Leptonic Flavor and CP violation

Yuval Grossman, Technion

यूवाल ग्रोसमेन, टेक्निओन

Leptonic Flavor and CP violation

Introduction

- Neutrino masses and mixings have been found
- Leptons are similar to quarks
- The leptons are a bit behind the quarks

Next: New Physics with leptons

PASCOS 2003

-p.2

In this talk SM: Massive neutrinos with mixings NP: Also new flavor changing interactions

Quarks

PASCOS 2003

- p.3

We understand the SM flavor sector

- The quark masses
- The CKM mixing angles
- Establish δ_{CKM} as a major source of CPV

We look for new physics

- New sources for flavor mixings
- New CP violating sources

Leptons

We are uncovering the SM lepton flavor sector

- Rough idea about the neutrino masses
- Rough idea about the mixing angles

We would like to fully understand the SM lepton sector

- Solid determinations of masses and mixing angles
- Signals of CPV
- Determine the nature of the masses (Dirac or Majorana)

PASCOS 2003

– p.4

What Next?

Can we look for new physics in the lepton sector?

- Additional sources of lepton flavor violation
- Other sources of lepton number violation
- CP violation sources beyond the leptonic mixing matrix

Such searches are well motivated and there are many ways to probe possible new leptonic flavor physics

PASCOS 2003

-p.5

Outline

- Neutrino masses and mixing in the SM
- Searching for new physics
 - New flavor physics with charged lepton decays
 - New flavor physics with neutrino oscillation (work with Gonzalez-Garcia, Gusso and Nir)
 - Lepton number violation with sneutrino oscillation (work with Haber)
- Conclusions

Neutrino masses in the SM

In the "improved" SM we have non-renormalizable terms

$$\frac{\lambda_{ij}}{M} L_i L_j H H \quad \Rightarrow \quad (m_{\nu})_{ij} \sim \lambda_{ij} \frac{v^2}{M}$$

Example: seesaw mechanism

Leptonic Flavor and CP violation

Lepton number violation

- In the "improved" SM neutrinos have Majorana masses
 - "Standard" probe of L violation is $0\nu 2\beta$ decays
 - Are there other sources of $\Delta L = 2$ interactions?
- In general, $(m_{\nu})_{ij} \not\propto (m_{\ell})_{ij} \Rightarrow$ flavor mixing
 - In the SM, flavor is encoded in the mixing matrix U
 - The way to probe it is via neutrino oscillation
 - Is U the only source of flavor mixing?

Charged leptons decays

Leptonic Flavor and CP violation

Charged leptons decays

SM: leptonic GIM is very effective

$$BR(\mu \to e\gamma) \sim 10^{-54} \times \left(\frac{m_{\nu}}{10^{-2} \,\mathrm{eV}}\right)^4$$

SUSY GUT:

 $BR(\mu \to e\gamma) \sim 10^{-12}$

Leptonic Flavor and CP violation

Charged leptons decays

SM: leptonic GIM is very effective

$$BR(\mu \to e\gamma) \sim 10^{-54} \times \left(\frac{m_{\nu}}{10^{-2} \,\mathrm{eV}}\right)^4$$

SUSY GUT:

$$BR(\mu \to e\gamma) \sim 10^{-12}$$

Observation of
$$\mu \rightarrow e\gamma$$

 $\downarrow \downarrow$
New lepton flavor physics

Leptonic Flavor and CP violation

NP with charged leptons

Many decay modes to look at

$$\mu \to e \gamma \quad \mu \to e e e e \quad \tau \to \mu \gamma \quad \tau \to \mu \mu e$$

• Other modes probe $\Delta L = 2$ interactions

$$\tau^- \to \mu^+ \pi^- \pi^-$$

- Relatively easy experimentally
- Probably the best probe of NP

Neutrino oscillation

Leptonic Flavor and CP violation

NP with neutrino oscillation

Usually,

- Neutrino oscillation: probe of neutrino masses and mixing
- Charged lepton decay: probe new physics

However, neutrino oscillation are sensitive to new physics

$$\ell^+: A_{NP}^2 \qquad \nu: A_{NP}$$

PASCOS 2003

– p.13

Thinking about long baseline experiments, we have observables that are linear in the small NP amplitude

Analog: $D - \overline{D}$ Oscillations

We look for

$$\Gamma[D^0(t) \to K^+ \pi^-] \propto e^{-\Gamma t} \left[|r|^2 + 2 \mathcal{I}m(r) \Delta M t + (\Delta M t)^2 \right]$$

$$x \equiv \frac{\Delta M}{\Gamma} \ll 1 \qquad r \equiv \frac{A(D \to K^+ \pi^-)}{A(D \to K^- \pi^+)} \ll 1$$

