Lecture 1

Symmetries

Our modern understanding of particle physics rests on the fundamental
concept of a “symmetry” i.e. invariance of the laws of physics under certain
transformations. Every conserved quantity (e.g. angular momentum) can be
thought of as arising through an underlying symmetry. There are two main
categories — space-time symmetries and “internal” symmetries.

For 4D space-time, the symmetries form the so called the Poincaré group
which includes Lorentz transformations (3 space rotations + 3 space-time
boosts) and translations along each of the 4 axes. This means essentially that
the laws of physics do not change if you move from one location to another,
or if you choose to move with a constant velocity, or if you orient yourself in
a different direction. As we shall see, requiring this invariance automatically
implies conservation of momentum. Furthermore, what we call “spin” turns
out to be a fundamental property of how a particle transforms under Lorentz
transformations.

Aside from conserving energy-momentum etc., we also observe conserva-
tion of electric charge. This too also be understood as a result of an underly-
ing internal symmetry called a U(1) symmetry. The full internal symmetry
of the Standard Model is known to be SU(3)xSU(2)xU(1). The goal of this
chapter (lectures 1-5) is to introduce what these symbols mean and how
these symmetries are described mathematically to be able to write equations
of motion for particles.

1 Lagrangian and equations of motion in clas-
sical mechanics

The Lagrangian L is a mathematical function defined (classically) as the
difference of kinetic energy and potential energy. It is important because
minimising the action, defined as

S = /Ldt (1.1)



seems to return the equation of motion. In short, for a point particle with
co-ordinates (z,y, z) moving under a potential V' (z,y, z) we have:

L = T-V
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Minimising the action gives the general form of the equation of motion:
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Which recovers Newton’s second law, i.e.
=>mx—-VV = 0 (1.4)

The Lagrangian is preferred because one can derive the equations of mo-
tion irrespective of the co-ordinates used. We could just as well have writ-
ten the lagrangian in terms of spherical co-ordinates. Furthermore, it is
possible to read out conserved quantities easily. For example, assume that
V(z,y,z) = —mgz (i.e. it is independent of x,y). Then we automatically
have

mi=0 & mij=0 (1.5)

= ma = const & my = const

pointing to the conservation of momenta in x & y directions. In the z-
direction, the equation of motion is our standard Newton’s second law

mz = —mgz



1. Write the general lagrangian for a single particle in cyclical co-
ordinates in 2D and show that the angular momentum is a con-
served quantity if the potential depends only on the radial co-
ordinate.

2. Re-write the lagrangian in Cartesian co-ordinates. What does
the conserved angular momentum correspond to?

Notice that if written in Cartesian co-ordinates, one has to combine terms
in order to arrive at the conserved quantity. A clever thing to do would be
to figure out the right co-ordinate system such that all conserved quantities
would be clearly readable from the equations of motion (which were indeed
studied extensively in the eighteenth century). However, an ingenious the-
orem was developed by Emmy Ncether to map out all conserved quantities
(or “invariants”) of a theory which we will study presently.

2 Lagrangian for a scalar field

We now generalise the Lagrangian for use with fields instead of particles. This
simply amounts to writing the Lagrangian in terms of functions of space-time,
e.g. real scalars ¢(x) instead of position z or canonical co-ordinates q. We
start with the classical description. In your quantum field theory course, you
will learn how the field can be quantised.

The Lagrangian for a scalar particle in 4D is written as

£(6) = 50,606 — S M6 (1.6)
Functions of functions are called functionals. In day-to-day calculations,
you can get away by treating them as ordinary co-ordinates except that
“differentiation with respect to the function” is denoted by a ¢ rather than
a d (i.e.like dzx is the infinitesimal change in z, d¢ is the infinetismal change
in ¢).
If the field ¢ changes by an infinetesimal amount d¢, we have (retaining
terms up to order d¢)

L(¢+0¢) = L(§) — 0,60"0¢ — M*¢3¢ (1.7)



Notice that % %
= — _M?
50 ¢ and 50,0

This confirms that the functional follows the same differential rule as ordinary
differentiation. We can write (using 60,¢ = 0,0¢)
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The equations of motion are obtained by a corresponding formula
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You can check that this results in the right equation of motion, viz. the Kein-

Gordon equation.
(0,0" + M*)¢ =0

The Lagrangian for a complex scalar field ¢ is given by
1 * QU 1 2 %
L(9) = 504906 — M" (1.10)

1. Rewrite ¢ in terms of component fields ¢, +i¢. What does this
Lagrangian correspond to? Write it in terms of column matrix
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2. Check that the Lagrangian in (1.10) is invariant under the trans-

formation ¢ — e™g.

3. What does this transformation correspond to in terms of ®?

3 Noether theorem: conserved currents & charges

In the above exercise, we saw an example of what is called a “symmetry”
of the theory — a transformation under which the Lagrangian remains un-
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changed. Consider the expression

j* =1i(¢"0"d — 90"¢")
it is easy to check that

Ot =0

once we use the equations of motion (—8,0" + M?)¢™*) = 0. We expect this
quantity to be conserved. Notice also its similarity to angular momentum
i(x0y — y0,). We will clarify this correspondence in the next few lectures.
But how does one arrive at this expression?

Let us start again with (1.8)
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Using 00,¢ = 0,0¢, we can write this as
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Further using the equation of motion (1.9) and substituting for

6L _ ) (IL
55 =2 (i)

we have,
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If the Lagrangian dependes on many fields {¢;}, the equation is modified to
a sum over all fields

5L L
5L =0, (5(%@ qs) = 0,j" (1.12)

The equations of motion are unchanged if Lagrangian changes by a total
derivative 9,A*. The most general definition of j# is then

= (5325@) —AF (1.13)
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Let us now go back to the symmetry of the Lagrangian in (1.10), i.e. ¢ — €™“¢.
Under this transformation, we have

56 = %6 — ¢ = io
5¢*:€—ia¢_¢:_i¢*

Therefore, considering ¢ and ¢* as the two degrees of freedom, we arrive at
the expression for j*

j* = i(¢* 0" — 09" (1.14)
The form of j* is determined entirely by the inherent symmetry of the

Lagrangian. In the next lecture we will formalise the notion of symmetry
using group theory.

Verify that the expression for j* remains the same even when written
in terms of real components (¢; + igs).

1. Assuming « is small, find the transformations of ¢; and ¢

2. Calculate j* using equations (1.12) and (1.14).

Take home points

1. Lagrangian formulation is a way to describe physics that makes
it easy to determine conserved quantities

2. Equations of motion describe how a particle moves or a field
evolves given initial conditions. Minimising the Lagrangian gives
equations of motion.

3. The Lagrangian for a single complex scalar of mass M is invariant
under the transformation ¢ — e

4. For any transformation under which the Lagrangian remains in-
variant (up to total derivative), there is a unique conserved cur-
rent. Finding all possible transformations under which the La-
grangian is invariant will give all conserved currents.



