stackrel{\circ}{=} (-\tilde{u}^a + \tilde{n}^a) \stackrel{\circ}{=} (-u^a_{\mathrm{m}} + n^a).$$

What happens under a boost?

• The matter expansion tensor

$$\Theta^{ab}_{\mathrm{m}} = rac{\Theta_{\mathrm{m}}}{3} h^{ab}_{\mathrm{m}} + \sigma^{ab}_{\mathrm{m}}$$

is intrinsic to the physical matter flow – remains unaffected by a change of observer.

• The measured Hubble parameter depends on who is measuring it:

$$\begin{split} \tilde{\mathbb{H}}(\tilde{n}) & \stackrel{\circ}{=} \Theta_{\mathrm{m}}^{ab} \tilde{K}_{a} \tilde{K}_{b} \stackrel{\circ}{=} \Theta_{\mathrm{m}}^{ab} \left(\gamma^{2} v^{a} v^{b} - 2 \gamma v^{a} \tilde{n}^{b} + \tilde{n}^{a} \tilde{n}^{b} \right) \\ & \stackrel{\circ}{=} \langle \tilde{\mathbb{H}} \rangle + \tilde{\mathbb{H}}_{a} \tilde{n}^{a} + \tilde{\mathbb{H}}_{ab} \tilde{n}^{a} \tilde{n}^{b} \,, \end{split}$$

where the boosted multipoles are

$$\begin{split} \langle \tilde{\mathbb{H}} \rangle &\stackrel{\circ}{=} \gamma^2 \left[\left(1 + \frac{v^2}{3} \right) \langle \mathbb{H} \rangle + \sigma_{\mathrm{m}}^{ab} \, v_a v_b \right] \,, \\ \tilde{\mathbb{H}}^a &\stackrel{\circ}{=} -2\gamma \Big(\langle \mathbb{H} \rangle \, v^a + \sigma_{\mathrm{m}}^{ab} \, v_b \Big) \,, \\ \tilde{\mathbb{H}}^{ab} &\stackrel{\circ}{=} \sigma_{\mathrm{m}}^{ab} + \langle \mathbb{H} \rangle \, v^{\langle a} v^{b \rangle} \,. \end{split}$$

Example: perturbed FLRW

• In the Newtonian (or longitudinal) gauge, the metric at first order in scalar perturbations is

$$\mathrm{d}\boldsymbol{s}^2 = -\big(1+2\boldsymbol{\Phi}\big)\mathrm{d}\boldsymbol{t}^2 + \boldsymbol{a}^2\big(1-2\boldsymbol{\Phi}\big)\mathrm{d}\boldsymbol{x}^2\,,$$

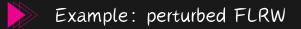
where the background coordinates are $x^{\mu} = (t, x^{i})$ and Φ is the gravitational potential.

The 4-velocities of gauge observers and matter are:

$$ilde{u}^\mu = \left(1- arPhi, 0
ight), \quad u^\mu_\mathrm{m} = \left(1- arPhi, - \mathbf{v}^i
ight) \; ext{ with } \; \mathbf{v}^i = -rac{\mathrm{d} x^i}{\mathrm{d} t}\,.$$

• Here v^i is a perturbative peculiar velocity \rightarrow velocities of boosted observers relative to the matter.

- Gauge observers are accelerating: $\tilde{u}^{\nu} \nabla_{\nu} \tilde{u}^{\mu} = a^{-2}(0, \partial^{i} \Phi).$
- Matter 4-acceleration vanishes: $u_{\rm m}^{\nu} \nabla_{\nu} u_{\rm m}^{\mu} = 0 \implies \dot{v}^{i} + Hv^{i} = a^{-2} \partial^{i} \Phi$.