- 3 terms: DCS decay, mixing and interference
- In general, the interference term enhance the sensitivity

PASCOS 2003

- p.14

Since $x \ll r$, CPV enhances the sensitivity to x

Neutrino Oscillations

- In the SM, $P(\nu_e \rightarrow \nu_\mu)[t=0] = 0$
- With new direct decay term $P(\nu_e \rightarrow \nu_\mu)[t=0] \neq 0$
- Example, LRS: $\mu^+ \rightarrow e^+ \bar{\nu}_{\mu} \nu_e$ and $\mu^+ \rightarrow e^+ \bar{\nu}_{\mu} \nu_{\mu}$

Leptonic Flavor and CP violation

Example:LRS

We define a complex small parameter

$$\epsilon \equiv \frac{G_{\rm NP}}{G_F} \sim \frac{f^2}{g^2} \; \frac{m_W^2}{M_\Delta^2}$$

- The produced state: $|\nu_e^s\rangle = |\nu_e\rangle + \epsilon |\nu_\mu\rangle$
- The detected state: $|\nu_{\mu}^{d}\rangle = |\nu_{\mu}\rangle$ Thus

$$\langle \nu^d_\mu | \nu^s_e \rangle = \epsilon \ \begin{cases} = 0 & {\rm SM} \\ \neq 0 & {\rm NP} \end{cases}$$

PASCOS 2003

- p.16

Can we probe ϵ in neutrino oscillation experiments?

Neutrino oscillations

We consider $\nu_e \rightarrow \nu_\mu$ oscillations (i = 1, 2)

$$P_{e\mu} = \sin^2 x \sin^2 2\theta - \sin 2x \sin 2\theta \,\mathcal{I}m(\epsilon) + |\epsilon|^2 \qquad x = \frac{\Delta m^2 t}{4E}$$

For small x and $\sin 2\theta = 1$

$$P_{e\mu} = |\langle \nu_{\mu}^{d} | \nu_{e}^{s}(t) \rangle|^{2} \sim |\epsilon - ix|^{2} = x^{2} - 2 \mathcal{I}m(\epsilon)x + |\epsilon|^{2}$$

- **9** $O(x^2)$ SM mixing
- $O(x^0)$ Direct decay term
- **9** $O(x^1)$ Interference

When $x > \epsilon$ the interference term enhances the sensitivity to the NP

PASCOS 2003

– p.17

All together

We can measure $P_{\pm} = P_{e\mu} \pm P_{\bar{e}\bar{\mu}}$. For $(x \ll 1)$

$$P_{+} \approx c_{2}x^{2}$$

 $P_{-} \approx a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4}$

where relative to c_2

 $a_1 \sim \mathcal{I}m(\epsilon)$ $a_2 \sim A \mathcal{R}e(\epsilon)$ $a_3 \sim (\Delta m_{12}^2 / \Delta m_{13}^2) \delta$ $a_4 \sim As_{13}$

PASCOS 2003

– p.18

and A is the matter effect

- Different x dependence is crucial
- There is sensitivity to both $\mathcal{I}m(\epsilon)$ and $\mathcal{R}e(\epsilon)$

Sensitivity

Optimistically, muon factory with 10^{20} muons

• Sensitivity up to
$$\epsilon \sim 10^{-5}$$

• Roughly, this is similar to $BR \sim 10^{-10}$ in rare decays

Neutrino oscillation can probe new flavor physics

PASCOS 2003

- p.19

Sneutrino oscillation

Leptonic Flavor and CP violation

New MSSM

Two candidates to extend the SM

- Massive neutrinos. Found
- Supersymmetry. Almost half found

MSSM with massive neutrinos

Leptonic Flavor and CP violation

MSSM with massive neutrinos

Two possible ways

- R-parity conserving supersymmetric extension of the "improved" SM
- R-parity violating supersymmetric extension of the "old" SM

In both cases the effect of the $\Delta L = 2$ interaction is to induce sneutrino "Majorana" mass

$$m_{\Delta L=2}^2 \ \tilde{\nu} \ \tilde{\nu}$$

PASCOS 2003

– p.22

Sneutrino – antisneutrino mixing

We then have

$$\mathcal{L} = m_{\tilde{\nu}}^2 \; \tilde{\nu}^* \tilde{\nu} + m_{\Delta L=2}^2 \; \tilde{\nu} \; \tilde{\nu}$$

where

- $m_{\tilde{\nu}}$: large (~ m_Z) $\Delta L = 0$ SUSY breaking mass
- $m_{\Delta L=2}$: small (~ m_{ν}) $\Delta L=2$ "Majorana" mass

