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* DM mass? * DM interactions with baryons?
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| Results: Underground Detectors |
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e Light DM, Heavy DM and Strongly-interacting DM
— "3" Blind-spots to the underground detectors.
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Strongly-interacting DM Componen’rj
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* A sub-component of DM can be strongly interacting.

e How to detect?

Y : Strongly-interacting DM component.




| Strongly-interacting DM Component |
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e "Earth-bound” DM provides a novel powerful probe.

Strongly-interacting DM component can be trapped inside the Earth in
significant quantities.

Annihilating DM Non-Annihilating DM

* Local annihilation inside any  Earth-bound DM can be
large-volume neutrino detectors 5 up-scattered by fast
(such as Super-Kamiokande) : neutrons inside the

Ray, (with Mckeen, Morissey, nuclear reactors, and
Pospelov, Ramani) [PRL, 2023] : subsequently detfected.

* Neutrinos from annihilation of
Earth-bound DM.

Pospelov & Ray [JCAP, 2024]

Ray, (with Ema, Pospelov)
[JHEP, 2024]



| Earth-Bound DM |

Press & Spergel (1985,ApJ), Gould (1987, ApJ),...

Small 6,,, — single collision, large 0,,, > multiple collisions.




| Earth-Bound DM |

Capture fraction f¢

|
|
|
I
I
I
I
[
I
I
I
|

.
AL ,]

-
' - llllll‘ LA LLLL

A lllllll LA LAl

F— ljlllll LA LA LALLL i - 1111111 AL LLLLAL

oy N|cm

i

LA Ll LA ALALLL
26

102

Bramante et al. (PRD, 2022)
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* Lets do some quick estimate:

For DM mass of 1 GeV and ¢, = 107%% cm?

DM density (assuming they uniformly distribute over the
Earth-volume)

~ 3% 10 GeV/cm?
]} =1

» 15 orders of magnitude larger than the Galactic DM density!
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Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]



Signal at Super-K |

. Sl BN At R AR S

e Earth-bound DM, of mass GeV scale have an enormously
large surface density.

* Their detection via scattering is almost impossible as they
acquire very little amount kinetic energy (0.03 eV).

See, however, Das, Kurinsky, Leane (PRL, 2024),...

e How to detect them?

Ray, [PRL, 2023]

Our proposal: simply look at their annihilation signature inside large-

volume detectors (annihilation is not limited to the tiny kinetic energy)!




e Using existing di-nucleon annihilation searches at Super-K

Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]
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o Lets illustrate our result in a concrete phenomenological
model.

1 2 ¢ 1 2
2z = - Z <F/,4v> - EFI;VFW T Emj’ <A/,4> +)((W'MD/4 N m)())(

x : Dirac fermion which can couple to a dark photon A’

* The perturbative cross section for y fto scatter on a
nucleus (Z, A) is related to the model parameters

l6nZ*aa e zﬂfA

0 —
XA 4
mA/

Pospelov, Ritz, Voloshin (PLB, 2008)



* We are interested in the following channel

yy —> A’A" with A’ —> SM + SM (say e™ + ¢e7)

* To ensure the decay within the Super-K fiducial volume,
we restrict the decay length ycz, < 1 m.



¥ : Dirac fermion which can
couple to a dark photon A’

xx— AA
A’ — SM + SM (say et +¢7)

-+ Unprecedented
sensitivity on parts
of the parameter
space.
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e Earth-bound DM if sufficiently heavy, shrinks tfowards the
core, leading to a negligible surface density.

gravity dominates over the diffusion processes

e Annihilation to neutrinos can occur at the Earth-core, if
Earth-bound DM if sufficiently heavy. Since the number
density is huge, annihilation rate is also fairly large.

