Neutrinos at direct detection: friend or foe?

- Tarak Nath Maity The University of Sydney, Australia
- Based on: B Carew, A Caddell, TNM, C O'Hare; 2312.04303 TNM, C Boehm; 2409.04385

Foe

Slowed down the search of dark matter Carew, Caddell, TNM, O'Hare; 2312.04303

Friend

Weak mixing angle at the lowest energy

TNM, Boehm; 2409.04385

Image modified from 2104.12785

Dark Matter exists!

Image credit: QUANTUM DIARIES

- Stable: No decay, very longlived
- Cold: Non-relativistic
- Massive: Wide range

Dark Matter exists!

Image credit: QUANTUM DIARIES

- Stable: No decay, very longlived
- Cold: Non-relativistic
- Massive: Wide range

What else!

m_{\chi}

What else!

A

What else!

Test every possible interactions

 m_{χ}

 $\chi: DM$

What else!

Test every possible interactions

Or set bounds

 m_{χ}

Sub-GeV DM-electron scattering

Essig+ 1108.5383, 1206.2644, 1509.01598, 1703.00910 ...

Sub-GeV DM-electron scattering

Essig+ 1108.5383, 1206.2644, 1509.01598, 1703.00910 ...

$$E_{\rm DM} \simeq 50 \,\mathrm{eV} \frac{m_{\rm DM}}{100 \,\mathrm{MeV}} \left(\frac{v}{10^{-3}}\right)^2$$

Sub-GeV DM-electron scattering

Essig+ 1108.5383, 1206.2644, 1509.01598, 1703.00910 ...

Semiconductor target

valence

Band gap energy $\sim 1 \text{ eV}$

Image credit: R Essig

S1-S2 only analysis

Tarak Nath Maity

Image credit: 2110.02359, 1903.03026, 0909.1063

S1-S2 only analysis

Tarak Nath Maity

Image credit: 2110.02359, 1903.03026, 0909.1063

Signatures in experiments (Si) SENSEI, DAMIC-M ...

Signatures in experiments (Si) SENSEI, DAMIC-M ...

SENSEI, DAMIC-M ...

SENSEI, DAMIC-M ...

Signatures in experiments (Si) SENSEI, DAMIC-M ...

Compared to typical CCD, in skipper-CCD one measure the * charge multiple times : sub-electron readout noise

Tiffenberg+ 1706.00028

Move the charge pixel by pixel and finally read it : typical CCD

Image credit: R Essig

No excess: bounds on DM

Tarak Nath Maity

No excess: bounds on DM

DM mass

Tarak Nath Maity

No excess: bounds on DM

Tarak Nath Maity

No excess: bounds on DM

Essig+ 1108.5383, 1206.2644 ... SENSEI 2004.11378 XENON1T 1907.12771, 2112.12116 DAMIC-M 2302.02372, 2307.07251

An+ 1708.03642, 2108.10332 Emken 2102.12483 DarkSide-50 2207.11968

DM-electron scattering: bounds

PandaX 2101.07479 CDMS 1804.10697 EDELWEISS 2003.01046

Essig+ 1108.5383, 1206.2644 ... SENSEI 2004.11378 XENON1T 1907.12771, 2112.12116 DAMIC-M 2302.02372, 2307.07251

An+ 1708.03642, 2108.10332 Emken 2102.12483 DarkSide-50 2207.11968

DM-electron scattering: bounds

PandaX 2101.07479 CDMS 1804.10697 EDELWEISS 2003.01046

Tarak Nath Maity

Essig+ 1108.5383, 1206.2644 ... XENON1T 1907.12771, 2112.12116 DAMIC-M 2302.02372, 2307.07251

DM-electron scattering: bounds

Tarak Nath Maity

Source of neutrinos?

Source of neutrinos?

Mainly the Solar neutrinos

Atmospheric and DSNB are subdominant

Sekiya TAUP 2023 Borexino Nature (2018) SNO nucl-ex/0204008 Bergstrom+ 1601.00972

Source of neutrinos?

Mainly the Solar neutrinos

Atmospheric and DSNB are subdominant

Sekiya TAUP 2023 Borexino Nature (2018) SNO nucl-ex/0204008 Bergstrom+ 1601.00972 Why are they problematic?