The sneutrino mass squared matrix is

$$\begin{pmatrix} m_{\tilde{\nu}}^2 & m_{\Delta L=2}^2 \\ m_{\Delta L=2}^2 & m_{\tilde{\nu}}^2 \end{pmatrix}$$

PASCOS 2003

– p.23

This results in $\tilde{\nu} - \tilde{\nu}^*$ mixing and small mass splitting

Analog: $B - \overline{B}$ mixing

In the *B* system

$$m_{\Delta B=0} \sim 5 \,\text{GeV}, \qquad m_{\Delta B=2} \sim 3 \times 10^{-4} \,\text{eV}$$

• $B_{L,H} = (B \pm \bar{B})/\sqrt{2}$ with $\Delta m_B/m_B \sim 6 \times 10^{-14}$

• Oscillations: $P(B \to \overline{B}) = \frac{1}{2}e^{-\Gamma t}(1 - \cos \Delta mt)$

Same sign dilepton events

No mixing $e^+e^- \to B\bar{B} \to \ell^+\ell^- X$ With mixing $e^+e^- \to B\bar{B} \to BB \to \ell^+\ell^+ X$

PASCOS 2003 – p.24

To observe oscillation $\Delta m/\Gamma$ should not be very small

Sneutrino mixing

The sneutrino system is very similar

The mass eigenstates are

$$\tilde{\nu}_{1,2} = (\tilde{\nu} \pm \tilde{\nu}^*)/\sqrt{2}$$

Very small mass splitting

 $\Delta m_{\tilde{\nu}}/m_{\tilde{\nu}} \ll 1$

PASCOS 2003

– p.25

- Expectation: $\Delta m_{\tilde{\nu}} \sim m_{\nu}$
- The sneutrino exhibits lepton number oscillation

Example: Super see saw mechanism

With one generation we add a singlet \hat{N}

$$W = \lambda \hat{H}_u \hat{L} \hat{N} + \frac{1}{2} M \hat{N} \hat{N}$$
$$V_{\text{soft}} = m_{\tilde{L}}^2 \tilde{\nu}^* \tilde{\nu} + m_{\tilde{N}}^2 \tilde{N}^* \tilde{N} + (\lambda A_\nu H_u \tilde{\nu} \tilde{N}^* + M B_N \tilde{N} \tilde{N} + \text{h.c.})$$

Dirac mass: $m_D = \lambda v_u$ Seesaw scale: M

- Neutrino mass $m_{\nu} = m_D^2/M$
- Sneutrino masses $m_{\tilde{\nu}}^2 = m_{\tilde{L}}^2 + \frac{1}{2}m_Z^2\cos 2\beta \pm \Delta m_{\tilde{\nu}}^2$

$$\Delta m_{\tilde{\nu}} = 2 \, m_{\nu} \times \, (A_{\nu} - \mu \cot \beta - B_N) / m_{\tilde{\nu}}$$

• $\Delta m_{\tilde{\nu}} \sim m_{\nu}$ when all the mass parameters are $O(m_Z)$,

Leptonic Flavor and CP violation

Experimental signatures

Model dependent

- $\Delta m_{\tilde{\nu}} \gtrsim 1 \,\text{GeV}$: Direct reconstruction
- $\Delta\Gamma_{\tilde{\nu}}/\Gamma_{\tilde{\nu}} \gtrsim 1$: Measure $\Delta\Gamma_{\tilde{\nu}}$
- Indirect effect $0\nu 2\beta$ and $e^-e^- \rightarrow \chi^-\chi^-$
- Most promising $x_{\tilde{\nu}} \equiv \Delta m_{\tilde{\nu}} / \Gamma_{\tilde{\nu}} \gtrsim 1$: Same sign lepton signal

$$e^+e^- \to \tilde{\nu}\tilde{\nu}^* \to \tilde{\nu}\tilde{\nu} \to \ell^-\ell^- X$$

PASCOS 2003

– p.27

Higher sensitivity when $\Gamma_{\tilde{\nu}}$ is small

Sneutrino mixing: Conclusions

- Sneutrino antisneutrino mixing is another probe of L violation
- Sneutrino exchange contributes to $0\nu 2\beta$
- In practice, it can be observed in part of the parameter space where $\Delta m/\Gamma$ is not too small

PASCOS 2003

– p.28

Conclusions

Leptonic Flavor and CP violation

Conclusions

- We are currently probing the SM leptonic sector
 - Measuring neutrino masses
 - Measuring mixing angles
 - Thinking about finding CPV
- We also look for new sources of flavor and CPV

PASCOS 2003

- p.30

- Charged leptons decay
- Neutrino oscillation
- Sneutrino oscillation
- Other methods