
Lecture 1

Symmetries

Our modern understanding of particle physics rests on the fundamental
concept of a “symmetry” i.e. invariance of the laws of physics under certain
transformations. Every conserved quantity (e.g. angular momentum) can be
thought of as arising through an underlying symmetry. There are two main
categories — space-time symmetries and “internal” symmetries.

For 4D space-time, the symmetries form the so called the Poincaré group
which includes Lorentz transformations (3 space rotations + 3 space-time
boosts) and translations along each of the 4 axes. This means essentially that
the laws of physics do not change if you move from one location to another,
or if you choose to move with a constant velocity, or if you orient yourself in
a different direction. As we shall see, requiring this invariance automatically
implies conservation of momentum. Furthermore, what we call “spin” turns
out to be a fundamental property of how a particle transforms under Lorentz
transformations.

Aside from conserving energy-momentum etc., we also observe conserva-
tion of electric charge. This too also be understood as a result of an underly-
ing internal symmetry called a U(1) symmetry. The full internal symmetry
of the Standard Model is known to be SU(3)×SU(2)×U(1). The goal of this
chapter (lectures 1–5) is to introduce what these symbols mean and how
these symmetries are described mathematically to be able to write equations
of motion for particles.

1 Lagrangian and equations of motion in clas-

sical mechanics

The Lagrangian L is a mathematical function defined (classically) as the
difference of kinetic energy and potential energy. It is important because
minimising the action, defined as

S =
∫
Ldt (1.1)
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seems to return the equation of motion. In short, for a point particle with
co-ordinates (x, y, z) moving under a potential V (x, y, z) we have:

L = T − V
=

m

2
(ẋ2 + ẏ2 + ż2)− V (x, y, z) (1.2)

Minimising the action gives the general form of the equation of motion:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (1.3)

∂L

∂ż
= mż

∂L

∂z
=

∂V

∂z

Which recovers Newton’s second law, i.e.

⇒ mẍ−∇V = 0 (1.4)

The Lagrangian is preferred because one can derive the equations of mo-
tion irrespective of the co-ordinates used. We could just as well have writ-
ten the lagrangian in terms of spherical co-ordinates. Furthermore, it is
possible to read out conserved quantities easily. For example, assume that
V (x, y, z) = −mgz (i.e. it is independent of x,y). Then we automatically
have

mẍ = 0 & mÿ = 0 (1.5)

⇒ mẋ = const & mẏ = const

pointing to the conservation of momenta in x & y directions. In the z-
direction, the equation of motion is our standard Newton’s second law

mz̈ = −mgz
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Exercise 1.1

1. Write the general lagrangian for a single particle in cyclical co-
ordinates in 2D and show that the angular momentum is a con-
served quantity if the potential depends only on the radial co-
ordinate.

2. Re-write the lagrangian in Cartesian co-ordinates. What does
the conserved angular momentum correspond to?

Notice that if written in Cartesian co-ordinates, one has to combine terms
in order to arrive at the conserved quantity. A clever thing to do would be
to figure out the right co-ordinate system such that all conserved quantities
would be clearly readable from the equations of motion (which were indeed
studied extensively in the eighteenth century). However, an ingenious the-
orem was developed by Emmy Nœther to map out all conserved quantities
(or “invariants”) of a theory which we will study presently.

2 Lagrangian for a scalar field

We now generalise the Lagrangian for use with fields instead of particles. This
simply amounts to writing the Lagrangian in terms of functions of space-time,
e.g. real scalars φ(x) instead of position x or canonical co-ordinates q. We
start with the classical description. In your quantum field theory course, you
will learn how the field can be quantised.

The Lagrangian for a scalar particle in 4D is written as

L(φ) =
1

2
∂µφ∂

µφ− 1

2
M2φ2 (1.6)

Functions of functions are called functionals. In day-to-day calculations,
you can get away by treating them as ordinary co-ordinates except that
“differentiation with respect to the function” is denoted by a δ rather than
a d (i.e. like dx is the infinitesimal change in x, δφ is the infinetismal change
in φ).