Source of neutrinos?

Mainly the Solar neutrinos

Atmospheric and DSNB are subdominant

Sekiya TAUP 2023 Borexino Nature (2018) SNO nucl-ex/0204008 Bergstrom+ 1601.00972 Why are they problematic?

DM-electron scattering

Source of neutrinos?

Mainly the Solar neutrinos

Atmospheric and DSNB are subdominant * Ionisation produce from nuclear recoil can be misidentified as electron recoil

Sekiya TAUP 2023 Borexino Nature (2018) SNO nucl-ex/0204008 Bergstrom+ 1601.00972 Why are they problematic?

Essig+ 1801.10159 Wyenberg+ 1803.08146

Tarak Nath Maity

Knapen+, *DarKEFL*, 2104.12786 Essig+, *QEdark*, 1509.01598 Canddell+, 2305.05125

Event rate

Carew, Caddell, TNM, O'Hare; 2312.04303

N: Exposure/no of background neutrino events $\delta \phi$: Uncertainty in the neutrino flux

Carew, Caddell, TNM, O'Hare; 2312.04303

N: Exposure/no of background neutrino events $\delta \phi$: Uncertainty in the neutrino flux

Carew, Caddell, TNM, O'Hare; 2312.04303

N: Exposure/no of background neutrino events $\delta \phi$: Uncertainty in the neutrino flux

N: Exposure/no of background neutrino events $\delta \phi$: Uncertainty in the neutrino flux

How to calculate the neutrino "floor"? Note: "floor" may not be hard

Define: Gradient of the discovery limit

$$n = -\left(\frac{\mathrm{d}\ln\bar{\sigma}_e}{\mathrm{d}\ln N}\right)^{-1} \qquad \text{O'Hare 2109.0}\\ N: \text{ Exposure}$$

How to calculate the neutrino "floor"? Note: "floor" may not be hard

Define: Gradient of the discovery limit

$$n = -\left(\frac{\mathrm{d}\ln\bar{\sigma}_e}{\mathrm{d}\ln N}\right)^{-1} \qquad \text{O'Hare 2109.0}\\ N: \text{ Exposure}$$

Neutrino fog

Tarak Nath Maity

Neutrino "floor"

Test Standard Model in sub-MeV energy regime with current neutrino events

What can we infer from these neutrinos?

Test Standard Model in sub-MeV energy regime with current neutrino events

Weak mixing angle $A^{\mu} = B_0^{\mu} \cos \theta_W + W_0^{\mu} \cos \theta_W$ $Z^{\mu} = W^{\mu}_{0} \cos \theta_{W} - B^{\mu}_{0} \sin \theta_{W}$ $\sin^2 \theta_W = \frac{g'^2}{g^2 + g'^2}$ $g: SU(2)_L$ gauge coupling g': U(1)_Y gauge coupling Quantum correction Running of weak mixing angle

What can we infer from these neutrinos?

What can we infer from these neutrinos?

Test Standard Model in sub-MeV energy regime with current neutrino events

What can we infer from these neutrinos?

Test Standard Model in sub-MeV energy regime with current neutrino events

What can we infer from these neutrinos?

Test Standard Model in sub-MeV energy regime with current neutrino events

S1-S2 analysis

Tarak Nath Maity

Image credit: 2110.02359, 1903.03026, 0909.1063

No S2/S1 ratio - can't distinguish - nuclear and electron recoil

Tarak Nath Maity

Image credit: 2110.02359, 1903.03026, 0909.1063

No S2/S1 ratio - can't distinguish - nuclear and electron recoil

Tarak Nath Maity

Image credit: 2110.02359, 1903.03026, 0909.1063

No S2/S1 ratio - can't distinguish - nuclear and electron recoil

XENONnT

ar iV > nucl-ex > arXiv:2408.02877

Nuclear Experiment

[Submitted on 6 Aug 2024]

First Measurement of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

Observed events: $10.7^{+3.7}_{-4.2}$ (S1-S2 analysis)

Statistical significance: 2.73 σ

Neutrino events at DD? nuclear recoil

PandaX-4T

$ar \times iv > hep-ex > arXiv:2407.10892$	Search
	Help
High Energy Physics – Experiment	

[Submitted on 15 Jul 2024 (v1), last revised 13 Sep 2024 (this version, v3)]

