In Search of the Perfect Fluid

Thomas Schaefer, North Carolina State University
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See T. Schafer, D. Teaney, “Perfect Fluidity” [arXiv:0904.3107]



The bottom-line

Remarkably, the best fluids that have been ob-
served are the coldest and the hottest fluid
ever created in the laboratory, cold atomic gases
(107°K) and the quark gluon plasma (102K ) at
RHIC.

Both of these fluids come close to a bound on
the shear viscosity that was first proposed based
on calculations in string theory, involving non-
equilibrium evolution of back holes in 5 (and more)

dimensions.



Measures of Perfection

Viscosity determines shear stress ( “friction”) in fluid flow
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Other sources of dissipation (thermal conductivity,
bulk viscosity, ...) vanish for certain fluids, but

shear viscosity is always non-zero.

There are reasons to believe that 7 is bounded from

below by a constant times As/kp. In a large class
of theories /s > h/(4rwkp).

A fluid that saturates the bound is a “perfect fluid”.



Fluids: Gases, Liquids, Plasmas, ...

Hydrodynamics: Long-wavelength, low-frequency
dynamics of conserved or spontaneously broken sym-
metry variables.
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Historically: Water
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Simple fluid: Conservation laws for mass, energy, momentum
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Constitutive relations: Energy momentum tensor
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reactive dissipative 2nd order
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Kinetic Theory

Kinetic theory: conserved quantities carried by quasi-particles

9,
aép + U V Ip +F- fop Clfp]
)
|
n~ gnplmfp

Normalize to density. Uncertainty relation suggests
no

Also: s ~ kpn and /s > h/kp

Validity of kinetic theory as pl,,¢, ~ h?



Effective Theories for Fluids (Here: Weak Coupling QCD)




Holographic Duals: Transport Properties

Thermal (conformal) field theory = AdSs5 black hole

CFT temperature < Hawking temperature

Hawking-Bekenstein entro
CFT entropy =3 WHING | b

~ area of event horizon
Graviton absorption cross section
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Holographic Duals: Transport Properties

Thermal (conformal) field theory = AdS5 black hole

Hawking-Bekenstein entro
CFT entropy =3 5 b

~ area of event horizon
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Strong coupling limit
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Strong coupling limit universal? Provides lower bound for all theories?



Effective Theories (Strong coupling)




Kinetics vs No-Kinetics
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Kinetics vs No-Kinetics

Spectral function p(w) = ImGRr(w,0) associated with T},
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Perfect Fluids: How to be a contender?

Bound is quantum mechanical
need quantum fluids
Bound is incompatible with weak coupling and kinetic theory
strong interactions, no quasi-particles
Model system has conformal invariance (essential?)

(Almost) scale invariant systems



Perfect Fluids: The contenders

Liquid Helium
T=0.1 meV)

QGP (T=180 MeV

Trapped Atoms
(T=0.1 neV)



Perfect Fluids: The contenders

Liquid Helium
n=17-10"%Pa - s

QGP n=5-10"Pa - s
Consider ratios

Trapped Atoms n/s
n=17-10"%Pqg-s



Kinetic Theory

. Quasiparticles

low temperature

unitary gas

phonons
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helium phonons, rotons
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QCD pions

high temperature

atoms

X

atoms
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quarks, gluons

X Oo=X
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Theory Summary
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|. Experiment (Liquid Helium)
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n/s ~0.8h/kp



Il. Hydrodynamics (Cold atoms)

Radial breathing mode  Ideal fluid hydrodynamics (P ~ n5/3)
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experiment: Kinast et al. (2005)



Viscous Hydrodynamics

Energy dissipation (n, (, k: shear, bulk viscosity, heat conductivity)
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Shear viscosity to entropy ratio
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Schaefer (2007), see also Bruun, Smith
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Dissipation

E/Ep = 0.56
E/Ep =2.1
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Dissipation

E/Ep = 0.56

E/Ep =2.1
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I1I. Elliptic Flow (QGP)

Hydrodynamic
expansion converts
coordinate space
anisotropy
to momentum space

anisotropy
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Viscosity and Elliptic Flow

Consistency condition 1}, > 01},

(applicability of Navier-Stokes)
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Danielewicz, Gyulassy (1985)

Very restrictive for 7 < 1 fm

Romatschke (2007), Teaney (2003)

Many questions: Dependence on initial conditions, freeze out, etc.



Outlook

Too early to declare a winner.

n/s ~ 0.8 (He), n/s < 0.5 (CA), n/s < 0.5 (QGP)

Other experimental constraints, more analysis needed.

Kinetic theory: o.k. in He (all T'), o.k. close to T, in CA, QGP?

New theory tools: AdS/Cold Atom correspondence? Field theory

approaches in cross over regime (large N, epsilon expansions, .. .)



