Impact of extragalactic point sources on the foregrounds and 21-cm observations

Shikhar Mittal

with Girish Kulkarni (TIFR), Dominic Anstey (Cambridge), Eloy de Lera Acedo (Cambridge)

State of the Universe Seminar

arXiv: 2406.17031

Outline

- Context
- Part 1 A model for extragalactic point sources and foregrounds
- Part 2 Bias in the signal reconstruction due to point sources
- Conclusion

Cosmic timeline

21-cm experiments are targeting cosmic dawn

- EDGES (PI: Judd Bowman, ASU): They made the first detection in 2018
- SARAS (PI: Saurabh Singh, RRI): Reject EDGES measurement
- **REACH** (PI: Eloy de Lera Acedo, University of Cambridge)
 - 1. Radio Experiment for the Analysis of Cosmic Hydrogen
 - 2. Will cover 28 > z > 7.5
 - 3. Karoo radio reserve in South Africa
 - 4. Funded by Kavli Foundation and Stellenbosch University
 - 5. Data expected by the end of 2024

MIST, PRIzM, ALBATROS, PRATUSH, DARE and more in development

Global 21-cm signal is of the order of mK but ...

REACH webpage

Foregrounds are 4-5 orders of magnitude stronger than the 21-cm signal

1. Foregrounds

- Galactic
- Extragalactic

2. Ionosphere

3. Instrument

4. Soil

5. 21-cm signal

Foregrounds are 4-5 orders of magnitude stronger than the 21-cm signal

- 1. Foregrounds
 - Galactic
 - Extragalactic
- 2. Ionosphere
- 3. Instrument
- 4. Soil
- 5. 21-cm signal

E. de Lera Acedo, 5th Global 21-cm workshop

Extragalactic foregrounds

Extragalactic foregrounds

- Active galactic nuclei
- Radio galaxies
- Radio emission from star forming galaxies
- Free-free emission from haloes and IGM

We need 3 inputs to simulate foregrounds due to point sources

- 1. How are the sources positioned on the sky?
- 2. What are their fluxes at some reference frequency?
- 3. What is their spectral energy distribution (SED)?

1. We use a power law form of correlation function

1. We use a power law form of correlation function

 $C(\chi) = A\chi^{-\gamma}; A = 7.8 \times 10^{-3}, \gamma = 0.821$

Based on TGSS-ADR1 survey by GMRT

2. We follow a power law distribution of S: dn/dS

2. We follow a power law distribution of S: dn/dS

$$\frac{\mathrm{d}n}{\mathrm{d}S} \sim S^{-1.75}$$

Di Matteo et al (2004); Gervasi et al. (2008)

2. We follow a power law distribution of S: dn/dS

 $\frac{\mathrm{d}n}{\mathrm{d}S} \sim S^{-1.75}$

• For our chosen distribution $S_{\rm max} = 100$ Jy and $S_{\rm min} = 10^{-6}$ Jy is sufficient

$$N_{\rm ps} \sim 4.4 \times 10^9$$

Di Matteo et al (2004); Gervasi et al. (2008)

3. We use a power law SED, $T \propto \nu^{-\beta}$

3. We use a power law SED, $T \propto \nu^{-\beta}$

 β has a Gaussian distribution:

$$\mathcal{P}(\beta) = \frac{1}{\sqrt{2\pi}\sigma_{\beta}} \exp\left[-\frac{(\beta - \beta_0)^2}{2\sigma_{\beta}^2}\right]$$

where $\beta_0 = 2.68$ and $\sigma_\beta = 0.5$ (Fiducial model)

Tegmark et al (2000); Gervasi et al (2008), Liu et al (2008, 2011)

Sky map of the brightness temperature due to point sources at $\nu = 150$ MHz, ($z \approx 8.5$)

Couple this with the REACH beam ...

Mittal et al (2024)

Simulated observed antenna temperature

Simulated observed antenna temperature

Simulated observed antenna temperature

Given the antenna temperature data can we reliably extract the 21-cm signal?

We use a Bayesian framework for inference

- $P(\theta|\mathcal{D}) \propto P(\mathcal{D}|\theta)P(\theta)$
- A Gaussian likelihood, $P(\mathcal{D}|\theta)$
- Uniform priors, $P(\theta)$

Model for inference = Foregrounds + antenna noise + 21-cm signal

Without PS in the data, signal recovery is good

Default pipeline; no point sources

With PS in the data, signal recovery is poor

A power law with a running index for PS leads to a good recovery

A power law with a running index for PS leads to a good recovery

- Total foregrounds model =
- galactic +

$$\left[T_{\rm f}\left(\frac{\nu}{\nu_0}\right)^{-\beta_{\rm f}+\Delta\beta_{\rm f}\ln\nu/\nu_0}\right]$$

3 new parameters introduced

A power law with a running index for PS leads to a good recovery

Total foregrounds model =

galactic +

$$\left[T_{\rm f}\left(\frac{\nu}{\nu_0}\right)^{-\beta_{\rm f}+\Delta\beta_{\rm f}\ln\nu/\nu_0}\right]$$

3 new parameters introduced

Conclusion

- We simulated the foregrounds due to extragalactic point sources
- With PS present in the data, the signal recovery is poor
- To improve, we propose a power law with a running index to capture the PS contribution

We release with this work a python package called epspy

21-cm signal as a thermometer

Our observable is the 21-cm brightness temperature relative to the background (CMB) temperature:

$$T_{21} = 27x_{\rm HI} \left(\frac{1-Y_{\rm p}}{0.76}\right) \left(\frac{\Omega_{\rm b}h^2}{0.023}\right) \sqrt{\frac{0.15}{\Omega_{\rm m}h^2} \frac{1+z}{10}} \left(1 - \frac{T_{\rm cmb}}{T_{\rm s}}\right) \, {\rm mK}$$

Madau et al. (1997), Furlanetto (2006)

Beam directivity pattern at 50 MHz A conical log-spiral antenna