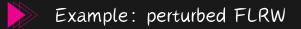


The projection tensor into the matter rest-space and the matter expansion tensor are

$$h_{\mu\nu}^{\rm m} = a^2 \begin{bmatrix} 0 & v_j \\ & \\ v_i & (1-2\Phi)\delta_{ij} \end{bmatrix}, \quad \Theta_{\mu\nu}^{\rm m} = a^2 \begin{bmatrix} 0 & Hv_j \\ \\ Hv_i & \delta_{ij}(H-3H\Phi + \dot{\Phi}) - \partial_i v_j \end{bmatrix}$$

From these equations we find the volume expansion and shear rates for matter:

$$\begin{split} \Theta_{\rm m} &= 3H + \delta \Theta_{\rm m} = 3H \Big(1 - \frac{1}{3H} \partial_i v^i - \frac{\dot{\Phi}}{H} - \Phi \Big) \approx 3H - \partial_i v^i, \\ \sigma_{ij}^{\rm m} &= -a^2 \partial_{\langle i} v_{j \rangle} = -a^2 \Big(\partial_i v_j - \frac{1}{3} \partial_k v^k \delta_{ij} \Big), \quad \sigma_{0\mu}^{\rm m} = 0. \end{split}$$



In perturbed FLRW, the monopole and quadrupole measured by the matter observers are:

$$\langle \mathbb{H}
angle = rac{1}{3} \Theta_{\mathrm{m}} = H - rac{1}{3} \partial_i v^i \,, \qquad \mathbb{H}_{ij} = \sigma^{\mathrm{m}}_{ij} = -a^2 \partial_{\langle i} v_{j
angle} \,.$$

The gauge observer measures a boosted Hubble parameter given by

$$\begin{split} \tilde{\mathbb{H}}(\tilde{n}) &= \Theta^{\mathrm{m}}_{\mu\nu}\,\tilde{K}^{\mu}\tilde{K}^{\nu} \\ &= -2\Theta^{\mathrm{m}}_{0i}\,\tilde{u}^{0}\,\tilde{n}^{i}+\Theta^{\mathrm{m}}_{ij}\,\tilde{n}^{i}\tilde{n}^{j} \quad \text{where} \quad \tilde{n}^{\mu}=(0,\tilde{n}^{i}) \\ &= \frac{1}{3}\Theta_{\mathrm{m}}-2Hv_{i}\,\tilde{n}^{i}+\sigma^{\mathrm{m}}_{ij}\,\tilde{n}^{i}\tilde{n}^{j} \,, \end{split}$$

Example: perturbed FLRW

- The boosted observer measures a monopole and quadrupole that reduce to the physical Hubble monopole and quadrupole at leading order in v_0 .
- The boost produces a dipole induced by the matter expansion and shear, i.e. $-2(\gamma \Theta_m^{ab} v_b)_{o}$.
- No higher-order multipoles appear.
- At leading order in $v_{\rm o}$:

$$\tilde{\mathbb{H}}(\tilde{n}) \stackrel{\circ}{=} \mathbb{H}(\tilde{n}) + \tilde{\mathbb{H}}_{a} \, \tilde{n}^{a} + O(v^{2})$$

where $\tilde{\mathbb{H}}^{a} \stackrel{\circ}{=} -2(\langle \mathbb{H} \rangle v^{a} + \sigma_{\mathrm{m}}^{ab} v_{b}) + O(v^{2}).$

• If $|\sigma_m^{ab}|_o \ll \langle \mathbb{H} \rangle_o$, then the dipole is directed almost opposite to the direction of v^a , with magnitude of $\approx 2v_o \langle \mathbb{H} \rangle_o$.

> Extracting the Hubble parameter from cosmic distances

The relation between the matter-frame redshift and the lightray affine parameter λ , $(k^a = dx^a/d\lambda)$ is:

$$\frac{\mathrm{d}z}{\mathrm{d}\lambda} = k^a \nabla_a (1+z) = \frac{1}{(u^b_\mathrm{m} k_b)_o} \, k_a k_b \, \nabla^a u^b_\mathrm{m} = E_o (1+z)^2 \, \mathbb{H} \,.$$