* Neutrinos, because of their feeble interactions, can reach
detectors like Super-K, IceCube-DeepCore, and searching
these annihilated neutrinos can provide sensitivity to DM

Interactions.
Pospelov & Ray [JCAP, 2024]



* We consider two phenological scenarios:
Lower energy neutrinos from the stopped pion decay

Higher energy neutrino lines from direct annihilation

Detector
DM e

Detector

Pospelov & Ray [JCAP, 2024]
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Energy Neufrinos |

Pospelov & Ray [JCAP, 2024]
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We use the Super-K DSNB search result with 0.01 wt% gadolinium
loaded water (22.5 kton X 552.2 days) to derive the exclusion limits

Super-Kamiokande (APJL, 2023)

*Gd-loaded water gives competitive limit (as compared to the pure-water
limits) although the data is 5 times less.
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DM annihilation directly to neutrinos yields a line at £, = m,

high-energy neutrinos can also come from yy — WTW~, bb, 17,
giving a continuum spectra up to £, =m, (or yy — A’A" = 4v).

e We search the "neutrino-line” signature in the IceCube
DeepCore data with a total live-time of 6.75 years.

* We use the null-detection of the neutrino-line signature in
the IceCube DeepCore data to derive the exclusions

vv

bb TT ' ,
Mass (GeV) P s | <10 a5 | <10 £ .. | 210 ¥
5 139 139.3 ' ’

10 396 7.0 1.37

20 29.7 0.97 0.27

35 7.41 0.22 0.09

50 3.51 0.096 0.05

100 1.39 0.038 0.027

IceCube (PRD,2022)
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Pospelov & Ray [JCAP, 2024]
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We probe up to f, > 1078 for sufficiently heavy Earth-bound DM.
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; Ear’rhasu the most opﬂmal bt ]

e Earth accumulates fewer number of DM particles as

2 2
(by a factor of ~ R@/RQ)

compared to the Sun.

Flux for Earth-bound DM is ~ 4000 larger than the neutrino flux from Sun.

This is quite different from standard weakly-interacting paradigm where Sun is the
most-optimal detector, and hence, has been studied over the past few decades.



* Nuclear Reactors act as powerful probe of Earth-bound DM
detection.

Earth-bound DM Fast neufron

pasEs) =0 VA
Up-scattered DM

Detector

Nuclear Reactor similar scheme as CELUNS detection

Ray, (with Ema, Pospelov) [JHEP, 2024]
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e Accumulation of Earth-bound DM. Q

e Distribution of Earth-bound DM. Q

e Up-scattering of Earth-bound DM inside Nuclear Reactors by
fast neutrons (typically of MeV energy).

We use CONUS experiment setup for our analysis.

e Subsequent propagation through shielding and detection via
scattering.

We use MC simulations for the propagation along with provide an
analytical recipe.



Ray, (with Ema, Pospelov) [JHEP, 2024]
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Smaller regions: includes only the DM particles which do not experience any collisions.
Bigger regions: includes the full multiple-scattering contributions.
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Tail of the distribution is utterly important. Many previous studies (e.g.,
Bramante et al [PRD, 2017], Leane et al. [JCAP, 2022] etc) neglect this simple

yet important point.



Summary _|

e Earth accumulates significant number of DM particles from

the Galactic halo, leading to a DM density 15 orders of
magnitude larger than the Galactic DM density!

e Despite their prodigious abundance, their detection is
extremely challenging as they acquire tiny amount of Kinetic
energy (0.03 eV).

e Annihilation of such Earth-bound DM at large-volume
neutrino detectors, provides a novel way for their detection
and can be used to probe strongly-interacting DM component.

o If they do not annihilate, they can be up-scattered by
colliding with the fast neutrons inside the nuclear reactors
and subsequently detected.



Y How to detect rare species of DM?

* Look at the ﬂ ? ﬂ v
Earth-bound DM! ’i ‘

& % o %

Thanks!

Questions & Comments: anupam.ray@berkeley.edu
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Axions & ALPs neutrino (Q balls, nuggets etc.) MACHOs

Celestial objects as powerful DM detectors
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Probing Ultralight PBHs via Hawking radiation
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