A pan-chromatic study of cosmic evolution of AGN using JWST

Devang Haresh Liya

2nd year PhD student, Newcastle University, UK Supervisors: Dr. David Rosario & Dr. Adam Ingram TIFR-Mumbai, 24th January, 2024 Email: d.h.liya2@ncl.ac.uk

Background Image: NASA/JPL-Caltech

Talk outline

- Aim of the project
- Observations
 - Overview of JWST
 - Sample selection
 - Ancillary data

• Modelling

- Model definitions
- Fitting framework
- Results
- Conclusions and future work

NASA/JPL-Caltech

What is an AGN?

- Accreting supermassive black hole at the centre of most galaxies.
- Discovered nearly 100 years ago.
- Simple models had only a few parameters like luminosity.
- Unified model: Various observed types of AGN are result of the viewing angle of the observer.
- Accretion disk and dusty torus.

B. Saxton NRAO/AUI/NSF

Why do we care about AGN?

- Inject energy into surroundings.
- AGN feedback necessary to reproduce the observed properties of galaxy populations.
- Affect star formation rate.
- Main component of Cosmic X-ray Background (CXB)

Questions

- How do AGN properties evolve with redshift?
 - Luminosity
 - Amount of obscuration
 - Geometry of obscurer
- What kind of observations should you make to constrain these properties?

IRAC 3.6µm image

IRAC 3.6µm image

NIRCam 3.56µm image

Overview of JWST

Where is JWST?

WEBB TELESCOPE IMAGE SHARPNESS CHECK

NIRCAM

NIRISS

MIRI

Credit: STScl

NIRCam

- Two imaging modules
- Operating range: 0.6 to 5.0 μm
- Total area: 9.7 arcmin²
- Resolution: 0.07" at 2 μm
- 29 filters divided between SW and LW
- Slitless GRISM spectroscopy resolution: R ~ 1600 at 4 micron

Credit: JDox

MIRI

- Operating range: 4.9 to 27.9 µm
- Total area: 2.3 arcmin²
- Resolution: 0.11"
- 13 filters
- Slitted and slitless spectroscopy ~100 at 7.5 µm
- IFU spectroscopy

Doing science with JWST

- MAST portal for accessing raw files: <u>https://mast.stsci.edu/portal/Mashup/Clients/Mast/Por</u> <u>tal.html</u>
- JDox for user documentation: https://jwst-docs.stsci.edu/
- Existing large public surveys:
 - CEERS (AEGIS/EGS)
 - COSMOS-Web (COSMOS. Largest so far!)
 - JADES (GOODS-N and GOODS-S)
 - PRIMER (COSMOS and UDS field)
- Call for cycle 4 later this year (?)

Sample selection

Our sample

- Extended Groth Strip (EGS)
- JWST coverage due to CEERS
- Ancillary data
 - X-ray: AEGIS-X
 - UV-Optical: CANDELS
 - Far-IR: HELP
- 92 sources: 66 NIRCam, 9 MIRI, 17 both
- X-ray luminosity > 10⁴² erg/s
- 0.4 < z < 3

Modelling

Stellar population with exponentially decaying SFR + attenuation

0.0

 10^{1}

Wavelength (micron)

 4×10^{44}

 $3 \times 10^{44}_{10^{0}}$

21

Stellar population with exponentially decaying SFR + attenuation

Warm Galaxy Dust emission with a variety of dust temperatures

FortesFit (users, testers, developers welcome!)

- Flexible SED fitting with Bayesian backbone.
- Models are first "registered" by the user.
 - Calculate SED given a set of parameters, filters, and redshift
- Models are described by a number of "shape parameters" and a single "scale parameter"
- Scale parameters very useful for derived quantities or dependencies
- Priors can be specified using scipy distributions or histograms. P(z) can be a prior but not a photometric redshift fitter.
- Powerful Bayesian inference engine MultiNest (upgrade to Ultranest coming soon!)

Scale parameter: Stellar mass Shape parameters: > log(age)

- > log(timescale)
- > E(B-V)

Scale parameter: L2500 Shape parameters:

- > opening angle (oa)
- > inclination (i)
- > optical depth (t)
- > Rout/Rin
- > Dust distribution (p & q)
- > E(B-V)

https://skirtor.streamlit.app/

Scale parameter: Total IR lumin Shape parameter: > Dust temperature

FortesFit (users, testers, developers welcome!)

- Output stored in HDF5 format.
- Marginalized posteriors, SED plots, diagnostic information (summary statistics, KLD, evidence etc).

Results

(In prep.)

Nuclear photometry using NIRCam (~1 micron to ~5 micron) is useful for tying down the AGN luminosity.

MIRI photometry (~6 micron to ~21 micron) is crucial for inferring geometrical parameters of the torus.

Population statistics

Summary and future direction

- First study looking at the resolved IR photometry of AGN sample at high redshifts using robust SED fitting framework.
- Significant gain to be made by adding JWST photometry but the importance of individual filters is unclear.
- Hierarchical Bayesian modelling to study evolution.
- Expand the study to a larger statistically significant sample using COSMOS.
- (Galaxy morphology/modelling?)

Footprint of the COSMOS-Web program Casey+, 22

Galaxy, AGN, and sonification group

Thank you!

d.h.liya2@ncl.ac.uk devangliya.github.io blogs.ncl.ac.uk/astro-obs