It then follows that the Hubble parameter at event o (z = 0) is

$$\mathbb{H}_{\rm o} = \frac{1}{E_{\rm o}} \left. \frac{\mathrm{d}z}{\mathrm{d}\lambda} \right|_{\rm o} \tag{1}$$

Using the boost relations:

$$\tilde{\mathbb{H}}_{\mathrm{o}}(\tilde{\textit{n}}) = \varGamma_{\mathrm{o}}^{-2} \mathbb{H}_{\mathrm{o}}(\textit{n})\,, \quad \tilde{\textit{E}}_{\mathrm{o}} = \varGamma_{\mathrm{o}}\textit{E}_{\mathrm{o}}\,, \quad 1 + \tilde{z} = \varGamma_{\mathrm{o}}^{-1}(1 + z) \;\; \text{and} \;\; \tilde{\lambda} = \lambda \;,$$

we have:

$$ilde{\mathbb{H}}_{\mathrm{o}} = rac{1}{ ilde{\mathcal{E}}_{\mathrm{o}}} \left. rac{\mathrm{d} ilde{z}}{\mathrm{d} ilde{\lambda}}
ight|_{\mathrm{o}}.$$

Therefore, relation (1) is invariant under boost transformations

Extracting the Hubble parameter from cosmic distances

• The affine parameter λ is not observable.

By the Equivalence Principle any distance d defined via lightrays at o, must reduce to the Minkowski distance near o:

With this, we obtain:

$$d_P = E_0 \lambda$$
 in Minkowski.

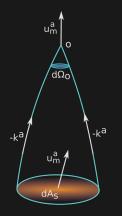
 $d = E_{o}\lambda + O(\lambda^{2})$ in the matter frame.

which gives us :

$$\mathbb{H}_{\mathrm{o}} = \frac{\mathrm{d}z}{\mathrm{d}d}\Big|_{\mathrm{o}}$$

in the matter frame.

Covariant cosmic distance measures



The observer area distance is defined by

 $dA_{\rm s} = d_A^2 d\Omega_{\rm o}$ in the matter frame,

Peforming a boost

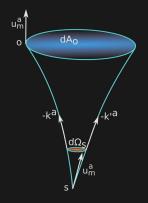
 $u^a_{\rm m} \big|_{\rm o} \to \tilde{u}^a_{\rm o}$

we have that

$$\mathrm{d}\tilde{A}_{\mathrm{s}} = \mathrm{d}A_{\mathrm{s}}, \ \mathrm{d}\tilde{\Omega}_{\mathrm{o}} = \Gamma_{\mathrm{o}}^{-2} \,\mathrm{d}\Omega_{\mathrm{o}}.$$

which gives us:

$$\tilde{d}_A(\tilde{z},\tilde{n}) = \Gamma_{\rm o}(n) \, d_A(z,n) = \gamma_{\rm o} \left(1 + v_a n^a\right)_{\rm o} d_A(z,n) \, .$$



The luminosity distance is defined by

$$\boxed{d_L^2 = \frac{L_{\rm s}/4\pi}{F_{\rm o}}} \quad {\rm in \ the \ matter \ frame}.$$

Peforming a boost u_{m}^{a}

$$u^a_{\rm m}\big|_{\rm o} \rightarrow \tilde{u}^a_{\rm o}$$

we have that

$$\mathrm{d}\tilde{A}_\mathrm{o} = \mathrm{d}A_\mathrm{o}\,, \ \ \tilde{L}_\mathrm{s} = L_\mathrm{s}\,, \ \ \tilde{F}_\mathrm{o} = \Gamma_\mathrm{o}^2\,F_\mathrm{o}\,.$$

which gives us:

$$\tilde{d}_L(\tilde{z}, \tilde{n}) = \Gamma_0(n)^{-1} d_L(z, n) = \gamma_0^{-1} (1 + v_a n^a)_0^{-1} d_L(z, n) .$$

So which distances should we use?