First Indication of Solar ⁸B Neutrino Flux through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T

Observed events: 3.5 ± 1.3 (S1-S2 analysis) **Observed events:** 78 ± 28 (**S2-only analysis**)

Statistical significance: 2.64 σ

 $u_{e,\mu, au}$

19

XENONnT

ar (iv > nucl-ex > arXiv:2408.02877

Nuclear Experiment

[Submitted on 6 Aug 2024]

First Measurement of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

Observed events: $10.7^{+3.7}_{-4.2}$ (S1-S2 analysis)

Statistical significance: 2.73 σ

Observing essentially the Standard Model process, can we say something new?

Neutrino events at DD? nuclear recoil

PandaX-4T

$ar \times iv > hep-ex > arXiv:2407.10892$	Search
	Help
High Energy Physics – Experiment	

[Submitted on 15 Jul 2024 (v1), last revised 13 Sep 2024 (this version, v3)]

First Indication of Solar ⁸B Neutrino Flux through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T

Observed events: 3.5 ± 1.3 (S1-S2 analysis) **Observed events:** 78 ± 28 (S2-only analysis)

Statistical significance: 2.64 σ

Tarak Nath Maity

 $u_{e,\mu, au}$

19

Our results: nuclear recoil

 $\frac{d\sigma}{dE_N} \propto f(\sin^2\theta_W)$

XENONnT

PandaX-4T

Our results: nuclear recoil

Tarak Nath Maity

TNM, Boehm; 2409.04385

Energy scale determined from recoil energy regime

Tarak Nath Maity

TNM, Boehm; 2409.04385

Our results: electron recoil

S1-S2 only analysis

S2/S1 ratio - can distinguish - nuclear and electron recoil

 $E_{\rm recoil} \gtrsim 0.5 \,\rm keV$

Neutrino-electron scattering

Observed $\nu - e$ events: ~ 60

But statistically not significant due to huge background

XENONnT 2207.11330 LZ 2307.15753 PandaX-4T 2408.07641

Our results: electron recoil S1-S2 only analysis

S2/S1 ratio - can distinguish - nuclear and electron recoil

 $E_{\rm recoil} \gtrsim 0.5 \,\rm keV$

Only upper limits above 1.16 σ

TNM, Boehm; 2409.04385

Neutrino-electron scattering

Observed $\nu - e$ events: ~ 60

But statistically not significant due to huge background

XENONnT 2207.11330 LZ 2307.15753 PandaX-4T 2408.07641

Our results: electron recoil S1-S2 only analysis

S2/S1 ratio - can distinguish - nuclear and electron recoil

 $E_{\rm recoil} \gtrsim 0.5 \,\rm keV$

TNM, Boehm; 2409.04385

Neutrino-electron scattering

Observed $\nu - e$ events: ~ 60

But statistically not significant due to huge background XENONnT 2207.11330 LZ 2307.15753

PandaX-4T 2408.07641

Only upper limits above 1.16 σ

Probing a SM parameter in an entirely new regime

Foe: Slowing down the search of DM

Carew, Caddell, TNM, O'Hare; 2312.04303

Summary

Neutrinos at direct detection

TNM, Boehm; 2409.04385

Summary

Neutrinos at direct detection

TNM, Boehm; 2409.04385

Backup

Neutrino flux

ν Source	$\mathbf{\Phi}(1$
pp	5.98
pep	1.44
hep	7.98
⁷ Be	4.93
⁷ Be	4.50
⁸ B	5.16
13 N	2.78
$^{15}\mathrm{O}$	2.05
17 F	5.28

 $\frac{1 \pm \delta \Phi / \Phi}{1 \pm 0.006} \times 10^{10}$ $(1\pm0.01)\times10^{8}$ $S(1\pm0.30) \times 10^{3}$ $(1\pm0.06)\times10^{8}$ $(1\pm0.06)\times10^{9}$ $5(1\pm0.02)\times10^{6}$ $(1\pm0.15)\times10^{8}$ $5(1\pm0.17)\times10^{8}$ $(1\pm0.20)\times10^{6}$

Low mass Si

25

Neutrino fog Xe

Carew, Caddell, TNM, O'Hare; 2312.04303

Neutrino "floor" and future projections

27