If the field φ changes by an infinetesimal amount δφ, we have (retaining
terms up to order δφ)

L(φ+ δφ) = L(φ)− ∂µφ∂µδφ−M2φδφ (1.7)
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Notice that
δL
δφ

= −M2φ and
δL
δ∂µφ

= ∂µφ

This confirms that the functional follows the same differential rule as ordinary
differentiation. We can write (using δ∂µφ = ∂µδφ)

δL =
δL
δ∂µφ

δ∂µφ+
δL
δφ
δφ (1.8)

The equations of motion are obtained by a corresponding formula

∂µ

(
δL
δ∂µφ

)
− δL
δφ

= 0 (1.9)

You can check that this results in the right equation of motion, viz. the Kein-
Gordon equation.

(∂µ∂
µ +M2)φ = 0

Exercise 1.2

The Lagrangian for a complex scalar field φ is given by

L(φ) =
1

2
∂µφ

∗∂µφ− 1

2
M2φ∗φ (1.10)

1. Rewrite φ in terms of component fields φ1 + iφ2. What does this
Lagrangian correspond to? Write it in terms of column matrix

Φ =

(
φ1

φ2

)

2. Check that the Lagrangian in (1.10) is invariant under the trans-
formation φ→ eiαφ.

3. What does this transformation correspond to in terms of Φ?

3 Nœther theorem: conserved currents & charges

In the above exercise, we saw an example of what is called a “symmetry”
of the theory — a transformation under which the Lagrangian remains un-

4



changed. Consider the expression

jµ = i(φ∗∂µφ− φ∂µφ∗)

it is easy to check that
∂µj

µ = 0

once we use the equations of motion (−∂µ∂µ +M2)φ(∗) = 0. We expect this
quantity to be conserved. Notice also its similarity to angular momentum
i(x∂y − y∂x). We will clarify this correspondence in the next few lectures.
But how does one arrive at this expression?

Let us start again with (1.8)

δL =
δL
δ∂µφ

δ∂µφ+
δL
δφ
δφ

Using δ∂µφ = ∂µδφ, we can write this as

δL =
δL
δ∂µφ

∂µδφ+
δL
δφ
δφ

Further using the equation of motion (1.9) and substituting for

δL
δφ

= ∂µ

(
δL
δ∂µφ

)

we have,

δL =
δL
δ∂µφ

∂µδφ+ ∂µ

(
δL
δ∂µφ

)
δφ

= ∂µ

(
δL
δ∂µφ

δφ

)
≡ ∂µj

µ (1.11)

If the Lagrangian dependes on many fields {φi}, the equation is modified to
a sum over all fields

δL = ∂µ

(
δL
δ∂µφi

δφi

)
≡ ∂µj

µ (1.12)

The equations of motion are unchanged if Lagrangian changes by a total
derivative ∂µΛµ. The most general definition of jµ is then

jµ ≡
(

δL
δ∂µφi

δφi

)
− Λµ (1.13)
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Let us now go back to the symmetry of the Lagrangian in (1.10), i.e.φ→ eiαφ.
Under this transformation, we have

δφ = eiαφ− φ = iφ

δφ∗ = e−iαφ− φ = −iφ∗

Therefore, considering φ and φ∗ as the two degrees of freedom, we arrive at
the expression for jµ

jµ = i(φ∗∂µφ− φ∂µφ∗) (1.14)

The form of jµ is determined entirely by the inherent symmetry of the
Lagrangian. In the next lecture we will formalise the notion of symmetry
using group theory.

Exercise 1.3

Verify that the expression for jµ remains the same even when written
in terms of real components (φ1 + iφ2).

1. Assuming α is small, find the transformations of φ1 and φ2

2. Calculate jµ using equations (1.12) and (1.14).

Take home points

1. Lagrangian formulation is a way to describe physics that makes
it easy to determine conserved quantities

2. Equations of motion describe how a particle moves or a field
evolves given initial conditions. Minimising the Lagrangian gives
equations of motion.

3. The Lagrangian for a single complex scalar of mass M is invariant
under the transformation φ→ eiαφ

4. For any transformation under which the Lagrangian remains in-
variant (up to total derivative), there is a unique conserved cur-
rent. Finding all possible transformations under which the La-
grangian is invariant will give all conserved currents.
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