So the transformation under a boost for d_A and d_L are given by:

$$\tilde{d} = \Gamma_{\mathrm{o}}^{\alpha} d$$
 where $\alpha = (1, -1)$ for $d = (d_A, d_L)$.

which implies the following transformation for the Hubble parameter:

$$\frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}}\Big|_{\mathrm{o}} = \Gamma_{\mathrm{o}}^{-1-\alpha} \frac{\mathrm{d}z}{\mathrm{d}d}\Big|_{\mathrm{o}} = \Gamma_{\mathrm{o}}^{-1-\alpha} \Gamma_{\mathrm{o}}^{2} \tilde{\mathbb{H}}_{\mathrm{o}} \quad \Rightarrow \quad \tilde{\mathbb{H}}_{\mathrm{o}} = \Gamma_{\mathrm{o}}^{\alpha-1} \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}}\Big|_{\mathrm{o}}.$$

Therefore, the boosted Hubble parameter in terms of d_A and d_L will be:

$$\tilde{\mathbb{H}}_{\mathrm{o}} = \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}_{A}}\bigg|_{\mathrm{o}} = \Gamma_{\mathrm{o}}^{-2} \left.\frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}_{L}}\right|_{\mathrm{o}}.$$

The relation

$$\mathbb{H}_{\mathbf{o}} = \frac{\mathrm{d}z}{\mathrm{d}d} \bigg|_{\mathbf{o}} \quad \bigotimes_{u_{\mathbf{o}}^{\mathrm{m}} |_{\mathbf{o}} \to \tilde{u}_{\mathbf{o}}^{\mathrm{m}}} \quad \tilde{\mathbb{H}}_{\mathbf{o}} = \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}}$$

is preserved under a boost for the area distance, but NOT for the luminosity distance.

CONCLUSIO

> Boosted observers need to use a corrected luminosity distance

If a moving observer wants to measure the Hubble parameter via the luminosity distance, the options are:

Use the correct boosted relation:

$$\tilde{\mathbb{H}}_{\mathrm{o}} = \left. \Gamma_{\mathrm{o}}^{-2} \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}_{L}} \right|_{\mathrm{o}}.$$

Use a luminosity distance modified by the appropriate redshift factor in order to achieve consistency:

$$d_{L*} = (1\!+\!z)^{-2} d_L \quad \bigotimes_{u^a_{\mathbf{n}}|_{\mathbf{o}} o ilde{u}^a_{\mathbf{o}}} \quad ilde{d}_{L*} = \Gamma_{\mathbf{o}} \, d_{L*}$$

In this case, the Hubble parameter for a boosted observer will be given by:

$$\mathbb{H}_{o} = \frac{\mathrm{d}z}{\mathrm{d}d_{L*}} \bigg|_{o} \quad \text{implies} \quad \tilde{\mathbb{H}}_{o} = \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}_{L*}} \bigg|_{o} \quad \text{where} \quad d_{L*} = \frac{d_{L}}{(1+z)^{2}}.$$

> Boosted observers need to use a corrected luminosity distance

If the moving observer uses the unmodified luminosity distance, they will derive an *incorrect* boosted Hubble parameter

$$\tilde{\mathbb{H}}_{\mathrm{o}}^{\times}(\tilde{n}) = \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{d}_{L}}(\tilde{n})\Big|_{\mathrm{o}} = \tilde{\mathbb{H}}_{\mathrm{o}}(\tilde{n})\,\tilde{\Gamma}_{\mathrm{o}}(\tilde{n})^{-2}\,,$$

Which can be rewritten as:

$$\tilde{\mathbb{H}}^{\times}(\tilde{n}) \stackrel{\circ}{=} \langle \mathbb{H} \rangle - \frac{6}{5} \sigma_{\mathrm{m}}^{ab} v_b \, \tilde{n}_a + \sigma_{\mathrm{m}}^{ab} \, \tilde{n}_a \tilde{n}_b + 2v^{\langle a} \, \sigma_{\mathrm{m}}^{bc \rangle} \, \tilde{n}_a \tilde{n}_b \tilde{n}_c + O(v^2) \, .$$

An observer moving relative to the matter who wrongly uses the luminosity distance predicts an incorrect dipole in the Hubble parameter:

- the dominant correct dipole term $-2\langle \mathbb{H} \rangle v^a$ disappears;
- the $\sigma_{\rm m}^{ab}v_b$ dipole term has the wrong factor;
- a spurious octupole is predicted.

We define the Hubble parameter in a covariant form, observable on the past lightcone. the past lightcone.

$$\mathbb{H} = \mathcal{K}_{a}\mathcal{K}_{b}\Theta_{\mathrm{m}}^{ab} = \frac{\Theta_{\mathrm{m}}}{3} + \sigma_{\mathrm{m}}^{ab}n_{a}n_{b} ,$$

Its monopole reduces to the standard H parameter in a FLRW spacetime, and a quadrupole, which is generated by shear anisotropy.

To leading order, an observer moving relative to the matter frame will measure this monopole and quadrupole, but will also detect a dipole, generated by Doppler and aberration effects.

$$\begin{split} & \langle \tilde{\mathbb{H}} \rangle \stackrel{\circ}{=} \gamma^2 \left[\left(1 + \frac{v^2}{3} \right) \langle \mathbb{H} \rangle + \sigma_{\mathrm{m}}^{ab} \, \mathbf{v}_a \mathbf{v}_b \right] \,, \\ & \tilde{\mathbb{H}}^a \stackrel{\circ}{=} -2\gamma \left(\langle \mathbb{H} \rangle \, \mathbf{v}^a + \sigma_{\mathrm{m}}^{ab} \, \mathbf{v}_b \right) , \\ & \tilde{\mathbb{H}}^{ab} \stackrel{\circ}{=} \sigma_{\mathrm{m}}^{ab} + \langle \mathbb{H} \rangle \, \mathbf{v}^{\langle a} \mathbf{v}^{b \rangle} \,. \end{split}$$

Higher-order Hubble multipoles in the moving observer's frame are a signal of systematics or a breakdown in the dust model.

When using the relation between the Hubble parameter and luminosity distance, a moving observer should correct the luminosity distance by a redshift factor.

$$d_{L*} = \frac{d_L}{(1+z)^2}.$$

Otherwise an incorrect dipole and a spurious octupole are detected.

$$\tilde{\mathbb{H}}^{\times}(\tilde{n}) \stackrel{\circ}{=} \langle \mathbb{H} \rangle - \frac{6}{5} \sigma_{\mathrm{m}}^{ab} v_b \, \tilde{n}_a + \sigma_{\mathrm{m}}^{ab} \, \tilde{n}_a \tilde{n}_b + 2 v^{\langle a} \, \sigma_{\mathrm{m}}^{bc \rangle} \, \tilde{n}_a \tilde{n}_b \tilde{n}_c + O(v^2) \, .$$

In perturbed FLRW models, this error leads to a false prediction of *no dipole.*

> Boosted deceleration parameter

The boost transformation of \mathbb{X}_{o} is given by $\widetilde{\mathbb{X}}_{o} = \Gamma(n)^{-3}\mathbb{X}_{o}$. Using (i) $\widetilde{\Gamma}(\widetilde{n}) = \gamma (1 + \widetilde{v}_{a}\widetilde{n}^{a}) = \Gamma(n)^{-1}$ (ii) $\gamma \widetilde{v}_{a}\widetilde{n}^{a} = -v_{a}\widetilde{n}^{a}$ and (iii) symmetrizing the tracefree tensors in terms of \widetilde{h}_{ab} , we obtain:

$$\langle \tilde{\mathbb{X}} \rangle = \gamma^3 (1 + v^2) \langle \mathbb{X} \rangle - \left(2\gamma^3 - \frac{\gamma}{3} \right) \left(\mathbb{X}_a v^a \right) + 2\gamma^3 \left(\mathbb{X}_{ab} v^a v^b \right) - 2\gamma^3 \left(\mathbb{X}_{abc} v^a v^b v^c \right);$$

$$\begin{split} \tilde{\mathbb{X}}_{a} &= -3\gamma^{2}\left(1+\frac{v^{2}}{5}\right) \ \langle \mathbb{X} \rangle v_{a} + \gamma^{2}\left(1+\frac{v^{2}}{5}\right) \ \mathbb{X}_{a} + \frac{12}{5}\gamma^{2} \ (\mathbb{X}_{b}v^{b})v_{a} \\ &- \frac{12}{5}\gamma^{2} \ (\mathbb{X}_{ab}v^{b}) - \gamma^{2}\left(1+\frac{v^{2}}{5}\right) \ (\mathbb{X}_{bc}v^{b}v^{c})v_{a} + \frac{18}{5}\gamma^{3} \ (\mathbb{X}_{abc}v^{a}v^{b}); \end{split}$$

 $\tilde{\mathbb{X}}_{ab} = 3\gamma \langle \mathbb{X} \rangle v_a v_b - \gamma (\mathbb{X}_c v^c) v_a v_b - 2\gamma \mathbb{X}_b v_a + \gamma \mathbb{X}_{ab} + 2\gamma (\mathbb{X}_{ac} v^c v_b) - 3\gamma (\mathbb{X}_{abc} v^c);$

$$\tilde{\mathbb{X}}_{abc} = -\langle \mathbb{X} \rangle \ v_a v_b v_c + \mathbb{X}_c \ v_a v_b - \mathbb{X}_{ab} \ v_c + \mathbb{X}_{abc},$$

where $\langle X \rangle$, X_a , X_{ab} and X_{abc} are the matter frame multipoles.

Measurements on spheres of constant redshift

Spheres of constant distance: In $\mathbb{H}_{o} = \frac{dz}{dd}|_{o}$, the Hubble constant is defined as the slope of the z(d) relation at the observer (d = 0).

Spheres of constant redshift: It is more usual to consider the Hubble diagram as a distance-redshift relation. In this case, we extract not \mathbb{H}_o but its inverse:

$$ilde{d} = rac{1}{ ilde{\mathbb{H}}_{\mathrm{o}}}ig(ilde{z} - ilde{z}_{\mathrm{o}}ig) + O(ilde{z}^2) \hspace{2mm} \Rightarrow \hspace{2mm} rac{1}{ ilde{\mathbb{H}}_{\mathrm{o}}} = rac{\mathrm{d} ilde{d}}{\mathrm{d} ilde{z}}ig|_{\mathrm{o}} \hspace{2mm} ext{where} \hspace{2mm} ilde{d} = ilde{d}_A \,, \ ilde{d}_{L*} \,.$$

The multipole expansion then gives:

$$\frac{1}{\tilde{\mathbb{H}}} \stackrel{\circ}{=} \left(\langle \tilde{\mathbb{H}} \rangle + \tilde{\mathbb{H}}_{a} \, \tilde{n}^{a} + \tilde{\mathbb{H}}_{ab} \, \tilde{n}^{\langle a} \tilde{n}^{b \rangle} \right)^{-1} \stackrel{\circ}{=} \sum_{\ell=0}^{\infty} \tilde{\mathbb{I}}_{a_{1}a_{2}\cdots a_{\ell}} \, \tilde{n}^{\langle a_{1}} \tilde{n}^{a_{2}} \cdots \tilde{n}^{a_{\ell} \rangle} \, .$$

 \bullet Infinite number of multipoles in $\tilde{\mathbb{H}}_{o}^{-1}$ and $\mathbb{H}_{o}^{-1}.$

• Assuming $|\sigma_{\rm m}^{ab}|_{\rm o} \ll \langle \mathbb{H} \rangle_{\rm o}$ and $|v^a|_{\rm o} \gg |\sigma_{\rm m}^{ab}|_{\rm o}$, then we can neglect higher order terms $O(3) \equiv O(\hat{\sigma}^2, v^3, \hat{\sigma}v^2)|_{\rm o}$ (where $\hat{\sigma}_{\rm m}^{ab} = \sigma_{\rm m}^{ab}/\langle \mathbb{H} \rangle$):

$$\begin{split} \tilde{\mathbb{H}}^{-1} \stackrel{\circ}{=} \left\langle \mathbb{H} \right\rangle^{-1} \bigg[1 + v^2 + \left(2 v^a + \frac{2}{5} \hat{\sigma}_{\mathrm{m}}^{ab} v_b \right) \tilde{n}_a + \left(3 v^{\langle a} v^{b \rangle} - \hat{\sigma}_{\mathrm{m}}^{ab} \right) \tilde{n}_a \tilde{n}_b \\ &- 4 v^{\langle a} \hat{\sigma}_{\mathrm{m}}^{bc \rangle} \tilde{n}_a \tilde{n}_b \tilde{n}_c \bigg] + O(3) \,. \end{split}$$

• At leading order in v: presence of a dipole, quadrupole and **octupole**. • Contrast with $\tilde{\mathbb{H}}_{o}$ (only dipole).

In the matter frame, this reduces to

$$\mathbb{H}^{-1} \doteq \langle \mathbb{H} \rangle^{-1} \Big[1 - \hat{\sigma}_{\mathrm{m}}^{ab} n_{a} n_{b} \Big] + O(3) \,.$$

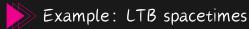
Dipole and octupole vanish at leading order.

• Relaxing the isotropy and homogeneity assumptions on FLRW, the simplest model we can get is the Lemaître-Tolman-Bondi (LTB) spacetime:

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + A_\parallel^2(t,r)\,\mathrm{d}r^2 + A_\perp^2(t,r)\,\mathrm{d}\Omega^2\,.$$

- $u_{\mathrm{m}}^{\mu} = \delta_{\mathrm{m}}^{\mu}$.
- Isotropic about the worldline $r = 0 \implies \sigma = 0$ for observers at the center.
- The radial direction is a preferred direction for the observer.
- There is an expansion rate H_{\parallel} along r^{μ} and an expansion rate H_{\perp} in the screen space orthogonal to it. The average expansion rate and shear are:

$$\langle \mathbb{H}
angle = rac{1}{3} ig(\mathcal{H}_{\parallel} + 2 \mathcal{H}_{\perp} ig) \;, \quad \sigma_{\mathrm{m}}^{\mu
u} = rac{1}{3} ig(\mathcal{H}_{\parallel} - \mathcal{H}_{\perp} ig) ig(2 e^{\mu} e^{
u} - S^{\mu
u} ig) \;.$$



The covariant matter-frame Hubble parameter is then given by:

$$\mathbb{H}(n) \stackrel{\circ}{=} \frac{1}{3} (H_{\parallel} + 2H_{\perp}) + (H_{\parallel} - H_{\perp}) e_{\langle \mu} e_{\nu \rangle} n^{\mu} n^{\nu}.$$

For the boosted observer, we get:

$$\begin{split} \langle \tilde{\mathbb{H}} \rangle &\stackrel{\circ}{=} \gamma^2 \bigg[\frac{1}{3} \bigg(1 + \frac{1}{3} v^2 \bigg) \big(H_{\parallel} + 2H_{\perp} \big) + \big(H_{\parallel} - H_{\perp} \big) e_{\langle \mu} e_{\nu \rangle} v^{\mu} v^{\nu} \bigg] \,, \\ \tilde{\mathbb{H}}_{\mu} &\stackrel{\circ}{=} -2\gamma \bigg[\frac{1}{3} \big(H_{\parallel} + 2H_{\perp} \big) v_{\mu} + \big(H_{\parallel} - H_{\perp} \big) e_{\langle \mu} e_{\nu \rangle} v^{\nu} \bigg] \,, \\ \tilde{\mathbb{H}}_{\mu\nu} &\stackrel{\circ}{=} \big(H_{\parallel} - H_{\perp} \big) e_{\langle \mu} e_{\nu \rangle} + \frac{1}{3} \big(H_{\parallel} + 2H_{\perp} \big) v_{\langle \mu} v_{\nu \rangle} \,. \end{split}$$